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Abstract

This thesis is devoted to the study of the geometry of curved Yang-Mills-Higgs gauge theory
(CYMH GT), a theory introduced by Alexei Kotov and Thomas Strobl. This theory reformu-
lates classical gauge theory, in particular, the Lie algebra (and its action) is generalized to a Lie
algebroid F, equipped with a connection V, and the field strength has an extra term (; there
is a certain relationship between ¢ and V, for example, if ( = 0, then V is flat. In the classical
situation F is an action Lie algebroid, a combination of a trivial Lie algebra bundle and a Lie
algebra action, V is then the canonical flat connection with respect to such an E, and ¢ = 0.

The main results of this Ph.D. thesis are the following:

e Reformulating curved Yang-Mills-Higgs gauge theory, also including a thorough introduc-
tion and a coordinate-free formulation, while the original formulation was not completely
coordinate-free. Especially the infinitesimal gauge transformation will be generalized to
a derivation on vector bundle V-valued functionals. Those vector bundles V' will be the
pullback of another bundle W, and the gauge transformation as derivation will be induced
by a Lie algebroid connection on W, using a more general notion of pullbacks of connec-
tions. This also supports the usage of arbitrary types of connections on W in the definition
of the infinitesimal gauge transformation, not just canonical flat ones as in the classical

formulation.

e Studying functionals as parameters of the infinitesimal gauge transformation, supporting
a richer set of infinitesimal gauge transformations, especially the parameter itself can
have a non-trivial gauge transformation. The discussion about the infinitesimal gauge
transformation is also about what type of connection for the definition of the infinitesimal
gauge transformation should be used, and this is argued by studying the commutator of
two infinitesimal gauge transformations, viewed as derivations on V-valued functionals. We
take the connection on W then in such a way that the commutator is again an infinitesimal
gauge transformation; for this flatness of the connection on W is necessary and sufficient.
For W = F and W = TN we use a Lie algebroid connection known as basic connection
which is not the canonical flat connection in the classical non-abelian situation; this is not
the connection normally used in the standard formulation, but it reflects the symmetries
of gauge theory better than the usual connection, which is in general not even flat. For
W = R the gauge transformation is uniquely given as the Lie derivative of a vector field
on the space of fields given by the field of gauge bosons and the Higgs field, and the
commutator is then just the Lie bracket of vector fields; in this case the bracket will also

give again a vector field related to gauge transformations.

e Defining an equivalence of CYMH GTs given by a field redefinition which is a transfor-

mation of structural data like the field of gauge bosons. In order to preserve the physics,



this equivalence is constructed in such a way that the Lagrangian of the studied theory
is invariant under this field redefinition. It is then natural to study whether there are

equivalence classes admitting representatives with flat V and/or zero (:

1. On the one hand, the equivalence class related to E = TS$7, 87 the seven-dimensional
sphere, admits only representatives with non-flat V, while locally the equivalence

class of all tangent bundles admits a representative with flat V.

2. On the other hand, the equivalence class related to "E = LAB” (Lie algebra bundle)
has a relation with an obstruction class about extending Lie algebroids by LABs; this
will imply that locally there is always a representative with flat V while globally this
may not be the case, similar to the previous bullet point. Furthermore, a canonical
construction for equivalence classes with no representative with zero ( is given, which
also works locally, and an interpretation of ¢ as failure of the Bianchi identity of the

field strength is provided.
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1. Introduction

This thesis concerns curved Yang-Mills-Higgs gauge theories (short: CYMH GT), introduced
by Alexei Kotov and Thomas Strobl, a generalization of Yang-Mills-Higgs gauge theories, where

we have essentially the following, as also summarized in [1]:!

e M a spacetime;
o N a smooth manifold, serves as set for the values of the Higgs field ® : M — N;

e F — N a Lie algebroid with anchor p, replacing the structural Lie algebra g and its action
v : g — X(N) of the classical formulation;

e a vector bundle connection V on E;
e a fibre metric k on F, as a substitute of the ad-invariant scalar product on g;

e a Riemannian metric g on IV, replacing the scalar product on the vector space in which the
Higgs field usually has values in and which is invariant under the action of v, used for the
kinetic term of ® which is minimally coupled to the field of gauge bosons A € Q! (M; ®*E);

e a 2-form on N with values in E, ¢ € Q%(N;E), an additional contribution to the field
strength of A.

A Lie algebroid is given by the following definition; especially, Lie algebroids can be thought

as a generalization of both, tangent bundles and Lie algebras.

Definition: Lie algebroid, [2, reduced definition of §16.1; page 113]

Let E — N be a real vector bundle of finite rank. Then E is a smooth Lie algebroid if
there is a bundle map pg = p: E — TN, called the anchor, and a Lie algebra structure
on I'(F) with Lie bracket [,-]; satisfying

[/’Lafl/]E:f[/%l/]E—i_gp(u)(f) v

for all f € C*°(N) and p,v € ['(E), where Z,,,)(f) is the action of the vector field p(u)

on the function f by derivation.

J

Gauge invariance of the Yang-Mills-Higgs type functional leads to several compatibility
conditions to be satisfied between those structures. If the connection V on FE is flat, the

compatibilities imply that the Lie algebroid is locally what we call an action Lie algebroid.

