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Multi-agent reinforcement learning and object detection as structured prediction

by Nicolas CARION

This thesis explores the use of structured losses in two different domains. In the
first contribution, we focus on multi-agent reinforcement learning (MARL), in en-
vironments that can be separated into several loosely coupled tasks. We set out to
find policies that can generalize well to more agents and tasks than seen during
training, effectively scaling up the size of problems that can be tackled. Our solution
assigns agents to tasks by approximately solving a centralized optimization problem
whose objective function is parameterized by a neural network. We study how the
expressivity of the optimization problem and that of the neural network influence
the generalization capabilities of the model, and show that with the right choices, the
policy can generalize to more than 5 times more agents than seen during training.

In the second contribution we formulate object detection as a set prediction prob-
lem, and design a model that can effectively tackle this formulation. Our solution
leverages a deep convolutional network, as is customary in computer vision, and a
transformer encoder-decoder network, an architecture that has enabled significant
progress in natural language processing. Crucially, our solution incorporates minimal
inductive bias, thereby alleviating the need for hand-designed detection-specific com-
ponents such as anchors or non-maximal suppression. With a comparable parameter
budget, our model matches the performance of well-established and highly-optimized
baselines such as Retinanet and Faster R-CNN on the challenging COCO detection
dataset. Finally, we show that the method can be naturally extended to perform
panoptic segmentation, where it outperforms competing approaches, thus showing
the versatility of the model.
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0.1. Foreword and organization of the manuscript 1

0.1 Foreword and organization of the manuscript

When I started my PhD at Facebook in September 2017, I joined a team which was
aiming at making progress in the game of Starcraft, an involved real-time strategy
game. The challenges in this domain were plenty, since little progress had been
made in the field, and the gap with the best human players and the best bots was
still significant, but we managed to make some progress (Synnaeve, Z. Lin, et al.,
2018; Synnaeve, Gehring, et al., 2019) . Given the sheer complexity of the game, I
decided to focus mainly on methods that can generalize well, so as to reduce the
learning burden: no need for the agent to see all the possible states of the game if it
can leverage effectively at test-time what was learned in the small training scenarios.

Towards the end of 2018, a competing team made a press release around a method
they had developed, and gained a lot of media coverage. Their approach was very
different, since they were mainly relying on imitation of human experts, thereby
alleviating a lot of the issues that arise when trying to learn to play this kind of games
from scratch. Nonetheless, the interest of Facebook for this research subsided, as it
was hard to justify the sustained significant resource investments it entails. With
the project winding down, it was hardly conceivable for me to continue working on
Starcraft, due to the lack of engineering support.

From there on, I decided to focus on simpler environments, such as the Atari emu-
lation platform (Bellemare et al., 2013), to study model-based reinforcement learning
approaches. My idea was that if one can learn a compact model of the dynamics,
then this model can potentially generalize to slightly more complex environments
(eg. more enemies), and thus enabling the agent to generalize as well. My plan to
achieve this was to learn a model at the object level. Instead of trying to predict the
RGB pixels of the screen directly, which was the dominant approach at the time, I
wanted to predict the behavior of each individual entity in the game. The goal was to
build a compact relational model of the environment, where we learn how each pair
of entities interact. This has a potential for generalization: most of the interactions are
very local (eg a ball bouncing on a paddle), and hence do not depend on the actual
number of entities in the scene.

Environments like Atari require dealing with a varying amount of objects in
each episode, since objects appear and disappear all the time. This called for an ap-
proach centered around sets, and I slowly converged to a transformer-based method.
However, there were significant short-comings. Firstly, the method required a ground-
truth annotation of the position of all the individual entities in each frame of the
game, which is not readily available in Atari. We resorted to building manual sprite
detectors of the game objects to tackle that, but it was realistically limiting the scope
to a handful of games. Moreover, demonstrating convincing results on these games
was also challenging, since the transformer approach was not entirely ironed out yet
and the competing baselines were generally very strong.

For all these reasons, I felt that this work was not ready for publication. Coinci-
dentally, I realized that the same underlying principles could be applied in a different
way to detect the objects instead of predicting their movements. I thus changed my
focus and successfully applied a very similar model to a purely supervised object
detection task, reaching state-of-the-art performance.

In fine, because of this missing link, my thesis is composed of two seemingly
unrelated works. To avoid creating far-fetched, artificial links between the two topics,
I chose to embrace this diversity, and separate my manuscript into two distinct halves.
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Chapter 1

Introduction

Major breakthroughs in reinforcement learning have allowed us to reach super-
human performance in a variety of tasks that were long thought to be out of reach
for machine-learning based systems. Perhaps the most striking example is that of
Go (Silver, Huang, et al., 2016; Silver, Hubert, et al., 2018), where the algorithm,
provided with only the rules of the game, attained super-human performance in early
2016. At the core, the method relies on simulating millions and millions of games
against itself, and then using this experience to improve the policy, in an iterative
fashion. Because the game is deterministic and fully observable, it is possible to
enumerate a large number of possible actions and anticipate the response of the
opponent. Most real-life settings are not as favorable, hence methods were proposed
to tackle stochastic and information-imperfect games such as Dota (Berner et al.,
2019) and Starcraft (Vinyals, Babuschkin, et al., 2019). These approaches also rely
on simulating countless hours of self-play to generate training experience for the
networks. However, the computational costs required to train agents to play such
games are increasing prohibitively, suggesting that new paradigms must be devised.
Moreover, these approaches rely on having access to a fast, accurate simulator of the
environment, which in this case is the game engine itself. Extending these methods
to the physical world thus remains a major challenge, since perfect simulation is
impractical and using physical robots to generate experience would take far too long.

Another characteristic of these methods is that they typically can deal only with
the task they were trained for, a phenomenon sometimes called “narrow AI”. If the
game rules are modified, then the networks need to be retrained from scratch, with
all the computational overhead it entails. To alleviate this issue, some works have
been focusing on creating models that can generalize to situations that have not
been seen at training time. In Chapter 2, we address similar issues in the context
of collaborative multi-agent problems. Specifically, we seek out to find policies that
generalize to situations with more agents to control, or more tasks to tackle. Finding
policies that generalize to account for more agents is a crucial endeavor for multi-
agent reinforcement learning, and many real-life scenarios involve collaborating with
varying number of agents, possibly unknown or even human. In our approach,
we leverage the generalization property of our method to train agents in small
environments, where the learning complexity is manageable, and then scale the
fine-grained collaboration patterns that were learnt to bigger environments than was
previously possible. Our solution relies on leveraging the structure of these multi-
agent scenarios, by combining an optimization procedure with a neural network that
determines the weights of the objective function. We study how the design decisions
for the neural network and the optimization procedure impact the generalization
capabilities of such a formulation, and show that it outperforms pure neural-network
based approaches. In Section 1.1, we present the collaborative multi-agent framework,
and some of the approaches that have been proposed.



4 Chapter 1. Introduction

Apart from control, one of the other major domains of interest in machine learn-
ing is perception. Tremendous progress has been made in building models that can
interpret visual and audio signals, sometimes even surpassing human experts in
specialized domains such as medical imaging (Rajpurkar et al., 2017). Detecting and
localizing objects in an image is one of the challenging tasks that the community
has made significant progress on over the last decade. It is a corner stone of com-
puter vision, that has many applications, from self-driving cars to medical imaging,
and in Section 1.2, we present the main paradigms used to tackle it. Most of the
recent approaches rely heavily on hand-designed components, such as candidate
boxes (anchors) to help the prediction of the box localization. Such priors require
careful tuning, demanding a particular expertise and computational resources, thus
potentially hampering performance on specific data distributions, as may be found in
medical images for example. In a true deep learning spirit, we set out to remove these
hand-designed components and train a model completely end-to-end. In Chapter 3,
we present a streamlined approach to detection, which, unlike mainstream methods,
places objects at the center of its focus. We remove the need for any detection-specific
components, and rely exclusively on architectures that have been widely adopted
by the deep learning community at large, namely residual networks (He, X. Zhang,
et al., 2016) and Transformers (Vaswani et al., 2017). The attention mechanisms that
are at the core of the Transformers allow the model not only to reason globally about
the image, which notably improves detection on large objects, but also to reason over
the predicted objects as a set, thereby avoiding the prediction of duplicates, which
typically plague mainstream detectors. Such formulation of the problem as a set
prediction not only allows us to reach competitive performance, but also holds great
promise in enabling the development of models that can reason about the objects,
their relationships, attributes and interactions.

Both these contributions rely on making use of specific structures of the problem
in ways that were not explored before. In both cases, the structures we rely on
involve finding a solution to a matching problem. Since matchings form a central
building block in both the following chapters, we review in Section 1.3 the underlying
mathematics, as well as several ways to optimize the variants of the problem we are
focusing on in this manuscript.

1.1 Collaborative Multi-agent RL

The drive to control agents or systems to perform a given task as efficiently as possible
dates back to the very early days of the development of computer science. In the
1950s, pioneers like Richard Bellman started studying the problem of optimal control,
and introduced the main theoretical foundation, the Markov Decision Process, or
MDP (Bellman, 1957). The simplest setting in optimal control is concerned with one
agent, alone in the environment. Example includes a robot trying to navigate out of a
maze, or an airplane auto-pilot trying land a plane as smoothly as possible. Some
challenges arise when the number of agents increases. Historically, two-player games
have been extensively studied, for example by explicitly modeling possible moves of
the opponent and finding the best response (Silver, Huang, et al., 2016; Edwards and
Hart, 1961), or, when the game becomes too complex, simply treating the opponent as
part of the environment (Vinyals, Babuschkin, et al., 2019). However, many real-world
problems involve more than one or two agents. These problems can be categorized
in various ways. Firstly, they may differ in the way the agents are interacting with
each-other: the task can be either collaborative (the agents are maximizing a common,
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shared reward), competitive (each agent has its own reward function), or mixed (a
combination of the two previous modes). Secondly, the problems vary in the extent to
which agents are able to communicate. This forms a continuum from totally isolated,
independent agents, to agents that are able to communicate in some limited ways, all
the way to fully shared information and decision-making between the agents. The
problems we are interested in, in this manuscript, are collaborative and centralized,
meaning that the agents can fully share information amongst themselves, and try to
optimize a joint reward. In the section 1.1.1, we formalize these notions precisely, and
in section 1.1.2 we review some of the main approaches to tackle them.

1.1.1 Formal definition

Fully Observable Centralized Model

In the fully observable case, it is relatively straightforward to define a centralized
model. The first formal definition comes from Boutilier, 1996, and is a simple exten-
sion of the MDP model.

Definition 1.1.1 (MMDP). A multi-agent Markov decision process (MMDP) is defined
as a tuple
M = 〈D, S, {Ai}i∈D, T, R〉 where

• D = {1, · · · , n} is the set of n agents.

• S is a (finite) set of states.

• Ai is the set of actions available to agent i. This set may be state dependent. We
denote the joint action as A = ×i∈DAi.

• T is the transition probability function: T : S×A → ∆(S) where ∆(S) is the
probability simplex over the next state.

• R is the reward function: R : S×A→ R

• b0 ∈ ∆(S), is the initial state distribution at time t = 0.

In this setting, the reward is joint, and observed by all agents. Note that all agents
have access to the full state, but not necessarily to the actions of others. However,
it is reasonable to assume that they do, since in most case they can compute them
themselves.

We note that extending this definition to the partially-observable case is not
straightforward, because we need to specify how the agents are allowed to share
information, if at all.

Multi-agent decision problems

In the most general formulation of a Multi-agent decision problem, we define what is
a multi-agent environment, and what it means for an agent to be part of it, i.e what it
can observe from the environment, other agents, and how it can act upon them.

Following Oliehoek and Amato, 2016, we define a Markov Multi-agent Environ-
ment (MME):

Definition 1.1.2 (MME). The Markov multiagent environment (MME) is defined as a
tuple
M = 〈D, S, {Ai}i∈D, T, {Oi}i∈D, O, {Ri}i∈P, b0〉, where
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• D = {1, · · · , n} is the set of n agents.

• S is a (finite) set of states.

• Ai is the set of actions available to agent i. This set may be state dependent. We
denote the joint action as A = ×i∈D.

• T is the transition probability function: T : S×A → ∆(S) where ∆(S) is the
probability simplex over the next state.

• Oi is the set of observations available to agent i.

• Oi is the observation probability function: Oi : S×A→ ∆(Oi)

• Ri is the immediate reward function for agent i: Ri : S×Ai → R

• b0 ∈ ∆(S), is the initial state distribution at time t = 0.

This definition makes the dynamic of the environment explicit, but leaves the
dynamics of the agents themselves unspecified.

To remedy this, Oliehoek and Amato, 2016 defines an agent component:

Definition 1.1.3 (Agent component). A fully-specified agent component, can be
formalized as a tuple
m = 〈D, {Ii}i∈D, {Ii,0}, {Ai}i∈D, {Oi}i∈D, {Zi}i∈D, i, {π}〉, where

• D = {1, · · · , n} is the set of n agents.

• Ii is the internal state of agent i. Sometimes called belief.

• Ii,0 is the initial internal state of agent i.

• Ai is the set of actions that the agent i can execute. May be state dependent.

• Oi is the set of observations available to agent i.

• Zi is the set of auxiliary observations (e.g. obtained by communication) avail-
able to agent i.

• πi is the (stochastic) policy of agent i: πi : Ii → ∆(S).

• li is the (stochastic) information state function of agent i: li : Ii×Ai×Oi×Zi →
Ii

We now have all the required pieces to define some partially observable multi-
agent models.

Partially Observable Centralized Model This is the most natural extension of
MMDP to a partially observable case. Specifically, agents share their beliefs and
observations of the state, but can’t observe the full-state.

Definition 1.1.4 (MPOMDP). A multi-agent POMDP (MPOMDP) is specified by a
MMEM and a partially specified agent model m where:

• m = 〈D, {Ii}, {Ii,0}, {Ai}, {Oi}, {Zi}, {li}, ·〉

• All the internal states sets are the same, and all agents start with the same belief,
and the belief-update functions are the same: for all i, j ∈ D2, Ii,0 = Ij,0, li = lj
and Ii = Ij
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• The auxiliary observations are the concatenation of the observations of other
agents are obtained by instantaneous communication: Zi =

⊗
j 6=i Oj

Note that this definition is independent of how decisions are actually going to be
taken in a physical system: it could be that a central system decides the action of all
the agents, which in turn merely execute them, or that each agent is responsible for
taking its own action (this setting is sometimes referred to as “decentralized execution”
in the literature). However, from a purely theoretical point of view, this difference
does not make much of a difference: given that the agents have the same beliefs and
observations, they can recompute the actions of their peers at will (if needed, the
weights of the networks can also be shared across the perfect communication channel,
or as part of the belief).

Decentralized models Even though we consider exclusively centralized settings in
this manuscript, we briefly review the decentralized counterparts to highlight the
similarities and differences.

The most extreme case of decentralization occurs when agents can’t communi-
cate at all, i.e. when for all agent i, Zi = ∅. This is known as the Dec-POMDP
model (Oliehoek, Spaan, and Vlassis, 2008). By contrast, some recent works assume
agents don’t share their observations, but allow some form of communication be-
tween them, for example through graph-based models (Foerster, Assael, et al., 2016;
Foerster, Farquhar, et al., 2018; Jiang, Amo, and Lu, 2018; Jiang and Lu, 2018; Das et al.,
2019; Witt et al., 2019). However, the communication protocol is most of the time
under-specified, and often times seems more catered to the technical solution than
any actual restriction from the problem itself. In fully cooperative games, there is no
incentive for the agents to withhold any of their information and observation, hence
as long as communication is possible, it is unclear why they would refrain from doing
so. Even considering real-life scenarios with fleet of robots communicating over WiFi
or Bluetooth using appropriate lossless compression algorithms, it seems likely that
they would be able to share enough information to form a common belief. Moreover,
graph-based methods also often implicitly assume several rounds of communication.
Under such assumption, it is possible to devise an execution scheme where the agents
agree upon a leader that is responsible for computing the actions of all the others,
then broadcast them such that they can simply execute them (such scheme is also
possible with only one communication round if the leader is pre-agreed upon and
can consume the messages of all other agents before broadcasting its response). All
in all, these considerations blur the line between such communicating decentralized
approaches in collaborative environments and the fully centralized model presented
in the previous paragraph. However, the distinction becomes fully apparent in mixed
collaboration-cooperation settings, where agents do not share the same reward func-
tion and thus must learn to communicate only the part of their knowledge that aligns
with their self-interested goals.

1.1.2 Approaches to collaborative multi-agent problems

Multi-agent collaborative problems have been studied in many different ways by
different research communities over time. For example, many specific problems
have been studied through the lens of Operational Research. Amongst others, we
can mention the famous multi-vehicle routing problem (Toth and Vigo, 2002), or
various instances of Unmanned Aerial Vehicle fleet management problems (Shetty,
Sudit, and Nagi, 2008; Richards et al., 2002). In this manuscript however, we are
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interested in model-free reinforcement learning approaches. In this context, small
scale problems can be tackled by simply considering the joint action-space and
applying standard reinforcement learning algorithms. However, as the number
of agents increases, the set of actions grows exponentially, very quickly becoming
intractable. One approach to side-step this issue is to exploit some structure in the
underlying dynamics (Meuleau et al., 1998; Tesauro, 2005; Proper and Tadepalli,
2009): for example, one may assume that the dynamics of the agents are mostly
independent, or only dependent on a handful of other agents. Another approach
gaining a lot of attention is to treat all the agents mostly independently, but allow
them to communicate through some graph-based models (Sukhbaatar, Szlam, and
Fergus, 2016; Foerster, Assael, et al., 2016; Zambaldi et al., 2019; Yang et al., 2018;
Jiang, Amo, and Lu, 2018; Jiang and Lu, 2018; Lowe et al., 2017; A. Singh, Jain, and
Sukhbaatar, 2019; Das et al., 2019; Witt et al., 2019). These methods essentially break
down the complexity of the problem by considering only the behavior of a given
agent at a time, then supplementing it with some learnt communication scheme with
the other agents, which is typically designed to enforce a limited amount of shared
information in order to keep the complexity manageable.

One of the main challenge in multi-agent problems lies in the adaptability and the
scalability of the proposed approaches. Adaptability requires the proposed methods
to be robust to changes in the number of agents, and is desirable for real-world
applications (Barrett et al., 2017): in most scenarios, training is expensive, hence it is
undesirable to have to retrain the whole policy if, for example, one of the robots breaks
or some new ones are added to the fleet. Scalability is also a challenge, as it is often
hard to scale up current multi-agent methods beyond a dozen units. We note that
good adaptability can potentially help scalability: if a method is able to learn a policy
in situations with few units, where the learning complexity is manageable, and then
generalize it to bigger scenarios without retraining, then the method can naturally be
scaled up. This is the approach we pursue in this manuscript. Amongst the notable
approaches to large scale MAARL, we can note the Mean-Field Approach (Yang
et al., 2018) which consists in approximating the effect of the other agents (possibly
restricted to a neighborhood) by considering the mean of the actions taken by them.
This is a relatively crude approximation which prevents fine-grained collaboration,
but allows to handle scenarios with up to a thousand agents comfortably, and even
varying number of agents (since the mean is always well defined). Less stringent ap-
proximations are possible, for example by explicitly constraining the set of neighbors
an agent can communicate with (Jiang and Lu, 2018; Jiang, Amo, and Lu, 2018). This
allows some small scale generalization in simple environments. However, even with
additional inductive biases, the generalization results reported on environments as
complex as StarCraft are mostly negative (Zambaldi et al., 2019; Usunier et al., 2016),
suggesting that additional mechanisms are required to achieve collaboration.

