
HAL Id: tel-03541331
https://theses.hal.science/tel-03541331

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning-based representations and methods for 3D
shape analysis, manipulation and reconstruction

Marie-Julie Rakotosaona

To cite this version:
Marie-Julie Rakotosaona. Learning-based representations and methods for 3D shape analysis, manip-
ulation and reconstruction. Computer Vision and Pattern Recognition [cs.CV]. Institut Polytechnique
de Paris, 2021. English. �NNT : 2021IPPAX114�. �tel-03541331�

https://theses.hal.science/tel-03541331
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
1I

P
PA

X
11

4

Learning-based representations and
methods for 3D shape analysis,
manipulation and reconstruction
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Abstract

Efficiently processing and analysing 3D data is a crucial challenge in modern applica-
tions as 3D shapes are becoming more and more widespread with the proliferation of
acquisition devices and modeling tools. While successes of 2D deep learning have become
commonplace and surround our daily life, applications that involve 3D data are lagging
behind. Due to the more complex non-uniform structure of 3D shapes, successful methods
from 2D deep learning cannot be easily extended and there is a strong demand for novel
approaches that can both exploit and enable learning using geometric structure. Moreover,
being able to handle the various existing representations of 3D shapes such as point clouds
and meshes, as well as the artefacts produced from 3D acquisition devices increases the
difficulty of the task. In this thesis, we propose systematic approaches that fully exploit
geometric information of 3D data in deep learning architectures. We contribute to point
cloud denoising, shape interpolation and shape reconstruction methods. We observe that
deep learning architectures facilitate learning the underlying surface structure on point
clouds that can then be used for denoising as well as shape interpolation. Encoding
local patch-based learned priors, as well as complementary geometric information such as
edge lengths, leads to powerful pipelines that generate realistic shapes. The key common
thread throughout our contributions is facilitating seamless conversion between different
representations of shapes. In particular, while using deep learning on triangle meshes
is highly challenging due to their combinatorial nature we introduce methods inspired
from geometry processing that enable the creation and manipulation of triangle faces.
Our methods are robust and generalize well to unseen data despite limited training sets.
Our work, therefore, paves the way towards more general, robust and universally useful
manipulation of 3D data.





Chapter 1

Introduction

The field of AI and deep learning, for analysing 2D images has recently led to tremendous
achievements for image manipulation [128], understanding [96] and generation [101, 140].
Even more impressively, these advances are currently being used in real life applications
ranging from retail to healthcare as well as banking and agriculture. Surprisingly methods
for processing 3D data are not encountering such success. Analogous applications on
shape manipulation [125], understanding or generation [16, 15] are lagging behind, failing
to produce similar quality results. This naturally raises the question: How can we achieve
similar success in 3D data applications? Despite representing the same environment
and objects, 3D data are fundamentally different from 2D images. Intuitively, since
they combine both appearance and geometry, 3D shapes carry richer information than
2D images. However they do not enjoy the same canonical representation that can be
found in a grid of pixels for instance. Popular representations of shapes such as point
clouds, a set of unordered data points in space, or triangle meshes, a set of triangles
that are connected by common edges, do not present a clear ordering or structure that
suits existing deep learning architectures as shown in Figure 1.1. Therefore, a potential
cause to the discrepancy in performance lies in the fact that current 3D methods tend to
focus on extending successful approaches from 2D vision to 3D without exploiting the
inherently different nature of 3D shapes. We are interested in exploring methods and
representations that process data in accordance with their specific nature and properties.
Furthermore, in addition to their particular geometric nature, 3D data present further
challenges in their representation that are twofold: (i) different historical source of 3D
data and tasks has led to numerous representations of shapes (point clouds, meshes,
voxels) (ii) due to hardware limitations, input data is often noisy and fails to capture
high frequency details.

1.1 Background

With the ubiquitous use of 3D data in many fields and industries such as entertainment,
cultural heritage, geo-exploration, architecture, and urban modeling, it is essential to
analyse and process such data before they can be used in downstream tasks. The discipline
of geometry processing [34] deals with mathematical models and algorithms for analyzing
and manipulating geometric data. Typical operations include surface reconstruction from
point samples (Figure 1.3), filtering operations for noise removal (Figure 1.2), geometric
data analysis and manipulation [206], shape simplification [6], and geometric modeling
and interactive design [35].
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Figure 1.1 – Main representations of 3D shapes. While point clouds and triangle meshes
allow highly detailed representations of shapes, they do not enjoy an ordered grid structure
such as 2D images or voxels. While voxels are structured as grids, they have limited
accuracy for the same memory budget.

Traditionally, 3D data are represented via numerous representations. The most
commonly used representations have naturally evolved from the various data sources and
processing operations on 3D data. While many of the essential operations from geometry
processing remain indispensable today, and are even becoming more abundant with the
emergence of new fields such as automatic shape generation, existing representations can
hinder progress on these same applications as they are not well suited for deep learning
applications as we highlight in Section 1.1.1.

In this thesis we are interested in learning-based algorithms that consume 3D infor-
mation obtained from acquisition devices and produce well-structured representations of
the underlying shapes.

1.1.1 Operations and Representations on 3D shapes

Shape Registration and Reconstruction Low cost sensors and acquisition methods
have recently become widely available, making it easy to acquire raw 3D data. Popular
tools such as Microsoft Kinect [109], photogrammetry or lidars produce RGBD images
and point clouds that suffer from noise and outliers due to limitations and inherent noise
of sensors and their environment [110, 187]. In order to correctly process 3D shapes in
later stages, it is necessary to denoise point clouds and possibly generate more structured
representations.

For reconstructing 3D shapes, we distinguish two preferred representations: point
clouds and meshes. Due to their simplicity, compactness, flexibility and powerful rep-
resentation capability point clouds are an immensely popular representation often used
for shape understanding [184, 235], shape generation and reconstruction [222]. A major
challenge in generating point clouds is that contrary to 2D images, the points do not follow
any canonical ordering, which makes extending existing methods intended for structured
data not straightforward. Furthermore, point clouds lack connectivity information that
characterize surfaces.

On the other hand, meshes remain a preferred representation especially for efficiently
storing and rendering 3D models. Meshes enable efficient and accurate representations
of 3D shapes as they can adapt to different levels of detail in separate regions and are
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well suited for tasks such as rendering due to their explicit representation of the surface.
However, due to their complexity it remains a challenge to apply deep learning methods
on meshes. They are often irregular and the combinatorial nature of the connectivity
information between vertices makes it difficult to represent them in a differentiable way.

Shape Manipulation and Generation A core problem in 3D computer vision is to
build models that can generate new, diverse and realistic shapes. In particular, morphing
and manipulating shapes to produce new models or animations from interpolations or
operations on existing shapes is a core problem that has been investigated in many recent
works [125, 188, 158, 19] as well as more classical approaches [138, 117]. Classical works
from geometry processing often formulate the task of interpolating shapes as a constrained
energy based minimization problem where physical characteristics such as volume or
shell deformations are preserved. While such methods can produce very high quality
results, they are often complex, expensive and rely on using meshes with one-to-one
correspondence. Recently, learning based methods have emerged that process point clouds
that are not necessarily in one-to-one correspondence efficiently. However, these methods
can lead to distortions during interpolations [104, 188] as they lack surface information
about the shape. We are interested in the problem of realistic shape interpolation from
point cloud data that are not in one-to-one correspondence and can be noisy or incomplete.

1.1.2 Deep Learning on 3D data

Early learning based methods on 3D data handle multiple representations: voxels [212],
point clouds [235, 184], meshes [111] for tasks such as shape classification or part seg-
mentation. While they do produce good results in such tasks, they are often not well
adapted to handle tasks from geometry processing such as denoising, reconstruction or
shape generation that require dealing with dense representations, going between different
representations, and understanding and respecting geometric properties.

We make the distinction between recent high-level operations extended from 2D
deep learning such as classification or segmentation problems that require a high-level
understanding of shapes, and shape analysis and processing operations that rely on
processing the geometric information of surfaces in different representations. We show
that deep learning is a powerful tool for processing geometric information on 3D shapes. In
turn, integrating geometry leads to more efficient representations for high-level operations
such as shape generation.

Finally, while successful applications of 2D deep learning rely on very large datasets
that contain up to 14 million images [62], annotated 3D datasets are often much smaller
such as ShapeNet [44] that only contain 51 thousand models. The scarcity of 3D data
compared to 2D images, is a major limitation that we address by infusing geometric
priors at different scales to produce more robust models.

1.2 Contributions

We organize the contributions of this thesis in three main parts.
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Figure 1.2 – Noisy point clouds with outliers (left). We remove outliers and project the
remaining points to recover the underlying clean surface (right).

Part 1: Point Cloud Denoising As mentioned above, learning to denoise point
clouds is a key challenge for producing accurate reconstructions. Traditional methods
for point cloud denoising largely rely on local surface fitting (e.g., jets or MLS surfaces),
local or non-local averaging, or on statistical assumptions about the underlying noise
model. In Chapter 3, we develop a simple learning-based method for removing outliers
and reducing noise in unordered point clouds. Our approach is efficient and robust to
varying amounts of noise and outliers, while being able to handle large densely-sampled
point clouds.

While the method described in Chapter 3 helps producing clean point clouds from
noisy data, point cloud representations still lack information about the underlying surface,
and specifically the connectivity between points. This fact motivates the next parts,
namely the need to encode intrinsic information as well as explicitly retrieving the said
connectivity in the form of meshes.

Part 2: Intrinsic shape representations While being widely used and available,
point cloud data does not encode any connectivity between points. Thus, methods trained
on point clouds can by their nature be insensitive to distortions that might appear on
generated shapes. This raises the following question: Can we learn to encode edge or
intrinsic information into shape representations computed from point clouds? In Chapter
4, we develop a representation and an architecture that allow to encode intrinsic shape
information and drastically improve the quality of reconstructions and interpolations of
shapes. Our approach is based on constructing a dual encoding space that enables shape
synthesis and, at the same time, provides links to the intrinsic shape information, which
is typically not available on point cloud data. Furthermore, the strong regularization
provided by our dual latent space approach also helps to improve shape recovery in
challenging settings from noisy point clouds across different datasets.

Chapter 4 demonstrates that we can learn to enrich existing representations with
learned intrinsic information. However, our method relies on a fixed template to generate
surfaces and does not adapt to new topologies which is the main goal of our final part.
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Figure 1.3 – Given an input clean point cloud (left), we learn triangles between input
points that best interpolate the surface (right).

Part 3: Differentiable meshing Generating high quality meshes efficiently from
noisy input is an essential task in 3D computer vision. However, their combinatorial
nature is a substantial obstacle to using them in learning-based methods. We aim at
generating meshes in an end-to-end manner since, as highlighted above, meshes are highly
efficient shape representations. In Chapter 5 and Chapter 6 we develop key tools for
enabling end-to-end meshing of point clouds and surfaces.

In Chapter 5 , we introduce a method for reconstructing triangle meshes from point
clouds. Existing learning-based methods for mesh reconstruction mostly generate triangles
individually, making it hard to create manifold meshes. We leverage the properties of 2D
Delaunay triangulations to construct a mesh from manifold surface elements. While our
method is currently the state of the art for similar methods, developing methods that are
fully differentiable is a crucial challenge for the future.

In Chapter 6, we present a differentiable approach for manipulating the topology
of triangles meshes. Our approach allows to optimize meshes using any differentiable
objective function by computing a soft existence score associated with the triangles of the
mesh. Our approach does not require any post-processing or combinatorial operations
such as edge flips or vertex splits.

1.3 List of publications

This dissertation is based on the following publications:

1. M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and M.
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point clouds, in Computer Graphics Forum, vol. 39, Wiley Online Library, 2020,
pp. 185-203. [187]

2. M.-J. Rakotosaona and M. Ovsjanikov, Intrinsic point cloud interpolation via
dual latent space navigation, in European Conference on Computer Vision, Springer,
2020, pp. 655-672. [188]
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ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 22-31. [186]
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Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 8588-8597. [125]
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Chapter 2

Introduction en Français

Le domaine de l’IA et de l’apprentissage profond, pour l’analyse des images 2D, a
récemment donné lieu à d’énormes avancements en matière de manipulation d’images
[128], de compréhension [96] et de génération [101, 140]. Plus impressionnant encore, ces
progrès sont actuellement utilisés dans des applications réelles allant du commerce, à la
santé, en passant par le secteur bancaire et l’agriculture. Étonnamment, les méthodes de
traitement des données 3D ne rencontrent pas un tel succès. Des applications analogues
sur la manipulation des formes [125], la compréhension ou la génération [16, 15] sont
à la traîne, ne parvenant pas à produire des résultats de qualité similaire. Cela amène
naturellement la question suivante : Comment pouvons-nous obtenir un succès similaire
dans les applications de données 3D ? Bien qu’elles représentent le même environnement
et les mêmes objets, les données 3D sont fondamentalement différentes des images 2D.
Intuitivement, puisqu’elles combinent à la fois l’apparence et la géométrie, les formes
3D sont porteuses d’informations plus riches que les images 2D. Cependant, elles ne
bénéficient pas de la même représentation canonique que celle que l’on peut trouver dans
une grille de pixels par exemple. Les représentations populaires des formes telles que
les nuages de points, un ensemble de points non ordonnés dans l’espace, ou les mailles
triangulaires, un ensemble de triangles reliés par des arêtes communes, ne présentent
pas un ordre ou une structure claire qui convienne aux architectures d’apprentissage
profond existantes, comme montré sur la figure 2.1. Ainsi, une cause potentielle de
l’écart de performance réside dans le fait que les méthodes 3D actuelles ont tendance
à se concentrer sur l’extension des approches fructueuses de la vision 2D à la 3D sans
exploiter la nature intrinsèquement différente des formes 3D. Nous nous intéressons à
l’exploration de méthodes et de représentations qui traitent les données en respectant leur
nature et de leurs propriétés spécifiques. En outre, en plus de leur nature géométrique
particulière, les données 3D présentent des défis supplémentaires dans leur représentation:
(i) les différentes sources historiques des données et des tâches 3D ont conduit à de
nombreuses représentations de formes (nuages de points, maillages, voxels) (ii) en raison
des limitations matérielles, les données d’entrée sont souvent bruitées et ne parviennent
pas à capturer les détails à haute fréquence.

2.1 Contexte

Avec l’utilisation systématique de données 3D dans de nombreux domaines et industries
telles que le divertissement, le patrimoine culturel, la géo-exploration, l’architecture et la
modélisation urbaine, il est essentiel d’analyser et de traiter ces données avant de pouvoir
les utiliser dans des applications connexes. La discipline du traitement de la géométrie
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Figure 2.1 – Principales représentations des formes 3D. Si les nuages de points et les
mailles triangulaires permettent des représentations très détaillées des formes, ils ne
bénéficient pas d’une structure de grille ordonnée comme les images 2D ou les voxels.
Bien que les voxels soient structurés comme des grilles, ils ont une précision limitée pour
le même budget en mémoire.

(geometry processing [34]) traite des modèles mathématiques et des algorithmes d’analyse
et de manipulation des données géométriques. Les opérations typiques comprennent la
reconstruction de surfaces à partir de nuages de points (figure 2.3), les opérations de
filtrage pour la suppression du bruit (figure 2.2), l’analyse et la manipulation de données
géométriques [206], la simplification de formes [6], et la modélisation géométrique et la
conception interactive [35].

Traditionnellement, les données 3D sont représentées par de nombreuses représen-
tations. Les représentations les plus couramment utilisées ont naturellement évolué
à partir de diverses sources de données et opérations de traitement des données 3D.
Alors que de nombreuses opérations essentielles du traitement de la géométrie restent
indispensables aujourd’hui, et deviennent même plus abondantes avec l’émergence de
nouveaux domaines tels que la génération automatique de formes, les représentations
existantes peuvent entraver les progrès de ces mêmes applications car elles ne sont pas
bien adaptées aux applications d’apprentissage profond, comme nous le soulignons dans
la section 2.1.1.

Dans cette thèse, nous nous intéressons aux algorithmes basés sur l’apprentissage
qui consomment des informations 3D obtenues à partir de dispositifs d’acquisition et
produisent des représentations bien structurées des surfaces concernées.

2.1.1 Opérations et Représentations sur les Formes 3D

Acquisition et reconstruction de formes Des capteurs et des méthodes d’acquisition
à faible coût sont récemment devenus largement accessible, ce qui facilite l’acquisition de
données 3D brutes. Des outils populaires tels que Microsoft Kinect [109], la photogram-
métrie ou les lidars produisent des images RGBD et des nuages de points qui souffrent de
bruit et de valeurs aberrantes en raison des limitations et du bruit inhérent aux capteurs
et à leur environnement [110, 187]. Afin de traiter correctement les formes 3D dans les
étapes ultérieures, il est nécessaire de débruiter les nuages de points et éventuellement de
générer des représentations plus structurées.

Pour reconstruire des formes 3D, on distingue deux représentations privilégiées : les
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nuages de points et les maillages. En raison de leur simplicité, de leur compacité, de
leur flexibilité et de leur puissante capacité de représentation, les nuages de points sont
une représentation extrêmement populaire, souvent utilisée pour la compréhension des
formes [184, 235], la génération et la reconstruction de formes [222]. Un défi majeur dans
la génération de nuages de points est que, contrairement aux images 2D, les points ne
suivent aucun ordre canonique, ce qui rend l’extension des méthodes existantes destinées
aux données structurées difficile. En outre, les nuages de points manquent d’informations
sur la connectivité qui caractérise les surfaces.

D’autre part, les maillages restent une représentation privilégiée, notamment pour le
stockage et le rendu efficaces des modèles 3D. Les maillages permettent une représentation
efficace et précise des formes 3D car ils peuvent s’adapter à différents niveaux de détail
dans des régions distinctes et sont bien adaptés à des tâches telles que le rendu grâce
à leur représentation explicite de la surface. Cependant, en raison de leur complexité,
l’application de méthodes d’apprentissage profond aux maillages reste un défi. Ils sont
souvent irréguliers et la nature combinatoire des informations de connectivité entre les
sommets rend difficile leur représentation de manière différentiable.

Manipulation et Génération de Formes L’un des principaux problèmes de la vision
par ordinateur en 3D est de construire des modèles capables de générer de nouvelles
formes qui sont diverses et réalistes. En particulier, la génération et la manipulation
de formes pour produire de nouveaux modèles ou animations à partir d’interpolations
ou d’opérations sur des formes existantes est un problème central qui a été étudié dans
de nombreux travaux récents [125, 188, 158, 19] ainsi que dans des approches plus
classiques [138, 117]. Les travaux classiques de traitement de la géométrie formulent
souvent la tâche d’interpolation des formes comme un problème de minimisation sous
contrainte basé sur des énergies traduisant des caractéristiques physiques telles que des
déformations de volume. Bien que ces méthodes puissent produire des résultats de très
haute qualité, elles sont souvent complexes, coûteuses et reposent sur l’utilisation de
maillages en correspondance. Récemment, des méthodes basées sur l’apprentissage ont
vu le jour et traitent efficacement des nuages de points qui ne sont pas nécessairement en
correspondances. Cependant, ces méthodes peuvent conduire à des distorsions lors des
interpolations [104, 188] car elles manquent d’informations de surface sur sous-jacente
de la forme 3D. Nous nous intéressons au problème d’interpolation de formes à partir
de données de nuages de points qui ne sont pas en correspondance et qui peuvent être
bruités ou incomplets.

2.1.2 Apprentissage Profond sur des Données 3D

Les méthodes d’apprentissage sur des données 3D permettent de traiter plusieurs représen-
tations : voxels [212], nuages de points [235, 184], maillages [111] pour des tâches telles
que la classification de formes ou la segmentation de parties. Bien qu’ils produisent de
bons résultats dans ces tâches, ils ne sont souvent pas bien adaptés pour traiter des
tâches de traitement de la géométrie telles que le débruitage, la reconstruction ou la
génération de formes qui nécessitent de traiter des représentations denses, de passer d’une
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représentation à l’autre, et de comprendre et respecter les propriétés géométriques.
Nous faisons la distinction entre les opérations récentes de haut niveau issues de

techniques d’apprentissage profond en 2D, telles que les problèmes de classification ou
de segmentation qui nécessitent une compréhension de haut niveau des formes, et les
opérations d’analyse et de traitement des formes qui reposent sur le traitement des
informations géométriques des surfaces dans différentes représentations. Nous montrons
que l’apprentissage profond est un outil puissant pour traiter l’information géométrique
des formes 3D. En conséquence, l’intégration de la géométrie conduit à des représentations
plus efficaces pour les opérations de haut niveau telles que la génération de formes.

Enfin, alors que les applications fructueuses de l’apprentissage profond en 2D reposent
sur de très grands jeux de données qui contiennent jusqu’à 14 millions d’images [62], les
jeux de données 3D annotés sont souvent beaucoup plus restreints, comme ShapeNet [44]
qui ne contient que 51 000 modèles. La rareté des données 3D par rapport aux images
2D est une limitation majeure que nous abordons en apprenant des données géométriques
à différentes échelles pour produire des modèles plus robustes.

2.2 Contributions

Nous organisons les contributions de cette thèse en trois parties principales.

Partie 1 : Débruitage des nuages de points Comme nous l’avons mentionné plus
haut, apprendre à débruiter les nuages de points est un défi majeur pour produire des
reconstructions précises. Les méthodes traditionnelles de débruitage des nuages de points
reposent en grande partie sur l’ajustement des surfaces locales (par exemple, les jets ou
les surfaces MLS), le moyennage local ou non local, ou sur des hypothèses statistiques
concernant le modèle de bruit sous-jacent. Dans le chapitre 3, nous développons une
méthode simple basée sur l’apprentissage pour supprimer les valeurs aberrantes et réduire
le bruit dans les nuages de points non ordonnés. Notre approche est efficace et robuste
face à des quantités variables de bruit et de valeurs aberrantes, tout en étant capable de
traiter des nuages de points denses.

Bien que la méthode décrite au chapitre 3 permette de produire des nuages de
points non bruités à partir de données bruitées, les représentations de nuages de points
manquent toujours d’informations sur la surface sous-jacente, et plus particulièrement
sur la connectivité entre les points. Ce constat motive les parties suivantes, à savoir la
nécessité d’encoder des informations intrinsèques ainsi que de récupérer explicitement
ladite connectivité sous forme de mailles.

Partie 2 : Représentations intrinsèques de formes Bien qu’elles soient largement
utilisées et accessibles, les données des nuages de points n’encodent aucune connectivité
entre les points. Ainsi, les méthodes entraînées sur des nuages de points peuvent par
nature être insensibles aux distorsions qui peuvent apparaître sur les formes générées.
Cela amène à se poser la question suivante : Peut-on apprendre à encoder des informations
sur la connectivité ou des informations intrinsèques dans les représentations de formes
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Figure 2.2 – Nuages de points bruités avec des points aberrants (à gauche). Nous
supprimons les points aberrants et projetons les points restants pour retrouver la surface
non bruitée (à droite).

calculées à partir de nuages de points ? Dans le chapitre 4, nous développons une
représentation et une architecture qui permettent d’encoder les informations intrinsèques
des formes et d’améliorer drastiquement la qualité des reconstructions et interpolations
de formes. Notre approche est basée sur la construction d’un espace d’encodage double
qui permet la synthèse de formes et, en même temps, fournit des liens vers les données
intrinsèques de la forme , qui ne sont généralement pas disponible sur les données de nuages
de points. En outre, la forte régularisation fournie par notre approche de l’espace latent
double permet également d’améliorer la reconstruction des formes dans des contextes
complexes à partir de nuages de points bruités dans différents ensembles de données.

Le chapitre 4 démontre que nous pouvons apprendre à enrichir des représentations
existantes avec des informations intrinsèques apprises. Cependant, notre méthode s’appuie
sur un maillage fixe pour générer des surfaces et ne s’adapte pas à de nouvelles topologies,
ce qui est l’objectif principal de notre dernière partie.

Partie 3 : Maillage différentiable La génération efficace de maillages de haute
qualité à partir d’une entrée bruitée est une tâche essentielle en vision par ordinateur 3D.
Cependant, leur nature combinatoire est un obstacle important à leur utilisation dans des
méthodes basées sur l’apprentissage. Nous cherchons à générer des maillages de bout en
bout car, comme nous l’avons souligné plus haut, les maillages sont des représentations
de forme très efficaces. Dans le chapitre 5 et le chapitre 6, nous développons des outils
clés pour permettre le maillage de bout en bout de nuages de points et de surfaces.

