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Par

Simon-Raphael Fischer

de

Straubing (Allemagne)

GEN‘EVE et LYON

2021



Thanks to all my friends and family for their lasting support in the last years which were

probably the most difficult of my life so far. Thanks to my mother, father, Dennis, Gregor,

Marco, Nico, Jakob, Kathi, Konstantin, Lukas, Locki, Luciana, Gareth, Philipp, Dominik,

Stefan, Ramona, Annerose, Michael, Maxim, and Anna. Also special thanks to their support

also additionally in technical aspects of the thesis to Anton Alekseev, Mark Hamilton, and

Alessandra Frabetti, and to Daniel for proof-reading my English, so, I Ąnally have someone to

blame for my bad English :) Without all your help this project would not have succeeded.





Abstract

This thesis is devoted to the study of the geometry of curved Yang-Mills-Higgs gauge theory

(CYMH GT), a theory introduced by Alexei Kotov and Thomas Strobl. This theory reformu-

lates classical gauge theory, in particular, the Lie algebra (and its action) is generalized to a Lie

algebroid E, equipped with a connection ∇, and the Ąeld strength has an extra term ζ; there

is a certain relationship between ζ and ∇, for example, if ζ ≡ 0, then ∇ is Ćat. In the classical

situation E is an action Lie algebroid, a combination of a trivial Lie algebra bundle and a Lie

algebra action, ∇ is then the canonical Ćat connection with respect to such an E, and ζ ≡ 0.

The main results of this Ph.D. thesis are the following:

• Reformulating curved Yang-Mills-Higgs gauge theory, also including a thorough introduc-

tion and a coordinate-free formulation, while the original formulation was not completely

coordinate-free. Especially the inĄnitesimal gauge transformation will be generalized to

a derivation on vector bundle V -valued functionals. Those vector bundles V will be the

pullback of another bundle W , and the gauge transformation as derivation will be induced

by a Lie algebroid connection on W , using a more general notion of pullbacks of connec-

tions. This also supports the usage of arbitrary types of connections on W in the deĄnition

of the inĄnitesimal gauge transformation, not just canonical Ćat ones as in the classical

formulation.

• Studying functionals as parameters of the inĄnitesimal gauge transformation, supporting

a richer set of inĄnitesimal gauge transformations, especially the parameter itself can

have a non-trivial gauge transformation. The discussion about the inĄnitesimal gauge

transformation is also about what type of connection for the deĄnition of the inĄnitesimal

gauge transformation should be used, and this is argued by studying the commutator of

two inĄnitesimal gauge transformations, viewed as derivations on V -valued functionals. We

take the connection on W then in such a way that the commutator is again an inĄnitesimal

gauge transformation; for this Ćatness of the connection on W is necessary and sufficient.

For W = E and W = TN we use a Lie algebroid connection known as basic connection

which is not the canonical Ćat connection in the classical non-abelian situation; this is not

the connection normally used in the standard formulation, but it reĆects the symmetries

of gauge theory better than the usual connection, which is in general not even Ćat. For

W = R the gauge transformation is uniquely given as the Lie derivative of a vector Ąeld

on the space of Ąelds given by the Ąeld of gauge bosons and the Higgs Ąeld, and the

commutator is then just the Lie bracket of vector Ąelds; in this case the bracket will also

give again a vector Ąeld related to gauge transformations.

• DeĄning an equivalence of CYMH GTs given by a Ąeld redeĄnition which is a transfor-

mation of structural data like the Ąeld of gauge bosons. In order to preserve the physics,
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this equivalence is constructed in such a way that the Lagrangian of the studied theory

is invariant under this Ąeld redeĄnition. It is then natural to study whether there are

equivalence classes admitting representatives with Ćat ∇ and/or zero ζ:

1. On the one hand, the equivalence class related to E = TS7, S7 the seven-dimensional

sphere, admits only representatives with non-Ćat ∇, while locally the equivalence

class of all tangent bundles admits a representative with Ćat ∇.

2. On the other hand, the equivalence class related to ŤE = LABŤ (Lie algebra bundle)

has a relation with an obstruction class about extending Lie algebroids by LABs; this

will imply that locally there is always a representative with Ćat ∇ while globally this

may not be the case, similar to the previous bullet point. Furthermore, a canonical

construction for equivalence classes with no representative with zero ζ is given, which

also works locally, and an interpretation of ζ as failure of the Bianchi identity of the

Ąeld strength is provided.



Contents

1. Introduction 1

1.1. Notation and other conventions throughout this work . . . . . . . . . . . . . . . 13

2. Gauge theory 17

2.1. Lie algebras and their actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. Isotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3. Yang-Mills-Higgs gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4. InĄnitesimal Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5. InĄnitesimal Gauge Invariance using connections . . . . . . . . . . . . . . . . . . 35

3. General theory of Lie algebroids 51

3.1. Lie algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2. Morphism of Lie algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3. Derivations on vector bundles V . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4. Lie algebroid connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5. Pullbacks of Lie algebroid connections . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6. Conjugated E-connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7. Basic connection and the basic curvature . . . . . . . . . . . . . . . . . . . . . . . 86

3.8. Exterior covariant derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.9. Direct product of Lie algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.10. Splitting theorem for Lie algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.11. Lie algebra bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.11.1. Notions similar to Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 107

3.11.2. Extensions of tangent bundles with Lie algebra bundles . . . . . . . . . . 110

4. Generalized gauge theory 117

4.1. Space of Ąelds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2. Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3. InĄnitesimal gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.1. InĄnitesimal gauge transformation of the Higgs Ąeld . . . . . . . . . . . . 132

4.3.2. InĄnitesimal gauge transformation of the Ąeld of gauge bosons . . . . . . 138

4.3.3. Curvature of gauge transformations . . . . . . . . . . . . . . . . . . . . . 151

4.4. InĄnitesimal gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.5. Field redeĄnition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.6. RedeĄned gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.7. Curved Yang-Mills-Higgs gauge theory . . . . . . . . . . . . . . . . . . . . . . . . 195

4.8. Properties of CYMH GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

I



Contents Simon-Raphael Fischer

5. Obstruction for CYMH GT 215

5.1. Lie algebra bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.1.1. CYMH GT for LABs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.1.2. Relation of vector bundle connections in gauge theories with certain Lie

derivation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.1.3. Obstruction for non-pre-classical gauge theories . . . . . . . . . . . . . . . 225

5.1.4. MackenzieŠs theory about extensions of tangent bundles . . . . . . . . . . 230

5.1.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.1.6. Existence of non-vanishing primitives stable under the Ąeld redeĄnition . 238

5.1.7. The Bianchi identity of the new Ąeld strength . . . . . . . . . . . . . . . . 240

5.2. Tangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

5.2.1. General situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

5.2.2. Local picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5.2.3. Unit octonions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5.3. General Lie algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.3.1. General situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.3.2. Direct products of CYMH GTs . . . . . . . . . . . . . . . . . . . . . . . . 255

5.3.3. Loose ideas and ansatzes . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

6. Future works 269

A. Certain useful identities 271

A.1. Lie algebra bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

B. Bibliography 277

List of Symbols 279

II







1. Introduction

This thesis concerns curved Yang-Mills-Higgs gauge theories (short: CYMH GT), introduced

by Alexei Kotov and Thomas Strobl, a generalization of Yang-Mills-Higgs gauge theories, where

we have essentially the following, as also summarized in [1]:1

• M a spacetime;

• N a smooth manifold, serves as set for the values of the Higgs Ąeld Φ : M → N ;

• E → N a Lie algebroid with anchor ρ, replacing the structural Lie algebra g and its action

γ : g → X(N) of the classical formulation;

• a vector bundle connection ∇ on E;

• a Ąbre metric κ on E, as a substitute of the ad-invariant scalar product on g;

• a Riemannian metric g on N , replacing the scalar product on the vector space in which the

Higgs Ąeld usually has values in and which is invariant under the action of γ, used for the

kinetic term of Φ which is minimally coupled to the Ąeld of gauge bosons A ∈ Ω1(M ; Φ∗E);

• a 2-form on N with values in E, ζ ∈ Ω2(N ;E), an additional contribution to the Ąeld

strength of A.

A Lie algebroid is given by the following deĄnition; especially, Lie algebroids can be thought

as a generalization of both, tangent bundles and Lie algebras.

DeĄnition: Lie algebroid, [2, reduced deĄnition of §16.1; page 113]

Let E → N be a real vector bundle of Ąnite rank. Then E is a smooth Lie algebroid if

there is a bundle map ρE := ρ : E → TN , called the anchor, and a Lie algebra structure

on Γ(E) with Lie bracket [·, ·]E satisfying

[µ, fν]E = f [µ, ν]E + ℒρ(µ)(f) ν

for all f ∈ C∞(N) and µ, ν ∈ Γ(E), where ℒρ(µ)(f) is the action of the vector Ąeld ρ(µ)

on the function f by derivation.

Gauge invariance of the Yang-Mills-Higgs type functional leads to several compatibility

conditions to be satisĄed between those structures. If the connection ∇ on E is Ćat, the

compatibilities imply that the Lie algebroid is locally what we call an action Lie algebroid.

1Common conventions and notations are introduced at the end of the introduction; see Section 1.1.
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CHAPTER 1. INTRODUCTION Simon-Raphael Fischer

DeĄnition: Action Lie algebroids, [2, §16.2, Example 5; page 114]

Let
(
g, [·, ·]g


be a Lie algebra equipped with a Lie algebra action γ : g → X(N) on a

smooth manifold N . A transformation Lie algebroid or action Lie algebroid is

deĄned as the bundle E := N × g over N with anchor

ρ(p, v) := γ(v)♣p

for (p, v) ∈ E, and Lie bracket

[µ, ν]E ♣
p

:= [µp, νp]g +
(
ℒγ(µ(p))(ν

a) − ℒγ(ν(p))(µ
a)
∣∣∣
p
ea

for all p ∈ N and µ, ν ∈ Γ(E), where one views a section µ ∈ Γ(E) as a map µ : N → g

and (ea)a is some arbitrary frame of constant sections.

Furthermore, ∇ is then a canonical Ćat connection of the action Lie algebroid, and one arrives

at the standard Yang-Mills-Higgs gauge theory if additionally ζ ≡ 0. Thus, the theory represents

a curved (with respect to ∇) version of gauge theory equipped with an additional 2-form ζ. If

∇ is Ćat we say in general that we have a pre-classical gauge theory, and if additionally ζ ≡ 0

we have a classical gauge theory. Every classical theory is also pre-classical, this is another

implication of the compatibility conditions.

For a given M,N and E there is an equivalence of CYMH GTs given by a Ąeld redeĄnition,

a transformation of the Ąeld of gauge bosons, but also of ∇, κ, g and ζ. The Lagrangian is

invariant under this transformation, hence, the physics is invariant. It is then natural to study

whether it is possible that the equivalence class of a given CYMH GT has a (pre-)classical repre-

sentative, and this is precisely the main motivation of this thesis. Along this study, CYMH GT

is reintroduced in a coordinate-free way, especially providing a new coordinate-free formulation

of the inĄnitesimal gauge transformations themselves. We proceed as follows:

In Chapter 2 we recall the fundamental basics of classical gauge theory, mostly their inĄnites-

imal information; that means that we always assume trivial principal bundles, thus, we do not

need principal bundles altogether. In Section 2.1 we introduce Lie algebras and their actions,

comparing Lie algebra actions and representations; in Section 2.2 we discuss isotropies and their

relation along orbits of a Lie group action. The classical Yang-Mills-Higgs gauge theory, espe-

cially the Yang-Mills-Higgs Lagrangian, is introduced in Section 2.3, and in Section 2.4 we prove

the inĄnitesimal gauge invariance of the Lagrangian. However, in Section 2.5 we are already

reformulating inĄnitesimal gauge transformations, making the Ąrst step towards the generalized

formulation of (inĄnitesimal) gauge theory. Even if the reader has a good knowledge about gauge

theory, it is highly recommended to read Section 2.5 in order to understand later why CYMH

GT is formulated as it is. The main result of this section is the reformulation of the inĄnitesimal

gauge transformation as a derivation induced by what we call a Lie algebra connection; the key

ingredients are the following, where the manifold N is for simplicity a vector space, and g is the

2



CHAPTER 1. INTRODUCTION Simon-Raphael Fischer

structural Lie algebra with action γ:

• The pair of inĄnitesimal gauge transformations, Ψε := (δεΦ, δεA), viewed as a vector

Ąeld on the space of Ąelds Mg whose elements are given as pairs (Φ, A), where Φ ∈

C∞(M ;N) (Higgs Ąeld) and A ∈ Ω1(M ; g) (Ąeld of gauge bosons); ε is a functional with

(Φ, A) 7→ ε(Φ, A) ∈ C∞(M ; g).

• The evaluation map ev : M × Mg → N deĄned by

ev(p,Φ, A) := Φ(p)

for all (p,Φ, A) ∈ M × Mg.

• The Ťbookkeeping trickŤ for functionals L, (Φ, A) 7→ L(Φ, A) ∈ Ωk(M ;K) (k ∈ N0),

where K is a vector space. Let (ea)a be a basis of K, then locally L = La ⊗ ea, where

La ∈ Ωk(M). If viewing (ea)a as a constant frame of the trivial vector bundle N ×K over

N , then we can also write

L = La ⊗ ev∗ea

due to constancy of the frame. For bookkeeping reasons we formally denote this expression

by ι(L); especially

ι(L)(Y1, . . . , Yk) ∈ Γ
(
ev∗(N ×K)

)

for all Y1, . . . , Yk ∈ X(M), and

ι(L)(Φ, A) ∈ Ωk(M ; Φ∗(N ×K))

for all (Φ, A) ∈ Mg.

• A g-connection g∇ on V := N ×K → N , deĄned as an R-bilinear map

g × Γ(V ) → Γ(V ),

(X, ν) 7→ g∇Xν,

satisfying

g∇X(fν) = f g∇Xν + ℒγ(X)(f) ν

for all X ∈ g, ν ∈ Γ(V ) and f ∈ C∞(N), where ℒγ(X)(f) is the action of the vector Ąeld

γ(X) on the function f by derivation.

The derived key statement is then the following theorem and deĄnition, where we are going

to use a generalized notion of pullbacks of connections.

3



CHAPTER 1. INTRODUCTION Simon-Raphael Fischer

Theorem

There is a unique R-linear operator δΨε : Γ(ev∗(V )) → Γ(ev∗(V )) with

δΨε(fs) = ℒΨε(f) s+ f δΨεs,

δΨε(ev∗ϑ) = −ev∗(g∇εϑ)

for all f ∈ C∞(M × Mg), s ∈ Γ(ev∗(V )) and ϑ ∈ Γ(V ), where we denote

ev∗(g∇εϑ)♣(p,Φ0,A0) =
(
g∇ε(Φ,A)♣pϑ

∣∣∣
Φ(p)

for all (p,Φ, A) ∈ M × Mg.

DeĄnition: InĄnitesimal gauge transformation as derivation

The inĄnitesimal gauge transformation δεL of a functional L, (Φ, A) 7→ L(Φ, A) ∈

Ωk(M ;K) (k ∈ N0), is then deĄned by

(δεL)(Y1, . . . , Yk) := δΨε

(
ι(L)(Y1, . . . , Yk)

)

for all Y1, . . . , Yk.

Section 2.5 will then conclude that this deĄnition of the inĄnitesimal gauge transformation

recovers the typical deĄnition by taking the canonical Ćat connection ∇ of V = N×K, i.e. given

by ∇x = 0 for all constant x ∈ Γ(V ), and then deĄning g∇ := ∇γ , (X, v) 7→ ∇γ(X)v for all

X ∈ g and v ∈ Γ(V ).

Chapter 3 is mainly about introducing all the needed mathematical basics. Section 3.1 starts

with introducing Lie algebroids and related notions, especially introducing action Lie algebroids

and Lie algebra bundles as a special example. Furthermore, small physical examples are pro-

vided, and isotropies are revisited to support a better understanding of the relationship to gauge

theory. Section 3.2 discusses morphisms of Lie algebroids, but since we are mainly interested

into base-preserving ones, this section is very short. An important basic notion are Lie algebroid

connections, and we want to introduce them as certain morphisms of anchored vector bundles,

similar to the introduction of Lie algebroid connections in [3]. In order to do so we Ąrst introduce

the Lie algebroid of derivations of vector bundles in Section 3.3, and in Section 3.4 we Ąnally

introduce Lie algebroid connections as base- and anchor-preserving vector bundle morphisms;

Lie algebroid connections on a vector bundle are essentially the same as typical vector bundle

connections but the direction of differentiation is along sections of the Lie algebroid and the

Leibniz rule is along the foliation of the anchor, similar to the Leibniz rule of the Lie bracket

of a Lie algebroid. Section 3.5 discusses pullbacks of Lie algebroid connections; Ąrst we follow

a typical introduction using Lie algebroid paths, but concluding with a more general statement

about pullbacks when one just differentiates along one direction:

4
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Corollary: Pullbacks of connections just differentiating along one vector Ąeld

Let Ei → Ni (i ∈ ¶1, 2♢) be two Lie algebroids over smooth manifolds Ni, V → N2 a vector

bundle, and E2∇ an E2-connection on V . Moreover, let f ∈ C∞(N1;N2), ν1 ∈ Γ(E1) and

ν2 ∈ Γ(f∗E2) such that

Df
(
ρE1(ν1)

)
= (f∗ρE2)(ν2).

Then there is a unique R-linear operator δν1 : Γ(f∗V ) → Γ(f∗V ) with

δν1(hs) = ℒρ(ν1)(h) s+ h δν1s,

δν1(f∗v) = f∗
(
E2∇ν2v



for all s ∈ Γ(f∗V ), v ∈ Γ(V ) and h ∈ C∞(N1).

A major example of a Lie algebroid connection is the basic connection, induced by a vector

bundle connection ∇ on a Lie algebroid. The basic connection can be thought as a Lie algebra

representation formulated as connection. Since the basic connection is related to conjugated con-

nections, Section 3.6 introduces the notion of connections conjugate to each other, and Section

3.7 then introduces the basic connection. Since Lie algebra representations are homomorphisms,

one may want that the basic connection is Ćat. Hence, a tensor known as the basic curvature

is also introduced and discussed; this tensor is in general not equivalent to the curvature of the

basic connection, it encodes the curvature of the basic connection, but it also contains informa-

tion about how ∇ acts on the bracket of the Lie algebroid. We will see that the vanishing of the

basic curvature is needed for the gauge invariance of the Yang-Mills-Higgs Lagrangian.

The remaining part of Chapter 3 is then again about very basic notions related to Lie al-

gebroids. Section 3.8 is about exterior covariant derivatives but generalized to Lie algebroid

connections, and Section 3.9 is about the natural Lie algebroid structure of the direct product

of Lie algebroids. There is also the Splitting Theorem for Lie algebroids: The anchor of a Lie

algebroid is a homomorphism of Lie brackets, thus, its image gives rise to a foliation on the base

manifold by the Frobenius Theorem; the foliation is singular due to the fact that the anchor has

not a constant rank in general. The Splitting Theorem is then about that Lie algebroids are

locally a direct product of a Lie algebroid along a leaf of the foliation and along a submanifold

transversal to the foliation. This is discussed in Section 3.10, mostly in a simpliĄed setting;

however, references for more general statements will be provided. The last section, Section 3.11,

focuses on Lie algebra bundles, a trivial example of Lie algebroids with zero anchor. It starts

with extending notions of Lie algebras like their centre to Lie algebra bundles and Ąnishes with

a discussion about Lie algebroids with surjective anchor and their quotients over ideals.

We then discuss the formulation of CYMH GT in Chapter 4. This chapter reintroduces

CYMH GT, using my own approach in many parts while the overall theory does not differ to

the original one as e.g. presented in [1]. It starts with the study of the space of Ąelds in Section

5
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4.1, the inĄnite-dimensional manifolds of pairs of the Higgs Ąeld and the Ąeld of gauge bosons,

similar to previously-mentioned Mg.

DeĄnition: Space of Ąelds

Let M,N be two smooth manifolds and E → N a Lie algebroid. Then we denote the

space of Ąelds by

ME := ME(M ;N) :=
{

(Φ, A)
∣∣∣ Φ ∈ C∞(M ;N) and A ∈ Ω1(M ; Φ∗E)

}
.

We will refer to A ∈ Ω1(M ; Φ∗E) as the Ąeld of gauge bosons and Φ just as a physical

Ąeld of this theory.

The main idea is to deĄne the inĄnitesimal gauge transformation as we did before in Section

2.5, but especially generalized to Lie algebroids, their connections and to the setting described

at the very beginning of this introduction; the Lie algebroid plays the role of the Lie algebra,

and Lie algebroid connections will replace the Lie algebra connections, which we have suggested

previously. One ingredient was to view the inĄnitesimal gauge transformation as a vector Ąeld

Ψ on Mg which is now replaced by ME . Thence, we will discuss the tangent space of the space

of Ąelds. Afterwards we discuss the deĄnition and algebra of the functionals we are going to look

at. Recall the Ťbookkeeping trickŤ, the essential idea was that functionals have values in the

ev-pullback of a vector bundle over N , where the evaluation map is deĄned as before. Thus, we

deĄne functionals as certain forms on M ×ME with values in ev∗V , where V is a vector bundle

over N ; a similar argument will be applied to A which explains why it has values in Φ∗E in

the general setting. To avoid bloating formulas and deĄnitions we will also introduce shortened

notations which is why it is highly suggested to read Section 4.1.

In Section 4.2 we deĄne physical quantities arising in gauge theory to the new generalised

setting as in the beginning of this introduction but without ζ, hence, without the extra term in

the Ąeld strength. As a major example serves the following deĄnition, where t∇ρ is the torsion

of the E-connection ∇ρ given by (∇ρ)µν = ∇ρ(µ)ν.

DeĄnition: Field of gauge bosons and their Ąeld strength,

[1, especially Eq. (11); Φ is denoted as X there]

Let M,N be smooth manifolds, and E → N a Lie algebroid equipped with a connection

∇ on E. We deĄne the Ąeld strength F by

F (Φ, A) := dΦ∗∇A−
1

2

(
Φ∗t∇ρ

)
(A ∧, A)

for all Φ ∈ C∞(M ;N) and A ∈ Ω1(M ; Φ∗E).

6



CHAPTER 1. INTRODUCTION Simon-Raphael Fischer

1
2

(
Φ∗t∇ρ

)
(A ∧, A) is an element of Ω2(M ; Φ∗E) given by


1

2

(
Φ∗t∇ρ

)
(A ∧, A)


(X,Y ) :=

1

2

((
Φ∗t∇ρ

)
(A(X), A(Y )) −

(
Φ∗t∇ρ

)
(A(Y ), A(X))

)

=
(
Φ∗t∇ρ

)
(A(X), A(Y ))

for all X,Y ∈ X(M).

This section concludes that one has the classical deĄnitions if E is an action Lie algebroid

and ∇ its canonical Ćat connection. We then Ąnally discuss inĄnitesimal gauge transformations

in Section 4.3, deĄning them as in Section 2.4 but extended to the generalized notions, and

Ąrst omitting a deĄnition of the inĄnitesimal gauge transformation of the Ąeld of gauge bosons;

for this we also make use of the previously introduced corollary about pullbacks of connections

if just differentiating along one direction. We will argue that the vector Ąelds allowing such a

pullback are precisely those vector Ąelds Ψ on the space of Ąelds whose component along the

ŤΦ-directionŤ is given by the inĄnitesimal gauge transformation of the Higgs Ąeld.

That is, one milestone of this thesis is the formulation of inĄnitesimal gauge transformations

of functionals as derivations induced by a generalized ev-pullback of a Lie algebroid connection,

while the inĄnitesimal gauge transformations of the Ąelds are given by vector Ąelds Ψ on the

space of Ąelds; the classical formulation is recovered by using a canonical Ćat connection since

functionals have values in a trivial vector bundle in the classical situation, such that a canonical

Ćat connection is given. The parameters of the inĄnitesimal gauge transformations are func-

tionals ε such that ε(Φ, A) ∈ Γ(Φ∗E); due to the fact that their values depends on Φ these

parameters have in general also a non-trivial inĄnitesimal gauge transformation.

Afterwards the inĄnitesimal gauge transformation of the Ąeld of gauge bosons A is formulated.

We will see that its transformation δεA does in general not live in the same space as A itself

due to horizontal components in the tangent space of the space of Ąelds. Therefore we will

apply a horizontal projection, however, to avoid loosing information about the ŤfullŤ formula

of δεA, this is done in such a way that the vector Ąeld Ψ related to the given inĄnitesimal

gauge transformation can uniquely be reconstructed. Essentially, the horizontal projection will

only lead to a loss of information which is given by the inĄnitesimal gauge transformation of the

Higgs Ąeld, and that information is already given, hence, one does not loose any real information.

Technically, δεA is given as the inĄnitesimal gauge transformation of the functional ϖ2 given

as the projection onto A, ϖ2(Φ, A) := A. The vector Ąeld Ψ = Ψε, parametrized by ε, is then

uniquely encoded in the deĄnition of the inĄnitesimal gauge transformation of Φ and in the

condition

(δεϖ2)(Φ, A) = −(Φ∗∇)ε,

where the Lie algebroid connection in the deĄnition of δε will be usually the basic connection in

this thesis; this is also why there is not the typical Lie bracket term as usual in the deĄnition

of the inĄnitesimal gauge transformation of A, this information is saved in the basic connection

7
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itself. We will motivate that condition on ϖ2 by how the minimal coupling between Φ and A

shall transform, similar to the typical motivation provided by physicists.

About the choice of using the basic connection: We will discuss what type of Lie algebroid

connection should be used for the inĄnitesimal gauge transformation if the functional is not

scalar-valued; the inĄnitesimal gauge transformation of scalar-valued functionals will uniquely

be given as Lie derivative of the vector Ąeld behind the transformation. We do so by looking

at the commutator of two inĄnitesimal gauge transformations; we expect that the commutator

should be again an inĄnitesimal gauge transformation. This is the case for the vector Ąelds

behind the inĄnitesimal gauge transformations (the scalar-valued situation basically), denoted

abstractly as Ψ above, but now denoted as Ψε to account the parameter ε. We show that the

relation is

[Ψϑ,Ψε] = −Ψ∆(ϑ,ε),

where ϑ is a second parameter and ∆ is a Lie bracket for those parameters deĄned by

∆(ϑ, ε)♣(Φ,A) := (δεϑ− δϑε)♣(Φ,A) + (Φ∗t∇ρ)
(
ϑ(Φ, A), ε(Φ, A)

)

for all (Φ, A) ∈ ME ; recall that the parameters themselves are functionals and have in general

a non-trivial gauge transformation now. However, for vector-bundle functionals we use Lie

algebroid connections as we motivated previously, the commutator of transformations is then

essentially a lift of the bracket of the vector Ąelds like Ψε; we will see that then the relation

of the commutator has essentially an extra term given by the ev-pullback of the curvature of

the used connection. Hence, if we want a similar behaviour as for the vector Ąelds Ψε, then

we need to use a Ćat connection. We will see that the basic connection will be Ćat in the new

formulation of gauge theory, hence, our choice, although we will argue that the gauge invariance

of the Lagrangian is not affected by that choice since it is scalar-valued.

Another canonical choice as connection would be ∇ρ. While the basic connection will not

be the canonical Ćat connection in the classical situation, ∇ρ will be; thus, the condition for

ϖ2 would strongly resemble the typical formula of δεA if using ∇ρ instead. Therefore choosing

the basic connection may be mainly an aesthetic choice, but we are going to see that the basic

connection, as a generalization of Lie algebra representations, reĆects the symmetries of gauge

theory in a better way, simplifying calculations, while ∇ρ, among certain other difficulties, will

not be Ćat in general such that its commutator of inĄnitesimal gauge transformations on vector

bundle valued functionals would have an extra term.

In the discussion about the inĄnitesimal gauge invariance of the generalized gauge theory,

starting in Section 4.4, we will prove the gauge invariance of the Lagrangian in the more general

setting (still without ζ). However, after long calculations we will see that locally the new setting

is the same as the classical setting, so, one may only have achieved a global formulation of gauge

theory also allowing non-trivial bundles as values of functionals like the Ąeld strength; all of

this is due to the fact that ∇ has to be Ćat in order to have gauge invariance. Now ζ becomes

important; in works like [1] it is introduced as ansatz. However, we will introduce it by deĄning
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and studying a Ąeld redeĄnition in Section 4.5. One can think of it as a coordinate-change

as in classical mechanics, leaving an inertial frame, leading to extra terms in several physical

relationships. As a next step one then reformulates classical mechanics such that it becomes

coordinate-free and -independent; this is also denoted as covariantization by physicists. Further

steps are then generalizations of structures like assuming whether it is possible that those arising

extra terms can always be mapped to zero by a coordinate change; if not, one may for example

have a non-Ćat connection.

In our case the ŤcoordinatesŤ are structural data like the Ąeld of gauge bosons and ∇.

The study about the reformulation of the existing gauge theory in Section 4.6, such that it

is ŤcoordinateŤ-independent with respect to the Ąeld redeĄnition, will lead to a generalized

gauge theory where the Ąeld strength has an extra term essentially given by the ev-pullback

of the previously-mentioned ζ ∈ Ω2(N ;E). This will be then Ąnalized in Section 4.7, and the

Ąeld redeĄnition is then nothing else than an equivalence of such more general gauge theories,

officially called curved Yang-Mills-Higgs gauge theories, abbreviated as CYMH GT. Finally, ∇

is in general not required to be Ćat anymore in order to achieve gauge invariance, especially we

have the relationship

R∇ = −d∇bas
ζ

where R∇ is the curvature of ∇ and d∇bas
the exterior covariant derivative of the basic connection

∇bas. This is also why ζ will be called primitive of ∇. At this point we have Ąnally recreated

CYMH GTs, but in a coordinate-free way, while the original formulation is not completely

coordinate-free, especially the inĄnitesimal gauge transformation was originally only formulated

in a coordinate-dependent way, without using Lie algebroid connections as in this thesis. Chapter

4 will conclude with Section 4.8 which is about certain general properties of CYMH GTs needed

for the following chapter.

Chapter 5 is then about whether or not there are CYMH GTs which are (pre-)classical, also

after any Ąeld redeĄnition. It could be that a given ζ vanishes after the Ąeld redeĄnition; similar

for ∇ with respect to Ćatness. We Ąrst study Lie algebra bundles E = K → N (LABs) in

Section 5.1: Subsection 5.1.1 shortly summarizes how a CYMH GT for LABs looks like, while

in Subsection 5.1.2 and Subsection 5.1.3 we will see that the question, about whether we have

a Ąeld redeĄnition transforming the gauge theory into a pre-classical one, has a strong relation

to MackenzieŠs study about extending Lie algebroids with Lie algebra bundles: ∇ is by the

compatibility conditions of a CYMH GT equivalent to a Lie derivation law covering what is

called a pairing Ξ which is a Lie algebroid morphism TN → Out(𝒟Der(K), where Out(𝒟Der(K)

is the Lie algebroid of outer bracket derivations of K, outer in the sense of the quotient of

bracket derivations over inner bracket derivations. That is, ∇ is also a bracket derivation and

its equivalence class in the quotient space of the outer bracket derivations is equivalent to the

pairing Ξ. We will see that the Ąeld redeĄnition is then just a transformation to any other Lie

derivation law covering the same pairing. Furthermore, d∇ζ will be an invariant of the Ąeld

redeĄnition, and the second Bianchi identity of ∇ will imply that d∇ζ is a centre-valued form.
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By the compatibility conditions one can argue that ∇ induces a differential dΞ on centre-valued

forms, independent of the choice of ∇. We will see that d∇ζ is closed with respect to dΞ, such

that it is natural to study the cohomology class of d∇ζ with respect to dΞ; the invariance under

the Ąeld redeĄnition will imply that this class only depends on Ξ. This class is precisely the

obstruction class Obs(Ξ) developed by Mackenzie.

Therefore we will introduce and discuss MackenzieŠs theory about extending Lie algebroids

by LABs in Subsection 5.1.4. On one hand, Mackenzie shows that the obstruction class is zero

if and only if one can extend TN by K in such a way that there is a transitive Lie algebroid for

which the kernel of the anchor is given by K.2 On the other hand, Mackenzie also shows that, if

N is contractible, then there is always a Ćat Lie derivation law ∇ covering Ξ; for contractible N

the obstruction class is trivially zero. Due to these results of Mackenzie we derive in Subsection

5.1.5 that a non-zero obstruction class implies that there is no Ąeld redeĄnition such that ∇

becomes Ćat, and that for contractible N there is always a Ąeld redeĄnition such that a given

CYMH GT is pre-classical.

Theorem: Local existence of pre-classical gauge theory (simpliĄed formula-

tion)

Let (K,Ξ) be a pairing of TN over a contractible manifold N , and let ∇ be a Ąxed Lie

derivation law covering Ξ.

Then we have a Ąeld redeĄnition such that the redeĄnition of ∇ is Ćat.

Theorem: Possible new and curved gauge theories on LABs

Let (K,Ξ) be a pairing of TN with Obs(Ξ) ̸= 0 and such that the Ąbre Lie algebra g

admits an ad-invariant scalar product.

Then we can construct a CYMH GT for which there is no Ąeld redeĄnition with what it

would become pre-classical.

However, a zero obstruction class does not necessarily imply that a CYMH GT can be trans-

formed to a pre-classical one, following an example of Mackenzie: The Hopf Ąbration S7 → S4

has a zero obstruction class but no Ćat Lie derivation law covering its canonical pairing as an

Atiyah sequence.

Up to this point it was just about ∇ and its Ąeld redeĄnition. In Subsection 5.1.6 we quickly

derive that for ζ it is easier to Ąnd an answer. If d∇ζ ̸= 0, then there is never a Ąeld redeĄnition

making ζ vanish. We also provide a canonical construction of such ζ if starting with a certain

classical gauge theory:

2Actually, Mackenzie shows a general statement; in this thesis MackenzieŠs statement is simpliĄed to our setting.
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Corollary: Canonical construction of non-classical gauge theories (simpliĄed

formulation)

Let g be a Lie algebra with non-zero centre and admitting an ad-invariant scalar product.

Also let (N, g) be any Riemannian manifold with at least three dimensions, and K = N×g

be a trivial LAB over N , equipped with the canonical Ćat connection ∇ and a metric κ

which restricts to an ad-invariant scalar product on each Ąbre.

Then there is a ζ ∈ Ω2(N ;Z(K)), with d∇ζ ̸= 0, such that this set-up describes a non-

classical CYMH GT with respect to an arbitrary spacetime M . Additionally, there is no

Ąeld redeĄnition making ζ zero.

In Subsection 5.1.7, we turn shortly to the discussion about a possible physical meaning of

d∇ζ ̸= 0 due to its inĆuence to the obstruction of (pre-)classical CYMH GTs. We are going to

see that it measures the failure of the Bianchi identity of the Ąeld strength, i.e. d∇ζ = 0 if and

only if the Bianchi identity is satisĄed.

Theorem: Bianchi identity of the Ąeld strength (simpliĄed formulation)

Let M and N be smooth manifolds, K → N an LAB, Φ ∈ C∞(M ;N), and ∇ and

ζ ∈ Ω2(N ;K) satisfying the compatibility conditions of a CYMH GT.

Then

dΦ∗∇(G(Φ, A)
)

+ [A ∧, G(Φ, A)]Φ∗K = Φ!
(
d∇ζ


,

where

G(Φ, A) = dΦ∗∇A+
1

2
[A ∧, A]Φ∗K + Φ!ζ

is the new Ąeld strength including the contribution of ζ, and where [·, ·]Φ∗K is the Φ-

pullback of the Ąeld of Lie brackets of K.

This concludes the discussion about LABs.

In Section 5.2 we turn to tangent bundles; again Subsection 5.2.1 will discuss the general

situation for tangent bundles, and we will see that tangent bundles are locally always pre-

classical in Subsection 5.2.2.

Theorem: Tangent bundles are locally pre-classical as CYMH GT (simpliĄed

version)

Let N = R
n (n ∈ N0) be an Euclidean space as smooth manifold and ∇ a connection on

E := TN which satisĄes the compatibility conditions. Then there is a Ąeld redeĄnition

such that ∇ becomes Ćat.

Globally however, we will see in Subsection 5.2.3 that the seven-dimensional sphere S7 admits
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a gauge theory in the sense of CYMH GT, related to a non-Ćat ∇. A Ćat ∇ would imply a Lie

group structure on S7 which does not exist as we know, and this will be the quintessence of its

structure as CYMH GT for which there is no Ąeld redeĄnition towards a pre-classical theory.

Theorem: Global example: Unit octonions (simpliĄed version)

S
7 admits a CYMH GT such that the related connection ∇ on E := TS7 is not Ćat.

Moreover, there is no Ąeld redeĄnition such that ∇ becomes Ćat.

The thesis concludes in Section 5.3 with a discussion about more general Lie algebroids; Ąrst

stating a small general statement in Section 5.3.1, but then turning to Lie algebroids given as

the direct product of tangent bundles and Lie algebra bundles in Section 5.3.2. We derive that

the direct product of CYMH GTs has a natural structure as CYMH GT, and we can extend the

existence of a redeĄnition towards a pre-classical theory by using previous results.

Theorem: Direct products of CYMHG GTs around regular points are Ćat

(simpliĄed formulation)

Let N := R
n (n ∈ N0) be a smooth manifold such that its tangent bundle admits a CYMH

GT, whose connection satisfying the compatibility conditions we denote by ∇N , and let

K → S be an LAB over a smooth contractible manifold S which also admits a CYMH

GT, equipped with a connection ∇K satisfying the compatibility conditions.

Then there is a Ąeld redeĄnition with respect to their direct product of CYMH GTs with

connection ∇ (satisfying the compatibility conditions) such that the Ąeld redeĄnition of ∇

becomes Ćat, where ∇ is canonically given as a product of ∇N and ∇K .

However, the discussion about general Lie algebroids will not go beyond this point, and the

thesis will conclude with a possible conjecture, which may simplify further calculations related

to direct products, especially allowing to extend other previous results.

Conjecture: Existence of a splitted Ąeld redeĄnition (simpliĄed formulation)

Let N be a smooth manifold such that its tangent bundle admits a CYMH GT, and let

K → S be an LAB over a smooth manifold S which also admits a CYMH GT.

If there is a Ąeld redeĄnition such that their direct product of CYMH GTs is pre-classical

or classical, then there is also a Ąeld redeĄnition for each factor separately transforming

each factor to a pre-classical or classical theory, respectively.

Subsection 5.3.3 just lists loose ansatzes and ideas for further calculations, not necessarily

related to direct products; for the thesis itself it is not necessarily needed to read this subsection.

Finally, Chapter 6 gives a short overview about possible future research plans.
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1.1. Notation and other conventions throughout this work

In this thesis a lot of conventions are used, they are either in the following list or will be

introduced later.

• Throughout this work we always use EinsteinŠs sum convention if suitable.

• Due to ambiguities about connectedness in the deĄnition of simply connected manifolds,

we emphasize that we will use the deĄnition of simply connectedness which also requires

that such a manifold is path-connected.

• A map f : A → B between two sets A and B we often also denote by [A ∋ a 7→ f(a) ∈ B],

or shortly [a 7→ f(a)], or also

A → B,

a 7→ f(a).

• Every time when we have a map with arguments from different sets, like a map f deĄned

on A × B with values in a set C, (a, b) 7→ f(a, b), where A and B are two sets, then we

sometimes just insert one or a part of the arguments. Those we denote e.g. by f(b) for

b ∈ B, so, f(b) : A → C, a 7→ f(a, b). We may also write instead f(·, b). This only applies

to situations where the arguments are not related by some condition like antisymmetry to

avoid confusion when ordering of the arguments is important.

• M,N will be smooth manifolds, although M sometimes also denotes a spacetime; but the

latter will be mentioned then.

• TN the tangent bundle of N .

• X(N) the space of vector Ąelds of N with Lie bracket [·, ·].

• Diff(N) will denote the space of diffeomorphisms of N and C∞(N) the space of its smooth

functions; when a smooth function has values in another smooth manifold M , then we

denote that space by C∞(N ;M).

• With
∧• V we will denote the exterior power of a vector bundle V .

• Γ(V ) will be V Šs vector space of sections.

• We will denote the bundle of automorphisms and endomorphisms of V by Aut(V ) and

End(V ), respectively. We also denote 𝒜𝓊𝓉(V ) := Γ(Aut(V )) and ℰ𝓃𝒹(V ) := Γ(End(V )).

With those we also always mean base-preserving ones, also called vertical automorphisms

and vertical endomorphisms.

• We denote the space of (r, s)-V -tensors by 𝒯
r
s (V ) := Γ(Tr

s(V )) for r, s ∈ N0, where

Tr
s(V ) :=

⊗s V ∗ ⊗
⊗r V (r, s ∈ N0).
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• V ∗ denotes the dual bundle of V , as a special example T∗N denotes the cotangent bundle

of N and Ωk(N) := Γ
(∧k T∗N


the space of k-forms (k ∈ N0).

• ∇ denotes a vector bundle connection on V with R∇ their curvature. Throughout this work

we will also face a more general notion of connection, but when we just write connection,

then we always mean a vector bundle connection. If some object is another type of

connection, then it will be explicitly mentioned or clear by the context.

• As usual, one can extend a connection ∇ to 𝒯
r
s (V ) (r, s ∈ N0) by the Leibniz rule. We

will denote such connections still with ∇.

• In the following D is also the total differential or tangent map of smooth maps, i.e. for

every smooth map F : M → N we have the canonical (total) differential DpF : TpM →

TF (p)N for all p ∈ M . In the following we view DF as an element of Ω1(M ;F ∗TN) by

X(M) ∋ Y 7→ DF (Y ), where DF (Y ) ∈ Γ(F ∗TN),M ∋ p 7→ DpF (Yp).

• The de-Rham differential is denoted by d.

• Coordinate vector Ąelds on a smooth manifold we often denote by ∂i.

• The Lie derivative of a vector Ąeld X is denoted by ℒX , and with this we also denote

the action of X on smooth functions f by derivation; the latter we may also denot with

X(f) = ℒX(f).

• With Ωp(N ;V ) (p ∈ N0) we denote the space of forms with values in V . There is a similar

notation for vector spaces W , Ωp(N ;W ); although W is not deĄned as a bundle over N ,

with that we mean forms with values in the trivial bundle N × W → N ; similar for all

other type of tensors, and also for other vector spaces and their associated trivial vector

bundles.

• When one has a connection ∇ on a vector bundle V → N , then one has the notion of

the exterior covariant derivative on Ωp(M ;E), denoted by d∇. In the case of a trivial

vector bundle V = N × W → N , where W is some vector space, we will often use the

canonical Ćat connection for ∇, deĄned by ∇ν = 0, where ν is a constant section of

N ×W , see e.g. [4, Example 5.1.7; page 260f.] for a geometric interpretation as horizontal

distribution. The canonical Ćat connection is clearly uniquely deĄned (if a trivialization

is given) because constant sections generate all sections and due to the Leibniz rule and

linearity of ∇. That is, let ∇′ be another canonical Ćat connection with ∇′ν = 0 for all

constant sections ν. Then every section of N × W is a sum of elements of the form fν,

where ν is still a constant section and f ∈ C∞(N), such that

∇(fν) = df ⊗ ν + f ∇ν︸︷︷︸
=0=∇′ν

= ∇′(fν),
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which proves the claim using the linearity of ∇. Let (ea)a be a constant global frame of

N ×W , thence,

d∇ω = dωa ⊗ ea

for all ω ∈ Ωp(M ;W ), where we write ω = ωa ⊗ ea. Hence, we deĄne

dω := d∇ω, (1.1)

when ∇ is the canonical Ćat connection. d is clearly a differential.

• With Φ∗V we denote the pullback/pull-back of the vector bundle V under a smooth map

Φ : M → N . We will also have sections F as an element of Γ
((⊗l

m=1E
∗
m


⊗ El+1


,

where E1, . . . El+1 (l ∈ N) are real vector bundles of Ąnite rank over N . Those pull-back as

section, denoted by Φ∗F , we will view as an element of Γ
((⊗l

m=1(Φ∗Em)∗


⊗ Φ∗El+1


,

and it is essentially given by

(Φ∗F )(Φ∗ν1, . . . ,Φ
∗νl) = Φ∗(F (ν1, . . . , νl))

for all ν1 ∈ Γ(E1), . . . , νl ∈ Γ(El), using that pullbacks of sections generate the sections of

a pullback bundle. In general we also make use of that sections of Φ∗E can be viewed as

sections of E along Φ, where E
π
→ N is any vector bundle over N . Let µ ∈ Γ(Φ∗E), then

it has the form µp = (p, vp) for all p ∈ M , where vp ∈ EΦ(p), the Ąbre of E at Φ(p); and a

section ν of E along Φ is a smooth map M → E such that π(ν) := π ◦ν = Φ. Then on one

hand pr2 ◦ µ is a section along Φ, where pr2 is the projection onto the second component,

and on the other hand M ∋ p 7→ (p, νp) deĄnes an element of Γ(Φ∗E). With that one

can show that there is a 1:1 correspondence of Γ(Φ∗E) with sections along Φ. We do not

necessarily mention it when we make use of that identiĄcation, it should be clear by the

context.

• We will also often make use of that Γ(Φ∗E) is generated by pullbacks of Γ(E). If we

explicitly use this in calculations, then we take for example a local frame (ea)a of E, and

then a frame of Φ∗E is given by (Φ∗ea)a. In such situations we implicitly assume that

(ea)a is deĄned on a part of the image of Φ. Similar for intersections of frames.

• Furthermore, we will often need frames for bundles like Φ∗E; we will then just write ŤLet

(ea)a be a local frame of EŤ and implicitly mean that we take (Φ∗ea)a as a frame for Φ∗E.

• Do not confuse the previously discussed pull-back of sections with the pull-back of forms

F ∈ Ωl(N ;V ), here denoted by Φ!F , which is an element of Γ
((∧l

m=1 T∗M


⊗ Φ∗V


∼=

Ωl(M ; Φ∗V ), and not of Γ
((⊗l

m=1(Φ∗TN)∗


⊗ Φ∗El+1


like Φ∗F . Φ!F is deĄned by

(
Φ!F


(Y1, . . . , Yl)

∣∣∣
p

:= FΦ(p)

(
DpΦ

(
Y1♣p


, . . . ,DpΦ

(
Yl♣p


(1.2)

for all p ∈ M and Y1, . . . , Yl ∈ X(M).
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CHAPTER 1. INTRODUCTION Simon-Raphael Fischer

• Unless otherwise stated, the considered manifolds and vector bundles are of Ąnite dimen-

sion and rank, respectively, and smooth; arising Ąelds are always real numbers, hence, we

also view C
n (n ∈ N) as R

2n.

• Morphisms of bundles over the same base are always base-preserving ones if not stated

otherwise.

• In the case when we explicitly state that we now turn to inĄnite-dimensional manifolds,

we always assume a convenient setting, for example that is, we assume that all the smooth

structures etc. are given and well-deĄned such that we can treat those manifolds and

objects as if they would be Ąnite-dimensional for the constructions we are going to study.

The tangent bundle of inĄnite-dimensional manifolds we will deĄne by the approach of

using equivalence classes of curves.

• As usual, there will be deĄnitions of certain objects depending on other elements, and for

keeping notations simple we will not always explicitly denote all dependencies. It will be

clear by context on which it is based on, that is, when we deĄne an object A using the

notion of Lie algebra actions γ and we write ŤLet A be [as deĄned before]Ť, then it will

be clear by context which Lie algebra action is going to be used, for example given in a

previous sentence writing ŤLet γ be a Lie algebra actionŤ.

• We have several identities shown in the Appendix A. We will use them throughout this

work, but the thesis will be written in such a way that one only needs to know the

appendix when starting to read Chapter 4, and several notions arising in the appendix

will be introduced before that chapter.

• At the very end is also a list of symbols. There we try to list all the needed symbols with

page numbers where they got deĄned. When you read this thesis using its pdf, then all

those symbols will be hyperlinked to that glossary. After clicking on such a link you may

be able to get immediately back where you were using the return button on your mouse

device if available, whether this works may also depend on your pdf reader; otherwise use

the hyperlinks of the listed page numbers in the glossary for a quicker navigation.

The list of symbols Ąrst lists generic symbols, then Greek letters, and afterwards Latin

letters.

• References are not only given in the text, the references of referenced statements and

deĄnitions are especially given in the title of those statements. The title also mentions

whether the statement as written in this thesis is a variation or generalization; when it is a

strong generalization, then the reference will be mentioned in a remark after the statement

or its proof.
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2. Gauge theory

2.1. Lie algebras and their actions

In the following we will shortly introduce the basic setup of inĄnitesimal gauge theory where a

trivial principal bundle is assumed and, thus, omitted. Equivalently, we assume a global gauge

or we just look at some open neighbourhood of the spacetime admitting a local gauge. We will

follow [4].

Moreover, we will especially focus on the inĄnitesimal behaviour of gauge theory. That is,

we will mainly concentrate on Lie algebras and not Lie groups. The following will also not be

a deep discussion of the deĄned notions, just providing the very needed deĄnitions, especially

those which are going to be generalized later. Thus, it is in general recommended to have already

knowledge about how gauge theory is mathematically formulated, especially Yang-Mills-Higgs

gauge theory.

DeĄnition 2.1.1: Lie group, [4, DeĄnition 1.1.4; page 6]

A Lie group G is a group which is also a smooth manifold such that

G×G → G,

(g, h) 7→ g · h

is smooth, where G×G has the canonical smooth structure of a product manifold inherited

by the smooth structure of G.

Remarks 2.1.2.

Usually, the deĄnition of Lie groups contains also the condition about that the inverse map,

G ∋ g 7→ g−1, is smooth, which can be combined with the smoothness of the multiplication map

to that

G×G → G,

(g, h) 7→ g · h−1,

shall be smooth as a single condition for the deĄnition of Lie groups. However, that is not

needed as pointed out in [4, Remark 1.1.8, page 7; see also Exercise 1.9.5, page 76f.], which is

why we just need to ask for smoothness of the product.

As known, the set of left invariant vector Ąelds1 on a Lie group form a Lie algebra.

1This can be identiĄed with the tangent space at the unit element as it is well-known.
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DeĄnition 2.1.3: Lie algebra, [4, DeĄnition 1.4.1, page 36]

Let g be a vector space together with a map

[·, ·]g : g × g → g,

(x, y) 7→ [x, y]g.

This pair
(
g, [·, ·]g


is called a Lie algebra with Lie bracket [·, ·]g when the following

hold:

• [·, ·]g is bilinear.

• [·, ·]g is antisymmetric.

• [·, ·]g satisĄes the Jacobi identity, i.e.

[
x, [y, z]g

]
g

+
[
y, [z, x]g

]
g

+
[
z, [x, y]g

]
g

= 0

for all x, y, z ∈ g.

Such an algebra is characterized by the following constants.

DeĄnition 2.1.4: Structure constants, [4, DeĄnition 1.4.17; page 38]

Let
(
g, [·, ·]g


be a Lie algebra. Then the structure constants Cabc ∈ C∞(R) are deĄned

by

[ea, eb]g = Ccabec (2.1)

for a given basis (ea)a.

Remarks 2.1.5. [4, DeĄnition 1.4.17 et seq.; page 38]

The antisymmetry and Jacobi identity of [·, ·]g imply

Cabc = −Cacb, (2.2)

0 = CdaeC
e
bc + CdbeC

e
ca + CdceC

e
ab. (2.3)

For deĄning couplings we also need Lie group and Lie algebra representations.

DeĄnition 2.1.6: Lie group representation, [4, DeĄnition 2.1.1; page 84]

Let G be a Lie group and W a vector space. Then a representation of G on W is a Lie

group homomorphism

Ψ : G → Aut(W ).
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DeĄnition 2.1.7: Lie algebra representation [4, DeĄnition 2.1.5; page 85]

Let g be a Lie algebra and W a vector space. Then a representation of g on W is a Lie

algebra homomorphism

ψ : g → End(W ).

As known, these can be related as in the following lemma.

Lemma 2.1.8: Every Lie group representation induces a Lie algebra represen-

tation [4, Proposition 2.1.12; page 86]

Every representation Ψ of a Lie group G on W deĄnes a Lie algebra representation ψ by

ψ := Ψ∗ := DeΨ, where e is the unit element of G.

We will focus on the following examples of Lie algebra representations. The Ąrst example

shows the homomorphism property directly, while the second one uses Lemma 2.1.8.

Example 2.1.9: su(2)-action,

[5, §6.2 et seq., page 586ff.; and §6.6 et seq.; page 633ff.]

Here we will view the Lie algebra g = su(2) as R
3: Let e1, e2, e3 denote the standard unit

vectors corresponding to the coordinates x1, x2, x3. Then the Lie bracket is given by the

cross product, i.e.

[ei, ej ]su(2)
:= ei × ej = ϵijkek, (2.4)

where ϵijk is the Levi-Civita tensor. The representation on W := R
3 is given by

ψ(v)(w) := v × w = ϵijkv
iwjek (2.5)

for all v, w ∈ R
3. This is a homomorphism by

ψ
(
[u, v]su(2)


(w) = uivjwk ϵijlϵlkm︸ ︷︷ ︸

=δikδjm−δimδjk

em = uiwivjej − uiwjvjei,

where δij is the Kronecker delta, and

(
[ψ(u), ψ(v)]End(R3)


(w) =

(
uivjϵilmϵjkl − uivjϵjlmϵikl


wkem

=
(
−uivi + uivi


wmem + uivjwiej − uivjwjei

= ψ
(
[u, v]su(2)


(w)

for all u, v, w ∈ R
3.
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Example 2.1.10: Electroweak interaction coupled to a Higgs Ąeld,

[4, Example 8.1.9; page 449f.; and §8.3.1; page 465ff.]

The electroweak interaction coupled to a Higgs Ąeld is deĄned as g := su(2) ⊕ u(1)

acting on W := C
2(∼= R

4). Let i be the imaginary number and nγ be a non-zero natural

number (a normalization constant). The Lie algebra representation ψ is then deĄned as

the induced representation Ψ∗ of the Lie group representation Ψ given by

(SU(2) × U(1)) × C
2 → C

2,

(
A, e iα, w


7→ Ψ

(
A, e iα


(w) :=

(
A, e iα


· w := e inγαAw

for all w ∈ C
2. This is clearly a Lie group representation.

Another important examples are the adjoint representations.

Example 2.1.11: Adjoint representations,

[4, Theorem 2.1.45 and abstract before that; page 101] & [4,

Theorem 2.1.52; page 105]

We have the well-known adjoint representation of a Lie group G: For an element

g ∈ G we deĄne the conjugation cg as a map by

G → G,

h 7→ cg(h) := ghg−1.

It is easy to check that cg is a Lie group automorphism, i.e. a diffeomorphism and a

homomorphism; moreover, the map G × G → G, (g, h) 7→ cg(h), is a left action of G on

itself, especially we have cgh = cg ◦ ch for all g, h ∈ G. All of those properties lead to the

deĄnition of the adjoint representation (of G) Ad : G → Aut(g), a G-representation on g

deĄned as map by

G → Aut(g),

g 7→ Ad(g) := Decg,

where e ∈ G is the neutral element; we deĄned Lie group representations with values in

vector bundle automorphisms, but due to the properties of the conjugation one can also

understand Aut(g) here as the space of Lie algebra automorphisms, especially Ad(g) is

additionally a homomorphism of the Lie bracket of g for all g ∈ G.

The induced Lie algebra representation of Ad is given by ad : g → End(g), X 7→ [X, ·]g,

the adjoint representation of g.
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Representations can be generalized to actions on manifolds N .

DeĄnition 2.1.12: Left action on manifold, [4, §3.2, DeĄnition 3.2.1; page 130]

A smooth left action of a Lie group G on a smooth manifold N is a smooth map

G×N → N,

(g, p) 7→ g · p = gp,

where G×N is equipped with the canonical product structure, and we demand:

• For all g, h ∈ G and p ∈ N

(g · h) · p = g · (h · p).

• For all p ∈ N and e the neutral element of G

e · p = p.

Remarks 2.1.13. [4, §3.4; page 141ff.]

One may try to think about a left action as a generalization of Lie group representation when

replacing the space of automorphisms of a vector space W with the space of diffeomorphisms

N , Diff(N), and then rewriting the left action as a map G → Diff(N), g 7→ [p 7→ gp] ∈ Diff(N).

The deĄnition of a left action then implies that this map would be a group homomorphism.

Keep in mind that the deĄnition of a representation of a Lie group demands smoothness

of the representation such that we would need to deĄne a smooth structure on (in general)

inĄnite-dimensional sets like Diff(N) which we would like to avoid. Hence, when we also want

to derive a Lie algebra action we just motivate it in the following way. Denote the action by

(g, p) 7→ Ψ(g, p) := g · p, then take any Lie algebra element X ∈ g to conclude for t, s ∈ R, by

using Def. 2.1.12,

Ψ
(
e tX , p

∣∣∣
t=0

= e · p = p,

Ψ
(
e (t+s)X , p


= Ψ

(
e tX · e sX , p


= Ψ

(
e tX ,Ψ

(
e sX , p


,

where t 7→ e tX denotes the 1-parameter subgroup through X. Thence, R × N → N, (t, p) 7→

Ψ
(
e tX , p


deĄnes the Ćow of a (complete) vector Ąeld γ(−X) ∈ X(N), deĄned at p by γ(−X)p :=

d
dt

∣∣∣
t=0

[
t 7→ Ψ

(
e tX , p

]
. This deĄnes a map g → X(N), X 7→ γ(X), which is known as the map to

fundamental vector Ąelds, and the change of the sign is needed to deĄne γ as a homomorphism

of Lie algebras, see e.g. [4, Proposition 3.4.4; page 144]. In fact, we are going to prove that in

Prop. 2.1.16, too, in the special situation of N = W for some vector space W .

Thence, we motivated the following deĄnition.
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DeĄnition 2.1.14: Lie algebra action, [2, §16.2, Example 5; page 114]

A Lie algebra action of a Lie algebra g on a smooth manifold N is a Lie algebra

homomorphism

γ : g → X(N)

such that the map

N × g → TN,

(p,X) 7→ γ(X)p

is smooth, equipping N × g with the canonical structure of product manifolds.

Remarks 2.1.15.

If γ is induced by a (left) Lie group action as in Remark 2.1.13, then we also call γ the induced

Lie algebra action.

We can show that all Lie algebra representations deĄne a Lie algebra action, not assuming

any integrability to a Lie group representation.

Proposition 2.1.16: Lie algebra representation → Lie algebra action,

[4, generalisation of parts of Example 3.4.2; page 143f.]

Every Lie algebra representation ψ on a vector space W deĄnes a Lie algebra action γ by

γ(X)v := −ψ(X)(v) (2.6)

for all X ∈ g and v ∈ W , where we view the right hand side as an element of TvW ,

making use of TvW ∼= W .

Remark 2.1.17

We then say that γ is induced by ψ.

Remarks 2.1.18.

A few words about using TvW ∼= W : In the following we will denote a basis of W by (ea)a,

v = vaea for all v ∈ W , which we will also identify as a (constant) frame of TW , i.e. ∂a ↔ ea

for some coordinate vector Ąelds (∂a)a. Then the deĄnition contained in Prop. 2.1.16 reads

γ(X) := −ψ(X),

where T ∈ X(W ) for T ∈ End(W ) is deĄned by

W → TW,
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v 7→ T (v) := T ab v
b∂a♣v.

Normally, we will omit this notation most of the time and write T = T since the identiĄcation

in TvW ∼= W is very natural. But until the proof of Prop. 2.1.16 we are going to keep this

notation.

To prove Prop. 2.1.16 we need to show the following Lemma and Corollary; these are basically

the statements as for fundamental vector Ąelds, [4, §3.4; page 141ff.], but just looking at g =

End(W ) with ψ = 1End(W ) as representation on W , which is all one needs to prove Prop. 2.1.16.

Lemma 2.1.19: End(W ) a Lie subalgebra of X(W ),

[4, §3.4; page 141ff.; especially second equation in Remark

3.4.5; page 145]

Let W be a vector space. Then End(W ) is a Lie subalgebra of X(W ), and we have

[T, L]End(W ) = −
[
T , L

]
(2.7)

for all T, L ∈ End(W ).

Proof.

That it is a subspace is clear due to 0 ∈ End(W ) and

aT + bL = aT + bL

for all T, L ∈ End(W ) and a, b ∈ R. We also get for v = vaea ∈ W

[
T , L

]
v

=
(
T
b
∂bL

a

︸ ︷︷ ︸
=∂b[v 7→La

cv
c]=La

b

−L
b
∂bT

a
∣∣∣
v
∂a♣v = −[T, L]aEnd(W )(v) ∂a♣v = − [T, L]End(W )

∣∣∣
v
,

which also shows that it is a subalgebra. ■

In fact, we can identify the endomorphisms of W with this subalgebra.

Corollary 2.1.20: Lie algebra isomorphism End(W ) ∼= End(W ),

[4, simpliĄed Proposition 3.4.3; page 144]

Let W be a vector space. Then there is a natural Lie algebra isomorphism

End(W ) ∼= End(W ). (2.8)

Proof.

DeĄne F : End(W ) → End(W ) by

F (L) := −L (2.9)
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for all L ∈ End(W ). Then observe for T, L ∈ End(W ) that

[F (T ), F (L)] =
[
T , L

]
Lem. 2.1.19

= −[T, L]End(W ) = F
(
[T, L]End(W )


,

hence, F is a homomorphism of Lie algebras, and it is clearly an isomorphism by deĄnition

(2.9). ■

Using Lemma 2.1.19 we can Ąnally prove Prop. 2.1.16.

Proof of Prop. 2.1.16.

Smoothness is clearly inherited by the smoothness of ψ. We need to show that γ deĄned by

γ(X) := −ψ(X) for all X ∈ g is a homomorphism of Lie algebras. Then use the sign change of

Lemma 2.1.19 to show for X,Y ∈ g

γ
(
[X,Y ]g


= −ψ

(
[X,Y ]g


ψ Homom.

= −[ψ(X), ψ(Y )]End(W )
2.1.19

=
[
ψ(X), ψ(Y )

]
= [γ(X), γ(Y )].

■

Prop. 2.1.16 immediately implies the following corollary.

Corollary 2.1.21: Lie group representation deĄnes actions,

[4, Example 3.4.2, page 143f.]

Every Lie group representation Ψ on a vector space W deĄnes a Lie group and Lie algebra

action on W .

Proof.

As it is well-known, every Lie group representation Ψ deĄnes a left action by

G×W → W,

(g, v) 7→ g · v := Ψ(g)(v).

The Lie algebra action γ is canonically given by the fundamental vector Ąelds related to this

action,

γ(X)v :=
d

dt

∣∣∣∣
t=0

[
t 7→

(
e−tX · v

]
= −Ψ∗(X)(v)

for t ∈ R, for all X ∈ g and v ∈ W . This is a Lie algebra action by Prop. 2.1.16. ■

2.2. Isotropy

Of a special importance in this work will be the isotropy subalgebra of a Lie algebra g. We

will deĄne this without using group actions because we wonŠt assume integrability in general

throughout this work.
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DeĄnition 2.2.1: The Isotropy Subalgebra,

[4, inĄnitesimal version of DeĄnition 3.2.4; page 132]

Let g be a Lie algebra, and γ : g → X(N) a Lie algebra action on a smooth manifold N .

Then the isotropy subalgebra gp at p ∈ N is deĄned as

gp := ¶X ∈ g ♣ γ(X)p = 0♢ . (2.10)

We also often call it just isotropy (at p).

When we have a Lie algebra representation ψ : g → End(W ) on a vector space W , then

its isotropy is related to its induced Lie algebra action as given in Prop. 2.1.16.

Remarks 2.2.2.

Normally the isotropy subalgebra is deĄned by assuming a (left) Lie group action Ψ : G×N →

N,Ψ(g, p) = g · p, of a Lie group G. Then the isotropy group at p ∈ N , [4, DeĄnition 3.2.4;

page 132], is deĄned as

Gp := ¶g ∈ G ♣ g · p = p♢ . (2.11)

By [4, Proposition 3.2.9; page 134], Gp is an embedded Lie subgroup of G, and, by [4, Proposition

3.2.10; page 134], one can show that the Lie algebra of Gp is the kernel of a map g → TpN ,

deĄned by

X 7→
d

dt

∣∣∣∣
t=0

[
t 7→ Ψ

(
e−tX , p

]
,

which is precisely the canonical action of fundamental vector Ąelds deĄned by Ψ, evaluated at

p. That is the motivation for Def. 2.2.1.

In case of an integrable Lie algebra action we have the following relationship of isotropies.

Corollary 2.2.3: Isotropy of integrable Lie algebra actions,

[4, inĄnitesimal version of the abstract before Proposition

3.2.10; page 134]

Let G be a Lie group with a (left) Lie group action Ψ : G×N → N, (g, p) 7→ ψ(g, p) = gp,

on a smooth manifold N . Then

Ad(g)(gp) = ggp (2.12)

for all g ∈ G and p ∈ N , where gp and ggp are the corresponding isotropy subalgebras

related to the Lie algebra action induced by Ψ. Especially, gp and ggp are isomorphic as

Lie algebras.

Proof.

This corollary is the inĄnitesimal version of the other well-known relationship of isotropy groups,
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see [4, abstract before Proposition 3.2.10; page 134],

cg(Gp) = Ggp (2.13)

for all g ∈ G and p ∈ N , especially, cg : Gp → Ggp is a Lie group isomorphism; this is easy to

check. Because the isotropy algebras are here now induced by the Lie group action, we know

that the induced Lie algebra action γ is given by the fundamental vector Ąelds, and, so, the

isotropy subalgebras are the Lie algebras of the isotropy groups, recall Remark 2.2.2.

First let us show that Ad(g)(gp) ⊂ ggp. Observe, making use of Eq. (2.13),

cg
(
e tX


∈ Ggp

for all g ∈ G, p ∈ N , X ∈ gp, and t ∈ R.
[
R ∋ t 7→ cg

(
e tX


∈ Ggp

]
is clearly a Lie group

homomorphism as a composition of homomorphisms, especially a 1-parameter subgroup. Hence,

ggp ∋
d

dt

∣∣∣∣
t=0

[
t 7→ cg

(
e tX

]
= Ad(g)(X),

and therefore Ad(g)(gp) ⊂ ggp.
2

That we have Ad(g)(gp) = ggp simply comes from the fact that everything is Ąnite-dimensional,

so, Ad(g)(gp) is a Ąnite-dimensional subspace of ggp, and by the Lie group isomorphism in

Eq. (2.13) we have dim(gp) = dim(ggp). Thus, Ad(g)(gp) = ggp follows, and that describes a Lie

algebra automorphism gp ∼= ggp because Ad(g) is a Lie algebra automorphism. ■

For the last statement we needed integrability. One may assume that isotropy subalgebras are

in general ideals of the Lie algebra g due to that result, by using that the induced Lie algebra

representation of Ad is given by ad. But the isotropy subalgebra is in general not an ideal,

i.e. we have in general not [X,Y ]g ∈ gp for all p ∈ N , X ∈ gp and Y ∈ g. Given those, Ąx local

coordinates (∂i)i on N around p and a g-action γ on N , then

γ
(
[X,Y ]g


p

= [γ(X), γ(Y )]♣p

=


ℒγ(X)

∣∣∣
p︸ ︷︷ ︸

=0

(
γi(Y )


− ℒγ(Y )

∣∣∣
p

(
γi(X)


∂i

= −ℒγ(Y )

∣∣∣
p

(
γi(X)


∂i

for all p ∈ N , X ∈ gp and Y ∈ g, where we locally write γ = γi ∂i. Therefore gp would be an

ideal, if there is a coordinate system such that γi(X) are constant along γ around p; we will

come back to this condition about constancy in another chapter. However, we will later see that

the isotropy subalgebra is always an ideal of another Lie bracket, the bracket of a vector bundle

which we will call a Lie algebroid. But let us now Ąrst shortly introduce the physical quantities.

2Alternatively, use the well-known equation cg(exp(tX)) = exp(tAd(g)(X)), see [4, Theorem 1.7.16; page 59].
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2.3. Yang-Mills-Higgs gauge theory

As introduced, we will only assume trivial principal bundles. Hence, the Ąeld of gauge bosons

will be represented by an element A ∈ Ω1(M ; g), where g is a Lie algebra and M is usually a

spacetime (but often just a smooth manifold in the following).

We also need the following deĄnition.

DeĄnition 2.3.1: Graded extension of the Lie bracket,

[4, generalization of DeĄnition 5.5.3; page 275]

Let M be a smooth manifold, W and W ′ vector spaces and F ∈
∧2W ∗ ⊗ W ′. Then

for ω ∈ Ωk(M ;W ) and η ∈ Ωl(M ;W ) (k, l ∈ N0) we deĄne F (ω ∧, η) as an element of

Ωk+l(M ;W ′) by

(
F (ω ∧, η)

)
(X1, . . . , Xk+l)

:=
1

k!l!

∑

σ∈Sk+l

sgn(σ)F
(
ω
(
Xσ(1), . . . , Xσ(k)


, η
(
Xσ(k+1), . . . , Xσ(k+l)


(2.14)

for all X1, . . . , Xk+l ∈ X(M), where Sk+l is the group of permutations of ¶1, . . . , k + l♢.

When either ω or η is a zero-form, then we may also write F (w, η) instead.

Remarks 2.3.2.

It is easy to check that F (ω ∧, η) is well-deĄned, i.e. that it is an element of Ωk+l(M ;W ′) by

construction.

For W = g and F = [·, ·]g observe that we have for A ∈ Ω1(M ; g)

[A ∧, A]g(X,Y ) := F (A ∧, A)(X,Y ) = [A(X), A(Y )]g − [A(Y ), A(X)]g = 2 [A(X), A(Y )]g

for all X,Y ∈ X(M). Making use of the structure constants Ccab with respect to a given basis

(ea)a of g, we can also write

[A ∧, A]g = Aa ∧Ab ⊗ [ea, eb]g = Aa ∧Ab ⊗ Ccabec. (2.15)

Let us now deĄne the Ąeld strength.

DeĄnition 2.3.3: Field strength, [4, Theorem 5.5.4; page 275]

Let g be a Lie algebra and M a smooth manifold. The Ąeld strength F (A) of A ∈

Ω1(M ; g) is deĄned by

F (A) := dA+
1

2
[A ∧, A]g. (2.16)

We view the Ąeld strength also as a map F : Ω1(M ; g) → Ω2(M ; g), A 7→ F (A).
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The Ąeld strength satisĄes the Bianchi Identity, encoding the homogeneous Maxwell equations

in the case of electromagnetism.

Theorem 2.3.4: Bianchi identity of the Ąeld strength,

[4, Theorem 5.14.2; page 311]

Let g be a Lie algebra and M a smooth manifold. Then the Ąeld strength F satisĄes the

Bianchi Identity

d
(
F (A)

)
+ [A ∧, F (A)]g = 0 (2.17)

for all A ∈ Ω1(M ; g).

Remarks 2.3.5.

See the reference for a proof for now. We will later prove a more general Bianchi identity which

will recover this statement; see Thm. 5.1.42.

Let us now deĄne the needed Lagrangians; we are going to state later the typical conditions for

gauge invariance, which is why we do not yet clarify any invariance of the used scalar products

in the following.

DeĄnition 2.3.6: Yang-Mills Lagrangian, [4, DeĄnition 7.3.1; page 414]

Let g be a Lie algebra, equipped with a scalar product κ, and M a spacetime with

spacetime metric η. Then we deĄne the Yang-Mills Lagrangian LYM as a map

Ω1(M ; g) → Ωdim(M)(M) by

LYM(A) := −
1

2
κ
(
F (A) ∧, ∗F (A)

)
(2.18)

for all A ∈ Ω1(M ; g), where ∗ is the Hodge star operator with respect to η.a

aAs a reference, see for example [4, DeĄnition 7.2.4; page 408].

We also want to look at the Higgs Ąeld. The Higgs Ąeld is a map Φ ∈ C∞(M ;W ), where W

is some vector space, and the Ąeld of gauge bosons A are coupled to Ąelds like the Higgs Ąeld

via the minimal coupling.

DeĄnition 2.3.7: Minimal coupling,

[4, DeĄnition 5.9.3; page 292; DeĄnition 7.5.5 et seq.; page

426]

Let g be a Lie algebra, M a smooth manifold, and W a vector space. Furthermore, let

ψ : g → End(W ) be a g-representation on W . Then we deĄne the minimal coupling D
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as a map given by

C∞(M ;W ) × Ω1(M ; g) → Ω1(M ;W ),

(Φ, A) 7→ D(Φ, A) := DAΦ = dΦ + ψ(A)(Φ), (2.19)

where ψ(A)(Φ) is an element of Ω1(M ;W ) given by

(
ψ(A)(Φ)

)
p
(Y ) = ψ

(
Ap(Y )

)(
Φ(p)

)

for all p ∈ M and Y ∈ TpM .

Remarks 2.3.8.

In [4] and other literature, minimal coupling also often just refers to the term ψ(A)(Ψ).

With that we can now deĄne the Yang-Mills-Higgs Lagrangian.

DeĄnition 2.3.9: Yang-Mills-Higgs Lagrangian, [4, DeĄnition 8.1.1; page 446f.]

Let g be a Lie algebra, equipped with a scalar product κ, M a spacetime with spacetime

metric η, and W a vector space, also equipped with a scalar product g. Furthermore,

let V ∈ C∞(W ), the potential of the Higgs Ąeld, and ψ : g → End(W ) be a g-

representation on W . Then we deĄne the Yang-Mills-Higgs Lagrangian LYMH as a

map C∞(M ;W ) × Ω1(M ; g) → Ωdim(M)(M) by

LYMH(Φ, A) := −
1

2
κ
(
F (A) ∧, ∗F (A)

)
+ g

(
DAΦ ∧, ∗DAΦ


− ∗

(
V ◦ Φ

)
(2.20)

for all (Φ, A) ∈ C∞(M ;W ) × Ω1(M ; g), where ∗ is the Hodge star operator with respect

to η.

The Higgs mechanism is needed for allowing masses of gauge bosons while keeping gauge

invariance. We will not introduce and discuss this because it would exceed the scope of this

thesis and it is already elaborated elsewhere, see for example [4, §8; page 445ff.]. However,

let us summarize the Higgs effect: The essential idea and result is that the components of A

along the isotropy subalgebras gp (p ∈ W ) describe the massless gauge bosons, while the other

components may describe the bosons with masses due to a non-trivial minimal coupling. That

is, Ąx a point p ∈ W , take a basis (fα)α of gp, and extend that basis to a basis of g, denoted by

(ea)a. Then write A = Aa ⊗ ea and deĄne Aiso := Aα ⊗ fα, and denote with γ the Lie algebra

action induced by ψ as in Prop. 2.1.16, such that

γ
(
Aiso♣p(Y )

)
p

= Aαiso♣p(Y ) ⊗ γ(fα)p︸ ︷︷ ︸
=0

= 0

for all p ∈ U and Y ∈ TpM . It is possible to extend that argument to certain open subsets of

W , leading to that Aiso has a trivial (=0) coupling to any Φ such that Aiso is going to describe
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the massless gauge bosons like the photon and the gluons. While the remaining components

of A may be massive. Thus, in order to allow masses of gauge boson, one needs that the

isotropy subalgebras are non-trivial subalgebras of g at certain subsets of W (especially around

the minimum of the potential V ). That is called symmetry breaking.

However, that is not the only factor needed, on one hand one needs a special form of the

potential, and on the other hand there is also the known unitary gauge which essentially Ąxes

the components of the Higgs Ąeld along the orbits of ψ such that the gauge bosons only really

couple to the components along the transversal structure. The components of the Higgs Ąeld

along the orbits of ψ generally describe the Nambu-Goldstone bosons, while the transversal

components are the actual Higgs bosons. Therefore we would not have a Higgs effect without a

transversal structure, and, thus, no masses of gauge bosons.

As mentioned, we will not prove or introduce anything of this in detail; see the given reference

for an elaborated discussion. But after we will have introduced the generalized and new gauge

theory, using Lie algebroids, we will very shortly revisit this behaviour, and it will be easier

to formulate due to the fact that the new formulation supports Lie algebra bundles and vector

bundles known as action Lie algebroids.

2.4. InĄnitesimal Gauge Invariance

Let us now turn to gauge invariance. We will only focus on its inĄnitesimal formulation because

the generalized gauge theory we want to go to will not assume integrability in general. We will

still follow [4, especially §5; page 257ff.], while we Ąrst give the observed space of Ąelds in order

to make following notations more compact.

DeĄnition 2.4.1: The space of Ąelds

Let M be a smooth manifold, W a vector space, and g a Lie algebra. Then we deĄne the

space of Ąelds by

Mg(M ;W ) :=
{

(Φ, A)
∣∣∣ Φ ∈ C∞(M ;W ) and A ∈ Ω1(M ; g)

}
. (2.21)

DeĄnition 2.4.2: InĄnitesimal gauge transformation of the Higgs Ąeld and the

Ąeld of gauge bosons,

[4, inĄnitesimal version of Theorem 5.3.9, see also comment

afterwards; page 269f.] and [4, inĄnitesimal version of Theo-

rem 5.4.4; page 273]

Let M be a smooth manifold, W a vector space, and g a Lie algebra, equipped with a Lie

algebra representation ψ : g → End(W ). Moreover, let ε ∈ C∞(M ; g).
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Then we deĄne the inĄnitesimal gauge transformation δεΦ of the Higgs Ąeld

Φ ∈ C∞(M ;W ) also as an element of C∞(M ;W ) by

δεΦ := ψ(ε)(Φ). (2.22)

The inĄnitesimal gauge transformation δεA of the Ąeld of gauge bosons A ∈

Ω1(M ; g) is deĄned as an element of Ω1(M ; g) by

δεA := [ε,A]g − dε. (2.23)

With that one can deĄne the inĄnitesimal gauge transformation of functionals.

DeĄnition 2.4.3: InĄnitesimal gauge transformation of functionals,

[4, motivated by statements like Theorem 7.3.2; page 414ff.]

Let M be a smooth manifold, W,K vector spaces, and g a Lie algebra, equipped with a

Lie algebra representation ψ : g → End(W ). Moreover, let ε ∈ C∞(M ; g).

Then we deĄne the inĄnitesimal gauge transformation δεL of L : Mg(M ;W ) →

Ωk(M ;K) (k ∈ N0) as a map Mg(M ;W ) → Ωk(M ;K) by

(δεL)(Φ, A) :=
d

dt

∣∣∣∣
t=0

[t 7→ L(Φ + tδεΦ, A+ tδεA)] (2.24)

for t ∈ R, where d/dt is deĄned using the canonical Ćat connection on M ×K → M .

Remarks 2.4.4.

This deĄnition leads to (δεL)(Φ, A) ∈ Ωk(M ;K), because the vector space W is viewed as a

trivial vector bundle over M such that one uses the canonical Ćat connection for the deĄnition of

d/dt, that is, one Ąxes a global trivialization, and then differentiates the components with respect

to that trivialization separately. Thus, one actually uses a very trivial horizontal projection in

that deĄnition.

This deĄnition is basically nothing else than a differential of functionals along the direction

given by (δεΦ, δεA). But we want to keep it as presented in order to emphasize something later.

One then calculates the typical formulas of the inĄnitesimal gauge transformations of the Ąeld

strength and minimal coupling

Proposition 2.4.5: InĄnitesimal gauge transformations of the Ąeld strength

and minimal coupling,

[4, inĄnitesimal version of Theorem 5.6.3; page 280] and [4,

inĄnitesimal version of Lemma 7.5.8; page 428]

Let M be a smooth manifold, W a vector space, and g a Lie algebra, equipped with a Lie

algebra representation ψ : g → End(W ). Moreover, let ε ∈ C∞(M ; g).
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Then we have

(δεF )(Φ, A) = [ε, F (A)]g, (2.25)

(δεD)(Φ, A) = ψ(ε)
(
DAΦ


(2.26)

for all (Φ, A) ∈ Mg(M ;W ).

Remarks 2.4.6.

The inĄnitesimal gauge transformation of A can also motivated by conditioning that the gauge

transformation of the minimal coupling has to look like as in this proposition. We will discuss

this later in more detail in the general setting.

Proof of Prop. 2.4.5.

We get3

(δεF )(A) =
d

dt

∣∣∣∣
t=0

[t 7→ F (A+ tδεA)]

=
d

dt

∣∣∣∣
t=0


t 7→ d(A+ tδεA) +

1

2
[A+ tδεA ∧, A+ tδεA]g



= d δεA︸︷︷︸
=[ε,A]

g
−dε

+
1

2
[δεA ∧, A]g +

1

2
[A ∧, δεA]g

= [dε,A]g + [ε, dA]g +
[
[ε,A]g − dε ∧, A

]
g

= [ε, dA]g +
[
[ε,A]g

∧, A
]
g

making use of Eq. (2.15) which implies that we have a product rule with respect to the two

arguments in [· ∧, ·]g in sense of wedge products and the differential, and we clearly have [ω ∧, η]g =

[η ∧, ω]g for all ω, η ∈ Ω1(M ; g) due to the antisymmetry of the Lie bracket; see also Appendix

A for their proof (as slightly generalized versions). Again using Eq. (2.15), the Jacobi identity

of the Lie bracket and a basis (ea)a of g, we arrive

[
[ε,A]g

∧, A
]
g

= εaAb ∧Ac ⊗
[
[ea, eb]g, ec

]
g

= εaAb ∧Ac ⊗

[
ea, [eb, ec]g

]
g

+
[
[ea, ec]g, eb

]
g



=
[
ε, [A ∧, A]g

]
g

−
[
[ε,A]g

∧, A
]
g

⇔
[
[ε,A]g

∧, A
]
g

=
1

2

[
ε, [A ∧, A]g

]
g
,

3F is independent of Φ, so, one can omit it there.
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hence,

(δεF )(A) =


ε, dA+

1

2
[A ∧, A]g



g

= [ε, F (A)]g.

For the minimal coupling observe, also now using additionally a basis (fα)α of W ,

dδεΦ = d
(
ψ(ε)(Φ)

)

= d
(
εaΦα ψ(ea)(fα)︸ ︷︷ ︸

∈g

)

= dεa Φαψ(ea)(fα) + εadΦαψ(ea)(fα)

= ψ(dε)(Φ) + ψ(ε)(dΦ),

and, thus,

(δεD)(Φ, A) =
d

dt

∣∣∣∣
t=0

[t 7→ d(Φ + tδεΦ) + ψ(A+ tδεA)(Φ + tδεΦ)]

= dδεΦ + ψ(δεA)(Φ) + ψ(A)(δεΦ)

= ψ(dε)(Φ) + ψ(ε)(dΦ) + ψ
(
[ε,A]g − dε


(Φ) + ψ(A)(ψ(ε)(Φ))

= ψ(ε)(dΦ) + [ψ(ε), ψ(A)]g + ψ(A)(ψ(ε)(Φ))
︸ ︷︷ ︸

=ψ(ε)(ψ(A)(Φ))

= ψ(ε)
(
DAΦ


,

where we used that ψ is a homomorphism of Lie brackets. ■

That leads to the typical well-known statement about the inĄnitesimal gauge invariance of

the Yang-Mills-Higgs Lagrangian. For that we shortly recall what it means that a scalar product

is invariant under a Lie algebra representation.

DeĄnition 2.4.7: Scalar products invariant under Lie algebra representations,

[4, DeĄnition 2.1.36; page 96]

Let g be a Lie algebra, W a vector space and ψ : g → End(W ) a g-representation on W .

Then we say that a scalar product g on W is ψ-invariant

g(ψ(X)(v), w) + g(v, ψ(X)(w)) = 0 (2.27)

for all X ∈ g and v, w ∈ W .
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Theorem 2.4.8: InĄnitesimal gauge invariance of the Yang-Mills-Higgs La-

grangian,

[4, inĄnitesimal version of Theorem 7.3.2; page 414] and [4,

inĄnitesimal version of Theorem 7.5.10; page 429]

Let g be a Lie algebra, equipped with a scalar product κ, M a spacetime with spacetime

metric η, and W a vector space, also equipped with a scalar product g. Furthermore, let

V ∈ C∞(W ) and ψ : g → End(W ) be a g-representation on W , whose induced Lie algebra

action is denoted by γ. If we have

κ is ad-invariant, (2.28)

g is ψ-invariant, (2.29)

0 = ℒγ(ε)V ◦ Φ (2.30)

for all ε ∈ C∞(M ; g) and Φ ∈ C∞(M ;W ), then

δεLYMH = 0 (2.31)

for all ε ∈ C∞(M ; g).

Remarks 2.4.9.

Condition (2.30) may be reduced to ℒγ(ε)V = 0; however, we will not discuss the potential, and

that ŤweakerŤ formulation may be a good starting point if one wants to restrict the set of Φ.

Proof of Thm. 2.4.8.

