
HAL Id: tel-03541299
https://theses.hal.science/tel-03541299

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aspects of conformal field theories and quantum fields
in AdS

Xiang Zhao

To cite this version:
Xiang Zhao. Aspects of conformal field theories and quantum fields in AdS. Quantum Physics [quant-
ph]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAX103�. �tel-03541299�

https://theses.hal.science/tel-03541299
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
1I

P
PA

X
10

3

Aspects of Conformal Field Theories
and Quantum Fields in AdS
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Abstract

This thesis studies the structure and the space of conformal field theories (CFTs),

and more generally various properties of conformal correlation functions. It extends

into multiple directions, both perturbative and non-perturbative, local and non-local,

with and without supersymmetry.

The first aspect concerns the conformal correlation functions in d-dimensional

spacetime and their relation to flat-space S-matrices in (d + 1)-dimensional space-

time. The connection is built up by considering a quantum field theory (QFT) in a

fixed (d + 1)-dimensional Anti-de Sitter (AdS) background and sending the radius

of the AdS curvature to infinity. That is, the central object to study is the flat-

space limit of QFT in AdS. The analysis starts from taking the flat-space limit of

the building blocks of Witten diagrams, namely the bulk-boundary and bulk-bulk

propagators. This analysis leads to conjectural generic prescriptions to extracting

flat-space physics from conformal correlators. Interestingly, the intuitional picture

that a Witten diagram simply reduces to the corresponding Feynman diagram does

not always hold, and the origin of this discrepancy lies in the bulk-bulk propaga-

tors: they could have two different flat-space limits. One of the limits always exists

and reduces to Feynman propagator, while the other, when present, can diverge in

the flat-space limit. This observation is tested by explicit examples, including four-

point scalar contact, exchange and triangle Witten diagrams and the conjectures are

expected to work whenever the scattering energy is large enough.

The second aspect studies the classification problem of conformal defects. The

goal is to partially answer the question: given a bulk CFT and consistency conditions

such as crossing symmetry and unitarity, what are the allowed conformal defects

with a non-trivial coupling to the bulk? Analytic bootstrap techniques are applied

to study a simplified version of this problem where in the bulk only a single free

scalar field is considered. Analysis of various three-point functions among bulk and

defect fields leads to the conclusion that almost all the n-point correlation functions

of defect fields are completely fixed up to a potentially unfixed one-point function.

This analysis also leads to an intermediate result in which it is proven that the n-

point correlation functions of a conformal theory with a generalised free spectrum

must be those of the generalised free field theory.

The third aspect studies the interplay between analyticity in spin in CFTs and
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supersymmetry. Operator spectrum in a general unitary CFT is expected to be

captured by a function analytic for spin ` > 1 [1], and the operators are organised

into various Regge trajectories. The presence of supersymmetry in general extends

the region of analyticity in spin. The 6d N = (2, 0) superconformal field theories

(SCFTs) is considered as a concrete example, in which analyticity in spin is expected

to hold down to ` > −3. Detailed analysis of the four-point function of the the stress

tensor supermultiplet uncovers an unexpected interplay between unprotected and

protected multiplets: the stress tensor multiplet can be found on a long (unprotected)

Regge trajectory when analytically continued to spin ` = −2. In this study a general

iterative bootstrap program is also established, which applies to all SCFTs that have

a chiral algebra subsector.
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Résumé

Cette thèse étudie la structure et l’espace des théories conformes des champs (CFT),

et plus généralement diverses propriétés des fonctions de corrélation conformes. Elle

s’étend dans de multiples directions, à la fois perturbatives et non perturbatives,

locales et non locales, avec et sans supersymétrie.

Le premier aspect concerne les fonctions de corrélation conformes dans l’espace-

temps de dimension d et leur relation avec les S-matrices de l’espace plat dans

l’espace-temps de (d + 1) dimensions. La connexion est établie en considérant une

théorie quantique des champs (QFT) dans un arrière-plan Anti-de Sitter (AdS) de

dimension fixe (d + 1) et en envoyant le rayon de la courbure de l’AdS à l’infini.

C’est-à-dire que l’objet central à étudier est la limite d’espace plat de QFT dans AdS.

L’analyse commence en prenant la limite de l’espace plat des blocs de construction des

diagrammes de Witten, à savoir les propagateurs vrac-à-limite et vrac-à-vrac. Cette

analyse conduit à des prescriptions génériques conjecturales pour extraire la physique

des espaces plats à partir de corrélateurs conformes. Fait intéressant, l’image intu-

itive qu’un diagramme de Witten réduit simplement au diagramme de Feynman

correspondant ne tient pas toujours et l’origine de cet écart réside dans les propaga-

teurs vrac-à-vrac: ils pourraient avoir deux limites d’espace plat différentes. L’une

des limites existe toujours et se réduit au propagateur Feynman, tandis que l’autre,

lorsqu’elle est présente, peut diverger dans la limite de l’espace plat. Cette observa-

tion est testée par des exemples explicites, y compris les diagrammes de Witten de

contact scalaire à quatre points, d’échange et de triangle et les conjectures devraient

fonctionner chaque fois que l’énergie de diffusion est suffisamment grande.

Le deuxième aspect étudie le problème de classification des défauts CFT. Le

but est de répondre en partie à la question: étant donné une CFT du volume et

des conditions de cohérence telles que la symétrie de croisement et l’unitarité, quels

sont les défauts de conformité autorisés avec un couplage non trivial au volume?

Des techniques de bootstrap analytiques sont appliquées pour étudier une version

simplifiée de ce problème où, dans l’ensemble, un seul champ scalaire libre est con-

sidéré. L’analyse de diverses fonctions à trois points parmi les champs de volume

et de défauts conduit à la conclusion que presque toutes les fonctions de corrélation

à n points des champs de défauts sont complètement fixées jusqu’à une fonction à

un point potentiellement non fixée. Cette analyse conduit également à un résultat
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intermédiaire dans lequel il est prouvé que les fonctions de corrélation à n points

d’une théorie conforme à spectre libre généralisé doivent être celles de la théorie du

champ libre généralisée.

Le troisième aspect étudie l’interaction entre l’analyticité en spin dans les CFT et

la supersymétrie. Le spectre des opérateurs dans une CFT unitaire générale devrait

être capturé par une analyse de fonction pour le spin ` > 1 [1], et les opérateurs

sont organisés en diverses trajectoires de Regge. La présence de supersymétrie étend

en général la région d’analyticité en spin. Les 6d N = (2, 0) théories des champs

superconformes (SCFT) sont considérées comme un exemple concret, dans lequel

l’analyticité en spin devrait se maintenir à ` > −3. Une analyse détaillée de la

fonction à quatre points du supermultiplet du tenseur des contraintes révèle une

interaction inattendue entre les multiplets non protégés et protégés: le multiplet du

tenseur des contraintes peut être trouvé sur une longue trajectoire de Regge (non

protégée) lorsqu’il continue analytiquement de tourner ` = 2. Dans cette étude, un

programme général de bootstrap itératif est également établi, qui s’applique à tous

les SCFT qui ont un sous-secteur d’algèbre chirale.
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Chapter 1

Introduction

Symmetry lies at the heart of modern theoretical physics. This thesis focuses on

one particular type of spacetime symmetry - conformal symmetry, which indicates

invariance under Poincaré transformations as well as scale and special conformal

transformations (a combination of inversion and translation). Quantum field theo-

ries (QFTs) invariant under conformal symmetry are called conformal field theories

(CFTs). CFT is the central topic of this thesis, but before the detailed discussion

perhaps in the first place one wonders: why are CFTs interesting?

1.1 Why Conformal Field Theory?

CFTs play an important role in many areas of physics. They describe the critical

phenomena in statistical physics, capture the worldsheet dynamics of string theory,

reside on one side of the AdS/CFT correspondence [5–9] and organise a vast territory

of the space of QFTs. Here we focus on two main motivations for this thesis.

Signposts in the space of QFTs Consider the renormalisation group (RG) flow

of a QFT. At the infrared (IR) the QFT can either flow to a gapped phase (with a

mass or length scale) or a gapless one, and the latter is called an IR fixed point. At an

IR fixed point the correlation length diverges and the theory becomes scale invariant.

In many cases, the scaling invariance gets enhanced to conformal invariance [10] and

therefore the long distance dynamics of the theory is captured by a CFT. As the

theory flows to the IR fixed point, the irrelevant operators becomes increasingly

insignificant and eventually drop out. A generic fact is that most operators are

irrelevant. Therefore, many theories distinct at the microscopic level are described

by the same CFT in the IR and they belong to the the same universality class.

Residing at the endpoints of many RG flows, CFTs serve as the signposts of the

space of QFTs. Charting out the space of CFTs leads us towards the comprehensive

understanding of the long-distance dynamics of almost any QFT that flows to a

gapless phase.
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CHAPTER 1. INTRODUCTION

Holographic Duality A full-fledged quantum mechanical description of gravity

has been a dream of theoretical physicists for decades. The AdS/CFT correspon-

dence provides a non-perturbative definition of quantum gravity in anti-de Sitter

(AdS) space in terms of CFTs on the asymptotic boundary. According to the cor-

respondence, the partition function in the bulk is equal to that on the boundary

[6, 7]

Zbulk[φ0] = ZCFT[φ0],

where φ0 denotes collectively the sources of operators in the CFT and boundary

conditions of the fields in the bulk. By taking functional derivatives with respect

to φ0 and setting them to zero, one obtains equalities between correlation functions

in the bulk and in the boundary CFT. Therefore, studying CFTs which have a

holographic dual helps us to unveil the shape of quantum gravity.1

In addition, within this framework one can consider a scenario where the back-

ground AdS geometry is fixed, hence no gravitational dynamics in AdS space and

no stress tensor present in the boundary theory. If one also sends the radius of AdS

curvature to infinity so that the centre of AdS looks like a flat space, the boundary

conformal theories (BCTs) will contain information about non-conformal flat-space

physics in a spacetime of one dimension higher [13]. This can offer a different ap-

proach to understand, for example, the analytic structure of flat-space S-matrices

from the conformal correlation functions whose analyticity is much better under-

stood.

1.2 The Bootstrap Philosophy

Traditional field theories rely heavily on the Lagrangian formulation. As is taught

in graduate courses on QFT, we can perturbatively calculate scattering amplitudes

by expanding the interaction term in the Lagrangian, from tree-level amplitudes to

higher loop corrections.

The bootstrap philosophy, on the other hand, takes a very different approach. In

a very broad sense, the philosophy of the bootstrap is to rely solely on the symmetries

and consistency conditions of the theory to solve it non-perturbatively. This has

many advantages over the Lagrangian formulation because the power of the latter

dims for strongly coupled theories. Moreover, there are intrinsically quantum theories

that do not even have a Lagrangian description. These theories automatically fall

out of reach of the Lagrangian approach but may still be accessible through the

bootstrap approach.

1See, for example, [11, 12] for discussions on criteria for CFTs to have a holographic dual.
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1.3. OUTLINE

Theories without a Lagrangian A fact in favour of the bootstrap philoso-

phy is the existence of non-Lagrangian theories. For example, the six-dimensional

N = (2, 0) superconformal field theories (SCFTs) do not have any known local La-

grangian description. They were originally defined as the decoupling limit of IIB

string theory and the interacting (2,0) theories are labelled by simply-laced Lie al-

gebra AN≥1, DN≥4, E6,7,8 [14].

At large N the (2,0) theories of type AN and DN are holographic dual of eleven-

dimensional supergravity [5, 15, 16] and for finite N they offer a window into quantum

gravity. Through dimensional reduction of (2,0) theories one can construct a vast

landscape of lower dimensional supersymmetric field theories and dualities among

them. For example, the AGT correspondence establishes novel connections between

4d N = 2 class S theories and 2d CFTs [17].

Despite their significance in physics, (2,0) theories are very difficult to study using

traditional QFT techniques, because they lack a local Lagrangian. One approach to

attack this problem is to view the (2,0) theories as abstract CFTs and constrain them

by consistency conditions such as crossing symmetry and unitarity. This approach

bears the name of conformal bootstrap and we will apply it to study the Regge

trajectories of (2,0) theories in Chapter 5. We will explain more about this in Section

2.10 and also apply analytic conformal bootstrap techniques in Chapter 4 to study

CFTs with defect.

1.3 Outline

In Chapter 2 we review preliminaries for the main results of the thesis. We discuss

the basics of d > 2 Euclidean conformal field theories (CFTs), the setup of putting a

QFT in a fixed Anti-de Sitter (AdS) background, and the conformal Froissart-Gribov

formula (Lorentzian inversion formula) and analyticity in spin.

Chapter 3 is devoted to the establishment of a position-space prescription to

extracting flat-space S-matrices in (d + 1)-dimensional spacetime from conformal

correlation functions in d-dimensional spacetime. The main idea is to put a QFT in

a fixed AdS background and send the radius of the AdS curvature to infinity. We

start from a heuristic and intuitional analysis of the flat-space limit of the building

blocks of Witten diagrams, namely the bulk-boundary and bulk-bulk propagators.

This analysis leads to our main conjectural prescriptions to extracting flat-space

physics from conformal correlators, which are called S-matrix conjecture (3.2.17)

and Amplitude conjecture (3.2.20). We then focus on the question of When are the

conjectures valid? and test our conjectures with explicit examples, including contact,

scalar exchange and scalar triangle Witten diagrams. At the perturbative level, the

main subtlety about the validity region of the conjecture lies in the flat-space limit

of the bulk-bulk propagator and we expect the conjectures to work whenever the

scattering energy is large enough. In s-channel 2-to-2 scattering of identical scalar

3



CHAPTER 1. INTRODUCTION

particles, for example, this requires

|s− 4m2| > 4m2,

where s is the Mandelstam variable and m is the mass of external particles. For t

and u-channel scattering, s in the above inequality gets replaced by Mandelstam t

and u.

Chapter 4 studies the problem of classifying defect CFTs: given a bulk CFT

and consistency conditions (crossing symmetry and unitarity), what are the allowed

conformal defects with a non-trivial coupling to the bulk? In this chapter we apply

analytic bootstrap techniques to study this problem for a single free scalar field living

in the bulk. By analysing various three-point functions among bulk and defect fields,

we find that almost all the n-point correlation functions of defect fields are completely

fixed up to a potentially unfixed one-point function. As an intermediate result, we

prove a theorem that the n-point correlation functions of a conformal theory with a

generalized free spectrum must be those of the generalized free theory.

Chapter 5 studies the interplay between analyticity in spin in CFTs and super-

symmetry. Analyticity in spin in CFTs is established by the Lorentzian inversion

formula [1], whose boundary of validity region is controlled by the behaviour of con-

formal correlators in the Regge limit and is shown to be ` > 1 in general. (See

Section 2.14 for more details about this statement.) Adding supersymmetry in gen-

eral softens the Regge behaviour and extends the analytic region of spin. In this

chapter we apply this methodology to the six-dimensional N = (2, 0) superconfor-

mal field theories (SCFTs) and focus on the four-point function of the the stress

tensor supermultiplet, for which the analyticity is extended to ` > −3. The analysis

of the Regge trajectories of superconformal primary and descendant operators un-

covers an unexpected interplay between unprotected and protected multiplets - the

stress tensor multiplet can be found on a long (unprotected) trajectory if we ana-

lytically continue it to spin ` = −2. We also set up an iterative inversion procedure

which can bootstrap CFT data entirely from the protected part of the four-point

function. Our results suggest that most of the interacting, physical (2,0) theories

should saturate the numerical upper bounds on CFT data given in [18]. However,

the iterative inversion procedure does not distinguish between A-type and D-type

theories, so we do not know which type of theories are close to being extremal. It

would be interesting to improve the method to make the distinction available in the

future.
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Chapter 2

Preliminaries

In this chapter we discuss aspects of the non-perturbative formulation of conformal

field theories (CFTs). We describe the conformal symmetry, both infinitesimal and

finite, and examine how it constrains the structure of the theory, in particular the

organisation of the local operators and the form of the correlation functions. We then

introduce the idea of conformal bootstrap which is to carve out the space of theories

non-perturbatively using consistency conditions such as crossing symmetry and uni-

tarity. In particular we are interested in the bootstrap in the Lorentzian regime. The

data describing the theory can be extracted from the so-called Lorentzian inversion

formula.

We also discuss the connection between conformal correlation functions and flat-

space S-matrices. The relation is built up by considering quantum field theories in

Anti-de Sitter space (QFT in AdS) where the correlation functions are related to

the conformal correlation functions living on the boundary of AdS. By taking the

flat-space limit, the conformal correlation functions morph into S-matrices in flat

space.

2.1 Conformal Transformations

2.1.1 Diffeomorphism

Consider a manifold M equipped with metric g. Under diffeomorphisms generated

by the conformal Killing vector fields εµ(x)∂µ, the metric is invariant up to a rescaling

factor. More specifically, under transformation xµ → x̃µ generated by ε, the metric

transforms as

gµν(x)→ g̃µν(x̃) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x) = Λ(x)gµν(x), (2.1.1)

where the spacetime indices µ = 1, 2, . . . , d.

Unless otherwise specified, in the following we will consider the case d > 2 and

work in Euclidean space with gµν(x) = δµν . It then follows that the Jacobian of the

5



CHAPTER 2. PRELIMINARIES

transformation (2.1.1) is proportional to an orthogonal matrix

∂x̃µ

∂xν
(x) = Ω (x)Rµ

ν (x) , Λ(x) = Ω(x)−2, Rµ
ν(x) ∈ SO(d), (2.1.2)

so locally a combination of scaling transformation and rotation.

For an infinitesimal transformation xµ → x̃µ = xµ + εµ(x), the last equality of

(2.1.1) becomes, to the leading order in ε,

Λ(x)δµν = δµν − (∂µεν(x) + ∂νεµ(x)). (2.1.3)

The scaling factor Λ(x) can be determined by contracting the indices on both sides

with δµν and this leads to the conformal Killing equation

∂µεν + ∂νεµ =
2

d
∂ · ε(x) δµν . (2.1.4)

The solutions to (2.1.4) are components of the conformal Killing vector fields and

they are

εµ(x) = aµ (translation)

εµ(x) = mµ
νx

ν (rotation)

εµ(x) = αxµ (dilatation)

εµ(x) = 2(x · b)xµ − bµx2 (special conformal transformation)

(2.1.5)

where aµ,mµ
ν , α, b

µ are constants and mµ
ν is antisymmetric. Exponentiating gives

the finite transformations xµ → x̃µ(x) with

x̃µ(x) = xµ + aµ (translation)

x̃µ(x) = Rµ
νx

ν (rotation)

x̃µ(x) = αxµ (dilatation)

x̃µ(x) = xµ−bµx2

1−2(b·x)+b2x2 (special conformal transformation)

(2.1.6)

In particular, special conformal transformations (SCT) can also be written as

x̃µ

x̃2
=
x̃µ

x2
− bµ, (2.1.7)

which means SCT is a combination of inversion (xµ → xµ/x2), translation and

inversion again.
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2.1. CONFORMAL TRANSFORMATIONS

Under transformation (2.1.1) local operators simply transform as tensors

Oa(x) ≡ Oµ1...µm
ν1...νn

(x)→ Õµ1...µm
ν1...νn

(x̃)

=
∂x̃µ1

∂xρ1
. . .

∂x̃µm

∂xρm
∂xσ1

∂x̃ν1
. . .

∂xσn

∂x̃νn
Oρ1...ρm

σ1...σn
(x)

= Ω(x)m−nρab(R
µ
ν(x))Ob(x),

(2.1.8)

where a is a shorthand notation for all the indices of O, ρab(R
µ
ν(x)) is in the repre-

sentation ρ in which Oa lives.

2.1.2 Scale and Weyl Transformation

Let us consider a generic metric in this subsection and discuss scale and Weyl trans-

formations. Infinitesimal scale transformations are defined as rescaling of the metric

gµν(x)→ (1 + 2λ)gµν(x), (2.1.9)

plus a transformation of the local operators

δλOa(x) = λ(−∆−m+ n)Oa(x), (2.1.10)

where ∆ is the scaling dimension of operator Oa and as in (2.1.8) m and n are the

number of upper and lower indices of Oa.
By promoting the constant parameter λ to a function of positions we obtain

the Weyl transformations. In other words, Weyl transformations are local scale

transformations. Setting λ = λ(x) and exponentiating (2.1.10) gives the finite Weyl

transformation of Oa

Oa(x)→ Õa(x̃) = σ(x)−∆−m+nOa(x), (2.1.11)

and the metric also gets rescaled

gµν(x)→ σ(x)2gµν(x). (2.1.12)

2.1.3 Conformal Transformation

By combining diffeomorphisms generated by conformal Killing vector fields with Weyl

transformations one can keep the metric invariant. These combined transformations

are called conformal transformations. More explicitly, we set Ω(x) in (2.1.8) and

σ(x) in (2.1.11) equal and this leads to

gµν(x) = δµν → δµν ,

Oa(x)→ Õa(x̃) = Ω(x)−∆ρab(R
µ
ν(x))Ob(x), Rµ

ν(x) ∈ SO(d).
(2.1.13)
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To be conformally symmetric is to be invariant under both diffeomorphisms generated

by conformal Killing vector fields and the corresponding Weyl transformations which

cancel the metric rescaling.

2.2 Conformal Ward Identity and Conserved Charges

Correlation functions of operatorsO, either fundamental or composite, can be defined

through path integrals as

〈O1(x1) . . .On(xn)〉g =
1

Z[g]

∫
[Dφ]g e

−S[φ,g]O1(x1) . . .On(xn), (2.2.1)

where φ denotes fundamental fields and g is the metric. The partition function is

Z[g] =

∫
[Dφ]g e

−S[φ,g]. (2.2.2)

Assuming the absence of diffeomorphism and Weyl anomalies, conformal symmetry

at the level of correlation functions dictates that

〈Õ1(x̃1) . . . Õn(x̃n)〉 = 〈O1(x̃1) . . .On(x̃n)〉, (2.2.3)

where both sides are evaluated under the flat metric and at the same points. The

infinitesimal form of (2.2.3) leads to a useful differential equation called the Ward

identity.

Let us define symmetry generators as the change of an operator under an in-

finitesimal transformation at the same point

Õ(x)−O(x) ≡ ωaGaO(x), (2.2.4)

where ωa is a position independent small parameter and a denotes abstractly a col-

lection of indices. By promoting ωa to a function of position, one finds that the

variation of the action has to take the form

δS =

∫
ddx∂µωa(x)Jµa (x). (2.2.5)

Integrating by parts and considering expansion of (2.2.3) under (2.2.4) up to the

leading order in ωa we get the Ward identity

∂µ 〈Jµa (x)O1(x1) . . .On(xn)〉 = −
∑
i

δ (x− xi) 〈O1 (x1) . . . GaOi(xi) . . .On (xn)〉 .

(2.2.6)
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For conformal transformations, the infinitesimal parameter ωa and the current Jµa (x)

are replaced respectively by conformal Killing vectors εν(x) in (2.1.5) and the stress

tensor T µν(x). Then we obtain the conformal Ward identity.

Each conformal Killing vector allows us to define a conserved charge operator

through the conformal Ward identity

Qε(Σ) ≡ −
∫

Σ

dSµεν(x)T µν(x), (2.2.7)

where Σ is an oriented boundary (codimension one) of a spacetime region V . Qε(Σ)

acts on all the operators inside V .

At the classical level the conservation of the charge operator Qε(Σ) follows from

the conserved current ∂µT
µν(x) = 0, the conformal Killing equation (2.1.4) and the

tracelessness condition for the stress tensor T µµ = 0.

To see the conservation at the quantum level, we consider the correlation function

〈Qε(Σ)O1(x1) . . .On(xn)〉

and use Stokes’ theorem, the conformal Killing equation (2.1.4) and the conformal

Ward identity. Because of the Dirac delta functions on the RHS of the conformal

Ward identity, the correlation function is invariant under the deformation of Σ as

long as it does not cross any operator insertions. This is the sense in which Qε(Σ)

is conserved. (By choosing Σ as a spatial slice and deforming it along the time

direction, one can recover the more conventional charge conservation which says the

time derivative of the charge operator vanishes.) Operators like Qε(Σ) are also called

topological surface operators.

The generator Ga and the conserved charge Qε are directly related through

(2.2.6). Consider a deformation of Σ which cross a single operator O(x)

Σ1 → Σ2, x ∈ V1, x /∈ V2 (2.2.8)

and define the difference between the two boundaries as

ΣO = Σ1 − Σ2, (2.2.9)

where −Σ denotes the same hypersurface with orientation reversed. By construction

ΣO only encloses operator O(x) and nothing else. Compare the difference between

the action of Qε(Σ1) and Qε(Σ2) we have1

〈Qε(ΣO)O(x) . . .〉 = εa〈GaO(x) . . .〉. (2.2.10)

1The relation between εµ and εa will be made explicit shortly in the next section.

9



CHAPTER 2. PRELIMINARIES

Since Σ’s are topological surfaces, we can quantise the theory2 and deform the sur-

faces such that Σ1 and Σ2 coincide with constant time surfaces. Then a correlation

function becomes a time-ordered expectation value and we get3

〈0|T{[Qε,O(x)] . . .}|0〉 = εa〈GaO(x) . . .〉, (2.2.11)

This means Qε is just the operator formulation of the generator εaGa.

2.3 Conformal Algebra

By considering the conformal Killing vectors (2.1.5) explicitly we can obtain in total

four generators Pµ,Mµν , D,Kµ for conformal transformations.

Translation

P µ = −
∫

Σ

dSµT
µν(x). (2.3.1)

Rotation

mνρM
νρ = −

∫
Σ

dSµmνρx
ρT µν(x)

= −
∫

Σ

dSµmνρ
1

2
(xρT µν(x)− xνT µρ(x))

→Mνρ = −
∫

Σ

dSµ
1

2
(xρT µν(x)− xνT µρ(x)) ,

(2.3.2)

where in the second line we have used the antisymmetry mνρ = −mρν .

Dilatation

D = −
∫

Σ

dSµxνT
µν(x). (2.3.3)

2By quantisation we mean choosing a time direction and a foliation of the spacetime orthogonal
to the time direction. Operators in correlation function will be time ordered. We will discuss more
about quantisation in Section 2.6.

3Now Qε is an operator acting on the Hilbert space associated to the quantisation and does not
explicitly depend on Σ.
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Special conformal transformation

bνK
ν = −

∫
Σ

dSµ(2(x · b)xν − bνx2)T µν(x)

= −
∫

Σ

dSµbν
(
2xνxρT

µρ(x)− x2T µν(x)
)

→ Kν = −
∫

Σ

dSµ
(
2xνxρT

µρ(x)− x2T µν(x)
)
.

(2.3.4)

The nonzero commutation relations among the generators are:

[Mµν , Pρ] = δνρPµ − δµρPν ,
[Mµν , Kρ] = δνρKµ − δµρKν ,

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν ,

[Kµ, Pν ] = 2δµνD − 2Mµν ,

[D,Pµ] = Pµ,

[D,Kµ] = −Kµ.

(2.3.5)

This is the conformal algebra. By rewriting the generators as

Lµν = Mµν , L−1,0 = D, L0,µ =
Pµ +Kµ

2
, L−1,µ =

Pµ −Kµ

2
, (2.3.6)

with Lab = −Lba and a, b = {−1, 0, 1, . . . , d}, one can show that Lab satisfy the

commutation relations of SO(d+1, 1), which is the rotation group in d+2 dimension

with Lorentzian signature.

2.4 Primary and Descendant Operators

Using the conformal algebra (2.3.5) we can construct corresponding irreducible rep-

resentations and organise operators accordingly. Since dilatation and rotation gener-

ators commute, we can diagonalise them simultaneously and label operators by their

eigenvalues, the scaling dimension ∆ and the spin `.4

The last two equations in (2.3.5) indicates that Pµ and Kµ raise and lower the

scaling dimension by one unit. For physically sensible theories the spectrum (the

scaling dimension in this case) should be bounded from below, thus we can define a

conformal primary operator as the lowest weight operator, such that it is annihilated

by Kµ

[Kµ,Oa(0)] = 0 (primary operator). (2.4.1)

4Here we only consider symmetric traceless representations of SO(d) so a single label ` suffices.
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For a given primary operator, acting on it with Pµ generates a tower of operators

with higher scaling dimensions

{[Pµ1 ,Oa(0)], [Pµ1 [Pµ2 ,Oa(0)]] , . . .} . (2.4.2)

These operators descending from the primary operator are called descendant opera-

tors. Each tower of operators forms a conformal multiplet.

For other generators the primary operators satisfy

[D,Oa(0)] = ∆Oa(0), (2.4.3)

[Mµν ,Oa(0)] = (Sµν)abO
b(0), (2.4.4)

[Kµ,Oa(0)] = 0, (2.4.5)

where (Sµν)ab = ρab(Mµν) is in the representation ρ in which Oa lives. For operators

away from the origin, using O(x) = ex·PO(0)e−x·P and the conformal algebra (2.3.5)

one obtains

[P µ,Oa(x)] = ∂µOa(x), (2.4.6)

[D,Oa(x)] = (xµ∂µ + ∆)Oa(x), (2.4.7)

[Mµν ,Oa(x)] = Mµνe
x·POa(0) =

(
mµν + (Sµν)ab

)
Oa(x), (2.4.8)

[Kµ,Oa(x)] =
(
kµ + 2∆xµ − 2xν (Sµν)ab

)
Oa(x), (2.4.9)

where mµν = xν∂µ − xµ∂ν , kµ = 2xµ(x · ∂)− x2∂µ.

2.5 Conformal Correlation Functions

Conformal correlation functions are the central objects of CFTs. As mentioned be-

fore, they are invariant under conformal transformations. Using (2.2.3) and (2.1.13)

we have the following Ward identity of finite transformation

〈Oa1
1 (x̃1) . . .Oann (x̃n)〉 = Ω (x1)−∆1 · · ·Ω (xn)−∆n

〈
ρa1
b1

(R(x1))Ob11 (x1) · · · ρanbn(R(xn))Obnn (xn)
〉
,

(2.5.1)

where again both sides are evaluated in the flat metric. This equation imposes strong

constraints on the form of correlation functions, as we will now discuss.

In the rest of this section we focus on two, three and four-point functions. For

simplicity we will only consider scalar operators.
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2.5.1 Two-point Function

The Ward identity (2.5.1) completely fixes two-point functions to be

〈O1(x1)O2(x2)〉 =
Cδ∆1∆2

|xij|2∆1
, (2.5.2)

where xij ≡ xi − xj. We can normalise the operators such that C = 1.

2.5.2 Three-point Function

As for three-point functions we get

〈O1(x1)O2(x2)O3(x3)〉 =
f123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1|x31|∆3+∆1−∆2
, (2.5.3)

where the three-point function coefficient f123 cannot be scaled away once we fix the

two-point function coefficient and it is not determined by conformal symmetry.

2.5.3 Four-point Function

For four-point functions we define the conformal cross ratios as

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

, (2.5.4)

where xij ≡ xi = xj.

In Euclidean region where all operators are spacelike separated, z and z̄ are

complex conjugate of each other and live on the complex plane. Using conformal

transformations one can reach the following configuration

x1 = (0, 0, 0, . . .), x2 = (x, y, 0, . . .), x3 = (1, 0, 0, . . .), x4 =∞ , (2.5.5)

then one finds that z = x+ iy. We will discuss Lorentzian and generic complex-time

configurations in Section 2.13.

Conformal symmetry constrains the four-point functions to only depend on the

cross ratios up to a universal kinematic prefactor

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =

∣∣∣∣x24

x14

∣∣∣∣∆12
∣∣∣∣x14

x13

∣∣∣∣∆34 g(z, z̄)

|x12|∆1+∆2|x34|∆3+∆4
, (2.5.6)

where ∆ij ≡ ∆i−∆j. It can be checked that (2.5.6) satisfies (2.5.1) for any function

g(z, z̄). The function g(z, z̄) is the main object of study in CFTs and we will discuss

it in more detail in Section 2.11.
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2.6 Radial Quantisation and the State-Operator Correspon-

dence

In this thesis we define quantisation to be a choice of foliation of the spacetime. Each

quantisation defines a direction of time and each leaf of the foliation, orthogonal to

the time direction, has its own Hilbert space of states. The time evolution moves

the states from one leaf to another. The most familiar quantisation is widely used

in Poincaré invariant theories in Rd where the time evolution is generated by the

Hamiltonian P 0. In conformally invariant theories it is convenient to foliate the

spacetime by Sd−1 spheres of various radii centred at the origin and time evolution

is generated by the dilatation operator D. This is called the radial quantisation.

Using radial quantisation we can show that in CFT local operators at the origin

are in one-to-one correspondence with states. In a general QFT, local operators are

defined at points in the spacetime while states span over the entire spatial slice. In

a CFT, however, scaling invariance allows to us shrink a spherical spatial slice into

the point at the origin, where a state can be identified with a local operator at that

point.

In the path integral language, states living on a sphere (Hilbert space) are gen-

erated by inserting operators inside the sphere and performing the path integral. For

a given sphere, a general state can be decomposed in to basis states

|ψ〉 =

∫
Dφb|φb〉〈φb|ψ〉, (2.6.1)

where φb denotes field configurations on the sphere. The coefficients can be calculated

by path integral. When there is an operator insertion O(x) in the path integral, the

coefficients are

〈φb|O(x)|0〉 =

∫
φ=φb

DΦe−S[Φ]O(x), (2.6.2)

where Φ denotes field configurations in the ball and φ denotes the boundary value of

Φ on the sphere. Therefore, the operator O(x) creates a state

O(x)|0〉 =

∫
Dφb|φb〉

∫
φ=φb

De−S[Φ]O(x). (2.6.3)

In particular, an operator at the origin creates an eigenstate of the dilatation operator

DO(0)|0〉 = [D,O(0)]|0〉+O(0)D|0〉 = ∆O(0)|0〉. (2.6.4)

On the other hand, given an eigenstate of the dilatation operator |Oi〉 we can con-

struct a local operator at the origin Oi(0) through its correlation functions with other
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local operators

〈0|φ1(x1)φ2(x2) . . .Oi(0)|0〉 := 〈0|φ1(x1)φ2(x2) . . . |Oi〉. (2.6.5)

Therefore, we have an identification between eigenstates of D and local operators at

the origin

O(0)↔ O(0)|0〉 ≡ |O〉. (2.6.6)

This is called the state-operator correspondence. For operators away from the origin,

it can be written as a infinite sum of primary and descendant operators at the origin

and thus corresponds to a linear combination of eigenstates of D.

2.6.1 Map to Cylinder

Under a Weyl transformation, i.e. a rescaling of the metric, the radial quantisation

can be mapped to a conventional quantisation on a cylinder. This can be seen by

writing down the metric explicitly

ds2
Rd = dr2 + r2ds2

Sd−1 = e2τ
(
dτ 2 + ds2

Sd−1

)
= e2τds2

R×Sd−1 , (2.6.7)

where

r = eτ (2.6.8)

and time translation on the cylinder is related to the dilatation in the flat space.

Under Weyl transformations gµν(x) → Ω2(x)gµν(x) the correlation functions

transform as5

〈O1 (x1) . . .On (xn)〉Ω2g =
〈O1 (x1) . . .On (xn)〉g

[Ω (x1)]∆1 . . . [Ω (xn)]∆n
. (2.6.9)

Applying this to the cylinder map (2.6.8), we can define operators on the cylinder

by

Ocyl. (τ,n) ≡ e∆τOflat (r,n), n ∈ Sd−1, (2.6.10)

such that

〈Ocyl.,1(τ1,n1) . . .Ocyl.,n(τn,nn)〉 = 〈Oflat,1(r1,n1) . . .Oflat,n(rn,nn)〉 . (2.6.11)

5In even dimensions the trace of the stress tensor does not vanish in general. As a result the
partition function is not invariant under Weyl transformation and the theory has a Weyl anomaly.
The Weyl anomaly does not play a role in this thesis and we will not discuss it.
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2.7 Reflection Positivity and Unitarity

In Lorentzian signature, unitarity requires the norm of states in the Hilbert space to

be non-negative. In Euclidean signature the notion of unitarity becomes reflection

positivity

〈φ|φ〉 = 〈0|O†E,n . . .O
†
E,1OE,1 . . .OE,n|0〉 ≥ 0, (2.7.1)

where “E” denotes Euclidean and for scalar operators

O†E(tE,x) = O∗E(−tE,x). (2.7.2)

The Euclidean counterpart of Hermitian operators satisfy

OE (tE,x)† = OE (−tE,x) , (2.7.3)

and are called real operators. It can be shown that the coefficients of three-point

functions λijk of real operators are real.

It has been established in [19] that from a reflection-positive CFT we can recon-

struct a unitary Lorentzian CFT by analytic continuation.

Unitarity bound The unitarity condition imposes constraints on the spectrum of

CFTs. They are captured by lower bounds on the scaling dimensions of the operators

∆ = 0 (unit operator)

∆ ≥
{

d−2
2
, ` = 0

`+ d− 2, ` > 0

(2.7.4)

These are called the unitarity bounds.

2.8 The Operator Product Expansion

Using radial quantisation and the state-operator correspondence, we can show the

following operator equation

Oi(xi)Oj(xj) =
∑
k

λijk
|xij|∆i+∆j−∆k

Ca(|xij|, ∂k)Oak(xk), (2.8.1)

where Ca is understood as a power series in ∂k and is completely fixed by conformal

symmetry. (2.8.1) is valid inside any correlation function as long as all other operators

Ol(xl) satisfy

|xlk| > max(|xik|, |xjk|). (2.8.2)
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In words, this means that the product of two local operators can be rewritten as

an infinite sum of other local operators and is called the operator product expan-

sion (OPE). In particular, by considering the correlation function of both sides of

(2.8.1) with another operator Ol, one finds that λijk is just the three-point function

coefficient. Hence λijk is also called the OPE coefficient.

To show the OPE we use radial quantisation originated at xk, insert the operators

Oi(xi) and Oj(xj) inside a ball centred at the origin and perform the path integral

over the interior of the ball to generate a state |ψ〉 on the sphere. Then we decompose

|ψ〉 into dilatation eigenstates, which by the state-operator correspondence are in

one-to-one correspondence to primary or descendant operators at the origin. This

produces an equation which is just (2.8.1) with both sides acting on the vacuum

state and by removing the vacuum state we obtain (2.8.1).

Note that we can choose xk and the corresponding radial quantisation freely as

long as (2.8.2) is satisfied. This means (in the Euclidean region) the OPE (2.8.1)

converges whenever we can use a sphere to separate Oi(xi),Oj(xj) from all other

operators.

2.9 QFT in AdS and Boundary Conformal Theory

In this section we consider the setup where QFT is placed in fixed Anti-de Sitter

(AdS) space, which is a maximally symmetric spacetime with a negative cosmological

constant. For a more comprehensive and pedagogical introduction to this subject we

refer to [20].

2.9.1 QFT in AdS: motivation

There are various motivations to consider putting a QFT in AdS [21–23]. First, it is

the leading order semi-classical approximation to quantum gravity in the sense that

gravitational fluctuation is considered as negligible. Therefore any sensible theory

of quantum gravity has to reduce to QFT in AdS when the gravitational dynamics

is turned off. Another motivation follows from the fact that AdS space provides an

IR cutoff which preserves the symmetry [21]. This is useful to study dynamics in

QFT otherwise plagued by IR divergences. Lastly, the motivation for this thesis is

to consider the flat-space limit of QFT in AdS.

For a QFT living in (d + 1)-dimensional AdS space which preserve its isome-

tries, the theory is constrained by the conformal group SO(d, 2) and we can define

boundary correlation functions as correlation functions of local bulk operators whose

insertion points are pushed towards the conformal boundary [8, 9].6 The full set of

6Alternatively boundary correlation functions can be defined as functional derivatives of the bulk
partition function with respect to the boundary conditions [6, 7]. For discussions on the equivalence
between the two definitions, see e.g. [24].
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correlation functions then defines a conformally invariant theory living on the bound-

ary. This is similar to the AdS/CFT correspondence, but with one notable difference,

namely there is no graviton in the bulk and no stress tensor on the boundary. Such

conformally invariant (boundary) theory without a stress tensor is called a boundary

conformal theory (BCT) to be distinguished from the full-fledged conformal field the-

ory [13]. Apart from the absence of a stress tensor, a BCT behaves just like a CFT.

Most notably it also has unitarity (or reflection positivity for Euclidean signature),

the state-operator correspondence and convergent OPE.

The duality between the bulk and the boundary allows one to study QFTs in AdS

using techniques established in CFT. Furthermore, one can take the flat-space limit

of QFT in AdS, for which the curvature radius R and scaling dimensions in BCT

are sent to infinity [25–27]. Intuitively, the centre of AdS space in this limit becomes

a flat space and one expects to be able to extract the S-matrix of the flat-space

QFT, either gapped or gapless, from the boundary conformal correlation functions.

This provides an alternative approach to study the (especially non-perturbative)

analytic structure of flat-space S-matrix, because CFTs are more constrained and

their analytic structure is better understood.

2.9.2 QFT in AdS: setup

Let us discuss the setup of putting a QFT in AdS in more details. This subsection

mainly follows the discussion in [13].

AdS space can be described equivalently by several different coordinates. Here

we consider the d + 1 dimensional Euclidean AdS space, denoted as AdSd+1, and

discuss three coordinates which will be useful later.

In Poincaré coordinates the metric is

ds2 = R2dz
2 + dr2 + r2dΩ2

d−1

z2
, z > 0, (2.9.1)

where R is the radius of AdS curvature, r and Ωi (i = 1, . . . , d) are radial and angular

coordinates of a d-dimensional flat space. This shows that AdSd+1 is conformal to

R+ ×Rd and the conformal boundary consists of a copy of Rd at z = 0 and a single

point at z =∞.

Alternatively, we can make the change of coordinates z = eτ cosλ, r = eτ sinλ

to obtain the global coordinates

ds2 = R2dτ
2 + dλ2 + sin2 λ dΩ2

d−1

cos2 λ
. (2.9.2)

This shows that AdSd+1 is conformal to a solid cylinder whose boundary at λ = π
2

is

conformal to R × Sd−1. This is the cylinder-to-flat-space map discussed in Section

2.6.1.
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A

B
B B

A

z

r

τ

λ

ρ

Figure 2.1. AdS space in Poincaré coordinates, global coordinates and spherical coordi-
nates. The red points and orange surfaces (each with its own Hilbert space) are identified
among the figures. The blue points in Poincaré and spherical coordinates are identified
with the blue circle in global coordinates, which is the τ → −∞ conformal boundary.

Finally in spherical coordinates the metric is

ds2 = dρ2 +R2 sinh2
( ρ
R

)
dΩ2

d. (2.9.3)

Thus AdSd+1 can also be regarded as an open ball with the conformal boundary

being a sphere at ρ =∞.

Boundary Operator-Bulk State Correspondence Similar to the argument in

CFTs, using radial quantisation one obtains a one-to-one correspondence between a

state living in the bulk and an operator at the origin of the conformal boundary. On

the one hand, an operator inserted at point A in figure 2.1 creates a state on the

Hilbert space. On the other hand, a state on the Hilbert space can be propagated

backwards to infinite past and reach the boundary point A, which defines a local

operator on the boundary. The bulk states can be labelled by eigenvalues of the

dilatation operator D and SO(d) rotation generator Mµν . For SO(d) scalars we have

the familiar relation between the scaling dimension ∆ of boundary primary operator

and the mass m of the single particle state in the bulk as

∆(∆− d) = m2R2. (2.9.4)

To obtain gapped theories in the flat-space, the limit to take is sending both R and

∆ to infinity while holding their ratio fixed

R→∞, ∆→∞, lim
R→∞

∆

R
= m fixed. (2.9.5)

In the flat-space limit, the ratio is just the mass of the single particle state.

Bulk-Boundary Operator Expansion The boundary operator-bulk state corre-

spondence also induces a bulk-boundary operator expansion. The argument is again

19



CHAPTER 2. PRELIMINARIES

similar to that of OPE in CFTs. A local operator in the bulk (for example at point

B in figure 2.1) creates a state in the Hilbert space. This state can be decomposed

into eigenstates of the dilatation operator D and by boundary operator-bulk state

correspondence these eigenstates are in one-to-one correspondence to boundary op-

erators with definite scaling dimensions, namely, primary or descendant operators.

Therefore a bulk operator can be written as a linear combination of primary and

descendant operators at the boundary

φi(z, x) =
∑
j

bijz
∆jCa(x, ∂x)Oaj (x), (2.9.6)

where the index a again labels SO(d) representations. By taking the limit z → 0,

one obtains a boundary operator by pushing the bulk operator to the boundary7

O(x) = lim
z→0

z−∆Oφ(z, x), (2.9.7)

and the boundary correlation function is [9]

〈O1 (x1) . . .On (xn)〉boundary = lim
z→0

z−
∑n
i=1 ∆i 〈φ1 (x1, z) . . . φn (xn, z)〉bulk (2.9.8)

Boundary Operator Product Expansion Operators on the conformal bound-

ary satisfy the usual OPE as in CFTs

Oi(xi)Oj(xj) =
∑
k

λijk
|xij|∆i+∆j−∆k

Ca(xk, ∂k)Oak(xk). (2.9.9)

The argument is completely analogous to that in Section 2.8. Using radial quantisa-

tion, the operator insertions Oi(xi) and Oj(xj) create a state in the Hilbert space of

the QFT in AdS through path integral. This state can be decomposed into dilatation

eigenstates, each of which corresponds to a local operator at the origin determined

by the quantisation. Hence the OPE holds.

2.9.3 Assumptions for the Flat-space Limit

To discuss the flat-space limit of QFT in AdS on a firm ground we need to make the

following assumptions:

7This relation can be understood by considering as an example a single scalar field in AdS. Since
in (AdS) Feynman diagrams each external operator is connected to a bulk-bulk propagator, we can
equivalently study the limit for the bulk-bulk propagator where one of the bulk points is pushed
to the boundary. In this limit the bulk-bulk propagator becomes the bulk-boundary propagator
[9, 28]. To obtain the operator on the boundary one needs to approach the boundary away from
the source points [29]. The prefactor, i.e. one, in front of O(x) follows from our definition of the
bulk-boundary propagator (3.2.4), whose normalisation absorbs the holographic renormalisation
factor (2∆ − d) first pointed out in [30]. This can be seen explicitly by comparing the definitions
of bulk-boundary propagator between (3.2.4) and that in [30].
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Assumption 1. The boundary conditions and the curvature couplings (if any) pre-

serve the AdS isometries at the quantum level. As the radius of curvature R increases,

this continues to hold.

As a result of this assumption the conformal symmetry of the boundary correlation

functions is also preserved for any R all the way to the flat-space limit.

Assumption 2. The Hilbert space of the QFT in AdS approaches that of the gen-

eralised free field (GFF) theory when R is large, and coincides with the flat-space

Hilbert space when R→∞.

As we will see later in Chapter 3, the GFF spectrum is related to the identity (non-

interacting) part of the flat-space S-matrix.

More generally, these two assumptions lead to our conjecture that relates d-

dimensional conformal correlation functions and (d + 1)-dimensional flat-space S-

matrix

lim
R→∞
〈O1 . . .OaOa+1 . . .Oa+b〉R ∼ 〈k1 . . . ka|Ŝ|p1 . . . pb〉. (2.9.10)

Chapter 3 is devoted to details of this conjecture and we will see to what extent and

precisely how it holds.

2.10 CFT Data and Conformal Bootstrap

Conformal symmetry completely fixes two-point functions. Three-point functions are

fixed up to the OPE coefficient. In general, an n-point function can be reduced to

an infinite sum of (n − 1)-point functions using the OPE. By doing this iteratively,

any n-point function can be reduced to three-point functions which are fixed up

to the OPE coefficient.8 Therefore, with the knowledge of the spectrum and the

OPE coefficients one can completely determine any n-point conformal correlation

functions. The set {spectrum, OPE coefficients} is called the CFT data.

Knowing the CFT data amounts to a complete understanding of the local degrees

of freedom of the theory, for example OPE structure and correlation functions of

local operators. However, this is highly non-trivial because the CFT data cannot be

arbitrary. Consider any three local operators in an n-point function (n > 3), one can

use the OPE between O1 and O2 and then between O3 and the expansion operators

from O1 ×O2; or one can first use the OPE between O2 and O3 and then fuse with

8The rigorous justification of this iterative procedure relies on proving the infinite sums from
OPEs can be exchanged (otherwise performing OPEs in different ordering gives different results),
which has not been done so far. In this thesis we focus on four-point functions, for which the OPE
convergence has been rigorously established [31].
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O1. These two options give naively different expressions, but they must agree as long

as the OPEs converge. Schematically, this is

〈O1O2O3 . . .On〉 = 〈O1O2O3 . . .On〉 (2.10.1)

This is the associativity of the OPE and it imposes non-trivial constraints on the

CFT data.

The program of exploiting these constraints with the goal to reduce or even iden-

tify the space of consistent CFT data is call the conformal bootstrap program. As

explained in Section 2.9, apart from studying properties of CFTs, we also have in

mind the goal to study flat-space physics through understanding conformal correla-

tion functions using the conformal bootstrap methods.

2.11 Four-point Functions, Conformal Blocks and the Cross-

ing Equation

In this section let us examine the four-point functions in more detail. Define a

complete basis as

1 =
∑
O

|O| ≡
∑
O

( ∑
α=O,PO,PPO,...

(〈α|α〉)−1 |α〉〈α|

)
(2.11.1)

where O denotes conformal primary operators and |O| is a projector onto the confor-

mal multiplet of O. By construction, the projector |O| commutes with all conformal

generators.9

Using radial quantisation and inserting this basis in the four-point function we

get

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =

∣∣∣∣x24

x14

∣∣∣∣∆12
∣∣∣∣x14

x13

∣∣∣∣∆34 g(z, z̄)

|x12|∆1+∆2 |x34|∆3+∆4

=
∑
O

〈0 |O1(x1)O2(x2)| O |O3(x3)O4(x4)| 0〉 .

(2.11.2)

The fact that |O| commutes with conformal generators means each summand in

(2.11.2) satisfies the Ward identity (2.5.1) and, just like the correlator itself, is a

function of cross ratios z and z̄. This leads to the definition of the conformal block

9This follows from the obvious commutation between the conformal generatorsQ and the identity
operator and the fact that the actions of Q simply reorganise local operators within the same
conformal multiplet.
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as the projection of the four-point function onto a certain conformal multiplet10

∣∣∣∣x24

x14

∣∣∣∣∆12
∣∣∣∣x14

x13

∣∣∣∣∆34 f12Of34OG
∆12,∆34

∆O,`O
(z, z̄)

|x12|∆1+∆2 |x34|∆3+∆4
:= 〈0 |O1(x1)O2(x2)| O |O3(x3)O4(x4)| 0〉 ,

(2.11.3)

where the OPE coefficients come from applying the OPE between O1(x1) ×O2(x2)

and O3(x3) ×O4(x4), respectively. Stripping off the kinematic prefactor, the corre-

lator g(z, z̄) has the following conformal block decomposition

g(z, z̄) =
∑

∆O,`O

f12Of34OG
∆12,∆34

∆O,`O
(z, z̄). (2.11.4)

This is called the s-channel block decomposition because it converges when O1 is

close to O2. Alternatively there are two other different ways to apply the OPEs

among operators

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 (t-channel),
(2.11.5)

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 (u-channel),
(2.11.6)

By identifying s and t-channel block decomposition, we obtain the following

crossing equation

∑
∆O,`O

f12Of34OG
∆12,∆34

∆O,`O
(z, z̄) =

(zz̄)
∆1+∆2

2

((1− z)(1− z̄))
∆2+∆3

2

∑
∆O′ ,`O′

f23O′f14O′ G
∆32,∆14

∆O′ ,`O′
(1− z, 1− z̄)

(2.11.7)

or schematically

∑
O

O1

O2 O3

O4

O
=

∑
O′

O1

O2 O3

O4

O′

(2.11.8)

It is also called the bootstrap equation because the idea of conformal bootstrap is

directly implemented through this equation.

10Conformal blocks can also be calculated by solving the conformal Casimir equations, up to
normalisation.
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2.12 The Conformal Partial Wave Expansion

Besides conformal block decomposition (2.11.4), the conformal correlator also has

the conformal partial wave expansion [32]

g(z, z̄) =
∞∑
`=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(∆, `)F∆12,∆34

∆,` (z, z̄) + (non-norm.). (2.12.1)

The function c(∆, `) is called the OPE density and is the key object. It encodes all

the dynamical information about the correlator. The function F∆,`(z, z̄) is called the

conformal partial wave and is given by a conformal block with dimension ∆ plus a

shadow conformal block with dimension ∆̃ ≡ d−∆,

F∆12,∆34

∆,` (z, z̄) =
1

2

(
G∆12,∆34

∆,` (z, z̄) +
Kd−∆,`

K∆,`

G∆12,∆34

d−∆,` (z, z̄)

)
, (2.12.2)

where the coefficient K∆,` reads

K∆12,∆34

∆,` =
Γ(∆− 1)

Γ(∆− d
2
)
κ∆12,∆34

∆+` ,

κ∆12,∆34

∆+` =
Γ
(

∆+`+∆12

2

)
Γ
(

∆+`−∆12

2

)
Γ
(

∆+`+∆34

2

)
Γ
(

∆+`−∆34

2

)
2π2Γ(∆ + `− 1)Γ(∆ + `)

.

(2.12.3)

The conformal partial waves with integer spin and unphysical dimension, ∆ ∈ d/2 +

iR form a complete basis for normalisable functions and satisfy the orthogonality

relation which schematically reads(
F∆12,∆34

∆,` , F∆12,∆34

∆′,`′

)
∼ δ`,`′δ(∆−∆′). (2.12.4)

There are, however, contributions to the correlator which are non-normalisable and

they are denoted as “(non-norm.)” in (2.12.1). The most notable example of non-

normalisable contribution is the identity operator. Details about non-normalisable

contributions are discussed in Appendix B of [33].

From (2.12.2) it is obvious that K∆,`F∆,`(z, z̄) is invariant under ∆ ↔ ∆̃ and

this is called shadow symmetry. As a result we can assume c(∆, `)/K∆,` to be also

shadow symmetric (because the anti-symmetric part, if any, does not contribute to

(2.12.1))

c(∆, `)

K∆12,∆34

∆,`

=
c(d−∆, `)

K∆12,∆34

d−∆,`

. (2.12.5)

The shadow symmetry allows us to rewrite (2.12.1) as an integral over conformal

24



2.13. EUCLIDEAN, LORENTZIAN AND COMPLEX KINEMATIC REGIONS

blocks only

g(z, z̄) =
∞∑
`=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(∆, `)G∆12,∆34

∆,` (z, z̄) + (non-norm.). (2.12.6)

Then by deforming the integral contour over ∆ to the right half plane and picking up

the poles in c(∆, `) we recover the conformal block expansion (2.11.4).11 Therefore,

the OPE density encodes the CFT data through the location and the residue of its

poles

f12Of34O = −Res∆′=∆O c(∆
′, `O). (2.12.7)

Using the orthogonality condition of the conformal partial waves one can extract

the OPE density by integrating both sides of (2.12.1) against another conformal

partial wave.12 This gives the Euclidean inversion formula

c(∆, `) = n∆,`

∫
C

dzdz̄ µ(z, z̄)F∆12,∆34

∆,` (z, z̄)g(z, z̄), (2.12.8)

where the integration runs over the Euclidean region, namely the entire complex

plane with z̄ = z∗. The integration measure is

µ(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
((1− z)(1− z̄))

∆34−∆12
2

(zz̄)2
. (2.12.9)

We leave the normalisation factor n∆,` implicit because it is not important for the

discussion. Note that the Euclidean inversion formula is valid only for integer spins.

2.13 Euclidean, Lorentzian and Complex Kinematic Regions

So far we have been considering Euclidean CFTs where operators are spacelike sep-

arated. For four-point functions in cross ratio space, this means z̄ = z∗ ∈ C. If the

operators are analytically continued to a Lorentzian configuration, then z, z̄ ∈ [0, 1]

and are independent of each other. More generally, (during analytic continuation) z

and z̄ can be viewed as two independent complex variables.

Regge Limit For example, to reach the (t-channel) Regge limit described in [34,

35], one needs to continue z̄ around 1 and then send both z and z̄ to 0 while keeping

their ratio fixed.

11A subtlety related to this statement is that conformal blocks also have poles in ∆, which
originate from the zeros in the projector defined in (2.11.1), through which the conformal block is
defined. These poles are cancelled by the spurious poles in c(∆, `) such that the conformal block
decomposition is indeed recovered. For more details see [33].

12The non-normalisable terms should be first subtracted and later added back after integration.
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34

2

1

ρ

ρ̄

z, z̄

0 1

z̄

z

Figure 2.2. Regge limit in position space starting from a Lorentzian configuration (left)
and cross ratio space starting from a Euclidean configuration (right).