LCommon conventions and notations are introduced at the end of the introduction; see Section 1.1.
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Definition: Action Lie algebroids, [2, §16.2, Example 5; page 114]

Let (g, [, -]g) be a Lie algebra equipped with a Lie algebra action v : g — X(N) on a
smooth manifold N. A transformation Lie algebroid or action Lie algebroid is
defined as the bundle £ := N X g over N with anchor

p(p;v) = v(v)lp

for (p,v) € E, and Lie bracket

1,1, = Ut el + (Lo @) = Lo (1) | ea

for all p € N and pu,v € I'(E), where one views a section p € I'(E) asamap p: N — g

and (eq), is some arbitrary frame of constant sections.

Furthermore, V is then a canonical flat connection of the action Lie algebroid, and one arrives
at the standard Yang-Mills-Higgs gauge theory if additionally ¢ = 0. Thus, the theory represents
a curved (with respect to V) version of gauge theory equipped with an additional 2-form (. If
V is flat we say in general that we have a pre-classical gauge theory, and if additionally { =0
we have a classical gauge theory. Every classical theory is also pre-classical, this is another

implication of the compatibility conditions.

For a given M, N and E there is an equivalence of CYMH GTs given by a field redefinition,
a transformation of the field of gauge bosons, but also of V, x, ¢ and (. The Lagrangian is
invariant under this transformation, hence, the physics is invariant. It is then natural to study
whether it is possible that the equivalence class of a given CYMH GT has a (pre-)classical repre-
sentative, and this is precisely the main motivation of this thesis. Along this study, CYMH GT
is reintroduced in a coordinate-free way, especially providing a new coordinate-free formulation

of the infinitesimal gauge transformations themselves. We proceed as follows:

In Chapter 2 we recall the fundamental basics of classical gauge theory, mostly their infinites-
imal information; that means that we always assume trivial principal bundles, thus, we do not
need principal bundles altogether. In Section 2.1 we introduce Lie algebras and their actions,
comparing Lie algebra actions and representations; in Section 2.2 we discuss isotropies and their
relation along orbits of a Lie group action. The classical Yang-Mills-Higgs gauge theory, espe-
cially the Yang-Mills-Higgs Lagrangian, is introduced in Section 2.3, and in Section 2.4 we prove
the infinitesimal gauge invariance of the Lagrangian. However, in Section 2.5 we are already
reformulating infinitesimal gauge transformations, making the first step towards the generalized
formulation of (infinitesimal) gauge theory. Even if the reader has a good knowledge about gauge
theory, it is highly recommended to read Section 2.5 in order to understand later why CYMH
GT is formulated as it is. The main result of this section is the reformulation of the infinitesimal
gauge transformation as a derivation induced by what we call a Lie algebra connection; the key

ingredients are the following, where the manifold N is for simplicity a vector space, and g is the
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structural Lie algebra with action ~:

o The pair of infinitesimal gauge transformations, ¥, = (0.®,0.A), viewed as a vector
field on the space of fields My whose elements are given as pairs (®, A), where ® €
C>®(M;N) (Higgs field) and A € Q'(M;g) (field of gauge bosons); ¢ is a functional with
(P,A) —e(P,A) € C*(M;g).

e The evaluation map ev: M x My — N defined by
ev(p, @, A) = ®(p)
for all (p,®, A) € M x M.

« The ”bookkeeping trick” for functionals L, (®, A) — L(®, A) € QF(M; K) (k € Ny),
where K is a vector space. Let (eq), be a basis of K, then locally L = L* ® e,, where
L* € QF(M). If viewing (e,), as a constant frame of the trivial vector bundle N x K over

N, then we can also write
L=L%®ev'e,

due to constancy of the frame. For bookkeeping reasons we formally denote this expression

by «(L); especially
L(L)(Y1,...,Yy) € T(ev*(N x K))
for all Y7,...,Y, € X(M), and
L(L)(®, A) € QF(M; d*(N x K))
for all (®, A) € M.
e A g-connection 8V on V := N x K — N, defined as an R-bilinear map
gx I'(V) —=T(V),
(X,v) — Vxv,
satisfying
Wx(fv)=fVxv+Zyx)(f)v

for all X € g, v € I'(V) and f € C*(N), where Z,x)(f) is the action of the vector field
~v(X) on the function f by derivation.

The derived key statement is then the following theorem and definition, where we are going

to use a generalized notion of pullbacks of connections.
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Theorem

There is a unique R-linear operator dy_ : I'(ev*(V')) — T'(ev*(V)) with
du.(fs) = Zw.(f) s+ [ Ou.s,
Oy, (ev'd) = —ev* (*V.0)
for all f € C®(M xMy), s € '(ev*(V)) and ¥ € I'(V), where we denote

ev*(gvsﬁ”(pv(bmAO) = (gva(‘va)lpﬁ) ’CD(p)

for all (p, ®,A) € M x M.

Definition: Infinitesimal gauge transformation as derivation

The infinitesimal gauge transformation §.L of a functional L, (¢, A) — L(P, A) €
QF(M; K) (k € Np), is then defined by

(0-L)(Y1,...,Ys) = dw. («(L)(Y1,...,Y}))

for all Y7,...,Y;.

