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Résumé en français

Présentation du contexte

Au cours de ces dernières années, le développement des nouvelles technologies et la digi-
talisation ont contribué à une forte augmentation de la quantité de données personnelles
collectées. Chaque jour, un grand nombre de données sur chacun d’entre nous sont ré-
coltées, stockées et analysées. Cela inclut des données médicales, nos historiques de nav-
igation internet, nos habitudes d’achat, notre activité sur les réseaux sociaux ou encore
des informations de localisation de smartphones... La collecte et l’analyse de ces données
peuvent profiter à la société. Par exemple, les données de santé peuvent permettre de faire
avancer la recherche, et l’analyse de données personnelles par des entreprises leur permet
de cibler plus précisément leur clientèle ce qui permet à chaque individu de bénéficier
de l’amélioration et du développement de nouveaux services. Cependant, les gens sont
de plus en plus soucieux de la protection de leur vie privée et peuvent être réticents à
l’idée de partager leurs données (parfois sensibles) avec d’autres. Quant aux entreprises,
elles sont soumises à une réglementation de plus en plus stricte en matière de collecte,
de traitement et de partage des données, voir par exemple la "Loi pour une République
numérique" (France) votée en octobre 2016 et le Règlement général sur la protection des
données (UE) qui est entré en vigueur en mai 2018.
Ce contexte souligne la nécessité de développer des méthodes pour manipuler, transformer
une base de données en une autre base de données qu’on dira privatisée (ou confidentielle),
de telle sorte que la vie privée de chaque individu dans la base de données soit préservée
mais aussi de telle sorte qu’il soit encore possible de tirer des conclusions pertinentes à
partir de la base de données privatisée. Parmi les nombreux travaux de recherche engen-
drés par ce problème, la confidentialité différentielle s’est démarquée en fournissant un
cadre mathématique solide qui offre des garanties rigoureuses en matière de respect de la
vie privée. Depuis l’article fondateur de Cynthia Dwork et ses co-auteurs en 2006 [33], la
notion de confidentialité différentelle a été largement adoptée en informatique, cryptogra-
phie, machine learning et en statistique.
Récemment, des chercheurs se sont intéressés à des problèmes d’inférence statistique sous

11



Introduction

contraintes de confidentialité différentielle, voir par exemple [67, 68, 80, 28, 29, 30, 81,
82, 17, 15]. Ces travaux ont pour buts de quantifier le prix à payer (en terme de vitesse
d’estimation) pour avoir des garanties de protection de la vie privée, et de développer
des mécanismes de privatisation et des procédures d’estimation optimaux. Cette thèse
s’inscrit dans cette ligne de recherche.

Confidentialité différentielle

Dans cette thèse, on s’intéresse à des problèmes d’inférence statistique sous des contraintes
de confidentialité différentielle locale, mais la confidentialité différentielle a d’abord été
introduite dans un cadre global dans [33].

Dans les deux cas, n individus observent chacun une variable aléatoire Xi et autorisent
ces données à être utilisées à des fins d’analyse statistique à condition qu’on leur fournisse
des garanties solides que leur vie privée sera protégée. Dans le cadre global, ces n individus
font confiance à une même autorité qui collecte les données X1, . . . , Xn et qui génère,
à partir de cette information complète, des données privatisées Z = (Z1, . . . , Zk) qui
préservent la vie privée des n individus. Notons que k peut être différent de n. Seules ces
données privatisées sont communicables et disponibles pour l’analyse statistique. Notons
respectivement (X n,An) et (Z,B) les espaces mesurables dans lesquels X = (X1, . . . , Xn)
et Z prennent leurs valeurs. La loi conditionnelle de Z sachant X est notée Q(· | X),
c’est à dire P(Z ∈ A | X = x) = Q(A | X = x), où Q(· | ·) : B × X n → [0, 1] est un
noyau de Markov. Pour α ∈ [0,∞), on dit ([33]) que Q, qu’on appellera mécanisme de
privatisation, garantit la α-confidentialité différentielle (globale) si

Q(A | x) ≤ eαQ(A | x′), ∀A ∈ B, ∀x, x′ ∈ X n : dH(x, x′) = 1, (1)

où dH(x, x′) := #{i = 1, . . . , n : xi 6= x′i} est la distance de Hamming entre x et x′, c’est
à dire le nombre de coordonnées de x qui diffèrent de celles de x′. Cette définition assure
que les mesures de probabilité Q(· | x), x ∈ X n, sont mutuellement absolument continues.
Ainsi, (1) peut se réécrire

e−α ≤ Q(A | x)
Q(A | x′) ≤ eα, ∀A ∈ B, ∀x, x′ ∈ X n : dH(x, x′) = 1,

avec la convention 0
0 = 1. Cette contrainte impose que la distribution de Z sachant X
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Introduction

ne dépend pas trop d’un individu en particulier dans la base de données. Intuitivement,
si la modification d’une entrée dans la base de données X ne modifie pas beaucoup la
distribution de Z sachant X alors il devrait être difficile de deviner si une personne donnée
est dans la base de données ou non, protégeant ainsi la vie privée de chaque individu dans
la base de données (voir Section 1.2.2 ou [80] pour plus de détails). Notons que plus α est
petit, plus e−α et eα sont proches de 1, plus la contrainte de confidentialité est forte.

Dans cette thèse, on s’intéressera plutôt à la confidentialité différentielle locale. Dans
la configuration locale, chacun des n individus peut générer une version privatisée de ses
véritables données sur sa propre machine, et seules les données privatisées sont collectées
puis analysées. L’avantage est que les propriétaires des données n’ont pas à partager leurs
véritables données avec qui que ce soit et qu’aucune tierce partie de confiance n’est néces-
saire. Cependant, un certain degré d’interaction entre les n individus peut-être autorisé.
En toute généralité, les données privatisées Z1, . . . , Zn peuvent être générées les unes après
les autres, et l’individu i peut utiliser, en plus de sa vraie donnée Xi, les données qui ont
déjà été privatisées Z1, . . . , Zi−1, pour générer Zi. On parle alors d’interaction séquen-
tielle. Précisément, les données Z1, . . . , Zn sont obtenues de la manière suivante : sachant
Xi = xi et Z1 = z1, . . . , Zi−1 = zi−1, le i-ème individu génère

Zi ∼ Qi(· | xi, z1, . . . , zi−1)

pour un noyau de Markov Qi : B × (X × Z i−1) → [0, 1], où (X ,A) and (Z,B) sont les
espaces mesurables auxquels appartiennent respectivement Xi et Zi, i = 1, . . . , n. On dira
alors que la suite de noyaux de Markov (Qi)i=1,...,n garantit la confidentialité différentielle
locale de niveau α si

sup
A∈B

sup
z1,...,zi−1∈Z

sup
xi,x′i∈X

Qi(A | xi, z1, . . . , zi−1)
Qi(A | x′i, z1, . . . , zi−1) ≤ eα, pour tout i = 1, . . . , n. (2)

Il se peut qu’aucune interaction entre les n individus ne soit autorisée. Dans ce cas, chaque
individu génère une version privatisée Zi de sa vraie donnée Xi indépendamment de tous
les autres individus. Précisément, sachant Xi = xi, le i-ème individu génère

Zi ∼ Qi(· | xi),
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Introduction

pour un noyau de Markov Qi : B × X → [0, 1]. La contrainte (2) s’écrit alors

sup
A∈B

sup
xi,x′i∈X

Qi(A | xi)
Qi(A | x′i)

≤ eα, pour tout i = 1, . . . , n,

et on parlera de confidentialité différentielle locale non-interactive. Le scénario non inter-
actif semble être plus attrayant en pratique puisque dans ce cadre, la collecte de données
peut être entièrement parallélisée. Toutefois, le fait de permettre une interaction séquen-
tielle entre les n individus offre une plus grande souplesse dans la construction des mécan-
ismes de privatisation et peut parfois conduire à de meilleures vitesses d’estimation que
dans le cadre non interactif. C’est par exemple le cas pour l’estimation de l’intégrale du
carré d’une densité de probabilité [15]. Nous renvoyons le lecteur à [43] pour une meilleure
compréhension du rôle de l’interactivité pour la confidentialité différentielle locale.

Résumé des contributions

Dans cette thèse, nous nous intéressons à certains problèmes d’estimation, de sélection de
variables et de tests sous la contrainte que seules des données privatisées via un mécan-
isme de privatisation garantissant la confidentialité différentielle locale de niveau α sont
disponibles pour l’inférence.

Une première contribution porte sur l’estimation non-paramétrique d’une densité de
probabilité à support inclus dans un compact [−T, T ]. Dans un cadre minimax prenant en
compte les contraintes de confidentialité différentielle locale, nous donnons des bornes in-
férieures sur la vitesse de convergence sur les ellipsoïdes de Besov Bspq(L) pour le risque Lr.
Nous complétons ces résultats par des bornes supérieures qui coïncident avec les bornes
inférieures à un facteur (au plus) logarithmique près. Plus précisément, nous proposons
des mécanismes de privatisation qui nous permettent de construire un estimateur linéaire
par ondelettes qui est optimal dans le cas p ≥ r, mais aussi un estimateur non linéaire
par ondelettes avec un seuillage correctement choisi qui est optimal (à un facteur loga-
rithmique près) dans tous les cas. De plus, ce deuxième estimateur est adaptatif au sens
où il ne dépend pas des paramètres s, p, q et L de l’espace de Besov auquel appartient
f . A notre connaissance, nous sommes les premiers à nous être intéressés à des prob-
lèmes d’adaptation en estimation sous contraintes de confidentialité différentielle locale.
Nos résultats nous permettent de mettre en évidence un changement de régime dans les
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vitesses d’estimation (connu sous le nom d’effet coude) analogue à celui observé dans le
cadre classique (i.e. sans contrainte de confidentialité, [24, 41]) mais situé à un niveau dif-
férent par rapport au cadre classique. De plus, nous quantifions à quel point les vitesses
d’estimation sont déteriorées à cause des contraintes de confidentialité. Ces résultats ont
fait l’objet d’une publication dans le journal Bernoulli [13] qui constitue le Chapitre 2 de
ce manuscrit.

Une deuxième contribution est consacrée à un problème de sélection de variables.
Dans le Chapitre 3, on s’intéresse à l’identification du support de l’espérance d’une vari-
able aléatoire suivant une loi normale d-dimensionnelle sous la contrainte que seules des
versions privatisées des données sont disponibles pour l’inférence. Pour cela, nous regar-
dons une modification de la théorie minimax classique prenant en compte les contraintes
de confidentialité différentielle locale. Nous donnons des bornes inférieures et des bornes
supérieures non-asymptotiques sur le risque minimax d’identification du support, pour
le risque lié à la distance de Hamming, sur des classes de vecteurs s-éparses (ou parci-
monieux) dont les coordonnées non nulles sont séparées de 0 par une constante a > 0.
Comme corollaires, nous obtenons des conditions nécessaires et des conditions suffisantes
pour que l’identification presque parfaite et l’identification exacte du support soient pos-
sibles. Lorsque l’on se restreint à l’utilisation de mécanismes non-interactifs agissant inde-
pendamment sur chaque coordonnée, notre borne inférieure montre que, contrairement à
ce qui a été observé dans le cadre classique non privé [12], l’identification presque parfaite
et l’identification exacte du support sont impossibles peu importe la valeur de a dans le
régime nα2/d2 . 1. Cependant, dans le régime nα2/d2 � log(nα2/d2) log(d), nous ex-
hibons une valeur critique a∗ (à un facteur logarithmique près) telle que l’identification
exacte du support est possible pour tout a � a∗ et impossible pour a ≤ a∗. Un résultat
similaire est obtenu pour l’identification presque parfaite du support. Nous montrons que
ces résultats peuvent être améliorés quand on autorise l’utilisation de n’importe quel mé-
canisme non-interactif garantissant la α-confidentialité différentielle locale, en ce sens que
la transition de phase a alors lieu pour une plus petite valeur critique. Cette thématique
de recherche a donné lieu à la rédaction d’un article qui a été soumis [14].

Une troisième contribution porte sur un problème de tests. Dans le chapitre 4, nous
supposons que les données sont générées à partir d’une densité de probabilité f appar-
tenant à une clase de Hölder H(β, L), 0 < β ≤ 1. Etant donné f0 ∈ H(β, L) on souhaite
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tester H0 : f ≡ f0 contre l’alternative

H1(ρ) : f ∈ H(β, L) et ‖f − f0‖1 ≥ ρ,

sous la contrainte que seules des données privatisées via un mécanisme de privatisation
garantissant la confidentialité différentielle locale de niveau α sont disponibles pour con-
struire une procédure de test. On s’intéresse aux vitesses minimax de séparation quand on
autorise seulement l’utilisation de mécanismes de privatisation non interactifs, puis quand
on autorise aussi l’utilisation des mécanismes séquentiellement interactifs. Nous proposons
des procédures de tests dont l’analyse nous permet d’obtenir des bornes supérieures sur ces
vitesses minimax. Ces résultats sont complétés par des bornes inférieures. En comparant
les bornes obtenues, nous montrons que les mécanismes de privatisation et les tests pro-
posés sont optimaux dans le scenario séquentiellement interactif, et optimaux à un facteur
logarithmique près dans le cadre non interactif, pour un large choix d’hypothèses nulles
f0, incluant la densité de probabilité d’une loi uniforme, normale, Beta, de Cauchy, de
Pareto, ou encore exponentielle. Nos résultats nous permettent de quantifier à quel point
les vitesses minimax de séparation sont dégradées par rapport au cadre classique de [7]. En
outre, on observe que permettre l’utilisation de mécanismes séquentiellement interactifs
améliore les résultats obtenus en ne considérant que des mécanismes non interactifs. Ce
phénomène, qui n’a pas lieu pour de nombreux problèmes d’estimation (voir par exemple
[30],[63] et le Chapitre 2), a déjà été observé pour des problèmes de tests dans [10] et [15].
Un article sur cet axe de recherche a été soumis [25].
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Chapter 1

Introduction

In recent years, the development of new technologies and digitalisation have contributed
to a sharp increase in the amount of personal data collected. Every day, a large amount of
data about each of us is collected, stored and analysed. This includes medical records, in-
ternet browsing history, shopping habits, social media activity, location information from
smartphones... The collection and analysis of such data can benefit society. For instance,
health data can be used to further medical research, and the analysis of personal data by
companies enable them to target their customers more precisely, allowing each individual
to benefit from the improvement and development of new services. However, people are
more and more concerned with the protection of their privacy and might be reluctant to
share their (sometimes sensitive) data with others. As for companies, they are subject to
stricter and stricter regulations on the collection, processing and sharing of data, see for
instance the "Loi pour une République numérique" (France) voted on October 2016 and
the General Data Protection Regulation (EU) which came into effect in May 2018.
This context highlights the necessity to develop mechanisms that take as input a database
and release a transformed database such that the privacy of each individual in the database
is preserved but also such that we can still draw relevant conclusions from the transformed
database. From the vast literature that this problem produced, differential privacy has
emerged as a strong mathematical scheme that provides rigorous privacy guarantees. Since
the seminal paper [33], differential privacy has been widely adopted by the computer sci-
ence, cryptography, machine learning, and statistics communities.
Recently, some papers have studied statistical inference problems under differential pri-
vacy constraints. Early work on this topic includes [80, 67, 68]. The first minimax rates of
convergence under differential privacy constraints were recently established in [28, 29, 30,
17]. Other papers such as [81, 82, 63, 15] also deal with minimax estimation problems un-
der differential privacy constraints, and [51, 10, 15] tackle minimax goodness-of-fit testing
problems. All these papers aim at determining the price (in terms of estimation or testing
rates) to be paid for privacy protection and at developing optimal privacy mechanisms.
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This thesis enters into this line of research.
After discussing the pitfalls of natural but maybe naive approaches to privacy preserv-
ing data analysis, we introduce the notion of differential privacy. We first present global
differential privacy which requires a trusted third party that collects the true data and
who is responsible for the release of a privatized output that preserves the privacy of the
individuals to which belong the data. We then introduce local differential privacy, setting
which will be considered in the rest of the thesis and in which data are privatized before
being collected so that the true data are never released. Finally, we present our contribu-
tions to locally differentially private minimax adaptive estimation of probability densities,
minimax variable selection and minimax goodness-of-fit testing. These contributions will
then be developed respectively in Chapter 2, Chapter 3 and Chapter 4.

1.1 First steps towards privacy preserving data anal-

ysis

1.1.1 De-identification

A commonly used approach toward data privacy protection is de-identification, which
consists in removing from the dataset names and obvious identifiers such as adresses,
phone numbers, e-mail adresses, social security numbers, etc. The aim of this technique
is to make individuals in the dataset not identifiable. However, there have been a number
of cases where persons in a de-identified database have been re-identified.

In 2006 an employee of the internet company AOL released a dataset consisting in a
list of 20 million search queries made by about 657000 users over a three-month period,
with the hope that it would benefit academic researchers. In order to protect the users’
anonyimity, identifiers such as names and IP adresses were removed and replaced by
identifier numbers. However, journalists of The New York Times have succeeded in re-
identifying an AOL user by analysing her internet searches [9]. This example shows that
a person can be re-identified thanks to the richness of the unmasked data.

People in a de-identified dataset can also be re-identified by comparing the de-identified
records with records in a different dataset that has not been de-identified. For instance,
L. Sweeney used a combination of three attributes (ZIP code, birth date end gender)
to re-identify the medical records of the governor of Massachussetts by comparing a de-
identified medical dataset with a voter registration list [71]. Another famous example
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of de-identification is given by the Netflix Prize. In October 2006, Netflix launched a
competition for improving its movie recommendation system [39]. The company offered
one million dollars to the first person who would be able to propose a recommendation
system that is more accurate than the one they used at that time by at least 10 percent. To
help contestants, Netflix gave them access to a database containing more than 100 million
ratings (and the dates they were given) collected between October, 1998 and December,
2005. These ratings were given by over 480 thousand customers and concern nearly 18
thousand movies. In order to protect the privacy of its customers, Netflix removed all
their personal information and perturbed some ratings (some ratings have been deleted,
some alternative ratings and dates have been inserted and some rating dates have been
modified) [59]. However, two researchers from the University of Texas at Austin have
managed to re-identify two Netflix customers by cross-correlating non-anonymous records
from the Internet Movie Database with Netflix de-identified records [56]. Even if these
data do not seem sensitive at first glance, these two researchers explain that it is possible
to learn sensitive information about a person’s political orientation, religious views or
even sexual preferences by analyzing the ratings and comments he gave to some movies.

Although de-identification is commonly used, successful re-identifications such as the
ones mentioned above can cast doubt on its effectiveness. An attractive property of dif-
ferential privacy is that it neutralizes attempts to re-identify people using auxiliary infor-
mation such as the ones mentioned above.

1.1.2 Data aggregation, summary statistics

Data aggregation is a process where data is gathered and expressed in a summary form for
statistical analysis. For instance, a company may decide to make a survey to see if people
prefer their brand or their competitors’ brands. To this aim, they can ask a large number
of people which brand they prefer among a given set of brands. They can also ask for
other pieces of information such as their names, gender, adress, or age. However, they will
present the results to the manager in a summary form. They may only present the counts
of votes obtained for each brand to determine which is the most popular. They might also
include additional information to determine which brand is the most popular by sexe,
age range or in certain regions, but the exact pieces of information obtained for each
individual that participated to the survey are never revealed. A common intuition is that
privacy of individuals can not be compromised if the data only shows results for groups
of individuals. Thus, releasing aggregated data and summary statistics is considered by
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many to be safe. However, this conception has to be mitigated.
To illustrate this, let’s take an example given by Dwork and Roth [31]. Suppose that

Mr. X is in a certain medical database and you’re allowed to ask some questions about
the database that can be answered by summary statistics. You ask "How many people in
the database have cancer ?" The result seems to protect the privacy of each individual in
the database. Now, ask "How many people, not named X, in the database have cancer ?".
This result, taken alone, also seems safe. However, if you compare the results to these two
questions, you can learn if Mr. X has cancer or not. This is called a differencing attack.
This example shows that doing simple math on aggregate values can give you information
on a particular individual in the database. One can think that this kind of problem can be
fixed by controling the sequence of questions and answers with the goal of prohibiting the
answer to the last question if, in light of the answers already given, it could compromise
privacy. However, as it is explained in [31], there are two difficulties with this approach.
First, refusing to answer a question can provide pieces of information. Second, it may not
even exist an algorithm for deciding if a pair of questions can lead to a differencing attack.

Aggregation can in practice protect privacy but there is no guarantee that it always
does.

1.1.3 Randomized response

Even if the notion of differential privacy has been formalized in 2006 in [33], its oldest
forms can be traced back to Warner [79] who introduced randomized response which
is a technique commonly used in survey research to protect the privacy of respondents
and encourage them to answer truthfully to sensitive issues such as sexuality or illegal
behaviors for instance.

Let us consider the following case. A survey aims at estimating the proportion of people
in the country who regularly use illegal drugs. Thus, we ask a random sample of persons if
they regularly use illegal drugs. Those who do not will of course answer "No". The problem
is that most of those who do use illegal drugs will lie and answer "No" because answering
"Yes" could be detrimental to them. This raises the following question : How can we get
accurate answers to a sensitive question which respondents might be reluctant to answer
truthfully? Randomized response techniques tackle this problem by adding random noise
to individual responses. The following example provides a randomized response technique
that can be found in [31] and which is slightly different from Warner’s original method.

20



1.1. First steps towards privacy preserving data analysis

Figure 1.1: A randomized response technique. The letter H stands for Heads, and T stands
for Tails.

Example 1.1.1. To deal with the problem mentioned above, let us ask each respondent
to follow the following steps before answering the question "Do you regularly use illegal
drugs ?" :

1. Flip a coin.

2. If tails, then answer truthfully.

3. If heads, then flip a second coin and answer "Yes" if heads, "No" if tails.

This technique provides plausible deniability : a person who answers "Yes" can credibly
say that he/she actually does not use illegal drugs since an answer "Yes" may have been
given because the two coin flips were both heads, which occurs with probability 1/4. Thus,
answering "Yes" can no longer be detrimental to the respondent, which should (in theory)
encourage him to answer truthfully. Let us now explain how the true proportion of people
who regularly use drugs can be estimated from the "privatized" answers. Let p denote
this true proportion. The probability that a respondent who follows the above instructions
answers "Yes" is given by (p/2) + (1/4), see Figure 1.1 for a tree diagram. If the number
of people surveyed is large enough, then the proportion of people surveyed who answered
"Yes" should be close to this theoretical probability. Thus, the true proportion p can be
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estimated by the following quantity :

2
[
Number of "Yes" answers
Number of people surveyed

− 1
4

]
.

1.2 Global differential privacy

In this section, we define the notion of global differential privacy (also called central
differential privacy) as introduced by Dwork et al. [33], and give some of its properties
that can explain why this notion of privacy has been widely adopted by the scientific
community as a natural one. We also present some classical privacy mechanisms and
discuss some relaxations of the original definition of differential privacy.

1.2.1 Definition

Assume that n individuals each observe a random variable Xi. Assume that they allow
these data to be used for statistical analysis on the condition that they are guaranteed
strong privacy protections. In the global setting of differential privacy, the n data hold-
ers share confidence in a common curator who collects the data X1, . . . , Xn and who is
responsible for the release of a privatized output Z = (Z1, . . . , Zk) that preserves the
privacy of the n individuals. The statistician does not have access to the original database
X = (X1, . . . , Xn) but only to the privatized output Z. Note that in general k does not
need to be equal to n. Let denote respectively (X n,An) and (Z,B) the measurable spaces
in which X and Z take values. The conditionnal distribution of Z given X will be denoted
by Q(· | X), i.e. P(Z ∈ A | X = x) = Q(A | x), where Q(· | ·) : B × X n → [0, 1] is a
Markov kernel, that is

• Q(· | x) is a probability measure for all x ∈ X n

• Q(A | ·) is An-measurable for all A ∈ B.

The Markov kernel Q is often referred to as a channel distribution, a privatization scheme
or a privacy mechanism. We can represent this schematically as in Figure 1.2. Note that
in the literature, the term "privacy mechanism" can also refer to the algorithm M such
that Z = M(X).

The following definition is due to Dwork et al. [33].
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1.2. Global differential privacy

Figure 1.2: Global privacy. The n individuals share confidence in a common curator who
gathers their true data and generates a privatized output from this complete information.

Definition 1.2.1. Let α ∈ [0,∞). The channel distribution Q is said to provide (global)
α-differential privacy if

Q(A | x) ≤ eαQ(A | x′), ∀A ∈ B, ∀x, x′ ∈ X n : dH(x, x′) = 1, (1.1)

where dH(x, x′) := #{i = 1, . . . , n : xi 6= x′i} denotes the number of distinct entries of x
and x′ also called the Hamming distance.

Note that Definition 1.2.1 ensures thats all the probability measures Q(· | x), x ∈ X n,
are equivalent. Thus, (1.1) can be rewritten

e−α ≤ Q(A | x)
Q(A | x′) ≤ eα, ∀A ∈ B, ∀x, x′ ∈ X n : dH(x, x′) = 1,

where we interpret 0
0 as equal to 1.

This notion of privacy requires that the distribution of the privatized output Z does
not depend too much on any single element of the database. Intuitively, if changing one
entry in the database X does not change the conditional distribution of Z given X too
much, then it should be difficult to guess if one given person is in the database or not.
The differential privacy constraint should thereby protect the privacy of each individual
in the database. See Section 1.2.2 or [80] for more discussion. Note that the smaller α,
the closer e−α and eα are to one, and thus the stronger is the privacy constraint.

Example 1.2.2. Let X1, . . . , Xn be n independent and identically distributed random
variables from an unknown distribution P with support X included in [−M,M ]. We
want to estimate θ := EP [X1] while protecting privacy. A classical estimator of θ is the
sample mean Xn = (1/n)∑n

i=1Xi. However, this is a summary statistics and we have
seen in Section 1.1.2 that releasing summary statistics does not guarantee privacy. In
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order to ensure differential privacy, one can add properly chosen noise to the sample
mean. Precisely, consider

Z = Xn + 2M
nα

W, W ∼ Lap(1), (1.2)

where W is independent of the Xi’s and

fLap(b)(x) = 1
2b · exp

(
−|x|
b

)
,

and let us check that this mechanism is α-differentially private. The density of Z given
X = x, where X = (X1, . . . , Xn) is given by

qZ|X=x(z) = nα

4M exp
(
− nα2M |z − xn|

)
, where xn = 1

n

n∑
i=1

xi.

Thus, for every x, x′ ∈ X n with Card{i : xi 6= x′i} = 1 it holds

qZ|X=x(z)
qZ|X=x′(z) = exp

(
nα

2M
[
|z − x′n| − |z − xn|

])
≤ exp

(
nα

2M |x
′
n − xn|

)
= exp

(
nα

2M

∣∣∣∣∣x
′
i0 − xi0
n

∣∣∣∣∣
)

for some i0 ∈ J1, nK

≤ exp(α)

which proves that the mechanism defined by (1.2) provides α-differential privacy. Note
that, like the sample mean, Z is an unbiased estimator of θ, however the variance of Z is
deteriorated compared to the variance of the sample mean since

Var(Z) = Var(Xn) + 8M2

nα2 = 1
n

Var(X1) + 8M2

n2α2 .

In particular, if one allows α to depend on n, we see that if α is chosen too small, namely
α = o(1/n), then the variance of Z explodes. This example highlights the fact that under
differential privacy, there will be a trade-off to make between statistical utility and the
chosen level of privacy : choosing α too large can lead to good statistical utility but may
compromise privacy while taking α too small ensures a high level of privacy but can
degrade a lot statistical utility.
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1.2.2 Basic properties

Differential privacy has several appealing properties that can explain why this notion of
privacy has been widely adopted by researchers in the computer science, machine learning,
and statistics communities. We summarize here some of these properties.

• Definition 1.2.1 provides a strong privacy guarantee even in the presence of an
adversary who would have almost full knowledge of the true database. Indeed, given
the full knowledge of Z, P (the distribution of Xi, i = 1, . . . , n), and Q, Wasserman
and Zhou (Theorem 2.4, [80]) proved that under differential privacy, any test of level
γ to test H0 : Z ∼ Q(· | x) against the alternative H1 : Z ∼ Q(· | x′) (where x and
x′ are two elements that differ in one entry) has power bounded from above by γeα.
Thus, if an adversary has access to the privatized database Z, knows how the data
have been privatized, and knows every entry of the true database X except the i-th
one, then it would be impossible for him to determine if Xi is the data of individual
A or individual B since such a test has either a large first type error probability or
a large second type error probability.

• Differential privacy is immune to post-processing: the composition of any function
with an α-differentially private mechanism is also α-differentially private, see for
instance Proposition 2.1 in [31]. This means that if an adversary has access to a
differentially private database then he can not manipulate it to make it less differ-
entially private.

• The release of several independent differentially private outputs is still differentially
private and it is easy to understand how the level of privacy degrades with the
number of outputs. Indeed, assume that the person responsible for the release of
privatized output does not only want to publish a privatized output Z1 but also a
second privatized output Z2. It has been proved (see for instance [31], Theorem 3.14)
that if Zi, i = 1, 2, are αi-differentially private and independent (conditionnaly on
X) views of X then releasing (Z1, Z2) is (α1 + α2)-differentially private. Of course,
this result can be applied repeatedly. In particular, to release (Z1, . . . , Zk) while
satisfying α-differential privacy, it is sufficient that each Zi, i = 1, . . . , k, is an α/k
differentially private view of X.

• Differential privacy guarantees can be amplified by subsampling [47, 66, 73]. Let
X = (X1, . . . , Xn) ∈ X n be a dataset. For m ∈ J1, nK, let Subsamplem(X) be a
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subset of X that is chosen uniformly at random among all the subsets of X of size
m. If a mechanism M defined on Xm is α-differentially private on Xm then the
mechanism M ◦Subsamplem defined on X n is m

n
(eα− 1)-differentially private [73].

Such results are essential for analysing privacy guarantees of procedures involving
subsampling steps, as is the case for stochastic gradient descent, which is one of the
most popular algorithm in machine learning.

• Differential privacy neutralizes linkage attacks, that is any attempt to re-identify
individuals in an anonymized database by combining this database with auxiliary
information (such as another dataset for instance).

1.2.3 Usual differentially private mechanisms

In this section we present some classical mechanisms that satisfy the differential privacy
constraint.

1.2.3.1 The Laplace mechanism

Early work on differential privacy focused on designing privacy mechanisms for answering
basic queries while satisfying differential privacy constraints. For instance, given a dataset
X ∈ X n and a function f : X n → Rd, one could ask what the value of f(X) is. Due to
Dwork et al. [33], the Laplace machanism, which consists in adding Laplace noise to
the true answer f(X) with a properly chosen noise level, allows to answer this question
while preserving privacy. Precisely, let denote by ∆f the global L1-sensitivity of f , that
is ∆f = max ‖f(x) − f(x′)‖1, where the maximum is taken over all elements x, x′ ∈ X n

differing in a single entry. This quantity measures the maximum change in the value of
f due to the change of one entry in any dataset. Dwork et al. [33] proved that releasing
Z = f(X) + (Y1, . . . , Yd) where Yi are drawn i.i.d. from Lap(∆f/α) is α-differentially
private. They apply this mechanism for the differentially private release of sums and
histograms. Perturbed (with Laplace noise) histograms have further been used for the
differentially private estimation of a Lipschitz-continuous density function [80]. With some
extra work, the Laplace mechanism can also be used to release contingency tables while
satisfying differential privacy constraints [8].
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1.2.3.2 Adding noise according to the local sensitivity

The Laplace mechanism works well for functions with small global sensitivity. However, for
many functions, such as the median, this approach yields high noise. This issue has been
tackled in [60] where the authors suggest to calibrate the magnitude of the noise added to
f(X) according to the local sensitivity of f at X, which measures the maximum change in
the value of f(X) due to the change of one entry in the dataset X. However, this scheme
is too naïve. Indeed, the noise magnitude will depend on the database and could leak
information about it, violating differential privacy. To prevent this, they instead calibrate
the noise level according to a smooth upper bound on the local sensitivity. Note that the
noise is not sampled from a Laplace distribution. We refer the reader to [60] for more
information about smooth upper bounds and about the choice of the noise distribution,
but also for applications of their mechanism to the release of the median and the release
of the cost of a minimum spanning tree of a graph. More recently, [5] has adapted the idea
of smooth sensitivity calibration to propose a private median estimator with subgaussian
type deviations. Unlike most prior work on differentially private median estimators, their
result also holds for unbounded random variables without any finite moment assumptions.

1.2.3.3 The sample and aggregate method

To apply the framework described in section 1.2.3.2, one must efficiently compute or
approximate a smooth upper bound on the sensitivity of f . However, this task can be
non-trivial and, for some functions f , NP-hard. To circumvent these difficulties, [60] pro-
poses the sample and aggregate method . It works by replacing f with a related function
f̄ for which a smooth upper bound on the sensitivity is efficiently computable. The first
step of the method consists in randomly partitionning the database X into m databases
X̃1, . . . , X̃m. Then, f is evaluated on each of these m databases, which gives outputs
z1, . . . , zm. For a properly chosen function g, called the center of attention, we then com-
pute f̄(X) = g(z1, . . . , zm) and finally release A(X) = g(z1, . . . , zm) + Y where the noise
Y is calibrated according to a slight generalization of the smooth sensitivity framework
of section 1.2.3.2. Nissim et al. proved that the sample and aggregate mechanism is dif-
ferentially private and that the released value A(X) is close to the true answer f(X)
for databases X such that f(X) is well-approximated by evaluating f on the random
subsamples. They apply their method to k-means and learning mixture of gaussians.
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1.2.3.4 The exponential mechanism

The exponential mechanism [53] has been introduced to deal with situations where adding
noise to the true answer of a query does not make sense (non-numerical queries) or can
completely destroy its value (see the example below).

Example 1.2.3 (Auction pricing, adapted from Example 3.5 in [31]). Suppose that an
auctioneer has an unlimited supply of some good. Assume that on the one hand several
bidders each propose a buying price for one good and on the other hand the auctioneer
chooses a selling price. The bidders who proposed a buying price higher than the selling
price get one good. The auctioneer wants to find the selling price that will maximize the
revenue. Assume that there are four bidders A, B, C, D and that they respectively bid 1,
1, 1 and 4.10. If the selling price is p ∈]0, 1] then all the bidders will get a good and the
revenue will be 4p. If the selling price is p ∈]1; 4.10] then only bidder D will get a good
and the revenue will be p. If the selling price is p > 4.10 then no bidder gets a good and
the revenue is 0. Thus, the revenue is maximized when the selling price is set to 4.10 and
the addition of noise to this optimal selling price can completely change the revenue since
the addition of a positive noise to it will make the revenue fall to 0.

Fix a range Z of possible outputs. The exponential mechanism relies on the existence
of a utility function q : X n × Z → R which maps a database X ∈ X n and a possible
output Z ∈ Z to a real number q(X,Z). Intuitively, q(X,Z) measures the quality of the
output Z if the database is X. For instance, in Example 1.2.3, X could be the buying
prices proposed by each bidder, Z could be the selling price fixed by the auctioneer, and
q(X,Z) could be the resulting revenue. Given X ∈ X n, the goal of the mechanism is
to return a Z ∈ Z such that q(X,Z) is (approximately) maximized while guaranteeing
differential privacy. Precisely, this mechanism consists in selecting Z ∈ Z with probability
proportional to exp(αq(X,Z)/(2∆q)), where here ∆q is the largest possible difference in
the utility function when applied to two databases that differ in one entry, for all z, that
is

∆q = max
z∈Z

max
x,x′∈Xn:dH(x,x′)=1

|q(x, z)− q(x′, z)|.

This mechanism satisfies the α-differential privacy constraints [53].
Let us mention some applications of the exponential mechanism. It has first been applied
to several problems in unlimited supply auctions and pricing [53]. It has further been
studied in [80] where the authors derive some general results about the accuracy of this
mechanism and apply the method to differentially private density estimation. Kifer et al.
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[49] discusses the use of the exponential mechanism to estimate the support of a vector
as a first step for high dimensional sparse regression under privacy constraints. Hall et al.
[40] discusses the use of the exponential mechanism for releasing a function in a way that
guarantees differential privacy.

1.2.4 Relaxations of global differential privacy

Some relaxations of the original definition of differential privacy have been proposed in the
literature. Maybe the most popular one is approximate differential privacy. The setting is
the same as for α-differential privacy but we say that the privacy mechanism Q provides
(ε, δ)-approximate differential privacy [32], ε ≥ 0, δ ≥ 0, if, instead of (1.1), it holds

Q(A | x) ≤ eεQ(A | x′) + δ, ∀A, ∀x, x′ : dH(x, x′) = 1.

This definition of privacy was initially proposed to allow for the addition of Gaussian
noise instead of Laplace noise when releasing the evaluation of a function f : X n → Rd

on a database X ∈ X n. Specifically, the Gaussian mechanism consists in adding Gaussian
noise to the value f(X) with a noise level calibrated according to the L2-sensitivity of
f . It appears that the Gaussian mechanism can not meet α-differential privacy for any
α but is approximate differentially private. A weakness of this notion of privacy is the
non-optimality or complexity of existing composition results. It is well known that the
composition of k mechanisms which are (ε, δ)-differentially private is (ε̃, δ̃)-differentially
private with ε̃ = kε, and δ̃ = kδ [32]. Moreover, this bound can not be tightened if no slack
in δ̃ is allowed. However, Dwork et al. [34] proved that one can obtain a better privacy
guarantee in terms of ε̃ if we allow for a slightly larger value of δ̃. Indeed, they prove that
for all δ′ > 0, the composition of k mechanisms which are (ε, δ)-differentially private is
(ε̃δ′ , kδ + δ′)-differentially private with ε̃δ′ = O(kε2 + ε

√
k log(1/δ′)). In [46] the authors

prove a tighter bound and they exactly characterize, for any fixed δ̃ ∈ [0, 1), the optimal ε̃
such that the composition of k mechanisms which are (ε, δ)-differentially private is (ε̃, δ̃)-
differentially private. This result has been extended in [55] to the non-homogeneous case
where the i-th mechanism, i = 1, . . . , k, is (εi, δi)-differentially private, and the authors
prove that computing the optimal ε̃ is computationally hard.

Mironov [54] has proposed another relaxation of α-differential privacy based on the
Renyi divergence. Let P1 and P2 be two distributions on a measurable space (Z,B).
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Assume that they have densities p1 and p2 with respect to a common σ-finite dominating
measure µ. The Renyi divergence of order 1 < b < ∞ and of order b = ∞ of P1 from P2

are then respectively given by

Db(P1‖P2) = 1
b− 1

∫ (
p1(z)
p2(z)

)b
p2(z)dµ(z), and D∞(P1‖P2) = ln

(
sup
A∈B

P1(A)
P2(A)

)
,

with the conventions that 0/0 = 0 and x/0 = ∞ for x > 0. Consider the notations
introduced to define α (global) differential privacy. The Markov kernel Q provides α-
differential privacy if and only if

D∞ (Q(· | x)‖Q(· | x′)) ≤ α for all x, x′ ∈ X n with dH(x, x′) = 1.

The idea of Renyi differential privacy is to allow for the use of the Renyi divergence
of order 1 < b < ∞. Precisely, the Markov kernel will be said to provide (b, α)-Renyi
differential privacy, b > 1 if

Db (Q(· | x)‖Q(· | x′)) ≤ α for all x, x′ ∈ X n with dH(x, x′) = 1.

This notion privacy shares attractive properties with α-differential privacy such as im-
munity to post-processing and a simple composition theorem. Moreover, like approximate
differential privacy, it allows for the use of the Gaussian mechanism. However, unlike both
α-(global) differential privacy and approximate (ε, δ)-differential privacy, the statement
and analysis of a form of privacy amplification by subsampling for Renyi differential pri-
vacy are complex [78].

More recently, a new relaxation of differential privacy, called f -differential privacy has
been introduced in [22]. It is inspired by an hypothesis testing formulation of privacy as
follows. For a testing problem of the form H0 : P = P0 versus H1 : P = P1, where P , P0

and P1 are three distributions, and for a rejection rule φ ∈ [0, 1], we denote by αφ = EP0 [φ]
and βφ = 1 − EP1 [φ] the first and second type error probabilities respectively. We then
define the function T (P0, P1) : [0, 1]→ [0, 1] by

T (P0, P1)(α) = inf
φ
{βφ : αφ ≤ α},

where the infimum is taken over all rejection rules. The greater this function is, the harder
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it is to distinguish between P0 and P1. Consider once again the notations introduced to
define α-(global) differential privacy. Given a function f : [0, 1] → [0, 1] that is equal
to T (P0, P1) for some distributions P0 and P1, the Markov kernel Q is said to provide
f -differential privacy if

T (Q(· | x), Q(· | x′)) ≥ f.

Letting P0 and P1 be such that f = T (P0, P1), f -differential privacy requires that testing
H0 : Z ∼ Q(· | x) against the alternative H1 : Z ∼ Q(· | x′) is at least as difficult
as distinguishing P0 from P1 based on a single draw. When P0 and P1 are the normal
distributions N (0, 1) and N (µ, 1), we talk about µ-Gaussian differential privacy. The
notion of f -differential privacy is immune to post processing, and the Gaussian mechanism
with a properly scaled noise level is Gaussian-differentially private. Moreover, this new
notion of privacy presents some advantages compared to the two previous relaxations.
Indeed, the authors present a tight composition theorem for f -differential privacy and a
simple and easy-to-interpret theorem of privacy amplification by subsambling. They also
prove that any definition of privacy that is based on an hypothesis testing interpretation
converges to Gaussian differential privacy in the limit under composition.

1.3 Local differential privacy (LDP)

The global model of differential privacy described in the previous section requires that
the data-holders share confidence in a common curator who has access to the original
data X1, . . . , Xn and generates a privatized output from this complete information. We
present here a stronger privacy condition called local differential privacy. All the results of
this thesis will be obtained in this local setting of differential privacy. In the local setup,
each individual can generate a privatized version of its true data on its own machine,
and only the privatized data are collected for analysis. The advantage is that data-owners
do not have to share their true data with anyone else and and no trusted third party
is needed. The local model of differential privacy has been adopted in recent years by
major technology companies including Google [35], Microsoft [21] and Apple [20] to collect
statistics about the activity of their users and improve user experience. In this section,
we introduce two specific classes of locally differentially private mechanisms that will be
of interest throughout this thesis : non-interactive mechanisms for which no interaction
between data-holders is allowed (see Figure 1.3), and sequentially interactive mechanisms
for which some amount of interaction between data-holders is allowed (see Figure 1.4
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Figure 1.3: Non-interactive local privacy. Each of the n individuals generates a private view
Zi of its original data Xi on its own machine independently of all the other individuals.
Only the privatized data (Z1, . . . , Zn) are collected and available for statistical analyses.

below).

1.3.1 The non-interactive scenario

In the local non-interactive scenario, each individual generates a private view Zi of its
original data Xi on its own machine independently of all the other individuals. Precisely,
given Xi = xi, the i-th data-holder draws

Zi ∼ Qi(· | xi),

for some Markov kernel Qi : B × X → [0, 1] where the measure spaces of the non-private
and private data are denoted with (X ,A) and (Z,B), respectively. In this case, we say
that the sequence of Markov kernels (Qi)i=1,...,n provides α-local differential privacy or
that Z1, . . . , Zn are α-local differentially private views of X1, . . . , Xn if

sup
A∈B

sup
xi,x′i∈X

Qi(A | xi)
Qi(A | x′i)

≤ eα, for all i = 1, . . . , n. (1.3)

Only the privatized data (Z1, . . . , Zn) are available for statistical analyses.
Note that the conditional distribution of Z = (Z1, . . . , Zn) given X = (X1, . . . , Xn) is
given by the Markov kernel Q : Bn ×X n → [0, 1] such that

Q(A1 × · · · × An | x1, . . . , xn) =
n∏
i=1

Qi(Ai | xi), ∀Ai ∈ B, ∀xi ∈ X .
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Thus, if Q1, . . . , Qn satisfy (1.3), then Q provides global α-differential privacy.

The following example shows that the randomized response technique introduced in
Example 1.1.1 is a locally differentially private privacy mechanism.

Example 1.3.1. The version of randomized response described in Example 1.1.1 is ln(3)-
locally differentially private ([31], Claim 3.5).

Let us consider once again the mean estimation framework of Example 1.2.2.

Example 1.3.2. Let X1, . . . , Xn be n independent and identically distributed random
variables from an unknown distribution P with support X included in [−M,M ]. We want
to estimate θ := EP [X1] while protecting privacy. To ensure global differential privacy,
we suggested in Example 1.2.2 to add Laplace noise to the sample mean. This requires a
trusted third party who collects X1, . . . , Xn, computes the sample mean Xn and adds the
Laplace noise. In the local scenario, such a trusted third party does not exist. Instead,
each Xi will be privatized by addition of Laplace noise and only the privatized data Zi,
i = 1, . . . , n, will be collected and used to estimate θ. Precisely, for all i ∈ J1, nK, generate

Zi = Xi + 2M
α
Wi, Wi ∼ Lap(1), Wi ⊥⊥ Xi.

The density of Zi given Xi = x is given by

qZi|Xi=x(z) = α

4M exp
(
− α

2M |z − x|
)
.

Thus, for every x, x′ ∈ X it holds

qZi|Xi=x(z)
qZi|Xi=x′(z) = exp

(
α

2M [|z − x′| − |z − x|]
)
≤ exp

(
α

2M |x
′ − x|

)
≤ exp(α),

which proves that Zi is an α-differentially private view of Xi for all i ∈ J1, nK. We can then
estimate θ by Zn = (1/n)∑n

i=1 Zi. Note that Zn is an unbiased estimator of θ, however
the variance of Zn is deteriored compared to the variance of the sample mean but also
compared to the globally differentially private estimator proposed in Example 1.2.2 since

Var(Zn) = Var(Xn) + Var(W n) = 1
n

Var(X1) + 8M2

nα2 .
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Figure 1.4: Sequentially-interactive local privacy. The privatized data Z1, . . . , Zn are gen-
erated one after the other. Individual i has access to the previously privatized data
Z1, . . . , Zi−1 in order to generate its own Zi. Only the privatized data (Z1, . . . , Zn) are
collected and available for statistical analyses.

1.3.2 The sequentially interactive scenario

In the local setting of differential privacy, even though data-owners do not share their
true data with anyone else, some interaction between individuals can be allowed. In the
so-called sequentially interactive scenario, the privatized data Z1, . . . , Zn are generated
one after the other and the i-th individual has access to the previously privatized data
Z1, . . . , Zi−1 in order to generate its own Zi. Precisely, Z1, . . . , Zn are obtained by succes-
sively applying suitable Markov kernels : given Xi = xi and Z1 = z1, . . . , Zi−1 = zi−1, the
i-th data-holder draws

Zi ∼ Qi(· | xi, z1, . . . , zi−1)

for some Markov kernel Qi : B × (X × Z i−1) → [0, 1] where the measure spaces of the
non-private and private data are denoted with (X ,A) and (Z,B), respectively.

We say that the sequence of Markov kernels (Qi)i=1,...,n provides α-local differential
privacy or that Z1, . . . , Zn are α-local differentially private views of X1, . . . , Xn if

sup
A∈B

sup
z1,...,zi−1∈Z

sup
xi,x′i∈X

Qi(A | xi, z1, . . . , zi−1)
Qi(A | x′i, z1, . . . , zi−1) ≤ eα, for all i = 1, . . . , n. (1.4)

Note that the conditional distribution of Z = (Z1, . . . , Zn) given X = (X1, . . . , Xn) is
given by the Markov kernel Q : Bn ×X n → [0, 1] such that for all x = (x1, . . . , xn) ∈ X n

Q(dz | x) = Q1(dz1 | x1)Q2(dz2 | x2, z1) · · ·Qn(dzn | xn, z1, . . . , zn−1).

Thus, if Q1, . . . , Qn satisfy (1.4), then Q provides global α-differential privacy.
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The non-interactive scenario seems to be more attractive in practice since in this
setting the collection of data can be fully parallelized. However, allowing for sequential
interaction between data-holders offers more flexibility in the construction of privacy
mechanisms and can sometimes lead to better estimation rates than the ones obtained in
the non-interactive setting. This is for instance the case for the estimation of the integrated
square of a density [15]. We refer the reader to [43] and references therein for a deeper
understanding of the role of interactivity in local differential privacy.

1.4 Contributions to minimax adaptive LDP estima-

tion of probability densities

The problems of density estimation and variable selection studied respectively in Chapters
2 and 3 can be considered as particular cases of a more general statistical problem called
minimax estimation. In this section, we present a modification of the non-private minimax
framework that takes into account privacy constraints and we summarise our contributions
to minimax adaptive density estimation under local differential privacy constraints.

1.4.1 LDP minimax risk

Consider n random variablesX1, . . . , Xn, assumed to be i.i.d. from some probability distri-
bution P ∈ P . Suppose that we want to estimate a parameter of interest θ(P ) ∈ Θ ⊂ F .
For instance, for the univariate mean estimation problem considered in Examples 1.2.2
and 1.3.2, P could be the set of all the probability distributions with support included
in [−M,M ], and the parameter of interest is θ(P ) = E[X1] ∈ [−M,M ] ⊂ R. Note that
F can be an infinite dimensional function space if the parameter of interest is a density
function for instance.

