
HAL Id: tel-03539538
https://theses.hal.science/tel-03539538

Submitted on 21 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vibro-acoustic study of the clavichord
Jean-Théo Jiolat

To cite this version:
Jean-Théo Jiolat. Vibro-acoustic study of the clavichord. Acoustics [physics.class-ph]. Sorbonne
Université, 2021. English. �NNT : 2021SORUS171�. �tel-03539538�

https://theses.hal.science/tel-03539538
https://hal.archives-ouvertes.fr


École doctorale de Sciences Mécaniques, Acoustique,
Électronique et Robotique de Paris (ED 391)

Thèse
pour obtenir le grade de docteur de

Sorbonne Université
Spécialité "Acoustique"

Vibro-Acoustic Study of the
Clavichord

Par Jean-Théo Jiolat

Soutenue le 25 juin 2021 devant le jury composé de :

Rapporteur : Emmanuel Foltête, Professeur, ENSMM, Besançon
Rapporteur : François Gautier, Professeur, ENSIM, Le Mans
Examinateur : José Antunes, Principal Researcher, C2TN, Bobadela
Examinateur : Régis Marchiano, Professeur, SU, Paris
Examinatrice : Caroline Traube, Professeure, Université de Montréal, Montréal
Directeur de thèse : Christophe D’Alessandro, Directeur de Recherche CNRS, SU, Paris
Co-directeur de thèse : Jean-Loïc Le Carrou, Maître de Conférences HDR, SU, Paris
Invitée : Théodora Psychoyou, Maîtresse de Conférences, SU, Paris
Invité : Thomas Steiner, Chercheur associé, Université de Bâle, Bâle





Bin ich dann gleich von Schmerz umgeben,
So schaffest du mir Trost und Ruh.
O wäre doch mein ganzes Leben
So freudenvoll und sanft wie du.

Dank, Dank sey dem der dich erfunden,
Mein silbertönendes Klavier!

Durch dich versüss’ ich trübe Stunden
Durch deine sanfte Töne mir.

Ernestine Krüger (1767-1843), "An das Clavier wenn es rein gestimmt is".1

Ted Rosenthal: When I was listening to your "Book of Ways,"(clavichord
improvisations) there were a number of pieces that were in a contrapuntal, perhaps
baroque or early classical style. So I thought you were improvising in that style.

Keith Jarrett: Well, when sound takes me there, then it’s not improvising in a
style to me. It’s the sound (and) how it relates to what I’ve heard maybe. It can
turn into that especially if the instrument is so provocatively historical which, of

course the clavichord is.

Interview between Keith Jarrett and Ted Rosenthal, ‘The Insanity of Doing More
than One Musical Thing’, Piano and Keyboard Magazine (January 1997).

1Georg Jacob Decker, Anleitung zur Singkomposition, Berlin, 1781, Allgemeine Musik-
Gesellschaft Zürich, Signatur: AMG III 711, Dauerleihgabe in der Zentralbibliothek Zürich.
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Chapter 1

Context and positioning of the PhD

This PhD is devoted to the vibro-acoustic study of the clavichord. It aims at high-
lighting the specific vibro-acoustic features of this instrument from its excitation
system to the vibration of the sympathetic strings. The excitation system is sig-
nificantly different from that of the other keyboard instruments. It is possible to
control the pitch of the clavichord vibrating string after exciting it. No other acous-
tic keyboard instrument is able to create such an effect. This is the reason why the
clavichord was commonly considered, mostly in the XVIIIth Germany, as the most
expressive keyboard instrument. Indeed, the clavichord player can take advantage
of this control to enhance the expressivity of its musical playing, for example by
producing vibrato. Also, because of its mechanical constraints, this clavichord ex-
citation system imposes a specific gesture to achieve this expressivity. One has to
play fast in order to play loudly, while mastering the control of the produced sound
pitch. As a result, keyboard players used this instrument to shape their musical
gesture. The clavichord pedagogical quality was especially acknowledged by Carl
Philipp Emmanuel Bach, who claimed that it was his most favoring instrument [1].
The sympathetic strings play a significant role in the acoustic functioning of the
clavichord. The sound produced by the clavichord is not very loud, largely out-
matched by that of the piano and the harpsichord. The reverberation effect created
by the sympathetic strings is often used in the case of the clavichord to increase
the produced sound loudness. Also, some of these sympathetic strings can resonate
because of frequency coincidence with the excited string. This is generally avoided
by the clavichord makers because this resonance could be detrimental for the mu-
sical sound. The excitation system of the clavichord and its sympathetic strings
vibration creating reverberation and resonance are the two main topics studied in
the work. A modelling of the clavichord is proposed by means of a formulation con-
ceived to model coupled mechanical systems. To study these vibro-acoustic features,
the model is simulated and compared with measurements.

The aim of the present chapter is to introduce the clavichord, considering its
organological and acoustic features, along side with the presentation of the clavichord
studied in this PhD, and setting the context related to the scientific study of this
instrument. To start with, a brief organological description of the clavichord is given
in section 1.1. An historical account of the organological evolution of this instrument
is given in section 1.2. Then, the specific clavichord chosen for our study is presented
in section 1.3 whose instrument making is based on a specific clavichord historical
model. The differences between the two are underlined in the same section. All
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the scientific studies that have been done so far on the clavichord is summed up in
section 1.4. Considering that the clavichord is an acoustic keyboard instrument, a
brief state of the art of musical acoustic studies on the piano and the harpsichord
is given in section 1.5. Since this PhD focuses on the modelling of the clavichord
by considering it like a mechanical coupled system, an overview of coupling models
used in musical acoustics is provided in section 1.6. Finally, the specific objectives
of this PhD are presented in details in section 1.7.

1.1 Organological description of the clavichord
Along a time span of five centuries, the clavichord has undergone a few organolog-
ical evolutions of different kinds with respect to the different European and South
American countries. Nevertheless, there are organalogical invariants regarding this
instrument which forge its identity. First of all, the clavichord has rectangular
dimensions, except for some instruments which are polygonal. Even wing-shaped
clavichords dating back to at least 1470 have existed [2]. In the right hand side of
the instrument, there is the soundboard whose dimensions vary depending on the
different clavichords. In its left hand side and at its centre, all the organological
elements constituting the excitation system are found. Namely, these are the keys
whose extremities are located below the strings. The stringing occupies the whole
dimensions of the instrument (see figure 1.1).

Figure 1.1: A view from above of the LAM1 clavichord (copy of a model designed by
Christian Gottlob Hubert, see section 1.3) designed by E. Dancet and M. Ducornet,
with the principal parts.
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The strings are stretched by means of tuning pins laid out on the soundboard.
The other strings’ extremity is placed at the left hand side of the clavichord by
means of hitch-pins. It is possible to divide the strings in three parts : 1. the part
which goes from the hitch-pin to the tangent (damped part of the string), 2. the
part which goes from the tangent to the bridge pin (played part of the string), 3.
and the part which goes from the bridge pin to the tuning pin, which is commonly
called the sympathetic part of the string. A strip of cloth is laid out at the extremity
of the strings, near the hitch-pin, in order to damp the strings’ vibration once their
corresponding keys are released. This instrument is usually double strung, which
means that each note is produced by the excitation of a pair of strings. As to the
clavichord presented in figure 1.1, it is fretted from the F2 − F#2 pair of strings up
to the final treble string, which means that two tangents strike the same string at
two different locations to produce two different notes separated by a half tone.

The way this instrument functions is simple : a small metal blade called the
tangent is laid out at the extremity of each key (see figure 1.2). Once the musician
finger presses one of the keys, the tangent is uplifted on the basis of the lever prin-
ciple. As the tangents are located below the strings, the uplifted tangent impacts
a pair of strings. As long as the finger pressure on the key remains, the tangent
remains in contact with the pair of strings. Then, the tangent becomes a bound-
ary condition working like a nut. Following the impact, the pair of strings is put
into vibration according to a length bounded by the tangent and the bridge. The
instrument strings are pressed vertically on the bridge and pressed horizontally on
the pins laid out along the bridge (see figure 1.2). This contact leads to the cou-
pling of the strings with the clavichord soundboard. By means of this coupling,
the vibratory energy of the excited strings is transmitted to the soundboard whose
role is to radiate the sound in the air. The tangent is in contact with the string as
long as the musician finger remains pressed on the key. After the tangent impact,
it uplifts the string with a height determined by the finger force exerted on the key.
By uplifting the key, the excited string tension increases. This increase in tension
leads to the increase in the string fundamental frequency. The frequency variation
created by the variation of the finger pressure is audible [3]. Thus, this excitation
mechanism leads to a direct control on the excited string frequency by the musician.
This is the most singular acoustic feature of the clavichord, which is not found in
any other keyboard string instruments. To play the clavichord with rigour, one must
develop a specific gesture adapted to the mechanical constraints imposed by the ex-
citation system [4].A summary of all the main vibratory components is present with
a block diagram presented in figure 1.3. This diagram summarises the interaction
of each of these components from the input given to the system up to the output
produced by it. To model the instrument, only a few of these components can be
taken into account: The key-tangent substructure, the muffled strings, the played
strings, the sympathetic strings and the bridge. This reduction of the clavichord can
be simulated in order to focus on the interested physical phenomena. The selected
components are pointed out by the red color.
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(a) (b)

Figure 1.2: Coupling point of the string and the pin laid out on the bridge (a),
Tangent impacting the string (b).

Figure 1.3: Block diagram of the vibro-acoustic functioning of the clavichord, where
the part in red refers to the components that are modelled in this work.
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1.2 Historical account of the clavichord
In this section, a historical overview of the clavichord focused on its organological
evolution is presented. The amount of information gathered here comes from the
monograph written by B. Brauchli [1].

1.2.1 Origin of the clavichord

The origin of the clavichord comes from the monochord, a medieval instrument. It
consists in a soundboard where a string is stretched at its two extremities. The bridge
coupling the string with the soundboard is not fixed. It can be displaced at different
points of the string. This unfixed bridge was a tool for theoreticians of the time to
study the harmonic relations between partials and string lengths. The arithmetic
ratios put forward by this instrument brought its contribution during the medieval
period to spread the Pythagorean theory, which postulate that the intervals’ ratios
in the case of musical instruments (musica instrumentalis) are analogous to the
proportions of the human body (musica humana) and ultimately to the harmony
of the cosmos (musica mundana) [5, 1]. Different instruments are derived from
the monochord. By adding more strings to the same soundboard, it gave birth to
the psaltery. Also, a keyboard has been added to the monochord. The origin of the
keyboard comes from the organ, which was invented by Ctesibius in the IIIth century
before Christ. With a parallel stringing and with a fixed bridge, the purpose was
to excite the different strings having different lengths by means of the keyboard to
play different notes. This is the way the clavichord came into being. One of the first
occurrence of the term "clavichord" (clavicordium) in the treaties is found in the
Minne Regel (The Rules of the Minnesinger) written in 1404 by Eberhard Cerne de
Minden. Given the date of this treaty, the first medieval clavichords date back at
least to the end of the XIVth century.

1.2.2 XVth century clavichords

Among all the clavichords built in the XVth century, none of them have survived.
These clavichords have been studied and reconstructed by means of iconographic
documents, treaties and textual sources. The oak carving of the altarpiece in the
Cathedral of Minden, dating back to 1425, presents one of the first representation
of the clavichord. These medieval clavichords have only a few strings (between 12
and 13 strings). At that period, the clavichord had the dimensions of a rectangular
box with a small size. All the strings are fretted, that means that many tangents
strike the same string at different locations in order to play many notes on the
same string. As a result, these clavichords possess more keys than strings. Also,
all the strings have the same length and the stringing is parallel to the keyboard.
The soundboard is placed underneath the key levers and occupies all the length of
the instrument. The first organological treaty dealing with the clavichord, among
other instruments, is the one written by Arnault de Zwolle (c. 1440). In this treaty,
stringing dimensions of the clavichord are indicated. It contains a diagram indicating
the distribution of the tangents and that of the strings, as well as a detailed plan
of construction of the instrument. This clavichord is tuned with respect to the
Pythagorean temperament. The treaty puts forward that the unison tuning of all
the strings, the one that was used before, has been abandoned in order to change
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the distances between the tangents. One of the most important representation of
the clavichord at that time is the intarsia of Urbino (1479-1482), which is found in
the Urbino ducal palace walls. It was done under the direction of Baccio Pontelli
during the reign of Duke Federigo da Montefeltro (see figure 1.4).

Figure 1.4: Intarsia of the Urbino ducal palace representing a clavichord (1479-
1482) (ref : http://www.gutenberg-e.org/kirkbride/detail/us_clavichord.
html [consulted in 06/01/2021])

1.2.3 XVIth century clavichords

When it comes to the XVIth century, five clavichords of this period remains (to
see an iconographic example, see figure 1.5; as for a real clavichord, see figure 1.6).
One of the major evolution of the clavichord is the development of the soundboard.
Medieval clavichords possess a soundboard located underneath the key levers. Be-
cause of this, the bridge was lengthened in height in order to support adequately
the strings. However, a high bridge as such is inadequate to transmit vibratory
energy from the strings to the soundboard. That is the reason why the soundboard
was displaced to the right hand side of the instrument. Also, to enhance the sound
quality of the bass strings, they were lengthened. By lengthening these strings,
their tension needs to be higher to obtain the same note. This increase in tension
implies a stronger static charge from the string on the bridge. This enables a better
transmission of the vibratory energy to the soundboard, hence these bass strings can
sound better in such a way. Because of this lengthening, the whole stringing needed
to be lengthened, which led to an enlargement of the clavichor dimension. Then,
new strings were added at the treble range. The XVIth century clavichord ended
up with an ambitus of 4 octaves or more. In addition to the main soundboard laid
out at the right hand side of the instrument, these clavichords still possess another
soundboard underneath the key levers, in accordance with the legacy of the XVth

century clavichords.
An important treaty of that period is the Musica getutcht (1511) by Sebastian

Virdung [6]. According to the author, it is possible to have as much strings on a
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Figure 1.5: Woman playing a clavichord, by Van Hemessen (c. 1575), conserved
at the Worcester art museum (ref : https://worcester.emuseum.com/objects/
10587/young-woman-playing-a-clavichord [consulted in 06/01/2021])

clavichord as wished, as long as all the strings are tuned in unison. On the basis of
Virdung’s model, a clavichord does not need more than twenty keys. The diagram
presented in this treaty shows a way to divide the tones of the instrument in a
chromatic way, especially by means of a particular lay out of the tangents. Each
string is struck by three tangents at different lengths. Because of the unison tuning
of the strings, The ambitus of Virdung’s clavichord became limited necessarily. It
has an ambitus of three octaves and a half, which is inferior to those of most XVIth
century clavichord. Finally, Virdung remarked the substantial acoustic role of the
sympathetic part of the strings, which vibrate sympathetically (Resonanz) and then
help to provide a richer sound [6].

1.2.4 XVIIth century clavichords

The XVIIth century witnesses a non-linear evolution of the clavichord, that is to say
an evolution which is differentiated with respect to the different European countries.
In general, the instrument ambitus enlarged. The secondary soundboard placed un-
derneath the key levers was abandoned, probably because its acoustical contribution
is negligible. It is interesting to note that the clavichord market at that time, in
whichever country, was less popular than that of the harpsichord. The clavichord
market was less structured, given the fact that it took shape by the initiative of
isolated and small workshops. To build a clavichord was considered as a secondary
activity for the instrument makers of this period, in comparison to the construction
of harpsichords and organs. The importance of clavichord making arises in Germany
during the XVIIIth century, where the most important instrument making workshops
were considerably devoted to clavichords. Eight clavichords of the XVIIth century
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remains (see for instance figure 1.7). The unfretted clavichord is introduced at the
end of this century. When a clavichord is unfretted, each pair of strings is struck
only by one tangent, as opposed to a fretted clavichord. Furthermore, the XVIIth
century fretted clavichords possess some unfretted pairs of strings, namely all the
strings corresponding to the D and A notes of all octaves. The only exception to
this is the unfretted clavichords made in the Iberian countries, where the unfretted
pairs of strings correspond to the E and B notes of all octaves. In any case, the
purpose of unfretting the strings is to diminish the number of tangents used for each
string. By comparing the XVIIth century clavichords with those of the preceding
centuries, it is possible to note a diminution of the key number striking the same
string as well as an increase of the pair of strings’ number enlarging the ambitus
in bass and in the treble. To give an idea of this evolution, the clavichord of the
Urbino intarsia (1482) have seventeen pair of strings. In comparison, a clavichord
dating back to the end of the XVIIth century possesses thirty five pairs of strings.
By this augmentation of the string number, the stringing has taken more space on
the instrument. Thus, the enlargement of the clavichord dimensions was necessary.
This change in size of the instrument led to a redistribution of the strings. Instead
of being parallel to the key levers, the stringing became laid out in an oblique way.
This particular layout has two advantages : 1. the total length of the strings can
be progressively differentiated, 2. this layout leads to a better harmonisation of key
levers’ disposition. However, this kind of stringing has one drawback : it undermines
the instrument stability. When the strings were parallel to the key levers, they were
also parallel to the wood fibers of the soundboard. This alignment is an efficient
way to support the static charge of the strings applied on the bridge. Having lost
this propriety because of the oblique layout, deformation of the soundboard became
more frequent.

Figure 1.6: Clavichord by Dominicus Pisaurensis, 1543. Henkel cat.
no. 1. Musikinstrumenten-Museum der Universität Leipzig (ref :
http://www.claviantica.com/Publications_files/Pisaurensis_clavichord_
files/Pisaurensis_Introduction_files/Introduction.htm [consulted
06/01/2021])

Most of the XVIth century clavichords possess many straight bridges, laid out
differently depending on the ambitus (see figure 1.6). These bridges with a straight
line shape led to bringing the coupling points of the treble and bass strings closer to
the soundboard boundaries. Given the fact that the amplitude of the soundboard
vibration nearby these boundaries is small, the acoustic radiation of the aforemen-
tioned strings were undermined. In comparison, for most of the XVIIth century
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clavichords, only one bridge is used (see figure 1.7). This bridge is in shape of an
S, placed diagonally on the soundboard. Often, the bridge height decreases around
the treble strings to compensate for the decrease of the strings’ diameter. When the
strings are laid out parallel to the key levers, they press the bridge vertically, which
is characteristic of XVIth century clavichords. In the XVIIth century, a deviation
angle was introduced between the played part of the string and its sympathetic part.
It was introduced without aligning the bridge pin, the hitch pin and the tuning pin.
Thus, the string presses horizontally the bridge pin. Then, the vertical pressure is
ensured by tightening the string by means of a tuning pin placed at an altitude
inferior to that of the bridge pin. To reinforce the soundboard stability with an
oblique stringing, ribs were added to the soundboard. The way the ribs were placed
depends on the different clavichords. Yet, one common solution was to place ribs
parallel and underneath the bridge. Thus, the soundboard and the bridge could be
stiffened at specific places.

Figure 1.7: Clavicorde, anonyme, c. 1620., St Cecilia Hall, Édinburgh (ref :
https://collections.ed.ac.uk/mimed/record/17226?highlight=mirrey [con-
sulted 06/01/2021]

Among the significant treaties on clavichord making, there is the Harmonie Uni-
verselle (1636) by Marin Mersenne [7]. The author points out that the clavichord
is not a loud instrument, producing a soft sound. He accounts for this softness of
sound in the following way :

But one should notice what is singular to this instrument, namely the
pieces of cloth, which are present around the strings in the space bounded
by ONPM [points in space] and which muffle the sound so much so that
it cannot be heard from afar, and this sound becomes really soft : that
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is why this instrument is suited for those who wish to play the spinet
without being heard by the neighbours; therein it can be called the
muffled spinet1.

By virtue of this low sound level, Mersenne bestows to the clavichord the name
"muffled spinet". It is interesting to point out that the clavichord is not a concert
instrument. It was only played in living rooms, which gave the opportunity to
practice freely this instrument without disturbing the neighbourhood. Nevertheless,
the argument used by Mersenne to account for this low sound level is wrong. The
clavichord is the only instrument where the sound is not produced by the entire
length of the string, given the fact that the tangent defines the boundary of one of
the string extremities while it sets the string into vibration at the same time. In
order words, the tangent is a boundary condition of the string. Yet at the same
time, it excites the string. As a result, the string is excited at a vibratory node
point. This causes the clavichord acoustic sound level to be low. In addition to this,
the little soundboard surface available for the acoustic radiation, compared to that
of a harpsichord soundboard, can also account for this low sound level.

1.2.5 XVIIIth century clavichords

In the XVIIIth century, the clavichord lost its fame in France, Italy and England
because of the empowering dominance of pluck instruments. These countries de-
veloped a musical style specifically elaborated to value the technical possibilities of
the harpsichord, the spinet and the virginal as opposed to countries such as Spain,
Portugal, Scandinavia and Germany. At that time, it is in Germany that clavichord
making reached a high level of craftsmanship and technicality which is comparable
to that of harpsichord making. Thus, great families of clavichord making came into
light, like for example the Silbermann, Stein, Hass, Schmahl, Schiedmayer, Horn
and Friederici families.

The tension of the oblique stringing tends to provoke soundboard deformations,
because the string number for unfretted clavichords is higher than for fretted ones.
The static charge of the strings was such that instrument deteriorated quite fast.
Then, a reinforcement of the structure needed to be introduced. In particular, stiffer
ribs to sustain the soundboard were necessary (see figure 1.8). The stringing became
more spaced, which led to longer keys levers. Typically, the distance between the
keyboard and the tangent, for the bass strings as well as for the treble strings, more
than doubled. Because of this increase in key levers’ length, the regulation of the
finger pressure exerted on the key changed, which undermines the playability. To
resolve partially this problem, the alignment of the key levers’ pivots was displaced
by an angle. As such, the total key length could be reduced in order to reduce

1(Mais il faut remarquer ce qui est de plus particulier en cet instrument, à savoir les morceaux
d’escarlatte ou d’autre drap, qui courent toutes les cordes dans l’espace compris entre ONPM et qui
étouffent tellement leur son, qu’il ne se peut entendre de loin, et qu’il est fort doux : c’est pourquoi
il est fort propre pour ceux qui désirent d’apprendre à jouer de l’épinette sans que les voisins
le puissent apercevoir; de là vient que l’on peut la nommer épinette sourde) Marin Mersenne,
1636, dans Christophe d’Alessandro, « Le clavicorde dans l’Encyclopédie (CLARICORDE, MAN-
ICORDE ou CLARICORDE, MANICORDION) » Édition numérique collaborative et critique
de l’Encyclopédie, online since January 4 2020, consulted in April 20 2020 (http://enccre.
academie-sciences.fr/encyclopedie/dossier/D00-37540b24699b/) [Personal translation]
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the necessary finger pressure to play the instrument. Notwithstanding the fame of
unfretted clavichords, the construction of fretted clavichords continued until the end
of the XVIIIth century.

Jacob Adlung is one of the most important theoretician of this period. His
treaties Anleitung zu der musikalischen Gelahrtheit (1758) [8] and Musica Mechan-
ica Organoedi (1768) [9] describe the instruments, their historical evolution, as well
as their musical practice at Adlung’s time. In the Anleitung, the term "Clavier"
is used. In XVIIIth century Germany, the term "Clavier" could be considered as
synonymous to the term "Klavichord". Indeed, the clavichord was considered as the
classical keyboard instrument, whose musical quality was praised and recognised in
the German speaking countries. According to Adlung, among the advantages of
the clavichord, these can be found : there is no plectrum to harmonise, the tuning
lasts long enough, and it is easy to tune the instrument since many keys strike the
same string. Also, the strings should not be too thick, and the angle between the
portion of the string coming from the tangent and arriving at the bridge and the
portion of the string leaving the bridge and continuing to the wrestpin should not
be too sharp (Adlung, Jacob, Musica Mechanica Organoedi, 1768, §581, in [1], pp.
197). The tangents should have the same height (Adlung, Jacob, Musica Mechanica
Organoedi, 1768, §584) and should stand vertically (Adlung, Jacob, Musica Mechan-
ica Organoedi, 1768, §591, in [1], pp. 200). A technique recommended by Adlung
consists in increasing the bridge height at the bass strings, which became a standard
feature for late clavichords. Finally, this theoretician insists on the importance of
the sympathetic part of the strings, putting forward the embellishment of the sound
provided by the resonant effect (Nachsingen) produced by sympathetic vibration
(cum sympathia).

Figure 1.8: Clavichord by Christian Gottfried Frederici, 1773, Musée de la
musique, Paris (ref : https://collectionsdumusee.philharmoniedeparis.fr/
doc/MUSEE/0160057 [consulted in 06/01/2021]
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There is also another treaty entitled Beitrag zu einer allgemeinen Verbesserung
der Claviere, aus mechanischen Gründen hergeleitet written by J.B.v.H, an uniden-
tified author. Among the positions taken by this author, one of those claims that
favouring the maximum tension possible of the clavichord stringing leads to obtain-
ing the best sound possible. Furthermore, the stringing tension should be balanced
for all the strings in order to obtain a sound equilibrium between the different strings.
In the treaty Clavierschule (1789) by Daniel Gottlob Türk [10], an insistence is given
on the duration and the sound level of the clavichord sound. Its sound should be
loud enough but not percussive, and having a long duration at the same time. As a
result, the compromise between duration and sound loudness is an important criteria
when it comes to making a good clavichord.

1.2.6 Reappearance of the clavichord

In the course of the XIXth century, the clavichord has been considered as an old and
ancient instrument. Even though this instrument was still practised by a small num-
ber of musicians at that time, it lost its fame on the European musical scene. The
piano became the keyboard instrument of reference in the XIXth century. Because
of its large acoustic radiation, its large ambitus and its associated aesthetics, the
piano remained very dominant brushing aside all the other keyboard instruments.
Nonetheless, at the end of the XIXth century, these forgotten instruments were redis-
covered, including the clavichord. In England, one of the pioneers of this rediscovery
motion is A.J. Hipkins (1826-1903) who presented in his book A Description and
History of the Pianoforte and the Older Keyboard Stringed Instruments (1896) [11]
this renewal of interest in the clavichord. Carl Engel (1818-1882), in his article
"Some Accounts of the Clavichord with Historical Notices" dating back to 1879 and
published in The Musical Times, mentions his fretted clavichord inviting musicians
to play J.S. Bach’s fugues with this instrument [12] :

I therefore invite my musical friends and my musical enemies also, if I
have any to go and examine it; or, still better, to play on it Bach’s fugues
precisely as he himself played them on the clavichord.

Another pioneer of this rediscovery motion is Arnold Dolmetsch (1858-1940), who
built six different clavichords between the years 1894 and 1897 [13]. This interest in
the clavichord at the end of the XIXth century was only present in England and in
the United States. In the course of the XXth century, German musicologists mostly
began publishing articles on the clavichord and its musical practice [1].

The clavichord decline can be explained, given the fact that the piano acoustic
radiation and musical possibilities outweighs that of the clavichord. However, it is
interesting to note the reemergence of this instrument and the regain of interest
in it since the end of the XIXth century up to now. The clavichord possesses its
proper instrument-making and some specific organological aspects. As a result a
specific musical aesthetics and a long tradition of musical interpretation for keyboard
instruments are related to this instrument.
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1.3 The studied instrument
The studied clavichord in this work has been built at The Paris Workshop, in
Montreuil, by C. d’Alessandro (it was the second clavichord that he built) and
C. Besnainou (a professional luthier) in 2007 (see figure 1.11). It has been built by
means of a kit designed by E. Dancet and M. Ducornet conceived on the basis of
the clavichords built by Christian Gottlob Hubert. This specific clavichord is not an
exact replica of a Hubert clavichord, but it contains the main essential features of
this instrument maker’s clavichords dating back to the last quarter of the XVIIIth
century. The instrument is of good musical and mechanical quality. This clavichord
has been made specifically for vibro-acoustic investigations. The overall characteris-
tics of this instrument are shown in table 1.1 (see also annex A) and the dimensions
of its strings are presented in annex B. Figure 1.9 shows the sketch of this clavichord
sides and figure 1.10 shows a precise and scaled sketch of the whole clavichord. The
name given to this instrument studied in this PhD is "LAM1 clavichord".

Range C1-D5, 51 strings
Stringing double strung
Soundboard 268 × 227
Dimensions 1267 × 358 × 112
Tuning A3 : 415 Hz
Materials of the strings yellow brass with the CuZn30 alloy
Fretting double fretted

Table 1.1: Overall characteristics of the LAM1 clavichord.

Christian Gottlob Hubert (1714-1793) is one of the major clavichord and key-
board instrument makers of the XVIIIth century. He is famous for making clavi-
chords, fortepianos, and also for building organs like that of the Catholic chapel at
Ansbach [14]. His craftsmanship was recognised as one of the finest, and his instru-
ments were praised for their durability and their beautiful tones. Many clavichords
have remained up to now [15], among which the clavichord dating back to 1784 and
preserved at the Cecilia Hall museum, at the University of Edinburgh (see figures
1.12). Although Dancet and Ducornet used this model to conceive the kit used by
C. d’Alessandro and C. Besnainou to make the clavichord of study, some differences
can be noticed between the two instruments. In overall, the played string lengths
are approximately similar. Furthermore, the range of the original 1784 Hubert clavi-
chord goes from C1 to F5, which amounts to 4 and a half octaves with 54 notes.
The range of the LAM1 clavichord is a bit smaller, going from C1 to D5, which
amounts to 51 notes. The two clavichords are double strung and fretted, except for
the D and A notes which are unfretted. Then the LAM1 clavichord has an amount
of 74 strings, which is 6 strings less than the original Hubert clavichord stringing.
The tangents for the lowest 11 notes are thicker than the others for the original
clavichord, which is not the case for the LAM1 clavichord. The dimensions of the
lid for the two instruments are not the same, and the lid of the original clavichord
is panelled as opposed to that of the LAM1 clavichord.
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Figure 1.9: Construction plan of the kit designed by Dancet and Ducornet seen from
the sides (copyright Dancet and Ducornet, The Paris Workshop).
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Figure 1.11: Picture of the LAM1 clavichord.

Figure 1.12: Picture of the original 1784 Hubert clavichord conserved at the St
Cecilia Hall museum, at the Edinburgh university (ref : https://collections.ed.
ac.uk/mimed/record/18264?highlight=hubert [consulted in 14/10/2020]).
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1.4 A review of the acoustics of the clavichord

To our knowledge, the oldest scientific study of the clavichord dates back to 1940
and was done by Trendelenburg [16]. It indicates that, as opposed to the piano, it is
possible to change lightly the timbre of the clavichord after the excitation by means
of the clavichord player’s action on the tangent in contact with the string without
changing the sound level.

In 1967, R.A. Hands published a scientific study on the clavichord, where the
clavichord excitation system is described [17]. This study accounts for the low
acoustic level of the instrument by means of impact energy splitting at the moment
when the tangent impacts the string. All the impact energy is not transmitted to the
played part of the string, but some of this energy goes to its damped part. This is
opposed to the harpsichord where all the energy given by the plucking goes entirely
to the played part of the string.

In 1973, because of this low sound level, R.W. Burhans proposed an electro-
acoustic way to amplify adequately the sound of the clavichord so that it could
compete with that of the piano [18].

The first study which takes into consideration the overall acoustic aspects of
the clavichord is that of Thwaites and Fletcher [19]. Specifically, this study aimed
at investigating theoretically as well as experimentally different aspects of this in-
strument acoustic functioning. It showed that the excitation force spectrum level
produced has a smooth slope of 6 dB/octave, and the radiated spectrum depends
greatly on the properties of the soundboard. It is on the basis of this result that
D.E. Hall tried to elaborate a physical synthesis model of the clavichord, trying
to reproduce the 6 dB/octave sound spectral decreasing [20]. Considering that the
struck pair of strings of the clavichord leaks energy to the bridge and the sound-
board, the interaction between the two strings leading to the two slopes decay is
retrieved by Thwaites and Fletcher’s study [19]. This process was already predicted
by the model elaborated by Weinreich for the piano [21].

To synthesize the clavichord sound, a simplified model elaborated by means of
signal processing was applied by Välimäki et al [22]. The synthesis model which is
suggested is based on digital wave-guide modeling of string instruments using the
principle of commuted waveguide synthesis, in which the soundboard response is
incorporated in the excitation signal. To enhance the realism of this synthesis, some
special sampling techniques are also used. This approach was used to synthesize the
sound of the acoustic guitar [23] and that of the piano [24]. Neglecting the second
polarization of the string, only one commuted wave guide is used per string. Then, to
model a pair of string, two digital wave guide string models are used. The coupling
of two string models is taken into account, where the output of only one of the two
string models is fed to the input of the other [22]. This model was modified to
control the attack sharpness of the synthesized sound [22]. Recordings of clavichord
tones are done to synthesize the excitation signal. The recorded signals are processed
by means of sinusoidal analysis, subtracting partials, equalizing the residual, and
truncating the resulting signals with the right half of a Hanning window [22]. The
sound coming from the cavity is included by triggering a soundbox response sample
at a low level each time any note is played. These samples are obtained by hitting
the clavichord bridge with an impulse hammer at various points. Furthermore,
knocks of the key are recorded to synthesize the ending of the clavichord notes. The
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effect of the string quasi-static stiffening due to the contact tangent/string was not
addressed by these authors. Some sound sample produced by the model by Välimäki
are available2. Also, a Neupert clavichord was simulated by the Modartt company3

within the framework of the KIViR (Keyboard Instrument Virtual Restoration)
project.

A study conducted by Bernhard Winkler focused in measuring mechanical and
acoustic aspects of three different clavichord belonging to Alfons Huber, restorer at
Kunsthistorisches Museum in Vienna: a replica of the Reiseclavichord of Johann
Andreas Stein and two medieval clavichords (one with brass strings and the other
with iron strings) [25]. The mobility of the soundboard is measured by means of
two techniques : by means of an interferometer and a acceleration sensor. Also, the
decay time of different tones of these clavichord measured. The modes found by
these two measuring technics and the measured decay time for the instruments are
compared.

More recently, mechanical considerations of this instrument were studied once
again by d’Alessandro [3]. By means of an experimental approach conducted on
an unfretted clavichord, built in 1983 by F. Bal at A. Sidey’s workshop, a theoret-
ical approach is compared to measurements. Specifically, an experimental study of
variations in the sound of clavichord notes at different dynamic levels is given. Con-
ducting measurements playing all 51 notes of this instrument, the radiated acoustic
signal, tangent velocity and two tangent string contact signals are measured. To
obtain as much variation in dynamic levels as possible, more than ten repeated
measurements are done for every note. A description of the tangent velocity in
the time and frequency domain is given. d’Alessandro elaborated a model of the
tangent-string contact point velocity, whose simulation matches with experimental
data. Furthermore, three aspects of the clavichord acoustics are analysed : relation-
ship between sound pressure level and pitch variations, spectral slope of the radiated
sound, and tangent velocity. Results show a linear relationship between sound pres-
sure level and tangent peak log velocity. Also, the sound spectral slope is almost
constant with respect to tangent velocity and dynamic level. It is shown that the
fundamental frequency is influenced by tangent velocity and finger pressure.

In another study by d’Alessandro, some vibro-acoustic features of this clavichord
built by F. Bal are compared to those of three other clavichords : the LAM1 clavi-
chord, a fretted clavichord built around 1985 from the popular ’King of Sweden’
Zuckermann kit, and a medieval clavichord built by Peter Bavington in 1988 in
London [26]. All the notes have been measured for all these four instruments, us-
ing the whole possible range of dynamic nuances. The acoustic signal, the tangent
velocity signal and the string/tangent contact signal for each string in a pair are
measured. This amounted to a database to give an acoustic portrait for each of
these instruments, showing some acoustic differences between them.

This study of the clavichord excitation system has been deepened by the same
author, tackling the issue of the paradoxical gesture when playing the clavichord
[4]. Having recalled the traditional playing of the clavichord carried on by Johann
Sebastian Bach, this study explains the importance of the finger motion in order to
play well. In particular, the pushed gesture, characterised by a vertical trajectory,

2http://users.spa.aalto.fi/vpv/publications/icmc00.htm [consulated in November 16
2020]

3https://www.modartt.com/neupert [consulted in November 16 2020]
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leads to a risk of playing out of tune with the intention of playing loudly. Indeed,
playing loudly implies pressing the key with sufficient velocity. However, with a
pushed gesture done by a musician, this tends to uplifting the string with too much
height, creating a pitch being out of tune. As a result, in the history of clavichord
performance, a pulled gesture (Schnellen in German) has been elaborated to avoid
such a consequence, by adding a backward horizontal component to the finger tra-
jectory. A comparison of the acoustic and vibratory consequences of the pushed and
pulled gesture is also presented by [4].

1.5 A brief review of acoustic keyboard instruments

1.5.1 The piano

Most of the key questions regarding the organological evolution and the acoustics of
the clavichord can be reconsidered by means of musical acoustic studies on string and
keyboard instruments. The one which has been the object of in-depth vibro-acoustic
studies is the piano. All the basics of its acoustic functioning and its instrument
making is summarised in the five conferences gathered by Askenfelt [27]. The piano,
as well as the clavichord, is an instrument whose strings are struck. It was created
in 1709 by Bartoloméo Christofori in Florence. Instead of being struck by a tangent
or to be plucked by a plectrum in the case of the harpsichord, the string is struck
by a hammer. As opposed to the clavichord where the tangent remains in contact
with the string, the hammer moves away from the string just after the excitation
by means of actions. This mechanism is reinforced by the double repetition action
introduced by Sébastien Érard between 1820 and 1821. The timing of the key action,
that from the finger pressure on the key up to the production of the string vibration
was studied and described [28]. The hammer core is made of wood and is covered by
felt (it could also be leather or cork). The relaxation and the disposition of the felt
depends on the excited string. Depending on this relaxation and disposition, the
hammer impulse force applied on the string changes, modifying the spectral content
of the produced sound. The harmonisation of the piano consists in relaxing the felt
adequately depending on the sound desired for each string. The transitory part of
the piano excitation was subject to a temporal and frequency analysis [29].

Physical models have been elaborated to simulate the hammer impact on the
piano string [30, 31]. Other models proceed by means of waveguide methods to model
the string-hammer interaction [32]. Some signal processing techniques can be used to
reconstruct the hammer impulse force profile by means of measurements of the piano
string velocity of vibration [33]. The measurement of the interaction between the
string and the hammer was also an object of study. Specific experimental techniques
have been used to observe this interaction, like contact identification, string motion,
and details on the force-compression behavior and the hammer and the string [34].
Also, some studies focused on the modelling of the key action in the piano [35, 36, 37],
in order to simulate the realism of the excitation dynamics [38].

Furthermore, the sound synthesis of the piano have been carried out, either by
means of waveguide methods [39, 40], or by means of physical models [41]. About
the piano soundboard, some vibro-acoustic studies have been done to synthesize
its mobility and its acoustic radiation [42, 43]. In particular, the behaviour of the
piano soundboard in mid-frequency domain was also an object of study [44, 45].
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Other studies of the soundboard vibratory behaviour, that of the piano as well
as that of other string instruments, consisted in elaborating procedures to identify
the structure modal densities in order to characterise the specific instrument [46].
Furthermore, unlike the clavichord, their is a possibility to change the piano tone
by means of the impact velocity of the hammer. So by his/her playing, the pianist
can have a specific control on that timbre. Investigations have been done to study
the individual pianist’s control on the sound [47]. The weight applied on the key
is also important when it comes to controlling the piano tone, given the existence
of the double escapement action. Using more weight, the pianist presses the key
to the bottom of the keyboard. Otherwise, using less weight, he plays more at the
keyboard surface. A specific study investigated the influence of this weight on the
control of the piano tone [48].

1.5.2 The harpsichord

When it comes to the harpsichord, some researches have been done regarding its
acoustic aspects. To our knowledge, the first scientific studies on the harpsichord
deal with the design as well as aspects regarding its performance practice [49]. Oth-
ers studied the harpsichord soundboard and the acoustic role of the air volume in
the cavity by means of experimental and analytical methods [50, 51]. The influence
of the metal rose on the vibratory behaviour of the soundboard was put forward
[52]. The excitation of the string is done by the plectrum plucking the string at
the moment when the finger presses the key. The main part of the harmonisation
of the harpsichord consists in adjusting the plectrum dimensions before laying it
out on the instrument. Acoustic and perceptive studies show the influence of the
harmonisation of the harpsichord sound [53, 54]. The study of the transitory part
of the excitation and its consequences on the harpsichord string vibration was done
[55]. Numerical and experimental studies were carried out to investigate the sound-
board vibratory behaviour using finite element methods [56]. In addition to this,
acoustical holographic techniques were used to highlight the acoustic radiation of
the harpsichord [57].

About the strings, experimental studies were done to understand the temporal
evolution of the harpsichord string partials [55]. Following this study, it led to the
elaboration of a damping model valid for strings that are monofilaments [58]. Some
historically informed studies were performed to understand the making process of
strings in the past [59].

As for the soundboard, studies focused on the vibratory proprieties of wood
[60]. Wood is a material sensitive to hygrometry, which means that its vibratory
proprieties can change depending on hygrometric conditions. Furthermore, wood
is an orthotropic material, meaning that its mechanical and elastic properties are
different according to the vertical, horizontal and longitudinal axis. Wood proprieties
vary depending on the fact that the piece of wood comes from the trunk centre or
the periphery of the tree. The direction of the wood fibers indicates the axis towards
which the structure can support substantial mechanical stresses without deforming
itself significantly [61].
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1.6 A brief review of studies of coupling in musical
acoustics

In a mechanical engineer’s point of view, all string instruments have a common
feature : they are mechanical and vibratory coupled systems. Given the fact that
the strings cannot efficiently radiate sound in the air because of their small radiating
surface, these strings must transfer their vibratory energy to a soundboard. This
former having a large radiating surface in contact with the air, and being quite
flexible and quite stiff at the same time, it can radiate the string sound with enough
sound level. When the strings transfer vibratory energy to the soundboard, it is
said that the strings are coupled to the soundboard. Thus, to study the string
instruments, it is necessary to study the couplings between mechanical vibratory
systems.

In musical acoustics, particular models have been either elaborated or directly
applied to model couplings between strings and the soundboard. One of the first
models to study this coupling, especially focusing on couplings between piano strings,
is the one put forward by Weinreich [21]. This analytical model has been developed
to predict the shift of the frequency and that of the damping of two partials of two
coupled strings when frequency coincidence occurs. Also, this model can account
for the two-part slope process of the radiated sound. Another model developed by
Gough puts forward the consequences of coupling between a string partial and that of
the soundboard [62]. Then, Woodhouse elaborated a new coupling model by means
of the modal equations of the string-soundboard coupled system [63]. He uses the
term "veering" [64] to describe the shift undergone by the coupled partial frequency
and damping with respect to the tuning in frequency of the string partial and that
of the soundboard. Also, Woodhouse’s model leads to the quantification of the
string-soundboard coupling strength, namely the quantification of the perturbation
amplitude at the specific coupling point when frequency coincidence arises. By
the influence of partial frequency coincidence, the coupling impedance at the string
coupling point decreases, which leads to enlarging the perturbation at this coupling
point [27]. This strong perturbation leads to a significant veering of the coupled
string partials’ frequency. Generally, musical instruments are made in such a way
that no strong couplings between the string and the soundboard occur. Otherwise,
the instrument could not be tuned correctly. In the case of weak couplings, the
assumption of small perturbations leads to the possibility to model the coupling
mobility influence on the string dampings [58]. This damping modelling was used
for instance to study the influence of the neck mobility on the string partials’ decay
in the case of the electric guitar [65].

More complete modelling of string instruments were achieved using coupled sys-
tems. The model of the piano elaborated by Chabassier and Chaigne consists in
modelling the constraining forces responsible for the coupling between the string
and the bridge [41, 66]. By noticing that the harp soundboard possesses a vibratory
behaviour similar to that of a beam, a model based on a transfer function approach
was used to model the couplings of harp strings [67]. In the case of the Portuguese
guitar, a model based on a penalty formulation was elaborated [68]. This formula-
tion consists in modelling the couplings between the string and the bridge by means
of equivalent stiffness and damping coefficients. One of the most recent formulation
used to model the couplings of string instruments is the Udwadia-Kalaba formula-
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tion [69]. This formulation was used primarily to model the couplings of mechanical
structure, such as those found in the field of robotics [70]. Then Antunes and Debut
adapted this formulation to vibratory systems by introducing the modal expansion
in the equations of motion [71]. Thus, this model was used to model string couplings
in the case of the guitar [72]. It was also used to model the strings’ couplings of
Gabonese harps [73].

Sympathy refers to the indirect vibration of strings which are not excited. This
indirect vibratory process is due to the vibratory energy transmission coming from
the excited string transmitted by means of the coupling with the bridge. In that
case, it is said that the string is set into vibration because of sympathy. Thus,
it is commonly accepted that sympathy designates the process where some strings
are set indirectly into vibration because of vibratory energy transmission. A string
is considered to be sympathetic in so far as it undergoes this indirect vibration.
In the case of the concert harp, as no string is damped by means of felt, all the
strings are potentially sympathetic. It is also said that these strings are responsible
for the "halo of sound" present in the radiated sound [74, 75]. In the case of the
piano, if the pedal responsible for damping the strings remains pressed, then this
same "halo of sound" arises by sympathetic vibrations. However, in the case of
some keyboard instruments like the clavichord, this phenomenon appears because
of the sympathetic part of the strings. The Blüthner piano has been conceived
specifically with added strings called aliquot, which are not played and whose role is
to contribute to the produced sound thanks to sympathetic vibration. In the case
of the Steinway, the sympathetic strings are called duplex strings. An acoustic and
perceptive study consisted in determining the acoustic role of these duplex strings
[76]. As it is observed for the clavichord, instrument makers and theoreticians like
Virdung and Adlung insisted on the essential role of the string sympathetic part
to enrich the produced sound [6, 9]. As this part of the string is set into vibration
indirectly by vibratory energy transfer because of couplings, it is possible to bestow
to these strings the status of sympathetic strings. A study was carried out on the
clavichord to determine these string acoustic input by means of impulse response
[77, 78]. Once again, a "halo of sound" created by the presence of sympathetic
strings is mentioned.

1.7 Objectives of this PhD
After considering this review of the literature, only the signal model elaborated by
Välimäki represents an overall model of the clavichord. One way to enhance the
understanding of its physical functioning is to conceive an overall physical model of
the clavichord. Specific topics need to be dealt with to study the vibro-acoustics
of the clavichord. This first main topic is the excitation of the clavichord string
by means of the tangent. The impact of the tangent transmitting momentum to
the clavichord string when exciting it has not yet been modelled. This is crucial
to simulate the dynamics of the clavichord string. The second topic regards the
acoustic effect of the sympathetic strings. This effect is an important aspect of the
clavichord sound. To study the response of the sympathetic strings, the couplings
of the strings with the bridge need to be taken into account. Therefore, specific
aims of this PhD are to study the excitation system and the sympathetic strings of
the clavichord by modelling them and by conducting experimental approaches. The
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method used to model the instrument must be adequate to include these two main
aspects.

This PhD provides a complete vibratory model of this instrument, as opposed to
partial models or complete signal models. This new model is based on the Udwadia-
Kalaba formulation, which considers the instrument as a mechanical system formed
by the coupling of different mechanical subsystems. Simulations of this model can be
done to study the miscellaneous acoustic aspects of the clavichord. The excitation
system, referring to the interaction between the string and the tangent, is studied.
The simulation of the excitation system gives results similar to experimental results
found by specific measurements and those presented in the literature. The simula-
tions allows a precise description of the clavichord string motion, which is specific
to this instrument only. New experimental approaches were used to describe the
interaction between the tangent and the string while playing the instrument, in par-
ticular using a robotic finger to program controlled finger trajectory. Specifically,
the phenomenon called the paradox of the clavichord was studied with these new
experimental approaches. Then, a thorough study of sympathy in the case of the
clavichord is undertaken by means of simulations and experimental approaches. Af-
ter distinguishing the difference between reverberation and resonance when it comes
to sympathy, appropriate vibro-acoustic descriptors were used to account for these
sympathetic vibratory phenomena. In the end, this PhD synthesises new results in
the study of the vibro-acoustics of the clavichord.

Chapter 2 is devoted to the presentation of the Udwadia-Kalaba formulation,
used to model coupled mechanical systems. This has been adapted to vibratory
structures by Antunes and Debut [71] by introducing the modal representation of
the system substructures in this formalism. The structures modeled in the case of
the clavichord is highlighted in figure 1.3. Then, chapter 3 focuses on the simulation
of the elaborated physical model of the clavichord. The measurements and the de-
termination of the modal parameters’ numerical value of each substructure is done,
and the study of the simulation parameters is investigated. Part III focuses on the
study of the excitation by means of experimental approaches and simulations of the
model. In chapter 4, the characteristics of the excitation system, which include the
motion of the key, the vibratory motion of the string following the excitation by the
tangent, the quantification of the string fundamental frequency variation created by
the string uplift, are investigated. Then, some aspects of the paradoxical gestures
when playing the clavichord are tackled in chapter 5, studying the control of the
string’s pitch by controlling the key depth and the control of the loudness by con-
trolling the key velocity. Then, Part IV focuses on the notion of sympathy when
it comes to the clavichord. The distinction between reverberation and resonance is
done. These two are considered by means of two different experimental approaches.
The experimental study of reverberation is done in chapter 6, highlighting its def-
inition and quantifying it by means of impulse responses study. The necessity of
considering the string resonance is pointed out by observing the response of each
sympathetic strings. It shows that the role of the sympathetic strings is not limited
to the reverberation effect, but it also includes the string resonance understood as
sympathy occurring by frequency coincidence. This kind of sympathy is investigated
in chapter 7, considering an experimental approach and comparing with results ob-
tained by means of simulations.
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Part II

Modelling and simulation of the
clavichord

27





Chapter 2

Modeling of the clavichord

2.1 Introduction

This chapter is devoted to the modelling of the clavichord by means of a formulation
leading to the coupling of mechanical systems vibrating in a single polarisation of
motion. After presenting the state of the art of the formulations available to couple
mechanical systems in section 2.2, the decision of using the Udwadia-Kalaba (U-K)
formulation is justified. Then in section 2.3, a presentation of the U-K formula-
tion is done, as well as the introduction of the modal representation in the U-K
formulation. The objective of this modal U-K formulation is to use it to model the
different vibratory substructures of the clavichord in section 2.4. In this section, the
modal representation of the different modeled substructures (string, bridge, key-
tangent substructure, damper) are given. Finally, the way that the couplings of
these different substructures are modeled is presented.