Section 2.5 will then conclude that this definition of the infinitesimal gauge transformation
recovers the typical definition by taking the canonical flat connection V of V. = N x K, i.e. given
by Vx = 0 for all constant z € I'(V)), and then defining *V = V,, (X,v) = V,x)v for all
X egandveI'(V).

Chapter 3 is mainly about introducing all the needed mathematical basics. Section 3.1 starts
with introducing Lie algebroids and related notions, especially introducing action Lie algebroids
and Lie algebra bundles as a special example. Furthermore, small physical examples are pro-
vided, and isotropies are revisited to support a better understanding of the relationship to gauge
theory. Section 3.2 discusses morphisms of Lie algebroids, but since we are mainly interested
into base-preserving ones, this section is very short. An important basic notion are Lie algebroid
connections, and we want to introduce them as certain morphisms of anchored vector bundles,
similar to the introduction of Lie algebroid connections in [3]. In order to do so we first introduce
the Lie algebroid of derivations of vector bundles in Section 3.3, and in Section 3.4 we finally
introduce Lie algebroid connections as base- and anchor-preserving vector bundle morphisms;
Lie algebroid connections on a vector bundle are essentially the same as typical vector bundle
connections but the direction of differentiation is along sections of the Lie algebroid and the
Leibniz rule is along the foliation of the anchor, similar to the Leibniz rule of the Lie bracket
of a Lie algebroid. Section 3.5 discusses pullbacks of Lie algebroid connections; first we follow
a typical introduction using Lie algebroid paths, but concluding with a more general statement

about pullbacks when one just differentiates along one direction:
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Corollary: Pullbacks of connections just differentiating along one vector field

Let E; — N; (i € {1,2}) be two Lie algebroids over smooth manifolds N;, V- — Ny a vector
bundle, and 2V an Es-connection on V. Moreover, let f € C*®°(Ny; No), vy € T'(E1) and
vy € I'(f*E2) such that

Df(pe (1)) = (F*pE,)(v2)-
Then there is a unique R-linear operator o,, : T(f*V) — T'(f*V) with
51,1 (hS) = S,Pp(l,l)(h) s+ h 5,,15,
S (f70) = £ (Vo)

foralls e T(f*V), v € (V) and h € C*°(Ny).

A major example of a Lie algebroid connection is the basic connection, induced by a vector
bundle connection V on a Lie algebroid. The basic connection can be thought as a Lie algebra
representation formulated as connection. Since the basic connection is related to conjugated con-
nections, Section 3.6 introduces the notion of connections conjugate to each other, and Section
3.7 then introduces the basic connection. Since Lie algebra representations are homomorphisms,
one may want that the basic connection is flat. Hence, a tensor known as the basic curvature
is also introduced and discussed; this tensor is in general not equivalent to the curvature of the
basic connection, it encodes the curvature of the basic connection, but it also contains informa-
tion about how V acts on the bracket of the Lie algebroid. We will see that the vanishing of the

basic curvature is needed for the gauge invariance of the Yang-Mills-Higgs Lagrangian.

The remaining part of Chapter 3 is then again about very basic notions related to Lie al-
gebroids. Section 3.8 is about exterior covariant derivatives but generalized to Lie algebroid
connections, and Section 3.9 is about the natural Lie algebroid structure of the direct product
of Lie algebroids. There is also the Splitting Theorem for Lie algebroids: The anchor of a Lie
algebroid is a homomorphism of Lie brackets, thus, its image gives rise to a foliation on the base
manifold by the Frobenius Theorem; the foliation is singular due to the fact that the anchor has
not a constant rank in general. The Splitting Theorem is then about that Lie algebroids are
locally a direct product of a Lie algebroid along a leaf of the foliation and along a submanifold
transversal to the foliation. This is discussed in Section 3.10, mostly in a simplified setting;
however, references for more general statements will be provided. The last section, Section 3.11,
focuses on Lie algebra bundles, a trivial example of Lie algebroids with zero anchor. It starts
with extending notions of Lie algebras like their centre to Lie algebra bundles and finishes with
a discussion about Lie algebroids with surjective anchor and their quotients over ideals.

We then discuss the formulation of CYMH GT in Chapter 4. This chapter reintroduces
CYMH GT, using my own approach in many parts while the overall theory does not differ to

the original one as e.g. presented in [1]. It starts with the study of the space of fields in Section
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4.1, the infinite-dimensional manifolds of pairs of the Higgs field and the field of gauge bosons,

similar to previously-mentioned 9.

Definition: Space of fields

Let M, N be two smooth manifolds and £ — N a Lie algebroid. Then we denote the
space of fields by

My = M(M; N) = { (@, 4) \ ® € C™(M;N) and A € Q' (M; D*E)} .

We will refer to A € QY (M; ®*E) as the field of gauge bosons and ® just as a physical
field of this theory.

The main idea is to define the infinitesimal gauge transformation as we did before in Section
2.5, but especially generalized to Lie algebroids, their connections and to the setting described
at the very beginning of this introduction; the Lie algebroid plays the role of the Lie algebra,
and Lie algebroid connections will replace the Lie algebra connections, which we have suggested
previously. One ingredient was to view the infinitesimal gauge transformation as a vector field
U on My which is now replaced by 9 g. Thence, we will discuss the tangent space of the space
of fields. Afterwards we discuss the definition and algebra of the functionals we are going to look
at. Recall the "bookkeeping trick”, the essential idea was that functionals have values in the
ev-pullback of a vector bundle over N, where the evaluation map is defined as before. Thus, we
define functionals as certain forms on M x 9tg with values in ev*V, where V is a vector bundle
over N; a similar argument will be applied to A which explains why it has values in ®*FE in
the general setting. To avoid bloating formulas and definitions we will also introduce shortened

notations which is why it is highly suggested to read Section 4.1.