In the non-private case, the statistician has direct access to (X1, ..., Xn) and we call
estimator any measurable function of X1, ..., Xn taking values in F . The quality of an
estimator θ̂ can be measured by the following quantity

EP⊗n
[
Φ
(
ρ(θ̂(X1, . . . , Xn), θ(P ))

)]
,

where ρ is some semi-metric on F×F , and Φ : R+ → R+ is a non-decreasing loss function
with Φ(0) = 0. This quantity is called the risk of θ̂ for the estimation of θ(P ). Classical
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choices of function Φ and metric ρ are given by Φ : x 7→ x2 and ρ(θ̂, θ) = |θ̂−θ| if θ, θ̂ ∈ R
and ρ(θ̂, θ) = ‖θ̂ − θ‖2 if θ, θ̂ ∈ L2(Rd). The corresponding risks are respectively called
mean squared error (MSE) and mean integrated squared error (MISE). If we know a priori
that P belongs to some set of distributions P , then the maximal risk of an estimator θ̂ is

rn(θ̂,P , θ) = sup
P∈P

EP⊗n
[
Φ
(
ρ(θ̂(X1, . . . , Xn), θ(P ))

)]
.

It is then natural to choose an estimator whose maximal risk is minimal, yielding the
minimax risk

Rn(P , θ) = inf
θ̂

sup
P∈P

EP⊗n
[
Φ
(
ρ(θ̂(X1, . . . , Xn), θ(P ))

)]
,

where the infimum runs over all estimators θ̂ taking (X1, . . . , Xn) as input. Note that
minimaxity is a criterion of optimality which is sometimes considered in the literature as
being too pessimistic in the sense that it provides the best estimator for the worst value of
the parameter. However, it remains one of the only criteria making it possible to compare
estimation procedures.

Duchi, Jordan and Wainwright [28, 29, 30] have been the first to propose a modification
of the minimax risk that takes into account privacy constraints. We describe it here. In
the private setting, the statistician has only access to privatized versions Z1, . . . , Zn of
X1, . . . , Xn and estimators are thus measurable functions of Z1, . . . , Zn. Let Qα denote
the set of all α-locally differentially private mechanisms. Assume that Z = (Z1, . . . , Zn)
has been produced via a privacy mechanism Q ∈ Qα. This leads to the following modified
minimax risk

Rn(Q,P , θ) = inf
θ̂

sup
P∈P

EQP⊗n
[
Φ
(
ρ(θ̂(Z1, . . . , Zn), θ(P ))

)]
,

where QP⊗n denotes the distribution of Z. It is then natural to search for a privacy
mechanism Q ∈ Qα that minimizes this quantity. The α-private minimax risk is finally
defined as follows

Rn,α(P , θ) = inf
Q∈Qα

inf
θ̂

sup
P∈P

EQP⊗n
[
Φ
(
ρ(θ̂(Z1, . . . , Zn), θ(P ))

)]
, (1.5)

where the infimum is taken over all estimators taking (Z1, . . . , Zn) as input and all privacy
mechanisms guaranteeing α-local differential privacy. A tuple (Q, θ̂) will be said rate
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optimal if
sup
P∈P

EQP⊗n
[
Φ
(
ρ(θ̂, θ(P ))

)]
≤ C(Φ ◦ ρ,P)Rn,α(P , θ).

The study of the private minimax risk (1.5) and the construction of optimal privacy
mechanisms and estimators are still at their beginnings. In [28, 29, 30], the authors de-
rive lower bounds and matching upper bounds on the α-private minimax risk (1.5) for
several statistical problems including mean estimation, median estimation, density es-
timation over Sobolev ellipsoids, and generalized linear models. They obtain the lower
bounds by developing and applying private versions of the classical Le Cam, Fano and
Assouad methods, see [83] for the non-private version of these methods. They obtain
matching upper bounds by exhibiting and analysing specific privacy-preserving estima-
tion procedures. The α-private minimax risk (1.5) has further been studied in [63] in the
case where the parameter of interest θ(P ) is a real parameter and the metric ρ is given
by ρ(x, y) = |x − y|. They characterize the rate at which Rn,α(P , θ) converges to zero
as n → ∞ in high generality. Precisely, if ωTV denotes the modulus of continuity of the
functional θ over P with respect to total variation distance, they prove that for a large
class of functions Φ, the α-private minimax risk (1.5) scales as Φ

(
ωTV ((nα2)−1/2)

)
under

regularity conditions that are satisfied in particular if θ is linear and P is convex. They
also exhibit a minimax sample mean estimator based on binary privatized observations
that achieves the minimax rate. They apply their results to classical examples including
moment estimation, estimation of a density at a fixed point and estimation of the end-
point of a uniform distribution. Butucea et al. [15] investigates minimax estimation of
the integrated square of a density. Let us also mention [27] which aims at taking into
account the pessimistic nature of minimax risk (1.5) and develop instead a local minimax
approach. The results obtained in the above mentioned papers allow, by comparing private
and non-private minimax rates, to quantify the price (in terms of estimation rates) that
has to be paid for privacy protection for a large number of estimation problems and can
also be used to determine which privacy mechanisms are optimal.
In this spirit, we study in Chapter 2 minimax adaptive density estimation over Besov
ellipsoids. In the next section, we present the existing results on minimax non-parametric
density estimation under differential privacy constraints and sum up our contributions to
this topic.
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1.4.2 Minimax adaptive LDP estimation of probability densities

The work on non-parametric density estimation under differential privacy constraints has
been initiated in [80] in the global framework described in Section 1.2. The authors discuss
the private estimation of Lipschitz continuous densities supported on [0, 1]r via histograms
and the estimation of densities supported in [0, 1] and belonging to a Sobolev ellipsoid
via orthogonal series. In [40] the authors develop methods for releasing functions while
preserving global (ε, δ)-approximate differential privacy (which is a relaxation of the global
differential privacy framework introduced in Section 1.2.4) and discuss kernel density
estimators as the main example. Interestingly, in [80] and [40] the authors exhibit density
estimators whose mean integrated squared error achieve the non-private minimax rate of
convergence. The effects of local differential privacy on minimax rates appear to be more
severe [29, 30, 63]. In [29] and [30] the authors study the estimation of a density function
supported on [0, 1] and provide minimax rates of convergence for the mean integrated
squared error over Sobolev ellipsoids with arbitrary smoothness parameter β ≥ 1. They
prove that the non-private minimax rate n−2β/(2β+1) deteriorates to (nα2)−2β/(2β+2) when
imposing α-local differential privacy constraints and they exhibit private estimators whose
mean integrated squared error achieve this rate. In [63] the authors apply the general
theory they have developed to several examples including minimax density estimation at
a point x0 ∈ Rd over the anisotropic class Hβ,L(Rd) of Lebesgue densities on Rd such that
for every j ∈ J1, dK and every x, x′ ∈ Rd,

∣∣∣f(x1, . . . , xj−1, x
′
j, xj+1, . . . , xd)− f(x)

∣∣∣ ≤ Lj|x′j − xj|βj .

Their results shows that the minimax rate for mean squared error degrades from n−1/(1+r̄/2)

where r̄ = ∑d
j=1 1/βj in the non-private setting to (nα2)−1/(1+r̄) under α-local differential

privacy constraints. All these results exhibit smoothness dependent privacy mechanisms
and estimators.

In Chapter 2 we pursue the work on non-parametric density estimation under local
differential privacy constraints initiated in the above mentioned papers by considering
density estimation over Besov ellipsoids and general Lr-risk. Moreover, we address adap-
tation to the smoothness parameter. Our contributions to this topic are summed up below
and were published in [13].
We assume that for i = 1, . . . , n the i-th data holder observes a real-valued random vari-
ableXi distributed according to a probability density function f whose support is included
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in some compact set [−T, T ]. The aim is that every data-holder releases an α-locally dif-
ferentially private view Zi of Xi such that the density f can be estimated from the data
Z1, . . . , Zn in an optimal way. We study the following α-private minimax risk

Rn,α(‖ · ‖,Dspq(L, T )) = inf
Q∈Qα

inf̂
f

sup
f∈Dspq(L,T )

E
[
‖f̂ − f‖rr

]
,

where Qα denotes the set of all α-locally differentially private privacy mechanisms and
Dspq(L, T ) denotes the set of all densities supported on a subset of [−T, T ] and belonging
to some Besov ellipsoids Bspq(L). Wavelet methods have turned out particularly convenient
to study the non-private version of this minimax risk which is known ([24], [41]) to have
lower bound rn where

rn =

n
− rs

2s+1 , if p > r
2s+1 ,

(n/ log n)−
r(s−1/p+1/r)
2(s−1/p)+1 , if p ≤ r

2s+1 and s ≥ 1
p
.

Moreover, these rates are optimal or suboptimal by a logarithmic factor only (see [41] for
an extensive discussion). The structural change of the rate between dense zone (where
p > r/(2s+1)) and sparse zone (where p ≤ r/(2s+1)) is sometimes called an elbow effect.
Moreover, in the dense case, we can distinguish the homogeneous zone when p ≥ r and
the non-homogeneous zone where r/(2s + 1) < p < r. In the homogeneous case, linear
wavelet estimators are rate optimal whereas linear procedures are necessarily sub-optimal
in the non-homogeneous case (see [41] and references therein). In this latter scenario as
well as in the sparse case, non-linear estimators based on wavelet thresholding turn out to
be optimal at least up to logarithmic factors. When α-local differential privacy constraints
are imposed, we derive the following lower bound on the α-private minimax risk :

Rn,α(‖·‖rr,Dspq) & r∗n,α,

where r∗n,α =


(n(eα − 1)2)−

rs
2s+2 , if p > r

s+1 ,(
n(eα−1)2

log(n(eα−1)2)

)− r(s−1/p+1/r)
2(s−1/p)+2 , if p ≤ r

s+1 and s ≥ 1
p
.

This lower bound is complemented by corresponding upper bound results. As in the
non-private case, we prove that a linear wavelet estimator (based on the privatized data
Z1, . . . , Zn) attains the given rate in the homogeneous case, that is, whenever p ≥ r, and
we show that non-linear estimators based on wavelet thresholding can attain the lower
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bound up to logarithmic factors both in the dense and in the sparse zone. Interestingly,
the non-linear estimator we propose does not depend on the parameters s, p, q, L. We
can make the following comments.

• The lower bound in the private setting is deteriorated compared to the non-private
one but reveals a similar elbow effect.

• In allowing for general Lr-risk and Besov ellipsoids, we have widened the range of
results on density estimation under privacy constraints which merely focused on
L2-risk and Sobolev ellipsoids or Lipschitz-continuous densities until now.

• To the best of our knowledge, we are the first to consider adaptation to smoothness
in the framework of locally differentially private estimation.

This research theme has led to the writing of the paper [14] that has been submitted.
In a work subsequent to ours and inspired by the results of [40], M. Kroll [50] has studied
pointwise kernel density estimation over Sobolev classes in the local setting of (α, β)-
approximate differential privacy and has investigated adaptivity to the smoothness pa-
rameter.

1.5 Contributions to LDP variable selection

A few papers tackle selection problems under privacy constraints. In the global (ε, δ)-
approximate differential privacy setting, [70] and [6] study top-k selection, which consists
in selecting the k largest coordinates of a vector of dimension d. This problem has also
been studied under local differential privacy constraints in [74].

In Chapter 3, we address another selection problem, namely support recovery in the
Gaussian mean model in Rd under the additional constraint that only privatised data are
available for inference. Let X i, i = 1, . . . , n be i.i.d N (θ, σ2Id) random vectors of Rd. We
assume that the vectors X i = (X i

j)j=1,...,d for i = 1, . . . , n are observed by n distinct data
holders who refuse to share their respective observations, and that the mean vector θ is
(s, a)-sparse in the sense that θ belongs to one of the following sets:

Θ+
d (s, a) = {θ ∈ Rd : there exists a set S ⊆ {1, . . . , d} with at most s elements

such that θj ≥ a for all j ∈ S, and θj = 0 for all j /∈ S},
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or

Θd(s, a) = {θ ∈ Rd : there exists a set S ⊆ {1, . . . , d} with at most s elements

such that |θj| ≥ a for all j ∈ S, and θj = 0 for all j /∈ S}.

We want to recover the support of θ, which means that we want to find where the non-zero
coefficients of θ are located. The parameter of interest is thus the vector η ∈ Rd defined
by

η = η(Pθ) = (I(θj 6= 0))j=1,...,d ,

where I(·) is the indicator function. Working under local differential privacy constraints,
the statistician does not have access to the true data to estimate η but only to α-locally
differentially private views Z1, . . . , Zn of X1, . . . , Xn. Our goal is to estimate the vector η
by a selector η̂, that is a measurable function η̂ = η̂(Z1, . . . , Zn) taking values in {0, 1}d.
We judge the quality of a selector η̂ as an estimator of η by the Hamming loss between η̂
and η which counts the number of positions at which η̂ and η differ :

|η̂ − η| :=
d∑
j=1
|η̂j − ηj| =

d∑
j=1

I(η̂j 6= ηj).

For the support recovery problem, we consider only α-locally differentially private mecha-
nisms which transform each X i ∈ Rd into a private release Zi taking also values in Rd, and
we focus here on non-interactive mechanisms. However, we distinguish between privacy
mechanisms that act on each coordinate of X i either locally (separately) or globally. More
specifically, we will consider the two following scenarios:

• Coordinate Local (CL) Privacy Mechanisms : there is a sequenceQ = (Qi)i=1,...,n

of Markov kernels providing α-local differential privacy such that Zi ∼ Qi(· | X i =
xi) for all i ∈ J1, nK, and Qi is obtained as product of coordinate-wise kernels as
follows:

for all i ∈ J1, nK and all j ∈ J1, dK, Zi
j ∼ Qi

j(· | X i
j = x)

for some (α/d)-differentially private mechanism Qi
j. We denote by QCLα the set of

all privacy mechanisms Q = (Q1, . . . , Qn) satisfying these assumptions.

• Coordinate Global (CG) Privacy Mechanisms : there is a sequence Q =
(Qi)i=1,...,n of Markov kernels providing α-local differential privacy such that Zi ∼
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Qi(· | X i = xi) for all i ∈ J1, nK. We denote by Qα the set of all privacy mechanisms
Q = (Q1, . . . , Qn) satisfying this assumption.

In other words, in the Coordinate Local case, we consider only non-interactive α-locally
differentially private mechanisms that act coordinate by coordinate with the same amount
of privacy on each coordinate, while in the second scenario any non-interactive α-locally
differentially private mechanism is allowed to be used.
For both scenarios, if Pθ denotes the distribution ofX i then the distribution of (Z1, . . . , Zn)
will be denoted by Q(P⊗nθ ). We say that a selector η̂ = (η̂1, . . . , η̂d) is separable if for all
j = 1, . . . , d its jth component η̂j depends only on (Zi

j)i=1,...,n . We denote by T the set
of all separable selectors. We are interested in the study of the following private minimax
risks

RCL
n (α,Θ) = inf

Q∈QCLα
inf

η̂=η̂(Z1,...,Zn)∈T
sup
θ∈Θ

1
s
EQ(P⊗n

θ
)|η̂(Z1, . . . , Zn)− η|, (1.6)

in the coordinate local case, and

Rn(α,Θ) = inf
Q∈Qα

inf
η̂=η̂(Z1,...,Zn)∈T

sup
θ∈Θ

1
s
EQ(P⊗n

θ
)|η̂(Z1, . . . , Zn)− η|, (1.7)

in the coordinate global case, for Θ = Θ+
d (s, a) and Θ = Θd(s, a). Note that these minimax

risks are special forms of minimax risk (1.5) with the metric ρ chosen as the Hamming
distance, and Φ : x 7→ x/s.
We provide lower bounds on minimax risks (1.6) and (1.7). Analyzing specific private
estimation procedures, we also provide upper bounds. As corollaries, we derive necessary
and sufficient conditions for exact recovery and almost full recovery to be possible. The
definition of exact recovery and almost full recovery we use are the ones used in [12].
Let (Θ+

d (sd, ad))d≥1 be a sequence of classes of sparse vectors. We will say that almost
full recovery is possible for (Θ+

d (sd, ad))d≥1 in the Coordinate Local case if there exists
Q ∈ QCLα and a selector η̂ such that

lim
d→∞

sup
θ∈Θ+

d
(sd,ad)

1
sd
EQ(P⊗n

θ
)|η̂ − η| = 0.

We will say that almost full recovery is impossible for (Θ+
d (sd, ad))d≥1 in the Coordinate

Local case if

lim inf
d→+∞

inf
Q∈QCLα

inf
η̂=η̂(Z1,...,Zn)∈T

sup
θ∈Θ+

d
(s,a)

1
sd
EQ(P⊗n

θ
)|η̂ − η| > 0.
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a . σ√
N

σ√
N
� a ≤ 2σ a ≥ 2σ

N := nα2

d2 . 1 impossible impossible impossible

N := nα2

d2 � 1 impossible

possible, as soon as

a� σ√
N

√
log(N) log(d),

if moreover

N � log(N) log (d)

possible, if

N � log(d)

Table 1.1: Exact recovery in the Coordinate Local case. Similar results hold for almost
full recovery with log(d) replaced by log(d/s).

We will say that exact recovery is possible for (Θ+
d (sd, ad))d≥1 in the Coordinate Local

case if there exists Q ∈ QCLα and a selector η̂ such that

lim
d→∞

sup
θ∈Θ+

d
(sd,ad)

EQ(P⊗n
θ

)|η̂ − η| = 0.

We will say that exact recovery is impossible for (Θ+
d (sd, ad))d≥1 in the Coordinate Local

case if
lim inf
d→+∞

inf
Q∈QCLα

inf
η̂=η̂(Z1,...,Zn)∈T

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂ − η| > 0.

We use similar definitions in the Coordinate Global case with QCLα replaced by Qα.
The conditions for exact recovery to be possible are summarized in Table 1.1 for the
Coordinate Local case and in Table 1.2 for the Coordinate Global case. In particular, our
results show the following.

• In the Coordinate Local case, almost full recovery and exact recovery are impossible
whatever the value of a if nα2/d2 is bounded from above. This is in particular the
case in the high-dimensional setting where n ≤ d. This underlines a strong difference
between the private setting and the classical setting, since [12] proved that in the
non-private setting almost full recovery and exact recovery are possible for a large
enough even if n = 1.

• However, in the regime nα2/d2 →∞ with nα2/d2 � log(nα2/d2) log(d) we observe
a phase transition result (up to log factors) for exact recovery at the value a∗ =
σd/(α

√
n). Indeed, we get that exact recovery is impossible in the Coordinate Local
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a . σ
√

log d
Nd

σ
√

log d
Nd
� a ≤ 2σ a ≥ 2σ

Nd
log d . 1 impossible impossible

impossible if

a ≤ σ

√
log

(
1 + log d

16Nd

)

Nd
log d � 1 impossible

possible, as soon as

a� σ
√

log d
Nd

√
log(Nd),

if moreover

Nd� log(Nd) log(d)

possible

Table 1.2: Exact recovery in the Coordinate Global case. We have set N = nα2/d2 for a
better comparison with the Coordinate Local case.

case for all a ≤ Ca∗ and is possible for all a� a∗ log1/2(nα2/d2) log1/2(d). A similar
result holds for almost full recovery with log(d) replaced by log(d/s). Once again,
this highlights a gap between the private and non-private cases since the phase tran-
sition occurs at a∗ = (σ/

√
n)
√

2 log(d/s− 1) (resp. a∗ = (σ/
√
n)[
√

2 log(d− s) +√
2 log(s)]) in the non private setting for almost full recovery (resp. exact recovery),

see [12].

• These results can be improved when allowing for all non-interactive (Coordinate
Global) α-locally differentially private mechanims in the sense that almost full re-
covery and exact recovery are possible under weaker conditions and phase transitions
occur at lower levels.

Our results can be a benchmark for working on more realistic models such as high-
dimensional linear regression and clustering of high-dimensional vectors, see [58] and [57].

1.6 Contributions to LDP goodness-of-fit testing

1.6.1 State of the art

Goodness-of-fit testing problems consist in testing whether a given set of samples was
drawn from a distribution P0 or from any other distribution P with d(P0, P ) ≥ ρ for some
distance between distributions d and some separation parameter ρ > 0. In Chapter 4, we
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1.6. Contributions to LDP goodness-of-fit testing

tackle this problem under local differential privacy constraints in the case where P and
P0 are assumed to have Hölder continuous densities f and f0 and d(P0, P ) = ‖f − f0‖1.
Specifically, we will study the local minimax testing radius which corresponds to the
smallest separation parameter for which there exists a private testing procedure whose
firs type and second type error probabilities are bounded from above by a constant fixed
in advance.

Goodness-of-fit testing for separation norm ‖ · ‖1 has recently received great attention
in the non-private setting. Working with discrete distributions, [75] and [19] provide upper
and lower bounds on the number of samples that are necessary to distinguish P = P0 from
‖P − P0‖1 ≥ ρ with high probability. Balakrishnan and Wasserman [7] has revisited this
problem in a minimax framework similar to the one considered in Chapter 4. Their results
show that the local minimax testing radius strongly depends on the null distribution. They
also investigate the continuous case, focusing on the case of Hölder continuous densities,
providing results that are optimal for many choices of the null density f0. We extend their
result to the private setting.

Several papers have tackled goodness-of-fit problems under global differential privacy
constraints, focusing on the case of multinomial distributions [37, 77, 62] or more general
but finitely supported discrete distributions [16, 2, 4]. Early research on goodness-of-
fit testing in the local setting of differential privacy include [36, 65, 3, 1]. Working with
multinomial distributions, [36] study the asymptotic distributions of several test statistics.
In [3] and the extended version [1], the authors provide upper and lower bounds on the
number of samples necessary to distinguish P = P0 := U(J1, dK) from TV(P, P0) ≥ ρ

with high probability, and [65] investigates this problem for more general discrete null
hypotheses. However, [3, 1, 65] obtain lower bounds over all test statistics based on data
that have been privatized via a fixed specific privacy mechanism, while in Chapter 4 we
will investigate optimality over all test statistics but also over all privacy mechanisms
which satisfy the local differential privacy constraints.

Minimax goodness-of-fit under local differential privacy constraints has first been stud-
ied in [51] for discrete random variables. Upper and lower bounds on the minimax testing
radius have been obtained. However, the authors consider only non-interactive mecha-
nisms and the lower bound is only proven when P0 is the uniform distribution. Minimax
goodness-of-fit testing for discrete random variables (not necessarily finite supported)
under local differential privacy constraints has further been studied in [10], where the au-
thors aim at computing the minimax testing rates when d(P, P0) = ∑d

j=1 |P (j)− P0(j)|i,
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i ∈ {1, 2}. Interestingly, the authors show that the minimax testing rates are improved
when allowing for sequentially interactive mechanisms compared to the case where only
non-interactive mechanisms are allowed to be used to privatize the data.
Lam-Weil et al. [51] are also the first to tackle goodness-of-fit testing for continuous ran-
dom variables under local differential privacy constraints. They consider ‖ · ‖2 separation
norm and study the minimax testing radius for the problem of goodness-of-fit for com-
pactly supported densities over Besov balls Bs2,∞(L) in the special case of non-interactive
local differential privacy. In a parallel work, [15] study the estimation of the integrated
square of a density and prove that allowing for sequential interaction improves over min-
imax estimation rates obtained in the non-interactive scenario. As an application, they
discuss non interactive and sequentially interactive L2 goodness-of-fit testing for densities,
extending the results obtained in [51] to more general Besov balls Bsp,q(L), to the interac-
tive scenario, and to the case where f0 is not assumed to be the uniform distribution but
has to be compactly supported and bounded from below on its support.
In Chapter 4 we pursue these works on minimax density testing under local differential
privacy constraints by considering densities in a Hölder class and the separation norm
‖ · ‖1. Moreover, we allow for densities that tend to 0 on their support, with possibly
unbounded support.

Let us mention that apart from goodness-of-fit, other testing problems have been stud-
ied over the past few years under differential privacy constraints, including independence
testing, simple hypothesis testing and closeness testing. In the global setting, [37, 77, 62]
study independence testing for categorical data, and [2, 4] consider closeness testing for
discrete random variables. In the local setting of differential privacy, independence testing
has been studied in [36] for categorical data and in [65, 1, 3] for more general discrete
random variables, and [44, 45, 43] investigate simple hypothesis testing.

1.6.2 Contributions to goodness-of-fit testing for densities

In Chapter 4 we continue the work on minimax goodness-of-fit testing for densities initi-
ated in [51] and [15]. While these papers focus on compactly supported densities which
belong to a Besov ball, we investigate the case of Hölder continuous densities and we do
not restrict ourselves to compactly supported functions.

Let (X1, ..., Xn) ∈ X n be i.i.d. with common probability density function (pdf) f :
X → R+. We assume that f belongs to the smoothness class H(β, L) for some smoothness
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0 < β ≤ 1 and L > 0, where

H(β, L) =
{
f : X → R+ : |f(x)− f(y)| ≤ L|x− y|β, ∀x, y ∈ X

}
.

Given a probability density function f0 in H(β, L), we want to solve the goodness-of-fit
test

H0 : f ≡ f0

H1(ρ) : f ∈ H(β, L) and ‖f − f0‖1 ≥ ρ,

where ρ > 0 under an α-local differential privacy constraint. We will consider the case
where only non-interactive privacy mechanisms are allowed to be used and the case where
both non-interactive and sequentially interactive mechanisms can be used for privatisation.

We adopt the following minimax framework. Given an α-LDP privacy mechanism Q,
let ΦQ = {φ : Zn → {0, 1}} denote the set of all tests based on Z1, . . . Zn, that is the set
of all measurable functions of the privatized sample Z1, . . . Zn which take value in {0, 1}
and are such that H0 is rejected if φ(Z1, . . . , Zn) = 1. The risk measure of a test φ for a
given α-locally differentially private mechanism Q is defined by

Rn(f0, ρ, Q, φ) := sup
f∈H1(ρ)

{
PQn

f0
(φ = 1) + PQn

f
(φ = 0)

}
,

where Qn
f denotes the distribution of (Z1, . . . , Zn) when X1, ..., Xn have common proba-

bility density function f . If we denote by Qα the set of all α-locally differentially private
(α-LDP) sequentially interactive mechanisms, then the sequentially interactive α-LDP
minimax testing risk is defined by

Rn,α(f0, ρ) := inf
Q∈Qα

inf
φ∈ΦQ

Rn(f0, ρ, Q, φ).

We define similarly the non-interactive α-LDP minimax testing risk RNI
n,α(f0, ρ), where the

first infimum is taken over the set QNI
α of all α-LDP non-interactive mechanisms instead

of Qα. Given γ ∈ (0, 1), we study the α-LDP minimax testing radius defined by

En,α(f0, γ) := inf {ρ > 0 : Rn,α(f0, ρ) ≤ γ} ,

and we define similarly ENI
n,α(f0, γ).
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Our contributions can be summarized as follows and were submitted in [25]. First,
when non-interactive privacy mechanisms are used, we present an α-locally differentially
private such mechanism and construct a testing procedure based on the privatized data.
In the non-private case, [7] suggests to combine a L2 procedure on a bulk set B where the
density f0 is bounded away from 0 by some small quantity and an L1 procedure on the
tail B = X \B. Following this recommendations, our procedure consists in the following
steps :

1. Consider a compact set B ⊂ R (its choice depends on f0, and on values of n and α).

2. Using the first half of the (privatized) data, define an estimator SB of
∫
B(f − f0)2.

3. Using the second half of the (privatized) data, define an estimator TB of
∫
B̄(f − f0).

4. Reject H0 if either SB ≥ t1 or TB ≥ t2.

Note that our procedure translates to the case of continuous distributions the one proposed
in [10] for locally differentially private goodness-of-fit testing of discrete distributions. The
study of the first and second type error probabilities of our test enables us to obtain
an upper bound on the non-interactive testing radius ENI

n,α(f0, γ). This result is further
complemented with a lower bound.

Next, we prove that these bounds can be improved when allowing for sequential inter-
action. This phenomenon, which can be observed neither for many estimation problems
(see for instance [30],[63] and Chapter 2) nor for simple hypothesis testing [43], has re-
cently been observed for the estimation of the integrated square of a density [15] and
goodness-of-fit testing problems [10, 15].

Finally, we investigate the optimality of our results. We show that our lower bounds
and upper bounds match up to a constant in the sequentially interactive scenario, and
up to a logarithmic factor in the non-interactive scenario, for several choices of the null
density f0 including densities from uniform, normal, Beta, Cauchy, Pareto, exponential
distributions. The results obtained for these examples are summarised in Table 1.3 for
β = 1 and compared to the non-private separation rates.
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Non-private sep-
aration rate

Private separation
rate, non-interactive
scenario (up to a log
factor)

Private separation
rate, interactive
scenario

U([a, b]) n−2/5 (nα2)−2/7 (nα2)−1/3

N (0, 1) n−2/5 log(nα2)3/7(nα2)−2/7 log(nα2)1/3(nα2)−1/3

Beta(a, b) n−2/5 (nα2)−2/7 (nα2)−1/3

Spiky null n−2/5 (nα2)−2/7 (nα2)−1/3

Cauchy(0, a) (log n)4/5n−2/5 (nα2)−2/13 (nα2)−1/5

Pareto(a, k) n−2k/(2+3k) (nα2)−2k/(7k+6) (nα2)−k/(3k+2)

Exp(λ) n−2/5 log(nα2)6/7(nα2)−2/7 log(nα2)2/3(nα2)−1/3

Table 1.3: Some examples of separation rates for different choices of densities f0 and β = 1.
The non-private separation rates can be found in [7]





Chapter 2

Local differential privacy:
Elbow effect in optimal density
estimation and adaptation over

Besov ellipsoids

Abstract: We address the problem of non-parametric density estimation under the
additional constraint that only privatised data are allowed to be published and avail-
able for inference. For this purpose, we adopt a recent generalisation of classical
minimax theory to the framework of local α-differential privacy and provide a lower
bound on the rate of convergence over Besov spaces Bspq under mean integrated Lr-
risk. This lower bound is deteriorated compared to the standard setup without pri-
vacy, and reveals a twofold elbow effect. In order to fulfil the privacy requirement,
we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Up-
per bounds within (at most) a logarithmic factor are derived under the assumption
that α stays bounded as n increases: A linear but non-adaptive wavelet estimator
is shown to attain the lower bound whenever p ≥ r but provides a slower rate of
convergence otherwise. An adaptive non-linear wavelet estimator with appropriately
chosen smoothing parameters and thresholding is shown to attain the lower bound
within a logarithmic factor for all cases.
Based on [13].

2.1 Introduction

Problem statement

In the modern information age, increasingly more institutions are collecting and storing
data. Provided that a certain amount of privacy is guaranteed, some of these institutions
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might be willing to provide access to selected data sets. Examples of such data may
include information about participants in a medical study, clients of a web service, or
persons interviewed in a scientific survey. In this framework, the following questions arise
naturally: How can data be sufficiently anonymised, given a rigorous definition of privacy,
and what are the consequences for subsequent data analyses resulting from the chosen
anonymisation procedure? The answer to these questions depends on several interacting
parameters, namely the privacy definition at hand, the potential extent of collaboration
of the involved data holding entities, and the kind of data mining tasks that should be
feasible based on the private data.

In this paper, we consider the problem of non-parametric density estimation under
local differential privacy as a special instance of the general problem sketched in the
previous paragraph: For i = 1, . . . , n, the i-th data holder observes a real-valued random
variable Xi distributed according to a probability density function f . The aim is that
every data holder releases an anonymised view Zi of Xi such that the privacy notion of
local differential privacy, that is introduced next, is satisfied and that the density f can
be estimated from the data Z1, . . . , Zn in an optimal way.

Local differential private estimation

The notion of local differential privacy aggregates two different concepts, namely local
privacy and differential privacy, that we explain in the sequel.

The qualitative notion of local privacy characterises how the different entities holding
the data X1, . . . , Xn might interact to generate a private release Z. It is opposed to the
concept of global privacy where the respective data holders share confidence in a common
curator who has access to the ensemble of non-masked data X1, . . . , Xn and generates the
releasable data from this complete information. In the local setup, such an authority that is
trusted by all the parties, does not exist. However, some amount of interaction between the
different parties is still allowed. The releasable data Z1, . . . , Zn are obtained by successively
applying suitable Markov kernels. Given Xi = xi and Z1 = z1, . . . , Zi−1 = zi−1, the i-th
dataholder draws

Zi ∼ Qi(· | Xi = xi, Z1 = z1, . . . , Zi−1 = zi−1)

for some Markov kernel Qi : Z ×X ×Z i−1 → [0, 1] where the measure spaces of the non-
private and private data are denoted with (X ,X ) and (Z,Z ), respectively. An important
special case is that of non-interactive local privacy where the random value of Zi depends
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on Xi only and must not depend on preceding values of Z. More precisely, in the non-
interactive case we have

Zi ∼ Q(· | Xi = xi)

for some Markov kernel Q that does no longer depend on the index i. The non-interactive
scenario comes along with some advantages in practice since it is balanced in the sense
that the data holders play a symmetric role in the privatisation process, that can also be
parallelized in this case. One should notice however that a restriction to non-interactive
scenarios might result in slower rates of convergence for statistical inference. But as will
be presented below, this is not the case in our density estimation framework, where rates
are already optimal for estimators based on non-interactively privatised data.

From a mathematical point of view, however, allowing also interactive procedures does
not lead to more technical proofs. Thus, we potentially allow non-interactive methods in
our minimax analysis, although the anonymisation techniques proposed in this paper are
exclusively non-interactive. Let us mention that for some tasks, however, interactive mech-
anisms provide natural and attractive alternatives (for instance, for private estimation in
generalized linear models; see [30], Section 5.2.1).

The notion of differential privacy is a quantitative one and introduces a condition that
makes the problem at hand mathematically tractable. We provide its definition for the
locally private case only and refer the reader to [80] for a definition in the global case.

Definition 2.1.1. bla A sequence of Markov kernels Qi : Z ×X ×Z i−1 → [0, 1] provides
α-differential privacy if

sup
A∈Z

Qi(A | Xi = x, Z1 = z1, . . . , Zi−1 = zi−1)
Qi(A | Xi = x′, Z1 = z1, . . . , Zi−1 = zi−1) ≤ exp(α) for all x, x′ ∈ X .

In the non-interactive case, this condition is replaced with

sup
A∈Z

Q(A | Xi = x)
Q(A | Xi = x′) ≤ exp(α) for all x, x′ ∈ X .

We denote with Qα the set of all local α-differential private Markov kernels.

Thus, the parameter α quantifies the amount of privacy that is guaranteed: setting
α = 0 ensures perfect privacy whereas letting α tend to infinity softens the privacy
restriction. In the non-interactive case, the defining property of α-differential privacy
above ensures that all the probability measures Q(dz|Xi = x), x ∈ X are equivalent.
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Hence, they admit densities q(· | Xi = x) with respect to a dominating measure (that can
be chosen to be equal to Q(dz|Xi = x∗), for any x∗ ∈ X ). In case of existence of such
densities, we say that the property of α-differential privacy is satisfied if

sup
z∈Z

q(z | Xi = x)
q(z | Xi = x′) ≤ exp(α) for all x, x′ ∈ X . (2.1)

A consequence from the definition of α-differential privacy is plausible deniability of
the data in the following sense: Given the private view Zi only, the power of any test of
the null hypothesis H0 : Xi = x against the alternative H1 : Xi = x′ with prescribed first
error probability γ has power bounded from above by γ exp(α) (see [80], Theorem 2.4).

Rate optimal density estimation over Besov ellipsoids

Let us briefly review some well-known results on non-parametric density estimation in
the non-private setup where X1, . . . , Xn can be observed. This classical model provides
a natural benchmark for the model where additional privacy restrictions are imposed,
and having in mind the results for this benchmark model turns out to be useful for
understanding the ones for the model with privacy.

Density estimation from a sampleX1, . . . , Xn of observations is one of the paradigmatic
problems in non-parametric statistics. A popular framework is that of minimax optimal
estimation: Given a loss function ` (that is, a function mapping a pair of density functions
(f, g) to some non-negative real number) and any class F of candidate density functions,
the quantity of interest is the minimax risk

Rn(`,F) = inf
f̃

sup
f∈F

E[`(f̃ , f)] (2.2)

where the infimum is taken over all estimators (that is, σ(X1, . . . , Xn)-measurable func-
tions). In this setup, an estimator f̂ is called rate optimal if

sup
f∈F

E[`(f̂ , f)] ≤ C(`,F)Rn(`,F).

Several function classes, loss functions and types of estimators have been intensively stud-
ied for the density estimation problem (see [72] and [38] for comprehensive overviews of
the topic). Throughout this paper, we consider the integrated risk associated to Lr-loss
defined by `(f, g) = ‖f−g‖rr for r ≥ 1. For the Besov spaces to be considered in the sequel,
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wavelet methods have turned out particularly convenient. Given a father wavelet ϕ and
a mother wavelet ψ associated to it, verifying some sufficient conditions (see conditions
(5.10)–(5.12) in [41]), and an integer j0 ∈ Z, a wavelet basis of L2(R) is given by

{ϕj0k = 2j0/2ϕ(2j0(·)− k) : k ∈ Z} ∪ {ψjk = 2j/2ψ(2j(·)− k) : j ≥ j0, k ∈ Z}. (2.3)

Given such a basis, the probability density f admits the following formal expansion (in
L2 sense):

f =
∑
k∈Z

αj0kϕj0k +
∑
j≥j0

∑
k∈Z

βjkψjk (2.4)

where the wavelet coefficients are defined as

αj0k =
∫
R
f(x)ϕj0k(x)dx and βjk =

∫
R
f(x)ψjk(x)dx.

An attractive property of wavelet expansions as (2.4) is that the membership of Besov
spaces can be characterised in terms of its wavelet coefficients with respect to a well chosen
wavelet basis. In the sequel, we will work under the following assumption on the father
wavelet ϕ.

Assumption 2.1.2. Following [41], we assume that the father wavelet function ϕ gener-
ates a multiresolution analysis of L2(R), that it is N + 1 times weakly differentiable for
some integer N , and that its derivative satisfies supx

∑
k|ϕ(N+1)(x − k)| < ∞ a.e. More-

over, we assume that there exists a bounded, non-increasing function Φ on R+ such that
|ϕ(u)| ≤ Φ(|u|) and that both

∫
Φ(|u|)du <∞ and

∫
Φ(|u|)|u|Ndu <∞.

Note that no assumption is needed on the mother wavelet ψ since it is defined using
the father wavelet. If the father wavelet function ϕ verifies Assumption 2.1.2 then, given
parameters 0 < s < N + 1 and 1 ≤ p, q ≤ ∞, the fact that f belongs to the Besov space
Bspq is equivalent to Jspq(f) <∞ where

Jspq(f) := ‖α0·‖p +
(∑
j≥0

(2j(s+1/2−1/p)‖βj·‖p)q
)1/q

for 1 ≤ q < ∞ and the usual modification if q = ∞. Fixing such a wavelet basis, we
consider Besov ellipsoids defined as

Bspq(L) = {f : R→ R : Jspq(f) ≤ L}.
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Since our interest is in density estimation, a quite natural class to consider is

Dspq = Dspq(L, T ) = {f : f ∈ Bspq(L), f ≥ 0,
∫
R
f(x)dx = 1 and supp(f) ⊆ [−T, T ]},

where supp(f) denotes the support of the function f . Note that we consider here the
Besov smoothness of f as a function defined on the whole real line, or, equivalently, that f
belongs to a periodic Besov class. It would equally be possible to define Besov smoothness
over the support [−T, T ]. Then the wavelet basis has to be boundary corrected so that it
detects the smoothness on this interval only and not the potential lack of smoothness of
f at its boundary. We refer the reader to [38] for boundary corrected wavelets, that also
dispose of all the properties that we need in the sequel.

It is well-known [38, 41, 24] that

Rn(‖·‖rr,Dspq) & rn, where rn =

n
− rs

2s+1 , if p > r
2s+1 ,

(n/ log n)−
r(s−1/p+1/r)
2(s−1/p)+1 , if p ≤ r

2s+1 and s ≥ 1
p
,

(2.5)

and these rates are optimal or suboptimal by a logarithmic factor only (see [41] for an
extensive discussion). The structural change of the rate between dense zone (where p >
r/(2s+ 1)) and sparse zone (where p ≤ r/(2s+ 1)) is sometimes called an elbow effect.

Moreover, in the dense case, we can distinguish the homogeneous zone when p ≥ r and
the non-homogeneous zone where r/(2s + 1) < p < r. In the homogeneous case, linear
wavelet estimators of the form

∑
k∈Z

α′j0kϕj0k(x) +
j1∑
j=j0

∑
k∈Z

β′jkψjk(x)

with α′j0k = 1
n

∑n
i=1 ϕj0k(Xi), β′jk = 1

n

∑n
i=1 ψjk(Xi), and appropriately chosen j0, j1 are rate

optimal whereas linear procedures are necessarily sub-optimal in the non-homogeneous
case (see [41] and references therein). In this latter scenario as well as in the sparse case,
non-linear estimators based on wavelet thresholding turn out to be optimal at least up to
logarithmic factors.

Minimax framework under privacy constraints

Let us now describe how to extend the classical minimax setup in order to encompass
the framework of local differential privacy. Since not only the estimation procedure but

56



2.1. Introduction

also the Markov kernels guaranteeing local α-differential privacy can freely be chosen, it
is natural to replace (2.2) with the local α-differential minimax risk defined as

R∗n,α(`,F) = inf
f̃

Q∈Qα

sup
f∈F

Ef,Q[`(f, f̃)].

Here the infimum is taken both over all (Z,Z )-measurable estimators of f and all Markov
kernels guaranteeing local α-differential privacy. A tuple (Q̂, f̂) consisting of a privacy
mechanism and an estimator f̂ is rate optimal (with respect to the local α-differential
private risk) if

sup
f∈F

E
f,Q̂

[`(f, f̂)] ≤ C(`,F)R∗n,α(`,F).

The quantity R∗n,α(`,F) as well as the construction of optimal privacy mechanism and
estimators represent the principal interest of the rest of the paper.

Related work

Research on statistical estimation under privacy constraints is rather recent. A landmark
paper is [80] where research on the subject has been initiated and density estimation via
histograms and orthogonal series in the global privacy setup have been discussed. In the
same global framework, the article [40] considers anonymisation of functional data and
discusses kernel density estimators as the main example. Local α-differential privacy was
intensively studied in [29] and the companion article [30]. In [29] the authors show that the
well-known technique of randomized response from survey statistics can be interpreted
under the umbrella of local α-differential privacy. In the context of density estimation,
[29] established minimax rates of convergence for the mean integrated squared error over
Sobolev classes with arbitrary smoothness parameter β ≥ 1. They establish the minimax
rate of order n−β/(β+1) for the mean integrated squared error over Sobolev classes with
β = 1 and show that this optimal rate can be attained by Laplace perturbation of empiri-
cal histogram coefficients. The papers [29, 30] provide also results for Sobolev classes with
higher degrees of smoothness (β > 1) but in this case a mere perturbation of the empirical
Fourier coefficients does not lead to a rate optimal method (see [29], Observation 1 for the
non-optimality of this approach). By means of a more sophisticated sampling technique
(see [29], or [30], Section 5.2.2), however, the authors derive the minimax rate of conver-
gence that is (nα2)−β/(β+1) also in the general case. Furthermore, [29] provides private
versions of classical information-theoretical bounds that allow to apply standard lower
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bound techniques also in the private setup. In [63], the estimation of linear functionals
in the framework of local privacy is considered and a characterisation of the rates of con-
vergence in terms of moduli of continuity is obtained which is in parallel to well-known
results for the non-private setup [23]. This general analysis contains the private estimation
of a probability density at a fixed point under mean squared error as a special case.

Main results

In Section 2.2, in addition and in formal analogy to (2.5), we derive the following lower
bound on the private minimax risk:

R∗n,α(‖·‖rr,Dspq) & r∗n,α, (2.6)

where r∗n,α =


(n(eα − 1)2)−

rs
2s+2 , if p > r

s+1 ,(
n(eα−1)2

log(n(eα−1)2)

)− r(s−1/p+1/r)
2(s−1/p)+2 , if p ≤ r

s+1 and s ≥ 1
p
.

This lower bound is complemented by corresponding upper bound results: The anonym-
isation technique used to create the private views of the non-releasable data X1, . . . , Xn

consists in an appropriately scaled version of the classical Laplace mechanism applied
on the empirical wavelet coefficients (Section 2.3). The wavelet estimators considered
in Sections 2.4 and 2.5 are based on the availability of the privatised data Z1, . . . , Zn

only. As in the non-private case, a linear wavelet estimator attains the given rate in the
homogeneous case, that is, whenever p ≥ r (Section 2.4). In Section 2.5, we study non-
linear estimators and show that an estimator using hard thresholding can nearly attain
the lower bounds both in the dense and in the sparse zone.

Notational conventions

For real numbers a, b we write Ja, bK = [a, b] ∩ Z. We denote with C a generic constant
that might change with every appearance. For two sequences {an}n, {bn}n, we denote
by an . bn that there exist some constant C > 0 and a fixed integer number N such
that an ≤ Cbn, for all n ≥ N . We say that an � bn, if both an . bn and bn . an. If
bn > 0, we denote by an ' bn the fact that an/bn → 1 as n → ∞. We recall that a
centred Laplace distribution with parameter λ > 0 has the probability density function
pλ(x) = 1

2λ exp(− |x|
λ

), for all real number x. In particular, if X ∼ pλ, then E|X|k = k!λk

for all k ∈ N.
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2.2 Lower bounds

The purpose of this section is to derive (2.6) and hence providing an analogue of (2.5)
under local α-differential privacy. To this purpose, we proceed in two steps. The first
lower bound, given in Proposition 2.2.1, is stronger in the private dense zone (p > r/(s+
1)), whereas the second one, given in Proposition 2.2.2, dominates in the private sparse
zone where p ≤ r/(s + 1). An essential tool for both proofs is a strong information
theoretical inequality (our Lemma 2.7.1) proved in [30], which states a bound for the
Kullback-Leibler divergence between any distributions that have been processed through
an arbitrary channel guaranteeing local α-differential privacy. We begin with the lower
bound that is dominating in the dense zone.

Proposition 2.2.1. Let α ∈ (0,∞) and let L, T > 0. Then,

inf
f̃

Q∈Qα

sup
f∈Dspq(L,T )

Ef,Q‖f̃ − f‖rr & (n(eα − 1)2)−
rs

2s+2 ,

where the infimum is taken over all estimators f̃ based on the private views Z1, . . . , Zn

and all Markov kernels Q ∈ Qα guaranteeing local α-differential privacy.

The proof of Proposition 2.2.1 is based on a reduction of the class Dspq to a finite
number of hypotheses indexed by the vertices of a hypercube of suitable dimension. It is
given in Section 2.7.1 in the appendix.

The following proposition complements Proposition 2.2.1 in stating a lower bound that
is stronger in the private sparse zone.

Proposition 2.2.2. Let α ∈ (0,∞). Let p ≥ 1, s ≥ 1/p and let L, T > 0. Then,

inf
f̃

Q∈Qα

sup
f∈Dspq(L,T )

Ef,Q‖f̃ − f‖rr &
(

log(n(eα − 1)2)
n(eα − 1)2

)r· s−1/p+1/r
2(s−1/p)+2

,

where the infimum is taken over all estimators f̃ based on the private views Z1, . . . , Zn

and all channels Q ∈ Qα providing local α-differential privacy.

The proof of Proposition 2.2.2 is given in Section 2.7.2 in the appendix.
Taking the maximum of the lower bounds obtained in Propositions 2.2.1 and 2.2.2

yields (2.6). In addition to our novel lower bounds, the known bounds (2.5) from the

59



Chapter 2 – Local differential privacy: Elbow effect in optimal density estimation and
adaptation over Besov ellipsoids

non-private framework still hold true under local α-differential privacy since processing
the original data X1, . . . , Xn through a privacy mechanism can be interpreted equivalently
as imposing a restriction on the set of admissible estimators in (2.2). More precisely, the
constraint of local α-differential privacy confines the set of potential estimators to those
of the form f̃ = f ◦Q where Q ∈ Qα and f is any measurable function. Thus,

R∗n,α ≥ Rn ∨ r∗n,α ≥ rn ∨ r∗n,α,

where the quantity rn is defined in (2.5). Hence, the following corollary holds.

Corollary 2.2.3. Let the assumptions of Propositions 2.2.1 and 2.2.2 hold true. Then,

R∗n,α(‖·‖rr,Dspq) &


n−

rs
2s+1 ∨ (n(eα − 1)2)−

rs
2s+2 , if p > r

s+1 ,

n−
rs

2s+1 ∨
(

n(eα−1)2

log(n(eα−1)2)

)− r(s−1/p+1/r)
2(s−1/p)+2 , if r

2s+1 < p ≤ r
s+1 ,(

n
logn

)− r(s−1/p+1/r)
2(s−1/p)+1 ∨

(
n(eα−1)2

log(n(eα−1)2)

)− r(s−1/p+1/r)
2(s−1/p)+2 , if p ≤ r

2s+1 .

Note that the frontier between the dense and the sparse zone in the private framework
is different from the one in the non-private framework leading to a partition into three
regimes for the lower bound and a twofold elbow effect. Note that these lower bounds
match the upper bounds derived in Section 2.4 and 2.5 at most up to logarithmic factors
whenever α stays bounded as n increases. In addition, the bounds from the non-private
setup dominate provided that α increases sufficiently fast in terms of n.

2.3 Privacy mechanisms

Let us denote with X1, . . . , Xn the real-valued random variables that represent the non-
private observations held by the different data holders. We assume thatX1, . . . , Xn ∼ f for
f ∈ Dspq. In particular, the support of the density f is contained in the interval [−T, T ]. In
this section, we introduce a non-interactive privacy mechanism creating a private release
Z1, . . . , Zn based on the non-private sample that satisfies the defining property of α-
differential privacy. For this purpose, we consider a wavelet basis as in (2.3). We assume
in the sequel that the following condition on the parent wavelets is satisfied:

ϕ and ψ are compactly supported on an interval [−A,A]. (W1)
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The idea of the proposed anonymisation technique is to mask the empirical wavelet co-
efficients α′j0k and β′jk for certain values of j. A consequence of (W1) and the compact
support of f is that for any j0 ∈ Z and any fixed resolution level j ∈ Z, the corresponding
αj0k and βjk can a priori be non-zero for a finite number of k only. We denote the set
of k with potentially non-zero αj0k by Nj0−1. Analogously, for j ≥ j0, the set of k with
potentially non-zero βjk is denoted with Nj.