2.2 A review of coupling models in musical acous-
tics

Many studies have been done to model couplings in the case of flexible mechanical
structures. The model developed by Weinreich is one of the first to study the effect
of coupling on the strings coupled to the bridge [21]. In summary, it shows how the
rate of energy transmission to the bridge as a function of time varies with respect
to the bridge admittance, the piano hammers irregularities, and the tuning of the
instrument. It considers a set of undamped harmonic oscillators which are coupled
with each other. This coupling is modeled by means of a matrix called the dynamic
matrix. Then, the system is reduced to two oscillators to come to a simplified
two-string model, only considering vertical polarisation of motion. The dynamic
matrix is then reduced to a two by two matrix. The two strings are considered to
be coupled with the same bridge coupling point. This former is expressed in terms
of the bridge admittance and the mistuning of the two strings. The eigenvalues of
the dynamic matrix are determined, which are complex. Their real part and their
imaginary part represent the shift of frequency and that of damping respectively
of the two strings with respect to the bridge impedance properties and the string
mistuning. As a result, this model leads to the prediction of the shift of the coupled
partials’ frequency and damping with respect to the tuning of these two partials
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and the bridge coupling admittance. Furthermore, this same model accounts for the
two-part slope of the sound radiated by the soundboard when frequency coincidence
between two strings partials occurs.

Then, Gough put forward another model to study the coupling between the
string and the bridge [62]. In particular, when frequency coincidence occurs be-
tween a string partial and that of the bridge, the phenomenon of string resonance
arises. That is described and explained by means of Gough model. To introduce
the model, it first considers the resonances of a lossy and flexible string coupled
with rigid end-supports. The classical string equation of motion is used to derive
its dynamic properties. Then, a yielding end-support is introduced to allow cou-
pling to the resonances of the instrument body on which the string is mounted. It
is done by adding a perturbation term to the expression of the string wave num-
ber. This perturbation depends on the bridge mechanical resistance and the string
characteristic impedance. Both weak coupling and strong coupling are assumed.
Then, the resonance responses of the string in the case of weak coupling and strong
coupling are derived. Furthermore, the interaction of this string with a second, not
necessarily similar, string tuned to resonate at the same frequency can be studied by
means of Gough model. Like in the Weinreich model, at string resonance, the bridge
impedance can be assumed to be a slowly varying function of frequency. These two
strings are also coupled with the same bridge coupling point. Solving the equations
related to two vibrating strings vibration and the induced bridge motion, the effect
on the bridge admittance curve can be derived and results similar to that found by
Weinreich are retrieved.

Also, by means of the modal equations of the string-soundboard coupled sys-
tem, Woodhouse elaborated a new coupling model [63]. This approach led to the
modelling of the coupling between a guitar string and its bridge. First, a modal rep-
resentation of the string and of the bridge is presented, considering that the two are
coupled with each other. Deriving the expression of the kinetic energy and potential
energy of this vibratory coupled system, the expression of the corresponding modal
mass matrix and that of the modal stiffness matrix are yielded. The expression of
the damping matrix is given by assuming proportional damping for the string and
for the bridge. As such, the expression of the modal response of the string-bridge
coupled system is derived. Along with this, Woodhouse put into light the veering
phenomenon [64] to describe the shift in frequency and damping of the tuned string
partial and that of the bridge. This is a similar phenomenon to that found by
Weinreich.

Then, when no frequency coincidence occurs, an approach developed by Valette
and Cuesta led to the modeling of the bridge coupling admittance effect on the
string dampings [58]. Similar to the Gough model, a perturbation is added to
the expression of the wave number. This perturbation is small assuming that the
coupling is weak. Given the continuity between the string admittance and that of the
bridge at the coupling point, and assuming that the string characteristic impedance
dominates the bridge impedance to ensure the reflection of the waves, it is possible
to express the string wave number with respect to the bridge coupling admittance.
This leads to the expression of the string perturbed frequencies and that of the
string perturbed dampings. This gives the influence of the coupling admittance on
the string frequencies and string dampings. In the case of the electric guitar, this
model was used to predict the effect of the neck coupling admittance on the electric
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guitar strings’ dampings [65].
The model elaborated by Chabassier et al is a complete modeling of the piano

taking into account the main elements that contribute to the sound production,
including the constraining forces responsible for the coupling between the string and
the bridge [41]. The Reissner Mindlin equations are used to model the soundboard
as a bidimensional thick, orthotropic, heterogeneous, frequency dependant damped
plate. The strings are modeled as a set of one dimensional damped system of
equations, taking into account the transversal waves, the shear waves arising from
the string stiffness, and the longitudinal waves arising from geometric nonlinearities.
An initial velocity is given to the hammer, which projects it to a choir of strings
before being repelled. The interaction between the string and the hammer is modeled
by an interacting force, being a nonlinear function of the hammer compression. The
strings are coupled to the soundboard at the bridge, forming a slight angle from
the horizontal plane. This coupling is modeled by a coupling force, using Lagrange
multipliers.

In the case of the concert harp, Le Carrou et al elaborated a transfer function
approach to couple the different substructures [67]. It is considered that the sound-
board represents a simple beam, with which several strings are coupled. With this
assumption, it is possible to compute analytically the modes of this coupled system
using the state vector formalism and the transfer matrix method. The state vector
of the strings and that of the soundboard, containing the kinematic and force vari-
ables of these structures, are introduced. The bending motions of the string and
that of the soundboard are described using elastic string theory and Euler-Bernoulli
beam model respectively. Introducing the state equation of a subsystem, a transfer
matrix is introduced to connect two state vectors at two different locations of the
subsystem. To couple the strings with the soundboard, the kinematic continuity
relations are assumed. That leads to the derivation of the continuity and coupling
matrices of the coupled system. Then, modal properties of the modeled beam-Nth

strings system can be obtained.
Then, the penalty formulation was used by Debut and Antunes to model the Por-

tuguese guitar [68]. First, the dynamical string model originally derived by Morse
and Ingard [79] is presented. Also, to approximate the nonlinear behaviour of musi-
cal strings, the simplified Kirchoff-Carrier model [80, 81] is used. Then, the modal
formulations of the nonlinear string dynamics for the two transverse polarizations
and of the soundboard are given. A model of the bridge kinematics, elaborated on
the basis of simple geometrical rationale, is used to model the coupling between
the strings and the soundboard at the bridge. Also, a penalty formulation is used
to ensure the string-bridge coupling. It requires the calculations of the motion of
the two coupled subsystems and two arbitrary coupling coefficients. These coeffi-
cients correspond to an equivalent stiffness coefficient and an equivalent damping
coefficient.

Another formulation was used to proceed to the modelling of these couplings,
which is the Udwadia-Kalaba formulation [69]. This is a formulation implemented
in the field of robotics, in order to couple rigid mechanical systems. Then this
formulation was adapted to flexible mechanical systems to model the guitar strings
coupled to the bridge [71, 72].

Since the clavichord is a coupled system, one of the aforementioned models can
be used to proceed to its modelling. Because of the elegance and the effectiveness of
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the Udwadia-Kalaba formulation, this approach has been chosen in this work. As
opposed to the transfer function approach developed by Le Carrou et al, which is
only restricted to an instrument having a soundboard with a modal basis similar to
that of a beam, the Udwadia-Kalaba formulation do not include such assumptions.
It was shown that this formulation was numerically more effective than that of the
penalty formulation [71]. As to the numerical approach, the modal basis of the
bridge can be measured by means of experimental modal analysis [82], and then the
measured parameters can be included in the model to simulate the modal behaviour
of the bridge [71]. Moreover, the model based on the Udawadia-Kalaba formulation
can be simulated by means of a simple finite difference scheme in time. As a result,
this formulation seems adequate to model the clavichord.

2.3 U-K model

2.3.1 U-K formulation of a coupled system

The original U-K formulation is derived by Firdaus E. Udwadia and Robert E. Kal-
aba, using Gauss’ principle of least action [69]. Then Arabyan and Wu [83], as well
as Laulusa and Bauchau [84] found an original algebraic approach for deriving the U-
K formulation for constrained systems from the classical formulation with Lagrange
multipliers [71]. Originally, this formulation was used to model rigid constrained
mechanical system [83].

Let us consider a mechanical system of M particles, with a M ×M diagonal
mass matrix M, which is subjected to an external force vector Fe(t), including all
constraint-independent forces. This system is also subjected to a set of P = Ph+Pnh
constraints composed of Ph holonomic and Pnh non-holonomic constraints which
depend on the system displacement y(t) and velocity v(t). Denoting the dynamical
solution yu(t) of the unconstrained system and that y(t) of the constrained system,
which depends on the constraining forces Fc(t), as it is shown in [83], one obtains the
equations of motion of the constrained system proposed by Udwadia and Kalaba [69].
The ϕi(y, t) holonomic constraints and the ψj(y, ẏ, t) non-holonomic constraints can
be written in the following way :

ϕi(y, t) = 0, i = 1, 2, ..., Ph (2.1)

ψj(y, ẏ, t) = 0, j = Ph + 1, 2, ..., Pnh (2.2)

Also, by differentiating equation 2.1 two times and equation 2.2 one time, these
constraints can be formulated in the form of a constraint matrix equation in terms
of acceleration [83] :

A(y, ẏ, t)ÿ(t) = b(y, ẏ, t). (2.3)

Where the P ×M matrix A(y, ẏ, t) and the P × 1 vector b(y, ẏ, t) are functions
of the motion. There is no need for the P constraints to be independent, therefore,
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the rank r of matrix A is r 6 P . The acceleration ÿu of the unconstrained system
is given by Newton’s second law :

Mÿu = Fe (2.4)
ÿu = M−1Fe (2.5)

Also, as opposed to the non-constrained system, the displacement ÿ of the con-
strained system depends on the constraint forces Fc :

Mÿ = Fe + Fc (2.6)

By using the Lagrange multipliers λ, which is a vector, the constraint forces Fc

can be expressed by means of the constraint matrix A [85] :

Fc = −ATλ (2.7)

So, out of equation 2.6, it follows :

Mÿ + ATλ = Fe (2.8)

Equations 2.3 and 2.8 lead to the matrix equation of the constrained system
motion :

[
M AT

A 0

](
ÿ
λ

)
=

(
Fe

b

)
(2.9)

Assuming that no mass within matrix M is equal to zero and that the constraint
matrix A is full, then the matrix of equation 2.9 is invertible. As a result, equation
2.9 becomes :

(
ÿ
λ

)
=

[
M AT

A 0

]−1(
Fe

b

)
(2.10)

As it is put forward by Arabyan and Wu [83], after using some algebra, the
inverse matrix can be rewritten thus :

[
M AT

A 0

]−1

=

[
M−1 −M−1AT (AM−1AT )−1AM−1 M−1AT (AM−1AT )−1

(AM−1AT )−1AM−1 −(AM−1AT )−1

]

(2.11)

As a result, equations 2.10 and 2.11 lead to the expression of the dynamic system
acceleration :

ÿ = (M−1 −M−1AT (AM−1AT )−1AM−1)Fe + M−1AT (AMAT )−1b

= M−1Fe + M−1AT (AM−1AT )−1(b−AM−1Fe)
(2.12)
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Then, using equation 2.5, it leads to :

ÿ = ÿu + M−1AT (AM−1AT )−1(b−Aÿu) (2.13)

Equation 2.13 shows that the dynamics of the constrained system is obtained by
means of a correction given by the dynamics of the non-constrained system. Also,
by means of equation 2.10, the expression of the Lagrange multiplier λ(t) becomes :

λ(t) = (AM−1AT )−1AM−1Fe − (AM−1AT )−1b

= −(AM−1AT )−1(b−AM−1Fe)
(2.14)

Then, by means of equation 2.7 and 2.14, it is possible to obtain the expression
of vector Fc(t) :

Fc(t) = AT (AM−1AT )−1(b−AM−1Fe) (2.15)

Matrix B is defined as such : B = AM−1/2. Thus, the second term of equation
2.13 can be rewritten as such :

M−1AT (AM−1AT )−1 = M−1/2M−1/2AT (AM−1/2M−1/2AT )−1

= M−1/2BT (BBT )−1 = M−1/2B+
(2.16)

where B+ is the Moore-Penrose generalized inverse of matrix B. Thus the dy-
namic equation of the constrained system given by the U-K formulation :

ÿ = ÿu + M−1/2B+(b−Aÿu). (2.17)

Furthermore, out of equation 2.15, the following equation unfolds :

Fc(t) = M1/2B+(b−Aÿu). (2.18)

Then, the U-K formulation provides equations 2.17 and 2.18 describing the dy-
namics of constraint mechanical systems. These equations can be applied to linear
or nonlinear, conservative or dissipative systems. For a given external force Fe, it
is possible to solve equation 2.17 by using a suitable time-step integration scheme.
Moreover, the Moore-Penrose generalized inverse B+ can be rendered numerically
robust, even when the constraint matrix is singular. If no constraint is applied,
equation 2.12 leads back to the unconstrained formulation 2.5. The main elegance
of the U-K formulation lies in the encapsulation in a single explicit equation of both
the dynamical equations of the system and the applied constraints. In particular,
no Lagrange multipliers or any additional variables are needed. Note that the vector
Fe contains the non-linear forces Fnl of the system and the excitation forces Fext

exerted on the system. The relation between these forces is expressed in section
2.3.2 when considering the modal U-K formulation.
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2.3.2 The modal U-K formulation

The U-K formulation can be adapted to continuous flexible systems whose dynamics
is described in terms of modal coordinates. This was done by Antunes and Debut so
that this formulation could be used to model string instruments such as the guitar
[71]. A number of S vibrating subsystems is assumed, each one defined in terms of
its unconstrained modal basis and being coupled through P kinematic constraints.
Defining r as the coordinate vector, a modal expansion of the system dynamic
response is done, leading to :

Y (r, t) =
N∑

n=0

qn(t)φn(r). (2.19)

With Y (r, t), qn(t), φn(r) being the dynamic response in terms of displacement,
the modal amplitudes and the mode shapes respectively in scalar form, and N is
the string number of modes. Let y(r, t) be the dynamic response vector in terms of
displacement. In matrix form, this conversion of physical coordinates to the modal
space gives :

y = Φq, ẏ = Φq̇, ÿ = Φq̈ (2.20)

Where q is the modal amplitudes vector and Φ is the mode shapes matrix. The
physical coordinates, the modal coordinates and the mode shapes are defined as
such :

y =




y1

y2

...
yS


 , q =




q1

q2

...
qS


 , Φ =




Φ1 0 . . . 0
0 Φ2 . . . 0
...

... . . . ...
0 0 . . . ΦS


 (2.21)

The modal basis of the vibratory subsystem s with Ns modes is defined thus :

qs(t) =




qs1(t)
qs2(t)
...

qsNs(t)


 , s = 1, 2, ..., S. (2.22)

Φs =




φs1(rs1) φs2(rs1) . . . φsNs(r
s
1)

φs1(rs2) φs2(rs2) . . . φsNs(r
s
2)

...
... . . . ...

φs1(rsRs) φs2(rsRs) . . . φsNs(r
s
Rs

)


 , s = 1, 2, ..., S. (2.23)

Where R = 1, 2, . . . , Rs puts forward the coordinates where the mode shapes are
defined. Replacing 2.20 into 2.13, it gives :
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MΦq̈ = MΦq̈u + AT (AM−1AT )−1(b−AΦq̈u) (2.24)

where q̈u are the modal accelerations of the unconstrained system. Then, the
modal mass matrix M (written in italics) is defined as M = ΦTMΦ, which gives
its inverse form M = Φ−TMΦ−1. By means of these definitions, equation 2.24 can
be rewritten :

M q̈ = M q̈u + ΦTAT (AΦM−1ΦTAT )−1(b−AΦq̈u) (2.25)

By introducing the modal constraint matrixA (written in italics), withA = AΦ,
it leads to :

q̈ = q̈u + M−1AT (AM−1AT )−1(b−AT q̈u) (2.26)

Then, by defining matrix B = AM−1/2, it leads to the dynamic equation of the
constrained system expressed in terms of modal coordinates :

q̈ = q̈u + M 1/2B+(b−Aq̈u). (2.27)

Let us consider the subsystem s on which an external force is applied. Its dy-
namics can be described as a set of modal equations, which is introduced as follows :

M sq̈s + Csq̇s + Ksqs + F s
nl(q

s, q̇s) = F s
ext, s = 1, 2, . . . , S (2.28)

where qs represents the modal amplitudes of the subsystem, M s, Cs and Ks

are respectively the modal mass matrix, the modal damping matrix and the modal
stiffness matrix of the subsystem, and F s

nl and F s
ext are modal force vectors, rep-

resenting respectively the nonlinear forces and the excitation forces applied on the
subsystem s. These mentioned modal forces come from the constraint-independent
forces, which are obtained by the modal projection of the physical external force vec-
tor Fe. To compute the modal acceleration q̈ of the constrained system, as suggests
equation 2.27, the modal acceleration q̈u of the unconstrained system is computed
by means of equation 2.5 :

q̈su = (M s)−1F s (2.29)

where vector F s refers to all independent modal constraint forces, which include
external forces F s

ext, modal dissipative and modal elastic linear and nonlinear forces :

F s = F s
ext −Csq̇s −Ksqs − F s

nl(q
s, q̇s), s = 1, 2, . . . , S (2.30)

By writing the modal equations of the S subsystems in matrix form, the modal
accelerations of the unconstrained system Q̈u = [q1

u,q
2
u, . . . ,q

S
u ]T are written as

follow :
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Q̈u = M−1[F ext −CQ̇−KQ− F nl(Q, Q̇)] (2.31)

where vectors Q = [q1,q2, . . . ,qS]T and Q̇ represent the modal displacement and
velocity of the S coupled subsystems. The matrices M , C and K are respectively
the modal mass matrix, the modal damping matrix and the modal stiffness matrix
of the constrained system, which are diagonal and are constructed by means of the
subsystems’ modal matrices :

M ≡




M 1 0 . . . 0
0 M 2 . . . 0
...

... . . . ...
0 0 . . . MS


 ,C ≡




C1 0 . . . 0
0 C2 . . . 0
...

... . . . ...
0 0 . . . CS


 ,

K ≡




K1 0 . . . 0
0 K2 . . . 0
...

... . . . ...
0 0 . . . KS




(2.32)

where the parameters of the modal matrices of each subsystem, that is the modal
masses ms

n, the modal dampings csn and the modal stiffness ksn are defined in the
following way :

ms
n =

∫

Ds

ρ(rs)[Φs
n(rs)]2drs, csn = 2ms

nω
s
nζ

s
n, ksn = ms

n(ωsn)2. (2.33)

where ωsn represents the modal pulsation, ζsn the modal damping and ρ(rs) is the
mass density. To compute the modal forces F s

ext, the corresponding physical forces
Fs
ext need to be projected on the mode shapes :

F s
ext,n(t) =

∫

Ds

Fext(r
s, t)φsn(rs)drs, s = 1, 2, . . . , S, n = 1, 2, . . . , Ns (2.34)

WithDs the space domain of the system and with F s
ext,n and Fext being the modal

forces and the physical forces respectively in scalar form, which gives in matrix form :

F s
ext = (Φs

ext)
T Fs

ext (2.35)

where Φs
ext is a matrix built from the mode shapes of the corresponding subsystem

s at the excitation points.
The unconstrained modal accelerations Q̈u(t) are computed by means of equa-

tions 2.30 and 2.29 :
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


q̈1
u

q̈2
u
...

q̈Su


 =




(M 1)−1 0 . . . 0
0 (M 2)−1 . . . 0
...

... . . . ...
0 0 . . . (MS)−1




×







F 1
ext(t)

F 2
ext(t)
...

F S
ext(t)


−




C1 0 . . . 0
0 C2 . . . 0
...

... . . . ...
0 0 . . . CS







q̇1

q̇2

...
q̇S




−




K1 0 . . . 0
0 K2 . . . 0
...

... . . . ...
0 0 . . . KS







q1

q2

...
qS


−




F 1
nl(q

1, q̇1)
F 2
nl((q

2, q̇2))
...

F S
nl((q

S, q̇S))







(2.36)

Moreover, the system is submitted to constraint conditions which couple the
different subsystems with each other at a specific physical coordinate rsc. Using
equation 2.3, the coupling equations are written thus :

A(Q, Q̇, t)Q̈ = b(Q, Q̇, t) (2.37)

with A(Q(t), Q̇(t), t) and b(Q(t), Q̇(t), t) defined at specific constraint locations
rsc between the subsystems.




A1(Φ1(r1
1), . . . ,ΦS(rS1 ); q1, . . . ,qS; q̇1, . . . , q̇S; t)

A2(Φ1(r1
2), . . . ,ΦS(rS2 ); q1, . . . ,qS; q̇1, . . . , q̇S; t)

...
AP (Φ1(r1

P ), . . . ,ΦS(rSP ); q1, . . . ,qS; q̇1, . . . , q̇S; t)


×




q̈1

q̈2

...
q̈S




=




b1(q1, . . . ,qS; q̇1, . . . , q̇S; t)
b2(q1, . . . ,qS; q̇1, . . . , q̇S; t)

...
bP (q1, . . . ,qS; q̇1, . . . , q̇S; t)




(2.38)

The modal forces F c(t) due to the constraints are computed from equation 2.27
by multiplying the second term of the equation, which represents the modal accel-
eration complement Q̈c = M−1/2B+(b−AQ̈u), by the system modal mass matrix
M , hence,

F c = M 1/2B+(b−AQ̈u) (2.39)

Then, the physical constraining forces are computed by means of the following
approximation [71] :

Fc =
(
(Φc)

T
)+

F c (2.40)
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which gives :

Fc =
(
(Φc)

T
)+

M 1/2B+(b−AQ̈u) (2.41)

Then it is possible to compute the constraint forces Fc after computing the modal
amplitudes Q̈u. The excitation force profile F ext corresponds to the input of the
system. The expression of the non-linear forces F nl depends on the nature of these
non-linearities. When it comes to the string, the geometrical non-linear forces are
modelled in section 2.4.1.

2.4 Modelling of the substructures of the clavichord

On the basis of the approach developed by Antunes and Debut, adapting the U-K
formulation to model the coupled substructures of the guitar, this adapted formula-
tion is used here to model the coupled substructures of the clavichord. The modelling
of the string, the bridge, the key-tangent substructure and the damper are dealt with
in this section. Along side with this, the coupling between the string and the bridge
is tackled. The excitation of the string by the key-tangent substructure is modeled
by means of coupling at the instant when the tangent strikes the string. Then, the
coupling between the damper and the string is done in order to model the effect of
the cloth damper. The way the different substructures are coupled is summarised
in figure 2.1.

Figure 2.1: Schema of the modeled G#3 string being excited by the tangent.
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2.4.1 String modelling

Linear description of the vibrating string

In this section, the modelling of the string by means of a modal representation is
considered. Legitimate assumptions considered to model the string are presented.
Then, the model for the stiff vibrating string is put into light. A damping model of
the string is then presented. Because of the considerable static displacement of the
string, a model of the geometrical non-linear force is considered to take into account
the variation of the string tension.

Figure 2.2: Sketch of the vibrating string moving with respect to only one polarisa-
tion of motion.

Let us consider an homogeneous string with length L, linear density µ and
stretched with a tension T0 (see figure 2.2). In reality, the string oscillates with
respect to two polarisations of motion (with respect to the y axis and to the z axis).
So at one point of the string, its trajectory in the (O,y,z) plane is an ellipse. In
this modelling, only the polarisation with respect to the y axis is considered. It is
assumed that the string vibratory displacement is small, so that the longitudinal
waves are neglected. The torsional waves are also neglected. For the moment, the
geometrical non-linearity is not taken into account.

By considering an elastic, thin and flexible string whose flexural stiffness is neg-
ligible, it is possible to yield a simple model of the string transverse motion (with
respect to the y axis). Proceeding by means of the application of Newton second
law on an infinitesimal portion of the string, and considering the small displacement
assumption, it leads to the wave equation of the flexible string expressed in terms
of displacement Y S with respect to the y axis [58] :

µ
∂2Y S(x, t)

∂t2
− T0

∂2Y S(x, t)

∂x2
= 0 (2.42)

where µ is the linear mass density of the string. It is considered that the bound-
ary conditions are pinned, which means that Y S(0, t) = Y S(L, t) = 0. By means
of equation 2.42 and these boundary conditions, it yields the perfectly harmonic
frequencies of the flexible strings fn = nf0, where n is the number of the partial and
f0 is the fundamental frequency of the string given by f0 = 1

2L

√
T0
ρS
.

By considering the flexural elasticity of the string and its radius, the string
bending stiffness plays a role in the string motion. Then, equation 2.42 becomes :
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ρS
∂2Y S(x, t)

∂t2
− T0

∂2Y S(x, t)

∂x2
+ EI

∂4Y S(x, t)

∂x4
= 0 (2.43)

where ρ is the mass density of the string and S its cross-section area so that
µ = ρS, E is the Young modulus of the string material and I is the second moment
of inertia of the string I = πr4

64
with r the radius of the string. Considering that this

stiff string is pinned at its extremity, its leads to the following boundary conditions
[58] :

Y S(0, t) = Y S(L, t) =
∂2Y S(x, t)

∂x2
(0, t) =

∂2Y S(x, t)

∂x2
(L, t) = 0 n = 1, 2, . . . , N

(2.44)

It comes down to the following modal frequencies of the string :

fn = nf0

√
1 +Bn2 = n

c0

2L

√
1 +Bn2 (2.45)

where c0 =
√

T0
µ
is the velocity of the transverse wave in the string, and B = π2EI

T0L2

is the inharmonic coefficient of the string. As a result, one can see in equation 2.45
that the modal frequencies are changed when including the string bending stiffness.
These frequencies are not absolutely harmonic anymore. The higher the rank n
of the partial, the more the shift of these modal frequencies from the harmonic
frequencies. Note that equation 2.43 can be rewritten with a modal representation.

Modal description of the string

To comply the string model with the modal U-K formulation, a modal representation
of the string is given in this section. A modal expansion of the string displacement
Y S is done :

Y S(x, t) =
Ns∑

n=1

φSn(x)qSn (t) (2.46)

where φSn are the mode shapes of the string, which are assumed to be real, qSn are
its modal amplitudes, and Ns is the string number of modes so that n = 1, 2, ..., Ns.
Because of the modal expansion, it is necessary to resolve the eigenvalue problem
related to equation 2.43 which reads as follow :

−T0
∂2φSn(x)

∂x2
+ EI

∂4φSn(x)

∂x4
− ρSω2

nφ
S
n = 0 (2.47)

where ωn = 2πfn is the modal pulsation. When solving equation 2.47 and using
the pined-pined boundary conditions given in equation 2.44, it leads to the following
string mode shapes :
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φSn(x) = sin
(nπx
L

)
n = 1, 2, . . . , N (2.48)

It is possible to demonstrate that, for a uniform string, these mode shapes are
orthogonal to each other, which means that taking two index n = 1, 2, ..., N and
i = 1, 2, ..., N :

∫ L

0

φSn(x)φSi (x) = δn,i (2.49)

where δn,i is the Kronecker delta. Using equation 2.46, equation 2.43 as well as
the orthogonal property of the string modes, it leads to the modal equations of the
string (where S refers to the string) :

MSq̈S + CSq̇S + KSqS = 0 (2.50)

where MS, CS and KS are the modal mass matrix, the modal damping ma-
trix and the modal stiffness matrix of the string respectively, and qS is the modal
amplitude vector of the string.

If the static displacement is large enough, the geometrical non-linear force related
to the string variation of tension also needs to be included. That yields the following
string modal equations :

MSq̈S + CSq̇S + KSqS + F S
nl(q

S) = 0 (2.51)

It was mentioned at the end of section 2.3.2 that the excitation force corresponds
to the input of the system. This force leads to a time-changing tension of the string
while the tangent is pressing the string. However, the expression of the geometrical
non-linear force can be expressed by means of the Kirchhoff-Carrier model, which is
the topic of the next section.

String geometrical non-linearity

The variation of tension of the string created by its uplift done by the tangent causes
the variation of its fundamental frequency. As this static displacement is consider-
able for the clavichord, inducing a substantial shift of the fundamental frequency,
this variation of the string tension needs to be modeled. In fact, the string uplift is
a geometrical deformation creating nonlinear forces. By modeling these nonlinear
forces caused by geometrical deformation, this variation of tension causing the vari-
ation in tuning frequency can be reproduced in the simulation. This is put forward
by Debut and Antunes in the case of a twelve-string Portuguese guitar, modeling
the non-linear forces of the strings by using the Kirchhoff-Carrier model, for high
amplitude vibrations [68, 72]. We propose here that the same formal approach can
be developed for modeling the time-varying string tension (and modal frequencies)
when the tangent pressure leads to quasi-steady large amplitude deformations. The
Kirchhoff-Carrier model leads to geometric nonlinear terms creating the dynamic
tension Tdyn :
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Tdyn =
ES

2L

L∫

0

[(
∂Y S(x, t)

∂x

)2
]
dx (2.52)

which gives rise to the nonlinear differential equation of motion :

ρS
∂2Y S(x, t)

∂t2
− (T0 + Tdyn(t))

∂2Y S(x, t)

∂x2
= 0 (2.53)

Where ρ is the mass density and S is the string section. Thus :

ρS
∂2Y S(x, t)

∂t2
− T0

∂2Y S(x, t)

∂x2
= Tdyn(t)

∂2Y S(x, t)

∂x2
(2.54)

In equation 2.54, the right side can be modeled as an external force named F nl

applied on the string :

F nl(x, t) = Tdyn
∂2Y S(x, t)

∂x2
(2.55)

In terms of string modes, using equation 2.52, the dynamic tension is rewritten :

Tdyn(t) =
ES

2L

L∫

0

[(
N∑

m=1

∂φm(x)

∂x
qm(t)

)(
N∑

n=1

∂φn(x)

∂x
qn(t)

)]
dx

=
ES

2L

N∑

m=1

N∑

n=1


qm(t)qn(t)

L∫

0

∂φm(x)

∂x

∂φn(x)

∂x
dx




(2.56)

Equation 2.55 becomes :

F nl(x, t) = Tdyn
∂2φn(x)

∂x2
qn(t) (2.57)

Thereby, it yields the nonlinear modal force terms :

F nl
n (t) =

L∫

0

F nl(x, t)φn(x)dx = Tdyn(t)
N∑

n=1

qn(t)

L∫

0

∂2φn(x)

∂x2
φn(x)dx (2.58)

When it comes to calculating the integrals in equation 2.56 :

L∫

0

∂φm(x)

∂x

∂φn(x)

∂x
dx =

mπ

L

nπ

L

L∫

0

cos
(mπx

L

)
cos
(nπx
L

)
dx

=





n2π2

2L
m = n

0 m 6= n

(2.59)
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leading to :

Tdyn(t) =
ESπ2

4L2

N∑

n=1

n2 (qn(t))2 (2.60)

Calculating the integral in equation 2.58 :

L∫

0

∂2φn(x)

∂x2
φn(x)dx = −

(mπ
L

)2
L∫

0

sin
(mπx

L

)
sin
(nπx
L

)
dx

=




−n2π2

2L
m = n

0 m 6= n

(2.61)

leading to :

F nl
n (t) = − π

2

2L
n2qn(t)Tdyn(t) = − π

2

2L
n2qn(t)

[
ESπ2

4L2

N∑

m=1

m2 (qm(t))2

]
(2.62)

Hence, the cubic modal force terms are deduced [68] :

F nl
n =

ESπ4

8L3
n2qn(t)

N∑

m=1

m2qm(t)2 (2.63)

Finally, equation 2.63 is the expression of the modal non-linear forces for the
string being pinned at its two extremities. Typically, in the case of the clavichord,
the equation 2.63 is used to model the physical consequences of the string static
displacement. It is shown in section 4.2.1 that this nonlinear modal formulation is
entirely compatible with the quasi-steady geometrical formulation.

Model of string modal dampings

One of the interesting feature of the modal approach is the possibility to bestow
to each mode a proper damping coefficient. These dampings can be estimated by
means of vibratory measurements of the string vibrating freely. In the case where
these dampings cannot be determined experimentally, it is possible to do it by means
of a model. Thus, the presentation of a physical damping model is proposed in this
section.

In the case of strings, the damping of the vibratory structure is low. By means
of this assumption, an imaginary part is added to the expression of the modal
frequencies to take account of dissipation. Damping occurs out of many phenomena,
and these have been deeply studied by Valette and Cuesta [58]. One of the sources of
dissipation is the effects of friction occurring inside the string when put into motion.
These frictions take place because of the visco-elasticity and thermo-elasticity of the
material. This source of damping is taken into account by the quality factor Qn,ve−te
which is expressed in the following way :

44



Q−1
n,ve−te =

4π2µEI

T 2
(fn)2δve−te (2.64)

where E is the Young modulus of the string, I is the second moment of inertia
of the string, T is the string tension, µ is the linear density of the string, and δve−te
is the imaginary part of the string Young modulus [58]. The term δve−te = δve + δte
encapsulates visco-elastic effects δve and thermo-elastic ones δte, taking the same
approach as Paté [65].

Moreover, at the microscopic level, the string represents a crystalline network.
In the course of the string history, irregularities are formed within this network,
which forms deformations at the macroscopic level. This effect is considered by
means of the term Qstruc which is a constant value. Also, during its vibration, the
string makes frictions because of the contact with the air, producing dissipation. It
is possible to model these dampings by assuming that the air flow is stationary and
that the fluid is perfect [58]. This viscous friction denoted by Qn,air is modeled as
follows :

Q−1
n,air =

R

2πµ
(fn)−1 (2.65)

where R designates the mechanical resistance

R = 2πηair + 2πds
√
πηairρairfn (2.66)

and where ρair and ηair corresponds to the dynamic viscosity and the density of
the air respectively, and ds represents the string diameter. Finally, it comes down
to the string damping model :

Q−1
n = Q−1

n,air +Q−1
n,ve−te +Q−1

struc =
R

2πµ
(fn)−1 +

4π2µEIδve
T 2

0

(fn)2 +Q−1
struc (2.67)

Notice that ζn = 1
2
Q−1
n , where ζn is the damping coefficient of the nth mode of

the string. By means of equation 2.67 and by choosing the appropriate parameters,
it is possible to model the dampings of the modelled string modes. The parame-
ters can either be found in the literature [58], or it can be obtained by means of
measurements. The latter approach is chosen in section 3.1.1.
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2.4.2 Bridge modelling

The motion of the bridge is modelled by its modal equations. Considering the modal
expansion of the bridge displacement :

Y B(r, t) =

NB∑

n=1

φBn (r)qBn (t) (2.68)

where r is the location vector, NB is the number of bridge modes, φBn are the
mode shapes of the bridge and qBn are the modal amplitudes of the bridge. Then,
the modal equations governing the bridge vibratory motion are :

MBq̈B + CBq̇B + KBqB = 0 (2.69)

where MB, CB and KB are the modal mass matrix, the modal damping matrix
and the modal stiffness matrix of the bridge respectively, and qB is the modal
amplitude vector of the bridge. Because of the complexity of the structure, as
opposed to the string, there is no continuous model that can yield analytically the
expression of the bridge modal parameters. These could be derived numerically
by means of finite element method by reproducing the geometry and the material
properties of the bridge, as it was done for instance in the case of the piano [41].
Experimental modal analysis of the bridge is done in section 3.1.2 to give numerical
values to the bridge modal parameters.

2.4.3 Key-tangent modelling

The tangent/key subsystem can be considered as a rigid rod which tilts with respect
to a pivot. When the tangent strikes the string, the elastic string reacts and the
whole system oscillates. The tangent has a mass MTg, the key has a mass Mk. The
length of the key is LT . The pivot of the key (balance point) is situated at a distance
Lp of the back of the key, the finger presses the key at a distance Lf of the back
of the key, and the tangent is located at a distance Ltg of the back of the key (see
figure 2.3).

Figure 2.3: Stylised sketch of the key, indicating the distances Ltg, Lp and Lf .

A mode shape is associated to the key-tangent subsystem to model the tilting
motion of the key. The modal representation of this system is given by the following
equations :
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Y Ta(r, t) = φTa(x)qTa(t) (2.70)

where Y Ta is the displacement of the key-tangent substructure, φTa is its mode
shape and qTa is its modal amplitude, "Ta" standing for "tangent", and,

mTaq̈Ta(t) + cTaq̇Ta(t) + kTaqTa(t) = Fext(t) (2.71)

where mTa, cTa and kTa are respectively the modal mass, modal damping and
modal stiffness of the key-tangent subsystem, and Fext is the modal excitation force
that the musician exerts on the key. The mode shape of the tangent is reduced to a
rigid-body mode corresponding to the motion of a key-lever. Thus, the mode shape
φTa is given in the following way :

φTa(x) =
LT − x
LT − Lp

− 1 (2.72)

Considering that the linear density of the key is ρk = Mk

LT
, the modal mass of the

key-tangent substructure mTa can be found thus :

mTa = MTgφ
Ta(Ltg)

2 +

LT∫

0

ρkφ
Ta(x)2dx (2.73)

After some calculations, it gives :

mTa = MTg

(
LT − Ltg
LT − Lp

− 1

)2

+Mk

3L2
p − 3LpLT + L2

T

3 (LT − Lp)2

(2.74)

Contacts between the tangent and the string are, in general, intermittent. Fur-
thermore, it is on this key-tangent substructure that the musician’s excitation force
is exerted, whose profile is described in section 3.1.5.

2.4.4 Damper modelling

The damper is modeled by coupling a portion of string with a number of mass-
spring-dampers assuming a continuity of displacement between the dampers and
the string at their contact points. All theses mass-spring-dampers are considered
independent to one another. Let ND is the chosen number of dampers D:

MDq̈D + CDq̇D + KDqD = 0 (2.75)

Where qD is the amplitude vector of the damper responses. Matrices MD, CD

and KD are square diagonal with identical coefficients mD, cD and kD, respectively.
All the mass-spring-dampers associated to the cloth damping device have the

same mass, stiffness and damping coefficients. These mass-spring-dampers repre-
senting the cloth damper are coupled with a certain length of the string, as it is
modeled in section 2.5.3.
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2.5 Modelling of the couplings between the clavi-
chord substructures

After presenting the modal representation of the different modelled substructures
belonging to the clavichord, their couplings need to be tackled. After precising the
coupling of all the different substructures, then it is possible to determine analyt-
ically the modal constraint matrix A and the vector b of the constrained system
given by equation 2.37 :

AQ̈ = b with A =



AB

ATa

AD


 , b =




bB
bTa
bD


 , Q̈ =




q̈S

q̈B

q̈Ta

q̈D


 (2.76)

whereAB is the matrix coupling the string with the bridge with bB its associated
vector, ATa is the matrix coupling the string with the key-tangent substructure with
bTa its associated vector, and AD is the matrix coupling the string with the damper
with bD its associated vector. Note that ATa is time-dependent, being nil when
there is no contact between the tangent and the string. By giving the continuity
conditions related to all these couplings, these matrices and vectors are determined
in sections 2.5.1, 2.5.2 and 2.5.3.

2.5.1 String-Bridge coupling

The interaction of the string with the bridge is modeled by means of coupling.
It is assumed that the displacement of the string is continuous with that of the
bridge at the coupling location. Therefore, one can express the necessary coupling
conditions to model the constraints of the system. This continuity implies that the
string displacement Y S(xB, t) must be the same as that of the bridge Y B(rB, t),
"S" standing for "string" and "B" standing for "bridge", xB is the location of the
coupling point on the string and rB is the vector of location of the coupling point
on the bridge. Thus :

Y S(xB, t)− Y B(rB, t) = 0 (2.77)

with modal coordinates, it leads to :

[ΦS(xB)]TqS(t)− [ΦB(rB)]TqB(t) = 0 (2.78)

with the mode shape vectors :

ΦS(xB) = [φS1 (xB)φS2 (xB) . . . φSNS(xB)]T ,

ΦB(rB) = [φB1 (rB)φB2 (rB) . . . φBNB(rB)]T
(2.79)

where NB is the number of bridge modes, NS is the number of string modes. As
a result, defining Nc as the number of strings of the system, equation 2.78 leads to
the following matrix AB and vector bB :
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AB =




[ΦS1(xB)]T 0 . . . 0 −[ΦB(rB1)]T 0
0 [ΦS2(xB)]T . . . 0 −[ΦB(rB2)]T 0
...

... . . . ...
...

...
0 0 . . . [ΦNc(xB)]T −[ΦB(rBNc

)]T 0


 , bB =




0
...
0




(2.80)

Equation 2.80 shows the coupling matrix AB and the associated vector bB used
to couple the strings with the bridge.

2.5.2 String and key-tangent substructure coupling

To model the contact between the tangent and the string, the approach developed
by Antunes et al [86] for modelling intermittent contacts in the framework of the
U-K formulation is adopted. This contact is considered to be a coupling between
the tangent and the string at the moment when the tangent touches the string.
At the contact location, assuming a continuity of displacement between the two
subsystems, this yields the following coupling condition :

Y S(xext, t)− Y Ta(rT , t) = 0 (2.81)

which leads to :

[ΦS(xext)]
TqS(t)− [ΦTa(rT )]TqTa(t) = 0 (2.82)

where Y Ta is the displacement of the tangent, xext is the position where the
string is excited, rT is the location of contact on the tangent. The tangent is initially
located below the string with respect to axis y. The whole string is initially at rest
at altitude y = 0. At the moment when the tangent reaches altitude y = 0, ATa

can be modified to couple the two subsystems. The contact is thus modeled by this
coupling written within matrix A at this moment in time. Then, the conditions for
this coupling are written as follow :





Y Ta(rT , t) < Y S(xext, t) ATa = 0 bTa = 0

Y Ta(rT , t) = Y S(xext, t) ATa =
[
[ΦS(xext)]

T 0 . . . 0 − [ΦTa(rT )]T 0 . . . 0
]

bTa = 0

(2.83)

where ΦS
c and ΦTa

c represent respectively the string mode shape vector and that
of the key-tangent substructure at the coupling point. Also, the U-K formulation
apply constraints on the system acceleration. It means that, when simulating the
model, the constraints on the system acceleration are met. However, respecting these
constraints does not imply respecting the constraints on the system displacement
and on the system velocity. Without the implementation of stabilization techniques,
numerical drifts take place during the simulation, because of the constraint violation
in terms of displacement and velocity. The technique elaborated by Yoon et al [87]
can be used to eliminate the aforementioned violations. It is based on a geometric
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projection approach applied after each time step. The displacement constraint vio-
lations are eliminated by reinforcing the constrained system displacement through
local linearisation :

yc = y + ∆y ⇒ yc = y −Aϕp(y, t) ⇒ qc = q−Aϕp(q, t) (2.84)

Then, the same procedure is done when it comes to the velocity constraint vio-
lations :

ẏc = ẏ + ∆ẏ ⇒ ẏc = ẏ −AΨp(y, ẏ, t) ⇒ q̇c = q̇−AΨp(q, q̇, t) (2.85)

where yc and ẏc represent respectively the corrected displacements and velocity,
∆y and ∆ẏ represent respectively the correction of the displacement and that of
the velocity, ϕp(y, t) and Ψp(ẏ, t) are respectively the displacement and velocity
constraints.

2.5.3 String-Damper coupling

Like the string-bridge coupling, the continuity of the string displacement Y S(xD, t)
with that of the damper Y D(rs, t) is assumed, "D" standing for "damper", xD
being the location of the damper on the string and rD being the vector locating the
damper. Thus :

Y S(xD, t)− Y D(rD, t) = 0 (2.86)

which leads to :

[ΦS(xD)]TqS(t)− [ΦD(rD)]TqD(t) = 0 (2.87)

Then, considering Nc strings in the system, equation 2.78 leads to the following
matrix AD and vector bD :

AD =




[ΦS1(xD1)]
T 0 . . . 0 −1 0 . . . 0

[ΦS1(xD2)]
T 0 . . . 0 0 −1 . . . 0

...
...

...
...

...
... . . . ...

[ΦS1(xDND )]T 0 . . . 0 0 0 . . . −1

[ΦS2(xD1)]
T 0 . . . 0 −1 0 . . . 0

[ΦS2(xD2)]
T 0 . . . 0 0 −1 . . . 0

...
...

...
...

...
... . . . ...

[ΦS2(xDND )]T 0 . . . 0 0 0 . . . −1
...

...
...

...
...

...
...

...
[ΦSNc (xD1)]

T 0 . . . 0 −1 0 . . . 0
[ΦSNc (xD2)]

T 0 . . . 0 0 −1 . . . 0
...

...
...

...
...

... . . . ...
[ΦSNc (xDND )]T 0 . . . 0 0 0 . . . −1




, bD =




0
...
0


 (2.88)

where ΦSn(rDj
) is the mode shape of the nth string coupled with the jth damper

at the rDj
location.
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2.6 Conclusion
The U-K formulation, which is used to model coupled mechanical systems, was pre-
sented. It was reformulated by introducing the modal representation of mechanical
structures in order to apply this formulation to vibratory systems. The elegance of
this formulation lies in the fact that all the couplings are modeled by means of a
single constraint matrix equation. It comes in handy to model the vibratory coupled
system, and also to model the excitation system by means of coupling. Then, this
modal U-K formulation was used to model the clavichord, considering its vibratory
substructures (string, bridge, key-tangent substructure, damper). After presenting
the modal representation of each of these substructures, continuity conditions were
given in order to find the expression of the system constraint matrix. In this con-
text, an original nonlinear approach is introduced for modelling the dynamical string
tension (and modal changes) due to the dynamic interaction between the tangent
and the string. This approach is able to stipulate frequency glidings due to such
interaction, as well as "vibrato" phenomena due to "aftertouch" interactions by the
player. Finally, an effective approach was implemented for modelling the intermit-
tent interaction between the tangent and the string. In chapter 3, This model of the
clavichord is simulated by estimating numerical values of each substructure modal
parameter, and testing the stability and convergence of the used numerical method.
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Chapter 3

Simulation of the clavichord model

This chapter focuses on the elaboration of the simulation based on the model put
forward in chapter 2. In section 3.1, the modal parameters for the different substruc-
tures are estimated : measurements of the strings’ damping is done, complying the
damping model presented in section 2.4.1 with the experimental results ; then, using
experimental modal analysis, the modal parameters of the bridge at three specific
locations are estimated. The values given to the key-tangent substructure modal
parameters and that of the damper are ad hoc, so that the solution given by the
simulation remains coherent. After defining a standard force profile applied to the
key-tangent substructure in section 3.1.5, the stability and the convergence of the
simulation is studied in section 3.3.

3.1 Parameters of the simulation

3.1.1 String modal dampings

It is possible to compute the string modal masses and modal stiffness analytically
knowing the string mode shapes (using equation 2.33). String dampings, being part
of the linear characteristics of the string, are obtained by means of the measurements
of the string vibration without the influence of its coupling with the body. One of
the hardships in the determination of strings’ dampings is the elimination of the
influence of the coupling with the body on them. To deal with this, the string is
placed on a string bench with the same geometrical dimensions (see figure 3.1). This
bench is a device which reduces the influence of coupling on the string vibration.
Having tuned the string at the right frequency with the right length, the vibratory
displacement of the string is measured at its other extremity by means of optical
forks [88]. The excitation is controlled by means of a thin string of copper rolled
up around the string diameter and whose break down always occurs at the same
level of string uplift. To obtain the maximum of modes with a satisfactory signal-
to-noise ratio, the string is plucked nearby one of its extremity and with respect to
the vertical polarisation. As it is not possible to proceed to the measurement of all
the strings of the clavichord, only a few of them have been chosen (the sympathetic
part of the G#3 string, the sympathetic part of the G#4 string, the sympathetic
part of the C#5 string). For each string, the vibratory measurement on the string
bench is repeated 10 times. Then, here comes the question of the frequency band
which is possible to analyse for each string set up on the bench. With respect to
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the string length and its tuning frequency, its vibration is more or less damped,
causing the high frequencies’ energy to be too low for the analysis. In this case of
study, for the sympathetic part of the C#5 string (L = 23.6 cm, ds = 0.28 mm,
f0 = 489.3 Hz), 9 partials are analysed, which gives a frequency band going from
489.3 Hz to 4431 Hz. For the sympathetic part of the G#4 string (L = 24.8 cm,
ds = 0.30 mm, f0 = 489.2 Hz), 11 partials are analysed, which gives a frequency
band going from 489.2 Hz to 5434 Hz. Then, for the sympathetic part of the G#3

string (L = 31.7 cm, ds = 0.33 mm, f0 = 396.9 Hz), 23 partials are analysed, which
gives a frequency band going from 396.9 Hz to 9354 Hz. In fact, the larger the string
length and the tuning frequency, the larger the frequency band. The strings used to
extract these dampings are those made by Vogel (see figure 3.1).