In Section 4.2 we define physical quantities arising in gauge theory to the new generalised
setting as in the beginning of this introduction but without ¢, hence, without the extra term in
the field strength. As a major example serves the following definition, where ty, is the torsion

of the E-connection V, given by (V,) v =V

P p(u)V-

Definition: Field of gauge bosons and their field strength,

[1, especially Eq. (11); ® is denoted as X there]

Let M, N be smooth manifolds, and £ — N a Lie algebroid equipped with a connection
V on E. We define the field strength F' by

. 1
F(®,A):=d®*VA— §(<I>*tvp)(A NA)

for all ® € C°(M; N) and A € Q' (M; ®*E).
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$(®*tv,)(A ) A) is an element of Q*(M; ®*F) given by

(30019,)(40 ) (X.¥) = 571, (AX), AV) = (@715, ) (A(Y), AX))

= (9%tv, ) (A(X), A(Y))

for all X,Y € X(M).

This section concludes that one has the classical definitions if F is an action Lie algebroid
and V its canonical flat connection. We then finally discuss infinitesimal gauge transformations
in Section 4.3, defining them as in Section 2.4 but extended to the generalized notions, and
first omitting a definition of the infinitesimal gauge transformation of the field of gauge bosons;
for this we also make use of the previously introduced corollary about pullbacks of connections
if just differentiating along one direction. We will argue that the vector fields allowing such a
pullback are precisely those vector fields ¥ on the space of fields whose component along the
”®-direction” is given by the infinitesimal gauge transformation of the Higgs field.

That is, one milestone of this thesis is the formulation of infinitesimal gauge transformations
of functionals as derivations induced by a generalized ev-pullback of a Lie algebroid connection,
while the infinitesimal gauge transformations of the fields are given by vector fields ¥ on the
space of fields; the classical formulation is recovered by using a canonical flat connection since
functionals have values in a trivial vector bundle in the classical situation, such that a canonical
flat connection is given. The parameters of the infinitesimal gauge transformations are func-
tionals € such that e(®, A) € I'(P*E); due to the fact that their values depends on & these
parameters have in general also a non-trivial infinitesimal gauge transformation.

Afterwards the infinitesimal gauge transformation of the field of gauge bosons A is formulated.
We will see that its transformation d.A does in general not live in the same space as A itself
due to horizontal components in the tangent space of the space of fields. Therefore we will
apply a horizontal projection, however, to avoid loosing information about the ”full” formula
of 0.A, this is done in such a way that the vector field ¥ related to the given infinitesimal
gauge transformation can uniquely be reconstructed. Essentially, the horizontal projection will
only lead to a loss of information which is given by the infinitesimal gauge transformation of the
Higgs field, and that information is already given, hence, one does not loose any real information.
Technically, 6. A is given as the infinitesimal gauge transformation of the functional oo given
as the projection onto A, wy(P, A) := A. The vector field ¥ = V., parametrized by ¢, is then
uniquely encoded in the definition of the infinitesimal gauge transformation of ® and in the

condition
(6cm2)(®, 4) = —(®*V)e,

where the Lie algebroid connection in the definition of §. will be usually the basic connection in
this thesis; this is also why there is not the typical Lie bracket term as usual in the definition

of the infinitesimal gauge transformation of A, this information is saved in the basic connection
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itself. We will motivate that condition on ws by how the minimal coupling between ® and A
shall transform, similar to the typical motivation provided by physicists.

About the choice of using the basic connection: We will discuss what type of Lie algebroid
connection should be used for the infinitesimal gauge transformation if the functional is not
scalar-valued; the infinitesimal gauge transformation of scalar-valued functionals will uniquely
be given as Lie derivative of the vector field behind the transformation. We do so by looking
at the commutator of two infinitesimal gauge transformations; we expect that the commutator
should be again an infinitesimal gauge transformation. This is the case for the vector fields
behind the infinitesimal gauge transformations (the scalar-valued situation basically), denoted
abstractly as ¥ above, but now denoted as W, to account the parameter . We show that the

relation is
Wy, Ue] = =Ua.0),
where ¥ is a second parameter and A is a Lie bracket for those parameters defined by
A, €)(@,4) = (00 — 09€)|(@,4) + (P7ty, ) (V(P, A),£(P, A))

for all (®, A) € Mg; recall that the parameters themselves are functionals and have in general
a non-trivial gauge transformation now. However, for vector-bundle functionals we use Lie
algebroid connections as we motivated previously, the commutator of transformations is then
essentially a lift of the bracket of the vector fields like U.; we will see that then the relation
of the commutator has essentially an extra term given by the ev-pullback of the curvature of
the used connection. Hence, if we want a similar behaviour as for the vector fields ¥., then
we need to use a flat connection. We will see that the basic connection will be flat in the new
formulation of gauge theory, hence, our choice, although we will argue that the gauge invariance
of the Lagrangian is not affected by that choice since it is scalar-valued.