Dans le chapitre 5 , nous présentons une méthode de reconstruction de maillages trian-
gulaires à partir de nuages de points. Les méthodes existantes basées sur l’apprentissage
pour la reconstruction de maillages génèrent généralement les triangles individuellement,
ce qui rend difficile la création de maillages bien structurés. Nous tirons parti des
propriétés des triangulations de Delaunay en 2D pour construire un maillage à partir
d’éléments de surface bien structurés. Bien que notre méthode soit actuellement l’état de
l’art pour des méthodes similaires, le développement de méthodes différentiables de bout
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Figure 2.3 – Étant donné un nuage de points non bruité en entrée (à gauche), nous
prédisons les triangles entre les points qui interpolent le mieux la surface (à droite).

en bout est un défi crucial pour l’avenir.
Dans le chapitre 6, nous présentons une approche différentiable pour manipuler la

topologie des maillages de triangles. Notre approche permet d’optimiser les mailles en
utilisant n’importe quelle fonction objectif différentiable en calculant un score d’existence
continu associé aux triangles de la maille. Notre approche ne nécessite pas de post-
traitement ou d’opérations combinatoires telles que des retournements d’arêtes.
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Chapter 3

PointCleanNet: Learning to
Denoise and Remove Outliers from

Dense Point Clouds

Point clouds obtained with 3D scanners or by image-based reconstruction tech-
niques are often corrupted with significant amount of noise and outliers. Traditional
methods for point cloud denoising largely rely on local surface fitting (e.g., jets or
MLS surfaces), local or non-local averaging, or on statistical assumptions about
the underlying noise model. In contrast, we develop a simple data-driven method
for removing outliers and reducing noise in unordered point clouds. We base our
approach on a deep learning architecture adapted from PCPNet, which was recently
proposed for estimating local 3D shape properties in point clouds. Our method first
classifies and discards outlier samples, and then estimates correction vectors that
project noisy points onto the original clean surfaces. The approach is efficient and
robust to varying amounts of noise and outliers, while being able to handle large
densely-sampled point clouds. In our extensive evaluation, both on synthesic and
real data, we show an increased robustness to strong noise levels compared to various
state-of-the-art methods, enabling accurate surface reconstruction from extremely
noisy real data obtained by range scans. Finally, the simplicity and universality of
our approach makes it very easy to integrate in any existing geometry processing
pipeline. Both the code and pre-trained networks can be found on the project page1.

3.1 Introduction

Raw 3D point clouds obtained directly from acquisition devices such as laser scanners or
as output of a reconstruction algorithm (e.g., image-based reconstruction) are regularly
contaminated with noise and outliers. The first stage of most geometry processing
workflows typically involves cleaning such raw point clouds by discarding the outlier
samples and denoising the remaining points to reveal the (unknown) scanned surface.
The clean output is then used for a range of applications like surface reconstruction,
shape matching, model retrieval, etc.

Any good point cloud cleanup algorithm should (i) balance between denoising and
feature-preservation, i.e., remove outliers and noise while retaining data fidelity by
preserving sharp edges and local details of the underlying scanned surface; (ii) be self-
tuning, i.e., not require as input precise estimates of the noise model or statistics of the

1https://github.com/mrakotosaon/pointcleannet
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Figure 3.1 – We present PointCleanNet, a two-stage network that takes a raw
point cloud (left) and first removes outliers (middle) and then denoises the remaining
pointset (right). Our method, unlike many traditional approaches, is parameter-free
and automatically discovers and preserves high-curvature features without requiring
additional information about the underlying surface type or device characteristics. Here,
point clouds are colored based on error compared to the ground truth point cloud (blue
denoting low error, red denoting high error).

unknown scanned surface (e.g., local surface type or curvature characteristics); (iii) be
invariant to permutation and rigid transform applied to the pointset, i.e., the denoised
output should not depend on angle of scanning or choice of coordinate system; and
(iv) avoid unnecessarily degrading the input, i.e., leave the points on the scanned surface if
the input happens to be noise-free. Note that the last criterion implies that the algorithm
should not oversmooth the output if the algorithm is iterated multiple times.

Decades of research have produced many variants of denoising approaches targeted
for different surface types and noise models (see survey [110]). Such approaches can
be broadly categorized as: classifying points as outliers using statistical methods, e.g.,
[3]; projecting points to estimated local surfaces (e.g., MLS surface, jet-fitting, etc.)
[86, 41, 42]; consolidating similar patches to cancel out iid noise perturbations (e.g., non-
local means, dictionary-based sparse coding), e.g., [70]; or, local smoothing using auxiliary
input information (e.g., bilateral smoothing) [123], among many others. Unfortunately,
there is no single winner among these methods. The choice of algorithm and its parameters
often depends on the scanned surface and the noise characteristics of the acquisition
setup. Given that the complexity of the underlying geometry and the noise characteristics
are, at best, partially known at acquisition time, choosing an optimal algorithm with
associated parameters is typically an iterative trial-and-error process.

Inspired by the recent successes of applying deep learning techniques for the analysis
and processing of geometric data, including [162, 37, 218] among many others, and
especially the seminal works designed for learning directly on point clouds [183, 216],
in this paper, we present PointCleanNet, a simple data-driven denoising approach.
Specifically, we design a two stage point cloud cleaning network based on the recently
proposed PCPNet architecture [107] to estimate robust local features and use this
information to denoise the point cloud. At training time, a variety of surface patches
extracted from a set of shapes is synthetically corrupted with outliers and noise of
varying magnitudes (including zero noise). This artificially corrupted set is then used to
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train PointCleanNet. Our two-stage method first removes outlier samples and then
estimates correction vectors for the remaining points. Figure 6.1 shows an example on a
raw real-world scanned point cloud from the ETHZ dataset [221].

The process is enabled by a novel loss function that effectively cleans pointsets
without requiring explicit information about the underlying surface or noise characteristics.
Intuitively, the network learns to identify local noise-free patches based on estimated
features extracted from corresponding raw pointsets and proposes per-point correction
vectors. In other words, the network implicitly builds a dictionary of local surface patches
in the form of local learned features and uses it to classify input points as outliers and
project the remaining ones onto an ensemble of dictionary patches. At test time, our
denoising network directly consumes raw input point clouds, classifies and discards outlier
measurements, and denoises the remaining points. The approach is simple to train and
use, and does not expect the user to provide parameters to characterize the surface or
noise model. Additionally, unlike traditional approaches, our denoising network can easily
be adapted to particular shape families and non-standard noise models.

We qualitatively and quantitatively evaluate PointCleanNet on a range of synthetic
datasets (with access to groundtruth surfaces) and real world datasets. In our extensive
tests, our approach performed better than a variety of state-of-the-art denoising approaches
(even with manually-tuned parameters) across both shape and medium to high noise
variations. Additionally, the simplicity and universality of our approach makes it very
easy to integrate in any existing geometry processing workflow.

3.2 Related Work

Point cloud denoising and outlier removal have a long and rich history in diverse areas of
computer science and a full overview is beyond the scope of the current article. Below, we
briefly review the main general trends for addressing these problems, while concentrating
on solutions most closely related to ours, and refer the interested reader to a recent survey
[110].

Outlier removal The earliest classical approaches for outlier detection, classification
and removal have been proposed primarily in the statistics and data mining communities,
in the general setting of point clouds in arbitrary dimensions, with several monographs
dedicated specifically to this topic [181, 18, 189, 3]. These methods are typically based
on robust local statistics and most often come with rigorous theoretical guarantees. At
the same time, their generality often comes at a cost, as purely statistical methods are
often not adapted to the specific features found in geometric 3D shapes, and in most
cases require non-trivial parameter tuning.

More recently, several approaches have been proposed for outlier detection, with
emphasis on utility for 3D point clouds, arising e.g., from acquisition data, including
[46, 108, 221]. The two former methods are implemented in widely used libraries such
as CGAL and have also been used in the context of surface reconstruction from noisy
point clouds [95]. These approaches are very robust, but are also based on setting critical
parameters or rely on using additional information such as color [221]. This makes it
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difficult to apply them, for example, across general noise models, without additional user
input and tuning of parameters.

Local surface fitting, bilateral filtering Denoising and outlier removal also arise
prominently, and have therefore been considered in the context of surface fitting to noisy
point clouds, including the widely-used Moving Least Squares (MLS) approach and its
robust variants [4, 164, 86, 177, 103]. Similarly, other local fitting approaches have also
been used for point cloud denoising, using robust jet-fitting with reprojection [41, 42] or
various forms of bilateral filtering on point clouds [123, 73], which take into account both
point coordinates and normal directions for better preservation of edge features. A closely
related set of techniques is based on sparse representation of the point normals for better
feature preservation [12, 199, 163]. Denoising is then achieved by projecting the points
onto the estimated local surfaces. These techniques are very robust for small noise but
can lead to significant over smoothing or over-sharpening for high noise levels [163, 110].

Non-local means, dictionary-based methods Another very prominent category of
methods, inspired in part from image-based techniques consist in using non-local filtering
based most often on detecting similar shape parts (patches) and consolidating them
into a coherent noise-free point cloud [64, 239, 70, 71, 234]. Closely related are also
methods, based on constructing “dictionaries” of shapes and their parts, which can then
be used for denoising and point cloud filtering, e.g., [231, 74] (see also a recent survey
of dictionary-based methods [146]). Such approaches are particularly well-suited for
feature-preserving filtering and avoid excessive smoothing common to local methods. At
the same time, they also require careful parameter setting and, as we show below, are
difficult to apply across a wide variety of point cloud noise and artefacts.

Denoising in images Denoising has also been studied in depth in other domains such as
for images, with a wide variety of techniques based on both local filtering, total variation
smoothing and non-local including dictionary-based methods [38, 81, 43, 159, 80].

More recently, to address the limitations mentioned above, and inspired by the success
of deep learning for other tasks, several learning-based denoising methods have also been
proposed for both images [236, 237, 131] and more recently meshes [213, 21], among others.
These methods are especially attractive, since rather than relying on setting parameters,
they allow the method to learn the correct model from data and adapt for the correct
noise setting at test time, without any user intervention. In signal processing literature, it
is widely believed that image denoising has reached close to optimal performance [45, 147].
One of our main motivations is therefore to show the applicability of this general idea,
and especaially the supervised approaches such as [213], that learn them from a set of
noisy meshes and their ground-truth counterparts, to the setting of 3D point clouds.

Learning in Point Clouds Learning-based approaches, and especially those based on
deep learning, have recently attracted a lot of attention in the context of Geometric
Data Analysis, with several methods proposed specifically to handle point cloud data,
including PointNet [183] and several extensions such as PointNet++ [184] and Dynamic
Graph CNNs [216] for shape segmentation and classification, PCPNet [107] for normal
and curvature estimation, P2P-Net [230] and PU-Net [232] for cross-domain point cloud
transformation and upsampling respectively. Other, convolution-based architectures
have also been used for point-based filtering, including most prominently the recent
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PointProNet architecture [190], designed for consolidating input patches, represented via
height maps with respect to a local frame, into a single clean point set, which can be used
for surface reconstruction. Although such an approach has the advantage of leveraging
image-based denoising solutions, error creeps in in the local normal estimation stage,
especially in the presence of noise and outliers.

Unlike these techniques, our goal is to train a general-purpose method for removing
outliers and denoising point clouds, corrupted with potentially very high levels of struc-
tured noise. For this, inspired by the success of PCPNet [107] for normal and curvature
estimation, we propose a simple framework aimed at learning to both classify outliers
and to displace noisy point clouds by applying an adapted architecture to point cloud
patches. We show through extensive experimental evaluation that our approach can
handle a wide range of artefacts, while being applicable to dense point clouds, without
any user intervention.

3.3 Overview

As a first step in digitizing a 3D object, we usually obtain a set of approximate point
samples of the scanned surfaces. This point cloud is typically an intermediate result used
for further processing, for example to reconstruct a mesh or to analyze properties of
the scanned object. The quality of these downstream applications depends heavily on
the quality of the point cloud. In real-world scans, however, the point cloud is usually
degraded by an unknown amount of outliers and noise. We assume the following point
cloud formation model:

P′ = {p′i} = {pi + ni}pi∈P ∪ {oj}oj∈O, (3.1)

where P′ is the observed noisy point cloud, P are perfect surface samples (i.e., pi ∈ S
lying on the scanned surface S), ni is additive noise, and O is the set of outlier points.
We do not make any assumptions about the noise model n or the outlier model O. The
goal of our work is to take the low-quality point cloud P′ as input, and output a higher
quality point cloud closer to P, that is better suited for further processing. We refer to
this process as cleaning. We split the cleaning into two steps: first we remove outliers,
followed by an estimation of per-point displacement vectors that denoise the remaining
points:

P̃ = {p′i + di}p′i∈P′\Õ, (3.2)

where P̃ is the output point cloud, d are the displacement vectors and Õ the outliers
estimated by our method. We first discuss our design choices regarding the desirable
properties of the resulting point cloud and then how we achieve them.

Approach. Traditional statistical scan cleaning approaches typically make assumptions
about the scanned surfaces or the noise model, which need to be manually tuned by
the user to fit a given setting. This precludes the use of these methods by non-expert
users or in casual settings. One desirable property of any cleaning approach is therefore
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robustness to a wide range of conditions without the need for manual parameter tuning.
Recently, deep learning approaches applied to point clouds [183, 184, 216, 107] have
shown a remarkable increase in robustness compared to earlier hand-crafted approaches.
Most of these methods perform a global analysis of the point cloud and produce output
that depends on the whole point cloud. This is necessary for global properties such as
the semantic class, but is less suited for tasks that only depend on local neighborhoods;
processing the entire point cloud simultaneously is a more challenging problem, since the
network needs to handle a much larger variety of shapes compared to working with small
local patches, requiring more training shapes and more network capacity. Additionally,
processing dense point clouds becomes more difficult, due to high memory complexity.
In settings such as ours, local methods such as PCPNet [107] perform better. Both steps
of our approach are based on the network architecture described in this method, due to
its relative simplicity and competitive performance. We adapt this architecture to our
setting (Section 3.4) and train it to perform outlier classification and denoising.

While our cleaning task is mainly a local problem, the estimated displacement vectors
d need to be consistent across neighborhoods in order to achieve a smooth surface. With
a local approach such as PCPNet, each local estimate is computed separately based on a
different local patch. The difference in local neighborhoods causes inconsistencies between
neighboring estimates that can be seen as residual noise in the result (see Figure 3.3).
We therefore need a method to coordinate neighboring results. We observed that the
amount of difference in local neighborhoods between neighboring estimates correlates
with the noise model. Thus, the resulting residual noise has a similar noise model as the
original noise, but with a smaller magnitude. This means we can iterate our network on
the residual noise to keep improving our estimates. See Figure B.8 for an overview of the
full denoising approach. We will provide extensive experiments with different numbers of
denoising iterations in Section 6.4.

Desirable properties of a point cloud. The two stages (i.e., outlier classification
and denoising) of our method use different loss functions. The properties of our denoised
point cloud are largely determined by these loss functions. Thus, we need to design them
such that their optimium is a point cloud that has all desirable properties. We identify
two key desirable properties: First, all points should be as close as possible to the original
scanned surface. Second, the points should be distributed as regularly as possible on the
surface. Note that we do not want the denoised points to exactly undo the additive
noise and approximate the original perfect surface samples, since the component of the
additive noise that is tangent to the surface cannot be recovered from the noisy point
cloud. Section 3.5 describes our loss functions, and in Section 6.4, we compare several
alternative loss functions.

3.4 Cleaning Model

As mentioned above, our goal is to take a noisy point cloud P′ and produce a cleaned point
cloud P̃ that is closer to the unknown surface that produced the noisy samples. We treat
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Figure 3.2 – Our two-stage point cloud cleaning architecture. (Top) Given a noisy point
cloud P′, we first apply a local outlier detection network that uses an architecture based
on PointNet [183] and PCPNet [107] to detect and remove outliers to obtain P̂ (bottom).
We then apply a second network, with a similar architecture, but a different loss, aimed
at reducing the noise level in P̂ by estimating correcting displacement vectors, which
results in the denoised point cloud P̃. FNN and (Q)STN stand for fully connected and
(Quaternion) Spatial Transformer networks[129], similar to their definition and use in
PCPNet [107].

denoising as a local problem: the result for each point p′i ∈ P′ only depends on a local
neighborhood P′i of radius r around the point. Focusing on local neighborhoods allows
us to handle dense point clouds without losing local detail. Increasing the locality (or
scale) radius r provides more information about the point cloud, at the cost of reducing
the capacity available for local details. Unlike traditional analytic denoising approaches,
a single neighborhood setting is robust to a wide range of noise settings, as we will
demonstrate in Section 6.4. In all of our experiments we set r to 5% of the point cloud’s
bounding box diagonal.

We assume the point cloud formation model described in Equation (3.1), i.e., the
noisy point cloud consists of surface samples with added noise and outliers. We then
proceed in two stages: first, we train a non-linear function g that removes outliers:

õi = g(P′i),

where õi is the estimated probability that point p′i is an outlier. We add a point to the
set of estimated outliers Õ if õi > 0.5. After removing the outliers, we obtain the point
cloud P̂ = P′ \ Õ. We proceed by defining a function f that estimates displacements for
these remaining points to move them closer to the unknown surface:

di = f(P̂i).

The final denoised points are obtained by adding the estimated displacements to the
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remaining noisy points: p̃i = p̂i + di. Both f and g are modeled as deep neural networks
with a PCPNet-based architecture. We next provide a short overview of PCPNet before
describing our modifications.

A major challenge when applying deep learning methods directly to point clouds is
achieving invariance to the permutation of the points: all permutations should produce the
same result. Training a network to learn this invariance is difficult due to the exponential
number of such permutations. As a solution to this problem, PointNet [183] proposes
a network architecture that is order-invariant by design. However, PointNet is a global
method, processing the whole point cloud in one forward iteration of the network. This
results in a degraded performance for shape details. PCPNet [107] was proposed as a
local variant of PointNet that is applied to local patches, gives better results for shape
details, and is applicable to dense point clouds, possibly containing millions of points.
We base our denoising architecture on PCPNet.

Creating a local patch. Given a point cloud P = {p1, . . . , pn}, the local patch Pi
contains all the points within the constant radius r inside a ball centered around pi. Using
this patch as input, we want to compute the outlier probability õi and a displacement
vector di, for the remaining non-outlier points. We first normalize this patch by centering
it and scaling it to unit size. The PCPNet architecture requires patches to have a fixed
number of points; like in the original paper, we pad patches with too few points with
zeros and take a random subset from patches with too many points. Intuitively, this step,
makes the network more robust to additional points.

Network architecture. An overview of our network architecture is shown in Figure B.8.
Given the normalized local patch Pi, the network first applies a spatial transformer
network [129] that is constrained to rotations, called a quaternion spatial transformer
network (QSTN). This is a small sub-network that learns to rotate the patch to a canonical
orientation (note that this estimation implicitly learns to be robust to outliers and noise,
similar to robust statistical estimation). At the end of the pipeline, the final estimated
displacement vectors are rotated back from the canonical orientation to world space. The
remainder of the network is divided into three main parts:

• a feature extractor h(p) that is applied to each point in the patch separately,

• a symmetric operation H(Pi) =
∑

pj∈Pi
h(pj) that combines the computed features

for each point into an order-invariant feature vector for the patch, and

• a regressor that estimates the desired properties di and õi from the feature vector
of the patch.

Following the original design of PointNet [183], the feature extractor is implemented
with a multi-layer perceptron that is applied to each point separately, but shares weights
between points. Computing the features separately for each point ensures that they are
invariant to the ordering of the points. The feature extractor also applies an additional
spatial transformer network to intermediate point features.
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In our implementation, we add skip connections to the multi-layer perceptrons, similar
to ResNet blocks. Empirically, we found this to help with gradient propagation and
improve training performance. The regressor is also implemented with a multi-layer
perceptron. Similar to the feature extractor, we add skip connections to help gradient
propagation and improve training performance. We use the same network width as in the
original PCPNet (please refer to the original paper for details). However, the network
is two times deeper as we replace the original layers with two layers ResBlocks. This
architecture is used to compute both outlier indicators and displacement vectors. We
change the number of channels of the last regressor layer to fit the size of the desired
output (1 for outlier indicators and 3 for displacement vectors).

Importantly, for a each point pi in the point cloud, we compute its local neighborhood
Pi and only estimate the outlier probability and displacement vector for the center point
pi, i.e., we do not estimate outlier probabilities or displacement vectors for other points
in the patch. Thus, each point in the original point cloud is processed independently by
considering its own neighborhood and indirectly gets coupled by the iterative cleaning,
as described next.

Iterative cleaning. At test time, after applying the displacement vectors computed
from a single iteration of the architecture, we are left with residual noise. The residual
error vectors from denoised points p̃i to the target surface that are introduced by our
method do not vary smoothly over the denoised points. Empirically, we found that this
residual noise has a similar type, but a lower magnitude than the original noisy points.
Intuitively, this can be explained by looking at the content of input patches for points
that are neighbors in the denoised point cloud. As shown in Figure 3.3, input patches
that are far apart have different content, resulting in different network predictions, while
patches that are close together have similar content, and similar predictions. The distance
of these input patches correlates with the noise model and the noise magnitude, therefore
the network predictions, and the denoised points, are likely to have noise of a similar
type, but a lower magnitude than the original noisy points. This allows us to iterate our
denoising approach to continue improving the denoised points.

estimated displacements d
noisy points P’
denoised points P ~

local neighborhood

original surface

Figure 3.3 – Residual noise. Different local neighborhoods for adjacent denoised points
cause slightly different results, which can be seen as residual noise in the denoised points.
Iterating the denoising approach improves the results.
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In practice, we observed shrinking of the point cloud after several iterations. To
counteract this shrinking, we apply an inflation step after each iteration, inspired by
Taubin smoothing [201]:

d′i = di − 1/k
∑

pj∈N(pi)

dj , (3.3)

where d′i are the corrected displacements vectors and N(pi) are the k nearest neighbours
of point pi, we set k = 100. Note that this step approximately removes the low-frequency
component from the estimated displacements.

3.5 Training Setup

To train the denoising model, we use a dataset of paired noisy point clouds and correspond-
ing clean ground truth point clouds. We do not need to know the exact correspondences
of points in a pair, but we assume we do know the ground truth outlier label for each noisy
point. Using a point cloud as ground truth instead of a surface description makes it easier
to obtain training data. For example, a ground truth point cloud can be obtained from a
higher-quality scan of the same scene the noisy point cloud was obtained from. Since
we work with local patches instead of entire point clouds, we can train with relatively
few shapes. To handle different noise magnitudes, and to enable our iterative denoising
approach, we train with multiple noise levels. This includes several training examples
with zero noise magnitude, which trains the network to preserve the shape of point clouds
without noise.

Loss function Choosing a good loss function is critical, as this choice has direct impact
on the properties of the cleaned point clouds. For the outlier removal phase, we use the
L1 distance between the estimated outlier labels and the ground truth outlier labels:

Lo(p̃i, pi) = ‖õi − oi‖1, (3.4)

where õi is the estimated outlier probability and oi is the ground truth label. We also
experimented with the binary cross-entropy loss, but found the L1 loss to perform better,
in practice.

In the denoising setting, designing the loss function is less straight-forward. Two
properties we would like our denoised point clouds to have are proximity of the points to
the scanned surface, and a regular distribution of the points over the surface. Assuming
the ground truth point cloud has both of these properties, a straight-forward choice for
the loss would be the L2 distance between the cleaned and the ground truth point cloud:

Lc(p̃i, pi) = ‖p̃i − pi‖22, (3.5)

where p̃i and pi are corresponding cleaned and ground truth points in a patch. Note
that, for simplicity of notation, we have unrolled the displacement vector expressions
directly in terms of point coordinates. However, this assumes knowledge of a point-wise
correspondence between the point clouds; and even if the correspondence is known, we
can in general not recover the component of the additive noise that is tangent to the
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Figure 3.4 – Alternate loss functions that result in comparatively worse performance (see
Figure 3.12). Dotted green line denotes the underlying scanned surface, orange points
denote original points, and blue points denote the noisy points. The error function Lc
(top) tries to learn denoising as denoised points p̃i going back to the original ground truth
points pi; while, the error function Lb tries to learn denoising as denoised points p̃i going
to the closest point in the cleaned point set P, i.e., NN(p′i,P).

surface. The minimizer of this loss is therefore an average between all potential candidates
the noisy point may have originated from. This average will in general not lie on the
surface, and lead to poor overall performance. Figure 3.4, top, illustrates this baseline
loss. Fortunately, we do not need to exactly undo the additive noise. There is a large
space of possible point clouds that satisfy the desired properties to the same degree as
the ground truth point cloud, or even more so.

