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This thesis is devoted to the study of the geometry of curved Yang-Mills-Higgs gauge theory (CYMH GT), a theory introduced by Alexei Kotov and Thomas Strobl. This theory reformulates classical gauge theory, in particular, the Lie algebra (and its action) is generalized to a Lie algebroid E, equipped with a connection ∇, and the Ąeld strength has an extra term ζ; there is a certain relationship between ζ and ∇, for example, if ζ ≡ 0, then ∇ is Ćat. In the classical situation E is an action Lie algebroid, a combination of a trivial Lie algebra bundle and a Lie algebra action, ∇ is then the canonical Ćat connection with respect to such an E, and ζ ≡ 0. The main results of this Ph.D.

• Reformulating curved Yang-Mills-Higgs gauge theory, also including a thorough introduction and a coordinate-free formulation, while the original formulation was not completely coordinate-free. Especially the inĄnitesimal gauge transformation will be generalized to a derivation on vector bundle V -valued functionals. Those vector bundles V will be the pullback of another bundle W , and the gauge transformation as derivation will be induced by a Lie algebroid connection on W , using a more general notion of pullbacks of connections. This also supports the usage of arbitrary types of connections on W in the deĄnition of the inĄnitesimal gauge transformation, not just canonical Ćat ones as in the classical formulation.

• Studying functionals as parameters of the inĄnitesimal gauge transformation, supporting a richer set of inĄnitesimal gauge transformations, especially the parameter itself can have a non-trivial gauge transformation. The discussion about the inĄnitesimal gauge transformation is also about what type of connection for the deĄnition of the inĄnitesimal gauge transformation should be used, and this is argued by studying the commutator of two inĄnitesimal gauge transformations, viewed as derivations on V -valued functionals. We take the connection on W then in such a way that the commutator is again an inĄnitesimal gauge transformation; for this Ćatness of the connection on W is necessary and sufficient.

For W = E and W = TN we use a Lie algebroid connection known as basic connection which is not the canonical Ćat connection in the classical non-abelian situation; this is not the connection normally used in the standard formulation, but it reĆects the symmetries of gauge theory better than the usual connection, which is in general not even Ćat. For W = R the gauge transformation is uniquely given as the Lie derivative of a vector Ąeld on the space of Ąelds given by the Ąeld of gauge bosons and the Higgs Ąeld, and the commutator is then just the Lie bracket of vector Ąelds; in this case the bracket will also give again a vector Ąeld related to gauge transformations.

• DeĄning an equivalence of CYMH GTs given by a Ąeld redeĄnition which is a transformation of structural data like the Ąeld of gauge bosons. In order to preserve the physics, E this equivalence is constructed in such a way that the Lagrangian of the studied theory is invariant under this Ąeld redeĄnition. It is then natural to study whether there are equivalence classes admitting representatives with Ćat ∇ and/or zero ζ:

1. On the one hand, the equivalence class related to E = TS 7 , S 7 the seven-dimensional sphere, admits only representatives with non-Ćat ∇, while locally the equivalence class of all tangent bundles admits a representative with Ćat ∇.

Introduction

This thesis concerns curved Yang-Mills-Higgs gauge theories (short: CYMH GT), introduced by Alexei Kotov and Thomas Strobl, a generalization of Yang-Mills-Higgs gauge theories, where we have essentially the following, as also summarized in [START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF]:1 

• M a spacetime;

• N a smooth manifold, serves as set for the values of the Higgs Ąeld Φ : M → N ;

• E → N a Lie algebroid with anchor ρ, replacing the structural Lie algebra g and its action γ : g → X(N ) of the classical formulation;

• a vector bundle connection ∇ on E;

• a Ąbre metric κ on E, as a substitute of the ad-invariant scalar product on g;

• a Riemannian metric g on N , replacing the scalar product on the vector space in which the Higgs Ąeld usually has values in and which is invariant under the action of γ, used for the kinetic term of Φ which is minimally coupled to the Ąeld of gauge bosons A ∈ Ω 1 (M ; Φ * E);

• a 2-form on N with values in E, ζ ∈ Ω 2 (N ; E), an additional contribution to the Ąeld strength of A.

A Lie algebroid is given by the following deĄnition; especially, Lie algebroids can be thought as a generalization of both, tangent bundles and Lie algebras.

DeĄnition: Lie algebroid, [2, reduced deĄnition of §16.1; page 113]

Let E → N be a real vector bundle of Ąnite rank. Then E is a smooth Lie algebroid if there is a bundle map ρ E := ρ : E → TN , called the anchor, and a Lie algebra structure on Γ(E) with Lie bracket

[•, •] E satisfying [µ, f ν] E = f [µ, ν] E + ℒ ρ(µ) (f ) ν
for all f ∈ C ∞ (N ) and µ, ν ∈ Γ(E), where ℒ ρ(µ) (f ) is the action of the vector Ąeld ρ(µ) on the function f by derivation.

Gauge invariance of the Yang-Mills-Higgs type functional leads to several compatibility conditions to be satisĄed between those structures. If the connection ∇ on E is Ćat, the compatibilities imply that the Lie algebroid is locally what we call an action Lie algebroid. for all p ∈ N and µ, ν ∈ Γ(E), where one views a section µ ∈ Γ(E) as a map µ : N → g and (e a ) a is some arbitrary frame of constant sections. Furthermore, ∇ is then a canonical Ćat connection of the action Lie algebroid, and one arrives at the standard Yang-Mills-Higgs gauge theory if additionally ζ ≡ 0. Thus, the theory represents a curved (with respect to ∇) version of gauge theory equipped with an additional 2-form ζ. If ∇ is Ćat we say in general that we have a pre-classical gauge theory, and if additionally ζ ≡ 0 we have a classical gauge theory. Every classical theory is also pre-classical, this is another implication of the compatibility conditions.

For a given M, N and E there is an equivalence of CYMH GTs given by a Ąeld redeĄnition, a transformation of the Ąeld of gauge bosons, but also of ∇, κ, g and ζ. The Lagrangian is invariant under this transformation, hence, the physics is invariant. It is then natural to study whether it is possible that the equivalence class of a given CYMH GT has a (pre-)classical representative, and this is precisely the main motivation of this thesis. Along this study, CYMH GT is reintroduced in a coordinate-free way, especially providing a new coordinate-free formulation of the inĄnitesimal gauge transformations themselves. We proceed as follows:

In Chapter 2 we recall the fundamental basics of classical gauge theory, mostly their inĄnitesimal information; that means that we always assume trivial principal bundles, thus, we do not need principal bundles altogether. In Section 2.1 we introduce Lie algebras and their actions, comparing Lie algebra actions and representations; in Section 2.2 we discuss isotropies and their relation along orbits of a Lie group action. The classical Yang-Mills-Higgs gauge theory, especially the Yang-Mills-Higgs Lagrangian, is introduced in Section 2.3, and in Section 2.4 we prove the inĄnitesimal gauge invariance of the Lagrangian. However, in Section 2.5 we are already reformulating inĄnitesimal gauge transformations, making the Ąrst step towards the generalized formulation of (inĄnitesimal) gauge theory. Even if the reader has a good knowledge about gauge theory, it is highly recommended to read Section 2.5 in order to understand later why CYMH GT is formulated as it is. The main result of this section is the reformulation of the inĄnitesimal gauge transformation as a derivation induced by what we call a Lie algebra connection; the key ingredients are the following, where the manifold N is for simplicity a vector space, and g is the Simon-Raphael Fischer structural Lie algebra with action γ:

• The pair of inĄnitesimal gauge transformations, Ψ ε := (δ ε Φ, δ ε A), viewed as a vector Ąeld on the space of Ąelds M g whose elements are given as pairs (Φ, A), where Φ ∈ C ∞ (M ; N ) (Higgs Ąeld) and A ∈ Ω 1 (M ; g) (Ąeld of gauge bosons); ε is a functional with (Φ, A) → ε(Φ, A) ∈ C ∞ (M ; g).

• The evaluation map ev : M × M g → N deĄned by ev(p, Φ, A) := Φ(p) for all (p, Φ, A) ∈ M × M g .

• The Ťbookkeeping trickŤ for functionals L, (Φ, A) → L(Φ, A) ∈ Ω k (M ; K) (k ∈ N 0 ), where K is a vector space. Let (e a ) a be a basis of K, then locally L = L a ⊗ e a , where L a ∈ Ω k (M ). If viewing (e a ) a as a constant frame of the trivial vector bundle N × K over N , then we can also write

L = L a ⊗ ev * e a
due to constancy of the frame. For bookkeeping reasons we formally denote this expression by ι(L); especially

ι(L)(Y 1 , . . . , Y k ) ∈ Γ ev * (N × K)
for all Y 1 , . . . , Y k ∈ X(M ), and

ι(L)(Φ, A) ∈ Ω k (M ; Φ * (N × K))
for all (Φ, A) ∈ M g .

• A g-connection g ∇ on V := N × K → N , deĄned as an R-bilinear map

g × Γ(V ) → Γ(V ), (X, ν) → g ∇ X ν, satisfying g ∇ X (f ν) = f g ∇ X ν + ℒ γ(X) (f ) ν
for all X ∈ g, ν ∈ Γ(V ) and f ∈ C ∞ (N ), where ℒ γ(X) (f ) is the action of the vector Ąeld γ(X) on the function f by derivation.

The derived key statement is then the following theorem and deĄnition, where we are going to use a generalized notion of pullbacks of connections.

Theorem

There is a unique R-linear operator δ Ψε : Γ(ev * (V )) → Γ(ev * (V )) with δ Ψε (f s) = ℒ Ψε (f ) s + f δ Ψε s, δ Ψε (ev * ϑ) = -ev * ( g ∇ ε ϑ) for all f ∈ C ∞ (M × M g ), s ∈ Γ(ev * (V )) and ϑ ∈ Γ(V ), where we denote

ev * ( g ∇ ε ϑ)♣ (p,Φ 0 ,A 0 ) = g ∇ ε(Φ,A)♣p ϑ  Φ(p)
for all (p, Φ, A) ∈ M × M g .

DeĄnition: InĄnitesimal gauge transformation as derivation

The inĄnitesimal gauge transformation δ ε L of a functional L, (Φ, A) → L(Φ, A) ∈ Ω k (M ; K) (k ∈ N 0 ), is then deĄned by

(δ ε L)(Y 1 , . . . , Y k ) := δ Ψε ι(L)(Y 1 , . . . , Y k )
for all Y 1 , . . . , Y k . Section 2.5 will then conclude that this deĄnition of the inĄnitesimal gauge transformation recovers the typical deĄnition by taking the canonical Ćat connection ∇ of V = N ×K, i.e. given by ∇x = 0 for all constant x ∈ Γ(V ), and then deĄning g ∇ := ∇ γ , (X, v) → ∇ γ(X) v for all X ∈ g and v ∈ Γ(V ).

Chapter 3 is mainly about introducing all the needed mathematical basics. Section 3.1 starts with introducing Lie algebroids and related notions, especially introducing action Lie algebroids and Lie algebra bundles as a special example. Furthermore, small physical examples are provided, and isotropies are revisited to support a better understanding of the relationship to gauge theory. Section 3.2 discusses morphisms of Lie algebroids, but since we are mainly interested into base-preserving ones, this section is very short. An important basic notion are Lie algebroid connections, and we want to introduce them as certain morphisms of anchored vector bundles, similar to the introduction of Lie algebroid connections in [START_REF] Mackenzie | General Theory of Lie Groupoids and Algebroids[END_REF]. In order to do so we Ąrst introduce the Lie algebroid of derivations of vector bundles in Section 3.3, and in Section 3.4 we Ąnally introduce Lie algebroid connections as base-and anchor-preserving vector bundle morphisms; Lie algebroid connections on a vector bundle are essentially the same as typical vector bundle connections but the direction of differentiation is along sections of the Lie algebroid and the Leibniz rule is along the foliation of the anchor, similar to the Leibniz rule of the Lie bracket of a Lie algebroid. Section 3.5 discusses pullbacks of Lie algebroid connections; Ąrst we follow a typical introduction using Lie algebroid paths, but concluding with a more general statement about pullbacks when one just differentiates along one direction:

Corollary: Pullbacks of connections just differentiating along one vector Ąeld

Let E i → N i (i ∈ ¶1, 2♢) be two Lie algebroids over smooth manifolds N i , V → N 2 a vector bundle, and

E 2 ∇ an E 2 -connection on V . Moreover, let f ∈ C ∞ (N 1 ; N 2 ), ν 1 ∈ Γ(E 1 ) and ν 2 ∈ Γ(f * E 2 ) such that Df ρ E 1 (ν 1 ) = (f * ρ E 2 )(ν 2 ).
Then there is a unique R-linear operator δ ν

1 : Γ(f * V ) → Γ(f * V ) with δ ν 1 (hs) = ℒ ρ(ν 1 ) (h) s + h δ ν 1 s, δ ν 1 (f * v) = f * E 2 ∇ ν 2 v  for all s ∈ Γ(f * V ), v ∈ Γ(V ) and h ∈ C ∞ (N 1 ).
A major example of a Lie algebroid connection is the basic connection, induced by a vector bundle connection ∇ on a Lie algebroid. The basic connection can be thought as a Lie algebra representation formulated as connection. Since the basic connection is related to conjugated connections, Section 3.6 introduces the notion of connections conjugate to each other, and Section 3.7 then introduces the basic connection. Since Lie algebra representations are homomorphisms, one may want that the basic connection is Ćat. Hence, a tensor known as the basic curvature is also introduced and discussed; this tensor is in general not equivalent to the curvature of the basic connection, it encodes the curvature of the basic connection, but it also contains information about how ∇ acts on the bracket of the Lie algebroid. We will see that the vanishing of the basic curvature is needed for the gauge invariance of the Yang-Mills-Higgs Lagrangian.

The remaining part of Chapter 3 is then again about very basic notions related to Lie algebroids. Section 3.8 is about exterior covariant derivatives but generalized to Lie algebroid connections, and Section 3.9 is about the natural Lie algebroid structure of the direct product of Lie algebroids. There is also the Splitting Theorem for Lie algebroids: The anchor of a Lie algebroid is a homomorphism of Lie brackets, thus, its image gives rise to a foliation on the base manifold by the Frobenius Theorem; the foliation is singular due to the fact that the anchor has not a constant rank in general. The Splitting Theorem is then about that Lie algebroids are locally a direct product of a Lie algebroid along a leaf of the foliation and along a submanifold transversal to the foliation. This is discussed in Section 3.10, mostly in a simpliĄed setting; however, references for more general statements will be provided. The last section, Section 3.11, focuses on Lie algebra bundles, a trivial example of Lie algebroids with zero anchor. It starts with extending notions of Lie algebras like their centre to Lie algebra bundles and Ąnishes with a discussion about Lie algebroids with surjective anchor and their quotients over ideals.

We then discuss the formulation of CYMH GT in Chapter 4. This chapter reintroduces CYMH GT, using my own approach in many parts while the overall theory does not differ to the original one as e.g. presented in [START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF]. It starts with the study of the space of Ąelds in Section CHAPTER 1. INTRODUCTION Simon-Raphael Fischer 4.1, the inĄnite-dimensional manifolds of pairs of the Higgs Ąeld and the Ąeld of gauge bosons, similar to previously-mentioned M g .

DeĄnition: Space of Ąelds

Let M, N be two smooth manifolds and E → N a Lie algebroid. Then we denote the space of Ąelds by

M E := M E (M ; N ) := (Φ, A) Φ ∈ C ∞ (M ; N ) and A ∈ Ω 1 (M ; Φ * E) .
We will refer to A ∈ Ω 1 (M ; Φ * E) as the Ąeld of gauge bosons and Φ just as a physical Ąeld of this theory.

The main idea is to deĄne the inĄnitesimal gauge transformation as we did before in Section 2.5, but especially generalized to Lie algebroids, their connections and to the setting described at the very beginning of this introduction; the Lie algebroid plays the role of the Lie algebra, and Lie algebroid connections will replace the Lie algebra connections, which we have suggested previously. One ingredient was to view the inĄnitesimal gauge transformation as a vector Ąeld Ψ on M g which is now replaced by M E . Thence, we will discuss the tangent space of the space of Ąelds. Afterwards we discuss the deĄnition and algebra of the functionals we are going to look at. Recall the Ťbookkeeping trickŤ, the essential idea was that functionals have values in the ev-pullback of a vector bundle over N , where the evaluation map is deĄned as before. Thus, we deĄne functionals as certain forms on M × M E with values in ev * V , where V is a vector bundle over N ; a similar argument will be applied to A which explains why it has values in Φ * E in the general setting. To avoid bloating formulas and deĄnitions we will also introduce shortened notations which is why it is highly suggested to read Section 4.1.

In Section 4.2 we deĄne physical quantities arising in gauge theory to the new generalised setting as in the beginning of this introduction but without ζ, hence, without the extra term in the Ąeld strength. As a major example serves the following deĄnition, where t ∇ρ is the torsion of the E-connection ∇ ρ given by (∇ ρ ) µ ν = ∇ ρ(µ) ν.

DeĄnition: Field of gauge bosons and their Ąeld strength,

[1, especially Eq. ( 11); Φ is denoted as X there]

Let M, N be smooth manifolds, and E → N a Lie algebroid equipped with a connection ∇ on E. We deĄne the Ąeld strength F by

F (Φ, A) := d Φ * ∇ A - 1 2 Φ * t ∇ρ (A ∧ , A)
for all Φ ∈ C ∞ (M ; N ) and A ∈ Ω 1 (M ; Φ * E).

1 2 Φ * t ∇ρ (A ∧ , A) is an element of Ω 2 (M ; Φ * E) given by  1 2 Φ * t ∇ρ (A ∧ , A)  (X, Y ) := 1 2 Φ * t ∇ρ (A(X), A(Y )) -Φ * t ∇ρ (A(Y ), A(X)) = Φ * t ∇ρ (A(X), A(Y ))
for all X, Y ∈ X(M ).

This section concludes that one has the classical deĄnitions if E is an action Lie algebroid and ∇ its canonical Ćat connection. We then Ąnally discuss inĄnitesimal gauge transformations in Section 4.3, deĄning them as in Section 2.4 but extended to the generalized notions, and Ąrst omitting a deĄnition of the inĄnitesimal gauge transformation of the Ąeld of gauge bosons; for this we also make use of the previously introduced corollary about pullbacks of connections if just differentiating along one direction. We will argue that the vector Ąelds allowing such a pullback are precisely those vector Ąelds Ψ on the space of Ąelds whose component along the ŤΦ-directionŤ is given by the inĄnitesimal gauge transformation of the Higgs Ąeld.

That is, one milestone of this thesis is the formulation of inĄnitesimal gauge transformations of functionals as derivations induced by a generalized ev-pullback of a Lie algebroid connection, while the inĄnitesimal gauge transformations of the Ąelds are given by vector Ąelds Ψ on the space of Ąelds; the classical formulation is recovered by using a canonical Ćat connection since functionals have values in a trivial vector bundle in the classical situation, such that a canonical Ćat connection is given. The parameters of the inĄnitesimal gauge transformations are functionals ε such that ε(Φ, A) ∈ Γ(Φ * E); due to the fact that their values depends on Φ these parameters have in general also a non-trivial inĄnitesimal gauge transformation.

Afterwards the inĄnitesimal gauge transformation of the Ąeld of gauge bosons A is formulated. We will see that its transformation δ ε A does in general not live in the same space as A itself due to horizontal components in the tangent space of the space of Ąelds. Therefore we will apply a horizontal projection, however, to avoid loosing information about the ŤfullŤ formula of δ ε A, this is done in such a way that the vector Ąeld Ψ related to the given inĄnitesimal gauge transformation can uniquely be reconstructed. Essentially, the horizontal projection will only lead to a loss of information which is given by the inĄnitesimal gauge transformation of the Higgs Ąeld, and that information is already given, hence, one does not loose any real information. Technically, δ ε A is given as the inĄnitesimal gauge transformation of the functional ϖ 2 given as the projection onto A, ϖ 2 (Φ, A) := A. The vector Ąeld Ψ = Ψ ε , parametrized by ε, is then uniquely encoded in the deĄnition of the inĄnitesimal gauge transformation of Φ and in the condition

(δ ε ϖ 2 )(Φ, A) = -(Φ * ∇)ε,
where the Lie algebroid connection in the deĄnition of δ ε will be usually the basic connection in this thesis; this is also why there is not the typical Lie bracket term as usual in the deĄnition of the inĄnitesimal gauge transformation of A, this information is saved in the basic connection CHAPTER 1. INTRODUCTION Simon-Raphael Fischer itself. We will motivate that condition on ϖ 2 by how the minimal coupling between Φ and A shall transform, similar to the typical motivation provided by physicists.

About the choice of using the basic connection: We will discuss what type of Lie algebroid connection should be used for the inĄnitesimal gauge transformation if the functional is not scalar-valued; the inĄnitesimal gauge transformation of scalar-valued functionals will uniquely be given as Lie derivative of the vector Ąeld behind the transformation. We do so by looking at the commutator of two inĄnitesimal gauge transformations; we expect that the commutator should be again an inĄnitesimal gauge transformation. This is the case for the vector Ąelds behind the inĄnitesimal gauge transformations (the scalar-valued situation basically), denoted abstractly as Ψ above, but now denoted as Ψ ε to account the parameter ε. We show that the relation is

[Ψ ϑ , Ψ ε ] = -Ψ ∆(ϑ,ε) ,
where ϑ is a second parameter and ∆ is a Lie bracket for those parameters deĄned by ∆(ϑ, ε)♣ (Φ,A) := (δ ε ϑ -δ ϑ ε)♣ (Φ,A) + (Φ * t ∇ρ ) ϑ(Φ, A), ε(Φ, A) for all (Φ, A) ∈ M E ; recall that the parameters themselves are functionals and have in general a non-trivial gauge transformation now. However, for vector-bundle functionals we use Lie algebroid connections as we motivated previously, the commutator of transformations is then essentially a lift of the bracket of the vector Ąelds like Ψ ε ; we will see that then the relation of the commutator has essentially an extra term given by the ev-pullback of the curvature of the used connection. Hence, if we want a similar behaviour as for the vector Ąelds Ψ ε , then we need to use a Ćat connection. We will see that the basic connection will be Ćat in the new formulation of gauge theory, hence, our choice, although we will argue that the gauge invariance of the Lagrangian is not affected by that choice since it is scalar-valued.

Another canonical choice as connection would be ∇ ρ . While the basic connection will not be the canonical Ćat connection in the classical situation, ∇ ρ will be; thus, the condition for ϖ 2 would strongly resemble the typical formula of δ ε A if using ∇ ρ instead. Therefore choosing the basic connection may be mainly an aesthetic choice, but we are going to see that the basic connection, as a generalization of Lie algebra representations, reĆects the symmetries of gauge theory in a better way, simplifying calculations, while ∇ ρ , among certain other difficulties, will not be Ćat in general such that its commutator of inĄnitesimal gauge transformations on vector bundle valued functionals would have an extra term.

In the discussion about the inĄnitesimal gauge invariance of the generalized gauge theory, starting in Section 4.4, we will prove the gauge invariance of the Lagrangian in the more general setting (still without ζ). However, after long calculations we will see that locally the new setting is the same as the classical setting, so, one may only have achieved a global formulation of gauge theory also allowing non-trivial bundles as values of functionals like the Ąeld strength; all of this is due to the fact that ∇ has to be Ćat in order to have gauge invariance. Now ζ becomes important; in works like [START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF] it is introduced as ansatz. However, we will introduce it by deĄning and studying a Ąeld redeĄnition in Section 4.5. One can think of it as a coordinate-change as in classical mechanics, leaving an inertial frame, leading to extra terms in several physical relationships. As a next step one then reformulates classical mechanics such that it becomes coordinate-free and -independent; this is also denoted as covariantization by physicists. Further steps are then generalizations of structures like assuming whether it is possible that those arising extra terms can always be mapped to zero by a coordinate change; if not, one may for example have a non-Ćat connection.

In our case the ŤcoordinatesŤ are structural data like the Ąeld of gauge bosons and ∇. The study about the reformulation of the existing gauge theory in Section 4.6, such that it is ŤcoordinateŤ-independent with respect to the Ąeld redeĄnition, will lead to a generalized gauge theory where the Ąeld strength has an extra term essentially given by the ev-pullback of the previously-mentioned ζ ∈ Ω 2 (N ; E). This will be then Ąnalized in Section 4.7, and the Ąeld redeĄnition is then nothing else than an equivalence of such more general gauge theories, officially called curved Yang-Mills-Higgs gauge theories, abbreviated as CYMH GT. Finally, ∇ is in general not required to be Ćat anymore in order to achieve gauge invariance, especially we have the relationship

R ∇ = -d ∇ bas ζ
where R ∇ is the curvature of ∇ and d ∇ bas the exterior covariant derivative of the basic connection ∇ bas . This is also why ζ will be called primitive of ∇. At this point we have Ąnally recreated CYMH GTs, but in a coordinate-free way, while the original formulation is not completely coordinate-free, especially the inĄnitesimal gauge transformation was originally only formulated in a coordinate-dependent way, without using Lie algebroid connections as in this thesis. Chapter 4 will conclude with Section 4.8 which is about certain general properties of CYMH GTs needed for the following chapter.

Chapter 5 is then about whether or not there are CYMH GTs which are (pre-)classical, also after any Ąeld redeĄnition. It could be that a given ζ vanishes after the Ąeld redeĄnition; similar for ∇ with respect to Ćatness. We Ąrst study Lie algebra bundles E = K → N (LABs) in Section 5.1: Subsection 5.1.1 shortly summarizes how a CYMH GT for LABs looks like, while in Subsection 5.1.2 and Subsection 5.1.3 we will see that the question, about whether we have a Ąeld redeĄnition transforming the gauge theory into a pre-classical one, has a strong relation to MackenzieŠs study about extending Lie algebroids with Lie algebra bundles: ∇ is by the compatibility conditions of a CYMH GT equivalent to a Lie derivation law covering what is called a pairing Ξ which is a Lie algebroid morphism TN → Out(𝒟 Der (K), where Out(𝒟 Der (K) is the Lie algebroid of outer bracket derivations of K, outer in the sense of the quotient of bracket derivations over inner bracket derivations. That is, ∇ is also a bracket derivation and its equivalence class in the quotient space of the outer bracket derivations is equivalent to the pairing Ξ. We will see that the Ąeld redeĄnition is then just a transformation to any other Lie derivation law covering the same pairing. Furthermore, d ∇ ζ will be an invariant of the Ąeld redeĄnition, and the second Bianchi identity of ∇ will imply that d ∇ ζ is a centre-valued form.

By the compatibility conditions one can argue that ∇ induces a differential d Ξ on centre-valued forms, independent of the choice of ∇. We will see that d ∇ ζ is closed with respect to d Ξ , such that it is natural to study the cohomology class of d ∇ ζ with respect to d Ξ ; the invariance under the Ąeld redeĄnition will imply that this class only depends on Ξ. This class is precisely the obstruction class Obs(Ξ) developed by Mackenzie. Therefore we will introduce and discuss MackenzieŠs theory about extending Lie algebroids by LABs in Subsection 5.1.4. On one hand, Mackenzie shows that the obstruction class is zero if and only if one can extend TN by K in such a way that there is a transitive Lie algebroid for which the kernel of the anchor is given by K. 2 On the other hand, Mackenzie also shows that, if N is contractible, then there is always a Ćat Lie derivation law ∇ covering Ξ; for contractible N the obstruction class is trivially zero. Due to these results of Mackenzie we derive in Subsection 5.1.5 that a non-zero obstruction class implies that there is no Ąeld redeĄnition such that ∇ becomes Ćat, and that for contractible N there is always a Ąeld redeĄnition such that a given CYMH GT is pre-classical.

Theorem: Local existence of pre-classical gauge theory (simpliĄed formulation)

Let (K, Ξ) be a pairing of TN over a contractible manifold N , and let ∇ be a Ąxed Lie derivation law covering Ξ.

Then we have a Ąeld redeĄnition such that the redeĄnition of ∇ is Ćat.

Theorem: Possible new and curved gauge theories on LABs

Let (K, Ξ) be a pairing of TN with Obs(Ξ) ̸ = 0 and such that the Ąbre Lie algebra g admits an ad-invariant scalar product.

Then we can construct a CYMH GT for which there is no Ąeld redeĄnition with what it would become pre-classical.

However, a zero obstruction class does not necessarily imply that a CYMH GT can be transformed to a pre-classical one, following an example of Mackenzie: The Hopf Ąbration S 7 → S 4 has a zero obstruction class but no Ćat Lie derivation law covering its canonical pairing as an Atiyah sequence.

Up to this point it was just about ∇ and its Ąeld redeĄnition. In Subsection 5.1.6 we quickly derive that for ζ it is easier to Ąnd an answer. If d ∇ ζ ̸ = 0, then there is never a Ąeld redeĄnition making ζ vanish. We also provide a canonical construction of such ζ if starting with a certain classical gauge theory: Let g be a Lie algebra with non-zero centre and admitting an ad-invariant scalar product. Also let (N, g) be any Riemannian manifold with at least three dimensions, and K = N ×g be a trivial LAB over N , equipped with the canonical Ćat connection ∇ and a metric κ which restricts to an ad-invariant scalar product on each Ąbre. Then there is a ζ ∈ Ω 2 (N ; Z(K)), with d ∇ ζ ̸ = 0, such that this set-up describes a nonclassical CYMH GT with respect to an arbitrary spacetime M . Additionally, there is no Ąeld redeĄnition making ζ zero.

In Subsection 5.1.7, we turn shortly to the discussion about a possible physical meaning of d ∇ ζ ̸ = 0 due to its inĆuence to the obstruction of (pre-)classical CYMH GTs. We are going to see that it measures the failure of the Bianchi identity of the Ąeld strength, i.e. d ∇ ζ = 0 if and only if the Bianchi identity is satisĄed.

Theorem: Bianchi identity of the Ąeld strength (simpliĄed formulation)

Let M and N be smooth manifolds, K → N an LAB, Φ ∈ C ∞ (M ; N ), and ∇ and ζ ∈ Ω 2 (N ; K) satisfying the compatibility conditions of a CYMH GT. Then

d Φ * ∇ G(Φ, A) + [A ∧ , G(Φ, A)] Φ * K = Φ ! d ∇ ζ  , where G(Φ, A) = d Φ * ∇ A + 1 2 [A ∧ , A] Φ * K + Φ ! ζ
is the new Ąeld strength including the contribution of ζ, and where [•, •] Φ * K is the Φpullback of the Ąeld of Lie brackets of K.

This concludes the discussion about LABs.

In Section 5.2 we turn to tangent bundles; again Subsection 5.2.1 will discuss the general situation for tangent bundles, and we will see that tangent bundles are locally always preclassical in Subsection 5.2.2.

Theorem: Tangent bundles are locally pre-classical as CYMH GT (simpliĄed version)

Let N = R n (n ∈ N 0 ) be an Euclidean space as smooth manifold and ∇ a connection on E := TN which satisĄes the compatibility conditions. Then there is a Ąeld redeĄnition such that ∇ becomes Ćat.

Globally however, we will see in Subsection 5.2.3 that the seven-dimensional sphere S 7 admits CHAPTER 1. INTRODUCTION Simon-Raphael Fischer a gauge theory in the sense of CYMH GT, related to a non-Ćat ∇. A Ćat ∇ would imply a Lie group structure on S 7 which does not exist as we know, and this will be the quintessence of its structure as CYMH GT for which there is no Ąeld redeĄnition towards a pre-classical theory.

Theorem: Global example: Unit octonions (simpliĄed version)

S 7 admits a CYMH GT such that the related connection ∇ on E := TS 7 is not Ćat. Moreover, there is no Ąeld redeĄnition such that ∇ becomes Ćat.

The thesis concludes in Section 5.3 with a discussion about more general Lie algebroids; Ąrst stating a small general statement in Section 5.3.1, but then turning to Lie algebroids given as the direct product of tangent bundles and Lie algebra bundles in Section 5.3.2. We derive that the direct product of CYMH GTs has a natural structure as CYMH GT, and we can extend the existence of a redeĄnition towards a pre-classical theory by using previous results.

Theorem: Direct products of CYMHG GTs around regular points are Ćat (simpliĄed formulation)

Let N := R n (n ∈ N 0 ) be a smooth manifold such that its tangent bundle admits a CYMH GT, whose connection satisfying the compatibility conditions we denote by ∇ N , and let K → S be an LAB over a smooth contractible manifold S which also admits a CYMH GT, equipped with a connection ∇ K satisfying the compatibility conditions. Then there is a Ąeld redeĄnition with respect to their direct product of CYMH GTs with connection ∇ (satisfying the compatibility conditions) such that the Ąeld redeĄnition of ∇ becomes Ćat, where ∇ is canonically given as a product of ∇ N and ∇ K .

However, the discussion about general Lie algebroids will not go beyond this point, and the thesis will conclude with a possible conjecture, which may simplify further calculations related to direct products, especially allowing to extend other previous results.

Conjecture: Existence of a splitted Ąeld redeĄnition (simpliĄed formulation)

Let N be a smooth manifold such that its tangent bundle admits a CYMH GT, and let K → S be an LAB over a smooth manifold S which also admits a CYMH GT. If there is a Ąeld redeĄnition such that their direct product of CYMH GTs is pre-classical or classical, then there is also a Ąeld redeĄnition for each factor separately transforming each factor to a pre-classical or classical theory, respectively. Subsection 5.3.3 just lists loose ansatzes and ideas for further calculations, not necessarily related to direct products; for the thesis itself it is not necessarily needed to read this subsection. Finally, Chapter 6 gives a short overview about possible future research plans.

Notation and other conventions throughout this work

In this thesis a lot of conventions are used, they are either in the following list or will be introduced later.

• Throughout this work we always use EinsteinŠs sum convention if suitable.

• Due to ambiguities about connectedness in the deĄnition of simply connected manifolds, we emphasize that we will use the deĄnition of simply connectedness which also requires that such a manifold is path-connected.

• A map f : A → B between two sets A and B we often also denote by

[A ∋ a → f (a) ∈ B],
or shortly [a → f (a)], or also

A → B, a → f (a).
• Every time when we have a map with arguments from different sets, like a map f deĄned on A × B with values in a set C, (a, b) → f (a, b), where A and B are two sets, then we sometimes just insert one or a part of the arguments. Those we denote e.g. by f (b) for b ∈ B, so, f (b) : A → C, a → f (a, b). We may also write instead f (•, b). This only applies to situations where the arguments are not related by some condition like antisymmetry to avoid confusion when ordering of the arguments is important.

• M, N will be smooth manifolds, although M sometimes also denotes a spacetime; but the latter will be mentioned then.

• TN the tangent bundle of N .

• X(N ) the space of vector Ąelds of N with Lie bracket [•, •].

• Diff(N ) will denote the space of diffeomorphisms of N and C ∞ (N ) the space of its smooth functions; when a smooth function has values in another smooth manifold M , then we denote that space by C ∞ (N ; M ).

• With • V we will denote the exterior power of a vector bundle V .

• Γ(V ) will be V Šs vector space of sections.

• We will denote the bundle of automorphisms and endomorphisms of V by Aut(V ) and End(V ), respectively. We also denote 𝒜𝓊𝓉(V ) := Γ(Aut(V )) and ℰ𝓃𝒹(V ) := Γ(End(V )).

With those we also always mean base-preserving ones, also called vertical automorphisms and vertical endomorphisms.

• We denote the space of (r, s)-V -tensors by 𝒯 r s (V ) := Γ(T r s (V )) for r, s ∈ N 0 , where T r s (V ) := s V * ⊗ r V (r, s ∈ N 0 ).

• V * denotes the dual bundle of V , as a special example T * N denotes the cotangent bundle of N and Ω k (N ) := Γ k T * N  the space of k-forms (k ∈ N 0 ).

• ∇ denotes a vector bundle connection on V with R ∇ their curvature. Throughout this work we will also face a more general notion of connection, but when we just write connection, then we always mean a vector bundle connection. If some object is another type of connection, then it will be explicitly mentioned or clear by the context.

• As usual, one can extend a connection ∇ to 𝒯 r s (V ) (r, s ∈ N 0 ) by the Leibniz rule. We will denote such connections still with ∇.

• In the following D is also the total differential or tangent map of smooth maps, i.e. for every smooth map F : M → N we have the canonical (total) differential D p F : T p M → T F (p) N for all p ∈ M . In the following we view DF as an element of Ω 1 (M ; F * TN ) by

X(M ) ∋ Y → DF (Y )
, where DF (Y ) ∈ Γ(F * TN ), M ∋ p → D p F (Y p ).

• The de-Rham differential is denoted by d.

• Coordinate vector Ąelds on a smooth manifold we often denote by ∂ i .

• The Lie derivative of a vector Ąeld X is denoted by ℒ X , and with this we also denote the action of X on smooth functions f by derivation; the latter we may also denot with X(f ) = ℒ X (f ).

• With Ω p (N ; V ) (p ∈ N 0 ) we denote the space of forms with values in V . There is a similar notation for vector spaces W , Ω p (N ; W ); although W is not deĄned as a bundle over N , with that we mean forms with values in the trivial bundle N × W → N ; similar for all other type of tensors, and also for other vector spaces and their associated trivial vector bundles.

• When one has a connection ∇ on a vector bundle V → N , then one has the notion of the exterior covariant derivative on Ω p (M ; E), denoted by d ∇ . In the case of a trivial vector bundle V = N × W → N , where W is some vector space, we will often use the canonical Ćat connection for ∇, deĄned by ∇ν = 0, where ν is a constant section of N × W , see e.g. [4, Example 5.1.7; page 260f.] for a geometric interpretation as horizontal distribution. The canonical Ćat connection is clearly uniquely deĄned (if a trivialization is given) because constant sections generate all sections and due to the Leibniz rule and linearity of ∇. That is, let ∇ ′ be another canonical Ćat connection with ∇ ′ ν = 0 for all constant sections ν. Then every section of N × W is a sum of elements of the form f ν, where ν is still a constant section and f ∈ C ∞ (N ), such that

∇(f ν) = df ⊗ ν + f ∇ν =0=∇ ′ ν = ∇ ′ (f ν),
Simon-Raphael Fischer which proves the claim using the linearity of ∇. Let (e a ) a be a constant global frame of N × W , thence, d ∇ ω = dω a ⊗ e a for all ω ∈ Ω p (M ; W ), where we write ω = ω a ⊗ e a . Hence, we deĄne dω := d ∇ ω, (1.1) when ∇ is the canonical Ćat connection. d is clearly a differential.

• With Φ * V we denote the pullback/pull-back of the vector bundle V under a smooth map Φ : M → N . We will also have sections F as an element of Γ

l m=1 E * m  ⊗ E l+1 
, where E 1 , . . . E l+1 (l ∈ N) are real vector bundles of Ąnite rank over N . Those pull-back as section, denoted by Φ * F , we will view as an element of Γ

l m=1 (Φ * E m ) *  ⊗ Φ * E l+1  ,
and it is essentially given by (Φ * F )(Φ * ν 1 , . . . , Φ * ν l ) = Φ * (F (ν 1 , . . . , ν l )) for all ν 1 ∈ Γ(E 1 ), . . . , ν l ∈ Γ(E l ), using that pullbacks of sections generate the sections of a pullback bundle. In general we also make use of that sections of Φ * E can be viewed as sections of E along Φ, where E π → N is any vector bundle over N . Let µ ∈ Γ(Φ * E), then it has the form µ p = (p, v p ) for all p ∈ M , where v p ∈ E Φ(p) , the Ąbre of E at Φ(p); and a section ν of E along Φ is a smooth map M → E such that π(ν) := π • ν = Φ. Then on one hand pr 2 • µ is a section along Φ, where pr 2 is the projection onto the second component, and on the other hand M ∋ p → (p, ν p ) deĄnes an element of Γ(Φ * E). With that one can show that there is a 1:1 correspondence of Γ(Φ * E) with sections along Φ. We do not necessarily mention it when we make use of that identiĄcation, it should be clear by the context.

• We will also often make use of that Γ(Φ * E) is generated by pullbacks of Γ(E). If we explicitly use this in calculations, then we take for example a local frame (e a ) a of E, and then a frame of Φ * E is given by (Φ * e a ) a . In such situations we implicitly assume that (e a ) a is deĄned on a part of the image of Φ. Similar for intersections of frames.

• Furthermore, we will often need frames for bundles like Φ * E; we will then just write ŤLet (e a ) a be a local frame of EŤ and implicitly mean that we take (Φ * e a ) a as a frame for Φ * E.

• Do not confuse the previously discussed pull-back of sections with the pull-back of forms F ∈ Ω l (N ; V ), here denoted by Φ ! F , which is an element of Γ for all p ∈ M and Y 1 , . . . , Y l ∈ X(M ).

• Unless otherwise stated, the considered manifolds and vector bundles are of Ąnite dimension and rank, respectively, and smooth; arising Ąelds are always real numbers, hence, we also view C n (n ∈ N) as R 2n .

• Morphisms of bundles over the same base are always base-preserving ones if not stated otherwise.

• In the case when we explicitly state that we now turn to inĄnite-dimensional manifolds, we always assume a convenient setting, for example that is, we assume that all the smooth structures etc. are given and well-deĄned such that we can treat those manifolds and objects as if they would be Ąnite-dimensional for the constructions we are going to study.

The tangent bundle of inĄnite-dimensional manifolds we will deĄne by the approach of using equivalence classes of curves.

• As usual, there will be deĄnitions of certain objects depending on other elements, and for keeping notations simple we will not always explicitly denote all dependencies. It will be clear by context on which it is based on, that is, when we deĄne an object A using the notion of Lie algebra actions γ and we write ŤLet A be [as deĄned before]Ť, then it will be clear by context which Lie algebra action is going to be used, for example given in a previous sentence writing ŤLet γ be a Lie algebra actionŤ.

• We have several identities shown in the Appendix A. We will use them throughout this work, but the thesis will be written in such a way that one only needs to know the appendix when starting to read Chapter 4, and several notions arising in the appendix will be introduced before that chapter.

• At the very end is also a list of symbols. There we try to list all the needed symbols with page numbers where they got deĄned. When you read this thesis using its pdf, then all those symbols will be hyperlinked to that glossary. After clicking on such a link you may be able to get immediately back where you were using the return button on your mouse device if available, whether this works may also depend on your pdf reader; otherwise use the hyperlinks of the listed page numbers in the glossary for a quicker navigation.

The list of symbols Ąrst lists generic symbols, then Greek letters, and afterwards Latin letters.

• References are not only given in the text, the references of referenced statements and deĄnitions are especially given in the title of those statements. The title also mentions whether the statement as written in this thesis is a variation or generalization; when it is a strong generalization, then the reference will be mentioned in a remark after the statement or its proof.

Gauge theory

Lie algebras and their actions

In the following we will shortly introduce the basic setup of inĄnitesimal gauge theory where a trivial principal bundle is assumed and, thus, omitted. Equivalently, we assume a global gauge or we just look at some open neighbourhood of the spacetime admitting a local gauge. We will follow [START_REF] Mark | Mathematical Gauge Theory[END_REF].

Moreover, we will especially focus on the inĄnitesimal behaviour of gauge theory. That is, we will mainly concentrate on Lie algebras and not Lie groups. The following will also not be a deep discussion of the deĄned notions, just providing the very needed deĄnitions, especially those which are going to be generalized later. Thus, it is in general recommended to have already knowledge about how gauge theory is mathematically formulated, especially Yang-Mills-Higgs gauge theory. 

4; page 6]

A Lie group G is a group which is also a smooth manifold such that

G × G → G, (g, h) → g • h
is smooth, where G×G has the canonical smooth structure of a product manifold inherited by the smooth structure of G. Remarks 2.1.2. Usually, the deĄnition of Lie groups contains also the condition about that the inverse map, G ∋ g → g -1 , is smooth, which can be combined with the smoothness of the multiplication map to that

G × G → G, (g, h) → g • h -1 ,
shall be smooth as a single condition for the deĄnition of Lie groups. However, that is not needed as pointed out in [4, Remark 1.1.8, page 7; see also Exercise 1.9.5, page 76f.], which is why we just need to ask for smoothness of the product.

As known, the set of left invariant vector Ąelds 1 on a Lie group form a Lie algebra. Let g be a vector space together with a map

[•, •] g : g × g → g, (x, y) → [x, y] g . This pair g, [•, •] g  is called a Lie algebra with Lie bracket [•,
•] g when the following hold:

• [•, •] g is bilinear. • [•, •] g is antisymmetric. • [•, •] g satisĄes the Jacobi identity, i.e. x, [y, z] g g + y, [z, x] g g + z, [x, y] g g = 0
for all x, y, z ∈ g.

Such an algebra is characterized by the following constants. 

C a bc = -C a cb , (2.2) 0 = C d ae C e bc + C d be C e ca + C d ce C e ab . ( 2.3) 
For deĄning couplings we also need Lie group and Lie algebra representations. Let g be a Lie algebra and W a vector space. Then a representation of g on W is a Lie algebra homomorphism

ψ : g → End(W ).
As known, these can be related as in the following lemma. Here we will view the Lie algebra g = su(2) as R 3 : Let e 1 , e 2 , e 3 denote the standard unit vectors corresponding to the coordinates x 1 , x 2 , x 3 . Then the Lie bracket is given by the cross product, i.e.

[e i , e j ] su(2) := e i × e j = ϵ ijk e k , (2.4) where ϵ ijk is the Levi-Civita tensor. The representation on W := R 3 is given by

ψ(v)(w) := v × w = ϵ ijk v i w j e k (2.5)
for all v, w ∈ R 3 . This is a homomorphism by

ψ [u, v] su(2)  (w) = u i v j w k ϵ ijl ϵ lkm =δ ik δ jm -δ im δ jk e m = u i w i v j e j -u i w j v j e i ,
where δ ij is the Kronecker delta, and

[ψ(u), ψ(v)] End(R 3 )  (w) = u i v j ϵ ilm ϵ jkl -u i v j ϵ jlm ϵ ikl  w k e m = -u i v i + u i v i  w m e m + u i v j w i e j -u i v j w j e i = ψ [u, v] su(2)  (w)
for all u, v, w ∈ R The electroweak interaction coupled to a Higgs Ąeld is deĄned as g := su(2) ⊕ u(1) acting on W := C 2 ( ∼ = R 4 ). Let i be the imaginary number and n γ be a non-zero natural number (a normalization constant). The Lie algebra representation ψ is then deĄned as the induced representation Ψ * of the Lie group representation Ψ given by

(SU(2) × U(1)) × C 2 → C 2 ,
A, e iα , w We have the well-known adjoint representation of a Lie group G: For an element g ∈ G we deĄne the conjugation c g as a map by

 → Ψ A, e iα  (w) := A, e iα  • w := e inγ α Aw for all w ∈ C 2 .
G → G, h → c g (h) := ghg -1 .
It is easy to check that c g is a Lie group automorphism, i.e. a diffeomorphism and a homomorphism; moreover, the map G × G → G, (g, h) → c g (h), is a left action of G on itself, especially we have c gh = c g • c h for all g, h ∈ G. All of those properties lead to the deĄnition of the adjoint representation (of G) Ad : G → Aut(g), a G-representation on g deĄned as map by

G → Aut(g), g → Ad(g) := D e c g ,
where e ∈ G is the neutral element; we deĄned Lie group representations with values in vector bundle automorphisms, but due to the properties of the conjugation one can also understand Aut(g) here as the space of Lie algebra automorphisms, especially Ad(g) is additionally a homomorphism of the Lie bracket of g for all g ∈ G.

The induced Lie algebra representation of Ad is given by ad : g → End(g), X → [X, •] g , the adjoint representation of g. A smooth left action of a Lie group G on a smooth manifold N is a smooth map

G × N → N, (g, p) → g • p = gp,
where G × N is equipped with the canonical product structure, and we demand:

• For all g, h ∈ G and p ∈ N

(g • h) • p = g • (h • p).
• For all p ∈ N and e the neutral element of G e • p = p.

Remarks 2.1.13. [4, §3.4; page 141ff.] One may try to think about a left action as a generalization of Lie group representation when replacing the space of automorphisms of a vector space W with the space of diffeomorphisms N , Diff(N ), and then rewriting the left action as a map

G → Diff(N ), g → [p → gp] ∈ Diff(N ).
The deĄnition of a left action then implies that this map would be a group homomorphism.

Keep in mind that the deĄnition of a representation of a Lie group demands smoothness of the representation such that we would need to deĄne a smooth structure on (in general) inĄnite-dimensional sets like Diff(N ) which we would like to avoid. Hence, when we also want to derive a Lie algebra action we just motivate it in the following way. Denote the action by (g, p) → Ψ(g, p) := g • p, then take any Lie algebra element X ∈ g to conclude for t, s ∈ R, by using Def. 2.1.12, Ψ e tX , p t → Ψ e tX , p  . This deĄnes a map g → X(N ), X → γ(X), which is known as the map to fundamental vector Ąelds, and the change of the sign is needed to deĄne γ as a homomorphism of Lie algebras, see e.g. [START_REF] Mark | Mathematical Gauge Theory[END_REF]Proposition 3.4.4;page 144]. In fact, we are going to prove that in Prop. 2.1.16, too, in the special situation of N = W for some vector space W .

Thence, we motivated the following deĄnition. We can show that all Lie algebra representations deĄne a Lie algebra action, not assuming any integrability to a Lie group representation. Every Lie algebra representation ψ on a vector space W deĄnes a Lie algebra action γ by

γ(X) v := -ψ(X)(v) (2.6)
for all X ∈ g and v ∈ W , where we view the right hand side as an element of T v W , making use of

T v W ∼ = W .
Remark 2.1.17

We then say that γ is induced by ψ.

Remarks 2.1.18.

A few words about using T v W ∼ = W : In the following we will denote a basis of W by (e a ) a , v = v a e a for all v ∈ W , which we will also identify as a (constant) frame of TW , i.e. ∂ a ↔ e a for some coordinate vector Ąelds (∂ a ) a . Then the deĄnition contained in Prop. 2.1.16 reads

γ(X) := -ψ(X),
where T ∈ X(W ) for T ∈ End(W ) is deĄned by

W → TW, v → T (v) := T a b v b ∂ a ♣ v .
Normally, we will omit this notation most of the time and write T = T since the identiĄcation in T v W ∼ = W is very natural. But until the proof of Prop. Let W be a vector space. Then End(W ) is a Lie subalgebra of X(W ), and we have

[T, L] End(W ) = -T , L (2.7)
for all T, L ∈ End(W ).

Proof.

That it is a subspace is clear due to 0 ∈ End(W ) and aT + bL = aT + bL for all T, L ∈ End(W ) and a, b ∈ R. We also get for

v = v a e a ∈ W T , L v = T b ∂ b L a =∂ b [v →L a c v c ]=L a b -L b ∂ b T a  v ∂ a ♣ v = -[T, L] a End(W ) (v) ∂ a ♣ v = -[T, L] End(W ) v ,
which also shows that it is a subalgebra. ■

In fact, we can identify the endomorphisms of W with this subalgebra. Let W be a vector space. Then there is a natural Lie algebra isomorphism End(W ) ∼ = End(W ).

(2.8)

Proof.

DeĄne F : End(W ) → End(W ) by 

F (L) := -L (2.9) CHAPTER 2. GAUGE THEORY Simon-Raphael Fischer for all L ∈ End(W ). Then observe for T, L ∈ End(W ) that [F (T ), F (L)] = T , L Lem. 2.1.19 = -[T, L] End(W ) = F [T, L] End(W )  , hence, F
X, Y ∈ g γ [X, Y ] g  = -ψ [X, Y ] g  ψ Homom. = -[ψ(X), ψ(Y )] End(W ) 2.1.19 = ψ(X), ψ(Y ) = [γ(X), γ(Y )]. ■ Prop.
G × W → W, (g, v) → g • v := Ψ(g)(v).
The Lie algebra action γ is canonically given by the fundamental vector Ąelds related to this action,

γ(X) v := d dt t=0 t → e -tX • v  = -Ψ * (X)(v)
for t ∈ R, for all X ∈ g and v ∈ W . This is a Lie algebra action by Prop. 2.1.16. ■

Isotropy

Of a special importance in this work will be the isotropy subalgebra of a Lie algebra g. We will deĄne this without using group actions because we wonŠt assume integrability in general throughout this work.

DeĄnition 2.2.1: The Isotropy Subalgebra, [4, inĄnitesimal version of DeĄnition 3.2.4; page 132]

Let g be a Lie algebra, and γ : g → X(N ) a Lie algebra action on a smooth manifold N . Then the isotropy subalgebra g p at p ∈ N is deĄned as

g p := ¶X ∈ g ♣ γ(X) p = 0♢ . (2.10)
We also often call it just isotropy (at p).

When we have a Lie algebra representation ψ : g → End(W ) on a vector space W , then its isotropy is related to its induced Lie algebra action as given in Prop. 

G p := ¶g ∈ G ♣ g • p = p♢ . ( 2 
c g e tX  ∈ G gp for all g ∈ G, p ∈ N , X ∈ g p , and t ∈ R. R ∋ t → c g e tX 
∈ G gp is clearly a Lie group homomorphism as a composition of homomorphisms, especially a 1-parameter subgroup. Hence,

g gp ∋ d dt t=0 t → c g e tX  = Ad(g)(X),
and therefore Ad(g)(g p ) ⊂ g gp . 2That we have Ad(g)(g p ) = g gp simply comes from the fact that everything is Ąnite-dimensional, so, Ad(g)(g p ) is a Ąnite-dimensional subspace of g gp , and by the Lie group isomorphism in Eq. (2.13) we have dim(g p ) = dim(g gp ). Thus, Ad(g)(g p ) = g gp follows, and that describes a Lie algebra automorphism g p ∼ = g gp because Ad(g) is a Lie algebra automorphism. ■

For the last statement we needed integrability. One may assume that isotropy subalgebras are in general ideals of the Lie algebra g due to that result, by using that the induced Lie algebra representation of Ad is given by ad. But the isotropy subalgebra is in general not an ideal, i.e. we have in general not [X, Y ] g ∈ g p for all p ∈ N , X ∈ g p and Y ∈ g. Given those, Ąx local coordinates (∂ i ) i on N around p and a g-action γ on N , then

γ [X, Y ] g  p = [γ(X), γ(Y )]♣ p =  ℒ γ(X) p =0 γ i (Y )  -ℒ γ(Y ) p γ i (X)   ∂ i = -ℒ γ(Y ) p γ i (X)  ∂ i
for all p ∈ N , X ∈ g p and Y ∈ g, where we locally write γ = γ i ∂ i . Therefore g p would be an ideal, if there is a coordinate system such that γ i (X) are constant along γ around p; we will come back to this condition about constancy in another chapter. However, we will later see that the isotropy subalgebra is always an ideal of another Lie bracket, the bracket of a vector bundle which we will call a Lie algebroid. But let us now Ąrst shortly introduce the physical quantities.

Yang-Mills-Higgs gauge theory

As introduced, we will only assume trivial principal bundles. Hence, the Ąeld of gauge bosons will be represented by an element A ∈ Ω 1 (M ; g), where g is a Lie algebra and M is usually a spacetime (but often just a smooth manifold in the following).

We also need the following deĄnition. Let M be a smooth manifold, W and W ′ vector spaces and

F ∈ 2 W * ⊗ W ′ . Then for ω ∈ Ω k (M ; W ) and η ∈ Ω l (M ; W ) (k, l ∈ N 0 ) we deĄne F (ω ∧ , η) as an element of Ω k+l (M ; W ′ ) by F (ω ∧ , η) (X 1 , . . . , X k+l ) := 1 k!l! σ∈S k+l sgn(σ)F ω X σ(1) , . . . , X σ(k)  , η X σ(k+1) , . . . , X σ(k+l)  (2.14)
for all X 1 , . . . , X k+l ∈ X(M ), where S k+l is the group of permutations of ¶1, . . . , k + l♢. When either ω or η is a zero-form, then we may also write F (w, η) instead.

Remarks 2.3.2.
It is easy to check that F (ω ∧ , η) is well-deĄned, i.e. that it is an element of Ω k+l (M ; W ′ ) by construction.

For W = g and F = [•, •] g observe that we have for A ∈ Ω 1 (M ; g)

[A ∧ , A] g (X, Y ) := F (A ∧ , A)(X, Y ) = [A(X), A(Y )] g -[A(Y ), A(X)] g = 2 [A(X), A(Y )] g
for all X, Y ∈ X(M ). Making use of the structure constants C c ab with respect to a given basis (e a ) a of g, we can also write

[A ∧ , A] g = A a ∧ A b ⊗ [e a , e b ] g = A a ∧ A b ⊗ C c ab e c . ( 2 

.15)

Let us now deĄne the Ąeld strength. Let g be a Lie algebra and M a smooth manifold. The Ąeld strength F (A) of A ∈ Ω 1 (M ; g) is deĄned by

F (A) := dA + 1 2 [A ∧ , A] g . (2.16)
We view the Ąeld strength also as a map

F : Ω 1 (M ; g) → Ω 2 (M ; g), A → F (A).
The Ąeld strength satisĄes the Bianchi Identity, encoding the homogeneous Maxwell equations in the case of electromagnetism. 

d F (A) + [A ∧ , F (A)] g = 0 (2.

17)

for all A ∈ Ω 1 (M ; g).

Remarks 2.3.5.

See the reference for a proof for now. We will later prove a more general Bianchi identity which will recover this statement; see Thm. 5.1.42.

Let us now deĄne the needed Lagrangians; we are going to state later the typical conditions for gauge invariance, which is why we do not yet clarify any invariance of the used scalar products in the following. Let g be a Lie algebra, equipped with a scalar product κ, and M a spacetime with spacetime metric η. Then we deĄne the Yang-Mills Lagrangian L YM as a map Ω 1 (M ; g) → Ω dim(M ) (M ) by

L YM (A) := - 1 2 κ F (A) ∧ , * F (A) (2.18)
for all A ∈ Ω 1 (M ; g), where * is the Hodge star operator with respect to η. We also want to look at the Higgs Ąeld. The Higgs Ąeld is a map Φ ∈ C ∞ (M ; W ), where W is some vector space, and the Ąeld of gauge bosons A are coupled to Ąelds like the Higgs Ąeld via the minimal coupling. Let g be a Lie algebra, M a smooth manifold, and W a vector space. Furthermore, let ψ : g → End(W ) be a g-representation on W . Then we deĄne the minimal coupling D CHAPTER 2. GAUGE THEORY Simon-Raphael Fischer as a map given by

C ∞ (M ; W ) × Ω 1 (M ; g) → Ω 1 (M ; W ), (Φ, A) → D(Φ, A) := D A Φ = dΦ + ψ(A)(Φ), (2.19) 
where ψ(A)(Φ) is an element of Ω 1 (M ; W ) given by

ψ(A)(Φ) p (Y ) = ψ A p (Y ) Φ(p)
for all p ∈ M and Y ∈ T p M .

Remarks 2.3.8.

In [START_REF] Mark | Mathematical Gauge Theory[END_REF] and other literature, minimal coupling also often just refers to the term ψ(A)(Ψ).

With that we can now deĄne the Yang-Mills-Higgs Lagrangian. Let g be a Lie algebra, equipped with a scalar product κ, M a spacetime with spacetime metric η, and W a vector space, also equipped with a scalar product g. Furthermore, let V ∈ C ∞ (W ), the potential of the Higgs Ąeld, and ψ : g → End(W ) be a grepresentation on W . Then we deĄne the Yang-Mills-Higgs Lagrangian L YMH as a map

C ∞ (M ; W ) × Ω 1 (M ; g) → Ω dim(M ) (M ) by L YMH (Φ, A) := - 1 2 κ F (A) ∧ , * F (A) + g D A Φ ∧ , * D A Φ  - * V • Φ (2.20)
for all (Φ, A) ∈ C ∞ (M ; W ) × Ω 1 (M ; g), where * is the Hodge star operator with respect to η.

The Higgs mechanism is needed for allowing masses of gauge bosons while keeping gauge invariance. We will not introduce and discuss this because it would exceed the scope of this thesis and it is already elaborated elsewhere, see for example [4, §8; page 445ff.]. However, let us summarize the Higgs effect: The essential idea and result is that the components of A along the isotropy subalgebras g p (p ∈ W ) describe the massless gauge bosons, while the other components may describe the bosons with masses due to a non-trivial minimal coupling. That is, Ąx a point p ∈ W , take a basis (f α ) α of g p , and extend that basis to a basis of g, denoted by (e a ) a . Then write A = A a ⊗ e a and deĄne A iso := A α ⊗ f α , and denote with γ the Lie algebra action induced by ψ as in Prop. 2.1.16, such that

γ A iso ♣ p (Y ) p = A α iso ♣ p (Y ) ⊗ γ(f α ) p =0 = 0
for all p ∈ U and Y ∈ T p M . It is possible to extend that argument to certain open subsets of W , leading to that A iso has a trivial (=0) coupling to any Φ such that A iso is going to describe the massless gauge bosons like the photon and the gluons. While the remaining components of A may be massive. Thus, in order to allow masses of gauge boson, one needs that the isotropy subalgebras are non-trivial subalgebras of g at certain subsets of W (especially around the minimum of the potential V ). That is called symmetry breaking.

However, that is not the only factor needed, on one hand one needs a special form of the potential, and on the other hand there is also the known unitary gauge which essentially Ąxes the components of the Higgs Ąeld along the orbits of ψ such that the gauge bosons only really couple to the components along the transversal structure. The components of the Higgs Ąeld along the orbits of ψ generally describe the Nambu-Goldstone bosons, while the transversal components are the actual Higgs bosons. Therefore we would not have a Higgs effect without a transversal structure, and, thus, no masses of gauge bosons.

As mentioned, we will not prove or introduce anything of this in detail; see the given reference for an elaborated discussion. But after we will have introduced the generalized and new gauge theory, using Lie algebroids, we will very shortly revisit this behaviour, and it will be easier to formulate due to the fact that the new formulation supports Lie algebra bundles and vector bundles known as action Lie algebroids.

InĄnitesimal Gauge Invariance

Let us now turn to gauge invariance. We will only focus on its inĄnitesimal formulation because the generalized gauge theory we want to go to will not assume integrability in general. We will still follow [4, especially §5; page 257ff.], while we Ąrst give the observed space of Ąelds in order to make following notations more compact.

DeĄnition 2.4.1: The space of Ąelds

Let M be a smooth manifold, W a vector space, and g a Lie algebra. Then we deĄne the space of Ąelds by Let M be a smooth manifold, W a vector space, and g a Lie algebra, equipped with a Lie algebra representation ψ : g → End(W ). Moreover, let ε ∈ C ∞ (M ; g).

M g (M ; W ) := (Φ, A) Φ ∈ C ∞ (M ; W ) and A ∈ Ω 1 (M ; g) . ( 2 
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Then we deĄne the inĄnitesimal gauge transformation δ ε Φ of the Higgs Ąeld Φ ∈ C ∞ (M ; W ) also as an element of C ∞ (M ; W ) by

δ ε Φ := ψ(ε)(Φ). (2.22)
The inĄnitesimal gauge transformation δ ε A of the Ąeld of gauge bosons A ∈ Ω 1 (M ; g) is deĄned as an element of Ω 1 (M ; g) by Let M be a smooth manifold, W, K vector spaces, and g a Lie algebra, equipped with a Lie algebra representation ψ : g → End(W ). Moreover, let ε ∈ C ∞ (M ; g).

δ ε A := [ε, A] g -dε. ( 2 
Then we deĄne the inĄnitesimal gauge transformation

δ ε L of L : M g (M ; W ) → Ω k (M ; K) (k ∈ N 0 ) as a map M g (M ; W ) → Ω k (M ; K) by (δ ε L)(Φ, A) := d dt t=0 [t → L(Φ + tδ ε Φ, A + tδ ε A)] (2.24)
for t ∈ R, where d/dt is deĄned using the canonical Ćat connection on M × K → M .

Remarks 2.4.4. This deĄnition leads to (δ ε L)(Φ, A) ∈ Ω k (M ; K), because the vector space W is viewed as a trivial vector bundle over M such that one uses the canonical Ćat connection for the deĄnition of d/dt, that is, one Ąxes a global trivialization, and then differentiates the components with respect to that trivialization separately. Thus, one actually uses a very trivial horizontal projection in that deĄnition.

This deĄnition is basically nothing else than a differential of functionals along the direction given by (δ ε Φ, δ ε A). But we want to keep it as presented in order to emphasize something later.

One then calculates the typical formulas of the inĄnitesimal gauge transformations of the Ąeld strength and minimal coupling Let M be a smooth manifold, W a vector space, and g a Lie algebra, equipped with a Lie algebra representation ψ : g → End(W ). Moreover, let ε ∈ C ∞ (M ; g).
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Then we have

(δ ε F )(Φ, A) = [ε, F (A)] g , (2.25) (δ ε D)(Φ, A) = ψ(ε) D A Φ  (2.26)
for all (Φ, A) ∈ M g (M ; W ).

Remarks 2.4.6.

The inĄnitesimal gauge transformation of A can also motivated by conditioning that the gauge transformation of the minimal coupling has to look like as in this proposition. We will discuss this later in more detail in the general setting.

Proof of Prop. 2.4.5.

We get3 

(δ ε F )(A) = d dt t=0 [t → F (A + tδ ε A)] = d dt t=0  t → d(A + tδ ε A) + 1 2 [A + tδ ε A ∧ , A + tδ ε A] g  = d δ ε A =[ε,A] g -dε + 1 2 [δ ε A ∧ , A] g + 1 2 [A ∧ , δ ε A] g = [dε, A] g + [ε, dA] g + [ε, A] g -dε ∧ , A g = [ε, dA] g + [ε, A] g ∧ , A
g making use of Eq. (2.15) which implies that we have a product rule with respect to the two arguments in [• ∧ , •] g in sense of wedge products and the differential, and we clearly have [ω ∧ , η] g = [η ∧ , ω] g for all ω, η ∈ Ω 1 (M ; g) due to the antisymmetry of the Lie bracket; see also Appendix A for their proof (as slightly generalized versions). Again using Eq. (2.15), the Jacobi identity of the Lie bracket and a basis (e a ) a of g, we arrive

[ε, A] g ∧ , A g = ε a A b ∧ A c ⊗ [e a , e b ] g , e c g = ε a A b ∧ A c ⊗  e a , [e b , e c ] g g + [e a , e c ] g , e b g  = ε, [A ∧ , A] g g -[ε, A] g ∧ , A g ⇔ [ε, A] g ∧ , A g = 1 2 ε, [A ∧ , A] g g , Simon-Raphael Fischer hence, (δ ε F )(A) =  ε, dA + 1 2 [A ∧ , A] g  g = [ε, F (A)] g .
For the minimal coupling observe, also now using additionally a basis (f α ) α of W ,

dδ ε Φ = d ψ(ε)(Φ) = d ε a Φ α ψ(e a )(f α ) ∈g = dε a Φ α ψ(e a )(f α ) + ε a dΦ α ψ(e a )(f α ) = ψ(dε)(Φ) + ψ(ε)(dΦ),
and, thus,

(δ ε D)(Φ, A) = d dt t=0 [t → d(Φ + tδ ε Φ) + ψ(A + tδ ε A)(Φ + tδ ε Φ)] = dδ ε Φ + ψ(δ ε A)(Φ) + ψ(A)(δ ε Φ) = ψ(dε)(Φ) + ψ(ε)(dΦ) + ψ [ε, A] g -dε  (Φ) + ψ(A)(ψ(ε)(Φ)) = ψ(ε)(dΦ) + [ψ(ε), ψ(A)] g + ψ(A)(ψ(ε)(Φ)) =ψ(ε)(ψ(A)(Φ)) = ψ(ε) D A Φ  ,
where we used that ψ is a homomorphism of Lie brackets. ■

That leads to the typical well-known statement about the inĄnitesimal gauge invariance of the Yang-Mills-Higgs Lagrangian. For that we shortly recall what it means that a scalar product is invariant under a Lie algebra representation. Let g be a Lie algebra, W a vector space and ψ : g → End(W ) a g-representation on W .

Then we say that a scalar product

g on W is ψ-invariant g(ψ(X)(v), w) + g(v, ψ(X)(w)) = 0 (2.27)
for all X ∈ g and v, w ∈ W . Let g be a Lie algebra, equipped with a scalar product κ, M a spacetime with spacetime metric η, and W a vector space, also equipped with a scalar product g. Furthermore, let V ∈ C ∞ (W ) and ψ : g → End(W ) be a g-representation on W , whose induced Lie algebra action is denoted by γ. If we have

κ is ad-invariant, (2.28) g is ψ-invariant, (2.29) 0 = ℒ γ(ε) V • Φ (2.30) for all ε ∈ C ∞ (M ; g) and Φ ∈ C ∞ (M ; W ), then δ ε L YMH = 0 (2.31) for all ε ∈ C ∞ (M ; g).
Remarks 2.4.9. Condition (2.30) may be reduced to ℒ γ(ε) V = 0; however, we will not discuss the potential, and that ŤweakerŤ formulation may be a good starting point if one wants to restrict the set of Φ. 

Proof of

[R ∋ t → L YMH (Φ + tδ ε Φ, A + tδ ε A)]
and we can do that on each summand in Def. 2.3.9 separately. Applying the product rule when calculating d dt and using Prop. 2.4.5, it is clear that the Ąrst two summands, the Yang-Mills Lagrangian and the kinetic part of the Higgs Ąeld, vanish because of the imposed invariances on κ and g. For the potential V observe

 d dt t=0 [t → V (Φ + tδ ε Φ)]  p = d Φ(p) V  ψ ε(p) Φ(p) Prop. 2.1.16 = -ℒ γ(ϵ(p)) V Φ(p)
, which is also zero by the assumed condition on the potential. Hence, the inĄnitesimal gauge transformation of all three summands of the Yang-Mills-Higgs Lagrangian is zero.4 ■ Remarks 2.4.10.

In [START_REF] Mark | Mathematical Gauge Theory[END_REF] one assumes a function V ∈ C ∞ (R) instead of the general potential we took. There the potential is then given by V (w) := V g(w, w) for all w ∈ W , e.g. V is a polynomial of the scalar product on W . Due to the ψ-invariance of g we get

 d dt t=0 [t → V (Φ + tδ ε Φ)]  p = D g(Φ(p),Φ(p)) V  g ψ(ε)(Φ)♣ p , Φ(p)  + g Φ(p), ψ(ε)(Φ)♣ p   = 0 for all Φ ∈ C ∞ (M ; W ), ε ∈ C ∞ (M ; g) and p ∈ M .
In the proof we also have seen

 d dt t=0 [t → V (Φ + tδ ε Φ)]  p = -ℒ γ(ϵ(p)) V Φ(p)
, thus, Eq. (2.30) is satisĄed for such potentials. See [4, §8; especially also the box at the top of page 450] for a thorough discussion about how the potential looks like for Yang-Mills-Higgs Lagrangians; in this work the potential will not play any important role, and besides conditions like Eq. (2.30) it is not going to appear anywhere here.

InĄnitesimal Gauge Invariance using connections

We want to introduce and redeĄne inĄnitesimal gauge invariance in a different way now, already pointing out what the next sections will be about. Therefore this section also serves as a Ąrst step towards Lie algebroids and the new gauge theory. As we have seen, the common idea is to interpret inĄnitesimal gauge transformations as derivations of functionals, parametrised by Lie algebra valued functions ε.

In this section we want to show that the inĄnitesimal gauge transformations can be viewed as a Ťconnection-likeŤ object on the inĄnite-dimensional spaces arising in the calculus of variations, but the connection will be inherited by a connection of a Ąnite-dimensional vector bundle. Before we discuss this, let us introduce the connections we look at in the Ąnite-dimensional situation; those will be a Ąrst step towards a generalization of typical vector bundle connections. In some sense, those are like Lie algebra actions, but as connections instead of a Lie derivative along a vector Ąeld. Let g be a Lie algebra, and γ : g → X(N ) be a Lie algebra action on a smooth manifold N . Then a g-connection on a vector bundle

E → N is an R-bilinear map g ∇ g × Γ(E) → Γ(E), (X, ν) → g ∇ X ν, satisfying g ∇ X (f ν) = f g ∇ X ν + ℒ γ(X) (f ) ν (2.32)
for all X ∈ g, ν ∈ Γ(E) and f ∈ C ∞ (N ), where ℒ γ(X) (f ) is the action of the vector Ąeld γ(X) on the function f by derivation.

Remarks 2.5.2. Similar to typical vector bundle connections, the Leibniz rule in the difference of two g-connections will cancel each other, resulting into an R-linear map g → ℰ𝓃𝒹(E); this is trivial to check.

It is on purpose that there is no separate imposed C ∞ (N )-linearity in the g-argument, it is then in more alignment with the deĄnition of g-actions. However, that is quickly recovered by deĄning

( g ∇ ε ν)♣ p := g ∇ ε(p) ν  p for all ε ∈ C ∞ (N ; g), ν ∈ Γ(E)
and p ∈ N . Furthermore, we will generalize this and the following concepts to Lie algebroid connections which will look more familiar again with the typical deĄnition.

Example 2.5.3: Lie algebra action as a Lie algebra connection, [7, special situation of Ąrst example in Example 2.8]

A major example is the Lie algebra action γ itself: Let E → N be a trivial vector bundle over a smooth manifold N , whose global trivialization we denote by (e a ) a . As usual, also let g be a Lie algebra, and γ : g → X(N ) be a Lie algebra action on N . Then deĄne g ∇ by

g ∇ X ν := ℒ γ(X) (ν a ) e a
for all X ∈ g and ν = ν a e a ∈ Γ(E). Consider the canonical Ćat connection ∇ of E with respect to the chosen trivialization, i.e. deĄned by ∇e a = 0, then

g ∇ X ν = ℒ γ(X) (ν a ) e a = ∇ γ(X) ν
for all X ∈ g and ν ∈ Γ(E). This also proves that this deĄnes a g-connection because it is trivial to check that all vector bundle connections ∇ ′ give rise to a g-connection deĄned by g ∇ ′ X = ∇ ′ γ(X) for all X ∈ g, regardless of triviality of E or Ćatness of ∇ ′ . In general we therefore denote such connections by

g ∇ ′ = ∇ ′ γ .
Example 2.5.4: Basic connection, [6, special situation of §2, DeĄnition 2.9]

Let E = N ×W → N be again a trivial bundle over N with Ąbre type W , denote with (e a ) a a global constant frame of E, and with ∇ its canonical Ćat connection. Also now assume that the Lie algebra action γ is induced by a Lie algebra representation ψ : g → End(W ).

Then deĄne a g-connection on E, denoted as ∇ bas , by

∇ bas X ν p := ψ(X)(ν p ) + ∇ γ(X) ν p (2.33)
for all X ∈ g, ν ∈ Γ(E) and p ∈ N . This deĄnes clearly a g-connection, viewing ψ(X)(ν) as an element of Γ(E) by p → ψ(X)(ν p ) such that we can view ψ as an R-linear map g → ℰ𝓃𝒹(E); for this recall Rem. 2.5.2.

Observe that for constant sections ν we get

∇ bas X ν = ψ(X)(ν).
Of special importance is W = g and ψ = ad. Those g-connections are related to the notion of what is known as basic connections, which we will introduce with more details later and which will be very important throughout this work.

Let us now assume that N is a vector space W . Recall Def. 2.4.3 and Rem. 2.4.4; the inĄnitesimal gauge transformation was essentially deĄned by expressing the differential as a derivative along a certain curve in M g (M ; W ), differentiating with d/dt using a canonical Ćat connection of the involved Ąnite-dimensional trivial vector bundles. However, especially because the aim of this work is also to present a covariantized formulation of gauge theory, one might want to reformulate this using general connections, not just the canonical Ćat connection, naturally supporting general vector bundles and manifolds as a result, while avoiding the problem of having horizontal components in some tangent bundle. The connections we want to use for that for now are the g-connections. But those are deĄned for vector bundles over N = W , not for a vector bundle over the spacetime M (in which our functionals have values in); that is simply due to that the image of a Lie algebra action, used in the Leibniz rule, is a vector Ąeld on N . Therefore, in order to deĄne a g-connection acting on forms of the spacetime M , we need to make a pullback to M , and the only map we have so far from M to N = W is Φ. In other words, we want to deĄne a Ťconnection-likeŤ object on functionals, which is inherited by a connection of some Ąnite-dimensional vector bundle by making a pullback, and the differentiation of such a connection on functionals is along M g (M ; W ). Moreover, one could naively view functionals L : M g (M ; W ) → Ω k (M ; K) (k ∈ N 0 , K a vector space) as sections of a bundle over M g (M ; W ) which has in general an inĄnite rank; more about that in a later chapter. Thus, we want to construct a ŤconnectionŤ on inĄnite-dimensional bundles coming from a Ąnite-dimensional world.

Let us only focus on pullbacks along curves in this section for simplicity. By the Leibniz rule Eq. (2.32) the direction of the derivative is along the Lie algebra action γ, while the idea of a pullback of a connection is that it differentiates pullbacks of sections along the differential of the curve. Hence, one expects a technical obstacle when allowing every curve for the pullback, because the typical motivation is that the Leibniz rule is inherited by the pullbacked connection. Let g be a Lie algebra, and γ : g → X(N ) be a Lie algebra action on a smooth manifold N . Then a g-path α with base path β is a pair of smooth curves (α, β), where α : I → g and β :

I → N , I an open interval of R, such that β(t) := d dt β t = β * γ α(t)  t = γ α(t) β(t) .
(2.34)

We also say that β is lifted to α.

Remarks 2.5.6.