We will prove the more general statement in more detail later, see Thm. 4.4.3, but it is a trivial

consequence of Prop. 2.4.5: We need to calculate

d

dt

∣∣∣∣
t=0

[R ∋ t 7→ LYMH(Φ + tδεΦ, A+ tδεA)]

and we can do that on each summand in Def. 2.3.9 separately. Applying the product rule when

calculating d
dt and using Prop. 2.4.5, it is clear that the Ąrst two summands, the Yang-Mills

Lagrangian and the kinetic part of the Higgs Ąeld, vanish because of the imposed invariances on

κ and g. For the potential V observe


d

dt

∣∣∣∣
t=0

[t 7→ V (Φ + tδεΦ)]

∣∣∣∣
p

=
(
dΦ(p)V

(
ψ
(
ε(p)

)(
Φ(p)

)) Prop. 2.1.16
= −ℒγ(ϵ(p))V

∣∣∣
Φ(p)

,

which is also zero by the assumed condition on the potential. Hence, the inĄnitesimal gauge

transformation of all three summands of the Yang-Mills-Higgs Lagrangian is zero.4 ■

Remarks 2.4.10.

In [4] one assumes a function Ṽ ∈ C∞(R) instead of the general potential we took. There the

4The Hodge star operator can be ignored because the spacetime metric is independent of the Ąelds Φ and A.
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potential is then given by V (w) := Ṽ
(
g(w,w)

)
for all w ∈ W , e.g. Ṽ is a polynomial of the

scalar product on W . Due to the ψ-invariance of g we get


d

dt

∣∣∣∣
t=0

[t 7→ V (Φ + tδεΦ)]

∣∣∣∣
p

= Dg(Φ(p),Φ(p))Ṽ


g
(
ψ(ε)(Φ)♣p,Φ(p)


+ g

(
Φ(p), ψ(ε)(Φ)♣p



= 0

for all Φ ∈ C∞(M ;W ), ε ∈ C∞(M ; g) and p ∈ M . In the proof we also have seen


d

dt

∣∣∣∣
t=0

[t 7→ V (Φ + tδεΦ)]

∣∣∣∣
p

= −ℒγ(ϵ(p))V
∣∣∣
Φ(p)

,

thus, Eq. (2.30) is satisĄed for such potentials. See [4, §8; especially also the box at the top

of page 450] for a thorough discussion about how the potential looks like for Yang-Mills-Higgs

Lagrangians; in this work the potential will not play any important role, and besides conditions

like Eq. (2.30) it is not going to appear anywhere here.

2.5. InĄnitesimal Gauge Invariance using connections

We want to introduce and redeĄne inĄnitesimal gauge invariance in a different way now, already

pointing out what the next sections will be about. Therefore this section also serves as a Ąrst

step towards Lie algebroids and the new gauge theory. As we have seen, the common idea is to

interpret inĄnitesimal gauge transformations as derivations of functionals, parametrised by Lie

algebra valued functions ε.

In this section we want to show that the inĄnitesimal gauge transformations can be viewed as

a Ťconnection-likeŤ object on the inĄnite-dimensional spaces arising in the calculus of variations,

but the connection will be inherited by a connection of a Ąnite-dimensional vector bundle. Before

we discuss this, let us introduce the connections we look at in the Ąnite-dimensional situation;

those will be a Ąrst step towards a generalization of typical vector bundle connections. In some

sense, those are like Lie algebra actions, but as connections instead of a Lie derivative along a

vector Ąeld.

DeĄnition 2.5.1: Lie algebra connection,

[6, special situation of §2, DeĄnition 2.2]

Let g be a Lie algebra, and γ : g → X(N) be a Lie algebra action on a smooth manifold

N . Then a g-connection on a vector bundle E → N is an R-bilinear map g∇

g × Γ(E) → Γ(E),

(X, ν) 7→ g∇Xν,

satisfying

g∇X(fν) = f g∇Xν + ℒγ(X)(f) ν (2.32)
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for all X ∈ g, ν ∈ Γ(E) and f ∈ C∞(N), where ℒγ(X)(f) is the action of the vector Ąeld

γ(X) on the function f by derivation.

Remarks 2.5.2.

Similar to typical vector bundle connections, the Leibniz rule in the difference of two g-connections

will cancel each other, resulting into an R-linear map g → ℰ𝓃𝒹(E); this is trivial to check.

It is on purpose that there is no separate imposed C∞(N)-linearity in the g-argument, it is

then in more alignment with the deĄnition of g-actions. However, that is quickly recovered by

deĄning

(g∇εν)♣p :=
(
g∇ε(p)ν

∣∣∣
p

for all ε ∈ C∞(N ; g), ν ∈ Γ(E) and p ∈ N . Furthermore, we will generalize this and the

following concepts to Lie algebroid connections which will look more familiar again with the

typical deĄnition.

Example 2.5.3: Lie algebra action as a Lie algebra connection,

[7, special situation of Ąrst example in Example 2.8]

A major example is the Lie algebra action γ itself: Let E → N be a trivial vector bundle

over a smooth manifold N , whose global trivialization we denote by (ea)a. As usual, also

let g be a Lie algebra, and γ : g → X(N) be a Lie algebra action on N . Then deĄne g∇

by

g∇Xν := ℒγ(X)(ν
a) ea

for all X ∈ g and ν = νaea ∈ Γ(E). Consider the canonical Ćat connection ∇ of E with

respect to the chosen trivialization, i.e. deĄned by ∇ea = 0, then

g∇Xν = ℒγ(X)(ν
a) ea = ∇γ(X)ν

for all X ∈ g and ν ∈ Γ(E). This also proves that this deĄnes a g-connection because it is

trivial to check that all vector bundle connections ∇′ give rise to a g-connection deĄned

by g∇′
X = ∇′

γ(X) for all X ∈ g, regardless of triviality of E or Ćatness of ∇′.

In general we therefore denote such connections by

g∇′ = ∇′
γ .

Example 2.5.4: Basic connection,

[6, special situation of §2, DeĄnition 2.9]

Let E = N×W → N be again a trivial bundle overN with Ąbre typeW , denote with (ea)a
a global constant frame of E, and with ∇ its canonical Ćat connection. Also now assume

36



CHAPTER 2. GAUGE THEORY Simon-Raphael Fischer

that the Lie algebra action γ is induced by a Lie algebra representation ψ : g → End(W ).

Then deĄne a g-connection on E, denoted as ∇bas, by

∇bas
X ν

∣∣∣
p

:= ψ(X)(νp) + ∇γ(X)ν
∣∣∣
p

(2.33)

for all X ∈ g, ν ∈ Γ(E) and p ∈ N . This deĄnes clearly a g-connection, viewing ψ(X)(ν)

as an element of Γ(E) by p 7→ ψ(X)(νp) such that we can view ψ as an R-linear map

g → ℰ𝓃𝒹(E); for this recall Rem. 2.5.2.

Observe that for constant sections ν we get

∇bas
X ν = ψ(X)(ν).

Of special importance is W = g and ψ = ad.

Those g-connections are related to the notion of what is known as basic connections,

which we will introduce with more details later and which will be very important through-

out this work.

Let us now assume that N is a vector space W . Recall Def. 2.4.3 and Rem. 2.4.4; the

inĄnitesimal gauge transformation was essentially deĄned by expressing the differential as a

derivative along a certain curve in Mg(M ;W ), differentiating with d/dt using a canonical Ćat

connection of the involved Ąnite-dimensional trivial vector bundles. However, especially because

the aim of this work is also to present a covariantized formulation of gauge theory, one might want

to reformulate this using general connections, not just the canonical Ćat connection, naturally

supporting general vector bundles and manifolds as a result, while avoiding the problem of

having horizontal components in some tangent bundle. The connections we want to use for that

for now are the g-connections. But those are deĄned for vector bundles over N = W , not for

a vector bundle over the spacetime M (in which our functionals have values in); that is simply

due to that the image of a Lie algebra action, used in the Leibniz rule, is a vector Ąeld on N .

Therefore, in order to deĄne a g-connection acting on forms of the spacetime M , we need to

make a pullback to M , and the only map we have so far from M to N = W is Φ. In other words,

we want to deĄne a Ťconnection-likeŤ object on functionals, which is inherited by a connection

of some Ąnite-dimensional vector bundle by making a pullback, and the differentiation of such

a connection on functionals is along Mg(M ;W ). Moreover, one could naively view functionals

L : Mg(M ;W ) → Ωk(M ;K) (k ∈ N0, K a vector space) as sections of a bundle over Mg(M ;W )

which has in general an inĄnite rank; more about that in a later chapter. Thus, we want to

construct a ŤconnectionŤ on inĄnite-dimensional bundles coming from a Ąnite-dimensional world.

Let us only focus on pullbacks along curves in this section for simplicity. By the Leibniz rule

Eq. (2.32) the direction of the derivative is along the Lie algebra action γ, while the idea of a

pullback of a connection is that it differentiates pullbacks of sections along the differential of

the curve. Hence, one expects a technical obstacle when allowing every curve for the pullback,

because the typical motivation is that the Leibniz rule is inherited by the pullbacked connection.
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So, we just allow certain curves, whose differential is in alignment with γ.

DeĄnition 2.5.5: Lie algebra paths,

[7, §2, special situation of the DeĄnition 2.4]

Let g be a Lie algebra, and γ : g → X(N) be a Lie algebra action on a smooth manifold N .

Then a g-path α with base path β is a pair of smooth curves (α, β), where α : I → g

and β : I → N , I an open interval of R, such that

β̇(t) :=
d

dt
β

∣∣∣∣
t

= β∗
(
γ
(
α(t)

)∣∣∣
t

= γ
(
α(t)

)∣∣
β(t)

. (2.34)

We also say that β is lifted to α.

Remarks 2.5.6.

If N = W is a vector space and γ is induced by a Lie algebra representation ψ : g → End(W ),

then, by Prop. 2.1.16, we would also have


d

dt
β

∣∣∣∣
t

= −ψ
(
α(t)

)
(β(t)) (2.35)

for all w ∈ W .

Proposition 2.5.7: Pullbacks of g-connections along g-paths,

[7, §2, special situation of the comment before DeĄnition

2.4]

Let g be a Lie algebra, γ : g → X(N) be a Lie algebra action on a smooth manifold N ,

and g∇ a g-connection on a vector bundle E → N . Also Ąx a g-path α : I → g with base

path β : I → N , I ⊂ R an open interval. Then there is a unique vector bundle connection

β∗(g∇) on β∗E → I with

(
β∗(g∇)

)
c d

dt

(β∗ν) = β∗(g∇cαν) (2.36)

for all ν ∈ Γ(E), c ∈ R and t ∈ I.

Proof.

The proof is basically the same as for pullbacks of vector bundle connections. The idea is the

following: As usual, the idea is that the pullbacks of sections, β∗ν (ν ∈ Γ(E)), generate Γ(β∗E).

Thus, Eq (2.36) deĄnes the connection uniquely, that is, sections µ of β∗E are determined by

sums of elements of the form f ·β∗ν, f ∈ C∞(I), and by the Leibniz rule any connection β∗(g∇)

satisfying Eq. (2.36) also satisĄes

(
β∗(g∇)

)
c d

dt

(f β∗ν) = c
df

dt
β∗ν + f β∗(g∇cαν)

for all c ∈ R and t ∈ I, such that uniqueness follows by linearity, assuming existence is given,

but for the existence one can simply take this equation as a possible deĄnition for β∗(g∇). Thus,
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let β∗(g∇) locally be deĄned by

(
β∗(g∇)

)
c d

dt

µ := c
dµa

dt
β∗ea + µa β∗(g∇cαea) (2.37)

for all µ = µa β∗ea, where (ea)a is a local frame of E. Linearity in all arguments and the Leibniz

rule follow by construction, also observe that for a function h ∈ C∞(N) and ν ∈ Γ(E) we can

calculate

β∗(g∇cα(hν)
)∣∣
t

= β∗(
ℒc(γ◦α)(h)

)∣∣∣
t︸ ︷︷ ︸

Def. 2.5.5
= cℒβ̇(h)♣

t

β∗ν + β∗(h g∇cαν
)∣∣
t

=


c

d(h ◦ β)

dt
β∗ν + (h ◦ β) β∗(g∇cαν

)∣∣∣∣
t

(2.38)

for all t ∈ I, thus,

(
β∗(g∇)

)
c d

dt

(β∗ν)
(2.37)

= c
d(νa ◦ β)

dt
β∗ea + (νa ◦ β) β∗(g∇cαea

) (2.38)
= β∗(g∇cαν),

so, Eq. (2.36) is satisĄed. Finally, by Eq. (2.38) it also follows that (2.37) is independent of the

chosen frame and, thus, globally deĄned. To see this, observe that any other frame (fb)b of E,

intersecting the neighbourhood of (ea)a, is given by ea = M b
afb, where M b

a is a local invertible

matrix function on N . Then

µ = µa β∗ea =
(
M b
a ◦ β


µa fb =: µ̃bfb,

such that µa =
((
M−1

)a
b

◦ β

µ̃b, and, thus, as a direct consequence of Eq. (2.38),

(
β∗(g∇)

)
c d

dt

µ
(2.37)

= c
dµa

dt
β∗ea + µa β∗(g∇cαea)

= c
d
(((

M−1
)a
d

◦ β

µ̃d


dt
β∗
(
M b
afb


+
((
M−1

a
d

◦ β

µ̃d β∗

(
g∇cα

(
M b
afb


Eq. (2.38)
= c

dµ̃b

dt
β∗fb + µ̃b β∗(g∇cαfb)

+ cµ̃d


−

d
(
M b
f ◦ β



dt

(
M−1

f
d

◦ β



+
((
M−1

a
d

◦ β
 d

(
M b
a ◦ β



dt


 β∗fb
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= c
dµ̃b

dt
β∗fb + µ̃b β∗(g∇cαfb),

using formulas of the differential of the inverse like M dM−1 = −dM M−1 (similar for β∗M =

M ◦ β). Hence, Def. (2.37) is frame-independent, and this Ąnishes the proof. ■

Remark 2.5.8: Essential condition for pullbacks of connections

Observe that the essential part of the proof is Eq. (2.38), everything follows either by this

equation or by the standard construction in (2.37). This will be important later because

we are going to generalise such statements about the pullbacks of connections. To avoid

doing the same all over again, we will just refer to this proof and remark, essentially

one only needs to check something like Eq. (2.38). Eq. (2.38) essentially proves that

the Leibniz rule inherited by g∇ is in alignment with the Leibniz rule of vector bundle

connections on β∗E → I.

Eq. (2.38) also motivates why g-paths are precisely the objects one needs to provide a

pullback of g-connections along curves.

Typically, this leads to the following construction.

Proposition 2.5.9: Derivations of sections along g-paths,

[7, special situation of §2, beginning of subsection 2.3; there

D/dt is denoted as ∇α]

Let g be a Lie algebra, γ : g → X(N) be a Lie algebra action on a smooth manifold N ,

and g∇ a g-connection on a vector bundle E → N . Also Ąx a g-path α : I → g with base

path β : I → N , I ⊂ R an open interval. Then there is a unique differential operator
D
dt : Γ(β∗V ) → Γ(β∗V ) with

D

dt
is linear over R, (2.39)

D

dt
(fs) =

df

dt
s+ f

D

dt
s, (2.40)

D

dt

∣∣∣∣
t

(β∗v) = β∗(g∇αv)♣t (2.41)

for all s ∈ Γ(β∗V ), v ∈ Γ(V ), f ∈ C∞(I) and t ∈ I.

Proof.

DeĄne

D

dt
:= (β∗(g∇)) d

dt
, (2.42)

where β∗(g∇) is given by Prop. 2.5.7. This operator satisĄes the needed properties by Prop. 2.5.7,

and the uniqueness will follow by the uniqueness given in Prop. 2.5.7. ■
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In the context of the previously introduced setting of gauge theory, we have N = W a vector

space, and E will be a trivial vector bundle over W . Later, when we are going to introduce

the generalized inĄnitesimal gauge transformation for the general theory, we will allow general

manifolds and vector bundles. But to avoid certain difficulties, which we will face later, we keep

it that simple most of the time in the following.

As argued earlier we want to make the pullback using Φ, the Higgs Ąeld. But this is a

Ąeld affected by the calculus of variations, and we want to show that a certain pullback of a

g-connection describes inĄnitesimal gauge transformations, hence, Φ is a ŤcoordinateŤ in that

context. So, the map we make a pullback with is a different one, but strongly related to Φ. Let

us clarify with which map we actually make the pullback.

DeĄnition 2.5.10: The evaluation map

Let M be a smooth manifold, W a vector space, and g a Lie algebra. Then we deĄne the

evaluation map ev : M × Mg(M ;W ) → W by

ev(p,Φ, A) := Φ(p) (2.43)

for all (p,Φ, A) ∈ M × Mg(M ;W ).

Given a g-connection g∇, we may try ev∗(g∇) because the functionals we look at are of the

form L : Mg(M ;W ) → Ωk(M ;K) (k ∈ N0, K a vector space), so, L : M × Mg(M ;W ) →
∧k T∗M ⊗K. However, as we argued earlier, the pullback of a g-connection is not always given.

Thus, the idea is to take a curve η in M ×Mg(M ;W ) such that ev ◦ η can be lifted to a g-path.

Then we can deĄne (ev ◦ η)∗(g∇); in other words, we want to make the pullback with ev but

the resulting pullback-connection just differentiates along certain directions.

Of course, we do not want to take any suitable curve. We want to identify this construction

with the inĄnitesimal gauge transformations, which we denoted earlier by (δΦ, δA) (omitting the

parameter ε for now) for the Ąelds Φ and A. Viewing (δΦ, δA) as a vector Ąeld on Mg(M ;W ),5

one wants to deĄne η as the (local) Ćow of that vector Ąeld. That is, we take a curve η parallel

to Mg(M ;W ), so, the M -component is constant.

Remark 2.5.11: Tangent spaces of Mg(M ;W )

A note about the tangent bundle of Mg(M ;W ): In the general setup, presented later, we

need to study it, see Prop. 4.1.2. Due to that we assume vector spaces and trivial vector

bundles for the values, it is trivial to check that we get

T(Φ,A)(Mg(M ;W )) ∼= Mg(M ;W ),

Hence, δΦ ∈ C∞(M ;W ) and δA ∈ Ω1(M ; g) makes sense, even when interpreted as

components of a vector Ąeld; still omitting the parameter ε.

5(δΦ, δA) is the value of that vector Ąeld at (Φ, A).
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Trivially, this comes from that one thinks of tangent vectors as velocities of curves in

Mg(M ;W ), which is basically just a pair of curves in W and g (after point evaluation,

e.g. a curve in C∞(M ;W ), t 7→ Φt, then viewed as t 7→ Φt(p) ∈ W ). As usual, one uses

then the canonical Ćat connections for TW ∼= W ×W and Tg ∼= g×g such that the veloc-

ities of the curves can be viewed as curves in the corresponding vector space. It is unusual

to formulate it like this, or to even mention this, but with that we want to emphasize that

one cannot expect that the vector Ąeld behind all of that has values (δΦ, δA) ∈ Mg(M ;W )

(globally) if canonical Ćat connections are not given. Especially, later in this work we will

have W = N an arbitrary smooth manifold such that C∞(M ;N) ∋ Φ will not carry a

vector space structure in general, and, so, one could not even argue with an overall vector

space structure of the inĄnite-dimensional space itself.

Fix now (Φ0, A0) ∈ Mg(M ;W ) and p ∈ M . Then take a curve η = (p,Φ, A) : I → M ×

Mg(M ;W ) (I ⊂ R an open interval), I ∋ t 7→ ηt = (p,Φt, At), with

ηt=0 = (p,Φ0, A0).

Observe then

ev ◦ η = Φ(p) := [t 7→ Φt(p)].

Given a Lie algebra action γ : g → X(W ),6 ev ◦ η can be lifted to a g-path, if there is a g-path

−ϵ(p) : I → g, t 7→ −ϵt(p), such that

d

dt

∣∣∣∣
t

(
Φ(p)

)
= −γ

(
ϵt(p)

)∣∣
Φt(p)

.

The sign is a convention, because if γ is induced by a Lie algebra representation ψ : g → End(W ),

then this equation can be written as, recall Rem. 2.5.6,

d

dt

∣∣∣∣
t

(
Φ(p)

)
= ψ

(
ϵt(p)

)(
Φt(p)

)
,

which resembles strongly the inĄnitesimal gauge transformation of the Higgs Ąeld (evaluated at

p), here for the Ąxed Φ0 if t = 0; recall Def. 2.4.2. Therefore we want to interpret the gauge

transformation of the Higgs Ąeld as the ŤvelocityŤ of those curves in C∞(M ;W ) which can be

lifted to a g-path, that is

δϵ0Φ0 :=
d

dt

∣∣∣∣
t=0

(
Φ(p)

)
= −γ

(
ϵt=0(p)

)∣∣
Φ0(p)

.

Since such lifts are in general not unique, we get naturally the parametrization of δΦ0 with

respect to ϵ0 : M → g, p 7→ ϵ0(p) := ϵt=0(p).

6In general, the Lie algebra behind that action does not have to be related to the same Lie algebra as in the

deĄnition of Mg(M ; W ) for the following deĄnitions and constructions. But for simplicity we assume that.
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DeĄnition 2.5.12: InĄnitesimal gauge transformation of the Higgs Ąeld

Let M be a smooth manifold, W a vector space, and g a Lie algebra with Lie algebra

action γ on W , induced by a Lie algebra representation ψ. Then we deĄne the subspace

Tψ
(Φ,A)

(
Mg(M ;W )

)
of T(Φ,A)

(
Mg(M ;W )

)
for all (Φ, A) ∈ Mg(M ;W ) by

Tψ
(Φ,A)

(
Mg(M ;W )

)
:=
{

(δΦ, δA) ∈ T(Φ,A)(Mg(M ;W ))
∣∣∣ ∃ϵ ∈ C∞(M ; g) : δΦ = ψ(ϵ)(Φ)

}
.

(2.44)

Its sections by Xψ(Mg(M ;W )).

To emphasize the relation of the Ąrst component, δΦ, with ϵ, we also write

δϵΦ := ψ(ϵ)(Φ) (2.45)

instead of δΦ. We call this the inĄnitesimal gauge transformation of the Higgs

Ąeld Φ.

Remarks 2.5.13.

For Ψ ∈ Xψ(Mg(M ;W )) observe that there is a smooth ε : Mg(M ;W ) → C∞(M ; g) with

Ψ♣(Φ,A) = (δϵΦ, δA)

for all (Φ, A) ∈ Mg(M ;W ), where δA ∈ Ω1(M ; g) and ϵ := ε(Φ, A) ∈ C∞(M ; g); and each

such ε deĄnes a Ψ ∈ Xψ(Mg(M ;W )). With that one can easily see that Xψ(Mg(M ;W )) is a

submodule of X(Mg(M ;W )), respectively; but Xψ(Mg(M ;W )) is in general not a subalgebra,

due to the fact that ε itself depends on Mg(M ;W ). To emphasize the relation between Ψ and

ε we also often write Ψ =: Ψε. Keep in mind that Ψε is not unique for a given ε because we

did not Ąx δA yet. Also observe the difference to the previous section: The parameter of the

inĄnitesimal gauge transformation is going to be a functional Mg(M ;W ) → C∞(M ; g), while

the typical formulation uses just ϵ ∈ C∞(M ; g) (basically a constant functional one could say).

To summarize, we have:

Corollary 2.5.14: Flows of Xψ(Mg(M ;W ))

Let M be a smooth manifold, W a vector space, and g a Lie algebra with Lie algebra

action γ on W , induced by a Lie algebra representation ψ. Also let Ψε ∈ Xψ(Mg(M ;W ))

for an ε : Mg(M ;W ) → C∞(M ; g) whose local Ćow through (Φ0, A0) ∈ Mg(M ;W ) we

denote by η♣(Φ0,A0) := (Φ, A) : I → Mg(M ;W ), t 7→ η♣(Φ0,A0)(t) = (Φt, At) (I ⊂ R an

open interval).

Then there is a smooth curve ϵ : I → C∞(M ; g), t 7→ ϵt, with ϵt=0 = ε(Φ0, A0) and such

that

−ϵ(p) := [t 7→ −ϵt(p)]
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is a g-path for all p ∈ M with base path

Φ(p) := [t 7→ Φt(p)],

that is

d

dt

∣∣∣∣
t

(
Φ(p)

)
= ψ

(
ϵt(p)

)(
Φt(p)

)
= (δϵtΦt)(p). (2.46)

Proof.

By construction and deĄnition, i.e. there is an ϵ : I → C∞(M ; g), t 7→ ϵt, such that

Ψ
(1)
η♣(Φ0,A0)(t) = ψ(ϵt)(Φt),

where Ψ(1) is the Ąrst component of Ψ, the one along the ŤΦ-directionŤ; thus, Eq. (2.46) follows

by the deĄnition of Ćows of vector Ąelds, and one can take ϵ in such a way that ϵt=0 = ε(Φ0, A0)

because we have at t = 0

Ψ
(1)
η♣(Φ0,A0)(0) = Ψ

(1)
(Φ0,A0) = ψ

(
ε(Φ0, A0)

)
(Φ0).

■

Let us conclude this section with the deĄnition of the inĄnitesimal gauge transformation of

the studied functionals, making use of the previously-discussed relation between g-paths and

the inĄnitesimal gauge transformation of the Higgs Ąeld. It is especially about pullbacks of g-

connections, which were uniquely deĄned by their differentiation on pullbacks, but the deĄnitions

of the typical functionals like the Ąeld strength or the minimal coupling do not contain any visible

pullback as if they do not live in a pullback bundle. But we will use a trivial bookkeeping trick:

The bundle those functionals have values in is a trivial bundle over M , and trivial bundles are

always trivially isomorphic to the pullback of another trivial bundle with the same Ąbre type,

e.g. M × g ∼= Φ∗(W × g), W × g the trivial bundle over N = W . That is the following:

Let K be a vector space, we viewed it as a trivial vector bundle over M , but we can do the

same for N = W , so, K can also be viewed as trivial vector bundle over W , and elements of K

are just constant sections of such a bundle. For bookkeeping, let us denote with ιM and ιW maps

K →֒ Γ(M × K) and K →֒ Γ(W × K), respectively, which embed elements of K canonically

into the space of constant sections of the trivial bundles M ×K and W ×K, respectively. Then

take a smooth map L : Mg(M ;W ) → Ωk(M ;K) (k ∈ N0) and a basis (ea)a of K. Previously

we expressed L then as, making use of ιM ,

L = La ⊗ ιM (ea),

where La : Mg(M ;W ) → Ωk(M). Fix (Φ, A) ∈ Mg(M ;W ), then we can trivially identify

ιM (ea) = Φ∗(ιW (ea)
)
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because ea is viewed as a constant section in both trivial vector bundles. Then observe

ev∗(ιW (ea)
)∣∣

(p,Φ,A)
= ιW (ea)♣Φ(p) = Φ∗(ιW (ea)

)∣∣
p

= ιM (ea)♣p

for all (p,Φ, A) ∈ M × Mg(M ;W ). Thus, we can also write

L = La ⊗ ev∗(ιW (ea)
)

=: ι(L),

and that interpretation of L we denote as ι(L) for bookkeeping reasons. Observe

ι(L)(Y1, . . . , Yk) = La(Y1, . . . , Yk)︸ ︷︷ ︸
∈C∞(M×Mg(M ;W ))

ev∗(ιW (ea)
)

∈ Γ(ev∗(W ×K))

for all Y1, . . . , Yk ∈ X(M); therefore also ι(L)(Φ, A) ∈ Ωk(M ; Φ∗K). With that we can now

Ąnally explicitly state the idea of describing inĄnitesimal gauge transformations as a certain

pullback of a g-connection.

Proposition 2.5.15: Functional derivative along Xψ(Mg(M ;W ))

Let M be a smooth manifold, W,K vector spaces, and g a Lie algebra with Lie algebra

action γ on W , induced by a Lie algebra representation ψ. Moreover, let g∇ be a g-

connection on the trivial vector bundle W ×K over W , and Ψε ∈ Xψ(Mg(M ;W )) for an

ε : Mg(M ;W ) → C∞(M ; g).

Then there is a unique R-linear operator δΨε : Γ(ev∗(W ×K)) → Γ(ev∗(W ×K)) with

δΨε(fs) = ℒΨε(f) s+ f δΨεs, (2.47)

δΨε(ev∗ϑ) = −ev∗(g∇εϑ) (2.48)

for all f ∈ C∞(M × Mg(M ;W )), s ∈ Γ(ev∗(W ×K)) and ϑ ∈ Γ(W × K), where we

denote

ev∗(g∇εϑ)♣(p,Φ0,A0) =
(
g∇ε(Φ0,A0)♣pϑ

∣∣∣
Φ0(p)

for all (p,Φ0, A0) ∈ M × Mg(M ;W ).

Remarks 2.5.16.

This emphasizes that δΨε is the Ťev-pullback of g∇ combined with a contraction along ΨεŤ (up

to a sign), and that combination leads to that we do not need an overall pullback with ev. When

we show this in the general setting, then we give a general condition about in which situations

one can do such pullbacks, avoiding the ansatz using Ćows and curves, making the approach

cleaner.

Proof of Prop. 2.5.15.

For Ψε let η : I × U → Mg(M ;W ) be its local Ćow on an open subset U ⊂ Mg(M ;W ),
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where I ⊂ R is an open interval containing 0, and we denote its Ćow through (Φ0, A0) ∈ U by

η♣(Φ0,A0) = (Φ, A), I ∋ t 7→ (Φt, At). For the Ćow η♣(Φ0,A0) we can apply Cor. 2.5.14, that is,

there is an ϵ : I → C∞(M ; g), t 7→ ϵt, such that Φ(p) := [t 7→ Φt(p)] is the base path of a g-path

−ϵ(p) := [t 7→ −ϵt(p)], and we have ϵt=0 = ε(Φ0, A0). Hence, Ąxing such a lift to a g-path, we

can deĄne by Prop. 2.5.7

δΨεs♣(p,Φ0,A0) :=

(
ev ◦

(
p, η♣(Φ0,A0)

∗

︸ ︷︷ ︸
=(Φ(p))∗

(g∇)



d
dt ♣t=0

((
p, η♣(Φ0,A0)

∗
s


=
((

Φ(p)
)∗

(g∇)


d
dt ♣t=0

((
p, η♣(Φ0,A0)

∗
s


(2.49)

for all s ∈ Γ(ev∗(W ×K)) and p ∈ M , where
(
p, η♣(Φ0,A0)

∗
s is by deĄnition a section of

(
ev ◦

(
p, η♣(Φ0,A0)

∗
(W ×K), especially,

(
p, η♣(Φ0,A0)

∗
s
∣∣∣
t

= s♣(p,Φt,At) ∈ ¶Φt(p)♢ ×K,

and, thus, it can also be seen as a section of
(
Φ(p)

)∗
(W × K). Then Def. 2.49 is nothing else

than the (restricted) deĄnition of D/dt♣t=0 related to g∇ and using the given g-path −ϵ(p) with

base path Φ(p), see Prop. 2.5.9 and its proof. That is

(δΨεs)(p,Φ0, A0) =
D

dt

∣∣∣∣
t=0

((
p, η♣(Φ0,A0)

∗
s


so, everything follows by Prop. 2.5.9, i.e. R-linearity is clearly implied, and

δΨε(fs)♣(p,Φ0,A0) =
d

dt

∣∣∣∣
t=0

(
f ◦

(
p, η♣(Φ0,A0)


s♣(p,Φ0,A0) + f(p,Φ0, A0)

D

dt

∣∣∣∣
t=0

((
p, η♣(Φ0,A0)

∗
s


= (ℒΨε(f) s+ f δΨεs)♣(p,Φ0,A0)

for all f ∈ C∞(M × Mg(M ;W )), and Ąnally

δΨε(ev∗ϑ)♣(p,Φ0,A0) =
D

dt

∣∣∣∣
t=0

((
ev ◦

(
p, η♣(Φ0,A0)

∗
ϑ


=
D

dt

∣∣∣∣
t=0

(
(Φ(p))∗ϑ

)

= −(Φ(p))∗(g∇ϵt=0ϑ)

ϵt=0=ε(Φ0,A0)
= −ev∗(g∇εϑ)♣(p,Φ0,A0)

for all ϑ ∈ Γ(W × K). Uniqueness also follows by Prop. 2.5.9, although this D/dt operator

only differentiates sections of the form
(
p, η♣(Φ0,A0)

∗
s; the vector space of such sections has

(
Φ(p)

)∗(
Γ(W ×K)

)
as a subset, the generators of sections of

(
Φ(p)

)∗
(W ×K), which was visible

by having s = ev∗ϑ, that is
(
p, η♣(Φ0,A0)

∗
(ev∗ϑ) =

(
ev ◦

(
p, η♣(Φ0,A0)

∗
ϑ =

(
Φ(p)

)∗
ϑ.

46



CHAPTER 2. GAUGE THEORY Simon-Raphael Fischer

Therefore the argument about uniqueness in the proof of Prop. 2.5.9 applies here, too.7 ■

Now we extend it to functionals. We will now also recall the inĄnitesimal gauge transformation

of the Ąeld of gauge bosons A as in Def. 2.4.2 and take that still as a deĄnition; at this point

there is nothing new to tell about that part of the inĄnitesimal gauge transformation, except

that ε : Mg(M ;W ) → C∞(M ; g), and, thus, the derivation will be along a vector Ąeld Ψε

Ψε♣(Φ,A) = (δϵΦ, δϵA) (2.50)

for all (Φ, A) ∈ Mg(M ;W ), where ϵ := ε(Φ, A) and δϵA = [ϵ, A]g − dϵ. We shortly write

for now Ψε = (δεΦ, δεA). However, in the general setting later we need to discuss the gauge

transformation of A and how to deĄne it, and therefore we will come back to this.

DeĄnition 2.5.17: InĄnitesimal gauge transformation

Let M be a smooth manifold, W,K vector spaces, and g a Lie algebra with Lie algebra

action γ on W , induced by a Lie algebra representation ψ. Moreover, let g∇ be a g-

connection on the trivial vector bundle W × K over W , and Ψε = (δεΦ, δεA) for an

ε : Mg(M ;W ) → C∞(M ; g).

Then we deĄne the inĄnitesimal gauge transformation δεL for L : Mg(M ;W ) →

Ωk(M ;K) (k ∈ N0) as a map Mg(M ;W ) → Ωk(M ;K) by

(δεL)(Y1, . . . , Yk) := δΨε

(
ι(L)(Y1, . . . , Yk)

)
(2.51)

for all Y1, . . . , Yk ∈ X(M), where δΨε is the unique operator given in Prop. 2.5.15 with

respect to g∇ and Ψε.

Remarks 2.5.18.

Recall that ι(L) was the bookkeeping trick, and, thus,

ι(L)(Y1, . . . , Yk) ∈ Γ(ev∗(W ×K))

for all Y1, . . . , Yk ∈ X(M). Hence, this deĄnition is well-deĄned; that δεL is a map Mg(M ;W ) →

Ωk(M ;K) also follows by construction. Especially observe that C∞(M)-multilinearity follows

because ℒΨεf = 0 for all f ∈ C∞(M) because Ψε is a vector Ąeld on Mg(M ;W ), viewed as

a vector Ąeld in M × Mg(M ;W ). So, C∞(M) is not affected by the Leibniz rule in δΨε . The

vector Ąelds Y1, . . . , Yk are similarly unaffected by the Lie derivative of ℒΨε ; hence, this is a

valid construction.

We now compare it with the classic deĄnition of the inĄnitesimal gauge transformation as in

Def. 2.4.3; for this also recall Ex. 2.5.3.

7Alternatively, one shows it directly in the same fashion, using again that ev-pullbacks of sections generate

Γ(ev∗(W ×K)), such that Eq. (2.48) uniquely deĄnes the operator because Eq. 2.47 declares how the operator

acts on the generated sections of pullbacks.
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Theorem 2.5.19: Recover of classical deĄnition of inĄnitesimal gauge transfor-

mation

Let M be a smooth manifold, W,K vector spaces, and g a Lie algebra with Lie algebra

action γ on W , induced by a Lie algebra representation ψ. Moreover, let g∇ = ∇γ be

the g-connection induced by the canonical Ćat connection ∇ of the trivial vector bundle

W ×K → W as in Ex. 2.5.3, and Ψε = (δεΦ, δεA) for an ε : Mg(M ;W ) → C∞(M ; g).

Then we have

(δεL)(Φ, A) =
d

dt

∣∣∣∣
t=0

[t 7→ L(Φ + tδϵΦ, A+ tδϵA)] (2.52)

for all L : Mg(M ;W ) → Ωk(M ;K) (k ∈ N0) and (Φ, A) ∈ Mg(M ;W ), where ϵ :=

ε(Φ, A), t ∈ R, and δε is as deĄned in Def. 2.5.17 with respect to ∇γ and Ψε.

In other words, we recover Def. 2.4.3, especially when taking an ε ∈ C∞(M ; g), i.e. a

constant ε, ŤconstantŤ in sense of

ε(Φ, A) = ε
(
Φ′, A′)

for all (Φ, A), (Φ′, A′) ∈ Mg(M ;W ).

Remark 2.5.20: δεA as transformation of a functional

Recall that d/dt is with respect to the canonical Ćat connection of M × W → M . Also

observe that δεA is here trivially also given by δεϖ2, where ϖ2(Φ, A) := A, the projection

onto the second factor in Mg. Viewing the Ąeld of gauge bosons as the functional ϖ2,

one may want to deĄne the inĄnitesimal gauge transformation of A as the inĄnitesimal

gauge transformation of ϖ2; since ϖ2 is g-valued, we would have

ι(ϖ2)(Y ) ∈ Γ(ev∗(W × g))

for all Y ∈ X(M), and, thus, ι(A) := ι(ϖ2)(Φ, A) ∈ Ω1(M ; Φ∗(W × g)) for any Ąxed

Φ. For the inĄnitesimal gauge transformation of the Ąeld strength one also applies the

bookkeeping trick such that it has values in ev∗(W × g), so, as we mentioned before, we

want to view the Lie algebra as a bundle over W instead of a bundle over M .

Proof of Thm. 2.5.19.

Let (ea)a be a basis of K, that especially implies

∇
(
ιW (ea)

)
= 0.

For L : Mg(M ;W ) → Ωk(M ;K) we then write

ι(L) = La ⊗ ev∗(ιW (ea)
)
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for La : Mg(M ;W ) → Ωk(M), so, La ∈ Ωk(M × Mg(M ;W )), and, thus, by using Prop. 2.5.15,

(δεL)(Y1, . . . , Yk)♣(Φ,A) = δΨε

(
ι(L)(Y1, . . . , Yk)

)∣∣
(Φ,A)

= ℒΨε(La(Y1, . . . , Yk))♣(Φ,A) ev∗(ιW (ea)
)∣∣

(Φ,A)︸ ︷︷ ︸
=Φ∗(ιW (ea))=ιM (ea)

−
(
La(Y1, . . . , Yk) ev∗

(
∇γ(ε)

(
ιW (ea)

)∣∣∣
(Φ,A)︸ ︷︷ ︸

=0

=
(
ℒΨε♣(Φ,A)

(La) ⊗ ιM (ea)

(Y1, . . . , Yk)

=


d

dt

∣∣∣∣
t=0

[t 7→ L(Φ + tδϵΦ, A+ tδϵA)]


(Y1, . . . , Yk)

for all (Φ, A) ∈ Mg(M ;W ) and Y1, . . . , Yk ∈ X(M), using that Ψε♣(Φ,A) = (δϵΦ, δϵA). ■

This concludes this section, we have shown how to write the inĄnitesimal gauge transformation

using g-connections. One can even show that the gauge invariance of the Yang-Mills-Higgs

Lagrangian can be shown with the same calculation of the previous section if ε is allowed to

depend on Mg(M ;W ). Such a dependency starts to matter when applying the inĄnitesimal

gauge transformation twice, which we will discuss later in full generality. Let us now shortly

discuss what we have learned.

First of all, we needed to do the bookkeeping trick. That was due to the Lie algebra action

γ, which acts on N = W and not on M . Hence, the natural construction of g-connections

using γ is deĄned on bundles over N . This was why we needed to make a pullback and to

think of functionals as having values in a pullback of a trivial bundle over N , especially using

Φ ∈ C∞(M ;N). For example, we thought of the Lie algebra g as a trivial bundle over M and

N, M × g and N × g, respectively, and it is more suitable to think of M × g as Φ∗(N × g). The

aim of the presented generalised gauge theory is also to generalise the trivial Lie algebra bundle,

especially getting rid of a global trivialisation by replacing it with some ŤsuitableŤ bundle E.

Hence, motivated by this section and as an ansatz, we are going to deĄne E in place of N × g

later and Φ∗E will replace M × g. In the same manner other vector spaces may be replaced like

that, too.

Second, assume we have that non-trivial bundle E now. Then we cannot impose the existence

of a canonical Ćat connection anymore as we did in all the basic deĄnitions before, like in

Def. 2.4.3; deĄning d/dt using the tangent map would lead to arising horizontal components

in the corresponding tangent bundle which may make further calculations more complicated

when a functional is used in other functionals, like in contractions using scalar products and

metrics, such that one may need to Ąx a horizontal distribution. Therefore the deĄnition of

inĄnitesimal gauge transformation as provided here is a Ąrst step towards a formulation using

(g-)connections, e.g. taking a connection ∇ and then deĄning g∇ = ∇γ .
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Third, one could argue that one could just look at vector bundle connections ∇ for which there

is always a pullback, avoiding the problems discussed in this section. However, g-connections

are more general, which we will see later, and we will then have an even more general notion.

But, for example, allow inĄnite-dimensional Lie algebras, then take g = X(N) and γ = 1, the

identity; then one clearly has the typical notion of a vector bundle connection. Especially when

thinking about that the inĄnitesimal gauge transformation are just certain, not all, vector Ąelds

on Mg, one might argue why not using a different connection like a g-connection which is not

directly related to ∇. Recall Ex. 2.5.4, we could also take ∇bas, which is clearly different to

∇γ as discussed there, even though ∇γ contributes to its deĄnition. We will later see that

∇bas does not necessarily have any notion of a parallel frame, even when it is assumed to be

Ćat.8 Actually, we are going to use the basic connection later, also for the inĄnitesimal gauge

transformations. We will show that the gauge invariance of the Yang-Mills-Higgs Lagrangian

can still be shown although we use ∇bas, also in the context of the typical formulation of gauge

theory. The advantage of the basic connection will be that it is always Ćat in the context of

gauge theory, while ∇γ might not be, which results into that we can generalize the well-known

relation

[
δε, δ

′
ε

]
= −δ[ε,ε′]

g
,

where the sign comes from our sign conventions deĄned earlier. We will see that a possible cur-

vature of ∇γ will not result into a generalization of that equation, if we deĄne the inĄnitesimal

gauge transformations using ∇γ . Moreover, we have seen in Ex. 2.5.4 that ∇bas is a gener-

alization of a Lie algebra representation; this will lead to that the basic connection supports

the symmetries of gauge theories, leading to more convenient formulas of inĄnitesimal gauge

transformations.

Last, the Lie algebra g is not only important from an algebraic point of view, but also in sense

of a connection besides the Ąeld of gauge bosons A, playing the role of a Ťdirection of derivativeŤ

similar to the tangent bundle when deĄning typical vector bundle connections. Thus, let us now

introduce an object generalizing both aspects, aspects of Lie algebras and tangent bundles: Lie

algebroids.

8Flatness will be deĄned later for such connections, but the construction has the typical form.
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3. General theory of Lie algebroids

3.1. Lie algebroids

In the following we follow [2, §VII].

DeĄnition 3.1.1: Lie algebroid, [2, reduced deĄnition of §16.1, page 113]

Let E → N be a real vector bundle of Ąnite rank. Then E is a smooth Lie algebroid if

there is a bundle map ρ : E → TN , called the anchor, and a Lie algebra structure on

Γ(E) with Lie bracket [·, ·]E satisfying

[µ, fν]E = f [µ, ν]E + ℒρ(µ)(f) ν (3.1)

for all f ∈ C∞(N) and µ, ν ∈ Γ(E), where ℒρ(µ)(f) is the action of the vector Ąeld ρ(µ)

on the function f by derivation. We will sometimes denote a Lie algebroid by (E, ρ, [·, ·]E).

Remark 3.1.2: Transitive Lie algebroids, [2, very beginning of §17; page 123]

If the anchor ρ is surjective, then we say that E is transitive.

Remarks 3.1.3.

We often will just write ŤLet E be a Lie algebroid.Ť, with that we canonically also denote the

anchor by ρ or ρE and the Lie bracket by [·, ·]E without further clarifying these notations.

Furthermore, [2, §16.1, page 113] imposes that ρ is a homomorphism of Lie brackets as a part

of the deĄnition of Lie algebroids, but we will see in the following that this is not needed, it will

be already a consequence of this reduced deĄnition as explained in e.g. [8, page 68].

Example 3.1.4: [2, §16.2, page 114]

The two basic examples of Lie algebroids are the following.

1. Each Ąnite dimensional real Lie algebra is a Lie algebroid over a point set ¶∗♢ with

zero anchor.

2. The tangent bundle TN of any manifold N where the anchor is the identity map

and where the Lie bracket is the usual one of vector Ąelds.

As shown by the basic examples above, the idea behind Lie algebroids is that they are a

simultaneous generalization of tangent bundles and Lie algebras, this allows a generalization of

speciĄc terms of their calculus to Lie algebroids. We will also always view tangent bundles as

Lie algebroids given by the structure presented in Ex. 3.1.4.
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DeĄnition 3.1.5: Basic calculus on Lie algebroids E

Let E → N be a Lie algebroid and V → N a vector bundle, then we deĄne the following:

• Structure functions, [2, §16.5, page 119]

Let (ea)a be some local frame over some open subset U ⊂ N . Then the structure

functions Cabc ∈ C∞(U) are deĄned by

[eb, ec]E = Cabcea. (3.2)

• E-Lie derivatives, [2, §16.1; page 113]

One can deĄne E-Lie derivatives, similar as in the situation of tangent bundles,

by

ℒµ(ν) := [µ, ν]E , (3.3)

ℒµ(f) := ℒρ(µ)(f) (3.4)

for all f ∈ C∞(N) and µ, ν ∈ Γ(E). The Leibniz rule (3.1) then reads

ℒµ(fν) = fℒµ(ν) + ℒµ(f) ν (3.5)

for all f ∈ C∞(N) and µ, ν ∈ Γ(E). We will use both notations, ℒµ and ℒρ(µ); it

is clear by context which is meant.

• E-forms, [2, §18.1; page 131]

The antisymmetric parts of (0, s)-E-tensors deĄne the E-forms, i.e. Ωs(E) :=

Γ(
∧sE∗) (s ∈ N0). The previously deĄned Lie derivative can be extended to

those forms (and general E-tensors) with the typical deĄnitions by imposing the

Leibniz rule. As for typical forms, one can deĄne E-forms with values in V by

Ωq(E;V ) := Γ(
∧sE∗ ⊗ V ).

• E-differential, [2, §18.1, page 131]

The E-differential is deĄned as dE : Ω•(E) → Ω•+1(E) by

(dEω)(ν0, . . . , νs) :=
∑

i

(−1)i ℒνi
(ω(ν0, . . . , ν̂i, . . . , νs))

+
∑

i<j

(−1)i+j ω
(
[νi, νj ]E , ν0, . . . , ν̂i, . . . , ν̂j , . . . , νs

)
(3.6)

for all ω ∈ Ωs(E) and ν0, . . . , νs ∈ Γ(E).

Remarks 3.1.6.

• Γ(E) is an inĄnite-dimensional Lie algebra w.r.t. [·, ·]E but it should be seen as a generaliza-

tion of Ąnite dimensional Lie algebras whose ŤĄnite dimensionŤ is the Ąnite rank of E: Choose
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a local frame (ea)a of E over an open subset U ⊂ N . As introduced, one gets in general now

structure functions Cabc ∈ C∞(U) instead of structure constants and a base of the Lie algebra

is replaced by such a (local) frame on the vector bundle; recall the last section about classical

gauge theory where we viewed the basis of the Lie algebra as a global constant frame.

• In the following we will argue that the anchor of a Lie algebroid is a homomorphism of Lie

brackets (if viewed as a tensor acting on sections). With that one can then show d2
E = 0 by

precisely the same calculation as one does with respect to the de-Rham differential. As argued in

[2, §18.1, page 131f.], there is a one-to-one correspondence between Lie algebroid structures and

such differential operators squaring to zero and satisfying the graded Leibniz rule with respect

to the wedge product. Moreover, there is also a correspondence to vector bundles admitting a

cohomological vector Ąeld; but we wonŠt use these relationships which is why we are not going

to state or explain these relationships explicitly.

In older works about Lie algebroids (also in [2]) one often sees that the deĄnition also contains

the condition about that the induced map Γ(ρ) : Γ(E) → X(N) (which we will still denote as ρ)

is a homomorphism of Lie algebras w.r.t. [·, ·]E and [·, ·], the Lie bracket of vector Ąelds X(N).

But that is not needed, see e.g. [8, page 68]. To show this we want to introduce some measures

for the homomorphism property and the Jacobi identity. Let us start with the former.

DeĄnition 3.1.7: Curvature of morphisms,

[3, variant of DeĄnition 5.2.9; page 187]

Let E1, E2 be two Lie algebroids over the same base manifold N . Then the curvature

of a vector bundle morphism ξ : E1 → E2 is a map Rξ : Γ(E1) × Γ(E1) → Γ(E2)

deĄned by

Rξ(µ, ν) := [ξ(µ), ξ(ν)]E2
− ξ

(
[µ, ν]E1


(3.7)

for all µ, ν ∈ Γ(E1).

Remarks 3.1.8.

Rξ is clearly anti-symmetric.

For an anchor ρ of a Lie algebroid we therefore expect Rρ = 0 in case it is a homomorphism

of Lie brackets.

Later, in the sections about connections, we will see that it makes sense to call Rξ curvature,

though one may already see why by its deĄnition. What we want to show is that Rρ = 0 for an

anchor ρ of a Lie algebroid. Hence, let us Ąrst show that those curvature are tensors if ξ is an

anchor preserving vector bundle morphism, which basically describes a morphism related to the

structure given by the anchor:1

1In fact, one can also deĄne vector bundles known as anchored vector bundles which are just vector bundles

with a bundle map like the anchor; see e.g. [9, §3, Ąrst part of DeĄnition 3.1]. Then the following deĄnition

is the deĄnition of morphisms of anchored vector bundles.
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DeĄnition 3.1.9: Anchor-preserving vector bundle morphism,

[3, §4.3, Equation (22); page 157]

Let Ei
πi→ Ni (i ∈ ¶1, 2♢) be two Lie algebroids over smooth manifolds Ni. Then we

say that a vector bundle morphism ξ : E1 → E2 over a smooth map f : N1 → N2
a is

anchor-preserving if it satisĄes

Df ◦ ρE1 = ρE2 ◦ ξ. (3.8)

aThat means π2 ◦ ξ = f ◦ π1.

Remark 3.1.10: Notations and base-preserving morphisms

• As it is well-known, ξ does not necessarily induce a map Γ(E1) → Γ(E2) on sections,

that depends on how f is structured. However, we have

π2
(
ξ(ν)

)
= f

(
π1(ν)︸ ︷︷ ︸
=1N1

)
= f

for all ν ∈ Γ(E1), such that ξ induces a tensor on Γ(E1) → Γ(f∗E2) (the C∞(N1)-

linearity follows trivially); see e.g. [10, paragraph after Propositon 7.10], too. Recall,

that we introduced that already for maps like Df at the end of the introduction, that is,

Df ∈ Ω1(N1; f∗TN2), which is also trivially an anchor-preserving vector bundle morphism

over f . This is why we write equations like Eq. (3.8) often as

Df ◦ ρE1 = (f∗ρE2) ◦ ξ (3.9)

when we view that condition as an equation for sections, in order to emphasize the

relationship with the pullback; recall that f∗ρE2 : Γ(f∗E2) → Γ(f∗TN2). However,

sometimes we also omit the notation of that pullback in that case.

• If E1, E2 are two Lie algebroids over the same base manifold N , then a vector

bundle morphism ξ : E1 → E2 is anchor-preserving if it satisĄes

ρE1 = ρE2 ◦ ξ. (3.10)

For this recall, that in this case we always mean base-preserving morphisms if not men-

tioning otherwise, that is, f = 1N . The anchor is therefore a trivial example for an

anchor-preserving morphism.

Remarks 3.1.11.

As in [3, DeĄnition 5.2.5; page 186] one may also call such anchor-preserving morphisms (E1-)

connections; also here it will be clearer later why, but to avoid confusion with typical connections

carrying a Leibniz rule (also called Koszul connection in [3]), we will not denote those as such.
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Lemma 3.1.12: Curvatures are tensorial in case of anchor-preservation,

[3, variant of Lemma 5.2.8; page 187]

Let E1, E2 be two Lie algebroids over the same base manifold N , and ξ : E1 → E2 an

anchor-preserving vector bundle morphism. Then Rξ is an anti-symmetric tensor, i.e. it

is C∞(N)-bilinear.

Remarks 3.1.13.

This also shows that one could test the homomorphism property of anchors in just one frame

around each point locally, because anchors are trivially anchor-preserving morphisms.

Proof of Lemma 3.1.12.

Rξ is clearly antisymmetric and, thus, we only need to show the C∞(N)-linearity with respect

to one argument. That is, applying the Leibniz rule on both summands,

Rρ(µ, fν) = [ξ(µ), fξ(ν)]E2
− ξ

(
[µ, fν]E1



= fRξ(µ, ν) + ℒ(ρE2
◦ξ)(µ)(f)

︸ ︷︷ ︸
ℒρE1

(µ)(f)

ξ(ν) − ξ
(
ℒρE1

(µ)(f) ν


= fRξ(µ, ν)

for all µ, ν ∈ Γ(E1) and f ∈ C∞(N). ■

Remarks 3.1.14.

By using what we discussed in Remark 3.1.10, one can deĄne a curvature also for vector bundle

morphisms of Lie algebroids over different bases, and that notion should still be a tensor in case

of anchor-preserving morphisms, too.

There is a certain relationship between the curvature of an anchor ρ using the Jacobiator

which will help us to show that anchors are also Lie bracket homomorphisms.

DeĄnition 3.1.15: Jacobiator, [10, Remark 6.12; page 35]

Let W be a vector space, not necessarily Ąnite-dimensional, equipped with an antisym-

metric bilinear bracket [·, ·]W : W × W → W, (v, w) 7→ [v, w]W . Then we deĄne the

Jacobiator J : W ×W ×W → W by

J(µ, ν, η) := [µ, [ν, η]W ]
W

+ [ν, [η, µ]W ]
W

+ [η, [µ, ν]W ]
W

(3.11)

for all µ, ν ∈ W .

Remarks 3.1.16.

It is clear that J = 0 if W = Γ(E) as Lie algebra, for E a Lie algebroid. It is also trivial to see

that J is R-trilinear and antisymmetric.
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Proposition 3.1.17: Relation of Jacobiator and anchor, [8, page 68]

Let E → N be a real vector bundle of Ąnite rank, equipped with a bundle map ρ : E → TN

and an antisymmetric bi-linear bracket [·, ·]E on the space of sections Γ(E) satisfying the

Leibniz rule (3.1) with respect to ρ. Then the following are equivalent:

• J is a tensor, where J is the Jacobiator related to Γ(E) with bracket [·, ·]E.

• Rρ = 0.

Remark 3.1.18: Anchor is a Homomorphism

This implies that the anchor of a Lie algebroid is a homomorphism of Lie algebras because

the deĄnition of Lie algebroids assumes the Jacobi identity on [·, ·]E , so, J = 0, the zero-

tensor. Vice versa, when we know that Rρ = 0, then we only need to check the Jacobi

identity in one frame around each point because J behaves like a tensor.

Proof of Prop. 3.1.17.

We have

J(µ, ν, fη) = [µ, [ν, fη]E ]
E

+ [ν, [fη, µ]E ]
E

+ [fη, [µ, ν]E ]
E

=
[
µ, f [ν, η]E + ℒρ(ν)(f) η

]
E

+
[
ν, f [η, µ]E − ℒρ(µ)(f) η

]
E

+ f [η, [µ, ν]E ]E − ℒρ([µ,ν]E)(f) η

= f ([µ, [ν, η]E ]E + [ν, [η, µ]E ]E + [η, [µ, ν]E ]E)︸ ︷︷ ︸
=J(µ,ν,η)

+ ℒρ(µ)(f) [ν, η]E + ℒρ(ν)(f) [η, µ]E − ℒρ(µ)(f) [ν, η]E + ℒρ(ν)(f) [µ, η]E

+ ℒρ(µ)

(
ℒρ(ν)(f)


η − ℒρ(ν)

(
ℒρ(µ)(f)


η − ℒρ([µ,ν]E)(f) η

= fJ(µ, ν, η) +
[
ℒρ(µ),ℒρ(ν)

]
(f) η − ℒρ([µ,ν]E)(f) η

= fJ(µ, ν, η) + ℒ[ρ(µ),ρ(ν)](f) η − ℒρ([µ,ν]E)(f) η

= fJ(µ, ν, η) − ℒRρ(µ,ν)(f) η

for all µ, ν, η ∈ Γ(E) and f ∈ C∞(N). Thus, we have

J(µ, ν, fη) = fJ(µ, ν, fη)

if and only if

Rρ(µ, ν) = 0,
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where we use that a vector Ąeld of N is zero when it always acts as zero derivation. The same

argument holds for all arguments due to the antisymmetry of J . Hence, we get the desired

equivalence of statements. ■

In the following we introduce other important examples of Lie algebroids which we need later,

see [2, §16.2].

Example 3.1.19: Bundle of Lie algebras,

[2, §16.2, Example 2; page 114] and [2, §16.3; page 116f.]

A bundle of Lie algebras, or BLA, is a bundle whose Ąbers consist of Lie algebras,

necessarily of the same dimension, giving rise to structure functions on the base manifold

which should be smooth.

Such a bundle is a Lie algebroid with the anchor ρ ≡ 0.

The converse is also true, every Lie algebroid with zero anchor is a bundle of Lie algebras

because then [·, ·]E behaves as a tensor due to the lack of a real Leibniz rule and is thence

a Ąeld of Lie algebra brackets. This is why BLAs may be just deĄned as Lie algebras with

zero anchor.

As argued in [3, Theorem 6.4.5; page 238f.], when the Lie algebras of each Ąbre of a bundle of

Lie algebras are isomorphic to each as Lie algebras, then we denote that as Lie algebra bundle

(in short LAB).

DeĄnition 3.1.20: Lie algebra bundle (LAB), [3, DeĄnition 3.3.8; page 104]

Let g be a Lie algebra. A Lie algebra bundle, or LAB, is a vector bundle K → N

equipped with a Ąeld of Lie algebra brackets [·, ·]g : Γ(K) × Γ(K) → Γ(K), i.e. [·, ·]g ∈

Γ
(∧2K∗ ⊗K


such that it restricts to a Lie algebra bracket on each Ąbre, and such that

K admits an LAB atlas ¶ψi : K♣Ui
→ Ui × g♢ of LAB charts subordinate to some

open covering (Ui)i of N , that is, an atlas such that each induced map ψi,p : Kp → g is a

Lie algebra isomorphism, where p ∈ Ui, Kp the Ąber at p, ψi,p := pr2 ◦ ψi♣Kp
and pr2 is

the projection onto the second factor.

We are going to discuss those later in more detail. For gauge theory the following example is

of special importance, and this example emphasizes why we are interested into Lie algebroids.

DeĄnition 3.1.21: Action Lie algebroids, [2, §16.2, Example 5; page 114]

Let
(
g, [·, ·]g


be a Lie algebra equipped with a Lie algebra action γ : g → X(N) on a

smooth manifold N . A transformation Lie algebroid or action Lie algebroid is

deĄned as the bundle E := N × g over N with anchor

ρ(p, v) := γ(v)♣p (3.12)
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for (p, v) ∈ E, and Lie bracket

[µ, ν]E ♣
p

:= [µp, νp]g +
(
ℒγ(µ(p))(ν

a) − ℒγ(ν(p))(µ
a)
∣∣∣
p
ea (3.13)

for all p ∈ N and µ, ν ∈ Γ(E), where one views a section µ ∈ Γ(E) as a map µ : N → g

and (ea)a is some arbitrary frame of constant sections.

Remarks 3.1.22.

[·, ·, ]E is here clearly well-deĄned since one just allows global constant frames. That is, another

global and constant frame is just given by fb = Ma
b ea, where Ma

b are constants (and invertible

as matrix). Due to this constancy,
(
ℒγ(µ(p))(ν

a) − ℒγ(ν(p))(µ
a)
∣∣∣
p
ea is clearly independent of

the chosen global constant frame.

Observe also that we have

ρ(ν) = γ(ν),

[µ, ν]E = [µ, ν]g

for all constant sections µ, ν ∈ Γ(E). We can trivially view constant sections of E as elements

of g as we did in Chapter 2; doing so implies that action Lie algebroids encode the Lie algebra

and its action.

Proposition 3.1.23: Action Lie algebroids are Lie algebroids,

[2, §16.2, Example 5; page 114]

Let
(
g, [·, ·]g


be some Lie algebra equipped with a Lie algebra action γ : g → X(N) on

a smooth manifold N . Then the action Lie algebroid as deĄned in Def. 3.1.21 is a Lie

algebroid structure on E = N × g. Moreover, it is the unique Lie algebroid structure on

E with

ρ(ν) = γ(ν), (3.14)

[µ, ν]E = [µ, ν]g (3.15)

for all constant sections µ, ν ∈ Γ(E).

Remarks 3.1.24.

The statement about uniqueness is equivalent to say that the action Lie algebroid is the unique

Lie algebroid structure on E = N × g such that the map h, deĄned by

g → Γ(E),

X 7→ h(X) = X,
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is a Lie algebra homomorphism with ρ ◦ h = γ,2 where we mean with h(X) = X that h(X) is

X as constant section in E. That emphasizes why we are interested into Lie algebroids when

we want to generalize gauge theory. Together with the uniqueness this also implies that action

Lie algebroids are the unique Lie algebroid structure related to classical gauge theory; which is

why we want to use those later to recover the classical theory.

Proof of Prop. 3.1.23.

First, let us show that we have a Lie algebroid structure. By construction it is clear that ρ is a

bundle map, [·, ·]E is antisymmetric and satisĄes the Leibniz rule w.r.t. ρ. Using a global frame

of constant sections (ea)a, the curvature Rρ of ρ (see Def. 3.1.7) is zero, in fact, for any p ∈ N

we have

Rρ(ea, eb)♣p = [ρ(ea), ρ(eb)︸ ︷︷ ︸
const.

= γ(eb♣p)=γ(eb)

]♣p − ρp
(

[ea, eb]E ♣
p



const.
= [γ(ea), γ(eb)]♣p − γ

(
[ea, eb]g

∣∣∣
p

= 0,

where we used that γ is a homomorphism for the last equality. Thence, ρ is a homomorphism.

Then by using Prop. 3.1.17 one can Ąnally show that the Jacobi identity is satisĄed. By using

again a global constant frame (ea)a and [ea, eb]E = [ea, eb]g, we get

J(ea, eb, ec) = [ea, [eb, ec]E ]
E

+ [eb, [ec, ea]E ]
E

+ [ec, [ea, eb]E ]
E

(p)

const.
= [ea, [eb, ec]E ]

g
+ [eb, [ec, ea]E ]

g
+ [ec, [ea, eb]E ]

g

const.
=

[
ea, [eb, ec]g

]
g

+
[
eb, [ec, ea]g

]
g

+
[
ec, [ea, eb]g

]
g

= 0.

Therefore we can conclude that this deĄnes a Lie algebroid. Uniqueness comes by construction

because constant sections describe a global frame and since we require that the anchor is a

bundle morphism, and that the Lie bracket on Γ(E) needs to satisfy the Leibniz rule; in other

words the deĄnition of the action Lie algebroid comes precisely from the motivation to impose

those conditions. That is, assume that we have another bundle map ρ′ : E → TN with

ρ′(ν) = γ(ν) = ρ(ν)

for all constant sections ν ∈ Γ(E). Then for all sections η = ηaea ∈ Γ(E) we have

ρ′(η) = ηaρ′(ea) = ηaρ(ea) = ρ(η),

2Observe the similarity to the deĄnition of anchor-preserving morphisms.
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hence, ρ′ = ρ follows trivially, and, so, we can assume the same anchor for any other Lie algebroid

structure. For the Lie bracket assume that there is another Lie bracket [·, ·]′E on Γ(E), satisfying

the Leibniz rule with respect to ρ′ = ρ, with

[µ, ν]′E = [µ, ν]g = [µ, ν]E

for all constant sections µ, ν. Therefore we can show for all sections η = ηaea, ξ = ξbeb ∈ Γ(E)

that

[η, ξ]′E = ηaξb [ea, eb]
′
E︸ ︷︷ ︸

=[ea,eb]E

+
(
ℒρ(η)(ξ

a) − ℒρ(ξ)(η
a)

ea

= [η, ξ]E

for all p ∈ N , using the Leibniz rule of both brackets with respect to ρ′ = ρ. This proves the

uniqueness. ■

Recall Prop. 2.1.16, with that we can use previous examples of Lie algebra actions to construct

action Lie algebroids.

Example 3.1.25: su(2)-action Lie algebroid, recall Ex. 2.1.9 and its references

Let E := R
3 × R

3 → R
3; ex, ey, ez are the standard unit vectors (which we will also

denote by e1, e2, e3, corresponding to x1 = x, x2 = y, x3 = z), the anchor is given by

ρ(ej) = −ϵjklx
k ∂/∂xl, where ϵjkl is the Levi-Civita tensor. The Lie bracket is given by

the cross product w.r.t. (ei)i, i.e. [ei, ej ]E := ei × ej .

That this is an action Lie algebroid simply follows by that its Lie algebra action is induced

by the Lie algebra representation introduced in Ex. 2.1.9.

Example 3.1.26: Electroweak interaction coupled to a Higgs Ąeld,

recall Ex. 2.1.10 and its references

The action Lie algebroid corresponding to the electroweak interaction coupled to

a Higgs Ąeld is deĄned as action Lie algebroid for g := su(2) × u(1) over N := C
2(∼=

R
4). Let i be the imaginary number, gw and g′ be positive real numbers (the coupling

constants), nγ be a non-zero natural number (a normalization constant) and

βl := gw
iσl
2

∈ su(2), l ∈ ¶1, 2, 3♢,

β4 := g′ i

2nγ
∈ u(1),

where the σl are the Pauli matrices

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i

i 0

)
, σ3 :=

(
1 0

0 −1

)
.
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Writing C
2 ∋ ω :=

(
ω1

ω2

)
=

(
x1 + ix2

x3 + ix4

)
∼=




x1

x2

x3

x4




and denoting the coordinate vector

Ąelds for the
(
xi
)
i

by ∂i, the Lie algebra action γ is then deĄned by

γ(β1)ω :=
gw
2

(
x4∂1 − x3∂2 + x2∂3 − x1∂4

∣∣∣
ω
,

γ(β2)ω :=
gw
2

(
−x3∂1 − x4∂2 + x1∂3 + x2∂4

∣∣∣
ω
,

γ(β3)ω :=
gw
2

(
x2∂1 − x1∂2 − x4∂3 + x3∂4

∣∣∣
ω
,

γ(β4)ω :=
g′

2

(
x1∂1 + x2∂2 + x3∂3 + x4∂4

∣∣∣
ω
,

which is induced by the Lie algebra representation introduced in Ex. 2.1.10, hence, it

deĄnes an action Lie algebroid.

Let us conclude this section by revisiting the isotropy introduced in Section 2.2. In order to

do so it is useful to start with action Lie algebroids E = N × g → N related to a Lie algebra g

action γ on a smooth manifold N . By Def. 2.2.1 the isotropy at p ∈ N is given by the kernel of

γ with point evaluation at p. However, as we have seen, this is precisely the kernel of the anchor

then at point p. Hence, we can immediately generalize the deĄnition of isotropies.

DeĄnition 3.1.27: Isotropies of Lie algebroids,

[2, §16.1, comment after the remark on page 113]

Let E → N be a Lie algebroid over a smooth manifold N . Then the isotropy of E is

deĄned as the kernel of the anchor ρ, Ker(ρ).

Recall the discussion after Cor. 2.2.3, the isotropy at a point is in general not an ideal of g,

however, the isotropy as a kernel of the anchor is an ideal of E in the sense of

ρ
(
ad(ν)

)
= ρ([ν, ·]E) = 0

for all ν ∈ Γ(E) with ρ(ν) = 0, using that ρ is a homomorphism of Lie brackets; one can

generalize this of course to open subsets of N . The Leibniz rule in [·, ·]E is basically canceling

the failure of being an ideal as it happened in the discussion after Cor. 2.2.3. Also observe that

[ν, fµ]E ♣
p

= f(p) [ν, µ]E ♣
p

+ ℒρ(ν)p
(f)

︸ ︷︷ ︸
=0

µp

for all f ∈ C∞(N) and ν, µ ∈ Γ(E) such that ρ(ν)p = 0 at a Ąxed point p ∈ N . Hence, the

Lie bracket becomes tensorial if restricted onto sections with values in the isotropy (at a point),
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therefore it is then a typical Lie bracket and it restricts onto each Ąbre such that Ker(ρp) is a Lie

algebra at each point p ∈ N , as also argued in [2, §16.1, comment after the remark on page 113].

However, the dimension of the isotropy is in general not constant which is why the isotropy is

in general not a bundle of Lie algebras; simply take an action Lie algebroid as in Ex. 3.1.26,

especially the action is induced by a Lie algebra representation on a vector space N = W . The

isotropy at 0 ∈ W is then always the full Lie algebra while aside that this is in general of course

not the case; we called this symmetry breaking, recall the discussion after Def. 2.3.9.

If the anchor is always zero, then the rank of the isotropy is constant and equals the ranks

of E. Hence, a Lie algebroid with zero anchor is a bundle of Lie algebras, as also argued in [2,

second example in §16.2; page 114].

In general, the anchor gives rise to a singular foliation on N due to that it is a homomorphism

of Lie brackets; we will discuss this later. Let us Ąrst turn very shortly to morphisms and then

to Lie algebroid connections.

3.2. Morphism of Lie algebroids

It is of course a natural question what a morphism of Lie algebroids is; we will only need the

easier deĄnition of morphisms for Lie algebroids over the same base, which is straightforward to

formulate.

DeĄnition 3.2.1: Base-preserving morphism of Lie algebroids,

[3, §3.3, second part of DeĄnition 3.3.1; page 100]

Let
(
E1, ρE1 , [·, ·]E1


and

(
E2, ρE2 , [·, ·]E2


be two Lie algebroids over the same base man-

ifold N . Then a morphism of Lie algebroids ϕ : E1 → E2 over N , or a base-

preserving morphism of Lie algebroids, is a vector bundle morphism with

ρE2 ◦ ϕ = ρE1 ,

ϕ
(
[µ, ν]E1


= [ϕ(µ), ϕ(ν)]E2

for all µ, ν ∈ Γ(E1).

When ϕ is additionally an isomorphism of vector bundles then we call it an isomorphism

of Lie algebroids over N , or a base-preserving isomorphism of Lie algebroids.

Remarks 3.2.2.

For a Lie algebroid E → N over a smooth manifold N its anchor ρ is therefore also a Lie

algebroid morphism E → TN ; recall Remark 3.1.18.

The Ąrst condition is actually the same as for anchor-preservation for morphisms over the

same base; recall the second point in Remark 3.1.10.

There is also a deĄnition of morphisms for Lie algebroids over different bases, but we will not
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need it which is why we are going to omit its deĄnition; see e.g. [10, §7].

We want to introduce connections as anchor-preserving morphisms; Ćatness is then equivalent

to say that connections are morphisms of Lie algebroids. In order to deĄne connections like that

we need to introduce the derivations on vector bundles.

3.3. Derivations on vector bundles V

In Chapter 2 we deĄned Lie algebra connections to deĄne inĄnitesimal gauge transformations.

Let us now start to reintroduce that concept for Lie algebroids, going towards Lie algebroid

connections, generalizing typical vector bundle connections.

Moreover, we want to view connections slightly different, as a certain morphism of Lie al-

gebroids. Before we can do this we need to introduce the Lie algebroid of derivations now,

which have a relationship to certain vector Ąelds known as linear vector Ąelds on a vector

bundle. The following constructions are motivated by [3, Example 3.3.4; page 102f.; and §3.4;

page 110ff.].

DeĄnition 3.3.1: Derivations on a vector bundle at a Ąxed point,

[3, variation of Example 3.3.4, page 102f.]

Let V → N be a vector bundle over a smooth manifold N and p ∈ N ; the Ąbre of V at p

we denote with Vp. Then a derivation on V at p is an R-linear map L : Γ(V ) → Vp for

which there exists a tangent vector ap(L) ∈ TpN such that

L(fv) = f(p) L(v) + ℒap(L)(f) vp (3.16)

for all f ∈ C∞(N) and v ∈ Γ(V ). We say that L lifts ap(L).

We deĄne the space of all derivations on V at p by

𝒟p(V ) := ¶L : Γ(V ) → Vp ♣ L a derivation on V at p♢ . (3.17)

Remarks 3.3.2.

It is clear that 𝒟p(V ) is a vector space, where the zero element is just the zero map with

ap(0) = 0, and all L ∈ 𝒟p(V ) can be restricted to open subsets U around p with the typical

arguments.

Our aim is to show that the disjoint union 𝒟(V ) of 𝒟p(V ) admits a vector bundle structure

and even forms a Lie algebroid. Its sections have then the following form, formally already

denoted by Γ(𝒟(V )).
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DeĄnition 3.3.3: Derivations on a vector bundle V ,

[3, Example 3.3.4; page 102f.]

Let V → N be a vector bundle over a smooth manifold N . Then a derivation on V is

an R-linear map 𝒯 : Γ(V ) → Γ(V ) such that there is a smooth vector Ąeld a(𝒯) ∈ X(N)

with

𝒯(fv) = f 𝒯(v) + ℒa(𝒯)(f) v (3.18)

for all f ∈ C∞(N) and v ∈ Γ(V ). We say that 𝒯 lifts a(𝒯).

We deĄne the space of all derivations on V by

Γ(𝒟(V )) := ¶𝒯 : Γ(V ) → Γ(V ) ♣ 𝒯 a derivation on V ♢ . (3.19)

Remarks 3.3.4.

It is clear that ℰ𝓃𝒹(V ) ⊂ Γ(𝒟(V )) with a(A) ≡ 0 for all A ∈ ℰ𝓃𝒹(V ), and that Γ(𝒟(V )) is a

C∞(N)-module.

The following result can be seen as a generalization of the section around Remark 2.1.18.

Proposition 3.3.5: Isomorphisms of the space of derivations of V at p,

[6, Example 3.10]

Let V → N be a real vector bundle with non-zero Ąnite rank and p ∈ N whose Ąber

we denote with Vp. Then each vector bundle connection ∇ on V induces a vector space

isomorphism

𝒟p(V ) ∼= TpN ⊕ End(Vp) (3.20)

Under such isomorphisms ap : 𝒟p(V ) → TpN , L 7→ ap(L) is the projection onto the Ąrst

factor.

Remarks 3.3.6.

The last statement shows why we say that ap(L) is lifted by L ∈ 𝒟p(V ).

Proof.

DeĄne T : TpN ⊕ End(Vp) → 𝒟p(V ) by

(X,A) 7→ T (X,A),

(T (X,A))(v) := T (X,A)(v) := ∇Xv♣p +A(vp) (3.21)

for all v ∈ Γ(V ). T is clearly bilinear, and T (X,A) clearly deĄnes a derivation at p. For

injectivity, observe

∇X = −A,
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for all (X,A) in the kernel of T , which is clearly a contradiction to the Leibniz rule in ∇X when

X ̸= 0 due to the fact that V has a non-zero rank. Thus, for such (X,A), X = 0 and then

clearly also A = 0; so, injectivity is given.

For surjectivity observe for all L ∈ 𝒟p(V ),

L(v) = ∇ap(L)v
∣∣∣
p

+ L(v) − ∇ap(L)v
∣∣∣
p

hence, use X := ap(L) ∈ TpN and deĄne A := L − ∇ap(L), which is clearly an element of

End(Vp). Hence, T is surjective, too.

That ap is under such an isomorphism the projection onto the Ąrst factor is clear by construc-

tion. ■

Trivially extending that isomorphism to all p ∈ N , leads to a canonical vector bundle structure

inherited by the Whitney sum TN ⊕ End(V ).

Lemma 3.3.7: Vector bundle of derivations,

[3, variation of the introduction in Example 3.3.4, page 102f.]

and [6, Example 3.10]

Let V → N be a real vector bundle with non-zero rank. Then there is a unique vector

bundle structure on 𝒟(V ) :=
∐
p∈N 𝒟p(V ) such that Γ(𝒟(V )) of Def. 3.3.3 is its space of

smooth sections, where
∐

is the disjoint union of sets.

Moreover, each connection ∇ on V deĄnes a vector bundle isomorphism

𝒟(V ) ∼= TN ⊕ End(V ), (3.22)

where TN ⊕ End(V ) is the Whitney sum of vector bundles.

Proof.

This follows by Prop. 3.3.5: Given a connection ∇, we can deĄne an isomorphism T : X(N) ⊕

ℰ𝓃𝒹(V ) → Γ(𝒟(V )) of C∞(N)-modules

T (X,A) := ∇X +A (3.23)

for all (X,A) ∈ X(N) ⊕ ℰ𝓃𝒹(V ). This shows that Γ(𝒟(V )) is a locally free sheaf of modules

of constant rank, and it restricts to 𝒟p(V ) at p ∈ N because T restricts to the isomorphism

of Prop. 3.3.5. Then we make use of the 1:1 correspondence of vector bundles and locally free

sheaf of modules of constant rank (over a sheaf of rings coming from a ringed space), which

implies a unique vector bundle structure on 𝒟(V ) :=
∐
p∈N 𝒟p(V ) such that Γ(𝒟(V )) is its

space of smooth sections. Since T is clearly C∞(N)-linear, we also have an isomorphism of

vector bundles 𝒟(V ) ∼= TN ⊕ End(V ) by T . ■

This leads to the following deĄnitions.
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DeĄnition 3.3.8: The bundle of derivations,

[3, variation of Example 3.3.4, page 102f.]

Let V → N be a real vector bundle with Ąnite rank. Then we deĄne the bundle of

derivations on V as the vector bundle 𝒟(V ) equipped with the vector bundle structure

of Lemma 3.3.7, assuming that the rank of V is non-zero; if the rank is zero, then we

deĄne 𝒟(V ) := N × ¶0♢.

Proposition 3.3.9: Lie algebroid structure on 𝒟(V ),

[3, Example 3.3.4, page 102f.]

Let V → N be a real vector bundle. 𝒟(V ) together with a deĄned by

𝒟(V ) → TN, (3.24)

𝒟p(V ) ∋ D 7→ a(D) := ap(D), (3.25)

and [·, ·]
𝒟(V ), deĄned by

Γ(𝒟(V )) × Γ(𝒟(V )) → Γ(𝒟(V )), (3.26)

(𝒯1,𝒯2) 7→ [𝒯1,𝒯2]
𝒟(V ) := 𝒯1 ◦ 𝒯2 − 𝒯2 ◦ 𝒯1, (3.27)

is a Lie algebroid with anchor a and Lie bracket [·, ·]
𝒟(V ). The anchor extended on sections

is exactly the same a as in Def. 3.3.3.

Remarks 3.3.10.

By Prop. 3.3.5, 𝒟(V ) is also transitive.

Proof.

For p ∈ N and for all f ∈ C∞(N), v ∈ Γ(V ), α, β ∈ R and D1, D2 ∈ 𝒟p(V ) we have

(αD1 + βD2)(fv) = f(p) (αD1 + βD2)(v) + ℒap(αD1+βD2)(f) vp

and

(αD1 + βD2)(fv) = αD1(fv) + βD2(fv)

= f(p) (αD1 + βD2)(v) +
(
αℒap(D1)(f) + βℒap(D2)(f)


vp

= f(p) (αD1 + βD2)(v) + ℒαap(D1)+βap(D2)(f) vp

and, hence,

ℒαap(D1)+βap(D2)(f) vp = ℒap(αD1+βD2)(f) vp.
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For a non-zero rank we can therefore conclude

αap(D1) + βap(D2) = ap(αD1 + βD2).

That means that a extends on sections, which gives the a given in Def. 3.3.3 on sections by

Lemma 3.3.7 (⇒ Def. 3.3.3 gives the sections of 𝒟(V ) ⇒ point evaluation at p of 𝒯 ∈ Γ(𝒟(V ))

gives a derivation of V at p lifting the tangent vector a(𝒯)♣p which we therefore identify as

ap(𝒯p)). While all of that is trivial for zero rank since then a ≡ 0.

That [·, ·]
𝒟(V ) is a Lie bracket is clear since it is just the typical commutator of linear operators

on a (inĄnite-dimensional) vector space. Thence, the only thing left is to show the Leibniz rule,

which simply follows by

[𝒯1, f𝒯2]
𝒟(V )(v) = 𝒯1(f𝒯2(v)) − f 𝒯2(𝒯1(v))

Eq. (3.18)
= f [𝒯1,𝒯2]

𝒟(V )(v) + ℒa(𝒯1)(f) 𝒯2(v)

for all f ∈ C∞(N), v ∈ Γ(V ). ■

As usual for differential operators, we will identify those derivations as certain vector Ąelds,

following [9, beginning of §2; Γ(𝒟(V )) is there denoted as 𝒶𝓊𝓉(E)] and [3, §3.4 et seq.; page

110ff.]. For the following recall that for each vector bundle V
π
→ N there is also a vector bundle

structure for TV
Dπ
→ TN , and the following diagram describes a double vector bundle

TV TN

V N

Dπ

πTV πTN

π

that is, each horizontal and vertical line is a vector bundle, and the horizontal and vertical

scalar multiplications on TV commute, see e.g. [11, §3ff.]. Let us shortly recap the vector

bundle structure of TV
Dπ
→ TN , following [3, discussion at the beginning of §3.4; page 110ff.]:

The linear structure at v ∈ TpN (p ∈ N) is basically given by the vertical structure of V

prolonged along the Ąbre Vp, but as an affine space whose offset is given by v. That is, let

ξ, η ∈ TV with

DπTV (ξ)π(ξ) = DπTV (η)π(η) =: v,

and, hence, due to πTN (v) = p,

p = (π ◦ πTV )(ξ) = (π ◦ πTV )(η).

Thus, one can take curves f, h : I → V (I ∈ R an open interval around 0) with

f(0) = πTV (ξ),
d

dt

∣∣∣∣
t=0

f = ξ,

h(0) = πTV (η),
d

dt

∣∣∣∣
t=0

h = η,
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such that

π ◦ f = π ◦ h,

because the condition on ξ and η imply on the base paths π ◦ f, π ◦ h : I → N that

(π ◦ f)(0) = p = (π ◦ h)(0),

d

dt

∣∣∣∣
t=0

(
π ◦ f

)
= DπTV (ξ)(ξ) = DπTV (η)(η) =

d

dt

∣∣∣∣
t=0

(
π ◦ h

)
.

Then the addition and scalar multiplication with λ ∈ R for TV
Dπ
→ TN is deĄned by

ξ η :=
d

dt

∣∣∣∣
t=0

(f + h),

λ · ξ :=
d

dt

∣∣∣∣
t=0

(λh),

where the addition of curves is well-deĄned because of π ◦ f = π ◦ h which implies π(f + h) =

π(f) = π(h); so, one can take the sum of the curves and

Dπ(ξ η) =
d

dt

∣∣∣∣
t=0

(
π(f + h)︸ ︷︷ ︸

=π(f)

)
= Dπ(ξ) = v.

In other words, those operations come from interpreting tangent vectors as equivalence classes of

curves, assuming there are representatives of the classes sharing the same base path (π◦f = π◦h)

with which one can do those operations. It is trivial to show that we have a double vector bundle.

The operations of the linear structure in TV
πTV→ V is still denoted in the same manner as usual,

and by deĄnition one also gets

πTV (ξ η) = πTV (ξ) + πTV (η),

πTV (λ · ξ) = λ πTV (ξ).

DeĄnition 3.3.11: Linear vector Ąelds, [3, DeĄnition 3.4.1; page 113]

Let V
π
→ N be a vector bundle over a smooth manifold N . Then a linear vector Ąeld

on V is a vector Ąeld ξ ∈ X(V ) which is also a vector bundle morphism V → TV over a

vector Ąeld X ∈ X(N), i.e. on one hand the following diagram commutes

V TV

N TN

ξ

π Dπ

X

that is

Dπ ◦ ξ = X ◦ π = π∗X, (3.28)
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and on the other hand we have additionally

ξαx+βy = α · ξx β · ξy (3.29)

for all x, y ∈ V with π(x) = π(y) and α, β ∈ R.

We say that ξ lifts X.