We propose a main loss function and an alternative with a slightly inferior performance,
but simpler and more efficient formulation. The main loss function has one term for
each of the two properties we would like to achieve: Proximity to the surface can be
approximated as the distance of each denoised point to its nearest neighbour in the
ground truth point cloud:

Ls(p̃i,Pp̃i) = min
pj∈Pp̃i

‖p̃i − pj‖22. (3.6)

For efficiency, we restrict the nearest neighbor search to the local patch Pp̃i of ground
truth points centered at p̃i. Originally, we experimented with only this loss function, but
noticed a filament structures forming on the surface after several denoising iterations, as
shown in Figure 3.5. Since the points are only constrained to lie on the surface, there are
multiple displacement vectors that bring them equally close to the surface. In multiple
iterations, the points drift tangent to the surface, forming clusters. To achieve a more
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Figure 3.5 – Omitting the regularity term from the loss causes the points to cluster into
filament structures on the surface after multiple iterations (left). Compare to results with
the regularity term (center) and the ground truth point cloud (right).

regular distribution on the surface, we introduce a regularization term:

Lr(p̃i,Pp̃i) = max
pj∈Pp̃i

‖p̃i − pj‖22. (3.7)

By minimizing this term, we minimize the squared distance to the farthest point in
the local patch Pp̃i . Intuitively, this keeps the cleaned point centered in the patch and
discourages a drift of the point tangent to the surface. Assuming the noisy point clouds
are approximately regularly distributed, this results in a regular distribution of the cleaned
points since, in this case Eq. 3.7 promotes the clean point to lie in the barycenter of the
points in its patch. With this term, we want to avoid the excessive clustering of points
(for example, into filament structures), which is especially important when applying our
approach iteratively. The full loss function is a weighted combination of the two loss
terms:

La = α Ls + (1− α) Lr. (3.8)

Since the second term can be seen as a regularization, we set α to 0.99 in our experiments.
Importantly, the loss defined in Eq. (3.8) depends on the current point cloud, so that

the point searches in Equations (3.6) and (3.7) need to be updated in every training epoch.
Alternatively, these target points can be fixed. Thus, our alternative loss function uses
an explicit ground truth for the cleaned point that can be precomputed:

Lb(p̃i, p
′
i,P) = ‖p̃i −NN(p′i,P)‖22, (3.9)

where NN(p′i,P) is the closest point to the initial noisy point p′i (before denoising) in the
ground truth point set P. Figure 3.4, bottom, illustrates this loss. Since both p′i and the
ground truth point cloud are constant during training, this mapping can be precomputed,
making this loss function more efficient and easier to implement. Additionally, the
fixed target prevents the points from drifting tangent to the surface. However, this loss
constrains the network more than La and we observed a slightly lower performance.
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Figure 3.6 – The shapes used for the PointCleanNet training and test sets.

For the outlier removal network we use a learning rate of 10−4 and uniform Kaiming
initialization [114] of the network weights. When training the denoising network, we
observed that network weights converge to relatively small values. To help convergence,
we lower the intial values of the weights to uniform random values in [−0.001, 0.001] and
decrease the learning rate to 10−8. This improves convergence speed for the denoising
network and lowers the converged error.

3.5.1 Relation to PCPNet

While being directly based on PCPNet [107], our approach has several characteristics,
specifically adapted to the point cloud denoising and outlier detection problem:

Loss. We use an adapted loss, summarized in Eq. (3.6) and (3.7), which, importantly,
not only includes a regularization via the distance to the farthest point, but is also
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Figure 3.7 – Qualitative comparison to the state-of-the-art. We compare simple shapes in
the top row and increase shape complexity towards the bottom. DGCNN can only handle
small point clouds, thus we use a sparser sampling for this method. Colors illustrate the
denoising error, we use the distance-to-surface for each denoised point.

updated at every training iteration, through the change of the corresponding points. We
have experimented with several alternatives such as the loss described in Eq. (3.9) and
found them to perform consistently worse than ours.

Iterative deep network. Importantly, we apply our network iteratively for improved
noise reduction. While perhaps non-standard, this results in very significant improvement
in our setting. Moreover, we found that a straightforward implementation might not
converge, while with the proper loss and with an inflation term, the network can both
stabilize and achieve higher accuracy.

Practical applicability. Finally, we remark that PointCleanNet, as a specialized
adaptation of an existing network, both simplifies its integration in practice and establishes
its applicability for point cloud denoising and outlier removal.

3.6 Results

We first describe our dataset and evaluation metric in Sections 3.6.1 and 3.6.2. Based on
this dataset and metric, we compare the denoising performance (Sec. 3.6.3) and the outlier
detection performance (Sec. 3.6.4) of our method to several baselines and state-of-the-art
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methods, including the recent learning-based approaches PointProNets [190] and an
adapted version of Dynamic Graph CNNs [216] among others. Experiments on additional
datasets with different noise distributions, including simulations of non-uniform scanner
noise, and noise from real world scans are presented in Section 3.6.5.

3.6.1 Datasets

Our main dataset contains 28 different shapes, which we split into 18 training shapes
and 10 test shapes. See Figure 3.6 for a gallery of all shapes. From the original triangle
meshes of each shape, we sample 100K points, uniformly at random on the surface, to
generate a clean point cloud.

For the denoising task, noisy point clouds are generated by adding Gaussian noise
with the standard deviation of 0.25%, 0.5%, 1%, 1.5% and 2.5% of the original shape’s
bounding box diagonal. In total, the denoising training set contains 108 shape variations,
arising from 6 levels of noise (including the clean points) for each of the 18 shapes.

For the outlier removal task, we use the same training and test shapes, however we
use only clean point clouds and with a larger sample count of 140k points per shape.
To generate outliers, we added Gaussian noise with standard deviation of 20% of the
shape’s bounding box diagonal to a random subset of points. The training set contains
point clouds with proportions starting at 10% until 90% in intervals of 10% of the points
converted to outliers. Only the outliers that are farther from the surface than the standard
deviation of the noise distribution are selected. In total, the outlier removal training set
contains 432 example shapes, arising from 6 outlier densities and 4 levels of noise for each
of the 18 training shapes. The test set contains point clouds with 30% of outliers points.
To test the generality of our outlier removal, we added a second method to generate
outliers to our test set only. In this setting, outliers are distributed uniformly inside the
shape’s bounding box that has been scaled up by 10%.

In Section 3.6.5 we also evaluate our method on point clouds generated with alternative
methods, including simulated non-uniform noise and noise from real real acquisition
devices.

PointCleanNet training datasets for denoising and outlier removal are available
on our project page.

3.6.2 Evaluation Metric

The evaluation metric should be sensitive to the desired properties of the point cloud
described earlier: point clouds should be close to the surface and have an approximately
regular distribution. If we assume the ground truth point clouds have a regular distribution,
the following Chamfer measure [84, 2], a variant of the Chamfer distance [14], measures
both of these properties:

c(P̃,P) =
1

N

∑
pi∈P̃

min
pj∈P
‖pi − pj‖22 +

1

M

∑
pj∈P

min
pi∈P̃
‖pj − pi‖22.

http://github.com/mrakotosaon/pointcleannet
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Figure 3.8 – Quantitative comparison. We compare the performance of our model to jet
smoothing [41], edge-aware denoising [123], the bilateral point cloud filter by Digne et
al. [73], Dynamic Graph CNNs [216], and PointProNets [190]. The two plots on the left
are evaluated on our test set without outliers, the two following plots compare the outlier
removal performance using the f1 and the f2 scores, and the right-most plot shows the
denoising performance after outlier removal.

Here N and M are the cardinalities of the cleaned P̃ and ground truth P point clouds,
respectively. Note that the first term measures an approximate distance from each cleaned
point to the target surface, while the second term intuitively rewards an even coverage of
the target surface and penalizes gaps. All our point clouds are scale-normalized to have a
unit bounding box diagonal, making the point distances comparable for different shapes.

For a dataset with simulated scanner noise that we will describe in Section 3.6.5, the
clean point set has a non-uniform point distribution. For this dataset we use only the
root mean square distance-to-surface (RMSD) of each point as evaluation metric:

d(P̃,P) =

√√√√ 1

N

∑
pi∈P̃

min
pj∈P
‖pi − pj‖22).

3.6.3 Evaluating Denoising

We first evaluate the denoising task alone, without outlier removal. We compare the
results of our method on different noise levels to several state-of-the-art techniques for
point cloud denoising.

We first consider a qualitative evaluation of our results in Figure 3.7, showing the
denoised point clouds for four different input noisy point clouds (Icosahedron, Star smooth,
Netsuke, Happy) with two different noise intensities, 1% and 2.5% of the original shape
bounding box diagonal. The distances from each of the denoised points to the ground
truth surface are color-coded. In the same figure, we can also compare the performance
of our method to other successful algorithms.

We compare against five other methods, as described next. It is important to note
that in most of these methods, it is necessary to tune some parameters, such as the
neighborhood size, to adjust to the different noise levels, while our method works across
all noise levels with the same hyper-parameters. When applicable, we manually adjusted
parameters for best performance. Also, in some algorithms, we allowed multiple parameter
settings (small, medium, large) to handle different levels of noise.
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Figure 3.9 – Example input outlier and noise corrupted pointclouds (top) and their
corresponding cleaned output (bottom) produced by PointCleanNet. From left to
right: torch, scarecrow, tanks-and-temple, galera, dragon, cylinder. The left two examples
are corrupted with real-world scanning noise and outliers, the other examples with
synthetic noise and outliers.

(i) Polynomial fitting with osculating jets [41, 42]: Osculating jet-fitting performs
well if the right neighborhood size is chosen for the given noise level. Otherwise,
neighborhood sizes that are too small overfit to strong noise (Figure 3.7, first
row), and neighborhood sizes that are too large do not preserve detailed features
(Figure 3.7, second and fourth row).

(ii) Edge-aware point set resampling [123]: Edge-aware point set resampling has larger
errors near detailed features (Figure 3.7, third and fourth row), while obtaining
good results near sharp edges, like the edges of the icosahedron.

(iii) Bilateral filtering for point clouds [73]: bilateral filtering performs poorly in strong
noise settings (Figure 3.7, first two rows).

(iv) Dynamic Graph CNN (DGCNN) [216]: Note that Dynamic Graph CNNs were
not designed for local operations, such as denoising. We modify the segmentation
variant of this method to output a displacement vector per point instead of class
probabilities. For the loss, the displacements are added to the original points and
the result is compared to the target point cloud using the same Chamfer measure
used as the error metric in our evaluation. Since the whole point cloud is processed
in a single go, we need to heavily sub-sample our dense point clouds before using
them as input for DGCNN. We also restrict DGCNN to a single iteration as we
found the result set to diverge over iterations. Similar to bilateral filtering, DGCNN
also performs poorly in strong noise settings (Figure 3.7, first two rows).

(v) PointProNets [190]: PointProNets requires oriented normals during training. Where
available, these are obtained from the ground truth source meshes, or estimated
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with PCPNet [107] otherwise. Differently from the original method, we also use
ground truth normals to orient the predicted height maps, instead of trying to
estimate an orientation, as we found the in-network estimation used in the original
method to be unstable for our datasets. Note that this provides an upper bound
for the performance of PointProNets. The denoised patches do not accurately
reconstruct detailed surfaces, presumably due to the smoothing effect of the image
convolutions, and suffer from artefacts caused by the smoothing of the height map
at the boundaries of a patch.

In contrast, our method works on local patches directly in the point domain, can
apply several iterations of denoising to improve results, and is robust to a large range
of noise levels with the same choice of hyper-parameters. This results in lower residual
error, especially in detailed surface regions.

We also present quantitative comparisons that summarize the performance of each
method on the entire dataset. The previously described Chamfer measure is used as
evaluation metric that captures both the distance from denoised points to the ground
truth surface and the regularity of the points. Results are shown in Figure 3.8 left
(without outlier removal). We can observe that PointCleanNet performs noticeably
better under mid to high noise level and using multiple iterations compared to all the
other methods. The performance of our method is also more stable to changes in noise
levels, while most other methods perform well only for a specific level of noise.

Comparison to the alternative loss. As shown in Figure 3.12, our alternative loss
performs slightly worse than our main loss. However, it is more efficient and easier to
implement, so the choice of loss function depends on the setting.

3.6.4 Evaluating Outlier Removal

Figure 3.8 shows the performance of our outlier removal method (right). For the purpose
of cleaning dense data, a model should prioritize classifying outlier points correctly (true
positives) over limiting the number of false positives. Therefore we consider that recall
has more importance than precision for this task. The Fβ score conveys the balance
between recall and precision. Plots 3 and 4 compare our method to jet-fitting [41] using
F1 and F2 scores. We observe that when recall and precision are weighted equally, our
method has the best performance when removing outliers on clean point clouds while
remaining effective on the other noise levels. PointCleanNet performs the best for all
noise levels when using F2 score which gives larger weight to recall.

The last plot in Figure 3.8 compares our approach to jet-fitting and edge-aware
filtering [123] with both outlier removal and denoising on the test set. In this experiment,
we first removed outliers using an outlier classification technique and then denoised the
point clouds from our test set. We show the results for different noise levels from zero
to 2.5% of the shape bounding box diagonal. Finally, we make two observations: first,
PointCleanNet outperforms edge-aware and jet-fitting techniques with outlier removal
and denoising on medium to large noise levels; and second, on smaller noise levels, our
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Figure 3.10 – Qualitative comparison on our outlier test set. Here the task is to remove
points that are not part of the original surface. Note that analytic methods with a large
setting for the radius (third column) fail to remove outliers hidden inside small details,
such as the arms of the statue, while a smaller setting (second column) results in a lot of
residual noise. Since PointCleanNet can learn to adapt to the feature to produce a
result with less noise.

model still outperforms a few of the different tuning variations of the related techniques.
Recall that our model does not require parameter tuning by the user.

Figure 3.10 also shows qualitative results for outlier removal on our test set compared
to the related techniques mentioned before. We observe that edge-aware filtering performs
worse around highly detailed regions and edges, while jet-fitting does not manage to
clean the remaining outliers at scattered points. The result highlights the consistent
performance of PointCleanNet across different shapes and varying level of details,
contrary to the other methods which produce less consistent distances to the underlying
ground truth shapes.

3.6.5 Performance under Different Noise Types

Directional noise We evaluated PointCleanNet on a synthetic dataset simulating
3D data acquisition via depth cameras. To do so we created a dataset with structured
noise levels to simulate depth uncertainty of depth reconstructions. Specifically, we added
noise using an anisotropic Gaussian distribution with constant covariance matrix aligned
along the scanning direction. The results are shown in Figure 3.11. Note that our network
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Figure 3.11 – Qualitative comparison on the directional noise test set. We show that
PointCleanNet can adapt to different kinds of noise models. Here we added anisotropic
noise to the shapes. Qualitative results are o the left, and quantitative plots of the absolute
and relative Chamfer measure over different noise levels on the right. Even though our
method was not trained on isotropic noise only, it still performs on par with the state of
the art on low and medium noise levels.

was not retrained for this specific model.
In this setting, the non-data-driven methods, such as jet-fitting and edge-aware

filtering, perform well since they are not specialized to any noise model. Even though
our method was never trained on this type of noise, it still performs on par with the
best methods on low to medium noise settings, and is only outperformed on high noise
settings by non-data-driven methods with parameters tuned for the given noise strength.

Structured noise We evaluated our method on a simulated LIDAR dataset (Velodyne)
generated using BlenSor [106], which models various types of range scanners. We chose
to simulate a rotating LIDAR, in particular a Velodyne HDL-64E scanner. BlenSor
implements two types of sensor specific error for this scanner: first, a distance bias for
each laser unit; and second, a per-ray Gaussian noise. The different effects of the noise
types can be observed in Figure 3.13. We use the shapes in PointCleanNet dataset for
this experiment. After being normalized, each shape is scanned from θ ∈ [0◦, 180◦] with
distance bias with standard deviation 0%, 0.5% and 1% and a per-ray noise of standard
deviation 0%, 0.5% and 1%.

Quantitative numbers are presented in Table 3.1. Here, we use the distance to the
surface instead of the Chamfer measure, since this type of scanner naturally produces
non-uniform point clouds (even in the ground truth). In bold, we highlight the two best
performing methods. We evaluate two versions of our method: one version trained on the
unstructured noise described in Section 3.6.1, and one version re-trained on the Velodyne
dataset. The retrained version significantly outperforms all other methods, while the
non-retrained version still performs competitively. In Figure 3.14, we show a qualitative
evaluation of our results compared to the two other best performing methods. We show
the denoised scans for two shapes: cylinder and dragon, with distance bias (first two
rows) and with distance bias and per-ray noise (last two rows). Both jet and bilateral
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Figure 3.12 – Comparison of our two-term loss La with the alternative loss Lb and the
baseline loss Lc. Our loss results gives large benefits over the baseline loss, and performs
somewhat better than the alternative loss as well, due to being less constrained.

Figure 3.13 – Simulated noise of a Velodyne HDL-64E scanner. Here we show an example
of the two noise types introduced by this scanner: distance bias (db) adds an error to the
depth of scan lines, while ray noise (rn) adds an error to the depth of each point. Note
that the points in the ground truth (left) are not distributed uniformly, so we use the
distance of each point to the surface as error measure for experiments with this dataset.

methods preserve an amount of structured noise (see the cylinder shape). Jet medium
produces artefact points in areas of high details especially on the dragon shape.

Table 3.2 and Figure 3.15 evaluate our model on the Kinect v1 dataset introduced in
[213]. We trained the model on the scans of the shapes David, big-girl and pyramid from
this dataset, and tested on a subset of the scans from boy, girl and cone with a radius
of 2.5% of the shapes’ bounding box diagonals. Our trained network achieves the best
performance. In Figure 3.15, we show the Poisson reconstructions [134] and distances



42 Chapter 3. Learning to Denoise and Remove Outliers

Figure 3.14 – Qualitative comparison with state-of-the-art methods on the Velodyne
dataset. We display the normalized distance to the ground truth surface. The two top
rows are evaluated on a dataset with only distance bias as noise and the two bottom rows
with added per-ray noise. The simulated scanner noise has a high spatial correlation along
the horizontal scan-lines, and lower correlation vertically across scan-lines. In this setting,
jet fitting introduces significant error in detailed surface regions, while bilateral denoising
has high residual error in the examples that have both noise types. PointCleanNet
successfully learns the noise model, resulting in lower residual error.

from the ground truth for the three best performing methods: jet medium, bilateral
and ours. The normals where computed using the normal estimation tool from Meshlab.
Note that jet-fitting method tends to preserve the structured noise while the bilateral
method tends to oversmooth shape. We also retrained PointCleanNet on the Kinect
v2 dataset described in [213]. As shown in Table 3.2 our method performs well compared
to other methods.

Generalization to real-world data. Figure 6.1 and the first two results in Fig-
ure 3.9 (left) show the result of our approach on real data obtained with the plane
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Table 3.1 – Comparison with state-of-the-art methods on the Velodyne datasets. We show
the root mean square distance-to-surface (RMSD) for each method. The first column
evaluates the methods on a dataset with only distance bias as noise and the second column
with added per-ray noise (see Figure 3.13 for examples of the noise types). PointProNets
was re-trained on the dataset, and for our method we show both a re-trained version,
and a version trained on the original dataset (Section 3.6.1).

Velodyne (db) Velodyne (db+rn)
jet small 5.46 5.78
jet medium 4.91 5.18
jet large 9.68 9.67
edge-aware small 5.50 6.36
edge-aware med. 5.48 5.77
edge-aware large 11.31 11.53
bilateral 4.53 4.99
PointProNets 17.47 22.02
ours 5.83 7.03
ours retrained 4.07 4.27

swift algorithm [221], an image-based 3D reconstruction technique. Statue, torch, and
scarecrow input point clouds each contain 1.4M points. Since in this case no ground
truth is available, we only show the qualitative results obtained using our method. Note
that although trained on an entirely different dataset, PointCleanNet still produces
high quality results on this challenging real-world data. The next three shapes in Figure
3.9 show results on other external raw point clouds, while the last one shows a shape
with sharp edges.

Table 3.2 – Comparison with state-of-the-art methods on the Kinect v1 and Kinect v2
datasets. We show the chamfer measure for each method. PointProNets was re-trained
on each dataset, and for our method we show both a re-trained version, and a version
trained on the original dataset (Section 3.6.1).

Kinect v1 Kinect v2
jet small 5.10 6.36
jet medium 4.69 6.16
jet large 5.40 8.63
edge-aware small 5.21 6.38
edge-aware med. 4.78 6.53
edge-aware large 6.85 13.10
bilateral 4.72 6.04
PointProNets 7.39 12.81
ours 5.02 6.42
ours retrained 4.57 6.26
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Figure 3.15 – Qualitative comparison of the three best performing methods on the Kinect
v1 dataset. For each shape, we compare a Poisson reconstruction and the normalized
distance to the ground truth surface of the denoised point sets computed by each method.
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3.7 Conclusion, Limitations and Future Work

We presented PointCleanNet, a learning-based framework that consumes noisy point
clouds and outputs clean ones by removing outliers and denoising the remaining points
with a displacement back to the underlying (unknown) scanned surface. One key advantage
of the proposed setup is the simplicity of using the framework at test time as it neither
requires additional parameters nor noise/device specifications from the user. In our
extensive evaluation, we demonstrated that PointCleanNet consistently outperforms
state-of-the-art denoising approaches (that were provided with manually tuned parameters)
on a range of models under various noise settings. Given its universality and ease of use,
PointCleanNet can be readily integrated with any geometry processing workflow that
consumes raw point clouds. Note that in our current framework, we still need paired
noisy-clean data to train PointCleanNet. An exciting future direction would be learn
denoising directly from unpaired data. As a supervised learning method, our approach is
also unlikely to succeed when noise characteristics during training are very different from
the ones of the test data.

While we presented a first learning architecture to clean raw point clouds directly,
several future directions remain to be explored: (i) First, as a simple extension, we would
like to combine the outlier removal and denoising into a single network, rather than
two separate parts. (ii) Further, to increase efficiency, we would like to investigate how
to perform denoising at a patch-level rather than per-point level. This would require
designing a scheme to combine denoising results from overlapping patches. (iii) Although
PointCleanNet already produces a uniform point distribution on the underlying
surface if the noisy points are uniformly distributed, we would like to investigate the
effect of a specific uniformity term in the loss function (similar to [230]) to also produce
a uniform distribution for non-uniform noisy points. The challenge, however, would be to
restrain the points to remain on the surface and not deviate off the underlying surface.
(iv) Additionally, it would be interesting to investigate how to allow the network to
upsample points, especially in regions with insufficient number of points, or to combine it
with existing upsampling methods such as [232] This would be akin to the ‘point spray’
function in more traditional point cloud processing toolboxes. (v) Finally, we would
like to investigate how to train a point cloud cleanup network without requiring paired
noisy-clean point clouds in the training set. If successful, this will enable directly handling
noisy point clouds from arbitrary scanning setups without requiring explicit noise model
or examples of denoised point clouds at training time. We plan to draw inspiration from
related unpaired image-translation tasks where generative adversarial setups that have
been successfully used.





Chapter 4

Intrinsic Point Cloud Interpolation
via Dual Latent Space Navigation

We present a learning-based method for interpolating and manipulating 3D
shapes represented as point clouds, that is explicitly designed to preserve intrinsic
shape properties. Our approach is based on constructing a dual encoding space
that enables shape synthesis and, at the same time, provides links to the intrinsic
shape information, which is typically not available on point cloud data. Our method
works in a single pass and avoids expensive optimization, employed by existing
techniques. Furthermore, the strong regularization provided by our dual latent
space approach also helps to improve shape recovery in challenging settings from
noisy point clouds across different datasets. Extensive experiments show that
our method results in more realistic and smoother interpolations compared to
baselines. Both the code and our pre-trained network can be found online: https:
//github.com/mrakotosaon/intrinsic_interpolations.

4.1 Introduction

A core problem in 3D computer vision is to manipulate and analyze shapes represented
as point clouds. Compared to other representations such as triangle meshes or dense
voxel grids, point clouds are distinguished by their generality, simplicity and flexibility.
For these reasons, and especially with the introduction of PointNet and its variants
[183, 184, 196], point clouds have gained popularity in machine learning applications,
including point-based generative models.

Unfortunately the flexibility of the point cloud representation also comes at a cost,
as it does not encode any topological or intrinsic metric information of the underlying
object. Thus, methods trained on point cloud data can, by their nature, be insensitive to
distortion that might appear on generated shapes. This problem is particularly prominent
in 3D shape interpolation, where a common approach is to generate intermediate shapes
by interpolating the learned latent vectors. In this case, even if the end-shapes are
realistic, the intermediate ones can have severe distortions that are very difficult to
detect and correct using only point-based information. More generally, several works
have observed that point cloud-based generative models can fail to capture the space of
natural shapes [150, 125], making it difficult to navigate them while maintaining realism.

In this paper, we introduce a novel architecture aimed specifically at injecting intrinsic
information into a generative point-based network. Our method works by learning
consistent mappings across the latent space obtained by a point cloud auto-encoder and
a feature encoding that captures the intrinsic shape structure. We show that these two

https://github.com/mrakotosaon/intrinsic_interpolations
https://github.com/mrakotosaon/intrinsic_interpolations
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Figure 4.1 – Intrinsic point cloud interpolation between points from an incomplete scan
with holes (left, reconstructed in first blue column) and points from a noisy mesh (right,
reconstructed in last blue column). Our method both reconstructs the shape better and
produces a more natural interpolation than a PointNet-based auto-encoder.

components can be optimized using shapes represented as triangle meshes during training.
The resulting linked latent space combines the strengths of a generative latent model and
of intrinsic surface information. Finally, we use the learned networks at test time on raw
3D point clouds that are neither in correspondence with the training shapes, nor contain
any connectivity information.

Our approach is general and not only enables smooth interpolations, while avoiding
expensive iterative optimization, but also, as we show below, leads to more accurate
shape reconstruction from noisy point clouds across different datasets. We demonstrate
on a wide range of experiments that our approach can significantly improve upon recent
baselines in terms of the accuracy of shape recovery as well as realism and smoothness of
shape interpolation.