Contributions

In this manuscript, we focus on problems that can be hierarchically decomposed in a
set of loosely coupled tasks, similarly to previous approaches (Proper and Tadepalli,
2009). Example includes battle scenarios, where each enemy unit can be seen as a task,
or collaborative navigation, where a task is a way-point to be visited. Such problems
can be approached by first assigning a task to each agent, then letting each agent
carry out its task, possibly interacting with other agents assigned to the same one.
Contrary to some graph-based approaches (Jiang and Lu, 2018; Jiang, Amo, and Lu,
2018) that tend to limit interactions based on geographic proximity, we group agents



1.2. Object detection 9

FIGURE 1.1: Object detection consists in finding tight bounding boxes
around visible objects.

based on the task they are carrying out, which allows more sensible coordination.
By contrast, the assignment step must coordinate all the units at once. To efficiently
search amongst the exponential number of possible assignments, we assume some
structure: for example, we may assume that each agent is able to contribute a certain
amount (positive or negative) to each possible task, and the contributions of all
agents assigned to a given task are additive. This results in a linear assignment
problem (see Section 1.3.2) that can be efficiently solved. We use a neural network
trained using reinforcement learning to predict the expected contributions of each
agent to each task. We finally show that the design decisions for the collaboration
optimization problem as well as the expressivity of the neural network both impact
the generalization potential of the policy found, and with the appropriate choices, we
demonstrate effective generalization to up to 5 times more units than seen during
training. This contribution has been accepted as a spotlight presentation at Neurips
2019 (Carion, Usunier, et al., 2019).

1.2 Object detection

Object detection has historically been a core computer vision task over the last decades
of research (Zou et al., 2019; L. Liu et al., 2020). Some of the earliest attempts can be
traced back to the 70s (Fischler and Elschlager, 1973), where a dynamic programming
algorithm was used to detect faces from a predefined template. The task is closely
related to object recognition, which involves classifying the most salient object of
the image. By contrast, in object detection, one must not only classify the object but
also regress its localization and extent, for example through the prediction of a tight
bounding box (Everingham et al., 2010) around the instance, as depicted in Fig.1.1. A
given image may contain an arbitrary number of instances, that must all be detected
individually. More formally, for an image I of dimension H ×W we define

B(I) =
{
(x, w, y, h) ∈ [0, W]2 × [0, H]2 | 0 ≤ x− w

2
< x +

w
2
≤W

and 0 ≤ y− h
2
< y +

h
2
≤ H

}
as the set of all possible bounding boxes contained in the image, characterized by
their center (x, y), their height h and width w. We assume a given finite discrete
set of category labels L that correspond to the classes of objects we are interested
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in detecting. The task of object detection can then be defined as producing a set
B(I) = {(b1, l1), · · · , (bn, ln)} ∈ B × L of bounding boxes and their associated
category label.

1.2.1 Object detection as a classification problem

The most common way to address the object detection task is to treat it as a classifi-
cation problem. The set of category labels is first extended as L = L ∪ {∅}, where
∅ is the label representing a box that does not canonically contain an object, some-
times referred to as the “background class”. Assuming we have access to a classifier
ĉ : B(I)→ L, we can construct the predicted set of detection as:

B̂(I) = {(b, ĉ(b)) | b ∈ B(I), ĉ(b) 6= ∅}

Since B is infinite, in practice it needs to be quantized to a finite subset that we
denote as B̃. This has two main consequences:

• It introduces a quantization error. To cope with this, some methods additionally
train a regressor to predict the quantization error, to try to compensate for it.

• It makes the problem ill-posed. In general, the true boxes are unlikely to be
contained in B̃, which means that in theory the classifier should label almost all
the boxes in the quantized set as ∅.

To make the problem solvable nonetheless, a common solution is to relax the classifica-
tion rule, by defining a heuristic label assignment rule which will assign a foreground
label to quantized boxes even when they are not exactly equal to a ground-truth box.
One possible way of doing so is to assign to a quantized box the label of the ground-
truth box that has the highest Intersection over Union (IoU), provided that it is above
a predefined threshold, and then train the classifier on this proxy classification task.
In general, since the matching is non-unique, there could be several quantized boxes
that are highly overlapping with the same ground-truth box and thus receive the
same label corresponding to the same instance. Training a classification model on
these artificial labels will lead the model to produce redundant predictions. As a
result, methods based on this principle often need an additional de-duplication set
operation.

We now review some of the historical breakthroughs in object detection using a
classification formulation.

First real-time face detector A notable milestone is the work of Paul Viola and
Micheal Jones (Viola and Jones, 2001) who obtained the first real-time object detection
algorithm. Though their method is in theory generic, it was particularly well suited to
detect faces, notably because of the low variability between instances. Their approach
relied on Adaboost (Freund and Schapire, 1995) to select features from a set of simple
and generic filters (Haar filters), then used a sliding-window approach to apply
them all over the image. They also relied on cascading the filters to speed-up the
computation and ensure real-time detection.

Deformable Part Models The next notable milestone is the work of Navneet Dalal
and Bill Triggs (Dalal and Triggs, 2005). Their method was following the sliding
window technique, but their feature descriptors consisted in Histogram of Gradients
(HOG), which consist in counting the local gradient orientation in a given patch of
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the image. The classification part had also been improved, following the progress in
pattern recognition, and they elected to use linear Support Vector Machines (Boser,
Guyon, and Vapnik, 1992). This approach was successfully applied to pedestrian
detection, even though the idea is in theory not class-specific. Some follow up works
(Ross Brook Girshick, 2012; Felzenszwalb, McAllester, and Ramanan, 2008) improved
on this approach by focusing on individual parts of the object instead of trying to
detect it as a whole: these models were called Deformable Part-based models.

Two-stage detectors In 2012, a major breakthrough occurred in computer vision:
using a deep convolutional network, Alex Krizhevsky et al. obtained significant
performance improvement on a challenging image recognition dataset (Krizhevsky,
Sutskever, and Hinton, 2012). From there on, these neural networks replaced tradi-
tional feature descriptors. One of the first attempt at incorporating convolutional
networks in a detection pipeline is RCNN (Ross B. Girshick et al., 2014). This ap-
proach is, in spirit, quite similar to the previous methods, with some improvements
to make it more efficient:

• Instead of naively classifying all possible regions, it relies on a heuristic to select
a few thousands of candidate boxes

• Instead of using HOG-like descriptors, it uses a convolutional network followed
by a linear SVM to classify each proposal, as well as a regressor to correct the
exact localization of the box.

In subsequent work, the SVM was replaced by fully connected layers (Ross B. Girshick,
2015), then the heuristic used to generate candidate boxes was replaced by a dedicated
network, called the Region Proposal Network (S. Ren et al., 2015a). This family of
methods is called two-stage detectors: a first network proposes regions, and a second
one classify and regress the precise bounding boxes.

It has to be noted that the Region Proposal Network (RPN) typically uses a set of
manually designed anchor boxes. They serve as a seed to the regression, since the
network’s predictions are made relatively to the anchor, and they enforce a diversity
in the scales and aspect ratios of the boxes considered. However, they introduce
additional hyper-parameters, which may require careful tuning when applying the
method to custom datasets with peculiar boxes distribution.

As noted previously, these methods suffer from duplicate detections, due to the
relaxed classification formulation. The most prevalent solution to this problem is
to apply a de-duplication step called the Non-Maximal Suppression (NMS). This
procedure greedily considers pair of boxes which predicts the same object category
and have a high overlap, and discards the one with the lowest confidence, then iterate
this process until reaching a fixed point. This building block (or its variants such as
Bodla et al., 2017) has been ubiquitous in two-stage detection pipelines to this day. Its
sequential nature makes it difficult to implement efficiently on modern computation
accelerators (GPUs, TPUs), although some more parallel versions have been proposed,
such as MatrixNMS (Xinlong Wang et al., 2020). However, the presence of such a
building block poses several issues:

• Since it is greedily based on a fixed overlap threshold, it forces a precision-recall
trade-off. Getting rid of duplicated boxes might imply removing true-positive
boxes corresponding to highly overlapping objects.

• It is susceptible to adversarial attacks (Derui Wang et al., 2019)
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• It is non-differentiable, making it impossible to use detected objects in down-
stream tasks while training end-to-end.

To this day two-stage methods are still considered the gold-standard for detection,
and winning entries in the object detection challenges, such as COCO (T.-Y. Lin,
Maire, et al., 2014) are based are almost always built on such principles.

One-stage detectors The two detection stages (box proposal, then refinement) yield
accurate detectors, but often at the expense of speed. A parallel line of works explore
the possibility of detecting in only one stage, trading a bit of localization accuracy for
speed, and thus yielding detectors that can comfortably operate in real-time.

One the very first one stage detection model was OverFeat (Sermanet et al.,
2014), presented in 2013. It uses a freezed feature extractor trained on Imagenet
Classification, as well as the dense classification head, and trains a class-specific
box regression head that densely predicts box coordinates at each location and at
several scales. The predictions are then aggregated across space and scales in a greedy
manner.

In 2016, Redmon et al. proposed YOLO (Redmon, Divvala, et al., 2016). The
approach consists in tiling the image in a 7× 7 grid, then for each cell of this coarse
grid predicts a classification label, and 2 boxes, characterized by their position relative
to the cell, their size, and a probability that this box correspond to a real object (used
for confidence score). Since the model considers only 98 possible boxes, it is able to
run very efficiently. However, it struggles to detect small objects, and one limitation
is that a single coarse cell is assumed to contain only boxes of a single class. Contrary
to OverFeat, the whole network is trained jointly. This first version of YOLO is a
bit unique amongst other detection methods in that its label propagation rule, by
construct, will enforce that the label of each ground-truth box will be applied to exactly
one proposed box. Indeed, the algorithm looks in which cell the center of the ground
box is falling, then picks the predicted box from that cell that has the highest overlap
with the ground-truth box. In that sense, it creates an implicit greedy matching
between ground-truth and predicted boxes. This makes the classification problem
harder for the network: not only it has to classify boxes with good overlap with the
ground-truth, but also has to implicitly rank them, so that the best overlapping box
gets the true label and the other are classified as background. This approach turned
out to be impractical as the number of candidate boxes increases, because it increases
the number of “good” candidates and thus makes it harder for the classifier to pick
the best one. It was thus dropped in subsequent work (Redmon and Farhadi, 2017) as
well as parallel works such as SSD (W. Liu, Anguelov, Erhan, Szegedy, S. Reed, et al.,
2016), where the number of candidate boxes was drastically increased, using proper
anchor boxes (box regression was made with respect to these anchors instead of the
grid cell). In these methods, the ground-truth label is propagated to any candidate
box whose IoU with the ground-truth is above some fixed threshold (typically 0.5).

Increasing the number of candidate boxes is necessary to improve recall, but it
comes with a drawback: it amplifies the imbalance between foreground boxes (the
ones that contain an object) and background boxes (those which are empty). To
alleviate this issue, some method such as RetinaNet (T.-Y. Lin, Goyal, et al., 2017)
adjust the cross-entropy loss to down-weight the contribution of well classified boxes,
forcing the network to focus on hard, ambiguous examples.

Anchor-free methods Most of the state-of-the-art detectors presented in the previ-
ous paragraphs rely on some pre-defined anchors to make predictions. These anchors
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encode prior knowledge about the task, and may require careful tuning if the dis-
tribution of box shapes is significantly different than the typical detection dataset
(COCO or Pascal VOC for example), as it may be the case for specialized domain like
medical imagery. Some methods have thus sought to avoid relying on such building
blocks.

The first line of work consists in treating some points on the boundary of the object
or its bounding box as keypoints and detecting them as such. CornerNet (Law and
Deng, 2018) seeks to detect the top-left and bottom-right corners of each object. To
do so, it predicts two high-resolution heatmaps: one for top-left corners and one for
bottom-right corners. Then it extracts the peaks of both heatmaps (using a 3× 3 max
pooling), as well as the feature vector associated with its location. To match corners
by pairs, it then proceed to compute the distance between each pair of embeddings,
and match the most similar ones. Some improvements to this approach where then
proposed, to improve the matching between corners (Dong et al., 2020) or detect
more natural keypoints that lie on the object boundary (Zhou, Zhuo, and Krähenbühl,
2019).

Another line of work consists in detecting objects from their center (Duan et al.,
2019; Z. Tian et al., 2019; Zhou, Dequan Wang, and Krähenbühl, 2019). In FCOS (Z.
Tian et al., 2019), each cell of all the feature-maps (at different resolution) are treated as
positive if they lie within the ground-truth of a given object. Then, depending on the
size of the object, a feature map at a particular resolution is heuristically selected, and
only cells within this feature map are eventually treated as positive. For each of them,
the network predicts the class of the object, as well as the distance from the center
of the cell to the four sides of the bounding box. The remaining negative cells are
simply trained to predict the background class. This results in many boxes predicted
for each instance, hence NMS is applied as usual. It has been shown (S. Zhang et al.,
2020) that using comparable implementation details, the difference between FCOS
and an anchor-based counter-part such as RetinaNet is negligible. CenterNet (Duan
et al., 2019; Zhou, Dequan Wang, and Krähenbühl, 2019) takes a slightly different
approach in that it considers as positive only the cell that contains the true center of
the bounding box, and thus only needs to regress the height and width of the box.
Similar to CornerNet, it thus produces a heatmap of all centers, and it extracts the
peaks (cells whose response value is greater than their 8 connected neighbors), which
in this case replace the non-maximal suppression step.

Overall, these anchor-free methods often require much bigger backbones to com-
pete with the anchor-based counterparts, while still relying on non-differentiable set
de-duplication such as (soft)NMS or peak extraction in the center heatmap.

1.2.2 Beyond classification based approaches

At a conceptual level, the issue behind classification-based approaches is that they
don’t optimize for the true objective, which is to predict a set. As a result, telling how
many instances of a given class are present in the image can prove challenging: indeed
the NMS acts as a way to control the precision recall tradeoff but can’t guarantee that
the true number of objects are going to be predicted. Recently some approaches try
to learn NMS with a convolutional network (Hosang, Benenson, and Schiele, 2017),
which is a step in the right direction but doesn’t yield state of the art performance.

A parallel line of work in object detection (Stewart, Andriluka, and Ng, 2016) and
instance segmentation (Romera-Paredes and Torr, 2015; Park and Berg, 2015; M. Ren
and Zemel, 2017; Salvador et al., 2017) fully embraces the set nature of the problem
and uses recurrent models to predict autoregressively all the objects that are present
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in the image. The main limitation of these approaches is that the sequential prediction
of the objects makes the inference time proportional to the number of instances which
is not compatible with real time applications. Moreover they suffer from low recall
leading to poor scores on challenging detection datasets such as COCO.

Contributions

In this manuscript, we show that a set based approach is possible using modern archi-
tectures such as transformers. This formulation side-steps many problems introduced
by the classical classification approach, particularly the class imbalance for the back-
ground classes, and the duplicate detections. This allows us to construct a streamlined
detection pipeline that is fully differentiable and don’t require any detection-specific
components. Crucially, we perform the detection in parallel which not only alleviates
the speed limitations encountered by the previous recurrent approaches, but also en-
sures a competitive recall score. We show that using a comparable parameter budget
and similar inference times as compared to well-established two stage methods, we
also match the average precision of these baselines. Furthermore, we show that the
architecture can be naturally extended to perform panoptic segmentation, obtaining
state-of-the-art performances, which demonstrate the generality of the approach. This
contribution has been accepted as an oral presentation at ECCV 2020 (Carion, Massa,
et al., 2020).

1.3 Matching

Matchings are an important concept in computer science, and have been studied
extensively through various lenses, including graph theory and operational research.
We start by recalling the mathematical definition and fixing some vocabulary in
Section 1.3.1. Matchings form an essential building block for both of the following
chapters: in the multi-agent chapter (Chapter 2), they constitute the foundation of the
policy executed by our agents, and thus we study the specific tools required in Sec-
tion 1.3.3. In the object detection chapter (Chapter 3), they appear in the computation
of our structured loss. The corresponding tools are exposed in Section 1.3.2.

1.3.1 Mathematical definition

In this section, we will consider two discrete, finite sets I and J , and w.l.o.g. we can
assume they are subset of the set of positive integers N. We denote n = ‖I‖ and
m = ‖J ‖, and unless stated explicitly we do not assume that n = m. In Chapter 2, I
will correspond to the set of agents, and J to the set of tasks that are to be solved. In
Chapter 3, both sets will correspond, respectively, to the set of predicted objects and
the set of ground truth objects.

Definition 1.3.1. A matching between two discrete finite sets I and J is simply a
function β : I → J . We call it a strict matching if β is injective. If n = m, a strict
matching is actually a bijection, and we call it a bipartite matching. See illustration in
Fig. 1.2

With a slight abuse of notation, we may refer to a matching β by the corresponding
assignment matrix (β)i,j, defined as:

∀i, j ∈ I × J , βi,j =

{
1 if β(i) = j
0 otherwise
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I J

(A) A general matching

I J

(B) A strict matching

I J

(C) A bipartite matching

FIGURE 1.2: Illustration of various matching types

Under this notation, (β)i,j is thus a binary right-stochastic matrix. There are mn

possible matchings, and m!
(m−n)! strict matchings (assuming m ≥ n, otherwise no strict

matching exists). In practical applications, though, we are typically interested in a
very limited subset of all possible matchings, the one that we deem “interesting”,
assuming we have a cost function that allows to compare various assignment. It then
becomes an optimization problem, and the exact nature of the cost function will lead
to different strategies for finding an exact or approximate solution.

In Section 1.3.2, we consider the problem of finding bipartite matching under a
linear cost function. In Section 1.3.3, we consider quadratic cost functions, and review
how it is possible to impose extra constraints to the matching.

1.3.2 Linear sum assignment

In this section, we consider bipartite matchings, under a linear cost function. Con-
cretely, for each i ∈ I and j ∈ J , assigning i to j is associated with a cost ci,j, and we
seek to find the matching that maximizes the total cost. In other word, we wish to
solve the following integer linear program (ILP):

min ∑
i,j

βi,jci,j

s.t. ∀j ∈ J , ∑
i

βi,j = 1

∀i ∈ I , ∑
j

βi,j = 1

∀i, j ∈ I × J , βi,j ∈ {0, 1}

In this ILP, the constraints enforce that the assignment matrix is binary bi-stochastic.
For this program to be solvable, we require that ‖I‖ = ‖J ‖. In practice though,
it is possible to deal with situations where both sets do not have equal cardinality,
and in this case, we are looking for a strict matching instead of a bipartite one. The
most straightforward way of doing so is to create some dummy padding elements
as follows. W.l.o.g, we assume that n = ‖I‖ < ‖J ‖ = m. We then define I =
I ∪ {dn+1, · · · , dm} where dk are some dummy elements that take arbitrary values
(distinct from the values in I and J ). We then define the new cost function ci,j as
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follows:

ci,j =

{
ci,j if i ∈ I
C otherwise

where C is a very large real number (C >> max ci,j). This is equivalent to lifting one
of the sum constraints in the ILP, and amounts to finding a match for the elements of
the bigger set that can be best matched, and leaving the rest un-matched.