Figure 3.1: String bench used to measure the damping of the studied strings by
means of optical forks (left), String made of copper and zinc by Vogel used to study
the damping of the studied strings (right)

The measurements are analysed by means of a high-resolution algorithm called
ESPRIT [89]. The portion of the signal processed starts at 0.5 s, so that the signal is
analysed beyond the transitory phase. A duration of 2 s is taken for the analysis in
order to avoid a low signal-to-noise ratio. To analyse with precision the dampings,
all string modes are processed individually with respect to the following procedure
[74, 65] : for all considered string modes, the algorithm centers its corresponding
frequency to 0 Hz. Then, the signal is processed by a FIR (Finite Impulse Response)
filtering centered at the same frequency before being decimated to reduce the time
of the computation. Finally, an estimation of the number of components is done
before applying the ESPRIT algorithm [74]. The analysis results give many fre-
quencies instead of just yielding the mode frequency of interest. To select the right
component, the proximity to the desired frequency and the highest level of energy
of identified partials are chosen as means of criteria.

By using the Valette and Cuesta model (see section 2.4.1) with the same damping
parameters, this model is matched with the measured dampings of the three strings.
To do this, the following parameters are chosen for the model (see Table 3.2) :

where the value of E and ρ are consistent values for strings made of brass, and the
value of ηair and ρair are taken from the literature [90]. The results are presented in
figure 3.2. The maximum relative error that can be found between the measurements
and the model is around 1.5 % for the G#4 string. This relative error is lower for the
two other strings. As for the dampings, in overall, the curve representative of the
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ρ (kg.m−3) E (Pa) δve−te Qstruc ηair (kg.m−1.s−1) ρair (kg.m−3)
7000 62 × 109 1,5 × 10−4 5 × 104 1,8 × 10−5 1,2

Table 3.1: String parameters used to simulate the string damping coefficients

model fit with the measured data, taking into account the computed error bars. The
upper value of the computed relative error in terms of damping for the G#3 string
is 0.3 %, except for three values that go up to 0.55 %. As for the two other strings,
the relative errors are below 0.3 %. The order of magnitude of the computed relative
errors in terms of damping is similar to that found by Issanchou when measuring
the dampings of an electric guitar string [91]. The quality factors found by Valette
and Cuesta studying the dampings of harpsichord strings [58], which are similar
to clavichord strings in terms of dimensions and materials, go from 2000 in low
frequency up to 6000 in high frequency around 3000-4000 Hz. These values are
similar to the quality factors found in figure 3.2. This shows the coherency of the
measured damping in this study. This satisfying match between the model and the
measurements leads to the possibility of transposing the value of the dampings for
all the other strings of the clavichord. Furthermore, the damping model can be
implemented to compute the mode dampings for other strings, those that have not
been identified by the experimental approach.
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Figure 3.2: Sympathetic part of the isolated G#3 string (a)-(b), sympathetic part of
the isolated G#4 string (c)-(d), sympathetic part of the isolated C#5 string (e)-(f).
Experimental (blue cross) and theoretical (blue circle) eigen frequencies, fexp and fth
respectively, incertitude to 95 % on ten measurements (blue bar) and relative error
εf = |fexp−fth|

fexp
(red star) (a, c and e), Experimental (blue cross) and theoretical (blue

line) quality factor, Qexp and Qth respectively, incertitude to 95 % on ten measures
(blue bar) and relative error εQ = |Qexp−Qth|

Qexp
(red star) (b, d and f).

56



3.1.2 Bridge modal parameters

To simulate the vibratory motion of the bridge, the modal parameters (mass ma-
trix, stiffness matrix, damping matrix, mode shapes) of this subsystem need to be
known. As no classical continuous model (like the beam) has a similar modal basis
as that of the bridge, these modal parameters need to be extracted out of modal
analysis. This could be done by means of finite element method, by reproducing nu-
merically the modal behaviour of the bridge. However, to obtain modal parameters
reproducing accurately the measured bridge FRF’s (Frequency Response Function),
the experimental modal analysis approach is chosen. It means that the FRF’s at
the interested coupling points are measured in order to identify by means of modal
analysis algorithms the associated modes. Only the interested coupling points are
considered in this experiment, even though the modal analysis of the whole bridge
was done in another experiment (see annex C). In figure 3.3, the experimental setup
for this measurement is presented. Measurements are done with an acquisition sys-
tem with a sample rate of 51.2 kHz and a 24 bit depth. Impulses are given by an
automatic impact hammer equipped with a force sensor PCB 086E80. It gives im-
pacts beside the measurement point on the bridge. Three positions, denoted (1) (2)
and (3), of the bridge are chosen : the coupling point between the bridge and the
G#3 string (2), that of the F3 string (3) and that of the D4 string (1) (see figure 3.3
(a)). An accelerometer PCB M352C65 is used to measure the vibratory response
of the bridge at these coupling points. It is placed on the hitch-pin that holds the
string. It is assumed that the vertical vibration of the hitch-pin is the same as that
of the bridge at this location in space, and the accelerometer measures the vertical
acceleration of the hitch-pin. The number bestowed to each coupling point in this
experimental modal analysis is pointed in figure 3.3. To measure only the FRF of
the bridge at these different points, all the strings are damped by means of added
felt damper.

(a) (b)

Figure 3.3: Experimental set up of the impulse response measurements at three
coupling point with the bridge, the driving point (point no2) located at the G#3

string-bridge coupling point, and the number of the measured point (a), diagram of
the accelerometer put on the hitch-pin of the bridge with respect to the y axis (b).
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Figure 3.4: Temporal (a) and spectral signal (b) of the impulse force related to the
driving point measurement of the FRF (ref 1dB : 1m.s−2).
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Figure 3.5: Driving point measurement of the FRF in terms of acceleration at the
coupling point no2 between the bridge and the G#3 string : Spectral amplitude (Ref
1 dB : 1 m.s−2.N−1) (a), Unwrapped phase (b), Coherency (c).

In figure 3.4, the temporal and spectral profile of the impulse force is presented.
In figure 3.5, the corresponding FRF along with its coherency are calculated. The
coherency shows that the frequency band where there is energy goes up to approxi-
mately 5000 Hz.
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Figure 3.6: Stabilization diagram of the analysed FRF (Ref 1 dB : 1 m.s−2.N−1) of
the G#3 coupling point (point no2).

There are two stages when it comes to proceeding with modal analysis. The first
stage solution is the estimation of physical poles containing the modal frequencies
and dampings of the analysed structure (see annex D). The LSRF (Least square
rational function) estimation method is used, which is programmed in the Matlab
signal processing toolbox [92]. To check the stability of the identified modes, a
stabilization diagram is computed by means of the Matlab function modalsd. From
this computation, only one stable pole for each modal order, that is modes having
stable frequency and damping, are considered to be the physical poles of the analysed
system (see figure 3.6).

The second stage solution is the estimation of residues which encapsulate the
mode shapes and modal masses of the system (to see this estimation in detail, see
annex D.3). The residues are assumed to be real. Therefore, the residues extracted
are forced to be real using the non negative least-squares curve fitting solver de-
scribed in [93] implemented in Matlab. It is decided that the modal masses are
normalized as such : mn = 1 kg, with the bridge mode n = 1,2,...,NB. Out of
this normalisation, the corresponding mode shapes are deduced from the residues.
Considering that Bn represent the real residues :

Bn =
φnφ

T
n

mn

(3.1)
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With mn = 1 kg, the real mode shapes are given by :

φn =
1√
Bnj




Bn1

Bn2
...
Bnj
...
BN




(3.2)

In figure 3.7, the mode shapes located in the three studied coupling points are
shown, and the measured FRF at the driven coupling point is compared with the
reconstructed one by means of modal analysis. The mode shapes associated to
the G#3 string coupling point should outline the shape of its corresponding FRF’s
spectral amplitude, which is the case. Furthermore, the three different mode shapes
indicate the difference in amplitude of the bridge mobility for the different modes
between the three different coupling points. For instance, it can easily be seen that
the bridge mobility at the F3 string coupling point is higher than that at the D4

string coupling point for the mode at 490 Hz. On the contrary, for the mode at
470 Hz, the bridge mobility at the D4 string coupling point is higher than that at
the F3 string coupling point.

When it comes to the reconstruction of the FRF’s G#3 string coupling point,
presented in figure 3.7, which is done by means of the extracted modal parameters,
this reconstructed FRF seems satisfying. Since this satisfying reconstruction was
done by means of real mode shapes, it means that the assumption that the residues
are real is justified. It means that the identified modes are much more real than
complex. Thus, the corresponding modal parameters can be used to simulate the
dynamics of the bridge using U-K formulation. As a result, the poles and the modal
masses of the system, as well as the mode shapes of the G#3 string coupling point
and that of the D4 string and F3 string, are obtained and can be used for the
simulation.
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Mode n fn (Hz) ζn (%)
1 149.7 3.8
2 159.1 4.3
3 170.2 3.6
4 178.2 4.6
5 188.4 5.3
6 194.7 8.8
7 196.5 6.7
8 199.1 4.2
9 202.8 7.8
10 204.0 8.9
11 213.1 3.5
12 220.4 14.1
13 226.5 2.1
14 235.2 10.2
15 256.1 3.4
16 264.0 26.2
17 269.2 10.3
18 276.0 8.5
19 288.5 2.6
20 303.4 3.3
21 308.2 4.0
22 313.7 8.6
23 322.1 12.8

Mode n fn (Hz) ζn (%)
24 325.0 3.0
25 331.2 8.4
26 390.5 9.9
27 394.7 8.6
28 399.7 3.2
29 406.9 2.6
30 411.9 14.5
31 415.4 7.7
32 421.8 4.5
33 431.5 1.7
34 433.4 2.9
35 452.4 1.4
36 468.8 14.0
37 474.3 3.5
38 481.1 5.9
39 489.6 1.6
40 493.8 11.9
41 521.0 5.0
42 534.1 13.4
43 549.4 4.6
44 554.7 2.1
45 579.8 1.2
46 586.4 8.8
47 594.6 8.1

Table 3.2: String modal frequencies and modal dampings extracted by means of
modal analysis
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Figure 3.7: Comparison of the spectral amplitude (Ref 1 dB : 1 m.s2.N−1) of the
measured FRF (blue line) with its reconstruction (red line) by means of modal
analysis at the driving point (point no2) coupling the bridge with the G#3 string
(a), Unwrapped phase of the measured FRF (blue line) and its reconstruction (red
line) by means of modal analysis (b), Mode shapes extracted out of this modal
analysis (c).

3.1.3 Modal parameters of the key-tangent substructure and
the damper

To start with, the G#3 string is modeled (see figure 2.1) to test the simulation
and to verify the variation of tension, the stability, the modal convergence and the
time convergence of the simulation. The three different parts of the string can be
differentiated. First, between x = 0 m and x = 0.2 m, there lies the damped part
of the string, where the damper is placed between x = 3.4 mm and x = 13.7 mm.
Then, between x = 0.2 m and x = 0.53 m, this is the played part of the string. The
rest of the string is its sympathetic part, which is beyond the coupling point with
the bridge.

The dimensions of the key are LT = 28.9 cm, Lp = 17.2 cm, Lf = 27.9 cm,
Ltg = 3.5 cm, and MTg = 5 g, Mk = 30 g as for the mass of the tangent and the key
respectively. The tilting mode of the G#3 key equipped of its tangent is a rigid body
mode. Then its frequency is fTa = 0 Hz. Its modal mass, determined in section
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2.4.3, is mTa = 1.17 × 10−2 kg, its modal stiffness is kTa = 4π2f 2
Tam

Ta = 0 N.m−1

and its modal damping is cTa = 2.5 kg.s−1. This damping coefficient is an ad hoc
value chosen so that the simulation remains coherent.

The damper in the model is a series of 65 dash-pots. This number of dash-pots
is chosen so that the string can be sufficiently damped when the key is released. The
parameters cD, mD and kD are chosen so that the damping effect exerted on the
string once the key is released can be reproduced. Since the damper weighs a few
grams, the value chosen for the modal mass is mD = 1.0×10−2 kg. Considering that
the mode of the damper is a body-mode, then kD = 0 N.m−1. Finally, to obtain
sufficient damping, it is chosen that cD = 8.0× 102 kg.s−1.

3.1.4 Discretization of the equation of motion

To simulate the model put into light in chapter 2, a numerical scheme need to be
chosen. A classical explicit scheme is used to discretize the equation of motion 2.36.
It consists in discretizing the temporal derivatives of this equation. It comes down
to obtaining the expression of the solution of the next time step Qn+1, with n being
the time sample of the solution, with respect to that of the two preceding steps
Qn and Qn−1. This leads to the following discretization of the modal amplitudes’
derivatives :

Q̇ =
Qn −Qn−1

∆t
(3.3)

and :

Q̈ =
Qn+1 − 2Qn + Qn−1

∆t
(3.4)

Where ∆t is the time step of the temporal discretization. Then, the explicit
scheme of equation 2.36 gives :

Qn+1 = 2Qn −Qn−1 + ∆t2M−1/2B+b

+ ∆t2
[(

M−1M−1/2B+AM−1
)(
−CQn −Qn−1

∆t
−KQn + F ext,n − F nl,n

)]

(3.5)

To ensure the stability of the numerical scheme presented in equation 3.5, its
stability condition can be derived (see annex E) [94] :

∆t ≤ 2

max(eig(WM−1K))
(3.6)

Then, according to equation 3.6, the time step should not be larger than a
value depending on the matrices W , M and K. The term M−1K give the eigen
pulsations. So the value of the denominator of equation 3.6 depends on the value
of the largest pulsation of the vibratory coupled system. As a result, increasing
the number of modes leads to reducing the time step compatible with the stability
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condition. To give an example, with 100 string modes in the case of the modeled
G#3 string, the time step ∆t cannot be larger than 2× 10−5 s. Beyond this value,
the simulation loses its stability. Even though this stability condition is respected, it
does not guaranty the good quality of the solution. Indeed, a time step convergence
is done in section 3.3.1 to find a reasonable time step which is not too small without
affecting the convergence of the solution.

3.1.5 Force profile

To excite the G#3 string, a force profile needs to be applied to the key-tangent
substructure. It is decided that this profile with respect to time be in the form :





Fext(t) = αt α > 0 0 < t < t1

Fext(t) = β1 β1 = t1 × α1 t1 < t < t2

Fext(t) = −αt+ β2 β2 = t3
t3−t2β1 t2 < t < t3

Fext(t) = 0 t3 < t

(3.7)

This force profile is made of a steep slope at the beginning, and then it remains
constant from the time t1 up to time t2. Note that this moment is before that the
key-tangent substructure strikes the string. So the force profile remains constant
when the contact between the key-tangent substructure and the tangent occurs.
Then, this force decreases linearly from the time t2 and goes to zero at time t3. In
figure 3.8, one can see a standard force profile used for the simulation, with α = 600
N.s−1, t1 = 0.01 s, t2 = 1.0 s, t3 = 1.01 s. This force profile is similar to that used
by the robotic finger as it is shown in annex F.
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Figure 3.8: Force profile used for the simulation, with α = 600 N.s−1, t1 = 0.01 s,
t2 = 1.0 s, t3 = 1.01 s.
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3.2 Observation at the contact point between the
key-tangent substructure and the string

The correction of the constraint violation in terms of displacement and velocity
given by equations 2.84 and 2.85 is implemented in the simulation. To verify the
continuity of the displacement and the velocity at the contact point between the
string and the key-tangent substructure, these are observed in figure 3.9 (a) and
(b). One can see that the displacement and the velocity of the string and that of
the tangent are superimposed after the impact, without observing any numerical
drifts. One can see a little discontinuity of 0.02 m.s−1 in the velocity at the moment
of contact. That represents a 2.6% difference, which is quite low and it doesn’t
influence much the simulation. Then, the correction of these constraints are well
implemented. Also, the acceleration at the contact point is observed in figure 3.9
(c). Once again, the continuity of the acceleration of the two substructures at the
contact point is verified.
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of the string at the excitation point with respect to time.
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Number of modes : m
10
20
30
40
50
60
70
80
90
100

Number of string modes : Ns

50
75
100
125
150
175
200

Time step : ∆t (s)
5× 10−6

4× 10−6

3.5× 10−6

3× 10−6

2× 10−6

7× 10−7

Table 3.3: Tables of the variation of the different parameters chosen to proceed to
the numerical study : the number of mode m related to equations 2.60 and 2.63,
the number of string modes : Ns, and the time step : ∆t.

3.3 Study of the simulation parameters

To verify that the simulation processed by means of the numerical method chosen in
section 3.1.4 is stable and convergent, a numerical study of some of the simulation
parameters needs to be done. The convergence of the series in equation 2.60 needs to
be verified, by varying the number of string modes given bym from 10 to 100 modes.
The influence of the string number of modes Ns on the results of the simulation is
observed by varying Ns from 50 modes to 200 modes. Also, the influence of the time
step ∆t of the simulation is studied, by varying it from 5×10−6 s to 7×10−7 s. The
different parameters chosen for this numerical study is shown in table 3.3.

3.3.1 Study of the time step

Study of the time step by means of the relative error of the string dis-
placement and that of the contraint force

To discretize the differential equation of motion 2.27, a value for the time step ∆t
is chosen. First, this value is conditioned by the stability condition of the scheme,
without which no solution is given by the simulation. Then, the time step gives the
sampling frequency of the solution. According Shannon’s sampling theorem :

fmax ≤
1

2∆t
(3.8)

Where fmax is the frequency of the system mode having the highest frequency. If
the condition given by equation 3.8 is not respected, then divergences occur. Also,
the smaller the time step, the better the precision of the computation.

Let us choose Ns = 100 modes for the modeled string. Different time steps are
taken to compute the successive relative errors of the solution in terms of string
displacement and of constraint force applied to the point of contact between the
string and the tangent. To compute their relative error, these solutions are resam-
ple so that they have the same sampling length. The relative error of the string
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displacement is computed by means of εY Sγn =

NT∑
i=0
|Y Sγn (ti)−Y Sγn+1

(ti)|

NT∑
i=0
|Y Sγn+1

(ti)|
, where Y S

γn(ti) is

the string displacement related to the current time step, Y S
γn+1

(ti) is the string dis-
placement of the next time step, and NT = T

∆t
with T the length of the signal.

Analogically, the relative error of the constraint force at the tangent-string contact

point is εFcγn =

NT∑
i=0
|Fc,γn (ti)−Fc,γn+1 (ti)|

NT∑
i=0
|Fc,γn+1 (ti)|

. For instance, in figure 3.10 (a), the data are

presented in the following way : the data placed between 5 × 10−6 and 4 × 10−6

whose value is around 0.02 % is the relative error between the string displacements
related to the two aforementioned times steps. The same way of reading the data
is applied in figure (b) when it comes to the relative error of the constraining force
Fc. Looking at figures 3.10 (a) and (b), it is shown that the solution converges with
respect to the time step, whether in terms of displacement or of constraining force.
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Figure 3.10: Relative error of the displacement at one point of the string and of the
constraint force applied to the point of contact between the string and the tangent
with respect to the time step.

Study of the time step by means of an energy analysis of the system

Also, to assure the quality of the computation, it is possible to evaluate it by means
of an energy analysis. The objective here is to conduct an energy analysis of the
simulation to assure that the solution provided by it (displacement, velocity and
acceleration of the system and its constraining forces) is improved when decreasing
the time step. By definition, the energy given to a mechanical system at rest initially
must be equal to the sum of the energies of its subsystems. The energy provided

to the system is the work Ee =
N∑
n=1

Ee,n done by the tangent, with the modal work

Ee,n :

Ee,n(t) =

T∫

0

Fext,n(rT , t)q̇
Ta
n (t)dt (3.9)
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The sum of all modes’ energy of the string, of the system tangent-key, of the
damper and of the bridge gives the total energy of the modeled system (for the
detail of the energy analysis and the computation, see annex G). In figure 3.11, the
work done by the key-tangent substructure is computed as well as the total energy
of the coupled system for different time steps. One can see that when the time
step goes down, the total energy curve becomes closer to that of the key-tangent
substructure work. This shows the degree of accuracy of the computation depending
on the value of the time step. As a result, choosing a small time step improves the
equivalence between the system mechanical energy and the work provided by the
excitation system. Furthermore, the sampling frequency associated to this time step
is Fs = 1

∆t
= 500000 Hz, so the associated Nyquist frequency is 250000 Hz. Since

the frequency of the modeled G#3 string is 392 Hz, the frequency of the 200th string
mode is 78400 Hz. Then, this maximum frequency do not go beyond the Nyquist
frequency which means that Shannon theorem is respected. So up to 200 string
modes, there is no risk of divergence because of aliasing. As a result of the energy
analysis, one can see that the quality of the simulation is improved by decreasing
the time step. Thanks to this analysis, a reasonable time step can be chosen to
ensure the quality of the simulation. In accordance with figure 3.11, the time step
chosen for the following simulations is ∆t = 2× 10−6, which is a good compromise
between the accuracy of the computation and its duration.
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Figure 3.11: Convergence of the total mechanical energy of the system compared to
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3.3.2 Study of the number of string modes

The convergence of the solution with respect to the number of modes chosen needs
to be evaluated. The relative error of the G#3 string displacement is εY Sn =
NT∑
i=0
|Y SNn (ti)−Y SNn−1

(ti)|

NT∑
i=0
|Y SNn−1

(ti)|
, and that of the constraint force at the tangent-string contact

point is εFcn =

NT∑
i=0
|Fc,Nn (ti)−Fc,Nn−1

(ti)|

NT∑
i=0
|Fc,Nn−1

(ti)|
. First, the convergence of the series within

equation 2.60 expressing the dynamic tension Tdyn can be evaluated. With n = 100
modes, the number of mode m is varied from 10 to 100 modes, and the impact on
the string displacement and on the constraint force at string-tangent contact loca-
tion is observed. Figure 3.12 shows the successive relative errors obtained for these
physical terms. The relative error dwindles with respect to the number of modes
m. Thereby the series within equation 2.60 converges and leads to the convergence
of the solution. Next, the convergence of the solution with respect to the number
of string modes Ns needs to be checked. Figure 3.13 shows that the relative error
converges with respect to the number of string modes, whether it is in terms of
string displacement or in terms of coupling force.
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Figure 3.12: Relative error of the displacement at one point of the string (a) and
of the constraint force applied to the point of contact between the string and the
tangent (b) with respect to the number of modes m, with ∆t = 2 × 10−6 s for all
the simulations.

If the relatives errors of the string displacement and that of the coupling force
at the tangent-string contact point decrease with respect to the number of string
modes Ns, then increasing this number leads the solution given by the simulation
to converge. Since the relative error is less than 2% for the displacement and the
coupling force when Ns = 100 modes, this number of string modes seems reasonable
to be chosen for the following simulations.
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Figure 3.13: Relative error of the displacement at one point of the string (a) and
of the constraint force applied to the point of contact between the string and the
tangent (b) with respect to the number of string modes Ns, with ∆t = 2 × 10−6 s
for all the simulations.

3.4 Simulation of the model
Assessment of the model is performed in 2 steps: 1/ visualisation of string motion;
2/ visualisation of subsystems vibrations and comparison with experimental data.

3.4.1 String motion

The string motion of the clavichord is shaped by the specific excitation mechanism
of the instrument. Time domain simulation of the system allows for visualisation of
the string motion. Simulation of the G#3 string motion is displayed in figure 3.14,
in response to a 6 N excitation force. The top panel represents the initial 35 ms,
i.e. the beginning of the motion. The tangent (represented by circles at x = 0.6 m,
sampled with a period of 0.1 ms) comes in contact with the string and lifts the string
to a maximum. When the tangent strikes the string, an angular point is created and
propagates to the bridge. At the same time, the string is uplifted by the tangent.
After the arrival of the angular point at the bridge, it is reflected back and then
reflected again by the tangent. As the mechanical impedance of the bridge and that
of the tangent are high compared to the string mechanical impedance, most of the
wave energy is reflected. The vibratory amplitude (then the sound amplitude level)
depends on the angle of the angular point, and then on the ratio of wave velocity
in the string and tangent velocity, as discussed in [3], and then on the steepness
of the tangent motion slope. In the middle panel of figure 3.14 the string motion
history is displayed between 35 and 200 ms (sampled with a period of 1 ms). The
low frequency (62.5 Hz) oscillation of the key-tangent subsystem because of the
elasticity of the string is observed. Bottom panel of figure 3.14 shows vibration by
sympathy of the part of string between the bridge and tuning pin, corresponding to
the circle in the middle panel, between 35 and 200 ms (sampled with a period of
1 ms). Note that the sympathetic vibration is two order of magnitude lower than
the played part of the string, between 10−5 - 10−6 m, and that the string motion
looks rather disorganized compared to more regular motion between the tangent
and bridge pin. No direct measurement of the whole string motion are available to
the best of our knowledge. Comparison with high-speed videos of the string motion
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Figure 3.14: History of the transverse motion for the G#3 string.x axis: time (s); y
axis : string length; z axis: transverse string motion. Top panel: full string between
t = 0.0164 s and t = 0.0759 s . Middle panel: full string between t = 0.0164 s
and t = 0.0224 s. bottom panel: sympathetic part alone, between t = 0.0164 s and
t = 0.0224 s.
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in the vicinity of the tangent1 show good agreement with the simulation : the same
"zipper" motion of the angular point on the string can be observed in high-speed
videos and figure 3.14.

3.4.2 Bridge motion

The bridge is a key point in sound production, because it moves the soundboard, and
then produces the sounds. For assessment of the model, simulated and measured
bridge motions are compared. The acceleration at the bridge pin for the string is
measured using the same PCB M352C65 accelerometer and the same acquisition
system as in section 3.1.2. For this measurement, all the other strings are muffled
using felt strips. Measured and simulated signals oscillograms and spectrograms
are displayed in Figure 3.15. The results are on the whole comparable. The main
difference between the two signals is the damping, where that of the simulated signal
is too high. The damping of the simulated signal can still be improved to obtain a
better result. Another difference between the two signals is in the attack transition.
The real acceleration exhibits a sharper attack transient. This could be explained
by the "drum noise" that is present in a real clavichord but not in the model. The
drum noise is the structural noise due to the shock of the tangent on the string,
that excites all the body (structure) of the instrument. This is a well known effect,
not simulated here, the string being isolated from the structure. Otherwise, the
essential features of simulation and measurement are very similar, and the orders of
magnitude of these accelerations are the same.

The forces applied to the key and the response at the bridge are analyzed with
the help of figure 3.16. A step force of 6 N is applied on the key for 1 s (see figure
3.16 (c)). The constraint force at the contact point between the tangent and strings
is computed. Note that the tangent force is lower than the force applied to the
key, because of the leverage ratio on the pivoting key (since Lf −Lp is smaller than
Lp − Ltg). Two conditions are studied in the simulation with and without damper.
The middle panel shows the simulated force at the bridge. As expected, the force
is lowered during the tone, because the tangent lifts the string, and then releases
the string pressure on the bridge. When dampers are removed, the string appears
less constrained, and the force at the bride is higher. String vibration is apparent in
the force signal. The top panel shows the vibration displacement. As expected, the
string is raised in response to the tangent lift, and raised higher when the dampers
are withdrawn. The vibratory magnitude is surprisingly low (a maximum of about
0.015 mm). Displacement measurements were subsequently performed on the G#3

string using a Keyence (LJ-V7060) profilometer. As this device is not meant to
measure vibratory signals, only the order of magnitude of the bridge motion can
be evaluated. The same order of magnitude were observed : a bridge lift of 0.010-
0.020 mm and a maximal vibratory amplitude of about 0.010-0.015 mm, in good
agreement with the simulated motions (see figure 3.17). After the key release, the
tangent loses contact with the string. The remaining vibration after the key release
corresponds to the sympathetic vibration between the bridge and tuning pin, and
in the non-damped situation to the vibration of all the length of the string. In this
latter situation, the magnitude is larger.

1see https://www.musimediane.com/7dalessandro/ [Retrieved: 2021-02-11]
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Figure 3.15: Comparison of simulated and measured acceleration at the bridge.
Oscillogram for 1s of the measurement (a) and of the simulation (b). Zoom on a 40
ms section of the measurement (c) and of the simulation (d). Spectrograms of the
measured signal (Top) and of the simulated signal (Bottom).
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Figure 3.16: Bridge displacement with (red) and without (blue) dampers (a), Force
on the bridge with (red) and without (blue) dampers (b), Force applied on the key
and resulting force on the tangent (c).
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Figure 3.17: Displacement of the bridge at the G#3 string coupling point, measured
and simulated.

3.5 Pair of strings

In the case of the clavichord, a pair of strings are struck by the tangent to produce a
note. According to Weinreich [21], because of the frequency near-coincidence of the
two string fundamental frequencies and the coupling with the bridge, the resulting
vibration shows the two-part slope process. This phenomenon must be retrieved by
the simulation when coupling two excited strings tuned to the same frequency. Two
identical G#3 strings are modeled, tuned to the same frequency and coupled in the
same way to the same coupling point (see figure 3.18). The tangent strikes the two
strings at the same time and at the same location. The results of this simulation can
be compared when simulating only the first of the two G#3 strings. It is possible
to verify that the constrained force is the same at the static phase whether striking
one string or two strings with the same exciting force. Since the two strings are the
same and their excitation is done at the same time and at the same location, an
equal distribution of the constrained force between the strings and the tangent is
expected once the system becomes static. Figure 3.19 shows the constrained forces
between the two cases. Before time 0.5 s, this is where the dynamic phase of the
system takes place, in which an oscillation of the constrained force with respect to
time can be observed. One can see that the amplitude of this force oscillation is
higher in the two strings’ case than in the one string case. This is consistent with
Bavington’s study which shows that when the finger is in contact with the key, the
force felt by the musician is higher in the two strings’ case than in the one string case
at the moment of contact [95]. From 0.5 s onward, the equality of the constrained
forces between the two cases can be observed, which is approximately the moment
when the static phase is reached. That result is consistent with the aforementioned
expectation.

In figure 3.20, the acceleration at the G#3 strings’ coupling point is shown when
striking the first of these strings only and when striking the two strings. By means
of comparison, the two-part slope process is noticeable when striking the two strings
as oppose to the case when striking only one string. This two-part slope process is
the same phenomenon that is described in Weinreich study [21], when coupling two
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identical piano strings to the same coupling point. Therefore, this effect observed
in the simulation when coupling two identical strings to the same coupling point is
plausible.

Figure 3.18: Sketch of the modelling of the pair of strings being excited by the same
tangent at the same time.
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Figure 3.19: Exciting force applied on the tangent and constraining force applied on
the string-tangent coupling point, when one string is struck and when two strings
are struck.
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Figure 3.20: Acceleration at the G3-G#3 strings’ coupling point, in the case where
only the first G3-G#3 string is excited and where the two strings are excited.

3.6 Conclusion
An overall estimation of the parameters needed for the simulation was performed.
The strings’ dampings were found by means of measurements on three different
strings on a string bench. Then, complying the model of string damping with ex-
perimental results, the dampings of all the clavichord strings could be derived. Then,
using FRF’s measurements and the modal representation of the bridge, experimen-
tal analysis could be done to estimate the modal parameters of the bridge at the
interested locations. In view of the coherency of the simulation results, convenient
and ad hoc values for the key-tangent substructure modal parameters and for that
of the damper are given. Furthermore, tests of the simulation were done to verify
its stability and its convergence. The simulation of one and two clavichord strings
seems to give good results. This model is used in chapter 4 to study the relation
between the impact velocity and its vibratory consequences in section 4.3, to study
the variation of the string tension because of its static displacement in section 4.2,
and to study the motion of the string and that of the tangent following the excita-
tion in section 4.4. Also, this model is used in chapter 7 to study numerically the
vibration of the sympathetic part of the strings.
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Part III

Excitation

79





Chapter 4

Functional analysis of the excitation
system

4.1 Introduction
When playing the clavichord, the musician finger presses the key, i.e. the tangent
is uplifted. Then this tangent strikes the string with some momentum, which leads
to the fact that the string is set into vibration. As long as the key is pressed by the
finger, the tangent remains in contact and elevates the string. As a consequence, the
tension of the string is influenced which impacts on the string fundamental frequency.
Also, depending on the velocity impact of the tangent, the sound produced by the
clavichord is influenced.

In this chapter, these aspects of the excitation of the clavichord string is studied.
First, the simulation is used to quantify the variation of the string tension and that
of its fundamental frequency in section 4.2. Next, the bridge vibratory response
to the excitation is studied by means of simulations in section 4.3, in order to
retrieve experimental results found by d’Alessandro [3]. Finally, the observation of
the string motion given by the simulation in section 4.4 is done, giving a precise
view of the specificity of the clavichord string motion and showing the interaction
between the string and the key-tangent substructure. Then, the two polarisations
of motion of the clavichord string are measured in section 4.5. It allows to see how
the excitation impacts on the string vibration in the two polarisations of motion.
Then, the legitimacy of the one polarisation assumption of the model established in
chapter 2 can be verified.
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4.2 String tension
Regarding the study of the clavichord string tension, two aspects need to be tackled.
First, the modelling of the dynamic string tension by means of the Kirchhoff-Carrier
model needs to be verified by comparing it to a static approach of modelling this
tension after having proved the equivalence between these two approaches. Then,
the influence of the modeled dynamic string tension on its fundamental frequency
is studied.

4.2.1 Equivalence of the tensions given by the static approach
and the dynamic one

In this section, the equivalence of the non-linear dynamic approach and the geomet-
rical quasi-static one to express the string tension variation is demonstrated1.

Static approach

As it is pointed out in [3], the string static tension Tstat can be expressed by a
geometric approximation :

∆Tstat = ES

(√
L2
l + Y 2

e +
√
L2
r + Y 2

e

L
− 1

)
(4.1)

where Ll = xe, Lr = L − xe and Ye are distances described in figure 4.2. This
can be rewritten in the following way :

∆Tstat = ES


Ll
L

√
1 +

(
Ye
Ll

)2

+
Lr
L

√
1 +

(
Ye
Lr

)2

− 1


 (4.2)

For usual position xe of the tangent, it can be assumed that Ye
Ll
� 1 and Ye

Lr
� 1.

Simplifying equation 4.2 using a Taylor expansion, it leads to :

∆Tstat = ES

[
Ll
L

(
1 +

1

2

(
Ye
Ll

)2
)

+
Lr
L

(
1 +

1

2

(
Ye
Lr

)2
)
− 1

]
= Y 2

e

ES

2LlLr
(4.3)

which can be written thus :

∆Tstat = Y 2
e

ES

2xe(L− xe)
(4.4)

By the way, in quasi-static conditions, the physical displacement of the string is
given by :

Y (x) =





x
xe
Ye 0 6 x 6 xe

L−x
L−xeYe xe 6 x 6 L

(4.5)

1This demonstration came from a personal communication given by José Antunes
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Dynamic approach

The result given in equation 4.4 can be retrieved using a non-linear dynamic ap-
proach, that is by using the Kirchoff-Carrier model. The expression of the tension
variation based on the aforementioned model given by equation 2.60 is recalled :

Tdyn =
ESπ2

4L2

N∑

n=1

n2 (qn)2 (4.6)

Then, the modal displacements qSn are computed by noticing that :

Y S(x) =
N∑

n=1

φSn(x)qSn ⇒
∫ L

0

Y (x)φSn(x)dx =

∫ L

0

[
φSn(x)

]2
qSndx (4.7)

so that the modal displacements created by the string displacement field are
given in the following way :

qSn =

L∫
0

Y (x)φSn(x)dx

L∫
0

[φSn(x)]2 dx

, n = 1, 2, ..., N (4.8)

which gives :

qSn = Ye

xe∫
0

x
xe
φSn(x)dx+

L∫
xe

L−x
L−xeφ

S
n(x)dx

L∫
0

[φSn(x)]2 dx

, n = 1, 2, ..., N (4.9)

with φSn(x) = sin
(
nπxe
L

)
. Computing the integrals in equation 4.9, one obtains :

qSn =
2L2 sin

(
nπxe
L

)

n2π2xe (L− xe)
Ye, n = 1, 2, ..., N (4.10)

Then, replacing equation 4.10 in equation 4.6 :

Tdyn(t) =
ESπ2

4L2

N∑

n=1

n2

(
2L2 sin

(
nπxe
L

)

n2π2xe (L− xe)
Ye

)2

(4.11)

By simplifying :

Tdyn(t) = Y 2
e

ESL2

π2x2
e (L− xe)2

N∑

n=1

(
1

n
sin
(nπxe

L

))2

(4.12)
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Notice that when the number of modes N is large enough, then :

N∑

n=1

(
1

n
sin
(nπxe

L

))2

≈
∞∑

n=1

(
1

n
sin
(nπxe

L

))2

(4.13)

Then noticing that :

sin(x)2 =
1− cos(2x)

2
∞∑

n=1

1

n2
=
π2

6

cos(x) =
exp (jx) + exp (−jx)

2

Equation 4.13 is rewritten thus :
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where Li2 is the dilogarithmic function defined as Li2(z) =
∞∑
n=1

zn

n2 with z being a

complex number. Using the following property of the dilogarithmic function [96] :

Li2 (z) + Li2
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Using equations 4.14 and 4.16, that amounts to the following result :
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Then, replacing equation 4.17 in equation 4.12

∆Tstat = Y 2
e

ES

2xe(L− xe)
(4.18)

which is identical to equation 4.4, given by the geometrical quasi-static approach.
Then, it is shown that the geometrical quasi-static approach is compatible with the
non-linear dynamic one based on the Kirchhoff Carrier model.
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Numerical verification of the equivalence between the dynamic and static
string tension variation

In the case of the clavichord, the boundary conditions of the string are "pinned-
pinned" (see figure 4.1). As a result, geometric nonlinear modal force terms are
calculated by means of equation 2.63. As a means of verification, the dynamical
tension computed by the simulation of equation 2.60 can be compared to the tension
computed by means of a static approach. When the string is excited by the tangent,
the shape of the string is assumed to be a triangle.

Figure 4.1: Photo indicating the pined nature of the boundary conditions of clavi-
chord strings

The variation of tension ∆T (t) computed dynamically by means of equation
2.60 and statically by means of equation 4.1 are shown in figure 4.2 (b). In this
simulation, the string is fixed on both ends. The dynamic approach and the static
one have to give the same string tension variation. Figure 4.2 shows that ∆T and
∆Tstat given by these two approaches are well superimposed. As a result, the two
approaches are consistent, which implies that the dynamic tension of the string is
well simulated. Also, one can see that the variation of tension has a similar form
to that of the string displacement at the coupling point with the tangent (see figure
3.9). If the variation of tension given by these two approaches are the same, then
it means that the dynamic tension is well modelled, whether there is a coupling
with the bridge or not. The same oscillation observed for the displacement can be
observed at the beginning of the ∆T (t). This oscillation depends on the modal
behaviour of the key-tangent substructure and that of the string.
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Figure 4.2: Representation of the G#3 string when uplifted by the tangent, where
the string is uncoupled with the bridge (left). Comparison of the dynamic tension
Tdyn to the static tension Tstat in the case of this string uplifted by the key-tangent
substructure (right).

4.2.2 Variation of the fundamental frequency by the dynamic
tension

Let us now reconsider the case where the G#3 is coupled with the bridge, like that
shown in the simulation in section 3.4. To estimate the influence of this variation
of tension on the string fundamental frequency f0, it is possible to compute this
frequency by means of Mersenne’s law [58] :

f0 =
1

2L

√
T + ∆T

µ
(4.19)

where µ is the linear density of the string, L is the length of the string, T is the
tension of the string and ∆T is the variation of tension created by the string uplift.
The interest here is to estimate the variation of the string fundamental frequency
∆f0 with respect to time. Rewriting equation 4.19 :

f0 =
1

2L

√
T

µ

√
1 +

∆T

T
= f0,r

√
1 +

∆T

T
(4.20)

where f0,r = 1
2L

√
T
µ
is the fundamental frequency of the string where it is only

stretched by its extremities with its tension T . The value of the tension ∆T is 0.8
N according to figure 4.3 at the static phase. The tension T (whose value is 45 N) is
larger than this variation, so it is possible to expand the term

√
1 + ∆T

T
at the first

order. It yields :

f0 = f0,r(1 +
∆T

2T
) = f0,r +

∆T

2T
f0,r = f0,r + ∆f0 (4.21)

As a result, the variation ∆f0 is given by this relation :

86



∆f0 =
∆T

2T
f0,r (4.22)

Let γ = ∆T
2T

, which is shown in figure 4.3 (a) with respect to time. It is found
that γ converges toward 0.9%. This implies that the resulting frequency f0 of the
uplifted string is obtained by augmenting the frequency f0,r when the string was
at rest by 0.9% of its value. Yin algorithm is used to measure the fundamental
frequency of the simulated clavichord struck string [97] (the position taken for the
string displacement signal used is x = 34.2 cm). This frequency is shown in figure 4.3
(b), which ends up being at 391.6 Hz after the transitory part of the excitation. This
is the fundamental frequency of the string once it is uplifted. To have that of the
string at rest, one has to consider f0 = 391.6 Hz and γ = 0.9%. Using equation 4.21,
one obtains f0,r = 388.1 Hz for the simulated G#3 string at rest. By calculating the
difference of these two frequencies in terms of cent, one obtains 16 cent. Beyond 4
cent, the difference in pitch is perceptible [98]. Therefore, the pitch shift produced
by the simulation is perceptible. When playing a real clavichord, the pitch shift
created by the string uplift is also perceptible. As a result, the excitation system
yields plausible results in terms of tension variation and fundamental frequency
variation.
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Figure 4.3: Variation of tension of the G#3 string when uplifted by the tangent,
where the string is coupled with the bridge, and the coefficient γ with respect to time
(a), Fundamental Fundamental frequency of the simulated G#3 string computed by
means of yin algorithm (b).
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4.3 Bridge vibration reacting to the tangent

4.3.1 Linearity between the vibratory level and the logarithm
of the impact velocity

It was shown experimentally by d’Alessandro [3] that the sound level produced by the
clavichord is proportional to the logarithm of the impact velocity of the tangent. A
similar result can be retrieved by means of the simulation. Since the simulation only
yields vibratory results, one can expect that this impact velocity may be proportional
to the produced acceleration at the coupling point between the bridge and the excited
string. To vary the impact velocity, the force F ext applied on the key-tangent
substructure is varied (see figure 4.4). For each excitation force given, the impact
velocity and the average acceleration computed by the simulation are obtained.
Similarly to the sound pressure level (SPL) the acceleration level is computed as
the logarithm of acceleration integrated over 250 ms, starting from the impact time.
In figure 4.4, the average acceleration in dB with respect to the logarithm of the
velocity is plotted. The linear regression shows the approximated linearity between
the two parameters, which is similar to results found by d’Alessandro measuring
sound pressure level. As a result, the simulation gives a coherent result in comparison
with experimental approaches.
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Figure 4.4: Force profiles used to obtain the simulated impact velocities and the
associated bridge acceleration (a), Time average of the bridge acceleration (ref 1 dB
: 1 m.s−2) at the G#3 string coupling point with respect to the logarithm of the
tangent impact velocity (b).

4.3.2 Link between spectral slope and impact velocity

It is possible to investigate the influence of the impact velocity on the timbre of
the bridge acceleration at the same coupling point. The same simulations as the
previous study with forces shown in figure 4.4 (a) are used to compute the spectral
slope of these different simulated accelerations. The results are presented in figure
4.5 for different impact velocities. First, one can see that the higher the impact
velocity, the higher the partials’ frequency of the string. In other words, the partials’
frequency increase little by little by increasing the impact velocity. This impact
velocity increases because of the increase in the excitation force amplitude. But
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with the force profiles that are used (figure 4.4 (a)), increasing the excitation force
amplitude leads to increasing the static displacement of the string, hence the increase
in the string fundamental frequency. That accounts for the little shift in frequency
of the partials in figure 4.5. Along with this, the first partials’ spectral amplitude
increase with respect to the impact velocity, which is consistent. Most importantly,
one can see that the spectral slopes for the different spectra are approximately the
same, which is put forward by drawing an average spectral slope for all the curves.
As a result, the timbre of the simulated bridge acceleration does not change with
respect to the tangent impact velocity, which is the same conclusion as the one found
in the light of the experimental study by d’Alessandro [3].
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Figure 4.5: Spectral amplitude of the different bridge accelerations at the G#3 string
coupling point with respect to time (ref 1 dB : 1 m.s−2), for different impact velocity
of the key-tangent substructure, with the average spectral slope.
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4.4 Motion of the struck string

4.4.1 Key-tangent motion

The objective of this section is to compare an experimental tangent velocity profile
with that coming from the simulation in order to see if these profiles are comparable.
To that purpose, a robotic finger is used. The DROPIC finger was conceived to
program finger trajectories in order to simulate excitations for string instruments
[99]. Its trajectory is programmed in terms of displacement and velocity in a 2
dimensional space (for further details, see annex F). The excitation performed by
the robotic finger was done on the F3 string (this is not the same string as the G#3

string which is simulated, but the two strings and the two corresponding keys are
not so different in dimension, so they are qualitatively comparable). The velocity
profile coming from the standard simulation done in section 3.4 and that derived
from the key displacement measurement caused by the robotic finger trajectory in
annex F are shown in figure 4.6 (a). The values chosen for the simulated velocity
profile are α = 200 N.s−1, t1 = 0.01 s, t2 = 1.0 s, t3 = 1.01 s (see section 3.1.5). The
ascending slope of the measured velocity profile is similar to that of the simulation,
whose value is 84.5 m.s−2. The impact velocity of the experimental velocity profile
is around 0.6 m.s −1 while that of the simulated one is around 0.8 m.s−1. In figure
4.6 (b), the Fourier transform of the two velocity profiles are presented. A little
vibratory energy can be seen at 330 Hz on the curve associated to the robotic finger
motion, which corresponds to the fundamental frequency of the F3 string excited
by the robotic finger. A similar observation can be seen for the curve associated to
the simulated key-tangent substructure motion where vibratory energy is found at
391 Hz, which corresponds to the modelled G#3 string fundamental frequency. The
lowest frequency of the robotic finger velocity profile where the spectral amplitude
is significant is 13 Hz, while that of the simulated key-tangent substructure velocity
profile is 62 Hz, which is exactly what was observed in section 3.4. In d’Alessandro’s
study, the low frequency motion at the contact point between the excited string and
the tangent is around 30 Hz for the Sidey clavichord [3]. The order of magnitude of
this frequency is consistent with that found with experimental data. The value of
this low frequency varies depending on the inertia of the specific key.

Another main difference in figure 4.6 (b) between the two curves is that the
lowest frequency is more damped in the robotic finger case than that in the simulated
motion case. Yet, the low frequency motion of this contact point is not so largely
damped in d’Alessandro’s velocity profile measurements [3]. So the damping of the
simulated motion low frequency remains plausible. Furthermore, the same bridge
acceleration spectral amplitudes are represented in figure 4.6 (c) between 100 Hz
and 10000 Hz with a logarithmic representation of the frequency axis. The spectral
slope of these curves are the same and is -6 dB/octave. In d’Alessandro’s study, the
spectral slope of the tangent velocity is also -6 dB/octave [3]. So the spectral slope
found in the simulation is consistent with that of the experimental data.
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Figure 4.6: Measured velocity of the F3 key caused by the robotic finger pressure
and velocity of the simulated key-tangent substructure displacement (a), Spectral
amplitude of the simulated key-tangent substructure displacement (ref 1 dB : 1
m.s−1), marking the two first modes’ frequency of this system (b), spectral ampli-
tudes plotted between 100 Hz and 10000 Hz with a logarithmic representation of
the frequency axis (c).
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4.5 Two dimensional motion of a struck string
When the string is set into vibration, it is vibrating with respect to two polar-
izations, namely the vertical and the horizontal one. The measurement of these
two polarizations of motion can be used to compare their vibratory amplitude. As
such, one can observe which polarization is predominant when the clavichord string
vibrates. To proceed to these measurements, pairs of optical forks (OMRON EE-
SX1131) are laid out on the clavichord as it is shown in figure 4.7. Each of the two
forks measure the displacement of the string with respect to a specific polarization
of motion. During the string motion, the light beam of each sensor is cut creating a
voltage proportional to the displacement. Since the F3 string diameter is 0.33 mm,
the radius of the photo-transistor chosen is 0.3 mm. The nearby strings need to
be displaced in order to lay out properly the optical forks. Then, before doing the
measurements, these forks need to be calibrated in accordance with the procedure
indicated by Le Carrou [88].

Figure 4.7: Optical forks placed at the sympathetic part and at the played part of
the second F3 string of the LAM1 clavichord.

This vibratory measurement in the two polarisations is done in the case of the
F3 string. A pair of forks is placed at the played part of the string, at 34 cm from
the tangent. Another is placed at its sympathetic part, at 11.5 cm from the bridge.
Then, the vibratory motion in the two polarisations of the string, in the played part
and in the sympathetic part, is measured. The excitation of the F3 string is done
by the robotic finger with the same trajectory that was programmed in annex F.

