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Résumé

Cette thèse est constituée de trois essais indépendants, chacun portant sur un

aspect théorique ou empirique relatif à la question des connaissances provenant

d’experts.

Dans le premier chapitre de cette thèse, j’étudie la transmission de connais-

sances scientifiques entre un expert et un décideur. Un modèle scientifique est

formalisé par une distribution de probabilité sur un ensemble de scénarios pos-

sibles. L’expert est supposé connaître le modèle le plus probable parmi un en-

semble possible et cherche à le communiquer au décideur. Toutefois, parce que

ces modèles sont trop complexes, l’expert ne peut pas certifier cette information

au décideur. Je montre que s’il y a une différence d’intérêt entre les deux partis,

à l’équilibre, la transmission de l’information est toujours partielle. L’expert ne

pourra jamais communiquer de manière crédible quel modèle est le plus proba-

ble. Toutefois, il pourra désigner un ensemble de modèles contenant celui-ci. La

taille de cet ensemble, et donc le degré d’information qu’il pourra communiquer,

dépend à la fois de la différence d’intérêt entre les partis mais aussi du consen-

sus entre les modèles scientifiques. Si la science n’est pas suffisamment consen-

suelle, il y a une asymétrie dans la transmission de l’information. Si le modèle le

plus probable est parmi les plus optimistes, la transmission d’information dépend

uniquement de la différence d’intérêt entre les partis. Mais s’il est parmi les plus

pessimistes, aucune transmission d’information n’est possible.

Dans le second chapitre de cette thèse, mes co-auteurs et moi mesurons ex-

périmentalement les croyances de sujets sur des événements dont ils sont plus ou
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moins familiers. Pour ce faire, nous proposons une méthode novatrice d’identification

des croyances des sujets qui s’appuie sur l’utilisation d’intervalles de probabilités

objectives. Pour chaque événement, notre approche nous permet d’éliciter des en-

sembles de distribution de probabilités majoritairement non dégénérés. De plus,

plus les événements sont familiers, plus les intervalles élicités sont restreints.

Ainsi, plus nos sujets se sentent experts sur une question, plus leurs croyances

sont précises. Notre approche nous permet également d’estimer la manière dont

ces sujets agissent en correspondance avec leurs croyances. Ce faisant, nous par-

venons à la première estimation du coefficient de mixture α dans le modèle de

décision α-maxmin EU de Hurwicz, en contrôlant par les croyances des sujets.

Dans le troisième chapitre de cette thèse, je reprends l’hypothèse que la con-

naissance scientifique est trop complexe pour être certifiée à des non-experts.

J’étudie les conséquences de celle-ci dans un cas appliqué : celui du changement

climatique. Je modélise le problème de la sur-émission de gaz à effet de serre

(GES) comme un jeu de contribution à un mal public. Dans ce jeu, tous les con-

tributeurs gagnent individuellement à émettre, car les GES sont corrélés à la con-

sommation de biens, mais tous les contributeurs souffrent du total des émissions

car celles-ci sont responsables de dommages climatiques. A l’équilibre, le niveau

d’émission est toujours trop élevé, car chaque contributeur ne tient pas compte

des externalités négatives dont il est responsable. Les contributeurs ne sont pas

des experts du climats, et leurs connaissances sur les dommages auxquels ils

s’exposent s’appuient uniquement sur un expert. Ce dernier tient compte des

externalités des contributeurs, et voudrait toujours un niveau d’émission plus

bas que celui obtenu à l’équilibre par les contributeurs. Il y a donc toujours une

différence d’intérêt entre l’expert et les non-experts. Dans ce chapitre, je prouve

qu’aucune transmission d’information ne peut avoir lieu à l’équilibre. Ce résultat

montre que la seule parole de l’expert, sans pouvoir de certification, ne suffit pas

lorsqu’il s’agit de communiquer sur le risque climatique.



SUMMARY

This thesis consists of three independent essays, each of which focuses on a theo-

retical or empirical aspect related to expert-based knowledge.

In the first chapter of this thesis, I study the transmission of scientific knowl-

edge between an expert and a decision maker. A scientific model is formalised

by a probability distribution over a set of possible scenarios. The expert is as-

sumed to know the most likely model among a set of possible models and tries

to communicate it to the decision maker. However, because these models are too

complex, the expert cannot certify this information to the decision maker. I show

that if there is a difference of interest between both parties, at equilibrium, the

transmission of information is always partial. The expert will never be able to

credibly communicate which model is the most likely. However, he will be able

to designate a set of models containing it. The size of this set, and thus the de-

gree of information that can be communicated, depends both on the difference of

interest between the parties and on the consensus among scientific models. If the

science is not sufficiently consensual, there is an asymmetry in the transmission

of information. If the most likely model is among the most optimistic, the trans-

mission of information depends solely on the difference in interest between the

parties. But if it is among the most pessimistic, no information transmission is

possible.

In the second chapter of this thesis, my co-authors and I experimentally mea-

sure subjects’ beliefs about events with which they are more or less familiar. To

do so, we propose a novel method for identifying subjects’ beliefs that relies on
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the use of objective probability intervals. For each event, our approach allows us

to elicit mostly non-degenerate probability distribution sets. Moreover, we find

that the more familiar the events, the smaller the elicited intervals. Thus, the more

our subjects believe themselves to have expertise on a question, the more accurate

their beliefs are. Our approach also allows us to estimate how these subjects act

in correspondence with their beliefs. In doing so, we arrive at the first estimate of

the mixture coefficient α in Hurwicz’s α-maxmin EU decision model, controlling

for the subjects’ beliefs.

In the third chapter of this thesis, I once again assume that scientific knowl-

edge is too complex to be certified to non-experts. I study the consequences of

this assumption in the case of climate change mitigation. I model the problem of

greenhouse gas (GHG) over-emission as a game of contribution to a public bad.

In this game, all contributors individually gain from emitting, because GHGs are

correlated with the consumption of goods, but all contributors suffer from the to-

tal level of emissions because these emissions are responsible for climate damage.

In equilibrium, the level of emissions is always too high, because each contributor

does not take into account the negative externalities for which it is responsible.

The contributors are not climate experts, and their knowledge of the damage they

are exposing themselves to is based solely on an expert. The expert takes into ac-

count the externalities of the contributors, and would always want a lower emis-

sion level than the one obtained in equilibrium by the contributors. Thus, there

is always a difference of interest between the expert and the non-experts. In this

chapter I prove that no transmission of information can take place at equilibrium.

This result shows that the word of the expert alone, without certification power,

is not enough when it comes to communicating about climate risk.
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INTRODUCTION GENERALE1

Alors que nous vivons à une époque où la somme des travaux scientifiques n’a

jamais été aussi importante, il semble, paradoxalement, que notre compréhen-

sion individuelle du monde soit chaque jour plus partielle. Comprendre le fonc-

tionnement d’une simple montre GPS demande par exemple de maîtriser les

principes de l’électronique, de la programmation informatique mais aussi de la

relativité générale. Fort peu d’entre nous maîtrisent suffisamment de pans de la

science pour en comprendre pleinement le fonctionnement. Cet apparent para-

doxe provient du fait que l’avancement collectif de la science n’a été possible

qu’au prix d’une division croissante de la compréhension des théories scientifiques.

Alors que le fonctionnement du monde est toujours plus complexe et que le savoir

scientifique sous-jacent à son organisation s’éparpille chaque jour davantage en-

tre une multitude d’experts, le degré de connaissance du monde nous possédons

individuellement n’a jamais été aussi incertain. Autrement dit, on peut se de-

mander dans quelle mesure nous pouvons dire que nous savons où nous nous

trouvons uniquement en nous appuyant sur une montre GPS, alors que nous ne

sommes experts ni en électronique, ni en programmation informatique, ni en rel-

ativité générale.

Bien que les travaux développés dans cette thèse relèvent de la science économique,

leur ambition est de contribuer à la question de la connaissance, au temps de la

division du savoir. L’accès à des croyances sur le monde tel qu’il est, ou "croy-

ance vraies", est à la fois l’ambition fondamentale de l’approche scientifique et

l’objet d’une perpétuelle remise en cause. Toute l’entreprise scientifique consiste

1Due to legal restrictions, this introduction had to be written in french. An english version can
be found here.

1

https://www.dropbox.com/s/6znd5c161k3n2x1/phdintroduction.pdf?dl=0


General Introduction 2

à proposer des méthodes de justification de croyances sur le monde suffisamment

robustes pour pouvoir être tenues pour des connaissances. Traditionnellement,

en philosophie de la connaissance, cette justification ne peut provenir que de la

perception ou d’un raisonnement logique que le sujet a formulé lui même. Cette

position, notamment défendue par Kant (1787) dans Critique de la raison pure ,

est celle de l’indépendance épistémique. Elle impose que pour accéder à la con-

naissance, le sujet doit avoir une maîtrise directe des justifications sous-tendant

la proposition considérée afin de pouvoir s’appuyer uniquement sur son propre

jugement.

Or, il apparaîtra sans doute au lecteur qu’en approchant la connaissance sous

cet angle, nous ne pouvons pas dire que nous savons où nous nous trouvons,

uniquement grâce à une montre GPS. Autrement dit, dans cet exemple, et dans

un grand nombre de cas similaires, l’exigence d’indépendance épistémique est

trop restrictive pour qu’on puisse parler de connaissance. Plus généralement, ce

constat nous ramène vers notre paradoxe initial: si l’on se tient à la seule posi-

tion kantienne, la très vaste majorité des propositions que nous tenons pour des

connaissances perdrait ce statut. Il faudrait alors dire que plus la science avance

collectivement, moins nous en savons sur le monde individuellement. Pour au-

tant, on peut penser que c’est l’inverse qui se produit: avec l’avancée de la science

nous avons le sentiment d’en savoir plus sur le monde. Il faudrait alors dire que

plus nous avançons dans l’Histoire, plus les sociétés sont irrationnelles car elles

tiennent pour des connaissances de plus en plus de choses dont la justification

n’est pas épistémiquement autonome.

C’est ce constat paradoxal qui a été fait par John Hardwig dans Epistemic De-

pendence (Hardwig, 1985). Pour le dépasser, Hardwig propose dans cet article, et

dans The role of trust in knowledge (Hardwig, 1991), une approche alternative de la

connaissance : on peut être justifié à tenir une proposition provenant d’un autre

individu pour connaissance si on est justifié à croire ceux qui la soutiennent et que

ceux-ci sont des autorités intellectuelles en la matière. Autrement dit, il est possi-

ble de fonder nos connaissances sur des experts. Par cette proposition, Hardwig

s’affranchit de l’exigence kantienne d’indépendance épistémique en introduisant



3 General Introduction

une troisième source de justification pour la connaissance : le témoignage.

La proposition de Hardwig a notamment contribué au développement récent

de l’épistémologie du témoignage. Pour les épistémologues du témoignage 1, la

déférence épistémique à autrui ne peut être justifiée que si son bénéficiaire est à la

fois plus compétent que soi-même et que le déférent est rationnellement justifié

à accorder sa confiance. Dans cette thèse, je me place à la suite de cette approche

de la connaissance et je propose d’approfondir l’étude du lien de confiance entre

expert et non-expert. Pour qui veut fonder la connaissance sur le témoignage, il

est d’une importance capitale d’étudier le lien de confiance entre expert et non-

expert même lorsque les intérêts de chaque parti sont différents. Dans un grand

nombre de cas, il serait en effet naïf de croire que ces intérêts sont alignés. Pour

prendre l’exemple initial de la montre GPS, il est raisonnable de penser que son

concepteur a intérêt à nous convaincre que c’est bien notre position que l’appareil

va afficher. En supposant qu’il est un expert concernant les montre GPS, dans

quelle mesure pouvons nous nous fier à lui concernant les propriétés de sa montre

?

Pour étudier les déterminants de la confiance que nous pouvons avoir dans

les experts, il a été souvent reproché à la philosophie des sciences de ne pas suff-

isamment tenir compte de la dimension sociale et politique de l’activité scien-

tifique (Barberousse et al., 2011).2 C’est notamment sur ces aspects que se con-

centrent les premier et troisièmes chapitres de cette thèse. Pour ce faire, l’usage

de la théorie des jeux m’a paru prometteuse, en raison des possibilités qu’elle of-

fre pour représenter les comportements individuels dans un cadre stratégique.

En m’engageant dans cette voie, j’ai donc pris le parti de proposer la notion

d’équilibre stratégique comme justification à une dépendance épistémique. Ainsi,

un non-expert sera justifié à croire une proposition que lui transmet un expert

si ce message est une action d’équilibre. Un avantage de cette approche est le

formalisme mathématique qui l’accompagne. Celui-ci permet de décrire le degré

1Voir notamment Goldman (2001), Coady (1992) et Burge (1993)
2Cette critique a notamment été formulée par les fondateurs des science studies, discipline

entièrement empirique qui s’est notamment développée à partir des du programme proposé dans
Bloor (1976) et Collins (1981) .



General Introduction 4

d’information qu’un non-expert est stratégiquement justifié à croire. Autrement

dit, même si un expert a une connaissance parfaite de son sujet, un non-expert,

s’il est son dépendant épistémique, ne sera pas nécessairement justifié au même

degré de connaissance. Cette thèse se propose d’étudier ce degré de justification

comme étant le résultat d’une interaction stratégique entre un émetteur (sachant)

et un receveur (dépendant). A la suite de Crawford and Sobel (1982), tenir une

proposition provenant d’un expert pour vrai sera justifiée pour le dépendant si, à

l’équilibre, l’expert a intérêt à transmettre cette proposition.

Dans le premier chapitre de cette thèse, Expert-based scientific knowledge: com-

municating over models, j’étudie la transmission de connaissances scientifiques dans

ce cadre. Un modèle scientifique est formalisé par une distribution de probabil-

ité sur un ensemble de scénarios possibles. Un expert est supposé connaître le

modèle le plus probable parmi un ensemble possible et cherche à le communi-

quer à un décideur. Le décideur est le dépendant épistémique de l’expert : il ne

peut s’appuyer que sur ce dernier pour justifier ses croyances sur les modèles.

Je montre que s’il y a une différence d’intérêt entre les deux partis, à l’équilibre,

la transmission de l’information est toujours partielle. L’expert ne pourra jamais

faire accéder le décideur au même degré de connaissance que lui. Il ne pourra ja-

mais communiquer de manière crédible quel modèle est le plus probable. Toute-

fois, il pourra désigner un ensemble de modèles contenant celui-ci. La taille de

cet ensemble, et donc le degré d’information qu’il pourra communiquer, dépend

à la fois de la différence d’intérêt entre les partis mais aussi du consensus entre les

modèles scientifiques. Si la science n’est pas suffisamment consensuelle, il y a une

asymétrie dans la transmission de l’information. Si le modèle le plus probable est

parmi les plus optimistes3, la transmission d’information dépend uniquement de

la différence d’intérêt entre les partis. Mais s’il est parmi les plus pessimistes,

aucune transmission d’information n’est possible. Ces résultats suggèrent qu’en

matière de modèles scientifiques, la dépendance épistémique est possible. Mais

celle-ci implique nécessairement une forme de dilution des connaissances. S’il y a

3Optimisme et pessimisme sont ici pensés en terme d’espérance d’utilité maximale pour le
décideur. Dans l’exemple du GPS, le modèle qui prédit que la montre donne avec certitude la
position d’un décideur qui cherche à se localiser est le plus optimiste possible. Un modèle qui
prédit que la montre n’a aucune capacité de localisation est plus pessimiste pour le décideur.
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une différence d’intérêt entre expert et non-expert, ce dernier n’est jamais justifié

au même degré de connaissance que l’expert. Autrement dit, les connaissance du

dépendant seront toujours plus imprécises.

Il semble donc que, par la voie du témoignage, nous ne soyons justifiés qu’à

des croyances imprécises sur le monde. Je ne suis généralement pas justifié à

croire que je connais le modèle scientifique le plus probable pour expliquer le

fonctionnement de ma montre GPS, mais seulement que je le connais avec une

certaine probabilité. Se pose alors la question de savoir dans quelle mesure on

peut encore parler de connaissance. Nous avons jusqu’ici tenu une connaissance

pour une croyance vraie et justifiée sur le monde. Comment une croyance peut-

elle être vraie et seulement probable à la fois ? On attribue souvent à David Hume

la paternité de ce débat. Avant Hume, la définition qui était donné à la vérité est

celle que l’on nomme désormais correspondantiste4. Au sens correspondantiste,

un énoncé est vrai si et seulement s’il correspond à l’objet auquel il se réfère dans

la réalité. Dans la section X de l’Enquête sur l’entendement humain (Hume, 1748),

Hume fait valoir que cette approche de la vérité est inaccessible à l’expérience.

Par l’expérience nous n’avons accès qu’à des conjonctions d’événements, à leurs

connexions habituelles, mais jamais aux lois certaines de la nature. La position

de Hume ouvre la voie à une position plus pragmatique concernant la notion de

vérité dans le concept de connaissance: seule l’inférence, au sens des corrélations

factuelles, nous est accessible et peut remplir le rôle laissé vide par la vérité. Avec

Hume, il n’est plus nécessaire de chercher à accéder à la vérité pour fonder une

connaissance. Il suffit de s’appuyer sur la notion de conjonction des événements.

On peut tenir une proposition pour connue si on observe un grand nombre de

conjonctions d’événements en sa faveur. Autrement dit, pour ceux qui prendront

la suite de Hume, une connaissance est une croyance suffisamment probable et

suffisamment justifiée sur le monde. Nous avons vu dans le premier chapitre que

la manière dont nous justifions nos croyances peut influer sur leur probabilité.

Pour déterminer si nous pouvons fonder nos connaissances sur des experts il

nous faut donc déterminer quand une croyance est suffisamment probable pour

pouvoir parler de connaissance.

4Voir par exemple le Théétète de Platon
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Cette question est encore largement débattue dans la philosophie de la con-

naissance contemporaine. Une des réponses proposé est celle du courant prag-

matiste et est notamment défendue par les philosophes Fantl et McGrath dans

Knowledge in an Incertain World 2009. Considérant une proposition p, ils estiment

que " votre probabilité de p est knowledge-level si et seulement si la probabilité

de non-p ne s’oppose pas à ce que p soit mise en pratique comme base pour la

croyance ou l’action ". Autrement dit, p peut être tenue pour connaissance si et

seulement si aucune raison qui semble rationnellement justifiée de croire que p est

fausse ne s’oppose à agir en s’appuyant sur p. Ainsi, si je suis justifié à croire que

la position que me donne ma montre a au moins 90% de chance d’être la bonne,

je peux dire que je connais ma position si les actions que je pourrais entreprendre

en m’appuyant sur cette croyance peuvent s’accommoder d’une probabilité de

10% pour que je me trompe. Le lecteur non initié trouvera sans doute que Fantl et

McGrath opèrent un retournement inhabituel pour définir la connaissance5. Con-

naître la proposition p n’est plus un état mental indépendant qui peut déboucher

sur une action, c’est une action qui peut faire de la proposition p un état mental

que l’on qualifiera de connaissance.

Dans le second chapitre de cette thèse, Eliciting Multiple Prior Beliefs, mes

co-auteurs et moi mesurons expérimentalement les croyances de sujets sur des

événements dont ils sont plus ou moins familiers. Notre approche s’appuie sur

le champs de la théorie de la décision, qui étudie la décision individuelle lorsque

l’incertitude est élevée. En particulier, nous nous appuyons sur l’approche des

a priori multiples introduit par Gilboa and Schmeidler (1989a), qui permettent

de rendre compte d’imprécision dans les croyances. Dans cette expérience, nous

proposons une méthode novatrice d’identification des croyances des sujets qui

s’appuie sur l’utilisation d’intervalles de probabilités objectives. Pour chaque

événement, notre approche nous a permis d’éliciter des ensembles de distribu-

tion de probabilités. La méthode trouve une prédominance d’intervalles de prob-

abilité non dégénérés parmi les sujets dans tous les cas explorés : nos sujets ont

des croyances imprécises. Plus les événements sont familiers, plus ces intervalles

5Cet angle est en réalité propre au courant pragmatiste selon Weatherson (2012), qui le qualifie
de pragmatic encroachement.
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sont restreints. Ainsi, plus nos sujets se sentent experts sur une question, plus

leurs croyances sont précises. Notre approche nous permet également d’estimer

la manière dont ces sujets agissent en correspondance avec leurs croyances. Nous

trouvons alors que, étant donnée une croyance qui est un intervalle de probabil-

ité, les sujets sont disposés à agir en s’appuyant sur elle lorsque, même pour une

probabilité basse de cet intervalle, cette action leur paraît justifiable. On peut

donc dire que dans ce chapitre nous mesurons les propositions que nos sujets ti-

ennent pour des connaissances, au sens de Fantl et McGrath. La méthode que

nous avons employée peut servir de mécanisme d’identification des croyances

pour des experts, par exemple sur des sujets complexes en science du climat.

Ce type d’identification est, par exemple, très important dans la calibration de

modèles de prospectives sur les impacts du changement climatique. Les pré-

dictions donnés par ces modèles reposent en effet souvent sur la calibration de

paramètres de départ qui ne peut se faire qu’à dire d’expert. La manière dont le

jugement de ces derniers est mesuré a un impact déterminant sur l’estimation de

ces paramètres.6 En suivant Fantl et McGrath, on peut en réalité dire que plus

que des croyances, cette méthode nous permet également de mesurer les propo-

sitions que ces experts tiennent pour des connaissances. En particulier, dans le

cadre de la famille de modèle de décision α-MEU (Ghirardato et al., 2004b), pour

une proposition donnée, notre approche permet à la fois de mesurer l’ensemble

d’a priori d’un sujet et le paramètre α qui va guider son action en fonction de ses

croyances. Ainsi, on pourra dire par exemple qu’un sujet estime qu’il y a entre

80% et 90% de chances pour que la position donnée par sa montre GPS soit juste.

Mais aussi que, si son α = 0.9, il considère connaître sa position si l’action qu’il

doit prendre en s’appuyant sur cette connaissance peut admettre une probabilité

d’erreur d’au plus 11 points de pourcentage.

En résumé, les deux premiers chapitres de cette thèse ont cherché à explorer

les raisons pour lesquelles nous pouvons fonder nos connaissances sur les ex-

perts. Dans mon premier chapitre j’ai défendu l’idée qu’en tant que non-experts

nous n’étions généralement justifiés qu’à des croyances sur le monde plus impré-

cises que celles des experts. A la suite de Fantl et McGrath, j’ai adhéré à l’idée que

6Le lecteur pourra trouver plus de détail dans Morgan et al. (1992) ou Cooke (1991).
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celles-ci sont légitimes à êtres tenues pour des connaissances dans la mesure où

les actions que nous pourrions entreprendre en nous appuyant sur elles peuvent

s’accommoder de la probabilité que nous nous trompions. Il est ainsi possible

qu’une même croyance soit suffisamment justifiée pour être tenue pour connais-

sance en ce qui concerne une action, mais pas en ce qui concerne une autre. Pour

les décisions de tous les jours, nous pensons généralement que nous connaissons

notre position grâce à notre montre GPS. Mais si cette position doit nous servir à

aiguiller les secours venus nous sauver en montagne, et qu’une erreur causerait

notre perte, dirons-nous toujours que nous connaissons notre position ? Les ré-

sultats empiriques obtenus dans mon second chapitre suggèrent que la réponse

sera oui si, même en étant pessimiste, je choisis de m’appuyer sur ma montre

pour donner ma position aux secours.

Dans le troisième chapitre de cette thèse, Communicating over climate risk, j’explore

les conséquences de cette approche de la dépendance épistémique aux experts

dans un cas pratique : celui du changement climatique. Je modélise le problème

de la sur-émission de gaz à effet de serre (GES) comme un jeu de contribution

à un mal public. Dans ce jeu, tous les contributeurs gagnent individuellement à

émettre, car les GES sont corrélés à la consommation de biens, mais tous les con-

tributeurs souffrent du total des émissions car celles-ci sont responsables de dom-

mages climatiques. A l’équilibre, le niveau d’émission est toujours trop élevé, car

chaque contributeur ne tient pas compte des externalités négatives dont il est

responsable. Les contributeurs ne sont pas des experts du climats, et leurs con-

naissances sur les dommages auxquels ils s’exposent s’appuient uniquement sur

un expert. Ce dernier tient compte des externalités des contributeurs, et voudrait

toujours un niveau d’émission plus bas que celui obtenu à l’équilibre par les con-

tributeurs. Il y a donc toujours une différence d’intérêt entre l’expert et les non-

experts. Dans ce chapitre je montre qu’aucune transmission d’information ne

peut avoir lieu à l’équilibre. L’expert n’est pas une source de connaissance pour

les contributeurs dans ce contexte. Autrement dit, le témoignage n’est pas une

source épistémique suffisamment forte pour motiver à lui seul l’action en faveur

du climat.



9 General Introduction

Ce dernier résultat est sans doute celui qui illustre le plus clairement l’importance

de poursuivre notre réflexion sur la connaissance, au temps de la division du

savoir. L’approche proposée dans cette thèse aide à comprendre pourquoi pour

tant d’entre nous, les décisions que nous impose le changement climatique sont

encore trop difficiles à prendre. Si l’on définit la connaissance par l’action, à la

manière des pragmatistes, et si l’on comprend que la division de la connaissance

implique une dépendance épistémique qui réduit la précision de nos croyances,

on prend une nouvelle mesure de la difficulté des choix environnementaux.
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1. Expert-based Scientific Knowledge:

Communicating over Models 1

Abstract

This paper studies the transmission of complex scientific knowledge. Scientific

models are formalised as probability distributions over possible scenarios. An

expert is assumed to know the most likely model and seeks to communicate it to

a decision maker, but cannot certify it. As a result, communication of scientific

knowledge is a cheap talk game over models. The decision maker is in a situ-

ation of model-uncertainty and is ambiguity sensitive. I show that information

transmission depends on both the strategic misalignment of players and the con-

sensus among scientific models. When science is divided, there is an asymmetry

in information transmission when the receiver has maxmin expected utility pref-

erences. Types below a certain threshold are necessarily pooled, regardless of the

misalignment. All equilibria of the game are outcome equivalent to a partitional

equilibria and, unlike similar models in the literature, the most informative one

is interim Pareto dominant.

1I would like to thank Jean-Marc Tallon, Stéphane Zuber, Frédéric Koessler, Massimo Mari-
nacci, Marco Ottaviani, Valentina Bossetti, Mark Le Quement, Francis Bloch, Larry Samuelson,
Loïc Berger and Guillaume Pommey for helpful discussions. I also thank seminar and conference
participants at PSE (TOM, SRE), Bocconi and FUR 2018 and Bocconi University for its hospitality.
Financial support through ANR CHOp (ANR-17-CE26-0003), ANR ADE (ANR-18-ORAR-0005-
01), ANR INDUCED (ANR-17-CE03-0008) and EUR PGSE is gratefully acknowledged.
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1.1. Introduction

We are laymen on most of the knowledge we claim to possess. Most of today’s

science is too complex for an individual to understand it at first hand. It is often

so complex that even for the experts who do understand it, it is hard to convey the

evidence supporting their claims in a convincing way. In such cases, our knowl-

edge relies much more on the word of these experts than on the evidence they

can convincingly provide. The importance of our confidence in experts is even

higher if one considers that, on topics such as climate change or the COVID-19

pandemic, science is highly uncertain. This is not only because data is scarce. The

mechanism through which tobacco causes lung cancer is well understood and

can give rise to a precise estimate of the chances of getting cancer upon smoking

a packet a day. Issues like climate change give rise to various models predicting

widely different probabilistic scenarios. The uncertainty over the models them-

selves is of a different nature than the mere randomness over outcomes that one

has to face even with a single well-established model.

In this paper, I test the expert-laymen bound of trust by studying the transmis-

sion of information in the context of this complex, uncertain science. Information

is about models, which I represent as probability distributions over states of the

world. The transmission is strategic, as the sender (the expert) does not necessar-

ily have the same interests as the receiver (the decision maker). For instance, the

expert can be concerned with externalities among decision makers on issues such

as global warming or the spread of a deadly virus. The expert reviews a set of sci-

entific models and decides which is the most accurate. This model is the expert’s

type. He then communicates its findings to the decision maker who acts upon it.

Given the strategic nature of the communication, the expert is typically not able

to truthfully reveal which model is the most accurate. The resulting uncertainty

over models creates a situation which has been extensively studied and desig-

nated as ambiguity. It calls for the use of specific ambiguity-sensitive preferences

for the decision maker.
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The game I study is in the tradition of Crawford and Sobel (1982)’s (hereafter

CS) cheap talk game. The main difference lies in the fact that communication

bears on models, seen as probability distributions over states of the world, rather

than on states themselves. I mainly focus on the cases where the receiver dis-

plays maxmin expected utility preferences (MEU) or subjective expected utility

(SEU) ones. The sender knows the state-generating model which is his type. At

equilibrium, the sender designates a set of models as containing his type. In the

SEU case, the equilibria of the game are similar to CS. But in the MEU case, the

change in the nature of information has a major impact on the outcome of the

game. Because of ambiguity aversion, the most pessimistic model is a strong

point of attraction for the receiver. When the sender’s preferred action leans to-

wards the recommended one in this model, his influence is extremely high. When

his interest is to induce an action in the opposite direction though, his influence

is nonexistent.

Two cases may arise. In the first case, no univocally worst state, in terms of

utility for the receiver, can be identified. Then, I say that science is divided be-

cause models putting a lower probability on one state do not necessarily decrease

the expected welfare. In this case, an ambiguity averse behaviour is a hedging

process against uncertainty. The receiver acts as if the worst possible combina-

tion of probabilities over states, an interior element of the set of types, would

realise. For types of senders on one side of that element, whatever the difference

of interest between both parties, the sender is unable to convey any information.

For types in the other side, the precision of information transmission depends on

the difference of interest between them. In the second case science is consensual

and ambiguity aversion consists in acting as if the state-generating model was the

one giving more weight to the univocally worst state. Communication then falls

in one of two previous categories. In both cases, it is always in the sender’s inter-

est to be as precise as he can, even after he learns his type. This second result also

strongly contrasts with the SEU case, where such incentives do not exist. Under

SEU preferences, the precision of information transmission depends only on the

difference of interest between both parties. When the latter is small, information

transmission can be almost perfect. But once the sender learns his type, he does

not always have an interest in being as informative as he can.
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Restricting attention to the popular linear-quadratic example of CS, I charac-

terise all equilibria when the receiver has both MEU and SEU preferences. In that

context I show that when the receiver is MEU, less alignment in the players’ in-

terest is required for an equilibrium with a given number of cut-off types to be

possible. Finally, I extend the model to the case of α-MEU decision-making, a

preference relation that allows to continuously vary the level of ambiguity aver-

sion. I show that, whatever the misalignment, there is a degree of ambiguity

aversion such that an absence of consensus in science leads to the asymmetry

in information transmission I observed in the MEU case. This result suggests a

form of robustness of what I observe in the MEU case. In addition, I show that

ambiguity aversion always eases information transmission.

My results apply when, in any state of the world, trade-offs are to be made. In

a pessimistic global-warming scenario, a high level of green house gases (GHG)

abatement should be chosen, at the expense of economic growth. In an opti-

mistic one, the opposite choice should be made. When decision-making is of this

nature, two situations are to be noticed. Either one state of the world is worse

than the others, whatever the decision maker’s action. Then, science is neces-

sarily consensual. Or conversely, the decision maker is caught between a rock

and a hard place, and science can be divided. Climate change is a good exam-

ple of the former situation. Scenarios such as the melting of the Antarctic ice

sheet or the collapse of the Atlantic thermohaline circulation have been called

"tipping elements" Lenton et al. (2008) because they imply a radical change in the

climate system. In other words, they are worse than any other. Paradoxically, it

is the existence of these catastrophic threats that creates the conditions for infor-

mation transmission over all models. Conversely, current decisions regarding the

COVID-19 pandemic are a choice between the lesser of two evils. One possibility

is that the virus lethality is limited and that sparse sanitary measures are enough

to contain casualties, while safeguarding the economy. But the opposite possibil-

ity cannot be discarded, triggering decisions which would lead to a much more

rigorous limitation of social life (Hollingsworth et al., 2011). Arguably, both sce-

narios have a comparable profile of consequences. In this situation, science can

be divided and my results show that information can only be conveyed regarding
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the models that consider the optimistic scenario (epidemiologically speaking) as

the most likely. More generally, models that call for more efforts in the provision

of a public good, such as social distancing or reduction in GHG emissions, will

be on the inaudible side of science.

The first specificity of my paper is to model complex science as non-certifiable

information. Complex science underlies some of the greatest challenges ours soci-

eties have to face. Consider the estimation of the effects of GHG on global temper-

ature, which relies heavily on black box prospective computer simulations. Firstly,

the process through which these simulations provide predictions is obscure; as

pointed out by Pidgeon and Fischhoff (2011), black box simulations are hardly

considered as convincing supporting evidence, even for scientists whose disci-

plines use observational methods. It is also extremely difficult for an expert of this

field to justify why a given prospective simulation was chosen, a given method-

ology implemented or given assumptions made. What distinguishes an expert is

precisely his direct understanding of the scientific foundation supporting existing

models and of their relative quality. The modelling choice made by epidemiolo-

gists in order to evaluate the impact of sanitary measures on the COVID-19 pan-

demic is another good example. Two main approaches exist: process-based mod-

els, that try to capture the mechanisms by which diseases spread and curve-fitting

approaches that aim at mathematically approximate the shape of the growth of

the epidemic (Ferguson et al., 2003). The latter class of models does not attempt

to characterise the underlying transmission process. As argued by Berger et al.

(2020), choosing among these models is a fine art. It requires balancing between

simplicity and comprehensiveness as a function of available data and the general

understanding of the underlying mechanism. A task which makes the expert who

he is. A final appropriate example, is the one of economists when they represent

the social world through models. Constantly we have to navigate among mod-

elling choices for the sake of tractability, compatibility with the rest of the litera-

ture or empirical testability. Economic modelling is complex because it requires

this expertise. The resulting choices can be extremely hard to justify outside of

the profession, a difficulty that has and still does attract a lot criticism.
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The second specificity of my paper is to identify model uncertainty as the spe-

cific uncertainty surrounding scientific knowledge. Consider again the case of the

effects of GHG emissions on the global temperature. Its estimation differs widely

among the numerous existing models, largely because they rely on very differ-

ent modelling choices. Predicting the impact of the rise of global temperature

involves, for instance, modelling the socioeconomic response of our societies. As

argued by Heal and Millner (2014), this can be done in a great variety of ways,

leading to model uncertainty. The same challenge is present in the management

of the COVID-19 pandemic. At the beginning of the pandemic, there was uncer-

tainty about some of the more fundamental characteristics of the virus, such as

its transmission channel, assuming one or another medium did, naturally, highly

impact the resulting public policy recommendation (see Hellewell et al. (2020) or

Anderson et al. (2020)). Following a tradition in statistics and decision theory

dating back at least to Wald (1949) (see Marinacci (2015) for a survey), I represent

scientific models as probability distributions over states of the world. Scientific

models are simplified representations of reality, or models, capturing the main

effects at stake in a given situation. For different courses of actions, a model

predicts consequences as a function of the state of the environment, and uses

probabilities to estimate their likelihood. When various models exist to represent

the same phenomena, and offer different predictions, we face model uncertainty.

Under model uncertainty, preferences generally fail to satisfy the expected-utility

requirements, as famously pointed out by Ellsberg (1961a). In particular, decision

makers may display ambiguity aversion. An individual is exposed to ambiguity

when the expected payoff to his strategy varies with the probabilities over which

he is uncertain. An ambiguity-averse individual will tend to favour strategies

that reduce that exposure. MEU preferences, introduced by Gilboa and Schmei-

dler (1989a), which I will focus on throughout most of the paper, are the more

popular example of preferences capturing that trend. Ghirardato et al. (2004b)’s

α-MEU preference is the most tractable extension of MEU, where α captures the

degree of ambiguity aversion of the decision maker. When α = 1, the two criteria

coincide.

The third specificity of my paper is to take into account the consequences of
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the often overlooked difference of interest between experts and decision makers

regarding science’s relative lack of persuasive power. The case of climate change

is again an example of utmost importance. Consider a receiver as a country decid-

ing on its GHG emissions in the widely studied context of a game of contribution

to a public bad (Barrett, 1994). Such a receiver benefits from her own emissions

but fails to internalise the externalities she produces on others, leading to ineffi-

ciently high levels of emission. An expert communicating on the corresponding

scientific knowledge might be expected to take this inefficiency into account. As

a result, if he cares about all countries’ welfare, there is always an asymmetry of

interests between the two. The rate of vaccination in a population is a similar

example. Vaccination is a public good: the higher it is, the better the population

is protected from the disease. Yet, individuals face a private cost in doing so and

may be assumed to care only about their own welfare. As pointed out by Ge-

offard and Philipson (1997), in this context, the overall rate is inefficient. Again,

there is an asymmetry of interest between a public health authority acting as a

social planner and the individual members of the population.

This study contributes to the recent literature on cheap talk communication

with ambiguity sensitive preferences. Kellner and Le Quement (2017) were the

first to study this question. In their model, communication is on states of the

world. They allow for Ellsbergian communication strategies which are a kind of

mixed strategy of the sender, where the mixing probability is ambiguous. They

show that the use of these strategies reduces misalignment between players, cre-

ating equilibria which ex-ante Pareto dominates the corresponding ones in CS.

Kellner and Le Quement (2018) explore a simple two actions two states setting,

with only standard mixed strategies allowed, but an ambiguous prior over the

states. They show that the optimal communication strategy of the sender is a ran-

domisation over partitions. Because my communication is over probability dis-

tributions and only pure strategies are allowed in my model, these results differ

from mine. In addition, as pointed out by Hanany et al. (2020), because commu-

nication is over states, the updating assumed in these papers violate sequential

optimality. This is an issue I don’t face when communication is over models.