If N = W is a vector space and γ is induced by a Lie algebra representation ψ : g → End(W ), then, by Prop. 2.1.16, we would also have

 d dt β  t = -ψ α(t) (β(t)) (2.35)
for all w ∈ W . Let g be a Lie algebra, γ : g → X(N ) be a Lie algebra action on a smooth manifold N , and g ∇ a g-connection on a vector bundle E → N . Also Ąx a g-path α : I → g with base path β : I → N , I ⊂ R an open interval. Then there is a unique vector bundle connection

β * ( g ∇) on β * E → I with β * ( g ∇) c d dt (β * ν) = β * ( g ∇ cα ν) (2.36) for all ν ∈ Γ(E), c ∈ R and t ∈ I.
Proof.

The proof is basically the same as for pullbacks of vector bundle connections. The idea is the following: As usual, the idea is that the pullbacks of sections,

β * ν (ν ∈ Γ(E)), generate Γ(β * E).
Thus, Eq (2.36) deĄnes the connection uniquely, that is, sections µ of β * E are determined by sums of elements of the form f • β * ν, f ∈ C ∞ (I), and by the Leibniz rule any connection β * ( g ∇) satisfying Eq. (2.36) also satisĄes

β * ( g ∇) c d dt (f β * ν) = c df dt β * ν + f β * ( g ∇ cα ν)
for all c ∈ R and t ∈ I, such that uniqueness follows by linearity, assuming existence is given, but for the existence one can simply take this equation as a possible deĄnition for β * ( g ∇). 

β * g ∇ cα (hν) t = β * ℒ c(γ•α) (h) t Def. 2.5.5 = cℒ β (h)♣ t β * ν + β * h g ∇ cα ν t =  c d(h • β) dt β * ν + (h • β) β * g ∇ cα ν  t (2.38)
for all t ∈ I, thus,

β * ( g ∇) c d dt (β * ν) (2.37) = c d(ν a • β) dt β * e a + (ν a • β) β * g ∇ cα e a (2.38) = β * ( g ∇ cα ν),
so, Eq. (2.36) is satisĄed. Finally, by Eq. (2.38) it also follows that (2.37) is independent of the chosen frame and, thus, globally deĄned. To see this, observe that any other frame (f b ) b of E, intersecting the neighbourhood of (e a ) a , is given by e a = M b a f b , where M b a is a local invertible matrix function on N . Then

µ = µ a β * e a = M b a • β  µ a f b =: μb f b , such that µ a = M -1 a b • β 
μb , and, thus, as a direct consequence of Eq. (2.38),

β * ( g ∇) c d dt µ (2.37) = c dµ a dt β * e a + µ a β * ( g ∇ cα e a ) = c d M -1 a d • β  μd  dt β * M b a f b  + M -1  a d • β  μd β * g ∇ cα M b a f b  Eq. (2.38) = c dμ b dt β * f b + μb β * ( g ∇ cα f b ) + cμ d    - d M b f • β  dt  M -1  f d • β  + M -1  a d • β  d M b a • β  dt    β * f b = c dμ b dt β * f b + μb β * ( g ∇ cα f b ),
using formulas of the differential of the inverse like M dM -1 = -dM M -1 (similar for Eq. (2.38) also motivates why g-paths are precisely the objects one needs to provide a pullback of g-connections along curves.

β * M = M • β).
Typically, this leads to the following construction. Let g be a Lie algebra, γ : g → X(N ) be a Lie algebra action on a smooth manifold N , and g ∇ a g-connection on a vector bundle E → N . Also Ąx a g-path α : I → g with base path β : I → N , I ⊂ R an open interval. Then there is a unique differential operator

D dt : Γ(β * V ) → Γ(β * V ) with D dt is linear over R, (2.39) 
D dt (f s) = df dt s + f D dt s, (2.40) D dt t (β * v) = β * ( g ∇ α v)♣ t (2.41) for all s ∈ Γ(β * V ), v ∈ Γ(V ), f ∈ C ∞ (I) and t ∈ I. Proof. DeĄne D dt := (β * ( g ∇)) d dt , ( 2.42) 
where β * ( g ∇) is given by Prop. 2.5.7. This operator satisĄes the needed properties by Prop. 2.5.7, and the uniqueness will follow by the uniqueness given in Prop. 2.5.7. ■

In the context of the previously introduced setting of gauge theory, we have N = W a vector space, and E will be a trivial vector bundle over W . Later, when we are going to introduce the generalized inĄnitesimal gauge transformation for the general theory, we will allow general manifolds and vector bundles. But to avoid certain difficulties, which we will face later, we keep it that simple most of the time in the following.

As argued earlier we want to make the pullback using Φ, the Higgs Ąeld. But this is a Ąeld affected by the calculus of variations, and we want to show that a certain pullback of a g-connection describes inĄnitesimal gauge transformations, hence, Φ is a ŤcoordinateŤ in that context. So, the map we make a pullback with is a different one, but strongly related to Φ. Let us clarify with which map we actually make the pullback.

DeĄnition 2.5.10: The evaluation map

Let M be a smooth manifold, W a vector space, and g a Lie algebra. Then we deĄne the evaluation map ev :

M × M g (M ; W ) → W by ev(p, Φ, A) := Φ(p) (2.43) for all (p, Φ, A) ∈ M × M g (M ; W ).
Given a g-connection g ∇, we may try ev * ( g ∇) because the functionals we look at are of the form L :

M g (M ; W ) → Ω k (M ; K) (k ∈ N 0 , K a vector space), so, L : M × M g (M ; W ) → k T * M ⊗ K.
However, as we argued earlier, the pullback of a g-connection is not always given.

Thus, the idea is to take a curve η in M × M g (M ; W ) such that ev • η can be lifted to a g-path.

Then we can deĄne (ev • η) * ( g ∇); in other words, we want to make the pullback with ev but the resulting pullback-connection just differentiates along certain directions.

Of course, we do not want to take any suitable curve. We want to identify this construction with the inĄnitesimal gauge transformations, which we denoted earlier by (δΦ, δA) (omitting the parameter ε for now) for the Ąelds Φ and A. Viewing (δΦ, δA) as a vector Ąeld on M g (M ; W ), 5one wants to deĄne η as the (local) Ćow of that vector Ąeld. That is, we take a curve η parallel to M g (M ; W ), so, the M -component is constant.

Remark 2.5.11: Tangent spaces of M g (M ; W ) A note about the tangent bundle of M g (M ; W ): In the general setup, presented later, we need to study it, see Prop. 4.1.2. Due to that we assume vector spaces and trivial vector bundles for the values, it is trivial to check that we get

T (Φ,A) (M g (M ; W )) ∼ = M g (M ; W ),
Hence, δΦ ∈ C ∞ (M ; W ) and δA ∈ Ω 1 (M ; g) makes sense, even when interpreted as components of a vector Ąeld; still omitting the parameter ε.
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Trivially, this comes from that one thinks of tangent vectors as velocities of curves in M g (M ; W ), which is basically just a pair of curves in W and g (after point evaluation, e.g. a curve in C ∞ (M ; W ), t → Φ t , then viewed as t → Φ t (p) ∈ W ). As usual, one uses then the canonical Ćat connections for TW ∼ = W × W and Tg ∼ = g × g such that the velocities of the curves can be viewed as curves in the corresponding vector space. It is unusual to formulate it like this, or to even mention this, but with that we want to emphasize that one cannot expect that the vector Ąeld behind all of that has values (δΦ, δA) ∈ M g (M ; W ) (globally) if canonical Ćat connections are not given. Especially, later in this work we will have W = N an arbitrary smooth manifold such that C ∞ (M ; N ) ∋ Φ will not carry a vector space structure in general, and, so, one could not even argue with an overall vector space structure of the inĄnite-dimensional space itself.

Fix now (Φ 0 , A 0 ) ∈ M g (M ; W ) and p ∈ M . Then take a curve η = (p, Φ, A) :

I → M × M g (M ; W ) (I ⊂ R an open interval), I ∋ t → η t = (p, Φ t , A t ), with η t=0 = (p, Φ 0 , A 0 ). Observe then ev • η = Φ(p) := [t → Φ t (p)].
Given a Lie algebra action γ : g → X(W ), 6 ev • η can be lifted to a g-path, if there is a g-path -ϵ(p) : I → g, t → -ϵ t (p), such that

d dt t Φ(p) = -γ ϵ t (p) Φt(p) .
The sign is a convention, because if γ is induced by a Lie algebra representation ψ : g → End(W ), then this equation can be written as, recall Rem. 2.5.6,

d dt t Φ(p) = ψ ϵ t (p) Φ t (p) ,
which resembles strongly the inĄnitesimal gauge transformation of the Higgs Ąeld (evaluated at p), here for the Ąxed Φ 0 if t = 0; recall Def. 2.4.2. Therefore we want to interpret the gauge transformation of the Higgs Ąeld as the ŤvelocityŤ of those curves in C ∞ (M ; W ) which can be lifted to a g-path, that is

δ ϵ 0 Φ 0 := d dt t=0 Φ(p) = -γ ϵ t=0 (p) Φ 0 (p) .
Since such lifts are in general not unique, we get naturally the parametrization of δΦ 0 with respect to ϵ 0 : M → g, p → ϵ 0 (p) := ϵ t=0 (p).

DeĄnition 2.5.12: InĄnitesimal gauge transformation of the Higgs Ąeld

Let M be a smooth manifold, W a vector space, and g a Lie algebra with Lie algebra action γ on W , induced by a Lie algebra representation ψ. Then we deĄne the subspace T ψ (Φ,A) M g (M ; W ) of T (Φ,A) M g (M ; W ) for all (Φ, A) ∈ M g (M ; W ) by

T ψ (Φ,A) M g (M ; W ) := (δΦ, δA) ∈ T (Φ,A) (M g (M ; W )) ∃ϵ ∈ C ∞ (M ; g) : δΦ = ψ(ϵ)(Φ) . (2.44)
Its sections by X ψ (M g (M ; W )).

To emphasize the relation of the Ąrst component, δΦ, with ϵ, we also write

δ ϵ Φ := ψ(ϵ)(Φ) (2.45)
instead of δΦ. We call this the inĄnitesimal gauge transformation of the Higgs Ąeld Φ.

Remarks 2.5.13. For Ψ ∈ X ψ (M g (M ; W )) observe that there is a smooth ε :

M g (M ; W ) → C ∞ (M ; g) with Ψ♣ (Φ,A) = (δ ϵ Φ, δA)
for all (Φ, A) ∈ M g (M ; W ), where δA ∈ Ω 1 (M ; g) and ϵ := ε(Φ, A) ∈ C ∞ (M ; g); and each such ε deĄnes a Ψ ∈ X ψ (M g (M ; W )). With that one can easily see that X ψ (M g (M ; W )) is a submodule of X(M g (M ; W )), respectively; but X ψ (M g (M ; W )) is in general not a subalgebra, due to the fact that ε itself depends on M g (M ; W ). To emphasize the relation between Ψ and ε we also often write Ψ =: Ψ ε . Keep in mind that Ψ ε is not unique for a given ε because we did not Ąx δA yet. Also observe the difference to the previous section: The parameter of the inĄnitesimal gauge transformation is going to be a functional M g (M ; W ) → C ∞ (M ; g), while the typical formulation uses just ϵ ∈ C ∞ (M ; g) (basically a constant functional one could say).

To summarize, we have:

Corollary 2.5.14: Flows of X ψ (M g (M ; W ))
Let M be a smooth manifold, W a vector space, and g a Lie algebra with Lie algebra action γ on W , induced by a Lie algebra representation ψ. Also let

Ψ ε ∈ X ψ (M g (M ; W )) for an ε : M g (M ; W ) → C ∞ (M ; g) whose local Ćow through (Φ 0 , A 0 ) ∈ M g (M ; W ) we denote by η♣ (Φ 0 ,A 0 ) := (Φ, A) : I → M g (M ; W ), t → η♣ (Φ 0 ,A 0 ) (t) = (Φ t , A t ) (I ⊂ R an open interval).
Then there is a smooth curve ϵ : 

I → C ∞ (M ; g), t → ϵ t , with ϵ t=0 = ε(Φ 0 , A 0 )
: I → C ∞ (M ; g), t → ϵ t , such that Ψ (1) η♣ (Φ 0 ,A 0 ) (t) = ψ(ϵ t )(Φ t ),
where Ψ (1) is the Ąrst component of Ψ, the one along the ŤΦ-directionŤ; thus, Eq. (2.46) follows by the deĄnition of Ćows of vector Ąelds, and one can take ϵ in such a way that ϵ t=0 = ε(Φ 0 , A 0 ) because we have at t = 0

Ψ (1) η♣ (Φ 0 ,A 0 ) (0) = Ψ (1) 
(Φ 0 ,A 0 ) = ψ ε(Φ 0 , A 0 ) (Φ 0 ).

■

Let us conclude this section with the deĄnition of the inĄnitesimal gauge transformation of the studied functionals, making use of the previously-discussed relation between g-paths and the inĄnitesimal gauge transformation of the Higgs Ąeld. It is especially about pullbacks of gconnections, which were uniquely deĄned by their differentiation on pullbacks, but the deĄnitions of the typical functionals like the Ąeld strength or the minimal coupling do not contain any visible pullback as if they do not live in a pullback bundle. But we will use a trivial bookkeeping trick: The bundle those functionals have values in is a trivial bundle over M , and trivial bundles are always trivially isomorphic to the pullback of another trivial bundle with the same Ąbre type, e.g. M × g ∼ = Φ * (W × g), W × g the trivial bundle over N = W . That is the following:

Let K be a vector space, we viewed it as a trivial vector bundle over M , but we can do the same for N = W , so, K can also be viewed as trivial vector bundle over W , and elements of K are just constant sections of such a bundle. For bookkeeping, let us denote with ι M and ι W maps K ֒→ Γ(M × K) and K ֒→ Γ(W × K), respectively, which embed elements of K canonically into the space of constant sections of the trivial bundles M × K and W × K, respectively. Then take a smooth map L : M g (M ; W ) → Ω k (M ; K) (k ∈ N 0 ) and a basis (e a ) a of K. Previously we expressed L then as, making use of ι M ,

L = L a ⊗ ι M (e a ),
where L a : M g (M ; W ) → Ω k (M ). Fix (Φ, A) ∈ M g (M ; W ), then we can trivially identify

ι M (e a ) = Φ * ι W (e a )
because e a is viewed as a constant section in both trivial vector bundles. Then observe ev * ι W (e a ) (p,Φ,A) = ι W (e a )♣ Φ(p) = Φ * ι W (e a ) p = ι M (e a )♣ p for all (p, Φ, A) ∈ M × M g (M ; W ). Thus, we can also write

L = L a ⊗ ev * ι W (e a ) =: ι(L),
and that interpretation of L we denote as ι(L) for bookkeeping reasons. Observe

ι(L)(Y 1 , . . . , Y k ) = L a (Y 1 , . . . , Y k ) ∈C ∞ (M ×Mg(M ;W )) ev * ι W (e a ) ∈ Γ(ev * (W × K)) for all Y 1 , . . . , Y k ∈ X(M ); therefore also ι(L)(Φ, A) ∈ Ω k (M ; Φ * K).
With that we can now Ąnally explicitly state the idea of describing inĄnitesimal gauge transformations as a certain pullback of a g-connection.

Proposition 2.5.15: Functional derivative along X ψ (M g (M ; W ))

Let M be a smooth manifold, W, K vector spaces, and g a Lie algebra with Lie algebra action γ on W , induced by a Lie algebra representation ψ. Moreover, let g ∇ be a gconnection on the trivial vector bundle W × K over W , and

Ψ ε ∈ X ψ (M g (M ; W )) for an ε : M g (M ; W ) → C ∞ (M ; g).
Then there is a unique R-linear operator δ Ψε : Γ(ev

* (W × K)) → Γ(ev * (W × K)) with δ Ψε (f s) = ℒ Ψε (f ) s + f δ Ψε s, (2.47) δ Ψε (ev * ϑ) = -ev * ( g ∇ ε ϑ) (2.48) for all f ∈ C ∞ (M × M g (M ; W )), s ∈ Γ(ev * (W × K)) and ϑ ∈ Γ(W × K), where we denote ev * ( g ∇ ε ϑ)♣ (p,Φ 0 ,A 0 ) = g ∇ ε(Φ 0 ,A 0 )♣p ϑ  Φ 0 (p) for all (p, Φ 0 , A 0 ) ∈ M × M g (M ; W ).
Remarks 2.5.16. This emphasizes that δ Ψε is the Ťev-pullback of g ∇ combined with a contraction along Ψ ε Ť (up to a sign), and that combination leads to that we do not need an overall pullback with ev. When we show this in the general setting, then we give a general condition about in which situations one can do such pullbacks, avoiding the ansatz using Ćows and curves, making the approach cleaner. 

Proof of

) :=  ev • p, η♣ (Φ 0 ,A 0 )  * =(Φ(p)) * ( g ∇)  d dt ♣ t=0 p, η♣ (Φ 0 ,A 0 )  * s  = Φ(p) * ( g ∇)  d dt ♣ t=0 p, η♣ (Φ 0 ,A 0 )  * s  (2.49) for all s ∈ Γ(ev * (W × K)) and p ∈ M , where p, η♣ (Φ 0 ,A 0 )  * s is by deĄnition a section of ev • p, η♣ (Φ 0 ,A 0 )  * (W × K), especially, p, η♣ (Φ 0 ,A 0 )  * s t = s♣ (p,Φt,At) ∈ ¶Φ t (p)♢ × K,
and, thus, it can also be seen as a section of Φ(p) * (W × K). Then Def. 2.49 is nothing else than the (restricted) deĄnition of D/dt♣ t=0 related to g ∇ and using the given g-path -ϵ(p) with base path Φ(p), see Prop. 2.5.9 and its proof. That is

(δ Ψε s)(p, Φ 0 , A 0 ) = D dt t=0 p, η♣ (Φ 0 ,A 0 )
 * s  so, everything follows by Prop. 2.5.9, i.e. R-linearity is clearly implied, and

δ Ψε (f s)♣ (p,Φ 0 ,A 0 ) = d dt t=0 f • p, η♣ (Φ 0 ,A 0 )  s♣ (p,Φ 0 ,A 0 ) + f (p, Φ 0 , A 0 ) D dt t=0 p, η♣ (Φ 0 ,A 0 )  * s  = (ℒ Ψε (f ) s + f δ Ψε s)♣ (p,Φ 0 ,A 0 )
for all f ∈ C ∞ (M × M g (M ; W )), and Ąnally

δ Ψε (ev * ϑ)♣ (p,Φ 0 ,A 0 ) = D dt t=0 ev • p, η♣ (Φ 0 ,A 0 )  * ϑ  = D dt t=0 (Φ(p)) * ϑ = -(Φ(p)) * ( g ∇ ϵ t=0 ϑ) ϵ t=0 =ε(Φ 0 ,A 0 ) = -ev * ( g ∇ ε ϑ)♣ (p,Φ 0 ,A 0 )
for all ϑ ∈ Γ(W × K). Uniqueness also follows by Prop. 2.5.9, although this D/dt operator only differentiates sections of the form p, η♣ (Φ 0 ,A 0 )  * s; the vector space of such sections has Φ(p) * Γ(W × K) as a subset, the generators of sections of Φ(p) * (W × K), which was visible by having s = ev * ϑ, that is

p, η♣ (Φ 0 ,A 0 )  * (ev * ϑ) = ev • p, η♣ (Φ 0 ,A 0 )  * ϑ = Φ(p) * ϑ.
Therefore the argument about uniqueness in the proof of Prop. 2.5.9 applies here, too. 7■ Now we extend it to functionals. We will now also recall the inĄnitesimal gauge transformation of the Ąeld of gauge bosons A as in Def. 2.4.2 and take that still as a deĄnition; at this point there is nothing new to tell about that part of the inĄnitesimal gauge transformation, except that ε : M g (M ; W ) → C ∞ (M ; g), and, thus, the derivation will be along a vector Ąeld Ψ ε

Ψ ε ♣ (Φ,A) = (δ ϵ Φ, δ ϵ A) (2.50)
for all (Φ, A) ∈ M g (M ; W ), where ϵ := ε(Φ, A) and δ ϵ A = [ϵ, A] g -dϵ. We shortly write for now Ψ ε = (δ ε Φ, δ ε A). However, in the general setting later we need to discuss the gauge transformation of A and how to deĄne it, and therefore we will come back to this.

DeĄnition 2.5.17: InĄnitesimal gauge transformation

Let M be a smooth manifold, W, K vector spaces, and g a Lie algebra with Lie algebra action γ on W , induced by a Lie algebra representation ψ. Moreover, let g ∇ be a gconnection on the trivial vector bundle W × K over W , and

Ψ ε = (δ ε Φ, δ ε A) for an ε : M g (M ; W ) → C ∞ (M ; g).
Then we deĄne the inĄnitesimal gauge transformation

δ ε L for L : M g (M ; W ) → Ω k (M ; K) (k ∈ N 0 ) as a map M g (M ; W ) → Ω k (M ; K) by (δ ε L)(Y 1 , . . . , Y k ) := δ Ψε ι(L)(Y 1 , . . . , Y k ) (2.51) for all Y 1 , . . . , Y k ∈ X(M )
, where δ Ψε is the unique operator given in Prop. 2.5.15 with respect to g ∇ and Ψ ε .

Remarks 2.5.18.

Recall that ι(L) was the bookkeeping trick, and, thus, We now compare it with the classic deĄnition of the inĄnitesimal gauge transformation as in Def. 2.4.3; for this also recall Ex. 2.5.3.

ι(L)(Y 1 , . . . , Y k ) ∈ Γ(ev * (W × K)) for all Y 1 , . . . , Y k ∈ X(M ). Hence, this deĄnition is well-deĄned; that δ ε L is a map M g (M ; W ) → Ω k (M ; K) also follows by construction. Especially observe that C ∞ (M )-multilinearity follows because ℒ Ψε f = 0 for all f ∈ C ∞ (M ) because Ψ ε is a vector Ąeld on M g (M ; W ), viewed as a vector Ąeld in M × M g (M ; W ). So, C ∞ (M )

Theorem 2.5.19: Recover of classical deĄnition of inĄnitesimal gauge transformation

Let M be a smooth manifold, W, K vector spaces, and g a Lie algebra with Lie algebra action γ on W , induced by a Lie algebra representation ψ. Moreover, let g ∇ = ∇ γ be the g-connection induced by the canonical Ćat connection ∇ of the trivial vector bundle W × K → W as in Ex. 2.5.3, and

Ψ ε = (δ ε Φ, δ ε A) for an ε : M g (M ; W ) → C ∞ (M ; g).
Then we have 

(δ ε L)(Φ, A) = d dt t=0 [t → L(Φ + tδ ϵ Φ, A + tδ ϵ A)] (2.52) for all L : M g (M ; W ) → Ω k (M ; K) (k ∈ N 0 ) and (Φ, A) ∈ M g (M ; W ), where ϵ := ε(Φ, A), t ∈ R,
ε(Φ, A) = ε Φ ′ , A ′ for all (Φ, A), (Φ ′ , A ′ ) ∈ M g (M ; W ).

Remark 2.5.20: δ ε A as transformation of a functional

Recall that d/dt is with respect to the canonical Ćat connection of M × W → M . Also observe that δ ε A is here trivially also given by δ ε ϖ 2 , where ϖ 2 (Φ, A) := A, the projection onto the second factor in M g . Viewing the Ąeld of gauge bosons as the functional ϖ 2 , one may want to deĄne the inĄnitesimal gauge transformation of A as the inĄnitesimal gauge transformation of ϖ 2 ; since ϖ 2 is g-valued, we would have

ι(ϖ 2 )(Y ) ∈ Γ(ev * (W × g))
for all Y ∈ X(M ), and, thus, ι(A) := ι(ϖ 2 )(Φ, A) ∈ Ω 1 (M ; Φ * (W × g)) for any Ąxed Φ. For the inĄnitesimal gauge transformation of the Ąeld strength one also applies the bookkeeping trick such that it has values in ev * (W × g), so, as we mentioned before, we want to view the Lie algebra as a bundle over W instead of a bundle over M .

Proof of Thm. 2.5. [START_REF] Fischer | Curved YangŰMillsŰHiggs gauge theories in the case of massless gauge bosons[END_REF].

Let (e a ) a be a basis of K, that especially implies

∇ ι W (e a ) = 0.
For L : M g (M ; W ) → Ω k (M ; K) we then write

ι(L) = L a ⊗ ev * ι W (e a )
for L a : M g (M ; W ) → Ω k (M ), so, L a ∈ Ω k (M × M g (M ; W )), and, thus, by using Prop. 2.5.15,

(δ ε L)(Y 1 , . . . , Y k )♣ (Φ,A) = δ Ψε ι(L)(Y 1 , . . . , Y k ) (Φ,A) = ℒ Ψε (L a (Y 1 , . . . , Y k ))♣ (Φ,A) ev * ι W (e a ) (Φ,A) =Φ * (ι W (ea))=ι M (ea) -L a (Y 1 , . . . , Y k ) ev * ∇ γ(ε) ι W (e a )  (Φ,A) =0 = ℒ Ψε♣ (Φ,A) (L a ) ⊗ ι M (e a )  (Y 1 , . . . , Y k ) =  d dt t=0 [t → L(Φ + tδ ϵ Φ, A + tδ ϵ A)]  (Y 1 , . . . , Y k ) for all (Φ, A) ∈ M g (M ; W ) and Y 1 , . . . , Y k ∈ X(M ), using that Ψ ε ♣ (Φ,A) = (δ ϵ Φ, δ ϵ A). ■
This concludes this section, we have shown how to write the inĄnitesimal gauge transformation using g-connections. One can even show that the gauge invariance of the Yang-Mills-Higgs Lagrangian can be shown with the same calculation of the previous section if ε is allowed to depend on M g (M ; W ). Such a dependency starts to matter when applying the inĄnitesimal gauge transformation twice, which we will discuss later in full generality. Let us now shortly discuss what we have learned.

First of all, we needed to do the bookkeeping trick. That was due to the Lie algebra action γ, which acts on N = W and not on M . Hence, the natural construction of g-connections using γ is deĄned on bundles over N . This was why we needed to make a pullback and to think of functionals as having values in a pullback of a trivial bundle over N , especially using Φ ∈ C ∞ (M ; N ). For example, we thought of the Lie algebra g as a trivial bundle over M and N, M × g and N × g, respectively, and it is more suitable to think of M × g as Φ * (N × g). The aim of the presented generalised gauge theory is also to generalise the trivial Lie algebra bundle, especially getting rid of a global trivialisation by replacing it with some ŤsuitableŤ bundle E. Hence, motivated by this section and as an ansatz, we are going to deĄne E in place of N × g later and Φ * E will replace M × g. In the same manner other vector spaces may be replaced like that, too.

Second, assume we have that non-trivial bundle E now. Then we cannot impose the existence of a canonical Ćat connection anymore as we did in all the basic deĄnitions before, like in Def. 2.4.3; deĄning d/dt using the tangent map would lead to arising horizontal components in the corresponding tangent bundle which may make further calculations more complicated when a functional is used in other functionals, like in contractions using scalar products and metrics, such that one may need to Ąx a horizontal distribution. Therefore the deĄnition of inĄnitesimal gauge transformation as provided here is a Ąrst step towards a formulation using (g-)connections, e.g. taking a connection ∇ and then deĄning g ∇ = ∇ γ .

Third, one could argue that one could just look at vector bundle connections ∇ for which there is always a pullback, avoiding the problems discussed in this section. However, g-connections are more general, which we will see later, and we will then have an even more general notion. But, for example, allow inĄnite-dimensional Lie algebras, then take g = X(N ) and γ = 1, the identity; then one clearly has the typical notion of a vector bundle connection. Especially when thinking about that the inĄnitesimal gauge transformation are just certain, not all, vector Ąelds on M g , one might argue why not using a different connection like a g-connection which is not directly related to ∇. Recall Ex. 2.5.4, we could also take ∇ bas , which is clearly different to ∇ γ as discussed there, even though ∇ γ contributes to its deĄnition. We will later see that ∇ bas does not necessarily have any notion of a parallel frame, even when it is assumed to be Ćat. 8 Actually, we are going to use the basic connection later, also for the inĄnitesimal gauge transformations. We will show that the gauge invariance of the Yang-Mills-Higgs Lagrangian can still be shown although we use ∇ bas , also in the context of the typical formulation of gauge theory. The advantage of the basic connection will be that it is always Ćat in the context of gauge theory, while ∇ γ might not be, which results into that we can generalize the well-known relation

δ ε , δ ′ ε = -δ [ε,ε ′ ] g ,
where the sign comes from our sign conventions deĄned earlier. We will see that a possible curvature of ∇ γ will not result into a generalization of that equation, if we deĄne the inĄnitesimal gauge transformations using ∇ γ . Moreover, we have seen in Ex. 2.5.4 that ∇ bas is a generalization of a Lie algebra representation; this will lead to that the basic connection supports the symmetries of gauge theories, leading to more convenient formulas of inĄnitesimal gauge transformations.

Last, the Lie algebra g is not only important from an algebraic point of view, but also in sense of a connection besides the Ąeld of gauge bosons A, playing the role of a Ťdirection of derivativeŤ similar to the tangent bundle when deĄning typical vector bundle connections. Thus, let us now introduce an object generalizing both aspects, aspects of Lie algebras and tangent bundles: Lie algebroids. Let E → N be a real vector bundle of Ąnite rank. Then E is a smooth Lie algebroid if there is a bundle map ρ : E → TN , called the anchor, and a Lie algebra structure on The two basic examples of Lie algebroids are the following.

General theory of Lie algebroids

Γ(E) with Lie bracket [•, •] E satisfying [µ, f ν] E = f [µ, ν] E + ℒ ρ(µ) (f ) ν (3.1) for all f ∈ C ∞ (N )
1. Each Ąnite dimensional real Lie algebra is a Lie algebroid over a point set ¶ * ♢ with zero anchor.

2. The tangent bundle TN of any manifold N where the anchor is the identity map and where the Lie bracket is the usual one of vector Ąelds.

As shown by the basic examples above, the idea behind Lie algebroids is that they are a simultaneous generalization of tangent bundles and Lie algebras, this allows a generalization of speciĄc terms of their calculus to Lie algebroids. We will also always view tangent bundles as Lie algebroids given by the structure presented in Ex. 3.1.4.

DeĄnition 3.1.5: Basic calculus on Lie algebroids E

Let E → N be a Lie algebroid and V → N a vector bundle, then we deĄne the following: 

ℒ µ (ν) := [µ, ν] E , ( 3.3) 
ℒ µ (f ) := ℒ ρ(µ) (f ) (3.4)
for all f ∈ C ∞ (N ) and µ, ν ∈ Γ(E). The Leibniz rule (3.1) then reads

ℒ µ (f ν) = f ℒ µ (ν) + ℒ µ (f ) ν (3.5)
for all f ∈ C ∞ (N ) and µ, ν ∈ Γ(E). We will use both notations, ℒ µ and ℒ ρ(µ) ; it is clear by context which is meant.

• E-forms, [2, §18.1; page 131] The antisymmetric parts of (0, s)-E-tensors deĄne the E-forms, i.e. Ω s (E) := Γ( s E * ) (s ∈ N 0 ). The previously deĄned Lie derivative can be extended to those forms (and general E-tensors) with the typical deĄnitions by imposing the Leibniz rule. As for typical forms, one can deĄne E-forms with values in V by Ω q (E; bc ∈ C ∞ (U ) instead of structure constants and a base of the Lie algebra is replaced by such a (local) frame on the vector bundle; recall the last section about classical gauge theory where we viewed the basis of the Lie algebra as a global constant frame.

V ) := Γ( s E * ⊗ V ). • E-differential, [2, §18.1, page 131] The E-differential is deĄned as d E : Ω • (E) → Ω •+1 (E) by (d E ω)(ν 0 , . . . , ν s ) := i (-1) i ℒ ν i (ω(ν 0 , . . . , ν i , . . . , ν s )) + i<j (-1) i+j ω [ν i , ν j ] E ,
• In the following we will argue that the anchor of a Lie algebroid is a homomorphism of Lie brackets (if viewed as a tensor acting on sections). With that one can then show d 2 E = 0 by precisely the same calculation as one does with respect to the de-Rham differential. As argued in [2, §18.1, page 131f.], there is a one-to-one correspondence between Lie algebroid structures and such differential operators squaring to zero and satisfying the graded Leibniz rule with respect to the wedge product. Moreover, there is also a correspondence to vector bundles admitting a cohomological vector Ąeld; but we wonŠt use these relationships which is why we are not going to state or explain these relationships explicitly.

In older works about Lie algebroids (also in [START_REF] Cannas | Geometric models for noncommutative algebras[END_REF]) one often sees that the deĄnition also contains the condition about that the induced map Γ(ρ) : Γ(E) → X(N ) (which we will still denote as ρ) is a homomorphism of Lie algebras w.r.t. [•, •] E and [•, •], the Lie bracket of vector Ąelds X(N ). But that is not needed, see e.g. [8, page 68]. To show this we want to introduce some measures for the homomorphism property and the Jacobi identity. Let us start with the former. Let E 1 , E 2 be two Lie algebroids over the same base manifold N . Then the curvature of a vector bundle morphism ξ :

E 1 → E 2 is a map R ξ : Γ(E 1 ) × Γ(E 1 ) → Γ(E 2 ) deĄned by R ξ (µ, ν) := [ξ(µ), ξ(ν)] E 2 -ξ [µ, ν] E 1  (3.7)
for all µ, ν ∈ Γ(E 1 ).

Remarks 3.1.8. R ξ is clearly anti-symmetric.
For an anchor ρ of a Lie algebroid we therefore expect R ρ = 0 in case it is a homomorphism of Lie brackets.

Later, in the sections about connections, we will see that it makes sense to call R ξ curvature, though one may already see why by its deĄnition. What we want to show is that R ρ = 0 for an anchor ρ of a Lie algebroid. Hence, let us Ąrst show that those curvature are tensors if ξ is an anchor preserving vector bundle morphism, which basically describes a morphism related to the structure given by the anchor: 

Let E i π i → N i (i ∈ ¶1, 2♢
) be two Lie algebroids over smooth manifolds N i . Then we say that a vector bundle morphism ξ :

E 1 → E 2 over a smooth map f : N 1 → N 2 a is anchor-preserving if it satisĄes Df • ρ E 1 = ρ E 2 • ξ. (3.8) a That means π2 • ξ = f • π1.
Remark 3.1.10: Notations and base-preserving morphisms

• As it is well-known, ξ does not necessarily induce a map Γ(E 1 ) → Γ(E 2 ) on sections, that depends on how f is structured. However, we have

π 2 ξ(ν) = f π 1 (ν) =1 N 1 = f for all ν ∈ Γ(E 1 ), such that ξ induces a tensor on Γ(E 1 ) → Γ(f * E 2 ) (the C ∞ (N 1
)linearity follows trivially); see e.g. [10, paragraph after Propositon 7.10], too. Recall, that we introduced that already for maps like Df at the end of the introduction, that is, Df ∈ Ω 1 (N 1 ; f * TN 2 ), which is also trivially an anchor-preserving vector bundle morphism over f . This is why we write equations like Eq. (3.8) often as

Df • ρ E 1 = (f * ρ E 2 ) • ξ (3.9)
when we view that condition as an equation for sections, in order to emphasize the relationship with the pullback; recall that

f * ρ E 2 : Γ(f * E 2 ) → Γ(f * TN 2 )
. However, sometimes we also omit the notation of that pullback in that case.

• If E 1 , E 2 are two Lie algebroids over the same base manifold N , then a vector bundle morphism ξ :

E 1 → E 2 is anchor-preserving if it satisĄes ρ E 1 = ρ E 2 • ξ. (3.10)
For this recall, that in this case we always mean base-preserving morphisms if not mentioning otherwise, that is, f = 1 N . The anchor is therefore a trivial example for an anchor-preserving morphism.

Remarks 3.1.11.

As in [3, DeĄnition 5.2.5; page 186] one may also call such anchor-preserving morphisms (E 1 -) connections; also here it will be clearer later why, but to avoid confusion with typical connections carrying a Leibniz rule (also called Koszul connection in [START_REF] Mackenzie | General Theory of Lie Groupoids and Algebroids[END_REF]), we will not denote those as such. This also shows that one could test the homomorphism property of anchors in just one frame around each point locally, because anchors are trivially anchor-preserving morphisms.

Proof of Lemma 3.1.12. R ξ is clearly antisymmetric and, thus, we only need to show the C ∞ (N )-linearity with respect to one argument. That is, applying the Leibniz rule on both summands,

R ρ (µ, f ν) = [ξ(µ), f ξ(ν)] E 2 -ξ [µ, f ν] E 1  = f R ξ (µ, ν) + ℒ (ρ E 2 •ξ)(µ) (f ) ℒ ρ E 1 (µ) (f ) ξ(ν) -ξ ℒ ρ E 1 (µ) (f ) ν  = f R ξ (µ, ν)
for all µ, ν ∈ Γ(E 1 ) and f ∈ C ∞ (N ). ■ Remarks 3.1.14.

By using what we discussed in Remark 3.1.10, one can deĄne a curvature also for vector bundle morphisms of Lie algebroids over different bases, and that notion should still be a tensor in case of anchor-preserving morphisms, too.

There is a certain relationship between the curvature of an anchor ρ using the Jacobiator which will help us to show that anchors are also Lie bracket homomorphisms. DeĄnition 3.1.15: Jacobiator, [10, Remark 6.12; page 35] Let W be a vector space, not necessarily Ąnite-dimensional, equipped with an antisymmetric bilinear bracket • J is a tensor, where J is the Jacobiator related to Γ(E) with bracket [•, •] E .

[•, •] W : W × W → W, (v, w) → [v, w] W . Then we deĄne the Jacobiator J : W × W × W → W by J(µ, ν, η) := [µ, [ν, η] W ] W + [ν, [η, µ] W ] W + [η, [µ, ν] W ] W (3.
• R ρ = 0.

Remark 3.1.18: Anchor is a Homomorphism

This implies that the anchor of a Lie algebroid is a homomorphism of Lie algebras because the deĄnition of Lie algebroids assumes the Jacobi identity on [•, •] E , so, J = 0, the zerotensor. Vice versa, when we know that R ρ = 0, then we only need to check the Jacobi identity in one frame around each point because J behaves like a tensor.

Proof of Prop. 3.1.17.

We have

J(µ, ν, f η) = [µ, [ν, f η] E ] E + [ν, [f η, µ] E ] E + [f η, [µ, ν] E ] E = µ, f [ν, η] E + ℒ ρ(ν) (f ) η E + ν, f [η, µ] E -ℒ ρ(µ) (f ) η E + f [η, [µ, ν] E ] E -ℒ ρ([µ,ν] E ) (f ) η = f ([µ, [ν, η] E ] E + [ν, [η, µ] E ] E + [η, [µ, ν] E ] E ) =J(µ,ν,η) + ℒ ρ(µ) (f ) [ν, η] E + ℒ ρ(ν) (f ) [η, µ] E -ℒ ρ(µ) (f ) [ν, η] E + ℒ ρ(ν) (f ) [µ, η] E + ℒ ρ(µ) ℒ ρ(ν) (f )  η -ℒ ρ(ν) ℒ ρ(µ) (f )  η -ℒ ρ([µ,ν] E ) (f ) η = f J(µ, ν, η) + ℒ ρ(µ) , ℒ ρ(ν) (f ) η -ℒ ρ([µ,ν] E ) (f ) η = f J(µ, ν, η) + ℒ [ρ(µ),ρ(ν)] (f ) η -ℒ ρ([µ,ν] E ) (f ) η = f J(µ, ν, η) -ℒ Rρ(µ,ν) (f ) η
for all µ, ν, η ∈ Γ(E) and f ∈ C ∞ (N ). Thus, we have

J(µ, ν, f η) = f J(µ, ν, f η) if and only if R ρ (µ, ν) = 0,
where we use that a vector Ąeld of N is zero when it always acts as zero derivation. The same argument holds for all arguments due to the antisymmetry of J. Hence, we get the desired equivalence of statements. ■

In 

: Γ(K) × Γ(K) → Γ(K), i.e. [•, •] g ∈ Γ 2 K * ⊗ K 
such that it restricts to a Lie algebra bracket on each Ąbre, and such that K admits an LAB atlas ¶ψ i : K♣ U i → U i × g♢ of LAB charts subordinate to some open covering (U i ) i of N , that is, an atlas such that each induced map ψ i,p : K p → g is a Lie algebra isomorphism, where p ∈ U i , K p the Ąber at p, ψ i,p := pr 2 • ψ i ♣ Kp and pr 2 is the projection onto the second factor.

We are going to discuss those later in more detail. For gauge theory the following example is of special importance, and this example emphasizes why we are interested into Lie algebroids. 

(ν a ) -ℒ γ(ν(p)) (µ a )
 p e a is clearly independent of the chosen global constant frame.

Observe also that we have

ρ(ν) = γ(ν), [µ, ν] E = [µ, ν] g
for all constant sections µ, ν ∈ Γ(E). We can trivially view constant sections of E as elements of g as we did in Chapter 2; doing so implies that action Lie algebroids encode the Lie algebra and its action. 

ρ(ν) = γ(ν), (3.14) [µ, ν] E = [µ, ν] g (3.15)
for all constant sections µ, ν ∈ Γ(E).

Remarks 3.1.24.

The statement about uniqueness is equivalent to say that the action Lie algebroid is the unique Lie algebroid structure on E = N × g such that the map h, deĄned by 2 where we mean with h(X) = X that h(X) is X as constant section in E. That emphasizes why we are interested into Lie algebroids when we want to generalize gauge theory. Together with the uniqueness this also implies that action Lie algebroids are the unique Lie algebroid structure related to classical gauge theory; which is why we want to use those later to recover the classical theory. 

g → Γ(E), X → h(X) = X, is a Lie algebra homomorphism with ρ • h = γ,

Proof of

R ρ (e a , e b )♣ p = [ρ(e a ), ρ(e b ) const. = γ(e b ♣p)=γ(e b ) ]♣ p -ρ p [e a , e b ] E ♣ p  const. = [γ(e a ), γ(e b )]♣ p -γ [e a , e b ] g  p = 0,
where we used that γ is a homomorphism for the last equality. Thence, ρ is a homomorphism.

Then by using Prop. Therefore we can conclude that this deĄnes a Lie algebroid. Uniqueness comes by construction because constant sections describe a global frame and since we require that the anchor is a bundle morphism, and that the Lie bracket on Γ(E) needs to satisfy the Leibniz rule; in other words the deĄnition of the action Lie algebroid comes precisely from the motivation to impose those conditions. That is, assume that we have another bundle map ρ ′ : E → TN with

ρ ′ (ν) = γ(ν) = ρ(ν)
for all constant sections ν ∈ Γ(E). Then for all sections η = η a e a ∈ Γ(E) we have 2 Observe the similarity to the deĄnition of anchor-preserving morphisms.

ρ ′ (η) = η a ρ ′ (e a ) = η a ρ(e a ) = ρ(η),
hence, ρ ′ = ρ follows trivially, and, so, we can assume the same anchor for any other Lie algebroid structure. For the Lie bracket assume that there is another Lie bracket

[•, •] ′ E on Γ(E), satisfying the Leibniz rule with respect to ρ ′ = ρ, with [µ, ν] ′ E = [µ, ν] g = [µ, ν] E
for all constant sections µ, ν. Therefore we can show for all sections η = η a e a , ξ 

= ξ b e b ∈ Γ(E) that [η, ξ] ′ E = η a ξ b [e a , e b ] ′ E =[ea,e b ] E + ℒ ρ(η) (ξ a ) -ℒ ρ(ξ) (η a )  e a = [η, ξ] E for all p ∈ N ,
E := R 3 × R 3 → R 3 ; e x ,
e y , e z are the standard unit vectors (which we will also denote by e 1 , e 2 , e 3 , corresponding to x 1 = x, x 2 = y, x 3 = z), the anchor is given by ρ(e j ) = -ϵ jkl x k ∂/∂x l , where ϵ jkl is the Levi-Civita tensor. The Lie bracket is given by the cross product w.r.t. (e i ) i , i.e. [e i , e j ] E := e i × e j . That this is an action Lie algebroid simply follows by that its Lie algebra action is induced by the Lie algebra representation introduced in Ex. 2.1.9.

Example 3.1.26: Electroweak interaction coupled to a Higgs Ąeld, recall Ex. 2.1.10 and its references

The action Lie algebroid corresponding to the electroweak interaction coupled to a Higgs Ąeld is deĄned as action Lie algebroid for g

:= su(2) × u(1) over N := C 2 ( ∼ = R 4
). Let i be the imaginary number, g w and g ′ be positive real numbers (the coupling constants), n γ be a non-zero natural number (a normalization constant) and

β l := g w iσ l 2 ∈ su(2), l ∈ ¶1, 2, 3♢ , 
β 4 := g ′ i 2n γ ∈ u(1),
where the σ l are the Pauli matrices

σ 1 := 0 1 1 0 , σ 2 := 0 -i i 0 , σ 3 := 1 0 0 -1 . Writing C 2 ∋ ω := ω 1 ω 2 = x 1 + ix 2 x 3 + ix 4 ∼ =        x 1 x 2 x 3 x 4       
and denoting the coordinate vector Ąelds for the x i i by ∂ i , the Lie algebra action γ is then deĄned by

γ(β 1 ) ω := g w 2 x 4 ∂ 1 -x 3 ∂ 2 + x 2 ∂ 3 -x 1 ∂ 4  ω , γ(β 2 ) ω := g w 2 -x 3 ∂ 1 -x 4 ∂ 2 + x 1 ∂ 3 + x 2 ∂ 4  ω , γ(β 3 ) ω := g w 2 x 2 ∂ 1 -x 1 ∂ 2 -x 4 ∂ 3 + x 3 ∂ 4  ω , γ(β 4 ) ω := g ′ 2 x 1 ∂ 1 + x 2 ∂ 2 + x 3 ∂ 3 + x 4 ∂ 4  ω ,
which is induced by the Lie algebra representation introduced in Ex. 2.1.10, hence, it deĄnes an action Lie algebroid.

Let us conclude this section by revisiting the isotropy introduced in Section 2.2. In order to do so it is useful to start with action Lie algebroids E = N × g → N related to a Lie algebra g action γ on a smooth manifold N . By Def. 2.2.1 the isotropy at p ∈ N is given by the kernel of γ with point evaluation at p. However, as we have seen, this is precisely the kernel of the anchor then at point p. Hence, we can immediately generalize the deĄnition of isotropies. Let E → N be a Lie algebroid over a smooth manifold N . Then the isotropy of E is deĄned as the kernel of the anchor ρ, Ker(ρ).

Recall the discussion after Cor. 2.2.3, the isotropy at a point is in general not an ideal of g, however, the isotropy as a kernel of the anchor is an ideal of E in the sense of

ρ ad(ν) = ρ([ν, •] E ) = 0
for all ν ∈ Γ(E) with ρ(ν) = 0, using that ρ is a homomorphism of Lie brackets; one can generalize this of course to open subsets of N . The Leibniz rule in [•, •] E is basically canceling the failure of being an ideal as it happened in the discussion after Cor. 2.2.3. Also observe that

[ν, f µ] E ♣ p = f (p) [ν, µ] E ♣ p + ℒ ρ(ν)p (f ) =0 µ p
for all f ∈ C ∞ (N ) and ν, µ ∈ Γ(E) such that ρ(ν) p = 0 at a Ąxed point p ∈ N . Hence, the Lie bracket becomes tensorial if restricted onto sections with values in the isotropy (at a point), therefore it is then a typical Lie bracket and it restricts onto each Ąbre such that Ker(ρ p ) is a Lie algebra at each point p ∈ N , as also argued in [2, §16.1, comment after the remark on page 113]. However, the dimension of the isotropy is in general not constant which is why the isotropy is in general not a bundle of Lie algebras; simply take an action Lie algebroid as in Ex. 3.1.26, especially the action is induced by a Lie algebra representation on a vector space N = W . The isotropy at 0 ∈ W is then always the full Lie algebra while aside that this is in general of course not the case; we called this symmetry breaking, recall the discussion after Def. 2.3.9.

If the anchor is always zero, then the rank of the isotropy is constant and equals the ranks of E. Hence, a Lie algebroid with zero anchor is a bundle of Lie algebras, as also argued in [2, second example in §16.2; page 114].

In general, the anchor gives rise to a singular foliation on N due to that it is a homomorphism of Lie brackets; we will discuss this later. Let us Ąrst turn very shortly to morphisms and then to Lie algebroid connections.

Morphism of Lie algebroids

It is of course a natural question what a morphism of Lie algebroids is; we will only need the easier deĄnition of morphisms for Lie algebroids over the same base, which is straightforward to formulate. 

Let E 1 , ρ E 1 , [•, •] E 1  and E 2 , ρ E 2 , [•, •] E 2 
be two Lie algebroids over the same base manifold N . Then a morphism of Lie algebroids ϕ : E 1 → E 2 over N , or a basepreserving morphism of Lie algebroids, is a vector bundle morphism with

ρ E 2 • ϕ = ρ E 1 , ϕ [µ, ν] E 1  = [ϕ(µ), ϕ(ν)] E 2 for all µ, ν ∈ Γ(E 1 ).
When ϕ is additionally an isomorphism of vector bundles then we call it an isomorphism of Lie algebroids over N , or a base-preserving isomorphism of Lie algebroids. Remarks 3.2.2. For a Lie algebroid E → N over a smooth manifold N its anchor ρ is therefore also a Lie algebroid morphism E → TN ; recall Remark 3.1.18.

The Ąrst condition is actually the same as for anchor-preservation for morphisms over the same base; recall the second point in Remark 3.1.10.

There is also a deĄnition of morphisms for Lie algebroids over different bases, but we will not need it which is why we are going to omit its deĄnition; see e.g. [10, §7].

We want to introduce connections as anchor-preserving morphisms; Ćatness is then equivalent to say that connections are morphisms of Lie algebroids. In order to deĄne connections like that we need to introduce the derivations on vector bundles.

Derivations on vector bundles V

In Chapter 2 we deĄned Lie algebra connections to deĄne inĄnitesimal gauge transformations. Let us now start to reintroduce that concept for Lie algebroids, going towards Lie algebroid connections, generalizing typical vector bundle connections.

Moreover, we want to view connections slightly different, as a certain morphism of Lie algebroids. Before we can do this we need to introduce the Lie algebroid of derivations now, which have a relationship to certain vector Ąelds known as linear vector Ąelds on a vector bundle. The following constructions are motivated by [ Let V → N be a vector bundle over a smooth manifold N and p ∈ N ; the Ąbre of V at p we denote with V p . Then a derivation on V at p is an R-linear map L : Γ(V ) → V p for which there exists a tangent vector a p (L) ∈ T p N such that

L(f v) = f (p) L(v) + ℒ ap(L) (f ) v p (3.16)
for all f ∈ C ∞ (N ) and v ∈ Γ(V ). We say that L lifts a p (L). We deĄne the space of all derivations on V at p by

𝒟 p (V ) := ¶L : Γ(V ) → V p ♣ L a derivation on V at p♢ . (3.17) Remarks 3.3.2.
It is clear that 𝒟 p (V ) is a vector space, where the zero element is just the zero map with a p (0) = 0, and all L ∈ 𝒟 p (V ) can be restricted to open subsets U around p with the typical arguments.

Our aim is to show that the disjoint union 𝒟(V ) of 𝒟 p (V ) admits a vector bundle structure and even forms a Lie algebroid. Its sections have then the following form, formally already denoted by Γ(𝒟(V )).

DeĄnition 3.3.3: Derivations on a vector bundle V , [3, Example 3.3.4; page 102f.]

Let V → N be a vector bundle over a smooth manifold N . Then a derivation on V is an R-linear map 𝒯 : Γ(V ) → Γ(V ) such that there is a smooth vector Ąeld a(𝒯) ∈ X(N ) with

𝒯(f v) = f 𝒯(v) + ℒ a(𝒯) (f ) v (3.18)
for all f ∈ C ∞ (N ) and v ∈ Γ(V ). We say that 𝒯 lifts a(𝒯).

We deĄne the space of all derivations on V by

Γ(𝒟(V )) := ¶𝒯 : Γ(V ) → Γ(V ) ♣ 𝒯 a derivation on V ♢ . (3.19) Remarks 3.3.4. It is clear that ℰ𝓃𝒹(V ) ⊂ Γ(𝒟(V )) with a(A) ≡ 0 for all A ∈ ℰ𝓃𝒹(V ), and that Γ(𝒟(V )) is a C ∞ (N )-module.
The following result can be seen as a generalization of the section around Remark 2.1.18.

Proposition 3.3.5: Isomorphisms of the space of derivations of V at p, [6, Example 3.10]

Let V → N be a real vector bundle with non-zero Ąnite rank and p ∈ N whose Ąber we denote with V p . Then each vector bundle connection ∇ on V induces a vector space isomorphism

𝒟 p (V ) ∼ = T p N ⊕ End(V p ) (3.20)
Under such isomorphisms a p : 𝒟 p (V ) → T p N , L → a p (L) is the projection onto the Ąrst factor.

Remarks 3.3.6.

The last statement shows why we say that a p (L) is lifted by L ∈ 𝒟 p (V ).

Proof.

DeĄne T : T p N ⊕ End(V p ) → 𝒟 p (V ) by (X, A) → T (X, A), (T (X, A))(v) := T (X, A)(v) := ∇ X v♣ p + A(v p ) (3.21)
for all v ∈ Γ(V ). T is clearly bilinear, and T (X, A) clearly deĄnes a derivation at p. For injectivity, observe

∇ X = -A,
for all (X, A) in the kernel of T , which is clearly a contradiction to the Leibniz rule in ∇ X when X ̸ = 0 due to the fact that V has a non-zero rank. Thus, for such (X, A), X = 0 and then clearly also A = 0; so, injectivity is given.

For surjectivity observe for all L ∈ 𝒟 p (V ),

L(v) = ∇ ap(L) v p + L(v) -∇ ap(L) v p hence, use X := a p (L) ∈ T p N and deĄne A := L -∇ ap(L) , which is clearly an element of End(V p ). Hence, T is surjective, too.
That a p is under such an isomorphism the projection onto the Ąrst factor is clear by construction.

■

Trivially extending that isomorphism to all p ∈ N , leads to a canonical vector bundle structure inherited by the Whitney sum TN ⊕ End(V ). Let V → N be a real vector bundle with non-zero rank. Then there is a unique vector bundle structure on 𝒟(V

) := p∈N 𝒟 p (V ) such that Γ(𝒟(V )) of Def. 3.3.
3 is its space of smooth sections, where is the disjoint union of sets. Moreover, each connection ∇ on V deĄnes a vector bundle isomorphism

𝒟(V ) ∼ = TN ⊕ End(V ), (3.22) 
where TN ⊕ End(V ) is the Whitney sum of vector bundles.

Proof. This follows by Prop. 3.3.5: Given a connection ∇, we can deĄne an isomorphism T :

X(N ) ⊕ ℰ𝓃𝒹(V ) → Γ(𝒟(V )) of C ∞ (N )-modules T (X, A) := ∇ X + A (3.23) for all (X, A) ∈ X(N ) ⊕ ℰ𝓃𝒹(V )
. This shows that Γ(𝒟(V )) is a locally free sheaf of modules of constant rank, and it restricts to 𝒟 p (V ) at p ∈ N because T restricts to the isomorphism of Prop. 3.3.5. Then we make use of the 1:1 correspondence of vector bundles and locally free sheaf of modules of constant rank (over a sheaf of rings coming from a ringed space), which implies a unique vector bundle structure on 𝒟(V ) := p∈N 𝒟 p (V ) such that Γ(𝒟(V )) is its space of smooth sections. Since T is clearly C ∞ (N )-linear, we also have an isomorphism of vector bundles 𝒟(V ) ∼ = TN ⊕ End(V ) by T . ■

This leads to the following deĄnitions.

DeĄnition 3.3.8: The bundle of derivations, [3, variation of Example 3.3.4, page 102f.]

Let V → N be a real vector bundle with Ąnite rank. Then we deĄne the bundle of derivations on V as the vector bundle 𝒟(V ) equipped with the vector bundle structure of Lemma 3.3.7, assuming that the rank of V is non-zero; if the rank is zero, then we deĄne 𝒟(V ) := N × ¶0♢. Let V → N be a real vector bundle. 𝒟(V ) together with a deĄned by

𝒟(V ) → TN, (3.24) 𝒟 p (V ) ∋ D → a(D) := a p (D), (3.25 
) 

and [•, •] 𝒟(V ) , deĄned by Γ(𝒟(V )) × Γ(𝒟(V )) → Γ(𝒟(V )), (3.26) 
(𝒯 1 , 𝒯 2 ) → [𝒯 1 , 𝒯 2 ] 𝒟(V ) := 𝒯 1 • 𝒯 2 -𝒯 2 • 𝒯 1 , ( 3 

Proof.

For p ∈ N and for all f

∈ C ∞ (N ), v ∈ Γ(V ), α, β ∈ R and D 1 , D 2 ∈ 𝒟 p (V ) we have (αD 1 + βD 2 )(f v) = f (p) (αD 1 + βD 2 )(v) + ℒ ap(αD 1 +βD 2 ) (f ) v p and (αD 1 + βD 2 )(f v) = αD 1 (f v) + βD 2 (f v) = f (p) (αD 1 + βD 2 )(v) + αℒ ap(D 1 ) (f ) + βℒ ap(D 2 ) (f )  v p = f (p) (αD 1 + βD 2 )(v) + ℒ αap(D 1 )+βap(D 2 ) (f ) v p
and, hence,

ℒ αap(D 1 )+βap(D 2 ) (f ) v p = ℒ ap(αD 1 +βD 2 ) (f ) v p .
For a non-zero rank we can therefore conclude

αa p (D 1 ) + βa p (D 2 ) = a p (αD 1 + βD 2 ).
That means that a extends on sections, which gives the a given in Def. gives a derivation of V at p lifting the tangent vector a(𝒯)♣ p which we therefore identify as a p (𝒯 p )). While all of that is trivial for zero rank since then a ≡ 0.

That [•, •] 𝒟(V )
is a Lie bracket is clear since it is just the typical commutator of linear operators on a (inĄnite-dimensional) vector space. Thence, the only thing left is to show the Leibniz rule, which simply follows by

[𝒯 1 , f 𝒯 2 ] 𝒟(V ) (v) = 𝒯 1 (f 𝒯 2 (v)) -f 𝒯 2 (𝒯 1 (v)) Eq. (3.18) = f [𝒯 1 , 𝒯 2 ] 𝒟(V ) (v) + ℒ a(𝒯 1 ) (f ) 𝒯 2 (v) for all f ∈ C ∞ (N ), v ∈ Γ(V ). ■
As usual for differential operators, we will identify those derivations as certain vector Ąelds, following [9, beginning of §2; Γ(𝒟(V )) is there denoted as 𝒶𝓊𝓉(E)] and [3, §3.4 et seq.; page 110ff.]. For the following recall that for each vector bundle V π → N there is also a vector bundle structure for TV Dπ → TN , and the following diagram describes a double vector bundle

TV TN V N Dπ π TV π TN π
that is, each horizontal and vertical line is a vector bundle, and the horizontal and vertical scalar multiplications on TV commute, see e.g. [11, §3ff.]. Let us shortly recap the vector bundle structure of TV Dπ → TN , following [3, discussion at the beginning of §3.4; page 110ff.]: The linear structure at v ∈ T p N (p ∈ N ) is basically given by the vertical structure of V prolonged along the Ąbre V p , but as an affine space whose offset is given by v. That is, let ξ, η ∈ TV with

D π TV (ξ) π(ξ) = D π TV (η) π(η) =: v, and, hence, due to π TN (v) = p, p = (π • π TV )(ξ) = (π • π TV )(η).
Thus, one can take curves f, h :

I → V (I ∈ R an open interval around 0) with f (0) = π TV (ξ), d dt t=0 f = ξ, h(0) = π TV (η), d dt t=0 h = η, such that π • f = π • h,
because the condition on ξ and η imply on the base paths π

• f, π • h : I → N that (π • f )(0) = p = (π • h)(0), d dt t=0 π • f = D π TV (ξ) (ξ) = D π TV (η) (η) = d dt t=0 π • h .
Then the addition and scalar multiplication with λ ∈ R for TV Dπ → TN is deĄned by

ξ η := d dt t=0 (f + h), λ • ξ := d dt t=0 (λh),
where the addition of curves is well-deĄned because of π

• f = π • h which implies π(f + h) = π(f ) = π(h)
; so, one can take the sum of the curves and

Dπ(ξ η) = d dt t=0 π(f + h) =π(f ) = Dπ(ξ) = v.
In other words, those operations come from interpreting tangent vectors as equivalence classes of curves, assuming there are representatives of the classes sharing the same base path (π•f = π•h) with which one can do those operations. It is trivial to show that we have a double vector bundle. The operations of the linear structure in TV π TV → V is still denoted in the same manner as usual, and by deĄnition one also gets

π TV (ξ η) = π TV (ξ) + π TV (η), π TV (λ • ξ) = λ π TV (ξ).

DeĄnition 3.3.11: Linear vector Ąelds, [3, DeĄnition 3.4.1; page 113]

Let V π → N be a vector bundle over a smooth manifold N . Then a linear vector Ąeld on V is a vector Ąeld ξ ∈ X(V ) which is also a vector bundle morphism V → TV over a vector Ąeld X ∈ X(N ), i.e. on one hand the following diagram commutes

V TV N TN ξ π Dπ X that is Dπ • ξ = X • π = π * X, (3.28)
and on the other hand we have additionally

ξ αx+βy = α • ξ x β • ξ y (3.29)
for all x, y ∈ V with π(x) = π(y) and α, β ∈ R.

We say that ξ lifts X.

Remark 3.3.12: Coordinates on TV As usual, vector Ąelds are locally determined by their action on coordinate functions, that is, denote with x i coordinates on N , then coordinates on V are given by π * x i and y j , where the latter are the Ąbre coordinates, given by a local trivialization, especially y j are (local) smooth and Ąbre-linear functions on V , elements of Γ(V * ), whose set we denote by C ∞ lin (V ) := Γ(V * ) as in [START_REF] Mackenzie | General Theory of Lie Groupoids and Algebroids[END_REF]. That means that (linear) vector Ąelds on V are uniquely given by their action on π * C ∞ (N ) and C ∞ lin (V ) := Γ(V * ), we will emphasize this in the following proposition.

The following proposition shows the idea behind the linear vector Ąelds. Let V π → N be a vector bundle over a smooth manifold N , and ξ ∈ X(V ). Then ξ is a linear vector Ąeld on V if and only if

ξ(π * C ∞ (N )) ⊂ π * C ∞ (N ) and ξ(C ∞ lin (V )) ⊂ C ∞ lin (V ).
Proof.

• We prove that by Ąrst showing that Eq. (3.28

) is equivalent to ξ(π * C ∞ (N )) ⊂ π * C ∞ (N ) for ξ ∈ X(V ). Let f ∈ C ∞ (N ), then ξ(π * f ) = d(π * f )(ξ) = (π * df ) Dπ(ξ) . If Dπ(ξ) = π * X for an X ∈ X(N ), then clearly ξ(π * f ) = π * (df (X)) ∈ π * (C ∞ (N )).
Therefore let us now show the other direction. We know that Dπ(ξ) ∈ Γ(π * TN ). Let ∂ i = ∂/∂x i i local coordinate vector Ąelds on N , then we can write

Dπ(ξ) = dπ i (ξ) π * ∂ i ,
and, so, we get the well-known formula for f

= x j ξ π * x j  = dπ i (ξ) π * ∂ i x j  = dπ j (ξ).
Hence, when there is for all

f an h f ∈ C ∞ (N ) with ξ(π * f ) = π * h f , 3 then Dπ(ξ) = dπ i (ξ) =ξ(π * x i ) π * ∂ i = π * i h x i ∂ i .
Since the coordinates x j were arbitrary, we can conclude that there is a vector Ąeld X ∈ X(N ) such that Dπ(ξ) = π * X; that is, deĄne X := i h x i ∂ i , and then show it is independent of coordinates, that is, take another coordinate system (

∂ ′ α = ∂/∂z α ) α of N . Then denote with M the (local) invertible Jacobian with ∂ ′ α = M i α ∂ i .
Since terms like ξ π * x i describe the components of ξ along the coordinates π * x i , we can immediately conclude

π * h z α = ξ(π * z α ) = π * M -1  α i  ξ π * x i  = π * M -1  α i h x i  . Therefore α h z α ∂ ′ α = i h x i ∂ i , thence, X is well-deĄned. Thus, Eq. (3.28) is equivalent to ξ(π * C ∞ (N )) ⊂ π * C ∞ (N ). • Now let ξ ∈ X(V ) satisfying Eq. (3.28) and lifting a vector Ąeld X ∈ X(N ), x, y ∈ V with π(x) = π(y) (such that D x π(ξ x ) = D y π(ξ y ) by Eq. (3.28)), and let f x , f y : I → V, (I ⊂ R an open interval around 0) be curves with f x (0) = x, f y (0) = y, π(f x ) = π(f y ) and d dt t=0 f x = ξ x , d dt t=0 f y = ξ y , then observe for all λ ∈ C ∞ lin (V ) that (α • ξ x β • ξ y )(λ) =  d dt t=0 (αf x + βf y )  (λ) = d dt t=0 λ • (αf x + βf y ) λ linear = α(λ•fx)+β(λ•fy) = α ξ x (λ) + β ξ y (λ)
for all α, β ∈ R.

If ξ satisĄes Eq. (3.29), then by those results

ξ αx+βy (λ) = α ξ x (λ) + β ξ y (λ), therefore ξ(λ) ∈ C ∞ lin (V )
and the proof is Ąnished (due to the previous bullet point). If, on the other hand, ξ(λ) ∈ C ∞ lin (V ), then also

ξ αx+βy (λ) = α ξ x (λ) + β ξ y (λ) = (α • ξ x β • ξ y )(λ). For an h ∈ C ∞ (N ) observe (α • ξ x β • ξ y )(π * h) =  d dt t=0 (αf x + βf y )  (π * h) = d dt t=0 h • π • (αf x + βf y ) =π•fx = d p h (D x π(ξ x )) Eq. (3.28) = D αx+βy π(ξ αx+βy ) = ξ αx+βy (π * h).
This proves the claim by Remark 3.3.12; that is, Ąx additionally to the coordinates π * x i Ąbre coordinates y j ∈ C ∞ lin (V ), then express ξ in those coordinates by

ξ αx+βy = ξ αx+βy π * x i  π *  ∂ ∂x i  αx+βy + ξ αx+βy y j  ∂ ∂y j αx+βy = (α • ξ x β • ξ y ) π * x i  π *  ∂ ∂x i  αx+βy + (α • ξ x β • ξ y ) y j  ∂ ∂y j αx+βy = α • ξ x β • ξ y .

■

As vector Ąelds the linear vector Ąelds carry a natural Lie algebroid structure when they are a closed algebra, and this is trivial to check. Let V π → N be a vector bundle over a smooth manifold N , and ξ, ς ∈ X(V ) linear vector Ąelds on

V lifting vector Ąelds X, Y ∈ X(N ), respectively. Then [ξ, ς] is a linear vector Ąeld lifting [X, Y ].
Proof. That [ξ, ς] is a linear vector Ąeld trivially follows by Prop. 3.3.13, that is, compositions of linear vector Ąelds like ξ • ς are clearly also lineary vector Ąelds by Prop. 3.3.13, thus, also

[ξ, ς] = ξ • ς -ς • ξ. We also have Dπ(ξ) = π * X and Dπ(ς) = π * Y . That immediately implies Dπ([ξ, ς]) = π * ([X, Y ]),
which is a well-known fact, as also given in [4, Proposition A.1.49; page 615].

In case this is unknown for the reader: It can be quickly shown by Ąrst observing that

ℒ ξ (π * f ) = ℒ ξ (f • π) = π * (df (Dπ(ξ))) = π * (ℒ X (f ))
for all f ∈ C ∞ (N ), as also given in [4, Lemma A.1.48; page 615]; basically the same as for pullback connections. By deĄnition we also clearly have Dπ(ξ

)(f ) = ℒ ξ (π * f ). Therefore altogether π * ((ℒ X • ℒ Y )(f )) = ℒ ξ (π * (ℒ Y (f ))) = (ℒ ξ • ℒ ς )(π * f ), thus, π * ([X, Y ](f )) = π * (ℒ X • ℒ Y -ℒ Y • ℒ X )(f ) = ℒ [ξ,ς] (π * f ) = Dπ [ξ, ς] (f ),
which Ąnishes the proof. ■

Finally we can relate it to the derivations of V , denoting the Lie algebra of linear vector Ąelds by 𝒶𝓊𝓉(V ); the notation comes from that one can motivate that linear vector Ąelds are the Lie algebra of 𝒜𝓊𝓉(V ), but we are neither going to prove nor use this, see e.g. the beginning of [START_REF] Bursztyn | Splitting theorems for Poisson and related structures[END_REF] for a short motivation. 

𝒶𝓊𝓉(V ) → Γ(𝒟(V )), ξ → D ξ , (3.30)
where

D ξ ∈ Γ(𝒟(V )) is given by λ(D ξ v) := X λ(v) -ξ v (λ) (3.31) for all v ∈ Γ(V ) and λ ∈ Γ(V * ) = C ∞ lin (V )
, and where X ∈ X(N ) is the vector Ąeld lifted by ξ.

Then D is a bracket-preserving isomorphism of C ∞ (N )-modules. Remarks 3.3.16. Let us show that D is well-deĄned. Observe λ D ξ (αv + βw) = X λ(αv + βw) -ξ αv+βw (λ) = α X λ(v) -ξ v (λ)  + β X λ(w) -ξ w (λ)  = α λ(D ξ v) + β λ(D ξ w) = λ(αD ξ v + βD ξ w) for all v, w ∈ Γ(V ), λ ∈ Γ(V * ), ξ ∈ 𝒶𝓊𝓉(V ) (lifting X ∈ X(N )) and α, β ∈ R, using π(v) = 1 N = π(w) and Prop. 3.3.13, that is, ξ(λ) is linear. Similarly one shows for all f ∈ C ∞ (N ) that λ(D ξ (f v)) = X λ(f v) =f λ(v) -ξ f v (λ) = f X λ(v) -ξ v (λ) + ℒ X (f ) λ(v) = f λ(D ξ v) + ℒ X (f ) λ(v) = λ(f D ξ v + ℒ X (f ) v). Hence, D ξ ∈ Γ(𝒟(V )).
Very short sketch for the proof of Thm. 3.3.15. We are not going to show this because we will not need this statement, please see the reference; the proof is relatively straightforward, but using several tricks. One Ąrst shows that 𝒶𝓊𝓉(V ) are sections of a certain Lie algebroid isomorphic to 𝒟(V * ) such that one essentially needs to show that 𝒟(V ) ∼ = 𝒟(V * ). For all L ∈ Γ(𝒟(V )) one can deĄne a T ∈ Γ(𝒟(V * )) as usual by forcing the Leibniz rule as in

T (λ) (v) := a(L) λ(v) -λ L(v)
for all λ ∈ Γ(V * ) and v ∈ Γ(V ). This deĄnes also an isomorphism of Lie algebroids 𝒟(V ) ∼ = 𝒟(V * ); see more in [3, discussion after Corollary 3.4.3; page 114ff.]. ■

Lie algebroid connections

In the following we will introduce the notion of E-connections, following partially [6, §2]. See also [7, §2.5] e.g. for a discussion about an E-Levi-Civita connection and other similar terms similar to Riemannian geometry. However, we want to introduce connections using the previous section, as in [START_REF] Mackenzie | General Theory of Lie Groupoids and Algebroids[END_REF]. Let E → N be a Lie algebroid over a smooth manifold N and V → N be a vector bundle over N .

1. An E-connection on the vector bundle V is a base-and anchor-preserving vector bundle morphism

E ∇ : E → 𝒟(V ), ν → E ∇ ν . 2. The E-curvature RE ∇ of E ∇ is deĄned as in Def. 3.1.7 by RE ∇ (µ, ν) := E ∇ µ , E ∇ ν 𝒟(V ) -E ∇ [µ,ν] E (3.32) for all µ, ν ∈ Γ(E). E ∇ is called Ćat if its curvature vanishes.
3. In the special case of V = E we can deĄne also the E-torsion tE ∇ as an element of

𝒯 1 2 (E) given by tE ∇ (µ, ν) := E ∇ µ ν -E ∇ ν µ -[µ, ν] E (3.33)
for all µ, ν ∈ Γ(E).

Remarks 3.4.2.

• The base-and anchor-preservation in the deĄnition of an E-connection especially means

a • E ∇ = ρ, so, for all µ ∈ E we have that E ∇ µ is R-linear and E ∇ µ (f v) = f E ∇ µ v + ℒ ρ(µ) (f ) v, for all f ∈ C ∞ (N ) and v ∈ Γ(V ).
That it is a base-preserving vector bundle morphism, implies that one can extend E ∇ to sections, giving rise to an R-linear map Γ(E) → Γ 𝒟(V ) , with

E ∇ f ν (v) = f E ∇ ν v for all ν ∈ Γ(E), f ∈ C ∞ (N ) and v ∈ Γ(V )
. This is precisely the typical deĄnition of a connection, besides that the Leibniz rule is along a more general anchor. In the case of E = TN , especially ρ E = 1 TN , we have a typical vector bundle connection, and it is trivial to see that both deĄnitions are equivalent in that situation.

• As noted at the end of the introduction, when write ŤconnectionŤ or Ťvector bundle con-nectionŤ, then we always mean typical TN -connections.

• This clearly generalizes the concept of Lie algebra connections as in Def. 2.5.1, for example look at an action Lie algebroid, but now with the tensorial behaviour again due to the bundle structure.

• As for vector bundle connections, one can view the curvature as a map

RE ∇ : Γ(E) × Γ(E) × Γ(V ) → Γ(V ), (µ, ν, v) → RE ∇ (µ, ν)v = E ∇ µ E ∇ ν v -E ∇ ν E ∇ µ v -E ∇ [µ,ν] E v.
In Lemma 3.1.12 we have that it is tensorial the Ąrst two arguments. For the third it is as for vector bundle connections,

RE ∇ (µ, ν)(f v) = f RE ∇ (µ, ν)v + ℒ ρ(µ) ℒ ρ(ν) (f )  -ℒ ρ(ν) ℒ ρ(µ) (f )  -ℒ [ρ(µ),ρ(ν)] E (f )  =0 v = f RE ∇ (µ, ν)v for all f ∈ C ∞ (N ), µ, ν ∈ Γ(E) and v ∈ Γ(V )
, using that ρ is a homomorphism of Lie brackets.

To summarize, a • RE ∇ = 0, and RE ∇ can be viewed as an element of 𝒯 1 3 (E). • As in the situation of vector bundle connections it is trivial and straightforward to check that tE ∇ is an anti-symmetric tensor because of the fact the Leibniz rules in the connections and the Lie bracket cancel each other.

In Ex. 2.5.3 we had a canonical Lie algebra connection, induced by a Lie algebra action and vector bundle connection. We can generalize this connection.

Example 3.4.3: Canonically induced E-connection, [7, Ąrst example in Example 2.8]

Let E → N be a Lie algebroid over a smooth manifold N and V → N be a vector bundle over N , equipped with a vector bundle connection ∇. Then deĄne E ∇ on V by

E ∇ µ := ∇ ρ(µ) (3.34)
for all µ ∈ Γ(E). This is a canonical example of an E-connection which we will denote as ∇ ρ .

As for vector bundle connections, we can extend a given E-connection to 𝒯 r s (V ) (r, s ∈ N 0 ).

Example 3.4.4: Dual Lie algebroid connections, very typical construction forcing the Leibniz rule as in [4, Definition 2.1.36, but using connections; page 96]

Let E → N be a Lie algebroid over a smooth manifold N and V → N be a vector bundle over N , equipped with an E-connection E ∇. Then we deĄne its dual E-connection on V * , still denoted as E ∇, by

E ∇ ν ω  (v) := ℒ ν ω(v) -ω E ∇ ν v  (3.35) for all ν ∈ Γ(E), ω ∈ Γ(V * ) and v ∈ Γ(V ). It is trivial to prove that E ∇ ν ω ∈ Γ(V * ) and
that this E ∇ is an E-connection on V * . Similarly, as for vector bundle connections, one extends E ∇ to 𝒯 r s (V ) for all r, s ∈ N 0 , always denoted by E ∇.

Flatness just means trivially the following by deĄnition. Let E → N be a Lie algebroid over a smooth manifold N and V → N a vector bundle.

Then an 

E-connection E ∇ : E → 𝒟(V ) on V is Ćat if
RE ∇ (µ, ν)η + RE ∇ (ν, η)µ + RE ∇ (η, µ)ν = tE ∇ (tE ∇ (µ, ν), η) + tE ∇ (tE ∇ (ν, η), µ) + tE ∇ (tE ∇ (η, µ), ν) + E ∇ µ tE ∇  (ν, η) + E ∇ ν tE ∇  (η, µ) + E ∇ η tE ∇  (µ, ν), (3.36) 
and we also get the second Bianchi identity 

0 = E ∇ µ RE ∇  (ν, η) + E ∇ ν RE ∇  (η, µ) + E ∇ η RE ∇  (µ, ν) + RE ∇ (tE ∇ (µ, ν), η) + RE ∇ (tE ∇ (ν, η), µ) + RE ∇ (tE ∇ (η, µ), ν) . ( 3 
[•, •] E . First observe for µ, ν, η ∈ Γ(E) that [µ, [ν, η] E ] E = µ, -tE ∇ (ν, η) + E ∇ ν η -E ∇ η ν E = tE ∇ (µ, tE ∇ (ν, η)) -E ∇ µ (tE ∇ (ν, η)) + E ∇ t E ∇ (ν,η) µ -tE ∇ µ, E ∇ ν η  + E ∇ µ E ∇ ν η -E ∇E ∇ν η µ + tE ∇ µ, E ∇ η ν  -E ∇ µ E ∇ η ν + E ∇E ∇ην µ = -tE ∇ (tE ∇ (ν, η), µ) -E ∇ µ (tE ∇ (ν, η)) + tE ∇ E ∇ ν η, µ  + tE ∇ µ, E ∇ η ν  + E ∇ µ E ∇ ν η -E ∇ µ E ∇ η ν -E ∇ [ν,η] E µ.
With σ we will denote the cyclic sum and thence by the Jacobi identity (and the cyclic property of the total sum)

0 = σ [µ, [ν, η] E ] E = σ -tE ∇ (tE ∇ (ν, η), µ) -E ∇ µ (tE ∇ (ν, η)) + tE ∇ E ∇ ν η, µ  + tE ∇ µ, E ∇ η ν  + E ∇ µ E ∇ ν η -E ∇ µ E ∇ η ν -E ∇ [ν,η] E µ = σ -tE ∇ (tE ∇ (µ, ν), η) -E ∇ µ (tE ∇ (ν, η)) + tE ∇ E ∇ µ ν, η  + tE ∇ ν, E ∇ µ η  + E ∇ µ E ∇ ν η -E ∇ ν E ∇ µ η -E ∇ [µ,ν] E η ⇔ σ RE ∇ (µ, ν)η = σ tE ∇ (tE ∇ (µ, ν), η) + E ∇ µ tE ∇  (ν, η)  . ■
In Section 2.5 we have seen that pullbacks of Lie algebra connections were important to deĄne the inĄnitesimal gauge transformation. Hence, let us turn to pullbacks of Lie algebroid connections.