By introducing a new pair of cross ratios ρ, ρ̄ defined through

z =
4ρ

(1 + ρ)2
, z̄ =

4ρ̄

(1 + ρ̄)2
, (2.13.1)

the Regge limit can also be parametrised as

ρ = σw = σeiθ, ρ̄ =
σ

w
= σe−iθ,

w → 0, σ fixed, or θ = it+ ε, t→∞,
(2.13.2)

where σ ∈ [0, 1], θ is real in Euclidean signature and imaginary in Lorentzian sig-

nature and t is called the boost parameter. As t → ∞, x1 and x2 are sent to

infinity along the lightlike direction. One can check that (2.13.2) indeed agrees with

the Regge limit, with which we have z ∼ 4wσ, z̄ ∼ 4wσ−1 and the iε prescription

dictates the direction of analytic continuation across the lightcones.

The Regge limit can also be visualised in position space starting from a Lorentzian

configuration, in which ρ, ρ̄ are real and independent of each other. By putting four

operators respectively at

x1 = (−ρ,−ρ̄), x2 = (ρ, ρ̄), x3 = (1, 1), x4 = (−1,−1), (2.13.3)

we see that in the Regge limit (2.13.2) operator 1 and 2 are sent to infinity along the

lightcone. This is illustrated in figure 2.2.

As we will see in Chapter 3, in the flat-space limit, the CFT Regge limit corre-

sponds to high energy scattering limit (QFT Regge limit) in the t-channel.

Lightcone limit on the second sheet Similar to the Regge limit, the lightcone

limit on the second sheet (LLSS) also corresponds to continuing z̄ around 1 and

sending z to 0. The difference is that z̄ is now fixed and finite.

Both Regge limit and LLSS are important for the discussion in the next section which
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we will now turn to.

2.14 The Lorentzian Inversion Formula

By analytically continuing the Euclidean inversion formula (2.12.8) to the Lorentzian

regime, one obtains Caron-Huot’s Lorentzian inversion formula [1],13 which dictates

that the OPE density is a combination of two functions analytic in spin14

c(∆, `) = ct(∆, `) + (−1)`cu(∆, `),

ct(∆, `) =
κ∆12,∆34

∆+`

4

∫ 1

0

dzdz̄µ(z, z̄)G∆12,∆34

`+d−1,∆−d+1(z, z̄)dDisct [g(z, z̄)] ,

cu(∆, `) =
κ∆12,∆34

∆+`

4

∫ 0

−∞
dzdz̄µ(z, z̄)G∆12,∆34

`+d−1,∆−d+1(z, z̄)dDiscu [g(z, z̄)] .

(2.14.1)

The most important factors appearing above are the double discontinuities, which

for a generic function g(z, z̄) read

dDisct[g(z, z̄)] = cos

(
π

∆34 −∆12

2

)
g(z, z̄)− 1

2
eiπ

∆34−∆12
2 g

(
z, 1− (1− z̄)e−2πi

)
− 1

2
e−iπ

∆34−∆12
2 g

(
z, 1− (1− z̄)e2πi

)
.

dDiscu[g(z, z̄)] = cos

(
π

∆34 −∆12

2

)
g(z, z̄)− 1

2
eiπ

∆34−∆12
2 g

(
z, z̄e2πi

)
− 1

2
e−iπ

∆34−∆12
2 g

(
z, z̄e−2πi

)
.

(2.14.2)

In words, the t(u)-channel double discontinuity operation takes a function and sub-

tracts from it its analytic continuations around z̄ = 1(∞) in both directions. Also

notice that the conformal block appearing in the integration kernel has swapped

dimension and spin.

In the Regge limit each conformal block (with ` ≥ 2) scales as

G∆,`(z, z̄) ∼ (zz̄)
1−`

2 , (2.14.3)

13The Lorentzian inversion formula was derived in both cross ratio space [1] and position space
[33]. Here we only state the final result.

14The analyticity in spin can be rigorously established only for (most part of) the leading Regge
trajectory so far. Regge trajectories correspond to singularities in c(∆, `), and since the integrals
in (2.14.1) diverge at this point it is unclear how to extend analyticity beyond (e.g. fixing ` and
increasing ∆) the leading trajectory. Nevertheless, the Lorentzian inversion formula has been largely
successful in explaining the smoothness of the numerically obtained CFT spectra even beyond the
leading trajectory (see e.g. [36]). Therefore, in this thesis we will use the phrase ‘analyticity in spin’
while keeping in mind that it is not fully rigorous in the mathematical sense.
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therefore the s-channel block decomposition diverges in the Regge limit. This is not

surprising because to reach Regge limit one needs to send z̄ around 1 (see figure 2.2)

and the s-channel block decomposition stops to converge. The Lorentzian inversion

formula in principle allows for analytically continuing spin in (2.12.1) to complex

values with small or negative real part (implemented by the Sommerfeld-Watson

transform), such that the divergence issue faced by s-channel OPE is overcome. This

then allows one to derive the asymptotic behaviour of the correlator in the Regge

limit (and the LLSS).15 This series of ideas largely resembles the Regge theory in

QFT16 and is therefore called the conformal Regge theory [35, 38–40].

The validity of the Lorentzian inversion formula depends on the behaviour of

the correlator in both the Regge limit and the LLSS. Following the conformal Regge

theory prescription, one finds that in general the Regge behaviour has the form17

lim
w→0

(g(z, z̄)− 1) ∼ w1−`∗ , (2.14.4)

where `∗ is the intercept of the leading Regge trajectory (i.e. the trajectory on the ∆−
` plane with the largest spin for any given dimension) with the shadow symmetric line

∆ = d/2. The potential divergence of the Lorentzian inversion formula is embodied

in the integral ∮
0

dww`−`∗−1, |w| → 0, (2.14.5)

thus ` > `∗ is needed for convergence. The Regge boundedness of conformal correla-

tors leads to the upper bound on the intercept `∗ ≤ 1, thus in general the Lorentzian

inversion formula is valid and establishes analyticity in spin for ` > 1. A similar

analysis indicates (but does not prove rigorously) that in the LLSS the correlator

scales as

lim
z→0

(g(z, 1− (1− z̄)e2πi − 1) ∼ z
τ0
2 , (2.14.6)

where τ0 is the lowest twist (∆− `) above the identity operator. Using the unitarity

bound (2.7.4) one again obtains that the inversion formula converges for ` > 1.

In Chapter 5 we will see that the presence of supersymmetry softens the Regge

behaviour of the correlator and thus analyticity in spin gets extended further. We

will also discuss along the way practical applications of the Lorentzian inversion

15This derivation is not fully rigorous because, as mentioned in footnote 14, the analyticity in
spin has not been fully established.

16In QFT, the Froissart-Gribov formula (see e.g. Section 2 of [37] for a review) establishes an-
alyticity in spin and applying the Sommerfeld-Watson transform to the partial wave expansion of
the scattering amplitude determines its high energy behaviour. In fact the Lorentzian inversion
formula was originally called the conformal Froissart-Gribov formula.

17Here we assume the only non-normalisable term to be the identity operator.
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formula.
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Chapter 3

Landau Diagrams in AdS and

S-matrices from Conformal

Correlators

3.1 Introduction

In this chapter we continue and expand the discussion in Section 2.9 on QFT in AdS

and its flat-space limit.

Let us first briefly review the setup and we refer to Section 2.9 for more details.

Consider a quantum field theory on a fixed (d+ 1)-dimensional AdS background. In

this setup, take a correlation function of local operators and push its insertion points

all the way to the conformal boundary, inserting scaling factors to obtain a finite

answer, as in (2.9.8). This LSZ-like limit gives rise to what we call boundary corre-

lation functions. If the AdS isometries are preserved then these obey all the useful

axioms of usual CFT correlation functions: conformal invariance in d dimensions,

a large domain of analyticity and a convergent conformal block decomposition. All

this is of course familiar from AdS/CFT; the only difference is that there is no stress

tensor in the boundary spectrum because the bulk metric is not dynamical.

Our main interest lies with the behaviour of these boundary correlation functions

in the flat-space limit. (We will write it as R → ∞ with R the curvature radius of

AdS.) Supposing that it exists, it is a natural expectation that the S-matrix of the

bulk theory is encoded in the flat-space limit of the boundary correlation functions.

This idea has a long history, especially in the context of AdS/CFT (starting with

[26, 27, 41–44]) where one can try to extract string theory amplitudes from CFT

correlators. Until recently comparatively little attention has been given to the setup

where the bulk theory is gapped and does not contain gravity, but see [13, 23, 45–

52] for works in that direction. It is nevertheless an extremely interesting subject.

This is because scattering amplitudes are rather mysterious objects with an interplay
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of analyticity and unitarity that appears to be at most partially understood. But

via the QFT in AdS construction we can obtain amplitudes as a limit of conformal

correlation functions, and it is natural to expect that the well-established properties

of the latter can clarify some of the mysteries surrounding the former.

As for the precise map from correlator to amplitude there exist several proposals.

Two concrete proposals were written down in [13]: one in Mellin space and a phase

shift formula. In other work mention was made of a Fourier space algorithm [53]. In

this work we propose a position-space limit, which refines and generalizes the idea

proposed in [54] for AdS2. One might wonder why we need yet another formula

given we already have concrete proposals. The main reason is because the existing

proposals have their own shortcomings: for instance, the phase shift formula has a

drawback that it can only be defined in a physical kinematics and relies on averaging

over the OPE data, which is sometimes difficult to perform in practice. On the other

hand, the Mellin approach involves integral transforms of some correlators which

make it hard to discuss their analytic properties at the nonperturbative level. In fact

the existence of the Mellin-space representation of the correlators was established

only quite recently in [55] and yet, its analyticity is not fully understood. Another,

more technical issue is that there are singularities of the flat-space amplitudes which

are not well-understood in the Mellin approach. One representative example are

anomalous thresholds, which come from on-shell propagations of particles in several

different channels. Such singularities are hard to see from the Mellin approach since

the poles of the Mellin representation of the correlator are normally associated with

the operator product expansion in a single channel.

By contrast, our position-space approach has the distinguishing feature that it

requires no OPE data manipulation or integral transforms: instead the position-space

correlator becomes the S-matrix element. We propose, for example, that two-point

functions |x− y|−2∆ become single-particle norms, 〈~k|~p〉 ∝ δ(d)(~k − ~p), that contact

diagrams in AdS become momentum-conserving delta functions, and more generally

that

lim
R→∞
〈O1(x1)O2(x2) . . .On(xn)〉 = 〈~k1

~k2 . . . | . . . ~kn〉 , (3.1.1)

with a suitable normalization of the operators. To make the above formula work

a map is needed from boundary positions to on-shell momenta, which indeed both

have d components. It turns out that this map is not without i’s, and for physical

kinematics we need to move the xi to complex positions. This is maybe to be

expected, since in real Lorentzian AdS massive particles cannot reach the boundary.

The precise map is given in section 3.2.3. For a four-point function of identical

operators it implies a relation between cross-ratios and Mandelstam invariants as

given in equation (3.2.32).

Another distinguishing feature of our proposal is that it fails to work in certain

kinematic regions. Starting with the exchange diagram, which is discussed in detail
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in section 3.3.3, we find that there are regions in the complex Mandelstam planes

where the flat-space limit of the correlation function diverges, even after stripping off

the momentum-conserving delta function, and therefore does not equal the scattering

amplitude. As we explain qualitatively in section 3.2, this is due to the possibility

of exchanged particles going on-shell and propagating over distances of the order of

the ever-growing AdS scale.1 Such a separation of the interaction vertices in a given

diagram is of course reminiscent of flat-space Landau diagrams which can be used

to deduce the location of potential singularities in flat-space scattering amplitudes.

In AdS with finite R the infrared is regulated and these Landau singularities do not

exist, but that does not mean that they cannot spoil the flat-space limit. To un-

derstand them better we formulate in section 3.4 the general AdS Landau equations

and compare them with their flat-space counterpart. We will argue that they are

indicators of singularities in the flat-space amplitude, since, it appears that every

flat-space Landau singularity is surrounded by a region in the Mandelstam planes

where the flat-space limit does not work. This would imply that the AdS Landau

equations can reproduce anomalous thresholds in the flat-space limit; to demonstrate

this we include a numerical analysis of the triangle diagram in section 3.4.2.

In sections 3.5 and 3.6 we compare our proposal with the Mellin space and phase

shift proposals of [13], respectively. We will find that the Mellin space proposal can

be recovered from our proposal (for Mellin-representable correlation functions) via

a saddle point analysis, and can understand the divergences from the AdS Landau

singularities as originating from a contribution of Mellin poles that are picked up by

moving the original integration contour to the steepest descent contour. (Conversely,

it is natural to suspect that anomalous thresholds cannot appear if no poles are picked

up.) Conformal blocks will really only enter our discussion in section 3.6, where we

will make contact with the phase shift formula of [13] and formulate a condition on

the OPE data such that the flat-space limit amplitude obeys unitary conditions. We

will also see that in that context the singularities arise from divergent contributions

of conformal blocks corresponding to “bound states” in the flat space limit. The

results in this section should be viewed as a first exploration into the implications of

the existence of an OPE for scattering amplitudes — we hope to report more results

in this direction in the near future.

1Landau diagrams in AdS were discussed also in [56], but there are several important differences
from our work. In [56], the authors only considered trajectories of massless particles in Lorentzian
AdS which interact at a single bulk point. Such diagrams give rise to singularities of the boundary
correlation functions even before the flat-space limit is taken. On the other hand, in this chapter we
discuss Landau diagrams of massive particles in a complexified AdS space that interact at widely
separated bulk points and which are responsible for singularities of the S-matrix in the flat-space
limit.
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3.2 The flat-space limit in position space

In this section, we present our conjectural position-space recipe for obtaining flat-

space scattering amplitudes from the conformal boundary correlation functions of a

QFT in AdS. In order to motivate the conjectures, we first explain how the building

blocks of AdS Witten diagrams, namely the bulk-boundary propagator and the bulk-

bulk propagator, morph into their counterparts in flat space. Our main result will

be that the bulk-boundary propagator becomes very simple in the flat-space limit

and essentially reduces to a factor like eipx with an on-shell momentum p while the

bulk-bulk propagator becomes the Feynman propagator 1/(p2 +m2).

After presenting our position-space formulas, we discuss briefly its physical im-

plications including a direct relation between the conformal cross ratios and the

Mandelstam variables. We also give a heuristic argument on why such a formula

may fail to work in certain kinematic regions. Understanding the details of why and

how the formula fails is the main subject of the rest of this chapter and that is what

will lead us to propose the AdS analogue of Landau diagrams in section 3.4.

3.2.1 The flat-space limit setup

Let us first specify the setup in more details. We consider massive quantum scalar

fields φi with mass mi. The corresponding boundary operators Oi which can be

obtained by pushing φi to the conformal boundary have scaling dimensions ∆i and

they satisfy ∆i(∆i−d) = m2
iR

2. The exact meaning of the flat-space limit is sending

both AdS curvature radius R and scaling dimension ∆i to infinity while keeping the

ratios fixed

R→∞, ∆i →∞, lim
R,∆i→∞

∆i

R
= mi fixed. (3.2.1)

3.2.2 Motivating the conjecture

To motivate the conjecture, let us consider the flat-space limit of the bulk-boundary

and bulk-bulk propagators.

Bulk-boundary propagator

We follow the conventions of [43]. This means that we will describe Euclidean AdSd+1

using embedding space coordinates X living in d + 2 dimensional Minkowski space

which obey:

−(X0)2 +
∑
i

(X i)2 = −R2, X0 > 0
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and points on the conformal boundary of AdS are labelled by d + 2 dimensional

points P on the projective null cone:

− (P 0)2 +
∑
i

(P i)2 = 0, P ∼ λP (λ ∈ R∗) (3.2.2)

We can resolve the constraints and ‘gauge fix’ as follows:

X =
(
R cosh

( ρ
R

)
, R sinh

( ρ
R

)
nX

)
,

P = (1, nP ),

Where we introduced our choice of local coordinates for AdSd+1: a radial coordinate

ρ and a d+1 dimensional unit norm vector nµ which obeys nµnνδµν = 1. The metric

reads:

ds2 = dρ2 +R2 sinh2
( ρ
R

)
dΩ2

d, (3.2.3)

and therefore the flat-space limit in these coordinates is very simple: we just send

R → ∞ holding all of the coordinates fixed. The standard Euclidean coordinate x

is then:

x = ρnX .

Now consider the bulk-boundary propagator. It reads:

GB∂(X,P ) =
C∆

R(d−1)/2(−2P ·X/R)∆

=
C∆

2∆R(d−1)/2
e−∆ log(−P ·X/R) (3.2.4)

where

C∆ =
Γ(∆)

2πhΓ(∆− h+ 1)
, h =

d

2
, ∆(∆− d) = m2R2.

Substituting

− P ·X/R = cosh
( ρ
R

)
− sinh

( ρ
R

)
nP · nX (3.2.5)

straightforwardly yields that

GB∂(X,P )
R→∞
−−→ mh−1

2mR+1πhR1/2
emnP ·x. (3.2.6)

This can be compared this with an external leg in a flat-space Feynman diagram,
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Figure 3.1. Analytic continuation of the boundary points. We start from a CFT on Sd

and analytically continue the insertion points of operators to complex values in order to
recover the flat-space S-matrix. Geometrically this corresponds to going from a sphere to
a hyperboloid.

which would simply read
1√
Z
eiηµνk

µyν . (3.2.7)

with kµ an on-shell Lorentzian momentum (so k2 = −m2), yν a Lorentzian position,

ηµν = diag(− + + . . .+), and, because we work in conventions where all momenta

are ingoing, k0 > 0 or k0 < 0 for an ingoing or outgoing momentum, respectively.

Clearly we find the normalization factor

1√
Z

=
C∆

2∆R(d−1)/2

R→∞
−−→ mh−1

2mR+1πhR1/2
, (3.2.8)

whereas the exponents are matched as follows. First we recognize that (3.2.6) was

derived with a Euclidean signature bulk metric, so the contraction nP · x is really

equal to δµνn
µ
Px

ν , and similarly δµνn
µ
pn

ν
p = 1. On the other hand (3.2.7) requires

Lorentzian signature, so if we write yµ = (y0, y) and xµ = (x0, x) then the standard

bulk analytic continuation dictates that2

y0 = −ix0 , y = x , (3.2.9)

and therefore a match can be obtained if the boundary points do something entirely

different, namely we need to set

n0
p = −k0/m np = ik/m . (3.2.10)

We conclude that physical S-matrix momenta correspond to complex boundary po-

sitions! More precisely, the above equation shows that if we start from real bound-

2There is no real freedom here: the bulk point x is integrated over and should be continued in
accordance with the desired Wick rotation.
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ary coordinates in Euclidean signature (so real nµp), then we need to continue the

spacelike components np to purely imaginary values, whereas the zero-component

remains real but obeys |n0
p| > 1 because |k0| > m. Pictorially this corresponds to

analytically continue the boundary sphere to a hyperboloid, see figure 3.1. Alterna-

tively, supposing we start from real boundary coordinates in Lorentzian signature,

which according to the bulk analytic continuation (3.2.9) corresponds to real np but

purely imaginary n0
p, then we find that we need to continue all the components to

purely imaginary values. We should also note that these continuations always re-

spect 1 = δµνn
µ
pn

ν
p = −ηµνkµkν/m2, so we are automatically on the mass shell. The

analytic continuation will be discussed in more detail below.

Bulk-bulk propagator

Next we consider the bulk-bulk propagator GBB(X1, X2). Its defining equation reads

(�g −∆(∆− d))GBB(X1, X2) =
1
√
g
δ(d+1)(X1 −X2) . (3.2.11)

For the computations that are to follow it turns out that the most convenient solution

is the split representation of [43] where3

GBB(X1, X2) =

∫ i∞

−i∞

dc

2πi

2c2

c2 − (∆− h)2

∫
∂AdS

dQ
R1−d Ch+c Ch−c

(−2Q ·X1/R)h+c(−2Q ·X2/R)h−c

(3.2.12)

In the large R limit we send ∆→∞ but we have to give some thought to the scaling

of X1 and X2. In the spherical AdS coordinates introduced above we have

X1 =
(
R cosh

(ρ1

R

)
, R sinh

(ρ1

R

)
nX1

)
,

X2 =
(
R cosh

(ρ2

R

)
, R sinh

(ρ2

R

)
nX2

)
,

Q = (1, nQ).

and the integration measure dQ is the usual one on the d-dimensional sphere. In the

flat-space limit we keep ρ fixed as we send R→∞. The substitution

c ≡ iKR, K ∈ R (3.2.13)

3The solutions can also be written as GBB(X1, X2) =
R1−dC∆
u∆ 2F1 (∆,∆− d/2 + 1, 2∆− d+ 1;−4/u) with u = (X1 − X2)2/R2. In this case the

two limits discussed later in this section yield, respectively, the familiar Bessel function expression
for the position-space Klein-Gordon propagator and an expression which is familiar from the large
∆ limit of a one-dimensional conformal block.
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(a) (X1 −X2)2 � R2 (b) (X1 −X2)2 ∼ R2

Figure 3.2. Two different limits of the bulk-bulk propagator. (a) If the two bulk points
are close to each other (X1−X2)2 � R2, the large R limit gives a propagator in flat space.
(b) If the two bulk points are kept apart, the limit is described by a geodesic in AdS which
connects the two points. In this case, the propagator falls off exponentially e−∆d(X1,X2)

where d(X1, X2) is a geodesic distance between the two points.

yields
1

(∆− h)2 − c2
→ 1

R2

1

m2 +K2
(3.2.14)

with ∆(∆ − d) = m2R2 as before, and with the appropriate large R limits of the

other building blocks we find that

GBB(X1, X2)→
∫ ∞

0

KddK

(2π)d+1

∫
dΩd

eiK(ρ1nQ·nX1
−ρ2nQ·nX2)

m2 +K2

=

∫
dd+1k

(2π)d+1

eik·(x1−x2)

m2 + k2
, (3.2.15)

where the integral over the AdS boundary coordinate Q simply becomes an integral

over a d-dimensional unit sphere, and we have made the identification KnµQ → kµ.

Notice that we get the right answer on the nose: unlike the bulk-boundary propagator

there are no relative factors of i or normalization issues. See also figure 3.2a.

In the above flat-space limit, we implicitly assumed that the two bulk points are

close to each other, (X1 −X2)2 � R2. Although this would be appropriate for the

flat-space limit, there also exists a pure large ∆ limit of the propagator where the

bulk points are kept apart. To find the behaviour in this limit we can close the c

contour in the appropriate right or left half plane to pick up the pole at c = ±(∆−h).

The Q integral can then be done via a saddle point approximation (which is easy

after choosing a specific frame) and results in

GBB(X1, X2)→ exp(−∆ρ̃) = exp(−∆ arccosh(−X1 ·X2/R
2)) (3.2.16)

up to a prefactor and other non-exponential terms in ∆ that will not matter below.

Note that what appears in the exponent is a geodesic distance between the two points

X1 and X2, so in this limit we recover a classical particle travelling along the geodesic

between these two points (see figure 3.2b).
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In order for the flat-space limit to work all the interactions must take place at

distances below the AdS scale. In the integrals over the bulk vertices X1 and X2 it is

therefore essential that these large ∆ limits are always suppressed for the correlation

functions that we want to analyse. This is a nontrivial condition since the points X1

and X2 are integrated over in a Witten diagram and in principle both limits must

be included. As we see in the subsequent sections, this large ∆ limit is precisely

what sometimes obstructs us from taking the flat-space limit in position space. For

now, we proceed to present our conjectures on the flat-space limit relegating detailed

discussions about possible subtleties to subsection 3.2.4.

3.2.3 S-matrix conjecture and amplitude conjecture

Any Witten diagram is a combination of bulk-bulk and bulk-boundary propagators

which are connected at vertices to be integrated over all of AdSd+1. In the pre-

ceding section we have seen that the flat-space limit of these building blocks (when

holding the bulk coordinates ρ and nµ fixed) reduces them to the corresponding flat-

space expression, and in particular bulk-boundary propagators reduce to the usual

external leg factors for position-space Feynman diagrams after a suitable analytic

continuation. It is then natural to formulate the

S-matrix conjecture :

〈k̃1 . . . k̃a|S|k1 . . . kb〉
?
= lim

R→∞

(√
Z
)a+b

〈O(ñ1) . . .O(ña)O(n1) . . .O(nb)〉|S-matrix

(3.2.17)

where the boundary correlator should be evaluated in the round metric on the bound-

ary Sd and analytically continued to the ‘S-matrix’ configurations which in unit

vector coordinates δµνn
µnν = δµνñ

µñν = 1 correspond to the values

(n0, n) = (−k0, ik)/m , (3.2.18)

and similarly for the tilded variables, with k0 > 0 for ‘in’ and k̃0 < 0 for ‘out’ states.

The normalization factor
√
Z was given in (3.2.8).4

Notice that the object on the left-hand side of equation (3.2.17) is an S-matrix

element and therefore includes possible disconnected components as well as an overall

4This is the right normalization factor when operators are normalized as 〈O|O〉 = C∆. For
unit normalized operators one should replace Z by Z̃ = C2

∆Z in (3.2.17). Notice also that in our
conventions O = O(can)/(2∆ − d) where O(can) would be the operator dual to a canonically nor-
malized scalar field in AdS, a common normalization convention in the holographic renormalization
literature [57].
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momentum-conserving delta function. Schematically we can write:

〈k̃1 . . . k̃a|S|k1 . . . kb〉 =(disconnected)

+ (2π)d+1i δ(d+1)

(
a∑
j=1

k̃j +
b∑
i=1

ki

)
T (k̃1 . . . k̃a; k1 . . . kb)

(3.2.19)

where the scattering amplitude T (. . .) normally has no further delta-function singu-

larities. To obtain T (. . .) we can consider the connected correlation function which

we then divide by the contact diagram to get rid of the momentum-conserving delta

function. This leads us to the

Amplitude conjecture :

T (k̃1 . . . k̃a; k1 . . . kb)
?
= lim

R→∞

〈O(ñ1) . . .O(ña)O(n1) . . .O(nb)〉conn

D(ñ1, . . . , ña, n1, . . . , nb)

∣∣∣∣
S-matrix, cons

(3.2.20)

with D(ñ1, . . . , ña, n1, . . . , nb) denoting the contact diagram in AdS, which is most

easily defined as the function that is a constant in Mellin space.5 Notice also that,

as indicated by the subscript, we not only continue the momenta to the S-matrix

configuration as in (3.2.18) but we also evaluate it on the support of the momentum-

conserving delta function in (3.2.19).

Validity of the conjectures We now make two important comments on our con-

jectures. First, precisely speaking these conjectures are valid only in certain kine-

matic regions. At the level of Witten diagrams, this is basically due to the large ∆

limit of the bulk-bulk propagator, which we discussed at the end of the last subsec-

tion. We will give a heuristic explanation of why they can fail in subsection 3.2.4 and

discuss in more detail when the conjectures hold in the rest of this chapter. Second,

although here we motivated the conjectures by the analysis of perturbative Witten

diagrams, one can arrive at the same conclusion from the conformal block expansion

once one makes certain assumptions on the OPE coefficients. We will present a first

exploration in this direction in section 3.6 while a more detailed analysis will be

presented in a future work.

Comparison between the conjectures Although the expressions look similar,

there is an important difference between the S-matrix conjecture in (3.2.17) and the

amplitude conjecture in (3.2.20). The former in its most general form only really

makes sense for real (on-shell) momenta, because only in that case can we make

sense of various delta functions. The latter has no such restriction and can be

5The masses of the external particles in the contact diagram should be taken to be the physical
masses in the interacting theory.
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applied to complex values of the momenta. Because of this feature, one might think

that the amplitude conjecture is more useful in practice. However we emphasize

that being able to reproduce the momentum-conserving delta function is not merely

of academic interest but is necessary in certain situations in order to capture the

correct physics of scattering amplitudes. The best place to see this is the scattering

amplitude in integrable field theories in two dimensions. Owing to the existence of

higher conserved charges, the (higher-point) scattering amplitudes in integrable field

theories come with extra factors of delta functions, one for each pair of incoming and

outgoing momenta, ∝
∏

j δ
(2)(k̃j+kj). As we see in the next section, the momentum-

conserving delta function in general come from a certain exponentially growing piece

of the boundary CFT correlator. This suggests that the higher-point correlation

functions in integrable field theories in AdS2 grow much faster than the corresponding

counterparts in non-integrable field theories when we take the flat-space limit. This

feature is arguably what distinguishes integrable field theories from non-integrable

field theories in AdS2. It would be interesting to make this precise and check it in

explicit examples6.

Connections to previous results The S-matrix conjecture (3.2.17) would lead to

an elegant way to obtain scattering amplitudes directly from the correlation function

in position space. A similar conjecture was published for AdS2 in [54], where it was

claimed that the Euclidean amplitude could be obtained as a limit of the position-

space expression. The derivation in that paper however required a more involved

wave-packet analysis, and the momentum-conserving delta function was left implicit.

In unrelated work, the paper [13] presented both a Mellin space formula and a phase

shift formula that could be used in certain cases to extract a flat-space scattering

amplitude from CFT data. A detailed comparison with these two prescriptions will

be presented in section 3.5 and 3.6, respectively. Finally our conjectures are rather

closely related to a recent proposal in [53]. Although we do not see the need to

perform any Fourier transforms as was proposed in that work, the underlying picture

is quite appealing — both to explain the complexification of the boundary positions

and to highlight potential issues with the conjectures.

3.2.4 Potential subtleties

We now present a heuristic explanation on why the conjectures can fail in certain

kinematic regions. For this purpose it is useful to connect our conjectures to a

‘cylinder with caps’ picture put forward in [53] (see figure 3.3) 7. This picture in-

volves the complexification of the boundary positions and naturally ties the ‘real-time

AdS/CFT’ prescriptions of [63, 64] to the extraction of scattering amplitudes from

6See recent works [51, 52, 58–62] on integrable (or solvable) theories on AdS2.
7We thank João Penedones for pointing out the relevance of this picture for our formulae.
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Figure 3.3. A ‘cylinder with caps’ configuration discussed in [53]. We consider two
Euclidean hemispheres and connect them by a Lorentzian cylinder of length π. We then
insert two operators on the upper cap and the remaining two operator on the lower cap.
The right figure shows a configuration of operator when viewed from the bottom of the
lower cap. The angle θ depicted in the figure becomes a scattering angle in the flat-space
limit.

conformal correlation functions. To see this, introduce new coordinates as:

X = (R cosh(r/R) cosh(τ), R cosh(r/R) sinh(τ), R sinh(r/R)n′) (3.2.21)

with n′ a new unit norm vector. Next we set τ = it so we are in Lorentzian signature

and the metric becomes:

ds2 = dr2 −R2 cosh2(r/R)dt2 +R2 sinh2(r/R) dΩ2
d−1 (3.2.22)

These are the standard global coordinates for Euclidean AdS. The map between old

boundary coordinates nµ and the new boundary coordinates (τ, n′) is easily found,

and (3.2.18) then implies that we need to set:

tanh(τ) = −k
0

m
,

n′

cosh(τ)
= i

k

m
(3.2.23)

to obtain an S-matrix element with external momentum kµ. In terms of the Lorentzian

coordinate t this means that we can take:

in state with k0 > 0: t = −π/2 + i arccoth( k0 /m), n′ = − k

|k|

out state with k0 < 0: t = +π/2− i arccoth(|k0|/m), n′ = − k

|k|

(3.2.24)

Notice that with our in-going conventions it is entirely reasonable that n′ points in

the opposite direction of k. What is more interesting is the behaviour of t: when

41



CHAPTER 3. LANDAU DIAGRAMS IN ADS AND S-MATRICES FROM
CONFORMAL CORRELATORS

(a) (b) (c)

Figure 3.4. Geodesic configurations and flat-space scattering. (a) The geodesics that
describe the flat-space scattering in the large R limit. Two particles emitted from the
operators in the lower Euclidean cap first tunnel to the Lorentzian cylinder, then scatter
at the centre of AdS and tunnel back to the upper Euclidean cap. (b) The geodesics that
give a dominant contribution when two operators are close to each other. Two operators
in the lower cap are directly connected by a Euclidean geodesic, and so are the operators
in the upper cap. These two geodesics can also be connected by an exchange of some light
particle (denoted by a blue dashed line). (c) The geodesics relevant for the bulk point
limit which corresponds to |k0| → ∞ in our setup. When two operators are close to the
edge of the lower cap, the dominant contribution is given by geodesics which connect four
operators in the Lorentzian cylinder.

tracing it in the complex time plane we see that we arrive exactly at the complex

time contour sketched already in figures 1 and 2 in [63], the essential bits of which

we reproduced in figure 3.3. The idea is that a Lorentzian segment, now with a

length in global time of exactly π, is sandwiched between two Euclidean ‘caps’ that

are responsible, via operator insertions on their conformal boundary, for the initial

and final state of the scattering event. Modulo Fourier transforms, this is exactly

the same picture as transpired from [53].

We can now use the ‘caps’ picture to explain potential subtleties of our conjec-

tures. To simplify the discussion we will consider a four-point function with two

operators in the upper cap and the remaining two in the lower cap as in figure 3.3.

AdS as a particle accelerator As discussed previously, particles dual to CFT

operators become classical in the flat space limit and travel along geodesics inside

AdS. In the present case, we have to find a geodesic in a mixed-signature spacetime

since the bulk geometry consists of the Euclidean part and the Lorentzian part.

To understand such a geodesic, let us start with the two operators inserted in the

lower cap, see figure 3.4a. The particles emitted from these operators first need to

‘tunnel’ to the Lorentzian cylinder following the Euclidean geodesics. In order to

smoothly connect them to the Lorentzian geodesics, these two particles must have

42



3.2. THE FLAT-SPACE LIMIT IN POSITION SPACE

zero velocities when they emerge into the Lorentzian cylinder from below. Once they

appear at the bottom of the cylinder, they then start to accelerate and approach each

other owing to an attractive potential coming from the AdS curvature. In this sense,

the AdS spacetime acts like a particle accelerator. Eventually, these particles collide

at the centre of AdS and scatter. Since the Compton wavelengths of these particles

(∝ 1/∆) are much smaller than the AdS radius, the scattering process must be

described by the flat-space S-matrix. The energy of the collision is determined by

how far apart the particles were at the bottom of the cylinder; the farther they were,

more they get accelerated. After the collision, the particles move away from each

other and eventually reach the top of the cylinder and then tunnel into the upper

Euclidean cap.

Other geodesics The discussion so far seems to support our conjectures on the

flat-space limit. There is however one important subtlety: the geodesic configuration

described above is not the only one that contributes to the four-point function. To

understand this, let us consider a limiting case in which the two operators in the

lower cap are very close to each other. In this case, we should take into account

a Euclidean geodesic which directly connects these two operators (see figure 3.4b).

This latter geodesic has a smaller Euclidean action than the one described above and

therefore gives a dominant contribution.

On the other hand, if we separate the two operators in the Euclidean cap, this

latter geodesic tends to have a larger Euclidean action and therefore can be neglected.

In particular, if we consider the so-called bulk-point limit [56] which in this picture

corresponds to inserting the two operators at the edge of the cap, the former geodesic

becomes entirely Lorentzian while the latter geodesic is Euclidean and is therefore

suppressed. See figure 3.4c.

These considerations suggest that the validity of our conjectures depends on

the kinematics. Of course, it is hard to tell just from this heuristic argument when

precisely they work. The purpose of the rest of this chapter is to perform a more

careful analysis and delineate the kinematic region in which they are supposed to

hold.

3.2.5 Conformal Mandelstam variables and kinematics

In this subsection we discuss some important aspects of the kinematical relation

(3.2.18) between real Lorentzian momenta and complexified boundary positions.

More details and technical derivations can be found in appendix 3.A.
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Conformal Mandelstam variables

Let us first say a few words about cross ratios. In terms of the spherical coordinates

on the boundary of AdS, we have

− Pi · Pj = 1− ni · nj = 1 +
ki · η · kj
mimj

(3.2.25)

This equation immediately implies the following relation between conformal cross

ratios and momenta:

(Pi · Pj)(Pk · Pl)
(Pi · Pk)(Pj · Pl)

=
(mimj + ki · η · kj)(mkml + kk · η · kl)
(mimk + ki · η · kk)(mjml + kj · η · kl)

. (3.2.26)

By further imposing the momentum conservation8∑
i

ki = 0 , (3.2.27)

one can rewrite the right hand side of (3.2.26) in terms of Mandelstam invariants.

It is instructive to work out the relation explicitly for four-point functions of

identical scalar operators. The familiar cross ratios are then:

u :=
P12P34

P13P24

, v :=
P14P23

P13P24

,
(
Pij := −2Pi · Pj

)
, (3.2.28)

but it will sometimes be better to use either the Dolan-Osborn variables (z, z̄) [65, 66]

or the radial coordinates (ρ, ρ̄) [67]:

u = zz̄ , v = (1− z)(1− z̄) , z =
4ρ

(1 + ρ)2
, z̄ =

4ρ̄

(1 + ρ̄)2
. (3.2.29)

8Interestingly, there always exists a conformal transformation that places the external points Pi
such that

∑
i ki = 0 and therefore s+ t+ ũ = 4m2 in terms of Mandelstam invariants. This is why,

in the equations below, there are never three independent Mandelstam invariants which would be
too many to match against the two independent cross ratios.
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Figure 3.5. The analytic structure of the four-point function in CFT and the flat-space
S-matrix. The conformal Mandelstam variables map the branch-cut singularities of the
four-point function to a two-particle threshold of the S-matrix.

We then get the relation9

Conformal Mandelstam variables :

s := −(k1 + k2)2 = 4m2

(
1−
√
ρρ̄

1 +
√
ρρ̄

)2

,

t := −(k1 + k4)2 = 4m2

(√
ρ+
√
ρ̄

1 +
√
ρρ̄

)2

,

ũ := −(k1 + k3)2 = −4m2

(√
ρ−
√
ρ̄

1 +
√
ρρ̄

)2

.

(3.2.30)

(Here we used ũ instead of the conventional notation u in order to distinguish it

from the cross ratio u.) These equations (3.2.30) are a new parametrization of the

conformal cross ratios of the boundary CFT correlators, chosen precisely such that

they become the Mandelstam variables of the scattering amplitudes in flat space.

For AdS2 this relation was derived previously in [54] and the result here generalizes

it to arbitrary dimensions.

The above equations map the Euclidean CFT kinematics where ρ and ρ̄ are com-

plex conjugates to the Euclidean region where 0 < s, t, ũ < 4m2, which is the orange

triangle in the centre of figure 3.6 shown below. To reach physical kinematics of scat-

tering amplitudes, or indeed any other region, some careful analytic continuations

are needed and we will discuss those below. One interesting initial observation is

that the expected two-particle branch cut at s = 4m2 is built in from the beginning:

according to equation (3.2.30) we just inherit it from the branch cuts at ρ, ρ̄ = 0

9While preparing this work, [68] appeared in arXiv in which a similar relation between the
cross ratios and the Mandelstam variables was discussed. It also discusses the relation between
the momentum conservation and the saddle-point equation, which we explain in section 3.2. As
acknowledged in that paper, the results in this work were obtained prior to the publication of [68].
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that exist in any correlation function, even before taking the flat-space limit.10 We

illustrated this in figure 3.5. This behaviour should perhaps be contrasted with the

Mellin space prescriptions: in Mellin space the idea is that infinite sequences of poles

condense into cuts and it is for example impossible to explore other Riemann sheets

before taking the flat-space limit. On the other hand, whereas our prescription nicely

yields the two-particle threshold there is no sign of any further cuts or poles (at least

on the first sheet) because conformal correlation functions are always perfectly ana-

lytic in the Euclidean region. In section 3.3 and beyond we will see that this is very

much related to the subtleties already discussed in section 3.2.4.

Analytic continuations

By conformal invariance, the n-point boundary correlation functions in the flat Eu-

clidean boundary metric depend only on the combinations −Pi · Pj. Contact or

light-cone singularities arise when there are i, j such that −Pi · Pj = 0. These

singularities correspond to the end points of branch cuts of position-space CFT cor-

relators, which extend to infinity along the negative real axis in the complex plane

of −Pi · Pj. From the last expression in equation (3.2.25) we find that

i in, j out or vice versa: −Pi · Pj|S-matrix ≥ 2

i, j both in or both out: −Pi · Pj|S-matrix ≤ 0 (3.2.31)

with the inequalities holding by virtue of the fact that all the kµi /mi are unit norm

timelike vectors with |k0
i | ≥ mi. The second continuation precisely lands us on a

branch cut. To see how we should approach the branch cut, recall that in flat space

one requires the corresponding Mandelstam invariants like sij = −(ki+kj)·η·(ki+kj),
to have a small positive imaginary part. In terms of such variables −2mimjPi ·Pj =

(mi +mj)
2 − sij, so we will need to give a small negative imaginary part to −Pi · Pj

when i and j are either both ‘in’ or both ‘out’.

Let us return to the cross ratios for the four-point functions of identical operators.

With the iε prescription understood, it is not hard to deduce (see appendix 3.A) that

reaching physical kinematics in the s-channel means that we should set the (ρ, ρ̄)

variables to:

ρ =

√
s− 2m√
s+ 2m

ei(θ−2π), ρ̄ =

√
s− 2m√
s+ 2m

e−iθ (3.2.32)

where θ is the scattering angle defined through

t =
1

2
(4m2 − s)(1− cos(θ)), ũ =

1

2
(4m2 − s)(1 + cos(θ)) . (3.2.33)

10This simply follows from the fact that the operator product expansion generally gives terms like
(ρρ̄)∆ with ∆ being noninteger. Therefore if we view the correlator as a function of two independent
parameters ρ and ρ̄, it has a branch cut at ρ, ρ̄ = 0.
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The factor 2πi indicates that ρ should be evaluated on the second sheet obtained by

circling around zero in a clockwise fashion whereas ρ̄ remains on the first sheet.

Re t

Re s

Re ũ = 0

-8 -4 4 8 12

-8

-4

4

8

12

s − phys
ũ − phys

t − phys

Euc

Figure 3.6. The Mandelstam (s, t) plane, coloured according to the analytic continuation
necessary to reach each region. The main distinction is orange versus blue: in the former
one should take ρ and ρ̄ to be complex conjugates and in the latter they are real and
independent. A refinement is the dark versus light shading. In the darkest central triangles
ρ and ρ̄ should be taken to live on the first sheet, and passing to lighter shades corresponds
to one or two analytic continuations of either ρ or ρ̄ around either 0 or 1. Exactly which
sheet corresponds to which region is detailed in appendix 3.A.

We can also consider the Mandelstam plane more generally and to find the

analytic continuations in the cross ratios that are necessary to reach all its different

regions. This is done in detail in appendix 3.A and we summarize a few essential

fact in figure 3.6.

Kinematic limits

The conformal Mandelstam variables allow us to relate kinematic limits of the CFT

correlator to those of the scattering amplitude. Here we summarize the correspon-

dence relegating more details including the derivations to appendix 3.A.

OPE limit Let us first analyse the s-channel OPE limit in which both ρ and ρ̄

approach zero: ρ, ρ̄→ 0. Using the conformal Mandelstam variables (3.2.30), we can

immediately see that this limit corresponds to the low-energy limit, or more precisely
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the near-threshold limit

s ∼ 4m2 , t, ũ ∼ 0 . (3.2.34)

Regge limit We next consider the Regge limit of the CFT correlator discussed in

[34, 35, 56, 69]. Following [35], we write the cross ratios as

u = σ2 , v = (1− σeρ)(1− σe−ρ) ' 1− 2σ cosh ρ . (3.2.35)

Then, to get to the Regge limit, we first analytically continue v as

v → e2πiv , (3.2.36)

and send σ → 0 while keeping ρ fixed. In this limit, the conformal Mandelstam

variables scale as

s ∼ 4m2

(
1− 1

cosh2 σ
2

)
, t ∼ −ũ ∼ 4m2

σ

1

cosh2 σ
2

� 1 . (3.2.37)

This in fact corresponds to the Regge limit of scattering amplitudes (in the t-channel).

This is of course expected from various results in the literature but the virtue of the

conformal Mandelstam variables is that it makes the relation transparent.

Bulk-point limit Another interesting limit is the so-called bulk-point limit studied

in [56]. This limit corresponds to the following analytic continuation11 of the radial

coordinates ρ,

ρ = e−iπ−εeiϕ , ρ̄ = e−iπ−εe−iϕ . (3.2.38)

Here ε is the regularization parameter, which will be sent to 0 in the bulk-point limit.

In this limit, the conformal Mandelstam variables scale as

s→∞ , t→ −∞ , ũ→ −∞ , (3.2.39)

while the scattering angle θ is finite. This is a fixed-angle high energy scattering

limit, which was studied by Gross and Mende [70] in string theory.

Massless limit Although this is not a kinematic limit, it is interesting to discuss

the massless limit m → 0. If we naively take this limit, the conformal Mandelstam

variables (3.2.30) all vanish. In order to have finite Mandelstam variables, we need to

approach the bulk-point limit as we send m to 0. This is consistent with the results

in the literature on the flat-space limit of the massless scattering, all of which involve

taking the bulk-point limit. It would be interesting to clarify the precise relation

11Here we are following the definition of the bulk-point limit in [56]. To relate it to the analytic
continuation to physical scattering kinematics discussed above (3.2.32), we need to perform a further
Euclidean rotation ρ→ e−πiρ and ρ̄→ eπiρ̄.
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between our proposal and those results, in particular the position-space approach to

the massless scattering discussed in [42]. We leave it for future investigations.

Double lightcone limit Finally let us briefly mention the double lightcone limit,

which corresponds to

u = ε(1− η) , v = (1− ε)η , (3.2.40)

with ε� η � 1. In this limit, we obtain

s ∼ 4m2(1− 2
√
ε) , t ∼ 4m2(1− 2

√
η) , ũ ∼ −4m2(1− 2(

√
ε+
√
η)) . (3.2.41)

To our knowledge, this limit does not correspond to a well-studied limit of scattering

amplitudes. However, given the role the double lightcone limit played in the devel-

opment of the analytic conformal bootstrap, it might be worth studying this limit in

the flat-space scattering.

3.3 Illustrative examples

We now test our conjectures in several simple and illustrative examples: two-point

functions, contact diagrams and four-point exchange diagrams. The goal of this

section is threefold. First, we explain the details of how the formula works in simple

cases. Second, we point out that the saddle-point equations for the geodesic networks

in AdS can be interpreted as the momentum conservation at each bulk vertex. We

also see a natural connection with the flat-space limit of the Mellin amplitude, which

we explore more in section 3.5. Third, we discuss how and when our formula stops

working using the exchange diagram as an illustrative example. In section 3.4 below,

we combine the latter two observations and propose the AdS analogue of Landau

diagrams, which delineate the kinematic regions in which the position-space recipe

for the flat-space limit gives a divergent answer.

3.3.1 Two-point functions

The easiest example for which we can test (3.2.17) is the two-point function. In our

normalization

〈O(n1)O(n2)〉 =
C∆2−∆

(1− n1 · n2)∆
(3.3.1)

We multiple by the factor Z and use the continuation in (3.2.18) to move particle 1

to the ‘in’ position, so (n0
1, n1) = (−q0

1, iq1
)/m and particle 2 to the ‘out’ position,

which we can write as (n0
2, n2) = (q0

2,−iq2
)/m, with q0 ≥ 0 and q2 = −m2 in both

cases. This yields

Z〈O(n1)O(n2)〉|S-matrix =
Z C∆2−∆

(1 + q0
1q

0
2/m

2 − q
1
· q

2
/m2)∆

=
2∆C−1

∆ Rd−1

(−ηµν(q1 + q2)µ(q1 + q2)ν/m2)∆

(3.3.2)
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This expression is best understood by going to a frame where q1 = (m, 0). We get

2∆C−1
∆ Rd−1(

1 +
√

1 + q2
2
/m2

)∆
(3.3.3)

and we observe that for large ∆ this function starts to look like a delta function

singularity, in the sense that it becomes a positive ‘bump’ with support contracting

to the point where q
2

= 0. To check that all the factors come out right we can

integrate:∫
ddq

2∆C−1
∆ Rd−1(

1 +
√

1 + q2/m2
)∆

= 2(2πmR)d
∆Γ(∆− d)

Γ(∆)

R→∞
−−→ 2m(2π)d (3.3.4)

which demonstrates that, more generally,

Z〈O(n1)O(n2)〉|S-matrix
R→∞−→ 2E1(2π)dδ(d)(q

1
− q

2
) (3.3.5)

thus proving our general formula (3.2.17) for single-particle states.

3.3.2 Contact diagram and momentum conservation

For our next example we consider n-point contact diagrams, which according to

our conjectures should give rise to the momentum-conserving delta function in the

flat-space limit. The diagram can be written as

Gc(Pi) =

∫
dX

n∏
i=1

GB∂(X,Pi) =
1

Rn(d−1)/2

∫
dX

n∏
i=1

C∆i
2−∆ie−∆i log(−Pi·X/R)

(3.3.6)

Vertex momenta and vertex Mandelstam invariants

We will analyse the Euclidean correlator for now, which means that the integral over

X is over the hyperboloid X2 = −R2 and X0 > 0. In the flat-space limit all the

scaling dimensions become large and we can use a saddle point approximation for

the integral. The relevant function to extremise is then

fc(X) = −
∑
i

∆i log(−Pi ·X/R) + λ(X2 +R2) (3.3.7)

with λ a Lagrange multiplier. In more detail, we define the integrals as∫
AdS

dX = 2R

∫ ∞
−∞

dd+2X θ(X0)δ(X2+R2) = 2R

∫ i∞

−i∞

dλ

2πi

∫ ∞
−∞

dd+2X θ(X0)eλ(X2+R2)

(3.3.8)
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with the factor 2R inserted so the volume element agrees with the one given by the

metric in equation (3.2.3). The saddle point equation becomes:∑
i

∆i
Pi

Pi ·X
− 2λX = 0 (3.3.9)

which we can contract with X to yield

λ = − 1

2R2

∑
i

∆i . (3.3.10)

and substituting this back we obtain that

∑
i

∆i

(
Pi

Pi ·X/R
+X/R

)
= 0 . (3.3.11)

Now comes a crucial observation: We can interpret (3.3.11) as a momentum-conservation

condition at the interaction vertex in AdS. To see this, introduce κi defined as

κi :=
∆i

R

(
Pi

Pi ·X/R
+X/R

)
. (3.3.12)

In terms of these variables, the saddle-point equation (3.3.11) indeed takes the form

of the momentum conservation ∑
i

κi = 0 . (3.3.13)

In addition, they are on-shell (in the Euclidean sense) and tangent vectors to AdS,

i.e.,

κ2
i = m2

i , X · κi = 0 . (3.3.14)

For these reasons, we call these variables ‘vertex momenta’. Geometrically these

vectors measure the momenta of particles at the position of the interaction vertex

in AdS (see figure 3.7). The fact that the saddle-point equation for the geodesics

coincides with the momentum conservation was first pointed out in [71] for three-

point functions. Our analysis provides a simple generalization of that statement to

higher-point functions.

It is instructive to introduce also the ‘vertex Mandelstam invariants’. If we set

σij := − ∆i∆j∑
k ∆k

Pi · Pj
(Pi ·X/R)(Pj ·X/R)

=
∆i∆j∑
k ∆k

(
1− κi · κj

mimj

)
(3.3.15)

then the saddle point equations (3.3.11), contracted with Pj, can be written as:∑
j

σij = ∆i . (3.3.16)
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Figure 3.7. Vertex momenta and their conservation. The saddle-point equation for the
contact diagram can be interpreted as the momentum conservation of ‘vertex momenta’
(denoted by κj ’s), which are momenta of particles measured at a point where all particles
meet. Since the particles follow curved trajectories, these momenta in general do not
coincide with the boundary momenta introduced in section 3.2.

Note furthermore that for n ≥ 4 the relation between the σij and the Pi is constrained

via their cross ratios,
σijσkl
σikσjl

=
(Pi · Pj)(Pk · Pl)
(Pi · Pk)(Pj · Pl)

. (3.3.17)

Namely the cross ratios of the vertex Mandelstam invariants coincide with the confor-

mal cross ratios of CFT. The previous two equations give precisely enough constraints

to completely determine the σij. The beauty of using the vertex Mandelstam vari-

ables is that they turn the saddle-point equations, which are originally constraints

on (d + 2)-component vectors, into simple algebraic equations (3.3.16) and (3.3.17)

for σij. Once they are determined, one can compute X from

Pi ·X/R = − ∆i√∑
k ∆k

√
− σjk
σijσik

(Pi · Pj)(Pi · Pk)
Pj · Pk

. (3.3.18)

Readers familiar with the Mellin space description of a correlator [43, 72] would

immediately notice an interesting similarity: if one replaces σij in (3.3.16) with the

Mellin variables γij, equation (3.3.16) coincides with the familiar constraint on γij.

There is indeed a more precise connection. In section 3.5 we will explain that the

Mellin representation in the flat-space limit can be evaluated via the saddle point

method, and at the saddle point the γij become equal to the σij and therefore in

particular obey equation (3.3.17). In the remainder of this section we will however

stick to the position-space description and discuss the explicit solutions to the saddle-

point equations and their physical implications.
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Boundary momenta vs. vertex momenta

So far, we have introduced two different notions of momenta for the CFT correlators.

First there are the boundary momenta ki that we used in section 3.2 to state our

conjecture. In Euclidean kinematics it is better to momentarily forget about the i’s

in equation (3.2.18) and set:

kµj = −∆j

R
nµPj , where Pj = (1, nPj) . (3.3.19)

These momenta are on-shell, k2
j = m2

j , but it is not at all necessary for them to be

conserved since we are free to choose arbitrary values of the nP . Physically the kµj
measure the momenta of particles at the boundary of AdS, and the relative minus

sign means that they are ingoing.

A second set of momenta are the vertex momentum κi which measure the mo-

menta of particles at the position of the interaction vertex in AdS and were intro-

duced in the previous subsection. Like the boundary momenta these are also on-shell,

but unlike the boundary momenta they always satisfy the momentum conservation

condition. This indicates that the vertex and boundary momenta do not agree in

general.

The discrepancy arises, of course, because the hyperbolic space is not flat and

particles move along curved trajectories.12 For given Pi the saddle point equations

select the particular bulk point X such that the particles interact at the vertex in a

locally momentum-conserving fashion. The relation between Pi and X is, especially

for higher-point functions, quite complicated, and it is therefore not always easy to

determine the vertex momenta. Nevertheless, there is a simple and beautiful relation

between these two momenta if we are in a special kinematics in which the boundary

momenta ki are also conserved. To see this, let us take a closer look at the momentum

conservation condition for the boundary momenta
∑

i ki = 0. Using (3.3.19), we can

rewrite it into
1∑
k ∆k

∑
i

∆iPi = C := (1, 0, 0, . . .) . (3.3.20)

Now, for this particular choice of the boundary points, the saddle-point equation for

the vertex momenta (3.3.11) becomes trivial to solve: we find that X = RC does the

job since Pi · C = −1. It immediately follows that κi = (0, ki), so bulk and vertex

momenta agree, and therefore the Mandelstam invariants for the boundary momenta

also coincide with the vertex Mandelstam invariants σij.

Restricting the Pi to the support of the momentum conserving delta function

would be sufficient to extract the amplitude T (. . .) as follows from our amplitude

12The ki and κi are normalized tangent vectors to the geodesic, so the contraction with any
Killing vector field is conserved along the trajectories. But this is not relevant for the component-
wise comparison in these paragraphs.
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conjecture. That said, we should remember that important information is lost if

we impose the boundary momentum conservation from the outset: our S-matrix

conjecture states that the contact diagram, when suitably continued to Lorentzian

signature, becomes a momentum-conserving delta function. To verify this, we need

to start with a more general configuration in which the boundary momenta are not

conserved and carefully analyze what happens if we approach the support of the

momentum-conserving delta function. This analysis turns out to be quite compli-

cated in general. So we will consider only n = 3 and n = 4 in what follows.

General momenta, n = 3

As a warm up, let us consider the three-point function, n = 3. In this case, we can

solve the saddle point equation (3.3.11) even in the absence of the conservation of

the boundary momenta. Specifically we try an ansatz of the form

X/R =
∑
j

cjPj (3.3.21)

and the saddle point equations then determine the coefficients

c1 =

√
− P2 · P3

2(P1 · P2)(P1 · P3)

∆12|3∆13|2

∆23|1
∑

k ∆k

(3.3.22)

with ∆12|3 = ∆1 + ∆2 −∆3, and cyclic permutations thereof. The vertex momenta

obey

σ12 =
1

2
∆12|3 . (3.3.23)

Note that, for the three-point function, (3.3.23) immediately follows from the saddle-

point equation written in terms of the vertex Mandelstam variables, (3.3.17).

The analysis of the three-point function is certainly a simple and instructive

exercise but unfortunately there is not much more we can say, since there are no

physical three-point scattering processes and we cannot really see the emergence of

the delta-function. Thus we will not work out the details of the flat-space limit any

further.