Hansen and Sargent (2001) and Hansen et al. (2006) have explored the effect
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of ambiguity aversion on model uncertainty in the context of dynamic decision

making, showing its connection with robust control. Millner et al. (2013) and

Berger et al. (2016) have argued for the relevance of model uncertainty and ambi-

guity aversion in the context of climate change management, where knowledge

is scarce. They show that under ambiguity averse preferences, model disagree-

ment is the main driver of GHG abatements. This paper belongs to that line of

thought, highlighting the informational and decisional consequences of this type

of uncertainty when the source of information is explicitly modelled.

This paper also relates to a continuing debate in epistemology regarding the

role of testimony in the foundation of knowledge. In classical epistemology, be-

liefs qualify as knowledge only if by perception or inference one can verify their

truth. This position has been called reductionist and has notably been defended by

Hume (1740) and Chisholm et al. (1989). But then, why can we say, for instance,

that we know that GHG emissions are responsible for global warming? For most

of us, this comes neither from perception nor from logical inference. As argued

by Burge (1993), perception and inference cannot be seen as warrants for most of

what we collectively designate as knowledge. An alternative anti-reductionist ap-

proach argues in favour of adding testimony to the list of primary warrants of

knowledge (Hardwig, 1985). For supporters of this view, it is the confidence in an

expert’s testimony which rationally entitles the layman to hold the expert’s judge-

ment for knowledge (Goldman, 2001). It is the strength of this bound of trust that

epistemologically entitles the layman to knowledge. This paper’s contribution

is to formally model the relationship of trust between expert and layman as a

strategic interaction. How much expert-based knowledge the layman is entitled

to posses is the information he holds at equilibrium. For instance, in the absence

of misalignment, the layman is entitled to the same knowledge as the expert, as

the former has no strategic reason to manipulate his information. The study of

this game’s equilibria thus contributes to the study of the foundation of expert

based-knowledge.

Section 1.2 introduces the base model and provides important preliminary

results (Proposition 1). Section 1.3 establishes general results regarding the struc-

ture of equilibria. No full revelation can happen at equilibrium: the sender never
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discloses his private information on models. Yet, when the interest of both par-

ties is not too distant, partial information transmission can happen. All equilibria

are outcome equivalent to those where the sender credibly points out an interval

of models containing the most accurate one (Proposition 2). In general, multi-

ple equilibria may exist in which the designated intervals are more or less broad

(Proposition 3). In section 1.4, I show that when the receiver has MEU prefer-

ences, information transmission can only be conveyed for models below a given

threshold, even if misalignment is arbitrarily small (Theorem 1). I show that the

sender always prefers to convey as much information as possible. That is, I show

that all equilibria can be ranked by informativeness and that the sender is always

interim better off (i.e. after having learned his type) playing the most informative

one (Theorem 2). This does not hold when the receiver has SEU preferences. In

section 1.5, adapting from the CS linear-quadratic example with uniform prior

I characterise equilibrium cut-off types and show that cells are constant in size

when the receiver is MEU (Corollary 1). Section 1.6 extends to α-MEU prefer-

ences and shows that whatever the misalignment, there is a degree of ambigu-

ity aversion for which no information transmission is possible for types above a

given threshold (Proposition 9 and 10). The appendix contains all generalisations

and proofs.

1.2. Setup

1.2.1. Primitives

I consider a game of communication between an expert acting as a sender S (he),

and a decision maker acting as a receiver R (she). Let A = R be the set of actions

of R and let Ω = {0, 1} be the set of possible states of nature. For i = S,R, let

ui : A×Ω→ R be the von Neumann-Morgenstern utility function of player i, that

maps her actions and the state into her welfare. I start by making the following

assumptions:
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Assumption 1 (Utilities - Crawford and Sobel (1982)). ui is assumed twice contin-

uously differentiable and strictly concave in a. For every ω ∈ Ω, there is a ∈ R such that
∂ui(a,ω)

∂a
= 0. For all a ∈ R, ∂ui(a,ω)

∂a
is strictly increasing in ω.

This assumption implies that ui admits a unique maximum for each state. De-

fine ai(ω) = arg maxa∈A ui(a, ω) this maximum. It is the optimal action of player

i under perfect information that the state is ω. Assumption 1 ensures that ai(ω)

is strictly increasing in ω. For instance, in the context of our climate application,

think of A as the level of GHG abatement and of Ω as the set of climate scenarios.

I call ω = 1 (ω = 0) the high (low) state as it is the one where the optimal action is

the highest (lowest). Taking the climate example again, whereA represents GHG

abatments, a level of contribution to a public good, the high state is the one where

climate damage is the highest. Conversely, if A captures a level of social distanc-

ing, as in the COVID-19 example, the high state is the one where the mortality of

the virus is the highest. The choice of an abatement level is the result of a trade-off

between economic growth (positively correlated with abatements) and potential

damages created by global warming. In the climate example, assumption 1 states

that for any climate scenario, there is a single optimal abatement level. A higher

abatement level a > ai(ω) is not optimal for i because it might create too much

climate damage. A lower abatement level a < ai(ω) is neither optimal for i as it

implies to reduce economic growth too much.

There is model uncertainty in the sense that, ex-ante, it is not known according

to which distribution the state is drawn. Instead, there is a family of Bernoulli

distributions D = {pθ|θ ∈ [θ, θ]}, where θ, θ ∈ [0, 1], that potentially generates the

true state, where pθ is the probability mass function of a Bernoulli distribution of

parameter θ:

pθ(ω) =

θ if ω = 1

1− θ if ω = 0

There is a bijection between the sets D and C = [θ, θ]. In the rest of the paper,
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for simplicity, I will specify all the communication strategy on the set C which

will be referred to as the set of models. Let Ai(θ) = argmaxa∈AEθ(ui(a, ω)) be

the optimal action in the eyes of player i under model θ, where Eθ(ui(a, ω)) =

(1− θ)ui(a, 0) + θui(a, 1) .

Assumption 2 (Model misalignment). For any model, the optimal actions of S and R

are always misaligned:

AS(θ) > AR(θ) for all θ ∈ C

Assumption 2 states that regardless of the model, there is always a difference

of interest between S and R such that optimal actions are ordered in the same

way1. Note that excluding the case where AS(θ) < AR(θ) for all θ ∈ C is without

loss of generality, as all results are symmetrical.

Finally, notice that the sorting condition over states of Assumption 1 implies

a sorting condition over models.

Lemma 1. Assumption 1 implies that:

∂2Eθ(ui(a, ω))

∂a∂θ
> 0

Lemma 1 states that the marginal utility of actions is increasing with θ. As,

for a given model, the expect utility of actions is single-peaked, it implies that the

optimal action of players, Ai(θ), is a strictly increasing function of θ.

1.2.2. Strategic interaction

Ex-ante, both players are in a situation of model uncertainty, also called ambigu-

ity. In order to model the way R acts under model uncertainty, I will consider two
1In appendix 1.8.1, I show that Assumption 2 is implied by the equivalent assumption made

on optimal actions as a function of the state (as in CS) plus an assumption on the ordering of the
marginal utility of actions of both players.
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separate cases. First, I will consider the case where they evaluate actions under

uncertainty through the maxmin decision criteria (MEU) proposed by Gilboa and

Schmeidler (1989a). According to Gilboa and Schmeidler (1989a), in addition to

their utility function, players are characterised by a set of priors over Ω, which I

will assume to be C. R evaluates action a ∈ A by:

V MEU
R (a) = min

θ∈C
Eθ(uR(a, ω))

Second , I will also consider the case where the receiver’s decision making co-

incides with Savage (1972)’s subjective expected utility (SEU), often identified as

a case of ambiguity neutrality. In that case, R’s preferences are represented by a

utility function and a subjective prior over models µ ∈ ∆(C) admitting a prob-

ability distribution function g. In order to study a case of communication over

models which is similar to CS, I will assume that in this case, R knows the objec-

tive distribution according to which the model is drawn. Thus, µ is an objective

distribution and I also assume that supp(µ) = C. R then evaluates action a under

uncertainty through:

V SEU
R (a) =

∫
θ∈C

g(θ)Eθ(uR(a, ω)))dθ

In the following, the MEU case (respectively SEU case) is the one where R’s

evaluation of action coincides with the MEU (respectively SEU) decision criteria.

The timing of the game is as follows:

1. Nature draws the state generating distribution θ0, according to µ. S is pri-

vately informed.

2. S sends a message regarding his type.

3. R updates her beliefs and chooses an action.
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Having learned the state generating distribution2 θ0 ∈ C from nature, S sends

a message m ∈ M, where M = [0, 1] to R. A signalling strategy for S is the

strategy σ : C → M. An action rule for R is a strategy y : M → A. Notice that I

will focus only on pure strategies. Let σ−1(m) ⊆ C, be the set of potential types of

S, having received message m, when S follows strategy σ. An equilibrium (σ∗, y∗)

is defined such that:

1. A sender of type θ evaluates message m by:

V θ
S (m) = Eθ(uS(y∗(m), ω))

∀θ ∈ C, any σ∗(θ) ∈M solves maxm∈M V θ
S (m).

2. Having received an equilibrium message m ∈ supp(σ∗), an MEU receiver

updates her belief such that she evaluates action a by:

V MEU
R (a, σ−1(m)) = min

θ∈σ−1(m)
Eθ(uR(a, ω)))

An SEU receiver is able to update her prior using Bayes’ rule such that:

g(θ|m) =


g(θ)

g(σ∗−1(m))
if θ ∈ σ∗−1(m)

0 if not

R then evaluates action a by:

V SEU
R (a, σ−1(m)) =

∫
θ∈C

g(θ|m)Eθ(uR(a, ω))dθ

In both cases, R chooses action y∗(m) which solves maxa∈A V
SEU
R (a, σ(m))

(respectively maxa∈A V
MEU
R (a, σ(m)))

2In appendix 1.8.1 I show that this assumption can be replaced by the one that the sender
receives a noisy signal regarding models’ likelihood
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As usual, any message m such that m /∈ supp(σ∗) is interpreted as some equi-

librium message m∗ ∈ supp(σ∗).

1.2.3. Consensus and division in Science

Before directing our attention to the equilibria of this game and their specificity,

it is useful to take a moment to study the players’ decision making under un-

certainty. This will help us understanding the specificities of the SEU and MEU

decision criteria in my model and provide us with the intermediate result we

need for the study of the equilibria. Given the assumptions and lemma 1, when

the receiver evaluates action according to SEU, the model is very similar to CS. In

that case, one can identify each model as a state in CS setting, where the payoff is

the expected utility under that model and µ is the prior over states. This case can

thus be used as a benchmark. Yet, when the receiver evaluates action according

to MEU, the game dramatically changes. In order to see why, let me introduce the

following definitions. Regarding models, two special cases arise: either the maxi-

mal expected welfare of the receiver is always increasing (or decreasing) with the

model, or this is not the case. I call the former case consensual science and the latter

divided science.

Definition 1. Science is consensual if any model that puts a higher probability to the

state giving the lowest maximal utility to the receiver decreases his maximal expected

welfare.

∀θ, θ′ ∈ C, θ < θ
′
,

uR(aR(0), 0) ≥ uR(aR(1), 1)⇒ Eθ(uR(AR(θ), ω)) > Eθ′ (uR(AR(θ
′
), ω))

uR(aR(0), 0) < uR(aR(1), 1)⇒ Eθ(uR(AR(θ), ω)) < Eθ′ (uR(AR(θ
′
), ω))

Science is divided if it is not consensual.

Consensus in science is a monotonicity condition on the maximal expected
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welfare of the receiver Eθ(uR(AR(θ), ω)): the more likely the state that gives the

lowest maximal utility the lower the maximal expected welfare of the receiver.

Take the climate example of the introduction where the high state is the one

where a catastrophic event happens and in the low state the one where it does

not. Then, all models agree that the more likely the catastrophic state, the lower

the maximal expected pay-off of the receiver. Now consider the converse case

where science is divided. Then, the monotinicity assumed above does not hold

any more: increasing the likelihood of a given state does not necessarily lower the

maximal expected welfare of the receiver. For this to be the case it must be that

no state fully dominates the other in terms of utility for the receiver. Because of

the single crossing assumption I made on utilities, both states can give the same

utility for a given action in (aR(0), aR(1)) at most once.

Definition 2. Define ã = argmaxa∈Aminω∈Ω uR(a, ω) as the precautionary action and

θ̃ ∈ [0, 1] such that AR(θ̃) = ã as the cautious model.

ã is the action that maximises the function that gives the worst possible utility

to the receiver. I call it the precautionary action because it is the optimal action an-

ticipating that the worst state will always realise. θ̃ is the model - not necessarily

in C - for which the precautionary action is the optimal action.3 Notice that for the

utility functions I have assumed, if both states give that same utility for a given

action in (aR(0), aR(1)), this action is the precautionary action ã. Then θ̃ ∈ (θ, θ)

and the maximal expected utility of the receiver is decreasing for models putting

a lower weight on the high state than the cautious one (θ < θ̃) and increasing for

the others (θ > θ̃).

To illustrate, consider the following parametric example:

3The fact that θ̃ exists and is unique is proven in Lemma 3
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Linear-quadratic example:

• uS(a, ω) = −(a− ω − b)2 − cω where b > 0 and c ∈ R

• uR(a, ω) = −(a− ω)2 − cω

• C = [0, 1] and µ ∼ U(C)

Then:

AS(θ) = θ + b

AR(θ) = θ

The example above is similar to CS’s linear-quadratic one, to the difference of

the −cω term. In function of the value c, the maximal utility in a given state is

either higher or lower than in the other. When c = 0, both states are comparable,

in the sense that under perfect information, the receiver could achieve exactly the

same pay-off in both of them. To the contrary, if for instance c > 0, state 0 gives a

higher maximum pay-off to the receiver than state 1.

As figure 1.1 shows, when c ∈ (−1, 1) both states give that same utility to

R for ã = 1+c
2
∈ (0, 1) and we are in a case of divided science and θ̃ = 1+c

2
.

Consider the special case where c = 0. Models on both side of θ̃ = 1
2

increase the

maximal expected welfare of the receiver. For instance, θ = 0.2 and θ = 0.8 both

improve the receiver’s maximal expected utility compared with θ̃, as illustrated

by figure 1.1. Thus, there is no strict ordering over models with respect to R’s

expected utility but a division of C in two sets of models with opposite impact

on R’s maximal expected utility. For models on one side of θ̃, the higher the

probability of one state, the better R’s welfare. But for models on the other side of

θ̃, the higher the probability of that same state, the worse R’s welfare.

Conversely, when c ≥ 1 we are in a case of consensual science. As illustrated

by figure 1.2, the precautionary action then is the optimal action in the worst



27 CHAPTER 1. COMMUNICATING OVER MODELS

ã aR(1)

uR(a, 1)uR(a, 0)

a

uR

minω∈Ω uR(a, ω)
E0.8(uR(a, ω))
E0.2(uR(a, ω))

Figure 1.1: c = 0 a case of divided science: for models
above 0.5,

the receiver’s welfare is increasing with the probability
of the high state. For models below 0.5, the opposite

happens.

state: ã = aR(1) = 1 and θ̃ = 1. The maximal expected utility of the receiver is

strictly decreasing in θ, the probability of the high state. In other words, for any

model of C, the higher the probability of the high state, the lower R’s welfare.

Similarly, when c ≤ −1 science is also consensual because the maximal expected

utility of the receiver is strictly increasing in θ, making the precautionary action

ã = aR(0) = 0.

It is clear that the behavioural response of an MEU decision maker will be

of a different nature, would science be divided or consensual. In the latter case,

the precautionary action consists in anticipating the fully dominated state, thus

acting as if the cautious model was the one putting the highest probability on that

state. In the former case, the precautionary action consists in hedging against

uncertainty, thus acting as if the cautious model was balancing odds between

both states in the exact manner that leads to ã as an optimal action. For B ⊂ C,

define AR(B) ⊂ argmaxa∈Aminθ∈B Eθ(uR(a, ω)) the set of optimal actions of a

MEU receiver given the set of priors B. Given these definitions, we can now state

the following result:

Proposition 1. Define B = [θ1, θ2] ⊂ C the set of priors of the receiver. Given that
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ã

uR(a, 0)

uR(a, 1)

a

uR

minω∈Ω uR(a, ω)
E0.7(uR(a, ω))
E0.3(uR(a, ω))

Figure 1.2: c = 1, a case of consensual science : for all
models,

the receiver’s welfare is decreasing with the probability
of the high state.

θ0 ∈ B, an MEU receiver has a unique optimal action which is given by:

AR(B) =


AR(θ2) if θ2 < θ̃

AR(θ̃) if θ̃ ∈ B

AR(θ1) if θ1 > θ̃

Proposition 1 states that an MEU receiver has a unique optimal action for any

belief θ0 ∈ B where B is an interval of C. When she further believes that all

models are below θ̃ (θ0 ∈ [θ1, θ2] and θ2 < θ̃) she optimally acts as if the probability

of the high state were maximal. When she believes that all models are above θ̃

(θ1 > θ̃) she optimally acts as if the probability of the high state were minimal.

Thus, when science is consensual, whatever R’s belief, she will always act as if

the probability of the high state was maximal, or minimal. But when science is

divided R will always act as if the probability of the high state was maximal for

beliefs below θ̃ (θ2 < θ̃) and minimal for beliefs above θ̃ (θ1 > θ̃). Finally, when R

believes that the cautious model could be the state generating model (θ̃ ∈ [θ1, θ2]),



29 CHAPTER 1. COMMUNICATING OVER MODELS

she optimally acts as if it were the case. This behavioural change described by

Proposition 1, directly caused by the change in the monotonicity of R’s maximal

expected welfare at θ̃, will be essential in the upcoming results. To the contrary,

notice that in the SEU case the cautious model plays no particular part.

1.3. Equilibrium analysis

Let us now turn to the study of the equilibrium structure. First, I introduce the

following definition:

Definition 3. Set {θ0, ..., θq} ⊆ C such that:

• θ = θ0 < ... < θq = θ where θk, for 0 ≤ k ≤ q, is called the k-th cut-off.

• ∪qk=1[θk−1, θk] = [θ, θ], where [θk−1, θk), for 1 ≤ k < q − 1, is called the k-th cell

and [θq−1, θ] the q-th cell.

A q-cut-off partition equilibrium is an equilibrium of the game where the signaling

strategy of S is uniform on every cell. That is, for θ ∈ [θk−1, θk), σ∗(θ) = mk, for

1 ≤ k ≤ q − 1 and for θ ∈ [θq−1, θ], σ∗(θ) = mq−1.

A q-cut-off partition equilibrium is an equilibrium where there is a partition

of the set of types in q cells. For any cell of this partition, any sender who is in

that cell credibly sends the same message to the receiver. Having received that

message, the receiver learns in what cell the sender is and acts optimally.

Proposition 2. In every equilibrium of the game, there is a partitioning of C in a fi-

nite number of cells where every cell induces a distinct action. Thus, any equilibrium is

outcome equivalent to a partition equilibrium.

The proof of Proposition 2 starts by showing that the number of actions in-

duced at equilibrium is finite. The argument is similar to the one given in CS’s
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Lemma 1 and follows from both the concavity of S’s evaluation of actions and the

fact that the optimal actions of R for a given belief B ⊂ C is in the convex hull of

the optimal actions for every element of B. Then I show that types that induce a

given action must form an interval. This is a consequence of the concavity of S’s

evaluation of actions.

Proposition 2 shows that there is a finite partition of C where types in every

cell induce a given action from the receiver. Notice that this does not imply that

types in every cell send the same message, as it is possible that different mes-

sages induce the same action. As a result, every equilibrium is not necessarily

a partition equilibrium, but must be outcome equivalent to one. In the follow-

ing, we focus only on partition equilibria. Notice that there is always at least one

partition equilibrium: the babbling equilibrium, where all types send the same

message.

In the following, I give a characterisation of all partition equilibria of the game.

Proposition 3. In any partition equilibrium of the game (σ∗q , y
∗), the cut-off types θq0, ..., θqq

are defined such that for k ∈ 1, ..., q:

V
θqk
S (y∗(mq

k−1)) = V
θqk
S (y∗(mq

k)) (1.1)

where mq
k is the equilibrium message of types θ ∈ [θqk, θ

q
k+1].

Figure 1.3 represents the interim utility of S when his type is θk. As a convex

combination of concave and single peaked functions, it is concave and maximal at

AS(θk). Figure 1.3 illustrates that mk−1 and mk are equilibrium messages because

they induce actions that give the same level of welfare to S. As a result, θk is a

cut-off type.
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y∗(mk−1) AS(θk) y∗(mk)

V θk
S

a

Figure 1.3: Identifying cut-offs

1.4. General results

In the following, I go one step further in the characterisation of the game’s equi-

libria. Recall that in the MEU case, R evaluates action a by:

V m
R (a) = minθ∈σ∗−1(m) Eθ(uR(a, ω))

For any m ∈M, call σ∗−1(m) = [θ1, θ2]. Recall from Proposition 1 that:

AR(σ∗−1(m)) =


AR(θ2) if θ2 < θ̃

AR(θ̃) if θ̃ ∈ B

AR(θ1) if θ1 > θ̃

(1.2)

Theorem 1. When the receiver has MEU preferences, all cut-offs in (θ, θ) are below θ̃.

An upward misaligned sender is never capable of conveying information over
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[θ̃, θ] when the receiver has MEU preferences. Assume that there is a q + 1 cut-

off equilibrium. Recall the characterisation result of partition equilibria given by

Proposition 3. For θq to be a cut-off type, it must be that the message sent by

types in the cell below and above θq induce actions that gives the same utility to a

sender of type θq. Would θq be a cut-off type, following (1.2) we would have that:

y
∗(mq−1) = AR(σ∗−1(mq−1)) = AR([θq−1, θq)) = AR(θ̃) = ã

y∗(mq) = AR(σ∗−1(mq)) = AR([θq, θq+1]) = AR(θq)

Yet, as illustrated by Figure 1.4, the utility of the sender induced by mq−1 is

always lower than the one induced by mq. This is a direct consequence of the

change in the monotonicity of R’s maximal expected welfare at θ̃. When R be-

lieves that the cautious model could be the state generating model, she optimally

acts as if it were the case. When she believes that θ0 ∈ [θq, θq+1) and θq > θ̃ she

will act as if the model was θq. As a result, because S is upwards misaligned we

have that:

ã < AR(θq) < AS(θq)

and as V θq
S is strictly increasing for a ≤ AS(θq) it is impossible that messages

sent by types in the cell below and above θq induce actions that gives the same

utility to a sender of type θq. As a result, the indifference between actions induced

by messagesmq−1 andmq needed for θq to be a cut-off type (as displayed in figure

1.3) is impossible.

A consequence of Theorem 1 is that when science is consensual such that θ̃ ≤
θ, the only equilibrium is the babbling equilibrium. That is, whatever the sender’s

type, whatever the message he sends, the induced action is always the same. In

other words, in this situation, the sender is inaudible. The next proposition shows
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AR([θq−1, θq))AR([θq, θq+1])AS(θq)

V
θq
S

a

Figure 1.4: MEU best responses for θq−1 < θ̃ < θq

that all partitional equilibria of our game can be built from the same finite set of

cut-off types.

Proposition 4. When the receiver evaluates actions following the MEU criteria there are

M > 0 partition equilibria. Call θ0 < ... < θM the cut-offs of the equilibrium with most

cut-offs. Then the q cut-off partition equilibrium is defined by cut-offs θ0 < θM−q < ... <

θM , for 0 ≤ q ≤M .

As illustrated by Figure 1.5, in the context of MEU preferences, the cut-off

types of every equilibrium are the same. That is: the interior cut-off of the one

cut-off equilibrium is the same as the first interior cut-off of the two cut-off equi-

librium. Similarly, the second cut-off of the two cut-off equilibrium is the same as

the second cut-off of the three cut-off equilibrium. The same holds for all cut-offs

of the existing equilibria. In particular, there is always an equilibrium with two

cut-offs - θ and θ - corresponding to the babbling equilibrium.

Given Theorem 1, all interior cut-offs are in [θ, θ̃]. As a result, when S points

out an interval of models, R only cares about its upper bound. As a result, cut-

offs types will not be determined by an indifference between pairs of expectations

of intervals of models (the two adjacent cells) but by an indifference between

pairs of expectations of models (the lower bounds of the two adjacent cells). In

the former case, each indifference condition depends on three distinct types and
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Figure 1.5: MEU equilibria for θ < θ̃ < θ

the prior. Thus, in order to determine the cut-off types, the entire sequence of

indifference conditions is needed. In the latter case, each indifference condition

depends on two distinct types only. Given that [θ, θ̃] is a closed set, it is then

possible to find the first cut-off starting from θ and then to iterate the process to

find the following ones. In doing so, I derive the cut-off types of the equilibrium

that has the most cut-offs. Then, all other equilibria are characterised by the q first

terms (1 ≤ q ≤M ) of that sequence, assuming it has M elements.

A direct consequence of Proposition 4 is that all equilibria of the game can be

ranked by informativeness, something which is never possible in the SEU case.4

The following result can thus be established regarding interim Pareto dominance

among equilibria.

Theorem 2. When the receiver has MEU preferences, the sender is always interim weakly

better off by playing the most informative equilibrium strategy

The intuition of the proof, for S downwards misaligned, is the following. Con-

sider the equilibria described in figure 1.5. Whatever the equilibrium considered,

types in [θ1, θ̃] will induce the same action θ̃. But types in [θ, θ1] will induce action

θ̃ in the babbling equilibrium, and θ1 in the 3 cut-off equilibrium. Yet, by construc-

tion of the latter equilibrium, all types in [θ, θ1] prefer to induce action θ1 than θ̃.

It follows that the 3 cut-off equilibrium interim Pareto dominates the babbling

equilibrium. The same reasoning can be applied regarding types in [θ, θ2] to show

4The informativeness ranking comes from the fact that when receiving m ∈ M from a type in
[θ1, θ2] with θ2 < θ an MEU receiver acts exactly as when receiving m

′ ∈M from a type in [θ
′

1, θ2],
for any θ

′

1 < θ1. For an SEU receiver, this behavioural pattern is impossible, the optimal action
would necessarily shift to the left.
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that the 4 cut-off equilibrium Pareto dominates the 3 cut-off one.

Discussion. Theorem 2 gives that S is always interim better-off communi-

cating following the most informative equilibrium strategy. This result differs

significantly from those obtained in CS’s framework. Under their monotonicity

condition (M), CS show that the ex ante expected payoffs for both Sender and Re-

ceiver is maximal for the equilibrium with most cut-off. Condition (M) is satisfied

if for any two sequence of cut-off types the k-th cut-off of each sequence can be

ordered in the same direction, for any k ≥ 1. This assumption is in particular ver-

ified by the linear-quadratic example. The resulting selected equilibrium is often

the one studied in applications. Yet, as already pointed out in CS, ex-ante Pareto

dominance is a questionable equilibrium-selection criterion, since once having

learned their type, different sender types will necessarily have opposed prefer-

ences. CS suggests that ex-ante Pareto dominance could be retained only if there

is an equilibrium selection agreement made ex-ante between players or if it can

be seen as a convention maintained over repeated plays with several opponents.

An alternative approach regarding equilibrium selection has been proposed by

Chen et al. (2008). In this paper, a condition on utility functions, NITS, has been

proposed. Under this condition, combined with Assumption (M), only the equi-

librium with most cut-offs survives in CS’s framework. An equilibrium satisfies

NITS if the Sender of the lowest type weakly prefers the equilibrium outcome to

the outcome induced by credibly revealing his type (if he could). In my case, one

could adopt interim Pareto dominance as a selection criterion, which is immune

to the limitations of ex-ante Pareto dominance and does not require supplemen-

tary assumptions as for NITS. Yet, it brings out the same (most informative) equi-

librium and provides a foundation for the attention it receives in applications.

Assume one sticks to the interpretation of C as the set of objective possible

models, as it is for instance the case for the climate and COVID-19 examples of

the introduction. The size of C captures the degree of objective imprecision in sci-

entific knowledge. For instance, if C = [0, 1] the objective probability of the high

state is between 0 and 1. It is then possible to analyse the effects of a change in

this objective imprecision. In particular, an increase in precision can move sci-
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ence from a state of division (where θ̃ is an interior point of C) to one of consensus

(where θ̃ is at the boundary of C). As exposed until now, such an increase in pre-

cision could result in a major change in communication possibilities, making R

fully influential over C or to the contrary, completely inaudible.

Take the linear-quadratic example introduced page 10 in the case when c = 0.

Then science is divided because θ̃ = 0.5 and all interior cut-offs are in [0, 0.5],

whatever the misalignment b > 0 of the sender. Assume the objective impreci-

sion C shifts from [0, 1] to C ′ = [0, 0.5]. Then science becomes consensual and the

partitioning of the set of types is possible over the entire C ′ . Conversely, objective

imprecision could shift to C ′′ = [0.5, 1]. Science would then be consensual as well,

but partitioning impossible.

1.5. The linear-quadratic example

In order to give a further insight of the results in the MEU case, I characterise all

partitional equilibria in the context of the parametric example introduced page 10

and adapted from the widely used linear-quadratic example of CS. I also provide

the same characterisation for the SEU case.

Proposition 5. In the context of our linear-quadratic example for any c ∈ R:

• When R has SEU preferences, a n-cut-off equilibrium exists if and only if:

0 < b <
1

2n(n+ 1)
(1.3)

and, for k ∈ 1, ..., n, cut-offs are:

θk =
k

n+ 1
− 2kb(n− k + 1)

• When R has MEU preferences, a n-cut-off equilibrium exists if and only if c > −1
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and

0 < b <
1

2n
(1.4)

and, for k ∈ 1, ..., n, cut-offs are:

θk = 1− 2b(n− k)

Proposition 1.5 shows that c has no influence on communication in the SEU

case. Yet, in the MEU one, when c ≤ −1, the maximal pay-off in state 0 is always

lower than in state 1. As a result, the attraction exerted by ambiguity aversion

plays against the sender’s communication possibilities and no non-babbling equi-

librium is possible. Conversely, when c ≥ 1 the attraction exerted by ambiguity

aversion plays in favour of the sender’s communication possibilities in cut-offs

can be on the entire set C.

A corollary of Proposition 1.5 is that it is possible to characterise each equilib-

rium’s cell sizes.

Corollary 1. Consider a q-cut-off partition equilibrium. When R is SEU, for any c ∈ R,

cells are increasing in size. For all k ∈ 1, ..., q − 1:

θk+1 − θk = θk − θk−1 + 4b

When R has MEU preferences and c > −1, non-terminal cells are of constant size.

For all k ∈ 1, ..., q − 2:

θk+1 − θk = 2b

where the cell containing θ is called the terminal cell.
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In the MEU case non-terminal cells have always the same size (2b), whatever

the considered equilibrium. In the SEU case, it depends on the considered equi-

librium. This illustrates why the general result proved in Proposition 4 holds.

If all non-terminal cells have the same size in any given equilibrium, and that

in addition the first cut-off is always the same (as proven in Proposition 5), it

is straightforward that those equilibria can be ranked by informativeness in the

Blackwell sense. Corollary 1 also states that in the SEU case, cells are at least of

size 4b and are thus always strictly larger.

The sender is able to induce a finer partition of types when the receiver is

MEU. Consider a given positive bias such that it is possible to get a n cut-off

equilibrium with a MEU receiver; then it is not always possible to sustain an n cut-

off equilibrium with an SEU receiver. More precisely : call the supremum of the

bias for which a n-cut-off equilibrium is possible in the MEU case bM(n) = 1
2n

. Call

the equivalent value of the bias in the SEU case bS(n) = 1
2n(n+1)

. Both functions

are increasing in n. In addition, for n ≥ 2, bS(n) = bM(n(n+ 1)). Thus, there is a n

cut-off equilibrium between an SEU receiver of bias b and the sender if and only

if there is a n(n+ 1) cut-off equilibrium between an MEU receiver of bias b.

1.6. α-MEU receiver

1.6.1. Optimal actions and structure of equilibria

In this section, I consider the case where R evaluates actions under uncertainty

through the α-maxmin decision criteria proposed by Ghirardato et al. (2004b)(α-

MEU). According to Ghirardato et al. (2004b), in addition to their utility function,

players are characterised by two more elements. First, a set of priors over Ω,

which I will assume to be C. Second, a parameter αi ∈ [0, 1] which captures

their attitude towards ambiguity. As all the analysis will be conducted at the

interim stage, αS is irrelevant. Thus, in the following, I will erase the subscript. R
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evaluates action a ∈ A by :

V α
R (a) = αmin

θ∈C
Eθ(uR(a, ω)) + (1− α) max

θ∈C
Eθ(uR(a, ω)) (1.5)

Here, the behavioural consequences of ambiguity aversion are captured by α.

It translates the decision maker’s weighting between optimistic and pessimistic

models regarding his expected utility. When α = 1, the α-MEU decision criteria

coincides with MEU5. Adapting Ghirardato et al. (2004b)’s proposition 20 to our

model one can state the following :

Definition 4 (Ghirardato et al. (2004b)). Receiver i, evaluating actions through V αi
R ,

is said to be more ambiguity averse6 than receiver j, evaluating actions through V αj
R , if

and only if

αi > αj

Thus, for a fixed set of priors and utility function, increasing ambiguity aver-

sion leads the receiver to anticipate an increasingly worst model in terms of ex-

pected utility.

As for the MEU case, having received an equilibrium message m ∈ supp(σ∗),

an α-MEU receiver updates her belief such that she evaluates action a by:

V α
R (a, σ(m)) = α min

θ∈σ−1(m)
Eθ(uR(a, ω))) + (1− α) max

θ∈σ−1(m)
Eθ(uR(a, ω)))

By a natural extension of the notations introduced above, for B ⊂ C, define

5In general, for non-symmetric utility functions, α-MEU does not have SEU as a special case
here. For instance, both criteria coincide if the set of models is a singleton. Yet, this set depends of
the information conveyed by the sender, which, at equilibrium, is never a singleton.

6In the sense of Ghirardato and Marinacci (2002)
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AR(B) = argmaxa∈AV
α
R (a,B) the set of optimal actions of the α-MEU receiver

when his belief is B.

Figure 1.6 illustrates the ex-ante evaluation of actions of the receiver in the

context of the linear-quadratic example. All valuation functions are located in

the blue area and are a convex combination between minθ∈C Eθ(uR(a, ω)) (in red)

and maxθ∈C Eθ(uR(a, ω)) (in black). Then, notice that for a given α V α
R (a) is not

necessarily single-peaked. For instance, for α = 0.3, V 0.3
R (a) is maximal at 0.3 and

0.77.

0.5 1

uR(a, 1)uR(a, 0)

a

uR

minθ∈C Eθ(uR(a, ω))
maxθ∈C Eθ(uR(a, ω))

V 0.3
R (a)
V α
R (a)

Figure 1.6: α-MEU ex-ante valuation

I now characterise the set of optimal actions of R for a given set of priors.

Proposition 6. Define B ⊂ C the set of priors of the receiver with minimal element

θ1 and maximal element θ2. Given this belief, her optimal set of actions AR(B) ⊂
[AR(θ1), AR(θ2)]. In the context of the linear-quadratic example, the set of optimal ac-

tion of a α-MEU receiver is given by:

7In the linear-quadratic example for c = 0 there are two optimal actions for any α ≤ 0.5.
The fact that this threshold is the one separating love and aversion for ambiguity is non-generic.
For sharper utility functions this threshold would be above 0.5. A formal definition is given in
assumption 4 of the appendix
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AR(B) =


αAR(θ2) + (1− α)AR(θ1) if θ2 < θ̃

{αAR(θ̃) + (1− α)AR(θM)|θM ∈ argmaxθ∈{θ1,θ2}Eθ(uR(a, ω))} if θ̃ ∈ B

αAR(θ1) + (1− α)AR(θ2) if θ1 > θ̃

A direct consequence of Proposition 6 is that ex-ante, for any a ∈ A, minθ∈C Eθ(uR(a, ω)) =

Eθ̃(uR(a, ω)) and that maxθ∈C Eθ(uR(a, ω)) = max(Eθ(uR(a, ω),Eθ(uR(a, ω)). Thus,

AR(C) = AR(αθ̃+(1−α)θ) when Eθ(uR(a, ω)) < Eθ(uR(a, ω)),AR(C) = AR(αθ̃+(1−
α)θ) when Eθ(uR(a, ω)) > Eθ(uR(a, ω)) and AR(C) = {AR(αθ̃ + (1− α)θ), AR(αθ̃ +

(1 − α)θ)} when Eθ(uR(a, ω)) = Eθ(uR(a, ω)). This explains the fact that in the

example we considered before, where E0(uR(a, ω)) = E1(uR(a, ω)), optimal ac-

tions where not unique. Notice also that, when α increases, AR(C) gets closer to ã,

in the euclidean sense. Thus, an increase in ambiguity aversion gets R’s ex-ante

optimal action closer to the precautionary action.

I now prove that under α-MEU preferences, all equilibria are still outcome

equivalent to a partition equilibria.

Proposition 7. In every equilibrium of the game, there is a partitioning of C in a fi-

nite number of cells where every cell induces a distinct action. Thus, any equilibrium is

outcome equivalent to a partition equilibrium.

As for the proof of Proposition 2, I start by showing that the number of actions

induced at equilibrium is finite. The argument is similar to the one given in CS’s

Lemma 1 and follows from both the concavity of S’s evaluation of actions and the

fact that the optimal actions of R for a given belief B ⊂ C is in the convex hull

of the optimal actions for every element of B. This is also true when R has α-

MEU preferences, as one can deduce from Proposition 6. Then I show that types

that induce a given action must form an interval. This is a consequence of the

concavity of S’s evaluation of actions.
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1.6.2. Comparative ambiguity aversion

In the following, I’m interested in the effect that ambiguity aversion has on the

structure of partitional equilibria. I compare the equilibria of two versions of the

game, where the only difference is the degree of ambiguity aversion of the re-

ceivers identified to their degree of ambiguity aversion α1 and α2. Notice that

the ex-post optimal action ARi(θ) is unaffected by ambiguity aversion, thus, I

will erase the subscript. I will only consider the linear-quadratic example intro-

duced before. Recall that in the MEU case, when c = 1 science is consensual and

communication is possible over the entire C, when c = 0 science is divided and

communication is only possible over (0, 1
2
) and finally when c = −1 science is

consensual but no information transmission is possible.