In figure 4.8, the vibratory displacement of the F3 string played part is measured
in the vertical polarization (y axis) and in the horizontal one (z axis). One can
notice the offset of these signals caused by the string uplift along both z and y axis.
The vibrating part of the signal is centered at zero. The uplift is done in the y
direction. Therefore it is consistent to observe an offset in the y axis larger than
that in the z axis. Also, the vibratory displacement of the string played part in the
y axis is 10 times larger than that in the z axis. So the tangent transmits more
energy to the vertical vibratory displacement of the string than to the horizontal
one. Given that the tangent strikes the string in the y axis, this interpretation seems
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Figure 4.8: Vibratory motion of the F3 P-string measured at 34 cm from the tangent,
the dynamic range of the fork measuring the vertical polarisation is [0.16 V - 0.83
V] and that measuring the horizontal polarisation is [0.03 V - 0.19 V] (a), Vibratory
motion of the F3 S-string measured at 11.5 cm from the bridge, the dynamic range of
the fork measuring the vertical polarisation is [0.04 V - 0.23 V] and that measuring
the horizontal polarisation is [0.12 V - 0.54 V] (b).

consistent with the measurements. It implies that when it comes to the clavichord,
the assumption that only the vertical polarization matters in the case of the excited
string is reasonable. In figure 4.8, the measurement of the displacement of the
sympathetic part of the F3 string in the two polarisations is shown. A little offset
can be observed in these measurements. The order of magnitude of the vibratory
amplitude in the y axis is four times larger than in the z axis. So the assumption of
considering only the vertical polarization in the case of the sympathetic part is still
legitimate.
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4.6 Conclusion
The study of the tension in section 4.2 when the string is excited showed that its
uplift leads to a variation of string fundamental frequency of around 1%, which
is perceptible to the human ear. Then, the excitation in the case the F3 string
showed that its vibration in the vertical polarization (y axis) is superior to that of
the horizontal one for the played part and sympathetic part of the string, which
is an assumption that is used for the model in chapter 2. Using simulations in
section 4.3, similar results found in the experimental investigation of the clavichord
by d’Alessandro were retrieved [3], such as the linearity between the logarithm of
the tangent impact velocity and the amplitude of the vibratory acceleration of the
bridge and the constancy of the spectral slope of the bridge vibratory acceleration
with respect to the impact velocity. Finally, the simulation in section 4.4 have shown
the motion of the excited string, where the combination of the static uplift movement
and that of the travelling wave could be observed. Also, the interaction between the
excited string and the key-tangent substructure was observed, presenting features
similar to the measurements. In particular, the low frequency motion of this contact
point is similar to that of the measurements done in this work or presented in the
literature.
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Chapter 5

The clavichord paradox

5.1 Introduction
As an introduction to this chapter, the singular aspect of clavichord performance
practice called the "clavichord paradox" is presented. First, this paradox is intro-
duced in section 5.1.1. Then, from the information taken from the works of Brauchli
[1] and d’Alessandro [100], a historical account of the music practice of the clavichord
is given in section 5.1.2.

5.1.1 Presentation of the clavichord paradox

As it is pointed out by Marin Mersenne [7], the clavichord is an instrument producing
a weak sound level compared to other stringed keyboard instruments. To give a
typical value for clavichords, the radiated sound at 30 cm above the centre of the
1784 Hubert clavichord soundboard has a maximum sound pressure level of 60 dB
SPL [101]. Also, it is the only keyboard instrument allowing for pitch control.
When a key is pressed, the corresponding pair of strings is impacted by a small
metal blade (the tangent) placed at the end of the key. As long as the key is
pressed, the tangent remains in contact with the strings. The tangent is at the
same time the nut (i.e. one extremity) of the string and the string exciter (the
string is then excited at a vibration node). It has been shown experimentally and
numerically that the sound level of the clavichord is proportional to the tangent
velocity at impact (see [3] and section 4.3.1). So the faster the key is pressed, the
louder the sound becomes. However, when a key is pressed with a high velocity, the
key displacement tends to be higher. The tangent raises the string, then increases its
tension, and thereby increases the string fundamental frequency (see section 4.2). As
a result, playing louder ends up in raising the pitch, if the key is pressed in a simple
vertical motion. To control independently loudness and intonation would require a
paradoxical gesture: at the tangent-string contact, the tangent should have enough
velocity, but should not uplift too much the string. In other words, the key should
transfer all the tangent momentum to the string, but without raising it too much,
or losing contact with it. This dependence between loudness and pitch accuracy is
coined "the clavichord paradox"[102, 4]. It is difficult, at least for human players,
to achieve exactly such a motion. However compromises between tangent impact
velocity and string displacement are possible.
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5.1.2 Historical account of the music practice of the clavi-
chord

This demanding rigour of the clavichord player music practice is a pedagogical virtue
developed for the practice of keyboards. As there is no such mechanical constraint
in the piano and in the harpsichord, this specific non-intuitive gesture can only be
elaborated by means of the clavichord. Also, a long tradition of keyboard practice
is connected to the clavichord. Since the XVth century, playing the clavichord was
considered as the groundwork for the music practice of keyboard instruments. One
of the first treaty to highlight this is the one by Paulus Paulirinus entitled Liber
XX Artium (1459-1463). This same consideration is found in the Musica getutscht
(1511) by Sebastian Virdung [6]. Once again, it is repeated in the XVIIIth century
by Johann Gottfried Walther, one of the cousins of Johann Sebastian Bach, in
his book Musikalisches Lexicon (1732) [103]. George Simon Löhlein affirmed in
his treaty Clavierischule (1765) [104] that the clavichord should be the starting
instrument for anyone who wants to start the practice of keyboard instruments. Carl
Philipp Emanuel (C.P.E.) Bach’s treaty Versuch über die wahre Art, das Clavier zu
spielen (1753) [105], whose author is one of those who praised and popularised the
clavichord in the XVIIIth century, puts forward the fact that in order to become a
good keyboard player, one has to practise the clavichord1.

By means of this music practice, the clavichord musical qualities were valued,
to the point of being highly appreciated in the XVIIIth century Germany. At that
period, as the sophistication of the instrument making of the clavichord reached
its zenith in this country, the expressive style connected to this instrument was
associated to the musical motion entiteld Empfindsamkeit, whose leader is C.P.E.
Bach. The XVIIIth musical historiographer Charles Burney witnessed the expres-
sive character of this instrument in one of his comments (Present State Germany,
Netherlands, Vol.1, pp. 108 [106]) on Daniel Schubart’s playing when practising
the clavichord, who was organist at the Stadtkirche of Ludwigdburg. Also, the
clavichord was considered at that time as a symbol of sensibility and intimacy, as
it is witnessed by the philosopher and poet Johann Gottfried Herder in 1800 in his
book Kalligone2 [107]. This expressive aesthetics of the clavichord came into light
by playing techniques only possible with this instrument. Among these techniques,
there is the Bebung which is a kind of vibrato done by varying quickly the finger
pressure on the key. Also, the Tragen der Töne consists in a single variation of this
pressure done on a series of notes after each attack. This frequency variation of the
string gives a singing aspect to the produced sound.

On the other hand, this expressivity is also connected to a way of placing the
hand at the keyboard. One of the first treaties dealing with this topic is that of

1Bach, Carl Phillipp Emanuel, Versuch über die wahre Art, das Clavier zu spielen (1753), §15 :
"Man muss also das Clavicord zur Erlernung des guten Vortrags und den Flügel, um die gehörige
Kraft in die Finger zu kriegen, brauchen. [...] Man kan sogar mit der Zeit, wenn man bloß auf
einem Clavicorde spielt, die Stärcke aus den Fingern verliehren, die man vorhero hatte (One must
therefore use the clavichord to learn good performance and the harpsichord to get the proper
strength in the fingers. [...] One can even lose the strength in the fingers that one had before, if
one only plays on a clavichord).

2"Music plays in us a clavichord which is our innermost nature (Die Musik spielt in uns ein
Clavichord, das unsre eigene innigste Natur ist)", Herder, Kalligone, 1800,: Sämtliche Werke XXII,
68 [107], from Brauschli, Bernard, The clavichord, op. cit. [1]
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Tomàs de Santa Maria entitled Libro Llamado Arte de Tañer Fantasía (1565). The
first treaties do not make a difference between the fingering at the organ, at the
harpsichord or at the clavichord. One of the most important feature mentioned by
Tomàs de Santa Maria is the fact of playing with the balls of the finger. This allows
to ensure a good contact with the keys and to avoid attacks of the notes which
are too percussive. In 1593, an important treaty entitled Il Transilvano written by
Girolamo Diruta is published. This author is the first to insist on the hand and
arm relaxation when playing, as well as on the suppleness and lightness of the hand.
For this, Diruta gives indications on the recommended hand shape : it should have
a cupped position, with the fingers slightly arched. Furthermore, the wrist should
supply the hand so as to form a straight line with the arm. With this configuration,
the author affirms that it is possible to play with agility and velocity. If these
indications put forward by Diruta may seem logical today, they represented at that
time an important evolution in the understanding of the technical playing at the
clavichord. This author is critical towards Santa Maria’s hand shape, where the wrist
is below the hand with arched fingers. With such a posture, Diruta affirms that it is
impossible to play well at the keyboard without getting tired. This archaic posture
of Santa Maria’s hand shape was abandoned at the profit of that of Diruta, where
the importance is given to relaxation and lightness. Regarding the hand shape, later
treaties give advises essentially on the height of the wrist and the degree of finger
bending.

It is interesting to linger on German treaties of the XVIIIth century. As it is
a period corresponding to the golden age of the clavichord, a lot of considerations
are focused on the clavichord player’s finger motion. In particular, one of the play-
ing style that kept the attention of the theoreticians and of the musicians is that
of Johann Sebastian Bach [100]. This performance practice was said to be "Every
Players first Grammatica" to quote J.G. Walther (1732) (see [103], page 169). The
treaty on the flute by Johann Joachim Quantz dating back to 1752 (Versuch einer
Anweisung die Flöte traversiere zu spielen [108]) is one of the first to describe this
playing. According to Quantz, it is possible to make an important distinction be-
tween two main gestures : a "pushed" gesture and a "pulled" one. The pushed
gesture corresponds to a finger motion which would be strictly vertical. On the
other hand, the pulled gesture corresponds to a motion possessing a vertical and a
horizontal components. Quantz describes this gesture as a rotating motion, where
the finger is pulled back just after its contact with the key. The vertical component
is responsible for the downward displacement of the key, while the horizontal one
aims at pulling back the finger in order to avoid a too important key depth. The
French name given to this gesture is "tire", which according to Quantz is the equiv-
alent of the German term "Schneller" [109]. The aforementioned treaty by C.P.E.
Bach (Versuch über die wahre Art, das Clavier zu Spielen) also refers to this same
kind of gesture when it comes to the clavichord. In this text, this digital motion is
called by the verb schnellen. A more precise description of this gesture is given by
Ernst Wilhem Wolf in the preface of his 1785 sonata collection (Eine Sonatine, Vier
affectvolle Sonaten und Ein dreyzehnmal variirtes Thema, welches sich mit einer
kurzen und freien Fantasie anfängt und endigst. Fürs Klavier). It is said in the
following extract (Preface, p. IV, see [110]) :

The best way of playing this type of melodic figure at the clavichord,
one which sufficiently differentiates the détaché from the normal style of
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articulation, and one which produces the best tone, is this: one strikes
the key with a stiff finger (as when playing a syncopation), and then
immediately draws the finger back towards the player so that it slides
off the front, and the key quickly springs back up. The tone, when thus
struck on good clavichords sounds rather as if the consonants "t’nt!"
were sounding along with it: this "t’nt!" has a better effect than the
"t’t" one gets when the finger releases the key without the slide-off.

Wolf refers to the continuous control of the possible sound quality when playing
the clavichord. This mentioned pulling back motion of the player is a way to avoid
an undesired large increase of the string tension in order to keep the right pitch. This
paradoxical gesture was highlighted explicitly by Nicolas-Joseph Hülmandel in 1791
in an article entitled "Clavecin" in l’Encyclopédie méthodique. Musique (Hüllmandel
1791, p. 285-286) [111] :

The advantage of this languet [the clavichord tangent] is to increase and
to soften the sound by pressing the finger more or less strongly on the
key, and its disadvantage is to elevate or to lower the sound at the same
time3.

5.1.3 Objectives

In a preceding work [102], the effect of vertical finger motion ("pushing motion")
and sliding finger motion ("pulling") on loudness and pitch of clavichord tones have
been studied. It has been shown that the pulling gesture is a better compromise
for dealing with the clavichord paradox: loudness and pitch are controlled more
independently with pulled than with pushed motions. The aim of this chapter is
to study the clavichord paradox with the help of new measurement techniques and
robotic simulation: 1/ to measure accurately finger trajectories and their conse-
quences on vibration and sound patterns (see section 5.2); 2/ to reproduce these
trajectories using a robotic finger, in order to study the limits of the clavichord
paradox, and then the "optimal" trajectories, decoupling key velocity at impact and
string displacement (see section 5.3).

5.2 Experimental approach with a musician

5.2.1 Experimental setup

The objective is to measure the vibration of the excited string resulting from the
motion of the musician’s finger. The musician involved in this experiment is well
trained in clavichord playing. In preceding works [3, 100], measurements were per-
formed with the help of an accelerometer near the tangent, a string-tangent contact
signal and a measurement microphone. It appeared necessary to measure directly
the finger motion and the string motion, using non-invasive measurement devices.

3"L’avantage de cette languette [la tangente du clavicorde] est d’augmenter et d’adoucir le son
en appuyant du doigt plus ou moins fort sur la touche, et son inconvénient est de le hausser ou de le
baisser en même temps.", in d’Alessandro, Christophe. "Le paradoxe du clavicorde et la technique
de Bach au clavier." Revue musicale OICRM 6.1 (2019): 87-112. [100] [Personal translation]
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Finger motions are filmed by a high-speed camera (Phantom Miro M 120) with a
2000 frame per second rate. Several marks are placed on the finger. Trajectories of
these marks are estimated thanks to image processing detailed in section 5.2.2.

String vibrations are measured with the help of calibrated opto-switch sensors
[88], as previously detailed in section 4.5. These sensors are optical forks, positioned
around the string. The string motion in one direction is measured with accuracy
and without contact. Only the vertical displacement of the string is considered here
(although the horizontal displacement can also be significant, see section 4.5). The
string chosen for our measurements is the G2 string (length is 70 cm, fundamental
frequency 185 Hz). The sensor is placed at 2 cm from the extremity of the string,
near the bridge in order to ensure that the string displacement is within the sensor
measurement range. Sound pressure is measured with the help of an omnidirectional
DPA 4006-TL microphone placed at 30 cm above the soundboard. A set of 8 tra-
jectories are recorded, using index and middle fingers, pulled and pushed motions
for long and short notes.

5.2.2 Image processing : trajectory identification

To extract the trajectory corresponding to the motion of the finger, an image pro-
cessing algorithm needs to be elaborated. One way to deal with this trajectory
extraction is to take advantage of contrast in the picture. An image is represented
by a matrix containing pixels. So each value in the matrix corresponds to the bright-
ness degree of the pixel. The musician’s finger is marked by means of felt-tipped
pen. In such a way, it is possible to create a contrast between the mark on the finger
and its vicinity. Once the motion of the finger is filmed, the pictures are processed
by means of an analysis window centred on the mark and including also its vicin-
ity. By means of the first picture of the filming, the trajectory point of origin is
placed at the centre of location of the finger mark. Also, a threshold is defined. If
the pixels’ value is under this threshold, then these values go to zero. Between the
two successive pictures, the mark undergoes a displacement because of the finger
motion. The window analysis is large enough so that the mark still remains within
the window in the second picture after the small displacement. After applying the
aforementioned threshold to the second picture, the maximum value of the contrast
within the analysis window corresponds to the centre of the mark. So the location of
this maximum value corresponds to the trajectory next point. Then, it is possible to
identify the displacement vector of the mark between the point of origin of the first
picture and its next location in the second picture. This next location is saved and
the analysis window is displaced by means of the same displacement vector, so that
it becomes centred on the finger mark in the second picture. Thus, this algorithm
is repeated for the following pictures so that the trajectory successive points of the
finger mark are measured.
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Figure 5.1: (Top) Images of the pushed (left-hand side) and the pulled gesture (right-
hand side) performed by the index finger. (Bottom) Trajectories of the pushed (left-
hand side) and the pulled gesture (right-hand side) performed by the index finger
(with tb the beginning time and te the ending time).
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Figure 5.2: Vibratory signal of the G2 string excited by means of the two different
trajectories done by the index finger with a short length (a), with a zoom at the
beginning of the signals (b).

0 0.2 0.4 0.6 0.8 1

time [s]

-1

0

1

2

3

4

5

d
is

p
la

ce
m

en
t 

[m
]

10
-4

Index finger pulled long

Index finger pushed long

0.08 0.1 0.12 0.14 0.16

time [s]

-1

0

1

2

3

4

5

d
is

p
la

ce
m

en
t 

[m
]

10
-4

Index finger pulled long

Index finger pushed long

Figure 5.3: Vibratory signal of the G2 string excited by means of the two different
trajectories done by the index finger with a long length (left), with a zoom at the
beginning of the signals (right).

5.2.3 Results

In figure 5.1, we used the videos to extract the trajectories representative of the
two distinct motions : the pushed and pulled gestures. The pushed motion refers
to a vertical trajectory, with the finger going mostly downward. The pulled motion
corresponds to a vertical and horizontal trajectory, with the finger sliding on the key
and going downward at the same time. Figure 5.1 displays a selection of extracted
trajectories. Note that the key depression is shallower in the second case.

Example of string vibration pattern are displayed in figure 5.2 and 5.3 for the
pushed and pulled gestures by the index finger. As the sensor is placed near the
bridge, the vibratory motion is of small amplitude, about 0.2 mm. The string height
is also small at this position, about 0.2-0.3 mm. It is much larger at the tangent
position. The string is much more elevated in the case of the pushed gesture than
in the case of the pulled one (see figure 5.2 and 5.3). Because of this difference
in string height, the string tension and then the sound fundamental frequency is
higher for the pushed gesture. Note that the vibration amplitude is also larger in
the case of the pushed gesture, resulting in a louder tone. The string fundamental
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frequency is measured on the sound and vibration signals using the Yin algorithm
[97] implemented in Matlab. The G2 string fundamental frequency with respect
to time is displayed in figure 5.4 (a). The fundamental frequency produced by
the pushed gesture of the index finger is around 185.5 Hz, whereas that produced
by the pulled gesture of the index finger is around 184.75 Hz. As expected, the
fundamental frequency is higher for the pushed gesture compared to the pulled
gesture. The difference between the fundamental frequencies of the pushed and the
pulled gesture is more than 4 cents. Such a difference is perceptually noticeable
[112]. This feature was also observed when studying the excitation system by means
of the simulation (see section 4.2). Fundamental frequency gives information about
the way the musician deals with the contact between the tangent and the string with
respect to time. In figure 5.4 (a), one can observe that the fundamental frequency
for the pushed gesture decreases with respect to time, whereas that of the pulled
gesture remains around the same fundamental frequency although with some little
hills. This shows that the key control differs for both gestures. These variations
of finger depth after the string-tangent contact are certainly perceived in terms of
quality of touch.
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Figure 5.4: Fundamental frequency of the signals in the case of the pushed and pulled
gesture done by the middle finger and the index finger (left-hand side). Sound level
of the different exciting configurations (right-hand side) (I : Index finger, M : Middle
finger, S : Short, L : Long).

The sound level in dB for the different microphone signals p(t) are computed for
the index finger and the middle finger thus :

Leq = 10 log10

(
1

T

∫ t0+T

t0

p(t)2

p2
ref

dt

)
(5.1)

where T is the integration time, t0 is the time at which the computation begins
and pref = 20× 10−5 Pa. The results are displayed in figure 5.4 (b) (the integration
time is 250 ms). For the pushed gesture and the pulled gesture respectively, the
long gesture produces a sound level of 59.5 dB and 55.0 dB for the index finger,
and 58.6 dB and 56.6 dB for the middle finger. In the case of the short gesture, For
the pushed gesture and the pulled gesture respectively, the sound level is 57.3 dB
and 56.3 dB for the index finger, and 59.3 dB and 58.4 dB for the middle finger. It
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Figure 5.5: DRoPiCrobotic finger for key trajectory control.

seems that the difference in sound level between pushed and pulled gesture is lower
for short excitation than for long excitation. Because of a lack of repeatability,
this observation cannot be stated for sure. However, in any case, pushed gestures
produce higher sound levels than pulled gestures. This has already been observed
on the signal amplitude in figure 5.2 and 5.3.

In summary, different gestures, corresponding to different finger trajectories, are
producing different vibratory patterns of the string, and then different sounds. In the
small set of recordings obtained, the pushed motions always produce a larger string
displacement : the string is always raised higher, and the amplitude of vibration
is larger. A larger amplitude of vibration results in a louder sound. A higher
string height results in a higher fundamental frequency. For the same reasons, the
finger motion in the case of pulled gestures gives lower fundamental frequencies and
also weaker sounds. Note that in previous studies it has been shown that pulled
motions, to some extent, allows for independent loudness and pitch control, a result
that cannot be observed here, because no sample have similar loudness. These
measurements are the first direct measurements of string height, and are in good
agreement with the theory developed in [3].

5.3 Experimental approach with the robotic finger
Measurements of finger motion show the dependence between string height, radiated
sound and fundamental frequency. As predicted by the clavichord paradox, it seems
difficult to control simultaneously the key (then tangent, then string) velocity and
displacement. The pulled motion provides a better control and a better management
of the clavichord paradox, because the finger trajectory is more complex: pressure on
the string can be released after the tangent-string impact. It is interesting to study
the clavichord paradox with the help of controlled and reproducible key trajectories.
For this purpose, the DROPIC robotic finger is used [99] (see figure 5.7).

5.3.1 Experimental setup

For a given starting trajectory, two parameters are considered and modified: down-
ward displacement (resulting in string height) and its maximal velocity (correspond-
ing to loudness). The A2 string (length is 59.1 cm, fundamental frequency tuned
at 205 Hz) is studied. The initial position of the robotic finger above the key is set

103



before modifying either the velocity or the displacement. A joint measurement of
the string vibration by means of calibrated opto-switch sensors is performed. Taking
a specific robotic finger trajectory as a reference, this can be modified to program
three different velocities with the same displacement, and three different downward
displacements with the same velocity (these displacements and velocities are not
measured in this experiment). The displacement of the key corresponding to a ref-
erent trajectory performed by the robotic finger is the one programmed in annex F.
The trajectory has a typical shape with a notch followed by a plateau. It is possible
to adjust independently the depth of the notch and the height of the plateau, that
correspond roughly to the key velocity at contact and to the string height.

5.3.2 Trajectories simulation and sound results
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Figure 5.6: Tracking of the fundamental frequencies of the signals in the case where
we modify the displacement of the key (left-hand side) and in the case where we
modify its velocity (right-hand side).

Systematic variations of displacement and velocity are performed. Displacement
no 1 is the largest one done in the vertical axis (y axis) by the robotic finger,
displacement no 3 is the smallest one, and displacement no 2 is in between. Velocity
no 1 is the fastest one performed by the robotic finger, velocity no 3 is the smallest
one, and velocity no 2 is in between. Note that in this second experiment, the note
studied is A2 instead of G2 studied in Section 5.2. These two notes are close enough
to be compared.

In figure 5.7 (a), the key velocity is varying but the key depth is constant. The
key depth is about 5-6 mm in this case (it is the same key depth as the trajectory
performed in annex F). Figure 5.6 (b) displays the fundamental frequency of the dif-
ferent string displacement signals measured when the key is pressed with the robotic
finger with different velocities and the same key depth. The resulting fundamental
frequency does not change, while the amplitude of the signal increases. This shows
that the finger displacement is well repeated by the robot no matter the change in
velocity. Moreover, it demonstrates that the clavichord paradox can be managed
with appropriate trajectories. These results also confirm that the displacement of
the key is directly linked to the string fundamental frequency. Conversely, as it is
shown in figure 5.6 (a), changing the displacement of the key while maintaining the
same velocity produces changes in fundamental frequency. However, fundamental
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Figure 5.7: Temporal signals of the A2 string produced by the different velocities of
the key (a). Displacement of the key (at the extremity of the finger) in the case of
the referent trajectory performed by the robotic finger (b).

frequency is very stable in the case of the robotic finger compared to a musician’s
finger (compare figures 5.6 (a) and 5.4 (a)).

These results demonstrate that a robotic control is able to manage the clavichord
paradox. Whether human and robotic control are comparable is questionable. In the
present experiment, the robotic finger has no haptic or sound feedback: the trajec-
tories are optimized directly, without any perceptual loop. On the contrary, human
control relies much on audio and haptic feedback. The musicians tend to control the
contact between the tangent and the string after the excitation by modifying the
key position according to the perceived effect of their initial motion. This variation
in time of the key position is probably an essential feature of the specific style of
a musical performance. Another difference between the robotic finger and human
finger is their mechanical and dynamical properties. Human fingers have a much
limited range of velocity and acceleration than the robotic ones. Oscillations of the
key-string-finger system that are observed in human control [3] seem negligible in
the case of the robotic finger (see the displacement of the key in figure 5.7 (a)).

5.4 Conclusion
This chapter presented two experiments addressing the clavichord paradox, i.e. si-
multaneous control of velocity and displacement of the string and tangent when
playing the instrument. In the first part, new measurements using a new method-
ology is used. Two types of finger trajectories have been used for performing two
different motions : the pushed and the pulled gesture. This experiment confirms
the dependence of displacement and velocity, and the possibility to modulate this
dependence with appropriate gestures. In the second experiment, a robotic finger is
used to further optimize the key trajectory, by modifying in terms of velocity and
downward displacement a referent trajectory. In this case it seems possible to man-
age the clavichord paradox, and to control independently velocity and displacement,
i.e. intonation and loudness of the instrument. Whether a musician would be able
to effectively perform this type of movement remains an open question.
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Part IV

Sympathy in the clavichord
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Foreword

In the case of the clavichord, there is a part of the strings which is never excited
called sympathetic strings. Because of the vibratory energy transmission by means
of the coupling with the bridge, all the strings vibrate when exciting one of those
strings. The played part of the strings do not vibrate that much because of the
cloth damper. Given that the bass strings are less damped than the others, their
sympathetic vibration is audible when listening to the sound. This contribution of
the bass strings’ sympathetic vibration is commonly called the "drum effect". Most
importantly, the sympathetic part of the strings vibrate sympathetically following
the excitation of one of the played strings. Their vibration contribute to the sound of
the clavichord, and their effect have been notified by clavichord makers as it is shown
by some historical treaties. This effect was first notified by Sebastian Virdung in
1511 in one of his musical treaty [6], where he talks about a resonance coming from
the sympathetic strings. In 1768, Jakob Adlung used the expression cum sympathia
to denote the sympathetic strings’ effect [9].

Contrary to the square piano, these strings are not damped because their vibra-
tory contribution leads to a reinforcement of the sound. This is opposed to the case
of the square piano whereby all strings are damped, in order to get rid of the hazing
sound effect resulting from the contribution of all these strings. This acoustic reality
of the piano led to the creation of the forte pedal by Clementi in the 1830’s. In the
case of the clavichord, this reinforcement is desirable because of its low sound level
production, which is one of the reasons why it was named "épinette sourde"4 in the
XVIIth century by Marin Mersenne [1]. The sound level measured 30 cm above the
center of the soundboard is 60 dB SPL at maximum as to our studied instrument,
which is a typical value for other clavichords [101].

It is possible to find studies tackling the phenomenon of the "halo of sound"
in string instruments. Besnainou and Castellango highlight that this halo created
by sympathetic strings influences the duration of the instrument sound [113], a
similar conclusion by d’Alessandro’s studying the clavichord [78]. Nevertheless, these
authors consider this phenomenon as though it was similar to a "resonance". In a
study focused on the influence in terms of timbre of sympathetic strings on the Indian
instruments’ sound, the term "resonance" is used once again [114]. By the way, this
is the same term used by Virdung (Resonanz ) referring to the sympathetic vibration
causing the halo of sound. Yet, Gough uses the term "resonance" to designate
something else in his study [62]. According to him, resonance refers to the string
vibratory behaviour when one of its partials is coincided with one of the soundboard
partials in terms of frequency. This resonant phenomenon mentioned by Gough does
not refer to the production of the halo of sound coming from sympathetic vibrations.

4muffled spinet
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Then, there is a difference between these two vibro-acoustic effects (halo of sound and
resonance) produced by sympathetic vibration which needs to be clarified. In reality,
many distinct acoustic and vibratory phenomena take place in this indirect vibration
of strings by couplings, which is not precised in preceding studies on sympathy.

Distinction between reverberation and resonance

Two physical phenomena are present when it comes to sympathetic vibration : re-
verberation effect and the string resonance because of frequency coincidence. These
two phenomena are conditioned by the soundboard which conditions the coupling
as well as the vibratory amplitude of the string partials.

Soundboard

The coupled system strings-bridge-soundboard can be considered as a linear vibra-
tory system, depending on the vibratory amplitude of the coupled system. There-
fore, the relation connecting the excitation force at one location of the system with
the resulting vibration at another location is given by a transfer function, also called
Green function [115]. This transfer function characterises the system mobility. Each
string is coupled to a specific location of the soundboard. Depending on the ex-
cited string, an excitation force is exerted on the bridge at this string coupling
point. Then, depending on the excited string among all the strings played on the
instrument, the vibratory response of the soundboard changes. In addition to this,
depending on the fact that the coupling points are located near an anti-node or
a node of vibration, the soundboard mobility favours or not the vibration of the
sympathetic strings.

Reverberation effect

If the clavichord strings are not damped, then their contribution to the radiated
sound can be shown. This contribution results in a halo of sound, in other words
in a reverberation effect. This acoustic effect arises because of the overall sum of
frequencies of the vibrating sympathetic strings, including their fundamental fre-
quencies as well their first partials. Then, a large frequency range is involved in this
reverberation effect. This large band effect in the frequency domain is created by
the short term transitory phase of the excitation applied on the played string. As
this transitory phase of the excitation is close to an impulse, this excitation is then
large band in the Fourier domain. When it comes to the reverberation effect, the
couplings between the strings and the bridge-soundboard are weak. In other words,
there is no need of frequency coincidence between the strings’ partials and that of
the soundboard, then no pole (frequencies and dampings) of the coupled system
modal basis is modified by means of resonance. However, depending on the location
of the excited string coupling point, the amplitude and damping of the sympathetic
string partials may vary.
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Resonance : coupling by frequency coincidence

When a frequency coincidence occurs between the string partials and that of the
soundboard, another coupling phenomenon takes place. If a string partial coincides
with one of the excited string partials, then this partial amplitude increases and the
vibratory amplitude of the sympathetic string increases. Regarding the radiated
sound, this process results in a whistling corresponding to the partial frequency
in question. Also, this frequency coincidence creates a change in frequency and
damping associated to the partial in question. This consists in a veering of the
modal basis’ eigen values of the coupled system. This is what Gough refers to when
mentioning the string resonance [62], regarding the frequency coincidence between
a string partial and a body partial. This is what Weinreich referred to when it
comes to the frequency coincidence of two string partials coupled to the same bridge
[21]. It is said that these specific couplings between vibratory structures are stronger
than those when there is no frequency coincidence between partials. To obtain these
strong couplings, this frequency coincidence must be very precise, and the strength
of this coupling is given by the veering indicator [63]. This kind of coupling is a short
band phenomenon in the frequency domain, and it is associated to the long term
of the permanent phase of the exciting signal. The amplitude of this sympathetic
vibration by means of resonance may be varied because of the soundboard mobility,
as it was shown between the F3 S-string case and that of the D4 S-string case in the
study of the LAM1 clavichord.

The question is to determine by a vibro-acoustic study how is the sound of the
clavichord modified by the sympathetic vibration of the sympathetic strings. To
tackle this issue, there are two approaches that can be considered. First, the rever-
beration effect of the LAM1 clavichord, which corresponds to the overall effect of its
sympathetic strings’ vibration, can be studied. Instead of considering the individual
vibratory response of a single sympathetic string, the sum effect of all these strings
given by the soundboard vibration and the radiated sound is considered. On the
other hand, the effect of a single sympathetic string on the sound when resonating
is another topic. When the excited string fundamental frequency coincides with
that of a sympathetic string, the latter vibratory response changes the clavichord
radiated sound in a different way than the reverberation effect. As a result, two
different effects can be used by means of the sympathetic strings to modify the ra-
diated sound. The differences between these two effects are summarised in table
5.1. The first effect refers to the reverberation of the instrument and is tackled in
chapter 6, whereas the second effect referring to the string resonance when frequency
coincidence occurs is considered in chapter 7.
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Reverberation effect Resonance by frequency coincidence

Large band excitation Short band excitation
Short term excitation Long term excitation
Weaker couplings Stronger couplings
Sum of all sympathetic string vibratory
contribution

Increase of amplitude of the sympa-
thetic string coupled partial

No change in frequency and damping Veering of frequencies and dampings
Halo of sound Whistling of the sympathetic string

Table 5.1: Features distinguishing the reverberation effect from the string resonance.
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Chapter 6

Study of reverberation

6.1 Introduction

This chapter is devoted to the effect of all sympathetic strings’ vibration on the
clavichord sound. The purpose is to study how this overall vibratory effect influences
the sound of the clavichord. To proceed, an experimental study is conducted, where
the impulse response of the studied clavichord at one driven point of the bridge is
studied. Measuring impulse responses at a driving point leads to a simplification of
the vibrating system to a single vibrating point. This is practical when it comes to
deconvoluting the impulse responses afterwards. The influence of the played part
of the strings and that of the sympathetic part on the clavichord impulse response
is considered by damping these strings by means of cloth damper. After presenting
the experimental protocol in section 6.3.1, the impulse responses are analysed in
different ways in section 6.3.2. As such, the influence of the sympathetic strings’
vibration on the duration of the sound, its sound level and its spectral centroid are
determined experimentally. These features could have been studied by means of the
simulation. However, it requires to simulate the 74 strings of the LAM1 clavichord.
This leads to computational difficulties, given the size of the computed matrices and
the associated computational time. As a result, only an experimental approach is
considered to study this effect. The results show that the overall contribution of the
sympathetic strings’ vibration, also called reverberation effect, can be characterised
by means of the sympathetic strings’ impulse response. It increases the duration of
the clavichord sound as well as the instrument sound level. The spectral centroid
is also changed by the sympathetic string vibration. This effect is associated to
the reverberation of the instrument, whose effect is similar to that found in room
acoustics. Then the sympathetic strings can be considered as a reverberator, which
is a linear system convoluted to the signal of the excited string.

To facilitate the references to the different parts of the clavichord and to the
specified phenomena, a specific terminology which is in accordance with figure 6.1 is
proposed. The played portion of the strings (P-string) is the part bounded between
the tangent and the bridge. This part of the string is excited by the tangent, and
oscillates until the key is released. The motion of the played string leads to a force
applied on its boundary condition, which moves the bridge and the soundboard. The
damped portion of the strings, also called muffle part (M-string) is limited between
the hitch-pin and the bridge, which is damped by the damper although sometimes
weakly, particularly for bass tones. Then, the sympathetic portion of the string
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Figure 6.1: A view from above of the LAM1 clavichord with indications as to the
substructures.

(S-string) is bounded between the bridge and the tuning pin. This section of the
string is not excited directly, but indirectly by the motion of the bridge, induced by
the P-strings.

6.2 Features of the clavichord
Organological features of the clavichord, and specifically of the LAM1 clavichord,
were presented in sections 1.1 and 1.3. In this present section, some acoustic features
of this instrument among which the frequency range of the sympathetic strings and
a description of the clavichord excitation signal are given.

Sympathetic strings (S-strings)

To characterize the studied instrument, a determination of the fundamental fre-
quency of all the strings has to be done. To do this, the vibration of each string is
measured with a vibrometer, exciting the string with a finger. Then, to obtain the
frequency of the string with precision, the signal is analysed with a high-resolution
method [74].

In figure 6.2, the fundamental frequency of each played and sympathetic string
of the LAM1 clavichord are represented, along with their three first partials, with
respect to the note of the according string. In such a way, it gives a characteriza-
tion of the frequencies involved in the effect produced by the sympathetic strings.
Frequency relations can also be noticed in this figure. Notice that the fundamental
frequencies of the sympathetic strings go between 350 Hz to 1200 Hz. It gives a
lower limit as to the acoustic influence of the sympathetic strings in the clavichord
sound. Given the partials of each strings, the higher limit depends on the partials’
amplitude and damping. This is given by impulse response measurements.

Acoustics of the clavichord: transient and oscillatory responses

Different substructures of the clavichord are involved in the radiated sound. Among
these, one can note the shock produced by the impact between the tangent and the
string and the structural noise induced coming mainly from the case and the lid.
Also there are the vibrations of the different parts of the strings : played strings and
sympathetic strings. Their vibrations are radiated by the soundboard by means of
the coupling with the bridge. Some reflections of the sound radiated occur because
of the lid. Then, the key drop induces some structural noise coming from the case
and the lid (see figure 1.3).
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Figure 6.2: Fundamental frequencies of the sympathetic part and the played part of
the strings with respect to the according notes.

The sound for a note is in three temporal phases : the first phase is the attack
corresponding to the moment of the tangent-string impact. The second phase is the
sustain where the string oscillates. Then the last one is the release, where the played
string is being damped and the key drop noise is produced.

The attack phase is short, and the transient part of the attack is close to a Heav-
iside step in displacement (integral of a Dirac impulse, see figure 6.3 (c)). Then the
acoustic response of the transient can be conveniently studied using impulse response
analysis (i.e. response to a broadband excitation). This transient phase of the signal
can give rise to body-induced partials, which has be shown to be an important fea-
ture in guitar tones [116]. The oscillatory phase is longer. The excited played string
frequencies can "lock" to the S-strings’ frequencies and exchange energy through
sympathetic vibration. This is typically a narrow band responses (tuned response).
The release phase is somehow close to the attack phase, but of weaker amplitude.
Then both wide band analysis and narrow band locking or tuning (a few selected
string sympathy) are expected. Sympathetic strings are not the only source of sym-
pathetic vibration: some weakly damped string low frequencies are also likely to
produce some sympathetic vibration. It should be noted that the excited signal has
a double slop, separated at 100 ms after the excitation (see figure 6.3 (a)). As it was
pointed out, this studied clavichord is fretted, meaning that a bundle of two strings
are stroke for one note. It has been demonstrated that this coupling between the
two stroke strings is responsible for the double slop phenomenon in the case of the
piano [21].
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Figure 6.3: Temporal signal of a played string vibration (a), of a sympathetic string
vibration (b), and of the tangent displacement (c).

6.3 Reverberation : experimental approach

6.3.1 Experimental set-up

Vibratory and acoustic impulse responses of the LAM1 clavichord are measured in
order to study the effect of its sympathetic strings. Let us consider the following
damping protocol with four different situations. First, all the strings are free, with-
out being damped. Then, the P-strings only are damped. Next, the S-strings only
are damped. Finally, all the strings are damped. The purpose of this protocol is
to identify the vibratory effect of each part in order to evaluate the effect of the
S-strings. All measurements are repeated three times, so that mean values and
standard deviations for the different descriptors in section 6.3.2 can be computed.
Measurements are done with an acquisition system with a sample rate of 51.2 kHz
and a 24 bit depth. Impulses are given by an automatic impact hammer PCB
086E80. It gives impacts beside the measurement point on the bridge. One position
of the bridge is chosen, which is the coupling point between the bridge and the G#3

P-strings. An accelerometer PCB M352C65 is used to measure the vibratory re-
sponse of the soundboard at this location. A DPA 4006-TL microphone, connected
to a PSP-2 amplifier, is disposed at 30 cm above the soundboard to measure its
acoustic response. This experimental set up is shown in figure 6.4 and a simplified
sketch of this experiment is shown in figure 6.5.
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Figure 6.4: The overall experimental setup used for the impulse response measure-
ments.

Figure 6.5: Sketch of the strings’ profile where the acceleration of the bridge driven
point created by the impact force of the hammer is measured.

6.3.2 Impulse response analysis

To start with, the different vibratory responses of the soundboard following the
hammer impact are presented. In figure 6.6, an example of an impulse response
measurement is given by presenting the measured force signal of the impact, the
acceleration signal measured by the accelerometer and the sound pressure signal
measured by the microphone. The spectrograms of the signals measured by the
accelerometer created by the impact for each damping condition are presented in
figures 6.7. One can see that the signal-to-noise ratio of the impulse responses
become large from 5000-6000 Hz onward. This is caused by the bandwidth of the
impact hammer, where its cutoff frequency is around 5000-6000 Hz. Then at this
cutoff frequency, the signal-to-noise ratio increases. This bandwidth is similar to
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Figure 6.6: temporal signals of an hammer impact (upper graph), of the soundboard
vibration at the measurement point (middle graph), and of the acoustic pressure at
30 cm above the soundboard (lower graph).

that observed with the impulse response measurements done in section 3.1.2.
Comparing spectrograms (a) and (b) in figure 6.7, one can see that much energy

has been lost at very low frequency by damping the P-strings, mostly below 350
Hz. This comes from the drum effect. It refers to the contribution of the low P-
strings which are weakly damped and that of the clavichord structural noise to the
radiated sound. The P-strings having low fundamental frequencies are responsible
for this energy provided to the signal. Comparing spectrograms (a) and (c), notice
that the duration of the high frequency components (from around 1000 to 6000 Hz)
of the signal have decreased by damping the S-strings. This is consistent, since
these strings contribute to the energy of the signal at high frequencies. Figure 6.2
shows that the fundamental frequency of the S-strings go from around 350 Hz to
1200 Hz. Their first harmonics may well provide vibratory energy up to 6000 Hz.
Then, spectrogram (d) shows that damping all the strings result in deleting almost
all the high frequency energy, since only the modes of the soundboard contribute
to the energy of the signal. Qualitatively, we would find similar observations with
acoustic impulse responses, with nonetheless a low pass filtering due to radiation. To
circumscribe the influence of the S-strings, it is possible to deconvolute the impulse
response where the S-strings are free by the one where they are damped. To do
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Figure 6.7: Spectrograms of the vibratory impulse response of the soundboard fol-
lowing the impact of the hammer where all the strings are free (a), where the P-
strings are damped (b), where the S-strings are damped (c) and where the all the
strings are damped (d), and spectrogram of the vibratory impulse response of the
S-strings obtained by deconvolution (e) (ref 1 dB : 1 m.s−2.N−1)

this, the first signal is divided by the second in the Fourier domain. Let H1(ω) and
H2(ω) be the Fourier transform of the impulse response where the S-strings are free
and where they are damped respectively. Then, the deconvolution is proceeded in
the following way :

Hd(ω) =
H1(ω)

H2(ω)
(6.1)
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where Hd is the FRF of the S-strings obtained by means of deconvolution. As a
result, it gives the impulse response of the S-strings only, presented in spectrogram
(e). Once again, the S-strings’ influence is localized mostly between 350 Hz and 6000
Hz. Notice that there is almost no noise at 5000-6000 Hz in the deconvolted impulse
response, since the noise of the two signals used for the deconvolution canceled.

Reverberation time of the impulse response

One way to describe the influence of the S-strings on the resulting sound is to
measure the length of the signal and its intensity. To compute the decay of the
signal, the Schroeder integration is implemented [117] which read as follow :

EDC(t) =

∫ T

t

h2(τ)dτ (6.2)

where EDC refers to the energy decay curve of the signal h, T is the total length
of the signal and t is the starting time of the integration. Then, a linear regression
of our decay curves could be done to compute the reverberating time T60 and T20,
which are the times for the sound level of the signal to decrease by 60 dB and by
20 dB respectively [65]. Observing the EDC’s in figures 6.8 and 6.9, some of these
curves do no decrease linearly. This is mostly the case for the curves related to the
250 Hz, 500 Hz and 1000 Hz octave bands. In these cases, the reverberation time
computed by means of a linear regression cannot be considered as a good indicator.
The decay of our impulse responses are computed within the different octave bands
to have a look at the influence of the S-strings on different frequency ranges (see
figure 6.9).
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Figure 6.8: Energy decay Curves (EDC) of the different impulse responses with
respect to the different damping conditions.

No matter the damping condition, the EDC is lower with respect to frequency,
which is witnessing the fact that there is more energy in low frequencies than in
high frequencies. Furthermore, in the 250 Hz octave band, the EDC is higher with
the damped S-strings condition than the damped P-strings condition. Once again,
the P-strings are responsible for the drum effect, which contributes mostly for the
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Figure 6.9: Energy decay Curves (EDC) of the different impulse responses with
respect to the different damping conditions : (a) at the 250 Hz octave band, (b) at
the 500 Hz octave band, (c) at the 1000 Hz octave band, (d) at the 2000 Hz octave
band, (e) at the 4000 Hz octave band.

low frequency energy of the impulse response. The S-strings, limited to 350 Hz,
do not provide energy to the low frequencies. It accounts for the fact that the
EDC is higher at the 250 Hz octave band when damping the S-strings than when
damping the P-strings. Yet, at higher octave bands, damping the S-strings ends
up decreasing much more the EDC than by damping the P-strings. At the 500 Hz
octave band, the EDC is higher when damping the P-strings than when damping
the S-strings, suggesting that the S-strings provide more vibratory energy at that
octave band than the P-strings. It seems consistent, since the drum effect created
by the P-strings only regards very low frequencies, as it was seen in spectrograms
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6.7 (a) and (b). So The P-strings do not effect the high frequency components of
the signal as much as the S-strings. It also shows the importance of the S-strings’
contribution in terms of the signal length. Also, there is no difference between the
free strings condition and the damped S-strings condition in the 2000 and 4000
Hz octave bands in terms of EDC. So the limits in terms of frequency of the S-
strings’ contribution to the signal length can be noticed. These results show good
consistency with similar measurements conducted done by d’Alessandro for another
clavichord [78]. In a nutshell, figure 6.8 shows that the influence of the sympathetic
strings’ vibration is significant to the EDC of the clavichord sound.

Sound level of the impulse response

Then, a comparison of the different acoustic impulse responses in terms of sound
pressure level is done. To do this, the sound level Leq is computed in dB and in
dBA, to take account of the human sensibility. Since the hammer impacts’ amplitude
associated to the different acoustic responses are not the same, this sound level is
computed on the impulse responses given by the spectral division of the acoustic
response and the hammer impact. As such, the different responses are normalised by
their associated hammer impact, so that their sound levels are comparable. Given
the acoustic impulse response h(t), its associated equivalent sound level Leq :

Leq = 10 log10

(
1

T

∫ t0+T

t0

h(t)2

p2
ref

dt

)
(6.3)

where T is the integration time, t0 is the time at which the computation begins
and pref = 20 × 10−5 Pa. The computation of the sound pressure level of the
different responses is done by beginning this computation after the excitation. The
computation of the Leq is computed 100 ms after the hammer impact. In such a
way, the impact at the beginning is not taken into account and only the effect of the
P-strings and the S-strings are considered. All Leq’s are computed within a span of
T = 1 s, which corresponds to a standard value when it comes to computing a Leq
with a slow weighting. The same parameters are chosen for the computation of the
sound pressure level in dB and dBA. The computation in dBA is the same as that
in dB (see equation 6.3), except that the A-weighting accounting for the relative
loudness perceived by the human ear is applied on the pressure signal.

In figure 6.10, the different Leq for each acoustic impulse response are presented.
The sound pressure level decreases with respect to the succeeding damping condi-
tions. In the free strings’ case, the sound level is 18 dB, and it is almost the same
in dBA. However, when damping the P-strings, the sound level is 17.5 dB and 15.8
dBA. Since the Leq computation in dBA mainly considers the high frequencies’ in-
fluence, the damping of the P-strings do not affect much the value of the sound level
in dBA. Since this computation in dB considers the low frequencies’ influence, then
the Leq in dB decreases when damping the P-strings. By the way, that also accounts
for the difference of their standard deviations. The filtering of the low frequencies
in the dBA computation leads to considerate the signal with a smaller band width,
which decreases the incertitude. When damping the S-strings, the value of the Leq
goes down to 15.1 dB and down to 9.0 dBA. Inversely, since the S-strings contribute
to providing vibratory energy to the high frequencies, the damping of the S-strings
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Figure 6.10: Sound level of the different impulse responses of the clavichord in dB
SPL and dBA (ref 1 dB : 20 ×10−5 Pa.N−1) with respect to the different string
damping configurations (F: free strings, D.P: damped P-strings, D.S: damped S-
strings, D: damped strings), where the some computations start at the excitation
and others 150ms after the excitation (duration 1s).

affects more the Leq computation in dBA than that in dB. Damping all the strings
leads to sound level in dBA to dwindle down to 3.1 dB. The sound level in dB seems
to have decreased down to 14.8 dB. Yet, given this small decreasing in dB com-
pared to the standard deviation in the damped S-strings case and in the all damped
strings case, this last observation cannot be confirmed. Any way, the difference of
the Leq between the case where the S-strings are damped and that where all strings
are damped is not so significant. Finally, observing generally that the sound level
decreases by damping the strings, it puts forward the fact that the sympathetic
vibration of the strings contribute to some extant to the clavichord sound level.