Instead let us briefly mention two specific limits of the ∆i variables for later

reference. First we can take the limit where ∆2 = ∆3 and send ∆1 to 0. In that case

c1 goes to zero, so X becomes a linear combination of P2 and P3 which means that X

lies on the geodesic between P2 and P3 in AdS. Another possible limit is the ‘decay’

limit where we send, say ∆23|1 to zero so particle 1 can (almost) decay into particles

2 and 3. In that case c1 blows up whereas c2 and c3 go to zero, which means that X

approaches P1. These are drawn in figure 3.8.
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P1

P2

P3
X

(a) ∆1 → 0

P1

P2

P3

X

(b) ∆23|1 → 0

Figure 3.8. Two different limits of the three-point diagram with ∆2 = ∆3.

General momenta, n = 4

Let us now consider a more physically interesting example, the contact diagram for

four identical particles. We will do a detailed analysis and show that the momentum-

conserving delta function appears from the saddle point value of the diagram, in

accordance with our S-matrix conjecture. Let us first determine the σij by solving

the algebraic equations (3.3.16) and (3.3.17). The result is given purely in terms of

the conformal cross ratios (3.2.29) as

σ12 = σ34 = ∆

√
u

1 +
√
u+
√
v
,

σ13 = σ24 = ∆
1

1 +
√
u+
√
v
,

σ14 = σ23 = ∆

√
v

1 +
√
u+
√
v
.

(3.3.24)

One can then define corresponding vertex Mandelstam invariants via s := 4m2− 8
∆
σ12,

t := 4m2− 8
∆
σ13 and u := 4m2− 8

∆
σ14. In equation (3.2.30) we wrote an expression for

the conformal (or boundary) Mandelstam invariants which was valid on the support

of the momentum-conserving delta function; one can verify that it agrees precisely

with equation (3.3.24).

With the σij in hand we can determine X via equation (3.3.18). The bulk point

is most easily described as a linear combination of the boundary points as in equation

(3.3.21). With a little work we find that (3.3.18) reduces to:

Pi ·X = − R

4ci
. (3.3.25)

and that

c1 =
α

(P12P13P14)1/2
(3.3.26)

with others obtained through cyclic permutations of the indices. The common factor
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α is given by

α =
(P12P13P14P23P24P34)1/4

√
2
(√

P12P34 +
√
P13P24 +

√
P14P23

)1/2
. (3.3.27)

The on-shell value of fc(X) reads:

fc(X) = ∆
4∑
i=1

log(4ci) (3.3.28)

To compute the full saddle-point approximation we need to compute the determinant

of the Hessian. The second derivatives are given by:

∂2fc(X)

∂Xµ∂Xν

=
4∑
i=1

∆
P µ
i P

ν
i

(Pi ·X)2
+ 2ληµν =

4∆

R2

(
4∑
i=1

4ciciP
µ
i P

ν
i − ηµν

)
∂2fc(X)

∂Xµ∂λ
= 2Xµ =

4∑
i=1

2ciP
µ
i

∂2fc(X)

∂λ2
= 0

(3.3.29)

After introducing the vectors

P̃i = 2ciPi (3.3.30)

one uses the matrix determinant lemma for∣∣∣∣−η +
∑

i P̃i(P̃i)
T
∑

i P̃i∑
i(P̃i)

T 0

∣∣∣∣ = (−1)d4 detij

[
δij − (P̃i)

T P̃j −
1

4
eij

]
= (−1)d

32
√
P12P13P14P23P24P34(√

P12P34 +
√
P13P24 +

√
P14P23

)3

(3.3.31)

where eij = 1 for all i and j. Mopping up all the other factors ultimately gives

Gc(Pi)
R→∞
−−→ R−d+322∆−d/2−6π−3d/2+1/2∆3d/2−9/2

(√
P12P34 +

√
P13P24 +

√
P14P23

)−2∆+3/2

(P12P13P14P23P24P34)1/4

(3.3.32)

As expected, this is a manifestly crossing symmetric function of the positions that

also obeys the right conformal transformation properties for a four-point function of

identical operators.

Now, according to the prescription dictated by the ‘S-matrix’ conjecture (3.2.17),

we should obtain a momentum conserving delta function if we multiply the contact

diagram Gc(Pi) by the normalization factor
√
Z, analytically continue to the ‘S-

matrix’ configuration and then take the flat-space limit. In equations this means
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that

Z2Gc(Pi)|S-matrix

R→∞
−−→ i(2π)d+1δ(d+1)(k1 + k2 + k3 + k4) (3.3.33)

should hold, with the momenta ki related to the boundary points Pi through (3.3.19).

In appendix 3.C we prove that this is indeed the case.13

3.3.3 Exchange diagram and geodesic networks

We now discuss the next-to-simplest Witten diagram for the four-point functions,

namely the exchange diagram. By analysing its flat-space limit, we encounter an

interesting obstruction against the position-space recipe for the flat-space limit. This

naturally leads us to propose the notion of Landau diagrams in AdS, which will be

the subject of the next section.

The exchange diagram is given by

Ge(Pi) =

∫
dXdY GB∂(X,P1)GB∂(X,P2)GBB(X, Y )GB∂(Y, P3)GB∂(Y, P4)

(3.3.34)

We will set all the external dimensions equal ∆1 = ∆2 = ∆3 = ∆4 = ∆ and

the dimension of the exchanged particle equal to ∆b for simplicity. Using the split

representation for the bulk-bulk propagator this becomes

Ge(Pi) =

∫ i∞

−i∞

dc

2πi

2c2

c2 − (∆b − h)2

∫
dQ

∫
dXdY

R3−3d Ch+c Ch−c
(−2Q ·X/R)h+c(−2Q · Y/R)h−c

× (C∆)4

(−2P1 ·X/R)∆(−2P2 ·X/R)∆(−2P3 · Y/R)∆(−2P4 · Y/R)∆
.

(3.3.35)

Contribution from the saddle

In the flat space limit, we expect this integral to be dominated by the saddle point.

After introducing the Lagrange multipliers λQ,X,Y and θQ, the function to extremise

becomes

fe(X, Y,Q, c) =− c [log(−Q ·X/R)− log(−Q · Y/R)]

−∆

[∑
j=1,2

log(−Pj ·X/R) +
∑
j=3,4

log(−Pj · Y/R)

]
+ λQQ

2 + θQ(Q0 − 1) + λX(X2 +R2) + λY (Y 2 +R2) .

(3.3.36)

13In particular, the seemingly random and certainly lengthy prefactor in equation (3.3.32) is
essential to reproduce the correct normalization in equation (3.3.33).
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Imposing
∂fe
∂c

=
∂fe
∂Q

=
∂fe
∂λQ

=
∂fe
∂θQ

=
∂fe
∂λX

=
∂fe
∂λY

= 0 , (3.3.37)

we find that the two bulk points must coincide at the saddle point; namely X = Y

(and λQ = θQ = 0). The remaining saddle point equations reduce to

c
Q

Q ·X
+ ∆

∑
j=1,2

Pj
Pj ·X

− 2λXX = 0 ,

−c Q

Q ·X
+ ∆

∑
j=3,4

Pj
Pj ·X

− 2λYX = 0 .

(3.3.38)

Contracting these equations with X, we get

λX = − 1

2R2
(2∆ + c) , λY = − 1

2R2
(2∆− c) . (3.3.39)

Now, to understand the physical meaning of the saddle-point equations, it is again

useful to use the vertex momenta

κj :=
∆j

R

(
Pj

Pj ·X/R
+X/R

)
, χ :=

c

R

(
Q

Q ·X/R
+X/R

)
. (3.3.40)

Here χ is a vertex momentum associated with the exchanged particle. Unlike the

external vertex momenta, it is off-shell, meaning that χ2 6= m2
b with mb := ∆b/R.

In terms of these variables, the saddle-point equation again takes the form of the

momentum conservation

κ1 + κ2 + χ = 0 , κ3 + κ4 − χ = 0 . (3.3.41)

This in particular means that the vertex momenta of the external particles are con-

served,
∑

j κj = 0. Note that (3.3.41) matches our expectation in the flat-space

limit: the momentum conservation holds at each vertex but the internal particle is

off-shell.

To determine the saddle-point values of c, Q, and X(= Y ) we can again con-

sider the vertex Mandelstam variables. Owing to the momentum conservation of the

external particles
∑

j κj = 0, σij’s are given by the same expressions as the con-

tact diagram (3.3.24) and so is X. On the other hand, if we use the momentum

conservation at each interaction vertex (3.3.41), we obtain alternative expressions

c2 = 4∆2 − 8∆σ12 = 4∆2 − 8∆σ34 (3.3.42)
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With (3.3.24) this yields14

c2 = 4∆2−
√
P12P34 +

√
P13P24 +

√
P14P23√

P12P34 +
√
P13P24 +

√
P14P23

(3.3.43)

In terms of the vertex momenta, or in terms of the boundary momenta on the support

of the momentum-conserving delta function, this expression is actually much simpler:

c2 = R2s , (3.3.44)

with s the conformal Mandelstam variable (3.2.30). This is simply a manifestation

of the fact that c2 measures the energy of the exchanged particle. We can then

determine Q solving (3.3.38). The result reads

Q ∝ λY
∑
j=1,2

cjPj − λX
∑
k=3,4

ckPk , (3.3.45)

where cj’s are given by (3.3.26) and λX,Y given by (3.3.39). Not written is an

unimportant proportionality factor that fixes the gauge Q0 = 1.

With X = Y it is immediate that the on-shell value of fe coincides with that of

the contact diagram, so we find again that

fe = ∆
4∑
i=1

log(4ci) . (3.3.46)

As is the case with the contact diagram, we also need the one-loop fluctuation around

the saddle point to reproduce the correct flat-space limit. It turns out that the

computation is most efficiently done if we first perform integration of X, Y and

Q exactly and then compute the fluctuation around the saddle point of c (3.3.43).

Relegating the details to Appendix 3.D, here we display the final result

Ge(Pi)
R→∞
−−→ Gc(Pi)|R→∞ ×

R2

∆2
b − c2

, (3.3.47)

where the first factor Gc(Pi)|R→∞ is the flat-space limit of the contact diagram

(3.3.32). Thus, once we multiply Ge(Pi) with the normalization factors
√
Z and

perform the analytic continuation, we recover the result for the exchange diagram in

the flat-space limit including the momentum conserving delta function:

Z2Ge(Pi)
∣∣
S-matrix

R→∞
−−→ i(2π)d+1δ(d+1)(k1 + k2 + k3 + k4)

1

(k1 + k2)2 +m2
. (3.3.48)

14The sign of c is arbitrary, since the equations are invariant under c→ −c and Q→ X+Q/(2Q ·
X).
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Figure 3.9. The contributions from the saddle point and the pole for the exchange di-
agram. To evaluate the exchange diagram using the saddle-point approximation of the
c-integral, we need to deform the original contour (the red dashed line) to a steepest de-
scent contour (the solid red line) that goes through the saddle point (the blue dot). Upon
doing so, the contour sometimes needs to cross the poles of the integrand and this produces
an additional contribution. Physically, the contribution from the saddle-point corresponds
to a scattering process in which the four-particles meet at a point while the contribution
from the pole corresponds to a geodesic network. The former is related to a flat-space
S-matrix while the latter is not.

Contribution from the pole

We have seen above that the contribution from the saddle point beautifully repro-

duces the flat-space limit of the exchange diagram. There is however one subtlety

in the argument above: initially the contour of integration of c is placed along the

imaginary axis. In order to evaluate the integral using the saddle-point approxima-

tion, we need to shift the contour so that it goes through the saddle point given by

(3.3.44). Upon doing so, the contour sometimes crosses poles in the integrand of

(3.3.35), namely the poles at c = ±(∆b − h). When this happens, the full contribu-

tion in the large R limit is given by a sum of two terms, the saddle-point contribution

determined above, and the contribution from the residue of the pole (see figure 3.9).

Let us for now discuss the contribution from the pole in the right half plane,
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c = ∆b − h. Evaluating the integral (3.3.35) at the pole we get

Ge(Pi)|pole =(h−∆b)

∫
dQ

∫
dXdY

R3−3d C∆b
Cd−∆b

(−2Q ·X/R)∆b(−2Q · Y/R)d−∆b

× (C∆)4

(−2P1 ·X/R)∆(−2P2 ·X/R)∆(−2P3 · Y/R)∆(−2P4 · Y/R)∆
.

(3.3.49)

To analyse the rest of the integral, we can again use the saddle-point approximation.

This is a safe manipulation since the integrand is not singular (for generic Pj’s). Now

the function to extremise is

fe,pole(X, Y,Q) =−∆b [log(−Q ·X/R)− log(−Q · Y/R)]

−∆

[∑
j=1,2

log(−Pj ·X/R) +
∑
j=3,4

log(−Pj · Y/R)

]
+ λQQ

2 + θQ(Q0 − 1) + λX(X2 +R2) + λY (Y 2 +R2) .

(3.3.50)

Since the integration variable c in (3.3.36) is replaced by a fixed number ∆b, the

saddle-point equations do not set the two bulk points to be coincident, so generically

X 6= Y . Instead we obtain

∆b
Q

Q ·X
+ ∆

∑
j=1,2

Pj
Pj ·X

− 2λXX = 0 , −∆b
Q

Q · Y
+ ∆

∑
j=3,4

Pj
Pj · Y

− 2λY Y = 0 ,

−∆b
X

Q ·X
+ ∆b

Y

Q · Y
+ 2λQQ = 0 , (3.3.51)

where λX,Y are given by

λX = − 1

2R2
(2∆ + ∆b) , λY = − 1

2R2
(2∆−∆b) . (3.3.52)

The first two equations can be recast into the momentum conservations at the two

bulk vertices X and Y . To see this, we introduce internal vertex momenta

χ1 :=
∆b

R

(
Q

Q ·X/R
+X/R

)
, χ2 :=

∆b

R

(
Q

Q · Y/R
+ Y/R

)
. (3.3.53)

Then the first two equations in (3.3.51) can be rewritten as

κ1 + κ2 + χ1 = 0 , κ3 + κ4 − χ2 = 0 . (3.3.54)

There are two important differences compared to equation (3.3.41): first the two

internal momenta χ1,2 are in general different, and second, unlike χ in (3.3.41) the
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Figure 3.10. Geodesic network. The contribution from the pole c = ∆b corresponds to
a network of geodesics in which the conservation of momenta holds at each vertex. Here
χ1,2 are internal vertex momenta while κj ’s are external vertex momenta.

internal momenta χ1,2 are on-shell, i.e. χ2
1 = χ2

2 = m2
b . Geometrically, these features

reflect the fact that the contribution from the pole describes a network of geodesics

in which two interaction points are macroscopically separated in AdS.15 This is also

consistent with the analysis in section 3.2, which showed that the pole contribution

to the bulk-to-bulk propagator corresponds to a geodesic connecting two bulk points

(see also figure 3.10). This is reminiscent of Landau diagrams in flat space, which

correspond to trajectories of on-shell particles in complexified Minkowski space. In

section 3.4, we will use this observation to propose the AdS version of Landau dia-

grams.

There are two different ways to evaluate the saddle-point value of fe,pole. The

first approach is to explicitly determine the saddle point by solving all the equations

(3.3.51) and then to evaluate fe,pole on that saddle point. The second approach is to

perform the integrals of X, Y and Q in (3.3.49) exactly and use the asymptotic form

of the conformal block. As explained in appendix 3.D, the second approach turns

out to be simpler and the result reads

fe,pole = −∆ log

(
P12P34

16

)
+ g (∆b) . (3.3.55)

with

g(x) := −4∆ log(∆)+(2∆+x) log(∆+ x
2
)+(2∆−x) log(∆− x

2
)+x log

(
2m−

√
s

2m+
√
s

)
,

(3.3.56)

where s is the Mandelstam variable.

15Unlike the ‘geodesic Witten diagram’ introduced in [73], here the bulk vertices do not lie on
the geodesic connecting the boundary points (as long as mb > 0). Both constructions do reduce to
a conformal block at large ∆, albeit with different normalizations.
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Figure 3.11. Regions in the complex s plane where the pole at c = ∆b is picked up (lighter
shaded) and the smaller subregion where the flat-space limit diverges (darker shaded).
The different colours correspond to mb = 0.5, 1, 1.5, 1.85 and we have set m = 1. The
problematic region for the exchange diagram always lies within the disk given by |s−4m2| <
4m2. We assumed that the external momenta are chosen such that momentum conservation
holds.

Exchange of dominance

We have seen that the exchange diagram receives two different contributions, the

one associated with the saddle point of c and the other associated with the pole of

c. As discussed above, the first contribution correctly reproduces the flat-space limit

while the second contribution corresponds to a network of geodesics in which the two

bulk points are macroscopically separated in AdS. Therefore the large R limit of the

exchange diagram gives the flat-space result if and only if the second contribution

can be neglected.

Clearly the most interesting configuration is when we are on the support of the

momentum-conserving delta function so the external momenta obey
∑4

i=1 ki = 0. In

that case the algorithm is the following (see figure 3.9).

1. Compare the position of the steepest descent contour through the saddle point

at c = R
√
s and the position of the pole at c = ∆b. If the steepest descent

contour is to the left of the pole, the flat space limit gives the correct answer.
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2. If the steepest descent contour is to the right of the pole, compare the real

parts of the exponents (3.3.46) and (3.3.55). In fact, if
∑4

i=1 ki = 0 then the

value of fe at the saddle point value vanishes and so we simply need to check

the sign of the real part of (3.3.55): if it is positive then the flat-space limit

diverges, and if it is negative then the flat-space limit gives the correct answer.

In figure 3.11, we plotted the region in which the flat-space limit works/fails in

the complex s-plane. As one can see there, the bound-state pole s = m2
b is at the

edge of a larger ‘blob’ where the flat-space limit gives a divergent answer. The size

of the region grows as we decrease the mass of the bound state, and when it becomes

massless mb → 0, the region is given by a disk of radius 4m2 centred at the two-

particle threshold s = 4m2. Therefore, if we are agnostic about mb then the flat-space

limit of the exchange diagram is only guaranteed to be finite for |s−4m2| > 4m2. We

furthermore observe that the bad region vanishes entirely as mb → 2m, and that for

any 0 ≤ mb < 2m it always includes at least a little bit of the physical line s > 4m2.

3.4 Landau diagrams in AdS

In section 3.2 we discussed two large ∆b limits of the bulk-bulk propagatorGBB(X, Y ):

one where the distance between X and Y becomes much smaller than the AdS ra-

dius R, which reproduced the flat-space Klein-Gordon propagator, and one where

this distance is kept finite in units of R, which reproduced the simple exponential

GBB(X, Y ) ∼ exp(−∆bd(X, Y )) with d(X, Y ) = arccosh(−X · Y/R2) the geodesic

distance between X and Y (in units of the AdS radius).

In the flat-space analysis of Witten diagrams the bulk points X and Y are inte-

grated over and in the large ∆ analysis their locations are dynamically determined

by the saddle point equations. It is therefore not entirely surprising that both be-

haviours of the bulk-bulk propagator can play a role. As was exemplified by the

exchange diagram of the previous subsection, for a propagator in a generic Witten

diagram the saddle point equations read:

∂f

∂c
= 0 =⇒ log(−Q ·X)− log(−Q · Y ) = 0 (3.4.1)

∂f

∂Q
= 0 =⇒ −c

(
X

Q ·X
− Y

Q · Y

)
+ 2λQQ = 0 (3.4.2)

Together they yield Y = X, and with all the bulk vertices close together we reproduce

the flat space result because all the interactions take place at a distance much smaller

than the AdS radius. The only potential hiccup in this procedure are the poles in

the complex c plane: if the steepest descent contour through the saddle point in the

c plane passes on the wrong side of one of these poles then its residue needs to be
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taken into account, resulting in unwanted additional contributions that can spoil the

extraction of an amplitude from the position-space correlator.

An AdS Landau diagram can be defined as a network of geodesics in AdS such

that vertex momentum is conserved at every interaction point. We recall that the

vertex momentum for each external leg is

κi =
∆i

R

(
Pi

Pi ·X/R
+X/R

)
, (3.4.3)

and for each internal leg it is

χi =
∆i

R

(
Qi

Qi ·X/R
+X/R

)
, (3.4.4)

where for every bulk-bulk propagator GBB(X, Y ) the value of Q is determined

through momentum conservation and

2λQQ = ∆b

(
X

Q ·X
− Y

Q · Y

)
(3.4.5)

and Q2 = 0 and Q0 = 1. Notice that the first equation in (3.4.1) no longer needs

to be obeyed because c is fixed to one of its poles; for definiteness we chose the pole

at c = ∆b but we will discuss this further below. Clearly the AdS Landau diagrams

extremise the ‘action’

f =−
∑

〈ik〉 ∈ Ext

∆i log(−Pi ·Xk)−
∑

〈kl〉 ∈ Int

∆〈kl〉
(
log(−Q〈kl〉 ·Xk)− log(−Q〈kl〉 ·Xl)

)
+
∑
k

λk(X
2
k +R2) +

∑
〈kl〉 ∈ Int

(
λ〈kl〉Q

2
〈kl〉 + θ〈kl〉(Q

0
〈kl〉 − 1)

)
(3.4.6)

where 〈ik〉 runs over the set of external legs between the boundary points Pi and

bulk points Xk connected by a bulk-boundary propagator, and 〈kl〉 labels all pairs

of internal legs, so legs connected by a bulk-bulk propagator. We will call the saddle

point equations the AdS Landau equations and the on-shell value of this action then

gives the contribution of the AdS Landau diagram to the flat-space limit of the

Witten diagram.

Notice that an alternative action can be obtained by eliminating Q and simply

using the large ∆ expression for the bulk-bulk propagator:

f̃ = −
∑

〈ik〉 ∈ Ext

∆i log(−Pi ·Xk)−
∑

〈kl〉 ∈ Int

∆〈kl〉 d(Xk, Xl) +
∑
k

λk(X
2
k +R2) (3.4.7)

with d(Xk, Xl) = arccosh(−Xk · Xl/R
2) as above. In this sense an AdS Landau
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diagram is a sort of ‘minimal distance’ diagram: the ∆’s provide a ‘spring constant’

that determines how much the action decreases if we pull points further apart, and

the external leg factors provide a ‘renormalized distance’ between bulk and boundary

points.

Returning to our conjectures we see that we can divide the configuration space

of all values of the Mandelstam invariants into different regions as follows. We first

look at the original saddle point equations and determine the integration contours

for the c variables in the correct flat space limit. If poles have been crossed in

deforming the original integration contour to this steepest descent contour then the

corresponding leg is ‘freed’ and the bulk points are allowed to separate. For each

region we can construct the AdS Landau diagram with the corresponding free internal

legs, demanding that all the non-free internal legs are contracted to a point. In

regions where the number of free legs is not zero, our conjectures have a chance of

working only if the on-shell value of the action is subleading compared to the contact

diagram.16

3.4.1 Comparison with flat space Landau diagrams

Much like flat space Landau diagrams, our AdS Landau diagrams correspond to clas-

sical on-shell particles propagating over large distances with momentum conservation

holding at the vertices. Let us compare the equations in a bit more detail.

In flat space the Landau conditions can be formulated as follows [74, 75].17 Sup-

pose the external momenta are qµi . One then associates a momentum kµr and a

parameter αr to each internal leg r and a position xµs to each vertex s. Then for the

internal leg between position xµ and yµ we impose that any non-zero propagation is

physical, so

xµ − yµ = αkµ (3.4.8)

Now either α is zero, the leg is contracted and the diagram said to be reduced, or the

propagation needs to be on-shell. In equations, for every leg we need that:

α(k2 +m2) = 0 (3.4.9)

16In fact, for the contact diagram on the support of the momentum conserving delta function the
on-shell action is zero. Therefore the condition for the conjectures to hold becomes Re(f) < 0.

17A priori all the positions and momenta here are to be understood in Minkowski space with a
metric with mostly plus signature. More interesting singularities can be obtained by complexifica-
tion. In particular, to obtain singularities in the ‘Euclidean domain’ where s, t, u are all positive
(and below threshold), we can analytically continue the spacelike components of kµ and xµ to
purely imaginary values (for example, in the centre of mass frame s = 4m2 + 4~p2 so s < 4m2

requires ~p2 < 0). Absorbing the signs in a redefinition of the metric, this is commonly described as
a configuration with all minus signature metric and real momenta. However our conjectures carry
additional factors of i. More precisely, equation (3.2.18) informs us that imaginary ~p corresponds
to real nµ, which means that standard Euclidean AdS is appropriate for the Euclidean domain in
the Mandelstam invariants.
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The last condition is momentum conservation for each vertex. If we ignore signs

corresponding to in- or outgoing momenta then this can be schematically written as:∑
r

kµr +
∑
i

qµi = 0 (3.4.10)

with the sum running over all legs, both external and internal (and both contracted

and not contracted), that end on the given vertex. The parameter α is interesting

here: for a large range of values of the Mandelstam invariants (in particular, all

the physical values as well as the Euclidean region) the only possible singularities

have α ≥ 0. Singularities with other values of α can appear on other sheets. More

extensive reviews of the Landau equations can be found, for example, in [76–78].

From the preceding discussions one can distil a nearly perfect analogy with the

AdS equations: the conservation of the on-shell momenta in flat space becomes

simply the conservation of the on-shell vertex momenta in AdS, and equation (3.4.5)

fixes the direction of the ‘momentum’ Qµ to be a linear combination of X and Y

such that the relevant vertex momenta at X and Y are tangential to the geodesic

between X and Y . This latter condition is precisely the expected AdS analogue of

flat-space propagation with a fixed momentum.

An final subtlety is the parameter α in the flat-space Landau equations. Its AdS

analogue is λQ since that is the natural relative parameter between the momentum

through a leg and its displacement. In particular, λQ = 0 if the leg is contracted

which corresponds to α = 0 in flat space. But in flat space we can furthermore deduce

that α ≥ 0 for singularities corresponding to physical or Euclidean kinematics, and

it is not immediately clear that the sign of λQ is similarly important. To see this we

will consider the defining equation for λQ, which is

λQ =
∆b

4

(
1

(Q · Y )2
− 1

(Q ·X)2

)
(3.4.11)

To see the relevance of the sign of λQ we first have to discuss the irrelevance

of the sign of c. Consider then a solution of the AdS Landau equations for a given

value of c. We claim that there must exist a solution at the opposite value −c with

Q pointing in the opposite direction. To see this, notice that we can always choose

a frame where we only need to consider the R2 spanned by X and Y , implying

that we can take X = (cosh(ρX), sinh(ρX)), Y = (cosh(ρY ), sinh(ρY )). Since Q is a

linear combination of X and Y which obeys Q2 = 0 and Q0 = 1, it must be that

Q = (1,±1) =: Q± and that correspondingly

λ±Q =
c

4

(
e±2ρY − e±2ρX

)
(3.4.12)

The choice between the ‘+’ and the ‘−’ sign is not fixed in our partial analysis, but it
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(a) Normal diagram with λQ > 0
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(b) ‘Flipped’ diagram with λQ < 0

Figure 3.12. Normal and ‘flipped’ scalar exchange diagram.

will be fixed by the vertex momentum conservation equations which given c provide

a definite direction to Q. However, we also notice that the momentum conservation

equations are invariant under sending c → −c and exchanging Q+ and Q−. Doing

so sends18

λ±Q → −
c

4

(
e∓2ρY − e∓2ρX

)
= e∓2(ρX+ρY )λ±Q . (3.4.13)

So, no matter whether the original solution had Q+ or Q− at +c, if λQ was positive

at +c then it is also positive at −c, and vice versa. In summary: the sign of λQ does

not depend on the choice between picking up the pole at +∆b or −∆b. Suppose then

that we set c = ∆b. To see that positive λQ is the ‘correct’ direction, note that from

equations (3.4.4) and (3.4.5) it follows that the corresponding vertex momentum

points inward at X and outward at Y . This is exactly in agreement with the relative

minus signs in vertex momentum conservation equations like equation (3.3.54), where

all the other vertex momenta are defined to point inward.

To conclude the analogy we just need to deduce that saddle points with λQ < 0

are unimportant in Euclidean configuration. Clearly something is amiss with them,

since they would correspond to ‘flipped’ solutions where particles propagate in the

direction opposite to their vertex momenta. This is illustrated in figure 3.12 using the

scalar exchange diagram as an example. In equations what happens is the following.

If λQ < 0 and c = +∆b then (−Q · Y ) > (−Q ·X), implying that the action can be

reduced by decreasing c. We take this as an indication that the saddle point in the

c plane lies to the left of the pole, much like in the unshaded region in figure 3.11

for the exchange diagram. This means that the pole is not picked up and indeed the

solution with λQ < 0 is unimportant.

Let us stress that this argument was restricted to Euclidean kinematics. Note

that in flat space Landau singularities with non-positive α can become important

when considering more involved analytic continuations in the Mandelstam variables,

for example by passing onto other sheets. In AdS the same observation holds: such

continuations may force a deformation of the c integration contour which forces one

18The gauge constraint Q0 = 1 introduces some non-covariance in the expression for λQ. This is
why λQ is not completely invariant.
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to take into account a contribution of the pole independently of the location of the

saddle point. It would be interesting to see if a criterion similar to the positivity of

λQ can be formulated for general complex values of the Mandelstam invariants.

Finally let us stress the most striking difference between the flat space and AdS

Landau equations appears to be that the latter can be solved much more generally

than the former. In fact, if we do not require the λQ variables to be positive then

it appears that the AdS Landau equations have a solution for any values of the

external momenta. This is not because the number of equations has changed but

rather because of the more permissive nature of the AdS Landau equations. Most

importantly, conservation of the vertex momenta can be achieved by moving the bulk

point X to a suitable location – something which is impossible in flat space because

of translation invariance.

Of course the AdS Landau diagrams are only important if (1) the poles are picked

up, and (2) the on-shell value of the action (3.4.6) has positive real part. As we have

seen above, this leads to ‘blobs’ where our conjectures are not valid because the flat-

space limit diverges. It is our expectation that there is always a large region where

the conjectures work and the AdS Landau diagrams do not dominate, and it would be

interesting to find such a region. For four-point functions we can use the conformal

block decomposition and some initial steps in this direction are discussed in section

3.6. It would also be worthwhile to further investigate the natural conjecture that

the support for flat-space Landau diagrams lies within the closure of the divergent

blobs for AdS Landau diagrams.

3.4.2 Anomalous thresholds and the triangle diagram

It is worthwhile to illustrate the general discussion of AdS Landau diagrams with

the example of the triangle diagram, which is the simplest diagram exhibiting an

anomalous threshold, i.e. a singularity in the Mandelstam s plane not directly at-

tributable to an intermediate physical state. In more detail, we will consider an

all-scalar triangle diagram with equal external masses m, equal internal masses µ,

and a momentum configuration as in figure (3.13). In flat space the loop integral is

easily written down and one finds that for

1

2
m < µ <

√
2

2
m, 0 < s < 2m2, (3.4.14)

there is a cut in the Mandelstam s variable on the physical sheet starting at

sanom = 4m2 − m4

µ2
. (3.4.15)

Since this is less than the natural physical threshold 4µ2, the singularity is said to be

anomalous. Our aim in this section is to reproduce this anomalous threshold from
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Figure 3.13. The triangle diagram in AdS.

the corresponding Witten diagram.

In AdS the triangle Witten diagram reads

Gt(Pi) =

∫
dXdY dZGB∂(X,P1)GB∂(Y, P2)GB∂(Z, P3)GB∂(Z, P4)

×GBB(X, Y )GBB(Y, Z)GBB(X,Z). (3.4.16)

with scaling dimensions ∆ ∼ mR and ∆b ∼ µR for the propagators as given in

figure 3.13. As per the previous discussion, the action of the AdS Landau diagram

to extremise is:

f̃t(X, Y, Z) =−∆ log(−P1 ·X/R)−∆ log(−P2 · Y/R)

−∆ log(−P3 · Z/R)−∆ log(−P4 · Z/R)

−∆bd(X, Y )−∆bd(Y, Z)−∆bd(X,Z), (3.4.17)

with d(X, Y ) = arccosh(−X · Y/R2). We will again assume that we are on the

support of the momentum conserving delta function and will also pass to the centre

of mass frame. Then the symmetries of the problem dictate the following ansatz:

P1 = (1, cos(θP ), sin(θP ) , P2 = (1, cos(θP ),− sin(θP ) ,

P3 = (1,− cos(θP ), sin(θP ) , P4 = (1,− cos(θP ),− sin(θP ) ,

X =
(
R cosh

(ρX
R

)
, R sinh

(ρX
R

)
cos(θX), R sinh

(ρX
R

)
sin(θX)

)
, (3.4.18)

Y =
(
R cosh

(ρX
R

)
, R sinh

(ρX
R

)
cos(θX),−R sinh

(ρX
R

)
sin(θX)

)
,

Z =
(
R cosh

(ρZ
R

)
, R sinh

(ρZ
R

)
, 0
)
.

Although we wrote equations for AdS2, the diagram does not depend on Mandelstam
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t so our result is actually valid for any spacetime dimension. The only independent

parameters are ρX , ρZ and θX and the remaining AdS Landau equations can be

found from:

∂f̃t
∂ρX

=
∂f̃t
∂ρZ

=
∂f̃t
∂θX

= 0 , (3.4.19)

whereas the Mandelstam s variable is related to θP as:

θP = −1

2
arccos

(
s− 2m2

2m2

)
+ π . (3.4.20)

The precise branch can be fixed by requiring θP ∈ [π/2, π] for s ∈ [0, 4].

Unfortunately the equations in (3.4.19) are still somewhat difficult to solve ana-

lytically and so we will proceed numerically. In agreement with the general discussion

earlier in this section, but in marked contrast with the flat-space equations, we man-

aged to find solutions to the AdS Landau equations everywhere we looked in the

complex s plane.19 For each value we computed the on-shell action and checked the

sign of Re(f̃t). The region where Re(f̃t) > 0 is the problematic region because the

Landau diagram dominates over the correct saddle point. In figure 3.14 we show

the result for µ/m = 0.501, 0.52, 0.6, 0.706(≈
√

2/2) in detail on the left. We again

uncover a blob-like region, entirely contained in the region |s − 4m2| < 4m2, where

the flat-space limit gives a divergent answer and the conjectures of section 3.2 do not

hold. It is satisfying to see that the anomalous threshold is correctly reproduced:

on the right we show that for general µ there is a perfect agreement between the

flat-space and AdS Landau diagram thresholds.

3.5 Mellin space

In this section we will compare our conjectures with the flat-space prescription of

[13] that was based on Mellin space [43, 72]. Recall that the Mellin space expression

for a Witten diagram with n points G(Pij) is

G(Pij) =

∫
[dγij]M(γij)

∏
1≤i<j≤n

Γ(γij)P
−γij
ij (3.5.1)

19The actual algorithm was fairly delicate. We used FindRoot in Mathematica to solve (3.4.19)
for different values of s. Unfortunately this method would often fail without a nearly perfect initial
guess of the values {ρX , ρZ , θX}. We therefore proceeded iteratively, starting from an ‘easy’ point
like s = 4 and then searching radially outward in small steps. We adjusted the step size dynamically,
reducing it if no solution could be found. Additional radial searches were applied to check for non-
convexities in the domain. Additional care needs to be taken because of the branch cuts in the
square roots in the saddle point equations.
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Figure 3.14. Left: Regions in the complex s plane (shaded) where the AdS Landau
diagram dominates over the flat-space saddle point. We have set m = 1. The dots, lines
and crosses are flat-space data: they are respectively the start of the anomalous threshold
at 4m2−m4/µ2, the branch cuts emanating from it, and the physical threshold 4µ2 which
is a little further along the cut. (The anomalous and physical threshold coincide when
µ/m =

√
2/2.) The shaded regions are the ‘bad’ regions obtained numerically. Note that

they always lie within the disk given by |s − 4m2| < 4m2 whose boundary is the black
dashed circle. Right: the red dots indicate, for a given µ ∈

(
1/2, 1/

√
2
)
, the smallest

real s for which the AdS Landau diagram dominates. They are in perfect agreement with
the yellow curve which is the flat-space anomalous threshold. The physical threshold is
indicated by the purple curve. The blue curve will be useful later for discussion in section
3.5. The vertical lines correspond to the branch cuts for different µ as in the left figure.

where

Pij := −2Pi · Pj (3.5.2)

and the Mellin space (integration) variables γij satisfy

n∑
j 6=i

γij = ∆i, γij = γji. (3.5.3)

The integration measure [dγ] is shorthand for a contour integral over the n(n −
3)/2 independent Mellin variables and includes a factor of 1/2πi for each variable.

The integration contour is of Mellin-Barnes type: it runs from −i∞ to +i∞ and

separates the poles in the Gamma functions and the Mellin amplitude in the usual

way. The Witten diagram is then encoded in the meromorphic Mellin amplitude

M(γij). For example, for an n-point contact Witten diagram the Mellin amplitude
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is just a constant:

contact diagram: M(γij) = N /Rn(d−1)/2−d−1 (3.5.4)

with the canonical normalization constant

N =
1

2
πhΓ

(∑
i ∆i − d

2

) n∏
i=1

C∆i

Γ(∆i)
.

Below we will investigate what happens to the Mellin representation in the

flat-space limit in order to see what our conjecture (3.2.17) becomes for Mellin-

representable functions.20 This will also allow us to tie our conjectures to one of the

two conjectures in [13], which we recall claimed that the scattering amplitude can be

obtained directly in terms of the Mellin amplitude via:

(m1)n(d−1)/2−d−1T (k1 . . . kn) = lim
∆i→∞

(∆1)n(d−1)/2−d−1

N
M

(
γij =

∆i∆j∑
k ∆k

(
1 +

ki · kj
mimj

))
,

(3.5.5)

Notice that all momenta in this equation are again taken to be ingoing (so k0 < 0 for

momenta corresponding to ‘out’ states). As a zeroth order check, the prescription

(3.5.5) clearly works for the contact diagram given in (3.5.4). Below we will essen-

tially recover this conjecture, but in the process we will also be able to explain the

appearance of the momentum-conserving delta function and find several subtleties

that will explain the anomalous behaviour discussed in sections 3.3 and 3.4.

3.5.1 The saddle point

In the large R,∆ limit it is natural to rescale γij = Rσij with σij fixed. We then find

that

G(Pij)
R→∞−→ Rn(n−3)/2e

∑
i ∆i log(R)/2

∫
[dσij]M(Rσij) exp (RF (σij;Pij)) (3.5.6)

with

F (σij;Pkl) :=
∑

1≤i<j≤n

(σij log(σij)− σij − σij log(Pij)) (3.5.7)

If the Mellin amplitude does not scale exponentially with R then it is natural to

assume that the integral can be approximated using a saddle point point analysis.

Since the σij variables obey linear constraints the saddle point equations are actually

20Although the Mellin space representation works very well for Witten diagrams [79, 80], it is
more general and according to recent work [55] can also be used for certain non-perturbative CFT
correlation functions. It would be extremely interesting to further explore the applicability of Mellin
space because of the immediate implication on our conjectures as outlined below.
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a little bit involved because one needs to pull back the partial derivatives ∂F/∂σij
to the constraint surface. When the dust settles one finds that

0 =
∂F

∂σij
+

2

(n− 1)(n− 2)

∑
1≤k<l≤n

∂F

∂σkl
− 1

n− 2

(∑
k 6=i

∂F

∂σik
+
∑
k 6=j

∂F

∂σkj

)
(3.5.8)

A simple check of these equations is that they are trivially obeyed for n = 3, in

agreement with the fact that there are no independent integration variables left in the

original Mellin integral. Notice that these saddle point equations have to be solved

simultaneously with the constraints
∑

j 6=i σij = ∆i/R. For the given F (σij;Pkl) we

find that
∂F

∂σij
= log(σij)− log(Pij) (3.5.9)

The case n = 4 is illustrative. We find that

∂F

∂σ12

+
∂F

∂σ34

=
∂F

∂σ13

+
∂F

∂σ24

=
∂F

∂σ14

+
∂F

∂σ23

(3.5.10)

If all the σij and Pij are real and positive then this gives:

σ12σ34

σ13σ24

=
P12P34

P13P24

σ14σ23

σ13σ24

=
P14P23

P13P24

(3.5.11)

so the cross-ratios in the Mellin variables should equal the cross-ratios in position

space! Similar-looking expressions arise for n > 4.

Instead of solving these equations in full generality, let us consider the obvious

attempt for the solution σ∗ij which is

σ∗ij =
∆i∆j

2R
∑

k ∆k

Pij =
∆i∆j

R
∑

k ∆k

(
1 +

ki · η · kj
mimj

)
(3.5.12)

which are just the values for the Mellin space prescription (3.5.5). This attempt

solves the saddle point equations but the constraint equations now read:∑
j 6=i

ki · η · kj = m2
i (3.5.13)

up to unimportant subleading terms in 1/R. But this is now a constraint on the ki
(so on the Pi) which is solved whenever∑

j

kµj = 0 (3.5.14)

so precisely when we position the boundary operators on top of the support of the

momentum-conserving delta function. Positioning the operators in this configuration
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is therefore part of the amplitude conjecture as discussed below equation (3.2.20).

Since the Mellin amplitude M(Rσij) did not affect the location of the saddle point

it is just an overall factor, and we can efficiently write the value at the saddle point

as:

G(Pij)
R→∞−→ Gc(Pij)R

n(d−1)/2−d−1M(Rσ∗ij)/N (3.5.15)

where Gc(Pij) is the contact diagram in the same large R limit. It then immediately

follows that our amplitude conjecture reduces precisely to the Mellin space prescrip-

tion conjecture (3.5.5) as long as we can trust the saddle point approximation.

As for the contact diagram itself, we can reproduce all the computations of

subsection 3.3.2 in Mellin space. For example, for n = 4 and all equal ∆i = ∆ we

can solve the Mellin saddle point equations to find:

σ∗12 = σ∗34 =
∆
√
P12P34/R√

P12P34 +
√
P13P24 +

√
P14P23

(3.5.16)

and the obvious permutations. With some work, the saddle point approximation can

then be shown to yield

Gc(Pij)
R→∞−→ 2π2e2∆ log(∆)−2∆

∆2

(√
P12P34 +

√
P13P24 +

√
P14P23

)−2∆+3/2

(P12P13P14P23P24P34)1/4
Mc(Rσ

∗
ij)

(3.5.17)

which reduces to precisely the same expression as equation (3.3.32) and so the posi-

tion space and Mellin space analyses of this diagram are in complete agreement.

3.5.2 The steepest descent contour

In our previous analysis we determined that the Mellin space prescription (3.5.5)

follows from our conjectures if we use a saddle point approximation for the Mellin

integration variables. What remains to be checked is where the saddle point analysis

can be trusted. In section 3.3 we found issues with the position-space analysis because

the steepest descent contour for a bulk-bulk propagator may not pass inbetween the

poles at c = ±∆. As we discuss below, the same can happen in Mellin space where

the steepest descent contour for the Mellin variables may lie on the wrong side of

poles in the Mellin amplitude itself. We will see that the additional contribution from

these poles is the Mellin space analogue of the AdS Landau diagram contributions

discussed in section 3.4.

First consider the poles in the Gamma functions that are part of the definition

of the Mellin amplitude given in equation (3.5.1). In our analysis these disappeared

when we used the Stirling approximation, so really we should verify if none of the σij
is real and negative so this approximation is trustworthy. In terms of the Mandelstam

75



CHAPTER 3. LANDAU DIAGRAMS IN ADS AND S-MATRICES FROM
CONFORMAL CORRELATORS

invariants sij := −(ki + kj)
2 we find that

σ∗ij =
1

2
∑

kmk

((mi +mj)
2 − sij) (3.5.18)

We see σ∗ij becomes real and negative precisely when the corresponding Mandelstam

invariant lies above the two-particle threshold. We can therefore use the Mellin saddle

point as long as we are on the principal sheet for all the Mandelstam invariants and

stay at least an infinitesimal amount away from the physical values.21

To illustrate this phenomenon we consider a four-point function of identical op-

erators, see also figure 3.15. After resolving the constraints on the Mellin variables

we can write that

G(Pij) = (P13P24)−∆

∫
dγ12dγ14

(2πi)2
M(γ12, γ14)Γ2(γ12)Γ2(γ14)Γ2(∆−γ12−γ14)u−γ12v−γ14

(3.5.19)

The Gamma functions provide exponential damping for large imaginary values of

their arguments, but this can be offset by extra phases introduced by the rotation

of u and v in the complex plane. Starting from real and positive values of these

cross ratios, we can rotate them by at most 2π before the exponential damping is

overcome and the Mellin representation becomes invalid. In more detail we can say

that the Mellin representation works for
√
u,
√
v and

√
u/v away from the negative

real axis. In terms of the Mandelstam invariants this means that

−π < arg

(
s− 4m2

ũ− 4m2

)
< π, −π < arg

(
t− 4m2

ũ− 4m2

)
< π, −π < arg

(
s− 4m2

t− 4m2

)
< π.

(3.5.20)

We see that for physical values of the Mandelstam variables (in either of the three

channels) we are just at the boundary of the range of validity of the Mellin space

representation and we need to use a small iε prescription.22

Figure 3.15 shows the steepest descent contour in the σ12 plane for values of

Mandelstam s approaching the physical threshold. We remark that in order to

construct this figure we already performed the γ14 integral, after which the location

of the saddle point and the steepest descent contour for large R depend only on

Mandelstam s. More precisely, if we do the γ14 integral by saddle point approximation

21This analysis also highlights a potentially important difference between the Mellin space pre-
scription and our amplitude conjecture: the former only works on the principal sheet but the latter
has a chance of giving the right answer also on the other sheets that can be reached by passing
through the multi-particle cuts. It would be interesting to explore this further.

22In practice we can probably send ε to zero as R goes to infinity. We have not worked out this
scaling in detail.

76



3.5. MELLIN SPACE

x

-0.4 -0.3 -0.2 -0.1 0.0 0.1
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

σsaddle12

σ12

(a) s = 6.2 + 0.3i

σ12

σsaddle12
x

-0.4 -0.3 -0.2 -0.1 0.0 0.1
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

(b) s = 6.2 + 0.05i

Figure 3.15. Steepest descent (red curve) and ascent (blue curve) contours of σ12 integral
for s = 6.2+0.3i (left) or s = 6.2+0.05i (right). The black dot is the saddle point, and the
cross indicates the starting poles of the semi-infinite sequences of poles in Γ2(Rσ12). The
other poles are represented by the black solid line. As s approaches the physical region,
the steepest descent contour gets close to the first Γ-function pole, but does not cross it.

then

G(Pij)|cons
R→∞−→

∫
dσ12

2πi
(. . .)M(Rσ12, Rσ

∗
14)

× exp

(
2R

(
σ12 log(σ12) + (m− σ12) log(m− σ12) + σ12 log

(
s+ 4m2

s− 4m2

)))
(3.5.21)

where we have also made the substitution γ12 = Rσ12 and expressed the cross ratios

in terms of the Mandelstam invariants. In deriving this expression we assumed that

the Pi were chosen to lie on the support of the momentum-conserving delta function.

The ellipsis refer to subleading terms in 1/R which do not affect the location of the

steepest descent contour in figure 3.15 (but which are essential for recovering the

delta function as described above).

A second potential issue is due to the existence of poles in the Mellin amplitude

itself. These are present for non-contact Witten diagrams in AdS and therefore we

need to understand how they affect the saddle point and the steepest descent contour

analysis. Unfortunately at present we lack the technology to analyse the most general

Witten diagram in the most general kinematical setup. We will therefore focus on

the scalar exchange diagram as a case study.
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3.5.3 The exchange diagram revisited

Let us again consider the scalar exchange diagram, already discussed in section 3.3.3,

involving four external operators of dimension ∆ with an exchange of a scalar oper-

ator with dimension ∆b. The corresponding Mellin amplitude is [43]:

N−1M(γ12) = −R5−d
∞∑
k=0

Rk

2∆− 2γ12 −∆b − 2k
, (3.5.22)

with

Rk =
Γ(2∆+∆b−d

2
)2

2Γ(4∆−d
2

)

(1 + ∆b−2∆
2

)2
k

k!Γ(∆b − d
2

+ 1 + k)
. (3.5.23)

For the flat-space limit we recall the analysis in [13]: set k = Rκ to find that, at

large R,

Rk
R→∞−→ 1

4mR2

√
64Rm3

π(4m2 −m2
b)

2
exp

(
− 64Rm3

(4m2 −m2
b)

2

(
κ− (2m−mb)

2/8m
)2

+ . . .

)
(3.5.24)

The sum over k therefore localizes at κ∗ = (2m−mb)
2/8m and the remaining Gaus-

sian sum (over k, not κ) gives a factor (4mR)−1 so we find that

Rd−5N−1M(Rσ∗12)
R→∞−→ − 1

4mR2(2m− 2σ∗12 −mb − 2κ∗)
= − 1

R2

1

s−m2
b

(3.5.25)

as expected from the flat-space formula in Mellin space [13].

Now we can analyse the steepest descent contour. Since the Mellin amplitude

for the exchange diagram only depends on γ12, we can safely do the γ14 integral by a

saddle point approximation and start our analysis from (3.5.21), the important part

of which is:

G(Pij)|cons
R→∞−→

∫
dσ12

2πi
(. . .)M(Rσ12, Rσ

∗
14) exp

(
Rφ

(
m,

4m2 + s

4m2 − s
, σ12

))
φ(α, β, σ) := 2σ log(σ) + 2(α− σ) log(α− σ) + 2σ log (β)

(3.5.26)

We will once more assume that we are on the support of the momentum-conserving

delta function. The main idea is illustrated in figure 3.16, where deforming the

original integration contour to the steepest descent contour may yield a number of

contributions from the Mellin poles. Of course, if Mellin poles get picked up then

we still have to check whether their contribution is leading or subleading at large R.

So we naturally arrive at three regions: in region I no Mellin poles are picked up, in

region II Mellin poles are picked up but their contribution is subleading, and finally

in region III Mellin poles are picked up and leading. Only in region III does the flat
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Figure 3.16. Steepest descent (red curve) and ascent (blue curve) contours of scalar
exchange diagram with m = 1, s = 2.2 (left) or s = 4.2 + 2i (right). The black dot is
the saddle point. The red dashed line indicates the original integral contour. The green
crosses are poles of the Mellin amplitude and those with a red circle are picked up during
contour deformation. The black crosses are the starting poles of Γ-functions and the rest
are represented by black solid lines.

space limit not work.

Finding these three regions is a technical exercise that involves finding the sta-

tionary phase contour in (3.5.26) and then estimating the contribution of any poles

that get picked up in regions II and III. The details are left to appendix 3.B and the

result is sketched in figure 3.17. This figure should of course be compared with figure

3.11 in section 3.3. Clearly the main results in each figure, namely the region III

‘blobs’ where the flat-space limit diverges, are exactly the same. The analyses were

also remarkably similar: in both cases there were ‘anomalous’ contributions from

either the pole at c = ∆b or from the poles in the Mellin amplitude. Nevertheless

the regions of type II are different: sometimes Mellin poles get picked up whereas

the pole at c = ∆b does not. This is not a contradiction: outside the blobs these

contributions vanish anyway, so the discrepancy just shows that not all zeroes are

created equally.

3.5.4 A bound on anomalous thresholds?

Compared to scattering amplitudes, conformal correlation functions have an extra

feature that we have not exploited so far: a conformal block decomposition. Since

a conformal block for an operator of dimension ∆b and spin ` corresponds to a

semi-infinite sequences of pole in the Mellin amplitude starting at ∆b − `, we are

in the unique position that we know the singularities in the Mellin amplitudes if we

know the spectrum of the theory (and assume that the correlation function can be
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Figure 3.17. Light shading: regions in the complex s plane where we pick up poles in the
Mellin amplitude. Dark shading: regions where these poles dominate and our flat-space
limit diverges. We have set m = 1 and the blue, orange, green and red domains respectively
correspond to mb = 0.5, 1, 1.5, 1.85. We have also highlighted the pole at s = m2

b for each
colour as well as the cut at s = 4. Although this is not entirely obvious from the plot, the
blue region extends rightward to include the orange, green and red regions and similarly
for the other colours.

represented as a Mellin amplitude). In other words, unlike scattering amplitudes

Mellin amplitudes cannot have anomalous thresholds like the one discussed for the

triangle diagram: if the first physical state, so the first non-trivial conformal block,

corresponds to an operator with twist τb then the Mellin amplitude should have

poles only for γ12 ≤ ∆ − τb/2. As examples we note that for the exchange diagram

τb = mbR whereas for the triangle diagram discussed in section 3.4.2 τb = 2µR with

µ the mass of the internal particle.

In the flat-space limit we are supposed to evaluate the Mellin amplitude at

γ12 =
∆

8m2
(4m2 − s) (3.5.27)

and therefore the Mellin poles can only interfere with the flat-space limit if

s > 4m(τb/R−m) (3.5.28)
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on the real axis. For complex s the Mellin conjecture (3.5.5) would predict that there

are no other singularities in the complex s plane as long as (3.5.20) is obeyed; for our

amplitude conjecture we in addition need to restrict ourselves to s in region I so no

Mellin poles are picked up. (This region is easily found using the results in appendix

3.B.) Either way, we see that the absence of anomalous thresholds in the Mellin

amplitude leads to a region in the Mandelstam plane where Landau singularities

should never appear, no matter how complicated the diagram.

Could the inequality be a universal threshold for Landau singularities? As a

zeroth order check we have plotted the inequality (3.5.28) on the right in figure 3.14

and indeed find that it is obeyed by the anomalous triangle threshold. Of course, to

obtain a general result we need to demand that equation (3.5.28) holds also for t and u

with τb replaced with the first physical operator in the corresponding conformal block

channel, and there may be additional subtleties if the Mellin amplitude depends non-

trivially on both the Mandelstam variables. We should also note that this putative

bound hinges on the validity of either the Mellin or the amplitude conjecture, but if

it holds then it is a result that applies purely to flat-space scattering amplitudes. It

would be interesting to investigate this further, either with QFT in AdS methods or

perhaps even without reference to AdS.

3.6 S-matrices from conformal block expansions

Up to now we have motivated and examined our conjecture that CFT correlators

become S-matrices in the flat space limit from a perturbative standpoint, examining

specific diagrams for weakly coupled QFTs in AdS space. The goal of this section is

to offer a complementary perspective by providing a non-perturbative argument for

the validity of our central claim, in the case of 2-to-2 scattering. In that case we can

explicitly use the OPE to express amplitudes in terms of the CFT data, and this will

allow us to show that CFT correlators do indeed, under certain assumptions, become

objects which obey the expected unitarity conditions for scattering amplitudes.

For simplicity we will consider identical scalar particles of mass m and we will

mostly focus on physical kinematics, i.e. s > 4m2 and real scattering angle. We will

be able to see explicitly under which circumstances our conjectures have a chance of

being valid, and under which it certainly fails.

3.6.1 Preliminaries

For the purposes of this section, we set:

〈k̃3, k̃4|S|k1, k2〉 = i(2π)d+1δ(d+1)(k1 + k2 + k3 + k4)S(k̃3, k̃4; k1, k2) (3.6.1)
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Note that S(ki) contains both connected and disconnected contributions, which may

seem a bit unusual. In terms of S(ki) our claim is:

S(k̃3, k̃4; k1, k2) = lim
R→∞

〈O(ñ3)O(ñ4)O(n1)O(n2)〉
Gc(ñ3, ñ4, n1, n2)

∣∣∣∣
S-matrix, cons

(3.6.2)

where Gc(x1, . . . , x4) is the contact diagram in AdS. Implicit in the equation is that

∆→ mR with the physical mass m fixed, which henceforth we set to unity. We can

think of the above formula as something that can be done for any family of CFT

correlators that depends on the parameter R such that the scaling dimensions grow

with R. Below we will show that under certain assumptions the resulting S(ki) will

be finite and obey the expected unitarity conditions for an elastic amplitude.

By conformal invariance we can of course write:

〈O(x1)O(x2)O(x3)O(x4)〉 =
G∆O(z, z̄)

x2∆O
13 x2∆O

24

, Gc(x1, x2, x3, x4) =
D∆O(z, z̄)

x2∆O
13 x2∆O

24

(3.6.3)

and with the conformal block decomposition:

G∆O(z, z̄) =
∑
∆,`

a∆,`
G∆,`(z, z̄)

(zz̄)∆O (3.6.4)

with a∆,` = λ2
O∆,`

the squared OPE coefficient, φ× φ ∼
∑

∆ λO∆,`
O∆,`.

As reviewed in section 3.2, the conformal cross ratios u and v are often parametrized

in terms of the Dolan-Osborn variables z and z̄ or in terms of the radial coordinates

ρ and ρ̄. In the following we will work with r and η which are related to the ρ and

ρ̄ variables via:

r(z, z̄) =
√
ρ
√
ρ̄, η =

1

2

(√
ρ

ρ̄
+

√
ρ̄

ρ

)
. (3.6.5)

Equation (3.2.30) is easily adapted to find the map between (r, η) and the Mandel-

stam variable s and the scattering angle23 θ:

s = 4(1− zeff), η = − cos(θ), (3.6.6)

where the introduction of

zeff :=
4r

(1 + r)2
(3.6.7)

will be useful to simplify the notation below. The technical advantage of working

with r, η is that we may reach the physical kinematics scattering region, which is

s − iε > 4 and real θ, from the Euclidean section without worrying about branch

cuts. Indeed, if we start from the Euclidean region where r ≥ 0 and η ∈ [−1, 1]

23Recall that Mandelstam t = − 1
2 (s− 4) (1− cos(θ)).
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then we can reach the physical s-channel scattering region by taking r negative with

a small negative imaginary part. At the same time η is taken to −η while always

remaining real.