Remark 3.3.12: Coordinates on TV

As usual, vector Ąelds are locally determined by their action on coordinate functions, that

is, denote with xi coordinates on N , then coordinates on V are given by π∗xi and yj ,

where the latter are the Ąbre coordinates, given by a local trivialization, especially yj are

(local) smooth and Ąbre-linear functions on V , elements of Γ(V ∗), whose set we denote

by C∞
lin(V ) := Γ(V ∗) as in [3]. That means that (linear) vector Ąelds on V are uniquely

given by their action on π∗C∞(N) and C∞
lin(V ) := Γ(V ∗), we will emphasize this in the

following proposition.

The following proposition shows the idea behind the linear vector Ąelds.

Proposition 3.3.13: Action of linear vector Ąelds,

[3, Ąrst two statements of Proposition 3.4.2; page 113f.]

Let V
π
→ N be a vector bundle over a smooth manifold N , and ξ ∈ X(V ). Then ξ is a

linear vector Ąeld on V if and only if ξ(π∗C∞(N)) ⊂ π∗C∞(N) and ξ(C∞
lin(V )) ⊂ C∞

lin(V ).

Proof.

• We prove that by Ąrst showing that Eq. (3.28) is equivalent to ξ(π∗C∞(N)) ⊂ π∗C∞(N)

for ξ ∈ X(V ). Let f ∈ C∞(N), then

ξ(π∗f) = d(π∗f)(ξ) = (π∗df)
(
Dπ(ξ)

)
.

If Dπ(ξ) = π∗X for an X ∈ X(N), then clearly

ξ(π∗f) = π∗(df(X)) ∈ π∗(C∞(N)).

Therefore let us now show the other direction. We know that Dπ(ξ) ∈ Γ(π∗TN). Let
(
∂i = ∂/∂xi

)
i

local coordinate vector Ąelds on N , then we can write

Dπ(ξ) = dπi(ξ) π∗∂i,

and, so, we get the well-known formula
(
for f = xj

)

ξ
(
π∗xj


= dπi(ξ) π∗

(
∂ix

j


= dπj(ξ).
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Hence, when there is for all f an hf ∈ C∞(N) with ξ(π∗f) = π∗hf ,3 then

Dπ(ξ) = dπi(ξ)︸ ︷︷ ︸
=ξ(π∗xi)

π∗∂i = π∗

(∑

i

hxi ∂i

)
.

Since the coordinates xj were arbitrary, we can conclude that there is a vector Ąeld X ∈ X(N)

such that Dπ(ξ) = π∗X; that is, deĄne X :=
∑
i hxi ∂i, and then show it is independent of

coordinates, that is, take another coordinate system (∂′
α = ∂/∂zα)α of N . Then denote with M

the (local) invertible Jacobian with ∂′
α = M i

α∂i. Since terms like ξ
(
π∗xi

)
describe the components

of ξ along the coordinates π∗xi, we can immediately conclude

π∗hzα = ξ(π∗zα) = π∗
((
M−1

α
i


ξ
(
π∗xi


= π∗

((
M−1

α
i
hxi


.

Therefore

∑

α

hzα ∂′
α =

∑

i

hxi ∂i,

thence, X is well-deĄned. Thus, Eq. (3.28) is equivalent to ξ(π∗C∞(N)) ⊂ π∗C∞(N).

• Now let ξ ∈ X(V ) satisfying Eq. (3.28) and lifting a vector Ąeld X ∈ X(N), x, y ∈ V with

π(x) = π(y) (such that Dxπ(ξx) = Dyπ(ξy) by Eq. (3.28)), and let fx, fy : I → V, (I ⊂ R an

open interval around 0) be curves with fx(0) = x, fy(0) = y, π(fx) = π(fy) and

d

dt

∣∣∣∣
t=0

fx = ξx,
d

dt

∣∣∣∣
t=0

fy = ξy,

then observe for all λ ∈ C∞
lin(V ) that

(α · ξx β · ξy)(λ) =


d

dt

∣∣∣∣
t=0

(αfx + βfy)


(λ)

=
d

dt

∣∣∣∣
t=0

(
λ ◦ (αfx + βfy)︸ ︷︷ ︸

λ linear
= α(λ◦fx)+β(λ◦fy)

)

= α ξx(λ) + β ξy(λ)

for all α, β ∈ R.

If ξ satisĄes Eq. (3.29), then by those results

ξαx+βy(λ) = α ξx(λ) + β ξy(λ),

therefore ξ(λ) ∈ C∞
lin(V ) and the proof is Ąnished (due to the previous bullet point).

If, on the other hand, ξ(λ) ∈ C∞
lin(V ), then also

ξαx+βy(λ) = α ξx(λ) + β ξy(λ) = (α · ξx β · ξy)(λ).

3That restricts trivially to local subsets, that is, it will work for f = xj , too.

70



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

For an h ∈ C∞(N) observe

(α · ξx β · ξy)(π
∗h) =


d

dt

∣∣∣∣
t=0

(αfx + βfy)


(π∗h)

=
d

dt

∣∣∣∣
t=0

(
h ◦ π ◦ (αfx + βfy)︸ ︷︷ ︸

=π◦fx

)

= dph (Dxπ(ξx))︸ ︷︷ ︸
Eq. (3.28)

= Dαx+βyπ(ξαx+βy)

= ξαx+βy(π
∗h).

This proves the claim by Remark 3.3.12; that is, Ąx additionally to the coordinates π∗xi Ąbre

coordinates yj ∈ C∞
lin(V ), then express ξ in those coordinates by

ξαx+βy = ξαx+βy

(
π∗xi


π∗

∂

∂xi

∣∣∣∣
αx+βy

+ ξαx+βy

(
yj
 ∂

∂yj

∣∣∣∣
αx+βy

= (α · ξx β · ξy)
(
π∗xi


π∗

∂

∂xi

∣∣∣∣
αx+βy

+ (α · ξx β · ξy)
(
yj
 ∂

∂yj

∣∣∣∣
αx+βy

= α · ξx β · ξy.

■

As vector Ąelds the linear vector Ąelds carry a natural Lie algebroid structure when they are

a closed algebra, and this is trivial to check.

Corollary 3.3.14: Linear vector Ąelds are a subalgebra,

[3, Corollary 3.4.3; page 114]

Let V
π
→ N be a vector bundle over a smooth manifold N , and ξ, ς ∈ X(V ) linear vector

Ąelds on V lifting vector Ąelds X,Y ∈ X(N), respectively. Then [ξ, ς] is a linear vector

Ąeld lifting [X,Y ].

Proof.

That [ξ, ς] is a linear vector Ąeld trivially follows by Prop. 3.3.13, that is, compositions of

linear vector Ąelds like ξ ◦ ς are clearly also lineary vector Ąelds by Prop. 3.3.13, thus, also

[ξ, ς] = ξ ◦ ς − ς ◦ ξ.

We also have Dπ(ξ) = π∗X and Dπ(ς) = π∗Y . That immediately implies

Dπ([ξ, ς]) = π∗([X,Y ]),

which is a well-known fact, as also given in [4, Proposition A.1.49; page 615].
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In case this is unknown for the reader: It can be quickly shown by Ąrst observing that

ℒξ(π
∗f) = ℒξ(f ◦ π) = π∗(df(Dπ(ξ))) = π∗(ℒX(f))

for all f ∈ C∞(N), as also given in [4, Lemma A.1.48; page 615]; basically the same as for pull-

back connections. By deĄnition we also clearly have Dπ(ξ)(f) = ℒξ(π
∗f). Therefore altogether

π∗((ℒX ◦ ℒY )(f)) = ℒξ(π
∗(ℒY (f))) = (ℒξ ◦ ℒς)(π

∗f),

thus,

π∗([X,Y ](f)) = π∗((ℒX ◦ ℒY − ℒY ◦ ℒX)(f)
)

= ℒ[ξ,ς](π
∗f) = Dπ

(
[ξ, ς]

)
(f),

which Ąnishes the proof. ■

Finally we can relate it to the derivations of V , denoting the Lie algebra of linear vector Ąelds

by 𝒶𝓊𝓉(V ); the notation comes from that one can motivate that linear vector Ąelds are the Lie

algebra of 𝒜𝓊𝓉(V ), but we are neither going to prove nor use this, see e.g. the beginning of [9]

for a short motivation.

Theorem 3.3.15: Derivations as linear vector Ąelds,

[3, Theorem 3.4.5; page 116]

Let V
π
→ N be a vector bundle over a smooth manifold N , and let D be a map deĄned by

𝒶𝓊𝓉(V ) → Γ(𝒟(V )),

ξ 7→ Dξ, (3.30)

where Dξ ∈ Γ(𝒟(V )) is given by

λ(Dξv) := X
(
λ(v)

)
− ξv(λ) (3.31)

for all v ∈ Γ(V ) and λ ∈ Γ(V ∗) = C∞
lin(V ), and where X ∈ X(N) is the vector Ąeld lifted

by ξ.

Then D is a bracket-preserving isomorphism of C∞(N)-modules.

Remarks 3.3.16.

Let us show that D is well-deĄned. Observe

λ
(
Dξ(αv + βw)

)
= X

(
λ(αv + βw)

)
− ξαv+βw(λ)

= α
(
X
(
λ(v)

)
− ξv(λ)


+ β

(
X
(
λ(w)

)
− ξw(λ)



= α λ(Dξv) + β λ(Dξw)
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= λ(αDξv + βDξw)

for all v, w ∈ Γ(V ), λ ∈ Γ(V ∗), ξ ∈ 𝒶𝓊𝓉(V ) (lifting X ∈ X(N)) and α, β ∈ R, using π(v) = 1N =

π(w) and Prop. 3.3.13, that is, ξ(λ) is linear. Similarly one shows for all f ∈ C∞(N) that

λ(Dξ(fv)) = X
(
λ(fv)

)
︸ ︷︷ ︸
=fλ(v)

−ξfv(λ)

= f
(
X
(
λ(v)

)
− ξv(λ)

)
+ ℒX(f) λ(v)

= f λ(Dξv) + ℒX(f) λ(v)

= λ(fDξv + ℒX(f) v).

Hence, Dξ ∈ Γ(𝒟(V )).

Very short sketch for the proof of Thm. 3.3.15.

We are not going to show this because we will not need this statement, please see the reference;

the proof is relatively straightforward, but using several tricks. One Ąrst shows that 𝒶𝓊𝓉(V ) are

sections of a certain Lie algebroid isomorphic to 𝒟(V ∗) such that one essentially needs to show

that 𝒟(V ) ∼= 𝒟(V ∗). For all L ∈ Γ(𝒟(V )) one can deĄne a T ∈ Γ(𝒟(V ∗)) as usual by forcing

the Leibniz rule as in

(
T (λ)

)
(v) := a(L)

(
λ(v)

)
− λ

(
L(v)

)

for all λ ∈ Γ(V ∗) and v ∈ Γ(V ). This deĄnes also an isomorphism of Lie algebroids 𝒟(V ) ∼=

𝒟(V ∗); see more in [3, discussion after Corollary 3.4.3; page 114ff.]. ■

3.4. Lie algebroid connections

In the following we will introduce the notion of E-connections, following partially [6, §2]. See

also [7, §2.5] e.g. for a discussion about an E-Levi-Civita connection and other similar terms

similar to Riemannian geometry. However, we want to introduce connections using the previous

section, as in [3].

DeĄnition 3.4.1: E-connection, E-curvature and E-torsion,

[3, variation of DeĄnition 5.2.5; page 186]

[3, variation of DeĄnition 5.2.9; page 187]

[3, §4.1, trivial generalization of Equation (14); page 154]

Let E → N be a Lie algebroid over a smooth manifold N and V → N be a vector bundle

over N .

1. An E-connection on the vector bundle V is a base- and anchor-preserving vector

bundle morphism E∇ : E → 𝒟(V ), ν 7→ E∇ν .
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2. The E-curvature RE∇ of E∇ is deĄned as in Def. 3.1.7 by

RE∇(µ, ν) :=
[
E∇µ,

E∇ν

]
𝒟(V )

− E∇[µ,ν]E (3.32)

for all µ, ν ∈ Γ(E). E∇ is called Ćat if its curvature vanishes.

3. In the special case of V = E we can deĄne also the E-torsion tE∇ as an element of

𝒯
1

2 (E) given by

tE∇(µ, ν) := E∇µν − E∇νµ− [µ, ν]E (3.33)

for all µ, ν ∈ Γ(E).

Remarks 3.4.2.

• The base- and anchor-preservation in the deĄnition of an E-connection especially means

a ◦ E∇ = ρ,

so, for all µ ∈ E we have that E∇µ is R-linear and

E∇µ(fv) = f E∇µv + ℒρ(µ)(f) v,

for all f ∈ C∞(N) and v ∈ Γ(V ). That it is a base-preserving vector bundle morphism, implies

that one can extend E∇ to sections, giving rise to an R-linear map Γ(E) → Γ
(
𝒟(V )

)
, with

E∇fν(v) = f E∇νv

for all ν ∈ Γ(E), f ∈ C∞(N) and v ∈ Γ(V ). This is precisely the typical deĄnition of a

connection, besides that the Leibniz rule is along a more general anchor. In the case of E = TN ,

especially ρE = 1TN , we have a typical vector bundle connection, and it is trivial to see that

both deĄnitions are equivalent in that situation.

• As noted at the end of the introduction, when write ŤconnectionŤ or Ťvector bundle con-

nectionŤ, then we always mean typical TN -connections.

• This clearly generalizes the concept of Lie algebra connections as in Def. 2.5.1, for example

look at an action Lie algebroid, but now with the tensorial behaviour again due to the bundle

structure.

• As for vector bundle connections, one can view the curvature as a map

RE∇ : Γ(E) × Γ(E) × Γ(V ) → Γ(V ),

(µ, ν, v) 7→ RE∇(µ, ν)v = E∇µ
E∇νv − E∇ν

E∇µv − E∇[µ,ν]E
v.

In Lemma 3.1.12 we have that it is tensorial the Ąrst two arguments. For the third it is as for

vector bundle connections,

RE∇(µ, ν)(fv) = f RE∇(µ, ν)v +
(
ℒρ(µ)

(
ℒρ(ν)(f)


− ℒρ(ν)

(
ℒρ(µ)(f)


− ℒ[ρ(µ),ρ(ν)]E(f)



︸ ︷︷ ︸
=0

v
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= f RE∇(µ, ν)v

for all f ∈ C∞(N), µ, ν ∈ Γ(E) and v ∈ Γ(V ), using that ρ is a homomorphism of Lie brackets.

To summarize, a ◦RE∇ = 0, and RE∇ can be viewed as an element of 𝒯1
3 (E).

• As in the situation of vector bundle connections it is trivial and straightforward to check

that tE∇ is an anti-symmetric tensor because of the fact the Leibniz rules in the connections

and the Lie bracket cancel each other.

In Ex. 2.5.3 we had a canonical Lie algebra connection, induced by a Lie algebra action and

vector bundle connection. We can generalize this connection.

Example 3.4.3: Canonically induced E-connection,

[7, Ąrst example in Example 2.8]

Let E → N be a Lie algebroid over a smooth manifold N and V → N be a vector bundle

over N , equipped with a vector bundle connection ∇. Then deĄne E∇ on V by

E∇µ := ∇ρ(µ) (3.34)

for all µ ∈ Γ(E). This is a canonical example of an E-connection which we will denote as

∇ρ.

As for vector bundle connections, we can extend a given E-connection to 𝒯
r
s (V ) (r, s ∈ N0).

Example 3.4.4: Dual Lie algebroid connections,

very typical construction forcing the Leibniz rule as in [4, Def-

inition 2.1.36, but using connections; page 96]

Let E → N be a Lie algebroid over a smooth manifold N and V → N be a vector bundle

over N , equipped with an E-connection E∇. Then we deĄne its dual E-connection on

V ∗, still denoted as E∇, by

(
E∇νω


(v) := ℒν

(
ω(v)

)
− ω

(
E∇νv


(3.35)

for all ν ∈ Γ(E), ω ∈ Γ(V ∗) and v ∈ Γ(V ). It is trivial to prove that E∇νω ∈ Γ(V ∗) and

that this E∇ is an E-connection on V ∗. Similarly, as for vector bundle connections, one

extends E∇ to 𝒯
r
s (V ) for all r, s ∈ N0, always denoted by E∇.

Flatness just means trivially the following by deĄnition.

Corollary 3.4.5: Flat connections, [3, §5.2, DeĄnition 5.2.9; page 187]

Let E → N be a Lie algebroid over a smooth manifold N and V → N a vector bundle.

Then an E-connection E∇ : E → 𝒟(V ) on V is Ćat if and only if it is a (base-preserving)

morphism of Lie algebroids.
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Proof.

This simply follows by deĄnition. ■

Of special importance regarding curvatures are of course the Bianchi identities.

Theorem 3.4.6: Bianchi identities,

[12, Satz 8.3, generalization of second statement there; page

90]

[3, reformulation of Proposition 7.1.9; page 265]

Let E → N be a Lie algebroid over a smooth manifold N , and E∇ be an E-connection

on E. Then the curvature RE∇ satisĄes both Bianchi identities, i.e. for all µ, ν, η ∈ Γ(E)

we have the Ąrst Bianchi identity

RE∇(µ, ν)η +RE∇(ν, η)µ+RE∇(η, µ)ν

= tE∇(tE∇(µ, ν), η) + tE∇(tE∇(ν, η), µ) + tE∇(tE∇(η, µ), ν)

+
(
E∇µtE∇


(ν, η) +

(
E∇νtE∇


(η, µ) +

(
E∇ηtE∇


(µ, ν), (3.36)

and we also get the second Bianchi identity

0 =
(
E∇µRE∇


(ν, η) +

(
E∇νRE∇


(η, µ) +

(
E∇ηRE∇


(µ, ν)

+RE∇ (tE∇(µ, ν), η) +RE∇ (tE∇(ν, η), µ) +RE∇ (tE∇(η, µ), ν) . (3.37)

Remarks 3.4.7.

Eq. (3.36) implies that tE∇ satisĄes the Jacobi identity if E∇ is Ćat and tE∇ is covariantly

constant with respect to E∇. Thence, it would deĄne another Lie bracket on Γ(E) which is

C∞-bilinear. Moreover, this Lie bracket then also deĄnes a Lie bracket on each Ąbre Ep.

Proof of the Ąrst Bianchi identity.

The second Bianchi identity we will prove later by its generalization (see Thm. 3.8.6 and Remark

3.8.7). The former statement we can prove now by showing that it is equivalent to the Jacobi

identity for [·, ·]E . First observe for µ, ν, η ∈ Γ(E) that

[µ, [ν, η]E ]
E

=
[
µ,−tE∇(ν, η) + E∇νη − E∇ην

]
E

= tE∇(µ, tE∇(ν, η)) − E∇µ (tE∇(ν, η)) + E∇tE∇
(ν,η)µ

− tE∇

(
µ,E∇νη


+ E∇µ

E∇νη − E∇E∇νηµ

+ tE∇

(
µ,E∇ην


− E∇µ

E∇ην + E∇E∇ηνµ
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= −tE∇(tE∇(ν, η), µ) − E∇µ (tE∇(ν, η)) + tE∇

(
E∇νη, µ


+ tE∇

(
µ,E∇ην



+ E∇µ
E∇νη − E∇µ

E∇ην − E∇[ν,η]Eµ.

With σ we will denote the cyclic sum and thence by the Jacobi identity (and the cyclic property

of the total sum)

0 = σ
(
[µ, [ν, η]E ]

E

)

= σ
(

− tE∇(tE∇(ν, η), µ) − E∇µ (tE∇(ν, η)) + tE∇

(
E∇νη, µ



+ tE∇

(
µ,E∇ην


+ E∇µ

E∇νη − E∇µ
E∇ην − E∇[ν,η]Eµ

)

= σ
(

− tE∇(tE∇(µ, ν), η) − E∇µ (tE∇(ν, η)) + tE∇

(
E∇µν, η



+ tE∇

(
ν,E∇µη


+ E∇µ

E∇νη − E∇ν
E∇µη − E∇[µ,ν]Eη

)

⇔ σ
(
RE∇(µ, ν)η

)
= σ

(
tE∇(tE∇(µ, ν), η) +

(
E∇µtE∇


(ν, η)


.

■

In Section 2.5 we have seen that pullbacks of Lie algebra connections were important to

deĄne the inĄnitesimal gauge transformation. Hence, let us turn to pullbacks of Lie algebroid

connections.

3.5. Pullbacks of Lie algebroid connections

As in the discussion around Def. 2.5.5 we need to be careful about how and when we can make

a pullback of Lie algebroid connections. We want to generalize Prop. 2.5.7, especially recall its

proof and Remark 2.5.8. For simplicity let us Ąrst look again at curves.

DeĄnition 3.5.1: E-paths, [7, §2, DeĄnition 2.4]

Let (E, ρ, [·, ·]E)
π
→ N be a Lie algebroid and I ⊂ R an open interval. Then an E-path

is a smooth map α : I → E with

(γ∗ρ)(α) =
d

dt
γ, (3.38)

where the curve γ : I → N , t 7→ π(α(t)), is the base path of α. We also say that γ is

lifted by α.

Remarks 3.5.2.

Recall that for a vector bundle V
pr
→ N we say that a section of V along γ is a smooth map
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v : I → V with pr◦v = γ, and that we identify sections of γ∗V with sections of V along γ. That

means that an E-path α can be viewed as a section of γ∗E.

Using this we can deĄne a pullback E-connection and a derivation along an E-path.

Proposition 3.5.3: Pull-back of an E-connection along an E-path,

[7, §2, comment before DeĄnition 2.4]

Let E → N be a Lie algebroid, V → N a vector bundle and E∇ an E-connection on V .

Fix an E-path α, I ∋ t 7→ α(t) ∈ E, with base path γ. Then there is a unique vector

bundle connection γ∗
(
E∇


on γ∗V → I with

γ∗
(
E∇


c d

dt

(γ∗v) = γ∗
(
E∇cαv


(3.39)

for all v ∈ Γ(V ) and c ∈ R.

Remarks 3.5.4.

As introduced, we will view (E-)connections as base- and anchor-preserving morphisms, and,

when acting on sections, as 1-forms. In the latter case, E∇v ∈ Ω1(E;V ), and the pull-back

as a section gives then γ∗
(
E∇v


∈ Γ((γ∗E)∗ ⊗ γ∗V ), therefore we deĄne

(
γ∗
(
E∇v


(cα) =:

γ∗
(
E∇cαv


when viewing α as a section of γ∗E. One could also just write E∇cαv when using

the interpretation of connections as morphisms, because E∇cα(t) is then a derivation of V at

γ(t) such that it is immediate that we have a section along γ and, hence, of γ∗V . However, most

of the time we prefer to write the pull-back as an accentuation.

When α = γ∗ν for ν ∈ Γ(V ), then we write γ∗
(
E∇cνv


, although it looks ambiguous with

the notation just discussed previously,

γ∗
(
E∇c γ∗νv


=
(
γ∗
(
E∇v


(c γ∗ν) = γ∗

((
E∇v


(cν)


= γ∗

(
E∇cνv


,

but the notation should be clear by the context.

Proof of Prop. 3.5.3.

As usual, the condition (3.39) uniquely deĄnes γ∗
(
E∇


by using that γ∗(Γ(V )) generates Γ(γ∗V )

and extending Eq. (3.39) by forcing the Leibniz rule, i.e. we deĄne

γ∗
(
E∇


c d

dt ♣t

(
f i γ∗vi


:= c

df i

dt

∣∣∣∣∣
t

γ∗(vi)♣t + f i(t) γ∗
(
E∇cαvi

∣∣∣
t

for all vi ∈ Γ(V ), f i ∈ C∞(I), t ∈ I and c ∈ R, where the index i runs over an arbitrary range;

recall Def. (2.37) in the proof of Prop. 2.5.7. Every other connection satisfying Eq. (3.39) has

the same form by the Leibniz rule, and, so, uniqueness follows if existence is given. Hence, it

is only left to prove that this gives a well-deĄned connection, that is, we need to prove that

it is independent of the choice of generators vi as in the proof of Prop. 2.5.7 and that it is a

connection satisfying Eq. (3.39). Recall Remark 2.5.8, we especially need to check whether the
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Leibniz rule inherited by E∇ is compatible with the Leibniz rule of connections of γ∗V → I, for

this we need to calculate

γ∗
(
E∇cα(hv)

∣∣∣
t

= ℒcρ(α(t))︸ ︷︷ ︸
= ℒcγ̇(t)

(h) v♣γ(t) + h(γ(t)) γ∗
(
E∇cαv

∣∣∣
t

=


c

d(h ◦ γ)

dt
γ∗v + (h ◦ γ) γ∗

(
E∇cαv

∣∣∣∣
t

for all v ∈ Γ(V ) and h ∈ C∞(N). Thus, the proof is then the same as for Prop. 2.5.7; linearity

and the Leibniz rule follow by construction, and Eq. (3.39) and the independence of the taken

generators follows by the previous calculation. ■

As usual, one can use this to deĄne parameter derivatives.

Proposition 3.5.5: Derivations of sections along E-paths,

[7, §2, beginning of subsection 2.3; there D/dt is denoted

as ∇α]

Let E → N be a Lie algebroid, V → N a vector bundle and E∇ an E-connection on V .

Fix an E-path α, I ∋ t 7→ α(t) ∈ E, with base path γ. Then there is a unique differential

operator D
dt : Γ(γ∗V ) → Γ(γ∗V ) with

D

dt
is linear over R, (3.40)

D

dt
(fs) =

df

dt
s+ f

D

dt
s, (3.41)

D

dt

∣∣∣∣
t

(γ∗v) = γ∗
(
E∇αv

∣∣∣
t

(3.42)

for all s ∈ Γ(γ∗V ), v ∈ Γ(V ), f ∈ C∞(I) and t ∈ I.

Proof.

Uniqueness will follow again by using that γ∗(Γ(V )) generates Γ(γ∗V ) and extending Eq. (3.42)

by forcing the Leibniz rule, this is given by choosing

D

dt
:= γ∗

(
E∇


d
dt

and then everything follows by Prop. 3.5.3. ■

Remarks 3.5.6.

When V = N × R, then we clearly have D/dt = d/dt, for this use the uniqueness and deĄne
E∇ := ∇0

ρ, where ∇0 = d is the canonical Ćat connection, and

d

dt

∣∣∣∣
t

(γ∗v)︸ ︷︷ ︸
=v◦γ:I→R

= dγ(t)v


d

dt

∣∣∣∣
t

γ



︸ ︷︷ ︸
=(γ∗ρ)(α(t))

= γ∗
(
dv
(
(γ∗ρ)(α)

)∣∣∣
t

= γ∗
(
E∇αv

∣∣∣
t
.

79



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

Prop. 3.5.3 can be generalized, using the notion deĄned in Def. 3.1.9.

Corollary 3.5.7: Pullbacks of Lie algebroid connections by anchor-preserving

morphisms

Let Ei → Ni (i ∈ ¶1, 2♢) be two Lie algebroids over smooth manifolds Ni, V → N2 a

vector bundle, and E2∇ an E2-connection on V . Also Ąx an anchor-preserving vector

bundle morphism ξ : E1 → E2 over a smooth map f : N1 → N2. Then there is a unique

E1-connection f∗
(
E2∇


on f∗V with

(
f∗
(
E2∇


ν
(f∗v) = f∗

(
E2∇ξ(ν)v


(3.43)

for all v ∈ Γ(V ) and ν ∈ Γ(E1).

Remarks 3.5.8.

This result is motivated by [10, Example 7.7] where it is shown that there is a 1:1 correspondence

of Lie algebroid paths and anchor-preserving morphisms. That is, let E1 = TI, where I ⊂ R is

an open interval. Then deĄne

α := ξ


d

dt


, (3.44)

which is a map I → E2, t 7→ ξ(d/dt♣t), such that the anchor-preservation implies

(f∗ρE2)(α) = Df


d

dt


=

d

dt
f.

Hence, α is an E2-path lifting f . Vice versa one can deĄne ξ by Eq. (3.44) if α is given, and

then extending ξ canonically to a tensor.

Furthermore, as one can see, the presented deĄnitions of connections and their pullbacks can

also be extended to vector bundles with just an anchor, without the need of a Lie bracket (⇒

anchored vector bundle). But as we have seen before, for example recall Remark 2.5.16, one can

even generalize it further which we will do in the next statement.

Proof of Cor. 3.5.7.

We only give a sketch because the proof is exactly as in Prop. 3.5.3, and all other similar

statements as in Section 2.5; instead of d/dt one has essentially ℒρE1
(ν) for ν ∈ Γ(E1) which

does neither change the structure nor the arguments of the proof. Making use of Def. 3.1.9 we

get

f∗
(
E2∇ξ(ν)(hv)


= (h ◦ f) f∗

(
E2∇ξ(ν)v


+ f∗(

ℒ(ρE2
◦ξ)(ν)︸ ︷︷ ︸

= ℒ(Df◦ρE1)(ν)

(h)
)
f∗v

= (h ◦ f) f∗
(
E2∇ξ(ν)v


+ ℒρE1

(ν)(h ◦ f) f∗(v)
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for all h ∈ C∞(N2), v ∈ Γ(V ) and ν ∈ Γ(E1), using the deĄnition of total differentials, that is

Dpf
(
ρE1(νp)

)
︸ ︷︷ ︸

∈Tf(p)N2

(h) = ℒρE1
(νp)(h ◦ f)

for all p ∈ N1. As mentioned in the proof of Prop. 3.5.3 and Remark 2.5.8, this proves that

the inherited Leibniz rule of E2∇ is compatible with the Leibniz rule of E1-connections on f∗V .

Hence, the remaining proof is then precisely as in Prop. 3.5.3 and 2.5.7; locally, f∗
(
E2∇


is

deĄned by

(
f∗
(
E2∇


ν
µ := ℒρE1

(ν)(µ
a) f∗ea + µa f∗

(
E2∇ξ(ν)ea



for all µ = µa f∗ea, where (ea)a is a local frame of V . Linearity and the Leibniz rule follow by

construction, and the well-deĄnedness and Eq. (3.43) additionally by the Ąrst calculation about

the compatibility of Leibniz rules. ■

What we need is an even more general statement as in Section 2.5, with still precisely the

same proof as before; recall Prop. 2.5.15.

Corollary 3.5.9: Pullbacks of connections just differentiating along one vector

Ąeld

Let Ei → Ni (i ∈ ¶1, 2♢) be two Lie algebroids over smooth manifolds Ni, V → N2 a vector

bundle, and E2∇ an E2-connection on V . Moreover, let f ∈ C∞(N1;N2), ν1 ∈ Γ(E1) and

ν2 ∈ Γ(f∗E2) such that

Df
(
ρE1(ν1)

)
= (f∗ρE2)(ν2). (3.45)

Then there is a unique R-linear operator δν1 : Γ(f∗V ) → Γ(f∗V ) with

δν1(hs) = ℒν1(h) s+ h δν1s, (3.46)

δν1(f∗v) = f∗
(
E2∇ν2v


(3.47)

for all s ∈ Γ(f∗V ), v ∈ Γ(V ) and h ∈ C∞(N1).

Remark 3.5.10: Commutating diagram behind pullbacks

Recall Remark 3.1.10, the pullback in (f∗ρE2)(ν2) in Eq. (3.45) is just for emphasizing

that ν2 is a section along f ; one can omit this in the notation, especially if one views

sections like ν2 as a map N1 → E2. Then we can equivalently write

Df ◦ ρE1(ν1) = ρE2 ◦ ν2, (3.48)

that is equivalent to that the following diagram commutes
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N1 E2

TN1 TN2

ν2

ρE1
(ν1) ρE2

Df

Remarks 3.5.11.

• In general one may want to write δν1 =
(
f∗
(
E2∇


ν1

, because it is precisely this by

uniqueness if a general pullback is possible. But to avoid confusion about the existence of a

general pullback we will stick with δν1 , and it will be clear by context which connection and ν2

is used for the deĄnition of δν1 .

• As in Remark 3.5.6, in the case of V = R×N2, the trivial line bundle over N2, we canonically

use E2∇ := ∇0
ρE2

, where ∇0 := d. Then one can similarly show as before that

δν1 = ℒν1 .

Proof of Cor. 3.5.9.

That is precisely the same proof as in the previous statements and as in Section 2; the only

difference is just the meaning, νi are Ąxed sections, but that does not matter in the calculations.

Eq. (3.45) is just the condition about anchor-preservation in the case of a Ąxed pair of sections,

and one uses this equation in the same fashion to how we used an anchor-preserving morphism in

the previous proofs. Essentially replace ν with ν1 and ξ(ν) with ν2 in the proof of Cor. 3.5.7. ■

The advantage of this weak formulation is that we do not need to know whether or not f can

be lifted to any morphism with certain properties like anchor-preservation. Eq. (3.45) states

what one needs to make a pullback of a Lie algebroid connection to just differentiate along one

direction. That was precisely the idea in the discussion around Prop. 2.5.15, but now more

compactly written down, not using Ćows of the involved vector Ąelds.

3.6. Conjugated E-connections

Later we will introduce a Lie algebroid connection known as basic connection, and it has a

special form which we want to study in a more general sense of conjugated E-connections; the

name is motivated by [6, paragraph after Proposition 2.12], while we especially refer to [13]

where the conjugate connections are called dual connections.

DeĄnition 3.6.1: Conjugated E-connections,

[13, beginning of §4.6]

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ be an E-connection on

E. We deĄne its conjugated E-connection ∇̂ by

∇̂µν := [µ, ν]E + ∇νµ (3.49)
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for all µ, ν ∈ Γ(E). We also say that ∇̂ and ∇ are conjugate to each other.

Remarks 3.6.2.

It is straightforward to check that the conjugate is an E-connection on E, linearity over R is

clear, and we have

∇̂µ(fν) = [µ, fν]E + ∇fνµ = f ∇̂µν + ℒρ(µ)(f) ν,

∇̂fµν = [fµ, ν]E + ∇ν(fµ) = f ∇̂µν − ℒρ(ν)(f) µ+ ℒρ(ν)(f) µ = f ∇̂µν

for all µ, ν ∈ Γ(E) and f ∈ C∞(N), using the Leibniz rule of the Lie bracket, and that ∇ is an

E-connection. It also makes sense to say that both E-connections are conjugate to each other

because ∇ is also the conjugate to ∇̂ by deĄnition, that is,

[µ, ν]E + ∇̂νµ = ∇µν,

and the conjugate of a connection is unique, that follows trivially by deĄnition.

We need several relations between their curvatures and torsions throughout this work.

Corollary 3.6.3: Torsion of conjugated E-connections

[13, Ąrst statement in the Ąrst proposition of §4.6]

Let ∇̂ and ∇ be two E-connections, conjugate to each other, on a Lie algebroid E → N

over a smooth manifold N . Then we get for their torsions

t
∇̂

(µ, ν) = −t∇(µ, ν) (3.50)

for all µ, ν ∈ Γ(E).

Proof.

We have

t
∇̂

(µ, ν) = ∇̂µν − ∇̂µν − [µ, ν]E

= [µ, ν]E + ∇νµ− [ν, µ]E − ∇µν − [µ, ν]E

= [µ, ν]E + ∇νµ− ∇µν

= −t∇(µ, ν)

for all µ, ν ∈ Γ(E). ■
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Lemma 3.6.4: Curvature of conjugated E-connections,

the Ąrst identity comes from [13, second statement of the Ąrst

proposition in §4.6]

Let ∇̂ and ∇ be two E-connections, conjugate to each other, on a Lie algebroid E → N

over a smooth manifold N . Then we have for their curvatures

R∇(µ, ν)η =
(
∇̂ηt∇̂


(µ, ν) +R

∇̂
(µ, η)ν −R

∇̂
(ν, η)µ (3.51)

= −
(
∇̂η ([µ, ν]E) −

[
∇̂ηµ, ν

]
E

−
[
µ, ∇̂ην

]
E

− ∇̂∇νη
µ+ ∇̂∇µη

ν


(3.52)

for all µ, ν, η ∈ Γ(E).

Remarks 3.6.5.

The second statement is a generalization of what is shown for a special type of connection in [6,

Proposition 2.12].

Proof of Lemma 3.6.4.

We will show Eq. (3.51) by Ąrst showing Eq. (3.52), but the latter for R
∇̂

instead of R∇; this

does not matter of course, because when we know the formula for one connection, then also for

the conjugated connection. Just by the deĄnition of duality and the Jacobi identity we have

∇µ ([η, ν]E) −
[
∇µη, ν

]
E

−
[
η,∇µν

]
E

− ∇
∇̂νµ

η + ∇
∇̂ηµ

ν

= [µ, [η, ν]E ]
E

+ [ν, [µ, η]E ]
E

+ [η, [ν, µ]E ]
E

−
[
∇̂ηµ, ν

]
E

−
[
η, ∇̂νµ

]
E

−
[
∇̂νµ, η

]
E

+
[
∇̂ηµ, ν

]
E

+ ∇̂ν∇̂ηµ− ∇̂η∇̂νµ+ ∇̂[η,ν]E
µ

= R
∇̂

(ν, η)µ

= −R
∇̂

(η, ν)µ

for all µ, ν, η ∈ Γ(E). Eq. (3.52) is therefore shown, and using this and Cor. 3.6.3 we also have

(
∇̂ηt∇̂


(µ, ν) = −

(
∇̂ηt∇


(µ, ν)

= −∇̂η

(
t∇(µ, ν)

)
+ t∇

(
∇̂ηµ, ν


+ t∇

(
µ, ∇̂ην



=
[
η, [µ, ν]E − ∇µν + ∇νµ

]
E

+ ∇
[µ, ν]E − ∇µν + ∇νµ︸ ︷︷ ︸

=∇ν µ−∇̂ν µ

η

+ ∇
∇̂ηµ

ν − ∇ν

(
[η, µ]E + ∇µη


−
[
[η, µ]E + ∇µη, ν

]
E
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+ ∇µ

(
[η, ν]E + ∇νη


− ∇

∇̂ην
µ−

[
µ, [η, ν]E + ∇νη

]
E

= [η, [µ, ν]E ]
E

+ [µ, [ν, η]E ]
E

+ [ν, [η, µ]E ]
E︸ ︷︷ ︸

=0

+ ∇µ ([η, ν]E) −
[
∇µη, ν

]
E

−
[
η,∇µν

]
E

− ∇
∇̂νµ

η + ∇
∇̂ηµ

ν
︸ ︷︷ ︸

=R
∇̂

(ν,η)µ

−∇ν ([η, µ]E) +
[
∇νη, µ

]
E

+
[
η,∇νµ

]
E

+ ∇
∇̂µν

η − ∇
∇̂ην

µ
︸ ︷︷ ︸

=−R
∇̂

(µ,η)ν

−∇
∇̂µν

η + ∇∇νµ
η

︸ ︷︷ ︸
=−∇[µ,ν]E

η

+∇µ∇νη − ∇ν∇µη

= R∇(µ, ν)η +R
∇̂

(ν, η)µ−R
∇̂

(µ, η)ν.

This gives Eq. (3.51). ■

We are especially interested into the curvature if the conjugated E-connection is Ćat.

Corollary 3.6.6: Curvature of conjugated E-connections where one connection

is Ćat,

[13, second and third statement of the Ąrst proposition in

§4.6]

Let ∇̂ and ∇ be two E-connections, conjugate to each other, on a Lie algebroid E → N

over a smooth manifold N . If ∇̂ is Ćat, then

R∇(µ, ν)η =
(
∇̂ηt∇̂


(µ, ν), (3.53)

also written as

R∇ = ∇̂t
∇̂
. (3.54)

Proof.

This simply follows by Lemma 3.6.4. ■

If both connections conjugate to each other are Ćat, then we have another Lie bracket by the

Ąrst Bianchi identity.
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Corollary 3.6.7: Torsion as Lie bracket

Let ∇̂ and ∇ be two Ćat E-connections, conjugate to each other, on a Lie algebroid E → N

over a smooth manifold N . Then their torsions are Lie brackets for Γ(E) which restrict

to Lie brackets on the Ąbres, giving rise to a BLA structure on E.

Proof.

This follows by the Ćatness of both connections Ąrst Bianchi identity in Thm. 3.4.6 and Cor. 3.6.6,

the latter implies

∇̂t
∇̂

= 0,

and the former, the Ąrst Bianchi identity, then gives

t
∇̂

(
t
∇̂

(µ, ν), η


+ t
∇̂

(
t
∇̂

(ν, η), µ


+ t
∇̂

(
t
∇̂

(η, µ), ν


= 0

for all µ, ν, η ∈ Γ(E). Bilinearity and antisymmetry is given, thus, t
∇̂

is a Lie bracket for Γ(E),

therefore also t∇ by Cor. 3.6.3. Since torsions are tensors we can conclude that the torsion

describes a Lie bracket on each Ąbre, too. ■

3.7. Basic connection and the basic curvature

As mentioned and already introduced in a simpliĄed form in Ex. 2.5.4, there is also another

canonical example of E-connection, the basic connection ∇bas. We follow mainly [6, §2.3];

however, in [14, §3.4] the basic connection is introduced as a certain Bott connection along

certain leaves given by the anchor, but we will neither use nor introduce that notion. The basic

connection is actually the conjugate connection of ∇ρ.

DeĄnition 3.7.1: Basic connection, [6, DeĄnition 2.9]

Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a vector bundle

connection on E. We then deĄne the basic connection (induced by ∇) as a pair of

E-connections, one on E itself and the other one on TN , both denoted by ∇bas.

1. (Basic E-connection on E)

The basic connection on E is deĄned as the conjugate of ∇ρ, that is,

∇bas
µ ν := [µ, ν]E + ∇ρ(ν)µ (3.55)

for all µ, ν ∈ Γ(E)

2. (Basic E-connection on TN)

The basic connection on TN is deĄned by

∇bas
µ X := [ρ(µ), X] + ρ (∇Xµ) (3.56)

for all µ ∈ Γ(E) and X ∈ X(N)
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Remarks 3.7.2.

It is trivial to see that these are E-connections.

In the physicsŠ part, Chapter 4, we will discuss the use of this connection in physics, as also

arising in [1, discussion around Equation (17)]. Nevertheless one can see here already that one

gets the adjoint representation for bundle of Lie algebras, i.e. ρ ≡ 0, because then the basic

connection on E is just the Ąeld of Lie brackets.

In the following we often just write of the Ťbasic connectionŤ or ∇bas, while we then always

mean both connections. It should be clear by context which of both connections we mean then.

Similar for its curvature R∇bas ; but the torsion t∇bas will only denote the torsion for the basic

connection on E since only on E the torsion is formulated.

We will use the following essential property of the basic connection very often.

Corollary 3.7.3: Compatibility of the basic connection with the anchor,

[6, comment after DeĄnition 2.9]

Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a vector bundle

connection on E. Then

ρ ◦ ∇bas = ∇bas ◦ ρ. (3.57)

Proof.

We have

ρ
(
∇bas
µ ν


= ρ

(
[µ, ν]E + ∇ρ(ν)µ


= [ρ(µ), ρ(ν)]E + ρ

(
∇ρ(ν)µ


= ∇bas

µ

(
ρ(ν)

)

for all µ, ν ∈ Γ(E), using that the anchor is a homomorphism of Lie brackets. ■

As in [1], we will later see that ∇bas should be Ćat for a given ∇ in order to formulate a gauge

theory (among other conditions). Thence, it is important to study the curvature of ∇bas. Its

curvature is encoded in another tensor, the basic curvature.

DeĄnition 3.7.4: Basic curvature, [6, DeĄnition 2.10]

Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a connection on

E. The basic curvature Rbas
∇ is then deĄned as an element of Γ

(∧2E∗ ⊗ T∗N ⊗ E


by

Rbas
∇ (µ, ν)X := ∇X([µ, ν]E) − [∇Xµ, ν]E − [µ,∇Xν]E − ∇∇bas

ν Xµ+ ∇∇bas
µ Xν, (3.58)

where µ, ν ∈ Γ(E) and X ∈ X(N).

Remarks 3.7.5.

• As stated in [6] one may think of this as ∇X([µ, ν]E) − [∇Xµ, ν]E − [µ,∇Xν]E which is

a measure of the derivation property of ∇ w.r.t. [·, ·]E , but corrected in such a way that it
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is tensoriel in all arguments. For a zero anchor the basic curvature would be equivalent to

∇X([µ, ν]E) − [∇Xµ, ν]E − [µ,∇Xν]E since then the basic connection on TN is identically zero.

• Compare the form of the basic curvature also with Lemma 3.6.4.

• It is trivial to see that the basic curvature is antisymmetric in the Lie algebroid arguments

and that it is trilinear. Also let f ∈ C∞(N) and observe

Rbas
∇ (µ, ν)(fX) = ∇fX([µ, ν]E) − [∇fXµ, ν]

E︸ ︷︷ ︸
=f [∇Xµ,ν]E−ℒν(f) ∇Xµ

−[µ,∇fXν]
E

− ∇∇bas
ν (fX)µ︸ ︷︷ ︸

=f∇
∇bas

ν X
µ+ℒν(f) ∇Xµ

+∇∇bas
µ (fX)ν

= f Rbas
∇ (µ, ν)X

for all µ, ν ∈ Γ(E) and X ∈ X(N), and

Rbas
∇ (µ, fν)X = ∇X([µ, fν]E) − [∇Xµ, fν]E − [µ,∇X(fν)]E − ∇∇bas

fν
Xµ+ ∇∇bas

µ X(fν)

= fRbas
∇ (µ, ν)X

+ ℒX(f) [µ, ν]E + ℒρ(µ)(f) ∇X(ν) + ℒXℒρ(µ)(f) ν − ℒρ(∇Xµ)(f) ν

− ℒρ(µ)(f) ∇Xν − ℒX(f) [µ, ν]E − ℒρ(µ)ℒX(f) ν + ℒ∇bas
µ X(f)

︸ ︷︷ ︸
=ℒ[ρ(µ),X]+ρ(∇X µ)(f)

ν

= fRbas
∇ (µ, ν)X + ℒXℒρ(µ)(f) ν − ℒρ(µ)ℒX(f) ν − ℒ[X,ρ(µ)](f) ν

︸ ︷︷ ︸
= 0

= fRbas
∇ (µ, ν)X,

that the basic curvature is also tensorial in µ follows by the antisymmetry.

Do not confuse this tensor with R∇bas , the curvature of the basic connection, either on E or

TN . However, the curvatures are encoded in the basic curvature.

Proposition 3.7.6: Relations between the curvatures,

[6, Proposition 2.11], [1, Equation (9)], [13, generalization

of second statement of the Ąrst proposition in §4.6]

Let E → N be a Lie algebroid over a smooth manifold N , and let ∇ be a connection on

E. Then one has:

1. The curvature of ∇bas on E is equal to −Rbas
∇ (·, ·) ◦ ρ.

2. The curvature of ∇bas on TN is equal to −ρ ◦Rbas
∇ .

We also have an important relation to the curvature R∇ of ∇,

Rbas
∇ (µ, ν)X = (∇Xt∇bas) (µ, ν) −R∇(ρ(µ), X)ν +R∇(ρ(ν), X)µ (3.59)
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for all µ, ν ∈ Γ(E) and X ∈ X(N), where t∇bas is the E-torsion of the basic connection

on E.

Remarks 3.7.7.

This implies that both ∇bas are Ćat if Rbas
∇ ≡ 0. The converse is in general not true. But for

invertible ρ the converse would hold. For Rbas
∇ ≡ 0 one also gets

(∇Xt∇bas)(µ, ν) = R∇(ρ(µ), X)ν −R∇(ρ(ν), X)µ, (3.60)

and by Cor. 3.6.3 we also have t∇bas = −t∇ρ such that one can rewrite this with the torsion of

∇ρ.

Proof of Prop. 3.7.6.

For the curvature of ∇bas on E observe, using Cor. 3.7.3,

−Rbas
∇ (µ, ν)

(
ρ(η)

)
= −

(
∇ρ(η)([µ, ν]E) − [∇ρ(η)µ, ν]E − [µ,∇ρ(η)ν]E − ∇∇bas

ν ρ(η)µ+ ∇∇bas
µ ρ(η)ν



= −
(
∇ρ(η)([µ, ν]E) −

[
∇ρ(η)µ, ν

]
E

−
[
µ,∇ρ(η)ν

]
E

− ∇ρ(∇bas
ν η)µ+ ∇ρ(∇bas

µ η)ν


Lem. 3.6.4
= R∇bas(µ, ν)η

for all µ, ν, η ∈ Γ(E). In the same fashion as in the proof of Lemma 3.6.4, using the Jacobi

identity and that ρ is a homomorphism, we also have

ρ
(
Rbas

∇ (µ, ν)X


= ρ
(
∇X([µ, ν]E) − [∇Xµ, ν]E − [µ,∇Xν]E − ∇∇bas

ν Xµ+ ∇∇bas
µ Xν



+ [[ρ(µ), ρ(ν)], X] + [[ρ(ν), X], ρ(µ)] + [[X, ρ(µ)], ρ(ν)]

= [ρ([µ, ν]E), X] + ρ (∇X([µ, ν]E))︸ ︷︷ ︸
=∇bas

[µ,ν]E
X

+ [ρ(ν), [ρ(µ), X] + ρ(∇Xµ)︸ ︷︷ ︸
=∇bas

µ X

] + ρ
(
∇∇bas

µ Xν


− [ρ(µ), [ρ(ν), X] + ρ(∇Xν)︸ ︷︷ ︸
=∇bas

ν X

] − ρ
(
∇∇bas

ν Xµ


= ∇bas
[µ,ν]E

X + ∇bas
ν ∇bas

µ X − ∇bas
µ ∇bas

ν X

= −R∇bas(µ, ν)X

for all X ∈ X(N). By Cor. 3.6.3 we know that that t∇bas = −t∇ρ , thus,

(∇Xt∇bas) (µ, ν) = −(∇Xt∇ρ)(µ, ν)
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= −∇X

(
t∇ρ(µ, ν)

)
+ t∇ρ(∇Xµ, ν) + t∇ρ(µ,∇Xν)

= ∇X

(
[µ, ν]E − ∇ρ(µ)ν + ∇ρ(ν)µ



+ ∇ρ(∇Xµ)ν − ∇ρ(ν)∇Xµ− [∇Xµ, ν]E

+ ∇ρ(µ)∇Xν − ∇ρ(∇Xν)µ− [µ,∇Xν]E

= ∇X([µ, ν]E) − [∇Xµ, ν]E − [µ,∇Xν]E + ∇ρ(∇Xµ)ν − ∇ρ(∇Xν)µ

+R∇(ρ(µ), X)ν + ∇[ρ(µ),X]ν −R∇(ρ(ν), X)µ− ∇[ρ(ν),X]µ

= Rbas
∇ (µ, ν)X +R∇(ρ(µ), X)ν −R∇(ρ(ν), X)µ.

■

The basic connection on E is conjugate to ∇ρ by deĄnition, and it will be later very important

that the basic connection is Ćat for gauge theory as we will see. By our discussion about conjugate

Lie algebroid connections we can immediately derive the following by Cor. 3.6.6.

Theorem 3.7.8: Curvature of ∇ρ for a vanishing basic curvature

Assume Rbas
∇ (·, ·) ◦ ρ = 0, then we have

R∇ρ = ∇bast∇bas , (3.61)

i.e.

R∇ρ(µ, ν)η = R∇(ρ(µ), ρ(ν))η =
(
∇bas
η t∇bas


(µ, ν)

for all µ, ν, η ∈ Γ(E).

Proof.

By Prop. 3.7.6 we know that the assumption implies that ∇bas on E is Ćat. Thence, we can use

Cor. 3.6.6 because of that ∇bas on E and ∇ρ are conjugate to each other. This concludes the

proof. ■

3.8. Exterior covariant derivatives

As for standard connections one can now deĄne exterior covariant derivatives related to Lie

algebroid connections.

90



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

DeĄnition 3.8.1: Exterior covariant derivatives using Lie algebroid connec-

tions,

[6, the discussion after Def. 2.2]

Let E → N be a Lie algebroid over a smooth manifold N , E∇ an E-connection on a

vector bundle V → N . Then we deĄne the exterior covariant derivative d
E∇ as an

operator Ωq(E;V ) → Ωq+1(E;V ) (q ∈ N0) by

(
d

E∇ω


(ν0, . . . , νq) :=
q∑

i=0

(−1)i E∇νi
(ω (ν0, . . . , ν̂i, . . . , νq))

+
∑

0≤i<j≤q

(−1)i+jω([νi, νj ]E , ν0, . . . , ν̂i, . . . , ν̂j , . . . , νq) (3.62)

for all ω ∈ Ωq(E;V ) and ν0, . . . , νq ∈ Γ(E).

Remarks 3.8.2.

That this is a well-deĄned operator can be shown as in the case of vector bundle connections.

Moreover, in the case of a connection ∇ on E one has also the previously discussed basic

connection ∇bas as E-connection on E and TN . ∇ is typical vector bundle connection and ∇bas

a pair of E-connections. Hence, it may make sense to look at forms with two degrees, one for

TN and the other one with respect to E.

The following space is also developed and studied by Alexei Kotov, communicated to me in

private communication, his studies are planned to be published in 2021.

DeĄnition 3.8.3: (p, q)-E-forms

Let E → N be a Lie algebroid over a smooth manifold N , and V → N a vector bundle.

Then the space of (p, q)-E-forms with values in V (p, q ∈ N0), will is deĄned by

Ωp,q(N,E;V ) := Γ

(
p∧

T∗N ⊗
q∧
E∗ ⊗ V

)
. (3.63)

Let us study possible exterior covariant derivatives on this space in the case of E = V .

Remark 3.8.4: Exterior covariant derivatives induced by ∇

Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E.

• For q = 0 one gets the space of p-forms with values in E, Ωp(N ;E), or more

general, those are forms on N with values in
∧q E∗ ⊗ E, i.e.

Ωp,q(N,E;E) ∼= Ωp

(
N ;

q∧
E∗ ⊗ E

)
. (3.64)
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• Analogously

Ωp,q(N,E;E) ∼= Ωq

(
E;

p∧
TN∗ ⊗ E

)
. (3.65)

• Using Eq. (3.64), denote with ∇ also the canonically induced connection on
∧q E∗ ⊗ E; then we have a canonical deĄnition of d∇ on Ωp,q(N,E;E). Since the

canonically induced connection on
∧q E∗ ⊗ E is deĄned by using the Leibniz rule, one

can rewrite the exterior covariant derivative d∇ of ω ∈ Ωp,q(N,E;E) as an element of

Ωp+1,q(N,E;E) by

(
d∇ω


(X0, . . . , Xp, ν1, . . . , νq)

=
p∑

i=0

(−1)i


∇Xi

(
ω
(
X0, . . . , X̂i, . . . , Xp, ν1, . . . , νq



−
q∑

j=1

ω
(
X0, . . . , X̂i, . . . , Xp, ν1, . . . ,∇Xi

νj , . . . , νq


+
∑

0≤i<j≤p

(−1)i+jω
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp, ν1, . . . , νq


, (3.66)

where X0, . . . , Xp ∈ X(N) and ν1, . . . , νq ∈ Γ(E).

• Similarly one proceeds with ∇bas, using that the basic connection acts on both,

E and TN , such that there is a canonically induced notion of ∇bas on
∧p TN∗ ⊗ E. By

Eq. (3.65) we have d∇bas
: Ωp,q(N,E;E) → Ωp,q+1(N,E;E) given by

(
d∇bas

ω

(X1, . . . , Xp, ν0, . . . , νq)

=
q∑

i=0

(−1)i


∇bas
νi

(
ω (X1, . . . , Xp, ν0, . . . , ν̂i, . . . νq)

)

−
p∑

j=1

ω
(
X1, . . . ,∇

bas
νi
Xj , . . . , Xp, ν0, . . . , ν̂i, . . . , νq



+
∑

0≤i<j≤q

(−1)i+jω(X1, . . . , Xp, [νi, νj ]E , ν0, . . . , ν̂i, . . . , ν̂j , . . . , νq), (3.67)

where ω ∈ Ωp,q(N,E;E), X1, . . . , Xp ∈ X(N) and ν0, . . . , νq ∈ Γ(E).

• For LABs one can see that d∇bas
acts as the Chevalley-Eilenberg differential
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dCE because the basic connection on TN is then identically to zero and the one on E is

just the adjoint.

The commutation of the basic curvature with the anchor carries over to the differential.

Lemma 3.8.5: Differential of basic curvature commutes with anchor

Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E. Then

(
∇bas
µ

(
ω ◦ (ρ, . . . , ρ)︸ ︷︷ ︸

p times

)
(ν1, . . . , νp) =

(
d∇bas

ω


(ρ(ν1), . . . , ρ(νp), µ), (3.68)

for all ω ∈ Ωp(N ;E) (p ∈ N0) and µ, ν1, . . . νp ∈ Γ(E); in short

∇bas (ω ◦ (ρ, . . . , ρ)) =
(
d∇bas

ω


◦ (ρ, . . . , ρ,1E). (3.69)

Proof.

Recall ρ ◦ ∇bas = ∇bas ◦ ρ by Cor. 3.7.3, then

(
∇bas
µ (ω ◦ (ρ, . . . , ρ))


(ν1, . . . , νp) = ∇bas

µ

(
ω(ρ(ν1), . . . , ρ(νp))

)

−
p∑

j=1

ω
(
ρ(ν1), . . . , ρ

(
∇bas
µ νj



︸ ︷︷ ︸
=∇bas

µ (ρ(νj))

, . . . , ρ(νp)


=
(
∇bas
µ ω


(ρ(ν1), . . . , ρ(νp))

=
(
d∇bas

ω


(ρ(ν1), . . . , ρ(νp), µ).

■

Recall that we did not prove the second Bianchi identity in Thm. 3.4.6. We are going to prove

the second Bianchi identity using the following theorem.

Theorem 3.8.6: Second Bianchi identity,

[3, reformulation of Proposition 7.1.9; page 265]

Let E → N be a Lie algebroid over a smooth manifold N , V → N a vector bundle, and let
E∇ be an E-connection on V , while we denote its naturally induced deĄnition on End(V )

also E∇. Viewing its curvature RE∇ as an element of Ω2(E; End(V )) we then have

d
E∇RE∇ = 0. (3.70)

Proof of Thm. 3.8.6.

93



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

Let µ, ν, η ∈ Γ(E) and v ∈ Γ(V ), then

((
d

E∇RE∇


(µ, ν, η)


(v) =

(
E∇µ (RE∇(ν, η)) − E∇ν (RE∇(µ, η)) + E∇η (RE∇(µ, ν))

−RE∇([µ, ν]E , η) +RE∇([µ, η]E , ν) −RE∇([ν, η]E , µ)

(v)

= E∇µ (RE∇(ν, η)v) −RE∇(ν, η)
(
E∇µv



− E∇ν (RE∇(µ, η)v) +RE∇(µ, η)
(
E∇νv



+ E∇η (RE∇(µ, ν)v) −RE∇(µ, ν)
(
E∇ηv



−RE∇([µ, ν]E , η)v +RE∇([µ, η]E , ν)v −RE∇([ν, η]E , µ)v

= E∇µ
E∇ν

E∇ηv − E∇µ
E∇η

E∇νv − E∇µ
E∇[ν,η]Ev

− E∇ν
E∇η

E∇µv + E∇η
E∇ν

E∇µv + E∇[ν,η]E
E∇µv

− E∇ν
E∇µ

E∇ηv + E∇ν
E∇η

E∇µv + E∇ν
E∇[µ,η]Ev

+ E∇µ
E∇η

E∇νv − E∇η
E∇µ

E∇νv − E∇[µ,η]E
E∇νv

+ E∇η
E∇µ

E∇νv − E∇η
E∇ν

E∇µv − E∇η
E∇[µ,ν]Ev

− E∇µ
E∇ν

E∇ηv + E∇ν
E∇µ

E∇ηv + E∇[µ,ν]E
E∇ηv

− E∇[µ,ν]E
E∇ηv + E∇η

E∇[µ,ν]Ev + E∇[[µ,ν]E ,η]E
v

+ E∇[µ,η]E
E∇νv − E∇ν

E∇[µ,η]Ev − E∇[[µ,η]E ,ν]E
v

− E∇[ν,η]E
E∇µv + E∇µ

E∇[ν,η]Ev + E∇[[ν,η]E ,µ]E
v

= 0,

where we also used the Jacobi identity. ■

Remark 3.8.7: Proof of the second Bianchi identity of Thm. 3.4.6

We can now Ąnally prove the second statement of Thm. 3.4.6 by showing that it is

equivalent to Thm. 3.8.6 if V = E; for µ, ν, η ∈ Γ(E) we have

(
E∇µRE∇


(ν, η) +

(
E∇νRE∇


(η, µ) +

(
E∇ηRE∇


(µ, ν)

+RE∇ (tE∇(µ, ν), η) +RE∇ (tE∇(ν, η), µ) +RE∇ (tE∇(η, µ), ν)
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= E∇µ (RE∇(ν, η)) −RE∇

(
E∇µν, η


−RE∇

(
ν,E∇µη



+ E∇ν (RE∇(η, µ)) −RE∇

(
E∇νη, µ


−RE∇

(
η,E∇νµ



+ E∇η (RE∇(µ, ν)) −RE∇

(
E∇ηµ, ν


−RE∇

(
µ,E∇ην



+RE∇

(
E∇µν − E∇νµ− [µ, ν]E , η


+RE∇

(
E∇νη − E∇ην − [ν, η]E , µ



+RE∇

(
E∇ηµ− E∇µη − [η, µ]E , ν



= E∇µ (RE∇(ν, η)) − E∇ν (RE∇(µ, η)) + E∇η (RE∇(µ, ν))

−RE∇([µ, ν]E , η) +RE∇([µ, η]E , ν) −RE∇([ν, η]E , µ)

=
(
d

E∇RE∇


(µ, ν, η)

Thm. 3.8.6
= 0.

So, both formulations are equivalent for V = E, but Thm. 3.8.6 is valid for any vector

bundle V and, thus, more general.

Remarks 3.8.8.

With a similar calculation as in Remark 3.8.7 one can also rewrite the Ąrst Bianchi identity of

Thm. 3.4.6 to

RE∇(µ, ν)η +RE∇(ν, η)µ+RE∇(η, µ)ν =
(
d

E∇tE∇


(µ, ν, η)

for all µ, ν, η ∈ Γ(E). Be careful, the right hand side is not the same as e.g. in Thm. 3.7.8,

i.e. not the same as E∇tE∇ because the torsion is an element of Ω0,2(N,E;E) such that E∇

and d
E∇ do act differently.

It is now natural to ask whether there is some usable commutation relation between both

differentials, d∇ and d∇bas
for a Ąxed connection ∇.

Proposition 3.8.9: Commutation relation

Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E. Then

(
d∇d∇bas

ω

(X0, . . . , Xp, ν0, . . . , νq)

=
(
d∇bas

d∇ω

(X0, . . . , Xp, ν0, . . . , νq)

+
p∑

i=0

q∑

k=0

(−1)i+kRbas
∇

(
νk, ω

(
X0, . . . , X̂i, . . . , Xp, ν0, . . . , ν̂k, . . . , νq


Xi
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+
p∑

i=0

q∑

k=0

(−1)i+kR∇

(
Xi, ρ

(
ω
(
X0, . . . , X̂i, . . . , Xp, ν0, . . . , ν̂k, . . . , νq


νk

+
p∑

i,j=0
i<j

q∑

k=0

(−1)i+j+kω
(
ρ(R∇(Xi, Xj)νk), X0, . . . , X̂i, . . . , X̂j , . . . , Xp, ν0, . . . , ν̂k, . . . , νq



+
p∑

i=0

q∑

k,l=0
k<l

(−1)i+k+lω
(
X0, . . . , X̂i, . . . , Xp, R

bas
∇ (νk, νl)Xi, ν0, . . . , ν̂k, . . . , ν̂l, . . . , νq



(3.71)

for all ω ∈ Ωp,q(N,E;E) (p, q ∈ N0), X0, . . . , Xp ∈ X(N) and ν0, . . . , νq ∈ Γ(E).

Remarks 3.8.10.

If ∇ is Ćat and if Rbas
∇ = 0, then one has simply

d∇d∇bas
ω = d∇bas

d∇ω. (3.72)

Both differentials, d∇ and d∇bas
, square to zero (recall Prop. 3.7.6)4 and, so, also the differentials

ω 7→ d1ω :=
(
d∇ + (−1)pd∇bas


ω, (3.73)

ω 7→ d2ω :=
(
(−1)qd∇ + d∇bas


ω (3.74)

for all ω ∈ Ωp,q(N,E;E), that can be seen by

d2
1ω = d1

(
d∇ + (−1)pd∇bas


ω

=
(
d∇ + (−1)p+1d∇bas


d∇ω +

(
d∇ + (−1)pd∇bas


(−1)pd∇bas

ω

=
(
d∇
2

︸ ︷︷ ︸
=0

ω +
(
d∇bas

2

︸ ︷︷ ︸
=0

ω + (−1)p+1d∇bas
d∇ω + (−1)pd∇d∇bas

ω

= (−1)p
(
d∇d∇bas

− d∇bas
d∇

ω

Eq. (3.72)
= 0,

similarly with d2.

For ν ∈ Γ(E) one gets

[
d∇bas

,d∇
]
ν = ινR

bas
∇ + ιρ(ν)R∇, (3.75)

4As for vector bundle connections, one can also show for general Lie algebroid connections that the square of their

exterior covariant derivatives is directly related to their curvature. We will not need this and the statements

about d1 and d2, hence, we do not show this. But the calculation is precisely the same.

96



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

here, ι denotes the contraction. Especially for Ćat ∇, Rbas
∇ describes the commutation relation

of both exterior covariant derivatives.

Proof of Prop. 3.8.9.

That is an extremely long and tedious but completely straightforward calculation. There is no

trick to use, ŤjustŤ insert the deĄnitions of all tensors and exterior covariant derivatives on both

sides of the equation and compare. ■

We can immediately conclude the following.

Corollary 3.8.11: Commutation for vanishing basic curvature

Let E → N be a Lie algebroid over a smooth manifold N and ∇ a connection on E. Then

Rbas
∇ = 0 if and only if

(
d∇d∇bas

ω

(X0, . . . , Xp, ν0, . . . , νq)

=
(
d∇bas

d∇ω

(X0, . . . , Xp, ν0, . . . , νq)

+
p∑

i=0

q∑

k=0

(−1)i+kR∇

(
Xi, ρ

(
ω
(
X0, . . . , X̂i, . . . , Xp, ν0, . . . , ν̂k, . . . , νq


νk

+
p∑

i,j=0
i<j

q∑

k=0

(−1)i+j+kω
(
ρ(R∇(Xi, Xj)νk), X0, . . . , X̂i, . . . , X̂j , . . . , Xp, ν0, . . . , ν̂k, . . . , νq



(3.76)

for all ω ∈ Ωp,q(N,E;E) (p, q ∈ N0), X0, . . . , Xp ∈ X(N) and ν0, . . . , νq ∈ Γ(E).

Remarks 3.8.12.

The Ť⇒Ť-direction was also found by Alexei Kotov. While I have derived it with the more

general previous proposition, Alexei Kotov has directly shown it from the point of view of

differentialgraded manifolds. This was communicated in a personal communication but there is

a paper planned about that by Alexei Kotov and Thomas Strobl, planned for 2021.

Proof of Cor. 3.8.11.

The Ť⇒Ť direction, i.e. we assuming a vanishing basic curvature, is clear by Prop. 3.8.9. For

the Ť⇐Ť direction we want to use Eq. (3.59) in Prop. 3.7.6. Observe that

(
d∇bas

1E


(µ, ν) = ∇bas

µ ν − ∇bas
ν µ− [µ, ν]E = t∇bas(µ, ν)

for all µ, ν ∈ Γ(E), and

(
d∇

1E


(X,µ) = (∇X1E)(µ) = ∇Xµ− ∇Xµ = 0
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for all X ∈ X(N) and µ ∈ Γ(E). Using these and by choosing ω = 1E ∈ Ω0,1(M,E;E) we have

by Eq. (3.76)

(
d∇t∇bas


(X,µ, ν) =

(
d∇d∇bas

1E


(X,µ, ν) = R∇(X, ρ(ν))µ−R∇(X, ρ(µ))ν

Eq. (3.59)
⇔ Rbas

∇ (µ, ν)X = (∇Xt∇bas)(µ, ν)︸ ︷︷ ︸
=(d∇t

∇bas)(X,µ,ν)

−R∇(ρ(µ), X)ν +R∇(ρ(ν), X)µ = 0.

■

3.9. Direct product of Lie algebroids

We will also need to know how to deĄne the direct products of Lie algebroids where we especially

refer to [10, Lemma 6.25] or [3, beginning of §4.2; page 155].

In the following we will have two Lie algebroids (E1, [·, ·]E1
, ρ1) → N1 and (E2, [·, ·]E2

, ρ2) →

N2 over two smooth manifolds N1 and N2. With pri : N1 × N2 → Ni we will denote in the

following part of this section the projection onto the i-th factor (i ∈ ¶1, 2♢), and T(N1 ×N2)

can be regarded as the Whitney sum of vector bundles pr∗
1(TN1) ⊕ pr∗

2(TN2), as usual and as

mentioned in [3]. We want to deĄne a Lie algebroid structure on pr∗
1(E1) ⊕ pr∗

2(E2) → N1 ×N2

(Whitney sum of pr∗
i (Ei)), and, thus, a canonical candidate of the anchor is immediately given

by pr∗
1ρE1 ⊕ pr∗

2ρE2 .

Sections of pr∗
i (Ei) can be viewed as compositions of the form µa pr∗

i

(
V i
a

)
, where V i

a ∈ Γ(Ei)

and µa ∈ C∞(N1 ×N2), simply using that pullbacks of sections generate all sections. Using

such decompositions has the advantage that the frames are given by (pullbacks of) frames of

Ei, especially, pr∗
i

(
V i
a

)
(no sum over i) is constant along Nj , j ̸= i. We then say that we take a

frame induced by E1 and E2.

Lemma 3.9.1: Uniqueness of the Lie algebroid structure on E1 × E2,

[10, Lemma 6.25]

[3, beginning of §4.2; page 155]

Let (E1, [·, ·]E1
, ρ1) → N1 and (E2, [·, ·]E2

, ρ2) → N2 be two Lie algebroids over two smooth

manifolds N1 and N2, and let E1 × E2 := pr∗
1(E1) ⊕ pr∗

2(E2) → N1 ×N2 be the Whitney

sum of vector bundles, equipped with the direct product of anchors. Then there is a unique

Lie algebroid structure on E1 × E2 such that

Γ(E1) ⊕ Γ(E2) → Γ(E1 × E2),

(µ, ν) 7→ pr∗
1µ⊕ pr∗

2ν = (pr∗
1µ,pr∗

2ν) (3.77)

is a Lie algebra homomorphism, where Γ(Ei) are viewed as (inĄnite-dimensional) Lie

algebras.
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Remarks 3.9.2.

With the direct product of anchors we mean here

ρE1×E2
:= ρE1 × ρE2

:= pr∗
1ρE1 ⊕ pr∗

2ρE2 .

Sketch of the proof of Lemma 3.9.1.

We just give a sketch of the proof since the calculations are all very straightforward, but tedious

to write down explicitly; the construction is as usual, making use of that some certain subset of

sections generate all sections and that one knows how to deĄne structures on that subset given

by the map in (3.77). The full structure then uniquely follows by forcing the Leibniz rule on the

Lie bracket.

In the following we will also omit all the pullback notations, so, when we write for example

that we take a section of Γ(E1), then we actually mean a pullback of that section along pr1.

Especially, we understand Γ(E1) ⊕ Γ(E2) as embedded in the sense of (3.77).

• For the existence we deĄne the Lie bracket [·, ·]E1×E2
as in the following: Let

(
f

(i)
a


a

be a

frame of Ei (i ∈ ¶1, 2♢) and their pullbacks give combined a frame of E1 ×E2 which we denote by

(ea)a; note that ea ∈ Γ(E1) ⊕ Γ(E2). The bracket [ea, eb]E1×E2
of this frame is then canonically

deĄned as direct product of the brackets [·, ·]E1
and [·, ·]E2

given by the direct product of Lie

algebras Γ(E1) ⊕ Γ(E2). Making use of that Γ(E1) ⊕ Γ(E2) generates Γ(E1 ×E2), we then write

for two sections µ = µaea, ν = νaea ∈ Γ(E1 × E2), and we then apply the typical construction

to force the Leibniz rule on the full set of sections,

[µ, ν]E1×E2
:= µaνb [ea, eb]E1×E2

+ µaℒρE1×E2
(ea)

(
νb

eb − νbℒρE1×E2

(eb)(µ
a) ea, (3.78)

where ρE1×E2 = ρE1 × ρE2 is the direct product of anchors. This is well-deĄned, because any

other frames
(
f

(i)
a


a

are locally related by a matrix on Ni, so, a change constant along Nj

(j ∈ ¶1, 2♢, i ̸= j). Hence, E1-E2-mixed terms of [ea, eb]E1×E2
are unaffected by a change of

such frames, and, so, it is still a direct product of Lie brackets for another frame. Especially, it

follows that the bracket is the direct product of the brackets on Γ(E1) ⊕ Γ(E2). That the whole

bracket is independent of the chosen frame is also trivial and straightforward to check; that

essentially follows by construction since the Lie derivatives ℒρE1×E2
(ea) will cancel the Leibniz

rule of [ea, eb]E1×E2
when changing the frame.

The calculations that this gives a Lie algebroid structure is now straightforward, similar to

the proof of Prop. 3.1.23. That is, the curvature of ρE1×E2 is trivially the direct product of the

curvature of ρE1 and ρE2

RρE1×E2
= RρE1

×RρE2

recall Def. 3.1.7. That simply follows by the fact that the anchor is a direct product and that

the Lie bracket is a direct product on Γ(E1) ⊕ Γ(E2), so, the curvature is a direct product

in the frame (ea), and therefore always because the curvature is a tensor (Lemma 3.1.12) and

Γ(E1) ⊕ Γ(E2) generates Γ(E1 × E2). Since Ei are Lie algebroids, the curvature is zero.
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The Lie bracket clearly satisĄes the Leibniz rule with respect to ρE1×E2 , and hence by

Prop. 3.1.17, we can test the Jacobi identity in a given frame; by construction, with respect

to the frame (ea) the bracket is a direct product of Lie brackets given by the direct product of

Lie algebras Γ(E1) ⊕ Γ(E2). So, Jacobi identity immediately follows.

• That the map deĄned in (3.77) is a Lie algebra homomorphism follows by construction since

the anchor and the Lie bracket are deĄned as direct products on Γ(E1) ⊕ Γ(E2).

• Uniqueness will follow by using that Γ(E1 ×E2) is generated by Γ(E1) ⊕ Γ(E2) as a module

over C∞(N1 × N2) using the map deĄned in (3.77), now denoted by Φ. Since Φ shall be a

homomorphism, the bracket on Γ(E1) ⊕ Γ(E2) embedded into Γ(E1 ×E2) is given by the direct

product of [·, ·]E1
and [·, ·]E2

in sense of Lie algebras; similarly as for X(N1) ⊕X(N2). Then take

any Lie algebroid bracket on E1 ×E2 such that Φ is a homomorphism and express sections with

respect to (ea)a. Using the Leibniz rule, every other possible Lie bracket has then the form of

(3.78), therefore uniqueness is given. ■

Hence, we deĄne:

DeĄnition 3.9.3: Direct product of Lie algebroids

Let (E1, [·, ·]E1
, ρ1) → N1 and (E2, [·, ·]E2

, ρ2) → N2 be two Lie algebroids over two smooth

manifolds N1 and N2, and let E1 ×E2 := pr∗
1(E1) ⊕ pr∗

2(E2) → N1 ×N2 be the Whitney

sum of vector bundles.

Then we call the Lie algebroid structure as given in Lemma 3.9.1 the direct product of

Lie algebroids.

There are some examples of direct products, especially also the Higgs mechanism of the

standard model.

Example 3.9.4: Examples of direct products of Lie algebroids

We provide two canonical examples; the Ąrst one directly comes by the construction for

which we viewed T(N1 ×N2) as the Whitney sum pr∗
1(TN1) ⊕ pr∗

2(TN2).

1. The Ąrst example is the direct product of two tangent bundles, Ei := TNi where

the Lie brackets are the ones from the tangent bundles and ρi := 1TNi
. Then

E1 × E2 = T(N1 ×N2).

2. Let E1 be the action Lie algebroid of the electroweak interaction, see Ex. 3.1.26,

and E2 be the Lie algebra su(3) → ¶∗♢ over a point set ¶∗♢ (with zero anchor).

Then E1 × E2 is called the Higgs mechanism of the standard model.

As usual, if we have several structures given on both factors, then we can often take their

product to deĄne a similar structure on the whole product of Lie algebroids. For tensors and

connections this is straightforward, however, we also have Lie algebroid connections and we
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have seen that pullbacks of those may not always been given; especially recall Cor. 3.5.7, that

is, anchor-preserving vector bundle morphisms are needed.

Lemma 3.9.5: Projections have lifts to anchor-preserving morphisms

Let (E1, [·, ·]E1
, ρ1) → N1 and (E2, [·, ·]E2

, ρ2) → N2 be two Lie algebroids over two smooth

manifolds N1 and N2, and let E1 × E2 be the direct product of Lie algebroids.

Then the projections πi : E1 × E2 → Ei (i ∈ ¶1, 2♢) are anchor preserving vector bundle

morphisms over pri : N1 ×N2 → Ni.

Remarks 3.9.6.

To clarify: πi project to Ei → Ni as Lie algebroid, not onto pr∗
iEi → N1 × N2. However,

extended to sections, πi maps to Γ(pr∗
iEi); recall Remark 3.1.10.

Proof of Lemma 3.9.5.

πi are clearly vector bundle morphisms by deĄnition. Denote with pi the projection of the bundle

Ei
pi→ Ni, similarly p the projection of E1 × E2

p
→ N1 ×N2, then

pi ◦ πi = pri ◦ p

by deĄnition, i.e. using that E1 ×E2 = pr∗
1E1 ⊕ pr∗

2E2. Hence, πi are vector bundle morphisms

over pri. Therefore we only need to check the anchor-preservation, that is, observe that with

precisely the same arguments

Dpr1 : pr∗
1TN1 ⊕ pr∗

2TN2 → TN1,

(X,Y ) 7→ X

is a vector bundle morphism over pr1 as it is also well-known, similarly for Dpr2.5 Then

(Dpri ◦ ρE1×E2)(µ1, µ2) = Dpri(ρE1×E2(µ1, µ2))

= Dpri

((
(pr∗

1ρE1)(µ1), (pr∗
2ρE2)(µ2)

)

= (pr∗
i ρEi

)(µi)

= (pr∗
i ρEi

◦ πi)(µ1, µ2)

for all (µ1, µ2) ∈ Γ(E1 × E2). Thus, πi is anchor-preserving; also recall Remark 3.1.10. ■

By Cor. 3.5.7 we can therefore also make pullbacks of Lie algebroid connections along those

projections. As a conclusion of this section, let us summarize and introduce the following.

5Essentially, the Dpri are the Ťπi for Ei = TNiŤ.
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Remark 3.9.7: Products of inherited structures

Let (E1, [·, ·]E1
, ρ1) → N1 and (E2, [·, ·]E2

, ρ2) → N2 be two Lie algebroids over two smooth

manifoldsN1 andN2, and let E1×E2 be the direct product of Lie algebroids. Furthermore,

let πi (i ∈ ¶1, 2♢) be the projections E1 × E2 → Ei as in Lemma 3.9.5.

Then, roughly in general, if we have some object Bi on Ei, then we deĄne their product

by

B1 ×B2 := pr∗
1B1 ⊕ pr∗

2B2, (3.79)

in case there is a well-deĄned notion for pr∗
iBi. This is of course well-deĄned for tensors,

i.e. Bi ∈ 𝒯
r
s (Ei) (r, s ∈ N0).

Another examples are vector bundle connections Bi := ∇i on Ei, or Ei-connections Bi :=
Ei∇ on vector bundles Vi → Ni by using Cor. 3.5.7. Especially the latter means that we

always canonically use πi for the pullbacks of Ei-connections, and observe

(
pr∗
i

(
Ei∇


(µ1,µ2)

(pr∗
i v) = pr∗

i

(
Ei∇µi

v


for all v ∈ Γ(Vi) and (µ1, µ2) ∈ Γ(E1 ×E2). Thence, exactly what one naturally expects,

for example Ťmixed terms are zeroŤ, that is, for example

(
pr∗

1

(
E1∇


(0,µ2)

(pr∗
1v) = 0.

That is of special usage if one uses that Γ(E1) ⊕ Γ(E2) generates Γ(E1 ×E2) and that the

mentioned structures are uniquely given by how they act on Γ(E1) ⊕ Γ(E2); also recall

Lemma 3.9.1. So, one just needs to take a frame induced by frames of Ei, and if a given

structure restricts in that frame to a structure on Ei, if just using the part of the frame

induced by Ei, and has no Ťmixed termsŤ, then one knows that this object can be written

as direct product.

All of that above similarly for structures given by TNi, and structures involving the

tangent bundles and the Ei as in the case of the anchors.

For example, let us have vector bundle connections ∇i on Ei, then we have the induced

basic connections ∇i,bas. We have a vector bundle connection on E1 × E2 by

∇ := ∇1 × ∇2,

whose curvature also splits as it is well-known (trivial to check with a frame induced by

frames of E1 and E2). With ∇1,bas × ∇2,bas one has a pair of E1 × E2-connections on

E1 × E2 and TN1 × TN2. Taking a frame induced by frames of E1 and E2 and TN1

and TN2, all of those connections and Lie algebroid connections restrict to the factors in

E1 × E2 by deĄnition. Using Lemma 3.9.1, also the Lie bracket and anchor are a direct

product on such a frame, for both E1 × E2 and TN1 × TN2, hence,

(
∇1 × ∇2

bas
= ∇1,bas × ∇2,bas
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and

Rbas
∇1×∇2 = Rbas

∇1 ×Rbas
∇2 .

Similarly the exterior covariant derivatives of ∇1 ×∇2 and
(
∇1 × ∇2

)bas
split on products

of forms ωi ∈ Ωpi,qi(N,E;E) (pi, qi ∈ N0) given by

ω1 × ω2 := pr!
1ω1 ⊕ pr!

2ω2. (3.80)

The differentials of Dpri are projections T(N1 ×N2) → TNi such that there is not really

a signiĄcant distinction between pr∗
i and pr!

i. This is why we are not going to clarify in

such situations whether the product is using pullbacks in sense of sections or forms. It

will be clear by context.

3.10. Splitting theorem for Lie algebroids

Using the last section, one can locally formulate Lie algebroids as direct products of certain Lie

algebroids. Let us study that, but Ąrst we need some basic notions; we are mainly following [2]

now.

DeĄnition 3.10.1: Singular and regular points of vector bundle morphisms,

[2, §4; generalization of third remark after Theorem 4.1;

page 17]

Let V1
π1→ N1 and V2

π2→ N2 be vector bundles over smooth manifolds N1 and N2, re-

spectively. Also let P : V1 → V2 be a continuous vector bundle morphism over some

continuous map f : N1 → N2, i.e. π2 ◦ P = f ◦ π1.

We call a point p ∈ N1 a regular point if there is an open neighbourhood around p onto

which rk(P ), the rank of P , is constant. Singular points are points p ∈ N1 which are

not regular.

In our case P will be the anchor ρ, and since ρ is a homomorphism we know that the image

of ρ, Im(ρ), is closed under the Lie bracket of the tangent bundle such that we expect a foliation

related to the image of ρ by the Frobenius Theorem; however, since the rank of an anchor is not

constant as we pointed out earlier, the foliation induced by the image of the anchor is a singular

foliation. Formally, this is proven as a more general Frobenius theorem as also discussed in [2,

discussion after the deĄnition in §16.1; page 113]; also see [9, beginning of §3.1]. Essentially, one

gets still a foliation if a subset of the tangent bundle is closed under the Lie bracket, but the

foliation is singular (non-constant dimension of the leaves). We are interested into those leaves

of the anchor, also called orbits, such that we need to study the rank of ρ. There is a statement

about that the amount of singular points is ŤsmallŤ.

103



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

Proposition 3.10.2: Amount of singular and regular points,

[2, generalization of second remark after Theorem 4.1;

page 17]

Let the situation be as in Def. 3.10.1. Then the set of all regular points is dense in N1.

Proof.

Let Sreg and Slocmax be the sets of regular points and of local maxima of rk(P ) in N1, respectively.

It is clear that Sreg ⊂ Slocmax but we can also show Slocmax ⊂ Sreg: Let p ∈ N1 be a local

maximum of rk(P ) with value k ∈ N0 and let k ≥ 1 w.l.o.g. (since for k = 0 it is clear that then

p ∈ Sreg). Then there is a minor m of order k of P such that m(p) ̸= 0. By continuity of P there

is an open neighbourhood U ⊂ N1 containing p such that m♣U ̸= 0 and, thus, rk(P )♣U ≥ k.