Spectral centroid of the impulse responses

The spectral centroid (SC), which represents the centre of gravity of the spectrum,
is introduced and defined as [118] :

SC =

∑N
k=1 fkak∑N
k=1 ak

(6.4)

It is computed from the discrete spectrum of the impulse response signal. The
terms fk and ak are the frequency and amplitude respectively in bin k. The spectral
centroid are computed for the different acoustic responses measured by the micro-
phone, where the computation is limited to the spectral bandwidth given by the
hammer impact which is between 0 and 6000 Hz. The mean value and the standard
deviation of the computed spectral centroids obtained for the different string damp-
ing configurations are presented in figure 6.11. The spectral centroid when all the
strings are free is placed at 646.5 Hz whereas that when the P-strings are damped
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Figure 6.11: Spectral centroids of the acoustic responses measured by the micro-
phone with respect to the different string damping configurations (F: free strings,
D.P: damped strings, D.S: damped strings, D: damped strings).

is placed at 693.5 Hz. Since the P-strings are related to the drum effect responsible
for providing low frequency energy to the clavichord sound, damping these strings
leads to cancelling this low frequency energy. Given the fact that the S-strings are
still present, there is still energy at high frequencies. As a result, this lack of this
P-string low frequency leads the clavichord spectral centroid to go up. When damp-
ing the S-strings, the spectral centroid goes down to 479.1 Hz. Diminishing the
high frequency energy of the sound by damping the S-strings, this leads the spectral
centroid to decrease. Finally, damping all the strings, there is a little decrease of
the spectral centroid down to 458.7 Hz. This can be explained by the cancelling of
the few high frequency energy provided by the P-strings, which is very little. Only
the soundboard modes are present when all the strings are damped. Although there
seems to be a small decrease, this observation can be criticized by means of the
corresponding standard deviation, which overlaps the spectral centroid value when
S-strings are damped. As a result, the spectral centroid indicates a specific change
in the clavichord timbre by means of the strings vibrating sympathetically.
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6.4 Response of each sympathetic string

Studying the overall effect of the S-string vibration resulting in a reverberation
effect gives one consequence of the sympathetic vibration. However, this does not
give information to the individual response of each string. The objective of this
section is to observe the response of each individual string of the instrument when
exciting a particular P-string.

A vibrometer (Polytech PDV 100) is used to measure the vibratory velocity in
the vertical polarization of each S-string in response to the excitation of the G#3

string (see figure 6.12). For each excitation, the velocity of vibration of one the 74
S-strings of the LAM1 clavichord is measured at 2 cm from the bridge. Given the
repeatability of the robotic finger, each of these vibratory measurements are done
by means of the same excitation. As a result, the individual S-strings responses to
the same string excitation are measured in such a way.

In figure 6.13, the measured velocity signals are shown. Then, figure 6.13 shows
the temporal energy of each of the 74 strings given by the same G#3 string excitation.
Much of the strings have a vibratory velocity amplitude reaching a maximum value
of around 0.01 m.s−1. Yet, two of the S-strings receive more energy than the other,
reaching an velocity energy amplitude of around 0.025-0.03 m.s−1.

Remember that the signal of the excited G#3 string has a transitory part. This
transitory part has a similar effect with that of an impulse response. This part is
short term, so the frequency band input is large. As a result, vibratory energy is
still given to all substructures in a large band configuration because of the excitation
transitory part. This transitory part is responsible for the reverberation occurring in
the clavichord. Furthermore, the permanent phase of the excitation is long term and
periodic, so the frequency band input becomes narrow, centered on the excited string
fundamental frequency and its harmonics. So energy is transmitted to all substruc-
tures at these specific frequencies because of the excitation signal permanent part.
The great majority of the S-strings have an amount of vibratory energy approxi-
mately similar among them. This comes from the energy transmission created by
both the transitory part and the permanent part of the excitation signal. However,
the two strings having higher vibratory amplitudes compared to the other strings
is explained by frequency coincidence. These strings are the sympathetic part of
the first excited G#3 string and that of the first B3 string respectively. The former
fundamental frequency is 387.7 Hz and that of the latter is 390.4 Hz. In this exper-
iment, the excited G#3 string is tuned at 389 Hz. Because these two strings have a
fundamental frequency close to that of the excited string, these strings resonate and
therefore their amplitudes become higher. The frequency coincidence between these
strings’ first partials is responsible for this increase of vibratory amplitude. The
closer these partial frequencies, the larger these partial amplitudes. This connection
between frequency coincidence and high partial amplitude can be seen in figure 6.14.
The two partials located at the G#3 and B3 strings have higher energy than all other
partials. Yet, these two partials’ frequencies are the closest to that of the excited
string. Then the relation between frequency coincidence and partial high amplitude
is noticeable. As a result, the permanent part of the excitation signal is responsible
for these large amplitudes. Then, independently of reverberation, the sympathetic
vibration of the strings becomes different because of frequency coincidence between
their partials. This was put forward by Gough, where he explained with his model
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Figure 6.12: Measurement with the vibrometer of each sympathetic to the G#3

string excitation by the robotic finger.

Figure 6.13: velocity signal of each sympathetic string in response to the G#3 string
excitation, each measured at 2 centimeter from the bridge.
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Figure 6.14: Velocity spectral energy of the S-string first partial in response of the
G#3 string excitation tuned at 389 Hz, with the G#3 S-string tuned at 387.7 Hz
and the B3 S-string tuned at 390.4 Hz.

that the string resonance occurs by means of this frequency coincidence, which leads
to this increase in the coincided partial amplitude [62].

An interesting difference between the sympathetic vibration of the first G#3 and
first B3 S-strings can be observed in figure 6.15. The temporal shape of the B3 S-
string vibratory velocity signal is increasing in a span of time of 0.2 s. In contrast,
that of the G#3 S-string is already at its maximum amplitude in 1 ms after the
excitation. Because the G#3 S-string is the sympathetic part of the excited string,
there is an added vibratory effect given to this S-string. The corresponding bridge
hitch-pin being the only thing separating the played part and the sympathetic part
of the G#3 string, a specific effect coming from the transitory part of the excitation
is transmitted to this S-string. Adding the frequency coincidence between these
two strings, a specific sympathetic vibration in the case of the G#3 S-string is then
created.
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Figure 6.15: Comparison of the first G#3 S-string velocity of vibration and that of
the first B3 S-string, measured at two centimeter from the bridge, after the G#3

P-string excitation

6.5 Conclusion
The reverberation effect of the LAM1 clavichord was studied in this chapter. This
effect comes from the overall contribution of all the strings vibrating sympatheti-
cally following the excitation of one clavichord played string. The impulse response
approach was taken in section 6.3 to study this specific effect. After presenting
the experimental protocol in section 6.3.1, an analysis of the measured vibratory
and acoustic impulse responses was done in section 6.3.2. The reverberation was
characterised by means of energy decay curves, sound pressure level and spectral
centroid. In general, damping the S-strings lead to decreasing all these parameters
of the clavichord sound. The specific role of the P-strings, responsible for the drum
effect, was identified by means of this approach. Then, the results show the extant
in which the sympathetic strings contribute to the clavichord sound, creating the
reverberation of the instrument. By means of the observation of each singular S-
string vibratory response to the same excited string in section 6.4, it was shown that
reverberation is not the only vibro-acoustic consequence of the S-string vibration.
There is another one related to the string resonance, a topic which is tackled in the
next chapter.
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Chapter 7

Study of resonance

7.1 Introduction

A different kind of coupling occurs when frequency coincidences between string
modes take place in a coupled system. In this respect, different cases need to be
distinguished to study the sympathetic phenomenon in terms of coupling between
modes. In the first case, it is about a frequency coincidence between an excited
string and a sympathetic string, without a coincidence with a mode of the sound-
board. Then, the coupling between the soundboard and the two strings is weak.
However, the coupling between the two strings yields a change in the coupled par-
tials’ frequency and damping. This change in frequency and damping depends on
the precision of the superimposition of the two partials’ frequency. This precision
in frequency coincidence also influences the beats, the amplitude and the velocity of
growth of the sympathetic string vibratory signal. Moreover, the vibratory ampli-
tude of this string can vary with respect to the amplitude of the bridge mobility at
the coupling point. Nearby an anti-node, the string coupling point moves with more
amplitude, whereas nearby a node, it moves with less amplitude. The amplitude
of motion of the coupling point can affect that of the whole string. Thereby, if the
coupling point is located near an anti-node, the vibratory amplitude of the string
will be larger. On the other hand, nearby a node, this amplitude will be smaller.
These specific situations is a phenomenon that has been studied in the case of string
sympathetic vibration of a concert harp [74]. The change in frequency and damp-
ing caused by the frequency coincidence between two modes has been explained by
means of Weinreich coupling model [21]. In the second case, the influence of cou-
pling between the bridge and the string on the string vibration is considered. With
respect to the proximity of the frequencies’ string modes and that of the bridge,
the modal basis can favor the string vibration. This study of string/body coupling
modes is dealt with by Le Carrou in the study of the concert harp [67]. Like the cou-
pling between two strings, the string/bridge coupling yields a change in the partial
frequency and damping. This change of these modal parameters varies depending
on the fact that the coupling is strong or weak. To determine the strong or weak
nature of this coupling, the veering indicator is used [63]. Veering corresponds to
the phenomenon where the eigen values of a vibratory system are deviated after
modes superimposition. This veering phenomenon is found in other fields : molec-
ular physics, vibration of membrane, and the study of cable vibration [64]. Then,
these different cases can be studied either with an experimental approach or with
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simulations of a model. The objective is to study the influence of tuning and of the
bridge coupling admittance on the sympathetic string vibration.

In section 7.2, theoretical considerations given in the literature regarding the
coupling of a string with a bridge are presented. Then, section 7.3 deals with the
experimental approach used to measure the impulse response of the LAM1 clavi-
chord bridge and the response of two studied sympathetic strings to an excited string
with different tuning configurations. The data processing of these measurements is
presented as well. In section 7.4, an analysis of the influence of the LAM1 clavi-
chord bridge coupling admittance on the amplitude and the damping of the studied
sympathetic strings partial is given. Next, measurements and simulations of the
clavichord model are used in section 7.5 to analyse the partial parameters of the
studied sympathetic strings and their resonant responses with respect to tuning and
the bridge coupling admittance.

7.2 Theoretical considerations
To study string resonance in the clavichord and the way it is influenced by the
coupling with the bridge, some models elaborated in the literature need to be re-
called. In section 7.2.1, the veering indicator is presented and used in the case of the
LAM1 clavichord to evaluate if a string-bridge coupling is strong or weak. Then,
the Weinreich model regarding piano string coupling is presented in section 7.2.2.
A simulation of this model is compared with that of the model based on the U-K
formulation in section 7.5.2 to evaluate the effect of resonance produced by the sec-
ond model. Finally, in the case of weak couplings, the Valette and Cuesta model is
presented in section 7.2.3. It is used to study the impact of the bridge mobility in
the string dampings in section 7.4.

7.2.1 Veering indicator

To find an adequate indicator to study the weak or strong nature of the coupling
between the string and the bridge, Woodhouse’s approach, rewritten by Paté, is con-
sidered [63, 90]. The modal basis of a single string and that of a bridge are presented.
Then, coupling the two substructures leads to the analytical determination of the
modal mass matrix and stiffness matrix associated to this constraint system. Then,
the constrained system modal basis is reduced to one string mode and one bridge
mode, since only the coincidence of these two modes are necessary. That leads to
reducing the order of the modal matrices. Postulating the Basile hypothesis [119],
the modal damping matrix of the constraint system can be written. By determining
the eigen values of the modal equations associated to this constraint system and
supposing a frequency coincidence between these two modes, the veering indicator
can be derived :

α =
2ρSL

n2π2(mk + ρSL
3

)
− (ξn − ξk)2 (7.1)

Where ρ is the density of the string, L is the string length, S is its section, n is
the number of the mode, mk is the modal mass associated to the bridge mode, ξn
is the damping of the string mode, and ξk is the damping of the bridge mode. In
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any case, if there is no frequency coincidence between the string modes and that of
the bridge, then the coupling between the two structures is weak. Strong couplings
take place only when frequency coincidence between their partials occurs and if the
veering indicator α is positive. If α is positive, then the coupling between the string
and the bridge is strong and the change in modal parameters occurs mainly in terms
of frequency. On the other hand, if α is negative, then the coupling is weak and
the change occurs mainly in terms of damping. Assuming that the Basil hypothesis
is valid, which assumes that the real modal basis of the system yields a diagonal
matrix, the formulation of the mobility Y (ω) of the structure in the case of a driven
point is :

Y (ω) =

Nb∑

n=1

jωφ2
k

mk(ω2
k + 2jωωkξk − ω2)

(7.2)

where Nb is the number of bridge mode, ω is the pulsation and ωk is the modal
pulsation of the bridge. With respect to this formulation, the mode shapes φk and
modal masses mk are normalised in a specific way [63] :

mk =
1

φ2
k

(7.3)

Assuming that the residues Ak are real, its expression at the driven point is :

Ak =
φ2
k

mk

(7.4)

Thus, the normalised mode shapes are deduced :

φk = A
1/4
k (7.5)

Then, after computing the poles of the mobility Y (ω) by means of the LSRF
(Least Square Rational Function) and then deriving its real residues as it was done
in section 3.1.2, the damping ξk and mk are known and ξn is extracted from the
study of the string dampings (see section 3.1.1). These are the parameters that are
used to compute the veering indicator α.

In figure 7.1, the veering indicator is calculated for each n and k and for the three
considered strings : G#3 P-string, D4 S-string and F3 S-string. For the positive
values, if there is a frequency coincidence between the specific string and the bridge,
then the coupling becomes strong. In our case, D4 S-string is tuned around the
target frequency 371 Hz. Since there is no bridge modes around this frequency, the
coupling with this string is then weak. When it comes to the G#3 excited string
and the F3 S-string, the target frequency is around 392 Hz. There is a bridge mode
located at 409 Hz (see the bridge modal basis extracted in section 3.1.2 presented
in figure 3.7). So by moving upward the F3 S-string frequency, it is possible for
this string mode to coincide with this bridge mode. At 409 Hz, the indicator α is
negative. So the coupling between the bridge and the string at 409 Hz is still weak.
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Figure 7.1: Computation of the veering indicator α for the three considered strings.

7.2.2 Weinreich string coupling model

The assumption of this model is that the two strings are attached to the same
coupling point, so their related coupling admittance is the same. A dynamical
matrix Ω for the simplified two-string model was derived in this study :

Ω =

(
2ε+ ζ ζ
ζ ζ

)
(7.6)

this matrix being used to couple the modal equations of the two strings. In the
dynamical matrix, the mistuning ε and a term ζ including the admittance Y of the
bridge, the string modal pulsation ω0 and the characteristic impedance Z0 of the
string are introduced :

ζ = jω0Z0
Y

π
, ε = f − f0 (7.7)

where f is mistuned frequency of the first string and f0 is the frequency of the
second string. Noticing that ζ is complex, it is possible to write ζ = ξ + jη. The
real part ξ can be positive or negative, where a positive value leads to a masslike
support and a negative value leads to a springlike support. The imaginary part η
is a measure of dissipation at the support ant its value must be positive. Looking
for the eigen values of the dynamical matrix, the two corresponding eigen values β±
are derived [21] :

β± = ε+ jη ±
√
ε2 + ξ2 − η2 + 2jξη (7.8)

β± is complex. The real part of it gives the frequency deviation of the two strings
with respect to the mistuning ε and its imaginary part gives the damping deviation
of these two strings with respect to ε.
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7.2.3 Weak coupling

If the coupling is weak, then the moving string extremity can be described as a small
perturbation to the string wave number [58] :

kn = k0,n + δn (7.9)

where k0,n is the string wave number without perturbation, δn is the perturbation
of the string provoked by the moving extremity, and kn is the string wave number
resulted from this perturbation. Then, it is possible to determine the expression
of the string dampings with respect to the mobility of the bridge at the coupling
point. Let Qn be the total quality factor of the string, Q0,n the quality factor of
the string without the influence of the coupling with the structure, c the velocity of
the wave propagation in the string, Yc(L, ωn) the mobility of the bridge expressed
at the coupling point and at modal pulsation ωn, ρl the linear density of the string,
and fn the modal frequency of the string. Coming back to the approach developed
by Valette and Cuesta [58, 65], the following expression can be established :

Q−1
n = Q−1

0,n +
c2ρL
πL

Re[Yc(L, ωn)]
1

fn
(7.10)

Also, the mobility of the string Yc(x, ω) at a driven point can be written like
this :

Yc(x, ω) =
Nc∑

n=1

jωφn(x, ω)2

mn(ω2
n + 2jωωnξn − ω2)

(7.11)

where Nc is the number of string modes, mn the string modal masses and φn(x)
the string mode shapes. At a frequency coincidence, ω = ωn and that yields :

|Yc(x, ωn)| = φn(x, ω)2Qn

2mnωn
(7.12)

where Qn = 1
2ξn

. Equation 7.12 shows that the amplitude of the partial given
by |Yc(x, ωn)| is proportional to its quality factor. As a result, if the damping of
the sympathetic string partial becomes smaller, then its amplitude becomes larger.
Also, when ω = ωn, |Yc(x, ωn)| reaches a maximum of amplitude, which is expected
when it comes to sympathy created by frequency coincidence. After presenting these
preliminary theoretical considerations, an experimental approach is conducted in the
next section to study the string sympathetic response with respect to tuning and
with respect to the bridge coupling admittance.
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7.3 Experimental approach

7.3.1 Experimental protocol

The LAM1 clavichord is placed in an acoustic isolated room (see figure 7.2). The
robotised finger DROPIC [120] is used in order to repeat the same trajectory for the
excitation. In this experience, the finger presses only the G3 key of the instrument.
Since the clavichord is fretted, the considered excited string can be called G3 or
G#3 indifferently. One of the two G#3 strings is damped to simplify the study
of coupling. Three accelerometers (PCB M352C65) are laid out on the bridge at
three precise positions : at the G#3 excited string coupling point, at the F3 S-string
coupling point and that of the D4 S-string. An automatic hammer impact (PCB
086E80) is placed at the G#3 string coupling point, so that it becomes a driven
point. A laser vibrometer (Polytech PDV 100) is used to measure the velocity of
vibration at one point of the studied sympathetic strings. As for the F3 S-string, the
vibrometer measures its vibration at 3.2 cm away from the tuning pin. As for the
D4 S-string, it is measured at 4.5 cm away from the tuning hitch-pin. A microphone
(DPA 4006-TL) is placed at 30 cm above the soundboard to measure the radiated
sound. The different tunings of the considered strings are presented in table 7.1.
Studying the case of the F3 string, the excited string is tuned at 392 Hz. In the case
of the D4 string, the excited string is tuned at 371 Hz. With respect to A3 = 415 Hz
tuning, the frequency 371 Hz corresponds to the G3 pitch, and 392 Hz corresponds
to the G#3 pitch. So the tuning of the excited string is done in a musical context.
After this tuning, for each case, the studied sympathetic string is being tuned around
the target frequency of the excited string. For each of the 9 tunings of each of these
strings, a vibratory measurement is done. The impulse response measurements are
done in two situations : with all strings free and with all strings being damped. For
measurements pressing the G#3 key with the robotic finger, only the case where all
strings are free is considered.

One of the hardships of this experimental approach is to conduct these mea-
surements in a reduced time span. Indeed, the hygrometry and the temperature of
the room where the clavichord is placed change with respect to time. These two
parameters influence the vibratory properties of the instrument. For the hypothesis
of the invariance of the system vibratory properties with respect to time to remain
true as much as possible, all the measurements were done in a single day. That is
the reason why a small number of tunings between the strings around the target fre-
quency, namely 9, is decided. The target frequency corresponds to the excited string
frequency. For each tuning, 5 successive measurements are done for the computation
of incertitudes.
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String Length (m) diameter (mm) Frequency of excitation (Hz) Material

G#3 P-string no1 31,8 0,33 371 - 392 Brass
F3 S-string no2 30,1 0,30 - Brass
D4 S-string no1 29,9 0,27 - Brass

String Tuning frequency of the S-string (Hz)

F3 S-string no2 386.4 | 388.3 | 392.6 | 393.4 | 393.9 | 395.8 | 395.9 | 399.0 | 401.0
D4 S-string no1 363.3 | 367.7 | 369.5 | 370.9 | 371.6 | 372.9 | 375.9 | 377.0 | 380.0

Table 7.1: Table summarising the strings’ parameters for the experimental protocol

Figure 7.2: Experimental set-up used to measure the LAM1 clavichord response to
impulse responses and to the G#3 string excitation, varying the tuning of the D4

S-string and that of the F3 S-string.

7.3.2 Data processing

Once these measurements are done, the modal properties of the first mode of the
studied sympathetic strings are extracted for each tuning. They are extracted out
of the impulse responses and out of the response signal following the G#3 string
excitation measured by the accelerometer placed at the G#3 string coupling point.
To proceed to this extraction, the measured signals are processed by means of the
ESPRIT algorithm [89] to identify all the components present located around the
frequency of the string excitation, which is the target frequency, 371 Hz for the
D4 S-string, 392 Hz for the F3 S-string. For all vibratory responses following the
G#3 string excitation measured, the signal is analysed 0.5 s after the excitation
to get rid of the effects of its transitory phase. It is analysed within a 2 s time
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span, so that a large enough SNR (signal to noise ratio) remains for the analysis.
Then the signal is filtered by a FIR (Finite Impulse Response) filter centered at the
fundamental frequency of the studied sympathetic string after this frequency being
displaced to 0 Hz. The filter transitory phase corresponding to the first samples of
the signal is brushed aside of the ESPRIT analysis. Before the analysis, the studied
signal is decimated to reduce the computation time. This procedure is the same
as the one done in section 3.1.1. After the analysis, the partial corresponding to
the fundamental frequency of the studied sympathetic string is identified. Thus, an
evolution of the properties of this partial with respect to the different tunings of the
sympathetic strings can be observed. Note that these properties are expressed in
terms of the ESM (Exponential Sinusoidal Model) used in the ESPRIT method.

7.4 Strings’ partials parameters extracted out of
the impulse responses

To denote the different mobilities, figure 7.3 shows the points of reference of the
different FRF : H21 is the mobility relating the D4 S-string point number 1 with
that of the G#3 string number 2, H22 is the mobility measured at the driven point
located at the G#3 string coupling point number 2, H23 is the mobility relating the
F3 S-string coupling point number 3 to that of the G#3 string number 2. Figure 7.4
show the different measured mobilities with all strings being damped. The spectral
amplitude of the H23 mobility shows that the target frequency of the F3 S-string
(392 Hz) is located nearby a bridge mode. On the other hand, the target frequency
of the D4 S-string (371 Hz) is located nearby a minimum of spectral amplitude of
the H21 mobility. As a result, it is expected that the F3 S-string vibrates with more
amplitude when excited by an impulse response compared to the D4 S-string. Also,
the conductances of the H23 mobility is higher at the target frequency of the F3

S-string (392 Hz) than that of the H21 at the target frequency of the D4 S-string
(371 Hz).

Figure 7.3: Scheme, with a stylised bridge, of the considered system to study cou-
plings, indicating the points of reference for the different measured FRF’s.
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In figure 7.5 (a), the spectral amplitude of H21 and H23 are shown along with
the amplitude of the D4 S-string first partials and that of the F3 S-string. Among
the 9 different tunings in the study of the D4 S-string, some first partials could
not be found in the ESPRIT analysis because they lacked energy. Only those that
could be well identified are kept. This lack of energy can be explained because of
the H21 mobility of the bridge at these tuning frequencies. As it was pointed out,
the target frequency of the D4 S-string is located nearby a minimum of mobility
spectral amplitude, far from any bridge mode. Therefore, it seems coherent that
some partials analysed for the D4 S-string may lack vibratory energy. Moreover, the
partials that are well identified show that the D4 S-string fundamental frequency
does not change in terms of amplitude. It remains constant around an order of
magnitude of 10−4 m.s−2. Indeed, there is little changes in spectral amplitude when
it comes to the H21 mobility between 360 and 380 Hz. On the contrary, all the F3

S-string first partials are well identified, not lacking vibratory energy in any case.
When the tuning frequency of the F3 S-string increases, the amplitude of its first
partial evolves considerably around an order of magnitude of 10−2 m.s−2. The H23

mobility accounts for this considerable evolution, because its spectral amplitude goes
higher around these frequencies. Then the bridge transmits more energy to the F3

S-string first partial than to that of the D4 S-string. The modal basis of the system
favors the vibratory amplitude of the F3 S-string more than that of the D4 S-string.
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Figure 7.4: Spectral amplitudes, Phases, and conductance of the H12, H22 and H23

mobilities.
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In figure 7.5 (b), the conductance of H21 and H23 along with the dampings of the
D4 S-string first partials and that of the F3 S-string are also presented. Analogically
to the analysis of the amplitude, the damping of the D4 S-string first partial presents
little variations whereas that of the F3 S-string evolves considerably. One can notice
a similar tendency of evolution between the amplitude and the damping of the same
partial. Considering that the coupling in this context is weak, this observation
can be accounted for by means of equation 7.10. The damping of the string is
proportional to the conductance of the bridge mobility at its coupling point. When
the mobility amplitude is higher, then the starting amplitude given to the string
becomes larger. Yet, an increase in mobility amplitude leads also its conductance
to be higher. When this conductance increases, then according to equation 7.10,
the damping of the string partial increases too. That justifies this similar tendency
between the amplitude and the damping of the partial influenced by the effect of
the bridge mobility at the coupling point. As a result, the modelling of coupling
by Valette and Cuesta [58] given by equation 7.10 under the assumption of weak
coupling does account for the variation of amplitude and damping of the measured
partials. It shows that by placing the string coupling points in different locations of
the soundboard, the partials’ amplitude and damping of the strings vary with the
same tendency. In a location that increases the string partial amplitude, it increases
also its damping. Since this is the case, the layout of the strings’ coupling points
influences the partials’ damping and the amplitude of the clavichord sound halo
given by the reverberation effect. Also, this is the reason why that when placing
the string coupling points, a compromise between amplitude and damping should
be found to find the best sound quality when playing the instrument.

7.5 Strings’ partials parameters at frequency coin-
cidence

The string modal parameters are influenced by the coupling mobility of the bridge,
as it is shown in section 7.4. Adding to this, these modal parameters can also be
influenced by the frequency coincidence between two strings’ partial. Measurements
conducted in section 7.3.1 with the string excitation when using the robotic finger
can be used to study this influence. Also, a simplified model of the studied system
can be elaborated by means of the formulation developed in chapter 2. Simulating
this model, a comparison between experimental and simulated data is done in section
7.5.2.

7.5.1 Modelling of the sympathetic strings

Among the 74 strings of the LAM1 clavichord, only three strings have been con-
sidered in the experimental approach to study the string resonance when frequency
coincidence occurs. Ideally, to model the whole clavichord, the 74 strings and the
74 coupling points of the bridge should be considered. However, this system can be
simplified in view of the study of specific physical phenomena. For instance, to study
the sympathetic vibrations with the model, since the reverberation effect resulting
from the vibration of the 74 sympathetic strings is not here at stake, a few strings
is only needed to investigate the string resonance. As such, the simplification of the
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system only considers the needed vibratory subsystems to facilitate the investigation
of the studied physical phenomena.

Figure 7.6: Sketch of the modelling of the G#3 string, F3 string and D4 string
coupled to the bridge.

The G#3 string is still considered as the excited string in the model. Then
the F3 string and the D4 string are considered as well. These two strings are not
excited. The response of their sympathetic part to the excited string is the object
of this study. This model is used in section 7.5.2 to compare simulation results
with experimental data. The modelling of these strings is summarised in figure 7.6.
To denote the different bridge coupling mobilities, like in figure 7.3, the different
coupling FRF’s are shown : H21 is the mobility relating the D4 S-string point with
that of the G#3 string, H22 is the mobility measured at the driven point located at
the G#3 string coupling point, H23 is the mobility relating the F3 S-string coupling
point to that of the G#3 string. As a result, the bridge is modeled by means of
these three coupling points.

Simulating this model (see figure 7.7 and 7.8), a similar procedure is conducted
as in the experimental approach in section 7.3.1. In the first case, the excited string
is tuned at 392 Hz, and the F3 S-string tuning is varied around this target frequency.
In the second case, the excited string is tuned at 371 Hz, and the D4 S-string tuning
is varied around this other target frequency. Exciting the G#3 string with these
different tuning configurations, the bridge acceleration signal at the G#3 string
coupling point (point no2) is analysed by means of the ESPRIT method. The same
protocol as in section 7.3.2 is conducted to extract the strings’ modal parameters.
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Figure 7.7: Picture of the modeled strings among those of the LAM1 clavichord :
the excited G#3 string, the F3 string and the D4 string. The axes of the picture are
isomorphic

Figure 7.8: Picture of the modeled strings among those of the LAM1 clavichord seen
from above. The axes of the picture are anisomorphic
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7.5.2 Variation of the modal parameters of the coupled par-
tials

Comparison between the experimental data and the simulated data

Regarding the variation of the strings’ modal parameters with respect to the sym-
pathetic string tuning compared to that of the excited string, the results obtained
by measurements and simulations are presented in figure 7.9. In this figure, the F3

S-string case as well as that of the D4 S-string are shown. In figures 7.9 (a) and
(b), the tuning frequency corresponds to the tuning of the studied S-string in each
case. The resulting frequency is the frequency measured after exciting the played
string. The frequencies of the excited string first partial and that of the studied
S-string obtained in the simulation are presented. Also, the measured first partial
frequency of the excited string with respect to that of the measured S-string is pre-
sented. Experimentally, the tuning of the studied S-string before the excitation is
not known.

In figure 7.9 (a), which regards the F3 S-string case, the measured frequency of
the G#3 string first partial varies between around 390 and 395 Hz, with a maximum
incertitude of 1.2 Hz. This is larger than the frequency obtained with the simulation,
where this frequency varies between 392.1 and 391.7 Hz. In figure (b), which regards
the D4 S-string case, the measured frequency is subjected to a variation which goes
between 372.4 and 372.3 Hz and with a maximum incertitude of 0.06 Hz, which is
way smaller than the measured F3 S-string frequencies. Also, the simulated data
shows a very small variation of the first partial frequency of the D4 S-string as
well, with a 0.2 Hz of variation at maximum. With the simulated data, the shift
of frequency noticed in the F3 S-string case is a bit larger than that noticed in the
D4 S-string case. However, with the measured data, the frequency variation of the
studied partials is way larger in the F3 S-string case than in the D4 S-string case.
In the two figures (a) and (b), the shapes of the simulated curves are the same.
When the tuning frequency of the S-string approaches the excited string frequency
from below, the latter increases a little and the former decreases also. Once the
S-string tuning frequency becomes larger than that of the excited string, then the
latter decreases suddenly and the former augments also all of a sudden. It is as
though the frequencies of the two strings were exchanged.

In figure 7.10 (a) and (b), the amplitude of the strings’ first partial in the two
case studies are shown. In the F3 S-string case shown in figure (a), the measured
modal amplitudes of the S-string go from 0.045 to 0.86 m.s−2 among the different
tunings, with a maximum incertitude of 0.37 m.s−2. That of the excited string go
from 0.12 to 0.83 m.s−2, with a maximum incertitude of 0.23 m.s−2. The simulated
curves show that the damping of the two strings vary from 0.29 to 1.1 m.s−2 for the
excited string and from 0.069 to 0.44 m.s−2 for the F3 S-string. In the D4 S-string
case shown in figure (b), the measured modal amplitudes of the S-string go from
0.019 to 0.55 m.s−2 among the different tunings, with a maximum incertitude of
0.20 m.s−2. That of the excited string go from 0.15 to 0.32 m.s−2, with a maximum
incertitude of 0.095 m.s−2. The simulated curves show that the amplitude of the
two strings partial vary from 0.34 to 0.63 m.s−2 for the excited string and from 0.023
to 0.21 m.s−2 for the D4 S-string. There is no particular conclusion to be drawn
out of the simulated curves. However, it is interesting to notice that the measured
S-string amplitude in figures (a) and (b) end up forming a resonance curve, where
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Figure 7.9: Resulting frequency of the sympathetic string coupled partial and that of
the excited string with respect to the tuning frequency in the case of the F3 S-string
(a) and that of the D4 S-string (b) given by the simulation, and resulting frequency
of the excited string with respect to the resulting frequency of the sympathetic string
given by the measurements.
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this amplitude is highest when the frequency of the S-string’ partial coincides the
most with that of the excited string partial. Also, the amplitudes of the F3 S-string
are larger than that of the D4 S-string, whether at frequency coincidence or not.
This is to be related to figure 7.13 discussed below. The reason that the simulated
curves do not reproduce these experimental curves is not known. More simulations
nearby frequency coincidence would be necessary.

In figure 7.11 (a) and (b), the damping of the strings’ first partial in the two
case studies are shown. In the F3 S-string case shown in figure (a), the measured
dampings of the S-string go from 1 to 4.6% among the different tunings, with a
maximum incertitude of 1.7%. That of the excited string go from 1.04 to 6.25%, with
a maximum incertitude of 2.65%. The simulated curves show that the damping of the
two strings vary from 0.96% to 4.84% for the excited string and from 1.13 to 5.24%
for the F3 S-string, which is close to the variation of the measured dampings. In the
D4 S-string case shown in figure (b), the measured modal dampings of the S-string
go from 0.69 to 1.48% among the different tunings, with a maximum incertitude of
0.56%. That of the excited string go from 1.01 to 1.61%, with a maximum incertitude
of 0.21%. The simulated curves show that the damping of the two strings vary from
1.01 to 1.38% for the excited string and from 0.96 to 1.37% for the D4 S-string,
which are also comparable to the values of the measured dampings. In overall, the
variations of damping in the F3 S-string case are larger that in the D4 S-string case.
Similar to the observation done for the frequency variation, the simulated damping
curves in figures (a) and (b) show that the excited string partial and that of the
S-string exchange there modal damping once the S-string tuning frequency becomes
larger than that of the excited string.

144



385 390 395 400

tuning frequency [Hz]

0

0.5

1

1.5

2
am

p
li

tu
d

e 
[m

.s
-2

]
G#3 excitated string

F3 sympathetic string

Experimental F3 sympathetic string

Experimental G#3 excited string

Target frequency

365 370 375 380

frequency [Hz]

0

0.5

1

1.5

2

am
p

li
tu

d
e 

[m
.s

-2
]

G3 excitated string

D4 sympathetic string

Experimental D4 sympathetic string

Experimental G3 excitated string

Target frequency

Figure 7.10: Amplitude of the sympathetic string coupled partial and that of the
excited string with respect to the tuning frequency in the case of the F3 S-string (a)
and that of the D4 S-string (b) given by the simulation, and amplitude of the excited
string with respect to the resulting frequency of the sympathetic string given by the
measurements.

145



385 390 395 400

tuning frequency [Hz]

0

2

4

6

8
d

am
p

in
g

 [
%

]

365 370 375 380

frequency [Hz]

0

2

4

6

8

d
am

p
in

g
 [

%
]

Figure 7.11: Damping of the sympathetic string coupled partial and that of the
excited string with respect to the tuning frequency in the case of the F3 S-string (a)
and that of the D4 S-string (b) given by the simulation, and damping of the excited
string with respect to the resulting frequency of the sympathetic string given by the
measurements.
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Comparison between the simulated data provided by the model and that
provided by Weinreich model

The simulated frequency and damping curves in figure 7.9 and 7.11 can be compared
with another model regarding string coupling. It is possible to compare them to the
values given by the model elaborated by Weinreich applied on piano strings [21]
(see section 7.2.2). The simulated frequencies obtained by means of the model are
transposed in terms of frequency deviation to compare them to the values given by
equation 7.8 yielded by the model by Weinreich. The values chosen for the simulated
Weinreich model is ξ = 0.3 and η = 0.35 in the F3 S-string case, ξ = 0.12 and η =
0.12 in the D4 S-string case. The comparison is shown in figures 7.12. The values in
frequency in figures (a) and (b) given by the simulation of the U-K model and that
of the Weinreich model give very similar results. in figures (c) and (d), the variation
of damping given by the two curves have the same shape. Even though they are
close, the amplitude of the damping deviation is not perfectly the same. Since the
frequency deviation curve given by the Weinreich model match with the simulated
frequencies given by the U-K model, the values of ξ and η should not be changed.
So the associated damping deviation curves should not be modified. As opposed
to the model based on the U-K formulation, the Weinreich model is based on the
assumption that the excited string and the sympathetic string are coupled with the
bridge at the same coupling point. Since it is not the case in our study, these strings
should not be subjected to the same bridge coupling admittance. In view of this
difference between the two models regarding this assumption, it may well account
for the dissimilarities in damping between the Weinreich model and that based on
the U-K formulation.

This satisfactory match with the Weinreich model can be useful to put forward
the difference between the sympathetic vibration of F3 S-string and that of the D4

S-string reacting to the same excited string. The influence of the bridge coupling
admittance on these two S-strings is not perfectly the same. Therefore, the deviation
in frequency and in damping between these two S-strings are not the same. Namely,
this deviation is larger in the F3 S-string case than in the D4 S-string case. As such,
it can be considered that the coupling between the excited G#3 string and the F3

S-string is stronger than that between the same excited string and the D4 S-string.
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Figure 7.12: Comparison between the frequency deviation given by the simulation
of the U-K model and that given the Weinreich model in the F3 S-string case (a) and
in the D4 S-string case (b), and comparison between the damping deviation given
by Weinreich model and the dampings given by the simulation of the U-K model,
in the F3 S-string case (c) and in the D4 S-string (d).

7.5.3 Vibratory and acoustic signals of the S-strings and the
soundboard

In figures 7.13, the velocity signals measured at one point of the F3 S-string (3.2
cm away from the tuning hitch-pin) and of the D4 S-string (4.5 cm away from the
tuning hitch-pin) by the vibrometer for each tuning are presented, as well as the
measured acceleration signals at the G#3 coupling point (point no2) when the S-
string fundamental frequency coincides with that of the excited string in the F3

S-string case and in the D4 S-string case. It can be seen that the more the tuning
frequency coincides with that of the S-string, the more the vibratory amplitude of
the S-string increases. In particular, beats can be seen in these velocity signals.
The cause of their presence is the frequency distance between the excited string
frequency and the S-string frequency. In other words, The beats’ frequency is equal
to this frequency difference. The larger the difference between these two frequencies,
the higher the frequency of the beats. As a result, when the frequency of the S-
string approaches that of the excited string, the beats’ frequency decreases and the
vibratory amplitude increases. This increase in the vibratory amplitude is consistent
with the measured modal amplitudes extracted from the acceleration signal at the
G#3 coupling point shown in figure 7.10. In other words, the S-string resonates
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Figure 7.13: Measured velocity vibratory signals of the F3 S-string responding to
the G3 string excitation (target frequency : 392 Hz), with different tunings of the
F3 S-string (measured point localised at 3.2 cm away from the tuning hitch-pin) (a),
That of the D4 S-string responding to the G3 string excitation (target frequency :
371 Hz), with different tunings the D4 S-string (measured point localised at 4.5 cm
away from the tuning hitch-pin) (b), Acceleration of the bridge at the G#3 string
coupling point which results from the excitation of this string tuned at 372 Hz and
at 392 Hz, coinciding with the D4 S-string first partial and that of the F3 S-string
respectively (c).

more when approaching frequency coincidence. This is accounted for by the study of
string resonance made by Gough [62]. It is showed that this frequency coincidence
creates a resonance at that coincided frequency in the bridge admittance. As a
result, a perturbation at the S-string coupling point occurs, leading to this increase
in vibratory amplitude.

As it was pointed out, the measured amplitude at resonance in figure 7.10 (a) in
the F3 S-string case is larger than that shown in figure 7.10 (b) in the D4 S-string
case. This can be verified by the acceleration signals measured at the G#3 coupling
point presented in figure 7.13. The initial vibratory amplitude of the acceleration
signal in blue is 47 m.s−2 and that of the red one is 36 m.s−2. The former is measured
when the excited string is tuned at the F3 S-string frequency (392 Hz) and the latter
is measured when the same excited string is tuned at the D4 S-string frequency (372
Hz). So the amplitude of this acceleration in the F3 S-string case is larger than
that in the D4 S-string case. Moreover, the amplitude of the blue acceleration signal
increases at 0.5 ms and decreases at 0.7 ms. Such a thing is not observed in the red
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Figure 7.14: Simulated velocity vibratory signals of the F3 S-string responding to
the G3 string excitation (target frequency : 392 Hz), with respect to the tuning
frequency of F3 string (measured point localised at 3.2 cm away from the tuning
hitch-pin) (a), That of the D4 S-string responding to the G3 string excitation (target
frequency : 371 Hz), with respect to the tuning frequency of D4 string (measured
point localised at 4.5 cm away from the tuning hitch-pin) (b), Acceleration of the
bridge at the G#3 string coupling point which results from the excitation of this
string tuned at 372 Hz and at 392 Hz, coinciding with the D4 S-string first partial
and that of the F3 S-string respectively (c)

acceleration signal.
In figure 7.14, the simulated velocity signals measured at one point of the F3 S-

string and of the D4 S-string for each tuning are presented, as well as the simulated
acceleration signals at the G#3 coupling point (point no2) when the S-string funda-
mental frequency coincides with that of the excited string in the F3 S-string case and
in the D4 S-string case. The same tendencies observed in the experimental signals
can be noticed in the simulated ones. The more the tuning frequency coincides with
that of the S-string, the more the vibratory amplitude of the S-string increases.
Also, the simulated acceleration signals indicate a similar tendency. Considering
the frequency coincidence in the F3 S-string case and that in the D4 S-string case,
the initial amplitude of the acceleration signal related to the former case, around 5
m.s−2, is higher than that related to the latter case, around 4 m.s−2. This can be
explained by the results found in section 7.4. Given the fact that spectral ampli-
tude of the corresponding coupling admittances is higher at 392 Hz than at 371 Hz,
more amplitude is given initially to the bridge acceleration when the excited string
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is tuned at 392 Hz than tuned at 371 Hz. Also, noticing that the conductance of
these coupling admittances is higher at 392 Hz than in 371 Hz (see figure 7.4), more
damping is given to the bridge acceleration when the excited string is tuned at 392
Hz than tuned at 371 Hz. This is the reason why the acceleration signal related to
the D4 S-string case lasts longer than the one related to the F3 S-string case.

Notwithstanding these similar tendencies between the measured signals and the
simulated ones, the order of magnitude of these signals are not always the same
comparing figures 7.13 and 7.14. That of the amplitude of the D4 S-string velocity
signals between the measurements and the simulation is comparable. However, that
is less the case for the F3 S-string velocity, where the simulated signals do not
increase enough when frequency coincidence occurs. The maximum value reached
in the measured signals is 0.15 m.s−1, instead of 0.06 m.s−1 for the simulated signals.
Also, the simulated acceleration signals are inferior to the measured ones by a factor
of 10. To correct this, one could increase the amplitude of the simulating excitation
force so that the vibratory amplitude of the bridge between the experiment and
the simulation may be comparable. Moreover, the resonating effect found in the
measured acceleration signal in the F3 S-string case is not retrieved in the simulated
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Figure 7.15: Spectrograms of the acceleration signal (Ref 1 dB : 1 m.s−2) measured
at the G#3 string coupling point in the F3 S-string case (a) and (b), and in the D4

S-string case (c) and (d). In spectrograms (a) and (c), the corresponding S-strings
are tuned with the excited string (392 Hz for the F3 S-string and 372 Hz for the D4

S-string), whereas in spectrograms (b) and (c) these sames S-strings are mistuned
with respect to this same excited string (401 Hz for the F3 S-string and 380 Hz for
the D4 S-string).
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Figure 7.16: Spectrograms of the pressure signal (Ref 1 dB : 1 Pa) measured at 30
cm above the center of the soundboard in the F3 S-string case (a) and (b), and in
the D4 S-string case (c) and (d). In spectrograms (a) and (c), the corresponding
S-strings are tuned with the excited string (392 Hz for the F3 S-string and 372 Hz
for the D4 S-string), whereas in spectrograms (b) and (c) these sames S-strings are
mistuned with respect to this same excited string (401 Hz for the F3 S-string and
380 Hz for the D4 S-string).

signals. These main differences ought to be explained by the limitation of the model
used for the simulations.

Furthermore, this difference can be seen in the spectrogram of these vibratory
signals in figures 7.15. In spectrogram (a), where the frequency of the F3 S-string
first partial coincides with that of the excited string fundamental frequency, it can be
seen that the partial at 392 Hz have a stronger amplitude between 0.5 and 2 s than
in spectrogram (b), where there is no frequency coincidence. This partial sounds as
if it was resonating, meaning that it gains slowly some amplitude at the beginning
of the signal. This effect is not retrieve in the D4 S-string, comparing spectrograms
7.15 (c) and (d). This resonance in the F3 S-string case is shown in the sound
looking at figures 7.16, where the spectrograms represent the experimental signals
measured by the microphone. In spectrogram (a), the same resonating partial can
be seen, which once again does not resonate in spectrogram (b). Surprisingly, in the
D4 S-string case, the partial duration at 744 Hz in spectrogram (d) is longer than
in spectrogram (c). Yet, there is no frequency coincidence occurring in spectrogram
(d). So this duration has nothing to do with the frequency coincidence between the
excited string partial and that of the D4 S-string.
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7.6 Conclusion
With this investigation, it is possible to put forward the effect of resonance in the
sound produced by the clavichord. it was found that the S-string partial at fre-
quency coincidence in the F3 S-string case is prominent in terms of amplitude in the
soundboard vibratory signal as well in the clavichord radiated sound, which is not
the case in the D4 S-string case. The explanation of this whistling sound is the dif-
ference of the influence of the bridge coupling admittance in these two cases. It was
put forward that the coupling between the excited G#3 string and the F3 S-string
is stronger than that between the same excited string and the D4 S-string. Given
this fact, the perturbation of the bridge coupling point with the F3 S-string is larger
than in the D4 S-string case. That leads to giving more vibratory energy to the F3

S-string coupled partial, leading to the observed whistling sound. As a result, the
presence of this whistling sound coming from the string resonance is conditioned by
the bridge coupling admittance. Only in the case of a sufficiently strong coupling
does the whistling sound of the sympathetic vibration of the S-string appears when
frequency coincidence with the excited string occurs.
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Part V

Conclusion
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Chapter 8

Conclusion and perspectives

Preceding studies on the clavichord either modeled only partially the instrument,
or modeled it by means of signal processing methods. Experimental results on the
vibro-acoustics of this instrument were found in the literature, and some were veri-
fied by means of simple vibratory models. The vibro-acoustic study of the clavichord
aimed in part II at giving a first complete physical modelling of clavichord strings
which would account for experimental results found in our work and in the literature
by means of simulations. In a mechanical engineering point of view, the clavichord
can be considered as a constraint system which is made of vibratory substructures
coupled to each other. The string, the key-tangent, the bridge and the damper can
be considered as individual substructures, where their couplings end up forming the
instrument. Given that these substructures are modeled by means of their modal
representation, experimental modal analysis was considered to find appropriate nu-
merical values for the substructures’ modal parameters. Then, a simulation study of
this model was done to verify the stability and the convergence of the implemented
numerical scheme. After this modelling and this simulation study, an overall study
of the clavichord excitation system in part III and of sympathy in the clavichord in
part IV were made, using experimental approaches and using simulations.

8.1 Results

In chapter 2, the Udwadia-Kalaba (U-K) formulation was used as a means to model
the couplings of the different substructures. This formulation was found to be prac-
tical in view of this modelling. The constraint system can be easily modelled by
means of the equation of motion of the system and of a constraint equation, where
the couplings are considered in a single coupling matrix. This formulation is compat-
ible with a modal representation of the system, which paves the way to the modelling
of coupled vibratory substructures. The modal representation of the string, bridge,
key-tangent substructure and that of the damper were presented. Given the fact that
this formulation is derived from the Gauss principle, there is no issue when it comes
to including non-conservative or nonlinear forces in the model. Considering that the
clavichord string is uplifted with a static displacement when excited, geometrical
nonlinear forces needed to be taken into account by means of the Kirchoff-Carrier
model to include the variation of string tension, hence to include the variation of
the excited string fundamental frequency. Then, the assumption of the continuity in
displacement between each substructure was considered to derive the coupling ma-
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trix of the constraint system. In particular, the excitation of the string is modelled
by coupling the key-tangent substructure and the string at the moment of contact.
That leads to the creation of a constraint force whose amplitude is similar to the
excitation force applied at the key-tangent substructure at the moment when the
mechanical system becomes static. This constraint force uplifts the string and sets
the string played part into vibration. In the coupling between the string and the
key-tangent substructure, given that the two substructures are not exactly in the
same position at the contact moment, stabilization techniques were implemented
to correct the displacement and the velocity of the system because of constraint
violations.