A particular family of correlators that will be important for us is that of gen-

eralized free fields, which describe free massive particles propagating in AdS space.

For this theory the correlator of the elementary fields takes the form:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x2∆O
12 x2∆O

34

+
1

x2∆O
13 x2∆O

24

+
1

x2∆O
14 x2∆O

23

=
1

x2∆O
13 x2∆O

24

(
1

(zz̄)∆O
+
∑
∆,`

an,`
G∆n,`,`(z, z̄)

(zz̄)∆O

)
.

(3.6.8)

where ∆n,` = 2∆O + 2n + ` corresponds to the scaling dimension of double twist

operators of the form φ∂`�nφ, and the OPE coefficients are given by:

an,` =
(d− 2)`

(d/2− 1)`

2 [(∆O − d/2 + 1)n(∆O)`+n]2

`!n!(d/2 + `)n(n+ 2∆O − d+ 1)n(`+ 2n+ 2∆O − 1)`(`+ n+ 2∆O − d/2)n
.

(3.6.9)

Below it will be useful to define an OPE density which is defined for continuous

values of ∆:

acont

∆,` ≡ an,`

∣∣∣∣
n=

∆−2∆O−`
2

. (3.6.10)

Note that in the flat-space limit the generalized free correlator should reduce

to trivial scattering. For the last two terms in equation (3.6.8) this is indeed the

case, since they are just products of two-point functions between one ‘in’ and one

‘out’ particle and the analysis of the two-point functions in section (3.3.1) is directly

applicable. The first term corresponds to a Witten diagram where the two ‘in’

particles and the two ‘out’ particles are contracted. The corresponding Feynman

diagram is certainly not part of a scattering amplitude, and we will analyse what

remains of this contribution below.

3.6.2 Conformal block expansion at large ∆O

After these preliminary remarks, we begin by examining the flat space limit. In the

limit of large scaling dimensions ∆ the conformal block reduces to [81]:

G∆,` ∼
∆→∞

NG
r∆

(1− r2)ν
C

(ν)
` (η)√

(1 + r2)2 − 4r2η2
, NG =

`!

(2ν)`
4∆ . (3.6.11)

with ν = (d − 2)/2. The second ingredient in our formula for S(ki) is the contact

term. In section 3.3.2 we determined that at large ∆O and in Euclidean kinematics
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we have:

D∆O(r, η) =
1

ND

(
1 + r2 + 2rη

(1 + r)2

)2∆O (1 + r)3√
r(1 + r2)2 − 4r3η2

. (3.6.12)

where24

ND = 2
7+d

2 ∆O
5 d−1

2 π
d−1

2 . (3.6.13)

To proceed we need to make some simplifying assumptions consistent with the

existence of a dual QFT description in flat space in the large radius limit. Let us

assume that in the particular family of correlators under consideration, the spectrum

of states consists of the identity, a finite set of scalar “bound states” with 1� ∆ <

2∆O and infinite towers of states with spins ` ≥ 0 and with ∆ ≥ 2∆O + `. The

latter will become the multiparticle continuum in the large R limit. Note that these

assumptions are satisfied for instance for the generalized free field considered above.

Physically we are stating that a hypothetical holographic flat-space QFT description

should contain only massive states, and that we are examining the scattering of the

lightest particle (otherwise multiparticle states would appear below 2∆O). There

are further assumptions that must be made on the OPE coefficients, as we shall see

shortly.

We can now use the expressions above to write:

lim
∆O→∞

G∆O(r, η)

D∆O(r, η)
= lim

∆O→∞

( √
r

(1 + r)3(1− r2)ν

)
I(r, η) +

∑
0<∆b<2∆O

N bound

∆b

(
a∆b,0

abound
∆b

)
r∆b

z2∆O
eff

+
∑

∆>2∆O+`
`=0,2,...

N cont

∆

(
a∆,`

acont
∆,`

)
r∆

z2∆O
eff

C
(ν)
` (η)


(3.6.14)

where I(r, η) is the identity block contribution,

I(r, η) ≡ ND

√
(1 + r2)2 − 4r2η2

z2∆O
eff

(1− r2)ν (3.6.15)

and we have defined the parameters

N cont

∆ = NGND a
cont

∆,` , N bound

∆b
= NGND a

bound

∆b
. (3.6.16)

We will give abound
∆ below.

Our expression contains three kinds of contributions: the identity, “bound states”

24In this section we work with unit normalized operators which means that this normalization
factor is a little different from equation (3.3.32).
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and the “continuum”, i.e. states above the twist gap τ > 2∆O. We will examine

below each contribution in turn, but the logic is as follows. The third contribution

is the most interesting one. We will see that for physical kinematics i.e. s > 4m2

and under certain assumptions on the OPE coefficients it is finite and becomes the

partial wave decomposition of the S-matrix, with an expression for the spin-` phase

shifts in terms of the CFT data. But before we see this we must take care of the

first two contributions, which will turn out to be either zero or divergent depending

on the choice of kinematical region.

Identity and bound states

We begin with the contribution of the identity. As stated above, from an S-matrix

perspective it corresponds to an unphysical diagram that connects the particles in the

‘in’ states and the particles in the ‘out’ states with nothing propagating in between.

It might therefore be reasonable to subtract it by hand. Alternatively, we see that

in the large ∆O limit the factor z−2∆O
eff dominates and as long as

|zeff| > 1⇔ |s− 4| > 4 , (3.6.17)

the unwanted contribution vanishes automatically. In particular for physical kine-

matics this requires s > 8. On the other hand, the factor diverges as long as |zeff| < 1.

Now for the bound states. In this case we need to know something about the

behaviour of their OPE coefficients in the large ∆O limit. We will assume that for

each such state we have

g2
∆b
≡ lim

R→∞

a∆b,0

abound
∆b

<∞ (∆b < 2∆O) (3.6.18)

where:

abound

∆b
:=

πdΓ
(

2∆O+∆b−d
2

)2

4∆O
d−5

C2
∆O
C∆b

Γ
(

∆b

2

)4
Γ
(

2∆O−∆b

2

)2

Γ(∆O)4Γ(∆b)2
(3.6.19)

We have defined g2
∆ in this way since it becomes a physical coupling in the flat-space

limit for a QFT in AdS space, as discussed in [13]. There is also some evidence for

the validity of this bound from the numerical conformal bootstrap [13, 46] and a

proof [82] for the special case d = 1.

Going to physical kinematics means we take r < 0, zeff < 0 and changing the

sign of η. With the appropriate iε insertions this yields:

r∆b

z2∆O
eff

→ (−r)∆b

(−zeff)2∆O
e−iπ(∆−2∆O) , η → −η . (3.6.20)

Note that the change in sign of η is immaterial in our case, because all states ap-
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pearing in the OPE must have even spin and so η always appears squared.

In the flat space limit we set sb ≡ ∆2
b/∆O

2 and find

N bound

∆b

(
a∆b,0

abound
∆b

)
(−r)∆b

(−zeff)2∆O
∼

∆O→∞
∆O

2d− 3
2 g2

∆b
R(s, sb)× E(s, sb)

∆O (3.6.21)

where R(s, sb) is independent of ∆O and

E(s, sb) :=

(
4− sb
s− 4

)2 [(
√
s− 2)(2 +

√
sb)

(
√
s+ 2)(2−√sb)

]√sb
(3.6.22)

The exponential factor implies that the contribution of the bound states is either

zero or infinite. In fact, the expression for a single ‘bound state’ conformal block is

exactly the same as the contribution of the pole at c = ∆b in the exchange diagram

discussion of section 3.3.3, as follows from the discussion in appendix 3.D. (If it

diverges then it also agrees with the contribution from the Mellin poles discussed in

section 3.5.3.) Therefore, as can also be gleaned from the expression (3.6.22) itself,

the region where the contribution from a bound state diverges is the same as already

shown in figures 3.11 and 3.17. The worst case scenario corresponds to sb = 0, i.e.

massless bound states, for which |E(s, sb)| < 1 if |s− 4| > 4, i.e. the same result as

for the identity. As we increase sb divergences are avoided in an increasingly wider

region.

3.6.3 The phase shift formula

Now let us look at those states which lie above the twist gap τ > 2∆O. We would

like to commute the large ∆O limit with the sum over blocks. For general kinematics

we cannot do this: each term in the sum will diverge. This does not necessarily

mean that our formula for S(ki) is wrong, but merely that we cannot commute the

OPE and flat space limits. However, let us again restrict to physical kinematics. As

explained above, after continuation we get the sum

i

( √
−r

(1 + r)3(1− r2)ν

) ∑
∆>2∆O+`
`=0,2,...

N cont

∆

(
a∆,`

acont
∆,`

)
(−r)∆

(−zeff)2∆O
e−iπ(∆−2∆O) C

(ν)
` (η) (3.6.23)

Notice that here it is important that we perform the continuation, and in particular

take r to be arbitrarily close to the negative real axis, before taking the large radius

limit.

The S-matrix is usually expressed in terms of polynomials related to Gegenbauer

polynomials in the following way:

P
(d)
` (η) := pd,`C

(ν)
` (η) , pd,` = (d− 2 + 2`)22d−3πν Γ(ν)] . (3.6.24)
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We now notice that

( √
−r

(1 + r)3(1− r2)ν

)
1

pd,`
N∆

(−r)∆

(−zeff)2∆O
∼

R→∞

4
√
s

(s− 4)ν

e− (∆−2∆O
√

1−zeff)2

2∆O(−zeff)√
2π∆O(−zeff)

 , ∆ > 2∆O

(3.6.25)

We see that for real and negative zeff this is bounded and exponentially suppressed

except in a region centred at (
∆

2∆O

)2

∼ 1− zeff =
s

4
(3.6.26)

and with half-width of order
√

2∆O(−zeff). Hence, the sum over states effectively

receives only contributions from that region as long as the OPE ratios which appear

in (3.6.23) are suitably bounded.

Let us now restrict ourselves to a kinematic region where both identity and

bound states do not contribute. Putting all the ingredients together we find

S(ki) =
2i
√
s

(s− 4)ν

∑
`=0,2,...

e2iδ`(s)P
(d)
` (η)

e2iδ`(s) := lim
∆O→∞

∑
∆>2∆O+`

2

(
a∆,`

acont
∆,`

)
e−iπ(∆−2∆O)

e− (∆−2∆O
√

1−zeff)2

2∆O(−zeff)√
2π∆O(−zeff)

 (3.6.27)

This is the main result of this section. It tells us that in the physical region the

conformal block expansion computes an object which at least kinematically takes

the same form as the partial wave decomposition of an S-matrix, with spin-` phase

shifts computable in terms of the CFT data. Note that the derivation of this formula

required restricting ourselves to the region s > 8. However, this is a shortcoming of

our original conjecture relating the S-matrix to the correlator, and not of the formulae

above which are expected to be valid for the full range of physical kinematics. For

instance, for the GFF correlator our formula gives:

e2iδ`(s) = lim
∆O→∞

∞∑
n=0

2

e− (∆n,`−2∆O
√

1−zeff)2

2∆O(−zeff)√
2π∆O(−zeff)

 = 1 . (3.6.28)

as it should be, independently of the range of s.

Arguably one of the most important properties of the S-matrix is that it should

satisfy unitarity, which in the current context states that:

|e2iδl(s)| ≤ 1 . (3.6.29)
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This is not automatic from our formula, and to show it will require us to make one

last but crucial assumption:

lim
∆O→∞

∑
|∆−E∆O|<∆O

α

(
a∆,`

acont
∆,`

)
= ∆O

α, with E > 2 fixed, and for some α ∈ [0, 1
2
) .

(3.6.30)

Physically we are demanding that in the flat space limit, the average OPE density

per unit size bin in scaling dimension space matches that of a generalized free field.

Note that the requirement of α < 1/2 is such that the averaging must be apparent on

a scale which is smaller than the scale of variation of the Gaussian, namely O(
√

∆O).

We can think of this assumption as a natural condition for a family of CFTs to have

a well-defined flat-space limit. It would be interesting to explore whether this is

really an assumption or if it can be proved as a general property of CFT correlators.

Using this assumption it is not hard to show that firstly the sum over states indeed

localizes in a region around ∆ ∼
√
s∆O of width ∼

√
∆O and secondly that the

all-important unitarity condition on the S-matrix actually holds.

The attentive reader may have noticed that in fact, for both these statements to

be true it would actually be sufficient that the equal sign in (3.6.30) was demoted

to a less-than sign. She may have also noticed that a similarly looking formula for

the phase shift was given already in [13]. These two observations are in fact related:

equality is needed in order for our formula to match the one given in [13], as we

show in detail in appendix 3.E. A second argument for the equality sign to hold in

equation (3.6.30) is that it leads to a nice relation between the imaginary part of the

connected amplitude and the double discontinuity of the CFT correlator as defined

in [1], as we now discuss.

Consider the connected part of the S-matrix, which arises by subtracting the full

GFF solution from the correlator,

T (s, η) =
2
√
s

(s− 4)ν

∑
`=0,2,...

i(e2iδ`(s) − 1)P
(d)
` (η) (3.6.31)

Thanks to our assumption (3.6.30) we may write

e2iδ`(s) − 1 = lim
∆O→∞

∑
∆>2∆O+`

2

(
a∆,`

acont
∆,`

)
(e−iπ(∆−2∆O) − 1)

e− (∆−2∆O
√

1−zeff)2

2∆O(−zeff)√
2π∆O(−zeff)


(3.6.32)

where the equality sign in that equation was crucial to move the subtracted ‘1’ inside
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the sum. This now means that the imaginary part of the amplitude will involve

1− Re e2iδ`(s) = lim
∆O→∞

∑
∆>2∆O+`

2

(
a∆,`

acont
∆,`

)
sin

[
π(∆− 2∆O)

2

]2
e− (∆−2∆O

√
1−zeff)2

2∆O(−zeff)√
2π∆O(−zeff)

 .

(3.6.33)

and hence

Im T (s, η) = lim
∆O→∞

dDiscG(r, η)

D(r, η)
. (3.6.34)

where we may define here

dDiscG(r, η) = lim
ε→0+

1

4
[2G(−r,−η)− G(r + iε, η)− G(r − iε, η)] , r < 0 . (3.6.35)

This relation is the precise sense that the double discontinuity of a correlator cap-

tures the imaginary part of a scattering amplitude. Notice that we have derived the

above equation for physical kinematics, since there we could use the conformal block

decomposition, but for the Lorentzian inversion formula of [1] or the dispersion re-

lation of [83] the double discontinuity is integrated over a region in cross ratio space

that does not reduce to a physical kinematics in the flat-space limit. The precise

flat-space limit of these equations will be discussed in future work.

3.7 Conclusions

In this chapter we presented two related conjectures concerning the flat-space limit

of the correlators on the conformal boundary for a gapped QFT in AdS. For a given

Witten diagram we have seen that all the propagators and vertices reduce to their

flat-space counterparts, and our S-matrix conjecture is the natural one that ‘erases

the circle’ and reduces it to a Feynman diagram contributing to an S-matrix element

in the flat-space limit. In contrast with many other conjectures, the flat-space limit

can be taken directly in position space and no integral transform is necessary. On

the other hand, for certain choices of the external momenta the interactions may be

spread out over distances comparable to the AdS scale and therefore the conjectures

do not always work.

Earlier recipes for extracting amplitudes from correlators include one based on

Mellin space and a phase shift formula, both presented in [13]. In regions where our

conjectures work we can recover these recipes, as we showed in detail in section 3.5

and 3.6, but we view our conjectures as more general: they also work for functions

that are not representable in Mellin space (with disconnected correlators being the

easiest example) and they are not restricted to elastic scattering like the phase shift

formula. An important qualification is that, within the domain given in equation

(3.5.20), the Mellin-space prescription seems to work for any correlator that can
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be written in Mellin space and does not suffer from the same divergences as our

conjectures.

In section 3.3 we discussed how the conjectures work for simple Witten diagrams

but fail for some values of the Mandelstam s for the exchange diagram. This led us

to introduce the general notion of Landau diagrams in AdS in section 3.4. As in

flat space, they correspond to classical particles propagating over long distances and

interacting in a momentum-conserving fashion; unlike in flat space, the momentum

conservation equations can always be solved and an AdS Landau diagram exists for

all values of the external momenta. They can however only be important if the real

part of the corresponding on-shell ‘action’ is positive, which indicates a failure of the

conjectures because the flat-space limit of the correlator diverges.

The most important open question concerns the range of external momenta

where the limit used in our conjectures is actually finite, and the assumptions needed

to show this. Notice that in all the examples we considered a divergence in the flat-

space limit only occurred within a subregion of

|s− 4m2| ≤ 4m2 , (3.7.1)

and similarly for t and u. This is in good agreement with the physical picture given

in section 3.2.4: close operator insertions in the Euclidean cap generate less energetic

particles, and the Euclidean geodesic connecting them dominates over the Lorentzian

one. Furthermore, for functions that can be represented in Mellin space we have also

seen that singularities are also unlikely to arise if s is real and

s < 4m(µ−m) (3.7.2)

and again similarly for t and u, and with µ the energy of the first state in the

corresponding channel. Could these inequalities hold more generally? Are there

more refined inequalities to be found? We can try to answer these questions either

at a perturbative or at a non-perturbative level.

Perturbatively there are important open questions concerning the structure of the

most general AdS Landau diagram and the region where it diverges. We also need to

better understand the AdS version of the well-known intricacies of flat-space Landau

diagrams as described for example in [77] and references therein. For example, we can

extend the numerical investigation of the triangle diagram in section 3.4.2 to include

the box and the acnode diagrams which are known to have a richer set of anomalous

thresholds. Similarly we should investigate singularities on other Riemann sheets,

which generally have complex displacement parameters α, as well as understand the

AdS analogue of ‘second type’ singularities that correspond to pinch configurations

with infinite momenta. Furthermore, recall that flat-space Landau diagrams can only

be drawn for specific configurations of the external momenta whereas AdS Landau
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diagrams can always be drawn, as discussed in section 3.4. Correspondingly, the flat-

space Landau diagrams capture the threshold where (anomalous) singularities can

appear but do not capture the branch cut that is often attached to such thresholds.

It would be interesting to see if the AdS Landau diagrams can do better and whether

branch cuts in the flat-space amplitude can always be taken to lie in the ‘blobs’ where

the AdS Landau diagrams diverge.

In this chapter we have not yet made enough use of the conformal block decom-

position of conformal correlation functions. As is by now well-known, this property

implies all sorts of wonderful boundedness and analyticity properties of the corre-

lation functions themselves. Can we use them to infer boundedness25 (unitarity)

and analyticity of the flat-space scattering amplitudes? Abstractly, consider a one-

parameter family of consistent conformal correlation functions and make a few nat-

ural assumptions concerning its spectrum as the parameter R → ∞. When does

such a family limit to a consistent S-matrix? And supposing that it does, what are

the analyticity properties of the resulting scattering amplitudes? To answer these

questions it is essential to obtain a better handle on the possible behaviour of cor-

relation functions and their OPE coefficients in the flat-space limit. The analysis

in section 3.6 provided a first step in this direction. In particular we showed that,

for a four-point function of identical operators the unitarity condition can be rather

precisely tied to the OPE coefficient density. On the other hand, additional tools are

necessary to conclude anything about the analyticity of the resulting amplitude.

We should note that in all of the above the divergences in the flat-space limit

were considered a ‘given’ and that we only attempted to avoid them by choosing

the external momenta appropriately. However one could also try to subtract all the

AdS Landau diagrams by hand so the flat-space limit is everywhere finite, thereby

improving the region of validity of our original conjectures. A possible way to do this

is suggested by our computation in section 3.6: from the conformal block perspective

one could naturally subtract crossing-symmetric sums of AdS exchange diagrams

for every block below the two-particle threshold, the effect of which can then be

reinstated by adding simple poles to the resulting S-matrix after taking the flat-

space limit. It would be interesting to find out whether this procedure can also be

done if the number of blocks below threshold becomes unbounded as R→∞, which

should be the case if we do not scatter the lightest particle in the theory.

Finally it would be interesting to generalize our formalism to scattering ampli-

tudes of massless particles, including photons and gravitons. One important point

which is not fully understood is how infrared divergences in such theories arise when

taking the flat-space limit. Landau diagrams in AdS introduced in this chapter might

25There are many interesting and well-known consequences of analyticity and unitarity including
elastic unitarity as was recently explored in [37]. For all of these it would be very interesting to find
their AdS ancestors. As an example we can mention the high-energy behaviour, which was done in
[84, 85].
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provide a useful tool for addressing this question. Another related question is to de-

velop a detailed understanding of the soft theorem in flat space [86–88] (see also

recent discussions in [89] on the soft theorem and the flat-space limit of AdS/CFT).

We hope our position-space approach will prove useful for this purpose since it would

allow us to directly analyse the flat-space limit of the Ward identity of the boundary

correlators. Of course the ultimate goal would be to understand quantum gravity in

flat space by taking the flat-space limit of AdS/CFT, but also on this front we still

have a long journey ahead of us.

3.A Analytic continuation in cross ratio space

It is worthwhile to see what the analytic continuation to the S-matrix configuration

becomes in terms of the familiar cross-ratios (u, v) and (z, z̄) for four-point conformal

correlation functions. In spherical boundary coordinates they are

u = zz̄ =
(1− n̂1 · n̂2)(1− n̂3 · n̂4)

(1− n̂1 · n̂3)(1− n̂2 · n̂4)
,

v = (1− z)(1− z̄) =
(1− n̂1 · n̂4)(1− n̂2 · n̂3)

(1− n̂1 · n̂3)(1− n̂2 · n̂4)
.

(3.A.1)

For the analytic continuation to the S-matrix configuration it will be necessary to

view two cross ratios as independent complex variables.

We will consider the analytic continuation to a scattering amplitude where par-

ticles 1 and 2 are incoming and particles 3 and 4 are outgoing. Therefore, upon

substitution of

(n0, n) = −(k0,−ik)/m , (3.A.2)

we will take k0
1 and k0

2 positive and k0
3 and k0

4 negative. We will assume that we are

on the support of the momentum conserving delta function
∑

i k
µ
i = 0, where the

remaining kinematical Lorentz-invariant degrees of freedom are captured in terms of

the Mandelstam invariants26

s = −(k1 + k2)2, t = −(k1 + k4)2, ũ = −(k1 + k3)2 =
∑
i

m2
i − s− t (3.A.3)

In terms of which we find that

u =
(s− (m1 +m2)2) (s− (m3 +m4)2)

(ũ− (m1 +m3)2) (ũ− (m2 +m4)2)
, v =

(t− (m2 +m3)2) (t− (m1 +m4)2)

(ũ− (m1 +m3)2) (ũ− (m2 +m4)2)
(3.A.4)

26Notice that the Mandelstam t variable is defined following CFT conventions where the ‘t-
channel’ is traditionally the one where operators 1 and 4 are fused together.
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u, v

0
u

v

(a) Analytic continuation of u and v

z, z̄

0 1
z

z̄

(b) Analytic continuation of z and z̄

Figure 3.18. Analytic continuation to s-physical S-matrix configuration. Left: u takes a
full clockwise turn around 0 while v does not. Right: the orange dashed curve indicates
that z moves on the second Riemann sheet. Black dotted lines indicate that z and z̄
are complex conjugate of each other at the starting point (corresponding to a Euclidean
configuration) and the end point (corresponding to an S-matrix configuration).

We can now analytically continue from the Euclidean region, where the Mandelstam

invariants s, t and ũ are all real and positive, to the physical S-matrix region for the

12 → 34 process, where s ≥ max ((m1 +m2)2, (m3 +m4)2) + iε and t and ũ such

that the scattering angle is real. The corresponding continuation in the cross-ratios

u and v is shown in figure 3.18a. We see that u makes a clockwise turn around the

origin and v remains real. The corresponding continuation in terms of the z and

z̄ variables is shown in figure 3.18b: we start from a Euclidean configuration with

z̄ = z∗, take one variable (which we take to be z) in a clockwise fashion through the

branch cut on the negative real axis, and end on an ‘S-matrix’ configuration where

again z̄ = z∗ but on another sheet.

In the equal mass case we can write that

√
u =

s− 4m2

ũ− 4m2
,

√
v =

t− 4m2

ũ− 4m2
(3.A.5)

In this formulation the Euclidean configuration corresponds to the principal branch

of the square roots. We find that restricting to physical Lorentzian momenta implies

that
√
u ≤ 0 and

√
v ≥ 0. In terms of the scattering angle θ, defined as

t =
1

2
(4m2 − s)(1− cos(θ)), ũ =

1

2
(4m2 − s)(1 + cos(θ)) (3.A.6)
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we find a particularly simple form in the ρ variables, namely

ρ =

√
s− 2m√
s+ 2m

ei(θ−2π), ρ̄ =

√
s− 2m√
s+ 2m

e−iθ (3.A.7)

So the physical parameters s and θ simply correspond to the modulus and argument

of the ρ variables. Notice that it is again understood that ρ, like z above, is evaluated

on the second sheet obtained by circling around zero in a clockwise fashion in order

to ensure that
√
u ≤ 0.

Re t

Re s

Re ũ = 0

-8 -4 4 8 12

-8

-4

4

8

12

ũ − phys
z z̄1 0

t − phys
z z̄ 1

z z̄0 1

z z̄1

z z̄ 0

z z̄ 0

z z̄0

z z̄ 1

s − phys
z z̄0

z z̄1

z, z̄ ∈ [1,∞) z, z̄ ∈ [0,1]

z, z̄ ∈ (−∞,0]

Euc

Figure 3.19. Analytic continuation of cross ratios on the real s − t plane. The orange
triangle is the Euclidean region and where all analytic continuations start from. The larger
triangle (including the Euclidean region) is the region where u and v stay in their principal
branch. It is also the so-called Mandelstam triangle where all Mandelstam variables are
below their two-particle threshold. The lighter orange regions correspond to s/t/ũ-physical
region, respectively. All the blue regions are Lorentzian regions where z and z̄ are real and
independent, and lie within the indicated intervals. The round arrows (notice the different
directions) indicate how the cross ratios z, z̄ should be analytically continued through the
(−∞, 0] or [1,∞) branch cut in the complex plane. In unlabelled regions z, z̄ stay in the
principal branch.

So far we have focused on s-channel physics, with operators 1 and 2 moved to an

‘in’ configuration and particles 3 and 4 to an ‘out’ configuration. Of course we could

have continued the positions differently in order to reach the physical regions of the
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t and the u channel which would involve different analytic continuations of the cross

ratios. We can also consider the ‘Euclidean’ configuration where all Mandelstam

invariants lie between 0 and 4m2 – in this configuration
√
u and

√
v are both real

and positive, and the ρ variable does not need to be analytically continued around

zero. Figure 3.19 shows the various continuations that are necessary to reach these

regions.27 For each of the physical regions the indicated continuation lands us above

the cut in the corresponding Mandelstam variable.

3.A.1 Different kinematic limits

To gain a bit more insight we will now explore various kinematic limits and relate

each of them between Mandelstam invariants s, t and cross ratios z, z̄. The limits

under consideration are a double lightcone limit and five s→∞ limits:

double lightcone limit: z → 0, z̄ → 1

s→∞ :



θ fixed

{
cos(θ) > 1

0 < cos(θ) < 1 (bulk-point limit)

t fixed
(Regge limit)


t > 0

t = 0 (forward limit)

t < 0

(3.A.8)

where we recall that

t =
1

2
(4m2 − s)(1− cos(θ)). (3.A.9)

In the Mandelstam s and t plane these different limits are shown in figure 3.20 and

in the complex z and z̄ plane they are shown in figure 3.21. Note that the starting

point for each limit always lies inside the Euclidean region and the endpoints of the

limits are always outside. The iε prescription we adopted for these continuations is

as follows: if the endpoint of s/t is greater than 4, then keep Im (s/t) non-negative;

if the endpoint of s/t is smaller than 0, then keep Im (s/t) non-positive; otherwise

the continuation can be arbitrary.

Let us offer a few comments on these limits. First of all, we find that the double

lightcone limit where z → 0 and z̄ → 1 corresponds to s→ 4m2 and t→ 4m2. (We

are not too concerned about the precise order in which these limits are taken here.)

At this point the two lightcones in the position space correlation function intersect,

27Note that the continuations of z, z̄ are somewhat arbitrary because those of Mandelstam vari-
ables only depend on products of z, z̄ (for example see (3.2.30)). In addition, the symmetry z ↔ z̄
adds even more arbitrariness. In particular, to reach a given point on s− t plane, a phase rotation
in z(z̄) can be traded with one in z̄(z) provided the phases are the same. Therefore, depending on
different conventions the reader may find different continuation prescriptions for z, z̄, but the one
for u, v should have no ambiguity.
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8

12 ∞

∞

1

2

3

4
5

6
s − phys

ũ − phys

t − phys

Euc

s → ∞
θ fixed

cos θ > 1
0 < cos θ < 1
(bulk-point limit)

t fixed(Regge limit)

t > 0
t = 0 (forward limit)
t < 0

double lightcone limit (s → 4, t → 4) 1
2
3

4
5
6

Re t

Re s

Re ũ = 0

Figure 3.20. Different kinematic limits in real s − t plane. The dark blue dashed lines
indicate analytic continuation of s, t into their complex planes, respectively. Details of
analytic continuation are explained in the text. The dark blue arrows lie on the real s− t
plane. The orange triangle is the Euclidean region, and within it lies the starting point of
all limits and their corresponding analytic continuation.

and similarly the s-channel and t-channel cuts intersect in the amplitude. In both

cases the region beyond this point is a bit mysterious. For example, as shown in figure

3.21, limit 2 requires an analytic continuation of z around 0 and z̄ around 1, and

so we are beyond the radius of convergence of any conformal block decomposition.

It would be interesting to see if some theory can be developed in order to better

understand this region.

Secondly let us consider the fixed angle high-energy limit 3 . In cross ratio space

this corresponds to the familiar bulk point limit. This is known to be the region in

cross ratio space where the flat-space scattering amplitude can be obtained from the

conformal correlation function in the case of massless external particles, which is of

course important in the context of AdS/CFT. In our case we recover this limit at

high energies where in some approximate sense the masses of the external particles

no longer matter. We have however not checked in detail that the bulk point limit

prescription is exactly reproduced here.

Lastly there are the various Regge limits28 4 , 5 and 6 which correspond to

28Note that here we discuss the Regge limits in the s-channel, as opposed to t-channel one in
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z, z̄

0 1

z

z̄

( 1 ) s→ 4, t→ 4

z, z̄

0 1

z

z̄

( 2 ) s→∞, cos θ > 1

z

z, z̄

0 1

z̄

( 3 ) s→∞, 0 < cos θ < 1

z, z̄

0 1
z

z̄

( 4 ) s→∞, t > 0

z, z̄

0 1

z

z̄

z, z̄

( 5 ) s→∞, t = 0

z, z̄

0 1
z

z̄

( 6 ) s→∞, t < 0

Figure 3.21. Different kinematic limits in z, z̄. The dashed curves indicate that the cross
ratios are in the second sheet. The grey dotted lines indicate that z and z̄ are complex
conjugate of each other.

section 3.2.5. The two limits are simply related by s↔ t, u↔ v.
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large s and fixed t. In plot 4 , z and z̄ approach 1 in a way such that

1− z
1− z̄

s→∞
=

(√
t+ 2√
t− 2

)2

. (3.A.10)

In plot 5 , z = z̄ when approaching 1, whereas in plot 6 , z and z̄ are complex

conjugate of each other up to a phase e2πi.

As discussed in the main text, these limits exactly correspond to the Regge

limit of conformal correlation functions. In this case only the z variable is continued

around 0 and so we are at the boundary of the radius of convergence of the s channel

conformal block decomposition.

3.B Steepest descent contours for the exchange diagram in

Mellin space

In this appendix we analyse the location of the steepest descent contour for the

exchange diagram in Mellin space and determine the contribution of any Mellin

poles that are picked up in deforming the original integration contour to the steepest

descent contour.

First we have to decide which poles are picked up. This is determined by the

crossing point of the steepest descent contour with the real axis. With the integrand

as in (3.5.26) the saddle point is located at

σ∗12 =
4m2 − s

8m
(3.B.1)

and at this point

φ

(
m,

4m2 + s

4m2 − s
, σ∗12

)
= −2m log

(
8m

4m2 + s

)
(3.B.2)

so we see that

Im

[
φ

(
m,

4m2 + s

4m2 − s
, σ∗12

)]
= 2m arg

(
4m2 + s

)
(3.B.3)

so the real σ12 axis is crossed at

σ̄12(s) :=
m arg[4m2 + s]

arg[4m2 + s]− arg[4m2 − s]
(3.B.4)

where we used that the steepest descent contour crossed the real axis for 0 < σ12 < m

as explained above. (As a consistency check we recover σ∗12 from σ̄12(s) for s real and
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Euclidean via a limiting procedure.) We pick up Mellin poles if:

σ̄12(s) < m−mb/2 . (3.B.5)

This gives rise to a region in the complex s plane that is shown as the lightly shaded

region in figure 3.17. Notice that it in particular includes the entire physical line

s > 4m2 and the pole at s = m2
b . A little further experimentation shows that we

do not pick up any Mellin poles for Re(s) < 0 as long as mb > m, and also that for

fixed Re(s) > 0 the function σ̄12(s) is increasing with |Im(s)|, so if we do not pick

up poles for a given s with Re(s) > 0 then we will also not pick up poles for any s

with greater imaginary part. Altogether this means that the region where we pick

up poles is within the region defined by Re(s) > 4m(mb −m) for mb > m.

The picked up Mellin poles give rise to a sum which we should compare to the

order of magnitude of the Mellin saddle point at σ∗12. In equations, we can say that

we are safe if

k̄(s)∑
k=0

Rk exp

(
Rφ

(
m,

4m2 + s

4m2 − s
,m−mb/2− k/R

)
−Rφ

(
m,

4m2 + s

4m2 − s
, σ∗12

))
R→∞−→ 0

(3.B.6)

with k̄(s) = R(m −mb/2 − σ̄12(s)). We will henceforth assume k̄(s) > 0 otherwise

there is nothing to estimate. To analyse the k sum we will ignore the phase factor

and instead investigate the slightly larger expression

k̄(s)∑
k=0

Rk exp

(
Rφ

(
m,
|4m2 + s|
|4m2 − s|

,m−mb/2− k/R
)
−Rφ

(
m,

4m2 + s

4m2 − s
, σ∗12

))
R→∞−→ 0 .

(3.B.7)

We now substitute the large R expression for the Rk and can attempt to find a saddle

point approximation for the sum. Notice that the location of the saddle point has

changed compared to the discussion around equation (3.5.24) because of the extra

k-dependent factor. We find two stationary points at

k∗±(s)/R =
mb

8

(
−4± |4m

2 + s|
m
√

Re(s)

)
(3.B.8)

If Re(s) > 0 then exactly one of the saddle points is real and positive. The value of

the summand at the saddle point is

exp

(
R (2m+mb)

(
log(2m+mb)−

1

2
log
(
|4m2 + s|+ 4m

√
Re(s)

))

+R (2m−mb)

(
log(2m−mb)−

1

2
log
(
|4m2 + s| − 4m

√
Re(s)

))) (3.B.9)

99



CHAPTER 3. LANDAU DIAGRAMS IN ADS AND S-MATRICES FROM
CONFORMAL CORRELATORS

up to an unimportant prefactor.

We can now distinguish several possibilities:

• If 0 < k̄(s) but Re(s) < 0 then the stationary points in the sum are complex.

We checked numerically that the summand is monotonically increasing and so

it is bounded from above by its value at k̄(s). This can only happen when

mb < m.

• If Re(s) > 0 and 0 < k∗+(s) < k̄(s) then the saddle point approximation should

work well for the sum.

• If Re(s) > 0 and 0 < k̄(s) < k∗+(s) then we can again take the value at k̄(s) as

an upper bound for the sum.

Each of these cases corresponds to a domain in the complex s plane (which all lie

within region I as defined around figure 3.17 because we assume k̄(s) > 0). We have

numerically checked that the summand in (3.B.7) in the first and third possibility

always goes to zero in the large R limit, so the problematic region is the subregion

of the second possibility where (3.B.9) does not vanish at large R. This is now easily

plotted numerically, leading to the domains shaded in figure 3.17.

3.C Verification of momentum conserving delta function

In this appendix we show that in the flat-space limit, the normalized, analytically

continued four-point contact diagram Gc(Pi) equals the momentum conserving delta

function,

Z2Gc(Pi)|S-matrix

R→∞
−−→ i(2π)d+1δ(d+1)(k1 + k2 + k3 + k4), (3.C.1)

where the normalization factor is defined in (3.2.8):

Z =
22∆Rd−1

C2
∆

. (3.C.2)

Our starting point is (3.3.32), which is reproduced here:

Gc(Pi)
R→∞
−−→ R−d+322∆−d/2−6π−3d/2+1/2∆3d/2−9/2

(√
P12P34 +

√
P13P24 +

√
P14P23

)−2∆+3/2

(P12P13P14P23P24P34)1/4
.

(3.C.3)

In Euclidean signature the Pij are all real and positive and so the amplitude in the

large ∆ limit gets support only around Pij = 0. This changes if we analytically

continue to the S-matrix configuration (3.2.18) as our conjecture dictates. Consider

again the case where particles 1 and 2 are the ‘in’ particles and 3 and 4 the ‘out’
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particles. We are then instructed to take P12 and P34 negative with a small negative

imaginary part. We may write:

Gc(Pij)|S-matrix
R→∞−→ iR−d+322∆−d/2−6π−3d/2+1/2∆3d/2−9/2 (f(Pij))

−2∆+3/2

(P12P13P14P23P24P34)1/4

∣∣∣∣∣
S-matrix

(3.C.4)

where we have introduced

f(Pij) := −
√
P12P34 +

√
P13P24 +

√
P14P23. (3.C.5)

Our first benefit is the factor of i, which matches (3.2.19). Taking into account

the wave function factors
√
Z we realize that the large ∆ limit of the normalized

contact diagram should, after substitution of Pij = 2(1+m−2ki ·η ·kj), become equal

to the momentum conserving delta function:

lim
R→∞

iZ2R−d+322∆−d/2−6π−3d/2+1/2∆3d/2−9/2 (f(Pij))
−2∆+3/2

(P12P13P14P23P24P34)1/4

?
= i(2π)d+1δ(d+1)(k1 + k2 + k3 + k4)

(3.C.6)

A complication in the verification of this claim is that both sides are meant to be

understood as functions of on-shell momenta, so the independent variables on either

side are really the spatial components ki of the four momenta.

Our first claim is that the contact diagram is maximized on the support of the

delta function. At large ∆ it is the function f(Pij) that provides exponential damping

and it is maximized whenever

∂log(f(Pij))

∂ki3
=
∂log(f(Pij))

∂ki4
= 0 (3.C.7)

which is solved on the momentum conserving configuration. More generally the form

of f(Pij) leads us to believe that there should be a Minkowskian version of Ptolemy’s

inequality that rigorously proves the maximization of f(Pij) uniquely and exactly

when momentum conservation is obeyed, but we have not tried to obtain it. At the

saddle point we easily find that

f(Pij)|saddle point = 8, (3.C.8)

independently of the values of the momenta themselves.

Next we need to check the volume of the bump centred at the momentum con-

serving configuration, so whether the integrations over both sides of (3.3.33) agree.
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To integrate, we parametrize Pi, or equivalently kµi , using rapidity and spherical

coordinates:

Pi = (1,∓ cosh(θi), i sinh(θi)n̂
(d)
i ) − /+ : in/out-going

kµi = (±m cosh(θi),m sinh(θi)n̂
(d)
i ) + /− : in/out-going

n̂
(d)
i = (cos(φi,1), sin(φi,1) n̂

(d−1)
i )

(3.C.9)

Integrating over the right-hand side of (3.3.33) gives∫
d|k3||k3|d−1ddk4

[
i(2π)d+1δ(d+1)(k1 + k2 + k3 + k4)

]
= i(2π)d+1

(
E2
CM

4
−m2

)d/2−1
ECM

4

= i(2π)d+1m
d−1

2
cosh(θ1) sinhd−2(θ1).

(3.C.10)

This function of θ1 needs to be matched on the left-hand side. To perform the

integrals we again resort to the saddle point approximation. Going to the centre of

mass frame of ingoing particles 1 and 2, the momentum-conserving saddle point now

reads

θ∗3 = θ∗4 = θ1, n̂
(d)∗
4 = −n̂(d)

3 . (3.C.11)

We also need to calculate the determinant of the matrix of second-order derivatives of

log(f(Pij)). Let us denote this as Detd for the d-dimensional case. It turns out that

using our coordinates the determinant at the saddle point can be easily calculated

for any dimension. To be precise, we set the ordering of the coordinates as

{θ3, θ4, φ4,1, . . . , φ4,d−1} (3.C.12)

and then the result reads

Detd
Det2

∣∣∣∣
saddle point

=

(
sinh2(θ1)

8

)d−2

sin2d−4(φ3,1) sin2d−6(φ3,2) . . . sin2(φ3,d−2)

(3.C.13)

where Det2 satisfies√
1

Det2

(f(Pij))
3/2

(P12P13P14P23P24P34)1/4

∣∣∣∣∣
saddle point

=
32

cosh(θ1) sinh2(θ1)
. (3.C.14)

The simplicity of this calculation follows from the fact that additional matrix

elements in higher dimensional cases compared to the two-dimensional case are all
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zeros except for the diagonal terms. To check this, we need to calculate

∂2 log(f(Pij))

∂θk∂φ4,l

, k = 3, 4, 2 ≤ l ≤ d− 1

∂2 log(f(Pij)

∂φ4,l∂φ4,m

, 1 ≤ l ≤ m ≤ d− 1

(3.C.15)

A useful observation is that when l ≥ 2, ∂f(Pij)/∂φ4,l is only proportional to

∂P34/∂φ4,l and it vanishes at the saddle point. Explicitly, we have

P34 = 2(1− cosh(θ3) cosh(θ4) + sinh(θ3) sinh(θ4)n̂3 · n̂4) (3.C.16)

∂P34

∂φ4,l

∣∣∣∣
saddle point

= 2 sinh(θ3) sinh(θ4)
∂
(
n̂

(d)
3 · n̂

(d)
4

)
∂φ4,l

∣∣∣∣∣∣
saddle point

= 0 (3.C.17)

where the last equal sign is because at the saddle point ∂n̂
(d)
3 /∂φ4,l is orthogonal to

n̂
(d)
4 and vice versa. It follows similarly that all the second-order partial derivatives

in (3.C.15) are zero due to orthogonality, except for one term, which is

∂2f(P34)

∂φ2
4,l

∣∣∣∣∣
saddle point

= 2 sinh2(θ1) sin(φ3,1)2 . . . sin(φ3,l−1)2 . (3.C.18)

Altogether we find that the integral over the left-hand side becomes29

∫
d|k3||k3|d−1ddk4

[
iZ2R−d+322∆−d/2−6π−3d/2+1/2∆3d/2−9/2 (f(Pij))

−2∆+3/2

(P12P13P14P23P24P34)1/4

]
' iZ2R−d+322∆−d/2−6π−3d/2+1/2∆3d/2−9/2(m cosh(θ1))2(m sinh(θ1))2d−2

×
( π

∆

)(d+1)/2
(

sinh2(θ1)

8

)−(d−2)/2
8−2∆+5/3

cosh(θ1) sinh2(θ1)

R→∞
= i(2π)d+1m

d−1

2
cosh(θ1) sinhd−2(θ1)

(3.C.19)

which exactly agrees with (3.C.10). We have therefore shown that our S-matrix con-

jecture is also correct for the four-point contact Witten diagram of identical operators

in any spacetime dimension.

29The product of sine functions in (3.C.13) precisely cancels against the spherical integration

measure of n̂
(d)
4 .
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3.D Saddle-point analysis of the exchange diagram

In this appendix, we explain details of the saddle-point computation of the exchange

diagram discussed in subsection 3.3.3. For this purpose, we first integrate out X, Y

and Q in (3.3.35) to get

Ge(Pi) =
R−d+5

32πh(P12)∆(P34)∆

∫ i∞

−i∞

dc

2πi

1

c2 − (∆b − h)2

(
Γ
(
∆− h

2
+ c

2

)
Γ
(
∆− h

2
− c

2

)
2πh(Γ(∆− h+ 1))2

)2

× [kcGh+c,0(ρ, ρ̄) + k−cGh−c,0(ρ, ρ̄)] , (3.D.1)

where G∆,l is the conformal block and ka is defined by

ka :=

(
Γ(h

2
+ a

2
)
)4

Γ(h+ c)Γ(c)
. (3.D.2)

In the flat-space limit (∆ ∼ c� 1), (3.D.1) can be approximated by

Ge(Pi) ∼
R−d+5

32πh(P12)∆(P34)∆

∫ i∞

−i∞

dc

2πi

N
c2 −∆2

b

(
ch−1eg(c) + (−c)h−1eg(−c)

)
, (3.D.3)

with

N =
2π1−2h∆4h−2(ρρ̄)h/2√

(1− ρ2)(1− ρ̄2)(∆2 − c2

4
)h+1(1− ρρ̄)h−1

,

g(x) =− 4∆ log(∆) + 2(∆ + x
2
) log(∆ + x

2
) + 2(∆− x

2
) log(∆− x

2
) +

x

2
log ρρ̄ ,

(3.D.4)

where ρ and ρ̄ are the radial coordinates. We can then perform the saddle-point

analysis for the c-integral. The two exponential factors eg(c) and eg(−c) give two

different saddle points but their contributions turn out to be identical. Including the

one-loop fluctuations around the saddle-point we get the result quoted in the main

text

Gc(Pi) ∼ Gc(Pi)|R→∞ ×
R2

∆2
b − c2

. (3.D.5)

On the other hand, the contributions from the poles can be determined by evalu-

ating eg(c) and eg(−c) at the positions of the poles c = ±∆b. For the c = ∆b pole, eg(−c)

can be neglected and the dominant contribution at large R is given by a product of

eg(∆b) and (P12P34)∆. This leads to the formula (3.3.55) in the main text.

3.E Comparison with the phase shift formula

In reference [13], following a different derivation, a formula for the spin-` phase shifts

was proposed for the scattering of two identical particles which in our notation can
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be written as

e2iδ`(s) = lim
∆O→∞

N`(s)
−1

∑
|∆−
√
s∆O|<∆O

α

w(∆)2a∆,`e
iπ(∆−2∆O) ,

N`(s) =
∑

|∆−
√
s∆O|<∆O

α

w(∆)2a∆,` ,
(3.E.1)

where the constraint on α > 0 was not examined very carefully, other than it should

be smaller than one. The explicit form of the weight w(∆) will not be required here.

It is sufficient to say that its dependence on ∆ is such that w(∆)2acont
∆,` does not vary

exponentially with ∆ in the limit of large ∆O. This implies that for the GFF theory

we have

N gff

` (s) =
∆O→∞

∆O
α
[
w(∆)2acont

∆,`

] ∣∣∣∣
∆=
√
s∆O

(3.E.2)

Let us now assume that N`(s) is universal for CFTs which describe QFTs in AdS,

and in particular equal to the GFF result above. This assumption was originally

made in [13] in order to match the above phase shift formula with the prescription

for the S-matrix based on the Mellin amplitude in that same reference, which is our

equation (3.5.5). We now point out that using the result above this is nothing but

the condition ∑
|∆−
√
s∆O|<∆O

α

(
a∆,`

acont
∆,`

)
= ∆O

α
(3.E.3)

i.e. the same as our assumption (3.6.30). This also leads to

e2iδ`(s) = lim
∆O→∞

∆O
−α

∑
|∆−
√
s∆O|<∆O

α

(
a∆,`

acont
∆,`

)
eiπ(∆−2∆O) . (3.E.4)

Comparing this to our own expression (3.6.27) we see that they differ only in the

way the averaging in the sum over states is being done: with a Gaussian in our case

and with a rectangular “window” in the above. Both averaging kernels tend to delta

functions in the large ∆O limit. As long as both limits exist they must describe the

same limiting function. The main difference is that the Gaussian prescribes that the

sum over states must be done over a precise region of width O(
√

∆), whereas the

exact width of the averaging window was not as precisely determined in the above.
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Chapter 4

Line and Surface Defects for the

Free Scalar Field

4.1 Introduction and summary

Extended operators, also called defects, are useful objects in quantum field theories

because they can probe non-local phenomena that are inaccessible to local operators.

For a given field theory there are often infinitely many different defects and universal

results are hard to come by. However, this situation improves if we focus on long

distances where we recover the conformal defects which correspond to the (forced)

symmetry breaking pattern

so(d+ 1, 1) −→ so(p+ 1, 1)× so(d− p) . (4.1.1)

The rationale for this pattern is as follows. First, if we assume locality and reflection

positivity then a d-dimensional infrared theory generally has so(d + 1, 1) conformal

invariance. If we now put the p-dimensional defect on an Rp subspace of Rd then we

can assume that it preserves: (a) a p-dimensional Poincaré symmetry, (b) rotations

in the transverse d − p dimensions, and (c) an overall dilatation symmetry in the

infrared. There are exceptions to (a) and (b), see for example [90] for the kinematics

of defects charged under transverse rotations, but we will not consider this here.

As for (c), a simple computation involving the bulk stress tensor shows that this

scale invariance is enhanced to so(p + 1, 1), so p-dimensional conformal invariance,

if the defect does not contain a specific ‘virial current’ of dimension p − 1, see for

example [91]. In this precise sense the pattern in (4.1.1) is considered to be the

generic situation at long distances.

In the following we will follow standard notation and introduce

q = d− p (4.1.2)
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as the co-dimension of the p-dimensional defect. In this work we will consider q > 1

and, since p > 0, d > 2 as well. The case q = 1 is analysed in [92].1

For the physics of the defect both sides of (4.1.1) are important. Away from the

defect the so(d+ 1, 1) symmetry algebra acts on the local bulk operators and implies

the existence of a convergent bulk operator product expansion. On the defect the local

operators are organized in representations of so(p+1, 1)× so(q), with the first factor

acting as the usual conformal algebra in p dimensions and the latter as a usual global

symmetry – although neither of these symmetries is generated by a local current on

the defect. Furthermore, these defect local operators have their own convergent defect

operator product expansion. The connection with the bulk operators is provided by

the bulk-defect operator expansion which states that a local bulk operator in the

vicinity of the defect can be written as a sum over defect operators. For example,

for a scalar operator and a co-dimension two defect we can write:

φ(~x, z, z̄) =
∑
k

(
bkφ z̄

sk

|z|∆φ−∆̂k+sk
C∆̂k

[|z|, ~∇2]Ôsk(~x) + c.c.

)
(4.1.3)

where we split the d-dimensional Euclidean coordinates as xµ = (~x,Re(z), Im(z))

with the latter two coordinates taken to be orthogonal to the defect. The index k

labels the different primary defect operators Ôsk , which in this case are all scalars

and therefore labelled by their scaling dimensions ∆̂k and SO(2) spin sk. The con-

tribution of their descendants is taken into account by the (explicitly known [94])

differential operator C∆̂k
[|z|, ~∇2]. The expansion also furnishes the bulk-defect oper-

ator expansion coefficients bkφ.

For co-dimension two defects the following comment is in order. In equation

(4.1.3) the spins s are integers if the bulk fields are to be single-valued around the

defect. This is however not necessary. If the bulk theory has a global symmetry G

then one might alternatively require that

φ(~x, e2πiz, e−2πiz̄) = φg(~x, z), for g ∈ G. (4.1.4)

For non-trivial g such defects are called monodromy defects. One may think of them

as the boundaries of the co-dimension one defects that implement g. We will only

consider G = Z2 and then there is a single type of monodromy defect corresponding

to the non-trivial element of G. In the presence of such a defect the odd bulk

operators have a bulk-defect expansion of the form given in equation (4.1.3) with

half-integer s. For more general G, like the case studied in [95], the expansion would

need further modifications.

The philosophy of the defect bootstrap is to explore the consistency conditions

that follow from the associativity of the three operator expansions given above. In

1See also [93] for recent work on free scalars that interact through a boundary.
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recent years there has been significant progress on this programme [96–106]. Just

as in the ordinary (bulk) conformal bootstrap, it is essential to know the relevant

conformal blocks which group the contributions of an entire conformal representation.

Pioneering work in this direction was done by [107, 108] in the case of co-dimension

1, whereas [94, 97, 109–113] contains results for higher co-dimensions.

Ideally the defect bootstrap would lead to a classification of all the possible

defects for a given bulk CFT. In the future it might for example be possible to

show that the monodromy defect is the only non-trivial line defect in the three-

dimensional Ising model, or that the known co-dimension two and four defects are

the only conformal defects in the six-dimensional (2, 0) theories. In this chapter we

consider a more modest problem: that of the classification of defects in the theory

of a single real free scalar. Our most important conclusion is that there is very

little scope for non-trivial conformal defects of co-dimension two and higher in such

theories. We consider this somewhat surprising: for example, we do not expect this

conclusion to hold for co-dimension one (boundaries). Indeed, for d > 2 several non-

trivial boundary conditions appear possible [92, 114–118] and for d = 2 there exists

a family of conformal boundary conditions for a free (compact) scalar [119]. Also,

non-trivial defects do exist in other cases where the bulk is free, like the non-trivial

co-dimension two monodromy defects for a free hypermultiplet in 4d with N = 2

[120, 121] (see also [122, 123] for not necessarily conformal defects in this theory)

and the co-dimension four surface operators in the Abelian (2, 0) theory [124–130].

Another example are the infinity of possible boundary conditions in a free four-

dimensional Maxwell theory [131], see also [132–134], which of course also features

conformal Wilson and ’t Hooft lines.

4.1.1 Summary

Although this work contains some more general results, our main outcome is that

most defects in the free scalar theory are ‘trivial’ in the sense that there is no room for

any interesting dynamics on the defect: up to potentially an undetermined one-point

function (for q = p + 2 only), all the n-point correlation functions of the bulk field

φ are completely fixed.2 More precisely, we will show that, in a reflection positive

setup (also see Table 4.1):

• monodromy defects with q = 2 can be non-trivial only if d ≥ 4;

• non-monodromy defects can be non-trivial only if q = 3 and if d ≥ 5.

2More precisely, the connected two-point function of φ is simply the unique Klein-Gordon prop-
agator with boundary conditions on the defect defined as below, and the connected higher-point
functions of φ are all zero. This definition relies on the Gaussian properties of the bulk scalar
field theory, which are not spoiled by a trivial defect. In the literature the word ‘trivial defect’
is often used to mean ‘no defect’. This definition of ‘trivial’ agrees with ours only in the case of
non-monodromy defects without one-point functions.
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Our reasoning proceeds as follows.

First, in section 4.2 we show that the equation of motion for two-point functions

strongly constrains the bulk-defect operator expansion of the bulk field φ. We will

discuss how, in all cases except the ones given above, this expansion is completely

fixed. For example, for co-dimension two it must take the form

φ(~x, z, z̄) =
∑
s

(
b+,s
φ z̄sC∆φ+s[|z|, ~∇2]ψ(+)

s (~x) + c.c.
)
, (4.1.5)

for some operators ψ
(+)
s with dimensions ∆̂

(+)
s = ∆φ + s and transverse spins s ≥ 0

constrained to be either half-integer or integer depending on the monodromy type of

the defect. The coefficients b+,s
φ are given below.

An expansion like equation (4.1.3) completely fixes the two-point function of the

bulk field φ, but more work is required to also constrain the higher-point functions:

we have to learn about the defect OPE of the operators ψ
(+)
s themselves. This we

do in sections 4.3 and 4.4, where we will demonstrate that the operators ψ
(+)
s are

generalized free fields and their n-point functions are given by a sum over Wick

contractions. In more detail, in section 4.3 we analyse the singularities in the three-

point function of one free bulk and two defect operators. Requiring the absence

of unphysical singularities implies that the defect OPE of two ψ
(+)
s operators can

only contain non-trivial operators of the ‘double twist’ type. This analysis however

cannot fix the OPE coefficients nor the multi-OPEs of the ψ
(+)
s operators. To finish

the proof we therefore need one more ingredient and this is provided in section 4.4:

we can use a dispersion relation in the complex time plane for the n-point functions

of the ψ
(+)
s operators. Since the discontinuities in this dispersion relation are trivial

the n-point functions must be trivial as well, and so our claim of the triviality of the

n-point functions of the bulk field φ also follows.

In section 4.5 we will specialize to the case of line defects. Although the derivation

is grosso modo the same, some subtleties arise because the analyticity properties of

conformal correlation functions on a line are different. However if we assume parity

on the defect then our conclusions remain the same. This in particular rules out a

non-trivial parity-preserving monodromy defect for a real scalar in d = 3, in sharp

contrast with the non-trivial supersymmetric monodromy defects in d = 4.