Let us now define two privacy mechanisms that will turn out to be convenient for the
purposes of this paper. It will be sufficient to consider j0, j1 ∈ N from now on. Note that
since the wavelets coefficients α′j0k and β′jk are in any case zero for k /∈ Nj0−1 and k /∈ Nj,
respectively, we do not have to consider any privatisation of these quantities.

First privacy mechanism

For i ∈ J1, nK, j ∈ Jj0 − 1, j1K, define

Zijk =

ϕj0k(Xi) + σj0−1Wi,j0−1,k, if j = j0 − 1, k ∈ Nj0−1,

ψjk(Xi) + σ̃jWijk, if j ∈ Jj0, j1K, k ∈ Nj,
(2.7)

where Wijk are independent Laplace distributed random variables with parameter 1,

σj0−1 = 4cA‖ϕ‖∞
α

· 2j0/2 and σ̃j = 4cA‖ψ‖∞
α

·
√

2√
2− 1

· 2j1/2,

for j ∈ Jj0, j1K with cA = 2dAe+ 1.

Second privacy mechanism

For i ∈ J1, nK, j ∈ Jj0 − 1, j1K, define

Zijk =

ϕj0k(Xi) + σj0−1Wi,j0−1,k, if j = j0 − 1, k ∈ Nj0−1,

ψjk(Xi) + σjWijk, if j ∈ Jj0, j1K, k ∈ Nj,
(2.8)

where Wijk are independent Laplace distributed random variables with parameter 1,

σj0−1 = 4cA‖ϕ‖∞
α

· 2j0/2 and σj = 4cA‖ψ‖∞
α

· 2ν − 1
ν − 1 · (j ∨ 1)ν · 2j/2,

for j ∈ Jj0, j1K with cA = 2dAe+ 1 and some ν > 1.
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Note that both privacy mechanisms in (2.7) and (2.8) are non-interactive because Zijk
does only depend on Xi and not on Zi′jk for i′ 6= i. The use of the Laplace distribution is
convenient to provide α-differential privacy whereas the Gaussian distribution is suitable
for weaker notions of privacy like approximate differential privacy and KL-divergence
differential privacy [26]. The following proposition shows that both privacy mechanisms,
Zi = (Zijk)j∈Jj0−1,j1K,k∈Nj satisfy the condition of α-differential privacy.

Proposition 2.3.1. The privacy mechanisms given in (2.7) and (2.8) are local α-differential
private.

Proof. By definition of the privacy mechanism in (2.7), the conditional density of Zi given
Xi = xi can be written as

qZi|Xi=xi(zi) =
∏

k∈Nj0−1

1
2σj0−1

exp
(
− |zi,j0−1,k − ϕj0k(xi)|

σj0−1

)

·
j1∏
j=j0

∏
k∈Nj

1
2σ̃j

exp
(
− |zijk − ψjk(xi)|

σ̃j

)
.

Thus, by the reverse and the ordinary triangle inequality,

qZi|Xi=xi(zi)
qZi|Xi=x

′
i(zi)

=
∏

k∈Nj0−1

exp
(
|zi,j0−1,k − ϕj0k(x′i)| − |zi,j0−1,k − ϕj0k(xi)|

σj0−1

)

·
j1∏
j=j0

∏
k∈Nj

exp
(
|zijk − ψjk(x′i)| − |zijk − ψjk(xi)|

σ̃j

)

≤ exp
( ∑
k∈Nj0−1

|ϕj0k(xi)|+ |ϕj0k(x′i)|
σj0−1

)
· exp

( j1∑
j=j0

∑
k∈Nj

|ψjk(xi)|+ |ψjk(x′i)|
σ̃j

)
.

Note that for any fixed xi and arbitrary j, ψjk(xi) 6= 0 holds only for at most cA = 2dAe+1
different k, and the same argument is valid for ϕj0k(xi). Thus,

qZi|Xi=xi(zi)
qZi|Xi=x

′
i(zi)

≤ exp
(

2 · 2j0/2cA‖ϕ‖∞
σj0−1

)
· exp

(
2‖ψ‖∞cA ·

j1∑
j=j0

2j/2
σ̃j

)

≤ exp
(
α

2 + α(
√

2− 1)
2
√

2

j1∑
j=j0

2j/2
2j1/2

)
≤ exp(α).

For the privacy mechanism (2.8), analogous calculations yield for the conditional density
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of Zi given Xi = xi that

qZi|Xi=xi(zi)
qZi|Xi=x

′
i(zi)

≤ exp
(

2 · 2j0/2cA‖ϕ‖∞
σj0−1

)
· exp

(
2‖ψ‖∞cA ·

j1∑
j=j0

2j/2
σj

)

≤ exp
(
α

2 + α

2 ·
ν − 1
2ν − 1(2 +

∞∑
j=2

j−ν)
)
≤ exp(α),

where we used that
∑j1
j=j0(j ∨ 1)−ν ≤ ∑∞j=0(j ∨ 1)−ν and

∑∞
j=2 j

−ν ≤ (ν − 1)−1.

2.4 Upper bound for linear wavelet estimators

The expansion (2.4) suggests to consider estimators of the form

f̂(x) =
∑

k∈Nj0−1

α̂j0kϕj0k(x) +
j1∑
j=j0

∑
k∈Nj

β̂jkψjk(x)

with appropriate estimators α̂j0k and β̂jk of αj0k and βjk, respectively. Note that in the
local private framework, estimators of the wavelet coefficients are allowed to depend on
the private views Zijk only but not on the hidden Xi. For the results concerning the
linear estimator in this section, it suffices to consider the case j0 = 0. In this case we put
ψ−1,k = ϕ0,k, β̂−1,k = α̂0k and define a linear wavelet estimator through

f̂lin(x) =
j1∑

j=−1

∑
k∈Nj

β̂jkψjk(x) with β̂jk = 1
n

n∑
i=1

Zijk.

Since EWijk = 0, the definition of β̂jk is natural and provides an unbiased estimate of the
true wavelet coefficient βjk.

Note that in the global differential privacy setting, a curator has access to the ensemble
of original data and can release a privatised version of the estimator f̂lin where α̂j0k and β̂jk
are allowed to depend on the whole non-masked sample X1, . . . , Xn. However, in the local
setting, privatisation of data must precede estimation. Therefore, in this later setup, we
may only release for any i = 1, . . . , n the vector containing Zijk for all j ∈ Jj0, j1K and k in
Nj. These vectors may be calculated by n distinct entities and neither the corresponding
averages α̂j0k, β̂jk nor the final private estimator f̂lin can be directly released by any of
these entities alone. We also underline the fact that the statistician needs to know the
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wavelet basis used during privatisation and that (s)he can only reconstruct the wavelet
estimator by using the given privatised sample. However, this additional information does
not diminish the privacy as defined in this context.

The following proposition provides an upper bound for the estimator f̂lin in the so-
called matched case when r = p. Its proof is given in Appendix 2.8.

Proposition 2.4.1. Assume that the father wavelet ϕ satifies Assumption (2.1.2). Let
1 ≤ p <∞ and Zijk defined as in (2.7). Then

sup
f∈Dspq

E‖f̂lin − f‖pp . 2−j1ps +
(

22j1

nα2

)p/2
+
(

2j1
n

)p/2
. (2.9)

In particular, choosing j1 = j1(n, α) such that

2j1 � (nα2)
1

2s+2 ∧ n
1

2s+1 , (2.10)

we obtain
sup
f∈Dspq

E‖f̂lin − f‖pp . (nα2)−
ps

2s+2 ∨ n−
ps

2s+1 . (2.11)

The upper bound (2.11) suggests the following interpretation: As long as α2 ≥ n1/(2s+1),
the estimator f̂lin attains the rate n−ps/(2s+1) known to be optimal when the sample
X1, . . . , Xn is available. However, as soon as α2 < n1/(2s+1), this standard rate is de-
teriorated and the slower rate (nα2)−ps/(2s+2) is attained. As in [30], the alteration of
the rate in comparison to the non-private framework concerns both the effective sample
size (that changes from n to nα2) and the exponent appearing in the rate. We empha-
size that the privacy mechanism (2.7) consists in a mere additive perturbation of the
values ϕj0k(Xi) and ψjk(Xi) by Laplace noise. This procedure is in notable contrast to
the privacy mechanism suggested in [30] where a more complicated two-step procedure is
used to release privatised coefficients in a Fourier series framework. In this Fourier series
framework, the authors of [30] show that rate optimal estimation can be achieved by their
two-step procedure whereas an additive perturbation of the Fourier coefficients by Laplace
noise necessarily leads to non-optimal rates (see [30], Section 5.2.2). In our case, however,
Proposition 2.4.1 together with Proposition 2.2.1 shows that rate optimal estimation can
be achieved by means of additive Laplace perturbation only.

Although the risk bound of Proposition 2.4.1 is valid only in the matched case, it can
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be extended to the case r 6= p by means of the following proposition. Its proof is given in
Appendix 2.8.

Corollary 2.4.2. Assume that the father wavelet ϕ satisfies Assumption (2.1.2). Let
1 ≤ p, r < ∞ and Zijk defined as in (2.7), and put by s′ = s − (1/p − 1/r)+. Then,
choosing j1 as in (2.10) yields

sup
f∈Dspq

E‖f̂lin − f‖rr . (nα2)−
rs′

2s′+2 ∨ n−
rs′

2s′+1 .

Corollary 2.4.2 together with Proposition 2.2.1 shows that the estimator f̂lin is of
optimal order in the dense homogeneous zone where p ≥ r (which is equivalent to s = s′)
and for α bounded from above. In analogy to [24], it would be possible to suggest a non-
linear estimation procedure depending on s that is optimal (up to logarithmic factors in
some cases) in the non-homogeneous dense case and in the sparse case as well. However, in
Section 2.5, we directly propose a non-linear estimator that is adaptive to the smoothness
s of the underlying density (as well as to the other parameters p and q of the Besov
space).

2.5 Upper bounds for the non-linear adaptive esti-

mator

In this section, the privacy mechanism is given by (2.8) in Section 2.3. We study the
theoretical properties of the non-linear wavelet estimators of the form

f̃n(x) =
∑
k

α̂j0kϕj0k(x) +
j1∑
j=j0

∑
k

β̃jkψjk(x) (2.12)

where
α̂j0k = 1

n

n∑
i=1

Zi,j0−1,k and β̃jk = β̂jk · 1{|β̂jk|≥Kt},

and β̂jk = 1
n

∑n
i=1 Zijk as in Section 2.4 (the choice of t and the value of the numerical

constant K are specified in Theorem 2.5.1 and its proof below). Thus, non-linearity enters
only with respect to the estimation of the detail coefficients βjk.

Theorem 2.5.1. Let the father wavelet ϕ satisfy Assumption 2.1.2 for some integer
N > 0. Let the private views Z1, . . . , Zn of the sample X1, . . . , Xn be generated with the
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privacy mechanism in (2.8). Consider the estimator f̃n defined in (2.12) with

• j0 ∈ N such that 2j0 � (nα2)
1

2(N+1)+2 ∧ n
1

2(N+1)+1 ,

• j1 = j′1 ∧ j′′1 where j′1, j′′1 ∈ N are such that

2j′1 � n

log n, and 22j′′1 � nα2

log(nα2) ,

• K = 4(L + σ) for some L > 0 and σ = 4cA‖ψ‖∞ · 2ν−1
ν−1 with ν introduced in the

definition of the second privacy mechanism,

• t = tj,n,α = γ · jν+1/2
√
n
· (1 ∨ 2j/2

α
) for j ∈ Jj0, j1K and some sufficiently large constant

γ (for instance, γ ≥ r(N + 1) works).

Then, the risk bound

sup
(s,p,q,L)∈Θ

sup
f∈Dspq(L,T )

E‖f̃n − f‖rr . (log n)C ·R?
n,α

where

R?
n,α =


n−

rs
2s+1 ∨ (nα2)−

rs
2s+2 , if p > r

s+1 ,

n−
rs

2s+1 ∨
(

nα2

log(nα2)

)− r(s−1/p+1/r)
2(s−1/p)+2 , if r

2s+1 < p ≤ r
s+1 ,(

n
logn

)− r(s−1/p+1/r)
2(s−1/p)+1 ∨

(
nα2

log(nα2)

)− r(s−1/p+1/r)
2(s−1/p)+2 , if p ≤ r

2s+1 ,

and where
Θ = (1/p,N + 1)× [1,∞)× [1,∞)× [L,L]

for some 0 < L ≤ L <∞.

The proof of the Theorem is given in Appendix 2.9. Note that both the privacy mech-
anism and the estimator in Theorem 2.5.1 are independent of the quantities s, p, q, and
L (only an upper bound L on L and an arbitrary value of ν > 1 that should be cho-
sen close to 1 are needed in order to specify the value of the constant K). Hence, the
proposed procedure is adaptive over the collection of Besov spaces parametrized by the
set Θ. Proposition 2.9.2 and Remark 2.9.3 show that the value L in the definition of K
can be replaced with an upper bound on ‖f‖∞. If such an a priori bound of ‖f‖∞ is not
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available, it might be replaced by some estimator of this quantity. The proposal of an ap-
propriate estimator and its detailed analysis are outside the scope of our presentation and
might be investigated in future work. The actual choice of the parameter ν is of secondary
importance for our analysis: it should be larger than 1 in order to ensure convergence of
the series

∑∞
j=2 j

−ν in the proof of Proposition 2.3.1; however, it should not be too large
since it appears in the final rates in the exponents of the additional logarithmic factors.
We emphasize that neither the necessity nor the optimal expression of these logarithmic
factors is not yet known in the framework of differential privacy.

2.6 Discussion

In this article, we have suggested refined methods for density estimation under the con-
straint of local α-differential privacy. By the use of estimators based on wavelet expan-
sions, we have been able to obtain adaptive procedures that obtain the minimax rate of
convergence up to an additional logarithmic factor only. To the best of our knowledge,
adaptation to smoothness has not been considered in the framework of private estimation
so far. Moreover, in allowing for general Lr-risk and Besov ellipsoids we have widened the
range of results in the privacy framework that has merely focused on L2-risk and Sobolev
ellipsoids until now. We emphasize that in our minimax approach a careful coupling of
a privacy mechanism associated with a corresponding estimator is provided. In the same
spirit, one may produce alternative couplings and we think it would be useful to further
compare the various privacy mechanisms from different perspectives.

A significant difference between our approach and the one suggested in Section 5.2.2
of [30] concerns the privacy mechanism: Whereas the procedure in [30] is built on a
rather sophisticated sampling strategy aiming at the perturbation of empirical Fourier
coefficients, our privacy mechanism consists in a simple Laplace perturbation of empirical
wavelet coefficients. In [30] it has been observed (see the last paragraph of Section 5.2.2
in that paper) that such an approach is not feasible for the Fourier basis since it would
lead to a suboptimal rate (under L2-risk) of order (nα2)−2s/(2s+3) over Sobolev ellipsoids
of smoothness s instead of the optimal rate (nα2)−s/(s+1). A heuristic explanation for the
easier accessibility of the problem by means of wavelet bases is given by their well-known
localisation properties in contrast to the global Fourier basis.

Note that wavelet methods in the non-private framework do not necessarily suffer from
a logarithmic loss in the rate (see, for instance, [24] where an additional logarithmic loss
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only appears in the dense zone). The fact that we encounter this type of loss in our private
scenario is caused by the term jν in the definition of the privacy mechanism (2.8). The
problem whether and if so, how such logarithmic losses might be circumvented remains
open and provides an interesting direction for future research.

Finally, let us sketch the connection between local private estimation in the non-
interactive setup and statistical inverse problems, in particular, density deconvolution: On
the one hand, in density deconvolution, the statistician is given a noisy sample Z1, . . . , Zn

where Zi = Xi+εi forXi ∼ f and εi ∼ q. Here, the density f is the quantity of interest and
q an error density which is (at least in the overwhelming part of the literature) supposed
to be known. In this setup, the Zi are distributed according to the density g where

g(·) = (Kqf)(·) :=
∫
q(· − x)f(x)dx (2.13)

is the convolution of f with the error density q. It is well-known that the difficulty of
reconstructing f from the sample Z1, . . . , Zn is linked with the degree of ill-posedness of
the inverse problem g = Kqf . The latter can be described either in terms of the sequence
(λ2

k) of eigenvalues of K∗qKq (K∗q denotes the adjoint operator of the linear operator Kq)
or in terms of the decay of the Fourier transform of the error density q. General inverse
problems of the form Kf = g have been thoroughly investigated in [48] in the framework
of a Gaussian white noise model. For Besov smooth signals f and |λk| � k−ρ for some
ρ > 0, [48] derived adaptive rates of estimation of f proportional to

 (log n)Cn−
rs

2(s+ρ)+1 , if s > (ρ+ 1
2)( r

p
− 1),

(log n)Cn−
r(s−1/p+1/r)
2(s−1/p+ρ)+1 , if s ≤ (ρ+ 1

2)( r
p
− 1) and s ≥ 1

p
.

On the other hand, the statistician who is given the non-interactive privatised sample
Z1, . . . , Zn is confronted with the problem of recovering f from a sample from the mixture
density

g(·) = (Kf)(·) :=
∫
qZ|X=x(·)f(x)dx,

which is a special instance of an inverse problem and strongly resembles (2.13). In contrast
to (2.13), however, the operatorK is now not a priori given as a component of the problem
but constitutes rather a part of its solution. In the local differential privacy framework,
the statistician should select the operator K, corresponding to the choice of a privacy
mechanism, subject to the two following constraints. First, the condition (2.1) concerning
α-differential privacy must hold. Second, the least possible amount of information should
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be smoothed out by the operator K. More precisely, denoting with ρ the degree of ill-
posedness as above, the proofs of the lower bounds suggest that the least admissible value
for ρ is 1/2. Our privacy mechanisms, that is, our choices of K satisfy both constraints
by leading to an overall estimation procedure that is nearly minimax.

We emphasize that the above interpretation of the locally differential private estima-
tion problem does not rule out privacy mechanisms that add noise directly to the random
variables X1, . . . , Xn in principle. In this case, the probability density function q in (2.13)
should satisfy the local α-differential privacy condition and have smoothness equal to 1/2.
An explicit density q satisfying (2.1) and having smoothness ρ = 1/2 does not seem trivial
to find. As already mentioned, [30] have noted that adding Laplace noise directly to the
observations cannot lead to an optimal procedure. Indeed, the convolution operator in
this case has degree of ill-posedness corresponding to ρ = 2 which yields a suboptimal
rate.

2.7 Appendix : Proofs of Section 2.2

We distinguish in the sequel the dense case and the sparse case that require different
explicit constructions. However, for both proofs of the lower bounds we need the existence
of a function f0 with the following properties (see [41]):

• f0 is a probability density,

• Jspq(f0) ≤ L/2,

• supp(f0) ⊆ [−T, T ],

• f0 ≡ c0 > 0 on some interval [a, b].

In particular, f0 ∈ Dspq(L/2, T ).
The main tool in the proof of the lower bounds is adapted from [30]. It allows to reduce

the problem to the study of the likelihoods of the non-privatised data and quantifies the
loss of information in the process.

Suppose that we are given a finite indexed family of distributions {Pν , ν ∈ V}. Let V
denote a random variable that is uniformly distributed over V . Conditionally on V = ν,
suppose we sample a random vector (X1, . . . , Xn) according to the product measure P⊗nν =
Pν ⊗ . . .⊗ Pν . Suppose that we draw an α-locally private sample Z1, . . . , Zn according to
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a channel Q. Conditioned on V = ν, (Z1, . . . , Zn) is distributed according to the measure
Mn

ν given by

Mn
ν (S) :=

∫
Qn(S | x1, . . . , xn)dP⊗nν (x1, . . . , xn) for S ∈ σ(Zn),

where Qn(· | x1, . . . , xn) denotes the joint distribution on Zn of the private sample Z1:n

conditioned on X1:n = x1:n. In this setup, we have the following inequality.

Lemma 2.7.1. [Based on [30], Theorem 1] Let α ≥ 0. For any α-locally differentially
private conditional distribution Q and any ν, ν ′ ∈ V, ν 6= ν ′, we have in the above setting

KL(Mn
ν ,M

n
ν′) + KL(Mn

ν′ ,M
n
ν ) ≤ 4n(eα − 1)2TV2(Pν , Pν′).

Lemma 2.7.1 quantifies the property that α-differential privacy acts as a contraction
on the space of probability measures.

2.7.1 Proof of Proposition 2.2.1

It is sufficient to prove the lower bound for n sufficiently large (the remaining finitely
many n might merely further reduce the value of the numerical constant C). Let f0 be the
function introduced above. For fixed j (the choice of which will be specified later) define
Ij as a maximal subset of Z such that supp(ψjk) ⊂ [a, b] and supp(ψjk) ∩ supp(ψjk′) = ∅
if k, k′ ∈ Ij with k 6= k′. Note that Nj := |Ij| � 2j. Define

F = {fθ : fθ = f0 + γ
∑
k∈Ij

θkψjk and θ = (θk) ∈ Θ := {0, 1}Nj}

where γ = c(n(eα − 1)2)−
2s+1

2(2s+2) for c sufficiently small and 2j � (n(eα − 1)2)
1

2s+2 . For c
sufficiently small, it holds γ2j/2‖ψ‖∞ 6 c0, which ensures that fθ is non-negative for all
θ ∈ Θ. One can easily check that

∫
fθ = 1 and supp(fθ) ⊆ [−T, T ] for all θ ∈ Θ. Moreover,

by the definition of γ, the choice of j and the equivalence of norms, we have

‖fθ‖spq ≤ ‖f0‖spq + c1γ2j(s+1/2−1/p)
( ∑
k∈Ij
|θk|p

)1/p

≤ L

2 + c1γ2j(s+1/2) ≤ L

2 + Ccc1 ≤ L,
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where the last inequality holds for c sufficiently small. Hence, F ⊂ Dspq(L, T ) and

sup
f∈Dspq(L,T )

Ef‖f̃ − f‖rr ≥ sup
f∈F

Ef‖f̃ − f‖rr = max
θ∈Θ

Eθ‖f̃ − fθ‖rr.

Denoting by ∆jk the support of ψjk, it holds for any estimator f̃ of f that

Eθ‖f̃ − fθ‖rr = Eθ
∫
|f̃(x)− fθ(x)|rdx

≥
∑
k∈Ij

Eθ
∫

∆jk

|f̃(x)− fθ(x)|rdx

=
∑
k∈Ij

Eθ
∫

∆jk

|f̃(x)− f0(x)− γθkψjk(x)|rdx

since fθ ≡ gθk := f0 + γθkψjk on ∆jk. Set

‖f̃ − gθk‖rr,∆jk
=
∫

∆jk

|f̃(x)− gθk(x)|rdx =
∫

∆jk

|f̃(x)− f0(x)− γθkψjk(x)|rdx,

and θ̌k = argminθ∈{0,1} ‖f̃ − gθ‖r,∆jk
. It follows from the triangle inequality that

2‖f̃ − gθk‖r,∆jk
≥ ‖f̃ − gθk‖r,∆jk

+ ‖f̃ − gθ̌k‖r,∆jk

≥ ‖gθk − gθ̌k‖r,∆jk

= γ|θk − θ̌k|‖ψjk‖r.

Thus,

Eθ‖f̃ − fθ‖rr ≥
γr

2r
∑
k∈Ij

Eθ[|θ̌k − θk|r]‖ψjk‖rr

= γr

2r ‖ψj1‖
r
r · Eθ[dH(θ̌, θ)],

where dH denotes the Hamming distance. Therefore,

sup
f∈Dspq(L,T )

Ef‖f̃ − f‖rr ≥ max
θ∈Θ

Eθ‖f̃ − fθ‖rr ≥
γr

2r ‖ψj1‖
r
r · inf

θ̃

max
θ∈Θ

Eθ[dH(θ̃, θ)].

In order to apply Lemma 2.7.2, we need to bound the Kullback-Leibler divergence between
two different distributions Mn

θ and Mn
θ′ of the private sample (Z1, . . . , Zn) resulting from

the sample X1, . . . , Xn if, for all i ∈ J1, nK, Xi is distributed according to fθ, fθ′ with
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dH(θ, θ′) = 1. We write Xi ∼ Pθ if Xi has density fθ. Using Lemma 2.7.1 we obtain for
any channel providing local α-differential privacy that

KL(Mn
θ ,M

n
θ′) ≤ 4(eα − 1)2nTV2(Pθ,Pθ′).

Now, since dH(θ, θ′) = 1 and θ, θ′ ∈ Θ, there exists k0 ∈ Ij such that

TV(Pθ,Pθ′) = 1
2

∫
|fθ(x)− fθ′(x)|dx = 1

2

∫
|γ
∑
k∈Ij

(θk − θ′k)ψjk(x)|dx

= γ

2

∫
|ψjk0(x)|dx = 1

22−j/2γ‖ψ‖1,

which implies that

KL(Mn
θ ,M

n
θ′) ≤ (eα − 1)2‖ψ‖2

1n2−jγ2 ≤ c2‖ψ‖2
1C <∞.

Applying Lemma 2.7.2 from the appendix with N = Nj & 2j implies

sup
f∈Dspq(L,T )

Ef‖f̃ − f‖rr &
γr

2r 2j(r/2−1)‖ψ‖rr · 2j

& (n(eα − 1)2)−
rs

2s+2 .

This implies the statement of the proposition since f̃ and the channel distribution were
arbitrary.

2.7.2 Proof of Proposition 2.2.2

We consider f0, ψ, Ij and Nj as in the proof of Proposition 2.2.1, but consider now the set

F = {fk = f0 + γ · ψjk, k ∈ Ij} ∪ {f0},

where j is chosen such that 2j '
(

n(eα−1)2

log(n(eα−1)2)

) 1
2(s+1−1/p) and γ = c2−j(s+1/2−1/p) for c

sufficiently small. Let us first check that this choice of j and γ guarantees that F ⊂
Dspq(L, T ). First, we have f0 ∈ Dspq(L, T ) and one can easily check that

∫
fk = 1 and

supp(fk) ⊆ [−T, T ] for all k ∈ Ij. Then, for any k ∈ Ij, we have on [a, b] that

fk ≥ c0 − γ‖ψjk‖∞ ≥ c0 − c2−j(s+1/2−1/p)2j/2‖ψ‖∞ ≥ c0 − c‖ψ‖∞ ≥ 0
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for c sufficiently small, and outside of [a, b] it holds fk = f0 ≥ 0. Furthermore, for any
k ∈ Ij,

‖fk‖spq ≤ ‖f0‖spq + γ‖ψjk‖spq ≤ L/2 + c2−j(s+1/2−1/p)‖ψjk‖spq ≤ L/2 + cc1 ≤ L

for c sufficiently small. Hence, F ⊂ Dspq(L, T ) and

sup
f∈Dspq(L,T )

Ef‖f̃ − f‖rr ≥ sup
f∈F

Ef‖f̃ − f‖rr.

Now, we show that for k, k′ ∈ Ij, k 6= k′, the hypotheses fk and fk′ , as well as the
hypotheses fk and f0, are sufficiently separated in the sense of Lemma 2.7.3. For such
k, k′ we have:

‖fk − fk′‖rr ≥ ‖fk − f0‖rr = γr2rj(1/2−1/r) · ‖ψ‖rr = cr2−rj(s+1/2−1/p)2rj(1/2−1/r) · ‖ψ‖rr
= cr‖ψ‖rr2−jr(s−1/p+1/r)

≥ C

(
log(n(eα − 1)2)
n(eα − 1)2

)r· s−1/p+1/r
2(s+1−1/p)

.

For k ∈ {0} ∪ Ij, let Mn
k be the distribution of the private sample (Z1, . . . , Zn) resulting

from the sample X1, . . . , Xn if for all i ∈ J1, nK Xi is distributed according to fk. For all
k ∈ Ij we have Mn

k �Mn
0 . It remains to bound the quantity 1

Nj

∑
k∈Ij KL(Mn

k ,M
n
0 ). We

write Xi ∼ Pk if Xi has density fk, k ∈ {0}∪Ij. First consider the total variation distance
between Pk and P0 for k ∈ Ij :

TV(Pk,P0) = 1
2

∫
|fk − f0| =

γ

2

∫
|ψjk| =

γ

2 2−j/2‖ψ‖1

= c

2‖ψ‖12−j(s−1/p+1),

and thus
TV2(Pk,P0) ≤ c2

4 ‖ψ‖
2
1C ·

log(n(eα − 1)2)
n(eα − 1)2 .

Applying Lemma 2.7.1 gives

1
Nj

∑
k∈Ij

KL(Mn
k ,M

n
0 ) ≤ c2‖ψ‖2

1C · log(n(eα − 1)2). (2.14)
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Now, log(Nj) ≥ log(C2j) and

log(C2j) > log(n(eα − 1)2)
2(s− 1/p+ 1) (1 + o(1)) ≥ 1

2
log(n(eα − 1)2)
2(s− 1/p+ 1)

for n sufficiently large, say n ≥ n0. Putting this estimate into (2.14) yields

1
Nj

∑
k∈Ij

KL(Mn
k ,M

n
0 ) ≤ C log(Nj)

for n ≥ n0 and C < 1/8 for c sufficiently small. We can then apply Lemma 2.7.3, which
yields for n ≥ n0 that

sup
f∈Dspq

Ef‖f̃ − f‖rr ≥ C

(
log(n(eα − 1)2)
n(eα − 1)2

)r· s−1/p+1/r
2(s−1/p)+2

.

The statement of the proposition follows since both the estimator f̃ and the privacy
mechanism considered were arbitrary.

2.7.3 Further auxiliary results for the lower bound proofs

The following lemma is a Kullback-Leibler version of Assouad’s lemma. As above, we
denote by dH the Hamming distance, that is, dH(θ, θ′) = ∑d

i=1 1{θi 6=θ′i} for θ, θ
′ ∈ Rd.

Lemma 2.7.2 ([72], p. 118, Theorem 2.12). Denote with Θ = {0, 1}N the set of all
binary sequences of length N . Let {Pθ : θ ∈ Θ} be a set of 2N probability measures on
some measurable space (X ,A ) and let the corresponding expectations be denoted by Eθ.
Then

inf
θ̃

max
θ∈Θ

Eθ[dH(θ, θ̃)] ≥ N

2 max{exp(−β)/2, 1−
√
β/2}

provided that KL(Pθ,Pθ′) ≤ β <∞ for all θ, θ′ ∈ Θ with dH(θ, θ′) = 1.

For the lower bound in the sparse case we need the following lemma taken from [72].

Lemma 2.7.3 ([72], p. 101, Theorem 2.7). Assume that M ≥ 1 and suppose that Θ
contains elements θ0, θ1, . . . , θM such that:

(i) d(θj, θk) ≥ 2Ψ > 0, for all 0 ≤ j < k ≤M ,
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(ii) Pj � P0, for all j = 1, . . . ,M , and

1
M

M∑
j=1

KL(Pj,P0) ≤ β logM

with 0 < β < 1/8 and Pj = Pθj , j = 0, 1, . . . ,M . Then

inf
θ̃

sup
θ∈Θ

Eθ(dr(θ̃, θ)) ≥ c(β)Ψr.

2.8 Appendix : Proofs of Section 2.4

2.8.1 Proof of Proposition 2.4.1

We give the proof for p > 2 only, which is based on Statement (ii) from Lemma 2.8.1.
The proof for 1 ≤ p ≤ 2 follows similarly using (i) instead. We decompose the risk of the
estimator f̂lin into approximation and stochastic error:

E‖f̂lin − f‖pp ≤ 2p−1{E‖f̂lin − E[f̂lin]‖pp + ‖E[f̂lin]− f‖pp}.

The approximation term can be dealt with exactly as in the case of non-private data (see
[41], p. 130),

‖E[f̂lin]− f‖pp ≤ C2−spj1 ,

and it remains to consider the stochastic term. Putting β′−1,k = 1
n

∑n
i=1 ϕ(Xi − k) and

β′jk = 1
n

∑n
i=1 ψjk(Xi), we have

f̂lin − E[f̂lin] =
j1∑

j=−1

∑
k∈Nj

β′jkψjk(x)−
j1∑

j=−1

∑
k∈Nj

βjkψjk(x)

+
∑

k∈N−1

(
1
n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1
n

n∑
i=1

σ̃jWijk

)
ψjk(x),

which can be rewritten as

f̂lin − E[f̂lin] = 1
n

n∑
i=1

Kj1+1(x,Xi)− E[Kj1+1(x,X1)]

+
∑

k∈N−1

(
1
n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1
n

n∑
i=1

σ̃jWijk

)
ψjk(x),
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where Kj(x, y) = 2j∑k ϕ(2jx− k)ϕ̄(2jy − k). We further decompose

E‖f̂lin − E[f̂lin]‖pp ≤ 2p−1E
∥∥∥∥∥ 1
n

n∑
i=1

Kj1+1(·, Xi)− E(Kj1+1(·, X1))
∥∥∥∥∥
p

p

+ 2p−1E
∥∥∥∥∥ ∑
k∈N−1

(
1
n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k +

j1∑
j=0

∑
k∈Nj

(
1
n

n∑
i=1

σjWijk

)
ψjk

∥∥∥∥∥
p

p

.

The first term on the right-hand side is analysed as in the non-private setup (see [41],
p. 130) leading to the bound

E
∥∥∥∥∥ 1
n

n∑
i=1

Kj1+1(·, Xi)− E[Kj1+1(·, X1)]
∥∥∥∥∥
p

p

≤ C

(
2j1
n

)p/2
. (2.15)

For the remaining term, we have by Tonelli’s theorem

E
∫ ∣∣∣∣∣ ∑

k∈N−1

(
1
n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1
n

n∑
i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx

= 1
np

∫
∆
E
∣∣∣∣∣ ∑
k∈N−1

(
n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
n∑
i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx

where ∆ is some compact set the length of which depends on A and T only. The expecta-
tion inside the integral is bounded from above by Rosenthal’s inequality (Statement (ii)
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of Lemma 2.8.1):

E
∣∣∣∣∣ ∑
k∈N−1

(
n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
n∑
i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

.
∑

k∈N−1

n∑
i=1

E
∣∣∣σ−1Wi,−1,kψ−1,k(x)|p +

j1∑
j=0

∑
k∈Nj

n∑
i=1

E|σ̃jWijkψjk(x)
∣∣∣p

+
( ∑
k∈N−1

n∑
i=1

E|σ−1Wi,−1,kψ−1,k(x)|2 +
j1∑
j=0

∑
k∈Nj

n∑
i=1

E|σ̃jWijkψjk(x)|2
)p/2

= n
∑

k∈N−1

σp−1|ψ−1,k(x)|pE|W1,−1,k|p + n
j1∑
j=0

∑
k∈Nj

σ̃pj |ψjk(x)|pE|W1jk|p

+ np/2
( ∑
k∈N−1

σ2
−1|ψ−1,k(x)|2E|W1,−1,k|2 +

j1∑
j=0

σ̃2
j

∑
k∈Nj
|ψjk(x)|2E|W1jk|2

)p/2

� n
∑

k∈N−1

σp−1|ψ−1,k(x)|p + n
j1∑
j=0

∑
k∈Nj

σ̃pj |ψjk(x)|p

+ np/2
( ∑
k∈N−1

σ2
−1|ψ−1,k(x)|2 +

j1∑
j=0

σ̃2
j

∑
k∈Nj
|ψjk(x)|2

)p/2

� n
∑

k∈N−1

|ψ−1,k(x)|p 1
αp

+ n
j1∑
j=0

∑
k∈Nj

2j1p/2|ψjk(x)|p 1
αp

+ np/2
( ∑
k∈N−1

|ψ−1,k(x)|2 1
α2 +

j1∑
j=0

2j1
∑
k∈Nj
|ψjk(x)|2 1

α2

)p/2
.

Recall the definition of ψjk and noting that due to the boundedness of the support of the
wavelet parents ϕ and ψ we have for any x and fixed j that ψjk(x) 6= 0 only for a finite
number of k that is independent of j. Thus, using the last expression we bound from
above as follows

∫
∆
E
∣∣∣∣∣ ∑
k∈N−1

(
n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
n∑
i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx

≤ C

(
n

αp
+ n2j1p/2

j1∑
j=0

2jp/2
αp

+ np/2
(

1
α2 + 2j1

j1∑
j=0

2j
α2

)p/2)

' n

αp
+ n · 2pj1

αp
+ np/2

αp
+ np/2 · 2pj1

αp
.
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Thus,

E
∫

∆

∣∣∣∣∣ ∑
k∈N−1

(
1
n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1
n

n∑
i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx

.
2pj1

αpnp−1 +
(

22j1

nα2

)p/2
. (2.16)

Combining (2.15) and (2.16) yields

E‖f̂lin − E[f̂lin]‖pp .
(

22j1

nα2

)p/2
+
(

2j1
n

)p/2
,

which proves (2.9). Choosing j1 = j1(n, α) as in (2.10) immediately implies (2.11).

2.8.2 Proof of Corollary 2.4.2

We distinguish between the cases p ≥ r and p < r.

2.8.2.0.1 1. Case: p > r In this case, s′ = s. Let us consider the estimator f̂lin with
j1 chosen as in Proposition 2.4.1. First note that there exists a constant C̄ > 0 such that
the Lebesgue measure of supp(f̂lin − f)) is bounded from above by a constant C̄ > 0.
Then, applying Hölder’s inequality and Proposition 2.4.1 yields

E‖f̂lin − f‖rr ≤ C̄1−r/p
(
E‖f̂lin − f‖pp

)r/p
. (nα2)−

rs
2s+2 ∨ n−

rs
2s+1 .

2.8.2.0.2 2. Case: p ≤ r In this case, s′ = s − 1/p + 1/r. Thanks to the Besov
embedding it holds Bspq ⊂ Bs

′
rq, which implies Dspq ⊂ Ds

′
rq. Thus, again using the upper

bound for the matched case from Proposition 2.4.1,

sup
f∈Dspq

E‖f̂lin − f‖rr ≤ sup
f∈Ds′rq

E‖f̂lin − f‖rr

. (nα2)−
rs′

2s′+2 ∨ n−
rs′

2s′+2 ,

which is the desired bound for the case p ≤ r.
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2.8.3 Inequalities for moments of sums of independent random

variables

Lemma 2.8.1. Let X1, . . . , Xn be independent centred random variables with E[|Xi|r] <
∞.

(i) If 0 < r ≤ 2, then

E
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣
r)
≤
(

n∑
i=1

E(X2
i )
)r/2

.

(ii) If r > 2, then there exists a constant C = C(r) such that

E
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣
r)
≤ C

{
n∑
i=1

E(|Xi|r) +
(

n∑
i=1

E(X2
i )
)r/2}

.

Inequality (i) follows directly from Jensen’s inequality and concavity of x 7→ xr/2 for
0 < r ≤ 2. For a proof of inequality (ii) we refer to [61], p. 59, Theorem 2.9.

2.9 Appendix : Proof of Theorem 2.5.1

This section is devoted to the proof of Theorem 2.5.1. The main reasoning is given in
Section 2.9.1 but some tedious calculations for this proof are deferred to Section 2.9.2.
Sections 2.9.3 and 2.9.4 contain auxiliary results used in Section 2.9.2.

2.9.1 Proof of Theorem 2.5.1

As in the proof of the Corollary 2.4.2, we note that it is sufficient to prove the result for
p ≤ r and one can deduce the result for p > r as in the proof of this corollary.

We consider the upper bound E‖f̃n − f‖rr ≤ 3r−1(E‖A‖rr + E‖B‖rr + ‖C‖rr) where

A =
∑
k∈Z

(α̂j0k − αj0k)ϕj0k, B =
j1∑
j=j0

∑
k∈Z

(β̃jk − βjk)ψjk, and

C =
∑
k∈Z

αj1kϕj1k − f.

We consider the risk bounds for E‖A‖rr, E‖B‖rr, and ‖C‖rr separately.
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2.9.1.0.1 Upper bound for the term E‖A‖rr: Putting α′j0k = 1
n

∑n
i=1 ϕj0k(Xi) it

holds

E‖A‖rr ≤ 2r−1E
∥∥∥∑
k∈Z

(α′j0k − αj0k)ϕj0k
∥∥∥r
r

+ 2r−1E
∥∥∥∑

k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k

∥∥∥r
r
.

The first term on the right-hand side is bounded by the compact support assumption on
ϕ and using Lemma 1 from [24] as in the non-private case (see [24], p. 522):

2r−1E
∥∥∥∑
k∈Z

(α′j0k − αj0k)ϕj0k
∥∥∥r
r
≤ C(r)2j0(r/2−1)∑

k

E|α′j0k − αj0k|
r ≤ C(r)

(
2j0
n

)r/2
.

Concerning the second term, first, by Fubini’s theorem

E
∥∥∥∑

k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k

∥∥∥r
r

=
∫
E|
∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k(x)|rdx,

and the integrand on the right-hand side can be bounded as follows: for r > 2,

E|
∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k(x)|r ≤ C(r)

nr

[
σrj0−1

∑
k

|ϕj0k(x)|r
n∑
i=1

E|Wi,j0−1,k|r

+
(
σ2
j0−1

∑
k

|ϕj0k(x)|2
n∑
i=1

E|Wi,j0−1,k|2
)r/2]

= C(r)
nr

[
σrj0−1

∑
k

|ϕj0k(x)|rnr! +
(

2nσ2
j0−1

∑
k

|ϕj0k(x)|2
)r/2]

.
1
nr

[
2rj0 · n

αr
+
(

22j0nα−2
)r/2]

= 2rj0
nr−1αr

+
(

22j0

nα2

)r/2
,

whereas for r ≤ 2,

E|
∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k(x)|r .

(
22j0

nα2

)r/2
.

Thus, altogether,

E‖A‖rr .
(

2j0
n

)r/2
+
(

22j0

nα2

)r/2
.
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Hence, for our choice of j0 and grant to s < N + 1 from Assumption 2.1.2, we obtain

E‖A‖rr .

n 1
2(N+1)+1

n

r/2 +
(nα2)

2
2(N+1)+2

nα2

r/2

= n−
r(N+1)

2(N+1)+1 + (nα2)−
r(N+1)

2(N+1)+2

≤ n−
rs

2s+1 + (nα2)−
rs

2s+2

. n−
rs

2s+1 ∨ (nα2)−
rs

2s+2 ∨
(

n

log n

)− r(s−1/p+1/r)
2(s−1/p)+1

∨
(

nα2

log(nα2)

)− r(s−1/p+1/r)
2(s−1/p)+2

,

and the bound on the right-hand side is the claimed rate.

2.9.1.0.2 Upper bound for the term E‖B‖rr: We consider the sets

B̂j = {k : |β̂jk| > Ktj,n,α}, Ŝj = B̂{
j ,

Bj = {k : |βjk| > (K/2)tj,n,α}, Sj = B{
j ,

B′j = {k : |βjk| > 2Ktj,n,α}, S ′j = (B′j){,

and the decomposition

B =
j1∑
j=j0

∑
k

(β̂jk − βjk)ψjk
[
1
B̂j∩Sj

(k) + 1
B̂j∩Bj

(k)
]

−
j1∑
j=j0

∑
k

βjkψjk
[
1
Ŝj∩B′j

(k) + 1
Ŝj∩S′j

(k)
]

=: (ebs + ebb)− (esb + ess).

Appropriate bounds for the four terms ebs, ebb, esb, ess are derived in Appendix 2.9.2.

2.9.1.0.3 Upper bound for the term ‖C‖rr:
In the case we consider, p ≤ r, we use the embedding Bspq ⊂ Bs

′
r∞, where we recall that

s′ = s− 1
p

+ 1
r
. Then, it holds

‖
∑
k∈Z

αj1kϕj1k − f‖rr ≤ C‖f‖rspq · 2−j1s
′r.
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Moreover, with our choice of j1,

2−j1s′r ≤ 2−j′1s′r + 2−j′′1 s′r

.

(
n

log n

)− rs′
2(s−1/p)+1

+
(

nα2

log(nα2)

)− rs′
2(s−1/p)+2

,

and the sum on the right-hand side is bounded from above by the claimed rate.

2.9.2 Bounds for the terms ebs, ebb, esb, and ess

Consider the event Ajk defined via Ajk = {|β̂jk − βjk| > K/2 · tj,n,α}. The concentration
inequality (2.21) for this event as well as the bound (2.22) will be used frequently in the
sequel without further reference. In the following, we bound the terms E‖ebs‖rr, E‖ebb‖rr,
E‖esb‖rr, and E‖ess‖rr separately.

2.9.2.1 Bound for ebs

By the Cauchy-Schwarz inequality and the fact that B̂j ∩ Sj ⊂ Ajk,

E‖ebs‖rr .
j1∑
j=j0

2j(r/2−1) ∑
k∈Nj

E[|β̂jk − βjk|r1B̂j∩Sj(k)]

≤
j1∑
j=j0

2j(r/2−1) ∑
k∈Nj

(
E[|β̂jk − βjk|2r]

)1/2
· P(|β̂jk − βjk| ≥ K/2 · tj,n,α)1/2

≤
j1∑
j=j0

2j(r/2−1) ∑
k∈Nj

(n−r/2 ∨ jνr/22jr/2(nα2)−r/2) · 2−γj/2

≤
j1∑
j=j0

2jr/22−γj/2(n−r/2 ∨ jνr/22jr/2(nα2)−r/2)

≤ n−r/2
j1∑
j=j0

2jr/22−γj/2 + (nα2)−r/2jνr/21

j1∑
j=j0

2jr2−γj/2

and this term is bounded from above by the claimed rate provided that γ ≥ 2r.
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2.9.2.2 Bound for esb

Using the relation Ŝj ∩B′j ⊂ Ajk, we obtain

E‖esb‖rr .
j1∑
j=j0

2j(r/2−1)∑
k

|βjk|r · E[1
Ŝj∩B′j

(k)]

.
j1∑
j=j0

2j(r/2−1) ∑
k∈Nj
|βjk|r · P(|β̂jk − βjk| ≥ K · tj,n,α)

.
j1∑
j=j0

2j( r2−1−γ)‖βj·‖rr.

In the considered case p ≤ r, we exploit the embedding Bspq ⊆ Bs
′
rq with s′ = s− 1

p
+ 1

r
to

get the bound
‖βj·‖r . 2−j(s′+ 1

2−
1
r

).

Hence,

E‖esb‖rr .
j1∑
j=j0

2j( r2−1−γ)2−jr(s′+ 1
2−

1
r

) =
j1∑
j=j0

2−j(γ+rs′) . 2−j0(γ+rs′)

by the definition of j0. Noting that

2−j0(γ+rs′) . (nα2)−
γ+rs′

2(N+1)+2 ∨ n−
γ+rs′

2(N+1)+1

≤ (nα2)−
rs

2s+2 ∨ n−
rs

2s+1

provided that γ is large enough (γ ≥ r(N + 1) is sufficient), shows that E‖esb‖rr is at most
of the same order as the claimed rate.
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2.9.2.3 Bound for ebb

Put t′j,n,α = γjν+1/2n−1/2 and t′′j,n,α = γjν+1/2(nα2)−1/22j/2. Note that tj,n,α = t′j,n,α∨ t′′j,n,α.
For any ρ ≥ 0, it holds

E‖ebb‖rr .
j1∑
j=j0

2j(r/2−1)∑
k

E[|β̂jk − βjk|r1B̂j∩Bj(k)]

.
j1∑
j=j0

2j(r/2−1)∑
k

(n−r/2 ∨ jνr/22jr/2(nα2)−r/2)1Bj(k)

.
j1∑
j=j0

2j(r/2−1)∑
k

n−r/21Bj(k)

+
j1∑
j=j0

2j(r/2−1)∑
k

jνr/22jr/2 · (nα2)−r/21Bj(k)

.
j1∑
j=j0

2j(r/2−1)(t′j,n,α)r ·
∑
k

|βjk|ρ(t′j,n,α)−ρ

+
j1∑
j=j0

2j(r/2−1)(t′′j,n,α)r
∑
k

|βjk|ρ(t′′j,n,α)−ρ

.
j1∑
j=j0

2j(r/2−1)(t′j,n,α)r−ρ
∑
k

|βjk|ρ︸ ︷︷ ︸
=:S1

+
j1∑
j=j0

2j(r/2−1)(t′′j,n,α)r−ρ ·
∑
k

|βjk|ρ︸ ︷︷ ︸
=:S2

. (2.17)

As this argument shows, one can even choose distinct values of ρ for different j, which
will be used in the following calculations. Note that

∑
k

|βjk|p . 2−jp(s+1/2−1/p),

and, if ρ ≤ p, by Hölder’s inequality

∑
k

|βjk|ρ ≤ 2j(1−ρ/p)
(∑

k

|βjk|p
)ρ/p
≤ 2j(1−ρ/p)2−jρ(s+1/2−1/p) = 2−jρ(s+1/2−1/ρ).

In the sequel, we consider three different cases corresponding to the three regimes in the
statement of Theorem 2.5.1.

2.9.2.3.1 1. Case: p > r/(s+ 1)
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• Bound for S1: Set q1 = r/(2s+ 1) and define κ1 ∈ N such that

2κ1(r/2−p/2−sp) � n−
p−q1

2 .

Choosing ρ < q1 ≤ p for the indices j ∈ Jj0, κK, we obtain (note that s+ 1/2 = r/(2q1))

κ1∑
j=j0

2j(r/2−1)(t′j,n,α)r−ρ
∑
k

|βjk|ρ . j
(r−ρ)(ν+1/2)
1 n−(r−ρ)/2

κ1∑
j=j0

2j(r/2−1)∑
k

|βjk|ρ

≤ j
(r−ρ)/2
1 n−(r−ρ)/2

κ1∑
j=j0

2j(r/2−1)2j(1−ρ/p)2−jρ(s+1/2−1/p)

. j
(r−ρ)(ν+1/2)
1 n−(r−ρ)/2

κ1∑
j=j0

2j(r/2−ρ(s+1/2))

. (log n)Cn−(r−ρ)/22κ1(r/2− rρ
2q1

)

� (log n)Cn(q1−r)/2

= (log n)Cn−
rs

2s+1 .