Pullbacks of Lie algebroid connections

As in the discussion around Def. 2.5.5 we need to be careful about how and when we can make a pullback of Lie algebroid connections. We want to generalize Prop. 2.5.7, especially recall its proof and Remark 2.5.8. For simplicity let us Ąrst look again at curves.

DeĄnition 3.5.1: E-paths, [7, §2, DeĄnition 2.4]

Let (E, ρ, [•, •] E ) π → N be a Lie algebroid and I ⊂ R an open interval. Then an E-path is a smooth map α : I → E with (γ * ρ)(α) = d dt γ, (3.38)
where the curve γ : I → N , t → π(α(t)), is the base path of α. We also say that γ is lifted by α.

Remarks 3.5.2. Recall that for a vector bundle V pr → N we say that a section of V along γ is a smooth map v : I → V with pr • v = γ, and that we identify sections of γ * V with sections of V along γ. That means that an E-path α can be viewed as a section of γ * E.

Using this we can deĄne a pullback E-connection and a derivation along an E-path. Let E → N be a Lie algebroid, V → N a vector bundle and E ∇ an E-connection on V .

Fix an E-path α, I ∋ t → α(t) ∈ E, with base path γ. Then there is a unique vector bundle connection

γ * E ∇  on γ * V → I with γ * E ∇  c d dt (γ * v) = γ * E ∇ cα v  (3.39)
for all v ∈ Γ(V ) and c ∈ R.

Remarks 3.5.4.

As introduced, we will view (E-)connections as base-and anchor-preserving morphisms, and, when acting on sections, as 1-forms. In the latter case, E ∇v ∈ Ω 1 (E; V ), and the pull-back as a section gives then

γ * E ∇v  ∈ Γ((γ * E) * ⊗ γ * V ), therefore we deĄne γ * E ∇v  (cα) =: γ * E ∇ cα v 
when viewing α as a section of γ * E. One could also just write E ∇ cα v when using the interpretation of connections as morphisms, because E ∇ cα(t) is then a derivation of V at γ(t) such that it is immediate that we have a section along γ and, hence, of γ * V . However, most of the time we prefer to write the pull-back as an accentuation.

When α = γ * ν for ν ∈ Γ(V ), then we write γ * E ∇ cν v  , although it looks ambiguous with the notation just discussed previously,

γ * E ∇ c γ * ν v  = γ * E ∇v  (c γ * ν) = γ * E ∇v  (cν)  = γ * E ∇ cν v  ,
but the notation should be clear by the context.

Proof of Prop. 3.5.3.

As usual, the condition (3.39) uniquely deĄnes γ * E ∇  by using that γ * (Γ(V )) generates Γ(γ * V ) and extending Eq. (3.39) by forcing the Leibniz rule, i.e. we deĄne

γ * E ∇  c d dt ♣ t f i γ * v i  := c df i dt t γ * (v i )♣ t + f i (t) γ * E ∇ cα v i  t for all v i ∈ Γ(V ), f i ∈ C ∞ (I), t ∈ I and c ∈ R,
where the index i runs over an arbitrary range; recall Def. (2.37) in the proof of Prop. 2.5.7. Every other connection satisfying Eq. (3.39) has the same form by the Leibniz rule, and, so, uniqueness follows if existence is given. Hence, it is only left to prove that this gives a well-deĄned connection, that is, we need to prove that it is independent of the choice of generators v i as in the proof of Prop. 2.5.7 and that it is a connection satisfying Eq. (3.39). Recall Remark 2.5.8, we especially need to check whether the Leibniz rule inherited by E ∇ is compatible with the Leibniz rule of connections of γ * V → I, for this we need to calculate

γ * E ∇ cα (hv)  t = ℒ cρ(α(t)) = ℒ c γ(t) (h) v♣ γ(t) + h(γ(t)) γ * E ∇ cα v  t =  c d(h • γ) dt γ * v + (h • γ) γ * E ∇ cα v   t for all v ∈ Γ(V ) and h ∈ C ∞ (N ).
Thus, the proof is then the same as for Prop. Let E → N be a Lie algebroid, V → N a vector bundle and

E ∇ an E-connection on V . Fix an E-path α, I ∋ t → α(t) ∈ E, with base path γ. Then there is a unique differential operator D dt : Γ(γ * V ) → Γ(γ * V ) with D dt is linear over R, (3.40) D dt (f s) = df dt s + f D dt s, (3.41) D dt t (γ * v) = γ * E ∇ α v  t (3.42) for all s ∈ Γ(γ * V ), v ∈ Γ(V ), f ∈ C ∞ (I) and t ∈ I.
Proof.

Uniqueness will follow again by using that γ * (Γ(V )) generates Γ(γ * V ) and extending Eq. (3.42) by forcing the Leibniz rule, this is given by choosing 

D dt := γ * E ∇  d dt
d dt t (γ * v) =v•γ:I→R = d γ(t) v  d dt t γ  =(γ * ρ)(α(t)) = γ * dv (γ * ρ)(α)  t = γ * E ∇ α v  t .
Prop. 3.5.3 can be generalized, using the notion deĄned in Def. 3.1.9.

Corollary 3.5.7: Pullbacks of Lie algebroid connections by anchor-preserving morphisms

Let E i → N i (i ∈ ¶1, 2♢
) be two Lie algebroids over smooth manifolds N i , V → N 2 a vector bundle, and E 2 ∇ an E 2 -connection on V . Also Ąx an anchor-preserving vector bundle morphism ξ :

E 1 → E 2 over a smooth map f : N 1 → N 2 .
Then there is a unique

E 1 -connection f * E 2 ∇  on f * V with f * E 2 ∇  ν (f * v) = f * E 2 ∇ ξ(ν) v  (3.43)
for all v ∈ Γ(V ) and ν ∈ Γ(E 1 ).

Remarks 3.5.8. This result is motivated by [START_REF] Meinrenken | Lie groupoids and Lie algebroids[END_REF]Example 7.7] where it is shown that there is a 1:1 correspondence of Lie algebroid paths and anchor-preserving morphisms. That is, let E 1 = TI, where

I ⊂ R is an open interval. Then deĄne α := ξ  d dt  , (3.44) which is a map I → E 2 , t → ξ(d/dt♣ t ), such that the anchor-preservation implies (f * ρ E 2 )(α) = Df  d dt  = d dt f.
Hence, α is an E 2 -path lifting f . Vice versa one can deĄne ξ by Eq. (3.44) if α is given, and then extending ξ canonically to a tensor.

Furthermore, as one can see, the presented deĄnitions of connections and their pullbacks can also be extended to vector bundles with just an anchor, without the need of a Lie bracket (⇒ anchored vector bundle). But as we have seen before, for example recall Remark 2.5.16, one can even generalize it further which we will do in the next statement.

Proof of Cor. 3.5.7.

We only give a sketch because the proof is exactly as in Prop. 3.5.3, and all other similar statements as in Section 2.5; instead of d/dt one has essentially ℒ ρ E 1 (ν) for ν ∈ Γ(E 1 ) which does neither change the structure nor the arguments of the proof. Making use of Def. 3.1.9 we get

f * E 2 ∇ ξ(ν) (hv)  = (h • f ) f * E 2 ∇ ξ(ν) v  + f * ℒ (ρ E 2 •ξ)(ν) = ℒ ( Df •ρ E 1 ) (ν) (h) f * v = (h • f ) f * E 2 ∇ ξ(ν) v  + ℒ ρ E 1 (ν) (h • f ) f * (v) for all h ∈ C ∞ (N 2 ), v ∈ Γ(V ) and ν ∈ Γ(E 1 ), using the deĄnition of total differentials, that is D p f ρ E 1 (ν p ) ∈T f (p) N 2 (h) = ℒ ρ E 1 (νp) (h • f ) for all p ∈ N 1 .
As mentioned in the proof of Prop. 3.5.3 and Remark 2.5.8, this proves that the inherited Leibniz rule of E 2 ∇ is compatible with the Leibniz rule of E 1 -connections on f * V . Hence, the remaining proof is then precisely as in Prop. 3.5.3 and 2.5.7; locally,

f * E 2 ∇  is deĄned by f * E 2 ∇  ν µ := ℒ ρ E 1 (ν) (µ a ) f * e a + µ a f * E 2 ∇ ξ(ν) e a 
for all µ = µ a f * e a , where (e a ) a is a local frame of V . Linearity and the Leibniz rule follow by construction, and the well-deĄnedness and Eq. (3.43) additionally by the Ąrst calculation about the compatibility of Leibniz rules. ■

What we need is an even more general statement as in Section 2.5, with still precisely the same proof as before; recall Prop. 2.5.15.

Corollary 3.5.9: Pullbacks of connections just differentiating along one vector

Ąeld

Let E i → N i (i ∈ ¶1, 2♢
) be two Lie algebroids over smooth manifolds N i , V → N 2 a vector bundle, and

E 2 ∇ an E 2 -connection on V . Moreover, let f ∈ C ∞ (N 1 ; N 2 ), ν 1 ∈ Γ(E 1 ) and ν 2 ∈ Γ(f * E 2 ) such that Df ρ E 1 (ν 1 ) = (f * ρ E 2 )(ν 2 ). (3.45)
Then there is a unique R-linear operator δ ν

1 : Γ(f * V ) → Γ(f * V ) with δ ν 1 (hs) = ℒ ν 1 (h) s + h δ ν 1 s, (3.46) δ ν 1 (f * v) = f * E 2 ∇ ν 2 v  (3.47) for all s ∈ Γ(f * V ), v ∈ Γ(V ) and h ∈ C ∞ (N 1 ).

Remark 3.5.10: Commutating diagram behind pullbacks

Recall Remark 3.1.10, the pullback in (f * ρ E 2 )(ν 2 ) in Eq. (3.45) is just for emphasizing that ν 2 is a section along f ; one can omit this in the notation, especially if one views sections like ν 2 as a map N 1 → E 2 . Then we can equivalently write

Df • ρ E 1 (ν 1 ) = ρ E 2 • ν 2 , (3.48)
that is equivalent to that the following diagram commutes

N 1 E 2 TN 1 TN 2 ν 2 ρ E 1 (ν 1 ) ρ E 2

Df

Remarks 3.5.11.

• In general one may want to write

δ ν 1 = f * E 2 ∇  ν 1
, because it is precisely this by uniqueness if a general pullback is possible. But to avoid confusion about the existence of a general pullback we will stick with δ ν 1 , and it will be clear by context which connection and ν 2 is used for the deĄnition of δ ν 1 .

• As in Remark 3.5.6, in the case of V = R×N 2 , the trivial line bundle over N 2 , we canonically use

E 2 ∇ := ∇ 0 ρ E 2
, where ∇ 0 := d. Then one can similarly show as before that

δ ν 1 = ℒ ν 1 .
Proof of Cor. 3.5.9. That is precisely the same proof as in the previous statements and as in Section 2; the only difference is just the meaning, ν i are Ąxed sections, but that does not matter in the calculations. Eq. (3.45) is just the condition about anchor-preservation in the case of a Ąxed pair of sections, and one uses this equation in the same fashion to how we used an anchor-preserving morphism in the previous proofs. Essentially replace ν with ν 1 and ξ(ν) with ν 2 in the proof of Cor. 3.5.7. ■

The advantage of this weak formulation is that we do not need to know whether or not f can be lifted to any morphism with certain properties like anchor-preservation. Eq. (3.45) states what one needs to make a pullback of a Lie algebroid connection to just differentiate along one direction. That was precisely the idea in the discussion around Prop. 2.5.15, but now more compactly written down, not using Ćows of the involved vector Ąelds.

Conjugated E-connections

Later we will introduce a Lie algebroid connection known as basic connection, and it has a special form which we want to study in a more general sense of conjugated E-connections; the name is motivated by [6, paragraph after Proposition 2.12], while we especially refer to [START_REF] Blaom | Geometric structures as deformed inĄnitesimal symmetries[END_REF] where the conjugate connections are called dual connections. Let E → N be a Lie algebroid over a smooth manifold N , and ∇ be an E-connection on E. We deĄne its conjugated E-connection ∇ by

∇ µ ν := [µ, ν] E + ∇ ν µ (3.49)
for all µ, ν ∈ Γ(E). We also say that ∇ and ∇ are conjugate to each other.

Remarks 3.6.2.

It is straightforward to check that the conjugate is an E-connection on E, linearity over R is clear, and we have

∇ µ (f ν) = [µ, f ν] E + ∇ f ν µ = f ∇ µ ν + ℒ ρ(µ) (f ) ν, ∇ f µ ν = [f µ, ν] E + ∇ ν (f µ) = f ∇ µ ν -ℒ ρ(ν) (f ) µ + ℒ ρ(ν) (f ) µ = f ∇ µ ν
for all µ, ν ∈ Γ(E) and f ∈ C ∞ (N ), using the Leibniz rule of the Lie bracket, and that ∇ is an E-connection. It also makes sense to say that both E-connections are conjugate to each other because ∇ is also the conjugate to ∇ by deĄnition, that is,

[µ, ν] E + ∇ ν µ = ∇ µ ν,
and the conjugate of a connection is unique, that follows trivially by deĄnition.

We need several relations between their curvatures and torsions throughout this work. Let ∇ and ∇ be two E-connections, conjugate to each other, on a Lie algebroid E → N over a smooth manifold N . Then we get for their torsions

t ∇ (µ, ν) = -t ∇ (µ, ν) (3.50)
for all µ, ν ∈ Γ(E).

Proof.

We have

t ∇ (µ, ν) = ∇ µ ν -∇ µ ν -[µ, ν] E = [µ, ν] E + ∇ ν µ -[ν, µ] E -∇ µ ν -[µ, ν] E = [µ, ν] E + ∇ ν µ -∇ µ ν = -t ∇ (µ, ν)
for all µ, ν ∈ Γ(E). ■ Let ∇ and ∇ be two E-connections, conjugate to each other, on a Lie algebroid E → N over a smooth manifold N . Then we have for their curvatures

R ∇ (µ, ν)η = ∇ η t ∇  (µ, ν) + R ∇ (µ, η)ν -R ∇ (ν, η)µ (3.51) = -∇ η ([µ, ν] E ) -∇ η µ, ν E -µ, ∇ η ν E -∇ ∇ν η µ + ∇ ∇µη ν  (3.52)
for all µ, ν, η ∈ Γ(E).

Remarks 3.6.5.

The second statement is a generalization of what is shown for a special type of connection in [6, Proposition 2.12].

Proof of Lemma 3.6.4.

We will show Eq. (3.51) by Ąrst showing Eq. (3.52), but the latter for R ∇ instead of R ∇ ; this does not matter of course, because when we know the formula for one connection, then also for the conjugated connection. Just by the deĄnition of duality and the Jacobi identity we have

∇ µ ([η, ν] E ) -∇ µ η, ν E -η, ∇ µ ν E -∇ ∇ν µ η + ∇ ∇ηµ ν = [µ, [η, ν] E ] E + [ν, [µ, η] E ] E + [η, [ν, µ] E ] E -∇ η µ, ν E -η, ∇ ν µ E -∇ ν µ, η E + ∇ η µ, ν E + ∇ ν ∇ η µ -∇ η ∇ ν µ + ∇ [η,ν] E µ = R ∇ (ν, η)µ = -R ∇ (η, ν)µ
for all µ, ν, η ∈ Γ(E). Eq. (3.52) is therefore shown, and using this and Cor. 3.6.3 we also have

∇ η t ∇  (µ, ν) = -∇ η t ∇  (µ, ν) = -∇ η t ∇ (µ, ν) + t ∇ ∇ η µ, ν  + t ∇ µ, ∇ η ν  = η, [µ, ν] E -∇ µ ν + ∇ ν µ E + ∇ [µ, ν] E -∇ µ ν + ∇ ν µ =∇ν µ-∇ν µ η + ∇ ∇ηµ ν -∇ ν [η, µ] E + ∇ µ η  -[η, µ] E + ∇ µ η, ν E + ∇ µ [η, ν] E + ∇ ν η  -∇ ∇ην µ -µ, [η, ν] E + ∇ ν η E = [η, [µ, ν] E ] E + [µ, [ν, η] E ] E + [ν, [η, µ] E ] E =0 + ∇ µ ([η, ν] E ) -∇ µ η, ν E -η, ∇ µ ν E -∇ ∇ν µ η + ∇ ∇ηµ ν =R ∇ (ν,η)µ -∇ ν ([η, µ] E ) + ∇ ν η, µ E + η, ∇ ν µ E + ∇ ∇µν η -∇ ∇ην µ =-R ∇ (µ,η)ν -∇ ∇µν η + ∇ ∇ν µ η =-∇ [µ,ν] E η +∇ µ ∇ ν η -∇ ν ∇ µ η = R ∇ (µ, ν)η + R ∇ (ν, η)µ -R ∇ (µ, η)ν.
This gives Eq. (3.51). ■

We are especially interested into the curvature if the conjugated E-connection is Ćat. 

R ∇ (µ, ν)η = ∇ η t ∇  (µ, ν), (3.53)
also written as

R ∇ = ∇t ∇ . (3.54)
Proof. This simply follows by Lemma 3.6.4. ■

If both connections conjugate to each other are Ćat, then we have another Lie bracket by the Ąrst Bianchi identity.

Corollary 3.6.7: Torsion as Lie bracket

Let ∇ and ∇ be two Ćat E-connections, conjugate to each other, on a Lie algebroid E → N over a smooth manifold N . Then their torsions are Lie brackets for Γ(E) which restrict to Lie brackets on the Ąbres, giving rise to a BLA structure on E.

Proof. This follows by the Ćatness of both connections Ąrst Bianchi identity in Thm. 3.4.6 and Cor. 3.6.6, the latter implies ∇t ∇ = 0, and the former, the Ąrst Bianchi identity, then gives

t ∇ t ∇ (µ, ν), η  + t ∇ t ∇ (ν, η), µ  + t ∇ t ∇ (η, µ), ν  = 0
for all µ, ν, η ∈ Γ(E). Bilinearity and antisymmetry is given, thus, t ∇ is a Lie bracket for Γ(E), therefore also t ∇ by Cor. 3.6.3. Since torsions are tensors we can conclude that the torsion describes a Lie bracket on each Ąbre, too. ■

Basic connection and the basic curvature

As mentioned and already introduced in a simpliĄed form in Ex. 2.5.4, there is also another canonical example of E-connection, the basic connection ∇ bas . We follow mainly [6, §2.3]; however, in [14, §3.4] the basic connection is introduced as a certain Bott connection along certain leaves given by the anchor, but we will neither use nor introduce that notion. The basic connection is actually the conjugate connection of ∇ ρ .

DeĄnition 3.7.1: Basic connection, [6, DeĄnition 2.9]

Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a vector bundle connection on E. We then deĄne the basic connection (induced by ∇) as a pair of E-connections, one on E itself and the other one on TN , both denoted by ∇ bas .

(Basic E-connection on E)

The basic connection on E is deĄned as the conjugate of ∇ ρ , that is,

∇ bas µ ν := [µ, ν] E + ∇ ρ(ν) µ (3.55) for all µ, ν ∈ Γ(E)

(Basic E-connection on TN )

The basic connection on TN is deĄned by

∇ bas µ X := [ρ(µ), X] + ρ (∇ X µ) (3.56) for all µ ∈ Γ(E) and X ∈ X(N ) Remarks 3.7.2.
It is trivial to see that these are E-connections.

In the physicsŠ part, Chapter 4, we will discuss the use of this connection in physics, as also arising in [1, discussion around Equation ( 17)]. Nevertheless one can see here already that one gets the adjoint representation for bundle of Lie algebras, i.e. ρ ≡ 0, because then the basic connection on E is just the Ąeld of Lie brackets.

In the following we often just write of the Ťbasic connectionŤ or ∇ bas , while we then always mean both connections. It should be clear by context which of both connections we mean then. Similar for its curvature R ∇ bas ; but the torsion t ∇ bas will only denote the torsion for the basic connection on E since only on E the torsion is formulated.

We will use the following essential property of the basic connection very often. Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a vector bundle connection on E. Then

ρ • ∇ bas = ∇ bas • ρ. (3.57)
Proof.

We have

ρ ∇ bas µ ν  = ρ [µ, ν] E + ∇ ρ(ν) µ  = [ρ(µ), ρ(ν)] E + ρ ∇ ρ(ν) µ  = ∇ bas µ ρ(ν)
for all µ, ν ∈ Γ(E), using that the anchor is a homomorphism of Lie brackets. ■

As in [START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF], we will later see that ∇ bas should be Ćat for a given ∇ in order to formulate a gauge theory (among other conditions). Thence, it is important to study the curvature of ∇ bas . Its curvature is encoded in another tensor, the basic curvature. Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a connection on

E. The basic curvature R bas ∇ is then deĄned as an element of Γ 2 E * ⊗ T * N ⊗ E  by R bas ∇ (µ, ν)X := ∇ X ([µ, ν] E ) -[∇ X µ, ν] E -[µ, ∇ X ν] E -∇ ∇ bas ν X µ + ∇ ∇ bas µ X ν, (3.58)
where µ, ν ∈ Γ(E) and X ∈ X(N ).

Remarks 3.7.5.

• As stated in [START_REF] Arias | Representations up to homotopy of Lie algebroids[END_REF] one may think of this as

∇ X ([µ, ν] E ) -[∇ X µ, ν] E -[µ, ∇ X ν] E which is a measure of the derivation property of ∇ w.r.t. [•,
•] E , but corrected in such a way that it is tensoriel in all arguments. For a zero anchor the basic curvature would be equivalent to

∇ X ([µ, ν] E ) -[∇ X µ, ν] E -[µ, ∇ X ν] E since
then the basic connection on TN is identically zero.

• Compare the form of the basic curvature also with Lemma 3.6.4.

• It is trivial to see that the basic curvature is antisymmetric in the Lie algebroid arguments and that it is trilinear. Also let f ∈ C ∞ (N ) and observe

R bas ∇ (µ, ν)(f X) = ∇ f X ([µ, ν] E ) -[∇ f X µ, ν] E =f [∇ X µ,ν] E -ℒν (f ) ∇ X µ -[µ, ∇ f X ν] E -∇ ∇ bas ν (f X) µ =f ∇ ∇ bas ν X µ+ℒν (f ) ∇ X µ +∇ ∇ bas µ (f X) ν = f R bas ∇ (µ, ν)X
for all µ, ν ∈ Γ(E) and X ∈ X(N ), and

R bas ∇ (µ, f ν)X = ∇ X ([µ, f ν] E ) -[∇ X µ, f ν] E -[µ, ∇ X (f ν)] E -∇ ∇ bas f ν X µ + ∇ ∇ bas µ X (f ν) = f R bas ∇ (µ, ν)X + ℒ X (f ) [µ, ν] E + ℒ ρ(µ) (f ) ∇ X (ν) + ℒ X ℒ ρ(µ) (f ) ν -ℒ ρ(∇ X µ) (f ) ν -ℒ ρ(µ) (f ) ∇ X ν -ℒ X (f ) [µ, ν] E -ℒ ρ(µ) ℒ X (f ) ν + ℒ ∇ bas µ X (f ) =ℒ [ρ(µ),X]+ρ(∇ X µ) (f ) ν = f R bas ∇ (µ, ν)X + ℒ X ℒ ρ(µ) (f ) ν -ℒ ρ(µ) ℒ X (f ) ν -ℒ [X,ρ(µ)] (f ) ν = 0 = f R bas ∇ (µ, ν)X,
that the basic curvature is also tensorial in µ follows by the antisymmetry.

Do not confuse this tensor with R ∇ bas , the curvature of the basic connection, either on E or TN . However, the curvatures are encoded in the basic curvature. Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a connection on E. Then one has:

1. The curvature of ∇ bas on E is equal to -R bas ∇ (•, •) • ρ. 2. The curvature of ∇ bas on TN is equal to -ρ • R bas ∇ .
We also have an important relation to the curvature R ∇ of ∇,

R bas ∇ (µ, ν)X = (∇ X t ∇ bas ) (µ, ν) -R ∇ (ρ(µ), X)ν + R ∇ (ρ(ν), X)µ (3.59)
for all µ, ν ∈ Γ(E) and X ∈ X(N ), where t ∇ bas is the E-torsion of the basic connection on E.

Remarks 3.7.7. This implies that both ∇ bas are Ćat if R bas ∇ ≡ 0. The converse is in general not true. But for invertible ρ the converse would hold. For R bas ∇ ≡ 0 one also gets 

(∇ X t ∇ bas )(µ, ν) = R ∇ (ρ(µ), X)ν -R ∇ (ρ(ν), X)µ, ( 3 
-R bas ∇ (µ, ν) ρ(η) = -∇ ρ(η) ([µ, ν] E ) -[∇ ρ(η) µ, ν] E -[µ, ∇ ρ(η) ν] E -∇ ∇ bas ν ρ(η) µ + ∇ ∇ bas µ ρ(η) ν  = -∇ ρ(η) ([µ, ν] E ) -∇ ρ(η) µ, ν E -µ, ∇ ρ(η) ν E -∇ ρ(∇ bas ν η) µ + ∇ ρ(∇ bas µ η) ν  Lem. 3.6.4 = R ∇ bas (µ, ν)η
for all µ, ν, η ∈ Γ(E). In the same fashion as in the proof of Lemma 3.6.4, using the Jacobi identity and that ρ is a homomorphism, we also have

ρ R bas ∇ (µ, ν)X  = ρ ∇ X ([µ, ν] E ) -[∇ X µ, ν] E -[µ, ∇ X ν] E -∇ ∇ bas ν X µ + ∇ ∇ bas µ X ν  + [[ρ(µ), ρ(ν)], X] + [[ρ(ν), X], ρ(µ)] + [[X, ρ(µ)], ρ(ν)] = [ρ([µ, ν] E ), X] + ρ (∇ X ([µ, ν] E )) =∇ bas [µ,ν] E X + [ρ(ν), [ρ(µ), X] + ρ(∇ X µ) =∇ bas µ X ] + ρ ∇ ∇ bas µ X ν  -[ρ(µ), [ρ(ν), X] + ρ(∇ X ν) =∇ bas ν X ] -ρ ∇ ∇ bas ν X µ  = ∇ bas [µ,ν] E X + ∇ bas ν ∇ bas µ X -∇ bas µ ∇ bas ν X = -R ∇ bas (µ, ν)X
for all X ∈ X(N ). By Cor. 3.6.3 we know that that t ∇ bas = -t ∇ρ , thus,

(∇ X t ∇ bas ) (µ, ν) = -(∇ X t ∇ρ )(µ, ν) = -∇ X t ∇ρ (µ, ν) + t ∇ρ (∇ X µ, ν) + t ∇ρ (µ, ∇ X ν) = ∇ X [µ, ν] E -∇ ρ(µ) ν + ∇ ρ(ν) µ  + ∇ ρ(∇ X µ) ν -∇ ρ(ν) ∇ X µ -[∇ X µ, ν] E + ∇ ρ(µ) ∇ X ν -∇ ρ(∇ X ν) µ -[µ, ∇ X ν] E = ∇ X ([µ, ν] E ) -[∇ X µ, ν] E -[µ, ∇ X ν] E + ∇ ρ(∇ X µ) ν -∇ ρ(∇ X ν) µ + R ∇ (ρ(µ), X)ν + ∇ [ρ(µ),X] ν -R ∇ (ρ(ν), X)µ -∇ [ρ(ν),X] µ = R bas ∇ (µ, ν)X + R ∇ (ρ(µ), X)ν -R ∇ (ρ(ν), X)µ.

■

The basic connection on E is conjugate to ∇ ρ by deĄnition, and it will be later very important that the basic connection is Ćat for gauge theory as we will see. By our discussion about conjugate Lie algebroid connections we can immediately derive the following by Cor. 3.6.6. 

R ∇ρ = ∇ bas t ∇ bas , (3.61) i.e. R ∇ρ (µ, ν)η = R ∇ (ρ(µ), ρ(ν))η = ∇ bas η t ∇ bas  (µ, ν)
for all µ, ν, η ∈ Γ(E).

Proof. By Prop. 3.7.6 we know that the assumption implies that ∇ bas on E is Ćat. Thence, we can use Cor. 3.6.6 because of that ∇ bas on E and ∇ ρ are conjugate to each other. This concludes the proof. ■

Exterior covariant derivatives

As for standard connections one can now deĄne exterior covariant derivatives related to Lie algebroid connections. Let E → N be a Lie algebroid over a smooth manifold N , E ∇ an E-connection on a vector bundle V → N . Then we deĄne the exterior covariant derivative d E ∇ as an

operator Ω q (E; V ) → Ω q+1 (E; V ) (q ∈ N 0 ) by d E ∇ ω  (ν 0 , . . . , ν q ) := q i=0 (-1) i E ∇ ν i (ω (ν 0 , . . . , ν i , . . . , ν q )) + 0≤i<j≤q (-1) i+j ω([ν i , ν j ] E , ν 0 , . . . , ν i , . . . , ν j , . . . , ν q ) (3.62)
for all ω ∈ Ω q (E; V ) and ν 0 , . . . , ν q ∈ Γ(E).

Remarks 3.8.2.
That this is a well-deĄned operator can be shown as in the case of vector bundle connections.

Moreover, in the case of a connection ∇ on E one has also the previously discussed basic connection ∇ bas as E-connection on E and TN . ∇ is typical vector bundle connection and ∇ bas a pair of E-connections. Hence, it may make sense to look at forms with two degrees, one for TN and the other one with respect to E.

The following space is also developed and studied by Alexei Kotov, communicated to me in private communication, his studies are planned to be published in 2021.

DeĄnition 3.8.3: (p, q)-E-forms

Let E → N be a Lie algebroid over a smooth manifold N , and V → N a vector bundle. Then the space of (p, q)-E-forms with values in V (p, q ∈ N 0 ), will is deĄned by

Ω p,q (N, E; V ) := Γ p T * N ⊗ q E * ⊗ V . (3.63)
Let us study possible exterior covariant derivatives on this space in the case of E = V .

Remark 3.8.4: Exterior covariant derivatives induced by ∇

Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E.

• For q = 0 one gets the space of p-forms with values in E, Ω p (N ; E), or more general, those are forms on N with values in q E * ⊗ E, i.e.

Ω p,q (N, E; E) ∼ = Ω p N ; q E * ⊗ E . (3.64) • Analogously Ω p,q (N, E; E) ∼ = Ω q E; p TN * ⊗ E . (3.65)
• Using Eq. (3.64), denote with ∇ also the canonically induced connection on q E * ⊗ E; then we have a canonical deĄnition of d ∇ on Ω p,q (N, E; E). Since the canonically induced connection on q E * ⊗ E is deĄned by using the Leibniz rule, one can rewrite the exterior covariant derivative d ∇ of ω ∈ Ω p,q (N, E; E) as an element of Ω p+1,q (N, E; E) by

d ∇ ω  (X 0 , . . . , X p , ν 1 , . . . , ν q ) = p i=0 (-1) i  ∇ X i ω X 0 , . . . , X i , . . . , X p , ν 1 , . . . , ν q  - q j=1 ω X 0 , . . . , X i , . . . , X p , ν 1 , . . . , ∇ X i ν j , . . . , ν q   + 0≤i<j≤p (-1) i+j ω [X i , X j ], X 0 , . . . , X i , . . . , X j , . . . , X p , ν 1 , . . . , ν q  , ( 3.66) 
where X 0 , . . . , X p ∈ X(N ) and ν 1 , . . . , ν q ∈ Γ(E).

• Similarly one proceeds with ∇ bas , using that the basic connection acts on both, E and TN , such that there is a canonically induced notion of ∇ bas on p TN * ⊗ E. By Eq. (3.65) we have d ∇ bas : Ω p,q (N, E; E) → Ω p,q+1 (N, E; E) given by

d ∇ bas ω  (X 1 , . . . , X p , ν 0 , . . . , ν q ) = q i=0 (-1) i  ∇ bas ν i ω (X 1 , . . . , X p , ν 0 , . . . , ν i , . . . ν q ) - p j=1 ω X 1 , . . . , ∇ bas ν i X j , . . . , X p , ν 0 , . . . , ν i , . . . , ν q   + 0≤i<j≤q (-1) i+j ω(X 1 , . . . , X p , [ν i , ν j ] E , ν 0 , . . . , ν i , . . . , ν j , . . . , ν q ), (3.67) 
where ω ∈ Ω p,q (N, E; E), X 1 , . . . , X p ∈ X(N ) and ν 0 , . . . , ν q ∈ Γ(E).

• For LABs one can see that d ∇ bas acts as the Chevalley-Eilenberg differential d CE because the basic connection on TN is then identically to zero and the one on E is just the adjoint.

The commutation of the basic curvature with the anchor carries over to the differential. 

p times  (ν 1 , . . . , ν p ) = d ∇ bas ω  (ρ(ν 1 ), . . . , ρ(ν p ), µ), (3.68) for all ω ∈ Ω p (N ; E) (p ∈ N 0 ) and µ, ν 1 , . . . ν p ∈ Γ(E); in short ∇ bas (ω • (ρ, . . . , ρ)) = d ∇ bas ω  • (ρ, . . . , ρ, 1 E ). (3.69) Proof. Recall ρ • ∇ bas = ∇ bas • ρ by Cor. 3.7.3, then ∇ bas µ (ω • (ρ, . . . , ρ))  (ν 1 , . . . , ν p ) = ∇ bas µ ω(ρ(ν 1 ), . . . , ρ(ν p )) - p j=1 ω ρ(ν 1 ), . . . , ρ ∇ bas µ ν j  =∇ bas µ (ρ(ν j )) , . . . , ρ(ν p )  = ∇ bas µ ω  (ρ(ν 1 ), . . . , ρ(ν p )) = d ∇ bas ω  (ρ(ν 1 ), . . . , ρ(ν p ), µ).

■

Recall that we did not prove the second Bianchi identity in Thm. 3.4.6. We are going to prove the second Bianchi identity using the following theorem. Let E → N be a Lie algebroid over a smooth manifold N , V → N a vector bundle, and let E ∇ be an E-connection on V , while we denote its naturally induced deĄnition on End(V ) also E ∇. Viewing its curvature RE ∇ as an element of Ω 2 (E; End(V )) we then have

d E ∇ RE ∇ = 0. (3.70) Proof of Thm. 3.8.6. Let µ, ν, η ∈ Γ(E) and v ∈ Γ(V ), then d E ∇ RE ∇  (µ, ν, η)  (v) = E ∇ µ (RE ∇ (ν, η)) -E ∇ ν (RE ∇ (µ, η)) + E ∇ η (RE ∇ (µ, ν)) -RE ∇ ([µ, ν] E , η) + RE ∇ ([µ, η] E , ν) -RE ∇ ([ν, η] E , µ)  (v) = E ∇ µ (RE ∇ (ν, η)v) -RE ∇ (ν, η) E ∇ µ v  -E ∇ ν (RE ∇ (µ, η)v) + RE ∇ (µ, η) E ∇ ν v  + E ∇ η (RE ∇ (µ, ν)v) -RE ∇ (µ, ν) E ∇ η v  -RE ∇ ([µ, ν] E , η)v + RE ∇ ([µ, η] E , ν)v -RE ∇ ([ν, η] E , µ)v = E ∇ µ E ∇ ν E ∇ η v -E ∇ µ E ∇ η E ∇ ν v -E ∇ µ E ∇ [ν,η] E v -E ∇ ν E ∇ η E ∇ µ v + E ∇ η E ∇ ν E ∇ µ v + E ∇ [ν,η] E E ∇ µ v -E ∇ ν E ∇ µ E ∇ η v + E ∇ ν E ∇ η E ∇ µ v + E ∇ ν E ∇ [µ,η] E v + E ∇ µ E ∇ η E ∇ ν v -E ∇ η E ∇ µ E ∇ ν v -E ∇ [µ,η] E E ∇ ν v + E ∇ η E ∇ µ E ∇ ν v -E ∇ η E ∇ ν E ∇ µ v -E ∇ η E ∇ [µ,ν] E v -E ∇ µ E ∇ ν E ∇ η v + E ∇ ν E ∇ µ E ∇ η v + E ∇ [µ,ν] E E ∇ η v -E ∇ [µ,ν] E E ∇ η v + E ∇ η E ∇ [µ,ν] E v + E ∇ [[µ,ν] E ,η] E v + E ∇ [µ,η] E E ∇ ν v -E ∇ ν E ∇ [µ,η] E v -E ∇ [[µ,η] E ,ν] E v -E ∇ [ν,η] E E ∇ µ v + E ∇ µ E ∇ [ν,η] E v + E ∇ [[ν,η] E ,µ] E v = 0,
where we also used the Jacobi identity. ■ We can now Ąnally prove the second statement of Thm. 3.4.6 by showing that it is equivalent to Thm. 3.8.6 if V = E; for µ, ν, η ∈ Γ(E) we have 

E ∇ µ RE ∇  (ν, η) + E ∇ ν RE ∇  (η, µ) + E ∇ η RE ∇  (µ, ν) + RE ∇ (tE ∇ (µ, ν), η) + RE ∇ (tE ∇ (ν, η), µ) + RE ∇ (tE ∇ (η, µ), ν) = E ∇ µ (RE ∇ (ν, η)) -RE ∇ E ∇ µ ν, η  -RE ∇ ν, E ∇ µ η  + E ∇ ν (RE ∇ (η, µ)) -RE ∇ E ∇ ν η, µ  -RE ∇ η, E ∇ ν µ  + E ∇ η (RE ∇ (µ, ν)) -RE ∇ E ∇ η µ, ν  -RE ∇ µ, E ∇ η ν  + RE ∇ E ∇ µ ν -E ∇ ν µ -[µ, ν] E , η  + RE ∇ E ∇ ν η -E ∇ η ν -[ν, η] E , µ  + RE ∇ E ∇ η µ -E ∇ µ η -[η, µ] E , ν  = E ∇ µ (RE ∇ (ν, η)) -E ∇ ν (RE ∇ (µ, η)) + E ∇ η (RE ∇ (µ, ν)) -RE ∇ ([µ, ν] E , η) + RE ∇ ([µ, η] E , ν) -RE ∇ ([ν, η] E , µ) = d E ∇ RE ∇  (µ, ν, η)
RE ∇ (µ, ν)η + RE ∇ (ν, η)µ + RE ∇ (η, µ)ν = d E ∇ tE ∇  (µ, ν, η)
for all µ, ν, η ∈ Γ(E). Be careful, the right hand side is not the same as e.g. in Thm. 3.7.8, i.e. not the same as E ∇tE ∇ because the torsion is an element of Ω 0,2 (N, E; E) such that E ∇ and d E ∇ do act differently.

It is now natural to ask whether there is some usable commutation relation between both differentials, d ∇ and d ∇ bas for a Ąxed connection ∇.

Proposition 3.8.9: Commutation relation

Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E. Then

d ∇ d ∇ bas ω  (X 0 , . . . , X p , ν 0 , . . . , ν q ) = d ∇ bas d ∇ ω  (X 0 , . . . , X p , ν 0 , . . . , ν q ) + p i=0 q k=0 (-1) i+k R bas ∇ ν k , ω X 0 , . . . , X i , . . . , X p , ν 0 , . . . , ν k , . . . , ν q  X i + p i=0 q k=0 (-1) i+k R ∇ X i , ρ ω X 0 , . . . , X i , . . . , X p , ν 0 , . . . , ν k , . . . , ν q  ν k + p i,j=0 i<j q k=0 (-1) i+j+k ω ρ(R ∇ (X i , X j )ν k ), X 0 , . . . , X i , . . . , X j , . . . , X p , ν 0 , . . . , ν k , . . . , ν q  + p i=0 q k,l=0 k<l (-1) i+k+l ω X 0 , . . . , X i , . . . , X p , R bas ∇ (ν k , ν l )X i , ν 0 , . . . , ν k , . . . , ν l , . . . , ν q  (3.71)
for all ω ∈ Ω p,q (N, E; E) (p, q ∈ N 0 ), X 0 , . . . , X p ∈ X(N ) and ν 0 , . . . , ν q ∈ Γ(E).

Remarks 3.8.10.

If ∇ is Ćat and if R bas ∇ = 0, then one has simply

d ∇ d ∇ bas ω = d ∇ bas d ∇ ω. (3.72)
Both differentials, d ∇ and d ∇ bas , square to zero (recall Prop. 3.7.6) 4 and, so, also the differentials

ω → d 1 ω := d ∇ + (-1) p d ∇ bas  ω, (3.73) ω → d 2 ω := (-1) q d ∇ + d ∇ bas  ω (3.74)
for all ω ∈ Ω p,q (N, E; E), that can be seen by

d 2 1 ω = d 1 d ∇ + (-1) p d ∇ bas  ω = d ∇ + (-1) p+1 d ∇ bas  d ∇ ω + d ∇ + (-1) p d ∇ bas  (-1) p d ∇ bas ω = d ∇  2 =0 ω + d ∇ bas  2 =0 ω + (-1) p+1 d ∇ bas d ∇ ω + (-1) p d ∇ d ∇ bas ω = (-1) p d ∇ d ∇ bas -d ∇ bas d ∇  ω Eq. (3.72) = 0, similarly with d 2 . For ν ∈ Γ(E) one gets d ∇ bas , d ∇ ν = ι ν R bas ∇ + ι ρ(ν) R ∇ , (3.75)
here, ι denotes the contraction. Especially for Ćat ∇, R bas ∇ describes the commutation relation of both exterior covariant derivatives.

Proof of Prop. 3.8.9. That is an extremely long and tedious but completely straightforward calculation. There is no trick to use, ŤjustŤ insert the deĄnitions of all tensors and exterior covariant derivatives on both sides of the equation and compare. ■

We can immediately conclude the following.

Corollary 3.8.11: Commutation for vanishing basic curvature

Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E. Then R bas ∇ = 0 if and only if

d ∇ d ∇ bas ω  (X 0 , . . . , X p , ν 0 , . . . , ν q ) = d ∇ bas d ∇ ω  (X 0 , . . . , X p , ν 0 , . . . , ν q ) + p i=0 q k=0 (-1) i+k R ∇ X i , ρ ω X 0 , . . . , X i , . . . , X p , ν 0 , . . . , ν k , . . . , ν q  ν k + p i,j=0 i<j q k=0
(-1) i+j+k ω ρ(R ∇ (X i , X j )ν k ), X 0 , . . . , X i , . . . , X j , . . . , X p , ν 0 , . . . , ν k , . . . , ν q  (3.76) for all ω ∈ Ω p,q (N, E; E) (p, q ∈ N 0 ), X 0 , . . . , X p ∈ X(N ) and ν 0 , . . . , ν q ∈ Γ(E).

Remarks 3.8.12.

The Ť⇒Ť-direction was also found by Alexei Kotov. While I have derived it with the more general previous proposition, Alexei Kotov 

d ∇ bas 1 E  (µ, ν) = ∇ bas µ ν -∇ bas ν µ -[µ, ν] E = t ∇ bas (µ, ν)
for all µ, ν ∈ Γ(E), and

d ∇ 1 E  (X, µ) = (∇ X 1 E )(µ) = ∇ X µ -∇ X µ = 0
for all X ∈ X(N ) and µ ∈ Γ(E). Using these and by choosing ω = 1 E ∈ Ω 0,1 (M, E; E) we have by Eq. (3.76)

d ∇ t ∇ bas  (X, µ, ν) = d ∇ d ∇ bas 1 E  (X, µ, ν) = R ∇ (X, ρ(ν))µ -R ∇ (X, ρ(µ))ν Eq. (3.59) ⇔ R bas ∇ (µ, ν)X = (∇ X t ∇ bas )(µ, ν) =(d ∇ t ∇ bas )(X,µ,ν) -R ∇ (ρ(µ), X)ν + R ∇ (ρ(ν), X)µ = 0. ■

Direct product of Lie algebroids

We will also need to know how to deĄne the direct products of Lie algebroids where we especially refer to [START_REF] Meinrenken | Lie groupoids and Lie algebroids[END_REF]Lemma 6.25] or [3, beginning of §4.2; page 155].

In the following we will have two Lie algebroids

(E 1 , [•, •] E 1 , ρ 1 ) → N 1 and (E 2 , [•, •] E 2 , ρ 2 ) → N 2 over two smooth manifolds N 1 and N 2 .
With pr i : N 1 × N 2 → N i we will denote in the following part of this section the projection onto the i-th factor (i ∈ ¶1, 2♢), and T(N 1 × N 2 ) can be regarded as the Whitney sum of vector bundles pr * 1 (TN 1 ) ⊕ pr * 2 (TN 2 ), as usual and as mentioned in [START_REF] Mackenzie | General Theory of Lie Groupoids and Algebroids[END_REF]. We want to deĄne a Lie algebroid structure on pr *

1 (E 1 ) ⊕ pr * 2 (E 2 ) → N 1 × N 2 (Whitney sum of pr * i (E i ))
, and, thus, a canonical candidate of the anchor is immediately given by pr

* 1 ρ E 1 ⊕ pr * 2 ρ E 2 .

Sections of pr *

i (E i ) can be viewed as compositions of the form µ a pr * i V i a , where V i a ∈ Γ(E i ) and µ a ∈ C ∞ (N 1 × N 2 ), simply using that pullbacks of sections generate all sections. Using such decompositions has the advantage that the frames are given by (pullbacks of) frames of E i , especially, pr * i V i a (no sum over i) is constant along N j , j ̸ = i. We then say that we take a frame induced by E 1 and E 2 . 

Let (E 1 , [•, •] E 1 , ρ 1 ) → N 1 and (E 2 , [•, •] E 2 , ρ 2 )
→ N 2 be two Lie algebroids over two smooth manifolds N 1 and N 2 , and let

E 1 × E 2 := pr * 1 (E 1 ) ⊕ pr * 2 (E 2 ) → N 1 × N 2 be
the Whitney sum of vector bundles, equipped with the direct product of anchors. Then there is a unique Lie algebroid structure on

E 1 × E 2 such that Γ(E 1 ) ⊕ Γ(E 2 ) → Γ(E 1 × E 2 ), (µ, ν) → pr * 1 µ ⊕ pr * 2 ν = (pr * 1 µ, pr * 2 ν) (3.77)
is a Lie algebra homomorphism, where Γ(E i ) are viewed as (inĄnite-dimensional) Lie algebras.

Remarks 3.9.2.

With the direct product of anchors we mean here

ρ E 1 ×E 2 := ρ E 1 × ρ E 2 := pr * 1 ρ E 1 ⊕ pr * 2 ρ E 2 .
Sketch of the proof of Lemma 3.9.1.

We just give a sketch of the proof since the calculations are all very straightforward, but tedious to write down explicitly; the construction is as usual, making use of that some certain subset of sections generate all sections and that one knows how to deĄne structures on that subset given by the map in (3.77). The full structure then uniquely follows by forcing the Leibniz rule on the Lie bracket.

In the following we will also omit all the pullback notations, so, when we write for example that we take a section of Γ(E 1 ), then we actually mean a pullback of that section along pr 1 . Especially, we understand Γ(E 1 ) ⊕ Γ(E 2 ) as embedded in the sense of (3.77).

• For the existence we deĄne the Lie bracket

[•, •] E 1 ×E 2 as in the following: Let f (i) a  a be a frame of E i (i ∈ ¶1, 2♢
) and their pullbacks give combined a frame of E 1 ×E 2 which we denote by (e a ) a ; note that e a ∈ Γ(E

1 ) ⊕ Γ(E 2 ). The bracket [e a , e b ] E 1 ×E 2 of this frame is then canonically deĄned as direct product of the brackets [•, •] E 1 and [•, •] E 2 given by the direct product of Lie algebras Γ(E 1 ) ⊕ Γ(E 2 ). Making use of that Γ(E 1 ) ⊕ Γ(E 2 ) generates Γ(E 1 × E 2 ), we then write for two sections µ = µ a e a , ν = ν a e a ∈ Γ(E 1 × E 2 )
, and we then apply the typical construction to force the Leibniz rule on the full set of sections,

[µ, ν] E 1 ×E 2 := µ a ν b [e a , e b ] E 1 ×E 2 + µ a ℒ ρ E 1 ×E 2 (ea) ν b  e b -ν b ℒ ρ E 1 ×E 2 (e b ) (µ a ) e a , ( 3.78) 
where

ρ E 1 ×E 2 = ρ E 1 × ρ E 2
is the direct product of anchors. This is well-deĄned, because any other frames f

(i) a  a
are locally related by a matrix on N i , so, a change constant along N j (j ∈ ¶1, 2♢, i ̸ = j). Hence, E 1 -E 2 -mixed terms of [e a , e b ] E 1 ×E 2 are unaffected by a change of such frames, and, so, it is still a direct product of Lie brackets for another frame. Especially, it follows that the bracket is the direct product of the brackets on Γ(E 1 ) ⊕ Γ(E 2 ). That the whole bracket is independent of the chosen frame is also trivial and straightforward to check; that essentially follows by construction since the Lie derivatives ℒ ρ E 1 ×E 2 (ea) will cancel the Leibniz rule of [e a , e b ] E 1 ×E 2 when changing the frame.

The calculations that this gives a Lie algebroid structure is now straightforward, similar to the proof of Prop. 3.1.23. That is, the curvature of

ρ E 1 ×E 2 is trivially the direct product of the curvature of ρ E 1 and ρ E 2 R ρ E 1 ×E 2 = R ρ E 1 × R ρ E 2
recall Def. 3.1.7. That simply follows by the fact that the anchor is a direct product and that the Lie bracket is a direct product on Γ(E 1 ) ⊕ Γ(E 2 ), so, the curvature is a direct product in the frame (e a ), and therefore always because the curvature is a tensor (Lemma 3.1.12) and Γ(E 1 ) ⊕ Γ(E 2 ) generates Γ(E 1 × E 2 ). Since E i are Lie algebroids, the curvature is zero.

The Lie bracket clearly satisĄes the Leibniz rule with respect to ρ E 1 ×E 2 , and hence by Prop. 3.1.17, we can test the Jacobi identity in a given frame; by construction, with respect to the frame (e a ) the bracket is a direct product of Lie brackets given by the direct product of Lie algebras Γ(E 1 ) ⊕ Γ(E 2 ). So, Jacobi identity immediately follows.

• That the map deĄned in (3.77) is a Lie algebra homomorphism follows by construction since the anchor and the Lie bracket are deĄned as direct products on Γ(E 1 ) ⊕ Γ(E 2 ).

• Uniqueness will follow by using that Γ(E 1 × E 2 ) is generated by Γ(E 1 ) ⊕ Γ(E 2 ) as a module over C ∞ (N 1 × N 2 ) using the map deĄned in (3.77), now denoted by Φ. Since Φ shall be a homomorphism, the bracket on

Γ(E 1 ) ⊕ Γ(E 2 ) embedded into Γ(E 1 × E 2 ) is given by the direct product of [•, •] E 1 and [•, •] E 2 in
sense of Lie algebras; similarly as for X(N 1 ) ⊕ X(N 2 ). Then take any Lie algebroid bracket on E 1 × E 2 such that Φ is a homomorphism and express sections with respect to (e a ) a . Using the Leibniz rule, every other possible Lie bracket has then the form of (3.78), therefore uniqueness is given. ■ Hence, we deĄne: DeĄnition 3.9.3: Direct product of Lie algebroids

Let (E 1 , [•, •] E 1 , ρ 1 ) → N 1 and (E 2 , [•, •] E 2 , ρ 2 )
→ N 2 be two Lie algebroids over two smooth manifolds N 1 and N 2 , and let

E 1 × E 2 := pr * 1 (E 1 ) ⊕ pr * 2 (E 2 ) → N 1 × N 2 be
the Whitney sum of vector bundles. Then we call the Lie algebroid structure as given in Lemma 3.9.1 the direct product of Lie algebroids.

There are some examples of direct products, especially also the Higgs mechanism of the standard model.

Example 3.9.4: Examples of direct products of Lie algebroids

We provide two canonical examples; the Ąrst one directly comes by the construction for which we viewed T(N 1 × N 2 ) as the Whitney sum pr * 1 (TN 1 ) ⊕ pr * 2 (TN 2 ). 1. The Ąrst example is the direct product of two tangent bundles, E i := TN i where the Lie brackets are the ones from the tangent bundles and

ρ i := 1 TN i . Then E 1 × E 2 = T(N 1 × N 2 ).
2. Let E 1 be the action Lie algebroid of the electroweak interaction, see Ex. As usual, if we have several structures given on both factors, then we can often take their product to deĄne a similar structure on the whole product of Lie algebroids. For tensors and connections this is straightforward, however, we also have Lie algebroid connections and we have seen that pullbacks of those may not always been given; especially recall Cor. 3.5.7, that is, anchor-preserving vector bundle morphisms are needed. Lemma 3.9.5: Projections have lifts to anchor-preserving morphisms

Let (E 1 , [•, •] E 1 , ρ 1 ) → N 1 and (E 2 , [•, •] E 2 , ρ 2 ) → N 2 be
two Lie algebroids over two smooth manifolds N 1 and N 2 , and let E 1 × E 2 be the direct product of Lie algebroids. Then the projections π i :

E 1 × E 2 → E i (i ∈ ¶1, 2♢
) are anchor preserving vector bundle morphisms over pr i :

N 1 × N 2 → N i .
Remarks 3.9.6. To clarify:

π i project to E i → N i as Lie algebroid, not onto pr * i E i → N 1 × N 2 .
However, extended to sections, π i maps to Γ(pr * i E i ); recall Remark 3.1.10.

Proof of Lemma 3.9.5. π i are clearly vector bundle morphisms by deĄnition. Denote with p i the projection of the bundle

E i p i → N i , similarly p the projection of E 1 × E 2 p → N 1 × N 2 , then p i • π i = pr i • p by deĄnition, i.e. using that E 1 × E 2 = pr * 1 E 1 ⊕ pr * 2 E 2 .
Hence, π i are vector bundle morphisms over pr i . Therefore we only need to check the anchor-preservation, that is, observe that with precisely the same arguments

Dpr 1 : pr * 1 TN 1 ⊕ pr * 2 TN 2 → TN 1 , (X, Y ) → X
is a vector bundle morphism over pr 1 as it is also well-known, similarly for Dpr 2 . 5 Then

(Dpr i • ρ E 1 ×E 2 )(µ 1 , µ 2 ) = Dpr i (ρ E 1 ×E 2 (µ 1 , µ 2 )) = Dpr i (pr * 1 ρ E 1 )(µ 1 ), (pr * 2 ρ E 2 )(µ 2 )  = (pr * i ρ E i )(µ i ) = (pr * i ρ E i • π i )(µ 1 , µ 2 ) for all (µ 1 , µ 2 ) ∈ Γ(E 1 × E 2 )
. Thus, π i is anchor-preserving; also recall Remark 3.1.10. ■ By Cor. 3.5.7 we can therefore also make pullbacks of Lie algebroid connections along those projections. As a conclusion of this section, let us summarize and introduce the following. Remark 3.9.7: Products of inherited structures

Let (E 1 , [•, •] E 1 , ρ 1 ) → N 1 and (E 2 , [•, •] E 2 , ρ 2 ) → N 2 be
two Lie algebroids over two smooth manifolds N 1 and N 2 , and let E 1 ×E 2 be the direct product of Lie algebroids. Furthermore, let π i (i ∈ ¶1, 2♢) be the projections E 1 × E 2 → E i as in Lemma 3.9.5. Then, roughly in general, if we have some object B i on E i , then we deĄne their product by

B 1 × B 2 := pr * 1 B 1 ⊕ pr * 2 B 2 , (3.79)
in case there is a well-deĄned notion for pr * i B i . This is of course well-deĄned for tensors, i.e.

B i ∈ 𝒯 r s (E i ) (r, s ∈ N 0 ). Another examples are vector bundle connections B i := ∇ i on E i , or E i -connections B i := E i ∇ on vector bundles V i → N i
by using Cor. 3.5.7. Especially the latter means that we always canonically use π i for the pullbacks of E i -connections, and observe

pr * i E i ∇  (µ 1 ,µ 2 ) (pr * i v) = pr * i E i ∇ µ i v  for all v ∈ Γ(V i ) and (µ 1 , µ 2 ) ∈ Γ(E 1 × E 2 ).
Thence, exactly what one naturally expects, for example Ťmixed terms are zeroŤ, that is, for example

pr * 1 E 1 ∇  (0,µ 2 ) (pr * 1 v) = 0.
That is of special usage if one uses that Γ(E 1 ) ⊕ Γ(E 2 ) generates Γ(E 1 × E 2 ) and that the mentioned structures are uniquely given by how they act on Γ(E 1 ) ⊕ Γ(E 2 ); also recall Lemma 3.9.1. So, one just needs to take a frame induced by frames of E i , and if a given structure restricts in that frame to a structure on E i , if just using the part of the frame induced by E i , and has no Ťmixed termsŤ, then one knows that this object can be written as direct product. All of that above similarly for structures given by TN i , and structures involving the tangent bundles and the E i as in the case of the anchors. For example, let us have vector bundle connections ∇ i on E i , then we have the induced basic connections ∇ i,bas . We have a vector bundle connection on

E 1 × E 2 by ∇ := ∇ 1 × ∇ 2 ,
whose curvature also splits as it is well-known (trivial to check with a frame induced by frames of E 1 and E 2 ). With ∇ 1,bas × ∇ 

∇ 1 × ∇ 2  bas = ∇ 1,bas × ∇ 2,bas and R bas ∇ 1 ×∇ 2 = R bas ∇ 1 × R bas ∇ 2 .
Similarly the exterior covariant derivatives of ∇ 1 ×∇ 2 and ∇ 1 × ∇ 2 bas split on products of forms ω i ∈ Ω p i ,q i (N, E; E) (p i , q i ∈ N 0 ) given by

ω 1 × ω 2 := pr ! 1 ω 1 ⊕ pr ! 2 ω 2 . (3.80)
The differentials of Dpr i are projections T(N 1 × N 2 ) → TN i such that there is not really a signiĄcant distinction between pr * i and pr ! i . This is why we are not going to clarify in such situations whether the product is using pullbacks in sense of sections or forms. It will be clear by context.

Splitting theorem for Lie algebroids

Using the last section, one can locally formulate Lie algebroids as direct products of certain Lie algebroids. Let us study that, but Ąrst we need some basic notions; we are mainly following [START_REF] Cannas | Geometric models for noncommutative algebras[END_REF] now. 

Let V 1 π 1 → N 1 and V 2 π 2
→ N 2 be vector bundles over smooth manifolds N 1 and N 2 , respectively. Also let P : V 1 → V 2 be a continuous vector bundle morphism over some continuous map f :

N 1 → N 2 , i.e. π 2 • P = f • π 1 .
We call a point p ∈ N 1 a regular point if there is an open neighbourhood around p onto which rk(P ), the rank of P , is constant. Singular points are points p ∈ N 1 which are not regular.

In our case P will be the anchor ρ, and since ρ is a homomorphism we know that the image of ρ, Im(ρ), is closed under the Lie bracket of the tangent bundle such that we expect a foliation related to the image of ρ by the Frobenius Theorem; however, since the rank of an anchor is not constant as we pointed out earlier, the foliation induced by the image of the anchor is a singular foliation. Formally, this is proven as a more general Frobenius theorem as also discussed in [2, discussion after the deĄnition in §16.1; page 113]; also see [9, beginning of §3.1]. Essentially, one gets still a foliation if a subset of the tangent bundle is closed under the Lie bracket, but the foliation is singular (non-constant dimension of the leaves). We are interested into those leaves of the anchor, also called orbits, such that we need to study the rank of ρ. There is a statement about that the amount of singular points is ŤsmallŤ. This follows by the fact that sup x∈U (rk(P ))(x) =: l < ∞ by the boundedness of rk(P ) and w.l.o.g. we can say that l ∈ N 0 by the N 0 -valuedness of rk(P ); there must be a y ∈ U such that l = (rk(P ))(y) since for any other upper bound l ′ ∈ N 0 of the rank on U , for which there is no y ∈ U with l ′ = (rk(P ))(y), one can lower l ′ by 1 such that l ′ -1 is still an upper bound (follows again by the N 0 -valuedness). This procedure is repeated until one gets an upper bound which is the value of some element in U . Thus, the supremum is also a maximum. Thence

∀x 0 ∈ N 1 \ S : ∀ open neighbourhoods U of x 0 : ∃y ∈ U : y ∈ S locmax = S reg ⇒ x 0 is an accumulation point of S reg ⇒ N 1 \ S ⊂ S ⇒ S reg = N 1 ,
where S denotes the closure of S = S reg . ■ Remarks 3.10.3. This means, assuming N 1 is connected, one has Ťwalls of measure zeroŤ of singular points between the connected components of the set of all regular points, i.e. between zones of different rank of P . By the previous proof one can also see that the rank of P is locally not maximal at a singular point.

Around regular points of ρ, its distribution is also an integrable foliation since the rank is constant. In general the natural question arises if one can split the Lie algebroid structure locally along this distribution, in sense of Ťorbital plus transversal structureŤ. Indeed, there are several statements about such splitting theorems, starting with the important splitting theorem of Poisson manifolds by Weinstein as in [2, Theorem 4.2; page 19], another splitting theorem for Lie algebroids can be found in [START_REF] Rui | Lie algebroids, holonomy and characteristic classes[END_REF]Theorem 1.1]. If you are interested into a more general approach and theorem then see [START_REF] Bursztyn | Splitting theorems for Poisson and related structures[END_REF]; in this paper the locality is just along the foliation while it can be Ťarbitrary bigŤ along the transversal direction.

To discuss the splitting theorem for Lie algebroids would certainly exceed the work of this thesis. Hence, we will just state the most simpliĄed statement around regular points without further proof; see the listed references for a thorough discussion. Recall the discussion after Def. 3.1.27, the kernel of the anchor at a point is a Lie algebra. Around regular points this means that the kernel is a bundle of Lie algebras, Ker(ρ) → N , one makes use of that in the following statement. For the following statement also recall that two submanifolds M 1 , M 2 of N are transversal if

T p M 1 + T p M 2 = T p N for all p ∈ M 1 ∩ M 2 .
We speak of a direct transversal if the sum is a direct sum/product. Let E → N be a Lie algebroid over a connected manifold N such that N only consists of regular points of the anchor ρ. Fix a point p ∈ N , and denote with L the leaf through p, given by the foliation of ρ. Furthermore, take a submanifold S with p ∈ S and which is transversal to the foliation of the anchor and which is a direct transversal of L. Then 

ρ(∂ i ) = ∂ i , ρ(e a ) = 0, [∂ i , e a ] E = 0,
using Lemma 3.9.1. We will later deĄne the Ąeld of gauge bosons A as a form on the spacetime with values in (the pullback of) a Lie algebroid; the components of A along e a are then the massless gauge bosons, while the other ones may get mass. The Higgs Ąeld will be a smooth map of the spacetime to N , and its components along L are then the Nambu-Goldstone bosons, while the transversal components are the Higgs bosons; for this recall the discussion about the Higgs mechanism after Def. 2.3.9 and the isotropy around Def. 3.1.27.

Using such a frame we conclude this section with a short statement about the existence of parallel frames of Lie algebroid connections. Let E → N be a Lie algebroid over a smooth manifold N , and E ∇ be an E-connection on a vector bundle V → N . Moreover, assume that E ∇ ν = 0 for all ν ∈ E with ρ(ν) = 0.

Then there is locally around each regular point a frame (e a ) a of E such that

E ∇e a = 0.
Sketch of the proof. Fix a regular point p ∈ N . We just give a short sketch of the proof, using a frame around p as given in Remark 3.10.5, denoted by (f a ) a , such that a subset of the frame, denoted as (g i ) i , satisĄes ρ(g i ) = ∂ i for some local coordinate vector Ąelds (∂ i ) i of the leaf through p. The remaining part of the frame, denoted as (h α ) α , spans the kernel of the anchor, that is, ρ(h α ) = 0. Then

E ∇ f b v = ℒ ρ(fa) (v a ) f a + v a E ∇ f b f a = ℒ ρ(fa) (v a ) f a + v a ω c ab f c for all v = v a f a ∈ Γ(V ) and µ ∈ Γ(E)
, where ω c ab are smooth functions locally on N given by

ω c ab f c = E ∇ f b f a . Let us study the equation E ∇v = 0. If f b = g i , then 0 = ∂ i v a f a + v a ω c ai f c ,
that is just the standard well-known PDEs, which we can solve. However, if

f b = h α , then 0 = v a ω c aα f c ,
and that is an algebraic equation, which may or may not be solvable. By the condition E ∇ ν = 0 for all ν ∈ E with ρ(ν) = 0 we know that E ∇ hα = 0 and, so, ω c aα = 0. This resolves the problem of the algebraic equations which are now trivially satisĄed. Hence, the remaining proof of the existence of the parallel frame is then similar to Ćat vector bundle connections, making use of the vanishing mixed components of the Lie bracket as given in the third equation in Remark 3.10.5 when studying the curvature with respect to such statements, in order to allow similar arguments about parallel transport as for vector bundle connections; see the reference for the remaining proof. ■

Especially the proof emphasizes why one cannot expect in general to have a parallel frame for Ćat Lie algebroid connections. For example take an action Lie algebroid E = N × g over a smooth manifold N , related to a Lie algebra g, and denote with ∇ its canonical Ćat connection. Then the basic connection on E gives

∇ bas µ ν = [µ, ν] g
for all constant sections µ, ν ∈ Γ(N × g). Therefore the basic connection is also Ćat because it is just the Lie bracket (by the Jacobi identity); but it is a canonical Ćat connection if and only if g is abelian. If the basic connection on E has a parallel frame (e a ) a , then

∇ ρ(ea) e b = [e a , e b ] E ,
which may not necessarily hold for any frame. Since the left hand side is tensorial in e a we could then derive for all sections ν with (in that neighbourhood)

ρ(ν) = 0 that 0 = ν a [e a , e b ] E .
However, the important piece of information in this work is to know that the basic connection is in general not the canonical Ćat connection for action Lie algebroids if ∇ is already the canonical Ćat connection.

Lie algebra bundles

Of special importance are the Lie algebra bundles (LABs), deĄned in Def. 3.1.20. As Lie algebroids they are rather easy since the anchor is zero. But they will still play an important role later; also the kernel of each anchor is a bundle of Lie algebras around regular points, which is why it is important to study those. LABs are a special case of bundle of Lie algebras, but we will see later why we are mainly interested into those.

We will summarise the most important results of this section in Ex. 3.11.15.

Notions similar to Lie algebras

Many constructions related to Lie algebras carry over to LABs. We will explain why. Let K → N be an LAB over a smooth manifold N with Ąbre type g as Lie algebra. Moreover, let h be a Lie characteristic subalgebra of g, that is, a subalgebra of g such that φ(h) = h for all Lie algebra automorphism φ : g → g.

Then there is a well-deĄned sub-LAB L of K, that is, a subbundle L of K which is also an LAB such that each LAB chart ψ : That is trivial. The essential thing to note is that we need φ(h) = h for all Lie algebra automorphisms φ : g → g as a condition for gluing the canonical construction of a sub-LAB in given a trivialization, i.e. it is trivial to construct a sub-LAB for a trivial LAB, and for gluing those constructions it is important that each LAB chart can restrict to a Lie algebra isomorphism L♣ U → U × h corresponding to the same subalgebra h. To make this possible, the local images/restrictions must be stable under transition maps in case two LAB charts of K overlap in some open neighbourhood. The transition maps are Lie algebra automorphisms, and, so, if two overlapping LAB charts of K restrict as stated, then their transition map is in alignment with this due to φ(h) = h for all Lie algebra automorphisms φ : g → g.

K♣ U → U × g restricts to an LAB chart L♣ U → U × h,
Hence, restricting the inverse of each LAB chart of K to U × h deĄnes a subbundle L of K, such that each Ąbre is essentially the subalgebra h and its bracket is canonically the restriction of the Ąeld of Lie brackets of K; all of that is well-deĄned by the previous paragraph, and that gives an LAB structure on L. ■ With this proposition we can quickly generalize certain constructions of Lie algebras to the level of LABs. For example, possible subalgebras h of a Lie algebra g with φ(h) = h for all Lie algebra automorphisms φ : g → g are trivially, due to that φ is a homomorphism of brackets, the centre Z(g) of g and [g, g] g , the corresponding sub-LABs are denoted by Z(K) and [K, K] K , respectively; we especially need the former. Moreover, the sections of Z(K) are also the centre of the Lie algebra Γ(K). Another important LABs will be related to Lie bracket derivations Der(g) of a Lie algebra g; those are as usual deĄned as those endomorphisms T ∈ End(g) of g such that

Z(g) Z(K)

T [x, y] g  = [T (x), y] g + [x, T (y)] g
for all x, y ∈ g. Recall, that we derived the derivations of a vector bundle V → N , denoted by 𝒟(V ), whose anchor was denoted by a and its kernel is trivially given by End(V ). Since the rank of End(V ) is constant, so, a has constant rank, and the kernel of anchors around regular points is a bundle of Lie algebras, we can conclude that End(V ) is an LAB, also because of that the Lie algebra Ąbre type is trivially given by End(W ) where W is the Ąbre type of of V .

In case of V = K an LAB over N , we have an LAB with Ąbre type End(g), and Der(g) is a subalgebra as it is well-known and trivial to check. Now let φ ∈ Aut(g), then take T ∈ Der(g), and observe for φ

• T • φ -1 that φ • T • φ -1  [x, y] g  = (φ • T )  φ -1 (x), φ -1 (y) g  = φ  T φ -1 (x)  , φ -1 (y) g + φ -1 (x), T φ -1 (y)  g  = φ • T • φ -1  (x), y g + x, φ • T • φ -1  (y) 
g for all x, y ∈ g. Thus, φ • T • φ -1 ∈ Der(g); similar for the inverse of φ such that φ • Der(g) • φ -1 = Der(g). The conjugation with φ is just a certain type of elements in Aut End(g) such that it looks like that we cannot yet use Prop. 3.11.1. However, the proof of Prop. 3.11.1 was just about transition maps and in case of End-bundles the typical atlas a has such transition maps as we know in general, which is why we can conclude similarly as in the proof of Prop. 3.11.1 that there is a well-deĄned sub-LAB Der(K) of End(K) with Ąbre type Der(g).

Der(g) Der(K)

N

There is a special set of derivations, the ideal of inner derivations ad(g) of g; that is, an inner derivation is of the form ad(x) for an x ∈ g. It is trivially a derivation by the Jacobi identity, and an ideal of Der(g) by

[ad(x), T ] Der(K)  (y) = [x, T (y)] g -T [x, y] g  =[T (x),y] g +[x,T (y)] g = -ad T (x) (y)
for all x, y ∈ g and T ∈ Der(g). As above, observe that for all φ ∈ Aut(g) we have

φ • ad(x) • φ -1  (y) = φ  x, φ -1 (y) g  = ad φ(x) (y),
hence, the discussed conjugation above restricts to inner derivations. Therefore we can apply the same argument as above to derive that ad(g) gives rise to a sub-LAB of Der(K) and of End(K), denoted by ad(K), the ideal of inner derivations of K.

a This is also clearly its LAB atlas. Let K → N be an LAB over a smooth manifold N and L a sub-LAB of K. Then L is an ideal of K if each Ąbre of L p is an ideal of K p for all p ∈ N .

One can construct a quotient of Der(K) over ad(K) in the usual way, but we need such quotients a bit more general. For this we need to discuss extensions of tangent bundles where LABs play an important role. Those are best described as certain short exact sequences. Remarks 3.11.8.

Extensions of tangent bundles with Lie algebra bundles

• As in this deĄnition, we will use those sequences also to deĄne the corresponding notation of the Lie algebroid morphisms, in order to avoid separately writing Ť[. . . ] where ι : K → E is a Lie algebroid morphism [. . . ]Ť. We also only give the sequence, implicitly meaning that K will be an LAB and E a Lie algebroid over N without mentioning it further.

• Furthermore, ι is an injective Lie algebroid morphism, especially an embedding since it is also vector bundle morphism. Hence, ι is up to Lie algebroid isomorphisms the inclusion in this work and can be thought as such, which is why we often omit it. These notations normally emphasize that a change of the explicit description of K is possible, in that case the inclusion would be replaced by a composition of the corresponding inclusion with a Lie algebroid isomorphism; however, we will not need this.

• We will, as usual, denote the Lie bracket of E by [•, •] E , and π is its anchor ρ due to that π is anchor-preserving and that the anchor of TN is the identity. Therefore we will use the typical notation of anchors in the following instead of π; we also clearly have ι(K) = Ker(ρ) by the exactness of the sequence.

• E is a transitive Lie algebroid because ρ = π is surjective in that case; in fact, by [3, Theorem 6.5.1; page 248] each transitive Lie algebroid E is such a short exact sequence. The rank of the anchor is constant for transitive Lie algebroids such that there are only regular points and, so, the kernel of the anchor, Ker(ρ), is a bundle of Lie algebras. One can show that Ker(ρ) is also a Lie algebra bundle by Thm. 5.1.1; the essential trick is to take a vector bundle morphism χ : TN → E with ρ•χ = 1 TN , and then to deĄne a connection ∇ on Ker(ρ) by ad•χ, i.e. ∇ X ν := [χ(X), ν] E for all X ∈ X(N ) and ν ∈ Ker(ρ). This connection will be a Lie bracket derivation of Ker(ρ) such that Thm. 5.1.1 can be used. We will not prove this, since we are not going to need it, hence, see the reference; however, the essential calculations will be done later in Section 5.1. Moreover, it is useful for the following constructions to keep this information in mind, in order to understand why it is a useful simpliĄcation to assume transitive Lie algebroids.

• So, in our case, extensions are equivalent to transitive Lie algebroids, such that one may wonder about the different name. Often, especially in Section 5.1, we will have a given K and N , then there is the question whether there is an E in the sense of an extension involving K and TN . Thence, the idea is that E extends TN by K in sense of Lie algebroids. The different name here is especially to emphasize a different context. Moreover, the idea of extensions can be generalized in the sense of replacing TN by an arbitrary Lie algebroid as in [ Let V → N be a vector bundle over a smooth manifold N . Then 𝒟(V ) with anchor a describes an extension as a transitive Lie algebroid as we have seen,

End(V ) 𝒟(V ) TN. a (3.83)
By deĄnition, a vector bundle connection ∇ of V is then a transversal of (3.83), and each transversal a connection.

In the case of V = K an LAB, we can deĄne 𝒟 Der (K) as the subset of those derivations generated by sections T ∈ Γ(𝒟(K)) with

T ([µ, ν] K ) = [T (µ), ν] K + [µ, T (ν)] K for all µ, ν ∈ Γ(K). Since [•, •] 𝒟(K)
is just deĄned as a commutator, it follows as trivial as for Der(g) of a Lie algebra g that Γ(𝒟 Der (K)) is a subalgebra of Γ(𝒟(K)); and at each point p ∈ N we have that 𝒟 Der (K) is a subspace of 𝒟(K). It is also a Lie algebroid, whose structure is inherited by 𝒟(K); for this take a connection ∇ on K which is a Lie bracket derivation, see Thm. 5.1.1 for its existence later. Then deĄne a map

TN × Der(K) → 𝒟 Der (K), (X, A) → ∇ X + A,
which is clearly well-deĄned because of the fact that the difference of two connections is always an element L of Ω 1 (N ; End(K)); if then both of these connections are Lie bracket derivations, then so also L such that L ∈ Ω 1 (N ; Der(K)). Hence, ∇ X + A ∈ 𝒟 Der (K). As in the proof of Prop. 3.3.5, see also Lemma 3.3.7, this deĄnes an isomorphism of vector spaces at each point, and as for 𝒟(K) this leads to that 𝒟 Der (K) has constant rank and it admits a transitive Lie algebroid structure with precisely the same arguments as for general derivations; since this structure is inherited by 𝒟(K), we may say that 𝒟 Der (K) is a transitive Lie subalgebroid. The kernel of its anchor, a♣ 𝒟 Der (K) , consists by deĄnition of those elements of End(K) which are also Lie bracket derivations, so, the kernel is Der(K).

Therefore we arrive at another extension, basically the restriction of (3.83) onto 𝒟 Der (K),

Der(K) 𝒟 Der (K) TN, a (3.84) 
and also here, a vector bundle connection of K which is also a Lie bracket derivation is equivalent to a transversal for (3.84).