4.2 Related Work

Shape interpolation, also known as morphing in certain contexts, is a vast and well-
researched area of computer vision and computer graphics (see [144] for a survey of the
early approaches). Below we review only most relevant works and focus on structure-
preserving mesh interpolation, and on recent learning-based methods that operate on
point clouds.

Classical methods for 3D shape interpolation have primarily focused on designing
well-founded geometric metrics, and associated optimization methods that enable smooth
structure-preserving interpolations. Early works in this direction include variants of as-
rigid-as-possible interpolation and modeling [5, 127, 223] and various representations of
shape deformation that facilitate specific transformation types, e.g. [209, 124, 152, 55, 208]
among many others.

A somewhat more principled framework is provided by the notion of shape spaces
[135, 167] in which interpolation can be phrased as computing a shortest path (geodesic).
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In the case of surface meshes, this approach was studied in detail in [138] and then
extended in numerous follow-up works, including [220, 87, 117, 115, 116] among others.
These approaches enjoy a rich theoretical foundation, but are typically restricted to
shapes having a fixed connectivity and can lead to difficult optimization problems at test
time.

We also note a recent set of methods based on the formalism of optimal transport
[20, 198, 32] which have also been used for shape interpolation. These approaches treat
the input shapes as probability measures that are interpolated via efficient optimization
techniques.

Somewhat more closely related to ours are data-driven and feature-based interpolation
methods. These include interpolation based on hand-crafted features [91, 125] or on
exploring various local shape spaces obtained by analyzing a shape collection [92, 238, 210].
Such techniques work well if the input shapes are sufficiently similar, but require triangle
meshes and dense point-wise correspondences, or a single template that is fitted to all
input data to build a statistical model, e.g. [113, 26, 27].

Most closely related to ours are recent generative models that operate directly on
unorganized point clouds [2, 150, 155]. These methods are often inspired by the seminal
work of PointNet and its variants [183, 184] and are typically based on autoencoder
architectures that allow shape exploration by manipulation in the latent space. Despite
significant progress in this area, however, the structure of learned latent spaces is typically
not easy to control or analyze. For example, it is well-known (see e.g. [125]) that
commonly-used linear interpolation in latent space can give rise to unrealistic shapes
that are difficult to detect and rectify.

Common approaches to address these issues include extensive data augmentation
[104], adversarial losses that penalize unrealistic instances [150, 19] or explicit modeling
of the metric in the latent space. The latter can be done by computing the Jacobian
of the decoder from the latent to the embedding space [48, 192] or using feature-based
metrics at test time [143, 88]. Unfortunately, as we show below, such techniques either
lead to difficult optimization problems at test time, or can still result in significant shape
distortion.

Contribution In this paper, we propose to address the challenges mentioned above by
building a dual latent space that combines a learned point-based auto-encoder with another
parallel encoding that captures the intrinsic shape metric given by the lengths of edges of
triangle meshes, required only during training. This second encoding exploits the insights
of mesh-based interpolation techniques [138, 116, 191] that highlight the importance of
interpolating the intrinsic surface information rather than the point coordinates. We
combine these two encodings by constructing dense networks that “translate” between
the two latent spaces, and enable smooth and accurate interpolation without relying on
correspondences or solving expensive optimization problems at test time.
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Figure 4.2 – Linear interpolation in the latent
space of the shape AE produces artefacts, as
the interpolation is close to linear interpola-
tion of the coordinates.

Figure 4.3 – Our overall architecture.
We build two auto-encoders that cap-
ture the shape and edge length structure
respectively, as well as two mapping net-
works MPE and MEP that “translate”
across the two latent spaces.

4.3 Method

4.3.1 Overview

Figure B.8 gives an overview of our network. As mentioned above, it consists of three
main building blocks and training steps: a shape auto-encoder, an auto-encoder of
the edge lengths of the underlying mesh, and two “translation” networks that enable
communication between the two latent spaces. These networks are used at test time to
endow given point clouds with intrinsic information which is then used, in particular, for
more accurate point cloud interpolation. We assume that the training data is given in
the form of triangle meshes with fixed connectivity, while the input at test time consists
of unorganized point clouds. In the following section we describe our architecture and
the associated losses, while the implementation and experimental details are given in
Section 6.4.

4.3.2 Architecture

Shape auto-encoder. Our first building block (Fig. B.8 top) consists of a shape
auto-encoder, based on the PointNet architecture [183]. We denote the encoder and
decoder networks as encp and decp respectively (we provide the exact implementation
details and compare to a VAE in the appendix Section A.3) and Section A.6. To train
this network we use the basic L2 reconstruction loss, since we assume that the input
shapes are in 1-1 correspondence. This leads to the following training loss:
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Lrec(P ) =
1

n

n∑
i=1

‖Pi − P̃i‖2, where P̃ = decp (encp(P )) . (4.1)

Here P is a training shape, the summation is done over all points in the point cloud, and
Pi represents the 3D coordinates of point i.

Importantly, our point-based encoder encp inherits the permutation invariance of
PointNet [183], which is crucial in real applications. Specifically, this allows us to encode
arbitrary point clouds at test time even if they have significantly different sampling and
are not in correspondence with the training data.

Edge length auto-encoder As observed in previous works and as we confirm below,
the shape AE can capture the structure of individual shapes, but often fails to reflect the
overall structure of shape space, which is particularly evident during shape interpolation.
We address this by constructing a separate auto-encoder whose latent space captures the
intrinsic shape information, and by learning mappings across the two latent spaces.

For this, we first build an auto-encoder (ence, dece) with dense layers that aims to
reconstruct a list of edge lengths. Note that since we assume 1-1 correspondence at
training time, the list of lengths of edges can be given in canonical (e.g., lexicographic
with respect to vertex ids) order. We therefore build an auto-encoder that encodes this list
into a compact vector and decodes it back from the latent representation. Our training
loss for this part consists of two components: an L2 error on the predicted edge lengths
and an additional term that promotes linearity in the learned latent space:

Le(EA) = ‖dece(ence(EA))− EA‖2 (4.2)

Llin(EA, EB) =

∥∥∥∥dece(ence(EA)) + dece(ence(EB))
2

−dece
(
ence(EA) + ence(EB)

2

)∥∥∥∥2 . (4.3)

Here EA, EB are the lists of edge lengths corresponding to the triangle meshes A,B
given during training. Our motivation for the loss Llin is to explicitly encourage linear
structure, which promotes smoothness of interpolated edge lengths and thus, as we show
below, minimizes intrinsic distortion.

Mapping networks Given two pretrained auto-encoders described above, we train
two dense mapping networks that translate elements between the two latent spaces. We
use MPE and MEP to denote the networks that translate an element from the shape
(resp. edge) latent space to the edge (resp. shape) latent space.

To define the losses we use to train these two networks, for a training mesh A we
let lA = encp(A) denote the latent vector associated with A by the shape encoder.
Recall that when training the shape AE we compare A with decp(lA). To train our
mapping networks MPE and MEP we instead compare A with decp (MEP (MPE(lA)). In



52 Chapter 4. Intrinsic Point Cloud Interpolation

other words, rather than decoding directly from lA we first map it to the edge length
latent space (via MPE). We then map the result back to the shape latent space (via
MEP ) and finally decode the 3D shape. We denote the shape reconstructed this way by
Ã = decp(MEP (MPE(encp(A)))). We compare Ã to the original shape A, which leads to
the following loss:

Lmap1(A) = drot(Ã, A). (4.4)

Here drot is a rotation invariant shape distance comparing the original and reconstructed
shape. We use it since the list of edge lengths can only encode a shape up to rigid motion
[99]. Specifically, we first compute the optimal rigid transformation between the input
shape A and the predicted point cloud Ã using Kabsh algorithm [10]. We then compute
the mean square error between the coordinates after alignment. As shown in [125] this
loss is differentiable using the derivative of the Singular Value Decomposition.

Our second loss compares the edge lengths of the reconstructed shape Ã to the edge
lengths of A. For this we use the standard L2 norm squared:

Lmap2(A) = ‖EA − EÃ‖
2
2, (4.5)

where EA denotes the list of edge lengths of shape A.
Our last loss considers a similar difference but starting in the edge length latent space,

rather than the shape one. Specifically, given a shape A with the list of edge lengths
EA, we first encode it to the edge length latent space via ence(EA). We then translate
the resulting latent vector to the shape latent space (via MEP ) and back to the edge
length latent space (via MPE), and finally decode the result using dece. This leads to
the following loss:

Lmap3(A) = ‖dece(MPE(MEP (ence(EA))))− EA‖22, (4.6)

Our overall loss is then simply a weighted sum of three terms αLmap1+βLmap2+γLmap3
for shapes given at training where γ is non-zero. We evaluate other possible losses in the
appendix.

Network Training To summarize, we train our overall network architecture described
in Figure B.8 in three separate steps. First we train the shape-based auto-encoder using
the loss given in Eq. (A.2). Then we train the edge length auto-encoder using the sum
of the losses in Eq. (A.5) and Eq. (4.3). Finally we train the dense networks MEP

and MPE using the sum of the three losses in Eq. (4.4), Eq. (4.5), Eq. (4.6). We also
experimented with training the different components jointly but have observed that the
problem is both more difficult and the relative properties of the computed latent spaces
become less pronounced when trained together, leading to less realistic reconstructions,
please refer to Sec. A.3 for additional details.

4.3.3 Navigating the restricted latent space

After training the networks as described above, we use them at test time for shape recon-
struction and interpolation. We stress that at test time we do not use the edge encoder
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and decoder networks ence, dece, as they require canonical edge ordering. Instead we use
the permutation invariant shape auto-encoder and the mapping networks MPE ,MEP to
better preserve intrinsic shape properties.

Interpolation Given two possibly noisy unorganized point clouds PA and PB we
first compute their associated edge-based latent codes: mA = MPE(encp(PA)) and
mB = MPE(encp(PB)). Here we use the permutation-invariance of our encoder encp
allowing to encode unordered point sets. We then linearly interpolate between mA and
mB but use the shape decoder decp for reconstruction. Thus, we compute a family of
intermediate point clouds as follows:

Pα = decp (MEP ((1− α)mA + αmB)) , α ∈ [0 . . . 1] (4.7)

In other words, we interpolate the latent codes in the edge-based latent space, but perform
the reconstruction via the shape decoder decp. This allows us to make sure that the
reconstructed shapes are both realistic and their intrinsic metric is interpolated smoothly.
Note that unlike the purely geometric methods, such as [138], our approach does not rely
on the given mesh structure at test time. Instead, we employ the learned edge-based
latent space as a proxy for recovering the intrinsic shape structure, which as we show
below, is sufficient to obtain accurate and smooth interpolations.

Since the edge length auto-encoder is fully rotation invariant, it is necessary to align
the output shapes at test time. We can do so easily by using the same optimal rigid
transformation as used to compute Eq. (4.6).

Reconstruction Given a point cloud PA we also use our trained architecture for shape
recovery via S = decp(MEP (MPE(encp(PA)))). Here we use the fact that the edge-length
latent space helps to regularize the shape space avoiding noisy or distorted output.

4.3.4 Interpretation

Our approach can be interpreted both in terms of capturing the structure of individual
3D shapes and of the entire shape space. For the former, our shape and edge-length
auto-encoders help to capture, respectively, the extrinsic and intrinsic information of the
underlying surface. Jointly, they enable more accurate shape recovery and comparison.
In this context, our approach is related to methods for reconstructing a shape from
its intrinsic metric. This problem, while possible theoretically [99], is computationally
challenging and error prone in practice [215, 33, 54, 52]. By using a learned latent space
our reconstruction is both efficient and leads to realistic results.

In terms of the shape space, the latent vectors of the shape auto-encoder provide a way
to parametrize the space of realistic 3D shapes while the edge-length latent space helps
to impose a distance structure on that space. This is similar to the standard approach in
Riemannian geometry [39] where the manifold structure of a space and the metric on
it are encoded separately. We highlight this interpretation in the appendix Section A.5,
and leave its complete exploration as exciting future work.
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4.3.5 Unsupervised training

Our method can be adapted to the unsupervised context where the 1-1 correspondences
are not provided during training. Contrary to our main pipeline, we cannot compute
the edge lengths directly from the training data. However, we can encourage the model
to produce a consistent mesh as described in [104]. We initialize the weights by pre-
training on a selected mesh using the reconstruction loss Lrec described in (A.2) and train
the model using Chamfer distance and regularization losses to keep the triangulation
consistent. Finally, we can train the edge-length auto-encoder by using the output of the
shape auto-encoder as training data. We describe this process in detail in the appendix
Section A.4.

4.4 Results

Datasets We train our networks on two different datasets: humans and animals. For
humans, we use the dataset proposed in [125]. The dataset contains 17440 shapes
subsampled to 1k points from DFAUST [27] and SURREAL [207]. The test set contains
10 sub-collections (character + action sequence, each consisting of 80 shapes) that are
isolated from the training set of DFAUST and 2000 shapes from SURREAL dataset.
During training the area of each shape is normalized to a common value. For animals
we sample 12000 shapes from the SMAL dataset [241]. We sample an equal number of
shapes from the 5 categories (big cats, horses, cows, hippos, dogs) to build a training
set of 10000 shapes and a testset of 2000 shapes. We simplify the shapes from SMAL to
2002 points per mesh. The animal dataset provides challenging shape pairs that are far
from being isometric.

4.4.1 Shape interpolation

We evaluate our method on our core application of shape interpolation and compare
against six different recent baselines. Namely, we compare to three data-driven methods,
by performing linear interpolations in the latent spaces of auto-encoders using PointNet
[183] and PointNet++ [184] architectures as well as the pre-trained auto-encoder proposed
in the state-of-the-art non-rigid shape matching method 3D-CODED [104].

We also compare to three optimization-based geometric methods, by building on the
ideas from [138, 192, 48]. We produce our first two baselines by initializing a linear path
in latent space of our shape auto-encoder and optimizing each sample via 1000 steps
of gradient descent. We use GD EL to denote the method that minimizes edge length
variations over interpolation steps, and G2 L2 to denote the method that minimizes the
L2 variance over the interpolated shape coordinates as described in [192]. Finally we
compare to a method simplified from [138] (GD Coord.), in which we first initialize a
path by linearly interpolating the coordinates of source and target shapes. Similarly
to GD EL, we minimize the discrete interpolation energy (edge length variation) using
gradient descent on the point coordinates directly.

Remark that GD Coord., GD L2 and GD EL methods all rely on gradient descent to
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Direct inference Optimization based
Ours PN 3D-Coded PN++ GD L2 GD EL GD Coord.

EL 0.231 0.351 0.613 0.299 0.363 0.298 0.034
Area 1.261 1.773 3.137 1.586 1.838 1.714 0.248
Volume 0.342 1.613 1.243 335.2 1.483 1.703 0.152

Table 4.1 – We report the mean squared variance of the edge length (EL), per surface area
and total shape volume over the interpolations of 100 shape pairs. Our method achieves
lowest variance across all intrinsic features among direct inference methods. Note that
GD coord. leads to interpolation with low distortion, as it optimizes the coordinates
directly but produces unrealistic shapes (see Figure 4.4). We refer to PointNet as PN
and PointNet++ as PN++.

compute each interpolation at test time. In other words, these approaches all require to
solve a highly non-trivial optimization problem during interpolation, leading to additional
computational cost and parameters (learning rate, number of iterations). In contrast, our
method outputs a smooth interpolation in a single pass.

To evaluate the interpolations we sample 50 shapes from the DFAUST testset using
farthest point sampling. We then test on 100 random pairs from those 50 shapes. We
use our pipeline trained with α = 30, β = 1200 and γ = 800 in the mapping networks
loss described in Section 4.3.2. We provide an ablation study on the choice of losses in
the appendix Section A.3.

Table 4.1 shows quantitative comparisons. Given an interpolation path (Sn) obtained
by each method, we compute the mean squared variance of various shape features f
on the path. We consider three features: lengths of edges, area of faces and overall
volume enclosed by the shape (computed from the mesh embedding). For each of these,
we compute the sum of the squared differences across all instances in the interpolating
sequence:

V arf (Sn) =
1

n− 1

n∑
i=2

‖f(Si)− f(Si−1)‖2. (4.8)

Intuitively, we expect a good interpolation method to result in smooth interpolations
which would have low variance across all of the intrinsic shape properties. When comparing
with PointNet++ as it inputs normalized bounding boxes, we normalize the total area
of each output. The large volume variance of this baseline is primarily due to bad
reconstruction quality of the input shapes.

As shown in Table 4.1 our method produces the best results among the direct data-
driven methods and the best results over all the baselines except from GD Coord. This
latter method is not data-driven and optimizes edge lengths directly on the coordinates
without any constraints. As such, it produces shapes with low distortion but that are not
realistic (see Figure 4.4). Furthermore, similarly to [138] it requires the input shapes to
be represented as meshes in 1-1 correspondence.
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Figure 4.4 – Qualitative comparison of interpolation on DFAUST testset. We display
the edge ratio between the linear interpolation of the target and source edges and the
produced interpolation.

In all qualitative figures, we visualize the minimum ratio between the linear inter-
polation of the ground truth edge lengths and the edge lengths of the produced shapes.
We color-code this ratio to highlight areas of highest intrinsic distortion (shown in red).
In Figure 4.4 we illustrate the interpolated shapes between the input source and target,
shown in grey. We observe that PointNet AE and PointNet++ methods tend to produce
results that are closer to linear interpolation of the coordinates. As highlighted above, we
notice that while GD Coord. has low variance in the interpolated intrinsic features, the
reconstructed shapes do not look natural. Overall, our method presents less distortions
and more smooth interpolations compared to all baselines. We present more comparisons
and evaluations in in the appendix Section A.1.

We further evaluate our model on the SMAL dataset. To build the interpolation
pairs from the test set, we sample 10 shapes per category by farthest points sampling.
We then choose 100 random pairs from that dataset. In Figure 4.5 we show results of
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Figure 4.5 – Interpolation of two horses from the SMAL dataset.

EL PC area
(10−5) (10−4) (10−8)

PointNet AE 3.023 2.120 2.454
Edge Length AE 3.127 - -
Ours 1.641 2.572 1.562

Table 4.2 – Mean squared reconstruction
losses on the humans testset. Edge length
reconstruction loss (EL), Point cloud coor-
dinates reconstruction loss (PC) and per
triangle area difference.

CD volume area
(10−3) (10−5)

Shape AE 4.703 30.851 0.1382
Ours 4.135 9.47 0.047

Table 4.3 – Reconstruction accuracy on the
SCAPE dataset. Chamfer distance (CD),
mean squared total volume difference and
total area difference.

interpolating between two horses. We observe that linear interpolation in the shape
latent space leads to shape distortions such as shorter legs (middle) and wrong shape size
estimation (top left). The Shape AE (resp. Ours) produces a edge variance of 2.068 (resp.
1.548). Similarly to above, our method shows improvement at interpolating intrinsic
information. We provide detailed numerical evaluation of interpolations on SMAL in the
appendix Section A.1.

Interpolation in the unsupervised case. The unsupervised Shape AE (resp. Ours)
produces a edge variance of 0.599 (resp. 0.394). While we observe better results in
the supervised setting, our method nevertheless produces quantitative and qualitative
improvement over the linear interpolation in latent space. We provide further numerical
and qualitative results in the appendix Section A.4.

4.4.2 Shape reconstruction

We also evaluate the accuracy of our model for shape reconstruction on the DFAUST/SURREAL
testset. In Table A.2, we compare the reconstruction accuracy to the base models. We
measure intrinsic features: edge length and per triangle area reconstruction loss, and
extrinsic L2 coordinates reconstruction loss. Our method reconstructs the input shape
intrinsic features better that the PointNet AE while producing comparable extrinsic
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reconstruction loss.
We further evaluate the generalization capacity of our network by evaluating on the

SCAPE [9] dataset. For testing we sample 1000 random points from the surface of each
mesh. Table 4.3 shows an improvement in the reconstruction for our method. We observe
even higher relative performance when comparing the total volume and total area of the
reconstructed shapes which give a sense of the perceived quality of the shapes. Shape
distortions are often related to shrunk or disproportional body parts. We show qualitative
results on reconstruction in the appendix Section A.2. Overall, our method produces
more precise and natural reconstructions. Finally, as shown in Figure 6.1, our method is
robust to high levels of noise (left), holes, and missing parts (right). We provide further
reconstruction examples in the appendix Section A.2.

4.5 Conclusion, Limitations & Future Work

We presented a method for interpolating unorganized point clouds. Key to our approach
is a dual latent space that both captures the extrinsic and intrinsic shape information,
given by edge lengths provided during training. We demonstrate that our approach
leads to significant improvement over existing methods, both in terms of interpolation
smoothness and quality of the generated results. In the future, we plan to extend our
method to incorporate other features such as semantic classes or segmentations. It would
also be interesting to explore our dual encoding space in other applications on images or
graphs.



Chapter 5

Learning Delaunay Surface
Elements for Mesh Reconstruction

We present a method for reconstructing triangle meshes from point clouds.
Existing learning-based methods for mesh reconstruction mostly generate triangles
individually, making it hard to create manifold meshes. We leverage the properties
of 2D Delaunay triangulations to construct a mesh from manifold surface elements.
Our method first estimates local geodesic neighborhoods around each point. We
then perform a 2D projection of these neighborhoods using a learned logarithmic
map. A Delaunay triangulation in this 2D domain is guaranteed to produce a
manifold patch, which we call a Delaunay surface element. We synchronize the
local 2D projections of neighboring elements to maximize the manifoldness of the
reconstructed mesh. Our results show that we achieve better overall manifoldness
of our reconstructed meshes than current methods to reconstruct meshes with
arbitrary topology. Our code, data and pretrained models can be found online:
https://github.com/mrakotosaon/dse-meshing

5.1 Introduction

Surface reconstruction from a given set of points (e.g., a scan), has a long history in
computational geometry and computer vision [23, 172]. A version of the problem requires
triangulating a given point cloud to produce a watertight and manifold surface. A key
challenge is to handle different sampling conditions while producing well-shaped triangles
and preserving the underlying shape features.

A good surface reconstruction algorithm should satisfy the following requirements:
(i) produce a connected, manifold and watertight triangulation; (ii) require no case-specific
parameter tuning; (iii) preserve sharp features; (iv) handle point sets with non-uniform
distribution; and (v) generalize to handle a variety of shapes.

A widely-used pipeline for surface reconstruction consists in first computing an
implicit surface representation [133] and then extracting a triangulation using a volumetric
method such as Marching Cubes [156]. Methods in this category often require additional
information (e.g., oriented normals), while, crucially, the resulting triangulations may not
preserve the original point set and can oversmooth sharp features. On the other hand,
methods from computational geometry, e.g., alpha shapes [79], ball pivoting [24], etc., can
respect the original point set, come with theoretical guarantees and produce triangulations
with desirable properties (e.g., good angle distribution). These approaches, however,
typically require careful parameter selection and rely on dense, uniformly sampled point
sets.

https://github.com/mrakotosaon/dse-meshing
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PointTriNet IER Meshing ours

[194]

[153]

[194] [153]

Figure 5.1 – We present a method for mesh reconstruction from point clouds. We combine
Delaunay triangulations with learned local parameterizations to obtain a higher-quality
mesh than the current state-of-the-art. Bad (non-manifold) triangles are shown in red.
Our method is robust to uniformly (top) and non-uniformly (bottom) sampled points.

More recently, learning-based approaches have been developed to extract a triangula-
tion without case-specific parameter selection. Most of such techniques focus on robustly
predicting a signed distance field or simply an occupancy map, from which a mesh is
subsequently extracted using volumetric triangulation [49, 94, 179]. Only two recent
methods [194, 153] produce a triangulation while respecting the original point set, but
they ignore the quality of the triangles or have trouble reconstructing sharp features.

We present a method that combines the advantages of classical methods with learning-
based data priors. Our method is based on blending together Delaunay surface elements,
which are defined by a 2D Delaunay triangulation of a local neighborhood in the point
set after projecting it to a planar 2D domain. For this, we propose an approach that
predicts a local projection via learned logarithmic maps and uses them to propose likely
triangles using local Delaunay triangulations. Figure 6.1 shows an example reconstructions
using our method. We evaluate our method on a benchmark of diverse surface point
sets, and provide a comparison with both classical and learning-based methods to show
the advantages of the proposed approach. Through these extensive experiments, we
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demonstrate that our method generalizes across diverse test sets, is more robust than
classical approaches, and produces higher-quality triangulations than recent learning-based
methods.

Computing a triangulation of a given point set is one of the most fundamental
problems in computational geometry, computer vision, and related disciplines. We review
methods most closely related to ours and refer to recent surveys [137, 197, 23, 172] for a
more in-depth discussion.

A commonly-used pipeline for surface reconstruction [120, 56] consists of computing
the implicit surface representation using, e.g., a signed distance function. A mesh can then
be extracted with standard methods such as Poisson surface reconstruction [133] combined
with Marching Cubes [156] or Dual Contouring [132]. Such approaches work well in
the presence of oriented normals and dense/uniform point sets, but do not necessarily
preserve the given points in the final mesh and lead to over-smoothing or loss of details
(see [23] for a detailed discussion).

