
HAL Id: tel-03541396
https://theses.hal.science/tel-03541396v1

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inside and around Wasserstein barycenters
Aleksei Kroshnin

To cite this version:
Aleksei Kroshnin. Inside and around Wasserstein barycenters. General Mathematics [math.GM].
Université de Lyon; Kharkevich Institute, 2021. English. �NNT : 2021LYSE1221�. �tel-03541396�

https://theses.hal.science/tel-03541396v1
https://hal.archives-ouvertes.fr


 

 
 
 
 
 

 
 
N°d’ordre NNT : 2021LYSE1221 
 
 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

l’Université Claude Bernard Lyon 1 
 

Ecole Doctorale N° 512 

Informatique et Mathématiques de Lyon 

 
Spécialité de doctorat : Mathématiques 

 

 
 
 

Soutenue publiquement le 21/10/2021, par : 

Aleksei KROSHNIN 

 
 

A travers et autour des barycentres de 

Wasserstein 
 

 
 

 
 
 

Devant le jury composé de : 
 

GENTIL, Ivan Professeur, UCBL Président 

DELON, Julie Professeure, Université de Paris  Rapporteure 

DE PASCALE, Luigi Professor, University of Florence    Rapporteur 

CAZELLES, Elsa Chargée de Recherche, CNRS  Examinatrice 

KOLESNIKOV, Alexander Professor, HSE University  Examinateur 

SUVORIKOVA, Alexandra Researcher, WIAS Examinatrice 

SANTAMBROGIO, Filippo Professeur, UCBL  Co-directeur de thèse 

SOBOLEVSKI, Andrei Director, IITP RAS    Co-directeur de thèse 



Université Claude Bernard – LYON 1 

Président de l’Université M. Frédéric FLEURY 

Président du Conseil Académique M. Hamda BEN HADID 

Vice-Président du Conseil d’Administration M. Didier REVEL 

Vice-Président du Conseil des Etudes et de la Vie Universitaire M. Philippe CHEVALLIER 

Vice-Président de la Commission de Recherche M. Petru MIRONESCU 

Directeur Général des Services M. Pierre ROLLAND 

COMPOSANTES SANTE 

Département de Formation et Centre de Recherche 

en Biologie Humaine 

Directrice : Mme Anne-Marie SCHOTT 

Faculté d’Odontologie Doyenne : Mme Dominique SEUX 

Faculté de Médecine et Maïeutique Lyon Sud - Charles Mérieux Doyenne : Mme Carole BURILLON 

Faculté de Médecine Lyon-Est  Doyen : M. Gilles RODE 

Institut des Sciences et Techniques de la Réadaptation (ISTR) Directeur : M. Xavier PERROT 

Institut des Sciences Pharmaceutiques et Biologiques (ISBP) Directrice : Mme Christine VINCIGUERRA 

COMPOSANTES & DEPARTEMENTS DE SCIENCES & TECHNOLOGIE 

Département Génie Electrique et des Procédés (GEP) Directrice : Mme Rosaria FERRIGNO 

Département Informatique Directeur : M. Behzad SHARIAT 

Département Mécanique Directeur M. Marc BUFFAT 

Ecole Supérieure de Chimie, Physique, Electronique (CPE Lyon) Directeur : Gérard PIGNAULT 

Institut de Science Financière et d’Assurances (ISFA) Directeur : M. Nicolas LEBOISNE 

Institut National du Professorat et de l’Education Administrateur Provisoire : M. Pierre CHAREYRON 

Institut Universitaire de Technologie de Lyon 1 Directeur : M. Christophe VITON 

Observatoire de Lyon Directrice : Mme Isabelle DANIEL 

Polytechnique Lyon Directeur : Emmanuel PERRIN 

UFR Biosciences Administratrice provisoire : Mme Kathrin GIESELER 

UFR des Sciences et Techniques des Activités Physiques et 

Sportives (STAPS) 

Directeur : M. Yannick VANPOULLE 

UFR Faculté des Sciences Directeur : M. Bruno ANDRIOLETTI 

 



iii

Acknowledgements

First of all, I would like to thank my co-supervisors, Filippo Santambrogio and Andrei Sobolevski,
for their guidance, discussions, and dealing with a sometimes nontrivial co-tutelle process.

I am also very thankful to Julie Delon and Luigi De Pascale for reviewing this manuscript,
and to all the members of the jury for accepting to participate in my (online) defense: Elsa
Cazelles, Ivan Gentil, Alexander Kolesnikov, and Alexandra Suvorikova.

Finally, I would like to thank my family for their help and support.



iv

Résumé

Le problème du transport optimal, initialement introduit par G. Monge en 1781 et redécou-
vert par L. Kantorovich en 1942, consiste à transformer une distribution de masse µ en une
autre ν avec le minimum de travail :

ˆ

c(x, y) dγ(x, y) → min
γ
,

où la minimisation se fait parmi les couplages de µ et ν (plans de transport) et c(x, y) est le coût
de transport d’une unité de masse de x à y. Dans cette thèse, on considère quelques problèmes
variationnels impliquant un transport optimal. On est principalement motivé par le problème
du barycentre de Wasserstein introduit par M. Agueh et G. Carlier en 2011 :

n
∑

i=1

wiW
2
2 (µi, ν) → min

ν
,

où ν1, . . . , νn sont des mesures de probabilité, w1, . . . , wn sont des poids positifs, et W2 est la
distance de 2-Wasserstein entre mesures, définie par transport optimal. On traite les problèmes
suivants :

• les barycentres par rapport à un coût général de transport, leur existence et leur stabilité ;

• concentration et théorème central limite pour les barycentres empiriques de Wasserstein
des mesures gaussiennes ;

• caractérisation, propriétés et théorème central limite pour les barycentres de Wasserstein
pénalisés par l’entropie ;

• le problème de transport optimal, pénalisé en l’énergie de Dirichlet d’un plan de transport.

Une autre partie de la thèse est consacrée à l’analyse de la complexité de l’algorithme des
projections itératives de Bregman [Ben+15]. Il s’agit d’une généralisation de l’algorithme bien
connu de Sinkhorn, qui nous permet de trouver une solution approximative du problème de
transport optimal ainsi que du problème du barycentre de Wasserstein.

Mots clés : transport optimal, espace de Wasserstein, barycentre de Wasserstein, moyenne
de Fréchet, théorème central limite, espace de Sobolev, algorithme de Sinkhorn, projections
itératives de Bregman, complexité des algorithmes.
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Abstract

Inside and around Wasserstein barycenters

The optimal transportation problem originally introduced by G. Monge in 1781 and rediscovered
by L. Kantorovich in 1942 consists in transformation of one mass distribution µ to another ν
with the minimal amount of work:

ˆ

c(x, y) dγ(x, y) → min
γ

over the couplings of µ and ν (transport plans), where c(x, y) is the cost of transportation of
unit mass from x to y. In this thesis, we consider some variational problems involving optimal
transport. We are mainly motivated by the Wasserstein barycenter problem introduced by
M. Agueh and G. Carlier in 2011:

n
∑

i=1

wiW
2
2 (µi, ν) → min

ν
,

where ν1, . . . , νn are probability measures, w1, . . . , wn are positive weights, and W2 is the 2-
Wasserstein distance between measures, defined via optimal transport. We deal with the follow-
ing problems:

• barycenters w.r.t. a general transportation cost, their existence and stability;

• concentration and central limit theorem for empirical Wasserstein barycenters of Gaussian
measures;

• characterization, properties, and central limit theorem for entropy-penalized Wasserstein
barycenters;

• optimal transportation problem, regularized with the Dirichlet energy of a transport plan.

Another part of the thesis is devoted to the complexity analysis of the iterative Bregman
projections algorithm [Ben+15]. This is a generalization of the well-known Sinkhorn algorithm,
which allows us to find an approximate solution of the optimal transportation problem and the
Wasserstein barycenter problem as well.

Keywords: optimal transport, Wasserstein space, Wasserstein barycenter, Fréchet mean,
central limit theorem, Sobolev space, Sinkhorn algorithm, iterative Bregman projections, algo-
rithmic complexity.

Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre
1918, F-69622 Villeurbanne Cedex, France

Institute for Information Transmission Problems of RAS, Bolshoy Karetny per. 19, build. 1,
Moscow 127051, Russia
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Chapter 1

Introduction

1.1 Optimal transport

The optimal transportation theory can be dated back to G. Monge [Mon81], while its modern
formulation is due to L. Kantorovich [Kan42]. The central object is the optimal transportation
problem consisting in transformation of one mass distribution µ to another ν with the minimal
amount of work. Namely, given measures µ and ν of the same mass (e.g. equal to 1) we want
to minimize the total transportation cost of µ to ν. The cost is measured via a cost function
c(x, y) that gives the price to move unit mass from x to y. In the Kantorovich formulation, this
leads to the Monge–Kantorovich problem:

ˆ

c(x, y) dγ(x, y) → min
γ
,

where the minimization is among measures γ with marginals µ and ν (i.e. the couplings of µ and
ν). Of particular interest is the case where µ and ν are probability measures on the same metric
space (X, ρ) and c := ρp for some 1 ≤ p <∞. This leads to so-called p-Wasserstein distance1:

Wp(µ, ν) :=

(

inf
{
ˆ

X×X
ρp(x, y) dγ(x, y) : γ is a coupling of µ and ν

})1/p

.

The space Pp(X) of probability measures on X with finite p-th moment endowed with Wp is
called the p-Wasserstein space over X. An important property of the Wasserstein distance is
that it captures the geometry of the underlying space X. The Wasserstein metric — especially
of order 1 or 2 — is used in a wide range of areas, such as probability theory and statistics
[LT13; BFS12; Zha18; Fla+18; PZ19], stochastic processes, PDE, kinetic theory, and dynamical
systems [CT04; MM13; HI17; QH18; LZZ19], image processing [RTG00; PKD07], data analysis
and machine learning [Kus+15; Cou+16; Kol+17; MMC16; ACB17]. In the same time, the
optimal transportation theory itself remains an active area of research [DF14; Moa16; Lot17;
KK17; CF19; DL+19].

1.2 Variational problems involving Wasserstein distance

Now let us discuss some variational problems in the Wasserstein space considered in the current
study.

Wasserstein barycenters. In 2011 M. Agueh and G. Carlier introduced a “typical element”
of a family of probability measures µ1, . . . , µn on the Euclidean space Rd, called the 2-Wasserstein

1Although this is the common name for this object nowadays, it is quite questionable from the historical
point of view, and some authors suggest to use the name transportation or Kantorovich metric instead [Ver06].
Moreover, in the image processing community it is known as the earth mover’s distance (EMD) due to the seminal
work of Monge, which makes this question even more confusing [RTG00].

1



2 INTRODUCTION

barycenter [AC11]:

ν∗ := argmin
ν∈P2(Rd)

n
∑

i=1

wiW
2
2 (µi, ν), (1.1)

where w1, . . . , wn are positive weights. This is a special case of the Fréchet mean in the 2-
Wasserstein space [Fré48]. It turns out that the barycenter to some extent captures the shape
of the averaged measures µ1, . . . , µn (see Figure 1.1), which makes it favorable compared to the
linear averaging of measures. This brings a lot of attention to barycenters: there are attempts
to use it in the image processing [Rab+11; BPC16], data analysis [Del+17; Álv+18; Ho+17;
SJ17; GPC15] etc. The works [BK12; KP17; LL17] generalize the concept of the Wasserstein
barycenter to the case of a probability distribution P on Pp(X) and an exponent p ≥ 1:

ν∗ := argmin
ν∈Pp(X)

ˆ

W p
p (µ, ν) dP (µ). (1.2)

This setting brings up the question of stability of the barycenter. In particular, in [BK18] the
authors consider a stochastic setting where measures µ1, µ2, . . . are drawn independently from
P , and define the empirical barycenters

νn := argmin
ν∈P2(Rd)

1

n

n
∑

i=1

W 2
2 (µi, ν). (1.3)

Under suitable assumptions on P the population barycenter ν∗ is unique and νn converge to
it: W2(νn, ν

∗) → 0, i.e. the law of large numbers (LLN) holds true. Having this LLN in
mind, it is natural to look for an asymptotic normality and a concentration of the empirical
barycenters around the population one, but this appears to be a much more subtle problems
(see [AC17; ALP19] for some results in this direction). In this work, we deal with these questions
in two special cases: for barycenters of Gaussian measures and general Wasserstein barycenters
penalized with the entropy. Of note, this work naturally extends the Gaussian case to the case
of barycenters of positive semi-definite Hermitian operators.

Harmonic maps and regularized Monge–Kantorovich problem. Let ∆k−1 be the k-
dimensional probability simplex. When we fix k points x1, . . . , xk in Rd, the barycenter map

x(λ) := argmin
x∈Rd

k
∑

i=1

λi‖x− xi‖2 =
k
∑

i=1

λixi, λ ∈ δk−1,

is affine — in particular, it is harmonic. This is not the case anymore for a Fréchet mean in a
general metric space (i.e. for argminx

∑k
i=1 λid(x, xi)

2), so barycenters and harmonic extensions
are different, but related notions (both define a nonlinear interpolation in a metric space). The
latter are introduced in [KS93] in the following way: let Ω ⊂ Rm be a domain with Lipschitz
boundary, (X, ρ) be a non-positively curved metric space; given f : ∂Ω → X, its harmonic
extension is a minimizer of the Dirichlet energy

Dir(u) :=
ˆ

Ω
|Du(x)|2 dx,

among Sobolev maps u : Ω → X such that tru = f . Of course, one has to define the Sobolev
space H1(Ω;X) and the “metric gradient” |Du(x)|. In [Lav19b; Lav19a] H. Lavenant studies
harmonic maps valued in the 2-Wasserstein space. He defines the H1 Sobolev space of measure-
valued maps on Ω (and the corresponding Dirichlet energy) using an analogue of the Benamou–
Brenier formula for absolutely continuous curves in the Wasserstein space proposed by [Bre03]
and shows that this definition is equivalent to the ones from [KS93] and [Res97].

Another application of Sobolev spaces is using the Dirichlet energy as a penalization. Similar
approaches are of interest in applied mathematics, e.g. image and data processing [Sol+14;
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Figure 1.1: Wasserstein barycenters of three images considered as probability measures on the
regular grid of size 60× 50. One can see the change of the barycenter as the weights vary. The
intensity oscillations are discretization artefacts.

Fer+14; GM14; VL18]. J. Louet in [Lou14] applies this to the optimal transport considering the
regularized Monge problem

ˆ

Ω
c
(

x, T (x)
)

dµ(x) +
ˆ

Ω
‖DT (x)‖2 dx→ min

T∈H1(Ω;Rd):T#µ=ν

with µ ∈ P(Ω) and ν ∈ P(Rd). He also proposes a Kantorovich-like formulation in terms of
transport plans. The discrete version of this problem was also considered in [Fer+14]. Instead,
here we will consider the Monge–Kantorovich problem penalized with the Dirichlet energy of a
coupling γ between µ and ν (which can be viewed as a measure-valued map x 7→ γx ∈ P(Rd)
due to the disintegration theorem) to ensure the smoothness of the optimal transport.

1.3 Iterative Bregman Projections

Now let us briefly recall the computational aspects of the optimal transport. If µ and ν are
discrete measures, then the Monge–Kantorovich problem is an LP problem of special form:

inf







n,m
∑

i,j=1

Ci,jXi,j : Xi,j ≥ 0,

m
∑

j=1

Xi,j = µi,

n
∑

i=1

Xi,j = νj







, (1.4)

where µ =
∑n

i=1 µiδxi , ν =
∑m

j=1 νjδyj , and Ci,j := c(xi, yj). Thus, it can be numerically solved
by standard methods for LP problems, e.g. the simplex method. Moreover, one can show that
it can be written in the form of the minimum-cost flow problem, which also admits efficient
numerical solution [PC+19].

M. Cuturi in 2013 [Cut13] proposed to add the entropic penalization λEnt(X) with a small
parameter λ > 0 and showed that the resulting problem is equivalent to finding u ∈ Rn+, v ∈ Rm+
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such that for all i and j

m
∑

j=1

ui exp
(

−Ci,j
λ

)

vj = µi,

n
∑

i=1

ui exp
(

−Ci,j
λ

)

vj = νj .

This is the so-called matrix scaling problem, and one of the most famous methods for solving
it is the Sinkhorn algorithm2 [Sin74]. It consists in alternating scaling of rows and columns

of a matrix X starting from X :=
(

−Ci,j

λ

)n,m

i,j−1
such that it satisfies the first and the second

equation, respectively. [Ben+15] proposed a generalization of the Sinkhorn algorithm called the
iterative Bregman projections method (IBP). This is a particular case of Dykstra’s algorithm
with Bregman divergences [BL00], which in the case of affine constraints consists in alternating
projections w.r.t. the Kullback–Leibler divergence.

It is well-known that the Sinkhorn algorithm for fixed λ converges geometrically [FL89], but
the constant grows extremely fast as λ→ 0 and it makes this bound impractical for estimating
the complexity of an approximate solution of the Monge–Kantorovich problem. The seminal
work [AWR17] shows that to obtain an ε-solution X̂ of the optimal transportation problem, i.e.
such that

n,m
∑

i,j=1

Ci,jX̂i,j ≤
n,m
∑

i,j=1

Ci,jX
∗
i,j + ε, where X∗ is a solution of (1.4), (1.5)

one should run the Sinkhorn algorithm for O
(

log(nm)
ε3

)

iterations. In this work, we provide the

improved bound O
(

log(nm)
ε2

)

for IBP applied to some optimal transport problems.

1.4 Related works

1.4.1 Wasserstein barycenters

In the seminal paper [AC11], authors define barycenters of finitely many measures from the
2-Wasserstein space over Rd, given by (1.1). They show the existence of a barycenter and its
uniqueness under the assumption that at least one of the measures µi is absolutely continuous
(Propositions 2.3 and 3.5). In the case d = 1 an explicit formula for barycenter is given via the
inverse cumulative distribution functions of the measures. If all µi are Gaussian, it is shown
that the barycenter is also Gaussian and satisfies some fixed-point equation (see Chapter 4 for
details). The authors also obtain an equivalent multimarginal formulation for the barycenter
problem:

ˆ

c(x1, . . . , xn) dγ(x1, . . . , xn) → min
γ∈Π(µ1,...,µn)

, (1.6)

where Π(µ1, . . . , µn) is the set of probability measures with marginals µ1, . . . , µn, and

c(x1, . . . , xn) := min
x∈Rd

n
∑

i=1

wi‖xi − x‖2 =
n
∑

i=1

wi‖xi‖2 −
∥

∥

∥

n
∑

i=1

wixi

∥

∥

∥

2
, xi ∈ Rd

(we assume w.l.o.g. that
∑n

i=1wi = 1). If γ∗ is a solution of the above problem, then (fw)#γ
∗ is

a Wasserstein barycenter and vice versa, where fw(x1, . . . , xn) :=
∑n

i=1wixi. Finally, they show
the regularity of the barycenter: once one of the measures (say, µ1) has a bounded density, then
(Theorem 5.1)

‖ν∗‖L∞ ≤ 1

wd1
‖µ1‖L∞ .

In [BK12] J. Bigot and T. Klein define for the first time the population barycenter in the
2-Wasserstein space over a compact set Ω ⊂ Rd (recall formula (1.2)). They prove its existence
and uniqueness under the assumption that the distribution P is concentrated on the set of a.c.

2also known as the Sinkhorn–Knopp, RAS, or balancing algorithms
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measures. In the stochastic setting, they obtain the strong LLN for the empirical barycenters
νn given by (1.3):

W2(νn, ν
∗) → 0 a.s.

The work [KP17] addresses the 2-Wasserstein population barycenters on a compact Rie-
mannian manifold M . If P (Pac(M)) > 0, where Pac(M) is the set of probability measures
absolutely continuous w.r.t. the volume measure, then the barycenter of P exists and is unique
(Theorem 3.1). The authors prove a regularity result similar to [AC11]: if the Ricci curvature
is bounded from below and P (P∞

ac (M)) > 0, then ν∗ ∈ P∞
ac (M), where P∞

ac (M) is the set of a.c.
probability measures with bounded densities (Theorem 6.1). Moreover, they obtain so-called
first and second order balance (Theorem 4.4), which is closely related to the characterization of
entropic-Wasserstein barycenters that we consider in Chapter 5.

In [LL17] T. Le Gouic and J.-M. Loubes consider a more general setting of the p-Wasserstein
space over an abstract Polish space X. They define the p-Wasserstein population barycenter
and show its existence. They also prove that the barycenters are stable w.r.t. the change of
the distribution: let Wp be the p-Wasserstein distance between measures on Pp(X), νn :=
bar(Pn), and Wp(Pn, P ) → 0; then, up to a subsequence, there is a barycenter ν∗ of P such that
Wp(νn, ν

∗) → 0 (Theorem 3). In particular, this result immediately implies the strong LLN.
In the note [AC17] M. Agueh and G. Carlier suggest an approach to obtain the central limit

theorem (CLT) for empirical 2-Wasserstein barycenters. In particular, they prove the CLT in the
one-dimensional case if P =

∑n
i=1wiδµi is a discrete distribution concentrated on the Gaussian

measures. It is worth noting that the idea of the proof relies on the differentiability of optimal
transportation maps, as in Chapter 4.

To the best of our knowledge, the most state-of-the-art result concerning the rates of conver-
gence of empirical 2-Wasserstein barycenters is obtained as a particular case of a more general
result by [Le +19]. This work establishes fast rates of convergence for empirical barycenters
over a large class of geodesic spaces with curvature bounds in the sense of Alexandrov. For
the 2-Wasserstein space over a Hilbert space it shows that EW 2

2 (νn, ν
∗) ≤ C

n
, under the as-

sumption of the strong convexity and smoothness of Brenier potentials between ν∗ := bar(P )
and P -a.e. µ (Corollary 16). This work extends and completes the results by [ALP19]. The
latter paper provides the rates of convergence for empirical barycenters on a metric space either
under the assumptions on weak curvature constraint on the underlying space or for the case of a
nonnegatively curved space on which geodesics, emanating from a barycenter, can be extended.

J. Bigot, E. Cazelles, and N. Papadakis in [BCP19] observed that when one discretizes con-
tinuous measures the corresponding (discrete) barycenter exhibits strong oscillations and pro-
posed to add a penalization to the Wasserstein variance functional to rule out such discretization
artefacts. They show the existence, uniqueness, and stability (in the sense of [LL17]) of the regu-
larized barycenters under suitable assumptions on the penalty functional (Section 3). Moreover,
for a compact domain, they obtain the rate of convergence of the empirical barycenters in terms
of Dudley’s integral and the metric entropy (Theorem 4.6).

Finally, it is worth mentioning that there are some other works dealing with the central
limit theorem for the Wasserstein distance, e.g. [RMS16; DL+19]. However, the setting in these
works differs significantly from what is done in the present study. A result similar in spirit
to Theorem 4.5.4 is obtained in [Del+19] for the case of the 2-Wasserstein space over the real
line. We refer to the recent monograph [PZ20] for more details on statistical problems in the
Wasserstein spaces including properties of empirical Wasserstein barycenters.

1.4.2 Sobolev spaces of measure-valued maps

There are several definitions of the Sobolev spaces of maps acting from Ω ⊂ Rm to some metric
space (X, ρ). N. Korevaar and R. Schoen in [KS93] define it using approximate Dirichlet energies:
u ∈W 1,p(Ω;X) if there is C <∞ such that

lim sup
ε→0

ˆ

Ω′

 

Bε(x)

ρp(u(x), u(y))

εp
dy dx ≤ C
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for all compactly embedded Ω′ ⊂⊂ Ω. Y. Reshetnyak in [Res97] gives another definition: u ∈
W 1,p(Ω;X) if there is a function g ∈ Lp(Ω) such that for any L-Lipschitz function F : X → R it
holds that F ◦ u ∈W 1,p(Ω) and

‖∇(F ◦ u)‖ ≤ Lg a.e. in Ω.

In [Res04], he showed that the two definitions are equivalent. Y. Brenier in [Bre03] proposes
a notion of Sobolev maps valued in the 2-Wasserstein space based on the Benamou–Brenier
formula. Namely, a map µ : Ω → P2(R

d) is Sobolev if there is a matrix field V satisfying (in a
weak sense) the continuity equation

∇Ωµ+∇Rd(V µ) = 0

and such that
´

Ω

´

Rd‖V ‖2 dµ(x) dx < ∞. In [Lav19b], H. Lavenant shows that in the 2-
Wasserstein space all the above definitions coincide (Theorems 3.17 and 3.24). He studies
harmonic maps valued in the Wasserstein space and their relations with convexity, geodesic
curves, and Wasserstein barycenters.

1.4.3 Numerical methods

As we already mentioned, M. Cuturi in [Cut13] proposes to add the entropic penalty to the
discrete Monge–Kantorovich problem (1.4) with a general cost matrix C and use the Sinkhorn
method for solving the resulting problem. According to [FL89], the Sinkhorn iterations are
contractive in the Hilbert projective metric, which leads to the geometric convergence. Namely,
suppose for simplicity that all Ci,j ∈ [0, 1] and consider the Sinkhorn algorithms’ steps

ut+1 :=
Kvt

µ
, vt+1 :=

Cut+1

ν

(here by a
b

we denote the coordinate-wise division), with Ki,j := exp
(

−Ci,j

λ

)

, u0 := 1 =

(1, . . . , 1), v0 := 1. Then

d(ut, u∗) + d(vt, v∗) ≤ γt−1

1− γ

(

d(u1, u∗) + d(v1, v∗)
)

,

where (u∗, v∗) solve the matrix scaling problem and γ :=
(

e1/λ−1
e1/λ+1

)2
≈ 1− 4e−1/λ (Theorem 4).

If λ is small (this is the case when we want to approximately solve the non-regularized problem
(1.4)), then this bound becomes impractical. In [AWR17] J. Altschuler, J. Weed, and P. Rigollet
obtained the first polynomial upper bound on the number of Sinkhorn iterations needed to obtain
an ε-approximate solution of (1.4): O

(

log(nm)
ε3

)

(Theorem 3). The key idea is that once we get

u and v such that ‖diag(u)Kv − p‖1 + ‖diag(v)KTu − q‖1 ≤ cε we can obtain from them (by
Algorithm 2) a feasible transport plan X̂, which is an ε-solution, i.e. satisfies (1.5). They also
proposed a greedy version of the Sinkhorn algorithm called Greenhorn.

To the best of our knowledge, the first algorithms for solving Wasserstein barycenter problem
(with fixed and non-fixed support) were proposed by M. Cuturi and A. Doucet in [CD14] based
on the accelerated Nesterov method. In this regard, it is worth mentioning the recent work
[AB21] where J. Altschuler and E. Boix-Adsera prove that computing a Wasserstein barycenter
with non-fixed support is an NP-hard problem (essentially, it has the same complexity as solving
the equivalent multimarginal optimal transport).

The iterative Bregman projections method proposed in [Ben+15] is a generalization of the
Sinkhorn algorithm that solves an entropy-penalized LP problem of the form

〈c, x〉+ λEnt(x) → min
x∈C1,...,Cm

,

where C1, . . . , Cm are convex subsets of Rd+. In the case of affine constraints, the method consists
of alternating projections w.r.t. the Kullback–Leibler divergence, and in a general setting, this
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is nothing but Dykstra’s algorithm with Bregman divergences [BL00]. The authors consider the
IBP application to the Wasserstein barycenters problem, the multimarginal optimal transport,
the partial and capacity constrained optimal transport, etc. The recent works [Car21] and
[Lin+19] study the convergence of IBP for the multimarginal optimal transport. The first one
establishes a geometric convergence (but suffering from the same problem as in the case of the

Sinkhorn algorithm). The second one obtains the iteration complexity O
(

logn
ε2

)

with the use of

the technique from our paper [DGK18], where n is the size of the support of a marginal. We
independently obtained the last result in the current thesis.

There are also a lot of works applying gradient and second-order methods of convex op-
timization to various optimal transportation-related problems, e.g. [COO15; CP16; Gen+16;
Dvu+17; DGK18; Dvu+18; Kro+19; LHJ19; Lin+20; PRV20]. For further reading, we refer to
the recent monograph [PC+19] and theses [Tup20; Dvi21].

1.5 Main results

Transportation topology. First of all, we consider an abstract setting with a metric space
X and a continuous cost function c : X ×X → R+ and define the transportation functional

J(µ, ν) := inf
{
ˆ

X×X
c(x, y) dγ(x, y) : γ is a coupling of µ and ν

}

.

Imposing suitable assumptions on X and c (a weak triangle inequality and a “consistency” of
c with the topology on X) we show that J inherits a lot of properties of the cost function c

and induces a topology τJ on P(X) with the basis of “balls” BJ
r (µ) := {ν ∈ P(X) : J(µ, ν) < r}

(thus, it can be considered as a generalization of the Wasserstein metric). Moreover, any set
E(µ) := {ν ∈ P(X) : J(µ, ν) <∞} endowed with τJ is a Polish space.

Fréchet barycenters. We define an average in P(X) w.r.t. J in the spirit of the Wasserstein
barycenter, which we call the regularized Fréchet barycenter: given a distribution P on P(X)
and a penalty G,

ν∗ := argmin
ν∈P(X)

[
ˆ

J(µ, ν) dP (µ) +G(ν)

]

.

We show that these barycenters exist and are stable w.r.t. P . Namely, let

J (P,Q) := inf
{
ˆ

J(µ, ν) dΓ (µ, ν) : Γ is a coupling of P and Q

}

, P,Q ∈ P(X),

and J (Pn, P ) → 0. If νn is a barycenter of Pn, then there is a subsequence converging to
some barycenter of P in the transportation topology. In particular, in the stochastic setting
mentioned above the law of large numbers holds true.

Wasserstein barycenters of Gaussian measures. In the case of the 2-Wasserstein space
over Rd and a distribution concentrated on the Gaussian measures we prove the central limit
theorem and concentration results for empirical Wasserstein barycenters. It is known that in
this case the population and the empirical barycenters are also Gaussian, say ν∗ = N (0, Q∗)
and νn = N (0, Qn) (w.l.o.g. we can assume they have zero-mean). We show the asymptotic
normality of their covariance matrices:

√
n(Qn −Q∗)

d−→ N (0,Ξ),

and non-asymptotic bounds on ‖Qn − Q∗‖ and W2(νn, ν∗). Moreover, the results are obtained
in a bit more general setting of Bures–Wasserstein barycenters. For the case of a scale-location
family we also provide an example of slower than 1√

n
rate of convergence.
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Entropic-Wasserstein barycenters. Consider a distribution P on the 2-Wasserstein space
over Rd and define its entropy-regularized barycenter

ν∗ := argmin
ν∈P2(Rd)

[
ˆ

W 2
2 (µ, ν) dP (µ) + λEnt(ν)

]

.

We prove existence and uniqueness of this object, and characterize it in terms of dual Kantorovich
potentials. Using this characterization, we study the properties of the entropic-Wasserstein
barycenters: moment bounds, a maximum principle, higher regularity, and stability. Moreover,
in the stochastic setting we obtain the central limit theorem in H2 for empirical barycenters
under additional regularity assumptions on the measures.

Sobolev spaces and regularized Monge–Kantorovich problem. We consider the Sobolev
spaces W 1,p of maps from an open domain Ω ⊂ Rm to Pp(Rd) defined in the sense of Reshet-
nyak [Res97] and admitting an equivalent definition through the continuity equation as shown
by Lavenant [Lav19b]. We study the fine properties of these maps [EG15], namely, we show
the existence of precise representatives up to a small set. We also give two notions of conver-
gence in the Sobolev space of measure-valued functions. Finally, we apply this theory to the
Monge–Kantorovich problem regularized with the Dirichlet energy:

ˆ

Ω

ˆ

Rd

c(x, y) dγ∗x(y) dµ(x) +
ˆ

Ω
‖Dγx‖p dx→ min

γx∈W 1,p:
´

γ∗x dµ(x)=ν
,

where γ∗x is the precise representative of the map x 7→ γx ∈ Pp(Rd) and show existence of a
solution under mild assumptions.

Complexity of Iterative Bregman Projections. For IBP method we suggest two different
strategies of projections: greedy and random. We provide a general scheme of the proof of com-
plexity bounds and apply it to two optimal transport-related problems: multimarginal optimal
transport and Fréchet barycenter, which in both cases gives the iteration complexity O

(

1
ε2

)

to achieve accuracy ε, compared to the previous best-known bound O
(

1
ε3

)

for the Sinkhorn
algorithm [AWR17].

1.6 Organisation of manuscript

The thesis is organized as follows. In Chapter 2, we remind some facts from the measure the-
ory and the theory of optimal transport and provide a survey of related works. In Chapter 3,
we study some topological properties of the space of measures on an abstract metric space
X endowed with the transportation functional. We also define regularized Fréchet barycen-
ters, show their existence and stability. The chapter is mainly based on the work [Kro18]. In
Chapter 4, we consider 2-Wasserstein barycenters of Gaussian measures, and, more generally,
Bures–Wasserstein barycenters. We study some differential properties of the optimal transport
maps and use them to prove the CLT and the concentration of empirical barycenters. We also
provide an example of a slower than 1√

n
rate of convergence. This chapter is based on the joint

work with V. Spokoiny and A. Suvorikova [KSS21]. In Chapter 5, we consider the 2-Wasserstein
barycenters penalized with the entropy. We obtain a formula for the density of a barycenter
and some corollaries, e.g. regularity and moment bounds. In the stochastic setting, we derive
the central limit theorem in H2. This chapter is based on the joint work with G. Carlier and
K. Eichinger [CEK20]. Chapter 6 concerns the Sobolev spaces of measure-valued maps, their fine
properties, and convergence. We further apply the obtained results to the regularized Monge–
Kantorovich problem. This chapter will be transformed into a research paper and submitted to a
scientific journal later on. Finally, Chapter 7 is devoted to the analysis of IBP. We provide new
complexity bounds for the multimarginal optimal transport and the barycenter problems based
on a general scheme — also obtained here — and illustrate them with numerical experiments.
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This is based on and generalizes results from the joint works with A. Gasnikov, P. Dvurechensky
et al. [DGK18; Kro+19; Sto+19].
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Chapter 2

Preliminaries

2.1 Measure theory

Let X be a topological metrizable space endowed with the Borel σ-algebra B(X). Then M(X)
denotes the space of finite signed measures on X. Respectively, M+(X) is the space of nonneg-
ative finite measures and P(X) is the space of probability measures on X. We suppose that a
metric on X is fixed, though a specific choice is often not important.

We will often drop the argument of a function and a measure and the symbol of domain of
integration if there is no risk of confusion, i.e. instead of

´

X
f(x) dµ(x) we will write

´

f dµ. We
denote the Lebesgue measure on Rd by L, L(A) = |A|, and

ˆ

A

f(x) dL(x) =
ˆ

A

f(x) dx =

ˆ

A

f.

For two spaces X, Y , a Borel map T : X → Y induces a push-forward map T# : M(X) →
M(Y ) given by

T#µ(A) := µ
(

T−1(A)
)

for any measurable A ⊂ Y.

Recall that for any integrable function f ∈ L1(Y, T#µ) it holds that
ˆ

Y

f d(T#µ) =

ˆ

X

f ◦ T dµ.

For a measure µ on X and a µ-integrable function f : X → R the measure fµ is defined as

(fµ)(A) :=

ˆ

A

f dµ for any measurable A ⊂ Y.

Moreover, for any Borel set B define µ⌊B := 1B µ, where 1B is the indicator function of B.

Narrow convergence of measures.

Definition 2.1 (Polish space). A separable topological space X is a Polish space if it is home-
omorphic to a complete metric space.

Definition 2.2 (Radon space; Definition 5.1.4 in [AGS08]). A separable topological metrizable
space X is a Radon space if any measure µ ∈ M+(X) is a Radon one [AGS08, def. 5.1.4], i.e.
for any ε > 0 there exists a compact set Kε such that µ(X \Kε) < ε.

E.g. any Polish space is also Radon [Bog07, Theorem 7.1.7].

Definition 2.3 (Narrow convergence; Definition 8.1.1 in [Bog07]). A sequence {µn}n∈N ⊂
M(X) narrowly converges to µ ∈ M(X) (µn ⇀ µ) if

ˆ

f dµn →
ˆ

f dµ for all f ∈ Cb(X),

11
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where Cb(X) is the space of continuous bounded functions over X. A corresponding topology
τw on M(X) is generated by basis sets of form

{

ν ∈ M(X) :

∣

∣

∣

∣

ˆ

fi dµ−
ˆ

fi dν

∣

∣

∣

∣

< ε, i = 1, . . . , n

}

, µ ∈ M(X), fi ∈ Cb(X), n ∈ N.

We sometimes refer to the narrow convergence as the weak one, meaning that it is defined
by duality with test functions.

Note that when we consider only the space of probability measures P(X), it is enough to test
again functions vanishing at infinity, C0(X). Moreover, if any closed ball in X is compact (e.g.
in Rd), then one can replace C0(X) with Cc(X). Furthermore, in Rd it is enough to consider
C∞
c (Rd).

A useful property of the narrow convergence is that once {µn}n∈N ⊂ M+(X), µn ⇀ µ, and
f ≥ 0 is a lower semicontinuous (l.s.c.) function over X, then

ˆ

f dµ ≤ lim inf
ˆ

f dµn.

Proposition 2.1.1 (Theorem 8.2.3 in [Bog07]). Let {µn}n∈N ⊂ M+(X), µ ∈ M+(X). The
following assertions are equivalent:

1. µn ⇀ µ;

2. µn(X) → µ(X) and µ(U) ≤ lim infµn(U) for any open set U ⊂ X;

3. µn(X) → µ(X) and µ(F ) ≥ lim supµn(F ) for any closed set F ⊂ X.

Combining Theorem 8.9.3 in [Bog07] and Section 5.1 in [AGS08] we obtain the following
result.

Proposition 2.1.2. Let X be a separable metrizable space. Then (M+(X), τw) also is separable
and metrizable. We denote a metric inducing τw by dw. Moreover, there exists a countable family
{fk}k∈N ⊂ Cb(X) such that µn ⇀ µ iff µn(X) are bounded and

´

fk dµn →
´

fk dµ for all k ∈ N.
If X is Polish, then (M+(X), τw) is also Polish.

One can take dw induced by the Kantorovich–Rubinstein norm [Bog07, Theorem 8.3.1]:
dw(µ, ν) := ‖µ− ν‖KR, where

‖λ‖KR := sup
{
ˆ

f dλ : f ∈ C(X), sup
x∈X

|f(x)| ≤ 1, Lip(f) ≤ 1

}

, λ ∈ M(X). (2.1)

If X is complete, then (M+(X), dw) is also complete.

Definition 2.4 (Tightness). A set of measures S ⊂ M+(X) on a topological space X is tight,
if for any ε > 0 the exists a compact set Kε ⊂ X such that

µ(X \Kε) ≤ ε ∀µ ∈ S.

The next result concerning compactness w.r.t. τw follows from Theorems 8.6.2, 8.6.4, and 8.6.7
in [Bog07].

Proposition 2.1.3 (Prokhorov’s theorem). Let X be a Radon space. If a set S ⊂ M+(X) is
uniformly bounded in variation and tight, then it is precompact in τw. On contrary, any narrowly
convergent sequence {µn}n∈N ⊂ M+(X) is tight. Moreover, if X is Polish, then any subset of
M+(X) precompact in τw is tight and uniformly bounded in variation.

Remark 2.1.4. We say a subset of a topological space is precompact if its closure is compact.
Note that if the space is metric but non-complete, the total-boundedness is in general not enough
for the set to be precompact.
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Disintegration and gluing.

Proposition 2.1.5 (Disintegration theorem). Let X, Y be Radon spaces and π : X → Y be a
Borel map. Then for any µ ∈ P(X) with ν := π#µ ∈ P(Y ) there is a ν-a.e. uniquely defined
family of measures {µy}y∈Y ⊂ P(X) such that

µy(π
−1(y)) = 1 for ν-a.e. y,

for any Borel set A ⊂ X the function y 7→ µy(A) is Borel, and

ˆ

X

f dµ =

ˆ

Y

(
ˆ

X

f dµy

)

dν(y)

for any Borel f : X → R+.

The next result shows that the disintegration theorem can be used to “glue” together several
couplings sharing the same marginal. It is a trivial generalization of Lemmata 5.3.2 and 5.3.4
in [AGS08].

Proposition 2.1.6 (Gluing lemma). Let T = (V,E) be a (possibly infinite) tree with at most
countable set of vertices V and {Xv}v∈V be a family of Radon spaces. If µv ∈ P(Xv) for all
v ∈ V , γu,v ∈ P(Xu × Xv) has marginals µu and µv for all (u, v) ∈ E, and γu,v transposed
coincides with γv,u, then there is a probability measure ν on

∏

v∈V Xv such that

(πu, πv)#ν = γu,v for all (u, v) ∈ E,

where πv is the projection to Xv.

2.2 Monge–Kantorovich problem

In this section we consider an optimal transportation problem, which is a key concept of this
work, and recall some of its properties. For more details on the subject we refer to monographs
[Vil03; AGS08; Vil09; San15].

Consider two Radon spaces X, Y and measures µ ∈ P(X), ν ∈ P(Y ). We define the set
of transport plans (the term is specific for the optimal transportation theory; usually they are
called couplings) taking µ to ν as

Π(µ, ν) :=
{

γ ∈ P(X × Y ) : π1#γ = µ, π2#γ = ν
}

,

where π1 and π2 are the projections to the first and the second factor, respectively. Note that
Π(µ, ν) is always nonempty because it contains at least the product measure µ⊗ ν. Sometimes
we also use a notation Π(µ1, . . . , µn) to denote the set of probability measures on

∏n
i=1Xi with

marginals µ1 ∈ P(X1), . . . , µn ∈ P(Xn).
Now fix a Borel nonnegative cost function c : X × Y → R+. Then the Monge–Kantorovich

problem consists in minimizing a total transportation cost:

C(γ) = Cc(γ) :=
ˆ

X×Y
c(x, y) dγ(x, y) → min

γ∈Π(µ,ν)
. (MK)

A transport plan γ∗ at which the minimum is attained is called optimal. The set of all optimal
transport plans from µ to ν is denoted by Πo(µ, ν). Respectively, the transportation functional
between µ and ν is the value of the Monge–Kantorovich problem:

J(µ, ν) = Jc(µ, ν) := inf
γ∈Π(µ,ν)

C(γ).

The Monge–Kantorovich problem can be viewed as a convex relaxation of the Monge problem,
where one is looking for a push-forward map instead of a transport plan:

ˆ

X

c
(

x, T (x)
)

dµ(x) → min
T
,
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where the minimization is over the Borel maps T such that T#µ = ν. Notice that unlike (MK)
this is not an LP problem. As we will see later, the Monge–Kantorovich problem admits a
solution under very mild assumptions, which is not the case for the Monge problem. However,
sometimes it is possible to show that the values of both problems coincides: e.g. if X and Y are
Polish, c is continuous, and µ has no atoms [Pra07].

Let us now recall some properties of the transportation functional J . First of all, since (MK)
is an (infinite-dimensional) linear programming problem, one trivially obtains the convexity of
its value J (cf. Theorem 4.8 in [Vil09]).

Lemma 2.2.1. The functional J is convex, i.e. for any measures µ0, µ1 ∈ P(X), ν0, ν1 ∈ P(Y )
and t ∈ [0, 1] it holds that

J(µt, νt) ≤ (1− t)J(µ0, ν0) + tJ(µ1, ν1),

where µt := (1− t)µ0 + tµ1, νt := (1− t)ν0 + tν1.

Corollary 2.2.2. Let Y = X and c(x, x) = 0 for all x ∈ X. Take µ0, µ1 ∈ P(X). Then for
any 0 ≤ t < s ≤ 1 it holds that

J(µt, µs) ≤ (s− t)J(µ0, µ1),

where µτ := (1− τ)µ0 + τµ1 for τ ∈ [0, 1].

Proof. Since µs = 1−s
1−tµt +

s−t
1−tµ1, from the convexity of J it follows that

J(µt, µs) ≤
1− s

1− t
J(µt, µt) +

s− t

1− t
J(µt, µ1) =

s− t

1− t
J(µt, µ1)

≤ s− t

1− t

(

(1− t)J(µ0, µ1) + tJ(µ1, µ1)
)

= (s− t)J(µ0, µ1).

However, in this work we deal with more specific setting. Namely, from now on assume
that the cost function is l.s.c. Clearly, in this case C is also nonnegative and l.s.c. w.r.t. the
narrow convergence. Moreover, the problem (MK) enjoys a lot of useful properties under this
assumption.

Proposition 2.2.3. For any µ ∈ P(X), ν ∈ P(Y ) there exists an optimal transport plan.
Moreover, if J(µ, ν) <∞, then Πo(µ, ν) is compact w.r.t. the topology of narrow convergence.

Proof. Note that Π(µ, ν) is nonempty, closed in the narrow topology, and tight since µ and
ν are tight. Then due to Prokhorov’s theorem any minimizing sequence {γn}n∈N for (MK)
has a narrowly convergent subsequence γnk

⇀ γ ∈ Π(µ, ν), and we conclude by the lower
semicontinuity of C.

Notice, however, that an optimal transport plan from µ to ν may not be unique.

Lemma 2.2.4. The functional J is lower semicontinuous w.r.t. the narrow convergence.

Proof. Let µn ⇀ µ, νn ⇀ ν and γn ∈ Πo(µn, νn) be an optimal transport plan from µn to
νn. Since {µn}n∈N and {νn}n∈N are tight, {γn}n∈N is too. W.l.o.g. assume that there exists
lim J(µn, νn) ∈ [0,∞]. Using Prokhorov’s theorem extract a weakly convergent subsequence
γnk

⇀ γ ∈ Π(µ, ν). Then due to the lower semicontinuity of C one obtains

J(µ, ν) ≤ C(γ) ≤ lim inf C(γnk
) = lim J(µn, νn).

Corollary 2.2.5. J is measurable w.r.t. the product of Borel σ-algebras Bw
(

P(X)
)

⊗Bw
(

P(Y )
)

induced by the topologies of narrow convergence.
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Kantorovich duality. One of the central points of the optimal transportation theory is a
duality. As (MK) is an infinite-dimensional linear programming problem, one can consider a
dual problem associated with it, e.g. the following one:

ˆ

X

u dµ+

ˆ

Y

v dν → max
u,v

, (D)

where the maximization is over all u ∈ L1(µ) and v ∈ L1(ν) such that u(x) + v(y) ≤ c(x, y)
for all x ∈ X, y ∈ Y (we allow u (v) to take infinite values on a µ- (ν-)negligible set). Any
solution (u, v) of this problem is called Kantorovich (dual) potentials for the transport from µ to
ν. Clearly, the value of the dual problem (D) is always not larger than the value of the primal
problem (MK) (this is so called weak duality). The question when these values coincide (strong
duality) and when there exists a solution of the dual problem is important for the OT theory
and is the subject of many research, see e.g. the bibliographical notes after Chapter 5 in [Vil09].

Definition 2.5. Let u : X → R̄. Then its c-transform is defined as

uc(y) := inf
x∈X

[c(x, y)− u(x)], y ∈ Y.

In the same way, for v : Y → R̄

vc(x) := inf
y∈Y

[c(x, y)− v(y)], x ∈ X.

If u = vc for some function v : Y → R̄, then we say u is c-concave.

Note that ucc ≥ u and uccc = uc, and the same holds for the c-transform of v. In the dual
problem we can hope to choose v = uc and u = vc, but uc and vc can be non-measurable, unless
c is continuous (in which case they are upper-semicontinuous).

Another important concept for duality is c-cyclical monotonicity.

Definition 2.6. A set Γ ⊂ X × Y is c-cyclically monotone if for any pairs (xi, yi) ∈ Γ ,
1 ≤ i ≤ n ∈ N, it hods that

n
∑

i=1

c(xi, yi) ≤
n
∑

i=1

c(xi, yi+1),

where yn+1 := y1.

Theorem 2.2.6 (Kantorovich duality). Take µ ∈ P(X) and ν ∈ P(Y ). Then the values of
problem (MK) and (D) coincide. Moreover, L1(µ) and L1(ν) in (D) can be replaced with C0

b (X)
and C0

b (Y ). If J(µ, ν) <∞, then for any γ ∈ Π(µ, ν) the following conditions are equivalent:

• γ is optimal;

• γ is concentrated on some c-cyclically monotone Borel set (which can be chosen dependent
only on µ and ν);

• there is a Borel c-concave function u : X → R∪−∞ such that u(x) + uc(y) = c(x, y) for
γ-a.e. (x, y). Moreover, uc coincides with a Borel function ν-a.e.

If, in addition, c(x, y) ≤ cX(x)+cY (y), where cX ∈ L1(µ), cY ∈ L1(ν), then the problem (D)
admits a solution.

Remark 2.2.7. If c is continuous, then the fact that γ is concentrated on a c-cyclically monotone
Borel set is equivalent to c-cyclical monotonicity of supp γ. Moreover, as was mentioned above,
in this case (Borel) dual potentials u and v can be chosen such that u = vc and v = uc.

Proof. Inspecting the proof of Theorem 5.10 in [Vil09], we conclude that this works as well for
Radon spaces X and Y : indeed, we need only Prokhorov’s theorem, inner regularity of any
probability measure on X × Y , and an approximation of µ and ν by discrete measures in the
topologies of narrow convergence.
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An important corollary of the above theorem is the stability of optimal transport plans w.r.t.
the narrow convergence once c is continuous (this is a trivial counterpart of Theorem 5.20 in
[Vil09] for the case of Radon spaces).

Proposition 2.2.8 (Weak stability of optimal transport plans). Let the cost function be con-
tinuous, µn ⇀ µ ∈ P(X), and νn ⇀ ν ∈ P(Y ). If lim inf J(µn, νn) < ∞ and γn ∈ Πo(µn, νn),
then there is an optimal transport plan γ ∈ Π(µ, ν) such that, up to a subsequence, γn ⇀ γ.

The stability result, in turn, yields the existence of a measurable selection of OT plans (cf.
Corollary 5.22 in [Vil09]).

Corollary 2.2.9. Let the cost function c be continuous, then there exists a Borel (w.r.t. the
topologies of narrow convergence) map (µ, ν) 7→ γo(µ, ν) ∈ Πo(µ, ν).

Proof. Consider the set-valued map from P(X)× P(Y ) to P(X × Y ):

Ψ(µ, ν) :=

{

Πo(µ, ν), if J(µ, ν) <∞,

{µ⊗ ν}, otherwise.

Note that Ψ(µ, ν) is compact and nonempty for any µ ∈ P(X), ν ∈ P(Y ). Recall that due
to Lemma 2.2.4 for any h > 0 the set

{

(µ, ν) ∈ P(X) × P(Y ) : J(µ, ν) ≤ h
}

is closed, hence
{

(µ, ν) : J(µ, ν) = ∞
}

is Borel. Now fix a closed set D ⊂ P(X×Y ) and h > 0. Proposition 2.2.8
yields that the set

{

(µ, ν) ∈ P(X)× P(Y ) : J(µ, ν) ≤ h, Πo(µ, ν) ∩D 6= ∅
}

also is closed in τw ⊗ τw. Then

{

(µ, ν) ∈ P(X)× P(Y ) : Ψ(µ, ν) ∩D 6= ∅
}

∈ Bw(X)⊗ Bw(Y )

and we can apply Theorem 6.9.4 in [Bog07] (clearly, one can replace an open set in the statement
with a closed set; see also the remark after it), which ensures the existence of a Borel selection
from Ψ and hence Πo.

Quadratic cost. Let us now consider the case X = Y = Rd and the cost function c(x, y) :=
∥x−y∥2

2 (which corresponds to the p-Wasserstein distance, see the next section), where ‖·‖ is the
Euclidean norm. By P2(R

d) we will denote the set of Borel probability measures on Rd with
finite second moment m2(µ) :=

´

‖x‖2 dµ. Let µ, ν ∈ P2(R
d), then by Theorem 2.2.6 there exists

dual potentials (u, v) ∈ L1(µ)× L1(ν) such that v = uc and u = vc. Consider now

φ(x) :=
‖x‖2
2

− u(x), ψ(y) :=
‖x‖2
2

− v(x), x ∈ Rd.

Then it is easy to see that

φ(x) = ψ∗(x) := sup
y∈Rd

(

〈x, y〉 − ψ(y)
)

and ψ(y) = φ∗(y) := sup
x∈Rd

(

〈x, y〉 − φ(x)
)

.

We will call (φ,ψ) Brenier potentials between µ and ν. The following famous result due to
Y. Brenier [Bre91] establishes existence and uniqueness of the optimal transport map for the
quadratic cost function.