Therefore also rk(P )♣U = k due to p ∈ Slocmax. Thence, p ∈ Sreg and so Sreg = Slocmax =: S.

Now let x0 ∈ N1 \ S and U an open neighbourhood of x0. rk(P ) reaches its upper bound on

U , i.e.

∃y ∈ U : ∀x ∈ U : (rk(P ))(x) ≤ (rk(P ))(y).

This follows by the fact that supx∈U (rk(P ))(x) =: l < ∞ by the boundedness of rk(P ) and

w.l.o.g. we can say that l ∈ N0 by the N0-valuedness of rk(P ); there must be a y ∈ U such that

l = (rk(P ))(y) since for any other upper bound l′ ∈ N0 of the rank on U , for which there is no

y ∈ U with l′ = (rk(P ))(y), one can lower l′ by 1 such that l′ − 1 is still an upper bound (follows

again by the N0-valuedness). This procedure is repeated until one gets an upper bound which

is the value of some element in U . Thus, the supremum is also a maximum. Thence

∀x0 ∈ N1 \ S : ∀ open neighbourhoods U of x0 : ∃y ∈ U : y ∈ Slocmax = Sreg

⇒ x0 is an accumulation point of Sreg

⇒ N1 \ S ⊂ S

⇒ Sreg = N1,

where S denotes the closure of S = Sreg. ■

Remarks 3.10.3.

This means, assuming N1 is connected, one has Ťwalls of measure zeroŤ of singular points

between the connected components of the set of all regular points, i.e. between zones of different

rank of P . By the previous proof one can also see that the rank of P is locally not maximal at

a singular point.

Around regular points of ρ, its distribution is also an integrable foliation since the rank is

constant. In general the natural question arises if one can split the Lie algebroid structure locally

along this distribution, in sense of Ťorbital plus transversal structureŤ. Indeed, there are several
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statements about such splitting theorems, starting with the important splitting theorem of

Poisson manifolds by Weinstein as in [2, Theorem 4.2; page 19], another splitting theorem for

Lie algebroids can be found in [14, Theorem 1.1]. If you are interested into a more general

approach and theorem then see [9]; in this paper the locality is just along the foliation while it

can be Ťarbitrary bigŤ along the transversal direction.

To discuss the splitting theorem for Lie algebroids would certainly exceed the work of this

thesis. Hence, we will just state the most simpliĄed statement around regular points without

further proof; see the listed references for a thorough discussion. Recall the discussion after

Def. 3.1.27, the kernel of the anchor at a point is a Lie algebra. Around regular points this

means that the kernel is a bundle of Lie algebras, Ker(ρ) → N , one makes use of that in the

following statement. For the following statement also recall that two submanifolds M1,M2 of N

are transversal if

TpM1 + TpM2 = TpN

for all p ∈ M1 ∩M2. We speak of a direct transversal if the sum is a direct sum/product.

Theorem 3.10.4: Splitting theorem around regular points, [9, Corollary 4.2]

Let E → N be a Lie algebroid over a connected manifold N such that N only consists of

regular points of the anchor ρ. Fix a point p ∈ N , and denote with L the leaf through p,

given by the foliation of ρ. Furthermore, take a submanifold S with p ∈ S and which is

transversal to the foliation of the anchor and which is a direct transversal of L. Then

E
locally around p

∼= TL× Ker(ρ)♣S , (3.81)

where TL × Ker(ρ)♣S is the direct product of Lie algebroids TL → L and Ker(ρ)♣S → S

(the bundle of Lie algebras given by the Ker(ρ) restricted to S).

Remark 3.10.5: Local frame of the splitting theorem

This theorem implies that around regular points p ∈ N are coordinate vector Ąeld (∂i)i
of L, and a frame (ea)a of Ker(ρ)♣S such that

ρ(∂i) = ∂i,

ρ(ea) = 0,

[∂i, ea]E = 0,

using Lemma 3.9.1. We will later deĄne the Ąeld of gauge bosons A as a form on the

spacetime with values in (the pullback of) a Lie algebroid; the components of A along

ea are then the massless gauge bosons, while the other ones may get mass. The Higgs

Ąeld will be a smooth map of the spacetime to N , and its components along L are then
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the Nambu-Goldstone bosons, while the transversal components are the Higgs bosons;

for this recall the discussion about the Higgs mechanism after Def. 2.3.9 and the isotropy

around Def. 3.1.27.

Using such a frame we conclude this section with a short statement about the existence of

parallel frames of Lie algebroid connections.

Lemma 3.10.6: Parallel frames of Ćat Lie algebroid connections around regular

points,

[15, Lemma 2.9]

Let E → N be a Lie algebroid over a smooth manifold N , and E∇ be an E-connection

on a vector bundle V → N . Moreover, assume that E∇ν = 0 for all ν ∈ E with ρ(ν) = 0.

Then there is locally around each regular point a frame (ea)a of E such that

E∇ea = 0.

Sketch of the proof.

Fix a regular point p ∈ N . We just give a short sketch of the proof, using a frame around

p as given in Remark 3.10.5, denoted by (fa)a, such that a subset of the frame, denoted as

(gi)i, satisĄes ρ(gi) = ∂i for some local coordinate vector Ąelds (∂i)i of the leaf through p. The

remaining part of the frame, denoted as (hα)α, spans the kernel of the anchor, that is, ρ(hα) = 0.

Then

E∇fb
v = ℒρ(fa)(v

a) fa + va E∇fb
fa = ℒρ(fa)(v

a) fa + vaωcabfc

for all v = vafa ∈ Γ(V ) and µ ∈ Γ(E), where ωcab are smooth functions locally on N given by

ωcabfc = E∇fb
fa. Let us study the equation E∇v = 0. If fb = gi, then

0 = ∂iv
a fa + vaωcaifc,

that is just the standard well-known PDEs, which we can solve. However, if fb = hα, then

0 = vaωcaαfc,

and that is an algebraic equation, which may or may not be solvable. By the condition E∇ν = 0

for all ν ∈ E with ρ(ν) = 0 we know that E∇hα = 0 and, so, ωcaα = 0. This resolves the problem

of the algebraic equations which are now trivially satisĄed. Hence, the remaining proof of the

existence of the parallel frame is then similar to Ćat vector bundle connections, making use of

the vanishing mixed components of the Lie bracket as given in the third equation in Remark

3.10.5 when studying the curvature with respect to such statements, in order to allow similar

arguments about parallel transport as for vector bundle connections; see the reference for the

remaining proof. ■
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Especially the proof emphasizes why one cannot expect in general to have a parallel frame

for Ćat Lie algebroid connections. For example take an action Lie algebroid E = N × g over a

smooth manifold N , related to a Lie algebra g, and denote with ∇ its canonical Ćat connection.

Then the basic connection on E gives

∇bas
µ ν = [µ, ν]g

for all constant sections µ, ν ∈ Γ(N × g). Therefore the basic connection is also Ćat because it

is just the Lie bracket (by the Jacobi identity); but it is a canonical Ćat connection if and only

if g is abelian. If the basic connection on E has a parallel frame (ea)a, then

∇ρ(ea)eb = [ea, eb]E ,

which may not necessarily hold for any frame. Since the left hand side is tensorial in ea we could

then derive for all sections ν with (in that neighbourhood) ρ(ν) = 0 that

0 = νa [ea, eb]E .

However, the important piece of information in this work is to know that the basic connection is

in general not the canonical Ćat connection for action Lie algebroids if ∇ is already the canonical

Ćat connection.

3.11. Lie algebra bundles

Of special importance are the Lie algebra bundles (LABs), deĄned in Def. 3.1.20. As Lie

algebroids they are rather easy since the anchor is zero. But they will still play an important

role later; also the kernel of each anchor is a bundle of Lie algebras around regular points, which

is why it is important to study those. LABs are a special case of bundle of Lie algebras, but we

will see later why we are mainly interested into those.

We will summarise the most important results of this section in Ex. 3.11.15.

3.11.1. Notions similar to Lie algebras

Many constructions related to Lie algebras carry over to LABs. We will explain why.

Proposition 3.11.1: sub-LABs, [3, Proposition 3.3.9; page 105]

Let K → N be an LAB over a smooth manifold N with Ąbre type g as Lie algebra.

Moreover, let h be a Lie characteristic subalgebra of g, that is, a subalgebra of g such

that φ(h) = h for all Lie algebra automorphism φ : g → g.

Then there is a well-deĄned sub-LAB L of K, that is, a subbundle L of K which is

also an LAB such that each LAB chart ψ : K♣U → U × g restricts to an LAB chart

L♣U → U × h, where U is an open subset of N on which an LAB chart is deĄned.
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Remarks 3.11.2.

It is an immediate consequence that the Ąeld of Lie brackets of L is given by the Ąeld of Lie

brackets of K restricted to L.

Proof of Prop. 3.11.1.

That is trivial. The essential thing to note is that we need φ(h) = h for all Lie algebra au-

tomorphisms φ : g → g as a condition for gluing the canonical construction of a sub-LAB in

given a trivialization, i.e. it is trivial to construct a sub-LAB for a trivial LAB, and for gluing

those constructions it is important that each LAB chart can restrict to a Lie algebra isomor-

phism L♣U → U × h corresponding to the same subalgebra h. To make this possible, the local

images/restrictions must be stable under transition maps in case two LAB charts of K overlap

in some open neighbourhood. The transition maps are Lie algebra automorphisms, and, so, if

two overlapping LAB charts of K restrict as stated, then their transition map is in alignment

with this due to φ(h) = h for all Lie algebra automorphisms φ : g → g.

Hence, restricting the inverse of each LAB chart of K to U × h deĄnes a subbundle L of K,

such that each Ąbre is essentially the subalgebra h and its bracket is canonically the restriction

of the Ąeld of Lie brackets of K; all of that is well-deĄned by the previous paragraph, and that

gives an LAB structure on L. ■

Example 3.11.3: Centres of LABs,

[3, Ąrst parapgraph after Proposition 3.3.9; page 105]

With this proposition we can quickly generalize certain constructions of Lie algebras to

the level of LABs. For example, possible subalgebras h of a Lie algebra g with φ(h) = h for

all Lie algebra automorphisms φ : g → g are trivially, due to that φ is a homomorphism

of brackets, the centre Z(g) of g and [g, g]g, the corresponding sub-LABs are denoted by

Z(K) and [K,K]K , respectively; we especially need the former. Moreover, the sections

of Z(K) are also the centre of the Lie algebra Γ(K).

Z(g) Z(K)

N

Example 3.11.4: Derivations of LABs,

[3, second and third parapgraph after Proposition 3.3.9, and

discussion around Proposition 3.3.10; page 105]

Another important LABs will be related to Lie bracket derivations Der(g) of a Lie algebra

g; those are as usual deĄned as those endomorphisms T ∈ End(g) of g such that

T
(
[x, y]g


= [T (x), y]g + [x, T (y)]g
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for all x, y ∈ g. Recall, that we derived the derivations of a vector bundle V → N ,

denoted by 𝒟(V ), whose anchor was denoted by a and its kernel is trivially given by

End(V ). Since the rank of End(V ) is constant, so, a has constant rank, and the kernel of

anchors around regular points is a bundle of Lie algebras, we can conclude that End(V )

is an LAB, also because of that the Lie algebra Ąbre type is trivially given by End(W )

where W is the Ąbre type of of V .

In case of V = K an LAB over N , we have an LAB with Ąbre type End(g), and Der(g)

is a subalgebra as it is well-known and trivial to check. Now let φ ∈ Aut(g), then take

T ∈ Der(g), and observe for φ ◦ T ◦ φ−1 that

(
φ ◦ T ◦ φ−1

(
[x, y]g


= (φ ◦ T )

[
φ−1(x), φ−1(y)

]
g



= φ

[
T
(
φ−1(x)


, φ−1(y)

]
g

+
[
φ−1(x), T

(
φ−1(y)

]
g



=
[(
φ ◦ T ◦ φ−1


(x), y

]
g

+
[
x,
(
φ ◦ T ◦ φ−1


(y)
]
g

for all x, y ∈ g. Thus, φ ◦ T ◦ φ−1 ∈ Der(g); similar for the inverse of φ such that

φ ◦ Der(g) ◦ φ−1 = Der(g). The conjugation with φ is just a certain type of elements

in Aut
(
End(g)

)
such that it looks like that we cannot yet use Prop. 3.11.1. However,

the proof of Prop. 3.11.1 was just about transition maps and in case of End-bundles

the typical atlasa has such transition maps as we know in general, which is why we can

conclude similarly as in the proof of Prop. 3.11.1 that there is a well-deĄned sub-LAB

Der(K) of End(K) with Ąbre type Der(g).

Der(g) Der(K)

N

There is a special set of derivations, the ideal of inner derivations ad(g) of g; that is,

an inner derivation is of the form ad(x) for an x ∈ g. It is trivially a derivation by the

Jacobi identity, and an ideal of Der(g) by

(
[ad(x), T ]Der(K)


(y) = [x, T (y)]g − T

(
[x, y]g



︸ ︷︷ ︸
=[T (x),y]

g
+[x,T (y)]

g

= −
(
ad
(
T (x)

))
(y)

for all x, y ∈ g and T ∈ Der(g). As above, observe that for all φ ∈ Aut(g) we have

(
φ ◦ ad(x) ◦ φ−1


(y) = φ

[
x, φ−1(y)

]
g


=
(
ad
(
φ(x)

))
(y),
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hence, the discussed conjugation above restricts to inner derivations. Therefore we can

apply the same argument as above to derive that ad(g) gives rise to a sub-LAB of Der(K)

and of End(K), denoted by ad(K), the ideal of inner derivations of K.

aThis is also clearly its LAB atlas.

Remarks 3.11.5.

As shown in [3, discussion around Proposition 3.3.10; page 105], one can quickly derive that

ad(K) is the image of ad : K → Der(K), which is just deĄned as the Ąbre-wise extended adjoint

map of ad on g. Since it is a tensor, the adjoint extends to sections.

ad(K) is trivially an ideal in the following sense.

DeĄnition 3.11.6: Ideals of LABs, [3, DeĄnition 3.3.11; page 106]

Let K → N be an LAB over a smooth manifold N and L a sub-LAB of K. Then L is an

ideal of K if each Ąbre of Lp is an ideal of Kp for all p ∈ N .

One can construct a quotient of Der(K) over ad(K) in the usual way, but we need such

quotients a bit more general. For this we need to discuss extensions of tangent bundles where

LABs play an important role. Those are best described as certain short exact sequences.

3.11.2. Extensions of tangent bundles with Lie algebra bundles

DeĄnition 3.11.7: Extension of tangent bundles by LABs and transversals,

[3, §7.1, DeĄnition 7.1.11; page 266; and DeĄnition 7.3.1;

page 277]

Let K → N be an LAB. Then an extension of TN by K is a short exact sequence of

Lie algebroids over N

0 K E TN 0,ι π

where E → N is a Lie algebroid and the sequence is exact as a sequence of vector bundles

but each arrow represents a Lie algebroid morphism, equivalently denoted asa

K E TN.ι π (3.82)

A transversal of (3.82) is a vector bundle morphism χ : TN → E such that π ◦ χ = 1TN .

aThe hooked arrow emphasizes the inclusion, and the two-headed arrow the surjectivity.

Remarks 3.11.8.

• As in this deĄnition, we will use those sequences also to deĄne the corresponding notation

of the Lie algebroid morphisms, in order to avoid separately writing Ť[. . . ] where ι : K → E is a
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Lie algebroid morphism [. . . ]Ť. We also only give the sequence, implicitly meaning that K will

be an LAB and E a Lie algebroid over N without mentioning it further.

• Furthermore, ι is an injective Lie algebroid morphism, especially an embedding since it

is also vector bundle morphism. Hence, ι is up to Lie algebroid isomorphisms the inclusion

in this work and can be thought as such, which is why we often omit it. These notations

normally emphasize that a change of the explicit description of K is possible, in that case the

inclusion would be replaced by a composition of the corresponding inclusion with a Lie algebroid

isomorphism; however, we will not need this.

• We will, as usual, denote the Lie bracket of E by [·, ·]E , and π is its anchor ρ due to that π

is anchor-preserving and that the anchor of TN is the identity. Therefore we will use the typical

notation of anchors in the following instead of π; we also clearly have ι(K) = Ker(ρ) by the

exactness of the sequence.

• E is a transitive Lie algebroid because ρ = π is surjective in that case; in fact, by [3,

Theorem 6.5.1; page 248] each transitive Lie algebroid E is such a short exact sequence. The

rank of the anchor is constant for transitive Lie algebroids such that there are only regular

points and, so, the kernel of the anchor, Ker(ρ), is a bundle of Lie algebras. One can show that

Ker(ρ) is also a Lie algebra bundle by Thm. 5.1.1; the essential trick is to take a vector bundle

morphism χ : TN → E with ρ◦χ = 1TN , and then to deĄne a connection ∇ on Ker(ρ) by ad◦χ,

i.e. ∇Xν := [χ(X), ν]E for all X ∈ X(N) and ν ∈ Ker(ρ). This connection will be a Lie bracket

derivation of Ker(ρ) such that Thm. 5.1.1 can be used. We will not prove this, since we are not

going to need it, hence, see the reference; however, the essential calculations will be done later

in Section 5.1. Moreover, it is useful for the following constructions to keep this information in

mind, in order to understand why it is a useful simpliĄcation to assume transitive Lie algebroids.

• So, in our case, extensions are equivalent to transitive Lie algebroids, such that one may

wonder about the different name. Often, especially in Section 5.1, we will have a given K and

N , then there is the question whether there is an E in the sense of an extension involving K

and TN . Thence, the idea is that E extends TN by K in sense of Lie algebroids. The different

name here is especially to emphasize a different context. Moreover, the idea of extensions can

be generalized in the sense of replacing TN by an arbitrary Lie algebroid as in [3, DeĄnition

3.3.19; page 109].

Example 3.11.9: Derivations as extension and connections as transversal,

[3, second statement of Corollary 3.6.11; page 140]

Let V → N be a vector bundle over a smooth manifold N . Then 𝒟(V ) with anchor a

describes an extension as a transitive Lie algebroid as we have seen,

End(V ) 𝒟(V ) TN.a (3.83)

By deĄnition, a vector bundle connection ∇ of V is then a transversal of (3.83), and each

transversal a connection.

111



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

In the case of V = K an LAB, we can deĄne 𝒟Der(K) as the subset of those derivations

generated by sections T ∈ Γ(𝒟(K)) with

T ([µ, ν]K) = [T (µ), ν]K + [µ, T (ν)]K

for all µ, ν ∈ Γ(K). Since [·, ·]
𝒟(K) is just deĄned as a commutator, it follows as trivial as

for Der(g) of a Lie algebra g that Γ(𝒟Der(K)) is a subalgebra of Γ(𝒟(K)); and at each

point p ∈ N we have that 𝒟Der(K) is a subspace of 𝒟(K). It is also a Lie algebroid,

whose structure is inherited by 𝒟(K); for this take a connection ∇ on K which is a Lie

bracket derivation, see Thm. 5.1.1 for its existence later. Then deĄne a map

TN × Der(K) → 𝒟Der(K),

(X,A) 7→ ∇X +A,

which is clearly well-deĄned because of the fact that the difference of two connections is

always an element L of Ω1(N ; End(K)); if then both of these connections are Lie bracket

derivations, then so also L such that L ∈ Ω1(N ; Der(K)). Hence, ∇X +A ∈ 𝒟Der(K). As

in the proof of Prop. 3.3.5, see also Lemma 3.3.7, this deĄnes an isomorphism of vector

spaces at each point, and as for 𝒟(K) this leads to that 𝒟Der(K) has constant rank and

it admits a transitive Lie algebroid structure with precisely the same arguments as for

general derivations; since this structure is inherited by 𝒟(K), we may say that 𝒟Der(K) is

a transitive Lie subalgebroid. The kernel of its anchor, a♣𝒟Der(K), consists by deĄnition of

those elements of End(K) which are also Lie bracket derivations, so, the kernel is Der(K).

Therefore we arrive at another extension, basically the restriction of (3.83) onto 𝒟Der(K),

Der(K) 𝒟Der(K) TN,a (3.84)

and also here, a vector bundle connection of K which is also a Lie bracket derivation is

equivalent to a transversal for (3.84).

As for Lie algebras, we want to take the quotient of Der(K) and 𝒟Der(K) over ad(K). That

is, as usual, done over ideals of Lie algebroids, which shall be subsets of the kernel of the anchor;

the reason behind this is to avoid problems in quotients with respect to the anchor. The typical

constructions for quotients will then apply because the anchor of an equivalence class is going

to be independent of the chosen representative.

DeĄnition 3.11.10: Ideals of transitive Lie algebroids,

[3, DeĄnition 6.5.6; page 250]

Let

K E TN.ι ρ
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be an extension. Then an ideal L of E is a sub-LAB of K with

[ν, µ]E ∈ Γ(L) (3.85)

for all ν ∈ Γ(E) and µ ∈ Γ(L).

Remarks 3.11.11.

As we know, the kernel of ρ, K, is a canonical example of an ideal.

Proposition 3.11.12: Quotient Lie algebroids of transitive Lie algebroids,

[3, Proposition 6.5.8]

Let

K E TN.ι ρ

be an extension and L an ideal of E. Furthermore, we denote with E
/
ι(L) and K

/
L

the quotient bundle as vector bundles, whose natural projections we denote by ♯ : E →

E
/
ι(L), µ 7→ µ+ ι(L), and ♯♣K , respectively. Then naturally deĄne

K
/
L

ι
→ E

/
ι(L), (3.86)

♯♣K(µ) 7→ ι
(
♯♣K(µ)

)
:= ♯

(
ι(µ)

)
, (3.87)

and

E
/
ι(L)

ρ
→ TN, (3.88)

♯(ν) 7→ ρ
(
♯(ν)

)
:= ρ(ν), (3.89)

and Ąnally equip E
/
ι(L) with the bracket [·, ·]

E
/
ι(L)

[♯(ν), ♯(η)]
E
/
ι(L)

:= ♯([ν, η]E) (3.90)

for all ν, η ∈ Γ(E). Then

K
/
L E

/
ι(L) TNι ρ

is an extension such that ♯ is a surjective submersion with kernel ι(L).

113



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

Remark 3.11.13

We call E
/
ι(L) the quotient (transitive) Lie algebroid of E over L. By deĄnition ♯

is a Lie algebroid morphism, as is ♯♣K by Eq. (3.87) since ι and ι are injective Lie algebroid

morphisms and embeddings.

Sketch of the proof of Prop. 3.11.12.

The proof is straightforward because the constructions are the typical ones for such structures.

We just give a sketch, one essentially needs to check that everything is well-deĄned, that we have

a Lie bracket in combination with an anchor and that the sequence of the quotients is exact.

First of all, everything has constant rank such that the taken quotients as vector bundles are

valid. Moreover, ι is well-deĄned because ι is injective by the exactness of the sequence, hence,

let µ, µ′ ∈ K with ♯♣K(µ) = ♯♣K(µ′)

♯
(
ι(µ)

)
= ♯
(
ι(µ− µ′)︸ ︷︷ ︸

∈ι(L)

+ι(µ′)
)

= ♯
(
ι(µ′)

)
,

such that ι
(
♯♣K(µ)

)
= ι
(
♯♣K(µ′)

)
; similarly for ν̂, ν̂ ′ ∈ E with ♯(ν̂) = ♯(ν̂ ′)

ρ(ν̂) = ρ(ν̂ − ν̂ ′
︸ ︷︷ ︸

∈ ι(L) ⊂ ι(K)

+ν̂ ′) = ρ(ν̂ ′),

thus, ρ
(
♯(ν̂)

)
= ρ

(
♯(ν̂ ′)

)
, and, Ąnally for ν, ν′, η, η′ ∈ Γ(E) with ♯(ν) = ♯(ν ′) and ♯(η) = ♯(η′),

♯
(
[ν, η]E

)
= ♯
(
[ν − ν ′
︸ ︷︷ ︸

∈ι(L)⊂ι(K)

+ν ′, η − η′

︸ ︷︷ ︸
∈ι(L)⊂ι(K)

+η′]E
)

= ♯
([
ν ′, η′]

E

)
,

using that the kernel of the anchor is an ideal of the Lie bracket, therefore also [♯(ν), ♯(η)]
E
/
ι(L)

=

[♯(ν ′), ♯(η′)]
E
/
ι(L)

. The (bi-)linearity of all those maps follows trivially, the bracket is also clearly

anti-symmetric, and

[♯(ν), f ♯(η)︸ ︷︷ ︸
=♯(fη)

]
E
/
ι(L)

= ♯
(
[ν, fη]E

)

= ♯
(
f [ν, η]E + ℒρ(ν)︸ ︷︷ ︸

=ℒρ(♯(ν))

(f) η
)

= f ♯
(
[ν, η]E

)
+ ℒρ(♯(ν))(f) ♯(η)

= f [♯(ν), ♯(η)]
E
/
ι(L)

+ ℒρ(♯(ν))(f) ♯(η)

for all f ∈ C∞(N). The Jacobi identity is clearly inherited by [·, ·]E , so, it is a Lie bracket and

ρ is the anchor by Prop. 3.1.17. By construction, ι is still injective, that is, assume

ι
(
♯♣K(µ)

)
= ι
(
♯♣K(µ′)

)
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for two Ąxed µ, µ′ ∈ K, then

0 = ♯
(
ι(µ− µ′)

)
,

thus, µ− µ′ ∈ L such that ♯♣K(µ) = ♯♣K(µ′), which proves the injectivity of ι. Moreover,

ρ
(
ι
(
♯♣K(µ)

))
= ρ

(
♯
(
ι(µ)

))
= ρ

(
ι(µ)

)
= 0

for all µ ∈ K; the anchor ρ is clearly surjective by ρ ◦ ♯ = ρ and because the quotient is just over

a subbundle of K = Ker(ρ), that is, for all X ∈ X(N) let ν ∈ Γ(E) such that X = ρ(ν), then

ρ
(
♯(ν)

)
= ρ(ν) = X.

Thence, the sequence of the quotients is exact. That ♯ is a surjective submersion with kernel

ι(L) follows trivially by construction as natural projection of quotient spaces. ■

Example 3.11.14: Outer bracket derivations of K,

[3, DeĄnition 7.2.1 and Equation (7); page 271]

Let K → N be an LAB over a smooth manifold N . Then we have the following quotient

Der(K)
/

ad(K) 𝒟Der(K)
/

ad(K) TN,a (3.91)

which we denote by

Out(K) Out(𝒟Der(K)) TN,a (3.92)

where Out(K) := Der(K)
/

ad(K) are the outer bracket derivations of K, and

Out(𝒟Der(K)) := 𝒟Der(K)
/

ad(K) are those derivations in 𝒟(K) which are also outer

bracket derivations. This quotient is possible because exactly as in Ex. 3.11.4 one can

show that ad(K) is also an ideal of 𝒟Der(K) and not just of Der(K), that is, we get again

as in Ex. 3.11.4

[T, ad(ν)]
𝒟Der(K)

= ad
(
T (ν)

)
(3.93)

for all ν ∈ Γ(K) and T ∈ Γ
(
𝒟Der(K)


.

Let us Ąnish this chapter with a summary of this section, also recall Remark 3.11.13.
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Example 3.11.15: Summary of Section 3.11,

[3, §7.2, Figure 7.1; page 272; we omit the labels of the

inclusion arrows]

Let K → N be an LAB over a smooth manifold N . Then the main results of Section 3.11

can be summarized in the following commuting diagram

Z(K) Z(K)

K K

Der(K) 𝒟Der(K) TN

Out(K) Out(𝒟Der(K)) TN

ad

♯+ ♯

a

a

(3.94)

where both rows and columns are short exact sequences of Lie algebroid morphisms,

especially the last two rows are extensions, and the diagram serves as a deĄnition of the

notation of the new Lie algebroid morphisms, for example ♯(+) denotes the projection of

derivations into the space of outer derivations.
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4. Generalized gauge theory

The purpose of the following sections is now to introduce a new and more general formulation

of gauge theory which we have introduced in Chapter 2. Especially recall the section about the

inĄnitesimal gauge transformation using Lie algebra connections, Section 2.5. Again, we do not

want to assume integrability, and so we only compare the new theory with a classical gauge

theory whose principal bundle is trivial and can thus be avoided completely by Ąxing a global

gauge.1

In that chapter we have used a Ťbookkeeping trickŤ, denoted by ι;2 that is, generalized, that

we had a spacetime M and the Higgs Ąeld Φ is a smooth map M → N . The physical quantities

like the Ąeld strength then had values in ev∗K and hence in Φ∗K after point evaluation at Φ,

where ev was the evaluation map of Def. 2.5.10 and K was some vector bundle over N (like

the Lie algebra); also recall Remark 2.5.20 where we argued that one can do something similar

for the Ąeld of gauge bosons and its inĄnitesimal gauge transformation, we are going to do so,

thus, viewing the Ąeld of gauge bosons of the classical formulation as forms with values in a

Φ-pullback of a trivial Lie algebra bundle. Moreover, we used g-connections, where g is a Lie

algebra acting on N via a Lie algebra action γ. By Prop. 3.1.23 action Lie algebroids as bundle

over N are a good candidate describing that notion, or more general, Lie algebroids and the

notion of Lie algebroid connections.

This is why we are going to deĄne the following physical quantities as having values in some

pullback using the evaluation map and Φ as for the Ąeld of gauge bosons, why we are going to

use a Lie algebroid E over N instead of a Lie algebra g, and why we will compare the following

deĄnitions with action Lie algebroids in order to allow a comparison with Chapter 2. We will see

that action Lie algebroids with their canonical Ćat connection will be the standard formulation

of gauge theory.

Although we speak of Φ as the Higgs Ąeld it can be of course any other Ąeld with a similar

Lagrangian, since we never really discuss the potential term. The Higgs Ąeld is just a main

example.

If you are interested into the calculations of this and the following chapter, then read Appendix

A Ąrst and the proofs listed there; certain steps of calculations are explained there which will

be simply used in the following without further explanation. We also need a similar notation as

in Def. 2.3.1, but extended to more than two arguments.

1We will use Lie algebroids; their integration is more complicated than the integrability of Lie algebras, see

e.g. [2, §16.4; page 117].
2Recall the discussion about ι after Cor. 2.5.14.
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DeĄnition 4.0.1: Graded extension of products,

[4, generalization of DeĄnition 5.5.3; page 275]

Let l ∈ N and E1, . . . El+1 → N be vector bundles over a smooth manifold N , and

F ∈ Γ
((⊗l

m=1E
∗
m


⊗ El+1


. Then we deĄne the graded extension of F as

Ωk1(N ;E1) × · · · × Ωkl(N ;El) → Ωk(N ;El+1),

(A1, . . . , Al) 7→ F (A1
∧, . . . ∧, Al),

where k := k1 + . . . kl and ki ∈ N0 for all i ∈ ¶1, . . . , l♢. F (A1
∧, . . . ∧, Al) is deĄned as an

element of Ωk(N ;El+1) by

F (A1
∧, . . . ∧, Al)(Y1, . . . , Yk) :=

1

k1! · · · · · kl!

∑

σ∈Sk

sgn(σ) F
(
A1

(
Yσ(1), . . . , Yσ(k1)


, . . . , Al

(
Yσ(k−kl+1), . . . , Yσ(k)



for all Y1, . . . , Yk ∈ X(N), where Sk is the group of permutations of ¶1, . . . , k♢ and sgn(σ)

the signature of a given permutation σ.
∧, may be written just as a comma when a zero-form is involved.

Locally, with respect to given frames
(
e

(i)
ai


ai

of Ei, this deĄnition has the form

F (A1
∧, . . . ∧, Al) = F

(
e(1)
a1
, . . . , e(l)

al


⊗Aa1

1 ∧ . . . ∧Aal

l (4.1)

for all Ai = Aai
i ⊗ e

(i)
ai , where Aai

i are ki-forms on N .

Remarks 4.0.2.

Using this notation, one has a useful way to compare pullbacks of forms, denoted by an excla-

mation mark, and pullbacks of sections, denoted by a star. That is, let Φ ∈ C∞(M ;N) and

F ∈ Ωl(N ;W ) for W → N a vector bundle, then

Φ!F =
1

l!
(Φ∗F )(DΦ ∧, . . . ∧, DΦ︸ ︷︷ ︸

l times

) (4.2)

by using the anti-symmetry of F and Def. 4.0.1, i.e.

1

l!

(
(Φ∗F )(DΦ ∧, . . . ∧, DΦ)


(Y1, . . . , Yl)

∣∣∣∣
p

=
1

l!

∑

σ∈Sl

sgn(σ) (Φ∗F )
(
DΦ

(
Yσ(1)


, . . . ,DΦ

(
Yσ(l)



︸ ︷︷ ︸
=sgn(σ) (Φ∗F )(DΦ(Y1),...,DΦ(Yl))

∣∣∣
p

=
1

l!


∑

σ∈Sl

1




︸ ︷︷ ︸
=l!

FΦ(p)

(
DpΦ

(
Y1♣p


, . . . ,DpΦ

(
Yl♣p
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=
(
Φ!F


(Y1, . . . , Yl)

∣∣∣
p

for all p ∈ M and Y1, . . . , Yl ∈ X(M).

In case of antisymmetric tensors we of course preserve that.

Proposition 4.0.3: Graded extensions of antisymmetric tensors

Let E1, E2 → N be real vector bundles of Ąnite rank over a smooth manifold N , F ∈

Ω2(E1;E2). Then

F (A ∧, B) = −(−1)kmF (B ∧, A) (4.3)

for all A ∈ Ωk(N ;E1) and B ∈ Ωm(N ;E2) (k,m ∈ N0). Similarly extended to all

F ∈ Ωl(E1;E2).

Remarks 4.0.4.

This is a generalization of similar relations just using the Lie algebra bracket [·, ·]g of a Lie

algebra g, see [4, §5, Ąrst statement of Exercise 5.15.14; page 316].

Proof.

Trivial by using Eq. (4.1). ■

4.1. Space of Ąelds

Before we can deĄne quantities like the Ąeld strength, we need to deĄne and study the inĄnite-

dimensional manifold of the arising Ąelds as we did in the classical situation; recall Def. 2.4.1.

Because of the non-triviality of the following bundles we need to take a closer look at this space.

Recall that we assume convenient settings when treating inĄnite-dimensional objects.

DeĄnition 4.1.1: Space of Ąelds

Let M,N be two smooth manifolds and E → N a Lie algebroid. Then we denote the

space of Ąelds by

ME := ME(M ;N) :=
{

(Φ, A)
∣∣∣ Φ ∈ C∞(M ;N) and A ∈ Ω1(M ; Φ∗E)

}
(4.4)

which we sometimes view as a Ąbration over C∞(M ;N)

ME(M ;N)

C∞(M ;N)

where the projection is given by ME(M ;N) ∋ (Φ, A) 7→ Φ.

We will refer to A ∈ Ω1(M ; Φ∗E) as the Ąeld of gauge bosons and Φ just as a physical

Ąeld of this theory.
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Let us look at the tangent space of ME(M ;N); we are interested into that because of the

identiĄcation of inĄnitesimal gauge transformations as tangent vectors. Also recall the discussion

about the double vector bundle structure before Def. 3.3.11 which we need now again.

Proposition 4.1.2: Tangent space of ME(M ;N)

Let M,N be two smooth manifolds and E
π
→ N a Lie algebroid. Then the tan-

gent space T(Φ0,A0)

(
ME(M ;N)

)
of ME(M ;N) at (Φ0, A0) consists of pairs (𝓋,𝒶) with

𝓋 ∈ Γ(Φ∗
0TN) and 𝒶 ∈ Ω1(M ;𝓋∗TE), where 𝓋

∗TE is the pullback of TE
Dπ
→ TN as a

vector bundle, viewing 𝓋 as a map M → TN . This pair also satisĄes

πTE(𝒶) = A0, (4.5)

where πTE denotes the projection of the vector bundle TE → E.

Remark 4.1.3: Total situation as commuting diagram

This implies that we have in totala

TE TN

M

E N

Dπ

πTE πTN

A0(Y )
Φ0

𝓋

𝒶(Y )

π

for all (Φ0, A0) ∈ ME(M ;N), (𝓋,𝒶) ∈ T(Φ0,A0)

(
ME(M ;N)

)
and Y ∈ X(M), that is,

π
(
A0(Y )

)
= Φ0, (4.6)

πTN (𝓋) = Φ0, (4.7)

πTE(𝒶) = A0, (4.8)

Dπ
(
𝒶(Y )

)
= 𝓋 (4.9)

for all Y ∈ X(M), where the projections of the vector bundles TE → E and TN → N

are denoted by πTE and πTN , respectively.

aRecall that we view sections of pullback bundles also as sections along maps; see Section 1.1.
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Remarks 4.1.4.

Especially for Eq. (4.9) recall the discussion about the double vector bundle structure before

Def. 3.3.11. That is,

𝒶(fY + hZ) = f · 𝒶(Y ) h · 𝒶(Z)

for all Y,Z ∈ X(M) and f, h ∈ C∞(M), because 𝒶 has values in TE viewed as a vector bundle

over TN . Therefore also

Dπ
(
𝒶(fY + hZ)

)
= Dπ

(
𝒶(Y )

)
.

This is also in alignment with Eq. (4.8) although it is about the vector bundle TE → E, so,

πTE

(
𝒶(fY + hZ)

)
= πTE

(
f · 𝒶(Y ) h · 𝒶(Z)

)

= f πTE

(
𝒶(Y )

)
+ h πTE

(
𝒶(Z)

)

= A0
(
fY + hZ

)
.

Proof of Prop. 4.1.2.

We identify the tangent spaces of (Φ0, A0) ∈ ME(M ;N) with the set consisting of elements of

the form

d

dt

∣∣∣∣
t=0

γ,

where γ : I → ME(M ;N) is a curve with γ(0) = (Φ0, A0) and I an open interval of R around 0.

Since we do not have any conditions on ME(M ;N) besides that A0 has values in Φ∗
0E, we will

see that we just need to describe where the ŤvelocityŤ of the curves live, and surjectivity will

then just follow by that we always can Ąnd curves with arbitrary initial conditions on position

and velocity. Let us write γ = (Φ, A), t 7→ γ(t) = (Φt, At), with

Φt ∈ C∞(M ;N), Φt=0 = Φ0,

At ∈ Ω1(M ; Φ∗
tE), At=0 = A0

for all t ∈ I. As usual, the tangent space consists of elements of the form


d

dt

∣∣∣∣
t=0

[t 7→ Φt],
d

dt

∣∣∣∣
t=0

[t 7→ At]


.

Hence, for all p ∈ M we have a curve Φ(p) := [t 7→ Φt(p)] in N with

d

dt

∣∣∣∣
t=0

(Φ(p)) ∈ TΦ0(p)N,

such that for all curves Φ

d

dt

∣∣∣∣
t=0

[t 7→ Φt] ∈ Γ(Φ∗
0TN),
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and besides Φt=0(p) = Φ0(p) there is no other condition on Φ(p), thus, for all v ∈ TΦ0(p)N there

is a curve Φ(p) such that its Ťinitial velocityŤ is v, i.e.

v =
d

dt

∣∣∣∣
t=0

(
Φ(p)

)
,

and extending this argument we can achieve that for all 𝓋 ∈ Γ(Φ∗
0TN) there is a curve Φ such

that

𝓋 =
d

dt

∣∣∣∣
t=0

[t 7→ Φt],

Now we Ąx such a curve Φ for a Ąxed 𝓋. Let us look at the curve A(Y ) := [t 7→ At(Y )] for

all Y ∈ X(M), that is A(Y ) : I ×M → E, (t, p) 7→ At,p(Yp) with π ◦ A(Y ) = Φ, where π is the

projection of E onto N. So,

TΦ0(p)N ∋ 𝓋p =
d

dt

∣∣∣∣
t=0

(
π(Ap(Yp))

)
= DA0(Y )♣pπ


d

dt

∣∣∣∣
t=0

Ap(Yp)


= DA0(Y )♣pπ(𝒶p(Yp)),

where

𝒶p(Yp) :=
d

dt

∣∣∣∣
t=0

[t 7→ At,p(Yp)] ∈ TA0(Y )♣pE

for all p ∈ M . Hence, we can also see 𝒶 equivalently as a form on M with values in TE such

that

πTE(𝒶) = A,

Dπ
(
𝒶(Y )

)
= 𝓋

for all Y ∈ X(M), and we view 𝒶 as an element of Ω1(M ;𝓋∗TE), too, where we view TE as the

vector bundle TE
Dπ
→ TN ; that is because of the following: Let Z ∈ X(M) be another vector

Ąeld and f, h ∈ C∞(M), then

𝒶p(f(p) Yp + h(p) Zp) =
d

dt

∣∣∣∣
t=0

[t 7→ At,p(f(p) Yp + h(p) Zp)]

=
d

dt

∣∣∣∣
t=0

[t 7→ f(p) At,p(Yp) + h(p) At,p(Zp)]

= f(p) · 𝒶p(Yp) h(p) · 𝒶p(Zp),

because of

DAp(Yp)π(𝒶p(Yp)) = 𝓋p = DAp(Zp)π(𝒶p(Zp))

and since [t 7→ At,p(Yp)] and [t 7→ At,p(Zp)] are the representing curves of 𝒶p(Yp) and 𝒶p(Zp) as

tangent vectors, respectively, satisfying

π(At,p(Yp)) = Φt(p) = π(At,p(Zp)),
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such that we precisely get the deĄnitions of · and .

As before, we can conclude that we can Ąnd a curve A for all 𝒶 ∈ Ω1(M ;𝓋∗TE) such that

𝒶 =
d

dt

∣∣∣∣
t=0

A.

(In this proof, we make use of the homotopy lifting property of Ąbrations such that we can Ąnd

an A(Y ) : I ×M → E for each Φ : I ×M → N for all (Φ0, A0) ∈ ME(M ;N) with the suitable

properties.) ■

Think of (𝓋,𝒶) again as candidates for the inĄnitesimal gauge transformations, for which we

wrote (δΦ, δA) in Chapter 2; also recall Remark 2.5.11. But other than in Remark 2.5.11 we

cannot assume canonical Ćat connections now which is why the last result shows that we cannot

view (𝓋,𝒶) as an element of ME(M ;N) in general, thus, we changed the notation to (𝓋,𝒶) for

now. So, we do not have any canonical horizontal distribution given, and therefore let us study

the vertical structure Ąrst.

Recall that there is the notion of a vertical bundle for Ąbre bundles F
π
→ N (as e.g. intro-

duced in [4, §5.1.1, for principal bundles, but it is straightforward to extend the deĄnitions]),

which is deĄned as a subbundle VF of the tangent bundle TF → F given as the kernel of

Dπ : TF → TN . The Ąbres VeF of F at e ∈ F are then given by

VeF = TeFp,

where p := π(e) ∈ N and Fp is the Ąbre of F at p. Now consider a vector bundle E
π
→ N , then

VeE = TeEp ∼= Ep because the Ąbres are vector spaces.

Proposition 4.1.5: Vertical bundle of ME(M ;N)

Let M,N be two smooth manifolds and E
π
→ N a Lie algebroid. Then the vertical bundle

of ME(M ;N), viewed as a Ąbration over C∞(M ;N), is given by

V(Φ,A)

(
ME(M ;N)

) ∼=
{

(𝓋,𝒶)
∣∣∣ 𝓋 = 0 ∈ Γ(Φ∗TN), 𝒶 ∈ Ω1(M ; Φ∗E)

}
∼= Ω1(M ; Φ∗E).

(4.10)

Proof of Prop. 4.1.5.

We have the bundle ME(M ;N)
ϖ
→ C∞(M ;N), where ϖ(Φ, A) := Φ for all (Φ, A) ∈ ME(M ;N).

Hence,

D(Φ,A)ϖ(𝓋,𝒶) = 𝓋

for all (𝓋,𝒶) ∈ T(Φ,A)ME(M ;N). The kernel of Dϖ at (Φ, A) ∈ ME(M ;N) is then given by

Ker
(
D(Φ,A)ϖ


=
{

(𝓋,𝒶) ∈ T(Φ,A)ME(M ;N)
∣∣∣ 𝓋 = 0

}
.
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By Prop. 4.1.2, we then know that 𝒶 has values in the vertical bundle VE, that is, for 𝒶p(Yp) ∈

TAp(Yp)E (p ∈ M , Y ∈ X(M)) we have

DAp(Yp)π(𝒶p(Yp)) = 0

⇔ 𝒶p(Yp) ∈ VAp(Yp)E ∼= EΦ(p).

Thus, we can view 𝒶 equivalently as an element of Ω1(M ; Φ∗E), so,

V(Φ,A)ME(M ;N) ∼=
{

(𝓋,𝒶)
∣∣∣ 𝓋 = 0 ∈ Γ(Φ∗TN), 𝒶 ∈ Ω1(M ; Φ∗E)

}
∼= Ω1(M ; Φ∗E).

■

That is, we can in general only expect to have (𝓋,𝒶) ∈ ME(M ;N) if at least 𝓋 = 0. Recall

that we identiĄed this component with the inĄnitesimal gauge transformation of the Higgs Ąeld

which was proportional to the Lie algebra representation, see Def. 2.4.2. Even when we do not

have yet the general deĄnition of that inĄnitesimal gauge transformation, it is natural to assume

that this transformation is therefore only zero when there is no coupling of the gauge bosons

to the Higgs Ąeld (= zero action), but in general there will be of course a coupling. As already

mentioned, we circumvented that problem in Chapter 2 by choosing canonical Ćat connections;

moreover, observe that this condition about 𝓋 = 0 comes from that the Ąeld of gauge bosons

A has values in Φ∗E, as if we would have applied the Ťbookkeeping trickŤ to A in Section 2.5,

too. Thus, we are going to treat the inĄnitesimal gauge transformation of A similar to how

we deĄned the inĄnitesimal gauge transformation for functionals in Section 2.5, then we also

achieve that its transformation can be viewed again as an element of Ω1(M ; Φ∗E), simplifying

further calculations, without really loosing information about the transformation of A; we will

explain this later. That the inĄnitesimal gauge transformation of the Higgs Ąeld is in general

not a smooth map M → N will be on the other hand actually less of a problem.

But before we can make that mathematical precise, we need to deĄne at what type of func-

tionals we are going to look at. One key step is to look at M×ME(M ;N) as we did in Def. 2.5.10

and afterwards.

DeĄnition 4.1.6: Evaluation map of M × ME

Let M,N be manifolds, and E → N a Lie algebroid over N . Then we deĄne the evalu-

ation map ev by

M × ME(M ;N) → N

(Φ, A) 7→ ev(p,Φ, A) := Φ(p) (4.11)

for all p ∈ M and (Φ, A) ∈ ME .
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Remark 4.1.7: Bigrading of forms on M × ME

Let πi (i ∈ ¶1, 2♢) be the projection onto the i-th factor in M × ME , then

T(M × ME) ∼= π∗
1TM ⊕ π∗

2TME . (4.12)

Gives rise to a bigrading of
∧k T∗(M × ME) (k ∈ N0),

k∧
T∗(M × ME) ∼=

⊕

p,q∈N0
p+q=k

(
p,q∧

T∗(M × ME)

)
, (4.13)

where

p,q∧
T∗(M × ME) := π∗

1

(
p∧

T∗M

)
⊗ π∗

2

(
q∧

T∗ME

)
. (4.14)

Similarly, for V a vector bundle over M × ME ,

Ωk(M × ME ;V ) ∼=
⊕

p,q∈N0
p+q=k

(
Ωp,q(M × ME ;V )

)
, (4.15)

with

Ωp,q(M × ME ;V ) := Γ

(
π∗

1

(
p∧

T∗M

)
⊗ π∗

2

(
q∧

T∗ME

)
⊗ V

)
. (4.16)

When V is the trivial line bundle, then we just write Ωp,q(M × ME).

If V is instead a vector bundle over N , then we have ev∗V naturally as bundle over

M × ME . Then, when taking a slice through (Φ, A) ∈ ME , i.e. evaluating a form at

points M × ¶Φ, A♢ while (Φ, A) ∈ ME is Ąxed,

L♣M×¶Φ,A♢ ∈ Ωp(M ; Φ∗V ) (4.17)

for all L ∈ Ωp,0(M × ME ; ev∗V ). Similarly, the de-Rham differential splits on Ωk(M ×

ME) as a differential along M and ME , dtotal = dM + dME
. When using exterior deriva-

tives, then we focus on directions along M , and we will denote that de-Rham differential

by d, i.e. d = dM .

Remarks 4.1.8.

Do not confuse notations like Ωp,q(M × ME ;V ) with the notation given in Def. 3.8.3; it will

be clear by the context which we mean, and, besides the next paragraphs, we actually will not

really use Ωp,q(M × ME ;V ) as notation anymore because we only want to motivate the next

and some following deĄnitions with this notation.

Eq. (4.17) is precisely the space our functionals should take values in when evaluated at

(Φ, A) ∈ ME . This leads to the following deĄnition.
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DeĄnition 4.1.9: Space of functionals in gauge theory

Let M,N be two smooth manifolds, E → N a Lie algebroid, and V → N a vector bundle.

Then the space of functionals ℱ
k
E(M ; ∗V ) (k ∈ N0) is deĄned as

ℱ
k
E(M ; ∗V ) := Ωk,0(M × ME(M ;N); ev∗V

)
. (4.18)

If V = N × R is the trivial line bundle over N , then we just write ℱ
k
E(M) instead of

ℱ
k
E(M ; ∗V ).

Remarks 4.1.10.

We often write for L ∈ ℱ
k
E(M ; ∗V )

ME ∋ (Φ, A) 7→ L(Φ, A) := L♣M×¶Φ,A♢ ∈ Ωk(M ; Φ∗V )

especially when we do not evaluate at p ∈ M ; recall Eq. (4.17).

Example 4.1.11: Projection onto the Ąeld of gauge bosons

Besides the physical quantities which we will deĄne later, we have an important and trivial

functional ϖ2 ∈ ℱ
1
E(M ; ∗E) given as the projection onto the Ąeld of gauge bosons, that

is

ϖ2(Φ, A) := A (4.19)

for all (Φ, A) ∈ ME . We will especially need this functional to deĄne the inĄnitesimal

gauge transformation of A and in several combinations with other functionals.

Example 4.1.12: Tangent map, total differential as functional

Also the total differential D can be viewed as a functional. That is D ∈ ℱ
1
E(M ; ∗TN) by

D(Φ, A) := DΦ ∈ Ω1(M ; Φ∗TN). (4.20)

Hence, when we just write D, then we mean precisely that.

For the following discussion and deĄnitions we use a similar convention of notation as in

Section 3.9. That is, we have T(M × ME) ∼= π∗
1TM ⊕ π∗

2TME as in Remark 4.1.7. If we

speak for example about TM , especially sections thereof, X(M), then we mean their canonical

embedding as a subalgebra of X(M × ME); so, X ∈ X(M) is also viewed as an element of

X(M × ME) but constant along ME . For vector bundle morphisms deĄned on T(M × ME) we

for example then also mean that forms restricted onto TM extend to maps acting on X(M).
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Remark 4.1.13: Notions on ℱ
k
E and further pullbacks with ev

By Def. 4.1.9, we recover typical notions on the space of functionals, notions like wedge

products, Def. 4.0.1 and contractions etc. by restricting notions on Ω•(M × ME) and

Ω•(M × ME ; ev∗V ) to Ω•,0(M × ME) and Ω•,0(M × ME ; ev∗V ) (• as placeholder for

the degree), respectively. Hence, we will not need to deĄne all those notions in that

setting, and, especially, Γ(ev∗V ) is therefore generated by elements of the form ev∗v,

where v ∈ Γ(V ).

Now assume we have a vector bundle connection ∇ on V , then ev∗∇ is a connection

on ev∗V . We want to restrict the exterior covariant derivative related to that connection

just to vector Ąelds on M . Observe for all X ∈ X(M) ⊂ X(M × ME), with Ćow γ in M

through a p ∈ M , (t, p) 7→ γt(p) (t ∈ I for some open interval in R containing 0),

D(p,Φ,A)ev(X) =
d

dt

∣∣∣∣
t=0

(
ev ◦ (γ(p),Φ, A)

)
=

d

dt

∣∣∣∣
t=0

(
(Φ ◦ γ)(p)

)
= DpΦ(X) (4.21)

for all (p,Φ, A) ∈ M × ME , where (γ(p),Φ, A) is the Ćow of X ∈ X(M) at (p,Φ, A),

viewed as an element of X(M × ME). So, the pushforward of X with ev at (Φ, A) is the

same as the pushforward of X with Φ, thus

(ev∗∇)X(p,Φ,A)
= (Φ∗∇)Xp

for all (p,Φ, A), viewing X as an element of X(M × ME) on the left hand side and as an

element of X(M) on the right hand side. Hence, we then also have

(
(ev∗∇)Xv

)∣∣
(p,Φ,A)

=
(
(Φ∗∇)Xp

v♣(Φ,A)

∣∣∣
p

for all v ∈ Γ(ev∗V ), since X does not differentiate along ME , and viewing v♣(Φ,A) := [p 7→

v♣(p,Φ,A)] as an element of Γ(Φ∗V ) on the right hand side. Therefore this naturally leads

on one hand to an exterior covariant derivative on the space of functionals by restricting

ev∗∇ to TM because then the exterior covariant derivative of (ev∗∇)♣TM clearly restricts

to ℱ
•
E(M ; ∗V ), and on the other hand

(
d (ev∗∇)♣TML

∣∣∣
(Φ,A)

= dΦ∗∇(L(Φ, A)
)
,

also recall Eq. (4.17).

Similarly, one shows for the pullback ev!ω of forms ω ∈ Ωk(N ;V ) that

(
ev!ω

∣∣∣
(p,Φ,A)

(X1, . . . , Xk) =
(
Φ!ω

∣∣∣
p
(X1, . . . , Xk)

for all X1, . . . , Xk ∈ X(M). Hence, also the ev-pullback of forms restricts to a Φ-pullback

of forms when Ąxing (Φ, A) and just evaluating at vector Ąelds along M .

Therefore we deĄne pullback functionals as in the following deĄnition.
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DeĄnition 4.1.14: Pullbacks as functionals

Let M,N be smooth manifolds, E → N a Lie algebroid, and V → N a vector bundle.

For all ω ∈ Γ(V ) we deĄne its pullback functional ∗v as an element of ℱ0
E(M ; ∗V ) by

∗v := ev∗v. (4.22)

For a vector bundle connection ∇ on V we deĄne the pullback connection ∗∇ (to

functionals) by

∗∇ := (ev∗∇)♣TM . (4.23)

Its induced exterior covariant derivative d
∗∇ we view as an exterior covariant derivative

on the space of functionals, especially

d
∗∇ : ℱk

E(M ; ∗V ) → ℱ
k+1
E (M ; ∗V ) (4.24)

for all k ∈ N0.

For all ω ∈ Ωk(N ;V ) (k ∈ N0) we deĄne similarly its form-pullback functional !ω as

an element of ℱk
E(M ; ∗V ) by

!ω :=
(
ev!ω

∣∣∣∧k
TM

. (4.25)

Remark 4.1.15

Observe that

(∗v)(Φ, A)♣p := (ev∗v)♣(p,Φ,A) = Φ∗v♣p (4.26)

for all (p,Φ, A) ∈ M × ME . Especially, (∗v)(Φ, A) = Φ∗v, similarly to what we al-

ready pointed out for !w and ∗∇ in Remark 4.1.13. By construction, and as argued in

Rem. 4.1.13, we also get

(
d

∗∇L

(Φ, A) = dΦ∗∇(L(Φ, A)

)
(4.27)

for all L ∈ ℱ
k
E(M ; ∗V ) (k ∈ N0) and (Φ, A) ∈ ME(M ;N).

We can also locally write, using a frame (ea)a of V ,

L = La ⊗ ∗ea, (4.28)

using that ev-pullbacks generate Γ(ev∗V ), where La ∈ ℱ
k
E(M) = Ωk,0(M × ME)

(restriction on open neighbourhood omitted).

The Ąrst calculation of Remark 4.1.13 also shows that we have

D = Dev♣TM
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as functionals, where we view Dev♣TM as an element of ℱ1
E(M ; ∗TN) given by Eq. (4.21).

This implies that we can apply Eq. (4.2), that is,

!ω =
(
ev!ω

∣∣∣∧k
TM

(4.2)
=

1

k!
(ev∗ω)(Dev♣TM ∧, . . . ∧, Dev♣TM ) =

1

k!
(∗ω)(D ∧, . . . ∧, D)

for all ω ∈ Ωk(N ;V ) (k ∈ N0). We are going to use this very often by just giving reference

to Eq. (4.2).

Example 4.1.16: Anchor as functional

Recall Ex. 4.1.11; the anchor gives also rise to a functional, especially needed for the

minimal coupling. (∗ρ)(ϖ2) is a functional in ℱ
1
E(M ; ∗TN), that is

(
(∗ρ)(ϖ2)

)
(Φ, A) = (Φ∗ρ)(A)

for all (Φ, A) ∈ ME(M ;N).

We have now the setup to Ąnally deĄne the physical quantities.

4.2. Physical Quantities

Let us Ąrst start with the deĄnition of the Ąeld strength. The following deĄnitions essentially

are motivated by [1], however, we completely reformulated it with the previously-introduced

notation in order to allow coordinate-free versions, also ŤfreeŤ with respect to (Φ, A) ∈ ME .

DeĄnition 4.2.1: Field of gauge bosons and their Ąeld strength,

[1, especially Eq. (11); Φ is denoted as X there]

Let M,N be smooth manifolds, and E → N a Lie algebroid equipped with a connection

∇ on E. We deĄne the Ąeld strength F as an element of ℱ2
E(M ; ∗E) by

F := d
∗∇ϖ2 −

1

2
(∗t∇ρ)(ϖ2

∧, ϖ2), (4.29)

that is

F (Φ, A) := dΦ∗∇A−
1

2

(
Φ∗t∇ρ

)
(A ∧, A) (4.30)

for all Φ ∈ C∞(M ;N) and A ∈ Ω1(M ; Φ∗E).

Remarks 4.2.2.

• Recall Def. 3.7.1 and Prop. 3.7.6 which imply t∇ρ = −t∇bas , where ∇bas is the basic con-

nection, such that

F = d
∗∇ϖ2 +

1

2
(∗t∇bas)(ϖ2

∧, ϖ2).
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We are going to use this often later.

• Let us recall the deĄnition of the standard setting, recall Def. 2.3.3, and recall the bookkeep-

ing trick before Prop. 2.5.15, which we denoted by ι: We then normally have A ∈ Ω1(M ; g),Φ ∈

C∞(M ;W ) for a given Lie algebra g and W a vector space, then the Ąeld strength is normally

deĄned as

F clas(Φ, A) ≡ F clas(A) = dAa ⊗ ea +
1

2
[A ∧, A]g (4.31)

for some given basis (ea)a of g. g is viewed as Ťtrivial bundleŤ over M , M × g, and (ea)a is a

constant frame.

Now, let us instead restrict Eq. (4.30) to an action Lie algebroid E = N × g equipped with

∇ as the canonical Ćat connection and (ea)a a global frame of constant sections, especially

∇ea = 0. Then (Φ∗ea)a trivializes Φ∗E such that Φ∗E ∼= M × g, (Φ∗ea)a describes a constant

frame, especially (Φ∗∇)(Φ∗ea) = Φ!(∇ea) = 0, and all Φ∗E-valued objects can be viewed as

g-valued. In that case, write A = Aa ⊗ Φ∗ea, and observe that

−
1

2

(
Φ∗t∇ρ

)
(A ∧, A) = −

1

2

(
Φ∗t∇ρ

)
(Φ∗ea,Φ

∗eb)︸ ︷︷ ︸
=Φ∗(t∇ρ (ea,eb))

Aa ∧Ab =
1

2
Φ∗ ([ea, eb]E)
︸ ︷︷ ︸

=[ea,eb]
g
=const.

Aa ∧Ab =
1

2
[A ∧, A]g

and

dΦ∗∇A = dAa ⊗ Φ∗ea −Aa ⊗ Φ!(∇ea) = dAa ⊗ Φ∗ea

for all A ∈ Ω1(M ; Φ∗E). Hence, we get

F = ι
(
F clas


.

As we have seen in the deĄnition of the action Lie algebroid, the anchor ρ replaces the notion

of Lie algebra actions and representations such that we now use the anchor to deĄne the minimal

coupling of A to Φ.

DeĄnition 4.2.3: Minimal coupling, [1, Eq. (3), Φ is denoted as X there]

Let M,N be smooth manifolds and E → N a Lie algebroid. Then we deĄne the minimal

coupling D as an element of ℱ1
E(M ; ∗TN) by

D := D − (∗ρ)(ϖ2). (4.32)

We also say that Φ is minimally coupled to A.

We also write

D(Φ, A) := DAΦ := DΦ − (Φ∗ρ)(A) (4.33)

for all Φ ∈ C∞(M ;N) and A ∈ Ω1(M ; Φ∗E).
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Remarks 4.2.4.

Restricting this to the standard situation gives back the standard deĄnition: Assume N = W

where W is a vector space, E = W × g an action Lie algebroid over W , whose action is induced

by a Lie algebra representation ψ : g → End(W ). Then the minimal coupling is

DAΦ
∣∣∣
p

= dpΦ
α ⊗ Φ∗∂α♣p + ψ

(
Ap(Y )

)(
Φ(p)

)

for all (p,Φ, A) ∈ M × ME(M ;W ) and Y ∈ TpM , where we use some global coordinates (∂α)α
of W and Prop. 2.1.16. Now we make use of the canonical identiĄcation of W Šs tangent spaces

with W itself, especially, vα = ∂α for some basis (vα)α on W . Then the Ąrst summand is

clearly dΦα ⊗ Φ∗∂α = ι(dΦ). Hence, also here we arrive at the classical deĄnition (under the

bookkeeping trick), recall Def. 2.3.7.

Finally we turn to the Lagrangian.

DeĄnition 4.2.5: Yang-Mills-Higgs Lagrangian,

[1, Eq. (2) and (16); but a different Ąeld strength there which

we will introduce later]

Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a

Lie algebroid, ∇ a connection on E, and let κ and g be Ąbre metrics on E and TN ,

respectively. Also let V ∈ C∞(N), which we call the potential of the Higgs Ąeld.

Then we deĄne the Yang-Mills-Higgs Lagrangian LYMH as an element of ℱ
dim(M)
E (M)

by

LYMH := −
1

2
(∗κ)(F ∧, ∗F ) + (∗g)(D ∧, ∗D) − ∗(∗V ), (4.34)

that is

LYMH(Φ, A) := −
1

2
(Φ∗κ)(F (Φ, A) ∧, ∗F (Φ, A)) + (Φ∗g)

(
DAΦ ∧, ∗DAΦ


− ∗(V ◦ Φ)

(4.35)

for all (Φ, A) ∈ ME(M ;N), where ∗ is the Hodge star operator with respect to η.

A short summary:

Corollary 4.2.6: Standard theory as action Lie algebroid, as motivated in [1]

Let M be a spacetime with a spacetime metric η, N = W be a vector space, equipped with

a Riemannian metric g on TW ∼= W ×W canonically induced by a scalar product on W ,

and E = N × g an action Lie algebroid for a Lie algebra g, equipped with its canonical

Ćat connection ∇ and a Ąbre metric κ which constantly extends a scalar product on g.

The g-action γ is induced by a Lie algebra representation ψ : g → End(W ), and we have

a potential V ∈ C∞(W ).
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Then Def. 4.2.1, 4.2.3 and 4.2.5 are the same as for the standard formulation of gauge

theory as introduced in Chapter 2.

Proof of Cor. 4.2.6.

By construction; also recall the remarks of Def. 4.2.1 and 4.2.3. For κ take a constant frame

(ea)a of E such that (Φ∗ea)a trivializes Φ∗E ∼= M × g for all Φ ∈ C∞(M ;N) and (Φ∗ea)a is also

a constant frame, and denote the scalar product on g by κ̃. Then observe

(Φ∗κ)(Φ∗ea,Φ
∗eb) = Φ∗(κ(ea, eb)

)
= Φ∗ (κ̃(ea, eb))︸ ︷︷ ︸

=const.

= κ̃(ea, eb),

hence, ∗κ = ι(κ) = κ a constant extension of κ̃; similarly for g. Thence, we arrive at the standard

deĄnition of the Lagrangian, using the remarks of Def. 4.2.1 and 4.2.3,

LYMH(Φ, A) = −
1

2
κ̃(F (Φ, A) ∧, ∗F (Φ, A)) + g̃

(
DAΦ ∧, ∗DAΦ


− ∗(V ◦ Φ),

where g̃ is the scalar product on W ; recall Def. 2.3.9. ■

Now let us Ąnally turn to the inĄnitesimal gauge transformation.

4.3. InĄnitesimal gauge transformations

4.3.1. InĄnitesimal gauge transformation of the Higgs Ąeld

We will now do precisely the same, but more general, as in Section 2.5. InĄnitesimal gauge

transformations of a functional L ∈ ℱ
k(M ; ∗V ) (k ∈ N0 and V → N a vector bundle) are

derivatives along certain directions in ME(M ;N), while the components of these directions as

vector Ąeld will be identiĄed with the inĄnitesimal gauge transformations of the corresponding

Ąelds, Φ and A. We want that these transformations satisfy the Leibniz rule, and we want

to study the commutator of such two transformations. In order to do that easily, we require

that such a derivative keeps a functional vertical, i.e. δL ∈ ℱ
k(M ; ∗V ), where δ denotes such a

transformation, and for this we will use connections, especially ones induced by a Lie algebroid

connection on V itself. We will do that by using pull-backs, especially using Cor. 3.5.9. That is,

since functionals are forms on M ×ME , we want to make the pullback along ev, while avoiding

the issue of lifting the evaluation map to a suitable vector bundle morphism by restricting to

certain vector Ąelds on ME satisfying the condition given in Cor. 3.5.9; we will see that this will

precisely give the formula of the inĄnitesimal gauge transformation of the Higgs Ąeld.

The arguments are precisely the same as in the discussion before Def. 2.5.12. Hence, we start

now with a similar deĄnition, but, as we also mentioned in the discussion of Def. 2.5.12, the

Lie algebroid used for the mentioned Lie algebroid connection on V does not need to be the

same Lie algebroid used in the deĄnition of ME(M ;N). This is why there is now a second Lie

algebroid B over N , equipped with a Lie algebroid connection B∇ on V ; but when we turn

to the inĄnitesimal gauge transformation of quantities like the minimal coupling, it is useful
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to have E = B, which we are then going to assume. However, one may want to do a similar

construction using a typical vector bundle connection on V which implies B = TN ; in order to

allow those type of constructions we keep it that general for the basic deĄnitions. Also recall

Prop. 4.1.2.

DeĄnition 4.3.1: Vector Ąelds along Lie algebroid paths

Let M,N be two smooth manifolds and (E, ρE , [·, ·]E), (B, ρB, [·, ·]B) two Lie alge-

broids over N . For (Φ, A) ∈ ME(M ;N) we deĄne TB
(Φ,A)ME(M ;N) as a subspace of

T(Φ,A)ME(M ;N) by

TB
(Φ,A)ME(M ;N) :=

{
(𝓋,𝒶) ∈ T(Φ,A)

(
ME(M ;N)

) ∣∣∣ ∃ϵ ∈ Γ(Φ∗B) : 𝓋 = −(Φ∗ρB)(ϵ)
}
.

(4.36)

Sections with values in these subspaces, called as the vector Ąelds along B-paths, we

denote by XB
(
ME(M ;N)

)
.

Remarks 4.3.2.

As images of the pullback of the anchor, it is clear that TB
(Φ,A)

(
ME(M ;N)

)
and XB

(
ME(M ;N)

)

are subspaces of T(Φ,A)

(
ME(M ;N)

)
and X

(
ME(M ;N)

)
, respectively.

For all Ψ ∈ XB(M) there is by deĄnition then an ε ∈ ℱ
0
E(M ; ∗B) such that

Ψ = (−(∗ρB)(ε), a) (4.37)

where (∗ρB)(ε) is an element of ℱ0
E(M ; ∗TN) given by ME(M ;N) ∋ (Φ, A) 7→ (Φ∗ρB)(ε(Φ, A)),

and a is a map deĄned on ME(M ;N) such that Ψ♣(Φ,A) is a tangent vector for all (Φ, A) ∈

ME(M ;N) as in Prop. 4.1.2. We will study a in more detail later, but now it will not be

important. We will write Ψ =: Ψε to emphasize the relationship with an ε ∈ ℱ
0
E(M ; ∗B). As

in Remark 2.5.13, for a given ε there can be several Ψε as long as we do not Ąx a. Moreover,

since ε ∈ ℱ
0
E(M ; ∗B) we cannot expect in general that XB

(
ME(M ;N)

)
is a subalgebra of

X
(
ME(M ;N)

)
. One may be able to show that if just allowing ε = ∗b (b ∈ Γ(B)), but since

those more general ε can have very general dependencies on (Φ, A) ∈ ME(M ;N) one cannot

expect a sub-algebraic behaviour at this point. We will come back to this after we will have

deĄned the inĄnitesimal gauge transformation for the Ąeld of gauge bosons.

By construction, the Ćows of those vector Ąelds carry the structure of Lie algebroid paths

which will allow us to do pullbacks of connections along these Ćows in order to deĄne certain

connections on functionals.

Corollary 4.3.3: Flows of XB
(
ME(M ;N)

)

Let M,N be two smooth manifolds and (E, ρE , [·, ·]E), (B, ρB, [·, ·]B) two Lie algebroids

over N . For a Ψ ∈ XB(ME(M ;N)) we denote its Ćow by γ = (Φ, A) : I → ME(M ;N),

t 7→ γ(t) = (Φt, At) ∈ ME(M ;N) through a Ąxed point (Φ0, A0) ∈ ME(M ;N) at t = 0,
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where I is an open interval of R containing 0, and we write Ψ♣γ(t) = (−(Φ∗
tρB)(ϵt),𝒶t) ∈

TB
(Φt,At)ME(M ;N), where ϵt ∈ Γ(Φ∗

tB) and 𝒶t ∈ Ω1(M ; ϵ∗tTE) (recall Prop. 4.1.2).

Then −ϵ(p) := [t 7→ −ϵt♣p], viewed as a curve I → B, is a B-path with base path Φ(p) :=

[t 7→ Φt(p)] for all p ∈ M .

Proof.

For p ∈ M Ąxed, it is clear by deĄnition that the base path of −ϵ(p) is given by Φ(p) since

ϵt♣p ∈ BΦt(p) for all t ∈ I, where BΦt(p) is the Ąbre of B at Φt(p). By deĄnition of Ćows we have

d

dt

∣∣∣∣
t

γ = Ψ♣γ(t)

for all t ∈ I, and, so,

(
(Φ(p))∗ρB

)(
−ϵ(p)

)∣∣
t

= −(Φ∗
tρB)(ϵt)♣p =

d

dt

∣∣∣∣
t

(
Φ(p)

)
,

which proves the claim. ■

As in Section 2.5, the Ąrst component of these vector Ąelds also deĄne the inĄnitesimal gauge

transformation of the Higgs Ąeld.

DeĄnition 4.3.4: InĄnitesimal gauge transformation of Φ

Let M,N be two smooth manifolds, (E, ρE , [·, ·]E), (B, ρB, [·, ·]B) two Lie algebroids over

N , and ε ∈ ℱ
0
E(M ; ∗B). For a (Φ, A) ∈ ME(M ;N) we deĄne the inĄnitesimal gauge

transformation δBε(Φ,A)Φ of Φ along ε(Φ, A) as an element of Γ(Φ∗TN) by

δBε(Φ,A)Φ :=
(
−(∗ρB)(ε)

)
(Φ, A) = −(Φ∗ρB)

(
ε(Φ, A)

)
, (4.38)

shortly denoted as δBε Φ := −(∗ρB)(ε) ∈ ℱ
0
E(M ; ∗TN).

In the case of E = B we just write δεΦ := −(∗ρ)(ε).

Remarks 4.3.5.

• Eq. (4.38) is also a generalization of a similar equation for a gauge transformation given in

[1, paragraph before Equation (10); we have a different sign in ε].

• Finally let us observe why Eq. (4.38) recovers the standard formula of the inĄnitesimal gauge

transformation of Φ, Def. 2.4.2. As usual, use the setting as in Cor. 4.2.6, i.e. let W be a vector

space and N = W such that Φ ∈ C∞(M ;W ), and E = N × g an action Lie algebroid for a Lie

algebra g whose Lie algebra action γ is induced by a Lie algebra representation ψ : g → End(W ).

Also E = B. Then we can simply use Prop. 2.1.16, using ϵ := ε(Φ, A), to get

(δεΦ)(p) = −ϵa(p) ρΦ(p)(ea) = −ϵa(p) γ(ea)Φ(p) = ϵa(p) ψ(ea)
(
Φ(p)

)
= ψ(ϵp)

(
Φ(p)

)

for all p ∈ M and ϵ ∈ Γ(Φ∗E) viewed as an element of C∞(M ; g), where (ea)a is a frame of

constant sections. This is precisely the standard formula.
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There is a relationship similar to Cor. 3.5.9, which summarizes the whole motivation of our

construction; also recall Remark 3.5.10.

Corollary 4.3.6: InĄnitesimal gauge transformation as condition for allowing

pullbacks

Let M,N be two smooth manifolds and (E, ρE , [·, ·]E), (B, ρB, [·, ·]B) two Lie algebroids

over N , and ε ∈ ℱ
0
E(M ; ∗B). Then Ψ ∈ X

(
ME(M ;N)

)
is an element of XB

(
ME(M ;N)

)

if and only if there is an ε ∈ ℱ
0
E(M ; ∗B) such that the following diagram commutes

M × ME(M ;N) B

T
(
M × ME(M ;N)

)
TN

−ε

(0,Ψ) ρB

Dev

that is

Dev ◦ (0,Ψ) = −ρB ◦ ε, (4.39)

where (0,Ψ) ∈ X(M) × X
(
ME(M ;N)

)
is the canonical embedding of Ψ as a vector Ąeld

on M × ME(M ;N).

Proof.

That is by construction. Let γ = (Φ, A) : I → ME(M ;N), t 7→ γ(t) = (Φt, At) (I ⊂ R an

open interval containing 0) be the Ćow of Ψ through (Φ0, A0) ∈ ME(M ;N) at t = 0, as e.g. in

Cor. 4.3.3. Then the local Ćow of (0,Ψ) through (p,Φ0, A0) ∈ M × ME(M ;N) is given by

(p,Φ, A). Thus,

D(p,Φ0,A0)ev(0,Ψ) =
d

dt

∣∣∣∣
t=0

(ev(p,Φ, A)) =
d

dt

∣∣∣∣
t=0

[t 7→ Φt(p)] =


Ψ(Φ)

∣∣∣
(Φ0,A0)

∣∣∣∣
p

∈ TΦ0(p)N,

where Ψ(Φ) is the Ąrst component of Ψ, for this also recall Prop. 4.1.2. The commutation of the

diagram is then equivalent to say that there is an ε ∈ ℱ
0
E(M ; ∗B)

Ψ(Φ) = −(∗ρB)(ε),

which is precisely the deĄnition for XB
(
ME(M ;N)

)
of Def. 4.3.1. ■

That immediately leads to:

Proposition 4.3.7: Parametrised variations of functionals

Let M,N be two smooth manifolds, (E, ρE , [·, ·]E), (B, ρB, [·, ·]B) two Lie algebroids over

N , V → N a vector bundle, B∇ a B-connection on V , and Ψε ∈ XB(ME(M ;N)) for

ε ∈ ℱ
0
E(M ; ∗B). Then there is a unique R-linear map δΨε : ℱ•

E(M ; ∗V ) → ℱ
•
E(M ; ∗V )
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with

δΨε(∗v) = −∗
(
B∇εv


, (4.40)

ιY δΨε = δΨειY (4.41)

δΨε(f ∧ L) = ℒΨε(f) ∧ L+ f ∧ δΨε(L), (4.42)

for all Y ∈ X(M), v ∈ Γ(V ), L ∈ ℱ
k
E(M ; ∗V ), and f ∈ ℱ

m
E (M) (k,m ∈ N0), where

ℱ
•
E(M ; ∗V ) :=

⊕
l∈N0

ℱ
l
E(M ; ∗V ) while δΨε keeps a given degree invariant.

Remarks 4.3.8.

Since the notation of δΨε does not emphasize the used connection, we will often roughly write:

For the functional space ℱ
•
E(M ; ∗V ) let δΨε be the unique operator of Prop. 4.3.7,

using B∇ as a B-connection on V , where • denotes an arbitrary degree.

Proof of Prop. 4.3.7.

That is a trivial consequence of Cor. 4.3.6 and Cor. 3.5.9, that is, we have a unique R-linear

operator δΨε : ℱ0
E(M ; ∗V ) → ℱ

0
E(M ; ∗V ) such that

δΨε(hs) = ℒΨε(h) s+ h δΨεs,

δΨε (∗v)︸︷︷︸
=ev∗v

= −∗
(
B∇εv



for all s ∈ Γ(ev∗V ) = ℱ
0
E(M ; ∗V ), h ∈ C∞(M × ME), and v ∈ Γ(V ). Eq. (4.41) and linearity

uniquely extends this operator to ℱ
•
E(M ; ∗V ), that is,

(δΨεL)(Y1, . . . , Yk) := δΨε

(
L(Y1, . . . , Yk)

)

for all L ∈ ℱ
k
E(M ; ∗V ) and Y1, . . . , Yk ∈ X(M); similar to Def. 2.5.17 this is well-deĄned (recall

also the remark after Def. 2.5.17). This is not in violation with the desired Leibniz rule because

Ψε are vector Ąelds on ME(M ;N) while Y1, . . . , Yk are vector Ąelds on M , thence, [Ψε, Yi] = 0

(i ∈ ¶1, . . . , k♢) in M ×ME(M ;N). The Leibniz rule in Eq. (4.42) then just follows by this and

the Leibniz rule inherited by Cor. 3.5.9.

Alternatively, use the Ćows given by Cor. 4.3.3 and prove it in the same manner as in

Prop. 2.5.15 (in combination with Def. 2.5.17). ■

Remarks 4.3.9.

• Given by Remark 3.5.11, for V = N × R we always take the canonical Ćat B-connection,

i.e. the canonical Ćat vector bundle connection ∇0 = d and then B∇ := ∇0
ρB

such that

δΨε = ℒΨε .
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Thus,

δΨεd = ℒΨεd = dℒΨε = dδΨε , (4.43)

since coordinates on ME(M ;N) and M are independent; recall the end of Remark 4.1.7 for this.

The Leibniz rule for δΨε can be then rewritten to

δΨε(f ∧ L) = δΨε(f) ∧ L+ f ∧ δΨε(L). (4.44)

• For dual bundles V ∗ we canonically take the dual connection to B∇ in order to have

Leibniz rules as usual. That also means the following (still keeping the same notation): Let

L ∈ ℱ
k
E(M ; ∗V ) and T ∈ ℱ

0
E(M ; ∗(V ∗)), then in a frame (ea)a of V and (fa)a of V ∗, f b(ea) = δba,

we locally write L = La ⊗ ∗ea and T = Tb · ∗f b, where La ∈ ℱ
k
E(M) and Tb ∈ ℱ

0
E(M). Then

with these conventions, including the previous bullet point,

δΨε(T (L)) = δΨε (TaL
a)︸ ︷︷ ︸

∈ℱk
E

(M)

= ℒΨε(TaL
a) = ℒΨε(Ta) L

a + Ta ℒΨε(La), (4.45)

hence, one achieves an independence of the chosen B∇. This emphasizes what we expect,

that we can freely choose the chosen connections for the variations of the tensors involved in

contractions, only the variations of their components matter in such situations; this is important

for the gauge invariance of the Lagrangian later. As we have discussed at the end of Section

2.5, we are going to take the basic connection to deĄne δΨε for quantities like the Ąeld strength,

which will not be related to the canonical Ćat connection when imposing the classical theory;

also recall Thm. 2.5.19. That is possible because the inĄnitesimal gauge transformation of the

Lagrangian stays untouched by this, it is always just the Lie derivative. The connections only

get important in explicit calculations when applying the Leibniz rule as in

δΨε(T (L)) = (δΨεT )(L) + T (δΨεL),

but the result will of course not change. Henceforth, the essential work is in deĄning Ψε; we did

not yet deĄne the inĄnitesimal gauge transformation of A.

This recovers the classical idea of inĄnitesimal gauge transformation, i.e. it is a Lie derivative

of components with respect to Ćat connections; also recall Thm. 2.5.19.

Theorem 4.3.10: Parametrised variations in the Ćat case

Let M,N be two smooth manifolds, (E, ρE , [·, ·]E), (B, ρB, [·, ·]B) two Lie algebroids over

N , and V → N a trivial vector bundle. Also let ∇ be the canonical Ćat connection of V ,

Ψε ∈ XB
(
ME(M ;N)

)
for an ε ∈ ℱ

0
E(M ; ∗B) and for ℱ

•
E(M ; ∗V ) let δΨε be the unique

operator of Prop. 4.3.7, using B∇ := ∇ρB
as a B-connection on V .

Then we have

δΨεL = (ℒΨεL
a) ⊗ ∗ea (4.46)
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for all L ∈ ℱ
•
E(M ; ∗V ), where (ea)a is a global constant frame of V .

Proof.

That is basically the same proof as in Thm. 2.5.19. Take a global constant frame (ea)a of V ,

then

∇ea = 0,

and therefore

(Φ∗∇)(Φ∗ea) = Φ!(∇ea) = 0

for all Φ ∈ C∞(M ;N). Hence, (∗∇)(∗ea) = !(∇ea) = 0, such that, using the Leibniz rule,

δΨεL = (ℒΨεL
a) ⊗ ∗ea.

■

As argued before, we can write Ψε = (−(∗ρB)(ε), a) (Eq. (4.37)) and we want to identify its

Ąrst and second component as the gauge transformation of Φ and A, respectively. Right now

a is just Ąxed by Prop. 4.1.2 such that it is very arbitrary; as in the standard setting of gauge

theory, we want that it is parametrised, which will be by ε, too.

4.3.2. InĄnitesimal gauge transformation of the Ąeld of gauge bosons

Recall Prop. 4.1.5 and its discussion, the tangent vector along the ŤA-directionŤ is only in the

same space as A if the Ąrst component is zero, which is δεΦ because we want to think of δεA

as the second component of Ψε. We cannot expect this to be zero in general, not even in the

standard setting because a Lie algebra representation will not act trivially on Φ, as we already

discussed after Prop. 4.1.5. However, as in the standard formulation, we want to formulate the

gauge transformation of A in such a way that it is somewhat in the same space; we will achieve

this by Ąxing a connection on E as we already did for functionals when deĄning δΨε . Since A

has values in Φ∗E, its image is also now affected by the gauge transformation of Φ, this is why

we can do something similar as for functionals; also recall Remark 2.5.20.

One may argue that an involved horizontal projection in the deĄnition for δεA may lead to lost

information about that object, especially important when one may want to integrate this theory,

while we will not need the Ťfull formulaŤ for δεA for the inĄnitesimal gauge transformation of the

Lagrangian as we already argued earlier. However, since A has values in Φ∗E, one expects that

δεA encodes partially what δεΦ already encodes. Prop. 4.1.2 shows us that δεA is still somewhat

vertical, because it is a form with values in the vector bundle TE → TN , whose linear structure

is essentially given by the vertical (prolonged) structure; δεA is just shifted ŤhorizontallyŤ by

δεΦ due to Eq. (4.9) and Prop. 4.1.5. Henceforth, our idea is to shape the horizontal projection
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in such a way that we only ŤlooseŤ the information we already know by δεΦ; making use of

Prop. 4.1.2.

Let us make it precise: Let us Ąrst look at a local trivialization of the Lie algebroid E
π
→ N is

trivial. That is let us have base coordinates
(
xi
)
i

of N , lifted to E by π∗xi, but we will omit all

the given pullbacks in the notation now in the following rough discussion for simplicity; also let
(
yj
)
j

be Ąbre coordinates. By Prop. 4.1.2, δεA should be, for a given (Φ, A) ∈ ME , a form on M

with values in TE (along some function; but again, we omit the pullbacks and point evaluations

for simplicity now). Hence, we expect

δεA = (δεA)i
∂

∂xi
+ (δεA)j

∂

∂yj
,

and δεA is the second component of Ψε = (δεΦ, δεA), which we used to deĄne δΨε . Again by

Prop. 4.1.2, also recall Remark 4.1.4, we know that

δεΦ = Dπ
(
(δεA)(Y )

)
= (δεA)i(Y )

∂

∂xi

for all Y ∈ X(M), where we used that ∂/∂yj are vertical vector Ąelds. Given that trivialization,

∂/∂xi deĄnes a canonical horizontal distribution. Hence, using that distribution for a horizontal

projection, one could deĄne the inĄnitesimal gauge transformation of A in that trivialization

just with (δεA)j ∂
∂yj which can be identiĄed with a form with values in E since ∂/∂yj are

vertical. While the components we ŤlooseŤ because of the horizontal projection is something

already encoded by δεΦ, such that those are easy to reconstruct if one needs the Ťfull formulaŤ

of δεA.