As for Lie algebras, we want to take the quotient of Der(K) and 𝒟 Der (K) over ad(K). That is, as usual, done over ideals of Lie algebroids, which shall be subsets of the kernel of the anchor; the reason behind this is to avoid problems in quotients with respect to the anchor. The typical constructions for quotients will then apply because the anchor of an equivalence class is going to be independent of the chosen representative. ι ρ be an extension and L an ideal of E. Furthermore, we denote with E ι(L) and K L the quotient bundle as vector bundles, whose natural projections we denote by ♯ : E → E ι(L), µ → µ + ι(L), and ♯♣ K , respectively. Then naturally deĄne 

K L ι → E ι(L), (3.86) ♯♣ K (µ) → ι ♯♣ K (µ) := ♯ ι(µ) , ( 3 
E ι(L) [♯(ν), ♯(η)] E ι(L) := ♯([ν, η] E ) (3.90) for all ν, η ∈ Γ(E). Then K L E ι(L) TN ι ρ
is an extension such that ♯ is a surjective submersion with kernel ι(L).

Remark 3.11.13

We call E ι(L) the quotient (transitive) Lie algebroid of E over L. By deĄnition ♯ is a Lie algebroid morphism, as is ♯♣ K by Eq. (3.87) since ι and ι are injective Lie algebroid morphisms and embeddings.

Sketch of the proof of Prop. 3.11.12.

The proof is straightforward because the constructions are the typical ones for such structures.

We just give a sketch, one essentially needs to check that everything is well-deĄned, that we have a Lie bracket in combination with an anchor and that the sequence of the quotients is exact. First of all, everything has constant rank such that the taken quotients as vector bundles are valid. Moreover, ι is well-deĄned because ι is injective by the exactness of the sequence, hence, let µ, µ

′ ∈ K with ♯♣ K (µ) = ♯♣ K (µ ′ ) ♯ ι(µ) = ♯ ι(µ -µ ′ ) ∈ι(L) +ι(µ ′ ) = ♯ ι(µ ′ ) , such that ι ♯♣ K (µ) = ι ♯♣ K (µ ′ ) ; similarly for ν, ν′ ∈ E with ♯(ν) = ♯(ν ′ ) ρ(ν) = ρ(ν -ν′ ∈ ι(L) ⊂ ι(K) +ν ′ ) = ρ(ν ′ ), thus, ρ ♯(ν) = ρ ♯(ν ′ ) , and, Ąnally for ν, ν ′ , η, η ′ ∈ Γ(E) with ♯(ν) = ♯(ν ′ ) and ♯(η) = ♯(η ′ ), ♯ [ν, η] E = ♯ [ν -ν ′ ∈ι(L)⊂ι(K) +ν ′ , η -η ′ ∈ι(L)⊂ι(K) +η ′ ] E = ♯ ν ′ , η ′ E ,
using that the kernel of the anchor is an ideal of the Lie bracket, therefore also [♯(ν), ♯(η)]

E ι(L) = [♯(ν ′ ), ♯(η ′ )] E ι(L)
. The (bi-)linearity of all those maps follows trivially, the bracket is also clearly anti-symmetric, and

[♯(ν), f ♯(η) =♯(f η) ] E ι(L) = ♯ [ν, f η] E = ♯ f [ν, η] E + ℒ ρ(ν) =ℒ ρ(♯(ν)) (f ) η = f ♯ [ν, η] E + ℒ ρ(♯(ν)) (f ) ♯(η) = f [♯(ν), ♯(η)] E ι(L) + ℒ ρ(♯(ν)) (f ) ♯(η)
for all f ∈ C ∞ (N ). The Jacobi identity is clearly inherited by [•, •] E , so, it is a Lie bracket and ρ is the anchor by Prop. 3.1.17. By construction, ι is still injective, that is, assume

ι ♯♣ K (µ) = ι ♯♣ K (µ ′ ) for two Ąxed µ, µ ′ ∈ K, then 0 = ♯ ι(µ -µ ′ ) , thus, µ -µ ′ ∈ L such that ♯♣ K (µ) = ♯♣ K (µ ′
), which proves the injectivity of ι. Moreover,

ρ ι ♯♣ K (µ) = ρ ♯ ι(µ) = ρ ι(µ) = 0
for all µ ∈ K; the anchor ρ is clearly surjective by ρ • ♯ = ρ and because the quotient is just over a subbundle of K = Ker(ρ), that is, for all X ∈ X(N

) let ν ∈ Γ(E) such that X = ρ(ν), then ρ ♯(ν) = ρ(ν) = X.
Thence, the sequence of the quotients is exact. That ♯ is a surjective submersion with kernel ι(L) follows trivially by construction as natural projection of quotient spaces. ■ Let K → N be an LAB over a smooth manifold N . Then the main results of Section 3.11 can be summarized in the following commuting diagram

Z(K) Z(K) K K Der(K) 𝒟 Der (K) TN Out(K) Out(𝒟 Der (K)) TN ad ♯ + ♯ a a (3.94)
where both rows and columns are short exact sequences of Lie algebroid morphisms, especially the last two rows are extensions, and the diagram serves as a deĄnition of the notation of the new Lie algebroid morphisms, for example ♯ (+) denotes the projection of derivations into the space of outer derivations.

Generalized gauge theory

The purpose of the following sections is now to introduce a new and more general formulation of gauge theory which we have introduced in Chapter 2. Especially recall the section about the inĄnitesimal gauge transformation using Lie algebra connections, Section 2.5. Again, we do not want to assume integrability, and so we only compare the new theory with a classical gauge theory whose principal bundle is trivial and can thus be avoided completely by Ąxing a global gauge. 1In that chapter we have used a Ťbookkeeping trickŤ, denoted by ι;2 that is, generalized, that we had a spacetime M and the Higgs Ąeld Φ is a smooth map M → N . The physical quantities like the Ąeld strength then had values in ev * K and hence in Φ * K after point evaluation at Φ, where ev was the evaluation map of Def. 2.5.10 and K was some vector bundle over N (like the Lie algebra); also recall Remark 2.5.20 where we argued that one can do something similar for the Ąeld of gauge bosons and its inĄnitesimal gauge transformation, we are going to do so, thus, viewing the Ąeld of gauge bosons of the classical formulation as forms with values in a Φ-pullback of a trivial Lie algebra bundle. Moreover, we used g-connections, where g is a Lie algebra acting on N via a Lie algebra action γ. By Prop. 3.1.23 action Lie algebroids as bundle over N are a good candidate describing that notion, or more general, Lie algebroids and the notion of Lie algebroid connections. This is why we are going to deĄne the following physical quantities as having values in some pullback using the evaluation map and Φ as for the Ąeld of gauge bosons, why we are going to use a Lie algebroid E over N instead of a Lie algebra g, and why we will compare the following deĄnitions with action Lie algebroids in order to allow a comparison with Chapter 2. We will see that action Lie algebroids with their canonical Ćat connection will be the standard formulation of gauge theory.

Although we speak of Φ as the Higgs Ąeld it can be of course any other Ąeld with a similar Lagrangian, since we never really discuss the potential term. The Higgs Ąeld is just a main example.

If you are interested into the calculations of this and the following chapter, then read Appendix A Ąrst and the proofs listed there; certain steps of calculations are explained there which will be simply used in the following without further explanation. We also need a similar notation as in Def. 2.3.1, but extended to more than two arguments. Let l ∈ N and E 1 , . . . E l+1 → N be vector bundles over a smooth manifold N , and

F ∈ Γ l m=1 E * m  ⊗ E l+1 
. Then we deĄne the graded extension of F as

Ω k 1 (N ; E 1 ) × • • • × Ω k l (N ; E l ) → Ω k (N ; E l+1 ), (A 1 , . . . , A l ) → F (A 1 ∧ , . . . ∧ , A l ),
where k := k 1 + . . . k l and k i ∈ N 0 for all i ∈ ¶1, . . . , l♢. F (A 1 ∧ , . . . ∧ , A l ) is deĄned as an element of Ω k (N ; E l+1 ) by

F (A 1 ∧ , . . . ∧ , A l )(Y 1 , . . . , Y k ) := 1 k 1 ! • • • • • k l ! σ∈S k sgn(σ) F A 1 Y σ(1) , . . . , Y σ(k 1 )  , . . . , A l Y σ(k-k l +1) , . . . , Y σ(k)  for all Y 1 , . . . , Y k ∈ X(N )
, where S k is the group of permutations of ¶1, . . . , k♢ and sgn(σ) the signature of a given permutation σ. ∧ , may be written just as a comma when a zero-form is involved.

Locally, with respect to given frames e

(i) a i  a i
of E i , this deĄnition has the form

F (A 1 ∧ , . . . ∧ , A l ) = F e (1)
a 1 , . . . , e (l)

a l  ⊗ A a 1 1 ∧ . . . ∧ A a l l (4.1)
for all

A i = A a i i ⊗ e (i)
a i , where A a i i are k i -forms on N .

Remarks 4.0.2.

Using this notation, one has a useful way to compare pullbacks of forms, denoted by an exclamation mark, and pullbacks of sections, denoted by a star. That is, let Φ ∈ C ∞ (M ; N ) and F ∈ Ω l (N ; W ) for W → N a vector bundle, then

Φ ! F = 1 l! (Φ * F )(DΦ ∧ , . . . ∧ , DΦ l times ) (4.2)
by using the anti-symmetry of F and Def. 4.0.1, i.e.

1 l! (Φ * F )(DΦ ∧ , . . . ∧ , DΦ)  (Y 1 , . . . , Y l ) p = 1 l! σ∈S l sgn(σ) (Φ * F ) DΦ Y σ(1)  , . . . , DΦ Y σ(l)  =sgn(σ) (Φ * F )(DΦ(Y 1 ),...,DΦ(Y l )) p = 1 l!   σ∈S l 1   =l! F Φ(p) D p Φ Y 1 ♣ p  , . . . , D p Φ Y l ♣ p  = Φ ! F  (Y 1 , . . . , Y l ) p for all p ∈ M and Y 1 , . . . , Y l ∈ X(M ).
In case of antisymmetric tensors we of course preserve that.

Proposition 4.0.3: Graded extensions of antisymmetric tensors

Let E 1 , E 2 → N be real vector bundles of Ąnite rank over a smooth manifold N , F ∈ Ω 2 (E 1 ; E 2 ). Then

F (A ∧ , B) = -(-1) km F (B ∧ , A) (4.3) for all A ∈ Ω k (N ; E 1 ) and B ∈ Ω m (N ; E 2 ) (k, m ∈ N 0 ). Similarly extended to all F ∈ Ω l (E 1 ; E 2 ).
Remarks 4.0.4. This is a generalization of similar relations just using the Lie algebra bracket Proof.

Trivial by using Eq. (4.1). ■

Space of Ąelds

Before we can deĄne quantities like the Ąeld strength, we need to deĄne and study the inĄnitedimensional manifold of the arising Ąelds as we did in the classical situation; recall Def. 2.4.1.

Because of the non-triviality of the following bundles we need to take a closer look at this space.

Recall that we assume convenient settings when treating inĄnite-dimensional objects.

DeĄnition 4.1.1: Space of Ąelds

Let M, N be two smooth manifolds and E → N a Lie algebroid. Then we denote the space of Ąelds by

M E := M E (M ; N ) := (Φ, A) Φ ∈ C ∞ (M ; N ) and A ∈ Ω 1 (M ; Φ * E) (4.4)
which we sometimes view as a Ąbration over C ∞ (M ; N )

M E (M ; N ) C ∞ (M ; N )
where the projection is given by M E (M ; N ) ∋ (Φ, A) → Φ. We will refer to A ∈ Ω 1 (M ; Φ * E) as the Ąeld of gauge bosons and Φ just as a physical Ąeld of this theory.

Let us look at the tangent space of M E (M ; N ); we are interested into that because of the identiĄcation of inĄnitesimal gauge transformations as tangent vectors. Also recall the discussion about the double vector bundle structure before Def. 3.3.11 which we need now again. where π TE denotes the projection of the vector bundle TE → E.

Remark 4.1.3: Total situation as commuting diagram

This implies that we have in total a TE TN

M E N Dπ π TE π TN A 0 (Y ) Φ 0 𝓋 𝒶(Y ) π for all (Φ 0 , A 0 ) ∈ M E (M ; N ), (𝓋, 𝒶) ∈ T (Φ 0 ,A 0 ) M E (M ; N ) and Y ∈ X(M ), that is, π A 0 (Y ) = Φ 0 , ( 4.6) 
π TN (𝓋) = Φ 0 , (4.7)

π TE (𝒶) = A 0 , ( 4.8) 
Dπ 𝒶(Y ) = 𝓋 (4.9) for all Y ∈ X(M ), where the projections of the vector bundles TE → E and TN → N are denoted by π TE and π TN , respectively.

a Recall that we view sections of pullback bundles also as sections along maps; see Section 1.1.

Remarks 4.1.4. Especially for Eq. (4.9) recall the discussion about the double vector bundle structure before Def. 3.3.11. That is,

𝒶(f Y + hZ) = f • 𝒶(Y ) h • 𝒶(Z)
for all Y, Z ∈ X(M ) and f, h ∈ C ∞ (M ), because 𝒶 has values in TE viewed as a vector bundle over TN . Therefore also

Dπ 𝒶(f Y + hZ) = Dπ 𝒶(Y ) .
This is also in alignment with Eq. (4.8) although it is about the vector bundle TE → E, so,

π TE 𝒶(f Y + hZ) = π TE f • 𝒶(Y ) h • 𝒶(Z) = f π TE 𝒶(Y ) + h π TE 𝒶(Z) = A 0 f Y + hZ . Proof of Prop. 4.1.2.
We identify the tangent spaces of (Φ 0 , A 0 ) ∈ M E (M ; N ) with the set consisting of elements of the form

d dt t=0 γ,
where γ : I → M E (M ; N ) is a curve with γ(0) = (Φ 0 , A 0 ) and I an open interval of R around 0. Since we do not have any conditions on M E (M ; N ) besides that A 0 has values in Φ * 0 E, we will see that we just need to describe where the ŤvelocityŤ of the curves live, and surjectivity will then just follow by that we always can Ąnd curves with arbitrary initial conditions on position and velocity. Let us write γ = (Φ, A), t → γ(t) = (Φ t , A t ), with

Φ t ∈ C ∞ (M ; N ), Φ t=0 = Φ 0 , A t ∈ Ω 1 (M ; Φ * t E), A t=0 = A 0
for all t ∈ I. As usual, the tangent space consists of elements of the form

 d dt t=0 [t → Φ t ], d dt t=0 [t → A t ]  .
Hence, for all p ∈ M we have a curve Φ(p

) := [t → Φ t (p)] in N with d dt t=0 (Φ(p)) ∈ T Φ 0 (p) N, such that for all curves Φ d dt t=0 [t → Φ t ] ∈ Γ(Φ * 0 TN ),
and besides Φ t=0 (p) = Φ 0 (p) there is no other condition on Φ(p), thus, for all v ∈ T Φ 0 (p) N there is a curve Φ(p) such that its Ťinitial velocityŤ is v, i.e.

v = d dt t=0 Φ(p) ,
and extending this argument we can achieve that for all 𝓋 ∈ Γ(Φ * 0 TN ) there is a curve Φ such that

𝓋 = d dt t=0 [t → Φ t ],
Now we Ąx such a curve Φ for a Ąxed 𝓋. Let us look at the curve A(Y

) := [t → A t (Y )] for all Y ∈ X(M ), that is A(Y ) : I × M → E, (t, p) → A t,p (Y p ) with π • A(Y ) = Φ, where π is the projection of E onto N. So, T Φ 0 (p) N ∋ 𝓋 p = d dt t=0 π(A p (Y p )) = D A 0 (Y )♣p π  d dt t=0 A p (Y p )  = D A 0 (Y )♣p π(𝒶 p (Y p )),
where

𝒶 p (Y p ) := d dt t=0 [t → A t,p (Y p )] ∈ T A 0 (Y )♣p E
for all p ∈ M . Hence, we can also see 𝒶 equivalently as a form on M with values in TE such that

π TE (𝒶) = A, Dπ 𝒶(Y ) = 𝓋
for all Y ∈ X(M ), and we view 𝒶 as an element of Ω 1 (M ; 𝓋 * TE), too, where we view TE as the vector bundle TE Dπ → TN ; that is because of the following: Let Z ∈ X(M ) be another vector Ąeld and f, h ∈ C ∞ (M ), then

𝒶 p (f (p) Y p + h(p) Z p ) = d dt t=0 [t → A t,p (f (p) Y p + h(p) Z p )] = d dt t=0 [t → f (p) A t,p (Y p ) + h(p) A t,p (Z p )] = f (p) • 𝒶 p (Y p ) h(p) • 𝒶 p (Z p ), because of D Ap(Yp) π(𝒶 p (Y p )) = 𝓋 p = D Ap(Zp) π(𝒶 p (Z p ))
and since [t → A t,p (Y p )] and [t → A t,p (Z p )] are the representing curves of 𝒶 p (Y p ) and 𝒶 p (Z p ) as tangent vectors, respectively, satisfying

π(A t,p (Y p )) = Φ t (p) = π(A t,p (Z p )),
such that we precisely get the deĄnitions of • and .

As before, we can conclude that we can Ąnd a curve A for all 𝒶 ∈ Ω 1 (M ; 𝓋 * TE) such that

𝒶 = d dt t=0 A.
(In this proof, we make use of the homotopy lifting property of Ąbrations such that we can Ąnd an A(Y ) : I × M → E for each Φ : I × M → N for all (Φ 0 , A 0 ) ∈ M E (M ; N ) with the suitable properties.) ■ Think of (𝓋, 𝒶) again as candidates for the inĄnitesimal gauge transformations, for which we wrote (δΦ, δA) in Chapter 2; also recall Remark 2.5.11. But other than in Remark 2.5.11 we cannot assume canonical Ćat connections now which is why the last result shows that we cannot view (𝓋, 𝒶) as an element of M E (M ; N ) in general, thus, we changed the notation to (𝓋, 𝒶) for now. So, we do not have any canonical horizontal distribution given, and therefore let us study the vertical structure Ąrst.

Recall that there is the notion of a vertical bundle for Ąbre bundles F 

V (Φ,A) M E (M ; N ) ∼ = (𝓋, 𝒶) 𝓋 = 0 ∈ Γ(Φ * TN ), 𝒶 ∈ Ω 1 (M ; Φ * E) ∼ = Ω 1 (M ; Φ * E).
p (Y p ) ∈ T Ap(Yp) E (p ∈ M , Y ∈ X(M )) we have D Ap(Yp) π(𝒶 p (Y p )) = 0 ⇔ 𝒶 p (Y p ) ∈ V Ap(Yp) E ∼ = E Φ(p) .
Thus, we can view 𝒶 equivalently as an element of Ω 1 (M ; Φ * E), so,

V (Φ,A) M E (M ; N ) ∼ = (𝓋, 𝒶) 𝓋 = 0 ∈ Γ(Φ * TN ), 𝒶 ∈ Ω 1 (M ; Φ * E) ∼ = Ω 1 (M ; Φ * E).

■

That is, we can in general only expect to have (𝓋, 𝒶) ∈ M E (M ; N ) if at least 𝓋 = 0. Recall that we identiĄed this component with the inĄnitesimal gauge transformation of the Higgs Ąeld which was proportional to the Lie algebra representation, see Def. 2.4.2. Even when we do not have yet the general deĄnition of that inĄnitesimal gauge transformation, it is natural to assume that this transformation is therefore only zero when there is no coupling of the gauge bosons to the Higgs Ąeld (= zero action), but in general there will be of course a coupling. As already mentioned, we circumvented that problem in Chapter 2 by choosing canonical Ćat connections; moreover, observe that this condition about 𝓋 = 0 comes from that the Ąeld of gauge bosons A has values in Φ * E, as if we would have applied the Ťbookkeeping trickŤ to A in Section 2.5, too. Thus, we are going to treat the inĄnitesimal gauge transformation of A similar to how we deĄned the inĄnitesimal gauge transformation for functionals in Section 2.5, then we also achieve that its transformation can be viewed again as an element of Ω 1 (M ; Φ * E), simplifying further calculations, without really loosing information about the transformation of A; we will explain this later. That the inĄnitesimal gauge transformation of the Higgs Ąeld is in general not a smooth map M → N will be on the other hand actually less of a problem.

But before we can make that mathematical precise, we need to deĄne at what type of functionals we are going to look at. One key step is to look at M ×M E (M ; N ) as we did in Def. 2.5.10 and afterwards. Let π i (i ∈ ¶1, 2♢) be the projection onto the i-th factor in M × M E , then

T(M × M E ) ∼ = π * 1 TM ⊕ π * 2 TM E . (4.12)
Gives rise to a bigrading of

k T * (M × M E ) (k ∈ N 0 ), k T * (M × M E ) ∼ = p,q∈N 0 p+q=k p,q T * (M × M E ) , ( 4.13) 
where

p,q T * (M × M E ) := π * 1 p T * M ⊗ π * 2 q T * M E . (4.14)
Similarly, for V a vector bundle over

M × M E , Ω k (M × M E ; V ) ∼ = p,q∈N 0 p+q=k Ω p,q (M × M E ; V ) , ( 4.15) 
with

Ω p,q (M × M E ; V ) := Γ π * 1 p T * M ⊗ π * 2 q T * M E ⊗ V . (4.16)
When V is the trivial line bundle, then we just write Ω p,q (M × M E ).

If V is instead a vector bundle over N , then we have ev * V naturally as bundle over M × M E . Then, when taking a slice through (Φ, A) ∈ M E , i.e. evaluating a form at points M × ¶Φ, A♢ while (Φ, A) ∈ M E is Ąxed,

L♣ M × ¶Φ,A♢ ∈ Ω p (M ; Φ * V ) (4.17)
for all L ∈ Ω p,0 (M × M E ; ev * V ). Similarly, the de-Rham differential splits on Ω k (M × M E ) as a differential along M and M E , d total = d M + d M E . When using exterior derivatives, then we focus on directions along M , and we will denote that de-Rham differential by d, i.e. d = d M .

Remarks 4.1.8. Do not confuse notations like Ω p,q (M × M E ; V ) with the notation given in Def. 3.8.3; it will be clear by the context which we mean, and, besides the next paragraphs, we actually will not really use Ω p,q (M × M E ; V ) as notation anymore because we only want to motivate the next and some following deĄnitions with this notation.

Eq. (4.17) is precisely the space our functionals should take values in when evaluated at (Φ, A) ∈ M E . This leads to the following deĄnition.

DeĄnition 4.1.9: Space of functionals in gauge theory

Let M, N be two smooth manifolds, E → N a Lie algebroid, and V → N a vector bundle. Then the space of functionals ℱ k E (M ; * V ) (k ∈ N 0 ) is deĄned as

ℱ k E (M ; * V ) := Ω k,0 M × M E (M ; N ); ev * V . (4.18) If V = N × R is the trivial line bundle over N , then we just write ℱ k E (M ) instead of ℱ k E (M ; * V ).
Remarks 4.1.10. We often write for

L ∈ ℱ k E (M ; * V ) M E ∋ (Φ, A) → L(Φ, A) := L♣ M × ¶Φ,A♢ ∈ Ω k (M ; Φ * V )
especially when we do not evaluate at p ∈ M ; recall Eq. (4.17).

Example 4.1.11: Projection onto the Ąeld of gauge bosons

Besides the physical quantities which we will deĄne later, we have an important and trivial functional ϖ 2 ∈ ℱ 1 E (M ; * E) given as the projection onto the Ąeld of gauge bosons, that is

ϖ 2 (Φ, A) := A (4.19)
for all (Φ, A) ∈ M E . We will especially need this functional to deĄne the inĄnitesimal gauge transformation of A and in several combinations with other functionals. Hence, when we just write D, then we mean precisely that.

For the following discussion and deĄnitions we use a similar convention of notation as in Section 3.9. That is, we have T

(M × M E ) ∼ = π * 1 TM ⊕ π *
2 TM E as in Remark 4.1.7. If we speak for example about TM , especially sections thereof, X(M ), then we mean their canonical embedding as a subalgebra of X(M × M E ); so, X ∈ X(M ) is also viewed as an element of X(M × M E ) but constant along M E . For vector bundle morphisms deĄned on T(M × M E ) we for example then also mean that forms restricted onto TM extend to maps acting on X(M ). 

(M × M E ) and Ω • (M × M E ; ev * V ) to Ω •,0 (M × M E )
and Ω •,0 (M × M E ; ev * V ) (• as placeholder for the degree), respectively. Hence, we will not need to deĄne all those notions in that setting, and, especially, Γ(ev * V ) is therefore generated by elements of the form ev * v, where v ∈ Γ(V ). Now assume we have a vector bundle connection ∇ on V , then ev * ∇ is a connection on ev * V . We want to restrict the exterior covariant derivative related to that connection just to vector Ąelds on M . Observe for all X ∈ X(M

) ⊂ X(M × M E ), with Ćow γ in M through a p ∈ M , (t, p) → γ t (p) (t ∈ I for some open interval in R containing 0), D (p,Φ,A) ev(X) = d dt t=0 ev • (γ(p), Φ, A) = d dt t=0 (Φ • γ)(p) = D p Φ(X) (4.21)
for all (p, Φ, A) ∈ M × M E , where (γ(p), Φ, A) is the Ćow of X ∈ X(M ) at (p, Φ, A), viewed as an element of X(M × M E ). So, the pushforward of X with ev at (Φ, A) is the same as the pushforward of X with Φ, thus

(ev * ∇) X (p,Φ,A) = (Φ * ∇) Xp
for all (p, Φ, A), viewing X as an element of X(M × M E ) on the left hand side and as an element of X(M ) on the right hand side. Hence, we then also have

(ev * ∇) X v (p,Φ,A) = (Φ * ∇) Xp v♣ (Φ,A)
 p for all v ∈ Γ(ev * V ), since X does not differentiate along M E , and viewing v♣ (Φ,A) := [p → v♣ (p,Φ,A) ] as an element of Γ(Φ * V ) on the right hand side. Therefore this naturally leads on one hand to an exterior covariant derivative on the space of functionals by restricting ev * ∇ to TM because then the exterior covariant derivative of (ev * ∇)♣ TM clearly restricts to ℱ • E (M ; * V ), and on the other hand

d (ev * ∇)♣ TM L  (Φ,A) = d Φ * ∇ L(Φ, A) ,
also recall Eq. (4.17). Similarly, one shows for the pullback ev

! ω of forms ω ∈ Ω k (N ; V ) that ev ! ω  (p,Φ,A) (X 1 , . . . , X k ) = Φ ! ω  p (X 1 , . . . , X k )
for all X 1 , . . . , X k ∈ X(M ). Hence, also the ev-pullback of forms restricts to a Φ-pullback of forms when Ąxing (Φ, A) and just evaluating at vector Ąelds along M .

Therefore we deĄne pullback functionals as in the following deĄnition.

DeĄnition 4.1.14: Pullbacks as functionals

Let M, N be smooth manifolds, E → N a Lie algebroid, and V → N a vector bundle. For all ω ∈ Γ(V ) we deĄne its pullback functional * v as an element of ℱ 0 E (M ; * V ) by * v := ev * v. 

d * ∇ : ℱ k E (M ; * V ) → ℱ k+1 E (M ; * V ) (4.24)
for all k ∈ N 0 . For all ω ∈ Ω k (N ; V ) (k ∈ N 0 ) we deĄne similarly its form-pullback functional ! ω as an element of ℱ k E (M ; * V ) by 

! ω := ev ! ω  k TM . ( 4 
* ∇ L  (Φ, A) = d Φ * ∇ L(Φ, A) (4.27) for all L ∈ ℱ k E (M ; * V ) (k ∈ N 0 ) and (Φ, A) ∈ M E (M ; N ).
We can also locally write, using a frame (e a ) a of V , L = L a ⊗ * e a , (4.28) using that ev-pullbacks generate Γ(ev * V ), where

L a ∈ ℱ k E (M ) = Ω k,0 (M × M E ) (restriction on open neighbourhood omitted).
The Ąrst calculation of Remark 4.1.13 also shows that we have D = Dev♣ TM as functionals, where we view Dev♣ TM as an element of ℱ 1 E (M ; * TN ) given by Eq. (4.21). This implies that we can apply Eq. (4.2), that is, 

! ω = ev ! ω  k TM (4.2) = 1 k! (ev * ω)(Dev♣ TM ∧ , . . . ∧ , Dev♣ TM ) = 1 k! ( * ω)(D ∧ , . . . ∧ , D) for all ω ∈ Ω k (N ; V ) (k ∈ N 0 ).
( * ρ)(ϖ 2 ) (Φ, A) = (Φ * ρ)(A)
for all (Φ, A) ∈ M E (M ; N ).

We have now the setup to Ąnally deĄne the physical quantities.

Physical Quantities

Let us Ąrst start with the deĄnition of the Ąeld strength. The following deĄnitions essentially are motivated by [START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF], however, we completely reformulated it with the previously-introduced notation in order to allow coordinate-free versions, also ŤfreeŤ with respect to (Φ, A) ∈ M E . Let M, N be smooth manifolds, and E → N a Lie algebroid equipped with a connection ∇ on E. We deĄne the Ąeld strength F as an element of ℱ 2 E (M ; * E) by

F := d * ∇ ϖ 2 - 1 2 ( * t ∇ρ )(ϖ 2 ∧ , ϖ 2 ), (4.29) 
that is

F (Φ, A) := d Φ * ∇ A - 1 2 Φ * t ∇ρ (A ∧ , A) (4.30) for all Φ ∈ C ∞ (M ; N ) and A ∈ Ω 1 (M ; Φ * E).
Remarks 4.2.2.

• Recall Def. 3.7.1 and Prop. 3.7.6 which imply t ∇ρ = -t ∇ bas , where ∇ bas is the basic connection, such that

F = d * ∇ ϖ 2 + 1 2 ( * t ∇ bas )(ϖ 2 ∧ , ϖ 2 ).
We are going to use this often later.

• Let us recall the deĄnition of the standard setting, recall Def. 2.3.3, and recall the bookkeeping trick before Prop. 2.5.15, which we denoted by ι: We then normally have A ∈ Ω 1 (M ; g), Φ ∈ C ∞ (M ; W ) for a given Lie algebra g and W a vector space, then the Ąeld strength is normally deĄned as

F clas (Φ, A) ≡ F clas (A) = dA a ⊗ e a + 1 2 [A ∧ , A] g (4.31)
for some given basis (e a ) a of g. g is viewed as Ťtrivial bundleŤ over M , M × g, and (e a ) a is a constant frame. Now, let us instead restrict Eq. (4.30) to an action Lie algebroid E = N × g equipped with ∇ as the canonical Ćat connection and (e a ) a a global frame of constant sections, especially ∇e a = 0. Then (Φ * e a ) a trivializes Φ * E such that Φ * E ∼ = M × g, (Φ * e a ) a describes a constant frame, especially (Φ * ∇)(Φ * e a ) = Φ ! (∇e a ) = 0, and all Φ * E-valued objects can be viewed as g-valued. In that case, write A = A a ⊗ Φ * e a , and observe that

- 1 2 Φ * t ∇ρ (A ∧ , A) = - 1 2 Φ * t ∇ρ (Φ * e a , Φ * e b ) =Φ * (t∇ ρ (ea,e b )) A a ∧ A b = 1 2 Φ * ([e a , e b ] E ) =[ea,e b ] g =const. A a ∧ A b = 1 2 [A ∧ , A] g and d Φ * ∇ A = dA a ⊗ Φ * e a -A a ⊗ Φ ! (∇e a ) = dA a ⊗ Φ * e a
for all A ∈ Ω 1 (M ; Φ * E). Hence, we get

F = ι F clas  .
As we have seen in the deĄnition of the action Lie algebroid, the anchor ρ replaces the notion of Lie algebra actions and representations such that we now use the anchor to deĄne the minimal coupling of A to Φ.

DeĄnition 4.2.3: Minimal coupling, [1, Eq. (3), Φ is denoted as X there]

Let M, N be smooth manifolds and E → N a Lie algebroid. Then we deĄne the minimal coupling D as an element of ℱ 1 E (M ; * TN ) by

D := D -( * ρ)(ϖ 2 ). ( 4 

.32)

We also say that Φ is minimally coupled to A. We also write

D(Φ, A) := D A Φ := DΦ -(Φ * ρ)(A) (4.33) for all Φ ∈ C ∞ (M ; N ) and A ∈ Ω 1 (M ; Φ * E). Remarks 4.2.4.
Restricting this to the standard situation gives back the standard deĄnition: Assume N = W where W is a vector space, E = W × g an action Lie algebroid over W , whose action is induced by a Lie algebra representation ψ : g → End(W ). Then the minimal coupling is 2) and ( 16); but a different Ąeld strength there which we will introduce later]

D A Φ p = d p Φ α ⊗ Φ * ∂ α ♣ p + ψ A p (Y ) Φ(p) for all (p, Φ, A) ∈ M × M E (M ; W ) and Y ∈ T p M ,
Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, and let κ and g be Ąbre metrics on E and TN , respectively. Also let V ∈ C ∞ (N ), which we call the potential of the Higgs Ąeld.

Then we deĄne the Yang-Mills-Higgs Lagrangian L YMH as an element of ℱ dim(M ) E (M ) by

L YMH := - 1 2 ( * κ)(F ∧ , * F ) + ( * g)(D ∧ , * D) - * ( * V ), (4.34) 
that is

L YMH (Φ, A) := - 1 2 (Φ * κ)(F (Φ, A) ∧ , * F (Φ, A)) + (Φ * g) D A Φ ∧ , * D A Φ  - * (V • Φ) (4.35)
for all (Φ, A) ∈ M E (M ; N ), where * is the Hodge star operator with respect to η.

A short summary:

Corollary 4.2.6: Standard theory as action Lie algebroid, as motivated in [1]

Let M be a spacetime with a spacetime metric η, N = W be a vector space, equipped with a Riemannian metric g on TW ∼ = W × W canonically induced by a scalar product on W , and E = N × g an action Lie algebroid for a Lie algebra g, equipped with its canonical Ćat connection ∇ and a Ąbre metric κ which constantly extends a scalar product on g. The g-action γ is induced by a Lie algebra representation ψ : g → End(W ), and we have a potential V ∈ C ∞ (W ).

Then Def. [START_REF] Mark | Mathematical Gauge Theory[END_REF] = κ(e a , e b ), hence, * κ = ι(κ) = κ a constant extension of κ; similarly for g. Thence, we arrive at the standard deĄnition of the Lagrangian, using the remarks of Def. 4.2.1 and 4.2.3,

L YMH (Φ, A) = - 1 2 κ(F (Φ, A) ∧ , * F (Φ, A)) + g D A Φ ∧ , * D A Φ  - * (V • Φ),
where g is the scalar product on W ; recall Def. 2.3.9. ■ Now let us Ąnally turn to the inĄnitesimal gauge transformation.

InĄnitesimal gauge transformations

InĄnitesimal gauge transformation of the Higgs Ąeld

We will now do precisely the same, but more general, as in Section 2.5. InĄnitesimal gauge transformations of a functional L ∈ ℱ k (M ; * V ) (k ∈ N 0 and V → N a vector bundle) are derivatives along certain directions in M E (M ; N ), while the components of these directions as vector Ąeld will be identiĄed with the inĄnitesimal gauge transformations of the corresponding Ąelds, Φ and A. We want that these transformations satisfy the Leibniz rule, and we want to study the commutator of such two transformations. In order to do that easily, we require that such a derivative keeps a functional vertical, i.e. δL ∈ ℱ k (M ; * V ), where δ denotes such a transformation, and for this we will use connections, especially ones induced by a Lie algebroid connection on V itself. We will do that by using pull-backs, especially using Cor. 3.5.9. That is, since functionals are forms on M × M E , we want to make the pullback along ev, while avoiding the issue of lifting the evaluation map to a suitable vector bundle morphism by restricting to certain vector Ąelds on M E satisfying the condition given in Cor. 3.5.9; we will see that this will precisely give the formula of the inĄnitesimal gauge transformation of the Higgs Ąeld. The arguments are precisely the same as in the discussion before Def. 2.5.12. Hence, we start now with a similar deĄnition, but, as we also mentioned in the discussion of Def. 2.5.12, the Lie algebroid used for the mentioned Lie algebroid connection on V does not need to be the same Lie algebroid used in the deĄnition of M E (M ; N ). This is why there is now a second Lie algebroid B over N , equipped with a Lie algebroid connection B ∇ on V ; but when we turn to the inĄnitesimal gauge transformation of quantities like the minimal coupling, it is useful to have E = B, which we are then going to assume. However, one may want to do a similar construction using a typical vector bundle connection on V which implies B = TN ; in order to allow those type of constructions we keep it that general for the basic deĄnitions. Also recall Prop. 4.1.2.

DeĄnition 4.3.1: Vector Ąelds along Lie algebroid paths

Let M, N be two smooth manifolds and (E,

ρ E , [•, •] E ), (B, ρ B , [•, •] B ) two Lie alge- broids over N . For (Φ, A) ∈ M E (M ; N ) we deĄne T B (Φ,A) M E (M ; N ) as a subspace of T (Φ,A) M E (M ; N ) by T B (Φ,A) M E (M ; N ) := (𝓋, 𝒶) ∈ T (Φ,A) M E (M ; N ) ∃ϵ ∈ Γ(Φ * B) : 𝓋 = -(Φ * ρ B )(ϵ) . (4.36)
Sections with values in these subspaces, called as the vector Ąelds along B-paths, we denote by

X B M E (M ; N ) . Remarks 4.3.2.
As images of the pullback of the anchor, it is clear that T B (Φ,A) M E (M ; N ) and X B M E (M ; N ) are subspaces of T (Φ,A) M E (M ; N ) and X M E (M ; N ) , respectively.

For all Ψ ∈ X B (M) there is by deĄnition then an

ε ∈ ℱ 0 E (M ; * B) such that Ψ = (-( * ρ B )(ε), a) (4.37)
where ( * ρ B )(ε) is an element of ℱ 0 E (M ; * TN ) given by M E (M ; N ) ∋ (Φ, A) → (Φ * ρ B )(ε(Φ, A)), and a is a map deĄned on M E (M ; N ) such that Ψ♣ (Φ,A) is a tangent vector for all (Φ, A) ∈ M E (M ; N ) as in Prop. 4.1.2. We will study a in more detail later, but now it will not be important. We will write Ψ =: Ψ ε to emphasize the relationship with an ε ∈ ℱ 0 E (M ; * B). As in Remark 2.5.13, for a given ε there can be several Ψ ε as long as we do not Ąx a. Moreover, since ε ∈ ℱ 0 E (M ; * B) we cannot expect in general that X B M E (M ; N ) is a subalgebra of X M E (M ; N ) . One may be able to show that if just allowing ε = * b (b ∈ Γ(B)), but since those more general ε can have very general dependencies on (Φ, A) ∈ M E (M ; N ) one cannot expect a sub-algebraic behaviour at this point. We will come back to this after we will have deĄned the inĄnitesimal gauge transformation for the Ąeld of gauge bosons.

By construction, the Ćows of those vector Ąelds carry the structure of Lie algebroid paths which will allow us to do pullbacks of connections along these Ćows in order to deĄne certain connections on functionals. for all t ∈ I, and, so,

I → M E (M ; N ), t → γ(t) = (Φ t , A t ) ∈ M E (M ; N ) through a Ąxed point (Φ 0 , A 0 ) ∈ M E (M ; N ) at t =
(Φ(p)) * ρ B -ϵ(p) t = -(Φ * t ρ B )(ϵ t )♣ p = d dt t Φ(p) ,
which proves the claim. ■

As in Section 2.5, the Ąrst component of these vector Ąelds also deĄne the inĄnitesimal gauge transformation of the Higgs Ąeld. • Finally let us observe why Eq. (4.38) recovers the standard formula of the inĄnitesimal gauge transformation of Φ, Def. 2.4.2. As usual, use the setting as in Cor. 4.2.6, i.e. let W be a vector space and N = W such that Φ ∈ C ∞ (M ; W ), and E = N × g an action Lie algebroid for a Lie algebra g whose Lie algebra action γ is induced by a Lie algebra representation ψ : g → End(W ). Also E = B. Then we can simply use Prop. 2.1.16, using ϵ := ε(Φ, A), to get

(δ ε Φ)(p) = -ϵ a (p) ρ Φ(p) (e a ) = -ϵ a (p) γ(e a ) Φ(p) = ϵ a (p) ψ(e a ) Φ(p) = ψ(ϵ p ) Φ(p)
for all p ∈ M and ϵ ∈ Γ(Φ * E) viewed as an element of C ∞ (M ; g), where (e a ) a is a frame of constant sections. This is precisely the standard formula.

There is a relationship similar to Cor. 3.5.9, which summarizes the whole motivation of our construction; also recall Remark 3.5.10.

Corollary 4.3.6: InĄnitesimal gauge transformation as condition for allowing pullbacks

Let M, N be two smooth manifolds and 

(E, ρ E , [•, •] E ), (B, ρ B , [•, •] B ) two Lie algebroids over N , and ε ∈ ℱ 0 E (M ; * B). Then Ψ ∈ X M E (M ; N ) is an element of X B M E (M ; N ) if and only if there is an ε ∈ ℱ 0 E (M ; * B) such that the following diagram commutes M × M E (M ; N ) B T M × M E (M ; N ) TN -ε (0,Ψ) ρ B Dev that is Dev • (0, Ψ) = -ρ B • ε, (4.39) where (0, Ψ) ∈ X(M ) × X M E (M ; N ) is the canonical embedding of Ψ as a vector Ąeld on M × M E (M ; N ).
D (p,Φ 0 ,A 0 ) ev(0, Ψ) = d dt t=0 (ev(p, Φ, A)) = d dt t=0 [t → Φ t (p)] =  Ψ (Φ) (Φ 0 ,A 0 )  p ∈ T Φ 0 (p) N,
where Ψ (Φ) is the Ąrst component of Ψ, for this also recall Prop. 4.1.2. The commutation of the diagram is then equivalent to say that there is an ε ∈ ℱ 0 E (M ; * B) 

Ψ (Φ) = -( * ρ B )(ε),
Ψ ε ∈ X B (M E (M ; N )) for ε ∈ ℱ 0 E (M ; * B).
Then there is a unique R-linear map δ Ψε : 

ℱ • E (M ; * V ) → ℱ • E (M ; * V ) with δ Ψε ( * v) = - * B ∇ ε v  , (4.40) ι Y δ Ψε = δ Ψε ι Y (4.41) δ Ψε (f ∧ L) = ℒ Ψε (f ) ∧ L + f ∧ δ Ψε (L), (4.42) for all Y ∈ X(M ), v ∈ Γ(V ), L ∈ ℱ k E (M ; * V ), and f ∈ ℱ m E (M ) (k, m ∈ N 0 ), where ℱ • E (M ; * V ) := l∈N 0 ℱ l E (M ; * V )
: ℱ 0 E (M ; * V ) → ℱ 0 E (M ; * V ) such that δ Ψε (hs) = ℒ Ψε (h) s + h δ Ψε s, δ Ψε ( * v) =ev * v = - * B ∇ ε v  for all s ∈ Γ(ev * V ) = ℱ 0 E (M ; * V ), h ∈ C ∞ (M × M E )
, and v ∈ Γ(V ). Eq. (4.41) and linearity uniquely extends this operator to ℱ

• E (M ; * V ), that is, (δ Ψε L)(Y 1 , . . . , Y k ) := δ Ψε L(Y 1 , . . . , Y k )
for all L ∈ ℱ k E (M ; * V ) and Y 1 , . . . , Y k ∈ X(M ); similar to Def. 2.5.17 this is well-deĄned (recall also the remark after Def. 2.5.17). This is not in violation with the desired Leibniz rule because Ψ ε are vector Ąelds on M E (M ; N ) while Y 1 , . . . , Y k are vector Ąelds on M , thence, [Ψ ε , Y i ] = 0 (i ∈ ¶1, . . . , k♢) in M × M E (M ; N ). The Leibniz rule in Eq. (4.42) then just follows by this and the Leibniz rule inherited by Cor. 3.5.9.

Alternatively, use the Ćows given by Cor. 4.3.3 and prove it in the same manner as in Prop. 2.5.15 (in combination with Def. 2.5.17). ■ Remarks 4.3.9.

• Given by Remark 3.5.11, for V = N × R we always take the canonical Ćat B-connection, i.e. the canonical Ćat vector bundle connection ∇ 0 = d and then B ∇ := ∇ 0 ρ B such that

δ Ψε = ℒ Ψε .
Thus,

δ Ψε d = ℒ Ψε d = dℒ Ψε = dδ Ψε , (4.43)
since coordinates on M E (M ; N ) and M are independent; recall the end of Remark 4.1.7 for this. The Leibniz rule for δ Ψε can be then rewritten to

δ Ψε (f ∧ L) = δ Ψε (f ) ∧ L + f ∧ δ Ψε (L). ( 4 

.44)

• For dual bundles V * we canonically take the dual connection to B ∇ in order to have Leibniz rules as usual. That also means the following (still keeping the same notation): Let

L ∈ ℱ k E (M ; * V ) and T ∈ ℱ 0 E (M ; * (V * )), then in a frame (e a ) a of V and (f a ) a of V * , f b (e a ) = δ b a , we locally write L = L a ⊗ * e a and T = T b • * f b , where L a ∈ ℱ k E (M ) and T b ∈ ℱ 0 E (M ).
Then with these conventions, including the previous bullet point,

δ Ψε (T (L)) = δ Ψε (T a L a ) ∈ℱ k E (M ) = ℒ Ψε (T a L a ) = ℒ Ψε (T a ) L a + T a ℒ Ψε (L a ), (4.45) 
hence, one achieves an independence of the chosen B ∇. This emphasizes what we expect, that we can freely choose the chosen connections for the variations of the tensors involved in contractions, only the variations of their components matter in such situations; this is important for the gauge invariance of the Lagrangian later. As we have discussed at the end of Section 2.5, we are going to take the basic connection to deĄne δ Ψε for quantities like the Ąeld strength, which will not be related to the canonical Ćat connection when imposing the classical theory; also recall Thm. 2.5.19. That is possible because the inĄnitesimal gauge transformation of the Lagrangian stays untouched by this, it is always just the Lie derivative. The connections only get important in explicit calculations when applying the Leibniz rule as in

δ Ψε (T (L)) = (δ Ψε T )(L) + T (δ Ψε L),
but the result will of course not change. Henceforth, the essential work is in deĄning Ψ ε ; we did not yet deĄne the inĄnitesimal gauge transformation of A.

This recovers the classical idea of inĄnitesimal gauge transformation, i.e. it is a Lie derivative of components with respect to Ćat connections; also recall Thm. 2.5.19. 

δ Ψε L = (ℒ Ψε L a ) ⊗ * e a .

■

As argued before, we can write Ψ ε = (-( * ρ B )(ε), a) (Eq. (4.37)) and we want to identify its Ąrst and second component as the gauge transformation of Φ and A, respectively. Right now a is just Ąxed by Prop. 4.1.2 such that it is very arbitrary; as in the standard setting of gauge theory, we want that it is parametrised, which will be by ε, too.

InĄnitesimal gauge transformation of the Ąeld of gauge bosons

Recall Prop. 4.1.5 and its discussion, the tangent vector along the ŤA-directionŤ is only in the same space as A if the Ąrst component is zero, which is δ ε Φ because we want to think of δ ε A as the second component of Ψ ε . We cannot expect this to be zero in general, not even in the standard setting because a Lie algebra representation will not act trivially on Φ, as we already discussed after Prop. 4.1.5. However, as in the standard formulation, we want to formulate the gauge transformation of A in such a way that it is somewhat in the same space; we will achieve this by Ąxing a connection on E as we already did for functionals when deĄning δ Ψε . Since A has values in Φ * E, its image is also now affected by the gauge transformation of Φ, this is why we can do something similar as for functionals; also recall Remark 2.5.20.

One may argue that an involved horizontal projection in the deĄnition for δ ε A may lead to lost information about that object, especially important when one may want to integrate this theory, while we will not need the Ťfull formulaŤ for δ ε A for the inĄnitesimal gauge transformation of the Lagrangian as we already argued earlier. However, since A has values in Φ * E, one expects that δ ε A encodes partially what δ ε Φ already encodes. Prop. 4.1.2 shows us that δ ε A is still somewhat vertical, because it is a form with values in the vector bundle TE → TN , whose linear structure is essentially given by the vertical (prolonged) structure; δ ε A is just shifted ŤhorizontallyŤ by δ ε Φ due to Eq. (4.9) and Prop. 4.1.5. Henceforth, our idea is to shape the horizontal projection in such a way that we only ŤlooseŤ the information we already know by δ ε Φ; making use of Prop. 4.1.2.

Let us make it precise: Let us Ąrst look at a local trivialization of the Lie algebroid E π → N is trivial. That is let us have base coordinates x i i of N , lifted to E by π * x i , but we will omit all the given pullbacks in the notation now in the following rough discussion for simplicity; also let y j j be Ąbre coordinates. By Prop. 4.1.2, δ ε A should be, for a given (Φ, A) ∈ M E , a form on M with values in TE (along some function; but again, we omit the pullbacks and point evaluations for simplicity now). Hence, we expect

δ ε A = (δ ε A) i ∂ ∂x i + (δ ε A) j ∂ ∂y j ,
and 

δ ε A is the second component of Ψ ε = (δ ε Φ, δ ε A),
δ ε Φ = Dπ (δ ε A)(Y ) = (δ ε A) i (Y ) ∂ ∂x i
for all Y ∈ X(M ), where we used that ∂/∂y j are vertical vector Ąelds. Given that trivialization, ∂/∂x i deĄnes a canonical horizontal distribution. Hence, using that distribution for a horizontal projection, one could deĄne the inĄnitesimal gauge transformation of A in that trivialization just with (δ ε A) j ∂ ∂y j which can be identiĄed with a form with values in E since ∂/∂y j are vertical. While the components we ŤlooseŤ because of the horizontal projection is something already encoded by δ ε Φ, such that those are easy to reconstruct if one needs the Ťfull formulaŤ of δ ε A.

Globally that means we want to deĄne δ ε A as a form with values in E using a Lie algebroid connection on E as we did in Prop. 4.3.7 in such a way that Ψ ε is uniquely given. In order to do that we need to view A as a functional, which is just ϖ 2 of Ex. 4.1.11. So, we impose a formula for δ ε ϖ 2 in such a way that it uniquely deĄnes Ψ ε , and that we can derive the inĄnitesimal gauge invariance of the Lagrangian as usual.

But how does one Ąx the inĄnitesimal gauge transformation of A normally when integrability is not used? One of the arguments in the standard formulation is given by looking at the transformation of the minimal coupling; we will do the same. Let us recall what that argument was: Again, let N = W be a vector space, and E = N × g an action Lie algebroid associated to a Lie algebra g whose Lie algebra action is induced by a Lie algebra representation ψ : g → End(W ). Then, for an ϵ ∈ C ∞ (M ; g), we have the inĄnitesimal gauge transformation δ ϵ Φ = ψ(ϵ)(Φ) for all Φ ∈ C ∞ (M ; W ). The minimal coupling is then deĄned by D A Φ = DΦ+ψ(A)(Φ), where A ∈ Ω 1 (M ; g); recall Def. 2.3.7. The (inĄnitesimal) gauge transformation of A is then chosen in such a way that it is an element of Ω 1 (M ; g), and such that one gets for the inĄnitesimal gauge transformation of the minimal coupling

(δ ϵ D)(Φ, A) = ψ(ϵ) D A Φ  (4.47)
among the category of gauge theories, where δ ϵ denotes again the classical formulation of the inĄnitesimal gauge transformation as introduced in Chapter 2.

In order to provide a similar argument and since the minimal coupling D is an element of ℱ 1 E (M ; * TN ), we need to Ąx a connection on TN in order to use Prop. 4.3.7. We want to use the basic connection, for this recall that for a given connection ∇ on a Lie algebroid E → N we have the canonical basic connection ∇ bas , Def. 3.7.1,

∇ bas µ ν = [µ, ν] E + ∇ ρ(ν) µ, ∇ bas µ X = [ρ(µ), X] + ρ(∇ X µ)
for all µ, ν ∈ Γ(E) and X ∈ X(N ). The reason why we want to use the basic connection is the following corollary about the recovery of Eq. (4.47).

Corollary 4.3.11: Gauge transformation of the minimal coupling in the standard framework

Let N = W be a vector space, E = N × g be an action Lie algebroid of a Lie algebra g whose action is induced by a Lie algebra representation ψ : g → End(W ), E is also equipped with its canonical Ćat connection ∇. Also let

Ψ ε ∈ X E (M E (M ; N )) for an ε ∈ ℱ 0 E (M ; * E
) and for the functional space ℱ • E (M ; * TN ) let δ Ψε be the unique operator of Prop. 4.3.7, using ∇ bas as E-connection on TN . Then we have

δ Ψε D (Φ, A) = 0 ⇔ δ Ψε D α (Φ, A) = ψ ε(Φ, A) D A Φ  α (4.48)
for all (Φ, A) ∈ M E (M ; N ) and α ∈ ¶1, . . . , dim(W )♢, where the components are with respect to global coordinate vector Ąelds (∂ α ) α on W , and where we used the canonical identiĄcation TW ∼ = W × W ∼ = Φ * TW such that D A Φ can be viewed as an element of Ω 1 (M ; W ).

Proof.

Let (e a ) a be a global and constant frame of E and ∂ α coordinate vector Ąelds on N , then we can write D = D α ⊗ * ∂ α , and, thus, by the Leibniz rule and with ϵ := ε(Φ, A)

δ Ψε D α (Φ, A) -(δ Ψε D) =δ Ψε (D α )⊗ * ∂α+D α ⊗δ Ψε ( * ∂α) (Φ, A) α = -  D A Φ  β ⊗ (δ Ψε ( * ∂ β ))(Φ, A) Prop. 4.3.7 = -Φ * (∇ bas ϵ ∂ β )  α = ϵ a Φ * -∂ β ρ α a + ρ α ∇ ∂ β e a  D A Φ  β (4.49)
for all α. Let us write ∂ α = ∂/∂w α for some coordinates (w α ) α on W . Then by Prop. 2.1.16,

-∂ β w → ρ α a (w) = -∂ β w → γ α a (w) = ∂ β w → ψ(e a )(w) α = ψ(e a ) α β (4.50)
for w ∈ W , because the differential is then just the differential of a matrix vector-product W ∋ w → ψ(e a )(w). Since ∇ is the canonical Ćat connection, constant sections are parallel, thus, we get in total

(δ Ψε D α )(Φ, A) -(δ Ψε D)(Φ, A) α = ϵ a Φ * ψ(e a ) α β const. D A Φ  β = ψ(ϵ) D A Φ  α
for all α, having ϵ ∈ C ∞ (M ; g) and D A Φ ∈ Ω 1 (M ; W ). That shows that we have

(δ Ψε D α )(Φ, A) = ψ(ϵ) D A Φ  α
if and only if

δ Ψε D = 0.

■

The right equation in the Equivalence (4.48) describes precisely the components of the expected inĄnitesimal gauge transformation of the minimal coupling in the standard formulation of gauge theory, and it is no coincidence that this is equivalent to δ Ψε D = 0 when using the basic connection.

Lemma 4.3.12: Metric compatibilities and their imposed symmetries for gauge theory, [1]

Let N = W be a vector space, E = N × g be an action Lie algebroid of a Lie algebra g whose action is induced by a Lie algebra representation ψ : g → End(W ), E is also equipped with its canonical Ćat connection ∇. Also let κ be a Ąbre metric on E which is a constantly extended scalar product κ of g; similarly, let g be a Ąbre metric which is a constant extension of a scalar product g of W .

Then we have

∇ bas κ = 0 ⇔ κ is ad-invariant, (4.51) 
∇ bas g = 0 ⇔ g is ψ-invariant, (4.52)

and ∇ bas on E and TN are the adjoint and ψ representation, respectively, when restricted on constant sections, i.e.

∇ bas µ ν = [µ, ν] g , (4.53) ∇ bas µ Y = ψ(µ)(Y ) (4.54) for all constant µ, ν ∈ Γ(E) and constant Y ∈ TN ∼ = W × W . Remarks 4.3.13.
Here we see that the basic connection ∇ bas replaces the canonical representations arising in the standard formulation of gauge theory. Moreover, we will later see that we need R bas ∇ = 0 to formulate the gauge theory, that implies that ∇ bas is Ćat (both), recall Prop. 3.7.6, such that it makes sense to think about it as a representation in the context of this thesis.

Proof.

Let (e a ) a be a frame of constant sections. Then κ(e a , e b ) = const., and hence 0 = ℒ ea κ(e b , e c ) .

We also have 

= ℒ ea g(∂ α , ∂ β ) Thus, g is ψ-invariant ⇔ 0 = g ψ(e a )(∂ α ), ∂ β + g ∂ α , ψ(e a )(∂ β ) ⇔ ℒ ea g(∂ α , ∂ β ) = g ψ(e a )(∂ α ), ∂ β + g ∂ α , ψ(e a )(∂ β ) ⇔ ℒ ea g(∂ α , ∂ β ) = g ∇ bas ea ∂ β , ∂ β  + g ∂ α , ∇ bas ea ∂ β  ⇔ ∇ bas g = 0.
■ Hence, when using the basic connection, we want that δ Ψε D = 0 such that we can recover the classical formula in sense of Cor. 4.3.11. To study this and later results we need several auxiliary results, recall also Ex. [START_REF] Mark | Mathematical Gauge Theory[END_REF] 

δ Ψε ( * ρ)(ϖ 2 ) = ( * ρ) δ Ψε ϖ 2 , (4.57) δ Ψε ! (∇µ)  = -  ! ∇ bas ε ∇µ  + * ∇ ( * ρ)(( * ∇)ε) µ   (4.58)
for all µ ∈ Γ(E), where we view ∇µ as an element of Ω 1 (N ; E). 

δ Ψε ! (∇µ)  (Φ, A) = -  Φ ! ∇ bas ϵ (∇µ)  + Φ * ∇ (Φ * ρ)((Φ * ∇)ϵ) µ  
where ϵ := ε(Φ, A). When ε = * ν for a ν ∈ Γ(E), then (Φ * ∇)(Φ * ν)

Eq. (A.2) = Φ ! (∇ν), so, ( * ∇)( * ν) = ! (∇ν). Thus, we can then write 

δ Ψ * ν ! (∇µ)  = -! ∇ bas ν ∇µ + ∇ ρ(∇ν) µ  . ( 4 
(δ ε d[(Φ, A) → Φ α ])(Φ, A) = (dℒ Ψε [(Φ, A) → Φ α ])(Φ, A) = -d((ρ α a • Φ) ϵ a )
then by Eq. (4.40) and the Leibniz rule of δ Ψε

(δ Ψε D)(Φ, A) = -d((ρ α a • Φ) ϵ a ) ⊗ Φ * ∂ α -dΦ α ⊗ ϵ a Φ * ∇ bas ea ∂ α  = -d(ρ α a • Φ) = (∂βρ α a •Φ) dΦ β ϵ a + (ρ α a • Φ) dϵ a  ⊗ Φ * ∂ α -dΦ α ⊗ ϵ a Φ * -∂ α ρ β a ∂ β + ρ(∇ ∂α e a )  = -(ρ α a • Φ) dϵ a ⊗ Φ * ∂ α -dΦ β ⊗ ϵ b (ρ α a • Φ) ω a bβ • Φ  Φ * ∂ α = -(ρ α a • Φ) dϵ a + ϵ b ω a bβ • Φ  dΦ β  ⊗ Φ * ∂ α = -(Φ * ρ) (Φ * ∇)ϵ .
• By Eq. 4.40,

δ Ψε ( * ρ) = - * ∇ bas ε ρ  ,
and by ρ • ∇ bas = ∇ bas • ρ we get

∇ bas ρ  (µ) = ∇ bas (ρ(µ)) -ρ ∇ bas µ  = 0
for all µ ∈ Γ(E). Hence, δ Ψε ( * ρ) = 0.

• By the Leibniz rule and the previous result we also have

δ Ψε ( * ρ)(ϖ 2 ) = ( * ρ) δ Ψε ϖ 2 .
• We view terms like ∇µ as elements of Ω 1 (N ; E) for all µ ∈ Γ(E), X(N ) ∋ Y → (∇µ)(X) = ∇ X µ, and therefore we can use the Leibniz rule on

! (∇µ) = * (∇µ) (D) = * (∇ D µ), i.e. due to Φ ! (∇µ) = Φ * (∇µ) (DΦ)
we can view ! (∇µ) as a contraction of the functionals * (∇µ) and D. Hence,

δ Ψε ! (∇µ)  = δ Ψε ( * (∇µ)) (D) + * ∇ δ Ψε D µ  Eq. (4.40) = - * ∇ bas ε ∇µ  (D) + * ∇ δ Ψε D µ  Eq. (4.55) = -  ! ∇ bas ε ∇µ  + * ∇ ( * ρ)(( * ∇)ε) µ  
.

■

Let us now Ąx the gauge transformation of A using these results. Recall that we write Ψ = Ψ ε for a Ψ ∈ X E (M E (M ; N )), where ε ∈ ℱ 0 E (M ; * E) such that we can write (recall Eq. (4.37))

Ψ ε = (-( * ρ B )(ε), a)
where a is a map on M E (M ; N ) such that Ψ♣ (Φ,A) is a tangent vector for all (Φ, A) ∈ M E (M ; N ), i.e. satisfying the diagram of Prop. 

Ψ ε ∈ X E M E (M ; N ) . Then there is a unique Ψ ε ∈ X E M E (M ; N ) such that δ Ψε ϖ 2 = -( * ∇)ε. (4.60)
Locally with respect to a given frame (e a ) a

(δ Ψε ϖ a 2 )(Φ, A) = (C a bc • Φ) ϵ b A c + (ω a bα • Φ) (ρ α c • Φ) ϵ b A c -dϵ a -ϵ b Φ ! (ω a b ) = ϵ b A c ⊗ Φ * ∇ bas e b e c  -(Φ * ∇)ϵ  a (4.61)
for all (Φ, A) ∈ M E (M ; N ), where ϵ := ε(Φ, A). Moreover, if we also have α, β ∈ R and ϑ ∈ ℱ 0 E (M ; * E), then

Ψ αε+βϑ = αΨ ε + βΨ ϑ , (4.62)
where the vector Ąelds are the ones uniquely given by Eq. (4.60).

Proof of Prop. 4.3.16.

Since it is about a vector Ąeld on M E (M ; N ), we will classify Ψ ε by its Ćow, using Cor. 4.3.3: We denote its Ćow through a Ąxed point (Φ 0 , A 0 ) ∈ M E (M ; N ) by γ : 

I → M E (M ; N ), t → γ(t) =: (Φ t , A t ) ∈ M E (M ; N ),
γ(0) = (Φ 0 , A 0 ), d dt γ = Ψ♣ γ(t) = (-(Φ * t ρ)(ϵ t ), 𝒶 t ).
(Φ 0 , A 0 ) and -(Φ * t ρ)(ϵ t ) are Ąxed, and we show that Eq. (4.60) will Ąx 𝒶 t . Without loss of generality let us assume that everything is small and local enough such that we have frames and coordinates, like a frame (e a ) a of E. 3 Making use of Prop. 4.3.7, we get

(δ Ψε ϖ 2 )(Φ t , A t ) = ℒ Ψε (ϖ a 2 )♣ (Φt,At) ⊗ Φ * t e a -A a t ⊗ Φ * t ∇ bas ϵt e a  .
Let us Ąrst assume Eq. ( 4.60) does hold. Then

ℒ Ψε (ϖ a 2 )♣ (Φt,At) ⊗ Φ * t e a = ϵ b t A c t ⊗ Φ * t ∇ bas e b e c  -(Φ * t ∇)ϵ t = (C a bc • Φ t ) ϵ b t A c t + (ω a bα • Φ t ) (ρ α c • Φ t ) ϵ b t A c t -dϵ a t -ϵ b t Φ ! t (ω a b )  ⊗ Φ * t e a
which proves Eq. (4.61) (insert t = 0). By the deĄnition of γ and the Lie derivative we also get

ℒ Ψε (ϖ a 2 )♣ (Φt,At) = d dt (ϖ a 2 • γ) = d dt [t → A a t ],
and, thus, and A t=0 = A 0 , while

d dt [t → A a t ] = (C a bc • Φ t ) ϵ b t A c t + (ω a bα • Φ t ) (ρ α c • Φ t ) ϵ b t A c 0 -dϵ a -ϵ b t Φ ! t (ω a b ). ( 4 
𝒶 t = d dt [t → A t ] = d dt [t → A a t ⊗ Φ * t e a ].
t → Φ t and t → A a t are uniquely given by this system and the differential equation (4.63), and, so, t → A t = A a t ⊗Φ * t e a is uniquely given, too. Hence, 𝒶 t is unique, and, thus, Ψ ε . Alternatively, the differential equations for d/dt Φ and d/dt A a are the action of the vector Ąeld Ψ ε on the coordinates of M E , and therefore deĄning Ψ ε .

The linearity of ψ ε in ε over R simply follows by the linearity given in the differential equations above: DeĄne Θ := αΨ ε +βΨ ϑ for α, β ∈ R and ϑ ∈ ℱ 0 E (M ; * E), where Ψ ε and Ψ ϑ are the unique vector Ąelds as given above, i.e. δ Ψε ϖ 2 = -( * ∇)ε and δ Ψ ϑ ϖ 2 = -( * ∇)ϑ, respectively. Observe that Θ ∈ X E M E (M ; N ) , where the component along the ŤΦ-directionŤ is by deĄnition given by

-α ( * ρ)(ε) -β ( * ρ)(ϑ) = -( * ρ)(αε + βϑ),
then, using the linearity of Eq. (4.63) in ε,

δ Θ ϖ 2 = ℒ Θ (ϖ a 2 ) ⊗ * e a -ϖ a 2 ⊗ * ∇ bas αε+βϑ e a  = (αℒ Ψε + βℒ Ψ ϑ )(ϖ a 2 ) ⊗ * e a -ϖ a 2 ⊗ * ∇ bas αε+βϑ e a  Eq. (4.63) = ℒ Ψ αε+βϑ (ϖ a 2 ) ⊗ * e a -ϖ a 2 ⊗ * ∇ bas αε+βϑ e a  = δ Ψ αε+βϑ ϖ 2 .
By the shown uniqueness of vector Ąelds like Ψ αε+βϑ , we get Θ = Ψ αε+βϑ .

■

Remarks 4.3.17.

Eq. ( 4.61) is also e.g. deĄned in [1, Eq. ( 10); opposite sign of ε], but in this reference it was not known how a coordinate-free version can look like. This equation recovers the standard formula of the inĄnitesimal gauge transformation of A. In order to see why this restricts to the standard formula, let us look again at the standard setting: When E = N × g is an action Lie algebroid with Lie algebra g, equipped with its canonical Ćat connection ∇, then we get the classical formula of gauge transformation by using a constant frame (e a ) a for E, i.e.

(δ Ψε ϖ a 2 )(Φ, A) = Φ * C a bc ϵ b A c -dϵ a = [ϵ ∧ , A] g -d Φ * ∇ ϵ  a
for all (Φ, A) ∈ M E (M ; N ), because ω a b = 0 and Φ * C a bc = C a bc = const., the structure constants of g. We can understand ϵ as an element of C ∞ (M ; g) as usual in the standard setting. That is precisely the typical formula of the classical setting, because Φ * ∇ is the standard Ćat connection of Φ * E ∼ = M × g. Moreover, we get in that situation

Φ * ∇ bas ϵ e a  = ϵ b Φ * ([e b , e a ] E ),
which is the main reason why the transformations of the components recover the classical formula although the total formula, Eq. (4.60), just carries the differential (as we saw in the proof). As already discussed, only the transformation of the components need the Ťcorrect formŤ when it is about the gauge invariance of the Lagrangian.

Using such a Ψ ε results into an inĄnitesimal gauge transformation of the minimal coupling as in Cor. [START_REF] Mark | Mathematical Gauge Theory[END_REF] 

:= ε(Φ, A), δ Ψε D α (Φ, A) = ϵ a Φ * -∂ β ρ α a + ρ α ∇ ∂ β e a  D A Φ  β . (4.65)
That is precisely the same formula as given in [1, Eq. ( 12), different sign for ϵ there], but there only the formula for the components was known. As discussed in Remark 4.3.17 we have seen that δ ε A a (using a frame (e a ) a of E) recovers the classical formula of the inĄnitesimal gauge transformation. However, the total formula, δ ε A, does not recover it which is no problem due to that the Lagrangian just depends on the variation of the components; for this also recall that arising differentials of A commute with δ ε , Eq. (4.43), which is needed for the variation of the Ąeld strength. Later we will see this explicitly when showing the gauge invariance of the Lagrangian. Alternatively, one could use ∇ ρ as E-connection on E instead of ∇ bas for the deĄnition of δ Ψε ; especially because of results like Thm. 4.3.10 and Thm. 2.5.19, which imply that one recovers classical formulas when ∇ is additionally Ćat. 4 When using ∇ ρ , the same Ψ ε leads to

Proof of

δ Ψε ϖ 2 = -( * t ∇ρ )(ε, ϖ 2 ) -( * ∇)ε, (4.67) 
where t ∇ρ is the torsion of ∇ ρ . As we have seen before, ∇ will be the canonical Ćat connection in the standard setting such that then δ Ψε A a = (δ Ψε A) a by Ćatness and Thm. 4.3.10. With similar calculations as before one also shows that the variation of the components, δ Ψε ϖ a 2 , recovers the classical formula of the inĄnitesimal gauge transformation of the Ąeld of gauge bosons, thus, δ Ψε ϖ 2 would restrict to the classical formula in the standard setting, too. Hence, ∇ ρ would look like the canonical choice, not ∇ bas . But we will later see that ∇ ρ is in general not Ćat, while ∇ bas will be Ćat, such that only for the latter the inĄnitesimal gauge transformations in form of the operator δ Ψε will give rise to a Lie algebra in general. Moreover, we are not going to Ąx any separate connection on TN which would be identiĄed with a canonical Ćat connection in the standard situation, such that the only canonical connection there is the basic connection; using the basic connections also for E-valued tensors is then in alignment to TN -valued tensors.

Hence, we Ąnally arrived at deĄning the inĄnitesimal gauge transformation of functionals.

DeĄnition 4.3.23: InĄnitesimal gauge transformation of functionals

Let M, N be two smooth manifolds, E → N a Lie algebroid over N , V → N a vector bundle, ∇ a connection on E, E ∇ an E-connection on V , and ε ∈ ℱ 0 E (M ; * E) together with the unique Ψ ε ∈ X E (M E (M ; N )) as given uniquely in Prop. 4.3.16. For the functional space ℱ • E (M ; * V ) let δ Ψε be the unique operator as in Prop. 4.3.7, using E ∇ as E-connection on V . Then we deĄne the inĄnitesimal gauge transformation

δ ε L of L ∈ ℱ • E (M ; * V ) as an element of ℱ • E (M ; * V ) by δ ε L := δ Ψε L. (4.68)
For V = E or V = TN we take E ∇ = ∇ bas on E and TN , respectively; for all further tensor spaces constructed of E and TN , like their duals, we take the canonical extension of the basic connections.

Remarks 4.3.24.

In the following we will have just one connection ∇ on E and E ∇ on V given. Without mentioning it further, we always use these connections for the deĄnition of δ ε because it should be clear by context.

We can quickly list two properties about δ ε .

Corollary 4.3.25: Linearity in ε

Let us assume the same as for Def. 4.3.23. Then

δ αε+βϑ = αδ ε + βδ ϑ (4.69)
for all α, β ∈ R and ε, ϑ ∈ ℱ 0 E (M ; * E).

Proof.

Let k ∈ N 0 , L ∈ ℱ k E (M ; * V ) and (e a ) a a local frame of V . Then, using Eq. (4.62) and the Leibniz rule,

δ αε+βϑ L = ℒ Ψ αε+βϑ L a Eq. (4.62) = ℒ αΨε+βΨ ϑ ⊗ * e a -L a ⊗ * E ∇ αε+βϑ e a  = α ℒ Ψε L a ⊗ * e a -L a ⊗ * E ∇ ε e a  + β ℒ Ψ ϑ L a ⊗ * e a -L a ⊗ * E ∇ ϑ e a  = (αδ ε + βδ ϑ )L,
where vector Ąelds like Ψ ε are given by Def. 

L ∈ ℱ k E (M ; * V ) (k ∈ N 0 ) be indepen- dent of A, i.e. L(Φ, A) = L(Φ, A ′ ) for all (Φ, A), (Φ, A ′ ) ∈ M E (M ; N ).
Then the deĄnition of δ ε L is independent of ∇. a a But not of E ∇, so, when E ∇ = ∇ bas , then there is still the dependency on ∇ in the role of E ∇.

Remarks 4.3.27. The independence mentioned in Remark 4.3.9 is about E ∇, not ∇. Eq. (4.61) shows clearly that ∇ contributes to δ ε in general, that is, the deĄnition of Ψ ε is certainly dependent on ∇, where Ψ ε is given by Def. 4.3.23.

Proof.

Let (e a ) a be a local frame of V , and write L = L a ⊗ * e a , then, using that δ ε = ℒ Ψε on ℱ k E (M ) (recall Remark 4.3.9, and Ψ ε is given by Def. 4.3.23),

δ ε L = ℒ Ψε L a ⊗ e a -L a ⊗ * E ∇ ε e a  .
The second summand is already independent of ∇, so, let us look at the Ąrst summand. Recall that Ψ ε contains two components, the Ąrst is the differentiation along the ŤΦ-directionŤ, given by -( * ρ)(ε), and the second for the ŤA-directionŤ, Ąxed by Prop. 4.3.16 using ∇. Due to the independence of L with respect to A we can conclude that L a must be independent of A since * e a is already independent of A, thus,

ℒ Ψ L a = ℒ Ψ ′ L a
for all Ψ, Ψ ′ ∈ X(M E (M ; N )) whose Ąrst component, the derivative along ŤΦŤ-coordinates, coincide. Hence, regardless which connection ∇ we choose to Ąx the second component of Ψ ε the deĄnition of δ ε L will be unaffected by this choice. ■

Curvature of gauge transformations

We want to calculate

δ ϑ δ ε -δ ε δ ϑ
for all ε, ϑ ∈ ℱ 0 E (M ; * E), and we want a behaviour similar to representations. For Φ ∈ C ∞ (M ; N ), Φ * E is in general not a Lie algebroid, see [9, §3.2ff.] or [10, §7.4; page 42ff.] about conditions on Φ which imply a natural Lie algebroid structure on Φ * E. Therefore we cannot expect to have a Lie bracket on sections of Φ * E. The essential problem is that we do not have an anchor on Φ * E → M in general such that one cannot try to construct Ąrst a bracket on pullbacks of sections and then to canonically extend such a bracket (similar to previous constructions), and this problem extends to ℱ 0 E (M ; * E). But there is a better object measuring a Ťbracket-likeŤ behaviour on this functional space; we will see at the end that this will be actually a Lie bracket. Then we deĄne the pre-bracket ∆ :

ℱ 0 E (M ; * E) × ℱ 0 E (M ; * E) → ℱ 0 E (M ; * E) by ∆(ϑ, ε) := δ ε ϑ -δ ϑ ε - * t ∇ bas (ϑ, ε) (4.70) for all ε, ϑ ∈ ℱ 0 E (M ; * E).
Remarks 4.3.29.

Given an E-connection E ∇ on E, Lie brackets can be expressed as

[µ, ν] E = E ∇ µ ν -E ∇ ν µ -tE ∇ (µ, ν)
for all µ, ν ∈ Γ(E). Recall that δ is strongly related to a certain pullback of ∇ bas ; then the idea of the pre-bracket is to use the right-hand side as a deĄnition. Since we know under which conditions and how to make pullbacks of E-connections and tensors, we circumvent the problem of deĄning a Lie bracket and anchor on a pullback bundle.

Let us study this bracket. 

for all ε, ϑ ∈ ℱ 0 E (M ; * E), f ∈ ℱ 0 E (M ), µ, ν ∈ Γ(E)
, and, when expressing everything with respect to a pull-back of a local frame (e a ) a of E, we get Let E = N × g be an action Lie algebroid, the usual relationship in classical gauge theory is for ε, ϑ ∈ C ∞ (M ; g) that

∆(ϑ, ε) = δ ε ϑ a * e a -δ ϑ ε a * e a + ϑ a ε b * [e a , e b ] E (4.74) for all ϑ, ε ∈ ℱ 0 E (M ; * E). Moreover, ∆(ϑ, ε) is independent of the chosen connection ∇ when both, ε and ϑ, are independent of A, that is, ε(Φ, A) = ε(Φ, A ′ ) for all (Φ, A), (Φ, A ′ ) ∈ M E (M ; N ); similar for ϑ.
δ clas ε , δ clas ϑ A = -δ clas [ε,ϑ] g A,
where δ clas ε is given by Def. 2.4.3, and the negative sign on the right hand side is due to our choice of sign with respect to ε, which we prove later in full generality. As we discussed, we apply the Ťbookkeeping trickŤ to formulate inĄnitesimal gauge transformations, also recall Def. 2.5.17 and Thm. 2.5.19. That is, for a constant frame (e a ) a of E, we have the Ťbookkeeping trickŤ ι(ε) given by

ι(ε) = ε a * e a ,
hence, the bookeeping trick is essentially a frame-dependent embedding of the functionals given in the classical gauge theory into ℱ • E . ε a are in this case only functions depending on M , but not on M E (M ; N ), especially, δ clas ϑ ε a = 0. By Eq. ( 4.74) we then have

∆ ι(ϑ), ι(ε) = ϑ a ε b * [e a , e b ] g = ι [ϑ, ε] g  ,
which is precisely what we want and expect of a generalized bracket.

Proof of Prop. 4.3.30.