Proposition 2.2.10 (Brenier’s theorem; Theorem 1.20 in [San15]). Let µ, ν ∈ P2(R
d) and µ be

absolutely continuous w.r.t. the Lebesgue measure. Then there exists a unique optimal transport
plan γ ∈ Πo(µ, ν), it has a form γ = (id, T )#µ, and T = ∇φ, where φ is a Brenier potential
between µ and ν.
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2.3 Wasserstein space

Let X be a Radon space with a fixed metric ρ. Fix an arbitrary point x0 ∈ X and for p ≥ 1
define the set of probability measures with finite p-th moment:

Pp(X) :=

{

µ ∈ P(X) : mp(µ) :=

ˆ

ρp(x, x0) dµ <∞
}

.

Now let us take the cost function c(·, ·) := ρp(·, ·) (obviously, it is nonnegative and continuous)
and define

Wp(µ, ν) := (Jc(µ, ν))
1/p :=

(

min
γ∈Π(µ,ν)

ˆ

ρp(x, y) dγ
)1/p

, µ, ν ∈ Pp(X). (2.2)

It follows from the gluing Proposition 2.1.6 and the Minkowski inequality that Wp is a metric
on Pp(X) [AGS08, Sec. 7.1].

Definition 2.7. We call Wp the p-Wasserstein metric, and (Pp(X),Wp) is the p-Wasserstein
space over (X, ρ).

Note that Wp(δx, δy) = ρ(x, y), thus X can be isometrically embedded into the p-Wasserstein
space, and one can hope that its geometry in some sense reflects the structure of X. The next
proposition shows that (Pp(X),Wp) inherits at least some topological properties of X.

Proposition 2.3.1 (Proposition 7.1.5 in [AGS08]). The p-Wasserstein space is separable. If X
is complete, then (Pp(X),Wp) is also complete. If X is compact, then (Pp(X),Wp) is compact.

One of important properties of the Wasserstein distance is that it almost metrizes the nar-
row convergence. Namely, convergence in Wp is equivalent to the narrow convergence and the
convergence of p-th moments:

Proposition 2.3.2 (Criterion of convergence in Wp; Theorem 6.9 in [Vil09]). Let X be a Polish
space, then Wp(µn, µ) → 0 iff µn ⇀ µ and mp(µn) → mp(µ).

In particular, if ρ is bounded, then the convergence in Wp is indeed equivalent to the narrow
convergence.

Absolutely continuous curves. Now consider again the case X = Rd with the Euclidean
distance. Recall that a curve {xt}t∈[0,1] in a complete metric space (X, ρ) is absolutely continuous
of order p ∈ [1,∞] if there is a function m ∈ Lp([0, 1]) such that for all 0 ≤ t ≤ s ≤ 1

ρ(xt, xs) ≤
ˆ s

t

m(r) dr. (2.3)

According to Theorem 1.1.2 in [AGS08] any absolutely continuous curve admits a metric deriva-
tive |x′| ∈ L1([0, 1]), i.e. the minimal (up to negligible sets) function satisfying (2.3).

Proposition 2.3.3 (Theorem 8.3.1 in [AGS08]). Let 1 < p <∞ and {µt}t∈[0,1] ⊂ Pp(Rd) be an

absolutely continuous curve of order p. Then there is a Borel vector field (x, t) 7→ vt(x) ∈ Rd

such that
‖vt‖Lp(Rd,µt;Rd) = |µ′|(t) for a.e. t ∈ [0, 1],

and (µt, vt) satisfies the continuity equation

∂tµ+ div(vtµt) = 0

in a weak sense, i.e. for any φ ∈ C1
c ([0, 1]× Rd) it holds that

ˆ

[0,1]

ˆ

Rd

∂tφ(t, x) dµt(x) dt+
ˆ

[0,1]

ˆ

Rd

〈vt,∇xφ(t, x)〉 dµt(x) dt = 0.

Conversely, if {µt}t∈[0,1] ⊂ Pp(Rd) is a narrowly continuous curve satisfying the continuity
equation with a field vt such that ‖vt‖Lp(Rd,µt;Rd) ∈ L1([0, 1]), then it is absolutely continuous
and

|µ′|(t) ≤ ‖vt‖Lp(Rd,µt;Rd) for a.e. t ∈ [0, 1].
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Chapter 3

Fréchet barycenters

3.1 Introduction

In this chapter we consider the Monge–Kantorovich problem on an abstract Radon space X and
try to impose minimal assumptions on the cost function that allow the transportation functional
J to induce a topology on P(X) in a reasonable way. We then investigate the properties of this
topology and define averaging of probability measures on X, using the optimal transport theory
to define a suitable concept of a “typical element”, which extends the notions of the Fréchet
mean [Fré48] and the Wasserstein barycenter [AC11].

We fix a Radon space X (see Definition 2.2), e.g. a Polish space, and a continuous cost
function c : X ×X → [0,∞). Assume that c(x, y) = 0 iff x = y, thus J(µ, ν) = 0 iff µ = ν due
to Proposition 2.2.3. In this chapter we sometimes call J(µ, ν) the Monge–Kantorovich distance
between µ and ν, meaning that it quantifies a dissimilarity between measures µ and ν in P(X),
although it is in general non-symmetric and may not satisfy the triangle inequality. Despite
J is not a metric, we show that under additional assumptions on c it induces a transportation
topology on P(X). The space P(X) endowed with this topology can be divided into equivalence
classes, and each of them is a Radon space (in particular, it is separable and metrizable).

Further, by analogy with a Wasserstein barycenter we introduce a notion of a Fréchet typical
element of P w.r.t. J , which we propose to call a Fréchet barycenter of P . It is defined as a
minimizer of the average transportation cost:

ˆ

P(X)
J(µ, ν) dP (µ) → min

ν∈P(X)

(rigorous definitions are given in Section 3.5). Suppose infν∈P(X)

´

P(X) J(µ, ν) dP (µ) < ∞.
Then we show that a Fréchet barycenter of P exists. Moreover, if the distributions Pn converge
to P w.r.t. the transportation cost on P

(

P(X)
)

with J as cost function, then the barycenters
of Pn also converge (in an appropriate sense) to a barycenter of P . For instance, this result
implies a law of large numbers for Fréchet barycenters. A similar setting was also considered
by T. Le Gouic and J.-M. Loubes in [LL17], where a stability result and a law of large numbers
were proven for barycenters in the p-Wasserstein space, and by J. Bigot and T. Klein in [BK12].
The current work, in particular, covers the case of the Wasserstein barycenters on an infinite-
dimensional uniformly convex separable Banach space X (e.g. a separable Hilbert space), which,
to the best of our knowledge, is the first result of this type.

The chapter is organized as follows. In Section 3.2 we impose assumptions on the cost
function c and study corresponding properties of the Monge–Kantorovich distance. In Section 3.3
we define the transportation topology on P(X), and consider its properties such as separability,
metrizability, and weak local compactness. In Section 3.4 we deal with the particular case of
X = Rd and c(x, y) = g(x− y), where g ≥ 0 is a convex function. Then we define in Section 3.5
a generalized barycenter of a distribution on P(X). The central result of this chapter is proven
in Subsection 3.5.2: the convergence of barycenters of distributions Pn is established provided
that Pn themselves converge to some distribution P .

19
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Notations. Let ρ be some metric on X, Br(x) be an open ball in X w.r.t. ρ for x ∈ X and
r > 0, then we call its closure B̄r(x) ⊂

{

y ∈ X : ρ(x, y) ≤ r
}

a closed ball (note that there can
be no equality, since we do not require ρ to be an inner metric). Let us define for any x ∈ X

and r > 0 an open c-ball Bc
r(x) :=

{

y ∈ X : c(x, y) < r
}

. Then a closed c-ball is B̄c
r(x) ⊂

{

y ∈
X : c(x, y) ≤ r

}

(again, the inclusion can be strict). In the same way we define an open J-ball
BJ
r (µ) :=

{

ν ∈ P(X) : J(µ, ν) < r
}

and a closed J-ball B̄J
r (µ) :=

{

ν ∈ P(X) : J(µ, ν) ≤ r
}

—
as we will see, it coincides with the closure of BJ

r (µ) in a transportation topology.
Further, we assume that there is a weaker metric ρw on X (e.g. this can be a metric inducing

the weak convergence if X is a normed space). We denote the convergence w.r.t. ρw by xn →w x,
and the narrow convergence of measures w.r.t. the corresponding topology (which we call the
ρw-narrow convergence) by µn ⇀w µ. Bw

r (x) and B̄w
r (x) denote an open and a closed ball w.r.t.

ρw, respectively.

3.2 Properties of Monge–Kantorovich distance

In this subsection we are going to impose some assumptions on the cost function and discuss
related properties of the Monge–Kantorovich distance. The first assumption concerns the topo-
logical properties of c.

Assumption 3.1. c is consistent in a sense that c(x, xn) → 0 iff c(xn, x) → 0 iff xn → x

for any x ∈ X and a sequence {xn}n∈N ⊂ X. Moreover, c is l.s.c. w.r.t. the weak topology
induced by ρw and satisfies the following Radon–Riesz-type property: if xn → x, yn →w y, and
c(xn, yn) → c(x, y), then yn → y.

Remark 3.2.1. Note that any ball Bc
r(x) ∈ B(X, ρw) due to the lower semicontinuity of c, thus

the separability of X together with the consistency of c give us B(X, ρ) ⊂ B(X, ρw), and hence
these two σ-algebras actually coincide. In particular, X endowed with ρw also is a Radon space.

Proof. Fix an arbitrary open ρ-ball B ⊂ X. It is enough to show that B ∈ B(X, ρw). Due to
the consistency of c for any x ∈ B there are r(x), δ(x) > 0 such that Bδ(x)(x) ⊂ Bc

r(x)(x) ⊂ B.
Define sets

An :=

{

x ∈ B : δ(x) ≥ 1

n

}

, n ∈ N

and take their dense countable subsets Sn ⊂ An. Then

An ⊂
⋃

x∈Sn

B1/n(x) ⊂
⋃

x∈Sn

Bc
r(x)(x) ⊂ B.

Since B =
⋃

n∈NAn, one obtains that

⋃

n∈N

⋃

x∈Sn

Bc
r(x)(x) = B.

As Bc
r(x)(x) ∈ B(X, ρw), we conclude that B ∈ B(X, ρw), thus B(X, ρ) = B(X, ρw).

Let us provided a couple of examples illustrating the above assumption, especially its second
part. First of all, if ρw is equivalent to ρ, then the Radon–Riesz property trivially follows from
the consistency of c. Now consider more reasonable cases.

Example 3.2.2. The main example that we can have in mind, of course, is the cost function
given by

c(x, y) := f (ρ(x, y)) , (3.1)

where f : R+ → R+ is a continuous function. Then c is consistent once f(tn) → 0 iff tn → 0.
Recall that a normed space X is called Radon–Riesz (or Kadets–Klee) if xn → x is equivalent to
xn ⇀ x and ‖xn‖ → ‖x‖. In particular, any uniformly convex Banach space (e.g. a Hilbert space,
Lebesgue spaces ℓp or Lp for 1 < p < ∞) satisfies this property. Then c(x, y) := f (‖x− y‖)
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fulfills the assumption once f is strictly increasing and ρw metrizes the weak convergence on
bounded sets (see, e.g. Section 5.1.2 in [AGS08]). In particular, f(t) := tp, corresponding to
the p-Wasserstein space, satisfies the above assumption. Another example is provided by the
optimal transportation theory itself: according to Proposition 2.3.2 the p-Wasserstein distance
fulfills these conditions, if ρw metrizes the narrow convergence.

First, we recall a connection between the transportation functional J and the narrow con-
vergence, following from the continuity of the cost function. It is quite similar to well-known
results for the Wasserstein metric, see Proposition 2.3.2.

Lemma 3.2.3. Let {µn}n∈N ⊂ P(X) be such that J(µ, µn) → 0 or J(µn, µ) → 0 for some
µ ∈ P(X). Then µn ⇀ µ.

Proof. Assume {µn}n∈N fails to narrowly converge to µ. Then there exists a closed set F ⊂ X

such that lim supµn(F ) > µ(F ). Let 3ε := limµn(F )−µ(F ) > 0 (without relabelling). Consider
the following open neighborhoods of F :

Fr :=
{

x ∈ X : inf
y∈F

c(x, y) < r
}

⊃ F, r > 0.

For any r > 0 the set Fr is open due to the continuity of c. On the other hand, the consistency of
c yields that for any x /∈ F there exists an open c-ball Bc

r(x) such that Bc
r(x)∩F = ∅. Therefore,

⋂

r>0 Fr = F and thus µ(F ) = limr→0 µ(Fr). Let r0 > 0 be such that µ(Fr0) < µ(F ) + ε. Since
µn(F ) > µ(F ) + 2ε for n large enough,

γn
(

(X \ Fr0)× F
)

= µn(F )− γn(Fr0 × F ) ≥ µn(F )− µ(Fr0) > ε,

where γn ∈ Πo(µ, µn) is an optimal transport plan. Consequently,

J(µ, µn) = C(γn) ≥ γn
(

(X \ Fr0)× F
)

inf
{

c(x, y) : x /∈ Fr0 , y ∈ F
}

≥ εr0 > 0,

which contradicts the assumptions of the lemma.

As we have seen, the convergence w.r.t. the transportation functional implies the narrow
convergence. Actually, the converse also holds under some additional assumptions.

Lemma 3.2.4. Let µn ⇀ µ and suppµn ⊂ F for all n, where F ⊂ X is a closed set such that
supx,y∈F c(x, y) <∞. Then lim J(µn, µ) = lim J(µ, µn) = 0.

Proof. Fix ε > 0. Due to the separability of X and the continuity of c one can cover X with a
countable union of closed balls B̄ri(xi), i ∈ N, such that c(x, y) < ε whenever x, y ∈ B̄2ri(xi).
Fix m ∈ N such that µ

(

X \⋃m
i=1Bri(xi)

)

< ε and consider a partition of unity by continuous
functions fi : X → [0, 1], 0 ≤ i ≤ m, satisfying

f0(x) = 0 ∀x ∈
m
⋃

i=1

B̄ri(xi);

fi(x) = 0 ∀x /∈ B̄2ri(xi), 1 ≤ i ≤ m.

Without loss of generality µ
(

Bri(xi)
)

> 0 and fi > 0 in Bri(xi), thus
´

fi dµ > 0, for all
1 ≤ i ≤ m. Define measures

λin :=
(fiµn)⊗ (fiµ)

max
{´

fi dµn,
´

fi dµ
} ∈ M+(X ×X), 1 ≤ i ≤ m, n ∈ N;

µ̂n := µn −
m
∑

i=1

π1#λ
i
n =

(

1−
m
∑

i=1

´

fi dµ
max

{´

fi dµn,
´

fi dµ
}fi

)

µn ≥ f0µn ≥ 0;

µ̂∗n := µ−
m
∑

i=1

π2#λ
i
n =

(

1−
m
∑

i=1

´

fi dµn
max

{´

fi dµn,
´

fi dµ
}fi

)

µ ≥ f0µ ≥ 0.
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Since µn ⇀ µ one has
´

fi dµn →
´

fi dµ for all i, thus

µ̂n(X) = µ̂∗n(X) =

ˆ

(

1−
m
∑

i=1

´

fi dµn
max

{´

fi dµn,
´

fi dµ
}fi

)

dµ

→
ˆ

(

1−
m
∑

i=1

fi

)

dµ =

ˆ

f0 dµ ≤ µ

(

X \
m
⋃

i=1

Bri(xi)

)

< ε.

Consider the following transport plans:

γn :=
µ̂n ⊗ µ̂∗n
µ̂n(X)

+

m
∑

i=1

λin ∈ Π(µn, µ), n ∈ N.

From suppµn ⊂ F it follows that suppµ ⊂ F and supp γn ⊂ F×F . DefineM := supx,y∈F c(x, y) <
∞. suppλin ⊂ B̄2ri(xi) × B̄2ri(xi) by the definition of λin and the functions fi. Now one can
obtain that

lim sup J(µn, µ) ≤ lim sup C(γn) ≤ lim sup
(

M
µ̂n(X)µ̂∗n(X)

µ̂n(X)
+ ε

m
∑

i=1

λin(X ×X)

)

≤M lim sup µ̂n(X) + ε ≤ (M + 1)ε.

This proves that J(µn, µ) → 0 because of the arbitrary choice of ε > 0. In the same way one
can show that J(µ, µn) → 0.

Now let us formulate the main assumption on the cost function c, which we suppose to hold
hereafter in the chapter: a weak triangle inequality.

Assumption 3.2. There exist constants A,B ≥ 0 such that the inequality holds for all x, y, z ∈
X:

c(x, y) ≤ A+B
(

min{c(x, z), c(z, x)}+ min{c(y, z), c(z, y)}
)

,

This is a quite natural assumption which holds for a wide class of cost functions, e.g. for
c(x, y) = ρp(x, y) with p > 0 (the case of p-Wasserstein spaces) or, more generally, the cost
function given by (3.1) if f is strictly increasing and f(t + s) ≤ A

(

f(t) + f(s)
)

for all t, s ≥ 0.
Another example is considered in Section 3.4.

Using “gluing” Proposition 2.1.6 one can trivially show that the Monge–Kantorovich distance
“inherits” the inequalities on the cost function:

Lemma 3.2.5. For all µ, ν, λ ∈ P(X)

J(µ, ν) ≤ A+B
(

min{J(µ, λ), J(λ, µ)}+ min{J(ν, λ), J(λ, ν)}
)

.

Moreover, one can locally amplify inequalities from Assumption 3.2, as the next lemma
shows.

Lemma 3.2.6. Let K ⊂ X be a compact set. Then for any ε > 0 there exist an open neigh-
bourhood Uε(K) ⊃ K and a constant BK

ε such that

c(x, y) ≤ ε+ c(x, z) +BK
ε c(y, z),

c(x, y) ≤ ε+ c(z, y) +BK
ε c(z, x)

for all x, y, z ∈ Uε(K).

Proof. Fix ε > 0. As c is continuous, it is uniformly continuous on K ×K, hence there exists
an open set V ∈ X ×X such that {(y, y) : y ∈ K} ⊂ V and c(x, y) ≤ c(x, z)+ ε/2 for all x ∈ K,
(y, z) ∈ V . Define M := maxx,y∈K c(x, y) <∞ and

δ := min
(y,z)∈K2\V

c(y, z) > 0,
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which is positive due to the compactness of K. Thus if (y, z) ∈ K2 \ V , then c(x, y) ≤ M ≤
M
δ
c(y, z) for all x ∈ K. Consequently,

c(x, y) ≤ ε/2 + c(x, z) +
M

δ
c(y, z) (3.2)

for all x, y, z ∈ K. Denote M
δ

by BK
ε .

Due to continuity of c one can choose an open neighbourhood W of K3 such that for all
x, y, z ∈ W there exist x′, y′, z′ ∈ K for which |c(x, y) − c(x′, y′)| < γ, |c(x, z) − c(x′, z′)| < γ,
and |c(y, z)− c(y′, z′)| < γ, where γ := ε/

(

4 + 2BK
ε

)

. Since K3 is compact, ρ(K3, X3 \W ) > 0

and there is a neighbourhood Uε(K) such that
(

Uε(K)
)3 ⊂ W . Now, applying inequality (3.2)

and the definition of W one can obtain that

c(x, y) ≤ γ + c(x′, y′) ≤ γ + ε/2 + c(x′, z′) +BK
ε c(y

′, z′)

≤ (2 +BK
ε )γ + ε/2 + c(x, z) +BK

ε c(y, z) ≤ ε+ c(x, z) +BK
ε c(y, z)

for all x, y, z ∈ Uε(K). The second inequality can be treated in the same way.

The next lemma states one of the main results of this subsection: J is continuous w.r.t. to
itself, what is essential to define a transportation topology later (cf. Theorem 1.48 in [San15]).

Lemma 3.2.7 (Continuity of J). Take two sequences {µn}n∈N, {νn}n∈N such that J(µ, µn) → 0
and J(ν, νn) → 0 for some measures µ, ν ∈ P(X). Then J(µn, νn) → J(µ, ν).

Proof. Let γ1n ∈ Πo(µ, µn), γ2 ∈ Πo(µ, ν), γ3n ∈ Πo(ν, νn) be optimal transport plans. Consider
measures σn ∈ Π(µn, µ, ν, νn) such that π2,1# σn = γ1n, π2,3# σn = γ2 and π

3,4
# σn = γ3n. Since the

sequences are tight one can fix 0 < ε < 1 and a compact set K such that µn(X \K), µ(X \K),
νn(X \K), ν(X \K) and

´

X2\K2 c(x2, x3) dγ2 are less than ε. Obviously,

J(µn, νn) ≤ C
(

π
1,4
# σn

)

=

ˆ

c(x1, x4) dσn.

Consider the set Y := Uε(K)×K2 × Uε(K). Now one can obtain due to Lemma 3.2.6 that
ˆ

Y

c(x1, x4) dσn ≤
ˆ

Y

(

ε+BK
ε c(x2, x1) + c(x2, x4)

)

dσn

≤
ˆ

Y

(

ε+BK
ε c(x2, x1) + ε+BK

ε c(x3, x4) + c(x2, x3)
)

dσn

≤ 2ε+BK
ε C(γ1n) +BK

ε C(γ3n) + C(γ2)
= 2ε+BK

ε J(µ, µn) +BK
ε J(ν, νn) + J(µ, ν)

−−−→
n→∞

2ε+ J(µ, ν) → J(µ, ν) as ε→ 0.

The remaining term may be bounded by Assumption 3.2 in the following way:
ˆ

X4\Y
c(x1, x4) dσn ≤

ˆ

X4\Y

(

A+Bc(x2, x1) +Bc(x2, x4)
)

dσn

≤
ˆ

X4\Y

(

A+Bc(x2, x1) +AB +B2c(x2, x3) +B2c(x3, x4)
)

dσn

≤ A(1 +B)σn(X
4 \ Y ) +BJ(µ, µn) +B2

ˆ

X4\Y
c(x2, x3) dσn +B2J(ν, νn)

≤ 4A(1 +B)ε+BJ(µ, µn) +B2J(ν, νn) +B2

ˆ

X4\Y
c(x2, x3) dσn.
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Notice that

X4 \ Y =
[

X × (X2 \K2)×X
]

∪
[

(

X \ Uε(K)
)

×K2 ×X
]

∪
[

X ×K2 ×
(

X \ Uε(K)
)

]

and
ˆ

X×(X2\K2)×X
c(x2, x3) dσn =

ˆ

X2\K2

c(x2, x3) dγ2 < ε.

Moreover, since J(µ, µn) → 0 and J(ν, νn) → 0, we have γ1n ⇀ (id, id)#µ and γ3n ⇀ (id, id)#ν,
thus σn ⇀ (π1, π1, π2, π2)#γ

2. Since
(

X \Uε(K)
)

×K2×X is closed and c(x2, x3) is continuous
and bounded on it we conclude that

lim sup
ˆ

(

X\Uε(K)
)

×K2×X
c(x2, x3) dσn ≤

ˆ

(

K∩X\Uε(K)
)

×K
c(x, y) dγ2 = 0,

as K ∩X \ Uε(K) = ∅. In the same way one can obtain that

lim sup
ˆ

X×K2×
(

X\Uε(K)
)
c(x2, x3) dσn = 0.

Thus J(µn, νn) → J(µ, ν).

Now let us show that the convergence in J is symmetric and associative.

Lemma 3.2.8. Let {µn}n∈N, {νn}n∈N, {λn}n∈N be tight sequences such that J(µn, νn) → 0 and
J(νn, λn) → 0; then J(νn, µn) → 0 and J(µn, λn) → 0.

Proof. Fix ε > 0 and a compact set K ⊂ X such that µn(K), νn(K) and λn(K) are greater
than 1− ε. Consider measures σn ∈ Π(µn, νn, λn) such that π1,2# σn = γ1n and π2,3# σn = γ2n where
γ1n and γ2n are optimal transport plans from µn to νn and from νn to λn, respectively. Due to
Assumption 3.2 and Lemma 3.2.6 one can obtain that

J(µn, λn) ≤ C
(

π
1,3
# σn

)

=

ˆ

c(x, z) dσn

≤
ˆ

K3

(

ε+ c(x, y) +BK
ε c(y, z)

)

dσn +
ˆ

X3\K3

(

A+Bc(x, y) +Bc(y, z)
)

dσn

≤ ε+ J(µn, νn) +BK
ε J(νn, λn) + 3εA+BJ(µn, νn) +BJ(νn, λn)

→ ε+ 3εA→ 0 as ε→ 0.

Thus J(µn, λn) → 0. Similarly,

J(νn, µn) ≤ C
(

π
2,1
# γ1n

)

=

ˆ

c(y, x) dγ1n

≤
ˆ

K3

(

ε+BK
ε c(x, y)

)

dγ1n +
ˆ

X3\K3

(

A+Bc(x, y)
)

dγ1n

≤ ε+BK
ε J(µn, νn) + 2εA+BJ(µn, νn) → ε+ 2εA,

therefore J(νn, µn) → 0.

Before we move to the next result, let us consider the following useful construction: fix some
point x0 ∈ X and for given R > 0 take a continuous function fR : X × X → [0, 1] such that
fR(x, y) = 1 for x, y ∈ Bc

R(x0) and fR(x, y) = 0 if x /∈ Bc
R+1(x0) or y /∈ Bc

R+1(x0). Let us take
measures µ, ν, γ ∈ Π(µ, ν) and consider λ := fRγ. Define

γ̃ = γ̃R := γ − λ+ (π2, π2)#λ

and ν̃ = ν̃R := π1#γ̃. So γ̃ ∈ Π(ν̃, ν) and J(ν̃, ν) ≤ C(γ̃) = C(γ) − C(λ) = C(γ) − C′(γ) where
C′(γ) = C′

R(γ) := C(fRγ). Note that ν̃ ≤ µ+ ν for any R.



2. Properties of Monge–Kantorovich distance 25

Consider a weakly convergent sequence of plans Π(µ, νn) ∋ γn ⇀ γ ∈ Π(µ, ν). One has
γ̃n ⇀ γ̃ hence ν̃n ⇀ ν̃. But on the complement of the ball Bc

R+1(x0) all the measures ν̃n coincide
with µ, consequently, J(ν̃n, ν̃) → 0 by Lemma 3.2.4.

Now we are ready to show that a converse result to Lemma 3.2.7 is also true, namely the
following counterpart of Assumption 3.1.

Lemma 3.2.9. Take two sequences {µn}n∈N, {νn}n∈N such that J(µn, µ) → 0, νn ⇀w ν, and
J(µn, νn) → J(µ, ν) <∞ for some measures µ, ν ∈ P(X). Then J(νn, ν) → 0.

Proof. Step 1. We start from proving νn ⇀ ν. Assume that it is false, then there is an open
set U ⊂ X, r > 0, and ε > 0 such that, up to a subsequence,

ν(U) > νn(Ur) + 3ε ∀n ∈ N,

with Ur :=
⋃

x∈U Br(x). Now consider the product topology τsw on (X, ρ) × (X, ρw) and recall
that B(X, ρw) = B(X, ρ). Let γn ∈ Πo(µn, νn) for all n ∈ N. Since µn ⇀ µ, νn ⇀w ν, the
sequence {γn}n∈N is tight w.r.t. τsw, hence there is a narrowly (w.r.t. τsw) convergent subsequence
γn ⇀sw γ ∈ Π(µ, ν) (without relabelling).

According to Assumption 3.1 for all x, y ∈ X there exists δ = δ(x, y) > 0 such that c(x′, y′) <
c(x, y) + 4δ implies ρ(y′, y) < r for x′ ∈ Bδ(x), y′ ∈ Bw

δ (y). Then one can find δ > 0 satisfying

γ∗ ({(x, y) ∈ X × U : δ(x, y) ≥ δ}) > γ(X × U)− ε = ν(U)− ε, (3.3)

where γ∗ is the outer measure induced by γ.
For given h > 0 define a (Lipschitz) continuous function

ch(x, y) := inf
x′,y′∈X

[

c(x′, y′) + hρ(x′, x) + hρw(y
′, y)

]

≤ c(x, y).

Clearly, ch ր c as h→ ∞ due to the lower semicontinuity of c. In particular,
ˆ

ch dγ →
ˆ

c dγ ≤ lim inf
ˆ

c dγn = lim J(µn, νn) = J(µ, ν) <∞.

Fix h ≥ 1 such that
ˆ

c dγ <
ˆ

ch dγ + εδ

and take an open (in τsw) set

V :=
⋃

{

Bδ/h(x)×Bw
δ/h(y) : x ∈ X, y ∈ U, δ(x, y) ≥ δ

}

.

Obviously, (3.3) yields

γ(V ) ≥ γ∗
(

{(x, y) ∈ X × U : δ(x, y) ≥ δ}
)

> ν(U)− ε.

Since γn ⇀sw γ, for large enough n we have

γn(V ) > γ(V )− ε > ν(U)− 2ε > νn(Ur) + ε = γn(X × Ur) + ε.

For any (x, y) ∈ V \ (X ×Ur) there is (x′, y′) ∈ X ×U such that x ∈ Bδ/h(x
′), y ∈ Bw

δ/h(y
′), and

δ(x′, y′) ≥ δ. Since ρ(y′, y) ≥ r, we have c(x, y) ≥ c(x′, y′) + 4δ, therefore

ch(x, y) ≤ c(x′, y′) + h
(

ρ(x′, x) + ρw(y
′, y)

)

≤ c(x′, y′) + 2δ ≤ c(x, y)− 2δ

and thus
ˆ

c dγn ≥
ˆ

(ch + 2δ 1V \(X×Ur)) dγn =

ˆ

ch dγn + 2δγn
(

V \ (X × Ur)
)

≥
ˆ

ch dγn + 2δ
(

γn(V )− γn(X × Ur)
)

>

ˆ

ch dγn + 2εδ.
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Finally,
ˆ

c dγ <
ˆ

ch dγ + εδ ≤ lim inf
ˆ

ch dγn + εδ ≤ lim inf
ˆ

c dγn − εδ,

which contradicts the fact that

lim
ˆ

c dγn = lim J(µn, νn) = J(µ, ν) ≤
ˆ

c dγ.

Consequently, νn ⇀ ν.
Step 2. Now we are going to show that J(µ, νn) → J(µ, ν). Apply Proposition 2.1.6 to find

σn ∈ Π(µ, µn, νn) such that π1,2# σn ∈ Πo(µ, µn) and π
2,3
# σn ∈ Πo(µn, νn), and extract a weakly

convergent subsequence σn ⇀ σ ∈ Π(µ, µ, ν). Since

J(µ, ν) ≤
ˆ

c(x2, x3) dσ ≤ lim inf
ˆ

c(x2, x3) dσn = lim J(µn, νn) = J(µ, ν),

we conclude that
(

A+Bc(x2, x3)
)

#
σn ⇀

(

A+Bc(x2, x3)
)

#
σ.

Fix ε > 0 and take compact K ⊂ X such that

ˆ

X3\K3

(A+Bc(x2, x3)) dσ ≤ ε.

Let U be a neighborhood of K from Lemma 3.2.6, then

J(µ, νn) ≤
ˆ

c(x1, x3) dσn

≤
ˆ

U3

(

ε+ c(x2, x3) +BK
ε c(x2, x1)

)

dσn +
ˆ

X3\U3

(

A+Bc(x2, x3) +Bc(x2, x1)
)

dσn

≤ ε+ J(µn, νn) + max
{

B, BK
ε

}

J(µn, µ) +

ˆ

X3\U3

(

A+Bc(x2, x3)
)

dσn.

By the weak convergence

lim sup
ˆ

X3\U3

(

A+Bc(x2, x3)
)

dσn ≤
ˆ

X3\U3

(

A+Bc(x2, x3)
)

dσ ≤ ε,

and since J(µn, νn) → J(µ, ν), J(µn, µ) → 0, one has lim sup J(µ, νn) ≤ J(µ, ν) + 2ε. At the
same time, J(µ, ν) ≤ lim inf J(µ, νn), hence J(µ, νn) → J(µ, ν).

Step 3. Let γn ∈ Πo(µ, νn) for all n ∈ N. Since the sequence {γn}n∈N is tight, one can
extract a subsequence γn ⇀ γ ∈ Π(µ, ν) (without relabelling). Fix ε > 0 and R > 0 such that
C′(γ) = C′

R(γ) > C(γ) − ε. Using the construction described before the lemma get transport
plans Π(ν̃n, νn) ∋ γ̃n ⇀ γ̃ ∈ Π(ν̃, ν). Therefore J(ν̃n, ν̃) → 0, J(ν̃, ν) ≤ C(γ̃) = C(γ)− C′(γ) < ε

and

J(ν̃n, νn) ≤ C(γ̃n) = C(γn)− C′(γn) = J(µ, νn)− C′(γn)

→ J(µ, ν)− C′(γ) ≤ C(γ)− C′(γ) < ε.

So, one can choose Rn → ∞ such that

lim J
(

(ν̃n)Rn , νn
)

= lim J
(

(ν̃n)Rn , ν̃Rn

)

= lim J(ν̃Rn , ν) = 0.

Since (ν̃n)Rn ≤ µ + νn and ν̃Rn ≤ µ + ν, all the sequences are tight and thus J(νn, ν) → 0 by
Lemma 3.2.8.
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3.3 Transportation topology

Lemma 3.2.7 immediately implies one of the main results of this chapter: there is a topology on
P(X) with the basis of “balls” w.r.t. J , and J is continuous w.r.t. this topology.

Definition 3.1 (Transportation topology). The set of all open J-balls BJ
r (µ) forms a basis of

the transportation topology τJ on P(X). We denote the convergence of a sequence {νn}n∈N to ν

in τJ (the transportation convergence) by νn
J−→ ν.

Note that νn
J−→ ν is equivalent to J(νn, ν) → 0 and J(ν, νn) → 0. If X is a compact

space, it follows from Lemmata 3.2.3 and 3.2.4 that the narrow convergence is equivalent to
the transportation convergence. In particular, in this case

(

P(X), τJ
)

itself is compact. Notice
however that if X is not compact, then

(

P(X), τJ
)

is neither compact nor locally compact.
Let the relation µ ∼ ν be defined as J(µ, ν) < ∞. Then it is an equivalence on P(X)

and splits the space into equivalence classes E(µ) :=
{

ν ∈ P(X) : J(µ, ν) < ∞
}

. Notice that
every equivalence class is path-connected, even if X is disconnected, since the curve [0, 1] ∋ t 7→
(1− t)µ+ tν is continuous by Corollary 2.2.2, whenever J(µ, ν) <∞. Let us denote by E0 the
class containing delta-measures, i.e. E0 := E(δx0) =

{

ν ∈ P(X) :
´

c(x0, x) dν(x) < ∞
}

for an
arbitrary x0 ∈ X (obviously, it does not depend on the choice of x0).

Lemmata 3.2.3, 3.2.7, and 3.2.9 immediately give the following necessary and sufficient con-
dition of convergence in τJ , which relates the transportation and the narrow convergences and
is analogous to the one in Proposition 2.3.2.

Theorem 3.3.1 (Criterion of convergence in τJ). Take measures ν and {νn}n∈N ⊂ P(X). The
following conditions are equivalent:

1. νn
J−→ ν;

2. νn ⇀ ν and J(µ, νn) → J(µ, ν) for all µ ∈ P(X);

3. νn ⇀w ν and J(µ, νn) → J(µ, ν) <∞ for some µ ∈ E(ν).

3.3.1 Class E0

Furthermore, for the class E0 there is also a dual formulation of the transportation convergence
through the narrow convergence of weighted measures, like in the case of the Wasserstein spaces
[cf. Vil09, Theorem 6.9].

Proposition 3.3.2. Take measures ν ∈ E0 and {νn}n∈N ⊂ P(X). Then νn
J−→ ν iff

´

f dνn →
´

f dν for any continuous function f such that there is α > 0 satisfying |f(x)| ≤ α
(

1+ c(x0, x)
)

for any x ∈ X.

Proof. 1. Let
´

f dνn →
´

f dν for any continuous function f such that |f(x)| ≤ α+βc(x0, x).
Then νn ⇀ ν and for any x0 ∈ X

J(δx0 , νn) =

ˆ

c(x0, x) dνn →
ˆ

c(x0, x) dν = J(δx0 , ν).

By Theorem 3.3.1 that implies νn
J−→ ν.

2. Now let νn
J−→ ν. Then νn ⇀ ν and

´

c(x0, x) dνn →
´

c(x0, x) dν. Obviously, it is
enough to consider the case when f is nonnegative and f(x) ≤ 1 + c(x0, x). Consider
functions fh := min{h, f} ∈ Cb(X), h ≥ 0. From the weak convergence of νn it follows
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that
´

fh dνn →
´

fh dν for any h ≥ 0. On the other hand,

0 ≤
ˆ

(f − fh) dνn =

ˆ

(f − h)+ dνn ≤
ˆ

(

1 + c(x0, x)− h
)

+
dνn

=

ˆ

(

c(x0, x)− ch−1(x0, x)
)

dνn

−−−→
n→∞

ˆ

(

c(x0, x)− ch−1(x0, x)
)

dν → 0 as h→ ∞.

Consequently,
´

f dνn →
´

f dν.

Corollary 3.3.3. Let X be a Polish space. Then the space (E0, τJ) is also Polish.

Proof. Consider the following embedding of E0 to M+(X): ν 7→ F (ν) :=
(

1 + c(x0, x)
)

ν. From

Proposition 3.3.2 it follows that νn
J−→ ν iff F (νn)⇀ F (ν). Moreover, the image F (E0) is weakly

closed in M+(X): indeed, if µn := F (νn)⇀ µ, then
ˆ

1

1 + c(x0, x)
dµ = lim

ˆ

1

1 + c(x0, x)
dµn =

ˆ

dνn = 1,

thus ν := 1
1+c(x0,x)

µ ∈ E0. Recall that the space M+(X) endowed with the topology of narrow
convergence is Polish (Proposition 2.1.2) and (E0, τJ) is isomorphic to a closed subspace of it,
consequently, it is also Polish.

As we have seen, the function ν 7→
´

f dν for f ∈
(

1 + c(x0, ·)
)

Cb(X) is continuous w.r.t.
the topology τJ . Sometimes it is possible to quantify this continuity. For example, if c(x, y) =
ρp(x, y) with p ≥ 1, and f is Lipschitz continuous with a constant L, then

∣

∣

´

f dµ−
´

f dν
∣

∣ ≤
LJ1/p(µ, ν). Recall that J1/p itself is a distance (the p-Wasserstein metric when we are talking
about E0 = Pp(X)), thus the function µ 7→

´

f dµ is also L-Lipschitz for this distance. The
next proposition is a simple generalization of the above result which concerns quantifying the
modulus of continuity of this function.

Proposition 3.3.4. Take a function f such that |f(x)−f(y)| ≤ g
(

c(x, y)
)

for all x, y ∈ X with
some concave function g. Then for any µ, ν ∈ P(X) such that f ∈ L1(µ) ∩ L1(ν) it holds that

∣

∣

∣

∣

ˆ

f dµ−
ˆ

f dν

∣

∣

∣

∣

≤ g
(

J(µ, ν)
)

.

Proof. Let γ be an optimal transport plan from µ to ν. Then by Jensen’s inequality
∣

∣

∣

∣

ˆ

f dµ−
ˆ

f dν

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

f(x) dγ −
ˆ

f(y) dγ

∣

∣

∣

∣

≤
ˆ

|f(x)− f(y)| dγ

≤
ˆ

g
(

c(x, y)
)

dγ ≤ g
(

ˆ

c dγ
)

= g
(

J(µ, ν)
)

.

Finally, Theorem 3.3.1 ensures stability of optimal transport plan w.r.t. the transportation
topology (cf. Proposition 2.2.8).

Proposition 3.3.5 (Stability of optimal plans). Let X, Y be Radon spaces and cX , cY be
cost functions satisfying Assumptions 3.1 and 3.2; denote the corresponding Monge–Kantorovich
distances by JX and JY . Let c : X × Y → R+ be a continuous cost function and set

cXY
(

(x, y), (x′, y′)
)

:= cX(x, x
′) + cY (y, y

′) for x, x′ ∈ X, y, y′ ∈ Y.

Take µn
JX−−→ µ ∈ E0(X) and νn

JY−−→ ν ∈ E0(Y ) such that lim inf Jc(µn, νn) < ∞. If γn
is an optimal transport plan from µn to νn w.r.t. c for n ∈ N, then, up to a subsequence,

γn
JXY−−−→ γ ∈ Πo(µ, ν), where JXY = JcXY

.
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Proof. According to Proposition 2.2.8 there is a subsequence γn ⇀ γ (without relabelling),
where γ is an optimal transport plan between µ and ν w.r.t. c. Fix arbitrary x0 ∈ X, y0 ∈ Y .
Then

JXY (δ(x0,y0), γn) =

ˆ

(

cX(x0, x) + cY (y0, y)
)

dγn(x, y)

=

ˆ

cX(x0, x) dµn +
ˆ

cY (y0, y) dνn

→
ˆ

cX(x0, x) dµ+

ˆ

cY (y0, y) dν = JXY (δ(x0,y0), γ) <∞,

hence the claim follows by Theorem 3.3.1.

3.3.2 Topological properties

As we saw in the previous section the transportation distance inherits a lot of properties of
the cost function. Corollary 3.3.3 shows that the Monge–Kantorovich space sometimes also
reflects properties of the underlying space X. Now we are going to prove that under the above
assumptions any class

(

E(µ0), τJ
)

is separable and metrizable.

Lemma 3.3.6. Take an arbitrary measure µ0 ∈ P(X). The equivalence class E(µ0) endowed
with the topology τJ is separable and metrizable.

Proof. 1. Let dw be a metric on P(X) inducing the narrow convergence. Then

dJ(µ, ν) := dw(µ, ν) + |J(µ0, µ)− J(µ0, ν)|

is also a metric and, obviously, µn
J−→ µ ∈ E(µ0) iff dJ(µn, µ) → 0 by Theorem 3.3.1.

2. Let Sµ0 be a countable family of measures of type ν := µ0⌊
(

X \ Bm(x0)
)

+ α
∑n

i=1 δxi
where m,n ∈ N, all xi belong to some countable dense subset of X, and α is a normalizing
constant. Fix a measure µ ∈ E(µ0), ε > 0, and R > 0 such that

ˆ

BR(x0)×BR(x0)
c(x, y) dγ > C(γ)− ε,

where γ is an optimal transport plan from µ0 to µ. Thus C′(γ) := C(fRγ) > C(γ)− ε and
J(µ̃, µ) ≤ C(γ)−C′(γ) < ε. But µ̃ obviously lies in the weak closure of Sµ0 , so there exists

a sequence Sµ0 ∋ νn
J−→ µ̃ and lim J(νn, µ) = J(µ̃, µ) < ε. Consequently, Sµ0 is a dense set

in E(µ0).

We have shown that the pair
(

E(µ0), J
)

possesses almost all the properties of (X, c), except
the essential fact that X is a Radon space, i.e. that any Borel probability measure on it is tight.
To prove that any class E(µ0) endowed with the transportation topology is a Radon space, let
us introduce the following additional assumption about a “c-completeness” of X, which allows
us to describe compact sets w.r.t. τJ .

Assumption 3.3. Let {Kn}n∈N be compact subsets of X and a sequence {rn}n∈N ⊂ R+ con-
verge to 0. Then the set

⋂

n∈N
⋃

x∈Kn
Bc
rn(x) is precompact.

Remark 3.3.7. The above property is an analogue of completeness in terms of c. Actually, one
can show that in the case of (3.1) it holds iff (X, ρ) is complete.

Again, this assumption yields a counterpart in the space of measures.

Lemma 3.3.8. Let {Kn}n∈N be compact in τJ subsets of P(X) and a sequence {rn}n∈N ⊂ R+

converge to 0. Then the set

H :=
⋂

n∈N

⋃

µ∈Kn

B̄J
rn(µ)

is compact in τJ .
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Proof. Take a sequence {νk}k∈N ⊂ H and measures µkn ∈ Kn such that J(µkn, ν
k) ≤ rn for

all n, k ∈ N. Due to the compactness of Kn, using the diagonal extraction procedure one

can find a subsequence such that (without relabelling) µkn
J−−−→

k→∞
µn ∈ Kn for all n. W.l.o.g.

assume rn ≤ 4−n. As µkn −−−⇀
k→∞

µn by Lemma 3.2.3, there are compact sets Kn ⊂ X such that

µkn(X \Kn) ≤ 2−n for all k, n ∈ N. Since

4−n ≥ rn ≥ J(µkn, ν
k) ≥ 2−n

(

µkn(Kn)− νk
(

K2−n

n

))

,

where K2−n

n :=
⋃

x∈Kn
Bc

2−n(x), we obtain that

νk
(

K2−n

n

)

≥ µkn(Kn)− 2−n ≥ 2 · 2−n.

Define HN :=
⋃

n>N K
2−n

n , N ∈ N. By Assumption 3.3 these sets are precompact. Note that

νk(X \HN ) ≤ 2 · 2−N ∀k,N ∈ N,

hence {νk}k∈N is tight, and by Prokhorov’s theorem there is a subsequence such that νk ⇀
ν ∈ P(X) without relabelling. By the lower semicontinuity of the Monge–Kantorovich distance,

J(µn, ν) ≤ rn for all n, thus µn
J−→ ν. In particular, this immediately implies that ν ∈ H, hence

H is closed in τJ . Now take sequences {ni}i∈N, {ki}i∈N such that µkini

J−→ ν. Since

J
(

µkini
, νki

)

≤ rni
→ 0 = J(ν, ν),

Lemma 3.2.9 yields that νki J−→ ν.

Now we are are ready to show that
(

E(µ0), τJ
)

is a Radon space. Actually, we will prove
even stronger result:

(

E(µ0), τJ
)

is a Polish space.

Theorem 3.3.9. For any µ0 ∈ P(X) the class E(µ0) endowed with the transportation topology
τJ is a Polish space.

Proof. Fix a countable dense set S = {µk}k∈N ⊂ E(µ0) and for any n ∈ N define the map
vn : E(µ0) → ℓ1 by

vn(ν) :=
{

2−k (1− nJ(µk, ν))+

}

k∈N
, ν ∈ E(µ0).

Clearly, 0 < ‖vn(ν)‖ ≤ 1. Now we define the following metric (the norms are in ℓ1):

dJ(µ, ν) := dw(µ, ν) +
∑

n∈N
2−n

(

‖vn(µ)− vn(ν)‖+
∥

∥

∥

∥

vn(µ)

‖vn(µ)‖
− vn(ν)

‖vn(ν)‖

∥

∥

∥

∥

)

, µ, ν ∈ E(µ0),

where dw is some metric inducing the narrow convergence. Since J is continuous in τJ and
every vn is bounded by the sequence

{

2−k
}

k∈N, we conclude that vn(νm) −−−−→
m→∞

vn(ν) 6= 0 once

νm
J−→ ν ∈ E(µ0), hence vn(νm)

∥vn(νm)∥ → vn(ν)
∥vn(ν)∥ and dJ(νm, ν) → 0 (recall also that the narrow

convergence is weaker than the transportation one). On the other hand, if dJ(νm, ν) → 0, then

νm ⇀ ν and J(µk, νm) −−−−→
m→∞

J(µk, ν) once J(µk, ν) < 1, thus νm
J−→ ν due to the density of S

in E(µ0) and Theorem 3.3.1. Therefore, dJ induces the same topology τJ .
Now consider a Cauchy sequence {νm}m∈N ⊂ E(µ0) w.r.t. dJ . Since ℓ1 is complete, for any

n ∈ N there is un ∈ ℓ1 such that

vn(νm)

‖vn(νm)‖
→ un as m→ ∞.
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Obviously, ‖un‖ = 1, thus there is kn ∈ N such that un(kn) > 0, hence for some mk ∈ N it holds
that 2−kn (1− nJ(µkn , νm))+ > 0, i.e. J(µkn , νm) <

1
n

, whenever m > mk. Consequently,

νm ∈ BJ
1/n(µkn) ∪

mk
⋃

j=1

BJ
1/n(νj) for all m ∈ N

and Lemma 3.3.8 yields that {νm}m∈N is precompact w.r.t. τJ (and w.r.t. dJ). This immediately
implies the convergence of the sequence. The claim follows.

Remark 3.3.10. According to the above theorem, Assumption 3.3 ensures that X is also Polish
(and hence, automatically, Radon): indeed, the set of Dirac measures is closed in τJ , and

δxn
J−→ δx is equivalent to xn → x.

Finally, Lemmata 3.2.5, 3.2.9, 3.3.8, and Theorem 3.3.9 show that for any µ ∈ P(X) the
pair

(

E(µ), J
)

satisfies the same assumptions as (X, c). This allows us to consider the Monge–
Kantorovich distance on P

(

E(µ)
)

with J as a cost function and apply the results obtained
above, which will be used in the next section to show stability of Fréchet barycenters. Moreover,
iterating this process one can construct a so-called “tower of measures” (see [Ver06]).

3.3.3 Locally compact X

Finally, we consider the case of locally compact X. This allows us to obtain a weak local
compactness of P(X), which will be essential in the next section to prove existence and stability
of Fréchet barycenters.

Assumption 3.4. Any closed c-ball B̄c
r(x) is compact w.r.t. ρw.

If we consider again Example 3.2.2, then this assumption holds once f is strictly increasing
and unbounded, due to the Banach–Alaoglu theorem (in the case of a Banach space X) or
Proposition 2.3.2 (in the case of the Wasserstein space X).

Notice that under this assumption from c(x, y) = 0 iff x = y it follows that c(x, xn) → 0 iff
c(xn, x) → 0 iff xn → x, i.e. the consistency of c. Moreover, it ensures Assumption 3.3.

Lemma 3.3.11. Assumption 3.4 yields Assumption 3.3.

Proof. Consider the set
H :=

⋂

n∈N

⋃

x∈Kn

Bc
rn(x).

from Assumption 3.3. Let {xk}k∈N ⊂ H. Obviously, H is bounded w.r.t. c, thus there is
a subsequence xk →w x (without relabelling). The rest of the proof is similar to the proof
of Lemma 3.3.8. Take ykn ∈ Kn such that c(ykn, xk) < rn for all n, k ∈ N. Again, up to a
subsequence, ykn → yn ∈ Kn as k → ∞. Then c(yn, x) ≤ lim infk→∞ c(ykn, xk) ≤ rn, hence there
are sequences {ni}i∈N, {ki}i∈N such that ykini

→ x and c(ykini
, xki) → 0 = c(x, x). Therefore, by

Assumption 3.1 xki → x.

Lemma 3.3.12. Under Assumption 3.4 any closed J-ball B̄J
r (µ) is compact w.r.t. the ρw-narrow

convergence.

Proof. Fix ε > 0 and a ball B̄c
m(x0) such that µ

(

B̄c
m(x0)) > 1− ε. Consider M := A+Bm+ Br

ε

and any ν ∈ B̄J
r (µ). Then

r ≥ J(µ, ν) ≥
ˆ

B̄c
m(x0)×

(

X\B̄c
M

(x0)
)
c(x, y) dγ(x, y)

≥
ˆ

B̄c
m(x0)×

(

X\B̄c
M

(x0)
)

(

c(x0, y)−Bc(x0, x)−A

B

)

dγ(x, y)

≥ M −Bm−A

B
γ
(

B̄c
m(x0)×

(

X \ B̄c
M (x0)

))

≥ r

ε

[

µ(B̄c
m(x0))− ν(B̄c

M (x0))
]

,

where γ ∈ Πo(µ, ν). Hence, ν(B̄c
M (x0)) ≥ µ(B̄c

m(x0)) − ε > 1 − 2ε. Therefore, B̄J
r (µ) is tight

w.r.t. ρw. The claim follows by Prokhorov’s theorem and Lemma 2.2.4.
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3.4 Case of Rd

Now consider the locally compact Polish space X = Rd with the Euclidean metric ρ(x, y) =
ρw(x, y) = ‖x− y‖. Take c(x, y) := g(x− y), where g is a real-valued convex function such that
g(0) = 0 and g(x) > 0 whenever x 6= 0 (cf. Section 1.3 in [San15]). Obviously, this cost function
is continuous and consistent, i.e. c(x, xn) → 0 iff c(xn, x) → 0 iff xn → x. Moreover, the space
and the cost function satisfy Assumption 3.4.

First, we assume that the following inequality holds:

B := sup
x,y

g(x+ y)

g(x) + g(y)
<∞. (3.4)

Notice that B ≥ 1 due to the convexity of g.

Proposition 3.4.1. Let inequality (3.4) hold. Then there exists q ≥ 1 such that g1/q satisfies
the triangle inequality:

g1/q(x+ y) ≤ g1/q(x) + g1/q(y) ∀x, y ∈ Rd.

Proof. Consider points x, y ∈ Rd such that g(y) = ξg(x), ξ ≤ 1. Due to the convexity of g one
can obtain that for any n ≥ 1 it holds

g(x+ y) ≤ n− 1

n
g(x) +

1

n
g(x+ ny) ≤ g(x) +

B

n

(

g(x) + g(ny)
)

.