In chapter 3, the numerical values of all modal parameters were investigated
as well as the stabilization and convergence of the model simulation. The string
dampings were considered by means of the study of three different clavichord strings
placed at a string bench. Vibratory measurements of these isolated strings led to the
using of a high resolution method to determine their dampings. Given the modal
representation of the string presented in chapter 2, the string modal dampings’
model was used to match these string dampings’ measurements, out of which the
numerical values of the damping model parameters could be found. As a result, the
damping model can be applied for all clavichord strings. Given the bridge modal
representation, an experimental modal analysis approach was used to determine the
bridge modal parameters at three different locations : at the G#3 coupling point,
that of the F3 string and that of the D4 string. The modal parameters of the
key-tangent substructure and the damper are chosen by means of ad hoc values,
where the consistency of these results is evaluated in view of the coherency of the
simulation results. Then, a study of the implemented numerical scheme is done
to find the stability condition of the simulation in terms of time step. Also, the
stability is secured by respecting Shannon’s sampling theorem, which imposes a
limited number of string modes with respect to the chosen time step. Simulating
the G#3 string, a study of the time step, in particular by means of an energy
analysis, showed that the simulation converges when diminishing the time step.
Also, a study of the number of string modes showed that the solution converges when
increasing this number of modes. A standard simulation was finally done to present
the consistency of the numerical results. The damper needs to be reconsidered to
avoid exaggerated influence on the string static displacement while conserving the
same damping effect. Finally, the simulation of two similar excited strings gives
a bridge vibratory response similar to that found by Weinreich when considering
coupled piano strings [21].

In chapter 4, the excitation system of the clavichord was investigated. The
robotic finger was used to repeat the same programmed trajectory leading to the
key motion. The key-depth was measured by means of a profilometer, measuring the
motion in terms of distance. The vibratory displacement in the two polarisations of
the string were measured to evaluate the model assumption of the one polarisation
of motion of the string. This assumption is well justified for the excited string, yet
debatable for the sympathetic strings. Then, the linearity of the bridge acceleration
in dB with the logarithm of the impact velocity of the key-tangent substructure was
verified by simulating the G#3 string excited with different impact velocities. Out
of these simulations, the spectral slope of the bridge acceleration spectrum remain-
ing constant with respect to the impact velocity was also verified. Furthermore, the
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measured velocity of the key pressed by the robotic finger was compared to the sim-
ulated key-tangent substructure velocity. A similar shape with similar amplitudes
and having similar low frequency motion could be observed, although the increasing
slopes of the two velocities are different. This difference can be corrected by investi-
gating the force profile exerted on the simulated key-tangent substructure. Finally,
the motion of the G#3 string was simulated to observe with precision the motion
of the string at the beginning of its excitation. The low frequency at the contact
point between the string and the key-tangent substructure was observed. Also, the
combination of the wave propagation and the string uplift forms the specificity of
the clavichord string motion that was observed in the simulation.

Chapter 5 was devoted to the study of the paradoxical gesture needed to play the
clavichord, also referred to as the clavichord paradox. The legacy coming from the
history of the clavichord performance points out the importance of this topic. Some
musical treaties mentioned the problem of the finger pushed gesture, characterised
by a vertical motion which causes a lack of balance between the obtained loudness
and the resulting pitch. Hence, a pulled gesture (called Schnellen), which add a
backward horizontal component to the finger motion, was introduced to reach this
compromise between pitch and loudness in the produced clavichord sound. In line
with preceding studies on this topic, measurements were conducted on the LAM1
clavichord by adding new kinds of measurements : the measurement of the string vi-
bratory displacement by means of optical forks and the filming of the finger gesture
by means of a high speed camera. Measurements conducted with a musician led
to retrieve qualitatively the same results found in the literature by means of these
new measurements, giving another representation of this clavichord paradox. Fur-
thermore, the robotic finger programmed trajectory was used and modified to study
this phenomenon with a trajectory whose velocity and displacement are controlled.
The same tendencies as that found in the case of the measurements done with a
musician can be observed. Namely, increasing the key velocity leads the clavichord
sound level to increase. And increasing the key depth leads the clavichord pitch
to increase. Therefore, the features characterising the clavichord paradox could be
objectified by means of the robotic finger.

In chapter 6, indicating the presence of two vibro-acoustic effects when it comes
to the sympathetic strings’ vibration, that is the reverberation effect and the string
resonance, the reverberation effect was investigated. This consists in an overall
acoustic effect provided by the vibration of all the sympathetic strings, an effect sim-
ilar to that found in room acoustics. This was studied by means of an experimental
approach based on impulse response measurements with different string damping
configurations. The frequency region influencing the studied clavichord sound is be-
tween 350 Hz and 6000 Hz regarding the S-strings, and that of the P-strings is below
350 Hz which creates the drum effect. The computation of the reverberation time
of the clavichord sound highlighted the fact that the sympathetic strings contribute
to the duration of the signal. Computing the sound level of the impulse responses,
letting free the sympathetic strings’ vibration enables the sound to be louder. Also,
computing the spectral centroid led to a representation of the change in the tim-
bre of the sound when damping the sympathetic strings. All these three indicators
revealed the significance of the sympathetic strings in influencing the sound of the
clavichord, where this influence can be considered as a reverberation effect. Since
the impulse response approach assumes the fact that the studied system is linear, the
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sympathetic strings can be considered as a linear system, namely as a reverberator.
Its impulse response is obtained by means of a deconvolution done with the mea-
sured signals. Afterwards, the individual vibratory response of each of the S-string
to the same excited string was measured. In such a way, the amplitude of these
different vibratory responses could be compared. For some S-strings, this amplitude
becomes larger than for all the other S-strings. This is not to be explained by the
reverberation effect. Hence, another vibro-acoustic effect also related to sympathy
which is resonance needs to be investigated.

In chapter 7, the resonance of the S-string when reaching frequency coincidence
is studied. Preceding works on string-bridge coupling led to the difference between
strong coupling and weak coupling, highlighted by the veering indicator [63]. The
strength of this coupling depends on the modal basis of the string and that of the
bridge. An experimental approach was conducted to study the coupling of the F3

S-string and that of the D4 S-string responding to the excited G#3 S-string. The
corresponding coupling admittances were measured by means of impulse response
measurements. In the F3 S-string case and that of the D4 S-string, the S-string tun-
ing is changed 9 times around the excited string fundamental frequency which is the
target frequency. For each of these tunings, impulses responses and vibro-acoustic
responses to the same excited string are measured. The partials’ parameters of the
excited string and of the S-strings were extracted by means of a high-resolution anal-
ysis. Impulse response measurements show a correlation between the amplitudes of
the considered partials and that of the corresponding coupling admittances, as well
as another correlation between their dampings and the conductance of these coupling
admittances. Namely the higher the spectral amplitude of the coupling admittance,
the higher the amplitude of the S-string partial. And the higher the conductance of
the coupling admittance, the higher the damping of the S-string partial. The partial
of the F3 S-string have a higher amplitude and a higher damping compared to the
D4 S-string, because the coupling admittance spectral amplitude and conductance of
the former is higher than that of the latter. These considerations give the influence
of the bridge mobility on the sympathetic vibration of the string. In particular, since
the reverberation effect results from the amplitude and the damping of all the sym-
pathetic strings’ partials, this approach shows how the bridge mobility influences the
clavichord reverberation effect. Then, the excited string approach was considered.
Adding to the measurements, a simplified model of the studied clavichord repro-
ducing the same experimental instructions was simulated. The considered partial
frequency, amplitude and damping given by the measurements and by the simu-
lated data were compared in the two cases, namely the F3 S-string case and that
of the D4 S-string. In the two cases, the order of magnitude of the change in the
frequency, damping and amplitude between the measured data and the simulated
ones are consistent. This variation is due to the resonance of the S-string, when
a frequency coincidence between its partial and that of the excited string occurs.
The lower the mistuning of the two strings, the higher the change in the partial
frequency, amplitude and damping. Comparing the data given by the simulated
model based on the U-K formulation with that provided by the Weinreich model,
the consistency of the two models have been noticed. Also, this comparison showed
that the coupling between the F3 S-string and the bridge is stronger than that of the
D4 S-string when exciting the G#3 string. This accounted for the resonating sound
of the clavichord when coinciding the excited string fundamental frequency with
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that of the F3 S-string, which is not present when tuning the same excited string
to the D4 S-string fundamental frequency. This comes from the resonating response
of the F3 S-string which is favored by its corresponding coupling admittance. The
same circumstance is not found in the D4 S-string case.

8.2 Perspectives

Some perspectives to this work are proposed in this section. These perspectives are
presented starting from short term investigation aiming at improving some aspects
of the elaborated clavichord model, up to long term investigations to go toward a
complete model of the clavichord, studying experimentally mores clavichords and
studying deeply musical performance in the case of the clavichord.

The modelling of the clavichord

Simulating the model of an instrument gives a picture of our understanding of its
vibro-acoustics. The more the sound synthesis of the modeled instrument is close to
that of the real one, the more the physical phenomena involved in the instrument
acoustic functioning are well theorised. Although the sound synthesis of this modeled
clavichord seems satisfactory, it does not reproduce exactly the radiated sound of
the real LAM1 clavichord. This modelling was done in view of studying selected
aspects of the clavichord, namely the excitation system and the sympathetic string
vibration, reducing the number of vibratory substructures. Either this model can be
used for further explorations, requiring only minor modifications of the modelling.
Or this model can be enhanced to account for other vibro-acoustic aspects of the
clavichord, leading to a betterment of the clavichord sound synthesis.

Further amendments and uses of the present clavichord model

Regarding the modeling of the damper, it was observed that the proposed model
can be improved in view of the simulated results. The damped part of the string
in the simulation still vibrates considerably after the excitation. Naturally, one
would increase the damping coefficients of the damper to increase the damping of
the string damped part. However, increasing these damping coefficients leads to
the slow-down of the static displacement of the excited string, which can become
unrealistic. Therefore, with this way of modeling the damper, it is not possible to
increase the damping of this string part without influencing the static motion of the
string. Another model of the damper should be elaborated to come to a sufficiently
damped string vibration.

Only one form of simulated force profile was used to produce the simulated vibra-
tory signals, which is a simplified profile compared to that produced by musicians. In
reality, this force varies in subtle ways after the moment of the key-tangent contact.
This is essential to reproduce some musical effects like the vibrato called Bebung
or the quick variation of the fundamental frequency called Tragen. Furthermore,
this force profile variation is important to study numerically the clavichord paradox
which demands a control of both the excitation force and the impact velocity.

The key-tangent substructure was modeled by considering the rotation of a rigid
bar produced by the finger pressure. In that regards, measurement of the key mo-
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ment of inertia was done in annex H. The musician finger could be modeled by
means of a set of spring-mass systems, with appropriate masses, stiffness and damp-
ing coefficients equivalent to that of a human finger. As such, the excitation force
would be the constrained force created by the coupling of the finger with the key.

The coupling have been modelled by means of the extracted bridge modal param-
eters, and its effect on the clavichord sympathetic string vibration was observed. A
parametric study investigating the influence of the variation of some specific bridge
modal parameters on the clavichord sound could be considered. Varying individually
the modal masses and the dampings of the bridge, the influence on the clavichord
string vibration could be observed. Also, varying these parameters influences the
value of the veering indicator. For instance, it would be interesting to simulate
a very strong coupling to observe a large deviation of the sympathetic string fre-
quency when resonating. Furthermore, when simulating the 74 strings of the LAM1
clavichord, the influence of the modal parameters on the reverberation effect would
also be a subject of interest. So a parametric study of the bridge modal behaviour
influence on the clavichord sound could be of help when understanding the effect of
coupling in musical instruments.

Enhancements of the clavichord modelling

The two polarisations of motion of the string could be taken into account. In that
case, measurement of the clavichord bridge impulse responses in the two polarisa-
tions need to be done. Preliminary measurements of these impulse responses have
been done to come up with an operational experimental setup. In particular, mea-
surement techniques to measure the bridge FRF, which is then used to verify the
equivalence of cross admittances of the bridge, have been tested in annex I.

To complete the model proposed in chapter 2, the radiation of the clavichord
sound should be included. Regarding the Udwadia-Kalaba formulation, no specific
analytical elaboration has been done so far to include the sound radiation with
this formulation. The soundboard could be modeled like a two dimensional thick
orthotropic plate coupled with the strings. Then the radiation can be modeled by
means of vibro-acoustic equations, coupling the plate equations of motion with that
of the propagation of sound in the air.

A much easier way to take account of the sound radiation in the model is to
include the measured acoustic and vibratory impulse responses of the clavichord at
one point in space. The simulated vibration of the bridge-soundboard can be con-
voluted with a transfer function obtained by means of the aforementioned measured
impulse responses. As such, this convolution leads to obtaining the radiation sound
of the studied clavichord.

Ideally, the 74 strings of the LAM1 clavichord should be considered to model
the whole instrument. However, as it was pointed out, the computational time of
the simulation becomes too large considering the numerical explicit scheme used
to discretize the equation of motion associated to the modeled constrained system
yielded by the U-K formulation. To shorten this computational time, a numerical
investigation needs to be tackled.

As it was indicated in the introduction, other modelling of the clavichord have
been done, like the one elaborated by Välimäki by means of signal processing meth-
ods. To have a better idea of the sound quality obtained by means of the simulated
model in this PhD, it should be compared to that obtained by preceding models.
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A comparison of the clavichord A3 note simulated by the model by Välimäki with
that produced by the simulated model based on the Udwadia-Kalaba formulation
could be done. Also, it would be interesting to compare the sound quality of the
simulated Neupert clavichord modelled by the Modartt company compared to that
produced by the simulated U-K model.

Performance studies on the clavichord

Regarding the experimental study of the finger gesture of the clavichord player, the
investigation could be carried on by reproducing the same experiment and adding
the tracking of the key displacement by the profilometer. A deep analysis of the
measured key displacement in accordance with the finger trajectory filmed by the
high-speed camera could be done. More repeatability of each measurement associ-
ated to the same instruction given to the musician should be considered. A musical
context could be taken into account to analyse the clavichord paradox in a playing
situation. Despite this paradox, it does not imply that all clavichord players adopt
the same playing strategies to deal with it. There may not be only one kind of play-
ing, but different ways of playing that would amount to a satisfactory musical result.
Is there only one way to deal with the clavichord paradox, or is there a diversity of
possible playing strategies ? Then, more musicians should be taken into account in
this experiment with a comparative approach in order to deepen this investigation.

Furthermore, to underline the specificity of the playing in the clavichord, the
measurements of this playing could be compared to that found in the case of the
harpsichord and of the piano. Historically, the clavichord was considered as a fun-
damental means to practice keyboard instruments in general. Because the influence
of the keyboard constraints on the fingers shape the motion of the player fingers,
the clavichord player performance should be specific. These constraints are not the
same when it comes to playing the piano and the harpsichord. Then, the question is
how much does the mechanical constraints of the clavichord influences the playing
of the musician. Comparing the finger motion of a pianist, a harpsichordist and a
clavichord player on a same clavichord could be useful to deepen these investiga-
tions. The measured key depths and measured sound level could be compared to
identify the principal differences in the musical results of these different musicians.

Considering more instruments

Finally, only the LAM1 clavichord was investigated in this work. Yet one clavichord
cannot summarise the features belonging to the diversity of clavichords. Changing
the dimension of the clavichord leads to changing the length of the stringing and its
number of strings. Then the reverberation effect is different from one clavichord to
another. Also, by changing the strings length, the stringing tension changes also.
As a result, the hardness of touch created by the tangent-string contact can change
from one clavichord to another. This means that the clavichord features analysed
in this work can vary by means of instrument-making choices. Thus, one possible
investigation is to study different clavichords and comparing there vibro-acoustic
features to understand how different instrument-making parameters change these
features. As a result, some experimental approaches should be reproduced on several
clavichords. Comparing them by means of the indicators used in this work can lead
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to a comparative study of the reverberation in the clavichord. Also, conducting
the study of the clavichord paradox on different instruments could highlight the
influences of the mechanical constraints on the playing.
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Contributions

This work gave rise to a preprint of a journal paper, proceedings and presentations.
The mentioned publications are showed in part VII.

Journal papers
Most of the work presented in chapter 2, 3 and 4 in this manuscript was submitted
to publication in February 2021 in the Journal of the Acoustical Society of America.

Proceedings in national and international conferences
The conducted studies on clavichord sympathetic strings were presented at the Con-
grès Français d’Acoustique CFA in 2018 [121] and at the International Modal Anal-
ysis Conference (IMAC) conference in 2019 [122]. The work in chapter 5 was pre-
sented at the International Symposium on Music Acoustics (ISMA) conference in
2019 [123].

Presentations
Presentations of parts of this work were given by means of posters at the Journée
Jeunes Chercheurs en vibration, Acoustique et Bruit (JJCAB) in 2017 and at the
Journées Jeunes Chercheurs en Acoustique, Audition et Signal (JJCAAS) in 2019.
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A Overall characteristics of the LAM1 clavichord

Figure 8.1: Dimensions of the LAM1 clavichord components of the case part made by
Dancet and Ducornet (copyright E. Dancet and M. Ducornet, The Paris Workshop).
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Figure 8.2: Dimensions of the LAM1 clavichord components of the action part
made by Dancet and Ducornet (copyright E. Dancet and M. Ducornet, The Paris
Workshop).
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Figure 8.3: Building of the LAM1 clavichord box.

Figure 8.4: Gluing of the soundboard with the bridge of the LAM1 clavichord
designed by Dancet and Ducornet during its construction.
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Figure 8.5: Box of the LAM1 clavichord designed by Dancet and Ducornet during
its construction.
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B Stringing of the LAM1 clavichord

B.1 Played part of the strings

Number Note Frequency (Hz) Total length (cm) Played length (cm) Diameter (mm)

1 C1 61,69 110.5 108.7 0.64
2 C1 61,69 111.0 109.2 0.64
3 C#1 65,36 109.8 108.0 0.64
4 C#1 65,36 109.8 108.0 0.64
5 D1 69,25 108.9 106.5 0.56
6 D1 69,25 109.9 106.5 0.56
7 D#1 73,36 109.5 105.0 0.56
8 D#1 73,36 110.0 105.0 0.56
9 E1 77,72 109.2 103.8 0.51
10 E1 77,72 110.0 103.7 0.51
11 F1 82,35 108.8 102.2 0.51
12 F1 82,35 109.7 102.3 0.51
13 F#1 87,24 108.7 100.4 0.51
14 F#1 87,24 109.6 100.2 0.51
15 G1 92,43 108.6 99.0 0.46
16 G1 92,43 109.9 98.8 0.46
17 G#1 97,93 108.7 97.2 0.46
18 G#1 97,93 109.1 97.0 0.46
19 A1 103.8 107.8 95.6 0.46
20 A1 103.8 108.2 95.2 0.46
21 A#1 109,9 106.7 93.4 0.41
22 A#1 109,9 107.5 93.1 0.41
23 B1 116,5 106.3 91.1 0.41
24 B1 116,5 106.5 91.0 0.41
25 C2 123,4 105.7 89.1 0.41
26 C2 123,4 105.6 88.6 0.41
27 C#2 130,7 104.6 86.5 0.41
28 C#2 130,7 104.5 85.9 0.41
29 D2 138,5 102.4 83.5 0.36
30 D2 138,5 102.9 82.7 0.36
31 D#2 146,7 99.4 80.6 0.36
32 D#2 146,7 99.8 79.6 0.36
33 E2 155,4 95.4 77.3 0.36

Continued on next page
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Number Note Frequency (Hz) Total length (cm) Played length (cm) Diameter (mm)

34 E2 155,4 95.6 76.3 0.36
35 F2 - F#2 164,7 - 174,5 90.7 74.0 - 70.2 0.36
36 F2 - F#2 164,7 - 174,5 90.7 72.8 - 68.9 0.36
37 G2 - G#2 184,9 - 195,9 85.5 67.0 - 63.5 0.36
38 G2 - G#2 184,9 - 195,9 85.2 65.6 - 62.3 0.36
39 A2 207,5 80.4 60.1 0.36
40 A2 207,5 80.5 59.0 0.36
41 A#2 - B2 219,8 - 232,9 76.0 56.7 - 53.9 0.36
42 A#2 - B2 219,8 - 232,9 76.1 55.5 - 52.7 0.36
43 C3 - C#3 246,8 - 261,4 71.4 50.7 - 48.0 0.33
44 C3 - C#3 246,8 - 261,4 70.7 49.5 - 46.9 0.33
45 D3 277,0 66.3 44.7 0.33
46 D3 277,0 66.3 43.5 0.33
47 D#3 - E3 293,4 - 310,9 61.2 41.6 - 39.4 0.33
48 D#3 - E3 293,4 - 310,9 61.0 40.8 - 38.6 0.33
49 F3 - F#3 329,4 - 349,0 57.2 37.1 - 35.2 0.33
50 F3 - F#3 329,4 - 349,0 57.6 36.5 - 34.6 0.33
51 G3 - G#3 369,7 - 391,7 53.5 33.6 - 31.8 0.33
52 G3 - G#3 369,7 - 391,7 54.2 32.9 - 31.1 0.33
53 A3 415,0 50.6 29.7 0.33
54 A3 415,0 51.1 29.3 0.33
55 A#3 - B3 439,7 - 465,8 47.2 28.0 - 26.4 0.33
56 A#3 - B3 439,7 - 465,8 47.6 27.7 - 26.1 0.33
57 C4 - C#4 493.5 - 522,9 43.5 25 - 23.9 0.30
58 C4 - C#4 493.5 - 522,9 44.7 24.7 - 23.6 0.30
59 D4 554,0 41.1 22.4 0.30
60 D4 554,0 42.8 22.2 0.30
61 D#4 - E4 586,7 - 621,8 38.2 21.3 - 20 0.30
62 D#4 - E4 586,7 - 621,8 39.1 20.9 - 19.7 0.30
63 F4 - F#4 658,8 - 697,9 35.4 19 - 18 0.30
64 F4 - F#4 658,8 - 697,9 36.3 18.9 - 17.9 0.30
65 G4 - G#4 739,4 - 783,4 33.0 16.7 - 15.9 0.30
66 G4 - G#4 739,4 - 783,4 33.5 16.6 - 15.8 0.30
67 A4 830 30.2 14.7 0.28
68 A4 830 30.7 14.6 0.28
69 A#4 - B4 879,4 - 931,6 27.3 13.6 - 12.4 0.28

Continued on next page
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Number Note Frequency (Hz) Total length (cm) Played length (cm) Diameter (mm)

70 A#4 - B4 879,4 - 931,6 29.0 13.6 - 12.4 0.28
71 C5 - C#5 987,0 - 1046 24.6 11.9 - 11.9 0.28
72 C5 - C#5 987,0 - 1046 25.5 11.8 - 11.0 0.28
73 D5 1108 22.9 10.3 0.28
74 D5 1108 23.4 10.3 0.28
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B.2 Sympathetic part of the strings

Number Note Frequency (Hz) Length (cm) Diameter (mm)

1 C1 938.4 6,8 0.64
2 C1 1068 7,5 0.64
3 C#1 1080 8,3 0.64
4 C#1 893,0 8,9 0.64
5 D1 1023 6,8 0.56
6 D1 1147 7,6 0.56
7 D#1 876,3 8,4 0.56
8 D#1 958,8 9,1 0.56
9 E1 1077 6,9 0.51
10 E1 1214 7,7 0.51
11 F1 925,4 8,6 0.51
12 F1 1018 9,5 0.51
13 F#1 1119 7,3 0.51
14 F#1 1258 8,2 0.51
15 G1 932,4 9,1 0.46
16 G1 1056 10 0.46
17 G#1 1102 7,9 0.46
18 G#1 1222 8,9 0.46
19 A1 935,2 9,7 0.46
20 A1 1048 8,8 0.46
21 A#1 1046 11 0.41
22 A#1 1179 10,4 0.41
23 B1 880,4 10,7 0.41
24 B1 977,8 10 0.41
25 C2 952.2 12,2 0.41
26 C2 1070 11,7 0.41
27 C#2 788,0 13 0.41
28 C#2 875,2 14,4 0.41
29 D2 802 13 0.36
30 D2 901,3 14,5 0.36
31 D#2 756,9 16,1 0.36
32 D#2 744,2 17,9 0.36
33 E2 655,1 16,8 0.36
34 E2 728,2 18,3 0.36

Continued on next page
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Number Note Frequency (Hz) Length (cm) Diameter (mm)

35 F2 - F#2 542,4 20,2 0.36
36 F2 - F#2 595,3 22,2 0.36
37 G2 - G#2 520,8 21,3 0.36
38 G2 - G#2 584,5 23,3 0.36
39 A2 458,3 25,3 0.36
40 A2 500,4 27,2 0.36
41 A#2 - B2 461,5 24,4 0.36
42 A#2 - B2 518,8 26,9 0.36
43 C3 - C#3 389,2 29,4 0.33
44 C3 - C#3 429,8 31,6 0.33
45 D3 414,7 26,6 0.33
46 D3 470,6 29,2 0.33
47 D#3 - E3 529,4 31,7 0.33
48 D#3 - E3 588,4 33,7 0.33
49 F3 - F#3 402,4 28,3 0.33
50 F3 - F#3 347,0 30,1 0.33
51 G3 - G#3 360,4 32,1 0.33
52 G3 - G#3 384,5 33,8 0.33
53 A3 405,3 28,2 0.33
54 A3 437,0 29,8 0.33
55 A#3 - B3 367,7 31,3 0.33
56 A#3 - B3 392,2 32,9 0.33
57 C4 - C#4 434,1 27 0.30
58 C4 - C#4 460,8 28,4 0.30
59 D4 396 29,9 0.30
60 D4 418 31,2 0.30
61 D#4 - E4 458,0 25,6 0.30
62 D#4 - E4 484,2 26.7 0.30
63 F4 - F#4 420,4 28,1 0.30
64 F4 - F#4 441,7 29,4 0.30
65 G4 - G#4 495,7 23,5 0.30
66 G4 - G#4 525,7 24,8 0.30
67 A4 443,8 26,1 0.28
68 A4 468,8 27,3 0.28
69 A#4 - B4 530,2 21,7 0.28
70 A#4 - B4 560,4 22,7 0.28

Continued on next page
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Number Note Frequency (Hz) Length (cm) Diameter (mm)

71 C5 - C#5 477,4 23,6 0.28
72 C5 - C#5 461,1 24,7 0.28
73 C5 571,1 19,3 0.28
74 C5 603,9 20,2 0.28
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C Modal analysis of the bridge
In the prospect of modeling the 74 strings of the LAM1 clavichord, a modal analysis
of the bridge with a complete discretization of this structure is necessary. Given
the proximity of the strings in the case of the clavichord, one point of discretization
for each pair of strings is decided, which amounts to 37 points (see figure 8.6).
First, a driven point must be chosen to proceed to the modal analysis of the bridge.
Because of the geometry of the bridge, it is difficult to get a proper impulse signal
by the impact hammer. Once a proper layout of the hammer is found, it should not
be moved anymore to secure the good quality of the impulse. Thus, the hammer
remains at the considered driven point during the experiment. All the strings are
damped by means of felts. The 14th point is considered as the driven point, because
this place is one of the most adequate to give to the bridge an impact at the vertical
axis.

Figure 8.6: Experimental setup for the modal analysis of the bridge, with the des-
ignation measurement point number, with the z axis.

Then, the sensor measuring the response of the bridge is moved to each dis-
cretized point, so that the expected 37 FRF’s needed for the bridge modal analysis
are measured. The decided sensor is a vibrometer (Polytech PDV 100), which mea-
sures the vibratory velocity response of the structure. Its low-pass analogical filter
is placed at 22 kHz so that it doesn’t affect the measurements. Also, the delay of the
measured signal inherent to the vibrometer laser functioning is taken into account.
The clavichord is placed in a muted chamber for this experiment.

Since the vibrometer measures the velocity response of the bridge, the obtained
FRF’s are mobilities. In figures 8.7 (a), (b) and (c), the spectral amplitude, con-
ductance, and susceptance of the mobility respectively of each measured point are
shown. The spectral amplitudes give an idea of the operational deformation of the
structure. As it is explained in section 7.2, the conductance (the real part of the
mobility) indicates how the coupling mobility can influence the damping of the cou-
pled string at a specific coupling point. Also, the susceptance (the imaginary part
of the mobility) encapsulates the information regarding the bridge mode shapes.
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Figure 8.7: Spectral amplitude (a), conductance (b), and susceptance (c) of the 37
measurement points’ FRF of the bridge.

Then, with these measurements, the bridge modal analysis is performed. A
frequency range going from 40 to 800 Hz is done. A number of 12 modes are
extracted. The poles are computed by means of the LSRF (Least Square Rational
Functions) method [92]. As to normalisation, the modal masses are normalised as
such : mn = 1. Then, by means of the residues, the according real mode shapes are
deduced with respect to this normalisation (see annex D). In figure 8.8, the measured
FRF, that of the 14th measurement (driving point) and the 26th measurement point,
and the corresponding ones reconstructed by means of modal analysis are shown,
assuring the good quality of the extracted modal parameters. The according bridge
mode shapes of some of the extracted modes are shown in figures 8.9 and 8.10.
Ideally, these modal parameters could be used to model the coupling of the 37 pairs
of strings.
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Figure 8.8: Measured FRF and reconstructed FRF by means of modal analysis of
the 14th point (driven point) and the 26th point.
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Figure 8.9: Mode shapes extracted from the 37 measurement points’ FRF of the
bridge, from the 1th mode to the 6th mode.
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mode 9 : f = 591 Hz, damping = 2.3 %

0 10 20 30 40

z axis [m]

-2

-1

0

1

m
o
d
e 

sh
ap

e 
[a

.u
.]

mode 10 : f = 635 Hz, damping = 1.4 %
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mode 11 : f = 688 Hz, damping = 1.9 %
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Figure 8.10: Mode shapes along the z axis extracted from the 37 measurement
points’ FRF of the bridge, from the 7th mode to the 12th mode.
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D Modal analysis theory

D.1 Complex and real formulation of the frequency response
function

Assuming the linearity of the vibratory system, the FRF (Frequency Response Func-
tion) Hk(ω) of the kth measurement point can be written thus [124] :

Hk(ω) =
N∑

n=1

Ank
jω − λn

+
N∑

n=1

Ank

jω − λn
(8.1)

where λn represent the pole of the vibratory system of the nth mode :

λn = −ωnζn + jωn
√

1− ζ2
n (8.2)

where ωn and ζn are the modal pulsation and the modal damping respectively.
The Ank refers to the system complex residues of the kth measurement point :

Ank =
ΨnkΨ

T
nj

2jωnmc
n

(8.3)

where j represents the driven point, Ψnk and mc
n are the complex mode shapes

and the modal masses of the vibratory system, Ank and λn are the complex conjugate
of the residues and that of the poles respectively. By applying the inverse Fourier
transform to equation 8.1, one obtains the expression of the impulse response hk(t) :

hk(t) =
N∑

n=1

Anke
λnt +

N∑

n=1

Anke
λnt (8.4)

Considering that the mode shapes are real, with Φn being the real mode shapes,
then the real formulation of the FRF Hk(ω) and that of the impulse response hk(t)
can be obtained [125] :

Hk(ω) =
N∑

n=1

Bnk

ω2
n − ω2 + 2jωωnζn

(8.5)

hk(t) =
N∑

n=1

Bnk
e−ωnζnt

ωn
√

1− ζ2
n

sin(ωn
√

1− ζ2
nt) (8.6)

That leads to defining the real residues Bnk expressed thus :

Bnk =
ΦnkΦnj

mr
n

(8.7)

with mr
n the real modal masses.
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D.2 Determination of the modal frequencies and modal damp-
ings

When physical poles of the transfer function are determined, then the associated
modal frequencies and modal dampings can be extracted :

fn =
1

|λn|
(8.8)

ζn =
−<(λn)

ωn
(8.9)

D.3 Determination of the residues and the mode shapes

Determination of the real residues by means of the frequency method

The objective is to extract the studied vibratory system real residues. It is possible
to rewrite equation 8.5 in a matrix form :




H(ω1)
H(ω2)

...
H(ωF )


 =







1
ω2
1−ω2

1+2jω1ω1ζ1
1

ω2
1−ω2

2+2jω2ω1ζ1
...
1

ω2
1−ω2

F+2jωFω1ζ1







1
ω2
2−ω2

1+2jω1ω2ζ2
1

ω2
2−ω2

2+2jω2ω2ζ2
...
1

ω2
2−ω2

F+2jωFω2ζ2



. . .




1
ω2
N−ω

2
1+2jω1ωN ζN

1
ω2
N−ω

2
2+2jω2ωN ζN

...
1

ω2
N−ω

2
F+2jωFωN ζN










B1

B2
...

BN




(8.10)

by inverting equation 8.10, ones obtains :




B1

B2
...

BN


 =







1
ω2
1−ω2

1+2jω1ω1ζ1
1

ω2
1−ω2

2+2jω2ω1ζ1
...
1

ω2
1−ω2

F+2jωFω1ζ1







1
ω2
2−ω2

1+2jω1ω2ζ2
1

ω2
2−ω2

2+2jω2ω2ζ2
...
1

ω2
2−ω2

F+2jωFω2ζ2



. . .




1
ω2
N−ω

2
1+2jω1ωN ζN

1
ω2
N−ω

2
2+2jω2ωN ζN

...
1

ω2
N−ω

2
F+2jωFωN ζN







+


H(ω1)
H(ω2)

...
H(ωF )




(8.11)

where [M]+ refers to the Moore-Penrose generalised inverse of matrix M :

[M]+ = ([M]H [M])−1[M]H (8.12)

where [[M]H is the Hermitian transpose of the complex matrix [M]
In equation 8.11, the FRF’s H must correspond to receptances to obtain the

right residues. In the case of admittances, the terms of the inverse matrix of equa-
tion 8.11 must be jω

ω2−ω2
n+2jωωnζ1

. In the case of accelerances, these terms must be
− ω2

ω2−ω2
n+2jωωnζ1

.
Also, the residues given by equation 8.11 can be forced to be real by using the

non negative least-squares curve fitting solver described in [93]. It consists in finding
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the residues Bn, assuming that Bn ≥ 0, by minimizing a norm. Let T be the matrix
present in equation 8.10 and let :

H =




H(ω1)
H(ω2)

...
H(ωF )


 , B =

(
B1,B2, . . . ,BN

)
(8.13)

with n = 1, ..., N . Then to determine the positive residues, the following norm
must be minimized :

min
B
‖TB−H‖2

2 (8.14)

Then, this problem is solved by using an appropriate solver, like the Matlab
function lsqnonneg [93].

Determination of the real residues by means of the temporal method

Also, the same reasoning can be done when it comes to the vibratory system impulse
response by rewriting equation 8.6 in the following matrix form :




h(t1)
h(t2)
...

h(tT )


 =







e−ω1ζ1t1

ω1

√
1−ζ21

sin(ω1

√
1− ζ2

1 t1)

e−ω1ζ1t2

ω1

√
1−ζ21

sin(ω1

√
1− ζ2

1 t2)

...
e−ω1ζ1tT

ω1

√
1−ζ21

sin(ω1

√
1− ζ2

1 tT )







e−ω2ζ2t1

ω2

√
1−ζ22

sin(ω2

√
1− ζ2

2 t1)

e−ω2ζ2t2

ω2

√
1−ζ22

sin(ω2

√
1− ζ2

2 t2)

...
e−ω2ζ2tT

ω2

√
1−ζ22

sin(ω2

√
1− ζ2

2 tT )




. . .




e−ωNζnt1

ωN
√

1−ζ2N
sin(ωN

√
1− ζ2

N t1)

e−ωNζnt2

ωN
√

1−ζ2N
sin(ωN

√
1− ζ2

N t2)

...
e−ωNζntT

ωN
√

1−ζ2N
sin(ωN

√
1− ζ2

N tT )










B1

B2
...

BN




(8.15)

By inverting equation 8.15, one obtains :
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


B1

B2
...

BN


 =







e−ω1ζ1t1

ω1

√
1−ζ21

sin(ω1

√
1− ζ2

1 t1)

e−ω1ζ1t2

ω1

√
1−ζ21

sin(ω1

√
1− ζ2

1 t2)

...
e−ω1ζ1tT

ω1

√
1−ζ21

sin(ω1

√
1− ζ2

1 tT )







e−ω2ζ2t1

ω2

√
1−ζ22

sin(ω2

√
1− ζ2

2 t1)

e−ω2ζ2t2

ω2

√
1−ζ22

sin(ω2

√
1− ζ2

2 t2)

...
e−ω2ζ2tT

ω2

√
1−ζ22

sin(ω2

√
1− ζ2

2 tT )




. . .




e−ωNζnt1

ωN
√

1−ζ2N
sin(ωN

√
1− ζ2

N t1)

e−ωNζnt2

ωN
√

1−ζ2N
sin(ωN

√
1− ζ2

N t2)

...
e−ωNζntT

ωN
√

1−ζ2N
sin(ωN

√
1− ζ2

N tT )







+




h(t1)
h(t2)
...

h(tT )




(8.16)

In equation D.3, the impulse responses h(t) must correspond to a displacement to
obtain the right residues. In the case of velocities, the terms e−ωnζnt

ωn
√

1−ζ2n
sin(ωn

√
1− ζ2

nt)

of the inverse matrix of equation must be derived one time with respect to time.
In the case of acceleration, these terms must be derived two times with respect to
time.

Determination of the complex and real mode shapes

To obtain the complex residues, the matrix form of the residues given by equation
8.1 is taken. So following the frequency method of extraction :




H(ω1)
H(ω2)

...
H(ωF )


 =







1
jω1−λ1 + 1

jω1−λ1
1

jω2−λ1 + 1
jω2−λ1

...
1

jωF−λ1
+ 1

jωF−λ1







1
jω1−λ2 + 1

jω1−λ2
1

jω2−λ2 + 1
jω2−λ2

...
1

jωF−λ2
+ 1

jωF−λ2




. . .




1
jω1−λN

+ 1
jω1−λN

1
jω2−λN

+ 1
jω2−λN

...
1

jωF−λN
+ 1

jωF−λN










A1

A2
...

AN




(8.17)

By inverting equation 8.17, one obtains :




A1

A2
...

AN


 =







1
jω1−λ1 + 1

jω1−λ1
1

jω2−λ1 + 1
jω2−λ1

...
1

jωF−λ1
+ 1

jωF−λ1







1
jω1−λ2 + 1

jω1−λ2
1

jω2−λ2 + 1
jω2−λ2

...
1

jωF−λ2
+ 1

jωF−λ2




. . .




1
jω1−λN

+ 1
jω1−λN

1
jω2−λN

+ 1
jω2−λN

...
1

jωF−λN
+ 1

jωF−λN







+




H(ω1)
H(ω2)

...
H(ωF )




(8.18)

It is possible to extract the complex mode shapes by means of the complex
residues. Considering a vibratory system with N modes and with c degrees of
freedom, and j representing the driven point, then :
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An =




An1

An2
...
Anj
...

ANc




(8.19)

Then, the complex mode shapes Ψnk are given by :

Ψnk =
Ank√
Anj

(8.20)

To determine the complex modal masses, equations 8.3 and 8.20 are used :

Ank =
ΨnkΨnj

2jωnmc
n

=
1

2jωnmc
n

Ank√
Anj

Anj√
Anj

=
Ank

2jωnmc
n

(8.21)

That implies :

mc
n =

1

2jωn
(8.22)

Then, one can obtain the real mode shapes by means of the complex mode
shapes. To proceed, it must be assumed that the damping matrix is proportional
to the mass matrix and to the stiffness matrix [119]. As such, the complex mode
shapes are related with the real mode shapes in the following way :

Φnk = <(Ψnk

√
2jωn) (8.23)

if the damping is not proportional, equation 8.23 is still valid in as much as the
modal frequencies are well separated, that is when the distance in terms of frequency
between the modes is greater than three times the -3 dB band width [119].

Let us normalise the real mode shapes mr
n = 1. Using equation 8.7:

Bnk =
ΦnkΦnj

mr
n

= ΦnkΦnj (8.24)

That implies :

Φnk =
Bnk√
Bnj

(8.25)

which can be verified by combining equations 8.24 and 8.25 :

Bnk =
ΦnkΦnj

mr
n

=
Bnk√
Bnj

Bnj√
Bnj

1

mr
n

=
Bnk

mr
n

(8.26)

which is consistent with the chosen normalisation, namely that mr
n = 1
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E Stability condition of the explicit scheme
The stability condition of the explicit numerical scheme used in equation 3.5 can
be derived. To do it, the method presented by Bilbao is used [94]. Let us consider
the differential equation 2.36 of the conservative system without its second member.
Then, this equation is discretized with a ∆t time step :

Qn+1 − 2Qn + Qn−1

∆t
= −WM−1KQn ⇔ Qn+1 = (2I−∆t2WM−1K)Qn −Qn−1

(8.27)

Afterwards, an Ansatz in the following form Qn = φzn is done to obtain an
eigen value equation.

∆tWM−1Kφ = −(z − 2 + z−1)φ (8.28)

It is wished that the roots of this equation be complex conjugate. To respect it,
it is shown in [94] that the following condition ought to be respected :

∆t ≤ 2

max(eig(WM−1K))
(8.29)

This equation expresses the stability condition of the implemented numerical
scheme in equation 3.5.
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F Measurement of the key motion

To proceed to the accounted vibratory measurements, the same key trajectory needs
to be repeated when it comes to setting into vibration the considered excited string.
This repetition is needed to produce the same vibratory input having a fixed vi-
bratory amplitude and the same pitch. In such a way, the different vibratory mea-
surements can be easily comparable. To do it, a device satisfying the excitation
repeatability hypothesis is necessary. The DROPIC robotic finger, whose trajectory
in terms of displacement and velocity in a 2 dimensional space can be programmed,
is used for this purpose [120, 126, 99]. This robotic finger motion is programmed
by controlling its articular positions. Its feedback loop leads to a low level control
of the current sent to the motors. In figure 8.11, the block diagram of the system
is presented including a PID controller (proportional–integral–derivative controller)
for the position loop and a PI controller (proportional-integral) for the current loop.
This robot is made of 2 arms connected by two pivots (see figure 8.12). The robotic
finger has two degrees of freedom. It can reproduce any trajectory in a plane parallel
to the axis of the key. Note that the key itself has only one degree of freedom. The
length of the robot arms is 45 mm. The area of use is 20×20 mm2 and the maximum
force that can be exerted by the finger is 20 N [120]. The trajectory of the robotic
finger is programmed by an external controller. This trajectory is coded in a .txt file
(see figure 8.11) by giving the desired x and z position in specific times, respecting
the velocity limit (1.21 m.s−1) and the area of use. Then, this file is interpreted by
the system in terms of angular positions for each arm.

Figure 8.11: Block diagram of the robotic finger system (extracted from [120])
(above), Trajectory given to the controller in a .txt file (below)
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To verify the trajectory repetition, it is possible to measure the key displacement
as well as the tangent uplift. It is measured by means of a Keyence laser profilometer,
functioning by laser triangulation (see figure 8.12). This specific measurement is
done on the F3 key of the LAM1 clavichord. This key displacement measurement
is repeated ten times. One kind of a typical finger trajectory is that of a vertical
downward motion. Then, the robotic finger trajectory is programmed in view of
producing this vertical downward motion with a velocity equivalent to that of a
musician’s finger.

In figures 8.13 (a) and (b), the F3 key depth and the tangent uplift with re-
spect to time produced by the robotic finger trajectory are shown. It is possible to
differentiate different phases in these key displacement measurements. First, when
the key is pressed, the key goes downward until it reaches -6.5 mm at time 0.5 s.
Then, it goes back up to -5.5 mm at time 0.55 s. Finally, the key depth remains
constant. As a result, the key displacement profile created by the robotic finger
trajectory is characterised by a notch followed by a plateau. The notch is caused
by the reaction of the string on the tangent, the two substructures behaving like a
damped spring-mass once in contact [3]. The tangent displacement in figure 8.13
describe the same shape as that of the key with a homothetic ratio, given that the
key is a rigid solid lever. Also, superimposing the ten measurements, the similarity
of these ten measurements can be noticed. As a result, the excitation repeatability
hypothesis is verified by using the robotic finger. Furthermore, the programmed
trajectory yields a reasonable key depth, which can be used for other experiments.

Figure 8.12: Lay out of the Keyence laser profilometer measuring the tangent dis-
placement whose corresponding key is struck by the DROPIC robotic finger (left),
Sketch of the robotic finger (extracted from [99]) (right)
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Figure 8.13: Ten measurements of the downward key displacement measured at the
extremity of the robotic finger (a) and that of the tangent uplift (b), obtained using
the same programmed trajectory.
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G Energy and power balance
This annex focuses on an energy analysis of a vibratory system used to verify the
precision of its simulation in section 3.3.1. First, the case of a damped spring-mass
oscillator is taken to introduce this energetic approach in section G.1. Then, this
approach is extended to a vibratory system described by its modal representation
in section G.2.

G.1 The damped spring-mass oscillator case

For a damped spring-mass oscillator with one degree of freedom, subjected to a force
F (t), the vibratory displacement y(t) is found by the following equation of motion :

mÿ(t) + cẏ(t) + ky(t) = F (t) (8.30)

where the equation coefficients can be written in terms of the eigen pulsation ω0

and the eigen damping ζ0 of the oscillator, with the damping coefficient c = 2mω0ζ0

and the stiffness coefficient k = mω2
0. To compute the energy associated to the

oscillator motion, the two sides of the equation 8.30 are multiplied by ẏ(t) :

mÿ(t)ẏ(t) + ky(t)ẏ(t) = F (t)ẏ(t)− c [ẏ(t)]2 (8.31)

All the terms of equation 8.31 represent a power. Note that :

ÿ(t)ẏ(t) =
d

dt

(
1

2
[ẏ(t)]2

)
; ẏ(t)y(t) =

d

dt

(
1

2
[y(t)]2

)
(8.32)

The left side of equation 8.31 represents the temporal derivative of the oscillator
mechanical energy Em(t) = Ec(t) + Ep(t), composed of the kinetic energy Ec(t) =
1
2
m [y(t)]2 and the potential energy Ep(t) = 1

2
k [y(t)]2. At the right side, the power

provided by the excitation force Ėe(t) = F (t)ẏ(t) and that provided by the oscillator
damping Ėd(t) = c [ẏ(t)]2 are found :

d

dt
(Ec(t) + Ep(t)) = Ėe(t)− Ėd(t) (8.33)

Equation 8.33 represents the oscillator power balance. Note that, without the
excitation force and the damping, the oscillator mechanical energy is conserved :

d

dt
(Em(t)) = 0⇒ Em(t) = Ec(t) + Ep(t) = Constant = Em(0) (8.34)

By the way, without the excitation force, the decrease of the mechanical energy
takes place over time because of damping :

d

dt
(Em(t)) = −c [ẏ(t)]2 (8.35)
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It is possible to obtain the oscillator energy balance by integrating its power
balance with respect to time. Integrating with respect to time the two sides of
equation 8.33, it yields :

Ec(t) + Ep(t) =

t∫

0

Ėedτ −
t∫

0

Ėddτ (8.36)

To summarise, in the case of damped spring-mass oscillator, two options can be
considered : either computing the different terms of the power balance or computing
that of the energy balance.
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G.2 Vibratory system described by its modal representation

In the case of a vibratory system represented by N modes, there are N modal
equations associated to this system, each subjected to a modal force Fn(t) with
n = 1, 2, . . . , N . The modal amplitudes qn(t) are computed thus :

mnq̈n(t) + cnq̇n(t) + knqn(t) = Fn(t), n = 1, 2, . . . , N (8.37)

where these equations’ coefficients can be written in terms of the modal pul-
sations ωn and the modal dampings ζn, with cn = 2mnωnζn and kn = mnω

2
n. In

equations 8.37, the modal forces are given by the projection of the physical forces
on the system modal basis. Assuming that the excitation is exerted on the system
point located at xe, then the modal forces are given in the following way :

Fn(t) = F (t)φn(xe), n = 1, 2, . . . , N (8.38)

By the way, the system physical displacement at any location xr is given by the
recombination of the modal responses :

y(xr, t) =
N∑

n=1

φn(xr)qn(t) (8.39)

Regarding this system, the energy balance is done for each individual mode, by
computing either the power terms or the energy terms.