The antisymmetry is clear, and the bilinearity follows by the linearity of

δ ε for all ε ∈ ℱ 0 E (M ; * E), recall Cor. 4.3.25. We have * t ∇ bas ( * µ, * ν) = * t ∇ bas (µ, ν) = * ∇ bas µ ν -∇ bas ν µ -[µ, ν] E 
for all µ, ν ∈ Γ(E), and

δ * ν ( * µ) = - * ∇ bas ν µ  , therefore ∆( * µ, * ν) = * ∇ bas µ ν  - * ∇ bas ν µ  - * ∇ bas µ ν -∇ bas ν µ -[µ, ν] E  = * [µ, ν] E ,
which proves Eq. (4.73). For ε, ϑ ∈ ℱ 0 E (M ; * E) we have, with respect to a frame (e a ) a of E,

δ ϑ ε = δ ϑ ε a * e a -ε a ϑ b * ∇ bas e b e a  ,
and so

∆(ϑ, ε) = δ ε ϑ a * e a -ϑ a ε b * ∇ bas e b e a  -δ ϑ ε a * e a + ε a ϑ b * ∇ bas e b e a  -ϑ a ε b * ∇ bas ea e b -∇ bas e b e a -[e a , e b ] E  = δ ε ϑ a * e a -δ ϑ ε a * e a + ϑ a ε b * [e a , e b ] E .
This expression for ∆(ϑ, ε) shows that its value is independent of the chosen ∇, when the functionals ε = ε a ⊗ * e a and ϑ = ϑ a ⊗ * e a are independent of A, since then also their components with respect to ( * e a ) a are independent of A because * e a is already independent of A. Then apply Cor. 4.3.26. ■

Corollary 4.3.32: ∆ a Lie bracket on the pull-backs of Γ(E)

Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E.

Then the restriction of ∆ on pullback functionals is a Lie bracket.

Proof.

The antisymmetry, the bilinearity over R and the closedness follow by Prop. 4.3.30, the same also for the Jacobi identity by observing

∆( * µ, ∆( * ν, * η))
Eq. ( 4.73)

= ∆( * µ, * ([ν, η] E ))
Eq. ( 4.73)

= * [µ, [ν, η] E ] E
for all µ, ν, η ∈ Γ(E). Hence, the Jacobiator of the restriction of ∆ on pullback functionals is given by the pullback of the Jacobiator of [•, •] E , the latter is of course zero. ■

We will see that ∆ is actually always a Lie bracket, but for proving this we do not want to show the Jacobi identity directly, due to how we constructed it we rather are going to use the equivalence with Bianchi identities of curvatures; recall the proof of Thm. 3.4.6. Hence, let us deĄne the curvature we are interested into.

DeĄnition 4.3.33: Curvature of inĄnitesimal gauge transformations along functionals

Let M, N be smooth manifolds, E → N a Lie algebroid, V → N a vector bundle, ∇ a connection on E, and E ∇ an E-connection on V . Then we deĄne the curvature

R δ along L ∈ ℱ k E (M ; * V ) as a map R δ (•, •)L : ℱ 0 E (M ; * E) × ℱ 0 E (M ; * E) × ℱ k E (M ; * V ) → ℱ k E (M ; * V ) (k ∈ N 0 ) by (ϑ, ε, L) → R δ (ϑ, ε)L, R δ (ϑ, ε)L := δ ϑ δ ε L -δ ε δ ϑ L + δ ∆(ϑ,ε) L (4.75) for all ϑ, ε ∈ ℱ 0 E (M ; * E). In alignment to Def. 4.3.21 we denote R δ (•, •)A := R δ (•, •)ϖ 2 , and R δ (•, •)A a := R δ (•, •)ϖ a 2
with respect to a frame (e a ) a of E. Remarks 4.3.34. The sign in front of the third term depends on which sign one takes in the deĄnition of δ ε . Changing the sign ε in the deĄnitions of the gauge tranformations would lead to a minus sign in front of the third summand.

Using a frame of E we can apply the Leibniz rule.

Corollary 4.3.35: Relationships between curvatures

Let M, N be smooth manifolds, E → N a Lie algebroid, V → N a vector bundle, ∇ a connection on E, and E ∇ an E-connection on V . Then locally

R δ (•, •)L = R δ (•, •)L a ⊗ * e a + L a ⊗ * RE ∇ (•, •)e a (4.76) for all L ∈ ℱ k E (M ; * V ) (k ∈ N 0 )
, where (e a ) a is a local frame of E and viewing RE ∇ (•, •)e a as an element of Ω 2 (E; E).

Proof.

Let us Ąrst study terms like

R δ (ϑ, ε)( * h) for ε, ϑ ∈ ℱ 0 E (M ; * E) and h ∈ Γ(V ), using a local frame (e a ) a of E, δ ϑ δ ε ( * h) = -δ ϑ ε a * E ∇ ea h  = -δ ϑ ε a * E ∇ ea h  + ε a ϑ b * E ∇ e b E ∇ ea h  ,
and

δ ∆(ϑ,ε) ( * h) Eq. (4.74) = -δ ε ϑ a -δ ϑ ε a + ϑ b ε c * [e b , e c ] E a  * E ∇ ea h  = δ ϑ ε a * E ∇ ea h  -δ ε ϑ a * E ∇ ea h  -ε a ϑ b * E ∇ [e b ,ea] E h  , in total R δ (ϑ, ε)( * h) = ε a ϑ b * E ∇ e b E ∇ ea h -E ∇ ea E ∇ e b h -E ∇ [ea,e b ] E h  R E ∇ (e b ,ea)h = * RE ∇ (•, •)h (ϑ, ε).
Therefore we arrive at

R δ (ϑ, ε)(L a ⊗ * e a ) = δ ϑ δ ε L a ⊗ * e a + δ ε L a ⊗ δ ϑ ( * e a ) + δ ϑ L a ⊗ δ ε ( * e a ) + L a ⊗ δ ϑ δ ε ( * e a ) -(ϑ ↔ ε) + δ ∆(ϑ,ε) L a ⊗ * e a + L a ⊗ δ ∆(ϑ,ε) * e a = R δ (ϑ, ε)L a ⊗ * e a + L a ⊗ R δ (ϑ, ε)( * e a ) = R δ (•, •)L a ⊗ * e a + L a ⊗ * RE ∇ (•, •)e a (ϑ, ε) for all L ∈ ℱ k E (M ; * V ). ■
Keep in mind that R δ is not a typical curvature, for example δ ε is not C ∞ -linear with respect to ε, such that it is not immediately clear whether this curvature is a tensor in the other arguments, so, we need to prove this if we want to simplify calculations. We are Ąrst focusing on R δ (•, •)A.

Proposition 4.3.36: R δ is a tensor

Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Then R δ (•, •)A is an anti-symmetric tensor, i.e. anti-symmetric and ℱ 0 E (M )-bilinear, and we have

R δ (ε, ϑ)A = R δ (ε, ϑ)A a ⊗ * e a + ( * R ∇ bas )(ε, ϑ)A (4.77) for all ε, ϑ ∈ ℱ 0 E (M ; * E).
Proof.

• The antisymmetry is clear by Prop. 4.3.30. Fix a local frame (e a ) a of E, then we have

δ ϑ δ f ε A Def. 4.3.21 = -δ ϑ ( * ∇)(f ε) = -δ ϑ df ⊗ ε + f ( * ∇)ε = -δ ϑ df ⊗ ε -df ⊗ δ ϑ ε -δ ϑ f ( * ∇)ε -f δ ϑ ( * ∇)ε = -δ ϑ df ⊗ ε -df ⊗ δ ϑ ε a * e a + df ⊗ ε a ϑ b * ∇ bas e b e a  -δ ϑ f ( * ∇)ε + f δ ϑ δ ε A for all ϑ, ε ∈ ℱ 0 E (M ; * E) and f ∈ ℱ 0 E (M ), and 
-δ f ε δ ϑ A = δ f ε ( * ∇)ϑ = δ f ε dϑ a ⊗ * e a + ϑ b ! (∇e b )  Eq. (4.58) = δ f ε dϑ a ⊗ * e a -dϑ a ⊗ f ε b * ∇ bas e b e a  + δ f ε ϑ b ! (∇e b ) -f ϑ b ! ∇ bas ε (∇e b )  -ϑ b * ∇ ( * ρ)(( * ∇)(f ε)) e b  =df ⊗ * (∇ ( * ρ)(ε) e b) +f •(. . . ) indep. of f = δ f ε dϑ a ⊗ * e a + δ f ε ϑ b ! (∇e b ) -ϑ b ε a df ⊗ * ∇ ρ(ea) e b  + f • (. . . ) independent of f .
Since we want to check the tensorial property, we can ignore the terms proportional to f ; we also have

δ ∆(ϑ,f ε) A = ( * ∇)(∆(f ε, ϑ))
Eq. ( 4.74)

= ( * ∇) δ ϑ f ε + f δ ϑ ε a * e a -δ f ε ϑ b * e b + f ε a ϑ b * ([e a , e b ] E )  Eq. (4.43) = δ ϑ df ⊗ ε + δ ϑ f ( * ∇)ε + df ⊗ δ ϑ ε a * e a -δ f ε dϑ b ⊗ * e b -δ f ε ϑ b ! (∇e b ) + ε a ϑ b df ⊗ * ([e a , e b ] E ) + f • (. . . ) independent of f .
Hence, we get in total 

R δ (ϑ, f ε)A = ε a ϑ b df ⊗ * ∇
) independent of f = f • (. . . ) independent of f for all ϑ, ε ∈ ℱ 0 E (M ; * E) and f ∈ ℱ 0 E (M ).
Using the antisymmetry proves that R δ (•, •)A is a tensor because the shown equation also holds for f ≡ 1 such that the remaining terms in the f -independent bracket are precisely giving rise to R δ (ϑ, ε)A.

• Eq. ( 4.77) just follows by Cor. 4.3.35. ■

Due to the tensorial behaviour, we can study R δ (•, •)A just with respect to pullback functionals, such that the notations and calculations can be simpliĄed. for all µ, ν ∈ Γ(E), viewing R bas ∇ (µ, ν) as an element of Ω 1 (N ; E).

Remarks 4.3.38.

• One can then derive with Eq. (4.2) that

! R bas ∇ (µ, ν)  = * R bas ∇ (µ, ν)  D = * R bas ∇  ( * µ, * ν)D,
viewing D as an element of ℱ 1 E (M ; * TN ); recall Ex. 4.1.12. Using that R δ (•, •)A is tensorial and that pullbacks are generators as usual, we get

R δ (ε, ϑ)A = - * R bas ∇  (ε, ϑ)D for all ε, ϑ ∈ ℱ 0 E (M ; * E).
• One could also view this theorem as a physical interpretation of the basic curvature.

Proof of Thm. 4.3.37.

We have

δ * µ (δ * ν A)(Φ, A) = -δ * µ ! (∇ν)  (Φ, A)
Eq. ( 4.59)

= ! ∇ bas µ (∇ν) + ∇ ρ(∇µ) ν  ,
and

∇ bas µ (∇ν) + ∇ ρ(∇µ) ν  (Y ) = ∇ bas µ ∇ Y ν -∇ ∇ bas µ Y ν + ∇ ρ(∇ Y µ) ν = [µ, ∇ Y ν] E + ∇ ρ(∇ Y ν) µ -∇ [ρ(µ),Y ] ν
for all Y ∈ X(M ). In total we would then look at the pull-back of the following form

∇ bas µ (∇ν) + ∇ ρ(∇µ) ν -∇ bas ν (∇µ) -∇ ρ(∇ν) µ -∇([µ, ν] E )  (Y ) = [µ, ∇ Y ν] E + ∇ ρ(∇ Y ν) µ -∇ [ρ(µ),Y ] ν -[ν, ∇ Y µ] E -∇ ρ(∇ Y µ) ν + ∇ [ρ(ν),Y ] µ -∇ Y ([µ, ν] E ) = -∇ Y ([µ, ν] E ) -[∇ Y µ, ν] E -[µ, ∇ Y ν] E -∇ ∇ bas ν Y µ + ∇ ∇ bas µ Y ν  Def. 3.7.4 = -R bas ∇ (µ, ν)Y.
Therefore we arrive at

R δ ( * µ, * ν)A = -! R bas ∇ (µ, ν)Y  .

■

We get immediately the following statement.

Corollary 4.3.39: Flat inĄnitesimal gauge transformation

Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E with

R bas ∇ = 0. Then R δ (•, •)A = 0. (4.79)
With respect to a frame (e a ) a of E we then also have

R δ (•, •)A a = 0 (4.80)
for all µ, ν ∈ Γ(E).

Remarks 4.3.40.

• This discussion, especially Cor. 4.3.39 and Thm. 4.3.37, are generalizations of statements in [16, especially Prop. 8 and Thm. 1] and [17, especially Eq. 9, 10 and 11; there the S denotes the basic curvature]. 5 In both of these works a coordinate-free formulation of δ ε A was not known, just δ ε A a . It was known that δ ε A a is dependent on coordinates, but not how it can be written/deĄned such that it is again an element of Ω 1 (M ; Φ * E). [START_REF] Bojowald | Lie algebroid morphisms, poisson sigma models, and off-shell closed gauge symmetries[END_REF] tries to formulate inĄnitesimal gauge transformations in a covariant way with a completely different approach by assuming a weaker form of equality, but only for a special situation and only for ε as an element of Φ * (Γ(E)) (i.e. they only looked at pullback functionals, when we express that in our languages). [START_REF] Mayer | Lie algebroid YangŰMills with matter Ąelds[END_REF] looks at the set Γ(Φ * E) for ε but assumes that ε a is independent of Φ and A which is clearly a coordinate-dependent description, because a change of the pull-back frame would introduce a Φ-dependency of the components ε a (in our words, they choose a coordinatedependent embedding of Γ(Φ * E) as functionals). In one way or the other, both works arrive at Eq. (4.80), but only evaluated at pullback functionals, that is, R δ ( * µ, * ν)A a = 0 for all µ, ν ∈ Γ(E).

What we provide is a coordinate-independent and -free deĄnition of such inĄnitesimal gauge transformations. Moreover, we have generalized Eq. ( 4.80) in form of Eq. ( 4.79), in sense of not only assuming pullback functionals by deĄning the pre-bracket ∆.

• Recall Remark 4.3.22: One could also take ∇ ρ to deĄne δ ε . It has the advantage that then δ ε A directly restricts to the standard formula when restricting ourselves to the classical setting. When deĄning and calculating R δ in a similar manner, we also get Eq. ( 4.77) where the curvature-term will be replaced with the curvature of ∇ ρ due to Cor. 4.3.35. Therefore one needs to impose at least Ćatness of ∇ ρ in order to get a similar result like Eq. (4.79); actually, one can check that one still needs a vanishing basic curvature, too. But we will later see that the basic connection will be in general Ćat, while ∇ ρ will not; especially we will see that the basic curvature will always vanish for the presented gauge theory. Thence, another reason for our choice to use the basic connection for the deĄnition of δ.

Proof of Cor. 4.3.39.

That is a trivial consequence of Thm. 4.3.37 and Prop. 4.3.36, using R bas ∇ = 0 (and that then the basic connection is Ćat by Prop. 3.7.6) and that R δ (•, •)A is ℱ 0 E (M )-bilinear such that one just needs to look at pullback functionals. ■

These results motivate even further why we use the basic connection to deĄne the inĄnitesimal gauge transformation. Moreover, R bas ∇ = 0 is also a condition which we will need for gauge invariance; see later. However, we also have this condition in the standard formulation of gauge theory such that it is not a newly imposed condition: Let E → N be a Lie algebroid. Then E is locally an action Lie algebroid if and only if it admits locally a Ćat connection ∇ with R bas ∇ = 0. If there is such a local isomorphism, then it can be chosen in such a way that ∇ describes the canonical Ćat connection. Remarks 4.3.42. As clariĄcation of the last sentence, under that isomorphism we have (locally) E = N × g for some Lie algebra g, and a basis of g, that is, a constant frame of E, will be parallel with respect to ∇. Especially, the canonical Ćat connection of every action Lie algebroid has a vanishing basic curvature. Furthermore, over a simply connected base the isomorphism is global as we will see in the proof (because one can then construct a global parallel frame for ∇; see the proof).

Proof. This basically follows by Eq. (3.59), i.e. ■

R bas ∇ (µ, ν)Y = (∇ Y t ∇ bas )(µ, ν) -R ∇ (ρ(µ), Y )ν + R ∇ (ρ(ν), Y )µ for all µ, ν ∈ Γ(E) and Y ∈ X(N ). Ť⇒Ť: Assume E♣ U ∼ = U × g is
We now want to generalize Cor. 4.3.39 by using Cor. 4.3.35, especially we need to understand the behaviour for scalar-valued functionals. For such functionals the inĄnitesimal gauge transformation is nothing else than the Lie derivative of some vector Ąeld in M E , which we denoted by Ψ ε . Recall Remark 4.3.2, we do in general not expect that Ψ ε ∈ X E M E (M ; N ) builds a subalgebra; however, since we restricted the set of those vector Ąelds by deĄning δ ε A in Prop. 4.3.16, there may be hope for the structure of a subalgebra; this will be discussed now.

Theorem 4.3.43: Bracket of gauge transformations a gauge transformation

Let M, N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E with R bas ∇ = 0. Furthermore let Ψ ε and Ψ ϑ for ε, ϑ ∈ ℱ 0 E (M ; * E) be the unique elements of X E M E (M ; N ) as given by Prop. 4.3.16. a Then

[Ψ ε , Ψ ϑ ] = -Ψ ∆(ε,ϑ) (4.81)
for all ε, ϑ ∈ ℱ 0 E (M ; * E), where Ψ ∆(ε,ϑ) is also the unique element of X E M E (M ; N ) as given by Prop. 4.3.16. a Recall that those Ψε are the vector Ąelds describing the inĄnitesimal gauge transformation; see Def. 4.3.23.

Proof.

First recall that we have by Remark 4.3.9

δ ε ω = ℒ Ψε ω for all ω ∈ ℱ • E (M ) and ε ∈ ℱ 0 E (M ; * E).
Therefore we want to use Cor. 4.3.39. As vector Ąelds of M E (M ; N ), the action of ℒ Ψε is uniquely given by its action on coordinates of M E (M ; N ), and these are essentially given by the components of the Ąelds (Φ, A) ∈ M E (M ; N ): Let x i i be local coordinate functions on N and let (e a ) a be a local frame of E, then coordinates of M E (M ; N ) are given by the functionals * x i and ϖ a 2 because of

* x i  (Φ,A) = Φ i , ϖ a 2 (Φ, A) = A a
for all (Φ, A) ∈ M E (M ; N ). Recall the Ąrst calculation in the proof of Cor. 4.3.35, we get similarly

R δ (ε, ϑ) * x i  = ε a ϑ b * ℒ ρ(ea) ℒ ρ(e b ) x i -ℒ ρ(e b ) ℒ ρ(ea) x i -ℒ ρ([ea,e b ] E ) x i  =  ℒ [ρ(ea),ρ(e b )] -ℒ ρ ([ ea,e b ] E )  x i =0
= 0 for all ε, ϑ ∈ ℱ 0 E (M ; * E), using that ρ is a homomorphisma and Remark 4.3.9 such that

δ ε * x i = -ε a * ℒ ρ(ea) x i 
. By Cor. 4.3.39 we also get

R δ (ε, ϑ)ϖ a 2 = 0.
By δ ε = ℒ Ψε on scalar-valued functionals we therefore get 

[ℒ Ψε , ℒ Ψ ϑ ] + ℒ Ψ ∆(ε,ϑ)  f = 0 for all f ∈ C ∞ M E (M ; N ) ,
δ * ν δ * µ Φ = -δ * ν * (ρ(µ)) = * ∇ bas ν ρ(µ)  = * ρ ∇ bas ν µ  for all µ, ν ∈ Γ(E), hence, a δ * ν δ * µ Φ -δ * µ δ * ν Φ + δ * ([ν,µ] E ) Φ = * ρ ∇ bas ν µ -∇ bas µ ν -[ν, µ] E  = * ρ t ∇ bas (ν, µ)  .
Therefore, if we want that this is zero, too, we would need that the torsion of the basic connection has values in the kernel of the anchor which is in general not the case. However, it is no harm that we do not have a zero value in general here. That is due to the fact that on one hand Φ just contributes via pull-backs, as we will also see in the following sections; on the other hand Φ is not vector-bundle valued and hence will not arise in any other form than as the map for the pullbacks in any Lagrangian or physical quantity. Even in the classical case, recall Prop. 2.1.16, a Lie algebra representation acting on Φ is just the evaluation of its induced action at Φ.

However, as we have seen in the proof, we got R δ (•, •) * x i = 0, and * x i (Φ,A) = Φ i for all (Φ, A) ∈ M E (M ; N ). That is, for the components of the Higgs Ąeld we have the desired behaviour, which is all we need. a Recall Eq. (4.73).

Finally, we can generalize Cor. 4.3.39.

Theorem 4.3.45: Curvature of δ on arbitrary functionals

Let M, N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E with R bas ∇ = 0. Furthermore let V → N be a vector bundle, equipped with an

E-connection E ∇ on V . Then R δ (ε, ϑ)L = ( * RE ∇ )(ε, ϑ)L (4.82) for all L ∈ ℱ k E (M ; * V ) (k ∈ N 0 ) and ε, ϑ ∈ ℱ 0 E (M ; * E). In short, R δ = * RE ∇ . Remarks 4.3.46.
This also shows that R δ is a tensor. Moreover, as expected, for Ćat E ∇ we would get 

R δ (ε, ϑ)L = 0. ( 4 
R δ (ε, ϑ)L = R δ (ε, ϑ)L a ⊗ * e a + ( * RE ∇ )(ε, ϑ)L for all L ∈ ℱ k E (M ; * V ) (k ∈ N 0 ) and ε, ϑ ∈ ℱ 0 E (M ; * E).
Hence, we just need to show that R δ (ε, ϑ)L a = 0. Again by Remark 4.3.9 we have δ ε = ℒ Ψε on scalar-valued functionals, where Ψ ε still denotes vector Ąelds as uniquely given by Prop. 4.3.16. Ψ ε are elements of X M E (M ; N ) , hence, 

(δ ε L a =ℒ Ψε L a ) p (Y 1 , . . . , Y k ) = ℒ Ψε L a p (Y 1 , . . . , Y k )  for all p ∈ M and Y 1 , . . . , Y k ∈ T p M . We know that L a ∈ ℱ k E (M ), and therefore L a p (Y 1 , . . . , Y k ) ∈ C ∞ M E (M ; N ) , so, we just need to use Thm. 4.3.43 to get (R δ (ε, ϑ)L a ) p (Y 1 , . . . , Y k ) = [ℒ Ψε , ℒ Ψ ϑ ] + ℒ Ψ ∆(ε,ϑ)  L a  p (Y 1 , . . . , Y k ) = [ℒ Ψε , ℒ Ψ ϑ ] + ℒ Ψ ∆(ε,ϑ)  L a p (
∆(η, ∆(ϑ, ε)) = ∆ η, δ ε ϑ -δ ϑ ε - * t ∇ bas (ϑ, ε) = δ δεϑ η -δ δ ϑ ε η -δ * t ∇ bas (ϑ,ε) η δ ∆(ϑ,ε) η -δ η δ ε ϑ + δ η δ ϑ ε + * t ∇ bas η, * t ∇ bas (ϑ, ε) + δ η * t ∇ bas (ϑ, ε) - * t ∇ bas (η, δ ε ϑ) + * t ∇ bas (η, δ ϑ ε) = δ η δ ϑ ε -δ η δ ε ϑ + δ ∆(ϑ,ε) η + δ η * t ∇ bas (ϑ, ε) - * t ∇ bas (η, δ ε ϑ) + * t ∇ bas (η, δ ϑ ε) =- * t ∇ bas (δ ϑ ε,η) + * t ∇ bas η, * t ∇ bas (ϑ, ε)
for all ε, ϑ, η ∈ ℱ 0 E (M ; * E). Taking the cyclic sum, we collect the terms as in the proof of Thm. 3.4.6, and hence we get, using that ∇ bas is used for the deĄnition of δ on E-valued functionals, = 0 for all ε, ϑ, η ∈ ℱ 0 E (M ; * E), where (e a ) a is a local frame of E, and we also used that ∇ bas is Ćat by Prop. 3.7.6; the Ćatness was applied when we used Thm. 3.4.6 and Thm. 4.3.45. 6 Thence, the Jacobi identity follows. ■ Remarks 4.3.48. The proof is essentially based on the Ąrst Bianchi identity of curvatures. Hence, taking any other E-connection ∇ ′ on E one could deĄne the bracket ∆ by using the torsion of ∇ ′ instead of ∇ bas , and then also deĄne the δ operator with respect to ∇ ′ on E-valued form. By Thm. 4.3.45 we could not expect R δ = 0 in general, but ∆ should be nevertheless a Lie bracket due to the fact that the Ąrst Bianchi identity always holds and that Thm. 4.3.45 provides the needed curvature terms for the Bianchi identity.

∆(η, ∆(ϑ, ε)) + ∆(ϑ, ∆(ε, η)) + ∆(ε, ∆(η, ϑ)) = R δ (η, ϑ)ε + R δ (ε, η)ϑ + R δ (ϑ, ε)η Thm. 4.3.45 = 0 + * t ∇ bas η, * t ∇ bas (ϑ, ε) + * t ∇ bas ε, * t ∇ bas (η, ϑ)
+ * t ∇ bas ϑ, * t ∇ bas (ε, η) + (δ η ( * t ∇ bas )) =- * (∇ bas η t ∇ bas ) (ϑ, ε) + (δ ε ( * t ∇ bas ))(η, ϑ) + (δ ϑ ( * t ∇ bas ))(ε, η) = -ϑ a ε b η c *  t ∇ bas (t ∇ bas (e a ,

InĄnitesimal gauge invariance

Let us now calculate the inĄnitesimal gauge transformations needed for the Lagrangian.

Proposition 4.4.1: InĄnitesimal gauge transformations of the Ąeld strength

Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Then we have

δ ε F = -  1 2 ( * R ∇ )(D ∧ , D)ε + * R bas ∇  (ε ∧ , ϖ 2 ∧ , D)  (4.84)
for all ε ∈ ℱ 0 E (M ; * E), where we write

Γ(E)×Γ(E)×X(N ) ∋ (µ, ν, Y ) → R bas ∇ (µ, ν, Y ) := R bas ∇ (µ, ν)Y .
Proof.

Let (e a ) a be a frame of E, then by Eq. ( 4.61)

dδ ε ϖ a 2 ⊗ * e a = d ε b ϖ c 2 ⊗ * ∇ bas e b e c  -( * ∇)ε  a ⊗ * e a = dε b ∧ ϖ c 2 ⊗ * ∇ bas e b e c  + ε b dϖ c 2 ⊗ * ∇ bas e b e c  -ε b ϖ c 2 ∧ d * ∇ bas e b e c  a
⊗ * e a -d ( * ∇)ε a ⊗ * e a also recall Eq. ( 4.43), and (4.58) (and also the calculation for Eq. (4.59)), then, using the previous calculation,

δ ε d * ∇ ϖ 2  = δ ε dϖ a 2 ⊗ * e a -ϖ b 2 ∧ ! (∇e b )  = dδ ε ϖ a 2 ⊗ * e a -dϖ a 2 ⊗ * ∇ bas ε e a  -δ ε ϖ b 2 ∧ ! (∇e b ) + ϖ b 2 ∧  * ∇ bas ε (∇e b )  (D) + * ∇ ( * ρ)(( * ∇)ε) e b  =ε a ! (∇ bas ea (∇e b ))+ε a ! (∇ ρ(∇ea) e b) +dε a ⊗ * (∇ ρ(ea) e b)  = dε a ∧ ϖ b 2 ⊗ * ∇ bas ea e b -∇ ρ(ea) e b  =t ∇ bas (ea,e b ) -ε a ϖ c 2 ∧ d * ∇ bas ea e c  b ⊗ * e b -d ( * ∇)ε b ⊗ * e b -ε a ϖ c 2 ⊗ * ∇ bas ea e c  -( * ∇)ε  b ∧ ! (∇e b ) + ε a ϖ b 2 ∧ !  ∇ bas ea (∇e b ) + ∇ ρ(∇ea) e b  = dε a ∧ ϖ b 2 ⊗ * (t ∇ bas (e a , e b )) -ε a ϖ c 2 ∧ d * ∇ * ∇ bas ea e c  Eq. (A.2) = ! (∇(∇ bas ea ec)) -d * ∇  2 ε =R * ∇ (•,•)ε + ε a ϖ b 2 ∧ !  ∇ bas ea (∇e b ) + ∇ ρ(∇ea) e b  = dε a ∧ ϖ b 2 * (t ∇ bas (e a , e b )) -ε a ! R ∇ (•, •)e a + ε a ϖ b 2 ∧ !  ∇ bas ea (∇e b ) -∇ ∇ bas ea e b  + ∇ ρ(∇ea) e b X(N )∋Y →[ea,∇ Y e b ] E +∇ ρ(∇ Y e b ) ea-∇ [ρ(ea),Y ] e b -∇ Y ([ea,eb] E )-∇Y ∇ ρ(e b ) ea
 , using the second calculation in the proof of Thm. 4.3.37. Moreover,

∇ bas η t ∇ bas  (µ, ν) Thm. 3.7.8 = R ∇ρ (µ, ν)η
for all µ, ν, η ∈ Γ(E), such that, also using Eq. ( 4.40),

δ ε  1 2 ( * t ∇ bas )(ϖ 2 ∧ , ϖ 2 )  = - 1 2  * ∇ bas ε t ∇ bas  (ϖ 2 ∧ , ϖ 2 ) + ( * t ∇ bas ) ( * ∇)ε ∧ , ϖ 2 + ( * t ∇ bas ) ϖ 2 ∧ , ( * ∇)ε =( * t ∇ bas ) ( * ∇)ε ∧ , ϖ 2  = - ε a 2 * R ∇ρ (•, •)e a (ϖ 2 ∧ , ϖ 2 ) -dε a ∧ ϖ b 2 * t ∇ bas (e a , e b ) + ε a ϖ b 2 ∧ ! t ∇ bas (∇e a , e b )
where we used that the torsion is anti-symmetric such that by Prop. 4.0.3

( * t ∇ bas ) ϖ 2 ∧ , ( * ∇)ε = ( * t ∇ bas ) ( * ∇)ε ∧ , ϖ 2 , (4.85)
because both arguments are 1-forms. We also have 

[e a , ∇ Y e b ] E + ∇ ρ(∇ Y e b ) e a -∇ [ρ(ea),Y ] e b -∇ Y ([e a , e b ] E ) -∇ Y ∇ ρ(e b ) e a + t ∇ bas (∇ Y e a , e b ) = [e a , ∇ Y e b ] E + ∇ ρ(∇ Y e b ) e a -∇ [ρ(ea),Y ] e b -∇ Y ([e a , e b ] E ) -∇ Y ∇ ρ(e b ) e a + [∇ Y e a , e b ] E -∇ ρ(∇ Y ea) e b + ∇ ρ(e b ) ∇ Y e a = -∇ Y ([e a , e b ] E ) + [e a , ∇ Y e b ] E + [∇ Y e a ,
δ ε F Def. 4.2.1 = -ε a ! R ∇ (•, •)e a - ε a 2 * R ∇ρ (•, •)e a (ϖ 2 ∧ , ϖ 2 ) Simon-Raphael Fischer + ε a ϖ b 2 ∧ ! R ∇ (ρ(e b ), •)e a -R bas ∇ (e a , e b )  Eq. (4.2) = - 1 2 ( * R ∇ )(D ∧ , D)ε + * R ∇ρ (ϖ 2 ∧ , ϖ 2 )ε =( * R ∇ )(( * ρ)(ϖ 2 ) ∧ , ( * ρ)(ϖ 2 ))ε  + ( * R ∇ ) ( * ρ)(ϖ 2 ) ∧ , D ε = 1 2 ( * R ∇ ) ( * ρ)(ϖ 2 ) ∧ , D ε+( * R ∇ ) D ∧ , ( * ρ)(ϖ 2 ) ε  - * R bas ∇  (ε ∧ , ϖ 2 ∧ , D) Def. 4.2.3 = - 1 2 ( * R ∇ )(D ∧ , D)ε -( * R ∇ )(D ∧ , ( * ρ)(ϖ 2 ))ε  - * R bas ∇  (ε ∧ , ϖ 2 ∧ , D) = -  1 2 ( * R ∇ )(D ∧ , D)ε + * R bas ∇  (ε ∧ , ϖ 2 ∧ , D)  ,
where we introduced the notation

Γ(E)×Γ(E)×X(N ) ∋ (µ, ν, Y ) → R bas ∇ (µ, ν, Y ) = R bas ∇ (µ, ν
)Y in order to emphasize the anti-symmetrization when applying the graded extension on R bas ∇ , and we used the same argument on ( * R ∇ ) ( * ρ)(ϖ 2 ) ∧ , D ε as in Eq. (4.85). ■ Remarks 4.4.2. These formulas look different when comparing it with the standard formulas, but that is again related to that we use the basic connection for the variations instead. As introduced, we should look at the variation of the components to see how the variation affects the variation of the Lagrangian.

• In order to deĄne gauge invariance the idea is as in [START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF], δ ε F a should be proportional to F which is not the case here for both terms. Explicitly we need that δ ε F = 0; in that case we would have for the components (with respect to a frame (e a ) a of E)

δ ε F a = (δ ε F ) a =0 -F b δ ε ( * e b ) a = * ∇ bas ε e b  a F b = ε c * [e c , e b ] E + ∇ ρ(e b ) e c  a F b (4.86)
such that the variation of the components is proportional to themselves and we can then formulate the symmetry on scalar products as usual as a symmetry under (inĄnitesimal) ŤrotationsŤ, see also the next theorem.

In the proof we saw that we can also write

δ ε F = - 1 2 ( * R ∇ )(D ∧ , D)ε + * R ∇ρ (ϖ 2 ∧ , ϖ 2 )ε  + ( * R ∇ ) ( * ρ)(ϖ 2 ) ∧ , D ε - * R bas ∇  (ε ∧ , ϖ 2 ∧ , D).
Since Φ and A are regarded as the Ąelds with respect to which the theory gets varied and M , N etc. are completely arbitrary up to this point, so, thinking about the whole category of possible manifolds, D and ϖ 2 can be viewed as (in general) independent functionals while ε is very arbitrary. Thus, in order to get δ ε F = 0 we need R ∇ = 0 and R bas ∇ = 0 in general. R bas ∇ = 0 sounds reasonable as we discussed in the previous section, recall the discussion around Cor. 4.3.39, but the condition that ∇ is Ćat is not a good condition because this will lead to that we have locally the standard formulation of gauge theory which is not the aim of this new formulation. The problems with Ćatness we are going to discuss later, instead let us discuss why this formula recovers the standard formula when using again action Lie algebroids with canonical Ćat connections.

• As usual we use again Cor. 4.2.6, for this assume that E = N ×g is an action Lie algebroid for some Lie algebra g, equipped with the canonical Ćat connection ∇; as in the proof of Thm. 4.3.41 the canonical Ćat connection satisĄes R bas ∇ = 0. Thus, we have then δ ε F = 0, and by the previous calculation

δ ε F a = ε c Φ * [e c , e b ] g  a const. F b = [ε, F ] g  a
for (e a ) a a constant frame. This is again precisely the expected formula, recall Prop. 2.4.5, and this is also shown and argued in [1, see the second paragraph after Eq. ( 11), keep in mind that the different sign for ε], where also the general formula with the curvature got stated, but again only for the components without knowing the full tensor.

Using this and Remark 4.4.2 we can Ąnally formulate what we need to have a gauge-invariant Lagrangian; for this we need to calculate δ ε L YMH (Def. 4.2.5). Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, κ and g Ąbre metrics on E and TN , respectively. Also let V ∈ C ∞ (N ) and assume that the following compatibility conditions hold:

R ∇ = 0, (4.87) 
R bas ∇ = 0, (4.88) 
∇ bas κ = 0, (4.89)

∇ bas g = 0, (4.90) * ℒ ( * ρ)(ε) V  = 0 (4.91)
for all ε ∈ ℱ 0 E (M ; * E). Then we have 

δ ε L YMH = 0 (4.92) for all ε ∈ ℱ 0 E (M ; * E).
* ρ)(ε) V  (Φ, A) p = Φ * ℒ (Φ * ρ)(ϵ) V  p = ℒ (ρ Φ(p) )(ϵp) V for all (p, Φ, A) ∈ M × M E (M ; N ), where ϵ := ε(Φ, A) ∈ Γ(Φ * E).
It is clear that Eq. (4.91) generalizes Eq. (2.30) if E is an action Lie algebroid.

Proof.

Observe that * ( * V ) = * V dvol η , where dvol η is the canonical volume form of η and the sign might differ depending on the deĄnition of the Hodge star operator. Using that, we only need to look at the variation of * V because dvol η is clearly not affected by δ, hence,

δ ε ( * V ) = - * ℒ ( * ρ)(ε) V  = 0 for all ε ∈ ℱ 0 E (M ; * E),
where we used the last condition. Up to a sign we also have

7 ω ∧ * ψ = ⟨ω, ψ⟩ dvol η for all ω, ψ ∈ Ω k (M ) (k ∈ N 0 ), where ⟨•, •⟩ is the standard scalar product deĄned on Ω k (M ) using η, i.e. ⟨ω, ψ⟩ = 1 k! ω α 1 ,...,α k ψ α 1 ,...,α k
where we express the forms with respect to coordinate vector Ąelds (∂ α ) α on M and raising an index is done by using η; especially, δ ε satisĄes the Leibniz rule on ⟨•, •⟩ because δ ε η = 0. Hence, similar to before,

δ ε (ω ∧ * ψ) = δ ε ⟨ω, ψ⟩ dvol η = ⟨δ ε ω, ψ⟩ + ⟨ω, δ ε ψ⟩ dvol η = δ ε ω ∧ * ψ + ω ∧ * (δ ε ψ)
for all ε ∈ ℱ 0 E (M ; * E). This clearly extends to Def. 4.0.1 by the Leibniz rule (e.g. this is immediate by the coordinate expression of graded extensions), in the sense of

δ ε ( * κ)(F ∧ , * F ) = (δ ε ( * κ))(F ∧ , * F ) + ( * κ)(δ ε F ∧ , * F ) + ( * κ) F ∧ , * (δ ε F ) for all ε ∈ ℱ 0 E (M ; * E),
similarly for other all terms of that form. Observe that we have δ ε F = 0 additionally to δ ε D = 0 by Prop. 4.3.18 and 4.4.1 and due to R ∇ = 0 and R bas ∇ = 0. So, we get in total, using the result of the variation of the potential V , 

δ ε L YMH = δ ε  - 1 2 ( * κ)(F ∧ , * F ) + ( * g)(D ∧ , * D) - * ( * V )  = - 1 2 δ ε ( * κ) (F ∧ , * F ) + δ ε ( * g) (D ∧ , * D)
 * ∇ bas ε κ   (F ∧ , * F ) -  * ∇ bas ε g   (D ∧ , * D) = 0
for all ε ∈ ℱ 0 E (M ; * E), using the metric compatibilities in the assumed conditions. ■

Lie algebroids equipped with a connection with vanishing basic curvature are also called Cartan algebroids as e.g. deĄned in [13, §2.3]; hence, this special type of Lie algebroid seems to be the relevant one for gauge theories, as we already have noticed in the discussion about gauge transformations. Let us collect all the results we got along the way in relation to the standard formulation.

Theorem 4.4.5: Standard formulation of gauge theory is recovered, [1]

Assume that N = W is a vector space, E = N ×g an action Lie algebroid for a Lie algebra g whose Lie algebra action γ is induced by a Lie algebra representation ψ : g → End(W ), and assume that ∇ is the canonical Ćat connection of E. Moreover, let κ be a Ąbre metric of E which is a canonical extension of an ad-invariant scalar product of g, similarly g is a metric on TW ∼ = W × W constantly extending an ψ-invariant scalar product of W . Finally, let V ∈ C ∞ (N ) such that it satisĄes Eq. (4.91). Then the compatibility conditions of Thm. 4.4.3 are satisĄed, and we recover the standard theory: The Lagrangian L YMH is as in the standard formulation and gauge-invariant, as does the Ąeld strength F , the minimal coupling D, the Ąeld of gauge bosons A, the Ąeld Φ, and its variation δ ε Φ; with respect to a constant frame (e a ) a of E and a constant frame (∂ α ) α of TW , δ ε A a coincide with the components of the variation of A of the standard formulation, as does δ ε F a and δ ε (D) α . Remarks 4.4.6. As discussed in subsection 4.3, the inĄnitesimal gauge transformation of the Lagrangian is just δ ε L YMH = ℒ Ψε L YMH . Thence, the deĄnition of Ψ ε is of importance for the gauge invariance of the Lagrangian, that is, how Φ and how the components of A transform; recall Prop. 4.3.16. Given that unique Ψ ε of Prop. 4.3.16 (for a Ąxed ∇) one can take any other connection on E to formulate δ ε A and δ ε in general, one will always get the gauge invariance of the Lagrangian, and the components of A etc. will also transform the same. Hence, the statement about the transformations of the components could also be formulated as that Ψ ε reduces to the same vector Ąeld on the space of Ąelds as in the classical situation.

However, as already mentioned before, the deĄnition of Ψ ε depends on ∇; but given a Ψ ε the choice of connections for the deĄnition of δ ε does not affect the gauge invariance of the Lagrangian.

When we would use ∇ ρ to deĄne the gauge transformations of E-valued functionals, then many of the total formulas would also restrict to standard formulas due to the Ćatness of ∇ in the standard situation, not just their components, recall Thm. 4.3.10. That is especially due to that ∇ ρ will be a canonical Ćat connection, while the basic connection is Ćat but it may not have a parallel frame due to the kernel of the anchor. If we would use ∇ ρ , we would loose the Ćatness of the gauge transformations as discussed in Cor. 4.3.39 whenever ∇ ρ is not Ćat anymore. However, we have now seen that ∇ needs to be Ćat for the gauge invariance of the Lagrangian such that this does seemingly not matter; but we will see later that there is the possibility to allow non-Ćat ∇. By Thm. 4.3.41 we immediately know that E ∼ = N ×g is an action Lie algebroid for a Lie algebra g with Lie algebra action γ : g → X(N ) on some open neighbourhood around each point, in such a way that ∇ is its canonical Ćat connection. Restricting the neighbourhood even further results into N = W for some vector space W . The remaining proof is exactly as in Thm. 4.4.5. ■ Hence, we arrive locally always at the standard situation; at least at something very similar to it. The Lie algebra action might not come from a Lie algebra representation and the metrics might look exotic, but these are just technicalities which are not important for us, especially when one recalls that the aim of this theory is that gauge theory is covariantized in order to easily replace ∇ with non-Ćat connections. However, there is a possibility in allowing non-Ćat connections, and for this we need to change the Ąeld strength to compensate the curvature term in Prop. 4.4.1 which is mainly the reason behind the compatibility condition about Ćatness, as also argued as an ansatz in [1, second paragraph after Equation [START_REF] Grabowski | Higher vector bundles and multi-graded symplectic manifolds[END_REF]]. We want to motivate this change by a Ąeld redeĄnition instead, a transformation which keeps the Lagrangian invariant after a modiĄcation, but breaking the condition about Ćatness.

Proof of

Before we do this let us shortly summarize an aspect of the classical theory which is now obvious due to this formulation. Given a Ąxed Ąbre metric κ such that ∇ bas κ = 0, as in one of the compatibility conditions, we would therefore know that ∇ bas is an E-Levi-Civita connection if and only if g is abelian. 8Proof.

We only need to check under which conditions the tensor of the torsion of the basic connection is zero for constant sections µ, ν since these generate all sections, especially we have ∇µ

= ∇ν = 0 and [µ, ν] E = [µ, ν] g : 0 = t ∇ bas (µ, ν) =-t ∇ρ (µ,ν) ⇔ 0 = t ∇ρ (µ, ν) ⇔ 0 = [µ, ν] g . ■

Field redeĄnition

We study the following transformation which keeps the action invariant; for this recall SylvesterŠs determinant theorem ([18, Appendix B; page 271]), also called Weinstein-Aronszajn identity, which says

det(1 n + CB) = det(1 m + BC), (4.94) 
where n, m ∈ N, 1 n and 1 m are the identity matrices on R n and R m , respectively, and C ∈ R n×m and B ∈ R m×n . Abstractly spoken, the typical idea of Ąeld redeĄnitions is the same as for covariantizing physical theories and deĄnitions. One applies a non-constant change of coordinates in such a way that one leaves the Ťinertial frameŤ as in classical mechanics, resulting to that one gets extra terms in several formulas like contributions coming from Ťinertial forcesŤ; but one still has the same physics, because the Lagrangian is actually invariant under that change of coordinates. Usually one reformulates the same theory naturally supporting those extra terms, leading to a theory naturally invariant under the observed changes of coordinates in all deĄnitions, which is often referred to as covariantization by physicists. Up to this point it is just something aesthetic one could say, however, the next step is then study whether the mentioned extra terms always vanish in some coordinate system. Think e.g. of connection 1-forms of connections and one started with a theory with an underlying Ćat connection such that the initial coordinate system was also the parallel frame where the 1-forms are zero, and the connection 1-forms then arise as those extra terms in other coordinate systems. Studying whether those connection 1-forms always can vanish in some coordinate system, means, whether or not non-trivial curvatures are possible.

In our case the ŤcoordinatesŤ we speak of is the structural data, especially A, a coordinate of M E , but also for example ∇, and, so, the extra terms are going to be in the compatibility condition about the curvature of ∇. To keep the same physics, that is, the Lagrangian stays invariant, we need to correct especially the Ąeld strength since the Ąeld strength is of course directly affected by non-trivial changes of A. Since the previously-discussed Ćatness of ∇ is given by the inĄnitesimal gauge transformation of the Ąeld strength, there is the hope that whatever we need to add to ŤcorrectŤ the Ąeld strength will also lead to a gauge invariant theory allowing non-Ćat connections. As a next step it is then natural to rewrite gauge theory allowing those extra terms, leading to a theory naturally invariant under the chosen change of ŤcoordinatesŤ (as in coordinate-independence), while the classical theory is just the same theory, written with respect to ŤcoordinatesŤ where those extra terms are zero. Finally, one may want to discuss what happens when these extra terms actually never vanish, even after such changes of ŤcoordinatesŤ. So, precisely the same as in the previous paragraph, just happening with a different type of ŤcoordinateŤ, which is why we are not going to say covariantization but Ąeld redeĄnition.

Let us start deĄning that Ąeld redeĄnition.

DeĄnition 4.5.1: Field redeĄnition

Let M, N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, and κ and g Ąbre metrics on E and TN , respectively. Also let λ ∈ Ω 1 (N ; E) such that Λ := 1 E -λ•ρ is an element of 𝒜𝓊𝓉(E). We then deĄne the Ąeld redeĄnition by

ϖ 2 λ := ( * Λ)(ϖ 2 ) + ! λ, ( 4.95) 
∇ λ := ∇ + Λ • d ∇ bas • Λ -1  λ, ( 4.96) 
κ λ := κ • Λ -1 , Λ -1  , ( 4 
.97)

g λ := g • Λ -1 , Λ -1  , ( 4.98) 
where Λ := 1 TN -ρ • λ.

Remarks 4.5.2.

• Λ and Λ are already endomorphisms by deĄnition, and, so, by Eq. ( 4.94) we know that Λ ∈ 𝒜𝓊𝓉(TN ) if and only if Λ ∈ 𝒜𝓊𝓉(E). Also recall that we view elements of Ω 1 (N ; E) also as elements of Ω 1,0 (N,

E; E), Def. 3.8.3, therefore Λ • d ∇ bas • Λ -1  λ ∈ Ω 1,1 (N, E; E) ∼ = Ω 1 (N ; End(E)).
• We can rewrite ϖ 2 λ to

ϖ 2 λ = ( * Λ)(ϖ 2 ) + ! λ Eq. (4.2) = ϖ 2 - * (λ • ρ) =( * λ)•( * ρ) (ϖ 2 ) + ( * λ)(D) = ϖ 2 + ( * λ)(D). (4.99) With respect to points (Φ, A) ∈ M E (M ; N ) this implies ϖ 2 λ  (Φ, A) = A λ = (Φ * Λ)(A) + Φ ! λ = A + (Φ * λ) D A Φ  . ( 4 

.100)

Viewing A and ϖ 2 as coordinates on M E (M ; N ), the idea of the Ąeld redeĄnition is a change of coordinates, consisting of a translation and a rotation with Λ which is basically a Ąrst order approximation of the typical rotation given by an exponential. The other formulas of the Ąeld redeĄnition are taken in such a way to keep all compatibility conditions in Thm. 4.4.3 but the one about the curvature of ∇. We will see this in the following.

• If we additionally have R bas ∇ = 0, then we have

d ∇ bas  2 = 0
by Prop. 3.7.6, thus, also

Λ • d ∇ bas • Λ -1  2 = Λ • d ∇ bas  2 • Λ -1 = 0,
hence, we add then an exact term to ∇.

• Eq. (4.95) was suggested by one of my supervisors, Thomas Strobl, and the Ąrst task of my PhD was to calculate all the remaining formulas and properties needed for the following discussions. In [1, the example at the very end, right before the conclusion] some transformation was discussed which is a special and simpliĄed situation of the Ąeld redeĄnition. Thomas Strobl got this special example of the Ąeld redeĄnition after a private dialogue with Edward Witten.

Remark 4.5.3: An important note about notation

Due to λ ∈ Ω 1,0 (N, E; E) one may want to write

Λ • d ∇ bas • Λ -1  λ = Λ • ∇ bas • Λ -1  λ = d Λ•∇ bas •Λ -1 λ,
but the Ąrst equality is not correct with our notation! Keep in mind that we have two degrees in form of the spaces Ω p,q (N, E; E) (p, q ∈ N 0 ), so, there are Leibniz rules involved on the p-degree if p ̸ = 0, here p = 1. That is, for Y ∈ X(N ) and ν ∈ Γ(E), compare

Λ • d ∇ bas • Λ -1  λ  (Y, ν) = Λ ∇ bas ν Λ -1 • λ  (Y )  = Λ ∇ bas ν Λ -1 • λ  (Y )  -λ ∇ bas ν Y  = Λ • ∇ bas ν • Λ -1  λ(Y ) -λ ∇ bas ν Y  with d Λ•∇ bas •Λ -1 λ  (Y, ν) = Λ • ∇ bas ν • Λ -1  λ(Y ) -λ Λ • ∇ bas ν • Λ -1  Y  .
Hence, due to the Leibniz rules, a composition of maps with connections is not the same as usual compositions of maps, here with a differential. With Λ • ∇ bas • Λ -1 we mean the whole object as a connection, so, acting on λ, extending Λ • ∇ bas • Λ -1 as an E-connection to Ω 1 (N ; E). While each component in Λ • d ∇ bas • Λ -1 acts separately on forms like λ, and ∇ bas is extended as E-connection to Ω 1 (N ; E) (without the conjugation). Therefore one needs to be very careful about how to use conjugations like Λ • . . . • Λ -1 and how to put square brackets, especially when connections are involved. Thus, also

Λ • d ∇ bas • Λ -1  λ  (•, ν) = Λ ∇ bas ν Λ -1 • λ  ̸ = Λ • ∇ bas ν • Λ -1  λ. (4.101)
If one always wants to write d ∇ bas = ∇ bas for elements of Ω p,0 (N, E; E) as at the beginning of this remark, then one needs to introduce a notation for extensions as of ∇ bas to Ω 1 (N ; E) in order to avoid precisely the confusion of notation discussed here.

We have actually the following corollary relating both notations/notions.

Corollary 4.5.4: Conjugation of differentials

Let N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Also let

λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E). Then d Λ•∇ bas •Λ -1 ω  (X 1 , . . . , X p , ν 0 , . . . , ν q ) = Λ • d ∇ bas • Λ -1  ω • Λ, . . . , Λ p times , 1 E , . . . , 1 E q times  Λ -1 (X 1 ), . . . , Λ -1 (X p ), ν 0 , . . . , ν q  (4.102)
for all ω ∈ Ω p,q (N, E; E) (p, q ∈ N 0 ), X 1 , . . . , X p ∈ X(N ) and ν 0 , . . . , ν q ∈ Γ(E). Equiva-lently, The second formulation emphasizes that it is roughly about a commutation relation between the conjugation with Λ and the differential with the basic connection.

d Λ•∇ bas •Λ -1  Λ • ω • Λ -1 , . . . , Λ -1 p times , 1 E , . . . , 1 E q times   = Λ • d ∇ bas ω  • Λ -1 , . . . , Λ -1 p times , 1 E , . . . , 1 E q+1 times  . ( 4 

Proof of Cor. 4.5.4.

That is a straightforward calculation, writing

E ∇ := Λ • ∇ bas • Λ -1 ,  d E ∇ ω  (X 1 , . . . , X p , ν 0 , . . . , ν q ) = q i=0 (-1) i  E ∇ ν i ω Λ • Λ -1  (X 1 ), . . . , Λ • Λ -1  (X p ), ν 0 , . . . , ν i , . . . ν q  - p j=1 ω Λ•Λ -1 •ω Λ • Λ -1  (X 1 ), . . . , E ∇ ν i X j , . . . , Λ • Λ -1  (X p ), ν 0 , . . . , ν i , . . . , ν q   + 0≤i<j≤q (-1) i+j ω =Λ•Λ -1 •ω Λ • Λ -1  (X 1 ), . . . , Λ • Λ -1  (X p ), [ν i , ν j ] E , ν 0 , . . . , ν i , . . . , ν j , . . . , ν q  = Λ • d ∇ bas • Λ -1  ω • Λ, . . . , Λ p times , 1 E , . . . , 1 E q times  Λ -1 (X 1 ), . . . , Λ -1 (X p ), ν 0 , . . . , ν q 
for all ω ∈ Ω p,q (N, E; E) (p, q ∈ N 0 ), X 1 , . . . , X p ∈ X(N ) and ν 0 , . . . , ν q ∈ Γ(E). The second equation is of course just that formula applied to

Λ • ω • Λ -1 , . . . , Λ -1 p times , 1 E , . . . , 1 E q times  .

■

Before we can study and discuss this Ąeld redeĄnition let us list several useful properties. Let N be a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, and κ and g Ąbre metrics on E and TN , respectively. Also let

λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ
is an element of 𝒜𝓊𝓉(E). Then we have

Λ -1 = l k=0 (λ • ρ) k + Λ -1 • (λ • ρ) l+1 , Λ -1 = l k=0 (ρ • λ) k + Λ -1 • (ρ • λ) l+1 , (4.104) 
∇ λ  bas = Λ • ∇ bas • Λ -1 , ∇ λ  bas = Λ • ∇ bas • Λ -1 , (4.105) ρ • Λ = Λ • ρ, Λ • λ = λ • Λ, (4.106) ρ • Λ -1 = Λ -1 • ρ, Λ -1 • λ = λ • Λ -1 (4.107)
for all l ∈ N 0 , where we mean the basic connection on E on the left and the one on TN on the right in the second line. Moreover, we have several identities for the redeĄnition of the connection

∇ λ = ∇ ′ -d ∇ ′ λ  • (1 TN , ρ) + Λ • t ∇ρ • Λ -1 • λ, 1 E  , ( 4.108) 
where

∇ ′ := Λ • ∇ • Λ -1
, and

∇ λ Y µ = Λ ∇ Λ -1 (Y ) µ -Λ -1 • λ  (Y ), µ E  + λ [Y, ρ(µ)] (4.109) 
for all µ ∈ Γ(E) and Y ∈ X(N ), Ąnally also

∇ λ Λ = ∇ Λ + d ∇ bas λ. (4.110)
Remarks 4.5.7. We especially need the formulas of the inverse for l = 0, i.e.

Λ -1 = 1 E + Λ -1 • λ • ρ, Λ -1 = 1 TN + Λ -1 • λ • ρ.
Proof.

• The Eq. (4.106) simply follow by deĄnition, and inverting these with respect to Λ and Λ gives Eq. (4.107). Using these, we also have

Λ • l k=0 (λ • ρ) k + Λ -1 • (λ • ρ) l+1 = l k=0 (1 E -λ • ρ) • (λ • ρ) k =(λ•ρ) k -(λ•ρ) k+1 + (λ • ρ) l+1 telescoping sum = (λ • ρ) 0 -(λ • ρ) l+1 + (λ • ρ) l+1 = 1 E ,
Simon-Raphael Fischer which proves the claim. In the same manner one shows the formula for Λ -1 .

• We have 

Λ • d ∇ bas • Λ -1  λ  (Y, µ) = Λ  ∇ bas µ Λ -1 • λ  (Y )  -Λ -1 • λ  ∇ bas µ Y   = Λ  -Λ -1 • λ  (Y ), µ E + ∇ Λ -1 •ρ•λ(Y ) µ  + λ([Y, ρ(µ)]) -λ • ρ(∇ Y µ) + ∇ Y µ Λ(∇ Y µ) -∇ Y µ = Λ  ∇ Λ -1 (Y ) µ -Λ -1 • λ  (Y ), µ E  + λ([Y, ρ(µ)]) -∇ Y µ,
∇ ′ Y µ -d ∇ ′ λ  (Y, ρ(µ)) + Λ t ∇ρ Λ -1 (λ(Y )), µ  = ∇ ′ Y µ -∇ ′ Y (λ • ρ)(µ) =∇ ′ Y (Λ(µ)) +∇ ′ ρ(µ) λ(Y ) + λ [Y, ρ(µ)] + Λ  -Λ -1 • λ  (Y ), µ E + ∇ (ρ•Λ -1 •λ)(Y ) µ -∇ ρ(µ) Λ -1 • λ  (Y )   = Λ ∇ Λ -1 (Y ) µ -Λ -1 • λ  (Y ), µ E  + λ [Y, ρ(µ)] ,
comparing it with the previous formula, we arrive at

∇ λ = ∇ ′ -d ∇ ′ λ  • (1 TN , ρ) + Λ • t ∇ρ • Λ -1 • λ, 1 E  . For I := Λ • d ∇ bas • Λ -1  λ ∈ Ω 1 (N ; End(E)) ∼ = Ω 1,1 (N, E; E) we also have I(Y, ν) = Λ • ∇ bas ν • Λ -1 • λ -λ • ∇ bas ν  (Y ) Eq. (4.96) = ∇ λ ν Y -∇ ν Y for all ν ∈ Γ(E) and Y ∈ X(N ); especially with ρ • ∇ bas = ∇ bas • ρ we get I Λ(Y ), ν  = Λ • ∇ bas ν • λ -λ • ∇ bas ν • Λ  (Y ) = ∇ bas ν • λ -λ • ∇ bas ν -λ • ρ • ∇ bas ν • λ + λ • ∇ bas ν • ρ • λ  (Y ) = ∇ bas ν • λ -λ • ∇ bas ν  (Y ) = d ∇ bas λ  (Y, ν),
which proves the last equation. Alternatively, use Cor. 4.5.4.

• Finally, using the things just shown,

∇ λ  bas µ ν = [µ, ν] E + ∇ λ ρ(ν) µ = [µ, ν] E + Λ  ∇ Λ -1 •ρ (ν) µ -Λ -1 • λ • ρ  (ν), µ E  + λ [ρ(ν), ρ(µ)] = [µ, ν] E + µ, Λ -1 • λ • ρ  (ν) E =[µ,Λ -1 (ν)] E +Λ ∇ (ρ•Λ -1 )(ν) µ  + (λ • ρ) Λ -1 • λ • ρ  (ν), µ E  + (λ • ρ) [ν, µ] E =(λ•ρ)([Λ -1 (ν),µ] E ) = Λ µ, Λ -1 (ν) E  + Λ ∇ (ρ•Λ -1 )(ν) µ  = Λ  ∇ bas µ Λ -1 (ν)  
for all µ, ν ∈ Γ(E). Similarly,

∇ λ  bas µ Y = [ρ(µ), Y ] + ρ ∇ λ Y µ  = [ρ(µ), Y ] + ρ  Λ ∇ Λ -1 (Y ) µ -Λ -1 • λ  (Y ), µ E  + λ [Y, ρ(µ)]  = [ρ(µ), Y ] + ρ(µ), Λ -1 • ρ • λ  (Y ) = ρ(µ), Λ -1 (Y ) +(ρ • Λ) ∇ Λ -1 (Y ) µ  + (ρ • λ) Λ -1 • ρ • λ  (Y ) + Y, ρ(µ)  -(ρ•λ) ρ(µ), Λ -1 (Y ) = Λ  ∇ bas µ Λ -1 (Y )  
for all µ ∈ Γ(E) and Y ∈ X(N ). ■

We will use these small results all the time, and we will not necessarily mention each equation each time when we use it. Using the formulas of the inverse, we can show the following.

Lemma 4.5.8: Invertible Ąeld redeĄnition

Let M, N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, and κ and g Ąbre metrics on E and TN , respectively. Also let

λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E). Then ϖ 2 -λ = ϖ 2 , ( 4.111) 
∇ -λ = ∇, (4.112) 
κ -λ = κ, (4.113)

g -λ = g, (4.114)
where we denote

ϖ 2 -λ := ϖ 2 λ -Λ -1 •λ
and so on.

Remarks 4.5.9.

All following formulas implied by the Ąeld redeĄnition, like a Ąeld redeĄnition of the basic connection, are deĄned by taking their typical deĄnition and replacing the terms with the Ąeld redeĄnitions given in Def. 4.5.1. That will imply similar inversion formulas for those terms.

Proof.

First observe that, using Prop. 4.5.6,

:= 1 E --Λ -1 • λ  • ρ = 1 E + Λ -1 • λ • ρ = Λ -1 , := 1 TN -ρ • -Λ -1 • λ  = 1 TN + Λ -1 • λ • ρ = Λ -1 .
Those are invertible, thus, we can apply the Ąeld redeĄnition using -Λ -1 • λ. Using these formulas, we get trivially,

κ -λ = κ • Λ -1 , Λ -1  • -1 , -1  = κ,
similarly for g. Moreover,

ϖ 2 -λ = ( * )( ϖ 2 λ ) -! Λ -1 • λ  = ( * ) ( * Λ)(ϖ 2 ) + ! λ  -! Λ -1 • λ  = ϖ 2 + ! Λ -1 • λ  -! Λ -1 • λ  = ϖ 2 ,
and

∇ -λ = ∇ λ -  • d ∇ λ bas • -1  Λ -1 • λ  Cor. 4.5.4 = ∇ + Λ • d ∇ bas • Λ -1  λ -d ∇ bas λ  • Λ -1 , 1 E  Eq. (4.110) = ∇ + Λ • d ∇ bas • Λ -1  λ -Λ • d ∇ bas • Λ -1  λ = 0,
viewing d ∇ bas λ as an element of Ω 1,1 (N, E; E). ■

RedeĄned gauge theory

We now want to calculate what the Ąeld redeĄnition changes, especially with respect to the Ąeld strength.

Theorem 4.6.1: Field redeĄnition of the Ąeld strength

Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Also

let λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E).
Then we have

D λ = * Λ  (D), (4.115) 
F λ = ( * Λ)  F - 1 2 ( * ξ)(D ∧ , D)  , (4.116) 
where

D λ := D -( * ρ) ϖ 2 λ  , ( 4.117) 
F λ := d * ∇ λ ϖ 2 λ - 1 2  * t ∇ λ ρ  ϖ 2 λ ∧ , ϖ 2 λ  , (4.118) 
ξ := Λ -1 • ζ λ • Λ, Λ  (4.119) and ζ λ is an element of Ω 2 (N ; E) deĄned by -ζ λ • Λ, Λ  (X, Y ) :=  d ∇ λ λ -t ∇ λ ρ • (λ, λ)  (X, Y ) = d ∇ λ  (X, Y ) + λ ∇ bas λ(X) Y -∇ bas λ(Y ) X  -[λ(X), λ(Y )] E (4.120)
for all X, Y ∈ X(N ).

Remarks 4.6.2.

When we deĄne the formal torsion 9 

t ∇ bas λ of ∇ bas λ , X(N ) × Γ(E) ∋ (Y, ν) → ∇ bas λ(Y ) ν, as an 9 It is formal because ∇ bas λ
is not a connection due to the fact that ρ • λ ̸ = 1 TN , otherwise Λ = 0 and, so, Λ

Simon-Raphael Fischer element of Ω 2 (N ; TN ) by

t ∇ bas λ (X, Y ) := ∇ bas λ(X) Y -∇ bas λ(Y ) X -[X, Y ] (4.121)
for all X, Y ∈ X(N ), then recall Def. 3.1.7 for

R λ (X, Y ) = λ(X), λ(Y ) -λ [X, Y ] ,
hence, we can write

λ t ∇ bas λ  -R λ  (X, Y ) = λ ∇ bas λ(X) Y -∇ bas λ(Y ) X  -[λ(X), λ(Y )] E , in total arriving to -ζ λ • Λ, Λ  = d ∇ λ + λ t ∇ bas λ  -R λ . (4.122)
Observe the (very rough) similarity with the Maurer-Cartan equation; especially for Lie algebra bundles, that is, zero anchor, this will look like a covariantized Maurer-Cartan equation with inhomogeneity. We will see this later.

Proof of Thm. 4.6.1.

In the following let (Φ, A) ∈ M E (M ; N ).

• The Ąeld redeĄnition of the minimal coupling directly follows by Def. (4.95), so,

D A λ Φ = DΦ =(Φ * 1 TN )(DΦ) -(Φ * ρ) (Φ * Λ)(A) + (Φ * λ)(DΦ) = Φ * Λ  (DΦ) -Φ * Λ • ρ  (A) = Φ * Λ  D A Φ  .
• With respect to a local frame (e a ) a of E and viewing terms like ∇ λ -∇ as an element of Ω 1 (N ; End(E)),

d Φ * ∇ λ (Φ * Λ)(A) = d Φ * ∇+ ∇ λ -∇ (Φ * Λ)(A) Eq. (A.3) = d Φ * ∇ A a ⊗ Φ * Λ(e a ) + Φ ! ∇ λ -∇  ∧ A a ⊗ Φ * Λ(e a ) = dA a ⊗ Φ * Λ(e a ) -A a ∧ Φ ! ∇ Λ(e a )  =(∇Λ)(ea)+Λ(∇ea) -A a ∧ Φ! ∇ λ (Λ(e a )) -(∇Λ)(e a ) -Λ(∇e a )) 
would not be invertible by SylvesterŠs determinant theorem. Therefore the Leibniz rule is not as usual. That is, ∇ bas λ : TN → D(E) is in general not anchor-preserving.

= dA a ⊗ Φ * Λ(e a ) -A a ∧ Φ ! (Λ(∇e a )) =(Φ * Λ)(Φ ! (∇ea)) +Φ! ∇ λ (Λ(e a )) -Λ(∇e a ))  ∧ A a = (Φ * Λ) d Φ * ∇ A  + Φ ! ∇ λ • Λ -Λ • ∇  (A) Eq. (4.2) = (Φ * Λ) d Φ * ∇ A  + Φ * ∇ λ • Λ -Λ • ∇  (DΦ ∧ , A), and d Φ * ∇ λ Φ ! λ  Eq. (A.2) = Φ !  d ∇ λ λ  Eq. (4.2) = 1 2  Φ *  d ∇ λ λ  (DΦ ∧ , DΦ), also 1 2  Φ * t ∇ λ ρ  A λ ∧ , A λ  Prop. 4.0.3 = 1 2  Φ * t ∇ λ ρ  (Φ * Λ)(A) ∧ , (Φ * Λ)(A) +  Φ * t ∇ λ ρ  Φ ! λ ∧ , Φ ! λ  +  Φ * t ∇ λ ρ  Φ ! λ ∧ , (Φ * Λ)(A)  Eq. (4.2) = 1 2 Φ *  t ∇ λ ρ • (Λ, Λ)  (A ∧ , A) + Φ *  t ∇ λ ρ • (λ, Λ)  (DΦ ∧ , A) + 1 2 Φ *  t ∇ λ ρ • (λ, λ)  (DΦ ∧ , DΦ).
So, in total we get, adding the missing term of the torsion in the deĄnition of the Ąeld strength,

F λ (Φ, A) = (Φ * Λ) d Φ * ∇ A  - 1 2 (Φ * Λ) Φ * t ∇ρ (A ∧ , A) + 1 2 (Φ * Λ) Φ * t ∇ρ (A ∧ , A) + Φ * ∇ λ • Λ -Λ • ∇  (DΦ ∧ , A) + 1 2  Φ *  d ∇ λ λ  (DΦ ∧ , DΦ) - 1 2 Φ *  t ∇ λ ρ • (Λ, Λ)  (A ∧ , A) -Φ *  t ∇ λ ρ • (λ, Λ)  (DΦ ∧ , A) - 1 2 Φ *  t ∇ λ ρ • (λ, λ)  (DΦ ∧ , DΦ) = (Φ * Λ)(F ) + Φ *  ∇ λ • Λ -Λ • ∇ -t ∇ λ ρ • (λ, Λ)  (DΦ ∧ , A) + 1 2 Φ *  Λ • t ∇ρ -t ∇ λ ρ • (Λ, Λ)  (A ∧ , A) + 1 2 Φ *  d ∇ λ λ -t ∇ λ ρ • (λ, λ)  (DΦ ∧ , DΦ). Now we need to insert the deĄnition of ∇ λ ,  d ∇ λ λ  (X, Y ) = d ∇+ Λ•d ∇ bas •Λ -1  λ λ (X, Y ) Eq. (A.3) = d ∇ λ  (X, Y ) + Λ  ∇ bas λ(Y ) Λ -1 • λ  (X)  -Λ -1 • λ  ∇ bas λ(Y ) X   -Λ  ∇ bas λ(X) Λ -1 • λ  (Y )  -Λ -1 • λ  ∇ bas λ(X) Y   = d ∇ λ  (X, Y ) + λ ∇ bas λ(X) Y -∇ bas λ(Y ) X  + Λ  ∇ bas λ(Y ) Λ -1 • λ  (X)  -∇ bas λ(X) Λ -1 • λ  (Y )   = Λ ∇ X λ(Y ) -Λ ∇ Y λ(X) + λ Λ(Y ), X + [(ρ • λ)(X), Y ]  + Λ  ∇ bas λ(Y ) Λ -1 • λ  (X)  -∇ bas λ(X) Λ -1 • λ  (Y )  
for all X, Y ∈ X(N ), and, by using the results about the Ąeld redeĄnition of the basic connection,

-t ∇ λ ρ (λ(X), λ(Y )) = t ∇ λ bas (λ(X), λ(Y )) = Λ  ∇ bas λ(X) Λ -1 • λ  (Y )   -Λ  ∇ bas λ(Y ) Λ -1 • λ  (X)   -[λ(X), λ(Y )] E . Then -ζ λ • Λ, Λ  (X, Y ) :=  d ∇ λ λ -t ∇ λ ρ • (λ, λ)  (X, Y ) = d ∇ λ  (X, Y ) + λ ∇ bas λ(X) Y -∇ bas λ(Y ) X  -[λ(X), λ(Y )] E and, using ρ • ∇ bas = ∇ bas • ρ and t ∇ρ = t ∇ bas ,  Λ • t ∇ρ -t ∇ λ ρ • (Λ, Λ)  (µ, ν) = t ∇ λ bas (Λ(µ), Λ(ν)) -(Λ • t ∇ bas )(µ, ν) = Λ ∇ bas Λ(µ) ν -∇ bas Λ(ν) µ -∇ bas µ ν + ∇ bas ν µ  -[Λ(µ), Λ(ν)] E + Λ([µ, ν] E ) = Λ ∇ bas (λ•ρ)(ν) µ -∇ bas (λ•ρ)(µ) ν  -[(λ • ρ)(µ), (λ • ρ)(ν)] E -[µ, ν] E + [(λ • ρ)(µ), ν] E + [µ, (λ • ρ)(ν)] E + [µ, ν] E -(λ • ρ)([µ, ν] E ) = λ ∇ bas (λ•ρ)(µ) ρ(ν) -∇ bas (λ•ρ)(ν) ρ(µ)  -[(λ • ρ)(µ), (λ • ρ)(ν)] E + [(λ • ρ)(ν), µ] E + ∇ ρ(µ) ((λ • ρ)(ν)) -[(λ • ρ)(µ), ν] E -∇ ρ(ν) ((λ • ρ)(µ)) + [(λ • ρ)(µ), ν] E + [µ, (λ • ρ)(ν)] E -λ([ρ(µ), ρ(ν)]) = d ∇ λ  (ρ(µ), ρ(ν)) + λ ∇ bas (λ•ρ)(µ) ρ(ν) -∇ bas (λ•ρ)(ν) ρ(µ)  -[(λ • ρ)(µ), (λ • ρ)(ν)] E = -ζ λ • Λ, Λ  (ρ(µ), ρ(ν)) = -ζ λ • Λ • ρ, Λ • ρ  (µ, ν)
for all µ, ν ∈ Γ(E). In a similar very straightforward fashion,

 ∇ λ • Λ -Λ • ∇ -t ∇ λ ρ • (λ, Λ)  (Y, µ) =  ∇ • Λ -Λ • ∇ + t ∇ λ bas (λ, Λ) + Λ • d ∇ bas • Λ -1  λ  • (1 TN , Λ)  (Y, µ) = ∇ Y Λ(µ) -Λ(∇ Y µ) + Λ ∇ bas λ(Y ) µ  -Λ • ∇ bas Λ(µ) • Λ -1  λ(Y ) -[λ(Y ), Λ(µ)] E + Λ • ∇ bas Λ(µ) • Λ -1  λ(Y ) -λ ∇ bas Λ(µ) Y  = . . . = ∇ Y λ • (-ρ) (µ)  -∇ -ρ(µ) λ(Y ) -λ [Y, -ρ(µ)] -λ(Y ), λ • (-ρ) (µ) E + λ ∇ bas λ(Y ) -ρ(µ) -∇ bas (λ•(-ρ))(µ) Y  = d ∇ λ  Y, -ρ(µ) + λ ∇ bas λ(Y ) -ρ(µ) -∇ bas (λ•(-ρ))(µ) Y  -λ(Y ), λ • (-ρ) (µ) E = -ζ λ • Λ, Λ  Y, -ρ(µ) = -ζ λ • Λ, Λ • (-ρ)  Y, µ
for all µ ∈ Γ(E) and Y ∈ X(N ). Finally, we can therefore conclude, by using that -

ζ λ • Λ, Λ 
is clearly an antisymmetric tensor by deĄnition,

F λ (Φ, A) = (Φ * Λ)(F ) + Φ *  -ζ λ • Λ, Λ • (-ρ)   (DΦ ∧ , A) Prop. 4.0.3 = 1 2 Φ * -ζ λ • Λ, Λ (DΦ ∧ , -(Φ * ρ)(A))+ Φ * -ζ λ • Λ, Λ (-(Φ * ρ)(A) ∧ , DΦ) + 1 2 Φ *  -ζ λ • Λ • ρ, Λ • ρ   (A ∧ , A) = Φ * -ζ λ • Λ, Λ (-(Φ * ρ)(A) ∧ , -(Φ * ρ)(A)) + 1 2 Φ *  -ζ λ • Λ, Λ   (DΦ ∧ , DΦ) = (Φ * Λ)(F ) + 1 2 Φ *  -ζ λ • Λ, Λ   D A Φ ∧ , D A Φ  = (Φ * Λ) F - 1 2 Φ *  Λ -1 • ζ λ • Λ, Λ   D A Φ ∧ , D A Φ  = (Φ * Λ)  F - 1 2 (Φ * ξ) D A Φ ∧ , D A Φ  
.

■

Let us now look at the compatibility conditions of Thm. 4.4.3 and how they change under the Ąeld redeĄnition. For this we need the following auxiliary results.

Proposition 4.6.3: Change of (basic) curvature under a change of the connection

Let E → N be a Lie algebroid, equipped with a vector bundle connection ∇. For any other connection ∇ ′ write ∇ ′ = ∇ + I where I ∈ Ω 1 (N ; End(E)). Then we have

R bas ∇ ′ = R bas ∇ -d ∇ bas I -I ∧ (ρ • I). (4.123)
For the curvatures of the connections we get 

R ∇ ′ = R ∇ + d ∇ I + I ∧ I. ( 4 
I ∧ (ρ • I) (Y, µ, ν) = I (ρ • I) Y, ν , µ -I (ρ • I) Y, µ , ν
for all µ, ν ∈ Γ(E) and Y ∈ X(N ). I ∧ I ∈ Ω 2 (N ; End(E)) makes direct use of Def. (A.1), but the second factor is directly contracted with a section of E, that is

(I ∧ I)(X, Y, ν) = I X, I(Y, ν) -I Y, I(X, ν)
for all ν ∈ Γ(E) and X, Y ∈ X(N ). Using the deĄnition of derivations 𝒟(V ) of vector bundles V one could also write

(I ∧ I)(X, Y, •) = [I(X, •), I(Y, •)] 𝒟(E)
for all X, Y ∈ X(N ).