Section 4.6 is devoted to perturbative tests of our results. We consider examples

in conformal perturbation theory that could lead to a non-trivial defect for the free

scalar theory and therefore a counterexample to our main claim. As expected these

attempts fail, but they do so in a rather interesting manner.

Some applications of our results will be discussed in section 4.7.
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4.2 The two-point function of the free scalar

In this section we will analyse the spectrum of operators appearing in the bulk-defect

operator expansion (4.1.3) for a free scalar field φ. To do so it suffices to look at

two-point functions involving one bulk field φ and a defect operator Ô. By imposing

the equation of motion �φ = 0 (away from contact points), we will find that the

spectrum in the bulk-defect operator expansion is highly constrained. We will then

consider the two-point function of φ to fix almost all the coefficients. In the main text

we will focus on q = 2 for simplicity of notation. The case with q > 2 is discussed in

appendix 4.A.

This section is mostly a review of results that have already appeared in the

literature. The defect blocks for the scalar two-point function in the presence of

the twist defect were first presented in [97]. For generic p, q defects, the blocks

for the scalar two-point functions were computed in [94] (see also [110, 112]). The

constraints imposed by the bulk equation of motion and by unitarity on the bulk-

defect expansion of a free scalar were first discussed in [135] (see also [97]) for the case

of the twist defect. This analysis was extended to generic p and q in Appendix B of

[94], and the equation “s ≤ (4−q)/2” of that reference is a less refined version of the

information presented in the two tables below. For q = 1, the blocks for the scalar

two-point function were obtained in [107] while the spectrum of boundary modes of

the free scalar was discussed in [96, 98, 136, 137].

4.2.1 General form of the two-point functions

In this section we consider the two-point function of a general scalar bulk primary φ

and a defect primary operator Ô. For a defect operator with transverse spin s and

scaling dimension ∆̂Ô one finds that3

〈φ(~x, z, z̄)Ô−s(0)〉 =
bÔφ z̄s

|z|∆φ−∆̂Ô+s(|z|2 + |~x|2)∆̂Ô
. (4.2.1)

where we used the same conventions for parallel and transverse coordinates as listed

in the introduction. Recall that in CFTs without defects the functional form of

three-point functions efficiently encapsulates the contribution of descendants in the

bulk OPE. In the defect setup the two-point function in equation (4.2.1) similarly

encodes the contribution of descendants in the bulk-defect operator expansion. This

is analysed in appendix 4.A; the corresponding infinite-order differential operator is

given in equation (4.A.4).

3See [94, 97, 109–113] for recent work on kinematical constraints for defect CFTs and also
[96, 107, 108] for previous studies in the co-dimension one case.
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Next we consider the two-point functions of two general bulk scalar operators φ,

〈φ(~x1, z1, z̄1)φ(~x2, z2, z̄2)〉. (4.2.2)

This correlation function depends non-trivially on two cross-ratios, which we can

take to be:

χ ≡ |~x12|2 + |z1|2 + |z2|2

|z1||z2|
, ϕ = arg

(
z1

z2

)
. (4.2.3)

In the following we will need the defect channel decomposition of this two-point

function which is obtained by plugging in the bulk-defect operator expansion twice.

This leads to two infinite-order differential operators of the form given in equation

(4.A.4) acting on the two-point function of a defect primary. In appendix 4.C we

resum these contributions from the defect descendants and obtain the defect channel

decomposition:

〈φ(~x1, z1, z̄1)φ(~x2, z2, z̄2)〉 =
1

(|z1||z2|)∆φ

∑
s

∑
Ô

|bÔφ |2 e−i s ϕF∆̂Ô
(χ). (4.2.4)

where we introduced the defect conformal blocks as:

F∆̂Ô
(χ) = χ−∆̂Ô 2F1

(
∆̂Ô
2
,
∆̂Ô + 1

2
; ∆̂Ô + 1− p

2
;

4

χ2

)
. (4.2.5)

We remark that these functions can also be computed by solving certain Casimir

equations with appropriate boundary conditions [94, 97, 110, 112]. One could also

consider a bulk channel decomposition of the same two-point function in terms of

a sum over bulk one-point functions. We will not need this decomposition in our

analysis.

4.2.2 Two-point functions of the free scalar

We now specialise to the case where φ is a free bulk scalar of canonical dimension

∆φ = d
2
− 1 and therefore obeys �φ = 0 away from contact points.

For the bulk-defect two-point function given in (4.2.1) the action of the Laplacian

gives

0 = 〈�φ(~x, z, z̄)Ô−s(0)〉 ∼ (∆̂Ô −∆φ + |s|)(∆̂Ô −∆φ − |s|)
bÔφ z̄

s

|z|2+∆φ−∆̂Ô+s(|z|2 + |~x|2)∆̂Ô
.

(4.2.6)

Therefore, the only defect primaries allowed to appear in the bulk-to-defect OPE of

a free scalar belong to one of the two families that we denote as ψ
(p)
s with p = ±,
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with dimensions ∆̂
(p)
s given by:4

ψ(±)
s ∆̂(±)

s = ∆φ ± |s|. (4.2.7)

We recall that we have set q = 2 and then have the spins s ∈ Z or Z + 1
2
, depending

on the choice for the Z2 monodromy, and [ψ
(±)
s ]† = ψ

(±)
−s . As we explain in more

detail in appendix 4.B, for s = 0 the two families merge and there is no degeneracy.

In reflection positive setups the spectrum is further constrained. The scaling

dimensions ∆̂ of any operator Ô on a p-dimensional defect need to obey the standard

unitarity condition

∆̂ ≥ p

2
− 1 or ∆̂ = 0, if p > 2,

∆̂ ≥ 0, if p ≤ 2. (4.2.8)

If the inequality for p > 2 is saturated then the operator is necessarily a free field

and its correlators must obey �Ô = 0. If ∆̂ = 0 for any p then the operator is

position-independent, ∂Ô = 0. We will also assume cluster decomposition and then,

by moving the position-independent operator far away, 〈Ô . . .〉 = 〈Ô〉〈. . .〉. The

operator Ô therefore behaves as a multiple of the identity operator and in particular

cannot be charged under transverse rotations.

For our operators ψ
(±)
s these conditions happen to rule out almost all of the ψ

(−)
s

since their dimensions are p
2
− s. In more detail, we first of all observe that the ψ

(−)
s

modes with s > 1 all sit below the unitarity bounds. For non-monodromy defects

this leaves the s = 1 case but it also happens to always be disallowed: it would be

below the unitarity bound for p = 1, a charged dimension zero operator for p = 2,

and a free field for p > 2 for which the bulk-defect two-point function does not obey

its equation of motion. For monodromy defects the condition s ≤ 1 leaves the ψ
(−)

± 1
2

operators and these are allowed for all p > 1 but not for p = 1 because then they

would again correspond to a dimension zero operator.

The analysis of the previous paragraph is summarized in the q = 2 column of

table 4.1. The other columns are obtained by repeating the analysis for higher co-

dimensions, the detailed computations for which can be found in appendix 4.A. We

note that the aforementioned s = 0 degeneracy is lifted if q > 2 and in that case

the ψ
(−)
0 mode can become a defect identity operator precisely when q = p + 2,

and also that free defect fields can never appear because the bulk-defect two-point

function never obeys the Laplace equation. Below we will demonstrate that defects

are necessarily trivial if none of the non-identity ψ
(−)
s operators appears, and this

leads directly to the main claim given in the introduction: interesting monodromy

4Note that ∆̂
(+)
s + ∆̂

(−)
s = 2∆φ = d − 2 = p and in this sense the operators ψ

(+)
s and ψ

(−)
s on

the p-dimensional defect are like a shadow pair.
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defects can exists only for p ≥ 2 and interesting non-monodromy defects only for

q = 3 and p ≥ 2.

s ∈ Z + 1
2

q = 2

p = 1 ψ
(+)
s

p ≥ 2 ψ
(+)
s and ψ

(−)
±1/2

s ∈ Z q = 2 q = 3 q = 4 q = 5 q = 6

p = 1

ψ
(+)
s

ψ
(+)
s and 1 ψ

(+)
s

p = 2

ψ
(+)
s and ψ

(−)
0

ψ
(+)
s and 1 ψ

(+)
s

p = 3
ψ

(+)
s

ψ
(+)
s and 1 ψ

(+)
s

p = 4 ψ
(+)
s ψ

(+)
s and 1

Table 4.1. Table of unitary defect spectrum in the free theory: for monodromy defects
with q = 2 and half-integer s on the top, and for general non-monodromy defects on the
bottom. The pattern in the bottom table continues outside the shown range of p and q.
For q > 2 the listed operators transform as symmetric traceless SO(q) tensors and then s
corresponds to its rank.

Before concluding this section, let us comment on the bulk-defect coefficients for

the operators ψ
(±)
s . As discussed in [97] and reviewed in appendix 4.B, in order to

reproduce the contact term in the Klein-Gordon equation,

〈�φ(x)φ(x′)〉 = −4π
p
2

+1

Γ
(
p
2

) δp+2(x− x′), (4.2.9)

the coefficients of the ψ
(+)
s are necessarily fixed to be

|b+,s
φ |

2 + (p− 1)|b−,sφ |
2 =

(∆φ)|s|
|s|!

. (4.2.10)

Note that any phases in b±,sφ can be absorbed in a phase of the corresponding op-

erators ψ
(±)
s , and therefore we can take the bulk operator expansion coefficients to

be real and positive. It follows that any freedom in the bulk-defect expansion coeffi-

cients is solely due to the appearance of the ‘−’ modes, with only one real parameter

introduced for every such mode. Without these modes the two-point function is

completely fixed.5

5The appearance of the ‘−’ mode in the free theory was not considered in [97]. Note that this
mode plays an important role in the free hypermultiplet example of [121]. Furthermore, as a small
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4.3 Constraining defect interactions

The goal of this section is to derive constraints on the defect spectrum from analyt-

icity requirements on correlation functions in the presence of defects. The bulk of

this section concerns q = 2 defects, but our argument can be extended to higher q

with only small changes; the relevant formulae for generic q are collected in appendix

4.C. Whenever necessary, we comment about results and differences with respect to

the higher co-dimension case. The main characters will be the three-point functions

involving the free scalar φ and one or two defect operators Ô and Ô′:

〈φ(x)Ô(~x′)Ô′(~x′′)〉, 〈φ(x1)φ(x2)Ô(~x′′)〉. (4.3.1)

We will show that the bulk-defect operator expansion of these correlators features

unphysical singularities, which can be removed only if very special conditions are

met.

Even though our analysis can be carried over to any unitary representation of the

parallel Lorentz group, we will restrict ourselves to symmetric and traceless tensors

of SO(p). We will contract the Lorentz indices with “parallel” polarization vectors

θa, (a = 1, . . . , p) on the defect and work with polynomials in θ, see for example [139]

for details. Concretely, for any symmetric and traceless SO(p) tensor of spin j we

define

Ô(j)
s (θ, ~x) ≡ θa1 . . . θajÔa1...aj

s (~x), θ•θ = 0, (4.3.2)

where • represents the SO(p)-invariant scalar product.

4.3.1 Bulk-defect-defect three-point functions

Let us consider first the three-point function of one bulk operator φ and two defect

primaries. For simplicity we take one of them, denoted Ô, to be an SO(p) scalar,

and the second one, denoted T̂ , to be a symmetric and traceless tensor of parallel

spin j. Without loss of generality we can place the third operator at infinity and so

we investigate:

〈φ(~x1, z, z̄)Ôs1(~x2)T̂ (j)
s2

(θ,∞)〉. (4.3.3)

This correlator is completely determined, via the bulk-defect operator expansion,

by the defect three-point functions between T̂ , Ô and the defect modes of the free

generalization of our result we note that a very similar analysis applies to conical metric singularities.
In that case the only difference is that the transverse spins s do not have to be half-integers. Such
singularities are relevant for the computation of Renyi entropies, see for example appendix C of [138]
for a computation in the free scalar theory. It would be interesting to understand the appearance of
the ‘−’ modes in more detail in this context. We thank Lorenzo Bianchi, Chris Herzog and Marco
Meineri for raising this point with us.
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scalar ψ
(p)
s introduced above. These are, in turn, constrained by the defect conformal

symmetry to be

〈ψ(p)
s (~x1)Ôs1(~x2)T̂ (j)

s2
(θ,∞)〉 =

f̂
(p)

sÔT̂

|~x12|∆̂
p
s+∆̂Ô−∆̂

T̂

P
(j)
‖ (x̂12, θ). (4.3.4)

where we should require that

s1 + s2 + s = 0. (4.3.5)

Note that the dependence on the SO(p) spin is captured by a unique polynomial,

homogeneous of degree j in the parallel polarization vector [139]

P
(j)
‖ (x̂12, θ) ≡ (−x̂12•θ)j , x̂a ≡ xa

|~x|
. (4.3.6)

By Bose symmetry the three-point function above cannot depend on the operator

ordering6 and therefore

f̂ÔψT̂ = (−1)j f̂ψÔT̂ . (4.3.7)

This implies in particular that only even j are allowed if the first two operators

are identical. The complete expression for (4.3.3) can be obtained by plugging the

bulk-to-defect OPE and resumming the contributions from descendants. After some

algebra, which we relegate to appendix 4.C, the result of this procedure is the defect

channel expansion of equation (4.3.3). This expansion takes the form

〈φ(~x1, |z|eiϕ)Ôs1(~x2)T̂ (j)
s2

(θ,∞)〉 =
P

(j)
‖ (x̂12, θ)

|z|∆φ+∆̂Ô−∆̂
T̂

∑
p∈{+,−}

b
(p,s)
φ f̂

(p)

sÔT̂
e−isϕF ÔT̂p,s (χ̂),

s = −s1 − s2.

(4.3.8)

The defect blocks in this expression are simple Hypergeometric functions of the cross-

ratio7

χ̂ =
|~x12|2

|z|2
. (4.3.9)

6For line defects the three-point functions generically depend on the ordering of the operators
on the line. This will be discussed in section 4.5.1.

7Since the defect three-point functions (4.3.4) do not depend on the transverse angle, the depen-
dence on ϕ in (4.3.8) enters only via the prefactor eisϕ in the bulk-to-defect OPE. It follows that
the defect blocks will only depend on |~x12| and |z|, so (4.3.9) must be the appropriate cross-ratio.
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and in appendix 4.C we show they are given by8

F ÔT̂p,s (χ̂) = χ̂κpÔT̂+ j
2

2F1

(
1− p

2
− j − κpÔT̂ ,−κpÔT̂ , 1−

p

2
+ ∆̂(p)

s ;− 1

χ̂

)
, (4.3.10)

where we introduced

κpÔT̂ = −1

2
(∆̂(p)

s + ∆̂Ô − ∆̂T̂ + j). (4.3.11)

Notice that the sum on the r.h.s. of (4.3.8) contains at most two terms. For q > 2 the

prefactors in equation (4.3.8) change a bit but the functional form of the blocks given

in equation (4.3.10) happens to remain the same, with the index s now denoting the

rank of an SO(q) symmetric and traceless tensor. We refer the reader to appendix

4.C for details.

4.3.2 Constraints from analyticity

In equation (4.3.8) the χ̂ → ∞ limit corresponds to the bulk-defect operator ex-

pansion. If we take the opposite limit χ̂ → 0 we are sending ~x12 → 0 and for finite

transverse separation the correlator should be analytic at ~x1 = ~x2. However a generic

term in (4.3.8) is not analytic since:9

P
(j)
‖ (x̂12, θ)F ÔT̂p,s (χ̂) ∼

χ̂→0

(−x12•θ)j

|z|j
χ̂1−j− p

2

Γ
(
j + p

2
− 1
)

Γ
(

1− p
2

+ ∆̂
(p)
s

)
Γ(−κpÔT̂ )Γ(j + ∆̂

(p)
s + κpÔT̂ )

+ . . . .

(4.3.12)

Such unphysical singularities must cancel out from the r.h.s. of (4.3.8). This can

happen either because of a relation among the OPE coefficients f̂ or because the

quantum numbers are such that (4.3.12) does not hold and the block is actually

regular. For all p and q we find that either of the following possible scenarios must

be realized.

1. In the first scenario the quantum numbers are such that the ‘generic’ relation

(4.3.12) is valid. Let us first suppose that both the “+” and “−” mode are

present, then the cancellation of the unphysical singularities can be enforced

8The notation employed in eq. (4.3.10) is a bit loose, since the defect blocks depend on the

quantum numbers of the operators T̂ and Ô and not on the operators themselves. May the reader
forgive this licentious choice.

9When p = 2 and j = 0 the singularity is actually logarithmic in χ̂ but the coefficient is essentially
the same. For p = 1 the non-analyticity of (4.3.12) is due to odd powers of

√
χ ∼ |~x12|. More

details on the continuation to p = 1 are given in section 4.5.1.
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by the following relation between the OPE coefficients:10

f̂
(−)

sÔT̂
= −

b
(+,s)
φ

b
(−,s)
φ

Γ
(

1− p
2

+ ∆̂
(+)
s

)
Γ

(
j+p−∆̂

(+)
s +∆̂Ô−∆̂

T̂

2

)
Γ

(
j+p−∆̂

(+)
s −∆̂Ô+∆̂

T̂

2

)
Γ
(

1 + p
2
− ∆̂

(+)
s

)
Γ

(
j+∆̂

(+)
s +∆̂Ô−∆̂

T̂

2

)
Γ

(
j+∆̂

(+)
s −∆̂Ô+∆̂

T̂

2

) f̂
(+)

sÔT̂
,

(4.3.13)

where we used the shadow relation ∆̂
(+)
s + ∆̂

(−)
s = p. On the other hand, if

the “−” mode is absent (or equal to the identity operator for which there is no

χ → 0 singularity), then the coefficient of the corresponding “+” mode must

be zero.

2. In the second scenario the scaling dimensions align such that (4.3.12) is not

valid. This can happen if

• κpÔT̂ = n with n ∈ N. In other words,

∆̂T̂ = ∆̂(p)
s + ∆̂Ô + j + 2n, n ∈ N (4.3.14)

so the dimension of T̂ equals that of a “double twist” combination of Ô
and ψ

(p)
s .

• j + κpÔT̂ + ∆̂
(p)
s = −n with n ∈ N. In other words,

∆̂Ô = ∆̂(p)
s + ∆̂T̂ + j + 2n, n ∈ N (4.3.15)

so the dimension of Ô equals that of a “double twist” combination of T̂

and ψ
(p)
s .

As shown in table 4.1, the “−” family does not occur in a large class of defects

and then the second scenario is the only one that can give non-zero three-point

functions. This is the case we will focus on below. It is however interesting to point

out that even in the other cases the non-triviality of the correlators is entirely due

to the appearance of the single “−” mode compatible with unitarity listed in table

4.1. Including this mode leads to an interesting variation of the usual bootstrap

problem because of the “shadow” relations (4.3.13) between OPE coefficients. A

first numerical analysis of this type of problem already appeared in the context of

the long-range Ising model [142] and in [92] similar equations were analysed in the

context of boundary conditions for free scalar fields.

10These special relations, which re-emphasize that one should think of the ψ
(±)
s as shadow pairs,

have appeared already in the context of the long-range Ising model [91, 140–142]. This is not
surprising, since the latter has a description in terms of a conformal defect of non-integer co-
dimension q.
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4.3.3 Reconstructing the bulk

We will now go one step beyond the analysis in the previous subsection and consider

three-point functions of the type:

〈φ(x1)φ(x2)T̂ (j)
s (θ,∞)〉. (4.3.16)

Note that the only allowed Lorentz representation for T̂ are symmetric traceless

tensors. In a ‘defect channel’ these three-point functions become a sum over the sort

of three-point functions that we just considered. Importantly, this sum should be

able to reproduce the ‘bulk channel’ OPE which corresponds to bringing the two φ

operators together. We will see that this is indeed the case.11

The defect-channel expansion

Our first goal will be to compute the defect channel blocks for the three-point function

(4.3.16). Our starting point is equation (4.3.4) specialized to the case where Ô is

one of the ψ
(p)
s , which is:

〈ψ(p1)
s1

(~x1)ψ(p2)
s2

(~x2)T̂ (j)
s (θ,∞)〉 =

f̂
(p1,p2)

s1s2T̂

|~x12|∆̂s1+∆̂s2−∆̂
T̂

P
(j)
‖ (x̂12, θ) δs1+s2+s,0. (4.3.17)

The correlator (4.3.16) can be obtained by acting twice with the bulk-to-defect OPE

on the three-point functions (4.3.17) and resumming the contributions from descen-

dants. As we show in appendix 4.C the result of this computation takes a simple form

when we specialize to the kinematical configuration where the two bulk operators lie

at the same transverse distance from the defect

z1 = |z|eiϕ, z2 = |z|. (4.3.18)

In this configuration, the full three-point function takes the following form

〈φ(~x1, |z|eiϕ)φ(~x2, |z|)T̂ (j)
s (θ,∞)〉 =

P
(j)
‖ (x̂12, θ)

|z|2∆φ−∆̂
T̂

∑
pi∈{+,−}

∑
s1

b
(p1,s1)
φ b

(p2,s2)
φ f̂

(p1,p2)

s1s2T̂
e−is1ϕF T̂(p1,s1),(p2,s2)(χ̂)δs1+s2+s,0 .

(4.3.19)

11One might try to go even further and also analyse the three-point function of the bulk field,
〈φφφ〉, in the presence of the defect. We found that this correlation function does not lead to
additional constraints. Note that it automatically vanishes for a monodromy defect.
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The defect blocks in the expression above are computed in appendix 4.C and read

F T̂(p1,s1),(p2,s2)(χ̂) = χ̂κp1,p2+ j
2

4F3

(
∆12 − ĥ−

1

2
,∆12 − ĥ,−κp1p2 ,−κp1p2 − j − ĥ; ∆̂(p1)

s1
− ĥ, ∆̂(p2)

s2
− ĥ, 2∆12 − 2ĥ− 1;− 4

χ̂

)
,

∆12 ≡
1

2
(∆̂(p1)

s1
+ ∆̂(p2)

s2
), κp1p2 ≡ −

1

2
(∆̂(p1)

s1
+ ∆̂(p2)

s2
− ∆̂T̂ + j), ĥ ≡ p

2
− 1,

(4.3.20)

where χ̂ is the cross-ratio defined in (4.3.9). Again we should emphasize that the

result (4.3.20) holds for all q, as we show in appendix 4.C.

Consistency with the bulk OPE

Our next goal will be to deduce under which conditions the ‘defect channel’ expansion

(4.3.19) is consistent with the ‘bulk channel’ OPE. In order to facilitate this analysis,

we integrate both sides of (4.3.19) against eis
′ϕ to obtain

1

2π

∫ 2π

0

dϕ eis
′ϕ〈φ(~x1, |z|eiϕ)φ(~x2, |z|)T̂ (j)

s (θ,∞)〉

=
P

(j)
‖ (x̂12, θ)

|z|2∆φ−∆̂
T̂

∑
p∈{+,−}

b
(p1,s′)
φ b

(p2,s2)
φ f̂

(p1,p2)

s′,s2T̂
F T̂(p1,s′),(p2,s2)(χ̂) δs′+s2+s,0. (4.3.21)

In contrast with equation (4.3.19), the sum on the r.h.s. of the above expression

contains at most three terms. In the higher co-dimension case we can analogously

integrate the three-point function against the appropriate spherical harmonics, to

isolate each SO(q) irrep. We will now proceed similarly to what we have done

in Section 4.3.2. On the one hand, the bulk self-OPE of the free scalar requires

analyticity at ~x1 = ~x2 for both the original as well as the integrated correlator

(4.3.21). (Note that the identity operator in the φ × φ OPE does not contribute.)

On the other hand, for generic values of its parameters the r.h.s. of (4.3.21) becomes

singular in this limit. For generic values of p and j the most singular term is given

by:

P
(j)
‖ (x̂12, θ)F T̂(p1,s1),(p2,s2)(χ̂) ∼

χ̂→0

(−x12•θ)j

|z|j
χ̂1−j− p

2

×
Γ(∆̂

(p1)
s1 − ĥ)Γ(∆̂

(p2)
s2 − ĥ)Γ(ĥ+ j)Γ(j + ∆̂T̂ − 1)

Γ(−κp1p2)Γ(j + ∆̂
(p1)
s1 + κp1p2)Γ(j + ∆̂

(p2)
s2 + κp1p2)Γ

(
∆̂

(p1)
s1

+∆̂
(p2)
s2

+∆̂
T̂

+j−p
2

) + . . . .

(4.3.22)
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but there are also powers of χ̂
1
2

(1−j−p+∆̂
T̂

) and χ̂
1
2

(2−j−p+∆̂
T̂

) with equally involved

coefficients.

As in the previous subsection, we can find constraints by demanding that such

singularities are absent in the full correlator. If both the ‘−’ and the ‘+’ modes are

present then there is an interesting spectrum of constraints to be found on both OPE

coefficients and scaling dimensions of T̂ that we will not fully report here. Instead,

we focus on the case where only the ‘+’ modes are present which is important for

the rest of the chapter. In that case three-point functions can only be non-zero if

the second scenario of section 4.3.2 is realized. Furthermore, we should take Ô to

also be a defect mode of φ, so Ô = ψ
(+)
s′ , and after projecting on a given s′ as above

we get to apply the ‘double twist’ conditions on ∆̂T̂ of that scenario twice. Only the

first of the two possibilities listed in that subsection then gives a dimension ∆̂T̂ that

is above the unitarity bound, and we conclude that:

∆̂T̂ = ∆̂(p1)
s1

+ ∆̂(p2)
s2

+ j + 2n, n ∈ N. (4.3.23)

In short, in the absence of the ‘−’ modes the OPE of the ψ
(+)
s operators contains only

‘double twist’ operators! Armed with this condition we see that there is no further

constraint to be gained from equation (4.3.22), since the coefficient of the singular

term now vanishes and the 〈φφT̂ 〉 correlator is analytic at ~x1 = ~x2.

4.4 Triviality of defects of dimension 2 and higher

We have established that for many defects the bulk-defect operator expansion of a

free scalar field is constrained to only contain operators that we called ψ
(+)
s , with

fixed coefficients. We have also shown that the non-trivial operators in the OPE of

the ψ
(+)
s must be of a ‘double twist’ type. In this section we will show that the latter

statement implies that all the correlation functions of the ψ
(+)
s operators must be

those of a generalized free theory. From this the triviality of the n-point functions

of φ follows immediately.12

We will consider here the case p ≥ 2. The line with p = 1 will be discussed in

the next section. To apply the theorem below to our analysis of defects with q > 2

one should in principle group the operators in representations of the non-Abelian

transverse rotation algebra. It is however easy to see that this just produces some

extra factors that do not change the gist of the argument.

The result ‘GFF spectrum implies GFF n-point functions’ might be interesting

on its own; for n = 4 it can be rephrased as the statement that a trivial double

12To be precise, when q = p+ 2 the identity operator can also appear in the bulk-defect operator
expansion of φ. Its coefficient is the only variable not fixed by our analysis.
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discontinuity [1] in all channels implies that the correlation function itself is trivial.13

Theorem 1. Consider a conformal theory in more than one dimension with a state-

operator correspondence and a discrete spectrum such that cluster decomposition is

obeyed. Suppose the theory has a set of scalar operators ψs(x) whose OPEs take the

form

ψs1 × ψs2 = δs1,s21 + (operators with twist ∆̂s1 + ∆̂s2 + 2k, with k ∈ N) (4.4.1)

Then all the n-point correlation functions of ψs(x) are those of generalized free fields.

The main ingredient in our proof will be a dispersion relation in the complex time

plane14 for which we will need the commutator [ψ(x), ψ(y)]. For spacelike separation

we write the operator product expansion as15

ψs1(x)ψs2(0) =
δs1,s2

(x2)∆̂s1

1 +
∑
k

λ k
12

xµ1 . . . xµ`k

(x2)(∆̂s1+∆̂s2−∆̂k+`k)/2
Okµ1...µ`k

(0) (4.4.2)

where in the sum over non-trivial operators k we do not distinguish between primaries

and descendants. By assumption ∆̂k− `k = ∆̂s1 +∆̂s2 +2k, and therefore every term

in the sum only yields non-negative integer powers of x2. Passing to the commutator

therefore yields

[ψs1(x), ψs2(0)] = disc

[
δsi,sj

(x2)∆̂si

]
1, (4.4.3)

which is valid as an operator equation as long as the OPE converges. As usual,

operator orderings in the commutator must be understood as the Euclidean time

orderings and the discontinuity has support only when the operators are causally

connected. We will not need the detailed expression of the discontinuity but it is

straightforward to work out.16

Our proof will now proceed inductively. We will study the n-point function

〈ψs1(x1)ψs2(x2)ψs3(x3) . . . ψsn(xn)〉 (4.4.4)

13For four-point functions of identical operators this theorem is a corollary of theorem 1 in [143].
In all other cases we believe this result is new.

14A discussion of the analytic structure of conformal correlation functions can found, for example,
in [144]. Recent other work on dispersion relations for four-point functions includes [83, 145].

15The attentive reader will have noticed a small change of notation: in this section the operators
ψs are taken to be Hermitian. They should be thought of as the real and imaginary part of the

ψ
(+)
s operators of the previous sections.
16For integer ∆ the discontinuity is supported only at x2 = 0, in agreement with Huygens’

principle.
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O
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τk+1
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τn

⋮

⋮

Im τ

(τ, y)
Re ττk τk+1τk−1τ2 τn…

Im τ

…
y

O

−y

Figure 4.1. Left: Operators ψsk (k ≥ 2) are inserted along the Euclidean time (Re τ)
axis. Lorentzian time is along the imaginary-τ axis. The lightcone of ψsk is illustrated in
blue triangles. ψs1 is off the line and its time component τ is complex in general. Right:
Lightcone branch cuts on the complex-τ plane.

in the following specific kinematic configuration. We put all operators but the first

one on a line:

xµk = (τk, 0, 0, 0, . . .), 2 ≤ k ≤ n , (4.4.5)

ordered such that τk < τk+1, whereas for the first operator we choose:

xµ1 = (τ, y, 0, 0, . . .) (4.4.6)

with y > 0 a social distancing parameter and τ an arbitrary complex time coordi-

nate. In the τ plane the correlator is analytic except on the vertical lightcone cuts

starting at τ = τk ± iy for 2 ≤ k ≤ n and running off to ±i∞ (see figure 4.1).

The discontinuities across these cuts completely determine the correlator because it

vanishes at large |τ | by cluster decomposition (see below for more details). This can

be formalized as a dispersion relation:17

Gn(τ) =

∮
dτ ′

2πi

1

τ ′ − τ
Gn(τ ′)

=

∫ ∞
−∞

dt′

2π

( 1

τ − τ2 − it′
〈[ψs1(τ2 + it, y), ψs2(τ2)]ψs3(τ3)ψs4(τ4) . . . ψsn(τn)〉

+ . . .

+
1

τ − τn − it′
〈ψs2(τ2)ψs3(τ3) . . . [ψs1(τn + it, y), ψsn(τn)]〉

)
,

(4.4.7)

17Single-variable and two-variable dispersion relations in CFT were recently studied in [145] and
[83] respectively.
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where we used that Euclidean time ordering determines the operator ordering.

Next we would like to substitute OPEs and conclude that only the identity con-

tributes in each commutator as in equation (4.4.3). Before doing so we need to ensure

that the OPE actually converges. Consider the contribution of the commutator be-

tween the first and the k’th operator in the dispersion relation. It will only have

support if the operators become timelike separated, so if |t′| > y. OPE convergence

for all values of t′ can be shown by mapping the configuration into the more familiar

z and z̄ coordinates. These can be found by performing a Möbius transformation:

x 7→ x− τk
x− τk−1

τk+1 − τk−1

τk+1 − τk
(4.4.8)

which maps τk to the origin, τk+1 to 1 and τk−1 to infinity; the image of operator 1

then defines what we call z and z̄. One finds:

z =
τ − τk + iy

τ − τk−1 + iy

τk+1 − τk−1

τk+1 − τk
z̄ =

τ − τk − iy
τ − τk−1 − iy

τk+1 − τk−1

τk+1 − τk
(4.4.9)

The Möbius transformation maps the other operators somewhere on the real axis

between 1 and ∞. As is familiar from studies of conformal four-point functions, the

desired OPE converges for any z and z̄ away from the real interval [1,∞), even if we

take z and z̄ complex and independent.18 Fortunately the entire t′ integration region

stays in that region: substituting τ = τk+ it shows that the imaginary parts of z and

z̄ are never zero for |t| > y. Therefore, the OPE converges and we can substitute

equation (4.4.3) in equation (4.4.7).

It is useful to analyse the large |τ | behaviour in the z and z̄ variables. One finds

that z, z̄ → (τk+1 − τk−1)/(τk+1 − τk) which is a real number greater than one.19

This being the image of infinity, we conclude that there is no operator inserted at

this point and the correlator in the z, z̄ coordinates does not blow up.20 It follows

that the original correlator must vanish due the Jacobian factor proportional to

(τ + iy − τk−1)−∆(τ − iy − τk−1)−∆. This is the ‘cluster decomposition’ that we

18After doing a further transform to the configuration corresponding to the ρ coordinates of [67]
we find the OPE yields an absolutely convergent expansion in powers of ρρ̄ = e2τ with coefficients
that are polynomials in

√
ρ/ρ̄ +

√
ρ̄/ρ = 2 cos(θ) with τ and θ cylinder coordinates and τ < 0.

Adding an imaginary part to τ clearly does not affect the convergence. Adding an imaginary part to
θ may seem more problematic, but since the twists of all the non-trivial operators are non-negative
we can rewrite the expansion as an absolutely convergent series in ρ and ρ̄. This series will then
still converge when ρ and ρ̄ are complex and independent, as long as they both have a modulus
smaller than one.

19This is actually at the very limit of the domain where the OPE between operator 1 and operator
k converges, which illustrates that OPE convergence is not at all guaranteed for a less judicious
choice of the n− 1 operator insertions.

20In fact, the operators at τk, τk+1, τk+2, . . . τn lie to the left of this point and the other ones
to its right, with τk−1 as stated at infinity. Fusing these two groups of operators together yields a
natural OPE channel for this point which converges for large |τ | both in the Euclidean window and
in between the cuts emanating from τk and τk+1.
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alluded to above.

Now let us return to equation (4.4.7). Since each commutator is proportional to

the identity operator, each of the (n− 1) terms in the dispersion relation factorizes

into an n− 2 point function times the discontinuity of the two-point function, and it

is the latter that contains all the t′ dependence. The t′ integrals are therefore easily

done and we find that

Gn(t1) =
δs1,s2

(x2
12)∆̂s1

〈ψs3(τ3)ψs4(τ4) . . . ψsn(τn)〉

+
δs1,s3

(x2
13)∆̂s1

〈ψs2(τ2)ψs4(τ4) . . . ψsn(τn)〉

+ . . .

+
δs1,sn

(x2
1n)∆̂s1

〈ψs2(τ2)ψs3(τ3) . . . ψsn−1(τn−1)〉.

(4.4.10)

By the induction hypothesis all the (n−2)-point functions in the preceding expression

are generalized free correlation functions, which when n is even are given by a sum

over the (n− 3)!! possible complete Wick contractions. For the n-point function the

above expression gives (n − 1) × (n − 3)!! = (n − 1)!! terms, and indeed it is easy

to verify that this is again just the sum of all possible Wick contractions. We can

therefore do induction in steps of two, using the one- and two-point function as a

starting point. This also means that the correlation functions vanish for odd n, in

agreement with the more general result of the previous section.

To complete the proof we need to relax the restricted kinematics where all but

one of the operators sit on a straight line. This is straightforward: our argument also

goes through for descendants of ψs, so we are free to take any number of derivatives

in any given direction acting on any of the n operators. The analyticity of the

Euclidean correlation functions away from contact points then dictates that our

correlation functions are also equal to those of the generalized free theory for more

general choices of the insertion points.

4.5 Triviality of line defects

In this section we consider line defects with p = 1. The equivalent of the rotation

group on the line is O(1) ' Z2 which is really just a parity symmetry.21 An important

assumption in what follows is that this symmetry is preserved. For definiteness we

will take the bulk scalar to be parity even and leave the parity odd case as an exercise.

The main objective of this section is then to prove that there is no room for

interacting line defects in our setup, either with or without a monodromy. To this

end we will first discuss how the results of section 4.3 can be adapted to the special

21In the context of the 3d Ising model, this parity has been called S-parity of [97, 135].
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case of p = 1. We then adapt the theorem of the previous section and again prove

that the “double twist” spectrum of defect operators implies that their correlation

functions must be those of a generalized free theory.

4.5.1 Analytic continuation to line defects

Let us first revisit the results of section 4.3. For the sake of simplicity we will again

take q = 2, but also comment on the main differences with respect to the higher

co-dimension case, where necessary. For line defects with parity the only allowed

representations for the parallel spin j are the scalar with j = 0 and the pseudo-scalar

with j = 1. The parity action is given by

x→ Rx = −x, ÔR(j)(Rx) = (−1)jÔ(j)(x). (4.5.1)

We also recall table 4.1, which states that only the ψ
(+)
s modes are allowed in the

bulk-to-defect OPE of the free scalar. So to prove the triviality of all line defects it

suffices to prove that those modes are generalized free.

The kinematics of correlation functions in the presence of line defects can be

obtained from their higher dimensional counterparts presented in section 4.3. The

O(1) spin dependence is captured by the polynomials (4.3.6) for j = 0 or j = 1.

With this in mind, the most general three-point function between the defect modes

ψ
(+)
s and any other two defect operators reads

〈ψ(+)
s (x1)Ô(j1)

s1
(x2)T̂ (j2)

s2
(∞)〉 =

f̂
(+)

sÔT̂

|x12|∆̂
(+)
s +∆̂Ô−∆̂

T̂

(signx12)j δs+s1+s2,0,

j ≡ j1 + j2 mod 2.

(4.5.2)

Note that, because of the sign function above, the defect correlators may depend on

the cyclic order of the operators on the line, which is preserved by the conformal

algebra but reversed by the parity operation. The operator ordering along the line

will play an important role later in this section, when we will be interested in n-point

correlation functions of the ψ’s.

We can now repeat the arguments of sections 4.3.1 and 4.3.2 to obtain constraints

on the defect spectrum from the analyticity properties of correlators like

〈φ(x1, z, z̄)Ô(j1)
s1

(x2)T̂ (j2)
s2

(∞)〉. (4.5.3)

The defect channel expansion of such correlators is again derived by acting with the

bulk-defect operator expansion on the three-point functions (4.5.2) and resumming

the descendants. It is easy to verify that the result is the natural continuation of
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(4.3.8) to p = 1:

〈φ(x1, |z|eiϕ)Ô(j1)
s1

(x2)T̂ (j2)
s2

(∞)〉 =
(signx12)j

|z|∆φ+∆̂Ô−∆̂
T̂

b
(+,s)
φ f̂

(+)

sÔT̂
e−isϕF ÔT̂+,s (χ̂),

s = −s1 − s2,

(4.5.4)

where j ≡ j1 + j2 mod 2 and with blocks given by (4.3.10). Compared to the result

obtained earlier for generic p > 1 – see equation (4.3.8) – the r.h.s. of (4.5.4) contains

only a single defect block.22 Hence, from the analyticity argument of section 4.3.2,

we immediately conclude that the defect three-point function (4.5.2) vanishes unless

∆̂T̂ = ∆̂(+)
s + ∆̂Ô + j + 2n, n ∈ N, j ≡ j1 + j2 mod 2,

or

∆̂Ô = ∆̂(+)
s + ∆̂T̂ + j + 2n, n ∈ N, j ≡ j1 + j2 mod 2. (4.5.5)

In particular, when Ô is itself a defect mode of φ we find that the scaling dimension

of T̂
(j)
s must equal

∆̂T̂ = ∆̂(+)
s1

+ ∆̂(+)
s2

+ j + 2n, n ∈ N. (4.5.6)

In conclusion, by repeating the analysis of section 4.3 for line defects, we have

proven that the ψ × ψ OPE contains only operators with “double twist” spectrum.

In the next section we will argue that the n-point functions of the ψ’s on the line

must again necessarily be those of a generalized free field.

4.5.2 Line defects and generalized free field theories

In this subsection we will discuss the one-dimensional version of theorem 1. We will

again write equations for the co-dimension 2 case, but the generalization to higher

co-dimensions is again straightforward.

Theorem 2. Consider a conformal theory in one dimension with parity, a convergent

operator product expansion and a discrete spectrum such that cluster decomposition

is obeyed. Suppose the theory has scalar operators ψs(x), with even parity, whose

OPEs take the form

ψs1×ψs2 = δs1,s21+(operators with twist ∆s1 + ∆s2 + 2k, with k ∈ N, and spin j ∈ {0, 1})
(4.5.7)

Then all the n-point correlation functions of the ψs(x) are those of generalized free

fields.

22In the case where q = 3 the identity operator is also allowed to appear which gives a disconnected
contribution.
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The main idea of this proof is similar to that of Theorem 1, that is, we use a

dispersion relation and use the GFF spectrum to compute all the discontinuities.

However, a subtlety arises in one-dimensional CFT because two correlation func-

tions with different operator ordering modulo cyclic permutations are generically

not related by an analytic continuation. For example, if we start with the correla-

tor 〈ψ1(0)ψ2(z)ψ3(1)ψ4(∞)〉 with 0 < z < 1 and analytically continue it into the

complex z plane then its value at negative real z generally does not agree with

〈ψ2(z)ψ1(0)ψ3(1)ψ4(∞)〉. In our case we start with an n-point function with opera-

tors sequentially ordered,

〈ψs1(x1)ψs2(x2) . . . ψsn(xn)〉, x1 < x2 < . . . < xn, (4.5.8)

and we would like to explore the complex x1 plane. Suppose we continue x1 via the

upper half plane to a real value between x2 and x3. We can use the above OPE to

see what happens. If we include the position dependence then it becomes

ψs1(x1)ψs2(x2) =
δs1,s21

(x2 − x1)2∆̂s1

+
∑
k

λ k
12

(x2 − x1)∆̂s1+∆̂s2−∆̂k

Ok(x2), x1 < x2,

(4.5.9)

By the main assumption of the theorem the contribution of the non-trivial operators

gives an analytic contribution in x1 in the vicinity of x2. For the identity operator,

on the other hand, we generally obtain a cut and some more detail is needed. We

will put the cut in the lower half of the x1 plane, which we emphasize by writing

ψs1(x1)ψs2(x2) =
δs1,s2e

iπ∆̂s1 1

(eiπ/2(x2 − x1))
2∆̂s1

+
∑
k

λ k
12

(x2 − x1)∆̂s1+∆̂s2−∆̂k

Ok(x2) (4.5.10)

and the fractional power is now understood to be evaluated on the principal branch.

The analytic continuation via the upper half plane leads to the analytically continued

OPE given by:

ψs1(x1)ψs2(x2) =
δs1,s2e

iπ∆̂s1 1

(e−iπ/2(x1 − x2))
2∆̂s1

+
∑
k

λ k
12 (−1)jk

(x1 − x2)∆̂s1+∆̂s2−∆̂k

Ok(x2), x2 < x1,

(4.5.11)

Now we use the assumed parity symmetry. It dictates that

λ k
21 = (−1)jλ k

12 , (4.5.12)

and this allows us to claim that, up to the contribution of the identity operator, the
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Re x1x3x2 xn

Im x1

…

Figure 4.2. Analyticity structure of n-point correlation function is established by consec-
utively hopping around the n− 1 operators in the complex x1 plane. The branch cuts are
chosen to stretch along the negative imaginary direction.

analytically continued OPE is the same as the re-ordered OPE. In equations:

ψs1(x1)ψs2(x2) =
δs1,s2(e2iπ∆̂s1 − 1)1

(x1 − x2)2∆̂s1

+ ψs2(x2)ψs1(x1), x1 > x2 . (4.5.13)

This is a useful formula. Indeed, since our original correlation function had a

〈ψ1ψ2ψ3 . . .〉 ordering, it would normally be impossible to use an OPE to analyse

what happens when x1 approaches x3 via analytic continuation. Equation (4.5.13)

however shows us that, up to a factor proportional to the identity operator, this

approach is actually determined by the OPE in the 〈ψ2ψ1ψ3 . . .〉 correlator. In terms

of the dispersion relation, this indicates that no unwanted contribution arises be-

cause the extra factor has vanishing discontinuity along the lightcone branch cut of

ψs3 , ψs4 , ..., ψsn . Of course we can now keep hopping around the remaining n − 2

operators and discover the full analytic structure of the n-point function in the com-

plex x1 plane: with our choice of cuts, there are vertical branch cuts starting at

x2, x3, . . . xn and no other singularities (see figure 4.2). What is more, the disconti-

nuity across those cuts is proportional to a two-point function times an (n−2)-point

function.23 Since the correlation function also falls off24 at large |x1| it is once more

23OPE convergence along the discontinuity is guaranteed by the same arguments as before.
24We claim that any correlation function 〈. . . ψ(x) . . .〉 in one dimension (that obeys cluster de-

composition and without operator insertions at infinity) vanishes when sending |x| → ∞ not along
the real axis. To see this, first perform a conformal inversion such that the new variable x′ = −1/x
goes to zero. We claim that this inverted correlator is finite and the original correlation function
therefore vanishes as |x|−2∆ψ , which is the Jacobian factor from the inversion. To prove finiteness,
suppose first that ψ(x) was the leftmost or rightmost operator. Then finiteness is immediate: the
point x′ = 0 is a physical point with no operators touching. If ψ(x) was not the leftmost or right-
most operator then we need to hop over the other operators to reach x′ = 0. For the correlator
at hand the discontinuity is known and does not lead to a further singularity, so finiteness of the
inverted correlator follows. But the result is actually more general: just fuse the operators to the
left and to the right of 0 to obtain a sum over three-point functions like 〈ψ(x′)O(yL)O(yR)〉 with
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completely determined by these discontinuities, and the same arguments as those in

the previous section show that it equals the generalized free correlation function for

all n.

4.6 Tests in conformal perturbation theory

In this section we present some tests of our claims in the context of co-dimension two

defects. In all the examples we consider, the candidate conformal defect is obtained

by coupling the free bulk scalar to the local operators of a lower-dimensional CFTp

living on the defect, and flowing to the IR. In the UV the interaction is taken to be

Sint =
∑
I

gI

∫
Rp

dpx ϕ̂I(~x), (4.6.1)

where ϕ̂I are some scalar composites made of (derivatives of) the bulk fields as well as

of local operators in the CFTp. We then seek for IR fixed points of (4.6.1) which allow

for non-trivial bulk-to-defect interactions. If all the operators ϕ̂I ’s have dimensions

∆̂I = p − δI with 0 < δI � 1, then the deformation (4.6.1) is slightly relevant and

the RG flow can be studied perturbatively. At the first order in couplings gI the beta

functions read [146]

βK = −δKgK +
Sp−1

2

∑
I,J

f̂IJK gIgJ +O(g3). (4.6.2)

In the equation above, Sp−1 is the volume of the (p − 1)-sphere and the numbers

f̂IJK , which are real in unitary theories, denote the three-point functions of the ϕ’s

computed at gI = 0

f̂IJK ≡ 〈ϕ̂I(0)ϕ̂J(1)ϕ̂K(∞)〉. (4.6.3)

A simple example of this scenario is the case where ϕI = φ, which is marginal

when q = p+ 2 and was also considered in [94]. In agreement with our main result,

the only effect of this defect is to give a one-point function to φ that is proportional

to g. Below we will present some other concrete realizations of the flow (4.6.1). For

these examples, we will check explicitly (using conformal perturbation theory) that

the CFTp decouples from the bulk at the unitary IR fixed points, whenever the ψ(−)

modes are not generated.

yL < 0 and yR > 0 the fusion points. The sum converges absolutely in a domain determined by the
coordinate differences |x′i − yL/R| and one can always find a path in the complex x′ plane to reach
x′ = 0 without exiting this domain. The sum is therefore finite.
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4.6.1 Coupling the trivial defect to lower-dimensional matter

We start by considering a slightly relevant deformation which couples the defect limit

of φ to some operator Ô of a given CFTp. If Ô has dimension p
2
− δ, with 0 ≤ δ � 1,

then a natural coupling is

Sint =

∫
Rp

dpx
(
g1 φ(~x, 0)Ô(~x) + g2 φ

2(~x, 0)
)
. (4.6.4)

Note that the “single-trace” coupling controlled by g1 generates the marginal op-

erator φ2 at the leading order along the RG flow. The interaction (4.6.4) has the

form of (4.6.1) with ϕ̂1 ≡ φ Ô and ϕ̂2 ≡ φ2. From the general result (4.6.2) it is

straightforward to obtain the beta functions at the first order:

β1 = −δg1 +
Sp−1

2
f̂211 g1g2, β2 =

Sp−1

2

(
f̂222 g

2
2 + f̂112 g

2
1

)
. (4.6.5)

From the second equation above, it is clear that a unitary and non-trivial fixed point

of this deformation will exist only if f̂222 and f̂112 have opposite sign. On the other

hand, these numbers can be computed using Wick’s theorem (since the bulk and the

defect are decoupled at g1 = g2 = 0), and as such they are product of two-point

functions. Since two-point functions, in turn, must be positive in unitary theories,

we conclude that the only possible fixed point at this order is the trivial one, and

the CFTp is decoupled.

For a concrete realization of the “single-trace” deformation (4.6.4) we can con-

sider the Yukawa coupling of a 4d free scalar field to a 2d free fermion χ:

Sint =

∫
R2

d2x
(
g1χ̄χφ+ g2φ

2 + g3(χ̄χ)2
)
. (4.6.6)

Since the fermion has UV dimension ∆̂χ = p−1
2

= 1
2
, the Yukawa coupling is classically

marginal. As soon as we turn on g1, the marginal couplings φ2 and (χ̄χ)2 will be

generated at one-loop. From (4.6.2), the beta functions at the first order read

β1 =
Sp−1

2
f̂131 g1g3, β2 =

Sp−1

2

(
f̂222 g

2
2 + f̂112 g

2
1

)
, β3 =

Sp−1

2

(
f̂333 g

2
3 + f̂113 g

2
1

)
.

(4.6.7)

As in the previous example, the three-point function coefficients above, which can be

computed in free theory, are positive numbers. We conclude that the only possible

fixed point of (4.6.6) is the trivial one.

The story becomes more interesting if we dimensionally continue (4.6.6) below

dimension two while keeping the co-dimension fixed, i.e. work with p = 2 − δ and

d = 4 − δ (0 ≤ δ � 1). When doing so, the operator φ2 remains marginal, while
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g1, g3 become slightly relevant and therefore we find

β1 = −g1δ

2
+
Sp−1

2
f̂131 g1g3, β2 =

Sp−1

2

(
f̂222 g

2
2 + f̂112 g

2
1

)
,

β3 = −g3δ +
Sp−1

2

(
f̂333 g

2
3 + f̂113 g

2
1

)
. (4.6.8)

Assuming unitarity, the first two equations set g1 = g2 = 0, while from the third

we get g3 ∼ δ. In other words, the deformation (4.6.6) flows towards a decoupled

Gross–Neveu model.

4.6.2 A nearly marginal deformation in free theory

As another case of the general setup discussed at the beginning of this section, we

can try the classically marginal deformation of the free theory

Sint =
g

2

∫
Rp

dpx φ2(x, 0). (4.6.9)

Although scale invariance is preserved classically, this example turns out to break

it in a subtle way quantum-mechanically. To establish this fact, it is sufficient to

compute the exact bulk-to-defect correlator 〈φ(x)φ(0)〉g. In order to simplify the

task, we will work in p-dimensional momentum space and consider

〈φ(~k, |z1|)φ(−~k, 0)〉g. (4.6.10)

The tree-level contribution can be extracted from the propagator obtained in ap-

pendix 4.B and reads

Gφφ̂(~k, |z1|) ≡ 〈φ(~k, |z1|)φ(−~k, 0)〉g=0 =
Cφ

(2π)
K0(|~k||z1|). (4.6.11)

The propagator between two φ(~k, 0)’s on the defect, which can be obtained by taking

the limit as z1 → 0 of the expression above, contains a log |z1| divergence. Setting

|z1| = µ the leading term in this expansion is

Gφ̂φ̂(~k) ≡ 〈φ(~k, 0)φ(−~k, µ)〉g=0 = − Cφ
(2π)

(γ + log(|~k|µ)− log 2), (4.6.12)

up to subleading terms as the scale µ is sent to zero. Because of this log, the

propagator (4.6.12) depends on the scale. This dependence is only “small”, since the

µ-derivative of (4.6.12) maps exactly to a contact term in position space, and as such

it can be understood as a “small” conformal anomaly [147, 148] and not something

to worry about. On the other hand, order by order in perturbation theory, the

corrections to the bulk-to-defect correlator are geometric and they can be exactly
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resummed:

〈φ(~k, |z1|)φ(−~k, 0)〉g = Gφφ̂(~k, |z1|)
∞∑
n=0

(
−g Gφ̂φ̂(~k, µ)

)n
=

Gφφ̂(~k, |z1|)
1 + g Gφ̂φ̂(~k, µ)

.

(4.6.13)

In this final expression, the µ dependence is far from being a contact term in position

space since

µ
∂

∂µ
〈φ(~k, |z1|)φ(−~k, 0)〉g =

Cφ
(2π)

g Gφφ̂(~k, |z1|)(
1 + g Gφ̂φ̂(~k, µ)

)2 , (4.6.14)

and, as such, it cannot be interpreted as a “small” conformal anomaly. The “small”

conformal anomaly of (4.6.12) has exponentiated, leading to a “large” breaking of

scale invariance and we conclude that the deformation (4.6.9) does not lead to a

non-trivial conformal defect.

4.6.3 A monodromy defect in free theory

For our final example we couple a free scalar with non-trivial Z2 monodromy to a

lower dimensional CFTp equipped with an additional SO(2)I global symmetry. If

the latter contains in its spectrum a operator Ôs of dimension ∆̂ = p−1
2
− δ, charged

under SO(2)I with spin |s| = 1/2, then we can consider an interaction that preserves

the diagonal of SO(2)× SO(2)I :

Sint = g

∫
dpx ψ

(+)
1
2

Ô− 1
2

+ c.c. (4.6.15)

This coupling is consistent with unitarity if p > 1 and it is slightly relevant if 0 <

δ � 1.

Since the three-point functions of ψ
(+)
1/2 vanish due to SO(2) symmetry, the exis-

tence of an IR fixed point for the interaction (4.6.15) depends on certain complicated

conditions that arise at the next-to-leading order in conformal perturbation theory.25

Assuming that there exists a non-trivial fixed point g2 ∼ δ, one may wonder

how this would fit in with our claims of the previous sections. The applicability of

our theorem to defect setups hinges on the absence of the so-called ψ(−) modes in

the bulk-defect operator expansion of the bulk field φ. For p = 1 these modes are

excluded by cluster decomposition, but for p > 1 our theorem would still dictate that

the dynamics of the CFTp must decouple from the bulk if we could consistently set

these modes to zero.

25At the next-to-leading order the existence of the fixed point depends on the sign of certain
regularized integrals of the four-point function of the deformation, see e.g. [140, 149] and also [150]
for the case of 1d CFTs.

132



4.7. APPLICATIONS

As it happens, a deformation of the form (4.6.15) necessarily induces the ap-

pearance of the ψ(−) modes in the bulk-to-defect OPE of φ at order g. To establish

this, it is sufficient to note that the bulk-to-defect two-point function between φ and

Ô−1/2 is non-zero at order g:

〈φ(0, z, z̄)Ô−s(0)〉 =− g
∫

dpw
z̄s

(|z|2 + |~w|2)∆φ+s

CÔÔ
|~w|2∆φ−2s−2δ

+O(g2)

=− g CÔÔSp−1
z̄s

|z|p
Γ
(
p
2

)
Γ(s)

2Γ
(
p
2

+ s
) +O(δ

3
2 ), s = 1/2. (4.6.16)

This result matches the expected form of a correlator between φ, and ψ
(−)
−1/2 – see

equation (4.2.1) – with bulk-to-defect coefficients b
−,−1/2
φ ∝ g.

In conclusion, the deformation (4.6.15) could provide an example of a unitary,

non-trivial conformal defect for p > 1. The way it is allowed to be non-trivial is

consistent with our theorem.

4.7 Applications

For the single free scalar field φ the space of possible conformal defects is remarkably

constrained, and in many cases the only allowed defects are trivial in the sense

specified in the introduction. In all dimensions and co-dimensions the appearance of

a ψ(−) mode in the bulk-to-defect expansion of φ is a necessary condition for a defect

to not be trivial.