Another canonical choice as connection would be V,. While the basic connection will not
be the canonical flat connection in the classical situation, V, will be; thus, the condition for
wy would strongly resemble the typical formula of 6. A if using V, instead. Therefore choosing
the basic connection may be mainly an aesthetic choice, but we are going to see that the basic
connection, as a generalization of Lie algebra representations, reflects the symmetries of gauge
theory in a better way, simplifying calculations, while V,, among certain other difficulties, will
not be flat in general such that its commutator of infinitesimal gauge transformations on vector
bundle valued functionals would have an extra term.

In the discussion about the infinitesimal gauge invariance of the generalized gauge theory,
starting in Section 4.4, we will prove the gauge invariance of the Lagrangian in the more general
setting (still without ¢). However, after long calculations we will see that locally the new setting
is the same as the classical setting, so, one may only have achieved a global formulation of gauge
theory also allowing non-trivial bundles as values of functionals like the field strength; all of
this is due to the fact that V has to be flat in order to have gauge invariance. Now ( becomes

important; in works like [1] it is introduced as ansatz. However, we will introduce it by defining
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and studying a field redefinition in Section 4.5. Omne can think of it as a coordinate-change
as in classical mechanics, leaving an inertial frame, leading to extra terms in several physical
relationships. As a next step one then reformulates classical mechanics such that it becomes
coordinate-free and -independent; this is also denoted as covariantization by physicists. Further
steps are then generalizations of structures like assuming whether it is possible that those arising
extra terms can always be mapped to zero by a coordinate change; if not, one may for example
have a non-flat connection.

In our case the ”coordinates” are structural data like the field of gauge bosons and V.
The study about the reformulation of the existing gauge theory in Section 4.6, such that it
is ”coordinate”’-independent with respect to the field redefinition, will lead to a generalized
gauge theory where the field strength has an extra term essentially given by the ev-pullback
of the previously-mentioned ¢ € Q?(N; E). This will be then finalized in Section 4.7, and the
field redefinition is then nothing else than an equivalence of such more general gauge theories,
officially called curved Yang-Mills-Higgs gauge theories, abbreviated as CYMH GT. Finally, V
is in general not required to be flat anymore in order to achieve gauge invariance, especially we

have the relationship
RV _ _dvbasg

where Ry is the curvature of V and dV"™ the exterior covariant derivative of the basic connection
Vb This is also why ¢ will be called primitive of V. At this point we have finally recreated
CYMH GTs, but in a coordinate-free way, while the original formulation is not completely
coordinate-free, especially the infinitesimal gauge transformation was originally only formulated
in a coordinate-dependent way, without using Lie algebroid connections as in this thesis. Chapter
4 will conclude with Section 4.8 which is about certain general properties of CYMH GTs needed
for the following chapter.

Chapter 5 is then about whether or not there are CYMH GTs which are (pre-)classical, also
after any field redefinition. It could be that a given { vanishes after the field redefinition; similar
for V with respect to flatness. We first study Lie algebra bundles £ = K — N (LABs) in
Section 5.1: Subsection 5.1.1 shortly summarizes how a CYMH GT for LABs looks like, while
in Subsection 5.1.2 and Subsection 5.1.3 we will see that the question, about whether we have
a field redefinition transforming the gauge theory into a pre-classical one, has a strong relation
to Mackenzie’s study about extending Lie algebroids with Lie algebra bundles: V is by the
compatibility conditions of a CYMH GT equivalent to a Lie derivation law covering what is
called a pairing = which is a Lie algebroid morphism TN — Out(Ppe; (K ), where Out(Dpe, (K)
is the Lie algebroid of outer bracket derivations of K, outer in the sense of the quotient of
bracket derivations over inner bracket derivations. That is, V is also a bracket derivation and
its equivalence class in the quotient space of the outer bracket derivations is equivalent to the
pairing =. We will see that the field redefinition is then just a transformation to any other Lie
derivation law covering the same pairing. Furthermore, dV¢ will be an invariant of the field

redefinition, and the second Bianchi identity of V will imply that dV¢ is a centre-valued form.
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By the compatibility conditions one can argue that V induces a differential d= on centre-valued
forms, independent of the choice of V. We will see that dV¢ is closed with respect to d=, such
that it is natural to study the cohomology class of dV ¢ with respect to d=; the invariance under
the field redefinition will imply that this class only depends on =. This class is precisely the
obstruction class Obs(Z) developed by Mackenzie.

Therefore we will introduce and discuss Mackenzie’s theory about extending Lie algebroids
by LABs in Subsection 5.1.4. On one hand, Mackenzie shows that the obstruction class is zero
if and only if one can extend TN by K in such a way that there is a transitive Lie algebroid for
which the kernel of the anchor is given by K.? On the other hand, Mackenzie also shows that, if
N is contractible, then there is always a flat Lie derivation law V covering =; for contractible N
the obstruction class is trivially zero. Due to these results of Mackenzie we derive in Subsection
5.1.5 that a non-zero obstruction class implies that there is no field redefinition such that V
becomes flat, and that for contractible N there is always a field redefinition such that a given
CYMH GT is pre-classical.