Globally that means we want to deĄne δεA as a form with values in E using a Lie algebroid

connection on E as we did in Prop. 4.3.7 in such a way that Ψε is uniquely given. In order to do

that we need to view A as a functional, which is just ϖ2 of Ex. 4.1.11. So, we impose a formula

for δεϖ2 in such a way that it uniquely deĄnes Ψε, and that we can derive the inĄnitesimal

gauge invariance of the Lagrangian as usual.

But how does one Ąx the inĄnitesimal gauge transformation of A normally when integrability

is not used? One of the arguments in the standard formulation is given by looking at the

transformation of the minimal coupling; we will do the same. Let us recall what that argument

was: Again, let N = W be a vector space, and E = N × g an action Lie algebroid associated

to a Lie algebra g whose Lie algebra action is induced by a Lie algebra representation ψ : g →

End(W ). Then, for an ϵ ∈ C∞(M ; g), we have the inĄnitesimal gauge transformation δϵΦ =

ψ(ϵ)(Φ) for all Φ ∈ C∞(M ;W ). The minimal coupling is then deĄned by DAΦ = DΦ+ψ(A)(Φ),

where A ∈ Ω1(M ; g); recall Def. 2.3.7. The (inĄnitesimal) gauge transformation of A is then

chosen in such a way that it is an element of Ω1(M ; g), and such that one gets for the inĄnitesimal

gauge transformation of the minimal coupling

(δϵD)(Φ, A) = ψ(ϵ)
(
DAΦ


(4.47)

among the category of gauge theories, where δϵ denotes again the classical formulation of the

inĄnitesimal gauge transformation as introduced in Chapter 2.

139



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

In order to provide a similar argument and since the minimal coupling D is an element of

ℱ
1
E(M ; ∗TN), we need to Ąx a connection on TN in order to use Prop. 4.3.7. We want to use

the basic connection, for this recall that for a given connection ∇ on a Lie algebroid E → N we

have the canonical basic connection ∇bas, Def. 3.7.1,

∇bas
µ ν = [µ, ν]E + ∇ρ(ν)µ,

∇bas
µ X = [ρ(µ), X] + ρ(∇Xµ)

for all µ, ν ∈ Γ(E) and X ∈ X(N). The reason why we want to use the basic connection is the

following corollary about the recovery of Eq. (4.47).

Corollary 4.3.11: Gauge transformation of the minimal coupling in the stan-

dard framework

Let N = W be a vector space, E = N × g be an action Lie algebroid of a Lie algebra

g whose action is induced by a Lie algebra representation ψ : g → End(W ), E is also

equipped with its canonical Ćat connection ∇. Also let Ψε ∈ XE(ME(M ;N)) for an

ε ∈ ℱ
0
E(M ; ∗E) and for the functional space ℱ

•
E(M ; ∗TN) let δΨε be the unique operator

of Prop. 4.3.7, using ∇bas as E-connection on TN . Then we have

(
δΨεD

)
(Φ, A) = 0 ⇔

(
δΨεD

α
)
(Φ, A) =

(
ψ
(
ε(Φ, A)

)(
DAΦ

α
(4.48)

for all (Φ, A) ∈ ME(M ;N) and α ∈ ¶1, . . . ,dim(W )♢, where the components are with

respect to global coordinate vector Ąelds (∂α)α on W , and where we used the canonical

identiĄcation TW ∼= W × W ∼= Φ∗TW such that DAΦ can be viewed as an element of

Ω1(M ;W ).

Proof.

Let (ea)a be a global and constant frame of E and ∂α coordinate vector Ąelds on N , then we

can write D = Dα ⊗ ∗∂α, and, thus, by the Leibniz rule and with ϵ := ε(Φ, A)

(
δΨεD

α
)
(Φ, A) −

(
(δΨεD)︸ ︷︷ ︸

=δΨε (Dα)⊗∗∂α+Dα⊗δΨε (∗∂α)

(Φ, A)
)α

= −

(
DAΦ

β
⊗ (δΨε(∗∂β))(Φ, A)
︸ ︷︷ ︸

Prop. 4.3.7
= −Φ∗(∇bas

ϵ ∂β)

α

= ϵa Φ∗
(
−∂βρ

α
a + ρα

(
∇∂β

ea
 (

DAΦ
β

(4.49)

for all α. Let us write ∂α = ∂/∂wα for some coordinates (wα)α on W . Then by Prop. 2.1.16,

−∂β
[
w 7→ ραa (w)

]
= −∂β

[
w 7→ γαa (w)

]
= ∂β

[
w 7→

(
ψ(ea)(w)

)α]
=
(
ψ(ea)

)α
β

(4.50)

for w ∈ W , because the differential is then just the differential of a matrix vector-product

W ∋ w 7→ ψ(ea)(w). Since ∇ is the canonical Ćat connection, constant sections are parallel,
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thus, we get in total

(δΨεD
α)(Φ, A) −

(
(δΨεD)(Φ, A)

)α
= ϵa Φ∗ (ψ(ea)

)α
β︸ ︷︷ ︸

const.

(
DAΦ

β
=
(
ψ(ϵ)

(
DAΦ

α

for all α, having ϵ ∈ C∞(M ; g) and DAΦ ∈ Ω1(M ;W ). That shows that we have

(δΨεD
α)(Φ, A) =

(
ψ(ϵ)

(
DAΦ

α

if and only if

δΨεD = 0.

■

The right equation in the Equivalence (4.48) describes precisely the components of the ex-

pected inĄnitesimal gauge transformation of the minimal coupling in the standard formulation

of gauge theory, and it is no coincidence that this is equivalent to δΨεD = 0 when using the

basic connection.

Lemma 4.3.12: Metric compatibilities and their imposed symmetries for gauge

theory, [1]

Let N = W be a vector space, E = N × g be an action Lie algebroid of a Lie algebra

g whose action is induced by a Lie algebra representation ψ : g → End(W ), E is also

equipped with its canonical Ćat connection ∇. Also let κ be a Ąbre metric on E which is

a constantly extended scalar product κ̃ of g; similarly, let g be a Ąbre metric which is a

constant extension of a scalar product g̃ of W .

Then we have

∇basκ = 0 ⇔ κ̃ is ad-invariant, (4.51)

∇basg = 0 ⇔ g̃ is ψ-invariant, (4.52)

and ∇bas on E and TN are the adjoint and ψ representation, respectively, when restricted

on constant sections, i.e.

∇bas
µ ν = [µ, ν]g, (4.53)

∇bas
µ Y = ψ(µ)(Y ) (4.54)

for all constant µ, ν ∈ Γ(E) and constant Y ∈ TN ∼= W ×W .

Remarks 4.3.13.

Here we see that the basic connection ∇bas replaces the canonical representations arising in the

standard formulation of gauge theory. Moreover, we will later see that we need Rbas
∇ = 0 to
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formulate the gauge theory, that implies that ∇bas is Ćat (both), recall Prop. 3.7.6, such that it

makes sense to think about it as a representation in the context of this thesis.

Proof.

Let (ea)a be a frame of constant sections. Then κ(ea, eb) = const., and hence

0 = ℒea

(
κ(eb, ec)

)
.

We also have

[ea, eb]g = [ea, eb]E + ∇ρ(eb)ea = ∇bas
ea
eb,

because ∇ is the canonical Ćat connection. Therefore

κ̃ is ad-invariant

⇔ 0 = κ̃
(
[ea, eb]g, ec


+ κ̃

(
eb, [ea, ec]g



⇔ ℒea(κ(eb, ec)) = κ
(
[ea, eb]g, ec


+ κ

(
eb, [ea, ec]g



⇔ ℒea(κ(eb, ec)) = κ
(
∇bas
ea
eb, ec


+ κ

(
eb,∇

bas
ea
ec


⇔ ∇basκ = 0.

For g recall Eq. (4.50), i.e.

−∂βρ
α
a =

(
ψ(ea)

)α
β
,

where we use coordinate vector Ąelds (∂α)α on N which also describes a constant frame for

TW ∼= W ×W , and hence also, as before,

(
ψ(ea)

)α
β

= [ρ(ea), ∂β] = [ρ(ea), ∂β] + ρ
(
∇∂β

ea


= ∇bas
ea
∂β,

and

0 = ℒea

(
g(∂α, ∂β)

)

Thus,

g̃ is ψ-invariant

⇔ 0 = g̃
(
ψ(ea)(∂α), ∂β

)
+ g̃

(
∂α, ψ(ea)(∂β)

)

⇔ ℒea

(
g(∂α, ∂β)

)
= g

(
ψ(ea)(∂α), ∂β

)
+ g

(
∂α, ψ(ea)(∂β)

)

⇔ ℒea

(
g(∂α, ∂β)

)
= g

(
∇bas
ea
∂β, ∂β


+ g

(
∂α,∇

bas
ea
∂β


⇔ ∇basg = 0.

■
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Hence, when using the basic connection, we want that δΨεD = 0 such that we can recover the

classical formula in sense of Cor. 4.3.11. To study this and later results we need several auxiliary

results, recall also Ex. 4.1.11, 4.1.12 and 4.1.16.

Lemma 4.3.14: Several identities related to variations with the basic connec-

tion

Let M,N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection

on E, and Ψε ∈ XE(ME(M ;N)) for an ε ∈ ℱ
0
E(M ; ∗E). For both functional spaces,

ℱ
•
E(M ; ∗E) and ℱ

•
E(M ; ∗TN), let δΨε be the unique operator of Prop. 4.3.7, using ∇bas

as E-connection on E and TN , respectively. Then

δΨεD = −(∗ρ)
(∗∇ε

)
, (4.55)

δΨε(∗ρ) = 0, (4.56)

δΨε

(
(∗ρ)(ϖ2)

)
= (∗ρ)

(
δΨεϖ2

)
, (4.57)

δΨε

(
!(∇µ)


= −


!
(
∇bas
ε ∇µ


+ ∗
(
∇(∗ρ)((∗∇)ε)µ


(4.58)

for all µ ∈ Γ(E), where we view ∇µ as an element of Ω1(N ;E).

Remarks 4.3.15.

We already introduced the notation for Eq. (4.58) (also recall Remark 3.5.4), but let us shortly

write down what it is for each (Φ, A) ∈ ME(M ;N),

(
δΨε

(
!(∇µ)


(Φ, A) = −


Φ!
(
∇bas
ϵ (∇µ)


+ Φ∗

(
∇(Φ∗ρ)((Φ∗∇)ϵ)µ



where ϵ := ε(Φ, A). When ε = ∗ν for a ν ∈ Γ(E), then (Φ∗∇)(Φ∗ν)
Eq. (A.2)

= Φ!(∇ν), so,

(∗∇)(∗ν) = !(∇ν). Thus, we can then write

δΨ∗ν

(
!(∇µ)


= −!

(
∇bas
ν ∇µ+ ∇ρ(∇ν)µ


. (4.59)

Proof for Lemma 4.3.14.

In the following (ea)a denotes a local frame of E, and ∂α are local coordinate vector Ąelds on

N , and (Φ, A) ∈ ME(M ;N). Regarding ε ∈ ℱ
0
E(M ; ∗E) we also write ϵ := ε(Φ, A).

• For Eq. (4.55) we write locally

DΦ = dΦα ⊗ Φ∗∂α,

where we view (Φ, A) 7→ Φα as an element of ℱ0
E(M) (on an open subset of M), such that by

δεΦ = −(∗ρ)(ε), and by using dδΨε = δΨεd and δΨε = ℒΨε on ℱ
0
E(M) (recall the discussion

around Eq. (4.43)),

(δεd[(Φ, A) 7→ Φα])(Φ, A) = (dℒΨε [(Φ, A) 7→ Φα])(Φ, A) = −d((ραa ◦ Φ) ϵa)
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then by Eq. (4.40) and the Leibniz rule of δΨε

(δΨεD)(Φ, A) = −d((ραa ◦ Φ) ϵa) ⊗ Φ∗∂α − dΦα ⊗ ϵa Φ∗
(
∇bas
ea
∂α


= −
(
d(ραa ◦ Φ)︸ ︷︷ ︸

= (∂βρ
α
a ◦Φ) dΦβ

ϵa + (ραa ◦ Φ) dϵa


⊗ Φ∗∂α

− dΦα ⊗ ϵa Φ∗
(
−∂αρ

β
a ∂β + ρ(∇∂αea)



= −(ραa ◦ Φ) dϵa ⊗ Φ∗∂α − dΦβ ⊗ ϵb (ραa ◦ Φ)
(
ωabβ ◦ Φ


Φ∗∂α

= −(ραa ◦ Φ)
(
dϵa + ϵb

(
ωabβ ◦ Φ


dΦβ


⊗ Φ∗∂α

= −(Φ∗ρ)
(
(Φ∗∇)ϵ

)
.

• By Eq. 4.40,

δΨε(∗ρ) = −∗
(
∇bas
ε ρ


,

and by ρ ◦ ∇bas = ∇bas ◦ ρ we get

(
∇basρ


(µ) = ∇bas(ρ(µ)) − ρ

(
∇basµ


= 0

for all µ ∈ Γ(E). Hence,

δΨε(∗ρ) = 0.

• By the Leibniz rule and the previous result we also have

δΨε

(
(∗ρ)(ϖ2)

)
= (∗ρ)

(
δΨεϖ2

)
.

• We view terms like ∇µ as elements of Ω1(N ;E) for all µ ∈ Γ(E), X(N) ∋ Y 7→ (∇µ)(X) =

∇Xµ, and therefore we can use the Leibniz rule on !(∇µ) =
(

∗(∇µ)
)
(D) = ∗(∇Dµ), i.e. due to

Φ!(∇µ) =
(
Φ∗(∇µ)

)
(DΦ)

we can view !(∇µ) as a contraction of the functionals ∗(∇µ) and D. Hence,

δΨε

(
!(∇µ)


=
(
δΨε(∗(∇µ))

)
(D) + ∗

(
∇δΨε Dµ



Eq. (4.40)
= −

(
∗
(
∇bas
ε ∇µ


(D) + ∗

(
∇δΨε Dµ



Eq. (4.55)
= −


!
(
∇bas
ε ∇µ


+ ∗
(
∇(∗ρ)((∗∇)ε)µ


.

■
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Let us now Ąx the gauge transformation of A using these results. Recall that we write Ψ = Ψε

for a Ψ ∈ XE(ME(M ;N)), where ε ∈ ℱ
0
E(M ; ∗E) such that we can write (recall Eq. (4.37))

Ψε = (−(∗ρB)(ε), a)

where a is a map on ME(M ;N) such that Ψ♣(Φ,A) is a tangent vector for all (Φ, A) ∈ ME(M ;N),

i.e. satisfying the diagram of Prop. 4.1.2 for all (Φ, A). For a given ε such a Ψε is in general not

unique. Recall that for a local frame (ea)a of E and local coordinate functions (∂α)α on N we

have

[eb, ec]E = Cabcea, ∇eb = ωab ⊗ ea, ∇∂αeb = ωabα ea.

Proposition 4.3.16: Gauge transformation of the Ąeld of gauge bosons

Let M,N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection on E,

ε ∈ ℱ
0
E(M ; ∗E), and for the functional space ℱ

•
E(M ; ∗E) let δΨε be the unique operator

of Prop. 4.3.7, using ∇bas as E-connection on E and any Ψε ∈ XE
(
ME(M ;N)

)
. Then

there is a unique Ψε ∈ XE
(
ME(M ;N)

)
such that

δΨεϖ2 = −(∗∇)ε. (4.60)

Locally with respect to a given frame (ea)a

(δΨεϖ
a
2)(Φ, A) = (Cabc ◦ Φ) ϵbAc + (ωabα ◦ Φ) (ραc ◦ Φ) ϵbAc − dϵa − ϵb Φ!(ωab )

=
(
ϵbAc ⊗ Φ∗

(
∇bas
eb
ec


− (Φ∗∇)ϵ
a

(4.61)

for all (Φ, A) ∈ ME(M ;N), where ϵ := ε(Φ, A).

Moreover, if we also have α, β ∈ R and ϑ ∈ ℱ
0
E(M ; ∗E), then

Ψαε+βϑ = αΨε + βΨϑ, (4.62)

where the vector Ąelds are the ones uniquely given by Eq. (4.60).

Proof of Prop. 4.3.16.

Since it is about a vector Ąeld on ME(M ;N), we will classify Ψε by its Ćow, using Cor. 4.3.3:

We denote its Ćow through a Ąxed point (Φ0, A0) ∈ ME(M ;N) by γ : I → ME(M ;N), t 7→

γ(t) =: (Φt, At) ∈ ME(M ;N), where I is an open interval of R containing 0, and we write

Ψ♣γ(t) = (−(Φ∗
tρ)(ϵt),𝒶t) ∈ TE

(Φt,At)ME(M ;N), where ϵt := ε(Φt, At) ∈ Γ(Φ∗
tE), and 𝒶t is a

morphism TM → TE satisfying the diagram in Prop. 4.1.2. So, we have a curve γ with

γ(0) = (Φ0, A0),

d

dt
γ = Ψ♣γ(t) = (−(Φ∗

tρ)(ϵt),𝒶t).
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(Φ0, A0) and −(Φ∗
tρ)(ϵt) are Ąxed, and we show that Eq. (4.60) will Ąx 𝒶t. Without loss of

generality let us assume that everything is small and local enough such that we have frames and

coordinates, like a frame (ea)a of E.3 Making use of Prop. 4.3.7, we get

(δΨεϖ2)(Φt, At) = ℒΨε(ϖa
2)♣(Φt,At) ⊗ Φ∗

t ea −Aat ⊗ Φ∗
t

(
∇bas
ϵt ea


.

Let us Ąrst assume Eq. (4.60) does hold. Then

ℒΨε(ϖa
2)♣(Φt,At) ⊗ Φ∗

t ea

= ϵbtA
c
t ⊗ Φ∗

t

(
∇bas
eb
ec


− (Φ∗
t∇)ϵt

=
(
(Cabc ◦ Φt) ϵ

b
tA

c
t + (ωabα ◦ Φt) (ραc ◦ Φt) ϵ

b
tA

c
t − dϵat − ϵbt Φ!

t(ω
a
b )


⊗ Φ∗
t ea

which proves Eq. (4.61) (insert t = 0). By the deĄnition of γ and the Lie derivative we also get

ℒΨε(ϖa
2)♣(Φt,At) =

d

dt
(ϖa

2 ◦ γ) =
d

dt
[t 7→ Aat ],

and, thus,

d

dt
[t 7→ Aat ] = (Cabc ◦ Φt) ϵ

b
tA

c
t + (ωabα ◦ Φt) (ραc ◦ Φt) ϵ

b
tA

c
0 − dϵa − ϵbt Φ!

t(ω
a
b ). (4.63)

So, Eq. (4.60) is equivalent to a set of coupled differential equations: We have a curve γ(t) =

(Φt, At), with Φt=0 = Φ0 and

d

dt
[t 7→ Φt] = −(Φ∗

tρ)(ϵt),

and At=0 = A0, while

𝒶t =
d

dt
[t 7→ At] =

d

dt
[t 7→ Aat ⊗ Φ∗

t ea].

t 7→ Φt and t 7→ Aat are uniquely given by this system and the differential equation (4.63), and,

so, t 7→ At = Aat ⊗Φ∗
t ea is uniquely given, too. Hence, 𝒶t is unique, and, thus, Ψε. Alternatively,

the differential equations for d/dt Φ and d/dt Aa are the action of the vector Ąeld Ψε on the

coordinates of ME , and therefore deĄning Ψε.

The linearity of ψε in ε over R simply follows by the linearity given in the differential equations

above: DeĄne Θ := αΨε+βΨϑ for α, β ∈ R and ϑ ∈ ℱ
0
E(M ; ∗E), where Ψε and Ψϑ are the unique

vector Ąelds as given above, i.e. δΨεϖ2 = −(∗∇)ε and δΨϑ
ϖ2 = −(∗∇)ϑ, respectively. Observe

that Θ ∈ XE
(
ME(M ;N)

)
, where the component along the ŤΦ-directionŤ is by deĄnition given

by

−α (∗ρ)(ε) − β (∗ρ)(ϑ) = −(∗ρ)(αε+ βϑ),

3One could even Ąx a point p ∈ M because we just need an interval for t for d/dt.
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then, using the linearity of Eq. (4.63) in ε,

δΘϖ2 = ℒΘ(ϖa
2) ⊗ ∗ea −ϖa

2 ⊗ ∗
(
∇bas
αε+βϑea



= (αℒΨε + βℒΨϑ
)(ϖa

2) ⊗ ∗ea −ϖa
2 ⊗ ∗

(
∇bas
αε+βϑea



Eq. (4.63)
= ℒΨαε+βϑ

(ϖa
2) ⊗ ∗ea −ϖa

2 ⊗ ∗
(
∇bas
αε+βϑea



= δΨαε+βϑ
ϖ2.

By the shown uniqueness of vector Ąelds like Ψαε+βϑ, we get

Θ = Ψαε+βϑ.

■

Remarks 4.3.17.

Eq. (4.61) is also e.g. deĄned in [1, Eq. (10); opposite sign of ε], but in this reference it was

not known how a coordinate-free version can look like. This equation recovers the standard

formula of the inĄnitesimal gauge transformation of A. In order to see why this restricts to the

standard formula, let us look again at the standard setting: When E = N × g is an action Lie

algebroid with Lie algebra g, equipped with its canonical Ćat connection ∇, then we get the

classical formula of gauge transformation by using a constant frame (ea)a for E, i.e.

(δΨεϖ
a
2)(Φ, A) = Φ∗Cabcϵ

bAc − dϵa =
(
[ϵ ∧, A]g − dΦ∗∇ϵ

a

for all (Φ, A) ∈ ME(M ;N), because ωab = 0 and Φ∗Cabc = Cabc = const., the structure constants

of g. We can understand ϵ as an element of C∞(M ; g) as usual in the standard setting. That is

precisely the typical formula of the classical setting, because Φ∗∇ is the standard Ćat connection

of Φ∗E ∼= M × g. Moreover, we get in that situation

Φ∗
(
∇bas
ϵ ea


= ϵb Φ∗([eb, ea]E),

which is the main reason why the transformations of the components recover the classical formula

although the total formula, Eq. (4.60), just carries the differential (as we saw in the proof). As

already discussed, only the transformation of the components need the Ťcorrect formŤ when it

is about the gauge invariance of the Lagrangian.

Using such a Ψε results into an inĄnitesimal gauge transformation of the minimal coupling as

in Cor. 4.3.11.
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Proposition 4.3.18: InĄnitesimal gauge transformation of the minimal Cou-

pling

Let M,N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection

on E, and ε ∈ ℱ
0
E(M ; ∗E) together with the unique Ψε ∈ XE(ME(M ;N)) as given in

Prop. 4.3.16. For both functional spaces, ℱ
•
E(M ; ∗E) and ℱ

•
E(M ; ∗TN), let δΨε be the

unique operator of Prop. 4.3.7, using ∇bas as E-connection on E and TN , respectively.

Then we have

δΨεD = 0. (4.64)

Remarks 4.3.19.

We already have derived the variation of the components of D, for this recall the general calcu-

lation for Eq. (4.49): Let (ea)a be a local frame of E and ∂α coordinate vector Ąelds on N , then

we can write D = Dα ⊗ ∗∂α, and, thus, with ϵ := ε(Φ, A),

(
δΨεD

α
)
(Φ, A) = ϵa Φ∗

(
−∂βρ

α
a + ρα

(
∇∂β

ea
 (

DAΦ
β
. (4.65)

That is precisely the same formula as given in [1, Eq. (12), different sign for ϵ there], but there

only the formula for the components was known.

Proof of Prop. 4.3.18.

This quickly follows by Lemma 4.3.14, especially Eq. (4.55) and (4.57),

δΨεD = δΨε

(
D − (∗ρ)(ϖ2)

)
= −(∗ρ)(∗∇ε) − (∗ρ)

(
δΨεϖ2

) Prop. 4.3.16
= 0.

■

Remarks 4.3.20.

Following the proof of Prop. 4.3.18 and using the uniqueness of Prop. 4.3.16 one could argue that

Ψε is the unique element of XE(ME(M ;N)) with δΨεD = 0 for a given ε in the category of Lie

algebroids, because this must then e.g. hold for the tangent bundle E = TN as Lie algebroid,

too, whose anchor is the identity.

By this result and Cor. 4.3.11 we deĄne the following.

DeĄnition 4.3.21: InĄnitesimal gauge transformation of gauge bosons

Let M,N be two smooth manifolds, E → N a Lie algebroid over N , ∇ a connection

on E, and ε ∈ ℱ
0
E(M ; ∗E) together with the unique Ψε ∈ XE

(
ME(M ;N)

)
as given in

Prop. 4.3.16. For the functional space ℱ
•
E(M ; ∗E) let δΨε be the unique operator of

Prop. 4.3.7, using ∇bas as E-connection on E.

For a (Φ, A) ∈ ME(M ;N) we deĄne the inĄnitesimal gauge transformation δε(Φ,A)A
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of A as an element of Ω1(M ; Φ∗E) by

δε(Φ,A)A := (δΨεϖ2)(Φ, A) = −(Φ∗∇)
(
ε(Φ, A)

)
, (4.66)

shortly denoted as δεA := δΨεϖ2 = −(∗∇)ε. Given a local frame (ea)a of E, we also

similarly deĄne δεA
a := δϖa

2 .

Remarks 4.3.22.

As discussed in Remark 4.3.17 we have seen that δεA
a (using a frame (ea)a of E) recovers the

classical formula of the inĄnitesimal gauge transformation. However, the total formula, δεA, does

not recover it which is no problem due to that the Lagrangian just depends on the variation of

the components; for this also recall that arising differentials of A commute with δε, Eq. (4.43),

which is needed for the variation of the Ąeld strength. Later we will see this explicitly when

showing the gauge invariance of the Lagrangian.

Alternatively, one could use ∇ρ as E-connection on E instead of ∇bas for the deĄnition of δΨε ;

especially because of results like Thm. 4.3.10 and Thm. 2.5.19, which imply that one recovers

classical formulas when ∇ is additionally Ćat.4 When using ∇ρ, the same Ψε leads to

δΨεϖ2 = −(∗t∇ρ)(ε,ϖ2) − (∗∇)ε, (4.67)

where t∇ρ is the torsion of ∇ρ. As we have seen before, ∇ will be the canonical Ćat connection in

the standard setting such that then δΨεA
a = (δΨεA)a by Ćatness and Thm. 4.3.10. With similar

calculations as before one also shows that the variation of the components, δΨεϖ
a
2 , recovers the

classical formula of the inĄnitesimal gauge transformation of the Ąeld of gauge bosons, thus,

δΨεϖ2 would restrict to the classical formula in the standard setting, too. Hence, ∇ρ would look

like the canonical choice, not ∇bas. But we will later see that ∇ρ is in general not Ćat, while

∇bas will be Ćat, such that only for the latter the inĄnitesimal gauge transformations in form of

the operator δΨε will give rise to a Lie algebra in general. Moreover, we are not going to Ąx any

separate connection on TN which would be identiĄed with a canonical Ćat connection in the

standard situation, such that the only canonical connection there is the basic connection; using

the basic connections also for E-valued tensors is then in alignment to TN -valued tensors.

Hence, we Ąnally arrived at deĄning the inĄnitesimal gauge transformation of functionals.

DeĄnition 4.3.23: InĄnitesimal gauge transformation of functionals

Let M,N be two smooth manifolds, E → N a Lie algebroid over N , V → N a vector

bundle, ∇ a connection on E, E∇ an E-connection on V , and ε ∈ ℱ
0
E(M ; ∗E) together

with the unique Ψε ∈ XE(ME(M ;N)) as given uniquely in Prop. 4.3.16. For the func-

tional space ℱ
•
E(M ; ∗V ) let δΨε be the unique operator as in Prop. 4.3.7, using E∇ as

4A Ćat connection is locally canonically Ćat with respect to the trivialization given by a parallel frame; later we

will also see that then E is locally an action algebroid and ∇ its canonical Ćat connection, if ∇ is Ćat and has

vanishing basic curvature.
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E-connection on V .

Then we deĄne the inĄnitesimal gauge transformation δεL of L ∈ ℱ
•
E(M ; ∗V ) as an

element of ℱ•
E(M ; ∗V ) by

δεL := δΨεL. (4.68)

For V = E or V = TN we take E∇ = ∇bas on E and TN , respectively; for all further

tensor spaces constructed of E and TN , like their duals, we take the canonical extension

of the basic connections.

Remarks 4.3.24.

In the following we will have just one connection ∇ on E and E∇ on V given. Without men-

tioning it further, we always use these connections for the deĄnition of δε because it should be

clear by context.

We can quickly list two properties about δε.

Corollary 4.3.25: Linearity in ε

Let us assume the same as for Def. 4.3.23. Then

δαε+βϑ = αδε + βδϑ (4.69)

for all α, β ∈ R and ε, ϑ ∈ ℱ
0
E(M ; ∗E).

Proof.

Let k ∈ N0, L ∈ ℱ
k
E(M ; ∗V ) and (ea)a a local frame of V . Then, using Eq. (4.62) and the

Leibniz rule,

δαε+βϑL = ℒΨαε+βϑ
La

︸ ︷︷ ︸
Eq. (4.62)

= ℒαΨε+βΨϑ

⊗ ∗ea − La ⊗ ∗
(
E∇αε+βϑea



= α
(
ℒΨεL

a ⊗ ∗ea − La ⊗ ∗
(
E∇εea


+ β

(
ℒΨϑ

La ⊗ ∗ea − La ⊗ ∗
(
E∇ϑea



= (αδε + βδϑ)L,

where vector Ąelds like Ψε are given by Def. 4.3.23. ■

Corollary 4.3.26: Independence of ∇

Let us assume the same as for Def. 4.3.23, and let L ∈ ℱ
k
E(M ; ∗V ) (k ∈ N0) be indepen-

dent of A, i.e. L(Φ, A) = L(Φ, A′) for all (Φ, A), (Φ, A′) ∈ ME(M ;N).

Then the deĄnition of δεL is independent of ∇.a

aBut not of E∇, so, when E∇ = ∇bas, then there is still the dependency on ∇ in the role of E∇.
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Remarks 4.3.27.

The independence mentioned in Remark 4.3.9 is about E∇, not ∇. Eq. (4.61) shows clearly that

∇ contributes to δε in general, that is, the deĄnition of Ψε is certainly dependent on ∇, where

Ψε is given by Def. 4.3.23.

Proof.

Let (ea)a be a local frame of V , and write L = La ⊗ ∗ea, then, using that δε = ℒΨε on ℱ
k
E(M)

(recall Remark 4.3.9, and Ψε is given by Def. 4.3.23),

δεL = ℒΨεL
a ⊗ ea − La ⊗ ∗

(
E∇εea


.

The second summand is already independent of ∇, so, let us look at the Ąrst summand. Recall

that Ψε contains two components, the Ąrst is the differentiation along the ŤΦ-directionŤ, given

by −(∗ρ)(ε), and the second for the ŤA-directionŤ, Ąxed by Prop. 4.3.16 using ∇. Due to the

independence of L with respect to A we can conclude that La must be independent of A since
∗ea is already independent of A, thus,

ℒΨL
a = ℒΨ′La

for all Ψ,Ψ′ ∈ X(ME(M ;N)) whose Ąrst component, the derivative along ŤΦŤ-coordinates,

coincide. Hence, regardless which connection ∇ we choose to Ąx the second component of Ψε

the deĄnition of δεL will be unaffected by this choice. ■

4.3.3. Curvature of gauge transformations

We want to calculate

δϑδε − δεδϑ

for all ε, ϑ ∈ ℱ
0
E(M ; ∗E), and we want a behaviour similar to representations. For Φ ∈

C∞(M ;N), Φ∗E is in general not a Lie algebroid, see [9, §3.2ff.] or [10, §7.4; page 42ff.]

about conditions on Φ which imply a natural Lie algebroid structure on Φ∗E. Therefore we

cannot expect to have a Lie bracket on sections of Φ∗E. The essential problem is that we do not

have an anchor on Φ∗E → M in general such that one cannot try to construct Ąrst a bracket

on pullbacks of sections and then to canonically extend such a bracket (similar to previous con-

structions), and this problem extends to ℱ
0
E(M ; ∗E). But there is a better object measuring a

Ťbracket-likeŤ behaviour on this functional space; we will see at the end that this will be actually

a Lie bracket.

DeĄnition 4.3.28: Pre-bracket on ℱ
0
E(M ; ∗E)

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E.
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Then we deĄne the pre-bracket ∆ : ℱ0
E(M ; ∗E) × ℱ

0
E(M ; ∗E) → ℱ

0
E(M ; ∗E) by

∆(ϑ, ε) := δεϑ− δϑε−
(∗t∇bas

)
(ϑ, ε) (4.70)

for all ε, ϑ ∈ ℱ
0
E(M ; ∗E).

Remarks 4.3.29.

Given an E-connection E∇ on E, Lie brackets can be expressed as

[µ, ν]E = E∇µν − E∇νµ− tE∇(µ, ν)

for all µ, ν ∈ Γ(E). Recall that δ is strongly related to a certain pullback of ∇bas; then the

idea of the pre-bracket is to use the right-hand side as a deĄnition. Since we know under which

conditions and how to make pullbacks of E-connections and tensors, we circumvent the problem

of deĄning a Lie bracket and anchor on a pullback bundle.

Let us study this bracket.

Proposition 4.3.30: Properties of the pre-bracket

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E.

Then we have

∆ is antisymmetric, (4.71)

∆ is R-bilinear, (4.72)

∆(∗µ, ∗ν) = ∗([µ, ν]E
)

(4.73)

for all ε, ϑ ∈ ℱ
0
E(M ; ∗E), f ∈ ℱ

0
E(M), µ, ν ∈ Γ(E), and, when expressing everything with

respect to a pull-back of a local frame (ea)a of E, we get

∆(ϑ, ε) = δεϑ
a ∗ea − δϑε

a ∗ea + ϑaεb ∗([ea, eb]E
)

(4.74)

for all ϑ, ε ∈ ℱ
0
E(M ; ∗E).

Moreover, ∆(ϑ, ε) is independent of the chosen connection ∇ when both, ε and ϑ, are

independent of A, that is, ε(Φ, A) = ε(Φ, A′) for all (Φ, A), (Φ, A′) ∈ ME(M ;N); similar

for ϑ.

Remarks 4.3.31.

Eq. (4.73) and (4.74) emphasize that we have a suitable candidate in ∆ as bracket.

Let E = N × g be an action Lie algebroid, the usual relationship in classical gauge theory is

for ε, ϑ ∈ C∞(M ; g) that

[
δclas
ε , δclas

ϑ

]
A = −δclas

[ε,ϑ]
g

A,
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where δclas
ε is given by Def. 2.4.3, and the negative sign on the right hand side is due to our choice

of sign with respect to ε, which we prove later in full generality. As we discussed, we apply the

Ťbookkeeping trickŤ to formulate inĄnitesimal gauge transformations, also recall Def. 2.5.17 and

Thm. 2.5.19. That is, for a constant frame (ea)a of E, we have the Ťbookkeeping trickŤ ι(ε)

given by

ι(ε) = εa ∗ea,

hence, the bookeeping trick is essentially a frame-dependent embedding of the functionals given

in the classical gauge theory into ℱ
•
E . εa are in this case only functions depending on M , but

not on ME(M ;N), especially, δclas
ϑ εa = 0. By Eq. (4.74) we then have

∆
(
ι(ϑ), ι(ε)

)
= ϑaεb ∗([ea, eb]g

)
= ι
(
[ϑ, ε]g


,

which is precisely what we want and expect of a generalized bracket.

Proof of Prop. 4.3.30.

The antisymmetry is clear, and the bilinearity follows by the linearity of δε for all ε ∈ ℱ
0
E(M ; ∗E),

recall Cor. 4.3.25. We have

(∗t∇bas

)
(∗µ, ∗ν) = ∗((t∇bas

)
(µ, ν)

)
= ∗

(
∇bas
µ ν − ∇bas

ν µ− [µ, ν]E



for all µ, ν ∈ Γ(E), and

δ∗ν(∗µ) = −∗
(
∇bas
ν µ


,

therefore

∆(∗µ, ∗ν) = ∗
(
∇bas
µ ν


− ∗
(
∇bas
ν µ


− ∗
(
∇bas
µ ν − ∇bas

ν µ− [µ, ν]E


= ∗([µ, ν]E

)
,

which proves Eq. (4.73). For ε, ϑ ∈ ℱ
0
E(M ; ∗E) we have, with respect to a frame (ea)a of E,

δϑε = δϑε
a ∗ea − εaϑb ∗

(
∇bas
eb
ea

,

and so

∆(ϑ, ε) = δεϑ
a ∗ea − ϑaεb ∗

(
∇bas
eb
ea


− δϑε
a ∗ea + εaϑb ∗

(
∇bas
eb
ea


− ϑaεb ∗
(
∇bas
ea
eb − ∇bas

eb
ea − [ea, eb]E



= δεϑ
a ∗ea − δϑε

a ∗ea + ϑaεb ∗([ea, eb]E
)
.

This expression for ∆(ϑ, ε) shows that its value is independent of the chosen ∇, when the

functionals ε = εa⊗∗ea and ϑ = ϑa⊗∗ea are independent of A, since then also their components

with respect to (∗ea)a are independent of A because ∗ea is already independent of A. Then apply

Cor. 4.3.26. ■
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Corollary 4.3.32: ∆ a Lie bracket on the pull-backs of Γ(E)

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E.

Then the restriction of ∆ on pullback functionals is a Lie bracket.

Proof.

The antisymmetry, the bilinearity over R and the closedness follow by Prop. 4.3.30, the same

also for the Jacobi identity by observing

∆(∗µ,∆(∗ν, ∗η))
Eq. (4.73)

= ∆(∗µ, ∗([ν, η]E))
Eq. (4.73)

= ∗([µ, [ν, η]E ]
E

)

for all µ, ν, η ∈ Γ(E). Hence, the Jacobiator of the restriction of ∆ on pullback functionals is

given by the pullback of the Jacobiator of [·, ·]E , the latter is of course zero. ■

We will see that ∆ is actually always a Lie bracket, but for proving this we do not want to

show the Jacobi identity directly, due to how we constructed it we rather are going to use the

equivalence with Bianchi identities of curvatures; recall the proof of Thm. 3.4.6. Hence, let us

deĄne the curvature we are interested into.

DeĄnition 4.3.33: Curvature of inĄnitesimal gauge transformations along

functionals

Let M,N be smooth manifolds, E → N a Lie algebroid, V → N a vector bundle, ∇ a

connection on E, and E∇ an E-connection on V .

Then we deĄne the curvature Rδ along L ∈ ℱ
k
E(M ; ∗V ) as a map Rδ(·, ·)L :

ℱ
0
E(M ; ∗E) × ℱ

0
E(M ; ∗E) × ℱ

k
E(M ; ∗V ) → ℱ

k
E(M ; ∗V ) (k ∈ N0) by

(ϑ, ε, L) 7→ Rδ(ϑ, ε)L,

Rδ(ϑ, ε)L := δϑδεL− δεδϑL+ δ∆(ϑ,ε)L (4.75)

for all ϑ, ε ∈ ℱ
0
E(M ; ∗E).

In alignment to Def. 4.3.21 we denote Rδ(·, ·)A := Rδ(·, ·)ϖ2, and Rδ(·, ·)A
a := Rδ(·, ·)ϖ

a
2

with respect to a frame (ea)a of E.

Remarks 4.3.34.

The sign in front of the third term depends on which sign one takes in the deĄnition of δε.

Changing the sign ε in the deĄnitions of the gauge tranformations would lead to a minus sign

in front of the third summand.

Using a frame of E we can apply the Leibniz rule.
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Corollary 4.3.35: Relationships between curvatures

Let M,N be smooth manifolds, E → N a Lie algebroid, V → N a vector bundle, ∇ a

connection on E, and E∇ an E-connection on V . Then locally

Rδ(·, ·)L = Rδ(·, ·)L
a ⊗ ∗ea + La ⊗ ∗(RE∇(·, ·)ea

)
(4.76)

for all L ∈ ℱ
k
E(M ; ∗V ) (k ∈ N0), where (ea)a is a local frame of E and viewing RE∇(·, ·)ea

as an element of Ω2(E;E).

Proof.

Let us Ąrst study terms like Rδ(ϑ, ε)(
∗h) for ε, ϑ ∈ ℱ

0
E(M ; ∗E) and h ∈ Γ(V ), using a local

frame (ea)a of E,

δϑδε(
∗h) = −δϑ

(
εa ∗

(
E∇eah


= −δϑε

a ∗
(
E∇eah


+ εaϑb ∗

(
E∇eb

E∇eah

,

and

δ∆(ϑ,ε)(
∗h)

Eq. (4.74)
= −

(
δεϑ

a − δϑε
a + ϑb εc

(∗([eb, ec]E
))a ∗

(
E∇eah



= δϑε
a ∗
(
E∇eah


− δεϑ

a ∗
(
E∇eah


− εaϑb ∗

(
E∇[eb,ea]E

h

,

in total

Rδ(ϑ, ε)(
∗h) = εaϑb ∗

(
E∇eb

E∇eah− E∇ea

E∇eb
h− E∇[ea,eb]E

h


︸ ︷︷ ︸
RE∇

(eb,ea)h

=
(∗(RE∇(·, ·)h

))
(ϑ, ε).

Therefore we arrive at

Rδ(ϑ, ε)(L
a ⊗ ∗ea) = δϑδεL

a ⊗ ∗ea + δεL
a ⊗ δϑ(∗ea) + δϑL

a ⊗ δε(
∗ea) + La ⊗ δϑδε(

∗ea)

− (ϑ ↔ ε)

+ δ∆(ϑ,ε)L
a ⊗ ∗ea + La ⊗ δ∆(ϑ,ε)

∗ea

= Rδ(ϑ, ε)L
a ⊗ ∗ea + La ⊗Rδ(ϑ, ε)(

∗ea)

= Rδ(·, ·)L
a ⊗ ∗ea + La ⊗

(∗(RE∇(·, ·)ea
))

(ϑ, ε)

for all L ∈ ℱ
k
E(M ; ∗V ). ■

Keep in mind that Rδ is not a typical curvature, for example δε is not C∞-linear with respect

to ε, such that it is not immediately clear whether this curvature is a tensor in the other

arguments, so, we need to prove this if we want to simplify calculations. We are Ąrst focusing

on Rδ(·, ·)A.
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Proposition 4.3.36: Rδ is a tensor

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E.

Then Rδ(·, ·)A is an anti-symmetric tensor, i.e. anti-symmetric and ℱ
0
E(M)-bilinear, and

we have

Rδ(ε, ϑ)A = Rδ(ε, ϑ)Aa ⊗ ∗ea + (∗R∇bas)(ε, ϑ)A (4.77)

for all ε, ϑ ∈ ℱ
0
E(M ; ∗E).

Proof.

• The antisymmetry is clear by Prop. 4.3.30. Fix a local frame (ea)a of E, then we have

δϑδfεA
Def. 4.3.21

= −δϑ
(
(∗∇)(fε)

)

= −δϑ
(
df ⊗ ε+ f (∗∇)ε

)

= −δϑdf ⊗ ε− df ⊗ δϑε− δϑf (∗∇)ε− fδϑ
(
(∗∇)ε

)

= −δϑdf ⊗ ε− df ⊗ δϑε
a ∗ea + df ⊗ εaϑb ∗

(
∇bas
eb
ea


− δϑf (∗∇)ε+ fδϑδεA

for all ϑ, ε ∈ ℱ
0
E(M ; ∗E) and f ∈ ℱ

0
E(M), and

−δfεδϑA = δfε
(
(∗∇)ϑ

)

= δfε
(
dϑa ⊗ ∗ea + ϑb !(∇eb)



Eq. (4.58)
= δfεdϑ

a ⊗ ∗ea − dϑa ⊗ fεb ∗
(
∇bas
eb
ea


+ δfεϑ
b !(∇eb) − fϑb !

(
∇bas
ε (∇eb)


− ϑb ∗

(
∇(∗ρ)((∗∇)(fε))eb



︸ ︷︷ ︸
=df⊗∗(∇(∗ρ)(ε)eb)+f ·(. . . )︸ ︷︷ ︸

indep. of f

= δfεdϑ
a ⊗ ∗ea + δfεϑ

b !(∇eb) − ϑbεadf ⊗ ∗
(
∇ρ(ea)eb


+ f · (. . . )︸ ︷︷ ︸

independent of f

.

Since we want to check the tensorial property, we can ignore the terms proportional to f ; we

also have

δ∆(ϑ,fε)A = (∗∇)(∆(fε, ϑ))

Eq. (4.74)
= (∗∇)

(
δϑf ε+ fδϑε

a ∗ea − δfεϑ
b ∗eb + fεaϑb ∗([ea, eb]E)



Eq. (4.43)
= δϑdf ⊗ ε+ δϑf (∗∇)ε+ df ⊗ δϑε

a ∗ea − δfεdϑ
b ⊗ ∗eb − δfεϑ

b !(∇eb)
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+ εaϑb df ⊗ ∗([ea, eb]E) + f · (. . . )︸ ︷︷ ︸
independent of f

.

Hence, we get in total

Rδ(ϑ, fε)A = εaϑbdf ⊗ ∗
(
∇bas
eb
ea − ∇ρ(ea)eb + [ea, eb]E



︸ ︷︷ ︸
=∇bas

eb
ea−∇bas

eb
ea=0

+f · (. . . )︸ ︷︷ ︸
independent of f

= f · (. . . )︸ ︷︷ ︸
independent of f

for all ϑ, ε ∈ ℱ
0
E(M ; ∗E) and f ∈ ℱ

0
E(M). Using the antisymmetry proves that Rδ(·, ·)A is a

tensor because the shown equation also holds for f ≡ 1 such that the remaining terms in the

f -independent bracket are precisely giving rise to Rδ(ϑ, ε)A.

• Eq. (4.77) just follows by Cor. 4.3.35. ■

Due to the tensorial behaviour, we can study Rδ(·, ·)A just with respect to pullback function-

als, such that the notations and calculations can be simpliĄed.

Theorem 4.3.37: Curvature of the inĄnitesimal gauge transformation mea-

sured by the basic curvature

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Then

Rδ(
∗µ, ∗ν)A = −!

(
Rbas

∇ (µ, ν)


(4.78)

for all µ, ν ∈ Γ(E), viewing Rbas
∇ (µ, ν) as an element of Ω1(N ;E).

Remarks 4.3.38.

• One can then derive with Eq. (4.2) that

!
(
Rbas

∇ (µ, ν)


=
(

∗
(
Rbas

∇ (µ, ν)


D =
(

∗Rbas
∇


(∗µ, ∗ν)D,

viewing D as an element of ℱ1
E(M ; ∗TN); recall Ex. 4.1.12. Using that Rδ(·, ·)A is tensorial and

that pullbacks are generators as usual, we get

Rδ(ε, ϑ)A = −
(

∗Rbas
∇


(ε, ϑ)D

for all ε, ϑ ∈ ℱ
0
E(M ; ∗E).

• One could also view this theorem as a physical interpretation of the basic curvature.

Proof of Thm. 4.3.37.

We have

δ∗µ(δ∗νA)(Φ, A) = −δ∗µ

(
!(∇ν)


(Φ, A)

157



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

Eq. (4.59)
= !

(
∇bas
µ (∇ν) + ∇ρ(∇µ)ν


,

and

(
∇bas
µ (∇ν) + ∇ρ(∇µ)ν


(Y ) = ∇bas

µ ∇Y ν − ∇∇bas
µ Y ν + ∇ρ(∇Y µ)ν

= [µ,∇Y ν]E + ∇ρ(∇Y ν)µ− ∇[ρ(µ),Y ]ν

for all Y ∈ X(M). In total we would then look at the pull-back of the following form

(
∇bas
µ (∇ν) + ∇ρ(∇µ)ν − ∇bas

ν (∇µ) − ∇ρ(∇ν)µ− ∇([µ, ν]E)

(Y )

= [µ,∇Y ν]E + ∇ρ(∇Y ν)µ− ∇[ρ(µ),Y ]ν − [ν,∇Y µ]E − ∇ρ(∇Y µ)ν + ∇[ρ(ν),Y ]µ− ∇Y ([µ, ν]E)

= −
(
∇Y ([µ, ν]E) − [∇Y µ, ν]E − [µ,∇Y ν]E − ∇∇bas

ν Y µ+ ∇∇bas
µ Y ν



Def. 3.7.4
= −Rbas

∇ (µ, ν)Y.

Therefore we arrive at

Rδ(
∗µ, ∗ν)A = −!

(
Rbas

∇ (µ, ν)Y

.

■

We get immediately the following statement.

Corollary 4.3.39: Flat inĄnitesimal gauge transformation

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E with

Rbas
∇ = 0. Then

Rδ(·, ·)A = 0. (4.79)

With respect to a frame (ea)a of E we then also have

Rδ(·, ·)A
a = 0 (4.80)

for all µ, ν ∈ Γ(E).

Remarks 4.3.40.

• This discussion, especially Cor. 4.3.39 and Thm. 4.3.37, are generalizations of statements

in [16, especially Prop. 8 and Thm. 1] and [17, especially Eq. 9, 10 and 11; there the S denotes

the basic curvature].5 In both of these works a coordinate-free formulation of δεA was not

known, just δεA
a. It was known that δεA

a is dependent on coordinates, but not how it can

be written/deĄned such that it is again an element of Ω1(M ; Φ∗E). [16] tries to formulate

5The sign of ε in the gauge transformations there is the opposite of our sign.
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inĄnitesimal gauge transformations in a covariant way with a completely different approach

by assuming a weaker form of equality, but only for a special situation and only for ε as an

element of Φ∗(Γ(E)) (i.e. they only looked at pullback functionals, when we express that in our

languages). [17] looks at the set Γ(Φ∗E) for ε but assumes that εa is independent of Φ and A

which is clearly a coordinate-dependent description, because a change of the pull-back frame

would introduce a Φ-dependency of the components εa (in our words, they choose a coordinate-

dependent embedding of Γ(Φ∗E) as functionals). In one way or the other, both works arrive

at Eq. (4.80), but only evaluated at pullback functionals, that is, Rδ(
∗µ, ∗ν)Aa = 0 for all

µ, ν ∈ Γ(E).

What we provide is a coordinate-independent and -free deĄnition of such inĄnitesimal gauge

transformations. Moreover, we have generalized Eq. (4.80) in form of Eq. (4.79), in sense of not

only assuming pullback functionals by deĄning the pre-bracket ∆.

• Recall Remark 4.3.22: One could also take ∇ρ to deĄne δε. It has the advantage that

then δεA directly restricts to the standard formula when restricting ourselves to the classical

setting. When deĄning and calculating Rδ in a similar manner, we also get Eq. (4.77) where

the curvature-term will be replaced with the curvature of ∇ρ due to Cor. 4.3.35. Therefore one

needs to impose at least Ćatness of ∇ρ in order to get a similar result like Eq. (4.79); actually,

one can check that one still needs a vanishing basic curvature, too. But we will later see that

the basic connection will be in general Ćat, while ∇ρ will not; especially we will see that the

basic curvature will always vanish for the presented gauge theory. Thence, another reason for

our choice to use the basic connection for the deĄnition of δ.

Proof of Cor. 4.3.39.

That is a trivial consequence of Thm. 4.3.37 and Prop. 4.3.36, using Rbas
∇ = 0 (and that then

the basic connection is Ćat by Prop. 3.7.6) and that Rδ(·, ·)A is ℱ
0
E(M)-bilinear such that one

just needs to look at pullback functionals. ■

These results motivate even further why we use the basic connection to deĄne the inĄnitesimal

gauge transformation. Moreover, Rbas
∇ = 0 is also a condition which we will need for gauge

invariance; see later. However, we also have this condition in the standard formulation of gauge

theory such that it is not a newly imposed condition:

Theorem 4.3.41: Relation of the basic curvature and action Lie algebroids,

[1, discussion around Eq. (9)], [6, Prop. 2.12], and [13, §2.5,

Theorem A]

Let E → N be a Lie algebroid. Then E is locally an action Lie algebroid if and only if

it admits locally a Ćat connection ∇ with Rbas
∇ = 0. If there is such a local isomorphism,

then it can be chosen in such a way that ∇ describes the canonical Ćat connection.

Remarks 4.3.42.

As clariĄcation of the last sentence, under that isomorphism we have (locally) E = N × g for
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some Lie algebra g, and a basis of g, that is, a constant frame of E, will be parallel with respect

to ∇. Especially, the canonical Ćat connection of every action Lie algebroid has a vanishing

basic curvature. Furthermore, over a simply connected base the isomorphism is global as we will

see in the proof (because one can then construct a global parallel frame for ∇; see the proof).

Proof.

This basically follows by Eq. (3.59), i.e.

Rbas
∇ (µ, ν)Y = (∇Y t∇bas)(µ, ν) −R∇(ρ(µ), Y )ν +R∇(ρ(ν), Y )µ

for all µ, ν ∈ Γ(E) and Y ∈ X(N).

Ť⇒Ť: Assume E♣U ∼= U × g is an action Lie algebroid for some open subset U of N for some

Lie algebra g. Over U take the canonical Ćat connection ∇, and let (ea)a be a frame of constant

sections on U . Then by Eq. (3.59)

Rbas
∇ (ea, eb) = (∇t∇bas)(ea, eb) = ∇

(
t∇bas(ea, eb)︸ ︷︷ ︸

=[ea,eb]E

)
= dCcab ⊗ ec,= 0

where Ccab are the structure constants of g.

Ť⇐Ť: Assume we have a Ćat connection ∇ over some open subset U with Rbas
∇ = 0. W.l.o.g.

assume there is a parallel frame (ea)a for ∇ on U (otherwise restrict U to a smaller subset).

Then again by Eq. (3.59)

0 = ∇
(
t∇bas(ea, eb)

)
= dCcab ⊗ ec,

thus, the structure functions related to the parallel frame are constant. Therefore the parallel

frame spans the same Lie algebra g at each Ąbre, so, E♣U ∼= U ×g as vector bundles. Identifying

elements of g with constant sections, the anchor ρ deĄnes clearly an action for g on N , and [·, ·]E
clearly restrict to [·, ·]g on constant sections. The Lie algebroid is thence of the action type by

the uniqueness given in Prop. 3.1.23. ■

We now want to generalize Cor. 4.3.39 by using Cor. 4.3.35, especially we need to under-

stand the behaviour for scalar-valued functionals. For such functionals the inĄnitesimal gauge

transformation is nothing else than the Lie derivative of some vector Ąeld in ME , which we

denoted by Ψε. Recall Remark 4.3.2, we do in general not expect that Ψε ∈ XE
(
ME(M ;N)

)

builds a subalgebra; however, since we restricted the set of those vector Ąelds by deĄning δεA

in Prop. 4.3.16, there may be hope for the structure of a subalgebra; this will be discussed now.

Theorem 4.3.43: Bracket of gauge transformations a gauge transformation

Let M,N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E with

Rbas
∇ = 0. Furthermore let Ψε and Ψϑ for ε, ϑ ∈ ℱ

0
E(M ; ∗E) be the unique elements of

XE
(
ME(M ;N)

)
as given by Prop. 4.3.16.a
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Then

[Ψε,Ψϑ] = −Ψ∆(ε,ϑ) (4.81)

for all ε, ϑ ∈ ℱ
0
E(M ; ∗E), where Ψ∆(ε,ϑ) is also the unique element of XE

(
ME(M ;N)

)
as

given by Prop. 4.3.16.

aRecall that those Ψε are the vector Ąelds describing the inĄnitesimal gauge transformation; see

Def. 4.3.23.

Proof.

First recall that we have by Remark 4.3.9

δεω = ℒΨεω

for all ω ∈ ℱ
•
E(M) and ε ∈ ℱ

0
E(M ; ∗E). Therefore we want to use Cor. 4.3.39. As vector Ąelds

of ME(M ;N), the action of ℒΨε is uniquely given by its action on coordinates of ME(M ;N),

and these are essentially given by the components of the Ąelds (Φ, A) ∈ ME(M ;N): Let
(
xi
)
i

be local coordinate functions on N and let (ea)a be a local frame of E, then coordinates of

ME(M ;N) are given by the functionals ∗
(
xi
)

and ϖa
2 because of

∗
(
xi
∣∣∣

(Φ,A)
= Φi,

ϖa
2(Φ, A) = Aa

for all (Φ, A) ∈ ME(M ;N). Recall the Ąrst calculation in the proof of Cor. 4.3.35, we get

similarly

Rδ(ε, ϑ)
(

∗
(
xi


= εaϑb ∗
(
ℒρ(ea)ℒρ(eb)x

i − ℒρ(eb)ℒρ(ea)x
i − ℒρ([ea,eb]E)x

i


︸ ︷︷ ︸
=


ℒ[ρ(ea),ρ(eb)]−ℒ

ρ([ea,eb]E)


xi=0

= 0

for all ε, ϑ ∈ ℱ
0
E(M ; ∗E), using that ρ is a homomorphisma and Remark 4.3.9 such that

δε
(

∗
(
xi
))

= −εa ∗
(
ℒρ(ea)x

i

. By Cor. 4.3.39 we also get

Rδ(ε, ϑ)ϖa
2 = 0.

By δε = ℒΨε on scalar-valued functionals we therefore get

(
[ℒΨε ,ℒΨϑ

] + ℒΨ∆(ε,ϑ)


f = 0

for all f ∈ C∞
(
ME(M ;N)

)
, which Ąnishes the proof. ■
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Remark 4.3.44: Curvature of δ on Φ

Keeping the same situation and notation as in the previous proof, observe that we have

δ∗νδ∗µΦ = −δ∗ν

(∗(ρ(µ))
)

= ∗
(
∇bas
ν

(
ρ(µ)

)
= ∗

(
ρ
(
∇bas
ν µ



for all µ, ν ∈ Γ(E), hence,a

δ∗νδ∗µΦ − δ∗µδ∗νΦ + δ∗([ν,µ]E)Φ = ∗
(
ρ
(
∇bas
ν µ− ∇bas

µ ν − [ν, µ]E


= ∗

(
ρ
(
t∇bas(ν, µ)

)
.

Therefore, if we want that this is zero, too, we would need that the torsion of the

basic connection has values in the kernel of the anchor which is in general not the case.

However, it is no harm that we do not have a zero value in general here. That is due

to the fact that on one hand Φ just contributes via pull-backs, as we will also see in the

following sections; on the other hand Φ is not vector-bundle valued and hence will not

arise in any other form than as the map for the pullbacks in any Lagrangian or physical

quantity. Even in the classical case, recall Prop. 2.1.16, a Lie algebra representation

acting on Φ is just the evaluation of its induced action at Φ.

However, as we have seen in the proof, we got Rδ(·, ·)
(

∗
(
xi
))

= 0, and ∗
(
xi
)∣∣

(Φ,A) = Φi

for all (Φ, A) ∈ ME(M ;N). That is, for the components of the Higgs Ąeld we have the

desired behaviour, which is all we need.

aRecall Eq. (4.73).

Finally, we can generalize Cor. 4.3.39.

Theorem 4.3.45: Curvature of δ on arbitrary functionals

Let M,N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E with

Rbas
∇ = 0. Furthermore let V → N be a vector bundle, equipped with an E-connection E∇

on V . Then

Rδ(ε, ϑ)L = (∗RE∇)(ε, ϑ)L (4.82)

for all L ∈ ℱ
k
E(M ; ∗V ) (k ∈ N0) and ε, ϑ ∈ ℱ

0
E(M ; ∗E). In short, Rδ = ∗RE∇.

Remarks 4.3.46.

This also shows that Rδ is a tensor. Moreover, as expected, for Ćat E∇ we would get

Rδ(ε, ϑ)L = 0. (4.83)

Proof of Thm. 4.3.45.

We want to use Cor. 4.3.35, so, for a given frame (ea)a we have

Rδ(ε, ϑ)L = Rδ(ε, ϑ)La ⊗ ∗ea + (∗RE∇)(ε, ϑ)L
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for all L ∈ ℱ
k
E(M ; ∗V ) (k ∈ N0) and ε, ϑ ∈ ℱ

0
E(M ; ∗E). Hence, we just need to show that

Rδ(ε, ϑ)La = 0. Again by Remark 4.3.9 we have δε = ℒΨε on scalar-valued functionals, where

Ψε still denotes vector Ąelds as uniquely given by Prop. 4.3.16. Ψε are elements of X
(
ME(M ;N)

)
,

hence,

(δεL
a

︸ ︷︷ ︸
=ℒΨεL

a

)p(Y1, . . . , Yk) = ℒΨε

(
Lap(Y1, . . . , Yk)



for all p ∈ M and Y1, . . . , Yk ∈ TpM . We know that La ∈ ℱ
k
E(M), and therefore Lap(Y1, . . . , Yk) ∈

C∞
(
ME(M ;N)

)
, so, we just need to use Thm. 4.3.43 to get

(Rδ(ε, ϑ)La)p(Y1, . . . , Yk) =
((

[ℒΨε ,ℒΨϑ
] + ℒΨ∆(ε,ϑ)


La

p
(Y1, . . . , Yk)

=
(
[ℒΨε ,ℒΨϑ

] + ℒΨ∆(ε,ϑ)

(
Lap(Y1, . . . , Yk)



Thm. 4.3.43
= 0,

which concludes the proof. ■

Let us conclude this section by showing that this Ąnally implies that ∆ is a Lie bracket.

Theorem 4.3.47: Pre-bracket a Lie bracket

Let M,N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E with

Rbas
∇ = 0. Then ∆ is a Lie bracket.

Proof.

By Prop. 4.3.30 we already know antisymmetry and R-bilinearity. Thus, only the Jacobi identity

is left to show, and the calculation is very similar to the calculation of the Ąrst Bianchi identity

in Thm. 3.4.6,

∆(η,∆(ϑ, ε)) = ∆
(
η, δεϑ− δϑε−

(∗t∇bas

)
(ϑ, ε)

)

= δδεϑη − δδϑεη − δ(
∗t

∇bas

)
(ϑ,ε)

η

︸ ︷︷ ︸
δ∆(ϑ,ε)η

− δηδεϑ+ δηδϑε+
(∗t∇bas

)(
η,
((∗t∇bas

)
(ϑ, ε)

))

+ δη
((∗t∇bas

)
(ϑ, ε)

)
−
(∗t∇bas

)
(η, δεϑ) +

(∗t∇bas

)
(η, δϑε)

= δηδϑε− δηδεϑ+ δ∆(ϑ,ε)η

+ δη
((∗t∇bas

)
(ϑ, ε)

)
−
(∗t∇bas

)
(η, δεϑ) +

(∗t∇bas

)
(η, δϑε)︸ ︷︷ ︸

=−
(

∗t
∇bas

)
(δϑε,η)
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+
(∗t∇bas

)(
η,
((∗t∇bas

)
(ϑ, ε)

))

for all ε, ϑ, η ∈ ℱ
0
E(M ; ∗E). Taking the cyclic sum, we collect the terms as in the proof of

Thm. 3.4.6, and hence we get, using that ∇bas is used for the deĄnition of δ on E-valued

functionals,

∆(η,∆(ϑ, ε)) + ∆(ϑ,∆(ε, η)) + ∆(ε,∆(η, ϑ))

= Rδ(η, ϑ)ε+Rδ(ε, η)ϑ+Rδ(ϑ, ε)η︸ ︷︷ ︸
Thm. 4.3.45

= 0

+
(∗t∇bas

)(
η,
(∗t∇bas

)
(ϑ, ε)

)
+
(∗t∇bas

)(
ε,
(∗t∇bas

)
(η, ϑ)

)

+
(∗t∇bas

)(
ϑ,
(∗t∇bas

)
(ε, η)

)

+ (δη(
∗t∇bas))︸ ︷︷ ︸

=−∗(∇bas
η t

∇bas)

(ϑ, ε) + (δε(
∗t∇bas))(η, ϑ) + (δϑ(∗t∇bas))(ε, η)

= −ϑaεbηc ∗

t∇bas(t∇bas(ea, eb), ec) + t∇bas(t∇bas(eb, ec), ea) + t∇bas(t∇bas(ec, ea), eb)

+
(
∇bas
ec
t∇bas


(ea, eb) +

(
∇bas
ea
t∇bas


(eb, ec) +

(
∇bas
eb
t∇bas


(ec, ea)



Thm. 3.4.6
= 0

for all ε, ϑ, η ∈ ℱ
0
E(M ; ∗E), where (ea)a is a local frame of E, and we also used that ∇bas is Ćat

by Prop. 3.7.6; the Ćatness was applied when we used Thm. 3.4.6 and Thm. 4.3.45.6 Thence,

the Jacobi identity follows. ■

Remarks 4.3.48.

The proof is essentially based on the Ąrst Bianchi identity of curvatures. Hence, taking any other

E-connection ∇′ on E one could deĄne the bracket ∆ by using the torsion of ∇′ instead of ∇bas,

and then also deĄne the δ operator with respect to ∇′ on E-valued form. By Thm. 4.3.45 we

could not expect Rδ = 0 in general, but ∆ should be nevertheless a Lie bracket due to the fact

that the Ąrst Bianchi identity always holds and that Thm. 4.3.45 provides the needed curvature

terms for the Bianchi identity.

4.4. InĄnitesimal gauge invariance

Let us now calculate the inĄnitesimal gauge transformations needed for the Lagrangian.

6But Ćatness is not actually needed here; see also the following remark.
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Proposition 4.4.1: InĄnitesimal gauge transformations of the Ąeld strength

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Then

we have

δεF = −


1

2
(∗R∇)(D ∧, D)ε+

(
∗Rbas

∇


(ε ∧, ϖ2

∧, D)


(4.84)

for all ε ∈ ℱ
0
E(M ; ∗E), where we write Γ(E)×Γ(E)×X(N) ∋ (µ, ν, Y ) 7→ Rbas

∇ (µ, ν, Y ) :=

Rbas
∇ (µ, ν)Y .

Proof.

Let (ea)a be a frame of E, then by Eq. (4.61)

dδεϖ
a
2 ⊗ ∗ea = d

(
εbϖc

2 ⊗ ∗
(
∇bas
eb
ec


− (∗∇)ε
a

⊗ ∗ea

= dεb ∧ϖc
2 ⊗ ∗

(
∇bas
eb
ec


+ εb dϖc
2 ⊗ ∗

(
∇bas
eb
ec


− εbϖc
2 ∧ d

(
∗
(
∇bas
eb
ec
a

⊗ ∗ea − d
(
(∗∇)ε

)a
⊗ ∗ea

also recall Eq. (4.43), and (4.58) (and also the calculation for Eq. (4.59)), then, using the previous

calculation,

δε
(
d

∗∇ϖ2


= δε

(
dϖa

2 ⊗ ∗ea −ϖb
2 ∧ !(∇eb)



= dδεϖ
a
2 ⊗ ∗ea − dϖa

2 ⊗ ∗
(
∇bas
ε ea


− δεϖ

b
2 ∧ !(∇eb)

+ϖb
2 ∧

(
∗
(
∇bas
ε (∇eb)


(D) + ∗

(
∇(∗ρ)((∗∇)ε)eb



︸ ︷︷ ︸
=εa !(∇bas

ea
(∇eb))+εa !(∇ρ(∇ea)eb)+dεa⊗∗(∇ρ(ea)eb)



= dεa ∧ϖb
2 ⊗ ∗

(
∇bas
ea
eb − ∇ρ(ea)eb



︸ ︷︷ ︸
=t

∇bas (ea,eb)

− εaϖc
2 ∧ d

(
∗
(
∇bas
ea
ec
b

⊗ ∗eb − d
(
(∗∇)ε

)b
⊗ ∗eb

−
(
εaϖc

2 ⊗ ∗
(
∇bas
ea
ec


− (∗∇)ε
b

∧ !(∇eb)

+ εaϖb
2 ∧ !


∇bas
ea

(∇eb) + ∇ρ(∇ea)eb



= dεa ∧ϖb
2 ⊗ ∗(t∇bas(ea, eb)) − εaϖc

2 ∧ d
∗∇
(

∗
(
∇bas
ea
ec


︸ ︷︷ ︸
Eq. (A.2)

= !(∇(∇bas
ea

ec))

−
(
d

∗∇
2
ε

︸ ︷︷ ︸
=R∗∇(·,·)ε
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+ εaϖb
2 ∧ !


∇bas
ea

(∇eb) + ∇ρ(∇ea)eb



= dεa ∧ϖb
2

∗(t∇bas(ea, eb)) − εa !(R∇(·, ·)ea
)

+ εaϖb
2 ∧ !


∇bas
ea

(∇eb) − ∇
(
∇bas
ea
eb


+ ∇ρ(∇ea)eb
︸ ︷︷ ︸

X(N)∋Y 7→[ea,∇Y eb]E+∇ρ(∇Y eb)ea−∇[ρ(ea),Y ]eb−∇Y ([ea,eb]E)−∇Y ∇ρ(eb)ea


,

using the second calculation in the proof of Thm. 4.3.37. Moreover,

(
∇bas
η t∇bas


(µ, ν)

Thm. 3.7.8
= R∇ρ(µ, ν)η

for all µ, ν, η ∈ Γ(E), such that, also using Eq. (4.40),

δε


1

2
(∗t∇bas)(ϖ2

∧, ϖ2)


= −

1

2

(
∗
(
∇bas
ε t∇bas


(ϖ2

∧, ϖ2)

+ (∗t∇bas)
(
(∗∇)ε ∧, ϖ2

)
+ (∗t∇bas)

(
ϖ2

∧, (∗∇)ε
)

︸ ︷︷ ︸
=(∗t

∇bas)
(

(∗∇)ε∧,ϖ2

)



= −
εa

2

(∗(R∇ρ(·, ·)ea
))

(ϖ2
∧, ϖ2)

− dεa ∧ϖb
2

∗(t∇bas(ea, eb)
)

+ εa ϖb
2 ∧ !(t∇bas(∇ea, eb)

)

where we used that the torsion is anti-symmetric such that by Prop. 4.0.3

(∗t∇bas)
(
ϖ2

∧, (∗∇)ε
)

= (∗t∇bas)
(
(∗∇)ε ∧, ϖ2

)
, (4.85)

because both arguments are 1-forms. We also have

[ea,∇Y eb]E + ∇ρ(∇Y eb)ea − ∇[ρ(ea),Y ]eb − ∇Y ([ea, eb]E) − ∇Y ∇ρ(eb)ea + t∇bas(∇Y ea, eb)

= [ea,∇Y eb]E + ∇ρ(∇Y eb)ea − ∇[ρ(ea),Y ]eb − ∇Y ([ea, eb]E) − ∇Y ∇ρ(eb)ea

+ [∇Y ea, eb]E − ∇ρ(∇Y ea)eb + ∇ρ(eb)∇Y ea

= −∇Y ([ea, eb]E) + [ea,∇Y eb]E + [∇Y ea, eb]E + ∇∇bas
eb

Y ea − ∇∇bas
ea

Y eb

+ ∇ρ(eb)∇Y ea − ∇Y ∇ρ(eb)ea − ∇[ρ(eb),Y ]ea

Def. 3.7.4
= −Rbas

∇ (ea, eb)Y +R∇(ρ(eb), Y )ea

for all Y ∈ X(N), and we are going to view Y 7→ −Rbas
∇ (ea, eb)Y +R∇(ρ(eb), Y )ea as an element

of Ω1(N ;E) (locally). Hence, altogether

δεF
Def. 4.2.1

= −εa !(R∇(·, ·)ea
)

−
εa

2

(∗(R∇ρ(·, ·)ea
))

(ϖ2
∧, ϖ2)
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+ εaϖb
2 ∧ !

(
R∇(ρ(eb), ·)ea −Rbas

∇ (ea, eb)


Eq. (4.2)
= −

1

2

(
(∗R∇)(D ∧, D)ε+

(∗R∇ρ

)
(ϖ2

∧, ϖ2)ε
︸ ︷︷ ︸

=(∗R∇)((∗ρ)(ϖ2) ∧, (∗ρ)(ϖ2))ε



+ (∗R∇)
(
(∗ρ)(ϖ2) ∧, D

)
ε

︸ ︷︷ ︸
= 1

2

(
(∗R∇)

(
(∗ρ)(ϖ2) ∧, D

)
ε+(∗R∇)

(
D ∧, (∗ρ)(ϖ2)

)
ε


−
(

∗Rbas
∇


(ε ∧, ϖ2

∧, D)

Def. 4.2.3
= −

1

2

(
(∗R∇)(D ∧, D)ε− (∗R∇)(D ∧, (∗ρ)(ϖ2))ε



−
(

∗Rbas
∇


(ε ∧, ϖ2

∧, D)

= −


1

2
(∗R∇)(D ∧, D)ε+

(
∗Rbas

∇


(ε ∧, ϖ2

∧, D)


,

where we introduced the notation Γ(E)×Γ(E)×X(N) ∋ (µ, ν, Y ) 7→ Rbas
∇ (µ, ν, Y ) = Rbas

∇ (µ, ν)Y

in order to emphasize the anti-symmetrization when applying the graded extension on Rbas
∇ , and

we used the same argument on (∗R∇)
(
(∗ρ)(ϖ2) ∧, D

)
ε as in Eq. (4.85). ■

Remarks 4.4.2.

These formulas look different when comparing it with the standard formulas, but that is again

related to that we use the basic connection for the variations instead. As introduced, we should

look at the variation of the components to see how the variation affects the variation of the

Lagrangian.

• In order to deĄne gauge invariance the idea is as in [1], δεF
a should be proportional to F

which is not the case here for both terms. Explicitly we need that δεF = 0; in that case we

would have for the components (with respect to a frame (ea)a of E)

δεF
a = (δεF )a︸ ︷︷ ︸

=0

−F b
(
δε(

∗eb)
)a

=
(

∗
(
∇bas
ε eb

a
F b = εc

(
∗
(
[ec, eb]E + ∇ρ(eb)ec

a
F b (4.86)

such that the variation of the components is proportional to themselves and we can then formu-

late the symmetry on scalar products as usual as a symmetry under (inĄnitesimal) ŤrotationsŤ,

see also the next theorem.

In the proof we saw that we can also write

δεF = −
1

2

(
(∗R∇)(D ∧, D)ε+

(∗R∇ρ

)
(ϖ2

∧, ϖ2)ε


+ (∗R∇)
(
(∗ρ)(ϖ2) ∧, D

)
ε−

(
∗Rbas

∇


(ε ∧, ϖ2

∧, D).

Since Φ and A are regarded as the Ąelds with respect to which the theory gets varied and

M , N etc. are completely arbitrary up to this point, so, thinking about the whole category of

possible manifolds, D and ϖ2 can be viewed as (in general) independent functionals while ε
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is very arbitrary. Thus, in order to get δεF = 0 we need R∇ = 0 and Rbas
∇ = 0 in general.

Rbas
∇ = 0 sounds reasonable as we discussed in the previous section, recall the discussion around

Cor. 4.3.39, but the condition that ∇ is Ćat is not a good condition because this will lead to

that we have locally the standard formulation of gauge theory which is not the aim of this new

formulation. The problems with Ćatness we are going to discuss later, instead let us discuss

why this formula recovers the standard formula when using again action Lie algebroids with

canonical Ćat connections.

• As usual we use again Cor. 4.2.6, for this assume that E = N×g is an action Lie algebroid for

some Lie algebra g, equipped with the canonical Ćat connection ∇; as in the proof of Thm. 4.3.41

the canonical Ćat connection satisĄes Rbas
∇ = 0. Thus, we have then δεF = 0, and by the previous

calculation

δεF
a = εc Φ∗

(
[ec, eb]g

a

︸ ︷︷ ︸
const.

F b =
(
[ε, F ]g

a

for (ea)a a constant frame. This is again precisely the expected formula, recall Prop. 2.4.5, and

this is also shown and argued in [1, see the second paragraph after Eq. (11), keep in mind that

the different sign for ε], where also the general formula with the curvature got stated, but again

only for the components without knowing the full tensor.

Using this and Remark 4.4.2 we can Ąnally formulate what we need to have a gauge-invariant

Lagrangian; for this we need to calculate δεLYMH (Def. 4.2.5).

Theorem 4.4.3: The gauge invariance of the Lagrangian,

[1, especially the discussion around Eq. (16)]

Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie

algebroid, ∇ a connection on E, κ and g Ąbre metrics on E and TN , respectively. Also

let V ∈ C∞(N) and assume that the following compatibility conditions hold:

R∇ = 0, (4.87)

Rbas
∇ = 0, (4.88)

∇basκ = 0, (4.89)

∇basg = 0, (4.90)

∗
(
ℒ(∗ρ)(ε)V


= 0 (4.91)

for all ε ∈ ℱ
0
E(M ; ∗E). Then we have

δεLYMH = 0 (4.92)

for all ε ∈ ℱ
0
E(M ; ∗E).
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Remarks 4.4.4.

Since Lie derivatives describe the canonical Ćat connection on smooth functions (canonical Ćat-

ness with respecto to the trivial line bundle over N , the notation of Eq. (4.91) is the same as

introduced in Remark 3.5.4 and as in other similar terms, i.e.

(
∗
(
ℒ(∗ρ)(ε)V


(Φ, A)

∣∣∣
p

= Φ∗
(
ℒ(Φ∗ρ)(ϵ)V

∣∣∣
p

= ℒ(ρΦ(p))(ϵp)V

for all (p,Φ, A) ∈ M × ME(M ;N), where ϵ := ε(Φ, A) ∈ Γ(Φ∗E). It is clear that Eq. (4.91)

generalizes Eq. (2.30) if E is an action Lie algebroid.

Proof.

Observe that ∗(∗V ) = ∗V dvolη, where dvolη is the canonical volume form of η and the sign

might differ depending on the deĄnition of the Hodge star operator. Using that, we only need

to look at the variation of ∗V because dvolη is clearly not affected by δ, hence,

δε(
∗V ) = −∗

(
ℒ(∗ρ)(ε)V


= 0

for all ε ∈ ℱ
0
E(M ; ∗E), where we used the last condition. Up to a sign we also have7

ω ∧ ∗ψ = ⟨ω, ψ⟩ dvolη

for all ω, ψ ∈ Ωk(M) (k ∈ N0), where ⟨·, ·⟩ is the standard scalar product deĄned on Ωk(M)

using η, i.e.

⟨ω, ψ⟩ =
1

k!
ωα1,...,αk

ψα1,...,αk

where we express the forms with respect to coordinate vector Ąelds (∂α)α on M and raising an

index is done by using η; especially, δε satisĄes the Leibniz rule on ⟨·, ·⟩ because δεη = 0. Hence,

similar to before,

δε(ω ∧ ∗ψ) = δε
(
⟨ω, ψ⟩ dvolη

)
=
(
⟨δεω, ψ⟩ + ⟨ω, δεψ⟩

)
dvolη = δεω ∧ ∗ψ + ω ∧ ∗(δεψ)

for all ε ∈ ℱ
0
E(M ; ∗E). This clearly extends to Def. 4.0.1 by the Leibniz rule (e.g. this is

immediate by the coordinate expression of graded extensions), in the sense of

δε
(
(∗κ)(F ∧, ∗F )

)
= (δε(

∗κ))(F ∧, ∗F ) + (∗κ)(δεF ∧, ∗F ) + (∗κ)
(
F ∧, ∗(δεF )

)

for all ε ∈ ℱ
0
E(M ; ∗E), similarly for other all terms of that form. Observe that we have δεF = 0

additionally to δεD = 0 by Prop. 4.3.18 and 4.4.1 and due to R∇ = 0 and Rbas
∇ = 0. So, we get

in total, using the result of the variation of the potential V ,

δεLYMH = δε


−

1

2
(∗κ)(F ∧, ∗F ) + (∗g)(D ∧, ∗D) − ∗(∗V )



= −
1

2

(
δε(

∗κ)
)
(F ∧, ∗F ) +

(
δε(

∗g)
)
(D ∧, ∗D)

7As also deĄned in [4, §7.2, DeĄnition 7.2.4; page 408].
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Eq. (4.40)
=

1

2


∗
(
∇bas
ε κ


(F ∧, ∗F ) −


∗
(
∇bas
ε g


(D ∧, ∗D)

= 0

for all ε ∈ ℱ
0
E(M ; ∗E), using the metric compatibilities in the assumed conditions. ■

Lie algebroids equipped with a connection with vanishing basic curvature are also called

Cartan algebroids as e.g. deĄned in [13, §2.3]; hence, this special type of Lie algebroid seems

to be the relevant one for gauge theories, as we already have noticed in the discussion about

gauge transformations. Let us collect all the results we got along the way in relation to the

standard formulation.

Theorem 4.4.5: Standard formulation of gauge theory is recovered, [1]

Assume that N = W is a vector space, E = N×g an action Lie algebroid for a Lie algebra

g whose Lie algebra action γ is induced by a Lie algebra representation ψ : g → End(W ),

and assume that ∇ is the canonical Ćat connection of E. Moreover, let κ be a Ąbre metric

of E which is a canonical extension of an ad-invariant scalar product of g, similarly g

is a metric on TW ∼= W × W constantly extending an ψ-invariant scalar product of W .

Finally, let V ∈ C∞(N) such that it satisĄes Eq. (4.91).

Then the compatibility conditions of Thm. 4.4.3 are satisĄed, and we recover the standard

theory: The Lagrangian LYMH is as in the standard formulation and gauge-invariant, as

does the Ąeld strength F , the minimal coupling D, the Ąeld of gauge bosons A, the Ąeld Φ,

and its variation δεΦ; with respect to a constant frame (ea)a of E and a constant frame

(∂α)α of TW , δεA
a coincide with the components of the variation of A of the standard

formulation, as does δεF
a and δε(D)α.

Remarks 4.4.6.

As discussed in subsection 4.3, the inĄnitesimal gauge transformation of the Lagrangian is just

δεLYMH = ℒΨεLYMH. Thence, the deĄnition of Ψε is of importance for the gauge invariance

of the Lagrangian, that is, how Φ and how the components of A transform; recall Prop. 4.3.16.

Given that unique Ψε of Prop. 4.3.16 (for a Ąxed ∇) one can take any other connection on E

to formulate δεA and δε in general, one will always get the gauge invariance of the Lagrangian,

and the components of A etc. will also transform the same. Hence, the statement about the

transformations of the components could also be formulated as that Ψε reduces to the same

vector Ąeld on the space of Ąelds as in the classical situation.

However, as already mentioned before, the deĄnition of Ψε depends on ∇; but given a Ψε

the choice of connections for the deĄnition of δε does not affect the gauge invariance of the

Lagrangian.

When we would use ∇ρ to deĄne the gauge transformations of E-valued functionals, then

many of the total formulas would also restrict to standard formulas due to the Ćatness of ∇ in

the standard situation, not just their components, recall Thm. 4.3.10. That is especially due
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to that ∇ρ will be a canonical Ćat connection, while the basic connection is Ćat but it may

not have a parallel frame due to the kernel of the anchor. If we would use ∇ρ, we would loose

the Ćatness of the gauge transformations as discussed in Cor. 4.3.39 whenever ∇ρ is not Ćat

anymore. However, we have now seen that ∇ needs to be Ćat for the gauge invariance of the

Lagrangian such that this does seemingly not matter; but we will see later that there is the

possibility to allow non-Ćat ∇.

Proof of Thm. 4.4.5.

First recall Thm. 4.3.41, especially, the canonical Ćat connection satisĄes Rbas
∇ = 0; the metric

compatibilities follow by Lemma 4.3.12, hence, all compatibility conditions of Thm. 4.4.3 are

satisĄed. That the formulas restrict to the standard ones we have discussed in Cor. 4.2.6 and

4.3.11, and Remarks 4.3.5, 4.3.17, and 4.4.2. ■

But due to the compatibility condition about the Ćatness we arrive locally now at an action

Lie algebroid, regardless of the speciĄc choice of E; and as we have seen multiple times, action

Lie algebroids recovers the classical theory.

Corollary 4.4.7: Gauge invariance implies standard theory,

[1, the discussion around Eq. (9)ff.]

Let us have the same conditions as in Thm. 4.4.3. Then E is locally isomorphic to an

action Lie algebroid N × g such that ∇ is its canonical Ćat connection and N = W is

a vector space, also, δεA
a are then of the form as in the standard formulation of gauge

theory with respect to a constant frame (ea)a, as does δεF
a.

Remarks 4.4.8.

Using Thm. 4.4.5 one can also derive the other classical formulas depending on the conditions

about the structure, like a given Lie algebra representation. But those are just technicalities,

the important part is to have an action Lie algebroid and its canonical Ćat connection.

Proof of Cor. 4.4.7.