I start by considering the consensual science cases: c = 1 or −1. In the follow-

ing, I characterise all the cut-offs of the corresponding partition equilibrium.

Proposition 8. In the linear quadratic example, when R is α-MEU, for α /∈ {0, 1
2
, 1} :

• When c = 1, there are N > 0 cut-off equilibria, one by number of cut-offs, and the

k-th cut-off of the 1 ≤ n ≤ N cut-off equilibrium is given by :

θnk(α) = (
1

2
− 2bn

2α− 1
)
(1− (1−α

α
)k

1− (1−α
α

)n

)
+

2bk

2α− 1

• When c = −1, there are M > 0 cut-off equilibria, one by number of cut-offs, and

the k-th cut-off of the 1 ≤ n ≤M cut-off equilibrium is given by :

θ
n

k(α) = (
1

2
− 2bn

2α− 1
)
(1− ( α

1−α)k

1− ( α
1−α)n

)
− 2bk

2α− 1
+

1

2

Figure 1.7 and 1.8 compute the cut-offs of the 3-cut-offs equilibrium as a func-

tion of α for a fixed positive bias b = 0.01. Notice that for a given level of mis-

alignment, information transmission is possible in both cases, for given levels of
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Figure 1.7: 3-cut-offs equilibria for c = 1
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Figure 1.8: 3-cut-offs equilibria for c = −1

ambiguity aversion. Thus, the asymmetry of the MEU case does not survive at

any level of ambiguity aversion. Yet, simulations suggest that, when c = −1, cut-
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off values decrease with α towards θ̃. Thus for a given bias, there is a level of

ambiguity aversion from which all types in C must pool. Conversely, simulations

suggest that, when c = 1, cut-off values continuously increase with α towards

their MEU values.

I now formally prove that in the case of consensual science, no communication

is possible in c = −1 when α is above a given threshold. In addition, I show that

for a given bias, ambiguity aversion eases the existence of a n cut-off equilibrium,

for n ≥ 2.

Proposition 9. In the context of the linear-quadratic example, when c = −1, b > 0 and

α ∈ (1
2
, 1) :

1. There is α(b) ∈ (1/2, 1) such that for α ≥ α(b), no information transmission is

possible in [0, 1]. Moreover, α(b) is a decreasing function.

2. For two receivers α1 and α2 such that α1 < α2, if there is a n ≥ 2 cut-off equilib-

rium between S and α1, there is a n cut-off equilibrium between S and α2

Thus, as suggested by the simulations, when c = −1, for a given bias, there is

a level of ambiguity aversion from which all types in C must pool. This follows

from the fact that for any N ≥ 2, θ
N

N−1(α) is a strictly decreasing and continuous

function and that limα→+∞ θ
N

N−1(α) < 1
2
. As a result, there must be α ∈ (1

2
, 1) such

that no partitionning of C is possible.

In addition, when there is an equilibrium with at least 3 cut-offs, ambiguity

aversion eases the existence of a n cut-off equilibrium. Recall bounds of C are

included in the count, which means that we are looking at every equilibrium

which is a non-babbling one. In other words, for a given bias, increasing ambi-

guity aversion might enable the existence of a k-cut-off equilibrium which was

not sustainable for a lower level of ambiguity aversion. In that sense, ambiguity

aversion eases information transmission, when science is consensual. This sec-

ond result follows from the fact that for any N ≥ 2, θNN−1(α) is a strictly increasing

function and that limα→+∞ θ
N
N−1(α) < 1

2
.
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I know further prove that the first result of Proposition 9 extends to the case

where c = 0 and science is divided:

Proposition 10. In the context of the linear-quadratic example when c = 0, b > 0 and

α ∈ (1
2
, 1), there is α(b) ∈ (1/2, 1) such that for α ≥ α(b), only one action can be induced

by types in [1
2
, 1]. Moreover, α(b) is a decreasing function.

As for the consensual science case, for a given bias, there is a level of ambigu-

ity aversion from which all types in [1
2
, 1] must pool. This suggests that there is a

form of continuity in the division of the set of types - on both sides of the hedging

model - that we have observed in the MEU case. For any level of misalignment of

S, there is degree of ambiguity aversion of R in (1
2
, 1) such that all models above θ̃

must pool. The proof of Proposition 10 builds on the one of proposition Proposi-

tion 9. I show that for any N ≥ 2, θ
N

N−1(α) is a strictly decreasing and continuous

function and that limα→+∞ θ
N

N−1(α) < 1
2
. As a result, there must be α ∈ (1

2
, 1) such

that no partitionning of [1
2
, 1] is possible.

1.7. Conclusion

This paper models the transmission of expert-based scientific knowledge as cheap-

talk communication over models, in a framework similar to Crawford and Sobel

(1982). Because models can be represented as probability distributions, a receiver

of this game can naturally be assumed to be ambiguity sensitive. For every pref-

erences I considered, I showed that all equilibria are outcome equivalent to a par-

tition equilibria. When the receiver is MEU, information transmission can only

happen for models below a given threshold, even if misalignment is arbitrarily

small. In addition, the sender always prefers to convey as much information as

possible as the most informative equilibrium is interim Pareto dominant. This

is not true when the receiver has SEU preferences, a case which is equivalent to

the model of communication over states proposed in Crawford and Sobel (1982).

In the linear-quadratic example with a uniform prior over models, more cut-offs

can exist in the MEU case than in the SEU one, for a given bias. This special case
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shows that when the expert’s preferred action is aligned with the effect of am-

biguity aversion, his influence is extremely high; but in the opposite case, it is

nonexistent. Assuming that the receiver has α-MEU preferences allows to show

the robustness of these results : whatever the misalignment, there is a degree of

ambiguity aversion for which no information transmission is possible for types

above a given threshold.

Coming back to the COVID-19 pandemic as an iconic case of conflicting sci-

ence, my results suggest that because of the epistemic nature of expert-based

knowledge, when faced with a choice between the lesser of two evils, decision

makers will tend to be unconvinced by scientific results which recommend more

collective efforts. To the contrary, when the state which demands more collective

efforts is also always worst then all others - as in the case of climate change - am-

biguity aversion is a powerful ally for the transmission of expert-based scientific

knowledge. For a scientific authority, the optimal communication policy is thus

opposed in these two cases. In the latter one, ambiguity aversion serves informa-

tion transmission and communication over models should be encouraged. In the

former, the asymmetry resulting from conflict in science is an important bias in in-

formation transmission. Therefore, simple announcements over complex science

that can be seen as cheap-talk for a non-expert audience should be avoided.

There are, of course, limitation to this work. First, it remains to show that re-

sults extend to a framework with multiple states. Second, it would be interesting

to introduce the possibility of delegating the action to the sender, as introduced

by Dessein (2002)—a possibility which is often welfare improving for the receiver.

Finally, in my view, the main avenue for future research is the extension of the

current framework to multiple experts. Many situations where expert-based sci-

entific knowledge plays an important part involve multiple senders, communi-

cating both simultaneously or sequentially. Existing work in the context of com-

munication over states, such as Battaglini (2002) or Krishna and Morgan (2001)

show that significant differences can appear.
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1.8. Appendix

1.8.1. Supplementary Assumptions

Assumptions on states

In the following I show that Assumption 2 is implied by the two following as-

sumptions.

Assumption 3 (Misalignment - Crawford and Sobel (1982)). The optimal actions of

S and R are always misaligned:

aS(ω) > aR(ω) for all ω ∈ Ω

Assumption 3 states that whatever the state, there is always a difference of

interest between S and R such that optimal actions are ordered the same way.

Assumption 4 (Sharpness). Whatever the sate, the sender has sharper preferences than

the receiver, for every action a ∈ A

∀a ∈ A, ∂uR(a,ω)
∂a

< ∂uS(a,ω)
∂a

Assumption 4 is a more technical assumption on the players utility function.

I assume that the player with highest optimal action in a given state has a more

concave utility function in that state, as illustrated by Figure 1.9. I call that prop-

erty sharpness, in the sense that it translates a sharper preference for the optimal

action.

Given Assumptions 3 and 4, I now show that both players optimal actions are

never aligned, whatever the model.

Lemma 2. Assumptions 3 and 4 imply that:
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Figure 1.9: Sharpness Assumption

AS(θ) < AR(θ) for all θ ∈ C or AS(θ) > AR(θ) for all θ ∈ C

Proof of lemma 2:

For player i and any θ ∈ C, define f θi : a → (1 − θ)∂ui(a,0)
∂a

+ θ ∂ui(a,1)
∂a

. f θi is a

continuous and decreasing function crossing the x-axis only once, at Ai(θ). We

want to prove that for all θ ∈ C, AR(θ) < AS(θ). In order to do so, it is enough to

prove that for any θ ∈ C, f θR(a) < f θS(a). Set hθ : a→ f θR(a)− f θS(a).

hθ(a) = (1− θ)(∂uR(a, 0)

∂a
− ∂uS(a, 0)

∂a
) + θ(

∂uR(a, 1)

∂a
− ∂uS(a, 1)

∂a
)

Thus, by Assumption 4, for all a ∈ A, hθ(a) < 0.
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Lemma 2 states that whatever the realised model, R and S optimal actions’

are always ordered in the same direction. Notice that Assumption 3 isn’t enough

for this result. When Assumption 4 is violated, there can be θ ∈ C such that

AS(θ) = AR(θ).

Imperfect knowledge of the model

In the following I show that the assumption that the sender observes the state gen-

erating distribution - the true model - can be replaced without significant change

in the result. Instead, I will assume that S observes a noisy signal regarding the

state generating distribution. I focus on the case where both players have MEU

preferences. Yet, results regarding the linear-quadratic example differ. The noise

decreases the precision of information transmission (cell sizes), acting as an addi-

tional bias.

Following Gajdos et al. (2008), I assume that S does not know the true model

θ0 but only observes an interval of models [θ0 − ε, θ0 + ε] of size 2ε > 0.

Assume that S’s preference under uncertainty are MEU. Then, having ob-

served [θ0 − ε, θ0 + ε], S evaluates action a through:

V MEU
S (a) = min

θ∈[θ0−ε,θ0+ε]
Eθ(uS(a, ω)))

Then, notice that the structure of equilibria is unaffected by those changes.

Proposition 2 which guarantees that all equilibrium are outcome equivalent to a

partition equilibrium only depends on the sender’s type, and not the state gener-

ating distribution.

The fact that information transmission can only take place below θ̃ (Theorem

1) is also unaffected under my assumptions. Recall that there can not be a cut-off

θk above θ̃ because AS(θk) > AR(s ∈ [θk, θk+1]). Yet, the optimal action when the
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sender’s signal is in [θk, θk+1] is AR(θk − ε) and the optimal action of S when his

type is θk is AS(θk − ε). Because of the misalignment of playser (assumption 2), it

can not be that AR(θk − ε) > AR(θk − ε).

The evaluation of actions by R changes. Take B = [θ1, θ2] ⊂ C, if R learns that

s ∈ B it implies that θ0 ∈ [θ1 − ε, θ2 + ε]. As a result, given that the sender’s type

is in B, R evaluates action a through:

V MEU
R (a,B) = min

θ∈[θ1−ε,θ2+ε]
Eθ(uR(a, ω))

= Eθ2+ε(uR(a, ω))

Thus, R’s evaluation of actions, for a given interval of parameters, still de-

pends only on the upper bound of that interval. As a result, Theorem 2 still holds

as well.

However, the characterisation in the linear quadratic will differ. The arbitrage

condition of proposition 4 gives that :

θk+1 = θk + 2b+ ε

Thus, it is as if the bias of the sender was b+ ε
2
. The cells’ length will change to a

size of 2b+ε. This will have an effect on ex-ante evaluation of welfare, as the noise

and the sender’s ambiguity aversion decreases the precision of communication.

1.8.2. Proofs of the results in the main text

Proof of lemma 1:
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∂2Eθ(ui(a, ω))

∂θ∂a
=
∂ui(a, 1)

∂a
− ∂ui(a, 0)

∂a

Assumption 1 gives that the latter is strictly positive.

Proof of Proposition 1:

In order to prove our result we need to study the variations of Eθ(uR(a, ω)) as

a function of θ. For a ∈ A,

∂Eθ(uR(a, ω))

∂θ
= uR(a, 1)− uR(a, 0)

Thus, we are interested in the sign of uR(a, 1) − uR(a, 0). First, we need to

prove the following lemma:

Lemma 3. Define B ⊂ C the belief of the receiver with minimal element θ1 and maximal

element θ2. Given this belief, her optimal action AR(B) ⊂ [AR(θ1), AR(θ2)].

Proof of lemma 3:

We prove this lemma in the more general context of α-MEU preferences. This

criteria coincides with MEU when α = 1.

First, notice that ∀a ∈ A, there is θm(a) ∈ B such that minθ∈B Eθ(uR(a, ω)) =

Eθm(a)(uR(a, ω)). Similarly, ∀a ∈ A, there is θM(a) ∈ B such that maxθ∈B Eθ(uR(a, ω)) =

EθM (a)(uR(a, ω)).

As a result, ∀a ∈ A, αminθ∈B Eθ(uR(a, ω)) + (1 − α) maxθ∈B Eθ(uR(a, ω)) =
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αEθm(a)(uR(a, ω)) + (1 − α)EθM (a)(uR(a, ω)) = Eαθm(a)+(1−α)θM (a)(uR(a, ω)). As, for

all a ∈ A, θ1 ≤ αθm(a) + (1 − α)θM(a) ≤ θ2 and that AR(θ) is a strictly increasing

function, it must be that AR(B) ⊂ [AR(θ1), AR(θ2)].

A consequence of the Lemma 3 is that when looking for optimal actions for a

givenB, it is sufficient to look for actions in [AR(θ1), AR(θ2)]. Notice that [AR(θ1), AR(θ2)] ⊂
[aR(0), aR(1)] and that for all a ∈ [aR(0), aR(1)] either:

1. uR(aR(0), 0) < uR(aR(0), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, utilities in

both states are never equal and uR(a, 0) < uR(a, 1) for all a ∈ A. As in this

case ã = aR(0) and thus θ̃ = 0, Eθ(uR(a, ω)) is strictly increasing with θ for

all a ∈ [aR(0), aR(1)]. As a result, AR(B) = AR(θ1).

2. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) > uR(aR(1), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, but as uR(aR(1), 0) >

uR(aR(1), 1) it must be that utilities in both states are never equal. As a

result, uR(a, 0) > uR(a, 1) for all a ∈ A. Thus, in this case ã = aR(1)

and θ̃ = 1. It follows that Eθ(uR(a, ω)) is strictly decreasing with θ for all

a ∈ [aR(0), aR(1)]. As a result, AR(B) = AR(θ2).

3. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) ≤ uR(aR(1), 1).

As for a > aR(0), uR(a, 0) is strictly decreasing and uR(a, 1) is strictly in-

creasing. Thus, both utilities are equal for a unique given action and by

definition of ã it must be that this point is ã. As a result:


uR(a, 0) > uR(a, 1) for a < ã

uR(a, 0) = uR(a, 1) for a = ã

uR(a, 0) < uR(a, 1) for a > ã
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Thus, for a ∈ [AR(θ1), AR(θ2)], Eθ(uR(a, ω)) is strictly decreasing with θ

when θ2 < θ̃ and strictly increasing with θ when θ1 > θ̃, which gives the

corresponding result. The above system also implies that when θ̃ ∈ B,

Eθ(uR(a, ω)) is always minimal for θ = θ̃. As a result, for all a ∈ [AR(θ1), AR(θ2)]

the minimal pay-off of the receiver as a function of the sender’s type is given

by:

min
θ∈B

Eθ(uR(a, ω)) =


Eθ2(uR(a, ω)) if a < ã

Eθ̃(uR(a, ω)) if a = ã

Eθ1(uR(a, ω)) if a > ã

The above system implies that when θ̃ ∈ B, minθ∈B Eθ(uR(a, ω)) is increasing

on (AR(θ1), ã) (as Eθ2(uR(a, ω)) is maximal at AR(θ2) > ã) and decreasing on

(ã, AR(θ2)) (as Eθ1(uR(a, ω)) is maximal at AR(θ1) < ã). As a result, it is

always maximal for ã. As a result, minθ∈B AR(B) = AR(θ̃).

Proof of Proposition 2

The proof is structured as follows. First, I show that the number of outcome

actions induced at equilibrium is finite. Then, I prove that the set of types which

get the same equilibrium outcome must form an interval. The continuity and the

strict monotonicity of the sender’s preferences closes the argument.

Lemma 4. There exists ε > 0 such that if u and v are actions induced in equilibrium,

|u− v| ≥ ε. Further the set of actions induced in equilibrium is finite.

Proof of Lemma 4

I say that action u is induced by an S-type θ if it is a best response to a given

equilibrium message m : u ∈ {AR(θ)|θ ∈ σ−1(m)}. Let Y be the set of all actions
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induced by some S-type θ. First, notice that if θ induces a, it must be that V θ
S (a) =

maxa∈Y V
θ
S (a). Since uS is strictly concave, V θ

S (a) can take on a given value for at

most two values of a. Thus, θ can induce no more than two actions in equilibrium.

Let u and v be two actions induced in equilibrium, u < v. Define Θu the set of

S types who induce u and Θv the set of S types who induce v. Take θ ∈ Θu and

θ
′ ∈ Θv. By definition, θ reveals a weak preference for u over v and θ

′ reveals a

weak preference for v over u that is:

V
θ
S (u) ≥ V θ

S (v)

V θ
′

S (v) ≥ V θ
′

S (u)

Thus, by continuity of θ → V θ
S (u)− V θ

S (v), there is θ̂ ∈ [θ, θ
′
] such that V θ̂

S (u) =

V θ̂
S (v). Since uS is strictly concave, we have that:

u < AS(θ̂) < v

Then, notice that since ∂2Eθ(uS(a,ω))
∂a∂θ

> 0 (Lemma 1), it must be that all types that

induce u are below θ̂. Similarly, it must be that all types that induce v are above

θ̂. That is:

∀θ ∈ Θu, θ ≤ θ̂

∀θ ∈ Θv, θ ≥ θ̂

Thus, whenR is MEU, Lemma 3 implies that the optimal action of the receiver,

given that θ ∈ Θu is below the optimal action when the type is θ̂. Similarly, the
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optimal action of the receiver, given that θ ∈ Θv is above the optimal action when

the type is θ̂. The same is true when when R is SEU. That is:

AR(Θu) ≤ AR(θ̂)

AR(Θv) ≥ AR(θ̂)

⇐⇒ u ≤ AR(θ̂) ≤ v

However, as AR(θ) 6= AS(θ) for all θ ∈ C, there is ε > 0 such that |AR(θ) −
AS(θ)| ≥ ε for all θ ∈ C. It follows that |u− v| ≥ ε.

Lemma 3 implies that for any belief B ⊂ C, the optimal action of the receiver

is in [AR(θ, AR(θ)]. Thus, the set of actions induced in equilibrium is bounded by

AR(θ) andAR(θ) and at least ε away from one another, which completes the proof.

Lemma 5. In every equilibrium of the game, if a is an action induced by type θ and by

type θ′′ for some θ < θ
′′ , then a is also induced by θ′ ∈ (θ, θ

′′
)

Proof of Lemma 5:

For the purpose of the proof, we introduce the notation W θ(a) = Eθ(uS(a, ω)),

which is the evaluation of a ∈ A by a sender of type θ.

We proceed by contradiction. Suppose a1 is induced by type θ and by type

θ
′′ and that there is θ′ ∈ (θ, θ

′′
) such that a1 is not induced. Then there must be

a2 6= a1 that type θ′ prefers and that θ′′ does not. Formally, this is:
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
W θ(a2) ≤ W θ(a1)

W θ
′
(a1) ≤ W θ

′
(a2)

W θ
′′
(a2) ≤ W θ

′′
(a1)

(1.6)

Notice that for a ∈ A:

∂W θ(a)

∂θ
= uS(a, 1)− uS(a, 0)

Similarly to S, define ãS = argmaxa∈Aminω∈Ω uS(a, ω). ãS is the action that

maximises the worst possible expected utility of the sender among the set of mod-

els. Two special cases are to be noticed. Either the high state is sufficiently worst

than the good one for it to give a lower utility at its optimal point: uS(aS(1), 1) ≤
uS(aS(1), 0). Then the hedging action is the optimal action in the high state ãS =

aS(1). Either the former is not true (uS(aS(1), 1) > uS(aS(1), 0)) and both states

must give the same utility for a given action in (aS(0), aS(1)). In that case ãS is the

action that gives the same utility in both states.

As a result, W θ(a) is strictly decreasing for a < ãS , constant for a = ãS and

strictly increasing for a > ãS . Assume that a1 < a2:

• When a1 < ãS and a2 ≥ ãS can cross at most once and system (1.6) is impos-

sible.

• Assume ãS ≤ a1 < a2. Then:

∂(W θ(a1)−W θ(a2))

∂θ
= uS(a1, 1)− uS(a1, 0)− (uS(a2, 1)− uS(a2, 0))

As, for a ≥ ãS , uS(a, 1) is a strictly increasing function and uS(a, 0) a strictly

decreasing one, we have that a1 < a2 implies that uS(a1, 1) − uS(a1, 0) <
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uS(a2, 1)− uS(a2, 0). Thus, W θ(a1)−W θ(a2) is a strictly decreasing function

of θ and W θ(a2) and W θ(a1) can cross at most once, making system (1.6)

impossible.

• Assume a1 < a2 < ãS . Then,W θ(a1)−W θ(a2) is a strictly increasing function

of θ and W θ(a2) and W θ(a1) can cross at most once, making system (1.6)

impossible.

The case a2 > a1 is symmetric.

By Lemma 4 there is a finite number of outcomes induced in equilibrium. The

continuity of AS(θ) gives that there is a type of the sender which is indifferent

between any pair of outcomes induced in equilibrium and the monotony ofAS(θ)

implies there are only a finite number of types which are indifferent between any

pair of outcomes. Hence, Lemma 5 implies that there is a partitioning of C in a

finite number of cells where every cell induces a given action at equilibrium.

Proof of Proposition 3

The outline of the proof is as follows. I start by showing that the cut-off types

of any equilibrium must satisfy condition (1.1). Any other equilibrium strategies

would be outcome equivalent.

Consider a couple of strategy (σ∗q , y
∗
q ) and write Cq

k = [θqk, θ
q
k+1].

• Assume y∗q is the equilibrium strategy of R. Given Proposition 2, any type

θ ∈ Cq
k induces the same action and prefers it to any other equilibrium ac-

tion. Thus, for σ∗q to be an equilibrium strategy, it is without loss of general-

ity to assume that any type θ ∈ Cq
k sends the same message mk and prefer it
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to any other message8. In particular, it must be preferred to message mk−1

which induces the preferred equilibrium action of types in Cq
k−1. For all

θ ∈ Cq
k :

V θ
S (y∗(mq

k)) ≥ V θ
S (y∗(mq

k−1))

Similarly, any type θ ∈ Cq
k−1 must prefer sending mk−1 to mk. For all θ ∈

Cq
k−1:

V θ
S (y∗(mq

k)) ≤ V θ
S (y∗(mq

k−1))

Thus, for σ∗q to be an equilibrium strategy a necessary condition is that:

V
θqk
S (y∗(mq

k−1)) = V
θqk
S (y∗(mq

k))

• Assume σ∗q is the equilibrium strategy of S. Then, for any θ ∈ C, the best

response of R in the MEU case to any equilibrium message σ∗q (θ) is:

argmaxa∈AV
MEU
R (a, σ∗−1

q (σ∗q (θ))) = y∗q (σ
∗
q (θ))

Similarly, in the SEU case, the best response of R to any equilibrium message

σ∗q (θ) is:

argmaxa∈AV
SEU
R (a, σ∗−1

q σ∗q (θ))) = y∗q (σ
∗
q (θ))

8Any other signaling strategy must induce the same action from R and will thus lead to the
same pay-offs for both players, whatever the sender’s type.
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Proof of Theorem 1

Assume there is a q + 1 cut-off equilibrium and that θq−1 < θ̃ < θq. As θq > θ̃,

we have that :

y
∗(mq−1) = AR(σ∗−1(mq−1)) = AR([θq−1, θq)) = AR(θ̃) = ã

y∗(mq) = AR(σ∗−1(mq)) = AR([θq, θq+1)) = AR(θq)

As AR is a strictly increasing function and because S is upwards misaligned,

we have that y∗(mq−1) < y∗(mq) < AS(θq). As by definition, a → Eθ(uS(a, ω)) is

strictly increasing on [0, AS(θq)], we have that Eθq(uS(y∗(mq−1), ω)) < Eθq(uS(y∗(mq), ω)) ⇐⇒
V
θq
S (mq−1) < V

θq
S (mq), which is a contradiction with the assumption that θq is a

cut-off type.

Proof of Proposition 4:

The structure of the proof is as follows. First, I provide an algorithm that

characterises the cut-off types of the equilibrium that has most cut-offs: θ0 < ... <

θM (step 1). Define E = {(θ1+k, ..., θM)|1 ≤ k ≤ M}. Then, I show that any non-

babbling partitional strategy of the sender characterised by cut-offs which are

elements of E is an equilibrium strategy (step 2). I conclude by showing that this

describes every equilibrium of the game (step 3).

In the following, I call Cq = [θq, θq+1], for 1 ≤ q < M − 1, CM = [θM , θ] and

C0 = [θ, θ1]

Step 1:

Assume there is a M cut-off equilibrium. Then the signalling strategy of the
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sender σ must be such that for q ∈ 0, ...,M , ∀θ ∈ Cq, σ(θ) = mk

First notice that V MEU
R (a, C0) = Eθ1(uR(a, ω)). For σ to be an equilibrium strat-

egy we need that ∀θ ∈ C0 and m 6= m0:

V θ
S (m0) ≥ V θ

S (m)

In C0, type θ1 has the most incentive to deviate from sending m0 to sending

m1, which would induce a higher action, as, V MEU
R (a, C1) = Eθ2(uR(a, ω)) and

AR(θ) is strictly increasing by Lemma 1.

Thus, a necessary condition for all types in C0 to send m0 is that:

V θ1
S (m0) ≥ V θ1

S (m1)

Furthermore, it is also necessary that all types in C1 prefer messagem1. In par-

ticular it must be the case for type θ1, thus: V θ1
S (m1) ≥ V θ1

S (m0). As a consequence,

a necessary condition for σ to be an equilibrium strategy is:

V θ1
S (m0) = V θ1

S (m1) (1.7)

By repeating the argument for all Cq, q ∈ 1, ...,M , a necessary condition for σ

to be an equilibrium strategy is for all q ∈ 1, ...,M :
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V
θq
S (mq−1) = V

θq
S (mq) (1.8)

Furthermore, the fact that ∪Mk=0Ck = C and the fact that for every pair of con-

sequent cell of the partition the incentive constraints are transitive gives that con-

ditions (1.8) is both necessary and sufficient. As AR(θ) is strictly monotone, it

implies that AR(θk) 6= AR(θk+1). θ being known, it is possible to derive θ1 directly

from (1.7). By repeating the reasoning by induction, θk+1 can be derived from θk

for k ∈ 1, ...,M − 1 from (1.8) as long as there is θM < θ̃.

Step 2:

I show that any partitional strategy of the sender characterised by θ0 < ... < θq

is an equilibrium strategy. I proceed by iteration:

• Step 1 proves that θ0 < ... < θM characterise an equilibrium. Let’s show that

θ0, θ2 < ... < θM does as well.

Assume S’s strategy is σM−1 such that for 2 ≤ k ≤M , ∀θ ∈ Ck, σM−1(θ) = mk

and ∀θ ∈ [θ, θ2], σM−1(θ) = m0. Then for k ∈ 1, ..., n − 1, when learning

its type θ ∈ Ck, by construction of the previous equilibrium, S’s preferred

message is mk. When θ ∈ [θM−1, θM ], mM−1 induces the same outcome as in

the M cut-off equilibrium and is preferred to all other messages.

When θ ∈ [θ, θ2] the fact that, for every pair of consequent cell of the parti-

tion, the incentive constraints are transitive implies that message m0 is pre-

ferred to any other message.

• Let’s assume that for q ≥ 2, σq defined as above is an equilibrium strategy

for S. By the same reasoning as above, it is straightforward to show that σq−1

is one as well. This completes the proof of step 2.

Step 3:
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Assume there is an equilibrium strategy of the sender σ which is not described

above. Recall AR(B) to be the optimal action of R under the belief that θ0 ∈ B for

B ⊂ C and W θ(a) = Eθ(uS(a, ω)) the evaluation of action a ∈ A by a sender of

type θ.

• Proposition 2 gives that all equilibria are partitional. First I’ll show that any

equilibria only characterised by elements of θ0, ..., θq must be characterised

by elements of E . It is straightforward to see that any equilibria only char-

acterised by elements of θ0, ..., θq which is not in E can be constructed from

an element of E by removing at least one element which is not an extrema.

To prove our claim, it is thus sufficient to prove that no equilibrium con-

structed from an element of E by removing exactly one element which is

not an extrema exists.

For 1 ≤ q ≤M , consider a strategy σp characterised by cut-offs θ0, θq, ..., θp−1, θp+1, ..., θM

for q + 1 ≤ p ≤M and assume it is an equilibrium strategy9. It must be that

that type θp+1 prefers outcome AR([θp−1, θp+1)) to outcome AR([θp+1, θp+2)).

Yet, by construction of the equilibrium of q cut-offs, types θp+1 is exactly in-

different between outcome AR([θp, θp+1)) and outcome AR([θp+1, θp+2)). As

AR([θp−1, θp+1)) < AR([θp, θp+1)), the previous implies that type θp+1 prefers

outcome AR([θp+1, θp+2)) to outcome AR([θp−1, θp+1)), which is a contradic-

tion.

• Thus σ must have a cut-off type θ∗ /∈ {θ1, ..., θM}. Assume without loss of

generality that θp < θ∗ < θp+1 for p ∈ 1, ...,M − 1. Then we have that:

W θ∗([θp, θ
∗]) = W θ∗([θ∗, θp+1])

⇐⇒ Eθ∗(uS(AR(θ∗))) = Eθ∗(uS(AR(θp+1)))

Yet, by the construction in step 1, the above implies that θ∗ = θp+1, which is

a contradiction.

9the choice of removing an element θp < θ̃ is without loss of generality
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Proof of Theorem 2:

Assume the equilibrium with most cut-offs has M elements. For any 1 ≤ q ≤
M let a q cut-off equilibrium be characterised by S’s strategy σ∗q and elements

θ0, θM−q, ..., θM .

First I’ll show that S is interim better-off in the q + 1 cut-off equilibrium than

in the q cut-off equilibrium. Then a simple iteration gives that S is better-off in the

M cut-off equilibrium than in the q cut-off equilibrium, for any q < M .

• Assume θ0 ∈ [θq, θ].

Then, S’s interim utility in the q + 1 cut-off equilibrium and in the q cut-off

equilibrium is Eθ0(uS((AR(θ̃)). Thus S is indifferent between both equilibria.

• Assume θ0 ∈ [θk, θk+1], for M − q ≤ k ≤M .

Then, S’s interim utility in the q + 1 cut-off equilibrium and in the q cut-

off equilibrium is Eθ0(uS((AR(θM−q−1)). Thus S is indifferent between both

equilibria.

• Assume θ0 ∈ [θ, θM−q−1], for M − q ≤ k ≤M .

Then, S’s interim utility in the q+1 cut-off equilibrium is Eθ0(uS((AR(θM−q−1))

and S’s interim utility in the q cut-off equilibrium is Eθ0(uS((AR(θM−q)).

Yet, because θM−q−1 is a cut-off type in the q + 1 cut-off equilibrium, for any

θ ∈ [θ, θM−q−1),

Eθ0(uS((AR(θM−q−1)) > Eθ0(uS((AR(θM−q))

Thus, any type of sender in [θ, θM−q−1) is interim better-off in the q+1 cut-off

equilibrium than in the q cut-off equilibrium.

Proof of Proposition 5:
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1. Assume R has SEU preferences. Assume there are n equilibrium cut-offs in

[0, 1]: θ0, ..., θn and thus θ0 = 0 θn = 1. When receiving equilibrium message

mk sent by types θ ∈ [θk, θk=1) S evaluates action through:

VR(a|mk) =

∫
θ∈[θk,θk+1]

(1− θ)uR(a, 0) + θuR(a, 1)dθ

= (1− E(θ|mk))uR(a, 0) + E(θ|mk)uR(a, 1)

where E(θ|mk) =
∫
θ∈[θk,θk+1]

θdθ = θk+θk+1

2
. A first order condition on the

above gives that when evaluating actions through VR(a|mk), the optimal

action is E(θ|mk). It follows that the equilibrium action of R is y∗(mk) =
θk+θk+1

2
. The optimal action in the eyes of S is AS(θ0) = θ0 + b. The arbitrage

condition gives that a sender of type θk must be indifferent between mk−1

and mk. That is, for k ∈ 2, ..., n:

AS(θk+1) =
y∗(mk) + y∗(mk+1)

2

Notice that this arbitrage condition translates in the similar condition as in

CS’s example:

θk+1 − θk = θk − θk−1 + 4b (1.9)

Equation (1.9) further gives that:

θk = k(θ1 − θ0) +
k(k − 1)

2
4b

Specifically, 1 = E(θn) = n(θ1) + n(n−1)
2

4b which gives θ1 = 1
n
− 2(n− 1)b and:

E(θk) = θk =
k

n
− 2kb(n− k)
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It follows that a n cut-off equilibrium exists if and only if:

0 < b <
1

2n(n− 1)

2. Assume R has MEU preferences and that there is a n-cut-off equilibrium.

When receiving message mn
k , for k ≥ 2:

VR(a|mk) = minθ∈[θk,θk+1]Eθ(uR(a))

Thus, when θ1 ≤ θ̃, VR(a|m0) = Eθ1(uR(a)) and the arbitrage condition giv-

ing the cut-off types gives thatAS(θ1) = θ1 +bmust thus be at equal distance

from θ1 and θ2. For this to be possible, it must be that b > 0. Thus, when

there is a n-cut-off equilibrium, it must be that θ̃ > θn. When receiving

message mk, for k ≥ 1:

VR(a|mk) = Eθk+1
(uR(a))

The equilibrium action of R when receiving the equilibrium message [θk, θk+1]

is y(mn
k) = E(θk+1). The arbitrage condition giving the cut-off types gives

that AS(θk+1) must thus be at equal distance from E(θk+1) and E(θk+2), giv-

ing

θk+1 + b =
θk+1 + θk+2

2

⇐⇒ θk+2 = θk+1 + 2b

When receiving message mn, the equilibrium action of R is y(mn) = θ̃ = 1
2
.

The arbitrage condition when S is of type θn−1 gives that:
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θ̃ + θn−1

2
= θn−1 + b

⇐⇒ θn−1 = 1− 2b

Which implies that, for all 1 ≤ k ≤ n− 1:

θk = θk = 1− 2b(n− k)

It follows that a n cut-off equilibrium exists if and only if:

θ1 > 0

⇐⇒ 1− 2bn > 0

⇐⇒ 0 < b <
1

2n

Proof of Corollary 1:

It is possible to derive from Proposition 5 that in the SEU case:

θk+1 − θk = θk − θk−1 + 4b

It is also possible to derive from Proposition 5 that in the MEU case:

θk+1 − θk = 2b
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Proof of Proposition 6 :

In order to prove our result we need to study the variations of Eθ(uR(a, ω)) as

a function of θ. For a ∈ A,

∂Eθ(uR(a, ω))

∂θ
= uR(a, 1)− uR(a, 0)

Thus, we are interested in the sign of uR(a, 1)−uR(a, 0). We want to prove that

:

min
θ∈B

AR(θ) =


AR(θ2) if θ2 < θ̃

AR(θ1) if θ1 > θ̃

AR(θ̃) if θ̃ ∈ B

The maximal pay-off of the receiver as a function of the sender’s type is given

by :

max
θ∈B

AR(θ) =


AR(θ1) if θ2 < θ̃

AR(θ2) if θ1 > θ̃

AR(θM) if θ̃ ∈ B

where θM = argmaxθ∈{θ1,θ2}Eθ(uR(a, ω)). A consequence of Lemma 3 is that

when looking for optimal actions for a given B, it is sufficient to look for actions

in [AR(θ1), AR(θ2)]. Notice that [AR(θ1), AR(θ2)] ⊂ [aR(0), aR(1)] and that for all
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a ∈ [aR(0), aR(1)] either :

1. uR(aR(0), 0) < uR(aR(0), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, utilities in

both states are never equal and uR(a, 0) < uR(a, 1) for all a ∈ A. As in this

case ã = aR(0) and thus θ̃ = 0, Eθ(uR(a, ω)) is strictly increasing with θ for all

a ∈ [aR(0), aR(1)]. As a result, minθ∈B AR(B) = AR(θ1) and maxθ∈B AR(B) =

AR(θ2)

2. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) > uR(aR(1), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, but as uR(aR(1), 0) >

uR(aR(1), 1) it must be that utilities in both states are never equal. As a

result, uR(a, 0) > uR(a, 1) for all a ∈ A. Thus, in this case ã = aR(1)

and θ̃ = 1. It follows that Eθ(uR(a, ω)) is strictly decreasing with θ for all

a ∈ [aR(0), aR(1)]. As a result, minθ∈B AR(B) = AR(θ2) and maxθ∈B AR(B) =

AR(θ1)

3. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) ≤ uR(aR(1), 1).

As for a > aR(0), uR(a, 0) is strictly decreasing and uR(a, 1) is strictly in-

creasing. Thus, both utilities are equal for a unique given action and by

definition of ã it must be that this point is ã. As a result:


uR(a, 0) > uR(a, 1) for a < ã

uR(a, 0) = uR(a, 1) for a = ã

uR(a, 0) < uR(a, 1) for a > ã

(1.10)

It follows from system (1.10) that, for all a ∈ [AR(θ1), AR(θ2)] the minimal

pay-off of the receiver as a function of the sender’s type is given by:
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min
θ∈B

Eθ(uR(a, ω)) =


Eθ2(uR(a, ω)) if a < ã

Eθ̃(uR(a, ω)) if a = ã

Eθ1(uR(a, ω)) if a > ã

The above system implies that when θ̃ ∈ B, minθ∈B Eθ(uR(a, ω)) is increasing

on (AR(θ1), ã) (as Eθ2(uR(a, ω)) is maximal at AR(θ2) > ã) and decreasing on

(ã, AR(θ2)) (as Eθ1(uR(a, ω)) is maximal at AR(θ1) < ã). As a result, it is

always maximal for ã. As a result, minθ∈B AR(B) = AR(θ̃).