Choosing ρ = p for indices j ∈ Jκ1 + 1, j1K, we obtain

j1∑
j=κ1+1

2j(r/2−1)(t′j,n,α)r−ρ
∑
k

|βjk|ρ . j
(r−p)(ν+1/2)
1 n−(r−p)/2

j1∑
j=κ1+1

2j(r/2−sp−p/2)

. j
(r−p)(ν+1/2)
1 n−(r−p)/22κ1(r/2−sp−p/2)

. j
(r−p)(ν+1/2)
1 n−(r−q1)/2

� (log n)C · n−
rs

2s+1 .

• Bound for S2: Set q2 = r/(s+ 1) and define κ2 ∈ N such that

2κ2(r−p−sp) � (nα2)−
p−q2

2 .
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Choosing ρ < q2 ≤ p for the indices j ∈ Jj0, κ2K, we obtain (note that s+ 1 = r/q2)

κ2∑
j=j0

2j(r/2−1)(t′′j,n,α)r−ρ ·
∑
k

|βjk|ρ . j
(r−ρ)(ν+1/2)
1 (nα2)−(r−ρ)/2

κ2∑
j=j0

2j(r−ρ(s+1))

. (log n)C(nα2)−(r−ρ)/22κ2(r− rρ
q2

)

� (log n)C(nα2)(q2−r)/2

= (log n)C(nα2)−
rs

2s+2 .

Choosing ρ = p for indices j ∈ Jκ2 + 1, j1K, we obtain

j1∑
j=κ2+1

2j(r/2−1)(t′′j,n,α)r−ρ
∑
k

|βjk|ρ . j
(r−p)(ν+1/2)
1 (nα2)−(r−p)/2

j1∑
j=κ2+1

2j(r−sp−p)

. j
(r−p)(ν+1/2)
1 (nα2)−(r−p)/22κ2(r−sp−p)

. (log n)C · (nα2)(q2−r)/2

= (log n)C · (nα2)−
rs

2s+2 .

2.9.2.3.2 2. Case: p ∈ (r/(2s+ 1), r/(s+ 1)]

• Bound for S1: The sum S1 can be dealt with as in the first case, since the choices of q1

and κ1 from that case are still legitimated for p ∈ (r/(2s+ 1), r/(s+ 1)].

• Bound for S2: In order to bound S2 in the second case, define q2 and κ2 via the relations

q2 = r · 1− 1/r
s− 1/p+ 1 and 2κ2 � (nα2)

q2
2(r−1) .

To deal with the sum over j ∈ Jj0, κ2K, we take ρ = p and obtain

κ2∑
j=j0

2j(r/2−1)(t′′j,n,α)r−ρ
∑
k

|βjk|ρ . j
(ν+1/2)(r−p)
1 (nα2)(r−p)/2

κ2∑
j=j0

2j(r−sp−p)

. (log n)C(nα2)−(r−p)/2
κ2∑
j=j0

2j(r−1)(1−p/q2)

. (log n)C(nα2)−(r−p)/22κ2(r−1)(1−p/q2)

� (log n)C(nα2)(q2−r)/2

= (log n)C(nα2)−
rs′

2(s−1/p)+2
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For the sum over indices j ∈ Jκ2 +1, j1K, we choose ρ > q2 > p, and obtain by monotony
of `ω-norms in ω, and putting s′′ = s+ 1/2− 1/p that

j1∑
j=κ2+1

2j(r/2−1)(t′′j,n,α)r−ρ
∑
k

|βjk|ρ . j
(ν+1/2)(r−ρ)
1 (nα2)−

r−ρ
2

j1∑
j=κ2+1

2j(r−ρ/2−1−ρs′′)

. (log n)C(nα2)−
r−ρ

2

j1∑
j=κ2+1

2j(r−1−ρ/2−ρs′′)

= (log n)C(nα2)−
r−ρ

2

j1∑
j=κ2+1

2j(r−1)(1−ρ/q2)

. (log n)C(nα2)−
r−ρ

2 2κ2(r−1)(1−ρ/q2)

� (log n)C(nα2)
q2−r

2

= (log n)C(nα2)−
rs′

2(s−1/p)+2 .

2.9.2.3.3 3. Case: p ≤ r/(2s+ 1)

• Bound for S1: Put

q1 = r · 1/2− 1/r
s+ 1/2− 1/p,

and choose κ1 ∈ N such that
2κ1 � n

1
2

q1
r/2−1 .

Then, taking ρ = p for the indices j ∈ Jj0, κ1K in the first sum in (2.17), we obtain

κ1∑
j=j0

2j(r/2−1)(t′j,n,α)r−ρ
∑
k

|βjk|ρ ≤ j
(ν+1/2)(r−p)
1 n−(r−p)/2

κ1∑
j=j0

2j(r/2−sp−p/2)

. (log n)Cn−(r−p)/2
κ1∑
j=j0

2j(r/2−1)(1−p/q1)

. (log n)Cn−(r−p)/22κ1(r/2−1)(1−p/q1)

= (log n)Cn
q1−r

2

= (log n)Cn−
rs′

2(s−1/p)+1 .

For the sum over indices j ∈ Jκ1 +1, j1K, we choose ρ > q1 > p, and obtain by monotony
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of `ω-norms in ω and putting s′′ = s+ 1/2− 1/p that

j1∑
j=κ1+1

2j(r/2−1)(t′j,n,α)r−ρ
∑
k

|βjk|ρ . j
(ν+1/2)(r−ρ)
1 n−

r−ρ
2

j1∑
j=κ1+1

2j(r/2−1−ρs′′)

. (log n)Cn−
r−ρ

2

j1∑
j=κ1+1

2j(r/2−1−ρs′′)

= (log n)Cn−
r−ρ

2

j1∑
j=κ1+1

2j(r/2−1)(1−ρ/q1)

. (log n)Cn−
r−ρ

2 2κ1(r/2−1)(1−ρ/q1)

� (log n)Cn
q1−r

2

= (log n)Cn−
rs′

2(s−1/p)+1 .

• Bound for S2: S2 can be dealt with exactly as in the second case.

2.9.2.4 Bound for ess

For any 0 ≤ ρ ≤ r

E‖ess‖rr .
j1∑
j=j0

2j( r2−1)∑
k

|βjk|rE[1
Ŝj∩S′j

(k)]

.
j1∑
j=j0

2j( r2−1)((t′j,n,α)r−ρ ∨ (t′′j,n,α)r−ρ)
∑
k

|βjk|ρ.

This term can be bounded from above by the right-hand side of (2.17), and we conclude
in the same way as for the term ebb.

2.9.3 A concentration inequality for the β̂jk

For our proof, we need concentration inequalities for the events

Ajk :=
{
|β̂jk − βjk| ≥ (K/2)j

ν+1/2
√
n

(
1 ∨ 2j/2

α

)}

for K > 0, where j ∈ Jj0, j1K and k ∈ Nj. Let recall the two-sided Bernstein’s inequality
(cf. [11] Theorem 2.10).
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Theorem 2.9.1. Let Y1, . . . , Yn be independent real valued random variables. Assume that
there exist some positive numbers v and c such that

n∑
i=1

E[Y 2
i ] 6 v, (2.18)

and for all integers m > 3
n∑
i=1

E[|Yi|m] 6 m!
2 vcm−2. (2.19)

Let S = ∑n
i=1(Yi − E[Yi]), then for every positive x

P
[
|S| >

√
2vx+ cx

]
6 2 exp(−x). (2.20)

Using this inequality, we can prove the following result.

Proposition 2.9.2. For all j ∈ Jj0, j1K satisfying j ≤ n, for all k ∈ Nj, and for all γ > 1
we have

P
(
|β̂jk − βjk| ≥ 4(c̄+ σ)γ j

ν+1/2
√
n

(
1 ∨ 2j/2

α

))
6 2−γj, (2.21)

where c̄ is an upper bound for supf∈Dspq(L,T ) ‖f‖∞ and σ = 4cA‖ψ‖∞(2ν − 1)/(ν − 1)
appears in the privacy mechanism (2.8).

Remark 2.9.3. By Equation (15) in [24], the choice c̄ = L is admissible for f ∈ Dspq(L, T ).

Proof. We will apply Bernstein’s inequality to the random variables {Zijk}i=1,...,n. Using
that ψjk(Xi) and Wijk are independent and that E[Wijk] = 0, we get for all i ∈ J1, nK

E[Z2
ijk] = E[ψjk(Xi)2] + σ2

jE[W 2
ijk] + 2σjE[ψjk(Xi)Wijk]

= E[ψjk(Xi)2] + σ2
jE[W 2

ijk] + 2σjE[ψjk(Xi)]E[Wijk]

= E[ψjk(Xi)2] + σ2
jE[W 2

ijk]

6 c̄+ 2σ2
j

6 2(c̄+ σj)2,

where c̄ > 0 depends on L is such that ‖f‖∞ ≤ c̄ for all f in Bspq(L) with s > 1
p
. Let

m > 3 be an integer. Using again that ψjk(Xi) and Wijk are independent we get for all
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i ∈ J1, nK

E[|Zijk|m] 6 E[(|ψjk(Xi)|+ σj|Wijk|)m]

= E
[
m∑
l=0

(
m

l

)
σlj|Wijk|l|ψjk(Xi)|m−l

]

=
m∑
l=0

(
m

l

)
σljE

[
|Wijk|l

]
E
[
|ψjk(Xi)|m−l

]

=
m∑
l=0

(
m

l

)
σljE

[
|ψjk(Xi)|m−l

]
l!

6 m!
m∑
l=0

(
m

l

)
σlj(c̄)m−l

= m!(c̄+ σj)m.

Conditions (2.18) and (2.19) are thus satisfied with v = 2n(c̄ + σj)2 and c = c̄ + σj, and
according to Bernstein’s inequality (2.20) we have for all x > 0

P
(
|β̂jk − βjk| > (c̄+ σj)

(
2
√
x

n
+ x

n

))
6 2 exp(−x).

Note that we have for all j ∈ Jj0, j1K,

c̄+ σj = c̄+ σjν
2j/2
α

6 (c̄+ σ)jν
(

1 ∨ 2j/2
α

)
,

where σ = 4cA‖ψ‖∞(2ν−1)/(ν−1) appears in the definition of σj in (2.8). Take x = Cj,
C > 0 and note that 2

√
Cj/n+ Cj/n 6 (2

√
C + C)

√
j/n if j 6 n. Consequently, we get

for all C > 0, for all j ∈ Jj0, j1K satisfying j 6 n and for all k ∈ Nj,

P
(
|β̂jk − βjk| > (c̄+ σ)(C + 2

√
C)j

ν+1/2
√
n

(
1 ∨ 2j/2

α

))
6 2 exp(−Cj).

Then, it suffices to take C = 2 ln(2)γ to obtain (2.21).
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2.9.4 Moment bounds and norm inequalities

Consider an arbitrary random function

ĝ =
j1∑
j=j0

∑
k

ĝjkψjk.

Putting

S(ι) =
j1∑
j=j0

2jι ≤

cγ2
max(j1ι,j0ι) if ι 6= 0,

j1 − j0, if ι = 0,

it has been shown in [24] that for arbitrary v ∈ R and u = r/(r − 2) it holds

E‖ĝ‖rr ≤

C
r∑j1

j=j0 2j(r/2−1)∑
k E|ĝjk|r, if 1 ≤ r ≤ 2,

CrS(uv)(r/2−1)+
∑j1
j=j0 2j(r/2−1−vr/2)∑

k∈Z E|ĝjk|r, if r > 2.

As in [24], adopting the formal convention S0 = 1, it suffices to consider the second
inequality for all r ≥ 1 (setting v = 0 for the case r ≤ 2). Thus, for any r ≥ 1,

E‖ĝ‖rr .
j1∑
j=j0

2j(r/2−1)∑
k

E|ĝjk|r. (2.22)

Consider again the decomposition β̂jk = β′jk + σj
n

∑n
i=1Wijk. We have, for any m ≥ 1,

E|β̂jk − βjk|m ≤ 2m−1E|β′jk − βjk|m + 2m−1E
∣∣∣∣∣σjn

n∑
i=1

Wijk

∣∣∣∣∣
m

.

In [24], p. 520, Equation (16) it is shown that

E|β′jk − βjk|m ≤ cn−m/2 (2.23)

provided that 2j ≤ n with a constant c depending only on s, p, q, L, ‖ψ‖m and m. In
addition, by Rosenthal’s inequality, it can be shown for any m ≥ 1 that

E
∣∣∣∣∣σjn

n∑
i=1

Wijk

∣∣∣∣∣
m

. jνm/22jm/2(nα2)−m/2. (2.24)
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Combining (2.23) and (2.24) yields

E|β̂jk − βjk|m . n−m/2 ∨ jνm/22jm/2(nα2)−m/2. (2.25)
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Chapter 3

Sharp phase transitions for
exact support recovery under

local differential privacy

Abstract:We address the problem of variable selection in the Gaussian mean model
in Rd under the additional constraint that only privatised data are available for
inference. For this purpose, we adopt a recent generalisation of classical minimax
theory to the framework of local α−differential privacy. We provide lower and upper
bounds on the rate of convergence for the expected Hamming loss over classes of at
most s-sparse vectors whose non-zero coordinates are separated from 0 by a constant
a > 0. As corollaries, we derive necessary and sufficient conditions (up to log factors)
for exact recovery and for almost full recovery. When we restrict our attention to
non-interactive mechanisms that act independently on each coordinate our lower
bound shows that, contrary to the non-private setting, both exact and almost full
recovery are impossible whatever the value of a in the high-dimensional regime such
that nα2/d2 . 1. However, in the regime nα2/d2 � log(nα2/d2) log(d) we can exhibit
a sharp critical value a∗ (up to a logarithmic factor) such that exact and almost full
recovery are possible for all a � a∗ and impossible for a ≤ a∗. We show that these
results can be improved when allowing for all non-interactive (that act globally on
all coordinates) locally α−differentially private mechanisms in the sense that phase
transitions occur at lower levels.
Based on [14].
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3.1 Introduction

Problem statement

Nowadays, a large amount of data, such as internet browsing history, social media activ-
ity, location information from smartphones, or medical records, are collected and stored.
On the one hand, the analysis of these data can benefit to individuals, companies, or
communities such as the scientific one. For instance, companies can use data to improve
their products and services, or health data can be used for medical research. On the other
hand, people are more and more concerned with the protection of their privacy and may
be reluctant to share their sensitive data. In this context, it seems essential to be able
to understand the tradeoffs between the statistical utility of the collected data and the
privacy of individuals from whom these data are obtained. This requires a formal defini-
tion of privacy and differential privacy has been adopted by researchers in the computer
science, machine learning, and statistics communities as a natural one.

Two kinds of differential privacy are discussed in the literature: central differential
privacy which has been introduced by Dwork et al. in [33], and local differential privacy.
We will focus in this paper on the second setting but we briefly discuss the difference
between central and local privacy. In both settings, n individuals want their privacy to
be preserved while their data, which will be denoted X1, . . . , Xn, are used for statistical
analyses. In the central setting, the n data-holders share confidence in a common curator
who has access to the original data X1, . . . , Xn and use them to generate a private release
Z. In a nutshell, central differential privacy ensures that the probability of observing an
output does not change much when a single data point of the original database is modified.
We refer to [80] for the formal definition of differential privacy in the central setting. In the
local setting, data is privatized before it is shared with a data collector : for all i ∈ J1, nK,
Xi is transformed into a private data Zi directly on the ith individual’s machine and
the data collector or the statistician only have access to the private sample Z1, . . . , Zn.
However, some interaction between the different data-holders is allowed. Formally, the
privatized data Z1, . . . , Zn are obtained by successively applying suitable Markov kernels
: given Xi = xi and Z1 = z1, . . . , Zi−1 = zi−1, the i-th dataholder draws

Zi ∼ Qi(· | Xi = xi, Z1 = z1, . . . , Zi−1 = zi−1)

for some Markov kernel Qi : Z ×X ×Z i−1 → [0, 1] where the measure spaces of the non-
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private and private data are denoted with (X ,X ) and (Z,Z ), respectively. Such random-
izations are known as sequentially interactive. We say that the sequence of Markov kernels
(Qi)i=1,...,n provides α-local differential privacy or that Z1, . . . , Zn are α-local differentially
private views of X1, . . . , Xn if

sup
A∈Z

Qi(A | Xi = x, Z1 = z1, . . . , Zi−1 = zi−1)
Qi(A | Xi = x′, Z1 = z1, . . . , Zi−1 = zi−1) ≤ exp(α) ∀i ∈ J1, nK, ∀x, x′ ∈ X . (3.1)

In this paper, we will focus on the special case of non-interactive local differential privacy
where Zi depends only on Xi but not on Zk for k < i. In this scenario, we have

Zi ∼ Qi(· | Xi = xi),

and condition (3.1) becomes

sup
A∈Z

Qi(A | Xi = x)
Qi(A | Xi = x′) ≤ exp(α) ∀i ∈ J1, nK, ∀x, x′ ∈ X .

We consider the problem of support recovery with separation assumptions under local
differential privacy as a special instance of the general problem described above. Precisely,
for i = 1, . . . , n, the ith data holder observes a random vector X i = (X i

j)j=1,...,d ∈ Rd

distributed according to the normal distribution N (θ, σ2Id), where the mean vector θ is
assumed to be (s, a)-sparse in the sense that θ belongs to one of the following sets:

Θ+
d (s, a) = {θ ∈ Rd : there exists a set S ⊆ {1, . . . , d} with at most s elements

such that θj ≥ a for all j ∈ S, and θj = 0 for all j /∈ S},

or

Θd(s, a) = {θ ∈ Rd : there exists a set S ⊆ {1, . . . , d} with at most s elements

such that |θj| ≥ a for all j ∈ S, and θj = 0 for all j /∈ S}.

The aim is that every data holder releases a private view Zi of X i such that the notion
of local differential privacy is satisfied and that the support of θ can be estimated from
the data Z1, . . . , Zn in an optimal way.

Notation. For two sequences {ad}d and {bd}d of non-negative real numbers, we write
ad . bd if there exists some constant C > 0 such that ad ≤ Cbd. If bd > 0 we write ad ∼ bd
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if ad/bd → 1 as d → ∞ and we write ad � bd if ad/bd → ∞ as d → ∞. We recall that a
centred Laplace distribution with parameter λ > 0 has the probability density function
defined by fλ(x) = 1

2λ exp
(
− |x|

λ

)
on R.

Motivation

The problem of high-dimensional sparse vectors estimation has recently been studied
in the framework of local differential privacy in [30]. For the 1-sparse means problem,
the authors proved that the private minimax risk for non-interactive α-locally differen-
tially private mechanisms over the set of distributions P supported on B∞(r) ⊂ Rd with
‖EP [X]‖0 ≤ 1 is bounded from below by

min
{
r2,

r2d log(2d)
n(eα − 1)2

}
,

proving that high-dimensional 1-sparse mean estimation is impossible in this setting when
both r2 & 1 and r2d log(2d) & n(eα − 1)2.

Obvious applications of variable selection are the estimation of the set that supports
the non-null coefficients in the mean vector, or the estimation of its size. We may use
our procedure to build a private mean estimator of s−sparse vectors in two steps: use
one part of the sample to recover the support and the other part to estimate the mean
values of the selected variables, that is a vector of reduced size. Moreover these results
are a benchmark for working on more realistic models such as high-dimensional linear
regression and clustering of high-dimensional vectors, see [58] and [57].

Minimax framework

Let X i, i = 1, . . . , n be i.i.d N (θ, σ2Id) random vectors of Rd. We assume that the vectors
X i = (X i

j)j=1,...,d for i = 1, . . . , n are observed by n distinct data holders who refuse to
share their respective observations. The statistician does not have access to these data
but only to α-locally differentially private views Z1, . . . Zn. We assume that θ belongs to
one of the sets Θ+

d (s, a) or Θd(s, a) introduced in Section 3.1 and we study the problem
of selecting the relevant components of θ, that is, of estimating the vector

η = η(Pθ) = (I(θj 6= 0))j=1,...,d ,
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where I(·) is the indicator function. Our goal is to estimate the vector η by a selector η̂,
that is a measurable function η̂ = η̂(Z1, . . . , Zn) taking values in {0, 1}d, where Z1, . . . , Zn

are α-locally differentially private views of X1, . . . , Xn. We judge the quality of a selector
η̂ as an estimator of η by the Hamming loss between η̂ and η which counts the number of
positions at which η̂ and η differ :

|η̂ − η| :=
d∑
j=1
|η̂j − ηj| =

d∑
j=1

I(η̂j 6= ηj).

For the support recovery problem, we consider only α-locally differentially private mech-
anisms which transform each X i ∈ Rd into a private release Zi taking also values in Rd,
that are known as non-interactive privacy mechanisms. However, we distinguish between
privacy mechanisms that act on each coordinate ofX i either separately, locally or globally.
More specifically, we will consider the two following scenarios:

• Coordinate Local (CL) Privacy Mechanisms : there is a sequenceQ = (Qi)i=1,...,n

of Markov kernels providing α-local differential privacy such that Zi ∼ Qi(· | X i =
xi) for all i ∈ J1, nK, and Qi is obtained as product of coordinate-wise kernels as
follows:

for all i ∈ J1, nK and all j ∈ J1, dK, Zi
j ∼ Qi

j(· | X i
j = x)

for some (α/d)-differentially private mechanism Qi
j. We denote by QCLα the set of

all privacy mechanisms Q = (Q1, . . . , Qn) satisfying these assumptions.

• Coordinate Global (CG) Privacy Mechanisms : there is a sequence Q =
(Qi)i=1,...,n of Markov kernels providing α-local differential privacy such that Zi ∼
Qi(· | X i = xi) for all i ∈ J1, nK. We denote by Qα the set of all privacy mechanisms
Q = (Q1, . . . , Qn) satisfying this assumption.

In other words, in the Coordinate Local case, we consider only non-interactive α-locally
differentially private mechanisms that act coordinates by coordinates. This scenario is
easier to study than the second one for which any non-interactive α-locally differentially
private mechanism is allowed to be used.

For both scenarios, if Pθ denotes the distribution of X i then we denote by QiPθ

the distribution of Zi. Since the distribution of (X1, . . . , Xn) is P⊗nθ , the distribution
of (Z1, . . . , Zn) will be denoted by Q(P⊗nθ ). In the Coordinate Local case, we denote by
Pθj the distribution of X i

j and by Qi
jPθj the distribution of Zi

j.
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We say that a selector η̂ = (η̂1, . . . , η̂d) is separable if for all j = 1, . . . , d its jth
component η̂j depends only on (Zi

j)i=1,...,n . We denote by T the set of all separable
selectors. We are interested in the study of the following private minimax risks

RCL
n (α,Θ) = inf

Q∈QCLα
inf

η̂=η̂(Z1,...,Zn)∈T
sup
θ∈Θ

1
s
EQ(P⊗n

θ
)|η̂(Z1, . . . , Zn)− η|, (3.2)

in the coordinate local case, and

Rn(α,Θ) = inf
Q∈Qα

inf
η̂=η̂(Z1,...,Zn)∈T

sup
θ∈Θ

1
s
EQ(P⊗n

θ
)|η̂(Z1, . . . , Zn)− η|, (3.3)

in the coordinate global case, for Θ = Θ+
d (s, a) and Θ = Θd(s, a).

We are interested in the study of two asymptotic properties : almost full recovery
and exact recovery, that we define here. Let (Θ+

d (sd, ad))d≥1 be a sequence of classes of
sparse vectors. We will say that almost full recovery is possible for (Θ+

d (sd, ad))d≥1 in the
Coordinate Local case if there exists Q ∈ QCLα and a selector η̂ such that

lim
d→∞

sup
θ∈Θ+

d
(sd,ad)

1
sd
EQ(P⊗n

θ
)|η̂ − η| = 0.

We will say that almost full recovery is impossible for (Θ+
d (sd, ad))d≥1 in the Coordinate

Local case if

lim inf
d→+∞

inf
Q∈QCLα

inf
η̂=η̂(Z1,...,Zn)∈T

sup
θ∈Θ+

d
(s,a)

1
sd
EQ(P⊗n

θ
)|η̂ − η| > 0.

We will say that exact recovery is possible for (Θ+
d (sd, ad))d≥1 in the Coordinate Local

case if there exists Q ∈ QCLα and a selector η̂ such that

lim
d→∞

sup
θ∈Θ+

d
(sd,ad)

EQ(P⊗n
θ

)|η̂ − η| = 0.

We will say that exact recovery is impossible for (Θ+
d (sd, ad))d≥1 in the Coordinate Local

case if
lim inf
d→+∞

inf
Q∈QCLα

inf
η̂=η̂(Z1,...,Zn)∈T

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂ − η| > 0.

We use similar definitions in the Coordinate Global case with QCLα replaced by Qα.
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3.1.1 Related work

Variable selection with Hamming loss in the Gaussian mean model in Rd has been stud-
ied in the non-private setting in [12]. The authors provide non-asymptotic lower and
upper bounds on the non-private version of minimax risk (3.2). As corollaries, they
derive necessary and sufficient conditions for almost full recovery and exact recovery
to be possible. They highlight a critical value a∗ = (σ/

√
n)
√

2 log(d/s− 1)(1 + o(1))
such that almost full recovery is possible for a ≥ a∗ and impossible for a < a∗. Sim-
ilar results have been obtained for exact recovery with the greater critical value a∗ =
(σ/
√
n)(

√
2 log(d− s) +

√
2 log s). In the present paper, we will see how these results are

affected by the privacy constraints.
A few papers tackle selection problems under privacy constraints. In [70], the authors
study top-k selection under a relaxation of central differential privacy called (ε, δ)-approximate
differential privacy (see for instance [32]). However, they use a weighted Hamming loss
as described below. Precisely, if X1, . . . , Xn are drawn i.i.d. from some distribution P

on {0, 1}d, they want to find the k greatest coordinates of the mean vector θ = EP [X1]
while respecting (ε, δ)-differential privacy constraints. They prove that the existence of
a (1, 1/(nd))-differentially private mechanism that outputs Z ∈ {0, 1}d with k non zero
coordinates such that

E

 d∑
j=1

θj1(Zj = 1)
 ≥ max

η∈{0,1}d:‖η‖1=k

d∑
j=1

θj1(ηj = 1)− β

requires n &
√
k log d samples in the low accuracy regime where β = k/10. More-

over, repeated use of the classical exponential mechanism solves this problem with n =
O(
√
k log d) samples. In [6], the authors study an empirical version of the problem stud-

ied in [70] : they want to find the top-k coordinates of the vector q ∈ Rd defined by
qj = (1/n)∑n

i=1Xi,j, j = 1, . . . , d while respecting (ε, δ)-differential privacy constraints.
Let τ be the k-th largest value among the coordinates {q1, . . . , qk}. They prove that the
existence of a (ε, δ)-differentially private mechanism that outputs a set S ⊂ J1, dK of k
elements such that qj ≥ τ − β for all j ∈ S requires n & k log(d) samples in the high-
accuracy regime where β �

√
log d/n. In [74], Ullman studies the same problem as [70]

for k = 1 under non-interactive α-local differential privacy constraints. If we consider
the low-accuracy regime considered by [70], the result by Ullman shows that solving the
problem under non-interactive α-local differential privacy requires n & d log d/α2 samples,
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a . σ√
N

σ√
N
� a ≤ 2σ a ≥ 2σ

N := nα2

d2 . 1 impossible impossible impossible

N := nα2

d2 � 1 impossible

possible, as soon as

a� σ√
N

√
log(N) log(d),

if moreover

N � log(N) log (d)

possible, if

N � log(d)

Table 3.1: Exact recovery in the Coordinate Local case. Similar results hold for almost
full recovery with log(d) replaced by log(d/s).

highlighting an exponentially worse dependence on the dimension compared to the result
obtained in the central model of (ε, δ)-approximate differential privacy.

Organisation of the paper

In Section 3.2, we study the minimax risk (3.2). We first provide a lower bound which
enables us to obtain necessary conditions for almost full recovery and exact recovery
to be possible in the case where only coordinate local privacy mechanisms are used. In
particular, we prove that almost full recovery is impossible in this case as soon as the
quantity nα2/d2 is bounded from above. We then provide non-asymptotic upper bounds
on the minimax risks in propositions and state more explicit asymptotic sufficient condi-
tions for almost full recovery and exact recovery to be possible in our corollaries. These
conditions and associated results are summarised in Table 3.1. In Section 3.3, we study
the minimax risk (3.3) and prove that the results of Section 3.2 can be improved when
any non-interactive (coordinate global) α-locally differentially private mechanism is al-
lowed. See Table 3.2 for a summary of these results. Detailed proofs can be found in the
Appendix.

3.2 Minimax risk using coordinate local non-interactive

privacy mechanisms

In this section, we provide a lower bound on the private minimax risk (3.2). This enables us
to obtain necessary conditions for almost full recovery and exact recovery to be possible

100



3.2. Minimax risk using coordinate local non-interactive privacy mechanisms

a . σ
√

log d
Nd

σ
√

log d
Nd
� a ≤ 2σ a ≥ 2σ

Nd
log d . 1 impossible impossible

impossible if

a ≤ σ

√
log

(
1 + log d

16Nd

)

Nd
log d � 1 impossible

possible, as soon as

a� σ
√

log d
Nd

√
log(Nd),

if moreover

Nd� log(Nd) log(d)

possible

Table 3.2: Exact recovery in the Coordinate Global case. We have set N = nα2/d2 for a
better comparison with the Coordinate Local case.

in the Coordinate Local scenario. In particular, we prove that almost full recovery is
impossible in the private setting of the Coordinate Local case if the quantity N := nα2/d2

is bounded from above. We then provide upper bounds on the minimax risk that entail
sufficient conditions for almost full recovery and exact recovery to be possible.

3.2.1 Lower bound

We first state our lower bound.

Theorem 3.2.1. For any a > 0, α > 0, 1 ≤ s ≤ d, n ≥ 1, we have

RCL
n (α,Θ+

d (s, a)) ≥
(

1− s

d

)
exp

(
−4n(eα/d − 1)2 min

{
a2

4σ2 , 1
})

. (3.4)

The proof of Theorem 3.2.1 can be found in Appendix 3.5.2. Some auxiliary results
used for the proof of Theorem 3.2.1 can be found in Appendix 3.5.1. Note that since
Θ+
d (s, a) ⊂ Θd(s, a) we have RCL

n (α,Θ+
d (s, a)) ≤ RCL

n (α,Θd(s, a)), thus the right hand
side of (3.4) is also a lower bound for RCL

n (α,Θd(s, a)).
For better confidentiality in practice, the parameter α must not be too large. In par-

ticular, we assume that α/d → 0 when d → +∞. We thus have n(eα/d − 1)2 ∼ nα2/d2

and Theorem 3.2.1 immediately shows the following.

Corollary 3.2.2. Let α > 0, 1 ≤ s ≤ d, n ≥ 1 be such that s/d ≤ C0 for some constant
C0 ∈ (0, 1), and α/d→ 0 when d→∞. Then, if nα2/d2 ≤ C1 for some constant C1 > 0
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or if nα2/d2 →∞ as d→∞ and a2 ≤ C2σ
2d2/(nα2), it holds

RCL
n (α,Θ) ≥ C

for some constant C > 0, where Θ = Θ+
d (s, a) or Θ = Θd(s, a).

Corollary 3.2.2 shows that almost full recovery is impossible under local differential
privacy constraints if the quantity nα2/d2 is bounded from above. In particular, almost full
recovery is impossible under local differential privacy constraints in the high-dimensional
setting, that is when n ≤ d, whatever the value of a. Corollary 3.2.2 also proves that if
nα2/d2 → +∞ then almost full recovery is impossible if a . (σd)/(

√
nα).

This underlines a strong difference between the private setting and the classical setting,
since [12] proved that in the non-private setting almost full recovery is possible for a
large enough even if n = 1. Transposed to this setting, variable selection is possible for
a � σ/

√
n and any n ≥ 1 without privacy constraints, whereas it is impossible for any

signal value a when the effective size N = nα2/d2 . 1 under privacy constraints.

3.2.2 Privacy mechanism

In this section, we introduce a non-interactive privacy mechanism creating private views
Z1, . . . , Zn of the original data X1, . . . , Xn that satisfy the local differential privacy con-
straint of level α. These privatized data will then be used to define a private selector
whose risk will be studied in Section 3.2.3.

To obtain the privatized data, we first censor the unbounded random variables X i
j, for

i = 1, . . . , n, j = 1, . . . , d, and then make use of an appropriately scaled version of the
classical Laplace mechanism. For all i ∈ J1, nK and j ∈ J1, dK define

Zi
j = [X i

j]T + 2Td
α
W i
j , (3.5)

where [·]T = max{−T,min{·, T}} denotes the censoring operator at level T , the W i
j ’s are

i.i.d Laplace(1) random variables, and W i
j is independent from X i

j. The censoring level T
needs to be properly chosen and will be specified later.

Note that the privacy mechanism defining (Zi)i=1,...,n is non-interactive since Zi does
only depend on X i and not on Zk for k 6= i. This is also a coordinate local mechanism
since Zi

j depends on X i
j but not on the X i

l for l 6= j. The following Proposition shows that
it satisfies the condition of α-local differential privacy.
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3.2. Minimax risk using coordinate local non-interactive privacy mechanisms

Proposition 3.2.3. For all i ∈ J1, nK and j ∈ J1, dK, Zi
j is an α/d-differentially private

view of X i
j. Consequently, for all i ∈ J1, nK Zi = (Zi

j)j=1,...,d is an α-differentially private
view of X i.

Proof. Set r = 2Td/α. By definition of the privacy mechanism (3.5), the conditional
density of Zi

j given X i
j = x can be written as

qZ
i
j |X

i
j=x(z) = 1

2r exp
(
−|z − [x]T |

r

)
.

Thus, by the reverse and the ordinary triangle inequality it holds for all i ∈ J1, nK,
j ∈ J1, dK and all x, x′, z ∈ R,

qZ
i
j |X

i
j=x(z)

qZ
i
j |X

i
j=x′(z)

= exp
(
|z − [x′]T |

r
− |z − [x]T |

r

)

≤ exp
(
|[x′]T − [x]T |

r

)

≤ exp
(2T
r

)
≤ exp

(
α

d

)
.

This proves that Zi
j is an α/d-differentially private view of X i

j. Let us check that Zi is an
α-differentially private view of X i. Denote by qZi|Xi=x the conditional density of Zi given
X i = x and note that for all x, x′, z ∈ Rd it holds

qZ
i|Xi=x(z)

qZi|Xi=x′(z) =
d∏
j=1

qZ
i
j |X

i
j=xj(zj)

qZ
i
j |X

i
j=x

′
j(zj)

≤ eα,

using the independence of the coordinates X i
1, ..., X

i
d and the conditional independence of

Zi
1, ..., Z

i
d given X i.

3.2.3 Upper bounds

Using these privatized data, we define two selectors that will provide upper bounds on the
minimax risk (3.2). For the class Θ+

d (s, a), we will use the selector η̂+ with the components

η̂+
j = I

(
1
n

n∑
i=1

Zi
j ≥ τ

)
, j = 1, . . . , d, (3.6)
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where the threshold τ has to be properly chosen, later on. For the class Θd(s, a), we will
use the selector η̂ with the components

η̂j = I

(∣∣∣∣∣ 1n
n∑
i=1

Zi
j

∣∣∣∣∣ ≥ τ

)
, j = 1, . . . , d, (3.7)

where τ to be defined later on. Note that η̂+ and η̂ are separable selectors since η̂+
j and η̂j

depend only on (Zi
j)i=1,...,n and not on the Zi

k for k 6= j. We now study the performances
of these selectors. Recall that Φ denotes the standard Gaussian cumulative distribution
function.

Proposition 3.2.4. Assume that a > bσ for some constant b > 0. Set C1 := 1− 2Φ(−b).
If τ, T are chosen such that

T ≤ a− σb, C1T − τ ≥ 0, τα/(8Td) ≤ 1 and α(C1T − τ)/(8Td) ≤ 1,

then it holds for all θ ∈ Θ+
d (s, a),

E
[1
s
|η̂+ − η|

]
≤ d− |S|

s

[
exp

(
− nτ 2

23 min{T 2, σ2}

)
+ exp

(
− τ 2nα2

27T 2d2

)]

+ |S|
s

[
exp

(
− n(C1T − τ)2

23 min{T 2, σ2}

)
+ exp

(
−(C1T − τ)2nα2

27T 2d2

)]
, (3.8)

and for all θ ∈ Θd(s, a) it holds

E
[1
s
|η̂ − η|

]
≤ 2

{
d− |S|
s

[
exp

(
− nτ 2

23 min{T 2, σ2}

)
+ exp

(
− τ 2nα2

27T 2d2

)]

+ |S|
s

[
exp

(
− n(C1T − τ)2

23 min{T 2, σ2}

)
+ exp

(
−(C1T − τ)2nα2

27T 2d2

)]}
, (3.9)

where S denotes the support of θ.

The proof of Proposition 3.2.4 is given in section 3.5.4 in the Appendix. Some auxiliary
results used in the proof of Proposition 3.2.4 can be found in Appendix 3.5.3. The following
Corollary gives sufficient conditions so that almost full recovery and exact recovery are
possible under local differential privacy in the Coordinate Local case when a ≥ 2σ.
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3.2. Minimax risk using coordinate local non-interactive privacy mechanisms

Corollary 3.2.5. Set C1 = 1− 2Φ(−1). Assume that

α/d→ 0, nα2/d2 → +∞ and lim sup log(d/s)
nα2/d2 <

C2
1

29 .

Then the selector η̂+ defined by (3.6) with T = σ and τ = C1T/2 satisfies

sup
θ∈Θ

1
s
EQ(P⊗n

θ
)|η̂

+(Z1, . . . , Zd)− η| → 0, (3.10)

for all a ≥ 2σ, where Θ = Θ+
d (s, a) or Θ = Θd(s, a). If, in addition, lim sup log(d)

nα2/d2 <
C2

1
29 ,

then
sup
θ∈Θ

EQ(P⊗n
θ

)|η̂
+(Z1, . . . , Zd)− η| → 0, (3.11)

for all a ≥ 2σ.

The proof of Corollary 3.2.5 is given in section 3.5.5 in the Appendix. Since we have
seen that almost full recovery is impossible when nα2/d2 is bounded from above or when
nα2/d2 → +∞ and a . (σd)/(

√
nα), it remains to study the case where nα2/d2 → +∞

and σd/(
√
nα)� a ≤ 2σ. This is done below.

Proposition 3.2.6. Let a > 0. If T and τ are chosen such that T ≥ a+σ
√

2 log
(
max

{
e, 4σ

a
√

2π

})
,

τ ≤ a/2, τα/(8Td) < 1 and α(a/2− τ)/(8Td) ≤ 1 then it holds for all θ ∈ Θ+
d (s, a),

E
[1
s
|η̂+ − η|

]
≤ d− |S|

s

[
exp

(
− nτ 2

23 min{T 2, σ2}

)
+ exp

(
− τ 2nα2

27T 2d2

)]

+ |S|
s

[
exp

(
− n(a/2− τ)2

23 min{T 2, σ2}

)
+ exp

(
−(a/2− τ)2nα2

27T 2d2

)]
,

where S denotes the support of θ.

The proof of Proposition 3.2.6 can be found in section 3.5.6 in the Appendix. Note
that as for the case a ≥ bσ, if θ ∈ Θd(s, a) we use η̂ instead of η̂+ and we can prove the
same result with an extra multiplicative factor 2. The next corollary gives new sufficient
conditions so that almost full recovery and exact recovery are possible.

Corollary 3.2.7. Assume that α/d→ 0, nα2/d2 → +∞ and σd/(
√
nα)� a ≤ 2σ. The

selector η̂+ defined by (3.6) with T = a+ σ

√
2 log

(√
nα
d

)
and τ = a/4 satisfies for d large
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enough

sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂

+(Z1, . . . , Zd)− η| ≤ 2 exp
log

(
d

s

)
− a2nα2

213σ2 log
(
nα2

d2

)
d2

 .
In particular, if a� σd

α
√
n

log1/2
(
nα2

d2

)
log1/2

(
d
s

)
it holds

sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂

+(Z1, . . . , Zd)− η| → 0. (3.12)

Moreover, if a� σd
α
√
n

log1/2
(
nα2

d2

)
log1/2 (d)

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂
+(Z1, . . . , Zd))− η| → 0. (3.13)

If nα2/d2 →∞ with (nα2/d2)� log(nα2/d2) log(d/s), then Corollary 3.2.7 combined
with Corollary 3.2.5 and with the lower bound (3.4) prove a phase transition result (up
to log factors) at the value a∗ = a∗(n, α, d, σ) = σd/(α

√
n). Indeed, we get that almost

full recovery is impossible in the Coordinate Local case for all a ≤ Ca∗ and is possible for
all a� a∗ log1/2(nα2/d2) log1/2(d/s).

3.3 Minimax risk using coordinate global non-interactive

privacy mechanisms

In this section, we study the minimax risk (3.3). We prove that in the Coordinate Global
case, almost full recovery and exact recovery are possible under weaker assumptions than
the one we obtained for the Coordinate Local case.

3.3.1 Privacy mechanism

We describe in this section the privacy mechanism we use to obtain private data that will
be used to design a private selector and to obtain upper bounds on the minimax risk (3.3)
in the Coordinate Global case.

For all i ∈ J1, nK, the private view Zi of X i is obtained using the following steps:

• Compute fT (X i) = ([X i
j]T )j=1,...,d where [·]T = max{−T,min{·, T}} denotes the
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3.3. Minimax risk using coordinate global non-interactive privacy mechanisms

censoring operator of level T and T will be specified later.

• Define a random vector X̃ i ∈ Rd with coordinates

X̃ i
j ∼

 T with probability 1
2 + [Xi

j ]T
2T

−T with probability 1
2 −

[Xi
j ]T

2T .

• Sample Y i ∼ B(πα) where πα = eα/(eα + 1) and generate

Z̃i ∼

 U
(
z̃ ∈ {−B,B}d | 〈z̃, X̃ i〉 > 0 or (〈z̃, X̃ i〉 = 0 and z̃1 = (B/T )X̃ i

1)
)

if Y i = 1
U
(
z̃ ∈ {−B,B}d | 〈z̃, X̃ i〉 < 0 or (〈z̃, X̃ i〉 = 0 and z̃1 = −(B/T )X̃ i

1)
)

if Y i = 0.

with

B = T
eα + 1
eα − 1Kd, where

1
Kd

=


1

2d−1

(
d−1
d−1

2

)
if d is odd

(d−2)!(d−2)
2d−1( d2−1)! d2 ! if d is even.

(3.14)

• Define the vector Zi by Zi = Z̃i if d is odd, and by its components

Zi
j =


d−2

2(d−1)Z̃
i
1 if j = 1

Z̃i
j ∀j ∈ J2, dK,

if d is even.

This mechanism is strongly inspired by the one proposed by Duchi et al. [30] for mean
estimation on the set of distributions P supported on B∞(r) ⊂ Rd with ‖E[X]‖0 ≤ s. In
particular, if d is odd, the event {〈z̃, X̃ i〉 = 0} has probability zero for all z̃ ∈ {−B,B}d

and our mechanism coincides in this case with the one proposed by Duchi et al. [30] at
the exception that we added a censoring step. Since in our framework the X i are not
compactly supported, this censoring step is needed so that the probabilities appearing in
the definition of X̃ i are non-negative.

Proposition 3.3.1. For all i ∈ J1, nK, Zi is an α-differentially private view of X i.

The following proposition will be useful in the analysis of the selector proposed in
Section 3.3.2.

Proposition 3.3.2. For all i ∈ J1, nK, it holds

E[Zi | X i] = fT (X i).
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The proofs of Proposition 3.3.1 and Proposition 3.3.2 can be found respectively in
Section 3.6.1 and 3.6.2 of the Appendix. Note that it also holds E[Zi | X i] = fT (Xi) when
Zi is produced via the Laplace mechanism described in Subsection 3.2.2. However the
variance Var(Zi

j | X i) is slower by a multiplicative factor d when Zi is produced with the
Laplace mechanism than when it is obtained with the above coordinate global mechanism.
Indeed, if Zi is produced with the above mechanism, then we have Var(Zi

j | X i) ≤ B2.
Stirling’s approximation yields K2

d . d for d large enough, see Lemma 3.6.1 in Appendix
3.6.3 for details. Thus, if α is bounded, we obtain Var(Zi

j | X i) ≤ T 2d/α2. Now, if Zi is
produced with the Laplace mechanism then it holds Var(Zi

j | X i) = 8T 2d2/α2. This faster
variance explains that we will obtain better results when allowing for coordinate global
mechanisms.

3.3.2 Upper bounds

Using the privatized data of the previous subsection, we define two selectors that will
enable us to obtain upper bounds on the minimax risk (3.3). As in the Coordinate Local
case, for the class Θ+

d (s, a), we will use the selector η̂+ with the components

η̂+
j = I

(
1
n

n∑
i=1

Zi
j ≥ τ

)
, j = 1, . . . , d, (3.15)

where the threshold τ has to be chosen. For the class Θd(s, a), we will use the selector η̂
with the components

η̂j = I

(∣∣∣∣∣ 1n
n∑
i=1

Zi
j

∣∣∣∣∣ ≥ τ

)
, j = 1, . . . , d. (3.16)

We now study the performances of these selectors.

The following result gives an upper bound on the risk of selector (3.15) when a ≥ Cσ

and will enable us to obtain sufficient conditions so that almost full recovery is possible
when a ≥ 2σ in the Coordinate Global case.

Proposition 3.3.3. Assume that a > bσ for some constant b > 0. Set C1 := 1− 2Φ(−b).
If τ, T are chosen such that

T ≤ a− σb, and C1T − τ > 0,
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then it holds for all θ ∈ Θ+
d (s, a),

E
[1
s
|η̂+ − η|

]
≤ d− |S|

s
exp

(
− nτ

2

2B2

)
+ |S|

s
exp

(
−n(C1T − τ)2

2B2

)
,

where S denotes the support of θ. In particular, choosing T = σ and τ = C1T/2 with
C1 = 1− 2Φ(−1) yields

sup
θ∈Θ+

d
(s,a)

E
[1
s
|η̂+ − η|

]
≤ d

s
exp

(
−C

2
1n(eα − 1)2

8(eα + 1)2K2
d

)

for all a ≥ 2σ.

The proof of Proposition 3.3.3 can be found in section 3.6.4 of the Appendix. Note that
we can provide similar results on the class Θd(s, a) considering the selector η̂. The upper
bounds are the same than for the class Θ+

d (s, a) up to a multiplicative factor 2 that comes
from the use in the proof of the two-sided Hoeffding’s inequality instead of the one-sided
inequality. Since Kd ≤ C

√
d for d large enough, we obtain that a sufficient condition for

almost full recovery to be possible when a ≥ 2σ is that n(eα−1)2

(eα+1)2d
& log(d/s). Moreover,

using that (eα − 1)2/(eα + 1)2 ≥ 0.2α2 if α ≤ 1, we obtain that a sufficient condition for
almost full recovery to be possible when a ≥ 2σ and α ≤ 1 is that nα2/d & log(d/s).
This improves the result we obtained when we considered only privacy mechanisms acting
coordinates by coordinates for which we needed nα2/d2 & log(d/s). We now deal with
the case a << σ.

Proposition 3.3.4. Let a > 0. If T and τ are chosen such that

T ≥ a+ σ

√√√√2 log
(

max
{
e,

4σ
a
√

2π

})
, and τ < a/2,

then it holds for all θ ∈ Θ+
d (s, a),

E
[1
s
|η̂+ − η|

]
≤ d− |S|

s
exp

(
− nτ

2

2B2

)
+ |S|

s
exp

(
−n(a/2− τ)2

2B2

)
,

where S denotes the support of θ.

The proof of Proposition 3.3.4 can be found in Appendix 3.6.5.
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Corollary 3.3.5. Assume that α/d→ 0, nα2/d→ +∞ and σ
√
d/(α

√
n)� a ≤ 2σ. The

selector η̂+ defined by (3.15) with T = a+ σ

√
2 log

(√
nα2

d

)
and τ = a/4 satisfies for n, d

large enough

sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂

+(Z1, . . . , Zd))− η| ≤ d

s
exp

(
− n(eα − 1)2a2

27σ2(eα + 1)2K2
d log(nα2/d)

)
.

In particular, if α ∈ (0, 1], if nα2/d → +∞ with (nα2/d)/ log(nα2/d) � log(d) then it
holds

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂
+(Z1, . . . , Zd))− η| → 0,

for all a satisfying σ
√

d
nα2

√
log

(
nα2

d

)
log(d)� a ≤ 2σ.

The first statement in Corollary 3.3.5 is a direct consequence of Proposition 3.3.4. The
second statement is a direct consequence of the first one where we have used (eα−1)2/(eα+
1)2 ≥ 0.2α2 for α ∈ (0, 1] and Kd ≤ C

√
d for d large enough. In the next subsection, we

complement these results with a lower bound. This will enable us to exhibit a value a∗

such that exact recovery is impossible for all a ≤ a∗ and possible for a � a∗ under the
assumptions α ∈ (0, 1] and nα2/d→∞ with (nα2/d)/ log(nα2/d)� log(d).

3.3.3 Lower bound

Proposition 3.3.6. For any a > 0, α > 0, d ≥ 4, 1 ≤ s ≤ d, n ≥ 1, we have

inf
Q∈Qα

inf
η̂∈T

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂ − η| ≥
1
4

(
1− 2n(eα − 1)2

d log(d)

[
exp

(
a2

σ2

)
− 1

])
.