Power balance

At each time step ti, the formulation is applied for each mode n = 1, 2, . . . , N :

Ėcn(ti) + Ėpn(ti) = Ėen(ti)− Ėdn(ti) (8.40)

with :

Ėcn(ti) = mnq̈n(ti)q̇n(ti)

Ėpn(ti) = knq̇n(ti)qn(ti)

Ėen(ti) = Fn(ti)q̇n(ti)

Ėdn(ti) = cn [q̇n]2

(8.41)

If the power balance is correct for all modes, then it is also correct for the whole
system :

N∑

n=1

Ėcn(ti) +
N∑

n=1

Ėpn(ti) =
N∑

n=1

Ėen(ti)−
N∑

n=1

Ėdn(ti) (8.42)
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Energy balance

At each time step ti, the formulation is applied for each mode n = 1, 2, . . . , N :

Ecn(t) + Epn(t) = Een(t)− Edn(t) (8.43)

with :

Ecn(ti) =
1

2
mn [q̇n(ti)]

2

Epn(ti) =
1

2
kn [qn(ti)]

2

Een(ti) ≈ Een(ti−1) + Fn(ti)q̇n(ti)∆t

Edn(ti) ≈ Edn(ti−1) + cn [q̇n(ti)]
2 ∆t

(8.44)

Also, the modal energy balance guaranties the system global energy balance :

N∑

n=1

Ecn(ti) +
N∑

n=1

Epn(ti) =
N∑

n=1

Een(ti)−
N∑

n=1

Edn(ti) (8.45)

Nonlinear terms of the string

The string nonlinear terms are all conservatives, because it has to do with additional
stiffness terms. Then the modal nonlinear terms are added to the mode potential
energy. The generalised modal equations become :

mnq̈n(t) + cnq̇n(t) + knqn(t) = Fn(t)− FNL
n (t), n = 1, 2, . . . , N (8.46)

where FNL
n (t) represents the sum of all geometrical nonlinear terms of the nth

modal equation. Then, for each mode n = 1, 2, . . . , N , the modal potential powers
become :

Ėpn(ti) = ĖL
pn(ti) + ĖNL

pn (ti) with





ĖL
pn(ti) = knqn(ti)q̇n(ti)

ĖNL
pn (ti) = FNL

n (ti)q̇n(ti)

(8.47)

and the corresponding modal potential energies can be computed :

Epn(ti) = EL
pn(ti) + ENL

pn (ti) with





EL
pn(ti) = 1

2
kn [qn(ti)]

2

ENL
pn (ti) ≈ ENL

pn (ti−1) + FNL
n (ti)q̇n(ti)∆t

(8.48)
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H Key moment of inertia

Some interesting features of a clavichord key can be measured. These information
will be possibly used to enhance the modeling of the key. One of the features
describing the rotating motion of the key is the moment of inertia. The experimental
protocol to measure the key moment of inertia is similar to that elaborated by Lozada
[127] and Roy [120]. To proceed to this measurement, the A2 key, which is a typical
key of the LAM1 clavichord, is chosen. It is hung on a plastic wire tensed by two
gibbets (see figure 8.14). A small accelerometer (PCB 352C23 SN LW 245598) is
placed on the key, by means of which the rotating frequency of key can be measured
when the key is put into free oscillation. The experience is laid out in such a way
that the key rotating motion remains unperturbed as far as possible. The key is
hung on the plastic wire at the level of its rotating center O (see figure 8.15). As
a result, when the key is rotating with respect to the polarization measured by the
sensor, the key frequency of oscillation rotating with respect to point O is measured.

Figure 8.14: The LAM1 clavichord A2 key hung on a plastic wire tensed by two
gibbets.

Then, the moment of inertia IO with respect to point O is computed :

IO = mgl
T

2π
(8.49)

Where m is the key mass, g is the gravitational acceleration, l is the distance
between the center of mass G and the rotational center O, and T is the oscillation
period. To compute the moment of inertia IG with respect to the center of mass G,
the Huygen’s theorem is used :

IG = IO −ml2 (8.50)

Having the following values for the key :
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Figure 8.15: Outline of the LAM1 clavichord A2 key

Length of the key : L = 28, 9cm

Rotational center position : LO = 11, 7cm

Position of the tangent : LT = 25.4cm

Position of the center of mass : LG = 13.5cm

Mass of the key : Mt = 30g

Measuring the rotational frequency of the key, it comes down to these results :

IO = 7.1937.10−4kg.m2

IG = 7.0737.10−4kg.m2

These measured values are similar to those found in the case of keys of keyboard
instruments [127, 120].
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I Verification of the crossed admittances

Modal parameters of the bridge needed to be extracted out of vibratory measure-
ments. One of the assumption for this is that the considered vibratory system is
linear. This can be verified by describing some of the specific features of a linear
vibratory system. Also, vibratory measurements on the clavichord bridge are not
simple. Because of the proximity of the strings and the way they are laid out, the
bridge end up being a cluttered space upon which the sensors cannot be put easily.
When it comes to measuring the bridge vibrations in two polarizations, strings need
to be moved away from their respecting bridge hitch pins. So this verification is also
a way to validate the experimental protocol used to obtain good quality measured
vibratory signals on the bridge. First, a nomenclature is used to clarify the terms
referring to the measured FRF’s. In figure 8.16, the set of axis (x,y) is indicated to
point out the two polarizations. The term Yxy referring to a specific FRF is to be
read in such a way : the FRF is measured with a hammer impact oriented along
the x axis and with the sensor measuring the vibratory response in the y axis.

Figure 8.16: Simplified scheme of a LAM1 clavichord bridge with a set of axis.

Two different experimental approaches are tested to establish an experimental
protocol adapted to measure the mobility of the bridge in the two polarizations of
motion y and x, hence leading to the verification of the linearity of the system. The
measurements are done with small accelerometers (PCB 352C23 SN LW 245598
and 233544) and with a PCB 086E80 impact hammer. Because of their little size,
these accelerometers sensibility is smaller compared to larger sensors. All results are
obtained by calculating the mean value of a set of ten measurements.

Considering a linear system with two polarizations of motion, the mobility matrix
Y is written :

209



Y =

(
Yyy Yyx
Yxy Yxx

)
(8.51)

To obtain this matrix, four FRF’s need to be measured. In each measurement,
the impact axis and the response measurement axis are changed. There are two
criteria to comply with in order to end up with a linear system matrix Y :

• Yxx and Yyy must have the same poles, that is the same modal frequencies
and modal dampings. these former represent a global feature of the vibratory
system. No matter where the measurement in the bridge take place, the same
modes need to be present in the measurements. What depends on the location
on the system is the amplitude of vibration of these modes, which refers to
the mode shapes. Therefore, the modal frequencies and modal dampings need
to be the same between Yxx and Yyy.

• The curves representing Yyx and Yxy need to be superimposed by virtue of
the reciprocity principle coming from the linearity of the vibratory system.
Whether the impact is oriented with respect to one of the axis and the mea-
sured response with respect to the other one, as long as the two points of
considerations used either for the excitation or the measurement are the same,
the two FRF’s resulting from these measurement need to be the same.

Once these two criteria are verified, the reliability of the measurements in the
two polarizations will be validated and the linearity of the system will be confirmed.

210



I.1 First approach : two accelerometers laid out on the bridge

The second approach consists in laying out the two accelerometers directly on the
bridge. In any case, it is mandatory to move the strings away from their correspond-
ing pins with this approach (see figure 8.17). In such a situation, the y and x axis
vibratory responses are directly measured. Note that because of the geometry of
the bridge, the sensors are inclined by a small angle relative to the y and x axis.
Since the sensors cannot be placed in a plan orthogonal to the axis, at least some
differences between Yyx and Yxy are expected.

Figure 8.17: Layout of the accelerometers on the bridge measuring the vibratory
response with respect to the x and y axis respectively.

Figures 8.18 shows the results obtained with this approach. The good equivalence
between Yyx and Yxy can be noticed. Therefore, the reciprocity principle is checked
in the case of the LAM1 clavichord bridge. The modes of vibration between Yyy and
Yxx are globally the same. That being said, it might be that some of the modes have
been displaced between of the difference in impact intensity of the hammer in the
two different measurements. The verification of the reciprocity principle confirms the
good quality of the measurements and it supports the assumption that the system
is linear.
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Figure 8.18: Spectral amplitude, phase and coherency of Yyy and Yxx with the
approach where two accelerometers are laid out on the two sides of the bridge (left),
Spectral amplitude, phase and coherency of Yyx and Yxy with the approach where
two accelerometers are laid out on the bridge (right).
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I.2 Second approach : two accelerometers laid out on the two
sides of the bridge

It is assumed that the mobility of the bridge at its top is equivalent to the mean
value of the mobilities at its two sides1. In figure 8.19, the specific layout of the
accelerometers is shown. Under this assumption, the approach consists in obtaining
the vibratory response at the bridge top (which is separated by a distance H from
the soundboard, see figure 8.19) in the y and x axis. To do it, an impact is given
with respect to the y and x axis measuring the vibratory response in the y axis at the
sides of the bridge (separated by a distance D) by means of the two aforementioned
accelerometers. Considering ar(t) and al(t) the acceleration measured at the right
side and at the left side of the bridge respectively, the acceleration in the y axis ay(t)
and that in the x axis ax(t) are thus computed (see [82]) :

ay(t) =
1

2
(ar(t) + al(t)) (8.52)

ax(t) =
H

D
(ar(t)− al(t)) (8.53)

Figure 8.20 shows results obtained out of the measurements and equations 8.52
and 8.53. Note that the reciprocity principle is not obtained with this approach
because the computed Yyx and Yxy are not equivalent. The reason of this mismatch
can be accounted for by putting into question the assumption of this approach,
namely that the vibration at the top of the bridge cannot be obtained by means
of two accelerometers placed at its two sides measuring the y axis response. The
complexity of the vibratory behaviour of this structure is the cause of this non-
equivalence.

Figure 8.19: Layout of the accelerometers at the two sides of the bridge (left),
Simplified scheme of a LAM1 clavichord bridge with a set of axis, with the two
accelerometers laid out at its two sides (right).

1This approach was proposed by Jose Antunes by means of a personal communication
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Figure 8.20: Spectral amplitude, phase and coherency of Yyy and Yxx with the
approach where two accelerometers are laid out on the two sides of the bridge (left),
Spectral amplitude, phase and coherency of Yyx and Yxy with the approach where
two accelerometers are laid out on the two sides of the bridge (right).
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Non-linear modelling of the string-tangent dynamics
with application to time-domain synthesis of the
clavichord

Jean-Théo Jiolat,1 Christophe d’Alessandro,1 Jean-Loic Le Carrou,1 and José Antunes-Vieira2

1Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, Équipe Lutheries-Acoustique-
Musique, F-75005 Paris, France
2Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa,
Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal

String excitation by the tangent in the clavichord is a unique mechanism. The tangent,
keeping in contact with the string after the initial strike, controls continuously the string
tension. Four main flexible subsystems are considered in the clavichord: the tangent-key
subsystem, the strings subsystem, the bridge-soundboard subsystem, the string damper sub-
system. A modal description of the dynamics of these subsystems is proposed. Parameters
of the subsystems are estimated on a copy of a historical instruments by Hubert (1784).
The different subsystems and their coupling are modeled using a modal Udwadia-Kalaba
formulation. A non-linear Kirchhoff-Carrier model of the string is used for capturing the
string-tangent interaction dynamics. Realistic string, soundboard and tangent motions are
obtained using a time-domain synthesis scheme that computes the dynamics of the uncoupled
subsystems and the constraints resulting from coupling between them. Simulated motions of
the model in response to a driving force on the key are analysed. The results are consistent
with experimental measurements and published data on the dynamics of the clavichord. The
model is able to reproduce the main acoustic features of the instrument: force on the key
for intonation control, key velocity for dynamic nuances control, constant spectral slope for
varying dynamic nuance.
©2021 Acoustical Society of America. [http://dx.doi.org(DOI number)]

[XYZ] Pages: 1–13

I. INTRODUCTION

The clavichord is highly prized as a practice instru-
ment among keyboard players, because of its superior
ability to encourage a polished technique? . Its sound
itself is weak and sometime a little disappointing at the
first contact with the instrument. One explanation for
its special appreciation of the clavichord as a wonderful
coach of finger technique lies in the refined string con-
trol allowed by its simple and direct action. In the piano
or harpsichord keyboard families (including tangent pi-
anos, tangentenfluegel), the string/excitation mechanism
(hammer, plectra) interaction is relatively short com-
pared to tone duration. The interaction is interrupted
after the hammer strike or plectra pluck, the string being
allowed to vibrate freely, independently of the key mo-
tion until the finger is lowered and the string damped.
On the contrary in the clavichord, the string and tan-
gent stay in contact, i.e. are mechanically coupled as
long as the key remains depressed (see1 for a thorough
presentation of the instrument). This feature has im-
portant consequences on the sound and the dynamic of
the instrument2. The tangent-string contact during the
whole tone is responsible to the specific (and much ap-
preciated) expressive features of the clavichord, partic-
ularly expressive pitch control, a unique feature among
keyboard instruments. Variations of finger force exerted

on the key change the string tension, allowing for effects
like vibrato, melodic accents of fine tuning. The aim of
the present research is to develop a physical model of the
clavichord that is able to account for, and synthesize the
specific feature of the clavichord’s action.

Relatively few acoustic studies on the clavichord have
been published so far. The first ones34 mainly reports de-
scriptions of sound features (level, spectrum) due to the
tangent action compared to the piano and harpsichord
actions4. From the player point of view, a study on the
clavichord touch and action is developed in5. Hardness
of touch and pitch stability are related to string tension
and key balance parameters. Some aspects of the physics
of the instrument are investigated in6: soundboard and
cavity coupling, tangent velocity profile and string dis-
placement, sound decay rate, string pair coupling effects
(as predicted by7). A simple linear string model is used
for qualitative explanation of the tangent velocity pro-
file (modeled as an exponential decaying function), string
motion and sound decay rate. Based on these results a
comparison with the piano and harpsichord through a
simple synthesis model is derived in8.

Focusing on the string excitation mechanism, the dy-
namics of the clavichord is revisited in2. Oscillation of
the key/tangent and string system is modeled as mass-
spring-damper model. Using a quasi-static approxima-
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FIG. 1. (a) Description of a clavichord and (b) Sketch of the
clavichord’s mechanism in three positions of the touch: at
rest, the tangent flushing the string and after excitation

tion of the string motion under the tangent action and a
delay-line linear model of the string, results on the excita-
tion dynamics are derived and compared to experimen-
tal data. The main conclusions are: both the tangent
velocity and the tangent displacement appear important
for playing the clavichord; a linear relationship between
tangent velocity and the sound pressure level is shown;
String displacement (and then variation of string tension)
has a significant effect on fundamental frequency; The
spectral slope does not vary much with tangent velocity
or displacement. Measurement on 4 clavichords are in
good agreement with these finding9. In a subsequent
study on clavichord playing technique, musical conse-
quences of the needed joint tangent displacement/veloc-
ity controls for the clavichord playing technique are stud-
ied in terms of the so-called "clavichord’s paradox"10.

As for sound synthesis, two approaches for physical
modeling have been published so far. The first approach
is based on commuted wave-guide synthesis11. In this
signal processing based approach, string/tangent inter-
action is partly based on sampling of real sounds (for
a realistic knock sound) and partly on additional filters
accounting for the variable string tension during a tone.

Another approach for sound synthesis considers the
clavichord as a particular case of a piano. A com-
plete physical model of the piano12,13 allows for real-time
sound synthesis and refined variations of the physical pa-
rameters of the considered instrument model (e.g. ham-
mer felt density and thickness, soundboard dimensions
and wood etc.). The clavichord is considered in this
framework among many historical pianos, harpsichords,
or hybrid instruments models? . The model is simulated
using a finite element approach, with particular attention
on the constraining forces responsible for the coupling

between the string and the bridge. The specific features
of clavichord excitation are not published, but it seems
that a hard metallic hammer is simulated for the initial
tangent strike. An additional after-touch effect seems to
account for the maintained tangent/string contact.

Although experimental data on the dynamics of the
clavichord have been published, only simple linear phys-
ical models have been proposed so far. A new model
for sound synthesis of the clavichord, paying special at-
tention to non-linear tangent/string dynamics is devel-
oped in the present article. A time-domain synthesis
scheme using the Udwadia-Kalaba (U-K) formulation
that proved successful for modeling of other stringed
instruments14 seemed appropriate for this purpose. A
functional description of the clavichord in terms of vi-
brating subsystems results in a simplified one string
model. Parameters are identified using experimental
measurements on a copy of a historical instruments (Part
II). A model of tangent/string interaction based on the
Kirchhoff-Carrier string representation and the U-K for-
mulation for coupled dynamical system is developed for
the one-string clavichord model (Part III). The modal
equations of the U-K model can be solved by means
of a simple finite difference time discretization scheme.
Synthesis results are compared to the measured dynamic
behaviour of the real clavichord using experiments and
published data (Part IV).

II. VIBRATORY AND ACOUSTIC SUBSYSTEMS IN THE
CLAVICHORD

A. Principle of the clavichord and tangent action

A clavichord and its parts are described in Figure
1-(a), a recent (2007) instrument inspired by a histori-
cal clavichord by Hubert (1784). The main parts of the
instrument are indicated on the picture. At the center
of the instrument, the sound of the clavichord results
from string vibration. The strings, organized in pairs,
are stretched between the hitch-pins and tuning pins
and attached to the radiating soundboard through the
bridge and bridge pin. Strings are functionally divided
into three sections. The "damped section", between the
hitch-pin and the tangent. This section is partially cov-
ered by strips of cloth. Then, after the initial tangent
excitation, its vibration is rapidly damped. The "played
section" vibrates between the tangent and bridge, as long
as the tangent stays in contact with the string after the
initial tangent strike. When the key is released, the tan-
gent contact is lost and the string vibration is damped by
the cloth strips. The "resting section" between the bridge
and the tuning pin, is not directly excited by the tangent,
but as it is not damped in the clavichord (contrary to e.g.
the square piano), partial transmission of the played sec-
tion vibration results in sympathetic vibration15,16. The
strings are pressed vertically on the bridge and pressed
horizontally on the pins laid out along the bridge. This
contact leads to the soundboard/string coupling. The
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FIG. 2. Schema of the modeled G#3 string being excited by
the tangent.

soundboard vibrates under the action of the string, and
because of its large surface sound is radiated in the air.

A complete study of the instrument is out of the
scope of the present work: only the simplified model dis-
played in Figure 1-(b) will be studied in depth. This
simplified model is made of only one string (the chosen
string is the first string of the G3# choir) and the cor-
responding key, tangent and damper. In this model the
string is stretched between the hitch-pin and tuning pin
and in contact with the bridge at the bridge pin. The
soundboard and bridge are those of the whole instru-
ment, because it is important to consider this part in its
integrity even for modeling a unique string. Other as-
pects of the instrument, like the case and lid, are not
considered in the present study, because their vibratory
and acoustic functions are only of second order.

B. Vibratory and acoustic subsystems

For modelling purposes, the model can be consid-
ered as an assembling of four vibrating subsystems as
displayed in Figure 2. The initial force for playing the
instrument is provided by the player’s finger. The player
moves the tangent/key subsystem, the first subsystem,
providing the string excitation. The strings, second sub-
system, act as the vibratory engine of the instrument.
Attached to the left side of the strings are the cloth
dampers, a third attached subsystem. Attached to right
side of the strings, is the bridge/soundboard subsystem,
fourth subsystem.

The string is the central subsystem of the instrument.
Let Y S(x, t) (resp. Y D(rD, t), Y Ta(rT , t), Y B(rs, t))
be the string displacement (resp. damper/string con-
tact point displacement, string/tangent contact point
displacement, string/bridge contact point displacement)
at position x (resp. rD, rT , rs). The vibratory sub-
systems are coupled to the string at points rD, rT , rs
(damper, tangent and bridge).

The first subsystem, the tangent/key subsystem, can
be considered as a rigid rod which tilts with respect to
a pivot. When the tangent strikes the string, the elas-

tic string reacts and the whole system oscillates. The
tangent has a mass MTg = 5 g, the key has a mass
Mk = 30 g. The length of the key is LT = 28.9 cm. The
pivot of the key (balance point) is situated at a distance
Lp = 17.2 cm of the back of the key, the finger presses the
key at a distance Lf = 27.9 cm of the back of the key, and
the tangent is located at a distance Ltg = 3.5 cm of the
back of the key, see Figure 1-(b). Associated modal pa-
rameters for the tangent/key subsystem (kTa,mTa, cTa)
are used.

The string, second subsystem, is characterized by
its mass, elasticity and damping factors. Between the
hitch pin and excitation point, the cloth strips damper,
third subsystem, is represented by N (typically N=65)
parallel damped oscillators characterized by their spring,
mass and viscous damping coefficients (kD,mD, cD). The
bridge/soundboard subsystem, fourth subsystem, is char-
acterized by its coupling admittance YB .

In the remaining of this part, parameters of the sub-
systems in Figure 2 are estimated on a copy of a historical
instruments by Hubert (1784) displayed in Figure 1-(a).
Parameter for the G#3 string are identified (see table I).
These parameters will be used for numerical simulation
and evaluation. Three functional parts of the string can
be identified: between x = 0 m and x = 0.2 m, is the
damped part of the string, with a cloth damper coiled
up between x = 3.4 mm and x = 13.7 mm. The played
part of the string is between x = 0.2 m and x = 0.53 m.
The sympathetic part rest of the string is between the
bridge pin x = 0.53 m and tuning pin x = 0.84 m.

C. The key-tangent subsystem

The modal parameters of the key-tangent subsys-
tem are determined by their vibratory characteristics.
The tilting mode of the G#3 key equipped of its tan-
gent is measured with the help of an impulse ham-
mer and accelerometers. The measured frequency are
fTa = 1.2 Hz. Its modal mass, determined in section
III B, is mTa = 1.17 × 10−2 kg, its modal stiffness is
kTa = 4π2f21mTa = 0.63 N.m−1 and its modal damping
is cTa = 2.5 kg.s−1.

D. The string subsystem

The string modal damping characteristics are ob-
tained by measurements of the vibrating string stretched
on a string bench. This bench allows for string vibra-
tion measurement without any coupling of the string with
another vibratory structure. The string is excited by a
copped wire that breaks at a given tension when lifted
vertically. The vibratory displacement of the string is
measured at the other extremity by means of optical
forks17. For the right (sympathetic) part of the G#3

string (L = 31.7 cm, ds = 0.33 mm, f0 = 396.9 Hz),
damping for 23 partials between 396.9 Hz to 9354 Hz are
analysed using the high-resolution algorithm ESPRIT18,
following the methodology described in19,20.
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ρ (kg.m−3) E (Pa) δve−te

7000 62 × 109 1,5 × 10−4

Qstruc ηair (kg.m−1.s−1) ρair (kg.m−3)

5 × 104 1,8 × 10−5 1,2

TABLE I. String’s parameters used to simulate the string
damping coefficients

The measured damping coefficients are matched with
the Valette and Cuesta model (see section III C 3), with
the parameters reported in Table I, where of E and ρ
corresponds to brass, ηair and ρair are taken from the
previous data21.

E. Bridge and soundboard subsystems

To simulate the vibratory motion of the bridge, the
modal parameters (mass matrix, stiffness matrix, damp-
ing matrix, mode shapes) of this subsystem need to be
known. As no classical continuous model (like the beam)
has a similar modal basis as that of the bridge, these
modal parameters need to be extracted out of modal
analysis. Modal parameters (mass matrix, stiffness ma-
trix, damping matrix, mode shapes) are estimated us-
ing experimental modal analysis and measurement of the
bridge Frequency Response Function (FRF). The FRF
are obtained by measurement of the response at the cou-
pling point between the bridge and the G#3 string (using
a PCB M352C65 accelerometer and an acquisition sys-
tem with a sample rate of 51.2 kHz and a 24 bit depth)
to impulses given by an automatic impact hammer (force
sensor PCB 086E80). The accelerometer is placed above
the hitch-pin and measures its vertical acceleration. All
the other strings are damped by strips of cloth woven on
both sides of strings (above the soundboard on the right
size and above the keyboard on the left size). Modal
analysis between 100 Hz and 600 Hz is conducted in two
steps. A first step is the estimation of physical poles con-
taining the modal frequencies and damping coefficients
of the analysed structure, using the Least square ratio-
nal function (LSRF) estimation method (Matlab signal
processing toolbox22). The second step is the estima-
tion of residues which encapsulate the mode shapes and
modal masses of the system. Normalizing modal masses
to mn = 1 kg for modes n = 1,2,...,NB , the correspond-
ing mode shapes are estimated from the residues. The
estimated and measured FRF at the G#3 string/bridge
coupling point are plotted on figure 3.

F. The damper subsystem, coupling between subsystems and
activation

The damper in the model is a series of 65 dash-
pots. The parameters cD, mD and kD are chosen so
that the damping effect exerted on the string once the
key is released can be reproduced. The values chosen are
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FIG. 3. Comparison of the spectral amplitude (Ref 1 dB :
1 m.s2.N−1) of the measured FRF (blue line) with its recon-
struction (red line) by means of modal analysis at the driving
point (point no2) coupling the bridge with the G#3 string
(a), Unwrapped phase of the measured FRF (blue line) and
its reconstruction (red line) by means of modal analysis (b),
Mode shapes extracted out of this modal analysis (c).

mD = 1.0× 10−2 kg, kD = 0 N.m−1 and cD = 8.0× 102

kg.s−1.
The four subsystems are coupled through the string:

the string is coupled to the damper at the damper loca-
tion; it is coupled to the bridge at the bridge pin loca-
tion; it is coupled to the tangent/key subsystem during
its contact at the tangent location. All these coupling
conditions assume a continuity of displacement between
the string at the coupling position and the other subsys-
tem involved.

Finally, the whole vibratory system is activated by
an external force that represents the action of the finger
on the key. The finger force profile is typically a step
with given attack and release times.

III. PHYSICAL MODELING USING THE U-K FORMULA-
TION

A. U-K formulation for the clavichord

In this section, the clavichord model in terms of four
coupled vibratory subsystems is modeled using a modal
U-K formulation14,23, a formalism that has been success-
fully used for physical modeling of the guitar and Por-
tuguese guitar24,25. Let us consider a mechanical system
with mass matrix M which is subjected to a force vector
Fe(t) including all constraint-independent internal and
external forces. This system is also subjected to con-
straining forces Fc(t). Denoting the dynamical solution
yu(t) of the unconstrained system and y(t) of the con-
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strained system, the motion equations of the constrained
system derived by Udwadia and Kalaba14,26 are:

ÿ = ÿu + M−1/2B+(b−Aÿu), ÿu = M−1Fe(t) (1)

where A is the constraint matrix, b is a known con-
strained vector. The generalized Moore-Penrose inverse
matrix B+ of B = AM1/2 can be rendered numerically
robust, even for a singular constraint matrix. For a par-
ticular external (finger) excitation Fe(t) these equations
are solved using a suitable time-step integration scheme.
A modal version of the U-K formulation suitable for con-
tinuous flexible systems proved successful for musical in-
struments modeling14. Assuming a set of S vibrating
subsystems defined in terms of their unconstrained modal
basis and coupled through P kinematic constraints, one
obtains14.

q̈ = WM̃−1(−C̃q̇− K̃q + Fext) (2)

where q represent the vector of modal displacements,
M̃, K̃, C̃ are respectively the modal mass matrix, modal
stiffness matrix, and modal damping matrix, while W =
1 − M̃−1/2B+A is a convenient global transformation
matrix (which is computed before the time loop), where
A is the modal constraint matrix, and Fext are the ex-
ternal modal forces applied on the system.

B. Key-tangent modelling

A mode shape is associated to the key-tangent sub-
system to model the tilting motion of the key. The modal
representation of this system is given by the following
equations :

Y Ta(r, t) = φTa(x)qTa(t) (3)

where Y Ta is the displacement of the key-tangent
substructure, φTa is its mode shape and qTa is its modal
amplitude, "Ta" standing for "tangent", and,

mTaq̈
Ta(t) + cTaq̇

Ta(t) + kTaq
Ta(t) = Fext(t) (4)

where mTa, cTa and kTa are respectively the modal
mass, modal damping and modal stiffness of the key-
tangent subsystem, and Fext is the modal excitation force
that the musician exerts on the key. The mode shape φTa
is given in the following way :

φTa(x) =
LT − x
LT − Lp

− 1 (5)

Considering that the linear density of the key is ρk =
Mk

LT
, the modal mass of the key-tangent substructuremTa

can be found thus :

mTa = MTgφ
Ta(Ltg)

2 +

LT∫

0

ρkφ
Ta(x)2dx (6)

After some calculations, it gives :

mTa = MTg

(
LT − Ltg
LT − Lp

− 1

)2

+Mk

3L2
p − 3LpLT + L2

T

3 (LT − Lp)2
(7)

C. String modelling

1. Modal description of the string

To comply the string model with the modal U-K for-
mulation, a modal representation of the string is given in
this section. A modal expansion of the string displace-
ment Y S is done :

Y S(x, t) =

Ns∑

n=1

φSn(x)qSn (t) (8)

where φSn are the mode shapes of the string, qSn are
its modal amplitudes, and Ns is the string’s number of
modes so that n = 1, 2, ..., Ns. Considering that the
boundary conditions of the clavichord string are pined-
pined, it leads to the following string’s mode shapes :

φSn(x) = sin
(nπx
L

)
n = 1, 2, . . . , N (9)

where L refers to the string length between the hitch-
pin and the tuning-pin. Also, if the static displacement is
large enough, the geometrical non-linear force F S

nl related
to the string’s variation of tension also needs to be taken
into account. That yields the following string’s modal
equations :

MSq̈S + CSq̇S + KSqS + F S
nl(q

S , q̇S) = 0 (10)

where MS , CS and KS are the modal mass ma-
trix, the modal damping matrix and the modal stiffness
matrix of the string respectively, and qS is the modal
amplitude vector of the string. The expression of the ge-
ometrical non-linear forces can be expressed by means of
the kirchhof-Carrier model, which is the topic of the next
section.

2. Non-linear string dynamics in string tangent inter-
action

The string-tangent interaction in the clavichord re-
sults in geometrical deformations of the string (the tan-
gent lifts the string after the initial contact) and conse-
quently in an increased string tension. This displacement
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can be quite significant in the clavichord, up to 3-5 mm,
inducing a substantial rise in pitch. The string uplift
results in a geometrical deformation of the string and
thus non-linear forces that must be considered in the dy-
namics of the instrument. For dynamic modeling of the
non-linear forces, the Kirchhoff-Carrier non-linear model
for the string is used27,28, following previous work on the
twelve-string Portuguese guitar24,25. According to the
mode shapes in Equation 9, the kirchhoff-Carrier model
leads to geometric non-linear terms creating the dynamic
tension Tdyn : +

Tdyn(t) =
ES

2L

L∫

0

[(
∂Y S(x, t)

∂x

)2
]
dx (11)

which gives rise to the non-linear differential equation
of motion :

ρS
∂2Y S(x, t)

∂t2
− (T0 + Tdyn(t))

∂2Y S(x, t)

∂x2
= 0 (12)

The force Fnl due to geometric non-linear terms are
:

Fnl(x, t) = Tdyn(t)
∂2Y S(x, t)

∂x2
(13)

Thereby, it yields the nonlinear modal force terms :

Fnln (t) =

L∫

0

Fnl(x, t)φn(x)dx (14)

Using equations 8 and 9 and calculating the integrals
in equation 11, it leads to a dynamic tension that depends
quadratically on the modal response amplitudes:

Tdyn(t) =
ESπ2

4L2

N∑

n=1

n2 (qn(t))
2 (15)

Then, calculating the integral in equation 14, the
cubic modal force terms are deduced24 :

Fnln =
ESπ4

8L3
n2qn(t)

N∑

m=1

m2qm(t)2 (16)

Equation 16 represents the modal non-linear forces
for the string due to the vertical displacement resulting
from the tangent lift. In contrast to the quasi-static sit-
uation, the force in Equation 16 can be computed in dy-
namic modeling of this interaction.

The increase of tension due to tangent height Ye is an
important parameter, particularly for the player, as it is
related to the hardness of touch5, the key force feedback
felt by the player.

Note that in a quasi-static approximation the string
lifted by the tangent is in the shape of a triangle (ne-
glecting the string stiffness). The resulting quasi-static
tension Tstat can be expressed using simple geometry2 :

∆Tstat = ES

(√
L2
l + Y 2

e +
√
L2
r + Y 2

e

L
− 1

)
(17)

where Ll = xe and Lr = L − xe are the lengths of
the left (resp. the right) side of string relative to the
excitation point xe, and Ye is the vertical heights of the
string. As the tangent heights is small compared to the
string length, it can be assumed that Ye

Ll
� 1 and Ye

Lr
� 1.

Simplifying equation 17 using a Taylor expansion, the
quasi-static tension is proportional to the square of the
tangent heights :

∆Tstat = Y 2
e

ES

2xe(L− xe)
(18)

The same result can be derived by using the
Kirchhoff-Carrier model. Under static conditions, in
equation 15, the modal displacements qSn are computed
by noticing that:

Y S(x) =

N∑

n=1

φSn(x)qSn

⇒
∫ L

0

Y (x)φSn(x)dx =

∫ L

0

[
φSn(x)

]2
qSndx

(19)

so that the modal displacements created by the string
displacement field are given by:

qSn =

L∫
0

Y (x)φSn(x)dx

L∫
0

[φSn(x)]
2
dx

, n = 1, 2, ..., N (20)

which gives :

qSn = Ye

xe∫
0

x
xe
φSn(x)dx+

L∫
xe

L−x
L−xe

φSn(x)dx

L∫
0

[φSn(x)]
2
dx

, n = 1, 2, ..., N

(21)

Because the physical displacement of the string is
given by :

Y (x) =





x
xe
Ye 0 6 x 6 xe

L−x
L−xe

Ye xe 6 x 6 L

(22)
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using Equation 9 for computing the integrals in equa-
tion 21, one obtains :

qSn =
2L2 sin

(
nπxe

L

)

n2π2xe (L− xe)
Ye, n = 1, 2, ..., N (23)

Then, replacing equation 23 in equation 15

Tdyn(Ye) = Y 2
e

ESL2

π2x2e (L− xe)2
N∑

n=1

n2
(

1

n
sin
(nπxe

L

))2

(24)

Notice that when the number of modes N is large
enough, then :

N∑

n=1

(
1

n
sin
(nπxe

L

))2

≈
∞∑

n=1

(
1

n
sin
(nπxe

L

))2

≈ π2

2

xe
L

(
1− xe

L

)
(25)

replacing equation 25 in equation 24 gives the same
result as Equation 18, showing that a same tangent
height gives a same string tension at for the quasi-static
approach and the non-linear Kirchhoff-Carrier approach.

3. Model of string’s modal dampings

To bestow a proper damping coefficient to each
string’s mode, the string damping model elaborated by
Valette and Cuesta29 is chosen. The air friction, the
visco-elastic and thermo-elastic friction as well as the
structural friction are taken into account. They are de-
noted respectively by the quality factor Qn,air, Qn,ve−te
and Qstruc.

Q−1n = Q−1n,air +Q−1n,ve−te +Q−1struc

=
R

2πρL
(nf0)−1 +

4π2ρLEIδve
T 2

(nf0)2 +Q−1struc

(26)
where R designates the mechanical resistance

R = 2πη + 2πds
√
πηairρairf (27)

and where ρair and ηair corresponds to the dynamic
viscosity and the density of the air respectively, and ds
represents the string’s diameter. Then, Q−1n represent
the damping coefficient associated to the nth mode of
the string. E is the Young modulus of the string, I is the
second moment of inertia of the string, T is the string’s
tension, ρL is the linear density of the string, and δve−te
is the imaginary part of the strin’s Young modulus. The
term δve−te = δve + δte encapsulates visco-elastic effects
δve and thermo-elastic ones δte, taking the same approach
as Paté20. Qstruc is a constant value. Using ζn =

Q−1
n

2 ,
one can obtain the damping ζn coefficients of the string.

D. Bridge modelling

The motion of the bridge is modelled by means of its
modal equations. So considering the modal expansion of
the bridge displacement :

Y B(r, t) =

NB∑

n=1

φBn (x)qBn (t) (28)

where r is the location vector, NB is the number of
bridge modes, φBn are the mode shapes of the bridge and
qBn are the modal amplitudes of the bridge. Then, the
modal equations governing the bridge’s vibratory motion
are :

MBq̈B + CBq̇B + KBqB = 0 (29)

where MB , CB and KB are the modal mass ma-
trix, the modal damping matrix and the modal stiffness
matrix of the bridge respectively, and qB is the modal
amplitude vector of the bridge. Because of the complex-
ity of the structure, as opposed to the string, there is no
continuous model that can yield analytically the expres-
sion of the bridge’s modal parameters. These could be
derived numerically by means of finite element method
by reproducing the geometry and the material properties
of the bridge, as it was done for instance in the case of
the piano12. Experimental modal analysis of the bridge
is done in section II E to give numerical values to the
bridge’s modal parameters.

E. Damper modelling

The damper is modeled by coupling a portion of
string with a number of mass-spring-dampers assuming a
continuity of displacement between the dampers and the
string at their contact points. All theses mass-spring-
damper are considered independent to one another. Let
ND is the chosen number of dampers D:

MDq̈D + CDq̇D + KDqD = 0 (30)

Where qD is the amplitude vector of the damper re-
sponses. Matrices MD, CD and KD are square diagonal
with identical coefficients mD, cD and kD, respectively.

All the mass-spring-dampers associated to the cloth
damping device have the same mass, stiffness and damp-
ing coefficients. So all the mass-spring-dampers have the
same frequency and the same damping. These mass-
spring-dampers representing the cloth damper are cou-
pled with a certain length of the string, as it is modeled
in section III F 3.

F. Couplings between subsystems

The individual subsystems are described with the
help of a modal representation. The modal constraint
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matrix A and the vector b of the constrained system is
given AQ̈ = b with: with

A =



AB

ATa

AD


 ,b =




bB
bTa
bD


 , Q̈ =




q̈S

q̈B

q̈Ta

q̈D


 (31)

where AB is the matrix coupling the string with the
bridge with bB its associated vector, ATa is the matrix
coupling the string with the key-tangent subsystem with
bTa its associated vector, and AD is the matrix coupling
the string with the damper with bD its associated vector.
By giving the continuity conditions related to all these
couplings, these matrices and vectors are determined in
sections III F 2, III F 1 and III F 3.

1. String and key-tangent subsystem coupling

To model the contact between the tangent and the
string, the approach developed by Antunes et al is
adopted23. This contact is considered to be a coupling
between the tangent and the string at the moment when
the tangent touches the string. At the contact location,
assuming a continuity of displacement between the two
subsystems, this yields the following coupling conditions :

Y S(xext, t)− Y Ta(rT , t) = 0 (32)

[ΦS(xext)]
TqS(t)− [ΦTa(rT )]TqTa(t) = 0 (33)

where Y Ta is the displacement of the tangent, xext is
the position where the string is excited, rT is the location
of contact on the tangent. The tangent is initially located
below the string with respect to axis y. The whole string
is initially at rest at altitude y = 0. At the moment
when the tangent reaches altitude y = 0, ATa can be
modified to couple the two subsystems. The contact is
thus modeled by this coupling written within matrix A
at this moment in time. Then, the conditions for this
coupling are written as follows :





Y Ta(rT , t) < Y S(xext, t) bTa = 0 ATa = 0

Y Ta(rT , t) = Y S(xext, t) bTa = 0

ATa =
[
[ΦS(xext)]

T 0 . . . 0− [ΦTa(rT )]T 0 . . . 0
]

where ΦS
c and ΦTa

c represent respectively the string’s
mode shape vector and that of the key-tangent subsys-
tem at the coupling point. The U-K formulation ap-
ply constraints on the system’s acceleration. It means
that, when simulating the model, the constraints on the
system’s acceleration are respected. However, respect-
ing these constraints does not imply respecting the con-
straints on the system’s displacement and on the sys-
tem’s velocity. Without the implementation of stabiliza-
tion techniques, numerical drifts are taking place dur-
ing the simulation, because of the constraint’s violation

in terms of displacement and velocity. The technique
elaborated by Yoon et al30 can be used to eliminate the
aforementioned violations. It is based on a geometric
projection approach applied after each time step. The
displacement constraint violations are eliminated by cor-
recting the constrained system displacement :

yc = y + ∆y ⇒ yc = y −Aϕp(x, t) (34)
⇒ qc = q−Aϕp(x, t) (35)

Then, the same procedure is done when it comes to
the velocity constraint violations :

ẏc = ẏ + ∆ẏ ⇒ ẏc = ẏ −AΨp(ẋ, t)

⇒ q̇c = q̇−AΨp(q̇, t)
(36)

where yc and ẏc represent respectively the corrected
displacements and velocity, ∆y and ∆ẏ represent respec-
tively the correction of the displacement and that of the
velocity, ϕp(y, t) and Ψp(ẏ, t) are respectively the dis-
placement and velocity constraints.

2. String-Bridge coupling

The interaction of the string with the bridge is mod-
eled by means of coupling. It is assumed that the dis-
placement of the string is continuous with that of the
bridge at the coupling location. Therefore, one can ex-
press the necessary coupling conditions to model the con-
straints of the system. This continuity implies that the
string’s displacement Y S(xB , t) must be the same as that
of the bridge Y B(rB , t), "S" standing for "string" and
"B" standing for "bridge", xB is the location of the cou-
pling point on the string and rB is the vector of location
of the coupling point on the bridge. Thus :

Y S(xB , t)− Y B(rB, t) = 0 (37)

with modal coordinates, it leads to :

[ΦS(xB)]TqS(t)− [ΦB(rB)]TqB(t) = 0 (38)

with the mode shape vectors :

ΦS(xB) = [φS1 (xB)φS2 (xB) . . . φSNS
(xB)]T ,

ΦB(rB) = [φB1 (rB)φB2 (rB) . . . φBNB
(rB)]T

(39)

where NB is the number of bridge’s modes, NS is the
number of string’s modes. As a result, defining Nc as the
number of strings of the system, equation 38 leads to the
following matrix AB and vector bB = 0 :

AB =
[
[ΦS(xB)]T −[ΦB(rB)]T 0 . . . 0

]
(40)

Equation 40 shows the coupling matrix AB and the
associated vector bB used to couple the strings with the
bridge.
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3. String-Damper coupling

Like the string-bridge coupling, the continuity of the
string’s displacement Y S(xD, t) with that of the damper
Y D(rs, t) is assumed, "D" standing for "damper", xD
being the location of the damper on the string and rD
being the vector locating the damper. Thus :

Y S(xD, t)− Y D(rD, t) = 0 (41)

[ΦS(xD)]TqS(t)− [ΦD(rD)]TqD(t) = 0 (42)

Then, equation 42 leads to the following matrix AD

and vector bD = 0 :

AD =




[ΦS(xD1
)]T 0 . . . 0 −1 0 . . . 0

[ΦS(xD2)]T 0 . . . 0 0 −1 . . . 0
...

...
...

...
...

...
. . .

...

[ΦS(xDND
)]T 0 . . . 0 0 0

... −1




where ΦS(xDj
) is the mode shape of the string cou-

pled with the nth damper at the xDj
location.

IV. SIMULATION AND EVALUATION OF THE CLAVI-
CHORD MODEL

The one-string model developed in Section III, using
the experimental data of Section II, is discussed in this
section. A finite element approach is chosen for simula-
tion. Following a preliminary convergence study, not de-
tailed her, an appropriate the time step is ∆t = 2× 10−6

s using Ns = 100 string modes. Assessment of the model
is performed in 3 steps: 1/ visualisation of string motion;
2/ visualisation of subsystems vibrations and comparison
with experimental data: 3/ comparison on the dynamics
of the model, previous models and experimental data on
the dynamics of the clavichord.

A. String motion

The string motion of the clavichord is shaped by the
specific excitation mechanism of the instrument. Time
domain simulation of the system allows for visualisation
of the string motion. Simulation of the G#3 string mo-
tion is displayed in Figure 4, in response to a 6 N excita-
tion force. The top panel represent the initial 35 ms, i.e.
the beginning of the motion. The tangent (represented
by circles at x=0.6m, sampled with a period of 0.1 ms)
comes in contact with the string and lifts the string to a
maximum. When the tangent strikes the string, an an-
gular point is created and propagates to the bridge. At
the same time, the string is uplifted by the tangent. Af-
ter the arrival of the angular point at the bridge, it is
reflected back and then reflected again by the tangent.
As the mechanical impedance of the bridge and that of
the tangent are high compared to the string mechani-
cal impedance, most of the wave energy is reflected. At

FIG. 4. History of the transverse motion for the G#3 string.x
axis: time (s); y axis : string length; z axis: transverse string
motion. Top panel: full string between t = 0.0164 s and
t = 0.0759 s . Middle panel: full string between t = 0.0164

s and t = 0.0224 s. bottom panel: sympathetic part alone,
between t = 0.0164 s and t = 0.0224 s.

vibration amplitude (then the sound amplitude level) de-
pends on the angle of the angular point, and then on the
ratio of wave velocity in the string and tangent velocity,
as discussed in2, and then on the steepness of the tan-
gent motion slope. In the middle panel of Figure 4 the
string motion history is displayed between 35 and 200 ms
(sampled with a period of 1 ms). The low frequency (62.5
Hz) oscillation of the key-tangent subsystem because of
the elasticity of the string is observed. Bottom panel
of Figure 4 shows vibration by sympathy of the part of
string between the bridge and tuning pin, corresponding
to the circle in the middle panel, between 35 and 200 ms
(sampled with a period of 1 ms). Note that the sympa-
thetic vibration is two order of magnitude lower than the
played part of the string, between 10−5 - 10−6 m, and
that the string motion looks rather disorganized com-
pared to more regular motion between the tangent and
bridge pin. No direct measurement of the whole string
motion are available to the best of our knowledge. Com-
parison with high-speed videos of the string motion in
the vicinity of the tangent? show good agreement with
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the simulation:the same "zipper" motion of the angular
point on the string can be observed in high-speed videos
and Figure 4.

B. Bridge motion

The bridge is a key point in sound production, be-
cause it moves the soundboard, and then produces the
sounds. For assessment of the model, simulated and mea-
sured bridge motions are compared. The acceleration at
the bridge pin for the string is measured using the same
PCB M352C65 accelerometer and the same acquisition
system as in section II E. For this measurement, all the
other strings are muffled using felt strips. Measured and
simulated signals oscillograms and spectrograms are dis-
played in Figure 5. The results are on the whole in very
good agreement. The main difference between the two
signals is in the attack transition. The real accelera-
tion exhibit a sharper attack transient. This could be
explained by the "drum noise" that is present in a real
clavichord but not in the model. The drum noise is the
structural noise due to the shock of the tangent on the
string, that excites all the body (structure) of the instru-
ment. This is a well known effect, not simulated here,
the string being isolated from the structure. Otherwise,
the essential features of simulation and measurement are
very similar, and the orders of magnitude of these accel-
erations are the same.

The forces applied to the key and the response at
the bridge are analyzed with the help of Figure 6. A
step force of 6 N is applied on the key for 1 s. The con-
straint force at the contact point between the tangent
and strings is computed. Note that the tangent force
is lower than the force applied to the key, because of
the leverage ration on the pivoting key (since xf − xp
is smaller than xp − xtg). Two conditions are studied
in the simulation with and without damper. The mid-
dle panel shows the simulated force at the bridge. As
expected, the force is lowered during the tone, because
the tangent lifts the string, and then release the string
pressure on the bridge. When dampers are removed, the
string appears less constrained, and the force lowering is
higher. String vibration is apparent in the force signal.
The top panel shows the vibration displacement. As ex-
pected, the string is raised in response to the tangent lift,
and raised higher when the dampers are withdrawn. The
vibratory magnitude is surprisingly low (a maximum of
about 0.015 mm). Displacement measurements were sub-
sequently performed on the G#3 string using a Keyence
(LJ-V7060) profilometer. The same order of magnitude
were observed: a bridge lift of 0.010-0.020 mm and a
maximal vibratory amplitude of about 0.010-0.015 mm,
in good agreement with the simulated motions. After
the key release, the tangent loses contact with the string.
The remaining vibration after the key release correspond
to the sympathetic vibration between the bridge and tun-
ing pin, and in the non-damped situation to the vibration
of all the length of the string. In this latter situation, the
magnitude is larger.
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FIG. 5. Comparison of simulated and measured acceleration
at the bridge. The first plot of each pair corresponds to mea-
surement and the second corresponds to simulation. Top:
oscillogram for 1s; Middle: zoom on a 40 ms section; Bottom:
spectrogram
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FIG. 6. Bottom: force applied on the key and resulting force
on the tangent. Middle: force on the bridge with (red) and
without (blue) dampers. Top: bridge displacement with (red)
and without (blue) dampers.

C. Tangent-string dynamics

Figure 7 shows the effect of the tangent-string in-
teraction on string tension. The key is activated by the
robotic finger. As expected, the key-tangent interaction
exhibit some oscillation due essentially to the string elas-
tic reaction to the tangent strike. The 60 Hz oscilla-
tion rate obtained is consistent with the 30 Hz oscilla-
tion reported2 in experiments with another clavichord.
The corresponding change in the measure31 fundamental
frequency is consistent, showing that the acoustic effect
of the string-tangent interaction is well rendered by the
model. Dynamic and quasi-static tension simulation give
almost identical results, consistent with measurements.
This shows the validity of the dynamic approach.

To study the effect of tangent velocity on acceleration
at the bridge, the force Fext applied on the key-tangent
subsystem is varied. The impact velocity and the average
acceleration are computed by the model. Similarly to
the sound pressure level (SPL) the acceleration level is
computed as the logarithm of acceleration integrated over
250 ms. Figure 8 shows a linear relationship between
the logarithm of the impact velocity and the acceleration
level in dB. This is in good agreement with experimental
results obtained for impact velocity and sound pressure
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FIG. 7. Top: Dynamic tension of the string and correspond-
ing fundamental frequency for a 0.5s note. Bottom: Dynamic
tension of the string in the firsts 0.1 s.
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FIG. 8. Force profiles used to obtain the simulated impact
velocities and the associated bridge acceleration (a), Time
average of the bridge acceleration (ref 1 dB : 1 m.s−2) at the
G#3 string coupling point with respect to the logarithm of
the tangent impact velocity (b).

level and with predictions by a linear model of string-
tangent dynamics2: playing louder is playing faster.