One of the earliest algorithm devised to find best assignment in this setting is the
Kuhn-Munkres algorithm (Kuhn, 1955), also known as the “Hungarian” algorithm,
which has a O(n4) complexity. The complexity was subsequently improved by
slightly tweaking the algorithm, leading to the Jonker-Volgenant algorithm (Jonker
and Volgenant, 1987), which brings the complexity down to O(n3), and is one of the
most popular algorithm used to date.

1.3.3 Constrained and quadratic cost matchings

In this section, we lift the requirements of the previous section and focus on general
assignments, which we characterize by the following ILP:

min C(β)

s.t. ∀i ∈ I , ∑
j

βi,j = 1

∀i, j ∈ I × J , βi,j ∈ {0, 1}

where C(β) is the cost function that we minimize.
We now review some special cases that appear in the rest of the manuscript, and

describe approaches to solve them.

Linear cost, no constraints If the cost function C is linear, as in Section 1.3.2, that is
C(β) = ∑i,j βi,jci,j, and in the absence of additional constraints, the solution to the ILP
is trivial to obtain: we can simply greedily assign each element of I to the element of
J that incurs the minimal cost.

Linear cost, capacity constraints With a linear cost function, a more interesting
scenario occurs when some constraints are added to the assignment. As a practical
example, we may consider a scenario where computational workloads are to be
assigned to servers in a computer cluster. Each workload i may require some amount
of resources ri, while each server j has a limited capacity cj. We impose that the sum
of the resources required by the workloads assigned to each server doesn’t exceed its
capacity.

Formally, that amounts to adding the following constraints to the ILP:

∀j ∈ J , ∑
i

riβi,j ≤ cj

Note that if ri = cj = 1 for all i, j, then we recover the bipartite matching case.
However, with arbitrary values for ri and cj, the problem becomes more complicated,
and the Hungarian algorithm and its variants do not apply anymore.

One way to approach this problem is to directly try to optimize the linear program.
In the special bipartite case (ri = cj = 1), the constraint matrix is totally unimodular,
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and in this case it is known that the solution of the ILP is the same as the solution
of the relaxed linear program, so one can simply solve the relaxed program using
efficient methods such as the simplex algorithm. In the general case, this nice property
may not hold, and it may be the case that the fractional solution is not integral. In
this case, the standard approach is to apply some rounding to retrieve an integral
solution to the matching. Many methods, such as randomized rounding (Raghavan
and Tompson, 1987) have been devised to tackle this, depending on the task at hand.

Quadratic cost If the cost function is quadratic, we obtain a quadratic assignment
problem (QAP), which is known to be amongst the hardest discrete optimization
problems:

min ∑
i,j

βi,jci,j + ∑
i,j,k,l

βi,jβk,ldi,j,k,l

s.t. ∀i ∈ I , ∑
j

βi,j = 1

∀i, j ∈ I × J , βi,j ∈ {0, 1}

It is also possible to add the constraints introduced in the previous paragraph.
Due to its importance in the operational research community, it has been widely

studied, and many solutions or heuristics have been proposed. The methods in-
clude exact branch and bound algorithms (Hahn and Grant, 1998), reduction to
ILPs (Adams and Johnson, 1994), and various blackbox optimization techniques like
tabu search (Battiti and Tecchiolli, 1994) or simulated annealing (Connolly, 1990).

In the context of this thesis, we are interested in small scale QAPs (mostly n
and m around 10, rarely 100), and speed is crucial since we are required to take a
decision within a few milliseconds. With this computational budget, most blackbox
optimization methods tends to be too high variance for our needs, since in this case
the final result will most likely depend on the quality of the initialization. To avoid
such variance, we seek a different class of methods. First, similarly to the linear
case, we consider the relaxed version of the program. We now have to optimize a
continuous function over a constrained, convex set. This cost function is not convex
in general, but nonetheless we apply convex optimization methods, knowing that we
may get stuck into a local minima. Given that our constraints are linear, an attractive
method is the Frank-Wolfe algorithm (Frank and Wolfe, 1956). Let us denote by D the
convex domain implied by the linear constraints. This algorithm works by repeating
the following steps until convergence:

1. We first find the current optimization direction. For that, we use the first order
Taylor expansion of our cost function C around the current point x, which is
Ĉ(y) = C(x) +∇C(x)(y− x). Minimizing this approximation with respect to
y is equivalent to finding s = arg miny∈D∇C(x)y. This sub-problem is exactly
a linear program, which we can solve efficiently using, for example, the simplex
method.

2. Then we need to determine a step-size γ. An easy way to do that is use a
decaying step-size at each iteration of the algorithm.

3. Finally, we update the current point by moving in the chosen direction for the
chosen step-size: x += γ(s− x)
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Several variants have been proposed to improve the convergence rate of the algo-
rithm. We use the Pairwise Frank-Wolf variant (Lacoste-Julien and Jaggi, 2015) which
considers a slightly different optimization direction based on the previous steps that
were taken.

Once this algorithm converges, we obtain a real-valued solution to the quadratic
program. Similarly as for the linear case, the last step is thus to apply some rounding
technique to retrieve a binary assignment.

With an appropriate convergence tolerance and an efficient simplex solver, this
method is finding a solution quickly enough to fit our computational requirements,
and on average it outperforms other blackbox approaches, given the same computa-
tional budget.
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Chapter 2

A Structured Prediction Approach
for Generalization in Cooperative
Multi-Agent Reinforcement
Learning

Abstract

Effective coordination is crucial to solve multi-agent collaborative (MAC) problems.
While centralized reinforcement learning methods can optimally solve small MAC
instances, they do not scale to large problems and they fail to generalize to scenarios
different from those seen during training. In this chapter, we consider MAC prob-
lems with some intrinsic notion of locality (e.g., geographic proximity) such that
interactions between agents and tasks are locally limited. By leveraging this property,
we introduce a novel structured prediction approach to assign agents to tasks. At
each step, the assignment is obtained by solving a centralized optimization problem
(the inference procedure) whose objective function is parameterized by a learned
scoring model. We propose different combinations of inference procedures and scor-
ing models able to represent coordination patterns of increasing complexity. The
resulting assignment policy can be efficiently learned on small problem instances and
readily reused in problems with more agents and tasks (i.e., zero-shot generalization).
We report experimental results on a toy search and rescue problem and on several
target selection scenarios in StarCraft: Brood War1, in which our model significantly
outperforms strong rule-based baselines on instances with 5 times more agents and
tasks than those seen during training.

2.1 Introduction

Multi-agent collaboration (MAC) problems often decompose into several intermediate
tasks that need to be completed to achieve a global goal. A common measure of size,
or difficulty, of MAC problems is the number of agents and tasks: more tasks usually
require longer-term planning, the joint action space grows exponentially with the
number of agents, and the joint state space is exponential in both the numbers of tasks
and agents. While general-purpose reinforcement learning (RL) methods Sutton and
Barto, 2018 are theoretically able to solve (centralized) MAC problems, their learning
(e.g., estimating the optimal action-value function) and computational (e.g., deriving
the greedy policy from an action-value function) complexity grows exponentially

1StarCraft and its expansion StarCraft: Brood War are trademarks of Blizzard Entertainment™.



20
Chapter 2. A Structured Prediction Approach for Generalization in Cooperative

Multi-Agent Reinforcement Learning

with the dimension of the problem. A way to address this limitation is to learn
in problems with few agents and a small planning horizon and then generalize the
solution to more complex instances. Unfortunately, standard RL methods are not
able to perform any meaningful generalization to scenarios different from those seen
during training. In this chapter we study problems whose structure can be exploited
to learn policies in small instances that can be efficiently generalized across scenarios
of different size.

Well-known MAC problems that are solved by a suitable sequence of agent-task
assignments include search and rescue, predator-prey problems, fleet coordination,
or managing units in video games. In all these problems, the dynamics describing the
interaction of the “objects” in the environment (i.e., agents and tasks) is regulated by
constraints that may greatly simplify the problem. A typical example is local proximity,
where objects’ actions may only affect nearby objects (e.g., in the predator-prey, the
prey’s movements only depend on nearby agents). Similarly, constraints may be
related to assignment proximity, as agents may only interact with agents assigned to
the same task.

The structure of problems with constrained interaction has been exploited to sim-
plify the learning of value functions (e.g., Proper and Tadepalli, 2009) or dynamics
of the environment (e.g., Guestrin, Koller, et al., 2003). These approaches effectively
generalize from easier to more difficult instances: we may train on small environ-
ments where the sample complexity is practical and generalize to large problems
without ever training on them (zero-shot generalization). The main drawback is that
when generalizing value functions or the dynamics, the optimal (or greedy) policy
still needs to be recomputed at each new instance, which usually requires solving an
optimization problem with complexity exponential in the number of objectives (e.g.,
maximizing the action-value function over the joint action space).

In this chapter, we build on the observation that in MAC problems with con-
strained interaction, optimal policies (or good approximations) can be effectively
represented as a combination of coordination patterns that can be expressed as re-
active rules, such as creating subgroups of agents to solve a single task, avoiding
redundancy, or combinations of both. We decompose agents’ policies into a high-
level agent-task assignment policy and a low-level policy that prescribes the actual
actions agents should take to solve the assigned task. As the most critical aspect of
MAC problems is the coordination between agents, we assume low-level policies
are provided in advance and we focus on learning effective high-level policies. To
leverage the structure of the assignment policy, we propose a structured prediction
approach, where agents are assigned to tasks as a result of an optimization problem.
In particular, we distinguish between the coordination inference procedure (i.e., the
optimization problem itself) and scoring models (the objective function) that provide
a score to agent-task and task-task pairs. In its more complex instance, we define a
quadratic inference procedure with linear constraints, where the objective function
uses learned pairwise scores between agents and tasks for the linear part of the
objective, and between different tasks for the quadratic part. With this structure
we address the intrinsic exponential complexity of learning in large MAC problems
through zero-shot generalization: 1) the parameters of the scoring model can be learned
in small instances, thus keeping the learning complexity low, 2) the coordination
inference procedure can be generalized to an arbitrary number of agents and tasks,
as its computational complexity is polynomial in the number of agents and tasks. We
study the effectiveness of this approach on a search and rescue problem and differ-
ent battle scenarios in “StarCraft: Brood War”. We show that the linear part of the
optimization problem (i.e., using agent-task scores) represents simple coordination
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patters such as assigning agents to their closest tasks, while the quadratic part (i.e.,
using task-task scores) may capture longer-term coordination such as spreading the
different agents to tasks that are far away to each other or, on the contrary, create
groups of agents that focus on a single task.

2.2 Related Work

Multi-agent reinforcement learning has been extensively studied, mostly in problems
of decentralized control and limited communication (see Busoniu, Babuska, and
De Schutter (2008) for a survey). By contrast, this chapter focuses on centralized control
under full state observation.

Our work is closely related to generalization in relational Markov Decision Pro-
cesses (Guestrin, Koller, et al., 2003) and decomposition approaches in loosely and
weakly coupled MDPs (S. P. Singh and Cohn, 1998; Meuleau et al., 1998; Guestrin,
Lagoudakis, and Parr, 2002; Tesauro, 2005; Proper and Tadepalli, 2009). The work
on relational MDPs and the related object-oriented MDPs and first-order MDPs
(Guestrin, Koller, et al., 2003; Diuk, Cohen, and Littman, 2008; Sanner and Boutilier,
2012) focus on learning and planning in environments where the state/action space
is compactly described in terms of objects (e.g., agents) that interact with each other,
without prior knowledge of the actual number of objects involved. Most of the work
in this direction is devoted to either efficiently estimating the environment dynamics,
or approximate the planning in new problem instances. Whereas the type of environ-
ments and problems we aim at are similar, we focus here on model-free learning of
policies that generalize to new (and larger) problem instances without replanning.

Loosely or weakly coupled MDPs are another form of structured MDPs, which
decompose into smaller MDPs with nearly independent dynamics. These works
mostly follow a decomposition approach in which global action-value functions are
broken down into independent parts that are either learned individually, or serve
as guide for an effective parameterization for function approximation. The policy
parameterization we develop follows the task decomposition approach of Proper
and Tadepalli (2009), but the policy structures we propose are different. Proper and
Tadepalli (2009) develop policies based on pairwise interaction terms between tasks
and agents similar to our quadratic model, but the pairwise terms are based on
interactions dictated by the dynamics of the environment (e.g., agent actions that
directly impact the effect of other actions) aiming at a better estimation of the value
function of low-level actions of the agents once an assignment is fixed, whereas our
quadratic term aims at assessing the long-term value of an assignment.

Many deep reinforcement learning algorithms have been recently proposed to
solve MAC problems with a variable number of agents, using different variations
of communication and attention over graphs (Sukhbaatar, Szlam, and Fergus, 2016;
Foerster, Assael, et al., 2016; Zambaldi et al., 2019; Yang et al., 2018; Jiang, Amo,
and Lu, 2018; Jiang and Lu, 2018; Lowe et al., 2017; A. Singh, Jain, and Sukhbaatar,
2019). However, most of these algorithms focus on fixed-size action spaces, and little
evidence has been given that these approaches generalize to larger problem instances
(Usunier et al., 2016; Foerster, Farquhar, et al., 2018; Zambaldi et al., 2019). Rashid et
al. (2018) and K. Lin et al. (2018) address the problem of learning (deep) decentralized
policies with a centralized critic during learning in structured environments. While
they do not address the problem of generalization, nor the problem of learning a
centralized controller, we use their idea of a separate critic computed based on the
full state information during training.
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2.3 Multi-agent Task Assignment

We formalize a general MAC problem. To keep notation simple, we present a fixed-
size description, but the end goal is to design policies that can be applied to environ-
ments of arbitrary size.

As customary in reinforcement learning, the objective of solving the tasks is
encoded through a reward function that needs to be maximized over the long run by
the coordinated actions of all agents. An environment with m tasks and n agents is
modeled as an MDP 〈Sm,X n,An, r, p〉, where S is the set of possible states of each
task (indexed by j = 1, . . . , m), X and A are the the set of states and actions of each
agent (indexed by i = 1, . . . , n). We denote the joint states/actions by s ∈ Sm, x ∈ X n,
and a ∈ An. The reward function is defined as r : Sm × X n × An → R and the
stochastic dynamics is p : Sm ×X n ×An → ∆(Sm ×X m), where ∆ is the probability
simplex over the (next) joint state set. A joint deterministic policy is defined as a
mapping π : Sm ×X n → An. We consider the episodic discounted setting where the
action-value function is defined as Qπ(s, x, a) = Eπ

[
r(s, x, a) + ∑T

t=1 γtr(st, xt, at)
]
,

where γ ∈ [0, 1), at = π(st, xt) for all t ≥ 1, st and xt are sampled from p, and T is
the time by when all tasks have been solved. The goal is to learn a policy π close to
the optimal π∗ = arg maxπ Qπ that we can easily generalize to larger environments.

Task decomposition. Following a similar task decomposition approach
as (Tesauro, 2005) and (Proper and Tadepalli, 2009), we consider hierarchical policies
that first assign each agent to a task, and where actions are given by a lower-level
policy that only depends on the state of individual agents and the task they are
assigned to. Denoting by B = {β ∈ {0, 1}n×m : ∑m

j=1 βij = 1} the set of assignment
matrices of agents to tasks, an assignment policy first chooses β̂(s, x) ∈ B. In the
second step, the action for each agent is chosen according to a lower-level policy π̃.
Using πi(s, x) to denote the action of agent i and β̂i(s, x) ∈ {1, ..., m} for the task
assigned to agent i, we have πi(s, x) = π̃(sβ̂i(s,x), xi), where sj and xi are respectively
the internal states of task j and agent i in the full state (s, x). In the following, we
focus on learning high-level assignment policies responsible for the collaborative
behavior, while we assume that the lower-level policy π̃ is known and fixed.

2.4 A Structured Prediction Approach

In this section we introduce a novel method for centralized coordination. We propose
a structured prediction approach in which the agent-task assignment is chosen by
solving an optimization problem. Our method is composed of two components: a
coordination inference procedure, which defines the shape of the optimization prob-
lem and thus the type of coordination between agents and tasks, and a scoring model,
which receives as input the state of agents and tasks and returns the parameters of
the objective function of the optimization. The combination of these two components
defines an agent-task assignment policy β̂ that is then passed to the low-level policy
π̃ (that we assume fixed) which returns the actual actions executed by the agents.
Finally, we use a learning algorithm to learn the parameters of the scoring model
itself in order to maximize the performance of β̂. The overall scheme of this method
is illustrated in Fig. 2.1.
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FIGURE 2.1: Illustration of the approach, where the agent-task assign-
ment is computed by a coordination inference procedure (CIP) which
receives as input agent-task (h) and task-task (g) scores computed by a
scoring model parametrized by θ. The assignment β̂ is then passed to
fixed low level policies that return the actions played by each agent.
The learning algorithm tunes θ and performs “meta-actions” hθ and gθ

on to the “meta-environment” composed by the inference procedure,
the low-level policies, and the actual environment.

2.4.1 Coordination Inference Procedures

The collaborative behaviors that we can represent are tied to the specific form of the
objective function and its constraints. The formulations we propose are motivated
by collaboration patterns important for long-term performance, such as creating
subgroups of agents, or spreading agents across tasks.