It also follows from system (1.10) that, for all a ∈ [AR(θ1), AR(θ2)] the maxi-

mal pay-off of the receiver as a function of the sender’s type is given by:

max
θ∈B

Eθ(uR(a, ω)) =


Eθ1(uR(a, ω)) if a < ã

EθM (uR(a, ω)) if a = ã

Eθ2(uR(a, ω)) if a > ã

where θM = argmaxθ∈{θ1,θ2}Eθ(uR(a, ω)). The above system implies that

when θ̃ ∈ B, maxθ∈B Eθ(uR(a, ω)) is decreasing on (AR(θ1), ã) (as Eθ1(uR(a, ω))

is maximal at AR(θ1)) and increasing on (ã, AR(θ2)) (as Eθ2(uR(a, ω)) is max-

imal at AR(θ2)). As a result, it is maximal at either AR(θ1) or AR(θ2). As a

result, maxθ∈B AR(B) = AR(θM).

Notice that when utilities are quadratic, a simple algebra gives that for θ < θ
′ :

argmaxa∈A
[
αEθ(ui(a, ω)) + (1− α)Eθ′ (ui(a, ω))

]
= α

(
argmaxa∈AEθ(ui(a, ω))

)
+ (1− α)

(
argmaxa∈AEθ′ (ui(a, ω))

)
= Ai(αθ + (1− α)θ

′
)

which implies that :
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AR(B) = argmaxa∈A
[
αmin
θ∈B

Eθ(uR(a, ω)) + (1− α) max
θ∈B

Eθ(uR(a, ω))
]

=


αAR(θ2) + (1− α)AR(θ1) if θ2 < θ̃

αAR(θ̃) + (1− α)AR(θM) if θ̃ ∈ B

αAR(θ1) + (1− α)AR(θ2) if θ1 > θ̃

Proof of Proposition 7

Lemma 6. There exists ε > 0 such that if u and v are actions induced in equilibrium,

|u− v| ≥ ε. Further the set of actions induced in equilibrium is finite.

Proof of Lemma 6

I say that action u is induced by an S-type θ if it is a best response to a given

equilibrium message m : u ∈ {AR(θ)|θ ∈ σ−1(m)}. Let Y be the set of all actions

induced by some S-type θ. First, notice that if θ induces a, it must be that V θ
S (a) =

maxa∈Y V
θ
S (a). Since uS is strictly concave, V θ

S (a) can take on a given value for at

most two values of a. Thus, θ can induce no more than two actions in equilibrium.

Let u and v be two actions induced in equilibrium, u < v. Define Θu the set of

S types who induce u and Θv the set of S types who induce v. Take θ ∈ Θu and

θ
′ ∈ Θv. By definition, θ reveals a weak preference for u over v and θ

′ reveals a

weak preference for v over u that is :

V
θ
S (u) ≥ V θ

S (v)

V θ
′

S (v) ≥ V θ
′

S (u)
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Thus, by continuity of θ → V θ
S (u)− V θ

S (v), there is θ̂ ∈ [θ, θ
′
] such that V θ̂

S (u) =

V θ̂
S (v). Since uS is strictly concave, we have that :

u < AS(θ̂) < v

Then, notice that since ∂2Eθ(uS(a,ω))
∂a∂θ

> 0 (Lemma 1), it must be that all types that

induce u are below θ̂. Similarly, it must be that all types that induce v are above

θ̂. That is :

∀θ ∈ Θu, θ ≤ θ̂

∀θ ∈ Θv, θ ≥ θ̂

Thus, when R is α-MEU, Lemma 3 implies that the optimal action of the re-

ceiver, given that θ ∈ Θu is below the optimal action when the type is θ̂. Similarly,

the optimal action of the receiver, given that θ ∈ Θv is above the optimal action

when the type is θ̂. That is :

AR(Θu) ≤ AR(θ̂)

AR(Θv) ≥ AR(θ̂)

⇐⇒ u ≤ AR(θ̂) ≤ v

However, as AR(θ) 6= AS(θ) for all θ ∈ C, there is ε > 0 such that |AR(θ) −
AS(θ)| ≥ ε for all θ ∈ C. It follows that |u− v| ≥ ε.

Lemma 3 implies that for any belief B ⊂ C, the optimal action of the receiver
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is in [AR(θ, AR(θ)]. Thus, the set of actions induced in equilibrium is bounded by

AR(θ) andAR(θ) and at least ε away from one another, which completes the proof.

By Lemma 6 there is a finite number of outcomes induced in equilibrium. The

continuity of AS(θ) gives that there is a type of the sender which is indifferent

between any pair of outcomes induced in equilibrium and the monotony ofAS(θ)

implies there are only a finite number of types which are indifferent between any

pair of outcomes. Hence, Lemma 5 implies that there is a partitioning of C in a

finite number of cells where every cell induces a given action at equilibrium.

Proof of Proposition 8:

I focus on the case c = 1. The case c = −1 is symmetric.

Assume there is a n > 0 cut-off equilibrium. It follows from the characterisa-

tion of cut-off types in the linear-quadratic example given in the proof of Propo-

sition 5 and the characterisation of optimal actions in the α-MEU case given in

Proposition 6 that, for 1 ≤ k ≤ n− 2 and α > 0 :

θnk + b =
αθnk + (1− α)θnk−1 + αθnk+1 + (1− α)θnk

2

⇐⇒ θk+1 − θk =
1− α
α

(θnk − θnk−1 +
2b

α
)

Set Vk = θnk+1 − θnk . It follows from the previous equality that (Vk)k is an

arithmetico-geometrical sequence. As a result, for 1 ≤ k ≤ n− 2 and α /∈ {0, 1
2
} :
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Vk = (
1− α
α

)k(θn1 −
2b

2α− 1
) +

2b

2α− 1

By induction, if follows that :

θnk+1 =
k∑
j=1

[(
1− α
α

)k(θn1 −
2b

2α− 1
) +

2b

2α− 1
] + θ1

⇐⇒ θnk+1 =
k∑
j=0

Vj

⇐⇒ θnk = (θ1 −
2bn

2α− 1
)
(1− (1−α

α
)k

1− (1−α
α

)

)
+

2bk

2α− 1

In particular, it must be that θnn = 1
2

which give that θn1 = (1
2
− 2bn

2α−1
)
(

1−( 1−α
α

)

1−( 1−α
α

)n

)
+

2b
2α−1

. As a result, we get that :

θnk = (
1

2
− 2bn

2α− 1
)
(1− (1−α

α
)k

1− (1−α
α

)n

)
+

2bk

2α− 1

Proof of Proposition 9 :

1. I start by proving that for n ≥ 2, θnn−1(α) is a strictly increasing function.

Define f(a) = 1−an−1

1−an , for a ∈ (0, 1/2). Notice that :

∂f(a)

∂a
=
an−2(an − na+ n− 1)

(1− an)2
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Thus :

∂f(a)

∂a
< 0

⇐⇒ =
an−2(an − na+ n− 1)

(1− an)2
< 0

⇐⇒ = an > n(a− 1) + 1

Yet, a ∈ (0, 1
2
) ⇒ an > 0 and n(a − 1) + 1 < 0 ⇐⇒ a < 1 − 1

n
which is true

because a ∈ (0, 1/2) and n ≥ 2. As a result, ∂f(a)
∂a

< 0 and f is a decreasing

function. Yet :

θnn−1(α) =
1

2
f(

1− α
α

) +
2bn

2α− 1
(1− f(

1− α
α

))− 2b

2α− 1

1−α
α
∈ (0, 1/2) for α ∈ (1

2
, 1) and is decreasing in α. As a result f(1−α

α
)

is increasing in α and θnn−1(α) as well as a sum and product of increasing

functions of α. In addition, we have that :

∂θnn−1(α)

∂b
< 0

⇐⇒ =
2n

(2α− 1
(1− f(

1− α
α

))− 2

(2α− 1
< 0

⇐⇒ = f(
1− α
α

) > 0

which is true. By a symmetrical process, one can prove that θ
n

n−1(α) is a

strictly decreasing function and that ∂θ
n
n−1(α)

∂b
< 0. Yet :

limα→1θ
n

n−1(α) = −2b <
1

2

Thus, as θ
n

n−1(α) is strictly decreasing and continuous, there is α(b) ∈ (1/2, 1)

such that θ
n

n−1(α) = 1
2
. As θ

n

n−1(α) is strictly decreasing, for α ≥ α(b), no
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information transmission is possible in C. In addition, because ∂θ
n
n−1(α)

∂b
< 0,

it follows that α(b) is a decreasing function.

2. I start by proving that for n ≥ 2, θn1 (α) is a strictly increasing function. De-

fine f(a) = 1−a
1−an , for a ∈ (0, 1/2). Notice that :

∂f(a)

∂a
=
n(1− a)an−1

(1− an)2
− 1

1− an

Thus :

∂f(a)

∂a
< 0

⇐⇒ = n− (n− 1)a <
1

an−1

Yet, a ∈ (0, 1/2) ⇒ 1
an−1 > 2n−1 and a ∈ (0, 1/2) ⇒ n − (n − 1)a < n. As a

result, for n ≥ 2, n− (n− 1)a < n ≤ 2n−1 < 1
an−1 which implies that ∂f(a)

∂a
< 0

and f is a decreasing function. Yet :

θnn−1(α) =
1

2
f(

1− α
α

) +
2bn

2α− 1
(1− f(

1− α
α

))− 2b

2α− 1

1−α
α
∈ (0, 1/2) for α ∈ (1

2
, 1) and is decreasing in α. As a result f(1−α

α
) is

increasing in α and θn1 (α) as well as a sum and product of increasing func-

tions of α. By a symmetric process, one can prove that θ
n

1 (α) is a decreasing

function.

Consider two receivers α1 and α2 such that α1 < α2. Assume there is a n

cut-off equilibrium between S and α1. Then θ
n

1 (α1) ∈ (0, 1). As θ
n

1 (α) is a

decreasing function, it must be that θ
n

1 (α2) < 1. In addition, as θ
n

n−1(α) is an

decreasing function, it follows that θ
n

n−1(α2) > limα→1θ
n

n−1(α) = 1
2
− 2b > 0

for b < 1
4
, which is the existence condition of the considered equilibrium. As

a result, there is a n cut-off equilibrium between S and α2
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Proof of Proposition 10 :

We are in the case where c = 0. Recall that in this case θ̃ = 1
2
.

• Consider the case of an n cut-off equilibrium that has n ≤ N−3 cut-off types

below 1
2
.

I call θNk (α) the k-th cut-off of our equilibrium. By Proposition 6, we get that

for n+ 2 ≤ k ≤ N − 1 and 1
2
< α < 1:

θNk (α) + b =
(1− α)θNk (α) + αθNk−1(α) + (1− α)θNk+1(α) + αθNk (α)

2

as before, we get by induction that:

θNk (α) = (θNn+1(α)− 2bN

2α− 1
)
(1− ( α

1−α)k

1− ( α
1−α)

)
− 2bk

2α− 1
− 1

2

In particular, it must be that θNN = 1 which give that θNn+1 = (1+ 2bN
2α−1

)
(

1−( α
1−α )

1−( α
1−α )N

)
+

2b
2α−1

. As a result, we get that :

θNN−1(α) = (1− 2bN

2α− 1
)
(1− ( α

1−α)N−1

1− ( α
1−α)N

)
− 2b(N − 1)

2α− 1
+

1

2

Yet, reproducing the reasoning in the proof of Proposition 9, one can show

that θNN−1(α) is a strictly decreasing function and that :

limα→1θ
N
N−1(α) =

1

2
− 2b <

1

2

Thus, as θNN−1(α) is strictly decreasing and continuous, there is α(b) ∈ (1/2, 1)
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such that θNN−1(α) = 1
2
.It follows that there is α(b) ∈ (0, 1) such that, for

α ≥ α(b), only one action can be induced by types in [1
2
, 1].

• Second, consider the case where n = N − 2. Then, there is a single cut-off

type in (1
2
, 1). Call that type θNN−1(α) ∈ (1

2
, 1). By Proposition 6 it must be

that:


θNN−1(α) + b =

α 1
2

+(1−α)θNn +αθNN−1(α)+(1−α)1

2

or

θNN−1(α) + b =
α 1

2
+(1−α)θNn+1+αθNN−1(α)+(1−α)1

2

⇐⇒


θNN−1(α) = 1

2
− 1−α

2−αθ
N
n − 2b

or

θNN−1(α) = 1
2
− 1−α

2−αθ
N
n+1 − 2b

In both cases we have that limα→1θ
N
N−1(α) = 1

2
− 2b < 1

2
. By the same argu-

ment as above, there must be α(b) ∈ (0, 1) such that, for α ≥ α(b), only one

action can be induced by types in [1
2
, 1].

• Finally, consider the case where N = 2. Then, either θNN−1(α) ≤ 1
2

for any

α > 1
2
, either there is α > 1

2
such that θNN−1(α) > 1

2
. In that second case,

following Proposition 6 it must be that:

θNN−1(α) + b =
αθ̃ + (1− α)0 + αθNN−1(α) + (1− α)1

2

⇐⇒ θNN−1(α) =
2− α− 4b

4− 2α

As limα→1
2−α−4b

4−2α
= 1

2
− 2b < 1

2
. By the same argument as above, there must

be α(b) ∈ (0, 1) such that, for α ≥ α(b), only one action can be induced by

types in [1
2
, 1].

In all three cases one can show that ∂θNN−1(α)

∂b
< 0, which implies that that α(b)

is a decreasing function.
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2. Eliciting Multiple Prior Beliefs 1

(with Mohammed Abdellaoui and Brian Hill)

Abstract

Despite the increasing relevance of multiple priors in various domains of eco-

nomics and the significant theoretical work on them, choice-based incentive com-

patible multiple-prior elicitation largely remains an open problem. This paper

develops a new solution, comprising of a preference-based identification of a sub-

ject’s probability interval for an event, and two procedures for eliciting it. The

method does not rely on specific assumptions about subjects’ ambiguity attitude

or probabilistic sophistication. To demonstrate its feasibility, we implement it

in two incentivized experiments to elicit the multiple-prior equivalent of sub-

jects CDFs over continuous-valued sources of uncertainty. The method finds a

predominance of non-degenerate probability intervals among subjects for all ex-

plored sources, with intervals being wider for less familiar sources. Finally, we

use our method to undertake the first elicitation of the mixture coefficient in the

Hurwicz α-maxmin EU model that fully controls for beliefs.

1I would like to thank Maxim Forlov and Thibaud Choppin de Janvry for very precious re-
search assistance.
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2.1. Introduction

The standard Bayesian model of decision under uncertainty in economics stip-

ulates that a decision maker’s beliefs are fully captured by a single probability

measure over the states of the world (Savage, 1954; Anscombe and Aumann,

1963). However, in the face of contrary empirical evidence, starting with Ells-

berg (1961b)’s famous examples, more general theories have weakened the stan-

dard assumption of probabilistic beliefs. One of the most popular models in-

volves a ‘belief component’ consisting of a set of priors over the states of the

world, rather than imposing a single prior from the outset (Gilboa and Schmei-

dler, 1989b). Multiple prior models have found a growing number of applications

in macro-economics (Ilut and Schneider, 2014), finance (Garlappi et al., 2007; Ep-

stein and Schneider, 2010), mechanism design (Bose and Renou, 2014), econo-

metrics (Manski, 2003, 2013), health economics (Giustinelli et al., 2021), but also

beyond economics, in climate science (Kriegler et al., 2009), risk analysis (Cox,

2012) and uncertainty communication (Dieckmann et al., 2010), including by cen-

tral banks (Carney et al., 2019). Despite obvious theoretical appeal, empirical

applications of multiple prior models still have to muddle along in the absence

of appropriate choice-based procedures for eliciting their ‘belief component’. To

date, almost all attempts to operationalize multiple prior elicitation have focused

on subjects’ stated probability intervals for individual events (Giustinelli et al.,

2021; Kriegler et al., 2009), and hence involve procedures that are neither choice

based nor incentive compatible. This paper proposes, and implements in a lab-

oratory experiment, a choice-based incentive-compatible elicitation method for

probability intervals.

Our elicitation is theoretically robust, in a double sense. On the one hand, we

work with a decision framework that does not postulate a specific ambiguity atti-

tude from the outset, e.g. universal ambiguity aversion (Gilboa and Schmeidler,

1989b). Specifically, we assume a Hurwicz α-maxmin expected utility decision

setup, which is consistent with recent experimental findings suggesting that peo-

ple could possibly exhibit ambiguity aversion in some choices and be ambiguity
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seeking in others (Kocher et al., 2018). On the other hand, we purposefully es-

chew any assumption that preferences are generated by precise probabilistic be-

liefs, i.e. that they are probabilistically sophisticated (Machina and Schmeidler,

1992). Multiple priors clearly come to the fore precisely in situations where such

assumptions are unwarranted. To our knowledge, we develop the first choice-

based incentive-compatible implementable approach to multiple prior elicitation

that is theoretically robust in this double sense (Section 2.5).

Elicitation under Hurwicz α-maxmin expected utility in the absence of prob-

abilistic sophistication faces well-known theoretical difficulties with the identifi-

cation of this model (Ghirardato et al., 2004a; Siniscalchi, 2006; Eichberger et al.,

2011). Our first contribution is a new resolution of them. Our proposal is inspired

by the matching probability (MP) method for determining the subjective proba-

bility of an uncertain event (Anscombe and Aumann, 1963). Under Subjective

Expected Utility (SEU), the subjective probability of a target event E coincides

with its MP, which can be inferred from preferences between a bet on E and bets

on events generated by extraneous random devices with known probability, e.g.

the color of a randomly drawn ball from an urn of known composition. Specifi-

cally, for urns containing only red or blue balls, the MP is given by the proportion

r of red balls such that the subject is indifferent between the gamble that pays out

a monetary prize z if E occurs, and nothing otherwise, and the gamble on the urn

with proportion r of red balls, that pays z if the next ball drawn from the urn is

red (Abdellaoui et al., 2005; Dimmock et al., 2015).

Our insight for eliciting probability intervals is to use extraneous random de-

vices with interval-valued rather than precise probabilities. To illustrate, consider

a partially known urn containing only red or blue balls, where all that is known

is that at least proportion r of balls in the urn are red, and at least proportion b

are blue (with r + b ≤ 1). Here, the probabilities of getting red or blue on the

next draw from the urn are summarized by the intervals [r, 1 − b] and [b, 1 − r],

respectively. Whilst a single indifference between the gamble on the target event

E and bets on such urns does not suffice to identify the subject’s probability inter-

val for E, we show that the latter can be identified from a pair of correctly-chosen
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indifferences involving bets concerning E and such ‘interval-valued’ urns. As

explained in detail in Section 2.2, we thus propose a preference-based associa-

tion of an ‘interval-valued’ urn to each event, which can be thought of as the

equivalent of matching probabilities for probability intervals. This matching prob-

ability interval notion resolves the problem of choice-based incentive-compatible

probability-interval elicitation in theory.

Our second contribution is to develop and apply in a laboratory setting two

methods for eliciting matching probability intervals: a two-dimensional exten-

sion of well-known (one-dimensional) choice lists, and an adaptive binary-choice

procedure that can be thought of as an interval analogue of the bisection or stair-

case method for eliciting matching probabilities. Whilst most elicitation exercises

in behavioral economics have focused on beliefs about single events (e.g. it will

rain tomorrow), many elicitation applications in economics and beyond require

subjects’ probability distributions or CDFs over a continuous variable of interest

(e.g. US inflation in 2023, Eurozone GDP in 2022, average global temperature in

2030). Motivated by this observation, we implement our methods on two pairs

of sources of uncertainty of the latter sort, to elicit the interval-valued CDFs gen-

erated by subjects’ multiple priors. Interval-valued CDFs are commonly used

in applications to go beyond the assumption of precise subjective probabilities

(Karanki et al., 2009). Application to elicit CDFs provides a test of concept, show-

ing that our approach can operate in such contexts.

Our central findings attest to the feasibility of our approach. Our method

yields generally consistent results, eliciting, for the vast majority of subjects, non-

degenerate interval-valued CDFs. Our elicitation suggests that imprecise beliefs—

i.e. non-singleton intervals for some events—are widespread, with only a handful

of subjects having fully precise probabilities for all elicited events. This finding,

which is consistent with elicitations using stated probability intervals (Giustinelli

et al., 2021), attests to the relevance of multiple-prior belief elicitation. Moreover,

by eliciting subjects’ beliefs for two similar sources which intuitively have differ-

ent degrees of familiarity or predictability (e.g. the temperature in Paris and in

Sydney for subjects in Paris), our elicitations provide insight into the relationship
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between intuitive familiarity or predictability and probability intervals. Specifi-

cally, we observe that the width of the subjective probability intervals is typically

larger for intuitively less familiar or less predictable sources. Again, the reason-

ableness of this correlation provides corroboration of the solidity of our method.

Finally, we connect our elicited beliefs with the Hurwicz α-maxmin EU model,

and perform what to our knowledge is the first elicitation of the mixture coeffi-

cient α in that model that fully controls for beliefs without making strong as-

sumptions about their form, such as probabilistic sophistication.

The paper is structured as follows. Section 2.2 sets out the theoretical back-

ground and presents the central planks of our methods (the ‘matching probabil-

ity interval’ notion, the two-dimensional choice lists and the binary-choice proce-

dure), with the relevant theoretical results. Section 2.3 sets out our experimental

implementations, in the form of two studies. Section 2.4 contains our results and

supporting analyses, whereas in Section 2.5 we discuss connected issues, next

steps and related literature. Proofs, data analyses and experimental details are

contained in the Appendices.

2.2. Theoretical Background

2.2.1. Preliminaries

We consider decision making situations where the objects of choice are two-outcome

prospects that pay a fixed monetary outcome z if an event occurs, and nothing

otherwise. Prospects with general winning event E and winning amount z are

denoted (z, E, 0) and called bets. The complementary bet, which pays out when the

event E does not occur, is denoted (0, E, z).

As mentioned previously, we use extraneous interval-valued random devices

realised by urns containing red and blue balls with partial information about the
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composition. For instance, consider the urn where subjects are only told that at

least a proportion r of its balls are red, at least a proportion b are blue (with r+b ≤
1) but receive no information about the colour composition of the remaining balls

(except that each is either red or blue). For such an urn, the information only

allows assignment of the interval [r, 1−b] for the probability of the next ball drawn

from the urn being red; similarly, there is the interval [b, 1 − r] for the next ball

being blue. Using these probability intervals for parametrization, we denote the

urn with at least proportion r of red balls and at least proportion b of blue balls

by [r, 1− b]. We denote the set of such interval-valued urns by I.1

Each urn [r, 1 − b] in I can be related to two (sorts of) prospects. One is the

prospect which pays z if the next ball drawn from the urn is red, and nothing

otherwise. For such a prospect, the probability of winning is characterized by the

interval [r, 1−b]; we denote this prospect by (z, [r, 1−b], 0). The other prospect in-

volves the complementary bet on this urn—that is, the bet on the next ball drawn

from it being blue. We denote this prospect by (0, [r, 1 − b], z). Note that the

probability of losing here is characterised by the interval [r, 1 − b], so the proba-

bility of winning is given by [b, 1− r]; this prospect is thus essentially equivalent

to (z, [b, 1 − r], 0). Since these prospects all involve objectively given informa-

tion about the probability of winning, albeit in interval rather precise probability

form, we call them interval lotteries (IL).2 Standard lotteries correspond to the spe-

cial case where the composition of the urn is fully known—i.e. r = 1− b.

The set I of interval-valued urns can be visually represented by the black

triangle in Figure 2.1. Each point (x, y) represents the urn [x, y]—i.e. with at

least proportion x of red balls and at least proportion 1 − y of blue ones. As

such, it represents two interval lotteries: the bet on red, (z, [x, y], 0), where all that

is known is that the winning probability is in the interval [x, y], and the bet on

blue (0, [x, y], z), where all that is known is that the losing probability is in this

1Formally: I = {[x, y] : (x, y) ∈ R2, 0 ≤ x ≤ y ≤ 1}.
2Our notion of interval lottery is distinct from that used by Gul and Pesendorfer (2014). They

use ‘interval lottery’ to denote (precise) probability measures over the set of intervals of (mon-
etary) prizes; here, ‘interval lottery’ denotes assignments of probability intervals to (fully deter-
mined, precise) outcomes. In particular, the interval lotteries (z, [r, 1 − b], 0) used here clearly
do not belong to the concept used by Gul & Pesendorfer’s (zero probability is assigned to each
outcome between 0 and z).
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interval. Standard lotteries, and urns with fully known composition correspond

to the points on the diagonal (x = y).

2.2.2. Upper and lower probabilities and CDFs

The sources of uncertainty considered here are real-valued variables, e.g. the

daily minimum temperature in Paris between November and March. In the pre-

cise probability case, elicitation aims at revealing the subjective probability over

the variable, which can be represented as a subjective cumulative distribution

function (CDF). One common way of doing so is by eliciting subjective probabil-

ities of events corresponding to the variable lying below certain fixed values, i.e.

if the variable takes values in the real interval T , the events considered are of the

form Et = {t′ ∈ T : t′ ≤ t}. For future reference, we call these cumulative events.

We now set out the aim of the corresponding exercise for multiple priors.

Multiple prior belief representations involve a convex, closed set C of proba-

bility measures: measures over the values of variable of interest, in our case.3 For

each event Et, the set of priors generates a probability interval {p(Et) : p ∈ C} =

[p(Et), p(Et)], where p(Et) = min {p(Et) : p ∈ C} and p(Et) = max {p(Et) : p ∈ C}
are the lower and upper probabilities for Et respectively. As is well-known, a set of

priors contains more information than the collection of upper and lower proba-

bilities for all events generated from it, but the latter (or sometimes less) is often

sufficient for applications, and sometimes preferable, insofar as it is easier to com-

municate.

For continuous-valued variables, CDFs are often used. Recall that for a proba-

bility measure p ∈ ∆(T ), the CDF is defined as Fp(t) = p({t′ ∈ T : t′ ≤ t}) = p(Et);

when the probability measure is a subjective probability, this is the correspond-

ing subjective CDF. In this context, a set of priors C generates the interval-valued

CDF FC(t) = {p(Et) : p ∈ C}, which takes the probability interval corresponding

to Et as value, for each t. This can be visually represented in terms of two (real-

3Technically, C ⊆ ∆(T ), the set of probability measures over T .
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valued) functions: the lower CDF, FC(t) = min {p(Et) : p ∈ C} = p(Et), and the

upper CDF, FC(t) = max {p(Et) : p ∈ C} = p(Et). These are widely used for rep-

resenting, communicating and studying sets of priors over continuous variables,

where they often go under the name of distribution bands or p-boxes (Berger

et al., 2000; Karanki et al., 2009), though, like upper and lower probabilities, they

involve an information loss as compared to sets of priors. In the implementation

of our elicitation procedure conducted here, our aim is to elicit subjective upper

and lower CDFs for the variables considered.

2.2.3. Decision model

For the purposes of presentation, we will focus on one of the most popular and

general models of decision under uncertainty involving sets of priors, the Hur-

wicz α-maxmin EU model. (In Section 2.5 and Appendix 2.7.3, we discuss how

our proposals extend to generalisations.) Under the α-maxmin model, a bet (z, E, 0)

is evaluated according to:

αp(E).u(z) + (1− α)p(E).u(z) (2.1)

where p(E) and p(E) are the upper and lower probabilities of E generated by the

subjects’ set of priors, as defined above, and u is a utility function normalized

so that u(0) = 0. The coefficient α is often associated with ambiguity attitude in

this model, with α > 1
2

considered as reflecting typical ambiguity aversion and

α < 1
2

as typical ambiguity seeking. For illustration, the standard behavior in the

Ellsberg two-urn example can be accommodated by α > 1
2

but not by α < 1
2
. This

model coincides with the Gilboa-Schmeidler maxmin-EU model when α = 1;

whenever α 6= 1, the model does not satisfy the Gilboa-Schmeidler uncertainty

aversion axiom—which can be thought of as characterizing universal ambiguity

aversion—and hence can accommodate ambiguity seeking behavior in certain

choices (even for 1 > α > 1
2
). Since typical findings suggest some ambiguity

seeking behavior, but not in situations that give reason to believe that α < 1
2
, we

take α > 1
2

to be typical and assume that preferences are represented according
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to (2.1) with α > 1
2

in the sequel (except where specified). As discussed in Section

2.7.3, the full strength of this assumption is not required for the central elements

of the elicitation method. The aim is to elicit p(E) and p(E).

We also assume the same representation for interval lotteries: i.e. preferences

concerning them are represented by an evaluation of (z, [r, 1− b], 0) by:

αru(z) + (1− α)(1− b)u(z) (2.2)

2.2.4. Matching Probability Benchmark

As discussed in the Introduction, our proposal can be thought of as an interval

analogue of the matching probability method. The latter is based on the insight

that, under SEU, the decision maker’s subjective probability of an event E, p(E),

is equal to the matching probability (MP) for E, defined as the probability p such

that (z, [p, p], 0) ∼ (z, E, 0). So eliciting the MP is tantamount to eliciting the sub-

ject’s subjective probability. In this way, the concept of MP resolves the problem

of incentive-compatible probability elicitation in theory: it suffices to elicit pref-

erences between the bet (z, E, 0) and thelottery (z, [r, r], 0) for values of r ranging

from 0 to 1. Due to stochastic dominance, the bet is expected to be preferred for

all values below some threshold r?, with the lottery being preferred above. In

practice, the subjec tmay be asked to fill in a choice list with each line offering

the choice between the bet (z, E, 0) and a lottery (z, [r, r], 0), for equally spaced

values of r ranging from 0 to 1. Then, the shifting value r?, i.e. the MP of event

E, is determined by the maximum value of r for which the subject prefers the

bet. To incentivize the procedure, a lottery—or equivalently, a row in the choice

list—is selected at random and the stated choice between the bet and that lot-

tery is played ‘for real’. This mechanism is incentive compatible: reporting one’s

real preferences is weakly dominant, for if one does not do so, there is a non-

zero probability of playing a choice ‘for real’ in which one will obtain one’s less

preferred option.
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Another elicitation procedure, sometimes called the ‘bisection’ procedure, uses

a chained sequence of binary choice questions to ‘hone in’ on the matching prob-

ability. Starting with a binary choice between (z, [1
2
, 1

2
], 0) and (z, E, 0), it then asks

a binary choice with the midpoint of the lower (respectively upper) interval [0, 1
2
]

(resp. [1
2
, 1]) whenever the subject chooses the former (resp. latter) option, and so

on. While this procedure optimizes the time needed to elicit MPs as compared

to choice lists, the application of the random incentive mechanism to it is some-

times criticized given that the binary choice offered at each iteration depends on

the subject’s choices at previous iterations. Hence there is a possibility of strategic

considerations in responses; accordingly, this mechanism is incentive compatible

only under the assumption that subjects treat each binary choice in isolation from

the others.

A hybrid elicitation procedure—proposed and implemented by Abdellaoui

et al. (2019) —combines these two procedures. The subject first undertakes the

bisection procedure, to aid her in filling in a choice list. At the end of the bisection

procedure, she is presented with a choice list filled in according to her replies on

the bisection procedure (i.e. for all entries with probability above the MP found

by the bisection procedure, the lottery is ‘pre-filled’ as chosen, and for all entries

below, the bet is). At this stage, the subject must confirm the choice-list replies

deduced from her bisection choices or correct the responses accordingly, and then

confirm. The prospect played ‘for real’ is determined by her reply in this choice

list task, according to the associated incentivisation mechanism specified above.

As argued in the cited paper, this combination of the two methods retains the

advantages of both: the bisection procedure—consisting of easier tasks—aids the

subject to fill in the choice list—which has more robust incentive compatibility

properties.

In this paper, we provide analogues of each of these three elements for mul-

tiple priors. First, we propose an analogue of MPs, and show that eliciting all

preferences between bets for and against an event E and interval lotteries (ILs)

is sufficient to yield the subject’s probability interval for E, in theory. Turning to

implementation, we then develop an extended notion of choice list under which
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a single ‘switching point’ question reveals the subject’s probability interval for

the event in question. We also develop a binary-choice procedure, reminiscent of

the bisection procedure. In our experiment we implement both, with the binary-

choice procedure helping to ‘fill in’ the extended choice list, as under the hybrid

approach. We now present these elements in turn.

2.2.5. Theory: Matching Probability Intervals

Our approach is based on the following notion. The matching probability interval

(MPI) of an event E is an [r, 1− b] ∈ I such that:

(z, [r, 1− b], 0) ∼(z, E, 0) (2.3)

(0, [r, 1− b], z) ∼(0, E, z) (2.4)

Plugging these indifferences into (2.1) and (2.2) yields the following equations:

αr + (1− α)(1− b) = αp(E) + (1− α)p(E),

α(1− (1− b)) + (1− α)(1− r) = α(1− p(E)) + (1− α)(1− p(E)).
(2.5)

Clearly, these equations are satisfied by r = p(E), 1 − b = p(E). Moreover,

whenever there is a unique pair r, 1 − b satisfying them, then there is a unique

matching probability interval, which indicates precisely the subjective probability

interval for E: i.e. [p(E), p(E)] = [r, 1 − b]. Under the α-maxmin EU model with

α 6= 1
2
, the MPI is unique (Proposition 3, Appendix 2.7.1). So to elicit the subjects’

probability interval for the event E, it suffices to find the MPI of E.

The MPI can be illustrated in Figure 2.1. The red hatched area represents the

upper contour set of the bet (z, E, 0) in the space of interval lotteries correspond-

ing to bets on red: that is, the set of (x, y) such that (z, [x, y], 0) � (z, E, 0). The

blue hatched area is the upper contour set of the complementary bet (0, E, z) in
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[1, 1][0, 1]

[0, 0]

(0, [x, y], z) � (0, E, z)
(z, [x, y], 0) � (z, E, 0)

(z, [x, y], 0) ∼ (z, E, 0)
(0, [x, y], z) ∼ (0, E, z)

MPI

r

1− b

Figure 2.1: Matching Probability Interval in space I of interval-valued urns, for
an event E.

the space of complementary ILs (corresponding to bets on blue): that, it is the set

of (x, y) such that (0, [x, y], z) � (0, E, z). The boundaries of these sets (the diag-

onal red and blue lines respectively) represent the indifference curves of (z, E, 0)

(resp. (0, E, z)), in the space of ‘red’ (resp. ‘blue’) ILs. The matching probability

interval corresponds to the black point at the intersection of these two lines.

This Figure also brings out the contribution of ILs as compared to standard lot-

teries and the long-standing identification problem for the α-maxmin EU model

(Section 2.5). The MP of the bet (z, E, 0) is given by the point where the red indif-

ference curve meets the diagonal; clearly eliciting it is insufficient to pin down the

subject’s probability interval for E. Similarly, the MP of the complementary bet

(0, E, z) is given by the point where the blue indifference curve meets the diago-

nal. Eliciting both of these MPs is sufficient to pin down the subject’s probability

interval (as the intersection of the indifference curves) only if the slope of the in-

difference curves is known: but this is determined by the α mixture coefficient in (2.1),

which also needs to be elicited. The use of ILs, and the notion of MPI built upon

it, allows elicitation of the subjective probability interval without requiring elici-

tation of the α mixture coefficient. Indeed, we shall use our probability interval

elicitation in tandem with MPs to estimate subjects’ α (Section 2.4.5).
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Just like the notion of MP for subjective probabilities under EU, the notion

of MPI resolves the challenge of incentive-compatible probability-interval elicita-

tion in theory. Obtaining the subject’s preferences between each pair consisting of

a bet (for or againstE) and an IL provides the MPI—and hence the subject’s prob-

ability interval for E—as the point satisfying (2.3) and (2.4). It is well known that

there are fully incentive-compatible mechanisms for eliciting such preferences.

For instance: the subject states her preference between each pair consisting of a

bet (for or against E) and an IL; a random bet (for or against E) and IL are then

chosen and she is remunerated according to the prospect between the two which

she stated as more preferred. By the standard argument, it is in the subject’s best

interest to report preferences truthfully, for if not there is a chance of receiving her

less preferred prospect in the choice which is ‘played for real’. These elicited pref-

erences provide, inter alia, the MPI and hence the subject’s probability interval for

E.

Of course, implementation typically requires a method involving fewer pref-

erence questions. This is especially challenging for probability intervals, since

the target is a point in a two-dimensional space, whereas elicitation of the pre-

cise probability of an event only needs to search a one-dimensional space. As we

shall see, there is a trade-off in this context between parsimony and the strength

of the incentive compatibility. For the purposes of implementation, we develop

two more parsimonious methods for eliciting MPIs, whilst making no claim to

have exhausted all possibilities.

2.2.6. Implementation 1: 2D Choice lists

Consider any MPI [r, 1− b] of an event E, so that the indifference (2.3) is satisfied.

Since α > 0 in the representation (2.1), it follows that:

(z, [q, 1− b], 0) �(z, E, 0) for all q > r (2.6)

(z, [q, 1− b], 0) ≺(z, E, 0) for all q < r
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On Figure 2.1, this determines the preferences on the ‘red’ ILs corresponding to

the bold red (horizontal) line. To the left of the MPI, the bet on E is preferred to

the IL corresponding to the bet on red from the urn [q, 1− b] (i.e. with probability

[q, 1− b] of winning); to the right of the MPI, the IL is preferred to the bet; and at

the MPI, the two are indifferent.