Consider n = 2k; it follows from inequality 3.4 that g(2ky) ≤ (2B)kg(y) and therefore

g(x+ y) ≤ g(x) + 2−kBg(x) +Bk+1g(y) = g(x)
(

1 +B(2−k + ξBk)
)

.

Take k := ⌊− ln ξ
ln 2B ⌋; then

2−k + ξBk ≤ 2
ln ξ

ln 2+ln B
+1 + ξB

− ln ξ
ln 2+ln B = 3ξ1/q0 ,

where q0 := ln 2B
ln 2 ≥ 1. Thus g(x+ y) ≤ g(x)

(

1 + 3Bξ1/q0
)

. Since ξ ≤ 1 one can obtain that for
q := max{3B, q0} it holds

g1/q(x+ y) ≤ g1/q(x)
(

1 + 3Bξ1/q0
)1/q ≤ g1/q(x)

(

1 +
3B

q
ξ1/q0

)

≤ g1/q(x)(1 + ξ1/q) = g1/q(x) + g1/q(y)

for all x, y ∈ Rd.

Corollary 3.4.2. For all µ, ν, λ ∈ P(Rd)

J1/q(µ, ν) ≤ J1/q(µ, λ) + J1/q(λ, ν).

Proof. Let us take measures µ, ν, λ ∈ P(Rd) and optimal transport plans γ1 ∈ Π(µ, λ), γ2 ∈
Π(λ, ν). Similarly to the proof of Lemma 3.2.5 consider a measure σ ∈ Π(µ, λ, ν) such that
π
1,2
# σ = γ1, π

2,3
# σ = γ2. Applying Proposition 3.4.1 and the Minkowski inequality one can

obtain that

J1/q(µ, ν) ≤ C1/q(π1,3# σ) =

(
ˆ

(

g1/q(x− z)
)q dσ

)1/q

≤
(
ˆ

(

g1/q(x− y) + g1/q(y − z)
)q dσ

)1/q

≤
(
ˆ

g(x− y) dσ
)1/q

+

(
ˆ

g(y − z) dσ
)1/q

= C1/q(γ1) + C1/q(γ2) = J1/q(µ, λ) + J1/q(λ, ν).
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Corollary 3.4.3. The function ρJ(µ, ν) := max
{

J1/q(µ, ν), J1/q(ν, µ)
}

∈ [0,∞] is a metric on
P(Rd) (which may take the value +∞).

As we have seen, under assumption (3.4)
(

P(X), J
)

is similar to a q-Wasserstein space for
some exponent q.

Now consider Assumption 3.2 in the Euclidean case. Obviously, one can rewrite it as

g(x+ y) ≤ A+B
(

g(±x) + g(±y)
)

.

Theorem 3.4.4. Under Assumption 3.2 for any ε > 0 there exist qε ≥ 1, Bε > 0 such that for
all x, y ∈ Rd it holds that

(

g(±x± y) + ε
)1/qε ≤

(

g(x) + ε
)1/qε +

(

g(y) + ε
)1/qε

,

g(x± y) ≤ ε+ (1 + ε)g(x) +Bεg(y).

Proof. Fix ε > 0. Consider r > 0 such that g(x) ≤ ε once ‖x‖ ≤ r. Since g(x) = 0 iff x = 0, one
has a(t) := min∥x∥≥t g(x) > 0 for all t > 0. If ‖x+ y‖ > r, then ‖x‖ > r/2 or ‖y‖ > r/2, and

g(x+ y) ≤ A+B
(

g(x) + g(y)
)

≤ A

a(r/2)

(

g(x) + g(y)
)

+B
(

g(x) + g(y)
)

=

(

A

a(r/2)
+B

)

(

g(x) + g(y)
)

.

Consequently, for Dr :=
A

a(r/2) +B ≥ 1 it holds that

g(±x± y) ≤ max
{

ε,Dr

(

g(x) + g(y)
)}

for all x, y ∈ Rd. In particular,

g(±x± y) + ε ≤ Dr

(

g(x) + ε+ g(y) + ε
)

and one can prove the first inequality in the same way as in Proposition 3.4.1.
In order to prove the second inequality, let us choose k ∈ N, r > 0 such that

2−kB < ε, 2−kA <
ε

2
, 2−kBg(x) <

ε

2
as ‖x‖ ≤ 2kr.

Then similarly to the proof of Proposition 3.4.1 one can show that

g(x+ y) ≤ (1 + 2−kB)g(x) + 2−kBg(2ky) + 2−kA

≤ (1 + ε)g(x) +
ε

2
+ max

{ε

2
, Dk

rBg(y)
}

≤ ε+ (1 + ε)g(x) +Bεg(y),

where Bε := Dk
rB.

Corollary 3.4.5. For any ε > 0 and measures µ, ν, λ ∈ P(Rd) the following inequalities hold:
(

J(µ, ν) + ε
)1/qε ≤

(

J(µ, λ) + ε
)1/qε +

(

J(λ, ν) + ε
)1/qε

,

J(µ, ν) ≤ ε+ (1 + ε)J(µ, λ) +BεJ(λ, ν),

J(µ, ν) ≤ ε+ (1 + ε)J(λ, ν) +BεJ(µ, λ).

The proof of Corollary 3.4.5 is completely similar to the proofs of Lemma 3.2.5 and Corol-
lary 3.4.2.

3.5 Fréchet barycenters

As we have obtained in Section 3.3, the space of probability measures endowed with the trans-
portation topology has some nice topological properties. In this section the barycenter of mea-
sures will be defined, i.e. some kind of averaging w.r.t. the transportation structure of the space.
It generalizes the construction from [AC11], where the 2-Wasserstein space is considered. More-
over, we consider a more general setting of penalized barycenters, which will be used later in
Chapter 5.

In the section the Fréchet barycenter will be shown to be “upper semicontinuous” in some
sense and statistically consistent. Analogous results for measures on R and a convex cost function
were proven in [KS15].
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3.5.1 Generalized averaging in P(X)

Hereafter we assume that Assumptions 3.1, 3.2, and 3.4 are fulfilled. Let the space P(X) be
endowed with the Borel σ-algebra B(τw) induced by the topology of narrow convergence τw. Note
that it is weaker than B(τJ), induced by the transportation topology, but they are equivalent
for defining an averaging in P(X).

Definition 3.2. Take a functional G : P(X) → R ∪ {+∞} (penalty) and a distribution P ∈
P
(

P(X)
)

. A G-regularized Fréchet barycenter barG(P ) (or just a Fréchet barycenter bar(P ) if
G ≡ const) w.r.t. the transportation functional J is any solution of the following problem:

VG(ν;P ) :=
ˆ

J(µ, ν) dP (µ) +G(ν) → min
ν∈P(X)

. (3.5)

Respectively, BarG(P ) is the set of all G-regularized Fréchet barycenters of P .

Clearly, for barG(P ) to exist it is necessary (but may be not sufficient) that P
(

E(µ0)
)

= 1
for some measure µ0. Notice that E(µ0) and every ball BJ

r (µ) belong to B(τw) due to the
lower semicontinuity of J . Thus, the restriction of B(τw) to E(µ0) coincides with B(τJ) since
(

E(µ0), τJ
)

has a countable basis of J-balls. Therefore, it is enough to consider the space P(X)
endowed with B(τw) instead of the stronger σ-algebra B(τJ).

Assumptions 3.1–3.4 ensure that a G-regularized Fréchet barycenter exists under suitable
assumptions on the penalty G: a bound on the negative part and a lower-semicontinuity.

Proposition 3.5.1. Let G : E(µ0) → R∪{+∞} be such that G ≥ α for some functional α(µ) =
o(J(µ0, µ)) as J(µ0, µ) → ∞; G is lower semicontinuous w.r.t. the ρw-narrow convergence
on any ball B̄J

r (µ0); and infν∈P(X)G(ν) < ∞. Let P be a probability distribution on E(µ0)
such that

´

J(µ0, µ) dP (µ) < ∞. Then there exists a G-regularized Fréchet barycenter of P .
Moreover, any minimizing sequence for VG(·;P ) is precompact in τJ , and every its partial limit
is a G-regularized barycenter of P . In particular, BarG(P ) is compact.

Proof. The weak triangle inequality yields that
ˆ

J(µ, ν) dP (µ) ≥
ˆ

J(µ0, ν)−BJ(µ0, µ)−A

B
dP (µ)

=
J(µ0, ν)−A

B
− 1

B

ˆ

J(µ0, µ) dP (µ) → ∞ as J(µ0, ν) → ∞.

Therefore, VG(ν;P ) ≥ α(ν) +
´

J(µ, ν) dP (µ) → ∞ once J(µ0, ν) → ∞, hence any minimizing
sequence {νn}n∈N for VG(·;P ) is bounded in J . By Lemma 3.3.12 there is a subsequence such
that νn ⇀w ν (without relabelling). By Fatou’s lemma and the lower semicontinuity of J and
G one has

VG(ν;P ) :=
ˆ

J(µ, ν) dP (µ) +G(ν) ≤
ˆ

lim inf J(µ, νn) dP (µ) + lim infG(νn)

≤ limVG(νn;P ) = inf
ν∈P(X)

VG(ν;P ),

i.e. ν is a barycenter of P . Moreover, J(µ, ν) = lim inf J(µ, νn) for P -a.e. µ, so by Theorem 3.3.1

there is a subsequence νnk

J−→ ν∗.

As an example of a narrowly lower semicontinuous regularizer one can consider a charac-
teristic function of some ρw-weakly closed subset G ⊂ P(X), or an entropy-type functional:

G(ν) :=
´

g
(

dν
dν0

)

dν0 once ν ≪ ν0, where g is a convex function. In the last case G may not
be bounded from below by a constant or l.s.c. w.r.t. the ρw-narrow convergence on the whole
space, but still satisfy the assumptions of the above proposition. See Chapter 5 and [BCP19] for
more details on entropic-regularized barycenters in the 2-Wasserstein space over Rd. Note that
in both cases G is convex. Due to the convexity of J by Lemma 2.2.1, BarG(P ) is a convex set.
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Moreover, if X = Rd and c(x, y) = g(x−y), where g is strictly convex, then J(µ, ·) is also strictly
convex, whenever µ is absolutely continuous w.r.t. the Lebesgue measure L. It follows from the
fact that in this case for any ν ∼ µ there exists a unique optimal transport map, see [San15,
Section 1.3]. Therefore, there exists a unique barycenter of P , whenever P

(

{µ : µ ≪ L}
)

> 0.
However, even without any assumption on measures one can take a strictly convex penalty
and ensure the uniqueness of the barycenter — e.g. this is the case for entropic-regularized
barycenters which will be considered in Chapter 5.

3.5.2 Stability of barycenters

Fix some µ0 ∈ P(X) and consider distributions on E = E(µ0). Let dw be a metric on E inducing
the ρw-narrow convergence. One can define the Monge–Kantorovich distance with J as a cost
function:

J (P,Q) := inf
Γ∈Π(P,Q)

ˆ

J(µ, ν) dΓ (µ, ν), P,Q ∈ P(E).

As E equipped with the topology τJ is a Polish space by Theorem 3.3.9, and J as a cost function
satisfies Assumptions 3.1–3.4, all the results from Section 3.3 hold for P(E) endowed with J
and the topology of dw-narrow convergence.

Now let us show that convergence of distributions with respect to J implies the transporta-
tion convergence of its barycenters. This result is similar to Theorem 2 from [LL17] in case of
p-Wasserstein spaces. Also, we will obtain the law of large numbers for empirical barycenters
proven in [BK12, Theorem 6.1] for the 2-Wasserstein space and measures with compact support.

Theorem 3.5.2. Let G,Gn : E → R, n ∈ N, satisfy assumptions of Proposition 3.5.1 and be
bounded from below by the same functional α. Assume that for any J-bounded sequence µn ⇀w µ

it holds that G(µ) ≤ lim infGn(µn), and for any µ ∈ E there is a sequence µn
J−→ µ such that

G(µ) = limGn(µn). Let a sequence {Pn}n∈N ⊂ P(E) be such that Pn
J−→ P for some distribution

P with
´

J(µ0, µ) dP (µ) < ∞. Then any sequence of their barycenters νn ∈ BarGn(Pn) is
precompact in τJ , and every its partial limit is a G-regularized barycenter of P . In particular, if

ν∗ := barG(P ) is unique, then νn
J−→ ν∗.

Remark 3.5.3. One can rewrite the statement of the theorem in the case of fixed Gn = G as
follows: for any ε > 0 there exists δ > 0 such that

BarG(P ′) ⊂ Uε (BarG(P )) as J (P, P ′) < δ,

where Uε (BarG(P )) :=
⋃

µ∈BarG(P )B
J
ε (µ) is an open neighbourhood of BarG(P ). One can

say that the set-valued map P 7→ BarG(P ) is upper-semicontinuous w.r.t. a Hausdorff-like
convergence.

Notice also that in general case there does not exist a continuous function P 7→ barG(P ),
even for G ≡ const. However, if G is strictly convex, then P 7→ barG(P ) is actually continuous
w.r.t. τJ .

Remark 3.5.4. The assumption on Gn and G means that G is the Γ-upper limit of Gn w.r.t. τJ ,
and the Γ-lower limit w.r.t. dw on every ball BJ

r (µ) (see [San15, p. 169] or [Dal12]).

Proof. Let ν∗ be a G-regularized barycenter of P . Take a sequence µn
J−→ µ such that G(ν∗) =

limGn(µn). Then

VG(ν∗;P ) = G(ν∗) + J (P, δν∗) = limGn(µn) + limJ (P, δµn)

= limVGn(µn;Pn) ≥ lim supVGn(νn;Pn),

but for any ν ∈ E

VGn(ν;Pn) ≥ Gn(ν) +
J(µ0, ν)−A

B
− 1

B

ˆ

J(µ0, µ) dPn(µ)

≥ α(ν) +
J(µ0, ν)−A

B
− 1

B
J (δµ0 , Pn) → ∞ as J(µ0, ν) → ∞.
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Therefore, J(µ0, νn) are bounded, hence by Lemma 3.3.12 there is a subsequence such that
νn ⇀w ν (without relabelling), which is equivalent to the dw-narrow convergence δνn ⇀w δν .
G(ν) ≤ lim infGn(νn) and J (P, δν) ≤ lim infJ (Pn, δνn), thus

VG(ν;P ) ≤ lim infVGn(νn;Pn) ≤ lim infVGn(µn;Pn) = VG(ν∗;P ),

i.e. ν ∈ BarG(P ). Moreover, this yields J (P, δν) = lim infJ (Pn, δνn), thus, up to a subsequence,

δνn
J−→ δν by Theorem 3.3.1. The claim follows.

In the same way as Corollary 2.2.9 we can obtain the following result.

Corollary 3.5.5. Let G satisfy the assumptions of Proposition 3.5.1. Then there exists a Borel
map ν : E(δµ0) : E(µ0) such that ν(P ) ∈ BarG(P ) for all P .

Corollary 3.5.6 (Upper semicontinuity of empirical barycenters). Take sequences of measures

{µni }n∈N ⊂ E and weights {λni }n∈N ⊂ [0,+∞) such that µni
J−→ µi, λ

n
i → λi for 1 ≤ i ≤ m,

and
∑m

i=1 λ
n
i = 1 for all n ∈ N. Let Pn :=

∑m
i=1 λ

n
i δµni and G satisfy the assumptions of

Proposition 3.5.1. Then any sequence of Fréchet barycenters {barG(Pn)}n∈N is precompact and
every its partial limit is a G-regularized barycenter of P :=

∑m
i=1 λiδµi.

Proof. Note that J(µni , µj) → J(µi, µj) for all 1 ≤ i, j ≤ m and maxi,j J(µi, µj) <∞, hence

J (Pn, P ) ≤
m
∑

i=1

min{λni , λi}J(µni , µi) + max
i,j

J(µni , µj)
m
∑

i=1

|λni − λi| → 0.

This shows that the conditions of Theorem 3.5.2 hold.

Corollary 3.5.7 (Law of large numbers). Let G and P satisfy the assumptions of Proposi-
tion 3.5.1, and {µn}n∈N ⊂ E be a sequence of i.i.d. random measures drawn from P . Define
the empirical measures Pn := 1

n

∑n
i=1 δµi and let νn ∈ BarG(Pn)1≤i≤n be a measurable choice of

(random) empirical barycenters. Then the sequence {νn}n∈N is precompact a.s. and every its
partial limit is a barycenter of P .

Proof. By the strong law of large numbers

J (Pn, δµ0) =
1

n

∑

i

J(µi, µ0) → E J(µ, µ0) = J (P, δµ0) <∞ a.s.,

and Pn ⇀ P a.s. due to Proposition 2.1.2. Then by Theorem 3.3.1 Pn
J−→ P almost surely, i.e.

the conditions of Theorem 3.5.2 hold.

Notice that all the statements in this section also hold for the space P(X) instead of
P
(

P(X)
)

, because one can identify a point x ∈ X with the Dirac measure δx ∈ P(X) so
that J(δx, δy) = c(x, y) for all x, y ∈ X, and the set of Dirac measures is closed w.r.t. to the
ρw-narrow convergence.



Chapter 4

Bures–Wasserstein barycenters

4.1 Introduction

In this chapter we consider 2-Wasserstein barycenters of measures with a special structure (e.g.
the Gaussians), and also its generalization to a complex space. Again, we are interested in
the stochastic setting, consistency and other related properties of barycenters. As was shown
in the previous chapter, a law of large numbers for empirical Wasserstein barycenters of i.i.d.
random measures holds in a quite general setting. Having this LLN in mind, it is natural to
look for error estimates and asymptotic normality of the error between population Wasserstein
barycenters and their empirical counterpart. But establishing a central limit theorem (CLT)
for Wasserstein barycenters and, more generally, for Fréchet means over a nonnegatively curved
metric space seems to be a delicate task (see [ALP19] for results on concentration of Fréchet
mean).

However, sometimes we can obtain more information on Wasserstein barycenters using a
special structure of considered measures. Recall that P2(R

d) is the set of Borel probability
measures on Rd having a finite second moment, and equipped with the 2-Wasserstein metric W2

given by (2.2) it forms the 2-Wasserstein space over Rd. In most cases there is no closed formula
for W2(µ, ν). Two important exceptions are the case of d = 1 and of Gaussian measures. In the
first case the Wasserstein barycenter of measures is given by averaging their inverse cumulative
functions [AC11]. In the second case, if µ = N (a,Q), ν = N (b, S), then (see [DL82])

W 2
2 (µ, ν) = ‖a− b‖2 + trQ+ trS − 2 tr

(

Q1/2SQ1/2
)1/2

. (4.1)

Moreover, if P ∈ P
(

P2(R
d)
)

is concentrated on Gaussian measures, then (at least one of) its
Wasserstein barycenter is also Gaussian [AC11]: it follows from a simple fact that the map
µ 7→ N (EµX,VarµX) is non-expanding in W2, i.e. once EµX = a, VarµX = Q, and Eν X = b,
Varν X = S, then

W2(µ, ν) ≥W2

(

N (a,Q),N (b, S)
)

.

Now we would like to point out that, actually, similar to (4.1) expressions appear not only
in the context of Gaussian measures.

Scale-location families. We first present the concept of a scale-location family of measures
on Rd. Let µ0 ∈ P2(R

d). The scale-location family induced by µ0 is defined as

SL(µ0) def
=
{

(p+ Px)#µ : P ∈ Sym+(d), p ∈ Rd
}

,

where Sym+(d) denotes the set of positive semi-definite symmetric matrices of size d × d. If
µ, ν ∈ SL(µ0) with EµX = a, VarµX = Q, and Eν X = b, Varν X = S, then W2(µ, ν) is given
by the same formula (4.1) [Álv+18; MC18]. For a distribution on a general scale-location family
it is not true that there always exists a barycenter from this family. However, it still holds once

37
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the covariance matrix of the template measure µ0 is nondegenerate, by the same arguments as
in the Gaussian case.

Scale-location families play an important role in modern data analysis and appear in many
practical applications due to being user-friendly in terms of theoretical analysis and, at the
same time, possessing high modeling power. For example, it is widely used in medical imaging
[Was+10], modeling of molecular dynamic [Gon+17], clustering procedures [Del+17], climate
modeling [MF17], and embedding of complex objects in low dimensional spaces [MC18].

Connection to quantum mechanics. The original Bures metric appears in quantum me-
chanics in relation to the fidelity measure between two quantum states and is used for the
measurement of quantum entanglement [MM08; DŁH11]. A density matrix ρ is an Hermitian
(i.e. complex self-adjoint: ρ̄ = ρT) positive semi-definite operator with unit trace: ρ ∈ H+(d),
tr ρ = 1. It is used to describe a statistical state of a quantum system. For an introduction
to the density operators theory one may look [Fan57]. Let ρ and σ be two density matrices.

Fidelity of these states, defined as F(ρ, σ) =
[

tr
(

ρ1/2σρ1/2
)1/2

]2
, quantifies a similarity between

ρ and σ, see [Joz94]. It corresponds to the Bures distance:

d2B(ρ, σ) := 2
(

1−F1/2(ρ, σ)
)

= 2 tr ρ+ 2σ − 2 tr
(

ρ1/2σρ1/2
)1/2

.

Notice that it has the same form (4.1), but now we are working with complex matrices instead
of real ones appearing in the classic OT problem.

Given a random ensemble of density matrices, one can recovery its mean using averaging
in the Euclidean sense. However, the Fréchet mean suggests an alternative way to define the
barycenter in terms of the Bures distance. Given a probability distribution P on H+(d), its
population barycenter belonging the class of all d × d-dimensional density operators is defined
as

ρ∗ = argmin
ρ∈H+(d):tr ρ=1

ˆ

H+(d)
d2B(σ, ρ) dP (σ).

It can be easily shown, that neglecting the condition tr ρ = 1, we end up with the global

barycenter, which is a solution of the fixed point equation ρ =
´

H+(d)

(

ρ1/2σρ1/2
)1/2

dP (σ).
However, this is a contraction mapping, thus tr ρ∗ can be smaller than 1, and then ρ∗ is not a
density operator. In other words, the condition trσ = 1 is needed to ensure that a barycenter
also belongs to the class of density operators.

4.1.1 Bures–Wasserstein barycenters

Taking into account the considered above examples, we suggest to endow the space of positive
semi-definite Hermitian matrices H+(d) with the Bures–Wasserstein distance dBW , originally
introduced in [BJL18]. For a pair of matrices Q,S ∈ H+(d) it is defined as

d2BW (Q,S) := trQ+ trS − 2 tr
(

Q1/2SQ1/2
)1/2

. (4.2)

In particular, if Q and S are real matrices, then dBW coincides with the 2-Wasserstein metric
between centered measures from some scale-location family with covariance matrices Q and S;
and if trQ = trS = 1, then it is the Bures distance between Q and S.

As in the previous chapter, we focus on the following statistical setting. Let P be a probability
distribution on H+(d). Two important characteristics of P are Fréchet mean and variance. While
the former is a “typical” representative of a data set in hand, the latter appears in the analysis
of data variability (see, e.g., [DLL15]). First, we define

V(Q) :=

ˆ

H+(d)
d2BW (Q,S) dP (S), Q ∈ H+(d).
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A Fréchet mean of P , called here a Bures–Wasserstein barycenter, is a minimizer of V(Q):

Q∗ := argmin
Q∈H+(d)

V(Q).

However, as noted for density matrices, in some cases one might be interested in a minimizer
belonging to an affine sub-space A ⊂ H(d):

Q∗ := argmin
Q∈H+(d)∩A

V(Q). (4.3)

Without loss of generality, we further address this problem. Respectively, the Fréchet variance
of P is

V∗ := inf
Q∈H+(d)∩A

V(Q) = V(Q∗).

Given an i.i.d. sample of matrices S1, . . . , Sn ∼ P , we construct an empirical version of V(Q):

Vn(Q) :=
1

n

n
∑

i=1

d2BW (Q,Si), Q ∈ H+(d).

Respectively, an empirical Bures–Wasserstein barycenter is

Qn := argmin
Q∈H+(d)∩A

Vn(Q). (4.4)

and the empirical Fréchet variance is

Vn := inf
Q∈H+(d)∩A

Vn(Q) = Vn(Qn).

In this chapter we study the convergence of Qn to Q∗ and Vn to V∗, in particular, a central
limit theorem, and investigate their nonasymptotic concentration properties. Under mild as-
sumptions on the distribution P we show the asymptotic normality of the empirical barycenter:

√
n (Qn −Q∗)

d−→ N (0,Ξ) ,

where Ξ is a covariance operator on H(d); and of the variance Vn:

√
n (Vn − V∗)

d−→ N
(

0,Var d2BW (Q∗, S)
)

.

The technique of the proof of the CLT is based on the delta-method, and is also suitable for
study of the concentration properties of Qn and Vn. Namely, assuming the distribution P to be
sub-Gaussian we obtain that with high probability

‖Q−1/2
∗ QnQ

−1/2
∗ − I‖F .

1√
n
, dBW (Qn, Q∗) .

1√
n
, and |Vn − V∗| .

1√
n
.

CLT and asymptotic normality of M-estimators. One of possible approaches to obtain
the central limit theorem is to look at a more general result concerning the asymptotic normality
of M-estimators. To make the text self-contained, we briefly recall the subject following Sec-
tion 5.4 in [Van06]. Under the setting (4.4), d2BW (Q,S) might be considered as a loss function
parametrized by elements of the affine subspace, Q ∈ A ∩ H+(d). Thus, to prove the CLT for
an empirical barycenter it is enough to validate the following conditions.

(C1) There exists a function ψQ : H+(d) → H(d) from L2(P ), such that

lim
Q→Q∗

∣

∣d2BW (Q,S)− d2BW (Q∗, S)− 〈ψQ∗
(S), Q−Q∗〉

∣

∣

‖Q−Q∗‖
= 0.
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(C2) As Q→ Q∗, it holds that

ˆ

(

d2BW (Q,S)− d2BW (Q∗, S)
)

dP (S) =
1

2
〈Q−Q∗,V (Q−Q∗)〉+ o(‖Q−Q∗‖),

where V is some positive definite operator.

(C3) Let Q 6= Q∗, and define gQ(S)
def
=

d2BW (Q,S)−d2BW (Q∗,S)

∥Q−Q∗∥ . Suppose that for some ε > 0, the

class {gQ : Q ∈ H+(d), ‖Q−Q∗‖ ≤ ε} has an envelope from L2(P ) and that it is a Donsker
class.

Lemma 4.2.11 presents differentiability of the Bures–Wasserstein distance and provides a
quadratic approximation for d2BW (Q,S), what ensures Conditions (C1) and (C2). However, the
validation of Condition (C3) is much more subtle. On the other hand, the direct proof of the
CLT introduced in the present chapter is also suitable for the proof of the concentration results.

The chapter is organised as follows. Section 4.2 concerns properties of the Bures–Wasserstein
distance dBW , optimal transport maps TSQ (which are linear in the considered case), and their
differentials. In Section 4.3 we impose assumptions on a distribution P , prove existence and
uniqueness of its barycenter, and characterize it in terms of optimal maps. Section 4.4 is devoted
to one of the main results of this chapter: central limit theorems for barycenters and Fréchet
variance. Further, in Section 4.5 we present non-asymptotic concentration bounds on Qn and
Vn under assumption of sub-exponential distribution P . On contrary, Section 4.6 deals with an
example of a slow convergence rate of 2-Wasserstein barycenters when the scale-location family
is degenerated. The appendix gathers some auxiliary results on concentration of random vectors
and matrices.

4.2 Properties of Bures–Wasserstein distance and OT maps

To make the presentation more transparent, we introduce a list of some used notations.

A,B Matrices or vectors
A,B Operators
(�)M Restriction of a quadratic form to a subspace M

A 4 B B −A is nonnegative definite
A ≺ B B −A is positive definite
λmax(�), λmin(�) Largest and smallest eigenvalue of an operator or a matrix
κ(�) = ‖�‖ ·

∥

∥�−1
∥

∥ Condition number of an operator or a matrix
‖�‖ Operator norm
‖�‖F Frobenius norm
‖�‖1 1-Schatten (nuclear) norm
‖�‖ψp

ψp Orlicz norm
〈�,�〉 Inner product associated to Frobenius norm
⊗ Tensor product
L(X) Distribution of a r.v. X
oP (�) little o in probability
OP (�) big O in probability

Following [BJL18], we continue to investigate properties of dBW (Q,S). Further we present
an alternative analytical expression for the distance. This result is well-known for the case of
real-valued symmetric matrices Q,S ∈ Sym+(d), see e.g. [OP82], although in [DL82] it is proven
for Hermitian matrices. We provide a short proof here for the sake of completeness.

Proposition 4.2.1. Let Q,S ∈ H+(d) and Q ≻ 0. Then (4.2) can be rewritten as

d2BW (Q,S) = min
{

tr (T − I)Q (T − I) : T ∈ Cd×d, TQT ∗ = S
}

,
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and the minimum is attained at the optimal map

TSQ = S1/2
(

S1/2QS1/2
)−1/2

S1/2 = Q−1/2
(

Q1/2SQ1/2
)1/2

Q−1/2. (4.5)

Here by
(

S1/2QS1/2
)−1/2

we denote the pseudo-inverse matrix
(

(

S1/2QS1/2
)1/2

)+
.

Remark 4.2.2. Note that being restricted to the sub-space Sym++(d), T
S
Q coincides with the

(matrix of the) optimal transport map between two centered normal distributions N (0, Q) and
N (0, S).

Proof. First, we prove that optimal T is self-adjoint. Indeed, assume the opposite, then

Q1/2TQT ∗Q1/2 =
(

Q1/2TQ1/2
)(

Q1/2TQ1/2
)∗

= Q1/2SQ1/2

and thus trQ1/2TQ1/2 < tr
(

Q1/2SQ1/2
)1/2

. Therefore

tr(T − I)Q(T ∗ − I) = trS + trQ− 2 trTQ = trS + trQ− 2 trQ1/2TQ1/2

> trS + trQ− 2 tr
(

Q1/2SQ1/2
)1/2

= d2BW (Q,S).

If T is Hermitian but not positive semi-definite, then

Q1/2TQ1/2 4
(

Q1/2SQ1/2
)1/2

, Q1/2TQ1/2 6=
(

Q1/2SQ1/2
)1/2

,

hence again trQ1/2TQ1/2 < tr
(

Q1/2SQ1/2
)1/2

.
Finally, if T ∈ H+(d), then it is straightforward to check that T = TSQ given by (4.5) and

tr(T − I)Q(T ∗ − I) = trS + trQ− 2 tr
(

Q1/2SQ1/2
)1/2

= d2BW (Q,S).

4.2.1 Properties of T S
Q

The proof of the central limit theorem mainly relies on the differentiability of the map (4.5).
Lemma 4.2.4 shows that TSQ can be linearised in the vicinity of Q:

TSQ+X = TSQ + dT S
Q(X) + o

(

‖X‖
)

,

where dT S
Q : H(d) → H(d) is a self-adjoint negative-definite operator and ‖X‖ stands for the

operator norm of X. Properties of dT S
Q are investigated in Lemma 4.2.5. Let us note that the

differentiability of an optimal transport map TSQ was established several times in different works,
e.g. [AC17] or [Lav19b, Section 7.2]. In particular, in [AC17] it was used to prove the CLT in
case of discrete distribution P . However, in this work we provide a refined analysis of dT S

Q what
allows us to obtain the CLT in a much more general setting.

Let us introduce some notation: if G(A) is a functional on matrices, then we denote its
differential as dAG.

Lemma 4.2.3. Map Q 7→ g(Q) = Q1/2 is differentiable on H++(d), and its differential is given
by

dQg(X) = U∗
(

(UXU∗)ij√
qi +

√
qj

)d

i,j=1

U, X ∈ H(d),

where Q = U∗ diag(q)U is the eigenvalue decomposition.
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Proof. First, let us consider the map P 7→ f(P ) := P 2. It is smooth and its differential

dP f(X) = PX +XP, X ∈ H(d)

is nondegenerate:
〈dP f(X), X〉 = 2 trXPX > 0, X 6= 0,

whenever P ∈ H++(d). From now on 〈·, ·〉 denotes a scalar product associated to Frobenius
norm.

Now applying the inverse function theorem we obtain that the inverse map g := f−1 is also
smooth and its differential enjoys the following equation

X =
(

dP f |P=Q1/2

)

(dQg(X)) = Q1/2dQg(X) + dQg(X)Q1/2,

thus
UXU∗ = (diag(q))1/2UdQg(X)U∗ + UdQg(X)U∗(diag(q))1/2,

(UXU∗)ij = (
√
qi +

√
qj)(UdQg(X)U∗)ij , 1 ≤ i, j ≤ d,

and

dQg(X) = U∗
(

(UXU∗)ij√
qi +

√
qj

)d

i,j=1

U.

Lemma 4.2.4 (Fréchet-differentiability of the map TSQ). For any S ∈ H+(d) the map Q 7→ TSQ
can be linearised in the vicinity of Q ∈ H++(d) as

TSQ+X = TSQ + dT S
Q (X) + o (‖X‖) , as X → 0,

where

dT S
Q(X)

def
= −S1/2U∗Λ−1/2δΛ−1/2US1/2, X ∈ H(d), (4.6)

U∗ΛU is an eigenvalue decomposition of S1/2QS1/2

U∗ΛU = S1/2QS1/2, U∗U = UU∗ = I, Λ = diag
(

λ1, . . . , λrank(S), 0, . . . , 0
)

,

Λ−1/2 =
(

Λ1/2
)+

= diag(λ−1/2
1 , . . . , λ

−1/2
rank(S), 0, . . . , 0),

δ = (δij)
d
i,j=1, δij =







∆ij√
λi+

√
λj
, i, j ≤ rank(S)

0, otherwise
, ∆ = US1/2XS1/2U∗.

Proof. The proof mainly relies on the differentiation of the pseudo-inverse term
(

S1/2QS1/2
)−1/2,

as long as

dT S
Q(X) = S1/2dQ

(

S1/2QS1/2
)−1/2

(X)S1/2.

Obviously, we can consider only the restriction to range(S) and therefore assume w.l.o.g. S ≻
0. As

(

S1/2(Q+X)S1/2
)−1/2

= U∗ (Λ+∆)−1/2 U , by Lemma 4.2.3 and von Neumann series
expansion we obtain for infinitesimal X ∈ H(d) and corresponding ∆ that

(Λ+∆)−1/2 =
(

Λ1/2 + δ + o(‖∆‖)
)−1

=
(

Λ1/4
(

I + Λ−1/4δΛ−1/4 + o(‖∆‖)
)

Λ1/4
)−1

= Λ−1/4
(

I − Λ−1/4δΛ−1/4 + o(‖∆‖)
)

Λ−1/4

= Λ−1/2 − Λ−1/2δΛ−1/2 + o(‖∆‖).
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Then the differential dQ

(

S1/2QS1/2
)−1/2

(X) is written as

dQ

(

S1/2QS1/2
)−1/2

(X) = −U∗Λ−1/2δΛ−1/2U.

Therefore,
TSQ+X = TSQ + dT S

Q(X) + o(‖X‖),
where dT S

Q(X) is defined by (4.6).

Lemmas 4.2.5 and 4.2.8 are technical and explore properties of dT S
Q .

Lemma 4.2.5. For any S ∈ H+(d), Q ∈ H++(d), the properties of operator dT S
Q defined in (4.6)

are following:

(I) it is self-adjoint;

(II) it is negative semi-definite;

(III) it enjoys the following bounds:

−
〈

dT S
Q(X), X

〉

≤ λ
1/2
max

(

S1/2QS1/2
)

2

∥

∥

∥Q−1/2XQ−1/2
∥

∥

∥

2

F
,

−
〈

dT S
Q(X), X

〉

≥ λ
1/2
min

(

S1/2QS1/2
)

2

∥

∥

∥
Q−1/2XQ−1/2

∥

∥

∥

2

F
;

(IV) it is homogeneous w.r.t. Q with degree −3
2 and w.r.t. S with degree 1

2 , i.e. dT S
aQ =

a−3/2dT S
Q and dT aS

Q = a1/2dT S
Q for any a > 0;

(V) it is monotone w.r.t. S1/2QS1/2 (once the range of S is fixed): dT S0
Q0

4 dT S1
Q1

in the sense

of self-adjoint operators on H(d) whenever S
1/2
0 Q0S

1/2
0 4 S

1/2
1 Q1S

1/2
1 and range(S0) =

range(S1); in particular, dT S
Q is monotone w.r.t. Q ∈ H++(d) for fixed S.

Proof. Slightly changing notations, we rewrite (4.6) as

dT S
Q(X) = −S1/2U∗Λ−1/2δXΛ−1/2US1/2,

where matrices U and Λ come from Lemma 4.2.4 and

δX = (δXij )
d
i,j=1, δXij =

∆X
ij√

λi +
√

λj
, ∆X = US1/2XS1/2U∗.

(I) Self-adjointness

Consider a scalar product

〈dT S
Q(X), Y 〉 = tr

(

dT S
Q(X)Y

)

= − tr
(

S1/2U∗Λ−1/2δXΛ−1/2US1/2Y
)

= − tr
(

Λ−1/2δXΛ−1/2US1/2Y S1/2U∗).

We now introduce a following notation

∆Y def
= US1/2Y S1/2U∗.

Then the above equality can be continued as follows:

− tr
(

Λ−1/2δXΛ−1/2US1/2Y S1/2U∗) = − tr
(

Λ−1/2δXΛ−1/2∆Y
)

= −
r
∑

i,j=1

δXij
√

λiλj
∆Y
ij = −

r
∑

i,j=1

∆X
ij∆

Y
ij

√

λiλj(
√
λi +

√

λj)

= tr
(

dT S
Q(Y )X

)

= tr
(

XdT S
Q(Y )

)

= 〈X,dT S
Q(Y )〉,

where r := rank(S). Thus the operator is self-adjoint.
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(II) Boundedness and (III) eigenvalues

Denoting ∆X by ∆ (i.e. now ∆ = US1/2XS1/2U∗) and taking into account the above expansion
of an inner product, one obtains

−〈dT S
Q(X), X〉 =

r
∑

i,j=1

∆2
ij

√

λiλj(
√
λi +

√

λj)
=

r
∑

i,j=1

(

∆ij
√

λiλj

)2 √

λiλj√
λi +

√

λj
. (4.7)

Note that the function

f(λi, λj)
def
=

√

λiλj√
λi +

√

λj

is monotonously increasing in both arguments λi and λj , thus

max
i,j

f(λi, λj) =
λ
1/2
max(Λ)

2
, min

i,j
f(λi, λj) =

λ
1/2
min(Λ)

2
. (4.8)

For the sake of simplicity we introduce a new variable

ζ
def
= Q−1/2XQ−1/2,

its Frobenius norm is written as

‖ζ‖2F = tr
(

XQ−1XQ−1
)

.

Moreover, the following inequality for trace holds:

tr
(

XQ−1XQ−1
)

≥ tr
(

ΠSXΠSQ
−1ΠSXΠSQ

−1ΠS

)

= tr
(

∆Λ+∆Λ+
)

=
∥

∥

∥Λ−1/2∆Λ−1/2
∥

∥

∥

2

F
=

r
∑

i,j=1

∆2
ij

λiλj
.

Here ΠS is the orthogonal projector onto the range of S.
Then combining (4.7) with (4.8), the upper and lower bounds can be obtained as follows:

−〈dT S
Q(X), X〉 ≤ max

i,j
f(λi, λj)

r
∑

i,j=1

(

∆ij
√

λiλj

)2

≤ λ
1/2
max(Λ)

2
‖ζ‖2F ,

−〈dT S
Q(X), X〉 ≥ min

i,j
f(λi, λj)

r
∑

i,j=1

(

∆ij
√

λiλj

)2

=
λ
1/2
min(Λ)

2
‖ζ‖2F .

Note, that if S is degenerated, the lower bound becomes trivial.

(IV) Homogeneity and (V) monotonicity

Homogeneity follows directly from definition (4.6). Now we prove monotonicity. As the range
of S1/2QS1/2 is fixed, we may assume S ≻ 0. Consider

〈dT S
Q(X), X〉 = tr

(

S1/2U∗Λ−1/2δΛ−1/2US1/2, X
)

=
〈

U∗Λ−1/2δΛ−1/2U, S1/2XS1/2
〉

=

〈

dQ

(

S1/2QS1/2
)−1/2

(X), S1/2XS1/2

〉

=
〈

dMM−1/2
(

S1/2XS1/2
)

, S1/2XS1/2
〉

,

with replacement M = S1/2QS1/2 to be change of variables. As long as X is supposed to be
fixed, it is enough to show that the differential dMM−1/2 is monotone in M . Notice that the
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operator
(

dMM−1/2
)−1

at point M is equal to the differential of the inverse map P 7→ P−2 at
point P =M−1/2:

dMM−1/2 =
(

dPP
−2
∣

∣

P=M−1/2

)−1
.

In turn, dPP
−2 can be expressed as

dPP
−2(X) = −P−1

(

P−1X +XP−1
)

P−1,

the right part of the above equation is self-adjoint, negative-definite and
〈

−P−1
(

P−1X +XP−1
)

P−1, X
〉

= −2 trP−2XP−1X.

Choose M1 < M0 ≻ 0 (thus M1/2
1 < M

1/2
0 ) and let Pi = M

−1/2
i for i = 0, 1. Then for any fixed

X ∈ H(d)

− trP−2
1 XP−1

1 X = − trM1XM
1/2
1 X ≤ − trM0XM

1/2
0 X = − trP−2

0 XP−1
0 X,

i.e. dPP
−2
∣

∣

P1
4 dPP

−2
∣

∣

P0
and hence for the differential of M 7→M−1/2 the inverse inequality

holds: dMM−1/2
∣

∣

M0
4 dMM−1/2

∣

∣

M1
. This entails monotonicity of dT S

Q .

Corollary 4.2.6. Under conditions of Lemma 4.2.5, it holds

λmax(−dT S
Q) ≤

λ
1/2
max(S

1/2QS1/2)

2λ2min(Q)
, λmin(−dT S

Q) ≥
λ
1/2
min(S

1/2QS1/2)

2λ2max(Q)
.

Proof. Item (III) from the above lemma ensures that

−
〈

dT S
Q(X), X

〉

≤ λ
1/2
max

(

S1/2QS1/2
)

2

∥

∥

∥
Q−1/2XQ−1/2

∥

∥

∥

2

F
≤ λ

1/2
max(S

1/2QS1/2)

2λ2min(Q)
‖X‖2F .

The second bound is proved in a similar way.

Corollary 4.2.7. Define the following rescaled operator

dtSQ(ζ)
def
= Q1/2dT S

Q

(

Q1/2ζQ1/2
)

Q1/2, ζ ∈ H(d). (4.9)

Then

λmin

(

−dtSQ
)

=
1

2
λ
1/2
min

(

S1/2QS1/2
)

,

λmax

(

−dtSQ
)

=
1

2
λ
1/2
max

(

S1/2QS1/2
)

.

Proof. Notice that inequalities

λmin

(

−dtSQ
)

≥ 1

2
λ
1/2
min

(

S1/2QS1/2
)

,

λmax

(

−dtSQ
)

≤ 1

2
λ
1/2
max

(

S1/2QS1/2
)

,

are a trivial consequence of Lemma 4.2.5 (III). Now defining for any 1 ≤ k ≤ rank(S)

∆k
ij =

{

1, i = j = k,

0, otherwise,
, Xk = S−1/2U∆kU∗S−1/2, ζk = Q−1/2XkQ−1/2

we obtain from (4.7) that

−
〈

dtSQ(ζ
k), ζk

〉

= −
〈

dT S
Q(X

k), Xk
〉

=
λ
1/2
k

2

∥

∥

∥
ζk
∥

∥

∥

2

F
.

Therefore, the above inequalities are sharp.
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Lemma 4.2.8. For any Q0, Q1 ∈ H++(d) and S ∈ H+(d) consider

Qt
def
= (1− t)Q0 + tQ1, Q′ def

= Q
−1/2
0 Q1Q

−1/2
0 . (4.10)

Then

2

λmin(Q′) + λ
1/2
min(Q

′)
dT S

Q0
4

ˆ 1

0
dT S

Qt
dt

4
2

λmax(Q′) + λ
1/2
max(Q′)

dT S
Q0

4
1

1 + 3‖Q′ − I‖/4dT
S
Q0
.

Moreover, if ‖Q′ − I‖ < 1, then

ˆ 1

0
dT S

Qt
dt <

1

1− ‖Q′ − I‖dT
S
Q0
.

Remark 4.2.9. The above inequality might seem confusing due to the fact that λmin(·) ≤ λmax(·),
however this is explained by the fact that dT S

Q is negative definite.

Proof. Notice that

(

(1− t) + tλmin(Q
′)
)

Q0 4 Qt = Q
1/2
0

(

(1− t)I + tQ′)Q1/2
0 4

(

(1− t) + tλmax(Q
′)
)

Q0.

Monotonicity and homogeneity with degree −3
2 of dT S

Q (see Lemma 4.2.5) yield

dT S
Qt

4 dT S
((1−t)+tλmax(Q′))Q0

=
(

(1− t) + tλmax(Q
′)
)−3/2

dT S
Q0

and

dT S
Qt

< dT S
((1−t)+tλmin(Q′))Q0

=
(

(1− t) + tλmin(Q
′)
)−3/2

dT S
Q0
.

Therefore,
ˆ 1

0
dT S

Qt
dt 4 dT S

Q0

ˆ 1

0

(

(1− t) + tλmax(Q
′)
)−3/2 dt

=
2

λmax(Q′) + λ
1/2
max(Q′)

dT S
Q0

and respectively,
ˆ 1

0
dT S

Qt
dt <

2

λmin(Q′) + λ
1/2
min(Q

′)
dT S

Q0
.

The inequality (II) follows from the fact that

λmin(Q
′) ≥ 1− ‖Q′ − I‖, λmax(Q

′) ≤ 1 + ‖Q′ − I‖,

and inequalities

√
1 + x ≤ 1 +

x

2
for x ≥ 0,

√
1− x ≥ 1− x for 0 ≤ x ≤ 1.
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4.2.2 Properties of dBW (Q,S)

The next lemma ensures the strict convexity of dBW (Q,S). In essence, the proof mainly relies
on Theorem 7 in [BJL18].

Lemma 4.2.10. For any S ∈ H+(d) the function Q 7→ d2BW (Q,S) is convex on H+(d). More-
over, if S ≻ 0, then it is strictly convex.

Proof. According to Theorem 7 in [BJL18] the function h(X) := trX1/2 is strictly concave on
H+(d), hence the function

Q 7→ d2BW (Q,S) = trS + trQ− 2 tr
(

S1/2QS1/2
)1/2

is convex on H+(d) for any positive semi-definite S. Moreover, if S ≻ 0, then Q 7→ S1/2QS1/2

is an injective linear map, and therefore d2BW (Q,S) is strictly convex.

Further we introduce differentiability of d2BW (Q,S) and provides its quadratic approximation.

Lemma 4.2.11. For any Q ∈ H++(d), S ∈ H+(d) the function d2BW (Q,S) is twice differentiable
in Q with

dQd
2
BW (Q,S)(X) = 〈I − TSQ , X〉, X ∈ H(d),

d2

Qd
2
BW (Q,S)(X,Y ) = −〈X,dT S

Q(Y )〉, X, Y ∈ H(d).

Moreover, the following quadratic approximation holds: for any Q0, Q1 ∈ H++(d)

− 2
(

1+λ
1/2
max(Q′)

)2

〈

dT S
Q0

(Q1 −Q0), Q1 −Q0

〉

≤ d2BW (Q1, S)− d2BW (Q0, S) + 〈TSQ0
− I,Q1 −Q0〉

≤ − 2
(

1+λ
1/2
min(Q

′)
)2

〈

dT S
Q0

(Q1 −Q0), Q1 −Q0

〉

.

with Q′ defined in (4.10).

Proof. Derivatives. Note that

dQ

(

S1/2QS1/2
)1/2

(X) = U∗δU,

where δ comes from Lemma 4.2.4. Furthermore, Lemma 4.2.3 implies that

dQ tr
(

S1/2QS1/2
)1/2

(X) = trdQ

(

S1/2QS1/2
)1/2

(X) = tr δ

=

rank(S)
∑

i=1

∆ii

2
√
λi

=
1

2
tr∆Λ−1/2

=
1

2
trS1/2XS1/2

(

S1/2QS1/2
)−1/2

=
1

2

〈

TSQ , X
〉

.

Consequently, d2BW (Q,S) is differentiable, and

dQd
2
BW (Q,S)(X) = trX − 2dQ tr

(

S1/2QS1/2
)1/2

(X) =
〈

I − TSQ , X
〉

.

Applying Lemma 4.2.4 one obtains

d2

Qd
2
BW (Q,S)(X,Y ) = dQ

〈

I − TSQ , X
〉

= −
〈

dT S
Q(Y ), X

〉

(Y ).
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Quadratic approximation. Let Q0, Q1 ∈ H++(d), Qt := (1 − t)Q0 + tQ1, t ∈ [0, 1]. The
Taylor expansion in the integral form applied to d2BW (Qt, S) implies

d2BW (Q1, S) = d2BW (Q0, S) +
〈

I − TSQ0
, Q1 −Q0

〉

+

ˆ 1

0
(1− t)

〈

−dT S
Qt
(Q1 −Q0), Q1 −Q0

〉

dt

= d2BW (Q0, S)−
〈

TSQ0
− I,Q1 −Q0

〉

−
〈[

ˆ 1

0
(1− t)dT S

Qt
dt
]

(Q1 −Q0), Q1 −Q0

〉

.

Following the same ideas as in the proof of Lemma 4.2.8 one obtains that
ˆ 1

0
(1− t)dT S

Qt
dt 4

ˆ 1

0
(1− t)

(

(1− t) + tλmax(Q
′)
)−3/2

dT S
Q0

dt

= 2
(

1+λ
1/2
max(Q′)

)2dT
S
Q0

and
ˆ 1

0
(1− t)dT S

Qt
dt < 2

(

1+λ
1/2
min(Q

′)
)2dT

S
Q0
.

Thus

− 2
(

1+λ
1/2
max(Q′)

)2

〈

dT S
Q0

(Q1 −Q0), Q1 −Q0

〉

≤ d2BW (Q1, S)− d2BW (Q0, S) + 〈TSQ0
− I,Q1 −Q0〉

≤ − 2
(

1+λ
1/2
min(Q

′)
)2

〈

dT S
Q0

(Q1 −Q0), Q1 −Q0

〉

.

4.3 Existence and uniqueness of barycenters

Along with knowledge of properties of the Bures–Wasserstein distance in hand, and before
moving to more general questions, one should ask her- or himself, whether a Bures–Wasserstein
barycenter Q∗ exists and, if so, is it unique or not.

Firstly, we assume that A has a nonempty intersection with the space of positive definite
operators.

Assumption 4.1. Given the setting (4.3), we suppose an affine subspace A ⊂ H(d) to be s.t.
H++(d)∩A 6= ∅. By M we denote the linear subspace of H(d) associated with A, i.e. the following
representation holds: A = {Q0}+M for some Q0 ∈ H(d).

Further, we assume that P assigns positive probability to the space of positive definite
Hermitian matrices H++(d) and that the average of S is finite.

Assumption 4.2. Let the distribution P on H+(d) be such that

P (H++(d)) > 0, E trS < +∞.

The next theorem ensures existence and uniqueness of the Fréchet mean introduced in (4.3)
under the above assumptions.

Theorem 4.3.1 (Existence and uniqueness of Q∗). Under Assumptions 4.1 and 4.2, there exists
a unique Bures–Wasserstein barycenter Q∗ of P . Furthermore, Q∗ ≻ 0 and it is characterised
as a unique solution of the equation

ΠM ETSQ = ΠMI, Q ∈ H++(d), (4.13)

where ΠM is the orthogonal projector onto M.
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Remark 4.3.2. In the case of Gaussian measures, uniqueness and nondegeneracy of Q∗ under
Assumption 4.2 follows from a general result for 2-Wasserstein barycenters, see e.g. Theorem 3.1
in [KP17]. However, it is not clear if this can be adapted to the considered setting with complex
matrices and linear constraints.

Remark 4.3.3. The equation (4.13) generalizes the result for scale-location families in 2-Wasserstein
space, presented in [Álv+18, Theorem 3.10], and originally obtained for the Gaussian case in
the seminal work [AC11, Theorem 6.1]. Namely, if A = Sym++(d), then Q∗ exists and is the
unique solution of a fixed-point equation:

Q = E
(

Q1/2SQ1/2
)1/2

, Q ∈ Sym++(d).

Note that it is similar to (4.13), as by multiplying the above equation from both sides by Q−1/2

one obtains ETSQ = I.