By Thm. 4.3.41 we immediately know that E ∼= N×g is an action Lie algebroid for a Lie algebra

g with Lie algebra action γ : g → X(N) on some open neighbourhood around each point, in such

a way that ∇ is its canonical Ćat connection. Restricting the neighbourhood even further results

into N = W for some vector space W . The remaining proof is exactly as in Thm. 4.4.5. ■

Hence, we arrive locally always at the standard situation; at least at something very similar

to it. The Lie algebra action might not come from a Lie algebra representation and the metrics

might look exotic, but these are just technicalities which are not important for us, especially

when one recalls that the aim of this theory is that gauge theory is covariantized in order to

easily replace ∇ with non-Ćat connections. However, there is a possibility in allowing non-Ćat

connections, and for this we need to change the Ąeld strength to compensate the curvature term

in Prop. 4.4.1 which is mainly the reason behind the compatibility condition about Ćatness, as
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also argued as an ansatz in [1, second paragraph after Equation (11)]. We want to motivate this

change by a Ąeld redeĄnition instead, a transformation which keeps the Lagrangian invariant

after a modiĄcation, but breaking the condition about Ćatness.

Before we do this let us shortly summarize an aspect of the classical theory which is now

obvious due to this formulation.

Corollary 4.4.9: Abelian Lie algebras and zero torsion

Let E = N × g be an action Lie algebroid over N for a Lie algebra g, equipped with the

canonical Ćat connection ∇. Then

t∇bas = 0 ⇔ g is abelian. (4.93)

Remarks 4.4.10.

Given a Ąxed Ąbre metric κ such that ∇basκ = 0, as in one of the compatibility conditions, we

would therefore know that ∇bas is an E-Levi-Civita connection if and only if g is abelian.8

Proof.

We only need to check under which conditions the tensor of the torsion of the basic connection is

zero for constant sections µ, ν since these generate all sections, especially we have ∇µ = ∇ν = 0

and [µ, ν]E = [µ, ν]g:

0 = t∇bas(µ, ν)︸ ︷︷ ︸
=−t∇ρ (µ,ν)

⇔ 0 = t∇ρ(µ, ν)

⇔ 0 = [µ, ν]g.

■

4.5. Field redeĄnition

We study the following transformation which keeps the action invariant; for this recall SylvesterŠs

determinant theorem ([18, Appendix B; page 271]), also called Weinstein-Aronszajn identity,

which says

det(1n + CB) = det(1m +BC), (4.94)

where n,m ∈ N, 1n and 1m are the identity matrices on R
n and R

m, respectively, and C ∈ R
n×m

and B ∈ R
m×n.

Abstractly spoken, the typical idea of Ąeld redeĄnitions is the same as for covariantizing

physical theories and deĄnitions. One applies a non-constant change of coordinates in such a

8See e.g. [7, §2.5] for a deĄnition of such Levi-Civita connections. However, it is precisely deĄned as usual.
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way that one leaves the Ťinertial frameŤ as in classical mechanics, resulting to that one gets

extra terms in several formulas like contributions coming from Ťinertial forcesŤ; but one still has

the same physics, because the Lagrangian is actually invariant under that change of coordinates.

Usually one reformulates the same theory naturally supporting those extra terms, leading to a

theory naturally invariant under the observed changes of coordinates in all deĄnitions, which is

often referred to as covariantization by physicists. Up to this point it is just something aesthetic

one could say, however, the next step is then study whether the mentioned extra terms always

vanish in some coordinate system. Think e.g. of connection 1-forms of connections and one

started with a theory with an underlying Ćat connection such that the initial coordinate system

was also the parallel frame where the 1-forms are zero, and the connection 1-forms then arise

as those extra terms in other coordinate systems. Studying whether those connection 1-forms

always can vanish in some coordinate system, means, whether or not non-trivial curvatures are

possible.

In our case the ŤcoordinatesŤ we speak of is the structural data, especially A, a coordinate

of ME , but also for example ∇, and, so, the extra terms are going to be in the compatibility

condition about the curvature of ∇. To keep the same physics, that is, the Lagrangian stays

invariant, we need to correct especially the Ąeld strength since the Ąeld strength is of course

directly affected by non-trivial changes of A. Since the previously-discussed Ćatness of ∇ is given

by the inĄnitesimal gauge transformation of the Ąeld strength, there is the hope that whatever

we need to add to ŤcorrectŤ the Ąeld strength will also lead to a gauge invariant theory allowing

non-Ćat connections. As a next step it is then natural to rewrite gauge theory allowing those

extra terms, leading to a theory naturally invariant under the chosen change of ŤcoordinatesŤ

(as in coordinate-independence), while the classical theory is just the same theory, written with

respect to ŤcoordinatesŤ where those extra terms are zero. Finally, one may want to discuss what

happens when these extra terms actually never vanish, even after such changes of ŤcoordinatesŤ.

So, precisely the same as in the previous paragraph, just happening with a different type of

ŤcoordinateŤ, which is why we are not going to say covariantization but Ąeld redeĄnition.

Let us start deĄning that Ąeld redeĄnition.

DeĄnition 4.5.1: Field redeĄnition

Let M,N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, and κ and

g Ąbre metrics on E and TN , respectively. Also let λ ∈ Ω1(N ;E) such that Λ := 1E−λ◦ρ

is an element of 𝒜𝓊𝓉(E). We then deĄne the Ąeld redeĄnition by

ϖ̃2
λ := (∗Λ)(ϖ2) + !λ, (4.95)

∇̃λ := ∇ +
(
Λ ◦ d∇bas

◦ Λ−1

λ, (4.96)

κ̃λ := κ ◦
(
Λ−1,Λ−1


, (4.97)
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g̃λ := g ◦
(
Λ̂−1, Λ̂−1


, (4.98)

where Λ̂ := 1TN − ρ ◦ λ.

Remarks 4.5.2.

• Λ̂ and Λ are already endomorphisms by deĄnition, and, so, by Eq. (4.94) we know that

Λ̂ ∈ 𝒜𝓊𝓉(TN) if and only if Λ ∈ 𝒜𝓊𝓉(E). Also recall that we view elements of Ω1(N ;E)

also as elements of Ω1,0(N,E;E), Def. 3.8.3, therefore
(
Λ ◦ d∇bas

◦ Λ−1

λ ∈ Ω1,1(N,E;E) ∼=

Ω1(N ; End(E)).

• We can rewrite ϖ̃2
λ to

ϖ̃2
λ = (∗Λ)(ϖ2) + !λ

Eq. (4.2)
= ϖ2 −

(∗(λ ◦ ρ)︸ ︷︷ ︸
=(∗λ)◦(∗ρ)

)
(ϖ2) + (∗λ)(D) = ϖ2 + (∗λ)(D). (4.99)

With respect to points (Φ, A) ∈ ME(M ;N) this implies

(
ϖ̃2

λ

(Φ, A) = Ãλ = (Φ∗Λ)(A) + Φ!λ = A+ (Φ∗λ)

(
DAΦ


. (4.100)

Viewing A and ϖ2 as coordinates on ME(M ;N), the idea of the Ąeld redeĄnition is a change

of coordinates, consisting of a translation and a rotation with Λ which is basically a Ąrst order

approximation of the typical rotation given by an exponential. The other formulas of the Ąeld

redeĄnition are taken in such a way to keep all compatibility conditions in Thm. 4.4.3 but the

one about the curvature of ∇. We will see this in the following.

• If we additionally have Rbas
∇ = 0, then we have

(
d∇bas

2
= 0

by Prop. 3.7.6, thus, also

(
Λ ◦ d∇bas

◦ Λ−1
2

= Λ ◦
(
d∇bas

2
◦ Λ−1 = 0,

hence, we add then an exact term to ∇.

• Eq. (4.95) was suggested by one of my supervisors, Thomas Strobl, and the Ąrst task

of my PhD was to calculate all the remaining formulas and properties needed for the following

discussions. In [1, the example at the very end, right before the conclusion] some transformation

was discussed which is a special and simpliĄed situation of the Ąeld redeĄnition. Thomas Strobl

got this special example of the Ąeld redeĄnition after a private dialogue with Edward Witten.

Remark 4.5.3: An important note about notation

Due to λ ∈ Ω1,0(N,E;E) one may want to write
(
Λ ◦ d∇bas

◦ Λ−1

λ =

(
Λ ◦ ∇bas ◦ Λ−1


λ = dΛ◦∇bas◦Λ−1

λ,

but the Ąrst equality is not correct with our notation! Keep in mind that we have two
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degrees in form of the spaces Ωp,q(N,E;E) (p, q ∈ N0), so, there are Leibniz rules involved

on the p-degree if p ̸= 0, here p = 1. That is, for Y ∈ X(N) and ν ∈ Γ(E), compare

((
Λ ◦ d∇bas

◦ Λ−1

λ

(Y, ν) = Λ

((
∇bas
ν

(
Λ−1 ◦ λ


(Y )



= Λ
(
∇bas
ν

((
Λ−1 ◦ λ


(Y )


− λ

(
∇bas
ν Y



=
(
Λ ◦ ∇bas

ν ◦ Λ−1
(
λ(Y )

)
− λ

(
∇bas
ν Y



with

(
dΛ◦∇bas◦Λ−1

λ

(Y, ν) =

(
Λ ◦ ∇bas

ν ◦ Λ−1
(
λ(Y )

)
− λ

((
Λ ◦ ∇bas

ν ◦ Λ−1

Y

.

Hence, due to the Leibniz rules, a composition of maps with connections is not the same

as usual compositions of maps, here with a differential. With Λ ◦ ∇bas ◦ Λ−1 we mean the

whole object as a connection, so, acting on λ, extending Λ◦∇bas ◦Λ−1 as an E-connection

to Ω1(N ;E). While each component in Λ ◦ d∇bas
◦ Λ−1 acts separately on forms like λ,

and ∇bas is extended as E-connection to Ω1(N ;E) (without the conjugation). Therefore

one needs to be very careful about how to use conjugations like Λ ◦ . . . ◦ Λ−1 and how to

put square brackets, especially when connections are involved. Thus, also

((
Λ ◦ d∇bas

◦ Λ−1

λ

(·, ν) = Λ

(
∇bas
ν

(
Λ−1 ◦ λ


̸=
(
Λ ◦ ∇bas

ν ◦ Λ−1

λ. (4.101)

If one always wants to write d∇bas
= ∇bas for elements of Ωp,0(N,E;E) as at the begin-

ning of this remark, then one needs to introduce a notation for extensions as of ∇bas to

Ω1(N ;E) in order to avoid precisely the confusion of notation discussed here.

We have actually the following corollary relating both notations/notions.

Corollary 4.5.4: Conjugation of differentials

Let N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Also let

λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ is an element of 𝒜𝓊𝓉(E). Then

(
dΛ◦∇bas◦Λ−1

ω


(X1, . . . , Xp, ν0, . . . , νq)

=

((
Λ ◦ d∇bas

◦ Λ−1
(
ω ◦

(
Λ̂, . . . , Λ̂︸ ︷︷ ︸
p times

,1E , . . . ,1E︸ ︷︷ ︸
q times

)(
Λ̂−1(X1), . . . , Λ̂−1(Xp), ν0, . . . , νq



(4.102)

for all ω ∈ Ωp,q(N,E;E) (p, q ∈ N0), X1, . . . , Xp ∈ X(N) and ν0, . . . , νq ∈ Γ(E). Equiva-
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lently,

dΛ◦∇bas◦Λ−1


Λ ◦ ω ◦
(
Λ̂−1, . . . , Λ̂−1

︸ ︷︷ ︸
p times

,1E , . . . ,1E︸ ︷︷ ︸
q times



= Λ ◦
(
d∇bas

ω


◦
(
Λ̂−1, . . . , Λ̂−1

︸ ︷︷ ︸
p times

,1E , . . . ,1E︸ ︷︷ ︸
q+1 times


. (4.103)

Remarks 4.5.5.

The second formulation emphasizes that it is roughly about a commutation relation between

the conjugation with Λ and the differential with the basic connection.

Proof of Cor. 4.5.4.

That is a straightforward calculation, writing E∇̃ := Λ ◦ ∇bas ◦ Λ−1,


d

E∇̃ω


(X1, . . . , Xp, ν0, . . . , νq)

=
q∑

i=0

(−1)i

E∇̃νi

(
ω
((

Λ̂ ◦ Λ̂−1

(X1), . . . ,

(
Λ̂ ◦ Λ̂−1


(Xp), ν0, . . . , ν̂i, . . . νq



−
p∑

j=1

ω︸︷︷︸
Λ◦Λ−1◦ω

((
Λ̂ ◦ Λ̂−1


(X1), . . . ,E∇̃νi

Xj , . . . ,
(
Λ̂ ◦ Λ̂−1


(Xp), ν0, . . . , ν̂i, . . . , νq



+
∑

0≤i<j≤q

(−1)i+j ω︸︷︷︸
=Λ◦Λ−1◦ω

((
Λ̂ ◦ Λ̂−1


(X1), . . . ,

(
Λ̂ ◦ Λ̂−1


(Xp), [νi, νj ]E , ν0, . . . , ν̂i, . . . , ν̂j , . . . , νq



=

((
Λ ◦ d∇bas

◦ Λ−1
(
ω ◦

(
Λ̂, . . . , Λ̂︸ ︷︷ ︸
p times

,1E , . . . ,1E︸ ︷︷ ︸
q times

)(
Λ̂−1(X1), . . . , Λ̂−1(Xp), ν0, . . . , νq



for all ω ∈ Ωp,q(N,E;E) (p, q ∈ N0), X1, . . . , Xp ∈ X(N) and ν0, . . . , νq ∈ Γ(E). The second

equation is of course just that formula applied to

Λ ◦ ω ◦
(
Λ̂−1, . . . , Λ̂−1

︸ ︷︷ ︸
p times

,1E , . . . ,1E︸ ︷︷ ︸
q times


.

■

Before we can study and discuss this Ąeld redeĄnition let us list several useful properties.

Proposition 4.5.6: Properties of Λ and Λ̂

Let N be a smooth manifold, E → N a Lie algebroid, ∇ a connection on E, and κ and g

Ąbre metrics on E and TN , respectively. Also let λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ
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is an element of 𝒜𝓊𝓉(E). Then we have

Λ−1 =
l∑

k=0

(λ ◦ ρ)k + Λ−1 ◦ (λ ◦ ρ)l+1, Λ̂−1 =
l∑

k=0

(ρ ◦ λ)k + Λ̂−1 ◦ (ρ ◦ λ)l+1,

(4.104)

(
∇̃λ
bas

= Λ ◦ ∇bas ◦ Λ−1,
(
∇̃λ
bas

= Λ̂ ◦ ∇bas ◦ Λ̂−1, (4.105)

ρ ◦ Λ = Λ̂ ◦ ρ, Λ ◦ λ = λ ◦ Λ̂, (4.106)

ρ ◦ Λ−1 = Λ̂−1 ◦ ρ, Λ−1 ◦ λ = λ ◦ Λ̂−1 (4.107)

for all l ∈ N0, where we mean the basic connection on E on the left and the one on TN

on the right in the second line. Moreover, we have several identities for the redeĄnition

of the connection

∇̃λ = ∇′ −
(
d∇′

λ


◦ (1TN , ρ) + Λ ◦ t∇ρ ◦
(
Λ−1 ◦ λ,1E


, (4.108)

where ∇′ := Λ ◦ ∇ ◦ Λ−1, and

∇̃λ
Y µ = Λ

(
∇

Λ̂−1(Y )
µ−

[(
Λ−1 ◦ λ


(Y ), µ

]
E


+ λ

(
[Y, ρ(µ)]

)
(4.109)

for all µ ∈ Γ(E) and Y ∈ X(N), Ąnally also

∇̃λ

Λ̂
= ∇

Λ̂
+ d∇bas

λ. (4.110)

Remarks 4.5.7.

We especially need the formulas of the inverse for l = 0, i.e.

Λ−1 = 1E + Λ−1 ◦ λ ◦ ρ,

Λ̂−1 = 1TN + Λ̂−1 ◦ λ ◦ ρ.

Proof.

• The Eq. (4.106) simply follow by deĄnition, and inverting these with respect to Λ and Λ̂

gives Eq. (4.107). Using these, we also have

Λ ◦

(
l∑

k=0

(λ ◦ ρ)k + Λ−1 ◦ (λ ◦ ρ)l+1

)
=

l∑

k=0

(1E − λ ◦ ρ) ◦ (λ ◦ ρ)k︸ ︷︷ ︸
=(λ◦ρ)k−(λ◦ρ)k+1

+ (λ ◦ ρ)l+1

telescoping sum
= (λ ◦ ρ)0 − (λ ◦ ρ)l+1 + (λ ◦ ρ)l+1

= 1E ,
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which proves the claim. In the same manner one shows the formula for Λ̂−1.

• We have

((
Λ ◦ d∇bas

◦ Λ−1

λ

(Y, µ) = Λ


∇bas
µ

((
Λ−1 ◦ λ


(Y )


−
(
Λ−1 ◦ λ

(
∇bas
µ Y



= Λ


−
[(

Λ−1 ◦ λ

(Y ), µ

]
E

+ ∇
Λ̂−1◦ρ◦λ(Y )

µ


+ λ([Y, ρ(µ)])

−λ ◦ ρ(∇Y µ) + ∇Y µ︸ ︷︷ ︸
Λ(∇Y µ)

−∇Y µ

= Λ


∇

Λ̂−1(Y )
µ−

[(
Λ−1 ◦ λ


(Y ), µ

]
E


+ λ([Y, ρ(µ)]) − ∇Y µ,

which proves Eq. (4.109) by using Def. (4.96). Let ∇′ := Λ ◦ ∇ ◦ Λ−1, then by Prop. 4.5.6

∇′
Y µ−

(
d∇′

λ

(Y, ρ(µ)) + Λ

(
t∇ρ

(
Λ−1(λ(Y )), µ



= ∇′
Y µ− ∇′

Y

(
(λ ◦ ρ)(µ)

)
︸ ︷︷ ︸

=∇′

Y
(Λ(µ))

+∇′
ρ(µ)

(
λ(Y )

)
+ λ

(
[Y, ρ(µ)]

)

+ Λ


−
[(

Λ−1 ◦ λ

(Y ), µ

]
E

+ ∇(ρ◦Λ−1◦λ)(Y )µ− ∇ρ(µ)

((
Λ−1 ◦ λ


(Y )



= Λ
(
∇

Λ̂−1(Y )
µ−

[(
Λ−1 ◦ λ


(Y ), µ

]
E


+ λ

(
[Y, ρ(µ)]

)
,

comparing it with the previous formula, we arrive at

∇̃λ = ∇′ −
(
d∇′

λ


◦ (1TN , ρ) + Λ ◦ t∇ρ ◦
(
Λ−1 ◦ λ,1E


.

For I :=
(
Λ ◦ d∇bas

◦ Λ−1

λ ∈ Ω1(N ; End(E)) ∼= Ω1,1(N,E;E) we also have

I(Y, ν) =
(
Λ ◦ ∇bas

ν ◦ Λ−1 ◦ λ− λ ◦ ∇bas
ν


(Y )

Eq. (4.96)
= ∇̃λ

νY − ∇νY

for all ν ∈ Γ(E) and Y ∈ X(N); especially with ρ ◦ ∇bas = ∇bas ◦ ρ we get

I
(
Λ̂(Y ), ν


=
(
Λ ◦ ∇bas

ν ◦ λ− λ ◦ ∇bas
ν ◦ Λ̂


(Y )

=
(
∇bas
ν ◦ λ− λ ◦ ∇bas

ν − λ ◦ ρ ◦ ∇bas
ν ◦ λ+ λ ◦ ∇bas

ν ◦ ρ ◦ λ

(Y )

=
(
∇bas
ν ◦ λ− λ ◦ ∇bas

ν


(Y )

=
(
d∇bas

λ

(Y, ν),

which proves the last equation. Alternatively, use Cor. 4.5.4.
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• Finally, using the things just shown,

(
∇̃λ
bas

µ
ν = [µ, ν]E + ∇̃λ

ρ(ν)µ

= [µ, ν]E + Λ


∇(

Λ̂−1◦ρ
)

(ν)
µ−

[(
Λ−1 ◦ λ ◦ ρ


(ν), µ

]
E


+ λ

(
[ρ(ν), ρ(µ)]

)

= [µ, ν]E +
[
µ,
(
Λ−1 ◦ λ ◦ ρ


(ν)
]
E︸ ︷︷ ︸

=[µ,Λ−1(ν)]E

+Λ
(
∇(ρ◦Λ−1)(ν)µ



+ (λ ◦ ρ)
([(

Λ−1 ◦ λ ◦ ρ

(ν), µ

]
E


+ (λ ◦ ρ)

(
[ν, µ]E

)

︸ ︷︷ ︸
=(λ◦ρ)([Λ−1(ν),µ]E)

= Λ
([
µ,Λ−1(ν)

]
E


+ Λ

(
∇(ρ◦Λ−1)(ν)µ



= Λ


∇bas
µ

(
Λ−1(ν)



for all µ, ν ∈ Γ(E). Similarly,

(
∇̃λ
bas

µ
Y = [ρ(µ), Y ] + ρ

(
∇̃λ
Y µ


= [ρ(µ), Y ] + ρ


Λ
(
∇

Λ̂−1(Y )
µ−

[(
Λ−1 ◦ λ


(Y ), µ

]
E


+ λ

(
[Y, ρ(µ)]

)

= [ρ(µ), Y ] +
[
ρ(µ),

(
Λ̂−1 ◦ ρ ◦ λ


(Y )

]

︸ ︷︷ ︸
=
[
ρ(µ),Λ̂−1(Y )

]
+(ρ ◦ Λ)

(
∇

Λ̂−1(Y )
µ


+ (ρ ◦ λ)
([(

Λ̂−1 ◦ ρ ◦ λ

(Y ) + Y, ρ(µ)

]

︸ ︷︷ ︸
−(ρ◦λ)

([
ρ(µ),Λ̂−1(Y )

])

= Λ̂


∇bas
µ

(
Λ̂−1(Y )



for all µ ∈ Γ(E) and Y ∈ X(N). ■

We will use these small results all the time, and we will not necessarily mention each equation

each time when we use it. Using the formulas of the inverse, we can show the following.

Lemma 4.5.8: Invertible Ąeld redeĄnition

Let M,N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, and κ and

g Ąbre metrics on E and TN , respectively. Also let λ ∈ Ω1(N ;E) such that Λ = 1E−λ◦ρ
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is an element of 𝒜𝓊𝓉(E). Then

ϖ̂2
−λ = ϖ2, (4.111)

∇̂−λ = ∇, (4.112)

κ̂−λ = κ, (4.113)

ĝ−λ = g, (4.114)

where we denote

ϖ̂2
−λ :=

˜̃
ϖ2

λ
−Λ−1◦λ

and so on.

Remarks 4.5.9.

All following formulas implied by the Ąeld redeĄnition, like a Ąeld redeĄnition of the basic

connection, are deĄned by taking their typical deĄnition and replacing the terms with the Ąeld

redeĄnitions given in Def. 4.5.1. That will imply similar inversion formulas for those terms.

Proof.

First observe that, using Prop. 4.5.6,

� := 1E −
(
−Λ−1 ◦ λ


◦ ρ = 1E + Λ−1 ◦ λ ◦ ρ = Λ−1,

�̂ := 1TN − ρ ◦
(
−Λ−1 ◦ λ


= 1TN + Λ̂−1 ◦ λ ◦ ρ = Λ̂−1.

Those are invertible, thus, we can apply the Ąeld redeĄnition using −Λ−1 ◦ λ. Using these

formulas, we get trivially,

κ̂−λ =
(
κ ◦

(
Λ−1,Λ−1


◦
(
�−1, �−1


= κ,

similarly for g. Moreover,

ϖ̂2
−λ = (∗�)(ϖ̃2

λ) − !
(
Λ−1 ◦ λ



= (∗�)
(
(∗Λ)(ϖ2) + !λ


− !
(
Λ−1 ◦ λ



= ϖ2 + !
(
Λ−1 ◦ λ


− !
(
Λ−1 ◦ λ



= ϖ2,

and

∇̂−λ = ∇̃λ −


� ◦ d

(
∇̃λ
)bas

◦ �−1
(

Λ−1 ◦ λ
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Cor. 4.5.4
= ∇ +

(
Λ ◦ d∇bas

◦ Λ−1

λ−

(
d∇bas

λ


◦
(
Λ̂−1,1E



Eq. (4.110)
= ∇ +

(
Λ ◦ d∇bas

◦ Λ−1

λ−

(
Λ ◦ d∇bas

◦ Λ−1

λ

= 0,

viewing d∇bas
λ as an element of Ω1,1(N,E;E). ■

4.6. RedeĄned gauge theory

We now want to calculate what the Ąeld redeĄnition changes, especially with respect to the Ąeld

strength.

Theorem 4.6.1: Field redeĄnition of the Ąeld strength

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Also

let λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ is an element of 𝒜𝓊𝓉(E). Then we have

D̃λ =
(

∗Λ̂

(D), (4.115)

F̃ λ = (∗Λ)


F −

1

2
(∗ξ)(D ∧, D)


, (4.116)

where

D̃λ := D − (∗ρ)
(
ϖ̃2

λ

, (4.117)

F̃ λ := d
∗∇̃λ

ϖ̃2
λ −

1

2


∗t

∇̃λ
ρ

(
ϖ̃2

λ ∧, ϖ̃2
λ

, (4.118)

ξ := Λ−1 ◦ ζ̂λ ◦
(
Λ̂, Λ̂


(4.119)

and ζ̂λ is an element of Ω2(N ;E) deĄned by

(
−ζ̂λ ◦

(
Λ̂, Λ̂


(X,Y ) :=


d∇̃λ

λ− t
∇̃λ

ρ
◦ (λ, λ)


(X,Y )

=
(
d∇λ


(X,Y ) + λ

(
∇bas
λ(X)Y − ∇bas

λ(Y )X


− [λ(X), λ(Y )]E

(4.120)

for all X,Y ∈ X(N).

Remarks 4.6.2.

When we deĄne the formal torsion9 t∇bas
λ

of ∇bas
λ , X(N) × Γ(E) ∋ (Y, ν) 7→ ∇bas

λ(Y )ν, as an

9It is formal because ∇bas
λ is not a connection due to the fact that ρ ◦ λ ̸= 1TN , otherwise Λ̂ = 0 and, so, Λ
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element of Ω2(N ; TN) by

t∇bas
λ

(X,Y ) := ∇bas
λ(X)Y − ∇bas

λ(Y )X − [X,Y ] (4.121)

for all X,Y ∈ X(N), then recall Def. 3.1.7 for

Rλ(X,Y ) =
[
λ(X), λ(Y )

]
− λ

(
[X,Y ]

)
,

hence, we can write

(
λ
(
t∇bas

λ


−Rλ


(X,Y ) = λ

(
∇bas
λ(X)Y − ∇bas

λ(Y )X


− [λ(X), λ(Y )]E ,

in total arriving to

−ζ̂λ ◦
(
Λ̂, Λ̂


= d∇λ+ λ

(
t∇bas

λ


−Rλ. (4.122)

Observe the (very rough) similarity with the Maurer-Cartan equation; especially for Lie algebra

bundles, that is, zero anchor, this will look like a covariantized Maurer-Cartan equation with

inhomogeneity. We will see this later.

Proof of Thm. 4.6.1.

In the following let (Φ, A) ∈ ME(M ;N).

• The Ąeld redeĄnition of the minimal coupling directly follows by Def. (4.95), so,

DÃλ

Φ = DΦ︸︷︷︸
=(Φ∗

1TN )(DΦ)

−(Φ∗ρ)
(
(Φ∗Λ)(A) + (Φ∗λ)(DΦ)

)

=
(
Φ∗Λ̂


(DΦ) −

(
Φ∗
(
Λ̂ ◦ ρ


(A)

=
(
Φ∗Λ̂

(
DAΦ


.

• With respect to a local frame (ea)a of E and viewing terms like ∇̃λ − ∇ as an element of

Ω1(N ; End(E)),

dΦ∗∇̃λ(
(Φ∗Λ)(A)

)
= dΦ∗

(
∇+∇̃λ−∇

)(
(Φ∗Λ)(A)

)

Eq. (A.3)
= dΦ∗∇(Aa ⊗ Φ∗(Λ(ea)

))
+ Φ!

(
∇̃λ − ∇


∧
(
Aa ⊗ Φ∗(Λ(ea)

))

= dAa ⊗ Φ∗(Λ(ea)
)

−Aa ∧ Φ!
(
∇
(
Λ(ea)

)

︸ ︷︷ ︸
=(∇Λ)(ea)+Λ(∇ea)

−Aa ∧ Φ!
(
∇̃λ(Λ(ea)) − (∇Λ)(ea) − Λ(∇ea))



would not be invertible by SylvesterŠs determinant theorem. Therefore the Leibniz rule is not as usual. That

is, ∇bas
λ : TN → D(E) is in general not anchor-preserving.
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= dAa ⊗ Φ∗(Λ(ea)
)

−Aa ∧ Φ!(Λ(∇ea))︸ ︷︷ ︸
=(Φ∗Λ)(Φ!(∇ea))

+Φ!
(
∇̃λ(Λ(ea)) − Λ(∇ea))


∧Aa

= (Φ∗Λ)
(
dΦ∗∇A


+
(
Φ!
(
∇̃λ ◦ Λ − Λ ◦ ∇


(A)

Eq. (4.2)
= (Φ∗Λ)

(
dΦ∗∇A


+
(
Φ∗
(
∇̃λ ◦ Λ − Λ ◦ ∇


(DΦ ∧, A),

and

dΦ∗∇̃λ
(
Φ!λ


Eq. (A.2)

= Φ!


d∇̃λ

λ


Eq. (4.2)

=
1

2


Φ∗


d∇̃λ

λ


(DΦ ∧, DΦ),

also

1

2


Φ∗t

∇̃λ
ρ

(
Ãλ ∧, Ãλ


Prop. 4.0.3

=
1

2

(
Φ∗t

∇̃λ
ρ

(
(Φ∗Λ)(A) ∧, (Φ∗Λ)(A)

)
+


Φ∗t

∇̃λ
ρ

(
Φ!λ ∧, Φ!λ

)

+


Φ∗t

∇̃λ
ρ

(
Φ!λ ∧, (Φ∗Λ)(A)



Eq. (4.2)
=

1

2

(
Φ∗

t
∇̃λ

ρ
◦ (Λ,Λ)

)
(A ∧, A) +

(
Φ∗

t
∇̃λ

ρ
◦ (λ,Λ)

)
(DΦ ∧, A)

+
1

2

(
Φ∗

t
∇̃λ

ρ
◦ (λ, λ)

)
(DΦ ∧, DΦ).

So, in total we get, adding the missing term of the torsion in the deĄnition of the Ąeld strength,

F̃ λ(Φ, A) = (Φ∗Λ)
(
dΦ∗∇A


−

1

2
(Φ∗Λ)

((
Φ∗t∇ρ

)
(A ∧, A)

)

+
1

2
(Φ∗Λ)

((
Φ∗t∇ρ

)
(A ∧, A)

)
+
(
Φ∗
(
∇̃λ ◦ Λ − Λ ◦ ∇


(DΦ ∧, A)

+
1

2


Φ∗


d∇̃λ

λ


(DΦ ∧, DΦ) −

1

2

(
Φ∗

t
∇̃λ

ρ
◦ (Λ,Λ)

)
(A ∧, A)

−

(
Φ∗

t
∇̃λ

ρ
◦ (λ,Λ)

)
(DΦ ∧, A) −

1

2

(
Φ∗

t
∇̃λ

ρ
◦ (λ, λ)

)
(DΦ ∧, DΦ)

= (Φ∗Λ)(F )

+

(
Φ∗


∇̃λ ◦ Λ − Λ ◦ ∇ − t
∇̃λ

ρ
◦ (λ,Λ)

)
(DΦ ∧, A)

+
1

2

(
Φ∗


Λ ◦ t∇ρ − t
∇̃λ

ρ
◦ (Λ,Λ)

)
(A ∧, A)
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+
1

2

(
Φ∗


d∇̃λ

λ− t
∇̃λ

ρ
◦ (λ, λ)

)
(DΦ ∧, DΦ).

Now we need to insert the deĄnition of ∇̃λ,


d∇̃λ

λ


(X,Y ) =

(
d

∇+

(
Λ◦d∇

bas
◦Λ−1


λ
λ

)
(X,Y )

Eq. (A.3)
=

(
d∇λ


(X,Y ) + Λ


∇bas
λ(Y )

((
Λ−1 ◦ λ


(X)


−
(
Λ−1 ◦ λ

(
∇bas
λ(Y )X



− Λ


∇bas
λ(X)

((
Λ−1 ◦ λ


(Y )


−
(
Λ−1 ◦ λ

(
∇bas
λ(X)Y



=
(
d∇λ


(X,Y ) + λ

(
∇bas
λ(X)Y − ∇bas

λ(Y )X


+ Λ


∇bas
λ(Y )

((
Λ−1 ◦ λ


(X)


− ∇bas

λ(X)

((
Λ−1 ◦ λ


(Y )



= Λ
(
∇X

(
λ(Y )

))
− Λ

(
∇Y

(
λ(X)

))
+ λ

([
Λ̂(Y ), X

]
+ [(ρ ◦ λ)(X), Y ]



+ Λ


∇bas
λ(Y )

((
Λ−1 ◦ λ


(X)


− ∇bas

λ(X)

((
Λ−1 ◦ λ


(Y )



for all X,Y ∈ X(N), and, by using the results about the Ąeld redeĄnition of the basic connection,

−t
∇̃λ

ρ
(λ(X), λ(Y )) = t(

∇̃λ
)bas(λ(X), λ(Y ))

= Λ


∇bas
λ(X)

((
Λ−1 ◦ λ


(Y )


− Λ


∇bas
λ(Y )

((
Λ−1 ◦ λ


(X)


− [λ(X), λ(Y )]E .

Then

(
−ζ̂λ ◦

(
Λ̂, Λ̂


(X,Y ) :=


d∇̃λ

λ− t
∇̃λ

ρ
◦ (λ, λ)


(X,Y )

=
(
d∇λ


(X,Y ) + λ

(
∇bas
λ(X)Y − ∇bas

λ(Y )X


− [λ(X), λ(Y )]E

and, using ρ ◦ ∇bas = ∇bas ◦ ρ and t∇ρ = t∇bas ,


Λ ◦ t∇ρ − t

∇̃λ
ρ

◦ (Λ,Λ)


(µ, ν) = t(

∇̃λ
)bas(Λ(µ),Λ(ν)) − (Λ ◦ t∇bas)(µ, ν)

= Λ
(
∇bas

Λ(µ)ν − ∇bas
Λ(ν)µ− ∇bas

µ ν + ∇bas
ν µ



− [Λ(µ),Λ(ν)]E + Λ([µ, ν]E)

= Λ
(
∇bas

(λ◦ρ)(ν)µ− ∇bas
(λ◦ρ)(µ)ν


− [(λ ◦ ρ)(µ), (λ ◦ ρ)(ν)]E
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− [µ, ν]E + [(λ ◦ ρ)(µ), ν]E + [µ, (λ ◦ ρ)(ν)]E

+ [µ, ν]E − (λ ◦ ρ)([µ, ν]E)

= λ
(
∇bas

(λ◦ρ)(µ)

(
ρ(ν)

)
− ∇bas

(λ◦ρ)(ν)

(
ρ(µ)

)
− [(λ ◦ ρ)(µ), (λ ◦ ρ)(ν)]E

+ [(λ ◦ ρ)(ν), µ]E + ∇ρ(µ)((λ ◦ ρ)(ν))

− [(λ ◦ ρ)(µ), ν]E − ∇ρ(ν)((λ ◦ ρ)(µ))

+ [(λ ◦ ρ)(µ), ν]E + [µ, (λ ◦ ρ)(ν)]E − λ([ρ(µ), ρ(ν)])

=
(
d∇λ


(ρ(µ), ρ(ν)) + λ

(
∇bas

(λ◦ρ)(µ)

(
ρ(ν)

)
− ∇bas

(λ◦ρ)(ν)

(
ρ(µ)

)

− [(λ ◦ ρ)(µ), (λ ◦ ρ)(ν)]E

=
(
−ζ̂λ ◦

(
Λ̂, Λ̂


(ρ(µ), ρ(ν))

=
(
−ζ̂λ ◦

(
Λ̂ ◦ ρ, Λ̂ ◦ ρ


(µ, ν)

for all µ, ν ∈ Γ(E). In a similar very straightforward fashion,


∇̃λ ◦ Λ − Λ ◦ ∇ − t

∇̃λ
ρ

◦ (λ,Λ)


(Y, µ)

=


∇ ◦ Λ − Λ ◦ ∇ + t(

∇̃λ
)bas(λ,Λ) +

((
Λ ◦ d∇bas

◦ Λ−1

λ


◦ (1TN ,Λ)


(Y, µ)

= ∇Y

(
Λ(µ)

)
− Λ(∇Y µ) + Λ

(
∇bas
λ(Y )µ


−
(
Λ ◦ ∇bas

Λ(µ) ◦ Λ−1
(
λ(Y )

)
− [λ(Y ),Λ(µ)]E

+
(
Λ ◦ ∇bas

Λ(µ) ◦ Λ−1
(
λ(Y )

)
− λ

(
∇bas

Λ(µ)Y


= . . .

= ∇Y

((
λ ◦ (−ρ)

)
(µ)


− ∇−ρ(µ)

(
λ(Y )

)
− λ

(
[Y,−ρ(µ)]

)

−
[
λ(Y ),

(
λ ◦ (−ρ)

)
(µ)
]
E

+ λ
(
∇bas
λ(Y )

(
−ρ(µ)

)
− ∇bas

(λ◦(−ρ))(µ)Y


=
(
d∇λ

(
Y,−ρ(µ)

)
+ λ

(
∇bas
λ(Y )

(
−ρ(µ)

)
− ∇bas

(λ◦(−ρ))(µ)Y


−
[
λ(Y ),

(
λ ◦ (−ρ)

)
(µ)
]
E

=
(
−ζ̂λ ◦

(
Λ̂, Λ̂

(
Y,−ρ(µ)

)

=
(
−ζ̂λ ◦

(
Λ̂, Λ̂ ◦ (−ρ)

(
Y, µ

)

for all µ ∈ Γ(E) and Y ∈ X(N). Finally, we can therefore conclude, by using that −ζ̂λ ◦
(
Λ̂, Λ̂



185



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

is clearly an antisymmetric tensor by deĄnition,

F̃ λ(Φ, A) = (Φ∗Λ)(F ) +

(
Φ∗


−ζ̂λ ◦
(
Λ̂, Λ̂ ◦ (−ρ)

)
(DΦ ∧, A)

︸ ︷︷ ︸
Prop. 4.0.3

= 1
2

((
Φ∗
(

−ζ̂λ◦
(

Λ̂,Λ̂
)))

(DΦ∧,−(Φ∗ρ)(A))+
(

Φ∗
(

−ζ̂λ◦
(

Λ̂,Λ̂
)))

(−(Φ∗ρ)(A)∧,DΦ)
)

+
1

2

(
Φ∗


−ζ̂λ ◦
(
Λ̂ ◦ ρ, Λ̂ ◦ ρ

)
(A ∧, A)

︸ ︷︷ ︸
=
(

Φ∗
(

−ζ̂λ◦
(

Λ̂,Λ̂
)))

(−(Φ∗ρ)(A)∧,−(Φ∗ρ)(A))

+
1

2

(
Φ∗


−ζ̂λ ◦
(
Λ̂, Λ̂

)
(DΦ ∧, DΦ)

= (Φ∗Λ)(F ) +
1

2

(
Φ∗


−ζ̂λ ◦
(
Λ̂, Λ̂

)(
DAΦ ∧, DAΦ



= (Φ∗Λ)

(
F −

1

2

(
Φ∗


Λ−1 ◦ ζ̂λ ◦
(
Λ̂, Λ̂

)(
DAΦ ∧, DAΦ

)

= (Φ∗Λ)


F −

1

2
(Φ∗ξ)

(
DAΦ ∧, DAΦ


.

■

Let us now look at the compatibility conditions of Thm. 4.4.3 and how they change under

the Ąeld redeĄnition. For this we need the following auxiliary results.

Proposition 4.6.3: Change of (basic) curvature under a change of the connec-

tion

Let E → N be a Lie algebroid, equipped with a vector bundle connection ∇. For any other

connection ∇′ write ∇′ = ∇ + I where I ∈ Ω1(N ; End(E)). Then we have

Rbas
∇′ = Rbas

∇ − d∇bas
I − I ∧ (ρ ◦ I). (4.123)

For the curvatures of the connections we get

R∇′ = R∇ + d∇I + I ∧ I. (4.124)

Remarks 4.6.4.

I ∧ (ρ ◦ I) is similarly deĄned to Def. (A.1) although ρ ◦ I has values in TN , the Ąrst factor I

simply acts on the TN part then, i.e. I ∧ (ρ ◦ I) is an element of Ω1,2(N,E;E) deĄned by
(
I ∧ (ρ ◦ I)

)
(Y, µ, ν) = I

(
(ρ ◦ I)

(
Y, ν

)
, µ
)

− I
(
(ρ ◦ I)

(
Y, µ

)
, ν
)

for all µ, ν ∈ Γ(E) and Y ∈ X(N).

I ∧ I ∈ Ω2(N ; End(E)) makes direct use of Def. (A.1), but the second factor is directly

contracted with a section of E, that is

(I ∧ I)(X,Y, ν) = I
(
X, I(Y, ν)

)
− I

(
Y, I(X, ν)

)

186



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

for all ν ∈ Γ(E) and X,Y ∈ X(N). Using the deĄnition of derivations 𝒟(V ) of vector bundles

V one could also write

(I ∧ I)(X,Y, ·) = [I(X, ·), I(Y, ·)]
𝒟(E)

for all X,Y ∈ X(N).

Proof of Prop. 4.6.3.

We have

(
∇′)bas

ν
Y = [ρ(ν), Y ] + ρ

(
∇′
Y ν
)

= ∇bas
ν Y + ρ

(
I(Y, ν)

)
,

for all µ, ν ∈ Γ(E) and Y ∈ X(N). Using these identities we get

Rbas
∇′ (µ, ν)Y = ∇′

Y ([µ, ν]E) −
[
∇′
Y µ, ν

]
E

−
[
µ,∇′

Y ν
]
E

− ∇′
(∇′)bas

ν Y
µ+ ∇′

(∇′)bas
µ Y

ν

= ∇Y ([µ, ν]E) − [∇Y µ, ν]E − [µ,∇Y ν]E − ∇∇bas
ν Y µ+ ∇∇bas

µ Y ν︸ ︷︷ ︸
=Rbas

∇
(µ,ν)Y

− [I(Y, µ), ν]E − [µ, I(Y, ν)]E + I(Y, [µ, ν]E)

− ∇(ρ◦I)(Y,ν)µ+ ∇(ρ◦I)(Y,µ)ν

− I
(
∇bas
ν Y, µ


+ I

(
∇bas
µ Y, ν


− I

(
(ρ ◦ I)

(
Y, ν

)
, µ


+ I
(
(ρ ◦ I)

(
Y, µ

)
, ν


= Rbas
∇ (µ, ν)Y

+ ∇bas
ν (I(Y, µ)) − I

(
∇bas
ν Y, µ



− ∇bas
µ (I(Y, ν)) + I

(
∇bas
µ Y, ν



+ I(Y, [µ, ν]E) − I
(
(ρ ◦ I)

(
Y, ν

)
, µ


+ I
(
(ρ ◦ I)

(
Y, µ

)
, ν


=
(
Rbas

∇ − d∇bas
I − I ∧ (ρ ◦ I)


(Y, µ, ν)

for all µ, ν ∈ Γ(E) and Y ∈ X(N). For the curvatures we get

R∇′(·, ·)ν = d∇′(
∇′ν

)

Eq. (A.3)
= d∇(∇′ν

)
+ I ∧ ∇′ν

= R∇(·, ·)ν + d∇(I(·, ν)
)

︸ ︷︷ ︸
Eq. (A.4)

= (d∇I)(ν)−I∧∇ν

+ I ∧ ∇ν + I ∧ I(·, ν)
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=
(
R∇ + d∇I + I ∧ I


(ν)

for all ν ∈ Γ(E), where we used that T ∧ ν = T (ν) ∈ Ω•(N ;E) for all T ∈ Ω•(N ; End(E)). ■

Let us Ąrst look at the compatibility conditions besides the curvature of ∇; we want that

these are preserved with the Ąeld redeĄnition.

Theorem 4.6.5: Field redeĄnition of the compatibility conditions except cur-

vature

Let N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, and κ and

g Ąbre metrics on E and TN , respectively. Assume that the compatibility conditions of

Thm. 4.4.3 are satisĄed, but ∇ is allowed to be non-Ćat. Also let λ ∈ Ω1(N ;E) such that

Λ = 1E − λ ◦ ρ is an element of 𝒜𝓊𝓉(E). Then we have

(
∇̃λ
bas

κ̃λ = 0, (4.125)

(
∇̃λ
bas

g̃λ = 0, (4.126)

Rbas
∇̃λ

= 0. (4.127)

Proof.

For the compatibilities with the metrics use Eq. (4.97), (4.98) and (4.105), so,

(
∇̃λ
bas

g̃λ
(

Λ̂(X), Λ̂(Y )


= d
(
g̃λ
(
Λ̂(X), Λ̂(Y )


− g̃λ

(
∇̃λ
bas(

Λ̂(X)

, Λ̂(Y )


− g̃λ


Λ̂(X),

(
∇̃λ
bas(

Λ̂(Y )


= d(g(X,Y )) − g
(
∇basX,Y


− g

(
X,∇basY



=
(
∇basg


(X,Y )

= 0,

for all X,Y ∈ X(N), similarly for κ. For I :=
(
Λ ◦ d∇bas

◦ Λ−1

λ ∈ Ω1(N ; End(E)) ∼=

Ω1,1(N,E;E) we also have

I(Y, ν)
Eq. (4.96)

= ∇̃λ
νY − ∇νY

for all ν ∈ Γ(E) and Y ∈ X(N), and

∇bas
ν µ︸ ︷︷ ︸

=[ν,µ]E+∇ρ(µ)ν

+I
(
ρ(µ), ν

)
= [ν, µ]E + ∇̃λ

ρ(µ)ν =
(
∇̃λ
bas

ν
µ

Eq. (4.105)
=

(
Λ ◦ ∇bas

ν ◦ Λ−1

µ
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for all µ, ν ∈ Γ(E). Using these identities and Rbas
∇ = 0, we can show

(
d∇bas

I + I ∧ (ρ ◦ I)

(Y, µ, ν) = ∇bas

µ

(
I(Y, ν)

)
− I

(
∇bas
µ Y, ν



− ∇bas
ν

(
I(Y, µ)

)
+ I

(
∇bas
ν Y, µ



− I(Y, [µ, ν]E) + I((ρ ◦ I)(Y, ν), µ) − I((ρ ◦ I)(Y, µ), ν)

=
(
Λ ◦ ∇bas

µ ◦ Λ−1
(
I(Y, ν)

)
− I

(
∇bas
µ Y, ν



−
(
Λ ◦ ∇bas

ν ◦ Λ−1
(
I(Y, µ)

)
+ I

(
∇bas
ν Y, µ



− I(Y, [µ, ν]E)

=
((

Λ ◦ d∇bas
◦ Λ−1


I

(Y, ν, µ)

=

(
Λ ◦ d∇bas

◦ Λ−1
2
λ


(Y, ν, µ)

=

(
Λ ◦

(
d∇bas

2

︸ ︷︷ ︸
Prop. 3.7.6

= 0

◦ Λ−1

λ

)
(Y, ν, µ)

= 0.

for all µ, ν ∈ Γ(E) and Y ∈ X(N). Using this and Rbas
∇ = 0, we get

Rbas
∇̃λ

Prop. 4.6.3
= Rbas

∇ − d∇bas
I − I ∧ (ρ ◦ I) = 0.

■

Let us now look at what happens with the curvature of ∇.

Theorem 4.6.6: Flatness breaking

Let N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E with

vanishing basic curvature. Also let λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ is an element

of 𝒜𝓊𝓉(E). Then

R
∇̃λ = Λ ◦R∇ ◦

(
Λ̂−1, Λ̂−1


− d

(
∇̃λ
)bas

ζ̂λ, (4.128)

where ζ̂λ is deĄned as in Thm. 4.6.1 and viewing the curvatures as elements of

Ω2(N ; End(E)).

Sketch of the proof.

• The proof of this theorem is extremely tedious and long, but very straightforward. Essen-

tially, just insert all the formulas of the Ąeld redeĄnition on both sides, then compare both sides,
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making use of the vanishing of the basic curvature. However, you may want to use certain tricks

to make the calculation less tedious (but it is still extremely tedious with tricks). Hence, we

show the Ąrst steps until one ŤjustŤ needs to insert all deĄnitions.

First let us observe that we can rewrite d
(

∇̃λ
)bas

ζ̂λ using Cor. 4.5.4, also recall Remark 4.6.2,

−


d
(

∇̃λ
)bas

ζ̂λ
(

Λ̂(X), Λ̂(Y ), ν


= −

((
Λ ◦ d∇bas

◦ Λ−1
(
ζ̂λ ◦

(
Λ̂, Λ̂

)
(X,Y, ν)

=

((
Λ ◦ d∇bas

◦ Λ−1
(

d∇λ+ λ
(
t∇bas

λ


−Rλ

)
(X,Y, ν)

for all X,Y ∈ X(N) and ν ∈ Γ(E), where −ζ̂λ ◦
(
Λ̂, Λ̂


is given by Eq. (4.120), also recall

Eq. (4.122). We also have

((
Λ ◦ d∇bas

◦ Λ−1
(
λ
(
t∇bas

λ


−Rλ


(X,Y, ν)

=
(
Λ ◦ ∇bas

ν ◦ Λ−1
(
λ
(
∇bas
λ(X)Y − ∇bas

λ(Y )X


− [λ(X), λ(Y )]E



− λ
(
∇bas
λ(∇bas

ν X)Y − ∇bas
λ(Y )∇

bas
ν X


+
[
λ
(
∇bas
ν X


, λ(Y )

]
E

− λ
(
∇bas
λ(X)∇

bas
ν Y − ∇bas

λ(∇bas
ν Y )X


+
[
λ(X), λ

(
∇bas
ν Y

]
E
.

Now let us start to calculate the left hand side given by R
∇̃λ , using the second equation in

Prop. 4.6.3, especially we need to calculate

d∇
((

Λ ◦ d∇bas
◦ Λ−1


λ

,

and for this we want to use Cor. 3.8.11. Using the commutator of operators, we see

[
d∇,Λ ◦ d∇bas

◦ Λ−1
]

=
[
d∇,Λ

]
◦ d∇bas

◦ Λ−1 + Λ ◦
[
d∇,d∇bas

]
◦ Λ−1 + Λ ◦ d∇bas

◦
[
d∇,Λ−1

]
,

with that we can write

d∇
((

Λ ◦ d∇bas
◦ Λ−1


λ


=
[
d∇,Λ ◦ d∇bas

◦ Λ−1
]
(λ) +

(
Λ ◦ d∇bas

◦ Λ−1
(

d∇λ

.

One needs to calculate the Ąrst summand, the summand in the middle in the formula of[
d∇,Λ ◦ d∇bas

◦ Λ−1
]

is given by Cor. 3.8.11 due to the vanishing basic curvature of ∇, so,

[
d∇,d∇bas

](
Λ−1 ◦ λ


(X,Y, ν) = R∇

(
X,
(
ρ ◦ Λ−1 ◦ λ


(Y )


ν −R∇

(
Y,
(
ρ ◦ Λ−1 ◦ λ


(X)


ν

−
(
Λ−1 ◦ λ ◦ ρ

(
R∇(X,Y )ν

)

for all X,Y ∈ X(N) and ν ∈ Γ(E), and

[
d∇,Λ

]
=
[
d∇,1E − λ ◦ ρ

]
= −

[
d∇, λ ◦ ρ

]
,
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and for the last summand in the second equation of Prop. 4.6.3 we have, also recall Remark

4.6.4 and Eq. (4.110),
[
I
(
Λ̂(X), ·


, I
(
Λ̂(Y ), ·

]
𝒟(E)

(ν) = ∇bas
∇bas

ν (λ(Y ))−λ(∇bas
ν Y )

(
λ(X)

)
− λ

(
∇bas

∇bas
ν (λ(Y ))−λ(∇bas

ν Y )X


− (Y ↔ X of all previous lines).

Now the purely tedious but straightforward part comes. Insert X,Y, ν everywhere10 and the

deĄnition of the basic connection on both sides of the desired equation; although you may

already recognize some similar terms of the calculation of the right hand side at the beginning,

for those terms one does not need to insert the deĄnition of the basic connection. Also make

heavily use of Prop. 4.5.6, and also directly use the vanishing of the basic curvature on the

right hand side (which implies Ćatness of the basic connection). We already got three curvature

terms, and there is one additional by Prop. 4.6.3; there is actually one missing, but that term

will be produced by the other remaining terms, for example by some of the form Ť∇bas
∇basŤ.

• As a proof of concept, you can also look at [19, proof of Theorem 3.6, the Ąrst equation

for the transformed curvature there] where I have calculated this for Lie algebra bundles; the

structure of the calculation there is, abstractly-spoken, the same, but extremely shorter and

less tedious due to a vanishing anchor. However, we will actually not need this theorem for the

gauge invariance of the transformed Lagrangian as we are going to see, and we will argue later

why the gauge invariance of the Lagrangian in general proves this theorem, too, avoiding the

tedious calculation. ■

Therefore we see that the curvature is not necessarily Ćat after a Ąeld redeĄnition. We

have seen that the other remaining compatibility conditions are still satisĄed, but what about

inĄnitesimal gauge invariance when Ćatness is gone? Eq. (4.116) shows us that we get an offset

in the Ąeld strength, which one may want to correct for preserving gauge invariance and the

Lagrangian itself, and Thm. 4.6.6 motivates that the derivative of this offset using a basic

connection has something to do with the curvature of ∇ such that there is hope that the offset

compensates the curvature, leading to a gauge invariant theory with a non-Ćat connection! Let

us prove this.

Theorem 4.6.7: InĄnitesimal gauge transformation after Ąeld redeĄnition

Let M,N be smooth manifolds, E → N a Lie algebroid, and ∇ a connection on E. Also

let λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ is an element of 𝒜𝓊𝓉(E). Then

δ̃λε = ∗Λ ◦ δε ◦ ∗
(
Λ−1


(4.129)

on E and

δ̃λε = ∗Λ̂ ◦ δε ◦ ∗
(
Λ̂−1


(4.130)

10In general use Λ̂(X) instead of X, similar for Y , as we did at the beginning and at the end, then it will be

easier to compare the terms since a lot of Λ will get canceled.
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on TN for all ε ∈ ℱ
0
E(M ; ∗E), where δ̃λε is similarly deĄned to δε but using ∇̃λ instead

of ∇ and ϖ̃2
λ instead of ϖ2 in Def. 4.3.23.a Moreover, on scalar-valued functionals we

have

δ̃λε = ℒΨε = δε, (4.131)

where Ψε ∈ XE(ME(M ;N)) is the vector Ąeld behind the deĄnition of δε, recall

Def. 4.3.23.

aϖ2 was needed for Ąxing the vector Ąelds like Ψε ∈ XE
(
ME(M ; N)

)
by Prop. 4.3.16.

Remarks 4.6.8.

Observe how Ψε is unaffected by the Ąeld redeĄnition although ϖ2 and ∇ transform by the Ąeld

redeĄnition, both of which were essential in the construction of inĄnitesimal gauge transforma-

tions.

Proof of Thm. 4.6.7.

We will prove this by using the uniqueness behind the construction of operators like δε, especially

recall Prop. 4.3.7 and 4.3.16. We write

δ′
ε := ∗Λ ◦ δε ◦ ∗

(
Λ−1



and Ąrst observe that

δ′
ε(

∗ν) = ∗Λ


δε
(

∗
(
Λ−1(ν)


= −∗Λ

(
∗
(
∇bas
ε

(
Λ−1(ν)


Eq. (4.105)

= −∗
(

∇̃λ
bas

ε
ν



for all ν ∈ Γ(E). Hence, it shares this property with δ̃λε , δ′
ε is also clearly R-linear and satisĄes

Eq. (4.41). In order to use the uniqueness of Prop. 4.3.7 we need to check the Leibniz rule (4.42).

δ′
ε certainly satisĄes the Leibniz rule by

δ′
ε(f L) = ∗Λ

(
δε
(
f
(

∗Λ−1

(L)



= ∗Λ


f δε

(
∗
(
Λ−1


(L)


+ ℒΨε(f)

(
∗Λ−1


(L)



= f δ′
εL+ ℒΨε(f) L

for all L ∈ ℱ
•
E(M ; ∗E) and f ∈ C∞

(
M ×ME(M ;N)

)
. Therefore δ′

ε is of the type of operator as

in Prop. 4.3.7, it even uses precisely the same vector Ąeld Ψε. So, we only need to check whether

Ψε is the same vector Ąeld as the one behind the deĄnition of δ̃λε .

For this let us use the uniqueness given in the Prop. 4.3.16, there it was about the uniqueness

of vector Ąelds like Ψε ∈ XE(ME(M ;N)) behind the Leibniz rule. The component along the

direction of the Higgs Ąeld is of course always (∗ρ)(ε) by deĄnition. Hence, we only need to

check the second component Ąxed by Eq. (4.60). So, using Prop. 4.3.16 for δε,

δ′
εϖ̃2

λ Def. (4.95)
= δ′

ε

(
(∗Λ)(ϖ2) + !λ
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Eq. (4.2)
=

(
∗Λ ◦ δε ◦ ∗

(
Λ−1

(
(∗Λ)(ϖ2) + (∗λ)(D)

)

= ∗Λ


δεϖ2 + δε

(
∗
(
Λ−1 ◦ λ


(D)



Eq. (4.55)
= ∗Λ

(
−(∗∇)ε−


∗


∇bas
ε

(
Λ−1 ◦ λ


(D) −

(
∗
(
Λ−1 ◦ λ

(
(∗ρ)

(
(∗∇)ε

))
)

= −(∗Λ)
(
(∗∇)ε

)
−
(∗(λ ◦ ρ)

)(
(∗∇)ε

)
︸ ︷︷ ︸

=−(∗∇)ε

−


∗


Λ
(
∇bas
ε

(
Λ−1 ◦ λ


(D)

︸ ︷︷ ︸
Eq. (4.2)

= !(Λ(∇bas
ε (Λ−1◦λ)))

Eq. (4.101)
= −

(
∗
(
∇̃λ

ε

using that ∗(∇′) = ∗∇ + !I for all other connections ∇′ = ∇ + I, where I ∈ Ω1(N ; End(E)); this

just follows by the deĄnition of pullbacks of vector bundle connections. Hence, the vector Ąeld

behind δ̃λε is precisely the one of δ′
ε, that is, Ψε, using the uniqueness of Prop. 4.3.16.

Finally, we have shown everything what we need to use the uniqueness of Prop. 4.3.7, hence,

δ̃λε = δ′
ε.

Similarly one shows this for the one on TN , and that δ̃λε = ℒΨε on scalar-valued functionals

we have already shown by observing that Ψε is behind the deĄnition of δ̃λε ; also recall Remark

4.3.9. ■

That leads to the following important statement.

Theorem 4.6.9: Still a gauge theory after Ąeld redeĄnition

Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie

algebroid, ∇ a connection on E, κ and g Ąbre metrics on E and TN , respectively. Also

let V ∈ C∞(N), assume that the compatibility conditions of Thm. 4.4.3 hold, and let

λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ is an element of 𝒜𝓊𝓉(E). Then we have

R
∇̃λ = −d

(
∇̃λ
)bas

ζ̂λ, (4.132)

Rbas
∇̃λ

= 0, (4.133)

(
∇̃λ
bas

κ̃λ = 0, (4.134)

(
∇̃λ
bas

g̃λ = 0, (4.135)

∗
(
ℒ(∗ρ)(ε)V


= 0 (4.136)

193



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

for all ε ∈ ℱ
0
E(M ; ∗E). Then we have

L̃λYMH = LYMH, (4.137)

and

δ̃λε L̃
λ
YMH = 0 (4.138)

for all ε ∈ ℱ
0
E(M ; ∗E), where

L̃λYMH := −
1

2


∗
(
κ̃λ
(

G̃λ ∧, ∗
(
G̃λ


+


∗
(
g̃λ
(

D̃λ ∧, ∗
(
D̃λ


− ∗(∗V ), (4.139)

with

G̃λ := F̃ λ +
1

2


∗
(
ζ̂λ
(

D̃λ ∧, D̃λ


(4.140)

and F̃ λ, ζ̂λ and D̃λ are deĄned in Thm. 4.6.1.

Remarks 4.6.10.

Recall our discussion about Cor. 4.3.39, where we mentioned that the vanishing basic curvature

is essential.

Proof of Thm. 4.6.9.

The Ąrst four equations we have proven by Thm. 4.6.5 and 4.6.6, for the Ąrst equation recall

that the Ąrst compatibility condition in Thm. 4.4.3 imposes that ∇ is Ćat, and the Ąfth equation

is just the same compatibility condition as of Thm. 4.4.3.

Using Thm. 4.6.1,

G̃λ = F̃ λ +
1

2

(
∗ζ̂λ
(

D̃λ ∧, D̃λ


= (∗Λ)


F −

1

2
(∗ξ)(D ∧, D)


+

1

2

(
∗ζ̂λ
(

D̃λ ∧, D̃λ


= (∗Λ)(F ),

(4.141)

where ξ = Λ−1 ◦ ζ̂λ ◦
(
Λ̂, Λ̂


. Thence, we immediately have by Def. 4.5.1 and Thm. 4.6.1

L̃λYMH = LYMH,

and Ąnally, by Thm. 4.6.7,

δ̃λε = δε,

such that by Thm. 4.4.3

δ̃λε L̃
λ
YMH = δεLYMH = 0.

■
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That theorem is a good starting point of formulating a new version of gauge theory allowing

non-Ćat connections, especially because the physics stay the same due to the invariance of the

Lagrangian under the Ąeld redeĄnition. Indeed, using theorems like Thm. 4.6.7 and 4.6.6 we

could have shown the gauge invariance of the adjusted and transformed Lagrangian similarly to

Thm. 4.4.3.

Let us now redeĄne gauge theory, using these results.

4.7. Curved Yang-Mills-Higgs gauge theory

Let us Ąrst redeĄne the Ąeld strength adding the correction term in Eq. (4.140).

DeĄnition 4.7.1: New Ąeld strength, [1, Equation (14)]

Let M,N be smooth manifolds, E → N a Lie algebroid equipped with a connection ∇ on

E, and ζ ∈ Ω2(N ;E), the primitive of ∇. We deĄne the (generalized) Ąeld strength

G as an element of ℱ2
E(M ; ∗E) by

G := F +
1

2
(∗ζ)(D ∧, D). (4.142)

Let us quickly state its inĄnitesimal gauge transformation.

Corollary 4.7.2: InĄnitesimal gauge transformation of the new Ąeld strength

Let M,N be smooth manifolds, E → N a Lie algebroid equipped with a connection ∇ on

E, and ζ ∈ Ω2(N ;E). Then

δεG = −

(
1

2


(∗R∇)(D ∧, D)ε+

(
∗
(
∇bas
ε ζ


(D ∧, D)


+
(

∗Rbas
∇


(ε ∧, ϖ2

∧, D)

)
(4.143)

for all ε ∈ ℱ
0
E(M ; ∗E).

Remarks 4.7.3.

That is a generalized version of [1, Equation (15)].

Proof.

Observe, using Prop. 4.3.18 and 4.3.7,

δε
(
(∗ζ)(D ∧, D)

)
= −

(
∗
(
∇bas
ε ζ


(D ∧, D),

such that the statement follows by Prop. 4.4.1. ■

Now towards the Lagrangian.
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DeĄnition 4.7.4: Curved Yang-Mills-Higgs Lagrangian,

[1, Eq. (2) and (16)]

Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie

algebroid, ∇ a connection on E, ζ ∈ Ω2(N ;E), and let κ and g be Ąbre metrics on E

and TN , respectively. Also let V ∈ C∞(N), which we still call the potential of the

Higgs Ąeld. Then we deĄne the curved Yang-Mills-Higgs Lagrangian LCYMH as

an element of ℱ
dim(M)
E (M) by

LCYMH := −
1

2
(∗κ)(G ∧, ∗G) + (∗g)(D ∧, ∗D) − ∗(∗V ), (4.144)

where ∗ is the Hodge star operator with respect to η.

The gauge invariance is immediate by the previous results.

Theorem 4.7.5: InĄnitesimal gauge invariance of the curved Yang-Mills-Higgs

Lagrangian

Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a

Lie algebroid, ∇ a connection on E, ζ ∈ Ω2(N ;E), κ and g Ąbre metrics on E and

TN , respectively. Also let V ∈ C∞(N) and assume that the following compatibility

conditions hold:

R∇ = −d∇bas
ζ, (4.145)

Rbas
∇ = 0, (4.146)

∇basκ = 0, (4.147)

∇basg = 0, (4.148)

∗
(
ℒ(∗ρ)(ε)V


= 0 (4.149)

for all ε ∈ ℱ
0
E(M ; ∗E). Then we have

δεLCYMH = 0 (4.150)

for all ε ∈ ℱ
0
E(M ; ∗E).

Remark 4.7.6

We call a setup like this a curved Yang-Mills-Higgs gauge theory, short as CYMH,

or also CYMH GT for emphasizing the part with gauge theory.

We speak of that we have found a CYMH GT structure, if we were able to deĄne ∇, κ
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and g for E → N satisfying the Ąrst four compatibility conditions. The spacetime and

the potential are not our focus and thoroughly discussed elsewhere, so, we always assume

that these exist in a suitable way.

Remarks 4.7.7.

This is basically the essential statement of [1, especially the discussion around Equation (16)],

but Eq. (4.145) has there a different form, see [1, Equation (13)]. We have reformulated that

equation, and this equation and the other compatibility conditions naturally arise if using the

basic connection in the deĄnition of the inĄnitesimal gauge transformation.

Eq. (4.145) means

R∇(·, ·)ν = −∇bas
ν ζ

for all ν ∈ Γ(E).

Proof of Thm. 4.7.5.

By Eq. (4.145), the vanishing of the basic curvature and Cor. 4.7.2 we immediately get

δεG = 0

for all ε ∈ ℱ
0
E(M ; ∗E). Therefore the remaining part of the proof is precisely as in Thm. 4.4.3.

■

Finally, we now arrived at a covariantized formulation of gauge theory allowing non-Ćat ∇.

We can still apply Thm. 4.3.41, so, a Ćat connection locally still applies the structure of an

action Lie algebroid such that one may argue that Ćatness already implies a classical theory.

However, ζ is not necessarily zero, it is then just constant with respect to the basic connection

by compatibility condition (4.145); we will actually see some examples for this later. Hence, one

cannot expect that the Ąeld strength looks as in the classical formulation if ∇ is Ćat, and, so, we

can only apply Thm. 4.4.5 if both, R∇ and ζ vanish. This motivates the following deĄnitions.

DeĄnition 4.7.8: Classical gauge theory

Let us assume the same structure as in Thm. 4.7.5. Then we say that we have a pre-

classical gauge theory, if ∇ is Ćat.

If we have additionally ζ = 0, then we say that we have a classical gauge theory.

Remarks 4.7.9.

If we have a classical CYMH GT, then also a pre-classical one by compatibility condition 4.145.

However, we motivated ζ by the Ąeld redeĄnition; there might be of course a Ąeld redeĄnition

making ∇ Ćat and/or ζ zero. This is what we mainly study in the remaining part of this thesis.

We have seen that we needed to add the part with ζ to the classical Ąeld strength F after the

Ąeld redeĄnition in order to get the same Lagrangian. That can be seen as that the Ťactual Ąeld
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redeĄnitionŤ of F was not just given by the Ąeld redeĄnition of ϖ2 and ∇; or, in other words,

that means we need a Ąeld redeĄnition of ζ, too, while ζ was zero in Thm. 4.6.9 and ζ̂λ was the

Ąeld redeĄnition of ζ ≡ 0.

DeĄnition 4.7.10: Field redeĄnition of the primitive

Let E → N a Lie algebroid over a smooth manifoldN , ∇ a connection on E, ζ ∈ Ω2(N ;E),

and λ ∈ Ω1(N ;E) such that Λ = 1−λ◦ρ ∈ 𝒜𝓊𝓉(E). Then we deĄne the Ąeld redeĄnition

ζ̃λ of ζ by

ζ̃λ := Λ ◦ ζ ◦
(
Λ̂−1, Λ̂−1


+ ζ̂λ, (4.151)

where ζ̂λ is given as in Thm. 4.6.1, that is,

ζ̃λ
(
Λ̂(X), Λ̂(Y )


= Λ

(
ζ(X,Y )

)
−


d∇̃λ

λ


(X,Y ) + t

∇̃λ
ρ
(λ(X), λ(Y ))

= Λ
(
ζ(X,Y )

)
−
(
d∇λ


(X,Y ) − λ

(
∇bas
λ(X)Y − ∇bas

λ(Y )X


+ [λ(X), λ(Y )]E

for all X,Y ∈ X(N).

Remark 4.7.11: Field redeĄnition of CYMH GTs

The Ąeld redeĄnition is therefore given by using Def. 4.5.1 and 4.7.10 altogether, so, when

we speak of the Ąeld redeĄnition of anything else besides the quantities in these deĄnitions,

then it is just canonically given; for example the Ąeld redeĄnition of something depending

on ζ is then the same deĄnition but replacing ζ with ζ̃λ; similarly for dependencies on ∇,

ϖ2 and the metrics κ on E and g on TN as we already did before. We call this procedure

the Ąeld redeĄnition of a CYMH GT on a given spacetime M , a smooth manifold

N and Lie algebroid E → N . We are going to show that the Lagrangian stays invariant

under the Ąeld redeĄnition and that this describes an equivalence relation of CYMH GTs

on given M,N and E.

For the invariance of the Lagrangian we do not need to prove everything again, we just need

to check the Ąeld redeĄnition of the Ąeld strength G and whether compatibility condition (4.145)

stays form-invariant.

Lemma 4.7.12: Field redeĄnition of the new Ąeld strength and compatibility

condition

Let M,N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E, ζ ∈

Ω2(N ;E), and λ ∈ Ω1(N ;E) such that Λ = 1 − λ ◦ ρ ∈ 𝒜𝓊𝓉(E). Then we have

G̃λ = (∗Λ)(G), (4.152)
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where

G̃λ := F̃ λ +
1

2


∗
(
ζ̃λ
(

D̃λ ∧, D̃λ

, (4.153)

for which F̃ λ and D̃λ are given by Thm. 4.6.1.

If the basic curvature of ∇ vanishes additionally and satisĄes R∇ = −d∇bas
ζ, then we

have

R
∇̃λ = −d

(
∇̃λ
)bas

ζ̃λ. (4.154)

Proof.

Those results are an immediate consequence of our calculations in the previous section, that is,

G̃λ = F̃ λ +
1

2


∗
(
ζ̂λ
(

D̃λ ∧, D̃λ


︸ ︷︷ ︸
Eq. (4.141)

= (∗Λ)(F )

+
1

2


∗
(
Λ ◦ ζ ◦

(
Λ̂−1, Λ̂−1

(
D̃λ ∧, D̃λ



Thm. 4.6.1
= (∗Λ)(F ) +

1

2

(∗(Λ ◦ ζ)
)
(D ∧, D)

= (∗Λ)


F +

1

2
(∗ζ)(D ∧, D)



= (∗Λ)(G),

and, by Thm. 4.6.6 (for which we need the vanishing of the basic curvature), Prop. 4.5.6 and

compatibility condition (4.145),

R
∇̃λ = Λ ◦R∇ ◦

(
Λ̂−1, Λ̂−1


− d

(
∇̃λ
)bas

ζ̂λ

= −Λ ◦ d∇bas
ζ ◦

(
Λ̂−1, Λ̂−1


− d

(
∇̃λ
)bas

ζ̂λ

Cor. 4.5.4
= −d

(
∇̃λ
)bas(

Λ ◦ ζ ◦
(
Λ̂−1, Λ̂−1


− d

(
∇̃λ
)bas

ζ̂λ

= −d
(

∇̃λ
)bas(

ζ̃λ

.

■

Hence, we immediately get:

Theorem 4.7.13: Gauge theory invariant under the Ąeld redeĄnition

Let M be a spacetime with a spacetime metric η, N a smooth manifold, E → N a Lie

algebroid, ∇ a connection on E, ζ ∈ Ω2(N ;E), κ and g Ąbre metrics on E and TN ,
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respectively. Also let V ∈ C∞(N), assume that the compatibility conditions of Thm. 4.7.5

hold, and let λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ is an element of 𝒜𝓊𝓉(E). Then we

have

R
∇̃λ = −d

(
∇̃λ
)bas

ζ̃λ, (4.155)

Rbas
∇̃λ

= 0, (4.156)

(
∇̃λ
bas

κ̃λ = 0, (4.157)

(
∇̃λ
bas

g̃λ = 0, (4.158)

∗
(
ℒ(∗ρ)(ε)V


= 0 (4.159)

for all ε ∈ ℱ
0
E(M ; ∗E). Then we have

L̃λCYMH = LCYMH, (4.160)

and

δ̃λε L̃
λ
CYMH = 0 (4.161)

for all ε ∈ ℱ
0
E(M ; ∗E), where

L̃λCYMH := −
1

2


∗
(
κ̃λ
(

G̃λ ∧, ∗
(
G̃λ


+


∗
(
g̃λ
(

D̃λ ∧, ∗
(
D̃λ


− ∗(∗V ), (4.162)

and where G̃λ is given as in Lemma 4.7.12, D̃λ is deĄned as in Thm. 4.6.1 and δ̃λε as in

Thm 4.6.7.

Remarks 4.7.14.

It is important to note for future proofs that the Ąeld redeĄnition already preserves the vanishing

of the basic curvature if ∇ has vanishing basic curvature, so, this is independent to whether or not

the other compatibility conditions are satisĄed. Similar for the metric compatibilities. However,

for the invariance of compatibility condition (4.145) one not only needs the condition itself but

also additionally the vanishing of the basic curvature as stated in Lemma 4.7.12. We sometimes

make use of this information when speaking about compatibility conditions in the context of

the Ąeld redeĄnition. However, we will not necessarily mention it again; recall the previous

calculations and proofs.

Proof.

This is precisely the same proof as in Thm. 4.6.9, using Lemma 4.7.12 and ζ̃λ instead of just

ζ̂λ. ■
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Remark 4.7.15: Avoidance of the calculation in the proof of Thm. 4.6.6

As we have seen in the proofs for Thm. 4.7.13 and 4.6.9 we only needed Thm. 4.6.6 for

the proof about the relationship of R∇ with ζ after the Ąeld redeĄnition, everything else

follows independent of Thm. 4.6.6, especially the other compatibility conditions and the

gauge invariance of the Lagrangian. Hence, one may want to argue, given the gauge

invariance of the Lagrangian and the other compatibility conditions after the Ąeld redef-

inition, that the gauge transformation of the transformed Ąeld strength has to vanish,

using similar calculations. By Cor. 4.7.2 one may then be able to argue in general that

the compatibility condition of ζ has to be preserved by the Ąeld redeĄnition. However,

for this one needs to discuss certain edge cases and that the contraction with κ can be

ignored (to avoid an argument about orthogonality). If one is able to argue like this, then

one can avoid the tedious calculation behind the proof of Thm. 4.6.6.

Therefore the Ąeld redeĄnition is now a transformation of the curved Yang-Mills-Higgs (in-

Ąnitesimal) gauge theory which keeps the Lagrangian invariant. Furthermore, the Ąeld redeĄni-

tion is an equivalence of CYMH GTs, which we now prove. We start with something similar to

Lemma 4.5.8 but for the primitive.

Lemma 4.7.16: Invertible behaviour of the Ąeld redeĄnition of the primitive

Let E → N a Lie algebroid over a smooth manifold N , ∇ a connection on E, ζ ∈

Ω2(N ;E), and λ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ ∈ 𝒜𝓊𝓉(E). Then

ζ
−λ

= ζ, (4.163)

where

ζ
−λ

:=
˜̃
ζλ

−Λ−1◦λ

.

Proof.

That is similar to the proof of Lemma 4.5.8, hence, let us summarize what we have derived

there,

� := 1E −
(
−Λ−1 ◦ λ


◦ ρ = Λ−1,

�̂ := 1TN − ρ ◦
(
−Λ−1 ◦ λ


= Λ̂−1,

those are invertible, thus, we can apply the Ąeld redeĄnition using −Λ−1◦λ. Then by Def. 4.7.10,

especially also recall Def. (4.120),

ζ
−λ

= � ◦ ζ̃λ ◦
(
�̂−1, �̂−1


+
̂̃
ζλ

−Λ−1◦λ

,

where, recalling Eq. (4.108),

� ◦ ζ̃λ ◦
(
�̂−1, �̂−1


= ζ + Λ−1 ◦ ζ̂λ ◦

(
Λ̂, Λ̂
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= ζ − Λ−1 ◦


d∇̃λ

λ− t
∇̃λ

ρ
◦ (λ, λ)



(A.3)
= ζ − Λ−1 ◦

(
dΛ◦∇◦Λ−1

λ︸ ︷︷ ︸
=(Λ◦d∇◦Λ−1)λ

+D ∧ λ− t
∇̃λ

ρ
◦ (λ, λ)



= ζ − d∇
(
Λ−1 ◦ λ



+ d∇
(
Λ−1 ◦ λ


◦ (1TN , ρ ◦ λ) + d∇

(
Λ−1 ◦ λ


◦ (ρ ◦ λ,1TN )

− t∇ρ ◦
(
Λ−1 ◦ λ, λ


− t∇ρ ◦

(
λ,Λ−1 ◦ λ


+ Λ−1 ◦ t

∇̃λ
ρ

◦ (λ, λ)

viewing D := −
(
dΛ◦∇◦Λ−1

λ


◦(1TN , ρ)+Λ◦t∇ρ ◦
(
Λ−1 ◦ λ,1E

)
as an element of Ω1(N ; End(E)),

and, using Prop. 4.5.6,
(
−t∇ρ ◦

(
Λ−1 ◦ λ, λ


− t∇ρ ◦

(
λ,Λ−1 ◦ λ


+ Λ−1 ◦ t

∇̃λ
ρ

◦ (λ, λ)
︸ ︷︷ ︸

=−t
(∇̃λ)

bas ◦(λ,λ)


(X,Y )

= −∇(ρ◦λ)(X)

((
Λ−1 ◦ λ


(Y )


+ ∇(ρ◦Λ−1◦λ)(Y )

(
λ(X)

)
+
[
λ(X),

(
Λ−1 ◦ λ


(Y )

]
E

+ ∇(ρ◦λ)(Y )

((
Λ−1 ◦ λ


(X)


− ∇(ρ◦Λ−1◦λ)(X)

(
λ(Y )

)
+
[(

Λ−1 ◦ λ

(X), λ(Y )

]
E

− ∇bas
λ(X)

((
Λ−1 ◦ λ


(Y )


+ ∇bas

λ(Y )

((
Λ−1 ◦ λ


(Y )


+ Λ−1([λ(X), λ(Y )]E)

= −∇(ρ◦λ)(X)

((
Λ−1 ◦ λ


(Y )


+ ∇(ρ◦Λ−1◦λ)(Y )

(
λ(X)

)
+
[
λ(X),

(
Λ−1 ◦ λ


(Y )

]
E

+ ∇(ρ◦λ)(Y )

((
Λ−1 ◦ λ


(X)


− ∇(ρ◦Λ−1◦λ)(X)

(
λ(Y )

)
+
[(

Λ−1 ◦ λ

(X), λ(Y )

]
E

−
[
λ(X),

(
Λ−1 ◦ λ


(Y )

]
E

− ∇(ρ◦Λ−1◦λ)(Y )

(
λ(X)

)

+
[
λ(Y ),

(
Λ−1 ◦ λ


(X)

]
E

+ ∇(ρ◦Λ−1◦λ)(X)

(
λ(Y )

)

+ Λ−1([λ(X), λ(Y )]E)

= −∇(ρ◦λ)(X)

((
Λ−1 ◦ λ


(Y )


+ ∇(ρ◦λ)(Y )

((
Λ−1 ◦ λ


(X)


+ Λ−1([λ(X), λ(Y )]E)

for all X,Y ∈ X(N), and, using additionally Lemma 4.5.8,

̂̃
ζλ

−Λ−1◦λ

:=


d∇̂−λ

(
Λ−1 ◦ λ


+ t

∇̂−λ
ρ

◦ (Λ−1 ◦ λ,Λ−1 ◦ λ)


◦
(
�̂−1, �̂−1



=
(
d∇
(
Λ−1 ◦ λ


+ t∇ρ ◦

(
Λ−1 ◦ λ,Λ−1 ◦ λ


◦
(
Λ̂, Λ̂



= d∇
(
Λ−1 ◦ λ


◦
(
Λ̂, Λ̂


+ t∇ρ ◦ (λ, λ)
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Therefore altogether, using Λ̂ = 1TN − ρ ◦ λ and again Prop. 4.5.6,

ζ
−λ

(X,Y ) = ζ(X,Y ) + d∇
(
Λ−1 ◦ λ

(
(ρ ◦ λ)(X), (ρ ◦ λ)(Y )

)
+ t∇ρ

(
λ(X), λ(Y )

)

− ∇(ρ◦λ)(X)

((
Λ−1 ◦ λ


(Y )


+ ∇(ρ◦λ)(Y )

((
Λ−1 ◦ λ


(X)


+ Λ−1([λ(X), λ(Y )]E)

= ζ(X,Y ) + d∇
(
Λ−1 ◦ λ

(
(ρ ◦ λ)(X), (ρ ◦ λ)(Y )

)

+ ∇(ρ◦λ)(X)

(
λ(Y )

)
− ∇(ρ◦λ)(Y )

(
λ(X)

)
− [λ(X), λ(Y )]E

− ∇(ρ◦λ)(X)

((
Λ−1 ◦ λ


(Y )


+ ∇(ρ◦λ)(Y )

((
Λ−1 ◦ λ


(X)


+ Λ−1([λ(X), λ(Y )]E)

= ζ(X,Y ) + d∇
(
Λ−1 ◦ λ

(
(ρ ◦ λ)(X), (ρ ◦ λ)(Y )

)

− ∇(ρ◦λ)(X)

((
Λ−1 ◦ λ ◦ ρ ◦ λ


(Y )


+ ∇(ρ◦λ)(Y )

((
Λ−1 ◦ λ ◦ ρ ◦ λ


(X)



+
(
Λ−1 ◦ λ ◦ ρ


([λ(X), λ(Y )]E)

︸ ︷︷ ︸
=(Λ−1◦λ)([(ρ◦λ)(X),(ρ◦λ)(Y )]E)

= ζ(X,Y ) + d∇
(
Λ−1 ◦ λ

(
(ρ ◦ λ)(X), (ρ ◦ λ)(Y )

)

− d∇
(
Λ−1 ◦ λ

(
(ρ ◦ λ)(X), (ρ ◦ λ)(Y )

)

= ζ(X,Y ).

■

The Ąeld redeĄnition, Def. 4.5.1 and 4.7.10, is also transitive.

Lemma 4.7.17: Transitivity of the Ąeld redeĄnition

Let M,N be smooth manifolds, E → N a Lie algebroid, ∇ a connection on E,

ζ ∈ Ω2(N ;E), κ and g Ąbre metrics on E and TN , respectively. Moreover, let

λ, λ′ ∈ Ω1(N ;E) such that Λ = 1E − λ ◦ ρ,Λ′ := 1E − λ′ ◦ ρ ∈ 𝒜𝓊𝓉(E).

Then the Ąeld redeĄnition with λ′ composed with the Ąeld redeĄnition of λ is equivalent

to a Ąeld redeĄnition with λ+ λ′ − λ′ ◦ ρ ◦ λ.

Remarks 4.7.18.

With this one can also quickly show Lemma 4.5.8 and 4.7.16 by deĄning λ′ := −Λ−1 ◦ λ such

that

λ+ λ′ − λ′ ◦ ρ ◦ λ = λ−Λ−1 ◦ λ+ Λ−1 ◦ λ ◦ ρ ◦ λ︸ ︷︷ ︸
=−Λ−1◦Λ◦λ

= 0,

which gives trivial transformations.
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Proof of Lemma 4.7.17.

First observe that

Λ′ ◦ Λ =
(
1E − λ′ ◦ ρ

)
◦ (1E − λ ◦ ρ)

= 1E − λ ◦ ρ− λ′ ◦ ρ+ λ′ ◦ ρ ◦ λ ◦ ρ

= 1E −
(
λ+ λ′ − λ′ ◦ ρ ◦ λ

)
◦ ρ

=: �

so, λ+λ′ −λ′ ◦ρ◦λ is a valid element of Ω1(N ;E) with which one can apply the Ąeld redeĄnition

due to the fact that Λ′ ◦ Λ ∈ 𝒜𝓊𝓉(E), thence, also � ∈ 𝒜𝓊𝓉(E); we also deĄne and calculate

similarly

�̂ := Λ̂′ ◦ Λ̂ = 1TN − ρ ◦ (λ+ λ′ − λ′ ◦ ρ ◦ λ)

which is an element of 𝒜𝓊𝓉(TN) (similarly to why Λ̂ is), where we denote Λ̂′ := 1TN − ρ ◦ λ′.