Theorem: Local existence of pre-classical gauge theory (simplified formula-

tion)

Let (K, =) be a pairing of TN over a contractible manifold N, and let V be a fized Lie
derivation law covering =.
Then we have a field redefinition such that the redefinition of V is flat.

Theorem: Possible new and curved gauge theories on LABs

Let (K,Z) be a pairing of TN with Obs(E) # 0 and such that the fibre Lie algebra g
admits an ad-invariant scalar product.
Then we can construct a CYMH GT for which there is no field redefinition with what it

would become pre-classical.

However, a zero obstruction class does not necessarily imply that a CYMH GT can be trans-
formed to a pre-classical one, following an example of Mackenzie: The Hopf fibration $° — $*
has a zero obstruction class but no flat Lie derivation law covering its canonical pairing as an

Atiyah sequence.

Up to this point it was just about V and its field redefinition. In Subsection 5.1.6 we quickly
derive that for ( it is easier to find an answer. If dV(¢ # 0, then there is never a field redefinition
making ¢ vanish. We also provide a canonical construction of such ( if starting with a certain

classical gauge theory:

2 Actually, Mackenzie shows a general statement; in this thesis Mackenzie’s statement is simplified to our setting.

10
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Corollary: Canonical construction of non-classical gauge theories (simplified
formulation)

Let g be a Lie algebra with non-zero centre and admitting an ad-invariant scalar product.

Also let (N, g) be any Riemannian manifold with at least three dimensions, and K = N x g
be a trivial LAB over N, equipped with the canonical flat connection V and a metric
which restricts to an ad-invariant scalar product on each fibre.

Then there is a ¢ € Q2(N; Z(K)), with dV(¢ # 0, such that this set-up describes a non-
classical CYMH GT with respect to an arbitrary spacetime M. Additionally, there is no

field redefinition making ¢ zero.

In Subsection 5.1.7, we turn shortly to the discussion about a possible physical meaning of
dV¢ # 0 due to its influence to the obstruction of (pre-)classical CYMH GTs. We are going to
see that it measures the failure of the Bianchi identity of the field strength, i.e. dV¢ = 0 if and
only if the Bianchi identity is satisfied.

Theorem: Bianchi identity of the field strength (simplified formulation)

Let M and N be smooth manifolds, K — N an LAB, ® € C*°(M;N), and V and
¢ € Q%(N; K) satisfying the compatibility conditions of a CYMH GT.
Then

d*'V(G(®, 4) + [A 4 G(®, A)]gu e = @' (dV¢),
where

* 1
G(®,A) =d*VA+ 5[/1 D Alge g + @'
is the new field strength including the contribution of ¢, and where [-,-]g«y s the ®-
pullback of the field of Lie brackets of K.

This concludes the discussion about LABs.
In Section 5.2 we turn to tangent bundles; again Subsection 5.2.1 will discuss the general
situation for tangent bundles, and we will see that tangent bundles are locally always pre-

classical in Subsection 5.2.2.

Theorem: Tangent bundles are locally pre-classical as CYMH GT (simplified

version)

Let N =R" (n € Ngy) be an Euclidean space as smooth manifold and V a connection on
E = TN which satisfies the compatibility conditions. Then there is a field redefinition
such that V becomes flat.

Globally however, we will see in Subsection 5.2.3 that the seven-dimensional sphere $” admits

11
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a gauge theory in the sense of CYMH GT, related to a non-flat V. A flat V would imply a Lie
group structure on $7 which does not exist as we know, and this will be the quintessence of its

structure as CYMH GT for which there is no field redefinition towards a pre-classical theory.

Theorem: Global example: Unit octonions (simplified version)

S” admits a CYMH GT such that the related connection V on E = TS is not flat.

Moreover, there is no field redefinition such that V becomes flat.

The thesis concludes in Section 5.3 with a discussion about more general Lie algebroids; first
stating a small general statement in Section 5.3.1, but then turning to Lie algebroids given as
the direct product of tangent bundles and Lie algebra bundles in Section 5.3.2. We derive that
the direct product of CYMH GTs has a natural structure as CYMH GT, and we can extend the

existence of a redefinition towards a pre-classical theory by using previous results.

Theorem: Direct products of CYMHG GTs around regular points are flat
(simplified formulation)

Let N :=R" (n € Ny) be a smooth manifold such that its tangent bundle admits a CYMH
GT, whose connection satisfying the compatibility conditions we denote by VY, and let
K — S be an LAB over a smooth contractible manifold S which also admits a CYMH
GT, equipped with a connection VX satisfying the compatibility conditions.

Then there is a field redefinition with respect to their direct product of CYMH GTs with
connection V (satisfying the compatibility conditions) such that the field redefinition of V

becomes flat, where V is canonically given as a product of VY and V.

However, the discussion about general Lie algebroids will not go beyond this point, and the
thesis will conclude with a possible conjecture, which may simplify further calculations related

to direct products, especially allowing to extend other previous results.

Conjecture: Existence of a splitted field redefinition (simplified formulation)

Let N be a smooth manifold such that its tangent bundle admits a CYMH GT, and let
K — S be an LAB over a smooth manifold S which also admits a CYMH GT.