We were inspired by classical methods based on Delaunay triangulations [28, 142, 30,
102, 68], alpha shapes [79] or ball pivoting [24]. Such approaches can be shown to recover
the shape mesh topology [8] under certain sampling conditions (an excellent overview of
such approaches is provided in [67]). Unlike implicit-based methods, approaches in this
category, e.g., [24, 7, 31] typically preserve the input point set. However, they can often fail
to produce satisfactory results for coarsely sampled shapes or in the presence of complex
geometric features. Another more robust, but computationally more expensive, approach
capable of feature preservation was introduced in [72], based on iterative optimisation
using optimal transport.

5.1.1 Learning for surface reconstruction

To address the challenges mentioned above, recent methods have aimed to learn surface
reconstruction priors from data. The majority of existing learning-based methods in this
area use a volumetric shape representation. For example, meshes can be computed by
predicting voxel grid occupancy [97, 166] or via a differentiable variant of the marching
cubes [151], or more recently using generative models for explicit or implicit surface
prediction [49, 94, 179, 170]. While these methods can produce accurate results they solve
a different problem to ours and do not compute a mesh over the given point set. Instead,
we focus on directly meshing a set of input points, which provides better control over
the final shape and avoid over-smoothing, often associated with implicit surface-based
techniques.

Other methods have also aimed to compute a surface by deforming a simple template
while updating its connectivity [211, 178], fitting parameterized [105, 219] or mesh-
aware patches [13], performing local (e.g., convex) shape decomposition. Majority of
these schemes are restricted to particular shape topology or category and again do not
necessarily guarantee point set preservation.
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Figure 5.2 – Overview of Delaunay Surface Element (DSE) generation. For any point pi
in an input point cloud, we select the k-nearest neighbors and extract the subset of points
that are in the geodesic neighborhood of pi, using a learned classification network. A
projection network then estimates a log map projection of the points into a 2D embedding,
where we can apply Delaunay Triangulation to get a DSE.

5.1.2 Learning mesh connectivity

More directly, our work fits within the line of recent efforts aimed explicitly at learning
the mesh connectivity for a given shape geometry. An early approach, Scan2Mesh [57]
developed a graph-based formulation to generate triangles in a mesh. However, the
method uses a costly volumetric representation, does not aim to produce manifold meshes,
and specializes on particular shape categories.

Most closely related to ours are two very recent approaches aimed directly to address
the point set triangulation problem. The first method PointTriNet [194] works on point
clouds and, similarly to ours, uses a local patch-based network for predicting connectivity.
However, this technique processes triangles independently and only promotes watertight
and manifold structure through soft penalties. The second method was presented in [153],
and estimates local connectivity by predicting the ratio between geodesic and Euclidean
distances. This is a powerful signal, which is then fed into a non-learning based selection
procedure, which aims to finally output a coherent mesh.

In contrast to both of these approaches [194, 153], we formulate the meshing problem
as learning of (local) Delaunay triangulations. Starting from the restricted Voronoi
diagram based formulation proposed in [31] we use data-driven priors to directly learn
local projections to create local Delaunay patches. As a result, locally our network
guarantees the coherence of the computed mesh. As we demonstrate below, learning
Delaunay surface elements, both leads to better shaped triangles (i.e., more desirable angle
distribution) and improves the overall manifold and watertight nature of the computed
triangle mesh.

5.2 Method

We assume to be given an point set P ∈ RN×3 sampled from a surface Ŝ. Our goal is
to create a mesh M = (P ′, T ) that approximates Ŝ, by choosing a new triangulation T
that triangulates a subset P ′ ⊂ P of the input point cloud. It is easy to obtain a high-
quality triangulation for any set of points that lies in 2D, via Delaunay triangulation [61].
However, when the set of points lies in 3D, finding a triangulation is a much harder
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problem. A simple solution is to locally project points to an estimated tangent plane of the
surface, resulting in local 2D embeddings where we can apply a Delaunay triangulation.
However, this is problematic near complex geometry, such as edges or thin structures and
is sensitive to an imperfect estimation of the tangent plane. Logarithmic maps [75, 118],
or log maps for short, provide a systematic solution to this problem by providing local
geodesic charts of the ground truth surface that are good local parameterizations of
complex geometry.

The core idea of our method is therefore to combine Delaunay triangulations and
learned log maps to create small triangulated patches that we call Delaunay Surface
Elements (DSEs). Each DSE approximates a small part of the surface and is guaranteed
to have a manifold triangulation. Since neighboring log maps may disagree, especially in
regions of high curvature, we align them locally with non-rigid transformations of the
2D parameterizations of each DSE. DSEs enable us to maintain the good properties of
Delaunay Triangulations, like manifoldness and high-quality triangles, within a data-
driven approach, that learns to extract local geodesic patches and parameterize them
with a the log map, thereby increasing robustness and reconstruction accuracy. Our
approach proceeds in four steps (the first two steps are illustrated in Figure 6.2):

1. For each point pi ∈ P , a network estimates a geodesic ball, by extracting a 3D
patch P i ∈ Rk×3 made up of its k-geodesically-closest points.

2. For each 3D point patch P i, a second network approximates the log map parame-
terization, to get a 2D embedding of the patch, denoted U i ∈ Rk×2.

3. We improve the consistency of neighboring patches by aligning their 2D embeddings,
giving us improved patch embeddings Û i, which we then use to compute the
Delaunay Surface Elements.

4. The Delaunay Surface Elements vote for candidate triangles, which are then aggre-
gated iteratively into a mesh.

5.2.1 Constructing Local Embeddings

The first two steps in our method are aimed at creating a patch P i around each point pi
and a local 2D embedding Ui of the points inside the patch. These two ingredients will
later be used to compute a 2D Delaunay triangulation that defines a Delaunay Surface
Element.

Geodesic patch construction Given the point pi and its K nearest neighbors Qi, we
train a network to find a subset of k points from these neighbors that are geodesically
closest to pi on the ground truth surface. In our experiments, we set K = 120 and
k = 30. More details on the choice of k and K are provided in Section B.8 of the
appendix. The network is trained to model a function cj := fθ([q

i
j , d

i
j ] | Qi) that classifies

each point qij in Qi as being one of the k geodesically closest points if cj = 1 or not
if cj = 0. We concatenate the Euclidean distance dij to the center point as additional
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input. The network is parameterized by θ, conditioned on the point set Qi, and models
a function from 3D position to classification value. We train this network with an L2
loss ‖cj − σ(ĉj)‖2, where ĉj is the ground classification and σ is the sigmoid function. To
obtain a fixed number of k points, we select the top-k points based on their predicted
labels cij , giving the (geodesic) patch P i.

Log map estimation We train a second network to compute the log map coordinates
of each point in P i, denoted as U i ∈ Rk×2. The network is trained to model a function
uij := gφ([p

i
j , d

i
j ] | P i), where φ denotes the network parameters and pj are the 3D

coordinates of a point in P i. These coordinates are concatenated with the Euclidean
distance dij to the center point. The network outputs the log map coordinates uij in U

i,
consisting of the Euclidean coordinates of the log map with an origin at the center point of
the patch. Like the classification network, this network is conditioned on the input point
set P i. We use the sum of two losses: a loss that penalizes the difference to the ground
truth coordinates and one that penalizes only the radial component of the coordinates,
i.e. the geodesic distance to the center. Since log map coordinates are defined only up to
a 2D rotation around the central point, we use the Kabsh algorithm [25] to find a 2D
rotation and/or reflection that optimally aligns the predicted log map and the ground
truth log map before computing the loss: ‖RU i − Û i‖22, where Û i is the ground truth
and R is the optimal rigid transformation computed by the Kabsh algorithm. Note that
the Kabsh algorithm is differentiable. Our second loss measures the error in the radial
component:

∑
j(‖uij‖2 − ‖ûij‖2)2. This loss measures how well the network can recover

geodesic distances regardless of the orientation in the patch.

Network architecture When approximating log maps with a network, continuity
is an important property. If the estimated mapping from 3D space to the 2D log
map parameterization is not continuous, the resulting Delaunay triangulation may have
flipped or intersecting triangles. We base our architecture on FoldingNet [228] that
produces continuous mappings from an input to an output domain. Unlike the original
implementation, however, which maps from 2D to 3D, we want to map from 3D to 2D.
Our experiments have shown that this network architecture leads to more continuous
results than a PointNet-based architecture. We have also found that it improves the
performance of our classification network, where we also adopt an architecture based on
FoldingNet. Since we train our network on individual patches, we can train on relatively
small datasets, where each shape provides a large number of patches as training samples.
More details on the architecture are provided in Section B.5 of the appendix.

5.2.2 Combining Delaunay Surface Elements

At this point, we have a local 2D parameterization for each patch. We could use these local
parameterizations to construct a triangulation of the patch by Delaunay-triangulating
it. However, each patch may be rather inconsistent with neighboring patches, in the
sense that if two patches P i, P j share three points a, b, c, the Delaunay triangulation of
U i may produce the triangle (a, b, c) while the triangulation of U j may not, since the
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Log maps Rigid alignment Clustering Averaging

Figure 5.3 – Log map alignment. To improve the consistency of log maps, we align
corresponding points in neighboring log maps with rigid transformations. The resulting
sets of corresponding points are then clustered to remove outliers and averaged, giving us
2D point embeddings that are more consistent with their neighbors.

points are laid out differently in each of the two parameterization. An example is shown
in Figure 5.4, right. Hence, the final pair of steps is aimed at improving the consistency
between the different patch parameterizations of neighboring DSEs before combining all
DSEs into the final mesh M .

Log map alignment In 2D, Delaunay triangulation are guaranteed to produce a
manifold triangulation. However, we produce independent 2D parametrizations for each
DSE. Large differences in the parameterization of neighboring DSEs may make their
triangulations incompatible (i.e., the union of their triangles may be non-manifold). In
this step, we locally align the log maps to one another to ensure better consistency,
without requiring the construction of a global parameterization. Namely, a point pk ∈ P
from the original point cloud has an image in the log maps of each patch that contains
that point. We denote this set of all log map images of point pk as Rk. We say U i, U j

are neighbor patches if they both have a point in the same Rk. Denote the image of pk
in the log map of each of the two patches as U i (pk), U j (pk), respectively.

Our approach is illustrated in Figure 5.3. Considering the patch U i, we align the
neighboring patch U j to it, by taking all corresponding points and using the Kabsch
algorithm to find the rigid motion that best aligns (in the least-squares sense) the points
based on their correspondences U i (pk) ↔ U j (pk). Repeating this for all neighboring
patches aligns them all to U i. We then define the set Rik to be the set of images of the
point pk in the aligned log maps and cluster Rik with DBSCAN [83]. The largest cluster
corresponds to the largest agreement between neighboring patches on the 2D coordinates
uik of point pk in patch i. We average all 2D coordinates in the cluster to update uik, and
weigh the average based on the distance of each point in Rik to the center of its patch.
Applying this process to all 2D coordinates U i in each patch, we get a corrected log map
Û i for each patch, giving us DSEs that are more consistent with the neighboring DSEs.
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triangle is member of three DSEs triangle is member of one DSE

Figure 5.4 – Triangle membership count. Delaunay Surface Elements are shown as colored
triangles. Triangles that are part of exactly three DSEs, like the dotted red triangle on
the left, result in a manifold triangulation. Triangles that are part of less than three
DSEs, like the triangle on the right, result in non-manifold triangulations. We use this
property to define a triangle confidence when selecting triangles.

Delaunay triangulation Given a patch P i and its 2D parameterization Û i, we can
compute a Delaunay Triangulation on the 2D points uij . If Û i approximates the log
map, this gives us a manifold triangulation of the 3D patch that locally approximates
the ground truth surface Ŝ. We define a Delaunay Surface Element D := (P i, T i) as
the set of Delaunay triangles T i corresponding to the Voronoi cell centered at pi. These
triangles form an umbrella with pi as its central point. We restrict our triangulation to
triangles that include the central point, as triangulations are increasingly inconsistent
with neighboring DSEs as the distance from the central point increases.

Triangle selection Combining the triangles of all DSEs yields a set of candidate
triangles that we use in a final triangle selection step to obtain a near-manifold mesh.
We base our selection criteria on our DSEs by observing that a triangulation is manifold
exactly if all triangles are part of three DSEs (see Figure 5.4). Therefore, we divide our
triangles into three confidence bins. Triangles that appear in three different DSEs will
be considered the most likely to appear in a manifold triangulation. And triangles that
appear only once are considered least likely. Finally, we use the triangle selection process
proposed in [153] to produce a triangulation based on our priority queue.

5.3 Results

We evaluate our method by comparing the quality and accuracy of our reconstructed
meshes to the current state-of-the-art.

Dataset Since our networks are trained on individual patches, our method is able to
train successfully from a small training set of shapes. Each shape provides a large set of
patches as training samples. We create a dataset with a total of 91 shapes chosen from
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Table 5.1 – Quantitative results on the FamousThingi testset. We compare the percent-
age of non-watertight edges (NW), the Chamfer distance (CD) and normal reconstruction
error in degrees (NR).

Method NW (%) CD ∗1e−2 NR
ball pivoting 25.7 0.524 6.59

PointTriNet [194] 17.2 0.337 6.24
RVE [31] 9.2 0.344 15.71

IER meshing [153] 5.3 0.343 6.30
α-shapes 3% 2.5 0.939 28.50
α-shapes 5% 1.7 1.064 17.69

Ours 0.4 0.326 5.23

Thingi10k [240] and the PCPNet [107] dataset, that we call FamousThingi, since the
PCPNet dataset contains several shapes that are well-known in the graphics and vision
literature. Each shape is sampled uniformly with 10k points. We compute ground truth
log maps at each point using the recent method by Sharp et al. [195]. The training set
contains 56 of these shapes and the remaining shapes are used for evaluation. Example
shapes and more details are given in Section B.4 of the appendix.

5.3.1 Comparison to Baselines

We compare our method to recent state of the art learning based methods for point-set
triangulation, as well as to more classical methods.

Ball pivoting [24] and α-shapes [79]. These two classic techniques use the concept
of rolling a ball on the surface to deduce connectivity at points of contact. For ball-
pivoting, the ball radius is automatically guessed as the bounding box diagonal divided
by the square root of the vertex count. For α-shapes, we report two different choices of
the radius parameter α, as 3% and 5% of the bounding box diagonal.

Restricted Voronoi estimation [31] (RVE) This method is the closest existing
baseline to our method. It estimates Voronoi cells restricted to the surface by projecting
local patches to local tangent planes. Note that this method requires normal information
that we estimate from the input point cloud.

PointTriNet [194] and IER meshing [153] We compare our method to two recent
learning based methods for triangulating point clouds. We retrain PointTriNet on our
dataset. Intrinsic-Extrinsic Ratio Guidance Meshing (IER meshing), however, needs a
larger amount of data to train and overfits on our dataset. Since it is not patch based, it
needs a larger variety of shapes to train. We use the pre-trained model provided by the
authors, that was trained on the larger ShapeNet dataset.
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α-Shapes (5%) Ball Pivoting RVE PointTriNet IER Meshing Ours
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Figure 5.5 – Qualitative comparison. We compare four meshes reconstructed by our
method to the results of five current methods. Non-manifold triangles are marked in
red and we show both the percentage of non-watertight edges (NW) and the Chamfer
distance multiplied by 100 (CD) below each shape. Note that classical non-data-driven
methods struggle to separate thin surfaces and data-driven methods have significantly
more non-manifold triangles.
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Metrics We compare to these methods using two metrics for the mesh quality and
two metrics for the mesh accuracy. As mesh quality measures, we use the percentage
of non-watertight edges (NW) and the standard deviation (Aσ) of triangle angles in the
mesh. Note that due to the triangle selection step, all the produced edges are manifold
(have one or two adjacent triangles) but the edges can be open. An angle of 60 degrees
corresponds to equilateral triangles, while skinny triangles have more extreme angles.

As a measure of the surface reconstruction accuracy, we use the Chamfer Distance [14,
84] (CD) between a dense point set PM sampled on the reconstructed surface and a dense
point set PŜ sampled on the ground truth surface:

CD(PM , PŜ) =
1

N

∑
pi∈PM

min
qj∈PŜ

‖pi − qj‖2 +

1

N

∑
qj∈PŜ

min
pi∈PM

‖qj − pi‖2

We also compare the normal reconstruction error (NR). At each vertex of the mesh we
measure the angle difference in degrees between the ground truth normal and the normal
obtained from our reconstructed mesh.

Quantitative Comparison In Table 5.1, we show a quantitative comparison between
our method and the baselines. Our method yields lower chamfer distance, and less
non-manifold edges, showing we both better-approximate the surface while at the same
time outputting a triangulation with far less non-manifold artifacts. Indeed, only the
classic technique of α-shapes manages to come close to our degree of manifoldness, at
the cost of lower accuracy, due to filling in concave surface regions (see examples in
Figure 5.5).

In Figure 5.7, we evaluate the quality of the generated triangles by considering the
histogram of triangle angles. The standard deviation of each method is given next to its
name. Our method yields superior triangle quality to all learning-based methods, and to
all classic techniques except for ball-pivoting, which achieves better triangle quality by
sacrificing manifoldness to a large degree.

Qualitative Comparison We show qualitative results in Figure 5.5, on 4 meshes of our
FamousThingi dataset. Non-manifold triangles are visualized in red, with the percentage
of non-manifold triangles, as well as the Chamfer distance error, written beneath each
result. The figure gives a very clear visual insight to the numbers from Table 5.1: the
classic techniques work in a non-adaptive way which enables them to produce meshes with
mostly-manifold edges, but they cannot handle thin and tight structures, like the scaffolds
of the tower. In contrast, the learning-based methods are more local and can handle
the concavities in, e.g., the wheel, but fall short on producing manifold triangulations.
Our method, combining the robustness of classic Delaunay triangulation, with modern,
data-driven learning techniques, manages to produce triangulations that both respect the
original fine geometry and have less non-manifoldness.



70 Chapter 5. Learning Delaunay Surface Elements

PointTriNet IER Meshing Ours

Figure 5.6 – Qualitative comparison on ShapeNet [44]. We compare with the two data-
driven methods PointTriNet and IER Meshing on five shapes taken from five different
categories of the ShapeNet dataset. Our approach results in more manifold meshes,
especially in detailed areas like the backrest of the chair.
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Figure 5.7 – Distribution of triangle angles in the reconstructed meshes. Our method
produces better shaped triangles than all other methods except for ball pivoting which
sacrifices mesh manifoldness. We show the angle variance next to each method.

We show additional results on five shapes of the ShapeNet dataset [44] in Figure 5.6.
Compared to the two data-driven methods PointTriNet and IER Meshing, we improve
upon the manifoldness, especially in regions with detailed geometry and high curvature,
like the edge of the table, or the backrest of the chair. The results show a similar
trend as in our FamousThingi dataset. Note that IER meshing is trained on the
ShapeNet dataset while PointTriNet and our method are trained on FamousThingi
dataset, demonstrating the ability of our method to generalize to unseen data. We show
quantitative and qualitative results on the ShapeNet dataset in Section B.2 and additional
qualitative results in B.3 of the appendix.

Limitations Finding a geometrically complex surface, like on parts of the Eiffel tower
in Figure 5.5, can be difficult. In such cases, the geodesic neighbors or logmap networks
may misclassify/misplace some points. Moreover, thin parts of a model are particularly
challenging. We can handle these cases better than existing works (Lego piece of Figure
5.5, or the plane wing in Figure 5.6. More extreme cases, like the leaves of a plant, would
require training on a dataset where these cases are more common.

Non uniform sampling We evaluate our method on non uniformly sampled point
clouds. In particular we sample points following a probability gradient along the y-axis
(horizontal). We observe in Figure 6.1 (bottom) that our method performs better than
other learning-based baselines. Note that PointTriNet, IER Meshing and our method have
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Table 5.2 – Ablation study over the components of our method. Log map alignment,
triangle selection as well as the log map parametrization improve manifoldness in the
output meshes.

Method NW (%) CD ∗1e−2 NR
Ours w/o align, select 22.51 0.326 7.26

Ours w/o select 10.98 0.348 6.86
Ours w/o log maps 1.18 0.334 5.93

Ours w/o align 1.07 0.325 5.19
Ours 0.40 0.326 5.22

not been retrained on a non-uniformly sampled dataset. We provide further evaluation
on non uniformly sampled point clouds in Section B.1 of the appendix.

5.3.2 Ablation study

We evaluate the impact of each step in our pipeline using an ablation study, shown in Table
5.2. We remove one component at a time and compute the percentage of non-watertight
edges (NW), Chamfer distance (CD) and normal reconstruction error (NR) as described
before. We first remove the alignment of the logmaps of the delaunay triangulation, which
results in a slight degradation manifoldness. Next, we evaluate the efficacy of our triangle
select ion process by instead creating a mesh from all triangles in our Delaunay Surface
Elements. This results in a significant drop in manifoldness of the triangulation, since we
do not achieve perfect alignment of our logmaps. Dropping both the alignment and the
selection results in a much more significant decrease in manifoldness than just removing
the selection – this hints that the alignment is indeed producing more consistent local
DSE’s. Lastly, we replace the log maps with simple 2D projections, to get the local patch
parameterization along the approximated normal vector. Please note that we still use the
learned geodesic neighborhood. Manifoldness deteriorates as well, showing the necessity
of our specific parameterization method. In particular, the 2D projection parametrization
performs poorly for complex shapes such as the Eiffel tower (NW: 5.59% (w/o logmaps),
2.48% (Ours)) or Trilego (NW: 5.59% (w/o logmaps) NW: 1.64% (Ours)) shapes. Note
that the Chamfer distance is not significantly increased by the removal of any component
from our pipeline, as our method’s locality prevents strong errors in the surface location
by design, due to considering only the learned geodesic neighborhoods of the surface.
We provide additional ablation of the learned Logmap component in Section B.7 of the
appendix.

5.4 Conclusion

We presented Delaunay Surface Elements for robust surface reconstruction from points
sets. In the process, we combine the best of two worlds: 2D Delaunay triangulation from
classical computational geometry which comes with guarantee about mesh quality and
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manifoldness; and local logmaps learned using networks, followed by synchonization to get
local data-driven 2D projection domains to handle non-planar regions. We demonstrated
that the method can be trained with very limited training data and produces near-
manifold triangulations that respect the original point set and have a higher mesh quality
than the state-of-the-art.

In the proposed method, the final mesh extraction is done via a non-differentiable
growing approach. In the future, it would be interesting to also learn the triangle selection
via a network. This could enable a truly end-to-end optimization and allow us to optimize
for context-specific point distributions accounting for data-priors (e.g., sharp edges)
and scanner characteristics. Another direction would be to consider weighted Delaunay
triangulations that provide additional freedom to local triangulations.





Chapter 6

Differentiable Surface Triangulation

Triangle meshes remain the most popular data representation for surface geometry.
This ubiquitous representation is essentially a hybrid one that decouples continuous
vertex locations from the discrete topological triangulation. Unfortunately, the
combinatorial nature of the triangulation prevents taking derivatives over the space
of possible meshings of any given surface. As a result, to date, mesh processing and
optimization techniques have been unable to truly take advantage of modular gradient
descent components of modern optimization frameworks. In this work, we present
a differentiable surface triangulation that enables optimization for any per-vertex
or per-face differentiable objective function over the space of underlying surface
triangulations. Our method builds on the result that any 2D triangulation can be
achieved by a suitably perturbed weighted Delaunay triangulation. We translate this
result into a computational algorithm by proposing a soft relaxation of the classical
weighted Delaunay triangulation and optimizing over vertex weights and vertex
locations. We extend the algorithm to 3D by decomposing shapes into developable
sets and differentiably meshing each set with suitable boundary constraints. We
demonstrate the efficacy of our method on various planar and surface meshes on
a range of difficult-to-optimize objective functions. Our code can be found online:
https://github.com/mrakotosaon/diff-surface-triangulation.

6.1 Introduction

Triangle meshes are arguably the most predominant surface representation, both in
geometry processing and computer graphics, as well as in other fields such as computational
geometry and topology. The popularity of triangle meshes comes from their simplicity,
flexibility, and the existence of many data structures for efficient mesh navigation and
manipulation [66, 65, 29, 203]. Many methods have been developed to compute or
modify triangulations of given surfaces or point clouds, while promoting properties such
as alignment to shape features (e.g., ridges or creases), adapting sampling density to
geometric detail, or triangle aspect ratio (see [40, 23] for an overview).

Unfortunately, as of now, no method has been proposed to enable a continuous,
differentiable representation of triangulations. This is mainly due to the fact that in
addition to the continuous spatial aspect - the position of each vertex - triangulations
also have a discrete combinatorial component - the connectivity, i.e., the set of edges
and triangles connecting the vertices. As a result, existing algorithms either optimize
the mesh quality by moving the vertex locations while keeping their connectivity fixed
[171], re-mesh from scratch, or iterate between updating the vertex positions and their
connectivity, e.g., [121, 204].

https://github.com/mrakotosaon/diff-surface-triangulation
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Figure 6.1 – We present a fully differentiable approach for optimizing triangle meshes both
in 2D and on surfaces. Our approach allows to optimize the mesh using any differentiable
objective function, based on vertex positions or shapes of triangles using continuous
optimization techniques. Here we demonstrate meshes obtained on a surface by optimizing
for (left) sizes of triangles to depend inversely on the mean absolute curvature value,
and (right) alignment of triangle edges to the maximal principal curvature directions
(i.e. triangle edges tend to follow the vector field). This optimization is done in a fully
differentiable manner without any post-processing or combinatorial operations such as
edge flips or vertex splits. Our framework is general and can be thus integrated within
modern optimization and learning modules.