Greedy assignment. The simplest form of assignment is to give a score to each
agent-task pair and then assign each agent to the task with the highest score, ignoring
other agents at inference time. In this approach, that we refer to as AMAX strategy, a
model hθ(x, s, i, j) ∈ R parameterized by θ receives as input the full state and returns
the score of agent i for task j. The associated policy is then

β̂AMAX (s, x, θ) = arg max
β∈B

∑
i,j

βi,jhθ(s, x, i, j), (2.1)

which corresponds to assigning each agent i to the task j with largest score hθ(x, s, i, j).
As a result, the complexity of coordination is reduced from O(mn) (i.e., considering
all possible agent-to-task assignments) down to a linear complexity O(nm) (once the
function hθ has been evaluated on the full state). We also notice that AMAX bears
strong resemblance to the strategy used in (Proper and Tadepalli, 2009), where the
scores are replaced by approximate value functions computed for any agent-task
pair.2

Linear Program assignment. Since AMAX ignores interactions between agents,
it tends to perform poorly in scenarios where a task has a high score for all agents (i.e.,
h(s, x, i, j) is large for a given j and for all i). In this situation, all agents are assigned
to the same task, implicitly assuming that the “value” of solving a task is additive
in the number of agents assigned to it (i.e., if n agents are assigned to the same task
then we could collect a reward n times larger). While this may be the case when the
number of agents assigned to the same task is small, in many practical scenarios this
effect tends to saturate as more agents are assigned to a single task. A simple way to
overcome this undesirable behavior is to impose a restriction on the number of agents
assigned to a task. We can formalize this intuition by introducing µ(i,j)(s, x) as the
contribution of an agent i to a given task j, and uj(s, x) as the capacity of the task j. In
the simplest case, we may know the maximum number of agents nj that is necessary

2An alternative approach is to sample assignments proportionally to hθ(s, x, i, j). Preliminary empiri-
cal tests of this procedure performed worse than AMAX and thus we do not report its results.
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to solve each task j, and we can set the capacity of each task to be nj, and all the
contributions µi,j to be 1. Depending on the problem, the capacities and contributions
are either prior knowledge or learned as a function of the state. Formally, denoting
by B(s, x) the constrained assignment space

B(s, x) =
{

β ∈ {0, 1}n×m
∣∣∣ ∀i,

m

∑
j=1

βi,j ≤ 1; ∀j,
n

∑
i=1

µi,j(s, x)βi,j ≤ uj(s, x)
}

, (2.2)

the resulting policy infers the assignment by solving an integer linear program

β̂LP (s, x, θ) = arg max
β∈B(s,x)

∑
i,j

βi,jhθ(s, x, i, j), (2.3)

Notice that even with the additional constraints in (2.2), some agents may not be
assigned to any task, hence inequality ∑m

j=1 βi,j ≤ 1 instead of strict equality.
In order to optimize (2.3) efficiently, we trade off accuracy for speed by solving

its linear relaxation using an efficient LP library (The Glop Linear Solver n.d.), and
retrieving a valid assignment using greedy rounding: Let us denote as β∗i,j the solution
of the relaxed ILP; we iterate over agents i in descending order of maxj β∗i,j, and assign
each agent to the task of maximum score that is not already saturated.

Quadratic Program assignment. The linear program above avoids straightfor-
ward drawbacks of a greedy assignment policy, but is unable to represent grouping
patterns that are important on the long-run in coordination and collaboration prob-
lems. For instance, it may be convenient to “spread” agents among unrelated tasks,
or, on the contrary, group agents together on a single task (up to the constraints) and
then move to other tasks in a sequential fashion. Such grouping patterns can be well
represented with a quadratic objective function of the form

β̂QUAD(s, x, θ) = arg max
β∈B(s,x)

[
∑
i,j

βi,jhθ(s, x, i, j) + ∑
i,j,k,l

βi,jβk,l gθ(s, x, j, l)
]
, (2.4)

where gθ(x, s, j, l) plays the role of a (signed) distance between two tasks and B is the
same set of constraints as in (2.2). In the extreme case where gθ(x, s, ., .) is a diagonal
matrix, the quadratic part of the objective favors agents to carry on the same task
(if the diagonal terms are positive) or on the contrary carry on different tasks (if the
terms are negative). In general, negative gθ(x, s, j, l) disfavors agents to be assigned
to j and l at the same time step depending on |gθ(x, s, j, l)|. For instance, in the search
and rescue problem, this captures the idea that agents should spread to explore the
map.

As for the LP , we optimize a continuous relaxation of (2.4) using the same
rounding procedure. The objective function may not be concave, because there is no
reason for gθ(x, s, ., .) to be negative semi-definite. In practice, we use the Frank-Wolfe
algorithm (Frank and Wolfe, 1956) to deal with the linear constraints; the algorithm is
guaranteed to converge to a local maximum and was efficient in our experiments.

2.4.2 Scoring Models

In order to allow generalizing the coordination policy β̂ to instances of different
size, the hθ and gθ functions should be able to compute scores for pairs agents/tasks
and tasks/tasks, independently of the actual amount of those. In order to make the
presentation concrete, in the following we illustrate different scoring models in the
case where the agents and tasks are objects located in a fixed-size 2D grid, and are
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Assignment

FIGURE 2.2: The PEM model for 3 agents and 2 tasks, arrows of
interactions are only drawn for 2 agents each with one task, and one
interaction of the two tasks. Agents are in cold (blue/green) colors,

tasks are in warm (red/orange) colors.

characterized by an internal state. The position on the grid is part of this internal
state.3

Direct Model (DM)

The first option is to use a fully decomposable approach (direct model), where the
score for the pair (i, j) only depends on the internal states of agent i and task j:
hθ(s, x, i, j) = h̃θ(sj, xi) for some function h̃ : S × X → R. This model only uses the
features of the pair of objects to compute the score. Precisely, h̃θ(sj, xi) is obtained
by concatenating the feature vectors of agent i and task j, and by feeding them to a
fully-connected network of moderate depth. In the quadratic program strategy, the
function gθ follows the same structure as h (but uses different weights).

While this approach is computationally efficient, if used in the simple AMAX

procedure (2.1), it leads to a policy that ignores interactions between agents altogether
and is thus unable to represent effective collaboration patterns. As a result, the direct
model should be paired with more sophisticated inference procedures to achieve
more complex coordination patterns. On the other hand, as it computes scores by
ignoring surrounding agents and tasks, once learned on small instances, it can be
directly applied (i.e., zero-shot generalization) to larger instances independently of
the number of agents and tasks.

General Model

An alternative approach is to take hθ as a highly expressive function of the full state.
The main challenge is this case is to define an architecture that can output scores for a
variable number of agents and tasks. In the case where agents/tasks are in a 2D grid,
we can define a positional embedding model (PEM) (see illustration in Fig.2.2) that
computes scores following ideas similar to non-local networks (Xiaolong Wang et al.,
2018). We use a deep convolutional neural network that outputs k features planes
at the same resolution as the input. This implies that each cell is associated with k
values that we treat as an embedding of the position. We divide this embedding in
two sub-embeddings of size k/2, to account for the two kinds of entities: the first
k/2 values represent an embedding of an agent, and the remaining ones represent
an embedding of a task. To compute the score between two entities, we concatenate
the embeddings of both entities and the input features of both of them, and run that

3Notice that the direct model illustrated below does not leverage this specific scenario, which, on the
other hand, is needed to define the general model.
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through a fully connected model, using the same topology as described for the direct
model.

By leveraging the full state, this model can capture non-local interactions between
agents and tasks (unlike the direct model) depending on the receptive field of the
convolutional network. Larger receptive fields allow the model to learn more sophis-
ticated scoring functions and thus better policies. Furthermore, it can be applied to
variable number of agents and tasks as a position contains at most one agent and one
task. Nonetheless, as it depends on the full state, the application to larger instances
means that the model may be tested on data points outside the support of the training
distribution. As a result, the scores computed on larger instances may be not accurate,
thus leading to policies that can have trouble generalizing to more complex instances.

2.4.3 Learning Algorithm

As illustrated in Fig. 2.1, the learning algorithm optimizes a policy parametrized by θ
that returns as actions the scores hθ and gθ , while the combination of the assignment
β̂ returned by the optimization, the low-level policy π̃ and the environment, plays
the role of a “meta-environment”. While any policy gradient algorithm could be
used to optimize θ, in the experiments we use a synchronous Advantage-Actor-Critic
algorithm (Mnih et al., 2016), which requires computing a state-value function. As
advocated by Rashid et al. (2018) in the context of learning decentralized policies,
we use a global value function that takes the whole state as input. We use a CNN
similar to the one of PEM, followed by a spatial pooling and a linear layer to output
the value. This value function is used only during training, hence its parametrization
does not impact the potential generalization of the policy. The pseudo-code of the
learning algorithm is presented in Algorithm 1 for the worker threads and Algorithm
2 for the learning threads.

Correlated exploration. Reinforcement learning requires some form of explo-
ration scheme. Many algorithms using decompositional approaches for MAC prob-
lems (Guestrin, Lagoudakis, and Parr, 2002; Tesauro, 2005; Proper and Tadepalli, 2009;
Rashid et al., 2018) rely on variants of Q-learning or SARSA and directly randomize
the low-level actions taken by the agents. However, this approach is not applicable to
our framework. In our case, the randomization is applied to the scores (denoted as
Hθ(s, x, i, j) and Gθ(s, x, j, l)) before passing them to the inference procedure. We can’t
use a simple gaussian noise, since at the beginning of the training, when the scoring
model is random, it would cause the agents to be assigned to different tasks at each
step, thus preventing them from solving any task and getting any positive reward.
To alleviate this problem, we correlate temporally the consecutive realizations of Hθ

and Gθ using auto-correlated noise as studied in (e.g., Wawrzynski, 2015), so that the
actual sequence of assignments executed by the agent is also correlated. To correlate
the parameters over p steps, at time t, we sample Ht,θ(i, j) according to (dropping de-
pendence on (st, xt) for clarity): N

(
ht,θ(i, j) + ∑t−1

t′=t−p(Ht′,θ(i, j)− ht′,θ(i, j)), σ
p

)
. This

is equivalent to correlating the sampling noise over a sliding window of size p. Dur-
ing the update of the model, we ignore the correlation, and assume that the actions
were sampled according to N (ht,θ(i, j), σ).

2.5 Experiments

We report results in two different problems: search and rescue and target selection
in StarCraft. Both experiments are designed to test the generalization performance
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Algorithm 1 Structured Prediction RL algorithm - Worker thread

// p is the number of correlated steps, σ the exploration standard deviation
// We denote by Queuep a queue of fixed size p. We assume we can sum all the elements in
it.
T ← 0
repeat

Start new a episode, t← 0
for all agent i and task j do

Init noise history for the linear part to 0: noise_hist_lin(i, j) = Queuep(0)
end for
for all pair of task j, k do

Init noise history for the quadratic part to 0: noise_hist_quad(j, k) = Queuep(0)
end for
repeat

Observe state st
for all agent i and task j do

Compute hθ(i, j, st) using the network
Sample the actual action Hi,j(st) ∼ N

(
hθ(i, j, st) + ∑ noise_hist_lin(i, j), σ

p

)
Store the current noise noise_hist_lin(i, j).append(Hi,j(st)− hθ(i, j, st))
Compute µi,j(st) the contribution of the agent to the task
Compute uj(st) the capacity of the task

end for
for all pair of task j, k do

Compute gθ(j, k, st) using the network
Sample the actual action Gj,k(st) ∼ N

(
gθ(j, k, st) + ∑ noise_hist_quad(j, k), σ

p

)
Store the current noise noise_hist_quad(j, k).append(Gj,k(st)− gθ(j, k, st))

end for
Compute the assignment using the constrained optimizer β ←
solve(H, G, µ, u)
Execute the assignment in the environment, observe reward rt
The policy is π(st) = [hθ(st), gθ(st)], and the action a(st) = [H, G]
Send to the learner thread (π(st), a(st), st, rt)
t← t + 1
T ← T + 1

until Episode ends
until T > Tmax

of our method: we learn the scoring models on small instances and the learned
policy is tested on larger instances with no additional re-training. We test different
combinations of coordination inference procedures and scoring models. Among the
inference procedures, AMAX should be considered as a basic baseline, while we
expect LP to express some interesting coordination patterns. The QUAD is expected
to achieve the better performance in the training instance, although its more complex
coordination patterns may not effectively generalize well to larger instances. Among
the scoring models, PEM should be able to capture dependencies between agents and
tasks in a single instance but may fail to generalize when tested on instances with a
number of agents and tasks not seen at training time. On the other hand, the simpler
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Algorithm 2 Structured Prediction RL algorithm - Learner thread

// p is the number of correlated steps, N is the return length we use, σ the exploration
standard deviation
γ is the discount factor, λ is the policy weight
repeat

Reset gradients dθ ← 0
Receive N consecutive samples from a worker thread
[(π1, a1, s1, r1), . . . , (πN , aN , sN , rN)]

R =

{
0 if sN is terminal
V(sN , θ) otherwise

for t = N − 1 to 1 do

R =

{
rt if st is terminal
rt + γR otherwise

Accumulate value loss dθ ← dθ +∇θ (|R−V(st, θ)|)
Compute advantage At ← R−V(st)
Compute new policy πnew,t(st, θ) using the network
Compute likelihood of action according to old policy (assuming at ∼ N (πt, σ))
lold ← NormalPDF(at, πt, σ)
Compute likelihood according to new policy (assuming at ∼ N (πnew,t, σ))
lnew ← NormalPDF(at, πnew,t, σ)
Compute importance ratio ir ← lnew

lold

Accumulate policy loss dθ ← dθ + λ∇θ(ir ∗ A ∗ log(lnew))
end for
Take an optimization step according to dθ.

until training ends

DM should generalize better if paired with a good coordination inference procedure.
The PEM + AMAX combination roughly corresponds to independent A2C learn-

ing and can be seen as the standard approach baseline, and we also provide strong
hand-crafted baselines. Most previous approaches didn’t aim achieving effective gen-
eralization, and often relied on fixed-size action spaces, rendering direct comparison
impractical.

2.5.1 Search and Rescue

Setting. We consider a search and rescue problem on a grid environment of 16 by
16 cells. Each instance is characterized by a set of n ambulances (i.e., agents) and
m victims (i.e., tasks). The goal is that all the victims are picked up by one of the
ambulances as quickly as possible. This problem can be seen as a Multi-vehicle
Routing Problem, which makes it NP-hard. Each ambulance can move in any of the 8
adjacent cells at each step, and is assumed to be able to pick-up an infinite number of
victims. At the beginning of each episode, m victims and n ambulances are spawned
uniformly at random on the grid. An ambulance picks up a victim as soon as it
reaches its cell, regardless of whether this ambulance was effectively assigned to that
victim or if it visited the cell contingently. When it happens, the state of the victim
changes to reflect the fact that that task is solved, yet nothing prevents the model
from continuing to assign ambulances to it.

The reward is −0.01 per time-step until the end of an episode (when all the
victims have been picked up). The learning task is challenging because the reward is
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TABLE 2.1: Search and Rescue. Average number of steps to solve the
validation episodes, depending on the train scenario. ∆ denotes the
improvement over baseline. Best results are in bold, with an asterisk
when they are statistically (p < 0.0001) better than the second best.
Results like "10.3(1.1%)" mean that the evaluation failed in 1.1% of
the test scenarios, and had an average score of 10.3 on the remaining
98.9%. In case of evaluation failures, the reported improvement over

baseline are indicative (reported in italics between parenthesis).

Train (n×m) Test Baseline Topline AMAX-PEM LP-PEM QUAD-PEM AMAX-DM LP-DM QUAD-DM

lower 2× 4 2× 4 14.34 10.28 11.98 12.09 11.44 13.78 11.98 11.55
is 5× 10 13.61 7.19 13.36 10.69 9.67 12.49 10.24 9.32*

better 8× 15 11.8 n.a 15.8(0.7%) 9.86 10.3(1.1%) 11.06 9.71 7.85*

lower 5× 10 2× 4 14.34 10.28 12.05 12.94 13.23(1%) 13.84 12.22 11.78*
is 5× 10 13.61 7.19 9.84 10.24 10.43 12.26 10.12 9.36*

better 8× 15 11.8 n.a 8.60 9.37 9.51 10.57 8.63 7.95*

higher In domain ∆ 22% 20% 21% 7% 21% 25%
is Out of domain ∆ (22%) 17% (18%) 7% 21% 29%

better Total ∆ 0% 38% (18%) 18% (19%) 7% 21% 28%

uninformative and coupled; it is difficult for an agent to assign credit to the resolution
of an individual task (i.e., picking up a victim). The assignment policy β̂ matches
ambulances to victims, while the low-level policy π̃ takes an action to reduce the
distance between the ambulance and its assigned victim. The victims are static, their
initial position is chosen randomly. In this environment, only one ambulance is
needed to pick-up a particular victim, hence the saturation uj(s, x) is set to 1.

Baseline and topline.

To evaluate the performance of the agents, we design a baseline and a topline, to get
a ballpark estimate of the performances that are to be expected in the scenarios.

Baseline The baseline is a simple deterministic greedy policy that assigns each
ambulance to the closest victim, regardless of what the others are doing. Given the
movement patterns of the ambulances, the distance function to be considered between
two points p1 = (x1, y1) and p2 = (x2, y2) is d(p1, p2) = max(|x1 − x2|, |y1 − y2|).
This corresponds to the number of steps needed for an ambulance starting in p1 to
reach p2.

Topline For the small instances of the problem, it is possible to use an exact al-
gorithm (topline) that solves the Multi-Vehicle Routing Problem exactly. To do it
efficiently, we first pre-compute for each subset of victims (there are 2m possible
subsets), the shortest path to visit them all, starting from each of the victims of the
subset (that is, if a subset contains 5 victims, we compute the 5 shortest paths that go
through all of them starting from each of the victims). This pre-computation phase
is done using a dynamic programming algorithm that has a complexity of O(2mm3).
This allows us to compute, for a given ambulance, what is the optimal way of visiting
a given subset of the victims: we simply need to choose which victim to visit first
and then execute the optimal path that we have cached between the remaining ones.
What remains to be done is to partition the victims in n sets, and assign those sets
to the n ambulances, so that the maximal time required by the ambulances to visit
their subset optimally is minimized. To solve this partition/assignment problem



30
Chapter 2. A Structured Prediction Approach for Generalization in Cooperative

Multi-Agent Reinforcement Learning

efficiently, we model it as an Integer Linear Program, and solve it exactly using an
efficient branch-and-cut solver (SCIP (Gleixner et al., 2017))

Model

We now delve into the details of the models used. We recall that the method requires
two networks: one for computing the value function, and one for the policy (i.e. the
pairwise scores), which can be either a direct model or a PEM (see 2.4.2)

Features For all the models, the input of consists in 4 feature planes: the first one
contains a 1 if the corresponding cell contains a victim (0 otherwise), the second
contains a 1 if the corresponding cell contains an ambulance, and the last two planes
contain respectively the x/y coordinates of the entity (victim or ambulance) contained
in that cell, if there is any.

Network architectures The value network is a residual network (He, X. Zhang, et
al., 2016) made of 3 residual blocks of 2 convolutional layers, with kernel size 3, stride
1, and padding such that the output of each layer has the same spatial dimension
as the input. Each convolutional layer outputs 32 feature planes, and we use ReLUs
as non-linearities, as well as BatchNorm layers for regularization. The output of the
last block is fed to a fully connected layer, which outputs one single value, the value
function. For the direct model, we use a simple fully connected network, with 3 linear
layers separated by ReLUs, with 32 hidden units each. The architecture of the PEM
network is the same as the value network.

Training

We train the model using a synchronous Advantage-Actor-Critic algorithm (A2C)
(see Mnih et al., 2016 for the asynchronous version), using the ELF platform (Y. Tian
et al., 2017). We batch 128 observations together, and run 256 agents in parallel.

We optimize the hyper-parameters of the learning procedure using a ran-
dom search. We sample 128 sets of hyper-parameters for each combination of
model/scenario, and we train the models during 8 hours on a Nvidia Volta. We
report the performance of the best performing model after training according to
the average reward on training problems. The parameters that were tuned are the
following: learning rate of the value network (we sample c ∈ [0, 5], uniformly at
random, and use 10−c), the learning rate of the policy network (same sampling), the
variance of the random policy (uniformly in [0.1, 2]), the number of correlated steps
in the exploration (uniformly in [1, 10]), the number of steps of the n-step return
(uniformly in [2, 5]), and the optimization algorithm (SGD or Adam Kingma and Ba,
2015).