If there is a field redefinition such that their direct product of CYMH GTs is pre-classical
or classical, then there is also a field redefinition for each factor separately transforming

each factor to a pre-classical or classical theory, respectively.

Subsection 5.3.3 just lists loose ansatzes and ideas for further calculations, not necessarily
related to direct products; for the thesis itself it is not necessarily needed to read this subsection.

Finally, Chapter 6 gives a short overview about possible future research plans.

12
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1.1. Notation and other conventions throughout this work

In this thesis a lot of conventions are used, they are either in the following list or will be

introduced later.

o Throughout this work we always use Einstein’s sum convention if suitable.

¢ Due to ambiguities about connectedness in the definition of simply connected manifolds,
we emphasize that we will use the definition of simply connectedness which also requires

that such a manifold is path-connected.

o Amap f: A— B between two sets A and B we often also denote by [A 2 a — f(a) € B],
or shortly [a — f(a)], or also

A — B,

a— f(a).

e Every time when we have a map with arguments from different sets, like a map f defined
on A x B with values in a set C, (a,b) — f(a,b), where A and B are two sets, then we
sometimes just insert one or a part of the arguments. Those we denote e.g. by f(b) for
be B,so, f(b): A— C,a— f(a,b). We may also write instead f(-,b). This only applies
to situations where the arguments are not related by some condition like antisymmetry to

avoid confusion when ordering of the arguments is important.

e M, N will be smooth manifolds, although M sometimes also denotes a spacetime; but the

latter will be mentioned then.
e TN the tangent bundle of N.
e X(N) the space of vector fields of N with Lie bracket [-,-].

o Diff (V) will denote the space of diffeomorphisms of N and C'°°(N) the space of its smooth
functions; when a smooth function has values in another smooth manifold M, then we
denote that space by C°°(N; M).

o With A®V we will denote the exterior power of a vector bundle V.
o I'(V) will be V’s vector space of sections.

o We will denote the bundle of automorphisms and endomorphisms of V' by Aut(V) and
End(V), respectively. We also denote 24 (V') := I'(Aut(V)) and &z/(V) := I'(End(V)).
With those we also always mean base-preserving ones, also called vertical automorphisms

and vertical endomorphisms.

o We denote the space of (r,s)-V-tensors by 7. (V) = I'(TL(V)) for r,s € Ny, where
T(V) =Q° V'@V (r,s € Ny).

13
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V* denotes the dual bundle of V| as a special example T* /N denotes the cotangent bundle
of N and QF(N) = F(Ak T*N) the space of k-forms (k € INp).

V denotes a vector bundle connection on V' with Ry their curvature. Throughout this work
we will also face a more general notion of connection, but when we just write connection,
then we always mean a vector bundle connection. If some object is another type of

connection, then it will be explicitly mentioned or clear by the context.

As usual, one can extend a connection V to 7] (V) (r,s € Ny) by the Leibniz rule. We

will denote such connections still with V.

In the following D is also the total differential or tangent map of smooth maps, 7.e. for
every smooth map F' : M — N we have the canonical (total) differential D,F : T,M —
Tpp)N for all p € M. In the following we view DF' as an element of QY(M; F*TN) by
X(M)>Y — DF(Y), where DF(Y) e I'(F*TN),M > p — D,F(Y,).

The de-Rham differential is denoted by d.
Coordinate vector fields on a smooth manifold we often denote by 0;.

The Lie derivative of a vector field X is denoted by & x, and with this we also denote

the action of X on smooth functions f by derivation; the latter we may also denot with

X(f) =2Zx(f)-

With QP(N; V) (p € Ny) we denote the space of forms with values in V. There is a similar
notation for vector spaces W, QP(N; W); although W is not defined as a bundle over N,
with that we mean forms with values in the trivial bundle N x W — N; similar for all
other type of tensors, and also for other vector spaces and their associated trivial vector
bundles.

When one has a connection V on a vector bundle V' — N, then one has the notion of
the exterior covariant derivative on QP(M; E), denoted by dV. In the case of a trivial
vector bundle V.= N x W — N, where W is some vector space, we will often use the
canonical flat connection for V, defined by Vv = 0, where v is a constant section of
N x W, see e.g. [, Example 5.1.7; page 260f.] for a geometric interpretation as horizontal
distribution. The canonical flat connection is clearly uniquely defined (if a trivialization
is given) because constant sections generate all sections and due to the Leibniz rule and
linearity of V. That is, let V' be another canonical flat connection with V' = 0 for all
constant sections v. Then every section of N x W is a sum of elements of the form fv,

where v is still a constant section and f € C°°(N), such that

V(fv)=dfev+fVy=V'(fv),
=0=V'v

14
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which proves the claim using the linearity of V. Let (eq), be a constant global frame of
N x W, thence,

dMw=dw* ®e,
for all w € QP(M; W), where we write w = w® ® e,. Hence, we define
dw == dVw, (1.1)
when V is the canonical flat connection. d is clearly a differential.