Proof. By Assumption 4.2 V(0) is finite:

V(0) := E d2BW (0, S) = E trS <∞.

Since dBW (Q,S) → ∞ as ‖Q‖ → ∞, one has V(Q) → ∞ as ‖Q‖ → ∞. Thus, any minimizing
sequence for V is bounded. As V is continuous, this implies existence of a barycenter Q∗ by the
compactness argument.

In case P (H++(d)) > 0 applying Lemma 4.2.10 we obtain strict convexity of the integral

Q 7→ E d2BW (Q,S) = V(Q), Q ∈ H+(d),

and therefore, uniqueness of the minimizer Q∗.
To prove that Q∗ ≻ 0 consider arbitrary degenerated Q0 ∈ H+(d) ∩ A, Q1 ∈ H++(d) ∩ A

(which exists by Assumption 4.1) and S ∈ H++(d). Let us define Qt = (1− t)Q0+ tQ1 ∈ A. We
are going to show, that

d

dt
d2BW (Qt, S) = 〈I − TSQt

, Q1 −Q0〉 → −∞ as t→ 0.

To prove this convergence, we consider the following eigen-decomposition
S1/2Q0S

1/2 = U∗ΛU , Λ = diag(λ1, . . . , λr, 0, . . . , 0), where r := rank(Q0). We denote as C =
US1/2Q1S

1/2U∗, and write it in a block form:

C =

(

C11 C12

C21 C22

)

, C11 ∈ H++(r), C12 = C∗
21 ∈ Cr×(d−r), C22 ∈ H++(d− r).

Thus, for all Qt the following representation holds (see Section A.5.5, paragraph Inverse of block
matrix in [BV04]):

U
(

S1/2QtS
1/2
)−1

U∗ =
(

(1− t)Λ+ tC
)−1

=

(

E−1
t + t2E−1

t C12S
−1
t C21E

−1
t −tE−1

t C12S
−1
t

−tS−1
t C21E

−1
t S−1

t

)

,

where Et = (1 − t)Λ11 + tC11, St = tC22 − t2C21E
−1
t C12, with Λ11 = diag(λ1, . . . , λr). When

t→ 0, Et → Λ11 ≻ 0, St

t
→ C22 ≻ 0. This yields

tU
(

S1/2QtS
1/2
)−1

U∗ →
(

0 0

0 C−1
22

)

,

and
√
tU
(

S1/2QtS
1/2
)−1/2

U∗ →
(

0 0

0 C
−1/2
22

)

.
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Therefore,

√
t
〈

TSQt
, Q0

〉

=
√
t

〈

(

S1/2QtS
1/2
)−1/2

, S1/2Q0S
1/2

〉

=

〈√
tU
(

S1/2QtS
1/2
)−1/2

U∗, US1/2Q0S
1/2U∗

〉

→
〈(

0 0

0 C
−1/2
22

)

,

(

Λ11 0
0 0

)

〉

= 0.

In the same way one can obtain

√
t
〈

TSQt
, Q1

〉

→
〈(

0 0

0 C
−1/2
22

)

,

(

C11 C12

C21 C22

)

〉

= trC1/2
22 > 0 as t→ 0.

Consequently,

d

dt
d2BW (Qt, S) = 〈I − TSQt

, Q1 −Q0〉 = trQ1 − trQ0 −
trC1/2

22 + o(1)√
t

→ −∞.

By Assumption 4.1 it holds that P (H++(d)) > 0. Further, since d2BW (Q,S) is convex, its
directional derivatives are bounded by difference quotients, thus one can apply Leibniz integral
rule for a Lebesgue-integrable function. This yields the following equality:

d

dt
V(Qt) = E

d

dt
d2BW (Qt, S) → −∞ as t→ 0,

thus Q0 cannot be a barycenter of P . This yields Q∗ ≻ 0.
Since V is convex and the barycenter of P is positive-definite and unique, it is characterized

as a stationary point of the Fréchet variation on subspace A, i.e. as a solution to equation

ΠM∇V(Q) = ΠM(I − ETSQ) = 0, Q ∈ A ∩H++(d),

as required. The first equality follows from Lemma 4.2.11.

4.4 Central limit theorems

Armed with the knowledge about properties of dBW (·, ·), Q∗, and Qn, we are now equipped
enough to introduce the first main result of the current study: the asymptotic normality of
empirical barycenters Qn.

Covariance operators. The proof of the CLT relies on covariance operators on the space of
optimal transportation maps and on the space of covariance matrices.

Consider Ti
def
= TSi

Q∗
and Tni

def
= TSi

Qn
. We define a covariance Σ of Ti, its empirical counterpart

Σn, and its data-driven estimator Σ̂n as follows:

Σ
def
= E (Ti − I)⊗ (Ti − I) , Σn

def
=

1

n

n
∑

i=1

(Ti − I)⊗ (Ti − I) ,

Σ̂n
def
=

1

n

n
∑

i=1

(Tni − I)⊗ (Tni − I) ,

where ⊗ stands for the tensor product.
The covariance of Qn and its empirical counterpart are defined as

Ξ
def
= F−1(Σ)MF−1, Ξ : M → M, (4.14)
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Ξ̂n
def
= F̂−1

n (Σ̂n)MF̂−1
n , Ξ̂n : M → M, (4.15)

where

F
def
= −E

(

dT S
Q∗

)

M
Fn

def
= − 1

n

n
∑

i=1

(

dT Si

Q∗

)

M
, (4.16)

F̂n
def
= − 1

n

n
∑

i=1

(

dT Si

Qn

)

M
.

Another key object which appears in the proofs quite often is a rescaled empirical barycenter:

Q′
n

def
= Q

−1/2
∗ QnQ

−1/2
∗ . (4.17)

Now we are ready to prove the central limit theorem for the empirical barycenter Qn.

Theorem 4.4.1 (Central limit theorem for empirical barycenter). Under Assumptions 4.1
and 4.2 the CLT for Bures–Wasserstein barycenter holds:

√
n (Qn −Q∗)

d−→ N (0,Ξ) , (A)

where Ξ is a self-adjoint linear operator acting on M defined by (4.14). Moreover, if (Σ)M is
nondegenerate, then √

nΞ̂
−1/2
n (Qn −Q∗)

d−→ N (0, (I)M) , (B)

where Ξ̂n is an empirical counterpart of Ξ defined by (4.15).

Proof. Proof of (A). As 0 ≤ dBW (Q,S) ≤ trQ+ trS, the random functions Vn a.s. uniformly
converge to the strictly convex function V on any compact set by the uniform law of large
numbers [Jen69, Theorem 2]. Therefore, their minimizers also converge Qn

a.s.−−→ Q∗ (see, e.g.,
Lemma 5.2.2 in [Van06]). In particular, P (Qn ≻ 0) → 1 as n → ∞. The expansion from
Lemma 4.2.4 at Q∗ implies

Tni = Ti +

ˆ 1

0
dT Si

Qt
(Qn −Q∗) dt, (4.18)

where Qt = (1− t)Q∗ + tQn. Note, that the condition for Qn being a barycenter is
ΠM

(

1
n

∑

i T
n
i − I

)

= 0. This fact together with averaging of (4.18) over i give:

ΠMI = ΠMT̄n −Gn

(

Qn −Q∗
)

, (4.19)

where

T̄n
def
=

1

n

n
∑

i=1

Ti, Gn
def
= − 1

n

∑

i

ˆ 1

0

(

dT Si

Qt

)

M
dt.

According to Lemma 4.2.8

2

λmax(Q′
n) + λ

1/2
max(Q′

n)
Fn 4 Gn 4

2

λmin(Q′
n) + λ

1/2
min(Q

′
n)

Fn

where Fn is defined in (4.16), and Q′
n comes from (4.17). Recall that F introduced in (4.16) is

a population counterpart of Fn. This operator is correctly defined since by Lemma 4.2.5 one
can show that it is self-adjoint, positive definite and bounded:

‖F ‖ ≤ E
∥

∥dT S
Q∗

∥

∥ ≤ E

∥

∥S1/2Q∗S1/2
∥

∥

2λ2min(Q∗)
<∞.

This bound follows directly from Corollary 4.2.6.
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Since by the law of large numbers Fn
a.s.−−→ F and Q′

n
a.s.−−→ I, it holds that λmin(Q

′
n)

a.s.−−→ 1

and λmax(Q
′
n)

a.s.−−→ 1, thus Gn
a.s.−−→ F . Therefore, we obtain from (4.19) that

Qn = Q∗ +G−1
n ΠM

(

T̄n − I
)

.

Note that dT S
Q∗

is negative definite for any S ≻ 0 by Lemma 4.2.5, hence F itself is negative

definite and thus can be inverted. In particular, G−1
n exist asymptotically a.s., and G−1

n
a.s.−−→

F−1. The result (A) follows immediately from the CLT for ΠMT̄n and Slutsky’s theorem.
Proof of (B). Note that result (A) is equivalent to the fact that

√
nΞ−1/2 (Qn −Q∗)

d−→ N (0, (I)M) .

To ensure convergence of Ξ̂n
a.s.−−→ Ξ we need to show that

a) Σ̂n
a.s.−−→ Σ (follows from Lemma 4.A.1, a.s. consistency of Q′

n, and the LLN);

b) F̂n
a.s.−−→ F .

Consider

dT S
Qn

4 dT S
λmax(Q′

n)Q∗
=
(

λmax(Q
′
n)
)−3/2

dT S
Q∗
,

dT S
Qn

< dT S
λmin(Q′

n)Q∗
=
(

λmin(Q
′
n)
)−3/2

dT S
Q∗
,

where the inequalities come from monotonicity of dT S
Q (see (V) in Lemma 4.2.5) and bounds

λmin(Q
′
n)Q∗ 4 Qn 4 λmax(Q

′
n)Q∗. The equalities hold due to homogeneity of dT S

Q with degree
−3

2 (see (IV) in Lemma 4.2.5). This naturally leads to the following bounds:

1

λ
3/2
max(Q′

n)
Fn 4 F̂n 4

1

λ
3/2
min(Q

′
n)

Fn.

Since Q′
n

a.s.−−→ I and Fn
a.s.−−→ F , this implies F̂n

a.s.−−→ F due to the continuity of λmax(·) and
λmin(·).

The above results ensure the validity of substitution Ξ by Ξ̂n. This yields (B).

The asymptotic convergence result for dBW (Qn, Q∗) is a straightforward corollary of the
above theorem.

Corollary 4.4.2 (Asymptotic distribution of dBW (Qn, Q∗)). Under conditions of Theorem 4.4.1
it holds that √

ndBW (Qn, Q∗)
d−→
∥

∥

∥Q
1/2
∗ dT

Q∗

Q∗
(Z)
∥

∥

∥

F
,

with Z ∼ N (0,Ξ). Moreover, replacing in the limiting distribution Q∗ and Z by their empirical

counterparts Qn and Zn ∼ N
(

0, Ξ̂n

)

, respectively, one obtains the following convergence:

dw

(

L
(√
ndBW (Qn, Q∗)

)

, L
(∥

∥

∥
Q1/2
n dT

Qn

Qn
(Zn)

∥

∥

∥

F

))

→ 0,

where dw is any metric inducing the weak convergence.

Proof. Since Qn
a.s.−−→ Q∗, Lemma 4.2.11 implies

d2BW (Qn, Q∗) = −1 + oP (1)

2

〈

dT
Q∗

Q∗
(Qn −Q∗), Qn −Q∗

〉

.
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Here oP denotes little o in probability: recall that Xn = oP (1) iff Xn
P−→ 0. Without loss of

generality we can consider case Q∗ = diag(q1, . . . , qd), thus Lemma 4.2.5 implies (notice that
Λ = Q2

∗ and ∆ = Q
1/2
∗ XQ

1/2
∗ )

−
〈

dT
Q∗

Q∗
(X), X

〉

=
d
∑

i,j=1

Xij

qi + qj
Xij =

d
∑

i,j=1

(qi + qj)

(

Xij

qi + qj

)2

= 2

d
∑

i,j=1

(√
qi

Xij

qi + qj

)2

= 2
∥

∥

∥Q
1/2
∗ dT

Q∗

Q∗
(X)

∥

∥

∥

2

F
.

By Theorem 4.4.1
√
n(Qn −Q∗) is asymptotically normal and centered, therefore

L
(√
ndBW (Qn, Q∗)

) d−→ L
(∥

∥

∥Q
1/2
∗ dT

Q∗

Q∗
(Z)
∥

∥

∥

F

)

.

where Z ∈ M ⊂ H(d) and Z ∼ N (0,Ξ).
Note, that Qn

a.s.−−→ Q∗, Ξ̂n
a.s.−−→ Ξ, and dT

Qn

Qn

a.s.−−→ dT
Q∗

Q∗
. The last result follows from

Lemma 4.2.5 (IV, V), and can be validated using the same framework as in the proof of (B)
in Theorem 4.4.1. Note, that λmin(Q

′
n)Q∗ 4 Qn 4 λmax(Q

′
n)Q∗, with Q′

n coming from (4.17).
Then

dT
Qn

Qn
4 dT

λmax(Q′
n)Q∗

λmax(Q′
n)Q∗

=
1

λmax(Q′
n)

dT
Q∗

Q∗
→ dT

Q∗

Q∗
,

dT
Qn

Qn
< dT

λmin(Q
′
n)Q∗

λmin(Q′
n)Q∗

=
1

λmin(Q′
n)

dT
Q∗

Q∗
→ dT

Q∗

Q∗
,

where the inequalities comes from monotonicity (see (V) in Lemma 4.2.5). The equalities hold
due to homogeneity (see (IV) in Lemma 4.2.5). Furthermore, the continuity of λmax(·) and
λmin(·) yields

L
(∥

∥

∥
Q1/2
n dT

Qn

Qn
(Zn)

∥

∥

∥

F

)

d−→ L
(∥

∥

∥
Q

1/2
∗ dT

Q∗

Q∗
(Z)
∥

∥

∥

F

)

,

where Zn ∼ N
(

0, Ξ̂n

)

. This, in turn, entails

dw

(

L
(√
ndBW (Qn, Q∗)

)

, L
(∥

∥

∥
Q1/2
n dT

Qn

Qn
(Zn)

∥

∥

∥

F

))

→ 0,

where dw is some metric inducing the weak convergence of the measures.

To illustrate the result, we consider the case of a diagonal Q∗ = diag(q1, . . . , qd). This setting
admits the explicit form of the limiting distribution:

L
(√
ndBW (Qn, Q∗)

) d−→ L





√

√

√

√

d
∑

i,j=1

Z2
ij

2(qi + qj)



 ,

where Z = (Zij)
d
i,j=1. This representation of the limiting distribution is derived in the proof of

Corollary 4.4.2 which is based on the fact that

d2BW (Qn, Q∗) = −1 + oP (1)

2

〈

dT
Q∗

Q∗
(Qn −Q∗), Qn −Q∗

〉

,

and the explicit formula for dT S
Q from Lemma 4.2.4.

The last result concerning convergence of empirical barycenter is the central limit theorem
for the empirical variance Vn.

Theorem 4.4.3 (Central limit theorem for Vn). Let Assumptions 4.1 and 4.2 be fulfilled and
E(trS)2 <∞. Then √

n (Vn − V∗)
d−→ N

(

0,Var d2BW (Q∗, S)
)

.
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Proof. By definition the empirical Fréchet variance is

Vn(Q) =
1

n

n
∑

i=1

d2BW (Q,Si).

Lemma 4.2.11 ensures the following bound on Vn(Q∗)− Vn(Qn):
0 ≤ Vn(Q∗)− Vn(Qn) ≤ 2

(

1+λ
1/2
min(Q

′
n)

)2 〈Fn(Qn −Q∗), Qn −Q∗〉.

The above quadratic bound together with Qn → Q∗, Fn → F and
√
n(Qn − Q∗)

d−→ N (0,Ξ)
yield:

Vn(Qn)− V(Q∗) = Vn(Q∗)− V(Q∗) +OP

(

1

n

)

.

Recall that Xn = OP (an) means that for any ε > 0 there is M > 0 such that lim supP{|X|n >
M} ≤ ε. On the other hand, by the classical central limit theorem we obtain:

√
n (Vn(Q∗)− V(Q∗)) =

√
n

(

1

n

∑

i

d2BW (Q∗, Si)− E d2BW (Q∗, S)

)

d−→ N
(

0,Var d2BW (Q∗, S)
)

.

4.5 Concentrations

This section discusses the concentration properties of Qn and Vn around Q∗ and V∗, respectively,
under the assumption of sub-Gaussianity of P .

Assumption 4.3 (Sub-Gaussianity of
√

trS). Let
√

trS be sub-Gaussian:

P
{√

trS ≥ t
}

≤ Be−bt
2

for any t ≥ 0,

with some constants B, b > 0.

4.5.1 Concentration of Qn

The next lemma is a key ingredient in the proof of the concentration result for Qn.

Lemma 4.5.1. Consider

ηn
def
=

1

λmin(F ′

n)

∥

∥

∥Q
1/2
∗ ΠM

(

T̄n − I
)

Q
1/2
∗
∥

∥

∥

F
(4.20)

where
F ′

n(X)
def
= Q

1/2
∗ Fn

(

Q
1/2
∗ XQ

1/2
∗
)

Q
1/2
∗ , X ∈

{

Q
−1/2
∗ Y Q

−1/2
∗

∣

∣

∣Y ∈ M
}

. (4.21)

Then
∥

∥Q′
n − I

∥

∥

F
≤ ηn

1− 3
4ηn

whenever ηn <
4
3 and Qn ≻ 0.

Proof. Let us define Qt
def
= tQn+(1− t)Q∗ for t ∈ [0, 1]. Due to Lemmas 4.2.5 and 4.2.8 we have

for any S ∈ H+(d)
〈

ΠM

(

TSQ∗
− TSQn

)

, Qn −Q∗
〉

=
〈

TSQ∗
− TSQn

, Qn −Q∗
〉

=

ˆ 1

0

〈

−dT S
Qt
(Qn −Q∗), Qn −Q∗

〉

dt

≥ 1

1 + 3
4‖Q′

n − I‖
〈

−dT S
Q∗

(Qn −Q∗), Qn −Q∗
〉

.
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Therefore,
〈

ΠM

(

T̄n − I
)

, Qn −Q∗
〉

≥ 1

1 + 3
4‖Q′

n − I‖
〈

Fn(Qn −Q∗), Qn −Q∗
〉

=
1

1 + 3
4‖Q′

n − I‖
〈

F ′

n(Q
′
n − I), Q′

n − I
〉

≥ λmin(F
′

n)

1 + 3
4‖Q′

n − I‖‖Q
′
n − I‖2F .

At the same time,
〈

ΠM

(

T̄n − I
)

, Qn −Q∗
〉

=
〈

Q
1/2
∗ ΠM

(

T̄n − I
)

Q
1/2
∗ , Q′

n − I
〉

≤
∥

∥

∥
Q

1/2
∗ ΠM

(

T̄n − I
)

Q
1/2
∗
∥

∥

∥

F
‖Q′

n − I‖F .

Hence

‖Q′
n − I‖F ≤ 1 + 3

4‖Q′
n − I‖

λmin(F ′

n)

∥

∥

∥Q
1/2
∗ ΠM

(

T̄n − I
)

Q
1/2
∗
∥

∥

∥

F
=
(

1 + 3
4‖Q′

n − I‖
)

ηn.

Rewriting the inequality above we obtain

‖Q′
n − I‖F ≤ ηn

1− 3
4ηn

provided that ηn < 4
3 .

Before proving concentration results, we define the operator F ′(X) as follows:

F ′(X)
def
= Q

1/2
∗ F

(

Q
1/2
∗ XQ

1/2
∗
)

Q
1/2
∗ for X ∈

{

Q
−1/2
∗ Y Q

−1/2
∗

∣

∣

∣Y ∈ M
}

. (4.22)

The first result concerns the concentration of Q′
n in Frobenius norm. This is a crucial step

in the proof of concentration of dBW (Qn, Q∗).

Theorem 4.5.2 (Concentration of Q′
n). Let Assumptions 4.1, 4.2, and 4.3 be fulfilled, then

P

{

‖Q′
n − I‖F ≥ cQ√

n
(
√
m+ t)

}

≤ 2me−ntF + e−t
2/2 + (1− p)n

for any t ≥ 0 and n ≥ c2Q(
√
m+ t)2, with

m
def
= dim(M), p

def
= P

(

H++(d)
)

,

cQ
def
=

4‖Q∗‖σT
λmin(F ′)

, tF
def
= C min

(

λmin(F
′)

U log1/2 (U/σF )
,
λ2min(F

′)

σ2F

)

,

where the operator F ′ is defined in (4.22), constant σT comes from auxiliary Proposition 4.A.4,
constants σF and U are defined in auxiliary Proposition 4.A.2, and C denotes a generic constant.

To make the result more transparent, we first discuss it in a less formal way. The proof
is based on three steps, and each step yields a bounding term. The first step gives the term
2me−ntF . It deals with the concentration of some auxiliary empirical operator F ′

n defined
in (4.21) in the vicinity of its population counterpart F ′. These two operators are essentially
a price to pay for moving from the space of optimal transportation maps TSQ to the space of
barycenters. The concentration of F ′

n is derived from a result by [Kol11] which is presented
in Proposition 4.A.2. The constants σF and U appear due to this concentration. Some prior
bounds on σF and U are obtained in Lemma 4.A.3. The second step yields the term e−t

2/2. It
ensures the concentration of

∥

∥

∥

1
n

∑

i T
Si

Q∗
− I
∥

∥

∥

F
, and relies on the result by [HKZ12]. To make the

text self-contained, we introduce it in Proposition 4.A.4. The constant σT comes from a bound
on
∥

∥

∥

1
n

∑

i T
Si

Q∗
− I
∥

∥

∥

F
. The last step yields the term (1− p)n. It comes from the requirement on

nondegeneracy of Qn. In other words, a high degeneracy leads to a smaller p and, thus, to worse
bounds.
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Proof. Let tn be s.t. the following upper bound on γn(tn) from Proposition 4.A.2 holds:

γn(tn) := C max

(

σF

√

tn+log(2m)
n

, U

√

log
(

U
σF

)

tn+log(2m)
n

)

≤ 1

2
λmin(F

′).

It is easy to see that this condition is fulfilled for tn = ntF − log(m) under a proper choice of
generic constant in the definition of tF . Then with probability at least 1−2me−ntF the following
bound holds:

λmin(F
′

n) ≥ λmin(F
′)− ‖F ′

n − F ′‖ ≥ 1

2
λmin(F

′),

with F ′

n to be defined in (4.21). The above facts together with definition of ηn (4.20) yield

ηn
def
=

∥

∥

∥
Q

1/2
∗ ΠM

(

T̄n − I
)

Q
1/2
∗
∥

∥

∥

F

λmin(F ′

n)

≤ 2‖Q∗‖
λmin(F ′)

∥

∥ΠM

(

T̄n − I
)∥

∥

F
=

cQ

2σT

∥

∥ΠM

(

T̄n − I
)∥

∥

F
.

Combining the above bounds with Proposition 4.A.4, we obtain:

P

{

ηn ≥ cQ

2
√
n
(
√
m+ t)

}

≤ 2me−ntF + e−t
2/2.

Now it follows from Lemma 4.5.1 that

P

{

‖Q′
n − I‖F ≥ cQ√

n
(
√
m+ t)

}

≤ P

{

2ηn ≥ cQ√
n
(
√
m+ t)

}

+ P
{

Qn ⊁ 0
}

≤ 2me−ntF + e−t
2/2 + (1− p)n,

whenever cQ
2
√
n
(
√
m + t) ≤ 2

3 . Here Q ⊁ 0 means that a matrix Q is not positive definite. We
used that Qn ≻ 0 if at least one of matrices S1, . . . , Sn is nondegenerate.

The next result deals with the concentration of Qn in the Bures–Wasserstein distance. It is
a corollary of the above theorem.

Corollary 4.5.3 (Concentration of Qn in dBW ). Under the conditions of Theorem 4.5.2 the
following result holds:

P

{

dBW (Qn, Q∗) ≥
cQ‖Q∗‖1/2√

n
(
√
m+ t)

}

≤ 2me−ntF + e−t
2/2 + (1− p)n.

Proof. To prove this result we use Lemma 4.2.11 and choose Q0 = S = Q∗, Q1 = Qn. Thus we
obtain

d2BW (Qn, Q∗) ≤ − 2
(

1 + λ
1/2
min(Q

′
n)
)2

〈

dT
Q∗

Q∗
(Qn −Q∗), Qn −Q∗

〉

Def. 4.9
=

2
(

1 + λ
1/2
min(Q

′
n)
)2

〈

−dt
Q∗

Q∗
(Q′

n − I), Q′
n − I

〉

≤ 2λmax

(

−dt
Q∗

Q∗

)

‖Q′
n − I‖2F

C.4.2.7
= λmax(Q∗)‖Q′

n − I‖2F ,

with Q′
n coming from (4.17). Hence by Theorem 4.5.2

dBW (Qn, Q∗) ≤ ‖Q∗‖1/2
cQ√
n
(
√
m+ t)

with probability at least 1− 2me−ntF − e−t
2/2 − (1− p)n.
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4.5.2 Concentration of Vn

The next main result of the current chapter describes the concentration properties of the em-
pirical Fréchet variance Vn.

Theorem 4.5.4 (Concentration of Vn). Let Assumptions 4.1, 4.2, and 4.3 be fulfilled, then, in
the notation of Theorem 4.5.2,

P
{

|Vn − V∗| ≥ z(µ, ν, d, n, t)
}

≤ 2me−ntF + 3e−t
2/2 + (1− p)n

with

z(b, ν, d, n, t)
def
= max

(

µt2

n
, νt√

n

)

+ 3
c2Q∥F ′∥

n
(
√
m+ t)2.

A pair (ν, µ) is the parameters of a sub-exponential r.v. d2BW (Q∗, S).

Proof. Following the proof of Theorem 4.4.3 we consider Vn(Q∗)− Vn(Qn):

0 ≤ Vn(Q∗)− Vn(Qn) ≤ 2
(

1+λ
1/2
min(Q

′
n)

)2 〈Fn(Qn −Q∗), Qn −Q∗〉

= 2
(

1+λ
1/2
min(Q

′
n)

)2 〈F ′

n(Q
′
n − I), Q′

n − I〉

≤ 2‖F ′

n‖ · ‖Q′
n − I‖2F ,

with F ′

n defined in (4.21), and Q′
n in (4.17).

Following the proof of Theorem 4.5.2, we obtain that with probability at least 1−2me−tFn−
e−t

2/2 − (1− p)n the following upper bounds hold:

‖Q′
n − I‖F ≤ cQ√

n
(
√
m+ t), ‖F ′

n − F ′‖ ≤ 1

2
λmin(F

′),

with F ′ coming from (4.22). Thus

‖F ′

n‖ ≤ ‖F ′‖+ ‖F ′

n − F ′‖ ≤ 3

2
‖F ′‖

and consequently

0 ≤ Vn(Q∗)− Vn(Qn) ≤ 3‖F ′‖
c2Q

n
(
√
m+ t)2.

Now we consider the difference Vn(Q∗) − V(Q∗). According to Assumption 4.3 S, and
therefore d2BW (Q∗, S), are sub-exponential r.v. with some parameters (ν, µ). Then Lemma 4.A.5
ensures

|Vn(Q∗)− V(Q∗)| ≤ max

(

2µt′

n
, ν

(

2t′

n

)1/2
)

with probability at least 1− 2e−t
′

. Combining two above bounds, we obtain:

|Vn(Qn)− V(Q∗)| ≤ max

(

2µt′

n
, ν

√

2t′

n

)

+ 3‖F ′‖
c2Q

n
(
√
m+ t)2

with probability at least 1− 2e−t
′ − 2me−ntF − e−t

2/2 − (1− p)n. Choosing t′ = t2/2, we get

P

{

|Vn(Qn)− V(Q∗)| ≥ max
(

µt2

n
,
νt√
n

)

+ 3‖F ′‖
c2Q

n
(
√
m+ t)2

}

≤ 2me−ntF + 3e−t
2/2 + (1− p)n.
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4.6 Slow rate of convergence: example

In this section we demonstrate an example of a distribution on a scale-location family such that
the rate of convergence of W2(νn, ν∗) is slower than 1√

n
, where ν∗ and νn are the population and

the empirical 2-Wasserstein barycenters, respectively. As was mentioned in the introduction,
there is an equivalence between Wasserstein and Bures–Wasserstein barycenters once the scale-
location family is induced by a template measure µ0 with a nondegenerate covariance matrix.
Yet, here we will consider a degenerated case.

Theorem 4.6.1. There exists a scale-location family SL(µ0) ⊂ P2(R
2) and a distribution P

on it such that it has the unique Wasserstein barycenter ν∗ = bar(P ) ∈ SL(µ0), for any n ∈ N

there is an empirical barycenter νn = bar(Pn) ∈ SL(µ0), and for large enough n with probability
at least 1

8

W2(νn, ν∗) ≥
C

logn
.

Proof. Step 1: construction of P . For any z ∈ R define a measure on R2

µz :=
1

2
(δaz + δ−az) ,

where az := (1 − z, z) ∈ R2. Let PZ be a distribution on R, then P := (z 7→ µz)#PZ is a
corresponding distribution on P(R2). Let Z be a random variable drawn from PZ .

Recall that ν∗ = bar(P ). Set ν̃ := 1
2 (ν∗ + (− id)#ν∗). Obviously, due to symmetry one has

for any z ∈ R

W 2
2 (µz, ν∗) ≥W 2

2 (µz, ν̃) =

ˆ

R2

min
{

‖x− az‖2, ‖x+ az‖2
}

dν̃(x)

=

ˆ

R2

min
{

‖x− az‖2, ‖x+ az‖2
}

dν∗(x).

Thus, ν̃ is also a Wasserstein barycenter. Moreover, ν∗-a.e. x is sent by the optimal plan to
the closest point among aZ , −aZ a.s., otherwise EW 2

2 (µZ , ν∗) > EW 2
2 (µZ , ν̃) according to the

above inequality. In particular,

EW 2
2 (µZ , ν∗) = E

ˆ

R2

min
{

‖x− aZ‖2, ‖x+ aZ‖2
}

dν∗(x) =
ˆ

R2

D(x) dν∗(x),

where D(x) := Emin
{

‖x− aZ‖2, ‖x+ aZ‖2
}

. Due to the symmetry of this function, any sym-
metric measure concentrated ArgminD is a barycenter of P . Hence

EW 2
2 (µZ , ν∗) = min

ν∈P2(Rd)
EW 2

2 (µZ , ν) = min
x∈Rd

D(x),

and ν∗ is concentrated on the set of minimizers of D. Note that D is semi-concave, thus it has
directional derivatives at any point x ∈ R2.

Let x = (x1, x2) and x1 < x2, then

min
{

‖x− az‖2, ‖x+ az‖2
}

=

{

‖x+ az‖2, z ≤ z(x),

‖x− az‖2, z ≥ z(x),

where z(x) := − x1
x2−x1 . Therefore, for all v ∈ S1 one has

∂vD(x) ≤ 2E 〈(x+ aZ)1[Z ≤ z(x)] + (x− aZ)1[Z > z(x)], v〉
= 2 〈x− E aZ + 2E aZ 1[Z ≤ z(x)], v〉 .

If x is a minimum point of D(x), then ∂vD(x) ≥ 0 for all v, hence

x = E aZ − 2E aZ 1[Z ≤ z(x)].
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Set F (z) := P{Z ≤ z} and E(z) := EZ 1[Z ≤ z] for all z ∈ R. Then the above equation reads
as

{

x1 = 1− EZ − 2
(

F (z(x))− E(z(x))
)

,

x2 = EZ − 2E(z(x)).
(4.23)

Substituting it to the formula for z(x), we get the following necessary condition for x to be a
minimizer of D:

z(x) =
EZ − 1 + 2F (z(x))− 2E(z(x))

2EZ − 1 + 2F (z(x))− 4E(z(x))
. (4.24)

Respectively, once x1 = x2 ≥ 0, we have

min
{

‖x− az‖2, ‖x+ az‖2
}

= ‖x− az‖2,

and thus
∂vD(x) ≤ 2〈x− E aZ , v〉.

Then x = argminD(x) yields x = E aZ = (1 − EZ,EZ), which is possible only when EZ = 1
2 ;

in this case we set z(x) := −∞, thus x also satisfies (4.23). Similar results for other possible
cases follow from the ones considered above by symmetry.

We are going to construct a distribution PZ such that Z > 0 a.s. and Argminx∈R2 D(x) =
{a1,−a1} (thus ν∗ = µ1). According to (4.23) this implies EZ = 1 since z(a1) = 0 and
F (0) = E(0) = 0. Obviously, there is no minimum point of D on the diagonal x1 = x2 because
EZ 6= 1

2 . Further, in this case (4.24) together with (4.23) substituted to x1 < x2 reads as

z(x) = 2
F (z(x))− E(z(x))

1 + 2F (z(x))− 4E(z(x))
and 1 + 2F (z(x))− 4E(z(x)) > 0. (4.25)

We want barycenters to be unstable w.r.t. small changes of P , so let us first consider F
satisfying (4.25) for all z. It is equivalent to the following equation:

1− z

1− 2z
F (z) =

z

2(1− 2z)
+ E(z).

If F is absolutely continuous, then E′(z) = zF ′(z), and it leads to the ODE

1

(1− 2z)2
F (z) +

1− z

1− 2z
F ′(z) =

1

2(1− 2z)2
+ zF ′(z)

with a solution F ∗ given by

F ∗(z) =
1

2

(

1− 1− 2z√
1− 2z + 2z2

)

.

It has the density

f∗(z) := (F ∗)′(z) =
1

2(1− 2z + 2z2)3/2
,

and the corresponding function E∗(z) := EZ∼F ∗ Z 1[Z ≤ z] is

E∗(z) =
1

2

(

1− 1− z√
1− 2z + 2z2

)

.

We are going to construct F such that it is close to F ∗ in the vicinity of 0 and ensures
the uniqueness of the barycenter ν∗ = µ1. Consider the density f := f∗ − δf , where δf(z) :=
1
z2

exp
(

−1
z

)

. Respectively, we denote

δF (z) :=

ˆ z

0
δf(s) ds = exp

(

−1

z

)

, δE(z) :=

ˆ z

0
sδf(s) ds.
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For 0 < z ≤ 1
3 we have δf(z) ≤ δf

(

1
3

)

= 9e−3 < 1
2 = f∗(0) ≤ f∗(z), i.e. f(z) > 0. We set

PZ := fL|[0,z0] + (1− F (z0))δz+ with some 0 < z0 ≤ 1
3 and with z+ still to be fixed. Condition

EZ = E(z0) + (1 − F (z0))z+ = 1 yields z+ = 1−E(z0)
1−F (z0)

(clearly, F (z0) and E(z0) do not depend
on z+). As was said above, we are interested only in the behavior of F around 0, so the second
term is chosen in a simple form (a Dirac measure) that allows us to obtain ν∗ = µ1.

Since δE(z) < zδF (z) for all z > 0, we have

z (1 + 2F (z)− 4E(z))− 2F (z) + 2E(z) = 2(1− z)δF (z)− 2(1− 2z)δE(z)

≥ 2(1− z)δF (z)− 2(1− 2z)zδF (z)

= 2
(

1− 2z + 2z2
)

F (z) > 0

whenever 0 < z ≤ z0. Consequently, for z0 < z < z+

z (1 + 2F (z)− 4E(z))− 2F (z) + 2E(z) = z (1 + 2F (z0)− 4E(z0))− 2F (z0) + 2E(z0)

≥ z0 (1 + 2F (z0)− 4E(z0))− 2F (z0) + 2E(z0) > 0.

Therefore, there is no solution of (4.25) with 0 < z(x) < z+. Furthermore, since F (z+) = 1 and
E(z+) = EZ = 1,

1 + 2F (z)− 4E(z) = 1 + 2F (z+)− 4E(z+) = −1 < 0

once z ≥ z+, which contradicts to the second inequality in (4.25). Finally, 2 F (z)−E(z)
1+2F (z)−4E(z) = 0

for z ≤ 0, hence the only solution of (4.25) is z = 0, and thus according to (4.23) we obtain that
a unique minimum point of D in the upper left half-plane is a1 = (0, 1). By the symmetry we
conclude that Argminx∈R2 D(x) = {a1,−a1}. Therefore, ν∗ = 1

2 (δa1 + δ−a1) = µ1 is the unique
Wasserstein barycenter of P .

Step 2: proof of the lower bound. Consider now a random sample Z1, . . . , Zn ∼ PZ . A
corresponding empirical barycenter is

νn := bar(µZ1 , . . . , µZn).

According to what was said above, νn is concentrated on the set of minimizers of the function

Dn(x) :=
1

n

n
∑

i=1

min
{

‖x− aZi
‖2, ‖x+ aZi

‖2
}

Moreover, there always exists a barycenter in form νn = 1
2 (δx + δ−x), thus from the same scale-

location family as all µz. Indeed, any symmetric measure concentrated on Argmin
x∈R2

Dn(x) is an

empirical barycenter.
Now we consider x = argminx∈R2 Dn(x) with x1 ≤ x2. First note that if x1 = x2, then

min {‖x− a1‖, ‖x+ a1‖} ≥ 1√
2
. Further we assume x1 < x2. Let us define

Fn(z) :=
1

n

n
∑

i=1

1[Zi ≤ z], En(z) :=
1

n

n
∑

i=1

Zi 1[Zi ≤ z].

Then condition (4.23) with z = z(x) reads as

z =
Z̄n − 1 + 2Fn(z)− 2En(z)

2Z̄n − 1 + 2Fn(z)− 4En(z)
, (4.26)

where Z̄n := 1
n

∑n
i=1 Zi.

We are going to show that with probability at least 1
8 it holds that any z satisfying the above

equation (4.26) is larger than C

logn
. From the standard CLT we obtain that for large enough n

with probability at least 1
4 one has

∆n := Z̄n − EZ ≥ σ

2
√
n
,
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where σ2 := VarZ. Using relative concentration inequalities for indicator functions (see Theo-
rem 5.1 and §5.1.2 in [BBL05]), we obtain that with probability at least 7

8 simultaneously for
all z ≥ 0 one has

|Fn(z)− F (z)| ≤ 2

√

F (z)
log(2n+ 1) + log 64

n
+ 4

log(2n+ 1) + log 64
n

≤ 4

√

z
log 64(2n+ 1)

n
+ 4

log 64(2n+ 1)

n
.

Here we used that f∗(z) ≤ 23/2, thus F (z) ≤ 23/2z ≤ 4z, and that the shatter coefficient
SF (Z2n

1 ) ≤ 2n+ 1 for the class F := {z 7→ 1[z ≤ a] : a ∈ R}. Further, note that

|En(z)− E(z)| ≤ z sup
s≤z

|Fn(s)− F (s)|.

Moreover,

0 ≤ δF (z) ≤ exp
(

−1

z

)

, 0 ≤ δE(z) ≤ z exp
(

−1

z

)

.

Now it is easy to see that there are n0 and c > 0 such that for n ≥ n0 with probability at least
1
8 ∆n ≥ σ

2
√
n

and for all 0 ≤ z < min
{

c
logn

, z0

}

|Fn(z)− F (z)| < 4√
n

(
√

c log 64(2n+ 1)

logn
+

log 64(2n0 + 1)√
n0

)

≤ ∆n

20
,

|En(z)− E(z)| < z0
∆n

20
≤ ∆n

60
,

and

δF (z) < n−1/c ≤ ∆n

20
, δE(z) < z0n

−1/c ≤ ∆n

60
.

Therefore,

2Z̄n − 1+2Fn(z)− 4En(z)

= 1 + 2∆n + 2F (z)− 4E(z) + 2(Fn(z)− F (z))− 4(En(z)− E(z))

≤ 1 + 2F ∗(z)− 4E∗(z) + 2∆n + 4δE(z) + 2|Fn(z)− F (z)|+ 4|En(z)− E(z)|

< 1 + 2F ∗(z)− 4E∗(z) +
9

4
∆n,

and

Z̄n − 1+2Fn(z)− 2En(z)

= ∆n + 2F (z)− 2E(z) + 2(Fn(z)− F (z))− 2(En(z)− E(z))

≥ 2(F ∗(z)− E∗(z)) + ∆n − 2δF (z)− 2|Fn(z)− F (z)| − 2|En(z)− E(z)|

> 2(F ∗(z)− E∗(z)) +
3

4
∆n.

Since z (1 + 2F ∗(z)− 4E∗(z)) = 2(F ∗(z)− E∗(z)), the above inequalities yield

z
(

2Z̄n − 1 + 2Fn(z)− 4En(z)
)

≤ 2(F ∗(z)− E∗(z)) +
9z

4
∆n

≤ 2(F ∗(z)− E∗(z)) +
3

4
∆n < Z̄n − 1 + 2Fn(z)− 2En(z),

which contradicts (4.26). Obviously, for z < 0

Z̄n − 1 + 2Fn(z)− 2En(z)

2Z̄n − 1 + 2Fn(z)− 4En(z)
=

∆n

1 + 2∆n
> 0 > z.

Consequently, any solution z of (4.26) must satisfy z ≥ min
{

c
logn

, z0

}

. Once z = z(x), this
implies that

min{‖x− a1‖, ‖x+ a1‖} ≥ C

logn
.

Hence d(supp νn, supp ν∗) ≥ C

logn
, and thus the claim follows.
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Appendix 4.A Auxiliary results

Lemma 4.A.1. Let ‖Q′
n − I‖ ≤ 1

2 , with Q′
n coming from (4.17); then

∥

∥

∥
Σ̂n −Σn

∥

∥

∥

1
≤ βn



2

(

1

n

∑

i

‖Ti − I‖2F

)1/2

+ βn



 ,

where

βn
def
= κ(Q∗)

(

1
n

∑

i‖Si‖
‖Q∗‖

)1/2

‖Q′
n − I‖F ,

κ(Q∗) is the condition number of Q∗ and ‖A‖1 is the 1-Schatten (nuclear) norm of an operator
A.

Proof. Note, that for any (Tni − I)⊗ (Tni − I) the following decomposition holds

(Tni − I)⊗ (Tni − I) = (Ti − I)⊗ (Ti − I) + (Tni − Ti)⊗ (Ti − I)

+ (Ti − I)⊗ (Tni − Ti) + (Tni − Ti)⊗ (Tni − Ti) .

Summing over i yields

Σ̂n −Σn =
1

n

∑

i

(Tni − Ti)⊗ (Ti − I) (4.27)

+
1

n

∑

i

(Ti − I)⊗ (Tni − Ti) +
1

n

∑

i

(Tni − Ti)⊗ (Tni − Ti) .

Note, that each

‖(Tni − Ti)⊗ (Ti − I)‖1 ≤ ‖Tni − Ti‖F ‖Ti − I‖F .
Lemmas 4.2.5 (III) and 4.2.8 yield

‖Tni − Ti‖F ≤ 1

1− ‖Q′
n − I‖

∥

∥

∥dT
Si

Q∗
(Qn −Q∗)

∥

∥

∥

F

≤ 2
∥

∥

∥
Q

−1/2
∗ dtSi

Q∗

(

Q′
n − I

)

Q
−1/2
∗

∥

∥

∥

F
≤ 2

λmax

(

dtSi

Q∗

)

λmin(Q∗)
‖Q′

n − I‖F

≤
λ
1/2
max

(

S
1/2
i Q∗S

1/2
i

)

λmin(Q∗)
‖Q′

n − I‖F ≤ κ(Q∗)

( ‖Si‖
‖Q∗‖

)1/2

‖Q′
n − I‖F ,

where dtSQ is defined in (4.9). Hence 1
n

∑

i‖Tni − Ti‖2F ≤ β2n. The above expression together

with (4.27) and Cauchy–Schwarz inequality lead to the upper bound on
∥

∥

∥
Σ̂n −Σn

∥

∥

∥

1
:

∥

∥

∥Σ̂n −Σn

∥

∥

∥

1
≤ 2

n

∑

i

‖Ti − I‖F ‖Tni − Ti‖F +
1

n

∑

i

‖Tni − Ti‖2F

≤ 2βn

(

1

n

∑

i

‖Ti − I‖2F

)1/2

+ β2n.

Further we present concentration of Fn around F . Denote as ‖X‖ψ2 an Orlicz norm with
Young function ψ2(x) = ex

2 − 1, i.e.

‖X‖ψ2

def
= inf

{

c > 0 : Eψ2 (|X|/c) ≤ 1
}

.

Then sub-Gaussianity of a r.v. X is equivalent to ‖X‖ψ2 <∞ and it ensures

Var(X) ≤
√
2‖X‖ψ2 .
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Proposition 4.A.2 (Concentration of F ′

n, Proposition 2 in [Kol11]). Let F ′

n, F ′, and dtSQ be
defined as (4.21), (4.22), and (4.9), respectively. There exists a constant C > 0 such that for all
t > 0 it holds with probability at least 1− e−t

‖F ′

n − F ′‖ ≤ γn(t), γn(t)
def
= C max

(

σF

√

t+log(2m)
n

, U

√

log
(

U
σF

)

t+log(2m)
n

)

,

where σ2F
def
=

∥

∥

∥

∥

E
(

dtSQ∗
− F ′

)2
∥

∥

∥

∥

, U
def
=
∥

∥

∥

∥

∥

∥dtSQ∗
− F ′

∥

∥

∥

∥

∥

∥

ψ2

.

Lemma 4.A.3. The above constants can be estimated as follows:

σF ≤ ‖Q∗‖1/2
2

(E‖S‖)1/2 , U ≤ 3

2
‖Q∗‖1/2

∥

∥‖S‖
∥

∥

1/2

ψ1
,

where ψ1(x) = ex − 1.

Proof. By Corollary 4.2.7 we obtain

σ2F
def
=
∥

∥

∥
E
(

dtSQ∗
− F ′

)2
∥

∥

∥
≤ E

∥

∥dtSQ∗

∥

∥

2 ≤ ‖Q∗‖
4

E‖S‖

and (due to properties of Orlicz norm)

U
def
=
∥

∥

∥

∥

∥dtSQ∗
− F ′

∥

∥

∥

∥

∥

ψ2

≤ ‖F ′‖√
ln 2

+
∥

∥

∥

∥

∥dtSQ∗

∥

∥

∥

∥

∥

ψ2

≤ ‖Q∗‖1/2
2

[

2E‖S‖1/2 +
∥

∥‖S‖1/2
∥

∥

ψ2

]

≤ ‖Q∗‖1/2
2

[

2 (E‖S‖)1/2 +
∥

∥‖S‖
∥

∥

1/2

ψ1

]

≤ 3

2
‖Q∗‖1/2

∥

∥‖S‖
∥

∥

1/2

ψ1
.

The next proposition ensures the concentration of T̄n.

Proposition 4.A.4 (Concentration of T̄n; [HKZ12], Theorem 1). Under Assumption 4.3 it
holds

P

{

∥

∥ΠM

(

T̄n − I
)∥

∥

F
≥ σT√

n

(√
m+ t

)

}

≤ e−t
2/2 for any t ≥ 0.

Lemma 4.A.5 (Sub-exponential tail bounds). Suppose that X is sub-exponential with param-
eters ν, b. Then

P {X ≥ EX + t} ≤
{

exp (− t2

2ν2
), if 0 ≤ t ≤ ν2

b
,

exp (− t
2b), if t ≥ ν2

b
.
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Chapter 5

Entropic-regularized barycenters

5.1 Introduction

In this chapter we again consider the 2-Wasserstein space over Rd. As was mentioned in the
previous chapter, establishing a central limit theorem (CLT) for Wasserstein barycenters is a
nontrivial problem, and such results are known only in very particular cases (dimension one
or the case of a scale-location family, see the last chapter). The difficulty is not only due to
the fact that the problem is infinite-dimensional but also (and in fact more importantly) to the
fact that Wasserstein barycenters are related to an obstacle problem for a system of Monge–
Ampère equations (see [AC11]). The support of a Wasserstein barycenter is indeed an unknown
of the problem and very little is known about its regularity (see [SW16] for counter-examples to
convexity). The free-boundary aspect of Wasserstein barycenters actually makes the dependence
of the barycenter on the sample possibly nonsmooth and thus prevents one from using a delta
method.

Bigot, Cazelles, and Papadakis in [BCP19] observed that when one discretizes continuous
measures, the corresponding (discrete) barycenters exhibit strong oscillations and proposed to
use an entropic penalization to rule out such discretization artefacts (recall that such penalized
barycenters were also considered in a more general setting in Chapter 3). Once one adds an en-
tropic term, the free-boundary aspect of the unregularized Wasserstein problem disappears and
one can expect regularity and quite strong estimates by PDE arguments. The objective of this
chapter is to investigate the regularizing effect of the entropic penalty term on 2-Wasserstein
barycenters. Starting from the optimality condition, which consists in an elliptic system of
Monge–Ampère equations, we will prove various bounds (on the Fisher information, by a max-
imum principle, or higher regularity based on the regularity theory for Monge–Ampère equa-
tions). We will then consider again the stochastic setting of entropic Wasserstein barycenters of
random i.i.d. measures. As a consequence of our estimates, we will obtain a strengthened form
of the law of large numbers (that is, not only for a.s. convergence in the Wasserstein distance,
but also for Sobolev norms) and more importantly, under suitable additional assumptions, we
will obtain a CLT.

In Section 5.2, we introduce the setting and prove existence and uniqueness of the entropic
Wasserstein barycenter. The entropic barycenter is then characterized by a system of Monge–
Ampère equations in Section 5.3 where we treat the Gaussian case as a simple application.
Section 5.4 is devoted to further properties: global moment and Sobolev bounds, strong stability
and a maximum principle. Higher regularity is considered in Section 5.5 in the bounded case.
Section 5.6 deals with asymptotic results for entropic barycenters of empirical measures with
a law of large numbers and a CLT. Finally, the appendix gathers some material related to the
linearization of Monge–Ampère equations and to auxiliary probability results which are used in
the proof of our CLT.

65
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5.2 Setting, assumptions and preliminaries

Recall that P2(R
d) is the set of Borel probability measures on Rd having a finite second moment,

and equipped with the 2-Wasserstein metric W2 given by (2.2):

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

ˆ

‖x− y‖2 dγ(x, y), µ, ν ∈ P2(X),

it forms the 2-Wasserstein space over Rd. The Kantorovich duality formula (see Subsection 2.2)
enables one to express 1

2W
2
2 (µ, ν) as the maximum of

ˆ

Rd

u dµ+

ˆ

Rd

v dν

among pairs of potentials u and v such that

u(x) + v(y) ≤ 1

2
‖x− y‖2 ∀x, y ∈ Rd.

Moreover, optimal u and v can be chosen such that Brenier potentials

φ(x) :=
1

2
‖x‖2 − u(x), ψ(y) :=

1

2
‖y‖2 − v(y)

are Legendre transforms of each other:

φ = ψ∗, ψ = φ∗.

We denote by uνµ any Kantorovich potential from µ to ν and likewise denote by φνµ := 1
2‖·‖2−uνµ

the corresponding Brenier potential. Moreover, if µ is absolutely continuous w.r.t. the Lebesgue
measure, then by Proposition 2.2.10 the optimal transport map T νµ = ∇φνµ from µ to ν is unique
up to a µ-negligible set. In particular, if µ is absolutely continuous and almost everywhere
strictly positive, the Brenier potential φνµ is uniquely defined on any connected component of
intΩ up to an additive constant.

Now we give ourselves a Borel (w.r.t. τw) probability measure P on P2(R
d) such that

ˆ

P2(Rd)
m2(ν) dP (ν) <∞, (5.1)

where m2(ν) denotes the second absolute moment of ν, i.e.

m2(ν) :=

ˆ

Rd

‖x‖2 dν(x), ν ∈ P2(R
d).

Given a regularization parameter λ > 0 and a Borel set Ω ⊂ Rd of positive Lebesgue measure (of
particular interest is the case where Ω = Rd or Ω is convex), we consider the following problem
(which was introduced in [BCP19] as an entropic regularization of the Wasserstein barycenter
problem):

Vλ,Ω(ρ;P ) :=
1

2

ˆ

W 2
2 (ρ, ν) dP (ν) + λEntΩ(ρ) → min

ρ∈P2(Rd)
, (5.2)

where EntΩ is defined for every µ ∈ P2(R
d) by

EntΩ(µ) :=

{

´

Ω ρ log ρ, if µ = ρdx, ρ log ρ ∈ L1(Rd), and µ(Ω) = 1,

+∞ otherwise.