Similar reasoning applies to complementary bets. By the indifference (2.4) and

the fact that α > 0, for an MPI [r, 1− b] of E, it follows that:

(0, [r, q], z) ≺(0, E, z) for all q > 1− b (2.7)

(0, [r, q], z) �(0, E, z) for all q < 1− b

On Figure 2.1, this determines the preferences on the (complementary) ‘blue’ ILs

corresponding to the bold blue (vertical) line. Above the MPI, the bet against E

is preferred to the IL corresponding to the bet on blue from urn [r, q] (i.e. with

probability [r, q] of losing); below the MPI, the IL is preferred to the bet; and at

the MPI, the two are indifferent.

Remark 1. Note the property behind preferences (2.6) and (2.7):

Definition 1 (Lower Stochastic Dominance). For every r, r′, b ∈ [0, 1] with 1 − b ≥
r, r′, (z, [r, 1− b], 0) ≺ (z, [r′, 1− b], 0) whenever r < r′.

Between ILs (z, [r, 1− b], 0) and (z, [r′, 1− b], 0) corresponding to bets on red from

urns with the same minimum proportion of blue balls, the decision maker prefers

the prospect where the minimum proportion of red balls is higher. This can be

thought of as an analogue of the standard stochastic dominance property for lot-

teries. Given the weakness of this assumption, this part of the proposal extends

beyond the α-maxmin EU model to models satisfying Lower Stochastic Domi-

nance (see Section 2.5 and Appendix 2.7.3).

It follows from the previous observations that the only points supporting the

specified preference patterns on the corresponding horizontal and vertical lines

are MPIs.
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Proposition 1. For any event E, let [r, 1− b] ∈ I be such that:

(z, [q, 1− b], 0) �(z, E, 0) for all q > r

(z, [q, 1− b], 0) ≺(z, E, 0) for all q < r

(0, [r, q], z) ≺(0, E, z) for all q > 1− b

(0, [r, q], z) �(0, E, z) for all q < 1− b

Then [r, 1− b] is a matching probability interval of E.

The red (horizontal) and blue (vertical) bold lines can thus be thought of as

a pair of choice lists, and the MPI is the switching point on each of them. We

henceforth refer to the combination of the two as a 2D choice list. Inspired by

this observation, consider the following mechanism for eliciting a subject’s MPI

for an event E. A subject reports an interval-valued urn [r, 1 − b] for E. She is

then remunerated as follows. First, an urn [x, y] is chosen at random from the 2D

choice list.4 Then she ‘receives’ or ‘plays’ a bet or IL according to the following

scheme:

• if y = 1− b, x < r, then she gets (z, E, 0) (i.e. she ‘plays’ the bet on E)

• if y = 1− b, x ≥ r, then she gets (z, [x, y], 0) (i.e. she ‘plays’ this IL)

• if x = r, y < 1− b, then she gets (0, [x, y], z) (i.e. she ‘plays’ this IL)

• if x = r, y ≥ 1− b, then she gets (0, E, z) (i.e. she ‘plays’ the bet against E)

It follows from the previous Proposition that this mechanism is incentive compat-

ible in the following sense: on each choice list, reporting the urn reflecting one’s

true upper or lower probability is in one’s best interest—it weakly dominates any

other report in the respective choice list. Hence asking a subject for an urn [r, 1−b]
such that, in each of the branches on the 2D choice list, she prefers the option she

would receive under the mechanism, incentivises reporting of a MPI. Note that,

4I.e. the interval is chosen at random from {[x, y] : (x, y) ∈ I, y = 1 − b} ∪ {[x, y] : (x, y) ∈
I, x = r}, the union of the horizontal and vertical lines going through (r, 1− b) in the Figure 2.1.
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since precise probabilities (and SEU) are a special case of multiple priors (respec-

tively, α-maxmin EU), this mechanism functions equally for Bayesian decision

makers, who are incentivised to report their precise probabilities.

Despite the considerably higher complexity involved in eliciting probability

intervals as opposed to precise probability values, this incentive mechanism is

as parsimonious as standard choice lists for MPs. Like them, it only asks for

one point. Like them, this point can be used to ‘fill in’ the other preferences in

the 2D choice list using the Lower Stochastic Dominance property (Definition 1).

However here, this does not suffice to determine all preferences between bets

and ILs. This is due to the space of ILs being a dimension larger than that of lot-

teries: whereas stochastic dominance allows filling in all bet-lottery preferences

in a standard MP choice list, no stochastic-dominance property can do the same

for all bet-IL preferences.5 Because of this, the branches of the 2D choice list are

not fixed, but depend on the subject’s reports, e.g. the choice list for the lower

probabilities (red horizontal line in Figure 2.1) depends on the reported upper

probability. It is thus possible for a subject to choose strategically on the basis of

the bet-IL choices she would like to face, thus reporting preferences that do not

satisfy the conditions in Propositions 1 and do not yield the MPI.

It is well-known that the incentive compatibility of an elicitation mechanism

typically depends on some form of isolation assumption. For instance, existing

preference elicitation methods under ambiguity concerning several events are

unbiased only if subjects treat different preference tasks in isolation from oth-

ers (Bade, 2015): a property that Azrieli et al. (2018) analyze under the name of

state-wise monotonicity. The proposed mechanism is incentive compatible un-

der an isolation assumption of this sort: namely, that subjects treat the branches

in the 2D choice list in isolation from each other. Experimental design can favor

such isolation. As set out in Section 2.3.3 (see also Appendix 2.9), 2D choice lists

are realized in our implementation by a single scrollbar with two cursors: visually

very different from that in Figure 2.1, this presentation promotes considering each

5This is also true for stronger stochastic dominance properties than Lower Stochastic Domi-
nance.
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branch individually and is less suggestive of strategic opportunities of changing

the choice lists by ‘moving around the 2D space’. That said, the extent to which

isolation holds in an experiment is ultimately an empirical question, and we treat

it as such. On this front, an advantage of the proposed elicitation method is that

strategic reasoning leads to easily recognizable choice patterns. As discussed in

Appendix 2.7.3, for any subject represented by (2.1) with α ∈ (0, 1) (whatever

her set of priors C), her optimal response to the 2D choice list task when rea-

soning strategically is one of the points [0, 0], [0, 1], [1, 1]: i.e., one of the vertices

of the space of interval-valued urns in Figure 2.1 (see Appendix 2.7.3 for details).

Moreover, the only case in which a response in the interior of the space is not sub-

optimal is when α = 1 and the subject assigns a precise probability of 0.5 to the

event under consideration. Checking for concentration of responses at the ver-

tices will thus provide insight into the extent of strategic reasoning in our subject

pool (Section 2.4.1).

2.2.7. Implementation 2: Binary-choice procedure

In our implementation, the 2D choice list task is preceded by a ‘bisection-style’

binary-choice procedure for identifying the MPI. Here we set out its general prin-

ciples; full details are provided in Appendix 2.7.2. The logic can again be illus-

trated on Figure 2.1. The space of interval-valued urns (or probability intervals)

is divided into four preference-defined areas, summarised in Table 2.1. The pro-

cedure is based on the following observation.

Proposition 2. Suppose preferences are represented according to (2.1) with α > 1
2
, and

let E be an event.

a. For any point [x, y] in the R-B region (i.e. such that the corresponding preferences

in Table 2.1 hold, for E), p(E) ≤ x and p(E) ≥ y. Moreover, for any point [x, y] in

the W region, p(E) ≥ x and p(E) ≤ y.
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Name Preferences Colour (in Figure 2.1)

R-B
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
Red & Blue

W
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
White (neither Red nor Blue)

R
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
Red

B
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
Blue

Table 2.1: Preference-based division of I

b. For any point [x, y] in the R region (i.e. such that the corresponding preferences in

Table 2.1 hold, for E), every [x′, y′] with x′ ≥ x and y′ ≥ y is also in R. Moreover,

for any point [x, y] in the B region, every [x′, y′] with x′ ≤ x and y′ ≤ y is also in

B.

It follows from part a. that if the experimenter has found a point (interval-valued

urn) [xRB, yRB] in the R-B region (i.e. such that there is the preference pattern in

Table 2.1, row 1), and a point [xW , yW ] in the W region, then the MPI is contained

in the ‘box generated’ by these points, i.e. it is in the set {[x, y] : xW ≤ x ≤ xRB, yRB ≤ y ≤ yW}.
The procedure works by searching the smallest such generated box for further

points in R-B or W, in order to ‘reduce’ the size of the boxes and hence ‘home

into’ the MPI. In this sense, it is analogous to the bisection procedure for MPs,

where preferences indicate that the MP is in a particular interval, and the proce-

dure searches to reduce the width of that interval.

Note that a similar result to Proposition 2 a. for the R and B regions does not

hold.6 However, by part b. it can be concluded, for any point (interval-valued

urn) [x, y] in R, that every point North-East of [x, y] is also in R, and similarly

for a point in B. So, if the experimenter has just discovered a point in R (i.e. the

elicited preferences for the relevant urn are as set out in Table 2.1), then, to seek

a point in R-B or W, she needs to look South-West of this point; and analogously

6This can be seen by considering the horizontal and vertical bold lines in Figure 2.1 to define
four quadrants, and by noting that there are both red and blue areas in the upper left-hand and
lower right-hand quadrants.
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for points in B. The procedure works, when at a point in R and B, by performing

a bisection along one-dimensional cuts of the space I guided by this observation,

until a point in R-B or W is found. Then the procedure between the closest R-B

and W points re-applies, in an attempt to generate a ‘smaller’ box. Details are

available in Appendix 2.7.2.

One final important property of the procedure used is an in-built ‘precision

bias’. Whenever no point in the areas R-B or W has been found, and hence at

a stage when it is searching for points in these areas, the procedure deliberately

moves closer to the space of precise urns (the 45◦ line in Figure 2.1); again, see

Appendix 2.7.2 for details. In this way, if there is any misclassification of subjects,

the tendency would be for the procedure to represent them as more precise than

they actually are.

2.3. Experimental Methods

We carried out two experiments in which we used our method to elicit upper and

lower CDFs for various sources of uncertainty. Both experiments involved two

comparable yet different sources of uncertainty (Table 2.2). EXP 1 implemented a

faster elicitation, eliciting probability intervals for fewer points per source. This

left time for standard matching probability elicitation for the same events, which

yield insight into the α-maxmin EU model (see Section 2.4.5). By contrast, EXP

2 implemented a slower upper and lower CDF elicitation, eliciting more points

per source. It also involved an omnibus confirmation screen, allowing subjects to

confirm (or revise) all choices concerning events in a source, after elicitation. In

EXP 2, no MPs were elicited.



2.3. EXPERIMENTAL METHODS 98

Type of Source
of uncertainty Treatments # Events Elicited # subjects

EXP 1

Minimum
winter

temperature
(°C)

Where: Paris;
Sydney 4 MPIs, MPs (Paris) 80

EXP 2 Entrance exam
grade ( /20)

Exam: Maths,
Contraction 5 MPIs 52

Table 2.2: Summary of studies

2.3.1. Subjects

132 subjects (undergraduate students) were recruited in total from two French

academic institutions: 80 from university of Paris 1 for EXP 1 and 52 from HEC

Paris Business School for EXP 2 (Table 2.2). EXP 1 took place in June 2018; EXP 2

took place in September-October 2019. Subjects’ choices were collected through

computer-based individual interviews that lasted about one hour in each of the

two studies. Each individual interview started with a video presentation of the

experimental instructions, followed by comprehension questions and one train-

ing MPI elicitation task (on an event not involved in the ensuing experiment).7

Appendix 2.9 reports the typical screenshots faced by subjects for the tasks. In

both experiments, subjects were told that there were no wrong or right answers,

and that they could ask any question regarding the experiment. Any differences

in experimental instructions between the experiments are explained in the sequel.

2.3.2. Stimuli and treatments

Sources of uncertainty

Each experiment involved two comparable sources of uncertainty, with one treat-

ment for each source (Table 2.2). The type of source in EXP 1 was the minimum

daily temperature over the previous November–March period; the sources dif-

7The video presentations are available upon request.
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fered on the city whose temperature was of interest—Paris, where the experiment

was carried out, and Sydney. EXP 2 involved two of the previous year’s entrance

exams for admission at undergraduate level through the ‘ECS’ and ‘ECE’ entrance

streams to a prominent French business school, HEC Paris. The subjects in the

experiment—students admitted at this level at the school—had sat the exams ei-

ther the same year or the previous year. The sources differed in the exam con-

sidered: the probability and statistics exam (officially called ‘Mathématiques II’),

which is generally considered to be ‘objectively marked’, and the ‘Contraction’

exam—a summary of a philosophical or literary text—whose marking is con-

sidered more ‘subjective’, ‘random’ and ‘unpredictable’ among candidates and

students. Indeed, the marks in the latter exam have higher variance.8

Each source of uncertainty involves a variable (temperature in °C, mark out of

20), the aim was to elicit subjects’ multiple prior beliefs—in the form of the gen-

erated upper and lower CDFs (Section 2.2.2)—over the variable. In each experi-

ment, the subject chose a number at the beginning of the experiment9 which iden-

tified, according to a spreadsheet to which the subject would only have access at

the end of the experiment, a random dayD between 01/11/2017 and 31/03/2018

(in EXP 1), and a random candidate C for entry to HEC Paris in 2019 (in EXP 2).

We estimated upper and lower CDFs by eliciting subjects’ upper and lower prob-

abilities for cumulative events, i.e. events Eti of the form: “the minimum temper-

ature on day D in Paris (resp. Sydney) was less than or equal to ti”, or “candidate

C obtained a mark less than or equal to ti in the Maths (resp. Contraction) exam”

(Section 2.2.2), for various fixed values of ti given in Table 2.3.10

Note that the events used pertained to time periods several months before

subjects participated in the experiment (2017-2018 Winter temperature, for sub-

8The variance of marks for Maths is 3.77, where it is 9.92 for Contraction.
9They chose a number between 1 and 150 in EXP1 (the number of days in the period consid-

ered), 1 and 456 (the number of candidates) in EXP 2.
10For each source in EXP 1, we chose temperature values close to the 10%, 33%, 66% and 90%

percentiles of the true distribution. For EXP 2, we used the same values for both sources (Maths
and Contraction), picked so they would seem to reasonably scan the range and correspond to
comparable points in the true distribution over Contraction scores, where they were at the 3% 15%
33% 68% and 86% percentiles. They were at the 0%, 0%, 2%, 21% and 60% of the true distribution
of Maths scores.
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Treatment Events Eti = {t′ ∈ T : t′ ≤ t′} for ti:

EXP 1 Paris −2, 2, 5, 8
Sydney 15, 18, 20, 22

EXP 2 Maths 7, 10, 12, 15, 17
Contraction 7, 10, 12, 15, 17

Table 2.3: Sources of uncertainty and events

jects taking part in the experiment in Spring 2018; exams sat in Spring 2019, for

subjects taking part in the experiment in Autumn 2019). Moreover, there is a nat-

ural difference in the familiarity with or predictability of the sources involved

in each experiment—with Paris’s weather being more familiar to Paris subjects

than Sydney’s, and Maths considered a more predictable exam than Contraction.

Finally, we had access to the real data for all the sources, which were used for

incentivisation (Section 2.3.4).11

Organisation of EXP 1

EXP 1 consisted of three blocks of tasks. Each of the first two blocks concerned

a single source (Paris or Sydney), and involved the elicitation of the upper and

lower probabilities for each of the events in the source (Table 2.3). The order of

these two blocks was randomized. In each block, the subject first declared, in

an non-incentivized manner and using a scrollbar, her estimated maximum and

minimum values for the minimum temperature on the unidentified day selected.

This is standard procedure in expert elicitation for unbounded sources, aimed

at combatting anchoring bias (Morgan, 2014), and played no role in our elicita-

tion. Then the elicitation procedure set out in Section 2.2 and implemented as

described in Section 2.3.3 was applied for each event in the source. Within each

block, the two extreme events (i.e. lowest and highest temperature points) were

asked first, in a random order, followed by the other two events, in a random

order.
11For the weather, the data source was Météo France (Paris Orly meteofrance.fr) and the Aus-

tralian Bureau of Metereology (Sydney Observatory Hill bom.gov.au); for the marks, they were
provided by HEC admission services.

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
http://www.bom.gov.au/climate/data/
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The final block involved the elicitation of MPs for the events in Paris treat-

ment. MPs were elicited for each event Eti in this source and its complement Ec
ti

(Table 2.3). The order of elicitations was randomized in this block.

Organisation of EXP 2

EXP 2 consisted of two blocks of tasks, corresponding to the first two blocks of

EXP 1. Each of the blocks concerned a single source (Maths or Contraction), and

involved the elicitation of the upper and lower probabilities for each of the events

in the source (Table 2.3). The order of the blocks was randomized. In each block,

the elicitation procedure set out in Section 2.2 and implemented as described in

Section 2.3.3 was applied for each event in the source. The order of events in each

block was randomized. Each block ended with a omnibus confirmation screen,

in which the confirmation 2D choice list scrollbars (Section 2.3.3) for each of the

events in the source were displayed and graphed, and the subject was given the

opportunity to go back and modify any of her responses for the events in the

source. This screen, the sources and the larger number of events elicited per

source were the central differences with respect to EXP 1.

2.3.3. Elicitation techniques

Elicitation of upper and lower probabilities

The elicitation procedure followed the steps whose underlying theory was set

out in Section 2.2. For each event Eti (Table 2.3), we first applied the chained

binary-choice procedure set out in Section 2.2.7 and Appendix 2.7.2. Each step

of the procedure involved an event Eti , and a 100-ball urn with a specified mini-

mum number of blue and red balls, where nothing was known about the colour

of the remaining balls. At each step, two choices were elicited from subjects: their

choice in the decision between the bet on the event Eti and the bet on the next ball
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drawn from the urn being red, and their choice in the decision between the bet

on Ec
ti

(or against Eti) and the bet on the next ball drawn from the same urn being

blue. (Details on the display are provided in Appendix 2.9.) The urn proposed in

the next step depended on the preferences elicited in the previous step according

to the procedure (Section 2.2.7 and Appendix 2.2.7). The subjective probability in-

terval for Eti elicited at the end of the procedure is deduced from the preferences

over such bets, as specified in the cited sections. The procedure continued until

the interval was estimated to a precision of 0.15 if it was not degenerate, 0.05 if

it was degenerate (i.e. corresponding to a precise probability), or up to 12 steps,

whichever came first.

At the end of this procedure, the ‘confirmation’ 2D-choice list was displayed

for verification. Although the ‘space of choices’ to be confirmed is the two-dimensional

‘cross’ in Figure 2.1 (Section 2.2.6), we implemented it via a one-dimensional

scrollbar based display with two cursors (see Appendix 2.9). The cursors spec-

ified the minimum number of red and blue balls respectively, and hence together

determined an interval-valued urn. They were initially set at the values deter-

mined by the binary-choice procedure. To confirm the whole 2D-choice list, the

subject had to scan all the associated choices. When moving the red cursor, the

blue cursor remained fixed at the pre-specified value. This accentuates the sepa-

rate nature of the cursors, which cannot be moved in tandem. It thus promotes

isolation of the branches of the 2D choice list, which is the condition for incentive

compatibility (Section 2.2.6). By moving the red cursor, the subject scanned all

the urns with the same minimum number of blue balls but differing minimum

numbers of red balls, i.e. the choices represented by the bold red horizontal line

in Figure 2.1. During this scan the corresponding choices between the bets on

the event Eti and the bets on red from the urn were displayed, with the ‘chosen

bet’, specified as in Section 2.2.6, being indicated (i.e. the bet on the urn when

there are more red balls than the provisionally elicited point; the bet on the event

otherwise). The subject also had to scan the choices associated with moving the

blue cursor—there, the red cursor (and hence minimum number of red balls) was

held fixed. When moving the blue cursor, the choices between the bets on Ec
ti

and

the bets on blue from the urn were displayed (with the corresponding choice,
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following the logic in Section 2.2.6). This corresponds to scanning the choices

represented by the vertical bold blue line in Figure 2.1. By clicking on the appro-

priate bet (on the event or the urn) in any of the displayed choices, subjects could

revise their reported preferences, hence modifying the specified position of the

fixed cursors (and the associated provisionally elicited point). After such modi-

fications, subjects had to reconfirm all of the associated choices, by moving one

and then the other cursor, before moving on to the next stage of the experiment.

The precision of the scrollbar, and hence subject responses, was to the nearest 0.01

(to the precise minimum number of red and blue balls respectively out of 100).

Omnibus confirmation screen (EXP 2)

In EXP 2, after the procedure described above was completed for all the events in

the source, the subject was asked to confirm all the elicited values, and given the

opportunity to modify responses. The confirmation screen displayed the interval-

valued urns elicited for the five events in the source. Moreover, this information

was summarized in a graph displaying the minimum number of red and blue

balls for each event (see Appendix 2.9). Hovering the mouse over the points on

the graph caused the associated interval-valued urn to be highlighted. By clicking

on the point on the graph or the urn, the subject could access the corresponding

two-cursor scrollbar confirmation screen at the end of the binary-choice proce-

dure for that event, where she could change her choices in exactly the same way

as set out above.

Elicitation of MPs (EXP 1)

The MP of the bet on a given event was elicited through a fairly standard two-

step procedure, from which our multiple prior elicitation procedure was inspired

(Section 2.2.4). First, a candidate MP was determined through a bisection process

(Abdellaoui et al., 2008) that consisted in a series of single pairwise choices be-

tween the bet on the event and an urn whose composition was fully known. The
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latter realises a standard lottery, i.e. a prospect for which the probability of win-

ning is perfectly known (Section 2.2.1). The displays used were similar to those

described above. Then the complete confirmation (one-dimensional, single cur-

sor) scrollbar-based choice list, filled in according to the prior bisection choices,

was displayed for verification. The precision of the elicited MP was to the nearest

0.05.

2.3.4. Incentivizing subjects

Participants in all studies were offered a flat payment of ¤10. Additionally, a ran-

dom incentive system was implemented, which was entirely analogous to those

standardly used to implement elicitation of matching probabilities. As noted

above, after the presentation of the instructions and before the beginning of the

experiment, the subject chose a number from a given range, which identified the

individual case of the variable of interest (the day, if the source was minimum

temperature; the candidate, if the source was the mark). The exact case identified

was specified according to a spreadsheet that would only be revealed at the end of

the experiment. This is in concordance with the approach set out by Johnson et al.

(2021), who argue that it reduces hedging motivations, given the well-known fact

that ambiguity models are indifferent to ex ante hedging. At the end of the ex-

periment, a choice list (a 2D-choice list or MP-choice list in EXP 1; a 2D-choice list

in EXP 2) and choice on it were chosen at random by the computer. The subject

was then paid according to the decision she had made on that choice. If she had

chosen, say, the bet on the event that the minimum temperature in Paris is less

than or equal to 2°C, then the day which she chose was revealed, as well as daily

temperature data for the November–March period, and she won if the minimum

temperature on that day was indeed 2°C or less; if not, she lost. If she had cho-

sen the urn, then she composed the appropriate urn—she counted the specified

minimum numbers of red and blue balls, with the remaining balls coming from

pre-constructed Ellsberg urns (of unknown composition). Then a ball was drawn

from the constructed urn, and she was paid according to whether she bet on the

color of that ball or not. All bets yielded 20¤ if won, and nothing otherwise.
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Figure 2.2: Median, 25% and 75% quantile ranges of upper and lower CDFs

2.4. Results

2.4.1. Descriptive Statistics and Performance

Figure 2.2 plots the median, 25% and 75% quantile upper and lower CDFs for

all elicited events and both experiments (see Tables 2.5–2.6 in Appendix 2.8.1 for

basic descriptive statistics). This Figure already give some early indications about

our results, and the performance of our elicitation method.

First of all, it reports ‘well-behaved’ upper and lower CDFs with probabili-

ties differing across subjects and events—thus suggesting the consistency of the

method. The elicited points for both upper and lower CDFs were also consistent
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across the successive steps of the elicitation procedure: the binary-choice pro-

cedure and the confirmation 2D choice list. This convergence accords with an

absence of strategic reasoning. Further, as noted in Section 2.2.6 (see also Ap-

pendix 2.7.3), subjects who engage in strategic reasoning when responding to the

2D choice list will be characterised by a large number of responses at the vertices

of the space of interval-valued urns, i.e. at the points [0, 0], [0, 1], [1, 1]. In EXP 1,

only one subject (out of 80) reported points in [0, 0], [0, 1], [1, 1] for more than half

of the elicited events12, whereas for no subject in EXP 2 were more than half of the

elicited points among these extremes (Table 2.9, Appendix 2.8.1).

Moreover, Figure 2.2 suggests that, on aggregate, upper and lower CDFs are

increasing, as they should be. Figure 2.3 plots descriptive statistics of the empiri-

cal distribution of individual Kendall τb rank correlation coefficients between the

size of events and the upper (resp. lower) probabilities or MPs elicited for each

source (see also Table 2.10, Appendix 2.8.1). As is clear from the Figure, the me-

dian Kendall τb is far greater than 0 for all sources—suggesting that the general

direction of the upper and lower CDFs is increasing—with a notable difference

between EXP 1 and EXP 2. In EXP 2, where subjects were given the opportunity

to confirm all their replies on all the 2D choice lists for a source (Section 2.3.3),

CDFs were strictly increasing for the vast majority of subjects; in EXP 1, where

2D choice lists were confirmed after consideration of the event and there was no

opportunity to reconfirm later, there were more violations of monotonicity. Com-

parison of the (cognitively less demanding) MPs with upper and lower CDFs in

the Paris treatment, whose median Kendall ranks are similar (Figure 2.3a), sug-

gests that such violations were not unique to the elicitation method proposed

here. As could have been expected, the frequency of monotonicity violations ap-

pears to increase with the difficulty of the choice task, with the MP task being ar-

guably easier than that for probability-interval elicitation, and the task for Paris,

the more familiar source for our subjects, being easier than that for Sydney.

12He / she reported 3 points out of 4 as [0, 1], for both sources.
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Figure 2.3: Individual-level Kendall τb for upper and lower CDFs for the
sources for each experiment, and for the MPs in EXP 1, Paris treatment.
In the case of MPs, the Lower MP is calculated using the MPs of the events Et
(and should be increasing in t), whereas the Kendall τb for upper MPs are calcu-
lated using one minus the MPs of complementary events Ec

t (which should be
increasing with t).
Note: The Kendall τb is an indication of ordinal association: the value 1 indicates that the
CDFs or MPs are strictly increasing; 0 suggests that there is no association between the
elicited probability and the size of the event; −1 indicates strictly decreasing CDFs.

2.4.2. Bayesian analysis

We also adopt a standard Bayesian approach, estimating hyperparameters for

upper and lower CDFs using a MCMC procedure. We run estimations for each

source under the assumption that upper and lower CDFs follow a (truncated)

normal distribution, and under a Beta distribution (Table 2.15, Appendix 2.8.2).

As shown in Table 2.4, the Beta distribution has the best goodness of fit under

both the AIC and BIC criteria for the sources in EXP 1, whereas the truncated

Normal distribution performs better according to both criteria for the sources in

EXP 2. Henceforth, we present the results under these distributions (the analyses

under the other distributions are given in Appendix 2.8.2).

Figure 2.4 plots 1000 MCMC samples for each of the upper and lower distri-

butions, for each source. (Statistics on the distributions of parameters are given

in Tables 2.16–2.23, Appendix 2.8.2.) They suggest that the proposed elicitation

technique supports a clean Bayesian estimation of subjective probability intervals

in the population, insofar as they chime with expectations given the nature of the
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Paris Sydney Mathematics Contraction

AIC normal 706.65 700.79 411.22 385.52
beta 648.26 684.36 416.18 390.64

BIC normal 711.42 705.56 415.12 389.42
beta 653.02 689.12 420.08 394.54

Table 2.4: AIC and BIC under (truncated) normal and Beta specifications for CDFs
(Table 2.15).

events. For instance, they suggest that the dispersion of subjective upper and

lower probabilities is larger for the temperature source (EXP 1) than the grade

source (EXP 2), which could be related to the fact that all subjects in EXP 2 had

sat both exams, and were very interested in the marking, several months before.

Also, within EXP 1, there is more dispersion in the estimated distributions for

Sydney than for Paris, as would be expected given the less familiar nature of the

former source, for Paris subjects.13

2.4.3. Imprecision

Both the graphs of raw data (Figure 2.2) and those emerging from the Bayesian

analysis (Figure 2.4) suggest that subjects’ beliefs are often imprecise: i.e. there is a

gap between their upper and lower probabilities. Indeed, two-sided Kolmogorov-

Smirnoff tests of the hypothesis that the median upper and lower CDFs are drawn

from the same distribution reject the hypothesis for each source (p < 0.0001 in all

cases), suggesting a gap between upper and lower CDFs. For further analysis,

we define the following index. For an event E from a given source (e.g. min-

imum temperature in Paris), we say that a subject’s imprecision concerning E is

p(E) − p(E), i.e. the width of her (elicited) probability interval for E. A subject’s

Imprecision Index for a source is defined to be her average imprecision across all

13More precisely, it is clear from Tables 2.17 and 2.19 that the standard deviations of the param-
eters for the Paris source are lower than for Sydney.
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Figure 2.4: Bayesian estimation of lower and upper CDFs: plots of 1000 samples
from MCMC.
(Beta distribution for EXP 1; Truncated Normal distribution for EXP 2)
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Figure 2.5: Imprecision Index (Eq. (2.8)) across sources in EXP 1 and EXP 2

elicited events in the source:

II =
1

n

n∑
i=1

(
p(En)− p(En)

)
(2.8)

This clearly gives an indication of how imprecise the subject’s beliefs are, on av-

erage, for events in the source. Naturally, an SEU decision maker will assign

precise probabilities to all events, and hence have an imprecision index of 0 (for

all sources).

Figure 2.5 displays the mean, median, 25% and 75% quantile, and max and

min Imprecision Indices across all sources in both experiments (see also Table

2.11, Appendix 2.8.1). It clearly suggests a tendency towards imprecision, with

mean and median Imprecision Indices greater than 0.1 for all sources. Two-sided

binomial tests reject the hypothesis of equal probability for the Imprecision Index

to be equal to vs. greater than 0 for each source (p < 0.0001 in all cases), with

a clear majority of subjects—74 out of 80 in EXP 1, and 49 out of 52 in EXP 2—

having strictly positive Imprecision Indices.

The general message of widespread imprecision is confirmed by data on the

number of precise events—events for which the subject’s elicited upper and lower

probabilities coincide (Table 2.12, Appendix 2.8.1). Not more than around 5% of

subjects gave precise probabilities for all events in a single source. Only 2 subjects
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(out of the 132 participating in both experiments) gave precise probabilities for

all events elicited. The data in Table 2.12 also allows a check on the extent to

which this imprecision could be driven by the binary-choice procedure, insofar

as it gives the number of precise events after the binary-choice procedure and

before the confirmation 2D choice list, as well as after confirmation. The general

finding of few fully precise subjects holds both before and after the confirmation

stage. Moreover, relatively few subjects change to fully precise probabilities for all

events of the source (at most 3 out of 80, for Sydney in EXP 1), with several fully

precise subjects introducing imprecision during the confirmation stage, especially

in EXP 2.

Delving further, we also investigate imprecision at the event level within sources.

Figure 2.6 presents CDFs of the imprecision for each elicited event in each of the

experiments and sources, across subjects. One-way ANOVAs of the imprecision

(dependent variable) against the event (factor) reject the null hypothesis of iden-

tical imprecision across all events for the sources in EXP 2 (p < 0.001 for Maths;

p = 0.003 for Contraction), whilst failing to reject it for the sources in EXP 1 (Table

2.13, Appendix 2.8.1). This suggests not only that imprecision is widespread, but

that imprecision may be event dependent within sources, as one would expect if

some events are intuitively more uncertain than others. For instance, the least im-

precise event in EXP 2 involves, for both sources, the lowest grade, where many

subjects are presumably more sure of their judgements.

In summary, the development of a method for eliciting multiple priors does

not emerge from this analysis as devoid of relevance: rather, it reveals that, when

given the possibility to ‘express’ the imprecision implied by non-degenerate prob-

ability intervals, many subjects do, at least for the events considered here. More-

over, at least within some sources, the extent of imprecision may depend on the

event.
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(d) Contraction source, EXP 2

Figure 2.6: CDFs of Imprecision across subjects, for each elicited event
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Figure 2.7: CDFs of Imprecision Index (Eq. (2.8))

2.4.4. Imprecision and familiarity

One reasonable hypothesis is that ceteris paribus subjects’ beliefs are more impre-

cise concerning events of which they are less familiar, or about which they feel as

if they have less knowledge. In terms of multiple priors models, this corresponds

to the probability intervals for the events being wider. Since, as explained in Sec-

tion 2.3, each of our experiments features two sources with which our subjects

will typically have different levels of familiarity, or which they naturally consider

as having different levels of predictability, a natural conjecture would be that im-

precision would be larger for Sydney than Paris, and for the Contraction grade

than the Maths one. After all, Paris subjects are less familiar with the weather in

Sydney than that in Paris; and the Contraction exam is generally considered to be

‘less predictable’ than the Maths one (Section 2.3.2).

Figure 2.7 plots the CDFs of the Imprecision Index defined above (Eq. (2.8))

across subjects, for the pair of sources in each experiment. A two-sided paired t-

test barely fails to reject the null hypothesis of identical Imprecision Indices across

the sources in EXP 1 (p = 0.0895), whilst it rejects it for EXP 2 (p = 0.0016). A two-

sided Binomial test with null hypothesis that an equal number of subjects have

larger Imprecision Index under one source than the other fails to reject the null

hypothesis for EXP 1 (p = 0.576), but rejects it for EXP 2 (p = 0.017). Rerunning
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the latter test using the results of the Bayesian analysis—i.e. for each experiment

and source, using the posterior distribution over parameters obtained from the

Bayesian estimation to sample 1000 tuples of parameters determining the upper

and lower distributions, and computing, for each tuple, the Imprecision Index as

defined in Eq. (2.8)—yields a rejection of the null hypothesis across the sources

for both EXP 1 and EXP 2 (p < 0.001 in both cases). These findings confirm the

expected relationship between imprecision and predictability in EXP 2: indeed,

in Figure 2.7, the CDF for Contraction—known as the less predictable exam—is

entirely to the right of that for Math, indicating a larger Imprecision Index. They

also point to a similar relationship between imprecision and familiarity in EXP 1:

again, with Figure 2.7 suggesting that CDFs for Paris are generally more precise.

That an expected relationship between imprecision and familiarity or pre-

dictability emerges clearly can also be seen as providing further indirect evidence

as to the solidity of the proposed elicitation method.

2.4.5. Matching probabilities and the α-maxmin EU mixture coef-

ficient

Recall that EXP 1 contained a supplementary treatment in which the MPs were

elicited for the Paris events Eti and Ec
ti

for which probability intervals had been

elicited (Table 2.2). Henceforth, we denote the MP of an event E by MP (E).

Under SEU, MP (Eti) = 1 −MP (Ec
ti

) = p(Eti), the subjective probability of Eti ,

for all Eti . So, as is well-known, comparing MP (Eti) and 1 −MP (Ec
ti

) provides

an indication into the violation of SEU. Under the α-maxmin EU model (2.1), we

have the following equations:

MP (Eti) = αp(Eti) + (1− α)p(Eti) (2.9)

1−MP (Ec
ti

) = αp(Eti) + (1− α)p(Eti) (2.10)
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Figure 2.8: PDF of α from the Bayesian estimation (EXP 1, Paris treatment)

Drawing on the elicited MPs and our elicitations of upper and lower probabilities,

the equations (2.9) and (2.10) can be used to elicit the mixture coefficient α in the

Hurwicz α-maxmin EU model. Under analysis using the raw data, the median α

across subjects is 0.80 (Table 2.25, Appendix 2.8.3). We also perform a Bayesian

estimation of the α in tandem with the lower and upper CDFs, combining equa-

tions (2.9) and (2.10) and the MP data with our upper and lower CDF elicitations

(see Appendix 2.8.2 and Tables 2.16 and 2.17). Figure 2.8 plots the distribution

over α resulting from this estimation. The Bayesian mean for α is at 0.81, which

is broadly consistent with the finding from the raw data. As discussed at more

length in Section 2.5, this is, to our knowledge, the first direct choice-based elici-

tation of the α in the α-maxmin EU model that fully controls for the set of priors

by eliciting the relevant information about them without making any assumption

about their shape.

2.5. Discussion

Our results attest to the feasibility of the proposed elicitation method. It elicits

non-degenerate and reasonable upper and lower CDFs Our elicitations also show
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that imprecision—a gap between upper and lower probabilities—is widespread,

with few subjects having precise probabilities for all events. Moreover, they bring

out some determinants of imprecision. For some sources, the width of probability

intervals may vary according to the event elicited; moreover, average imprecision

decreases with the familiarity of the source of uncertainty, as one might expect.

Finally, we draw on our probability interval elicitation to elicit the mixture co-

efficient in the Hurwicz α-maxmin EU model—the first such elicitation, to our

knowledge, to fully control for beliefs.

We now discuss the robustness of our procedure, some related literature, and

its potential contributions going forward.

Robustness Our approach has been presented in terms of the popular Hurwicz

α-maxmin EU decision model (Section 2.2), which is doubtless the most general

decision model in which the ‘belief component’ of the representation is just a

set of priors. However, many of the central elements of the approach generalise

to extensions building on sets of priors but weakening the linearity of the Hur-

wicz function form (2.1), to account for probability weighting for instance (see

Appendix 2.7.3 for details). First of all, the notion of MPI remains well-defined

for all such extensions, and the decision maker’s subjective probability interval is

always an MPI. Though MPIs are not guaranteed to be unique for every conceiv-

able extension of this sort, they are essentially unique for a family of reasonable

extensions (Appendix 2.7.3). The 2D choice list incentivization mechanism only

relies on the weak Lower Stochastic Dominance property of preferences (Defini-

tion 1, Section 2.2.6). Apart from the maxmax-EU model (i.e. (2.1) with α = 0),

which is very rarely found in subjects, this property is satisfied by any reasonable

decision model generalising α-maxmin EU to allow for nonlinear dependence

of preferences on upper and lower probabilities (Appendix 2.7.3). In this sense,

the 2D choice list incentivization mechanism is widely valid. Finally, whilst the

binary-choice procedure relies on the strongest assumption made in Section 2.2—

that α > 1
2
—there is independent evidence that this holds for most of our subjects

(Appendix 2.7.3). As noted in Section 2.2, it is the 2D choice list confirmation
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task that counts for incentivizing subjects’ choices, the binary-choice procedure

playing the role of an aid to completing it.