The proof of Proposition 3.3.6 is based on a private version of Fano’s method, see
Proposition 2 in [30]. It can be found in Section 3.6.6 of the Appendix. Using that (eα −
1)2 ≤ 4α2 for α ∈ (0, 1) and exp(x2) − 1 ≤ 14x2 for 0 ≤ x ≤ 2, Proposition 3.3.6
immediatly shows the following.

Corollary 3.3.7. Let α ∈ (0, 1). If nα2/(d log d) ≤ C/448 for some constant C ∈ (0, 1)
then it holds

inf
Q∈Qα

inf
η̂∈T

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂ − η| ≥
1
4 (1− C) > 0,

for all a ≤ 2σ.
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This shows that exact recovery is impossible for all a ≤ 2σ if nα2/(d log d) ≤ C/448
for some constant C ∈ (0, 1). Proposition 3.3.6 also implies that exact recovery is impos-
sible if a ≤ σ

√
log(1 + Cd log d/(8nα2)) for some constant C ∈ (0, 1). However, unlike the

coordinate local case, the lower bound provided by Proposition 3.3.6 does not allow us to
say that exact recovery is also impossible for a ≥ max{2σ, σ

√
log(1 + Cd log d/(8nα2))}

when nα2/(d log d) is bounded from above. The following corollary is also a direct conse-
quence of Proposition 3.3.6. It shows that when nα2/(d log d)→∞, exact recovery is still
impossible if a is too small.

Corollary 3.3.8. If α ∈ (0, 1), nα2/d→ +∞ with nα2/d� log d and a ≤ (σ/224)
√
d log d/(nα2)

it holds
lim inf
d→+∞

inf
Q∈Qα

inf
η̂∈T

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂ − η| ≥
1
8 .

The lower bound of Proposition 3.3.6 combined with the upper bounds of Subsection
3.3.2 exhibit a phase transition at the value a∗ (up to a logarithmic factor) such that
exact recovery is impossible for all a ≤ a∗ and possible for a� a∗ under the assumptions
α ∈ (0, 1] and nα2/d→∞ with (nα2/d)/ log(nα2/d)� log(d). Precisely, set

a∗ = a∗(n, α, d, σ) = σ

224

√
d log d
nα2 .

Proposition 3.3.6 combined with Corollary 3.3.5 and Proposition 3.3.3 give the following
result.

Corollary 3.3.9. Assume that α ∈ (0, 1] and nα2/d→ +∞ with (nα2/d)/ log(nα2/d)�
log(d). Then, exact recovery is impossible for all a ≤ a∗ and is possible for all a �
a∗
√

log(nα2/d).

Note that Proposition 3.3.6 does not allow us to obtain impossibility results for almost
full recovery in the regime nα2/(d log d)� 1. Its proof relies on a private Fano’s method
(Proposition 2 in [30]) applied with the family of distributions {N (aωi, σ2Id), i = 1, . . . , d}
where ωi ∈ {0, 1}d is defined by ωij = δij and δ is the Kronecker delta. The same proof
with ωi defined by ωij = 1 if j ∈ J(i−1)s+1, isK and ωij = 0 otherwise for i = 1, . . . bd/sc,
provides the following lower bound.

Proposition 3.3.10. For any a > 0, α > 0, n ≥ 1. If d/s ≤ 4 then we have

inf
Q∈Qα

inf
η̂∈T

sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂ − η| ≥

1
4

(
1− 2n(eα − 1)2

bd/sc log(bd/sc)

[
exp

(
sa2

σ2

)
− 1

])
.
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However, this bound turns out to be suboptimal in the sense that when it holds
(nα2/d)/ log(nα2/d) � log(d/s) the combination of this bound with upper bounds in
Proposition 3.3.3 and Corollary 3.3.5 allows us to exhibit the critical value a∗ for almost
full recovery only up to a logarithmic factor times the sparsity s. Indeed, on the one hand
Proposition 3.3.3 and Corollary 3.3.5 prove that almost full recovery is possible for all
a� σ

√
d/(nα2)

√
log (nα2/d) log(d/s) in the regime (nα2/d)/ log(nα2/d)� log(d/s). On

the other hand Proposition 3.3.10 proves that, in the same regime, almost full recovery is
impossible for a . (σ/s)

√
d/(nα2)

√
log(d/s) but does not allow us to say what happen

for (σ/s)
√
d/(nα2)

√
log(d/s)� a . σ

√
d/(nα2)

√
log(nα2/d) log(d/s).

3.4 Discussion

We addressed the problem of variable selection in the Gaussian mean model in Rd under
local differential privacy constraints. We have provided lower and upper bounds on the
rate of convergence for the expected Hamming loss over classes of at most s-sparse vectors
whose non-zero coordinates are separated from 0 by a constant a > 0. When we restrict
our attention to non-interactive mechanisms that act independently on each coordinate
(coordinate local privacy mechanisms) we have proved that, contrary to the non-private
setting, almost full recovery and exact recovery are impossible whatever the value of a
in the high-dimensional regime. This is due to the fact that the loss of information due
to privacy may reduce the effective sample size N := nα2/d2 under the value 1, and this
does not allow support recovery neither exact nor almost full.
However, in the regime nα2/d2 � log(nα2/d2) log(d) we have exhibited a critical value
a∗ (up to a logarithmic factor) such that exact recovery is possible for all a � a∗ and
impossible for all a ≤ a∗. We have also proved that these results can be improved when
allowing for all non-interactive locally differentially private mechanisms, that we also call
coordinate global. The effective sample size is Nd in this case and it is larger than N .
For many estimation problems allowing for sequentially interactive privacy mechanisms
do not improve substantially over non-interactive minimax rates. This includes for in-
stance density estimation [13], one-dimensional mean estimation [30], and estimation of a
linear functional of the true distribution [63]. However, for some estimation problems (see
for instance the estimation of the integrated square of a density, [15]) and some testing
problems (see [10] and [15]) allowing for sequentially interaction between data-holders can
substantially improve over non-interactive minimax rates of estimation or non-interactive
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minimax rates of testing. The change of regime from coordinate local to coordinate global
privacy mechanisms suggests that support recovery will be improved for interactive pri-
vacy mechanisms, but it is left for future work to study whether that is indeed the case.

3.5 Appendix : Proofs of Section 3.2

3.5.1 Some auxiliary results for the proof of the lower bound

The proof of Theorem 3.2.1 strongly relies on the following result known as the Bayesian
version of the Neyman-Pearson lemma.

Theorem 3.5.1 ([52], Problem 3.10). Let P0 and P1 be probability distributions possessing
densities p0 and p1 with respect to a measure µ. Consider the problem of testing H0 : P =
P0 against H1 : P = P1, and suppose that known probabilities π and 1−π can be assigned
to H0 and H1 prior to the experiment. Then the test T ∗ given by

T ∗(X) = I((1− π)p1(X) > πp0(X))

is a minimizer of the overall probability of error resulting from the use of a test T ,

πE0[T (X)] + (1− π)E1[1− T (X)].

The following lemmas are also useful to prove the lower bound.

Lemma 3.5.2. Let b, c > 0. Let P and Q be two probability measures having densities p
and q with respect to some measure µ. It holds

∫
min{bp(x), cq(x)}dµ(x) ≥ bc

b+ c

(∫ √
p(x)q(x)dµ(x)

)2
.

The case b = c = 1 can be found in [72] (lemma 2.3). We generalize the proof for any
b, c > 0.
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Proof. Cauchy-Schwarz inequality yields

bc
(∫ √

p(x)q(x)dµ(x)
)2

=
(∫ √

bp(x) · cq(x)dµ(x)
)2

=
(∫ √

min{bp(x), cq(x)}
√

max{bp(x), cq(x)}dµ(x)
)2

≤
∫

min{bp(x), cq(x)}dµ(x)
∫

max{bp(x), cq(x)}dµ(x).

Set A = {x : bp(x) ≥ cq(x)} and note that
∫

min{bp, cq}dµ+
∫

max{bp, cq}dµ =
∫
A
cqdµ+

∫
AC
bpdµ+

∫
A
bpdµ+

∫
AC
cqdµ = b+ c.

Thus,

bc
(∫ √

p(x)q(x)dµ(x)
)2
≤
∫

min{bp(x), cq(x)}dµ(x)
[
b+ c−

∫
min{bp(x), q(x)}dµ(x)

]
≤ (b+ c)

∫
min{bp(x), q(x)}dµ(x).

In the proof of the lower bound, Lemma 3.5.2 will be combined with the following
result whose proof can be found in [72].

Lemma 3.5.3. Let P and Q be two probability measures having densities p and q with
respect to some measure µ. It holds

(∫ √
p(x)q(x)dµ(x)

)2
≥ exp(−KL(P,Q)).

3.5.2 Proof of Theorem 3.2.1

Let Q ∈ QCLα and let η̂ be a separable selector. Since η̂j depends only on (Zi
j)i=1,...,n, it

holds

EQ(P⊗n
θ

)|η̂(Z)− η| =
d∑
j=1

E⊗ni=1Q
i
jPθj
|η̂j(Z1

j , . . . , Z
n
j )− ηj|.

Following the proof of Theorem 2.2 in [12], we denote by Θ′ the set of all θ in Θ+
d (s, a)

such that exactly s components of θ are equal to a and the remaining d− s components
are equal to 0. Since Θ′ is a subset of Θ+

d (s, a), it holds
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sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂(Z)− η| ≥ 1

s|Θ′|
∑
θ∈Θ′

d∑
j=1

E⊗ni=1Q
i
jPθj
|η̂j(Z1

j , . . . , Z
n
j )− ηj|

= 1
s|Θ′|

d∑
j=1

 ∑
θ∈Θ′:θj=0

E⊗ni=1Q
i
jP0(η̂j) +

∑
θ∈Θ′:θj=a

E⊗ni=1Q
i
jPa

(1− η̂j)


= 1
s

d∑
j=1

((
1− s

d

)
E⊗ni=1Q

i
jP0(η̂j) + s

d
E⊗ni=1Q

i
jPa

(1− η̂j)
)

≥ 1
s

d∑
j=1

inf
T∈[0,1]

((
1− s

d

)
E⊗ni=1Q

i
jP0(T ) + s

d
E⊗ni=1Q

i
jPa

(1− T )
)
.

Set
L∗j = inf

T∈[0,1]

((
1− s

d

)
E⊗ni=1Q

i
jP0(T ) + s

d
E⊗ni=1Q

i
jPa

(1− T )
)
.

Since Qi
j provides αj-differential privacy, the channel probabilities Qi

j(· | x) have densities
z 7→ qij(z | x) with respect to some measure µij. Therefore, dQi

jP0(z) = mi
j,0(z)dµij(z),

and dQi
jPa(z) = mi

j,a(z)dµij(z), where mi
j,b(z) =

∫
R q

i
j(z | x)dPb(x), b ∈ {0, a}. Thus, for

b ∈ {0, a}, it holds

d(⊗ni=1Q
i
jPb)(y1, . . . , yn) = [

n∏
i=1

mi
j,b(yi)]dµj(y1, . . . , yn),

where µj = µ1
j ⊗ · · · ⊗ µnj . According to Theorem 3.5.1, the infimum L∗j is thus attained

for T = T ∗j given by

T ∗j (Y1, . . . , Yn) = I

(
s

d

n∏
i=1

mi
j,a(Yi) >

(
1− s

d

) n∏
i=1

mi
j,0(Yi)

)
.
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Set Aj = {(y1, . . . , yn) ∈ Rn : s
d

∏n
i=1 m

i
j,a(yi) >

(
1− s

d

)∏n
i=1 m

i
j,0(yi)}.

sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂(Z)− η| ≥ 1

s

d∑
j=1

[(
1− s

d

) ∫
Aj

[
n∏
i=1

mi
j,0(yi)]dµj(y1, . . . , yn)

+s

d

∫
ACj

[
n∏
i=1

mi
j,a(yi)]dµj(y1, . . . , yn)

]

= 1
s

d∑
j=1

∫
Rn

min
{(

1− s

d

) n∏
i=1

mi
j,0(yi),

s

d

n∏
i=1

mi
j,a(yi)

}
dµj(y1, . . . , yn)

≥
(

1− s

d

)
· 1
d

d∑
j=1

∫
Rn

√√√√( n∏
i=1

mi
j,0(yi)

)(
n∏
i=1

mi
j,a(yi)

)
dµj(y1, . . . , yn)

2

≥
(

1− s

d

)
· 1
d

d∑
j=1

exp
(
−KL

(
⊗ni=1Q

i
jP0,⊗ni=1Q

i
jPa

))
,

where the two last inequalities follow from lemma 3.5.2 and lemma 3.5.3. Using suc-
cessively a property of the Kullback-Leibler divergence and Theorem 1 of [30] on the
contractive effects of privacy on pairs of distribution, we obtain

sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂(Z)− η| ≥

(
1− s

d

)
· 1
d

d∑
j=1

exp
(
−

n∑
i=1

KL
(
Qi
jP0, Q

i
jPa

))

≥
(

1− s

d

)
· 1
d

d∑
j=1

exp
(
−4n(eα/d − 1)2TV(P0, Pa)2

)
=
(

1− s

d

)
exp

(
−4n(eα/d − 1)2TV(P0, Pa)2

)
.

Since this result holds for all Q ∈ QCLα and all separable selector η̂, we obtain

inf
Q∈QCLα

inf
η̂∈T

sup
θ∈Θ+

d
(s,a)

1
s
EQ(P⊗n

θ
)|η̂ − η| ≥

(
1− s

d

)
exp

(
−4n(eα/d − 1)2TV(P0, Pa)2

)
.

The inequality TV (P0, Pa) ≤ 1 and Pinsker’s inequality

TV (P0, Pa) ≤
√

KL(P0, Pa)
2 = a

2σ ,

then imply the statement of Theorem 3.2.1.
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3.5.3 Some auxiliary results for the upper bounds

Lemma 3.5.4. For all a ≥ 0, 1
n

∑n
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
is a sub-gaussian ran-

dom variable with parameter at most min
{
T√
n
, σ√

n

}
.

Proof. First, observe that [a + σξij]T ∈ [−T, T ] almost surely. Then, according to Ex-
ercise 2.4 in [76] the random variable [a + σξij]T − E

[
[a+ σξij]T

]
is sub-gaussian with

parameter at most T for all i ∈ J1, nK. Since (ξij)i=1,...,n are independent, we obtain that
1
n

∑n
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
is sub-gaussian with parameter at most T/

√
n. We

now prove that it is also subgaussian with parameter at most σ/
√
n. To this aim, define

g : x ∈ Rn 7→ 1
n

∑n
i=1[a+ σxi]T ∈ R. It holds

|g(x)− g(y)| ≤ σ√
n
‖x− y‖2 ∀x, y ∈ Rn.

Set Y = (ξ1
j , . . . , ξ

n
j ). According to Theorem 2.26 in [76], g(Y )− E[g(Y )] is sub-gaussian

with parameter at most σ/
√
n.

We now recall Bernstein’s inequality (cf. [11] Corollary 2.11).

Theorem 3.5.5. Let Y1, . . . , Yn be independent real valued random variables. Assume that
there exist some positive numbers v and c such that

n∑
i=1

E[Y 2
i ] 6 v, (3.17)

and for all integers m > 3
n∑
i=1

E[|Yi|m] 6 m!
2 vcm−2. (3.18)

Let S = ∑n
i=1(Yi − E[Yi]), then for every positive t

P (S > t) 6 exp
(
− t2

2(v + ct)

)
. (3.19)

Note that if v ≤ ct then (3.19) yields P(S ≥ t) ≤ exp(−t/4c). If ct ≤ v then (3.19)
yields P(S ≥ t) ≤ exp(−t2/4v).
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3.5.4 Proof of Proposition 3.2.4

It holds

|η̂+ − η| =
∑
j:ηj=0

η̂+
j +

∑
j:ηj=1

(1− η̂+
j )

=
∑
j:ηj=0

I

(
1
n

n∑
i=1

[σξij]T + 2Td
nα

n∑
i=1

W i
j ≥ τ

)

+
∑
j:ηj=1

I

(
1
n

n∑
i=1

[θj + σξij]T + 2Td
nα

n∑
i=1

W i
j < τ

)
.

Thus,

E
[1
s
|η̂+ − η|

]
= 1
s

∑
j:ηj=0

P
(

1
n

n∑
i=1

[σξij]T + 2Td
nα

n∑
i=1

W i
j ≥ τ

)
︸ ︷︷ ︸

=T1,j

+ 1
s

∑
j:ηj=1

P
(

1
n

n∑
i=1

[θj + σξij]T + 2Td
nα

n∑
i=1

W i
j < τ

)
︸ ︷︷ ︸

=T2,j

.

We first study T1,j. It holds

T1,j ≤ P
(

1
n

n∑
i=1

[σξij]T ≥
τ

2

)
+ P

(
n∑
i=1

W i
j ≥

τnα

4Td

)
.

Note that E
[
[σξij]T

]
= 0. Using Lemma 3.5.4 to bound from above the first term and

Bernstein’s inequality (3.19) with v = 2n and c = 1 to bound from above the second
term, we obtain if τα/(8Td) < 1

T1,j ≤ exp
(
− nτ 2

23 min{T 2, σ2}

)
+ exp

(
− τ 2nα2

27T 2d2

)
.
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Since x 7→ [x]T is a non-decreasing function and since θj ≥ a for all j such that ηj = 1, it
holds

T2,j ≤ P
(

1
n

n∑
i=1

[a+ σξij]T + 2Td
nα

n∑
i=1

W i
j < τ

)

= P
(

1
n

n∑
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
+ E

[
[a+ σξ1

j ]T
]

+ 2Td
nα

n∑
i=1

W i
j < τ

)

= P
(
− 1
n

n∑
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
− 2Td

nα

n∑
i=1

W i
j > E

[
[a+ σξ1

j ]T
]
− τ

)
.

Now, if ξ ∼ N (0, 1) then

E [[a+ σξ]T ] = TP
(
ξ >

T − a
σ

)
− TP

(
ξ <
−T − a

σ

)
+ E [(a+ σξ)I(|a+ σξ| ≤ T )]

= TP
(
ξ >

T − a
σ

)
− TP

(
ξ <
−T − a

σ

)
+
∫ T−a

σ

−T−a
σ

(a+ σx) 1√
2π
e−x

2/2dx

≥ TP
(
ξ >

T − a
σ

)
− TP

(
ξ <
−T − a

σ

)
+ aP

(−T − a
σ

≤ ξ ≤ T − a
σ

)
+ σ ·

(−T − a
σ

)
· P
(−T − a

σ
≤ ξ ≤ T − a

σ

)
= T

[
P
(
ξ >

T − a
σ

)
− P

(
ξ ≤ T − a

σ

)]
= T

[
1− 2Φ

(
T − a
σ

)]
,

where Φ denotes the standard Gaussian cumulative distribution function. Thus, if a ≥
T + σb for some b > 0, it holds E

[
[a+ σξ1

j ]T
]
≥ C1T with C1 = 1− 2Φ(−b), and

T2,j ≤ P
(
− 1
n

n∑
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
− 2Td

nα

n∑
i=1

W i
j > C1T − τ

)

≤ P
(
− 1
n

n∑
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
>
C1T − τ

2

)

+ P
(

n∑
i=1

(
−W i

j

)
>
nα(C1T − τ)

4Td

)
.

We can now bound from above the first term using lemma 3.5.4 and the second term
using Bernstein’s inequality. This gives, if C1T ≥ τ and α(C1T − τ)/(8Td) ≤ 1

T2,j ≤ exp
(
− n(C1T − τ)2

23 min{T 2, σ2}

)
+ exp

(
−(C1T − τ)2nα2

27T 2d2

)
.
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This ends the proof of (3.8). We now prove (3.9). If θ ∈ Θd(s, a), we use the estimator η̂
instead of η̂+ and it holds

E
[1
s
|η̂ − η|

]
= 1
s

∑
j:ηj=0

P
(∣∣∣∣∣ 1n

n∑
i=1

[σξij]T + 2Td
nα

n∑
i=1

W i
j

∣∣∣∣∣ ≥ τ

)
︸ ︷︷ ︸

=T̃1,j

+ 1
s

∑
j:ηj=1

P
(∣∣∣∣∣ 1n

n∑
i=1

[θj + σξij]T + 2Td
nα

n∑
i=1

W i
j

∣∣∣∣∣ < τ

)
︸ ︷︷ ︸

=T̃2,j

.

We first study T̃1,j. It holds

T̃1,j ≤ P
(∣∣∣∣∣ 1n

n∑
i=1

[σξij]T
∣∣∣∣∣+ 2Td

nα

∣∣∣∣∣
n∑
i=1

W i
j

∣∣∣∣∣ ≥ τ

)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

[σξij]T
∣∣∣∣∣ ≥ τ

2

)
+ P

(∣∣∣∣∣
n∑
i=1

W i
j

∣∣∣∣∣ ≥ τnα

4Td

)

≤ 2
[
exp

(
− nτ 2

23 min{T 2, σ2}

)
+ exp

(
− τ 2nα2

27T 2d2

)]
,

if τα/(8Td) < 1, where we have used the two-sided versions of the concentration inequal-
ities we used to prove (3.8). We now study T̃2,j. For all j such that ηj = 1, it holds

T̃2,j = P
(∣∣∣∣∣ 1n

n∑
i=1

(
[θj + σξij]T − E

[
[θj + σξij]T

])
+ E

[
[θj + σξ1

j ]T
]

+ 2Td
nα

n∑
i=1

W i
j

∣∣∣∣∣ < τ

)

≤ P
(∣∣∣E [[θj + σξ1

j ]T
]∣∣∣− ∣∣∣∣∣ 1n

n∑
i=1

(
[θj + σξij]T − E

[
[θj + σξij]T

])
+ 2Td

nα

n∑
i=1

W i
j

∣∣∣∣∣ < τ

)

= P
(∣∣∣∣∣ 1n

n∑
i=1

(
[θj + σξij]T − E

[
[θj + σξij]T

])
+ 2Td

nα

n∑
i=1

W i
j

∣∣∣∣∣ > ∣∣∣E [[θj + σξ1
j ]T
]∣∣∣− τ)

Now, observe that

∣∣∣E [[θj + σξ1
j ]T
]∣∣∣ ≥ E

[
[θj + σξ1

j ]T
]
≥ E

[
[a+ σξ1

j ]T
]
,

if θj ≥ a since x 7→ [x]T is non-decreasing, and if θj ≤ −a we have

∣∣∣E [[θj + σξ1
j ]T
]∣∣∣ ≥ −E [[θj + σξ1

j ]T
]
≥ −E

[
[−a+ σξ1

j ]T
]

= −E
[
[−a− σξ1

j ]T
]

= E
[
[a+ σξ1

j ]T
]
,
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where we have used that x 7→ [x]T is a non-decreasing and odd function and that −ξ1
j

and ξ1
j have the same distribution. Moreover, we have seen in the proof of (3.8) that if

ξ ∼ N (0, 1) then it holds

E [[a+ σξ]T ] ≥ T
[
1− 2Φ

(
T − a
σ

)]
,

where Φ denotes the standard Gaussian cumulative distribution function. Thus, if a ≥
T + σb for some b > 0, it holds E

[
[a+ σξ1

j ]T
]
≥ C1T for all j such that ηj = 1 with

C1 = 1− 2Φ(−b), and

T̃2,j ≤ P
(∣∣∣∣∣ 1n

n∑
i=1

(
[θj + σξij]T − E

[
[θj + σξij]T

])
+ 2Td

nα

n∑
i=1

W i
j

∣∣∣∣∣ > C1T − τ
)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

(
[θj + σξij]T − E

[
[θj + σξij]T

])∣∣∣∣∣+
∣∣∣∣∣2Tdnα

n∑
i=1

W i
j

∣∣∣∣∣ > C1T − τ
)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

(
[θj + σξij]T − E

[
[θj + σξij]T

])∣∣∣∣∣ > C1T − τ
2

)

+ P
(∣∣∣∣∣

n∑
i=1

W i
j

∣∣∣∣∣ > nα(C1T − τ)
4Td

)
.

Using the two-sided version of the concentration inequalities that we used to bound T2,j

in the proof of (3.8), we obtain if C1T ≥ τ and α(C1T − τ)/(8Td) ≤ 1

T̃2,j ≤ 2
[
exp

(
− n(C1T − τ)2

23 min{T 2, σ2}

)
+ exp

(
−(C1T − τ)2nα2

27T 2d2

)]
.

This ends the proof of (3.9).

3.5.5 Proof of Corollary 3.2.5

Let prove (3.10). Note that if the assumptions of corollary 3.2.5 are satisfied, and it T = σ

and τ = C1T/2 then the assumptions of proposition 3.2.4 are also satisfied and for all
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a ≥ 2σ we have

sup
θ∈Θ

E
[1
s
|η̂+ − η|

]
≤ 2 · d

s

[
exp

(
−C

2
1n

25

)
+ exp

(
−C

2
1nα

2

29d2

)]

= 2
{

exp
(

log
(
d

s

)
− C2

1n

25

)
+ exp

(
log

(
d

s

)
− C2

1nα
2

29d2

)}

= 2
{

exp
(
−nα

2

d2

[
C2

1d
2

25α2 −
log(d/s)
nα2/d2

])
+ exp

(
−nα

2

d2

[
C2

1
29 −

log(d/s)
nα2/d2

])}
.

The two terms appearing in the last inequality both tend to 0 as d → +∞ under the
assumptions of Corollary 3.2.5, which gives (3.10). The proof of (3.11) is similar.

3.5.6 Proof of Proposition 3.2.6

The beginning of the proof is similar to the proof of Proposition 3.2.4. It holds

E
[1
s
|η̂+ − η|

]
= 1
s

∑
j:ηj=0

P
(

1
n

n∑
i=1

[σξij]T + 2Td
nα

n∑
i=1

W i
j ≥ τ

)
︸ ︷︷ ︸

=T1,j

+ 1
s

∑
j:ηj=1

P
(

1
n

n∑
i=1

[θj + σξij]T + 2Td
nα

n∑
i=1

W i
j < τ

)
︸ ︷︷ ︸

=T2,j

,

and we have

T1,j ≤ exp
(
− nτ 2

23 min{T 2, σ2}

)
+ exp

(
− τ 2nα2

27T 2d2

)

if τα/(8Td) < 1, and

T2,j ≤ P
(
− 1
n

n∑
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
− 2Td

nα

n∑
i=1

W i
j > E

[
[a+ σξ1

j ]T
]
− τ

)
.
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Now, we bound from below E [[a+ σξ]T ] in a different way than in the proof of Proposition
3.2.4.

E [[a+ σξ]T ] = TP
(
ξ >

T − a
σ

)
− TP

(
ξ <
−T − a

σ

)
+ E [(a+ σξ)I(|a+ σξ| ≤ T )]

= TP
(
ξ >

T − a
σ

)
− TP

(
ξ <
−T − a

σ

)
+
∫ T−a

σ

−T−a
σ

(a+ σx) 1√
2π
e−x

2/2dx

= TP
(
ξ >

T − a
σ

)
− TP

(
ξ <
−T − a

σ

)
+ aP

(−T − a
σ

≤ ξ ≤ T − a
σ

)
+ σ√

2π

[
exp

(
−(T + a)2

2σ2

)
− exp

(
−(T − a)2

2σ2

)]

≥ aP
(−T − a

σ
≤ ξ ≤ T − a

σ

)
− σ√

2π
exp

(
−(T − a)2

2σ2

)

≥ aP
(−T + a

σ
≤ ξ ≤ T − a

σ

)
− σ√

2π
exp

(
−(T − a)2

2σ2

)

= a
[
1− 2P

(
ξ ≥ T − a

σ

)]
− σ√

2π
exp

(
−(T − a)2

2σ2

)
.

If T ≥ a+
√

2σ, then

2P
(
ξ ≥ T − a

σ

)
≤ 2√

2π
exp

(
− (T−a)2

2σ2

)
T−a
σ

= 1√
π

exp
(
−
(
T−a√

2σ

)2
)

T−a√
2σ

≤ 1
4 .

If T ≥ a+ σ
√

2 log(δ) with δ ≥ 4σ
a
√

2π , then

σ√
2π

exp
(
−(T − a)2

2σ2

)
≤ σ√

2πδ
≤ a

4 .

Thus, if T ≥ a+ σ

√
2 log

(
max

{
e, 4σ

a
√

2π

})
, then E [[a+ σξ]T ] ≥ a/2, and

T2,j ≤ P
(
− 1
n

n∑
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
− 2Td

nα

n∑
i=1

W i
j >

a

2 − τ
)

≤ P
(
− 1
n

n∑
i=1

(
[a+ σξij]T − E

[
[a+ σξij]T

])
>
a/2− τ

2

)

+ P
(

n∑
i=1

(
−W i

j

)
>
nα(a/2− τ)

4Td

)
.
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We can now bound from above the first term using lemma 3.5.4 and the second term

using Bernstein’s inequality. This gives, if T ≥ a +
√

2 log
(
max

{
e, 4σ

a
√

2π

})
, τ ≤ a/2 and

α(a/2− τ)/(8Td) ≤ 1

T2,j ≤ exp
(
− n(a/2− τ)2

23 min{T 2, σ2}

)
+ exp

(
−(a/2− τ)2nα2

27T 2d2

)
.

3.5.7 Proof of Corollary 3.2.7

Let prove (3.12). The chosen values of T and τ satisfy the assumptions of Proposition
3.2.6 for d large enough and yield

sup
θ∈Θ+

d
(s,a)

E
[1
s
|η̂+ − η|

]
≤ d

s

[
exp

(
− na2

27 min{T 2, σ2}

)
+ exp

(
− a2nα2

211T 2d2

)]

= exp
(

log
(
d

s

)
− na2

27σ2

)
+ exp

(
log

(
d

s

)
− a2nα2

211T 2d2

)

≤ 2 exp
(

log
(
d

s

)
− a2nα2

211T 2d2

)
.

Conclude using T = a + σ

√
2 log

(√
nα
d

)
≤ 2σ + σ

√
log

(
nα2

d2

)
≤ 2σ

√
log

(
nα2

d2

)
. The proof

of (3.13) is similar.

3.6 Appendix : Proofs of Section 3.3

3.6.1 Proof of Proposition 3.3.1

Note that it is sufficient to prove that Z̃i is an α-LDP view of X i. Indeed, if Z̃i is an
α-LDP view of X i then it holds for all z ∈ Z and x, x′ ∈ Rd (we omit the superscript i)

P (Z = z | X = x)
P (Z = z | X = x′) =

∑
z̃∈{−B,B}d P

(
Z = z | Z̃ = z̃, X = x

)
P
(
Z̃ = z̃ | X = x

)
∑
z̃∈{−B,B}d P

(
Z = z | Z̃ = z̃, X = x′

)
P
(
Z̃ = z̃ | X = x′

)
=
∑
z̃∈{−B,B}d P

(
Z = z | Z̃ = z̃

)
P
(
Z̃ = z̃ | X = x

)
∑
z̃∈{−B,B}d P

(
Z = z | Z̃ = z̃

)
P
(
Z̃ = z̃ | X = x′

)
≤ eα,
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where we have used that Z is independent from X conditionally to Z̃ and the fact that
P
(
Z̃ = z̃ | X = x

)
≤ eαP

(
Z̃ = z̃ | X = x′

)
for all z̃ ∈ {−B,B}d if Z̃ is an α-LDP view

of X. So, let’s prove that Z̃i is an α-LDP view of X i. In what follows, we omit once again
the superscript i. We have to prove that for all z̃ ∈ {−B,B}d and all x, x′ ∈ Rd it holds

P
(
Z̃ = z̃ | X = x

)
P
(
Z̃ = z̃ | X = x′

) ≤ eα.

Let z̃ ∈ {−B,B}d and x ∈ Rd. It holds

P
(
Z̃ = z̃ | X = x

)
=

∑
x̃∈{−T,T}d

P
(
Z̃ = z̃ | X = x, X̃ = x̃

)
· P
(
X̃ = x̃ | X = x

)
=

∑
x̃∈{−T,T}d

P
(
Z̃ = z̃ | X̃ = x̃

)
· P
(
X̃ = x̃ | X = x

)
,

and since Y and X̃ are independent we have

P
(
Z̃ = z̃ | X̃ = x̃

)
= P

(
Z̃ = z̃ | X̃ = x̃, Y = 1

)
· P (Y = 1)

+ P
(
Z̃ = z̃ | X̃ = x̃, Y = 0

)
· P (Y = 0)

= παP
(
Z̃ = z̃ | X̃ = x̃, Y = 1

)
+ (1− πα)P

(
Z̃ = z̃ | X̃ = x̃, Y = 0

)
.

Moreover, since for x̃ ∈ {−T, T}d

Card
({
z̃ ∈ {−B,B}d | 〈z̃, x̃〉 > 0 or (〈z̃, x̃〉 = 0 and z̃1 = (B/T )x̃1)

})
= Card

({
z̃ ∈ {−B,B}d | 〈z̃, x̃〉 < 0 or (〈z̃, x̃〉 = 0 and z̃1 = −(B/T )x̃1)

})
= 2d−1,

it holds

P
(
Z̃ = z̃ | X̃ = x̃, Y = 1

)
=

 0 if 〈z̃, x̃〉 < 0 or (〈z̃, x̃〉 = 0 and z̃1 = −(B/T )x̃1)
1

2d−1 if 〈z̃, x̃〉 > 0 or (〈z̃, x̃〉 = 0 and z̃1 = (B/T )x̃1) ,

and

P
(
Z̃ = z̃ | X̃ = x̃, Y = 0

)
=


1

2d−1 if 〈z̃, x̃〉 < 0 or (〈z̃, x̃〉 = 0 and z̃1 = −(B/T )x̃1)
0 if 〈z̃, x̃〉 > 0 or (〈z̃, x̃〉 = 0 and z̃1 = (B/T )x̃1) .
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We thus have

P
(
Z̃ = z̃ | X̃ = x̃

)
=


1−πα
2d−1 if 〈z̃, x̃〉 < 0 or (〈z̃, x̃〉 = 0 and z̃1 = −(B/T )x̃1)
πα

2d−1 if 〈z̃, x̃〉 > 0 or (〈z̃, x̃〉 = 0 and z̃1 = (B/T )x̃1) ,

and, if we set

Az̃ =
{
x̃ ∈ {−T, T}d : 〈z̃, x̃〉 > 0 or (〈z̃, x̃〉 = 0 and z̃1 = (B/T )x̃1)

}
and

Cz̃ =
{
x̃ ∈ {−T, T}d : 〈z̃, x̃〉 < 0 or (〈z̃, x̃〉 = 0 and z̃1 = −(B/T )x̃1)

}
,

we obtain

P
(
Z̃ = z̃ | X = x

)
= πα

2d−1

∑
x̃∈Az̃

P
(
X̃ = x̃ | X = x

)
+ 1− πα

2d−1

∑
x̃∈Cz̃

P
(
X̃ = x̃ | X = x

)
.

Consequently, it holds for all z̃ ∈ {−B,B}d and all x ∈ Rd,

min{πα, 1− πα}
2d−1 ≤ P

(
Z̃ = z̃ | X = x

)
≤ max{πα, 1− πα}

2d−1 ,

where we have used that Az̃ tCz̃ = {−T, T}d and ∑x̃∈{−T,T}d P
(
X̃ = x̃ | X = x

)
= 1. We

finally obtain for all z̃ ∈ {−B,B}d and all x, x′ ∈ Rd,

P
(
Z̃ = z̃ | X = x

)
P
(
Z̃ = z̃ | X = x′

) ≤ max{πα, 1− πα}
min{πα, 1− πα}

= πα
1− πα

= eα.

3.6.2 Proof of Proposition 3.3.2

Let x ∈ Rd. We first compute E
[
Z̃ | X = x

]
. It holds

E
[
Z̃ | X = x

]
=

∑
x̃∈{−T,T}d

P
(
X̃ = x̃ | X = x

)
· E

[
Z̃ | X = x, X̃ = x̃

]
=

∑
x̃∈{−T,T}d

P
(
X̃ = x̃ | X = x

)
· E

[
Z̃ | X̃ = x̃

]
,
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and since Y and X̃ are independent we have

E
[
Z̃ | X̃ = x̃

]
= P (Y = 1) · E

[
Z̃ | X̃ = x̃, Y = 1

]
+ P (Y = 0) · E

[
Z̃ | X̃ = x̃, Y = 0

]
= παE

[
Z̃ | X̃ = x̃, Y = 1

]
+ (1− πα)E

[
Z̃ = z | X̃ = x̃, Y = 0

]
.

Define

Ax̃ :=
{
z̃ ∈ {−B,B}d | 〈z̃, x̃〉 > 0 or (〈z̃, x̃〉 = 0 and z̃1 = (B/T )x̃1)

}
,

Cx̃ :=
{
z̃ ∈ {−B,B}d | 〈z̃, x̃〉 < 0 or (〈z̃, x̃〉 = 0 and z̃1 = −(B/T )x̃1)

}
.

Conditionnally on
{
X̃ = x̃, Y = 1

}
, it holds Z ∼ U (Ax̃). Thus,

E
[
Z̃ | X̃ = x̃, Y = 1

]
=
∑
z̃∈Ax̃

P
(
Z̃ = z̃ | X̃ = x̃, Y = 1

)
z̃ = 1

Card(Ax̃)
∑
z̃∈Ax̃

z̃.

Similarly,

E
[
Z̃ | X̃ = x̃, Y = 0

]
= 1

Card(Cx̃)
∑
z̃∈Cx̃

z̃ = 1
Card(Cx̃)

∑
z̃∈Ax̃

(−z̃)

= −E
[
Z̃ | X̃ = x̃, Y = 1

]
,

where we have used Card(Cx̃) = Card(Ax̃). We thus obtain

E
[
Z̃ | X̃ = x̃

]
= 2πα − 1

Card(Ax̃)
∑
z̃∈Ax̃

z̃,

and, using that Card(Ax̃) = 2d−1 for all x̃ ∈ {−T, T}d we obtain

E
[
Z̃ | X = x

]
= 2πα − 1

2d−1

∑
x̃∈{−T,T}d

P (X̃ = x̃ | X = x
)
·
∑
z̃∈Ax̃

z̃

 .
We now compute

∑
z̃∈Ax̃ z̃ for all x̃ ∈ {−T, T}d. Note that for z̃ ∈ {−B,B}d and x̃ ∈

{−T, T}d, 〈z̃, x̃〉 is a sum of d terms, each equal to −BT or BT . If a denotes the number
of elements of this sum equal to BT and b denotes the number of elements of this sum
equal to −BT , then it holds a+ b = d and 〈z̃, x̃〉 = aBT − bBT = BT (d− 2b). Thus we
can only have 〈z̃, x̃〉 = kBT , with k ∈ J−d, dK and |k| has the same parity as d. We thus
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have ∑
z̃∈Ax̃

z̃ =
(d−1)/2∑
p=0

∑
{z̃∈{−B,B}d:〈z̃,x̃〉=(2p+1)BT}

z, (3.20)

if d is odd, and ∑
z̃∈Ax̃

z̃ =
d/2∑
p=1

∑
z̃∈{−B,B}d:
〈z̃,x̃〉=2p·BT

z̃ +
∑

z̃∈{−B,B}d:
〈z̃,x̃〉=0
z̃1=B

T
x̃1

z̃, (3.21)

if d is even. Now, observe that for all x̃ ∈ {−T, T}d, for all j ∈ J1, dK and for all k ∈
{0, . . . , d} with the same parity as d, it holds

∑
z̃∈{−B,B}d:
〈z̃,x̃〉=kBT

z̃j = B

T

[(
d− 1
d+k

2 − 1

)
−
(
d− 1
d+k

2

)]
x̃j. (3.22)

Indeed, for all z̃ ∈ {−B,B}d, for all x̃ ∈ {−T, T}d, and for all k ∈ {0, . . . , d} with the
same parity as d, it holds

〈z̃, x̃〉 = k ·BT ⇐⇒

 z̃j = B
T
x̃j for d+k

2 elements j ∈ J1, dK
z̃j = −B

T
x̃j for d−k

2 elements j ∈ J1, dK.

Setting Dk,x̃ = {z̃ ∈ {−B,B}d : 〈z̃, x̃〉 = k ·BT}, it thus holds

∑
z̃∈Dk,x̃

z̃j =
∑

z̃∈Dk,x̃

B

T
x̃j1

(
z̃j = B

T
x̃j

)
−

∑
z∈Dk,x̃

B

T
x̃j1

(
z̃j = −B

T
x̃j

)

= B

T

[
Card

(
z̃ ∈ Dk,x̃ : z̃j = B

T
x̃j

)
− Card

(
z̃ ∈ Dk,x̃ : z̃j = −B

T
x̃j

)]
x̃j

= B

T

[(
d− 1
d+k

2 − 1

)
−
(
d− 1
d+k

2

)]
x̃j.

We now end the proof of Proposition 3.3.2 when d is odd. Combining (3.22) with (3.20),
we obtain for d odd ∑

z∈Ax̃
z̃ = B

T

(
d− 1
d−1

2

)
x̃,
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and the choice of B yields

E
[
Z̃ | X = x

]
= 2πα − 1

2d−1
B

T

(
d− 1
d−1

2

) ∑
x̃∈{−T,T}d

P
(
X̃ = x̃ | X = x

)
· x̃

= E
[
X̃ | X = x

]
Since for all j ∈ J1, dK it holds

E
[
X̃j | X = x

]
= T

(
1
2 + [xj]T

2T

)
− T

(
1
2 −

[xj]T
2T

)
= [xj]T ,

we obtain for d odd

E [Z | X = x] = E
[
Z̃ | X = x

]
= E

[
X̃ | X = x

]
= fT (x),

which proves Proposition 3.3.2 when d is odd. From now on, we assume that d is even.
Combining (3.22) with (3.21), we obtain

∑
z̃∈Ax̃

z̃ = B

T

(
d− 1

d
2

)
x̃+

∑
z̃∈{−B,B}d:
〈z̃,x̃〉=0
z̃1=B

T
x̃1

z̃.

Now, observe that for z̃ ∈ {−B,B}d and x̃ ∈ {−T, T}d it holds 〈z̃, x̃〉 = 0 if and only if
z̃j = (B/T )x̃j for exactly d/2 subscripts j ∈ J1, dK and z̃j = −(B/T )x̃j for exactly d/2
subscripts j ∈ J1, dK. We thus have

∑
z̃∈{−B,B}d:
〈z̃,x̃〉=0
z̃1=B

T
x̃1

z̃1 = B

T
x̃1 · Card

({
z̃ ∈ {−B,B}d : 〈z̃, x̃〉 = 0 and z̃1 = B

T
x̃1

})

= B

T

(
d− 1
d
2 − 1

)
x̃1,
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and for j ≥ 2 it holds

∑
z̃∈{−B,B}d:
〈z̃,x̃〉=0
z̃1=B

T
x̃1

z̃j = B

T
x̃j

[
Card

({
z̃ ∈ {−B,B}d : 〈z̃, x̃〉 = 0, z̃1 = B

T
x̃1, z̃j = B

T
x̃j

})

−Card
({
z̃ ∈ {−B,B}d : 〈z̃, x̃〉 = 0, z̃1 = B

T
x̃1, z̃j = −B

T
x̃j

})]
= B

T

[(
d− 2
d
2 − 2

)
−
(
d− 2
d
2 − 1

)]
x̃j.

We thus obtain

∑
z̃∈Ax̃

z̃j =


B
T

(
d
d
2

)
x̃1 if j = 1

B
T

[(
d−1
d
2

)
+
(
d−2
d
2−2

)
−
(
d−2
d
2−1

)]
x̃j if j ∈ J2, dK

.

The choice

B = 2d−1T

2πα − 1 ·
(d2 − 1)!d2 !

(d− 2)!(d− 2)
then yields

E
[
Z̃j | X = x

]
=


(2πα−1)B

2d−1T

(
d
d
2

)∑
x̃∈{−T,T}d x̃1P

(
X̃ = x̃ | X = x

)
if j = 1

(2πα−1)B
2d−1T

· (d−2)!(d−2)
( d2−1)! d2 !

∑
x̃∈{−T,T}d x̃jP

(
X̃ = x̃ | X = x

)
if j ∈ J2, dK

=


2(d−1)
d−2

∑
x̃∈{−T,T}d x̃1P

(
X̃ = x̃ | X = x

)
if j = 1∑

x̃∈{−T,T}d x̃jP
(
X̃ = x̃ | X = x

)
if j ∈ J2, dK

.

Thus, it holds E [Zj | X = x] = ∑
x̃∈{−T,T}d P

(
X̃ = x̃ | X = x

)
x̃j for all j ∈ J1, dK, and

E[Z | X = x] =
∑

x̃∈{−T,T}d
P
(
X̃ = x̃ | X = x

)
x̃ = E

[
X̃ | X = x

]
= fT (x).

3.6.3 Asymptotic analysis of the value Kd defined in (3.14)

Lemma 3.6.1. The value Kd defined in (3.14) behaves asymptotically in d as

Kd ∼
d→∞

√
π

2
√
d.
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In particular, it holds Kd .
√
d for d large enough.

The proof relies on Stirling’s approximation. We first deal with the case where d is
odd. In this case, Stirling’s approximation yields

Kd = 2d−1

[(
d−1

2

)
!
]2

(d− 1)! ∼
d→∞

2d−1 · π(d− 1)
(
d− 1

2e

)d−1

·

√2π(d− 1)
(
d− 1
e

)d−1
−1

.

The right-hand side of this asymptotic equivalence is equal to
√
π/2
√
d− 1. We thus

obtain Kd ∼
d→∞

√
π/2
√
d.

We now assume that d is even. in this case, Stirling’s approximation yields

Kd =
2d−1(d2 − 1)!d2 !
(d− 2)!(d− 2) ∼d→∞

2d−1

d− 2 ·π
√

(d− 2)d
(
d− 2

2e

) d
2−1 (

d

2e

) d
2

·

√2π(d− 2)
(
d− 2
e

)d−2
−1

The right-hand side of this asymptotic equivalence is equal to

√
π

e
√

2
√
d(d− 2)− d2d d2 =

√
π

e
√

2
√
d exp

(
−d2 log

(
1− 2

d

))
∼

d→∞

√
π

2
√
d,

which ends the proof.

3.6.4 Proof of Proposition 3.3.3

The proof is similar to the one we made in the Coordinate Local case (Proposition 3.2.4).
However, in the Coordinate Global case, for all j ∈ J1, dK the (Zi

j)i are bounded random
variables, which will enable us to use Hoeffding’s inequality instead of Lemma 3.5.4 and
Bernstein’s inequality.

Writting
|η̂+ − η| =

∑
j:ηj=0

η̂+
j +

∑
j:ηj=1

(1− η̂+
j ),

we have

E
[1
s
|η̂+ − η|

]
= 1
s

∑
j:ηj=0

P
(

1
n

n∑
i=1

Zi
j ≥ τ

)
︸ ︷︷ ︸

=T1,j

+1
s

∑
j:ηj=1

P
(

1
n

n∑
i=1

Zi
j < τ

)
︸ ︷︷ ︸

=T2,j

.
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We first study T1,j. For j satisfying ηj = 0, it holds

E
[
Zi
j

]
= E

[
E
[
Zi
j | X i

]]
= E

[
[X i

j]T
]

= E
[
[σξij]T

]
= 0,

where we have used Proposition 3.3.2. Thus, Hoeffding’s inequality yields

T1,j = P
(

n∑
i=1

(Zi
j − E[Zi

j]) ≥ nτ

)
≤ exp

(
− nτ

2

2B2

)
.

We now study T2,j. Let j ∈ J1, dK such that ηj = 1. It holds

T2,j = P
(

1
n

n∑
i=1

(
Zi
j − E

[
Zi
j

])
+ 1
n

n∑
i=1

E
[
Zi
j

]
< τ

)

= P
(

1
n

n∑
i=1

(
−Zi

j − E
[
−Zi

j

])
> E

[
Z1
j

]
− τ

)
.

Proposition 3.3.2 gives

E
[
Z1
j

]
= E

[
[X1

j ]T
]

= E
[
[θj + σξ1

j ]T
]
≥ E

[
[a+ σξ1

j ]T
]
,

and we have proved in Appendix 3.5.4 that if ξ ∼ N (0, 1) then it holds

E [[a+ σξ]T ] ≥ T
[
1− 2Φ

(
T − a
σ

)]
,

where Φ denotes the standard Gaussian cumulative distribution function. Thus, if a ≥
T + σb for some b > 0, it holds E

[
[a+ σξ

(1)
j ]T

]
≥ C1T with C1 = 1− 2Φ(−b), and

T2,j ≤ P
(

1
n

n∑
i=1

(
−Zi

j − E
[
−Zi

j

])
> C1T − τ

)

≤ exp
(
−n(C1T − τ)2

2B2

)

according to Hoeffding’s inequality if C1T − τ > 0. This yields

E
[1
s
|η̂+ − η|

]
≤ d− |S|

s
exp

(
− nτ

2

2B2

)
+ |S|

s
exp

(
−n(C1T − τ)2

2B2

)
.

The proof of the second statement of Proposition 3.3.3 is straightforward.
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3.6.5 Proof of Proposition 3.3.4

The beginning of the proof is similar to the proof of Proposition 3.3.3. It holds

E
[1
s
|η̂+ − η|

]
= 1
s

∑
j:ηj=0

P
(

1
n

n∑
i=1

Zi
j ≥ τ

)
︸ ︷︷ ︸

=T1,j

+1
s

∑
j:ηj=1

P
(

1
n

n∑
i=1

Zi
j < τ

)
︸ ︷︷ ︸

=T2,j

,

with

T1,j ≤ exp
(
− nτ

2

2B2

)
,

and

T2,j ≤ P
(

1
n

n∑
i=1

(
−Zi

j − E
[
−Zi

j

])
> E

[
[a+ σξij]T

]
− τ

)
.