Proof of Prop. 4.6.3. We have

∇ ′ bas ν Y = [ρ(ν), Y ] + ρ ∇ ′ Y ν = ∇ bas ν Y + ρ I(Y, ν) ,
for all µ, ν ∈ Γ(E) and Y ∈ X(N ). Using these identities we get

R bas ∇ ′ (µ, ν)Y = ∇ ′ Y ([µ, ν] E ) -∇ ′ Y µ, ν E -µ, ∇ ′ Y ν E -∇ ′ (∇ ′ ) bas ν Y µ + ∇ ′ (∇ ′ ) bas µ Y ν = ∇ Y ([µ, ν] E ) -[∇ Y µ, ν] E -[µ, ∇ Y ν] E -∇ ∇ bas ν Y µ + ∇ ∇ bas µ Y ν =R bas ∇ (µ,ν)Y -[I(Y, µ), ν] E -[µ, I(Y, ν)] E + I(Y, [µ, ν] E ) -∇ (ρ•I)(Y,ν) µ + ∇ (ρ•I)(Y,µ) ν -I ∇ bas ν Y, µ  + I ∇ bas µ Y, ν  -I (ρ • I) Y, ν , µ  + I (ρ • I) Y, µ , ν  = R bas ∇ (µ, ν)Y + ∇ bas ν (I(Y, µ)) -I ∇ bas ν Y, µ  -∇ bas µ (I(Y, ν)) + I ∇ bas µ Y, ν  + I(Y, [µ, ν] E ) -I (ρ • I) Y, ν , µ  + I (ρ • I) Y, µ , ν  = R bas ∇ -d ∇ bas I -I ∧ (ρ • I)  (Y, µ, ν)
for all µ, ν ∈ Γ(E) and Y ∈ X(N ). For the curvatures we get

R ∇ ′ (•, •)ν = d ∇ ′ ∇ ′ ν Eq. (A.3) = d ∇ ∇ ′ ν + I ∧ ∇ ′ ν = R ∇ (•, •)ν + d ∇ I(•, ν) Eq. (A.4) = (d ∇ I)(ν)-I∧∇ν + I ∧ ∇ν + I ∧ I(•, ν) CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer = R ∇ + d ∇ I + I ∧ I  (ν)
for all ν ∈ Γ(E), where we used that

T ∧ ν = T (ν) ∈ Ω • (N ; E) for all T ∈ Ω • (N ; End(E)). ■
Let us Ąrst look at the compatibility conditions besides the curvature of ∇; we want that these are preserved with the Ąeld redeĄnition. Let N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, and κ and g Ąbre metrics on E and TN , respectively. Assume that the compatibility conditions of Thm. 4.4.3 are satisĄed, but ∇ is allowed to be non-Ćat. Also let λ ∈ Ω 1 (N ; E) such that

Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E). Then we have ∇ λ  bas κ λ = 0, (4.125) 
∇ λ  bas g λ = 0, (4.126) R bas ∇ λ = 0. (4.127) 
Proof.

For the compatibilities with the metrics use Eq. (4.97), (4.98) and (4.105), so,

 ∇ λ  bas g λ  Λ(X), Λ(Y )  = d g λ Λ(X), Λ(Y )  -g λ  ∇ λ  bas Λ(X)  , Λ(Y )  -g λ  Λ(X), ∇ λ  bas Λ(Y )   = d(g(X, Y )) -g ∇ bas X, Y  -g X, ∇ bas Y  = ∇ bas g  (X, Y ) = 0,
for all X, Y ∈ X(N ), similarly for κ.

For I := Λ • d ∇ bas • Λ -1  λ ∈ Ω 1 (N ; End(E)) ∼ = Ω 1,1 (N, E; E) we also have I(Y, ν) Eq. (4.96) = ∇ λ ν Y -∇ ν Y
for all ν ∈ Γ(E) and Y ∈ X(N ), and

∇ bas ν µ =[ν,µ] E +∇ ρ(µ) ν +I ρ(µ), ν = [ν, µ] E + ∇ λ ρ(µ) ν = ∇ λ  bas ν µ Eq. (4.105) = Λ • ∇ bas ν • Λ -1
 µ for all µ, ν ∈ Γ(E). Using these identities and R bas ∇ = 0, we can show d

∇ bas I + I ∧ (ρ • I)  (Y, µ, ν) = ∇ bas µ I(Y, ν) -I ∇ bas µ Y, ν  -∇ bas ν I(Y, µ) + I ∇ bas ν Y, µ  -I(Y, [µ, ν] E ) + I((ρ • I)(Y, ν), µ) -I((ρ • I)(Y, µ), ν) = Λ • ∇ bas µ • Λ -1  I(Y, ν) -I ∇ bas µ Y, ν  -Λ • ∇ bas ν • Λ -1  I(Y, µ) + I ∇ bas ν Y, µ  -I(Y, [µ, ν] E ) = Λ • d ∇ bas • Λ -1  I  (Y, ν, µ) =  Λ • d ∇ bas • Λ -1  2 λ  (Y, ν, µ) =  Λ • d ∇ bas  2 Prop. 3.7.6 = 0 • Λ -1  λ (Y, ν, µ) = 0.
for all µ, ν ∈ Γ(E) and Y ∈ X(N ). Using this and R bas ∇ = 0, we get

R bas ∇ λ Prop. 4.6.3 = R bas ∇ -d ∇ bas I -I ∧ (ρ • I) = 0.

■

Let us now look at what happens with the curvature of ∇.

Theorem 4.6.6: Flatness breaking

Let N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E with vanishing basic curvature. Also let

λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E). Then R ∇ λ = Λ • R ∇ • Λ -1 , Λ -1  -d ∇ λ bas ζ λ , (4.128)
where ζ λ is deĄned as in Thm. 4.6.1 and viewing the curvatures as elements of Ω 2 (N ; End(E)).

Sketch of the proof.

• The proof of this theorem is extremely tedious and long, but very straightforward. Essentially, just insert all the formulas of the Ąeld redeĄnition on both sides, then compare both sides, making use of the vanishing of the basic curvature. However, you may want to use certain tricks to make the calculation less tedious (but it is still extremely tedious with tricks). Hence, we show the Ąrst steps until one ŤjustŤ needs to insert all deĄnitions.

First let us observe that we can rewrite d ∇ λ bas ζ λ using Cor. 4.5.4, also recall Remark 4.6.2,

-  d ∇ λ bas ζ λ  Λ(X), Λ(Y ), ν  = -Λ • d ∇ bas • Λ -1  ζ λ • Λ, Λ  (X, Y, ν) = Λ • d ∇ bas • Λ -1  d ∇ λ + λ t ∇ bas λ  -R λ  (X, Y, ν)
for all X, Y ∈ X(N ) and ν ∈ Γ(E), where -

ζ λ • Λ, Λ
 is given by Eq. ( 4.120), also recall Eq. (4.122). We also have

Λ • d ∇ bas • Λ -1  λ t ∇ bas λ  -R λ  (X, Y, ν) = Λ • ∇ bas ν • Λ -1  λ ∇ bas λ(X) Y -∇ bas λ(Y ) X  -[λ(X), λ(Y )] E  -λ ∇ bas λ(∇ bas ν X) Y -∇ bas λ(Y ) ∇ bas ν X  + λ ∇ bas ν X  , λ(Y ) E -λ ∇ bas λ(X) ∇ bas ν Y -∇ bas λ(∇ bas ν Y ) X  + λ(X), λ ∇ bas ν Y  E .
Now let us start to calculate the left hand side given by R ∇ λ , using the second equation in Prop. 4.6.3, especially we need to calculate

d ∇ Λ • d ∇ bas • Λ -1  λ  ,
and for this we want to use Cor. 3.8.11. Using the commutator of operators, we see

d ∇ , Λ • d ∇ bas • Λ -1 = d ∇ , Λ • d ∇ bas • Λ -1 + Λ • d ∇ , d ∇ bas • Λ -1 + Λ • d ∇ bas • d ∇ , Λ -1 ,
with that we can write

d ∇ Λ • d ∇ bas • Λ -1  λ  = d ∇ , Λ • d ∇ bas • Λ -1 (λ) + Λ • d ∇ bas • Λ -1  d ∇ λ  .
One needs to calculate the Ąrst summand, the summand in the middle in the formula of d ∇ , Λ • d ∇ bas • Λ -1 is given by Cor. 3.8.11 due to the vanishing basic curvature of ∇, so,

d ∇ , d ∇ bas Λ -1 • λ  (X, Y, ν) = R ∇ X, ρ • Λ -1 • λ  (Y )  ν -R ∇ Y, ρ • Λ -1 • λ  (X)  ν -Λ -1 • λ • ρ  R ∇ (X, Y )ν
for all X, Y ∈ X(N ) and ν ∈ Γ(E), and

d ∇ , Λ = d ∇ , 1 E -λ • ρ = -d ∇ , λ • ρ ,
and for the last summand in the second equation of Prop. 4.6.3 we have, also recall Remark 4.6.4 and Eq. (4.110),

I Λ(X), •  , I Λ(Y ), •  𝒟(E) (ν) = ∇ bas ∇ bas ν (λ(Y ))-λ(∇ bas ν Y ) λ(X) -λ ∇ bas ∇ bas ν (λ(Y ))-λ(∇ bas ν Y ) X  -(Y ↔ X of all previous lines).
Now the purely tedious but straightforward part comes. Insert X, Y, ν everywhere 10 and the deĄnition of the basic connection on both sides of the desired equation; although you may already recognize some similar terms of the calculation of the right hand side at the beginning, for those terms one does not need to insert the deĄnition of the basic connection. Also make heavily use of Prop. 4.5.6, and also directly use the vanishing of the basic curvature on the right hand side (which implies Ćatness of the basic connection). We already got three curvature terms, and there is one additional by Prop. 4.6.3; there is actually one missing, but that term will be produced by the other remaining terms, for example by some of the form Ť∇ bas ∇ bas Ť. • As a proof of concept, you can also look at [19, proof of Theorem 3.6, the Ąrst equation for the transformed curvature there] where I have calculated this for Lie algebra bundles; the structure of the calculation there is, abstractly-spoken, the same, but extremely shorter and less tedious due to a vanishing anchor. However, we will actually not need this theorem for the gauge invariance of the transformed Lagrangian as we are going to see, and we will argue later why the gauge invariance of the Lagrangian in general proves this theorem, too, avoiding the tedious calculation. ■ Therefore we see that the curvature is not necessarily Ćat after a Ąeld redeĄnition. We have seen that the other remaining compatibility conditions are still satisĄed, but what about inĄnitesimal gauge invariance when Ćatness is gone? Eq. (4.116) shows us that we get an offset in the Ąeld strength, which one may want to correct for preserving gauge invariance and the Lagrangian itself, and Thm. 4.6.6 motivates that the derivative of this offset using a basic connection has something to do with the curvature of ∇ such that there is hope that the offset compensates the curvature, leading to a gauge invariant theory with a non-Ćat connection! Let us prove this. 

λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E). Then δ λ ε = * Λ • δ ε • * Λ -1  (4.129)
on E and

δ λ ε = * Λ • δ ε • * Λ -1  (4.130)
10 In general use Λ(X) instead of X, similar for Y , as we did at the beginning and at the end, then it will be easier to compare the terms since a lot of Λ will get canceled.

on TN for all ε ∈ ℱ 0 E (M ; * E), where δ λ ε is similarly deĄned to δ ε but using ∇ λ instead of ∇ and ϖ 2 λ instead of ϖ 2 in Def. [START_REF] Mark | Mathematical Gauge Theory[END_REF] 

δ ′ ε := * Λ • δ ε • * Λ -1 
and Ąrst observe that

δ ′ ε ( * ν) = * Λ  δ ε * Λ -1 (ν)   = - * Λ * ∇ bas ε Λ -1 (ν)  Eq. (4.105) = - *  ∇ λ  bas ε ν 
for all ν ∈ Γ(E). Hence, it shares this property with δ λ ε , δ ′ ε is also clearly R-linear and satisĄes Eq. (4.41). In order to use the uniqueness of Prop. 4.3.7 we need to check the Leibniz rule (4.42). δ ′ ε certainly satisĄes the Leibniz rule by

δ ′ ε (f L) = * Λ δ ε f * Λ -1  (L)  = * Λ  f δ ε  * Λ -1  (L)  + ℒ Ψε (f ) * Λ -1  (L)  = f δ ′ ε L + ℒ Ψε (f ) L for all L ∈ ℱ • E (M ; * E) and f ∈ C ∞ M × M E (M ; N ) . Therefore δ ′
ε is of the type of operator as in Prop. 4.3.7, it even uses precisely the same vector Ąeld Ψ ε . So, we only need to check whether Ψ ε is the same vector Ąeld as the one behind the deĄnition of δ λ ε . For this let us use the uniqueness given in the Prop. 4.3.16, there it was about the uniqueness of vector Ąelds like Ψ ε ∈ X E (M E (M ; N )) behind the Leibniz rule. The component along the direction of the Higgs Ąeld is of course always ( * ρ)(ε) by deĄnition. Hence, we only need to check the second component Ąxed by Eq. (4.60). So, using Prop. 4.3.16 for δ ε ,

δ ′ ε ϖ 2 λ Def. (4.95) = δ ′ ε ( * Λ)(ϖ 2 ) + ! λ  Eq. (4.2) = * Λ • δ ε • * Λ -1  ( * Λ)(ϖ 2 ) + ( * λ)(D) = * Λ  δ ε ϖ 2 + δ ε  * Λ -1 • λ  (D)  Eq. (4.55) = * Λ -( * ∇)ε -  *  ∇ bas ε Λ -1 • λ   (D) - * Λ -1 • λ  ( * ρ) ( * ∇)ε = -( * Λ) ( * ∇)ε - * (λ • ρ) ( * ∇)ε =-( * ∇)ε -  *  Λ ∇ bas ε Λ -1 • λ   (D) Eq. (4.2) = ! (Λ(∇ bas ε (Λ -1 •λ)))
Eq. ( 4.101) = - * ∇ λ  ε using that * (∇ ′ ) = * ∇ + ! I for all other connections ∇ ′ = ∇ + I, where I ∈ Ω 1 (N ; End(E)); this just follows by the deĄnition of pullbacks of vector bundle connections. Hence, the vector Ąeld behind δ λ ε is precisely the one of δ ′ ε , that is, Ψ ε , using the uniqueness of Prop. 4.3.16. Finally, we have shown everything what we need to use the uniqueness of Prop. 4.3.7, hence,

δ λ ε = δ ′ ε .
Similarly one shows this for the one on TN , and that δ λ ε = ℒ Ψε on scalar-valued functionals we have already shown by observing that Ψ ε is behind the deĄnition of δ λ ε ; also recall Remark 4.3.9. ■ That leads to the following important statement.

Theorem 4.6.9: Still a gauge theory after Ąeld redeĄnition

Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, κ and g Ąbre metrics on E and TN , respectively. Also let V ∈ C ∞ (N ), assume that the compatibility conditions of Thm. 4.4.3 hold, and let for all ε ∈ ℱ 0 E (M ; * E), where

λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E). Then we have R ∇ λ = -d ∇ λ bas ζ λ , ( 4 
L λ YMH := - 1 2  * κ λ   G λ ∧ , * G λ  +  * g λ   D λ ∧ , * D λ  - * ( * V ), (4.139) 
with 

G λ := F λ + 1 2  * ζ λ   D λ ∧ , D λ  ( 4 
G λ = F λ + 1 2 * ζ λ  D λ ∧ , D λ  = ( * Λ)  F - 1 2 ( * ξ)(D ∧ , D)  + 1 2 * ζ λ  D λ ∧ , D λ  = ( * Λ)(F ), (4.141) 
where

ξ = Λ -1 • ζ λ • Λ, Λ  .
Thence, we immediately have by Def. 4.5.1 and Thm. 4.6.1

L λ YMH = L YMH ,
and Ąnally, by Thm. 4.6.7,

δ λ ε = δ ε ,
such that by Thm. 4.4.3

δ λ ε L λ YMH = δ ε L YMH = 0.
■ That theorem is a good starting point of formulating a new version of gauge theory allowing non-Ćat connections, especially because the physics stay the same due to the invariance of the Lagrangian under the Ąeld redeĄnition. Indeed, using theorems like Thm. 4.6.7 and 4.6.6 we could have shown the gauge invariance of the adjusted and transformed Lagrangian similarly to Thm. 4.4.3.

Let us now redeĄne gauge theory, using these results.

Curved Yang-Mills-Higgs gauge theory

Let us Ąrst redeĄne the Ąeld strength adding the correction term in Eq. (4.140). Let M, N be smooth manifolds, E → N a Lie algebroid equipped with a connection ∇ on E, and ζ ∈ Ω 2 (N ; E), the primitive of ∇. We deĄne the (generalized) Ąeld strength G as an element of ℱ 2 E (M ; * E) by

G := F + 1 2 ( * ζ)(D ∧ , D). (4.142) 
Let us quickly state its inĄnitesimal gauge transformation. 2) and ( 16)]

δ ε G = - 1 2  ( * R ∇ )(D ∧ , D)ε + * ∇ bas ε ζ  (D ∧ , D)  + * R bas ∇  (ε ∧ , ϖ 2 ∧ , D) (4.143) for all ε ∈ ℱ 0 E (M ; * E).
Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, ζ ∈ Ω 2 (N ; E), and let κ and g be Ąbre metrics on E and TN , respectively. Also let V ∈ C ∞ (N ), which we still call the potential of the Higgs Ąeld. Then we deĄne the curved Yang-Mills-Higgs Lagrangian L CYMH as an element of ℱ dim(M ) E (M ) by

L CYMH := - 1 2 ( * κ)(G ∧ , * G) + ( * g)(D ∧ , * D) - * ( * V ), (4.144) 
where * is the Hodge star operator with respect to η.

The gauge invariance is immediate by the previous results. We call a setup like this a curved Yang-Mills-Higgs gauge theory, short as CYMH, or also CYMH GT for emphasizing the part with gauge theory. We speak of that we have found a CYMH GT structure, if we were able to deĄne ∇, κ and g for E → N satisfying the Ąrst four compatibility conditions. The spacetime and the potential are not our focus and thoroughly discussed elsewhere, so, we always assume that these exist in a suitable way.

Remarks 4.7.7. This is basically the essential statement of [1, especially the discussion around Equation ( 16)], but Eq. ( 4.145) has there a different form, see [START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF]Equation (13)]. We have reformulated that equation, and this equation and the other compatibility conditions naturally arise if using the basic connection in the deĄnition of the inĄnitesimal gauge transformation. Eq. ( 4.145) means

R ∇ (•, •)ν = -∇ bas ν ζ for all ν ∈ Γ(E).
Proof of Thm. 4.7.5. By Eq. (4.145), the vanishing of the basic curvature and Cor. 4.7.2 we immediately get

δ ε G = 0 for all ε ∈ ℱ 0 E (M ; * E).
Therefore the remaining part of the proof is precisely as in Thm. 4.4.3. ■ Finally, we now arrived at a covariantized formulation of gauge theory allowing non-Ćat ∇. We can still apply Thm. 4.3.41, so, a Ćat connection locally still applies the structure of an action Lie algebroid such that one may argue that Ćatness already implies a classical theory. However, ζ is not necessarily zero, it is then just constant with respect to the basic connection by compatibility condition (4.145); we will actually see some examples for this later. Hence, one cannot expect that the Ąeld strength looks as in the classical formulation if ∇ is Ćat, and, so, we can only apply Thm. 4.4.5 if both, R ∇ and ζ vanish. This motivates the following deĄnitions. We have seen that we needed to add the part with ζ to the classical Ąeld strength F after the Ąeld redeĄnition in order to get the same Lagrangian. That can be seen as that the Ťactual Ąeld redeĄnitionŤ of F was not just given by the Ąeld redeĄnition of ϖ 2 and ∇; or, in other words, that means we need a Ąeld redeĄnition of ζ, too, while ζ was zero in Thm. 4.6.9 and ζ λ was the Ąeld redeĄnition of ζ ≡ 0. 

ζ λ := Λ • ζ • Λ -1 , Λ -1  + ζ λ , (4.151)
where ζ λ is given as in Thm. 4.6.1, that is,

ζ λ Λ(X), Λ(Y )  = Λ ζ(X, Y ) -  d ∇ λ λ  (X, Y ) + t ∇ λ ρ (λ(X), λ(Y )) = Λ ζ(X, Y ) -d ∇ λ  (X, Y ) -λ ∇ bas λ(X) Y -∇ bas λ(Y ) X  + [λ(X), λ(Y )] E
for all X, Y ∈ X(N ).

Remark 4.7.11: Field redeĄnition of CYMH GTs

The Ąeld redeĄnition is therefore given by using Def. 4.5.1 and 4.7.10 altogether, so, when we speak of the Ąeld redeĄnition of anything else besides the quantities in these deĄnitions, then it is just canonically given; for example the Ąeld redeĄnition of something depending on ζ is then the same deĄnition but replacing ζ with ζ λ ; similarly for dependencies on ∇, ϖ 2 and the metrics κ on E and g on TN as we already did before. We call this procedure the Ąeld redeĄnition of a CYMH GT on a given spacetime M , a smooth manifold N and Lie algebroid E → N . We are going to show that the Lagrangian stays invariant under the Ąeld redeĄnition and that this describes an equivalence relation of CYMH GTs on given M, N and E.

For the invariance of the Lagrangian we do not need to prove everything again, we just need to check the Ąeld redeĄnition of the Ąeld strength G and whether compatibility condition (4.145) stays form-invariant. where

G λ := F λ + 1 2  * ζ λ   D λ ∧ , D λ  , (4.153)
for which F λ and D λ are given by Thm. 4.6.1.

If the basic curvature of ∇ vanishes additionally and satisĄes R ∇ = -d ∇ bas ζ, then we have

R ∇ λ = -d ∇ λ bas ζ λ . (4.154)
Proof.

Those results are an immediate consequence of our calculations in the previous section, that is,

G λ = F λ + 1 2  * ζ λ   D λ ∧ , D λ  Eq. (4.141) = ( * Λ)(F ) + 1 2  * Λ • ζ • Λ -1 , Λ -1   D λ ∧ , D λ  Thm. 4.6.1 = ( * Λ)(F ) + 1 2 * (Λ • ζ) (D ∧ , D) = ( * Λ)  F + 1 2 ( * ζ)(D ∧ , D)  = ( * Λ)(G),
and, by Thm. 4.6.6 (for which we need the vanishing of the basic curvature), Prop. 4.5.6 and compatibility condition (4.145), 

R ∇ λ = Λ • R ∇ • Λ -1 , Λ -1  -d ∇ λ bas ζ λ = -Λ • d ∇ bas ζ • Λ -1 , Λ -1  -d ∇ λ bas ζ λ Cor. 4.5.4 = -d ∇ λ bas Λ • ζ • Λ -1 , Λ -1  -d ∇ λ bas ζ λ = -d ∇ λ bas ζ λ  . ■ Hence,
L λ CYMH := - 1 2  * κ λ   G λ ∧ , * G λ  +  * g λ   D λ ∧ , * D λ  - * ( * V ), (4.162)
and where G λ is given as in Lemma 4.7.12, D λ is deĄned as in Thm. 4.6.1 and δ λ ε as in Thm 4.6.7. Remarks 4.7.14. It is important to note for future proofs that the Ąeld redeĄnition already preserves the vanishing of the basic curvature if ∇ has vanishing basic curvature, so, this is independent to whether or not the other compatibility conditions are satisĄed. Similar for the metric compatibilities. However, for the invariance of compatibility condition (4.145) one not only needs the condition itself but also additionally the vanishing of the basic curvature as stated in Lemma 4.7.12. We sometimes make use of this information when speaking about compatibility conditions in the context of the Ąeld redeĄnition. However, we will not necessarily mention it again; recall the previous calculations and proofs.

Proof. This is precisely the same proof as in Thm. 4.6.9, using Lemma 4. As we have seen in the proofs for Thm. 4.7.13 and 4.6.9 we only needed Thm. 4.6.6 for the proof about the relationship of R ∇ with ζ after the Ąeld redeĄnition, everything else follows independent of Thm. 4.6.6, especially the other compatibility conditions and the gauge invariance of the Lagrangian. Hence, one may want to argue, given the gauge invariance of the Lagrangian and the other compatibility conditions after the Ąeld redefinition, that the gauge transformation of the transformed Ąeld strength has to vanish, using similar calculations. By Cor. 4.7.2 one may then be able to argue in general that the compatibility condition of ζ has to be preserved by the Ąeld redeĄnition. However, for this one needs to discuss certain edge cases and that the contraction with κ can be ignored (to avoid an argument about orthogonality). If one is able to argue like this, then one can avoid the tedious calculation behind the proof of Thm. 4.6.6.

Therefore the Ąeld redeĄnition is now a transformation of the curved Yang-Mills-Higgs (in-Ąnitesimal) gauge theory which keeps the Lagrangian invariant. Furthermore, the Ąeld redeĄnition is an equivalence of CYMH GTs, which we now prove. We start with something similar to Lemma 4.5.8 but for the primitive. where

ζ -λ := ζ λ -Λ -1 •λ . Proof.
That is similar to the proof of Lemma 4.5.8, hence, let us summarize what we have derived there,

:= 1 E --Λ -1 • λ  • ρ = Λ -1 , := 1 TN -ρ • -Λ -1 • λ  = Λ -1 ,
those are invertible, thus, we can apply the Ąeld redeĄnition using -Λ -1 •λ. Then by Def. 4.7.10, especially also recall Def. (4.120),

ζ -λ = • ζ λ • -1 , -1  + ζ λ -Λ -1 •λ
, where, recalling Eq. (4.108),

• ζ λ • -1 , -1  = ζ + Λ -1 • ζ λ • Λ, Λ  = ζ -Λ -1 •  d ∇ λ λ -t ∇ λ ρ • (λ, λ)  (A.3) = ζ -Λ -1 • d Λ•∇•Λ -1 λ =(Λ•d ∇ •Λ -1 )λ +D ∧ λ -t ∇ λ ρ • (λ, λ)  = ζ -d ∇ Λ -1 • λ  + d ∇ Λ -1 • λ  • (1 TN , ρ • λ) + d ∇ Λ -1 • λ  • (ρ • λ, 1 TN ) -t ∇ρ • Λ -1 • λ, λ  -t ∇ρ • λ, Λ -1 • λ  + Λ -1 • t ∇ λ ρ • (λ, λ) viewing D := -d Λ•∇•Λ -1 λ  • (1 TN , ρ) + Λ • t ∇ρ • Λ -1 • λ, 1 E
as an element of Ω 1 (N ; End(E)), and, using Prop. 4.5.6,

-t ∇ρ • Λ -1 • λ, λ  -t ∇ρ • λ, Λ -1 • λ  + Λ -1 • t ∇ λ ρ • (λ, λ) =-t ( ∇ λ ) bas •(λ,λ)  (X, Y ) = -∇ (ρ•λ)(X) Λ -1 • λ  (Y )  + ∇ (ρ•Λ -1 •λ)(Y ) λ(X) + λ(X), Λ -1 • λ  (Y ) E + ∇ (ρ•λ)(Y ) Λ -1 • λ  (X)  -∇ (ρ•Λ -1 •λ)(X) λ(Y ) + Λ -1 • λ  (X), λ(Y ) E -∇ bas λ(X) Λ -1 • λ  (Y )  + ∇ bas λ(Y ) Λ -1 • λ  (Y )  + Λ -1 ([λ(X), λ(Y )] E ) = -∇ (ρ•λ)(X) Λ -1 • λ  (Y )  + ∇ (ρ•Λ -1 •λ)(Y ) λ(X) + λ(X), Λ -1 • λ  (Y ) E + ∇ (ρ•λ)(Y ) Λ -1 • λ  (X)  -∇ (ρ•Λ -1 •λ)(X) λ(Y ) + Λ -1 • λ  (X), λ(Y ) E -λ(X), Λ -1 • λ  (Y ) E -∇ (ρ•Λ -1 •λ)(Y ) λ(X) + λ(Y ), Λ -1 • λ  (X) E + ∇ (ρ•Λ -1 •λ)(X) λ(Y ) + Λ -1 ([λ(X), λ(Y )] E ) = -∇ (ρ•λ)(X) Λ -1 • λ  (Y )  + ∇ (ρ•λ)(Y ) Λ -1 • λ  (X)  + Λ -1 ([λ(X), λ(Y )] E )
for all X, Y ∈ X(N ), and, using additionally Lemma 4.5.8,

ζ λ -Λ -1 •λ :=  d ∇ -λ Λ -1 • λ  + t ∇ -λ ρ • (Λ -1 • λ, Λ -1 • λ)  • -1 , -1  = d ∇ Λ -1 • λ  + t ∇ρ • Λ -1 • λ, Λ -1 • λ  • Λ, Λ  = d ∇ Λ -1 • λ  • Λ, Λ  + t ∇ρ • (λ, λ)
Therefore altogether, using Λ = 1 TN -ρ • λ and again Prop. 4.5.6,

ζ -λ (X, Y ) = ζ(X, Y ) + d ∇ Λ -1 • λ  (ρ • λ)(X), (ρ • λ)(Y ) + t ∇ρ λ(X), λ(Y ) -∇ (ρ•λ)(X) Λ -1 • λ  (Y )  + ∇ (ρ•λ)(Y ) Λ -1 • λ  (X)  + Λ -1 ([λ(X), λ(Y )] E ) = ζ(X, Y ) + d ∇ Λ -1 • λ  (ρ • λ)(X), (ρ • λ)(Y ) + ∇ (ρ•λ)(X) λ(Y ) -∇ (ρ•λ)(Y ) λ(X) -[λ(X), λ(Y )] E -∇ (ρ•λ)(X) Λ -1 • λ  (Y )  + ∇ (ρ•λ)(Y ) Λ -1 • λ  (X)  + Λ -1 ([λ(X), λ(Y )] E ) = ζ(X, Y ) + d ∇ Λ -1 • λ  (ρ • λ)(X), (ρ • λ)(Y ) -∇ (ρ•λ)(X) Λ -1 • λ • ρ • λ  (Y )  + ∇ (ρ•λ)(Y ) Λ -1 • λ • ρ • λ  (X)  + Λ -1 • λ • ρ  ([λ(X), λ(Y )] E ) =(Λ -1 •λ)([(ρ•λ)(X),(ρ•λ)(Y )] E ) = ζ(X, Y ) + d ∇ Λ -1 • λ  (ρ • λ)(X), (ρ • λ)(Y ) -d ∇ Λ -1 • λ  (ρ • λ)(X), (ρ • λ)(Y ) = ζ(X, Y ).

■

The Ąeld redeĄnition, Def. 

, λ ′ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ, Λ ′ := 1 E -λ ′ • ρ ∈ 𝒜𝓊𝓉(E).
Then the Ąeld redeĄnition with λ ′ composed with the Ąeld redeĄnition of λ is equivalent to a Ąeld redeĄnition with λ 

+ λ ′ -λ ′ • ρ • λ.
′ := -Λ -1 • λ such that λ + λ ′ -λ ′ • ρ • λ = λ -Λ -1 • λ + Λ -1 • λ • ρ • λ =-Λ -1 •Λ•λ = 0,
which gives trivial transformations.

Proof of Lemma 4.7.17.

First observe that

Λ ′ • Λ = 1 E -λ ′ • ρ • (1 E -λ • ρ) = 1 E -λ • ρ -λ ′ • ρ + λ ′ • ρ • λ • ρ = 1 E -λ + λ ′ -λ ′ • ρ • λ • ρ =: so, λ + λ ′ -λ ′ • ρ • λ is a valid element of Ω 1 (N ; E)
with which one can apply the Ąeld redeĄnition due to the fact that Λ ′ • Λ ∈ 𝒜𝓊𝓉(E), thence, also ∈ 𝒜𝓊𝓉(E); we also deĄne and calculate similarly

:= Λ ′ • Λ = 1 TN -ρ • (λ + λ ′ -λ ′ • ρ • λ)
which is an element of 𝒜𝓊𝓉(TN ) (similarly to why Λ is), where we denote Λ ′ := 1 TN -ρ • λ ′ . By Remark 4.7.11 we only need to check the basic Ąeld redeĄnition of Def. 4.5.1 and 4.7.10, so,

ϖ 2 λ λ ′ = * Λ ′ ( * Λ)(ϖ 2 ) + ! λ (4.2) = ( * λ)(D)  + ! λ ′ = * Λ ′ • * Λ (ϖ 2 ) + * Λ ′ • λ (D) = ! (Λ•λ) + ! λ ′ = ( * )(ϖ 2 ) + ! λ + λ ′ -λ ′ • ρ • λ .
For the metrics we immediately have

κ λ λ ′ = κ • Λ -1 , Λ -1  • (Λ ′ ) -1 , (Λ ′ ) -1  = κ • -1 , -1  ,
similarly for g. Recall again Prop. 4.5.6 and Cor. 4.5.4, then with ζ λ+λ ′ -λ ′ •ρ•λ . However, it is very tedious and long, hence, we will omit the calculation; we are going to motivate it differently, using the Ąeld redeĄnition of the Ąeld strength provided in Lemma 4.7.12. That is,

∇ λ λ ′ = ∇ λ +  Λ ′ • d ∇ λ bas • (Λ ′ ) -1  λ ′ = ∇ + Λ • d ∇ bas • Λ -1  λ =(Λ ′ ) -1 • •d ∇ bas • -1  (Λ ′ •λ)  +Λ ′ • Λ • d ∇ bas • Λ -1 • (Λ ′ ) -1  λ ′ • Λ  • Λ -1 , 1 E  = ∇ + • d ∇ bas • -1  λ + λ ′ • Λ  =λ+λ ′ -λ ′ •ρ•λ -• d ∇ bas • -1  λ ′ • ρ • λ + Λ ′ -1 • λ ′ • ρ • • d ∇ bas • -1  Λ ′ • λ  + • d ∇ bas • -1  λ ′ • Λ  • Λ -1 • ρ • λ, 1 E  = ∇ λ+λ ′ -λ ′ •ρ•λ -• d ∇ bas  -1 • λ ′ • ρ • λ  + λ ′ • ρ • Λ • d ∇ bas Λ -1 • λ  + • d ∇ bas • -1  λ ′ • Λ  • Λ -1 • ρ • λ, 1 E  = ∇ λ+λ ′ -λ ′ •ρ•λ -• ∇ bas • -1 • λ ′ • ρ • λ + λ ′ • ρ • λ • ∇ bas + λ ′ • ρ • Λ • ∇ bas • Λ -1 • λ -λ ′ • ρ • Λ • Λ -1 • λ • ∇ bas + • ∇ bas • -1 • λ ′ • Λ • Λ -1 • ρ • λ -• -1 • λ ′ • Λ • ∇ bas • Λ -1 • ρ Cor. 3.7.3 = ρ•Λ•∇ bas •Λ -1 •λ = ∇ λ+λ ′ -λ ′ •ρ•λ ,
G λ+λ ′ -λ ′ •ρ•λ = F λ+λ ′ -λ ′ •ρ•λ + 1 2  * ζ λ+λ ′ -λ ′ •ρ•λ   D λ+λ ′ -λ ′ •ρ•λ ∧ , D λ+λ ′ -λ ′ •ρ•λ  ,
but also Lemma 4.7.12

G λ+λ ′ -λ ′ •ρ•λ = ( * )(G) = * Λ ′ • ( * Λ) (G) = * Λ ′ G λ  = G λ λ ′
.

By the previous results we immediately get

F λ+λ ′ -λ ′ •ρ•λ = F λ λ ′ , because F is independent of ζ.
Similarly as for G we get by Thm. 4.6.1

D λ+λ ′ -λ ′ •ρ•λ = D λ λ ′ .
Then simply compare both sides in

G λ+λ ′ -λ ′ •ρ•λ = G λ λ ′ to get * ζ λ+λ ′ -λ ′ •ρ•λ -ζ λ λ ′ D λ+λ ′ -λ ′ •ρ•λ ∧ , D λ+λ ′ -λ ′ •ρ•λ  = 0.
Since Dev and D are in general non-zero, and by D = D -( * ρ)(ϖ 2 ) (so, the minimal coupling stays non-zero if it was initially non-zero), one can conclude As we already argued, starting with a non-Ćat ∇ and/or a non-zero ζ, it is now natural to ask whether or not there is a Ąeld redeĄnition making ∇ Ćat and/or ζ zero, equivalently, whether or not there is an equivalence class with pre-classical and/or classical representative, respectively. We will do this in the next chapter, but let us Ąrst state some basic properties of a CYMH GT. We know how the connection acts on the Lie bracket of E due to the vanishing of the basic curvature, hence, let us look at how the curvature acts on the Lie bracket, also using the Jacobi identity of [•, •],

ζ λ+λ ′ -λ ′ •ρ•λ = ζ λ λ ′ ,

Properties of CYMH GT

R ∇ (Y, Z)([µ, ν] E ) = Use R bas ∇ =0 . . . = [∇ Y ∇ Z µ, ν] E + [∇ Z µ, ∇ Y ν] E + ∇ ∇ bas ν Y ∇ Z µ -∇ ∇ bas ∇ Z µ Y ν + [∇ Y µ, ∇ Z ν] E + [µ, ∇ Y ∇ Z ν] E + ∇ ∇ bas ∇ Z ν Y µ -∇ ∇ bas µ Y ∇ Z ν + ∇ Y ∇ ∇ bas ν Z µ -∇ Y ∇ ∇ bas µ Z ν -Y ↔ Z of previous two lines  -∇ [Y,Z] µ, ν E -µ, ∇ [Y,Z] ν E -∇ ∇ bas ν ([Y,Z]) µ + ∇ ∇ bas µ ([Y,Z]) ν = R ∇ ∇ bas ν Y, Z  µ + R ∇ Y, ∇ bas ν Z  µ -R ∇ ∇ bas µ Y, Z  ν -R ∇ Y, ∇ bas µ Z  ν + ∇ [∇ bas ν Y,Z] µ =∇ [[ρ(ν),Y ]+ρ(∇ Y ν),Z] µ +∇ [Y,∇ bas ν Z] µ -∇ [∇ bas µ Y,Z] ν -∇ [Y,∇ bas µ Z] ν + ∇ [ρ(∇ Z ν),Y ]+ρ(∇ Y ∇ Z ν) µ -∇ [ρ(∇ Z µ),Y ]+ρ(∇ Y ∇ Z µ) ν -Y ↔ Z  + ∇ [ρ(µ),[Y,Z]]+ρ(∇ [Y,Z] µ) ν -∇ [ρ(ν),[Y,Z]]+ρ(∇ [Y,Z] ν) µ + [µ, R ∇ (Y, Z)ν] E -[ν, R ∇ (Y, Z)µ] E = R ∇ ∇ bas ν Y, Z  µ + R ∇ Y, ∇ bas ν Z  µ -R ∇ ∇ bas µ Y, Z  ν -R ∇ Y, ∇ bas µ Z  ν + ∇ bas µ (R ∇ (Y, Z)ν) -∇ bas ν (R ∇ (Y, Z)µ) = d ∇ bas R ∇  (Y, Z, µ, ν) + R ∇ (Y, Z)([µ, ν] E ) ⇔ 0 = d ∇ bas R ∇  (Y, Z, µ, ν)
for all Y, Z ∈ X(N ) and ν, µ ∈ Γ(E) ■ So, we know that the basic connection is Ćat when the basic curvature vanishes, recall Prop. 3.7.6, and that the curvature R ∇ is closed with respect to the differential induced by the basic connection. The compatibility condition 4.145 then imposes that the curvature even needs to be exact in order to formulate a gauge theory.

We know that curvatures satisfy a Bianchi identity, let us therefore check what this implies about ζ. 

∈ Ω 2 (N ; E) such that R ∇ = -d ∇ bas ζ. Then 0 = ∇ bas ν 0 d ∇ ζ  (Y 0 , Y 1 , Y 2 ) -∇ bas ν 0 ζ • (1 TN , ρ • ζ)  (Y 0 , Y 1 , Y 2 ) -∇ bas ν 0 ζ • (1 TN , ρ • ζ)  (Y 1 , Y 2 , Y 0 ) -∇ bas ν 0 ζ • (1 TN , ρ • ζ)  (Y 2 , Y 0 , Y 1 ) (4.165) for all Y 0 , Y 1 , Y 2 ∈ X(N ) and ν 0 ∈ Γ(E), where ζ • (1 TN , ρ • ζ) (Y 0 , Y 1 , Y 2 ) = ζ Y 0 , (ρ • ζ)(Y 1 , Y 2 ) .
Proof. R ∇ satisĄes the Bianchi identity, i.e.

d ∇ R ∇ = 0,
where we view the curvature as an element of Ω 2 (N ; End(E)). Then use Cor. 3.8.11 to get Classical also implies that ζ ≡ 0, hence, the torsion of ∇ bas vanishes.11 By Cor. 4.4.9, g is abelian.

0 = -d ∇ R ∇  (Y 0 , Y 1 , Y 2 , ν 0 ) = d ∇ d ∇ bas ζ  (Y 0 , Y 1 , Y 2 , ν 0 ) = d ∇ bas d ∇ ζ  (Y 0 , Y 1 , Y 2 , ν 0 ) + R ∇ Y 0 , (ρ • ζ)(Y 1 , Y 2 ) ν 0 -R ∇ Y 1 , (ρ • ζ)(Y 0 , Y 2 ) ν 0 + R ∇ Y 2 , (ρ • ζ)(Y 0 , Y 1 ) ν 0 -ζ (ρ • R ∇ )(Y 0 , Y 1 )ν 0 , Y 2 + ζ (ρ • R ∇ )(Y 0 , Y 2 )ν 0 , Y 1 -ζ (ρ • R ∇ )(Y 1 , Y 2 )ν 0 , Y 0 = d ∇ bas d ∇ ζ  (Y 0 , Y 1 , Y 2 , ν 0 ) -∇ bas ν 0 ζ  Y 0 , (ρ • ζ)(Y 1 , Y 2 ) + ∇ bas ν 0 ζ  Y 1 , (ρ • ζ)(Y 0 , Y 2 ) -∇ bas ν 0 ζ  Y 2 , (ρ • ζ)(Y 0 , Y 1 ) + ζ ∇ bas ν 0 (ρ • ζ)  (Y 0 , Y 1 ), Y 2  -ζ ∇ bas ν 0 (ρ • ζ)  (Y 0 , Y 2 ), Y 1  + ζ ∇ bas ν 0 (ρ • ζ)  (Y 1 , Y 2 ), Y 0  for all Y 0 , Y 1 , Y 2 ∈ X(N ) and ν 0 ∈ Γ(E), using that ζ ∈ Ω 2,0 (N, E; E) ∼ = Ω 2 (N ; E), R ∇ = -d ∇ bas ζ and ρ • ∇ bas = ∇ bas • ρ such that ρ • ∇ bas ν 0 ζ  (Y 0 , Y 1 ) = ρ ∇ bas ν 0 ζ  (Y 0 , Y
If we have E = TN , then just use the equivalence in Cor. 4.4.9, so, assuming that E is isomorphic to an abelian action Lie algebroid and ∇ is its canonical Ćat connection, implies that the basic connection has no torsion; since the anchor is now bijective we have ζ ≡ 0. ■

Along the transversal directions it will be a bit more difficult as we will see in the next chapter. However, as a Ąrst approach one can look at the following proposition, which is based on the assumption that one has partially a parallel frame of the basic connection along the foliation, also using Thm. 4.8.4; recall Section 3.9, and also recall that BLA means bundle of Lie algebras. The setup of the following proposition is basically for Lie algebroids restricted on a suitable neighbourhood of regular points.

Proposition 4.8.7: Local mixed terms of the primitive of the connection

Let N be a parallelizable smooth manifold, K → S a BLA over a smooth manifold S, and E = TN × K → N × S as direct product of Lie algebroids, equipped with a connection ∇ with a vanishing basic curvature. Furthermore, assume that there is a global trivialisation (f i ) i of TN such that ∇ bas f i = 0 (on E) for all i, and assume that we have a

ζ ∈ Ω 2 (N ; E) with ζ • (ρ, ρ) = -t ∇ bas . If ζ additionally satisĄes ζ(Y, f i ) = ∇ Y f i for all Y ∈ X(S) ⊂ X(N × S), then R ∇ Y, ρ(µ) ν = -d ∇ bas ζ  Y, ρ(µ), ν (4.168)
for all µ, ν ∈ Γ(E) and Y ∈ X(S).

Remarks 4.8.8. With X(S) ⊂ X(N × S) we emphasize that we view vector Ąelds of a factor of the base, here S, as vector Ąelds on N × S with values in S and constant along N , i.e. the canonical embedding.

That is important to keep in mind if one sees notations like X(S) in this context.

A word on why we wrote Ť∇ bas f i = 0 (on E)Ť. One needs to be careful here, with the basic connection we always mean two connections. However, we have for example ρ(f i ) = f i such that both versions of the basic connection can act on f i , and as long as K has not zero rank we can not expect that both connections give the same, that is, let ν ∈ Γ(K), then, on E,

∇ bas ν f i = [ν, f i ] E + ∇ f i ν,
and, on TN ,

∇ bas ν f i = ρ(∇ f i ν),
which is clearly different, even if [ν, f i ] E = 0. However, our imposed condition is about that f i as an element of Γ(E) should be parallel to the basic connection, then we use the usual commutation with the anchor to get

0 = ρ ∇ bas f i  = ∇ bas ρ(f i ) ,
where we did not write ρ(f i ) as f i to emphasize that f i is viewed as an element of X(N ) on the right hand side. Hence, ∇ bas f i = 0 in sense of TN is implied here. In the proof we sometimes write ρ(f i ) for similar reasons of accentuation.

Proof of Prop. 4.8.7. We prove Eq. (4.168) locally using frames due to its tensorial nature. Let (f a ) a be a local frame of E, which is given by the frame (f i ) i of TN and by a frame (f α ) α of K, both frames are canonically embedded into E; that is, f i are constant along S, and f α along N . Other Latin indices still denote the frame of TN , and other Greek ones the part of K, and we clearly have ρ(f i ) = f i , ρ(f α ) = 0; especially, f i also span the image of the anchor. Then

∇ bas f i Y = [f i , Y ] =0 + ρ(∇ Y f i ) = ρ(∇ Y f i ), ∇ bas fα Y = [ρ(f α ) =0 , Y ] + ρ(∇ Y f α ) = ρ(∇ Y f α ), ⇒ ∇ bas fa Y = ρ(∇ Y f a )
for all Y ∈ X(S). By the vanishing of the basic curvature we get

∇ Y ([f a , f b ] E ) = [∇ Y f a , f b ] E + [f a , ∇ Y f b ] E + ∇ ∇ bas f b Y f a -∇ ∇ bas fa Y f b = [∇ Y f a , f b ] E + [f a , ∇ Y f b ] E + ∇ ρ(∇ Y f b ) f a -∇ ρ(∇ Y fa) f b ,
such that, additionally using t ∇ bas Cor. 3.6.3 = -t ∇ρ and the assumptions about ζ,

-∇ bas fa ζ  Y, ρ(f i ) = -∇ bas fa ζ Y, ρ(f i ) =∇ Y f i + ζ ∇ bas fa Y, ρ(f i )  =ζ(ρ(∇ Y fa),ρ(f i )) +ζ Y, ∇ bas fa ρ(f i ) =ρ ∇ bas fa f i =0  = -[f a , ∇ Y f i ] E -∇ ρ(∇ Y f i ) f a + ∇ ρ(∇ Y fa) f i -∇ f i ∇ Y f a -[∇ Y f a , f i ] = ∇ Y ([f i , f a ] E ) =-∇ bas fa f i +∇ f i fa -∇ f i ∇ Y f a = ∇ Y ∇ f i f a -∇ f i ∇ Y f a [Y,f i ]=0 = R ∇ (Y, f i )f a = R ∇ Y, ρ(f i ) f a . ■

Obstruction for CYMH GT

Let us Ąnally turn to the question whether or not there is always a Ąeld redeĄnition making ∇ Ćat or ζ zero. As we know by the splitting theorem of Lie algebroids, Thm. 3.10.4, around regular points every Lie algebroid is the sum of a tangent bundle and a bundle of Lie algebras (BLAs). The discussion about general Lie algebroids is very difficult, hence, let us Ąrst focus on both factors separately.

Lie algebra bundles

We only want to discuss Lie algebra bundles (LABs) actually, not BLAs in general. That is motivated by the following theorem. Let K → N be a bundle of Lie algebras (BLA) over a connected manifold N whose Ąeld of Lie brackets is denoted by [•, •] K . Then K is an LAB if and only if it admits a vector bundle connection ∇ with vanishing basic curvature, that is

∇ Y ([µ, ν] K ) = [∇ Y µ, ν] K + [µ, ∇ Y ν] K for all µ, ν ∈ Γ(K) and Y ∈ X(N ). Remarks 5.1.2.
Even if the Lie algebras of the Ąbres of a BLA are not isomorphic as Lie algebras recall that each BLA is a vector bundle, hence, the rank is constant.

Sketch of the proof.

For Ť⇒Ť, that is, K is assumed to be an LAB, just take locally the canonical Ćat connection related to a local trivialization K♣ U ∼ = U × g, where U is an open subset of N and g the Lie algebra describing K as LAB; recall Def. 3.1.20. Such a connection has trivially a vanishing basic curvature, e.g. use that the basic curvature is a tensor and test the vanishing against a frame of constant sections. Then use a partition of unity subordinate to a covering of such trivializations in order to get a globally deĄned connection with vanishing basic curvature.

The essential idea for the other direction is to observe that in the case of BLAs (zero anchor) we have

t ∇ bas Cor. 3.6.3 = -t ∇ρ = [•, •] K
for all vector bundle connections ∇ on K. In case of a vanishing basic curvature we get by Eq. (3.59)

∇([•, •] K ) = 0,
i.e. the Ąeld of Lie brackets is parallel with respect to all ∇ with vanishing basic curvature. In [3, §6.4; page 236ff.] it is then shown that [•, •] K is deformable under the conjugation of vector space isomorphisms between two Ąbres of K, that is, the bracket of µ, ν ∈ E p 2 at p 2 ∈ N can be calculated by the value of the bracket at another base point p 1 ∈ N using a conjugation of the bracket; 1 given an vector space isomorphism ξ : E p 1 → E p 2 the mentioned conjugation is given by ξ ξ -1 (µ), ξ -1 (ν) K . That implies that ξ must be a Lie algebra isomorphism, and, extending this, K is an LAB. This argument can be proven with arguments of the holonomy theory of connections, especially one uses that the values of a parallel section at two points connected by a curve are related by the parallel transport along that curve, or, in other words, the value at one point is the value at the other point conjugated by the parallel transport.

Alternatively (but very similar), one argues as in [START_REF] Arias | Representations up to homotopy of Lie algebroids[END_REF]Proposition 2.13]; that is, as we have seen, ∇ X is a linear vector Ąeld on K as a derivation on a vector bundle (recall Section 3.3, especially Thm. 3.3.15). One can argue that linear vector Ąelds are inĄnitesimal automorphisms of a vector bundle. 2 Since the vanishing of the basic curvature is just the inĄnitesimal version of a Lie algebra homomorphism, the connection encodes the inĄnitesimal information of a Lie algebra isomorphism, therefore one can show that parallel transports by ∇ are then Lie algebra isomorphisms with which one can construct a suitable LAB trivialization of K. ■ So, this theorem implies that a vanishing basic curvature means that a bundle of Lie algebras is an LAB (over a connected base manifold). So, in our context bundle of Lie algebras are not so important, which is why we just want to focus on LABs.

CYMH GT for LABs

Let us now start to look at the situation of LABs; recall Def. 3.1.20. Let us summarize the important previous results about CYMH GTs restricted onto LABs. The following section about LABs is also discussed in my paper [START_REF] Fischer | Curved YangŰMillsŰHiggs gauge theories in the case of massless gauge bosons[END_REF], slightly differently written. Also observe that for a zero anchor the basic connection ∇ bas on TN is just zero, making the compatibility condition on the metric g on TN trivial, and on E it is the adjoint representation. This and the zero anchor in general simpliĄes all the involved equations: p1, p2 need to be connected by a path which is why one assumes a connected base manifold. 2 See also the beginning of [START_REF] Bursztyn | Splitting theorems for Poisson and related structures[END_REF].

g (K, [•, •] K ) N
we denote LAB over a smooth manifold N with Lie algebra structure inherited by g, with its Ąeld

[•, •] K ∈ Γ 2 K * ⊗ K 
of Lie brackets which restricts on the Lie bracket [•, •] g on each Ąbre. The gauge theory we look at is then now with respect to E = K. In the classical setting that would be a gauge theory where the gauge bosons are not paired to another Ąelds via the minimal coupling because LABs are action Lie algebroids with zero action. Let (M, η) be a spacetime M with its spacetime metric η, and Φ : M → N a smooth map, representing the Higgs Ąeld. Φ * K has also the structure of an LAB with a Ąeld of Lie brackets denoted by [

•, •] Φ * K ∈ Γ 2 Φ * (K * ) ⊗ Φ * K  , which restricts to [•, •] g on each Ąbre, too. This bracket is given by [•, •] Φ * K = Φ * ([•, •] K ).
Let us also Ąx a vector bundle connection ∇ on K for which there is a ζ ∈ Ω 2 (N ; K) such that

∇ Y ([µ, ν] K ) = [∇ Y µ, ν] K + [µ, ∇ Y ν] K , ( 5.1) 
R ∇ (Y, Z)µ = [ζ(Y, Z), µ] K (5.2)
for all Y, Z ∈ X(N ) and µ, ν ∈ Γ(K).

The Ąeld of gauge bosons (for a given Higgs Ąeld) will be represented by

A ∈ Ω 1 (M ; Φ * K).
The Ąeld strength G is then deĄned as an element of ℱ 2 K (M ; * K) by

G(Φ, A) := d Φ * ∇ A + 1 2 [A ∧ , A] Φ * K + 1 2 (Φ * ζ)(DΦ ∧ , DΦ) = d Φ * ∇ A + 1 2 [A ∧ , A] Φ * K + Φ ! ζ. (5.
3)

The curved Yang-Mills-Higgs Lagrangian is then deĄned as a top-degree-form

ℒ CYMH ∈ ℱ dim(M ) K (M ) given by ℒ CYMH (Φ, A) := - 1 2 (Φ * κ)(G ∧ , * G) + (Φ * g)(DΦ ∧ , * DΦ) + * (V • Φ), (5.4) 
where * is the Hodge star operator w.r.t. to η, V ∈ C ∞ (N ) is the potential for Φ, g is a Riemannian metric on N and κ a Ąbre metric on K.

We only allow Lie algebras g admitting an ad-invariant scalar product to which κ shall restrict to on each Ąbre. Doing so, we achieve inĄnitesimal gauge invariance for ℒ CYMH .

Remarks 5.1.4.

• In the following we want to test whether a given connection ∇ satisĄes the compatibility conditions (5.1) and (5.2). Especially about the latter we say that a connection ∇ satisĄes compatibility condition (5.2) if there is a ζ ∈ Ω 2 (N ; K) such that this condition is satisĄed. So, we are not going to study this condition with respect to a Ąxed ζ. Moreover, for simplicity for LABs we only mean (5.1) and (5.2) with compatibility conditions because the compatibility conditions on the metrics are either trivial or well-understood.

• Recall Remark 4.3.40; if we would use ∇ ρ in general to deĄne the inĄnitesimal gauge transformation for K-valued forms, then we can only expect R δ (•, •)A = 0 if the basic curvature vanishes and ∇ ρ is Ćat; the latter is now trivially satisĄed, while the former is one of the compatibility conditions. If doing so, the essential gauge transformations have again the very familiar form,

δ ε(Φ,A) A = (δ ε ϖ 2 )(Φ, A) = [ε(Φ, A), A] Φ * K -d Φ * ∇ ε(Φ, A) , ( 5.5 
)

δ ε Φ = 0 (5.6)
for all ε ∈ ℱ 0 K (M ; * K) and (Φ, A) ∈ M K (M ; N ). As usual, the inĄnitesimal gauge transformation δ ε G of G is then given by (recall Thm. 2.5.19 and 4.3.10)

(δ ε G)(Φ, A) = d dt t=0 t → G Φ, A + t • δ ε(Φ,A) A  (5.7) 
for t ∈ R. Because of the compatibility conditions (5.1) and (5.2) we can derive that δ ε G has the following form

(δ ε G)(Φ, A) = [ε(Φ, A), G(Φ, A)] Φ * K .
(5.8) However, we will not need those since we have discussed the gauge transformations thoroughly before, which is why we do not prove this; but it is easy to check as an exercise.

That is the situation regarding gauge theory and its formalism on Lie algebra bundles. The Ąeld redeĄnition deĄned earlier has the following simpliĄed form. Recall its properties shown earlier.

Field redeĄnition 5.1.5: In the situation of LABs

Let λ ∈ Ω 1 (N ; K), then the Ąeld redeĄnition in the case of LABs leads to the following formulas

A λ = A + (Φ * λ)(DΦ) = A + Φ ! λ,
(5.9)

ζ λ = ζ -d ∇ λ + 1 2 [λ ∧ , λ] K , ( 5.10) 
and

∇ λ Y µ = ∇ Y µ -[λ(Y ), µ] K (5.11)
for all Y ∈ X(N ) and µ ∈ Γ(K). The metrics κ and g stay the same.

Remarks 5.1.6. For Eq. (5.11) we can write

∇ λ = ∇ -ad • λ, ( 5.12) 
where ad

• λ ∈ Ω 1 (N ; End(K)), (ad • λ)(Y )(µ) := [λ(Y ), µ] K for all Y ∈ X(N ) and µ ∈ Γ(K). This implies that (ad • λ)(µ) = [λ, µ] K = [λ ∧ , µ] K .
Similarly, we get ad • ω ∈ Ω l (N ; End(K)).

Relation of vector bundle connections in gauge theories with certain Lie derivation laws

Starting with a CYMH GT using LABs, there is the natural question whether or not one arrives at a (pre-)classical gauge theory by using the Ąeld redeĄnition 5.1.5. We now especially need what we have discussed in Section 3.11, most importantly Ex. 3.11.15 which was about the following commuting diagram of Lie algebroid morphisms:

Z(K) Z(K) K K Der(K) 𝒟 Der (K) TN Out(K) Out(𝒟 Der (K)) TN ad ♯ + ♯ a a (5.13)
where K → N is an LAB over a smooth manifold N , Z(K) its centre, 𝒟 Der (K) derivations of K which are also Lie bracket derivations, Der(K) are the same but as endomorphisms, so, the kernel of a; and the Out denotes the quotient over the adjoint of K, ad(K).

In order to understand CYMH GT using LABs, it is important to understand what type of connection ∇ we have due to the compatibility conditions (5.1) and (5.2). We understand vector bundle connections as an anchor-preserving (and base-preserving) vector bundle morphism TN → 𝒟(K). For all Y ∈ X(N ), compatibility condition (5.1) implies that ∇ Y is a derivation of the Lie bracket [•, •] K and so of [•, •] g on each Ąbre. Thence, the vector bundle morphism ∇ has values in 𝒟 Der (K). 

2; page 272]

A pairing of TN is a pair of an LAB K → N together with a (base-preserving) morphism of Lie algebroids Ξ : TN → Out(𝒟 Der (K)). We also say that TN and K are paired by Ξ. Now we can deĄne a special type of connection. 

∇ Y ([µ, ν] K ) = [∇ Y µ, ν] K + [µ, ∇ Y ν] K , ♯(R ∇ (Y, Z)) = 0
for all Y, Z ∈ X(N ) and µ, ν ∈ Γ(K).

Remarks 5.1.13. So, we have seen that compatibility condition (5.1) implies that ∇ has to be a Lie derivation law, and compatibility condition (5.2) then implies that it covers a pairing of TN and K.

As argued in [3, §7.2, discussion after DeĄnition 7.2.2, replace the A there with TN ; page 272], for a given Ξ there is always a Lie derivation law covering it. As a sketch, that follows by the construction and deĄnition of ♯ given by Prop. 3.11.12, i.e. it is a surjective submersion, such that the existence of a map ∇ : TN → 𝒟 Der (K) with ♯ • ∇ = Ξ follows, ∇ is a vector bundle morphism, since ♯ and Ξ are; Ąnally, we have by diagram (5.13) a • ♯ = a and Ξ is anchor-preserving, so, a • Ξ = 1 TN , such that we can apply a on both side of ♯

• ∇ = Ξ to get a • ∇ = 1 TN .
Therefore ∇ is also anchor-preserving and, thus, a vector bundle connection.

Proof.

We already have seen that a connection ∇ satisfying compatibility condition (5.1) has a 1:1 correspondence to an anchor-preserving vector bundle morphism ∇ : TN → 𝒟 Der (K), i.e. a Lie derivation law. So, we only have to care about compatibility condition (5.2). Ť⇐Ť: So, let us have a Lie derivation law with additionally ♯(R ∇ (Y, Z)) = 0 for all Y, Z ∈ X(N ). DeĄne Ξ := ♯ • ∇, and recall that ♯ : 𝒟 Der (K) → Out(𝒟 Der (K)) is a Lie algebroid morphism such that Ξ is an anchor-preserving vector bundle morphism by deĄnition, using that ∇ is a Lie derivation law,

a • Ξ = a • ♯ • ∇ = a • ∇ = 1 TN .
Using that ♯ is a homormorphism of Lie brackets, and by

♯(R ∇ (Y, Z)) = 0 for all Y, Z ∈ X(N ), we also get Ξ([Y, Z]) = ♯ ∇ [Y,Z]  = ♯ [∇ Y , ∇ Z ] 𝒟 Der (K)  = [♯(∇ Y ), ♯(∇ Z )] Out(𝒟 Der (K)) = [Ξ(Y ), Ξ(Z)] Out(𝒟 Der (K)) ,
i.e. Ξ is a Lie algebroid morphism (base-preserving), and it is covered by ∇ due to its deĄnition. Ť⇒Ť: This part of the proof is as in [3, §7.2, discussion after DeĄnition 7.2.2; page 272] and similar to the previous calculation. Let ∇ be a Lie derivation law covering some Lie algebroid morphism Ξ, especially, ♯ • ∇ = Ξ. That implies

♯(R ∇ (Y, Z)) = ♯ [∇ Y , ∇ Z ] 𝒟 Der (K) -∇ [Y,Z]  = [♯(∇ Y ), ♯(∇ Z )] Out(𝒟 Der (K)) -♯ ∇ [Y,Z]  = [Ξ(Y ), Ξ(Z)] Out(𝒟 Der (K)) -Ξ([Y, Z]) = 0
for all Y, Z ∈ X(N ), using that both, ♯ and Ξ, are homomorphisms of the corresponding Lie brackets. This Ąnishes the proof. ■ Given a Lie derivation law covering some Ξ, we get that ∇ is an anchor-preserving vector bundle morphism and ♯ • ∇ = Ξ is a Lie algebroid morphism. When we want that ∇ is not Ćat, in the hope of Ąnding a new gauge theory (recall Cor. 4.4.7), we do not want that ∇ itself is a Lie algebroid morphism by Cor. 3.4.5, while ♯ is a Lie algebroid morphism and Ξ = ♯ • ∇, too. That looks like a tightrope walk. But there are a lot of non-Ćat Lie derivation laws covering some Ξ, we may see some in the following parts, so, constructing non-Ćat connections for a gauge theory is not impossible. But the Ąeld redeĄnition 5.1.5 may still lead to a Ćat connection while keeping the same physics, i.e. the Lagrangian stays the same.

To study this we now need to construct an invariant for the Ąeld redeĄnition. Observe the following, using the notation as introduced in (5.13).

Proposition 5.1.14: Field redeĄnition preserves the pairing Let (K, Ξ) be a pairing of TN , ∇ be a Lie derivation law covering Ξ and ζ ∈ Ω 2 (N ; K) satisfying compatibility condition (5.2) with respect to ∇. Then the Ąeld redeĄnition 5.1.5 preserves the pairing, i.e. ∇ λ is also a Lie derivation law covering Ξ for all λ ∈ Ω 1 (N ; K). Moreover, for every other Lie derivation law ∇ ′ covering Ξ there is a λ ∈ Ω 1 (N ; K) such that ∇ ′ = ∇ λ and for its curvature

R ∇ ′ = ad • ζ λ .
Remarks 5.1.15. These are exactly the same formulas as in [3, §7.2, Proposition 7.2.7, identifying MackenzieŠs 1form l with -λ, also keep in mind that Mackenzie deĄnes curvatures with an opposite sign; page 274]. In this reference Mackenzie studies the form given by the difference of two Lie derivation laws covering the same pairing and arrives exactly at our formulas of the Ąeld redeĄnition which we have derived from a more general context of gauge theory on Lie algebroids.

In this work the context is given by Ąeld redeĄnitions of a gauge theory, while Mackenzie studies these connections in the context of extending Lie algebroids by Lie algebra bundles (over the same base) such that their Whitney sum admits a Lie algebroid structure. Hence, in the following we will see that MackenzieŠs study about extensions has a 1:1 correspondence to the question whether one can Ąnd a Ąeld redeĄnition such that ∇ λ is Ćat. Proof of Prop. 5.1.14. By Thm. 4.7.13 we know that the Ąeld redeĄnition preserves the compatibility conditions (5.1) and (5.2), i.e.

∇ λ Y ([µ, ν] K ) = ∇ λ Y µ, ν K + µ, ∇ λ Y ν K , for all Y ∈ X(N ), ν ∈ Γ(K) and µ ∈ Γ(Z(K)). That implies that ∇ Y µ ∈ Γ(Z(K)) such that
∇ is also a connection on Γ(Z(K)), which we now denote by ∇ Z(K) . Restricting the second compatibility condition onto Z(K) then immediately implies

R ∇ Z(K) = 0,
i.e. ∇ Z(K) is Ćat, and therefore, by the deĄnition of the exterior covariant derivative,

d Ξ := d ∇ Ω • (N ;Z(K)) = d ∇ Z(K)
is a differential. Now take any other Lie derivation law ∇ ′ covering Ξ. By Prop. 5.1.14, there is a λ ∈ Ω 1 (N ; K) such that

∇ ′ = ∇ -ad • λ, i.e. ∇ ′ Y µ = ∇ Y µ
for all Y ∈ X(N ) and µ ∈ Γ(Z(K)). Hence, d Ξ is independent of the choice of ∇. ■

One can now check that d ∇ ζ is closed under d Ξ . Be aware of that for non-Ćat Lie derivation laws ∇ covering Ξ this is not an obviously trivial question; due to compatibility condition (5. Let (K, Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ be any element of Ω 2 (N ; K) that satisĄes compatibility condition (5.2) with respect to ∇. Then

d Ξ d ∇ ζ = 0 (5.18) i.e. d ∇ ζ ∈ Ω 3 (N ; Z(K)) is closed under d Ξ .
Proof.

We have 

d ∇  2 ζ = R ∇ ∧ ζ Eq. (5.2) = (ad • ζ) ∧ ζ Eq. (A.5) = [ζ ∧ , ζ] K , but also, using that ζ ∈ Ω 2 (N ; K), [ζ ∧ , ζ] K Eq. (A.7) = -[ζ ∧ , ζ] K , such that d ∇  2 ζ = -d ∇  2 ζ.
Especially, d ∇ ζ ′ -d ∇ ζ is d Ξ -exact.
Proof. This simply follows by the compatibility condition (5.2), i.e. 

ζ ′ (Y, Z) -ζ(Y, Z), µ K = R ∇ (Y, Z)µ -R ∇ (Y, Z)µ = 0 for all Y, Z ∈ X(N ) and µ ∈ Γ(K). Thence, ξ := ζ ′ -ζ is an element of Ω 2 (N ; Z(K)). By Thm. 5.1.21 we get d ∇ ζ ′ -d ∇ ζ = d ∇ ζ ′ -ζ ∈Ω 2 (N ;Z(K)) = d Ξ ζ ′ -ζ , i.e. d ∇ ζ ′ -d ∇ ζ is
d ∇ ζ ′ = d ∇ ζ + d ∇ ζ ′ -ζ d Ξ -exact ∈ d ∇ ζ Ξ , i.e. d ∇ ζ ′ Ξ = d ∇ ζ Ξ
, and the latter shows

 d ∇ λ ζ λ  Ξ = d ∇ ζ Ξ .
Thence, by using Prop. The equivalence to the last statement simply follows by using Prop. 5.1.14. ■

MackenzieŠs theory about extensions of tangent bundles

We now want to study when the obstruction is zero and when it implies the existence of a Ćat Lie derivation law covering Ξ. To understand this, we need to understand why Mackenzie studied this obstruction class. Mackenzie was interested into whether or not a Lie algebroid can be extended by an LAB; we are going to state MackenzieŠs statements in the special situation of having TN as the Lie algebroid. But the arguments and calculations do not really differ; in the context of gauge theory we just need to study TN . Recall Def. 3.11.7 about extensions and transversals; there will be now another Lie algebroid E besides the LAB K, and the anchor of E we will denote by π instead of ρ to avoid confusion with ρ = 0 of K. This E is not the same E as in the context of CYMH GT; the Lie algebroid for CYMH GT in this section is K as we have introduced it.

To a given transversal we are able to deĄne a Lie derivation law covering some Lie algebroid morphism Ξ : TN → Out(𝒟 Der (K)). ι π be an extension of TN by an LAB K → N , and let χ be any transversal. Then a connection ∇ χ on K, given by

ι(∇ χ Y µ) = [χ(Y ), ι(µ)] E (5.22)
for all Y ∈ X(N ) and µ ∈ Γ(K), describes a Lie derivation law covering some Lie algebroid morphism Ξ : TN → Out(𝒟 Der (K)).

Proof.

Let us discuss why Eq. (5.22) is well-deĄned and giving rise to a vector bundle morphism ∇ χ : TN → 𝒟(K). ι is an injective 5 Lie algebroid morphism and embedding such that we can identify K and ι(K) as LABs; since the kernel of π is given by the image of ι we know that any element ξ ∈ Γ(E) with π(ξ) = 0 is also an element of Γ(ι(K)) and has, thus, a 1:1 correspondence in Γ(K) given by ι -1 (ξ). Due to that π is a homomorphism of of Lie brackets and by π • ι = 0, we have

π([χ(Y ), ι(µ)] E ) = 0
for all Y ∈ X(N ) and µ ∈ Γ(K). It follows that the right hand side of Eq. (5.22) deĄnes an element of Γ(K). Hence, it is valid to deĄne ∇ χ Y as some map on Γ(K) by using Eq. (5.22) for all Y ∈ X(N ). Additionally, for all Y, Z ∈ X

(N ), µ, ν ∈ Γ(K), f, h ∈ C ∞ (N ) and α, β ∈ R we have ι ∇ χ f Y +hZ µ  = [χ(f Y + hZ), ι(µ)] E = [f χ(Y ) + hχ(Z), ι(µ)] E π•ι=0 = f [χ(Y ), ι(µ)] E + h [χ(Z), ι(µ)] E = ι(f ∇ χ Y µ + h∇ χ Z µ), also ι ∇ χ Y (αµ + βν) = [χ(Y ), ι(αµ + βν)] E = α[χ(Y ), ι(µ)] E + β[χ(Y ), ι(ν)] E = ι(α∇ χ Y µ + β∇ χ Y ν),
and

ι(∇ χ Y (f µ)) = [χ(Y ), f ι(µ)] E π•χ=1 TN = f ι(∇ χ Y µ) + ℒ Y (f ) ι(µ) = ι(f ∇ χ Y µ + ℒ Y (f ) µ).
Moreover,

ι(∇ χ Y ([µ, ν] K )) = [χ(Y ), ι([µ, ν] K ) =[ι(µ),ι(ν)] E ] E = [[χ(Y ), ι(µ)] E , ι(ν)] E + [ι(µ), [χ(Y ), ι(ν)] E ] E = [ι(∇ χ Y µ), ι(ν)] E + [ι(µ), ι(∇ χ Y ν)] E = ι [∇ χ Y µ, ν] K + ι [µ, ∇ χ Y ν] K = ι [∇ χ Y µ, ν] K + [µ, ∇ χ Y ν] K using the Jacobi identity for [•, •] E .
Thence, ∇ χ is a Lie derivation law. By Thm. 5.1.12 we are left showing whether ♯ 

• R ∇ χ = 0, ι(R ∇ χ (Y, Z)µ) = [χ(Y ), [χ(Z), ι(µ)] E ] E -[χ(Z), [χ(Y ), ι(µ)] E ] E -[χ([Y, Z]), ι(µ)] E = [[χ(Y ), χ(Z)] E , ι(µ)] E -[χ([Y, Z]), ι(µ)] E = [[χ(Y ), χ(Z)] E -χ([Y, Z]) =Rχ(Y,Z) , ι(µ)] E = [R χ (Y, Z), ι(µ)] E , ( 5 
π(R χ (Y, Z)) = [(π • χ)(Y ), (π • χ)(Z)] -(π • χ)([Y, Z]) π•χ=1 TN = 0,
using that π is a Lie algebroid morphism. Therefore R χ (Y, Z) ∈ ι(K) for all Y, Z ∈ X(N ), and, so, Eq. (5.23) implies

R ∇ χ (Y, Z) = ad • ι -1  (R χ (Y, Z)) (5.24)
using that ι is an injective Lie algebroid morphism. By (5.13) we get ♯ • R ∇ χ = 0, and the statement follows. ■ Furthermore, the pairing covered by ∇ χ is the same for all transversals χ. ι π be an extension of TN by an LAB K → N , and let χ and χ ′ be two transversals. Then

♯ • ∇ χ = ♯ • ∇ χ ′ .
Proof.

Since χ and χ ′ are transversals we get

π • χ(Y ) -χ ′ (Y ) = Y -Y = 0,
for all Y ∈ X(N ), such that, again by the exactness of the sequence, there is a µ

(Y ) ∈ Γ(K) with χ(Y ) -χ ′ (Y ) = ι(µ(Y ))
. Due to the C ∞ -linearity of the transversals we even have a vector bundle morphism µ : TN → K such that

χ -χ ′ = ι • µ, such that ∇ χ Y ν Eq. (5.22) = [χ(Y ), ι(ν)] E = χ ′ (Y ), ι(ν) E + [ι(µ(Y )), ι(ν)] E =ι([µ(Y ),ν] K ) = ι ∇ χ ′ Y ν + [µ(Y ), ν] K  for all Y ∈ X(N ) and ν ∈ Γ(K). Therefore ∇ χ = ∇ χ ′ + ad • µ,
thus, by (5.13),

♯ • ∇ χ = ♯ • ∇ χ ′ .

■

This immediately leads to the following deĄnition. 

Proof.

We only give a sketch; for the full proof please see the reference. We especially need the part of the proof starting with a zero obstruction class. Given a zero obstruction class, Ąx a Lie derivation law ∇ covering Ξ, and let ζ be any element of Ω 2 (N ; K) that satisĄes compatibility condition (5.2) with respect to ∇. First, additionally following [3, Proposition 7.2.13; page 277], that is, Obs(Ξ) = 0 implies that there is an h ∈ Ω 2 (N ; Z(K)) with

d ∇ ζ = d Ξ h Thm. 5.1.21 = d ∇ h, then deĄne ζ ′ := ζ -h such that clearly d ∇ ζ ′ = 0. Observe, R ∇ (5.2) = ad • ζ = ad • ζ ′ .
DeĄne E := TN ⊕ K be the vector bundle given as the Whitney sum of K and TN . The anchor is just the projection onto the Ąrst factor, and deĄne the bracket by

[(Y, ν), (Z, µ)] E := [Y, Z], [ν, µ] K + ∇ Y µ -∇ Z ν -ζ ′ (Y, Z)
for all (Y, ν), (Z, µ) ∈ E. It is trivial to check that the Leibniz rule is with respect to the chosen anchor, bilinearity and antisymmetry are also clear. Hence, one essentially needs to check the Jacobi identity: This is a straightforward calculation resulting into a big sum. All the terms will cancel each other by the Jacobi identity of [•, •] K ; and there will be terms where ∇ will act on the Lie bracket and terms where adjoints act on ∇ such that these cancel each other by using that ∇ has values in 𝒟 Der (K); moreover, one also gets clearly the curvature of ∇ and adjoints of ζ ′ which will cancel the curvature terms by R ∇ = ad • ζ ′ ; Ąnally, there are also terms where ∇ acts on ζ ′ and ζ ′ is contracted in one factor with terms like [Y, Z], and all these terms will result into d ∇ ζ ′ which is zero by construction. Hence, Jacobi identity will be given and, thus, a Lie algebroid structure.

For the other direction, that is, now assume that we have an extension with Ξ ext = Ξ, one Ąrst shows that there is a transversal χ with ∇ χ = ∇; this is as in the proof of [3, Proposition 7.3.6; page 279], and we also omit the notation of ι now again, assuming the standard inclusion, for simplicity in the notation. For any transversal χ ′ we have ♯ • ∇ = ♯ • ∇ χ ′ due to Ξ = Ξ ext , that leads to that there is a Ąeld redeĄnition by Prop. 5.1.14 with λ ∈ Ω 1 (N ; K) such that

∇ = ∇ χ ′ + ad • λ = ad • χ ′ + λ = ∇ χ ,
using the deĄnition of connections like ∇ χ ′ , where χ := χ ′ + λ and ad is of course using the Lie bracket of E, possibly restricting onto the bracket of K. Recall Def. 3.1.7, by the calculation of Eq. (5.23) we have

R ∇ = R ∇ χ = ad • R χ ,
hence, R χ is a possible primitive (which is how we actually called ζ), satisfying compatibility condition (5.2) with respect to ∇. We want to calculate d ∇ χ R χ in order to study Obs(Ξ), so,

d ∇ χ R χ  (X, Y, Z) = ∇ χ X R χ (Y, Z) =[χ(X),Rχ(Y,Z)] E -∇ χ Y R χ (X, Z) + ∇ χ Z R χ (X, Y ) -R χ ([X, Y ], Z) + R χ ([X, Z], Y ) -R χ ([Y, Z], X) = σ [χ(X), [χ(Y ), χ(Z)] E ] E -χ(X), χ [Y, Z] E -χ [X, Y ] , χ(Z) E + χ [X, Y ], Z  = 0
for all X, Y, Z ∈ X(N ), where σ denotes the cyclic sum through X, Y, Z and where we used the Jacobi identity of [•, •] and [•, •] E . Thus, trivially Obs(Ξ) = 0. ■ By Cor. 5.1.27 we see that the question about whether there is a Ąeld redeĄnition in sense of 5.1.5 to arrive at a pre-classical gauge theory, i.e. when ∇ is Ćat, is related to the existence of an extension of TN by K.

When we are just interested into local behaviours then we might assume that N is contractible. 

Proof.