Related literature Our elicitation method relates to existing experimental and

theoretical literature on multiple prior models, and the α-maxmin EU model in

particular. Part of this literature is concerned with testing such models, or com-

paring them to others (e.g. Hey et al., 2010; Baillon and Bleichrodt, 2015); by

contrast, the aim here is to elicit probability intervals in the context of a fairly

general multiple prior model. Similarly, there is a literature studying matching

probabilities or certainty equivalents of bets on objectively-given probability in-

tervals based on interval-valued urns (e.g. Baillon et al. (2012); Chew et al. (2017));

here, by contrast, we use such urns as elicitation devices for subjective probability

intervals.

On the theory side, the challenge of incentive-compatible elicitation of multi-

ple prior beliefs under α-maxmin EU is related to identification issues with this

model, arising from the fact that different pairs of mixture coefficient α and sets of

priors can represent the same preferences over (Savage or Anscombe-Aumann)

acts. Proposed approaches to this challenge include pinning down the set of pri-

ors using ‘unambiguous preferences’ (Ghirardato et al., 2004a), though this has

problems in finite state spaces (Eichberger et al., 2011), or enrichening the state

space to include an infinite product structure and invoking symmetry axioms

(Klibanoff et al., 2021). Another line of attack concentrates on special cases of

the α-maxmin EU model, notably involving some form of probabilistic sophis-

tication, i.e. the assumption that there are precise probabilistic beliefs which

completely determine the contributions of events to preferences (Machina and

Schmeidler, 1992; Chew and Sagi, 2006). Working with a rich state space à la Sav-

age, Gul and Pesendorfer (2014, 2015) obtain a unique identification of α and the

set of priors whenever the latter is generated as the set of extensions of a precise

probability measure on a subalgebra of events. (Grant et al. (2019) have extended

this approach beyond the assumption of linearity in upper and lower probabili-

ties built into α-maxmin EU; see Appendix 2.7.) Chateauneuf et al. (2007) obtain
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a unique identification of α and the set of priors whenever the latter is generated

from a precise probability measure via ε-contamination, i.e. mixture with the set

of all probability measures. As stated in the Introduction, we specifically avoid

the sort of probabilistic sophistication assumption behind these approaches, mo-

tivated by the observation that such assumptions are inadmissible precisely in

those situations where multiple prior beliefs are most relevant. Indeed, our pro-

cedure takes a different approach, following the theoretical contribution of Hill

(2019), who shows that invoking (the equivalent of this paper’s) interval lotter-

ies allows full identification of α-maxmin EU with no need for specific richness

assumptions on the state space, probabilistic sophistication, or any other (non-

standard) assumptions on the set of priors. As we shall see below, our method

provides data to evaluate the sort of probabilistic sophistication assumption be-

hind the aforementioned approaches.

On the experimental front, there is a small literature dealing with incentive-

compatible elicitation of multiple priors. One family of approaches purport to

elicit multiple priors as the support of second-order beliefs, represented as a mea-

sure over the space of probability measures. Beyond the assumption of second-

order beliefs, which is foreign to the original multiple prior models (Gilboa and

Schmeidler, 1989b; Bewley, 2002; Ghirardato et al., 2004a), these often make fur-

ther assumptions about the role of these second-order beliefs in choice. For in-

stance, Qiu and Weitzel (2016) elicit subjects’ distributions over the matching

probabilities of other participants in the experiment, and purport to deduce sub-

jects’ own second-order beliefs from these, relying on the assumption that a sub-

ject’s opinions about others’ matching probabilities coincides with the uncertainty

surrounding her own assessment. In a theoretical paper, Karni (2020) develops

an ingenious incentive-compatible mechanism for eliciting second-order beliefs

and the associated set of priors (as the support), relying on a three-period setup.

The mechanism assumes that the subject’s second-order beliefs coincide with her

beliefs about what she will believe in the interim period. As made clear above,

our method relies on no assumptions beyond the α-maxmin EU model (or ap-

propriate weakenings thereof), and in particular there is no role for second-order

beliefs or assumptions on how they relate to other beliefs.
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Another family of approaches draws on the theoretical literature discussed

above, and in particular on the probabilistically sophisticated special case stud-

ied by Chateauneuf et al. (2007), where the subject’s set of priors is generated as

the ε-contamination of a single probability measure with the space of all priors.14

Dimmock et al. (2015); Baillon et al. (2018b,a) use elicitation of standard MPs (in

the case of the last paper, certainty equivalents) to estimate ‘ambiguity indices’,

from which one can back out the mixture coefficient α and the parameters of the

ε-contaminated set of priors. As noted previously, multiple prior decision models

come to the fore in situations where preferences cannot be reasonably assumed to

be generated from precise probabilities, and our elicitation technique was specif-

ically designed to be independent of the assumption of probabilistic sophistica-

tion for this reason. Moreover, our data provides empirical insight into the afore-

mentioned probabilistic sophistication assumption. In particular, it implies that,

except for events with very high probabilities, the imprecision (in the sense of

Section 2.4.1) is the same for all events.15 As noted in Section 2.4.3 (see also Table

2.13, Appendix 2.8.1), our observations reject this equality for the sources in EXP

2, though not for the sources in EXP 1.16 This suggests that there are sources for

which their method’s underlying assumption is violated. That said, it can be vi-

able on some sources; indeed, our data indicate that the Paris source in EXP 1 may

be one such source. And in fact, we can estimate the ambiguity indices used in

the aforementioned papers on the basis of the data from our study (EXP 1, Paris

treatment) under their assumption about the set of priors,17 and find, for instance,

that they yield the value 0.82 for the mixture coefficient α, which, reassuringly, is
14Formally, the assumption is that the set of priors C = {(1− ε)p+ ε∆}, where ∆ is the space

of all probability measures, p is an element of ∆ and ε ∈ [0, 1].
15If the set of priors is as defined in footnote 14, then, for any E such that (1−ε)p(E) ∈ [0, 1−ε],

the probability interval for event E is [(1 − ε)p(E), (1 − ε)p(E) + ε], and hence the event has
imprecision ε.

16The ε-contamination assumption is consistent with the imprecision being smaller for high-
probability events, which in our setup means Et for large t. It is thus inconsistent with the fact,
clear in Figure 2.6, that the imprecision is generally smallest for E7 (the lowest-probability event
in EXP 2), and in the case of the Maths source, highest for E17 (the highest probability event).

17Specifically, Baillon et al. (2018b) propose the average of 1−MP (E)−MP (Ec) over a selection
of events as their measure of the ‘ambiguity aversion index’ b. The average for the events elicited
here can be deduced directly from Table 2.26 (Appendix 2.8.4), as around 0.16. On the other hand,
under (2.1) with the specified form for the set of priors (see footnote 14), their ‘a-insensitivity
index’ a = ε. Under such sets of priors, as noted in footnote 15, everyE with (1−ε)p(E) ∈ [0, 1−ε]
has imprecision ε. The average imprecision, as measured by the Imprecision Index (Table 2.11),
thus gives an estimate of their a: it is around 0.25. The mixture coefficient α is related to these
indices by α = 1

2

(
b
a + 1

)
(Baillon et al., 2018b,a), yielding the value in the text.
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close to the Bayesian and raw estimates reported in Section 2.4.5. So not only is

our elicitation method more robust, insofar as it applies in situations where the

assumptions underlying their approach do not hold, it can evaluate precisely in

which cases they do hold; in those cases, their approach, implemented on our

data, gives the same result as our ‘direct’ elicitation.

Going beyond the lab, there is a large and growing literature on elicitation

of multiple priors or imprecise probabilities in a range of disciplines, from eco-

nomics to climate science. All such elicitation exercises of which we are aware

use stated probability intervals, and as such are not incentive compatible. For

instance, Giustinelli et al. (2021) elicit beliefs on dementia and long-term care de-

cisions in a large-scale representative survey (over 1000 subjects), allowing stated

probabilities to be interval-valued. Consistently with our results (Section 2.4.3),

they find widespread imprecision. They argue forcefully for the importance of

probability-interval elicitation for reducing survey bias and understanding atti-

tudes to and behavior in the face of high-uncertainty events, such as whether

one will develop dementia and whether one should insure against it. In another

approach, in another domain, Kriegler et al. (2009) elicit beliefs of selected sci-

entists (around 50 subjects) concerning climate tipping points, allowing partici-

pants to state probability intervals for these (notoriously uncertain) events. Such

expert elicitations, which involve often time-consuming and individualised ses-

sions with selected experts, have emerged as a central tool for managing complex

uncertainties (Morgan, 2014). Though they have traditionally aimed at eliciting

precise probabilities, Kriegler et al. (2009) shows that imprecision is widespread

for some events, and hence once again argue for the relevance of probability-

interval elicitation.

Future Directions Two leitmotivs emerge from the literature review. On the

one hand, our results are consistent with existing studies suggesting that im-

precision is widespread, especially for certain events. However, based as they

are on an incentive-compatible, choice-based and theoretically robust elicitation

method, our results are less open to criticisms of existing studies pointing to a lack
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of incentive compatibility or the reliance on a specific model. On the other hand,

as we saw on the ε-contamination example, our method can be used to evaluate

the assumptions behind—and hence the effectiveness of— existing methods.

The latter point suggests one direction for future research. As noted, stated

probability intervals are typically used in large-scale surveys (such as Giustinelli

et al. 2021), but how close, or far, are subjects’ stated probability intervals from

their actual multiple prior beliefs? This is a question that our method can be used

to answer, by eliciting upper and lower probabilities with it on some subjects,

and comparing these with their stated intervals. As such, our method can be

use to corroborate, refine, correct and chose between existing, less well-founded

approaches.

Moreover, the main aim of this paper is to demonstrate the possibility of

choice-based incentive-compatible probability-interval elicitation with the gen-

eral methodology proposed. Another future direction is to operationalize sim-

pler, parametrized versions of the method, involving fewer choice questions.

These could prove more suitable for elicitation in large field studies.

Finally, at the other end of the spectrum are expert elicitation exercises of the

sort cited above. In general, fewer subjects are involved, with each spending

more time; the flip side is that more precision is desired of the elicitation at the in-

dividual level. Here our longer EXP 2 suggests that our method can provide the

appropriate individual-level probability-interval elicitation, whilst being incen-

tive compatible and theoretically well-founded. Note that expert elicitation exer-

cises often deal with continuous variables, and hence aim to elicit CDFs (Colson

and Cooke, 2018); our implementation on continuous sources provides a proof of

concept of the method on precisely such cases.
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2.6. Conclusion

This paper proposes and implements a solution to the open problem of choice-

based incentive-compatible elicitation of multiple prior beliefs. It comprises of a

new preference-based notion—Matching Probability Intervals—and probability-

interval analogues of standard choice lists and bisection elicitation procedures.

Theoretically, it operates in the context of the Hurwicz α-maxmin EU model and

in the absence of strong assumptions about subjects’ sets of priors, most notably

any form of probabilistic sophistication.

Our implementation of the elicitation method, in two experiments to elicit

subjective upper and lower CDFs over continuous-valued sources of uncertainty,

testifies to its feasibility. It finds a predominance of imprecision—a gap between

upper and lower probabilities—across our subjects, for all explored sources, show-

ing it to be related to familiarity or predictability. It also allows us to perform

what, to our knowledge, is the first elicitation of the mixture coefficient in the

α-maxmin EU model that fully controls for beliefs.
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2.7. Theoretical Appendix

In order to bring out the robustness of our proposal, and the assumptions under-

lying it, we shall at times work with a more general decision model than Hurwicz

α-maxmin EU (2.1). Consider the representation where a bet (z, E, 0) is evaluated

according to:

W (p(E), p(E)).u(z) (2.11)

where p(E), p(E) and u are as in Section 2.2.3, and W is an ‘aggregation function’,

which is continuous in both coordinates and normalised—W (x, x) = x for all x.

α-maxmin EU is the special case where W is linear: W (x, y) = αx+ (1− α)y. See

Grant et al. (2019) for an axiomatisation of a special case of (2.11) where the set

of priors is generated by a probability measure on a subalgebra, and a thorough

discussion of its potential. As in Section 2.2, we assume the same representation

for imprecise risky prospects.

Note that, unlike α-maxmin EU, the general form (2.11) can accommodate

non-linear, Prospect-Theory-style weighting of the lower and upper probabilities,

for instance taking W (x, y) = αw(x) + (1−α)w(y), where w is a Prospect-Theory-

style weighting function.

2.7.1. Proofs

We prove Proposition 1 under representation (2.11) withW continuous, normalised

and strictly increasing in the first coordinate. As noted above, α-maxmin EU

model with α > 0 is a special case.

Proposition 3. For any decision maker represented according to (2.1) with α 6= 1
2
, and

for any event E, there is a unique MPI for E.

Proof. Existence is immediate from Eqs. (2.3) and (2.4). Uniqueness is immediate

from the linearity of the indifference curves in I-space (see Figure 2.1).
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Proof of Proposition 1. Under (2.11), it follows from the first preference pattern in

Proposition 1 that W (q, 1 − b) > W (p(E), p(E)) for all q > r, and similarly for

the others. By the continuity of W , it thus follows from the first two preferences

that W (r, 1 − b) = W (p(E), p(E)), and from the second pair of preferences that

W (b, 1− r) = W (1− p(E), 1− p(E)). It thus follows that (z, [r, 1− b], 0) ∼ (z, E, 0)

and (0, [r, 1− b], z) ∼ (0, E, z), so [r, 1− b] is a MPI for E, as required.

Proof of Proposition 2. Part a. Plugging in the representations (2.1) and (2.2), any

[x, y] in the R-B region satisfies:

αx+ (1− α)y ≥ αp(E) + (1− α)p(E)

α(1− y) + (1− α)(1− x) ≥ α(1− p(E)) + (1− α)(1− p(E))

By basic algebra (add α times the first inequality to (1−α) times the second), one

obtains (α2− (1−α)2)x ≥ (α2− (1−α)2)p(E), whence it follows, since α > 1
2
, that

x ≥ p(E). Similarly, one obtains ((1 − α)2 − α2)y ≥ ((1 − α)2 − α2)p(E), whence,

since α > 1
2
, y ≤ p(E). A similar argument establishes the result for points in W.

Part b. follows directly from the fact that, under 2.2, whenever x ≤ x′ and

y ≤ y′, then (z, [x, y], 0) � (z, [x′, y′], 0) and (0, [x, y], z) � (0, [x′, y′], z).

We state for completeness the result on the uniqueness of the MPI.

2.7.2. Binary-choice procedure

Introduction and setup

Our binary-choice procedure is fully described in Figures 2.10–2.13. Figure 2.10

sets out the general structure (and stopping rules). At each step of the procedure,



125 CHAPTER 2. ELICITING MULTIPLE PRIOR BELIEFS

preferences are elicited for a single probability interval [p
i
, pi]: i.e. preferences

between the bet on the event and the IL (z, [p
i
, pi], 0), and between the bet on

the complement event and the complementary IL (0, [p
i
, pi], z). The heart of the

procedure, detailed in Figures 2.11–2.13, involves specification of the next proba-

bility interval proposed for elicitation on the basis of the preferences concerning

the previous intervals. We first set out the notation used in the presentation of

these parts of the procedure, before explaining informally its main steps.

The procedure draws on two formal elements. The first is the assignment

of partially known urns—or equivalently probability intervals—to preference-

defined regions, discussed in Section 2.2.7. Recall from Section 2.2.1 that a par-

tially known urn [p, q], i.e. with a minimum proportion p of red balls and a mini-

mum proportion 1−q of blue balls, corresponds to a probability interval; we shall

present the procedure in terms of the latter here. For every event Ei and urn [p, q],

the preferences in the choices between the bet on Ei and that on a red ball being

drawn from the urn, and between the bet on Ec
i and that on blue from the urn

suffice to situate [p, q] in one of the four regions, R − B,W,R,B defined in Table

2.1 (Section 2.2.7). For instance, in Figure 2.9, which we shall use to illustrate the

procedure, the probability intervals already elicited are the dots coloured white,

red, blue and red-blue according to the (preference-based) region they belong to.

The second element is a ‘polar’-style coordinate system for the set of probabil-

ity intervals I, under which, informally, (m,α) ∈ [0, 0.5]× [0, 1] is the probability

interval that is α along the piecewise-linear line that goes through the probability

intervals [0, 0], [1, 1], and [m, 1 − m] (corresponding to the urn with at least pro-

portion m of red balls and at least proportion m of blue balls). The thick grey line

in Figure 2.9 is one such line. Formally, σ : I → [0, 0.5]× [0, 1] is defined by:

σ([p, q]) =



( p
p+q

, p+q
2

) p ≤ 1− q, p+ q ∈ (0, 2)

( 1−q
2−p−q ,

p+q
2

) p > 1− q, p+ q ∈ (0, 2)

(0, 0) p = q = 0

(0, 1) p = q = 1

(2.12)
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It is straightforward to check that σ is a well-defined function on I. Every point

except for [0, 0], [1, 1] corresponds to a unique line (parametrised by m) and ‘dis-

tance’ along that line (parametrised by α). [0, 0] (respectively [1, 1]) corresponds

to a single α, namely 0 (resp. 1), though it lies on all such lines; we set the corre-

sponding m = 0 by convention. For information, the inverse map is given by:

σ−1(m,α) =

[2αm, 2α(1−m)] α ≤ 1
2

[(2− 2α)m+ (2α− 1), (2− 2α)(1−m) + (2α− 1)] α > 1
2

(2.13)

We write σ1([p, q]) (respectively σ2([p, q])) for the first (resp. second coordinate) of

σ([p, q]). Since this is a simple change of coordinates, we shall write (m,α) ∈ B as

short for σ−1(m,α) ∈ B, and similarly for other cases.

Presentation of main steps

As discussed in Section 2.2.7 (Proposition 2), elicited points in the R-B and W

regions determine an area in I ‘between the R-B and the W points’ to which the

MPI must belong. The general aim of the procedure is thus to find progressively

‘closer’ points in R-B and W, hence reducing the size of this area. This motivates

the two main steps in the determination of the next probability interval to be

presented for elicitation, [pi+1, qi+1], on the basis of the previously elicited point

[pi, qi].

On the one hand, if [pi, qi] is in the R-B region (respectively, the W region), then

by Proposition 2 a. (Section 2.2.7), the MPI will be North-West of [pi, qi] (resp.

South-East of [pi, qi]) in Figure 2.1—i.e. p ≤ pi and p ≥ qi (resp. p ≥ pi and p ≤ qi),

where the MPI is [p, p]. In such cases, the procedure proposes a [pi+1, qi+1] North-

West (resp. South-East) of [pi, pi]. This exemplified by the [pi+1, qi+1] proposed

for point X in Figure 2.9. The precise proposal for [pi+1, qi+1] depends on whether

there is a point in W (resp. R-B); technicalities aside, this is the general strategy of
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the cases in lines 20-23 and 36-39 of the procedure (Figures 2.12-2.13). If the point

[pi+1, qi+1] turns out to be in R-B or W, this will further restrict the area where the

MPI can lie.

On the other hand, if [pi, qi] is in the R or W regions, then Proposition 2 a.

does not apply; as discussed in Section 2.2.7, the aim in such cases is to find a

point in the R-B or W regions, to continue reducing the area containing the MPI.

The procedure draws on two observations; first, as mentioned above, any point

[pi, qi] can be equivalently written in another coordinate system, specifying the

line it sits on—parametrised by m = σ1([pi, qi])—and how ‘far’ along the line it

is—parametrised by α = σ2([pi, qi]). Second, for [pi, qi] in R (respectively W), by

Proposition 2 b., all points North-East (resp. South-West) of [pi, qi] are also in R

(resp. W). So the only points in R-B and W on the line m = σ1([pi, qi]) corre-

sponding to the point [pi, qi] must be South-West of [pi, qi], i.e. with lower α (resp.

North-West, i.e. with higher α). Accordingly, the procedure proposes a point

[pi+1, qi+1] on the line m = σ1([pi, qi]) but shifted in the appropriate direction, as

illustrated by the [pi+1, qi+1] proposed for point Y (lying in the R region) in Figure

2.9. Technicalities aside, this is general strategy for Case 1 (lines 1-17) and the

cases in lines 24-34 and lines 40-44 of the procedure (Figures 2.11–2.13). Among

these cases, all retain the same m (grey line in Figure 2.9) except those considered

in lines 12-17. These treat cases where no point in R-B or W has yet been found;

the procedure in these cases increases m during the search, hence looking closer

to the diagonal (ie. the line of [p, q] with p = q). We used a procedure with this

in-built precision bias to favour Bayesian replies (i.e. precise probabilities); in the

light of it, our finding of widespread imprecision (Section 2.4.3) is all the more

remarkable.

Convergence

Except for extreme cases, the procedure tends to the MPI.18

Proposition 4. Suppose preferences are represented according to (2.1) with 1 > α > 1
2
,

18In this result, we adopt the Euclidean topology on I ⊆ R2.
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[pi+1, qi+1] when [pi, qi] = Y

[pi+1, qi+1] when [pi, qi] = X

m = const;
α ∈ [0, 1]

X

Y

p

p

[1, 1][0, 1]

[0, 0]

[0.5, 0.5]

Figure 2.9: Binary Choice Procedure.

let E be an event, and let [p
n
, pn] be the result of the procedure in Figures 2.11–2.13 (with

initial values set as in Figure 2.10) applied for n steps. Then [p
n
, pn] → [p(E), p(E)]

as n → ∞. Moreover, the procedure also converges in this sense when preferences are

represented according to (2.1) with α = 1, p(E) 6= 0 and p(E) 6= 1.

Proof. We provide the main steps of the proof here; they rely on technical Lemmas

1–4, which are detailed in Appendix 2.10. We adopt the notation and initial values

from Figure 2.10; in particular, let Eln be the set of elicited points after n steps. As

discussed in Section 2.2.5, the MPI is [p(E), p(E)]. Moreover, by Proposition 2, at

stage n, the MPI is contained in

Φn =

[p, q] ∈ I :
max {p′ : [p′, q′] ∈ Eln ∩W} ≤ p ≤ min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,
max {q′′ : [p′′, q′′] ∈ Eln ∩R−B} ≤ q ≤ min {q′ : [p′, q′] ∈ Eln ∩W}


(2.14)

where the maximum of an empty set is taken to be 0 and the minimum 1.

We reason referring to the cases in the procedure (Figures 2.11–2.13). At the

beginning of the procedure, it is in Case 1 (El0 ∩ W = El0 ∩ R − B = ∅). By

lines 13-16, if no point in W or R-B is found, the points elicited by the procedure

will reach the space of precise probabilities (i.e. points [p, q] with p = q), where
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it will follow a standard bisection procedure. All such points have σ1-value of

0.5. It follows from Lemma 1 that if the MPI is not precise, then a point will be

found in R-B, so the procedure moves to Case 2. On the other hand, if the MPI

is precise, then, by Lemma 1 and the bisection character of the procedure on the

space of precise probabilities, the points elicited in the procedure will converge to

it as required.

Now consider cases where the procedure arrives to Case 2 or 3, i.e. it finds

a point in R-B or W. By Lemma 3, σ1([pn, qn]) → σ1([p(E),p(E)]) as n → ∞. We

distinguish three cases.

• σ1([p(E),p(E)]) > 0 and σ1([pn, qn]) 6= σ1([p(E),p(E)]) for all n. By Propo-

sition 2 and the definition of σ (and in particular the slopes of the lines

σ1([p, q]) = m form > 0), it follows straightforwardly that min[p,q]∈Eln d([p(E), p(E)], [p, q])→
0 as n → 0, where d is the Euclidean distance on I ⊆ R2, whence [p

n
, pn] →

[p(E), p(E)] as required.

• σ1([p(E),p(E)]) > 0 and σ1([pi, qi]) = σ1([p(E),p(E)]) for some i. By Lemma

1 and Case 2 (lines 24-33) and Case 3 (lines 40-43), the procedure will, from

i onwards, only pass through points with same σ1-value σ1([p(E),p(E)]),

where it will only find points in R and B. Moreover, it follows a bisection-

style procedure on the line σ1([p, q]) = σ1([p(E),p(E)]). It follows from stan-

dard arguments, Lemma 1 and representation (2.1) that this procedure con-

verges to [p(E), p(E)] as required.

• σ1([p(E),p(E)]) = 0 and α < 1 in the representation (2.1). Suppose p(E) = 0;

the other case (p(E) 6= 0 and so p(E) = 1) is treated similarly. By Lemma

1, [pn, qn] contains a subsequence of points in R-B, with σ1-value tending

to 0. Since α < 1, by representation (2.1), for every q < p(E), there exists

p > 0 such that (z, [p, q], 0) ≺ (z, E, 0), and hence such that [p, q] is not in R-B.

Moreover, by the representation and Lower Stochastic Dominance, for every

q > p(E) and p, (0, [p, q], z) ≺ (0,
[
p(E), p(E)

]
, z) ∼ (0, E, z), so such [p, q] are

not in R-B. It follows that the subsequence of [pn, qn] consisting of points in

R-B converges to
[
p(E), p(E)

]
, so [pn, qn]→

[
p(E), p(E)

]
as required.
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2.7.3. Robustness of the elicitation method

As stated in Section 2.2, the proposed elicitation method has three (novel) ele-

ments. The first is the notion of MPI, and the observation that they yield the

probability intervals generated by the subjects’ set of priors. The second is the

incentivisation mechanism, based on the 2D choice list set out in Section 2.2.6.

As for elicitation of subjective probabilities (e.g. choice-list methods for eliciting

MPs), this is already sufficient to provide an elicitation mechanism for subjects’

sets of priors. However, the proposal also includes a chained binary-choice pro-

cedure, in the style of the ‘bisection’ or ‘staircase’ method for MPs or certainty

equivalents, to aid the subject find the MPI. We now discuss to what extent the

proposed elements apply beyond the typical α-maxmin EU representation with

α > 1
2

on which we have focused in Section 2.2. We also analyse the consequences

of violation of the isolation assumption (Section 2.2.6) for the 2D choice list incen-

tivisation mechanism.

Matching Probability Intervals

Under the general preferences of the form (2.11), the equations (2.5) for the MPI

can be rewritten in the obvious way.19 Clearly, the notion of MPI is well defined,

and the subjective probability interval is an MPI. The form of W can however

affect the uniqueness of the MPI. More precisely, it is guaranteed to be unique

whenever there is a unique solution to the equations, and this only occurs if W

satisfies the following ‘single-crossing property’: every pair of red-and-blue in-

19Explicitly:

W (p, p) =W (p(E), p(E)) (2.15)

W (1− p, 1− p) =W (1− p(E), 1− p(E)) (2.16)
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Figure 2.10: Binary choice procedure: structure
Notation: d(•, •) is the Euclidean distance in I ⊂R2.
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Figure 2.11: Determination of Next Binary Choice: Part 1
Notation: σ defined in (2.12) and (2.13).
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Figure 2.12: Determination of Next Binary Choice: Part 2
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Figure 2.13: Determination of Next Binary Choice: Part 3
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difference curves in Figure 2.1 cross at most once.20 Whether this is the case, and

how often it is not, will depend on the functional form of W . We thus consider

what form of uniqueness holds for reasonable W .

For instance, the MPI is clearly unique whenW is linear and non-symmetric21—

and hence for α-maxmin EU whenever α 6= 1
2
. A more general interesting case

is when W incorporates probability weighting, e.g. is of the form W (x, y) =

αw(x) + (1 − α)w(y) for a weighting function w. Note that this form can incor-

porate findings on probability weighting for (two-outcome) lotteries, via the w.

For such W , if w takes the quasi-linear form often used in literature (Chateauneuf

et al., 2007; Wakker, 2010), then MPIs can be shown to remain unique (by a sim-

ilar reasoning to that for the non-weighted case). Moreover, even for non-linear

weighting functions, calculation of relevant cases suggests that MPIs are typically

unique. As an example, Figure 2.14 plots red and blue indifference curves for the

specified form of W with w being the popular Prelec weighting function with the

parameters found by Abdellaoui et al. (2011) for a Paris temperature source—i.e.

one that is similar to the source we used in EXP 1—and an α of 0.8 (close to the

value we found for α; Section 2.4.5). Clearly, red and blue indifference curves

typically only cross (at most) once, as required for uniqueness of MPI. Even in the

cases where there are multiple MPIs, there will be at most two, with one close to

the horizontal or vertical boundary.

In summary, even for reasonable extensions beyond α-maxmin EU, MPIs are

well-defined, and the subject’s probability interval is always a MPI. Moreover,

there is reason to believe that uniqueness continues to hold largely, and where

it does not, there is at most one other possible candidate MPI. Note that even in

cases of non-uniqueness, the analysis of the 2D choice list incentivisation mecha-

nism is unaffected, and every MPI remains a weakly dominant strategy. So it will

yield a candidate probability interval.

20Technically, for every A,B ∈ R, |{[x, y] ∈ I : W (x, y) = A,W (1− y, 1− x) = B}| ≤ 1.
21I.e. it is not the case that W (x, y) = W (y, x) for all x, y.
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Figure 2.14: Indifference curves in probability interval space I under (2.11) with
W (x, y) = αw(x) + (1− α)w(y).
Red lines: indifference curves for IL (z, [p, q], 0): i.e. curves of the form αw(x) + (1 −
α)w(y) = C.
Blue lines: indifference curves for IL (0, [p, q], z): i.e. curves of the form αw(1− y) + (1−
α)w(1− x) = D.
Parametrisation: Prelec weighting function w(x) =

(
e−(−ln(x))α)

)β
with α = 0.54 and

β = 0.85 (Abdellaoui et al., 2011); α = 0.8.
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2D Choice List

As discussed in Section 2.2.6, the 2D choice list is incentive compatible under

an isolation assumption—that subjects treat the two branches of the choice list

separately—and under the α-maxmin EU model (2.1). We first consider the con-

sequences of violation of the isolation assumption, before turning to robustness

to generalisation of the decision model.

Robustness to violations of isolation Suppose that the isolation assumption

in Section 2.2.6 does not hold, and the subject reasons strategically across the

two branches of the 2D choice list. Then the choice of MPI is conceptualised

as the choice of a (second-order) lottery assigning a probability to playing a bet

for or against E or to playing specific ILs according to the mechanism. Assum-

ing the α-maximin EU model (2.1) at both levels, the subject evaluates each such

second-order lottery using the expectation over the values of the bets and ILs.

Let [p(E), p(E)] = [p, p]. For any reported point [q, q] in this task, by the incentive

mechanism defined in Section 2.2.6:

• the probability of receiving the bet on E is q

q+1−q

• the probability of receiving the IL on red is q−q
q+1−q

• the probability of receiving the bet on Ec is 1−q
q+1−q

• the probability of receiving the IL on red is q−q
q+1−q

Using these, and the evaluations of the bets and the ILs according to (2.1) and

(2.2) (with [p, p]), one obtains the following form for the utility of reporting [q, q]

when the true beliefs are [p, p]:
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(1− q)
(
α (1− p)− (α− 1)

(
1− p

))
q − q + 1

+

(
q − q

)( q

2
+ α (1−q)

2
− (α−1) (1−q)

2
− 1

2

)
q − q + 1

+
q
(
α p− p (α− 1)

)
q − q + 1

+

(
q − q

) (
q
2

+
α q

2
− q (α−1)

2

)
q − q + 1

Finding the optimum numerically for a grid of values of p, p, α ∈ [0, 1] using Mat-

lab , we find that, for every (p, p, α) (with p ≥ p) except for p = 0, p = 1, α = 0, and

those with p = 0.5, α = 1 or p = 0.5, α = 1, the maximum is one or several of the

‘vertices’ of the triangle in Figure 2.1, i.e. [0, 0], [0, 1], [1, 1]. For p = 0, p = 1, α = 0

and p = 0.5 , α = 1 or p = 0.5 , α = 1 with p 6= p, the maxima are all points on one

of the boundaries of the triangle, i.e. {[0, y] : y ∈ [0, 1]} , {[x, 1] : x ∈ [0, 1]} , {[x, y] : x ∈ [0, 1], y = x}.
When p = 0.5, p = 0.5, α = 1, the utility above is constant, so all points maximise

it.

Clearly, in our experiment involving nested events, a subject who gives precise

probability of 0.5 to all elicited events would have a very particular (bimodal) dis-

tribution across the variable of interest (temperature, marks). Given the implau-

sibility of such beliefs, we conclude from this analysis that, for a subject violating

the isolation assumption discussed in Section 2.2.6 and responding to the choice

list strategically, every response except perhaps one or two will be at a vertex of

the space I (i.e. the triangle in Figure 2.1). Certainly, every response except at

most one will be on the boundary of this set.

Robustness to generalizations of the decision model As suggested in Section

2.2.6, the incentivization mechanism implemented by the 2D choice list relies

solely on the weak Lower Stochastic Dominance property (Definition 1). Formu-

lated in terms of Eq. (2.11), this is just the assumption that W is strictly increasing

in the first coordinate—or, in terms of preferences, decision makers are sensitive

to the lower winning probability. The only reasonable model in the family of

form (2.11) violating this property is the maxmax EU—α-maxmin EU with α = 0.

Since there is basically no evidence for a significant number of subjects with such
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preferences, the incentive compatibility of the 2D choice list discussed in Section

2.2.6 generalizes widely.

Binary-choice procedure

The binary-choice procedure is based on the division of I into regions, displayed

in Table 2.1, and Proposition 2, in particular part a. dictating ‘where’ the MPI

is relative to points in two of the regions (the W and R-B regions). For decision

makers represented according to the α-maxmin EU model (2.1), Proposition 2

a. only holds if α > 1
2
.22 When α < 1

2
, the opposite of the statement in the

Proposition holds: the MPI is ‘North-West’ of the elicited point (on Figure 2.1)

not when the latter is in R-B, but when it is in W (and similarly for South-East).

So the algorithm applied to such decision makers would ‘move’ in the wrong

direction: instead of looking ‘South-East’ for the MPI after finding a point in R-B,

it would look ‘North-West’, for instance. Note that, even if the algorithm does

not work properly for such decision makers, the 2D choice list incentivisation

mechanism is still valid, and hence they would, in principle, correct any issues

at the 2D choice list confirmation stage. To gain some insight into the extent of

procedure misfunction due to α < 1
2
, we can look at the evidence on the value of

α for our subjects, as well as some statistics on the functioning of the procedure.

We find little evidence for widespread α < 1
2

among our subjects. First of

all, the elicitation of α reported in Section 2.4.5 finds median and 25 percentile

values way over 1
2

(Table 2.25), indicating that less than 25% of subjects have

α < 1
2
. Moreover, under the α-maxmin EU model, the sum of the MP of an event

and that of its complement is less than (respectively, greater than) one precisely

when α > 1
2

(resp. α < 1
2
; see Appendix 2.8.4), indicating that we can use our

matching probability data to check for the sign of α − 1
2
. Table 2.26 (Appendix

2.8.4) displays the descriptive statistics on this sum for the Paris treatment where

MPs were elicited, confirming again that α > 1
2

for over 75% of subjects.

22It also holds under the probability weighting specification of (2.11) mentioned in Section 2.7.3,
with α > 1

2 .
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As concerns its functioning, since the procedure ‘moves’ in the wrong direc-

tion for subjects with α < 1
2
, no such subjects will pass through both points in W

and points in R-B during the procedure. However, 383 applications of the pro-

cedure out of 704 in EXP 1 passed through points in W and R-B (300 out of 606

in EXP 2). Whilst there were nevertheless applications of the procedure which

passed through points in R-B but not W (152 in EXP 1, 77 in EXP 2) and in W but

not R-B (114 in EXP 1, 105 in EXP 2), these would be expected if the procedure

functioned correctly and the probability intervals were large (respectively small).

The evidence thus does not support a hypothesis involving misfunctioning of the

procedure over explanations, such as this, relating to proper functioning and the

character of the elicited intervals.

2.8. Supplementary Statistics

2.8.1. Descriptive Statistics

Tables 2.5–2.8 report the basic descriptive statistics on the upper and lower elicited

probabilities after the ‘confirmation’ 2D choice list, and before the confirmation

screen but after the binary-choice procedure, respectively.

Elicited points on a vertex Table 2.9 reports counts of the number of subjects

with a given number of elicited points at the vertex of the space I of partially

known urns (and corresponding probability intervals) in Figure 2.1.