Note that this is nothing but problem (3.5) from Chapter 3 with G = λEntΩ. If Ω = Rd we
simply denote EntRd = Ent and Vλ,Rd = Vλ. When considering ρ ∈ P(Rd) absolutely continuous
w.r.t. the Lebesgue measure, we shall slightly abuse notations and use the same notation for its
density.
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Example 5.2.1. If Ω = Rd and P =
∑I

i=1 piδδxi is concentrated on Dirac masses, (5.2) can be
reformulated as

inf
ρ∈P2(Rd)

1

2

ˆ

Rd

∥

∥

∥x−
I
∑

i=1

pixi

∥

∥

∥

2
dρ(x) + λEnt(ρ),

whose solution is the Gaussian

ρ̄(x) =
1

(2πλ)
d
2

exp
(

− 1

2λ

∥

∥

∥
x−

I
∑

i=1

pixi

∥

∥

∥

2)

whereas the (unregularized) Wasserstein barycenter of P is just δ∑I
i=1 pixi

.

Lemma 5.2.2. There is a constant C > 0 such that for any ρ ∈ P2(R
d)

Ent(ρ) ≥ −d
2

logm2(ρ)− Cd.

Moreover, for any measurable A ⊂ Rd with |A| < 1 it holds that

ρ(A) ≤
(

Ent(ρ) +
d

2

(

logm2(ρ)
)

+
+ Cd

)

1

log(1/|A|) .

Remark 5.2.3. The second claim ensures the uniform integrability of the set
{

ρ ∈ P2(R
d) :

m2(ρ) ≤ C, Ent(ρ) ≤ C
}

with any C > 0. If |Ω| < ∞, then the boundedness of the entropy is
enough, but in the general case it becomes trickier since ρ log ρ can be negative.

Proof. Take the Gaussian density g := N (0, σ2I). Then

0 ≤ KL(ρ, g) :=

ˆ

ρ log
ρ

g
= Ent(ρ) +

m2(ρ)

2σ2
+
d

2
log
(

2πσ2
)

.

The r.h.s. attains minimum at σ =
√

m2(ρ)/d, which gives us

Ent(ρ) ≥ −d
2

[

1 + log
(

2πm2(ρ)

d

)]

(5.3)

= −d
2

logm2(ρ)−
d

2
log(πe) +

d

2
log

d

2

≥ −d
2

logm2(ρ)− d

(

log(πe)
2

+
1

e

)

.

Here we used that x logx ≥ −1
e
≥ −d

e
for all x ≥ 0.

Now consider A ⊂ Rd with |A| < 1. Define B := Rd \ A and the density ρB := ρ1B

ρ(B) . Using
Jensen’s inequality we obtain

Ent(ρ) = ρ(B)

ˆ

B

ρB log
(

ρBρ(B)
)

+

ˆ

A

ρ log ρ

≥ ρ(B)Ent(ρB) + ρ(B) log ρ(B) + ρ(A) log
ρ(A)

|A|
= ρ(B)Ent(ρB) + ρ(A) log

1

|A| +
(

ρ(A) log ρ(A) + ρ(B) log ρ(B)
)

Note that ρ(B) = 1−ρ(A) and p log p+(1−p) log(1−p) ≥ − log 2 for any p ∈ [0, 1]. Furthermore,
due to (5.3)

−ρ(B)Ent(ρB) ≤
d

2
ρ(B) log

(

2πem2(ρB)

d

)

≤ d

2
ρ(B) log

(

2πem2(ρ)

dρ(B)

)

=
d

2
ρ(B) log

(

πem2(ρ)
)

− d

2
ρ(B) log

(

dρ(B)

2

)

≤ d

2

(

logm2(ρ)
)

+
+
d

2
log(πe) +

1

e
.
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Finally, we get

ρ(A) log
1

|A| ≤ Ent(ρ)− ρ(B)Ent(ρB) + log 2

≤ Ent(ρ) +
d

2
(logm2(ρ))+ + d

(

log(πe)
2

+
1

e
+ log 2

)

.

Corollary 5.2.4. For any R > 0 the functional EntΩ is l.s.c. w.r.t. the narrow convergence on
the closed ball B̄W2

R (δ0) =
{

ρ ∈ P(Rd) : m2(ρ) ≤ R2
}

.

Remark 5.2.5. Again, if |Ω| <∞, then the uniform integrability and the Dunford–Pettis theorem
[Bel15, Theorem 3] immediately yield that EntΩ is l.s.c. w.r.t. the narrow convergence on the
whole space P(Rd).

Proof. Let ρn ⇀ ρ, m2(ρn) ≤ R2. Then Ent(ρ) ≤ lim inf Ent(ρn), see e.g. the appendix of
[Car+17]. W.l.o.g. assume Ent(ρn) ≤ E < ∞ for all n. It remains to show that ρ(Ω) = 1. By
the above lemma there is a constant C > 0 such that

ρn(A) ≤
C

log(1/|A|) ∀n ∈ N

once |A| < 1. For any 0 < ε < 1 one can find a closed set Fε ⊂ Ω such that |Ω \ Fε| ≤ ε. Then

ρ(Fε) ≥ lim sup ρn(Fε) = 1− lim inf ρn(Ω \ Fε) ≥ 1− C

log(1/ε)
→ 1 as ε→ 0.

Therefore, ρ(Ω) = 1 and hence

EntΩ(ρ) = Ent(ρ) ≤ lim inf Ent(ρn) = lim inf EntΩ(ρn).

Now we can conclude that there exists a solution of (5.2), i.e. a corresponding regularized
Fréchet barycenter in terms of Chapter 3.

Proposition 5.2.6. Assume (5.1), then problem (5.2) admits a unique solution.

Proof. Existence of a solution follows immediately from Proposition 3.5.1: indeed, Lemma 5.2.2
and Corollary 5.2.4 ensure that EntΩ satisfies assumptions on a penalty functional. The unique-
ness of the minimizer follows from the strict convexity of the entropy and the convexity of the
squared 2-Wasserstein distance.

Entropic-Wasserstein barycenters can therefore be defined as follows.

Definition 5.1. The unique solution ρ̄ of (5.2) is called the entropic-Wasserstein barycenter of
P w.r.t. λ and Ω and denoted barλ,Ω(P ) and simply barλ(P ) if Ω = Rd.

Remark 5.2.7. If Ω is open and λn → 0, then Gn := λn EntΩ and

G(µ) :=

{

0, if µ(Ω) = 1,

+∞, otherwise

satisfy assumptions of Theorem 3.5.2. Hence, up to extraction of a subsequence,

W2

(

barλn,Ω(P ), bar0,Ω(P )
)

→ 0,

where bar0,Ω(P ) ∈ BarG(P ). Moreover, taking the closure of Ω does not change the entropic-
Wasserstein barycenter, thus we have also

W2

(

barλn,Ω(P ), bar0,Ω(P )
)

→ 0.
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We can immediately state some basic invariance properties of entropic-Wasserstein barycen-
ters in case Ω = Rd. For instance, if we shift all measures ν by some vector s ∈ Rd and rotate
by some orthogonal matrix Q ∈ O(d), then entropic-Wasserstein barycenters will be also shifted
and rotated by the same vector and matrix (clearly, the same result holds for any subgroup of
translations and orthogonal transformations that Ω is invariant to). The next proposition shows
that translations can actually be “factored out” from the barycenter.

Proposition 5.2.8. Let Ω = Rd, λ > 0, P be a measure on P2(R
d) satisfying condition

(5.1), and ρ̄ = barλ(P ). Fix a measurable map s ∈ L2
(

P ;Rd
)

and define a measure Ps :=
(ν 7→ ν + s(ν))#P , where ν ⊕ s := (x 7→ s + x)#ν for all ν ∈ P2(R

d) and s ∈ Rd. Then
barλ(Ps) = ρ̄⊕ s̄, with s̄ :=

´

s(ν) dP (ν).

Proof. Note that it is enough to consider the case Eν [X] = 0 for P -a.e. ν, where Eν [X] =
´

Rd x dν(x) is the average of ν ∈ P2(R
d). Recall that due to the bias-variance decomposition

W 2
2 (µ, ν) =W 2

2 (µ⊖ Eµ[X], ν ⊖ Eν [X]) + ‖Eµ[X]− Eν [X]‖2, µ, ν ∈ P2(R
d).

Since entropy is invariant to shifts, we get for any ρ ∈ P2(R
d) and a ∈ Rd

Vλ(ρ⊕ a;Ps) =
1

2

ˆ

[

W 2
2 (ρ⊖ Eρ[X], ν) + ‖Eρ[X] + a− s(ν)‖2

]

dP (ν) + λEnt(ρ)

= Vλ(ρ;P )−
1

2
‖Eρ[X]‖2 + 1

2
‖a+ Eρ[X]− s̄‖2 + C.

In particular, taking s ≡ 0, ρ = ρ̄, and using that the minimum with respect to a is attained
at 0, we get that Eρ̄[X] = 0. Now, we can first minimize Vλ(ρ;P ) over ρ’s with zero mean:
Eρ[X] = 0, and then minimize the third term with respect to a, hence barλ(Ps) = ρ̄⊕ a, a = s̄.
The claim follows.

Remark 5.2.9. Note that, when Ω = Rd, a useful corollary of Proposition 5.2.8 is that the
expectation w.r.t. the entropic-Wasserstein barycenter is the average of the expectations:

Eρ̄[X] =

ˆ

Eν [X] dP (ν).

5.3 Characterization

From now on we assume that Ω is open, unless explicitly stated otherwise. The entropic term
forces the regularized barycenter to be everywhere positive. Indeed, arguing in a similar way as
in Lemma 8.6 from [San15], we arrive at:

Lemma 5.3.1. Let ρ̄ := barλ,Ω(P ) then ρ̄ > 0 a.e. on Ω and log(ρ̄) ∈ L1
loc(Ω).

Proof. Let g be the standard Gaussian density, scaled so as to give mass 1 to Ω. For t ∈ (0, 1),
set ρt := (1− t)ρ̄+ tg. The convexity of ρ 7→W 2

2 (ρ, ν) together with the optimality of ρ̄ give

λ [EntΩ(ρt)− EntΩ(ρ̄)] ≥
t

2

ˆ

[

W 2
2 (ρ̄, ν)−W 2

2 (g, ν)
]

dP (ν),

so that for some C, we have for every t ∈ (0, 1)

1

t
(EntΩ(ρt)− EntΩ(ρ̄)) ≥ C. (5.4)

Now, observe that

1

t
(EntΩ(ρt)− EntΩ(ρ̄)) =

ˆ

{ρ̄=0}
g log(tg) +

ˆ

{ρ̄>0}

1

t

(

ρt log(ρt)− ρ̄ log(ρ̄)
)

≤
ˆ

{ρ̄=0}
g log(tg) +

ˆ

{ρ̄>0}

(

g log(g)− ρ̄ log(ρ̄)
)

≤ log(t)
ˆ

{ρ̄=0}
g + EntΩ(g)− EntΩ(ρ̄)
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(where in the second line we have used the convexity of s 7→ s log s). Combining this inequality
with (5.4) and letting t→ 0+, we immediately see that |{ρ̄ = 0}| = 0.

Let us now show that log(ρ̄) ∈ L1
loc(Ω). Since max(0, log(ρ̄)) ≤ ρ̄ we have to show that

´

K
log(ρ̄) > −∞ for every compact subset (of positive Lebesgue measure) K of Ω. Calling µ the

uniform probability measure on K, setting νt := ρ̄+ t(µ− ρ̄) for t ∈ (0, 1) and arguing as above,
we have

1

t
(EntΩ(νt)− EntΩ(ρ̄)) ≥ C.

Moreover, 1
t
(νt log(νt) − ρ̄ log ρ̄) ≤ µ log(µ) − ρ̄ log ρ̄ ∈ L1(Ω), Fatou’s lemma and the previous

inequality thus give

C ≤ lim sup
t→0+

1

t
(EntΩ(νt)− EntΩ(ρ̄))

≤
ˆ

Ω
lim sup
t→0+

(νt log(νt)− ρ̄ log(ρ̄)) =
ˆ

Ω
log(ρ̄)(µ− ρ̄)

and since EntΩ(ρ̄) is finite, this gives
´

K
log(ρ̄) > −∞.

If Ω is connected, then the fact that the regularized barycenter is everywhere positive guar-
antees uniqueness (up to a constant) of the Brenier potential between ρ̄ and ν ∈ P2(R

d), and
thus its stability w.r.t. changes of ρ̄. However, the case of disconnected Ω seems to be less
studied, and for the sake of completeness let us provide in the next lemmas some results based
on the analysis of convex potentials φνρ.

Lemma 5.3.2. Let µ ∈ P(Rd). Then for any compact set K ⊂ Ω and any convex function
φ : Ω → R one has

osc
K
φ := max

K
φ− min

K
φ ≤ diam(K) + r

inf
x∈Kr/2

µ(Br/2(x))

ˆ

Ω
‖∇φ‖dµ, (5.5)

where 0 < r ≤ d(K, ∂Ω), Kσ =
⋃

x∈K B̄σ(x) for any σ > 0, and ‖∇φ(x)‖ := minw∈∂φ(x)‖w‖.
Moreover, the Lipschitz constant of φ on K, Lip (φ|K), can be estimated as

Lip (φ|K) ≤ 2diam(K) + 3r

r inf
x∈K3r/4

µ(Br/4(x))

ˆ

Ω
‖∇φ‖dµ. (5.6)

Remark 5.3.3. Notice that Ω is not necessarily convex, thus we say a function φ on Ω is convex
if it can be extended to a convex function on Rd (possibly making value +∞), cf. [Fig17].

Proof. Let x1 ∈ argmaxK φ, x0 ∈ argminK φ, and w ∈ ∂φ(x1). Then for any x ∈ Ω and
z ∈ ∂φ(x) one has

φ(x0) + 〈z, x− x0〉 ≥ φ(x) ≥ φ(x1) + 〈w, x− x1〉,
and thus the Cauchy–Schwarz inequality yields

‖z‖ ≥ oscK φ+ 〈w, x− x1〉
‖x− x0‖

.

Therefore,
ˆ

Ω
‖∇φ‖dµ ≥

ˆ

Wr(x1,w)
‖∇φ‖dµ ≥ osc

K
φ

ˆ

Wr(x1,w)

1

‖x− x0‖
dµ

≥ osc
K
φ

ˆ

Wr(x1,w)

1

‖x− x1‖+ ‖x1 − x0‖
dµ

≥ osc
K
φ
µ
(

Br/2

(

x+ rw
2∥w∥

))

diam(K) + r
,
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where we have set Wr(x,w) := {y ∈ Br(x) : 〈w, y − x〉 ≥ 0} and used the fact that

Br/2

(

x+ rw
2∥w∥

)

⊂Wr(x,w). Finally, the first claim follows from the inclusion x+ rw
2∥w∥ ∈ Kr/2.

To prove (5.6) we apply (5.5) to Kr/2, which yields

osc
Kr/2

φ ≤
diam(Kr/2) + r/2

inf
x∈K3r/4

µ
(

Br/4(x)
)

ˆ

Ω
‖∇φ‖dµ ≤ diam(K) + 3r/2

inf
x∈K3r/4

µ
(

Br/4(x)
)

ˆ

Ω
‖∇φ‖dµ.

Note that for any x ∈ K and w ∈ ∂φ(x) one has Br/2(x) ⊂ Kr/2, hence

osc
Kr/2

φ ≥ osc
Br/2(x)

φ ≥ r

2
‖w‖.

Therefore,

‖w‖ ≤ 2

r
osc
Kr/2

φ ≤ 2diam(K) + 3r

r inf
x∈K3r/4

µ
(

Br/4(x)
)

ˆ

Ω
‖∇φ‖dµ,

thus we obtain the desired bound on Lip (φ|K).

Corollary 5.3.4. Let ρ ∈ P2(Ω) have a positive density, ρn ∈ P2(R
d) be such that W2(ρn, ρ) → 0,

and νn ∈ P2(R
d) be such that W2(νn, ν) → 0 for some ν. Fix an open connected U ⊂⊂ Ω and

x0 ∈ U . If φνnρn is a Brenier potential between ρn and νn, for all n ∈ N, then

φνnρn − φνnρn(x0) ⇒ φνρ on U,

where φ is the uniquely defined on U Brenier potential between ρ and ν, such that φνρ(x0) = 0,
and ⇒ stands for the uniform convergence. Moreover, ∇φνnρn → ∇φνρ a.e. on Ω.

Proof. Let us denote φn := φνnρn and φ := φνρ. Since any optimal transport plan from ρn to νn is
concentrated on the graph of φn, we have

ˆ

Ω
‖∇φn‖dρn ≤

ˆ

Ω
‖y‖dνn = m1(νn) → m1(ν).

In the same way, since ∇φ is defined a.e. on Ω,
ˆ

Ω
‖∇φ‖dρ =

ˆ

Ω
‖y‖dν = m1(ν).

Furthermore, inf
x∈U3r/4

ρ
(

Br/4(x)
)

> 0 since ρ > 0, where 0 < r ≤ d(U, ∂Ω) > 0, thus

lim inf inf
x∈U3r/4

ρn
(

Br/4(x)
)

> 0,

because ρn ⇀ ρ. Then the above lemma and the Arzelà–Ascoli theorem yield that, up to a
subsequence,

φn − φn(x0) ⇒ ψ on U

for some convex ψ, ψ(x0) = 0. Consequently, ∇φn → ∇ψ a.e. on U (recall that ψ and all φn
are differentiable a.e.) and, moreover, for a.e. x ∈ U

d
(

∇ψ(x), ∂φn(y)
)

→ 0 as y → x, n→ ∞.

At the same time, d
(

∇φ(x), ∂φ(y)
)

→ 0 as y → x for a.e. x ∈ U . Combining this with the
stability of optimal transport plans (Proposition 2.2.8) and the uniqueness of Brenier’s map we
conclude that ∇ψ = ∇φ a.e. on U , hence ψ = φ on U due to the connectedness of U . Extension
to the whole Ω is trivial.
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The uniqueness of the Kantorovich potential between ρ̄ and ν in the case of connected Ω
is well-known to be very useful in terms of the differentiability of µ 7→ W 2

2 (µ, ν) and µ 7→
´

W 2
2 (µ, ν) dP (ν) at µ = ρ̄, as expressed in Lemma 5.3.5 below. This is a slight generalization

of Proposition 7.14 in [San15], adapted to the case of unbounded domain.

Lemma 5.3.5. Let Ω be connected, ρ̄ := barλ,Ω(P ), and, given ν ∈ P2(R
d), let uνρ̄ be the (unique

on Ω, up to an additive constant) Kantorovich potential between ρ̄ and ν. If µ ∈ L1(Ω) is a
probability density such that µ − ρ̄ has compact support in Ω, then defining ρε := ρ̄ + ε(µ − ρ̄)
for ε ∈

(

0, 12
)

we have

lim
ε→0+

1

2ε

[

W 2
2 (ρε, ν)−W 2

2 (ρ̄, ν)
]

=

ˆ

Ω
uνρ̄ d(µ− ρ̄)

and

lim
ε→0+

1

2ε

ˆ

[

W 2
2 (ρε, ν)−W 2

2 (ρ̄, ν)
]

dP (ν) =
ˆ

(
ˆ

Ω
uνρ̄ d(µ− ρ̄)

)

dP (ν).

Proof. Let us shorten notations by defining

u = uνρ̄, φ = φνρ̄ :=
1

2
‖·‖2 − uνρ̄

and let uε be a Kantorovich potential between ρε and ν and φε := 1
2‖·‖2 − uε. Let K be a

compact subset of Ω supporting µ− ρ̄ and normalize the Brenier potentials φ and φε in such a
way that their minimum on K is 0. It immediately follows from the Kantorovich duality formula
that

ˆ

K

uε d(µ− ρ̄) ≥ 1

2ε
[W 2

2 (ρε, ν)−W 2
2 (ρ̄, ν)] ≥

ˆ

K

u d(µ− ρ̄). (5.7)

Since W 2
2 (ρε, ρ̄) ≤ εW 2

2 (µ, ρ̄) → 0 as ε → 0, Corollary 5.3.4 yields that uε ⇒ u on K. Passing
to the limit in (5.7) gives us the first claim of the lemma.

Now observe that since (∇φε)#ρε = ν and ε < 1
2 , we have

ˆ

Ω
‖∇φε‖ρ̄ ≤ 2

ˆ

Ω
‖∇φε‖ρε = 2m1(ν). (5.8)

Set
θε(ν) :=

1

2ε
[W 2

2 (ρε, ν)−W 2
2 (ρ̄, ν)]

and note that it follows from (5.7)–(5.8) and Lemma 5.3.2 that |θε(ν)| can be bounded by an
affine function of m1(ν), the desired result therefore follows from (5.1), Lebesgue’s dominated
convergence theorem and the first claim.

We are now in position to characterize the regularized barycenter.

Theorem 5.3.6. Let ρ̄ ∈ P2(Ω), then ρ̄ = barλ,Ω(P ) if and only if there is a measurable choice
of Brenier potentials φνρ̄ such that ρ̄ has a continuous density given by

ρ̄(x) = exp
(

− 1

2λ
‖x‖2 + 1

λ

ˆ

φνρ̄(x) dP (ν)
)

(5.9)

for every x ∈ Ω. Moreover, log(ρ̄) is semi-convex hence differentiable a.e. and for a.e. x ∈ Ω
one has

x+ λ∇ log(ρ̄)(x) =
ˆ

∇φνρ̄(x) dP (ν). (5.10)

Proof. We start with proving (5.9).
Sufficiency. Assume that ρ̄ ∈ P2(R

d) satisfies (5.9), and let µ ∈ P2(R
d) be such that

EntΩ(µ) <∞. Firstly, using the convexity of the entropy we obtain

EntΩ(µ) ≥ EntΩ(ρ̄) +
ˆ

Ω
log(ρ̄)(µ− ρ̄).
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Secondly, by the Kantorovich duality formula and the fact that uνρ̄ := 1
2‖·‖2−φνρ̄ is a Kantorovich

potential between ρ̄ and ν, we get

1

2
W 2

2 (µ, ν) ≥
1

2
W 2

2 (ρ̄, ν) +

ˆ

Ω
uνρ̄ d(µ− ρ̄).

Combining the above inequalities, observing that (5.9) means that λ log ρ̄+
´

uνρ̄ dP (ν) = 0, and
using Fubini’s theorem, we thus get

Vλ,Ω(µ;P ) ≥ Vλ,Ω(ρ̄;P ),

so that ρ̄ = barλ,Ω(P ).

Necessity. Step 1: connected Ω. Fix a compact with nonempty interior subset K of Ω
and normalize the (unique) dual potential uνρ̄ such that it has minimum 0 on K. Then, arguing
as in the proof of Lemma 5.3.5, there is a constant CK such that ‖uνρ̄‖L∞(K) ≤ CK(1 +m2(ν))
so that the (semi-concave) potential

x 7→ U(x) :=

ˆ

uνρ̄(x) dP (ν)

is bounded on K. Now we claim that V := λ log(ρ̄) + U (which is integrable on K thanks
to Lemma 5.3.1) coincides Lebesgue a.e. with a constant on K (which taking an exhaustive
sequence of compact subsets of Ω will enable to find normalizing constants for φνρ̄ that do not
depend on K and therefore prove (5.9)). Assume, by contradiction, that V does not coincide
Lebesgue a.e. with a constant on K, then we could find two measurable subsets K1 and K2 of
K, both of positive Lebesgue measure, and α ∈ R and δ > 0 such that

V ≥ α+ δ a.e. on K1, V ≤ α− δ a.e. on K2. (5.11)

In particular ρ̄(K1) > 0 and ρ̄(K2) > 0, now set β := ρ̄(K1)
2ρ̄(K2)

and define the probability density

µ ∈ L1(Ω) by

µ(x) :=











1
2 ρ̄(x) if x ∈ K1,

(1 + β)ρ̄(x) if x ∈ K2,

ρ̄(x) otherwise

and ρε := ρ̄+ ε(µ− ρ̄). It is straightforward to check that

lim
ε→0+

1

ε
[Ent(ρε)− Ent(ρ̄)] =

ˆ

K

log(ρ̄)(µ− ρ̄).

With Lemma 5.3.5, the construction of µ, and (5.11), this yields

lim
ε→0+

1

ε
[Vλ,Ω(ρε;P )− Vλ,Ω(ρ̄;P )] =

ˆ

K

V (µ− ρ̄) = −1

2

ˆ

K1

V ρ̄+ β

ˆ

K2

V ρ̄ ≤ −δρ̄(K1) < 0

contradicting the optimality of ρ̄.

Step 2: general case. Now consider a general open Ω. Take connected open sets Ωn ⊂ Rd

such that Ω ⊂ Ωn and |Ωn \ Ω| → 0. Let ρ̄n := barλ,Ωn
(P ), then Lemma 5.2.2 allows us

to apply Theorem 3.5.2, which yields that W2(ρ̄n, ρ̄) → 0. Moreover, according to Step 1 and
Lemma 5.3.2 all log ρ̄n are locally Lipschitz continuous uniformly in n, hence ρ̄n ⇀ ρ̄ > 0 implies
that log ρ̄n locally uniformly converge to (the continuous version of) log ρ̄.

Now take a dense countable subset S = {xk}k∈N of Ω and define functions

fkn(ν) :=
φνρ̄n(xk)

m1(ν)
, ν ∈ P2(R

d).

Let φνρ̄n be normalized in such way that φνρ̄n(x0) = cn = λ log ρ̄n(x0) +
∥x0∥2

2 for all ν ∈ P2(R
d),

n ∈ N, where x0 ∈ Ω is a fixed point. From the stability it follows that every fkn is measurable,
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and Lemma 5.3.2 ensures that fkn ∈ L∞(P ). Moreover, since ρ̄n(x0) → ρ̄(x0) > 0, then cn are
bounded, hence {fkn}n∈N is uniformly bounded for every k. By the Banach–Alaoglu theorem
and the diagonal extraction argument there is a subsequence such that fkn ⇀

∗ fk ∈ L∞(P ) for
all k ∈ N (without relabelling). Define

ψν(xk) := m1(ν)f
k(ν), ν ∈ P2(R

d), k ∈ N.

Note that if xk and xj belong to the same connected component of Ω, then by Corollary 5.3.4

fkn(ν)− f jn(ν) →
φνρ̄(xk)− φνρ̄(xj)

m1(ν)
∀ν ∈ P2(R

d).

Therefore, for P -a.e. ν on any connected component ψν(xk) coincides with φνρ̄(xk) for all k,
up to an additive constant, hence one can extend ψν to every connected component of Ω by
continuity.

Now consider xk0 , . . . , xkm ∈ S and (w1, . . . , wm) ∈ ∆m−1 such that xk0 =
∑m

i=1wixki . The
convexity of φνρ̄n yields that

fk0n ≤
m
∑

i=1

wif
ki
n for all n ∈ N,

hence

ψν(xk0) := m1(ν)f
k0(ν) ≤ m1(ν)

m
∑

i=1

wif
ki(ν) =:

m
∑

i=1

wiψ
ν(xki) for P -a.e. ν.

Since there is a countable set of these inequalities and due to the continuity of ψν , this is enough
to ensure that it is convex (in the sense of Remark 5.3.3) for P -a.e. ν. Hence ψν = φνρ̄ for P -a.e.
ν. Finally, since

´

m1(ν) dP (ν) <∞, we obtain that for all k ∈ N

λ log ρ̄n(xk) +
‖xk‖2
2

=

ˆ

φνρ̄n(xk) dP (ν) =:
ˆ

m1(ν)f
k
n(ν) dP (ν)

→
ˆ

m1(ν)f
k(ν) dP (ν) =:

ˆ

ψν(xk) dP (ν).

As log ρ̄n locally uniformly converge to log ρ̄ we conclude that

λ log ρ̄+
‖·‖2
2

=

ˆ

ψν dP (ν) in Ω.

Proof of (5.10). Since

Φ :=

ˆ

φνρ̄ dP (ν)

is convex, log ρ̄ is semi-convex. It is therefore differentiable a.e. Now we claim that if x ∈ Ω is a
differentiability point of Φ it also has to be a differentiability point of φνρ̄ for P -almost every ν.
Indeed, assume that Φ is differentiable at x ∈ Ω. For n ∈ N, let An denote the set of ν ∈ P2(R

d)
for which there exist pν and qν in ∂φνρ̄(x) such that ‖pν − qν‖ ≥ 1/n. The desired claim will be
established if we prove that P (An) = 0 for every n ∈ N. Let (qν , pν) ∈ ∂φνρ̄(x)

2 be chosen (in a
measurable way) so that ‖pν − qν‖ ≥ 1/n when ν ∈ An, then, for every h ∈ Ω− x, one has

φνρ̄(x+ h)− φνρ̄(x)−
1

2
〈pν + qν , h〉 ≥

1

2
|〈pν − qν , h〉|.

By integration s :=
´

pν+qν
2 dP (ν) ∈ ∂Φ(x) = {∇Φ(x)} and then

Φ(x+ h)− Φ(x)− 〈s, h〉 = o(h) ≥ 1

2

ˆ

An

|〈pν − qν , h〉| dP (ν).
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By homogeneity, we thus have
´

An
|〈pν − qν , h〉| dP (ν) = 0 for every h, so that

´

An
‖pν −

qν‖dP (ν) = 0 ≥ P (An)/n and, therefore, P (An) = 0. Hence, if Φ is differentiable at x,
for every h ∈ Rd we have:

φνρ̄(x+ th)− φνρ̄(x)

t
→ 〈∇φνρ̄(x), h〉 as t→ 0+, for P -a.e. ν.

Moreover, the left-hand side above is controlled in absolute value by the Lipschitz constant of
φνρ̄ in a compact neighborhood of x which, thanks to Lemma 5.3.2, in turn, is controlled by

ˆ

Ω
‖∇φνρ̄‖ρ̄ =

ˆ

Rd

‖y‖dν(y) ≤
√

m2(ν).

Thanks to (5.1) and Lebesgue’s dominated convergence theorem, we thus get

∇Φ(x) =

ˆ

∇φνρ̄(x) dP (ν),

which shows (5.10).

Remark 5.3.7 (First regularizing effect). One immediately deduces from (5.9) and the convexity
of φνρ̄, further regularity properties of the regularized barycenter:

log(ρ̄) ∈ L∞
loc(Ω), ρ̄ ∈W

1,∞
loc (Ω), and ∇ρ̄ ∈ BVloc(Ω,R

d).

Example 5.3.8 (Gaussian case). Suppose now that P is concentrated on Gaussian measures
and Ω = Rd; then the regularized barycenter is Gaussian as well. In order to prove this we can
assume thanks to Proposition 5.2.8 that P -a.e. ν = N (0, Sν), where Sν are positive semi-definite
matrices with EP [Sν ] ≤ σ2I, σ > 0. We want to prove that there is a positive definite symmetric
matrix Q̄ such that

barλ(P ) = N (0, Q̄).

In order to see that, recall that the optimal transport from ρ = N (0, Q) with Q ≻ 0 to ν =

N (0, S) is given by T νρ (x) = TSQx, where TSQ := Q−1/2
(

Q1/2SQ1/2
)1/2

Q−1/2 (see Chapter 4).

Thus φνρ = 1
2〈x, T

Sν

Q x〉+ C, and the optimality condition (5.9) can be rewritten as

−λ
2
〈x, Q̄−1x〉 = −‖x‖2

2
+

1

2
EP 〈x, TSν

Q x〉+ C,

i.e.

I = λQ̄−1 + Q̄−1/2 EP

[

(

Q̄1/2SνQ̄
1/2
)1/2

]

Q̄−1/2.

Thus Q̄ has to be a solution of the following fixed-point equation:

Q = F (Q) := λI + EP

[

(

Q1/2SνQ
1/2
)1/2

]

.

This has a solution by Brouwer’s fixed-point theorem. Indeed, denote αν := λmax(Sν). By
assumption

EP [αν ] ≤ trEP [Sν ] ≤ dσ2.

Define
α := 2λ+ dσ2,

then for any λI 4 Q 4 αI it holds that

λmax(F (Q)) ≤ λ+ EP

[

(ανα)
1/2
]

≤ λ+
α

2
+

EP [αν ]

2
≤ λ+

α

2
+
dσ2

2
= α.

So, F maps the convex set {λI 4 Q 4 αI} to itself, and it is clearly continuous. The existence
of Q̄ such that Q̄ = F (Q̄) therefore follows from Brouwer’s fixed-point theorem.
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Example 5.3.9 (Discrete case). Consider now the case where Ω = Rd and P is a discrete
measure supported on discrete measures:

P =
∑

i∈I
piδνi with νi =

∑

j∈Ji
ν
j
i δxji

,

where I and each Ji are finite and for every i ∈ I the points (xji )j∈Ji are pairwise distinct and
the weights νji are positive. Then it follows from Theorem 5.3.6 that ρ̄ := barλ(P ) has the form

ρ̄(x) = exp
(

− 1

2λ
‖x‖2 + 1

λ

∑

i∈I
piφi(x)

)

,

where ∇φi is the optimal transport map from ρ̄ to νi. It is given by

φi(x) = max
j∈Ji

{〈x, xji 〉 − ψ
j
i } := φψi

(x),

where the ψi = (ψji )j∈Ji should match the mass conservation condition:

ν
j
i = ρ̄

(

∂φ∗
ψi
(xji )

)

∀i ∈ I, j ∈ Ji. (5.12)

In the semi-discrete optimal terminology, ∂φ∗
ψi
(xji ) is the so-called Laguerre cell, where φψi

coincides with x 7→ 〈x, xji 〉 − ψ
j
i . Computing ρ̄ := barλ(P ) therefore amounts to finding ψ

j
i ,

i ∈ I, j ∈ Ji, such that (5.12) holds for ρ̄ depending on the ψji as well:

ρ̄(x) = exp
(

− 1

2λ
‖x‖2 + 1

λ

∑

i∈I
pi max

j∈Ji
{〈x, xji 〉 − ψ

j
i }
)

. (5.13)

Using results from [KMT19] concerning the differentiability of the Kantorovich functional in
the semi-discrete case, it is easy to see that the nonlinear system (5.12)–(5.13) is the system of
Euler–Lagrange equations for the finite-dimensional concave maximization problem

−
∑

i∈I
pi
∑

j∈Ji
ψ
j
i ν
j
i − λ

ˆ

Rd

exp
(

− 1

2λ
‖x‖2 + 1

λ

∑

i∈I
pi max

j∈Ji
{〈x, xji 〉 − ψ

j
i }
)

dx→ max
ψ
j
i

,

which is the dual to the entropic barycenter problem in this semi-discrete setting.

5.4 Properties of the entropic barycenter

5.4.1 Global bounds

The aim of this paragraph is to emphasize some global bounds on the entropic barycenter which
hold in the case where Ω may be unbounded, in particular it covers the case of the whole space.

Lemma 5.4.1. The entropic-Wasserstein barycenter ρ̄ of P satisfies the following bound on the
Fisher information:

ˆ

Ω
‖∇ log(ρ̄)‖2ρ̄ ≤ 1

λ2

ˆ

W 2
2 (ρ̄, ν) dP (ν).

In particular,
√
ρ̄ ∈ H1(Ω), hence in the case Ω = Rd it holds that ρ̄ ∈ L∞(R) ∩ C0,1/2(R)

if d = 1, ρ̄ ∈ Lq(R2) for every q ∈ [1,+∞) if d = 2 and ρ̄ ∈ L
d

d−2 (Rd) if d ≥ 3. Finally,
(1 + ‖x‖)∇ρ̄ ∈ L1(Rd).

Proof. According to Theorem 5.3.6

∇ log(ρ̄(x)) =
1

λ

ˆ

(

∇φνρ̄(x)− x
)

dP (ν) = − 1

λ

ˆ

∇uνρ̄(x) dP (ν),
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thus
ˆ

Ω

‖∇ρ̄‖2
ρ̄

=

ˆ

Ω
‖∇ log(ρ̄)‖2ρ̄ ≤ 1

λ2

ˆ

Ω
ρ̄(x)

ˆ

P2(Rd)
‖∇uνρ̄(x)‖2 dP (ν) dx,

and using Fubini’s Theorem, we get that

ˆ

Ω

‖∇ρ̄‖2
ρ̄

≤ 1

λ2

ˆ

[
ˆ

Ω
‖∇uνρ̄‖2ρ̄

]

dP (ν) =
1

λ2

ˆ

W 2
2 (ρ̄, ν) dP (ν).

Finally, (1 + ‖x‖)∇ρ̄ = 2 (1 + ‖x‖)√ρ̄∇√
ρ̄ belongs to L1(Rd) since both (1 + ‖x‖)√ρ̄ and ∇√

ρ̄

are in L2(Rd).

Proposition 5.4.2. Let Ω be a Borel set such that |Ω| > 0 (not necessarily open) and

ˆ

mp(ν) dP (ν) < +∞ (5.14)

for some p ≥ 1 (where mp(ν) :=
´

Rd‖x‖p dν(x)). Then the entropic-Wasserstein barycenter ρ̄ of
P satisfies mp(ρ̄) < +∞, and more precisely, for any r > 0 it holds that

mp(ρ̄) ≤
6p

2

(

rp +

ˆ

mp(ν) dP (ν)
)

+
|B1(0)|Γ

(

d+p
2

)

2|Ω ∩Br(0)|
(96λ)(d+p)/2. (5.15)

In particular, if Ω = Rd, then

mp(ρ̄) ≤
6p

2

ˆ

mp(ν) dP (ν) + (3456λ)p/2 Γ

(

d+ p

2

)

. (5.16)

Proof. Fix r > 0 s.t. |Ω ∩ Br(0)| > 0 and denote S := Ω ∩ Br(0). Now let us take R > 0 and
consider the set

QR :=
{

x ∈ BR(0) \BR/2(0) : ‖x‖ ≥ 3
(

E‖T νρ̄ (x)‖+ r
)}

, (5.17)

where T νρ̄ := ∇φνρ̄ is the optimal transport map (here and after, expectations are taken w.r.t.
ν ∼ P ). Assume ρ̄(QR) > 0 and define

ρt := ρ̄+ t

(

ρ̄(QR)

|S| 1S −ρ̄1QR

)

∈ P2(Ω), 0 ≤ t ≤ 1.

Then

d

dt
EntΩ(ρt)

∣

∣

∣

∣

t=0+
=
ρ̄(QR)

|S

ˆ

S

log ρ̄−
ˆ

QR

ρ̄ log ρ̄

≤ ρ̄(QR) log
(

ρ̄(S)

|S|

)

− ρ̄(QR) log
(

ρ̄(QR)

|QR|

)

≤ ρ̄(QR) log
( |QR|ρ̄(S)
ρ̄(QR)|S|

)

≤ ρ̄(QR) log
( |BR(0)|
ρ̄(QR)|S|

)

= ρ̄(QR) log
(

VdR
d

ρ̄(QR)|S|

)

,

where Vd := |B1(0)| is the volume of a unit ball in Rd. Furthermore, for any ν we can estimate
W 2

2 (ρ1, ν) using the transport plan

γ :=
(

id, T νρ̄
)

#

(

ρ̄1Rd\QR

)

+
1

|S| 1S ⊗
(

T νρ̄
)

#
(ρ̄1QR

) ∈ Π(ρ1, ν),
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which gives us

W 2
2 (ρ1, ν) ≤

ˆ

Rd\QR

‖T νρ̄ (x)− x‖2ρ̄+
 

S

[
ˆ

QR

‖T νρ̄ (x)− y‖2ρ̄(x)
]

dy

≤W 2
2 (ρ0, ν) +

ˆ

QR

[

(

r + ‖T νρ̄ (x)‖
)2 − ‖T νρ̄ (x)− x‖2

]

ρ̄

≤W 2
2 (ρ0, ν) +

ˆ

QR

[

r2 + 2r‖T νρ̄ (x)‖ − ‖x‖2 + 2‖T νρ̄ (x)‖‖x‖
]

ρ̄.

Then it is easy to see that, due to the convexity of W 2
2 ,

d

dt
EW 2

2 (ρt, ν)

∣

∣

∣

∣

t=0+
≤ EW 2

2 (ρ1, ν)− EW 2
2 (ρ0, ν)

≤
ˆ

QR

[

r2 + 2 (r + ‖x‖)E‖T νρ̄ (x)‖ − ‖x‖2
]

ρ̄

=

ˆ

QR

[

(

r + E‖T νρ̄ (x)‖
)2 −

(

‖x‖ − E‖T νρ̄ (x)‖
)2
]

ρ̄

≤ −1

3

ˆ

QR

‖x‖2ρ̄ ≤ − ρ̄(QR)R
2

12
.

Therefore,
d

dt
Vλ,Ω(ρt;P )

∣

∣

∣

∣

t=0+
≤ λρ̄(QR)

(

log
(

VdR
d

ρ̄(QR)|S|

)

− R2

24λ

)

.

On the other hand, by optimality this derivative should be nonnegative, thus

ρ̄(QR) ≤
VdR

d

|S| exp
(

− R2

24λ

)

. (5.18)

Now we set Rn = 2n and define qn := ρ̄(QRn), n ∈ Z. Note that by the definition (5.17) of
QR, if x ∈ Ω \⋃n∈ZQRn , then ‖x‖ < 3

(

E‖T νρ̄ (x)‖+ r
)

. Consequently,

mp(ρ̄) =

ˆ

Ω
‖x‖pρ̄ ≤

ˆ

Ω\∪n∈Z
QRn

3p
(

E‖T νρ̄ ‖+ r
)p
ρ̄+

∑

n∈Z
Rpnqn.

Using the fact that (a+b)p ≤ 2p−1(ap+bp),
(

T νρ̄
)

#
ρ̄ = ν, and Jensen’s inequality, one can bound

the first term on the r.h.s. as follows:
ˆ

Ω\
∪

n∈Z
Q2n

3p
(

E‖T νρ̄ (x)‖+ r
)p
ρ̄ ≤ 6p

2

(

rp + E

ˆ

Ω
‖T νρ̄ ‖pρ̄

)

=
6p

2
(rp + Emp(ν)) .

Now let us bound the second term: due to (5.18) we get

∑

n∈Z
Rpnqn ≤ Vd

|S|
∑

n∈Z
Rd+pn exp

(

− R2
n

24λ

)

≤ Vd

|S|
∑

n∈Z

ˆ 2n+1

2n
xd+p−1 exp

(

− x2

96λ

)

dx

=
Vd

|S|

ˆ +∞

0
xd+p−1 exp

(

− x2

96λ

)

dx

=
Vd(96λ)

(d+p)/2

2|S| Γ

(

d+ p

2

)

.

Combining the above bounds together we obtain

mp(ρ̄) ≤
6p

2
(rp + Emp(ν)) +

Vd(96λ)
(d+p)/2

2|S| Γ

(

d+ p

2

)

,
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thus the first claim follows.
Finally, in case Ω = Rd, we can take r =

√
96λ

6p/(p+d) , then using |S| = Vdr
d one obtains

mp(ρ̄) ≤
6p

2
Emp(ν) +

(

6d/(p+d)
√
96λ

)p 1 + Γ
(

d+p
2

)

2

≤ 6p

2
Emp(ν) + (3456λ)p/2 Γ

(

d+ p

2

)

.

Remark 5.4.3. Note that (5.16) (and thus, in some sense, (5.15)) is an interpolation between two
bounds. On the one hand, if Ω = Rd and λ = 0, then ρ̄ is a standard Wasserstein barycenter
and, due to the convexity of mp along generalized geodesics, one gets the bound

mp(ρ̄) ≤
ˆ

mp(ν) dP (ν).

On the other hand, if P is concentrated at the measure δ0, then ρ̄ = N (0, λI) by Theorem 5.3.6.
In this case,

mp(ρ̄) =
(2λ)p/2 Γ

(

p+d
2

)

Γ
(

d
2

) ,

which coincides with the second term in the r.h.s. of (5.16) up to a constant factor to the power
p and a factor depending on the dimension.

Remark 5.4.4. Let us indicate now a more elementary approach to obtain moment bounds when
Ω is convex. Let V : Rd → R+ be a convex potential such that

ˆ

mV (ν) dP (ν) < +∞, where mV (ν) :=

ˆ

Rd

V (x) dν(x).

On the one hand, thanks to (5.10), the convexity of V and the fact that ∇φνρ̄#
ρ̄ = ν, we have:

ˆ

Ω
V (λ∇ log ρ̄(x) + x)ρ̄(x) dx ≤

ˆ

mV (ν) dP (ν).

On the other hand, again by convexity V (λ∇ log ρ̄(x) + x)ρ̄(x) ≥ V (x)ρ̄(x) + λ〈∇V (x),∇ρ̄(x)〉.
Integrating by parts (which can be justified if V is C1,1 and using Lemma 5.4.1), denoting by n
the outward normal to Ω on ∂Ω, we thus get

ˆ

Ω
(V − λ∆V )ρ̄ ≤

ˆ

mV (ν) dP (ν)− λ

ˆ

∂Ω
∂nV ρ̄. (5.19)

Assuming (5.14) and choosing V (x) = ‖x − x0‖p (actually, some suitable C1,1 approximations
of V ) with p ≥ 2 in (5.19) with x0 ∈ Ω, observing that ∂nV ≥ 0 on ∂Ω since Ω is convex, we
obtain the bound

ˆ

Ω

(

‖x− x0‖p − λp(p+ d− 2)‖x− x0‖p−2
)

ρ̄(x) dx ≤
ˆ

Ω

ˆ

Rd

‖x− x0‖p dν(x) dP (ν).

In particular, when Ω = Rd or, more generally, when Ω is convex and contains 0, we have

m2(ρ̄) ≤ 2λd+

ˆ

m2(ν) dP (ν),

and for higher moments

mp(ρ̄) ≤ λp(p+ d− 2)mp−2(ρ̄) +

ˆ

mp(ν) dP (ν).

Note finally that when choosing V linear, the two convexity inequalities we used above are
equalities, yielding

ˆ

Ω
xρ̄(x) dx+ λ

ˆ

∂Ω
nρ̄ =

ˆ

P2(Rd)

ˆ

Rd

x dν(x) dP (ν).
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Corollary 5.4.5. Let Ω be open. Under assumptions of Proposition 5.4.2 it holds that ρ̄1/p ∈
W 1,p(Ω). In particular, if p > d, then ρ̄ ∈ L∞(Ω) ∩ C0,1−d/p(Ω).

Proof. Once we have a bound on mp(ρ̄), the fact that ρ̄1/p is W 1,p can be proved as for Lemma
5.4.1. Indeed, by the same arguments (together with the crude bound ‖∇φνρ̄(x) − x‖p ≤
2p−1

(

‖∇φνρ̄(x)‖p + ‖x‖p
)

) we arrive at

pp‖∇ρ̄1/p‖p
Lp(Ω) =

ˆ

Ω

‖∇ρ̄‖p
ρ̄p−1

≤ 2p−1

λp

(
ˆ

mp(ν) dP (ν) +mp(ρ̄)

)

.

5.4.2 Stability

Following Subsection 3.5.2, let us define the p-Wasserstein metric between measures on Pp(Rd):

Wp
p (P,Q) := inf

Γ∈Π(P,Q)

ˆ

Pp(Rd)×Pp(Rd)
W p
p (µ, ν) dΓ (µ, ν).

Lemma 5.4.6 (Stability). Take p ≥ 2 and let {Pn}n≥1 ⊂ Pp
(

Pp(Rd)
)

, P ∈ Pp
(

Pp(Rd)
)

be s.t.
Wp(Pn, P ) → 0. Then for ρ̄n := barλ,Ω(Pn) and ρ̄ := barλ,Ω(P ) it holds that

Wp(ρ̄n, ρ̄) −→ 0, (5.20)

ρ̄1/pn

W 1,p(Ω)−−−−−→ ρ̄1/p, (5.21)

log ρ̄n
W

1,q
loc

(Ω)−−−−−→ log ρ̄, ∀ 1 ≤ q <∞. (5.22)

Proof. Proof of (5.20). Note that since W2 ≤ Wp and W2 ≤ Wp, one has W2(Pn, P ) → 0.
According to the proof of Proposition 5.2.6, EntΩ(ρ̄n) satisfies the assumptions of Theorem 3.5.2,
hence the latter yields W2(ρ̄n, ρ̄) → 0.

Arguing in the same way as in the proof of Proposition 5.4.2, one can show that for any
R > 0

ˆ

{∥x∥≥R}
‖x‖pρ̄n ≤ C

[
ˆ

Pp(Rd)

ˆ

{∥x∥≥R}

(

1 +
∥

∥∇φνρ̄n
∥

∥

p)
ρ̄n dPn(ν)

+

ˆ +∞

R

xd+p−1 exp
(

− x2

96λ

)

dx
]

, (5.23)

where the constant C depends solely on Ω, λ, p, and d.
To prove that Wp(ρ̄n, ρ̄) → 0, we use the stability of optimal transport plans from Proposi-

tion 3.3.5: once W2(ρn, ρ) → 0, Wp(νn, ν) → 0, and there exists a unique optimal transport plan
γνρ from ρ to ν for the quadratic cost function, one has Jc(γνnρn , γ

ν
ρ ) → 0, where the cost function

c
(

(x1, y1), (x2, y2)
)

:= ‖x1 − x2‖2 + ‖y1 − y2‖p, xi, yi ∈ Rd,

and γνnρn is any optimal transport plan from ρn to νn for the quadratic cost function. Further,
using Proposition 3.3.2, it is easy to show that for any closed set G ⊂ Rd the function

(ρ, ν) 7→
ˆ

G

(

1 + ‖∇φνρ‖p
)

ρ =

ˆ

G×Rd

(1 + ‖y‖p) dγνρ (x, y)

is upper-semicontinuous w.r.t. the convergence in W2 (for ρ) and Wp (for ν), as well as its
average w.r.t. a measure on Pp(Rd):

(ρ, P ) 7→
ˆ

Pp(Rd)

ˆ

G

(

1 + ‖∇φνρ‖p
)

ρdP (ν).
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Hence for all R > 0 one obtains

lim sup
ˆ

Pp(Rd)

ˆ

{∥x∥≥R}

(

1 + ‖∇φνρ̄n‖p
)

ρ̄n dPn(ν) ≤
ˆ

Pp(Rd)

ˆ

{∥x∥≥R}

(

1 + ‖∇φνρ̄‖p
)

ρ̄dP (ν).

Using this together with (5.23), we get that

lim sup
ˆ

{∥x∥≥R}
‖x‖pρ̄n ≤ C

[
ˆ

{∥x∥≥R}

(

ˆ

Pp(Rd)

(

1 + ‖∇φνρ̄‖p
)

dP (ν)

)

ρ̄

+

ˆ +∞

R

xd+p−1 exp
(

− x2

96λ

)

dx
]

→ 0 as R→ 0.

Thus the measures ‖·‖pρ̄n are uniformly integrable, and using the criterion of convergence in
the Wasserstein space (see e.g. [Vil09, Theorem 6.9]) we deduce that Wp(ρ̄n, ρ̄) → 0.

Proof of (5.21) and (5.22). Fix an arbitrary open set U ⊂⊂ Ω. By Lemma 5.3.2

Lip
(

φνρ̄n

∣

∣

U

)

≤ C

inf
x∈U3r/4

ρ̄n
(

Br/4(x)
)

(
ˆ

Ω
‖∇φνρ̄n‖2ρ̄n

)1/2

=
C

inf
x∈U3r/4

ρ̄n
(

Br/4(x)
)

√

m2(ν),

where r = d(U, ∂Ω). Since ρ̄n ⇀ ρ̄ and ρ̄ > 0 on Ω, we have inf
x∈U3r/4

ρ̄n
(

Br/4(x)
)

≥ c > 0 for any

n. Therefore, the functions

φ̄n = λ log ρ̄n +
‖·‖2
2

=

ˆ

φνρ̄n dPn(ν)

are uniformly Lipschitz continuous on U for all n since
´

m2(ν) dPn(ν) are uniformly bounded.
Furthermore, as ρ̄n ⇀ ρ̄ > 0, φ̄n are also uniformly bounded on U . Then, by the Arzelà–Ascoli

theorem, φ̄n
C(U)−−−→ φ̄, and we deduce from weak convergence that φ̄ = λ log ρ̄+ ∥·∥2

2 . Moreover,
every φ̄n is convex, thus ∇φ̄n → ∇φ̄ a.e. on U . Hence, by Lebesgue’s dominated convergence

theorem, we get φ̄n
W 1,q(U)−−−−−→ φ̄ for any 1 ≤ q <∞ and thus (5.22).

Further, using (5.10), we get

ˆ

Ω\U
‖∇ρ̄1/pn ‖p = 1

pp

ˆ

Ω\U
‖∇ log ρ̄n‖pρ̄n ≤ 2p−1

(pλ)p

ˆ

Ω\U
(‖∇φ̄n‖p + ‖x‖p) ρ̄n.

Since the functions ρ 7→
´

Ω\U‖x‖pρ and (ρ, P ) 7→
´

Pp(Rd)

´

Ω\U‖∇φνρ‖pρdP (ν) are u.s.c., we
obtain that

lim sup
ˆ

Ω\U
‖∇ρ̄1/pn ‖p → 0 as U → Ω

(e.g. in a sense that ρ̄(Ω \ U) → 0). Finally, this together with (5.22) yields that ρ̄1/pn
W 1,p(Ω)−−−−−→

ρ̄1/p.