Experiments

We trained our models on two instances (n = 2, m = 4 and n = 5, m = 10) and
we test them on the training scenarios, as well as in out of domain instances with a
larger number of victims and ambulances. At test time, we evaluate the policies on
a fixed set of 1000 random episodes (with different starting positions). The agents
use the same variance and number of correlated steps as they had during training.
The results are summarized in Tab. 2.1, where we report the average number of steps
required to complete the episodes. Because of its computational cost, the topline for
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(A) (B)

FIGURE 2.3: (left) Learning curves of the Quad models; (right) The
distance from the red dot computed by the model (depicted as the
density), is skewed towards the corner, compared to the ground-truth

distance (depicted as the contours)

the biggest instance (8× 15) is not available. Numbers in bold denote the best model,
numbers with an asterisk indicate that the model statistically outperforms the second
best one, according to the Wilcoxon test (Wilcoxon, 1945), with a p-value of less than
0.0001. Numbers in italics indicate models for which the evaluation got stuck in an
endless loop in some of the scenarios. The failure rate is indicated between brackets,
and we report, for information, the performance without taking the failures into
account. In the last rows of the table, we aggregate the average improvements over
the baseline (100 ∗ baseline−method

baseline ). The in-domain scores correspond to the scores
obtained when the test instance matches the train instance. Conversely, the out of
domain scores correspond to the performances on unseen instances. Note that no
model was trained on 8× 15.

Results. We first notice that the PEM scoring model tends to overfit to the train
scenario, leading to poor generalization (i.e., in some configuration it fails to complete
the problem). On the other hand, for the DM, the generalization is very stable.
Regarding the inference procedures 4, AMAX tends to perform at least as well as the
greedy baseline, by learning how to compute the relevant distance function between
an ambulance and a victim. The LP strategy can rely on the same distance function
and perform better, since it enforces the coordination between agents and avoids
sending more than one ambulance to the same victim. Finally, the QUAD strategy
is able to learn long-term strategies, and in particular how to spread efficiently the
ambulances across the map (e.g., if two victims are very close, it is wasteful to assign
two distinct ambulances to them, since one can efficiently pick-up both victims
sequentially, while the other ambulance can be assigned to further victims).

A notable fact is that the AMAX DM agent performs on average 7% better than the
baseline. This is unexpected since the only features it has access to are the positions
of the ambulance and the victim, thus it would be expected to learn to send each
ambulance to the closest victim. We credit this development to the ability of the model
to learn to break ties between equally close victims, which it does by choosing the
victims that are on the furthest peripheral positions of the map. Since these positions
tend to be the outliers, they are on average more difficult to access than the ones in the
middle, so it is beneficial to favor them. The baseline breaks ties randomly and thus
does not account for that. This can be observed in Fig 2.3b in which we plotted the
similarity function learned by the model, by computing the score the model would

4We study their performance when paired with DM.
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give when the agent is located at the red dot and the task is located anywhere else.
While the function it generates resembles the ground-truth distance, the distribution
is slightly skewed towards the bottom-left corner.

Overall, the constrained strategies (LP and QUAD ) perform better than the AMAX

strategy, and the the QUAD strategy is better than the LP strategy, irrespective of
the feature model used. This is an evidence that the structure introduced into the
inference procedure is indeed able to improve the performance of the agent. These
strategies also leverage the structure of the problem through the constraints on the
assignment, which means that there is less room for learning something that cannot
be computed directly from the pairwise positions using the additional information
provided by the access to the full view. Since the extra information does not directly
help, it slows down the learning procedure, and hinders the final performance. This
can be seen in Fig 2.3a, where the PEM agent is slower to converge, and converges to
a worse performance than the DM agent, when both use the QUAD strategy.

2.5.2 Target Selection in StarCraft

StarCraft is a real-game strategy game, in which the player must build an army and
control individual units to destroy her opponent’s. In this paper, we do not consider
full games of StarCraft, but rather focus on a specific sub-problem in StarCraft: battles
between two groups of units. This setting, often referred to as micromanagement,
has already been studied in the literature, using a mixture of scripted behaviours
and search (Churchill, Saffidine, and Buro, 2012; Churchill and Buro, 2013; Ontanón
et al., 2013; Churchill, Z. Lin, and Synnaeve, 2017), or using RL techniques (Usunier
et al., 2016; Foerster, Farquhar, et al., 2018). In these battles, a crucial aspect of the
policy is to assign a target enemy unit (the task) to each of our units (the agents), in a
coordinated way. Since we focus on the agent-task assignment (the high-level policy
β̂), we use a simple low-level policy for the agents (neither learnt nor scripted) relying
on the built-in “attack” command of the game, which moves each unit towards its
target, possibly avoiding obstacles or other units on the way, and shoots as soon as
the target is in range. This contrasts with previous works, which usually allow more
complex movement patterns (e.g., retreating while the weapon is reloading). While
such low-level policies could be integrated in our framework, we preferred to use the
simplest “attack” policy to better assess the impact of the high-level coordination.

In this problem, the capacity uj(s, x) of a task j is defined as the remaining health
of the enemy unit, and the contribution µi,j(s, x) of an agent i to this task is defined as
the amount of damage dealt by unit i to the enemy j. These constraints are meant
to avoid dealing more damage to an enemy than necessary to kill it, a phenomenon
known as over-killing.

Experimental setup

All the experiments are played on a fully empty map, where the units are centered in
the middle, outside their respective fire range. We disable the Fog-of-War, meaning
that all units have full vision of the whole map. Because of the kind of movement
policy we use, the units never go near the edge of the map, hence there is no collision
involved but the collisions between units themselves. The bot takes its actions every
3 frames, but we reevaluate the target assignment only every 6 frames. If the target of
a unit dies in the meantime, then it does nothing until the next re-assignment. The
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reward at time t is defined as

rt = (ourHealtht − ourHealtht−1 + theirHealtht−1 − theirHealtht)/ourHealth0.

At the beginning of every battle, the units are spawned according to a seeded
normal distribution, which is skewed towards the Y dimension, in order to form
more coherent initial spread of the units. Even though the starting positions are
deterministic with respect to the seed, the outcome of a battle is not, even if the policy
of the players are totally deterministic. This is due to the internal randomness of the
game engine, which affects things like the random miss probability of each attack
(any attack has a 1

256 probability of failing) and the initial orientation of the units.
The opponent army is controlled by the built-in AI. In practice, it means that

we give an "attack-move" order to the opponent, with the target position being the
centroid of our units. This order is repeated every 60 frames with an updated centroid.
The attack-move order causes the built-in AI to take over the unit, globally moving it
towards the target position and attacking any visible unit along the way.

We wish to emphasize the fact that all the details of the experimental protocol have
a significant impact on the outcome of the battles. In particular, the frequency at which
the opponent’s attack-move command is re-issued matters: if the frequency is too
high, then the units tend to attack less, because spamming orders have some counter-
intuitive effects on the game engine. Conversely, if the frequency is too low, then the
attack point might be significantly off the centroid of our army, leading to sub-optimal
attacking behaviour. Similarly, the initial positions of the units plays an important role.
As a result, the exact win-rate are not directly comparable with previous works, where
neither precise details of the setup nor source code are available. The differences can
be observed even in the win-rate of the baseline heuristics. For this work, we refer to
the source code in the supplementary material for the exact details used.

Scenarios We consider three different kinds of scenarios:

Wraith These are ranged flying units, which means that they don’t collide with
any other unit. We denote these scenarios as wNvM where N is the size of our
army, and M is the size of the enemy army. Following the previous works, we
train on the imbalanced scenario w15v17, where the two additional units given
to the opponent are required to make the scenario challenging.

Marines These are ranged ground units, which do have collisions. We denote these
scenarios as mNvM where N is the size of our army, and M is the size of the
enemy army. Since the built-in AI has a better control policy for ground units,
we train on the balanced scenario m10v10, which is challenging enough.

Zergling-Hydralisk Zerglings are fast melee units (they can only attack if they are
in contact of their target), while Hydralisks are slower ranged units. In this
scenario, we investigate the opportunity to learn distinct behaviours depending
on the type of the agent or its task. To further amplify their relative capabilities,
we give the Zerglings a speed boost ("Metabolic Boost" upgrade), and the Hy-
dralisks a range boost ("Grooved Spines" upgrade). We denote these scenarios
as "zhNvM" which correspond to N Zerglings and N Hydralisks versus M
Zerglings and M Hydralisks. We train on zh10v10.

Baseline Heuristics To properly assess the strength of our model, we use a set of
baseline heuristics designed to get a good baseline performance in our scenarios.
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Some of them are standard heuristics from the literature (Usunier et al., 2016), and
we also propose some improved versions to provide an attempt at the best scripted
policy that could be used in a bot. Note that for fair comparison with the model,
we focus on the targeting exclusively, and none of the baselines incorporate special
movement behavior. We recall that generally, in these battles, two things matter
predominantly:

1. Focus firing. The intuition is that it is crucial to kill enemy units as quickly as
possible to create a numeric advantage that snowballs into victory.

2. Avoid over-killing. The goal is here is to avoid wasting any shot. If we have
3 units dealing 10 damage each, and an enemy with 22 hit-points remaining,
then assigning all 3 units to this enemy will deal an expected 30 damage, hence
wasting 30− 22 = 8 damage. It would probably be wiser to assign one of our
units to another target instead.

Both of these design goals are in conflict, hence the difficulty lies in balancing them
properly, particularly when some enemy units are close to dying. With these design
goals in mind, here are the heuristics we consider as a comparison. Note that these
heuristics are re-evaluated every 6 frames.

Closest (c) Each unit independently picks the units that is the closest, as measured
by the distance function used by the game engine. Ties are broken using the
unit internal ID, which is randomly assigned at the beginning of the game but
consistent for the duration of the episode.

Weakest Closest (wc) All units are collectively assigned to the weakest enemy unit.
The distance is used as a tie breaker.

Weakest closest No-Overkill (wcnok) We select the weakest-closest enemy unit,
then assign greedily in an arbitrary order as many units as possible as long as
the total sum of damage to this unit is lesser than its health. When this enemy is
saturated, if some of our units don’t have a target yet, then we select the second
weakest-closest, and so on until all enemy units have been exhausted or all our
units have a target.

Weakest Closest No-Overkill No Change(wcnoknc) Same as wcnok, but once a
unit starts attacking a target, it keeps doing so until the target dies. When
the target dies, a new target is computed as in wcnok. Keeping the same target
can reduce some instability in the assignment found by wcnok, but can lead to
over-killing.

Weakest Closest No-Overkill Smart (wcnoks) Same as wcnoknc, except that the
target is kept only as long as it doesn’t risk causing over-killing. When it does,
a new target is computed as in wcnok.

Random No change (rand-nc) Each unit pick a target at random at the beginning of
the episode, and keep attacking it until it is dead. When that happens, a new
target is picked randomly.

Training

Given the poor results of PEM in the previous experiment, we only train DM with all
the possible inference procedures. Each unit is represented by its features: whether it
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TABLE 2.2: Best hyper-parameters found through random search on
the different models

Experiment Model Learn. rate Policy-loss weight λ Explor. std-dev σ Returns length # correlated steps

Marine QUAD 4.272e-05 1.585e+01 2.910e+00 5 10
LP 2.280e-05 2.157e-03 7.017e-01 6 5

AMAX 4.330e-05 5.396e-01 2.418e+00 2 2

Wraith QUAD 2.826e-05 2.514e+02 1.899e+00 6 7
LP 5.600e-05 5.534e-01 4.244e-01 4 6

AMAX 2.525e-05 6.847e+01 1.994e+00 8 10

Zergling-Hydra QUAD 5.325e-05 6.277e-01 7.185e-01 3 3
LP 6.534e-05 4.455e-02 2.902e+00 8 1

AMAX 1.885e-05 2.119e-02 1.881e+00 3 10

is an enemy, its position, velocity, current health, range, cool-down (number of frames
before the next possible attack), and one hot encoding of its type. This amounts to
8 to 10 features per units, depending on the scenario. For training, we sample 100
sets of hyper-parameters for each combination of model/scenario, and train them for
8 hours on a Nvidia Volta with a batch-size of 32. For the learning rate we sample
c u.a.r in [−6,−3], and use 10c, for the policy-loss weight λ, we sample d u.a.r in
[−3, 3] and use 10d, the exploration standard deviation σ is sampled u.a.r in [0.1, 3],
the return-length used in A2C is an integer sampled u.a.r in [2, 10], and the number of
correlated exploration steps is an integer sampled u.a.r. in [1, 10]. The best parameters
found are reported in Table 2.2.

The scoring models hθ and gθ are fully-connected networks consisting of 3 linear
layers with ReLU. To compute hθ(i, j), we give as input to the network the concate-
nation of the features of ally unit i and the features of enemy unit j, along with 2
additional features: a boolean flag that indicates whether i was attacking j in the
previous step (this is meant to facilitate temporal consistency of the actions), and the
distance between both units, as computed by the internal game engine. The input of
gθ(j, k) only contains the features of enemy units j and k, with no additional features.

In this experiment, we found that the training algorithm is relatively sensitive
to the random seed. To better assess the performances, we re-trained the best set
of hyper-parameters for each model/scenario on 10 random seeds, for 18 hours.
The performances we report are the median of the performances of all the seeds, to
alleviate the effects of the outliers. The results are aggregated in Tab. 2.3. Although
the number of units is a good indicator of the difficulty of the environment, whether
the numbers of units are balanced in both teams dramatically change the “dynamics”
of the game. For instance, zh10v12 is unbalanced and thus much more difficult
than zh11v11, which is balanced. The performance of the baseline can be seen as a
relatively accurate estimate of the difficulty of the scenario.

Results

Results are provided in Table 2.3. As StarCraft is a real-time game, one first concern
regards the runtime of our algorithm. In the biggest experiment, involving 80 units
vs 82, our algorithm returns actions in slightly more than 500ms (5ms for the forward
in the model, 500ms to solve the inference of QUAD ). Given the frequency at which
we take actions (every 6 frames), such timings allow real-time play in StarCraft.

Amongst the scenarios, the Wraith setting (wNvM) are the ones where the as-
sumption of independence between the tasks holds the best, since in this case there
are no collisions between units. These scenarios also require good coordination, since
it is important to focus fire on the same unit. Indeed, for these scenarios, the best



36
Chapter 2. A Structured Prediction Approach for Generalization in Cooperative

Multi-Agent Reinforcement Learning

TABLE 2.3: Results on StarCraft: average win-rate of the different
methods and all the heuristics. Bests results are in bold, the best
heuristic on each scenario is in italics. We report 95% confidence

intervals (using the Normal approximation interval).

Heuristics RL

Train Test c wc wcnok wcnoknc wcnoks rand-nc LP DM QUAD DM AMAX

m10v10 m5v5 0.77 ± 0.03 0.88 ± 0.02 0.56 ± 0.03 0.86 ± 0.02 0.83 ± 0.02 0.15 ± 0.02 0.90 ± 0.02 0.83 ± 0.02 0.84 ± 0.02
m10v10 0.77 ± 0.03 0.44 ± 0.03 0.00 ± 0.00 0.45 ± 0.03 0.56 ± 0.03 0.01 ± 0.01 0.94 ± 0.02 0.83 ± 0.02 0.82 ± 0.02
m10v11 0.25 ± 0.03 0.07 ± 0.02 0.00 ± 0.00 0.05 ± 0.01 0.11 ± 0.02 0.00 ± 0.00 0.52 ± 0.03 0.28 ± 0.03 0.29 ± 0.03
m15v15 0.75 ± 0.03 0.03 ± 0.01 0.00 ± 0.00 0.14 ± 0.02 0.18 ± 0.02 0.00 ± 0.00 0.92 ± 0.02 0.69 ± 0.03 0.77 ± 0.03
m15v16 0.40 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 0.68 ± 0.03 0.32 ± 0.03 0.43 ± 0.03
m30v30 0.69 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.74 ± 0.03 0.06 ± 0.02 0.36 ± 0.03

w15v17 w15v17 0.07 ± 0.02 0.00 ± 0.00 0.58 ± 0.03 0.33 ± 0.03 0.81 ± 0.02 0.01 ± 0.01 0.53 ± 0.03 0.89 ± 0.02 0.30 ± 0.03
w30v34 0.01 ± 0.01 0.00 ± 0.00 0.36 ± 0.03 0.31 ± 0.03 0.90 ± 0.02 0.01 ± 0.01 0.76 ± 0.03 0.99 ± 0.01 0.37 ± 0.03
w30v35 0.00 ± 0.00 0.00 ± 0.00 0.10 ± 0.02 0.08 ± 0.02 0.60 ± 0.03 0.01 ± 0.00 0.56 ± 0.03 0.94 ± 0.02 0.24 ± 0.03
w60v67 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.02 0.00 ± 0.00 0.33 ± 0.03 0.72 ± 0.03 0.13 ± 0.02
w60v68 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.21 ± 0.03 0.52 ± 0.03 0.07 ± 0.02
w80v82 0.00 ± 0.00 0.00 ± 0.00 0.09 ± 0.02 0.08 ± 0.02 0.32 ± 0.03 0.00 ± 0.00 0.11 ± 0.02 0.36 ± 0.03 0.03 ± 0.01

zh10v10 zh10v10 0.86 ± 0.02 0.26 ± 0.03 0.00 ± 0.00 0.54 ± 0.03 0.64 ± 0.03 0.00 ± 0.00 0.90 ± 0.02 0.83 ± 0.02 0.84 ± 0.02
zh10v11 0.30 ± 0.03 0.01 ± 0.01 0.00 ± 0.00 0.04 ± 0.01 0.09 ± 0.02 0.00 ± 0.00 0.46 ± 0.03 0.24 ± 0.03 0.40 ± 0.03
zh10v12 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.06 ± 0.02 0.01 ± 0.01 0.06 ± 0.01
zh11v11 0.87 ± 0.02 0.15 ± 0.02 0.00 ± 0.00 0.38 ± 0.03 0.56 ± 0.03 0.00 ± 0.00 0.87 ± 0.02 0.75 ± 0.03 0.80 ± 0.02
zh12v12 0.85 ± 0.02 0.05 ± 0.01 0.00 ± 0.00 0.23 ± 0.03 0.42 ± 0.03 0.00 ± 0.00 0.82 ± 0.02 0.64 ± 0.03 0.75 ± 0.03

performing heuristics are the more complicated ones that focus fire on the weakest
while preventing over-killing. This is the type of policies that only the QUAD model is
able to represent, explaining its dominance in this scenario. During these battles, both
armies tend to overlap totally, hence it becomes almost impossible to use surrogate
coordination principles based on spatial disposition only, such as targeting the closest
unit. In this case, the quadratic part of the score function is crucial to learn focus-firing
and results show that without the ability to represent such a long-term coordination
pattern, both LP and AMAX fail to reach the same level of performance. Notably,
the coordination pattern learned by QUAD generalizes well, outperforming the best
heuristics in instances as much as 5 times the size of the training instance.