Monotonicity Tables 2.10a and 2.10b report the descriptive statistics for the in-

dividuallevel Kendall τb, calculated over the events in each source.23

23Note that τb for not defined for some subjects in EXP 1 (because of too many ties), and they
were dropped. Hence the count for EXP 1 may vary across sources.
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Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.29 0.17 -0.01 0.15 0.29 0.40 0.7
2 80.0 0.38 0.22 0.00 0.20 0.35 0.50 1.0
5 80.0 0.48 0.23 0.00 0.35 0.46 0.66 1.0
8 80.0 0.57 0.24 0.05 0.42 0.59 0.75 1.0

(a) Lower probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.55 0.21 0.09 0.40 0.55 0.67 1.0
2 80.0 0.65 0.19 0.23 0.51 0.65 0.80 1.0
5 80.0 0.74 0.17 0.25 0.62 0.76 0.88 1.0
8 80.0 0.82 0.14 0.50 0.75 0.85 0.94 1.0

(b) Upper probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.31 0.22 0.00 0.14 0.26 0.45 0.95
18 80.0 0.35 0.26 0.00 0.14 0.32 0.47 1.00
20 80.0 0.41 0.27 -0.01 0.20 0.40 0.61 1.00
22 80.0 0.43 0.26 -0.01 0.20 0.39 0.61 1.00

(c) Lower probabilities Sydney

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.58 0.27 0.01 0.37 0.56 0.84 0.99
18 80.0 0.66 0.24 0.03 0.50 0.69 0.88 1.00
20 80.0 0.71 0.23 0.01 0.60 0.76 0.89 1.00
22 80.0 0.73 0.23 0.00 0.58 0.80 0.92 1.00

(d) Upper probabilities Sydney

Table 2.5: Descriptive Statistics: Elicited lower and upper probabilities after 2D
choice list, EXP 1
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Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.05 0.07 -0.01 0.00 0.04 0.08 0.35
10 52.0 0.15 0.12 0.00 0.06 0.12 0.19 0.50
12 52.0 0.24 0.15 0.00 0.14 0.20 0.31 0.63
15 52.0 0.40 0.19 0.08 0.26 0.38 0.55 0.73
17 52.0 0.60 0.16 0.18 0.54 0.64 0.71 0.86

(a) Lower probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.12 0.14 0.00 0.02 0.08 0.16 0.60
10 52.0 0.23 0.17 0.00 0.10 0.20 0.30 0.65
12 52.0 0.35 0.18 0.04 0.22 0.32 0.48 0.72
15 52.0 0.54 0.20 0.08 0.40 0.52 0.70 0.87
17 52.0 0.75 0.15 0.22 0.65 0.78 0.86 1.01

(b) Upper probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.12 0.08 0.01 0.06 0.11 0.17 0.36
10 52.0 0.22 0.12 0.02 0.14 0.20 0.29 0.50
12 52.0 0.33 0.13 0.14 0.22 0.32 0.40 0.60
15 52.0 0.54 0.14 0.19 0.46 0.56 0.65 0.83
17 52.0 0.71 0.13 0.25 0.65 0.74 0.83 0.90

(c) Lower probabilities Contraction

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.22 0.14 0.02 0.11 0.20 0.31 0.56
10 52.0 0.37 0.14 0.06 0.30 0.34 0.46 0.65
12 52.0 0.51 0.14 0.20 0.40 0.50 0.64 0.74
15 52.0 0.74 0.11 0.40 0.67 0.77 0.82 0.90
17 52.0 0.86 0.07 0.60 0.82 0.86 0.91 1.00

(d) Upper probabilities Contraction

Table 2.6: Descriptive Statistics: Elicited lower and upper probabilities after 2D
choice list, EXP 2
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Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.28 0.15 0.0 0.15 0.30 0.39 0.64
2 80.0 0.36 0.21 0.0 0.20. 0.33 0.45 1.00
5 80.0 0.48 0.23 0.0 0.35 0.46 0.67 1.00
8 80.0 0.54 0.25 0.05 0.35 0.55 0.74 1.00

(a) Lower probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.55 0.21 0.0 0.39 0.56 0.68 0.99
2 80.0 0.64 0.18 0.23 0.52 0.67 0.78 1.00
5 80.0 0.75 0.17 0.25 0.61 0.79 0.89 1.00
8 80.0 0.81 0.14 0.50 0.73 0.85 0.92 1.00

(b) Upper probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.28 0.21 0.0 0.12 0.26 0.38 0.95
18 80.0 0.33 0.27 0.0 0.11 0.30 0.45 1.00
20 80.0 0.43 0.28 0.0 0.19 0.42 0.61 1.00
22 80.0 0.42 0.26 0.0 0.21 0.35 0.61 1.00

(c) Lower probabilities Sydney

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.60 0.27 0.00 0.42 0.61 0.83 0.99
18 80.0 0.67 0.25 0.03 0.50 0.66 0.89 1.00
20 80.0 0.73 0.23 0.00 0.60 0.79 0.89 1.00
22 80.0 0.74 0.22 0.00 0.62 0.80 0.91 1.00

(d) Upper probabilities Sydney

Table 2.7: Descriptive Statistics: Elicited lower and upper probabilities after
binary-choice procedure and before 2D choice list, EXP 1
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Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.11 0.16 0.00 0.01 0.06 0.14 1.00
10 52.0 0.18 0.14 0.00 0.08 0.14 0.30 0.50
12 52.0 0.25 0.15 0.00 0.15 0.22 0.32 0.60
15 52.0 0.38 0.22 0.04 0.19 0.33 0.53 1.00
17 52.0 0.54 0.18 0.07 0.43 0.60 0.66 0.86

(a) Lower probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.18 0.23 0.00 0.03 0.08 0.28 1.00
10 52.0 0.27 0.22 0.00 0.10 0.23 0.44 0.70
12 52.0 0.40 0.23 0.00 0.22 0.38 0.61 0.78
15 52.0 0.56 0.21 0.08 0.39 0.58 0.71 1.00
17 52.0 0.73 0.16 0.22 0.62 0.76 0.85 0.99

(b) Upper probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.15 0.09 0.01 0.08 0.15 0.20 0.40
10 52.0 0.26 0.12 0.00 0.18 0.23 0.35 0.48
12 52.0 0.32 0.16 0.04 0.21 0.30 0.40 0.71
15 52.0 0.53 0.19 0.16 0.40 0.55 0.66 1.00
17 52.0 0.67 0.20 0.07 0.62 0.68 0.83 1.00

(c) Lower probabilities Contraction

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.30 0.23 0.03 0.12 0.24 0.41 0.85
10 52.0 0.41 0.18 0.00 0.31 0.35 0.56 0.86
12 52.0 0.54 0.16 0.20 0.44 0.55 0.65 0.87
15 52.0 0.74 0.14 0.37 0.66 0.74 0.84 1.00
17 52.0 0.85 0.09 0.50 0.82 0.86 0.91 1.00

(d) Upper probabilities Contraction

Table 2.8: Descriptive Statistics: Elicited lower and upper probabilities after
binary-choice procedure and before 2D choice list, EXP 2
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Paris Sydney
Point # subjects # subjects

0 1 2 3 4 0 1 2 3 4
[0, 0] 80 0 0 0 0 80 0 0 0 0
[0, 1] 80 0 0 0 0 80 0 0 0 0
[1, 1] 79 0 0 1 0 78 1 0 1 0

[0, 0], [0, 1] or [1, 1] 79 0 0 1 0 78 1 0 1 0
(a) EXP 1

Maths Contraction
Point # subjects # subjects

0 1 2 3 4 5 0 1 2 3 4 5
[0, 0] 46 5 1 0 0 0 52 0 0 0 0 0
[0, 1] 52 0 0 0 0 0 52 0 0 0 0 0
[1, 1] 52 0 0 0 0 0 52 0 0 0 0 0

[0, 0], [0, 1] or [1, 1] 46 5 1 0 0 0 52 0 0 0 0 0
(b) EXP 2

Table 2.9: For each type of point, the table indicates the number of subjects with
the specified number of elicited points being of this type.

MP Lower MP Upper Paris Lower Paris Upper Sydney Lower Sydney Upper

count 74.00 78 79 78 78 78
mean 0.62 0.66 0.56 0.56 0.27 0.41
std 0.46 0.38 0.45 0.47 0.59 0.50
min -0.91 -0.91 -0.91 -0.91 -1.00 -1.00
25% 0.55 0.55 0.33 0.33 -0.14 0.00
50% 0.71 0.69 0.67 0.67 0.33 0.55
75% 0.91 0.91 1.00 1.00 0.67 0.91
max 1.00 1.00 1.00 1.00 1.00 1.00

(a) EXP 1

Contraction Lower Contraction Upper Maths Lower Maths Upper

count 52 52 52 52
mean 0.99 0.99 0.98 1.00
std 0.02 0.03 0.07 0.01
min 0.95 0.80 0.53 0.95
25% 1.00 1.00 1.00 1.00
50% 1.00 1.00 1.00 1.00
75% 1.00 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00

(b) EXP 2

Table 2.10: Individual-level Kendall τb descriptive statistics
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EXP 1 EXP 2
Paris Sydney Maths Contraction

count 80 80 52 52
mean 0.25 0.29 0.13 0.19
std 0.17 0.20 0.09 0.11
min 0 0 0 0.01
25% 0.10 0.10 0.06 0.11
50% 0.23 0.28 0.11 0.17
75% 0.35 0.43 0.19 0.23
max 0.82 0.75 0.45 0.53

Table 2.11: Imprecision Index (Eq. (2.8)) descriptive statistics; EXP 1 and EXP 2.

EXP 1 EXP 2
# Precise
events Paris Sydney Maths Contraction

2D C.L. B-C Proc 2D C.L. B-C Proc 2D C.L. B-C Proc 2D C.L. B-C Proc

0 51 48 48 44 20 12 31 19
1 14 14 18 23 14 14 12 20
2 7 11 8 8 12 10 5 3
3 6 0 2 4 3 10 3 4
4 2 1 4 1 0 2 1 7
5 - - - - 3 4 0 2

Total 80 80 80 80 52 52 52 52

Table 2.12: Number of subjects with given number of precise events, per source.
Data given after the 2D choice list confirmation screen (2D C.L.) and after the
binary-choice procedure but before the confirmation screen (B-C Proc).

Imprecision

Table 2.11 presents the descriptive statistics for the Imprecision Index, whereas

Table 2.12 displays counts of the number of subjects with various numbers of

precise elicited points, as well as differences before the 2D choice list confirma-

tion stage of the experiment as opposed to after. Table 2.13 presents the results

of ANOVAs of the imprecision concerning an event against the event, for each

source, where the null hypothesis is that imprecision is invariant across events.



147 CHAPTER 2. ELICITING MULTIPLE PRIOR BELIEFS

Source F p-value

EXP 1 Paris 0.1048 0.957
Sydney 0.4769 0.698

EXP 2 Contraction 4.0352 0.003
Maths 5.863 0.00015

Table 2.13: One-sided ANOVAs of the imprecision related to an event (dependent
variable) on the event (factor), for each source. (H0: the imprecision is identical
across all events in the source.)

Binary choice procedure

Table 2.14 reports data on the number of steps, and mean and median widths of

elicited probability intervals, over the implemented binary-choice procedure in

the two experiments.

2.8.2. Bayesian estimation

Statistical approach

Estimation of upper and lower CDFs in EXP 1 and EXP 2 Recall that T denotes

the space of possible values of the variables of interest (minimum temperatures

in EXP 1, grades in EXP 2). For each source, we estimate general models of the

form:

p(E) = f(E) + ε

p(E) = f(E) + ε
(2.17)

where p(E) (resp. p(E)) are the elicited lower (resp. upper) probabilities of the

cumulative event E (Section 2.2.2), f and f are CDFs over T from specified two-

parameter families, with parameters a, b (resp. a, b), and ε and ε are zero-mean

normal distributions with variance σ2 and σ2 respectively.
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# steps Occurrences Interval size

# % Mean Median

4 43.0 6.10 0.45 0.30
5 88.0 12.5 0.29 0.29
6 45.0 6.39 0.21 0.15
7 42.0 5.96 0.24 0.19
8 85.0 12.07 0.33 0.33
9 54.0 7.67 0.31 0.25
10 61.0 8.66 0.19 0.14
11 54.0 7.67 0.31 0.33
12 50.0 7.10 0.18 0.17
13 61.0 8.66 0.27 0.23
14 44.0 6.25 0.34 0.30
15 55.0 7.81 0.34 0.39
16 17.0 2.41 0.32 0.27
17 2.0 0.28 0.45 0.45
18 3.0 0.42 0.43 0.49

(a) EXP 1

# steps Occurrences Interval size

# % Mean Median

4 30.0 4.95 0.28 0.15
5 58.0 9.57 0.17 0.14
6 35.0 5.77 0.12 0.14
7 31.0 5.11 0.21 0.15
8 59.0 9.73 0.23 0.18
9 80.0 13.20 0.10 0.0
10 72.0 11.88 0.7 0.0
11 42.0 6.93 0.19 0.12
12 45.0 7.42 0.17 0.15
13 33.0 5.44 0.15 0.5
14 49.0 8.08 0.23 0.20
15 58.0 9.57 0.13 0.10
16 11.0 1.81 0.24 0.16
17 2.0 0.33 0.15 0.15
19 1.0 0.16 0.06 0.06

(b) EXP 2

Table 2.14: Bisection-style choice procedure: number of steps, mean and median
width of elicited interval
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For each equation, the parameter space is Θ ⊆ R3, with a typical point (a, b, σ)

(resp. (a, b, σ)) specifying an f (resp. f ) and the variance of the relevant error

term. We specify the following priors over the hyperparameters : a, b, σ are reali-

sations from A ∼ N(µa, σ
2
a), B ∼ N(µb, σ

2
b ) and Σ = σσ | Y |with Y ∼ N(0, 1).

We use a MCMC-like approach to estimate the posterior distributions of these

distributions though the use of the Python package PyMC3, and more specifically,

the No-U-Turn Sampler algorithm (NUTS) (Hoffman and Gelman, 2014).

The likelihood of observations x1, ..., xn pertaining to t1, . . . , tn (e.g. elicited

lower probabilities for cumulative events Eti = {t ∈ T : t ≤ ti}) given the point

(a, b, σ) ∈ Θ is:

L(a, b, σ|x1, . . . , xn) =
∏

i∈{1,...,n}

ϕ

(
xi − f(a,b)({t ≤ ti})

σ

)

where f(a,b) is the CDF with parameters a, b and ϕ is the density of the normal

distribution. Hence the likelihood of hyperparameters µa, σ2
a, µb, σ

2
b , µσ, σ

2
σ given

observations x1 . . . xn is :

L(µa, σ
2
a, µb, σ

2
b , µσ, σ

2
σ|x1, . . . , xn)

=
∫

(a,b,σ)∈Θ
L(a, b, σ|x1, . . . , xn)dp(a, b, σ|µa, σ2

a, µb, σ
2
b , µσ, σ

2
σ)

L(µa, σ
2
a, µb, σ

2
b , µσ, σ

2
σ|x1, . . . , xn) and L(µa, σ

2
a, µb, σ

2
b
, µσ, σ

2
σ|x1, . . . , xn) are used by

the NUTS algorithm to estimate the posterior distributions of A, B and Σ, where

x1, . . . , xn, x1, . . . , xn are the elicited lower and upper probabilities respectively,

under the parametric families for f given in Table 2.15.

Likelihood estimation of alpha in EXP 1 (Paris treatment) For the Bayesian es-

timation of the mixture coefficient α in the α-maxmin EU model, we supplement
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Temperature (EXP 1) Grade (EXP 2)
Family 1 Truncated Normal N (a, b) Truncated Normal N (a, b)

Family 2 Beta B(a, b) Beta B(a, b)

Support
[min of min stated

temperature, max of max
stated temperature]

[0,20]

Table 2.15: Families of distributions over T (temperature; grade)

the general model (2.17) with the following equations

MP (E) = αp(E) + (1− α)p(E) + εα

1−MP (Ec) = αp(E) + (1− α)p(E) + εα

(2.18)

which are discussed in Section 2.4.5. We assume that α follows a beta distribution

B(aα, bα), and the εα are zero-mean normal distributions, with the hyperparame-

ters independent and normally distributed, as above.

The MPs have been elicited for the Paris treatment in EXP 1. The hyperpa-

rameters concerning the upper and lower CDFs discussed above and those for α

were estimated under the model composed of (2.17) and (2.18) using the NUTS

algorithm, with the procedure set out above.

Analysis

Figure 2.15 displays the upper and lower distributions under the parametric fam-

ilies not shown in Figure 2.4. Tables 2.16-2.23 give statistics on the distribution

over parameters under the estimated hyperparameters.



151 CHAPTER 2. ELICITING MULTIPLE PRIOR BELIEFS

-15 -2 2 5 8 30
Min temperature Paris

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ob
ab

ili
ty

-16 15 18 20 22 30
Min temperature Sydney

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

(a) EXP 1
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(b) EXP 2

Figure 2.15: Bayesian estimation of lower and upper CDFs: plots of 1000 samples
from MCMC (Truncated Normal distribution for EXP 1; Beta distribution for EXP
2)

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 5.25 0.31 0.01 4.65 5.87 1009.11 1.0
a -2.57 0.37 0.01 -3.27 -1.87 542.99 1.0
aα 3.42 1.62 0.06 0.53 6.38 630.90 1.0
bα 1.80 1.04 0.05 0.10 3.80 429.61 1.0
b 11.35 0.75 0.02 9.71 12.66 1214.33 1.0
b 11.00 0.64 0.03 9.78 12.17 614.95 1.0
s 0.22 0.01 0.00 0.20 0.23 1043.67 1.0
s 0.18 0.01 0.00 0.17 0.19 1055.83 1.0
sα 0.21 0.01 0.00 0.20 0.23 930.43 1.0
sα 0.19 0.01 0.00 0.17 0.20 909.78 1.0

α 0.81 0.04 0.00 0.74 0.88 754.54 1.0

Table 2.16: Statistics for parameters under Bayesian estimation; Paris (EXP 1);
Normal parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 1.43 0.23 0.01 1.04 1.91 569.30 1.0
b 1.64 0.29 0.01 1.13 2.24 571.99 1.0
a 1.07 0.16 0.01 0.73 1.39 541.73 1.0
b 2.46 0.35 0.01 1.76 3.17 522.49 1.0
aα 4.32 1.76 0.06 1.06 7.87 812.98 1.0
bα 1.90 1.08 0.04 0.18 3.92 606.36 1.0
s 0.22 0.01 0.00 0.20 0.23 1163.74 1.0
s 0.18 0.01 0.00 0.17 0.19 1239.11 1.0
sα 0.21 0.01 0.00 0.20 0.23 1134.15 1.0
sα 0.19 0.01 0.00 0.17 0.20 1409.46 1.0

α 0.81 0.04 0.00 0.74 0.88 1079.99 1.0

Table 2.17: Statistics for parameters under Bayesian estimation; Paris (EXP 1);
Beta parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 22.03 0.45 0.01 21.11 22.80 1130.92 1.0
a 14.66 0.46 0.01 13.78 15.48 876.71 1.0
b 9.62 0.95 0.03 7.88 11.67 1018.57 1.0
b 9.04 0.85 0.02 7.42 10.78 882.98 1.0
s 0.26 0.01 0.00 0.23 0.28 933.24 1.0
s 0.25 0.01 0.00 0.23 0.27 831.75 1.0

Table 2.18: Statistics for parameters under Bayesian estimation; Sydney (EXP 1);
Normal parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 1.12 0.55 0.04 0.31 2.21 1.91 1.57
a 0.14 0.32 0.03 -0.27 0.67 1.07 4.19
b 1.32 0.48 0.02 0.49 2.24 320.38 1.00
b 0.94 0.24 0.01 0.50 1.37 321.66 1.00
s 0.25 0.01 0.00 0.23 0.27 522.03 1.00
s 0.24 0.01 0.00 0.22 0.26 671.56 1.00

Table 2.19: Statistics for parameters under Bayesian estimation; Sydney (EXP 1);
Beta parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 15.88 0.17 0.01 15.57 16.22 788.64 1.0
a 5.40 0.28 0.01 4.86 5.95 955.04 1.0
b 13.97 0.17 0.00 13.65 14.33 1218.24 1.0
b 5.03 0.25 0.01 4.58 5.53 928.02 1.0
s 0.14 0.01 0.00 0.13 0.16 1158.52 1.0
s 0.17 0.01 0.00 0.16 0.19 958.54 1.0

Table 2.20: Statistics for parameters under Bayesian estimation; Maths (EXP 2);
Normal parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 3.76 0.09 0.0 3.58 3.93 978.44 1.0
a 1.46 0.05 0.0 1.36 1.55 900.67 1.0
b 2.27 0.09 0.0 2.10 2.43 1049.31 1.0
b 1.22 0.05 0.0 1.12 1.32 1031.36 1.0
s 0.16 0.01 0.0 0.14 0.17 1311.22 1.0
s 0.19 0.01 0.0 0.17 0.20 1247.27 1.0

Table 2.21: Statistics for parameters under Bayesian estimation; Maths (EXP 2);
Beta parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 14.17 0.13 0.00 13.93 14.42 1090.28 1.0
a 5.32 0.22 0.01 4.90 5.78 1068.01 1.0
b 11.61 0.13 0.00 11.37 11.87 1167.95 1.0
b 5.39 0.21 0.01 4.99 5.78 1209.38 1.0
s 0.12 0.01 0.00 0.11 0.13 1501.55 1.0
s 0.12 0.01 0.00 0.11 0.13 1144.85 1.0

Table 2.22: Statistics for parameters under Bayesian estimation; Contraction (EXP
2); Normal parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 3.06 0.09 0.0 2.90 3.23 888.13 1.00
a 1.57 0.05 0.0 1.48 1.67 937.24 1.00
b 1.96 0.07 0.0 1.82 2.11 478.84 1.01
b 1.56 0.06 0.0 1.45 1.66 460.19 1.00
s 0.14 0.01 0.0 0.13 0.15 966.76 1.00
s 0.13 0.01 0.0 0.12 0.15 894.44 1.00

Table 2.23: Statistics for parameters under Bayesian estimation; Contraction (EXP
2); Beta parametrisation
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest pos-
terior density 2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

2.8.3. Matching Probability data and analysis of α

Table 2.24 provides descriptive statistics on the elicited MPs. Table 2.25 provide

descriptive statistics on the α estimated from the raw data (from equations (2.9)

and (2.10)). These equations cannot be applied to estimate α whenever the upper

and lower probabilities of an event coincide, i.e. p(E) = p(E); Table 2.25 per-

forms the estimates using all events for which the equations can be applied—and

hence only removes the two subjects for which the upper and lower probabilities

coincide for all events (Table 2.12).

2.8.4. Elicitation-free check of α > 1
2

Under the α-maxmin EU model (2.1), it follows from Eqs. 2.9 and 2.10 that

MP (E) +MP (Ec) = 1 + (p(E)− p(E)).(1− 2α)

Since p(E)−p(E) ≥ 0 by definition, it follows that, whenever there is imprecision,

MP (E) +MP (Ec) < 1 if and only if α > 1
2
.
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MP (Et) count mean std min 25% 50% 75% max
Event t =

-2 80 0.35 0.21 0.02 0.17 0.37 0.47 1.00
2 80 0.44 0.20 0.02 0.27 0.47 0.57 0.97
5 80 0.54 0.23 0.02 0.37 0.55 0.68 0.97
8 80 0.60 0.21 0.17 0.47 0.57 0.76 0.97

1−MP (Ec
t ) count mean std min 25% 50% 75% max

Event t =

-2 80 0.50 0.19 0.03 0.38 0.48 0.63 0.98
2 80 0.59 0.19 0.23 0.48 0.57 0.74 0.98
5 80 0.71 0.20 0.23 0.53 0.73 0.92 0.98
8 80 0.77 0.17 0.43 0.63 0.80 0.93 0.98

Table 2.24: Descriptive statistics for MP (Ei) and 1 −MP (Ec
i ) in Paris treatment,

EXP 1

α

count 78
mean 0.97
std 0.66
min -0.32
25% 0.62
50% 0.80
75% 1.17
max 3.84

Table 2.25: Descriptive statistics for α, estimated from raw data according to Eqns
(2.9) and (2.10).
Estimation conducted across all subjects such that, for any least one event E,
p(E) 6= p(E).
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MP (Et) +
MP (Ec

t )
count mean std min 25% 50% 75% max

Event t =

-2 80 0.84 0.20 0.29 0.71 0.89 0.98 1.31
2 80 0.85 0.20 0.29 0.73 0.89 0.99 1.34
5 80 0.83 0.22 0.24 0.69 0.89 0.99 1.29
8 80 0.83 0.18 0.39 0.69 0.89 0.99 1.26

Table 2.26: MP (E) + MP (Ec) descriptive statistics for all events for which MPs
were elicited (those concerning Paris temperature in EXP1).

Table 2.26 displays the descriptive statistics for the sum MP (E) +MP (Ec) for

the Paris source in EXP1. It is clear that the vast majority of subjects have a sum of

MPs less than 100 1 indicating an α greater than 0.5. Indeed, over 80% of subjects

have sum of MPs less than or equal to 1.
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2.9. Experimental design and displays

2.9.1. Probability interval elicitation: displays

(a) Bet on the complement of the event E−2

(b) Bet on the event E−2

Figure 2.16: Displays for a step in the binary-choice procedure

Figure 2.16 shows the display in a typical step of the binary-choice procedure.

Specifically, the two figures show the two choice questions making up the step,

involving bets on complementary events (temperature below vs above; bet on red

vs blue).

At the end of the binary choice procedure, the two-cursor scrollbar, realising

the 2D-choice list described in Section 2.2.6, is displayed, and the subject is invited

to verify all choices, and correct them if required, prior to confirmation. The top
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(a) First display

(b) Moving the blue cursor to confirm choices

Figure 2.17: Two-cursor scrollbar confirmation screen, implementing the 2D
choice list



159 CHAPTER 2. ELICITING MULTIPLE PRIOR BELIEFS

pane of Figure 2.17 shows a typical confirmation screen that appears at the end

of the binary-choice procedure, where the retained values for red and blue balls

are 66 and 29@ respectively. The red lines below then above the bar indicate that,

for an urn with at least 29 blue balls and a minimum number of red balls greater

than 66, option B (the bet on red from the urn) is preferred over A (the bet on the

temperature being less than -2°C), whereas when there are at least 29 blue urns

and the minimum number of red balls is less than 66, option A is preferred over

B. The blue lines indicate the same for how preferences vary over urns with at

least 66 red balls, for different minimum numbers of blue balls.

The bottom pane of Figure 2.17 illustrates a situation where the subject is ver-

ifying preferences as the number of blue balls vary, by moving the blue cursor

(which is thus highlighted). The red cursor is kept fixed at its provisional value,24

and, for each position of the blue cursor, the choice between the bet on the event

(temperature greater than 2°) and the bet on the urn with the specified minimum

number of blue balls and at least 66 red balls is presented. The chosen option

(as per Section 2.2.6) is indicated. In this case, the subject prefers the bet on the

event over that on the urn, when only 3 balls are guaranteed to be blue. He may

change this choice by clicking on the other option, or on the cursor. To confirm his

response for the event, the subject has to scroll the blue cursor across the entire

confirmation line, scanning all the choices, and likewise for the red cursor.

In EXP 2, there was a final confirmation screen after the elicitation for all

events in a given source, presented in Figure 2.18. All interval-valued urns cor-

responding to the choices made and confirmed by the subject for the source are

presented on the left. They are graphically depicted on the right: the red line

shows the minimum number of red balls for each event (mark, in the case of this

source), whereas the blue line plots 100 minus the minimum number of blue balls.

To change a choice, a subject can either click on the choice on the right hand plot

or on the corresponding urn in the sidebar on the left. By doing so, she returns to

the corresponding two-cursor scrollbar confirmation screen, as in Figure 2.17. She

may modify her choices on this screen as described above, and must reconfirm

24If the subject tries to move the red cursor, the blue cursor returns to its provisional value, and
remains fixed there whilst the red cursor is being moved.
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before proceeding.

Figure 2.18: Omnibus confirmation screen

2.9.2. MP elicitation: displays

Figure 2.19 shows the displays for a typical choice in the MP elicitation (top

pane) and the confirmation screen (bottom pane). These are comparable to the

displays for probability interval elicitation, with the exception that a standard

single-cursor scrollbar is used for confirmation. For the latter, as for the proba-

bility interval confirmation screen, the subject may use the cursor to scan choices

and may click on the relevant option to modify her choice. She must scan all

choices before confirming.
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(a) Binary-choice procedure

(b) Confirmation scrollbar

Figure 2.19: MP displays



2.10. LEMMAS FOR THE PROOF OF PROPOSITION 4 162

2.10. Lemmas for the proof of Proposition 4

In the following Lemmas, we suppose that preferences are represented according

to (2.1) with α > 1
2
, with E the event of interest with the subjective probability

interval [p(E),p(E)].

Lemma 1. For every m ∈ [0, 0.5]:

• If σ1

([
p(E),p(E)

])
< m, there exists [p, q] ∈ R − B with σ1([p, q]) = m, but no

[p, q] ∈ W with σ1([p, q]) = m;

• If σ1

([
p(E),p(E)

])
> m, there exists [p, q] ∈ W with σ1([p, q]) = m, but no

[p, q] ∈ R−B with σ1([p, q]) = m;

• If σ1

([
p(E),p(E)

])
= m, each [p, q] with σ1([p, q]) = m and [p, q] 6=

[
p(E),p(E)

]
belongs to either R or B.

Proof. Straightforward to check from the representation (2.1) and the definition of

σ (2.12). (See also Figures 2.1 and 2.9.)

Lemma 2. If p(E) = p(E) and Case 1 arrives at a point [pi, qi] with pi = qi, then the

procedure remains in Case 1, and [p
n
, pn]→ [p(E), p(E)] as n→∞.

Proof. Once the procedure reaches the subspace of precise probabilities, it exe-

cutes a standard bisection procedure (lines 13–16, Figure 2.11).

Lemma 3. Suppose that the procedure reaches a point [pi,qi] in R-B or W. Then the

sequence σ1([pn, qn])→ σ1(
[
p(E),p(E)

]
) as n→∞.

Proof. Consider a stage i in the procedure where a point has just been found in
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R-B or W. So the area containing the MPI is Φi (Eq. (2.14)). Let

mW
i = minσ1(Φi)

=σ1 ([max {p′ : [p′, q′] ∈ Eln ∩W} ,min {q′ : [p′, q′] ∈ Eln ∩W}])

mRB
i = maxσ1(Φi)

=

σ1 ([min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}]) Eln ∩R−B 6= ∅

0.5 otherwise

and |Φi| = mR−B
i −mW

i . The latter is the maximum difference in σ1 values across

all pairs of points in Φi. In the first two subcases of Case 3 (lines 35-39), the next

probability interval elicited is

[pi+1, qi+1] =
1

2
[max {p′ : [p′, q′] ∈ Eln ∩W} ,min {q′ : [p′, q′] ∈ Eln ∩W}]

+
1

2
[min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}]

In the second subcase of Case 2 (lines 22-23), where a point in W has been found,

but no point in R-B, the next probability interval elicited is

[pi+1, qi+1] =
1

2

1

2

 min {p′′ : [p′′, q′′] ∈ Eln ∩W}+

max {q′′ : [p′′, q′′] ∈ Eln ∩W}

 ,
1

2

 min {p′′ : [p′′, q′′] ∈ Eln ∩W}+

max {q′′ : [p′′, q′′] ∈ Eln ∩W}


+

1

2
[min {p′′ : [p′′, q′′] ∈ Eln ∩W} ,max {q′′ : [p′′, q′′] ∈ Eln ∩W}]

where [1
2

(min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}) , 1
2

(min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B})]
is the point on the diagonal of precise probabili-

ties (i.e. degenerate probability intervals) that is clos-

est to [min {p′′ : [p′′, q′′] ∈ Eln ∩W} ,max {q′′ : [p′′, q′′] ∈ Eln ∩W}]
(it is on the downwards sloping 45° line from

[min {p′′ : [p′′, q′′] ∈ Eln ∩W} ,max {q′′ : [p′′, q′′] ∈ Eln ∩W}]). So this point

has σ1-value 0.5.
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In first subcase of Case 2 (lines 20-21), where a point in R-B has been found,

but no point in W, the next probability interval elicited, [pi+1, qi+1], is a 1
2
− 1

2
mix

of [min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}] with



 min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+

max {q′′ : [p′′, q′′] ∈ Eln ∩R−B} − 1
, 1

 min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}

+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}
> 1

0,
min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+

max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}

 min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}

+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}
≤ 1

which is the point on the upper boundary (with either lower bound for the

probability interval 0 or upper bound 1) that is on the downwards sloping

45° line from [min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}].
This point has σ1-value 0.

Clearly, in all cases, mW
i < σ1([pi+1, qi+1]) < mRB

i . Moreover, by the rest of the

subcases in Cases 2 & 3, if this point is not in R-B or W, all the subsequent points

elicited will have the same σ1-value as [pi+1, qi+1]. And whenever a point in R-B is

found, the next area containing the MPI, Φi+1, will have the same minimum σ1-

value mW
i , but its maximum value will be replaced by σ1([pi+1, qi+1]). By Lemma

4, it follows that

|Φi|.
mW
i

mRB
i +mW

i

≤ |Φi+1|

≤ |Φi|.
1−mW

i

(1−mRB
i ) + (1−mW

i )

Similarly, whenever a point in W is found, the next area containing the MPI, Φi+1,

will have the same maximum σ1 value mRB
i , but its minimum value will be re-

placed by σ1([pi+1, qi+1]), whence
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|Φi|.
1−mRB

i

(1−mRB
i ) + (1−mW

i )
≤ |Φi+1|

≤ |Φi|.
mRB
i

mRB
i +mW

i

Since, for any j > i, mRB
j ≤ mRB

i and mW
j ≥ mW

i , for any such j,
1−mWj

(1−mRBj )+(1−mWj )
≤

1−mWi
(1−mRBi )+(1−mWi )

and
mRBj

mRBj +mWj
≤ mRBi

mRBi +mWi
. So, for any j = i + k with k ∈ N, k ≥ 1,

|Φj| ≤
(

max
{

1−mWi
(1−mRBi )+(1−mWi )

,
mRBi

mRBi +mWi

})k
.|Φi|. So the sequence [mW

n ,m
RB
n ] is

a bisection-like sequence of decreasing intervals (in the sense of containment),

each of which contains σ1([p(E),p(E)]). Moreover, by the previous observation,

whenever a point [p, q] is found in W with σ1([p, q]) > 0, then the sequence |Φn| =
mRB
n −mW

n → 0 as n → ∞, so σ1([pn, qn]) → σ1([p(E),p(E)]) as required. (Recall

that 0.5 ≥ mRB
n ≥ mW

n ≥ 0 for all n.)

We now separate two cases, according to whether σ1

([
p(E), p(E)

])
= 0 or

not. Suppose first that σ1

([
p(E), p(E)

])
= δ > 0 . We show that the procedure

will either arrive at a point with σ1-value δ, or a point in W. At a stage i in the

procedure where no points in W have been found, but a point in R-B has, mW
i = 0

and 0.5 ≥ mR−B
i > 0. At each subsequent stage, by Lemma 1, either i. no point is

found in W or R-B; ii. a point is found in W or R-B, and the next such point is in

W; iii. a point is found in W or R-B, and the next such point is in R-B. In case ii.,

the claim is established; in case i., by Lemma 1, the procedure is examining points

with σ1-value δ, and the claim is established. Assume for reductio that at all such

stages, the σ1-value of the explored points is not δ, but no point in W is found—i.e.

we are always in case iii. Then, by the previous observations, for every j = i + k

with k ∈ N, k ≥ 1, |Φj| ≤
(

1−mWi
(1−mRBi )+(1−mWi )

)k
.|Φi| =

(
1

2−mRBi

)k
.mRB

i . Hence

|Φj| = mRB
j → 0, contradicting the fact that there are no points with σ1-value less

that δ in R-B. Hence the procedure eventually finds a point in W . By the previous

observation it follows that σ1([pn, qn])→ σ1([p(E),p(E)]) as required.

Now consider the case where σ1

([
p(E), p(E)

])
= 0. By Lemma 1, whenever

the procedure searches for a point on a line σ1([p, q]) = m > 0, it will find a point
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in R-B. Hence, by the previous argument, it produces a sequence of points [pn, qn]

in R-B, defining Φn and associated [mW
n ,m

RB
n ], with mW

n = 0 and mRB
j → 0, as

required.

Lemma 4. Let [pW , qW ] be a point in W, with σ1([pW , qW ]) = mW and suppose that

the line σ1 ([p, q]) = mR−B contains a point in R-B but not in W. Then, for any point

[pR−B, qR−B] ∈ R−B with σ1 ([pR−B, qR−B]) = m

σ1([
pW+pR−B

2
,
qW + qR−B

2
]) ∈

[
2mW .mR−B

mW +mR−B
,
mW (1−mR−B) +mR−B(1−mw)

(1−mR−B) + (1−mw)

]
Moreover, the same holds for a given point [pR−B, qR−B] ∈ R−B and any point [pW , qW ] ∈
W on the line σ1 ([p, q]) = mW .

Proof. We first restrict attention to points [p, q] with p < 1 − q (or, in the polar-

style coordinate system, α < 1
2
). For any points [p1, q1] and [p2, q2], written in

polar-style coordinate system as (m1, α1) and (m2, α2), by (2.12) and (2.13), the

midpoint (in Cartesian coordinates), 1
2
[p1, q1]+ 1

2
[p2, q2] is

(
α1m1+α2m2

α1+α2
, α1+α2

2

)
in the

polar system. Written in the polar coordinate system, let [pW , qW ] be (mW , αW );

the points on the line σ1 ([p, q]) = mR−B are (mR−B, α), for varying α. Note that, by

Proposition 2, mR−B > mW . It follows from representation 2.1 that (z, [p′, q′], 0) ≺
(z, [p, q], 0) whenever q′ < q and p′ < p, whence, since [pW , qW ] ∈ W , we have that

(z, [p′, q′], 0) ≺ (z, E, 0) for all q′ < qW and p′ < pW , so such points are not in R-B.

So any point [p, q] on σ1 ([p, q]) = mR−B which is in R-B is such that p ≥ pW . By

a similar argument (using the fact that (0, [p′, q′], z) ≺ (0, E, z) for all q′ > qW and

p′ > pW ), any point [p, q] on σ1 ([p, q]) = mR−B which is in R-B is such that q ≥ qW .

So any point [p, q] on σ1 ([p, q]) = mR−B which is in R-B has α > αWm
W

mR−B
(where, by

2.13, this is in the α of the point on σ1 ([p, q]) = mR−B with p = pW = 2αWmW );

similarly, any such point has α < αW (1−mW )
(1−mRB)

. Plugging these bounds into the

expression for the midpoint yields the result. Similar calculations yield the same

result for the cases of p > 1 − q for some or all of the point considered. Finally,

analogous arguments establish the conclusion for [pR−B, qR−B] ∈ R−B fixed and

[pW , qW ] ∈ W on the line σ1 ([p, q]) = mW .



3. Communicating over climate risk1

Abstract

It is often argued that insufficient climate change awareness is responsible for

its limited mitigation. This paper discusses that claim in the context of a game

of contribution to a public bad, green house gases (GHG) emissions, under un-

certainty. Contributors receive information regarding potential climate damages

from a benevolent expert. Because of climate science complexity, I assume that ex-

pert claims are non-verifiable and that communication is cheap-talk. I show that

no information transmission can happen at equilibrium. As a result, the contribu-

tors’ expected social welfare is always lower than under perfect information. This

is because, in this game, communication can only happen if the equilibrium over-

provision of GHG emissions is not too high. This result highlights the necessity

of commitment power for the informed party when it comes to communicating

over climate risk.