In particular, the previous lemma shows that one can approximate the barycenter ρ̄ by
approximating P with discrete measures supported on some dense set of measures, e.g. discrete
or having smooth densities. As another corollary of Lemma 5.4.6, in Section 5.6 we will obtain
a law of large numbers for entropic-Wasserstein barycenters.
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5.4.3 Maximum principle

Proposition 5.4.7. Assume that Ω is convex and P
(

{ν(Ω) = 1}
)

= 1, and let ρ̄ := barλ,Ω(P )
be its entropic barycenter. Then

‖ρ̄‖L∞(Rd) ≤
(
ˆ

‖ν‖−1/d

L∞(Rd)
dP (ν)

)−d
.

Proof. We first prove the result in the simple case where P is supported by finitely many mea-
sures and then proceed by approximation thanks to the stability Lemma 5.4.6 (more precisely,
its corollary Proposition 5.6.1).

Step 1: the case of finitely many measures. Fix a compact convex set K ⊂ Ω with
nonempty interior. Assume that P =

∑N
i=1 piδνi , where each νi is supported in K and has a

C0,α, bounded away from 0 density on K. Since K is bounded, all φνiρ̄ are Lipschitz, so we can
take the continuous version of ρ̄ on Ω. Now fix an arbitrary x ∈ Ω \K. Since ρ̄ > 0 on Ω and
(

∇φνiρ̄
)

#
ρ̄ = νi for all i, there are subgradients ∇φνiρ̄ (x) ∈ K. Let y =

∑N
i=1 pi∇φνiρ̄ (x) ∈ K,

v = y−x
∥y−x∥ , then thanks to (5.9)

∂v log ρ̄(x) ≥ 1

λ
〈y − x, v〉 = 1

λ
‖y − x‖ > 0,

therefore x cannot be a maximum point of ρ̄, and ρ̄ actually attains its maximum on K.
Further, since log(ρ̄) ∈ W

1,∞
loc (Ω), the regularity result of Cordero-Erausquin and Figalli

[CF19] yields that φνiρ̄ is in fact C2,α
loc . Then at its maximum point x ∈ Ω we should have, on the

one hand
N
∑

i=1

piD
2φνiρ̄ (x) 4 I

(recall that A 4 B means that B − A is positive semi-definite). On the other hand, using the
Monge–Ampère equation ρ̄ = det

(

D2φνiρ̄
)

νi
(

∇φνiρ̄
)

(see also (5.27)), we get

ρ̄(x) ≤ ‖νi‖L∞(Rd) det
(

D2φνiρ̄ (x)
)

, i = 1, . . . , N.

So, using the concavity of det(·)1/d over symmetric positive semi-definite matrices, we obtain

N
∑

i=1

pi

(

ρ̄(x)

‖νi‖L∞(Rd)

)1/d

≤
N
∑

i=1

pi det
(

D2φνiρ̄ (x)
)1/d ≤ det

(

N
∑

i=1

piD
2φνiρ̄ (x)

)1/d

≤ 1,

what gives

ρ̄ ≤
(

N
∑

i=1

pi‖νi‖−1/d

L∞(Rd)

)−d

.

Of course, the requirement that νi is bounded away from 0 is just here to justify twice
differentiability of φνiρ̄ , if we drop this assumption replacing νi with νni := (1− 1

n
)νi+

1
n|K| , using

Lemma 5.4.6 we get the same conclusion by letting n→ ∞. In a similar way, Hölder regularity
of the νi’s can also be removed by suitably mollifying these measures and arguing by stability
again. Finally, if P =

∑N
i=1 piδνi with m2(νi) < +∞, we can find an increasing sequence of

compact convex sets Kn ⊂ Ω, such that for every n ∈ N

max
i=1,...,N

ˆ

Rd\Kn

(

1 + ‖x‖2
)

dνi(x) ≤
1

n
.

Set

νni :=
νi 1Kn

νi(Kn)
≤ n

n− 1
νi, Pn :=

N
∑

i=1

piδνni ,
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then ρ̄n := barλ,Ω(Pn) is bounded with

ρ̄n ≤ n

n− 1

(

N
∑

i=1

pi‖νi‖−1/d

L∞(Rd)

)−d

.

Since W2(ν
n
i , νi) → 0 for all 1 ≤ i ≤ N , we have W2

2 (Pn, P ) → 0, thus stability enables us to
conclude that

ρ̄ ≤
(

N
∑

i=1

pi‖νi‖−1/d

L∞(Rd)

)−d

.

Step 2: the general case. We now consider the case of a general Borel probability P on
P2(R

d) satisfying (5.1) and concentrated on measures giving full mass to Ω. Let ν1, ν2, . . . be
i.i.d. random measures drawn from P . Then, by Proposition 5.6.1, the empirical barycenters
ρ̄n := barλ,Ω(Pn), where Pn := 1

n

∑n
i=1 δνi is the empirical measure, a.s. converge to ρ̄ in 2-

Wasserstein distance. Since

1

n

n
∑

i=1

‖νi‖−1/d

L∞(Rd)
→

ˆ

‖ν‖−1/d

L∞(Rd)
dP (ν) a.s.

by the strong law of large numbers, we conclude using Step 1.

Remark 5.4.8. If, under assumptions of the above proposition,

P
(

{ν ∈ L∞(Rd), ν ≤ C}
)

= α > 0,

then it gives

‖ρ̄‖L∞(Rd) ≤
C

αd
.

The same bound was obtained in Theorem 6.1 from [KP17] for 2-Wasserstein barycenters on
Riemannian manifolds.

The following simple example shows that convexity of Ω is essential for the maximum prin-
ciple (even if P -a.e. measure ν is concentrated on Ω).

Example 5.4.9. Consider the one-dimensional case where Ω = [−8,−4] ∪ [−1, 1] ∪ [4, 8]. Let
P = 1

2δν− + 1
2δν+ , ν− = 1

4 1(−8,−4), ν+ = 1
4 1(4,8). First, we take λ = 0, thus ρ̄0 := bar0,Ω(P )

is an ordinary Wasserstein barycenter constrained to be supported on Ω. It is easy to see that
ρ̄0 is actually supported on [−1, 1], so ‖ρ̄0‖L∞(Ω) ≥ 1

2 while ‖ν−‖L∞(Ω) = ‖ν+‖L∞(Ω) =
1
4 . Now

we consider ρ̄λ := barλ,Ω(P ) and let λ → 0. By compactness, we readily get that ρ̄λ ⇀ ρ̄0, so,
for λ small enough, we have ‖ρ̄λ‖L∞(Ω) >

1
4 . Finally, by rescaling, one can construct examples

violating the maximum principle for any λ > 0.

5.5 Higher regularity

The theory developed so far has needed very mild assumptions on Ω. To deduce higher regularity
(up to the boundary) of the Kantorovich potentials and the barycenter we need to impose more
conditions on the domain.

Suppose that P is concentrated on sufficiently regular probability measures supported on a
closed ball of radius R > 0, B̄ := Ω = B̄R(0), more precisely, assume that for some α ∈ (0, 1),
k ∈ N and C > 0

P (Q) = 1, Q :=
{

ϱ ∈ Pac(Ω) : ‖log ϱ‖Ck,α(Ω) ≤ C
}

. (5.24)
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Remark 5.5.1. The following arguments are presented here for the case of a ball for simplicity but
work for compact convex sets with Ck+2,α-boundary which are strongly convex with a uniform
modulus of convexity. More precisely, we require that there are m-strongly convex functions
Hν ,H ∈ Ck+2,α(Rd) for m > 0 such that

Ω = {x ∈ Rd : H(x) < 0}, ∂Ω = {x ∈ Rd : H(x) = 0},
supp ν = {x ∈ Rd : Hν(x) ≤ 0}, ∂(supp ν) = {x ∈ Rd : Hν(x) = 0},

and supp ν are uniformly bounded for P -a.e. ν.

Thanks to the entropic regularization, this regularity implies regularity for the potentials
and the barycenter.

Proposition 5.5.2. Under assumption (5.24), one has

φνρ̄ ∈ Ck+2,α(Ω) for P -a.e. ν and ρ̄ ∈ Ck+2,α(Ω),

and there is a constant K > 0 such that

‖φνρ̄‖Ck+2,α(Ω), ‖φρ̄ν‖Ck+2,α(Ω) ≤ K for P -a.e. ν. (5.25)

Furthermore, for P -a.e. ν the transport ∇φνρ̄ : Ω → Ω is a diffeomorphism of class Ck+1,α.

Proof. By (5.24) P -a.e. ν ∈ C0,α(Ω) is bounded from below and above on Ω by a constant only
depending on C. With the representation of ρ̄ in (5.9) we obtain that ∇ log ρ̄ is bounded by
2R/λ a.e. Together with

´

ρ̄ = 1 this implies that ‖log ρ̄‖C0,1(Ω) is bounded by a constant only
depending on R and λ.

This implies by Caffarelli’s regularity theory for Monge–Ampère equations (see [Caf96] for
the original paper and Theorem 3.3 [DF14] for a concise formulation) that for any ν ∈ Q,
φνρ̄ ∈ C2,α(Ω) and ∇φνρ̄ : Ω → Ω is a diffeomorphism.

For the uniform estimate again by Caffarelli’s regularity theory for Monge–Ampère equations
(theorem on page 3 of [Caf92]) there is an α1 ∈ (0, 1) and constant C1 (only depending on α1,
C and R) such that

‖φνρ̄‖C1,α1 (Ω), ‖φρ̄ν‖C1,α1 (Ω) ≤ C1 for every ν ∈ Q.

This implies in particular ρ̄ ∈ C1,α1(Ω) by (5.9) and we can apply Theorem 5.A.5 to see that

Φρ̄ :
{

ν ∈ C0,α1(Ω) : ν(Ω) = 1, ‖log ν‖L∞(Ω) <∞
}

→ M
ν 7→ φρ̄ν

is continuous (where M denotes the set of C2,α1(Ω) Brenier potentials φ with zero mean such
that ‖∇φ‖ = R on ∂Ω). Now note that, by the compact embedding of Hölder spaces, Q is
compact in C0,α1(Ω). This implies that Φρ̄(Q) is compact in C2,α1(Ω). Hence, there is a K1 > 0
such that

‖φρ̄ν‖C2,α1 (Ω) ≤ K1 for P -a.e. ν.

Furthermore, since each φρ̄ν is strongly convex thanks to compactness of Φρ̄(Q) we conclude
that there is constant c > 0 such that

D2φρ̄ν < cI for P -a.e. ν, (5.26)

so that we obtain
‖D2φνρ̄‖L∞(Ω) ≤ c for P -a.e. ν,

which gives ρ̄ ∈ C1,1(Ω) and then again by Caffarelli’s regularity theory for Monge–Ampère
equations φνρ̄ ∈ C3,α(Ω). Differentiating now the Monge–Ampère equation (which is satisfied in
the classical sense)

det(D2φνρ̄)ν(∇φνρ̄) = ρ̄ in Ω,

‖∇φνρ̄‖2 = R2 on ∂Ω,
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in direction e ∈ Sd−1, we obtain by the same considerations as in the appendix

div(Aν∇(∂eφ
ν
ρ̄)) = ∂eρ̄ in Ω,

∇φνρ̄ · ∇(∂eφ
ν
ρ̄) = 0 on ∂Ω,

where Aν = ν(∇φνρ̄) det(D2φνρ̄)(D
2φνρ̄)

−1. Thanks to Lemma 5.A.2 and (5.26) we can finally
deduce by classical Schauder estimates (Theorem 6.30 in [GT15]) that there is constant K > 0
uniform in ν such that

‖∂eφνρ̄‖C2,α(Ω) ≤ K
(

‖∂eφνρ̄‖C0,α(Ω) + ‖∂eρ̄‖C0,α(Ω)

)

.

This concludes the uniform estimate of φνρ̄ in C3,α(Ω) for P -a.e. ν, and by again employing
(5.9) we deduce ρ̄ ∈ C3,α(Ω). The same bound follows for φρ̄ν by exchanging the role of ρ̄ and ν.
Higher regularity follows by standard elliptic theory.

Note in particular that φνρ̄ satisfies the Monge–Ampère equation, subject to the second
boundary value condition, which encodes the fact that ∇φνρ̄ maps the ball into itself, in the
classical sense

det(D2φνρ̄)ν(∇φνρ̄) = ρ̄ in B

∇φνρ̄(B) ⊂ B,
(5.27)

and that the second boundary value condition is equivalent (see Lemma 5.A.1) to an eikonal
equation on the boundary

‖∇φνρ̄(x)‖2 = R2 ∀x ∈ ∂B.

5.6 Statistical properties

5.6.1 Stochastic setting and law of large numbers

Now we consider again the stochastic setting (see Corollary 3.5.7 and Chapter 4): let P , as
above, be a distribution on P2(Ω) with finite second moment, and ν1, ν2, . . . be independent
random measures drawn from P . We will call the barycenter of the first n measures ν1, . . . , νn
an empirical barycenter: ρ̄n := barλ,Ω(Pn), where Pn := 1

n

∑n
i=1 δνi is the empirical measure.

Note that ρ̄n is random, and in this section we will establish its statistical properties, namely,
consistency and (under additional assumptions) a central limit theorem. As already mentioned
in section 5.4, a LLN follows immediately from Lemma 5.4.6.

Proposition 5.6.1 (Law of large numbers). Assume
´

mp(ν) dP (ν) < +∞ for some p ≥ 2. Let
ρ̄ be the entropic-Wasserstein barycenter of P and {ρ̄n}n∈N be empirical barycenters. Then it
a.s. holds that

Wp(ρ̄n, ρ̄) −→ 0,

log ρ̄n
W

1,q
loc

(Ω)−−−−−→ log ρ̄ ∀1 ≤ q <∞,

ρ̄1/pn

W 1,p(Ω)−−−−−→ ρ̄1/p.

Moreover, under assumption (5.24) ρ̄n
a.s.−−→ ρ̄ in Ck+2,β(Ω) for any β ∈ (0, α).

Proof. Then the first part of the theorem follows from Lemma 5.4.6 since Pn converge to P in
Wp metric (recall 3.5.7).

Further, once (5.24) holds, sequence {ρ̄n}n∈N is uniformly bounded in Ck+2,α(Ω) by Propo-
sition 5.5.2. Therefore, due to compact Hölder embedding and weak convergence ρ̄n ⇀ ρ̄, the
second claim follows.
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5.6.2 Central limit theorem

Let H be a separable Hilbert space endowed with its Borel sigma-algebra. Recall that ran-
dom variables {Xn}n∈N taking values in H converge in distribution to a random variable X if
E f(Xn) → E f(X) for any bounded continuous function f on H. We denote this convergence
by

Xn
d−→ X.

We also need to recall the notion of strong operator topology (SOT): operators An on H converge

to A in SOT (An
SOT−−−→ A), if Anu → Au for all u ∈ H. Finally, to prove a central limit

theorem for barycenters we will use some technical results from probability theory postponed to
Appendix 5.B.

Let us also introduce the following notation: if F is a space of integrable functions on Ω,
then

F⋄ :=

{

f ∈ F :

ˆ

Ω
f = 0

}

.

Theorem 5.6.2 (Central limit theorem). Let the assumption (5.24) be fulfilled with k = 1.
Then a CLT for empirical barycenters holds in H2

⋄ (B):

√
n (ρ̄n − ρ̄)

d−→ ξ ∼ N (0,Σ),

with covariance operator Σ = G−1 Var(φνρ̄)G
−1, where

G : u 7→ λ
u

ρ̄
− λ

 

B

u

ρ̄
− E(Φν)′(ρ̄)

and Φν(ρ̄) is the zero-mean Brenier potential between ρ̄ and ν.

Proof. Step 1. Let us introduce the following map F :

F :

{

ρ ∈ C2(B̄) :

ˆ

B

ρ = 1, min
B̄

ρ > 0

}

→ C2
⋄ (B̄)

ρ 7→ λ log ρ+
‖·‖2
2

−
 

B

(

λ log ρ(x) +
‖x‖2
2

)

.

It is continuously differentiable and its derivative is

F ′(ρ) : u 7→ λ
u

ρ
− λ

 

B

u

ρ
.

Then equation (5.9) can be rewritten (see Appendix 5.A for properties of the map Φν) as
follows:

F (ρ̄) = EΦν(ρ̄).

Respectively, for the empirical barycenter it reads as

F (ρ̄n) =
1

n

n
∑

i=1

Φνi(ρ̄n).

Combining the above equations and using the differentiability of F and Φν (Theorem 5.A.5), we
obtain

Gn(ρ̄n − ρ̄) = F (ρ̄n)− F (ρ̄)− 1

n

n
∑

i=1

(Φνi(ρ̄n)− Φνi(ρ̄)) =
1

n

n
∑

i=1

φi − Eφ, (5.28)

where φi = φνiρ̄ , Eφ = Eφνρ̄, and the operator Gn is defined as follows:

Gn :=

ˆ 1

0
F ′(ρ̄tn) dt− 1

n

n
∑

i=1

ˆ 1

0
(Φνi)′(ρ̄tn) dt
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with ρ̄tn := (1− t)ρ̄+ tρ̄n.

Step 2. We are going to apply the delta-method to prove a CLT and to do this we need a
convergence (in an appropriate space)

(Gn)
−1 P−→ G−1, G := F ′(ρ̄)− E(Φν)′(ρ̄).

We will consider a CLT in H2
⋄ (B), but first, let us extend all the linear operators above to

L2
⋄(B). Denote by Barλ,B(Q) the set of entropic barycenters of all measures supported on Q:

Barλ,B(Q) :=
{

barλ,B(P ) : P ∈ P
(

P2(R
d)
)

, P (Q) = 1
}

.

Clearly, the operators F ′(ρ) are Hermitian, bounded and positive definite for all ρ ∈ Barλ,B(Q).
Using (5.25) and (5.9) we conclude that these ρ are uniformly bounded away from zero, thus
F ′(ρ) are uniformly positive-definite: indeed, for any u ∈ L2

⋄(B)

〈u, F ′(ρ)u〉L2(B) =

ˆ

B

λ
u2

ρ
≥ λ

minB̄ ρ
‖u‖2L2(B) ≥ cF ‖u‖2L2(B).

For all ρ ∈ Barλ,B(Q) and ν ∈ Q it holds that −(Φν)′(ρ) are Hermitian and nonnegative.
They are also uniformly bounded since all ν and D2φνρ are uniformly bounded away from zero
according to (5.24) and Proposition 5.5.2: namely, Theorem 5.A.5 together with the Poincaré
inequality and Theorem 6.27 from [Lie13] yield that there is a constant CΦ > 0 such that

‖(Φν)′(ρ)u‖H2(B) ≤ CΦ‖u‖L2(B). (5.29)

In particular, the operators G and all Gn are a.s. well-defined, uniformly positive definite, and
thus continuously invertible in L2

⋄(B) with

‖G−1‖L2
⋄(B) ≤ ‖F ′(ρ̄)−1‖L2

⋄(B) ≤
1

cF
and ‖G−1

n ‖L2
⋄(B) ≤

1

cF
.

Now we consider the space H2
⋄ (B). It is easy to see that F ′(ρ) and (Φν)′(ρ) can be contin-

uously extended to it for any ρ ∈ Barλ,B(Q), ν ∈ Q. We are going to show that there exist
G−1 and G−1

n for all n, and they are uniformly bounded. Obviously, F ′(ρ̄) and
´ 1
0 F

′(ρ̄tn) dt
are continuously invertible, with uniformly bounded inverses. In particular, they are Fredholm
operators of index 0. Due to (5.29) and the Rellich–Kondrachov theorem (Φν)′(ρ) are compact
and uniformly bounded in H2

⋄ (B) for all ρ ∈ Barλ,B(Q), ν ∈ Q, as well as any of their average.
Thus G := F ′(ρ̄)−E(Φν)′(ρ̄) also is a Fredholm operator, and indG = indF ′(ρ̄) = 0; since G is
positive definite in L2

⋄(B), kerG = {0}, therefore G is invertible in H2
⋄ (B). The same applies to

any Gn. Let us prove that G−1
n are uniformly bounded in H2

⋄ (B). Suppose Gnu = v ∈ H2
⋄ (B).

Then

‖
(
ˆ 1

0
F ′(ρ̄tn) dt

)

u‖H2(B) ≤ ‖v‖H2(B) +
1

n

n
∑

i=1

ˆ 1

0
‖(Φνi)′(ρ̄tn)u‖H2(B) dt

≤ ‖v‖H2(B) + CΦ‖u‖L2(B)

≤ ‖v‖H2(B) + CΦ‖G−1
n ‖L2

⋄(B)‖v‖L2(B)

≤
(

1 +
CΦ

cF

)

‖v‖H2(B).

On the other hand,

∥

∥

∥

∥

(
ˆ 1

0
F ′(ρ̄tn) dt

)

u

∥

∥

∥

∥

H2(B)

≥
∥

∥

∥

∥

∥

(
ˆ 1

0
F ′(ρ̄tn) dt

)−1
∥

∥

∥

∥

∥

−1

H2
⋄(B)

‖u‖H2(B) ≥ c‖u‖H2(B).
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Therefore,

‖G−1
n ‖H2

⋄(B) ≤
1

c

(

1 +
CΦ

cF

)

.

Now let us prove that G−1
n → G−1 in SOT. First,

ˆ 1

0
F ′(ρ̄tn) dt a.s.−−→ F ′(ρ̄)

since ρ̄n
C2(B̄)−−−−→ ρ̄ a.s. by Proposition 5.6.1. Second, (5.29), the LLN, and the separability of

H2
⋄ (B) yield that

1

n

n
∑

i=1

(Φνi)′(ρ̄)
SOT−−−→ E(Φν)′(ρ̄) a.s.

It remains to show that

1

n

n
∑

i=1

ˆ 1

0
(Φνi)′(ρ̄tn) dt− 1

n

n
∑

i=1

(Φνi)′(ρ̄)
SOT−−−→ 0 a.s. (5.30)

Let ν ∈ Q and ρ
C2(B̄)−−−−→ ρ̄. Due to Theorem 5.A.5

‖(Φν)′(ρ)u− (Φν)′(ρ̄)u‖H2(B) → 0 for any u ∈ C0,α
⋄ (B̄),

hence (5.29) and the density of C0,α
⋄ (B̄) in L2

⋄(B) yield that (Φν)′(ρ) → (Φν)′(ρ̄) in SOT on
H2

⋄ (B). Now we fix u ∈ H2
⋄ (B), then functions

fνi(ρ) :=

∥

∥

∥

∥

ˆ 1

0
(Φνi)′(ρt)u dt− (Φνi)′(ρ̄)u

∥

∥

∥

∥

H2(B)

,

where ρt := (1 − t)ρ̄ + tρ, are bounded, continuous, and fνi(ρ̄) = 0. Since ρ̄n
C2(B̄)−−−−→ ρ̄ a.s.,

Lemma 5.B.1 ensures that
∥

∥

∥

∥

∥

1

n

n
∑

i=1

ˆ 1

0
(Φνi)′(ρ̄tn)udt− 1

n

n
∑

i=1

(Φνi)′(ρ̄)u

∥

∥

∥

∥

∥

H2(B)

≤ 1

n

n
∑

i=1

fνi(ρ̄n) → 0 a.s.

Taking a dense countable set {uj}j∈N in H2
⋄ (B) and using the boundedness of (Φν)′ by (5.29),

one obtains (5.30). Combining the above results we conclude that Gn
SOT−−−→ G a.s. Finally, for

any u ∈ H2
⋄ (B) one has

G−1
n u−G−1u = G−1

n (G−Gn)G
−1u→ 0

since G−1
n are uniformly bounded. I.e., G−1

n
SOT−−−→ G−1 almost surely.

Step 3. Note that ‖φνρ̄‖H2(B) ≤ C‖φνρ̄‖C2(B̄), thus E‖φνρ̄‖2H2(B) < ∞, and by the standard
CLT in Hilbert spaces (see e.g. [LT13, Theorem 10.5]) applied to {φi}i∈N we obtain that

Sn√
n
:=

1√
n

n
∑

i=1

(

φi − Eφνρ̄
) d−→ ξ, with ξ ∼ N

(

0,Var(φνρ̄)
)

.

According to (5.28),
√
n (ρ̄n − ρ̄) = G−1

n

Sn√
n
.

Since G−1
n are uniformly bounded and G−1

n
SOT−−−→ G−1 a.s., Lemma 5.B.2 yields the CLT for ρ̄n:

√
n (ρ̄n − ρ̄)

d−→ G−1ξ ∼ N
(

0, G−1 Var(φνρ̄)G
−1
)

.
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Remark 5.6.3 (CLT in the discrete case). Let us finally remark that the above delta-method
can easily be adapted to the case where Ω is convex and bounded and P is supported on a set
of measures of the form

∑N
j=1 ν

jδxj with a lower bound on the mass of atoms νj ≥ ε and the
distance between atoms ‖xi − xj‖ ≥ ε once i 6= j, for some ε > 0. Of course, in this case, one
cannot use the regularity theory for Monge–Ampère and its linearization, but one can instead
take advantage of the fine analysis of the semi-discrete case by Kitagawa, Mérigot and Thibert
[KMT19]. Indeed, in this case Φν(ρ) always take the form x 7→ max{〈x, xj〉−ψj}, but it follows
from Theorem 5.1 in [KMT19] and the implicit function theorem that the dual variables ψj

depend in a C1 way on ρ ∈ C0,1(Ω) as well as an estimate of the form

‖(Φν)′(ρ)u‖L2(Ω) ≤ C

√

√

√

√

N
∑

j=1

u(Vj)2

where the Vj ’s are the Laguerre cells associated with ρ and ν. Note that the r.h.s. of this
inequality depends on finitely many linear functionals of u, therefore (Φν)′(ρ) is compact in
L2
⋄(Ω). Moreover, one can show that there is a uniform bound

‖(Φν)′(ρ)‖L2
⋄(Ω) ≤ C

in the same way as in the proof of Theorem 5.1 in [KMT19], using the Cheeger inequality for
graphs together with the lower bounds on νj and ‖xi − xj‖, a relative isoperimetric inequality,
and uniform bounds on ρ. Since −(Φν)′(ρ) is Hermitian and nonnegative definite, we can argue
as in the proof above invoking the Fredholm alternative theorem to invert the operators G and
Gn in L2

⋄(Ω). This easily yields a CLT in L2
⋄(Ω) in this discrete setting.

Appendix 5.A Linearization of Monge–Ampère equations

Here we collect some results on the linearization of Monge–Ampère equations. For proofs we
refer to the original paper [CEK20].

Given a closed ball B̄ := B̄R(0) of radius R > 0, α ∈ (0, 1), and k ∈ N0, define

Sk,α :=
{

ϱ ∈ Pac(B̄) : ‖log ϱ‖Ck,α(B̄) <∞
}

.

Consider µ ∈ S0,α, ν ∈ S1,α. Our goal is to linearize the following Monge–Ampère equation with
a second boundary value condition:

det(D2φ)ν(∇φ) = µ,

∇φ(B̄) = B̄.
(5.31)

Note that thanks to Brenier’s theorem there exists a unique convex solution satisfying (5.31)
(a priori in the sense of ∇φ#µ = ν), and it is in C2,α(B̄) thanks to the regularity theory for
Monge–Ampère equations. We will need the following lemmas.

Lemma 5.A.1. Let φ ∈ C1(B̄) be strictly convex. Then the following are equivalent

• ∇φ(B̄) = B̄,

• ∇φ(∂B) ⊂ ∂B.

Lemma 5.A.2. For φ ∈ C2(B̄) strongly convex such that ‖∇φ(x)‖2−R2 = 0 for x ∈ ∂B, there
is β ∈ C(∂B), β > 0 such that (D2φ)−1(x) · x = β(x)∇φ(x) for x ∈ ∂B. Futhermore, there
exists κ > 0 such that |∇φ(x) · x| ≥ κ for all x ∈ ∂B.

Form now on, we fix the constant by considering potentials in the set

Ck,α⋄ (B̄) :=

{

φ ∈ Ck,α(B̄) :

ˆ

B

φ = 0

}

.
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Let us also define
M :=

{

φ ∈ C2,α
⋄ (B̄) : ‖∇φ‖2 −R2 = 0 on ∂B

}

.

We now claim that in a neighborhood of a strongly convex function φ0 ∈ M this set is the graph
of a C1-function.

Lemma 5.A.3. At φ0 ∈ M strongly convex, M is locally given by the image of a bijective
C1-function on a closed subspace of C2,α

⋄ (B̄). More precisely, there exist open subsets V ⊂ F0 :=
{

h ∈ C
2,α
⋄ (B̄) : ∇φ0 · ∇h = 0 on ∂B

}

, U ⊂ C
2,α
⋄ (B̄), with φ0 ∈ U, and a bijective C1-function:

χ0 : V → U ∩M.

Furthermore, for f0 := ΠF0(φ0), where ΠF0(φ) is defined as a solution of

− div(A0∇f) = − div(A0∇φ) +
ffl

B
div(A0∇φ) in B,

∇φ0 · ∇f = 0 on ∂B,

it holds that χ′
0(f0) = id.

Now for φ0 ∈ M take U ⊂ C
2,α
⋄ (B̄) from Lemma 5.A.3 (and possibly restrict it further such

that any φ ∈ U ∩M is strongly convex) and consider the map

Mν : U ∩M →
{

u ∈ C0,α(B̄) :

ˆ

B

u = 1

}

φ 7→ det(D2φ)ν(∇φ)

where ν is a fixed probability density in the set S1,α. Note that this map is well-defined by
Lemma 5.A.1 and the fact that the push forward preserves the mass. We want to “take the
derivative at φ ∈ U ∩ M” by pulling back Mν to the linear space F0 with the map χ0 from
Lemma 5.A.3.

Proposition 5.A.4. In the setting of Lemma 5.A.3, let φ ∈ U ∩M be strongly convex. Then
Nν :=Mν ◦ χ0 is continuously differentiable at f := ΠF0φ and the derivative is given by

N ′
ν(f) : F0 → C0,α

⋄ (B̄)

h 7→ tr(AνD2(χ′
0(f)h)) + det(D2φ)∇ν(∇φ) · ∇(χ′

0(f)h),

where F0 =
{

h ∈ C
2,α
⋄ (B̄) : ∇φ0 · ∇h = 0 on ∂B

}

and Aν := ν(∇φ) cof(D2φ). In addition, in

the weak sense we have

N ′
ν(f)h = div(Aν∇(χ′

0(f)h)).

For fixed ν ∈ S1,α, consider now the map

Φν : S0,α → M,

µ → φ, where φ is strongly convex and ∇φ#µ = ν.
(5.32)

Note that this is well defined thanks to Brenier’s theorem (Theorem 2.12 (ii) [Vil03]) and regu-
larity theory for Monge–Ampère equations (Theorem 3.3 [DF14]). Furthermore, by the consid-
erations before one can show that it is continuously differentiable.

Theorem 5.A.5. Φν as defined in (5.32) is continuously differentiable. More precisely, for
every µ ∈ S0,α, the value of (Φν)′(µ)f at f ∈ C

0,α
⋄ (B̄) is the unique solution h ∈ C

2,α
⋄ (B̄) of the

linearized equation
div(Aν∇h) = f in B,

∇φ0 · ∇h = 0 on ∂B,

where φ0 = Φν(µ) and Aν = ν(∇φ0) cof(D2φ0).



2. Auxiliary probability results 91

Appendix 5.B Auxiliary probability results

Lemma 5.B.1. Consider space Cb(X ) of bounded continuous functions on a separable metric
space X endowed with the topology of pointwise convergence. Let f1, f2, . . . be i.i.d. (Borel)
random functions from Cb(X ) s.t. f1(x

∗) = 0 a.s. and E supx∈X |f1(x)| <∞. Let {Xn}n∈N be a
sequence of r.v. convergent to x∗ a.s. Then

1

n

n
∑

i=1

fi(Xn) → 0 a.s.

Proof. Consider the modulus of continuity for f at point x∗:

ωf (δ, x
∗) := sup

x∈B̄δ(x∗)

|f(x)− f(x∗)|, δ > 0.

Note that (f, δ) 7→ ωf (δ, x
∗) is measurable: indeed, take a countable dense set S ⊂ X , then

ωf (δ, x
∗) = sup

x∈S
|f(x)− f(x∗)|1[d(x, x∗) < δ].

Since fi(x∗) = 0 a.s., we have for any fixed δ > 0

∣

∣

∣

∣

∣

1

n

n
∑

i=1

fi(Xn)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

ωfi(d(Xn, x
∗), x∗)

≤ 1

n

n
∑

i=1

(

ωfi(δ, x
∗)1 [d(Xn, x

∗) ≤ δ] + sup
x∈X

|fi(Xn)|1 [d(Xn, x
∗) > δ]

)

.

Further, E supx∈X |f1(x)| <∞, therefore by the strong LLN

1

n

n
∑

i=1

sup
x∈X

|fi(Xn)| a.s.−−→ E sup
x∈X

|f1(x)|,

1

n

n
∑

i=1

ωfi(δ, x
∗)

a.s.−−→ Eωf1(δ, x
∗) ≤ E sup

x∈X
|f1(x)|.

Since 1 [d(Xn, x
∗) > δ] → 0 a.s. it holds a.s. that

lim sup
1

n

n
∑

i=1

ωfi(d(Xn, x
∗), x∗) ≤ Eωf1(δ, x

∗) → 0 as δ → 0

due to Lebesgue’s dominated convergence theorem. The claim follows.

The following result is a version of Slutsky’s theorem for Hilbert space. We say that Xn ∈ H

converge in probability to X (Xn
P−→ X), if ‖Xn − X‖ P−→ 0, i.e. for any ε > 0 it holds that

P {‖Xn −X‖ > ε} → 0.

Lemma 5.B.2. Let {An}n∈N be a sequence of random bounded operators on a separable Hilbert
space H convergent to a fixed operator A in SOT a.s. and bounded in probability (i.e. for any
ε > 0 there exists Mε s.t. P (‖An‖ > Mε) ≤ ε for all n). Let {Xn} be a sequence of r.v. in H,

Xn
d−→ X. Then AnXn

d−→ AX.

Proof. Let {en}n∈N be an o.n.b. in H and Πk be the orthogonal projector onto the first k axes
e1, . . . , ek. Then

AnXn = AXn + (An −A)ΠkXn + (An −A) (I −Πk)Xn. (5.33)
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Since An
SOT−−−→ A a.s., for any fixed k we have ‖(An −A)Πk‖op → 0 a.s., thus

(An −A)ΠkXn
P−→ 0.

Moreover,

(I −Πk)Xn
d−−−→

n→∞
(I −Πk)X

P−−−→
k→∞

0.

Since An are bounded in probability, the above equations imply that

(An −A)Xn
P−→ 0.

This together with (5.33) and Xn
d−→ X yields convergence AnXn

d−→ AX.



Chapter 6

Dirichlet energy and Sobolev spaces

of measure-valued maps

6.1 Introduction

In this chapter we study Sobolev spaces of measure-valued maps motivated by a Monge–
Kantorovich problem regularized with a “Dirichlet energy” of a transport plan. Let Ω be an
open subset of Rm, and c : Ω× Rd → R+ be a Borel cost function. First, consider the following
regularized Monge problem for µ ∈ P(Ω), ν ∈ P(Rd):

ˆ

Ω
c
(

x, T (x)
)

dµ(x) +
ˆ

Ω
‖DT (x)‖p dx→ min

T∈W 1,p(Ω;Rd):T#µ=ν
. (6.1)

This was studied by J. Louet in [Lou14], where a PDE characterization of a solution was obtained.
In particular, in Section 4.2 he proposed some Kantorovich-like formulation.

However, here we use another approach, based on the theory of Sobolev spaces valued in the
Wasserstein space. It was proposed by Y. Brenier in [Bre03] and developed by H. Lavenant in
the works [Lav19b; Lav19a] in the context of harmonic mappings valued in the 2-Wasserstein
space. Let γ = γ(x)⊗ µ be the disintegration of a transport plan γ between µ and ν. Then we
consider the following problem:

ˆ

c dγ +

ˆ

Ω
‖Dγ(x)‖p dx→ min

γ∈Π(µ,ν)
,

where ‖Dγ(x)‖ to be understood as a “metric gradient” of a Sobolev map from Ω to Pp(Rd).
Note that a standard p-Sobolev function can be defined up to a set of zero p-capacity, thus
we can consider µ which is a.c. w.r.t. the p-capacity, but not necessarily w.r.t. the Lebesgue
measure. In this case, of course, we have to extend γ(x) to the whole Ω.

We are going to consider some properties of measure-valued Sobolev maps, including fine
properties and precise representative, and also define a notion of their convergence which is
suitable for studying the regularized Monge–Kantorovich problem.

Notations. Let Ω ⊂ Rm be an open set such that |Ω| <∞ and D be a closed subset of Rd. If
φ is a function on Ω×D, then by ∇ξφ we denote its gradient in Ω, and by ∇xφ we denote the
gradient in D.

Let 1 < p ≤ ∞, then p′ := p
p−1 is the conjugate index to p, and p∗ := pm

m−p is the Sobolev
conjugate once p < m. Furthermore, for 1 < p < m, the p-capacity of a set A ⊂ Rm is defined
as [EG15, Section 4.7]

Capp(A) := inf
{
ˆ

Rm

‖∇u‖p dξ : u ∈ Lp
∗

(Rm), ∇u ∈ Lp(Rm), u ≥ 0, A ⊂ int{u ≥ 1}
}

.

Capp is an outer measure on Rm, but it is not Borel. We say a measure µ≪ Capp if µ∗(A) = 0
whenever Capp(A) = 0, or, equivalently, if for any A ⊂ Rm with Capp(A) = 0 there is a Borel

93
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set B ⊃ A such that µ(B) = 0. As mentioned in [EG15, Chapter 4], Capp is a suitable measure
to study the fine properties of Sobolev functions.

The chapter is organized as follows. In Section 6.2 we define Sobolev maps valued in a
metric space and in the space of probability measures and recall some basic properties of them.
In Section 6.3 we consider integral mappings of form ξ →

´

D
φ dµ[ξ] and use them to study

the fine properties of Sobolev maps. Section 6.4 is devoted to two notions of convergence in
the measure-valued Sobolev space. Finally, in Section 6.5 we define rigorously the regularized
Monge–Kantorovich problem, show existence of a solution, and discuss some open questions.

6.2 Sobolev maps valued in metric space

Let (X, ρ) be a metric space and Ω be a domain in Rm as described above, endowed with
the Lebesgue measure L|Ω. Then we can naturally define the Lebesgue space Lp(Ω;X) in the
following way.

Definition 6.1. We say that a Borel map u : Ω → X belongs to the Lebesgue space Lp(Ω;X)
for 1 < p <∞, if for some (thus any) fixed x0 ∈ X

ˆ

Ω
ρp(u(ξ), x0) dξ <∞.

A metric on Lp(Ω, X) is defined as

dp(u, v) =

(
ˆ

Ω
ρp(u(ξ), v(ξ)) dξ

)1/p

, u, v ∈ Lp(Ω, X).

Of course, dp is, strictly speaking, a pseudometric between maps, thus we identify maps
which coincide a.e. in Ω. An important property of the space Lp(Ω;X) is that it is complete iff
the target space (X, ρ) is complete.

Following Yu. Reshetnyak [Res97], we now give a general definition of the Sobolev space
W 1,p(Ω;X). In the case X = Rd it is equivalent to the standard definition.

Definition 6.2. A map u ∈ Lp(Ω;X) belongs to the Sobolev space W 1,p(Ω;X) iff there is
gu ∈ Lp(Ω) such that for any L-Lipschitz function F : X → R it holds that F ◦u ∈W 1,p(Ω) and
‖∇(F ◦ u)‖ ≤ Lgu a.e. in Ω.

Now we pass to a more specific setting, whereX is the space Pp(D) of probability measures on
D with finite p-th moment endowed with the p-Wasserstein distanceWp. Then µ ∈ Lp(Ω,Pp(D))
can be equivalently described with a Young measure

µ := µ⊗ L|Ω ∈ M+(Ω×D)

such that
´

‖x‖p dµ(ξ, x) <∞. Indeed, the disintegration of any Young measure µ ∈ M+(Ω×D)
(i.e. such that π1#µ = L|Ω) satisfying this condition gives us a map µ ∈ Lp(Ω,Pp(D)). Now
consider the Sobolev space W 1,p(Ω;Pp(D)) in the sense of the above definition. In Theorem 3.17
in [Lav19b] H. Lavenant shows that there is an equivalent definition based on a multidimensional
analogue of the Benamou–Brenier formula (in that work it is proven for p = 2 but the proof
works for any p > 1 as well).

Proposition 6.2.1. Let µ ∈ Lp(Ω;Pp(D)) for some 1 < p < ∞. Then µ ∈ W 1,p(Ω;P(D)) iff
there exists a measurable matrix-valued function V ∈ Lp(Ω×D,µ;Rm×d) satisfying the following
continuity equation in a weak sense:

∇ξµ+∇x(V µ) = 0, (6.2)

i.e. for any φ ∈ C1
c (Ω× Rd) it holds that

ˆ

∇ξφ dµ+

ˆ

V∇xφdµ = 0.

Moreover, there is a constant Cp > 0 such that gpµ(ξ) ≤ Cp
´

‖V ‖p dµ[ξ] for a.e. ξ ∈ Ω.
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Notice that we can replace Pp(D) with Pp(Rd) under the assumption that µ[ξ](D) = 1 for
a.e. ξ ∈ Ω, which immediately follows from Definition 6.2. In this case one can extend V to
Ω× Rd with 0.

Again, one can equivalently define the Sobolev space using Young measures. Let µ ∈
W 1,p(Ω;P(D)), then we say ϱ ∈ M+(Ω × D × Rm×d) is its phase measure if π1,2# ϱ = µ,
´

‖V ‖p dϱ(ξ, x, V ) <∞, and for any φ ∈ C1
c (Ω× Rd)

ˆ

(

∇ξφ(ξ, x) + V∇xφ(ξ, x)
)

dϱ(ξ, x, V ) = 0.

Given a phase measure ϱ, we can construct an admissible field using the barycentric projection:
V̄ (ξ, x) :=

´

V dϱ|ξ,x.
For any µ ∈W 1,p(Ω;P(D)) we define its Dirichlet energy as follows:

Dirp(µ) := inf
{
ˆ

‖V ‖p dµ : V satisfies (6.2)
}

.

By the direct method in the calculus of variations we obtain the following

Lemma 6.2.2. Let the norm ‖·‖ on Rm×d be strictly convex and µ ∈ W 1,p(Ω;P(D)) for some
1 < p <∞. Then there exists a unique field V satisfying (6.2) such that Dirp(µ) =

´

‖V ‖p dµ.

We will call the function V from the above lemma the velocity field of µ. It is worth to
mention that the definition of the Sobolev space does not depend on the choice of a norm on
Rm×d, and hence V is for now an auxiliary object. Thus, let us for simplicity use the Frobenius
norm, unless explicitly stated otherwise. However, the regularized Monge–Kantorovich problem
in Section 6.5 essentially depends on a specific choice of the norm.

6.3 Integral mappings and precise representatives

As shown in [Lav19b, Section 5], if m > 1, then a Sobolev map valued in Pp(D) in general does
not satisfy the superposition principle, and moreover, it cannot be represented via a measure
on W 1,p(Ω;D). Thus, we cannot rely on this representation to study the properties of Sobolev
maps. Instead, we will apply Definition 6.2 and Proposition 6.2.1 to integral mappings of form
ξ →

´

D
φdµ[ξ].

Lemma 6.3.1. Let φ ∈ C1(Ω×Rd) be such that |φ| ≤ C (1 + ‖x‖q), ‖∇xφ‖ ≤ C
(

1 + ‖x‖q−1
)

,
and ‖∇ξφ‖ ≤ C (1 + ‖x‖q) with some constant C ≥ 0 and exponent q ≥ 1. Given µ ∈
W 1,p(Ω,Pp(D)) for q ≤ p <∞, define the function

g(ξ) :=

ˆ

D

φ(ξ, x) dµ[ξ](x), ξ ∈ Ω.

Then g ∈W 1,s(Ω), where s := p
q
, and

∇g(ξ) =
ˆ

D

[∇ξφ(ξ, x) + V (ξ, x)∇xφ(ξ, x)] dµ[ξ](x).

Proof. Step 1: compactly supported φ. Assume that there is a compact set K ⊂ D such
that φ(ξ, ·) is supported on K for any ξ ∈ Ω. Clearly, g ∈ Ls(Ω). Moreover, (6.2) implies that
for any η ∈ C1

c (Ω)
ˆ

Ω
g∇η dξ :=

ˆ

Ω

ˆ

D

φ(ξ, x)∇η(ξ) dµ[ξ](x) dξ

=

ˆ

Ω

ˆ

D

[

∇ξ

(

η(ξ)φ(ξ, x)
)

− η(ξ)∇ξφ(ξ, x)
]

dµ[ξ](x) dξ

= −
ˆ

Ω

ˆ

D

V (ξ, x)∇x

(

η(ξ)φ(ξ, x)
)

dµ[ξ](x) dξ −
ˆ

Ω
η

ˆ

D

∇ξφ(ξ, x) dµ[ξ](x) dξ

= −
ˆ

Ω
η

ˆ

D

[

∇ξφ(ξ, x) + V (ξ, x)∇xφ(ξ, x)
]

dµ[ξ](x) dξ,
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where V is the velocity field of µ. Thus

∇g(ξ) =
ˆ

D

[

∇ξφ(ξ, x) + V (ξ, x)∇xφ(ξ, x)
]

dµ[ξ](x)

in a weak sense. From the assumptions of the lemma it immediately follows that ∇g ∈
Lp(Ω;Rm) ⊂ Ls(Ω;Rm).

Step 2: general case. Consider functions fn ∈ C1(Rd) for n ∈ N such that fn = 1 in
Bn(0), fn = 0 outside B3n(0), and ‖∇fn‖ ≤ 1

n
. Define φn(ξ, x) := fn(x)φ(ξ, x) for ξ ∈ Ω,

x ∈ Rd, and corresponding functions gn(ξ) :=
´

D
φn(ξ, x) dµ[ξ](x). Since for every x ∈ B3n(0)

‖∇xφn‖ = ‖fn∇xφ+ φ∇xfn‖ ≤ ‖∇xφ‖+ |φ| · ‖∇xfn‖

≤ C
(

1 + ‖x‖q−1
)

+ C
(1 + ‖x‖q)

n
≤ 4C

(

1 + ‖x‖q−1
)

,

gn ∈W 1,s(Ω) according to Step 1. Furthermore,

‖g − gn‖sLs(Ω) =

ˆ

Ω

∣

∣

∣

∣

ˆ

D

(1− fn(x))φ(ξ, x) dµ[ξ](x)

∣

∣

∣

∣

s

dξ

≤
ˆ

Ω

ˆ

D\Bn(0)
|φ(ξ, x)|s dµ[ξ](x) dξ

≤ Cs
ˆ

Ω×(D\Bn(0))
(1 + ‖x‖q)s dµ(ξ, x)

≤ (2C)s
ˆ

Ω×(D\Bn(0))
(1 + ‖x‖p) dµ(ξ, x) → 0 as n→ ∞.

Now define

v(ξ) :=

ˆ

D

[

∇ξφ(ξ, x) + V (ξ, x)∇xφ(ξ, x)
]

dµ[ξ](x).

We are going to show that ∇gn converge to v in Ls(Ω;Rm). First of all,

v(ξ)−∇gn(ξ)

=

ˆ

D

[

(1− fn(x))
(

∇ξφ(ξ, x) + V (ξ, x)∇xφ(ξ, x)
)

− φ(ξ, x)V (ξ, x)∇fn(x)
]

dµ[ξ](x).

From the definition of fn and the assumptions of the lemma we obtain the following bounds:

ˆ

Ω

∥

∥

∥

∥

ˆ

D

(1− fn(x))∇ξφ(ξ, x) dµ[ξ](x)

∥

∥

∥

∥

s

dξ ≤
ˆ

Ω×(D\Bn(0))
‖∇ξφ‖s dµ

≤ Cs
ˆ

Ω×(D\Bn(0))
(1 + ‖x‖q)s dµ(ξ, x) −−−→

n→∞
0.

Furthermore,

ˆ

Ω

∥

∥

∥

∥

ˆ

D

(1− fn(x))V (ξ, x)∇xφ(ξ, x) dµ[ξ](x)

∥

∥

∥

∥

s

dξ

≤ Cs
ˆ

Ω
‖V (ξ, ·)‖sLp(D\Bn(0),µ[ξ]) ·

∥

∥1 + ‖x‖q−1
∥

∥

s

Lp′ (D,µ[ξ])
dξ

≤ Cs
∥

∥

∥‖V (ξ, ·)‖p/q
Lp(D\Bn(0),µ[ξ])

∥

∥

∥

Lq(Ω)
·
∥

∥

∥

(

1 +
∥

∥‖x‖q−1
∥

∥

Lp′ (D,µ[ξ])

)s∥
∥

∥

Lq′ (Ω)

≤ (2C)s

(

ˆ

Ω×(D\Bn(0))
‖V ‖p dµ

)1/q
(

1 +
∥

∥

∥

∥

∥‖x‖q−1
∥

∥

s

Lp′ (D,µ[ξ])

∥

∥

∥

Lq′ (Ω)

)

.
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If q = 1, then
∥

∥

∥

∥

∥‖x‖0
∥

∥

s

Lp′ (D,µ[ξ])

∥

∥

∥

L∞(Ω)
≤ 1, otherwise p′ ≤ q′ <∞ and

∥

∥

∥

∥

∥‖x‖q−1
∥

∥

s

Lp′ (D,µ[ξ])

∥

∥

∥

q′

Lq′ (Ω)
=

ˆ

Ω

(
ˆ

D

‖x‖(q−1)p′ dµ[ξ](x)
)sq′/p′

dξ

≤
ˆ

Ω×D
‖x‖(q−1)sq′ dµ(ξ, x) =

ˆ

Ω×D
‖x‖p dµ(ξ, x) <∞

(here we used that sq′

p′
= sq(p−1)

(q−1)p = p−1
q−1 ≥ 1 and (q − 1)sq′ = sq = p). Thus,

ˆ

Ω

∥

∥

∥

∥

ˆ

D

(1− fn(x))∇ξφ(ξ, x) dµ[ξ](x)

∥

∥

∥

∥

s

dξ → 0 as n→ ∞.

The last term can be estimated as follows:
ˆ

Ω

∥

∥

∥

∥

ˆ

D

φ(ξ, x)V (ξ, x)∇fn(x) dµ[ξ](x)

∥

∥

∥

∥

s

dξ

≤ Cs
ˆ

Ω

(

ˆ

B3n(0)\Bn(0)
‖V (ξ, x)‖1 + ‖x‖q

n
dµ[ξ](x)

)s

dξ

≤ Cs
ˆ

Ω
‖V (ξ, ·)‖sLp(D\Bn(0),µ[ξ]) ·

∥

∥

∥

1

n
+ 3‖x‖q−1

∥

∥

∥

s

Lp′ (D,µ[ξ])
dξ → 0 as n→ ∞.

Therefore, ‖v −∇gn‖Ls → 0, hence g ∈W 1,s(Ω) and ∇g = v.

Lemma 6.3.2. Let µ ∈ W 1,p(Ω,Pp(D)) for some 1 < p < m. Then there exists a Borel map
µ∗ : Ω → P(D) and a Borel set A ⊂ Ω such that Capp(A) = 0, µ∗ = µ a.e., and for any
ξ ∈ Ω \A

Wp

(

 

Br(ξ)
µ[ζ] dζ,µ∗[ξ]

)

→ 0 as r → 0

and, more than that,
 

Br(ξ)
W p∗

p (µ[ζ],µ∗[ξ]) dζ → 0 as r → 0. (6.3)

Proof. First of all, note that due to the σ-subadditivity of the p-capacity, it is enough to consider
Ω equal to a ball. Then any function from W 1,p(Ω) can be extended to Rm, and we can apply
results from Section 4.8 in [EG15]. Since we are interested only in local properties, this does
not spoil the results.

Step 1: narrow convergence. Let {φn}n∈N be a dense countable subset of C1
c (R

d). Since
for each n the function gn(ξ) :=

´

D
φn dµ[ξ] belongs to W 1,p(Ω), by Theorem 4.8.1 in [EG15]

(obviously, it works if Rm is replaced with an open Ω as well) there exists a Borel function
g∗n : Ω → R and a Borel set An ⊂ Ω such that Capp(An) = 0 and for any ξ ∈ Ω \An

ˆ

D

φn dµr[ξ] =
 

Br(ξ)
gn → g∗n(ξ) as r → 0, (6.4)

where µr[ξ] :=
ffl

Br(ξ)
µ. In the same way, take g0(ξ) := m1(µ[ξ]) :=

´

D
‖x‖dµ[ξ](x), then by

Definition 6.2 g0 ∈ W 1,p(Ω), thus there is a corresponding function g∗0 and a Borel set A0 such
that Capp(A0) = 0 and

g0(µr[ξ]) =

 

Br(ξ)
g0 → g∗0(ξ) as r → 0, ∀ξ ∈ Ω \A0.