The other settings, Marine (mNvM) and Zergling-Hydralisk (zhNvM) break the
independence assumption because the units now have collisions. It is even worse
for the Zerglings, since they are melee units. This can be seen because the best
performing heuristic tends to be closest, showing that it might be better for each unit
to focus on close-by enemies, and avoid picking faraway targets that would result
in maneuvering and thus likely losing of the army cohesion. In the Marine scenario,
all three models usually learn to wait (by picking no target) in the beginning of the
battle, and start picking a target only when the enemies are about to get in range. This
strategy allows them to keep a rather good formation, which they would otherwise
lose, had they picked a wrong target. This gives them a little edge in the battle,
and then they proceed by following a strategy that looks like an optimized version
attacking the closest unit. In the Zergling-Hydralisk scenarios, the models learn to
wait in the beginning as well. This is an exploit on the rushing behaviour of the
opponent: the faster zerglings of the enemy will engage first, while its hydralisks are
lagging behind. This allows the models to first clear up the zergling wave with the
combined forces of their zerglings and hydras, before turning to the enemy hydralisks.
The coordination patterns are then harder to learn for the QUAD model, and they
generalize poorly. However, these scenarios with collisions also tend to require less
long-term coordination, and the immediate coordination patterns learned by the LP
model are enough to significantly outperform the heuristics, even when transferring
to unseen instances.
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2.6 Conclusion

In this chapter we proposed a structured approach to multi-agent coordination.
Unlike previous work, it uses an optimization procedure to compute the assignment
of agents to tasks and define suitable coordination patterns. The parameterization
of this optimization procedure is seen as the continuous output of an RL trained
model. We showed on two challenging problems the effectiveness of this method, in
particular in generalizing from small to large instance, and discussed the impact of
the choice of the expressivity of the score-functions on the generalization abilities of
the model.
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Chapter 3

End-to-End Object Detection with
Transformers

Abstract

We present a new method that views object detection as a direct set prediction
problem. Our approach streamlines the detection pipeline, effectively removing
the need for many hand-designed components like a non-maximum suppression
procedure or anchor generation that explicitly encode our prior knowledge about
the task. The main ingredients of the new framework, called DEtection TRansformer
or DETR, are a set-based global loss that forces unique predictions via bipartite
matching, and a transformer encoder-decoder architecture. Given a fixed small
set of learned object queries, DETR reasons about the relations of the objects and
the global image context to directly output the final set of predictions in parallel.
The new model is conceptually simple and does not require a specialized library,
unlike many other modern detectors. DETR demonstrates accuracy and run-time
performance on par with the well-established and highly-optimized Faster R-CNN
baseline on the challenging COCO object detection dataset. Moreover, DETR can be
easily generalized to produce panoptic segmentation in a unified manner. We show
that it significantly outperforms competitive baselines. Training code and pretrained
models are available at https://github.com/facebookresearch/detr.

3.1 Introduction

The goal of object detection is to predict a set of bounding boxes and category labels for
each object of interest. Modern detectors address this set prediction task in an indirect
way, by defining surrogate regression and classification problems on a large set of
proposals (S. Ren et al., 2015b; Cai and Vasconcelos, 2019), anchors (T.-Y. Lin, Goyal,
et al., 2017), or window centers (Zhou, Dequan Wang, and Krähenbühl, 2019; Z. Tian
et al., 2019). Their performances are significantly influenced by postprocessing steps
to collapse near-duplicate predictions, by the design of the anchor sets and by the
heuristics that assign target boxes to anchors (S. Zhang et al., 2020). To simplify these
pipelines, we propose a direct set prediction approach to bypass the surrogate tasks.
This end-to-end philosophy has led to significant advances in complex structured
prediction tasks such as machine translation or speech recognition, but not yet in
object detection: previous attempts (Stewart, Andriluka, and Ng, 2016; Hosang,
Benenson, and Schiele, 2017; Bodla et al., 2017; S Hamid Rezatofighi et al., 2018)
either add other forms of prior knowledge, or have not proven to be competitive with
strong baselines on challenging benchmarks. In this chapter, we aim to bridge this
gap.

https://github.com/facebookresearch/detr
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FIGURE 3.1: DETR directly predicts (in parallel) the final set of detec-
tions by combining a common CNN with a transformer architecture.
During training, bipartite matching uniquely assigns predictions with
ground truth boxes. Prediction with no match should yield a “no

object” (∅) class prediction.

We streamline the training pipeline by viewing object detection as a direct set pre-
diction problem. We adopt an encoder-decoder architecture based on transformers
(Vaswani et al., 2017), a popular architecture for sequence prediction. The self-
attention mechanisms of transformers, which explicitly model all pairwise interac-
tions between elements in a sequence, make these architectures particularly suitable
for specific constraints of set prediction such as removing duplicate predictions.

Our DEtection TRansformer (DETR, see Figure 3.1) predicts all objects at once,
and is trained end-to-end with a set loss function which performs bipartite matching
between predicted and ground-truth objects. DETR simplifies the detection pipeline
by dropping multiple hand-designed components that encode prior knowledge, like
spatial anchors or non-maximal suppression. Unlike most existing detection methods,
DETR doesn’t require any customized layers, and thus can be reproduced easily
in any framework that contains standard ResNet (He, X. Zhang, et al., 2016) and
Transformer (Vaswani et al., 2017) classes.

Compared to most previous work on direct set prediction, the main features of
DETR are the conjunction of the bipartite matching loss and transformers with (non-
autoregressive) parallel decoding (Oord et al., 2018; Gu et al., 2018; Ghazvininejad
et al., 2019; Devlin et al., 2019). In contrast, previous work focused on autoregressive
decoding with RNNs (Stewart, Andriluka, and Ng, 2016; Romera-Paredes and Torr,
2015; Park and Berg, 2015; M. Ren and Zemel, 2017; Salvador et al., 2017). Our
matching loss function uniquely assigns a prediction to a ground truth object, and is
invariant to a permutation of predicted objects, so we can emit them in parallel.

We evaluate DETR on one of the most popular object detection datasets,
COCO (T.-Y. Lin, Maire, et al., 2014), against a very competitive Faster R-CNN
baseline (S. Ren et al., 2015b). Faster R-CNN has undergone many design iterations
and its performance was greatly improved since the original publication. Our
experiments show that our new model achieves comparable performances. More
precisely, DETR demonstrates significantly better performance on large objects, a
result likely enabled by the non-local computations of the transformer. It obtains,
however, lower performances on small objects. We expect that future work will
improve this aspect in the same way the development of FPN (T.-Y. Lin, Dollár, et al.,
2017) did for Faster R-CNN.

Training settings for DETR differ from standard object detectors in multiple ways.
The new model requires extra-long training schedule and benefits from auxiliary
decoding losses in the transformer. We thoroughly explore what components are
crucial for the demonstrated performance.

The design ethos of DETR easily extend to more complex tasks. In our exper-
iments, we show that a simple segmentation head trained on top of a pre-trained
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DETR outperfoms competitive baselines on Panoptic Segmentation (Kirillov, He, et al.,
2019), a challenging pixel-level recognition task that has recently gained popularity.

3.2 Related work

Our work build on prior work in several domains: bipartite matching losses for set
prediction, encoder-decoder architectures based on the transformer, parallel decoding,
and object detection methods.

3.2.1 Set Prediction

There is no canonical deep learning model to directly predict sets. The basic set
prediction task is multilabel classification (see e.g., Seyed Hamid Rezatofighi et al.,
2017; Pineda et al., 2019 for references in the context of computer vision) for which
the baseline approach, one-vs-rest, does not apply to problems such as detection
where there is an underlying structure between elements (i.e., near-identical boxes).
The first difficulty in these tasks is to avoid near-duplicates. Most current detectors
use postprocessings such as non-maximal suppression to address this issue, but
direct set prediction are postprocessing-free. They need global inference schemes
that model interactions between all predicted elements to avoid redundancy. For
constant-size set prediction, dense fully connected networks (Erhan et al., 2014) are
sufficient but costly. A general approach is to use auto-regressive sequence models
such as recurrent neural networks (Vinyals, S. Bengio, and Kudlur, 2016). In all cases,
the loss function should be invariant by a permutation of the predictions. The usual
solution is to design a loss based on the Hungarian algorithm (Kuhn, 1955), to find a
bipartite matching between ground-truth and prediction. This enforces permutation-
invariance, and guarantees that each target element has a unique match. We follow
the bipartite matching loss approach. In contrast to most prior work however, we
step away from autoregressive models and use transformers with parallel decoding,
which we describe below.

3.2.2 Transformers and Parallel Decoding

Transformers were introduced by Vaswani et al., 2017 as a new attention-based
building block for machine translation. Attention mechanisms (Bahdanau, Cho,
and Y. Bengio, 2015) are neural network layers that aggregate information from the
entire input sequence. Transformers introduced self-attention layers, which, similarly
to Non-Local Neural Networks (Xiaolong Wang et al., 2018), scan through each
element of a sequence and update it by aggregating information from the whole
sequence. One of the main advantages of attention-based models is their global
computations and perfect memory, which makes them more suitable than RNNs on
long sequences. Transformers are now replacing RNNs in many problems in natural
language processing, speech processing and computer vision (Devlin et al., 2019;
Lüscher et al., 2019; Synnaeve, Xu, et al., 2019; Radford et al., 2019; Parmar et al.,
2018).

Transformers were first used in auto-regressive models, following early sequence-
to-sequence models (Sutskever, Vinyals, and Le, 2014), generating output tokens one
by one. However, the prohibitive inference cost (proportional to output length, and
hard to batch) lead to the development of parallel sequence generation, in the domains
of audio (Oord et al., 2018), machine translation (Gu et al., 2018; Ghazvininejad et al.,
2019), word representation learning (Devlin et al., 2019), and more recently speech
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recognition (Chan et al., 2020). We also combine transformers and parallel decoding
for their suitable trade-off between computational cost and the ability to perform the
global computations required for set prediction.

3.2.3 Object detection

Most modern object detection methods make predictions relative to some initial
guesses. Two-stage detectors (S. Ren et al., 2015b; Cai and Vasconcelos, 2019) pre-
dict boxes w.r.t. proposals, whereas single-stage methods make predictions w.r.t.
anchors (T.-Y. Lin, Goyal, et al., 2017) or a grid of possible object centers (Zhou,
Dequan Wang, and Krähenbühl, 2019; Z. Tian et al., 2019). Recent work (S. Zhang
et al., 2020) demonstrate that the final performance of these systems heavily depends
on the exact way these initial guesses are set. In our model we are able to remove this
hand-crafted process and streamline the detection process by directly predicting the
set of detections with absolute box prediction w.r.t. the input image rather than an
anchor.

Set-based loss. Several object detectors (Erhan et al., 2014; W. Liu, Anguelov, Erhan,
Szegedy, S. E. Reed, et al., 2016; Redmon, Divvala, et al., 2016) used the bipartite
matching loss. However, in these early deep learning models, the relation between
different prediction was modeled with convolutional or fully-connected layers only
and a hand-designed NMS post-processing can improve their performance. More
recent detectors (S. Ren et al., 2015b; T.-Y. Lin, Goyal, et al., 2017; Zhou, Dequan Wang,
and Krähenbühl, 2019) use non-unique assignment rules between ground truth and
predictions together with an NMS.

Learnable NMS methods (Hosang, Benenson, and Schiele, 2017; Bodla et al.,
2017) and relation networks (Hu et al., 2018) explicitly model relations between
different predictions with attention. Using direct set losses, they do not require any
post-processing steps. However, these methods employ additional hand-crafted
context features like proposal box coordinates to model relations between detections
efficiently, while we look for solutions that reduce the prior knowledge encoded in
the model.

Recurrent detectors. Closest to our approach are end-to-end set predictions for ob-
ject detection (Stewart, Andriluka, and Ng, 2016) and instance segmentation (Romera-
Paredes and Torr, 2015; Park and Berg, 2015; M. Ren and Zemel, 2017; Salvador et al.,
2017). Similarly to us, they use bipartite-matching losses with encoder-decoder archi-
tectures based on CNN activations to directly produce a set of bounding boxes. These
approaches, however, were only evaluated on small datasets and not against modern
baselines. In particular, they are based on autoregressive models (more precisely
RNNs), so they do not leverage the recent transformers with parallel decoding.

3.3 Background: transformer architecture

Since our model is based on the Transformer architecture, we present here the general
form of attention mechanisms we use for completeness. The attention mechanism fol-
lows Vaswani et al., 2017, except for the details of positional encodings (see Equation
3.6) that follows Cordonnier, Loukas, and Jaggi, 2020.
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3.3.1 Multi-head

The general form of multi-head attention with M heads of dimension d is a function
with the following signature (using d′ = d

M , and giving matrix/tensors sizes in
underbrace)

mh-attn : Xq︸︷︷︸
d×Nq

, Xkv︸︷︷︸
d×Nkv

, T︸︷︷︸
M×3×d′×d

, L︸︷︷︸
d×d

7→ X̃q︸︷︷︸
d×Nq

(3.1)

where Xq is the query sequence of length Nq, Xkv is the key-value sequence of length
Nkv (with the same number of channels d for simplicity of exposition), T is the
weight tensor to compute the so-called query, key and value embeddings, and L is
a projection matrix. The output is the same size as the query sequence. To fix the
vocabulary before giving details, multi-head self-attention (mh-s-attn) is the special
case Xq = Xkv, i.e.

mh-s-attn(X, T, L) = mh-attn(X, X, T, L) . (3.2)

The multi-head attention is simply the concatenation of M single attention heads
followed by a projection with L. The common practice (Vaswani et al., 2017) is to
use residual connections, dropout and layer normalization. In other words, denoting
X̃q = mh-attn(Xq, Xkv, T, L) and ¯̄X(q) the concatenation of attention heads, we have

X′q = [attn(Xq, Xkv, T1); ...; attn(Xq, Xkv, TM)] (3.3)

X̃q = layernorm
(
Xq + dropout(LX′q)

)
, (3.4)

where [;] denotes concatenation on the channel axis.

3.3.2 Single head

An attention head with weight tensor T′ ∈ R3×d′×d, denoted by attn(Xq, Xkv, T′),
depends on additional positional encoding Pq ∈ Rd×Nq and Pkv ∈ Rd×Nkv . It starts by
computing so-called query, key and value embeddings after adding the query and
key positional encodings (Cordonnier, Loukas, and Jaggi, 2020):

[Q; K; V] = [T′1(Xq + Pq); T′2(Xkv + Pkv); T′3Xkv] (3.5)

where T′ is the concatenation of T′1, T′2, T′3. The attention weights α are then computed
based on the softmax of dot products between queries and keys, so that each element
of the query sequence attends to all elements of the key-value sequence (i is a query
index and j a key-value index):

αi,j =
e

1√
d′

QT
i Kj

Zi
where Zi =

Nkv

∑
j=1

e
1√
d′

QT
i Kj . (3.6)

In our case, the positional encodings may be learnt or fixed, but are shared across all
attention layers for a given query/key-value sequence, so we do not explicitly write
them as parameters of the attention. We give more details on their exact value when
describing the encoder and the decoder. The final output is the aggregation of values
weighted by attention weights: The i-th row is given by

attni(Xq, Xkv, T′) =
Nkv

∑
j=1

αi,jVj (3.7)
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FIGURE 3.2: DETR uses a conventional CNN backbone to learn a 2D
representation of an input image. The model flattens it and supple-
ments it with a positional encoding before passing it into a transformer
encoder. A transformer decoder then takes as input a small fixed num-
ber of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output em-
bedding of the decoder to a shared feed forward network (FFN) that
predicts either a detection (class and bounding box) or a “no object”

class.

3.3.3 Feed-forward network (FFN) layers

The original transformer alternates multi-head attention and so-called FFN layers
(Vaswani et al., 2017), which are effectively multilayer 1x1 convolutions, which have
Md input and output channels in our case. The FFN we consider is composed
of two-layers of 1x1 convolutions with ReLU activations. There is also a residual
connection/dropout/layernorm after the two layers, similarly to (3.4).

3.4 The DETR model

Two ingredients are essential for direct set predictions in detection: (1) a set prediction
loss that forces unique matching between predicted and ground truth boxes; (2) an
architecture that predicts (in a single pass) a set of objects and models their relation.
We describe our architecture in detail in Figure 3.2.

In our work we use a Hungarian permutation-invariant loss (Kuhn, 1955), a
standard option adopted in many other set prediction problems (Vinyals, S. Bengio,
and Kudlur, 2016), including detection (Hu et al., 2018; Hosang, Benenson, and
Schiele, 2017). For this loss, we first find an optimal bipartite matching between
predictions and the ground truth objects, according to some matching cost. Next, a
pair-wise task loss is calculated for each of the found prediction-target matching. We
describe the matching cost and the pair-wise loss we use in Section 3.4.1.

3.4.1 Object detection set prediction loss

DETR infers a fixed-size set of N predictions, in a single pass through the decoder,
where N is set to be significantly larger than the typical number of objects in an
image. One of the main difficulties of training is to score predicted objects (class,
position, size) with respect to the ground truth. Our loss produces an optimal
bipartite matching between predicted and ground truth objects, and then optimize
object-specific (bounding box) losses.

Let us denote by y the ground truth set of objects, and ŷ = {ŷi}N
i=1 the set of

N predictions. Assuming N is larger than the number of objects in the image, we
consider y also as a set of size N padded with ∅ (no object). To find a bipartite
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matching between these two sets we search for a permutation of N elements σ ∈ SN
with the lowest cost:

σ̂ = arg min
σ∈SN

N

∑
i
Lmatch(yi, ŷσ(i)), (3.8)

where Lmatch(yi, ŷσ(i)) is a pair-wise matching cost between ground truth yi and a
prediction with index σ(i). This optimal assignment is computed efficiently with the
Hungarian algorithm, following prior work (e.g. (Stewart, Andriluka, and Ng, 2016)).

The matching cost takes into account both the class prediction and the similarity
of predicted and ground truth boxes. Each element i of the ground truth set can be
seen as a yi = (ci, bi) where ci is the target class label (which may be ∅) and bi ∈ [0, 1]4

is a vector that defines ground truth box center coordinates and its height and width
relative to the image size. For the prediction with index σ(i) we define probability
of class ci as p̂σ(i)(ci) and the predicted box as b̂σ(i). With these notations we define
Lmatch(yi, ŷσ(i)) as −1{ci 6=∅} p̂σ(i)(ci) + 1{ci 6=∅}Lbox(bi, b̂σ(i)).

This procedure of finding the matching plays the same role as the heuristic
assignment rules used to match proposal (S. Ren et al., 2015b) or anchors (T.-Y. Lin,
Dollár, et al., 2017) to ground truth objects in modern detectors. The main difference is
that we need to find one-to-one matching for direct set prediction without duplicates.