This lack of a unified differentiable representation is particularly unfortunate in light
of recently-introduced gradient-based optimization frameworks such as Pytorch [180] and
TensorFlow [1] for Machine Learning applications. These frameworks rely on the differen-
tiablity of the pipeline and enable modular design. In absence of such a differentiable
triangulation framework, current deep-learning pipelines either perform surface meshing
during post-processing, or use formulations that are learned via proxies [151, 194, 153, 186],
which typically do not give explicit access to the resulting triangle mesh structure.

In this work, we devise what we believe to be the first formulation for differential
triangulation, enabling gradient-based optimization for per-face and/or per-vertex objec-
tives, such as size and curvature alignment. Our approach is general, can be applied to
manifolds represented in any explicit representation, is modular, and supports optimizing
for any objective that can be expressed as a differentiable function with respect to triangle
properties like size and angles.

The main technical challenge in devising a differentiable triangulation is develop-
ing a smooth representation that allows to control both the vertex positions and the
(inherently-combinatorial) mesh structure, while also ensuring the resulting mesh is always
a 2-manifold. Our core idea is to use the concept of a weighted Delaunay triangula-
tion (WDT) [58]. It considers a given set of vertices, along with per-vertex weights,
which define a unique triangulation using a Voronoi-like partition of space.

In this paper we propose a differentiable weighted Delaunay triangulation (dWDT),
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by considering (arbitrary) triplets of vertices and whether they constitute a triangle in the
triangulation defined by the weights and vertices. While in classic WDT, this existence
receives a binary value, we generalize that definition by assigning inclusion scores to
triangle membership, thus giving them a soft association. We demonstrate that this
relaxation provides a unified control over both the vertices and the mesh structure, and
can be used to directly optimize any (differentiable) objective function defined on the
triangles. Intuitively, we define the triangle inclusion scores in terms of Voronoi diagram
distances that represent how close a certain triangle is from inclusion into (or removal
from) the triangulation. Represented as a continuous quantity, we can optimize triangle
inclusion scores as a function of vertex positions and weights. Importantly, Memari et
al. [165] showed that, in 2D, any triangulation can be represented through a perturbation
of a WDT, in other words, any triangulation can be reached by adjusting vertex positions
and weights, and then applying a WDT. Therefore, our approach is both differentiable
and generic, allowing to accommodate a wide range of mesh structures.

To apply our relaxation to 3D surfaces, we decompose the source into local patches,
and then perform per-patch differentiable meshing with appropriate boundary constraints.
For example, in Figure 6.1 we show triangulations obtained by optimizing for different
objective functions, given the same original underlying surface models. The modular
nature of our approach makes it easy to switch between target objective functions.
Similarly, we can triangulate different surface representations (see Figure 6.9 for a
triangulation of an analytic surface defined by a function).

We evaluate our method to produce 2D and 3D meshes optimized for a mix of target
objective functions such as shape/size of triangles, and alignment to given vector fields,
thereby highlighting that our approach is both more flexible, and can accommodate for
more diverse objectives than alternative approaches.

6.2 Related Work

Surface remeshing and triangle mesh optimization are both extremely well-studied prob-
lems in computational geometry, computer graphics, and related fields. Below we review
methods most closely related to ours, and refer to recent surveys, including [137, 50, 6, 136]
for a more in-depth discussion.

Simplification-based approaches A common objective for surface remeshing is re-
ducing the number of elements in the final mesh. As a result, especially early remeshing
techniques, starting with the pioneering QEM approach [93], often focused on preserving
mesh quality during simplification (see [93] for a survey of local methods). Such methods
are typically based on edge-collapse operation followed by vertex position optimization,
and have been extended both in terms of efficiency, e.g., [126, 176], the use of various
metrics [174] including feature preservation [217], and even using spectral quantities [145]
during edge collapse. However, such approaches are essentially greedy and typically do
not allow to optimize mesh properties based on general structural criteria.
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Figure 6.2 –Overview of our approach. We propose a differentiable weighted Delaunay
Triangulation (dWDT) to create a soft triangulation from a set of 2D vertices V with
associated associated weights W (shown as marker size). In the soft triangulation,
triangles have inclusion scores S of being part of the triangulation. We illustrate triangle
inclusion scores as edge colors (using the largest inclusion score of the two adjacent faces)
and only show triangles with inclusion score > 0.001. The 2D vertices V are lifted to form
a soft 3D triangulation on the manifold’s surface using a fixed mapping m−1. Since the
pipeline is fully differentiable, we can propagate gradients of any differentiable loss on the
3D triangulation back to the vertex positions V and weights W . Note that by choosing
appropriate weights W , our network can ignore points and produce a triangulation over
a subset of points, if desired.

Local methods A related set of methods includes approaches based on local mesh
modification while aiming to improve the overall mesh quality, e.g., [122, 77, 233]. In
addition to edge collapse, these local operators include edge flipping, edge splitting, and
vertex translation. A prominent method in this category is real-time adaptive remeshing
(RAR) [77], which uses an adaptive sizing function and edge flipping to optimize the
mesh quality and vertex valence. This framework was recently extended for efficient
error-bounded remeshing [51] through a use of a range of powerful local refinement
operations. Similarly, Explicit Surface Remeshing (ESR) [200] is another efficient method
for remeshing based on local refinement operations coupled with angle-based smoothing.
The more recent Instant Meshes [130] technique advocates using local optimization and
smoothing, while aiming to optimize potentially global consistency. This results in a
powerful and efficient framework, capable of handing both isotropic triangular or quad-
dominant meshes. Nevertheless, as with other local techniques the topology (i.e. the
connectivity between vertices) and geometry are handled separately, preventing a unified
differentiable, global mesh optimization.

Delaunay and CVT-based methods Another powerful set of remeshing methods,
more closely related to our approach are based on Delaunay triangulations, and centroidal
Voronoi tessellations (CVT). The former category includes approaches based on triangle
refinement by flipping non-locally Delaunay (NLD) edges [78] and defining an intrinsic
Delaunay triangulations [85]. Furthermore, global optimization techniques have also been
used for finding optimal Delaunay triangulations [47] under the assumption that vertex
connectivity is fixed. In a different line of work, centroidal Voronoi tessellations (CVT)
have been used for finding an approximately uniform vertex distributions, so that their
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Voronoi diagram (and thus its dual, the Delaunay triangulation) is well-shaped, e.g.,
[76, 225, 214] among many others. Such methods have also been extended, for example,
to explicitly penalize obtuse and sharp angles [226] and to anisotropic remeshing by
embedding in an appropriate (e.g., feature or curvature-aware) space [148]. Nevertheless,
the final shape of the triangulation is difficult to control using these methods, and it is
not easy to combine multiple objective functions in a coherent optimization strategy.

Optimization-based approaches Finally we also note methods based explicitly on
optimizing an objective. This includes both local, e.g., [121, 77] and global optimization,
e.g., [205, 160] strategies (see also Section 4.7 in [136]). Existing optimization strategies
most often rely on either smoothness energies [202, 63, 89], use sampling [90] or a variant
of CVT, e.g., [224] to optimize vertex positions. In both cases, while the positions of
the vertices can be optimized, the connectivity is only defined implicitly and updated
separately, typically without explicitly taking into account the optimization objective.
More fundamentally, the mesh structure is purely combinatorial, preventing the use of
powerful tools based on differentiability.

In contrast to these approaches, we propose a fully differentiable framework that allows
to jointly optimize for both vertex positions and triangle mesh connectivity, by using a
soft version of the weighted Delaunay triangulation (WDT). Our method is inspired
by theoretical results demonstrating that in 2D any triangulation can be represented
through a perturbation of a WDT [165]. Importantly, the same result does not hold for
the standard Delaunay triangulation, and therefore optimizing over the weights of the
WDT as well as the vertex positions allows significantly more control over the shape of
the final triangulation and even allows ignoring some input points if they are deemed
unnecessary (i.e., high weights) in the final triangle mesh.

Importantly, the differentiable nature of our approach allows optimizing for a range
of criteria jointly, simply by formulating a single (differentiable) objective function.
Furthermore, it enables optimization of both vertex positions and criteria that depend
on the connectivity in a unified framework. Finally, our differentiable meshing block can
be also ultimately be used as part of a larger, differentiable shape processing or design
system.

Weighted Voronoi and power diagrams. Weighted Voronoi diagrams are also
known as power diagrams, and have been researched extensively in the context of tri-
angulations [98]. In computer graphics, they have been used for various tasks such as
computing blue noise [59], or simulating fluid dynamics [60]. [169, 100, 165] considered
power diagrams in the context of formulating different triangulation duals. They also
propose to optimize objectives on the dual. This is a different context and use-case than
our differentiable formulation, which is geared towards a gradient-guided optimization of
arbitrary geometric objectives on the triangulation.

Differentiability in computer vision Recently, with the success of deep learning in
computer vision, making common operations differentiable has started to gain research
interest. In particular relaxing hard condition for deep learning purposes into soft
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formulations has been used for tasks such as RANSAC [36], rendering [154] or shape
correspondence [161] among others. Similarly to these methods, we present a soft
formulation of triangle existence.

6.3 Method

Let (V ′, T ) represent a triangulation of a surface in 3D space, with V ′ = (v′1, . . . , v
′
n), v

′
i ∈

R3 vertices, and T its triangular faces. A common strategy for triangulating a manifold
surface is to first find a 2D parameterization that maps the surface to a planar 2D domain,
then sample a set of vertices V = (v1, . . . , vn), vi ∈ R2 in the 2D domain, and compute a
triangulation which respects the chosen vertices. Our method relies on the ubiquitous
Delaunay triangulation [50, 61] (DT), used for triangulating a given 2D vertex set. We
denote it as T = DT(V ). A Delaunay triangulation always includes all chosen vertices,
and is, uniquely defined with respect to them, as long as the points are in general position.
In order to gain more control over the triangulation, one can consider a weighted Delaunay
triangulation [203, 11] T = WDT(V,W ), where each vertex vi has a scalar weight wi,
with W = (w1, . . . , wn). Traditional methods for computing a WDT are typically not
differentiable, as the space of all possible faces is combinatorial.

We propose a differentiable weighted Delaunay triangulation dWDT(V,W ) that
is differentiable with respect to both the vertex positions V and the weights W . In
conjunction with a parameterization m that defines a bijective and piecewise differentiable
mapping m from a surface in 3D to a 2D parameter space, dWDT enables a differentiable
pipeline for triangulating 3D domains. We describe our differentiable triangulation
approach in two parts (see Figure 6.2). First, in Section 6.3.1, we describe the differentiable
weighted 2D Delaunay triangulation dWDT. In this part, we first focus on the definition
of DT and the existence of triangles, w.r.t. vertex positions and weights, and then
replace the binary triangle existence function with a smooth triangle inclusion score,
again defined w.r.t the vertex positions and weights, in a way that naturally follows from
the definition of DT. This yields a soft and differentiable notion of a triangulation that
can easily be generalized to a weighted Delaunay triangulation. Then, in Section 6.3.2,
we describe a parameterization m that maps between a manifold surface and our 2D
Delaunay triangulation to obtain dWDT on 3D surfaces, before describing the losses
and optimization setup in Section 6.3.3.

6.3.1 Differentiable Weighted Delaunay Triangulation

Assume we are given a set of vertices V = {v1, ..., v|V |} with vj ∈ R2. Consider the set of
all possible triangles defined over these vertices, i.e., all possible triplets of vertices:

T ∗ = {(vj , vk, vl) |vj , vk, vl ∈ V } . (6.1)

Any triangulation of the vertices V is a subset of all possible triangles T ⊂ T ∗ on V , and
we can consider the triangulation’s existence function e : T ∗ → {0, 1}, defined for any
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triplet ti ∈ T ∗ as

ei =

{
1 t ∈ T
0 t /∈ T.

(6.2)

From this perspective, the binary and discrete existence function is the cause of the
combinatorial nature of the triangulation problem. Hence, our main goal is to define a
smooth formulation in which this function is differentiable as to enable gradient-based
optimization. We achieve this by extending WDT to the smooth setting.

Towards gaining intuition into WDT, let us first consider the classic, non-weighted
Delaunay triangulation DT(V ) of a given set of vertices V . This triangulation is defined
by considering each possible triangle t ∈ T ∗ and deeming it as part of the triangulation
DT(V ) if and only if its circumcenter is the shared vertex of the three Voronoi cells
centered at the triangle’s vertices (see Figure 6.3 for an illustration). The Voronoi cell
of vertex vj is defined as the set of points in R2 closer to vj than to any other vertex
vk ∈ V .

Said differently, each pair of vertices (vj , vk) divides the 2D plane into two half-spaces:
the set of points closer to vj , denoted as Hj<k, and the set of points closer to vk, denoted
as Hk<j . The Voronoi cell aj centered at vj is defined as the intersection of half-spaces
aj
⋂
k 6=j Hj<k. The triangle circumcenter is the intersection point of the three half-space

boundaries between the three vertex pairs that define its edges. Hence, we can define the
existence function of the Delaunay triangulation for a triplet of vertices, ti = (vj , vk, vl)
with circumcenter ci as

ei =

{
1 if ci = aj ∩ ak ∩ al
0 otherwise.

(6.3)

Parameterizing Triangle Existence with respect to V . We are interested in
how the triangulation T changes as the vertex positions are changed - namely, we aim to
analyze the range of vertex positions that do not change its membership function ei of a
triangle ti.

For any triangle ti = (vj , vk, vl), we consider the three reduced Voronoi cells aj|i,
ak|i, al|i respectively around the triangle’s vertices vj , vk, vl, where we define a reduced
Voronoi cell aj|i centered at the triangle vertex vj as the Voronoi cell created by ignoring
the two other vertices of the triangle, vk and vl (see Figure 6.3). The triangle ti is part
of the triangulation T as long is its circumcenter ci remains inside the reduced Voronoi
cells around its vertices. Similarly, ti is not part of T as long as its circumcenter remains
outside its three reduced Voronoi cells. Note that, by construction, the circumcenter
simultaneously enters or exits the three reduced Voronoi cells. Thus, we can re-formulate
the triangle existence ei as:

ei =

{
1 if ci ∈ ax|i for any x ∈ {j, k, l}
0 otherwise.

(6.4)
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Figure 6.3 – Triangle inclusion score and reduced Voronoi cell. A reduced Voronoi
cell for a given triangle ti at a vertex vj is constructed from the point set that excludes
the two other vertices of the triangle. A triangle ti exists in the Delaunay triangulation,
as long as its circumcenter ci remains inside the reduced Voronoi cell. We base triangle
inclusion scores si|j on the signed distance from ci to the boundary of the reduced Voronoi
cell.

Continuous Triangle Inclusion Scores We now turn to making DT differentiable
by relaxing the binary existence function ei defined in Equation (6.4) into a continuous
inclusion score function, si, denoting the inclusion score of a triangle ti ∈ T ∗ to exist as a
member of the triangulation T , defined with respect to vertex positions. The inclusion
scores are based on the signed distance of the triangle circumcenter to the boundary of
the reduced Voronoi cells at the triangle vertices: considering a single vertex vj of the
triangle ti, and its reduced Voronoi cell aj|i, the inclusion score is defined as:

si|j := σ
(
α d(ci, aj|i)

)
, (6.5)

where d is the signed distance (positive inside, negative outside) from a point ci to the
boundary of a reduced Voronoi cell aj|i, and α is a scaling factor for the width of the
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Sigmoid σ (we use α = 1000 in all experiments). The Sigmoid gives a smooth transition
from an inclusion score close to 1 inside the reduced Voronoi cell to an inclusion score
close to 0 outside, with an inclusion score 0.5 if the circumcenter lies on the boundary of
the reduced Voronoi cell, i.e., exactly when the discrete triangle membership changes.
The triangle inclusion score si can then be defined as the average over the three inclusion
scores at its vertices vj , vk, and vl:

si =
1

3
(si|j + si|k + si|l). (6.6)

Note that since the circumcenter simultaneously enters/exits the reduced Voronoi cells
around each vertex, all three inclusion scores equal 0.5 at a discrete membership transition.

For each triangle ti, we store the triangle inclusion score si and the three inclusion
scores si|j , si|k and si|l defined for its three vertices, yielding a soft 2D triangulation (V, S)
with inclusion scores S. We store the inclusion scores si|j in addition to the triangle
inclusion scores si, since most losses that we use are defined on vertices where using a
triangle’s vertex inclusion scores is more convenient. We can, subsequently, convert this
soft triangulation into a discrete 2D triangulation (V, T ), by selecting all triangles where
si > 0.5. This gives us the same results as the discrete DT, the final triangulation is
guaranteed to be manifold.

Since the number of all possible triangles T ∗ grows cubically with the vertex count,
we reduce the number of triangles under consideration by observing that vertices in the
triangles of a Delaunay triangulation are typically within the k-nearest neighbors of each
other, for some small k (we use k = 80 in all experiments). Thus, at each Voronoi cell
aj , we only consider triangles that are within the k-nearest neighbors of vj and set all
other triangle inclusion score implicitly to 0. Note that since the 2D vertices V change
positions during optimization, we recompute nearest neighbours after each iteration of
our algorithm.

Weighted Delaunay triangulation Our relaxed formulation of the Delaunay trian-
gulation can naturally be extended to the weighted Delaunay triangulation WDT, where
weights are associated to each vertex. The weights allow shifting the boundary between
the two half-spaces Hj<k and Hk<j , by the relative weights wj and wk of the two vertices.
The weighted half space Hj<k is defined as the set of points x ∈ R2 where

‖x− vj‖22 − w2
j ≤ ‖x− vk‖22 − w2

k (6.7)

so that a larger weight pushes the boundary away from the vertex. This allows generalizing
the definition of the Voronoi cell to a weighted Voronoi cell. As a result, the existence
function Equation (6.4) and the inclusion score si|j in Equation (6.5) can be used as-is,
with the modified definition of the half-planes, and considering the weighted circumcenter
of the triangle. This makes the inclusion scores S of the soft triangulation (V, S) a
function of both the vertex position V and their weights W .

Thus, weights enable further control over the resulting triangulation, by enabling
modifications the Voronoi cells (and therefore, the triangulation itself). In fact, note that
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it is even possible for a vertex to be excluded from a WDT (i.e., not be part of any
triangle), if the weight difference to any other vertex is so large that the boundary line
between the two half-spaces shifts past one of the vertices - a property not possible with
classical Delaunay triangulation. We will make use of this property to allow our method
to ignore vertices deemed unnecessary, hence producing triangulations with a reduced
number of vertices. In the following, we consider the weighted triangle circumcenters,
denoted by ci, and the weighted Voronoi cells, denoted by ai.

6.3.2 3D Surface Parameterization

So far we have defined differentiable triangulations of 2D sets of vertices. In order to apply
our dWDT on a 3D surfaceM, we reduce the problem to a set of 2D (triangulation)
problems.

First, we construct a bijective piecewise differentiable mappingm between the manifold
and the 2D plane, i.e., a 2D parameterization. Next, we elaborate on the computation
of this parameterization. As a pre-process, since we are not concerned with the original
triangulation but only the underlying surface it represents, we initially remesh input
models using isotropic explicit remeshing [53] to yield meshes constituting between
3.5 − 4.5K triangles. We normalize each model to unit area. We then decompose the
manifold into a set of separate patches {P1,P2, . . .} that can be individually parameterized
with less distortion than the whole shape. Individual patches are found with a spectral
clustering approach [173], using the adjacency matrix for affinity. We used 10 patches in
all experiments.

Then, we construct a low-distortion mapping m between the surface of a patch Pi and
the 2D plane using Least-Squares Conformal Maps [149] (LSCM). To lower the distortion
of the mapping for patches that are far from developable, we first measure the distortion
as the deviation of the local scale factor from the global average. Patches with high
distortion are cut along the shortest geodesic between the area of maximum distortion
and any existing boundary. This process is repeated until the maximum distortion of all
patches, measured as the ratio between local scale and global average is above 15% and
the mapping is bijective. Finally, we normalize the 2D parametrization of each patch to
have equal average edge length. We compute this mapping once, as a preprocess, and
reuse it in all steps of the optimization.

Differentiable 3D Surface Triangulation Given the mapping m, we can pull back
the computed 2D triangulation (V, T ) to a part of the 3D surface Pi using the inverse
mapping m−1. Thus, our differentiable triangulation of a 3D surface patch is defined as:

(V ′, S) :=
((
m−1(v1), . . . ,m

−1(vn)
)
, dWDT(V,W )

)
, (6.8)

which gives us the soft 3D triangulation (V ′, S) that consists of a set of 3D vertices V ′

and triangle inclusion scores S. Note that the inclusion scores are differentiable functions
of the 2D vertices V and their weights W , and that we can obtain a manifold discrete
mesh at any time by selecting all triangles with inclusion scores > 0.5. Since the mapping
m is piecewise differentiable, any loss L can be applied directly to the 3D vertices V ′ and
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triangle inclusion scores S, allowing gradients to propagate back to the parameters V
and W that define V ′ and S. We highlight that similarly to Leaky ReLU activations,
the piecewise differentiability does not significantly impact optimization. We discuss the
losses we use in our experiments in Section 6.3.3.

Boundary preservation Special care must be taken to preserve the boundary of each
patch, so that putting the patches back together does not result in gaps or overlaps. We
use a two-part strategy to ensure pieces fit back together. First, we define a loss that
repels vertices from the boundary of a patch, which we describe in Section 6.3.3. Second,
we perform a post-processing step that cuts the 2D mesh (V, S) along the 2D boundary,
based on a triangle flipping strategy along the boundary. Namely, we use the simple
strategy described in [193] between consecutive boundary points of the optimized patches.
The boundary between patches is therefore kept fixed before and after the optimization
step.

6.3.3 Losses and Optimization

Our differentiable triangulation allows us to optimize a triangular mesh on a surface
in 3D using any differentiable loss defined on the 3D vertex positions V and triangle
inclusion scores S. We experiment with several different losses, combinations of which
are useful for both traditional applications, as well as novel ones, as we experimentally
show in Section 6.4.

The triangle size loss Ls encourages triangles to have a specified area:

Ls(V ′, S) :=
1∑
i,j si|j

∑
i,j

si|j
(
0.5 ‖(v′k − v′j)× (v′l − v′j)‖2 −A(vj)

)2
, (6.9)

where v′j , v
′
k, and v

′
l are the 3D vertices of triangle ti, and A(vj) is the target area at

vertex vj , where A is defined as a continuous function over the 3D surface. This loss
allows us, for example, to coarsen a triangulation, when used in conjunction with other
losses. Note that the size of the triangles is not constrained by the initial number of
vertices - due to the WDT our optimized result can contain fewer vertices than the
initial triangulation.

The boundary repulsion loss Lb encourages vertices to stay inside the 2D boundary of
the patch P during the optimization:

Lb(V,P) :=
1

|V |
∑
j

eε−min(ε, (vj−bj)nb
j), (6.10)

where bj is the point on the boundary closest to the vertex vj and nbj is the 2D boundary
normal at that point (pointing inward). The repulsion loss is non-zero below a (signed)
distance ε from the boundary as we show in Figure 6.4. We set ε to 0.01 in our experiments.
Note that we do not use our triangle inclusion scores in this loss, since we want all vertices
to remain inside the boundary, irrespective of inclusion scores. We note that since Lb
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vj bj

ε

Figure 6.4 – Boundary repulsion loss. The repulsion loss is non-zero below a (signed)
distance ε from the boundary. Non-boundary vertices inside the red region are pushed
towards the center of the patch.

has a local effect and does not rely on global properties of the patch, patches can be
non-convex.

The angle loss La encourages triangles to be equilateral.

La(V ′, S,P) :=
1∑
i,j si|j

∑
i,j

si|j |cos(∠j)− cos(π/3)| , (6.11)

where ∠j is the corner angle of triangle ti including vertex vj . Note that this loss can be
modified to produce isosceles triangles.

The curvature alignment loss Lc encourages two edges per vertex to align to the two
directions of the minimum principal curvature vector field C. We define it as,

Lc(V ′, S,P, C) :=
−1∑
i,j si|j

∑
j

(
LSE(∪i∈Nj{C(vj) · hjk si|j , C(vj) · hjl si|j})

+ LSE(∪i∈Nj{−C(vj) · hjk si|j ,−C(vj) · hjl si|j})
)

with hjm =(v′j − v′m)/‖v′j − v′m‖2, (6.12)

where Nj are the triangles adjacent to v′j , and v
′
j , v
′
k, v

′
l are the 3D vertices of triangle ti.

LSE denotes the smooth maximum function LogSumExp over the weighted alignment
scores of all edges adjacent to vertex v′j , where each triangle contributes two edges
corresponding to hjk and hjl. Intuitively, we want to maximize the alignment of the
best-aligned edge in a star of each vertex, for both the positive and negative target
guidance direction C(vj), which is the principal curvature field evaluated at vj .