Now we define A :=
⋃

n∈N0
An, Capp(A) = 0. From the above equation we get that for any

ξ ∈ Ω \ A the family {µr[ξ]}r<r0 is tight for small enough r0 = r0(ξ). Therefore, there is a
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weak partial limit µ∗[ξ] as r → 0, and due to (6.4) g∗n(ξ) =
´

D
φn dµ∗[ξ], hence it is unique, and

µr[ξ]⇀ µ∗[ξ] as r → 0. Moreover, g∗n = gn a.e. for all n, thus µ∗ = µ a.e. in Ω.
Step 2: Wasserstein convergence. For any R > 0 take smooth nonnegative function

ψR on Rd such that ψR ≡ 0 in BR(0), ψR(x) ≤ ‖x‖p in B2R(0) \ BR(0), ψR(x) = ‖x‖p outside
B2R(0), and ‖∇ψR‖ ≤ 3pψ

1/p′

R . Define the corresponding functions

fR(ξ) :=

ˆ

D

ψR dµ[ξ] and hR(ξ) :=

(

1

R
+ fR(ξ)

)1/p

, ξ ∈ Ω.

fR ∈W 1,1(Ω) by Lemma 6.3.1, hence hR ∈W 1,1(Ω) and ∇hR = ∇fR
(1/R+fR)1−1/p . Note that

‖∇fR(ξ)‖p =
∥

∥

∥

∥

∥

ˆ

D\BR(0)
V (ξ, x)∇ψR(x) dµ[ξ](x)

∥

∥

∥

∥

∥

p

≤
(

ˆ

D\BR(0)
‖∇ψR‖p

′

dµ[ξ]

)p/p′
ˆ

D\BR(0)
‖V (ξ, x)‖p dµ[ξ](x)

≤
(
ˆ

D

(3p)p
′

ψR dµ[ξ]
)p−1 ˆ

D\BR(0)
‖V (ξ, x)‖p dµ[ξ](x)

= (3p)pfp−1
R

ˆ

D\BR(0)
‖V (ξ, x)‖p dµ[ξ](x),

hence
ˆ

Ω
‖∇hR‖p =

ˆ

Ω

‖∇fR‖p
(1/R+ fR)p−1

≤ (3p)p
ˆ

Ω×(D\BR(0))
‖V ‖p dµ.

Furthermore,

ˆ

Ω
h
p
R =

|Ω|
R

+

ˆ

Ω

(
ˆ

D

ψR dµ[ξ]
)

dξ ≤ |Ω|
R

+

ˆ

Ω×(D\BR(0))
‖x‖p dµ(ξ, x),

thus hR ∈W 1,p(Ω). Recall that w.l.o.g. we assumed Ω is a ball, thus one can extend hR to Rm

in such way that hR ≥ 0 and

‖∇hR‖pLp(Rm) ≤ C

(

1

R
+

ˆ

Ω×(D\BR(0))

[

‖x‖p + ‖V ‖p
]

dµ

)

,

where C is a constant depending on Ω and p. Since ‖∇hR‖Lp(Rm) → 0 as R→ ∞, one can find
a sequence {Rn}n∈N such that ‖∇hRn‖Lp(Rm) ≤ 4−n. By Lemma 4.8.1 in [EG15]

Capp(En) ≤ C2np
ˆ

Rm

‖∇hRn‖p ≤ C2−np,

where C is some constant depending on p and m, and

En :=

{

ξ ∈ Rm : sup
r>0

 

Br(ξ)
hRn > 2−n

}

.

Note that En is a Borel set. Then the Borel–Cantelli lemma yields that Capp(E) = 0 for
E :=

⋂

k∈N
⋃

n≥k En. Using again Theorem 4.8.1 in [EG15] take a Borel set F ⊂ Rm such that
Capp(F ) = 0 and for all n ∈ N and ξ ∈ Rm \ F it holds that

 

Br(ξ)
hRn → h∗Rn

and
 

Br(ξ)

∣

∣hRn(ζ)− h∗Rn
(ξ)
∣

∣

p∗ dζ → 0 as r → 0. (6.5)
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Now fix an arbitrary ξ ∈ Rm\(A∪E∪F ) with the set A defined in Step 1. There is k = k(ξ) ∈ N

such that ξ /∈ En for all n ≥ k, thus h∗Rn
(ξ) ≤ 2−n. By the Minkowski inequality we get for any

r > 0
ˆ

Rm\B2Rn (0)
‖x‖p dµr[ξ](x) ≤

ˆ

D

ψRn dµr[ξ] =
 

Br(ξ)
fRn ≤

 

Br(ξ)
h
p
Rn

≤



h∗Rn
(ξ) +

(

 

Br(ξ)

∣

∣hRn(ζ)− h∗Rn
(ξ)
∣

∣

p dζ

)1/p




p

≤



2−n +

(

 

Br(ξ)

∣

∣hRn(ζ)− h∗Rn
(ξ)
∣

∣

p dζ

)1/p




p

,

hence due to (6.5)

lim sup
r→0

ˆ

Rm\B2Rn (0)
‖x‖p dµr[ξ](x) ≤ 2−np.

Recall that µr[ξ]⇀ µ∗[ξ], thus by Theorem 6.9 in [Vil09] we conclude that Wp(µr[ξ],µ
∗[ξ]) → 0.

Step 3. To prove (6.3), consider a dense countable set {νl}l∈N ⊂ Pp(D). Note that any
function dl(ξ) := Wp(µ[ξ], νl) is Sobolev. Then Theorem 4.8.1 (ii) in [EG15] and the previous
steps yield that there is a zero-capacity Borel set G ⊂ Ω such that for any ξ ∈ Ω \G and for all
n, l ∈ N

 

Br(ξ)
|dl(ζ)− d∗l (ξ)|p

∗

dζ → 0,

 

Br(ξ)

∣

∣

∣

∣

ˆ

D

φn dµ[ζ]−
ˆ

D

φn dµ∗[ξ]

∣

∣

∣

∣

p∗

dζ → 0,

 

Br(ξ)

∣

∣

∣
m1/p
p (µ[ζ])−m1/p

p (µ∗[ξ])
∣

∣

∣

p∗

dζ → 0

as r → 0. The last result follows from the fact that m1/p
p (·) is 1-Lipschitz continuous w.r.t. Wp

and
 

Br(ξ)
mp(µ[ζ]) dζ = mp(µr[ξ]) → mp(µ

∗[ξ]),

hence
(

m
1/p
p ◦ µ

)∗
(ξ) = m

1/p
p (µ∗[ξ]). Assume that d∗l (ξ) 6= Wp(µ

∗[ξ], νl) for some l ∈ N. Then

there is a sequence ζk → ξ such that dl(ζk) → d∗l (ξ), mp(µ[ζk]) → mp(µ
∗[ξ]), and

´

D
φn dµ[ζk] →

´

D
φn dµ∗[ξ] for all n. Thus, Wp(µ[ζk],µ

∗[ξ]) → 0 by Proposition 2.3.2, and we obtain a
contradiction. Therefore, d∗l (ξ) =Wp(µ

∗[ξ], νl) for all l ∈ N.
Finally, for any l

 

Br(ξ)
W p∗

p (µ[ζ],µ∗[ξ]) dζ ≤ 2p
∗−1

(

W p∗

p (µ∗[ξ], νl) +
 

Br(ξ)
W p∗

p (µ[ζ], νl) dζ

)

→ 2p
∗−1W p∗

p (µ∗[ξ], νl) as r → 0,

and since {νl}l∈N is dense in Pp(D), we obtain (6.3).

6.4 Convergence

In this section we introduce some notions of convergence in W 1,p(Ω;Pp(D)) allowing us to
obtain a stability of precise representatives, which is important to study the regularized optimal
transportation problem in the next section.

Let us introduce a truncated p-Wasserstein distance for 1 < p <∞:

W̄ p
p (µ, ν)

def
= inf

π∈Π(µ,ν)
min

{

‖x− y‖p, 1
}

dπ(x, y), µ, ν ∈ P(D).
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Clearly, it is nothing but the p-Wasserstein distance for the truncated metric min
{

‖x− y‖, 1
}

,
and for p = 1 it is equivalent to the Kantorovich–Rubinstein distance (2.1). By Proposition 2.3.2,
the convergence w.r.t. W̄p is equivalent to the narrow convergence since the truncated metric is
bounded.

Lemma 6.4.1. Let 1 < p < ∞ and {µn}n∈N ⊂ W 1,p(Ω,Pp(D)) be such that Dirp(µn) ≤ C for
all n with some constant C <∞. If

µn ⇀ ν ∈ M+(Ω×D),

then ν = µ⊗ L|Ω for some Borel map µ : Ω → P(D), and
ˆ

Ω
W̄1(µ[ξ],µn[ξ]) dξ → 0. (6.6)

Proof. First of all, note that ν is a Young measure, thus ν = µ ⊗ L|Ω for some Borel map
µ : Ω → P(D). Like in Step 1 in the proof of Lemma 6.3.2, let {φk}k∈N be a dense countable
subset of C1

c (R
d), gkn(ξ) :=

´

D
φk dµn[ξ], gkn ∈ W 1,p(Ω) ∩ L∞(Ω), and gk(ξ) :=

´

D
φk dµ[ξ]. For

any η ∈ C1
c (Ω) we have
ˆ

Ω
ηgkn =

ˆ

Ω×D
η(ξ)φk(ξ, x) dµn(ξ, x) →

ˆ

Ω×D
η(ξ)φk(ξ, x) dν(ξ, x) =

ˆ

Ω
ηgk.

This together with the Rellich–Kondrachov theorem yields that gkn → gk in L
p
loc(Ω). Therefore,

up to a subsequence, gkn → gk a.s. in Ω for all k ∈ N, hence µn[ξ] ⇀ µ[ξ] for a.e. ξ. The claim
follows by the dominated convergence theorem since W̄1 ≤ 1.

The first notion of convergence in W 1,p(Ω,Pp(D)) is based on the Radon–Riesz property.
This is an analogue of the strong convergence in the standard Sobolev space.

Proposition 6.4.2. Let µ ∈ W 1,p(Ω,P(D)) for some 1 < p < ∞, and a sequence {µn}n∈N ⊂
W 1,p(Ω,P(D)) be such that µn ⇀ µ and

Dirp(µn) → Dirp(µ).

Then
ˆ

Ω

ˆ

D2

‖V (ξ, x)− Vn(ξ, x
′)‖p dπn[ξ](x, x′) dξ → 0, (6.7)

where πn[ξ] ∈ Πo(µ[ξ],µn[ξ]) is any measurable selection of optimal transport plans for the cost
function min

{

‖x− y‖, 1
}

, and V , Vn are the velocity fields of µ and µn, respectively.

Proof. If Dirp(µ) = 0, then the claim holds trivially. Now assume w.l.o.g. that Dirp(µ = 1.
Since µn ⇀ µ and Dirp(µn) ≤ C with some constant C for all n ∈ N, we have by the Prokhorov
theorem that, up to a subsequence,

Vnµn ⇀Wµ

with W ∈ Lp(Ω × D,µ;Rm×d). Clearly, W satisfies the continuity equation for µ: ∇ξµ +
∇x(Wµ) = 0, and due to the lower semicontinuity of the Benamou–Brenier functional (V µ, µ) 7→
´

‖V ‖p dµ we have
‖W‖Lp(µ) ≤ lim inf‖Vn‖Lp(µn) = ‖V ‖Lp(µ),

thus W = V as V is the unique minimizer of ‖V ‖Lp(µ) satisfying (6.2).
Now fix U ∈ C1

c (Ω×D;Rm×d). Denote πn := πn ⊗ L|Ω ∈ M+(Ω×D2). One has
ˆ

Ω×D
〈V, U〉 dµ = lim

ˆ

Ω×D
〈Vn, U〉 dµn

= lim
ˆ

Ω×D2

〈Vn(ξ, x′), U(ξ, x′)〉 dπn(ξ, x, x′)

= lim
ˆ

Ω×D
〈V̄n, U〉 dµ+ lim

ˆ

Ω×D2

〈Vn(ξ, x′), U(ξ, x′)− U(ξ, x)〉 dπn(ξ, x, x′),
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where V̄n(ξ, x) :=
´

D
Vn dπn[ξ]

∣

∣

x
is the barycentric projection of Vn. The last term in the above

inequality can be estimated as follows:
∣

∣

∣

∣

ˆ

Ω×D2

〈Vn(ξ, x′), U(ξ, x′)− U(ξ, x)〉 dπn(ξ, x, x′)

∣

∣

∣

∣

≤
ˆ

Ω

ˆ

D2

‖Vn(ξ, x′)‖ · ‖U(ξ, x′)− U(ξ, x)‖∗ dπn[ξ](x, x′) dξ

≤ C

ˆ

Ω

ˆ

D2

‖Vn(ξ, x′)‖min{‖x′ − x‖, 1}dπn[ξ](x, x′) dξ

≤ C

ˆ

Ω
‖Vn(ξ, ·)‖Lp(µn[ξ])

(

min{‖x′ − x‖, 1}p′ dπn[ξ](x, x′)
)1/p′

dξ

≤ C‖Vn‖Lp(µn)

(
ˆ

Ω
W̄1(µ[ξ],µn[ξ]) dξ

)1/p′

= C Dirp(µn)
(
ˆ

Ω
W̄1(µ[ξ],µn[ξ]) dξ

)1/p′

→ 0,

where C = 2max‖U‖∗+max‖DxU‖ and the last line follows from Lemma 6.4.1. Combining the
above equations we obtain

ˆ

Ω×D
〈V̄n, U〉µ→

ˆ

Ω×D
〈V, U〉µ. (6.8)

Since
ˆ

Ω×D
‖V̄n‖p dµ ≤

ˆ

Ω×D
‖Vn‖p dµn →

ˆ

Ω×D
‖V ‖p dµ,

we conclude that ‖V̄n‖Lp(µ) → ‖V ‖Lp(µ). Thus, V̄n ⇀ V in Lp(µ) according to (6.8), and V̄n → V

in Lp(Ω×D,µ;Rm×d) due to the uniform convexity.
Define vn := ‖Vn‖ and v̄n := ‖V̄n‖. Hanner’s inequalities [Han56] yield that if p ≥ 2, then

‖vn + v̄n‖pLp(πn)
+ ‖vn − v̄n‖pLp(πn)

≤
(

‖vn‖Lp(πn) + ‖v̄n‖Lp(πn)

)p
+
∣

∣‖vn‖Lp(πn) − ‖v̄n‖Lp(πn)

∣

∣

p

→ 2p‖v‖p
Lp(µ) = 2p Dirp(µ).

On the other hand, by Jensen’s inequality

‖vn + v̄n‖Lp(πn) ≥ ‖Vn + V̄n‖Lp(πn) ≥ 2‖V̄n‖Lp(πn) → 2‖V ‖Lp(µ) = 2‖v‖Lp(µ), (6.9)

thus ‖vn − v̄n‖pLp(πn)
→ 0. If 1 < p < 2, then

(

‖vn + v̄n‖Lp(πn) + ‖vn − v̄n‖Lp(πn)

)p
+
∣

∣‖vn + v̄n‖Lp(πn) − ‖vn − v̄n‖Lp(πn)

∣

∣

p

≤ 2p
(

‖vn‖pLp(πn)
+ ‖v̄n‖pLp(πn)

)

→ 2p+1‖v‖p
Lp(µ)

and by (6.9)

lim sup
(

‖vn + v̄n‖Lp(πn) + ‖vn − v̄n‖Lp(πn)

)p
+
∣

∣‖vn + v̄n‖Lp(πn) − ‖vn − v̄n‖Lp(πn)

∣

∣

p

≥
(

2‖v‖Lp(µ) + lim sup‖vn − v̄n‖Lp(πn)

)p
+
(

2‖v‖Lp(µ) − lim sup‖vn − v̄n‖Lp(πn)

)p

+
,

thus ‖vn − v̄n‖Lp(πn) → 0 due to the strict convexity of the function t 7→ (a + t)p + (a − t)p+.
Therefore, in both cases we obtain that

‖vn − v̄n‖pLp(πn)
→ 0. (6.10)

Furthermore, the strict convexity of the norm on Rm×d implies that there exists a monotone
function δ : [0, 2] → [0, 1] strictly positive outside {0} such that

∥

∥

∥

∥

X + Y

2

∥

∥

∥

∥

≤ max{‖X‖, ‖Y ‖}
[

1− δ

( ‖X − Y ‖
max{‖X‖, ‖Y ‖}

)]

∀X,Y ∈ Rm×d.
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Then
ˆ

∥

∥

∥

∥

Vn + V̄n

2

∥

∥

∥

∥

p

dπn ≤
ˆ

max{vn, v̄n}p
[

1− δ

( ‖Vn − V̄n‖
max{vn, v̄n}

)]p

dπn

≤
ˆ

max{vn, v̄n}p dπn −
ˆ

max{vn, v̄n}pδ
( ‖Vn − V̄n‖

max{vn, v̄n}

)

dπn.

Due to (6.9) and (6.10)

lim
ˆ

max{vn, v̄n}p dπn = lim
ˆ

∥

∥

∥

∥

Vn + V̄n

2

∥

∥

∥

∥

p

dπn =

ˆ

‖V ‖p dµ,

thus
ˆ

max{vn, v̄n}pδ
( ‖Vn − V̄n‖

max{vn, v̄n}

)

dπn → 0.

obviously, for any ε > 0 there is Cε > 0 such that tp ≤ ε+ Cεδ(t) for all t ∈ [0, 2], hence

ˆ

‖Vn − V̄n‖p dπn =

ˆ

max{vn, v̄n}p
( ‖Vn − V̄n‖

max{vn, v̄n}

)p

dπn

≤
ˆ

max{vn, v̄n}p
[

ε+ Cεδ

( ‖Vn − V̄n‖
max{vn, v̄n}

)]

dπn → ε

ˆ

‖V ‖p dµ as n→ ∞.

Since ‖V̄n − V ‖Lp(πn) = ‖V̄n − V ‖Lp(µ) → 0, the claim follows.

Corollary 6.4.3. Under the assumptions of Proposition 6.4.2 for any φ ∈ C1
b (R

d) (i.e. such
that φ ∈ Cb(R

d) and ∇φ ∈ Cb(R
d;Rd)) and

g : ξ 7→
ˆ

D

φ dµ[ξ], gn : ξ 7→
ˆ

D

φ dµn[ξ],

it holds that gn → g in W 1,p(Ω).

Proof. According to Lemma 6.3.1 g, gn ∈W 1,p(Ω) and

∇g(ξ) =
ˆ

D

V (ξ, x)∇φ(x) dµ[ξ](x),

∇gn(ξ) =
ˆ

D

Vn(ξ, x)∇φ(x) dµn[ξ](x).

Clearly, |g(ξ) − gn(ξ)| ≤ CW̄1(µ[ξ],µn[ξ]), thus from (6.6) it follows that gn
L1(Ω)−−−−→ g. Since g

and all gn are uniformly bounded, we have gn
Lp(Ω)−−−−→ g. Further,

∇gn(ξ)−∇g(ξ) =
ˆ

D2

[

Vn(ξ, x
′)∇φ(x′)− V (ξ, x)∇φ(x)

]

dπn[ξ](x, x′)

=

ˆ

D2

[

Vn(ξ, x
′)− V (ξ, x)

]

∇φ(x′) dπn[ξ](x, x′)

+

ˆ

D2

V (ξ, x)
[

∇φ(x′)−∇φ(x)
]

dπn[ξ](x, x′).
(6.11)

It follows from (6.7) and the boundedness of ∇φ that
∥

∥

∥

∥

ˆ

D2

[

Vn(ξ, x
′)− V (ξ, x)

]

∇φ(x′) dπn[ξ](x, x′)

∥

∥

∥

∥

Lp(Ω)

→ 0.

Now we estimate the second term: fix R > 0, then
∥

∥

∥

∥

ˆ

D2

V (ξ, x)
(

∇φ(x′)−∇φ(x)
)

dπn[ξ](x, x′)

∥

∥

∥

∥

≤ R

ˆ

D

‖∇φ(x′)−∇φ(x)‖dπn[ξ](x, x′) + C

ˆ

D

(‖V (ξ, x)‖ −R)+ dµ[ξ](x).
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Obviously,
∥

∥

∥

∥

ˆ

D

(‖V (ξ, x)‖ −R)+ dµ[ξ](x)

∥

∥

∥

∥

Lp(Ω)

→ 0 as R→ ∞.

Next, for any compact K ⊂ D and ε > 0 due to the uniform continuity of ∇φ on K there exists
a constant CK,ε > 0 such that

‖∇φ(x′)−∇φ(x)‖ ≤ ε+ CK,ε min{‖x′ − x‖, 1}

for any x, x′ ∈ K. Therefore,
∥

∥

∥

∥

ˆ

D

‖∇φ(x′)−∇φ(x)‖dπn[ξ](x, x′)

∥

∥

∥

∥

Lp(Ω)

≤ ε+ CK,ε

(
ˆ

Ω
W̄

p
1 (µ[ξ],µn[ξ]) dξ

)1/p

+ 2max‖∇φ‖
(
ˆ

Ω

(

πn[ξ](D
2 \K2)

)p
dξ
)1/p

≤ ε+ CK,ε

(
ˆ

Ω
W̄1(µ[ξ],µn[ξ]) dξ

)1/p

+ 2max‖∇φ‖
(
ˆ

Ω

(

πn[ξ](D
2 \K2)

)p
dξ
)1/p

and
ˆ

Ω

(

πn[ξ](D
2 \K2)

)p
dξ ≤

ˆ

Ω
(µ[ξ](D \K) + µn[ξ](D \K)) dξ.

Thus, (6.6) together with tightness of the sequence {µn}n∈N yield that
∥

∥

∥

∥

ˆ

D

‖∇φ(x′)−∇φ(x)‖dπn[ξ](x, x′)

∥

∥

∥

∥

Lp(Ω)

→ 0.

Finally, substituting the above results into (6.11) we obtain

∇gn
Lp(Ω)−−−−→ ∇g.

Corollary 6.4.4. Under the assumptions of Proposition 6.4.2 there exist a subsequence {µnk
}k∈N

and a Borel set A ⊂ Ω such that Capp(A) = 0 and

µ∗
nk
[ξ]⇀ µ∗[ξ] for all ξ ∈ Ω \A,

where µ∗
n and µ∗ are the precise representatives of µn and µ.

Proof. As in the proof of Lemma 6.3.2, fix a countable family {φk}k∈N dense in C1
c (D) and define

functions gkn(ξ) :=
´

D
φk dµn[ξ], gk(ξ) :=

´

D
φk dµ[ξ]. Since ‖gkn − gk‖W 1,p(Ω) → 0 for all k ∈ N

according to Corollary 6.4.3, there exists a zero-capacity set A ⊂ Ω and a subsequence such that
(without relabelling) (gkn)

∗(ξ) → (gk)∗(ξ) for all ξ ∈ Ω \ A. Recall that (gkn)
∗(ξ) =

´

D
φk dµ∗

n[ξ]
and (gk)∗(ξ) =

´

D
φk dµ∗[ξ] up to a zero-capacity set, thus the claim follows.

The above convergence in the assumptions of Proposition 6.4.2, which is partially a counter-
part of the strong convergence in W 1,p(Ω), is sometimes too strong. In particular, it is nor clear
how to obtain a compactness w.r.t. this to prove the existence of a solution of the regularized
Monge–Kantorovich problem. Another approach is based on the Wasserstein convergence of
phase measures introduced in Section 6.2. Assume for simplicity that |Ω| = 1. Let u ∈W 1,p(Ω).
We say ϱ ∈ P(Ω × R × Rm) is a phase measure of u if π1#ϱ = L|Ω, x̄ = u, v̄ = ∇u, and
´ (

|x|p + ‖v‖p
)

dϱ(ξ, x, v) < ∞. Here x̄(ξ) :=
´

R×Rm x dϱ|ξ and v̄(ξ) :=
´

R×Rm v dϱ|ξ are the

barycentric projections. Define the cost function on
(

Ω× R× Rm
)2:

c
(

(ξ, x, v), (ξ′, x′, v′)
)

:= min{‖ξ − ξ′‖, 1}+ |x− x′|p + ‖v − v′‖p,

and the corresponding transportation functional Jp := Jc (see Section 2.2). The next lemma,
which can be of independent interest, ensures the convergence of precise representatives once
phase measures converge in the transportation topology.
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Lemma 6.4.5. Take µ ∈ P(Ω) such that µ ≪ Capp. Let u, un ∈ W 1,p(Ω), n ∈ N, and
ϱ, ϱn ∈ P(Ω × R × Rm) be their phase measures such that Jp(ϱn, ϱ) → 0. Then u∗n → u∗ in µ,
i.e. for any ε > 0

µ
(

{ξ ∈ Rm : |u∗n(ξ)− u∗(ξ)| > ε}
)

→ 0.

Proof. Note that since µ(Ω) = 1, for any ε > 0 there is a compact K(ε) ⊂ Ω such that
µ(K(ε)) ≥ 1− ε. Therefore, it is enough to consider the case where suppµ ⊂⊂ Ω.

The case of singular µ. Assume that µ⊥L. The idea of the proof is as follows. We are
going to show that for any ε > 0 there are sets S(ε), En(ε) such that µ(S(ε)) ≥ 1− ε,

{ξ ∈ S(ε) : u∗n(ξ)− u∗(ξ) > 1} ⊂ En(ε),

and one has lim supn→∞ Capp(En(ε)) → 0 as ε→ 0. Since µ≪ Capp, this implies that

µ
(

{x ∈ Ω : u∗n − u∗ > 1}
)

→ 0.

We conclude multiplying functions un and u by an arbitrary constant.
Step 1. The proof is partially based on the ideas from Lemma 4.8.1 in [EG15]. Fix an open

set Ω′ such that suppµ ⊂ Ω′ ⊂⊂ Ω. Take ε > 0 and an open set U = U(ε) ⊂ Ω′ with µ(U) = 1,
|U | ≤ ε (it is possible since µ⊥L). Now choose 0 < r0 = r0(ε) ≤ min{1, d(Ω′, ∂Ω)/2} satisfying
µ(U−3r0) ≥ 1− ε, and denote S = S(ε) := U−3r0 , where

U−r := {ξ ∈ U : d(ξ, ∂U) > r} , r > 0,

is an open subset of U .
Define wn := un − u and w∗

n := u∗n − u∗ (slightly abusing notation). Due to Theorem 4.8.1
in [EG15] there exists an open set Vn = Vn(ε) ⊂ S such that Capp(Vn) < ε, w∗

n is continuous on
S \ Vn, and

 

Br(ξ)
wn −−−→

r→0
w∗
n(ξ) ∀ξ ∈ S \ Vn.

In particular, one can find a nonnegative function fn = fn(ε) ∈ W 1,p(Rm) such that Vn ⊂
int{fn ≥ 1} and

´

Rm‖∇fn‖p < ε.
Now define

An = An(ε) := {ξ ∈ S \ Vn : w∗
n(ξ) > 1} .

Note that En := An ∪ Vn is open. Also consider a family of balls

Fn = Fn(ε) :=
{

B = B̄r(ξ) : ξ ∈ An, r < r0,

∣

∣

∣

∣

 

B

wn − w∗
n(ξ)

∣

∣

∣

∣

< w∗
n(ξ)− 1

}

.

By Besicovitch’s covering theorem [EG15] there exist N = N(m) countable families of disjoint
balls {Bij}j∈N ⊂ Fn, i = 1 . . . , N , satisfying

An ⊂
n
⋃

i=1

∞
⋃

j=1

Bij ⊂ U−2r0 . (6.12)

Consider Bij = B̄r(ξ); the Sobolev extension theorem and Poincaré’s inequality for balls [EG15,

Theorem 4.5.2] yield that there is a function fij ∈W 1,p(Rm) such that fij |Bij
=
(

ffl

Bij
wn − wn

)

+
and

‖fij‖W 1,p ≤ C‖∇wn‖Lp(Bij). (6.13)

Finally, define gn = gn(ε) := (w̃n)+ + fn + supi,j fij , with a Sobolev function w̃n such that
w̃n ≥ wn on any ball Bij . Note that for any ξ ∈ Bij one has

gn(ξ) ≥ wn(ξ) + fij(ξ) ≥
 

Bij

wn > 1,
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and fn(ξ) ≥ 1 for any ξ ∈ Vn, thus En = An ∪ Vn ⊂ {gn ≥ 1}. Since En is open we have
En ⊂ int{gn ≥ 1}, therefore

Capp(En) ≤
ˆ

‖∇gn‖p ≤ C

ˆ

(

‖∇w̃n‖p + ‖∇fn‖p + ‖∇ sup
i,j

fij‖p
)

. (6.14)

Step 2. Now we are going to estimate the r.h.s. of (6.14). Recall that
´

‖∇fn‖p ≤ ε.
Furthermore, due to (6.13), (6.12), and Lemma 4.7.2 in [EG15]

ˆ

‖∇ sup
i,j

fij‖p ≤
ˆ

sup
i,j

‖∇fij‖p ≤
N
∑

i=1

∞
∑

j=1

ˆ

‖fij‖pW 1,p

≤
N
∑

i=1

∞
∑

j=1

ˆ

Bij

‖∇wn‖p ≤ CN

ˆ

U−2r0

(‖∇un‖p + ‖∇u‖p) .

Let πn be an optimal transport plan between ϱn and ϱ. Then using Jensen’s inequality we get
ˆ

U−2r0

‖∇un‖p ≤
ˆ

‖vn‖p 1ξn∈U−2r0 dϱn(ξn, xn, vn)

≤ C

ˆ

(‖v‖p + ‖vn − v‖p)1ξn∈U−2r0 dπn

≤ C

(

Jp(ϱn, ϱ) +

ˆ

‖v‖p 1ξn∈U−2r0 dπn

)

.

Since
´

‖v‖p dϱ <∞, there exists a monotone function δ : R+ → R+ such that δ(t) → 0 as t→ 0,
and for any measurable ψ : Ω → [0, 1] one has

ˆ

ψ(ξ)‖v‖p dϱ(ξ, x, v) ≤ δ

(
ˆ

Ω
ψ

)

.

Therefore, using that π1#ϱ = π1#ϱn = L|Ω we get

ˆ

U−2r0

‖∇u‖p ≤
ˆ

‖v‖p 1ξ∈U−2r0 dϱ ≤ δ
(

|U−2r0 |
)

≤ δ (|U |) ≤ δ(ε),

ˆ

‖v‖p 1ξn∈U−2r0 dπn ≤ δ
(

|U−2r0 |
)

≤ δ(ε).

Combining these bound together, we obtain from (6.14) that

Capp(En) ≤ C

(
ˆ

‖∇w̃n‖p + ε+ Jp(ϱn, ϱ) + δ(ε)

)

. (6.15)

Note that there is no guarantee that
´

Ω‖∇wn‖p is small, thus we cannot just take w̃n = wn,
even despite the fact that wn in general does not vanish on ∂Ω. Instead, we will construct
w̃n = w̃n(ε) ∈ W

1,p
0 (Ω) such that w̃n ≡ wn on U−2r0 , and

´

Ω‖∇w̃n‖p is small enough. First,
take κ = κ(ε) ∈ C∞(Rm) such that κ|U−2r0 ≡ 0, κ|Rm\U−r0 ≡ 1, and a mollifier η ∈ C∞(Rm),

supp η = B1(0). Fix 0 < h = h(ε) < max
{

r0,
1

2max∥∇κ∥

}

. Consider

whn(ξ) :=

ˆ

B1(0)
η(e)wn(ξ + hκ(ξ)e) de, ξ ∈ Ω−r0 .

Note that whn ≡ wn on U−2r0 and whn ≡ ηh ∗ wn on Ω−r0 \ U−r0 . Moreover, whn ∈ W 1,p(Ω−r0)
and

ˆ

U−r0

‖∇whn‖p ≤
ˆ

B1(0)
η(e)

ˆ

U−r0

‖∇wn(ξ + hκ(ξ)e)‖p dξ de ≤ C

ˆ

U

‖∇wn‖p
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because ξ 7→ ξ + hκ(ξ)e is a bilipschitz map for any e ∈ B1(0). Again,
ˆ

U

‖∇wn‖p ≤ C
(

Jp(ϱn, ϱ) + δ (|U |)
)

≤ C
(

Jp(ϱn, ϱ) + δ(ε)
)

. (6.16)

Furthermore, for any ζ ∈ Ω−r0

∇(ηh ∗ wn)(ζ) = (ηh ∗ ∇wn)(ζ)

=

ˆ

Ω
ηh(ζ − ξ)(∇un(ξ)−∇u(ξ)) dξ

=

ˆ

ηh(ζ − ξn)vn dϱn(ξn, xn, vn)−
ˆ

ηh(ζ − ξ)v dϱ(ξ, x, v)

=

ˆ

[

ηh(ζ − ξn)(vn − v) +
(

ηh(ζ − ξn)− ηh(ζ − ξ)
)

v
]

dπn,

hence for any t ∈ (0, 1)

‖∇(ηh ∗ wn)(ζ)‖ ≤ Ch

ˆ

(

‖vn − v‖+ min{‖ξn − ξ‖, 1}‖v‖
)

dπn

≤ Ch

ˆ

(

‖vn − v‖+ t‖v‖+ 1[‖ξn − ξ‖ > t] · ‖v‖
)

dπn

≤ Ch

(

J1/p
p (ϱn, ϱ) + t

ˆ

‖v‖dϱ(ξ, x, v) + δ1/p
(

πn{‖ξn − ξ‖ > t}
)

)

.

By Markov’s inequality πn{‖ξn − ξ‖ > t} ≤ 1
t
Jp(ϱn, ϱ), thus

ˆ

Ω−r0\U−r0

‖∇whn‖p =
ˆ

Ω−r0\U−r0

‖∇(ηh ∗ wn)‖p → 0 as n→ ∞.

Combining this bound with (6.16) we obtain that

lim sup
n→∞

ˆ

Ω−r0

‖∇whn‖p ≤ Cδ(ε).

Finally, fix a cut-off function θ ∈ C∞
c (Rm) (depending only on Ω, Ω′) such that θ|Ω′ ≡ 1,

θ|Rm\Ω−t ≡ 0, with t := d(Ω′, ∂Ω)/2 ≥ r0. Note that Ω−t ⊂ Ω−r0 and U ⊂ Ω′. Define w̃n := whnθ.
In the same way as above one can obtain

sup
ζ∈Ω−r0

|ηh ∗ wn(ζ)| → 0 as n→ ∞

henceforth

lim sup
n→∞

ˆ

Rm

‖∇w̃n‖p ≤ C lim sup
n→∞

(

ˆ

Ω−t

‖∇whn‖p + max‖∇θ‖p
ˆ

Ω−t\Ω′

∣

∣

∣whn

∣

∣

∣

p
)

≤ C lim sup
n→∞

(

ˆ

Ω−r0

‖∇whn‖p + max‖∇θ‖p
ˆ

Ω−r0\Ω′

|ηh ∗ wn|p
)

≤ Cδ(ε).

Substitution of this bound into (6.15) gives us

lim sup Capp(En) ≤ C
(

ε+ δ(ε)
)

.

Since
{ξ ∈ Ω : u∗n(ξ)− u∗(ξ) > 1} ⊂ En ∪ (Ω \ S),

µ(Rm \ S) ≤ ε, and µ≪ Capp, the claim follows.
The case of general µ. Now take a general µ and consider the Lebesgue decomposition

µ = µac + µs: µs⊥L and µac ≪ L. Take Ω′ ⊂ Ω with smooth boundary such that suppµ ⊂ Ω′.
Since

´

Ω′ φun →
´

Ω′ φu for any φ ∈ Cb(R
m), the Rellich–Kondrachov theorem yields that

un → u in Lp(Ω′). Furthermore, un = u∗n and u = u∗ a.e. in Ω′, thus u∗n → u∗ in µac. The claim
follows.
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Corollary 6.4.6. Take µ ∈ P(Ω) such that µ ≪ Capq for some 1 < q < p. Let {un}n∈N be
a bounded sequence in W 1,p(Ω). Then, up to a subsequence, there is u ∈ W 1,p(Ω) such that
u∗n → u∗ µ-a.e.

Proof. Take the phase measures ϱn := (id, un,∇un)#L|Ω. Since
´

(‖x‖p + ‖v‖p) dϱn(ξ, x, v) are
bounded, there is a subsequence and a measure ϱ such that Jq(ϱn, ϱ) → 0 (without relabelling).
Obviously,

´

(‖x‖p + ‖v‖p) dϱ(ξ, x, v) < ∞, ϱ is a Young measure and satisfies the continuity
equation, thus this is a phase measure of u :=

´

x dϱ|ξ ∈ W 1,p(Ω). According to the above
lemma, u∗n → u∗ in µ, thus one can extract a subsequence converging µ-a.e.

Corollary 6.4.7. Let µ ∈ P(Ω) be as in Lemma 6.4.5, γ,γn ∈ W 1,p(Ω,Pp(D)), ϱn and ϱ be
their phase measures, and J(ϱn, ϱ) → 0. Then, up to a subsequence,

γ∗
n[ξ]⇀ γ∗[ξ] for µ-a.e. ξ.

Proof. As in the proof of Lemma 6.4.1 take a countable set {φk}k∈N ⊂ C∞
c (Rd) dense in

Cc(R
d) and define functions gkn :=

´

φk dγn[ξ], gk :=
´

φk dγ[ξ]. Lemma 6.3.1 implies that
ϱkn := (ξ, φk(x), V∇φ(x))#ϱn and ϱk := (ξ, φk(x), V∇φ(x))#ϱ are phase measures of gkn and gk,
respectively. In the same way as in the proof of Corollary 6.4.3 one can show that J(ϱkn, ϱ

k) → 0
for any k ∈ N. Using the above lemma we obtain that there is a subsequence such that (gkn)

∗(ξ) →
(gk)∗(ξ) for µ-a.e. ξ (without relabelling). Since (gkn)

∗(ξ) =
´

φk dγ∗
n[ξ] and (gk)∗(ξ) =

´

φk dγ∗[ξ]
outside a zero-capacity set, hence µ-a.e., the claim follows from the diagonal extraction argu-
ment.

6.5 Regularized Monge–Kantorovich problem

Now let us move to the announced regularized optimal transportation problem. Fix a cost
function c : Ω ×D → R+ and an exponent 1 < p < m. Take a source measure µ ∈ P(Ω) and a
target measure ν ∈ P(D) and consider the following regularized Monge–Kantorovich problem:

inf
{
ˆ

Ω

[
ˆ

D

c(ξ, x) dγ∗[ξ](x)

]

dµ(ξ) + Dirp(γ)

∣

∣

∣

∣

γ ∈W 1,p(Ω,Pp(D)),

ˆ

Ω
γ∗[ξ] dµ(ξ) = ν

}

.

(6.17)
In terms of phase measures it can rewritten as

inf
{

ˆ

Ω

[
ˆ

D

c(ξ, x) dγ∗[ξ](x)

]

dµ(ξ) +
ˆ

‖V ‖p dϱ(ξ, x, V )
∣

∣

∣ γ ∈W 1,p(Ω,Pp(D)),

ˆ

Ω
γ∗[ξ] dµ(ξ) = ν, ϱ ∈ M+

(

Ω×D × Rm×d
)

is a phase measure of γ
}

.

which also is an (infinite-dimensional) LP problem, like the standard Monge–Kantorovich prob-
lem.

Notice that if ν ∈ Pp(D), then γ ≡ ν is a competitor in problem (6.17), thus its value is
bounded from above by

ˆ

Ω

[
ˆ

D

c(ξ, x) dν(x)
]

dµ(ξ).

The next theorem shows that the above problem admits a solution under quite mild assumptions.

Theorem 6.5.1. Let c(ξ, ·) be l.s.c. for all ξ ∈ Ω and Ω be bounded and have a Lipschitz
boundary. If µ ∈ P(Ω) is such that µ ≪ Capq for some 1 < q < p and the value of the
problem (6.17) is finite, then it admits a solution.

Remark 6.5.2. Notice that γ∗ is defined µ-a.e. once µ ≪ Capp but here we need a stronger
assumption.
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Lemma 6.5.3. Let Ω and µ ∈ P(Ω) be as in Theorem 6.5.1, and µ assign positive mass to
every connected component of Ω. Then there is a constant C such that for any u ∈ L1(Ω) with
∇u ∈ Lp(Ω)

‖u‖Lp(Ω) ≤ C
(

‖∇u‖Lp(Ω) + ‖u∗‖Lp(Ω,µ)

)

.

Proof. Assume the assertion is false, then there is a sequence un ∈ L1(Ω) such that ‖u‖Lp(Ω) = 1
but ‖∇u‖Lp(Ω) → 0 and ‖u∗n‖Lp(Ω,µ) → 0. Then by the Rellich–Kondrachov theorem, up to
extraction of a subsequence, un converge to some u in Lp(Ω). Clearly, ‖u‖Lp(Ω) = 1, ∇u ≡ 0,
thus u ≡ ak ∈ R in every connected component Ωk of Ω and ‖un − u‖W 1,p(Ω) → 0. Hence there
is a subsequence such that u∗n → u∗ µ-a.e. (without relabelling). Therefore,

∑

k

ˆ

Ωk

|ak|p dµ =

ˆ

|u∗|p dµ ≤ lim inf
ˆ

Ω
|u∗n|p dµ→ 0,

thus ak = 0 for all Ωk, i.e. u ≡ 0, which leads to a contradiction.

Proof of Theorem 6.5.1. Take a minimizing sequence {γn}n∈N ⊂ W 1,p(Ω,P(D)) for (6.17) and
let Vn be their velocity fields and ϱn = (id, Vn)#γn be their phase measures. Note that if Ωk is
a connected component of Ω and µ(Ωk) = 0, then w.l.o.g. γn ≡ δ0 in Ωk, hence we can assume
that µ assigns positive mass to every connected component of Ω. Lemma 6.5.3 together with
Proposition 6.2.1 ensures that

ˆ

‖x‖p dϱn(ξ, x, V ) =

ˆ

Ω
mp(γn[ξ]) dξ

≤ C

(
ˆ

Ω
gpγn

(ξ) dξ +
ˆ

Ω
mp(γ

∗
n[ξ]) dµ(ξ)

)

≤ C

(
ˆ

‖V ‖p dϱn(ξ, x, V ) +mp(ν)

)

,

where gγn comes from Definition 6.2. Then
´ (

‖x‖p + ‖V ‖p
)

dϱn(ξ, x, V ) ≤ M < ∞ for all n,
thus, up to a subsequence, ϱn converge to some ϱ ∈ M+(Ω × D × Rd) in the transportation
topology induced by the cost function

c
(

(ξ, x, v), (ξ′, x′, v′)
)

:= min{‖ξ − ξ′‖, 1}+ |x− x′|q + ‖v − v′‖q.

Clearly,
´ (

‖x‖p+‖V ‖p
)

dϱ(ξ, x, V ) ≤M and ϱ is a phase measure of some γ ∈W 1,p(Ω,Pp(D)).
By Corollary 6.4.7 there is a subsequence such that γ∗

n[ξ] ⇀ γ∗[ξ] for µ-a.e. ξ (without rela-
belling). Therefore, for any test function φ ∈ Cb(D) the dominated convergence theorem yields
that

ˆ

Ω

[
ˆ

D

φdγ∗[ξ]

]

dµ(ξ) = lim
ˆ

Ω

[
ˆ

D

φ dγ∗
n[ξ]

]

dµ(ξ) =
ˆ

D

φ dν,

thus
´

Ω γ∗[ξ] dµ(ξ) = ν, i.e. γ is a competitor in (6.17). By Fatou’s lemma and the lower
semicontinuity of c(ξ, ·)

ˆ

Ω

[
ˆ

D

c(ξ, x) dγ∗[ξ](x)

]

dµ(ξ) ≤ lim inf
ˆ

Ω

[
ˆ

D

c(ξ, x) dγ∗
n[ξ](x)

]

dµ(ξ).

Since

Dirp(γ) ≤
ˆ

‖V ‖p dϱ(ξ, x, V ) ≤ lim inf
ˆ

‖V ‖p dϱn(ξ, x, V ) = lim inf Dirp(γn),

we conclude that γ is a solution of (6.17).

6.5.1 Open questions

Finally, let us mention that there is a lot of directions for further research concerning the
considered problem.

• The existence of a solution if µ≪ Capp but µ 6≪ Capq for any q < p.
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• The stability of solutions of (6.17) w.r.t. change of µ and ν (cf. Propositions 2.2.8 and 3.3.5).

• The relation of this problem to the regularized Monge problem (6.1): do their values
coincide and when is a solution of (6.17) induced by a transport map?

• The asymptotic behavior of

inf
{
ˆ

Ω

[
ˆ

D

c(ξ, x) dγ∗[ξ](x)

]

dµ(ξ) + λDirp(γ)
∣

∣

∣ γ ∈W 1,p(Ω,Pp(D)),

ˆ

Ω
γ∗[ξ] dµ(ξ) = ν

}

as λ→ +0. When does it converge to the standard Monge–Kantorovich problem?
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Chapter 7

Analysis of iterative Bregman

projections

7.1 Introduction

Our focus in this chapter is on the computational aspects of OT-related problems for the case of
discrete probability measures. The state-of-the-art approach for the Monge–Kantorovich prob-
lem in this setting proposed by M. Cuturi in 2013 [Cut13] is to apply Sinkhorn’s matrix scaling
algorithm [Sin74] to the entropy-regularized optimization problem. In [Ben+15] Benamou et al.
proposed the iterative Bregman projections (IBP) algorithm for a wide range of OT problems
including the multimarginal optimal transport and the Wasserstein (or Fréchet) barycenters.
This method can be considered in some cases as an alternating projections (w.r.t. the Kullback–
Leibler divergence) algorithm and also as a generalization of the Sinkhorn algorithm.

Here we provide theoretical iteration complexity bounds on IBP applied to the multimarginal
OT problem and to the Fréchet barycenter problem in terms of the accuracy ε. Let us also
mention that there is a lot of works proposing various algorithms for the considered problems
and some of them provide theoretical complexity bounds which are better then the ones we
obtain in this chapter (see Section 1.4). However, here we stick to the IBP algorithm because
of its simplicity and clarity, which makes it favorable from the practical point of view.

Notations. We define the probability simplex in RN as ∆N−1 := {x ∈ RN+ :
∑N

i=1 xi = 1}.
For x ∈ RN+ we denote the negative entropy as

H(x) :=
N
∑

i=1

xi(logxi − 1) = 〈x, logx− 1〉.

Here 1 = 1N ∈ RN is the vector of ones. The term −〈x,1〉 is added to simplify calculations if
the mass of x is not preserved. Here and further by log(x) (exp(x)) we denote the element-wise
logarithm (exponent) of matrix or vector x, and 〈A,B〉 :=∑n,m

i,j=1AijBij for any A,B ∈ Rn×m.
For two matrices A and B we also define element-wise multiplication and element-wise division
as A ⊙ B and A

B
respectively. The Kullback–Leibler divergence for x, y ∈ RN+ is defined as the

Bregman divergence associated with H:

KL(x|y) :=
N
∑

i=1

(

xi log
xi

yi
− xi + yi

)

= 〈x, logx− log y〉+ 〈y − x,1〉 ≥ 0.

By [n] we denote the set {1, . . . , n}. If x ∈ RN , then we sometimes refer to its j-th component
as [x]j .

The chapter is organized as follows. In Section 7.2 we formulate the general problem and
formulate the dual version of the IBP algorithm. In Section 7.3 we study the convergence of
dual IBP in the abstract setting. Section 7.4 is devoted to the multimarginal optimal transport
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problem. In Section 7.5 we consider the application of IBP to the barycenter problem. Finally,
Section 7.6 provides some numerical results concerning the convergence of dual IBP.

7.2 Problem statement and preliminaries

Consider the following LP problem:

〈x, c〉 → min
x∈RN

+∩C1∩···∩Cm
, (7.1)

where each Ci is an affine subspace of RN . For simplicity we assume that c ∈ [0, 1]N . Following
[Cut13; Ben+15], add an entropy penalization:

〈x, c〉+ λH(x) → min
x∈RN

+∩C1∩···∩Cm
, (7.2)

where λ > 0 is a penalization parameter. The problem (7.2) is sometimes called an entropy-
linear programming problem [Gas+16]. The idea of IBP is to notice that this is equivalent to
minimization of KL

(

x|e−c/λ
)

and use alternating projections on the sets C1, . . . , Cm w.r.t. the
Kullback–Leibler divergence: at the step t we choose it ∈ [m] := {1, . . . ,m} and set

xt+1 := argmin
x∈Cit

KL (x|xt) , (7.3)

with x0 := e−c/λ. Let us remark that if Ci is not an affine set, then one must add a correction
term to ensure the convergence of this algorithm to the solution of (7.2). Actually, IBP can
be considered as Dykstra’s algorithm in the non-Euclidean setting [BL00] and, as we will see
later, it is equivalent to alternating minimization in the dual problem. However, in all the
Monge–Kantorovich problem, the multimarginal OT, and the Wasserstein barycenter problems
the sets Ci are affine. Moreover, in the case of the Monge–Kantorovich problem this is exactly
the Sinkhorn algorithm.

Set
Ci =

{

x ∈ RN : Aix = bi
}

, Ai ∈ Rni×N , bi ∈ Rni .

By the min-max theorem (see [BV04])

min
x∈RN

+∩C1∩···∩Cm
〈x, c〉+ λH(x)

= min
x∈RN

+

[

〈x, c+ λ logx− λ1〉+ λ

m
∑

i=1

sup
ui∈Rni

〈ui, bi −Aix〉
]

= sup
u1,...,um

[

λ

m
∑

i=1

〈ui, bi〉+ inf
x∈RN

+

(

〈x, c+ λ logx− λ1〉 − λ

m
∑

i=1

sup
ui∈Rni

〈x,AT

i ui〉
)]

= λ sup
u1,...,um

[

m
∑

i=1

〈ui, bi〉 −
〈

exp

(

m
∑

i=1

AT

i ui −
c

λ

)

,1

〉]

,

thus the dual problem to (7.2) (up to a multiple −λ) is

ψ(u) := 〈x(u),1〉 −
n
∑

i=1

〈ui, bi〉 → min
u∈Rn1×···×Rnm

, (7.4)

where u = (u1, . . . , um) ∈ Rn1 × · · · × Rnm and

x(u) := exp

(

m
∑

i=1

AT

i ui −
c

λ

)

.
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Note that
∇uiψ(u) = Aix(u)− bi.

Let x∗λ be the unique solution of the primal problem, then u is a solution of the dual prob-
lem (which can not be unique) iff x(u) = x∗λ. In particular, note that (7.3) is equivalent to
solving (7.2) with only one set Cit instead of C1, . . . , Cm and −λ logxt instead of c, thus

xt+1 = exp
(

AT

itvt + logxt
)

,

where
vt = argmin

v∈Rnit

〈

exp
(

AT

itv + logxt
)

,1
〉

− 〈v, bit〉.

Since x0 := e−c/λ = x(0), we conclude that IBP is equivalent to alternating minimization in
the dual problem (7.4), like Dykstra’s algorithm [GM89]. In particular, xt = x(ut), where
u0 = 0 and at each step we update ut+1

it
:= uit + vt. This brings us to the dual version of IBP

(Algorithm 1). The operators πi are defined as follows: πi(u) = u′ = (u′1, . . . , u
′
m), where

u′i := argmin
u∈Rni

ψ(u1, . . . , u, . . . , um), u′j := uj for j ∈ [m] \ {i}. (7.5)

Notice that it is a bit more general than IBP since we allow any starting points u01, . . . , u
0
m, not

only zero. For now, we do not specify the stopping criterion and the way we choose indices it.
Clearly, if m = 2 (e.g. in the Sinkhorn algorithm), then it are uniquely defined by i0. If m > 2,
then there are three main possibilities to take it:

• in a fixed cyclic order;

• randomly;

• greedily, optimizing some criterion at every step.

It is known from the theory of alternating optimization that a fixed order can lead to a slower
convergence, thus in this work we consider the other options.

Algorithm 1 Dual iterative Bregman projections

Input: c, A1, . . . , Am, b1 . . . , bm, λ > 0, starting points u01, . . . , u
0
m.

1: Set t := 0.
2: repeat
3: Choose it ∈ [m] \ {it−1}.
4: ut+1 := πit(u

t).
5: t := t+ 1.
6: until A stopping criterion is fulfilled.

Output: x(ut).