The second step is to compute the loss function, the Hungarian loss for all pairs
matched in the previous step. We define the loss similarly to the losses of common ob-
ject detectors, i.e. a linear combination of a negative log-likelihood for class prediction
and a box loss Lbox(·, ·) defined later:

LHungarian(y, ŷ) =
N

∑
i=1

[
− log p̂σ̂(i)(ci) + 1{ci 6=∅}Lbox(bi, b̂σ̂(i))

]
, (3.9)

where σ̂ is the optimal assignment computed in the first step (3.8). In practice,
we down-weight the log-probability term when ci = ∅ by a factor 10 to account
for class imbalance. This is analogous to how Faster R-CNN training procedure
balances positive/negative proposals by subsampling (S. Ren et al., 2015b). Notice
that the matching cost between an object and ∅ doesn’t depend on the prediction,
which means that in that case the cost is a constant. In the matching cost we use
probabilities p̂σ̂(i)(ci) instead of log-probabilities. This makes the class prediction
term commensurable to Lbox(·, ·), and we observed better empirical performances.

Bounding box loss

The second part of the matching cost and the Hungarian loss is Lbox(·) that scores
the bounding boxes. Unlike many detectors that do box predictions as a ∆ w.r.t.
some initial guesses, we make box predictions directly. While such approach simplify
the implementation it poses an issue with relative scaling of the loss. The most
commonly-used `1 loss will have different scales for small and large boxes even if
their relative errors are similar. To mitigate this issue we use a linear combination of
the `1 loss and the generalized IoU loss (H. Rezatofighi et al., 2019) Liou(·, ·) that is
scale-invariant:

Liou(bσ(i), b̂i) = 1−
( |bσ(i) ∩ b̂i|
|bσ(i) ∪ b̂i|

−
|B(bσ(i), b̂i) \ bσ(i) ∪ b̂i|

|B(bσ(i), b̂i)|

)
. (3.10)

|.| means “area”, and the union and intersection of box coordinates are used as short-
hands for the boxes themselves. The areas of unions or intersections are computed by
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min / max of the linear functions of bσ(i) and b̂i, which makes the loss sufficiently well-
behaved for stochastic gradients. B(bσ(i), b̂i) means the largest box containing bσ(i), b̂i
(the areas involving B are also computed based on min / max of linear functions of
the box coordinates).

Overall, similarly to Romera-Paredes and Torr, 2015; M. Ren and Zemel, 2017, we
linearly combine these two losses:

Lbox(bσ(i), b̂i) = λiouLiou(bσ(i), b̂i) + λL1||bσ(i) − b̂i||1 , (3.11)

where λiou, λL1 ∈ R are hyperparameters. These two losses are normalized by the
number of objects inside the batch. Extra care must be taken for distributed training:
since each GPU receives a sub-batch, with a varying number of objects, it is not
sufficient to normalize by the number of objects in the local batch, since in general
the sub-batches are not balanced across GPUs. Instead, it is important to normalize
by the total number of objects in all sub-batches. This avoids biasing the loss towards
images with few objects, that tend to be large, salient objects, that are anyway well
detected by the model.

Auxiliary decoding losses

We found helpful to use auxiliary losses (Al-Rfou et al., 2019) in the decoder during
training, especially to help the model output the correct number of objects of each
class. The output of each decoder layer is normalized with a shared layer-norm then
fed to the shared prediction heads (classification and box prediction). We then apply
the Hungarian loss as usual for supervision.

3.4.2 DETR architecture

The overall DETR architecture is surprisingly simple and depicted in Figure 3.2. It
contains three main components, which we describe below: a CNN backbone to
extract a compact feature representation, an encoder-decoder transformer, and a
simple feed forward network (FFN) that makes the final detection prediction.

Unlike many modern detectors, DETR can be implemented in any deep learning
framework that provides a common CNN backbone and a transformer architecture
implementation with just a few hundred lines. Inference code for DETR can be
implemented in less than 50 lines in PyTorch (Paszke et al., 2019). We hope that the
simplicity of our method will attract new researchers to the detection community.

Backbone

Starting from the initial image ximg ∈ R3×H0×W0 (with 3 color channels1), a conven-
tional CNN backbone generates a lower-resolution activation map f ∈ RC×H×W .
Typical values we use are C = 2048 and H, W = H0

32 , W0
32 .

Transformer encoder

Our transformer architecture is illustrated in Fig.3.3. First, a 1x1 convolution reduces
the channel dimension of the high-level activation map f from C to a smaller dimen-
sion d. creating a new feature map z0 ∈ Rd×H×W . The encoder expects a sequence as

1The input images are batched together, applying 0-padding adequately to ensure they all have the
same dimensions (H0, W0) as the largest image of the batch.
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FIGURE 3.3: Architecture of DETR’s transformer.

input, hence we collapse the spatial dimensions of z0 into one dimension, resulting in
a d× HW feature map. Each encoder layer has a standard architecture and consists
of a multi-head self-attention module and a feed forward network (FFN). Since the
transformer architecture is permutation-invariant, we supplement it with fixed posi-
tional encodings (Parmar et al., 2018; Bello et al., 2019) that are added to the input of
each attention layer. We defer to the supplementary material the detailed definition
of the architecture, which follows the one described in (Vaswani et al., 2017).

Transformer decoder

The decoder follows the standard architecture of the transformer, transforming N
embeddings of size d using multi-headed self- and encoder-decoder attention mecha-
nisms. The difference with the original transformer is that our model decodes the
N objects in parallel at each decoder layer, while Vaswani et al. (Vaswani et al.,
2017) use an autoregressive model that predicts the output sequence one element
at a time. We refer the reader unfamiliar with the concepts to the supplementary
material. Since the decoder is also permutation-invariant, the N input embeddings
must be different to produce different results. These input embeddings are learnt
positional encodings that we refer to as object queries, and similarly to the encoder, we
add them to the input of each attention layer. The N object queries are transformed
into an output embedding by the decoder. They are then independently decoded into
box coordinates and class labels by a feed forward network (described in the next
subsection), resulting N final predictions. Using self- and encoder-decoder attention
over these embeddings, the model globally reasons about all objects together using
pair-wise relations between them, while being able to use the whole image as context.
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Prediction feed-forward networks (FFNs)

The final prediction is computed by a 3-layer perceptron with ReLU activation func-
tion and hidden dimension d, and a linear projection layer. The FFN predicts the
normalized center coordinates, height and width of the box w.r.t. the input image,
and the linear layer predicts the class label using a softmax function. Since we predict
a fixed-size set of N bounding boxes, where N is usually much larger than the actual
number of objects of interest in an image, an additional special class label ∅ is used
to represent that no object is detected within a slot. This class plays a similar role to
the “background” class in standard object detection approaches.

Spatial positional encoding

Encoder activations are associated with corresponding spatial positions of image
features. In our model we use a fixed absolute encoding to represent these spatial
positions. We adopt a generalization of the original Transformer (Vaswani et al., 2017)
encoding to the 2D case (Parmar et al., 2018). Specifically, for both spatial coordinates
of each embedding we independently use d

2 sine and cosine functions with different
frequencies. We then concatenate them to get the final d channel positional encoding.

Computational complexity

Every self-attention in the encoder has complexity O(d2HW + d(HW)2): O(d′d) is
the cost of computing a single query/key/value embeddings (and Md′ = d), while
O(d′(HW)2) is the cost of computing the attention weights for one head. Other
computations are negligible. In the decoder, each self-attention is in O(d2N + dN2),
and cross-attention between encoder and decoder is in O(d2(N + HW) + dNHW),
which is much lower than the encoder since N � HW in practice.

3.5 Experiments

We show that DETR achieves competitive results compared to Faster R-CNN (S. Ren
et al., 2015b) and RetinaNet (T.-Y. Lin, Goyal, et al., 2017) in quantitative evaluation
on COCO. Then, we provide a detailed ablation study of the architecture and loss,
with insights and qualitative results. Finally, to show that DETR is a versatile model,
we present results on panoptic segmentation, training only a small extension on a
fixed DETR model.

Dataset

We perform experiments on COCO 2017 detection and panoptic segmentation
datasets (T.-Y. Lin, Maire, et al., 2014; Kirillov, Ross B. Girshick, et al., 2019),
containing 118k training images and 5k validation images. Each image is annotated
with bounding boxes and panoptic segmentation. There are 7 instances per image on
average, up to 63 instances in a single image in training set, ranging from small to
large on the same images. If not specified, we report AP as bbox AP, the integral
metric over multiple thresholds. For comparison with other models we report
validation AP at the last training epoch, and in ablations we report the median over
the last 10 epochs.
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TABLE 3.1: Comparison with RetinaNet and Faster R-CNN with a
ResNet-50 and ResNet-101 backbones on the COCO validation set.
The top section shows results for models in Detectron2 Wu et al., 2019,
the middle section shows results for models with GIoU H. Rezatofighi
et al., 2019, random crops train-time augmentation, and the long 9x
training schedule. DETR models achieve comparable results to heavily
tuned Faster R-CNN baselines, having lower APS but greatly im-
proved APL. We use torchscript models to measure FLOPS and FPS.

Results without R101 in the name correspond to ResNet-50.

Model GFLOPS/FPS #params AP AP50 AP75 APS APM APL

RetinaNet 205/18 38M 38.7 58.0 41.5 23.3 42.3 50.3
Faster RCNN-DC5 320/16 166M 39.0 60.5 42.3 21.4 43.5 52.5
Faster RCNN-FPN 180/26 42M 40.2 61.0 43.8 24.2 43.5 52.0
Faster RCNN-R101-FPN 246/20 60M 42.0 62.5 45.9 25.2 45.6 54.6

RetinaNet+ 205/18 38M 41.1 60.4 43.7 25.6 44.8 53.6
Faster RCNN-DC5+ 320/16 166M 41.1 61.4 44.3 22.9 45.9 55.0
Faster RCNN-FPN+ 180/26 42M 42.0 62.1 45.5 26.6 45.4 53.4
Faster RCNN-R101-FPN+ 246/20 60M 44.0 63.9 47.8 27.2 48.1 56.0

DETR 86/28 41M 42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5 187/12 41M 43.3 63.1 45.9 22.5 47.3 61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M 44.9 64.7 47.7 23.7 49.5 62.3

Technical details

We train DETR with AdamW (Loshchilov and Hutter, 2019) setting the initial trans-
former’s learning rate to 10−4, the backbone’s to 10−5, and weight decay to 10−4. We
also apply gradient clipping, with a maximal gradient norm of 0.1. All transformer
weights are initialized with Xavier init (Glorot and Y. Bengio, 2010), and the back-
bone is with ImageNet-pretrained ResNet model (He, X. Zhang, et al., 2016) from
TORCHVISION with frozen batchnorm layers. We observe that having the backbone
learning rate roughly an order of magnitude smaller than the rest of the network is
important to stabilize training, especially in the first few epochs. In the transformer,
we also use additive dropout of 0.1 after every multi-head attention and FFN before
layer normalization. For training, we use a linear combination of `1 and GIoU losses
for bounding box regression with λL1 = 5 and λiou = 2 weights respectively. All
models were trained with N = 100 decoder query slots.

We report results with two different backbones: a ResNet-50 and a ResNet-101.
The corresponding models are called respectively DETR and DETR-R101. Following
(Li et al., 2017), we also increase the feature resolution by adding a dilation to the last
stage of the backbone and removing a stride from the first convolution of this stage.
The corresponding models are called respectively DETR-DC5 and DETR-DC5-R101
(dilated C5 stage). This modification increases the resolution by a factor of two,
thus improving performance for small objects, at the cost of a 16x higher cost in the
self-attentions of the encoder, leading to an overall 2x increase in computational cost.
A full comparison of FLOPs of these models, Faster R-CNN and RetinaNet is given
in Table 3.1.

We use scale augmentation, resizing the input images such that the shortest side
is at least 480 and at most 800 pixels while the longest at most 1333 (Wu et al., 2019).
To help learning global relationships through the self-attention of the encoder, we
also apply random crop augmentations during training, improving the performance
by approximately 1 AP. Specifically, a train image is cropped with probability 0.5 to a
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self-attention(430, 600)

self-attention(520, 450)

self-attention(450, 830)

self-attention(440, 1200)

FIGURE 3.4: Encoder self-attention for a set of reference points. The
encoder is able to separate individual instances. Prediction made with

baseline DETR on a validation image.

random rectangular patch which is then resized again to 800-1333. The transformer is
trained with default dropout of 0.1. At inference time, some slots predict empty class.
To optimize for AP, we override the prediction of these slots with the second highest
scoring class, using the corresponding confidence. This improves AP by 2 points
compared to filtering out empty slots. For our ablation experiments we use training
schedule of 300 epochs with a learning rate drop by a factor of 10 after 200 epochs,
where a single epoch is a pass over all training images once. Training the baseline
model for 300 epochs on 16 V100 GPUs takes 3 days, with 4 images per GPU (hence a
total batch size of 64). For the longer schedule used to compare with Faster R-CNN
we train for 500 epochs with learning rate drop after 400 epochs, which improves AP
by 1.5 points.

3.5.1 Comparison with Faster R-CNN and RetinaNet

Transformers are typically trained with Adam or Adagrad optimizers with very long
training schedules and dropout, and this is true for DETR as well. Faster R-CNN,
however, is trained with SGD with minimal data augmentation and we are not aware
of successful applications of Adam or dropout. Despite these differences we attempt
to make our baselines stronger. To align it with DETR, we add generalized IoU (H.
Rezatofighi et al., 2019) to the box loss, the same random crop augmentation and
long training known to improve results (He, Ross B. Girshick, and Dollár, 2019). We
performed a grid search to find the best weights for the losses and the final models
use only GIoU loss with weights 20 and 1 for box and proposal regression tasks
respectively. Results are presented in Table 3.1. In the top section we show results
from Detectron2 Model Zoo (Wu et al., 2019) for models trained with the 3x schedule.
In the middle section we show results (with a “+”) for the same models but trained
with the 9x schedule (109 epochs) and the described enhancements, which in total
adds 1-2 AP. In the last section of Table 3.1 we show the results for multiple DETR
models. To be comparable in the number of parameters we choose a model with 6
transformer and 6 decoder layers of width 256 with 8 attention heads. Like Faster
R-CNN with FPN this model has 41.3M parameters, out of which 23.5M are in ResNet-
50, and 17.8M are in the transformer. Even though both Faster R-CNN and DETR are
still likely to further improve with longer training, we can conclude that DETR can
be competitive with Faster R-CNN with the same number of parameters, achieving
42 AP on the COCO val subset. The way DETR achieves this is by improving APL
(+7.8), however note that the model is still lagging behind in APS (-5.5). DETR-DC5
with the same number of parameters and similar FLOP count has higher AP, but is



3.5. Experiments 51

TABLE 3.2: Effect of encoder size. Each row corresponds to a model
with varied number of encoder layers and fixed number of decoder
layers. Performance gradually improves with more encoder layers.

#layers GFLOPS/FPS #params AP AP50 APS APM APL

0 76/28 33.4M 36.7 57.4 16.8 39.6 54.2
3 81/25 37.4M 40.1 60.6 18.5 43.8 58.6
6 86/23 41.3M 40.6 61.6 19.9 44.3 60.2
12 95/20 49.2M 41.6 62.1 19.8 44.9 61.9

still significantly behind in APS too. Results on ResNet-101 backbone are comparable
as well.

FLOPS computation

Given that the FLOPS for Faster R-CNN depends on the number of proposals in the
image, we report the average number of FLOPS for the first 100 images in the COCO
2017 validation set. We compute the FLOPS with the tool flop_count_operators
from Detectron2 Wu et al., 2019. We use it without modifications for Detectron2
models, and extend it to take batch matrix multiply (bmm) into account for DETR
models.

3.5.2 Ablations

Attention mechanisms in the transformer decoder are the key components which
model relations between feature representations of different detections. In our abla-
tion analysis, we explore how other components of our architecture and loss influence
the final performance. For the study we choose ResNet-50-based DETR model with 6
encoder, 6 decoder layers and width 256. The model has 41.3M parameters, achieves
40.6 and 42.0 AP on short and long schedules respectively, and runs at 28 FPS, simi-
larly to Faster R-CNN-FPN with the same backbone.

Number of encoder layers

We evaluate the importance of global image-level self-attention by changing the
number of encoder layers, and summarize findings in Table 3.2). Without encoder
layers, overall AP drops by 3.9 points, with a more significant drop of 6.0 AP on
large objects. We hypothesize that, by using global scene reasoning, the encoder is
important for disentangling objects. In Figure 3.4, we visualize the attention maps of
the last encoder layer of a trained model, focusing on a few points in the image. The
encoder seems to separate instances already, which likely simplifies object extraction
and localization for the decoder.

Number of decoder layers

We apply auxiliary losses after each decoding layer (see Section 3.4.1), hence, the
prediction FFNs are trained by design to predict objects out of the outputs of every
decoder layer. We analyze the importance of each decoder layer by evaluating the
objects that would be predicted at each stage of the decoding (Fig. 3.5). Both AP
and AP50 improve after every layer, totalling into a very significant +8.2/9.5 AP
improvement between the first and the last layer. With its set-based loss, DETR does
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FIGURE 3.5: AP and AP50 performance after each decoder layer in a
long schedule baseline model. DETR does not need NMS by design,
which is validated by this figure. NMS lowers AP in the final layers,
removing TP predictions, but improves it in the first layers, where

DETR does not have the capability to remove double predictions.

FIGURE 3.6: Visualizing decoder attention for every predicted object
(images from COCO val set). Predictions are made with DETR-DC5
model. Decoder typically attends to object extremities, such as legs

and heads.

not need NMS by design. To verify this we run a standard NMS procedure with
default parameters (Wu et al., 2019) for the outputs after each decoder. NMS improves
performance for the predictions from the first decoder. This can be explained by the
fact that a single decoding layer of the transformer is not able to compute any cross-
correlations between the output elements, and thus it is prone to making multiple
predictions for the same object. In the second and subsequent layers, the self-attention
mechanism over the activations allows the model to inhibit duplicate predictions.
We observe that the improvement brought by NMS diminishes as depth increases. It
hurts AP in the last layers, as it incorrectly removes true positive predictions.