The proof of this theorem is very long and needs a lot of preparation, therefore this would sadly exceed this work; thence, see the reference of this statement. The essential idea is that this is the generalization of the inĄnitesimal analogue about that a principal bundle admits a global section over a contractible base. MackenzieŠs proof is about generalizing the proof of principal bundles where the base is contracted and homotopy classiĄcation of bundles is used. In order to do something similar, Mackenzie introduces a certain cohomology theory in [3, §7; page 257ff.]; in parts we already introduced the basics for it. ■

Results

In total we derive therefore the following two statements, the Ąrst can be seen as a generalization of Cor. 5.1.16. Hence, we have shown that Obs(Ξ) is not just an obstruction for extensions of TN , it also leads to an obstruction for the question about whether or not a CYMH GT can be transformed to a pre-classical gauge theory by a Ąeld redeĄnition. However, Mackenzie also has shown that there are examples with zero obstruction class but without a Ćat Lie derivation law covering the pairing. Thus, there is in general only for contractible N an equivalence of Obs(Ξ) = 0 and the existence of Ćat Lie derivation laws covering a pairing. Then for the adjoint bundle

K := P × SU(2) su(2) := S 7 × su(2)  SU (2) 
we have the Atiyah sequence

K E := TP SU(2) TS 4 . ι π
of TS 4 by K. We can view this sequence as an extension. Then Obs(Ξ Ext ) = 0 because of the fact that K is semisimple, but there is no Ćat derivation law, especially no Ćat derivation law covering Ξ Ext .

• We are not going to prove this, because introducing Atiyah sequences etc. would certainly exceed this work, since we will not need these notions in the following again. Hence, see the reference for the proof; for the deĄnition of Atiyah sequences see [3, §3.1 and §3.2; page 86ff.]. The main idea about the deĄnition of Atiyah sequences however is to observe that the Lie group behind the deĄnition of a principal bundle P p → N , N a smooth manifold, also acts on TP by the differential of left-(or right-) multiplication. Due to how the Lie group acts on P it is trivial to see that it also restricts to an action on the vertical bundle, which is isomorphic to P × g since its trivialization are the induced fundamental vector Ąelds. Dp projects TP onto TS 4 and the vertical bundle is its kernel; one can show that this is preserved by the chosen quotients over the Lie group action. This leads to such short exact sequences, the Atiyah sequences.

• In case you do not know the construction of this Hopf bundle, see e.g. [4, Example 4.2.14; page 214ff.]; the construction is basically that we view S 7 as unit octonions and SU(2) ∼ = S 3 as unit quaternions, an action of S 3 on S 7 is then canonically given. Taking the quotient of S 7 over S 3 is precisely the quaternionic projective line which is isomorphic to S 4 .

• As other Hopf Ąbrations, this Hopf Ąbration is not trivial. Hence, the idea of the proof is to show that a Ćat Lie derivation law covering Ξ ext would imply a trivialization of this Hopf Ąbration. A sketch: First observe that the adjoint of E of any section of E induces an element of 𝒟 Der (K) if restricted onto K; due to that K is the kernel of EŠs anchor, this even deĄnes an E-connection on K. Since su(2) is semisimple this induces an isomorphism E → 𝒟 Der (K). Then one can argue that a Ćat Lie derivation law would induce a Ćat connection on the Hopf bundle; S 4 is simply connected such that this implies a trivialization of this Hopf bundle. Which would be clearly a contradiction.

Remark 5.1.36: Hopf bundle as an example for CYMH GT

The Ąbre of K is given by su(2), and, thence, the existence of an ad-invariant scalar product is given. Therefore this gives an example of a CYMH GT as in 5.1.3 by taking any Ąbre metric κ on K which restricts to an ad-invariant scalar product on each Ąbre, and taking any Lie derivation law ∇ covering Ξ Ext , and, so, the existence of a ζ ∈ Ω 2 (N ; K) as in compatibility condition (5.2) is given. By Prop. 5.1.14 this example shows that there is no Ąeld redeĄnition as in 5.1.5 such that this gauge theory would become pre-classical. In [START_REF] Mosseri | Geometry of entangled states, Bloch spheres and Hopf Ąbrations[END_REF] is a relationship of two-qubit systems, as arising in quantum computational science, and precisely this Hopf Ąbration shown. This may or may not prove any physical signiĄcance of this example. At least it may give hints towards a further study related to this example. Remarks 5.1.37. Observe that a trivial semisimple LAB would not work: Fix any global frame (e a ) a of the trivial LAB, then we would have ∇e a = [λ, e a ] K for a λ ∈ Ω 1 (N ; K) because all bracket derivations are inner derivations for semisimple Lie algebras; for this, simply view the connection 1-forms ω b a , given by ∇e a = ω b a ⊗ e b , as matrices acting on constant (w.r.t. (e a ) a ) sections. Then ∇ λ would be Ćat, and its parallel frame is e.g. given by (e a ) a . This argument just depends on the triviality of the LAB, regardless whether the base is contractible or not. The obstruction class is of course always trivial for semisimple LABs because their centre is zero.

Existence of non-vanishing primitives stable under the Ąeld redeĄnition

When one is interested into perturbation theory, especially just in a local theory, then Thm. 5.1.33 seems to show that locally one can not hope for new gauge theories, especially ones related to non-Ćat ∇. However, we still have the two-form ζ. We can transform every CYMH GT locally Simon-Raphael Fischer to pre-classical ones by Thm. 5.1.33, but not always to classical ones as we are now going to see.

Theorem 5.1.38: Existence of LABs giving rise to non-classical gauge theories

Let K → N be an LAB , ∇ a connection satisfying compatibility conditions (5.1) and (5. ■

Starting with a standard Yang-Mills gauge theory with an additional free physical Ąeld Φ with a Lagrangian similar to the Higgs Ąeld, we have a canonical construction when the centre of the Lie algebra is non-trivial.

Corollary 5.1.39: Canonical construction of non-classical gauge theories

Let g be a Lie algebra with non-zero centre and admitting an ad-invariant scalar product. Also let (N, g) be any Riemannian manifold with at least three dimensions, and K = N ×g be a trivial LAB over N , equipped with the canonical Ćat connection ∇ and a metric κ which restricts to an ad-invariant scalar product on each Ąbre. Then there is a ζ ∈ Ω 2 (N ; Z(K)) in sense of 5.1.3, with d ∇ ζ ̸ = 0, such that this set-up describes a non-classical CYMH GT with respect to an arbitrary spacetime M . Additionally, there is no λ ∈ Ω 1 (N ; K) as in 5.1.5 such that ζ λ = 0.

Proof.

By the assumptions we have everything we need to formulate a YMH GT for a given spacetime M , following 5. Proof.

• We can show

Φ * ∇ ([Φ * µ, Φ * ν] Φ * K ) = Φ * ([µ,ν] K ) Eq. (A.10) = Φ ! (∇([µ, ν] K ))
Eq. (5.1)

= Φ ! ([∇µ, ν] K + [µ, ∇ν] K ) Eq. (A.6) = Φ ! (∇µ), Φ * ν Φ * K + Φ * µ, Φ ! (∇ν) Φ * K Eq. (A.10) = [(Φ * ∇)(Φ * µ), Φ * ν] Φ * K + [Φ * µ, (Φ * ∇)(Φ * ν)] Φ * K
for all µ, ν ∈ Γ(K). Since pull-backs of Γ(K) generate Γ(Φ * K) and since (5.1) is a tensorial equation, we can derive that Φ * ∇ also satisĄes compatibility condition (5.1) with respect to the LAB Φ * K.

• Now let ∇ satisfy compatibility condition (5.2), and recall that in general curvatures satisfy

R ∇ (•, •)ν = R ∇ ν = d ∇  2 ν ∈ Ω 2 (N ; K)
for all ν ∈ Γ(K) (see also [4, §5, third part of Exercise 5.15.12; page 316]). Then apply Eq. (A.2) to get 

R Φ * ∇ (Φ * ν) = d Φ * ∇  2 (Φ * ν) = Φ !  d ∇  2 ν  Eq. (5.2) = Φ ! ([ζ, ν] K ) Eq. (A.6) = Φ ! ζ, Φ * ν Φ * K , such that R Φ * ∇ = ad * •Φ ! ζ follows,
d Φ * ∇ G(Φ, A) + [A ∧ , G(Φ, A)] Φ * K = Φ ! d ∇ ζ  , ( 5.26) 
where

G(Φ, A) = d Φ * ∇ A + 1 2 [A ∧ , A] Φ * K + Φ ! ζ
was the Ąeld strength.

Remarks 5.1.43. This clearly generalizes the standard Bianchi identity for Ąeld strengths as in Thm. 2.3.4: Take a trivial LAB K equipped with its canonical Ćat connection and ζ ≡ 0. Then we arrive at the typical Bianchi identity. In general, we get d 

Φ * ∇ G + [A ∧ , G] Φ * K = 0 if d ∇ ζ = 0,
Φ * ∇ G + [A ∧ , G] Φ * K = 0.
Proof.

The calculation is similarly to the standard calculation of the standard formulation of the Bianchi identity as in [4, §5, Theorem 5.14.2; page 311], making use of compatibility condition (5.1) needed for Eq. (A.11). We have, viewing the curvature R Φ * ∇ as an element of Ω 2 (M ; End(Φ * K)),

d Φ * ∇  2 A = R Φ * ∇ ∧ A Eq. (5.25) = ad * • Φ ! ζ  ∧ A Eq. (A.5) = Φ ! ζ ∧ , A Φ * K Eq. (A.7) = -A ∧ , Φ ! ζ Φ * K , d Φ * ∇ ([A ∧ , A] Φ * K ) Eq. (A.11) = d Φ * ∇ A ∧ , A Φ * K -A ∧ , d Φ * ∇ A Φ * K Eq. (A.7) = -2 A ∧ , d Φ * ∇ A Φ * K , [A ∧ , [A ∧ , A] Φ * K ] Φ * K Eq. (A.8) = 0, d Φ * ∇ Φ ! ζ  Eq. (A.2) = Φ ! d ∇ ζ  ,
and, using all of these, we arrive at

d Φ * ∇ G(Φ, A) + [A ∧ , G(Φ, A)] Φ * K Def. (5.3) = Φ ! d ∇ ζ  .

■

Thence, d ∇ ζ measures the failure of the Bianchi identity of the Ąeld strength G. For example, applying Cor. 5.1.39 to the Yang-Mills gauge theory of electromagnetism, i.e. the Lie algebra is given by g = u(1), would result into a gauge theory where there is no (vector) potential of the Ąeld strength as usual, so, G could not be written as d ∇ A for some A ∈ Ω 1 (N ; Φ * K). 6 This concludes our discussion about LABs in the context of CYMH GTs.

Tangent bundles

Let us look at the next extreme of possible Lie algebroids: The tangent bundles themselves.

General situation

Let us quickly summarize what we need for tangent bundles in the context of CYMHG GT.

Situation 5.2.1: Compatibility conditions for tangent bundles

We now have E = TN , and, thus, the Lie bracket is just the typical one for vector Ąelds. The anchor is the identity on TN , ρ = 1 TN . Therefore there is now a coupling between the Ąelds of gauge bosons and the Higgs Ąeld; however, since tangent bundles are transitive Lie algebroids, there is no transversal structure, hence, no Higgs bosons, only Nambu-Goldstone bosons if assuming a classical structure. a Thus, also now we still have no real Higgs effect. Both basic connections clearly now coincide, especially we have for a connection ∇ on E,

∇ bas Y Z = [Y, Z] + ∇ Z Y
for all Y, Z ∈ X(N ), so, ∇ bas is also a vector bundle connection and has a 1:1 correspondence with ∇. what we do, means that we only have two compatibility conditions. Essentially we only need to construct a Ćat metric connection ∇ bas , and due to the 1:1 correspondence to ∇ we have then everything needed for a CYMH GT as in Thm. 4.7.5, modulo the potential which is not important for the discussion since we always assume that a suitable potential is given. Every other structure needed for a CYMHG GT still looks the same in its form. Hence, we will now not recall the Ąeld strength and the Lagrangian as we did for LABs.

a Recall, that the components of the Higgs Ąeld along the orbits are the Nambu-Goldstone bosons which can often be Ťgauged awayŤ by the unitary gauge, thus, not relevant for the Higgs effect; see [4, §8; page 445ff.].

Remarks 5.2.2. We used a lot of exterior covariant derivatives in the past, especially we had two degrees in forms like Ω p,q (N, E; E) (p, q ∈ N 0 ), hence, a degree with respect to both TN and E. Now both bundles coincide, but for the purpose of calculating with such forms it is still important to distinguish them. For the Ąeld redeĄnition there is not much to say additionally, besides that for λ ∈ Ω 1 (N ; E) we have Λ = 1 E -λ = Λ. There are important results with respect to whether we have a (pre-)classical gauge theory.

Corollary 5.2.3: Pre-classical theories have constant torsion

Let N be a smooth manifold, equipped with a connection ∇ on E := TN with vanishing basic curvature. Then there is a λ ∈ Ω Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on E := TN such that ∇ is Ćat and has vanishing basic curvature. Then N is diffeomorphic to a Lie group.

Sketch of the proof for Thm. 5.2.5.

We only give a sketch of the proof, see the references for all details. First of all, as we already discussed, the vanishing of the basic curvature and the fact that N is simply connected imply there is an isomorphism to an action Lie algebroid N × g, g a Lie algebra, such that ∇ is its canonical Ćat connection by Thm. 4.3.41. Then deĄne ω ∈ Ω 1 (N ; g) by the composition of the given isomorphism 7 TN → N × g and the projection onto the second factor N × g → g. ω p : T p N → g is then clearly an isomorphism of vector spaces for all p ∈ N ; such forms are also equivalent to absolute parallelisms, a trivialization of the tangent bundle, because specifying such a form gives clearly a trivialization (also in the case if g is just a vector space). The idea is that the parallel frames of ∇ will be left-invariant vector Ąelds of a Lie group. Let us denote the parallel frame of ∇ by (e a ) a , which is also a constant frame of N × g, making it obvious why that frame will be the left-invariant vector Ąelds (their generators); it is global due to the fact that N is simply connected. So, ∇e a = 0 and let us study

(dω)(X, Y ) = d ∇ ω  (X, Y ) = ∇ X ω(Y ) -∇ Y ω(X) -ω([X, Y ])
for all X, Y ∈ X(N ). In coordinates, especially for the constant frame, we have by deĄnition ω(ν) = ν for all constant ν ∈ Γ(N × g) ∼ = X(N ), thus,

(dω)(µ, ν) = -ω [µ, ν] g  const. = -[µ, ν] g = -[ω(µ), ω(ν)] g = -  1 2 [ω ∧ , ω] g  (µ, ν)
for all constant µ, ν ∈ Γ(N ×g). Since this is a tensorial equation this holds for all sections/vector Ąelds, so, the Maurer-Cartan equation is satisĄed. Hence, ω will be the Maurer-Cartan form, inĄnitesimally decoding the Lie group structure related to the differential of the Left multiplication. The Maurer-Cartan equation is the integrability condition, that is, one can locally deĄne an exponential, generating a Lie group structure locally. 8 By compactness and conectedness one can do this globally leading to that M is diffeomorphic to a Lie group integrating g. ■ Especially looking at manifolds which are not Lie groups can help to Ąnd CYMH GTs on tangent bundle which are not pre-classical, also under the Ąeld redeĄnition.

Local picture

Having Thm. 5.2.5 in mind, one expects that tangent bundles as CYMH GT are locally always a pre-classical CYMH GT. 

Unit octonions

By Thm. 5.2.5, we now show that there is an example for a CYMH GT by using a manifold which is not a Lie group; of course we study the canonical example of such a manifold, the seven dimensional sphere S 7 . S 7 can be understood as the set of unit octonions. It would certainly exceed the purpose of this thesis to discuss those in full detail, hence, we only introduce and show parts of the basics needed for the proof such that one should be able to understand the motivation and structure behind the following deĄnitions. See the following reference for a thorough discussion. We will follow [4, §3.10, page 170ff.; Exercise 3.12.15, page 189f.; Example 4.5.10, page 229], using the exceptional Lie group G 2 to deĄne octonions. In this subsection let V := R 7 , and we denote its standard Euclidean scalar product by ⟨•, •⟩, its orthonormal base by (e j ) 7 j=1 and w i 7 i=1 its dual basis, i.e. w i (e j ) = δ i j , the Kronecker delta. We also deĄne a shorter notation for products of w i , for example w ij := w i ∧ w j , similar with more than two factors.

where i, j ∈ ¶1, 2♢; this is known as a certain Stiefel manifold, see for example [4, Example 3.9.1; page 168] for an introduction and discussion. We have (x ′ , y ′ ), (e 1 , e 2 ) ∈ V 2 R 7 , and then there is an element q ∈ G 2 such that qx ′ = e 1 and qy ′ = e 2 ; this is given by [4, Theorem 3.10.15; page 177], where it is shown that G 2 acts transitively on V 2 R 7 by q • (v 1 , v 2 ) = (qv 1 , qv 2 ) for all q ∈ G 2 and (v 1 , v 2 ) ∈ V 2 R 7 . With that we can derive qx = q ♣♣x♣♣ x ′ = x 1 e 1 , qy = q ⟨x ′ , y⟩x ′ + y -⟨x ′ , y⟩x ′ y ′ = y 1 e 1 + y 2 e 2 where x 1 := ♣♣x♣♣, y 1 := ⟨x ′ , y⟩, y 2 := ♣♣y -⟨x ′ , y⟩x ′ ♣♣. Hence, we have found the desired element q ∈ G 2 ; in case x and y are linear dependent and one element is unzero (it is a trivial task if both are zero), one extends the non-zero element Ąrst to a basis of a 2-dimensional subspace of R 7 and applies then the same argument as in the previous situation.

• We now want to Ąx such a q for a given pair x and y; it allows us to simplify the calculation by reducing the involved dimensions, using the G 2 -equivariance of P . So, ⟨P (x, P (x, y)), z⟩ = ⟨qP 

z • z = z • z = ♣♣z♣♣ 2 e 0 ,
such that every non-zero octonion has a multiplicative inverse. Especially, the multiplication is closed on the elements with norm 1, that is, for all z, w ∈ O ∼ = R 8 with ♣♣z♣♣ = ♣♣w♣♣ = 1 we have ♣♣zw♣♣ = 1. S 7 can be then interpreted as those octonions with unit norm, the unit octonions, and henceforth it carries their non-associative algebra. It is a well-known fact that S 7 does not admit a Lie group structure, so, especially one cannot get rid of the non-associativity.

These properties are straightforward calculations and very well-known, hence, we are not proving these explicitly, see the mentioned reference for example. But the non-associativity can be quickly seen by (recall the end of the proof of Lemma 5. 

Proof.

For z, w ∈ O let us write z = x 0 e 0 + x and w = y 0 e 0 + y, where x 0 , y 0 ∈ R and x, y ∈ V . Then, using i, j ∈ ¶1, . . . , 7♢, e j z = x 0 e j -⟨e j , x⟩e 0 + P (e j , x) = x 0 e j -x j e 0 + x i P (e j , e i ), then, using k ∈ ¶1, . . . , 7♢, (e j z, w) = x 0 e j -x j e 0 + x i P (e j , e i ), y 0 e 0 + y k e k  = x 0 y j -x j y 0 + x i y k P (e j , e i ), e k =⟨P (e j ,e i ),e k ⟩ = x 0 y j -x j y 0 + x i y k ϕ(e j , e i , e k )

=-ϕ(e j ,e k ,e i )=-⟨P (e j ,e k ),e i ⟩ = -x j y 0 -x 0 y j + x i y k e i , P (e j , e k )  = -(z, e j w).

■

With that one can construct a trivialization of TS = -z, e j • x 0 e k -x k e 0 + x i P (e k , e i )  = -x 0 e 0 + x, -x 0 δ jk e 0 + x 0 P (e j , e k ) -x k e j -x i ⟨e j , P (e k , e i )⟩ e 0 + x i P (e j , P (e k , e i ))  = x 0  2 δ jk + x 0 x i ⟨e j , P (e k , e i )⟩ -x 0 x i ⟨e i , P (e j , e k )⟩

=ϕ(e j ,e k ,e i )=ϕ(e k ,e i ,e j )=⟨e j ,P (e k ,e i )⟩

+x k x j -x, x i P (e j , P (e k , e i ))  = x 0  2 δ jk + x k x j -x, x i P (e j , P (e k , e i ))

 writing z = x 0 e 0 + x, where x 0 ∈ R and x ∈ V ; also recall similar calculations of the previous proofs like at the beginning of the proof of Prop. 5.2.16. Using Lemma 5.2.13,

x, x i P (e j , P (e k , e i )) using that z is a unit octonion. Hence, (Y j ) j is an orthonormal frame, globally deĄned, especially linear independent by the orthogonality. Thus, we have a global trivialization of TS 7 . ■

We can therefore Ąnally prove that the unit octonions as S 7 give rise to a CYMH GT.

Theorem 5.2.18: Global example: Unit octonions S 7 admits a CYMH GT as in Thm. 4.7.5 such that the related connection ∇ on E := TS 7 is not Ćat. Moreover, there is no Ąeld redeĄnition ∇ λ of ∇ such that ∇ λ is Ćat, where λ ∈ Ω 1 (N ; E) such that Λ = 1 TS 7 -λ ∈ 𝒜𝓊𝓉(E).

Remarks 5.2.19.

The following constructions for this CYMHG GT structure is also very similar to the construction of a Ćat metric connection in [21, §4], where a Clifford algebra is used instead.

Proof of Thm. 5.2.18.

Recall the situation as described in 5.2.1; we only need to construct a Ćat metric connection ∇ bas on TS 7 , because we are going to assume that the metrics on TS 7 as Lie algebroid and tangent bundle are the same. The connection ∇ is then uniquely given by ∇ bas , and we will deĄne the primitive of ∇ by ζ := t ∇ . The construction follows by Thm. 5.2.17, so, let (Y j ) j (j ∈ ¶1, . . . , 7♢) be the global trivialization of TS 7 deĄned by S 7 ∋ z → e j • z for all j. Then deĄne ∇ bas by ∇ bas Y j = 0, uniquely extended to a connection of TS 7 , using that Y j is a global frame. Flatness is an immediate consequence, since (Y j ) j is a parallel frame by deĄnition.

Moreover, (Y j ) j are an orthonormal frame of (•, •); hence, for the CYMH GT we take (•, •) restricted on TS 7 as Ąbre metric. Then

∇ bas (•, •)  (Y j , Y k ) = d (Y j , Y k ) =δ jk -∇ bas Y j , Y k  -Y j , ∇ bas Y k  = 0
for all j, k. Thus, we have now everything for a CYMH GT, especially, we have a ∇ with vanishing basic curvature. Moreover, by Thm. 5.2.5 ∇ cannot be Ćat, otherwise S 7 would admit a Lie group structure. Furthermore, by Thm. 4.7.13 the Ąeld redeĄnition preserves the vanishing of the basic curvature such that we can apply the same argument to ∇ λ , thence, ∇ λ cannot be Ćat for all λ ∈ Ω 1 (N ; E). ■

Remark 5.2.20: Stability with respect to other transformations

As one can see by the proof, the base ingredient is Thm. 5.2.5. Hence, one can probably apply the same statement to every transformation preserving the vanishing of the basic curvature.

Hence, we have a CYMH GT on S 7 which is not pre-classical (stable under the Ąeld redefinition). It was essential that S 7 cannot admit a Lie group structure, strongly related to the non-associativity. As we also have seen in Cor. 5.2.3 and 3.6.6, also recall the proof of the former, the Ćatness of ∇ is equivalent to the constancy of the structure functions with respect to a parallel frame of ∇ bas . The parallel frame we took in the last proof was the trivialization (Y j ) j (j ∈ ¶1, . . . , 7♢) given in Thm. 5.2.17; summarising all of that, we can conclude that the non-associativity is directly related to the non-constancy of the structure functions for (Y j ) j . In [START_REF] Lázaro | A note on KirchhoffŠs theorem for almost complex spheres I[END_REF]Equation (4); an ArXiv preprint] is a formula derived for precisely those structure functions, emphasizing this argument since the non-constant term there is directly related to the non-associativity.

This concludes our discussion of tangent bundles; let us now turn to general Lie algebroids. The octonions will not appear anymore, hence, the notation will not be used anymore and the following notation will resemble the previous notations again.

General Lie algebroids

General situation

Let us now go to more general Lie algebroids as also used in the discussion until and around Thm. 4.7.5.

The previously discussed constancy of the torsion and its relationship to Ćatness in the case of tangent bundles we also have partially for general Lie algebroids.

Corollary 5.3.1: Pre-classical theories have constant torsion

Let E → N be a Lie algebroid over a smooth manifold N , equipped with a connection ∇ on E with vanishing basic curvature. Then there is a λ ∈ Ω 

Direct products of CYMH GTs

As we know, Lie algebroids are the direct product of a tangent bundle and a bundle of Lie algebras around regular points, Thm. 3.10.4. Hence, there is hope to extend some of the previous results to direct products of Lie algebroids. Therefore let us Ąrst deĄne the direct product of CYMH GTs, especially recall Remark 3.9.7, Lemma 3.9.1 and Section 3.9 in general. We will make use of the direct product of Lie algebroids without further explaining again how the anchor and bracket etc. are deĄned. Proof.

That is trivial to see by recalling Remark 3.9.7, especially we have In the following statement we study a certain CYMH GT, as it is given around regular points, and we will not always denote all the structures; for example, we just denote the connections when we are not going to use the compatibilities with the metrics.

∇ 1 × ∇ 2  bas = ∇ 1  bas × ∇ 2  bas , R bas ∇ 1 ×∇ 2 = R bas ∇ 1 × R bas ∇ 2 , R ∇ 1 ×∇ 2 = R ∇ 1 × R ∇ 2 , d (∇ 1 ×∇ 2 )

Theorem 5.3.5: Direct products of CYMHG GTs around regular points are Ćat

Let N := R n (n ∈ N 0 ) be a smooth manifold such that its tangent bundle admits a CYMH GT, whose connection satisfying the compatibility conditions we denote by ∇ N , and let K → S be an LAB over a smooth contractible manifold S which also admits a CYMH GT, equipped with a connection ∇ K satisfying the compatibility conditions. Then there is a Ąeld redeĄnition with respect to the direct product of CYMH GTs, E := TN × K → N × S, such that ∇ λ is Ćat, where ∇ := ∇ N × ∇ K and λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ ∈ 𝒜𝓊𝓉(E).

Proof.

We need to check whether we can apply Thm. 5.1.33 and 5.2.6 separately. We will do so by studying the Ąeld redeĄnition only for ∇ with respect to λ of the form

λ = λ N × λ K = pr ! 1 λ N  ⊕ pr ! 2 λ K  ,
where pr i (i ∈ ¶1, 2♢) is the projection onto the i-th factor in N × S, λ N ∈ Ω 1 (N ; TN ), and λ K ∈ Ω 1 (S; K). Using such a λ implies

Λ = 1 TN ×K =1 TN ×1 K -λ • ρ TN ×K =ρ TN ×ρ K =1 TN ×0 = Λ N × Λ K ,
where Λ N := 1 TN -λ N and Λ K := 1 K . Therefore

Λ -1 = Λ N  -1 × Λ K  -1
, similarly for Λ. Again by Remark 3.9.7 we have

∇ bas = ∇ N  bas × ∇ K  bas
, and, so, the following completely splits as direct product

Λ • d ∇ bas • Λ -1  λ =  Λ N • d (∇ N ) bas • Λ N  -1  λ N  ×  Λ K • d (∇ K ) bas • Λ K  -1  λ K  ,
by Def. (4.96) we get, using ∇ = ∇ N × ∇ K ,

∇ λ = ∇ N  λ N × ∇ K  λ K .
This means that we can calculate the Ąeld redeĄnition of the curvature as if we would just look at either TN or K as in the previous sections because then the curvature splits, too, as usual.

So, deĄne λ N in such a way that ∇ N  λ N is Ćat by using Thm. 5.2.6; in the same fashion choose

λ K such that ∇ K  λ K
is Ćat using Thm. 5.1.33. ■

As one has seen in the proof, the idea is to take a λ = λ N × λ K . It is natural to assume that we can extend and generalize previous statements which were just about the existence of a λ. However, statements about the stability of a CYMH GT under the Ąeld redeĄnition like Thm. 5.1.38 and 5.2.18, or the construction of the obstruction class for LABs. The reason for this are the mixed terms in the formulas of the Ąeld redeĄnition if λ ̸ = λ N × λ K such that the connection of K could contribute to the curvature of TN , for example assume, using the same notation as in the previous statement and proof, λ ∈ Ω 1 (N ; K), so, a form along N but having values in K. Then by Eq. (4.109), similar calculations as before and using that λ has values in K,

∇ N  λ ∂ i ∂ j = Λ  ∇ N Λ -1 (∂ i ) ∂ j -[λ(∂ i ), ∂ j ] E  = (1 -λ) ∇ N ∂ i ∂ j  -[λ(∂ i ), ∂ j ] E = ∇ N ∂ i ∂ j -λ ∇ N ∂ i ∂ j  -[λ(∂ i ), ∂ j ] E ,
observe that Λ = 1 such that every λ ∈ Ω 1 (N ; K) is allowed by SylvesterŠs determinant theorem.

The Ąrst summand has values in TN and the second and third in K. Hence, in general the formulas will not split anymore for general λ. However, I personally hope and assume the following conjecture.

Conjecture 5.3.6: Existence of a splitted Ąeld redeĄnition

Let N be a smooth manifold such that its tangent bundle admits a CYMH GT, and let K → S be an LAB over a smooth manifold S which also admits a CYMH GT.

If there is a Ąeld redeĄnition such that the direct product of CYMH GTs, E := TN ×K → N × S, is pre-classical or classical, then there is also a Ąeld redeĄnition with respect to a λ of the form λ N × λ K such that the direct product of CYMH GTs is pre-classical or classical, respectively, where λ N ∈ Ω 1 (N ; TN ) and λ K ∈ Ω 1 (S; K) are valid parameters for Ąeld redeĄnitions for each factor.

If it is possible to show this, then the whole discussion about Ąeld redeĄnition towards preclassical or classical structures would reduce to parameters of the form λ = λ N × λ K , essentially, one could look at both factors separately in a direct product of CYMH GTs.

Due to the fact that the general situation is very difficult to study this is the Ąnal conclusion of CYMH GTs. What will follow are loose ideas and ansatzes, very loosely structured, for a possible following discussion and study after the thesis. Hence, the reader can ignore the following subsection if wanted.

Loose ideas and ansatzes

As a Ąrst ansatz one may want to assume a connection which can restrict to the isotropy of the anchor, in the hope to generalize the discussion about the LABs; especially recall the discussion about LABs in the context of CYMH GTs, we will strongly refer to that without much further notice. Then Ker(ρ p ) = Ker(ρ q ), and Ker(ρ p ) is an ideal of g, where p, q ∈ N are arbitrary regular points of the same connected component of regular points.

Remarks 5.3.9. Recall Thm. 4.3.41: Having a Ćat connection ∇ with vanishing basic curvature implies that locally we have a similar situation as in this proposition, just with additional integrability of the underlying Lie algebra assumed here.

Since every action Lie algebroid can be integrated to a Lie groupoid and due to a generalization of Ad as in [3, Section 3.7, especially Prop. 3.7.1 (iii); page 141ff.], one might be able to proof that statement (locally) for any Lie algebroid with a Ćat CYMH-compatible connection ∇. Prop. 5.3.8. By deĄnition parallel sections of ∇ are precisely constant sections, so, Ąx a basis (e a ) a of g, constantly extended to E, such that ∇e a = 0. W.l.o.g. assume that N is connected and just consists of regular points (Ąx e.g. a connected component of regular points on N ), hence, K := Ker(ρ) has constant rank and describes a bundle of Lie algebras. Then due to ∇ Γ(K) ⊂ Γ(K) by assumption, we know that ∇♣ K is also Ćat which implies that a subset of the parallel sections (= constant sections) describes a frame of K. Thus, we can choose (e a ) a in such a way that there is a subframe (f α ) α (locally) spanning K. 9 Since (f α ) α consists of constant sections, we can conclude that the isotropy subalgebra of g is the same for all points of N , i.e. K p = g p = g q = K q for all p, q ∈ N , where K p = g p and K q = g q is the isotropy algebra at p and q, respectively. Also recall Cor. 2.2.3, that is, also using the just shown equality K p = K gp for all p ∈ N and g ∈ G, we get for all p ∈ N , g ∈ G, w ∈ g p = K p , t ∈ R, and v ∈ g. Thus, K p is an ideal of g. ■ Remarks 5.3.10.

Proof of

For simplicity assume now that the rank of the anchor is constant. Also assume we have an action Lie algebroid, related to a Lie algebra g, with a non-Ćat connection ∇ such that we have a CYMH gauge theory and ∇(Γ(K)) ⊂ Γ(K), where K := Ker(ρ). Moreover, assume that the action behind the anchor can be integrated to a Lie group action. If the anchor has a non-trivial kernel (so, nonzero and not all of the Lie algebroid), then one may try the following argument: Assume there is a λ ∈ Ω 1 (N ; E) such that ∇ λ is Ćat. By Lemma 5.3.7 we have ∇ λ (Γ(K)) ⊂ Γ(K). Locally we still have an action Lie algebroid related to a Lie algebra g ′ by Thm. 4.3.41 such that ∇ λ is the canonical Ćat connection. Then by Prop. 5.3.8 we know that the kernel of ρ p at a regular point p ∈ N is an ideal of the Lie algebra g ′ of the new action Lie algebroid; this ideal is nontrivial (not zero and not g ′ ) because the anchorŠs kernel is nontrivial.

9 Technical: A space of parallel sections are Ąnite-dimensional subspaces of, here, Γ(E), whose basis is e.g. the frame we choose here. Then one can just apply standard analysis of vector spaces, i.e. take any Ąnitedimensional basis of parallel sections of K, and then extend that basis to a basis of parallel sections of E.

When we start e.g. with a simple Lie algebra g, we get clearly a contradicion if the new Lie algebra g ′ is still simple. However, we cannot expect that g ′ is of a similar type as g when the anchor is nonzero. For example take the two dimensional non-abelian Lie algebra g := R Therefore, the frame given by ẽ1 and ẽ2 gives rise to an isomorphism E ∼ = N × g ′ as action Lie algebroid, where g ′ is the two-dimensional abelian Lie algebra. So, we could have also started with the abelian Lie algebra instead of the non-abelian one to deĄne precisely the same action Lie algebroid, both equipped with an action inducing the same anchor.

This ambiguous behaviour depends on the rank of the anchor. For a zero anchor, that is, for bundle of Lie algebras, like the BLA induced by the kernel of an anchor around regular points, that can certainly not happen. But recall the splitting theorem, Section 3.10, one part of the Lie algebroid also comes from the tangent bundle of the leaves, and as we know, the structure functions of a tangent bundle can be very arbitrary. For example start with the coordinate vector Ąelds, hence, zero structure functions (abelian). Then there is obviously a non-constant change of the frame such that the structure functions are not zero anymore because of the Leibniz rule in the bracket; for example choose a frame which is not a full set of coordinate vector Ąelds.

As in the case of LABs, having a connection restricting to the kernel (or an ideal of it) would imply that we have an LAB structure there due to the vanishing of the basic curvature; recall the the isotropy is a bundle of Lie algebras around regular points. ; the tensorial behaviour clearly also implies that this is a vector space. Similarly, sections with values in Z E ∇  are a vector space subset of Γ(E) by deĄnition, but it is not necessarily a module with constant rank as we are going to see.

Thus, for the following proofs about the structure of Z ∇ bas  we will often use (local) sections ν ∈ Γ(E) with values in Z ∇ bas  , extending a certain element of E. That is mainly for convenience due to the fact how connections are normally denoted, and in order to use the deĄnition of ∇ bas .

Recall that the kernel of the anchor ρ at a point p ∈ N is a Lie algebra, whose Lie algebra is inherited by [•, •] E , and that we denote centres of Lie algebras g by Z(g) (similar for Lie algebra bundles). We denote the Lie bracket of [•, •] E on the kernel by [•, •] Ker(ρ) (similar for the Lie algebra structure on each Ąbre or for any subalgebras). Around regular points of E the kernel of the anchor is a bundle of Lie algebras as previously mentioned, and by Thm. 5.1.1 it will be a Lie algebra bundle (LAB) when there is a Lie derivation law. , that is ∇ν is an element of the kernel of the anchor. Remarks 5.3.17. The dimension of the kernel of ρ is in general not constant such that we cannot expect that Lemma 5.3.18: Centre of the basic connection around regular points Let N be a smooth manifold and K → S be a bundle of Lie algebras over a smooth manifold S such that Z(K) is a subbundle of abelian Lie algebras, that is Z(K) has constant rank. Then deĄne the Lie algebroid E as the direct product of Lie algebroids, E := TN × K → N × S, equipped with a connection ∇ = ∇ TN × ∇ K , where ∇ TN and ∇ K are connections on TN and K, respectively. Then Z ∇ bas  = Z(K).

(5.50)

Remarks 5.3.19.

In that case, Z ∇ bas  has constant rank and is independent of the choice of ∇.

Proof of Lemma 5.3.18. By deĄnition of E, there are coordinates (∂ i ) i of N and a frame of E consisting of two parts, (f i ) i locally spanning TN (as Lie algebroid) and (f α ) α locally spanning K, both (locally) constantly extended along the base of the other factor in E = TN × K, such that

ρ(f i ) = ∂ i , ρ(f α ) = 0, [f i , f j ] E = 0, [f i , f α ] E = 0.
Since Z(K) is a subbundle of Lie subalgebras of K we can assume that (f α ) α contains a subframe (f 𝓇 ) 𝓇 spanning Z(K). Then for all ν = ν 𝓇 f 𝓇 ∈ Γ(E) (ν α ∈ C ∞ (N × S)) with values in Z(K) we then have by deĄnition,

∇ bas ν f i = ν 𝓇 ∇ bas f𝓇 f i = ν 𝓇 [f 𝓇 , f i ] + ∇ ρ(f i ) f 𝓇  = ν 𝓇 ∇ ∂ i f 𝓇 , ∇ bas ν f α = [ν, f α ] K = 0. (5.51)
Similar to before, ∇ bas ν is a tensor due to ρ(ν) = 0 such that Eq. (5.51) are fully encoding ∇ bas ν on E. Therefore we are interested into whether ∇ bas ν f i is zero. By deĄnition ∇ ρ is Ćat when restricted onto Z(K), i.e. on Z(K)-valued sections of K which are constantly extended along N , that is, we have

∇ ρ f 𝓇 = 0.
Then for all ν = ν 𝓇 f 𝓇 (ν 𝓇 can depend on N ) we get by Eq. (5.51)

∇ bas ν f i = ν 𝓇 ∇ ∂ i f 𝓇 = 0
for all i. By deĄnition we also have ∇ν ∈ Γ(K) for all sections ν with values in the centre of K. Therefore, by Cor. 5.3.11, we know ∇ bas ν Y = 0

Future works

One may take these results as a motivation to always assume that a CYMH GT is pre-classical.

There is hope to generalize the construction of the obstruction class to every Lie algebroid by assuming that the isotropy of the Lie algebroid is stable under the chosen connection. As we have seen, this stability condition is invariant under the Ąeld redeĄnition, and it may allow to reduce the study ŤroughlyŤ to a study of Lie algebra bundles because the isotropy is a Lie algebra bundle around regular points in our case, also recall Thm. 5.1.1. Of course, a Lie algebroid consists of more than an isotropy. To take care of the remaining structure one could ŤdecoupleŤ the Lie algebroid along the foliation and along a transversal submanifold using the splitting theorem. However, we also have seen that there are certain difficulties in that approach.

Future plans for research could be studying a possible generalized deĄnition of the obstruction class, using the previously-mentioned idea or another ansatz; in general, there are still a lot of open questions regarding general Lie algebroids which need to be answered. The question about the (physical) signiĄcance of the tensor ζ is interesting, too. For this it is also necessary to quantize this theory.

One could also think about integrating this theory, probably using Lie groupoids instead of Lie groups. Often it is of advantage if underlying curvatures are Ćat when it is about integrability, which may mean that ∇ needs to be Ćat for a suitable integration and that may be a further argument for assuming that the theory is already pre-classical. However, since we used the basic connection to deĄne inĄnitesimal gauge transformations, which is always Ćat in our context, we may or may not have solved a certain problem in integrating CYMH GTs.

Another possible plan is to go back to the example of unit octonions. S 7 is a Moufang loop and its corresponding tangent space at its neutral element is an algebra known as Malcev algebra. Hence, this example may show that a suitable new formulation of gauge theory may be in replacing Lie groups and Lie algebras with Moufang loops and Malcev algebras, respectively. In a private talk to Alessandra Frabetti I learned that one seemingly only needs the structure of Moufang loops for renormalizations such that it might be fruitful to develop a gauge theory using that notion.

Thanks for reading and your support! Do not hesitate to ask me further questions. I wish you a nice and pleasant time. Ω p (N ; V ) Space of p-forms with values in a vector bundle E, p ∈ N 0 Ω p,q (N, E; V ) Space of (p, q)-E-forms with values in V , p, q ∈ N 0 Ω s (E) Space of q-forms of a vector bundle E, q ∈ N 0 

DeĄnition: Action Lie algebroids, [ 2 ,. 2 ,

 22 §16Example 5; page 114] Let g, [•, •] g  be a Lie algebra equipped with a Lie algebra action γ : g → X(N ) on a smooth manifold N . A transformation Lie algebroid or action Lie algebroid is deĄned as the bundle E := N × g over N with anchor ρ(p, v) := γ(v)♣ p for (p, v) ∈ E, and Lie bracket [µ, ν] E ♣ p := [µ p , ν p ] g + ℒ γ(µ(p)) (ν a ) -ℒ γ(ν(p)) (µ a )  p e a

  construction of non-classical gauge theories (simpliĄed formulation)

  l (M ; Φ * V ), and not of Γl m=1 (Φ * TN ) *  ⊗ Φ * E l+1  like Φ * F . Φ ! F is deĄned by Φ ! F  (Y 1 , . . . , Y l ) p := F Φ(p) D p Φ Y 1 ♣ p  , . . . , D p Φ Y l ♣ p  (1.2)

DeĄnition 2 . 1 . 1 :

 211 Lie group, [4, DeĄnition 1.1.

DeĄnition 2 . 1 . 4 :

 214 Structure constants, [4, DeĄnition 1.4.17; page 38] Let g, [•, •] g  be a Lie algebra. Then the structure constants C a bc ∈ C ∞ (R) are deĄned by [e a , e b ] g = C c ab e c (2.1) for a given basis (e a ) a . Remarks 2.1.5. [4, DeĄnition 1.4.17 et seq.; page 38] The antisymmetry and Jacobi identity of [•, •] g imply

CHAPTER 2 .DeĄnition 2 . 1 . 12 : 2 ,

 221122 GAUGE THEORY Simon-Raphael Fischer Representations can be generalized to actions on manifolds N . Left action on manifold, [4, §3.DeĄnition 3.2.1; page 130]

 t=0 =

 t=0 e • p = p, Ψ e (t+s)X , p  = Ψ e tX • e sX , p  = Ψ e tX , Ψ e sX , p  , where t → e tX denotes the 1-parameter subgroup through X. Thence, R × N → N, (t, p) → Ψ e tX , p  deĄnes the Ćow of a (complete) vector Ąeld γ(-X) ∈ X(N ), deĄned at p by γ(-X) p := d dt t=0

DeĄnition 2 . 1 . 14 :

 2114 Lie algebra action, [2, §16.2, Example 5; page 114]A Lie algebra action of a Lie algebra g on a smooth manifold N is a Lie algebra homomorphismγ : g → X(N ) such that the map N × g → TN, (p, X) → γ(X) pis smooth, equipping N × g with the canonical structure of product manifolds.Remarks 2.1.15. If γ is induced by a (left) Lie group action as in Remark 2.1.13, then we also call γ the induced Lie algebra action.

Proposition 2 . 1 . 16 :

 2116 Lie algebra representation → Lie algebra action, [4, generalisation of parts of Example 3.4.2; page 143f.]

Corollary 2 . 1 . 20 : 4 , simpliĄed Proposition 3 . 4 . 3 ;

 21204343 Lie algebra isomorphism End(W ) ∼ = End(W ), [page 144]

DeĄnition 2 . 3 . 1 :

 231 Graded extension of the Lie bracket, [4, generalization of DeĄnition 5.5.3; page 275]

DeĄnition 2 . 3 . 3 :

 233 Field strength, [4, Theorem 5.5.4; page 275]

Theorem 2 . 3 . 4 : 4 ,

 2344 Bianchi identity of the Ąeld strength, [Theorem 5.14.2; page 311] Let g be a Lie algebra and M a smooth manifold. Then the Ąeld strength F satisĄes the Bianchi Identity

DeĄnition 2 . 3 . 6 :

 236 Yang-Mills Lagrangian, [4, DeĄnition 7.3.1; page 414]

DeĄnition 2 . 3 . 9 :

 239 Yang-Mills-Higgs Lagrangian, [4, DeĄnition 8.1.1; page 446f.]

. 21 ) 2 . 4 . 2 :

 21242 DeĄnition InĄnitesimal gauge transformation of the Higgs Ąeld and theĄeld of

DeĄnition 2 . 4 . 7 : 4 ,

 2474 Scalar products invariant under Lie algebra representations, [DeĄnition 2.1.36; page 96]

Theorem 2 . 4 . 8 :

 248 InĄnitesimal gauge invariance of the Yang-Mills-

DeĄnition 2 . 5 . 1 :

 251 Lie algebra connection, [6, special situation of §2, DeĄnition 2.2]

CHAPTER 2 .DeĄnition 2 . 5 . 5 : 7 ,

 22557 GAUGE THEORY Simon-Raphael Fischer So, we just allow certain curves, whose differential is in alignment with γ. Lie algebra paths, [§2, special situation of the DeĄnition 2.4]

Proposition 2 . 5 . 7 : 7 ,

 2577 Pullbacks of g-connections along g-paths, [§2, special situation of the comment before DeĄnition 2.4]

Proposition 2 . 5 . 9 :

 259 Derivations of sections along g-paths, [7, special situation of §2, beginning of subsection 2.3; there D/dt is denoted as ∇ α ]

3. 1 .DeĄnition 3 . 1 . 1 :

 1311 Lie algebroidsIn the following we follow[2, §VII]. Lie algebroid, [2, reduced deĄnition of §16.1, page 113]

Proposition 3 . 1 . 2 , §16. 2 ,

 3122 23: Action Lie algebroids are Lie algebroids, [Example 5; page 114] Let g, [•, •] g  be some Lie algebra equipped with a Lie algebra action γ : g → X(N ) on a smooth manifold N . Then the action Lie algebroid as deĄned in Def. 3.1.21 is a Lie algebroid structure on E = N × g. Moreover, it is the unique Lie algebroid structure on E with

3 . 1 .

 31 17 one can Ąnally show that the Jacobi identity is satisĄed. By using again a global constant frame (e a ) a and [e a , e b ] E = [e a , e b ] g , we get J(e a , e b , e c ) = [e a , [e b , e c ] E ] E + [e b , [e c , e a ] E ] E + [e c , [e a , e b ] E ] E (p) const. = [e a , [e b , e c ] E ] g + [e b , [e c , e a ] E ] g + [e c , [e a , e b ] E ] g const. = e a , [e b , e c ] g g + e b , [e c , e a ] g g + e c , [e a , e b ] g g = 0.

DeĄnition 3 . 1 . 2 ,

 312 27: Isotropies of Lie algebroids, [§16.1, comment after the remark on page 113]

DeĄnition 3 . 2 . 1 : 3 ,

 3213 Base-preserving morphism of Lie algebroids, [§3.3, second part of DeĄnition 3.3.1; page 100]

3 ,DeĄnition 3 . 3 . 1 :

 3331 Example 3.3.4; page 102f.; and §3.4; page 110ff.]. Derivations on a vector bundle at a Ąxed point, [3, variation of Example 3.3.4, page 102f.]

Lemma 3 . 3 . 7 : 6 ,

 3376 Vector bundle of derivations, [3, variation of the introduction in Example 3.3.4, page 102f.] and [Example 3.10]

Proposition 3 . 3 . 9 : 3 ,

 3393 Lie algebroid structure on 𝒟(V ), [Example 3.3.4, page 102f.]

  3.3.3 on sections by Lemma 3.3.7 (⇒ Def. 3.3.3 gives the sections of 𝒟(V ) ⇒ point evaluation at p of 𝒯 ∈ Γ(𝒟(V ))

Proposition 3 . 3 . 13 : 3 ,

 33133 Action of linear vector Ąelds, [Ąrst two statements of Proposition 3.4.2; page 113f.]

Corollary 3 . 3 . 14 : 3 ,

 33143 Linear vector Ąelds are a subalgebra, [Corollary 3.4.3; page 114]

→

  N be a vector bundle over a smooth manifold N , and let D be a map deĄned by

DeĄnition 3 . 4 . 1 : 1 ,

 3411 E-connection, E-curvature and E-torsion, trivial generalization of Equation (14); page 154]

Corollary 3 . 4 . 5 : 2 ,

 3452 Flat connections, [3, §5.DeĄnition 5.2.9; page 187]

Proposition 3 . 5 . 3 : 7 ,

 3537 Pull-back of an E-connection along an E-path, [§2, comment before DeĄnition 2.4]

Proposition 3 . 5 . 5 :

 355 2.5.7; linearity and the Leibniz rule follow by construction, and Eq. (3.39) and the independence of the taken generators follows by the previous calculation. ■ As usual, one can use this to deĄne parameter derivatives. Derivations of sections along E-paths, [7, §2, beginning of subsection 2.3; there D/dt is denoted as ∇ α ]

  and then everything follows by Prop. 3.5.3. ■ Remarks 3.5.6. When V = N × R, then we clearly have D/dt = d/dt, for this use the uniqueness and deĄne E ∇ := ∇ 0 ρ , where ∇ 0 = d is the canonical Ćat connection, and

DeĄnition 3 . 6 . 1 :

 361 Conjugated E-connections, [13, beginning of §4.6]

Corollary 3 . 6 . 3 :

 363 Torsion of conjugated E-connections [13, Ąrst statement in the Ąrst proposition of §4.6]

Lemma 3 . 6 . 4 :

 364 Curvature of conjugated E-connections, the Ąrst identity comes from [13, second statement of the Ąrst proposition in §4.6]

Corollary 3 . 7 . 3 :

 373 Compatibility of the basic connection with the anchor, [6, comment after DeĄnition 2.9]

DeĄnition 3 . 7 . 4 :

 374 Basic curvature, [6, DeĄnition 2.10]

Proposition 3 . 7 . 6 :

 376 Relations between the curvatures, [6, Proposition 2.11], [1, Equation (9)], [13, generalization of second statement of the Ąrst proposition in §4.6]

Theorem 3 . 7 . 8 :

 378 Curvature of ∇ ρ for a vanishing basic curvature Assume R bas ∇ (•, •) • ρ = 0, then we have

DeĄnition 3 . 8 . 1 :

 381 Exterior covariant derivatives using Lie algebroid connections, [6, the discussion after Def. 2.2]

Lemma 3 . 8 . 5 :

 385 Differential of basic curvature commutes with anchor Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E. Then ∇ bas µ ω • (ρ, . . . , ρ)

Theorem 3 . 8 . 6 :

 386 Second Bianchi identity, [3, reformulation of Proposition 7.1.9; page 265]

Remark 3 . 8 . 7 :

 387 Proof of the second Bianchi identity of Thm. 3.4.6

Lemma 3 . 9 . 1 :

 391 Uniqueness of the Lie algebroid structure on E 1 × E 2 , [10, Lemma 6.25] [3, beginning of §4.2; page 155]

  3.1.26, and E 2 be the Lie algebra su(3) → ¶ * ♢ over a point set ¶ * ♢ (with zero anchor). Then E 1 × E 2 is called the Higgs mechanism of the standard model.

DeĄnition 3 . 10 . 1 :

 3101 Singular and regular points of vector bundle morphisms, [2, §4; generalization of third remark after Theorem 4.1; page 17]

Proposition 3 . 10 . 2 : 1 ; page 17 ]

 3102117 Amount of singular and regular points, [2, generalization of second remark after Theorem 4.Let the situation be as in Def.3.10.1. Then the set of all regular points is dense in N 1 .Proof.Let S reg and S locmax be the sets of regular points and of local maxima of rk(P ) in N 1 , respectively. It is clear that S reg ⊂ S locmax but we can also show S locmax ⊂ S reg : Let p ∈ N 1 be a local maximum of rk(P ) with value k ∈ N 0 and let k ≥ 1 w.l.o.g. (since for k = 0 it is clear that then p ∈ S reg ). Then there is a minor m of order k of P such that m(p) ̸ = 0. By continuity of P there is an open neighbourhood U ⊂ N 1 containing p such that m♣ U ̸ = 0 and, thus, rk(P )♣ U ≥ k. Therefore also rk(P )♣ U = k due to p ∈ S locmax . Thence, p ∈ S reg and so S reg = S locmax =: S. Now let x 0 ∈ N 1 \ S and U an open neighbourhood of x 0 . rk(P ) reaches its upper bound on U , i.e. ∃y ∈ U : ∀x ∈ U : (rk(P ))(x) ≤ (rk(P ))(y).

Theorem 3 . 10 . 4 :

 3104 Splitting theorem around regular points, [9, Corollary 4.2]

ERemark 3 . 10 . 5 :

 3105 locally around p ∼ = TL × Ker(ρ)♣ S , (3.81) where TL × Ker(ρ)♣ S is the direct product of Lie algebroids TL → L and Ker(ρ)♣ S → S (the bundle of Lie algebras given by the Ker(ρ) restricted to S). Local frame of the splitting theorem This theorem implies that around regular points p ∈ N are coordinate vector Ąeld (∂ i ) i of L, and a frame (e a ) a of Ker(ρ)♣ S such that

Lemma 3 . 10 . 6 :

 3106 Parallel frames of Ćat Lie algebroid connections around regular points

Example 3 . 11 . 3 : 3 ,

 31133 Centres of LABs, [Ąrst parapgraph after Proposition 3.3.9; page 105]

Remarks 3 .

 3 11.5. As shown in[3, discussion around Proposition 3.3.10; page 105], one can quickly derive that ad(K) is the image of ad : K → Der(K), which is just deĄned as the Ąbre-wise extended adjoint map of ad on g. Since it is a tensor, the adjoint extends to sections. ad(K) is trivially an ideal in the following sense. DeĄnition 3.11.6: Ideals of LABs, [3, DeĄnition 3.3.11; page 106]

DeĄnition 3 . 11 . 7 : 3 , §7. 1 ,

 311731 Extension of tangent bundles by LABs and transversals, [DeĄnition 7.1.11; page 266; and DeĄnition 7.3.1; page 277]Let K → N be an LAB. Then an extension of TN by K is a short exact sequence of Lie algebroids over N E → N is a Lie algebroid and the sequence is exact as a sequence of vector bundles but each arrow represents a Lie algebroid morphism, equivalently denoted as a (3.82) is a vector bundle morphism χ : TN → E such that π • χ = 1 TN .a The hooked arrow emphasizes the inclusion, and the two-headed arrow the surjectivity.

  be an extension. Then an idealL of E is a sub-LAB of K with [ν, µ] E ∈ Γ(L) (3.85)for all ν ∈ Γ(E) and µ ∈ Γ(L).Remarks 3.11.11.As we know, the kernel of ρ, K, is a canonical example of an ideal.Proposition 3.11.12: Quotient Lie algebroids of transitive Lie algebroids,

  ) → ρ ♯(ν) := ρ(ν), (3.89) and Ąnally equip E ι(L) with the bracket [•, •]

Example 3 . 11 . 14 : 3 ,Example 3 . 11 . 15 : 3 , §7. 2 , 7 . 1 ;

 311143311153271 Outer bracket derivations of K, [DeĄnition 7.2.1 and Equation (7); page 271] Let K → N be an LAB over a smooth manifold N . Then we have the following quotient Der(K) ad(K) 𝒟 Der (K) ad(K) := Der(K) ad(K) are the outer bracket derivations of K, and Out(𝒟 Der (K)) := 𝒟 Der (K) ad(K) are those derivations in 𝒟(K) which are also outer bracket derivations. This quotient is possible because exactly as in Ex. 3.11.4 one can show that ad(K) is also an ideal of 𝒟 Der (K) and not just of Der(K), that is, we get again as in Ex. 3.11.4 [T, ad(ν)] 𝒟 Der(K) = ad T (ν) (3.93) for all ν ∈ Γ(K) and T ∈ Γ 𝒟 Der(K)  . Let us Ąnish this chapter with a summary of this section, also recall Remark 3.11.13. Summary of Section 3.11, [Figure page 272; we omit the labels of the inclusion arrows]

Proposition 4 . 1 . 2 :

 412 Tangent space of M E (M ; N ) Let M, N be two smooth manifolds and E π → N a Lie algebroid. Then the tangent space T (Φ 0 ,A 0 ) M E (M ; N ) of M E (M ; N ) at (Φ 0 , A 0 ) consists of pairs (𝓋, 𝒶) with 𝓋 ∈ Γ(Φ * 0 TN ) and 𝒶 ∈ Ω 1 (M ; 𝓋 * TE), where 𝓋 * TE is the pullback of TE Dπ → TN as a vector bundle, viewing 𝓋 as a map M → TN . This pair also satisĄes π TE (𝒶) = A 0 , (4.5)

π→Proposition 4 . 1 . 5 :

 415 N (as e.g. introduced in [4, §5.1.1, for principal bundles, but it is straightforward to extend the deĄnitions]), which is deĄned as a subbundle VF of the tangent bundle TF → F given as the kernel of Dπ : TF → TN . The Ąbres V e F of F at e ∈ F are then given by V e F = T e F p , where p := π(e) ∈ N and F p is the Ąbre of F at p. Now consider a vector bundle E π → N , then V e E = T e E p ∼ = E p because the Ąbres are vector spaces. Vertical bundle of M E (M ; N ) Let M, N be two smooth manifolds and E π → N a Lie algebroid. Then the vertical bundle of M E (M ; N ), viewed as a Ąbration over C ∞ (M ; N ), is given by

(4. 10 )

 10 Proof of Prop. 4.1.5. We have the bundle M E (M ; N ) ϖ → C ∞ (M ; N ), where ϖ(Φ, A) := Φ for all (Φ, A) ∈ M E (M ; N ). Hence, D (Φ,A) ϖ(𝓋, 𝒶) = 𝓋 for all (𝓋, 𝒶) ∈ T (Φ,A) M E (M ; N ). The kernel of Dϖ at (Φ, A) ∈ M E (M ; N ) is then given by Ker D (Φ,A) ϖ  = (𝓋, 𝒶) ∈ T (Φ,A) M E (M ; N ) 𝓋 = 0 . 123 CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer By Prop. 4.1.2, we then know that 𝒶 has values in the vertical bundle VE, that is, for 𝒶

DeĄnition 4 . 1 . 6 :Remark 4 . 1 . 7 :

 416417 Evaluation map of M × M ELet M, N be manifolds, and E → N a Lie algebroid over N . Then we deĄne the evaluation map ev byM × M E (M ; N ) → N (Φ, A) → ev(p, Φ, A) := Φ(p)(4.11)for all p ∈ M and (Φ, A) ∈ M E . Bigrading of forms on M × M E

Example 4 . 1 . 12 :

 4112 Tangent map, total differential as functional Also the total differential D can be viewed as a functional. That is D ∈ ℱ 1 E (M ; * TN ) by D(Φ, A) := DΦ ∈ Ω 1 (M ; Φ * TN ). (4.20)

Remark 4 . 1 . 13 :

 4113 Notions on ℱ k E and further pullbacks with ev By Def. 4.1.9, we recover typical notions on the space of functionals, notions like wedge products, Def. 4.0.1 and contractions etc. by restricting notions on Ω •

(4. 22 )

 22 For a vector bundle connection ∇ on V we deĄne the pullback connection * ∇ (to functionals) by * ∇ := (ev * ∇)♣ TM .(4.23)Its induced exterior covariant derivative d * ∇ we view as an exterior covariant derivative on the space of functionals, especially

(

  * v)(Φ, A)♣ p := (ev * v)♣ (p,Φ,A) = Φ * v♣ p (4.26) for all (p, Φ, A) ∈ M × M E . Especially, ( * v)(Φ, A) = Φ * v,similarly to what we already pointed out for ! w and * ∇ in Remark 4.1.13. By construction, and as argued in Rem. 4.1.13, we also get d

DeĄnition 4 . 2 . 1 :

 421 Field of gauge bosons and their Ąeld strength, [1, especially Eq. (11); Φ is denoted as X there]

  ) a trivializes Φ * E ∼ = M × g for all Φ ∈ C ∞ (M ; N ) and (Φ * e a ) a is also a constant frame, and denote the scalar product on g by κ. Then observe (Φ * κ)(Φ * e a , Φ * e b ) = Φ * κ(e a , e b ) = Φ * ( κ(e a , e b ))=const.

Corollary 4 . 3 . 3 :

 433 Flows of X B M E (M ; N ) Let M, N be two smooth manifolds and (E, ρ E , [•, •] E ), (B, ρ B , [•, •] B ) two Lie algebroids over N . For a Ψ ∈ X B (M E (M ; N )) we denote its Ćow by γ = (Φ, A) :

DeĄnition 4 . 3 . 4 :

 434 InĄnitesimal gauge transformation of Φ Let M, N be two smooth manifolds, (E, ρ E , [•, •] E ), (B, ρ B , [•, •] B ) two Lie algebroids over N , and ε ∈ ℱ 0 E (M ; * B). For a (Φ, A) ∈ M E (M ; N ) we deĄne the inĄnitesimal gauge transformation δ B ε(Φ,A) Φ of Φ along ε(Φ, A) as an element of Γ(Φ * TN ) byδ B ε(Φ,A) Φ := -( * ρ B )(ε) (Φ, A) = -(Φ * ρ B ) ε(Φ, A) ,(4.38)shortly denoted as δ B ε Φ := -( * ρ B )(ε) ∈ ℱ 0 E (M ; * TN ). In the case of E = B we just write δ ε Φ := -( * ρ)(ε).

Remarks 4 . 3 . 5 .

 435 • Eq. (4.38) is also a generalization of a similar equation for a gauge transformation given in [1, paragraph before Equation (10); we have a different sign in ε].

  Proof.That is by construction. Let γ = (Φ, A) :I → M E (M ; N ), t → γ(t) = (Φ t , A t ) (I ⊂ Ran open interval containing 0) be the Ćow of Ψ through (Φ 0 , A 0 ) ∈ M E (M ; N ) at t = 0, as e.g. in Cor. 4.3.3. Then the local Ćow of (0, Ψ) through (p, Φ 0 , A 0 ) ∈ M × M E (M ; N ) is given by (p, Φ, A). Thus,

Proposition 4 . 3 . 7 :

 437 which is precisely the deĄnition for X B M E (M ; N ) of Def. 4.3.1. ■ That immediately leads to: Parametrised variations of functionals Let M, N be two smooth manifolds, (E, ρ E , [•, •] E ), (B, ρ B , [•, •] B ) two Lie algebroids over N , V → N a vector bundle, B ∇ a B-connection on V , and

Theorem 4 . 3 . 10 :

 4310 Parametrised variations in the Ćat caseLet M, N be two smooth manifolds,(E, ρ E , [•, •] E ), (B, ρ B , [•, •] B )two Lie algebroids over N , and V → N a trivial vector bundle. Also let ∇ be the canonical Ćat connection of V ,Ψ ε ∈ X B M E (M ; N ) for an ε ∈ ℱ 0 E (M ; * B) and for ℱ • E (M ; * V ) let δ Ψεbe the unique operator of Prop. 4.3.7, using B ∇ := ∇ ρ B as a B-connection on V . Then we have δ Ψε L = (ℒ Ψε L a ) ⊗ * e a (4.46) for all L ∈ ℱ • E (M ; * V ), where (e a ) a is a global constant frame of V . Proof. That is basically the same proof as in Thm. 2.5.19. Take a global constant frame (e a ) a of V , then ∇e a = 0, and therefore (Φ * ∇)(Φ * e a ) = Φ ! (∇e a ) = 0 for all Φ ∈ C ∞ (M ; N ). Hence, ( * ∇)( * e a ) = ! (∇e a ) = 0, such that, using the Leibniz rule,

[

  e a , e b ] g = [e a , e b ] E + ∇ ρ(e b ) e a = ∇ bas ea e b , because ∇ is the canonical Ćat connection. Therefore κ is ad-invariant ⇔ 0 = κ [e a , e b ] g , e c  + κ e b , [e a , e c ] g  ⇔ ℒ ea (κ(e b , e c )) = κ [e a , e b ] g , e c  + κ e b , [e a , e c ] g  ⇔ ℒ ea (κ(e b , e c )) = κ ∇ bas ea e b , e c  + κ e b , ∇ bas ea e c  ⇔ ∇ bas κ = 0. For g recall Eq. (4.50), i.e. -∂ β ρ α a = ψ(e a ) α β , where we use coordinate vector Ąelds (∂ α ) α on N which also describes a constant frame for TW ∼ = W × W , and hence also, as before, ψ(e a ) α β = [ρ(e a ), ∂ β ] = [ρ(e a ), ∂ β ] + ρ ∇ ∂ β e a  = ∇ bas ea ∂ β , and 0

Remarks 4 . 3 . 15 .

 4315 We already introduced the notation for Eq. (4.58) (also recall Remark 3.5.4), but let us shortly write down what it is for each (Φ, A) ∈ M E (M ; N ),

. 59 )

 59 Proof forLemma 4.3.14. In the following (e a ) a denotes a local frame of E, and ∂ α are local coordinate vector Ąelds on N , and (Φ,A) ∈ M E (M ; N ). Regarding ε ∈ ℱ 0 E (M ; * E)we also write ϵ := ε(Φ, A). • For Eq. (4.55) we write locally DΦ = dΦ α ⊗ Φ * ∂ α , where we view (Φ, A) → Φ α as an element of ℱ 0 E (M ) (on an open subset of M ), such that by δ ε Φ = -( * ρ)(ε), and by using dδ Ψε = δ Ψε d and δ Ψε = ℒ Ψε on ℱ 0 E (M ) (recall the discussion around Eq. (4.43)),

2 Prop■DeĄnition 4 . 3 . 21 : 2 .

 243212 Prop. 4.3.18. This quickly follows by Lemma 4.3.14, especially Eq. (4.55) and (4.57),δ Ψε D = δ Ψε D -( * ρ)(ϖ 2 ) = -( * ρ)( * ∇ε) -( * ρ) δ Ψε ϖ Remarks 4.3.20.Following the proof of Prop. 4.3.18 and using the uniqueness of Prop. 4.3.16 one could argue that Ψ ε is the unique element of X E (M E (M ; N )) with δ Ψε D = 0 for a given ε in the category of Lie algebroids, because this must then e.g. hold for the tangent bundle E = TN as Lie algebroid, too, whose anchor is the identity. By this result and Cor. 4.3.11 we deĄne the following. InĄnitesimal gauge transformation of gauge bosons Let M, N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection on E, and ε ∈ ℱ 0 E (M ; * E) together with the unique Ψ ε ∈ X E M E (M ; N ) as given in Prop. 4.3.16. For the functional space ℱ • E (M ; * E) let δ Ψε be the unique operator of Prop. 4.3.7, using ∇ bas as E-connection on E. For a (Φ, A) ∈ M E (M ; N ) we deĄne the inĄnitesimal gauge transformation δ ε(Φ,A) A of A as an element of Ω 1 (M ; Φ * E) by δ ε(Φ,A) A := (δ Ψε ϖ 2 )(Φ, A) = -(Φ * ∇) ε(Φ, A) , (4.66) shortly denoted as δ ε A := δ Ψε ϖ 2 = -( * ∇)ε. Given a local frame (e a ) a of E, we also similarly deĄne δ ε A a := δϖ a Remarks 4.3.22.

DeĄnition 4 . 3 .

 43 28: Pre-bracket on ℱ 0 E (M ; * E) Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E.

Proposition 4 . 3 .

 43 30: Properties of the pre-bracket Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Then we have ∆ is antisymmetric, (4.71) ∆ is R-bilinear, (4.72) ∆( * µ, * ν) = * [µ, ν] E (4.73)

Remarks 4 .

 4 3.31. Eq. (4.73) and (4.74) emphasize that we have a suitable candidate in ∆ as bracket.

  bas e b e a -∇ ρ(ea) e b + [e a , e b ]

Theorem 4 . 3 .

 43 37: Curvature of the inĄnitesimal gauge transformation measured by the basic curvature Let M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Then R δ ( * µ, * ν)A = -! R bas ∇ (µ, ν)

Theorem 4 . 3 .

 43 41: Relation of the basic curvature and action Lie algebroids,

  an action Lie algebroid for some open subset U of N for some Lie algebra g. Over U take the canonical Ćat connection ∇, and let (e a ) a be a frame of constant sections on U . Then by Eq. (3.59) R bas ∇ (e a , e b ) = (∇t ∇ bas )(e a , e b ) = ∇ t ∇ bas (e a , e b ) =[ea,e b ] E = dC c ab ⊗ e c , = 0 where C c ab are the structure constants of g. Ť⇐Ť: Assume we have a Ćat connection ∇ over some open subset U with R bas ∇ = 0. W.l.o.g. assume there is a parallel frame (e a ) a for ∇ on U (otherwise restrict U to a smaller subset). Then again by Eq. (3.59) 0 = ∇ t ∇ bas (e a , e b ) = dC c ab ⊗ e c , thus, the structure functions related to the parallel frame are constant. Therefore the parallel frame spans the same Lie algebra g at each Ąbre, so, E♣ U ∼ = U × g as vector bundles. Identifying elements of g with constant sections, the anchor ρ deĄnes clearly an action for g on N , and [•, •] E clearly restrict to [•, •] g on constant sections. The Lie algebroid is thence of the action type by the uniqueness given in Prop. 3.1.23.

  e b ), e c ) + t ∇ bas (t ∇ bas (e b , e c ), e a ) + t ∇ bas (t ∇ bas (e c , e a ), e b ) + ∇ bas ec t ∇ bas  (e a , e b ) + ∇ bas ea t ∇ bas  (e b , e c ) + ∇ bas e b t ∇ bas  (e c , e a )  Thm. 3.4.6

4 =

 4 e b ] E + ∇ ∇ bas e b Y e a -∇ ∇ bas ea Y e b + ∇ ρ(e b ) ∇ Y e a -∇ Y ∇ ρ(e b ) e a -∇ [ρ(e b ),Y ] e a Def. 3.7.-R bas ∇ (e a , e b )Y + R ∇ (ρ(e b ), Y )e a for all Y ∈ X(N ), and we are going to view Y → -R bas ∇ (e a , e b )Y + R ∇ (ρ(e b ), Y )e a as an element of Ω 1 (N ; E) (locally). Hence, altogether

Theorem 4 . 4 . 3 :

 443 The gauge invariance of the Lagrangian, [1, especially the discussion around Eq. (16)]

Remarks 4 . 4 . 4 .

 444 Since Lie derivatives describe the canonical Ćat connection on smooth functions (canonical Ćatness with respecto to the trivial line bundle over N , the notation of Eq. (4.91) is the same as introduced in Remark 3.5.4 and as in other similar terms, i.e. * ℒ (

Corollary 4 . 4 . 7 :

 447 Thm. 4.4.5. First recall Thm. 4.3.41, especially, the canonical Ćat connection satisĄes R bas ∇ = 0; the metric compatibilities follow by Lemma 4.3.12, hence, all compatibility conditions of Thm. 4.4.3 are satisĄed. That the formulas restrict to the standard ones we have discussed in Cor. 4.2.6 and 4.3.11, and Remarks 4.3.5, 4.3.17, and 4.4.2. ■ But due to the compatibility condition about the Ćatness we arrive locally now at an action Lie algebroid, regardless of the speciĄc choice of E; and as we have seen multiple times, action Lie algebroids recovers the classical theory. Gauge invariance implies standard theory, [1, the discussion around Eq. (9)ff.] Let us have the same conditions as in Thm. 4.4.3. Then E is locally isomorphic to an action Lie algebroid N × g such that ∇ is its canonical Ćat connection and N = W is a vector space, also, δ ε A a are then of the form as in the standard formulation of gauge theory with respect to a constant frame (e a ) a , as does δ ε F a . Remarks 4.4.8. Using Thm. 4.4.5 one can also derive the other classical formulas depending on the conditions about the structure, like a given Lie algebra representation. But those are just technicalities, the important part is to have an action Lie algebroid and its canonical Ćat connection. Proof of Cor. 4.4.7.

Corollary 4 . 4 . 9 :

 449 Abelian Lie algebras and zero torsionLet E = N × g be an action Lie algebroid over N for a Lie algebra g, equipped with the canonical Ćat connection ∇. Then t ∇ bas = 0 ⇔ g is abelian.(4.93)Remarks 4.4.10.

Proposition 4 . 5 . 6 :

 456 Properties of Λ and Λ

  which proves Eq. (4.109) by using Def. (4.96). Let ∇ ′ := Λ • ∇ • Λ -1 , then by Prop. 4.5.6

. 124 )

 124 Remarks 4.6.4. I ∧ (ρ • I) is similarly deĄned to Def. (A.1) although ρ • I has values in TN , the Ąrst factor I simply acts on the TN part then, i.e. I ∧ (ρ • I) is an element of Ω 1,2 (N, E; E) deĄned by

Theorem 4 . 6 . 5 :

 465 Field redeĄnition of the compatibility conditions except curvature

Theorem 4 . 6 . 7 :

 467 InĄnitesimal gauge transformation after Ąeld redeĄnitionLet M, N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Also let

  135) * ℒ ( * ρ)(ε) V  = 0 (4.136)for all ε ∈ ℱ 0 E (M ; * E). Then we haveL λ YMH = L YMH ,

DeĄnition 4 . 7 . 1 :

 471 New Ąeld strength, [1, Equation (14)]

Corollary 4 . 7 . 2 :

 472 InĄnitesimal gauge transformation of the new Ąeld strengthLet M, N be smooth manifolds, E → N a Lie algebroid equipped with a connection ∇ on E, and ζ ∈ Ω 2 (N ; E). Then

Remarks 4 . 7 . 3 .DeĄnition 4 . 7 . 4 :

 473474 That is a generalized version of[START_REF] Kotov | Curving Yang-Mills-Higgs gauge theories[END_REF] Equation (15)].Proof.Observe, using Prop. 4.3.18 and 4.3.7,δ ε ( * ζ)(D ∧ , D) = - * ∇ bas ε ζ  (D ∧ , D),such that the statement follows by Prop. 4.4.1. ■ Now towards the Lagrangian. Curved Yang-Mills-Higgs Lagrangian, [1, Eq. (

Theorem 4 . 7 . 5 :∇

 475 InĄnitesimal gauge invariance of the curved Yang-Mills-Higgs LagrangianLet M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, ζ ∈ Ω 2 (N ; E), κ and g Ąbre metrics on E and TN , respectively. Also let V ∈ C ∞ (N ) and assume that the following compatibility conditions hold:R ∇ = -d ∇ bas ζ, bas g = 0, (4.148) * ℒ ( * ρ)(ε) V  = 0 (4.149)for all ε ∈ ℱ 0 E (M ; * E). Then we haveδ ε L CYMH = 0 (4.150)for all ε ∈ ℱ 0 E (M ; * E).

DeĄnition 4 . 7 . 8 :

 478 Classical gauge theoryLet us assume the same structure as in Thm. 4.7.5. Then we say that we have a preclassical gauge theory, if ∇ is Ćat. If we have additionally ζ = 0, then we say that we have a classical gauge theory. Remarks 4.7.9. If we have a classical CYMH GT, then also a pre-classical one by compatibility condition 4.145. However, we motivated ζ by the Ąeld redeĄnition; there might be of course a Ąeld redeĄnition making ∇ Ćat and/or ζ zero. This is what we mainly study in the remaining part of this thesis.

DeĄnition 4 . 7 . 10 :

 4710 Field redeĄnition of the primitive Let E → N a Lie algebroid over a smooth manifold N , ∇ a connection on E, ζ ∈ Ω 2 (N ; E), and λ ∈ Ω 1 (N ; E) such that Λ = 1-λ•ρ ∈ 𝒜𝓊𝓉(E). Then we deĄne the Ąeld redeĄnition ζ λ of ζ by

Lemma 4 . 7 . 12 :

 4712 Field redeĄnition of the new Ąeld strength and compatibility conditionLet M, N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, ζ ∈ Ω 2 (N ; E), and λ ∈ Ω 1 (N ; E) such that Λ = 1 -λ • ρ ∈ 𝒜𝓊𝓉(E). Then we have G λ = ( * Λ)(G),(4.152) 

Remark 4 . 7 . 15 :

 4715 [START_REF] Boucetta | Riemannian geometry of Lie algebroids[END_REF].12 and ζ λ instead of just ζ λ .■ Avoidance of the calculation in the proof of Thm. 4.6.6

Lemma 4 . 7 . 16 :

 4716 Invertible behaviour of the Ąeld redeĄnition of the primitive Let E → N a Lie algebroid over a smooth manifold N , ∇ a connection on E, ζ ∈ Ω 2 (N ; E), and λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ ∈ 𝒜𝓊𝓉(E). Then ζ -λ = ζ, (4.163)

Remarks 4 . 7 . 18 .