To obtain an admissible point for the initial problem (7.1) we apply a “rounding procedure”
to the output x(ut) of the above algorithm. In the subsequent sections, we show that to solve
the non-regularized problem 7.1 with accuracy ε, in the considered cases, it is enough to take
λ ∝ ε and run (dual) IBP for O

(

1
ε2

)

iterations (with constants depending on N).

7.3 Convergence of dual IBP

Here we provide complexity bounds on IBP based on a refinement of the analysis from [AWR17]
and general results for Dykstra’s algorithm and alternating minimization.

First of all, we have to decide which kind of convergence is needed to obtain an approximate
solution of the initial problem (7.1). In [AWR17] it is shown that for the Sinkhorn algorithm it
is enough to obtain

m
∑

i=1

‖x(u)− x(πi(u))‖1 ≤ ε′ (7.6)
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for a suitable ε′ depending on ε. In the next sections we will see that this approach works for
the multimarginal OT and the barycenter problem as well.

Let u∗ = (u∗1, . . . , u
∗
m) be some solution of (7.4), ψ∗ := ψ(u∗), and

ψ̃(u) := ψ(u)− ψ∗, u ∈ Rn1 × · · · × Rnm .

Further analysis of dual IBP convergence is based on the following simple observation (cf.
[AWR17]): if u′ := πi(u), then

ψ(u)− ψ(u′) =
〈

x(u)− x(u′),1
〉

+
n
∑

j=1

〈u′j − uj , bj〉

=
〈

x(u)− x(u′),1
〉

+ 〈u′i − ui, Aix(u
′)〉

=
〈

x(u)− x(u′),1
〉

+ 〈logx(u′)− logx(u), x(u′)〉
= KL

(

x(u′)|x(u)
)

.

If x(u), x(u′) ∈ ∆N−1, then Pinsker’s inequality yields

ψ(u)− ψ(u′) ≥ 1

2
‖x(u′)− x(u)‖21. (7.7)

Remark 7.3.1. Notice that in the general case, the inequality t log t
s
− t+ s ≥ (t−s)2

2max{s,t} following
from the Taylor’s theorem for all s, t ∈ R+, implies that

KL(x|y) ≥ ‖x− y‖21
2〈x+ y,1〉 ,

for all x, y ∈ RN+ , thus

ψ(u)− ψ(u′) ≥ ‖x(u′)− x(u)‖21
2〈x(u) + x(u′),1〉 .

This inequality can be used to analyze the case where the total mass of x(ut) is not preserved,
but this is outside of the scope of the current work.

The gradient inequality for the convex function ψ gives us

ψ̃(u) ≤
m
∑

i=1

〈∇uiψ(u), ui − u∗i 〉 =
m
∑

i=1

〈Aix(u)− bi, ui − u∗i 〉

=

m
∑

i=1

〈Aix(u)−Aix(πi(u)), ui − u∗i 〉 =
m
∑

i=1

〈

x(u)− x(πi(u)), A
T

i (ui − u∗i )
〉

.

Now we need an additional assumption which allows us to use (7.7) and relates it to the above
inequality.

Assumption 7.1. Suppose that there is R = R(λ) > 0 such that for all t ≥ 0 one has

m
∑

i=1

〈

x(ut)− x(πi(u
t)), AT

i (u
t
i − u∗i )

〉

≤ R

m
∑

i=1

∥

∥x(ut)− x(πi(u
t))
∥

∥

1

and x(πi(u
t)) ∈ ∆N−1 for any i ∈ [m].

7.3.1 Greedy strategy

Consider a greedy strategy: for each t choose it which maximizes ‖x(πi(ut))− x(ut)‖1, and stop
once (7.6) holds for ut. Otherwise, if the stopping criterion is not fulfilled and t ≥ 1, then due
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to (7.7)

ψ(ut)− ψ(ut+1) ≥ 1

2
‖x(ut+1)− x(ut)‖21 ≥

1

2

(

1

m− 1

m
∑

i=1

‖x(πi(u))− x(u)‖1
)2

≥ 1

2(m− 1)2
max







(

ψ̃(u)

R

)2

, (ε′)2







=
1

2(m− 1)2R2
max

{

ψ̃2(u), (ε′R)2
}

. (7.8)

Here we used that ut = πit−1(u
t). To study the sequence {ψ̃(ut)}t∈N0 we need the next technical

lemma.

Lemma 7.3.2. Let {δt}t∈N0 ⊂ R+ be a nonincreasing sequence. Take β > 0 and define for any
t ≥ 0

αt :=
δt − δt+1

max
{

δ2t , β
2
} ≥ 0. (7.9)

Then ∞
∑

t=0

αt ≤
3

β
.

Proof. According to (7.9)

αt =
δt − δt+1

max
{

δ2t , β
2
} ≤ min

{

1

δt
,
δt

β2

}

≤ 1

β
. (7.10)

Furthermore,
1

δt+1
≥ 1

δt

1

1− αtδt
≥ 1

δt
+ αt.

Define St :=
∑t−1

τ=0 ατ . The above inequality yields

1

δt
≥ 1

δ0
+ St. (7.11)

On the other hand, δt+1 ≤ δt − αtβ
2, hence for any s ≥ t

δt − δs ≥ β2(Ss − St). (7.12)

To combine the two estimates above we consider a switching strategy parametrized by a number
h ∈ (0, δ0]. Let t ≥ 0 be the last moment where δt ≥ h. Then for any 0 ≤ s ≤ t by (7.11)

Ss ≤ St ≤
1

δt
− 1

δ0
≤ 1

h
− 1

δ0

and for s ≥ t by (7.12) and (7.10)

Ss ≤ St+1 +
δt+1 − δs

β2
≤ αt + St +

h

β2
≤ 1

β
+

1

h
+

h

β2
− 1

δ0
.

Minimizing the sum of these two estimates w.r.t. h ∈ (0, δ0], we conclude that

Ss ≤ inf
0<h≤δ0

(

1

β
+

1

h
+

h

β2
− 1

δ0

)

=

{

1
β
+ δ0

β2 , δ0 < β,
3
β
− 1

δ0
, otherwise.

In both cases, we have Ss ≤ 3
β

.

Theorem 7.3.3. Under Assumption 7.1 Algorithm 1 with greedy strategy stops after at most

6(m− 1)2
R

ε′
+ 2

iterations.
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Proof. Bound (7.8) yields that

αt :=
ψ̃(ut)− ψ̃(ut+1)

max
{

ψ̃2(ut), (ε′R)2
} ≥ 1

2(m− 1)2R2

for all t ≥ 1, thus by Lemma 7.3.2 it can hold for no more than

2(m− 1)2R2 3

ε′R
=

6(m− 1)2R

ε′

iterations. Therefore, stopping criterion (7.6) is fulfilled for the first time at iteration

t ≤ 1 + 6(m− 1)2
R

ε′
.

The claim follows.

7.3.2 Randomized strategy

A drawback of the greedy strategy is that at every step we have to compute x(πi(ut)) for all
i. In some cases (e.g. for both problems we deal with in this chapter) ‖x(πi(ut)) − x(ut)‖1 =
‖Aix(ut)−bi‖1, but computing of Aix(ut) and x(πi(ut)) has the same complexity, so it ism times
more expensive than just to make a step of IBP. Another way is to use a randomized strategy
and pick up each it randomly and uniformly from [m] \ {it−1}. Nontrivial issue is the choice
of a stopping criterion, since computing of

∑m
i=1‖x(πi(ut)) − x(ut)‖1 at each iteration is too

expensive. Instead, we suggest for any t = km, k ∈ N0, to draw random τk ∼ U ([t, t+m− 1])
and stop whenever

m
∑

i=1

‖x(πi(uτk))− x(uτk)‖1 ≤ ε′.

Theorem 7.3.4. Under Assumption 7.1 Algorithm 1 with randomized strategy stops with prob-
ability at least 1− δ for any δ ∈

(

0, 12
)

after at most

12(m− 1)2R

ε′
+ 6m log

2

δ
+m

iterations.

Proof. Step 1. Assume for now that we run IBP infinitely. Let N ∈ N0∪{∞} be the (random)
number of iterations t ≥ 1 where (7.6) fails, and {Tn}n∈N be the sequence of these iterations. If
N is finite, then we continue it with ∞. First, we are going to obtain a bound on N . Define
random variables

Zn :=







‖x(uTn+1)−x(uTn )‖2

1
∑m

i=1∥x(πi(uTn ))−x(uTn )∥21
− 1

m−1 , n ≤ N,

0, otherwise.

Obviously, − 1
m−1 ≤ Zn ≤ 1 − 1

m−1 a.s. Let Fn be the sigma-algebra of events induced by
T1, . . . , Tn and i0, . . . iTn−1. Then E[Zn|Fn] = 0 and, if n ≤ N ,

Var[Zn|Fn] ≤
1

m− 1

∑

j ̸=iTn−1

∥

∥x(πj(u
Tn))− x(uTn)

∥

∥

4

1
(

∑m
i=1‖x(πi(uTn))− x(uTn)‖21

)2 ≤ 1

m− 1
,

otherwise Var[Zn|Fn] = 0. Therefore, in the same way as in Proposition 2 from [Yin04] one can
prove that for any s ∈ N and h > 0

P

{

s
∑

n=1

Zn ≤ −h
}

≤ exp

(

− h2

2
(

s/(m− 1) + h/3
)

)

. (7.13)
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Due to (7.7) for all n ≤ N

ψ(uTn)− ψ(uTn+1) ≥ 1

2

(

Zn +
1

m− 1

) m
∑

i=1

∥

∥x(πi(u
Tn))− x(uTn)

∥

∥

2

1

≥ 1

2(m− 1)

(

Zn +
1

m− 1

)

(

m
∑

i=1

∥

∥x(πi(u
Tn))− x(uTn)

∥

∥

1

)2

≥ 1

2(m− 1)

(

Zn +
1

m− 1

)

(

max

{

ψ̃(uTn)

R
, ε′
})2

(here we used that πiTn−1(u
Tn) = uTn), thus

αTn :=
ψ̃(uTn)− ψ̃(uTn+1)

max
{

ψ̃2(uTn), (ε′R)2
} ≥ 1

2(m− 1)R2

(

Zn +
1

m− 1

)

.

By Lemma 7.3.2

3

ε′R
≥

∞
∑

t=0

αt ≥
N
∑

n=1

αTn ≥ 1

2(m− 1)R2

N
∑

n=1

(

Zn +
1

m− 1

)

,

hence
s
∑

n=1

(

Zn +
1

m− 1

)

≤ 6(m− 1)R

ε′
∀0 ≤ s ≤ N.

Consequently, for any s ∈ N0

P {N ≥ s} ≤ P

{

s
∑

n=1

(

Zn +
1

m− 1

)

≤ 6(m− 1)R

ε′

}

= P

{

s
∑

n=1

Zn ≤ 6(m− 1)R

ε′
− s

m− 1

}

.

Set

s :=

⌈

12(m− 1)2R

ε′
+ 5(m− 1) log

2

δ

⌉

,

then h := s
m−1 − 6(m−1)R

ε′
≥ s

2(m−1) > 0 and bound (7.13) yields that

P {N ≥ s} ≤ exp

(

− h2

2
(

s/(m− 1) + h/3
)

)

≤ exp

(

− h2

2
(

2h+ h/3
)

)

≤ exp
(

−3h

14

)

≤ δ

2
.

Step 2. Now fix n ∈ N and consider independent random variables τ0, . . . , τn−1 such that
τk ∼ U ([km, (k + 1)m− 1]). Obviously, they are independent with i0, i1, . . . . Let lk be the
number of iterations km ≤ t < (k+1)m such that (7.6) does not hold. Denote by En the event
where (7.6) fails at all τk. Then

P (En|l0, . . . , ln−1) ≤
n−1
∏

k=0

lk

m
≤
(

1

nm

n−1
∑

k=0

lk

)n

.

But
∑n−1

k=0 lk ≤ N + 1, and combining this with Step 1 we obtain that

P(En) ≤
( s

nm

)n

+ P{N ≥ s} ≤
( s

nm

)n

+
δ

2
.

If nm ≥ s+m log 2
δ
, then due to the concavity of log(·)

nm
(

log(nm)− log s
)

≥ nm− s ≥ m log
2

δ
,
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hence
( s

nm

)n

≤ δ

2
,

and P(En) ≤ δ. Thus with probability at least 1− δ the number of iterations is bounded by

m

⌈

s

m
+ log

2

δ

⌉

≤ s+m log
2

δ
+m

≤ 12(m− 1)2R

ε′
+ 5(m− 1) log

2

δ
+ 1 +m log

2

δ
+m

≤ 12(m− 1)2R

ε′
+ 6m log

2

δ
+m.

7.4 Multimarginal OT problem

Given a cost tensor C ∈ [0, 1]n1×···×nm and vectors pi ∈ ∆ni−1, the discrete multimarginal
optimal transport problem is formulated as

min
{

〈C,X〉 : X ∈ Rn1×···×nm
+ , AiX = pi

}

, (7.14)

where X is a multimarginal transport plan and Ai is the projector on the i-th component Rni .
Clearly, this can be written in the form (7.1).

It is easy to see that the dual function (7.4) in this case equals to

ψ(u1, . . . , um) =
∑

j1,...,jm

Xj1,...,jm(u)−
m
∑

i=1

〈ui, pi〉,

where

Xj1,...,jm(u) := exp

(

−Cj1,...,jm
λ

+
m
∑

i=1

[ui]ji

)

.

Operators πi are given by

πi(u) = (u1, . . . , u
′
i, . . . um), u′i = ui + log pi − log

(

AiX(u)
)

,

which in terms of the primal variable X corresponds to the coordinate-wise multiplication by
the tensor

⊗i−1
k=1 1nk

⊗ pi
AiX(u) ⊗

⊗m
k=i+1 1nk

[Ben+15]. In particular,

‖X(u)−X(πi(u))‖1 =
∥

∥

∥

∥

(

1− pi

AiX(u)

)

AiX(u)

∥

∥

∥

∥

= ‖AiX(u)− pi‖1.

Let vec(X) ∈ RN be a vectorized tensor X, where N :=
∏m
i=1 ni. Abusing notations, we also

sometimes suppose Ai ∈ Rni×N .
First, define a rounding map Pb by Algorithm 2. This is a trivial generalization of Algorithm 2

in [AWR17]. Note that

AiX̂ = Aixm + (1− 〈xm,1〉)qi = Aixm + 〈bi −Aixm,1〉qi = bi ∀i ∈ [m],

thus X̂ is a feasible point for problem 7.14 if bi = pi.

Lemma 7.4.1. Let X̂ come from Algorithm 2, then

‖X̂ −X‖1 ≤
m
∑

i=1

‖AiX − bi‖1.
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Algorithm 2 Rounding to feasible point in MOT

Input: X ∈ Rn1×···×nm
+ such that ‖X‖1 = 1, b1 ∈ ∆n1−1, . . . , bm ∈ ∆nm−1.

1: x0 := vec(X).
2: for i ∈ [m] do

3: xi := xi−1 ⊙AT

i

(

bi
Aixi−1

∧ 1

)

(here a ∧ b is the coordinate-wise minimum of a and b).
4: end for
5: for i ∈ [m] do
6: qi :=

bi−Aixm
⟨bi−Aixm,1⟩ ∈ ∆ni−1.

7: end for
8: X̂ := vec−1(xm) + (1− 〈xm,1〉)

⊗m
i=1 qi.

Output: X̂.

Proof. Consider x0, . . . , xm from Algorithm 2. Then xi ≤ xi−1 coordinate-wise,

‖xi − xi−1‖1 = 〈, xi−1 − xi,1〉 =
∥

∥

∥

∥

xi−1 − xi−1 ⊙AT

i

(

bi

Aixi−1
∧ 1

)∥

∥

∥

∥

1

=

∥

∥

∥

∥

Aixi−1 − (Aixi−1)⊙
(

bi

Aixi−1
∧ 1

)∥

∥

∥

∥

1

=

∥

∥

∥

∥

(Aixi−1)⊙
(

bi

Aixi−1
− 1

)

+

∥

∥

∥

∥

1

= ‖(Aixi−1 − bi)+‖1,

Therefore,

‖X̂ −X‖1 ≤ ‖x0 − xm‖1 + (1− 〈xm,1〉) = 2〈x0 − xm,1〉

= 2

m
∑

i=1

〈(Aixi−1 − bi)+,1〉 ≤ 2

m
∑

i=1

‖Aix0 − bi‖1.

Since 〈bi,1〉 = 〈Aix0,1〉 = ‖X‖1 = 1, then 〈(Aix0 − bi)+,1〉 = 1
2‖Aix0 − bi‖1 and

‖X̂ −X‖1 ≤
m
∑

i=1

‖Aix0 − bi‖1.

Lemma 7.4.2. Let u ∈ Rn1 × · · · × Rnm and ‖X(u)‖1 = 1. Then

〈Pp(X(u)), C〉 ≤ 〈X∗, C〉+ 2
m
∑

i=1

‖AiX(u)− pi‖1 + λ logN,

where X∗ is any solution of (7.14).

Proof. From the duality it immediately follows that

X(u) = argmin
X∈Rn1×···×nm

+ :AiX=bi, i∈[m]

(

〈X,C〉+ λH(X)
)

,

where bi := AiX(u) ∈ ∆ni−1. Then for X ′ := Pb(X
∗) we have

〈X ′, C〉+ λH(X ′) ≥ 〈X(u), C〉+ λH(X(u)).

Using that the values of C belong to [0, 1] and Lemma 7.4.1 we obtain

〈Pp(X(u)), C〉 ≤ 〈X(u), C〉+ ‖Pp(X(u))−X(u)‖1
≤ 〈X ′, C〉+ λH(X ′)− λH(X(u)) + ‖Pp(X(u))−X(u)‖1
≤ 〈X∗, C〉+ ‖X ′ −X∗‖1 + λ

(

H(X ′)−H(X(u))
)

+ ‖Pb(X(u))−X(u)‖1

≤ 〈X∗, C〉+ 2

m
∑

i=1

‖bi − pi‖1 + λ
(

H(X ′)−H(X(u))
)

.
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The claim follows from the bounds

1 ≤ −H(x) ≤ 1 + logN ∀x ∈ ∆N−1.

The above lemma justifies the correctness of Algorithm 3.

Algorithm 3 Solving (7.14) by dual IBP

Input: C, p1, . . . , pm, accuracy ε > 0.
1: Set λ := ε

2 logN
, ε′ := ε

4 .
2: Run Algorithm 1 with u0i := log pi, i ∈ [m], and obtain X(ut) such that

m
∑

i=1

‖AiX(ut)− pi‖1 ≤ ε′.

3: Compute X̂ by Algorithm 2.
Output: X̂.

The next result provides bounds on ut from Algorithm 1 in the seminorm

|v| := max v − min v,

which will be used to ensure Assumption 7.1.

Lemma 7.4.3. Fix λ > 0 and let u ∈ Rn1×···×nm, u′ = (u1, . . . , u
′
i, . . . , um) := πi(u) for some

i ∈ [m], where πi is defined by (7.5) for the regularized multimarginal OT problem. Then

|u′i − log pi| ≤
1

λ
. (7.15)

In particular, any solution u∗ of the dual problem for the regularized multimarginal OT satis-
fies (7.15) for all i ∈ [m]

Proof. W.l.o.g. assume that i = 1. According to Section 7.2 u′
1 is characterized by the equation

P1X(u′) = p1, and P1X(u∗) = p1 as well. From the formula for X(u) we obtain that for any
j ∈ [n1]

[p1]j = [A1X(u′)]j = [p1]je
[u′1−log p1]j

∑

j2,...,jm

exp

(

−Cj,j2...,jm
λ

+

m
∑

i=2

[ui]ji

)

≤ [p1]je
[u′1−log p1]j

∑

j2,...,jm

exp

(

m
∑

i=2

[ui]ji

)

.

In the same way, using that Cj,j2...,jm ≤ 1, one gets

[p1]j ≥ [p1]je
[u′1−log p1]j−1/λ

∑

j2,...,jm

exp

(

m
∑

i=2

[ui]ji

)

,

thus

− log





∑

j2,...,jm

exp

(

m
∑

i=2

[ui]ji

)



 ≤ [u′1 − log p1]j ≤
1

λ
− log





∑

j2,...,jm

exp

(

m
∑

i=2

[ui]ji

)



 .

The claim follows.
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Theorem 7.4.4. The iteration complexity of Algorithm 3 is bounded by

48(m− 1)2
logN
ε2

+ 1 = O

(

m2 logN
ε2

)

for the greedy strategy and, with probability at least 1− δ, by

96(m− 1)2
logN
ε2

+ 6m log
2

δ
+ 1 = O

(

m2 logN
ε2

+m log
1

δ

)

for the randomized strategy.

Proof. Obviously, if ri := AiX ∈ ∆ni−1, then ‖X‖1 =
∑

j1,...,jm
Xj1,...,jm = 〈ri,1〉 = 1, and vice

versa. Hence ‖X(πi(u))‖1 = 1 for any u.
Note that AT

i 1ni
= 1N , hence for all t ≥ 1

〈

x(ut)− x(πi(u
t)), AT

i (u
t
i − log pi)

〉

=
〈

Ai
(

x(ut)− x(πi(u
t))
)

, (uti − log pi − a1)
〉

≤ ‖x(ut)− x(πi(u
t))‖1‖uti − log pi − a1‖∞

for any a ∈ R. Taking a :=
max(uti−log pi)+min(uti−log pi)

2 , using Lemma 7.4.3 and the fact that
u0i := log pi, we conclude with

〈

x(ut)− x(πi(u
t)), AT

i (u
t
i − log pi)

〉

≤ ‖x(ut)− x(πi(u
t))‖1

|uti − log pi|
2

≤ 1

2λ
‖x(ut)− x(πi(u

t))‖1.

The same bound holds for u∗i , thus

m
∑

i=1

〈

x(ut)− x(πi(u
t)), AT

i (u
t
i − u∗i )

〉

≤ 1

λ

m
∑

i=1

‖x(ut)− x(πi(u
t))‖1.

Therefore, Assumption 7.1 is fulfilled with R = 1
λ

= 2 logN
ε

. The claim follows from Theo-
rems 7.3.3 and 7.3.4.

7.5 Barycenter problem

Now we consider the problem of finding discrete Fréchet barycenter. Given cost matrices
C1 ∈ [0, 1]ni,n, . . . , CL ∈ [0, 1]nL,n, vectors p1 ∈ ∆n1−1, . . . , pL ∈ ∆nL−1, and positive weights
(w1, . . . , wL) ∈ ∆L−1, it can be written as

min

{

L
∑

l=1

wl〈Cl, Xl〉 : (X1, . . . , XL) ∈ Rn1×n
+ × · · · × R

nL×n
+ ∩ Cu ∩ Cv

}

, (7.16)

where

Cu :=
{

(X1, . . . , XL) ∈ Rn1×n × · · · × RnL×n : Xl1 = pl, ∀l ∈ [L]
}

,

Cv :=
{

(X1, . . . , XL) ∈ Rn1×n × · · · × RnL×n : 〈Xl1,1〉 = 1, ∃q ∈ Rn : XT

l 1 = q ∀l ∈ [L]
}

.

If we identify (w1X1, . . . , wLXL) with a vector x = vec(X) ∈ R
(n1+···+nL)n
+ , then this problem

can also be written in the form 7.1 with the corresponding matrices

Aux := (w1X11, . . . , wLXL1) ∈ Rn1 × · · · × RnL ,

Avx :=
(

w1(X
T
1 1− q), . . . , wL(X

T
L1− q)

)

∈ RL × (Rn)L, where q :=

L
∑

l=1

wlX
T

l 1



122 ANALYSIS OF ITERATIVE BREGMAN PROJECTIONS

(to simplify the notations we denote them by Au and Av instead of A1 and A2).
The dual function (7.4) in this case reads as

ψ(u,ν, s) =
L
∑

l=1

wl〈Xl(u,ν, s),11
T〉 −

L
∑

l=1

wl〈ul, pl〉 −
L
∑

l=1

wlsl,

where u = (u1, . . . , uL) ∈ Rn1 × · · · × RnL corresponds to the first constraint, s ∈ RL and
ν = (ν1, . . . , νL) ∈ (Rn)L correspond to the second one, and

Xl(u,ν, s) :=
1

wl
exp

(

−Cl
λ

+ ul1
T + 1

(

νl −
L
∑

k=1

wkνk

)T

+ sl11
T

)

, l ∈ [L].

Let us make the change of variables vl := νl −
∑L

k=1wkνk with the additional constraint
∑L

l=1wlvl = 0. Then

ψ(u,v, s) =

L
∑

l=1

wl〈Xl(u,v, s),11
T〉 −

L
∑

l=1

wl〈ul, pl〉 −
L
∑

l=1

wlsl

and

Xl(u,v, s) = Xl(ul, vl, sl) :=
esl

wl
exp

(

−Cl
λ

+ ul1
T + 1vT

l

)

.

According to the previous section the operator πu is given by

πu(u,v, s) = (u′,v, s), u′l = ul + log pl − log
(

Xl(u,v, s)1
)

,

which in the primal variables corresponds to the multiplication of rows: Xl 7→ diag
(

pl
Xl1

)

Xl.

Now consider (u,v′, s′) = πv(u,v, s), then there is h ∈ Rn such that for all l ∈ [L]

∇vlψ(u,v
′, s′) = XT

l (u,v
′, s′)1 = es

′

l
−slev

′

l
−vl ⊙

(

XT

l (u,v, s)1
)

= h

and ∂slψ(u,v
′, s′) = 〈Xl(u,v

′, s′)1,1〉 − 1 = 0. Thus

v′l = vl − (s′l − sl)1− log
(

XT

l (u,v, s)1
)

+ logh

and since
∑L

l=1wlvl =
∑L

l=1wlv
′
l = 0,

logh =

L
∑

l=1

wl log
(

XT

l (u,v, s)1
)

+ 1

L
∑

l=1

wl(s
′
l − sl).

We can take s′l − sl = d for all l, then

v′l = vl +
L
∑

k=1

wk log
(

XT

k (u,v, s)1
)

− log
(

XT

l (u,v, s)1
)

and s′l = sl − log
(

〈q,1〉
)

,

where q :=
∏L
l=1(X

T

l 1)
wl is the coordinate-wise geometric mean of the marginals XT

1 1, . . . , X
T

L1.

In terms of the primal variables this corresponds to Xl 7→ 1
⟨q,1⟩Xl diag

(

q

XT

l
1

)

. Notice that this

step is a bit different then in [Ben+15] or [Kro+19] (where it is just Xl 7→ Xl diag
(

q

XT

l
1

)

because

there is no sl variables), but it allows to simplify the analysis and obtain the same complexity
bounds.

First, define a rounding map by Algorithm 4. Obviously, it returns (X̂1, . . . , X̂L) which is a
feasible point for problem 7.16 if bl = pl.
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Algorithm 4 Rounding to feasible point in barycenter problem

Input: Matrices X1 ∈ Rn1×n
+ , . . . , XL ∈ R

nL×n
+ such that XT

1 1 = · · · = XT

L1 = q ∈ ∆n−1,
vectors b1 ∈ ∆n1−1, . . . , bL ∈ ∆nL−1, weights w1, . . . wL.

1: By Algorithm 2 with m = 2 compute X̂l ∈ Rn1×n
+ such that X̂l1 = bl, X̂T

l 1 = q.
Output: X̂1, . . . , X̂L.

Lemma 7.5.1. Let u ∈ Rn1 × · · · × RnL, v ∈ (Rn)L, s ∈ RL, and XT

l (ul, vl, sl)1 = q ∈ ∆n−1

for all l ∈ [L]. Then

L
∑

l=1

wl〈X̂l, Cl〉 ≤
L
∑

l=1

wl〈X∗
l , Cl〉+ 2

L
∑

l=1

wl‖Xl(ul, vl, sl)1− pl‖1 + λ logn,

where (X∗
1 , . . . , X

∗
L) is any solution of (7.16) and

(

X̂l

)

l∈[L] are obtained by Algorithm 4 from
(

Xl(ul, vl, sl)
)

l∈[L and vectors p1, . . . , pL.

Proof. From the duality we obtain that x(u,v, s) is the solution of the regularized barycenter
problem with constraints Xl1 = bl := Xl(ul, vl, sl)1 ∈ ∆nl−1. Then for (X ′

1, . . . , X
′
L) obtained

from (X∗
1 , . . . , X

∗
L) via Algorithm 4 with these bl we have

L
∑

l=1

wl〈X ′
l , Cl〉+ λH(x′) ≥

L
∑

l=1

wl〈Xl(ul, vl, sl), Cl〉+ λH(x(u,v, s)).

Note that X ′
l1 = Xl(ul, vl, sl)1, thus

H(X ′
l)−H(Xl(ul, vl, sl)) ≤ logn,

and

H(x′)−H(x(u,v, s)) =
L
∑

l=1

(

〈wlX ′
l , log(wlX ′

l)− 1〉 − 〈wlXl(ul, vl, sl), log(wlXl(ul, vl, sl))− 1〉
)

=

L
∑

l=1

wl
(

H(X ′
l)−H(Xl(ul, vl, sl))

)

≤ logn.

By Lemma 7.4.1

L
∑

l=1

wl‖X ′
l −X∗

l ‖1 ≤
L
∑

l=1

wl‖(X∗
l )

T
1− bl‖1 =

L
∑

l=1

wl‖pl − bl‖1

as well as

L
∑

l=1

wl‖X̂l −Xl(ul, vl, sl)‖1 ≤
L
∑

l=1

wl‖XT

l (ul, vl, sl)1− pl‖1 =
L
∑

l=1

wl‖pl − bl‖1.

Thus, using that the values of C belong to [0, 1] we obtain

L
∑

l=1

wl〈X̂l, Cl ≤
L
∑

l=1

wl〈Xl(u,v), Cl〉+
L
∑

l=1

wl‖pl − bl‖1

≤
L
∑

l=1

wl〈X ′
l , Cl〉+ λ

(

H(x′)−H(x(u,v, s))
)

+

L
∑

l=1

wl‖pl − bl‖1

≤ 〈X∗, C〉+ 2
L
∑

l=1

wl‖pl − bl‖1 + λ logn.
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We are going to use the stopping criterion

‖x(ut,vt, st)− x(πu(u
t,vt, st))‖1 + ‖x(ut,vt, st)− x(πv(u

t,vt, st))‖1 ≤ ε′. (7.17)

But if we stop after iteration t where it = u, then possibly XT

l 1 6≡ XT

1 1 and we cannot apply
Algorithm 4 to produce an approximate solution of (7.16). The next lemma shows that in this
case we can make one more step of IBP.

Lemma 7.5.2. Let (u,v′, s′) := πv(u,v, s). Then

L
∑

l=1

wl‖Xl(ul, v
′
l, s

′
l)1− pl‖1 ≤ ‖x(u,v, s)− x(πu(u,v, s))‖1 + ‖x(u,v, s)− x(πv(u,v, s))‖1.

Proof. First, due to the form of πu one has

‖x(u,v, s)− x(πu(u,v, s))‖1 =
L
∑

l=1

wl‖Xl(ul, vl, sl)1− pl‖1. (7.18)

Then

L
∑

l=1

wl‖Xl(ul, v
′
l, s

′
l)1− pl‖1 ≤

L
∑

l=1

wl
(

‖Xl(ul, v
′
l, s

′
l)−Xl(ul, vl, sl)‖1 + ‖Xl(ul, vl, sl)1− pl‖1

)

= ‖x(u,v, s)− x(πv(u,v, s))‖1 + ‖x(u,v, s)− x(πu(u,v, s))‖1.

The above lemmata together with (7.18) justify the correctness of Algorithm 5.

Algorithm 5 Solving (7.16) by dual IBP

Input: Cost matrices C1, . . . , CL, vectors p1, . . . , pL, weights w1, . . . , wL, accuracy ε > 0.
1: Set λ := ε

2 logn
, ε′ := ε

4 .
2: Run Algorithm 1 with u0l := log pl, v0l = 0, s0l = 0, for l ∈ [L], and obtain

(w1X1, . . . , wLXL) := x(ut,vt, st) satisfying (7.17).
3: if it−1 = u then
4: Set (w1X1, . . . , wLXL) := x(ut+1,vt+1, st+1).
5: end if
6: Compute X̂1, . . . , X̂L by Algorithm 2.

Output: X̂1, . . . , X̂L.

Again, we need the following bounds to ensure Assumption 7.1.

Lemma 7.5.3. Fix λ > 0. Let u ∈ Rn1 × · · ·×RnL, v ∈ (Rn)L, s ∈ RL, and (u∗,v∗, s∗) be any
solution of the dual problem. If (u′,v, s) := πu(u,v, s), then

|u′l − log pl| ≤
1

λ
∀l ∈ [L],

and if (u,v′, s′) := πv(u,v, s), then

|v′l| ≤
2

λ
∀l ∈ [L].

In particular, (u∗,v∗, s∗) also satisfies the above bounds.
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Proof. In the same way as in the proof of Lemma 7.4.3 we can show that

logwl − sl − log〈evl ,1〉 ≤ min(u′l − log pl) ≤ max(u′l − log pl) ≤ logwl − sl − log〈evl ,1〉+ 1

λ
,

hence |u′l − log pl| ≤ 1
λ

. Similarly,

sl + log〈eul ,1〉 − logwl −
1

λ
≤ min

[

log
(

XT

l (ul, vl, sl)1
)

− vl
]

≤ max
[

log
(

XT

l (ul, vl, sl)1
)

− vl
]

≤ sl + log〈eul ,1〉 − logwl,

thus
∣

∣log
(

XT

l (ul, vl, sl)1
)

− vl
∣

∣ ≤ 1
λ

and |v′l| ≤ 2
λ

. In particular, the same bounds hold for
(u∗,v∗, s∗).

Theorem 7.5.4. The iteration complexity of Algorithm 5 is bounded by

96
logn
ε2

+ 2 = O

(

logN
ε2

)

.

Proof. By construction, Xl(πu(u,v, s)) and Xl(πv(u,v, s)) have unit mass for all u,v, s. Hence
using Lemma 7.5.3 we can obtain in the same way as in the proof of Theorem 7.4.4 that for all
t ≥ 1

〈

x(ut,vt, st)− x(πu(u
t,vt, st)), AT

u (u
t − logp)

〉

=

L
∑

l=1

wl
〈

Xl(u
t
l , v

t
l , s

t
l)1− pl, u

t
l − log pl

〉

≤ 1

2

L
∑

l=1

wl‖Xl(u
t
l , v

t
l , s

t
l)1− pl‖1|utl − log pl|

≤ 1

2λ
‖x(ut,vt, st)− x(πu(u

t,vt, st))‖1,

and thus
〈

x(ut,vt, st)− x(πu(u
t,vt, st)), AT

u (u
t − u∗)

〉

≤ 1

λ
‖x(ut,vt, st)− x(πu(u

t,vt, st))‖1.

Furthermore,
〈

x(ut,vt, st)− x(πv(u
t,vt, st)), AT

v (s
t,vt)

〉

=

L
∑

l=1

wl
[〈

XT

l (u
t
l , v

t
l , s

t
l)1− q̂, vtl

〉

+ sl(〈Xl(u
t
l , v

t
l , s

t
l)1,1〉 − 1)

]

=

L
∑

l=1

wl
〈

XT

l (u
t
l , v

t
l , s

t
l)1− q̂, vtl

〉

,

where q̂ := q
⟨q,1⟩ ∈ ∆n−1, q :=

∏L
l=1(X

T

l 1)
wl . By the same arguments,

〈

x(ut,vt, st)− x(πv(u
t,vt, st)), AT

v (s
t − s∗,vt − v∗)

〉

≤ 2

λ
‖x(ut,vt, st)− x(πv(u

t,vt, st))‖1.

Therefore, Assumption 7.1 is fulfilled with R = 2
λ

= 4 logN
ε

. The claim follows from Theo-
rem 7.3.3.

7.6 Numerical experiments

In this section, we provide a numerical analysis of dual IBP for the computation of approximate
Wasserstein barycenters and the solution of the multimarginal optimal transport problem. Let
us mention that this is not among the main goals of the thesis and we add it here for illustrative
purposes. The algorithm is implemented in Python 3.7 [VD09] using the log-domain stabilization
technique to speed up [Chi+18; Sch19].
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Multimarginal optimal transport. Let us consider the multimarginal problem (1.6) asso-
ciated with the 2-Wasserstein barycenter problem. We generated three samples in R2 of size 40
from the uniform distributions on the unit discs centered at the points (0, 0), (0, 1), and (1, 0),
respectively (Fig. 7.1a). Then we applied Algorithm 3 to solve the corresponding discrete prob-
lem (1.6) with equal weights. The push-forward of the obtained approximate solution γ̂ by the
barycenter map (x1, x2, x3 7→ x1+x2+x3

3 ), which gives an approximate Wasserstein barycenter, is
depicted in Figure 7.1b. Finally, Figure 7.2a shows the dependence of the number of iterations
T on the accuracy ε for the greedy, cyclic, and random strategies. As we can see, in the con-
sidered range of values ε the complexities of all three strategies are close and the dependence is
almost linear in the log–log scale with the slope ≈ −1.2, i.e. T ≈ C

(

1
ε

)1.2, which is faster then

the theoretical bound O
(

1
ε

)2 obtained in Section 7.4.

(a) Generated samples (b) Obtained barycenter (red points)

Figure 7.1: The initial data and the output of Algorithm 3

(a) Algorithm 3 (b) Algorithm 5

Figure 7.2: Number of iterations T vs. accuracy ε

Wasserstein barycenters. Figure 7.3 depicts two samples of greyscale images of handwritten
digits (“3” and “6”, respectively) from the MNIST dataset [LC10]. Considering the images as
measures on the 28 × 28 regular grid (normalized to have the total mass 1), we are looking
for the 2-Wasserstein barycenters of these samples with equal weights supported on the same
grid. Figure 7.4 shows the output of Algorithm 5 applied to the above images with different
accuracy ε after the normalization of the cost matrix to be between 0 to 1. As expected, the
higher the accuracy, the sharper the barycenter, and for small ε we observe notable oscillations.
Figure 7.2b demonstrates the dependence of the number of iterations T on the accuracy ε. For
small ε the complexities for two samples are similar. Moreover, the dependence is almost linear
in the log–log scale with the slope ≈ −1.8, i.e. T ≈ C

(

1
ε

)1.8, which is faster but close enough to

the theoretical bound O
(

1
ε

)2 obtained in Section 7.5.
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Figure 7.3: Two sample of images from the MNIST dataset: digits “3” (top row) and “6” (bottom
row)

Figure 7.4: Approximate barycenters of the images from Figure 7.3 for different values of ε

As we see, in both cases, the convergence is faster than given by the upper bounds from
Sections 7.4 and 7.5. However, for the moment, we are not aware of better theoretical guarantees
or lower bounds for IBP.
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Chapter 8

Résumé des résultats de la thèse

8.1 Transport optimal

La théorie du transport optimal est aujourd’hui un domaine de recherche populaire. Elle
remonte à G. Monge [Mon81], tandis que sa formulation moderne est due à L. Kantorovich
[Kan42]. L’objet central est le problème du transport optimal, qui consiste à transformer une
distribution de masse µ en une autre ν avec le minimum de travail. Dans la formulation de
Kantorovich, connue sous le nom de problème de Monge–Kantorovich, ce problème se lit comme
suit : étant donné des mesures de probabilité µ et ν et une fonction de coût c(·, ·), on veut
minimiser le coût total de transport

ˆ

c(x, y) dγ(x, y) → min
γ
,

où la minimisation se fait parmi les couplages de µ et ν. D’un intérêt particulier est le cas où
µ et ν sont des mesures de probabilité sur le même espace métrique (X, ρ) et c := ρp pour un
certain 1 ≤ p <∞. On peut alors définir la distance de p-Wasserstein

Wp(µ, ν) :=

(

inf
{
ˆ

X×X
ρp(x, y) dγ(x, y) : γ est un couplage de µ et ν

})1/p

.

L’espace Pp(X) de mesures de probabilité sur X avec le moment d’ordre p fini, doté de Wp, est
appelé espace de p-Wasserstein sur X. Une propriété importante de la distance de Wasserstein
est qu’elle capture la géométrie de l’espace sous-jacent X. En raison de ce fait, elle est largement
utilisée dans divers domaines tels que la théorie des probabilités et les statistiques, les processus
stochastiques, les EDP, la théorie cinétique, le traitement des images, l’analyse des données et
l’apprentissage automatique. Dans cette thèse, on considère certains problèmes variationnels
impliquant le transport optimal.

8.2 Topologie des transports

Dans le Chapitre 3, on considère un cadre abstrait avec un espace métrique séparable X et
une fonction de coût continue c : X ×X → R+ et définissons la fonction de transport

J(µ, ν) := inf
{
ˆ

X×X
c(x, y) dγ(x, y) : γ est un couplage de µ et ν

}

.

On suppose que X est un espace de Radon (voir la Définition 2.2) — par exemple, un espace
polonais ; la fonction de coût est « cohérente » et satisfait la propriété de Radon–Riesz, c’est-à-
dire que c(x, y) = 0 si et seulement si x = y et qu’il existe une métrique plus faible ρw sur X
telle que si xn → x, ρw(yn, y) → 0 et c(xn, yn) → c(x, y), alors yn → y. On suppose également
que c satisfait une forme faible de l’inégalité triangulaire : pour certaines constantes A,B > 0

c(x, y) ≤ A+B
(

min{c(x, z), c(z, x)}+ min{c(y, z), c(z, y)}
)

∀x, y, z,∈ X.

129
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En particulier, ces hypothèses sont satisfaites dans le cas de la métrique de Wasserstein. On
montre ensuite que J hérite des propriétés ci-dessus de la fonction de coût c. Elle induit une
topologie τJ sur P(X) avec la base de « boules » BJ

r (µ) := {ν ∈ P(X) : J(µ, ν) < r} (on peut
donc la considérer comme une généralisation de la métrique de Wasserstein). De plus, sous
l’hypothèse supplémentaire de la « complétude » de (X, c) on obtient que tout ensemble E(µ) :=
{ν ∈ P(X) : J(µ, ν) <∞} doté de τJ est un espace polonais (Théorème 3.3.9).

Ce chapitre est principalement basé sur le travail [Kro18].

8.3 Barycentres

En 2011, M. Agueh et G. Carlier ont introduit un « élément typique » d’une famille de
mesures de probabilité µ1, . . . , µn sur l’espace euclidien Rd, appelé le barycentre de Wasserstein
[AC11] :

ν∗ := argmin
ν∈P2(Rd)

n
∑

i=1

wiW
2
2 (µi, ν),

où w1, . . . , wn sont des poids positifs. Il s’agit d’une instance particulière de la moyenne de
Fréchet dans le cas de l’espace de 2-Wasserstein [Fré48]. Il s’avère que le barycentre capture
dans une certaine mesure la forme des mesures moyennées µ1, . . . , µn, ce qui le rend favorable
par rapport à la moyenne linéaire des mesures et lui vaut une grande attention.

Dans les travaux [BK12 ; KP17 ; LL17], le concept de barycentre de Wasserstein a été géné-
ralisé au cas d’une distribution de probabilité P sur Pp(X) et d’un exposant p ≥ 1 :

ν∗ := argmin
ν∈Pp(X)

ˆ

W p
p (µ, ν) dP (µ).

[BK18] et [LL17] montrent la stabilité du barycentre par rapport à P . En particulier, si les
mesures µ1, µ2, . . . sont tirées indépendamment selon P , alors les barycentres empiriques

νn := argmin
ν∈P2(Rd)

1

n

n
∑

i=1

W p
p (µi, ν).

convergent vers le barycentre de la population ν∗ : Wp(νn, ν
∗) → 0, c’est-à-dire qu’il existe la

loi des grands nombres (LLN). De plus, J. Bigot, E. Cazelles et N. Papadakis dans [BCP19] ont
proposé d’ajouter une pénalisation à la fonctionnelle de variance de Wasserstein ci-dessus pour
régulariser le barycentre. Les Chapitres 3, 4 et 5 sont consacrés à des sujets connexes.

Barycentres de Fréchet. Dans le contexte de la Section 8.2, on définit une moyenne dans
P(X) en fonction de J , que l’on appelle le barycentre de Fréchet régularisé : étant donné une
distribution P sur P(X) et une pénalité G,

ν∗ := argmin
ν∈P(X)

[
ˆ

J(µ, ν) dP (µ) +G(ν)

]

.

On prouve qu’un tel barycentre existe lorsque
´

J(µ, µ0) dP (µ) <∞ pour un certain µ0, X est
localement compact par rapport à ρw, G est semi-continu inférieur par rapport à la convergence
étroite et borné par le bas par une fonction α(ν) = o(J(µ0, ν)) lorsque J(µ0, ν) → ∞ (Proposi-
tion 3.5.1). Le Théorème 3.5.2 montre que les barycentres de Fréchet sont stables par rapport à
P au sens de [LL17]. A savoir, soit

J (P,Q) := inf
{
ˆ

J(µ, ν) dΓ (µ, ν) : Γ est un couplage de P et Q
}

, P,Q ∈ P(X),

et J (Pn, P ) → 0. Étant donnée une suite Gn satisfaisant aux hypothèses ci-dessus avec un même
α et Γ-convergeant (localement) vers une fonctionnelle G, si νn est un barycentre de Pn, alors il
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existe une sous-suite convergeant vers un certain barycentre de P dans la topologie du transport
(Théorème 3.5.2). En particulier, dans le cadre stochastique mentionné ci-dessus, on a une loi
des grands nombres.

Ces résultats sont principalement basés sur le travail [Kro18].

Barycentres de Bures–Wasserstein. Pour les mesures gaussiennes µ = N (a,Q) et ν =
N (b, S) sur Rd, il s’avère que

W 2
2 (µ, ν) = ‖a− b‖2 + trQ+ trS − 2 tr

(

Q1/2SQ1/2
)1/2

.

De plus, il est connu que si P ∈ P
(

P2(R
d)
)

est concentré sur des mesures gaussiennes, alors (au
moins un de) son barycentre de 2-Wasserstein est aussi gaussien [AC11]. Pour des raisons de
simplicité, on ne considère que les mesures centrées, qui sont entièrement décrites par leur ma-
trice de covariance. On peut ensuite généraliser la formule ci-dessus aux matrices semi-définies
positives hermitiennes, ce qui permet d’obtenir la métrique dite de Bures–Wasserstein dBW
sur H+(d). Dans le Chapitre 4, basé sur le travail conjoint avec V. Spokoiny et A. Suvorikova
[KSS21], on considère les barycentres de Bures–Wasserstein correspondants. On étudie les pro-
priétés différentielles de la métrique de Bures–Wasserstein pour prouver le théorème de la limite
centrale : √

n(Qn −Q∗)
d−→ N (0,Ξ),

où

Qn := argmin
Q∈H+(d)

1

n

n
∑

i=1

d2BW (Si, Q), Q∗ := argmin
Q∈H+(d)

ˆ

H+(d)
d2BW (S,Q) dP (S)

sont les barycentres empiriques et de population, respectivement, et les Si sont tirés indépendam-
ment selon P . On obtient également des bornes non asymptotiques sur ‖Qn−Q∗‖ et W2(νn, ν∗)
sous l’hypothèse que trSi est une variable aléatoire sous-exponentielle. De plus, pour le cas
d’une famille dégénérée d’échelle-localisation (scale-location), on fournit un exemple de taux de
convergence plus lent que 1√

n
.

Barycentres entropiques de Wasserstein Dans le Chapitre 5, on considère une distribu-
tion P sur l’espace de 2-Wasserstein sur Rd et, suivant [BCP19], on définit son barycentre de
Wasserstein régularisé par l’entropie.

ν∗ := argmin
ν∈P2(Ω)

[
ˆ

W 2
2 (µ, ν) dP (µ) + λEnt(ν)

]

,

où Ω ⊂ Rd est un ensemble ouvert de mesure de Lebesgue positive. On prouve l’existence et
l’unicité de cet objet, et le caractérisons en termes de potentiels duaux de Kantorovich. En
particulier, ν∗ est a.c. et sa densité ρ̄ satisfait les conditions suivantes

log ρ̄(x) = − 1

λ

ˆ

uνρ̄(x) dP (ν) ∀x ∈ Ω,

où uνρ̄ est un potentiel de Kantorovich entre ρ̄ et ν pour la fonction de coût ∥x−y∥2
2 (Théo-

rème 5.3.6). En utilisant cette caractérisation, on étudie les propriétés des barycentres entro-
piques de Wasserstein : des bornes de moments (Proposition 5.4.2), un principe de maximum
(Proposition 5.4.7), une régularité supérieure (Proposition 5.5.2) et une stabilité au sens de
[LL17] (Lemma 5.4.6). De plus, si Ω est une boule et que P est concentré sur des mesures sur Ω
avec une densité Hölderienne, alors on prouve le théorème de la limite centrale pour les densités
des barycentres empiriques dans l’espace de Sobolev H2 (Théorème 5.6.2).

Ce chapitre est basé sur un travail conjoint avec G. Carlier et K. Eichinger [CEK20].
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8.4 Espaces de Sobolev de fonctions à valeur mesures et pro-

blème de Monge–Kantorovich régularisé

Le Chapitre 6 est consacré à l’espace de Sobolev W 1,p des applications à valeurs dans l’es-
pace de p-Wasserstein sur Rd. Étant donné un domaine ouvert Ω ⊂ Rm, on définit l’espace
W 1,p(Ω,Pp(Rd) au sens de Reshetnyak [Res97]. Selon Lavenant [Lav19b], celui-ci admet une
définition équivalente : µ : Ω → Pp(Rd) est Sobolev s’il existe une mesure de Young ϱ sur
Ω × Rd × Rm×d (mesure de phase) telle que sa projection sur les deux premières composantes
π
1,2
# ϱ = µ⊗ L|Ω,

´

‖V ‖p dϱ(ξ, x, V ) <∞ et pour tout φ ∈ C1
c (Ω× Rd)

ˆ

(

∇ξφ(ξ, x) + V∇xφ(ξ, x)
)

dϱ(ξ, x, V ) = 0.

On étudie les propriétés fines des applications de Sobolev, à savoir, on montre l’existence de
représentants précis à un petit ensemble près : pour tout Sobolev µ, il existe un borélien A ⊂ Ω
et une application µ∗ : Ω → Pp(Rd) telle que Capp(A) = 0 et

Wp

(

 

Br(ξ)
µ[ζ] dζ,µ∗[ξ]

)

→ 0 lorsque r → 0

(Lemma 6.3.2). On donne également deux notions de convergence dans ces espaces : une basée
sur la propriété de Radon–Riesz (Proposition 6.4.2) et une sur la convergence des mesures de
phase dans une topologie de transport (Corollaire 6.4.7). Les deux assurent la convergence des
représentants précis. Enfin, on définit l’énergie de Dirichlet de µ comme suit

Dirp(µ) := inf
{
ˆ

‖V ‖p dϱ : ϱ est une mesure de phase de µ

}

et on applique la théorie ci-dessus au problème régularisé de Monge–Kantorovich entre µ ∈ P(Ω)
et ν ∈ P(Rd) :

ˆ

Ω

ˆ

Rd

c(x, y) dγ∗x(y) dµ(x) + Dirp(γ) → min
γx∈W 1,p:

´

γ∗x dµ(x)=ν
,

Où γ∗x est le représentant précis de la carte x 7→ γx ∈ Pp(Rd). Sous des hypothèses assez faibles,
on montre l’existence d’une solution du problème ci-dessus (Théorème 6.5.1).

8.5 Analyse des projections itératives de Bregman

Dans le Chapitre 7, on considère l’algorithme itératif des projections de Bregman [Ben+15]
pour résoudre le problème

min
{

〈c, x〉+ λEnt(x) : x ∈ RN+ , Aix = bi, i = 1, . . . ,m
}

.

Il s’agit d’une généralisation de l’algorithme bien connu de Sinkhorn pour le problème de Monge–
Kantorovich discret régularisé par l’entropie, consistant à alterner les projections sur les en-
sembles affines {Aix = bi} en fonction de la divergence de Kullback–Leibler. On donne une
autre forme de cet algorithme sous la forme d’une minimisation alternée dans le problème dual
et suggérons deux stratégies différentes de projections : gloutonne et aléatoire. On fournit un
schéma général de la preuve des limites de complexité et l’appliquons à deux problèmes liés
au transport optimal : le transport optimal multimarginal et le barycentre de Fréchet. Dans
les deux cas, on obtient la complexité d’itération O

(

1
ε2

)

pour atteindre la précision ε (dans le
problème primal non régularisé), par rapport à la limite précédente la plus connue O

(

1
ε3

)

pour
l’algorithme de Sinkhorn [AWR17].

Ceci est basé sur et généralise les résultats des travaux conjoints avec A. Gasnikov, P. Dvu-
rechensky et al. [DGK18 ; Kro+19 ; Sto+19].
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