Similarly to the visualization of the attention in the encoder, we visualize decoder
attentions in Fig. 3.6, coloring attention maps for each predicted object in different
colors. We observe that the attention in the decoder fairly local, meaning that it
mostly attends to object extremities such as heads or legs. We hypothesise that after
the encoder has separated instances via global attention, the decoder only needs to
attend to the extremities to extract the class and object boundaries.
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TABLE 3.3: Effect of loss components on AP. We train two models
turning off `1 loss, and GIoU loss, and observe that `1 gives poor
results on its own, but when combined with GIoU improves APM and

APL. Our baseline (last row) combines both losses.

class `1 GIoU AP ∆ AP50 ∆ APS APM APL

X X 35.8 -4.8 57.3 -4.4 13.7 39.8 57.9
X X 39.9 -0.7 61.6 0 19.9 43.2 57.9
X X X 40.6 - 61.6 - 19.9 44.3 60.2

TABLE 3.4: Results for different positional encodings compared to
the baseline (last row), which has fixed sine pos. encodings passed at
every attention layer in both the encoder and the decoder. Learned
embeddings are shared between all layers. Not using spatial positional
encodings leads to a significant drop in AP. Interestingly, passing them
in decoder only leads to a minor AP drop. All these models use learned

output positional encodings.

spatial pos. enc. output pos. enc.
encoder decoder decoder AP ∆ AP50 ∆

none none learned at input 32.8 -7.8 55.2 -6.5
sine at input sine at input learned at input 39.2 -1.4 60.0 -1.6
learned at attn. learned at attn. learned at attn. 39.6 -1.0 60.7 -0.9
none sine at attn. learned at attn. 39.3 -1.3 60.3 -1.4
sine at attn. sine at attn. learned at attn. 40.6 - 61.6 -

Loss ablations

To evaluate the importance of different components of the matching cost and the loss,
we train several models turning them on and off. There are three components to the
loss: classification loss, `1 bounding box distance loss, and GIoU H. Rezatofighi et al.,
2019 loss. The classification loss is essential for training and cannot be turned off, so
we train a model without bounding box distance loss, and a model without the GIoU
loss, and compare with baseline, trained with all three losses. Results are presented
in Table 3.3. GIoU loss on its own accounts for most of the model performance, losing
only 0.7 AP to the baseline with combined losses. Using `1 without GIoU shows
poor results. We only studied simple ablations of different losses (using the same
weighting every time), but other means of combining them may achieve different
results.

Importance of FFN

FFN inside tranformers can be seen as 1× 1 convolutional layers, making encoder
similar to attention augmented convolutional networks (Bello et al., 2019). We attempt
to remove it completely leaving only attention in the transformer layers. By reducing
the number of network parameters from 41.3M to 28.7M, leaving only 10.8M in the
transformer, performance drops by 2.3 AP, we thus conclude that FFN are important
for achieving good results.

Importance of positional encodings

There are two kinds of positional encodings in our model: spatial positional encod-
ings and output positional encodings (object queries). We experiment with various
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FIGURE 3.7: Visualization of all box predictions on all images from
COCO 2017 val set for 20 out of total N = 100 prediction slots in
DETR decoder. Each box prediction is represented as a point with
the coordinates of its center in the 1-by-1 square normalized by each
image size. The points are color-coded so that green color corresponds
to small boxes, red to large horizontal boxes and blue to large vertical
boxes. We observe that each slot learns to specialize on certain areas
and box sizes with several operating modes. We note that almost
all slots have a mode of predicting large image-wide boxes that are

common in COCO dataset.

combinations of fixed and learned encodings, see results in appendix. Output posi-
tional encodings are required and cannot be removed, so we experiment with either
passing them once at decoder input or adding to queries at every decoder attention
layer. In the first experiment we completely remove spatial positional encodings
and pass output positional encodings at input and, interestingly, the model still
achieves more than 32 AP, losing 7.8 AP to the baseline. Then, we pass fixed sine
spatial positional encodings and the output encodings at input once, as in the original
transformer (Vaswani et al., 2017), and find that this leads to 1.4 AP drop compared
to passing the positional encodings directly in attention. Learned spatial encodings
passed to the attentions give similar results. Surprisingly, we find that not passing
any spatial encodings in the encoder only leads to a minor AP drop of 1.3 AP. When
we pass the encodings to the attentions, they are shared across all layers, and the
output encodings (object queries) are always learned.

Given these ablations, we conclude that transformer components: the global
self-attention in encoder, FFN, multiple decoder layers, and positional encodings, all
significantly contribute to the final object detection performance.

3.5.3 Analysis

In this section, we probe the model more in depth, to gain an understanding of its
inner workings and its limits.

Decoder output slot analysis

In Fig. 3.7 we visualize the boxes predicted by different slots for all images in COCO
2017 val set. DETR learns different specialization for each query slot. We observe that
each slot has several modes of operation focusing on different areas and box sizes.
In particular, all slots have the mode for predicting image-wide boxes (visible as the
red dots aligned in the middle of the plot). We hypothesize that this is related to the
distribution of objects in COCO.

Generalization to unseen numbers of instances

Some classes in COCO are not well represented with many instances of the same
class in the same image. For example, there is no image with more than 13 giraffes
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FIGURE 3.8: In (a), we study the generalization to higher number
of instances. Even though no image in the training set has more
than 13 giraffes, DETR has no difficulty generalizing to 24 and more
instances.In (b), we analyze the number of instances of various classes
missed by DETR depending on how many are present in the image
We report the mean and the standard deviation. As the number of
instances gets close to 100, DETR starts saturating and misses more

and more objects.

in the training set. We create a synthetic image2 to verify the generalization ability
of DETR (see Figure 3.8a). Our model is able to find all 24 giraffes on the image
which is clearly out of distribution. This experiment confirms that there is no strong
class-specialization in each object query.

By design, DETR cannot predict more objects than it has query slots, i.e. 100 in our
experiments. We further analyze the behavior of DETR when approaching this limit.
We select a canonical square image of a given class, repeat it on a 10× 10 grid, and
compute the percentage of instances that are missed by the model. To test the model
with less than 100 instances, we randomly mask some of the cells. This ensures that
the absolute size of the objects is the same no matter how many are visible. To account
for the randomness in the masking, we repeat the experiment 100 times with different
masks. The results are shown in Fig.3.8b. The behavior is similar across classes,
and while the model detects all instances when up to 50 are visible, it then starts
saturating and misses more and more instances. Notably, when the image contains
all 100 instances, the model only detects 30 on average, which is less than if the image
contains only 50 instances that are all detected. The counter-intuitive behavior of
the model is likely because the images and the detections are far from the training
distribution. Indeed, there are very few example images with a lot of instances of a
single class. However, we note that it is difficult to disentangle, from this experiment,
two types of out-of-domain generalization: the aspect of the image itself (a synthetic
grid, with masked-out, black cells), and the number of instances visible. But since
COCO doesn’t contain images with many instances of a single class, this type of
experiment represents our best effort to understand whether query objects overfit
the label and position distribution of the dataset. Overall, the experiments suggests
that the model does not overfit on these distributions since it yields near-perfect
detections up to 50 objects.

2Base picture credit: https://www.piqsels.com/en/public-domain-photo-jzlwu
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FIGURE 3.9: Illustration of the panoptic head. A binary mask is gener-
ated in parallel for each detected object, then the masks are merged

using pixel-wise argmax.

3.5.4 DETR for panoptic segmentation

Panoptic segmentation (Kirillov, He, et al., 2019) has recently attracted a lot of at-
tention from the computer vision community. Similarly to the extension of Faster
R-CNN (S. Ren et al., 2015b) to Mask R-CNN (He, Gkioxari, et al., 2017), DETR
can be naturally extended by adding a mask head on top of the decoder outputs.
In this section we demonstrate that such a head can be used to produce panoptic
segmentation (Kirillov, He, et al., 2019) by treating stuff and thing classes in a unified
way. We perform our experiments on the panoptic annotations of the COCO dataset
that has 53 stuff categories in addition to 80 things categories.

We train DETR to predict boxes around both stuff and things classes on COCO,
using the same recipe. Predicting boxes is required for the training to be possible,
since the Hungarian matching is computed using distances between boxes. We also
add a mask head which predicts a binary mask for each of the predicted boxes,
see Figure 3.9. It takes as input the output of transformer decoder for each object
and computes multi-head (with M heads) attention scores of this embedding over
the output of the encoder, generating M attention heatmaps per object in a small
resolution. To make the final prediction and increase the resolution, an FPN-like
architecture is used. We refer to the supplement for more details. The final resolution
of the masks has stride 4 and each mask is supervised independently using the
DICE/F-1 loss (Milletari, Navab, and Ahmadi, 2016) and Focal loss (T.-Y. Lin, Goyal,
et al., 2017).

The mask head can be trained either jointly, or in a two steps process, where we
train DETR for boxes only, then freeze all the weights and train only the mask head
for 25 epochs. Experimentally, these two approaches give similar results, we report
results using the latter method since it is less computationally intensive.

To predict the final panoptic segmentation we simply use an argmax over the
mask scores at each pixel, and assign the corresponding categories to the resulting
masks. This procedure guarantees that the final masks have no overlaps and thus
DETR does not require a heuristic (Kirillov, He, et al., 2019) to align different masks.

Training details

We train DETR, DETR-DC5 and DETR-R101 models following the recipe for bounding
box detection to predict boxes around stuff and things classes in COCO dataset. The
new mask head is trained for 25 epochs (see supplementary for details). During
inference we first filter out the detection with a confidence below 85%, then compute
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TABLE 3.5: Comparison with the state-of-the-art methods UP-
SNet (Xiong et al., 2019) and Panoptic FPN (Kirillov, Ross B. Girshick,
et al., 2019) on the COCO val dataset We retrained PanopticFPN with
the same data-augmentation as DETR, on a 18x schedule for fair com-
parison. UPSNet uses the 1x schedule, UPSNet-M is the version with

multiscale test-time augmentations.

Model Backbone PQ SQ RQ PQth SQth RQth PQst SQst RQst AP

PanopticFPN+ R50 42.4 79.3 51.6 49.2 82.4 58.8 32.3 74.8 40.6 37.7
UPSnet R50 42.5 78.0 52.5 48.6 79.4 59.6 33.4 75.9 41.7 34.3
UPSnet-M R50 43.0 79.1 52.8 48.9 79.7 59.7 34.1 78.2 42.3 34.3
PanopticFPN+ R101 44.1 79.5 53.3 51.0 83.2 60.6 33.6 74.0 42.1 39.7
DETR R50 43.4 79.3 53.8 48.2 79.8 59.5 36.3 78.5 45.3 31.1
DETR-DC5 R50 44.6 79.8 55.0 49.4 80.5 60.6 37.3 78.7 46.5 31.9
DETR R101 45.1 79.9 55.5 50.5 80.9 61.7 37.0 78.5 46.0 33.0
DETR-DC5 R101 45.6 80.0 56.1 50.9 80.9 62.2 37.5 78.6 46.8 33.1

the per-pixel argmax to determine in which mask each pixel belongs. We then collapse
different mask predictions of the same stuff category in one, and filter the empty ones
(less than 4 pixels).

FIGURE 3.10: Qualitative results for panoptic segmentation generated
by DETR-R101. DETR produces aligned mask predictions in a unified
manner for things and stuff. Images are taken from COCO val set (ids

969, 2427, 3499).

Main results

Qualitative results are shown in Figure 3.10 and Figure 3.11. In table 3.5 we compare
our unified panoptic segmenation approach with several established methods that
treat things and stuff differently. We report the Panoptic Quality (PQ) and the break-
down on things (PQth) and stuff (PQst). We also report the mask AP (computed on
the things classes), before any panoptic post-treatment (in our case, before taking
the pixel-wise argmax). We show that DETR outperforms published results on
COCO-val 2017, as well as our strong PanopticFPN baseline (trained with same
data-augmentation as DETR, for fair comparison). The result break-down shows that
DETR is especially dominant on stuff classes, and we hypothesize that the global
reasoning allowed by the encoder attention is the key element to this result. For things
class, despite a severe deficit of up to 8 mAP compared to the baselines on the mask
AP computation, DETR obtains competitive PQth. We also evaluated our method on
the test set of the COCO dataset, and obtained 46 PQ. We hope that our approach will
inspire the exploration of fully unified models for panoptic segmentation in future
work.
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(A) Failure case with overlapping objects. PanopticFPN misses one plane entirely, while DETR fails to
accurately segment 3 of them.

(B) Things masks are predicted at full resolution, which allows sharper boundaries than PanopticFPN

FIGURE 3.11: Comparison of panoptic predictions. From left to right:
Ground truth, PanopticFPN with ResNet 101, DETR with ResNet 101

3.6 Conclusion

We presented DETR, a new design for object detection systems based on transformers
and bipartite matching loss for direct set prediction. The approach achieves com-
parable results to an optimized Faster R-CNN baseline on the challenging COCO
dataset. DETR is straightforward to implement and has a flexible architecture that is
easily extensible to panoptic segmentation, with competitive results. In addition, it
achieves significantly better performance on large objects, likely due to the processing
of global information performed by the self-attention.

This new design for detectors also comes with new challenges, in particular re-
garding training, optimization and performances on small objects. Current detectors
required several years of improvements to cope with similar issues, and we expect
future work to successfully address them for DETR.
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Chapter 4

Conclusion

In this thesis, we have made two main contributions. In the first one, we explored
multi-agent collaborative problems, and we showed that borrowing some tools
from the operational research community, in the form of centralized optimization
problems, and marrying them with the adequate neural networks allow to get the
best of both worlds and obtain a class of solution that can structurally generalize
better than their fully neural counter-parts. This paves the way for exciting real
world applications, from teams of robots playing soccer to fleets of quadcopters
coordinating their flight patterns. In the future, an exciting avenue of research is
enable this seamless collaboration even when the other agents are unknown, and
especially if they are human.

The second contributions explored the opportunity to develop object-centric mod-
els for object detection, thus breaking from mainstream approaches. It showed that
with little hand-crafted knowledge, we can indeed achieve competitive detection per-
formance, using readily available building blocks such as Resnets and Transformers.
Beyond detection, an object-centric model such as DETR could enable exciting new
developments in future works, by providing an end-to-end pipeline to all the down-
stream tasks that require reasoning about objects, such as object tracking, keypoint
estimation, forward prediction. Its similarity with popular speech detection models
as well as neural language processing models could allow bridging the gap between
these modalities, bringing us closer to a model that can jointly reason about all of
them at once.
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Appendix A

DETR minimal inference code in
Pytorch

To demonstrate the simplicity of the approach, we include inference code with Py-
Torch and Torchvision libraries in Listing 1. The code runs with Python 3.6+, PyTorch
1.4 and Torchvision 0.5. Note that it does not support batching, hence it is suitable
only for inference or training with DistributedDataParallel with one image per GPU.
Also note that for clarity, this code uses learnt positional encodings in the encoder
instead of fixed, and positional encodings are added to the input only instead of
at each transformer layer. Making these changes requires going beyond PyTorch
implementation of transformers, which hampers readability. Refer to the official
source code for the full implementation.
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1 import torch
2 from torch import nn
3 from torchvision.models import resnet50
4

5 class DETR(nn.Module):
6

7 def __init__(self, num_classes, hidden_dim, nheads,
8 num_encoder_layers, num_decoder_layers):
9 super().__init__()

10 # We take only convolutional layers from ResNet-50 model
11 self.backbone = nn.Sequential(*list(resnet50(pretrained=True).children())[:-2])
12 self.conv = nn.Conv2d(2048, hidden_dim, 1)
13 self.transformer = nn.Transformer(hidden_dim, nheads,
14 num_encoder_layers, num_decoder_layers)
15 self.linear_class = nn.Linear(hidden_dim, num_classes + 1)
16 self.linear_bbox = nn.Linear(hidden_dim, 4)
17 self.query_pos = nn.Parameter(torch.rand(100, hidden_dim))
18 self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
19 self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
20

21 def forward(self, inputs):
22 x = self.backbone(inputs)
23 h = self.conv(x)
24 H, W = h.shape[-2:]
25 pos = torch.cat([
26 self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),
27 self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),
28 ], dim=-1).flatten(0, 1).unsqueeze(1)
29 h = self.transformer(pos + h.flatten(2).permute(2, 0, 1),
30 self.query_pos.unsqueeze(1))
31 return self.linear_class(h), self.linear_bbox(h).sigmoid()
32

33 detr = DETR(num_classes=91, hidden_dim=256, nheads=8, num_encoder_layers=6, num_decoder_layers=6)
34 detr.eval()
35 inputs = torch.randn(1, 3, 800, 1200)
36 logits, bboxes = detr(inputs)

LISTING 1: DETR PyTorch inference code. For clarity it uses learnt
positional encodings in the encoder instead of fixed, and positional
encodings are added to the input only instead of at each transformer
layer. Making these changes requires going beyond PyTorch imple-
mentation of transformers, which hampers readability. The entire
code to reproduce the experiments will be made available before the

conference.
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MOTS CLÉS

Apprentissage profond, système multi-agent, Apprentissage par renforcement, vision par ordinateur, détec-
tion d’objets

RÉSUMÉ

Cette thèse explore l’utilisation de fonctions de perte structurées dans deux domaines distincts. Dans la première contri-
bution, nous nous intéressons à l’apprentissage par renforcement multi-agent, dans le contexte d’environnements qui peu-
vent être séparés en plusieurs tâches faiblement dépendantes. On s’attache à trouver des politiques qui se généralisent
à plus d’agents et de tâches que les scénarios d’entraînement, permettant ainsi d’augmenter la taille des problèmes
qui peuvent être approchés. Notre solution affecte les agents aux tâches en résolvant un problème d’optimisation cen-
tralisé dont la fonction objectif est paramétrée par un réseau de neurones. On montre que l’expressivité du problème
d’optimisation et celle du réseau de neurones influencent la capacité du modèle à généraliser, et qu’avec les bons choix,
la politique peut généraliser à plus de 5 fois plus d’agents que pendant l’entraînement.
Dans la seconde contribution, nous formulons la détection d’objets comme un problème de prédiction d’ensemble, et nous
concevons un modèle dans cette optique. Notre solution utilise un réseau convolutionel profond, comme souvent en vision
par ordinateur, et un encodeur-décodeur de Transformer, une architecture qui a récemment permis d’importants progrès
en traitement du langage. Remarquablement, notre solution n’incorpore que peu de biais inductif, et ne nécessite donc
pas de composants spécifiques à la détection d’objets, tels que les ancres de détection. Avec un nombre de paramètres
comparable, notre modèle égale la performance de modèles de référence, tels que Retinanet et Faster R-CNN sur le
dataset de détection COCO. Pour finir, nous montrons que la méthode peut naturellement être étendue à la segmentation
panoptique, où elle surpasse les approches concurrentes, démontrant ainsi sa généralité.

ABSTRACT

This thesis explores the use of structured losses in two different domains. In the first contribution, we focus on multi-agent
reinforcement learning (MARL), in environments that can be separated into several loosely coupled tasks. We set out to
find policies that can generalize well to more agents and tasks than seen during training, effectively scaling up the size of
problems that can be tackled. Our solution assigns agents to tasks by approximately solving a centralized optimization
problem whose objective function is parameterized by a neural network. We study how the expressivity of the optimization
problem and that of the neural network influence the generalization capabilities of the model, and show that with the right
choices, the policy can generalize to more than 5 times more agents than seen during training.
In the second contribution we formulate object detection as a set prediction problem, and design a model that can
effectively tackle this formulation. Our solution leverages a deep convolutional network, as is customary in computer vision,
and a transformer encoder-decoder network, an architecture that has enabled significant progress in natural language
processing. Crucially, our solution incorporates minimal inductive bias, thereby alleviating the need for hand-designed
detection-specific components such as anchors or non-maximal suppression. With a comparable parameter budget, our
model matches the performance of well-established and highly-optimized baselines such as Retinanet and Faster R-CNN
on the challenging COCO detection dataset. Finally, we show that the method can be naturally extended to perform
panoptic segmentation, where it outperforms competing approaches, thus showing the versatility of the model.
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