We should point out that our results also apply when the bulk theory has a

decoupled real free scalar, since one can integrate out all the other bulk matter and

conclude that the n-point functions of the scalar are trivial. This works in particular

for some supersymmetric theories. For example, consider the surface defects in the

Abelian (2, 0) theories in six dimensions that were recently discussed in [129]. If

conformality is not spoiled by an anomaly as in the example discussed above, we

would expect triviality of the scalar correlation functions. Another example are the

aforementioned defects in the N = 2 four-dimensional free hypermultiplet. These

appear to be labelled by a monodromy Φ→ eiαΦ with Φ a complex scalar. We can

immediately conclude that no defect can exist for α = 0 and that for other values

of α any non-triviality is allowed because of the single ψ(−) mode in the two-point

function of the bulk scalar. This is in line with some recent explicit computations in

[121]. In three dimensions our results also match with the supersymmetric literature:

for example, the non-trivial defects in free N = 4 theories in [151] all appear to have

a scale associated with them.

Defects and free scalar fields also naturally appear as the infrared description

of vortices and Goldstone bosons in setup where a U(1) global symmetry is sponta-

neously broken. In that case the size R of the vortex provides a natural scale. Our
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results imply that interactions between the Goldstone degrees of freedom and the

vortex trivialize in the deep infrared when R → 0. A good physical example of this

situation is the scattering of phonons off a vortex in superfluid helium. In this case a

microscopic model is available, and computations in for example [152] (but see also

references therein) confirm this view.

Let us finally point out an interesting possible extension of our results to con-

formal defects in (weakly) interacting theories. As explained in section 4.3 there are

always unphysical singularities when we apply the bulk-defect operator expansion

to three-point functions, and their cancellation will therefore imply a infinite and

non-trivial sum rule. It would be interesting to analyse these constraints further, for

example in an epsilon expansion or in a large N limit.

4.A Details of the scalar bulk-to-defect OPE

In this appendix we give some details about the bulk-to-defect OPE of a scalar bulk

operator. We then specialize to the case where the bulk operator is a free field, and

we spell out the constraints imposed by the equations of motion on the spectrum of

its defect modes.

For the sake of completeness, we consider generic conformal defects of dimension

p and co-dimension q. In order to encode the SO(p)×SO(q) spin it is convenient to

contract the corresponding indices with “parallel” or “transverse” polarizations vec-

tors, respectively θa (a = 1, . . . , p) and wi (i = 1, . . . , q), and work with polynomials

in these variables. The following definitions generalizes the ones given in (4.3.2)

Ôa1...aj
s (w, ~x) ≡ wi1 . . . wisÔa1...aj

i1...is(~x), w◦w = 0,

Ô(j)
s (w, θ, ~x) ≡ θa1 . . . θajÔa1...aj

s (w, ~x), θ•θ = 0, (4.A.1)

where the symbols ◦ and • represent, respectively, SO(q)-invariant and SO(p)-

invariant scalar products in real space.

The bulk-to-defect OPE of a scalar bulk operator Σ(x) contains infinitely many

defect primaries Σ̂s, scalars under SO(p) and transforming as symmetric and traceless

tensors of SO(q). If we neglect the contribution from defect descendants, we have

schematically

Σ(x) =
∑
Σ̂,s

bΣ̂
Σ

|x⊥|∆Σ−∆̂
Σ̂

(w◦x̂)s Σ̂s(w, ~x) + . . . (4.A.2)

In the expression above we introduced the unit vector x̂i ≡ xi

|x⊥|
, orthogonal w.r.t.

the defect.26 If we take the defect operators to be unit normalized, then the numbers

26To recover the operator’s contribution in real space from the expression above it is sufficient to

134



4.B. TWO-POINT FUNCTION IN FREE THEORY FOR Q = 2 DEFECTS

bΣ̂
Σ are identified precisely with the bulk-to-defect couplings

〈Σ(x)Σ̂s(w, 0)〉 =
bΣ̂

Σ(w◦x̂)s

|x⊥|∆Σ−∆̂
Σ̂(x2)∆̂

Σ̂

. (4.A.3)

The contribution from the defect descendants in (4.A.2) is completely encoded into

(4.A.3). By comparing the bulk-to-defect OPE with (4.A.3) one finds [94]

Σ(x) =
∑
Σ̂,s

∑
n

bΣ̂
Σ

|x⊥|∆Σ−∆̂
Σ̂

(
−1

4
|x⊥|2~∇2

‖

)n
n!
(

∆̂Σ̂ + 1− p
2

)
n

(w◦x̂)s Σ̂s(w, ~x). (4.A.4)

We now specialize to the case where the bulk operator Σ is a free scalar, which we

denote by φ, with defect modes ψs. As we have shown explicitly for co-dimension

two defects in Section 4.2.2, the defect primaries that can couple to φ are selected

by the free equation of motion. Requiring that the Laplacian annihilates (4.A.3) at

separated points gives the following condition [94]

(τ̂ −∆φ)(∆φ − τ̂ + 2− q − 2s) = 0, τ̂ = ∆̂Σ̂ − s. (4.A.5)

Assuming no further degeneracy, for each spin s at most two families of defect pri-

maries are allowed in the bulk-to-defect OPE of φ. These two solutions, denoted as

ψ
(±)
s , form a shadow pair on the defect

ψ(+)
s : ∆̂(+)

s = ∆φ + s, or ψ(−)
s : ∆̂(−)

s = ∆φ + 2− q − s. (4.A.6)

Crucially, the spin of the second family is restricted by unitarity (4.2.8) to the values

s ≤ 4−q
2

(for p > 1) and s ≤ 3−q
2

(for p = 1). Note that for q = p + 2 there is a ‘−′
mode of dimension zero and (as explained in the main text) by cluster decomposition

we may assume it proportional to the defect identity 1. For p > 2 the primary that

saturates the unitarity bound is a free field and must obey the Laplace equation,

which is inconsistent with a non-zero two-point function with the bulk field φ. It can

therefore be consistently removed from the spectrum. Altogether the unitary defect

spectrum is summarized in table 4.1 in the main text.

4.B Two-point function in free theory for q = 2 defects

In this appendix we perform the computation of the two-point function of a free

scalar in the presence of a twist defect. This computation was originally performed

by the authors of [97], however we will obtain a slightly more general result. The

note that (w◦x̂)s Σ̂s(w, ~x) is mapped to x̂i1 . . . x̂is Σ̂i1...is(~x).
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starting point is Green’s equation (4.2.9), which we report here for convenience

−�G(x1, x2) = Cφ δ
p+2(x1 − x2), Cφ ≡

4π
p
2

+1

Γ
(
p
2

) . (4.B.1)

The normalization Cφ is chosen in such a way that

G(x1, x2) ∼
x1→x2

1

|x1 − x2|d−2
. (4.B.2)

To solve Green’s equation, it is convenient to Fourier transform to the p-dimensional

momentum space along the defect and then adopt a basis of SO(2) spherical har-

monics. In terms of the complex coordinates z1 = |z1|eiϕ and z2 = |z2| we obtain

G(x1, x2) =
∑
s

∫
dpk

(2π)p
ei
~k·~x12eisϕas(|~k|, |z1|, |z2|), (4.B.3)

where the sum runs over all (half)-integers, depending on the choice of monodromy

for φ. Denoting |zi| = ri for simplicity of notation, we find that the modes as satisfy

the following differential equation 27(
|~k|2 − ∂2

∂r2
1

− 1

r1

∂

∂r1

+
s2

r2
1

)
as(|~k|, r1, r2) =

Cφ
2π

1

r1

δ(r1 − r2). (4.B.4)

The homogeneous problem has a general solution given by as(|~k|, r1, r2) = A(r2)I|s|(|~k|r1)+

B(r2)K|s|(|~k|r1), where Is(x), Ks(x) are modified Bessel functions. Let us consider

the region where r1 ≥ r2. Then, regularity of the solution asymptotically far away

from the defect, i.e. r1 → ∞, sets A = 0. In the region where r1 ≤ r2, the I|s|(|~k|r)
are regular while K|s| behave as

K|s|(|~k|r) ∼
r→0
|~k|−|s|r−|s| + |~k||s|r|s|,

K0(|~k|r) ∼
r→0

c log(r|~k|) + c′, (4.B.5)

for some constants c, c′. Due to the logarithmic singularity in the second line of the

above, which is not allowed by conformal invariance, we are forced to set B = 0

for s = 0. For |s| > 0, on the other hand, there is no reason to impose regularity

conditions at r = 0, since we do not expect the physics to be smooth in the proximity

of the defect. In terms of the bulk-to-defect OPE, the singular modes in the first

line of (4.B.5) take into account the presence of the defect primaries of dimensions

∆φ − |s|. These singular solutions are compatible with unitarity as long as p = 1 or

27We used δ2(x− x′) = 1
r δ(ϕ− ϕ

′)δ(r − r′) and then δ(ϕ) = 1
2π

∑
s e

isϕ.
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p > 1 and 0 < |s| < 1. Hence

as(|~k|, r1, r2) =


|s| ≥ 0, BII

s (r2)K|s|(|~k|r1), r1 ≥ r2,

|s| = 0 or |s| ≥ 1, AI
s(r2)I|s|(|~k|r1), r1 ≤ r2,

0 < |s| < 1, AI
s(r2)I|s|(|~k|r1) +BI

s(r2)K|s|(|~k|r1), r1 ≤ r2.

(4.B.6)

For p = 1 the solution (4.B.5) is either a constant mode (|s| = 1
2
) or below the

unitarity bound and we are free to set it to zero by choosing B = 0 for all s.28 Let us

now go back to the inhomogeneous problem and fix the solution (4.B.6) in order to

reproduce the contact term in the r.h.s. of (4.B.4). To this end, we need to impose

continuity of (4.B.6) at r1 = r2, and that the discontinuity of its first derivative at

r1 = r2 equals precisely
Cφ

2πr2
. After some little algebra we find

as(|~k|, r1, r2) =

{
BI
s(r2)K|s|(|~k|r1) +

Cφ
2π
I|s|(|~k|r2)K|s|(|~k|r1), r1 ≥ r2

BI
s(r2)K|s|(|~k|r1) +

Cφ
2π
I|s|(|~k|r1)K|s|(|~k|r2), r1 ≤ r2

(4.B.7)

with the understanding that BI
s(r2) 6= 0 only for p > 1 and 0 < |s| < 1. If we finally

impose symmetry under exchange of the two external scalars, which are identical,

we find the condition

BI
s(r1)K|s|(|~k|r2) = BI

s(r2)K|s|(|~k|r1), (4.B.8)

which is satisfied by BI
s(r2) = hsK|s|(|~k|r2), for any real constant hs. The final

solution can be written as

G(x1, x2) = G(−)(x1, x2) +G(+)(x1, x2)

G(−)(x1, x2) =
∑
s=± 1

2

∫
dpk

(2π)p
ei
~k·~x12eisϕhsK|s|(|~k|r1)K|s|(|~k|r2)

G(+)(x1, x2) =
Cφ
2π

∑
s 6=± 1

2

∫
dpk

(2π)p
ei
~k·~x12eisϕI|s|(|~k|r<)K|s|(|~k|r>), (4.B.9)

where r< = min(r1, r2) and r> = max(r1, r2). Note that the expression above differs

from the result of [97] by the additional contribution G(−)(x1, x2). One can explicitly

28Upon invoking cluster-decomposition principle, as we did in appendix 4.A.
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perform the momentum-space integration in the first line of (4.B.9) to find

G(−)(x1, x2) =
2p−2h 1

2

(2π)∆φ− 1
2

Γ

(
∆φ −

1

2

)
cos
(
ϕ
2

)
(r1r2)∆φ

(
ξ +

√
ξ(ξ + 4) + 2

)∆φ− 1
2(

ξ +
√
ξ(ξ + 4) + 4

)2∆φ−1
,

(4.B.10)

where we introduced the cross ratio

ξ =
|~x12|2 + (r1 − r2)2

r1r2

. (4.B.11)

In real space, the spin s contribution to G(+)(x1, x2) is [97]

G(+)
s (x1, x2) =

Γ(∆̂
(+)
s )

Γ (∆φ) Γ
(

∆̂
(+)
s −∆φ + 1

) eisϕξ−∆̂
(+)
s

(r1r2)∆φ

× 2F1

(
∆̂(+)
s , ∆̂(+)

s − p− 1

2
; 2∆̂(+)

s − p+ 1;−4

ξ

)
,

(4.B.12)

where ∆̂
(+)
s = ∆φ+ |s|. Note that the result (4.B.12) is equivalent to (4.2.4) in virtue

of the following identity

ξ−x 2F1

(
x,−p

2
+ x+

1

2
;−p+ 2x+ 1;−4

ξ

)
=

(ξ + 2)−x 2F1

(
x+ 1

2
,
x

2
;−p

2
+ x+ 1;

4

(ξ + 2)2

)
.

(4.B.13)

Note that if we impose trivial monodromy, the result (4.B.12) leads to the two-point

function for a trivial defect:

1

(x1 − x2)d−2
=
∑
s∈Z

G(+)
s (x1, x2). (4.B.14)

For the twist defect in p = 2, we note that the generic solution (4.B.9) takes a simple

form

G(x1, x2) =
2 cos

(
ϕ
2

)
(x1 − x2)2

 1√
ξ + 4

+
h 1

2
(1− cosϕ+ ξ/2)

√
2

√
2 + ξ +

√
ξ(ξ + 4)(

4 + ξ +
√
ξ(ξ + 4)

)
 ,

(4.B.15)

which reduces to the result of [97] when we set h 1
2

= 0.

Finally, by comparing (4.B.9) with the defect channel blocks (4.2.4) we can
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extract the relevant bulk-to-defect OPE coefficients:

|bs,+φ |
2 + (p− 1)|bs,−φ |

2 =
(∆φ)|s|
|s|!

,

|bs,−φ |
2 = δ|s|, 1

2

h 1
2

4π∆φ− 1
2

Γ

(
∆φ −

1

2

)
,

0 ≤ h 1
2
≤ 4πp/2−1

Γ
(
p
2

) . (4.B.16)

The inequality in the last line follows from |bs,±φ | ≥ 0, which is required by reflection-

positivity.

4.C Three-point functions from the bulk-to-defect OPE

This appendix contains the derivations of the defect conformal blocks presented in

section 4.3. In what follows we will keep p, q generic, for the sake of completeness. As

a further generalization, we will take the bulk scalar to be generic, i.e. not necessarily

free, and denote it as Σ (as we did in appendix 4.A).

Let us start from deriving the defect expansion of

〈Σ(x1)Ôs2(w2, ~x2)T̂ (j)
s3

(w3, θ,∞)〉. (4.C.1)

In the expression above, Ô and T̂ are symmetric and traceless tensors of SO(q),

respectively of spin s2 and s3. The dependence on the SO(p) × SO(q) is encoded

into polynomials in the polarization vectors {wi}, θ, as explained in appendix 4.A.

The starting point is the three-point functions between the defect modes of Σ,

denoted as Σ̂, and any other two defect operators:

〈Σ̂s1(w1, ~x1)Ôs2(w2, ~x2)T̂ (j)
s3

(w3, θ,∞)〉 =
f̂Σ̂ÔT̂

|~x12|∆̂Σ̂
+∆̂Ô−∆̂

T̂

P
(s1,s2,s3)
⊥ ({wi})P (j)

‖ (x̂12, θ).

(4.C.2)

The SO(p) spin is encoded in the polynomials P
(j)
‖ , which were already introduced in

(4.3.6). The SO(q) spin dependence is captured by the polynomials P
(s1,s2,s3)
⊥ , which

are homogeneous of degree si in the transverse polarization vectors wi

P
(s1,s2,s3)
⊥ ({wi}) ≡ (w1◦w2)

1
2

(s1+s2−s3)(w1◦w3)
1
2

(s1−s2+s3)(w2◦w3)
1
2

(s2−s1+s3), (4.C.3)

where si are non-negative integers satisfying

s1 + s2 − s3 = 2n1, s1 − s2 + s3 = 2n2, s2 − s1 + s3 = 2n3, ni ∈ N. (4.C.4)
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Note that the w1, w2, w3’s cannot be linearly independent for q = 2, and as such the

basis (4.C.3) becomes over-complete.

To compute (4.C.1), we apply the bulk-to-defect OPE (4.A.4) on the three-point

functions (4.C.2). The derivatives in the parallel directions commute with the SO(q)

polynomials and, making use of the identity

∇2n
~x12

(
(−~x12•θ)j

|~x12|2t

)
= 4n(t)n

(
1 + t− j − p

2

)
n

(−~x12•θ)j

|~x12|2t+2n
, (4.C.5)

we can find the following series representation

〈Σ(x1)Ôs2(w2, ~x2)T̂ (j)
s3

(w3, θ,∞)〉 =

P
(j)
‖ (x̂12, θ)

|x1⊥|∆Σ+∆̂Ô−∆̂
T̂

∑
Σ̂,s

bΣ̂
Σ f̂Σ̂ÔT̂ P

(s,s2,s3)
⊥ ({wi})(w◦x̂1)s×

× χ̂κΣ̂ÔT̂+ j
2

∑
n

(−χ̂)−n

n!

(−κΣ̂ÔT̂ )n
(
1− p

2
− j − κΣ̂ÔT̂

)
n(

∆̂Σ̂ −
p
2

+ 1
)
n

, (4.C.6)

where we introduced the parameter

κΣ̂ÔT̂ = −1

2
(∆̂Σ̂ + ∆̂Ô − ∆̂T̂ + j), (4.C.7)

as well as the cross-ratio (4.3.9). The sum over s is truncated to those values that

satisfy SO(q) selection rules (4.C.4). Finally, the sum over n can be performed for

generic values of the parameters. The results is a beautiful Hypergeometric function

F ÔT̂
Σ̂

(χ̂) = χ̂κΣ̂ÔT̂+ j
2 2F1

(
1− p

2
− j − κΣ̂ÔT̂ ,−κΣ̂ÔT̂ , 1−

p

2
+ ∆̂Σ̂;− 1

χ̂

)
. (4.C.8)

When we take the bulk operator to be a free scalar, the expression above gives

precisely eq. (4.3.10). This result, can also be obtained by solving the relevant

Casimir equation as done in [153].29 Importantly, the defect blocks F are completely

blind to the transverse directions. In particular they only depend on the parallel

dimension p, and not on q.

Let us now consider the bulk-bulk-defect three-point function

〈Σ(x1)Σ(x2)T̂ (j)
s (w, θ,∞)〉. (4.C.9)

Again, we will not require Σ to be a free scalar. The complete form of the expression

29We do not find perfect agreement with the block calculated in [153]. We obtained the same
Casimir equation however our block is a different linear combination of solutions. The solution of
[153] does not seem to be consistent with the OPE limit.
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above can be obtained by applying once again the bulk-to-defect OPE to eq. (4.C.6)

and then resum the descendants. In practise it is easier to start from the three-point

functions

〈Σ̂s1(w1, ~x1)Σ̂′s2(w2, ~x2)T̂ (j)
s (w, θ,∞)〉 =

f̂Σ̂Σ̂′T̂

|~x12|∆̂Σ̂
+∆̂

Σ̂′−∆̂
T̂

P
(s1,s2,s)
⊥ ({wi})P (j)

‖ (x̂12, θ),

(4.C.10)

and apply twice on it the bulk-to-defect OPE (4.A.4). Making use twice of the

identity (4.C.5) we obtain

〈Σ(x1)Σ(x2)T̂ (j)
s (w, θ,∞)〉 =

∑
Σ̂,Σ̂′,s1,s2

bΣ̂
Σ b

Σ̂′

Σ f̂Σ̂Σ̂′T̂

×
∑
m,n

(−1)m+n

m!n!

|x1⊥|∆̂Σ̂
−∆Σ+2n|x2⊥|∆̂Σ̂′−∆Σ+2m

|~x12|−2κ
Σ̂Σ̂′+2m+2n−j

×
(−κΣ̂Σ̂′)m(−κΣ̂Σ̂′ +m)n

(
−κΣ̂Σ̂′ − ĥ− j

)
m

(
−κΣ̂Σ̂′ +m− ĥ− j

)
n(

∆̂Σ̂ − ĥ
)
n

(
∆̂Σ̂′ − ĥ

)
m

× (w1◦x̂1)s1(w2◦x̂2)s2P
(s1,s2,s)
⊥ (w1, w2, w)︸ ︷︷ ︸

W⊥(s1,s2,s)(x̂1,x̂2,w)

P
(j)
‖ (x̂12, θ), (4.C.11)

where we introduced

κΣ̂Σ̂′ ≡ −
1

2
(∆̂Σ̂ + ∆̂Σ̂′ − ∆̂T̂ + j), ĥ ≡ p

2
− 1. (4.C.12)

The integers s1, s2, s are constrained by the selection rules (4.C.4). Resumming this

expression is expected to be hard since this configuration is characterized by three

cross-ratios (compare to (4.2.3)),

χ ≡ |~x12|2 + |x1⊥|2 + |x2⊥|2

|x1⊥||x2⊥|
, t ≡ |x1⊥|

|x2⊥|
, cosϕ ≡ x̂1◦x̂2. (4.C.13)

For our purposes, which is studying the bulk OPE limit of (4.C.9), it will be sufficient

to specialize (4.C.11) to the “cylindrical” configuration

xi1 = |z|ni1, xi2 = |z|ni2, n1◦n2 = cosϕ, n◦n = 1, t = 1, (4.C.14)

where the resummation can be performed easily. In terms of the cross-ratio χ̂ defined

141



CHAPTER 4. LINE AND SURFACE DEFECTS FOR THE FREE SCALAR
FIELD

in (4.3.9) we find:

F T̂
Σ̂Σ̂′

(χ̂) = χ̂−
1
2

(∆̂
Σ̂

+∆̂
Σ̂′−∆̂

T̂
)

4F3

(
∆12 − ĥ−

1

2
,∆12 − ĥ,−κΣ̂Σ̂′ ,−κΣ̂Σ̂′ − j − ĥ; ∆̂Σ̂ − ĥ, ∆̂Σ̂′ − ĥ, 2∆12 − 2ĥ− 1;− 4

χ̂

)
,

(4.C.15)

where we defined ∆12 ≡ 1
2
(∆̂Σ̂ + ∆̂Σ̂′). When we take Σ to be a free scalar we find

precisely the blocks (4.3.20). Furthermore, from this result we can recover the blocks

for the two-point function shown in eq.(4.2.4) by simply setting Σ̂ = Σ̂′ and the third

operator to be the identity. In this case, the functionsW⊥(s1,s1,0) become Gegenbauer

polynomials of cosϕ

W⊥(s,s)(x̂1, x̂2) = (w1◦x̂1)s (w2◦x̂2)s (w1◦w2)s =
s!

2s( q
2
− 1)s

C
( q

2
−1)

s (cosϕ). (4.C.16)

Finally, after the hypergeometric transformation (4.B.13), the 4F3 in (4.C.15) simply

reduces to (4.2.4).
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Chapter 5

Regge Trajectories for the (2,0)

Theories

5.1 Introduction

The advent of Regge theory in the 1960s led to a profound improvement in our

understanding of relativistic scattering amplitudes, relating in particular their high-

energy behaviour to the spectrum of resonances and bound states. Holography led to

expectations that a similar structure should exist in CFTs [34, 35, 154, 155], but it

was only recently that these ideas became formalised non-perturbatively in a seminal

paper by Caron-Huot [1].

The results of [1] indicate that a CFT spectrum organizes itself in Regge tra-

jectories with spectra and OPE coefficients that are smooth functions of the spin

`. This picture elucidates the remarkable smoothness of numerically obtained OPE

data, for example that of the three-dimensional Ising model analysed in [36, 156],

and goes some way towards explaining the success of large spin perturbation theory

[157, 158], see for example [159, 160]. As has become customary in the literature, we

will use the expression “analyticity in spin” (of the OPE data) to refer to this circle

of ideas.

It should be pointed out explicitly that so far analyticity in spin is at best an

assumption with many supporting evidences. Caron-Huot’s Lorentzian inversion for-

mula in [1] has the potential to establish analyticity in spin down to the leading Regge

trajectory. For this establishment to be rigorous one has to understand the scaling

behaviour of the conformal correlators in both the Regge limit and the second-sheet

lightcone limit, in which the Lorentzian inversion integral can potentially diverge.

However, currently a rigorous calculation of the scaling behaviour in the second-

sheet lightcone limit is still unknown. (See Section 5.4.3 for discussions in more

details.) Moreover, even if the convergence of the Lorentzian inversion formula is

understood, it is unclear how to extend analyticity in spin beyond the leading Regge

trajectory. This is related to the fact that the OPE density function in the most
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generic case is a complex function of two complex variables, scaling dimension and

spin. There is also a priori no reason to assume all of the singularities in the OPE

density function are just simple poles but not including other types of singularities

such as branch cuts.

One important caveat concerns the behaviour for the lowest possible spins. For

spins below some critical value `? it becomes much harder to use analyticity in spin to

extract concrete information about the spectrum of the theory, see for example [160,

161] for some attempts for the three-dimensional Ising and O(2) models. According

to the analysis in [1] the exact value of `∗ is related to the behaviour of the correlation

function in the Regge limit. For a generic unitary CFT, it was deduced in [1] that

`∗ 6 1 because its (suitably normalized) correlation functions are bounded by a

constant in the Regge limit. A priori the spin 1 and spin 0 OPE data therefore do

not need to smoothly connect to the higher spin OPE data.

In supersymmetric theories everything is better, and it is therefore worthwhile

to investigate how analyticity in spin for conformal theories combines with super-

symmetry. A first positive sign is that the analyticity in spin can extend also to

lower spins in the theory, simply because a superconformal primary of spin ` 6 `∗

can have conformal primary descendants of spin ` > `∗ and OPE coefficients related

by supersymmetry. Since the scaling dimensions of these descendants are simply

integer-shifted compared to that of the primary, and the coefficients of each descen-

dant conformal block are often equal to that of the primary times a simple rational

function of ∆ and `, analyticity in spin of such a non-vanishing descendant trajectory

would imply analyticity in spin of the primary trajectory1 also below `∗!

In this chapter we undertake a study of the non-perturbative implications of

analyticity in spin for supersymmetric conformal field theories (SCFTs). We have

chosen to focus on the six-dimensional (2, 0) theories, but at a qualitative level our

results certainly extend to theories in lower dimensions and likely also to theories

with less supersymmetry – we comment on this further in section 5.7.2 The particular

four-point function we analyse is that of the superconformal primary of the stress

tensor multiplet. This is the same four-point function as was analysed holographically

in [166, 167], and with numerical bootstrap methods in [18]. Perturbatively, in a

large c expansion, this correlator was also studied in [162], taking as input the tree-

level results of [168, 169]; and in [170–172]. The form of the superconformal Ward

identities and superconformal blocks can be extracted from the more general analysis

of [173].

1We caution the reader that this does not automatically ensure analyticity in spin of the full
OPE data, i.e. including that of descendants, below `∗. We will provide concrete counterexamples
below.

2At a perturbative level the Lorentzian inversion formula of [1] has already been widely used for
superconformal theories. For the (2, 0) theories there are for large c computations in [162], while
N = 4 SYM was studied in an expansion in 1/c in [163, 164]. An approximate spectrum for large,
but finite ` was also studied through the inversion formula for certain N = 2 theories in [165].
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![2,0] × ![2,0] ∼ 1 + ![2,0] + ![4,0] + ℬ[2,0]ℓ + ![0,4] + ℬ[0,2]ℓ + ℒ[0,0]Δ,ℓ

(Δ, ℓ) → (2, − 2)

(Δ, ℓ) → (4, − 2)ℓ → − 4

ℓ → − 2 ℓ → − 1

Figure 5.1. The self-OPE of the stress tensor multiplet. See the main text for further
explanations.

5.1.1 Summary of results

Sections 5.3 and 5.6 contain our key results. The results of section 5.3 are summarized

in figure 5.1. Unfortunately its explanation requires a minimal understanding of the

rather technical superconformal block decomposition. We review this in section 5.2

and provide the essentials in the next paragraph.

We follow the notation of [18] and denote superconformal multiplets as X [p, q]∆,`
with (∆, `) and [p, q] respectively corresponding to the conformal representation

and the so(5) R-symmetry Dynkin labels of the superconformal primary, and with

X ∈ {L,A,B, C,D} denoting the type of shortening condition. Long multiplets are

denoted L and maximally short (half-BPS) multiplets are denoted D. For short

multiplets we do not write ∆ because it is fixed by the other quantum numbers,

and similarly we omit ` for the D-type multiplets because it is always zero. Using

this language the stress tensor multiplet is known to be a D[2, 0] multiplet and in

its self-OPE we find the six non-trivial multiplets shown in figure 5.1. (The Ward

identities also allow for B[0, 0]` multiplets but these contain higher spin currents and

appear only in the free theory, as well as for D[2, 2] and D[0, 2] multiplets which

are excluded by Bose symmetry.) Out of the five types of short multiplets there are

three, shaded in green, whose OPE coefficients are completely fixed by virtue of the

chiral algebra construction of [174, 175]. For the other short multiplets, which are

shaded in orange, the coefficients are generally not known. For the long multiplets

we know neither the scaling dimensions nor the coefficients.

Given this rather involved structure of the superconformal OPE, it is a natural

question to ask how the superconformal blocks organize themselves into Regge tra-

jectories. The answer to this question turns out to be surprisingly involved. First of

all, it is important to realize that a single Regge trajectory for superconformal pri-

maries will induce many Regge trajectories corresponding to the conformal primary

superdescendants. And because some of those descendant trajectories have higher

spin, it becomes necessary to extend the superconformal trajectories to negative spin

to get a complete picture. In doing so some obvious connections appear: the results

that we review in section 5.2 (in particular table 5.1) indicate that the D[4, 0] and

D[0, 4] multiplets find a natural place in the (straight) Regge trajectories of the B-
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type multiplets: the latter as the continuation of the B[0, 2]` multiplet to spin −1,

and the former as the continuation of the B[2, 0]` multiplet to spin −2. What is less

obvious, however, is that the D[2, 0] multiplet itself does not fit into these trajecto-

ries. Instead, one finds that it is a combination of (i) the continuation to spin −2

of a long, unprotected Regge trajectory, and (ii) the continuation to spin −4 of the

straight B[2, 0]` trajectory. Finally, the continuation of the B[0, 2]` trajectory to spin

−3 induces unwanted (descendant) blocks which can be cancelled by the continuation

to spin −2 of another unprotected long trajectory.

Altogether, then, analyticity in spin intertwines the straight and curved Regge

trajectories in intricate ways, and multiplets with protected OPE coefficients or di-

mensions can appear on unprotected trajectories. This results in a non-trivial inter-

play between supersymmetry and analyticity in spin.3

As we also review in section 5.2, the unfixed OPE data for the four-point function

of the D[2, 0] multiplet is captured in a single function a(z, z̄). This function shares

many similarities with an ordinary CFT four-point function and in particular has

a standard conformal block decomposition in the s-channel. It is therefore natural

to try to apply the Lorentzian inversion formula of [1] directly to this function. In

section 5.4 we will set up the inversion procedure. We analyse numerous subtleties,

leading ultimately to a picture of the analytic structure of the corresponding spectral

density as shown in figure 5.6 on page 173. In line with our previous discussion, the

` axis extends to negative spins : in fact, the rather soft Regge behaviour of a(z, z̄)

leads one to conclude that `∗ 6 −3! In the figure we also observe two straight Regge

trajectories corresponding to the two types of protected operators of figure 5.1, and

the intersection of the leading long trajectory with a short trajectory at spin −2 as

dictated by the analysis of section 5.3.

The observation that `∗ < 0 means that, unlike in non-supersymmetric theories,

all the physical supermultiplets appearing in the D[2, 0] self-OPE are expected to

be reachable via Regge trajectories. This leads one to the appealing prospect that

this four-point function can (at least approximately) be bootstrapped: we iteratively

apply the Lorentzian inversion formula to some initial trial spectrum until we hit

a fixed point. Of course, with an OPE as in figure 5.1 the natural trial spectrum

consists of the operators fixed by the chiral algebra.

In section 5.6 we present the initial results of such an approach. The first ‘inver-

sion’ of the protected data in the t-channel yields an approximate s-channel spectrum

whose long multiplets are of double-twist type, with anomalous dimensions that we

3A somewhat orthogonal result is presented in section 5.3.4: we find new constraints on the
coefficients for the conformal block decomposition of the superconformal blocks themselves. These
coefficient are of course already determined by the superconformal algebra, but our constraints arise
from analyticity in spin and shadow symmetry, and we checked they are satisfied by the superblocks.
Similar constraints should hold for the blocks in any SCFT as well as for the decomposition of an
ordinary conformal block in lower-dimensional conformal blocks as in [176].
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estimate. We then refine our estimate by inverting the leading Regge trajectory sev-

eral times until we hit a fixed point. Although this procedure ignores the subleading

Regge trajectories, for sufficiently large c the resulting scaling dimensions and OPE

coefficients nicely track the numerical bootstrap bounds of [18] — see the numerous

figures in section 5.6 starting on page 187. We therefore believe that a more complete

iterative scheme would converge to the same ‘extremal’ solutions as those found with

numerical bootstrap methods.

5.2 The four-point function

We consider the four-point function of the dimension four scalar which forms the

bottom component of the D[2, 0] stress tensor multiplet in the six-dimensional (2, 0)

theories. Knowledge of this correlator allows for the computation of any four-point

function involving only operators in the stress tensor superconformal multiplet [173],

thus making it a natural object to study. Our conventions are exactly those of [18]

from which we have lifted some of the equations and to which we refer the reader

for more details. The essential summary is as follows. Our scalar transforms in the

14-dimensional [2, 0] representation of the so(5) R-symmetry algebra. Since

[2, 0]⊗ [2, 0] = [0, 0]⊕ [2, 0]⊕ [0, 2]⊕ [4, 0]⊕ [0, 4]⊕ [2, 2] , (5.2.1)

the four-point function features six different R-symmetry channels AR(z, z̄) with R

labelling the representations on the right-hand side. Our conventions for the four-

point function and the R-symmetry projectors are given in appendix 5.A. As usual,

conformal symmetry and the operator product expansion dictate that each of these

admits a decomposition into ordinary conformal blocks:

AR(z, z̄) =
∑

λ2
R∆,`G

(`)
∆ (z, z̄) , (5.2.2)

but supersymmetry imposes far stricter constraints. First of all, for this correlator,

the information in all six channels is completely encoded by two functions:

a(z, z̄) and h(z) . (5.2.3)
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As indicated, the second function is independent of z̄. The relation is through simple

second-order derivative operators. To fix ideas let us quote them here in full [173]:

A[4,0](z, z̄) =
1

6
u4∆2

[
u2a(z, z̄)

]
,

A[2,2](z, z̄) =
1

2
u4∆2 [u(v − 1)a(z, z̄)] ,

A[0,4](z, z̄) =
1

6
u4∆2 [u(3(v + 1)− u)a(z, z̄)] ,

A[0,2](z, z̄) =
1

2
u4∆2

[
(v − 1)

(
(v + 1)− 3

7
u

)
a(z, z̄)

]
−u2

(
(z − 2)zh′(z) + (z̄ − 2)z̄h′(z̄)

2(z − z̄)2
+ (z + z̄ − zz̄)

h(z)− h(z̄)

(z − z̄)3

)
,

A[2,0](z, z̄) =
1

2
u4∆2

[(
(v − 1)2 − 1

3
u(v + 1) +

2

27
u2

)
a(z, z̄)

]
+u2

(
zz̄
h(z)− h(z̄)

(z − z̄)3
− z2h′(z) + z̄2h′(z̄)

2(z − z̄)2

)
,

A[0,0](z, z̄) =
1

4
u4∆2

[(
(v + 1)2 − 1

5
(v − 1)2 − 3

5
u(v + 1) +

3

35
u2

)
a(z, z̄)

]
−u2 (5(1− z) + z2)h′(z) + (5(1− z̄) + z̄2)h′(z̄)

5(z − z̄)2

+u2 (2zz̄ + 5(1− z) + 5(1− z̄))
h(z)− h(z̄)

5(z − z̄)3
. (5.2.4)

with the operator

∆2f(z, z̄) :=

(
∂2

∂z∂z̄
− 2

z − z̄

(
∂

∂z
− ∂

∂z̄

))
zz̄f(z, z̄) . (5.2.5)

and with u = zz̄ and v = (1− z)(1− z̄) as usual.

Equation (5.2.4) automatically resolves all the constraints of the superconfor-

mal Ward identities and was first published in [173]. The deeper reason for the

appearance of a meromorphic function h(z) is the existence of a chiral algebra for

the six-dimensional (2, 0) theories [174, 175].

5.2.1 Superconformal block decomposition

A related consequence of supersymmetry is the grouping of ordinary conformal blocks

into superconformal blocks. In the OPE under consideration there can appear eight

types of supermultiplets [166, 167, 177, 178]:

D[2, 0]×D[2, 0] ∼ 1+D[2, 0]+D[4, 0]+D[0, 4]+B[2, 0]`+B[0, 2]`+B[0, 0]`+L[0, 0]∆,` .

(5.2.6)
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As indicated, some multiplets can have non-zero spin ` (which are necessarily odd

for the B[0, 2] multiplets and even for the other multiplets by Bose symmetry). The

last type of multiplets are the unprotected or ‘long’ multiplets and can also have

arbitrary ∆ (provided it lies above the unitarity bound, ∆ > ` + 6). The B[0, 0]`
multiplets contain higher spin currents and will therefore no longer be considered

in this work. The contribution of each multiplet to the four-point function is most

easily captured by stating their contribution to a(z, z̄) and h(z); this is given in table

5.1 with the listed ‘atomic’ contributions given by [18]:

aat
∆,`(z, z̄) =

4

z6z̄6(∆− `− 2)(∆ + `+ 2)
G(`)

∆+4(∆12 = 0,∆34 = −2; z, z̄) ,

hat
β (z) =

zβ−1

1− β 2F1[β − 1, β; 2β, z] ,

(5.2.7)

where G(`)
∆+4(∆12 = 0,∆34 = −2; z, z̄) is an ordinary (non-supersymmetric) six-

dimensional conformal block, but for a four-point function of operators with unequal

scaling dimension ∆i=1,...4. We also introduced ∆ij := ∆i −∆j. The explicit form of

the block is given in (5.A.4). We also use the notation

G(`)
∆ (z, z̄) (5.2.8)

for a block with ∆12 = ∆34 = 0. With (5.2.7) in hand one can verify, as was done

in [18], that for each line in table 5.1 the application of the operators in equation

(5.2.4) yields a finite sum of ordinary conformal blocks with the expected quantum

numbers in each of the six R-symmetry channels — see the figures in the next section

for examples.

X ∆ aX (z, z̄) hX (z) comments

L[0, 0]∆,` ∆ aat
∆,`(z, z̄) 0 generic long multiplet, ∆ > `+ 6

B[0, 2]`−1 `+ 7 aat
`+6,`(z, z̄) 0 ` > 0

D[0, 4] 8 aat
6,0(z, z̄) 0

B[2, 0]`−2 `+ 6 aat
`+4,`(z, z̄) 2−`hat

`+4(z) ` > 0
D[4, 0] 8 aat

4,0(z, z̄) hat
4 (z)

B[0, 0]` `+ 4 0 hat
`+4(z) higher spin currents, ` > 0

D[2, 0] 4 0 hat
2 (z) stress tensor multiplet

1 0 0 hat
0 (z) identity

Table 5.1. Superconformal blocks contribution from all superconformal multiplets ap-
pearing in the OPE of two stress tensor multiplets. The contributions are determined from
the atomic building blocks. Bose symmetry requires that ` is an even integer. Here ∆ is
the dimension of the superconformal primary.
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5.2.2 OPE coefficients from the chiral algebra

The chiral algebra [174] underlying the (2, 0) theories [175] completely fixes the func-

tion h′(z) in terms of a single parameter which one may take to be the c central

charge.4 This fixes

h(z) = −
(
z3

3
− 1

z − 1
− 1

(z − 1)2
− 1

3(z − 1)3
− 1

z

)
−8

c

(
z − 1

z − 1
+ log(1− z)

)
+β ,

(5.2.9)

where β is an unphysical integration constant that does not appear in the correlation

function, as is clear from equation (5.2.4). We fix it as β = −1/6 + 8/c such that

the atomic decomposition of h(z) reads

h(z) = hat0 (z) +
∞∑

`=−2 ,
` even

b` h
at
`+4(z) , (5.2.10)

with5

b` =
(`+ 1)(`+ 3)(`+ 2)2 `

2
!
(
`
2

+ 2
)
!!
(
`
2

+ 3
)
!!(`+ 5)!!

18(`+ 2)!!(2`+ 5)!!

+
8

c

(
2−

`
2
−1(`(`+ 7) + 11)(`+ 3)!!Γ

(
`
2

+ 2
))

(2`+ 5)!!
.

One can now use the block decomposition of h(z) to also completely fix the coefficients

of the D[2, 0], D[4, 0] and B[2, 0]` multiplets in terms of c. According to table 5.1 the

latter two multiplets also give a contribution to a(z, z̄). It is then useful to split off

this ‘chiral’ contribution and write

a(z, z̄) = aχ(z, z̄) + au(z, z̄) , (5.2.11)

with aχ(z, z̄) capturing the completely known contribution of the D[4, 0] and B[2, 0]`
multiplets,

aχ(z, z̄) :=
∞∑
`=0 ,
` even

2`b` a
at
`+4,`(z, z̄) , (5.2.12)

4This central charge is determined by the two-point function of the stress tensor, given, e.g., in
[179]. We normalize it such that a single free tensor multiplet has c = 1, and thus it is related to
the canonically normalized CT of [179] by CT = 84

π6 c.
5Here b−2 should be thought of as the limit of the given expression as ` → −2, which gives

b−2 = 8/c.
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and with an ‘unknown’ part au(z, z̄) of the form

au(z, z̄) =
∑

∆>`+6,`

λ2
∆,`a

at
∆,`(z, z̄) . (5.2.13)

The blocks that saturate the inequality correspond to theD[0, 4] or B[0, 2]` multiplets,

and all other blocks correspond to L[0, 0]∆,` multiplets.

5.2.3 Crossing symmetry equations

The crossing symmetry equations which arise from permuting the external operators

lead to a set of linear algebraic relations for the functions AR(z, z̄). Substituting

(5.2.4) into these relations, one finds that all the derivatives can be eliminated and

(assuming the above form of h(z)) one also finds simple algebraic crossing equations

for the function a(z, z̄) [18]. These read:

a(z, z̄) =
1

(1− z)5(1− z̄)5
a

(
z

z − 1
,

z̄

z̄ − 1

)
zz̄ a(z, z̄) = (1− z)(1− z̄)a(1− z, 1− z̄) + Ch(1− z, 1− z̄)− Ch(z, z̄)

(5.2.14)

where

Ch(z, z̄) =
1

(z − z̄)3

h (z)− h(z̄)

zz̄
. (5.2.15)

The first of the crossing equations relates the t- and u-channel and is solved by

demanding that the s-channel block decomposition (equations (5.2.12) and (5.2.13))

only contains even spin operators. The second one is less trivial as it relates the

block decompositions in different channels. It will be used extensively below.

5.3 Regge trajectories and supersymmetry

As we mentioned in the introduction, a given superconformal multiplet contains sev-

eral conformal primary operators whose Regge trajectories are naturally related by

supersymmetry. It might then appear natural to focus on the Regge trajectories

of the superconformal multiplets as a whole, and to ignore the trajectories of the

superconformal descendants. For the D[2, 0] correlator one can do so by analysing

the Regge trajectories for all spins directly for the function a(z, z̄) instead of those

for the six functions AR(z, z̄). Perhaps surprisingly, doing so would only paint an

incomplete picture: for several superconformal Regge trajectories the arrangement

of the conformal descendants, which is dictated by supersymmetry, is not automat-

ically correct. Instead, the combined demands of analyticity in spin together with

supersymmetry lead to non-trivial constraints for superconformal Regge trajectories.

The aim of this section is to exhibit these constraints and argue for a particular

structure of the superconformal trajectories that resolves them. We will first consider
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the contributions of the short multiplets, which lie on straight trajectories, and then

move on to the long multiplets whose twist is not fixed by supersymmetry. The

next two subsections detail the issues and are unavoidably a bit technical. The hasty

reader may want to skip to subsection 5.3.3 for a summary of the issues we uncovered

and their potential resolution.

All of the issues we discuss below will happen for low spins where, as mentioned

in the introduction, the operators do not always manifestly lie on Regge trajectories.

The threshold value `∗ is claimed to be determined by the Regge behaviour of the

correlation function. In section 5.4.3 we will show that the Regge behaviour of the

six functions AR(z, z̄) is actually quite a bit softer than in a non-supersymmetric

theory, leading to extended manifest analyticity in spin. Let us here already quote

the upshot, which is that:

A[4,0] has analyticity in spin for ` > −3 ,

A[2,2] has analyticity in spin for ` > −2 ,

A[2,0] has analyticity in spin for ` > −1 ,

A[0,4] has analyticity in spin for ` > −1 ,

A[0,2] has analyticity in spin for ` > 0 ,

A[0,0] has analyticity in spin for ` > 1 .

(5.3.1)

5.3.1 Short multiplets and straight trajectories

Short multiplets with unknown coefficients

We start our exploration with the B[0, 2]`−1 multiplets (for even ` > 0), which are

short multiplets whose coefficients are not fixed by the chiral algebra. Since their

dimensions are fixed, they lie on straight Regge trajectories. We begin by plotting

the conformal primary descendants and their trajectories for a few low-lying spins

for each of the R-symmetry channels. This yields the black dots and solid black lines

in figure 5.2.

Note that we have added a small horizontal split to overlapping Regge trajectories

for presentational purposes: the twist of all trajectories are really even integers. For

space reasons we have only added a (partial) legend to the [4, 0] channel: the black

half-line connects the B[0, 2]1, B[0, 2]3, B[0, 2]5, . . . multiplets, and the corresponding

primary operators are always the first three black dots on this half-line. (In other

words, in each R-symmetry channel the operator content of the B[0, 2]1 multiplet is

given by those black dots that lie on the endpoint of a black half-line, and so on for

the remaining multiplets.)

The most interesting feature of these trajectories now follows from the dashed

lines, which indicate the continuation of this trajectory to unphysical spins of the

superconformal primary. We are forced to draw this continuation because analyt-

icity in spin dictates that Regge trajectories cannot just end in the middle of the
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Figure 5.2. (∆, `) planes: B[0, 2]`−1 trajectories (lines and dots) and D[0, 4] operators
(squares)

(∆, `) plane. After going down two units in spin along this dashed line we find the

hypothetical “B[0, 2]−1” multiplet and going down four units yields the “B[0, 3]−3”

multiplet. Neither of these multiplets exist, so what are we to make of them?

Let us first consider the “B[0, 2]−1” multiplet. In the plots we show grey, orange

and white dots at the putative locations of its conformal primary operators. The

white dots are easiest to explain: they correspond to the absence of an operator due

to a kinematical zero. For example, the twist ten trajectory in the [0, 4] channel gives

a contribution of the form

λ2
B[0,2]`−1

`(4 + `)(5 + `)(9 + `)

12(1 + `)(3 + `)(6 + `)(8 + `)
G(`)

10+`(z, z̄) , (5.3.2)

with λ2
B[0,2]`−1

the contribution of this superconformal multiplet to (5.2.13). We see

that this contribution vanishes at ` = 0 and this explains the corresponding white

dot. The orange and the grey dots are then actual conformal primary blocks that,

barring a dynamical zero in the overall OPE coefficient, need to be accommodated
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by other supermultiplets.

As the reader might have expected from table 5.1, the multiplet that comes to

the rescue is the D[0, 4] multiplet. The operator contents of the latter is indicated

by the squares in the figure and we see a nice one-to-one match between these and

the grey and orange dots of the “B[0, 2]−1” multiplet. Although this is not obvious

from the figure, almost all the coefficients work out as well. For example, in the [2, 0]

channel there is a twist 8 trajectory of the form:

λ2
B[0,2]`−1

(`+ 5)2(`+ 9)

3(`+ 8)(2`+ 9)(2`+ 11)
G(2+`)

10+` (z, z̄) , (5.3.3)

and in the limit `→ 0 this precisely matches a contribution to the D[0, 4] multiplet

of the form:

λ2
D[0,4]

25

3 · 8 · 11
G(2)

10 (z, z̄) . (5.3.4)

Similarly we find that the coefficients agree for all the other grey dot/square combi-

nations. It is therefore natural to postulate that

lim
`→−1

λ2
B[0,2]`

= λ2
D[0,4] , (5.3.5)

where taking the limit of course only makes sense because of analyticity in spin.

Surprisingly, assuming equation (5.3.5) does not resolve everything: there is a

strange mismatch which occurs for the scalar of dimension 10 in the [0, 0] channel.

In the B[0, 2]`−1 supertrajectory we obtain:

lim
`→0

λ2
B[0,2]`−1

3(`+ 4)(`+ 5)(`(`+ 9)(4`(`+ 9) + 59)− 360)

280(`+ 1)(`+ 3)(`+ 6)(`+ 8)(2`+ 7)(2`+ 11)
G(`)

10+`(z, z̄)

= − 15

2156
λ2
D[0,4]G

(0)
10 (z, z̄) ,

(5.3.6)

where we used equation (5.3.5). Although the D[0, 4] multiplet should indeed have

a block with these quantum numbers, its coefficient is different and should actually

be:
1

308
λ2
D[0,4]G

(0)
10 (z, z̄) . (5.3.7)

This mismatch is why we coloured this combination orange rather than grey in the

figure.6 Let us call this issue 1. We note that this issue is only present if we

6One may wonder how the issue arises, given that everything is clearly analytic in spin at the

level of the function a(z, z̄). The problem is that the B[0, 2]`−1 multiplet induces a block G(`−4)
`+10 (z, z̄)

in the [0, 0] channel which has negative spin for ` = 0, 2. As we send `→ 2 this becomes a spin −2
block, which one may check vanishes identically in six dimensions and therefore does not contribute.
But for ` → 0 we find a spin −4 block, which happens to be equal to (16/3 times) a spin 0 block
of the same dimension. This yields an additional contribution to the coefficient of the spin 0 block
of dimension 10 in the D[0, 4] multiplet and causes the non-analyticity in spin.
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have analyticity down to spin 0 in the [0, 0] R-symmetry channel, which does not

rigorously follow from the Regge limit analysis summarized in (5.3.1).

Let us now go down two more units in spin and investigate the “B[0, 2]−3” mul-

tiplet which is indicated by the red dots in the figure. (Perhaps surprisingly, there is

no kinematical zero that prevents any of these operators from appearing.) According

to (5.3.1) we expect to have analyticity of the CFT data at all the red points except

the scalars in the [0, 0] channel, but these blocks do not correspond to the operator

content of any other superconformal multiplet. They are therefore genuinely un-

wanted contributions, and the fact that they do not vanish automatically is what

we call issue 2. Of course, this issue would be resolved immediately if the overall

coefficient vanishes, so if lim`→−2 λ
2
B[0,2]`−1

= 0, but we emphasize that this would be

a dynamical constraint. We will find another potential dynamical resolution below.

Short multiplets with known coefficients

Our next set of multiplets contains short multiplets with a contribution to the chiral

algebra: the B[2, 0]`−2 and the D[4, 0] multiplets. We can repeat the above analysis

for these operators, but with the one change that here the OPE coefficients are

completely fixed:

λ2
B[2,0]`−2

= 2`b`, λ2
D[4,0] = lim

`→0
λ2
B[2,0]`−2

= 2b0 . (5.3.8)

and therefore the analogue of equation (5.3.5) is manifestly true. For the six functions

AR(z, z̄) these multiplets give the picture shown in figure 5.3.

The white and grey dots now indicate the operator content of a “B[2, 0]−2”

multiplet and, as expected, match almost perfectly with the squares that correspond

to a D[4, 0] multiplet. Yet there is again one exception: the scalar of dimension 8 in

the [0, 0] channel. For this operator we have

lim
`→0

λ2
B[2,0]`−2

9(`− 1)(`+ 8)

1400(`+ 1)(`+ 6)
G(`)

8+`(z, z̄) = − 3

350
λ2
D[4,0]G

(0)
8 (z, z̄) , (5.3.9)

whereas the D[4, 0] multiplet does not have such a scalar. We call this issue 3,

although we must note once again that analyticity is not guaranteed from (5.3.1) for

spin zero.

We have two more issues to discuss. First, as for the previous figure, the fur-

ther continuation down to a “B[2, 0]−4” multiplet induces another unwanted scalar

operator of dimension 8 in the [2, 0] channel with coefficient

lim
`→−2

λ2
B[2,0]`−2

(`+ 4)2(`+ 5)2(`+ 8)

8(`+ 6)(2`+ 7)(2`+ 9)2(2`+ 11)
G(2+`)

10+` (z, z̄) = λ2
B[2,0]−4

9

700
G(0)

8 (z, z̄) .

(5.3.10)
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Figure 5.3. (∆, `) planes: B[2, 0]`−2 trajectories (lines and dots) and D[4, 0] operators
(squares)

This isolated operator once more cannot fit in a superconformal multiplet and so

the block must somehow cancel: this is issue 4. Notice that in this case the OPE

coefficient is known,

λ2
B[2,0]−4

=
1

4
b−2 =

2

c
. (5.3.11)

The putative resolution of issue 2 therefore cannot work in this case, since 2/c > 0

in all but the generalized free theory.

The last issue for this set of blocks is the D[2, 0] multiplet itself. It contributes

three conformal blocks:

[0, 0] :
6

175
G(2)

6 (z, z̄) ,

[2, 0] :
1

2
G(0)

4 (z, z̄) ,

[0, 2] :
1

5
G(1)

5 (z, z̄) ,

(5.3.12)
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which we recognize as the contributions from the stress tensor, the superconformal

primary, and the R-symmetry current. This block has an OPE coefficient equal to

b−2 = 8/c as determined by the chiral algebra and so is present in any bona fide

theory. It is however clear that neither of these three operators fits into any of the

Regge trajectories we have drawn so far, and this is issue 5.

5.3.2 Long multiplets

Now let us analyse the Regge trajectories for the long multiplets L[0, 0]∆,`. For these

multiplets the scaling dimensions are unknown, and likewise there is no a priori proof

that the Regge trajectories `(∆) have a particularly simple form. We can nevertheless

explore the consequences if we assume that there exists a trajectory that extends

to low spins. Just as for the protected multiplets, we will find issues corresponding

to non-analyticity in the induced trajectories for the AR(z, z̄) as soon as any Regge

trajectory for a supermultiplet crosses the lines with ` = 0, ` − 2, or ` = −4. For

efficiency of presentation we would like to capture all the issues in one plot, and to do

so we simply invented an otherwise random trajectory7 that crosses all these three

lines as shown in figure 5.4. We however stress that the issues we are about to list

are local, in the sense that they hold for any trajectory crossing these low spins, and

do not depend on the global shape of the trajectory. For example, in our view it

would have been perfectly possible for a trajectory that intersects the ` = −4 line to

be disconnected from a trajectory that extends to positive spins.

The legend in the [4, 0] channel indicates the scaling dimension that we have

chosen for the first four long multiplets on our hypothetical trajectories. (Recall

that ∆ > ` + 6 for an L[0, 0]∆,` multiplet by unitarity which is easily obeyed here.)

Unlike the previous plots there are no exactly overlapping induced trajectories for

any of the AR(z, z̄) and therefore there was no need to add a horizontal split by hand.

At low spins we encounter our first issue at spin 0. We see some kinematical

zeroes, indicated by the white dots, which are analytic in spin and nothing to worry

about. However the red dot indicates a problem: for a long supermultiplet with

quantum numbers (∆, `) and ` generic there exists a conformal primary R-symmetry

singlet of the form:

λ2
L[0,0]∆,`

ξ(`,∆)G(`)
∆+4(z, z̄) , (5.3.13)

with ξ(`,∆) a rational function of ∆ and ` that is too ugly to include here. In the

limit `→ 0 we find:

lim
`→0

ξ(`,∆) = −3(∆− 2)(∆ + 4)(∆(∆ + 2)− 6)

448(∆− 3)(∆ + 1)2(∆ + 5)
, (5.3.14)

7The sketched trajectory is not entirely random: we picked a convex shape and an asymptotic
twist of 12, meaning we can think of it as the second double-twist trajectory after the leading one
(which asymptotes to twist 8).
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Figure 5.4. (∆, `) planes: a randomly chosen L[0, 0]∆,` trajectory extending down to spin
−4.

which is not the correct expression for a spin zero long multiplet, which instead has

a contribution of the form:8

λ2
L[0,0]∆,0

9(∆− 4)(∆− 2)(∆ + 4)(∆ + 6)

1792(∆− 3)(∆− 1)(∆ + 3)(∆ + 5)
G(0)

∆+4(z, z̄) . (5.3.15)

We can call this issue 6. We stress that it exists for any long multiplet trajectory

that crosses the ` = 0 line, provided analyticity holds down to spin zero in the singlet

channel.9

Going down in spin, we reach the orange points at spin −2, which correspond

to issue 7. Again, a “L[0, 0]∆,−2” multiplet does not exist and so generically the

combination of orange points should not actually be present in a physical theory.

8The discrepancy is again due to a spin `− 4 block in the supermultiplet — see the footnote 6.
9Note that while the difference between (5.3.14) and (5.3.15) vanishes for ∆ = 2, this value is

not allowed for ` = 0 by unitarity.
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Notice that we have shown the situation for generic ∆; much like the function ξ(`,∆)

vanishes at ∆ = 2 there are some zeroes in the coefficients for specific values of ∆

and then some of the orange points may disappear. This will be important below.