1I would like to thank Jean-Marc Tallon, Stéphane Zuber, Frédéric Koessler, Valentina Bossetti,
Marco Ottaviani, Hélène Ollivier, Loic Berger, Francis Bloch, Larry Samuelson and Guillaume
Pommey for helpful discussions. I also thank seminar and conference participants at PSE (TOM,
SRE), Bocconi and FUR 2018 and Bocconi University for its hospitality. Financial support through
ANR CHOp (ANR-17-CE26-0003), ANR ADE (ANR-18-ORAR-0005-01), ANR INDUCED (ANR-
17-CE03-0008) and EUR PGSE is gratefully acknowledged.

167



3.1. INTRODUCTION 168

3.1. Introduction

For decades, there has been scientific consensus on human responsibility regard-

ing global warming. Considerable effort and international coordination has been

devoted to raising awareness on the negative consequences of green house gases

(GHG) emissions on the environment, a task most famously embodied by the

Intergovernmental Panel on Climate Change’s (IPCC) creation in 1988. Climate

awareness has generally been considered as an obvious factor in favour of public

willingness to act on the matter (see for instance Halady and Rao, 2010; Lee et al.,

2015) and often raised as top policy recommendation (see Douenne and Fabre,

2020, for a recent example). Yet, interestingly, the connection between informa-

tion provision to the general public regarding climate risk and the reduction of

GHG emissions has rarely been discussed from a theoretical perspective—a ques-

tion this paper aims to address.

Global warming is undoubtedly one of the most dramatic example of strategic

behaviours leading to overall inefficiency. Because individuals fail to internalise

the negative consequences of their GHG emissions on others, the non-cooperative

equilibrium level of emission is higher than the socially optimal one. Although

it is known since Blackwell (1950) that information has always positive value in

Bayesian decision problems, the value of information in the context of strategic

interactions is a more subtle question. In games, information can have a negative

effect on social welfare.1 In a seminal paper, Angeletos and Pavan (2007) shows

that for a large class of games, information can decrease social welfare. Although

the game I consider in this paper does not fall within this class, it is also a case

where information does not always have positive value for social welfare.2

In this paper, I consider a game of contribution to a public bad where there is

uncertainty over climate damages resulting from global warming. Contribution

to GHG emissions is made through positive energy consumption. Contributors

benefit from energy consumption to the extent that consumption goods depend

1For an early example of this see Hirshleifer (1978).
2An illustration of this is given in section 3.4.
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on carbon-intensive energies to be produced, but expose themselves to potential

climate damages. Before choosing their energy consumption levels, contributors

receive expert advice regarding climate risk. The expert is known to be benevo-

lent and aim for socially optimal energy consumption. Yet, because of the com-

plexity of science, the information he provides is not verifiable by contributors.

More precisely, his channel of communication is cheap-talk. The main result of

this paper is that under this channel of communication, no information trans-

mission can happen from the sender to the receivers. As a result, this situation is

welfare decreasing compared to perfect information. This is because in this game,

communication can only happen if the equilibrium over-provision of GHG emis-

sions is not too high. Yet, this is only the case in the degenerate situation where

receivers’ optimal emission levels are null.

The key assumption underlying this result is that when experts communi-

cate over climate science to the general public, their claims are non-certifiable.

Although scientific results regarding climate change are well established for sci-

entists, for non-scientists the supporting evidence is simply too complex to be

acquired. One leading example is the black box prospective computer simulations

over which the estimation of the effects of GHG on global temperature heavily

rely. Not only is the process through which these simulations provide predictions

obscure: as pointed out by Pidgeon and Fischhoff (2011), black box simulations

are hardly considered as convincing evidence, even for scientists whose disci-

plines use observational methods. Surveying a large sample of citizens in Europe

and the USA, Lorenzoni and Pidgeon (2006) shows that most people have limited

knowledge over climate change and mostly relate to it through trust in experts.

But when non-experts are involved in a game of contribution to a public bad,

there are good reasons to doubt that they blindly trust experts. This is because

in that context, individual contributors interests are not aligned with those of a

benevolent expert. Said otherwise, there is a normative difference between the in-

formed party, who aims for social welfare, and the non-informed one, who aims

for his own private good. In recent work, Gabel et al. (2021) provides evidence in

line with that concern. Their paper shows that American conservatives display

less confidence in science than liberals because scientists are believed to prioritise
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regulation over individual freedom—a normative choice over which they differ.

Ehret et al. (2018) and Van Boven et al. (2018) also provide evidence on how dis-

trust for climate science can emerge from political partisanship and perceived

normative misalignment. When information is non-certifiable and the informed

party has a difference of interest with the non-informed one, full revelation be-

comes doubtful.

The assumption that climate science is non-certifiable information does not

necessarily lead to cheap-talk communication. One could for instance assume

that scientists could commit to some signal structure in the manner of Kamenica

and Gentzkow (2011)’s information design approach. Yet, cheap-talk communi-

cation is generally considered as the weakest form of communication for the expert

because no commitment is possible for him.3 As information can have negative

value in the game I consider, it is natural to ask if, under the weakest form of non-

certifiable communication, information can be provided in a welfare improving

way.

This paper relates to several strands of literature. First, it relates to the liter-

ature on international environmental agreements (IEA), where emission policies

regarding climate change are negotiated between countries. They can formally

be seen as a game of contribution to a public bad. Yet, in these models, players

can agree to form a coalition to mitigate GHG emissions. Various concepts of

coalition are used to model welfare improving counterparts to the simple Nash

equilibrium of the game (see Finus, 2008, for a review). In this paper, I choose to

focus on the latter, as it serves as reference point to all the coalitional achievable

agreements. As a consequence, the modelling of the emission game is similar

to the canonical model of Bergstrom et al. (1986). My model also integrates the

uncertainty surrounding climate change, which is essential in that context.4 In

the IEA literature, Na and Shin (1998) were the first to take this route. Finus and

Pintassilgo (2013) added risk behaviour to the picture. Asheim (2010) introduces
3Min (2017) provides a general argument in favour of that claim. It shows that if one assumes

that the sender could commit to a signal structure, even with some limited probability, then he
can design information in order to obtain a higher expected pay-off than under pure cheap-talk
communication. As in my model the sender is benevolent, this result implies that more commit-
ment power for the sender necessarily implies a higher expected social welfare compared with
cheap-talk.

4On that topic and for a review of its economic modelling, see Pindyck (2007).
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a benevolent environmental agency which can strategically reveal certifiable in-

formation over climate risk. My paper is the first to introduce non-certifiable

information to the picture.

Second, this paper relates to the literature on strategic communication, start-

ing with Crawford and Sobel (1982) cheap-talk model with one sender and one

receiver. Goltsman and Pavlov (2008) study cheap-talk with public and private

communication with multiple receivers. Yet, unlike in my paper, these actions of

these receivers do not affect each other. Galeotti et al. (2013) studies cheap-talk

communication in the context of networks, where multiple imperfectly informed

senders are also decision-makers and can influence each other both by their ac-

tions and messages.

Section 3.2 introduces the base model. Section 3.3 solves the game of con-

tribution to a public bad for any given message of the informed party. Section

3.4 discusses the welfare implications of uncertainty and in particular shows that

information doesn’t always have positive value. Section 3.5 establishes that no

information can be communicated by the sender at equilibrium. The appendix

contains all the proofs.

3.2. Setup

I consider a game between a scientific authority acting as a sender S (he) and N

receivers (she) Ri having to choose a level of energy consumption ei ≥ 0. When

consuming ei units of energy, receiver i emits αei units of GHG emissions, where

α > 0 is called the level of carbon dependence. This is because the higher α, the

higher the level of GHG emissions for a unit of energy. The set of possible actions

for each receiver is thus A = R+. For a given level of total GHG emissions, there

is uncertainty on the severity of damages suffered by receivers. Let Ω = [0, 1]

be the possible global warming scenarios, where climate damages are increasing

with ω. I will refer to them as the states. The scientific authority S learns the state

from Nature, but cannot certify his information. He can send a costless message
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m ∈ [0, 1] to the receivers indicating a subset of states where the true state might

be. The timing of the game is as follows:

1. Nature draws the state ω0 according to a uniform distribution over Ω of

density g.

2. S is privately informed of ω0.

3. Communication stage: the sender sends a message to the receivers regard-

ing its type.

4. Emission stage: the receivers choose simultaneously a level of energy con-

sumption ei

Receiver i’s utility function will be:

ui(ei, e−i, ω) = ei −
1

2
(
N∑
i=1

αei + ω)2

Let us decompose the components of this utility function. Energy consump-

tion positively impacts receivers’ utility through:

b(ei) = ei

b represents the fact that energy consumption correlates with economic con-

sumption which increases receivers’ utility. Yet, it is also responsible for GHG

emission and potential damages due to global warming. This is captured through:

d(ei, e−i, ω) =
1

2
(
N∑
i=1

αei + ω)2

d represents the cost of energy consumption. It is increasing with the total
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level of emissions. The higher ω, the more severe the consequences of global

warming and the greater the cost of emissions. Finally, notice that α is an ex-

ogenous variable over which contributors have no control. Yet, its value will be

useful to our analysis, for the purpose of comparative statics.

Thus, overall:

ui(ei, e−i, ω) = b(ei)− d(ei, e−i, ω)

Receiver i does not take into account the impact of her emissions on other

receivers. As a result, emissions are a public bad and its collective consequences

are not internalised by players. The sender seeks to maximise social welfare. That

is:

uS(e1, ..., eN , ω) =
N∑
i=1

ui(ei, e−i, ω)

=
N∑
i=1

ei −
N

2
(
N∑
i=1

αei + ω)2

The choice of a receiver’s energy consumption is the result of a trade-off be-

tween economic growth and potential damages created by global warming. They

are determined by the state and the level of carbon dependence. The more severe

climate damages (the higher the state), the lower the optimal level of energy con-

sumption in order to mitigate the consequences of climate damages. Notice that

utility functions are single-peaked. As a result, for a given state, there is a sin-

gle optimal energy consumption level ei(ω). A higher energy consumption level

e > ei(ω) is not optimal for i because it might create too much climate damage. A

lower energy consumption level e < ei(ω) is neither optimal for i as it implies to

reduces economic growth by too much.
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A strategy for S is σ : Ω→ [0, 1] which consists in transmitting a message m to

the receivers regarding its type. A strategy for a receiver consists in choosing an

energy consumption level as a function of message m. An equilibrium consists

in a signalling strategy σ(ω) and an action rule for each receiver y1(m), ..., yN(m)

such that :

1. S chooses a strategy σ such that for all m ∈ [0, 1]:

uS(y1(σ(ω)), ..., yN(σ(ω)), ω)) ≥ uS(y1(m), ..., yN(m), ω)

2. Having received an equilibrium public message m ∈ supp(σ), Ri updates

her prior using Bayes’ rule such that:

g(ω|m) =


g(ω)∫

σ−1(m) g(ω)dω
if ω ∈ σ−1(m)

0 if not

and chooses action yi(m), such that for all e ∈ A :

E(ui(yi(m), y−i(m), ω)|m) ≥ E(ui(e, y−i(m), ω)|m)

where E(ui(ei, e−i, ω)|m) =
∫
ω∈Ω

g(ω|m)ui(ei, e−i, ω)dω. Any messagem such

that m /∈ supp(σ) is interpreted as some equilibrium message m∗ ∈ supp(σ).

3.3. Emission stage

I start by focusing on the emission game. Consider any message m ∈ [0, 1]

and set ei(m), for any i ∈ 1, ...N , the solution to the maximisation problem:

maxei∈R+ E(ui(ei, e−i(m)|m). ei(m) is the equilibrium level of energy consump-

tion of receiver i having received message m.
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First order condition gives that the equilibrium levels of energy consumption

of the receivers must be such that:

N∑
i=1

ei(m) = max(
1

α2
− E(ω|m)

α
, 0)

Having received messagem, there is a continuum of equilibria in the emission

game which all give the same total level of energy consumption. As my focus

is on the latter quantity, and for the sake of simplicity, in the following I will

restrict attention to symmetric individual equilibrium energy consumption levels.

Thus, for any given equilibrium message m, the equilibrium symmetric energy

consumption of a receiver is:

e(m) = max(
1

Nα2
− E(ω|m)

Nα
, 0) (3.1)

Similarly, set eWi (m), for any i ∈ 1, ...N , the solution to the maximisation prob-

lem: maxeWi ∈R+

∑N
i=1 E(ui(e

W
i , e

W
−i(m), ω)|m). eWi (m) is the socially optimal level of

energy consumption of receiver i having received message m.

First order condition gives that the socially optimal levels of energy consump-

tion of the receivers must be such that:

N∑
i=1

eWi (m) = max(
1

Nα2
− E(ω|m)

α
, 0)

As before, I will restrict attention to symmetric individual socially optimal

energy consumption levels. For any given equilibrium messagem, the symmetric
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socially optimal energy consumption of a receiver is:

eW (m) = max(
1

(Nα)2
− E(ω|m)

Nα
, 0)

3.4. Welfare analysis

Before turning to the resolution of the communication stage, let’s examine the two

sources of loss of welfare in our model: over-provision of the public bad (energy

consumption) and uncertainty regarding climate damages. In a first-best world,

levels of energy consumption would be efficient. This could be because receivers

could commit to adopt the socially optimal level of energy consumption through

some mechanism. In addition, the sender would be able to certify his private

information, something that would then be a dominant strategy5.

I will draw my attention to the expected welfare of a given receiver. Under

the assumptions we have made, the social welfare can be directly derived by

multiplying the expected welfare of a given receiver by N . For α < 1 we have

that for any m ∈ [0, 1], e(m) > 06 and that for α < 1
N

we have that for any

m ∈ [0, 1], eW (m) > 0. In the present section I’ll focus on the case α < 1
N

. In

the first-best world, a receiver’s energy consumption is the socially optimal one

eW (ω) = 1
(Nα)2

− ω
Nα

and the expected welfare of a given receiver is:

5In fact, in this case, even if information is non-certifiable, because there is no difference of
interest between the sender and the outcome of the receiver’s game, full revelation is a dominant
equilibrium for the sender.

6Write e(ω) = 1
Nα2− ω

Nα . It must be that for anym ∈ [0, 1], there is ω̃ ∈ Ω such that e(m) = e(ω̃).
Yet, e(ω) > 0 for any ω ∈ Ω when α < 1. The same reasoning applies for eW (m) > 0 resulting in
condition α < 1

N .
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W1(N,α) =

∫ 1

0

ui(e
W (ω), eW (ω), ω)dω

=
1

Nα
(

1

Nα
− 1

2
)− 1

2
(

1

Nα
)2

=
1

2Nα
(

1

Nα
− 1)

In the first-best world, the state is known. The socially-optimal action is imple-

mented in every state, making the level of climate damage d state-independent.

As a result, the expectation over state is only taken over the benefit term b.

Now consider a second-best world where receivers can no longer commit to

adopt socially optimal levels of energy consumption but are constrained to non-

cooperative levels. The sender certifies his private information and we are under

perfect information. When α < 1
N

, the resulting equilibrium energy consumption

is e(ω) = 1
Nα2 − ω

Nα
. The expected welfare of a given receiver then is:

W2(N,α) =

∫ 1

0

ui(e(ω), e(ω), ω)dω

=
1

Nα
(

1

α
− 1

2
)− 1

2
(

1

α
)2

= W1(N,α) +
N − 1

2
b(α,N)

First, notice that as b(α,N) < 0, non-cooperative energy consumption choices

result in a decrease in expected welfare for N > 1. This is because, as energy

is a public bad in our game, non-cooperative energy consumption is too high

compared to social welfare. As a result, receivers’ welfare is lower in the second

best-world than in the first-best one. As before, the level of climate damage d is

state-independent and the expectation over state is only taken over the benefit

term b.
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Let’s step in a third-best world where receivers choose non-cooperative levels

of energy consumption and, in addition, climate damage is uncertain. Here, re-

ceivers act entirely based on their prior. When α < 1
N

, the expected welfare of a

receiver then is:

W3(N,α) =
1

Nα

( 1

α
−
∫ 1

0

ωdω
)
− 1

2

∫ 1

0

( 1

α
− 1

2
+ ω

)2
dω

=
1

Nα

( 1

α
− 1

2

)
− 1

6

[
(

1

α
+

1

2
)3 − (

1

α
− 1

2
)3
]

= W2(N,α)− 1

24

Notice that whatever the number of contributorsN and the level of carbon de-

pendence α, uncertainty reduces the welfare compared to the second-best world.

Full uncertainty is harmful for a receiver’s expected welfare. As for the second-

best world, the expected welfare of a contributor is decreasing with the number

of total contributors N . Because of uncertainty, receivers are not able to make

climate damages state-independent.

Now, notice that in our game, the value of information is not always positive.

To see this assume that the sender could certify ω0 ∈ [1
2
, 1] and that N = 2. When

α < 1
2
, the expected welfare of a receiver would be:

WC(2, α) =
1

2α

( 1

α
−
∫ 1

1
2

ωdω
)
− 1

2

∫ 1

1
2

( 1

α
− 1

2
+ ω

)2
dω

=
1

2α

( 1

α
− 3

4

)
− 1

6

[
(

1

α
+

1

2
)3 − (

1

α
)3
]

= W2(2, α)− α2 + 12α− 12

48α2

For 0 < α < 1
2
, we have that WC(2, α) > W2(2, α) and a receiver is better-off
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knowing only that ω0 ∈ [1
2
, 1] than under perfect information.7 Could a benevo-

lent sender take advantage of the fact that information can have negative value

to increase social welfare compared to the second-best world through cheap-talk

communication ?

To answer this question, it is time to turn to the communication stage and see

how the sender’s influence places the receiver’s welfare with respect to the first,

second and third-best worlds.

3.5. Communication stage

3.5.1. Strictly positive energy consumption

I first consider the case where, whatever the state, the equilibrium and socially

optimal energy consumption levels are strictly positive. When α < 1
N

, energy

consumption levels are strictly positive, and we have that:

eW (m) = e(m)− N − 1

(Nα)2

Notice that when N = 1 sender and receiver have exactly the same utility

function and aim for the same total level of energy consumption. Yet whenN > 1,

energy consumption is always higher in the non-cooperative equilibrium than

what would be socially optimal: eW (m) < e(m).

I now turn to the communication stage. I prove that the equilibrium messages

and the resulting total level of energy consumption in the game I study can be

derived through the analysis of a parallel one sender one receiver game.

7The exact constraint is α < 4
√

3− 6 but 1
2 < 4

√
3− 6.
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Proposition 11. Consider the parallel one sender, one receiver communication game

where the set of types is Ω = [0, 1] the action variable is a ∈ R, the receiver has uni-

form prior over Ω, the utility of the sender is:

US(a, ω) = −
(
a− (

1

Nα2
− ω

α
)
)2

and the utility of the receiver is:

UR(a, ω) = −
(
a− (

1

α2
− ω

α
)
)2

When α < 1
N

, a strategy of the sender is an equilibrium strategy if and only if it is an

equilibrium strategy of the sender of the parallel game.

Let me introduce the definition of a partional equilibrium adapted from Craw-

ford and Sobel (1982) Lemma 1:

Definition 5. Define {ω0, ..., ωq} ⊆ [0, 1] such that:

• 0 = ω0 < ... < ωq = 1 where ωk, for 0 ≤ k ≤ q, is called the k-th cut-off.

• ∪qk=1[ωk−1, ωk] = [0, 1], where [ωk−1, ωk), for 1 ≤ k < q − 1, is called the k-th cell

and [ωq−1, 1] the q-th cell.

A q-cut-off partition equilibrium is an equilibrium of the game where the signaling

strategy of S is uniform on every cell. That is, for ω ∈ [ωk−1, ωk), σ∗(ω) = mk, for

1 ≤ k ≤ q − 1 and for ω ∈ [ωq−1, 1], σ∗(ω) = mq−1.

The proof of Proposition 11 works in two steps. I first show that all equilib-

ria of the original game are partitional. An important assumption for this to be
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the case is that the sender of the original game cares only about the total energy

consumption of the receivers, making the outcome variable unidimentional. As a

result, the logic of the proof of Crawford and Sobel (1982) can be reproduced.

Then, I show that all equilibria of the original game and the parallel game

coincide. Given that both sets of equilibria are partitional, one needs to show

that for a given signalling strategy, any type of sender in the original game which

is indifferent between two messages is also indifferent between the same two

messages in the parallel game if he follows the same signalling strategy, and con-

versely. This is true because for a given type, the senders in the original and par-

allel games have the same optimal action and because their utility functions are

both symmetric. As a result, for a given signalling strategy, any pair of messages

that induce the same utility to the parallel sender also provide the same utility to

the original sender. Thus, cut-off types in both games are the same, which suffices

to identify partition equilibria.

Given that the equilibrium messages in the parallel game are the same as in the

original one, that utility functions of the parallel game are symmetric around their

maximum and that the prior is uniform over [0, 1], the same procedure as in CS

section 4 can be followed to derive cut-off types. That is, a n-cut-off equilibrium

ωn0 , ..., ω
n
n is defined such that, for all k ∈ 1, ...n− 1:

eW (ωnk ) =
1

2

( 1

ωnk − ωnk−1

∫ ωnk

ωnk−1

e(ω)dω +
1

ωnk+1 − ωnk

∫ ωnk+1

ωnk

e(ω)dω
)

(3.2)

⇐⇒ 1

Nα2
− ωnk

α
=

1

2
[

1

α2
− ωnk−1 + ωnk

2α
+

1

α2
− ωnk + ωnk+1

2α
]

Given that ωn0 = 0 and ωnn = 1, the incentive constraints above imply that for

k ∈ 1, ...n:

ωnk =
k

n
+ 2k(n− k)b(α,N)
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where b(α,N) = −N−1
Nα

is the difference between the total socially optimal

emission level and the total non-cooperative one (note that the bias is strictly

negative here). Because cut-offs are exactly as in the linear quadratic case of

Crawford and Sobel (1982), their existence depends entirely on b(α,N). There-

fore, I call b(α,N) the communication bias. Notice that the communication bias

is exactly the individual over-provision in public bad (emissions) compared to

socially optimal level.

It follows that there a n-cut-off equilibrium exists if and only if all cut-offs are

in [0, 1], which is equivalent to:

ωn1 > 0

⇐⇒ b(α,N) > − 1

2n(n− 1)

⇐⇒ α >
2n(n− 1)(N − 1)

N
(3.3)

This constraint states that if receivers’ carbon dependence is low enough, the

sender cannot convey information through a n-cut-off equilibrium. In particular,

if α ≤ 4(N−1)
N

, no information can be conveyed at all. In other words, the only

equilibrium is the babbling one where all types send the same message.

The fact that the level of carbon dependence α has to be high for information

transmission to be possible can seem surprising at first sight. It comes from the

fact that reducing carbon dependence decreases climate damages at a quadratic

rate, whereas benefits from energy consumption only vary linearly. When α is

high, receivers reduce drastically their energy consumption because the damage

they face is potentially very high. But when α is low, receivers face little poten-

tial damage, neglecting emission reduction in favour of energy consumption. As

a result, because they fail to internalise the consequences of energy consump-

tion on the other receivers, they increase the inefficiency of the emission stage.

Consequently, the equilibrium energy consumption gets further apart from the



183 CHAPTER 3. COMMUNICATING OVER CLIMATE RISK

socially optimal level, increasing the communication misalignment. As the com-

munication stage is essentially equivalent to a special case of Crawford and So-

bel (1982)’s linear quadratic example, the maximum number of cut-offs decreases

with this misalignment. The assumption that damages are more convex in energy

consumption than benefits is thus essential for the result we get.

Notice that interval of carbon dependence α compatible with the existence of

a n-cut-off equilibrium is smaller wen the number of receivers N > 2 increases.

For a given symmetric level of individual energy consumption, more contribu-

tors who fail to internalise the consequences of energy consumption means more

over-provision of the public bad. As a result, the misalignment between the non-

cooperative equilibrium and the socially optimal level of energy consumption

increases. In other words, increasing the number of receivers only makes com-

munication more difficult for the sender.

Yet, recall that in order to focus on strictly positive socially optimal energy

consumption levels, we have assumed that α < 1
N

. It follows that a n-cut-off

equilibrium exists if and only if:

2n(n− 1)(N − 1)

N
< α <

1

N

For N > 1 and n > 1, the interval of α which verifies this inequality is empty.

In other words, the only equilibrium is the babbling one.

To understand this result, consider the case of a 1-cut-off equilibrium. For it

to exist, there must be ω1 such that a sender of that type is indifferent between

informing receivers that his type is below and above ω1. This is the incentive con-

straint of the sender given in (3.2) which states that the induced actions by those

messages have to be at equal distance of the optimal action of the sender. Yet,

for this to be possible, it must be that the communication bias b(α,N), that is the
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individual over provision in public bad compared to the socially optimal level, is

not too high. That bias is increasing with the number of receivers and decreasing

with the level of carbon dependence. But even when N = 2, (3.3) gives that for

a 1-cut-off equilibrium to exist it must be that α > 2, a value for which socially

optimal energy consumption is null. In other words, in the game I consider, when

contributions must be strictly positive, the equilibrium over provision in public

bad is always too important for a benevolent sender to be able to convey some

information regarding climate damages.

Thus, the results of this section imply that under cheap-talk communication

and strictly positive energy consumption levels, because no information trans-

mission can occur, receiver’s welfare in the same as in the third-best world. In

other words, the absence of certification power for the sender, makes him unable

to affect the receivers’ welfare.

Notice that if the damage function was more convex than what I have as-

sumed, the marginal damage of a unit of energy would be higher. Consider the

following damage function: d(ei, e−i, ω) = 1
β
(
∑N

i=1 αei + ω)β . For β > 2, the in-

efficiency would increase and the communication bias as well. But the condition

for the level of energy consumption to be strictly positive would stay the same,

whatever β > 1, making the existence of a 1-cut-off equilibrium even harder. To

the contrary, when the damage function is less convex, for 1 < β < 2, the ineffi-

ciency of the emission stage decreases and the incentive constraint of the sender

is easier to meet. Yet, this gain is still insufficient to overcome the constraint on

positive energy consumption.

3.5.2. Null energy consumption

Now I consider the case of a 1-cut-off equilibrium when equilibrium and socially

optimal energy consumption can be equal to zero. For it to exist, there must be

ω1 such that a sender of that type is indifferent between informing receivers that

his type is below and above ω1. When ω ≥ 1
Nα

, the socially optimal energy con-
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sumption is equal to zero. Given that the sender’s utility function is symmetric

and single-peaked, for ω1 to exist, the induced actions must be strictly lower and

higher than eW (ω1), the optimal action for a sender of that type. This is impossi-

ble when ω1 ≥ 1
Nα

because no action can be strictly negative. Thus, we want to

known if there is ω1 <
1
Nα

such that strategy σ1 : ω → 1(ω ≥ ω1) is an equilibrium

strategy8. For this to be the case it must be that:

uS(e(0), ω1) = uS(e(1), ω1)

⇐⇒ eW (ω1) =
1

2

(
e(0) + e(1)

)

The equilibrium energy consumption levels are strictly positive only for states

below ω = 1
α

. Therefore, the above is equivalent to:

1

(Nα)2
− ω1

Nα
=

1

2

( 1

Nα2
− ω1

2Nα
+

1

(ω − ω1)
(

1

Nα2
− 1

Nα

∫ ω

ω1

ωdω)
)

computation gives that:

ω1 =

√
(16a+ 9)N2 − 24N + 16 +N + 4

4aN

and that there is no α > 0 such that 0 < ω1 <
1
Nα

. In other words, a 1-cut-off

equilibrium is never possible, even allowing for null energy consumption levels.

This result shows that in the game I consider, even when contributions can be

null, a benevolent sender is unable to convey any information regarding climate

damages. Although we have not computed welfare allowing for null emission

8Testing any other strategy giving a 1-cut-off separation would be equivalent
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levels, this result also suggests that even then the absence of certification power

for the sender, makes him unable to affect the receivers’ welfare.

3.6. Conclusion

In this paper, I considered a game of contribution to a global temperature-increasing

public bad, where there is uncertainty over potential climate damages. Con-

tributors receive expert advice regarding climate risk from a benevolent expert

through cheap-talk communication. I showed that this channel of communica-

tion is welfare decreasing compared to perfect information because the equilib-

rium over-provision of GHG emissions is always too high for information trans-

mission to be possible.

This result highlights the necessity of stronger forms of communication when

it comes to climate risk. Although the value of information can be negative in

the game I consider, under cheap-talk only the lack of information transmission

is always harmful for social welfare. The fact that no communication is possible

under cheap-talk derives from the assumption that public bad contribution is al-

ways positive. Yet, allowing for negative contributions, which could represent

investment in carbon capture technologies, could potentially change that result.

This is possibility is left for future research. Forms of communication with partial

commitment, such as information design, could take advantage of the negative

value of information aspect of the game. Addressing that question is also an im-

portant avenue for future research.
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3.7. Appendix

Proof of Proposition 11:

Notice that Ui(a, ω), i ∈ {S,R} is twice continuously differentiable, concave,

admits a unique maximum in their action variable and that :

∂2Ui(a, ω)

∂a∂ω
> 0

Thus, Ui(t, ω) verifies all requirements of utility functions in Crawford and

Sobel (1982) such that all equilibria of the parallel game are partitional. Notice

that the same requirements are met by ui(ei, e−i, ω), i ∈ {1, ..., N} in their action

variable ei. The sender cares only about the total energy consumption, I iden-

tify his utility function to uS(t, ω) = Ct − N
2

(αt + ω)2 where t is the total energy

consumption level of receivers and let tS(ω) be the corresponding optimal action.

uS(t, ω) meets the requirements of Crawford and Sobel (1982) with respect to t.

Call t(ω) =
∑N

i=1 ei(ω) the total equilibrium energy consumption level in state

ω. We have that t(ω) 6= tS(ω) for all ω ∈ Ω so by directly adapting Crawford

and Sobel (1982)’s lemma 1 one can show that all equilibrium of the game are

partitional. I’ll do it as follows: first, I show that the number of aggregate en-

ergy consumption levels of the receivers induced at equilibrium is finite (lemma

7). Then, I prove that the set of types which get the same equilibrium outcome

must form an interval. The continuity and the strict monotonicity of the sender’s

preferences closes the argument.

Lemma 7. There exists ε > 0 such that if u and v are actions induced in equilibrium,

|u−v| ≥ ε. Further the set of aggregate energy consumption levels induced in equilibrium

is finite.

Proof of Lemma 7

I say that action u is induced by an S-type ω if it is a best response to a given
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equilibrium message m : u ∈ {∑N
i=1 ei(ω)|ω ∈ σ−1(m)}. Let Y be the set of all

actions induced by some S-type ω. First, notice that if ω induces t, it must be

that uS(t, ω) = maxt∈Y uS(t, ω). Since uS is strictly concave, it can take on a given

value for at most two values of t. Thus, ω can induce no more than two levels of

aggregate energy consumption of the receivers in equilibrium.

Let u and v be two levels of aggregate energy consumption induced in equi-

librium, u < v. Define Θu the set of S types who induce u and Θv the set of S

types who induce v. Take ω ∈ Θu and ω
′ ∈ Θv. By definition, ω reveals a weak

preference for u over v and ω
′ reveals a weak preference for v over u that is:

uS(u, ω) ≥ uS(v, ω)

uS(v, ω
′
) ≥ uS(u, ω

′
)

Thus, by continuity of ω → uS(u, ω) − uS(v, ω), there is ω̂ ∈ [ω, ω
′
] such that

uS(u, ω̂) = uS(v, ω̂). Since uS is strictly concave, we have that:

u < tS(ω̂) < v

Then, notice that since ∂2uS(t,ω)
∂t∂ω

> 0, it must be that all types that induce u are

below ω̂. Similarly, it must be that all types that induce v are above ω̂. That is:

∀ω ∈ Θu, ω ≤ ω̂

∀ω ∈ Θv, ω ≥ ω̂

Given that u1 and u2 verify the assumptions of Crawford and Sobel (1982), the
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sum of optimal action of the receivers, given that ω ∈ Θu is below the optimal

action when the type is ω̂. Similarly, the sum of optimal actions of the receivers,

given that ω ∈ Θv is above the optimal action when the type is ω̂. That is:


∑N

i=1 ei(Θu) ≤
∑N

i=1 ei(ω̂)∑N
i=1 ei(Θv) ≥

∑N
i=1 ei(ω̂)

⇐⇒ u ≤
N∑
i=1

ei(ω̂) ≤ v

However, as
∑N

i=1 ei(ω) 6= tS(ω) for all ω ∈ Ω, there is ε > 0 such that |∑N
i=1 ei(ω)−

tS(ω)| ≥ ε for all ω ∈ Ω. It follows that |u− v| ≥ ε.

For any belief B ⊂ Ω, the sum of optimal action of the receivers is in [0, 1].

Thus, the set of actions induced in equilibrium is bounded and at least ε away

from one another, which completes the proof.

Notice also that because uS verifies all the requirement of Crawford and So-

bel (1982), in every equilibrium of the game, if t is a level of aggregate energy

consumption induced by type ω and by type ω′′ for some ω < ω
′′ , then t is also

induced by ω′ ∈ (ω, ω
′′
).

By Lemma 7 there is a finite number of outcomes induced in equilibrium. The

continuity of tS(ω) gives that there is a type of the sender which is indifferent be-

tween any pair of outcomes induced in equilibrium and the monotony of tS(ω)

implies there are only a finite number of types which are indifferent between any

pair of outcomes. Hence, the point made just above implies that there is a parti-

tioning of Ω in a finite number of cells where every cell induces a given level of

aggregate energy consumption at equilibrium. This implies that any equilibrium

is outcome equivalent to a partition equilibrium.
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Call (σP , yP ) an equilibrium of the parallel game. To conclude the proof, I want

to show that (σ, e1, ..., eN) is an equilibrium of the game if and only if (σP , yP ) is

an equilibrium of the parallel game where σP = σ and yP = e1 + ...+ eN .

First, I show that if (σP , yP ) is an equilibrium of the parallel game, then σ = σP

and e1, ..., eN such that e1 + ...+ eN = yP is an equilibrium of the game.

1. Assume that R1, ..., RN play the equilibrium strategies ei defined in sec-

tion 2. Take an equilibrium of the parallel game (σP , yP ). It follows that

for any ω ∈ Ω,
∑N

i=1 ei(σ
P (ω)) = C

α2 − E(ω|σP (ω))
α

= yP (σP (ω)). Thus, by

playing strategy σP , the sender induces exactly the same aggregate energy

consumption from the receivers as the action from the parallel receiver.

In addition, for any ω ∈ Ω, the parallel sender has the same optimal ac-

tion as the sum of socially optimal actions for the sender: for any ω ∈ Ω,

argmaxa≥0US(a, ω) =
∑N

i=1 e
W
i (ω). uS and US are also both single-peaked

and quadratic. As a result, for any parallel sender to be indifferent between

two actions, it must be that they are at equal distance of his optimal action.

Similarly for the sender to be indifferent between two aggregate energy con-

sumption levels, it must be that they are at equal distance of his optimal ac-

tion. To see this, assume that the parallel sender is indifferent between two

actions a1 and a2. Then it must be that:

US(a1, ω) = US(a2, ω)

⇐⇒ −
(
a1 − (

C

Nα2
− ω

α
)
)2

= −
(
a2 − (

C

Nα2
− ω

α
)
)2

⇐⇒ C

Nα2
− ω

α
=
a1 + a2

2

Similarly, assume the sender is indifferent between
∑N

i=1 ei and
∑N

i=1 e
′
i such

that
∑N

i=1 ei = a1 and
∑N

i=1 e
′
i = a2. Then it must be that:
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uS(
N∑
i=1

ei, ω) = uS(
N∑
i=1

e
′

i, ω)

⇐⇒ C

N∑
i=1

ei −
N

2
(α

N∑
i=1

ei + ω)2 = C

N∑
i=1

e
′

i −
N

2
(α

N∑
i=1

e
′

i + ω)2

⇐⇒ C

Nα2
− ω

α
=

∑N
i=1(ei + e

′
i)

2
=
a1 + a2

2

As these optimal actions are the same, if the parallel sender is indifferent

between two actions a1 and a2, the sender is also indifferent between
∑N

i=1 ei

and
∑N

i=1 e
′
i such that

∑N
i=1 ei = a1 and

∑N
i=1 e

′
i = a2. As a result, as σP is

an equilibrium strategy for the parallel sender, σ = σP is an equilibrium

strategy for the sender.

2. Take an equilibrium of the parallel game (σP , yP ). Assume that S and R−i

play equilibrium strategies σP and e−i defined in section 2. Then, because

the sender’s equilibrium message is public, Ri and R−i have the same belief

and it follows from Ri’s first order condition that ei = yP −∑j 6=i ej is an

equilibrium strategy.

Now I show that if (σ, e1, ..., eN) is an equilibrium of the game, then σP = σ

and yP such that yP = e1 + ...+ eN is an equilibrium of the parallel game.

1. Take an equilibrium of the game (σ, e1, ..., eN). Assume that R plays the

equilibrium strategies yP =
∑N

i=1 ei. Following lemma 7, σ must be a par-

titional signalling strategy. Then, following a similar argument as above,

because the parallel sender has the same optimal action as the sum of sym-

metric socially optimal actions for the sender, and that uS and US are both

single-peaked and quadratic, every equilibrium message instructed by σ in-

duces exactly the same welfare to the sender and the parallel sender. As a

result, σP = σ must be an equilibrium strategy for the parallel sender.

2. Take an equilibrium of the game (σ, e1, ..., eN). Assume that the parallel

sender plays the equilibrium strategies σP = σ. Then, because for any given
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belief the parallel receiver picks the same optimal action as the sum of op-

timal actions of Ri, for i ∈ 1, ..., N , and because e1, ..., eN is an equilibrium

strategy, it must be that yP =
∑N

i=1 ei is an equilibrium strategy.
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