Moreover, we have proved in Appendix 3.5.6 that if ξ ∼ N (0, 1) and T ≥ a+σ
√

2 log
(
max

{
e, 4σ

a
√

2π

})
,

then E [[a+ σξ]T ] ≥ a/2. Thus, if T and τ are chosen such that T ≥ a+σ
√

2 log
(
max

{
e, 4σ

a
√

2π

})
,

and τ < a/2, Hoeffding’s inequality yields

T2,j ≤ P
(

1
n

n∑
i=1

(
−Zi

j − E
[
−Zi

j

])
>
a

2 − τ
)
≤ exp

(
−n(a/2− τ)2

2B2

)
.

3.6.6 Proof of Proposition 3.3.6

For i = 1, . . . , d, define the vector ωi ∈ {0, 1}d by ωi,j = 1 if j = i, ωi,j = 0 if j 6= i and
define Pωi as the mutlivariate normal distribution N (aωi, σ2Id). For i 6= j if holds

|η(Pωi)− η(Pωj)| = |ωi − ωj| = 2.

The private Fano method (Proposition 2 in [30]) thus yields

inf
Q∈Qα

inf
η̂∈T

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂ − η| ≥
1
2

{
1− n(eα − 1)2

d log(d)

[
sup

γ∈B∞(Rd)

d∑
i=1

(ϕωi(γ))2
]
− log(2)

log(d)

}
,

with
B∞(Rd) =

{
γ ∈ L∞(Rd) | ‖γ‖∞ ≤ 1

}
,

ϕωi(γ) =
∫
X
γ(x)(dPωi(x)− dP̄ (x)) =

∫
Rd
γ(x)(fωi(x)− f̄(x))dx,
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where fωi is the density of Pωi and f̄ = (1/d)∑d
i=1 fωi . We have

d∑
i=1

(ϕωi(γ))2 =
d∑
i=1

(∫
Rd
γ(x)(fωi(x)− f̄(x))dx

)(∫
Rd
γ(y)(fωi(y)− f̄(y))dy

)

=
∫
Rd
γ(x)

[∫
Rd

(
d∑
i=1

(fωi(x)− f̄(x))(fωi(y)− f̄(y))
)
γ(y)dy

]
dx.

Let Φ denote the density of the N (0, σ2Id) distribution. If γ ∈ B∞(Rd) then γ ∈
L2(Rd, dΦ), ‖γ‖L2(Rd,dΦ) ≤ 1, and we can write

d∑
i=1

(ϕωi(γ))2 =
∫
Rd
γ(x)

[∫
Rd

(
d∑
i=1

fωi(x)− f̄(x)
Φ(x) · fωi(y)− f̄(y)

Φ(y)

)
γ(y)Φ(y)dy

]
Φ(x)dx

= 〈γ,Kγ〉L2(Rd,dΦ),

where
K : L2(Rd, dΦ) → L2(Rd, dΦ)

γ 7→
∫
Rd

(∑d
i=1

fωi−f̄
Φ (·) · fωi (y)−f̄(y)

Φ(y)

)
γ(y)Φ(y)dy

Note that we can rewrite

Kγ =
d∑
i=1

〈fωi − f̄
Φ , γ

〉
L2(Rd,dΦ)

· fωi − f̄Φ

 .
This expression implies thatK is an operator of finite rank (it is thus a compact operator),
K is self-adjoint, and 〈Kγ, γ〉 ≥ 0 for all γ ∈ L2(Rd, dΦ). In particular, the last point
implies that the eigenvalues of K are non-negative. We have

sup
γ∈B∞(Rd)

d∑
i=1

(ϕωi(γ))2 ≤ sup
{γ∈L2(Rd,dΦ):‖γ‖2

L2(Rd,dΦ)
≤1}
〈γ,Kγ〉L2(Rd,dΦ)

= sup
{γ∈L2(Rd,dΦ):‖γ‖2

L2(Rd,dΦ)
=1}
〈γ,Kγ〉L2(Rd,dΦ)

= sup
{γ∈L2(Rd,dΦ):‖γ‖2

L2(Rd,dΦ)
=1}

∣∣∣〈γ,Kγ〉L2(Rd,dΦ)

∣∣∣
= ‖K‖,

where the last equality follows from the fact that
(
L2(Rd, dΦ), 〈·, ·〉L2(Rd,dΦ)

)
is an Hilbert

space and K is self-adjoint. Since K is also compact and since the eigenvalues of K are
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non-negative it follows

sup
γ∈B∞(Rd)

d∑
i=1

(ϕωi(γ))2 ≤ ‖K‖ = max{|λ| : λ ∈ V P (T )} = max{λ : λ ∈ V P (T )},

where V P (T ) is the set of all the eigenvalues of K. It remains to compute this maximum.
By definition, λ is an eigenvalue of K if λI −K is not injective. For λ 6= 0, the Fredholm
alternative for compact self-adjoint operators (see for instance [42], p.209) implies that
λI−K is not injective if and only if λI−K is not surjective. Thus, the non-zero eigenvalues
of K are the values of λ ∈ R∗ such that the operator λI −K is not surjective. For λ ∈ R,
let Aλ be the matrix with coefficients

(Aλ)ij =
〈
fωi − f̄

Φ ,
fωj − f̄

Φ

〉
L2(Rd,dΦ)

− λδij, i, j ∈ J1, dK,

where δ is the Kronecker delta. The following result proves that if λ is a non-zero eigenvalue
of K then it holds Det(Aλ) = 0

Lemma 3.6.2. Let λ ∈ R, λ 6= 0. If Det(Aλ) 6= 0 then λI −K is surjective.

Proof. To lighten the notations, set 〈·, ·〉2,Φ = 〈·, ·〉L2(Rd,dΦ). Let λ ∈ R, λ 6= 0 and assume
that Det(Aλ) 6= 0. We prove that for all g ∈ L2(Rd, dΦ) there exists γ ∈ L2(Rd, dΦ) such
that g = (λI − K)γ. Consider g ∈ L2(Rd, dΦ). Since Det(Aλ) 6= 0, the matrix Aλ is
invertible and for all v ∈ Rd there exists ξ ∈ Rd such that v = Aλξ. In particular, for

v =
〈fω1 − f̄

Φ , g

〉
2,Φ
, . . . ,

〈
fωd − f̄

Φ , g

〉
2,Φ

T ,
there exists ξ ∈ Rd such that v = Aλξ, that is〈

fωi − f̄
Φ , g

〉
2,Φ

= (Aλξ)i =
d∑
j=1

〈
fωi − f̄

Φ ,
fωj − f̄

Φ

〉
2,Φ
ξj − λξi

for all i ∈ J1, dK. Define

γ = 1
λ
g − 1

λ

d∑
j=1

ξj
fωj − f̄

Φ .
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We have

(λI −K)γ = λγ −Kγ

= g −
d∑
i=1

ξi
fωi − f̄

Φ −
d∑
i=1

〈fωi − f̄
Φ , γ

〉
L2(Rd,dΦ)

· fωi − f̄Φ


= g −

d∑
i=1

ξi + 1
λ

〈
fωi − f̄

Φ , g

〉
2,Φ
− 1
λ

d∑
j=1

ξj

〈
fωi − f̄

Φ ,
fωj − f̄

Φ

〉
2,Φ


︸ ︷︷ ︸

=0

fωi − f̄
Φ

= g,

which concludes the proof of the Lemma.

We now find the values of λ for which we have Det(Aλ) = 0. To do so, we first make
explicit the coefficients of Aλ. It holds〈

fωi − f̄
Φ ,

fωj − f̄
Φ

〉
2,Φ

=
〈
fωi
Φ ,

fωj
Φ

〉
2,Φ
−
〈
fωi
Φ ,

f̄

Φ

〉
2,Φ
−
〈
f̄

Φ ,
fωj
Φ

〉
2,Φ

+
〈
f̄

Φ ,
f̄

Φ

〉
2,Φ

=
〈
fωi
Φ ,

fωj
Φ

〉
2,Φ
− 1
d

d∑
k=1

〈
fωi
Φ ,

fωk
Φ

〉
2,Φ
− 1
d

d∑
k=1

〈
fωk
Φ ,

fωj
Φ

〉
2,Φ

+ 1
d2

d∑
k=1

d∑
l=1

〈
fωk
Φ ,

fωl
Φ

〉
2,Φ
,
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and, if we denote by 〈·, ·〉2 the usual scalar product on Rd, we have

〈
fωi
Φ ,

fωj
Φ

〉
2,Φ

=
∫
Rd

1
(2πσ2)d exp

(
−‖x−aωi‖

2
2

2σ2

)
exp

(
−‖x−aωj‖

2
2

2σ2

)
1

(2πσ2)d/2 exp
(
−‖x‖

2
2

2σ2

) dx

= 1
(2πσ2)d/2

∫
Rd

exp
(
−‖x‖

2
2 + ‖aωi‖2

2 − 2〈x, aωi〉+ ‖aωj‖2
2 − 2〈x, aωj〉

2σ2

)
dx

= exp
(
‖a(ωi + ωj)‖2

2 − ‖aωi‖2
2 − ‖aωj‖2

2
2σ2

)

· 1
(2πσ2)d/2

∫
Rd

exp
(
−‖x− a(ωi + ωj)‖2

2
2σ2

)
dx

= exp
(
a2〈ωi, ωj〉2

σ2

)

=

exp(a2/σ2) if j = i

1 if j 6= i.

We thus obtain

〈
fωi − f̄

Φ ,
fωj − f̄

Φ

〉
2,Φ

=


(
1− 1

d

) [
exp

(
a2

σ2

)
− 1

]
if j = i

1
d

[
1− exp

(
a2

σ2

)]
if j 6= i.

Write

C1 =
(

1− 1
d

) [
exp

(
a2

σ2

)
− 1

]
,

and

C2 = 1
d

[
1− exp

(
a2

σ2

)]
.

The matrix Aλ has its diagonal elements equal to C1 − λ and the other coefficients equal
to C2. Operations on the rows and columns of Aλ yield

Det(Aλ) = (C1 + (d− 1)C2 − λ) (C1 − C2 − λ)d−1

= −λ
(

exp
(
a2

σ2

)
− 1− λ

)d−1

Thus, the operator K has only one non-zero eigenvalue and it is equal to exp
(
a2

σ2

)
− 1.
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We finally obtain

inf
Q∈Qα

inf
η̂∈T

sup
θ∈Θ+

d
(s,a)

EQ(P⊗n
θ

)|η̂ − η| ≥
1
2

(
1− n(eα − 1)2

d log(d)

[
exp

(
a2

σ2

)
− 1

]
− log(2)

log(d)

)

≥ 1
4

(
1− 2n(eα − 1)2

d log(d)

[
exp

(
a2

σ2

)
− 1

])
,

if d ≥ 4.
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Chapter 4

Goodness of fit testing for
Hölder continuous densities

under local differential
privacy

Abstract: We address the problem of goodness-of-fit testing for Hölder continuous
densities under local differential privacy constraints. We study minimax separation
rates when only non-interactive privacy mechanisms are allowed to be used and when
both non-interactive and sequentially interactive can be used for privatisation. We
propose privacy mechanisms and associated testing procedures whose analysis enables
us to obtain upper bounds on the minimax rates. These results are complemented with
lower bounds. By comparing these bounds, we show that the proposed privacy mech-
anisms and tests are optimal up to at most a logarithmic factor for several choices
of f0 including densities from uniform, normal, Beta, Cauchy, Pareto, exponential
distributions. In particular, we observe that the results are deteriorated in the pri-
vate setting compared to the non-private one. Moreover, we show that sequentially
interactive mechanisms improve upon the results obtained when considering only
non-interactive privacy mechanisms.
Based on [25].

4.1 Introduction

Over the past few years, data privacy has become a fundamental problem in statistical data
analysis. While more and more personal data are collected each day, stored and analyzed,
private data analysis aims at publishing valid statistical results without compromising the
privacy of the individuals whose data are analysed. Differential privacy has emerged from
this line of research as a strong mathematical framework which provides rigorous privacy
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guarantees.

Global differential privacy has been formalized by Dwork et al. [33]. Their definition
requires a curator who gathers the confidential data of n individuals and generates a priva-
tized output from this complete information. Only this privatized output can be released.
In a nutshell, the differential privacy constraints require that altering a single entry in
the original dataset does not affect the probability of a privatized output too much. One
intuition behind this definition is that if the distribution of the privatized output does
not depend too much on any single element of the database, then it should be difficult
for an adversary to guess if one given person is in the database or not. We refer the
reader to [80] for a precise definition of global differential privacy and more discussion
on its testing interpretation. In this paper, we will rather focus on the stronger notion of
local differential privacy for which no trusted curator is needeed. In the local setup, each
individual generates a privatized version of its true data on its own machine, and only the
privatized data are collected for analysis. Thus, the data-owners do not have to share their
true data with anyone else. However, some interaction between the n individuals can be
allowed. We will consider two specific classes of locally differentially privacy mechanisms :
non-interactive and sequentially interactive privacy mechanisms, respectively. In the local
non-interactive scenario, each individual generates a private view Zi of its original data Xi

on its own machine independently of all the other individuals. In the sequentially inter-
active scenario, the privatized data Z1, . . . , Zn are generated such that the i-th individual
has access to the previously privatized data Z1, . . . , Zi−1 in addition to the original data
Xi in order to generate its own Zi.

In this paper, we study a goodness-of-fit testing problem for densities under local dif-
ferential privacy constraints. Goodness-of-fit testing problems consist in testing whether
n independent and identically distributed random variables X1, ..., Xn were drawn from a
specified distribution P0 or from any other distribution P with d(P0, P ) ≥ ρ for some dis-
tance between distributions d and some separation parameter ρ > 0. Here, the considered
distributions will be assumed to have Hölder smooth densities and we will measure the
separation between distributions using the L1 norm which corresponds (up to a constant)
to the total variation distance. Moreover, only privatised data Z1, ..., Zn are supposed
available to be used in order to design testing procedures. Therefore we proceed in two
steps: first randomize the original sample into a private sample, then build a test using
the latter sample. Optimality is shown over all test procedures and additionally over all
privacy mechanisms satisfying the privacy constraints. We adopt a minimax point of view
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and aim at determining the private minimax testing radius which is the smallest sepa-
ration parameter for which there exists a private testing procedure whose first type and
second type error probabilities are bounded from above by a constant fixed in advance.

Contributions

Our contributions can be summarized as follows. First, when non-interactive privacy mech-
anisms are used, we present an α-locally differentially private such mechanism and con-
struct a testing procedure based on the privatized data. Its analysis indicates how to
tune the parameters of the test statistic and the threshold of the test procedure in order
to get a least upper bound on the non interactive testing radius. This result is further
complemented with a lower bound.

Next, we prove that these bounds can be improved when allowing for sequential in-
teraction. When previously privatized random variables are publicly available, we may
proceed in two steps in order to improve on the detection rates. The first part of the
sample is privatized as in the non-interactive case and it is used to acquire partial infor-
mation on the unknown probability density. This information is further encoded in the
private versions of the second part of the sample and the whole procedure benefits and
attains faster rates of detection. This idea was previously introduced in [15] and was also
successful for testing discrete distributions in [10].

Finally, we investigate the optimality of our results for many choices of the null density
f0. We prove that our lower bounds and upper bounds match up to a constant in the
sequentially interactive scenario, and up to a logarithmic factor in the non-interactive
scenario, for several f0 including densities from uniform, gaussian, beta, Cauchy, Pareto
and exponential distributions.

Related work

Goodness-of-fit testing for separation norm ‖ · ‖1 has recently received great attention in
the non-private setting. Valiant and Valiant [75] studies the case of discrete distributions.
Given a discrete distribution P0 and an unknown discrete distribution P , they tackle the
problem of finding how many samples from P one should obtain to be able to distinguish
with high probability the case that P = P0 from the case that ‖P − P0‖1 ≥ ε. They
provide both upper bounds and lower bounds on this sample complexity as a function
of ε and the null hypothesis P0. Other testing procedures for this problem have been
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proposed in [19], and [7] has revisited the problem in a minimax framework similar to the
one considered in this paper (without privacy constraints). Note that before these papers,
the majority of the works on this problem focused on the case where P0 is the uniform
distribution, or considered a worst-case setting. The upper and lower bounds obtained in
[75] and [7] appear to match in most usual cases but do not match for some pathological
distributions. This problem has been fixed in [18], where the authors provide matching
upper and lower bounds on the minimax separation distance for separation norm ‖ · ‖t, t
in [1, 2]. As for the continuous case, [7] studies goodness-of-fit testing for densities with
separation norm ‖ · ‖1, focusing on the case of Hölder continuous densities. As it has
already been observed for the discrete case, they prove that the local minimax testing
radius (or minimax separation distance) strongly depends on the null distribution. We
extend their results to the private setting.

Many papers have been devoted to the study of testing problems under global differ-
ential privacy constraints. This includes goodness-of-fit testing [37, 2, 4, 16, 77], indepen-
dence testing [37, 77] and closeness testing [2, 4]. In the local setting of differential privacy,
[44, 45, 43] study simple hypothesis testing, and [36, 65, 3] consider independence testing.
Some of these references and a few others also deal with goodness-of-fit testing under
local differential privacy constraints: [36] studies the asymptotic distribution of several
test statistics used for fitting multinomial distributions, while [65] and [3] provide upper
and lower bounds on the sample complexity for fitting more general but finitely supported
discrete distributions. However, [3] considers only the case where the null distribution P0

is the uniform distribution, and both papers prove lower bounds only with respect to the
choice of the test statistic for a fixed specific privacy mechanism. In the minimax results
below we prove optimality over all test statistics and also over all privacy mechanisms
submitted to the local differential privacy constraints.

Minimax goodness-of-fit testing for discrete random variables has first been studied
with L2 separation norm in [51]. They consider the non-interactive scenario exclusively,
and their lower bound result is proven for the uniform distribution P0 under the null. Lam-
Weil et al. [51] also tackles the problem of goodness-of-fit testing for continuous random
variables with ‖ · ‖2 separation norm. They are the first to study minimax testing rates
for the problem of goodness-of-fit testing for compactly supported densities over Besov
balls Bs2,∞(L) in the setting of non-interactive local differential privacy. They provide
an upper bound which holds for any density f0, and a matching lower bound in the
special case where f0 is the uniform density over [0, 1]. In a parallel work, [15] investigates

142



4.1. Introduction

the estimation of the integrated square of a density over general Besov classes Bsp,q, and
prove that allowing for sequential interaction improves over the results obtained in the
non-interactive scenario in terms of minimax estimation rates. As an application, they
discuss non-interactive and sequentially interactive L2-goodness-of-fit testing for densities
supported on [0, 1] which lie in Besov balls. They thus extend the results obtained in [51]
to more general Besov balls, to the interactive scenario, and to the case where f0 is not
assumed to be the uniform distribution, but has to be bounded from below on its support.

Later, locally differentially private goodness-of-fit testing for discrete random variables
(not necessarily finite supported) has been studied in [10] in a minimax framework. The
authors aim at computing the minimax testing rates when d(P, P0) = ∑d

j=1 |P (j)−P0(j)|i,
i ∈ {1, 2}. They provide upper bounds on the minimax testing rates by constructing and
analysing specific private testing procedures, complement these results with lower bounds,
and investigate the optimality of their results for several choices of the null distribution
P0. Interestingly, they tackle both the sequentially interactive case and the non-interactive
case and prove that the minimax testing rates are improved when sequentially interaction
is allowed. Such a phenomenon appears neither for simple hypothesis testing [43], nor for
many estimation problems (see for instance [30, 63, 13]).

We pursue these works by considering goodness-of-fit testing of Hölder-smooth prob-
ability densities and the separation norm ‖ · ‖1. Moreover, similarly to [7], we consider
densities with Hölder smoothness β in (0,1] and that can tend to 0 on their support,
with possibly unbounded support. Our goal is to show how differential privacy affects the
minimax separation radius for this goodness-of-fit test. Balakrishnan and Wasserman[7],
following works in discrete testing initiated by [75], have shown that two procedures need
to be aggregated in this case. They split the support of the density f0 into a compact set
B where f0 is bounded from below by some positive constant and they build a weighted
L2 test on this set; then they build a tail test on B which is based on estimates of the
total probabilities (P − P0)(B). They show that the separation rates are of order

(
(
∫
B f0(x)γdx)1/γ

n

) 2β
4β+d

, where γ = 2β
3β + d

,

for d−dimensional observations and depend of f0 via an integral functional. The cut-off
(choice of B) will depend on n and their separation rates are not minimax optimal due
to different cut-offs in the upper and lower bounds.

We show that under local differential privacy constraints, we get for an optimal choice
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of B the separation rates
|B|

3β+3
4β+3 (nα2)−

2β
4β+3

when only non interactive privacy mechanisms are allowed, and we show that better rates
are obtained

|B|
β+1
2β+1 (nα2)−

2β
4β+2

when interactive privacy mechanims are allowed (using previously published privatized
information). We see that our rates only depend on f0 in a global way through the length
|B| of the set B and that explains why we do not need to weight the L2 test statistic.
Further work will include extension to more general Hölder and Besov classes with β > 0
and adaptation to the smoothness β by aggregation of an increasing number of tests as
introduced by [69].

Organization of the paper

The paper is organized as follows. In Section 4.2 we introduce the notion of local differ-
ential privacy and describe the minimax framework considered in the rest of the paper.
In Section 4.3 we introduce a non-interactive privacy mechanism and an associated test-
ing procedure. Its analysis leads to an upper bound on the non-interactive testing radius
which is complemented by a lower bound. In Section 4.4 we give a lower bound on the
testing radius for the sequentially interactive scenario and present a sequentially interac-
tive testing procedure which improves on the rates of the non interactive case. In Section
4.5 we prove that our results are optimal (at most up to a logarithmic factor) for several
choices of the null density f0.

4.2 Problem statement

Let (X1, ..., Xn) ∈ X n be i.i.d. with common probability density function (pdf) f : X →
R+. We assume that f belongs to the smoothness class H(β, L) for some smoothness
0 < β ≤ 1 and L > 0, where

H(β, L) =
{
f : X → R+ : |f(x)− f(y)| ≤ L|x− y|β, ∀x, y ∈ X

}
.

In the sequel, we will omit the space X in the definition of functions f and f0 and integrals,
and we will choose a set B such that B ⊂ X and denote by B = X \B.
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Given a probability density function f0 in H(β, L0) for some L0 < L, we want to solve
the goodness-of-fit test

H0 : f ≡ f0

H1(ρ) : f ∈ H(β, L) and ‖f − f0‖1 ≥ ρ,

where ρ > 0 under an α-local differential privacy constraint. We will consider two classes
of locally differentially private mechanisms : sequentially interactive mechnisms and non-
interactive mechanisms. In the sequentially interactive scenario, privatized data Z1, . . . , Zn

are obtained by successively applying suitable Markov kernels : given Xi = xi and Z1 =
z1, . . . , Zi−1 = zi−1, the i-th data-holder draws

Zi ∼ Qi(· | Xi = x, Z1 = z1, . . . , Zi−1 = zi−1)

for some Markov kernel Qi : Z × X × Z i−1 → [0, 1] where the measure spaces of the
non-private and private data are denoted with (X ,X ) and (Z,Z ), respectively. We say
that the sequence of Markov kernels (Qi)i=1,...,n provides α-local differential privacy or
that Z1, . . . , Zn are α-local differentially private views of X1, . . . , Xn if

sup
A∈Z

sup
z1,...,zi−1∈Z

sup
x,x′∈X

Qi(A | Xi = x, Z1 = z1, . . . , Zi−1 = zi−1)
Qi(A | Xi = x′, Z1 = z1, . . . , Zi−1 = zi−1) ≤ eα, for all i = 1, . . . , n.

(4.1)
We will denote by Qα the set of all α-LDP sequentially interactive mechanisms. In the
non-interactive scenario Zi depends only on Xi but not on Zk for k < i. We have

Zi ∼ Qi(· | Xi = xi),

and condition (4.1) becomes

sup
A∈Z

sup
x,x′∈X

Qi(A | Xi = x)
Qi(A | Xi = x′) ≤ eα, for all i = 1, . . . , n.

We will denote by QNI
α the set of all α-LDP non-interactive mechanisms. Given an α-LDP

privacy mechansim Q, let ΦQ = {φ : Zn → {0, 1}} denote the set of all tests based on
Z1, . . . Zn.
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The sequentially interactive α-LDP minimax testing risk is given by

Rn,α(f0, ρ) := inf
Q∈Qα

inf
φ∈ΦQ

sup
f∈H1(ρ)

{
PQn

f0
(φ = 1) + PQn

f
(φ = 0)

}
.

We define similarly the non-interactive α-LDP minimax testing risk RNI
n,α(f0, ρ), where

the first infimum is taken over the set QNI
α instead of Qα. Given γ ∈ (0, 1), we study the

α-LDP minimax testing radius defined by

En,α(f0, γ) := inf {ρ > 0 : Rn,α(f0, ρ) ≤ γ} ,

and we define similarly ENI
n,α(f0, γ).

4.3 Non-interactive Privacy Mechanisms

In this section we design a non-interactive α-locally differentially private mechanism and
the associated testing procedure. We study successively its first and second type error
probabilities in order to obtain an upper bound on the testing radius ENI

n,α(f0, γ). We then
present a lower bound on the testing radius. The test and privacy mechanism proposed
in this section will turn out to be (nearly) optimal for many choices of f0 since the lower
bound and the upper bound match up to a logarithmic factor for several f0, see Section
4.5 for many examples.

4.3.1 Upper bound in the non-interactive scenario

We propose a testing procedure that, like [7], combines an L2 procedure on a bulk set B
where the density f0 under the null is bounded away from 0 by some (small) constant and
an L1 procedure on the tail B. However, we note that, unlike [7], the rate depends on f0

in a global way, only through the length |B| of the set B. Our procedure also translates
to the case of continuous distributions the one proposed by Berret and Butucea [10] for
locally private testing of discrete distributions. It consists in the following steps:

1. Consider a compact set B ⊂ R (its choice depends on f0, and on values of n and α).

2. Using the first half of the (privatized) data, define an estimator SB of
∫
B(f − f0)2.

3. Using the second half of the (privatized) data, define an estimator TB of
∫
B̄(f − f0).
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4. Reject H0 if either SB ≥ t1 or TB ≥ t2.

Assume without loss of generality that the sample size is even and equal to 2n so that
we can split the data into equal parts, X1, . . . , Xn and Xn+1, . . . , X2n. Let B ⊂ R be a
nonempty compact set, and let (Bj)j=1,...,N be a partition of B, h > 0 be the bandwidth
and (x1, . . . , xN) be the centering points, that is Bj = [xj − h, xj + h] for all j ∈ J1, NK.
Let ψ : R→ R be a function satisfying the following assumptions.

Assumption 4.3.1. ψ is a bounded function supported in [−1, 1] such that

∫ 1

−1
ψ(t)dt = 1, and

∫ 1

−1
|t|β|ψ(t)|dt <∞.

In particular, Assumption 4.3.1 implies that ψh(xj − y) = 0 if y 6∈ Bj, where ψh(u) =
1
h
ψ(u

h
).

We now define our first privacy mechanism. For i ∈ J1, nK and j ∈ J1, NK set

Zij = 1
h
ψ
(
xj −Xi

h

)
+ 2‖ψ‖∞

αh
Wij,

where (Wij)i∈J1,nK,j∈J1,NK is a sequence of i.i.d Laplace(1) random variables. Using these
privatized data, we define the following U-statistic of order 2.

SB :=
N∑
j=1

1
n(n− 1)

∑
i 6=k

(Zij − f0(xj))(Zkj − f0(xj)).

The second half of the sample is used to design a tail test. For all i ∈ Jn+ 1, 2nK set

Zi = ±cα, with probabilities
1
2

(
1± I(Xi 6∈ B)

cα

)
,

where cα = (eα + 1)/(eα − 1). Using these private data, we define the following statistic.

TB = 1
n

2n∑
i=n+1

Zi −
∫
B
f0.

We then put

Φ =

1 if SB ≥ t1 or TB ≥ t2

0 otherwise
, (4.2)
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where

t1 = 3
2L

2
0C

2
βNh

2β + 196‖ψ‖2
∞
√
N

γnα2h2 , t2 =
√

20
nα2γ

, (4.3)

with Cβ =
∫ 1
−1 |u|β|ψ(u)|du. The privacy mechanism that outputs (Z1, . . . , Zn, Zn+1, . . . , Z2n)

is non-interactive since for all i ∈ J1, 2nK Zi depends only onXi. The following result estab-
lishes that this mechanism also provides α-local differential privacy. Its proof is deferred
to Section 4.6.1 in the Appendix.

Proposition 4.3.2. For all i ∈ J1, 2nK, Zi is an α-locally differentially private view of
Xi.

The following proposition studies the properties of the test statistics. Its proof is given
in the Appendix 4.6.2.

Proposition 4.3.3. 1. It holds

EQn
f

[SB] =
N∑
j=1

([ψh ∗ f ](xj)− f0(xj))2 . (4.4)

Under Assumption 4.3.1 it also holds if α ∈ (0, 1]

VarQn
f

(SB) ≤ 36‖ψ‖2
∞

nα2h2

N∑
j=1

([ψh ∗ f ](xj)− f0(xj))2 + 164‖ψ‖4
∞N

n(n− 1)α4h4 . (4.5)

2. It holds

EQn
f
[TB] =

∫
B

(f − f0), and VarQn
f
(TB) = 1

n

(
c2
α −

(∫
B
f
)2
)
.

The study of the first and second type error probabilities of the test Φ in (4.2) with a
convenient choice of h leads to the following upper bound on ENI

n,α(f0, γ).

Theorem 4.3.4. Assume that α ∈ (0, 1) and β ≤ 1. The test procedure Φ in (4.2) with
t1 and t2 in (4.3) and bandwidth h given by h � |B|−1/(4β+3)(nα2)−2/(4β+3) attains the
following bound on the separation rate

ENI
n,α(f0, γ) ≤ C(L, γ, ψ) ·

{
|B|

3β+3
4β+3 (nα2)−

2β
4β+3 +

∫
B
f0 + 1√

nα2

}
,

for all compact set B ⊂ R.
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The proof can be found in Appendix 4.6.2. Note that the tightest upper bound is
obtained for the sets B that minimize the right-hand sides in Theorem 4.3.4.
In order to do this, we note that the upper bounds sum a term which increases with B,
a term which decreases with B:

∫
B f0 and a term 1/

√
nα2 free of B. Thus we suggest to

choose B = Bn,α as a level set

Bn,α ∈ arg inf
B compact set

{∫
B
f0 ≥ |B|

3β+3
4β+3 (nz2

α)−
2β

4β+3 + 1√
nα2

and inf
B
f0 ≥ sup

B

f0

}
. (4.6)

4.3.2 Lower bound in the non-interactive scenario

We now complete the study of the testing radius ENI
n,α(f0, γ) with the following lower

bound.

Theorem 4.3.5. Let α > 0. Assume that β ≤ 1. Set zα = e2α − e−2α. For all compact
set B ⊂ R satisfying

|B|β/(4β+3)C0(B) ≥ C(nz2
α)−2β/(4β+3) (4.7)

for some C > 0 where C0(B) = min{f0(x) : x ∈ B}, it holds

ENI
n,α(f0, γ) ≥ C(ψ, b, γ, L, L0)

[
log

(
C|B|

4β+4
4β+3 (nz2

α)
2

4β+3

)]−1
|B|

3β+3
4β+3 (nz2

α)−
2β

4β+3 .

It is easy to see that our upper and lower bounds are optimal (when α is bounded)
up to a logarithmic factor if the support X of f0 is compact with c1 ≤ |X | ≤ c2 for two
constants c1 > 0 and c2 > 0 and if f0 is bounded from below on X . Indeed, for such
functions, the choice B = X yields an upper bound of order (nα2)−

2β
4β+3 . Moreover, (4.7)

holds with this choice of B and Theorem 4.3.5 proves that the upper bound is optimal up
to a logarithmic factor. In the case of densities with bounded support but which can tend
to 0 on their support, and in the case of densities with unbounded support, we suggest to
choose B = Bn,α as defined in (4.6) both in the upper and lower bounds. In the examples
considered in Section 4.5, the choice of B = Bn,α for the upper bound also satisfies (4.7)
and yields optimal bounds (up to a logarithmic factor).

Proof of Theorem 4.3.5. We use the well-known reduction technique. The idea is to build
a family {fν : ν ∈ V} that belong to the alternative set of densities H1(ρ) and then reduce
the test problem to testing between f0 and the mixture of the fν . Our construction of
such functions is inspired by the one proposed in [51] for goodness-of-fit testing over Besov

149



Chapter 4 – Goodness of fit testing for Hölder continuous densities under local differential
privacy

Balls Bs2,∞ in the special case where f0 is the uniform distribution over [0, 1], and in [15]
for the minimax estimation over Besov ellipsoids Bsp,q of the integrated square of a density
supported in [0, 1]. However, we need to make some modifications in order to consider
Hölder smoothness instead of Besov smoothness and to tackle the case of densities with
unbounded support.
Let B ⊂ R be a nonempty compact set, and let (Bj)j=1,...,N be a partition of B, h > 0 be
the bandwidth and (x1, . . . , xN) be the centering points, that is Bj = [xj − h, xj + h] for
all j ∈ J1, NK. Let ψ : [−1, 1] → R be such that ψ ∈ H(β, L),

∫
ψ = 0 and

∫
ψ2 = 1. For

j ∈ J1, NK, define

ψj : t ∈ R 7→ 1√
h
ψ
(
t− xj
h

)
.

Note that the support of ψj is Bj,
∫
ψj = 0 and (ψj)j=1,...,N is an orthonormal family.

Fix a privacy mechanism Q = (Q1, . . . , Qn) ∈ QNI
α . According to lemma B.3 in [15],

we can consider for every i ∈ J1, nK a probability measure µi on Zi and a family of µi-
densities (qi(· | x))x∈R such that for every x ∈ R one has dQi(· | x) = qi(· | x)dµi and
e−α ≤ qi(· | x) ≤ eα. Denote by g0,i(zi) =

∫
R qi(zi | x)f0(x)dx the density of Zi when Xi

has density f0. Define for all i = 1, . . . , n the operator Ki : L2(R)→ L2(Zi, dµi) by

Kif =
∫
R

qi(· | x)f(x)1B(x)√
g0,i(·)

dx, f ∈ L2(R).

Note that this operator is well-defined since g0,i(zi) ≥
∫
R e
−αf0(x)dx = e−α > 0 for all zi.

Observe that its adjoint operator K?
i is given by

K?
i : ` ∈ L2(Zi, dµi) 7→

∫
Zi

`(zi)qi(zi | ·)1B(·)√
g0,i(zi)

dµi(zi).

Using Fubini’s theorem we thus have for all f ∈ L2(R)

K?
iKif =

∫
Zi

∫
R

qi(zi | y)f(y)1B(y)√
g0,i(zi)

dy
 qi(zi | ·)1B(·)√

g0,i(zi)
dµi(zi)

=
∫
R

(∫
Zi

qi(zi | y)qi(zi | ·)1B(y)1B(·)
g0,i(zi)

dµi(zi)
)
f(y)dy,

meaning thatK?
iKi is an integral operator with kernel Fi(x, y) =

∫
Zi

qi(zi|x)qi(zi|y)1B(x)1B(y)
g0,i(zi) dµi(zi).
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Define the operator

K = 1
n

n∑
i=1

K?
iKi,

which is symmetric and positive semidefinite. Define also

WN = span{ψj, j = 1, . . . , N}.

Let (v1, . . . , vN) be an orthonormal family of eigenfunctions of K as an operator on the
linear L2(R)-subspace WN . Note that since vk can be written as a linear combination
of the ψj’s, it holds

∫
R vk = 0 and Supp(vk) ⊂ B. We also denote by λ2

1, . . . , λ
2
N the

corresponding eigenvalues. Note that they are non-negative.

Define the functions

fν : x ∈ R 7→ f0(x) + δ
N∑
j=1

νj

λ̃j
vj(x),

where for j = 1, . . . , N νj ∈ {−1, 1}, δ > 0 may depend on B,h, N , ψ, γ, L, L0, β, n and
α, and will be specified later, and

λ̃j = max
{
λj
zα
,
√

2h
}
, zα = e2α − e−2α.

The following lemma shows that for δ properly chosen, for most of the possible ν ∈
{−1, 1}N , fν is a density belonging to H(β, L) and fν is sufficiently far away from f0 in
a L1 sense.

Lemma 4.3.6. Let Pν denote the uniform distribution on {−1, 1}N . Let b > 0. If the
parameter δ appearing in the definition of fν satisfies

δ ≤ h√
log(2N/b)

min
{
C0(B)
‖ψ‖∞

,
1
2

(
1− L0

L

)
hβ
}
,

where C0(B) := min{f0(x) : x ∈ B}, then there exists a subset Ab ⊆ {−1, 1}N with
Pν(Ab) ≥ 1− b such that

i) fν ≥ 0 and
∫
fν = 1, for all ν ∈ Ab,

ii) fν ∈ H(β, L), for all ν ∈ Ab,
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iii) ‖fν − f0‖1 ≥ 3C1
8

δN√
log( 2N

b )
, for all ν ∈ Ab, with C1 =

∫ 1
−1 |ψ|.

Denote by gν,i(zi) =
∫
R qi(zi | x)fν(x)dx the density of Zi when Xi has density fν , and

dQn(z1, . . . , zn) = Eν
[
n∏
i=1

gν,i(zi)dµi(zi)
]
.

If δ is chosen such that δ ≤ h√
log(2N/b)

min
{
C0(B)
‖ψ‖∞ ,

1
2

(
1− L0

L

)
hβ
}
, setting

ρ? = 3C1

8
δN√

log
(

2N
b

) ,

we deduce from the above lemma that if

EQn
f0

( dQn

dQn
f0

)2
 ≤ 1 + (1− γ − b)2 for all Q ∈ QNI

α , (4.8)

then it holds
inf

Q∈QNI
α

inf
φ∈ΦQ

sup
f∈H1(ρ?)

{
PQn

f0
(φ = 1) + PQn

f
(φ = 0)

}
≥ γ,

where H1(ρ?) := {f ∈ H(β, L) : f ≥ 0,
∫
f = 1, ‖f − f0‖1 ≥ ρ?}, and consequently

ENI
n,α(f0, γ) ≥ ρ?. Indeed, if (4.8) holds, then we have

inf
Q∈QNI

α

inf
φ∈ΦQ

sup
f∈H1(ρ?)

{
PQn

f0
(φ = 1) + PQn

f
(φ = 0)

}
≥ inf

Q∈QNI
α

inf
φ∈ΦQ

(
PQn

f0
(φ = 1) + sup

ν∈Ab
PQn

fν
(φ = 0)

)
≥ inf

Q∈QNI
α

inf
φ∈ΦQ

(
PQn

f0
(φ = 1) + Eν

[
I(ν ∈ Ab)PQn

fν
(φ = 0)

])
,

and

Eν
[
I(ν ∈ Ab)PQn

fν
(φ = 0)

]
= PQn(φ = 0)− Eν

[
I(ν ∈ Acb)PQnfν (φ = 0)

]
≥ PQn(φ = 0)− Pν(Acb)

≥ PQn(φ = 0)− b.
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Thus, if (4.8) holds, we have

inf
Q∈QNI

α

inf
φ∈ΦQ

sup
f∈H1(ρ?)

{
PQn

f0
(φ = 1) + PQn

f
(φ = 0)

}
≥ inf

Q∈QNI
α

inf
φ∈ΦQ

(
PQn

f0
(φ = 1) + PQn(φ = 0)− b

)
≥ inf

Q∈QNI
α

(
1− TV(Qn, Q

n
f0)− b

)

= inf
Q∈QNI

α

1− b−

√√√√√EQn
f0

( dQn

dQn
f0

)2
− 1

 ≥ γ.

We now prove that (4.8) holds under an extra assumption on δ.

We have that

EQn
f0

( dQn

dQn
f0

)2
 = EQn

f0

(Eν [∏n
i=1 gν,i(Zi)]∏n

i=1 g0,i(Zi)

)2


= EQn
f0

[
Eν,ν′

n∏
i=1

(
1 + δ

N∑
k=1

νk

λ̃k
· 〈qi(Zi | ·), vk〉

g0,i(Zi)

)
·
(

1 + δ
N∑
k=1

ν ′k
λ̃k
· 〈qi(Zi | ·), vk〉

g0,i(Zi)

)]

= Eν,ν′
n∏
i=1

(
1 + δ

N∑
k=1

νk

λ̃k
EQf0

[
〈qi(Zi | ·), vk〉

g0,i(Zi)

]
+ δ

N∑
k=1

ν ′k
λ̃k

EQf0

[
〈qi(Zi | ·), vk〉

g0,i(Zi)

]

+δ2
N∑

k1,k2=1

νk1ν
′
k2

λ̃k1λ̃k2

EQf0

[
〈qi(Zi | ·), vk1〉〈qi(Zi | ·), vk2〉

(g0,i(Zi))2

] ,
where we have interverted EQn

f0
and Eν,ν′ and used the independence of the Zi, i = 1, . . . , n.

Now, observe that

EQf0

[
〈qi(Zi | ·), vk〉

g0,i(Zi)

]
=
∫
Zi

〈qi(zi | ·), vk〉
g0,i(zi)

· g0,i(zi)dµi(zi)

=
∫
Zi

(∫
R
qi(zi | x)vk(x)dx

)
dµi(zi)

=
∫
R
vk = 0,
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and, using that Supp(vk) ⊂ B for all k,

EQf0

[
〈qi(Zi | ·), vk1〉〈qi(Zi | ·), vk2〉

(g0,i(Zi))2

]

=
∫
Zi

〈qi(zi | ·), vk1〉〈qi(zi | ·), vk2〉
(g0,i(zi))2 · g0,i(zi)dµi(zi)

=
∫
Zi

1
g0,i(zi)

(∫
R
qi(zi | x)vk1(x)dx

)(∫
R
qi(zi | y)vk2(y)dy

)
dµi(zi)

=
∫
R

∫
R

(∫
Zi

qi(zi | x)qi(zi | y)1B(x)1B(y)
g0,i(zi)

dµi(zi)
)
vk1(x)vk2(y)dxdy

=
∫
R

∫
R
Fi(x, y)vk1(x)vk2(y)dxdy = 〈vk1 , K

?
iKivk2〉.

Using 1 + x ≤ exp(x), we thus obtain

EQn
f0

( dQn

dQn
f0

)2
 = Eν,ν′

n∏
i=1

1 + δ2
N∑

k1,k2=1

νk1ν
′
k2

λ̃k1λ̃k2

〈vk1 , K
?
iKivk2〉


≤ Eν,ν′

exp
δ2

n∑
i=1

N∑
k1,k2=1

νk1ν
′
k2

λ̃k1λ̃k2

〈vk1 , K
?
iKivk2〉


= Eν,ν′

exp
nδ2

N∑
k1,k2=1

νk1ν
′
k2

λ̃k1λ̃k2

〈vk1 , Kvk2〉


= Eν,ν′

exp
nδ2

N∑
k1,k2=1

νk1ν
′
k2

λ̃k1λ̃k2

· λ2
k2〈vk1 , vk2〉


≤ Eν,ν′

[
exp

(
nδ2z2

α

N∑
k=1

νkν
′
k

)]
,

where we have used that
λ2
k

λ̃2
k

= λ2
k

max{z−2
α λ2

k, 2h}
≤ z2

α.

Now, using that for k = 1, . . . , N , νk, ν ′k are Rademacher distributed and independent
random variables, we obtain

EQn
f0

( dQn

dQn
f0

)2
 ≤ Eν,ν′

[
N∏
k=1

exp
(
nδ2z2

ανkν
′
k

)]

= Eν
[
N∏
k=1

cosh
(
nδ2z2

ανk
)]

=
N∏
k=1

cosh
(
nδ2z2

α

)
≤ exp

(
Nn2δ4z4

α

2

)
,
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where the last inequality follows from cosh(x) ≤ exp(x2/2) for all x ∈ R. Thus, (4.8)
holds as soon as

δ ≤
[

2 log (1 + (1− b− γ)2)
Nn2z4

α

]1/4

.

Finally, taking δ = min
{

h√
log(2N/b)

min
{
C0(B)
‖ψ‖∞ ,

1
2

(
1− L0

L

)
hβ
}
,
[

2 log(1+(1−b−γ)2)
Nn2z4

α

]1/4}
, we

obtain

ENI
n,α(f0, γ) ≥ C(ψ, b, γ) 1√

log (2N/b)
min

 |B|√
log(2N/b)

min
{
C0(B)
‖ψ‖∞

,
1
2

(
1− L0

L

)
hβ
}
,
N3/4√
nz2

α

 .
If B is chosen such that C0(B) = min{f0(x), x ∈ B} ≥ Chβ, then the bound becomes

ENI
n,α(f0, γ) ≥ C(ψ, b, γ, L, L0) 1√

log (2N/b)
min

 |B|hβ√
log(2N/b)

,
N3/4√
nz2

α

 ,
and the choice h � |B|−1/(4β+3)(nz2

α)−2/(4β+3) yields

ENI
n,α(f0, γ) ≥ C(ψ, b, γ, L, L0)

[
log

(
C|B|

4β+4
4β+3 (nz2

α)
2

4β+3

)]−1
|B|

3β+3
4β+3 (nz2

α)−
2β

4β+3 .

Note that with this choice of h, the condition C0(B) ≥ Chβ becomes

|B|β/(4β+3)C0(B) ≥ C(nz2
α)−2β/(4β+3).

4.4 Interactive Privacy Mechanisms

In this section, we prove that the results obtained in Section 4.3 can be improved when
sequential interaction is allowed between data-holders.

4.4.1 Upper bound in the interactive scenario

We first propose a testing procedure which relies on some sequential interaction between
data-holders. We then prove that this test achieves a better separation rate than the one
obtained in Section 4.3.
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We assume that the sample size is equal to 3n so that we can split the data in three
parts. Like in the non-interactive scenario, we consider a non empty compact set B ⊂ R,
and B = ⋃N

j=1Bj a partition of B with |Bj| = 2h for all j ∈ J1, NK.

With the first third of the data, X1, . . . , Xn, we generate privatized arrays Zi =
(Zij)j=1,...,N that will be used to estimate p(j) :=

∫
Bj
f . Let’s consider the following privacy

mechanism. We first generate an i.i.d. sequence (Wij)i∈J1,nK,j∈J1,NK of Laplace(1) random
variables and for i = 1, . . . , n and j = 1, . . . , N we set

Zij = I(Xi ∈ Bj) + 2
α
Wij.

For each j = 1, . . . , N , we then build an estimator of p(j) :=
∫
Bj
f via

p̂j = 1
n

n∑
i=1

Zij.

We now privatize the second third of the data. Set cα = eα+1
eα−1 and τ = (nα2)−1/2. For all

i ∈ Jn + 1, 2nK, we generate Zi ∈ {−cατ, cατ} using the estimator p̂j and the true data
Xi by

P (Zi = ±cατ | Xi ∈ Bj) = 1
2

(
1± [p̂j − p0(j)]τ−τ

cατ

)
,

P
(
Zi = ±cατ | Xi ∈ B̄

)
= 1

2 ,

where [x]τ−τ = max{−τ,min(x, τ)}, and p0(j) =
∫
Bj
f0. We then define the test statistic

DB = 1
n

2n∑
i=n+1

Zi −
N∑
j=1

p0(j)[p̂j − p0(j)]τ−τ .

The analysis of the mean and variance of this statistic can be found in Appendix 4.7.2.
It will be crucial in the analysis of our final test procedure.
Finally, we define the same tail test statistic as in Section 4.3. For all i ∈ J2n + 1, 3nK, a
private view Zi of Xi is generated by

Zi = ±cα, with probabilities
1
2

(
1± I(Xi 6∈ B)

cα

)
,
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and we set

TB = 1
n

3n∑
i=2n+1

Zi −
∫
B
f0.

The final test is

Φ =

1 if DB ≥ t1 or TB ≥ t2

0 otherwise
, (4.9)

where

t1 = 2
√

5
nα2√γ

, t2 =
√

20
nα2γ

. (4.10)

We denote the privacy mechanism that outputs (Z1, . . . , Zn, Zn+1, . . . , Z2n, Z2n+1, . . . , Z3n)
byQ. It is sequentially interactive since each Zi for i ∈ Jn+1, 2nK depends on the privatized
data (Z1, . . . , Zn) through p̂j, but does not depend on the other Zk, k ∈ Jn+1, 2nK, k 6= i.
The following result establishes that this mechanism provides α-local differential privacy.
Its proof is deferred to Appendix 4.7.1.

Proposition 4.4.1. The sequentially interactive privacy mechanism Q provides α-local
differential privacy.

The following Proposition gives properties of the test statistic DB. Its proof is in the
Appendix 4.7.2.

Proposition 4.4.2. 1. It holds EQfn [DB] = ∑N
j=1{p(j) − p0(j)}E

[
[p̂j − p0(j)]τ−τ

]
. In

particular, EQfn0 [DB] = 0. Moreover, we have

EQfn [DB] ≥ 1
6Dτ (f)− 6 τ√

n
, (4.11)

with Dτ (f) = ∑N
j=1 |p(j)− p0(j)|min {|p(j)− p0(j)|, τ} where we recall that p(j) :=

∫
Bj
f .

2. It holds
VarQfn(DB) ≤ 5

(nα2)2 + 67Dτ (f)
nα2 .

The following result presents an upper bound on En,α(f0, γ). Its proof is in Appendix
4.7.3.