Finally if a long supertrajectory hits spin −4 then we induce a single scalar of

dimension ∆ + 4 in the [0, 0] channel. This is the green dot and issue 8, which once

more is only an issue if analyticity holds down to spin zero in this channel.

5.3.3 Resolving the issues

Let us recap. The issues we have collected are:

1. The limit ` → 0 of the B[0, 2]`−1 multiplet should be a D[0, 4] multiplet but

gives the wrong coefficient for a dimension 10 scalar in the [0, 0] channel.

2. The limit `→ −2 of the B[0, 2]`−1 multiplet gives unwanted operators in several

channels.

3. The limit ` → 0 of the B[2, 0]`−2 multiplet should be a D[4, 0] multiplet but

gives the wrong coefficient for a dimension 8 scalar in the [0, 0] channel.

4. The limit ` → −2 of the B[2, 0]`−2 multiplet gives an unwanted dimension 8

scalar in the [2, 0] channel with coefficient 9/(350c).

5. The operators in the D[2, 0] multiplet do not fit in a short Regge trajectory.

6. The limit `→ 0 of a generic L[0, 0]∆,` multiplet should be an L[0, 0]∆,0 multiplet

but gives the wrong coefficient for a dimension ∆+4 scalar in the [0, 0] channel.

7. The limit `→ −2 of a generic L[0, 0]∆,` multiplet gives unwanted operators in

several channels.

8. The limit `→ −4 of a generic L[0, 0]∆,` multiplet gives an unwanted scalar of

dimension ∆ + 4 in the [0, 0] channel.

We see that issues 1, 3, 6 and 8 all pertain only to scalars in the R-symmetry

singlet channel. It is not entirely clear that we need to take them seriously: according

to equation (5.3.1) analyticity in spin for A[0,0](z, z̄) is guaranteed only down to spin

` > 1. Although this would be one way to resolve the issues (or at least provide

us with a license to ignore them), there is another option: issue 8 has the potential

to resolve the other 3 issues. More precisely we simply postulate the existence of

otherwise unknown unprotected Regge trajectories that cross the ` = −4 line at

∆ = 6 (to resolve issue 1), at ∆ = 4 (to resolve issue 3) and at ∆ = ∆̂ with ∆̂ the

dimension of any generic long multiplet that crosses the ` = 0 line (to resolve issue

6). Whether this is the correct resolution, or whether there is another mechanism
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at play, is not something we can hope to address with our current knowledge of the

(2, 0) theories.

More interesting resolutions can be found for the other issues. The first observa-

tion is a perfect cancellation between a special case of issue 7 and issue 2: if a long

multiplet trajectory crosses ` = −2 exactly at ∆ = 4 then it induces precisely the

same set of blocks as the “B[0, 2]−3” multiplet. We can write that

L[0, 0]∆=4,`=−2 = B[0, 2]−3 , (5.3.16)

where, as always, the evaluation at negative spin is understood to be defined through

analytic continuation. This means that issue 2 can be resolved not only by demanding

that the B[0, 2]−3 multiplet has zero coefficient (as we hypothesized above), but also

by a long trajectory hitting spin −2 exactly at ∆ = 4 with the right coefficient. Just

as for the spin −4 long multiplets, at present our understanding of the (2, 0) theories

is insufficient to know which of these two potential resolutions is realized. We do

note, however, that hitting spin −2 at ∆ = 4 would not be entirely unreasonable

for the first subleading trajectory. This trajectory asymptotes to ∆ = ` + 10 but

according to a large spin analysis is expected to slope towards lower ∆ at lower spins.

Again with our current knowledge of (2, 0) theories we cannot tell if this or other

mechanisms are in place to resolve these issues.

This leaves us with issue 5 which is arguably the most interesting. Our suggested

resolution comes about by another special case of issue 7: an “L[0, 0]∆=2,`=−2” long

supermultiplet, or more precisely the analytic continuation of a regular long multiplet

to ` = −2 and ∆ = 2, gives the contribution:

[0, 0] : − 24

175
G(2)

6 (z, z̄) ,

[2, 0] : −2G(0)
4 (z, z̄) +

9

700
G(0)

8 (z, z̄) ,

[0, 2] : −4

5
G(1)

5 (z, z̄) .

(5.3.17)

Therefore, if we add this multiplet with a (negative) coefficient −2/c then we re-

produce all the stress tensor multiplet blocks with the right coefficient. The one

mismatch is an additional scalar block of dimension 8 in the [2, 0] channel, but its

coefficient −9/(350c) is precisely such that it cancels the unwanted conformal block

of issue 4, which is thereby also resolved! It is therefore entirely natural to conjecture

the following observation:

Claim 1. The leading long L[0, 0]∆,` multiplet trajectory extends to ` = −2 where

it hits ∆ = 2 and has a residue corresponding to an OPE coefficient of −2/c. This

yields the conformal blocks of the stress tensor multiplet in the different AR(z, z̄).
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Figure 5.5. (∆, `) planes: leading L[0, 0]∆,` trajectory (lines and dots) and D[2, 0] opera-
tors (squares)

The observation that the stress tensor multiplet lies on an unprotected trajectory

implies a remarkable interplay between the long and protected multiplets that we

could not have observed without appealing to analyticity in spin of descendants. It

leads to the improved picture for the leading long trajectory in the (2, 0) theories

shown in figure 5.5.

This picture is again heuristic: to draw the trajectory we took some reasonable

guesses for the scaling dimensions of the first few long multiplets based on the nu-

merical bootstrap results of [18] at c = 25. We then included the point ∆ = 2 at

spin −2 and drew an otherwise arbitrary curve through all these points. As before,

the solid part of the curve corresponds to long multiplets with physical spins ` > 0

and the dotted part is the continuation to negative spin. The grey and orange dots

correspond to respectively the resolution of issue 5 and 4. As for any long multiplet

there is still an instance of issue 8 which is indicated by the red dot.

From the picture we also observe that the very leading Regge trajectory in the
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[0, 0] channel is given by a specific conformal primary descendant of dimension ∆+4

and spin ` + 4 if the superconformal primary has dimension ∆ and spin `. (This

trajectory asymptotes to the line ∆ = ` + 8 which means that it is indeed more

leading than any of the short trajectories.) According to our observation this is the

trajectory that the stress tensor lies on. In this sense the (2, 0) theories would then

be similar to a non-supersymmetric theory like the Ising or O(N) models where there

is ample numerical evidence that the stress tensor lies on the leading (non-straight)

Regge trajectory.

Resolution in generalized free field theory

We can now investigate how the issues are resolved in theories whose spectrum and

OPE coefficients we know exactly. There are only two such options: the theory of

N free tensor multiplets, and generalized free field theory. However, the former is

qualitatively different from the cases considered in this work since it is free, and will

thus have an extra family of short multiplets (B[0, 0]`>0), which contain conserved

currents of spin larger than two. These multiplets give rise to various new conformal

primary trajectories and change the aforementioned issues. In particular, the stress

tensor fits as the continuation to ` = −2 of this trajectory.

We will then consider only the case of generalized free field theory. The corre-

sponding four-point function is obtained just by Wick contractions, and solves the

crossing equations with c =∞. The function a(z, z̄) for this theory reads:

a(z, z̄) =
z3(z̄ − 1)3 − 3z2(z̄ − 1)3 + 3z(z̄ − 1)3 − (z̄ − 2)((z̄ − 1)z̄ + 1)

3(z − 1)3z2(z̄ − 1)3z̄2
. (5.3.18)

An added advantage of this function is its very soft behaviour in the Regge limit and

in the second-sheet light-cone limit, which per the analysis of section 5.4.3 leads to an

improvement over the generic behaviour of equation (5.3.1): for this function we have

analyticity for all physical spins in all channels. This means all eight issues must be

resolved. Issues 4 and 5 are automatically resolved since c =∞, and in what follows

we will see how the remaining issues are resolved for the leading trajectories. We

note that the superconformal block decomposition of this correlator is easily found,

and besides the protected multiplets we find towers of unprotected multiplets at the

double twist values ∆ = 8 + ` + 2n, n ∈ N0. The corresponding coefficients can be

found by applying the supersymmetric inversion formula of section 5.4.

Let us start with the leading trajectory of the R-symmetry singlet channel, which

has twist τ = ∆ − ` = 8. Operators on this trajectory get contributions from

the two short trajectories as well as the leading long trajectory with ∆ = 8 + `,

` > 0. Taking the OPE coefficients of these operators we can reconstruct the leading

trajectory of A[0,0](z, z̄) using the superconformal blocks. Altogether we find the
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following conformal primaries

A[0,0](z, z̄)
∣∣∣
τ=8

=
∑
`>0 ,
` even

2`+2b`+2c
B[2,0]`
2,2 G(`+2)

`+10 (z, z̄)

+
∑
`>1 ,
` odd

λ2
B[0,2]`

(
c
B[0,2]`
1,1 G(`+1)

`+9 (z, z̄) + c
B[0,2]`
3,3 G(`+3)

`+11 (z, z̄)
)

+
∑

∆=8+` ,
`>0 ,
` even

λ2
L[0,0]∆,`

(
c
L[0,0]∆,`
4,4 G(`+4)

∆+4 (z, z̄) + c
L[0,0]∆,`
2,2 G(`+2)

∆+2 (z, z̄) + c
L[0,0]∆,`
0,0 G(`)

∆ (z, z̄)
)
,

(5.3.19)

where c••,• are the coefficients of the expansion of the superconformal block of the

respective supermultiplet in conformal blocks. We chose not to spell them out here,

but they are completely known rational functions of ∆ and `. Analyticity in spin of

the leading Regge trajectory for ` > 0 requires the above to be identical to

A[0,0](z, z̄)
∣∣∣
τ=8

=
∑

∆=8+`,
`>0
`even

(
2`b`c

B[2,0]`−2

2,2 + λ2
B[0,2]`−1

c
B[0,2]`−1

1,1 + λ2
B[0,2]`−3

c
B[0,2]`−3

3,3

+λ2
L[0,0]∆−4,`−4

c
L[0,0]∆−4,`−4

4,4 + λ2
L[0,0]∆−2,`−2

c
L[0,0]∆−2,`−2

2,2 + λ2
L[0,0]∆,`

c
L[0,0]∆,`
0,0

)
G(`)

∆ (z, z̄) ,

(5.3.20)

such that the OPE coefficients are an analytic function of `. Indeed these two ex-

pressions agree due to the following relations between OPE coefficients and the su-

perconformal block coefficients:

λL[0,0]6,−2 = 0 , c
B[0,2]−1

1,1 = 0 , λB[0,2]−3 = 0 , c
L[0,0]4,−4

4,4 λ2
L[0,0]4,−4

= −b0c
B[2,0]−2

2,2 .

(5.3.21)

The last equation means issues 3 and 8 (for the leading long trajectory) cancel

out, while issue 2 and 7 (for the leading long trajectory) are resolved by the OPE

coefficients vanishing. The same exercise can be done for the twist 10 conformal

primaries in the R-symmetry singlet channel, and this time a relation between (a)

the spin −4 long multiplet of the sub-leading trajectory (∆ = 10 + `), (b) the D[0, 4]

multiplet, and (c) the short trajectory B[2, 0]` at spin −1 conspire to solve issues 1

and 8 (for the subleading long trajectory). Carrying out these checks for higher

twists, one finds that the OPE coefficients continue to conspire to resolve all issues;

for example issue 6 for the leading long trajectory (∆ = 8 + `) is cancelled by issue 8

for the sub-sub-leading long trajectory (∆ = 12 + `).
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5.3.4 Shadow symmetry in all channels

We have seen that a single Regge trajectory at the level of supermultiplets induces

several Regge trajectories for the AR(z, z̄) which have integer shifts in ` and ∆

and OPE coefficients determined by the super-Regge trajectory. What is not at all

obvious is then whether shadow symmetry is automatically realized. To see that it

is, let us focus on the long multiplets. Consider a long trajectory where the spin of

the superconformal primary is given by a function `s.c.p.(∆). To deduce the shadow

symmetry of this function consider first the [4, 0] channel. There we see that the

super-trajectory induces a single regular conformal trajectory that is shifted by four

units, so

`[4,0](∆) = `s.c.p.(∆− 4) . (5.3.22)

This is a regular bosonic trajectory and therefore obeys ordinary shadow symmetry:

`[4,0](6−∆) = `[4,0](∆). The shadow symmetry of the super-trajectory is therefore

`s.c.p.(∆) = `s.c.p.(−2−∆) , (5.3.23)

and in particular the shadow-symmetric point at the level of the super-trajectory lies

at ∆ = −1. Now consider the coefficient of the [4, 0] descendant. In our conventions

it equals

λ2
[4,0](∆ + 4, `) =

(∆− `− 2)(∆ + `+ 2)

(∆− `− 6)(∆ + `− 2)
λ2
s.c.p.(∆, `) , (5.3.24)

with λ2
s.c.p.(`,∆) denoting the coefficient of the block corresponding to the supercon-

formal primary (in the [0, 0] channel). The ordinary shadow symmetry [1] reads

λ2
[4,0](6−∆, `)

K0,0
6−∆,`

=
λ2

[4,0](∆, `)

K0,0
∆,`

, (5.3.25)

where K0,0
∆,` is a kinematical factor defined in equation (5.4.17) below, and implies a

slightly modified shadow symmetry for the superconformal primary:

λ2
s.c.p.(∆, `)

K0,0
∆+4,`

=
(`−∆)(−∆ + `+ 6)(∆ + `− 2)(∆ + `+ 4)

(−∆ + `− 4)(−∆ + `+ 2)(∆ + `+ 2)(∆ + `+ 8)

λ2
s.c.p.(−2−∆, `)

K0,0
2−∆,`

.

(5.3.26)

Next, let us consider another trajectory, for example the superconformal primary

itself in the [0, 0] channel. How can the above equations be compatible with ordinary

shadow symmetry in this channel, which would send ∆ → 6 − ∆ and not ∆ →
−2−∆? The answer is that another superconformal descendant comes to the rescue,

as follows. To restore shadow symmetry we need a ‘shadow superconformal primary’

trajectory `s.s.c.p.(∆) given by the shadow of the shadow:

`s.s.c.p.(∆) := `s.c.p.(6−∆) = `s.c.p.(∆− 8) . (5.3.27)
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This trajectory does indeed exist in the supermultiplet: it is the top component of

the long multiplet with dimension ∆ + 8. Compared to the superconformal primary,

its coefficient is the messy expression:

λ2
s.s.c.p.(∆ + 8, `) =

∆(∆ + 6)(−∆ + `+ 2)(∆− `)(∆− `+ 2)2(∆− `+ 4)

65536(∆ + 2)(∆ + 4)(−∆ + `− 3)(−∆ + `+ 1)(−∆ + `+ 6)(∆− `+ 1)2

× (∆ + `+ 2)(∆ + `+ 4)(∆ + `+ 6)2(∆ + `+ 8)

(∆ + `− 2)(∆ + `+ 3)(∆ + `+ 5)2(∆ + `+ 7)
λ2
s.c.p.(∆, `) ,

(5.3.28)

but it is precisely the one necessary to recover shadow symmetry between these two

multiplets in the [0, 0] channel: with a little computation one finds that

λ2
s.s.c.p.(6−∆, `)

K0,0
6−∆,`

=
λ2
s.c.p.(∆, `)

K0,0
∆,`

. (5.3.29)

We have checked that similar relations exist between other superconformal descen-

dants and that therefore the entire set of Regge trajectories in each of the six R-

symmetry channels is shadow symmetric provided the relation (5.3.26) holds. To

the best of our knowledge, the corresponding identities involving the coefficients of

the different conformal blocks inside the superconformal multiplet have not been

observed before. We expect it to be a very general property, valid for any super-

conformal algebra, that can for example be used as an additional verification in the

computations of superconformal blocks, and perhaps provide extra constraints on

the superconformal blocks of non-BPS operators.10 It would be interesting to see if

this property can be deduced more directly from properties of the superconformal

algebra.

5.4 Supersymmetric inversion

The demonstration of analyticity in spin of the OPE data for any CFT proceeds via

the so-called Lorentzian inversion formula of [1]. For the four-point function under

consideration one could in principle apply the formula to the six different functions

AR(z, z̄) and combine the data from these operations in order to get a complete

picture for the Regge trajectories of the superconformal multiplets. A more elegant

approach is to work directly with the function a(z, z̄). As we will discuss below,

this function essentially has all the right properties for the Euclidean and Lorentzian

10In fact, we naturally would expect that a similar identity holds if we decompose ordinary
conformal blocks into lower-dimensional conformal blocks. This would ensure that, if we for example
analyse a correlation function of a three-dimensional theory with two-dimensional conformal blocks,
the shadow symmetry of each three-dimensional trajectory separately suffices to ensure shadow
symmetry of the (generically infinitely many) two-dimensional trajectories it induces. It would be
interesting to verify this.
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inversion formulas to apply, and its block decomposition will give us direct access to

all the OPE coefficients of operators that contribute to it.

5.4.1 Inversion formula for a(z, z̄)

As can be seen from equations (5.2.7), (5.2.12) and (5.2.13), the function a(z, z̄),

multiplied by (zz̄)6, admits a conformal block decomposition as follows:

(zz̄)6a(z, z̄) = (zz̄)6aχ(z, z̄) + (zz̄)6au(z, z̄) ,

(zz̄)6aχ(z, z̄) =
∞∑

`=0, ` even

2`b`
`+ 3

G(`)
`+8(∆12 = 0,∆34 = −2; z, z̄) ,

(zz̄)6au(z, z̄) =
∑

∆>`+6,
`>0, ` even

4λ2
∆,`

(∆− `− 2)(∆ + `+ 2)
G(`)

∆+4(∆12 = 0,∆34 = −2; z, z̄) .

(5.4.1)

It is therefore most natural to apply the inversion formula of [1] to (zz̄)6a(z, z̄). The

inversion formula results in a function c(∆, `) whose meromorphic structure captures

the OPE data. Normally one evaluates c(∆, `) at integer ` and, for generic values of

∆, a pole in c(∆, `) at some value ∆∗ signifies the presence of a conformal block in

the OPE decomposition, whose coefficient is simply given by (minus) the residue of

the pole. In our case there is a small offset to take into account: a pole at generic ∆∗

signifies the presence of a supermultiplet contributing as aat
∆∗−4,` (for a long multiplet

this means the primary has dimension ∆s.c.p. = ∆∗ − 4 according to table 5.1), and

whose OPE coefficient is related to the residue by the factor 4/(∆∗−`−6)/(∆∗+`−2).

The decomposition (5.4.1) shows that we should treat (zz̄)6a(z, z̄) as a four-point

function of non-identical scalar operators with ∆12 = 0 and ∆34 = −2. Further-

more, all the spins in its block decomposition are even integers and therefore there

is no distinction between the t- and the u-channel contributions. The singularities

of (zz̄)6a(z, z̄) are also those of a four-point function of non-identical scalars, as

can be seen from its conformal block decomposition (5.4.1) and its crossing equa-

tion (5.2.14). All in all, the associated spectral density is computable through the

Lorentzian inversion formula [1] as11

c(∆, `) = 2∆−5+` (1 + (−1)`)

4
κ0,−2

∆+`

1∫
0

dzdz̄ µ(z, z̄)G(∆−5)
`+5 (0,−2; z, z̄) dDisct

[
(zz̄)6a(z, z̄)

]
,

(5.4.2)

11The factor 2∆−5+` follows from our normalization of conformal blocks. It is spelled out in
appendix 5.A and differs from that of [1] by a factor 2`.
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where the most important factor involves the double discontinuity operation, which

for a generic four-point function g(z, z̄) reads:

dDisct [g(z, z̄)] = cos

(
π

∆34 −∆12

2

)
g(z, z̄)− 1

2
eiπ

∆34−∆12
2 g(z, 1− (1− z̄)e2πi)

− 1

2
e−iπ

∆34−∆12
2 g(z, 1− (1− z̄)e−2πi) . (5.4.3)

where the e2πi factors indicate an analytic continuation onto a secondary sheet, in

this case around z̄ = 1. The other factors are given by:

κ∆12,∆34

∆+` =
Γ(∆+`+∆12

2
)Γ(∆+`−∆12

2
)Γ(∆+`+∆34

2
)Γ(∆+`−∆34

2
)

2π2Γ(∆ + `− 1)Γ(∆ + `)
, (5.4.4)

µ(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
((1− z)(1− z̄))

∆34−∆12
2

(zz̄)2
, (5.4.5)

and we recall that G(`)
∆ (∆12,∆34; z, z̄) is an ordinary bosonic conformal block. For

our case one should set ∆12 = 0 and ∆34 = −2 in all of the above formulas.

5.4.2 Single-valuedness

In the derivations of the Lorentzian inversion formula [1, 33] it is usually assumed

that the function to be ‘inverted’ is a proper CFT four-point function. Here this

is not exactly the case: although a(z, z̄) has a nice decomposition into s-channel

conformal blocks, it has slightly awkward t-channel behaviour. To see this, recall the

crossing symmetry equation (5.2.14) and take z, z̄ → 1. The functions a(1− z, 1− z̄)

and Ch(1− z, 1− z̄) are nicely behaved in that limit, but Ch(z, z̄) has a logarithmic

term not seen in an ordinary four-point function. Loosely speaking we can write

that:12

(zz̄)6a(z, z̄) ⊃ 8(zz̄)4

c(z − z̄)3
(log(1− z)− log(1− z̄)) . (5.4.6)

The problem with this term is that it spoils Euclidean single-valuedness of a(z, z̄):

when setting z̄ = z∗ and taking z around 1 in the complex plane the function does

not return to itself.

It would be nice to investigate the true importance of Euclidean single-valuedness

around 1 (and around ∞) for the validity of the Lorentzian inversion formula more

generally. We can however show that it is unimportant in our case in a simpler way.

12This equation attempts to highlight the logarithmic singularity but in doing so is a bit mis-
leading, because it also shows an apparent singularity at z = z̄. The latter cancels in the full
a(z, z̄).
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We consider the function

afree(z, z̄) :=
(z3(z̄ − 1)3 − 3z2(z̄ − 1)3 + 3z(z̄ − 1)3 − (z̄ − 2)((z̄ − 1)z̄ + 1))

3(z − 1)3z2(z̄ − 1)3z̄2

+
4(−(z − z̄)(z + z̄ − 2) + 2(z − 1)(z̄ − 1) log(1− z)− 2(z − 1)(z̄ − 1) log(1− z̄))

c(z − 1)z2(z̄ − 1)z̄2(z − z̄)3
.

(5.4.7)

This function was introduced in [167] as the four-point function obtained by simple

Wick contractions in the theory of N free tensor multiplets, with c = N (and it is

also a fairly natural object from the holographic perspective). The conformal block

decomposition of this function is rather easy to find. Furthermore, if we ignore its

non-single-valuedness and blindly substitute it into the Lorentzian inversion formula

(5.4.2) we get the right answer.13 So at least for afree(z, z̄) the non-single valuedness

is not an issue.

The argument for the validity of the Lorentzian inversion formula for generic

a(z, z̄) is then as follows. Let us define:

ã(z, z̄) = a(z, z̄)− afree(z, z̄) . (5.4.8)

Then (zz̄)6ã(z, z̄) is single-valued and has a good conformal block decomposition

(albeit without positive coefficients), so the Lorentzian inversion formula should be

applicable. Of course we get a different density c̃(∆, `) which includes the spectrum of

afree(z, z̄) in addition to the physical spectrum of a(z, z̄). But the Lorentzian inversion

formula is fundamentally a linear operation that in itself does not require single-

valuedness. So we can split ã(z, z̄) again and apply the Lorentzian inversion formula

to each term separately. Since we verified that the inversion of afree(z, z̄) works and

the corresponding cfree(∆, `) yields the correct conformal block decomposition, it

must be that the inversion of a(z, z̄) gives

c̃(∆, `) + cfree(∆, `) , (5.4.9)

and this function has the right analyticity properties to recover the conformal block

decomposition of a(z, z̄) and nothing more.

5.4.3 Behaviour on the second sheet

As we stated above, the results of [1] tie the Regge behaviour of correlation functions

to the minimal spin for which the OPE data is guaranteed to be analytic in spin. Non-

analyticity happens when the contributions to the integrals from ‘arcs at infinity’ are

non-zero [1, 33, 180]. These arcs correspond to the case where z̄ → 0 on the secondary

13We have explicitly checked this for the operators of twist 4, 6, 8 and 10 but strongly suspect
this to be true for all other operators as well.
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sheets reached by going around z̄ = 1. If one sends z → 0 at the same rate as z̄ then

this is the Regge limit. It is customary to parametrise this limit as:

z = w σ , z̄ =
w

σ
, w → 0 , σ fixed . (5.4.10)

For a general function g(z, z̄) the arguments of [1] imply that with a Regge behaviour

of the form

g ∼ w1−`∗ , (5.4.11)

the ‘arcs at infinity’ contributions from the Regge limit vanish if the integral
∮

0
dww`−`∗−1

converges, so if ` > `∗. In this way softer Regge behaviour implies a larger domain

of analyticity in spin.

Let us investigate the behaviour of our correlation function in this limit. We

begin by noting that the functions AR(z, z̄) have a decomposition into ordinary

bosonic blocks, including an identity operator for the singlet channel. The non-

supersymmetric arguments of [1] then go through: the AR(z, z̄) must be bounded

by a constant in the Regge limit and analyticity in spin holds at least for any spin

` > 1. Supersymmetry allows us to do better. We can see this by eliminating the

derivatives in (5.2.4) to find an expression for a(z, z̄) in terms of (z and z̄ dependent)

linear combinations of the AR(z, z̄) and h(z). Since we know h(z) exactly and can

also bound the AR(z, z̄), it is not hard to deduce that

(zz̄)6a(z, z̄) ∼
3A[2,0] + A[0,4]

3
w2 , as w → 0 . (5.4.12)

in the Regge limit. This is a softer behaviour in the Regge limit with respect to a

bosonic correlator that grows as w0, ensuring analyticity in spin down to spin ` > −1.

However, we expect analyticity to hold all the way down to spin ` > −3. One partial

argument for this are the conformal primary trajectories in the R-symmetry singlet

channel: as shown in section 5.3 a superconformal primary of spin ` has a descendant

of spin ` + 4 in this channel. The ` > −3 result for the superconformal primaries

then immediately follows from the non-supersymmetric result that analyticity in spin

holds down to spin 1 for any conformal family.

This expectation can be proven by bounding the growth of a(z, z̄) in the Regge

limit directly, as done in [1], using the fact that the t- and u-channel OPEs converge

in that limit. In appendix 5.B we use the t- and u-channel OPEs in an expansion in

the z and ¯̄z variables to bound the growth of a(z, z̄) as

(zz̄)6a(z, z̄) ∼ w4 ; as w → 0 , (5.4.13)

along almost any direction in the complex w-plane, confirming analyticity in spin of
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c(∆, `) all the way for all spins greater than −3!14

We note that the non-single-valuedness of a(z, z̄) is not important: since afree(z, z̄)

behaves like w5 in this limit, equation (5.4.13) also gives the leading behaviour for

the single-valued correlator ã(z, z̄).

Let us finally discuss the Regge behaviour of the six functions AR(z, z̄). A naive

estimate arises by plugging the behaviour (5.4.13) into equation (5.2.4), but the

latter contains derivatives and if a function vanishes at least as fast w4 then it is

not mathematically guaranteed that its derivative vanishes at least as fast as w3. In

appendix 5.B we therefore explain how to bound the derivatives of a(z, z̄) directly,

leading to the Regge behaviour:

A[4,0] ∼ w4 , A[2,2] ∼ w3 , A[2,0] ∼ w2 ,

A[0,4] ∼ w2 , A[0,2] ∼ w1 , A[0,0] ∼ w0 .
(5.4.14)

This directly leads to the results quoted in equation (5.3.1) at the beginning of section

5.3.

The lightcone limit

Another potential contribution from the ‘arcs at infinity’ comes from a lightcone

limit on the second sheet that corresponds to z̄ → 0 holding z fixed. In this limit the

convergence of the Lorentzian inversion formula depends on ∆ and `; more precisely,

if g(z, z̄) ∼ z̄τ
∗/2 in that limit, then we need

∆− ` < τ ∗ , and d−∆− ` < τ ∗ . (5.4.15)

It is not immediately clear what the correct value of τ ∗ could be. On the first sheet

τ ∗ is equal to the lowest twist in the s-channel spectrum. In that case τ ∗ ≥ d/2− 1

would be appropriate for a generic CFT, because the s-channel identity operator

needs to be subtracted, while in our case τ ∗ = 8. As discussed in [33], this value

again leads to analyticity in spin for ` > 1 because we can set ∆ = d/2, and in our

case it would not spoil ` > −3. On the secondary sheets this is not necessarily true

because the s-channel block decomposition no longer converges – instead one uses the

t-channel conformal block decomposition (and unitarity) to bound the full correlator

by its behaviour on the first sheet. The best possible bound that can be rigorously

proven in this way corresponds to τ ∗ ≥ 0. This value is however unlikely: it would

imply non-convergence of the Lorentzian inversion formula for ∆ < ` and invalidate

the analyses of the first Regge trajectory in the literature. (In our case we can

show that τ ∗ ≥ 4 instead of zero from (5.B.3) and (5.B.8), but the effect is similar.)

14To be precise, the z and z̄ expansion can be used to show the given behaviour along any
direction with arg(w) 6= π/2. Using the ρ variables it might be possible to show the bound is valid
also exactly along the imaginary axis. See appendix 5.B for details.
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It would be interesting to have a better handle on the lightcone behaviour on the

secondary sheets, but we will not consider possible lightcone contributions further in

the remainder of this chapter. See [19, 33, 144, 181] for previous discussions on the

second sheet lightcone limit.

5.4.4 Analyticity properties of c(∆, `)

As we explained in the previous subsection, conformal blocks in the decomposition

of a(z, z̄) correspond to poles in the function c(∆, `). These are however not the

only poles: there are also kinematical singularities. It is therefore worthwhile to

take a look at the analytic structure of c(∆, `), which we will do in this subsection.

In contrast with most other studies we will also be interested in what happens at

negative spins `. The result of our analysis is summarized in figure 5.6.

Kinematical singularities

Recall that the shadow symmetry of the OPE density is embodied in the following

equation

c(∆, `)

K∆12,∆34

∆,`

=
c(d−∆, `)

K∆12,∆34

d−∆,`

, (5.4.16)

where

K∆12,∆34

∆,` =
Γ(∆− 1)

Γ(∆− d/2)
κ∆12,∆34

∆+` . (5.4.17)

The shadow symmetry for c(∆, `) follows automatically from c(∆, `) as defined

through eqs. (5.4.2) and (5.4.1), and from shadow symmetry in the [4, 0] channel

given in (5.3.25). For this reason we choose to analyse the kinematical singularities

of c(∆, `)/K0,−2
∆,` and one can recover the kinematical singularities of c(∆, `) by re-

moving the K factor. From (5.4.2) we see that these singularities are encoded in the

kernel block times a prefactor, more precisely 2∆−5 Γ(∆−3)
Γ(∆−1)

G(∆−5)
`+5 (0,−2; z, z̄). Using

(5.5.11) it can be easily checked that this combination is shadow symmetric.

The generic pole structure of conformal blocks was discussed in [81, 182], but

it does not apply to even spacetime dimensions where we can also encounter double

poles. In our case d = 6 and thus we will analyse the pole structure using the closed

form of the six-dimensional conformal blocks directly.

We are only interested in the pole locations and below in table 5.2 we tabulate

both the simple and double poles in Γ(∆−3)
Γ(∆−1)

G(∆−5)
`+5 (0,−2; z, z̄). We have written

these as poles in spin because we will soon be interested in the setup with fixed ∆

and negative `.
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pole locations in ` simple poles double poles

(∆− 3)− 4− 2n n ∈ Z≥0 ∆ ∈ Z≤3, n ∈ Z≥0

−3 ∆ = 2, 4

−(∆− 3)− 4− 2n n ∈ Z≥0 ∆ ∈ Z≥4, n ∈ Z≥0

Table 5.2. Simple and double poles of Γ(∆−3)
Γ(∆−1)G

(∆−5)
`+5 (0,−2; z, z̄)

Dynamical poles and analyticity in spin

Finally we have to take into account the dynamical poles in c(∆, `). The conformal

block decomposition of (zz̄)6a(z, z̄) was given in equation (5.4.1). The short mul-

tiplets induce two straight Regge trajectories: one with known OPE coefficients at

∆ = `+8 and one with unknown OPE coefficients at ∆ = `+10. The long multiplets

have unknown scaling dimensions, but as we discussed in the previous subsection we

expect the leading long trajectory to smoothly continue to the stress tensor. If we

take the various offsets into account this means that it must cross through the point

∆ = 6 and ` = −2 in c(∆, `). The numerical results of [18] further suggest that this

trajectory asymptotes to the leading double twist trajectory, which here implies that

its asymptotic twist equals 12.

In section 5.4.3 we analysed the Regge behaviour of the function a(z, z̄) and found

that it behaves rather smoothly; if z = σw and z̄ = w/σ then (zz̄)6a(z, z̄) ∼ w4 as

w → 0 on the secondary sheets. The integral in (5.4.2) therefore converges in that

region as long as ` > −3, and the contributions from the ‘arcs at infinity’ in the

Regge limit must also vanish for this range of spins.

An impression of the interplay of kinematic and dynamical poles is shown in

figure 5.6. We omitted the subleading unprotected Regge trajectories in the figure.

Note that the claim 1 implies the short B[2, 0] trajectory and the leading long tra-

jectory intersect at spin −2 and ∆ = 6 in figure 5.6. The OPE coefficients of the two

trajectories are such that the residue of c(∆,−2) at ∆ = 4 vanishes.

5.5 Practical supersymmetric inversion

In this section we will discuss some practical aspects of working with the inversion

formula (5.4.2) for a(z, z̄). We will first discuss the use of the crossing equation

and the simplifications that occur after substitution of the t-channel conformal block

decomposition. This provides sufficient background for a small (and crude) numerical

test of convergence for negative spins which we perform in subsection 5.5.2. It will

be convenient to consider the small z expansion of the integrand of equation (5.4.2),
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Figure 5.6. Regge trajectories (black) and kinematical poles (grey) of c(∆, `)/K0,−2
∆,` for

a(z, z̄). The dots indicate physical operators with the red one corresponding to the the
stress tensor multiplet. The dashed line indicates the asymptotic double twist behaviour
of the leading long multiplets. The grey crosses indicate double poles.

and in subsection 5.5.3 we explain how this works and use it to recover the OPE

coefficients of the short multiplets that contribute to the chiral algebra. This all

provides sufficient background for more serious numerical experiments in section 5.6.

One subtle but important point of the inversion formula (5.4.2) is relegated to

appendix 5.C. In that appendix we discuss how to regulate divergences that arise in

the z → 1 limit of the integral. Roughly speaking these divergences arise because

the scaling dimensions are integers, and in practice we find badly divergent integrals

of the type
∫ 1
dz (1 − z)−n. Although such divergences are invisible in the small z

expansion discussed in subsection 5.5.3, it is of course of fundamental importance

that we are able to tame them since otherwise the entire inversion formula would

stop making sense.

5.5.1 The t-channel decomposition

The double discontinuity (5.4.3) vanishes for each s-channel block separately and

the integral in (5.4.2) does not commute with the decomposition into these blocks.

Instead one can employ crossing symmetry and consider the t-channel block decom-

position. In typical ‘experiments’ one approximates the four-point function on the

right-hand side of (5.4.2) with a finite sum of t-channel blocks and investigates the

resulting approximation to c(∆, `).

Let us recall that the crossing equation (5.2.14) for a(z, z̄) reads:

zz̄ a(z, z̄) = (1− z)(1− z̄) (au(1− z, 1− z̄) + aχ(1− z, 1− z̄))

+ Ch(1− z, 1− z̄)− Ch(z, z̄) ,
(5.5.1)
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where

Ch(z, z̄) =
1

(z − z̄)3

h (z)− h(z̄)

zz̄
. (5.5.2)

Notice that we now split a(1− z, 1− z̄) = aχ(1− z, 1− z̄) + au(1− z, 1− z̄) on the

right-hand side to highlight that one part of this function is known and fixed by the

chiral algebra as discussed in section 5.2.

The Lorentzian inversion formula instructs us to take the double discontinuity

of the right-hand side of equation (5.5.1). It is well-known that, in general conformal

field theories, the contribution to the double discontinuity vanishes for the t-channel

operators with double-twist quantum numbers. In our case even more cancellations

occur than the “double-twists” of the inverted correlator (zz̄)6a(z, z̄), although they

do correspond to double-twists in the different R-symmetry channels.

First consider au(1 − z, 1 − z̄). Its block decomposition was given in equation

(5.2.13) which we repeat here:

au(1− z, 1− z̄) =
∑

∆>`+6,`

λ2
∆,`a

at
∆,`(1− z, 1− z̄) . (5.5.3)

It is not hard to verify that the blocks with ∆ = ` + 6 that saturate the inequality,

which we recall correspond to the D[0, 4] multiplet (for ` = 0) and the B[0, 2]`
multiplets (for ` > 0), have vanishing integrated double discontinuity. Therefore

only the long multiplets can contribute, and:

dDisct [(1− z)(1− z̄)au(1− z, 1− z̄)] =
∑

∆>`+6,`

λ2
∆,` dDisct

[
(1− z)(1− z̄)aat

∆,`(1− z, 1− z̄)
]
.

(5.5.4)

so the inequality constraint for ∆ has become strict. The double discontinuity of a

single t-channel conformal block is

dDisct

[
G(`)

∆ (0,−2; 1− z, 1− z̄)
]

=− 2 sin2

(
∆ + `

2
π

)
G(`)

∆ (0,−2; 1− z, 1− z̄),

(5.5.5)

where we have used the fact that ` is an even integer.

Next we consider aχ(1− z, 1− z̄). This is a known function whose block decom-

position was given in equation (5.2.12). For these blocks the double discontinuity is

not vanishing, but instead it cancels almost entirely against the contribution from
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Ch(1− z, 1− z̄). In fact we may write:

dDisct [(1− z)(1− z̄)aχ(1− z, 1− z̄) + Ch(1− z, 1− z̄)] =

dDisct

[
h̃(1− z)− h̃(1− z̄)

(z̄ − z)3(1− z)(1− z̄)

]
, (5.5.6)

with h̃(z) defined as the ‘truncation’ of h(z) to just the identity and the stress tensor

block:

h̃(z) = hat
0 (z) + b−2h

at
2 (z) = −1

2
+

1

z
+

24

c

(
1− 2

z
+

2 log(1− z)

z
− 2 log(1− z)

z2

)
.

(5.5.7)

Notice that the identity and the stress tensor are the only multiplets that do not

contribute to aχ(1− z, 1− z̄).

The previous two paragraphs imply that, out of the all t-channel data, only

the identity, the stress tensor multiplet, and the long multiplets contribute to the

double discontinuity. The contribution of all the other short multiplets simply drops

out. Notice that there is furthermore a contribution to the double discontinuity

from Ch(z, z̄) which is non-vanishing and not subject to the above cancellations. In

equations:

dDisct
[
(zz̄)6a(z, z̄)

]
=

∑
∆>`+6,`

λ2
∆,`dDisct

[
(zz̄)5(1− z)(1− z̄)aat

∆,`(1− z, 1− z̄)
]

+ dDisct

(zz̄)5
(
h̃(1− z)− h̃(1− z̄)

)
(z̄ − z)3(1− z)(1− z̄)

− (zz̄)5Ch(z, z̄)


=

∑
∆>`+6,`

−8λ2
∆,`

(∆− `− 2)(∆ + `+ 2)

(
zz̄

(1− z)(1− z̄)

)5

sin2

(
∆ + `

2
π

)
G(`)

∆+4(0,−2; 1− z, 1− z̄)

+ dDisct

[(
2z4

(1− z)3
+

8z4 (1− 6z + 3z2 + 2z3 − 6z2 log(z))

c(1− z)6

)
1

1− z̄

− 4z4

3(1− z)3

1

(1− z̄)2
+

z4

3(1− z)3

1

(1− z̄)3
+

8z4

c(1− z)3
log(1− z̄)

]
,

(5.5.8)

where in passing to the final expression we have only kept the terms with non-

vanishing double discontinuity.
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Figure 5.7. We plot a crude estimate of c(∆, `)|phys as a function of ` with ∆ = 3 +
10−5 and with c = 25 (left) and c = 8748 (right). The slight displacement from the
shadow symmetric line at ∆ = 3 is simply for faster numerics. Here c(∆, `)|phys = (` +
3) c(∆, `)/ [κ∆+`Γ((`+ ∆ + 1)/2)Γ((`+ 6−∆ + 1)/2)] is just the c(∆, `) with all spurious
poles divided out. The long blocks are scalars from increasingly large twist trajectories
(8, 10, 12, ...). Their OPE coefficients are taken from supergravity results for c = 25 and
mean field theory results for c = 8748. The anomalous dimensions are all set to −1.

5.5.2 Convergence along shadow-symmetric line

As a first experiment we can try to see if we can numerically observe convergence for

negative spins as predicted by the Regge behaviour discussed in section 5.4.3. To do

so we can start with (5.5.8) and plug in increasingly many t-channel blocks. Since we

do not know the exact spectrum (and are only interested in a quick numerical check

of the convergence properties anyway) we took a maximally crude approximation:

apart from the leading Regge trajectory, for which we used some input from the

numerical bootstrap results of [18], we took a ‘shifted’ mean-field-like spectrum of

scalar operators where all the dimensions were shifted from their mean field values

by 1. This was done to maximize their contribution to the dDisc, because with

the shift the prefactor sin2(π(∆ + `)/2) = 1. For the OPE coefficients we took the

values obtained from the supergravity computation of [167] extrapolated to finite c.

We did not add spinning operators since these numerically would have contributed

much less to the double discontinuity anyway. We then inverted this spectrum using

(5.4.2) and plot the resulting function c(∆, J) at the shadow-symmetric point where

∆ = d/2 + 10−5, taking care to regulate the z → 1 divergences as discussed in

appendix 5.C. The results are shown in figure 5.7.

Note that we have divided out unphysical poles analysed in subsection 5.4.4.

Although our estimate is extremely crude, we do see convergence for negative spins

and a breakdown not until spin −3 for c = 25 and around −4 for c = 8748. Note

that the pole at ` = −5 is expected: it is the intercept of the leading short trajectory

which we also show in figure 5.6.
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5.5.3 Small z expansion

We would like to use the inversion formula (5.5.8) to extract anomalous dimensions

and OPE coefficients. A practical way to do so is to use the small z expansion [1],

which works as follows. We first define

h =
∆− `

2
, h̄ =

∆ + `

2
, (5.5.9)

and rewrite (5.4.2) as

c(h, h̄) =

1∫
0

dz

2z
z−h

(
22h̄−5 2κ0,−2

2h̄
zh+1

∫ 1

z

dz̄ µ(z, z̄)G(h̄+h−5)

h̄−h+5
(0,−2; z, z̄) dDisct

[
(zz̄)6a(z, z̄)

])
.

(5.5.10)

Here we have restricted the range of z̄ integration to z < z̄ < 1 which brings in a

factor of 2. We are also considering only the even spin c(h, h̄) and thus replaced

1+(−1)` = 2. In the limit z → 0 the bracketed expression above can be expanded in

powers of z and then the outer integral simply converts these powers into poles of h.

The OPE coefficients are then given by the coefficients of this power series expansion

— up to a Jacobian to transform from (h, h̄) back to (∆, `).

When away from shadow symmetric line we can simplify (5.5.10) by discarding

“half” of the kernel block. This follows from the fact that one can split a conformal

block into two parts:

G(∆+1−d)
`+d−1 (∆12,∆34; z, z̄) = (Gpure)

(∆+1−d)
`+d−1 (∆12,∆34; z, z̄)

+ 2d−2∆ Γ(∆− 1)Γ
(
−∆ + d

2

)
Γ
(
∆− d

2

)
Γ(−(∆ + 1− d))

(Gpure)
(−∆+1)
`+d−1 (∆12,∆34; z, z̄),

(5.5.11)

where each of the Gpure can be expanded into pure power terms in the limit z � z̄ � 1

[1]. For example, the contribution from the first Gpure to the z̄ integral kernel in

(5.5.10) has the following expansion

2h̄+h+1−dzh+1µ(z, z̄)(Gpure)
(h̄+h+1−d)

h̄−h+d−1
(∆12,∆34; z, z̄)

=
(1− z̄)

∆34−∆12
2

z̄2

∞∑
n=0

zn
n∑

j=−n

B∆12,∆34

n,j (h, h̄)k∆12,∆34

2(h̄+j)
(z̄) ,

(5.5.12)

where the constant prefactor is inserted to simplify notation, and

k∆12,∆34

2h̄
(z) := zh̄ 2F1

(
h̄− ∆12

2
, h̄+

∆34

2
, 2h̄; z

)
. (5.5.13)
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Similar manipulations can be done for the second pure power term, with one notable

difference that the second expansion scales as z∆−d/2 (1 +O(z)) which we can ignore

when we are to the right of the shadow symmetric line.

The expansion coefficients in (5.5.12) are easy to fix15 and the first few coefficients

with d = 6, ∆12 = 0, ∆34 = −2 are

B0,0(h, h̄) = 1 ,

B1,1(h, h̄) = −
(
h̄2 − 1

)
(h− h̄− 2)

2(2h̄− 1)(2h̄+ 1)(h− h̄− 3)
,

B1,0(h, h̄) = 1− h

2
,

B1,−1(h, h̄) = −2(h+ h̄− 3)

h+ h̄− 4
.

(5.5.15)

After substituting the inverted block with Gpure and using the expansion (5.5.12),

we can define a generating function as

C(z, h̄+ j) = 2h̄−h+1 κ0,−2

2h̄

∫ 1

z

dz̄

z̄2(1− z̄)
k0,−2

2(h̄+j)
(z̄) dDisct

[
(zz̄)6a(z, z̄)

]
, (5.5.16)

such that (5.5.10) can be rewritten as

c(h, h̄) =

∫ 1

0

dz

2z
z−h

(∑
n,j

znBn,j(h, h̄)C(z, h̄+ j)

)

≡
∫ 1

0

dz

2z
z−h C̃(z, h, h̄) .

(5.5.17)

In the existing literature the small z expansion of the inversion formula is gener-

ally used to extract CFT data of the leading trajectory from the generating function.

For such a case we would only need the leading (n = j = 0) term. We may write

C(z, h̄) ≈ P (h̄)zh(h̄) , (5.5.18)

and the OPE data for the leading trajectory can then be extracted as

h(h̄) = lim
z→0

z∂zC(z, h̄)

C(z, h̄)
, P (h̄) = lim

z→0

C(z, h̄)

zh(h̄)
, (5.5.19)

15For this it is useful to use the identity [1]

1

z̄
k2h̄(z̄) = k2h̄−2(z̄) +

(
1

2
+

∆12∆34

8h̄(h̄− 1)

)
k2h̄(z̄) +

(
∆2

12 − 4h̄2
) (

∆2
34 − 4h̄2

)
64h̄2

(
4h̄2 − 1

) k2h̄+2(z̄) . (5.5.14)
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where h(h̄) = h∞+ δh(h̄) with h∞ the double-trace value and δh(h̄)→ 0 as h̄→∞.

The anomalous dimension can be determined by solving the equation

δh(h̄) = h̄− `− h∞ . (5.5.20)

and the squared OPE coefficient can be calculated through

λ2
∆,` =

(
1− ∂h(h̄)

∂h̄

)−1

· P (h̄) , (5.5.21)

where the Jacobian factor is needed because λ2
∆,` is the residue of c(∆, `) with respect

to ∆ at fixed `.

In our case the setup is slightly different. A quick look at figure 5.6 shows that

for all non-negative spins the leading two trajectories are expected to be straight:

they correspond respectively to the short multiplets belonging to the chiral algebra

(with known coefficients) and the short multiplets at the unitarity bound of the long

multiplet (with unknown coefficients). After that we find the leading unprotected

trajectory. In equations this means that, if we write the generic power expansion

ansatz,

C̃(z, h, h̄) ≈
∑
k

Pk(h, h̄)zhk(h̄) , (5.5.22)

then in our case

C̃(z, h, h̄) ≈ P4(h, h̄)z4 + P5(h, h̄)z5 +
∑
k

Pk(h, h̄)zhk(h̄) , (5.5.23)

with the sum running over all the unprotected Regge trajectories.

Consistency with the conformal block decompositions

Let us now offer some comments on the consistency of (5.5.23) with the conformal

block decompositions. Firstly, it agrees (as it should) with the s-channel expansion of

a(z, z̄): taking all the prefactors into account it is easy to see that the contributions

from aat
`+4,` begin at z4, those from aat

`+6,` at z5, and those from the long multiplets

at even higher powers; for example, in mean field theory the leading unprotected

trajectory begins to contribute at the z6 term.

Next, let us try to discern the origin of the various powers in (5.5.23) from

the t-channel perspective. (In the footnote below we discuss the obvious issue of

convergence.) To do so we have to remember the inhomogeneous crossing symmetry

equation for dDisct [(zz̄)6a(z, z̄)], which concretely speaking leads to the extra terms

displayed in equation (5.5.8). These (known) terms already result in z4 and z5 terms

(without logarithms) at small z, and in the next subsection we will show that the z4

term precisely reproduces the OPE coefficients of the short multiplets that contribute
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to the chiral algebra. This leaves us with the sum over t-channel blocks corresponding

to the unknown operators. At small z, a single t-channel block looks like:(
zz̄

(1− z)(1− z̄)

)5

G(`)
∆ (0,−2; 1− z, 1− z̄) =

∞∑
n=0

zn+5H
(1),n
∆,` (1− z̄) +

∞∑
n=0

zn+6 log(z)H
(2),n
∆,` (1− z̄) , (5.5.24)

where the prefactor on the left-hand side matches that of the crossing equation (5.5.8)

and the explicit form of the H functions will not be important for us. Remarkably,

this is precisely the structure that we would expect from equation (5.5.23): no contri-

bution to the z4 term, which is therefore determined entirely by the inhomogeneous

terms in the crossing symmetry equation, a non-zero z5 term, which means a non-zero

contribution to the short multiplets with undetermined coefficients, and a logarithm

signifying an anomalous dimension starting only at order z6.16

In the next subsection we will first invert the z4 term in order to recover the

known OPE coefficients of the chiral algebra. In section 5.6 we will numerically

estimate some of the unknown OPE data corresponding to the z5 term and beyond.

Recovering the chiral algebra shorts

In agreement with the previous discussion we will take the coefficient of z4 from the

inhomogeneous terms in the crossing equation (5.5.8) and ignore any contribution

from the unprotected multiplets. Substituting this into equation (5.5.16) for the

generating function, the integral to do is then:

C(z, h̄)
∣∣∣
z4

=2h̄−h+1 κ0,−2

2h̄

∫ 1

0

dz̄

z̄2(1− z̄)
k0,−2

2h̄
(z̄)

× dDisct

[
1

3

1

(1− z̄)3
− 4

3

1

(1− z̄)2
+

(
2 +

8

c

)
1

1− z̄
+

8

c
log(1− z̄)

]
,

(5.5.25)

16An important caveat to the above analysis is that an infinite sum over t-channel blocks need not
have the same behaviour as a single block, and so using equation (5.5.24) in the crossing symmetry
equation does not constitute a completely reliable estimate for the small z limit of a(z, z̄). In fact,
a comparison of the (known) z4 term on both sides of the crossing equations does show that the
t-channel blocks must sum up to give non-zero z4 and z5 terms in (zz̄)6a(z, z̄). However, it is also
easy to see that these terms have vanishing double discontinuity and are therefore unimportant
in the Lorentzian inversion formula. Also, each t-channel block only contributes with log(z) and
integer z powers, while finite anomalous dimensions (with respect to exact double-twist dimensions)
require higher powers of the log(z).
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Using the factor 4/(∆s.c.p.−`−2)(∆s.c.p.+`+2) to convert to physical OPE coefficient,

we have

C(z, h̄ = `+ 4)
∣∣∣
z4

=
λ2
B[2,0]`−2

`+ 3
. (5.5.26)

and with a bit of algebra one then finds

λ2
B[2,0]`−2

=

√
π2−`−7(`+ 1)(`+ 2)(`+ 3)Γ(`+ 7)

9Γ
(
`+ 7

2

) +

√
π2−`−2 (`2 + 7`+ 11) Γ(`+ 4)

c Γ
(
`+ 7

2

) .

(5.5.27)

It is easy to check that the result matches 2`b` for all even spins, but is a nicer

function of `.

5.6 Numerical approximations

In this section we will use the small z expansion of subsection 5.5.3 for some numerical

experiments. Our main question is whether the input of some limited t-channel OPE

data can produce a reliable approximation of the s-channel OPE data. We will

mostly focus on the low-spin operators in the leading Regge trajectory which will

allow us to make comparisons to the numerical bootstrap results of [18].

5.6.1 Inversion for higher-twist trajectories

In this section we generalize (5.5.19), which states how to extract the leading-twist

data from the inversion formula, to higher-twist trajectories. This amounts to ex-

tracting the coefficient and powers of the z5 and higher terms in C̃(z, h, h̄) shown in

equation (5.5.23). These terms get contributions from the long multiplets, which we

do not know exactly, and so we use an approximation scheme where we input only

finitely many long t-channel blocks. For the z5 term the scheme is obvious: we just

sum the coefficients of all the z5 terms of whatever t-channel blocks we put into the

inversion formula. The resulting coefficient in the generating function directly pro-

vides an estimate for the OPE coefficients of the D[0, 4] and B[0, 2]` short multiplets.

The integrals to be done are detailed in subsection 5.6.1 below.

For the unprotected multiplets the ansatz (5.5.23) in principle dictates that we

should compute:

hn(h̄) = lim
z→0

z∂zC̃
sub.
n (z, h, h̄)

C̃sub.
n (z, h, h̄)

, Pn(h, h̄) = lim
z→0

C̃sub.
n (z, h, h̄)

zhn(h̄)
. (5.6.1)

where the ‘sub.’ superscript indicates that we should subtract the contribution of the

more leading terms in the small z expansion before taking the limit. This prescription

however runs into the familiar problem that each t-channel block contributes only a
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log(z)z6 term as z → 0, and such terms need to exponentiate to recover the expected

zh̄(h) behaviour, signalling that the t-channel sum does not commute with taking

z → 0 term by term. In order to remedy this we will evaluate the right-hand sides

of (5.6.1) at finite but small z.

Finite z inversion

The essence of the “finite-z inversion” method [36, 159, 161] is to replace equation

(5.6.1) with an estimate at small but finite z0

hn(h̄) ' hz0,n(h, h̄) =
z∂zC̃

sub.
n (z, h, h̄)

C̃sub.
n (z, h, h̄)

∣∣∣∣∣
z=z0

,

Pn(h, h̄) ' Pz0,n(h, h̄) =
C̃sub.
n (z, h, h̄)

zhz0,n(h,h̄)

∣∣∣∣∣
z=z0

.

(5.6.2)

Notice that at finite z0 higher order terms in the expansion (5.5.23) also contribute

and this introduces h-dependence into the approximation of hn(h̄) which is therefore

now denoted as hz0,n(h, h̄). Equation (5.5.20) is modified into

hz0,n(h(h̄), h̄) = hz0,n(h̄− `, h̄) = h̄− ` . (5.6.3)

Since the exact answer is independent of h, a weak h-dependence of hz0,n should

be a sign of its good approximation to h(h̄). Note also that now we have distinct

equations to solve for each spin ` – a significant difference compared to the more

common (practical) analyses of the leading Regge trajectory.

The value of z0 in (5.6.2) is crucial to the approximation results we get, but

before discussing the determination of z0, let us first introduce another variable y

which turns out to be useful for the inversion calculation. The y variable is defined

such that the inversion of the “generalized free” part in (5.5.8), i.e., the protected part

of a(z, z̄) in the limit c → ∞, gives exactly zero anomalous dimensions even when

using the finite-z inversion (5.6.2). Denoting the inversion result as C̃sub.
n (z, h, h̄)|gf,

we have

yn(z, h, h̄) := C̃sub.
n (z, h, h̄)|gf , (5.6.4)

and by construction this gives

y∂yC̃
sub.
n (z, h, h̄)|gf

C̃sub.
n (z, h, h̄)|gf

= n , (5.6.5)

for any z0. This also gives reliable results for anomalous dimensions of operators

with large spin which asymptote to generalized free operators. The switch from z to
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y introduces a Jacobian factor and (5.6.2) becomes

hy0,n(h, h̄) =
y∂yC̃

sub.
n (z(y), h, h̄)

C̃sub.
n (z(y), h, h̄)

∣∣∣∣∣
y=y0

=

(
y∂yz

z

∣∣∣∣
z=z0

)
· hz0,n(h, h̄)

=
nyn(z, h, h̄)

∂zyn(z, h, h̄)

∂zC̃
sub.
n (z, h, h̄)

C̃sub.
n (z, h, h̄)

∣∣∣∣∣
z=z0

,

(5.6.6)

where the Jacobian is calculated by taking a derivative on both sides of (5.6.4), and17

Py0,n(h, h̄) =
C̃sub.
n (z, h, h̄)

zhy0,n(h,h̄)

∣∣∣∣∣
z=z0

. (5.6.7)

Although y is conceptually a nicer variable, from (5.6.4) we see that it depends

on z, h, h̄, which makes it practically more complicated. Therefore, we will write

y0 = y(z0, h, h̄) and all the finite-y inversions in this chapter will be performed at

fixed z0 rather than y0.