 4718 With this one can also quickly show Lemma 4.5.8 and 4.7.16 by deĄning λ

  rewriting deĄnitions like d ∇ bas λ = ∇ bas • λ -λ • ∇ bas , where the basic connection in the Ąrst summand is the one on E and the one on TN in the second summand, i.e.d ∇ bas λ  (Y, ν) = ∇ bas ν λ(Y ) -λ ∇ bas ν Y  for all ν ∈ Γ(E)and Y ∈ X(N ). Finally let us look at the Ąeld redeĄnitions of ζ, the calculation is very similar to the proof of Lemma 4.7.16; the calculation is purely straightforward, just compare the deĄnitions of ζ λ λ ′

Theorem 4 . 8 . 3 :

 483 Bianchi identity for the primitives of the connectionLet E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E with vanishing basic curvature and for whose curvature there is a ζ

5 ,

 5 see also the last note at the beginning of §6.4; page 238f.] [6, Proposition 2.13]

Situation 5 . 1 . 3 :

 513 CYMH GT for Lie algebra bundlesLet g be a real Ąnite-dimensional Lie algebra with Lie bracket [•, •] g . With

1

 1 

𝒟DeĄnition 5 . 1 . 9 :

 519 Der (K) is also a Lie subalgebroid of 𝒟(K) as discussed earlier. So, by compatibility condition (5.1), we arrive at that ∇ has to be what we will call a Lie derivation law: Pairing of TN , [3, §7.2, DeĄnitions 7.2.

3 , §7. 2 ,

 32 2), ζ is not centre-valued in general such that d ∇ ζ cannot be written as d Ξ ζ. Lemma 5.1.23: Closedness of d ∇ ζ under the central representation, [Lemma 7.2.5, d ∇ ζ is denoted by f and d Ξ as d, and without written proof there; page 274]

  exact with respect to d Ξ since ζ ′ -ζ has values in Z(K). ■ Since d ∇ ζ is invariant under the Ąeld redeĄnition, this Ąnally shows that d ∇ ζ is a useful object to study in the context of the Ąeld redeĄnition. By Lemma 5.1.23 this is a closed form, and it is clear that in the Ćat situation ζ has values in Z(K) by compatibility condition (5.2). By Thm. 5.1.21 we would get d ∇ ζ = d Ξ ζ, i.e. d ∇ ζ would be then exact. Hence, it makes sense to study the cohomology class of d ∇ ζ with respect to d Ξ if one is interested into whether or not the gauge theory can be transformed into a pre-classical 4 gauge theory by the Ąeld redeĄnitions. We denote the space of cohomology classes of d Ξ -closed elements of Ω • (N ; Z(K)) by ℋ • TN, d Ξ , Z(K)  (5.20) as in [3, Theorem 7.2.12, replace A with TN and ρ Ξ with d Ξ ; page 277], and the classes by [•] Ξ . Thus, d ∇ ζ Ξ ∈ ℋ 3 TN, d Ξ , Z(K)  , using that d ∇ ζ is d Ξ -closed by Lemma 5.1.23.

3 ,. ( 5 . 21 )

 3521 5.1.14, i.e. one can reach every other Lie derivation law covering Ξ by using the Ąeld redeĄnition 5.1.5, one can freely change the Lie derivation law covering Ξ by Prop. 5.1.18, and by Lemma 5.1.24 it does not matter which ζ is used. ■ This clearly motivates the following deĄnition of MackenzieŠs obstruction class. DeĄnition 5.1.26: The obstruction class of pairings, [§7.2, comment after Theorem 7.2.12; page 277] Let (K, Ξ) be a pairing of TN , and let ∇ be any Lie derivation law covering Ξ. Also let ζ be any element of Ω 2 (N ; K) that satisĄes compatibility condition (5.2) with respect to ∇. Then we deĄne the obstruction class of Ξ by Obs(Ξ) := d ∇ ζ Ξ We immediately get a Ąrst result related to CYMH GT. Corollary 5.1.27: First approach of obstruction for CYMH GT on LABs Let (K, Ξ) be a pairing of TN , and let ∇ be a Ąxed Lie derivation law covering Ξ. Then we have ∃ a Ąeld redeĄnition as in 5.1.5 :∇ λ is Ćat ⇒ Obs(Ξ) = 0 ∈ ℋ 3 TN, d Ξ , Z(K)  .Or, equivalently, if there is a Ćat Lie derivation law covering Ξ, then Obs(Ξ) = 0. Proof of Cor. 5.1.27. Let ζ be any element of Ω 2 (N ; K) that satisĄes compatibility condition (5.2) with respect to ∇. When there is a Ąeld redeĄnition such that ∇ λ is Ćat then we can conclude that ζ λ has only values in Z(K) by compatibility condition (5.2). But then we arrive at Obs(Ξ) = d ∇ ζ

Proposition 5 . 1 . 3 , §7. 3 ,

 5133 28: Lie derivation law of a transversal, [Proposition 7.3.2 and Lemma 7.3.3, replace A with TN and A ′ with E; page 278]

Corollary 5 . 1 . 3 ,

 513 29: All transversals results into the same covered pairing, [§7.3, comment after Lemma 7.3.3, replace A with TN and A ′ with E; page 278]

DeĄnition 5 . 1 . 3 , §7. 3 , 3 , §7. 3 ,

 513333 30: Pairing induced by an extension, [DeĄnition 7.3.4, replace A with TN and A ′ with E; of TN by an LAB K → N , and let χ be any transversal. Then the pairing Ξ ext := ♯ • ∇ χ : TN → Out(𝒟 Der (K)) is the pairing of TN with K induced by the extension. Finally we can state what Mackenzie has shown about the obstruction class. Theorem 5.1.31: Obstruction of an extension, [Proposition 7.3.6, page 279, Corollary 7.3.9 and the comment afterwards, page 281; replace A with TN and A ′ with E] Let (K, Ξ) be a pairing of TN . Then there is an extension K E TN ι π of TN by K such that Ξ ext = Ξ if and only if Obs(Ξ) = 0 ∈ ℋ 3 TN, d Ξ , Z(K)  . Moreover, given such an extension, then for all Lie derivation laws ∇ covering Ξ there is a transversal χ such that ∇ = ∇ χ .

Theorem 5 . 1 .

 51 33: Local existence of pre-classical gauge theoryLet (K, Ξ) be a pairing of TN over a contractible manifold N , and let ∇ be a Ąxed Lie derivation law covering Ξ. Then we have a Ąeld redeĄnition in sense of 5.1.5 making ∇ Ćat, i.e. there is a λ ∈ Ω 1 (N ; K) such that ∇ λ is Ćat.Proof.We only need to show that Obs(Ξ) = d ∇ ζ Ξ = 0, where ζ ∈ Ω 2 (N ; K) such that compatibility condition (5.2) is satisĄed. As given in Thm. 5.1.21 the central representation d Ξ of Ξ is basically d ∇ Z(K) where ∇ Z(K) is ∇ restricted on the subbundle Z(K), and we have shown that ∇ Z(K) is Ćat by compatibility condition (5.2). Due to the fact that N is contractible, we have a global parallel frame (e a ) a for Z(K) with respect to ∇ Z(K) . By Prop. 5.1.19 we have d∇ ζ ∈ Ω 3 (N ; Z(K)), thence, we can write d ∇ ζ = ω a ⊗ e a with ω a ∈ Ω 3 (N ). We arrive at d Ξ d ∇ ζ = dω a ⊗ e a ,where d is the standard de-Rham differential. So, the differential breaks down to the standard differential in each component, especially closedness and exactness mean to be closed and exact in each component with respect to (e a ) a , respectively. By Lemma 5.1.23 we have d Ξ d ∇ ζ = 0, thus, dω a = 0. Again due to that N is contractible, we can conclude that closedness implies exactness by the Poincaré lemma. Thence, Obs(Ξ) = 0. By Thm. 5.1.31 we have an extensionK E TN.ι π such that Ξ ext = Ξ, and, hence, a Ćat Lie derivation law covering Ξ by Thm. 5.1.32. By Prop. 5.1.14 the existence of the Ąeld redeĄnition to a Ćat derivation law covering Ξ follows. ■ Theorem 5.1.34: Possible new and curved gauge theories on LABs Let (K, Ξ) be a pairing of TN with Obs(Ξ) ̸ = 0 and such that the Ąbre Lie algebra g admits an ad-invariant scalar product. Then we can construct a CYMH GT for which there is no Ąeld redeĄnition with what it would become pre-classical. Proof. Take any Lie derivation law ∇ covering Ξ (recall the second paragraph of Remark 5.1.13 about the existence of ∇ for a given Ξ). By Thm. 5.1.12 this connection satisĄes compatibility conditions (5.1) and (5.2). Together with the existence of an ad-invariant scalar product we have everything what we need to construct a CYMH GT in sense of 5.1.3. Due to Obs(Ξ) ̸ = 0 and Cor. 5.1.27 the statement follows. ■

Example 5 . 1 . 7 S 4

 5174 35: The isotropy of a Hopf Ąbration, [3, Example 7.3.20; page 287] • Let P be the Hopf Ąbration SU(2) S

2 )

 2 with respect to a given ζ ∈ Ω 2 (N ; K) such that d ∇ ζ ̸ = 0. Then there is no λ ∈ Ω 1 (N ; K) as in 5.1.5 such that ζ λ = 0. Proof. We have a 2-form ζ ∈ Ω 2 (N ; K) such that d ∇ ζ ̸ = 0. By Prop. 5.1.18 we have d ∇ λ ζ λ = d ∇ ζ for all λ ∈ Ω 1 (N ; K). When there would be a Ąeld redeĄnition leading to a classical gauge theory, then ζ λ = 0 but then also d ∇ λ ζ λ = 0. Thence, by d ∇ ζ ̸ = 0 the statement follows.

5 . 1 . 7 .

 517 1.3; by Thm. 4.3.41 compatibility condition (5.1) follows. For compatibility condition (5.2) just take any element of Ω 2 (N ; Z(K)), denoted as ζ, then this condition is trivially satisĄed because ∇ is Ćat and ζ only has values in the centre of K. Since N is three-dimensional and Z(K) is non-zero, we can then conclude the existence of d ∇ ζ ̸ = 0. For this recall that d ∇ ζ is still a centre-valued form by Prop. 5.1.19 and that d ∇ is then just the differential d Ξ for Ξ := ♯ • ∇ as in Thm. 5.1.21. Therefore we only need to take any non-d Ξ -closed centre-valued form ζ, of which there are plenty. The non-existence of a λ with ζ λ = 0 then follows by Thm. 5.1.38. ■ The Bianchi identity of the new Ąeld strength We conclude this paper with an interpretation of d ∇ ζ, and for this we need to calculate the Bianchi identity of the Ąeld strength. Hence, we need to understand how Φ * ∇ behaves. Proposition 5.1.40: Pull-Back of a Lie derivation law covering a pairing Let K → N be an LAB, equipped with a connection ∇ satisfying compatibility condition (5.1); also let M be another smooth manifold and Φ : M → N a smooth map. Then Φ * ∇ also satisĄes compatibility condition (5.1) with respect to Φ * K. When ∇ satisĄes compatibility condition (5.2) with respect to a ζ ∈ Ω 2 (N ; K), not necessarily assuming (5.1), then this extends to Φ * K, too, i.e. R Φ * ∇ = ad * • Φ ! ζ, (5.25) viewing the curvature as an element of Ω 2 (M ; End(Φ * K)) and ad * denotes the adjoint of Φ * K. Remarks 5.1.41. By Thm. 5.1.12, we get that the pull-back of a Lie derivation law of K covering the Lie algebroid morphism ♯ • ∇ is a Lie derivation law of Φ * K covering the Lie algebroid morphism ♯ • Φ * ∇.

  by using again that pull-backs of Γ(K) generate Γ(Φ * K). ■ Using this we calculate the Bianchi identity for the Ąeld strength G. Theorem 5.1.42: Bianchi identity of the Ąeld strength Let M and N be smooth manifolds, K → N an LAB, Φ ∈ C ∞ (M ; N ), and ∇ a connection satisfying compatibility conditions (5.1) and (5.2) with respect to a given ζ ∈ Ω 2 (N ; K). Then

  For example the combatibility condition aboutζ ∈ Ω 2 (N ; E) ∼ = Ω 2,0 (N, E; E) reads d ∇ bas ζ  (X, Y, Z) = ∇ bas Z ζ(X, Y ) -ζ ∇ bas Z X, Y  -ζ X, ∇ bas Z Y for all X, Y, Z ∈ X(N ), but Ťonly Z as a section of EŤ. If we view all three arguments as sections of E, that is, ζ as an element of Ω 2 (E; E) ∼ = Ω 0,2 (N, E; E), we would get instead thatd ∇ bas ζ  (X, Y, Z) = ∇ bas X ζ(Y, Z) -∇ bas Y ζ(X, Z) + ∇ bas Z ζ(X, Y ) -ζ [X, Y ], Z + ζ [X, Z], Y -ζ [Y, Z], X ,which is clearly different. Hence, it is still important to distinguish between TN as the Lie algebroid E and as tangent bundle TN . However, in that case, for ζ ∈ Ω 2 (N ; E) we know thatd ∇ bas ζ = ∇ bas ζ,and the right hand side would be in alignment with both interpretations of ζ as form.

Theorem 5 . 2 . 6 :

 526 Tangent bundles are locally pre-classical as CYMH GTLet N = R n (n ∈ N 0 ) be an Euclidean space as smooth manifold and ∇ a connection on E := TN with vanishing basic curvature. Then there is a λ ∈ Ω 1 (N ; E) such that ∇ λ is Ćat.Proof. That will essentially follow by Cor. 5.2.3, we need to Ąnd a Ąeld redeĄnition such that ∇ λ  bas t ∇ λ bas = 0, so, ∇ λ is Ćat if and only if t ∇ λ bas is constant w.r.t. ∇ λ  bas . As we have discussed in 5.2.1 we know that there is a parallel frame (e a ) a of E for ∇ bas , globally deĄned since N = R n , especially simply connected. Then also t ∇ bas(e a , e b ) = -[e a , e b ] E = -C c ab e c , where C c ab are structure functions, and ∇ bas t ∇ bas  (e a , e b ) = ∇ bas (t ∇ bas (e a , e b )) = -∇ bas [e a , e b ] E = -d(C c ab ) ⊗ e c . When the structure functions are already constants weŠre done, otherwise we will now use the transformation formulas in Def. 4.5.1. By Eq. (4.105) it is clear that e a := Λ(e a ) deĄnes a parallel frame for ∇ bas and, thus, similarly  ∇ λ  bas t ∇ λ bas  ( e a , e b ) = -∇ λ  bas [ e a , e b ] E = -d C c ab  ⊗ e c , where C c ab are the structure functions related to ( e a ) a . Thence, ∇ λ is Ćat if and only if C c ab are constants. Λ ∈ 𝒜𝓊𝓉(E) can be taken in such a way that (Λ(e a )) a are global coordinate vector Ąelds ∂ i , because then λ = 1 TN -Λ is a valid deĄnition for λ ∈ Ω 1 (N ; E). Using such a λ implies [ e a , e b ] E = 0, thus, C c ab = 0. So, we have found a Ąeld redeĄnition to a Ćat connection by Cor. 5.2.3. ■

  (x, P (x, y)), qz⟩ = ⟨P (qx, qP (x, y)), qz⟩ = ⟨P (qx, P (qx, qy)), qz⟩ = (x 1 ) 2 y 2 P (e 1 , P (e 1 , e 2 )), qz = (x 1 ) 2 y 2 P (e 1 , e 3 ), qz= -(x 1 ) 2 y 2 e 2 + (x 1 ) 2 y 1 e 1 -(x 1 ) 2 y 1 e 1 , qz = -(x 1 ) 2 (y 1 e 1 + y 2 e 2 ) =⟨qx,qx⟩qy + x 1 y 1 x 1 e 1 =⟨qx,qy⟩qx , qz = -⟨x, x⟩⟨qy, qz⟩ + ⟨x, y⟩⟨qx, qz⟩ = ⟨-⟨x, x⟩y + ⟨x, y⟩x, z⟩for all x, y, z ∈ V , using G 2 ⊂ SO[START_REF] Boucetta | Riemannian geometry of Lie algebroids[END_REF], the antisymmetry of P , and the deĄnition of ϕ to calculate that⟨P (e 1 , e 2 ), v⟩ = ϕ(e 1 , e 2 , v) = v 3 for all v ∈ V , such that P (e 1 , e 2 ) =e 3 , and similarly one derives P (e 1 , e 3 ) = -e 2 . Therefore P (x, P (x, y)) = -⟨x, x⟩y + ⟨x, y⟩x. ■ Simon-Raphael Fischer Now let us deĄne the octonions. DeĄnition 5.2.14: Octonions, [4, third part of Exercise 3.12.15; page 189f.] We deĄne the octonions O by O := Re 0 ⊕ V ∼ = R 8 , (5.38) where Re 0 denotes R emphasizing that e 0 denotes a basis along that factor, and deĄne an R-bilinear multiplication • on O by e 0 • e 0 := e 0 , e 0 • x := x • e 0 := x, x • y := -⟨x, y⟩e 0 + P (x, y), (5.39) for all x, y ∈ V . Furthermore, let (•, •) be the scalar product on O sucht that (e a ) 7 a=0 is its orthonormal basis. Remarks 5.2.15. As one trivially sees and pointed out in [4, last part of Example 4.5.10; page 229], one has e 2 j = -e 0 for all j ∈ ¶1, . . . , 7♢, using the antisymmetry of P . With the norm ♣♣ • ♣♣ induced by (•, •) one can show that O is a normed division algebra, but • is not an associative multiplication, see e.g. [4, third and sixth part of Exercise 3.12.15; page 189f.]. This especially means that ♣♣z • w♣♣ = ♣♣z♣♣ ♣♣w♣♣ for all z, w ∈ O, and by deĄning the octonionic conjugation z := x 0 e 0 -x for z = x 0 e 0 + x, where x 0 ∈ R and x ∈ V , one can show that

7 and e 1 •Proposition 5 . 2 . 16 :

 715216 2.13 in order to see how to calculate values of P ), (e 1 • e 2 ) • e 4 = P (e 1 , e 2 ) • e 4 = e 3 • e 4 = P (e 3 , e 4 ) = -e (e 2 • e 4 ) = e 1 • P (e 2 , e 4 ) = e 1 • e 6 = P (e 1 , e 6 ) = e 7 , hence, (e 1 • e 2 ) • e 4 ̸ = e 1 • (e 2 • e 4 ), as also mentioned in [4, sixth part of Exercise 3.12.15; page 190]. S 7 is a parallelizable manifold. To see this we also need the following. Compatibility of the multiplication in O with (•, •), [4, motivated by Example 4.5.10; page 229] We have (e j z, w) = -(z, e j w) (5.40) for all z, w ∈ O and j ∈ ¶1, . . . , 7♢.

7 . 5 . 2 . 17 :

 75217 Theorem TS 7 is trivial, [4, last part of Example 4.5.10; page 229] S 7 is a parallelizable manifold, and a possible trivialization is given by vector Ąelds Y j ∈ X S 7 (j ∈ ¶1, . . . , 7♢), deĄned byY j ♣ z := e j • z (5.41)for all z ∈ S 7 , which is also a orthonormal frame for (•, •) (restricted to a scalar product for TS 7 ).Proof.Observe (Y j ♣ z , z) = (e j • z, z) Prop. 5.2.16 = -(z, e j z) = -(e j z, z) = -(Y j ♣ z , z)for all z ∈ S 7 , hence, (Y j ♣ z , z) = 0, so, perpendicular to z, which is why one can view Y j ∈ X(S 7 ). We also have, k also an element of ¶1, . . . , 7♢, (Y j , Y k ) = (e j • z, e k • z) Prop. 5.2.16 = -z, e j • (e k • z)

=Lemma 5 . 2 . 13 = 0  2 +

 521302 ⟨x, P (e j , P (e k , x))⟩ = ϕ e j , P (e k , x), x = ϕ x, P (x, e k ), e j = ⟨P (x, P (x, e k )), e j ⟩ ⟨-⟨x, x⟩e k + ⟨x, e k ⟩x, e j ⟩ = -⟨x, x⟩δ jk + x k x j , and, so,(Y j , Y k ) =  x ⟨x, x⟩  δ jk = ♣♣z♣♣ 2 δ jk = δ jk ,

bas ζ 1 × ζ 2 = d (∇ 1 ) bas ζ 1 × d (∇ 2 ) bas ζ 2 ∇ bas κ 1 × κ 2  2  bas κ 2 DeĄnition 5 . 3 . 4 :

 1212222534 Hence, using the compatibility conditions on E i ,R ∇ = -∇ bas ζ 1 × ζ 2 = 0, similarly for g 1 × g 2 .■ Direct product of CYMH GT Assume the same as in Thm. 5.3.3. Then we call E 1 × E 2 with its natural CYMH GT structure deĄned there the direct product of CYMH GTs.

Lemma 5 . 3 . 7 :Proposition 5 . 3 . 8 :

 537538 Invariance of connection restricting on the isotropyLet E → N be a Lie algebroid over a smooth manifold N , and L a subbundle of E with ρ(ν) = 0 and [ν, µ] E ∈ Γ(L) for all ν ∈ Γ(L) and µ ∈ Γ(E), i.e. Γ(L) is an ideal of Γ(E), living in the kernel of ρ. Moreover, let ∇ be a connection on E and L with ∇ Γ(L) ⊂ Γ(L). Then∇ λ Γ(L) ⊂ Γ(L).(5.43)Proof. By Eq. (4.109) we have∇ λ Y µ = Λ ∇ Λ -1 (Y ) µ -Λ -1 • λ  (Y ), µ E  + λ [Y, ρ(µ)]for all µ ∈ Γ(E) and Y ∈ X(N ). The statement follows now for µ ∈ Γ(L) because of the assumptions and Λ♣ Ker(ρ) = 1 Ker(ρ) . ■ Let us interpret this algebraically for the Ćat situation; recall Def. 3.1.27 and its discussion. Algebraic meaning in the Ćat situation Let E = N × g be an action Lie algebroid over a smooth manifold N of a Lie algebra g, whose Lie algebra action is induced by a Lie group action of a Lie group G on N , G × N ∋ (g, p) → gp ∈ N . Moreover, let ∇ be the canonical Ćat connection for which we assume ρ(∇ν) = 0 for all ν ∈ Γ(E) with ρ(ν) = 0.

  Ad(g)(w) ∈ K p ⇒ Ad(exp(tv))(w) ∈ K p gp closed subalgebra of g ⇒ [v, w] g ∈ K p ,

  2 = span⟨e 1 , e 2 ⟩, [e 1 , e 2 ] g = e 2 , equipped with an action γ on N := R 2 deĄned by γ(e 1 ) := ∂ x , γ(e 2 ) := 0, where we denote the coordinates of N by x and y. It is trivial to check that γ is a Lie algebra action, hence, we have a corresponding action Lie algebroid E = N × g with anchor ρ induced by γ and Lie algebroid bracket [•, •] E induced by [•, •] g . e 1 and e 2 are a global frame when viewed as constant sections. Now we make a change of the frame: ẽ1 := e 1 , and ẽ2 := e -x e 2 . We still have ρ(ẽ 1 ) = ∂ x and ρ(ẽ 2 ) = 0, but by the Leibniz rule we arrive at [ẽ 1 , ẽ2 ] E = e -x [e 1 , e 2 ] g =e 2 -e -x e 2 = 0.

Corollary 5 . 3 . 11 :DeĄnition 5 . 3 . 14 :.

 53115314 Lie derivation laws and vanishing basic curvatureLet E → N be a Lie algebroid, where N is a connected manifold just consisting of regular points, L be a subbundle of Lie algebras of K := Ker(ρ), and ∇ a connection on E with ∇ Γ(L) ⊂ Γ(K). Then∇ bas ν Y = 0 (5.44) The centre of basic connectionsLet E → N be a Lie algebroid over a smooth manifold N , V → N a vector bundle, and E ∇ an E-connection on V . Then we deĄne the centreZ E ∇  of E ∇ by Z E ∇  := ν ∈ E E ∇ ν = 0 .(5.48)In the case of E ∇ = ∇ bas we mean both, ∇ bas on E and TN , i.e. ∇ bas ν = 0 for both connections simultaneously when ν ∈ Z ∇ bas  Remarks 5.3.15. Since E ∇ ν is tensorial in ν, we can restrict this deĄnition to a point p ∈ N , giving rise to a deĄnition of the centre at p, denoted by Z p E ∇ 

Proposition 5 . 3 . 16 :

 5316 Properties of the centreLet E → N be a Lie algebroid over a smooth manifold N , V → N a vector bundle of at least rank 1, andE ∇ an E-connection on V . Then Z p E ∇  is asubset of Ker(ρ p ) for all p ∈ N . If we have a vector bundle connection ∇ on E, then Z p ∇ bas  is an abelian subalgebra of Z(Ker(ρ p )). Moreover, we have ρ(∇ν) = 0 (5.49) for all (local) sections ν of E with values in Z ∇ bas 

Lemma 2.1.8: Every Lie group representation induces a Lie algebra represen- tation [4, Proposition 2.1.12; page 86] Every

  We will focus on the following examples of Lie algebra representations. The Ąrst example shows the homomorphism property directly, while the second one uses Lemma 2.1.8.

representation Ψ of a Lie group G on W deĄnes a Lie algebra representation ψ by ψ := Ψ * := D e Ψ, where e is the unit element of G. Example 2.1.9: su(2)-action, [5, §6.2 et seq., page 586ff.; and §6.6 et seq.; page 633ff.]

10: Electroweak interaction coupled to a Higgs Ąeld, [4, Example 8.1.9; page 449f.; and §8.3.1; page 465ff.]

  

3 . Example 2.1.

  This is clearly a Lie group representation.

Another important examples are the adjoint representations. Example 2.1.11: Adjoint representations, [4, Theorem 2.1.45 and abstract before that; page 101] & [4, Theorem 2.1.52; page 105]

  2.1.16 we are going to keep this notation.To prove Prop. 2.1.16 we need to show the following Lemma and Corollary; these are basically the statements as for fundamental vector Ąelds, [4, §3.4; page 141ff.], but just looking at g = End(W ) with ψ = 1 End(W ) as representation on W , which is all one needs to prove Prop. 2.1.16.

	Lemma 2.1.19: End(W ) a Lie subalgebra of X(W ),
	[4, §3.4; page 141ff.; especially second equation in Remark
	3.4.5; page 145]

  Smoothness is clearly inherited by the smoothness of ψ. We need to show that γ deĄned by γ(X) := -ψ(X) for all X ∈ g is a homomorphism of Lie algebras. Then use the sign change of Lemma 2.1.19 to show for

	is a homomorphism of Lie algebras, and it is clearly an isomorphism by deĄnition
	(2.9).	■
	Using Lemma 2.1.19 we can Ąnally prove Prop. 2.1.16.	
	Proof of Prop. 2.1.16.	

  2.1.16.

	Remarks 2.2.2.

Normally the isotropy subalgebra is deĄned by assuming a (left) Lie group action Ψ : G × N → N, Ψ(g, p) = g • p, of a Lie group G. Then the isotropy group at p ∈ N , [4, DeĄnition 3.2.4; page 132], is deĄned as

Corollary 2.2.3: Isotropy of integrable Lie algebra actions, [4, inĄnitesimal version of the abstract before Proposition 3.2.10; page 134]

  gp is a Lie group isomorphism; this is easy to check. Because the isotropy algebras are here now induced by the Lie group action, we know that the induced Lie algebra action γ is given by the fundamental vector Ąelds, and, so, the isotropy subalgebras are the Lie algebras of the isotropy groups, recall Remark 2.2.2.First let us show that Ad(g)(g p ) ⊂ g gp . Observe, making use of Eq. (2.13),

.11) By [4, Proposition 3.2.9; page 134], G p is an embedded Lie subgroup of G, and, by [4, Proposition 3.2.10; page 134], one can show that the Lie algebra of G p is the kernel of a map g → T p N , deĄned by X → d dt t=0 t → Ψ e -tX , p  , which is precisely the canonical action of fundamental vector Ąelds deĄned by Ψ, evaluated at p. That is the motivation for Def. 2.2.1. In case of an integrable Lie algebra action we have the following relationship of isotropies. Let G be a Lie group with a (left) Lie group action Ψ : G × N → N, (g, p) → ψ(g, p) = gp, on a smooth manifold N . Then Ad(g)(g p ) = g gp (2.12) for all g ∈ G and p ∈ N , where g p and g gp are the corresponding isotropy subalgebras related to the Lie algebra action induced by Ψ. Especially, g p and g gp are isomorphic as Lie algebras. Proof. This corollary is the inĄnitesimal version of the other well-known relationship of isotropy groups, see [4, abstract before Proposition 3.2.10; page 134], c g (G p ) = G gp (2.13) for all g ∈ G and p ∈ N , especially, c g : G p → G

  .23)With that one can deĄne the inĄnitesimal gauge transformation of functionals.

DeĄnition 2.4.3: InĄnitesimal gauge transformation of functionals, [4, motivated by statements like Theorem 7.3.2; page 414ff.]

Remark 2.5.8: Essential condition for pullbacks of connections

  

	Hence, Def. (2.37) is frame-independent, and this Ąnishes the proof.	■
	Observe that the essential part of the proof is Eq. (2.38), everything follows either by this	
	equation or by the standard construction in (2.37). This will be important later because	
	we are going to generalise such statements about the pullbacks of connections. To avoid	
	doing the same all over again, we will just refer to this proof and remark, essentially	
	one only needs to check something like Eq. (2.38). Eq. (2.38) essentially proves that	
	the Leibniz rule inherited by g ∇ is in alignment with the Leibniz rule of vector bundle	
	connections on β	

* E → I.

  Prop. 2.5.15. For Ψ ε let η : I × U → M g (M ; W ) be its local Ćow on an open subset U ⊂ M g (M ; W ), where I ⊂ R is an open interval containing 0, and we denote its Ćow through (Φ 0 , A 0 ) ∈ U by η♣ (Φ 0 ,A 0 ) = (Φ, A), I ∋ t → (Φ t , A t ). For the Ćow η♣ (Φ 0 ,A 0 ) we can apply Cor. 2.5.14, that is, there is an ϵ : I → C ∞ (M ; g), t → ϵ t , such that Φ(p) := [t → Φ t (p)] is the base path of a g-path

	-ϵ(p) := [t → -ϵ t (p)], and we have ϵ t=0 = ε(Φ 0 , A 0 ). Hence, Ąxing such a lift to a g-path, we
	can deĄne by Prop. 2.5.7
	δ Ψε s♣ (p,Φ 0 ,A 0

  is not affected by the Leibniz rule in δ Ψε . The vector Ąelds Y 1 , . . . , Y k are similarly unaffected by the Lie derivative of ℒ Ψε ; hence, this is a valid construction.

  and δ ε is as deĄned in Def. 2.5.17 with respect to ∇ γ and Ψ ε .

	In other words, we recover Def. 2.4.3, especially when taking an ε ∈ C ∞ (M ; g), i.e. a
	constant ε, ŤconstantŤ in sense of

Remark 3.1.2: Transitive Lie algebroids, [2, very beginning of §17; page 123]

  and µ, ν ∈ Γ(E), where ℒ ρ(µ) (f ) is the action of the vector Ąeld ρ(µ) on the function f by derivation. We will sometimes denote a Lie algebroid by (E, ρ,[•, •] E ).If the anchor ρ is surjective, then we say that E is transitive.

	Remarks 3.1.3.
	We often will just write ŤLet E be a Lie algebroid.Ť, with that we canonically also denote the
	anchor by ρ or ρ E and the Lie bracket by [•, •] E without further clarifying these notations.
	Furthermore, [2, §16.1, page 113] imposes that ρ is a homomorphism of Lie brackets as a part
	of the deĄnition of Lie algebroids, but we will see in the following that this is not needed, it will
	be already a consequence of this reduced deĄnition as explained in e.g. [8, page 68].

Example 3.1.4: [2, §16.2, page 114]

  

  E but it should be seen as a generalization of Ąnite dimensional Lie algebras whose ŤĄnite dimensionŤ is the Ąnite rank of E: Choose a local frame (e a ) a of E over an open subset U ⊂ N . As introduced, one gets in general now structure functions C a

	ν 0 , . . . , ν i , . . . , ν j , . . . , ν s	(3.6)
	for all ω ∈ Ω s (E) and ν 0 , . . . , ν s ∈ Γ(E).	
	Remarks 3.1.6.	
	• Γ(E) is an inĄnite-dimensional Lie algebra w.r.t. [•, •]	

1 DeĄnition 3.1.9: Anchor-preserving vector bundle morphism, [3, §4.3, Equation (22); page 157]

  

Lemma 3.1.12: Curvatures are tensorial in case of anchor-preservation, [3, variant of Lemma 5.2.8; page 187]

  

	Let E 1 , E 2 be two Lie algebroids over the same base manifold N , and ξ : E 1 → E 2 an
	anchor-preserving vector bundle morphism. Then R ξ is an anti-symmetric tensor, i.e. it
	is C ∞ (N )-bilinear.
	Remarks 3.1.13.

Proposition 3.1.17: Relation of Jacobiator and anchor, [8, page 68]

  

	Let E → N be a real vector bundle of Ąnite rank, equipped with a bundle map ρ : E → TN
	and an antisymmetric bi-linear bracket [•, •] E on the space of sections Γ(E) satisfying the
	Leibniz rule (3.1) with respect to ρ. Then the following are equivalent:
	11)
	for all µ, ν ∈ W .
	Remarks 3.1.16.
	It is clear that J = 0 if W = Γ(E) as Lie algebra, for E a Lie algebroid. It is also trivial to see
	that J is R-trilinear and antisymmetric.

Example 3.1.19: Bundle of Lie algebras, [2, §16.2, Example 2; page 114] and [2, §16.3; page 116f.] A bundle of Lie algebras, or BLA, is

  a bundle whose Ąbers consist of Lie algebras, necessarily of the same dimension, giving rise to structure functions on the base manifold which should be smooth. Such a bundle is a Lie algebroid with the anchor ρ ≡ 0. The converse is also true, every Lie algebroid with zero anchor is a bundle of Lie algebras because then [•, •] E behaves as a tensor due to the lack of a real Leibniz rule and is thence a Ąeld of Lie algebra brackets. This is why BLAs may be just deĄned as Lie algebras with zero anchor.As argued in [3, Theorem 6.4.5; page 238f.], when the Lie algebras of each Ąbre of a bundle of Lie algebras are isomorphic to each as Lie algebras, then we denote that as

	the following we introduce other important examples of Lie algebroids which we need later,
	see [2, §16.2].

Lie algebra bundle (in short LAB). DeĄnition 3.1.20: Lie algebra bundle (LAB), [3, DeĄnition 3.3.8; page 104] Let g be a Lie algebra. A Lie algebra bundle, or LAB, is

  a vector bundle K → N equipped with a Ąeld of Lie algebra brackets [•, •] g

DeĄnition 3.1.21: Action Lie algebroids, [2, §16.2, Example 5; page 114]

  

		
	Let g, [•, •] g	be a Lie algebra equipped with a Lie algebra action γ : g → X(N ) on a
	smooth manifold N . A

transformation Lie algebroid or action Lie algebroid is

  deĄned as the bundle E := N × g over N with anchor

	for (p, v) ∈ E, and Lie bracket			
	 [µ, ν] E ♣ p := [µ p , ν p ] g + ℒ γ(µ(p)) (ν a ) -ℒ γ(ν(p)) (µ a )	p	e a	(3.13)
	for all p ∈ N and µ, ν ∈ Γ(E), where one views a section µ ∈ Γ(E) as a map µ : N → g
	and (e a ) a is some arbitrary frame of constant sections.			
	Remarks 3.1.22.			
	[•, •, ] E is here clearly well-deĄned since one just allows global constant frames. That is, another
	global and constant frame is just given by f b = M a b e a , where M a b are constants (and invertible
	as matrix). Due to this constancy, ℒ γ(µ(p))			
	ρ(p, v) := γ(v)♣ p			(3.12)

  Prop. 3.1.23. First, let us show that we have a Lie algebroid structure. By construction it is clear that ρ is a bundle map, [•, •] E is antisymmetric and satisĄes the Leibniz rule w.r.t. ρ. Using a global frame of constant sections (e a ) a , the curvature R ρ of ρ (see Def. 3.1.7) is zero, in fact, for any p ∈ N we have

algebroid, recall Ex. 2.1.9 and its references Let

  

using the Leibniz rule of both brackets with respect to ρ ′ = ρ. This proves the uniqueness. ■ Recall Prop. 2.1.16, with that we can use previous examples of Lie algebra actions to construct action Lie algebroids. Example 3.1.25: su(2)-action Lie

  Of special importance regarding curvatures are of course the Bianchi identities.

	Proof.	
	This simply follows by deĄnition.	■
	Theorem 3.4.6: Bianchi identities,	
	[12, Satz 8.3, generalization of second statement there; page	
	90]	
	[3, reformulation of Proposition 7.1.9; page 265]	

and only if it is a (base-preserving) morphism of Lie algebroids.

Let E → N be a Lie algebroid over a smooth manifold N , and E ∇ be an E-connection on E. Then the curvature RE ∇ satisĄes both Bianchi identities, i.e. for all µ, ν, η ∈ Γ(E) we have the Ąrst Bianchi identity

  .60) and by Cor. 3.6.3 we also have t ∇ bas = -t ∇ρ such that one can rewrite this with the torsion of ∇

ρ . Proof of Prop. 3.7.6. For the curvature of ∇ bas on E observe, using Cor. 3.7.3,

  has directly shown it from the point of view of differentialgraded manifolds. This was communicated in a personal communication but there is a paper planned about that by Alexei Kotov and Thomas Strobl, planned for 2021.

	Proof of Cor. 3.8.11.
	The Ť⇒Ť direction, i.e. we assuming a vanishing basic curvature, is clear by Prop. 3.8.9. For
	the Ť⇐Ť direction we want to use Eq. (3.59) in Prop. 3.7.6. Observe that

  2,bas one has a pair of E 1 × E 2 -connections on E 1 × E 2 and TN 1 × TN 2 . Taking a frame induced by frames of E 1 and E 2 and TN 1 and TN 2 , all of those connections and Lie algebroid connections restrict to the factors in E 1 × E 2 by deĄnition. Using Lemma 3.9.1, also the Lie bracket and anchor are a direct

product on such a frame, for both E 1 × E 2 and TN 1 × TN 2 , hence,

  Remarks 3.11.2. It is an immediate consequence that the Ąeld of Lie brackets of L is given by the Ąeld of Lie brackets of K restricted to L.

	Proof of Prop. 3.11.1.

where U is an open subset of N on which an LAB chart is deĄned.

  We are going to use this very often by just giving reference to Eq. (4.2).

	Example 4.1.16: Anchor as functional
	Recall Ex. 4.1.11; the anchor gives also rise to a functional, especially needed for the
	minimal coupling. ( * ρ)(ϖ 2 ) is a functional in ℱ 1 E (M ;

* TN ), that is

  where we use some global coordinates (∂ α ) α of W and Prop. 2.1.16. Now we make use of the canonical identiĄcation of W Šs tangent spaces with W itself, especially, v α = ∂ α for some basis (v α ) α on W . Then the Ąrst summand is clearly dΦ α ⊗ Φ * ∂ α = ι(dΦ). Hence, also here we arrive at the classical deĄnition (under the bookkeeping trick), recall Def. 2.3.7.

Finally we turn to the Lagrangian. DeĄnition 4.2.5: Yang-Mills-Higgs Lagrangian, [1, Eq. (

  .2.1, 4.2.3 and 4.2.5 are the same as for the standard formulation of gauge theory as introduced in Chapter 2.

	Proof of Cor. 4.2.6.
	By construction; also recall the remarks of Def. 4.2.1 and 4.2.3. For κ take a constant frame
	(e a )

a of E such that (Φ * e a

  0, where I is an open interval of R containing 0, and we write Ψ♣ γ(t) = (-(Φ * t ρ B )(ϵ t ), 𝒶 t ) ∈ T B (Φt,At) M E (M ; N ), where ϵ t ∈ Γ(Φ * t B) and 𝒶 t ∈ Ω 1 (M ; ϵ * t TE) (recall Prop. 4.1.2). Then -ϵ(p) := [t → -ϵ t ♣ p ], viewed as a curve I → B, is a B-path with base path Φ(p) := [t → Φ t (p)] for all p ∈ M . Ąxed, it is clear by deĄnition that the base path of -ϵ(p) is given by Φ(p) since ϵ t ♣ p ∈ B Φt(p) for all t ∈ I, where B Φt(p) is the Ąbre of B at Φ t (p). By deĄnition of Ćows we have

	Proof.	
	For p ∈ M d dt t	γ = Ψ♣ γ(t)

  while δ Ψε keeps a given degree invariant.Proof of Prop. 4.3.7.That is a trivial consequence of Cor. 4.3.6 and Cor. 3.5.9, that is, we have a unique R-linear operator δ Ψε

	Remarks 4.3.8.

Since the notation of δ Ψε does not emphasize the used connection, we will often roughly write: For the functional space ℱ • E (M ; * V ) let δ Ψε be the unique operator of Prop. 4.3.7, using B ∇ as a B-connection on V , where • denotes an arbitrary degree.

  which we used to deĄne δ Ψε . Again by Prop. 4.1.2, also recall Remark 4.1.4, we know that

3.14: Several identities related to variations with the basic connec- tion

  .1.11, 4.1.12 and 4.1.16. Ψε be the unique operator of Prop. 4.3.7, using ∇ bas as E-connection on E and TN , respectively. Then

	Lemma 4.δ Ψε D = -( * ρ) * ∇ε ,	(4.55)
	δ Ψε ( * ρ) = 0,	(4.56)

Let M, N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection on E, and

Ψ ε ∈ X E (M E (M ; N )) for an ε ∈ ℱ 0 E (M ; * E). For both functional spaces, ℱ • E (M ; * E) and ℱ • E (M ; * TN ), let δ

.16: Gauge transformation of the Ąeld of gauge bosons

  4.1.2 for all (Φ, A). For a given ε such a Ψ ε is in general not unique. Recall that for a local frame (e a ) a of E and local coordinate functions (∂ α ) α on N we have [e b , e c ] E = C a bc e a , ∇e b = ω a b ⊗ e a , ∇ ∂α e b = ω a bα e a . Ψε be the unique operator of Prop. 4.3.7, using ∇ bas as E-connection on E and any

	Proposition 4.3

Let M, N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection on E, ε ∈ ℱ 0 E (M ; * E), and for the functional space ℱ • E (M ; * E) let δ

  * t E), and 𝒶 t is a morphism TM → TE satisfying the diagram in Prop. 4.1.2. So, we have a curve γ with

	where I is an open interval of R containing 0, and we write
	Ψ♣ γ(t) = (-(Φ * t ρ)(ϵ t ), 𝒶 t ) ∈ T E (Φt,At) M

E (M ; N ), where ϵ t := ε(Φ t , A t ) ∈ Γ(Φ

3.18: InĄnitesimal gauge transformation of the minimal Cou- pling

  .3.11. Ψε be the unique operator of Prop. 4.3.7, using ∇ bas as E-connection on E and TN , respectively.

	Proposition 4.given in
	Prop. 4.3.16. For both functional spaces, ℱ • E (M ; Then we have	
	δ Ψε D = 0.	(4.64)
	Remarks 4.3.19.	

Let M, N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection on E, and ε ∈ ℱ 0 E (M ; * E) together with the unique Ψ ε ∈ X E (M E (M ; N )) as * E) and ℱ • E (M ; * TN ), let δ We already have derived the variation of the components of D, for this recall the general calculation for Eq. (4.49): Let (e a ) a be a local frame of E and ∂ α coordinate vector Ąelds on N , then we can write D = D α ⊗ * ∂ α , and, thus, with ϵ

  Keeping the same situation and notation as in the previous proof, observe that we have

which Ąnishes the proof. ■ Remark 4.3.44: Curvature of δ on Φ

  Y 1 , . . . , Y k )

		
	Thm. 4.3.43 =	0,
	which concludes the proof.	

■

Let us conclude this section by showing that this Ąnally implies that ∆ is a Lie bracket. Theorem 4.3.47: Pre-bracket a Lie bracket Let M, N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E with R bas ∇ = 0. Then ∆ is a Lie bracket.

Proof. By Prop. 4.3.30 we already know antisymmetry and R-bilinearity. Thus, only the Jacobi identity is left to show, and the calculation is very similar to the calculation of the Ąrst Bianchi identity in Thm. 3.4.6,

  .3.23. a Moreover, on scalar-valued functionals we ϖ2 was needed for Ąxing the vector Ąelds like Ψε ∈ X E ME(M ; N ) by Prop. 4.3.16.Remarks 4.6.8. Observe how Ψ ε is unaffected by the Ąeld redeĄnition although ϖ 2 and ∇ transform by the Ąeld redeĄnition, both of which were essential in the construction of inĄnitesimal gauge transformations. We will prove this by using the uniqueness behind the construction of operators like δ ε , especially recall Prop. 4.3.7 and 4.3.16. We write

	have	
	δ λ ε = ℒ Ψε = δ ε ,	(4.131)
	where Ψ ε ∈ X E (M E (M ; N )) is the vector Ąeld behind the deĄnition of δ ε , recall
	Def. 4.3.23.	
	Proof of Thm. 4.6.7.	

a

  .140) and F λ , ζ λ and D λ are deĄned in Thm. 4.6.1.

	Remarks 4.6.10.
	Recall our discussion about Cor. 4.3.39, where we mentioned that the vanishing basic curvature
	is essential.
	Proof of Thm. 4.6.9.
	The Ąrst four equations we have proven by Thm. 4.6.5 and 4.6.6, for the Ąrst equation recall
	that the Ąrst compatibility condition in Thm. 4.4.3 imposes that ∇ is Ćat, and the Ąfth equation
	is just the same compatibility condition as of Thm. 4.4.3.
	Using Thm. 4.6.1,

13: Gauge theory invariant under the Ąeld redeĄnition Let

  we immediately get: Ąbre metrics on E and TN , respectively. Also let V ∈ C ∞ (N ), assume that the compatibility conditions of Thm. 4.7.5 hold, and let λ ∈ Ω 1 (N ; E) such that Λ = 1 E -λ • ρ is an element of 𝒜𝓊𝓉(E).

	have for all ε ∈ ℱ 0 E (M ; * E). Then we have ∇ λ  bas R ∇ λ = -d ∇ λ bas R bas ∇ λ = 0, κ λ = 0, ∇ λ  bas g λ = 0,  = 0 L λ CYMH = L CYMH , and δ λ ε L λ CYMH = 0 Theorem 4.7.Then we ζ λ , (4.155) (4.156) (4.157) (4.158) (4.159) (4.160) (4.161) for all ε ∈ ℱ 0 E (M ;

M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, ζ ∈ Ω 2 (N ; E), κ and g * ℒ ( * ρ)(ε) V * E), where

Lemma 4.7.17: Transitivity of the Ąeld redeĄnition Let

  4.5.1 and 4.7.10, is also transitive. M, N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, ζ ∈ Ω 2 (N ; E), κ and g Ąbre metrics on E and TN , respectively. Moreover, let λ

Remark 4.7.19: Field redeĄnition as equivalence of CYMH GTs This

  however, there are edge cases where this argument fails: M could be a point for example, but it is clear that the Ąeld redeĄnition of ζ is independent of the choice of M such that one can quickly circumvent this problem. Another edge case is N as a point, but then ζ ≡ 0 such that everything is trivially concluded.■ Ąnally shows that the Ąeld redeĄnition is an equivalence of CYMH GTs (for Ąxed M, N and E). ReĆexivity simply follows due to that λ ≡ 0 is a valid parameter for the Ąeld redeĄnition, symmetry by Lemma 4.5.8 and 4.7.16, and transitivity by Lemma 4.7.17. Furthermore, by Thm. 4.7.13, the physics stay the same after a Ąeld redeĄnition, which is why one may speak of a physical equivalence.

Theorem 4.8.1: Curvature closed under basic connections, by Alexei Kotov

  

	Proof of Thm. 4.8.1.	
	Let E → N be a Lie algebroid over a smooth manifold N , and ∇ be a connection on E
	with vanishing basic curvature. Then	
	d ∇ bas R ∇ = 0.	(4.164)
	Remarks 4.8.2.	
	Alexei Kotov has found this identity, too, with a different approach; this was communicated in
	a private communication but there is a paper planned about that by Alexei Kotov and Thomas
	Strobl, planned for 2021.	

  Lie algebroid which is locally never an action Lie algebroid; in that case the connection could not be Ćat by Thm. 4.3.41. However, this is a difficult task; this statement may simplify that, one could just look at abelian action Lie algebroids. With that particular choice for ζ one would have then a non-classical gauge theory, in case one has a Lie algebroid which is not isomorphic to an abelian action Lie algebroid. Classical means that ∇ is Ćat, and, thus, we have a global isomorphism to an action Lie algebroid N × g for a Lie algebra g, using that N is simply connected and Thm. 4.3.41; also recall Remark 4.3.42. ∇ is then its canonical Ćat connection.

	Remarks 4.8.6.
	In general one could study whether it is possible to have a connection with vanishing basic
	curvature on a Proof of Cor. 4.8.5.

1 )  ∇ is its canonical Ćat connection.

DeĄnition 5.1.10: Lie derivation law covering Ξ, [3, §7.2, see discussion after DeĄnition 7.2.2; page 272]

  Let K → N be an LAB and ∇ : TN → 𝒟 Der (K) a Lie derivation law. Assume that TN and K are paired by a (base-preserving) Lie algebroid morphism Ξ : TN → Out(𝒟

Der (K)). Then we say that ∇ is a Lie derivation law covering Ξ if

♯ • ∇ = Ξ.

(5.16)

Remarks 5.1.11. So, while a Lie derivation law is not necessarily a morphism of Lie algebroids, ♯ • ∇ is of that type when ∇ covers a pairing.

This type of connection is exactly the type we need for gauge theory on LABs.

Theorem 5.1.12: (C)YMH GT only allows Lie derivation laws covering Ξ

Let K → N be an LAB. Then a map ∇ : TN → 𝒟 Der (K) is a Lie derivation law covering some (base-preserving) Lie algebroid morphism Ξ : TN → Out(𝒟 Der (K)) if and only if it is a connection on K satisfying the compatibility conditions (5.1) and (5.2), i.e.

  Let (K, Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ and ζ ′ be two elements of Ω 2 (N ; K) which satisfy compatibility condition (5.2) with respect to ∇.

	Then	
	ζ ′ -ζ ∈ Ω 2 (N ; Z(K)).	(5.19)

Hence, the last statement follows. ■ We need to know how d ∇ ζ changes by varying ζ. Lemma 5.1.24: Varying ζ in d ∇ ζ, [3, §7.2, Lemma 7.2.6, Mackenzie denotes ζ by Λ, d ∇ ζ by f and d Ξ by d; page 274]

Theorem 5.1.25: Cohomology of d ∇ ζ an invariant, [3, §7.2, Theorem 7.2.12, Mackenzie denotes

  Let (K, Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ be any element of Ω 2 (N ; K) that satisĄes compatibility condition (5.2) with respect to ∇. This follows by Lemma 5.1.24 and Prop. 5.1.18. The former shows that changing ζ with another element ζ ′ of Ω 2 (N ; K) satisfying compatibility condition (5.2) results into

	Then d ∇ ζ
	Proof.

d Ξ with ρ Ξ , ζ with Λ, d ∇ ζ with f (∇, Λ), and replace A with TN ; page 277] Ξ only depends on Ξ and not on the particular choice of ∇ and ζ.

  .23) using again the Jacobi identity for [•, •] E and that ι is a Lie algebroid morphism, where R χ is the curvature of χ as deĄned in Def. 3.1.7, which is a tensor by Lemma 3.1.12 and by the fact that χ is a transversal, that is, χ is anchor-preserving. Observe

Theorem 5.1.32: Extensions over contractible manifolds, [3, §8.2, Theorem 8.2.1, replace

  Mackenzie stated that E admits a Ćat connection, with that they actually mean that it is a Ćat Lie derivation law covering Ξ Ext .

	Let		
	K	E	TN.

A with E, L with K and T M with TN ; page 314ff.] ι π be an extension of TN by an LAB K over a contractible manifold N . Then there is a Ćat Lie derivation law covering Ξ Ext . a a

  ∇ bas shall be a Ćat connection as compatibility condition. The other compatibility conditions do not really change their form. However, we assume for simplicity that the Ąbre metric κ on E and Riemannian metric g on TN coincide, such that the number of compatibility conditions is reduced by one; thus, we only have compatibility condition related to the metrics That a ζ exists in this situation we already know by Thm. 4.8.4 and Cor. 3.6.3 that ζ = t ∇ is a solution of this compatibility condition; this also implies that ∇. Choosing that ζ,

	The compatibility condition (4.146) reduces to	
	R ∇ bas = 0	(5.27)
	by Prop. 3.7.6, hence, ∇ bas g = 0.	(5.28)
	Moreover, for a gauge invariance of the theory we need ζ ∈ Ω 2 (N ; E) such that	
	R ∇ = -d ∇ bas ζ.	(5.29)

Theorem 5.2.5: Certain classical CYMH GTs are Lie groups, [13, §3.1 and the references therein] and [6, Comment after Proposition 2.12]

  1 (N ; E) such that ∇ λ is Ćat if and only if there isa λ ∈ Ω 1 (N ; E) such that t ∇ λ bas = -t ∇ λ isconstant with respect to ∇ λ Remarks 5.2.4. Recall Cor. 3.6.7; in the case of a Ćat ∇ ρ = ∇ (or its Ąeld redeĄnition) its torsion would be another Lie bracket on E, but tensorial. Proof of Cor. 5.2.3. That quickly follows by Cor. 3.6.6, using the vanishing of the basic curvature which is here equivalent to that ∇ bas is Ćat, i.e. R ∇ = ∇ bas t ∇ bas , hence, ∇ is Ćat if and only if ∇ bas t ∇ bas = 0. By Thm. 4.7.13 and its remark afterwards the vanishing of the basic curvature is preserved, hence,R ∇ λ = ∇ λOf special importance is the next theorem.

						 bas	, that is,
	∇ λ	 bas	t	∇ λ bas = 0.	(5.30)
				 bas	t	∇ λ bas .
	Hence, the statement follows immediately.				■

  1 (N ; E) such that ∇ λ ρ is Ćat if and only if there is a λ ∈ Ω 1 (N ; E) such that t ∇ λ bas = -t ∇ λ ρ Remarks 5.3.2. As for tangent bundles also recall here Cor. 3.6.7; in the case of a Ćat ∇ ρ (or its Ąeld redeĄnition) its torsion would be another Lie bracket on E, but tensorial. One could clearly generalize this statement by just imposing Ćatness of ∇ bas on E. Proof of Cor. 5.3.1. The proof is exactly as in Cor. 5.2.3, the only exception is that Cor. 3.6.6 (in combination with Prop. 3.7.6) in general implies R ∇ρ = ∇ bas t ∇ bas , which is why we can extend Cor. 5.2.3 only to ∇ ρ in general. ■

						is constant with respect
	to ∇ λ	 bas	, that is,		
			∇ λ	 bas	t	∇ λ bas = 0.	(5.42)

Theorem 5.3.3: Direct products of CYMH GTs is a CYMH GT Let

  i ∈ ¶1, 2♢ and E i → N i be Lie algebroids over smooth manifolds N i , both equipped with a connection ∇ i , a Ąbre metric κ i on E i and a Riemannian metric g i of N i such that the compatibility conditions are satisĄed for each i, where we denote the primitives ofR ∇ i by ζ i . Then the direct product of Lie algebroids E 1 × E 2 is a CYMH GT, equipped with ∇ := ∇ 1 × ∇ 2 , κ 1 × κ 2 ,and g 1 × g 2 , where the primitive of the curvature R ∇ 1 ×∇ 2 is for example given by ζ 1 × ζ 2 .

  Structure functions of an algebra (mainly of a Lie algebroid E) 18, 52 C ∞ (N ) Smooth functions on a smooth manifold N C ∞ (N ; M ) Smooth functions on N with values in M CYMH Abbreviation for curved Yang-Mills-Higgs gauge theory, also CYMH GT D Total differential of smooth maps, also viewed as functional 14, 126 Der(K) Lie bracket derivations of an LAB K Diff Space of diffeomorphisms D A Φ Minimal coupling D of a physical Ąeld Φ with the Ąeld of gauge bosons A 29, 130 𝒟 p (V ) Space of derivations on a vector bundle V at a base point p ∈ N

	A	Field of gauge bosons A	27, 119
	A λ	Field redeĄnition of the Ąeld of gauge bosons A	
	a	Anchor of the space of derivations 𝒟(V ) on a vector bundle V	
	ad	Adjoint representation of a Lie algebra	
	ad(K)	Ideal of inner bracket derivations of an LAB K	
	Aut	Space of automorphisms	
	𝒜𝓊𝓉	Space of sections of automorphisms	
	BLA	Abbreviation for bundle of Lie algebras	
	C a bc		
	𝒟(V )	Bundle of derivations on a vector bundle V	
	𝒟 Der (K)	Derivations of an LAB K which are also Lie bracket derivations	
	d	de-Rham differential	
	D dt	Derivation of sections along a path, denoted by D/dt	
	d E	E-differential	
	d E ∇	Exterior covariant derivative w.r.t. a E-connection E ∇	
	d ∇	Exterior covariant derivative w.r.t. a connection ∇	
	E	Vector bundle and mostly a smooth Lie algebroid	
	End	Space of endomorphisms	
	ℰ𝓃𝒹	Space of sections of endomorphisms	
	F	Field strength F	27, 129
	ℱ k E	Space of functionals for gauge theory as k-forms	
	G	(Generalized) Ąeld strength G	
	g	Lie algebra	
	g λ	Field redeĄnition of a Riemannian metric g	
	Im	Image of a function	
	J	Jacobiator of an algebra	
	LAB	Abbreviation for Lie algebra bundle	
	ℒ	Lie or E-Lie derivative (with Lie algebroid E)	14, 52
	L YMH	Yang-Mills-Higgs Lagrangian	29, 131

On the other hand, the equivalence class related to ŤE = LABŤ (Lie algebra bundle) has a relation with an obstruction class about extending Lie algebroids by LABs; this will imply that locally there is always a representative with Ćat ∇ while globally this may not be the case, similar to the previous bullet point. Furthermore, a canonical construction for equivalence classes with no representative with zero ζ is given, which also works locally, and an interpretation of ζ as failure of the Bianchi identity of the Ąeld strength is provided.

Common conventions and notations are introduced at the end of the introduction; see Section 1.1.

Actually, Mackenzie shows a general statement; in this thesis MackenzieŠs statement is simpliĄed to our setting.

This can be identiĄed with the tangent space at the unit element as it is well-known.

Alternatively, use the well-known equation cg(exp(tX)) = exp(tAd(g)(X)), see [4, Theorem 1.7.16; page 59].

F is independent of Φ, so, one can omit it there.

The Hodge star operator can be ignored because the spacetime metric is independent of the Ąelds Φ and A.

(δΦ, δA) is the value of that vector Ąeld at (Φ, A).

In general, the Lie algebra behind that action does not have to be related to the same Lie algebra as in the deĄnition of Mg(M ; W ) for the following deĄnitions and constructions. But for simplicity we assume that.

Alternatively, one shows it directly in the same fashion, using again that ev-pullbacks of sections generate Γ(ev * (W × K)), such that Eq. (2.48) uniquely deĄnes the operator because Eq. 2.47 declares how the operator acts on the generated sections of pullbacks.

Flatness will be deĄned later for such connections, but the construction has the typical form.

In fact, one can also deĄne vector bundles known as anchored vector bundles which are just vector bundles with a bundle map like the anchor; see e.g. [9, §3, Ąrst part of DeĄnition 3.1]. Then the following deĄnition is the deĄnition of morphisms of anchored vector bundles.

That restricts trivially to local subsets, that is, it will work for f = x j , too.

As for vector bundle connections, one can also show for general Lie algebroid connections that the square of their exterior covariant derivatives is directly related to their curvature. We will not need this and the statements about d1 and d2, hence, we do not show this. But the calculation is precisely the same.

Essentially, the Dpr i are the Ťπi for Ei = TNiŤ.

We will use Lie algebroids; their integration is more complicated than the integrability of Lie algebras, see e.g. [2, §16.4; page 117].

Recall the discussion about ι after Cor. 2.5.14.

One could even Ąx a point p ∈ M because we just need an interval for t for d/dt.

A Ćat connection is locally canonically Ćat with respect to the trivialization given by a parallel frame; later we will also see that then E is locally an action algebroid and ∇ its canonical Ćat connection, if ∇ is Ćat and has vanishing basic curvature.

The sign of ε in the gauge transformations there is the opposite of our sign.

But Ćatness is not actually needed here; see also the following remark.

See e.g.[7, §2.5] for a deĄnition of such Levi-Civita connections. However, it is precisely deĄned as usual.

By the metric compatibility with κ, ∇ bas is an E-Levi-Civita connection, as we also discussed in Rem. 4.4.10.

Mackenzie called the following construction a coupling and not pairing. I renamed it to avoid confusion with couplings in a physical context. Thanks for this suggestion, Alessandra Frabetti.

Recall Def. 4.7.8.

This follows by the exactness of the given sequence.

Recall that d ∇ is a differential since ∇ is Ćat in that situation.

We will use this isomorphism all the time in the following, without further extra notation.

The Maurer-Cartan equation as a Ťzero curvature conditionŤ encodes basically the inĄnitesimal information about that there is a unique group element connecting two other group elements.

Recall the similarity to the condition in Lemma 3.10.6.

As also deĄned in [4, §5, third part of Exercise 5.15.12; page 316].
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We can also write

and (again)

■

Recall Thm. 3.7.8 for the following statement. where H ∈ Ω 2 (E; E) with ∇ bas H = 0, also satisfy

that is,

for all µ, ν, η ∈ Γ(E).

Proof of Thm. 4.8.4.

That is a trivial consequence of Cor. 3.6.6 and Lemma 3.8.5, that is,

■

Therefore one can view the negative of the torsion of the basic connection as a canonical choice for ζ along the foliation of the anchor. In case we decide to take Let K → N be an LAB. A Lie derivation law for TN with coefficients in K is an anchor-and base-preserving vector bundle morphism ∇ : TN → 𝒟 Der (K), that is, a connection ∇ on K in the usual sense such that

for all Y ∈ X(N ) and µ, ν ∈ Γ(K).

Remarks 5.1.8. By Thm. 5.1.1 such a connection always exists for LABs.

In [3, §5.2, second part of Example 5.2.12; page 188f.] such a connection is also called Lie connection; Lie derivation laws are actually a bit more general deĄned, using general Lie algebroids in place of TN . However, we will not need this generalization, but all the references in the following are actually about more general connections; in order to make it easier for the reader who looks up those references, we decided to still use the term Lie derivation law instead to avoid confusion. Now about understanding the compatibility condition (5.2): In the context of the Ąeld re-deĄnition, if it would be possible to make ∇ Ćat by a Ąeld redeĄnition, then there would be a parallel frame (e a ) a locally for ∇ λ such that by Eq. (5.11)

for all Y ∈ X(N ). That is, with respect to that frame, the Lie bracket derivation ∇ Y looks like an adjoint of λ(Y ), an inner Lie bracket derivation. Thence, it makes sense to look at the previously discussed Lie algebroid of outer derivations etc., which is why we emphasize again to recall the discussion around diagram (5.13) in Section 3.11.

With diagram (5.13) we can now also study compatibility condition (5.2)

for all Y, Z ∈ X(N ). We will show that this implies that ∇ is a Lie derivation law covering what is called a pairing of TN with K. For that we need to deĄne what a pairing is.

that implies by Thm. 5.1.12 that ∇ λ is a Lie derivation law covering Ξ λ := ♯ • ∇ λ . Moreover, using the notation (5.13),

for all λ ∈ Ω 1 (N ; K), using ♯ • ad = 0. This shows that ∇ λ covers Ξ.

Now let ∇ ′ be another Lie derivation law covering Ξ, then clearly

for all Y ∈ X(N ), such that ∇ ′ -∇ ∈ Ω 1 (N ; Der(K)) by (5.13), and

Again by (5.13), there is a µ(Y

) for all Y ∈ X(N ), and due to the C ∞ -linearity w.r.t. Y we get ∇ ′ -∇ = ad • µ for a µ ∈ Ω 1 (N ; K). By Ąeld redeĄnition 5.1.5 we can take λ = -µ to get ∇ ′ = ∇ λ .

Since ∇ satisĄes compatibility condition (5.2) by Thm. 5.1.12 and since this condition is preserved by a Ąeld redeĄnition, the last statement follows,

Locally we can say the following.

Corollary 5.1.16: Local existence of a Ćat Lie derivation law covering a pairing

Let K be an LAB. Then locally there is always a Ćat Lie derivation law covering some (base-preserving) Lie algebroid morphism Ξ : TN → Out(𝒟 Der (K)).

Remarks 5.1.17. So, locally, by using Prop. 5.1.14, the question whether or not one can transform to a Ćat connection with the Ąeld redeĄnition breaks down to the question if there is a Ćat connection covering the same pairing.

Proof.

Locally there is a trivialization K ∼ = U × g as LABs on some open subset U ⊂ N . Then deĄne ∇ as the canonical Ćat connection, and by Thm. 4.3.41 we know that it has vanishing basic curvature, so, it satisĄes compatibility condition (5.1); compatibility condition (5.2) is trivially satisĄed by the Ćatness.

Obstruction for non-pre-classical gauge theories

Using the previous subsection, let us now look at whether or not we can make the connection Ćat by a Ąeld redeĄnition. For such questions it is useful to have an invariant; actually, d ∇ ζ is invariant under the Ąeld redeĄnition. 

(5.17)

Proof.

Recall that in general curvatures satisfy

and, by combining everything, we arrive at 
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Then we have 

for any Lie derivation law ∇ covering Ξ. d Ξ is independent of the choice of ∇.

We call this differential central representation of Ξ. (5.31) This 3-form will essentially deĄne the multiplication table for octonions; but before we do so, let us deĄne G 2 for which we need a GL(7, R)-action on k V * . We deĄne We deĄne the exceptional Lie group G 2 as a subset of GL(7, R) by

(5.33) Remarks 5.2.10. G 2 is clearly a subgroup of GL(7, R) as the isotropy of ϕ. As argued in [START_REF] Mark | Mathematical Gauge Theory[END_REF], it is therefore also a closed embedded Lie subgroup; furthermore, in [4, Corollary 3.10.7; page 173] it is also shown that G 2 is a compact embedded Lie subgroup of SO [START_REF] Boucetta | Riemannian geometry of Lie algebroids[END_REF]. That also implies that ⟨qx, qy⟩ = ⟨x, y⟩ (5.34) for all x, y ∈ V and q ∈ G 2 . We will not prove this because because it is on one hand straighforward but a bit tedious to prove, and we assume that the exceptional Lie group G 2 is a known object for the reader. The map P is antisymmetric, bilinear and G 2 -equivariant, that is q P (x, y) = P (qx, qy) (5.36) for all q ∈ G 2 and x, y ∈ V .

Proof.

Antisymmetry and bilinearity follow immediately by deĄnition. For the third property we use that G 2 ⊂ SO [START_REF] Boucetta | Riemannian geometry of Lie algebroids[END_REF] and the deĄnition of G 2 , so,

for all x, y, z ∈ V and q ∈ G 2 . ■

We will also need some additional technical result for P . for all x, y ∈ V .

Sketch of proof for Lemma 5.2.13.

for some x 1 , y 1 , y 2 ∈ R 2 (not necessarily the components of x and y, which is why the indices are at lower position). This is given in [4, Ąrst part of Exercise 3.12.15; page 189]; we only give a sketch of this part of the proof actually, see the references for all the calculations. First assume that x and y are linear independent, then apply the Gram-Schmidt process to get orthonormal vectors

If we additionally have ∇ Γ(L) ⊂ Γ(L), then the following are equivalent:

1. ∇ a Lie derivation law on L.

2. The basic curvature of ∇ restricted on L is zero, i.e.

Proof.

Those are trivial consequences of ∇ Γ(L) ⊂ Γ(K), i.e.

for all ν ∈ Γ(L) and Y ∈ X(N ). With additionally ∇ Γ(L) ⊂ Γ(L) then also

for all µ, ν ∈ Γ(L) and Y ∈ X(N ). Therefore, ∇ has a vanishing basic curvature restricted on L if and only if it is a Lie derivation law on L (a Lie bracket derivation of L). ■ Using Thm. 5.1.1, L has to be an LAB in such a case; hence having such an L and ∇ there is hope to generalize our results with respect to LABs. In the study about LABs, the obstruction class was given by d ∇ ζ and we have argued that this is exact with respect to d Ξ in the case of Ćatness, which was the differential for centre-valued forms induced by a pairing Ξ of an LAB with a tangent bundle, induced by ∇ which restricted to centre-valued forms by the vanishing of the basic curvature. The essential argument about the exactness of d ∇ ζ was the compatibility condition for ζ, implying that ζ is centre-valued in the case of LABs and Ćatness, and another argument was that ∇ restricts to such centre-valued sections. In general, Ćatness now implies closedness of ζ with respect to the basic connection. Therefore let us study whether ∇ restricts to closed forms also in general. for all ω ∈ Ω q (E; E) (q ∈ N 0 ) with d ∇ bas ω = 0 and ρ(ω) = 0.

Remarks 5.3.13. By Cor. 3.8.11 we immediately have

for all ω ∈ Ω p,q (N, E; E) (p, q ∈ N 0 ), when ∇ is Ćat. Thus,

for all ∇ bas -closed ω ∈ Ω p,q (N, E; E) and Ćat ∇ with vanishing basic curvature.

Proof of Cor. 5.3.12.

That is a trivial consquence of Cor. 3.8.11, using Ω q (E; E) ∼ = Ω (p=0,q) (N, E; E),

■

Hence, in general it is natural to assume that it is about exactness with respect to the basic connection, a replacement of the centre-valued forms in the study about LABs. However, in order to deĄne a differential on such parallel sections similar to d Ξ , we require Ćatness of ∇ restricted to these sections, regardless whether ∇ itself was Ćat; otherwise it is difficult to study non-Ćat ∇ similar to the discussion for LABs. In the case of LABs this was trivially given by the compatibility condition between the curvature and ζ, which immediately implied that R ∇ (•, •)ν = 0 for all centre-value sections ν. But in general this would mean

for all ν. Hence, centre-valued sections, onto which ∇ shall restrict, seems not only be about closed sections, but also about sections ν with ∇ bas ν = 0, 10 which makes sense, because the basic connection on E is in the case of LABs an adjoint representation in both arguments, so, there is an ambiguity in how to generalize centre-valued sections in this context.

gives rise to a module with constant rank; but even if we just look at neighbourhoods around regular points of E we cannot expect a constant rank. For example take E = TN × K → N ×S, where we mean the direct sum of Lie algebroids of TN → N and K → S, where K → S is a Lie algebra bundle (zero-anchor) over a manifold S. Then take a coordinate frame (∂ i ) i of TN and (f α ) α of K, both constantly extended to E such that [∂ i , f α ] E = 0 and the total collection is denoted by (e a ) a . Let us look at Z ∇ bas  ∋ ν = ν α f α (using Prop. 5.3.16, especially ν is an element of the kernel)

where we viewed ∂ i as an element of the tangent bundle as Lie algebroid, i.e. we took the deĄnition of ∇ bas on Lie algebroids (denoted by E usually). Hence, this is then a purely algebraic equation and depends also on the kernel of ω a iα such that a general statement about the rank of the centre is not possible without further information about ∇.

Proof of Prop. 5.3.16.

We have, using the deĄnition of E-Lie derivatives,

Since V has at least rank 1, we can conclude that ρ(ν) = 0. Hence, ν p ∈ Ker(ρ p ) for all p ∈ N . Furthermore, in the case of ∇ bas we get additionally

for all µ p ∈ Ker(ρ p ) and p ∈ N , where we used that ∇ bas νp is tensorial due to ρ(ν p ) = 0 such that ∇ bas νp can be viewed as a tensor (similar for [•, •] E ), and that the basic connection on E is just the Lie bracket when acting on the kernel of the anchor. Hence, ν p ∈ Z p (Ker(ρ p )), and, since Z p (Ker(ρ p )) is abelian, it immediately follows that Z p ∇ bas  is an abelian subalgebra. 

As already motivated, we have then a Ćat curvature in the case of CYMH GT.

Corollary 5.3.20: Zero curvature on the centre

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E such that R ∇ is exact with respect to d ∇ bas , i.e. there is

a Here d ∇ bas is not necessarily a differential.

Proof.

That is a simple consequence of the d ∇ bas -exactness and ∇ bas ν = 0 for all ν ∈ Z ∇ bas



.

■

The vanishing of the basic curvature also implies in the general situation that ∇ preserves such centres, similar to LABs.

Lemma 5.3.21: Stability of the kernel of the adjoint representation

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E with vanishing basic curvature and such that R ∇ is exact with respect to d ∇ bas . Moreover, we require

for all ν ∈ Γ(E) with ∇ bas ν = 0, where we mean with ∇ bas both connections, on E and on TN .
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Proof. We have, using Cor. 5.3.20 and the vanishing basic curvature,

for all µ, ν ∈ Γ(E), where ∇ bas ν = 0, and Y ∈ X(N ). Hence, only the basic connection on TN is left. We know ρ(∇ν) = 0 by Eq. ( 5.49), hence, by the condition on ∇ about kernel-valued sections we have

for all X ∈ X(N ), and so

This proves the claim. ■ With Cor. 5.3.12, Lemma 5.3.21 and Cor. 5.3.20 we may have everything for doing something similar as for LABs. However, another important result for LABs was that d ∇ ζ is centre-valued; this was given by the Bianchi identity 4.8.3. This identity does now not immediately imply that d ∇ ζ is closed with respect to the basic connection; and even if, for example because it has values in the isotropy, we would still need that d ∇ ζ has also values in the centre of the basic connection in order to use Cor. 5.3.20 to deĄne a cohomology class. This is not given, not even by the Bianchi identity.

Summarizing, the problem is that we cannot simply generalize the discussion about LABs. The Bianchi identity for ζ suggests that a possible differential for a cohomology is a differential induced by ∇ restricted on ∇ bas -closed forms. But the compatibility condition on R ∇ and ζ only implies Ćatness on sections with values in the centre of the basic connection. Even if we are able to construct suitable ζ, satisfying all of that for d ∇ ζ, it is not given that this construction is Ťstable enoughŤ under the Ąeld redeĄnition, which is important in order to show that d ∇ ζ is an invariant of the Ąeld redeĄnition.

Concluding, this means one needs in general a (completely?) different construction; maybe hoping for that Conjecture 5.3.6 holds. Nevertheless, one may see that the general situation is highly more complicated.

A. Certain useful identities

A.1. Lie algebra bundles

In this appendix we prove and deĄne very basic notions, which are often direct generalizations of typical relations known in gauge theory. It is recommended to read this part at the beginning of Chapter 4, especially if one is interested into all the calculations. Recall the following wedge product 1 of forms with values in a vector bundle E and values in its space of endomorphisms End(E),

where S k+l is the group of permutations ¶1, . . . , k +l♢. This is then locally given by, with respect to a frame (e a ) a of E,

where T acts as an endomorphism on e a , i.e. T (e a ) ∈ Ω k (N ; E), and ω = ω a ⊗ e a . Also recall that there is the canonical extension of ∇ on End(E) by forcing the Leibniz rule. We still denote this connection by ∇, too.

Proposition A.1.1: Several useful identities

Let M and N be two smooth manifolds, K → N a vector bundle, Φ : M → N a smooth map, ∇ a connection on K, and k, l, m ∈ N 0 . Then we have

, and T ∈ Ω m (N ; End(K)).
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If K is additionally an LAB, then we also have Proof.

• Recall that we have the following property of the pullback connection = dw a ⊗ Φ * e a + (-1) l w a ∧ Φ ! (∇e a )

2 Recall that the pull-back of forms is denoted with an exclamation mark.

Simon-Raphael Fischer for all w ∈ Ω l (M ; Φ * K), and the pull-back of forms clearly splits over this tensor product by its deĄnition, i.e.

and, so, Combining both equations, we arrive at

In the following let K also be an LAB.
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• We also have

for all w ∈ Ω l (N ; K), ψ ∈ Ω k (N ; K), and Y 1 , . . . , Y l+k ∈ X(N ), where S k+l is the group of permutations ¶1, . . . , k + l♢.

• By deĄnition of Φ * K we have

for all smooth maps Φ : M → N and µ, ν ∈ Γ(K). Let (e a ) a be again a Ąxed frame of K, ω = ω a ⊗ e a ∈ Ω l (N ; K) and ψ = ψ a ⊗ e a ∈ Ω k (N ; K), then, again using Def. 4.0.1,

• The antisymmetry of the Lie bracket generalizes to

for all ω ∈ Ω l (N ; K) and ψ ∈ Ω k (N ; K).

• Let (e a ) a be still a local frame of K, then

Simon-Raphael Fischer for all µ ∈ Γ(K), ω ∈ Ω l (N ; K), and smooth maps Φ : M → N , where we used (Φ * T )(Φ * µ) = Φ * (T (µ)) for all T ∈ Γ(End(K)) for the last equality. Since sections of Φ * K are generated by pullbacks of sections of K, we can conclude

■

When we add the compatibility conditions (5.1), then we have a few more identities.

Corollary A.1.2: Identities related to Lie bracket derivations

Let K → N be an LAB, equipped with a connection ∇ satisfying compatibility condition (5.1); also let M be another smooth manifold and Φ : M → N a smooth map. Then

for all ω ∈ Ω l (N ; K) and ψ ∈ Ω k (N ; K).

Remarks.

Eq. (A.11) is a direct generalization of [4, §5, third statement of Exercise 5.15.14 where it is stated for g (trivial LAB with canonical Ćat connection); page 316].

Proof.

• Using compatibility condition (5.1) and a local frame (e a ) a of K,
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• Then by Eq. (A.4) and (A.5), we get

and we can rewrite Eq. (A.11)

Combining both, we have

for all ω ∈ Ω l (N ; K) and ψ ∈ Ω k (N ; K). By (locally) using the 0-forms ψ = e a for all a, this implies Eq. (A.12). ■ Anchor of a Lie algebroid E, sometimes written as ρ E Φ Physical Ąeld, major example is the Higgs Ąeld 28, 119 Ψ ε
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