By Remark 4.7.11 we only need to check the basic Ąeld redeĄnition of Def. 4.5.1 and 4.7.10, so,

˜̃
ϖ2

λ
λ′

=
(∗Λ′)((∗Λ)(ϖ2) + !λ︸︷︷︸

(4.2)
= (∗λ)(D)


+ !λ′

=
(∗Λ′ ◦ ∗Λ

)
(ϖ2) +

(∗(Λ′ ◦ λ
))

(D)
︸ ︷︷ ︸

=!(Λ◦λ)

+!λ′

= (∗�)(ϖ2) + !(λ+ λ′ − λ′ ◦ ρ ◦ λ
)
.

For the metrics we immediately have

˜̃κλ
λ′

= κ ◦
(
Λ−1,Λ−1


◦
(
(Λ′)−1, (Λ′)−1


= κ ◦

(
�−1, �−1


,

similarly for g. Recall again Prop. 4.5.6 and Cor. 4.5.4, then

˜̃
∇λ

λ′

= ∇̃λ +


Λ′ ◦ d

(
∇̃λ
)bas

◦ (Λ′)−1

λ′

= ∇ +
(
Λ ◦ d∇bas

◦ Λ−1

λ

︸ ︷︷ ︸
=(Λ′)−1◦

((
�◦d∇

bas
◦�−1


(Λ′◦λ)


+Λ′ ◦ Λ ◦

((
d∇bas

◦ Λ−1 ◦ (Λ′)−1
(
λ′ ◦ Λ̂


◦
(
Λ̂−1,1E



= ∇ +
(
� ◦ d∇bas

◦ �−1
 (
λ+ λ′ ◦ Λ̂



︸ ︷︷ ︸
=λ+λ′−λ′◦ρ◦λ

−
(
� ◦ d∇bas

◦ �−1
(
λ′ ◦ ρ ◦ λ

)
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+
(
Λ′)−1

◦ λ′ ◦ ρ ◦
((

� ◦ d∇bas
◦ �−1

(
Λ′ ◦ λ

)

+
((

� ◦ d∇bas
◦ �−1

(
λ′ ◦ Λ̂


◦
(
Λ̂−1 ◦ ρ ◦ λ,1E



= ∇̃λ+λ′−λ′◦ρ◦λ

−
(
� ◦ d∇bas

(
�−1 ◦ λ′ ◦ ρ ◦ λ



+ λ′ ◦ ρ ◦ Λ ◦ d∇bas
(
Λ−1 ◦ λ



+
((

� ◦ d∇bas
◦ �−1

(
λ′ ◦ Λ̂


◦
(
Λ̂−1 ◦ ρ ◦ λ,1E



= ∇̃λ+λ′−λ′◦ρ◦λ

− � ◦ ∇bas ◦ �−1 ◦ λ′ ◦ ρ ◦ λ+ λ′ ◦ ρ ◦ λ ◦ ∇bas

+ λ′ ◦ ρ ◦ Λ ◦ ∇bas ◦ Λ−1 ◦ λ− λ′ ◦ ρ ◦ Λ ◦ Λ−1 ◦ λ ◦ ∇bas

+ � ◦ ∇bas ◦ �−1 ◦ λ′ ◦ Λ̂ ◦ Λ̂−1 ◦ ρ ◦ λ− � ◦ �−1 ◦ λ′ ◦ Λ̂ ◦ ∇bas ◦ Λ̂−1 ◦ ρ︸ ︷︷ ︸
Cor. 3.7.3

= ρ◦Λ◦∇bas◦Λ−1

◦λ

= ∇̃λ+λ′−λ′◦ρ◦λ,

rewriting deĄnitions like d∇bas
λ = ∇bas ◦ λ − λ ◦ ∇bas, where the basic connection in the Ąrst

summand is the one on E and the one on TN in the second summand, i.e.

(
d∇bas

λ

(Y, ν) = ∇bas

ν

(
λ(Y )

)
− λ

(
∇bas
ν Y



for all ν ∈ Γ(E) and Y ∈ X(N). Finally let us look at the Ąeld redeĄnitions of ζ, the calculation

is very similar to the proof of Lemma 4.7.16; the calculation is purely straightforward, just

compare the deĄnitions of
˜̃
ζλ
λ′

with ζ̃λ+λ′−λ′◦ρ◦λ. However, it is very tedious and long, hence,

we will omit the calculation; we are going to motivate it differently, using the Ąeld redeĄnition

of the Ąeld strength provided in Lemma 4.7.12. That is,

G̃λ+λ′−λ′◦ρ◦λ = F̃ λ+λ′−λ′◦ρ◦λ +
1

2


∗
(
ζ̃λ+λ′−λ′◦ρ◦λ

(
D̃λ+λ′−λ′◦ρ◦λ ∧, D̃λ+λ′−λ′◦ρ◦λ


,

but also Lemma 4.7.12

G̃λ+λ′−λ′◦ρ◦λ = (∗�)(G) =
((∗Λ′) ◦ (∗Λ)

)
(G) =

(∗Λ′)(G̃λ


=
˜̃
Gλ

λ′

.

By the previous results we immediately get

F̃ λ+λ′−λ′◦ρ◦λ =
˜̃
F λ

λ′

,
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because F is independent of ζ. Similarly as for G we get by Thm. 4.6.1

D̃λ+λ′−λ′◦ρ◦λ =
˜̃
Dλ

λ′

.

Then simply compare both sides in G̃λ+λ′−λ′◦ρ◦λ =
˜̃
Gλ

λ′

to get
(

∗

(
ζ̃λ+λ′−λ′◦ρ◦λ −

˜̃
ζλ
λ′
))(

D̃λ+λ′−λ′◦ρ◦λ ∧, D̃λ+λ′−λ′◦ρ◦λ


= 0.

Since Dev and D are in general non-zero, and by D̃ = D − (∗ρ)(ϖ2) (so, the minimal coupling

stays non-zero if it was initially non-zero), one can conclude

ζ̃λ+λ′−λ′◦ρ◦λ =
˜̃
ζλ
λ′

,

however, there are edge cases where this argument fails: M could be a point for example, but

it is clear that the Ąeld redeĄnition of ζ is independent of the choice of M such that one can

quickly circumvent this problem. Another edge case is N as a point, but then ζ ≡ 0 such that

everything is trivially concluded. ■

Remark 4.7.19: Field redeĄnition as equivalence of CYMH GTs

This Ąnally shows that the Ąeld redeĄnition is an equivalence of CYMH GTs (for Ąxed

M,N and E). ReĆexivity simply follows due to that λ ≡ 0 is a valid parameter for

the Ąeld redeĄnition, symmetry by Lemma 4.5.8 and 4.7.16, and transitivity by Lemma

4.7.17. Furthermore, by Thm. 4.7.13, the physics stay the same after a Ąeld redeĄnition,

which is why one may speak of a physical equivalence.

As we already argued, starting with a non-Ćat ∇ and/or a non-zero ζ, it is now natural to ask

whether or not there is a Ąeld redeĄnition making ∇ Ćat and/or ζ zero, equivalently, whether or

not there is an equivalence class with pre-classical and/or classical representative, respectively.

We will do this in the next chapter, but let us Ąrst state some basic properties of a CYMH GT.

4.8. Properties of CYMH GT

Theorem 4.8.1: Curvature closed under basic connections, by Alexei Kotov

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ be a connection on E

with vanishing basic curvature. Then

d∇bas
R∇ = 0. (4.164)

Remarks 4.8.2.

Alexei Kotov has found this identity, too, with a different approach; this was communicated in

a private communication but there is a paper planned about that by Alexei Kotov and Thomas

Strobl, planned for 2021.
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Proof of Thm. 4.8.1.

We know how the connection acts on the Lie bracket of E due to the vanishing of the basic

curvature, hence, let us look at how the curvature acts on the Lie bracket, also using the Jacobi

identity of [·, ·],

R∇(Y, Z)([µ, ν]E) = Use Rbas
∇

=0. . .

= [∇Y ∇Zµ, ν]E + [∇Zµ,∇Y ν]E + ∇∇bas
ν Y ∇Zµ− ∇∇bas

∇Z µ
Y ν + [∇Y µ,∇Zν]E

+ [µ,∇Y ∇Zν]E + ∇∇bas
∇Z ν

Y µ− ∇∇bas
µ Y ∇Zν + ∇Y ∇∇bas

ν Zµ− ∇Y ∇∇bas
µ Zν

−
(
Y ↔ Z of previous two lines



−
[
∇[Y,Z]µ, ν

]
E

−
[
µ,∇[Y,Z]ν

]
E

− ∇∇bas
ν ([Y,Z])µ+ ∇∇bas

µ ([Y,Z])ν

= R∇

(
∇bas
ν Y, Z


µ+R∇

(
Y,∇bas

ν Z

µ−R∇

(
∇bas
µ Y,Z


ν −R∇

(
Y,∇bas

µ Z

ν

+ ∇[∇bas
ν Y,Z]µ︸ ︷︷ ︸

=∇[[ρ(ν),Y ]+ρ(∇Y ν),Z]µ

+∇[Y,∇bas
ν Z]µ− ∇[∇bas

µ Y,Z]ν − ∇[Y,∇bas
µ Z]ν

+ ∇[ρ(∇Zν),Y ]+ρ(∇Y ∇Zν)µ− ∇[ρ(∇Zµ),Y ]+ρ(∇Y ∇Zµ)ν −
(
Y ↔ Z



+ ∇[ρ(µ),[Y,Z]]+ρ(∇[Y,Z]µ)ν − ∇[ρ(ν),[Y,Z]]+ρ(∇[Y,Z]ν)µ

+ [µ,R∇(Y,Z)ν]E − [ν,R∇(Y,Z)µ]E

= R∇

(
∇bas
ν Y, Z


µ+R∇

(
Y,∇bas

ν Z

µ−R∇

(
∇bas
µ Y,Z


ν −R∇

(
Y,∇bas

µ Z

ν

+ ∇bas
µ (R∇(Y, Z)ν) − ∇bas

ν (R∇(Y,Z)µ)

=
(
d∇bas

R∇


(Y, Z, µ, ν) +R∇(Y,Z)([µ, ν]E)

⇔ 0 =
(
d∇bas

R∇


(Y, Z, µ, ν)

for all Y,Z ∈ X(N) and ν, µ ∈ Γ(E) ■

So, we know that the basic connection is Ćat when the basic curvature vanishes, recall

Prop. 3.7.6, and that the curvature R∇ is closed with respect to the differential induced by

the basic connection. The compatibility condition 4.145 then imposes that the curvature even

needs to be exact in order to formulate a gauge theory.

We know that curvatures satisfy a Bianchi identity, let us therefore check what this implies

about ζ.
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Theorem 4.8.3: Bianchi identity for the primitives of the connection

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E

with vanishing basic curvature and for whose curvature there is a ζ ∈ Ω2(N ;E) such that

R∇ = −d∇bas
ζ. Then

0 =
(
∇bas
ν0

(
d∇ζ


(Y0, Y1, Y2) −

(
∇bas
ν0

(
ζ ◦ (1TN , ρ ◦ ζ)

)
(Y0, Y1, Y2)

−
(
∇bas
ν0

(
ζ ◦ (1TN , ρ ◦ ζ)

)
(Y1, Y2, Y0) −

(
∇bas
ν0

(
ζ ◦ (1TN , ρ ◦ ζ)

)
(Y2, Y0, Y1)

(4.165)

for all Y0, Y1, Y2 ∈ X(N) and ν0 ∈ Γ(E), where

(
ζ ◦ (1TN , ρ ◦ ζ)

)
(Y0, Y1, Y2) = ζ

(
Y0, (ρ ◦ ζ)(Y1, Y2)

)
.

Proof.

R∇ satisĄes the Bianchi identity, i.e.

d∇R∇ = 0,

where we view the curvature as an element of Ω2(N ; End(E)). Then use Cor. 3.8.11 to get

0 =
(
−d∇R∇


(Y0, Y1, Y2, ν0)

=
(
d∇d∇bas

ζ

(Y0, Y1, Y2, ν0)

=
(
d∇bas

d∇ζ

(Y0, Y1, Y2, ν0)

+R∇

(
Y0, (ρ ◦ ζ)(Y1, Y2)

)
ν0 −R∇

(
Y1, (ρ ◦ ζ)(Y0, Y2)

)
ν0 +R∇

(
Y2, (ρ ◦ ζ)(Y0, Y1)

)
ν0

− ζ
(
(ρ ◦R∇)(Y0, Y1)ν0, Y2

)
+ ζ

(
(ρ ◦R∇)(Y0, Y2)ν0, Y1

)
− ζ

(
(ρ ◦R∇)(Y1, Y2)ν0, Y0

)

=
(
d∇bas

d∇ζ

(Y0, Y1, Y2, ν0)

−
(
∇bas
ν0
ζ
(
Y0, (ρ ◦ ζ)(Y1, Y2)

)
+
(
∇bas
ν0
ζ
(
Y1, (ρ ◦ ζ)(Y0, Y2)

)

−
(
∇bas
ν0
ζ
(
Y2, (ρ ◦ ζ)(Y0, Y1)

)

+ ζ
((

∇bas
ν0

(ρ ◦ ζ)

(Y0, Y1), Y2


− ζ

((
∇bas
ν0

(ρ ◦ ζ)

(Y0, Y2), Y1



+ ζ
((

∇bas
ν0

(ρ ◦ ζ)

(Y1, Y2), Y0



for all Y0, Y1, Y2 ∈ X(N) and ν0 ∈ Γ(E), using that ζ ∈ Ω2,0(N,E;E) ∼= Ω2(N ;E), R∇ =

−d∇bas
ζ and ρ ◦ ∇bas = ∇bas ◦ ρ such that

(
ρ ◦ ∇bas

ν0
ζ

(Y0, Y1) = ρ

((
∇bas
ν0
ζ

(Y0, Y1)
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= ρ
(
∇bas
ν0

(
ζ(Y0, Y1)

)
− ζ

(
∇bas
ν0
Y0, Y1


− ζ

(
Y0,∇

bas
ν0
Y1



= ∇bas
ν0

(
(ρ ◦ ζ)(Y0, Y1)

)
− (ρ ◦ ζ)

(
∇bas
ν0
Y0, Y1


− (ρ ◦ ζ)

(
Y0,∇

bas
ν0
Y1



=
(
∇bas
ν0

(ρ ◦ ζ)

(Y0, Y1).

We can also write
(
∇bas
ν0
ζ
(
Y0, (ρ ◦ ζ)(Y1, Y2)

)
= ∇bas

ν0

(
ζ
(
Y0, (ρ ◦ ζ)(Y1, Y2)

)

− ζ
(
∇bas
ν0
Y0, (ρ ◦ ζ)(Y1, Y2)


− ζ

(
Y0,∇

bas
ν0

(
(ρ ◦ ζ)(Y1, Y2)

)
,

and (again)
(
∇bas
ν0

(ρ ◦ ζ)

(Y0, Y1) = ∇bas

ν0

(
(ρ ◦ ζ)(Y0, Y1)

)
− (ρ ◦ ζ)

(
∇bas
ν0
Y0, Y1


− (ρ ◦ ζ)

(
Y0,∇

bas
ν0
Y1


,

such that in total

0 =
(
d∇bas

d∇ζ

(Y0, Y1, Y2, ν0)

− ∇bas
ν0

(
ζ
(
Y0, (ρ ◦ ζ)(Y1, Y2)

)
+ ζ

(
∇bas
ν0
Y0, (ρ ◦ ζ)(Y1, Y2)


+ ζ

(
Y0,∇

bas
ν0

(
(ρ ◦ ζ)(Y1, Y2)

)

+ ∇bas
ν0

(
ζ
(
Y1, (ρ ◦ ζ)(Y0, Y2)

)
− ζ

(
∇bas
ν0
Y1, (ρ ◦ ζ)(Y0, Y2)


− ζ

(
Y1,∇

bas
ν0

(
(ρ ◦ ζ)(Y0, Y2)

)

− ∇bas
ν0

(
ζ
(
Y2, (ρ ◦ ζ)(Y0, Y1)

)
+ ζ

(
∇bas
ν0
Y2, (ρ ◦ ζ)(Y0, Y1)


+ ζ

(
Y2,∇

bas
ν0

(
(ρ ◦ ζ)(Y0, Y1)

)

− ζ
(
Y2,∇

bas
ν0

(
(ρ ◦ ζ)(Y0, Y1)

)
− (ρ ◦ ζ)

(
∇bas
ν0
Y0, Y1


− (ρ ◦ ζ)

(
Y0,∇

bas
ν0
Y1



+ ζ
(
Y1,∇

bas
ν0

(
(ρ ◦ ζ)(Y0, Y2)

)
− (ρ ◦ ζ)

(
∇bas
ν0
Y0, Y2


− (ρ ◦ ζ)

(
Y0,∇

bas
ν0
Y2



− ζ
(
Y0,∇

bas
ν0

(
(ρ ◦ ζ)(Y1, Y2)

)
− (ρ ◦ ζ)

(
∇bas
ν0
Y1, Y2


− (ρ ◦ ζ)

(
Y1,∇

bas
ν0
Y2



=
(
d∇bas

d∇ζ

(Y0, Y1, Y2, ν0)

︸ ︷︷ ︸
=(∇bas

ν0
(d∇ζ))(Y0,Y1,Y2)

− ∇bas
ν0

(
ζ
(
Y0, (ρ ◦ ζ)(Y1, Y2)

)
+ ζ

(
∇bas
ν0
Y0, (ρ ◦ ζ)(Y1, Y2)



+ ζ
(
Y0, (ρ ◦ ζ)

(
∇bas
ν0
Y1, Y2


+ (ρ ◦ ζ)

(
Y1,∇

bas
ν0
Y2



− ∇bas
ν0

(
ζ
(
Y1, (ρ ◦ ζ)(Y2, Y0)

)
+ ζ

(
∇bas
ν0
Y1, (ρ ◦ ζ)(Y2, Y0)



+ ζ
(
Y1, (ρ ◦ ζ)

(
∇bas
ν0
Y2, Y0


+ (ρ ◦ ζ)

(
Y2,∇

bas
ν0
Y0



− ∇bas
ν0

(
ζ
(
Y2, (ρ ◦ ζ)(Y0, Y1)

)
+ ζ

(
∇bas
ν0
Y2, (ρ ◦ ζ)(Y0, Y1)
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+ ζ
(
Y2, (ρ ◦ ζ)

(
∇bas
ν0
Y0, Y1


+ (ρ ◦ ζ)

(
Y0,∇

bas
ν0
Y1



=
(
∇bas
ν0

(
d∇ζ


(Y0, Y1, Y2) −

(
∇bas
ν0

(
ζ ◦ (1TN , ρ ◦ ζ)

)
(Y0, Y1, Y2)

−
(
∇bas
ν0

(
ζ ◦ (1TN , ρ ◦ ζ)

)
(Y1, Y2, Y0) −

(
∇bas
ν0

(
ζ ◦ (1TN , ρ ◦ ζ)

)
(Y2, Y0, Y1).

■

Recall Thm. 3.7.8 for the following statement.

Theorem 4.8.4: Primitives of the connection along the foliation of the anchor

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E with

vanishing basic curvature. Then all ζ ∈ Ω2(N ;E) satisfying

ζ ◦ (ρ, ρ) = −t∇bas +H, (4.166)

where H ∈ Ω2(E;E) with ∇basH = 0, also satisfy

R∇ ◦ (ρ, ρ) = −
(
d∇bas

ζ


◦ (ρ, ρ,1E), (4.167)

that is,

R∇

(
ρ(µ), ρ(ν)

)
η = −

(
d∇bas

ζ
(
ρ(µ), ρ(ν), η

)

for all µ, ν, η ∈ Γ(E).

Proof of Thm. 4.8.4.

That is a trivial consequence of Cor. 3.6.6 and Lemma 3.8.5, that is,

R∇ ◦ (ρ, ρ) = R∇ρ = ∇bast∇bas
∇basH=0

= −∇bas(ζ ◦ (ρ, ρ)
)
.

Lem. 3.8.5
=

(
−d∇bas

ζ


◦ (ρ, ρ).

■

Therefore one can view the negative of the torsion of the basic connection as a canonical

choice for ζ along the foliation of the anchor. In case we decide to take ζ ∈ Ω2(N ;E) such that

ζ ◦ (ρ, ρ) = −t∇bas , we get:

Corollary 4.8.5: Certain classical CYMH GTs implying an abelian structure

Let us have the same setup and notation as in Thm. 4.7.5, i.e. let us assume a CYMH

GT. Moreover, assume we have ζ ◦ (ρ, ρ) = −t∇bas and that N is simply connected.

If this CYMH GT is classical, then it is isomorphic to an abelian action Lie algebroid

such that ∇ is its canonical Ćat connection.

In case of tangent bundles, E = TN , this statement is an equivalence, that is, this CYMH

GT is classical if and only if it is isomorphic to an abelian action Lie algebroid such that
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∇ is its canonical Ćat connection.

Remarks 4.8.6.

In general one could study whether it is possible to have a connection with vanishing basic

curvature on a Lie algebroid which is locally never an action Lie algebroid; in that case the

connection could not be Ćat by Thm. 4.3.41. However, this is a difficult task; this statement

may simplify that, one could just look at abelian action Lie algebroids. With that particular

choice for ζ one would have then a non-classical gauge theory, in case one has a Lie algebroid

which is not isomorphic to an abelian action Lie algebroid.

Proof of Cor. 4.8.5.

Classical means that ∇ is Ćat, and, thus, we have a global isomorphism to an action Lie algebroid

N ×g for a Lie algebra g, using that N is simply connected and Thm. 4.3.41; also recall Remark

4.3.42. ∇ is then its canonical Ćat connection.

Classical also implies that ζ ≡ 0, hence, the torsion of ∇bas vanishes.11 By Cor. 4.4.9, g is

abelian.

If we have E = TN , then just use the equivalence in Cor. 4.4.9, so, assuming that E is

isomorphic to an abelian action Lie algebroid and ∇ is its canonical Ćat connection, implies that

the basic connection has no torsion; since the anchor is now bijective we have ζ ≡ 0. ■

Along the transversal directions it will be a bit more difficult as we will see in the next chapter.

However, as a Ąrst approach one can look at the following proposition, which is based on the

assumption that one has partially a parallel frame of the basic connection along the foliation,

also using Thm. 4.8.4; recall Section 3.9, and also recall that BLA means bundle of Lie algebras.

The setup of the following proposition is basically for Lie algebroids restricted on a suitable

neighbourhood of regular points.

Proposition 4.8.7: Local mixed terms of the primitive of the connection

Let N be a parallelizable smooth manifold, K → S a BLA over a smooth manifold S, and

E = TN ×K → N × S as direct product of Lie algebroids, equipped with a connection ∇

with a vanishing basic curvature. Furthermore, assume that there is a global trivialisation

(fi)i of TN such that ∇basfi = 0 (on E) for all i, and assume that we have a ζ ∈ Ω2(N ;E)

with ζ ◦ (ρ, ρ) = −t∇bas.

If ζ additionally satisĄes ζ(Y, fi) = ∇Y fi for all Y ∈ X(S) ⊂ X(N × S), then

R∇

(
Y, ρ(µ)

)
ν = −

(
d∇bas

ζ
(
Y, ρ(µ), ν

)
(4.168)

for all µ, ν ∈ Γ(E) and Y ∈ X(S).

11By the metric compatibility with κ, ∇bas is an E-Levi-Civita connection, as we also discussed in Rem. 4.4.10.
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Remarks 4.8.8.

With X(S) ⊂ X(N × S) we emphasize that we view vector Ąelds of a factor of the base, here S,

as vector Ąelds on N × S with values in S and constant along N , i.e. the canonical embedding.

That is important to keep in mind if one sees notations like X(S) in this context.

A word on why we wrote Ť∇basfi = 0 (on E)Ť. One needs to be careful here, with the basic

connection we always mean two connections. However, we have for example ρ(fi) = fi such that

both versions of the basic connection can act on fi, and as long as K has not zero rank we can

not expect that both connections give the same, that is, let ν ∈ Γ(K), then, on E,

∇bas
ν fi = [ν, fi]E + ∇fi

ν,

and, on TN ,

∇bas
ν fi = ρ(∇fi

ν),

which is clearly different, even if [ν, fi]E = 0. However, our imposed condition is about that

fi as an element of Γ(E) should be parallel to the basic connection, then we use the usual

commutation with the anchor to get

0 = ρ
(
∇basfi


= ∇bas(ρ(fi)

)
,

where we did not write ρ(fi) as fi to emphasize that fi is viewed as an element of X(N) on the

right hand side. Hence, ∇basfi = 0 in sense of TN is implied here. In the proof we sometimes

write ρ(fi) for similar reasons of accentuation.

Proof of Prop. 4.8.7.

We prove Eq. (4.168) locally using frames due to its tensorial nature. Let (fa)a be a local frame

of E, which is given by the frame (fi)i of TN and by a frame (fα)α of K, both frames are

canonically embedded into E; that is, fi are constant along S, and fα along N . Other Latin

indices still denote the frame of TN , and other Greek ones the part of K, and we clearly have

ρ(fi) = fi, ρ(fα) = 0; especially, fi also span the image of the anchor. Then

∇bas
fi
Y = [fi, Y ]︸ ︷︷ ︸

=0

+ ρ(∇Y fi) = ρ(∇Y fi),

∇bas
fα
Y = [ρ(fα)︸ ︷︷ ︸

=0

, Y ] + ρ(∇Y fα) = ρ(∇Y fα),

⇒ ∇bas
fa
Y = ρ(∇Y fa)

for all Y ∈ X(S). By the vanishing of the basic curvature we get

∇Y ([fa, fb]E) = [∇Y fa, fb]E + [fa,∇Y fb]E + ∇∇bas
fb

Y fa − ∇∇bas
fa

Y fb

= [∇Y fa, fb]E + [fa,∇Y fb]E + ∇ρ(∇Y fb)fa − ∇ρ(∇Y fa)fb,
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such that, additionally using t∇bas
Cor. 3.6.3

= −t∇ρ and the assumptions about ζ,

(
−∇bas

fa
ζ
(
Y, ρ(fi)

)
= −∇bas

fa

(
ζ
(
Y, ρ(fi)

))
︸ ︷︷ ︸

=∇Y fi

+ ζ
(
∇bas
fa
Y, ρ(fi)



︸ ︷︷ ︸
=ζ(ρ(∇Y fa),ρ(fi))

+ζ
(
Y,∇bas

fa

(
ρ(fi)

)
︸ ︷︷ ︸
=ρ
(

∇bas
fa

fi

)
=0



= −[fa,∇Y fi]E − ∇ρ(∇Y fi)fa

+ ∇ρ(∇Y fa)fi − ∇fi
∇Y fa − [∇Y fa, fi]

= ∇Y ([fi, fa]E)
︸ ︷︷ ︸

=−∇bas
fa

fi+∇fi
fa

−∇fi
∇Y fa

= ∇Y ∇fi
fa − ∇fi

∇Y fa

[Y,fi]=0
= R∇(Y, fi)fa

= R∇

(
Y, ρ(fi)

)
fa.

■
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5. Obstruction for CYMH GT

Let us Ąnally turn to the question whether or not there is always a Ąeld redeĄnition making

∇ Ćat or ζ zero. As we know by the splitting theorem of Lie algebroids, Thm. 3.10.4, around

regular points every Lie algebroid is the sum of a tangent bundle and a bundle of Lie algebras

(BLAs). The discussion about general Lie algebroids is very difficult, hence, let us Ąrst focus on

both factors separately.

5.1. Lie algebra bundles

We only want to discuss Lie algebra bundles (LABs) actually, not BLAs in general. That is

motivated by the following theorem.

Theorem 5.1.1: BLA
?
= LAB,

[3, Theorem 6.4.5, see also the last note at the beginning of

§6.4; page 238f.]

[6, Proposition 2.13]

Let K → N be a bundle of Lie algebras (BLA) over a connected manifold N whose Ąeld

of Lie brackets is denoted by [·, ·]K . Then K is an LAB if and only if it admits a vector

bundle connection ∇ with vanishing basic curvature, that is

∇Y ([µ, ν]K) = [∇Y µ, ν]K + [µ,∇Y ν]K

for all µ, ν ∈ Γ(K) and Y ∈ X(N).

Remarks 5.1.2.

Even if the Lie algebras of the Ąbres of a BLA are not isomorphic as Lie algebras recall that

each BLA is a vector bundle, hence, the rank is constant.

Sketch of the proof.

For Ť⇒Ť, that is, K is assumed to be an LAB, just take locally the canonical Ćat connection

related to a local trivialization K♣U ∼= U × g, where U is an open subset of N and g the Lie

algebra describing K as LAB; recall Def. 3.1.20. Such a connection has trivially a vanishing

basic curvature, e.g. use that the basic curvature is a tensor and test the vanishing against a

frame of constant sections. Then use a partition of unity subordinate to a covering of such

trivializations in order to get a globally deĄned connection with vanishing basic curvature.

The essential idea for the other direction is to observe that in the case of BLAs (zero anchor)

we have

t∇bas
Cor. 3.6.3

= −t∇ρ = [·, ·]K
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for all vector bundle connections ∇ on K. In case of a vanishing basic curvature we get by

Eq. (3.59)

∇([·, ·]K) = 0,

i.e. the Ąeld of Lie brackets is parallel with respect to all ∇ with vanishing basic curvature. In

[3, §6.4; page 236ff.] it is then shown that [·, ·]K is deformable under the conjugation of vector

space isomorphisms between two Ąbres of K, that is, the bracket of µ, ν ∈ Ep2 at p2 ∈ N can

be calculated by the value of the bracket at another base point p1 ∈ N using a conjugation of

the bracket;1 given an vector space isomorphism ξ : Ep1 → Ep2 the mentioned conjugation is

given by ξ
([
ξ−1(µ), ξ−1(ν)

]
K

)
. That implies that ξ must be a Lie algebra isomorphism, and,

extending this, K is an LAB. This argument can be proven with arguments of the holonomy

theory of connections, especially one uses that the values of a parallel section at two points

connected by a curve are related by the parallel transport along that curve, or, in other words,

the value at one point is the value at the other point conjugated by the parallel transport.

Alternatively (but very similar), one argues as in [6, Proposition 2.13]; that is, as we have

seen, ∇X is a linear vector Ąeld on K as a derivation on a vector bundle (recall Section 3.3,

especially Thm. 3.3.15). One can argue that linear vector Ąelds are inĄnitesimal automorphisms

of a vector bundle.2 Since the vanishing of the basic curvature is just the inĄnitesimal version

of a Lie algebra homomorphism, the connection encodes the inĄnitesimal information of a Lie

algebra isomorphism, therefore one can show that parallel transports by ∇ are then Lie algebra

isomorphisms with which one can construct a suitable LAB trivialization of K. ■

So, this theorem implies that a vanishing basic curvature means that a bundle of Lie algebras

is an LAB (over a connected base manifold). So, in our context bundle of Lie algebras are not

so important, which is why we just want to focus on LABs.

5.1.1. CYMH GT for LABs

Let us now start to look at the situation of LABs; recall Def. 3.1.20. Let us summarize the

important previous results about CYMH GTs restricted onto LABs. The following section

about LABs is also discussed in my paper [19], slightly differently written. Also observe that for

a zero anchor the basic connection ∇bas on TN is just zero, making the compatibility condition

on the metric g on TN trivial, and on E it is the adjoint representation. This and the zero

anchor in general simpliĄes all the involved equations:

Situation 5.1.3: CYMH GT for Lie algebra bundles

Let g be a real Ąnite-dimensional Lie algebra with Lie bracket [·, ·]g. With

1p1, p2 need to be connected by a path which is why one assumes a connected base manifold.
2See also the beginning of [9].
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g (K, [·, ·]K)

N

we denote LAB over a smooth manifold N with Lie algebra structure inherited by g, with

its Ąeld [·, ·]K ∈ Γ
(∧2K∗ ⊗K


of Lie brackets which restricts on the Lie bracket [·, ·]g on

each Ąbre. The gauge theory we look at is then now with respect to E = K.

In the classical setting that would be a gauge theory where the gauge bosons are not

paired to another Ąelds via the minimal coupling because LABs are action Lie algebroids

with zero action.

Let (M,η) be a spacetime M with its spacetime metric η, and Φ : M → N a smooth

map, representing the Higgs Ąeld. Φ∗K has also the structure of an LAB with a Ąeld of

Lie brackets denoted by [·, ·]Φ∗K ∈ Γ
(∧2 Φ∗(K∗) ⊗ Φ∗K


, which restricts to [·, ·]g on each

Ąbre, too. This bracket is given by

[·, ·]Φ∗K = Φ∗([·, ·]K).

Let us also Ąx a vector bundle connection ∇ on K for which there is a ζ ∈ Ω2(N ;K) such

that

∇Y ([µ, ν]K) = [∇Y µ, ν]K + [µ,∇Y ν]K , (5.1)

R∇(Y, Z)µ = [ζ(Y,Z), µ]K (5.2)

for all Y,Z ∈ X(N) and µ, ν ∈ Γ(K).

The Ąeld of gauge bosons (for a given Higgs Ąeld) will be represented by

A ∈ Ω1(M ; Φ∗K).

The Ąeld strength G is then deĄned as an element of ℱ2
K(M ; ∗K) by

G(Φ, A) := dΦ∗∇A+
1

2
[A ∧, A]Φ∗K +

1

2
(Φ∗ζ)(DΦ ∧, DΦ)

= dΦ∗∇A+
1

2
[A ∧, A]Φ∗K + Φ!ζ. (5.3)

The curved Yang-Mills-Higgs Lagrangian is then deĄned as a top-degree-form ℒCYMH ∈

ℱ
dim(M)
K (M) given by

ℒCYMH(Φ, A) := −
1

2
(Φ∗κ)(G ∧, ∗G) + (Φ∗g)(DΦ ∧, ∗DΦ) + ∗(V ◦ Φ), (5.4)

where ∗ is the Hodge star operator w.r.t. to η, V ∈ C∞(N) is the potential for Φ, g is

a Riemannian metric on N and κ a Ąbre metric on K.

We only allow Lie algebras g admitting an ad-invariant scalar product to which κ shall

restrict to on each Ąbre. Doing so, we achieve inĄnitesimal gauge invariance for ℒCYMH.
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Remarks 5.1.4.

• In the following we want to test whether a given connection ∇ satisĄes the compatibility

conditions (5.1) and (5.2). Especially about the latter we say that a connection ∇ satisĄes

compatibility condition (5.2) if there is a ζ ∈ Ω2(N ;K) such that this condition is satisĄed.

So, we are not going to study this condition with respect to a Ąxed ζ. Moreover, for simplicity

for LABs we only mean (5.1) and (5.2) with compatibility conditions because the compatibility

conditions on the metrics are either trivial or well-understood.

• Recall Remark 4.3.40; if we would use ∇ρ in general to deĄne the inĄnitesimal gauge

transformation for K-valued forms, then we can only expect Rδ(·, ·)A = 0 if the basic curvature

vanishes and ∇ρ is Ćat; the latter is now trivially satisĄed, while the former is one of the

compatibility conditions. If doing so, the essential gauge transformations have again the very

familiar form,

δε(Φ,A)A = (δεϖ2)(Φ, A) = [ε(Φ, A), A]Φ∗K − dΦ∗∇(ε(Φ, A)
)
, (5.5)

δεΦ = 0 (5.6)

for all ε ∈ ℱ
0
K(M ; ∗K) and (Φ, A) ∈ MK(M ;N). As usual, the inĄnitesimal gauge transforma-

tion δεG of G is then given by (recall Thm. 2.5.19 and 4.3.10)

(δεG)(Φ, A) =
d

dt

∣∣∣∣
t=0

[
t 7→ G

(
Φ, A+ t · δε(Φ,A)A

]
(5.7)

for t ∈ R. Because of the compatibility conditions (5.1) and (5.2) we can derive that δεG has

the following form

(δεG)(Φ, A) = [ε(Φ, A), G(Φ, A)]Φ∗K . (5.8)

However, we will not need those since we have discussed the gauge transformations thoroughly

before, which is why we do not prove this; but it is easy to check as an exercise.

That is the situation regarding gauge theory and its formalism on Lie algebra bundles. The

Ąeld redeĄnition deĄned earlier has the following simpliĄed form. Recall its properties shown

earlier.

Field redeĄnition 5.1.5: In the situation of LABs

Let λ ∈ Ω1(N ;K), then the Ąeld redeĄnition in the case of LABs leads to the following

formulas

Ãλ = A+ (Φ∗λ)(DΦ) = A+ Φ!λ, (5.9)

ζ̃λ = ζ − d∇λ+
1

2
[λ ∧, λ]K , (5.10)

and

∇̃λ
Y µ = ∇Y µ− [λ(Y ), µ]K (5.11)
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for all Y ∈ X(N) and µ ∈ Γ(K). The metrics κ and g stay the same.

Remarks 5.1.6.

For Eq. (5.11) we can write

∇̃λ = ∇ − ad ◦ λ, (5.12)

where ad ◦ λ ∈ Ω1(N ; End(K)), (ad ◦ λ)(Y )(µ) := [λ(Y ), µ]K for all Y ∈ X(N) and µ ∈ Γ(K).

This implies that

(ad ◦ λ)(µ) = [λ, µ]K = [λ ∧, µ]K .

Similarly, we get ad ◦ ω ∈ Ωl(N ; End(K)).

5.1.2. Relation of vector bundle connections in gauge theories with certain Lie

derivation laws

Starting with a CYMH GT using LABs, there is the natural question whether or not one arrives

at a (pre-)classical gauge theory by using the Ąeld redeĄnition 5.1.5. We now especially need

what we have discussed in Section 3.11, most importantly Ex. 3.11.15 which was about the

following commuting diagram of Lie algebroid morphisms:

Z(K) Z(K)

K K

Der(K) 𝒟Der(K) TN

Out(K) Out(𝒟Der(K)) TN

ad

♯+ ♯

a

a

(5.13)

where K → N is an LAB over a smooth manifold N , Z(K) its centre, 𝒟Der(K) derivations of

K which are also Lie bracket derivations, Der(K) are the same but as endomorphisms, so, the

kernel of a; and the Out denotes the quotient over the adjoint of K, ad(K).

In order to understand CYMH GT using LABs, it is important to understand what type of

connection ∇ we have due to the compatibility conditions (5.1) and (5.2). We understand vec-

tor bundle connections as an anchor-preserving (and base-preserving) vector bundle morphism

TN → 𝒟(K). For all Y ∈ X(N), compatibility condition (5.1) implies that ∇Y is a derivation

of the Lie bracket [·, ·]K and so of [·, ·]g on each Ąbre. Thence, the vector bundle morphism ∇

has values in 𝒟Der(K).

𝒟Der(K) is also a Lie subalgebroid of 𝒟(K) as discussed earlier. So, by compatibility condition

(5.1), we arrive at that ∇ has to be what we will call a Lie derivation law:
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DeĄnition 5.1.7: Lie derivation law,

[3, §7.2, special form of DeĄnition 7.2.9, page 275.]

Let K → N be an LAB. A Lie derivation law for TN with coefficients in K is an

anchor- and base-preserving vector bundle morphism ∇ : TN → 𝒟Der(K), that is, a

connection ∇ on K in the usual sense such that

∇Y ([µ, ν]K) = [∇Y µ, ν]K + [µ,∇Y ν]K (5.14)

for all Y ∈ X(N) and µ, ν ∈ Γ(K).

Remarks 5.1.8.

By Thm. 5.1.1 such a connection always exists for LABs.

In [3, §5.2, second part of Example 5.2.12; page 188f.] such a connection is also called

Lie connection; Lie derivation laws are actually a bit more general deĄned, using general Lie

algebroids in place of TN . However, we will not need this generalization, but all the references

in the following are actually about more general connections; in order to make it easier for the

reader who looks up those references, we decided to still use the term Lie derivation law instead

to avoid confusion.

Now about understanding the compatibility condition (5.2): In the context of the Ąeld re-

deĄnition, if it would be possible to make ∇ Ćat by a Ąeld redeĄnition, then there would be a

parallel frame (ea)a locally for ∇̃λ such that by Eq. (5.11)

∇Y ea = [λ(Y ), ea]K

for all Y ∈ X(N). That is, with respect to that frame, the Lie bracket derivation ∇Y looks

like an adjoint of λ(Y ), an inner Lie bracket derivation. Thence, it makes sense to look at the

previously discussed Lie algebroid of outer derivations etc., which is why we emphasize again to

recall the discussion around diagram (5.13) in Section 3.11.

With diagram (5.13) we can now also study compatibility condition (5.2). The curvature R∇

of a Lie connection ∇ : TN → 𝒟Der(K) is clearly an element of Ω2(N ;𝒟Der(K)) since

R∇(Y,Z) = [∇Y ,∇Z ]
𝒟Der(K)︸ ︷︷ ︸

∈ Γ(𝒟Der(K))

− ∇[Y,Z]︸ ︷︷ ︸
∈ Γ(𝒟Der(K))

∈ Γ(𝒟Der(K))

for all Y,Z ∈ X(N). Compatibility condition (5.2) is then equivalent to

♯(R∇(Y,Z)) = 0 (5.15)

for all Y,Z ∈ X(N). We will show that this implies that ∇ is a Lie derivation law covering what

is called a pairing of TN with K. For that we need to deĄne what a pairing is.3

3Mackenzie called the following construction a coupling and not pairing. I renamed it to avoid confusion with

couplings in a physical context. Thanks for this suggestion, Alessandra Frabetti.
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DeĄnition 5.1.9: Pairing of TN , [3, §7.2, DeĄnitions 7.2.2; page 272]

A pairing of TN is a pair of an LAB K → N together with a (base-preserving) morphism

of Lie algebroids Ξ : TN → Out(𝒟Der(K)). We also say that TN and K are paired by

Ξ.

Now we can deĄne a special type of connection.

DeĄnition 5.1.10: Lie derivation law covering Ξ,

[3, §7.2, see discussion after DeĄnition 7.2.2; page 272]

Let K → N be an LAB and ∇ : TN → 𝒟Der(K) a Lie derivation law. Assume

that TN and K are paired by a (base-preserving) Lie algebroid morphism Ξ : TN →

Out(𝒟Der(K)). Then we say that ∇ is a Lie derivation law covering Ξ if

♯ ◦ ∇ = Ξ. (5.16)

Remarks 5.1.11.

So, while a Lie derivation law is not necessarily a morphism of Lie algebroids, ♯ ◦ ∇ is of that

type when ∇ covers a pairing.

This type of connection is exactly the type we need for gauge theory on LABs.

Theorem 5.1.12: (C)YMH GT only allows Lie derivation laws covering Ξ

Let K → N be an LAB. Then a map ∇ : TN → 𝒟Der(K) is a Lie derivation law covering

some (base-preserving) Lie algebroid morphism Ξ : TN → Out(𝒟Der(K)) if and only if it

is a connection on K satisfying the compatibility conditions (5.1) and (5.2), i.e.

∇Y ([µ, ν]K) = [∇Y µ, ν]K + [µ,∇Y ν]K ,

♯(R∇(Y,Z)) = 0

for all Y,Z ∈ X(N) and µ, ν ∈ Γ(K).

Remarks 5.1.13.

So, we have seen that compatibility condition (5.1) implies that ∇ has to be a Lie derivation

law, and compatibility condition (5.2) then implies that it covers a pairing of TN and K.

As argued in [3, §7.2, discussion after DeĄnition 7.2.2, replace the A there with TN ; page

272], for a given Ξ there is always a Lie derivation law covering it. As a sketch, that follows

by the construction and deĄnition of ♯ given by Prop. 3.11.12, i.e. it is a surjective submersion,

such that the existence of a map ∇ : TN → 𝒟Der(K) with ♯ ◦ ∇ = Ξ follows, ∇ is a vector

bundle morphism, since ♯ and Ξ are; Ąnally, we have by diagram (5.13) a ◦ ♯ = a and Ξ is
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anchor-preserving, so, a ◦ Ξ = 1TN , such that we can apply a on both side of ♯ ◦ ∇ = Ξ to get

a ◦ ∇ = 1TN .

Therefore ∇ is also anchor-preserving and, thus, a vector bundle connection.

Proof.

We already have seen that a connection ∇ satisfying compatibility condition (5.1) has a 1:1

correspondence to an anchor-preserving vector bundle morphism ∇ : TN → 𝒟Der(K), i.e. a Lie

derivation law. So, we only have to care about compatibility condition (5.2).

Ť⇐Ť: So, let us have a Lie derivation law with additionally ♯(R∇(Y,Z)) = 0 for all Y, Z ∈

X(N). DeĄne Ξ := ♯ ◦ ∇, and recall that ♯ : 𝒟Der(K) → Out(𝒟Der(K)) is a Lie algebroid

morphism such that Ξ is an anchor-preserving vector bundle morphism by deĄnition, using that

∇ is a Lie derivation law,

a ◦ Ξ = a ◦ ♯ ◦ ∇ = a ◦ ∇ = 1TN .

Using that ♯ is a homormorphism of Lie brackets, and by ♯(R∇(Y,Z)) = 0 for all Y,Z ∈ X(N),

we also get

Ξ([Y, Z]) = ♯
(
∇[Y,Z]



= ♯
(
[∇Y ,∇Z ]

𝒟Der(K)



= [♯(∇Y ), ♯(∇Z)]Out(𝒟Der(K))

= [Ξ(Y ),Ξ(Z)]Out(𝒟Der(K)),

i.e. Ξ is a Lie algebroid morphism (base-preserving), and it is covered by ∇ due to its deĄnition.

Ť⇒Ť: This part of the proof is as in [3, §7.2, discussion after DeĄnition 7.2.2; page 272] and

similar to the previous calculation. Let ∇ be a Lie derivation law covering some Lie algebroid

morphism Ξ, especially, ♯ ◦ ∇ = Ξ. That implies

♯(R∇(Y,Z)) = ♯
(
[∇Y ,∇Z ]

𝒟Der(K) − ∇[Y,Z]



= [♯(∇Y ), ♯(∇Z)]Out(𝒟Der(K)) − ♯
(
∇[Y,Z]



= [Ξ(Y ),Ξ(Z)]Out(𝒟Der(K)) − Ξ([Y, Z])

= 0

for all Y, Z ∈ X(N), using that both, ♯ and Ξ, are homomorphisms of the corresponding Lie

brackets. This Ąnishes the proof. ■
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Given a Lie derivation law covering some Ξ, we get that ∇ is an anchor-preserving vector

bundle morphism and ♯ ◦ ∇ = Ξ is a Lie algebroid morphism. When we want that ∇ is not Ćat,

in the hope of Ąnding a new gauge theory (recall Cor. 4.4.7), we do not want that ∇ itself is a

Lie algebroid morphism by Cor. 3.4.5, while ♯ is a Lie algebroid morphism and Ξ = ♯ ◦ ∇, too.

That looks like a tightrope walk. But there are a lot of non-Ćat Lie derivation laws covering

some Ξ, we may see some in the following parts, so, constructing non-Ćat connections for a

gauge theory is not impossible. But the Ąeld redeĄnition 5.1.5 may still lead to a Ćat connection

while keeping the same physics, i.e. the Lagrangian stays the same.

To study this we now need to construct an invariant for the Ąeld redeĄnition. Observe the

following, using the notation as introduced in (5.13).

Proposition 5.1.14: Field redeĄnition preserves the pairing

Let (K,Ξ) be a pairing of TN , ∇ be a Lie derivation law covering Ξ and ζ ∈ Ω2(N ;K)

satisfying compatibility condition (5.2) with respect to ∇.

Then the Ąeld redeĄnition 5.1.5 preserves the pairing, i.e. ∇̃λ is also a Lie derivation

law covering Ξ for all λ ∈ Ω1(N ;K). Moreover, for every other Lie derivation law ∇′

covering Ξ there is a λ ∈ Ω1(N ;K) such that

∇′ = ∇̃λ

and for its curvature

R∇′ = ad ◦ ζ̃λ.

Remarks 5.1.15.

These are exactly the same formulas as in [3, §7.2, Proposition 7.2.7, identifying MackenzieŠs 1-

form l with −λ, also keep in mind that Mackenzie deĄnes curvatures with an opposite sign; page

274]. In this reference Mackenzie studies the form given by the difference of two Lie derivation

laws covering the same pairing and arrives exactly at our formulas of the Ąeld redeĄnition which

we have derived from a more general context of gauge theory on Lie algebroids.

In this work the context is given by Ąeld redeĄnitions of a gauge theory, while Mackenzie

studies these connections in the context of extending Lie algebroids by Lie algebra bundles (over

the same base) such that their Whitney sum admits a Lie algebroid structure. Hence, in the

following we will see that MackenzieŠs study about extensions has a 1:1 correspondence to the

question whether one can Ąnd a Ąeld redeĄnition such that ∇̃λ is Ćat.

Proof of Prop. 5.1.14.

By Thm. 4.7.13 we know that the Ąeld redeĄnition preserves the compatibility conditions (5.1)

and (5.2), i.e.

∇̃λ
Y ([µ, ν]K) =

[
∇̃λ
Y µ, ν

]
K

+
[
µ, ∇̃λ

Y ν
]
K
,
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R
∇̃λ(Y,Z)µ =

[
ζ̃λ(Y, Z), µ

]
K
,

that implies by Thm. 5.1.12 that ∇̃λ is a Lie derivation law covering Ξ̃λ := ♯ ◦ ∇̃λ. Moreover,

using the notation (5.13),

♯ ◦ ∇̃λ = ♯ ◦ (∇ − ad ◦ λ) = ♯ ◦ ∇ = Ξ

for all λ ∈ Ω1(N ;K), using ♯ ◦ ad = 0. This shows that ∇̃λ covers Ξ.

Now let ∇′ be another Lie derivation law covering Ξ, then clearly

a♣𝒟Der(K)(∇
′
Y − ∇Y ) = Y − Y = 0

for all Y ∈ X(N), such that ∇′ − ∇ ∈ Ω1(N ; Der(K)) by (5.13), and

0 = Ξ − Ξ = ♯ ◦ ∇′ − ♯ ◦ ∇ = ♯ ◦
(
∇′ − ∇

)
︸ ︷︷ ︸

∈ Ω1(N ;Der(K))

= ♯+ ◦
(
∇′ − ∇

)
.

Again by (5.13), there is a µ(Y ) ∈ Γ(K) such that ∇′
Y − ∇Y = ad(µ(Y )) for all Y ∈ X(N),

and due to the C∞-linearity w.r.t. Y we get ∇′ − ∇ = ad ◦ µ for a µ ∈ Ω1(N ;K). By Ąeld

redeĄnition 5.1.5 we can take λ = −µ to get ∇′ = ∇̃λ.

Since ∇ satisĄes compatibility condition (5.2) by Thm. 5.1.12 and since this condition is

preserved by a Ąeld redeĄnition, the last statement follows, R∇′(Y,Z) = ad
(
ζ̃λ(Y,Z)


for all

Y, Z ∈ X(N). ■

Locally we can say the following.

Corollary 5.1.16: Local existence of a Ćat Lie derivation law covering a pairing

Let K be an LAB. Then locally there is always a Ćat Lie derivation law covering some

(base-preserving) Lie algebroid morphism Ξ : TN → Out(𝒟Der(K)).

Remarks 5.1.17.

So, locally, by using Prop. 5.1.14, the question whether or not one can transform to a Ćat

connection with the Ąeld redeĄnition breaks down to the question if there is a Ćat connection

covering the same pairing.

Proof.

Locally there is a trivialization K ∼= U × g as LABs on some open subset U ⊂ N . Then deĄne

∇ as the canonical Ćat connection, and by Thm. 4.3.41 we know that it has vanishing basic

curvature, so, it satisĄes compatibility condition (5.1); compatibility condition (5.2) is trivially

satisĄed by the Ćatness.

By Thm. 5.1.12 the statement follows. ■
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5.1.3. Obstruction for non-pre-classical gauge theories

Using the previous subsection, let us now look at whether or not we can make the connection

Ćat by a Ąeld redeĄnition. For such questions it is useful to have an invariant; actually, d∇ζ is

invariant under the Ąeld redeĄnition.

Proposition 5.1.18: d∇ζ an invariant of the Ąeld redeĄnition,

[3, §7.2, Proposition 7.2.11, last statement, there ζ is de-

noted by Λ and d∇ζ by f(∇,Λ); page 276]

Let (K,Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ be

any element of Ω2(N ;K) that satisĄes compatibility condition (5.2) with respect to ∇.

Then d∇ζ is invariant under the Ąeld redeĄnition 5.1.5, i.e.

d∇̃λ

ζ̃λ = d∇ζ. (5.17)

Proof.

Recall that in general curvatures satisfy

(
d∇
2
ω = R∇ ∧ ω

for all ω ∈ Ωl(N ;K), viewing R∇ as an element of Ω2(N ; End(K)). Then we have

(
d∇
2
λ = R∇ ∧ λ

Eq. (5.2)
= (ad ◦ ζ) ∧ λ

Eq. (A.5)
= [ζ ∧, λ]K ,

d∇([λ ∧, λ]K)
Eq. (A.11)

=
[
d∇λ ∧, λ

]
K

−
[
λ ∧, d∇λ

]
K

Eq. (A.7)
= 2

[
d∇λ ∧, λ

]
K
,

(ad ◦ λ) ∧ ζ̃λ
Eq. (A.5)

=
[
λ ∧, ζ̃λ

]
K

Eq. (A.7)
= −

[
ζ̃λ ∧, λ

]
K

Eq. (5.10), (A.8)
= −[ζ ∧, λ]K +

[
d∇λ ∧, λ

]
K
,

and, by combining everything, we arrive at

d∇̃λ

ζ̃λ = d∇−ad◦λ
(
ζ̃λ


Eq. (A.3), (5.10)
= d∇


ζ − d∇λ+

1

2
[λ ∧, λ]K


− (ad ◦ λ) ∧ ζ̃λ = d∇ζ

for all λ ∈ Ω1(N ;K). ■

Therefore let us study d∇ζ. Earlier we have shown what the (second) Bianchi identity for

R∇, d∇R∇ = 0, implies for ζ under using the compatibility condition (5.2); recall Thm. 4.8.3.

Let us state what this means in the situation of LABs.

Proposition 5.1.19: Bianchi identity for ζ

Let (K,Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ be

any element of Ω2(N ;K) that satisĄes compatibility condition (5.2) with respect to ∇.
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Then we have

d∇ζ ∈ Ω3(N ;Z(K)),

i.e. d∇ζ has always values in the centre of K.

Remarks 5.1.20.

This is equivalent to [3, §7.2, Lemma 7.2.4, ζ is denoted as Λ there; page 273]. Mackenzie shows

it by direct calculation in that special situation, while we derive it from the previous, more

general result.

Proof.

By Thm. 4.8.3, which clearly reduces to the following in the case of LABs (insert ρ = 0)
[
d∇ζ(Y1, Y2, Y3), µ

]
K

= 0

for all Y1, Y2, Y3 ∈ X(N), and µ ∈ Γ(K). That proves the claim. ■

In fact, d∇ is a differential on centre-valued forms.

Theorem 5.1.21: Differential on centre-valued forms,

[3, §7.2, DeĄnition 7.2.3 and the discussion directly before;

page 273]

Let (K,Ξ) be a pairing. Then every Lie derivation law ∇ covering Ξ restricts to a Ćat

connection ∇Z(K) on Z(K).

Moreover, Ξ induces a differential dΞ : Ω•(N ;Z(K)) → Ω•+1(N ;Z(K)) by choosing

dΞ := d∇Z(K)
= d∇

∣∣∣
Ω•(N ;Z(K))

for any Lie derivation law ∇ covering Ξ. dΞ is independent

of the choice of ∇.

We call this differential central representation of Ξ.

Remarks 5.1.22.

Recall the second paragraph of Remark 5.1.13, i.e. there is a Lie derivation Law ∇ : TN →

𝒟Der(K) covering Ξ. Hence, dΞ always exists for a given Ξ.

Proof of Thm. 5.1.21.

By Thm. 5.1.12 ∇ satisĄes compatibility conditions

∇Y ([µ, ν]K) = [∇Y µ, ν]K + [µ,∇Y ν]K ,

R∇(Y, Z) = ad(ζ(Y, Z))

for all Y,Z ∈ X(N), µ, ν ∈ Γ(K) and for some ζ ∈ Ω2(N ;K). Let µ ∈ Γ(Z(K)), then the Ąrst

compatibility condition implies

0 = [∇Y µ, ν]K
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for all Y ∈ X(N), ν ∈ Γ(K) and µ ∈ Γ(Z(K)). That implies that ∇Y µ ∈ Γ(Z(K)) such that

∇ is also a connection on Γ(Z(K)), which we now denote by ∇Z(K). Restricting the second

compatibility condition onto Z(K) then immediately implies

R∇Z(K) = 0,

i.e. ∇Z(K) is Ćat, and therefore, by the deĄnition of the exterior covariant derivative,

dΞ := d∇
∣∣∣
Ω•(N ;Z(K))

= d∇Z(K)

is a differential. Now take any other Lie derivation law ∇′ covering Ξ. By Prop. 5.1.14, there is

a λ ∈ Ω1(N ;K) such that

∇′ = ∇ − ad ◦ λ,

i.e.

∇′
Y µ = ∇Y µ

for all Y ∈ X(N) and µ ∈ Γ(Z(K)). Hence, dΞ is independent of the choice of ∇. ■

One can now check that d∇ζ is closed under dΞ. Be aware of that for non-Ćat Lie derivation

laws ∇ covering Ξ this is not an obviously trivial question; due to compatibility condition (5.2),

ζ is not centre-valued in general such that d∇ζ cannot be written as dΞζ.

Lemma 5.1.23: Closedness of d∇ζ under the central representation,

[3, §7.2, Lemma 7.2.5, d∇ζ is denoted by f and dΞ as d, and

without written proof there; page 274]

Let (K,Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ be

any element of Ω2(N ;K) that satisĄes compatibility condition (5.2) with respect to ∇.

Then

dΞd∇ζ = 0 (5.18)

i.e. d∇ζ ∈ Ω3(N ;Z(K)) is closed under dΞ.

Proof.

We have
(
d∇
2
ζ = R∇ ∧ ζ

Eq. (5.2)
= (ad ◦ ζ) ∧ ζ

Eq. (A.5)
= [ζ ∧, ζ]K ,

but also, using that ζ ∈ Ω2(N ;K),

[ζ ∧, ζ]K
Eq. (A.7)

= −[ζ ∧, ζ]K ,

such that
(
d∇
2
ζ = −

(
d∇
2
ζ. Hence, the last statement follows. ■

We need to know how d∇ζ changes by varying ζ.
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Lemma 5.1.24: Varying ζ in d∇ζ,

[3, §7.2, Lemma 7.2.6, Mackenzie denotes ζ by Λ, d∇ζ by f

and dΞ by d; page 274]

Let (K,Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ and

ζ ′ be two elements of Ω2(N ;K) which satisfy compatibility condition (5.2) with respect to

∇.

Then

ζ ′ − ζ ∈ Ω2(N ;Z(K)). (5.19)

Especially, d∇ζ ′ − d∇ζ is dΞ-exact.

Proof.

This simply follows by the compatibility condition (5.2), i.e.

[
ζ ′(Y,Z) − ζ(Y,Z), µ

]
K

= R∇(Y,Z)µ−R∇(Y, Z)µ = 0

for all Y, Z ∈ X(N) and µ ∈ Γ(K). Thence, ξ := ζ ′ − ζ is an element of Ω2(N ;Z(K)). By Thm.

5.1.21 we get

d∇ζ ′ − d∇ζ = d∇ (ζ ′ − ζ
)

︸ ︷︷ ︸
∈Ω2(N ;Z(K))

= dΞ(ζ ′ − ζ
)
,

i.e. d∇ζ ′ − d∇ζ is exact with respect to dΞ since ζ ′ − ζ has values in Z(K). ■

Since d∇ζ is invariant under the Ąeld redeĄnition, this Ąnally shows that d∇ζ is a useful object

to study in the context of the Ąeld redeĄnition. By Lemma 5.1.23 this is a closed form, and

it is clear that in the Ćat situation ζ has values in Z(K) by compatibility condition (5.2). By

Thm. 5.1.21 we would get d∇ζ = dΞζ, i.e. d∇ζ would be then exact. Hence, it makes sense to

study the cohomology class of d∇ζ with respect to dΞ if one is interested into whether or not

the gauge theory can be transformed into a pre-classical4 gauge theory by the Ąeld redeĄnitions.

We denote the space of cohomology classes of dΞ-closed elements of Ω•(N ;Z(K)) by

ℋ
•
(
TN, dΞ, Z(K)


(5.20)

as in [3, Theorem 7.2.12, replace A with TN and ρΞ with dΞ; page 277], and the classes by [·]Ξ.

Thus,

[
d∇ζ

]
Ξ

∈ ℋ
3
(
TN, dΞ, Z(K)


,

using that d∇ζ is dΞ-closed by Lemma 5.1.23.

4Recall Def. 4.7.8.
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Theorem 5.1.25: Cohomology of d∇ζ an invariant,

[3, §7.2, Theorem 7.2.12, Mackenzie denotes dΞ with ρΞ, ζ

with Λ, d∇ζ with f(∇,Λ), and replace A with TN ; page 277]

Let (K,Ξ) be a pairing of TN and ∇ be a Lie derivation law covering Ξ. Also let ζ be

any element of Ω2(N ;K) that satisĄes compatibility condition (5.2) with respect to ∇.

Then
[
d∇ζ

]
Ξ

only depends on Ξ and not on the particular choice of ∇ and ζ.

Proof.

This follows by Lemma 5.1.24 and Prop. 5.1.18. The former shows that changing ζ with another

element ζ ′ of Ω2(N ;K) satisfying compatibility condition (5.2) results into

d∇ζ ′ = d∇ζ + d∇(ζ ′ − ζ
)

︸ ︷︷ ︸
dΞ-exact

∈
[
d∇ζ

]
Ξ
,

i.e.
[
d∇ζ ′

]
Ξ

=
[
d∇ζ

]
Ξ

, and the latter shows


d∇̃λ

ζ̃λ


Ξ
=
[
d∇ζ

]
Ξ
.

Thence, by using Prop. 5.1.14, i.e. one can reach every other Lie derivation law covering Ξ by

using the Ąeld redeĄnition 5.1.5, one can freely change the Lie derivation law covering Ξ by

Prop. 5.1.18, and by Lemma 5.1.24 it does not matter which ζ is used. ■

This clearly motivates the following deĄnition of MackenzieŠs obstruction class.

DeĄnition 5.1.26: The obstruction class of pairings,

[3, §7.2, comment after Theorem 7.2.12; page 277]

Let (K,Ξ) be a pairing of TN , and let ∇ be any Lie derivation law covering Ξ. Also let

ζ be any element of Ω2(N ;K) that satisĄes compatibility condition (5.2) with respect to

∇.

Then we deĄne the obstruction class of Ξ by

Obs(Ξ) :=
[
d∇ζ

]
Ξ
. (5.21)

We immediately get a Ąrst result related to CYMH GT.

Corollary 5.1.27: First approach of obstruction for CYMH GT on LABs

Let (K,Ξ) be a pairing of TN , and let ∇ be a Ąxed Lie derivation law covering Ξ.

Then we have

∃ a Ąeld redeĄnition as in 5.1.5 : ∇̃λ is Ćat ⇒ Obs(Ξ) = 0 ∈ ℋ
3
(
TN, dΞ, Z(K)


.

Or, equivalently, if there is a Ćat Lie derivation law covering Ξ, then Obs(Ξ) = 0.
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Proof of Cor. 5.1.27.

Let ζ be any element of Ω2(N ;K) that satisĄes compatibility condition (5.2) with respect to ∇.

When there is a Ąeld redeĄnition such that ∇̃λ is Ćat then we can conclude that ζ̃λ has only

values in Z(K) by compatibility condition (5.2). But then we arrive at

Obs(Ξ) =
[
d∇ζ

]
Ξ

Prop. 5.1.18
=


d∇̃λ

ζ̃λ


Ξ

Thm. 5.1.21
=

[
dΞζ̃λ

]
Ξ

= 0.

The equivalence to the last statement simply follows by using Prop. 5.1.14. ■

5.1.4. MackenzieŠs theory about extensions of tangent bundles

We now want to study when the obstruction is zero and when it implies the existence of a

Ćat Lie derivation law covering Ξ. To understand this, we need to understand why Mackenzie

studied this obstruction class. Mackenzie was interested into whether or not a Lie algebroid can

be extended by an LAB; we are going to state MackenzieŠs statements in the special situation

of having TN as the Lie algebroid. But the arguments and calculations do not really differ; in

the context of gauge theory we just need to study TN . Recall Def. 3.11.7 about extensions and

transversals; there will be now another Lie algebroid E besides the LAB K, and the anchor of

E we will denote by π instead of ρ to avoid confusion with ρ = 0 of K. This E is not the same

E as in the context of CYMH GT; the Lie algebroid for CYMH GT in this section is K as we

have introduced it.

To a given transversal we are able to deĄne a Lie derivation law covering some Lie algebroid

morphism Ξ : TN → Out(𝒟Der(K)).

Proposition 5.1.28: Lie derivation law of a transversal,

[3, §7.3, Proposition 7.3.2 and Lemma 7.3.3, replace A

with TN and A′ with E; page 278]

Let

K E TN.ι π

be an extension of TN by an LAB K → N , and let χ be any transversal. Then a

connection ∇χ on K, given by

ι(∇χ
Y µ) = [χ(Y ), ι(µ)]E (5.22)

for all Y ∈ X(N) and µ ∈ Γ(K), describes a Lie derivation law covering some Lie

algebroid morphism Ξ : TN → Out(𝒟Der(K)).

Proof.

Let us discuss why Eq. (5.22) is well-deĄned and giving rise to a vector bundle morphism

∇χ : TN → 𝒟(K). ι is an injective5 Lie algebroid morphism and embedding such that we

5This follows by the exactness of the given sequence.
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can identify K and ι(K) as LABs; since the kernel of π is given by the image of ι we know

that any element ξ ∈ Γ(E) with π(ξ) = 0 is also an element of Γ(ι(K)) and has, thus, a 1:1

correspondence in Γ(K) given by ι−1(ξ). Due to that π is a homomorphism of of Lie brackets

and by π ◦ ι = 0, we have

π([χ(Y ), ι(µ)]E) = 0

for all Y ∈ X(N) and µ ∈ Γ(K). It follows that the right hand side of Eq. (5.22) deĄnes an

element of Γ(K). Hence, it is valid to deĄne ∇χ
Y as some map on Γ(K) by using Eq. (5.22) for

all Y ∈ X(N). Additionally, for all Y,Z ∈ X(N), µ, ν ∈ Γ(K), f, h ∈ C∞(N) and α, β ∈ R we

have

ι
(
∇χ
fY+hZµ


= [χ(fY + hZ), ι(µ)]E

= [fχ(Y ) + hχ(Z), ι(µ)]E

π◦ι=0
= f [χ(Y ), ι(µ)]E + h [χ(Z), ι(µ)]E

= ι(f∇χ
Y µ+ h∇χ

Zµ),

also

ι
(
∇χ
Y (αµ+ βν)

)
= [χ(Y ), ι(αµ+ βν)]E = α[χ(Y ), ι(µ)]E + β[χ(Y ), ι(ν)]E = ι(α∇χ

Y µ+ β∇χ
Y ν),

and

ι(∇χ
Y (fµ)) = [χ(Y ), fι(µ)]E

π◦χ=1TN= f ι(∇χ
Y µ) + ℒY (f) ι(µ) = ι(f ∇χ

Y µ+ ℒY (f) µ).

Moreover,

ι(∇χ
Y ([µ, ν]K)) = [χ(Y ), ι([µ, ν]K)

︸ ︷︷ ︸
=[ι(µ),ι(ν)]E

]E

= [[χ(Y ), ι(µ)]E , ι(ν)]
E

+ [ι(µ), [χ(Y ), ι(ν)]E ]
E

= [ι(∇χ
Y µ), ι(ν)]

E
+ [ι(µ), ι(∇χ

Y ν)]
E

= ι
(
[∇χ

Y µ, ν]
K

)
+ ι
(
[µ,∇χ

Y ν]
K

)

= ι
(
[∇χ

Y µ, ν]
K

+ [µ,∇χ
Y ν]

K

)

using the Jacobi identity for [·, ·]E . Thence, ∇χ is a Lie derivation law. By Thm. 5.1.12 we are

left showing whether ♯ ◦R∇χ = 0,

ι(R∇χ(Y,Z)µ) = [χ(Y ), [χ(Z), ι(µ)]E ]
E

− [χ(Z), [χ(Y ), ι(µ)]E ]
E

− [χ([Y, Z]), ι(µ)]E

231



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

= [[χ(Y ), χ(Z)]E , ι(µ)]
E

− [χ([Y,Z]), ι(µ)]E

= [[χ(Y ), χ(Z)]E − χ([Y,Z])
︸ ︷︷ ︸

=Rχ(Y,Z)

, ι(µ)]E

= [Rχ(Y,Z), ι(µ)]E , (5.23)

using again the Jacobi identity for [·, ·]E and that ι is a Lie algebroid morphism, where Rχ is

the curvature of χ as deĄned in Def. 3.1.7, which is a tensor by Lemma 3.1.12 and by the fact

that χ is a transversal, that is, χ is anchor-preserving. Observe

π(Rχ(Y,Z)) = [(π ◦ χ)(Y ), (π ◦ χ)(Z)] − (π ◦ χ)([Y,Z])
π◦χ=1TN= 0,

using that π is a Lie algebroid morphism. Therefore Rχ(Y, Z) ∈ ι(K) for all Y,Z ∈ X(N), and,

so, Eq. (5.23) implies

R∇χ(Y,Z) =
(
ad ◦ ι−1


(Rχ(Y,Z)) (5.24)

using that ι is an injective Lie algebroid morphism. By (5.13) we get ♯ ◦ R∇χ = 0, and the

statement follows. ■

Furthermore, the pairing covered by ∇χ is the same for all transversals χ.

Corollary 5.1.29: All transversals results into the same covered pairing,

[3, §7.3, comment after Lemma 7.3.3, replace A with TN

and A′ with E; page 278]

Let

K E TN.ι π

be an extension of TN by an LAB K → N , and let χ and χ′ be two transversals.

Then

♯ ◦ ∇χ = ♯ ◦ ∇χ′

.

Proof.

Since χ and χ′ are transversals we get

π ◦
(
χ(Y ) − χ′(Y )

)
= Y − Y = 0,

for all Y ∈ X(N), such that, again by the exactness of the sequence, there is a µ(Y ) ∈ Γ(K)

with χ(Y )−χ′(Y ) = ι(µ(Y )). Due to the C∞-linearity of the transversals we even have a vector

bundle morphism µ : TN → K such that

χ− χ′ = ι ◦ µ,
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such that

∇χ
Y ν

Eq. (5.22)
= [χ(Y ), ι(ν)]E =

[
χ′(Y ), ι(ν)

]
E

+ [ι(µ(Y )), ι(ν)]E︸ ︷︷ ︸
=ι([µ(Y ),ν]K)

= ι
(
∇χ′

Y ν + [µ(Y ), ν]K



for all Y ∈ X(N) and ν ∈ Γ(K). Therefore

∇χ = ∇χ′

+ ad ◦ µ,

thus, by (5.13),

♯ ◦ ∇χ = ♯ ◦ ∇χ′

.

■

This immediately leads to the following deĄnition.

DeĄnition 5.1.30: Pairing induced by an extension,

[3, §7.3, DeĄnition 7.3.4, replace A with TN and A′ with E;

page 278]

Let

K E TN.ι π

be an extension of TN by an LAB K → N , and let χ be any transversal.

Then the pairing Ξext := ♯ ◦ ∇χ : TN → Out(𝒟Der(K)) is the pairing of TN with K

induced by the extension.

Finally we can state what Mackenzie has shown about the obstruction class.

Theorem 5.1.31: Obstruction of an extension,

[3, §7.3, Proposition 7.3.6, page 279, Corollary 7.3.9 and the

comment afterwards, page 281; replace A with TN and A′

with E]

Let (K,Ξ) be a pairing of TN .

Then there is an extension

K E TNι π

of TN by K such that Ξext = Ξ if and only if Obs(Ξ) = 0 ∈ ℋ
3
(
TN, dΞ, Z(K)


.

Moreover, given such an extension, then for all Lie derivation laws ∇ covering Ξ there is

a transversal χ such that

∇ = ∇χ.
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Proof.

We only give a sketch; for the full proof please see the reference. We especially need the part

of the proof starting with a zero obstruction class. Given a zero obstruction class, Ąx a Lie

derivation law ∇ covering Ξ, and let ζ be any element of Ω2(N ;K) that satisĄes compatibility

condition (5.2) with respect to ∇. First, additionally following [3, Proposition 7.2.13; page 277],

that is, Obs(Ξ) = 0 implies that there is an h ∈ Ω2(N ;Z(K)) with

d∇ζ = dΞh
Thm. 5.1.21

= d∇h,

then deĄne ζ ′ := ζ − h such that clearly d∇ζ ′ = 0. Observe,

R∇
(5.2)
= ad ◦ ζ = ad ◦ ζ ′.

DeĄne

E := TN ⊕K

be the vector bundle given as the Whitney sum of K and TN . The anchor is just the projection

onto the Ąrst factor, and deĄne the bracket by

[(Y, ν), (Z, µ)]E :=
(
[Y, Z], [ν, µ]K + ∇Y µ− ∇Zν − ζ ′(Y, Z)

)

for all (Y, ν), (Z, µ) ∈ E. It is trivial to check that the Leibniz rule is with respect to the chosen

anchor, bilinearity and antisymmetry are also clear. Hence, one essentially needs to check the

Jacobi identity: This is a straightforward calculation resulting into a big sum. All the terms will

cancel each other by the Jacobi identity of [·, ·]K ; and there will be terms where ∇ will act on

the Lie bracket and terms where adjoints act on ∇ such that these cancel each other by using

that ∇ has values in 𝒟Der(K); moreover, one also gets clearly the curvature of ∇ and adjoints

of ζ ′ which will cancel the curvature terms by R∇ = ad ◦ ζ ′; Ąnally, there are also terms where

∇ acts on ζ ′ and ζ ′ is contracted in one factor with terms like [Y, Z], and all these terms will

result into d∇ζ ′ which is zero by construction. Hence, Jacobi identity will be given and, thus, a

Lie algebroid structure.

For the other direction, that is, now assume that we have an extension with Ξext = Ξ, one

Ąrst shows that there is a transversal χ with ∇χ = ∇; this is as in the proof of [3, Proposition

7.3.6; page 279], and we also omit the notation of ι now again, assuming the standard inclusion,

for simplicity in the notation. For any transversal χ′ we have ♯ ◦ ∇ = ♯ ◦ ∇χ′

due to Ξ = Ξext,

that leads to that there is a Ąeld redeĄnition by Prop. 5.1.14 with λ ∈ Ω1(N ;K) such that

∇ = ∇χ′

+ ad ◦ λ = ad ◦
(
χ′ + λ

)
= ∇χ,

using the deĄnition of connections like ∇χ′

, where χ := χ′ + λ and ad is of course using the Lie

bracket of E, possibly restricting onto the bracket of K. Recall Def. 3.1.7, by the calculation of

Eq. (5.23) we have

R∇ = R∇χ = ad ◦Rχ,
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hence, Rχ is a possible primitive (which is how we actually called ζ), satisfying compatibility

condition (5.2) with respect to ∇. We want to calculate d∇χ
Rχ in order to study Obs(Ξ), so,

(
d∇χ

Rχ

(X,Y, Z) = ∇χ

X

(
Rχ(Y, Z)

)
︸ ︷︷ ︸
=[χ(X),Rχ(Y,Z)]E

−∇χ
Y

(
Rχ(X,Z)

)
+ ∇χ

Z

(
Rχ(X,Y )

)

−Rχ([X,Y ], Z) +Rχ([X,Z], Y ) −Rχ([Y,Z], X)

= σ
(
[χ(X), [χ(Y ), χ(Z)]E ]

E
−
[
χ(X), χ

(
[Y,Z]

)]
E

−
[
χ
(
[X,Y ]

)
, χ(Z)

]
E

+ χ
(
[X,Y ], Z

)

= 0

for all X,Y, Z ∈ X(N), where σ denotes the cyclic sum through X,Y, Z and where we used the

Jacobi identity of [·, ·] and [·, ·]E . Thus, trivially Obs(Ξ) = 0. ■

By Cor. 5.1.27 we see that the question about whether there is a Ąeld redeĄnition in sense of

5.1.5 to arrive at a pre-classical gauge theory, i.e. when ∇ is Ćat, is related to the existence of

an extension of TN by K.

When we are just interested into local behaviours then we might assume thatN is contractible.

Theorem 5.1.32: Extensions over contractible manifolds,

[3, §8.2, Theorem 8.2.1, replace A with E, L with K and TM

with TN ; page 314ff.]

Let

K E TN.ι π

be an extension of TN by an LAB K over a contractible manifold N . Then there is a Ćat

Lie derivation law covering ΞExt.
a

aMackenzie stated that E admits a Ćat connection, with that they actually mean that it is a Ćat Lie

derivation law covering ΞExt.

Proof.

The proof of this theorem is very long and needs a lot of preparation, therefore this would sadly

exceed this work; thence, see the reference of this statement. The essential idea is that this is

the generalization of the inĄnitesimal analogue about that a principal bundle admits a global

section over a contractible base. MackenzieŠs proof is about generalizing the proof of principal

bundles where the base is contracted and homotopy classiĄcation of bundles is used. In order to

do something similar, Mackenzie introduces a certain cohomology theory in [3, §7; page 257ff.];

in parts we already introduced the basics for it. ■
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5.1.5. Results

In total we derive therefore the following two statements, the Ąrst can be seen as a generalization

of Cor. 5.1.16.

Theorem 5.1.33: Local existence of pre-classical gauge theory

Let (K,Ξ) be a pairing of TN over a contractible manifold N , and let ∇ be a Ąxed Lie

derivation law covering Ξ.

Then we have a Ąeld redeĄnition in sense of 5.1.5 making ∇ Ćat, i.e. there is a λ ∈

Ω1(N ;K) such that ∇̃λ is Ćat.

Proof.

We only need to show that Obs(Ξ) =
[
d∇ζ

]
Ξ

= 0, where ζ ∈ Ω2(N ;K) such that compatibility

condition (5.2) is satisĄed. As given in Thm. 5.1.21 the central representation dΞ of Ξ is basically

d∇Z(K)
where ∇Z(K) is ∇ restricted on the subbundle Z(K), and we have shown that ∇Z(K) is

Ćat by compatibility condition (5.2). Due to the fact that N is contractible, we have a global

parallel frame (ea)a for Z(K) with respect to ∇Z(K).

By Prop. 5.1.19 we have d∇ζ ∈ Ω3(N ;Z(K)), thence, we can write d∇ζ = ωa ⊗ ea with

ωa ∈ Ω3(N). We arrive at

dΞd∇ζ = dωa ⊗ ea,

where d is the standard de-Rham differential. So, the differential breaks down to the standard

differential in each component, especially closedness and exactness mean to be closed and exact

in each component with respect to (ea)a, respectively. By Lemma 5.1.23 we have dΞd∇ζ = 0,

thus, dωa = 0. Again due to that N is contractible, we can conclude that closedness implies

exactness by the Poincaré lemma. Thence, Obs(Ξ) = 0.

By Thm. 5.1.31 we have an extension

K E TN.ι π

such that Ξext = Ξ, and, hence, a Ćat Lie derivation law covering Ξ by Thm. 5.1.32. By

Prop. 5.1.14 the existence of the Ąeld redeĄnition to a Ćat derivation law covering Ξ follows. ■

Theorem 5.1.34: Possible new and curved gauge theories on LABs

Let (K,Ξ) be a pairing of TN with Obs(Ξ) ̸= 0 and such that the Ąbre Lie algebra g

admits an ad-invariant scalar product.

Then we can construct a CYMH GT for which there is no Ąeld redeĄnition with what it

would become pre-classical.

Proof.

Take any Lie derivation law ∇ covering Ξ (recall the second paragraph of Remark 5.1.13 about
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the existence of ∇ for a given Ξ). By Thm. 5.1.12 this connection satisĄes compatibility con-

ditions (5.1) and (5.2). Together with the existence of an ad-invariant scalar product we have

everything what we need to construct a CYMH GT in sense of 5.1.3.

Due to Obs(Ξ) ̸= 0 and Cor. 5.1.27 the statement follows. ■

Hence, we have shown that Obs(Ξ) is not just an obstruction for extensions of TN , it also

leads to an obstruction for the question about whether or not a CYMH GT can be transformed

to a pre-classical gauge theory by a Ąeld redeĄnition. However, Mackenzie also has shown that

there are examples with zero obstruction class but without a Ćat Lie derivation law covering the

pairing. Thus, there is in general only for contractible N an equivalence of Obs(Ξ) = 0 and the

existence of Ćat Lie derivation laws covering a pairing.

Example 5.1.35: The isotropy of a Hopf Ąbration,

[3, Example 7.3.20; page 287]

• Let P be the Hopf Ąbration

SU(2) S7

S4

Then for the adjoint bundle

K := P ×SU(2) su(2) :=
(
S

7 × su(2)
/

SU(2)

we have the Atiyah sequence

K E := TP
/

SU(2) TS4.ι π

of TS4 by K. We can view this sequence as an extension.

Then Obs(ΞExt) = 0 because of the fact that K is semisimple, but there is no Ćat deriva-

tion law, especially no Ćat derivation law covering ΞExt.

• We are not going to prove this, because introducing Atiyah sequences etc. would cer-

tainly exceed this work, since we will not need these notions in the following again. Hence,

see the reference for the proof; for the deĄnition of Atiyah sequences see [3, §3.1 and §3.2;

page 86ff.]. The main idea about the deĄnition of Atiyah sequences however is to observe

that the Lie group behind the deĄnition of a principal bundle P
p

→ N , N a smooth mani-

fold, also acts on TP by the differential of left- (or right-) multiplication. Due to how the

Lie group acts on P it is trivial to see that it also restricts to an action on the vertical

bundle, which is isomorphic to P × g since its trivialization are the induced fundamental

vector Ąelds. Dp projects TP onto TS4 and the vertical bundle is its kernel; one can show

that this is preserved by the chosen quotients over the Lie group action. This leads to

such short exact sequences, the Atiyah sequences.
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• In case you do not know the construction of this Hopf bundle, see e.g. [4, Example

4.2.14; page 214ff.]; the construction is basically that we view S7 as unit octonions and

SU(2) ∼= S3 as unit quaternions, an action of S3 on S7 is then canonically given. Taking

the quotient of S7 over S3 is precisely the quaternionic projective line which is isomorphic

to S4.

• As other Hopf Ąbrations, this Hopf Ąbration is not trivial. Hence, the idea of the proof

is to show that a Ćat Lie derivation law covering Ξext would imply a trivialization of

this Hopf Ąbration. A sketch: First observe that the adjoint of E of any section of E

induces an element of 𝒟Der(K) if restricted onto K; due to that K is the kernel of EŠs

anchor, this even deĄnes an E-connection on K. Since su(2) is semisimple this induces

an isomorphism E → 𝒟Der(K). Then one can argue that a Ćat Lie derivation law would

induce a Ćat connection on the Hopf bundle; S4 is simply connected such that this implies

a trivialization of this Hopf bundle. Which would be clearly a contradiction.

Remark 5.1.36: Hopf bundle as an example for CYMH GT

The Ąbre of K is given by su(2), and, thence, the existence of an ad-invariant scalar

product is given. Therefore this gives an example of a CYMH GT as in 5.1.3 by taking

any Ąbre metric κ on K which restricts to an ad-invariant scalar product on each Ąbre, and

taking any Lie derivation law ∇ covering ΞExt, and, so, the existence of a ζ ∈ Ω2(N ;K) as

in compatibility condition (5.2) is given. By Prop. 5.1.14 this example shows that there

is no Ąeld redeĄnition as in 5.1.5 such that this gauge theory would become pre-classical.

In [20] is a relationship of two-qubit systems, as arising in quantum computational sci-

ence, and precisely this Hopf Ąbration shown. This may or may not prove any physical

signiĄcance of this example. At least it may give hints towards a further study related to

this example.

Remarks 5.1.37.

Observe that a trivial semisimple LAB would not work: Fix any global frame (ea)a of the trivial

LAB, then we would have ∇ea = [λ, ea]K for a λ ∈ Ω1(N ;K) because all bracket derivations

are inner derivations for semisimple Lie algebras; for this, simply view the connection 1-forms

ωba, given by ∇ea = ωba ⊗ eb, as matrices acting on constant (w.r.t. (ea)a) sections. Then ∇̃λ

would be Ćat, and its parallel frame is e.g. given by (ea)a. This argument just depends on the

triviality of the LAB, regardless whether the base is contractible or not. The obstruction class

is of course always trivial for semisimple LABs because their centre is zero.