Optimization Given a loss L, as a sum of a selection of the terms above, we optimize
the 3D mesh M , parameterized by the 2D vertex positions V and vertex weights W .
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Since our framework is completely differentiable, we use the Adam [139] optimizer. We
initialize all vertex weights with random values and use the mapping of the input mesh
vertices to 2D as the initial 3D vertex positions. We use a learning rate of 0.0001 in all
experiments. Please refer to the supplementary video for evolving triangulations over
optimization iterations.

6.4 Results

We next describe experiments that highlight the key advantage of our method - differen-
tiability, which enables plugging in and mixing any combination of differentiable losses,
circumventing the need to design a specialized optimization method for each loss combi-
nation. Practically, the experiments show the efficacy of our method, and its ability to
produce superior results than state-of-the-art methods that are specifically tailored to those
specific applications. Code of our method is available at github.com/mrakotosaon/diff-
surface-triangulation.

6.4.1 Customized Triangulation

Most triangulation tasks are formulated via user-provided requirements that are imposed
on the resulting triangulation, such as desired triangle sizes or edge alignment. We employ
our differentiable losses in two common scenarios, shown in Figures 6.1 and 6.5. We
evaluate our method in both scenarios on 140 randomly selected meshes (among those
with genus 10 or less) sampled from Thingi10k [240].

(i) Triangle size. We first optimize the triangulation to match a given distribution of
triangle sizes, represented as a scalar field over the surface. We chose to assign sizes that
are the reciprocal of the mean absolute curvature value, so that high curvature regions
receive a finer tessellation than lower-curvature regions. We sum the losses Ls, Lb, and
La with weights 0.5, 500, and 107, respectively, in order to scale each loss to the same
range. Qualitative results are shown in the left half of Figure 6.5.

As evaluation metric, we take the absolute difference between the resulting triangle
size and the target size distribution. Since we are interested in the distribution of relative
triangle sizes rather than the absolute sizes, we normalize the triangle sizes per model
to have zero mean and unit standard deviation. To compare our triangle sizes to the
continuous target size distribution, triangle size at each vertex is defined as the average
size of all adjacent triangles. In Figure 6.5, normalized triangle sizes are shown as colors
while the numbers below each result show the RMSE over all vertices.

We compare our method to the remeshing method of Loseille [157], a state-of-the-art
method for remeshing that can be guided by a given triangle size field, and show a
qualitative comparison on a subset of shapes in Figure 6.5. In most cases our method
can reproduce the target size distribution more accurately. Note, for example, the size
distribution on the top of the pawn, on the heads, on the rim of the hat and on the cat’s
hind.

https://github.com/mrakotosaon/diff-surface-triangulation
https://github.com/mrakotosaon/diff-surface-triangulation
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Figure 6.5 – Qualitative Results. We show two applications of our approach. In the
left half of the figure we optimize for given target triangle sizes, and compare with a
state-of-the-art remeshing method [157] (triangles are colored according to size). In the
right half, we optimize for edges that are aligned to the principal curvature directions
and compare with Instant Meshes [130] (colors illustrate alignment errors). Boundaries
of the patch decomposition are shown as white lines on the input meshes. The average
error is given below each result - for our method we give the error with / without faces
adjacent to a patch boundary. Note that our differentiable triangulation more accurately
satisfies the target triangle sizes or edge directions.

(ii) Vector-field alignment. In our second scenario, we optimize 3D meshes with
the loss Lc that encourages edges to align with a given vector field. We chose to use
minimum principal curvature directions to encourage meshes which edges that adhere



6.4. Results 89

step 3 step 7 step 19 step 67 step 255 step 999 ground truth

min

max

triangle size

cu
rv

at
ur

e 
al

ig
nm

en
t

tr
ia

ng
le

 s
iz

e

0

max

alignm
ent error

1.41 1.22 1.04 0.79 0.64 0.57

16.8 16.1 14.8 11.6 9.84 9.40

Figure 6.6 – Optimization steps. We show our results at different optimization steps
for curvature alignment (top row), and triangle size (bottom row).

to ridge lines and geometric features. At the same time, we emphasize that any other
user-prescribed field could be used as well. We minimize the loss Lc combined with the
boundary repulsion loss Lb with weights of 1 and 500, respectively. Qualitative results
are shown in the right half of Figure 6.5.

As evaluation metric, we take the absolute angular difference between both the positive
and negative prescribed curvature direction at each vertex and the best-aligned edge.
We compare with Instant Meshes [130], a method specialized to creating feature-aligned
equilateral triangulations. Since Instant Meshes is designed to align to sharp features and
is not well defined near flat regions or umbilical points, we weight the per vertex-alignment
error using the following term:

wj =
|kj1 − k

j
2|

0.5 ∗ (|kj1|+ |k
j
2|)
, (6.13)

where kj1 and kj2 are the signed principal curvature magnitudes at vertex j. Intuitively,
this term reduces the influence of regions that are nearly flat or umbilical, so as to not
penalize the baseline in those regions unfairly. In Figure 6.5, edge alignment errors are
shown as colors while the numbers below each result show the RMSE over all vertices.

Our general-purpose triangulation achieves significantly better alignment, as can
be seen by the significantly lower color-coded and average error on all models. While
the baseline method of [130] generates triangles that are very close to equilateral, the
alignment with the curvature directions suffers, as can be seen on the lower part of the
pawn, where none of the edges align well with the curvature directions. Similarly, for the
cylindrical hat, our method generates edge-loops “hugging” the cylinder, while Instant
Meshes does not present such edge-loops. On more organic models, such as the cat and
human, lack of alignment is even more evident, e.g., on the human’s brow.
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Quantitative evaluation We further evaluate our method on our complete dataset of
140 meshes taken from Thingi10k [240]. The quantitative results in Table 6.1 show the
RMSE of the metrics described above over all vertices and all shapes in the dataset. Since
the vertices at the boundary of our patches cannot fully be optimized with our approach,
we provide errors computed both with and without the vertices at the patch boundaries.
In both cases and in both applications, our method approximates the correct triangle
sizes and edges directions significantly better than the state-of-the-art methods [157]
and [130].

Table 6.1 – Quantitative results. We compare both the triangle size and curvature
alignment applications to state of the art remeshing methods. For our results, we provide
values computed both with and without the boundary triangles.

input mesh [157] ours w/o bound. ours

1.320 0.865 0.499 0.686
triangle size

input mesh [130] ours w/o bound. ours

14.043 11.850 7.919 8.4617
curvature alignment

6.4.2 Optimization

Choice of optimizer. We evaluate the effect of different optimization methods, com-
paring ADAM, LBFGS, and Simulated Annealing. In Figure 6.7 we show results on a
2D triangulation example where we optimize for both triangle sizes, and alignment to a
custom vector field. We run each optimizer for 1000 steps and observe that while LBFGS
can achieve better performances on some patches, ADAM produces good results more
consistently, and hence we opted to use it in all our experiments. We use Simulated
Annealing (SA) with the discrete mesh representation instead of our formulation as SA
does not handle gradients. After computing the non differentiable weighted Delaunay
triangulation, we minimize the discrete version of our losses: for instance we align existing
edges to the curvature vector field and fit the area of existing triangles to the target
area function. Both gradient-based methods perform significantly better than the
non-gradient based method, Simulated Annealing, suggesting that our search space is
typically too complex to allow for a more random search strategy that is not guided by
gradients. We included the comparison to the non-gradient-based simulated annealing
to show gradient-based methods are more apt for this problem; however, putting perfor-
mance aside, we note that simulated annealing cannot accomplish the main goal of our
work, which is to devise a triangulation module that can be used within differentiable
optimization frameworks (e.g., PyTorch [180]).
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Figure 6.7 – Comparing different optimizers. We compare ADAM, LBFGS and
Simulated Annealing on a 2D mesh. We start from a 2D mesh with random vertices.
In the top row, we optimize edges to align with a given vector field. The best-aligned
edges are color-coded according to the alignment error (blue is lowest error, yellow largest
error). The average alignment error is shown at the top. In the bottom row, we optimize
triangle areas to align with a given size field. Vertices are color-coded according to the
average neighboring triangle area (blue are smaller triangles, yellow larger triangles),
with RMSE shown at the top. Note how the two gradient-based optimizers ADAM and
LBFGS perform significantly better than the gradient-less simulated annealing.

Optimization process. In Figure 6.6 we show the evolution of the triangulation
through the optimization steps. The gradual change shows that indeed our differential
triangulation enables gradient-based optimization which smoothly decreases the energy
towards a local minimum. Please refer to the supplemental video for more detailed
visualizations of the optimization process.

6.4.3 Loss blending

As an important advantage, our method naturally enables blending and interpolating
the relative weights placed on different loss terms, such as triangle size and adherence
to equilateral triangles. We show the plot of energies with respect to such a blending in
Figure 6.8 using the aggregated loss term defined as,

L(V ′, P ) := t× La + (1− t)× Ls (6.14)

with t being the blending weight. We evaluate over 7 values of the weight on a subset
of 7 models from our dataset. This allows us to easily trade off between characteristics
for the triangulation. Note that this was not previously possible for specialized methods
targeted towards individual tasks.
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Figure 6.8 – Loss blending. We blend the triangle sizing loss Ls and the equilateral
triangle loss La on 7 models of the dataset. We show the error in triangle distribution
and the standard deviation of face angles. Note that given a triangulation, the average
angle value is 60◦. We observe that we can combine the two losses to obtain a trade off
between the desired properties.

6.4.4 Method of vertex initialization

We compare our method with an alternative vertex initialization technique in Table 6.2.
Given fixed per-patch boundary vertices, we uniformly sample the remaining vertices on
the 3D surface using rejection sampling. We evaluate both initialization methods on the
same subset of shapes from Section 6.4.3. We observe that the alternative initialization
method produces initial triangulations with higher errors. While our method is not
completely insensitive to the initialization strategy, it can significantly decrease the loss
in both cases.

6.4.5 Runtime and memory

We show the average runtime and maximum memory usage of our method for multiple
values of k in Table 6.3 and multiple vertices count per patch in Table 6.4. The runtime
is for a typical optimization with 1000 iterations. Both time and memory are linear in
the number of vertices and cubic in the number of neighbors k. In our experiments, we
typically optimize for 1000 steps for the curvature alignment task and 1500 steps for the
triangle size task.
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Table 6.2 – Vertex initialization methods. We compare an initialization based on
remeshed 3D vertices to an initialization based on a uniform distribution over the 3D
surface. The uniform initialization has significantly higher initial error, but our method
can still decrease the loss significantly.

init. method input mesh ours

remeshed model vertices 1.354 0.634
uniform 1.429 0.791

triangle size

init. method input mesh ours

remeshed model vertices 13.809 9.037
uniform 19.119 11.028

curvature alignment

Table 6.3 – Runtime and memory usage w.r.t. k. We report the average runtime
for an optimization with 1K iterations and maximum memory usage per patch.

k 70 80 90

runtime (sec) 132 185 252
memory (GB) 7.6 9.47 13.2

Table 6.4 – Runtime and memory usage w.r.t. number of vertices per patch.
We report the average runtime for an optimization with 1K iterations and maximum
memory usage per patches of varying number of vertices. Time and memory are linear
in the number of vertices. Note that we can adjust the size of our patches as needed to
avoid memory limitations.

n vertices 500 700 900 1100

runtime (sec) 266 364 477 581
memory (GB) 9.0 12.6 16.3 21.1
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Figure 6.9 – Analytic surfaces. Our method can triangulate surfaces given in any
representation: here we triangulate an analytic surface (a catenoid), with the parameteric
domain shown on the top row, and the 3D surface on the bottom row. Starting from
randomly distributed vertices (left), our approach successfully triangulates the analytic
surface with curvature-based triangle sizes (middle) and equal triangle sizes (right).

6.4.6 Analytic Surfaces

Our differentiable triangulation method can be applied to any kind of 3D surface, as
long as bijective piecewise differentiable parameterization of the surface is available. In
Figure 6.9, we experiment with an analytically defined 3D surface, a catenoid [69]. This
surface is defined as a function over a 2D parameter domain (thus, the analytical function
itself is our mapping m). We start with randomly distributed vertices in the parameter
domain and optimize for either triangle sizes based on the curvature magnitude that we
compute analytically or for equal-sized triangles in the 3D domain. Curvature values
were computed analytically from the surface definition. We can see that our approach
successfully optimizes these objectives on the analytic surface.

6.4.7 Discussion on performance

We observe that our method presents an overhead compared to task-specific methods
in terms of running time and the size of processed meshes. But with this overhead, our
method buys generality and differentiability. We can minimize multiple different objectives
(like the objectives of [157], [130]), or can easily combine multiple objectives, without
modifying our pipeline and our method can be used as a component in a differentiable
framework. Our numerical results are on par with specifically tailored remeshing methods.
Note that several recent learning-based methods work with even smaller point counts



6.5. Conclusion, Limitations & Future Work 95

(1024 points in PointNet [183], 2250 Edges in MeshCNN [111], 2048 points in [158]),
but these restrictions are quickly decreasing with improvements in GPU hardware and
methodological improvements.

6.5 Conclusion, Limitations & Future Work

The framework presented in this paper is the first, to the best of our knowledge, to enable
approaching surface triangulation from a differentiable point of view. As shown in the
experiments, differentiability enables a generic and flexible framework, which can handle
various geometric losses, along with their combinations, while taking advantage of modern
optimization frameworks. We believe it is the first step towards a black-box, differentiable
triangulation module in deep learning frameworks such as PyTorch and TensorFlow where
it can be immensely helpful in devising a trainable pipeline, e.g., learning to triangulate
models based on deformation sequences.

Our method has two main limitations, the first of which is that the surface needs to
be segmented into patches before triangulating. The boundaries of these patches do not
participate in the optimization and hence some visible artifacts exist across boundaries.
Nevertheless, we note that as shown in the experiments, even with this limitation, our
approach achieves significantly better results than the state of the art. A possible solution
for this would be to repeat the meshing by iteratively selecting different patches and
reparameterizing until convergence.

The second limitation of our method is that it cannot yet handle a large number of
points (e.g., 100k+), or large patches, as we need to compute the inclusion scores over a
the large space of possible triangles. As future work, we plan to consider a multiscale
approach for tackling this issue.

We are excited about the possibilities our approach opens up. For one, since our
method can work with surfaces represented in any explicit format (as we show in Figure
6.9), we wish to explore triangulating surfaces in other representations, such as NURBS,
or neural representations such as AtlasNet [105, 168]. Extending our method further to
point clouds and recovering not only an optimized triangulation but also the topological
structure (i.e. the connectivity that defines a surface) could be immensely important for
future applications. As an immediate application, we wish to harness differentiabilty to
train a network to directly output vertex weights and displacements for any given surface
in a single forward pass, and thus avoid test-time optimization.
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Conclusion

Shape processing is an important aspect of 3D computer vision. Deep learning methods
on 3D data are numerous and can currently handle common problems such as shape
segmentation or classification well. However, they do not allow the generation and
manipulation of low-level geometric aspects. Therefore they often struggle on tasks
that rely on processing the geometric properties of shapes such as point cloud denoising,
deformation and meshing. The main contribution of this thesis lies in building systematic
deep learning-based approaches that are able to exploit and generate geometric content.
We achieved this by building a patch-based pipeline that can retrieve clean data from
a noisy point cloud (Chapter 3), therefore recovering the underlying clean surface.
We enabled surface retrieval from noisy and incomplete point clouds as well as shape
interpolation from point clouds by explicitly learning and exploiting intrinsic information,
thus significantly enhancing the typical autoencoder architecture (Chapter 4). Finally we
laid the foundations to help bridge the representational gap between triangle meshes and
point clouds inside learning based methods (Chapter 5 and 6).

7.1 Discussion and Future work

While we have taken a significant step towards better representations of 3D shapes as
well as easy conversion between representations, several challenges still separate us from
the goals of seamlessly navigating between representations, creating new 3D content and
perfectly handling noisy data.

Point Cloud Denoising Follow-up works on deep denoising tasks further advance
state of the art by using unpaired training data [119] or learning self-priors [112]. More
recent work have started to rely on non local information [227, 82] as well. To the best of
our knowledge, no method combines both local priors with global priors that correspond
to higher level of understanding such as symmetries or semantic properties. As a result,
denoising methods still tend to produce shapes that lose detailed information. In the
future, building methods that rely on both local and global priors will be interesting to
more accurately denoise input shapes.

Intrinsic shape representations and deformations In Chapter 4 we successfully
combine geometric information with information learned on point clouds. Recent methods
for shape deformation are starting to combine geometry processing and deep learning as
well. In [17] the authors represent shapes as an atlas while encouraging as isometric as
possible deformations. In [229] the authors combine a traditional cage-based deformation
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technique, with learned control parameters. However, our method as well as more recent
ones are still limited to specific classes of shapes, meshes or templates. A longer term
goal would be to design methods that can inject geometric information to shapes from
any class or dataset.

Differentiable Meshing While recent works are using a wide variety of representations
of shapes [179] and are starting to combine them [175], many aspects of a more direct
approach to meshing point clouds such as ours remain under-explored. Generating high
quality meshes end-to-end is still an open problem and it would be highly beneficial
incorporate differentiable meshing into many applications such as denoising, deformation
or shape generation.

Throughout our work, we have produced methods that generalize well to new unseen
data. In Chapter 3 and Chapter 5, we observed that learning from patch data helps to
build robust methods that can be applied to arbitrary shape classes. Similarly, in Chapter
4 infusing geometric information leads to better generalization despite a small training
set. In contrast, methods that limit themselves to specific classes from a large dataset
such as ShapeNet [44] benefit from using high level understanding of parts, classes and
shapes. An interesting challenge for future work is to exploit the high level understanding
power of neural networks while maintaining the generalization power we have observed in
this thesis, perhaps by combining geometric information with high-level features.

Finally, we have introduced alternative representations of 3D shapes: in Chapter 3
and 5 we represent shapes as a set of independent local patches that are later combined to
produce a smooth surface. In Chapter 4 we represent shapes as a combination of extrinsic
and intrinsic learned latent representations. In Chapter 6, we represent meshes as a
combination of soft triangles. While we have investigated multiple representations they
all present advantages and drawbacks. For instance while patch-based representations
allow high generalization, they suffer from compatibility issues between independent
neighboring patches. While our dual latent representation from Chapter 4 enables highly
realistic interpolations, the applications are limited to datasets of similar classes. Our soft
triangle representation in Chapter 6 is subject to costly memory requirements. Finding
the right representation for specific tasks or sets of tasks is still an important problem.
Addressing this problem would allow to fully exploit the power of deep learning methods
on 3D shapes and go beyond the limitations of existing approaches.



Appendix A

Intrinsic Point Cloud Interpolation
via Dual Latent Space Navigation:

Additional Results

In Section A.1 we provide additional illustrations of our shape interpolation
method. In Section A.2 we demonstrate the performance of our approach for shape
reconstruction highlighting the utility of our dual network for strong regularization
of recovering high-quality shapes from noisy point clouds, as mentioned in the main
manuscript. In Section A.3 we provide an in-depth ablation study of our network
design. In Section A.4 we demonstrate the performance of our approach in the
unsupervised case (when the training data is not in correspondence). In section A.5,
we develop intuitive connections to Riemannian geometry. Finally, in Section A.6
we provide details of our architecture.

A.1 Shape interpolation

In Figure A.1 we provide an additional qualitative comparison of the linear interpolations
in the basic shape (PointNet) AE latent space and the interpolation using our method.
Our method preserves body type better (row 2) and interpolates well between a pair of
shapes where the end result differs highly from the linear interpolation of the coordinates
(row 4).

We further compare our method to other baselines on the SMAL animals dataset.
Table A.1 reports the mean-squared variance of several shape features during interpolation
of 100 pairs among 50 shapes obtained by farthest points sampling on this dataset. Note
that our method produces significantly better quantitative results across all shape features.

edge length area (10−3) volume (10−2)
PointNet 2.068 3.742 2.754
GD L2 1.906 3.618 2.681
GD EL 1.899 3.585 2.575
3D Coded 9.359 16.922 19.969
Ours 1.538 2.975 1.728

Table A.1 – MS variance of various shape features obtained from interpolating 100 pairs
among 50 shapes obtained by farthest points sampling on animals dataset (SMAL)
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Figure A.1 – We compare linear interpolations in PointNet AE latent space and interpo-
lation using our approach. We visualize the ratio between the linear interpolation of edge
lengths and edge lengths of the computed interpolations, to help highlight problematic
areas.
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Figure A.2 – We compare linear interpolations in PointNet AE latent space and interpo-
lation using our approach on real scans with artefacts.

We also test our method on real scans from the DFAUST dataset [27] in Figure A.2.
We observe that our method leads to more realistic results with lower distortion.

A.2 Shape reconstruction

As mentioned in the main manuscript, our approach not only enables better interpolation,
but also results in more accurate reconstructions from noisy input. Here we provide
additional qualitative and quantitative evaluation of the reconstruction performance and
comparison to different baseline methods.

Recall that for our method, given a noisy unordered point cloud P , we reconstruct the
shapes by using the following combination of our trained networks decp(MEP (MPE(encp(P )))),
which differs from the standard auto-encoder approach decp(encp(P )). Therefore, in this
section we show that the additional regularization provided by our mapping networks
MEP ,MPE results in better shape reconstruction.

To be fair to 3D-CODED, we normalize the total area of the output shapes. We
evaluate this method before (3D-CODED) and after (3D-CODED*) their additional step
of Chamfer Distance minimization. Note that in the case of 3D-CODED* additional
optimization at test time is required to recompute the latent code that best approximates
the input. Our method, on the other hand, performs the reconstruction in one shot.

In all of the experiments the training data is the combination of DFAUST and
SURREAL datasets, and the test data is the DFAUST test shapes, both with and without
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Figure A.3 – Reconstruction of meshes from point clouds containing 1000 points, sampled
from the underlying shape.

noise.
Table A.2 shows reconstruction results for several baselines on the 800 DFAUST

test shapes. We report the edge length accuracy (EL), rotation-invariant point cloud
reconstruction accuracy (PC) and per triangle area reconstruction accuracy (area). Note
that our approach achieves the best overall reconstruction accuracy, especially on the
intrinsic quantities and gives slightly worse reconstruction extrinsic loss (PC) compared
to PointNet AE. We provide qualitative examples in Figure A.3. Note that our method
leads to both preservation of the overall shape structure and significantly less intrinsic
distortion compared to all baselines.

Table A.3 shows reconstruction performance on noisy point clouds. Note that we test
using our model which was trained on clean data. Each noisy point cloud is obtained by
adding Gaussian noise magnitude 5% of the scale of the mesh to each vertex coordinate.
We observe that our method outperforms the other baselines for all the features. Figure
A.4 shows reconstructed meshes from the noisy point clouds. Notice that our method
performs better at recovering the original pose and body type than the different baselines.

Table A.4 shows reconstruction results on simplified point clouds. We randomly
sample 500 points from the test shapes surfaces. We recall that the network was trained
on 1000 point clouds. We observe that our method is more robust to under-sampling. In
particular, and contrary to other methods, the intrinsic properties remain competitive
with the performance from Table A.2.

We also demonstrate the generalization power across different datasets by showing
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EL (10−5) PC (10−4) area (10−8)
PointNet AE 3.023 2.120 2.454
Edge Length AE 3.127 - -
Ours L1,2,3 1.641 2.572 1.562
3D-CODED 6.323 5.803 5.485
3D-CODED* 6.284 4.260 5.409
PointNet++ 2.835 3.224 2.835

Table A.2 – Mean squared reconstruction losses on DFAUST testset. Edge length
reconstruction loss (EL), Point cloud coordinates reconstruction loss (PC) and per
triangle area difference

Noisy dataset
EL (10−5) PC (10−4) area (10−8)

PointNet AE 5.663 8.538 5.650
Ours 3.016 7.329 2.812
3D-CODED 8.553 10.463 7.058
PointNet++ 26.837 81.379 18.23

Table A.3 – Mean squared reconstruction losses on the DFAUST testset with noise. We
use 5% of the shape bounding box gaussian noise on the testset. We recall that the
network was trained on 1000 point clouds. We show the edge length reconstruction loss
(EL), the rotation invariant reconstruction loss (PC) and the per triangle area difference

Undersampled dataset
EL (10−5) PC (10−4) area (10−8)

PointNet AE 3.847 3.313 2.810
Ours 1.854 3.587 1.685
3D-CODED 6.219 6.898 5.341
PointNet++ 36.223 117.824 27.541

Table A.4 – Mean squared reconstruction losses on the DFAUST testset undersampled.
We randomly sample 500 points from the test shapes surfaces. We recall that the network
was trained on 1000 point clouds. We show the edge length reconstruction loss (EL), the
rotation invariant reconstruction loss (PC) and the per triangle area difference
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Figure A.4 – Reconstructions from point clouds with 5% of the shape scale gaussian
noise.

in Figure A.6 examples of reconstructions from SCAPE dataset [9]. While the simple
PointNet AE, is still able to reconstruct the overall position of the tested human, the
output has distortions near the hands (left) and the legs (right). Our method generates
more natural meshes even though the dataset is completely unknown with an entirely
different underlying mesh, different body type and poses that are different to those seen
at training. Note that we do not display the color coding as we do not have access to
ground truth edge lengths.
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Figure A.5 – We reconstruct a mesh from 500 points sub-sampled randomly from the
ground truth mesh. We use a network pre-trained on inputs of size 1000 points.