Theorem 4.4.3. Assume that α ∈ (0, 1) and β < 1. The test procedure Φ in (4.9) with
t1 and t2 in (4.10) and bandwidth h given by

h � |B|−
1

2β+1 (nα2)−
1

2β+1 ,

157



Chapter 4 – Goodness of fit testing for Hölder continuous densities under local differential
privacy

attains the following bound on the separation rate

En,α(f0, γ) ≤ C(L,L0, γ)
{
|B|

β+1
2β+1 (nα2)−

β
2β+1 +

∫
B
f0 + 1√

nα2

}
.

This result indicates to choose the optimal set B = Bn,α as a level set

Bn,α = arg inf
B compact set

{∫
B
f0 ≥ |B|

β+1
2β+1 (nα2)−

β
2β+1 + 1√

nα2
and inf

B
f0 ≥ sup

B

f0

}
.

(4.12)

4.4.2 Lower bound in the interactive scenario

In this subsection we complement the study of En,α(f0, γ) with a lower bound. This lower
bound will turn out to match the upper bound for several f0, proving the optimality of
the test and privacy mechanism proposed in the previous subsection for several f0. See
Section 4.5 for the optimality.

Theorem 4.4.4. Let α ∈ (0, 1). Assume that β ≤ 1. Set zα = e2α− e−2α. For all compact
set B ⊂ R satisfying

|B|β/(2β+1)C0(B) ≥ C(nz2
α)−β/(2β+1) (4.13)

for some C > 0 where C0(B) = min{f0(x) : x ∈ B}, it holds

En,α(f0, γ) ≥ C(ψ, γ, L, L0)|B|
β+1
2β+1 (nz2

α)−
β

2β+1 .

The proof is deferred to Appendix 4.7.4. Let us note that the same comment after
Theorem 4.3.5 holds in this case. In all examples, we choose the set Bn,α as defined in
(4.12) and show that it checks the condition (4.13) giving thus minimax optimality of the
testing rates.

4.5 Examples

In this section, we investigate the optimality of our lower and upper bounds for some
examples of densities f0. For all the examples studied below, our bounds are optimal (up
to a constant) in the interactive scenario, and optimal up to a logarithmic factor in the
non-interactive scenario.
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Non-private separa-
tion rate

Private separation
rate, non-interactive
scenario (up to a log
factor)

Private separation
rate, interactive
scenario

U([a, b]) n−2/5 (nα2)−2/7 (nα2)−1/3

N (0, 1) n−2/5 log(nα2)3/7(nα2)−2/7 log(nα2)1/3(nα2)−1/3

Beta(a, b) n−2/5 (nα2)−2/7 (nα2)−1/3

Spiky null n−2/5 (nα2)−2/7 (nα2)−1/3

Cauchy(0, a) (log n)4/5n−2/5 (nα2)−2/13 (nα2)−1/5

Pareto(a, k) n−2k/(2+3k) (nα2)−2k/(7k+6) (nα2)−k/(3k+2)

Exp(λ) n−2/5 log(nα2)6/7(nα2)−2/7 log(nα2)2/3(nα2)−1/3

Table 4.1: Some examples of separation rates for different choices of densities f0 and β = 1.
The non-private separation rates can be found in [7]

The densities considered in this section are Hölder continuous with exponent β for
all β ∈ (0, 1] unless otherwise specified. The results are stated for n large enough and
α ∈ (0, 1) such that nα2 → +∞ as n→∞. They are summarised in Table 4.1 for β = 1
and compared to the non-private separation rates. The proofs can be found in Appendix
4.8.

Example 4.5.1. Assume that f0 is the density of the continuous uniform distribution on
[a, b] where a and b are two constants satisfying a < b, that is

f0(x) = 1
b− a

I(x ∈ [a, b]).

Taking B = [a, b] in Theorems 4.3.5, 4.3.4, 4.4.4 and 4.4.3 yields the following bounds on
the minimax radius

[
log

(
C(nα2)

2
4β+3

)]−1
(nα2)−

2β
4β+3 . ENI

n,α(f0, γ) . (nα2)−
2β

4β+3 ,

and
En,α(f0, γ) � (nα2)−

β
2β+1

Example 4.5.2. Assume that f0 is the density of the Pareto distribution with parameters
a > 0 and k > 0, that is

f0(x) = kak

xk+1 I(x ≥ a).
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It holds[
log

(
C(nα2)

4β+4
4β+3 ·

2β
k(4β+3)+3β+3 + 2

4β+3

)]−1
(nα2)−

2kβ
k(4β+3)+3β+3 . ENI

n,α(f0, γ) . (nα2)−
2kβ

k(4β+3)+3β+3 ,

and
En,α(f0, γ) � (nα2)−

kβ
k(2β+1)+β+1 .

Example 4.5.3. Assume that f0 is the density of the exponential distribution with pa-
rameter λ > 0, that is

f0(x) = λ exp(−λx)I(x ≥ 0).

It holds[
log

(
C log(nα2)

4β+4
4β+3 (nα2)

2
4β+3

)]−1
log(nα2)

3β+3
4β+3 (nα2)−

2β
4β+3 . ENI

n,α(f0, γ) . log(nα2)
3β+3
4β+3 (nα2)−

2β
4β+3 ,

and
En,α(f0, γ) � log(nα2)

β+1
2β+1 (nα2)−

β
2β+1

Example 4.5.4. Assume that f0 is the density of the normal distribution with parameters
0 and 1, that is

f0(x) = 1√
2π

exp
(
−x

2

2

)
.

It holds[
log

(
C log(nα2)

4β+4
2(4β+3) (nα2)

2
4β+3

)]−1
log(nα2)

3β+3
2(4β+3) (nα2)−

2β
4β+3 . ENI

n,α(f0, γ),

ENI
n,α(f0, γ) . log(nα2)

3β+3
2(4β+3) (nα2)−

2β
4β+3 ,

and
En,α(f0, γ) � log(nα2)

β+1
2(2β+1) (nα2)−

β
2β+1

Example 4.5.5. Assume that f0 is the density of the Cauchy distribution with parameters
0 and a > 0, that is

f0(x) = 1
πa

a2

x2 + a2 .

It holds [
log

(
C(nα2)

4β+4
4β+3 ·

2β
7β+6 + 2

4β+3

)]−1
(nα2)−

2β
7β+6 . ENI

n,α(f0, γ) . (nα2)−
2β

7β+6 ,
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and
En,α(f0, γ) � (nα2)−

β
3β+2

Example 4.5.6. Assume that the density f0 is given by

f0(x) =


L0x if 0 ≤ x ≤ 1√

L0

2
√
L0 − L0x if 1√

L0
≤ x ≤ 2√

L0

0 otherwise.

It holds [
log

(
C(nα2)

2
4β+3

)]−1
(nα2)−

2β
4β+3 . ENI

n,α(f0, γ) . (nα2)−
2β

4β+3 ,

and
En,α(f0, γ) � (nα2)−

β
2β+1

Example 4.5.7. Assume that f0 is the density of the Beta distribution with parameters
a ≥ 1 and b ≥ 1, that is

f0(x) = 1
B(a, b)x

a−1(1− x)b−1I(0 < x < 1), (4.14)

where B(·, ·) is the Beta function. It holds

[
log

(
C(nα2)

2
4β+3

)]−1
(nα2)−

2β
4β+3 . ENI

n,α(f0, γ) . (nα2)−
2β

4β+3 ,

and
En,α(f0, γ) � (nα2)−

β
2β+1 .

Note that the density f0 given by (4.14) can be defined for all a > 0 and b > 0. However,
f0 is Hölder continuous for no exponent β ∈ (0, 1] if a < 1 or b < 1. Note also that if a = 1
and b = 1 then f0 is the density of the continuous uniform distribution on [0, 1], and this
case has already been tackled in Example 4.5.1. Now, if a = 1 and b > 1 (respectively
a > 1 and b = 1), one can check that f0 is Hölder continuous with exponent β for all
β ∈ (0,min{b − 1, 1}] (respectively β ∈ (0,min{a − 1, 1}]). Finally, if a > 1 and b > 1
then f0 is is Hölder continuous with exponent β for all β ∈ (0,min{a− 1, b− 1, 1}].
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4.6 Appendix : Proofs of Section 4.3

4.6.1 Proof of Proposition 4.3.2

Let i ∈ J1, nK. Set σ := 2‖ψ‖∞/(αh). The conditional density of Zi given Xi = y can be
written as

qZi|Xi=y(z) =
N∏
j=1

1
2σ exp

(
−|zj − ψh(xj − y)|

σ

)
.

Thus, by the reverse and the ordinary triangle inequality,

qZi|Xi=y(z)
qZi|Xi=y′(z) =

N∏
j=1

exp
(
|zj − ψh(xj − y′)| − |zj − ψh(xj − y)|

σ

)

≤
N∏
j=1

exp
(
|ψh(xj − y′)− ψh(xj − y)|

σ

)

≤ exp
 1
σh

N∑
j=1

∣∣∣∣∣ψ
(
xj − y′

h

)
− ψ

(
xj − y
h

)∣∣∣∣∣


≤ exp
 1
σh

N∑
j=1

[∣∣∣∣∣ψ
(
xj − y′

h

)∣∣∣∣∣+
∣∣∣∣ψ (xj − yh

)∣∣∣∣
]

≤ exp
(

2‖ψ‖∞
σh

)
≤ exp(α),

where the second to last inequality follows from the fact that for a fixed y the quantity
ψ((xj − y)/h) is non-zero for at most one coefficient j ∈ J1, NK. This is a consequence of
Assumption 4.3.1. This proves that Zi is an α-locally differentially private view of Xi for
all i ∈ J1, nK.
Consider now i ∈ Jn+ 1, 2nK. For all j ∈ J1, NK it holds

P (Zi = cα | Xi /∈ B)
P (Zi = cα | Xi ∈ Bj)

= 1 + 1
cα

= 2eα
eα + 1 .

Since 2 ≤ eα + 1 ≤ 2eα, we obtain

e−α ≤ 1 ≤ P (Zi = cα | Xi /∈ B)
P (Zi = cα | Xi ∈ Bj)

≤ eα.
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It also holds
P (Zi = −cα | Xi /∈ B)
P (Zi = −cα | Xi ∈ Bj)

= 1− 1
cα

= 2
eα + 1 ∈ [e−α, eα].

Now, for all (j, k) ∈ J1, NK2 it holds

P (Zi = cα | Xi ∈ Bk)
P (Zi = cα | Xi ∈ Bj)

= P (Zi = −cα | Xi ∈ Bk)
P (Zi = −cα | Xi ∈ Bj)

= 1 ∈ [e−α, eα].

This proves that Zi is an α-locally differentially private view of Xi for all i ∈ Jn+ 1, 2nK.

4.6.2 Proof of Theorem 4.3.4

Proof of Proposition 4.3.3. 1. Equality (4.4) follows from the independance of Zi and Zk
for i 6= k and from E[Zij] = ψh ∗ f(xj). We now prove (4.5). Set ah,j := ψh ∗ f(xj) and let
us define

ÛB = 1
n(n− 1)

∑
i 6=k

N∑
j=1

(Zij − ah,j) (Zkj − ah,j) ,

V̂B = 2
n

n∑
i=1

N∑
j=1

(ah,j − f0(xj)) (Zij − ah,j) ,

and observe that we have

SB = ÛB + V̂B +
N∑
j=1

(ah,j − f0(xj))2.

Note that Cov(ÛB, V̂B) = 0. We thus have

Var(SB) = Var(ÛB) + Var(V̂B),

and we will bound from above Var(ÛB) and Var(V̂B) separately. We begin with Var(V̂B).
Since V̂B is centered, it holds

Var(V̂B) = E[V̂ 2
B]

= 4
n2

n∑
i=1

N∑
j=1

n∑
t=1

N∑
k=1

(ah,j − f0(xj)) (ah,k − f0(xk))E [(Zij − ah,j) (Ztk − ah,k)] .
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Note that if t 6= i, the independance of Zi and Zt yields

E [(Zij − ah,j) (Ztk − ah,k)] = 0.

Moreover, since the Wij, j = 1, . . . , N are independent of Xi and E[Wij] = 0 we have

E [(Zij − ah,j) (Zik − ah,k)]

= E
[(
ψh (xj −Xi) + 2‖ψ‖∞

αh
Wij − ah,j

)(
ψh (xk −Xi) + 2‖ψ‖∞

αh
Wik − ah,k

)]

= E [ψh (xj −Xi)ψh (xk −Xi)]− ah,kE [ψh (xj −Xi)] + 4‖ψ‖2
∞

α2h2 E [WijWik]

− ah,jE [ψh (xk −Xi)] + ah,jah,k

=
[∫

(ψh (xj − y))2 f(y)dy + 8‖ψ‖2
∞

α2h2

]
I(j = k)− ah,jah,k,

where the last equality is a consequence of Assumption 4.3.1. We thus obtain

Var(V̂B) = 4
n

N∑
j=1

(ah,j − f0(xj))2
[∫

(ψh (xj − y))2f(y)dy + 8‖ψ‖2
∞

α2h2

]

− 4
n

N∑
j=1

N∑
k=1

(ah,j − f0(xj)) (ah,k − f0(xk)) ah,jah,k

= 4
n

N∑
j=1

(ah,j − f0(xj))2
[∫

(ψh (xj − y))2f(y)dy + 8‖ψ‖2
∞

α2h2

]

− 4
n

 N∑
j=1

(ah,j − f0(xj)) ah,j

2

≤ 4
n

N∑
j=1

(ah,j − f0(xj))2
[∫

(ψh (xj − y))2f(y)dy + 8‖ψ‖2
∞

α2h2

]
.

Now,
∫

(ψh (xj − y))2f(y)dy ≤ ‖ψh‖2
∞ ≤ ‖ψ‖2

∞/h
2 ≤ ‖ψ‖2

∞/(α2h2) if α ∈ (0, 1]. We finally
obtain

Var(V̂B) ≤ 36‖ψ‖2
∞

nα2h2

N∑
j=1

(ah,j − f0(xj))2 .

We now bound from above Var(ÛB). One can rewrite ÛB as

ÛB = 1
n(n− 1)

∑
i 6=k

h(Zi, Zk),

164



4.6. Appendix : Proofs of Section 4.3

where

h(Zi, Zk) =
N∑
j=1

(Zij − ah,j) (Zkj − ah,j) .

Using a result for the variance of a U -statistic (see for instance Lemma A, p.183 in [64]),
we have (

n

2

)
Var(ÛB) = 2(n− 2)ζ1 + ζ2,

where
ζ1 = Var (E [h(Z1, Z2) | Z1]) , and ζ2 = Var (h(Z1, Z2)) .

We have ζ1 = 0 since E [h(Z1, Z2) | Z1] = 0 and thus

Var(ÛB) = 2
n(n− 1)Var (h(Z1, Z2)) .

Write

h(Z1, Z2) =
N∑
j=1

(
ψh (xj −X1) + 2‖ψ‖∞

αh
W1j − ah,j

)(
ψh (xj −X2) + 2‖ψ‖∞

αh
W2j − ah,j

)

=
N∑
j=1

(ψh (xj −X1)− ah,j) (ψh (xj −X2)− ah,j) + 4‖ψ‖2
∞

α2h2

N∑
j=1

W1jW2j

+ 2‖ψ‖∞
αh

N∑
j=1

W1j(ψh(xj −X2)− ah,j) + 2‖ψ‖∞
αh

N∑
j=1

W2j(ψh(xj −X1)− ah,j)

=: T̃1 + T̃2 + T̃3 + T̃4.

We thus have Var(h(Z1, Z2)) = ∑4
i=1 Var(T̃i)+2∑i<j Cov(T̃i, T̃j). Observe that Cov(T̃i, T̃j) =

0 for i < j and Var(T̃3) = Var(T̃4). We thus have

Var(h(Z1, Z2)) = Var(T̃1) + Var(T̃2) + 2Var(T̃3).

The independence of the random variables (Wij)i,j yields

Var(T̃2) = 64‖ψ‖4
∞N

α4h4 .
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The independence of the random variables (Wij)i,j and their independence with X2 yield

Var(T̃3) = E
[
T̃ 2

3

]
= 4‖ψ‖2

∞
α2h2 E

 N∑
j=1

W1j(ψh(xj −X2)− ah,j)
N∑
k=1

W1k(ψh(xk −X2)− ah,k)


= 4‖ψ‖2
∞

α2h2

N∑
j=1

N∑
k=1

E [W1jW1k]E [(ψh(xj −X2)− ah,j)(ψh(xk −X2)− ah,k)]

= 8‖ψ‖2
∞

α2h2

N∑
j=1

E
[
(ψh(xj −X2)− ah,j)2

]

≤ 8‖ψ‖2
∞

α2h2

N∑
j=1

E
[
(ψh(xj −X2))2

]
.

Now, since y 7→ ψh(xj − y) is null outside Bj (consequence of Assumption 4.3.1), it holds

N∑
j=1

E
[
(ψh(xj −X2))2

]
=

N∑
j=1

∫
Bj

(ψh(xj − y))2 f(y)dy ≤ ‖ψh‖2
∞

N∑
j=1

∫
Bj
f ≤ ‖ψh‖2

∞,

and thus
Var(T̃3) ≤ 8‖ψ‖4

∞
α2h4 .
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By independence of X1 and X2, it holds E[T̃1] = 0, and

Var(T̃1) = E
[
T̃ 2

1

]
=

N∑
j=1

N∑
k=1

E [(ψh (xj −X1)− ah,j) (ψh (xj −X2)− ah,j)

· (ψh (xk −X1)− ah,k) (ψh (xk −X2)− ah,k)]

=
N∑
j=1

N∑
k=1

E [(ψh (xj −X1)− ah,j) (ψh (xk −X1)− ah,k)]

· E [(ψh (xj −X2)− ah,j) (ψh (xk −X2)− ah,k)]

=
N∑
j=1

N∑
k=1

[∫
ψh(xj − y)ψh(xk − y)f(y)dy − ah,jah,k

]2

=
N∑
j=1

N∑
k=1

(∫
ψh(xj − y)ψh(xk − y)f(y)dy

)2
+

N∑
j=1

N∑
k=1

a2
h,ja

2
h,k

− 2
N∑
j=1

N∑
k=1

ah,jah,k

∫
ψh(xj − y)ψh(xk − y)f(y)dy.

Assumption 4.3.1 yields
∫
ψh(xj − y)ψh(xk − y)f(y)dy = 0 if j 6= k. We thus obtain

Var(T̃1) =
N∑
j=1

(∫
(ψh(xj − y))2f(y)dy

)2
− 2

N∑
j=1

a2
h,j

∫
(ψh(xj − y))2 f(y)dy +

 N∑
j=1

a2
h,j

2

.

Now, since y 7→ ψh(xj − y) is null outside Bj (consequence of Assumption 4.3.1), observe
that

N∑
j=1

(∫
(ψh(xj − y))2f(y)dy

)2
≤ ‖ψ‖

4
∞

h4

N∑
j=1

(∫
Bj
f

)2

≤ ‖ψ‖
4
∞

h4

N∑
j=1

∫
Bj
f ≤ ‖ψ‖

4
∞

h4 ,

and N∑
j=1

a2
h,j

2

=
 N∑
j=1

(∫
ψh(xj − y)f(y)dy

)2
2

≤ ‖ψ‖
4
∞

h4

 N∑
j=1

(∫
Bj
f

)2
2

≤ ‖ψ‖
4
∞

h4 ,

yielding Var(T̃1) ≤ 2‖ψ‖
4
∞

h4 . We thus have

Var(ÛB) ≤ 2
n(n− 1)

[
2‖ψ‖

4
∞

h4 + 64‖ψ‖4
∞N

α4h4 + 16‖ψ‖4
∞

α2h4

]
≤ 164‖ψ‖4

∞N

n(n− 1)α4h4 .
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Finally,

Var(SB) ≤ 36‖ψ‖2
∞

nα2h2

N∑
j=1

(ah,j − f0(xj))2 + 164‖ψ‖4
∞N

n(n− 1)α4h4 .

2. For all i ∈ Jn+ 1, 2nK it holds

EQn
f
[Zi] = E [Zi | Xi /∈ B]P (Xi /∈ B) +

N∑
j=1

E [Zi | Xi ∈ Bj]P (Xi ∈ Bj)

=
[
cα ·

1
2

(
1 + 1

cα

)
− cα ·

1
2

(
1− 1

cα

)]
P (Xi /∈ B) +

N∑
j=1

[
cα ·

1
2 − cα ·

1
2

]
P (Xi ∈ Bj)

= P (Xi /∈ B) .

This yields EQn
f
[TB] =

∫
B(f − f0), and using the independence of the Zi, i = n+ 1, . . . , 2n

we obtain

VarQn
f
[TB] = 1

n2

2n∑
i=n+1

Var(Zi) = 1
n2

2n∑
i=n+1

[
E[Z2

i ]− E[Zi]2
]

= 1
n

(
c2
α −

(∫
B
f
)2
)
.

We can now proove Theorem 4.3.4. We first prove that the choice of t1 and t2 in
(4.3) gives PQn

f0
(Φ = 1) ≤ γ/2. Since EQn

f0
[TB] = 0, Chebyshev’s inequality and Proposi-

tion 4.3.3 yield for α ∈ (0, 1]

PQn
f0

(TB ≥ t2) ≤ PQn
f0

(|TB| ≥ t2) ≤
VarQn

f0
(TB)

t22
≤ c2

α

nt22
≤ 5
nα2t22

= γ

4 .

If t1 > EQn
f0

[SB] = ∑N
j=1 ([ψh ∗ f0](xj)− f0(xj))2, then Chebychev’s inequality and Propo-
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sition 4.3.3 yield

PQn
f0

(SB ≥ t1) ≤ PQn
f0

(|SB − EQn
f0

[SB]| ≥ t1 − EQn
f0

[SB])

≤
VarQn

f0
(SB)

(t1 − EQn
f0

[SB])2

≤
36‖ψ‖2∞
nα2h2

∑N
j=1 ([ψh ∗ f0](xj)− f0(xj))2(

t1 −
∑N
j=1 ([ψh ∗ f0](xj)− f0(xj))2

)2

+
164‖ψ‖4∞N
n(n−1)α4h4(

t1 −
∑N
j=1 ([ψh ∗ f0](xj)− f0(xj))2

)2 .

Observe that

t1 ≥
N∑
j=1

([ψh ∗ f0](xj)− f0(xj))2+max


√√√√√288‖ψ‖2

∞
γnα2h2

N∑
j=1

([ψh ∗ f0](xj)− f0(xj))2,

√√√√ 1312‖ψ‖4
∞N

γn(n− 1)α4h4

 .
Indeed for f ∈ H(β, L) with β ≤ 1 it holds |[ψh ∗ f ](xj)− f(xj)| ≤ LCβh

β for all j ∈
J1, NK where Cβ =

∫ 1
−1 |u|β|ψ(u)|du, and thus using ab ≤ a2/2 + b2/2 we obtain

N∑
j=1

([ψh ∗ f0](xj)− f0(xj))2 + max


√√√√√288‖ψ‖2

∞
γnα2h2

N∑
j=1

([ψh ∗ f0](xj)− f0(xj))2,

√√√√ 1312‖ψ‖4
∞N

γn(n− 1)α4h4


≤ L2

0C
2
βNh

2β + max

1
2L

2
0C

2
βNh

2β + 144‖ψ‖2
∞

γnα2h2 ,

√√√√ 1312‖ψ‖4
∞N

γn(n− 1)α4h4


≤ 3

2L
2
0C

2
βNh

2β + 144‖ψ‖2
∞

γnα2h2 + 52‖ψ‖2
∞
√
N

√
γnα2h2

≤ 3
2L

2
0C

2
βNh

2β + 196‖ψ‖2
∞
√
N

γnα2h2 = t1.

Then it holds

PQn
f0

(SB ≥ t1) ≤
36‖ψ‖2∞
nα2h2

∑N
j=1 ([ψh ∗ f0](xj)− f0(xj))2

(t1 −
∑N
j=1 ([ψh ∗ f0](xj)− f0(xj))2)2

+
164‖ψ‖4∞N
n(n−1)α4h4

(t1 −
∑N
j=1 ([ψh ∗ f0](xj)− f0(xj))2)2

≤ γ

8 + γ

8 ≤
γ

4 ,
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and thus
PQn

f0
(Φ = 1) ≤ PQn

f0
(TB ≥ t2) + PQn

f0
(SB ≥ t1) ≤ γ

2 .

We now exhibit ρ1, ρ2 > 0 such that

∫
B |f − f0| ≥ ρ1 ⇒ PQn

f
(SB < t1) ≤ γ/2∫

B̄ |f − f0| ≥ ρ2 ⇒ PQn
f
(TB < t2) ≤ γ/2.

In this case, for all f ∈ H(β, L) satisfying ‖f − f0‖1 ≥ ρ1 + ρ2 it holds

PQn
f0

(Φ = 1) + PQn
f
(Φ = 0) ≤ γ

2 + min
{
PQn

f
(SB < t1),PQn

f
(TB < t2)

}
≤ γ

2 + γ

2 = γ,

since
∫
B |f−f0|+

∫
B̄ |f−f0| = ‖f−f0‖1 ≥ ρ1+ρ2 implies

∫
B |f−f0| ≥ ρ1 or

∫
B̄ |f−f0| ≥ ρ2.

Consequently, ρ1 + ρ2 will provide an upper bound on ENI
n,α(f0, γ).

If
∫
B(f − f0) = EQn

f
[TB] > t2 then Chebychev’s inequality yields

PQn
f
(TB < t2) = PQn

f

(
EQn

f
[TB]− TB > EQn

f
[TB]− t2

)
≤ PQn

f

(∣∣∣EQn
f
[TB]− TB

∣∣∣ > EQn
f
[TB]− t2

)
≤

VarQn
f
(TB)(

EQn
f
[TB]− t2

)2

≤ c2
α

n (
∫
B(f − f0)− t2)2 .

Now, observe that ∫
B̄

(f − f0) ≥
∫
B̄
|f − f0| − 2

∫
B̄
f0.

Thus, setting

ρ2 = 2
∫
B̄
f0 +

(
1 + 1√

2

)
t2,

we obtain that
∫
B̄ |f − f0| ≥ ρ2 implies

PQn
f
(TB < t2) ≤ 2c2

α

nt22
≤ 10
nα2t22

= γ

2 .

We now exhibit ρ1 such that
∫
B |f − f0| ≥ ρ1 implies PQn

f
(SB < t1) ≤ γ/2. First note that
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if the following relation holds

EQn
f
[SB] =

N∑
j=1
|[ψh ∗ f ](xj)− f0(xj)|2 ≥ t1 +

√√√√2VarQn
f
(SB)

γ
, (4.15)

then Chebychev’s inequality yields

PQn
f
(SB < t1) ≤ PQn

f

SB ≤ EQn
f
[SB]−

√√√√2VarQn
f
(SB)

γ

 ≤ γ

2 .

Using
√
a+ b ≤

√
a+
√
b for all a, b > 0 and ab ≤ a2/2 + b2/2 we have

√√√√2VarQn
f
(SB)

γ
≤

√√√√√72‖ψ‖2
∞

γnα2h2

N∑
j=1

([ψh ∗ f ](xj)− f0(xj))2 + 328‖ψ‖4
∞N

γn(n− 1)α4h4

≤

√√√√√72‖ψ‖2
∞

γnα2h2

N∑
j=1

([ψh ∗ f ](xj)− f0(xj))2 +
√

656‖ψ‖4
∞N

γn2α4h4

≤ 1
2

N∑
j=1

([ψh ∗ f ](xj)− f0(xj))2 + 36‖ψ‖2
∞

γnα2h2 + 26‖ψ‖2
∞
√
N

√
γnα2h2

≤ 1
2

N∑
j=1

([ψh ∗ f ](xj)− f0(xj))2 + 62‖ψ‖2
∞
√
N

γnα2h2 .

Thus, if
N∑
j=1
|[ψh ∗ f ](xj)− f0(xj)|2 ≥ 2

[
t1 + 62‖ψ‖2

∞
√
N

γnα2h2

]
(4.16)

then (4.15) holds and we have PQn
f
(SB < t1) ≤ γ/2. We now link

∑N
j=1 |[ψh ∗ f ](xj)− f0(xj)|2

to
∫
B |f − f0|. According to Cauchy-Schwarz inequality we have

 N∑
j=1
|[ψh ∗ f ](xj)− f0(xj)|

2

≤ N
N∑
j=1
|[ψh ∗ f ](xj)− f0(xj)|2 .

171



Chapter 4 – Goodness of fit testing for Hölder continuous densities under local differential
privacy

We also have∣∣∣∣∣∣
∫
B
|f − f0| −

N∑
j=1

2h|ψh ∗ f(xj)− f0(xj)|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
j=1

∫
Bj
|f − f0| −

N∑
j=1

2h|ψh ∗ f(xj)− f0(xj)|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
j=1

∫
Bj

(|f(x)− f0(x)| − |ψh ∗ f(xj)− f0(xj)|) dx

∣∣∣∣∣∣
≤

N∑
j=1

∫
Bj
|f(x)− f0(x)− ψh ∗ f(xj) + f0(xj)| dx

≤
N∑
j=1

∫
Bj

(|f(x)− f(xj)|+ |f(xj)− ψh ∗ f(xj)|+ |f0(xj)− f0(x)|) dx

≤
[
1 + Cβ + L0

L

]
Lhβ|B|.

We thus have

N∑
j=1
|[ψh ∗ f ](xj)− f0(xj)|2 ≥

1
4Nh2

(∫
B
|f − f0| −

[
1 + Cβ + L0

L

]
Lhβ|B|

)2
.

Thus, if

∫
B
|f − f0| ≥

[
1 + Cβ + L0

L

]
Lhβ|B|+ 2h

√
N

√√√√2t1 + 124‖ψ‖2
∞
√
N

γnα2h2 =: ρ1

then (4.16) holds and we have PQn
f
(SB < t1) ≤ γ/2. Consequently

ENI
n,α(f0, γ) ≤ ρ1 + ρ2

≤
[
1 + Cβ + L0

L

]
Lhβ|B|+ 2h

√
N

√√√√2t1 + 124‖ψ‖2
∞
√
N

γnα2h2 + 2
∫
B̄
f0 +

(
1 + 1√

2

)
t2

≤ C(L,L0, β, γ, ψ)
[
hβ|B|+Nhβ+1 + N3/4

√
nα2

+
∫
B̄
f0 + 1√

nα2

]

≤ C(L,L0, β, γ, ψ)
[
hβ|B|+ |B|3/4

h3/4
√
nα2

+
∫
B̄
f0 + 1√

nα2

]

where we have used
√
a+ b ≤

√
a+
√
b for a, b > 0 to obtain the second to last inequality.
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Taking h � |B|−1/(4β+3)(nα2)−2/(4β+3) yields

ENI
n,α(f0, γ) ≤ C(L,L0, β, γ, ψ)

[
|B|

3β+3
4β+3 (nα2)−

2β
4β+3 +

∫
B
f0 + 1√

nα2

]
.

4.6.3 Proof of Lemma 4.3.6

For j = 1, . . . , N , write

vj =
N∑
k=1

akjψk.

Note that since (ψ1, . . . , ψN) and (v1, . . . , vN) are two orthonormal bases ofWN , the matrix
(akj)kj is orthogonal. We can write

fν(x) = f0(x) + δ
N∑
j=1

N∑
k=1

νjakj

λ̃j
ψk(x), x ∈ R.

Define

Ab =

ν ∈ {−1, 1}N :

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣ ≤ 1√
h

√
log

(2N
b

)
for all 1 ≤ k ≤ N

 .
The union bound and Hoeffding inequality yield

Pν(Acb) ≤
N∑
k=1

P

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣ > 1√
h

√
log

(2N
b

)

≤
N∑
k=1

2 exp

− 2 log
(

2N
b

)
h
∑N
j=1 4a

2
kj

λ̃2
j


≤ b,

where the last inequality follows from λ̃2
j ≥ 2h for all j and

∑N
j=1 a

2
kj = 1. We thus have

Pν(Ab) ≥ 1− b.
We now prove i). Since

∫
ψk = 0 for all k = 1, . . . , n, it holds

∫
fν =

∫
f0 = 1 for

all ν. Since Supp(ψk) = Bk for all k = 1, . . . , N , it holds fν ≡ f0 on Bc and thus fν is
non-negative on Bc. Now, for x ∈ Bk it holds

fν(x) = f0(x) + δ
N∑
j=1

νjakj

λ̃j
ψk(x) ≥ C0(B)− δ‖ψ‖∞√

h

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣ .
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Moreover, for any ν ∈ Ab, we have

δ‖ψ‖∞√
h

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣ ≤ δ‖ψ‖∞
h

√
log

(2N
b

)
≤ C0(B)

since δ is assumed to satisfy δ ≤ h√
log(2N/b)

min
{
C0(B)
‖ψ‖∞ ,

1
2

(
1− L0

L

)
hβ
}
. Thus, fν is non-

negative on R for all ν ∈ Ab.

To prove ii), we have to show that |fν(x)− fν(y)| ≤ L|x− y|β, for all ν ∈ Ab, for all
x, y ∈ R. Since fν ≡ f0 on Bc and f0 ∈ H(β, L0), this result is trivial for x, y ∈ Bc. If
x ∈ Bl and y ∈ Bk it holds

|fν(x)− fν(y)| ≤ |f0(x)− f0(y)|+

∣∣∣∣∣∣δ
N∑
j=1

νjalj

λ̃j
ψl(x)− δ

N∑
j=1

νjakj

λ̃j
ψk(y)

∣∣∣∣∣∣
≤ L0|x− y|β +

∣∣∣∣∣∣δ
N∑
j=1

νjalj

λ̃j
ψl(x)− δ

N∑
j=1

νjalj

λ̃j
ψl(y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣δ
N∑
j=1

νjakj

λ̃j
ψk(x)− δ

N∑
j=1

νjakj

λ̃j
ψk(y)

∣∣∣∣∣∣
≤ L0|x− y|β + δ√

h

∣∣∣∣∣∣
N∑
j=1

νjalj

λ̃j

∣∣∣∣∣∣
∣∣∣∣ψ (x− xlh

)
− ψ

(
y − xl
h

)∣∣∣∣
+ δ√

h

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣
∣∣∣∣ψ (x− xkh

)
− ψ

(
y − xk
h

)∣∣∣∣
≤ L0|x− y|β + δ

hβ+1/2

∣∣∣∣∣∣
N∑
j=1

νjalj

λ̃j

∣∣∣∣∣∣ · L|x− y|β + δ

hβ+1/2

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣ · L|x− y|β
=
L0

L
+ δ

hβ+1/2

∣∣∣∣∣∣
N∑
j=1

νjalj

λ̃j

∣∣∣∣∣∣+ δ

hβ+1/2

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣
L|x− y|β,

where we have used ψ ∈ H(β, L). Observe that for all k = 1, . . . , n and for all ν ∈ Ab it
holds

δ

hβ+1/2

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣ ≤ δ

hβ+1 ·
√

log
(2N
b

)
≤ 1

2

(
1− L0

L

)
,

since δ is assumed to satisfy δ ≤ h√
log(2N/b)

min
{
C0(B)
‖ψ‖∞ ,

1
2

(
1− L0

L

)
hβ
}
. Thus, it holds

|fν(x)−fν(y)| ≤ L|x−y|β for all ν ∈ Ab, x ∈ Bl and y ∈ Bk. The case x ∈ Bc and y ∈ Bk

can be handled in a similar way, which ends the proof of ii).
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We now prove iii). It holds

∫
R
|fν − f0| =

∫
R

∣∣∣∣∣∣δ
N∑
j=1

νj

λ̃j
vj(x)

∣∣∣∣∣∣ dx = δ
N∑
k=1

∫
Bk

∣∣∣∣∣∣
N∑
j=1

νj

λ̃j
vj(x)

∣∣∣∣∣∣ dx
= δ

N∑
k=1

∫
Bk

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j
ψk(x)

∣∣∣∣∣∣ dx
= δ

N∑
k=1

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣
∫
Bk

|ψk(x)| dx

= C1δ
√
h

N∑
k=1

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣ ,
where C1 =

∫ 1
−1 |ψ|. For all ν ∈ Ab it thus holds

∫
R
|fν − f0| ≥ C1

δh√
log

(
2N
b

) N∑
k=1

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣
2

.

Moreover,

N∑
k=1

∣∣∣∣∣∣
N∑
j=1

νjakj

λ̃j

∣∣∣∣∣∣
2

=
N∑
k=1

 N∑
j=1

(
νjakj

λ̃j

)2

+
∑
j 6=l

νjakj

λ̃j

νlakl

λ̃l


=

N∑
j=1

1
λ̃2
j

N∑
k=1

a2
kj +

∑
j 6=l

νjνl

λ̃jλ̃l

N∑
k=1

akjakl

=
N∑
j=1

1
λ̃2
j

,

since the matrix (akj)k,j is orthogonal. Thus, for all ν ∈ Ab it holds

‖fν − f0‖1 ≥ C1
δh√

log
(

2N
b

) N∑
j=1

1
λ̃2
j

.
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Set J = {j ∈ J1, NK : z−1
α λj ≥

√
2h}, we have for all ν ∈ Ab

‖fν − f0‖1 ≥ C1
δh√

log
(

2N
b

) N∑
j=1

(
1

2hI(z−1
α λj <

√
2h) + z2

α

λ2
j

I(z−1
α λj ≥

√
2h)

)

= C1
δh√

log
(

2N
b

)
 1

2h(N − |J |) +
∑
j∈J

z2
α

λ2
j



≥ C1
δh√

log
(

2N
b

)
N2h − |J |2h + z2

α|J |2
∑
j∈J

λ2
j

−1


= C1
δN

2
√

log
(

2N
b

)
1− |J |

N
+
(
|J |
N

)2

|B|z2
α

∑
j∈J

λ2
j

−1
 ,

where the second to last inequality follows from the inequality between harmonic and
artithmetic means. Now,

∑
j∈J

λ2
j ≤

N∑
j=1

λ2
j =

N∑
j=1
〈Kvj, vj〉

=
N∑
j=1

〈
1
n

n∑
i=1

∫
R

(∫
Zi

qi(zi | y)qi(zi | ·)1B(y)1B(·)
g0,i(zi)

dµi(zi)
)
vj(y)dy, vj

〉

= 1
n

n∑
i=1

∫
Zi

N∑
j=1

(∫
R

∫
R

qi(zi | y)qi(zi | x)1B(y)1B(x)
g0,i(zi)

vj(x)vj(y)dxdy
)

dµi(zi)

= 1
n

n∑
i=1

∫
Zi

N∑
j=1

(∫
R

qi(zi | x)1B(x)
g0,i(zi)

vj(x)dx
)2

g0,i(zi)dµi(zi)

= 1
n

n∑
i=1

∫
Zi

N∑
j=1

(∫
R

(
qi(zi | x)
g0,i(zi)

− e−2α
)
1B(x)vj(x)dx

)2

g0,i(zi)dµi(zi),

since
∫
1B(x)vj(x)dx = 0. Recall that qi satisfies e−α ≤ qi(zi | x) ≤ eα for all zi ∈ Zi and

all x ∈ R. This implies e−α ≤ g0,i(zi) ≤ eα, and therefore 0 ≤ fi,zi(x) := qi(zi|x)
g0,i(zi)−e

−2α ≤ zα.
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Writing fi,zi,B = 1B · fi,zi , we have

N∑
j=1

(∫
R

(
qi(zi | x)
g0,i(zi)

− e−2α
)
1B(x)vj(x)dx

)2

=
N∑
j=1
〈fi,zi,B, vj〉2 =

∥∥∥∥∥∥
N∑
j=1
〈fi,zi,B, vj〉vj

∥∥∥∥∥∥
2

2

=
∥∥∥ProjVect(v1,...,vN )(fi,zi,B)

∥∥∥2

2

≤ ‖fi,zi,B‖
2
2 ≤ z2

α|B|.

Moreover,
∫
Zi g0,i(zi)dµi(zi) =

∫
R(
∫
Zi qi(zi | x)dµi(zi))f0(x)dx =

∫
R f0 = 1. This gives∑

j∈J λ
2
j ≤ z2

α|B| and for all ν ∈ Ab

‖fν − f0‖1 ≥ C1
δN

2
√

log
(

2N
b

)
1− |J |

N
+
(
|J |
N

)2
 ≥ 3C1

8
δN√

log
(

2N
b

) .

4.7 Appendix : Proofs of Section 4.4

4.7.1 Proof of Proposition 4.4.1

Let i ∈ J1, nK. Since Zi depends only on Xi, condition (4.1) reduces to

qZi|Xi=y(z)
qZi|Xi=y′(z) ≤ eα, ∀y, y′ ∈ R, ∀z ∈ RN , (4.17)

where qZi|Xi=y denotes the conditional density of Zi given Xi = y. It holds

qZi|Xi=y(z) =
N∏
j=1

α

4 exp
(
−α|zj − I(y ∈ Bj)|

2

)
.
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Thus, by the reverse and the ordinary triangle inequality,

qZi|Xi=y(z)
qZi|Xi=y′(z) =

N∏
j=1

exp
(
α [|zj − I(y′ ∈ Bj)| − |zj − I(y ∈ Bj)|]

2

)

≤
N∏
j=1

exp
(
α|I(y ∈ Bj)− I(y′ ∈ Bj)|

2

)

= exp
α

2

N∑
j=1
|I(y ∈ Bj)− I(y′ ∈ Bj)|


≤ exp(α),

which proves (4.17).
Consider now i ∈ Jn + 1, 2nK. Since Zi depends only on Xi and on Z1, . . . , Zn, condition
(4.1) reduces for i ∈ Jn+ 1, 2nK to

P (Zi = z | Xi ∈ A,Z1 = z1, . . . , Zn = zn)
P (Zi = z | Xi ∈ F,Z1 = z1, . . . , Zn = zn) ∈ [e−α, eα] (4.18)

for all z ∈ {−cατ, cατ}, A,F ∈ {B,B1, . . . , BN} and z1, . . . , zn ∈ RN . For all j, k ∈ J1, NK,
for all z1, . . . , zn it holds

P (Zi = cατ | Xi ∈ Bj, Z1 = z1, . . . , Zn = zn)
P (Zi = cατ | Xi ∈ Bk, Z1 = z1, . . . , Zn = zn) =

1 + [p̂j−p0(j)]τ−τ
cατ

1 + [p̂k−p0(k)]τ−τ
cατ

∈
[
cα − 1
cα + 1 ,

cα + 1
cα − 1

]
= [e−α, eα],

and a similar result holds for z = −cατ . For all j ∈ J1, NK, for all z1, . . . , zn it holds

P (Zi = cατ | Xi ∈ Bj, Z1 = z1, . . . , Zn = zn)
P
(
Zi = cατ | Xi ∈ B,Z1 = z1, . . . , Zn = zn

) = 1+[p̂j − p0(j)]τ−τ
cατ

∈
[
1− 1

cα
, 1 + 1

cα

]
⊂ [e−α, eα],

and a similar result holds for z = −cατ . This ends the proof of (4.18).
Consider now i ∈ J2n + 1, 3nK. Since Zi depends only on Xi, condition (4.1) reduces for
i ∈ J2n+ 1, 3nK to

P (Zi = z | Xi ∈ A)
P (Zi = z | Xi ∈ F ) ∈ [e−α, eα], ∀A,F ∈ {B,B1, . . . , BN}, ∀z ∈ {−cα, cα}.

We have already proved this in the proof of Proposition 4.3.2.
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4.7.2 Analysis of the mean and variance of the statistic DB

Proof of Proposition 4.4.2. 1. For all i ∈ Jn+ 1, 2nK it holds

P (Zi = ±cατ | Z1, . . . , Zn)

=
N∑
j=1

P (Zi = ±cατ | Xi ∈ Bj)P(Xi ∈ Bj) + P
(
Zi = ±cατ | Xi ∈ B̄

)
P(Xi ∈ B̄)

=
N∑
j=1

1
2

(
1± [p̂j − p0(j)]τ−τ

cατ

)
p(j) + 1

2

∫
B̄
f.

For i ∈ Jn+ 1, 2nK we thus have

E[Zi | Z1, . . . , Zn] = cατP(Zi = cατ | Z1, . . . , Zn)− cατP(Zi = −cατ | Z1, . . . , Zn)

=
N∑
j=1

p(j)[p̂j − p0(j)]τ−τ .

Thus,

E[DB] = E [E[DB | Z1, . . . , Zn]] =
N∑
j=1
{p(j)− p0(j)}E

[
[p̂j − p0(j)]τ−τ

]
.

The proof of (4.11) is similar to the proof of Theorem 3 in [10].

2. Write

Var(DB) = E [Var (DB | Z1, . . . , Zn)] + Var (E [DB | Z1, . . . , Zn]) .

It holds

E [DB | Z1, . . . , Zn] =
N∑
j=1
{p(j)− p0(j)}[p̂j − p0(j)]τ−τ ,
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and

Var (DB | Z1, . . . , Zn) = Var
 1
n

2n∑
i=n+1

Zi −
N∑
j=1

p0(j)[p̂j − p0(j)]τ−τ | Z1, . . . , Zn


= Var

 1
n

2n∑
i=n+1

Zi | Z1, . . . , Zn


= 1
n2

2n∑
i=n+1

Var (Zi | Z1, . . . , Zn)

≤ 1
n2

2n∑
i=n+1

E
[
Z2
i | Z1, . . . , Zn

]

≤ c2
ατ

2

n
,

where we have used the independence of the random variables (Zi)i=n+1,...,2n conditionnally
on Z1, . . . , Zn. This gives

Var(DB) ≤ c2
ατ

2

n
+

N∑
j=1
{p(j)− p0(j)}2Var

(
[p̂j − p0(j)]τ−τ

)
+
∑
j1 6=j2
{p(j1)− p0(j1)}{p(j2)− p0(j2)}Cov([p̂j1 − p0(j1)]τ−τ , [p̂j2 − p0(j2)]τ−τ ).

Set Pj = [p̂j − p0(j)]τ−τ . We will prove that

Var(Pj) ≤
10
nα2 exp

(
−nα

2(p(j)− p0(j))2

168

)
, ∀j ∈ J1, NK, (4.19)

and

|Cov(Pj1 , Pj2)| ≤ 2p(j1)p(j2)
n

exp
(
−nα

2 [(p(j1)− p0(j1))2 + (p(j2)− p0(j2))2]
336

)
(4.20)

for all j1, j2 ∈ J1, NK, j1 6= j2. We admit these results for the moment and finish the proof
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of Proposition 4.4.2. Using (4.19) and (4.20) we obtain

Var(DB) ≤ c2
ατ

2

n
+ 10
nα2

N∑
j=1
{p(j)− p0(j)}2 exp

(
−nα

2(p(j)− p0(j))2

168

)

+ 2
n

 N∑
j=1
|p(j)− p0(j)|p(j) exp

(
−nα

2(p(j)− p0(j))2

336

)2

≤ c2
ατ

2

n
+ 10
nα2

N∑
j=1
{p(j)− p0(j)}2 exp

(
−nα

2(p(j)− p0(j))2

168

)

+ 2
n

 N∑
j=1

p(j)2

 N∑
j=1
|p(j)− p0(j)|2 exp

(
−nα

2(p(j)− p0(j))2

168

)
≤ c2

ατ
2

n
+ 12
nα2

N∑
j=1
|p(j)− p0(j)|2 exp

(
−nα

2(p(j)− p0(j))2

168

)
,

where the second to last inequality follows from Cauchy Schwarz inequality. Now, observe
that if aj := |p(j)− p0(j)| 6= 0, then we can write

|p(j)−p0(j)| exp
(
−nα

2(p(j)− p0(j))2

168

)
= min{τ, aj}·

aj/τ

min{1, aj/τ}
exp

(
− 1

168

(
aj
τ

)2
)
,

where we recall that τ = 1/
√
nα2. The study of the function g : x 7→ [x/min{1, x}] exp(−x2/168)

gives g(x) ≤
√

84e−1/2 for all x ≥ 0. We thus have

Var(DB) ≤ c2
ατ

2

n
+ 12e−1/2√84

nα2

N∑
j=1
|p(j)− p0(j)|min {τ, |p(j)− p0(j)|} .

Using that α2c2
α ≤ 5 for all α ∈ (0, 1), we finally obtain the claim of Proposition 4.4.2,

Var(DB) ≤ 5
(nα2)2 + 67

nα2Dτ (f).

It remains now to prove (4.19) and (4.20). We will use the following concentration in-
equality which is an application of Bernstein’s inequality (see for instance Corollary 2.11
in [11])

P (|p̂j − p(j)| ≥ x) ≤ 2 exp
(
−nα

2x2

42

)
, for all 0 < x ≤ 1

α
. (4.21)

Let us prove (4.19). Let j ∈ J1, NK. We first deal with the case where p(j)− p0(j) ≥ 2τ .
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We have

Var
(
[p̂j − p0(j)]τ−τ

)
= Var

(
[p̂j − p0(j)]τ−τ − τ

)
≤ E

[(
[p̂j − p0(j)]τ−τ − τ

)2
]

= E
[
(−2τ)21 (p̂j − p0(j) ≤ −τ) + (p̂j − p0(j)− τ)21 (p̂j − p0(j) ∈ [−τ, τ ])

]
≤ 4τ 2P (p̂j − p0(j) ≤ τ)

= 4τ 2P (p(j)− p̂j ≥ p(j)− p0(j)− τ)

≤ 4τ 2P (|p(j)− p̂j| ≥ p(j)− p0(j)− τ)

Now, if p(j)− p0(j) ≥ 2τ then we have 0 < p(j)− p0(j)− τ ≤ p(j) ≤ 1 ≤ 1/α and (4.21)
gives

Var
(
[p̂j − p0(j)]τ−τ

)
≤ 8τ 2 exp

(
−nα

2 {p(j)− p0(j)− τ}2

42

)

≤ 8
nα2 exp

(
−nα

2 {p(j)− p0(j)}2

168

)
,

which ends the proof of (4.19) for the elements j ∈ J1, NK such that p(j) − p0(j) ≥ 2τ .
Starting from Var

(
[p̂j − p0(j)]τ−τ

)
= Var

(
[p̂j − p0(j)]τ−τ + τ

)
, a similar proof gives (4.19)

for the elements j ∈ J1, NK such that p(j)−p0(j) ≤ −2τ . It remains to deal with the case
|p(j) − p0(j)| < 2τ . In this case, using that [·]τ−τ is Lipschitz continuous with Lipschitz
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constant 1 we have

Var
(
[p̂j − p0(j)]τ−τ

)
= Var

(
[p̂j − p0(j)]τ−τ − [pj − p0(j)]τ−τ

)
≤ E

[(
[p̂j − p0(j)]τ−τ − [pj − p0(j)]τ−τ

)2
]

≤ E
[
|p̂j − p(j)|2

]
= Var(p̂j)

= 1
n2

n∑
i=1

Var (I(Xi ∈ Bj)) + 4
n2α2

n∑
i=1

Var(Wij)

≤ 9
nα2

= 9
nα2 exp

(
nα2 {p(j)− p0(j)}2

168

)
exp

(
−nα

2 {p(j)− p0(j)}2

168

)

≤ 9 exp(1/42)
nα2 exp

(
−nα

2 {p(j)− p0(j)}2

168

)
,

where the last inequality follows from the assumption |p(j)−p0(j)| ≤ 2τ = 2/
√
nα2. This

ends the proof of (4.19). We now prove (4.20). For all i ∈ J1, n+ 1K, we will write

Ei [·] = E [· | X1, . . . , Xi−1] ,

Eji [·] = 1
p(j)E [·1(Xi ∈ Bj) | X1, . . . , Xi−1] ,

Ecompi [·] = 1
p
(
B
)E [·1(Xi ∈ B) | X1, . . . , Xi−1

]
.