5.1.6. Existence of non-vanishing primitives stable under the Ąeld redeĄnition

When one is interested into perturbation theory, especially just in a local theory, then Thm. 5.1.33

seems to show that locally one can not hope for new gauge theories, especially ones related to

non-Ćat ∇. However, we still have the two-form ζ. We can transform every CYMH GT locally
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to pre-classical ones by Thm. 5.1.33, but not always to classical ones as we are now going to see.

Theorem 5.1.38: Existence of LABs giving rise to non-classical gauge theories

Let K → N be an LAB , ∇ a connection satisfying compatibility conditions (5.1) and (5.2)

with respect to a given ζ ∈ Ω2(N ;K) such that d∇ζ ̸= 0.

Then there is no λ ∈ Ω1(N ;K) as in 5.1.5 such that ζ̃λ = 0.

Proof.

We have a 2-form ζ ∈ Ω2(N ;K) such that

d∇ζ ̸= 0.

By Prop. 5.1.18 we have d∇̃λ
ζ̃λ = d∇ζ for all λ ∈ Ω1(N ;K). When there would be a Ąeld

redeĄnition leading to a classical gauge theory, then ζ̃λ = 0 but then also d∇̃λ
ζ̃λ = 0. Thence,

by d∇ζ ̸= 0 the statement follows. ■

Starting with a standard Yang-Mills gauge theory with an additional free physical Ąeld Φ

with a Lagrangian similar to the Higgs Ąeld, we have a canonical construction when the centre

of the Lie algebra is non-trivial.

Corollary 5.1.39: Canonical construction of non-classical gauge theories

Let g be a Lie algebra with non-zero centre and admitting an ad-invariant scalar product.

Also let (N, g) be any Riemannian manifold with at least three dimensions, and K = N×g

be a trivial LAB over N , equipped with the canonical Ćat connection ∇ and a metric κ

which restricts to an ad-invariant scalar product on each Ąbre.

Then there is a ζ ∈ Ω2(N ;Z(K)) in sense of 5.1.3, with d∇ζ ̸= 0, such that this set-up de-

scribes a non-classical CYMH GT with respect to an arbitrary spacetime M . Additionally,

there is no λ ∈ Ω1(N ;K) as in 5.1.5 such that ζ̃λ = 0.

Proof.

By the assumptions we have everything we need to formulate a YMH GT for a given spacetime

M , following 5.1.3; by Thm. 4.3.41 compatibility condition (5.1) follows. For compatibility

condition (5.2) just take any element of Ω2(N ;Z(K)), denoted as ζ, then this condition is

trivially satisĄed because ∇ is Ćat and ζ only has values in the centre of K.

Since N is three-dimensional and Z(K) is non-zero, we can then conclude the existence of

d∇ζ ̸= 0. For this recall that d∇ζ is still a centre-valued form by Prop. 5.1.19 and that d∇ is

then just the differential dΞ for Ξ := ♯◦∇ as in Thm. 5.1.21. Therefore we only need to take any

non-dΞ-closed centre-valued form ζ, of which there are plenty. The non-existence of a λ with

ζ̃λ = 0 then follows by Thm. 5.1.38. ■
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5.1.7. The Bianchi identity of the new Ąeld strength

We conclude this paper with an interpretation of d∇ζ, and for this we need to calculate the

Bianchi identity of the Ąeld strength. Hence, we need to understand how Φ∗∇ behaves.

Proposition 5.1.40: Pull-Back of a Lie derivation law covering a pairing

Let K → N be an LAB, equipped with a connection ∇ satisfying compatibility condi-

tion (5.1); also let M be another smooth manifold and Φ : M → N a smooth map. Then

Φ∗∇ also satisĄes compatibility condition (5.1) with respect to Φ∗K.

When ∇ satisĄes compatibility condition (5.2) with respect to a ζ ∈ Ω2(N ;K), not neces-

sarily assuming (5.1), then this extends to Φ∗K, too, i.e.

RΦ∗∇ = ad∗ ◦ Φ!ζ, (5.25)

viewing the curvature as an element of Ω2(M ; End(Φ∗K)) and ad∗ denotes the adjoint of

Φ∗K.

Remarks 5.1.41.

By Thm. 5.1.12, we get that the pull-back of a Lie derivation law of K covering the Lie algebroid

morphism ♯ ◦ ∇ is a Lie derivation law of Φ∗K covering the Lie algebroid morphism ♯ ◦ Φ∗∇.

Proof.

• We can show

Φ∗∇ ([Φ∗µ,Φ∗ν]Φ∗K)
︸ ︷︷ ︸

= Φ∗([µ,ν]K)

Eq. (A.10)
= Φ!(∇([µ, ν]K))

Eq. (5.1)
= Φ!([∇µ, ν]K + [µ,∇ν]K)

Eq. (A.6)
=

[
Φ!(∇µ),Φ∗ν

]
Φ∗K

+
[
Φ∗µ,Φ!(∇ν)

]
Φ∗K

Eq. (A.10)
= [(Φ∗∇)(Φ∗µ),Φ∗ν]Φ∗K + [Φ∗µ, (Φ∗∇)(Φ∗ν)]Φ∗K

for all µ, ν ∈ Γ(K). Since pull-backs of Γ(K) generate Γ(Φ∗K) and since (5.1) is a tensorial

equation, we can derive that Φ∗∇ also satisĄes compatibility condition (5.1) with respect to the

LAB Φ∗K.

• Now let ∇ satisfy compatibility condition (5.2), and recall that in general curvatures satisfy

R∇(·, ·)ν = R∇ν =
(
d∇
2
ν ∈ Ω2(N ;K)

for all ν ∈ Γ(K) (see also [4, §5, third part of Exercise 5.15.12; page 316]). Then apply Eq. (A.2)

to get

RΦ∗∇(Φ∗ν) =
(
dΦ∗∇

2
(Φ∗ν) = Φ!

(
d∇
2
ν


Eq. (5.2)

= Φ!([ζ, ν]K)
Eq. (A.6)

=
[
Φ!ζ,Φ∗ν

]
Φ∗K

,
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such that RΦ∗∇ = ad∗◦Φ!ζ follows, by using again that pull-backs of Γ(K) generate Γ(Φ∗K). ■

Using this we calculate the Bianchi identity for the Ąeld strength G.

Theorem 5.1.42: Bianchi identity of the Ąeld strength

Let M and N be smooth manifolds, K → N an LAB, Φ ∈ C∞(M ;N), and ∇ a connection

satisfying compatibility conditions (5.1) and (5.2) with respect to a given ζ ∈ Ω2(N ;K).

Then

dΦ∗∇(G(Φ, A)
)

+ [A ∧, G(Φ, A)]Φ∗K = Φ!
(
d∇ζ


, (5.26)

where

G(Φ, A) = dΦ∗∇A+
1

2
[A ∧, A]Φ∗K + Φ!ζ

was the Ąeld strength.

Remarks 5.1.43.

This clearly generalizes the standard Bianchi identity for Ąeld strengths as in Thm. 2.3.4: Take

a trivial LAB K equipped with its canonical Ćat connection and ζ ≡ 0. Then we arrive at the

typical Bianchi identity. In general, we get dΦ∗∇G+[A ∧, G]Φ∗K = 0 if d∇ζ = 0, which resembles

strongly the standard Bianchi identity, but covariantized. Hence, we say that G satisĄes the

Bianchi identity if and only if dΦ∗∇G+ [A ∧, G]Φ∗K = 0.

Proof.

The calculation is similarly to the standard calculation of the standard formulation of the Bianchi

identity as in [4, §5, Theorem 5.14.2; page 311], making use of compatibility condition (5.1)

needed for Eq. (A.11). We have, viewing the curvatureRΦ∗∇ as an element of Ω2(M ; End(Φ∗K)),

(
dΦ∗∇

2
A = RΦ∗∇ ∧A

Eq. (5.25)
=

(
ad∗ ◦ Φ!ζ


∧A

Eq. (A.5)
=

[
Φ!ζ ∧, A

]
Φ∗K

Eq. (A.7)
= −

[
A ∧, Φ!ζ

]
Φ∗K

,

dΦ∗∇([A ∧, A]Φ∗K)
Eq. (A.11)

=
[
dΦ∗∇A ∧, A

]
Φ∗K

−
[
A ∧, dΦ∗∇A

]
Φ∗K

Eq. (A.7)
= −2

[
A ∧, dΦ∗∇A

]
Φ∗K

,

[A ∧, [A ∧, A]Φ∗K ]Φ∗K

Eq. (A.8)
= 0,

dΦ∗∇
(
Φ!ζ


Eq. (A.2)

= Φ!
(
d∇ζ


,

and, using all of these, we arrive at

dΦ∗∇(G(Φ, A)
)

+ [A ∧, G(Φ, A)]Φ∗K

Def. (5.3)
= Φ!

(
d∇ζ


.

■
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Thence, d∇ζ measures the failure of the Bianchi identity of the Ąeld strength G. For example,

applying Cor. 5.1.39 to the Yang-Mills gauge theory of electromagnetism, i.e. the Lie algebra is

given by g = u(1), would result into a gauge theory where there is no (vector) potential of the

Ąeld strength as usual, so, G could not be written as d∇Â for some Â ∈ Ω1(N ; Φ∗K).6 This

concludes our discussion about LABs in the context of CYMH GTs.

5.2. Tangent bundles

Let us look at the next extreme of possible Lie algebroids: The tangent bundles themselves.

5.2.1. General situation

Let us quickly summarize what we need for tangent bundles in the context of CYMHG GT.

Situation 5.2.1: Compatibility conditions for tangent bundles

We now have E = TN , and, thus, the Lie bracket is just the typical one for vector

Ąelds. The anchor is the identity on TN , ρ = 1TN . Therefore there is now a coupling

between the Ąelds of gauge bosons and the Higgs Ąeld; however, since tangent bundles are

transitive Lie algebroids, there is no transversal structure, hence, no Higgs bosons, only

Nambu-Goldstone bosons if assuming a classical structure.a Thus, also now we still have

no real Higgs effect.

Both basic connections clearly now coincide, especially we have for a connection ∇ on E,

∇bas
Y Z = [Y,Z] + ∇ZY

for all Y, Z ∈ X(N), so, ∇bas is also a vector bundle connection and has a 1:1 correspon-

dence with ∇. The compatibility condition (4.146) reduces to

R∇bas = 0 (5.27)

by Prop. 3.7.6, hence, ∇bas shall be a Ćat connection as compatibility condition.

The other compatibility conditions do not really change their form. However, we assume

for simplicity that the Ąbre metric κ on E and Riemannian metric g on TN coincide,

such that the number of compatibility conditions is reduced by one; thus, we only have

compatibility condition related to the metrics

∇basg = 0. (5.28)

Moreover, for a gauge invariance of the theory we need ζ ∈ Ω2(N ;E) such that

R∇ = −d∇bas
ζ. (5.29)

6Recall that d∇ is a differential since ∇ is Ćat in that situation.

242



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

That a ζ exists in this situation we already know by Thm. 4.8.4 and Cor. 3.6.3 that ζ = t∇

is a solution of this compatibility condition; this also implies that ∇. Choosing that ζ,

what we do, means that we only have two compatibility conditions. Essentially we only

need to construct a Ćat metric connection ∇bas, and due to the 1:1 correspondence to

∇ we have then everything needed for a CYMH GT as in Thm. 4.7.5, modulo the potential

which is not important for the discussion since we always assume that a suitable potential

is given.

Every other structure needed for a CYMHG GT still looks the same in its form. Hence,

we will now not recall the Ąeld strength and the Lagrangian as we did for LABs.

aRecall, that the components of the Higgs Ąeld along the orbits are the Nambu-Goldstone bosons which

can often be Ťgauged awayŤ by the unitary gauge, thus, not relevant for the Higgs effect; see [4, §8;

page 445ff.].

Remarks 5.2.2.

We used a lot of exterior covariant derivatives in the past, especially we had two degrees in

forms like Ωp,q(N,E;E) (p, q ∈ N0), hence, a degree with respect to both TN and E. Now

both bundles coincide, but for the purpose of calculating with such forms it is still important to

distinguish them. For example the combatibility condition about ζ ∈ Ω2(N ;E) ∼= Ω2,0(N,E;E)

reads

(
d∇bas

ζ

(X,Y, Z) = ∇bas

Z

(
ζ(X,Y )

)
− ζ

(
∇bas
Z X,Y


− ζ

(
X,∇bas

Z Y


for all X,Y, Z ∈ X(N), but Ťonly Z as a section of EŤ. If we view all three arguments as sections

of E, that is, ζ as an element of Ω2(E;E) ∼= Ω0,2(N,E;E), we would get instead that

(
d∇bas

ζ

(X,Y, Z) = ∇bas

X

(
ζ(Y,Z)

)
− ∇bas

Y

(
ζ(X,Z)

)
+ ∇bas

Z

(
ζ(X,Y )

)

− ζ
(
[X,Y ], Z

)
+ ζ

(
[X,Z], Y

)
− ζ

(
[Y, Z], X

)
,

which is clearly different. Hence, it is still important to distinguish between TN as the Lie

algebroid E and as tangent bundle TN . However, in that case, for ζ ∈ Ω2(N ;E) we know that

d∇bas
ζ = ∇basζ,

and the right hand side would be in alignment with both interpretations of ζ as form.

For the Ąeld redeĄnition there is not much to say additionally, besides that for λ ∈ Ω1(N ;E)

we have Λ = 1E − λ = Λ̂. There are important results with respect to whether we have a

(pre-)classical gauge theory.
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Corollary 5.2.3: Pre-classical theories have constant torsion

Let N be a smooth manifold, equipped with a connection ∇ on E := TN with vanishing

basic curvature. Then there is a λ ∈ Ω1(N ;E) such that ∇̃λ is Ćat if and only if there is

a λ ∈ Ω1(N ;E) such that t(
∇̃λ
)bas = −t

∇̃λ is constant with respect to
(
∇̃λ
bas

, that is,

(
∇̃λ
bas

t(
∇̃λ
)bas = 0. (5.30)

Remarks 5.2.4.

Recall Cor. 3.6.7; in the case of a Ćat ∇ρ = ∇ (or its Ąeld redeĄnition) its torsion would be

another Lie bracket on E, but tensorial.

Proof of Cor. 5.2.3.

That quickly follows by Cor. 3.6.6, using the vanishing of the basic curvature which is here

equivalent to that ∇bas is Ćat, i.e.

R∇ = ∇bast∇bas ,

hence, ∇ is Ćat if and only if ∇bast∇bas = 0. By Thm. 4.7.13 and its remark afterwards the

vanishing of the basic curvature is preserved, hence,

R
∇̃λ =

(
∇̃λ
bas

t(
∇̃λ
)bas .

Hence, the statement follows immediately. ■

Of special importance is the next theorem.

Theorem 5.2.5: Certain classical CYMH GTs are Lie groups,

[13, §3.1 and the references therein] and [6, Comment after

Proposition 2.12]

Let N be a smooth compact and simply connected manifold, and assume we have a con-

nection ∇ on E := TN such that ∇ is Ćat and has vanishing basic curvature. Then N is

diffeomorphic to a Lie group.

Sketch of the proof for Thm. 5.2.5.

We only give a sketch of the proof, see the references for all details. First of all, as we already

discussed, the vanishing of the basic curvature and the fact that N is simply connected imply

there is an isomorphism to an action Lie algebroid N × g, g a Lie algebra, such that ∇ is its

canonical Ćat connection by Thm. 4.3.41. Then deĄne ω ∈ Ω1(N ; g) by the composition of

the given isomorphism7 TN → N × g and the projection onto the second factor N × g → g.

ωp : TpN → g is then clearly an isomorphism of vector spaces for all p ∈ N ; such forms are also

7We will use this isomorphism all the time in the following, without further extra notation.
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equivalent to absolute parallelisms, a trivialization of the tangent bundle, because specifying

such a form gives clearly a trivialization (also in the case if g is just a vector space).

The idea is that the parallel frames of ∇ will be left-invariant vector Ąelds of a Lie group. Let

us denote the parallel frame of ∇ by (ea)a, which is also a constant frame of N × g, making it

obvious why that frame will be the left-invariant vector Ąelds (their generators); it is global due

to the fact that N is simply connected. So, ∇ea = 0 and let us study

(dω)(X,Y ) =
(
d∇ω


(X,Y ) = ∇X

(
ω(Y )

)
− ∇Y

(
ω(X)

)
− ω([X,Y ])

for all X,Y ∈ X(N). In coordinates, especially for the constant frame, we have by deĄnition

ω(ν) = ν

for all constant ν ∈ Γ(N × g) ∼= X(N), thus,

(dω)(µ, ν) = −ω
(
[µ, ν]g



︸ ︷︷ ︸
const.

= −[µ, ν]g = −[ω(µ), ω(ν)]g = −


1

2
[ω ∧, ω]g


(µ, ν)

for all constant µ, ν ∈ Γ(N×g). Since this is a tensorial equation this holds for all sections/vector

Ąelds, so, the Maurer-Cartan equation is satisĄed. Hence, ω will be the Maurer-Cartan form,

inĄnitesimally decoding the Lie group structure related to the differential of the Left multiplica-

tion. The Maurer-Cartan equation is the integrability condition, that is, one can locally deĄne

an exponential, generating a Lie group structure locally.8 By compactness and conectedness one

can do this globally leading to that M is diffeomorphic to a Lie group integrating g. ■

Especially looking at manifolds which are not Lie groups can help to Ąnd CYMH GTs on

tangent bundle which are not pre-classical, also under the Ąeld redeĄnition.

5.2.2. Local picture

Having Thm. 5.2.5 in mind, one expects that tangent bundles as CYMH GT are locally always

a pre-classical CYMH GT.

Theorem 5.2.6: Tangent bundles are locally pre-classical as CYMH GT

Let N = R
n (n ∈ N0) be an Euclidean space as smooth manifold and ∇ a connection on

E := TN with vanishing basic curvature. Then there is a λ ∈ Ω1(N ;E) such that ∇̃λ is

Ćat.

Proof.

That will essentially follow by Cor. 5.2.3, we need to Ąnd a Ąeld redeĄnition such that

(
∇̃λ
bas

t(
∇̃λ
)bas = 0,

8The Maurer-Cartan equation as a Ťzero curvature conditionŤ encodes basically the inĄnitesimal information

about that there is a unique group element connecting two other group elements.
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so, ∇̃λ is Ćat if and only if t(
∇̃λ
)bas is constant w.r.t.

(
∇̃λ
bas

. As we have discussed in 5.2.1 we

know that there is a parallel frame (ea)a of E for ∇bas, globally deĄned since N = R
n, especially

simply connected. Then also

t∇bas(ea, eb) = − [ea, eb]E = −Ccab ec,

where Ccab are structure functions, and
(
∇bast∇bas


(ea, eb) = ∇bas (t∇bas(ea, eb)) = −∇bas( [ea, eb]E

)
= −d(Ccab) ⊗ ec.

When the structure functions are already constants weŠre done, otherwise we will now use the

transformation formulas in Def. 4.5.1. By Eq. (4.105) it is clear that ẽa := Λ(ea) deĄnes a

parallel frame for ∇̃bas and, thus, similarly
(

∇̃λ
bas

t̃(
∇̃λ
)bas


(ẽa, ẽb) = −

(
∇̃λ
bas(

[ẽa, ẽb]E
)

= −d
(
C̃cab


⊗ ẽc,

where C̃cab are the structure functions related to (ẽa)a. Thence, ∇̃λ is Ćat if and only if C̃cab are

constants.

Λ ∈ 𝒜𝓊𝓉(E) can be taken in such a way that (Λ(ea))a are global coordinate vector Ąelds ∂i,

because then

λ = 1TN − Λ

is a valid deĄnition for λ ∈ Ω1(N ;E). Using such a λ implies

[ẽa, ẽb]E = 0,

thus, C̃cab = 0. So, we have found a Ąeld redeĄnition to a Ćat connection by Cor. 5.2.3. ■

5.2.3. Unit octonions

By Thm. 5.2.5, we now show that there is an example for a CYMH GT by using a manifold

which is not a Lie group; of course we study the canonical example of such a manifold, the seven

dimensional sphere S7. S7 can be understood as the set of unit octonions. It would certainly

exceed the purpose of this thesis to discuss those in full detail, hence, we only introduce and

show parts of the basics needed for the proof such that one should be able to understand the

motivation and structure behind the following deĄnitions. See the following reference for a

thorough discussion. We will follow [4, §3.10, page 170ff.; Exercise 3.12.15, page 189f.; Example

4.5.10, page 229], using the exceptional Lie group G2 to deĄne octonions.

In this subsection let V := R
7, and we denote its standard Euclidean scalar product by ⟨·, ·⟩,

its orthonormal base by (ej)
7
j=1 and

(
wi
)7
i=1 its dual basis, i.e. wi(ej) = δij , the Kronecker delta.

We also deĄne a shorter notation for products of wi, for example

wij := wi ∧ wj ,

similar with more than two factors.
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DeĄnition 5.2.7: Multiplication form for octonions,

[4, DeĄnition 3.10.1; page 171]

We deĄne a 3-form ϕ ∈
∧3 V ∗ by

ϕ := w123 + w1 ∧
(
w45 + w67


+ w2 ∧

(
w46 − w57


− w3 ∧

(
w47 + w56


. (5.31)

This 3-form will essentially deĄne the multiplication table for octonions; but before we do so,

let us deĄne G2 for which we need a GL(7,R)-action on
∧k V ∗.

DeĄnition 5.2.8: GL(7,R)-action on
∧k V ∗,

[4, comment before DeĄnition 3.10.3]

We deĄne

(qα)(v1, . . . , vk) := α
(
q−1v1, . . . , q

−1vk


(5.32)

for all α ∈
∧k V ∗ (k ∈ N0), q ∈ GL(7,R), and v1, . . . , vk ∈ V , where q acts on V as usual

by the standard representation.

Using this notion, we can deĄne G2.

DeĄnition 5.2.9: Exceptional Lie group G2, [4, DeĄnition 3.10.3; page 171]

We deĄne the exceptional Lie group G2 as a subset of GL(7,R) by

G2 := ¶q ∈ GL(7,R) ♣ qϕ = ϕ♢ . (5.33)

Remarks 5.2.10.

G2 is clearly a subgroup of GL(7,R) as the isotropy of ϕ. As argued in [4], it is therefore also a

closed embedded Lie subgroup; furthermore, in [4, Corollary 3.10.7; page 173] it is also shown

that G2 is a compact embedded Lie subgroup of SO(7). That also implies that

⟨qx, qy⟩ = ⟨x, y⟩ (5.34)

for all x, y ∈ V and q ∈ G2. We will not prove this because because it is on one hand straighfor-

ward but a bit tedious to prove, and we assume that the exceptional Lie group G2 is a known

object for the reader.

DeĄnition 5.2.11: [4, DeĄnition 3.10.8; page 175]

Let us deĄne a map P : V × V → V by

⟨P (x, y), z⟩ := ϕ(x, y, z) (5.35)

for all x, y, z ∈ V .
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By deĄnition we get.

Proposition 5.2.12: Properties of P , [4, Proposition 3.10.9]

The map P is antisymmetric, bilinear and G2-equivariant, that is

q
(
P (x, y)

)
= P (qx, qy) (5.36)

for all q ∈ G2 and x, y ∈ V .

Proof.

Antisymmetry and bilinearity follow immediately by deĄnition. For the third property we use

that G2 ⊂ SO(7) and the deĄnition of G2, so,

⟨q
(
P (x, y)

)
, z⟩ =

〈
P (x, y), q−1z

〉
= ϕ

(
x, y, q−1z


= (qϕ)︸︷︷︸

=ϕ

(qx, qy, z) = ⟨P (qx, qy), z⟩

for all x, y, z ∈ V and q ∈ G2. ■

We will also need some additional technical result for P .

Lemma 5.2.13: Additonal properties of P ,

[4, Ąrst part of Exercise 3.12.16; page 190]

We have

P
(
x, P (x, y)

)
= −⟨x, x⟩y + ⟨x, y⟩x (5.37)

for all x, y ∈ V .

Sketch of proof for Lemma 5.2.13.

• Let x, y ∈ V . Then there is a q ∈ G2 such that

qx = x1e1, qy = y1e1 + y2e2

for some x1, y1, y2 ∈ R
2 (not necessarily the components of x and y, which is why the indices are

at lower position). This is given in [4, Ąrst part of Exercise 3.12.15; page 189]; we only give a

sketch of this part of the proof actually, see the references for all the calculations. First assume

that x and y are linear independent, then apply the Gram-Schmidt process to get orthonormal

vectors

x′ :=
x

♣♣x♣♣
, y′ :=

y − ⟨x′, y⟩x′

♣♣y − ⟨x′, y⟩x′♣♣
.

Let

V2

(
R

7


:=
{

(v1, v2)
∣∣∣ vi ∈ R

7, ⟨vi, vj⟩ = δij
}
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where i, j ∈ ¶1, 2♢; this is known as a certain Stiefel manifold, see for example [4, Example

3.9.1; page 168] for an introduction and discussion. We have (x′, y′), (e1, e2) ∈ V2
(
R

7
)
, and then

there is an element q ∈ G2 such that qx′ = e1 and qy′ = e2; this is given by [4, Theorem 3.10.15;

page 177], where it is shown that G2 acts transitively on V2
(
R

7
)

by q · (v1, v2) = (qv1, qv2) for

all q ∈ G2 and (v1, v2) ∈ V2
(
R

7
)
. With that we can derive

qx = q
(
♣♣x♣♣ x′) = x1e1,

qy = q
(
⟨x′, y⟩x′ +

∣∣∣∣y − ⟨x′, y⟩x′
∣∣∣∣ y′) = y1e1 + y2e2

where x1 := ♣♣x♣♣, y1 := ⟨x′, y⟩, y2 := ♣♣y − ⟨x′, y⟩x′♣♣. Hence, we have found the desired element

q ∈ G2; in case x and y are linear dependent and one element is unzero (it is a trivial task if

both are zero), one extends the non-zero element Ąrst to a basis of a 2-dimensional subspace of

R
7 and applies then the same argument as in the previous situation.

• We now want to Ąx such a q for a given pair x and y; it allows us to simplify the calculation

by reducing the involved dimensions, using the G2-equivariance of P . So,

⟨P (x, P (x, y)), z⟩ = ⟨qP (x, P (x, y)), qz⟩

= ⟨P (qx, qP (x, y)), qz⟩

= ⟨P (qx, P (qx, qy)), qz⟩

=
〈

(x1)2y2 P (e1, P (e1, e2)), qz
〉

=
〈

(x1)2y2 P (e1, e3), qz
〉

=
〈
−(x1)2y2e2 + (x1)2y1e1 − (x1)2y1e1, qz

〉

=
〈
− (x1)2(y1e1 + y2e2)︸ ︷︷ ︸

=⟨qx,qx⟩qy

+x1y1 x1e1︸ ︷︷ ︸
=⟨qx,qy⟩qx

, qz
〉

= −⟨x, x⟩⟨qy, qz⟩ + ⟨x, y⟩⟨qx, qz⟩

= ⟨−⟨x, x⟩y + ⟨x, y⟩x, z⟩

for all x, y, z ∈ V , using G2 ⊂ SO(7), the antisymmetry of P , and the deĄnition of ϕ to calculate

that

⟨P (e1, e2), v⟩ = ϕ(e1, e2, v) = v3

for all v ∈ V , such that P (e1, e2) = e3, and similarly one derives P (e1, e3) = −e2. Therefore

P (x, P (x, y)) = −⟨x, x⟩y + ⟨x, y⟩x.

■
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Now let us deĄne the octonions.

DeĄnition 5.2.14: Octonions, [4, third part of Exercise 3.12.15; page 189f.]

We deĄne the octonions O by

O := Re0 ⊕ V ∼= R
8, (5.38)

where Re0 denotes R emphasizing that e0 denotes a basis along that factor, and deĄne

an R-bilinear multiplication · on O by

e0 · e0 := e0, e0 · x := x · e0 := x, x · y := −⟨x, y⟩e0 + P (x, y), (5.39)

for all x, y ∈ V . Furthermore, let (·, ·) be the scalar product on O sucht that (ea)
7
a=0 is

its orthonormal basis.

Remarks 5.2.15.

As one trivially sees and pointed out in [4, last part of Example 4.5.10; page 229], one has

e2
j = −e0

for all j ∈ ¶1, . . . , 7♢, using the antisymmetry of P .

With the norm ♣♣ · ♣♣ induced by (·, ·) one can show that O is a normed division algebra, but

· is not an associative multiplication, see e.g. [4, third and sixth part of Exercise 3.12.15; page

189f.]. This especially means that

♣♣z · w♣♣ = ♣♣z♣♣ ♣♣w♣♣

for all z, w ∈ O, and by deĄning the octonionic conjugation

z := x0e0 − x

for z = x0e0 + x, where x0 ∈ R and x ∈ V , one can show that

z · z = z · z = ♣♣z♣♣2 e0,

such that every non-zero octonion has a multiplicative inverse. Especially, the multiplication is

closed on the elements with norm 1, that is, for all z, w ∈ O ∼= R
8 with ♣♣z♣♣ = ♣♣w♣♣ = 1 we have

♣♣zw♣♣ = 1. S7 can be then interpreted as those octonions with unit norm, the unit octonions,

and henceforth it carries their non-associative algebra. It is a well-known fact that S7 does not

admit a Lie group structure, so, especially one cannot get rid of the non-associativity.

These properties are straightforward calculations and very well-known, hence, we are not

proving these explicitly, see the mentioned reference for example. But the non-associativity can

be quickly seen by (recall the end of the proof of Lemma 5.2.13 in order to see how to calculate

values of P ),

(e1 · e2) · e4 = P (e1, e2) · e4 = e3 · e4 = P (e3, e4) = −e7
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and

e1 · (e2 · e4) = e1 · P (e2, e4) = e1 · e6 = P (e1, e6) = e7,

hence, (e1 · e2) · e4 ̸= e1 · (e2 · e4), as also mentioned in [4, sixth part of Exercise 3.12.15; page

190].

S
7 is a parallelizable manifold. To see this we also need the following.

Proposition 5.2.16: Compatibility of the multiplication in O with (·, ·),

[4, motivated by Example 4.5.10; page 229]

We have

(ejz, w) = −(z, ejw) (5.40)

for all z, w ∈ O and j ∈ ¶1, . . . , 7♢.

Proof.

For z, w ∈ O let us write z = x0e0 + x and w = y0e0 + y, where x0, y0 ∈ R and x, y ∈ V . Then,

using i, j ∈ ¶1, . . . , 7♢,

ejz = x0ej − ⟨ej , x⟩e0 + P (ej , x) = x0ej − xje0 + xi P (ej , ei),

then, using k ∈ ¶1, . . . , 7♢,

(ejz, w) =
(
x0ej − xje0 + xi P (ej , ei), y

0e0 + ykek


= x0yj − xjy0 + xiyk
(
P (ej , ei), ek

)
︸ ︷︷ ︸

=⟨P (ej ,ei),ek⟩

= x0yj − xjy0 + xiyk ϕ(ej , ei, ek)︸ ︷︷ ︸
=−ϕ(ej ,ek,ei)=−⟨P (ej ,ek),ei⟩

= −
(
xjy0 − x0yj + xiyk

(
ei, P (ej , ek)

)

= −(z, ejw).

■

With that one can construct a trivialization of TS7.

Theorem 5.2.17: TS7 is trivial, [4, last part of Example 4.5.10; page 229]

S7 is a parallelizable manifold, and a possible trivialization is given by vector Ąelds Yj ∈
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X
(
S7
)

(j ∈ ¶1, . . . , 7♢), deĄned by

Yj ♣z := ej · z (5.41)

for all z ∈ S7, which is also a orthonormal frame for (·, ·) (restricted to a scalar product

for TS
7).

Proof.

Observe

(Yj ♣z, z) = (ej · z, z)
Prop. 5.2.16

= −(z, ejz) = −(ejz, z) = −(Yj ♣z, z)

for all z ∈ S7, hence, (Yj ♣z, z) = 0, so, perpendicular to z, which is why one can view Yj ∈ X(S7).

We also have, k also an element of ¶1, . . . , 7♢,

(Yj , Yk) = (ej · z, ek · z)

Prop. 5.2.16
= −

(
z, ej · (ek · z)

)

= −
(
z, ej ·

(
x0ek − xke0 + xi P (ek, ei)



= −
(
x0e0 + x,−x0δjke0 + x0P (ej , ek) − xkej − xi⟨ej , P (ek, ei)⟩ e0 + xiP (ej , P (ek, ei))



=
(
x0
2
δjk + x0xi⟨ej , P (ek, ei)⟩ − x0xi ⟨ei, P (ej , ek)⟩︸ ︷︷ ︸

=ϕ(ej ,ek,ei)=ϕ(ek,ei,ej)=⟨ej ,P (ek,ei)⟩

+xkxj −
(
x, xiP (ej , P (ek, ei))



=
(
x0
2
δjk + xkxj −

(
x, xiP (ej , P (ek, ei))



writing z = x0e0 + x, where x0 ∈ R and x ∈ V ; also recall similar calculations of the previous

proofs like at the beginning of the proof of Prop. 5.2.16. Using Lemma 5.2.13,
(
x, xiP (ej , P (ek, ei))


= ⟨x, P (ej , P (ek, x))⟩

= ϕ
(
ej , P (ek, x), x

)

= ϕ
(
x, P (x, ek), ej

)

= ⟨P (x, P (x, ek)), ej⟩

Lemma 5.2.13
= ⟨−⟨x, x⟩ek + ⟨x, ek⟩x, ej⟩

= −⟨x, x⟩δjk + xkxj ,

and, so,

(Yj , Yk) =

(
x0
2

+ ⟨x, x⟩


δjk = ♣♣z♣♣2 δjk = δjk,

252



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

using that z is a unit octonion. Hence, (Yj)j is an orthonormal frame, globally deĄned, especially

linear independent by the orthogonality. Thus, we have a global trivialization of TS
7. ■

We can therefore Ąnally prove that the unit octonions as S7 give rise to a CYMH GT.

Theorem 5.2.18: Global example: Unit octonions

S7 admits a CYMH GT as in Thm. 4.7.5 such that the related connection ∇ on E := TS7

is not Ćat. Moreover, there is no Ąeld redeĄnition ∇̃λ of ∇ such that ∇̃λ is Ćat, where

λ ∈ Ω1(N ;E) such that Λ = 1TS7 − λ ∈ 𝒜𝓊𝓉(E).

Remarks 5.2.19.

The following constructions for this CYMHG GT structure is also very similar to the construction

of a Ćat metric connection in [21, §4], where a Clifford algebra is used instead.

Proof of Thm. 5.2.18.

Recall the situation as described in 5.2.1; we only need to construct a Ćat metric connection

∇bas on TS7, because we are going to assume that the metrics on TS7 as Lie algebroid and

tangent bundle are the same. The connection ∇ is then uniquely given by ∇bas, and we will

deĄne the primitive of ∇ by ζ := t∇.

The construction follows by Thm. 5.2.17, so, let (Yj)j (j ∈ ¶1, . . . , 7♢) be the global trivial-

ization of TS7 deĄned by S7 ∋ z 7→ ej · z for all j. Then deĄne ∇bas by

∇basYj = 0,

uniquely extended to a connection of TS7, using that Yj is a global frame. Flatness is an

immediate consequence, since (Yj)j is a parallel frame by deĄnition.

Moreover, (Yj)j are an orthonormal frame of (·, ·); hence, for the CYMH GT we take (·, ·)

restricted on TS7 as Ąbre metric. Then

(
∇bas(·, ·)


(Yj , Yk) = d

(
(Yj , Yk)︸ ︷︷ ︸

=δjk

)
−
(
∇basYj , Yk


−
(
Yj ,∇

basYk


= 0

for all j, k. Thus, we have now everything for a CYMH GT, especially, we have a ∇ with

vanishing basic curvature. Moreover, by Thm. 5.2.5 ∇ cannot be Ćat, otherwise S7 would admit

a Lie group structure. Furthermore, by Thm. 4.7.13 the Ąeld redeĄnition preserves the vanishing

of the basic curvature such that we can apply the same argument to ∇̃λ, thence, ∇̃λ cannot be

Ćat for all λ ∈ Ω1(N ;E). ■

Remark 5.2.20: Stability with respect to other transformations

As one can see by the proof, the base ingredient is Thm. 5.2.5. Hence, one can probably

apply the same statement to every transformation preserving the vanishing of the basic

curvature.
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Hence, we have a CYMH GT on S7 which is not pre-classical (stable under the Ąeld redef-

inition). It was essential that S7 cannot admit a Lie group structure, strongly related to the

non-associativity. As we also have seen in Cor. 5.2.3 and 3.6.6, also recall the proof of the

former, the Ćatness of ∇ is equivalent to the constancy of the structure functions with respect

to a parallel frame of ∇bas. The parallel frame we took in the last proof was the trivialization

(Yj)j (j ∈ ¶1, . . . , 7♢) given in Thm. 5.2.17; summarising all of that, we can conclude that the

non-associativity is directly related to the non-constancy of the structure functions for (Yj)j .

In [22, Equation (4); an ArXiv preprint] is a formula derived for precisely those structure func-

tions, emphasizing this argument since the non-constant term there is directly related to the

non-associativity.

This concludes our discussion of tangent bundles; let us now turn to general Lie algebroids.

The octonions will not appear anymore, hence, the notation will not be used anymore and the

following notation will resemble the previous notations again.

5.3. General Lie algebroids

5.3.1. General situation

Let us now go to more general Lie algebroids as also used in the discussion until and around

Thm. 4.7.5.

The previously discussed constancy of the torsion and its relationship to Ćatness in the case

of tangent bundles we also have partially for general Lie algebroids.

Corollary 5.3.1: Pre-classical theories have constant torsion

Let E → N be a Lie algebroid over a smooth manifold N , equipped with a connection ∇

on E with vanishing basic curvature. Then there is a λ ∈ Ω1(N ;E) such that ∇̃λ
ρ is Ćat

if and only if there is a λ ∈ Ω1(N ;E) such that t(
∇̃λ
)bas = −t

∇̃λ
ρ

is constant with respect

to
(
∇̃λ
bas

, that is,

(
∇̃λ
bas

t(
∇̃λ
)bas = 0. (5.42)

Remarks 5.3.2.

As for tangent bundles also recall here Cor. 3.6.7; in the case of a Ćat ∇ρ (or its Ąeld redeĄnition)

its torsion would be another Lie bracket on E, but tensorial. One could clearly generalize this

statement by just imposing Ćatness of ∇bas on E.

Proof of Cor. 5.3.1.

The proof is exactly as in Cor. 5.2.3, the only exception is that Cor. 3.6.6 (in combination with

Prop. 3.7.6) in general implies

R∇ρ = ∇bast∇bas ,
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which is why we can extend Cor. 5.2.3 only to ∇ρ in general. ■

5.3.2. Direct products of CYMH GTs

As we know, Lie algebroids are the direct product of a tangent bundle and a bundle of Lie

algebras around regular points, Thm. 3.10.4. Hence, there is hope to extend some of the previous

results to direct products of Lie algebroids. Therefore let us Ąrst deĄne the direct product of

CYMH GTs, especially recall Remark 3.9.7, Lemma 3.9.1 and Section 3.9 in general. We will

make use of the direct product of Lie algebroids without further explaining again how the anchor

and bracket etc. are deĄned.

Theorem 5.3.3: Direct products of CYMH GTs is a CYMH GT

Let i ∈ ¶1, 2♢ and Ei → Ni be Lie algebroids over smooth manifolds Ni, both equipped

with a connection ∇i, a Ąbre metric κi on Ei and a Riemannian metric gi of Ni such

that the compatibility conditions are satisĄed for each i, where we denote the primitives

of R∇i by ζi.

Then the direct product of Lie algebroids E1 × E2 is a CYMH GT, equipped with ∇ :=

∇1 ×∇2, κ1 ×κ2, and g1 ×g2, where the primitive of the curvature R∇1×∇2 is for example

given by ζ1 × ζ2.

Proof.

That is trivial to see by recalling Remark 3.9.7, especially we have

(
∇1 × ∇2

bas
=
(
∇1
bas

×
(
∇2
bas

,

Rbas
∇1×∇2 = Rbas

∇1 ×Rbas
∇2 ,

R∇1×∇2 = R∇1 ×R∇2 ,

d(∇1×∇2)
bas(

ζ1 × ζ2


= d(∇1)
bas(

ζ1


× d(∇2)
bas(

ζ2


Hence, using the compatibility conditions on Ei,

R∇ = −∇bas
(
ζ1 × ζ2


,

Rbas
∇ = 0,

and

∇bas
(
κ1 × κ2


=

(
∇1
bas

κ1


×

(
∇2
bas

κ2


= 0,

similarly for g1 × g2. ■
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DeĄnition 5.3.4: Direct product of CYMH GT

Assume the same as in Thm. 5.3.3. Then we call E1 × E2 with its natural CYMH GT

structure deĄned there the direct product of CYMH GTs.

In the following statement we study a certain CYMH GT, as it is given around regular points,

and we will not always denote all the structures; for example, we just denote the connections

when we are not going to use the compatibilities with the metrics.

Theorem 5.3.5: Direct products of CYMHG GTs around regular points are

Ćat

Let N := R
n (n ∈ N0) be a smooth manifold such that its tangent bundle admits a CYMH

GT, whose connection satisfying the compatibility conditions we denote by ∇N , and let

K → S be an LAB over a smooth contractible manifold S which also admits a CYMH

GT, equipped with a connection ∇K satisfying the compatibility conditions.

Then there is a Ąeld redeĄnition with respect to the direct product of CYMH GTs, E :=

TN × K → N × S, such that ∇̃λ is Ćat, where ∇ := ∇N × ∇K and λ ∈ Ω1(N ;E) such

that Λ = 1E − λ ◦ ρ ∈ 𝒜𝓊𝓉(E).

Proof.

We need to check whether we can apply Thm. 5.1.33 and 5.2.6 separately. We will do so by

studying the Ąeld redeĄnition only for ∇ with respect to λ of the form

λ = λN × λK = pr!
1

(
λN


⊕ pr!
2

(
λK

,

where pri (i ∈ ¶1, 2♢) is the projection onto the i-th factor in N × S, λN ∈ Ω1(N ; TN), and

λK ∈ Ω1(S;K). Using such a λ implies

Λ = 1TN×K︸ ︷︷ ︸
=1TN ×1K

−λ ◦ ρTN×K︸ ︷︷ ︸
=ρTN ×ρK=1TN ×0

= ΛN × ΛK ,

where ΛN := 1TN − λN and ΛK := 1K . Therefore

Λ−1 =
(
ΛN
−1

×
(
ΛK

−1
,

similarly for Λ̂. Again by Remark 3.9.7 we have

∇bas =
(
∇N

bas
×
(
∇K

bas
,

and, so, the following completely splits as direct product

(
Λ ◦ d∇bas

◦ Λ−1

λ =


ΛN ◦ d(∇N)

bas

◦
(
ΛN
−1


λN


×


ΛK ◦ d(∇K)

bas

◦
(
ΛK

−1

λK

,

by Def. (4.96) we get, using ∇ = ∇N × ∇K ,

∇̃λ =
(
∇̃N

λN

×
(
∇̃K

λK

.
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This means that we can calculate the Ąeld redeĄnition of the curvature as if we would just look

at either TN or K as in the previous sections because then the curvature splits, too, as usual.

So, deĄne λN in such a way that
(
∇̃N

λN

is Ćat by using Thm. 5.2.6; in the same fashion choose

λK such that
(
∇̃K

λK

is Ćat using Thm. 5.1.33. ■

As one has seen in the proof, the idea is to take a λ = λN × λK . It is natural to assume

that we can extend and generalize previous statements which were just about the existence of

a λ. However, statements about the stability of a CYMH GT under the Ąeld redeĄnition like

Thm. 5.1.38 and 5.2.18, or the construction of the obstruction class for LABs. The reason for

this are the mixed terms in the formulas of the Ąeld redeĄnition if λ ̸= λN × λK such that the

connection of K could contribute to the curvature of TN , for example assume, using the same

notation as in the previous statement and proof, λ ∈ Ω1(N ;K), so, a form along N but having

values in K. Then by Eq. (4.109), similar calculations as before and using that λ has values in

K,

(
∇̃N

λ
∂i

∂j = Λ


∇N

Λ̂−1(∂i)
∂j − [λ(∂i), ∂j ]E



= (1 − λ)
(
∇N
∂i
∂j


− [λ(∂i), ∂j ]E

= ∇N
∂i
∂j − λ

(
∇N
∂i
∂j


− [λ(∂i), ∂j ]E ,

observe that Λ̂ = 1 such that every λ ∈ Ω1(N ;K) is allowed by SylvesterŠs determinant theorem.

The Ąrst summand has values in TN and the second and third in K. Hence, in general the

formulas will not split anymore for general λ. However, I personally hope and assume the

following conjecture.

Conjecture 5.3.6: Existence of a splitted Ąeld redeĄnition

Let N be a smooth manifold such that its tangent bundle admits a CYMH GT, and let

K → S be an LAB over a smooth manifold S which also admits a CYMH GT.

If there is a Ąeld redeĄnition such that the direct product of CYMH GTs, E := TN×K →

N × S, is pre-classical or classical, then there is also a Ąeld redeĄnition with respect to

a λ of the form λN × λK such that the direct product of CYMH GTs is pre-classical or

classical, respectively, where λN ∈ Ω1(N ; TN) and λK ∈ Ω1(S;K) are valid parameters

for Ąeld redeĄnitions for each factor.

If it is possible to show this, then the whole discussion about Ąeld redeĄnition towards pre-

classical or classical structures would reduce to parameters of the form λ = λN ×λK , essentially,

one could look at both factors separately in a direct product of CYMH GTs.

Due to the fact that the general situation is very difficult to study this is the Ąnal conclusion

of CYMH GTs. What will follow are loose ideas and ansatzes, very loosely structured, for
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a possible following discussion and study after the thesis. Hence, the reader can ignore the

following subsection if wanted.

5.3.3. Loose ideas and ansatzes

As a Ąrst ansatz one may want to assume a connection which can restrict to the isotropy of the

anchor, in the hope to generalize the discussion about the LABs; especially recall the discussion

about LABs in the context of CYMH GTs, we will strongly refer to that without much further

notice.

Lemma 5.3.7: Invariance of connection restricting on the isotropy

Let E → N be a Lie algebroid over a smooth manifold N , and L a subbundle of E

with ρ(ν) = 0 and [ν, µ]E ∈ Γ(L) for all ν ∈ Γ(L) and µ ∈ Γ(E), i.e. Γ(L) is an ideal

of Γ(E), living in the kernel of ρ. Moreover, let ∇ be a connection on E and L with

∇
(
Γ(L)

)
⊂ Γ(L).

Then

∇̃λ
(
Γ(L)

)
⊂ Γ(L). (5.43)

Proof.

By Eq. (4.109) we have

∇̃λ
Y µ = Λ

(
∇

Λ̂−1(Y )
µ−

[(
Λ−1 ◦ λ


(Y ), µ

]
E


+ λ

(
[Y, ρ(µ)]

)

for all µ ∈ Γ(E) and Y ∈ X(N). The statement follows now for µ ∈ Γ(L) because of the

assumptions and Λ♣Ker(ρ) = 1Ker(ρ). ■

Let us interpret this algebraically for the Ćat situation; recall Def. 3.1.27 and its discussion.

Proposition 5.3.8: Algebraic meaning in the Ćat situation

Let E = N × g be an action Lie algebroid over a smooth manifold N of a Lie algebra

g, whose Lie algebra action is induced by a Lie group action of a Lie group G on N ,

G×N ∋ (g, p) 7→ gp ∈ N . Moreover, let ∇ be the canonical Ćat connection for which we

assume ρ(∇ν) = 0 for all ν ∈ Γ(E) with ρ(ν) = 0.

Then Ker(ρp) = Ker(ρq), and Ker(ρp) is an ideal of g, where p, q ∈ N are arbitrary

regular points of the same connected component of regular points.

Remarks 5.3.9.

Recall Thm. 4.3.41: Having a Ćat connection ∇ with vanishing basic curvature implies that

locally we have a similar situation as in this proposition, just with additional integrability of the

underlying Lie algebra assumed here.
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Since every action Lie algebroid can be integrated to a Lie groupoid and due to a generalization

of Ad as in [3, Section 3.7, especially Prop. 3.7.1 (iii); page 141ff.], one might be able to proof

that statement (locally) for any Lie algebroid with a Ćat CYMH-compatible connection ∇.

Proof of Prop. 5.3.8.

By deĄnition parallel sections of ∇ are precisely constant sections, so, Ąx a basis (ea)a of g,

constantly extended to E, such that ∇ea = 0. W.l.o.g. assume that N is connected and just

consists of regular points (Ąx e.g. a connected component of regular points on N), hence, K :=

Ker(ρ) has constant rank and describes a bundle of Lie algebras. Then due to ∇
(
Γ(K)

)
⊂ Γ(K)

by assumption, we know that ∇♣K is also Ćat which implies that a subset of the parallel sections

(= constant sections) describes a frame of K. Thus, we can choose (ea)a in such a way that

there is a subframe (fα)α (locally) spanning K.9 Since (fα)α consists of constant sections, we

can conclude that the isotropy subalgebra of g is the same for all points of N , i.e.

Kp = gp = gq = Kq

for all p, q ∈ N , where Kp = gp and Kq = gq is the isotropy algebra at p and q, respectively.

Also recall Cor. 2.2.3, that is, also using the just shown equality Kp = Kgp for all p ∈ N and

g ∈ G, we get

Ad(g)(w) ∈ Kp

⇒ Ad(exp(tv))(w) ∈ Kp

gp closed subalgebra of g
⇒ [v, w]g ∈ Kp,

for all p ∈ N , g ∈ G, w ∈ gp = Kp, t ∈ R, and v ∈ g. Thus, Kp is an ideal of g. ■

Remarks 5.3.10.

For simplicity assume now that the rank of the anchor is constant. Also assume we have an

action Lie algebroid, related to a Lie algebra g, with a non-Ćat connection ∇ such that we

have a CYMH gauge theory and ∇(Γ(K)) ⊂ Γ(K), where K := Ker(ρ). Moreover, assume

that the action behind the anchor can be integrated to a Lie group action. If the anchor has a

non-trivial kernel (so, nonzero and not all of the Lie algebroid), then one may try the following

argument: Assume there is a λ ∈ Ω1(N ;E) such that ∇̃λ is Ćat. By Lemma 5.3.7 we have

∇̃λ(Γ(K)) ⊂ Γ(K). Locally we still have an action Lie algebroid related to a Lie algebra g′ by

Thm. 4.3.41 such that ∇̃λ is the canonical Ćat connection. Then by Prop. 5.3.8 we know that

the kernel of ρp at a regular point p ∈ N is an ideal of the Lie algebra g′ of the new action Lie

algebroid; this ideal is nontrivial (not zero and not g′) because the anchorŠs kernel is nontrivial.

9Technical: A space of parallel sections are Ąnite-dimensional subspaces of, here, Γ(E), whose basis is e.g. the

frame we choose here. Then one can just apply standard analysis of vector spaces, i.e. take any Ąnite-

dimensional basis of parallel sections of K, and then extend that basis to a basis of parallel sections of E.
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When we start e.g. with a simple Lie algebra g, we get clearly a contradicion if the new Lie

algebra g′ is still simple.

However, we cannot expect that g′ is of a similar type as g when the anchor is nonzero. For

example take the two dimensional non-abelian Lie algebra g := R
2 = span⟨e1, e2⟩, [e1, e2]g = e2,

equipped with an action γ on N := R
2 deĄned by

γ(e1) := ∂x,

γ(e2) := 0,

where we denote the coordinates of N by x and y. It is trivial to check that γ is a Lie algebra

action, hence, we have a corresponding action Lie algebroid E = N × g with anchor ρ induced

by γ and Lie algebroid bracket [·, ·]E induced by [·, ·]g. e1 and e2 are a global frame when viewed

as constant sections.

Now we make a change of the frame: ẽ1 := e1, and ẽ2 := e−xe2. We still have ρ(ẽ1) = ∂x and

ρ(ẽ2) = 0, but by the Leibniz rule we arrive at

[ẽ1, ẽ2]E = e−x [e1, e2]g︸ ︷︷ ︸
=e2

−e−xe2 = 0.

Therefore, the frame given by ẽ1 and ẽ2 gives rise to an isomorphism E ∼= N × g′ as action Lie

algebroid, where g′ is the two-dimensional abelian Lie algebra. So, we could have also started

with the abelian Lie algebra instead of the non-abelian one to deĄne precisely the same action

Lie algebroid, both equipped with an action inducing the same anchor.

This ambiguous behaviour depends on the rank of the anchor. For a zero anchor, that is, for

bundle of Lie algebras, like the BLA induced by the kernel of an anchor around regular points,

that can certainly not happen. But recall the splitting theorem, Section 3.10, one part of the

Lie algebroid also comes from the tangent bundle of the leaves, and as we know, the structure

functions of a tangent bundle can be very arbitrary. For example start with the coordinate vector

Ąelds, hence, zero structure functions (abelian). Then there is obviously a non-constant change

of the frame such that the structure functions are not zero anymore because of the Leibniz rule

in the bracket; for example choose a frame which is not a full set of coordinate vector Ąelds.

As in the case of LABs, having a connection restricting to the kernel (or an ideal of it) would

imply that we have an LAB structure there due to the vanishing of the basic curvature; recall

the the isotropy is a bundle of Lie algebras around regular points.

Corollary 5.3.11: Lie derivation laws and vanishing basic curvature

Let E → N be a Lie algebroid, where N is a connected manifold just consisting of regular

points, L be a subbundle of Lie algebras of K := Ker(ρ), and ∇ a connection on E with

∇
(
Γ(L)

)
⊂ Γ(K). Then

∇bas
ν Y = 0 (5.44)
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for all ν ∈ Γ(L) and Y ∈ X(N).

If we additionally have ∇
(
Γ(L)

)
⊂ Γ(L), then the following are equivalent:

1. ∇ a Lie derivation law on L.

2. The basic curvature of ∇ restricted on L is zero, i.e.

Rbas
∇ (µ, ν)Y = 0

for all µ, ν ∈ Γ(L) and Y ∈ X(N).

Proof.

Those are trivial consequences of ∇
(
Γ(L)

)
⊂ Γ(K), i.e.

ρ(∇ν) = 0

for all ν ∈ Γ(L), hence,

∇bas
ν Y = [ρ(ν)︸︷︷︸

=0

, Y ] + ρ
(
∇Y ν

)
︸ ︷︷ ︸

=0

= 0

for all ν ∈ Γ(L) and Y ∈ X(N). With additionally ∇
(
Γ(L)

)
⊂ Γ(L) then also

Rbas
∇ (µ, ν)Y = ∇Y ([µ, ν]E) − [∇Y µ︸ ︷︷ ︸

∈Γ(L)

, ν]E − [µ,∇Y ν]E −∇∇bas
ν Y µ+ ∇∇bas

µ Y ν︸ ︷︷ ︸
=0

= ∇Y ([µ, ν]L) − [∇Y µ, ν]L − [µ,∇Y ν]L

for all µ, ν ∈ Γ(L) and Y ∈ X(N). Therefore, ∇ has a vanishing basic curvature restricted on L

if and only if it is a Lie derivation law on L (a Lie bracket derivation of L). ■

Using Thm. 5.1.1, L has to be an LAB in such a case; hence having such an L and ∇ there is

hope to generalize our results with respect to LABs. In the study about LABs, the obstruction

class was given by d∇ζ and we have argued that this is exact with respect to dΞ in the case of

Ćatness, which was the differential for centre-valued forms induced by a pairing Ξ of an LAB

with a tangent bundle, induced by ∇ which restricted to centre-valued forms by the vanishing of

the basic curvature. The essential argument about the exactness of d∇ζ was the compatibility

condition for ζ, implying that ζ is centre-valued in the case of LABs and Ćatness, and another

argument was that ∇ restricts to such centre-valued sections. In general, Ćatness now implies

closedness of ζ with respect to the basic connection. Therefore let us study whether ∇ restricts

to closed forms also in general.
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Corollary 5.3.12: ∇ preserving ∇bas-closedness

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E with

vanishing basic curvature. Then we have

d∇bas
d∇ω = 0 (5.45)

for all ω ∈ Ωq(E;E) (q ∈ N0) with d∇bas
ω = 0 and ρ(ω) = 0.

Remarks 5.3.13.

By Cor. 3.8.11 we immediately have

d∇bas
d∇ω = d∇d∇bas

ω (5.46)

for all ω ∈ Ωp,q(N,E;E) (p, q ∈ N0), when ∇ is Ćat. Thus,

d∇bas
d∇ω = 0 (5.47)

for all ∇bas-closed ω ∈ Ωp,q(N,E;E) and Ćat ∇ with vanishing basic curvature.

Proof of Cor. 5.3.12.

That is a trivial consquence of Cor. 3.8.11, using Ωq(E;E) ∼= Ω(p=0,q)(N,E;E),

d∇bas
d∇ω

ρ(ω)=0
= d∇ d∇bas

ω︸ ︷︷ ︸
=0

= 0.

■

Hence, in general it is natural to assume that it is about exactness with respect to the basic

connection, a replacement of the centre-valued forms in the study about LABs. However, in

order to deĄne a differential on such parallel sections similar to dΞ, we require Ćatness of ∇

restricted to these sections, regardless whether ∇ itself was Ćat; otherwise it is difficult to study

non-Ćat ∇ similar to the discussion for LABs. In the case of LABs this was trivially given

by the compatibility condition between the curvature and ζ, which immediately implied that

R∇(·, ·)ν = 0 for all centre-value sections ν. But in general this would mean

0 = R∇(·, ·)ν = −∇bas
ν ζ

for all ν. Hence, centre-valued sections, onto which ∇ shall restrict, seems not only be about

closed sections, but also about sections ν with ∇bas
ν = 0,10 which makes sense, because the basic

connection on E is in the case of LABs an adjoint representation in both arguments, so, there

is an ambiguity in how to generalize centre-valued sections in this context.

10Recall the similarity to the condition in Lemma 3.10.6.
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DeĄnition 5.3.14: The centre of basic connections

Let E → N be a Lie algebroid over a smooth manifold N , V → N a vector bundle, and
E∇ an E-connection on V . Then we deĄne the centre Z

(
E∇


of E∇ by

Z
(
E∇


:=
{
ν ∈ E

∣∣∣ E∇ν = 0
}
. (5.48)

In the case of E∇ = ∇bas we mean both, ∇bas on E and TN , i.e. ∇bas
ν = 0 for both

connections simultaneously when ν ∈ Z
(
∇bas


.

Remarks 5.3.15.

Since E∇ν is tensorial in ν, we can restrict this deĄnition to a point p ∈ N , giving rise to a

deĄnition of the centre at p, denoted by Zp
(
E∇


; the tensorial behaviour clearly also implies

that this is a vector space. Similarly, sections with values in Z
(
E∇


are a vector space subset

of Γ(E) by deĄnition, but it is not necessarily a module with constant rank as we are going to

see.

Thus, for the following proofs about the structure of Z
(
∇bas


we will often use (local) sections

ν ∈ Γ(E) with values in Z
(
∇bas


, extending a certain element of E. That is mainly for

convenience due to the fact how connections are normally denoted, and in order to use the

deĄnition of ∇bas.

Recall that the kernel of the anchor ρ at a point p ∈ N is a Lie algebra, whose Lie algebra is

inherited by [·, ·]E , and that we denote centres of Lie algebras g by Z(g) (similar for Lie algebra

bundles). We denote the Lie bracket of [·, ·]E on the kernel by [·, ·]Ker(ρ) (similar for the Lie

algebra structure on each Ąbre or for any subalgebras). Around regular points of E the kernel

of the anchor is a bundle of Lie algebras as previously mentioned, and by Thm. 5.1.1 it will be

a Lie algebra bundle (LAB) when there is a Lie derivation law.

Proposition 5.3.16: Properties of the centre

Let E → N be a Lie algebroid over a smooth manifold N , V → N a vector bundle of at

least rank 1, and E∇ an E-connection on V . Then Zp
(
E∇


is a subset of Ker(ρp) for all

p ∈ N .

If we have a vector bundle connection ∇ on E, then Zp
(
∇bas


is an abelian subalgebra of

Z(Ker(ρp)). Moreover, we have

ρ(∇ν) = 0 (5.49)

for all (local) sections ν of E with values in Z
(
∇bas


, that is ∇ν is an element of the

kernel of the anchor.

Remarks 5.3.17.

The dimension of the kernel of ρ is in general not constant such that we cannot expect that
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Z
(
E∇


gives rise to a module with constant rank; but even if we just look at neighbourhoods

around regular points of E we cannot expect a constant rank. For example take E = TN×K →

N×S, where we mean the direct sum of Lie algebroids of TN → N and K → S, where K → S is

a Lie algebra bundle (zero-anchor) over a manifold S. Then take a coordinate frame (∂i)i of TN

and (fα)α of K, both constantly extended to E such that [∂i, fα]E = 0 and the total collection

is denoted by (ea)a. Let us look at Z
(
∇bas


∋ ν = ναfα (using Prop. 5.3.16, especially ν is an

element of the kernel)

0 = ∇bas
ν ∂i = να ∇bas

fα
∂i = να ∇∂i

fα︸ ︷︷ ︸
=:ωa

αi ea

= ναωaαi ea,

where we viewed ∂i as an element of the tangent bundle as Lie algebroid, i.e. we took the

deĄnition of ∇bas on Lie algebroids (denoted by E usually). Hence, this is then a purely algebraic

equation and depends also on the kernel of ωaiα such that a general statement about the rank of

the centre is not possible without further information about ∇.

Proof of Prop. 5.3.16.

We have, using the deĄnition of E-Lie derivatives,

0 = E∇ν(fv) = ℒν(f) v + f E∇νv︸ ︷︷ ︸
=0

= ℒν(f) v = ℒρ(ν)(f) v

for all v ∈ Γ(V ), ν ∈ Z
(
E∇


and f ∈ C∞(N). Since V has at least rank 1, we can conclude

that ρ(ν) = 0. Hence, νp ∈ Ker(ρp) for all p ∈ N .

Furthermore, in the case of ∇bas we get additionally

0 = ∇bas
νp
µp = [νp, µp]E = [νp, µp]Ker(ρp)

for all µp ∈ Ker(ρp) and p ∈ N , where we used that ∇bas
νp

is tensorial due to ρ(νp) = 0 such that

∇bas
νp

can be viewed as a tensor (similar for [·, ·]E), and that the basic connection on E is just

the Lie bracket when acting on the kernel of the anchor. Hence, νp ∈ Zp(Ker(ρp)), and, since

Zp(Ker(ρp)) is abelian, it immediately follows that Zp
(
∇bas


is an abelian subalgebra.

Finally, let ν ∈ Γ(E) with values in Z
(
∇bas


, then we have

0 = ∇bas
ν Y = [ρ(ν), Y ] + ρ(∇Y ν)

for all Y ∈ X(N). Previously we have shown that ρ(ν) = 0, this implies ρ(∇Y ν) = 0, which

Ąnishes the proof. ■

Around regular points we can say a bit more, recall Thm. 3.10.4.
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Lemma 5.3.18: Centre of the basic connection around regular points

Let N be a smooth manifold and K → S be a bundle of Lie algebras over a smooth

manifold S such that Z(K) is a subbundle of abelian Lie algebras, that is Z(K) has

constant rank. Then deĄne the Lie algebroid E as the direct product of Lie algebroids,

E := TN × K → N × S, equipped with a connection ∇ = ∇TN × ∇K , where ∇TN and

∇K are connections on TN and K, respectively. Then

Z
(
∇bas


= Z(K). (5.50)

Remarks 5.3.19.

In that case, Z
(
∇bas


has constant rank and is independent of the choice of ∇.

Proof of Lemma 5.3.18.

By deĄnition of E, there are coordinates (∂i)i of N and a frame of E consisting of two parts, (fi)i
locally spanning TN (as Lie algebroid) and (fα)α locally spanning K, both (locally) constantly

extended along the base of the other factor in E = TN ×K, such that

ρ(fi) = ∂i, ρ(fα) = 0,

[fi, fj ]E = 0, [fi, fα]E = 0.

Since Z(K) is a subbundle of Lie subalgebras of K we can assume that (fα)α contains a subframe

(f𝓇)
𝓇

spanning Z(K). Then for all ν = ν𝓇f𝓇 ∈ Γ(E) (να ∈ C∞(N × S)) with values in Z(K)

we then have by deĄnition,

∇bas
ν fi = ν𝓇 ∇bas

f𝓇 fi = ν𝓇
(
[f𝓇, fi] + ∇ρ(fi)f𝓇


= ν𝓇 ∇∂i

f𝓇, ∇bas
ν fα = [ν, fα]K = 0. (5.51)

Similar to before, ∇bas
ν is a tensor due to ρ(ν) = 0 such that Eq. (5.51) are fully encoding ∇bas

ν

on E. Therefore we are interested into whether ∇bas
ν fi is zero. By deĄnition ∇ρ is Ćat when

restricted onto Z(K), i.e. on Z(K)-valued sections of K which are constantly extended along

N , that is, we have

∇ρf𝓇 = 0.

Then for all ν = ν𝓇f𝓇 (ν𝓇 can depend on N) we get by Eq. (5.51)

∇bas
ν fi = ν𝓇 ∇∂i

f𝓇 = 0

for all i. By deĄnition we also have

∇ν ∈ Γ(K)

for all sections ν with values in the centre of K. Therefore, by Cor. 5.3.11, we know

∇bas
ν Y = 0
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for all ν ∈ Γ(E) with values in Z(K) and Y ∈ X(N).

Hence,

∇bas
ν = 0

for all section ν with values in Z(K). So, Z(K) ⊂ Z
(
∇bas


. Recall Prop. 5.3.16 such that we

already know that

Z
(
∇bas


⊂ Z(K),

hence, Z
(
∇bas


= Z(K). ■

As already motivated, we have then a Ćat curvature in the case of CYMH GT.

Corollary 5.3.20: Zero curvature on the centre

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E such

that R∇ is exact with respect to d∇bas
, i.e. there is a ζ ∈ Ω2(N ;E) with R∇(·, ·)µ = −∇bas

µ ζ

for all µ ∈ Γ(E).a Then

R∇(·, ·)ν = 0 (5.52)

for all ν ∈ Z
(
∇bas


.

aHere d∇
bas

is not necessarily a differential.

Proof.

That is a simple consequence of the d∇bas
-exactness and ∇bas

ν = 0 for all ν ∈ Z
(
∇bas


. ■

The vanishing of the basic curvature also implies in the general situation that ∇ preserves

such centres, similar to LABs.

Lemma 5.3.21: Stability of the kernel of the adjoint representation

Let E → N be a Lie algebroid over a smooth manifold N , and ∇ a connection on E with

vanishing basic curvature and such that R∇ is exact with respect to d∇bas
. Moreover, we

require

ρ(∇ν) = 0

for all ν ∈ Γ(E) with ρ(ν) = 0.

Then

∇bas
∇ν = 0 (5.53)

for all ν ∈ Γ(E) with ∇bas
ν = 0, where we mean with ∇bas both connections, on E and on

TN .
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Proof.

We have, using Cor. 5.3.20 and the vanishing basic curvature,

∇bas
∇Y ν

µ = [∇Y ν, µ]E + ∇ρ(µ)∇Y ν

= [∇Y ν, µ]E + ∇Y ∇ρ(µ)ν︸ ︷︷ ︸
=[µ,ν]E

+∇[ρ(µ),Y ]ν

= [∇Y ν, µ]E + [µ,∇Y ν]E︸ ︷︷ ︸
=0

+[∇Y µ, ν]E + ∇∇bas
ν Y µ︸ ︷︷ ︸
=0

−∇∇bas
µ Y ν + ∇[ρ(µ),Y ]ν

︸ ︷︷ ︸
=−∇ρ(∇Y µ)ν

= −∇bas
ν ∇Y µ

= 0

for all µ, ν ∈ Γ(E), where ∇bas
ν = 0, and Y ∈ X(N). Hence, only the basic connection on TN

is left. We know ρ(∇ν) = 0 by Eq. (5.49), hence, by the condition on ∇ about kernel-valued

sections we have

ρ(∇X∇Y ν) = 0

for all X ∈ X(N), and so

∇bas
∇Y ν

X = [ρ(∇Y ν)︸ ︷︷ ︸
=0

, X] + ρ(∇X∇Y ν).

This proves the claim. ■

With Cor. 5.3.12, Lemma 5.3.21 and Cor. 5.3.20 we may have everything for doing something

similar as for LABs. However, another important result for LABs was that d∇ζ is centre-valued;

this was given by the Bianchi identity 4.8.3. This identity does now not immediately imply that

d∇ζ is closed with respect to the basic connection; and even if, for example because it has values

in the isotropy, we would still need that d∇ζ has also values in the centre of the basic connection

in order to use Cor. 5.3.20 to deĄne a cohomology class. This is not given, not even by the

Bianchi identity.

Summarizing, the problem is that we cannot simply generalize the discussion about LABs.

The Bianchi identity for ζ suggests that a possible differential for a cohomology is a differential

induced by ∇ restricted on ∇bas-closed forms. But the compatibility condition on R∇ and ζ

only implies Ćatness on sections with values in the centre of the basic connection. Even if we are

able to construct suitable ζ, satisfying all of that for d∇ζ, it is not given that this construction

is Ťstable enoughŤ under the Ąeld redeĄnition, which is important in order to show that d∇ζ is

an invariant of the Ąeld redeĄnition.

Concluding, this means one needs in general a (completely?) different construction; maybe

hoping for that Conjecture 5.3.6 holds. Nevertheless, one may see that the general situation is

highly more complicated.
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6. Future works

One may take these results as a motivation to always assume that a CYMH GT is pre-classical.

There is hope to generalize the construction of the obstruction class to every Lie algebroid by

assuming that the isotropy of the Lie algebroid is stable under the chosen connection. As we

have seen, this stability condition is invariant under the Ąeld redeĄnition, and it may allow to

reduce the study ŤroughlyŤ to a study of Lie algebra bundles because the isotropy is a Lie algebra

bundle around regular points in our case, also recall Thm. 5.1.1. Of course, a Lie algebroid

consists of more than an isotropy. To take care of the remaining structure one could ŤdecoupleŤ

the Lie algebroid along the foliation and along a transversal submanifold using the splitting

theorem. However, we also have seen that there are certain difficulties in that approach.

Future plans for research could be studying a possible generalized deĄnition of the obstruction

class, using the previously-mentioned idea or another ansatz; in general, there are still a lot of

open questions regarding general Lie algebroids which need to be answered. The question about

the (physical) signiĄcance of the tensor ζ is interesting, too. For this it is also necessary to

quantize this theory.

One could also think about integrating this theory, probably using Lie groupoids instead of Lie

groups. Often it is of advantage if underlying curvatures are Ćat when it is about integrability,

which may mean that ∇ needs to be Ćat for a suitable integration and that may be a further

argument for assuming that the theory is already pre-classical. However, since we used the basic

connection to deĄne inĄnitesimal gauge transformations, which is always Ćat in our context, we

may or may not have solved a certain problem in integrating CYMH GTs.

Another possible plan is to go back to the example of unit octonions. S
7 is a Moufang

loop and its corresponding tangent space at its neutral element is an algebra known as Malcev

algebra. Hence, this example may show that a suitable new formulation of gauge theory may be

in replacing Lie groups and Lie algebras with Moufang loops and Malcev algebras, respectively.

In a private talk to Alessandra Frabetti I learned that one seemingly only needs the structure

of Moufang loops for renormalizations such that it might be fruitful to develop a gauge theory

using that notion.

Thanks for reading and your support! Do not hesitate to ask me further questions. I wish

you a nice and pleasant time.
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A. Certain useful identities

A.1. Lie algebra bundles

In this appendix we prove and deĄne very basic notions, which are often direct generalizations

of typical relations known in gauge theory. It is recommended to read this part at the beginning

of Chapter 4, especially if one is interested into all the calculations. Recall the following wedge

product1 of forms with values in a vector bundle E and values in its space of endomorphisms

End(E),

∧ : Ωk(N ; End(E)) × Ωl(N ;E) 7→ Ωk+l(N ;E)

(T, ω) 7→ T ∧ ω

for all k, l ∈ N0, given by

(T ∧ ω)(Y1, . . . , Yk+l) :=
1

k!l!

∑

σ∈Sk+l

sgn(σ) T
(
Yσ(1), . . . , Yσ(k)

(
ω
(
Yσ(k+1), . . . , Yσ(k+l)


, (A.1)

where Sk+l is the group of permutations ¶1, . . . , k+l♢. This is then locally given by, with respect

to a frame (ea)a of E,

T ∧ ω = T (ea) ∧ wa,

where T acts as an endomorphism on ea, i.e. T (ea) ∈ Ωk(N ;E), and ω = ωa ⊗ ea. Also recall

that there is the canonical extension of ∇ on End(E) by forcing the Leibniz rule. We still denote

this connection by ∇, too.

Proposition A.1.1: Several useful identities

Let M and N be two smooth manifolds, K → N a vector bundle, Φ : M → N a smooth

map, ∇ a connection on K, and k, l,m ∈ N0. Then we have

dΦ∗∇
(
Φ!ω


= Φ!

(
d∇ω


, (A.2)

d∇+Dω = d∇ω +D ∧ ω, , (A.3)

d∇(T ∧ ω) = d∇T ∧ ω + (−1)m T ∧ d∇ω (A.4)

for all ω ∈ Ωl(N ;K), ψ ∈ Ωk(N ;K), D ∈ Ω1(N ; End(K)), and T ∈ Ωm(N ; End(K)).

1As also deĄned in [4, §5, third part of Exercise 5.15.12; page 316].
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If K is additionally an LAB, then we also have

(ad ◦ ω) ∧ ψ = [ω ∧, ψ]K , (A.5)

Φ!([ω ∧, ψ]K) =
[
Φ!ω ∧, Φ!ψ

]
Φ∗K

, (A.6)

[ω ∧, ψ]K = −(−1)lk [ψ ∧, ω]K , (A.7)

[ω ∧, [ω ∧, ω]K ]
K

= 0, (A.8)

ad∗ ◦ Φ!ω = Φ!(ad ◦ ω) (A.9)

for all ω ∈ Ωl(N ;K), ψ ∈ Ωk(N ;K), and smooth maps Φ : M → N , where we write ad∗

for the adjoint representation with respect to [·, ·]Φ∗K .

Remarks.

Eq. (A.7) and Eq. (A.8) are generalizations of similar expressions just using the Lie algebra

bracket [·, ·]g of a Lie algebra g, which basically is the formulation on trivial LABs, see [4, §5, Ąrst

and second statement of Exercise 5.15.14; page 316]. Eq. (A.4) is of course the typical Leibniz

rule of the exterior covariant derivative just extended to the wedge-product with End(K)-valued

forms, and Eq. (A.2) is a generalization of the well-known Φ! ◦d = d◦Φ!, where d is the de-Rham

differential (we omit to clarify on which manifold; this should be given by the context).

Proof.

• Recall that we have the following property of the pullback connection

(Φ∗∇)Y (Φ∗µ) = Φ∗
(
∇DΦ(Y )µ



for all Y ∈ X(M), smooth maps Φ : M → N , connections ∇, and µ ∈ Γ(K), shortly writing as2

(Φ∗∇)(Φ∗µ) = Φ∗(∇DΦµ) = Φ!(∇µ), (A.10)

viewing terms like ∇µ as an element of Ω1(N ;K), X(N) ∋ ξ 7→ ∇ξµ, such that we can apply

Eq. (4.2). That extends to exterior covariant derivatives by Ąxing a local frame (ea)a of K (also

used in the following), then we have ωa ∈ Ωl(U) (l ∈ N0) such that locally

ω = ωa ⊗ ea

for all ω ∈ Ωl(N ;K). The exterior covariant derivative generally (locally) writes

dΦ∗∇w = dwa ⊗ Φ∗ea + (−1)lwa ∧ (Φ∗∇)(Φ∗ea)︸ ︷︷ ︸
Eq. (A.10)

= Φ!(∇ea)

= dwa ⊗ Φ∗ea + (−1)lwa ∧ Φ!(∇ea)

2Recall that the pull-back of forms is denoted with an exclamation mark.
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for all w ∈ Ωl(M ; Φ∗K), and the pull-back of forms clearly splits over this tensor product by its

deĄnition, i.e.

Φ!ω = Φ!ωa ⊗ Φ∗ea,

and, so,

dΦ∗∇
(
Φ!ω


= d

(
Φ!wa



︸ ︷︷ ︸
=Φ!(dωa)

⊗ Φ∗ea + (−1)l Φ!wa ∧ Φ!(∇ea)

= Φ!
(
dωa ⊗ ea + (−1)l ωa ∧ ∇ea



= Φ!
(
d∇ω


.

• Observe

d∇+Dω = dωa ⊗ ea + (−1)l ωa ∧ (∇ +D)ea = d∇ω +D ∧ ω

for all ω ∈ Ωl(N ;K), D ∈ Ω1(N ;K), and connections ∇ on K.

• Now let T ∈ Ωm(N ; End(K)) and (La)a a frame of End(K), such that we can write T =

T a ⊗ La, then

d∇(T ∧ ω) = d∇(T (ea) ∧ ωa) = d∇(T (ea)) ∧ ωa + (−1)m T (ea) ∧ dωa

for all ω ∈ Ωl(N ;K), and

(
d∇T


(ea) = dT b ⊗ Lb(ea) + (−1)m T b ∧ (∇Lb)(ea)︸ ︷︷ ︸

= ∇(Lb(ea))−Lb(∇ea)

= d∇(T (ea)) − (−1)m T b ∧ Lb(∇ea)

= d∇(T (ea)) − (−1)m
(
T b ⊗ Lb(ec)



︸ ︷︷ ︸
= T (ec)

∧ (∇ea)
c

= d∇(T (ea)) − (−1)m T ∧ ∇ea

⇔ d∇(T (ea)) =
(
d∇T


(ea) + (−1)m T ∧ ∇ea.

Combining both equations, we arrive at

d∇(T ∧ ω) = d∇T ∧ ω + (−1)m T (ea) ∧
(
dωa + (−1)l wb ∧ (∇eb)

a


= d∇T ∧ ω + (−1)m T ∧ d∇ω.

In the following let K also be an LAB.
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• We also have

((ad ◦ ω)︸ ︷︷ ︸
∈ Ωl(N ; End(K))

∧ ψ)(Y1, . . . , Yl+k)

Def. (A.1)
=

1

k!l!

∑

σ∈Sk+l

sgn(σ)
[
ω
(
Yσ(1), . . . , Yσ(l)


, ψ
(
Yσ(l+1), . . . , Yσ(l+k)

]
K

Def. 4.0.1
= [ω ∧, ψ]K(Y1, . . . , Yl+k)

for all w ∈ Ωl(N ;K), ψ ∈ Ωk(N ;K), and Y1, . . . , Yl+k ∈ X(N), where Sk+l is the group of

permutations ¶1, . . . , k + l♢.

• By deĄnition of Φ∗K we have

[Φ∗µ,Φ∗ν]Φ∗K = Φ∗([µ, ν]K)

for all smooth maps Φ : M → N and µ, ν ∈ Γ(K). Let (ea)a be again a Ąxed frame of K,

ω = ωa ⊗ ea ∈ Ωl(N ;K) and ψ = ψa ⊗ ea ∈ Ωk(N ;K), then, again using Def. 4.0.1,

Φ!([ω ∧, ψ]K) = Φ!
(
[ea, eb]K ⊗ ωa ∧ ψb


= Φ∗([ea, eb]K)
︸ ︷︷ ︸

= [Φ∗ea,Φ∗eb]Φ∗K

⊗Φ!ωa ∧ Φ!ψb =
[
Φ!ω ∧, Φ!ψ

]
Φ∗K

.

• The antisymmetry of the Lie bracket generalizes to

[ω ∧, ψ]K = [ea, eb]K︸ ︷︷ ︸
= −[eb,ea]K

⊗ ωa ∧ ψb︸ ︷︷ ︸
= (−1)lkψb∧ωa

= −(−1)lk [ψ ∧, ω]K

for all ω ∈ Ωl(N ;K) and ψ ∈ Ωk(N ;K).

• Let (ea)a be still a local frame of K, then

[ω ∧, [ω ∧, ω]K ]
K

Eq. (A.7)
= −(−1)2l2 [[ω ∧, ω]K

∧, ω]
K

= − [[ea, eb]K , ec]K︸ ︷︷ ︸
Jacobi

= [ea,[eb,ec]K ]
K

+[eb,[ec,ea]K ]
K

⊗ ωa ∧ ωb ∧ ωc

= −[ω ∧, [ω ∧, ω]K ]
K

− [eb, [ec, ea]K ]
K

⊗ ωa ∧ ωb ∧ ωc︸ ︷︷ ︸
= (−1)2l2ωb∧ωc∧ωa

= −2 [ω ∧, [ω ∧, ω]K ]
K

⇔ [ω ∧, [ω ∧, ω]K ]
K

= 0

for all ω ∈ Ωl(N ;K).

• We also have
[
Φ!ω,Φ∗µ

]
Φ∗K

Eq. (A.6)
= Φ!([ω, µ]K) = Φ!

(
(ad ◦ ω)(µ)


=
(
Φ!(ad ◦ ω)



︸ ︷︷ ︸
∈ Ω1(M ; End(Φ∗K))

(Φ∗µ)
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for all µ ∈ Γ(K), ω ∈ Ωl(N ;K), and smooth maps Φ : M → N , where we used (Φ∗T )(Φ∗µ) =

Φ∗(T (µ)) for all T ∈ Γ(End(K)) for the last equality. Since sections of Φ∗K are generated by

pullbacks of sections of K, we can conclude

ad∗ ◦ Φ!ω = Φ!(ad ◦ ω).

■

When we add the compatibility conditions (5.1), then we have a few more identities.

Corollary A.1.2: Identities related to Lie bracket derivations

Let K → N be an LAB, equipped with a connection ∇ satisfying compatibility condi-

tion (5.1); also let M be another smooth manifold and Φ : M → N a smooth map. Then

d∇([ω ∧, ψ]K
)

=
[
d∇ω ∧, ψ

]
K

+ (−1)l
[
ω ∧, d∇ψ

]
K
, (A.11)

d∇(ad ◦ ω) = ad ◦ d∇ω (A.12)

for all ω ∈ Ωl(N ;K) and ψ ∈ Ωk(N ;K).

Remarks.

Eq. (A.11) is a direct generalization of [4, §5, third statement of Exercise 5.15.14 where it is

stated for g (trivial LAB with canonical Ćat connection); page 316].

Proof.

• Using compatibility condition (5.1) and a local frame (ea)a of K,

d∇([ω ∧, ψ]K) = d∇
(
[ea, eb]K ⊗ ωa ∧ ψb



= ∇([ea, eb]K)
︸ ︷︷ ︸

= [∇ea,eb]K+[ea,∇eb]K

∧ ωa ∧ ψb + [ea, eb]K ⊗ dωa ∧ ψb

+ (−1)l [ea, eb]K ⊗ ωa ∧ dψb

= [ea, eb]K ⊗ (∇ec)
a ∧ ωc ∧ ψb + (−1)l [ea, eb]K ⊗ ωa ∧ (∇ec)

b ∧ ψc

+ [ea, eb]K ⊗ dωa ∧ ψb + (−1)l [ea, eb]K ⊗ ωa ∧ dψb

= [ea, eb]K ⊗
((

(∇ec)
a ∧ ωc + dωa︸ ︷︷ ︸

= (d∇ω)a


∧ ψb + (−1)l ωa ∧

(
(∇ec)

b ∧ ψc + dψb


=
[
d∇ω ∧, ψ

]
K

+ (−1)l
[
ω ∧, d∇ψ

]
K

for all ω ∈ Ωl(N ;K) and ψ ∈ Ωk(N ;K).
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• Then by Eq. (A.4) and (A.5), we get

d∇([ω ∧, ψ]K) = d∇((ad ◦ ω) ∧ ψ) = d∇(ad ◦ ω) ∧ ψ + (−1)l (ad ◦ ω) ∧ d∇ψ,

and we can rewrite Eq. (A.11)

d∇([ω ∧, ψ]K) =
(
ad ◦ d∇ω


∧ ψ + (−1)l (ad ◦ ω) ∧ d∇ψ.

Combining both, we have

d∇(ad ◦ ω) ∧ ψ =
(
ad ◦ d∇ω


∧ ψ

for all ω ∈ Ωl(N ;K) and ψ ∈ Ωk(N ;K). By (locally) using the 0-forms ψ = ea for all a, this

implies Eq. (A.12). ■
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