The influence of the impact velocity on the timbre
of the bridge acceleration is studied. Spectral slopes of
the acceleration spectrum for different impact velocities
are presented in Figure 9. Two effects are noticeable.
First, increasing the excitation force leads to increasing
the static displacement of the string, hence the funda-
mental frequency. This accounts for the frequency shift
of the partials in figure 9. Second, the spectral slopes for
the different spectra remain approximately the same, an
average spectral slope can represent spectral slope for all
the spectra. Then, the timbre of the simulated bridge
acceleration, so to speak, does not change much with re-
spect to the tangent impact velocity, a result reported in
a previous experimental study2.
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FIG. 9. Spectral amplitude of the different bridge accelera-
tions at the G#3 string coupling point with respect to time
(ref 1 dB : 1 m.s−2), for different impact velocity of the key-
tangent subsystem (0.4433 m.s−1, 0.535 m.s−1, 0.622 m.s−1,
0.698 m.s−1, 0.769 m.s−1, 0.834 m.s−1, 0.894 m.s−1 and 0.951
m.s−1), with the average spectral slope.

V. CONCLUSION AND PERSPECTIVES

In summary, the essential features of the non-linear
dynamics of the string-tangent interaction are well cap-
tured by the U-K model for the clavichord. A very sim-
plified instrument is considered here. At least four impor-
tant vibroacoustic characteristics of this instrument are
missing and must be worked out : 1/ coupling between
the two unison strings of a choir; 2/ effect of free strings
between the bridge and tuning pins, that bring sympa-
thetic vibration and resonance; 3/ effect of the lid, sound
radiation aspects; 4/ other source of sound by vibration
of the structure. Part of this research program is cur-
rently in progress, aiming at a fully parametric physical
clavichord model that would be desirable for historical
instrument simulation and analysis, performance studies
and new music instrument design.
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Le clavicorde est un instrument à clavier particulièrement expressif, mais de faible niveau sonore. Lorsqu’une des
touches du clavier est enfoncée, un élément de métal (appelé tangente) percute une paire de cordes et reste en
contact avec elle, la tangente jouant le rôle à la fois d’excitateur et de sillet. La portion des cordes mortes, entre
le chevalet et les chevilles d’accord est laissée libre dans le clavicorde. Ces cordes mortes sont assez longues, et
elle entre en vibration par sympathie, à cause du mouvement du chevalet, venant ajouter de la réverbération et un
renforcement du son. Le but de ce travail est d’étudier et de quantifier l’effet des cordes mortes. Les mesures sont
conduites sous 2 conditions : avec cordes mortes libres et avec cordes mortes étouffées. Les résultats montrent
la manifestation de deux phénomènes distincts : l’un est l’effet de réverbération, que l’on peut modéliser par un
système vibratoire linéaire ; l’autre est l’effet de sympathie, caractérisé par le couplage entre les partiels des cordes
jouées et mortes.

1 Introduction

1.1 Présentation du clavicorde
Le clavicorde est un instrument à clavier particulièrement

expressif, mais dont le niveau sonore est assez faible (d’où
son surnom "d’épinette sourde" au XVIIème siècle chez
Marin Mersenne) [1]. La mécanique est simple : les
touches à balancier sont équipées de lames de laiton, les
tangentes, qui font office de sillet et excitent les cordes
à leurs extrémités. Lorsque l’on relâche la touche, une
bande de tissu située à droite de la tangente étouffe la
vibration de la corde. Le niveau de pression sonore du
clavicorde est faible, proportionnel au logarithme de la
vitesse d’impact de la tangente, directement liée à celle du
doigt (contrairement au piano qui multiplie la vitesse grâce
à la mécanique) [6]. Le niveau mesuré 30 cm au dessus du
centre de la table d’harmonie est au maximum de 60 dB SPL,
pour l’instrument que nous étudions ici, ce qui est typique
des valeurs mesurées pour d’autres clavicordes. On trouvera
des mesures de niveau sonore et de durée pour toutes les
notes de 4 clavicordes jouées avec diverses nuances dans [5].
Une façon d’augmenter la durée ou le niveau du son dans le
clavicorde est d’utiliser les parties mortes des cordes, entre
le chevalet et les chevilles d’accord (voir Figure 1) comme
des cordes sympathiques, c’est à dire des cordes qui ne sont
pas directement mises en vibration par l’excitation, mais qui
sont entraînées par la vibration des cordes jouées [8].

1.2 Fonctionnement acoustique
Le clavicorde est muni d’un unique chevalet. Toutes les

cordes sont toutes couplées par ce chevalet, qui les divise
en deux segments : la partie "corde jouée", excitée par la
tangente, entre la tangente (sillet) et le chevalet, et la partie
"corde morte", entre le chevalet et les chevilles (voir figure
1). Lorsque les cordes jouées sont excitées, il y a un transfert
d’énergie vibratoire vers les cordes mortes par le biais du
couplage avec le chevalet. Ceci provoque la vibration des
cordes mortes, de la tables d’harmonie, et de la masse d’air
sous la table d’harmonie (qui, jointe à la cavité forme un
résonateur de Helmoltz). L’énergie vibratoire est transférée
à la table d’harmonie qui rayonne le son dans la salle où se
trouve l’instrument. (voir figure 2).

Les cordes mortes sont laissées libres dans le clavicorde,
contrairement par exemple au piano (le piano carré est
très proche du clavicorde du point de vue de la facture,
et les cordes mortes y sont étouffées [4]). Des mesures
acoustiques ont montré que ces cordes mortes apportent
un halo sonore à l’instrument, un effet que l’on peut
comparer à la réverbération d’une salle : ce premier

effet de vibration sympathique, que nous nommons ici
"réverbération" ne privilégie pas de fréquence précise, mais
une zone fréquentielle large (dans le gamme de 450 Hz à
1000 Hz environ pour l’instrument étudié dans [7]). Par
ailleurs, lorsque les rapports de fréquence sont favorables,
une ou plusieurs cordes mortes peuvent être susceptibles
de renforcer la vibration d’une corde jouée, par couplage
mécanique à travers le chevalet : nous réservons désormais
le mot de "sympathie" pour ce couplage mécanique, effet qui
a été observé et modélisé dans d’autres instruments.

Dans le cas de la harpe de concert, il a été montré que les
harmoniques des cordes dont la fondamentale est en dessous
de celle de la corde excitée viennent contribuer à la vibration
par sympathie [9]. Dans certains modèles de pianos, au
premier rang desquels les pianos à queue Steinway & Sons,
se trouvent des cordes mortes dénommées cordes "duplex",
localisées à l’avant et à l’arrière des parties jouées, pour
l’ensemble de son ambitus. Ces cordes contribuent au timbre
du son rayonné [10].

1.3 Positionnement du problème
Le présent travail est une première approche pour mettre

en évidence et caractériser ces deux effets dans le cas du
clavicorde, en mesurant les phénomènes vibratoires dues à la
mise en vibration indirecte des cordes mortes. L’instrument
étudié est une copie inspirée d’un clavicorde historique
(Christian Gottlob Hubert, Ansbach, 1784, conservé dans la
Russel Collection, Edimbourg) construit par un des auteurs
en 2008 dans l’atelier Marc Ducornet. L’instrument présente
51 touches de Do1 à Ré5, les notes sont liées par 2 à partir
de Mi2, et il possède donc 37 chœurs de 2 cordes, soit 74
cordes pour les 51 notes. Il est accordé à La3=415 Hz. Jouer
une note met donc en vibration deux cordes jouées et 74
cordes mortes. L’approche expérimentale porte sur deux
volets. Dans un premier temps, l’effet de réverbération est
étudié, en négligeant le couplage au chevalet. En faisant
l’hypothèse que les cordes mortes fonctionnent comme
un système passif, ou système linéaire invariant dans le
temps, c’est à dire qu’il n’y a pas de tranfert d’énergie des
cordes mortes vers les cordes jouée (donc pas de sympathie,
mais seulement réverbération), une première expérience
caractérise la réponse impulsionnelle de la table d’harmonie
dans différentes configurations. Dans un second temps, les
effets de couplage entre cordes jouées et cordes mortes sont
étudiés en situation de jeu. Pour cela la réponse des cordes
jouées avec les cordes mortes libres est comparée avec la
réponse des cordes jouée avec les cordes mortes étouffées
convoluée par la réponse impulsionnelle des cordes mortes
libres. Dans l’hypothèse d’un couplage par sympathie, la
première réponse devrait durer davantage que la seconde.
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Figure 1 – Vue du dessus du clavicorde Hubert avec des
légendes, le point rouge correspondant à la position où se

trouve l’accéléromètre.

2 Réponse impulsionnelle
Des mesures acoustiques de réponses impulsionnelles

ont été décrites dans [7]. Il s’agissait du son rayonné, en
réponse à des impulsions par un marteau sur la table, en
combinant toutes les conditions de cordes mortes étouffées,
cordes jouées étouffées, cavité étouffée. Les résultats
(sous l’hypothèse d’une réponse linéaire, sans couplages
mécaniques au chevalet) montrent un effet de réverbération
dans le son. De plus l’ensemble des cordes jouées contribue
en basse fréquence, ce qui est connu des facteurs de
clavicorde comme "effet tambour". Les cordes jouées sont
en effet toutes couplées par la bande d’étouffoir, et un choc
sur la structure les met en vibration, avec un son grave de
"tambour". La cavité joue un rôle, avec une résonance de
Helmoltz vers 50-200 Hz environ.

2.1 Protocole expérimental
Nous souhaitons mesurer la réponse impulsionnelle

de la table d’harmonie en un point de la structure. Pour
mettre en place cette mesure vibratoire, nous plaçons un
accéléromètre (PCB M352C65) en bas du chevalet là où
auront lieu les impacts effectués par le marteau d’impact
(PCB 086C01) (voir figure 1). Le marteau d’impact envoie
un signal E en entrée et on mesure le signal d’accélération
a en sortie 3. Les mesures de réponse en fréquence seront
donc co-localisées. Nous sommes à même d’étouffer les
cordes mortes grâce à la disposition de feutres faisant
office d’étouffoir. Par conséquent, nous pouvons mesurer la
réponse impulsionnelle de notre système lorsque les cordes
mortes sont libres et lorsque ces cordes sont étouffées. Nous
ne nous intéresserons ici qu’à l’étouffement des cordes
mortes, et pas à l’effet tambour.

2.2 Méthode d’analyse
Considérons le système vibratoire "cordes, chevalet,

table". Nous faisons l’hypothèse que les sous-structures de
notre système vibratoire sont découplées. Cela implique
que nous pouvons décomposer notre système vibratoire en
différents sous-systèmes, comme on peut le voir sur la figure
3.

Notre système d’étude est alors linéaire. On peut
donc caractériser une réponse impulsionnelle pour
chaque sous-structure de la figure 3. L’ensemble de ces
différentes réponses impulsionnelles caractérise la réponse

impulsionnelle du système vibratoire globale. De plus,
on considère que notre système vibratoire ne se déplace
selon une seule direction, ici l’axe z (voir figure 1). Ce
qui implique que notre système ne possède qu’un seul
degré de liberté. Sous couvert de ces hypothèses, nous
pouvons calculer nos fonctions de réponse en fréquence
par simple division fréquentielle, et ainsi obtenir la réponse
impulsionnelle correspondante par transformée de Fourier.

2.3 Analyse de la Réponse impulsionnelle des
cordes mortes

Ayant mesuré les réponses impulsionnelles de notre
système vibratoire selon que les cordes mortes soient
libres ou étouffées, on effectue une déconvolution de nos
signaux dans le domaine de Fourier. Ainsi, nous enlevons
la contribution de tous les éléments vibrants dans le signal
vibratoire si ce n’est celle des cordes mortes. Nous montrons
ce que nous obtenons comme signal résultant sur la figure
4. On remarque que la bande de fréquence d’influence des
cordes mortes va de 350 Hz à 4500 Hz. On montre sur la
figure 5 la répartition des fréquences des cordes mortes
et des cordes jouées selon le nom de la note de chaque
corde. On remarque que les fréquences des cordes mortes
vont de 350 Hz à 1200 Hz environ. La borne inférieure de
350 Hz pour la zone fréquentielle des cordes mortes est
cohérente avec celle trouvé par le biais de la figure 4. Le
reste de l’énergie spectrale au-dessus de 1200 Hz est dû aux
harmoniques de toutes les cordes mortes. L’énergie spectrale
au dessous de 350 Hz provient probablement de la vibration
des cordes graves jouées, qui elles n’ont pas été totalement
soustraites (cet effet, le "tambour" a été décrit dans [7], il est
d’une amplitude notable dans le grave du spectre).

3 Étude en situation de jeu

3.1 Protocole expérimental
Nous voulons aussi analyser le comportement de la

partie morte des cordes de notre clavicorde d’étude lors de
la production de sons musicaux. Nous gardons la même
disposition expérimentale que précédemment. Ici nous
utilisons un doigt robotique (voir Figure 6) pour enfoncer
les touches correspondant aux cordes Si2 et Sol4. Ce doigt
peut effectuer une trajectoire programmée et la répéter de
façon identique [3]. Cette trajectoire est programmée par la
position et la vitesse du doigt robotisé selon le plan (y,z) (voir
figure 1). Les mesures obtenues sont les réponses vibratoires
de la table d’harmonie dues aux excitations de ces deux
cordes en répétant la même trajectoire d’enfoncement de la
touche. Une excitation particulière est considérée, celle où
le doigt relâche directement la touche après l’avoir enfoncé.
La trajectoire en question est effectué de telle façon à ce que
la touche soit enfoncée de 7 mm environ et que la vitesse
d’enfoncement soit de l’ordre de 0,6 m.s-1. Cette valeur
de vitesse d’enfoncement est équivalente à celle qui est
utilisée dans [6], où c’est le doigt du musicien qui enfonce
la touche. On considère alors que la trajectoire du doigt
robotisé utilisée ici est équivalente que celle d’un musicien.
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touche tangente Cordes jouées
E

Chevalet

Cordes mortes

table d’harmoniea Rayonnement

Figure 2 – Schéma bloc du fonctionnement acoustique du clavicorde, E représentant l’entrée du système vibratoire et a
correspondant au signal vibratoire mesuré par l’accéléromètre.

cordes + chevalet + table d’harmonie
E S

table
E

chevalet cordes
S

Figure 3 – Schéma bloc du système vibratoire linéaire, où E
est le signal d’entrée et S est le signal de sortie.

Figure 4 – Réponse impulsionnelle des cordes mortes du
clavicordes.

3.2 Analyse temporelle
Nous effectuons une comparaison entre les formes

d’onde des signaux mesurés dans des conditions différentes.
Sur la figure 7 (haut), on montre les signaux vibratoires
mesurés lors de l’excitation de la corde de Si2 lorsque
les cordes mortes sont libres (bleu) et lorsqu’elles sont
étouffées (rouge). Qualitativement, on peut remarquer que
le signal correspondant à la condition "libre" dure plus
longtemps que le deuxième signal. Cela met en exergue le
fait que la contribution vibratoire des cordes mortes permet
l’allongement du signal vibratoire. Aussi, nous effectuons
sur la figure 7 (bas) la même comparaison lorsque l’on
excite la corde de Sol4. On peut en tirer la même conclusion.
En revanche, quantitativement, le signal correspondant à
la situation où les cordes mortes sont libres dure encore
plus longtemps que le deuxième signal. Cette différence
de longueur en temps est plus accrue que dans le cas de
l’excitation de la corde de Si2. Ceci peut s’expliquer par
un effet de couplage. La corde de Sol4 est couplée avec
certaines cordes mortes par le biais de relation fréquentielle
entre leur première harmonique, ce qui n’est pas le cas pour
la corde de Si2 (voir figure 5). Ceci a pour conséquence que

Figure 5 – Fréquences fondamentales des cordes mortes et
des cordes jouées. Les fondamentales des cordes mortes se

situent entre 350Hz et 1200 Hz environ. Deux zones
fréquencielles apparaissent : un zone ou les cordes jouées

sont en dessous des cordes mortes, et une zone ou elles sont
dans la même gamme de fréquences fondamentales.

Figure 6 – Doigt robotisé pour le jeu automatique et
reproductible du clavier.

le signal de Sol4 possède des composantes fréquentielles
plus élevées en énergie que celles du signal de Si2.

La figure 8 représente les signaux du Si2 et du Sol4
dans les conditions cordes mortes libres (bleu) et cordes
mortes étouffées convolués par la réponse impulsionnelle
des cordes mortes libres seules (rouge). Pour la note
Si2 les deux signaux se superposent bien. Cela indique
que les cordes mortes joue un rôle de système linéaire,
puisque la convolution par leur réponse impulsionnelle
du signal étouffé est proche du signal libre. Au contraire,
pour la note Sol4, les deux signaux se superposent mal.
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Figure 7 – Signal d’accéleration sur la table, note jouée Si2
(haut) et Sol4 (bas), mortes étouffées et cordes mortes libres.

Figure 8 – Signal d’accéleration sur la table, note jouée Si2
(haut) et Sol4 (bas) avec les cordes mortes mortes étouffées,
et cordes mortes mortes étouffées convoluées par la réponse

impultionnelle de la table.

Donc une simple convolution ne suffit pas pour expliquer

l’effet des cordes mortes. Un phénomène non-linéaire,
comme un couplage mécanique au chevalet entre les cordes
jouées et les cordes mortes, prend certainement place dans
l’interaction des cordes jouées et des cordes mortes. Une
analyse temps-fréquence permet de visualiser cet effet.

3.3 Analyse spectro-temporelle
Sur la figure 9, on montre la comparaison entre le

signal de la réponse du système vibratoire avec les cordes
mortes étant libres et avec l’excitation de la corde de Sol4
(spectrogramme A), et le signal de celle où la corde de
Si2 est excitée (spectrogramme B). Les harmoniques du
premier signal possèdent plus d’énergie spectrale que ceux
du deuxième. On remarque que les partiels de fréquences
1480 Hz, 2188 Hz, 2967 Hz, 3656 Hz, et 4468 Hz sont
assez prépondérants dans le signal de la note Sol4. En
revanche, peu de partiels se distinguent nettement sur le
signal correspondant à la note Si2, si ce n’est légèrement les
partiels 2553 Hz et 4688 Hz.

Toujours sur la figure 9, on fait une comparaison
semblable à la précédente, tout en ayant étouffé les cordes
mortes (spectrogramme C et D). Dans les deux cas, on
remarque que toutes les hautes fréquences sont fortement
atténuées. Les partiels susmentionnés des deux signaux ne
sont plus présents. Seuls les partiels en deçà de 350 Hz
restent inchangés par rapport à la situation précédente. Par
comparaison entre les spectrogrammes A et C, on peut
constater de nouveau que l’effet des cordes mortes se trouve
principalement dans la bande de fréquence allant de 350 Hz
à 4500 Hz.

3.4 Mise en évidence de la sympathie
Pour évaluer les contributions de la réverbération et de

la sympathie, nous utilisons les signaux où l’on a convolué
la réponse impulsionnelle des cordes mortes avec un signal
vibratoire de la réponse de la table d’harmonie où les
cordes mortes sont étouffées. Nous le faisons dans le cas
où l’on excite la corde de Sol4 et celle de Si2. Les signaux
obtenus sont affichés sur les spectrogrammes E et F de la
figure 9. Dans le cas du spectrogramme E, on remarque la
résurgence des partiels de Sol4 comme on l’avait noté sur le
spectrogramme A. Par contre, ces partiels durent bien moins
longtemps que dans le cas de notre mesure vibratoire où les
cordes mortes sont libres. Dans le cas du spectrogramme F,
le signal convolué est assez proche du spectrogramme B,
tout en notant l’absence de la légère prééminence des partiels
de hauteur 2553 Hz et 4688 Hz dans le signal convolué.

En ayant utilisé un système de filtre linéaire invariant
dans le temps, on a montré que la convolution de la réponse
impulsionnelle des cordes mortes du système avec le signal
de la corde de Si2 donnait une réponse vibratoire cohérente.
En revanche, cette modélisation ne semble pas satisfaisante
dans le cas de la convolution avec le signal de la corde de
Sol4. Or, cette modélisation implique qu’entre le chevalet
et les cordes mortes, la transmission d’énergie vibratoire est
unidirectionnelle seulement. Il n’y a pas de couplage entre
la corde excitée et les cordes mortes, ne permettant pas une
transmission vibratoire réciproque.

Par conséquent, dans le cas du signal de la corde de
Si2, on a un transfert d’énergie vibratoire majoritairement
à perte, où toute l’énergie est transférée à toutes les cordes
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Figure 9 – Comparaison entre les spectrogrammes du signal de la réponse vibratoire de la table d’harmonie lorsqu’on excite les
notes si2 et Sol4 : avec les cordes mortes libres (spectrogramme A et B) ; avec les cordes mortes étouffées (spectrogramme C et

D) ; en ayant convolué avec la réponse impulsionnelle des cordes mortes (spectrogramme E et F).

mortes sans effet de couplage. Cette distribution directe à
toutes les cordes mortes est responsable du halo sonore,
résultant de l’ensemble des contributions vibratoires de
toutes ces cordes. La création de ce halo sonore est ce que
l’on appelle l’effet de réverbération. Cet effet se retrouve
aussi dans le cas de l’excitation de la corde de Sol4. En
revanche, Il y a en plus un effet de couplage entre certaines

cordes mortes et la corde de Sol4, où certains partiels de
cette corde échangent de l’énergie avec d’autres partiels
de même fréquence des cordes mortes concernées. Ceci
permet à ces partiels d’obtenir plus d’énergie. Ce transfert
d’énergie réciproque par effet de couplage se réfère à l’effet
de sympathie.
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4 Conclusion
Dans cette étude, nous avons mené une approche

expérimentale afin d’étudier l’effet de sympathie du
clavicorde, en particulier en prenant comme instrument
d’étude une réplique d’un clavicorde Hubert. Deux
expériences distinctes ont été effectuées : une qui consistait
à mesurer la réponse impulsionnelle de la table d’harmonie
de notre instrument dans deux configurations différentes,
c’est-à-dire avec cordes mortes libres et puis avec ces cordes
étouffées ; la deuxième consistait à mesurer la réponse de
la table d’harmonie en enfonçant les touches Sol4 et Si2
du clavicorde par le biais d’un doigt robotique reproduisant
la même trajectoire. La première expérience nous a permis
de caractériser la réponse impulsionnelle de notre système
vibratoire en utilisant un système de filtre linéaire invariant
dans le temps. Lors de la deuxième, nous avons pu étudier
les différentes réponses de notre système d’étude selon
la fréquence fondamentale de la corde excitée et selon
l’étouffement ou non des cordes mortes. Dans le cas de
l’excitation de la corde de Si2, le système utilisé permet de
donner une réponse semblable au signal mesuré. Par contre,
ce système présente ses limites dans le cas de l’excitation de
la corde de Sol4. Ceci nous permet de mettre en évidence
l’existence d’un effet de couplage potentiel qui renvoie à
l’effet de sympathie.

Dans le cas du clavicorde, les cordes mortes permettent
d’allonger le signal et d’ajouter un halo sonore grâce à
l’effet de réverbération, similaire à celui que l’on trouve
en acoustique des salles [7]. Nos mesures confirment ces
résultats, et les précisent : par déconvolution, la réponse
impulsionnelle du filtre linéaire associé aux cordes mortes à
été mesurée. On peut ainsi caractériser et comparer de façon
simple cet aspect de la sonorité d’un instrument.

En plus de la réverbération un effet de sympathie a été
mis en evidence. L’effet de sympathie se caractérise ici par
la mise en vibration indirecte d’une corde par l’accord ou
le couplage entre certains partiels de cette dernière et avec
ceux de la corde excitée. La harpe de concert notamment
présente ce phénomène de sympathie, et des travaux ce sont
attachées à caractériser expérimentalement et théoriquement
la sympathie sur cet instrument [2, 9]. Au delà de la mise
en évidence du phénomène, nos travaux futurs porterons
sur l’analyse fréquentielle des modes qui contribuent à la
sympathie et sur la modélisation mécanique du couplage au
chevalet.
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Abstract

The vibratory and acoustic modeling of musical instruments is important for several purposes in cultural heritage preservation,
performance studies and musical creation. On the one hand, building a model helps understanding the key features of an
instrument, and then is useful for evaluation, documentation and preservation of historical models. On the other hand, modeling
and simulation can help for improving existing instruments, or even designing new instruments by extension of the model. The
clavichord is an early keyboard instrument equipped with a very simple mechanics. The strings are excited by small metal
wedges or blades (the tangents) placed at the end of the keys. The tangent remains in contact with the strings for the duration
of the note, defining the vibrating length of the string. All strings are coupled at a same bridge. A string is divided into
three sections: a damped section (DS) between the hitch-pin and the tangent; the played section (PS), excited by the tangents,
between the tangent and the bridge; and the resting section (RS) between the bridge and the tuning pin. Because of the coupling
through the bridge of the PS and RS, the RS is set into vibration, acting as sympathetic strings. The vibratory responses of
the RS is modelled using a modal approach based on the Udwadia-Kalaba formulation. Firstly, a review of the method is
presented, accompanied with measurements performed on an instrument (copy of a Hubert 1784 fretted clavichord), which
include an experimental modal analysis at the instrument bridge and measurements of string motions. Then, simulation results
are reported and compared with experimental measurements.

Keywords: Sympathetic vibration, Clavichord, Udwadia-Kalaba formulation, String coupling, Modal analysis

1 Introduction

The sound of string instruments results of the vibratory behavior of coupled mechanical subsystems. These couplings can be
studied by using physical modeling of several kinds. For instance, in the case of the concert harp, the coupling of the strings
and the soundboard has been modeled by means of transfer matrices [3]. Also, it could be modeled by using finite element
methods or experimental modal analysis, in particular using substructure techniques. In the case of the guitar, the couplings
have been modeled by extracting the modal parameters of the soundboard at the bridge locations where the strings and the
structure motions are coupled [1]. In the clavichord, a string is divided into three functional sections: a damped section (DS)
between the hitch-pin and the tangent; the played section (PS), excited by the tangents, between the tangent and the bridge; and
the resting section (RS) between the bridge and the tuning pin (see figure 1). The RS of the string is not directly excited by
the tangent but is subjected to the motion constraint at the bridge. Then it is set into vibration, acting as sympathetic strings.
Our objective is to predict the vibratory response of the RS of strings, set indirectly into vibration as a consequence of the
excitation of one PS. To proceed accordingly, we first present the Udwadia-Kalaba (U-K) formulation and its modal extension,
in order to compute the vibratory responses of a set of coupled mechanical substructures. Then, having extracted the necessary
experimental modal parameters from our studied clavichord, we present some results from our numerical simulation.



2 Model U-K

The U-K formulation was originally obtained from the Gauss principle of least action. Then, in the papers by Arabyan and Wu
[2] and Laulusaand Bauchau [5], an original algebraic approach was found for deriving the U-K formulation for constrained
systems from the classical formulation with Lagrange multipliers [1]. Let us consider a mechanical system with mass matrix
M which is subjected to an external force vector Fe(t), which includes all constraint-independent internal and external forces.
This system is also subjected to a set of P holonomic and non-holonomic constraints which depend on the system displacement
x(t) and velocity v(t). Denoting the dynamical solution xu(t) of the unconstrained system and the one x(t) of the constrained
system, which depends on the constraining forces Fc(t), and following [2], one obtains the motion equations of the constrained
system proposed by Udwadia and Kalaba [1, 2] :

ẍ = ẍu +M−1/2B+(b−Aẍu). (1)

ẍu = M−1Fe(t) (2)

where A is the constraint matrix, b is a known constrained vector, B+ is the Moore-Penrose inversion of matrix B = AM1/2.
The original character of this approach is that it can be used for conservative or dissipative, linear or non-linear systems.
Moreover, the generalized inverse B+ can be rendered numerically robust, even when the constraint matrix is singular. For a
particular excitation Fe(t), we can solve these equations using a suitable time-step integration scheme. Next, we adapt the U-K
formulation in order to deal with continuous flexible systems whose dynamics will be described in terms of modal coordinates.
We assume a set of S vibrating subsystems, each one defined in terms of its unconstrained modal basis and being coupled
through P kinematic constraints. Then, using the usual modal equations that govern the physical motion of the subsystems, we
end up with similar equations of motion, which are described now in terms of modal parameters [1].

q̈ =WWWM̃−1(−C̃q̇− K̃q+Fext) (3)

where q represent the vector of modal displacements, M̃, K̃, C̃ are respectively the modal mass matrix, modal stiffness matrix,
and modal damping matrix, while WWW = 1−M̃−1/2BBB+AAA is a convenient global transformation matrix (which is computed before
the time loop), where AAA is the modal constraint matrix, and Fext are the external modal forces applied on the system. In order
to proceed to the computation of the vibratory response of the constraint system, for a given external force vector, we need to
obtain the modal parameters of each unconstrained subsystem. For the strings, we consider the classical mode shapes that we
find theoretically for a flexible string. We also use a theoretical formulation for the damping of the string [4]. For the simulation,
we decide to take 50 modes for each strings, covering a frequency range up to 24.5 kHz. Concerning the modal parameters
of the instrument soundboard, which were measured at the bridge, these were obtained through experimental modal identifi-
cation, using 37 points for the discretization along the bridge. Once we measured the vibratory frequency response functions
(between a reference location and each point of the bridge), we proceeded to the modal identification using a frequency-domain
approach called LSRF (Least-squares rational function estimation method), implemented in Matlab [6]. This modal analysis
was performed within a frequency band going from 40 Hz to 800 Hz, leading to 12 identified modes.

3 Results and conclusion

To compare our model with experimental data, we used a vibrometer to measure the vibratory velocity of the RS of the C5
string, at two centimeters from the bridge, induced by the tangent excitation of PS of the F3 string (i.e. playing the F3 key),
all the other strings being muffled. The vibratory response is only measured in the vertical polarization of the motion of the
string, since the model developed gives the response in just one polarization of motion. Our first step was to model the F3
PS and the G4 and C5 RS being coupled with the bridge (see figure 1). We choose these two strings because their RS have
harmonic frequency relations with the harmonics of the PS of the F3 string: therefore a significant vibratory coupling should
be expected. We produced numerically a realistic string excitation such that the response of the played string was as close
as possible to the experimental response. In figure 2, we compare the spectral response of the C5 RS given by the numerical
simulation with the measured one. In both results, we see the fundamental frequency peak of the F3 string which is at 328
Hz and all its harmonics, which are the partials transmitted to the C5 RS by means of the coupling with the bridge. Also,
we note the presence of the fundamental frequency peak of the C5 RS which is at 491 Hz and its harmonics, being present
because of the impulse response given to all substructures by the tangent excitation. Figure 2 shows a good agreement between



the numerical simulation and measurement. So with this simplified model, we can take account of much of the physics being
involved despite of the complexity of this instrument. For example, the coupling of the string with the bridge is quite simplified
in the model. However, some spectral components do not have the same spectral amplitudes. In particular, we see that the
partial at 200 Hz is absent in the simulation. We conjecture that this frequency peak comes from a soundboard mode of the
clavichord which was not taken into account in the model. As for the other partials, their lack of spectral energy is probably
due to a lack of precision in the estimation of the damping of the strings, and/or from some inaccuracy of the simulated string
excitation. To further improve the model, we should consider all the 74 sympathetic strings of the Hubert clavichord in our
simulation, which implies much longer computations. However, repeating the same measurement with all strings being free,
the vibratory response of the RS of the C5 string remains quite unchanged. So we may not need to consider all the strings in
the model to obtain a better result. Also, to improve our results, we should proceed to a more precise study of the damping of
the strings and of the excitation features, to have a better estimation of the spectral amplitude of each partial of the computed
response.

Fig. 1: Photo from above of the Hubert clavichord, with indi-
cations as to the substructures being modeled in our numerical
simulations
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Fig. 2: Spectral comparison between the experimental signal
measured with the vibrometer and the simulation of the C5
string having excited the F3 string of the Hubert clavichord
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Abstract
The clavichord is considered to be the most demanding keyboard instrument in terms of finger control. This is
because of its direct mechanisms: the key works as a lever. When the finger presses the key, the tangent (metal
blade) on the key’s extremity goes up and strike the string. And as long as the finger remains pressed on the
key, the tangent remains in contact with the string, leading to string’s tone variation. The loudness of the sound
is proportional to the velocity of the key’s displacement. Then there is a duality between loudness and pitch
accuracy. This is the paradox of the clavichord. The objective of the study is to analyze experimentally the
vibro-acoustical consequences of the instrument with respect to the gestural strategies of the finger. To proceed,
an experimented player performs in different configurations two main gestures: the pushed and pulled gesture.
A robotic finger is used to simulate different trajectories in terms of downward displacement and velocity. The
study shows that the pushed and pulled gestures have opposed influences on the fundamental frequency and
on the sound level. The robotic finger demonstrates that a rise in sound level without a rise in fundamental
frequency is possible.
Keywords: Clavichord, gesture, robotic finger

1 INTRODUCTION
1.1 The clavichord’s paradox
The clavichord is the earliest stringed keyboard instruments, dating back to the XVth century [1]. Its sound
level is low compared to other stringed instruments, and it is the only keyboard instrument allowing for some
pitch control. When a key is pressed, the corresponding pair of strings is impacted by a small metal blade
(the tangent) placed at the end of the key. As long as the key is pressed, the tangent remains in contact with
the strings. The tangent is at the same time the nut (i.e. one extremity) of the string and the string exciter
(the string is then excited at a vibration node). It has been showed experimentally that the sound level of the
clavichord is proportional to the tangent velocity at impact [7]. So the faster the key is pressed, the louder
the sound becomes. However, when a key is pressed with a high velocity, the key’s displacement tends to be
higher. The tangent raises the string, then increases its tension, and thereby increases the vibration fundamental
frequency. As a result, playing louder ends up in raising the pitch, if the key is pressed in a simple vertical
motion. To control independently loudness and intonation would require a paradoxical gesture: at the tangent-
string contact, the tangent should have enough velocity, but should not raise the string. In other words, the key
should transfer all the tangent momentum to the string, but without raising it, or losing contact. This dependence
between loudness and pitch accuracy is coined "the clavichord’s paradox"[4, 5]. It is difficult, at least for human
players, to achieve exactly such a motion. However compromises between tangent impact velocity and string
displacement are possible.

1.2 Historical clavichord techniques
The clavichord is considered as the most demanding among keyboards instruments in terms of finger control.
This is because every nuance of pressure of the finger on the key is likely to change loudness and intonation.
In addition both finger velocity and displacement must be controlled because of the clavichord’s paradox. To



Figure 1. Photo from above of the Hubert clavichord.

deal with these constraints, specific performance practice have been elaborated. Because of these constraints,
the clavichord has always been highly praised as a pedagogical instrument. Several texts describing clavichord
performance around Johann Sebastian Bach’s circle, "Every Players first Grammatica" to quote J.G. Walther
(1732) (see [12], page 169), mention a specific technique called "Schnellen" [11], which can be translated in
French by "tire" [5] and in English by "pulled" (see for instance, J.J. Quantz, 1752, C.P.E. Bach 1752, Forkel
1802). In this technique, the finger tip is drawn back quickly after contact with the key, in a sliding motion.

1.3 Measurement and simulation of fingers motions
In a preceding work [4], the effect of vertical finger motion ("pushing motion") and sliding finger motion
("pulling") on loudness and pitch of clavichord tones have been studied. It has been shown that the pulling ges-
ture is a better compromise for dealing with the clavichord’s paradox: loudness and pitch are controlled more
independently with pulled than with pushed motions. The aim of the present work is to study the clavichord’s
paradox with the help of new measurement techniques and robotic simulation: 1/ to measure accurately finger
trajectories and their consequences on vibration and sound patterns (Section 2); 2/ to reproduce these trajec-
tories using a robotic finger, in order to study the limits of the clavichord’s paradox, and then the "optimal"
trajectories, decoupling key velocity at impact and string displacement (Section 3).

2 MEASUREMENTS OF FINGER AND VIBRATORY MOTIONS
2.1 Experimental setup
The instrument under study has been built by C. d’Alessandro and C. Besnainou, and completed in 2007 (at
The Paris Workshop, led by M. Ducornet, in Montreuil). It is based on a kit designed by E. Dancet and M.
Ducornet after XVIIIth century unfretted clavichord models by G. Hubert. The instrument is not an exact copy
of an historical model. It has been built especially for acoustic investigations, but it has occasionally been
played in concert. The instrument has 51 keys, from C to d3, with double strings in brass. Its dimensions are
1267 mm x 358 mm x 112 mm. It is tuned at A=415 Hz, in a Kirnberger II temperament. Vibrating string
lengths C = 1097mm, c = 926mm, c1 = 509mm, c2 = 262mm, c3 = 122mm.
The objective is to measure the vibration of the excited string resulting from the motion of the musician’s
finger. In preceding works, measurements were performed with the help of an accelerometer near the tangent,
a string-tangent contact signal and a measurement microphone. It appeared necessary to measure directly the
finger motion and the string motion, using non-invasive measurement devices. Finger motions are filmed by a
high-speed camera (Phantom Miro M 120) with a 2000 frame per second rate. Several marks are placed on the
finger. Trajectories of these marks are estimated thanks to image processing.
String vibrations are measured with the help of calibrated opto-switch sensors [8]. These sensors are optical



forks, positioned around the string. The string motion in one direction is measured with accuracy and without
contact. Only the vertical displacement of the string is considered here (although the horizontal displacement
can also be significant). The string chosen for our measurements is the G2 string (length is 70 cm, fundamental
frequency 185 Hz). The sensor is placed at 2 cm from the extremity of the string, near the bridge in order to
be within its measurement range. Sound pressure is measured with the help of an omnidirectional DPA 4006-
TL microphone placed at 30 cm above the soundboard. A set of 8 trajectories are recorded, using index and
middle fingers, pulled and pushed motions for long and short notes.
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Figure 2. (Top) Images of the pushed (left-hand side) and the pulled gesture (right-hand side) performed by
the index finger. (Bottom) Trajectories of the pushed (left-hand side) and the pulled gesture (right-hand side)
performed by the index finger (with tb the beginning time and te the ending time).

2.2 Results
In figure 2, we used the videos to extract the trajectories representative of the two distinct motions : the pushed
and pulled gestures. The pushed motion refers to a vertical trajectory, the finger going mostly downward.
The pulled motion corresponds to a vertical and horizontal trajectory, the finger sliding on the key and going
downward at the same time. Figure 2 displays a selection of extracted trajectories. Note that the key depression
is shallower in the second case.
Example of string vibration pattern are displayed in figure 3 and 4 for the pushed and pulled gestures by the
index finger. As the sensor is placed near the bridge, the vibratory motion is of small amplitude, about 0.2 mm.
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Figure 3. Vibratory signal of the G2 string excited by means of the two different trajectories done by the index
finger with a short length (left-hand side), with a zoom at the beginning of the signals (right-hand side).
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Figure 4. Vibratory signal of the G2 string excited by means of the two different trajectories done by the index
finger with a long length (left-hand side), with a zoom at the beginning of the signals (right-hand side).

The string height is also small at this position, about 0.2-0.3 mm. It is much larger at the tangent position.
The string is much more elevated in the case of the pushed gesture than the pulled one (see figure 3 and
4). Because of this difference in string height, the string tension and then the sound fundamental frequency
is higher for the pulled motion. Note that the vibration amplitude is also larger in the case of the pushed
gesture, resulting in a louder tone. Fundamental frequency is measured on the sound and vibration signals
using the Yin algorithm [6] implemented in Matlab. Fundamental frequency with respect to time (G2 string) is
displayed in figure 5. As predicted, the fundamental frequency is higher for the pushed gesture compared to
the pulled gesture. The difference between the pushed and the pulled gesture is more than 4 cents for some
conditions. Such a difference is perceptually noticeable. Fundamental frequency gives information about the
way the musician deals with the contact between the tangent and the string with respect to time. In figure 5,
one can observe that the fundamental frequency for the pushed gesture decreases with respect to time, whereas
that of the pulled gesture remains around the same fundamental frequency although with some little hills. This
shows that the key control differs for both gestures. These variations of finger depth after the string-tangent
contact are certainly perceived in terms of quality of touch.
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Figure 5. Fundamental frequency of the signals in the case of the pushed and pulled gesture done by the middle
finger and the index finger (left-hand side). Sound level of the different exciting configurations (right-hand side)
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Figure 6. Measurement devices: (left-hand side) optical forks for string displacement. (right-hand side) DRoPi-
Crobotic finger for key trajectory control.

The sound level in dB for the different microphone signals are displayed in figure 5 (integration time 250 ms).
Pushed gestures produce higher sound levels than pulled gestures. This has already been observed on the signal
amplitude in figure 3 and 4.
In summary, different gestures, corresponding to different finger trajectories, are producing different vibratory
patterns of the string, and then different sounds. In the small set of recordings available, the pushed motions
always produce a larger string displacement : the string is always raised higher, and the amplitude of vibration
is larger. A larger amplitude of vibration results in a louder sound. A higher string height results in a higher
fundamental frequency. For the same reasons, the finger motion in the case of pulled gestures gives lower
fundamental frequencies and also weaker sounds. Note that in previous studies it has been shown that pulled
motions, to some extent, allows for independent loudness and pitch control, a result that cannot be observed
here, because no sample have similar loudness. These measurements are the first direct measurements of string
height, and are in good agreement with the theory developed in [7].



3 ROBOTIC SIMULATION OF FINGERS MOTIONS
3.1 Experimental setup: the robotic finger
Measurements of finger motion show the dependence between string height, sound radiated and fundamental
frequency. As predicted by the clavichord’s paradox, it seems difficult to control simultaneously the key (then
tangent, then string) velocity and displacement. The pulled motion provides a better control and a better man-
agement of the clavichord’s paradox, because the finger trajectory is more complex: pressure on the string can
be released after the tangent-string impact.
It is interesting to study the clavichord’s paradox with the help of controlled and reproducible key trajectories.
For this purpous, a robotic finger is used. The DROPIC robot [9] has been initially developed for simulation of
finger trajectories in plucking gesture of harps [3, 2]. It has been applied to keyboard instruments in studies of
the plectra effects for the harpsichord. [10]. The robotic finger has two degrees of freedom. It can reproduce
any trajectory in a plane parallel to the axis of the key. Note that the key itself has only one degree of freedom.
The effort for depressing a key is relatively weak, less than 2 N.
For a given starting trajectory, two parameters are considered and modified: downward displacement (result-
ing in string height) and its maximal velocity (corresponding to loudness). The A2 string (length is 59.1 cm,
fundamental frequency 205Hz) is studied. The initial position of the robotic finger above the key is set be-
fore modifying either the velocity or the displacement. A joint measure of the string vibration by means of
calibrated opto-switch sensors is performed. Three different velocities with the same displacement, and three
different downward displacements with the same velocity have been programmed. The displacement of the key
corresponding to a referent trajectory performed by the robotic finger is displayed in figure 8. The trajectory
has a typical shape with a notch followed by a plateau. It is possible to adjust independently the depth of the
notch and the height of the plateau, that correspond roughly to the key velocity at contact and to the string
height.

3.2 Trajectories simulation and sound results
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Figure 7. Tracking of the fundamental frequencies of the signals in the case where we modify the displacement
of the key (left-hand side) and in the case where we modify its velocity (right-hand side).

Systematic variations of displacement and velocity are performed. Note that in this second experiment, the note
studied is A2 instead of G2 studied in Section 2. These two notes are close enough to be compared. In figure
8, the key velocity is varying but the key depth is constant. The key depth is about 5-6 mm in this case. The
resulting average string elevation is 0.1 mm.
Figure 7 displays the fundamental frequency of the different signals measured when the key is played with
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Figure 8. Temporal signals of the A2 string produced by the different velocities of the key (left-hand side).
Displacement of the key in the case of the referent trajectory performed by the robotic finger (right-hand side).

the robotic finger. The resulting fundamental frequency does not change, while the amplitude of the signal
increases. This shows that the trajectory of the finger is well repeated by the robot no matter the change in
velocity. Moreover, it demonstrates that the clavichord’s paradox can be managed with appropriate trajectories.
These results also confirm that the displacement of the key is directly linked to the string’s fundamental fre-
quency. Conversely, changing the displacement of the key but maintaining the same velocity produces changes
in fundamental frequency. However, fundamental frequency is very stable in the case of the robotic finger
compared to a musician’s finger (compare figures 7 and 5).
These results demonstrate that a robotic control is able to manage the clavichord’s paradox. Whether human
and robotic control are comparable is questionable. In the present experiment, the robotic finger has no haptic
or sound feedback: the trajectories are optimized directly, without any perceptual loop. On the contrary, human
control relies much on audio and haptic feedback. The musicians tend to control the contact between the tangent
and the string after the excitation by modifying the key position according to the perceived effect of their initial
motion. This variation in time of the key position is probably an essential feature of the specific style of a
musical performance. Another difference between the robotic finger and human finger is their mechanical and
dynamical properties. Human fingers have a much limited range of velocity and acceleration than the robot.
Oscillations of the key-string-finger system that are observed in human control [7] seem negligible in the case
of the robotic finger (see the displacement of the key in figure 8).

4 CONCLUSIONS
This work presents two experiments addressing the clavichord’s paradox, i.e. simultaneous control of velocity
and displacement of the string and tangent when playing the instrument. In a first part, new measurements
using a new methodology is used. Two types of finger trajectories have been used for performing two different
motions : the pushed and the pulled gesture. This experiment confirms the dependence of displacement and
velocity, and the possibility to modulate this dependence with appropriate gestures. In the second experiment, a
robotic finger is used to further optimize the key trajectory, by modifying in terms of velocity and downward
displacement a referent trajectory. In this case it seems possible to manage the clavichord’s paradox, and to
control independently velocity and displacement, i.e. intonation and loudness of the instrument. Whether a
musician would be able to effectively perform this type of movement remains an open question.
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Abstract
The objective of this PhD is to study the vibro-acoustic behaviour of the clavichord, from its ex-
citation system to the sympathetic strings vibration. The Udwadia-Kalaba formulation is used to
model the instrument as a coupled mechanical system, reduced to its main vibratory substructures:
the key-tangent substructure, the string, the damper and the bridge-soundboard. The Kirchhoff-
Carrier model is introduced to model the non-linear geometric deformation of the clavichord string
responsible for the change in its fundamental frequency when it is excited by the tangent. Sim-
ulation of this model give satisfactory results compared to the measurements and experimental
results found in the literature. The main features of the excitation system are satisfactorily re-
produced: the pitch shift caused by the string uplift, the linearity between the vibratory level
and the logarithm of the impact velocity as well as the link between spectral slope and impact
velocity. The "clavichord paradox", referring to the demanding gesture of the musician’s finger to
balance between pitch shift and sound level, is studied experimentally with the help of a clavichord
player and by means of a robotic finger on a specific clavichord, made from a model conceived by
C.G. Hubert. Sympathetic string vibration in the clavichord create two different vibro-acoustic
effects: the reverberation effect similar to that found in room acoustics, and string resonance oc-
curring when frequency coincidence between two string partials take place. These two effects are
studied experimentally and numerically. The comparison between simulations and measurements
are consistent and put forward the veering of the partial frequency and damping at resonance. It
highlights the relation between the mechanical properties of the string-bridge coupling and string
resonance, putting forward the acoustic features of this instrument and the adjustment part done
by the instrument maker.

Keywords : clavichord, Udwadia-Kalaba formulation, coupled system, experimental study,
sympathy, reverberation, resonance

Résumé
L’objectif de cette thèse consiste à étudier le comportement vibro-acoustique du clavicorde, depuis
le système d’excitation jusqu’à la vibration des cordes sympathiques. La formulation Udwadia-
Kalaba est utilisée pour modéliser l’instrument comme un système mécanique couplé réduit à ses
sous-structures vibratoires principales : la sous-structure tangente-touche, la corde, les étouffoirs
et le système chevalet-table. Le modèle de Kirchhoff-Carrier est introduit pour modéliser les dé-
formations géométriques non-linéaires de la corde du clavicorde à l’origine du changement de sa
fréquence fondamentale lors de l’excitation par la tangente. La simulation du modèle donne des
résultats satisfaisants comparés aux mesures et aux résultats expérimentaux de la littérature. Les
caractéristiques principales de l’excitation sont reproduites : le changement de fréquence fonda-
mentale causé par le soulèvement de la corde, la linéarité entre le niveau vibratoire et le logarithme
de la vitesse d’impact, ainsi que le lien entre la pente spectrale et la vitesse d’impact. Le « paradoxe
du clavicorde », faisant référence à l’exigence du geste du doigt du musicien en vue d’un compromis
entre l’augmentation de la fréquence fondamentale et le niveau sonore, est étudié expérimentale-
ment avec l’aide d’un clavicordiste et d’un doigt robotique sur un clavicorde d’étude, fabriqué à
partir d’un modèle de C.G. Hubert. La vibration des cordes sympathiques du clavicorde créent
deux effets vibro-acoustiques différents : l’effet de réverbération similaire à celui présent en acous-
tique des salles, et la résonance se manifestant dès lors qu’une coïncidence fréquentielle entre deux
partiels de corde a lieu. Ces deux effets sont étudiés expérimentalement et numériquement. La
comparaison entre les simulation et les mesures sont cohérentes et mettent en évidence la déviation
de la fréquence et de l’amortissement du partiel à la résonance. Ceci montre la relation entre les
propriétés mécaniques du couplage corde-chevalet et la résonance de la corde, mettant en avant les
spécificités sonores de cet instrument et la part de réglage du facteur.

Mots-clefs : clavicorde, formulation Udwadia-Kalaba, système couplé, étude expérimentale,
sympathie, réverbération, résonance.
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