A.3 Ablation study

A.3.1 Architecture design

Importance of multiple separate networks We first test the utility of having
separate networks, rather than training a single network with a combined loss. Specifically,
in our study, we have observed that introducing intrinsic information directly during the
training of the shape auto-encoder produces unrealistic results with significant artefacts.
(Fig. A.7) We train two point-cloud AE (auto-encoders) using: a combination of edge (Le)
and point coordinate (Lrec) losses and edge (Le), point coordinate (Lrec) and linearity
losses (Llin)

Effect of separate networks training In our experiments, we fix the weights of the
shape AE and edge auto-encoder during the training of the mapping networks. By doing
so, we fix the latent space and generating capabilities of each network. We believe that if
this constraint is not respected, the shape AE and edge auto-encoder can be indirectly
trained for different losses and generate distortions in the generated shapes. Here, we
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Figure A.6 – Shape reconstruction from SCAPE. We reconstruct from 1k random points
on the surface.

Figure A.7 – Simple AE trained with Le and Lrec (left) or Le, Lrec and Llin (right)
produces artifacts during interpolation.

train the mapping networks, edge auto-encoder and shape AE at the same time. To make
the training easier, we use a pretrained shape AE and edge auto-encoder. As seen in
Table A.5, the reconstruction losses are better than before. However, the shape AE can
produce non natural reconstructions during interpolations as shown in Figure A.8. We
believe that if the shape AE and edge auto-encoder network were not pretrained, the
resulting reconstructed shapes would present even more distortions since the pretrained
shape AE can already generate decent natural looking shapes on parts of the dataset.

Auto-encoder vs Variational auto-encoder During our study we compared the
performances of our pipeline using either a PointNet AE or a PointNet VAE. The type of
network did not result in significant differences. By instance the mean squared variance
of the edge length for our architecture trained with a VAE is 0.2301 and 0.2311 when
trained with a AE (respectively 0.3760 and 0.3510 for the simple VAE and AE without

EL (10−5) PC (10−4) area (10−8)
Ours 1.666 2.611 1.554
Ours sim. train. 1.027 1.464 1.027

Table A.5 – Mean squared reconstruction losses on the DFAUST testset. We present
our main network and an alternative model where all three components are trained
simultaneously. Edge length reconstruction loss (EL), Point cloud rotation invariant
reconstruction loss (PC) and per triangle area difference (area).
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Figure A.8 – Shape distortions are appearing during interpolation if the shape AE, edge
auto-encoder and mapping networks are trained at the same time.

Figure A.9 – Cumulative distribution function of edge reconstruction loss on the DFAUST
testset for our network trained without cycle consistency with Ldirect.

using our pipeline).

A.3.2 Choice of losses

Importance of cycle consistency loss. We train the mapping networks with direct
reconstruction losses instead of cycle consistency losses as described in section 4.2 with
Lmap1, Lmap2, Lmap3 :

Ldirect(P,EP ) = αdrot(decp(MEP (ence(EP )))), P ) (A.1)

+ β‖el(decp(MEP (ence(EP )))))− EP ‖2

+ ‖dece(MPE(encp(P )))− EP ‖2

In Table A.6, we observe that the quality of the map and the quality of the reconstruc-
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EL PC area
PointNet AE 3.023 ∗ 10−5 2.120 ∗ 10−4 2.454 ∗ 10−8
Ours 1.641 ∗ 10−5 2.572 ∗ 10−4 1.562 ∗ 10−8
Ours Ldirect 0.1019 0.6289 1.338∗10−2

Table A.6 – Mean squared reconstruction losses on the DFAUST testset.

EL (10−5) PC (10−4) area (10−8)
Ours L2,3 1.595 14.816 1.490
Ours L1,3 2.301 2.245 2.113
Ours L1,2,3 1.641 2.572 1.562

Table A.7 – Ablation study on different mapping network losses. The subscripts 1, 2, 3
refer to Lmap1, Lmap2, Lmap3 respectively. We show the mean squared reconstruction
losses on DFAUST testset. Edge length reconstruction loss (EL), Point cloud coordinates
reconstruction loss (PC) and per triangle area difference

tions are worse. In Figure A.9 we show the cumulative distribution function of the edge
length reconstruction loss on the testset. While most shapes seem to have reasonable
edge reconstruction quality, outlier points make the reconstruction loss explode. Since
cycle consistency is not enforced, the network can map shapes onto outliers in the shape
space that do not correspond to reasonable natural shapes.

Mapping losses In Table A.7 we show an ablation study of the different losses combi-
nations (described in section 4.2 of the main manuscript) used for training the mapping
networks. The subscripts 1, 2, 3 denote the use of Lmap1, Lmap2, Lmap3 respectively.
We observe that when trained with Lmap2, Lmap3, so only intrinsic features, the model
produces better intrinsic reconstruction performances to the expense of the extrinsic
reconstruction loss. On the contrary, when trained with only Lmap1 and Lmap3 the
network produces good point coordinate reconstruction but worse intrinsic reconstruction
performances. To combine the benefits of the different losses, we choose to experiment
with a model trained with the 3 losses.

Cycle consistency and direct loss regularization Finally, we combine our cycle
consistency loss with direct versions of Lmap1, Lmap2, Lmap3 described in equations from
A.1. In table A.8, we observe that the models trained with cycle consistency only and
cycle consistency with direct losses produce comparable results.

Linearity regularization term in edge auto-encoder. We train a version of our
network without the linearity regularization term Llin described in Eq. (6) of the main
manuscript for training the edge auto-encoder. As seen in Table A.9, the interpolations in
the latent space of the edge auto-encoder are smoother when the network is trained with



A.4. Interpolation in the unsupervised case 109

EL area (10−4) Volume (10−4)
Ours L1,2,3 0.231 1.261 0.342
Ours L1,2,3 with Ldirect 0.342 1.315 0.264

Table A.8 – We report the mean squared variance of the edge length (EL), per surface
area and total shape volume over the interpolations of 100 shape pairs. We compare our
method, and our method trained with extra direct losses.

EL
Edge AE 0.199
Edge AE no lin. reg. 1.777

Table A.9 – We report the mean squared variance of the edge length (EL) over the
interpolation in the edge length AE latent space of 100 shape pairs.

the linearity term. In Table A.10, we observe that this term is also related to smoother
interpolations of shapes.

A.4 Interpolation in the unsupervised case

Our method can be adapted to an unsupervised context where the 1-1 correspondences
are not provided during training. The training process can be described in 3 steps: We
first train a point cloud auto-encoder that takes unordered point clouds and outputs an
ordered point clouds where the order corresponds to given template T . Then we train
the edge auto-encoder by using the output of the shape auto-encoder as training data.
Finally, we train the mapping networks as described in the main manuscript.

We first initialize the weights by pre-training the shape AE network to output a
chosen template mesh using a variant of the reconstruction loss Lrec described in Eq. 4

EL area (10−4) volume (10−4)
Ours 0.230 1.220 0.385
Ours no lin. reg. 0.245 1.361 0.430

Table A.10 – Interpolation losses for our network where the edge auto-encoder is trained
with and without linearity regularization term. We report the mean squared variance of
the edge length (EL), per surface area and total shape volume over the interpolations of
100 shape pairs from the DFAUST testset.
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EL area (10−4) volume (10−5)
3D Coded (unsupervised) 0.982 4.140 16.054
PointNet AE (unsupervised) 0.597 3.508 5.251
Ours (unsupervised) 0.398 2.752 4.718

Table A.11 – We report the mean squared variance of the edge length (EL), per surface
area and total shape volume over the interpolations of 100 shape pairs. We highlight,
while all models produce worse results than their supervised equivalents, our method
leads to better interpolations.

of the main manuscript.

LrecInit(P ) =
1

n

n∑
i=1

‖Ti − P̃i‖2, where P̃ = decp (encp(P )) . (A.2)

Then we train the model using Chamfer Distance (CD) from Eq. (A.3) while
encouraging the network to maintain the learned triangulation from step 1 by using
regularization terms similar to those used in [104] described bellow.

CD(P̃ , P ) =
1

n

∑
pi∈P̃

min
pj∈P

‖pi − pj‖22 +
1

n

∑
pj∈P

min
pi∈P̃
‖pj − pi‖22 (A.3)

Lrege (EP̃ ) = ‖EP̃ − ET ‖
2
2,where P̃ = decp(encp(P )) (A.4)

Lreglap (P̃ ) = ‖L ∗ (P̃ − T )‖
2
2,where L is the graph laplacian (A.5)

We compare our method to unsupervised versions of PointNet AE and 3D Coded. We
report numerical evaluation of the interpolations in Table A.11. Note, that our method
leads to improved shape features compared to other methods. In Figure A.10, we observe
that our method produces more realistic shapes, in particular it produces better arms
and heads than PointNet AE and better arms than 3D Coded.

A.5 Geodesics in non flat domains

As mentioned in the main manuscript the two auto-encoders of our architecture can be
interpreted as parametrizing the space of realistic shapes and endowing this space with
metric (distance) structure. Specifically, the shape auto-encoder aims to recover realistic
3D shapes, and we can compare shapes by computing the Euclidean distance between
their associated latent vectors in the edge-length auto encoder. Below we explore the
relation between linear interpolation and geodesic paths on curved surfaces.

First we note that a classical result in differential geometry (a consequence of Gauss’s
Theorema Egregium) states that it is impossible to parametrize a curved surface using a
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Figure A.10 – Interpolation between shapes when trained with no 1-1 correspondences at
train time. Our method produces more realistic shapes.

Euclidean coordinate system while mapping geodesic paths to straight line segments [22]
(Chapter 3.1). This directly implies (up to mild genericity conditions such as smoothness)
that there does not exist an auto-encoder network that is both bijective onto some latent
space and allows to recover geodesics through linear interpolation of the latent vectors.
Said differently, linear interpolation in the latent space only allows to recover a flat metric
on the space of shapes, while the intrinsic distortion metric can induce curvature in shape
space [115].

Nevertheless, we observe that in certain cases linear interpolation can be used to
recover geodesic paths even for non-flat domains, if the shape is embedded into a
larger space. Specifically, consider the standard sphere Sn−1 embedded in Rn and two
points p, q ∈ Sn−1 that are not polar opposites. Now, construct a line segment linearly
interpolating p, q in Rn and then project this line segment onto Sn−1. It is clear that the
projected segment will recover the geodesic path on the sphere, despite using a linear
interpolation in Euclidean space.

This simple example illustrates that if a surface is embedded in a larger space (so that
the map from the surface to this space is not a parametrization as it is not invertible)
points in that space can be mapped onto the surface through projection. While the
projection will necessarily introduce distortion, it can nevertheless help recover geodesic
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Figure A.11 – Shape AE architecture.
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Figure A.12 – Edge length AE architecture.

MLP
(256, 256, 256)25

6

latent 
representation

25
6

latent 
representation

Figure A.13 – Mapping networks architecture.

paths by providing projected points informed by the metric in the embedding space.
Although simple and very special, this example points at the interest in studying the
relation between the latent spaces of auto-encoders and Riemannian metrics, which we
leave as exciting direction for future work.

A.6 Architecture details

We present the detailed architecture of the shape AE, edge length AE and mapping
networks in Figure A.11, A.12, A.13.

We implemented the presented architectures using Tensorflow and the Adam optimizer
for training.



Appendix B

Learning Delaunay Surface
Elements for Mesh Reconstruction:

Additional Results

In this document we collect additional details about the proposed method and
results that were not included in Chapter 5. We evaluate our method on a dataset
with non-uniform sampling in Section B.1. We demonstrate the generalization power
of our method in Section B.2 by providing additional quantitative and qualitative
results on the ShapeNet dataset. In Section B.3 we illustrate our method with more
qualitative results. In Section B.4 we show example shapes from our dataset. We
provide additional details on the architecture of our pipeline in Section B.5, show the
typical runtime of our method in Section B.6, provide ablation of the learned Logmap
component in Section B.7, and show experiments with different neighborhood sizes
in Section B.8.

B.1 Non-uniform sampling

We provide additional results on a non-uniformly sampled variant of the FamousThingi
dataset. We sample points following a density gradient along the y-axis (horizontal in
the figures), where point density correlates with the y-coordinate. A few examples are
shown in Figure B.1 (bottom). We did not retrain on this dataset variant and evaluate
the same model we used for the uniform point clouds. In Table B.1 we show that our
method remains robust even with this non-uniform sampling, with only a small decrease in
performance compared to uniform sampling. IER meshing takes the largest performance
hit with over twice as many non-manifold triangles and significantly increased Chamfer
distance. Overall our method shows a similar improvement over the baselines as in uniform
sampling. The angle distribution of triangles produced by our method is compared to all
baselines in Figure B.2. Our method achieves the best performance with angles more
centered around 60 degrees.

We show qualitative comparison in Figure B.3. We observe that ball pivoting and
IER meshing are particularly impacted by the non uniform sampling while our method
achieves the best quality reconstructions.

B.2 Results on ShapeNet

We compare our method to PointTriNet and IER meshing. Both our method and
PointTriNet are trained on the FamousThingi dataset, showing their generalization
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Figure B.1 – Examples of uniformly sampled point clouds (top) and non uniformly sampled
point clouds. The density of points follows a gradient along the y axis (horizontal).

Ours
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Figure B.2 – Triangle angles distribution. Our method produces triangles with angles
more centered around 60 degrees and fewer very obtuse or very acute angles.
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Table B.1 – Quantitative comparison the FamousThingi testset where points are sampled
non-uniformly. We compare the percentage of non-watertight edges (NW), the Chamfer
distance (CD), and the normal reconstruction in degrees (NR) to all baselines.

Method NW (%) CD ∗1e−2 NR
Ball pivoting 31.5 0.396 6.84
PointTriNet 14.2 0.383 6.59
IER meshing 13.5 0.487 7.00

RVE 11.0 0.396 9.08
α-shapes 1% 3.5 3.228 63.21
α-shapes 3% 2.7 0.971 28.88
α-shapes 5% 1.7 1.061 17.71

Ours 1.3 0.356 6.02

Table B.2 – Quantitative comparison on 100 random shapes from ShapeNet. We compare
our three main metrics to learning-based baselines. IER meshing was specifically trained
on ShapeNet, while our method trained on a different dataset (FamousThingi). Even
with this handicap, our method obtains better manifoldness and Chamfer distance.

Method NW (%) CD ∗1e−2 NR
PointTriNet 22.33 0.416 10.95
IER meshing 6.96 0.456 6.54

Ours 5.51 0.396 9.44

performance, while IER meshing was trained on ShapeNet (since IER meshing requires
more shapes for training than the other two methods). Even though this gives IER
meshing an advantage, we observe in Table B.2 that our method still produces shapes
with better manifoldness and Chamfer distance than other methods.

Additional qualitative results are provided in Figure B.4. We observe that our method
produces meshes with better manifoldness and preserves details such as the drawer handles
(row 2) or the two sides of the plane wings (row 1) more accurately. Finally, our method
produces fewer large holes in the reconstructed mesh.

B.3 More Qualitative Results

We provide additional qualitative results by meshing point clouds of well-known monu-
ments obtained from Famous Paris Buildings. Results are shown in Figure B.5. Since
these shapes are geometrically more complex than the shapes in FamousThingi or
ShapeNet, we uniformly sample 50k points from each monument. We do not re-train on
this dataset. Our method generalizes well to unseen data and denser point clouds.

We also include a real scan reconstruction in Figure B.6. We reconstruct a point
cloud with 50k sampled points and compare to other learning-based methods. Since IER
meshing can not handle 50k points, we sample 12k points for comaring to IER meshing.

https://cults3d.com/en/3d-model/architecture/famous-paris-buildings
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B.4 Dataset Examples

A few examples of shapes from our FamousThingi dataset are shown Figure B.7. In
Figure B.1, we show two examples of uniformly sampled point clouds we use as input to
our method, and two non-uniformly sampled point clouds that we use in the experiments
described in Section B.1.

B.5 Architecture Details

We show the detailed architecture of our geodesic patch classification network and the
2D log map projection network in Figure B.8. The classification network implements
a function cj := fθ([q

i
j , d

i
j ] | Qi) that classifies if each point qi in the euclidean patch

Qi is part of the geodesic patch Pi, while the projection network implements a function
uij := gφ([p

i
j , d

i
j ] | P i) that projects points pij in the geodesic patch Pi to their 2D log

map coordinates uij . Here di is the euclidean distance from a point to its patch center.
Both networks use the same architecture based on FoldingNet [228], except for their

output dimension. They take as input a 3D point concatenated with the distance to the
patch center and proceed to compute a 1024-dimensional global feature vector for the
input patch with a PointNet [183]. Each input point is then augmented with this global
feature vector and transformed by two blocks of per-point MLPs into a one-dimensional
(classification network) or two-dimensional (projection network) per-point output.
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α-Shapes (5%) Ball Pivoting RVE PointTriNet IER Meshing Ours
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Figure B.3 – Surface reconstructions from non-uniform point clouds. Non-manifold
triangles are marked in red. Shapes are sampled more densely to the left and more
coarsely to the right. We can see that methods struggle to reconstruct the coarsely
sampled parts of the point cloud. While our method also has slightly more errors in the
coarsely sampled regions, the mesh quality drops by a much smaller amount from densely
to coarsely sampled regions.
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Figure B.4 – Qualitative results on ShapeNet testset. We do not retrain our method
on the ShapeNet dataset while IER meshing was trained on this dataset. Even so, our
method produces more manifold meshes and preserves details such as the drawer handles
(row 2) more accurately. We better separate the two sides (top and bottom) of the plane
wings (row 1). Finally, our method presents fewer large holes in the reconstructed mesh.
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Figure B.5 – Meshing well-known monuments. We show the ground truth (top), the
reconstructed mesh (middle), the reconstructed mesh with non manifold triangles colored
in red (bottom). Our method generalizes well this more complex data that is also sampled
more densely than our training set.
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Figure B.6 – Reconstructing real scans from Tanks and Temples [141]
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Figure B.7 – Examples from our dataset. We show ground truth meshes from both the
training set and the test set.
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Figure B.8 – Detailed architecture of our pipeline. We first select a small geodesic patch
using the classification network (purple). The projection network (blue) then applies a
2D projection to this patch that approximates a log map.
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Table B.3 – Average runtime estimation per step on 10k point clouds in seconds.

Log map est. Log map align. Selection Total
5.8 24.8 2.1 32.8

Table B.4 – Quantitative comparison our our learned logmap component to two logmap
approximation methods.

geodesic distance ∗1e−3 2D position ∗1e−2

Projection 1.943 2.627
Rotation 1.943 2.835
Ours 0.471 0.835

B.6 Runtime

We measure the average runtime of our method on point clouds of 10k vertices in Table B.3,
including the runtime for each step of the method.

B.7 Ablation of the Learned Logmap

We compare the performance of our learned logmap component to two baselines. The
first baseline approximates the logmap by projecting neighboring points onto the tangent
plane computed from the ground truth normal. The second baseline is the approach
proposed in [102], where points are rotated onto the tangent plane. Please note the both
of these baselines use ground truth normal information, while our method does not. We
evaluate the methods on a subset of 33 manifold shapes from our FamousThingi testset
and sample 2k patches of k=30 geodesic neighbors per shape. We measure the MSE
of the geodesic distance and of the 2D coordinates after patch alignment. Our method
produces significantly better logmap estimates compared to other baselines as we show in
Table B.4.

B.8 Ablation of Neighbor Counts k and K

We evaluate our method on different values of the geodesic neighbor count k (20, 30, and
50) and different values for the euclidean neighbor count K (80, 120, 160) in Table B.5.
For each pair of (k,K) values, we train our models for 30 epochs. The choice of the
geodesic neighbor count k affects the performance of our method significantly. If k is
small, the Delaunay element approximation quality is affected. If k is large, it is more
difficult for the logmap estimation network to produce a usable logmap. Changes in the
choice of the euclidean neighbor count K lead to less significant performance drops. In
our experiment we choose the parameter values k = 30 and K = 120 which produce the
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Table B.5 – Ablation of different values for the geodesic and euclidean and neighbor
counts k and K.

k K CD(∗1e−2) NW(%) NR
20 80 0.3437 5.569 5.921
20 120 0.3394 4.381 5.845
20 160 0.3496 4.712 6.483
30 80 0.3274 0.509 5.682
30 120 0.3276 0.485 5.661
30 160 0.3272 0.524 5.690
50 80 0.3335 1.822 6.046
50 120 0.3282 0.667 5.856
50 160 0.3286 0.728 5.883

best results for the non-watertightness and normal reconstruction metrics. Please note
that for k = 30 the difference in Chamfer distance values is negligible.
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Titre : Représentations et méthodes basées sur l’apprentissage pour l’analyse, la manipulation et la recons-
truction de formes en 3D

Mots clés : maillage, géométrie, représentation de forme, réseaux de neurones, interpolation, débruitage

Résumé : Traiter et analyser efficacement les
données 3D est un défi crucial dans les applica-
tions modernes, car les formes 3D sont de plus
en plus répandues avec la prolifération des disposi-
tifs d’acquisition et des outils de modélisation. Alors
que les succès de l’apprentissage profond en 2D
sont devenus monnaie courante et entourent notre
vie quotidienne, les applications qui impliquent des
données 3D sont à la traı̂ne. En raison de la struc-
ture non uniforme plus complexe des formes 3D, les
méthodes d’apprentissage profond en 2D ne peuvent
pas être facilement étendues et il existe une forte de-
mande pour de nouvelles approches qui peuvent à
la fois exploiter et permettre l’apprentissage en utili-
sant la structure géométrique. De plus, être capable
de gérer les différentes représentations existantes
des formes 3D telles que les nuages de points et
les maillages, ainsi que les artefacts produits par les
dispositifs d’acquisition 3D augmente la difficulté de
la tâche. Dans cette thèse, nous proposons des ap-
proches systématiques qui exploitent pleinement les
informations géométriques des données 3D dans des
architectures d’apprentissage profond. Nous contri-
buons aux méthodes de débruitage de nuages de

points, d’interpolation de formes et de reconstruc-
tion de formes. Nous observons que les architectures
d’apprentissage profond facilitent l’apprentissage de
la structure de surface sous-jacente des nuages de
points, qui peut ensuite être utilisée pour le débruitage
et l’interpolation de formes. L’encodage de prieurs ap-
pris basés sur des patchs locaux, ainsi que d’infor-
mations géométriques complémentaires telles que la
longueur des arrêtes, permet de créer des pipelines
puissants qui génèrent des formes réalistes. Le prin-
cipal fil conducteur de nos contributions est de fa-
ciliter la conversion entre différentes représentations
de formes. En particulier, alors que l’utilisation de
l’apprentissage profond sur des mailles triangulaires
est complexe en raison de leur nature combinatoire,
nous introduisons des méthodes inspirées du traite-
ment de la géométrie qui permettent la création et
la manipulation de faces de triangles. Nos méthodes
sont robustes et se généralisent bien aux données
inconnues malgré des jeux d’entraı̂nement limités.
Notre travail ouvre donc la voie à une manipulation
plus générale, robuste et universellement utile des
données 3D.

Title : Learning-based representations and methods for 3D shape analysis, manipulation and reconstruction

Keywords : meshing, geometry processing, surface representation, neural networks, interpolation, denoising

Abstract : Efficiently processing and analysing 3D
data is a crucial challenge in modern applications as
3D shapes are becoming more and more widespread
with the proliferation of acquisition devices and mo-
deling tools. While successes of 2D deep learning
have become commonplace and surround our daily
life, applications that involve 3D data are lagging be-
hind. Due to the more complex non-uniform structure
of 3D shapes, successful methods from 2D deep lear-
ning cannot be easily extended and there is a strong
demand for novel approaches that can both exploit
and enable learning using geometric structure. Mo-
reover, being able to handle the various existing re-
presentations of 3D shapes such as point clouds and
meshes, as well as the artefacts produced from 3D
acquisition devices increases the difficulty of the task.
In this thesis, we propose systematic approaches
that fully exploit geometric information of 3D data in
deep learning architectures. We contribute to point

cloud denoising, shape interpolation and shape re-
construction methods. We observe that deep lear-
ning architectures facilitate learning the underlying
surface structure on point clouds that can then be
used for denoising as well as shape interpolation. En-
coding local patch-based learned priors, as well as
complementary geometric information such as edge
lengths, leads to powerful pipelines that generate rea-
listic shapes. The key common thread throughout our
contributions is facilitating seamless conversion bet-
ween different representations of shapes. In particu-
lar, while using deep learning on triangle meshes is
highly challenging due to their combinatorial nature
we introduce methods inspired from geometry proces-
sing that enable the creation and manipulation of tri-
angle faces. Our methods are robust and generalize
well to unseen data despite limited training sets. Our
work, therefore, paves the way towards more general,
robust and universally useful manipulation of 3D data.
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