To find the suitable value of z0 (or y0), we will plot both hz0,n(h, h̄) (or hy0,n(h, h̄))

and Pz0,n(h, h̄) (or Py0,n(h, h̄)) as functions of z and look for a plateau, similar to the

approach in [161]. Because of the relatively small amount of unprotected OPE data

available to us, we will first pick a value for z0 based on inversion of only the protected

part of a(z, z̄) (called short inversion). After extracting the unprotected CFT data

(see next paragraph for details) we will check if the selected z0 still sits on a plateau

when inverting both protected and unprotected part of a(z, z̄) (called long inversion).

This is illustrated in figure 5.8 where we consider the leading long scalar multiplet

with c = 98. By repeating this procedure for other values of central charge and spin,

one will find different suitable values for z0.

Iterative inversion procedure

To test whether we can bootstrap the CFT data out of the protected sector we will

adopt an iterative procedure. First we invert only the short multiplets to obtain

a set of estimated data, denoted as iter0, for the multiplets on the leading long

trajectory up to spin `max = 16.18 Then we invert these long multiplets from iter0

to obtain a new set of CFT data, iter1, again for the leading long trajectory again

up to `max. Then we iterate for several times until the data converges and itern will

17Notice that we extract the coefficient of zhy0,n instead of yhy0,n , because, as can be seen from
(5.6.4), y is defined to include the “generalized free” OPE coefficient. One could also have defined
y dividing the right-hand side of (5.6.4) by the OPE coefficient, and then we would extract the
coefficient of yhy0,n .

18It is straightforward to extend to higher `max, but we find that this does not noticeably change
the results. We do expect, however, that including higher-twist long trajectories can improve the
results significantly (see subsection 5.6.2).
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Figure 5.8. Short and long (up to spin 16) inversion results for spin 0 long multiplet
with c = 98. The vertical lines on both plots pass through log10 z = −1.55, and this is
our choice for the finite y inversion. The orange curves indicate that the plateau regions
remain largely unchanged after adding the long multiplet contribution. We also included
plots using the z variable for comparison.

be our final numerical estimate. In practice we found that 2 6 n 6 5 is sufficient,

depending on the central charge. As mentioned before the value of z0 for finite-y(z)

inversion should be determined separately for each spin. However, for large spins the

anomalous dimensions are highly suppressed and vary little as we change z0, thus in

practice we can use the same z0 for spins ` > 2 or 4 depending on the central charge.

Extract the OPE coefficients of the shorts at bound

With an estimate for the long multiplets in hand we can invert for the OPE coeffi-

cients of the non-chiral algebra short multiplets.19 This can be done similarly as in

section 5.5.3. The main differences are that we need to extract the coefficient of z5

term rather than the z4 term, and invert both protected and unprotected operators.

In equations we have

C̃(z, h = 5, h̄ = `+ 5)
∣∣∣
z5

=
λ2
B[0,2]`−1

2`+ 8
=

(
λshort

)2

B[0,2]`−1
+
(
λlong

)2

B[0,2]`−1

2`+ 8
, (5.6.8)

and λ2
D[0,4] = lim`→−1 λ

2
B[0,2]`

. Inverting the protected part in a similar manner as

before yields the contribution from the short multiplets in the t-channel:

(
λshort

)2

B[0,2]`−1
=

√
π2−`−9(`+ 1)(`+ 2)(`+ 4)(`+ 7)(`+ 8)Γ(`+ 6)

9Γ
(
`+ 9

2

)
− 5
√
π2−`−4(`+ 4)(`(`+ 9) + 17)Γ(`+ 6)

c(`+ 3)(`+ 6)Γ
(
`+ 9

2

) .

(5.6.9)

19Recall that the t-channel non-chiral algebra short multiplets have vanishing double discontinuity
and therefore they do not participate in the iteration procedure, as discussed in section 5.5.1.
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As for the long multiplets, using the double discontinuity expression (5.5.8) and the

expression generating function (5.5.16), we find that they contribute:

(
λlong

)2

B[0,2]`−1
=2`(2`+ 8)

∑
∆′s.c.p.>`

′+6,`′

−8λ2
∆′s.c.p.,`

′ sin2
(
(∆′s.c.p. + `′)π/2

)
(∆′s.c.p. − `′ − 2)(∆′s.c.p. + `′ + 2)

× 2κ0,−2
2(`+5)

∫ 1

0

dz̄
1

z̄2(1− z̄)
k0,−2

2(`+5)(z̄)

(
z̄

1− z̄

)5

G(`′)
∆′s.c.p.+4(0,−2; 1, 1− z̄) ,

(5.6.10)

where we have used primed notation for t-channel quantum numbers. Note that the

t-channel block is evaluated at z = 0, which gives a finite linear combination of eight

hypergeometric functions 2F1(. . . , 1 − z̄). Therefore, for each 6d conformal block

the z̄ integral breaks down into eight atomic integrals and they can be performed

analytically using the method in [159].

Equation (5.6.10) presents a kind of ‘supersymmetric sum rule’ for the OPE

data. We see no reason why it could not be absolutely convergent for all spins. One

interesting application could then be the vanishing OPE coefficient of the D[0, 4]

multiplet for the A1 theory with c = 25 which was discussed already in [18]. In

that case the positive contribution from equation (5.6.9) needs to be offset by the

uniformly negative contributions from the long multiplets in equation (5.6.10). More

generally, taking only finitely many t-channel blocks into account would provide an

upper bound on the OPE coefficients.

5.6.2 Numerical results

In this subsection we present the numerical estimates for the following unknown CFT

data:20

• conformal dimensions of the leading long multiplets ∆`, ` = 0, 2, 4, 6,

• OPE coefficients of the leading long multiplets λ2
L[0,0]∆`,`

, ` = 0, 2, 4, 6,

• OPE coefficients of non-chiral algebra short multiplets λ2
D[0,4] and λ2

B[0,2]`−1
with

` = 2, 4, 6.

We will plot all of this data as a function of the central charge c. As a reminder, we

note that for the AN−1 and DN theories

c(AN−1) = 4N3 − 3N − 1 , c(DN) = 16N3 − 24N2 + 9N . (5.6.11)

In each of the three cases we will take as our initial input the inhomogeneous

contribution to the crossing equation, i.e., the last two lines on the right-hand side

20Estimates for higher spins (up to ` = 16) are available from the authors on request.
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of (5.5.8). At first order in the iteration this yields something that bears qualitative

similarities to the supergravity answer, but with the important difference that we

work at finite c and finite z – so the familiar derivatives of conformal blocks now

get replaced with an approximation consisting of regular conformal blocks. We then

feed the answers for the leading Regge trajectory into the right-hand side of (5.5.8)

and iterate a few times as described in the previous subsection.

Besides this straightforward iteration scheme, we have also attempted to improve

our results for the A1 theory with c = 25 with a small variation where we input the

following numerical bootstrap data [18]:

∆0 . 6.4 , λ2
L[0,0]`=0

. 1.3 , ∆2 . 9.4 . (5.6.12)

These are respectively the dimension and coefficient of the first scalar and the di-

mension of the first spin 2 operator. These values are rough extrapolations of the

bootstrap bounds of [18] which are believed to be saturated for the (2, 0) theory with

c = 25. To incorporate these values we have simply replaced the corresponding OPE

data in the output of an iteration with (5.6.12) before feeding it back into the next

iteration.

Dimensions of leading long multiplets

In figure 5.9 we present the conformal dimensions of the multiplets in the leading long

Regge trajectory for the first few spins as functions of c−1/3.21 We include both the

results from short inversion (the starting point of the iteration) and long inversion

(the fixed point of the iterated inversion for the leading long trajectory).

The shaded regions in the plots correspond to the numerical upper bounds from

[18] which are available for ` = 0, 2, 4.22 We also plot some holographic results:

firstly the two-derivative supergravity solution [166, 167], which agrees with large-

spin perturbation theory, secondly the c−5/3 correction for the An and Dn theories

obtained in [162] which arises from higher-derivative terms in the bulk, and thirdly

the c−2 and c−8/3 corrections which arise from bulk loops and which were determined

from the tree-level data also in [162].23 Although these curves only correspond to

the first few terms in the large c expansion, we have nevertheless plotted them down

21The reason of using c−1/3 is that this helps separate the large c results further than using c−1,
and c−1/3 is proportional to N−1 in the large N limit.

22Note that the upper bound for leading long scalar at c = 25 in figure 5.9 is around 7.1 instead
of 6.4 as shown in (5.6.12), because these grey shaded bounds are obtained with D[0, 4] multiplet
present while the upper bound ∆0 . 6.4 is obtained by removing D[0, 4] by hand. See [18] for more
details. Also, the steps occurring in the spin 4 bound are simply a numerical artifact due to an
early termination of the binary search.

23The computation in [162] left some coefficients undetermined. We only show a comparison with
this data for higher spins where these coefficients have no effect.
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Figure 5.9. Dimensions of the leading long multiplets with spin 0, 2, 4, 6, against c−1/3.
The grey shaded regions are numerical upper bounds (available for spin 0, 2, 4) from [18].
The orange numbers are central charges (a strict subset of the chosen values correspond
to physical theories). The orange curves correspond to short inversions and the red curves
correspond to stabilized iterative long inversions up to spin 16 (see text for a detailed
explanation). For c = 25, we also perform a corrected iterative long inversion, taking into
account the numerical results of [18], and the result is indicated by a triangular point.
We also show 1/c results from two-derivative supergravity and higher order cα corrections
(denoted as O(cα) in the plot legend) from [162, 171] whenever available.

to finite values of c.24

Our best results are those for intermediate values of c where we differ signifi-

cantly from the supergravity results and more closely trace the numerical bounds.

For example, for 102 . c . 103 the numerics indicate the existence of an extremal

solution to the crossing equations with a fairly large ∆0. The holographic results sig-

nificantly underestimate this gap, but our repeated inversion formula tracks it much

more reliably. Our iteration scheme is less successful for the only non-trivial theory

with c < 98, which is the A1 theory with c = 25: at this point our estimates some-

times even exceed the numerical bounds. This likely happens because the anomalous

dimensions are too large and recovering them correctly in the s-channel requires the

24We do not expect a large c expansion to converge, and the regime where finite c answers
qualitatively agree with (non-resummed) holographic computations might end up being very small.
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input of (many) more conformal blocks in the t-channel.25 For comparison: in the

three-dimensional Ising model the largest anomalous dimension for a physical op-

erator on the leading Regge trajectory is approximately 0.036 (the stress tensor),

whereas for c = 25 the the scalar (with dimension ∆0) has an anomalous dimension

of about 1.6.

As shown in the plot, the c−5/3 corrections are different for the An andDn series of

theories. This raises the interesting question whether our iterative inversion scheme

could potentially also recover this difference. There might, for example, be different

fixed points of our procedure which one could try to find by starting with different

initial conditions, for example by an additional input of the c−5/3 corrections. In this

way we could hope to iterate towards solutions that the numerical bootstrap cannot

find. It would be very interesting to try this in future work.

OPE coefficients of leading long multiplets

In figure 5.10 we present the OPE coefficients of the leading long multiplets for

the first few lowest spins as functions of c−1/3. Similar to before, we show results

from short inversion, the corrected and uncorrected long inversions, together with

supergravity results and numerical estimates.26 The picture is rather similar: for

intermediate central charges we much more accurately trace the numerical bounds

(especially in the scalar sector) than the supergravity result. This corroborates our

viewpoint that our iterative procedure converges towards the extremal solution.

5.6.3 OPE coefficients of non-chiral algebra short multiplets

In figure 5.11 we present estimates for the OPE coefficients of the short multiplets not

fixed by the chiral algebra, for the first few lowest spins and as functions of c−1/3.27

Here the short inversion produces the same results as the one from supergravity and

therefore we only need to show the long inversion results. We also show the results

25We have also attempted to include one more Regge trajectory in the t-channel but this did not
significantly change the results. At a superficial level this is because anomalous dimensions and
OPE coefficients go to zero quickly for higher trajectories, yielding suppressions in the Lorentzian
inversion formula. This leads us to suspect that one may need to include more than just the double-
twist Regge trajectories (of the external operators) in the t-channel, but we have not investigated
this further.

26The numerical results are unpublished results from [18]. They correspond to upper bounds for
the squared OPE coefficients under the assumption that the corresponding conformal dimensions
saturate their own bounds. They are therefore similar to those shown in figure 12 of [18]. Since the
inversion procedure does not produce exactly the same conformal dimensions, these upper bounds
on OPE coefficients are not entirely applicable, but we do expect them to provide decent estimates.
The bounds appear jittery due to an imprecise determination of the long dimensions following from
an early termination of the binary search – see footnote 22, and also due to insufficient numerical
precision as noted in [18].

27The numerical bounds displayed appear jittery due to “failed searches” which occur because
the numerical precision used is barely sufficient to obtain these bounds as noted in [18].
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Figure 5.10. OPE coefficients of leading long multiplets with spin 0, 2, 4, 6, against c−1/3.
The grey shaded regions are unpublished numerical upper bounds (available for spin 0, 2,
4) from [18]. The orange numbers are central charges (a strict subset of the chosen values
correspond to physical theories). The orange curves correspond to short inversions and
the red curves correspond to stabilized iterative long inversions up to spin 16 (see text for
detailed explanation). For c = 25, we also perform a corrected (triangular point) iterative
long inversion using the numerical results of [18].

from [162] whenever applicable. The relative normalizations between that work and

ours are as follows:(
λthere

)2

D[0,4]

(λhere)2
D[0,4]

=
3

8
,

(
λthere

)2

B[0,2]`−1

(λhere)2
B[0,2]`−1

=
2−`−1`(`+ 3)

(`+ 1)(`+ 4)
. (5.6.13)

Here we find only marginal improvement over the supergravity answers.

Note that for A1 theory (c = 25), λ2
D[0,4] should vanish [18], but we were not

able to recover this result from any estimate that involves only a single trajectory.

Indeed, if we use (i) the numerical upper bounds on ∆0,2,4, λ2
L[0,0]`=0,2,4

from [18],

(ii) the assumption that large spin perturbation theory is reliable for ` > 6, and

(iii) convexity of the leading long trajectory then one cannot recover λ2
D[0,4] = 0 at

c = 25 by just inverting the data on the leading Regge trajectory. The difficulty of

recovering this vanishing OPE coefficient is also confirmed by an analysis we present

in appendix 5.D, which shows that we need unrealistically large OPE coefficients if
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Figure 5.11. OPE coefficients of non-chiral algebra short multiplets with spin 0, 2, 4,
6, against c−1/3. The grey shaded regions are numerical upper bounds (available for spin
0, 2, 4) from [18]. The red numbers are central charges (a strict subset of the chosen
values correspond to physical theories). Short inversions produce the same results as the
supergravity ones. The red curves correspond to stabilized iterative long inversions up
to spin 16 (see text for detailed explanation). For c = 25, we also perform a corrected
(triangular point) iterative long inversion using numerical data from [18]. We also show
higher order cα corrections (denoted as O(cα) in the plot legend) from [162, 171] whenever
available.

we only use a few t-channel blocks.28

Finally, let us mention that a similar negative result holds for the recovery of

the stress tensor multiplet. Recall that we argued in section 5.3 that the leading

unprotected Regge trajectory should cross the stress tensor point at (∆, `) = (2,−2),

which would correspond to an anomalous dimension equal to 4. In practice we

observed that the finite y estimates rapidly stopped being sensible already at smaller

negative spins: for example, we find a zero in the function y(z, h, h̄) which leads to a

singularity in hy0(h, h̄). It is then not sensible to try even lower spins without adding

28On the other hand, as explained in subsection 5.6.1, the fact that λ2
D[0,4] = 0 translates into a

specific sum rule for the other OPE data and one can ask whether this datum can be used as an
input in order to improve our other estimates for this theory. We leave this as an interesting open
question for future work.

190



5.7. OUTLOOK

many more t-channel blocks.

5.7 Outlook

We have explored the consequences of analyticity in spin for the six-dimensional

(2, 0) theories and found an interesting interplay between supersymmetry and Regge

trajectories. Some numerical experiments allowed us to approximately bootstrap the

four-point function of the stress tensor multiplet. Let us mention a few possibilities

for further explorations.

First, our numerical experiments can be extended. We can certainly consider

other correlators or other theories, in different dimensions and with varying amounts

of supersymmetry. Other possibilities include the incorporation of subleading Regge

trajectories for the correlator at hand, or perhaps a multi-correlator study to improve

the estimates. A related direction is the incorporation of known results into the

numerics. For example, for the leading trajectory we claim to know both its location

and coefficient at spin −2 and it would be nice to somehow use this information.

It would be especially nice if we could use the c−5/3 results because it would

allow us to distinguish between the A- and D-type theories at large c. Perhaps this

can be done by finding different fixed points for very large c and then tracing them

as c gradually decreased.

Second, it would be interesting to have a better idea of the Regge trajectories

in supersymmetric theories for negative or non-integer spins. There should also be

supersymmetric versions of the light-ray operators of [38] and it would be interesting

to study their properties. Also, is there a more direct argument for the improved

Regge behaviour (and larger analyticity in spin) in supersymmetric theories or do we

have to analyse individual multiplets for each correlator separately? Furthermore,

the softer Regge behaviour of supersymmetric correlators means the dispersion rela-

tions of [83, 183], which reconstruct a correlator from its double-discontinuity should

apply directly without any subtractions. It would be interesting to consider the

convergent sum-rules of [183] in the case of the N = (2, 0) theories, and to solidify

our understanding of the Regge intercept by resolving the questions we discussed in

section 5.4.

Different amounts of supersymmetry and different dimensions

Much of what was discussed here in the context of six-dimensional N = (2, 0) SCFTs

is not unique to these theories. Four-point functions of BPS operators often enjoy

an extended analyticity in spin due to a softer Regge behaviour of the correlator

that is inverted. Roughly, in dimensions d > 2 one expects analyticity in spin for

` > `?, with `? = 1 − d−2
2
N for d 6= 5, and `? = −1 for d = 5, from the fact that

supersymmetry relates conformal primaries of spin one to conformal primaries with
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spin `?.29 As a result, Regge trajectories of the superprimaries exchanged in such

OPEs are more constrained than their bosonic counterparts, with analyticity in spin

imposing constraints on short and long trajectories. We leave a detailed study of

the interplay between analyticity in spin and supersymmetry for future work, and

simply conclude with a few general comments on how the stress tensor fits into

superconformal primary Regge trajectories in interacting theories.

In the case of SCFTs with more than eight supercharges we expect the stress

tensor to fit into the leading long trajectory at a negative spin, similarly to what

was discussed here. For maximally supersymmetric theories it corresponds to the

spin −2 continuation of the leading long superprimary trajectory, which should have

dimension 0 (−1) in four (three) dimensions. This follows from examining the half-

BPS superblocks for the stress tensor supermultiplet correlator given in, e.g., [66,

173, 185–187], and we expect this structure to hold for other half-BPS correlators.

This fits well with the results for planar N = 4 Super-Yang-Mills, where complete

Regge trajectories can be obtained numerically, for any value of the ’t Hooft coupling,

from the quantum spectral curve approach [188]. The Regge trajectory obtained in

[188] is that of the leading unprotected single-trace conformal primary operators, in

the 20′ R-symmetry representation, that appear in the stress tensor superprimary’s

self-OPE.30 For spin greater than two, the operators in this trajectory are genuinely

unprotected long operators, but at spin zero one finds the superprimary of the stress

tensor multiplet itself. As pointed out in [188], the fact that the spin is an even

function of the dimension, for this Regge trajectory, follows from shadow symmetry of

the Regge trajectories in the 105 R-symmetry channel. We expect shadow symmetry

in this channel (and all others) will follow from the structure of the superconformal

blocks, as we observed in section 5.3.4 for the (2, 0) theories.

Just like in the N = (2, 0) case, the stress tensor supermultiplet OPE in N = 4

features various short multiplets whose OPE coefficients are completely fixed from

the chiral algebra of [174], see [186] for details. As argued in [164], the superprimary

Regge trajectories are analytic for all spins greater than −3, and we expect other con-

nections between long and short trajectories to follow from imposing simultaneously

analyticity in spin and supersymmetry.

Analyticity in spin demands SCFTs with eight supercharges, or less, have a struc-

ture of superconformal Regge trajectories that looks closer to the non-supersymmetric

case – the stress tensor supermultiplet should fit at non-negative spin in the lead-

ing long trajectory. For SCFTs with eight supercharges, we expect that the stress

29This can be seen from the structure of the superconformal multiplets in [184]. However, a
precise statement requires an analysis of the Regge behaviour of the correlator whose conformal
block decomposition is being inverted. As far as we know this has been only done in four dimensions
for chiral operators in the non-chiral channel [165], and N = 4 half-BPS operators [164].

30Note, however, that the leading singe-trace trajectory is not necessarily the leading Regge
trajectory of the full non-perturbative CFT. This trajectory is also analysed in [35].
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tensor superprimary (a scalar and singlet [184]) should fit into the leading super-

Regge trajectory, which will have the first unprotected long operator at spin two.

The stress tensor itself would fall in the leading Regge conformal primary trajectory,

which has the first unprotected operator at spin four. At the level of kinematics this

expectation can be checked from the known superblocks of half-BPS flavour current

multiplets which were written down explicitly, for arbitrary dimensions, in [189, 190].

The chiral algebra of [174] provides a check at the level of dynamics for the four-point

function of flavour current multiplets in four-dimensional N = 2 SCFTs. Requiring

the stress tensor to fit into the leading unprotected Regge trajectory fixes the OPE

coefficient and scaling dimension of this trajectory at zero spin – see the blocks given

in [66, 191]. These values turn out to be precisely what is needed to ensure analyt-

icity down to spin zero of the function (zz̄)2G(z, z̄) defined in [191], which admits a

block decomposition and has a softer Regge growth (ensuring analyticity for ` > −1)

similarly to (zz̄)6a(z, z̄) here. Once again, more interconnections between short and

long trajectories will likely follow from analyticity in spin.

5.A (Super)conformal blocks and projectors

We consider the four-point function of the superprimary of the stress tensor multiplet

Φ{IJ}(x), where I , J are fundamental so(5) indices. Contracting the so(5) indices

with null vectors Y I as Φ(x, Y ) = YIYJΦ{IJ}(x), we can write the four-point function

as

〈Φ(x1, Y1)Φ(x2, Y2)Φ(x3, Y3)Φ(x4, Y4)〉 = 16
(Y1 · Y2)2 (Y3 · Y4)2

x8
12x

8
34

∑
R

AR(z, z̄)PR(α, ᾱ) ,

(5.A.1)

with

1

αᾱ
:=

(Y1 · Y2) (Y3 · Y4)

(Y1 · Y3) (Y2 · Y4)
,

(α− 1)(ᾱ− 1)

αᾱ
:=

(Y1 · Y4) (Y2 · Y3)

(Y1 · Y3) (Y2 · Y4)
,

zz̄ :=
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) :=
x2

14x
2
23

x2
13x

2
24

.

(5.A.2)
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Here PR are the projectors onto each of the representations R appearing in the tensor

product of two [2, 0] representations in (5.2.1) and are given by [173]

Y [4,0](α, ᾱ) = (αᾱ)2 + (α− 1)2(ᾱ− 1)2 + 4αᾱ(α− 1)(ᾱ− 1)− 8(αᾱ + (α− 1)(ᾱ− 1))

9
+

8

63
,

Y [2,2](α, ᾱ) = (αᾱ)2 − (α− 1)2(ᾱ− 1)2 − 4(αᾱ− (α− 1)(ᾱ− 1))

7
,

Y [0,4](α, ᾱ) = (αᾱ)2 + (α− 1)2(ᾱ− 1)2 − 2αᾱ(α− 1)(ᾱ− 1)− 2(αᾱ + (α− 1)(ᾱ− 1))

3
+

1

6
,

Y [0,2](α, ᾱ) = α + ᾱ− 1 ,

Y [2,0](α, ᾱ) = αᾱ + (α− 1)(ᾱ− 1)− 2

5
,

Y [0,0](α, ᾱ) = 1 .

(5.A.3)

We denote the six-dimensional (non-supersymmetric) conformal blocks appear-

ing the de decomposition of a four-point function of operators with dimensions

∆i=1,...4 by G(`)
∆ (∆12,∆34; z, z̄), where ∆ij = ∆i − ∆j. Here and throughout this

chapter we omit the first two arguments (∆12 , ∆34) whenever they are vanishing.

Their explicit form reads [66, 192] 31

G(`)
∆ (∆12,∆34; z, z̄) = F00 −

`+ 3

`+ 1
F−11 +

(∆− 4)(`+ 3)

16(∆− 2)(`+ 1)

(∆− `−∆12 − 4)(∆− `+ ∆12 − 4)(∆− `+ ∆34 − 4)(∆− `−∆34 − 4)

(∆− `− 5)(∆− `− 4)2(∆− `− 3)
F02

− ∆− 4

∆− 2

(∆ + `−∆12)(∆ + `+ ∆12)(∆ + `+ ∆34)(∆ + `−∆34)

16(∆ + `− 1)(∆ + `)2(∆ + `+ 1)
F11

+
2(∆− 4)(`+ 3)∆12∆34

(∆ + `)(∆ + `− 2)(∆− `− 4)(∆− `− 6)
F01 ,

(5.A.4)

where

Fnm(z, z̄) =
(zz̄)

∆−`
2

(z − z̄)3

((z
2

)`
zn+3z̄m2F1

(
∆ + `−∆12

2
+ n,

∆ + `+ ∆34

2
+ n,∆ + `+ 2n, z

)
2F1

(
∆− `−∆12

2
− 3 +m,

∆− `+ ∆34

2
− 3 +m,∆− `− 6 + 2m, z̄

)
− (z ←→ z̄)

)
.

(5.A.5)

31With respect to [18, 66, 192] we removed an overall factor of (−1)`.
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5.B Regge bound of a(z, z̄)

In this appendix we show that the function a(z, z̄) is bounded in the Regge limit as

(5.4.13). This limit corresponds to going around the branch cut starting at z̄ = 1 and

sending w, defined in (5.4.10), to zero along any direction in the complex-w plane.32

Following [1], we do so by bounding the function on the secondary sheets (obtained

by going around the branch cut in either direction according to the phase of w) by

its (positive) value on the first sheet with real values of the cross-ratios.

The function a(z, z̄) admits a decomposition in powers of z and z̄ following from

its s-channel OPE, given in equations (5.2.11), (5.2.12) and (5.2.13), as

(zz̄)6a(z, z̄) =
∑

∆′>8+|`|,`

b∆′,` z
∆′−`

2 z̄
∆′+`

2 , (5.B.1)

where ∆′ > 8 + |`| follows from the decomposition of a(z, z̄) in the blocks given in

eq. (5.2.7), with the prime in ∆ to remind us the sum runs over both conformal

primaries and descendants, and where ` runs over positive and negative spins of any

parity. To bound a(z, z̄) on the second sheet we now need to show the coefficients

b∆′,` are non-negative. The function a(z, z̄) is only related to a physical correlator

through the inverse of the differential operator ∆2 as given in equation (5.2.5), so

we do not know of a direct way to use reflection positivity to show positivity of

the coefficients b∆′,`. However, reflection positivity would also follow from positivity

of the coefficients of the decomposition of a(z, z̄) in blocks as given in (5.2.12) and

(5.2.13), so all that remains is to show the blocks aat
∆,`(z, z̄) in (5.2.7) have a positive

decomposition in powers of z and z̄. We have checked this to be the case for all

relevant scaling dimensions and for various spins in a series expansion in small z and

z̄, but do not have a proof, due to the convoluted form of six-dimensional conformal

blocks (5.A.4). We will proceed using the z and z̄ coordinates and not the ρ variable

of [67] since the expansion of z and z̄ in powers of ρ and ρ̄ is not positive.33

Bounding a(z, z̄)

The expansion (5.B.1) converges for |z|, |z̄| < 1. Using the second crossing symmetry

equation (5.2.14) we can use instead the t-channel decomposition to compute

a(z, z̄) =
1

((1− z)(1− z̄))5zz̄

∑
∆′>8+|`|,`

b∆′,`(1−z)
∆′−`

2 (1−z̄)
∆′+`

2 +
Ch(1− z, 1− z̄)− Ch(z, z̄)

zz̄
,

(5.B.2)

32Compared to [1] we have re-scaled w such that 4wthere = where.
33While (zz̄)6a(z, z̄) does not have an expansion in positive powers of ρ and ρ̄ it is still possible

that (zz̄)6a(z, z̄)/(1 − z)/(1 − z̄) does, which given the form of the crossing equations would be a
sufficient condition. However, due to the convoluted form of the blocks, we could only check this
to a rather low order in the ρ and ρ̄ expansion. If the expansion is indeed positive, then following
the same reasoning as below would yield the bound (5.4.13) for all values of arg(w).
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where the sum now converges for |1− z|, |1− z̄| < 1. This representation of a(z, z̄)

allows us to continue to the secondary sheets by going around the cut starting at

z̄ = 1, provided |1− z̄| < 1. For |1− z̄| > 1 we will use the u-channel below. Going

around the branch cut amounts to introducing phases in the scaling-block expansion

above, and we get

|a	/�(z, z̄)| 6 |1− z||1− z̄|
|zz̄|

z′z̄′

(1− z′)(1− z̄′)
a(z′, z̄′) +

∣∣∣∣C	/�h(1− z, 1− z̄)− C	/�h(z, z̄)

zz̄

∣∣∣∣
− Ch(1− z

′, 1− z̄′)− Ch(z′, z̄′)
(1− z′)(1− z̄′)

|1− z||1− z̄|
|zz̄|

,

(5.B.3)

where we used the second crossing equation again, and defined

1− z′ ≡ |1− z| < 1 , 1− z̄′ ≡ |1− z̄| < 1 (5.B.4)

We can now take the limit of w → 0, using

z ∼ σw , z̄ ∼ 1

σ
w , z′ ∼ σ|w| cos(arg(w)) , z̄′ ∼ 1

σ
|w| cos(arg(w)) .

(5.B.5)

The behaviour of a(z′, z̄′) as w → 0 is controlled by the lowest dimensional operator

appearing in its decomposition. which is the superprimary of the D[4, 0] supermulti-

plet with ∆′ = 8, while the behaviour of the remaining terms can be found from the

explicit form of Ch(z, z̄) given in eq. (5.2.15). All in all we find

|a	/�(z, z̄)| 6 sec6(arg(w)) + 1

3|w|8
, as w → 0 , (5.B.6)

where the leading contribution comes from the terms involving Ch only. This bound

is valid for | arg(w)| < π/2 which corresponds to the region of convergence of the

t-channel decomposition. To obtain a bound for | arg(w)| > π/2 we now turn to a

u-channel decomposition.

Combining both equations in (5.2.14) we write now an expansion valid for |1−
z|, |1− z̄| > 1

a(z, z̄) =
(1− z)(1− z̄)

zz̄

∑
∆′>8+|`|,`

b∆′,`

(
1

1− z

)∆′−`
2
(

1

1− z̄

)∆′+`
2

+
1

z(1− z)4

1

z̄(1− z̄)4

(
Ch
(

1

1− z
,

1

1− z̄

)
− Ch

(
z

z − 1
,

z̄

z̄ − 1

))
.

(5.B.7)

Going around the branch-cut starting at z̄ = 1 in either direction once again intro-
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duces just phases in the expansion, while Ch is a known function, and so we write

|a	/�(z, z̄)| 6 (1− z′)5(1− z̄′)5(z′z̄′)

|1− z|5|1− z̄|5|zz̄|
a(z′, z̄′)

+

∣∣∣∣ 1

z(1− z)4

1

z̄(1− z̄)4

(
C	/�h

(
1

1− z
,

1

1− z̄

)
− C	/�h

(
z

z − 1
,

z̄

z̄ − 1

))∣∣∣∣
−
(
Ch
(

1

1− z′
,

1

1− z̄′

)
− Ch

(
z′

z′ − 1
,

z̄′

z̄′ − 1

))
(1− z′)6(1− z̄′)6

|1− z|5|1− z̄|5|zz̄|
.

(5.B.8)

Just as before we find that the Regge behaviour of a(z, z̄) is bounded by

|a	/�(z, z̄)| 6 sec6(arg(w)) + 1

3|w|8
, as w → 0 , (5.B.9)

thus showing eq. (5.4.13) for | arg(w)| 6= π/2.

Bounding AR(z, z̄)

Finally, we need to bound the behaviour of the AR(z, z̄) in the Regge limit. These

functions are obtained from a(z, z̄) and its first z and z̄ derivatives through equation

(5.2.4). Taking a derivative with respect to z and/or z̄ in equation (5.B.1) does not

spoil positivity of the expansion coefficients. We can then can repeat the above com-

putation bound directly ∂za(z, z̄), ∂z̄a(z, z̄) and ∂z̄∂za(z, z̄). The bounds obtained

then imply the Regge behaviour of AR(z, z̄) quoted in (5.4.14), for | arg(w)| 6= π/2.

5.C Regulating the divergence of c(∆, `) near z → 1

In this appendix we discuss the regularization of integrals in the Lorentzian inversion

formula (5.4.2) and explicitly work out the case of four-dimensional mean field theory

as an example.

The integrals over z (and z̄) in c(∆, `) diverge when the integrand scales in the

limit z → 1 as O ((1− z)−p) with p > 1. In general this divergence can be resolved

by analytic continuation of p from the convergent region p < 1 to its actual value, but

when p is an integer such analytic continuation fails because of factors like Γ(−p+n)

where n is a positive integer. In the z̄ variable there are additional sine functions

from the double discontinuity operation and they produce compensating zeros to

yield finite answers; this is why we encountered no divergences in the inversion of

the z4 term that we performed in section 5.5.3. This leaves us with the divergence

from the z-integral when p is a large enough integer. As was already discussed in

[1, 33], one can either regulate the z-integral by setting a cutoff 1− ε and then drop

the divergent terms in the limit ε → 0; or one can keep p generic for integration,
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then series expand p around the actual integral value and discard divergent terms.

Here we apply the second approach.

Let us consider the split of the double discontinuity as in equation (5.5.8). It

is easy to verify that the contribution from the long multiplets always converges,

but the contribution from the short multiplets behaves as (1− z)−4 and needs to be

regulated. The way to do so is to write c(∆, `) as

c(∆, `) =
c(−2)(∆, `)

(p− 4)2
+
c(−1)(∆, `)

p− 4
+ c(0)(∆, `) +O(p− 4) , (5.C.1)

and then simply drop c(−2)(∆, `) and c(−1)(∆, `).

Two follow-up checks are needed: first, c(0)(∆, `) should give the correct residues

at physical poles; second, the subtracted parts which are (the principal series integral

of) c(−2)(∆, `) and c(−1)(∆, `) should not have a conformal block decomposition to

make sure that nothing physical is subtracted.

The first check is straightforward. We simply calculate c(0)(∆, `) for the short

multiplets and find that the residues at twist 8 and 10 in the sense of (zz̄)6a(z, z̄)

match (5.5.27) and (5.6.9) respectively. The second check is however technically

more involved because conformal blocks in 6d are complicated functions. Therefore

we will instead do a simpler check to illustrate the essential idea.

Example: mean field theory in 4d

Let us now consider the four-point function 〈φφφφ〉 of mean field theory in 4d. We

first use the inversion formula to reproduce the CFT data, and then focus on the

cases with integral external dimensions. In this section the normalization of the

conformal blocks is the same as that in [1].

For MFT we only need to invert the t-channel identity operator, and we get

c(∆, `) =
1 + (−1)`

4
κ∆+`

1∫
0

dzdz̄µ(z, z̄)G(∆−3)
`+3 (z, z̄)dDisc

[(
zz̄

(1− z)(1− z̄)

)∆φ

]

=
(1 + (−1)`)(∆− 2)(`+ 1)

4π2
sin2(π∆φ)Γ(1−∆φ)2Γ(2−∆φ)2

×
Γ
(

1
2
(∆ + `)

)2
Γ(−∆ + `+ 4)Γ

(
1
2
(−∆ + `+ 2∆φ)

)
Γ
(

1
2
(−4 + ∆ + `+ 2∆φ)

)
Γ
(

1
2
(−∆ + `+ 4)

)2
Γ(∆ + `− 1)Γ

(
1
2
(−∆ + `− 2∆φ + 8)

)
Γ
(

1
2
(∆ + `− 2∆φ + 4)

) .
(5.C.2)

It it straightforward to check that when ` is an even integer, the residue of −c(∆, `)
at ∆ = 2∆φ + `+ 2n indeed gives the OPE coefficient of MFT given in [193].

When ∆φ ∈ Z>2 it can be seen from the second line of (5.C.2) that c(∆, `) is

divergent, since there is a fourth-order pole and only a second-order zero. To regulate
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poles in ∆
(n = 0, 1, 2, . . .)

origin comment

∆ = −`− 2n Γ
(

1
2
(∆ + `)

)2 κ-factor poles,
not picked up

∆ = `+ 5 + 2n Γ(−∆+`+4)

Γ( 1
2

(−∆+`+4))
2

kernel block poles,
cancelled by block poles

∆ = 2∆φ + `+ 2n Γ
(

1
2
(−∆ + `+ 2∆φ)

) double-twist poles,
zero residue

4−∆ = 2∆φ + `+ 2n Γ
(

1
2
(−4 + ∆ + `+ 2∆φ)

) shadow double-twist poles,
not picked up

Table 5.3. Poles in ∆ of c(−2)(∆, `; ∆φ)

c(∆, `) for any integer ∆φ we expand

c(∆, `; ∆ex) =
c(−2)(∆, `; ∆φ)

(∆ex −∆φ)2
+
c(−1)(∆, `; ∆φ)

∆ex −∆φ

+ c(0)(∆, `; ∆φ) +O(∆ex −∆φ) ,

(5.C.3)

where we have kept the dependence on external dimension explicit. The residues are

c(−2)(∆, `; ∆φ) =
(1 + (−1)`)(∆− 2)(`+ 1)

2Γ(∆φ − 1)2Γ(∆φ)2

×
Γ
(

1
2
(∆ + `)

)2
Γ(−∆ + `+ 4)Γ

(
1
2
(−∆ + `+ 2∆φ)

)
Γ
(

1
2
(−4 + ∆ + `+ 2∆φ)

)
Γ
(

1
2
(−∆ + `+ 4)

)2
Γ(∆ + `− 1)Γ

(
1
2
(−∆ + `− 2∆φ + 8)

)
Γ
(

1
2
(∆ + `− 2∆φ + 4)

) ,
(5.C.4)

and

c(−1)(∆, `; ∆φ) =

[
− 2ψ(∆φ − 1)− 2ψ(∆φ) + ψ

(
−∆ + `+ 2∆φ

2

)
+ ψ

(
−4 + ∆ + `+ 2∆φ

2

)
+ ψ

(
−∆ + `− 2∆φ + 8

2

)
+ ψ

(
∆ + `− 2∆φ + 4

2

)]
× c(−2)(∆, `; ∆φ) .

(5.C.5)

Now we check the poles of ∆ in c(−2)(∆, `; ∆φ). There are four sets of poles and

they all come from the Γ-functions in the numerator of (5.C.4). From left to right,
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the first set of poles originate from the κ-factor. In general this factor reads

κ∆12,∆34

∆+` =
Γ(1

2
(∆ + `+ ∆12)Γ(1

2
(∆ + `−∆12)Γ(1

2
(∆ + `+ ∆34)Γ(1

2
(∆ + `−∆34)

2π2Γ(∆ + `)Γ(∆ + `− 1)
,

(5.C.6)

and has poles at

∆ = −`±∆12 − 2n, ∆ = −`±∆34 − 2n, n = 0, 1, 2, . . . . (5.C.7)

As discussed in [33] these poles are on the left hand side of the ∆-integration contour

when the external dimensions are in the principal series and therefore not picked up.

When we analytically continue external dimensions to physical (and real) values,

although some of the poles may move to the right of contour integration, the contour

should be deformed such that the poles remain to the left and not picked up. The

second set of poles are the spurious poles similar to the ones listed in the last row of

table 5.2. These poles will be picked up in the principal-series integration

g(z, z̄) =

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(∆, `)G(`)

∆ (z, z̄) + (non-norm.) , (5.C.8)

but as shown in [33] they will be cancelled exactly by the poles of the block G(`)
∆ (z, z̄),

thus nothing physical is subtracted. The third and fourth set of poles are physical

double-twist poles and their shadows. One can check that the residues of the third

set of poles vanish when ∆φ ∈ Z≥2 and the fourth set of poles are never picked up.

We summarize these results in table 5.3 and note in passing that the check related

to physical poles is the most important one.

Turning to c(−1)(∆, `), it is straightforward to check that it does not contain any

poles other than those in c(−2)(∆, `). Therefore, we conclude that c(−2)(∆, `) and

c(−1)(∆, `) do not have a block decomposition and can be safely subtracted.

5.D Exploring the required t-channel contributions

In this appendix we explore the issues with the A1 theory a bit further. In particular,

we would like to know whether the vanishing of the D[0, 4] OPE coefficient at c = 25

can be recovered at all from a sum over t-channel blocks, and if so what properties

such a block decomposition has. Therefore we take the rather crude ansatz where

we pack the contribution of the entire unprotected part of a(z, z̄) into the first few

t-channel long blocks with some (unrealistically) large anomalous dimensions and

OPE coefficients. Demanding then that λ2
D[0,4] = 0 might give us an idea of what

this implies for the unprotected data.
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Concretely we experimented with approximating the entire unprotected contri-

bution in the t-channel by the following three groups of data:

1 block: ∆0 = 6.4, λ2
L[0,0]0

= 11.4071,

2 blocks: ∆0 = 6.4, λ2
L[0,0]0

= 1.59017, ∆2 = 8.4, λ2
L[0,0]2

= 4.21943 ,

(5.D.1)

2+2 blocks: ∆0 = 6.4, λ2
L[0,0]0

= 1.44136, ∆2 = 8.4, λ2
L[0,0]2

= 3.84518,

∆0′ = 8.86, λ2
L[0,0]0′

= 6.08945, ∆2′ = 10.86, λ2
L[0,0]0′

= 8.74061,

where the first two groups consider only multiplets on the leading long trajectory

while the last one also takes into account of the subleading long trajectory, which we

distinguish by adding a prime in the spin. The inversion results are shown in table

5.4. For all of these sets we have imposed λ2
D[0,4] = 0. From the table we can draw

some qualitative conclusions:

• The OPE coefficient of the non-chiral algebra short multiplets are relatively

stable across all three sets of input data.

• The dimensions of the long multiplets in all columns are lower than the inversion

results in figure 5.9.

• Distributing the contributions to double discontinuity into more blocks on the

leading long trajectory lowers the dimensions and OPE coefficients of the lead-

ing long multiplets. However, notice that in the “2 blocks” column ∆0 is still

higher while ∆2 is already lower than the numerical bootstrap’s prediction

∆0 ' 6.4,∆2 ' 9.4. All the OPE coefficients decrease after the redistribution.

• Distributing the contribution to double discontinuity into both leading and

subleading long trajectories further slightly lowers ∆0 and increases ∆2, which

moves the results closer to numerical predictions. From the OPE coefficients,

λ2
L[0,0]0

receives the most significant change, a decrease that is also consistent

with our expectation. Therefore, we again see evidence that we should include

contributions from the subleading long trajectory to fully recover the unpro-

tected CFT data.
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1 block 2 blocks 2+2 blocks

λ2
B[0,2]`−1

` = 2, 4, 6

10.1005 10.1009 10.1127

19.3475 19.3476 19.3518

21.4387 21.4387 21.4399

∆`

` = 0, 2, 4, 6

7.0681 6.9434 6.9405

9.4951 9.3667 9.3783

11.8086 11.7476 11.7559

13.9220 13.8990 13.9029

λ2
L[0,0]`

` = 0, 2, 4, 6

1.9259 1.5510 1.5282

4.1565 3.8376 3.8343

5.5590 5.2950 5.3085

5.4229 5.3212 5.3312

Table 5.4. Crude estimates of unprotected CFT data of A1 theory for the first few lowest
spins. The results are obtained by imposing λ2

D[0,4] = 0 and approximating the entire

unprotected part of a(z, z̄) by: a single scalar block on the leading long trajectory (“1”),
one block of spin 0 and one block of spin 2 on the leading long trajectory (“2”), and blocks
of spin 0 and spin 2 both on the leading and subleading long trajectories (“2+2”). The
input CFT data are listed in (5.D.1).
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a propagator in flat space. (b) If the two bulk points are kept apart,
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3.3 A ‘cylinder with caps’ configuration discussed in [53]. We consider two

Euclidean hemispheres and connect them by a Lorentzian cylinder of

length π. We then insert two operators on the upper cap and the

remaining two operator on the lower cap. The right figure shows a

configuration of operator when viewed from the bottom of the lower

cap. The angle θ depicted in the figure becomes a scattering angle in

the flat-space limit. 41

203



LIST OF FIGURES

3.4 Geodesic configurations and flat-space scattering. (a) The geodesics
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3.7 Vertex momenta and their conservation. The saddle-point equation for
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dot is the saddle point, and the cross indicates the starting poles of

the semi-infinite sequences of poles in Γ2(Rσ12). The other poles are

represented by the black solid line. As s approaches the physical

region, the steepest descent contour gets close to the first Γ-function

pole, but does not cross it. 77

3.16 Steepest descent (red curve) and ascent (blue curve) contours of scalar

exchange diagram with m = 1, s = 2.2 (left) or s = 4.2 + 2i (right).

The black dot is the saddle point. The red dashed line indicates the

original integral contour. The green crosses are poles of the Mellin

amplitude and those with a red circle are picked up during contour

deformation. The black crosses are the starting poles of Γ-functions

and the rest are represented by black solid lines. 79

3.17 Light shading: regions in the complex s plane where we pick up poles

in the Mellin amplitude. Dark shading: regions where these poles

dominate and our flat-space limit diverges. We have set m = 1 and

the blue, orange, green and red domains respectively correspond to

mb = 0.5, 1, 1.5, 1.85. We have also highlighted the pole at s = m2
b for

each colour as well as the cut at s = 4. Although this is not entirely

obvious from the plot, the blue region extends rightward to include

the orange, green and red regions and similarly for the other colours. 80

3.18 Analytic continuation to s-physical S-matrix configuration. Left: u

takes a full clockwise turn around 0 while v does not. Right: the

orange dashed curve indicates that z moves on the second Riemann

sheet. Black dotted lines indicate that z and z̄ are complex conju-

gate of each other at the starting point (corresponding to a Euclidean

configuration) and the end point (corresponding to an S-matrix con-

figuration). 93

3.19 Analytic continuation of cross ratios on the real s−t plane. The orange

triangle is the Euclidean region and where all analytic continuations

start from. The larger triangle (including the Euclidean region) is the

region where u and v stay in their principal branch. It is also the so-

called Mandelstam triangle where all Mandelstam variables are below

their two-particle threshold. The lighter orange regions correspond to

s/t/ũ-physical region, respectively. All the blue regions are Lorentzian

regions where z and z̄ are real and independent, and lie within the

indicated intervals. The round arrows (notice the different directions)

indicate how the cross ratios z, z̄ should be analytically continued

through the (−∞, 0] or [1,∞) branch cut in the complex plane. In

unlabelled regions z, z̄ stay in the principal branch. 94
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3.20 Different kinematic limits in real s − t plane. The dark blue dashed

lines indicate analytic continuation of s, t into their complex planes,

respectively. Details of analytic continuation are explained in the text.

The dark blue arrows lie on the real s− t plane. The orange triangle is

the Euclidean region, and within it lies the starting point of all limits

and their corresponding analytic continuation. 96

3.21 Different kinematic limits in z, z̄. The dashed curves indicate that

the cross ratios are in the second sheet. The grey dotted lines indicate

that z and z̄ are complex conjugate of each other. 97

4.1 Left: Operators ψsk (k ≥ 2) are inserted along the Euclidean time

(Re τ) axis. Lorentzian time is along the imaginary-τ axis. The light-

cone of ψsk is illustrated in blue triangles. ψs1 is off the line and its

time component τ is complex in general. Right: Lightcone branch

cuts on the complex-τ plane. 122

4.2 Analyticity structure of n-point correlation function is established by

consecutively hopping around the n − 1 operators in the complex x1

plane. The branch cuts are chosen to stretch along the negative imag-

inary direction. 128

5.1 The self-OPE of the stress tensor multiplet. See the main text for

further explanations. 145

5.2 (∆, `) planes: B[0, 2]`−1 trajectories (lines and dots) and D[0, 4] oper-

ators (squares) 153

5.3 (∆, `) planes: B[2, 0]`−2 trajectories (lines and dots) and D[4, 0] oper-

ators (squares) 156

5.4 (∆, `) planes: a randomly chosen L[0, 0]∆,` trajectory extending down

to spin −4. 158

5.5 (∆, `) planes: leading L[0, 0]∆,` trajectory (lines and dots) and D[2, 0]

operators (squares) 161

5.6 Regge trajectories (black) and kinematical poles (grey) of c(∆, `)/K0,−2
∆,`

for a(z, z̄). The dots indicate physical operators with the red one corre-

sponding to the the stress tensor multiplet. The dashed line indicates

the asymptotic double twist behaviour of the leading long multiplets.

The grey crosses indicate double poles. 173
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5.7 We plot a crude estimate of c(∆, `)|phys as a function of ` with ∆ = 3+

10−5 and with c = 25 (left) and c = 8748 (right). The slight displace-

ment from the shadow symmetric line at ∆ = 3 is simply for faster nu-

merics. Here c(∆, `)|phys = (`+3) c(∆, `)/ [κ∆+`Γ((`+ ∆ + 1)/2)Γ((`+ 6−∆ + 1)/2)]

is just the c(∆, `) with all spurious poles divided out. The long blocks

are scalars from increasingly large twist trajectories (8, 10, 12, ...). Their

OPE coefficients are taken from supergravity results for c = 25 and

mean field theory results for c = 8748. The anomalous dimensions are

all set to −1. 176

5.8 Short and long (up to spin 16) inversion results for spin 0 long mul-

tiplet with c = 98. The vertical lines on both plots pass through

log10 z = −1.55, and this is our choice for the finite y inversion. The

orange curves indicate that the plateau regions remain largely un-

changed after adding the long multiplet contribution. We also included

plots using the z variable for comparison. 184

5.9 Dimensions of the leading long multiplets with spin 0, 2, 4, 6, against

c−1/3. The grey shaded regions are numerical upper bounds (available

for spin 0, 2, 4) from [18]. The orange numbers are central charges (a

strict subset of the chosen values correspond to physical theories). The

orange curves correspond to short inversions and the red curves corre-

spond to stabilized iterative long inversions up to spin 16 (see text for

a detailed explanation). For c = 25, we also perform a corrected iter-

ative long inversion, taking into account the numerical results of [18],

and the result is indicated by a triangular point. We also show 1/c

results from two-derivative supergravity and higher order cα correc-

tions (denoted as O(cα) in the plot legend) from [162, 171] whenever

available. 187

5.10 OPE coefficients of leading long multiplets with spin 0, 2, 4, 6, against

c−1/3. The grey shaded regions are unpublished numerical upper

bounds (available for spin 0, 2, 4) from [18]. The orange numbers

are central charges (a strict subset of the chosen values correspond to

physical theories). The orange curves correspond to short inversions

and the red curves correspond to stabilized iterative long inversions

up to spin 16 (see text for detailed explanation). For c = 25, we also

perform a corrected (triangular point) iterative long inversion using

the numerical results of [18]. 189
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5.11 OPE coefficients of non-chiral algebra short multiplets with spin 0,

2, 4, 6, against c−1/3. The grey shaded regions are numerical upper

bounds (available for spin 0, 2, 4) from [18]. The red numbers are

central charges (a strict subset of the chosen values correspond to

physical theories). Short inversions produce the same results as the

supergravity ones. The red curves correspond to stabilized iterative

long inversions up to spin 16 (see text for detailed explanation). For

c = 25, we also perform a corrected (triangular point) iterative long

inversion using numerical data from [18]. We also show higher order

cα corrections (denoted as O(cα) in the plot legend) from [162, 171]

whenever available. 190

209



List of Tables

4.1 Table of unitary defect spectrum in the free theory: for monodromy

defects with q = 2 and half-integer s on the top, and for general non-

monodromy defects on the bottom. The pattern in the bottom table

continues outside the shown range of p and q. For q > 2 the listed

operators transform as symmetric traceless SO(q) tensors and then s

corresponds to its rank. 113

5.1 Superconformal blocks contribution from all superconformal multi-

plets appearing in the OPE of two stress tensor multiplets. The con-

tributions are determined from the atomic building blocks. Bose sym-

metry requires that ` is an even integer. Here ∆ is the dimension of

the superconformal primary. 149

5.2 Simple and double poles of Γ(∆−3)
Γ(∆−1)

G(∆−5)
`+5 (0,−2; z, z̄) 172

5.3 Poles in ∆ of c(−2)(∆, `; ∆φ) 199

5.4 Crude estimates of unprotected CFT data of A1 theory for the first

few lowest spins. The results are obtained by imposing λ2
D[0,4] = 0

and approximating the entire unprotected part of a(z, z̄) by: a single

scalar block on the leading long trajectory (“1”), one block of spin

0 and one block of spin 2 on the leading long trajectory (“2”), and

blocks of spin 0 and spin 2 both on the leading and subleading long

trajectories (“2+2”). The input CFT data are listed in (5.D.1). 202
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[103] A. Bissi, T. Hansen, and A. Söderberg, Analytic Bootstrap for Boundary CFT,

JHEP 01 (2019) 010, [arXiv:1808.08155].

[104] A. Kaviraj and M. F. Paulos, The Functional Bootstrap for Boundary CFT,

arXiv:1812.04034.

216

http://arxiv.org/abs/1401.7026
http://arxiv.org/abs/1703.05448
http://arxiv.org/abs/2005.03667
http://arxiv.org/abs/1805.05967
http://arxiv.org/abs/1509.00008
http://arxiv.org/abs/2009.03336
http://arxiv.org/abs/1912.07505
http://arxiv.org/abs/1601.02883
http://arxiv.org/abs/1706.02414
http://arxiv.org/abs/1210.4258
http://arxiv.org/abs/1310.5078
http://arxiv.org/abs/1502.07217
http://arxiv.org/abs/1605.04175
http://arxiv.org/abs/1608.05126
http://arxiv.org/abs/1712.08185
http://arxiv.org/abs/1703.08159
http://arxiv.org/abs/1808.08155
http://arxiv.org/abs/1812.04034


BIBLIOGRAPHY
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Titre : Aspects des théories de champs conformes et champs quantiques en AdS

Mots clés : Théorie des champs, Théories conformes, Supersymétrie

Résumé : Nous étudions des aspects des théories

quantiques et conformes, qui sont utiles pour décrire

des systèmes comme les particules élémentaires et

les transitions de phase dans les fluides et les ai-

mants. Nos principaux résultats sont triples.

Premièrement, nous montrons que l’étude des

théories quantiques des champs dans l’espace

courbe peut être un moyen utile d’obtenir sa matrice

S, qui fournit une description des processus de diffu-

sion.

Deuxièmement, nous considérons les théories quan-

tiques des champs sans interactions, et nous nous

demandons si nous pouvons ajouter des interactions

uniquement localisées sur un défaut de l’espace-

temps. Nous montrons que de telles configurations ne

peuvent pas être conformes de manière invariante.

Troisièmement, nous considérons des théories impor-

tantes pour la théorie des cordes et qui décrivent la

gravité quantique. Nous expliquons comment les états

avec un spin différent peuvent être regroupés en tra-

jectoires, et montrons que ces trajectoires s’étendent

beaucoup plus loin que dans la plupart des théories.

Title : Aspects of conformal field theories and quantum fields in AdS

Keywords : Quantum and conformal field theories, supersymmetry

Abstract : We study aspects of quantum and confor-

mal theories, which are useful to describe systems as

diverse as elementary particles and phase transitions

in fluids and magnets. Our main results are threefold.

First, we show that studying quantum field theories

in curved space can be a useful way to obtain its S-

matrix, which provides a description scattering pro-

cesses.

Second, we consider quantum field theories without

interactions, and ask ourselves whether we can add

interactions only localized on a defect in space-time.

We show that such setups cannot be conformally in-

variant.

Third, we consider theories that are important in string

theory and describe quantum gravity. We explain how

states with a different spin can be grouped in trajec-

tories, and show that these trajectories extend much

further than in most theories.
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