Observe that
Eji [Pj1 ] a.s.= Ej2i [Pj1 ] , ∀j, j2 6= j1, (4.22)

and
Ecompi [Pj1 ] a.s.= Ej2i [Pj1 ] , ∀j2 6= j1, (4.23)

where we recall that Pj = [p̂j − p0(j)]τ−τ . Let j1, j2 ∈ J1, NK, j1 6= j2. We have

Cov (Pj1 , Pj2) = Cov (En+1 [Pj1 ] ,En+1 [Pj2 ])

= E [En+1 [Pj1 ]En+1 [Pj2 ]]− E [Pj1 ]E [Pj2 ]

= E
[
n∑
i=1

(Ei+1 [Pj1 ]Ei+1 [Pj2 ]− Ei [Pj1 ]Ei [Pj2 ])
]
,
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where the sum in the last line is a telescoping sum. We thus have

Cov (Pj1 , Pj2) =
n∑
i=1

E [Ei+1 [Pj1 ]Ei+1 [Pj2 ]− Ei [Pj1 ]Ei [Pj2 ]] . (4.24)

Now, it holds

Ei [Pj1 ] = E [Pj1 | X1, . . . , Xi−1]

= E

Pj1 ·
 N∑
j=1

1(Xi ∈ Bj) + 1(Xi ∈ B)
 | X1, . . . , Xi−1


=

N∑
j=1

p(j)Eji [Pj1 ] + p
(
B
)
Ecompi [Pj1 ]

= p(j1)Ej1i [Pj1 ] +
N∑
j=1
j 6=j1

p(j)Ej2i [Pj1 ] + p
(
B
)
Ej2i [Pj1 ] ,

where the last equality follows from (4.22) and (4.23). We thus obtain

Ei [Pj1 ] = p(j1)Ej1i [Pj1 ] + (1− p(j1))Ej2i [Pj1 ] . (4.25)

Similarly, it holds

Ei [Pj2 ] = p(j2)Ej2i [Pj2 ] + (1− p(j2))Ej1i [Pj2 ] . (4.26)

We now compute EXi [Ei+1 [Pj1 ]Ei+1 [Pj2 ]]. We have

EXi [Ei+1 [Pj1 ]Ei+1 [Pj2 ]]

=
∫
R
f(yi)

[∫
Rn−i

Pj1(X1, . . . , Xi−1, yi, yi+1, . . . yn)f(yi+1) · · · f(yn)dyi+1 · · · dyn

·
∫
Rn−i

Pj2(X1, . . . , Xi−1, yi, y
′
i+1, . . . y

′
n)f(y′i+1) · · · f(y′n)dy′i+1 · · · dy′n

]
dyi

=
N∑
j=1

∫
R
f(yi)1(yi ∈ Bj)

[∫
Rn−i

Pj1(X1, . . . , Xi−1, yi, yi+1, . . . yn)f(yi+1) · · · f(yn)dyi+1 · · · dyn

·
∫
Rn−i

Pj2(X1, . . . , Xi−1, yi, y
′
i+1, . . . y

′
n)f(y′i+1) · · · f(y′n)dy′i+1 · · · dy′n

]
dyi

+
∫
R
f(yi)1(yi ∈ B)

[∫
Rn−i

Pj1(X1, . . . , Xi−1, yi, yi+1, . . . yn)f(yi+1) · · · f(yn)dyi+1 · · · dyn

·
∫
Rn−i

Pj2(X1, . . . , Xi−1, yi, y
′
i+1, . . . y

′
n)f(y′i+1) · · · f(y′n)dy′i+1 · · · dy′n

]
dyi
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For j = 1, . . . , N , let xj be such that Bj = [xj − h, xj + h]. Observe that if yi ∈ B̊j then
it holds 1(yi ∈ Bk) = δj,k = 1(xj ∈ Bk) where δ is the Kronecker delta. Observe also that
if yi ∈ B then it holds 1(yi ∈ Bk) = 0 = 1(z ∈ Bk) for some z ∈ B. This gives

Pk (X1, . . . , Xi−1, yi, yi+1, . . . , yn)1(yi ∈ B̊j) = Pk (X1, . . . , Xi−1, xj, yi+1, . . . , yn)1(yi ∈ B̊j),
(4.27)

and

Pk (X1, . . . , Xi−1, yi, yi+1, . . . , yn)1(yi ∈ B) = Pk (X1, . . . , Xi−1, z, yi+1, . . . , yn)1(yi ∈ B).
(4.28)

We thus have

EXi [Ei+1 [Pj1 ]Ei+1 [Pj2 ]]

=
N∑
j=1

p(j)
[∫

Rn−i
Pj1(X1, . . . , Xi−1, xj, yi+1, . . . yn)f(yi+1) · · · f(yn)dyi+1 · · · dyn

·
∫
Rn−i

Pj2(X1, . . . , Xi−1, xj, y
′
i+1, . . . y

′
n)f(y′i+1) · · · f(y′n)dy′i+1 · · · dy′n

]
+ p(B)

[∫
Rn−i

Pj1(X1, . . . , Xi−1, z, yi+1, . . . yn)f(yi+1) · · · f(yn)dyi+1 · · · dyn

·
∫
Rn−i

Pj2(X1, . . . , Xi−1, z, y
′
i+1, . . . y

′
n)f(y′i+1) · · · f(y′n)dy′i+1 · · · dy′n

]
.

Now, observe that
∫
Rn−i

Pk(X1, . . . , Xi−1, xj, yi+1, . . . yn)f(yi+1) · · · f(yn)dyi+1 · · · dyn = Eji [Pk]. (4.29)

Indeed, it holds

Eji [Pk] = 1
p(j)E [Pk1(Xi ∈ Bj) | X1, . . . , Xi−1]

= 1
p(j)

∫
Rn−i+1

Pk(X1, . . . , Xi−1, yi, yi+1, . . . , yn)1(yi ∈ Bj)f(yi)f(yi+1) · · · f(yn)dyidyi+1dyn

=
∫
Rn−i

Pk(X1, . . . , Xi−1, xj, yi+1, . . . , yn)f(yi+1) · · · f(yn)dyi+1dyn,

where the last equality follows from (4.27). Similarly, using (4.28) one can prove that for
z ∈ B it holds

∫
Rn−i

Pk(X1, . . . , Xi−1, z, yi+1, . . . yn)f(yi+1) · · · f(yn)dyi+1 · · · dyn = Ecompi [Pk].

185



Chapter 4 – Goodness of fit testing for Hölder continuous densities under local differential
privacy

We thus have

EXi [Ei+1 [Pj1 ]Ei+1 [Pj2 ]] =
N∑
j=1

p(j)Eji [Pj1 ]Eji [Pj2 ] + p(B)Ecompi [Pj1 ]Ecompi [Pj2 ],

and, using (4.22) and (4.23) we finally obtain

EXi [Ei+1 [Pj1 ]Ei+1 [Pj2 ]] = p(j1)Ej1i [Pj1 ]Ej1i [Pj2 ] + p(j2)Ej2i [Pj1 ]Ej2i [Pj2 ]

+ (1− p(j1)− p(j2))Ej2i [Pj1 ]Ej1i [Pj2 ] . (4.30)

Putting (4.25), (4.26) and (4.30) in (4.24), we obtain

Cov (Pj1 , Pj2)

=
n∑
i=1

E
[
p(j1)Ej1i [Pj1 ]Ej1i [Pj2 ] + p(j2)Ej2i [Pj1 ]Ej2i [Pj2 ] + (1− p(j1)− p(j2))Ej2i [Pj1 ]Ej1i [Pj2 ]

+
{
p(j1)Ej1i [Pj1 ] + (1− p(j1))Ej2i [Pj1 ]

}{
p(j2)Ej2i [Pj2 ] + (1− p(j2))Ej1i [Pj2 ]

}]
=

n∑
i=1

p(j1)p(j2)E
[(
Ej1i [Pj1 ]− Ej2i [Pj1 ]

) (
Ej1i [Pj2 ]− Ej2i [Pj2 ]

)]
,

and Cauchy-Schwarz inequality gives

|Cov(Pj1 , Pj2)| ≤
n∑
i=1

p(j1)p(j2)
√
E
[(
Ej1i [Pj1 ]− Ej2i [Pj1 ]

)2
]√

E
[(
Ej1i [Pj2 ]− Ej2i [Pj2 ]

)2
]
.

(4.31)
Now, using (4.29) and Jensen’s inequality we have

E
[(
Ej1i [Pj1 ]− Ej2i [Pj1 ]

)2
]

= E
[{∫

Rn−i
(Pj1(X1, . . . , Xi−1, xj1 , yi+1, . . . , yn)− Pj1(X1, . . . , Xi−1, xj2 , yi+1, . . . , yn))

f(yi+1) · · · f(yn)dyi+1 · · · dyn}2
]

≤ E
[∫

Rn−i
{Pj1(X1, . . . , Xi−1, xj1 , yi+1, . . . , yn)− Pj1(X1, . . . , Xi−1, xj2 , yi+1, . . . , yn)}2

f(yi+1) · · · f(yn)dyi+1 · · · dyn]

= E
[
{Pj1(X1, . . . , Xi−1, xj1 , Xi+1, . . . , Xn)− Pj1(X1, . . . , Xi−1, xj2 , Xi+1, . . . , Xn)}2

]
= E

([ 1
n

+ Y
]τ
−τ
− [Y ]τ−τ

)2
 ,
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where
Y = 1

n

n∑
k=1
k 6=i

1(Xk ∈ Bj1) + 2
nα

n∑
k=1

Wkj1 − p0(j1).

Note that since [·]τ−τ is continuous Lipschitz with Lipschitz constant 1, it holds

E
[(
Ej1i [Pj1 ]− Ej2i [Pj1 ]

)2
]
≤ 1
n2 .

However, we can provide another bound when |p(j1)− p0(j1)| ≥ 2(τ + 1/n). Assume that
p(j1)− p0(j1) ≥ 2(τ + 1/n). We have

E
[(
Ej1i [Pj1 ]− Ej2i [Pj1 ]

)2
]

≤ E

([ 1
n

+ Y
]τ
−τ
− [Y ]τ−τ

)2

1(Y ≤ τ)
+ E

([ 1
n

+ Y
]τ
−τ
− [Y ]τ−τ

)2

1(Y > τ)


≤ 1
n2P(Y ≤ τ)

= 1
n2P

 1
n

n∑
k=1
k 6=i

1(Xk ∈ Bj1) + 2
nα

n∑
k=1

Wkj1 − p0(j1) ≤ τ


≤ 1
n2P

(
1
n

n∑
k=1

1(Xk ∈ Bj1)− 1
n

+ 2
nα

n∑
k=1

Wkj1 − p0(j1) ≤ τ

)

= 1
n2P

(
p̂j1 ≤ τ + 1

n
+ p0(j1)

)
≤ 1
n2P

(
|p̂j1 − p(j1)| ≥ p(j1)− p0(j1)− τ − 1

n

)

Now, if p(j1)−p0(j1) ≥ 2(τ+1/n) then we have 0 < p(j1)−p0(j1)−τ− 1
n
≤ p(j1) ≤ 1 ≤ 1

α

and (4.21) gives

E
[(
Ej1i [Pj1 ]− Ej2i [Pj1 ]

)2
]
≤ 2
n2 exp

(
−nα

2 (p(j1)− p0(j1)− τ − 1/n)2

42

)

≤ 2
n2 exp

(
−nα

2 (p(j1)− p0(j1))2

168

)
.

One can prove the same result if p(j1)− p0(j1) ≤ −2(τ + 1/n), and similar bounds with

j1 replaced by j2 hold for E
[(
Ej1i [Pj2 ]− Ej2i [Pj2 ]

)2
]
. We can now conclude.

If j1 6= j2 are such that |p(j1) − p0(j1)| ≥ 2(τ + 1/n) and |p(j2) − p0(j2)| ≥ 2(τ + 1/n)
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then (4.31) gives

|Cov (Pj1 , Pj2)| ≤ 2p(j1)p(j2)
n

exp
(
−nα

2 [(p(j1)− p0(j1))2 + (p(j2)− p0(j2))2]
336

)
.

If j1 6= j2 are such that |p(j1) − p0(j1)| < 2(τ + 1/n) and |p(j2) − p0(j2)| ≥ 2(τ + 1/n)
then (4.31) gives

|Cov (Pj1 , Pj2)|

≤
√

2p(j1)p(j2)
n

exp
(
−nα

2(p(j2)− p0(j2))2

336

)

=
√

2p(j1)p(j2)
n

exp
(
−nα

2 [(p(j1)− p0(j1))2 + (p(j2)− p0(j2))2]
336

)
exp

(
nα2(p(j1)− p0(j1))2

336

)

≤
√

2 exp(1/21)p(j1)p(j2)
n

exp
(
−nα

2 [(p(j1)− p0(j1))2 + (p(j2)− p0(j2))2]
336

)
,

since |p(j1) − p0(j1)| < 2(τ + 1/n) ≤ 4/
√
nα2. The same result holds if j1 6= j2 are such

that |p(j1)− p0(j1)| ≥ 2(τ + 1/n) and |p(j2)− p0(j2)| < 2(τ + 1/n). Finally, if j1 6= j2 are
such that |p(j1)− p0(j1)| < 2(τ + 1/n) and |p(j2)− p0(j2)| < 2(τ + 1/n), then (4.31) gives

|Cov (Pj1 , Pj2)| ≤ p(j1)p(j2)
n

≤ p(j1)p(j2)
n

exp
( 2

21

)
exp

(
−nα

2 [(p(j1)− p0(j1))2 + (p(j2)− p0(j2))2]
336

)
,

which ends the proof of (4.20).

4.7.3 Proof of Theorem 4.4.3

The outline of the proof is similar to that of Theorem 4.3.4 : we first prove that the choice
of t1 and t2 in (4.10) yields PQn

f0
(Φ = 1) ≤ γ/2 and we then exhibit ρ1, ρ2 > 0 such that


∫
B |f − f0| ≥ ρ1 ⇒ PQn

f
(DB < t1) ≤ γ/2∫

B̄ |f − f0| ≥ ρ2 ⇒ PQn
f
(TB < t2) ≤ γ/2.

The quantity ρ1 + ρ2 will then provide an upper bound on En,α(f0, γ).
We have already seen in the proof of the upper bound in the non-interactive scenario
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that the choice t2 =
√

20/(nα2γ) gives PQn
f0

(TB ≥ t2) ≤ γ/4. Moreover, Chebychev’s
inequality and Proposition 4.4.2 yield

PQn
f0

(DB ≥ t1) = PQn
f0

(DB − EQn
f0

[DB] ≥ t1) ≤ PQn
f0

(
|DB − EQn

f0
[DB]| ≥ t1

)
≤

VarQfn0 (DB)
t21

≤ 5
(nα2)2t21

≤ γ

4

for t1 = 2
√

5/(nα2√γ). We thus have

PQn
f0

(Φ = 1) ≤ PQn
f0

(DB ≥ t1) + PQn
f0

(TB ≥ t2) ≤ γ

2 .

We have seen in the proof of Theorem 4.3.4 (upper bound in the non-interactive scenario)
that if we set

ρ2 = 2
∫
B̄
f0 +

(
1 + 1√

2

)
t2,

then we have ∫
B̄
|f − f0| ≥ ρ2 =⇒ PQn

f
(TB < t2) ≤ γ

2 .

It remains now to exhibit ρ1 such that
∫
B |f − f0| ≥ ρ1 implies PQn

f
(DB < t1) ≤ γ/2.

Chebychev’s inequality gives

PQn
f
(DB < t1) = PQn

f

(
EQn

f
[DB]−DB > EQn

f
[DB]− t1

)
≤ VarQfn(DB)(

EQn
f
[DB]− t1

)2

≤
5

(nα2)2(
EQn

f
[DB]− t1

)2 +
67Dτ (f)
nα2(

EQn
f
[DB]− t1

)2 ,

if EQn
f
[DB] − t1 > 0. Now, observe that if Dτ (f) ≥ 12(t1 + 6τ/

√
n), Proposition 4.4.2

implies

EQn
f
[DB]− t1 ≥

1
6Dτ (f)− 6τ√

n
− t1 ≥ t1 + 6τ√

n
≥ t1,
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and

EQn
f
[DB]− t1 ≥

1
6Dτ (f)−

(
6τ√
n

+ t1

)
≥ 1

6Dτ (f)− 1
12Dτ (f) = 1

12Dτ (f).

Thus, if Dτ (f) ≥ 12(t1 + 6τ/
√
n) we obtain

PQn
f
(DB < t1) ≤ 5

(nα2)2t21
+ 144× 67
nα2Dτ (f) = γ

4 + 9648
nα2Dτ (f) .

Thus, if Dτ (f) satisfies

Dτ (f) ≥ Cγ
nα2 , with Cγ = max

{
24
√

5 + 72
√
γ

,
9648× 4

γ

}

then we have PQn
f
(DB < t1) ≤ γ/2. We now exhibit ρ1 such that

∫
B |f − f0| ≥ ρ1 implies

Dτ (f) ≥ Cγ/(nα2). To this aim, we will use the following facts

i) Dτ (f) ≥ min
{∑N

j=1 |p(j)− p0(j)|2, τ
√∑N

j=1 |p(j)− p0(j)|2
}
,

ii)
∑N
j=1 |p(j) − p0(j)|2 ≥ C2

γ

nα2 ⇒ min
{∑N

j=1 |p(j)− p0(j)|2, τ
√∑N

j=1 |p(j)− p0(j)|2
}
≥

Cγ
nα2 ,

iii) (
∫
B |f − f0|)2 ≤ 4(L+ L0)2|B|2h2β + |B|/(2h)∑N

j=1 |p(j)− p0(j)|2.

We admit for now these three facts and conclude the proof of our upper bound. If we have

(∫
B
|f − f0|

)2
≥ 4(L+ L0)2|B|2h2β + |B|2h

C2
γ

nα2

then iii) implies
N∑
j=1
|p(j)− p0(j)|2 ≥

C2
γ

nα2 ,

and ii) combined with i) yield Dτ (f) ≥ Cγ/(nα2) and thus PQn
f
(DB < t1) ≤ γ/2. We can

then take

ρ1 =
√

4(L+ L0)2|B|2h2β + |B|2h
C2
γ

nα2 .

For all f ∈ H(β, L) satisfying ‖f − f0‖1 ≥ ρ1 + ρ2 it holds

PQn
f0

(Φ = 1) + PQn
f
(Φ = 0) ≤ γ

2 + min
{
PQn

f
(DB < t1),PQn

f
(TB < t2)

}
≤ γ

2 + γ

2 = γ,
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since ‖f − f0‖1 ≥ ρ1 + ρ2 implies
∫
B |f − f0| ≥ ρ1 or

∫
B̄ |f − f0| ≥ ρ2. Consequently, we

have

En,α(f0, γ) ≤ ρ1 + ρ2 =
√

4(L+ L0)2|B|2h2β + |B|2h
C2
γ

nα2 + 2
∫
B̄
f0 +

(
1 + 1√

2

)
t2

≤ C(L,L0, γ)
|B|hβ +

√
|B|
hnα2 +

∫
B̄
f0 + 1√

nα2

 .
The choice h � |B|−

1
2β+1 (nα2)−

1
2β+1 yields

En,α(f0, γ) ≤ C

[
|B|

β+1
2β+1 (nα2)−

β
2β+1 +

∫
B
f0 + 1√

nα2

]
,

which ends the proof of Theorem 4.4.3. It remains to prove i), ii) and iii). Let’s start with
the proof of i). If τ ≥

√∑N
j=1 |p(j)− p0(j)|2, then τ ≥ |p(j)− p0(j)| for all j, and we thus

have

Dτ (f) =
N∑
j=1
|p(j)− p0(j)|2 = min


N∑
j=1
|p(j)− p0(j)|2, τ

√√√√√ N∑
j=1
|p(j)− p0(j)|2

 .
We now deal with the case τ <

√∑N
j=1 |p(j)− p0(j)|2. In this case, we can write

Dτ (f)− τ

√√√√√ N∑
j=1
|p(j)− p0(j)|2

=
N∑
j=1
|p(j)− p0(j)|min {|p(j)− p0(j)|, τ} − τ

∑N
j=1 |p(j)− p0(j)|2√∑N
k=1 |p(k)− p0(k)|2

=
N∑
j=1
|p(j)− p0(j)|

min {|p(j)− p0(j)|, τ} − τ |p(j)− p0(j)|√∑N
k=1 |p(k)− p0(k)|2


︸ ︷︷ ︸

=:Aj

,

and Aj ≥ 0 for all j. Indeed, if j is such that |p(j)− p0(j)| < τ it holds

Aj = |p(j)− p0(j)|
1− τ√∑N

k=1 |p(k)− p0(k)|2

 ≥ 0,
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and if j is such that |p(j)− p0(j)| ≥ τ it holds

Aj = τ

1− |p(j)− p0(j)|√∑N
k=1 |p(k)− p0(k)|2

 ≥ 0.

Thus, if τ <
√∑N

j=1 |p(j)− p0(j)|2 we have

Dτ (f) ≥ τ

√√√√√ N∑
j=1
|p(j)− p0(j)|2 = min


N∑
j=1
|p(j)− p0(j)|2, τ

√√√√√ N∑
j=1
|p(j)− p0(j)|2

 ,
which end the proof of i). We now prove ii). Assume that

∑N
j=1 |p(j)−p0(j)|2 ≥ C2

γ/(nα2).
It holds C2

γ ≥ Cγ since Cγ ≥ 1 and we thus have
∑N
j=1 |p(j)− p0(j)|2 ≥ Cγ/(nα2). It also

holds

τ

√√√√√ N∑
j=1
|p(j)− p0(j)|2 ≥ τ · Cγ√

nα2
= Cγ
nα2 ,

yielding ii). Finally, Cauchy-Schwarz inequality yields

(∫
B
|f − f0|

)2
≤ |B|

∫
B
|f − f0|2

≤ |B| ·

∣∣∣∣∣∣
∫
B
|f − f0|2 −

1
2h

N∑
j=1

(p(j)− p0(j))2

∣∣∣∣∣∣+ |B|2h

N∑
j=1

(p(j)− p0(j))2 .

Now, observe that∣∣∣∣∣∣
∫
B
|f − f0|2 −

1
2h

N∑
j=1

(p(j)− p0(j))2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

∫
Bj

[
(f − f0)(x)− p(j)− p0(j)

2h

]2

dx

∣∣∣∣∣∣ ,
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and observe also that for x ∈ Bj it holds∣∣∣∣∣(f − f0)(x)− p(j)− p0(j)
2h

∣∣∣∣∣ =
∣∣∣∣∣ 1
2h

∫
Bj

[(f − f0)(x)− (f − f0)(u)]du
∣∣∣∣∣

≤ 1
2h

∫
Bj

[|f(x)− f(u)|+ |f0(x)− f0(u)|] du

≤ L+ L0

2h

∫
Bj
|x− u|βdu

≤ L+ L0

2h

∫
Bj

(2h)βdu

≤ 2(L+ L0)hβ.

This gives∣∣∣∣∣∣
∫
B
|f − f0|2 −

1
2h

N∑
j=1

(p(j)− p0(j))2

∣∣∣∣∣∣ ≤
N∑
j=1

∫
Bj

4(L+ L0)2h2β = 4(L+ L0)2|B|h2β,

which yields iii).

4.7.4 Proof of Theorem 4.4.4

Let B ⊂ R be a nonempty compact set, and let (Bj)j=1,...,N be a partition of B, h > 0 be
the bandwidth and (x1, . . . , xN) be the centering points, that is Bj = [xj − h, xj + h] for
all j ∈ J1, NK. Let ψ : [−1, 1] → R be such that ψ ∈ H(β, L),

∫
ψ = 0 and

∫
ψ2 = 1. For

j ∈ J1, NK, define

ψj : t ∈ R 7→ 1√
h
ψ
(
t− xj
h

)
.

Note that the support of ψj is Bj,
∫
ψj = 0 and (ψj)j=1,...,N is an orthonormal family.

For δ > 0 and ν ∈ VN = {−1, 1}N , define the functions

fν : x ∈ R 7→ f0(x) + δ
N∑
j=1

νjψj(x),

The following lemma shows that for δ properly chosen, for all ν ∈ VN , fν is a density
belonging to H(β, L) and fν is sufficiently far away from f0 in a L1 sense.
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Lemma 4.7.1. If the parameter δ appearing in the definition of fν satisfies

δ ≤
√
h ·min

{
C0(B)
‖ψ‖∞

,
1
2

(
1− L0

L

)
hβ
}
,

where C0(B) := min{f0(x) : x ∈ B}, then we have

i) fν ≥ 0 and
∫
fν = 1, for all ν ∈ VN ,

ii) fν ∈ H(β, L), for all ν ∈ VN ,

iii) ‖fν − f0‖1 = C1δN
√
h, for all ν ∈ VN , with C1 =

∫ 1
−1 |ψ|.

Proof. We first prove i). Since
∫
ψj = 0 for all j = 1, . . . , n, it holds

∫
fν =

∫
f0 = 1 for

all ν. Since Supp(ψk) = Bk for all k = 1, . . . , N , it holds fν ≡ f0 on Bc and thus fν is
non-negative on Bc. Now, for x ∈ Bj it holds for all ν ∈ VN

fν(x) = f0(x) + δνjψj(x) ≥ C0(B)− δ‖ψj‖∞ ≥ C0(B)− δ‖ψ‖∞√
h
≥ 0,

since δ ≤ C0(B)
√
h/‖ψ‖∞ Thus, fν is non-negative on R for all ν ∈ VN .

To prove ii), we have to show that |fν(x)− fν(y)| ≤ L|x− y|β, for all ν ∈ VN , for all
x, y ∈ R. Since fν ≡ f0 on Bc and f0 ∈ H(β, L0), this result is trivial for x, y ∈ Bc. If
x ∈ Bl and y ∈ Bk it holds

|fν(x)− fν(y)| ≤ |f0(x)− f0(y)|+ |δνlψl(x)− δνkψk(y)|

≤ L0|x− y|β + |δνlψl(x)− δνlψl(y)|+ |δνkψk(x)− δνkψk(y)|

≤ L0|x− y|β + δ√
h

∣∣∣∣ψ (x− xlh

)
− ψ

(
y − xl
h

)∣∣∣∣
+ δ√

h

∣∣∣∣ψ (x− xkh

)
− ψ

(
y − xk
h

)∣∣∣∣
≤ L0|x− y|β + δ

hβ+1/2 · L|x− y|
β + δ

hβ+1/2 · L|x− y|
β

=
(
L0

L
+ 2δ
hβ+1/2

)
L|x− y|β

≤ L|x− y|β

where we have used ψ ∈ H(β, L) and δ ≤ hβ+1/2

2

(
1− L0

L

)
. Thus, it holds |fν(x)−fν(y)| ≤

L|x− y|β for all ν ∈ VN , x ∈ Bl and y ∈ Bk. The case x ∈ Bc and y ∈ Bk can be handled
in a similar way, which ends the proof of ii).
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We now prove iii). It holds

∫
R
|fν − f0| =

∫
R

∣∣∣∣∣∣δ
N∑
j=1

νjψj(x)

∣∣∣∣∣∣ dx =
N∑
k=1

∫
Bk

|δνkψk(x)| dx = δN
√
h
∫ 1

−1
|ψ|.

For a privacy mechanism Q ∈ Qα, we denote by Qn
f0 (respectively Q

n
fν ) the distribution

of (Z1, . . . , Zn) when the Xi’s are distributed according to f0 (respectively to fν). We set
Q̄n = 1/2N ∑ν∈VN Q

n
fν . If δ is chosen such that δ ≤

√
h·min

{
C0(B)
‖ψ‖∞ ,

1
2

(
1− L0

L

)
hβ
}
, setting

ρ? = C1δN
√
h, we deduce from the above lemma that if

KL(Qn
f0 , Q̄

n) ≤ 2(1− γ)2 for all Q ∈ Qα, (4.32)

then it holds
inf
Q∈Qα

inf
φ∈ΦQ

sup
f∈H1(ρ?)

{
PQn

f0
(φ = 1) + PQn

f
(φ = 0)

}
≥ γ,

where H1(ρ?) := {f ∈ H(β, L) : f ≥ 0,
∫
f = 1, ‖f − f0‖1 ≥ ρ?}, and consequently

En,α(f0, γ) ≥ ρ?. Indeed, if (4.32) holds, then we have

inf
Q∈Qα

inf
φ∈ΦQ

sup
f∈H1(ρ?)

{
PQn

f0
(φ = 1) + PQn

f
(φ = 0)

}

≥ inf
Q∈Qα

inf
φ∈ΦQ

PQn
f0

(φ = 1) + 1
2N

∑
ν∈VN

PQn
fν

(φ = 0)


= inf
Q∈Qα

inf
φ∈ΦQ

(
1−

[
PQn

f0
(φ = 0)− PQ̄n(φ = 0)

])
≥ inf

Q∈Qα

[
1− TV(Qn

f0 , Q̄
n)
]

≥ inf
Q∈Qα

1−

√
KL(Qn

f0 , Q̄
n)

2


≥ γ,

where the second to last inequality follows from Pinsker’s inequality. We now prove
that (4.32) holds under an extra assumption on δ. Fix a privacy mechanism Q ∈ Qα.
The conditionnal distribution of Zi given Z1, . . . , Zi−1 when Xi is distributed accord-
ing to f0 or fν will be denoted by L(0)

Zi|z1:(i−1)
(dzi) =

∫
RQi(dzi | xi, z1:(i−1))f0(xi)dxi and

L(ν)
Zi|z1:(i−1)

(dzi) =
∫
RQi(dzi | xi, z1:(i−1))fν(xi)dxi respectively. The joint distribution of
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Z1, . . . , Zi when X1, . . . , Xi are i.i.d. from f0 will be denoted by

L(0)
Z1,...,Zi

(dz1:i) = L(0)
Zi|z1:(i−1)

(dzi) · · · L(0)
Z2|z1(dz2)L(0)

Z1 (dz1).

The convexity and tensorization of the Kullback-Leibler divergence give

KL(Qn
f0 , Q̄

n) ≤ 1
2N

∑
ν∈V

KL(Qn
f0 , Q

n
fν )

= 1
2N

∑
ν∈V

n∑
i=1

∫
Zi−1

KL
(
L(0)
Zi|z1:(i−1)

,L(ν)
Zi|z1:(i−1)

)
L(0)
Z1,...,Zi−1

(dz1:(i−1)).

According to lemma B.3 in [15], there exists a probability measure µz1:(i−1) on Z and a
family of µz1:(i−1)-densities zi 7→ qi(· | xi, z1:(i−1)) of Qi(· | xi, z1:(i−1)), xi ∈ R such that

e−α ≤ qi(zi | xi, z1:(i−1)) ≤ eα, ∀zi ∈ Z,∀xi ∈ R.

We can thus write L(0)
Zi|z1:(i−1)

(dzi) = m
(0)
i (zi | z1:(i−1))dµz1:(i−1)(zi), and L

(ν)
Zi|z1:(i−1)

(dzi) =
m

(ν)
i (zi | z1:(i−1))dµz1:(i−1)(zi) with m

(0)
i (zi | z1:(i−1)) =

∫
R qi(zi | xi, z1:(i−1))f0(xi)dxi and

m
(ν)
i (zi | z1:(i−1)) =

∫
R qi(zi | xi, z1:(i−1))fν(xi)dxi. Bounding the Kullback-Leibler diver-

gence by the χ2-divergence, we have

KL
(
L(0)
Zi|z1:(i−1)

,L(ν)
Zi|z1:(i−1)

)

≤
∫
Z

dL(0)
Zi|z1:(i−1)

dL(ν)
Zi|z1:(i−1)

− 1


2

L(ν)
Zi|z1:(i−1)

(dzi)

=
∫
Z

m(0)
i (zi | z1:i−1)−m(ν)

i (zi | z1:i−1)
m

(ν)
i (zi | z1:i−1)

2

m
(ν)
i (zi | z1:i−1)dµz1:(i−1)(zi)

=
∫
Z

(∫
R qi(zi | x, z1:i−1) (f0(x)− fν(x)) dx

m
(ν)
i (zi | z1:i−1)

)2

m
(ν)
i (zi | z1:i−1)dµz1:(i−1)(zi)

=
∫
Z

[∫
R

(
qi(zi | x, z1:i−1)
m

(ν)
i (zi | z1:i−1)

− e−2α
)

(f0(x)− fν(x)) dx
]2

m
(ν)
i (zi | z1:i−1)dµz1:(i−1)(zi),

since
∫
R(f0 − fν) = 0. Recall that qi satisfies e−α ≤ qi(zi | x, z1:(i−1)) ≤ eα. Thus, we have
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eα =
∫
eαfν ≥ m

(ν)
i (zi | z1:(i−1)) ≥ e−α

∫
fν = e−α, and therefore

0 ≤ gi,z1:i(x) := qi(zi | x, z1:(i−1))
m

(ν)
i (zi | z1:(i−1))

− e−2α ≤ zα = e2α − e−2α.

Thus,

1
2N

∑
ν∈VN

[∫
R

(
qi(zi | x, z1:i−1)
m

(ν)
i (zi | z1:i−1)

− e−2α
)

(f0(x)− fν(x)) dx
]2

m
(ν)
i (zi | z1:i−1)

≤ eαδ2 1
2N

∑
ν∈VN

[
N∑
k=1

νk

∫
R
gi,z1:i(x)ψk(x)dx

]2

= eδ2
N∑
k=1

[∫
R
gi,z1:i(x)ψk(x)dx

]2

≤ eδ2z2
α

N∑
k=1
‖ψk‖2

1

≤ eδ2z2
αNhC

2
1

= e

2C
2
1δ

2z2
α|B|,

where we recall that C1 =
∫
|ψ|. We thus obtain

KL(Qn
f0 , Q̄

n) ≤ e

2C
2
1δ

2nz2
α|B|,

and (4.32) holds as soon as

δ ≤

√√√√ 4(1− γ)2

eC2
1nz

2
α|B|

.

Finally, taking δ = min
{√

h ·min
{
C0(B)
‖ψ‖∞ ,

1
2

(
1− L0

L

)
hβ
}
,
√

4(1−γ)2

eC2
1nz

2
α|B|

}
, we obtain

En,α(f0, γ) ≥ C(ψ, γ) min

|B|min
{
C0(B)
‖ψ‖∞

,
1
2

(
1− L0

L

)
hβ
}
,

√
|B|

√
h
√
nz2

α

 .
If B is chosen such that C0(B) = min{f0(x), x ∈ B} ≥ Chβ, then the bound becomes

En,α(f0, γ) ≥ C(ψ, γ, L, L0) min

|B|hβ,
√
|B|

√
h
√
nz2

α

 ,
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and the choice h � |B|−1/(2β+1)(nz2
α)−1/(2β+1) yields

En,α(f0, γ) ≥ C(ψ, γ, L, L0)|B|
β+1
2β+1 (nz2

α)−
β

2β+1 .

Note that with this choice of h, the condition C0(B) ≥ Chβ becomes |B|β/(2β+1)C0(B) ≥
C(nz2

α)−β/(2β+1).

4.8 Appendix : Proofs of Section 4.5

4.8.1 Example 4.5.2

We first prove the result for the non-interactive case. Take

B = [a, T ], with T = (nα2)
2β

k(4β+3)+3β+3 .

Note that T > a for n large enough. Theorem 4.3.4 gives

ENI
n,α(f0, γ) . max

{
(T − a)

3β+3
4β+3 (nα2)−

2β
4β+3 ,

(
a

T

)k}

. max
{
T

3β+3
4β+3 (nα2)−

2β
4β+3 , T−k

}
= (nα2)−

2kβ
k(4β+3)+3β+3 .

To obtain the lower bound, we first check that condition (4.7) in Theorem 4.3.5 is satisfied.
Since T → +∞ as n→∞, it holds for n large enough

|B|
β

4β+3C0(B) = (T − a)
β

4β+3
kak

T k+1

= kakT
β

4β+3−(k+1)
(

1− a

T

) β
4β+3

& T
β−(k+1)(4β+3)

4β+3

& C(nα2)−
2β

4β+3 .
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Condition (4.7) is thus satisfied and Theorem 4.3.5 thus yields for n large enough

ENI
n,α(f0, γ) &

[
log

(
C(T − a)

4β+4
4β+3 (nα2)

2
4β+3

)]−1
(T − a)

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
CT

4β+4
4β+3 (nα2)

2
4β+3

)]−1
T

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
C(nα2)

4β+4
4β+3 ·

2β
k(4β+3)+3β+3 + 2

4β+3

)]−1
(nα2)−

2kβ
k(4β+3)+3β+3 .

The proof in the interactive scenario follows the same lines at the exception of the choice
of T which should be taken as

T = (nα2)
β

k(2β+1)+β+1 .

4.8.2 Example 4.5.3

We first prove the result for the non-interactive case. Take

B = [0, T ], with T = 1
λ
· 2β

4β + 3 log(nα2).

Theorem 4.3.4 gives

ENI
n,α(f0, γ) . max

{
T

3β+3
4β+3 (nα2)−

2β
4β+3 , exp(−λT )

}
. max

{
log(nα2)

3β+3
4β+3 (nα2)−

2β
4β+3 , (nα2)−

2β
4β+3

}
. log(nα2)

3β+3
4β+3 (nα2)−

2β
4β+3 .

Now, observe that

|B|
β

4β+3C0(B) = T
β

4β+3 · λ exp(−λT ) = λT
β

4β+3 (nα2)−
2β

4β+3 & (nα2)−
2β

4β+3 .

Thus, condition (4.7) is satisfied and Theorem 4.3.5 yields

ENI
n,α(f0, γ) &

[
log

(
CT

4β+4
4β+3 (nα2)

2
4β+3

)]−1
T

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
C log(nα2)

4β+4
4β+3 (nα2)

2
4β+3

)]−1
log(nα2)

3β+3
4β+3 (nα2)−

2β
4β+3 .
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The proof in the interactive scenario follows the same lines at the exception of the choice
of T which should be taken as

T = 1
λ
· β

2β + 1 log(nα2).

4.8.3 Example 4.5.4

We first prove the result for the non-interactive case. Take

B = [−T, T ], with T =
√

4β
4β + 3 log(nα2).

Theorem 4.3.4 gives

ENI
n,α(f0, γ) . max

{
(2T )

3β+3
4β+3 (nα2)−

2β
4β+3 ,

2√
2π

∫ +∞

T
e−x

2/2dx

}

. max
{
T

3β+3
4β+3 (nα2)−

2β
4β+3 ,

1
T

exp
(
−T

2

2

)}

. max
{

log(nα2)
3β+3

2(4β+3) (nα2)−
2β

4β+3 , (nα2)−
2β

4β+3

}
. log(nα2)

3β+3
2(4β+3) (nα2)−

2β
4β+3 .

Now, observe that

|B|
β

4β+3C0(B) = (2T )
β

4β+3 · 1√
2π

exp
(
−T

2

2

)
& (nα2)−

2β
4β+3 .

Thus, condition (4.7) is satisfied and Theorem 4.3.5 yields

ENI
n,α(f0, γ) &

[
log

(
C(2T )

4β+4
4β+3 (nα2)

2
4β+3

)]−1
(2T )

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
C log(nα2)

4β+4
2(4β+3) (nα2)

2
4β+3

)]−1
log(nα2)

3β+3
2(4β+3) (nα2)−

2β
4β+3

The proof in the interactive scenario follows the same lines at the exception of the choice
of T which should be taken as

T =
√

2β
2β + 1 log(nα2).
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4.8.4 Example 4.5.5

We first prove the result for the non-interactive case. Take

B = [−T, T ], with T = (nα2)
2β

7β+6 .

Theorem 4.3.4 gives

ENI
n,α(f0, γ) . max

{
(2T )

3β+3
4β+3 (nα2)−

2β
4β+3 ,

2
πa

∫ +∞

T

a2

a2 + x2dx

}

. max
{
T

3β+3
4β+3 (nα2)−

2β
4β+3 , arctan

(
a

T

)}
.

Since T →∞ as n→∞, we have arctan(a/T ) ∼n→∞ a/T and thus arctan(a/T ) ≤ 2(a/T )
for n large enough. This gives for n large enough

ENI
n,α(f0, γ) . max

{
T

3β+3
4β+3 (nα2)−

2β
4β+3 ,

1
T

}
= (nα2)−

2β
7β+6

Now, observe that for n large enough it holds

|B|
β

4β+3C0(B) = (2T )
β

4β+3 · 1
πa

a2

T 2 + a2 & T
β

4β+3 · 1
T 2 = (nα2)−

2β
4β+3 .

Thus, condition (4.7) is satisfied and Theorem 4.3.5 yields

ENI
n,α(f0, γ) &

[
log

(
C(2T )

4β+4
4β+3 (nα2)

2
4β+3

)]−1
(2T )

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
C(nα2)

4β+4
4β+3 ·

2β
7β+6 + 2

4β+3

)]−1
(nα2)−

2β
7β+6 .

The proof in the interactive scenario follows the same lines at the exception of the choice
of T which should be taken as

T = (nα2)
β

3β+2 .

201



Chapter 4 – Goodness of fit testing for Hölder continuous densities under local differential
privacy

4.8.5 Example 4.5.6

We first prove the result for the non-interactive case. The upper bound is straightforward
taking B = [0, 2/

√
L0]. For the lower bound, take

B =
[
T,

2√
L0
− T

]
, with T = (nα2)−

2β
4β+3 .

Note that for n large enough it holds T < 1/(2
√
L0) and we thus have

|B|
β

4β+3C0(B) =
(

2√
L0
− 2T

) β
4β+3

· L0T & T = (nα2)−
2β

4β+3 .

Thus, condition (4.7) is satisfied and Theorem 4.3.5 yields

ENI
n,α(f0, γ) &

log
C ( 2√

L0
− 2T

) 4β+4
4β+3

(nα2)
2

4β+3

−1 (
2√
L0
− 2T

) 3β+3
4β+3

(nα2)−
2β

4β+3

&
[
log

(
C(nα2)

2
4β+3

)]−1
(nα2)−

2β
4β+3

The proof in the interactive scenario follows the same lines at the exception of the choice
of T for the lower bound which should be taken as

T = (nα2)−
β

2β+1 .

4.8.6 Example 4.5.7

Let a ≥ 1, b ≥ 1 with a > 1 or b > 1. We first prove the result for the non-interactive
case. The upper bound is straightforward taking B = [0, 1]. For the lower bound, we need
to distinguish different cases.

Case 1 : a > 1, b = 1. In this case f0 is strictly non-decreasing on [0, 1] and f0(0) = 0.
In order that f0 is bounded from below by a strictly positive quantity, we thus take B of
the form B = [T1, 1] with 0 < T1 < 1. We choose

T1 = (nα2)−
2β

(a−1)(4β+3) .
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Observe that that for n large enough we have

|B|
β

4β+3C0(B) = [1− T1]
β

4β+3 · 1
B(a, 1)T

a−1
1 & T a−1

1 = (nα2)−
2β

4β+3

Thus, condition (4.7) is satisfied and Theorem 4.3.5 yields for n large enough

ENI
n,α(f0, γ) &

[
log

(
C [1− T1]

4β+4
4β+3 (nα2)

2
4β+3

)]−1
[1− T1]

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
C(nα2)

2
4β+3

)]−1
(nα2)−

2β
4β+3 .

Case 2 : a = 1, b > 1. In this case f0 is strictly non-increasing on [0, 1] and f0(1) = 0.
In order that f0 is bounded from below by a strictly positive quantity, we thus take B of
the form B = [0, 1− T2] with 0 < T2 < 1. We choose

T2 = (nα2)−
2β

(b−1)(4β+3) .

Observe that that for n large enough we have

|B|
β

4β+3C0(B) = [1− T2]
β

4β+3 · 1
B(1, b)T

b−1
2 & T b−1

2 = (nα2)−
2β

4β+3

Thus, condition (4.7) is satisfied and Theorem 4.3.5 yields for n large enough

ENI
n,α(f0, γ) &

[
log

(
C [1− T2]

4β+4
4β+3 (nα2)

2
4β+3

)]−1
[1− T2]

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
C(nα2)

2
4β+3

)]−1
(nα2)−

2β
4β+3 .

Case 3 : a > 1, b > 1. In this case, f0 is non-decreasing on [0, (a− 1)/(a+ b− 2)], non-
increasing on [(a − 1)/(a + b − 2), 1] and f0(0) = f0(1) = 0. In order that f0 is bounded
from below by a strictly positive quantity, we thus take B of the form B = [T3, 1 − T4]
and we choose

T3 = (nα2)−
2β

(a−1)(4β+3) , T4 = (nα2)−
2β

(b−1)(4β+3) .

Observe that for n large enough it holds

0 < T3 <
a− 1

a+ b− 2 < 1− T4 < 1.
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Observe that for n large enough we have

|B|
β

4β+3C0(B) = [1− (T3 + T4)]
β

4β+3 · 1
B(a, b) min

{
T a−1

3 (1− T3)b−1, (1− T4)a−1T b−1
4

}
& min

{
T a−1

3 , T b−1
4

}
& (nα2)−

2β
4β+3 .

Thus, condition (4.7) is satisfied and Theorem 4.3.5 yields for n large enough

ENI
n,α(f0, γ) &

[
log

(
C [1− (T3 + T4)]

4β+4
4β+3 (nα2)

2
4β+3

)]−1
[1− (T3 + T4)]

3β+3
4β+3 (nα2)−

2β
4β+3

&
[
log

(
C(nα2)

2
4β+3

)]−1
(nα2)−

2β
4β+3

The proof in the interactive scenario follows the same lines at the exception of the choice
of T1 and T2 which should be taken as

T1 = T3 = (nα2)−
β

(a−1)(2β+1) , T2 = T4 = (nα2)−
β

(b−1)(2β+1) .
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Titre : Problèmes d’estimation, de sélection de variables et de tests sous contraintes de confi-
dentialité différentielle locale

Mot clés : confidentialité différentielle locale, estimation d’une densité, identification du sup-

port, tests d’adéquation, transition de phase, vitesses minimax

Résumé : La notion de confidentialité différen-
tielle a été introduite pour permettre de réali-
ser des analyses statistiques tout en fournissant
des garanties de protection des données per-
sonnelles analysées. Dans cette thèse, on s’in-
téresse à trois problèmes d’inférence statistique
sous contraintes de confidentialité différentialle
locale.
Dans un premier temps, on s’intéresse à l’esti-
mation non-paramétrique d’une densité de pro-
babilité. Nous étudions le risque minimax Lr
sur les ellipsoïdes de Besov Bspq(L), et nous in-
téressons à la question de l’adaptation au pa-
ramètre de régularité.

On s’intéresse ensuite à l’identification du sup-
port de l’espérance d’une variable aléatoire sui-
vant une loi normale d-dimensionnelle. Sous des
hypothèses de sparsité, nous étudions le risque
minimax lié à la distance de Hamming, et en
déduisons des conditions nécessaires et suffi-
santes pour que l’identification du support soit
possible.
Enfin, nous étudions un problème de test d’adé-
quation pour des densités Höldériennes dont le
support n’est pas supposé borné.
Pour chaque problème, nous mettons en évi-
dence l’influence des contraintes de confiden-
tialité sur les vitesses minimax.

Title: Estimation, variable selection and testing problems under local differential privacy con-
straints

Keywords: local differential privacy, density estimation, support recovery, goodness-of-fit test-

ing, phase transition, minimax rates

Abstract: The notion of differential privacy
has been introduced to enable statistical anal-
yses to be carried out while protecting the pri-
vacy of the individuals whose data are anal-
ysed. In this thesis, three problems of statis-
tical inference under local differential privacy
constraints are considered.
First, we address the problem of non-
parametric density estimation. We study the
minimax risk over Besov ellipsoids Bspq(L) un-
der the Lr-risk, and we investigate adaptation
to the regularity parameter.

We then consider the problem of identifying the
support of the expectation of a d-dimensional
gaussian random variable. Under sparsity as-
sumptions, we study the minimax risk for the
Hamming loss, and obtain necessary and suffi-
cient conditions for support recovery to be pos-
sible.
Finally, we address a goodness-of-fit testing
problem for Hölder continuous densities.
For each problem, we quantify how the local
differential privacy constraints affect the clas-
sical minimax rates.
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