o With ®*V we denote the pullback/pull-back of the vector bundle V' under a smooth map
®: M — N. We will also have sections F' as an element of T’ ((@fn:l E;",L) ® El+1),
where Fy,... Ej41 (I € N) are real vector bundles of finite rank over N. Those pull-back as
section, denoted by ®*F, we will view as an element of T’ (( in:l((ﬁ*Em)*) ® @*EZH),

and it is essentially given by
(O F)(@w1,...,00) = & (F(un,..., 1))

for all vy € I'(Ey), ...,y € I'(E)), using that pullbacks of sections generate the sections of
a pullback bundle. In general we also make use of that sections of ®*FE can be viewed as
sections of E along ®, where £ > N is any vector bundle over N. Let u € T'(®*E), then
it has the form y, = (p,v,) for all p € M, where v, € Eg(p), the fibre of £ at ®(p); and a
section v of E along ® is a smooth map M — E such that w(v) := morv = ®. Then on one
hand pry o i is a section along ®, where pry is the projection onto the second component,
and on the other hand M > p — (p,vp) defines an element of I'(®*E). With that one
can show that there is a 1:1 correspondence of I'(®*E) with sections along ®. We do not
necessarily mention it when we make use of that identification, it should be clear by the

context.

o We will also often make use of that I'(®*E) is generated by pullbacks of I'(E). If we
explicitly use this in calculations, then we take for example a local frame (e,), of E, and
then a frame of ®*E is given by (®*e,),. In such situations we implicitly assume that

(€a), is defined on a part of the image of ®. Similar for intersections of frames.

e Furthermore, we will often need frames for bundles like ®* F; we will then just write ”Let

(€q), be alocal frame of E” and implicitly mean that we take (®*e,), as a frame for ®*F.

e Do not confuse the previously discussed pull-back of sections with the pull-back of forms
F € Q(N;V), here denoted by ®'F, which is an element of T (( - T*M) ® <I>*V) o
Q(M; ®*V), and not of I' (@, (®*TN)") © &*Eyy1 ) like @*F. 'F is defined by

! R
(q> F) (Yi,... ,Yl)’p = Fap) (qu>(yl|p), - ,Dpcb(mp)) (1.2)

forallpe M and Y7,...,Y; € X(M).

15
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¢ Unless otherwise stated, the considered manifolds and vector bundles are of finite dimen-
sion and rank, respectively, and smooth; arising fields are always real numbers, hence, we
also view C" (n € N) as R,

e Morphisms of bundles over the same base are always base-preserving ones if not stated

otherwise.

e In the case when we explicitly state that we now turn to infinite-dimensional manifolds,
we always assume a convenient setting, for example that is, we assume that all the smooth
structures etc. are given and well-defined such that we can treat those manifolds and
objects as if they would be finite-dimensional for the constructions we are going to study.
The tangent bundle of infinite-dimensional manifolds we will define by the approach of

using equivalence classes of curves.

e As usual, there will be definitions of certain objects depending on other elements, and for
keeping notations simple we will not always explicitly denote all dependencies. It will be
clear by context on which it is based on, that is, when we define an object A using the
notion of Lie algebra actions v and we write "Let A be [as defined before]”, then it will
be clear by context which Lie algebra action is going to be used, for example given in a

previous sentence writing "Let v be a Lie algebra action”.

e We have several identities shown in the Appendix A. We will use them throughout this
work, but the thesis will be written in such a way that one only needs to know the
appendix when starting to read Chapter 4, and several notions arising in the appendix

will be introduced before that chapter.

o At the very end is also a list of symbols. There we try to list all the needed symbols with
page numbers where they got defined. When you read this thesis using its pdf, then all
those symbols will be hyperlinked to that glossary. After clicking on such a link you may
be able to get immediately back where you were using the return button on your mouse
device if available, whether this works may also depend on your pdf reader; otherwise use

the hyperlinks of the listed page numbers in the glossary for a quicker navigation.

The list of symbols first lists generic symbols, then Greek letters, and afterwards Latin

letters.

o References are not only given in the text, the references of referenced statements and
definitions are especially given in the title of those statements. The title also mentions
whether the statement as written in this thesis is a variation or generalization; when it is a
strong generalization, then the reference will be mentioned in a remark after the statement

or its proof.
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2. Gauge theory

2.1. Lie algebras and their actions

In the following we will shortly introduce the basic setup of infinitesimal gauge theory where a
trivial principal bundle is assumed and, thus, omitted. Equivalently, we assume a global gauge
or we just look at some open neighbourhood of the spacetime admitting a local gauge. We will
follow [4].

Moreover, we will especially focus on the infinitesimal behaviour of gauge theory. That is,
we will mainly concentrate on Lie algebras and not Lie groups. The following will also not be
a deep discussion of the defined notions, just providing the very needed definitions, especially
those which are going to be generalized later. Thus, it is in general recommended to have already
knowledge about how gauge theory is mathematically formulated, especially Yang-Mills-Higgs
gauge theory.

Definition 2.1.1: Lie group, [4, Definition 1.1.4; page 6]

A Lie group G is a group which is also a smooth manifold such that
GxG— G,
(9.h) = g-h

is smooth, where G x G has the canonical smooth structure of a product manifold inherited

by the smooth structure of G.

Remarks 2.1.2.

Usually, the definition of Lie groups contains also the condition about that the inverse map,

G > g — ¢!, is smooth, which can be combined with the smoothness of the multiplication map
to that
GxG— 3,
(9;h) = g-h™,

shall be smooth as a single condition for the definition of Lie groups. However, that is not
needed as pointed out in [, Remark 1.1.8, page 7; see also Exercise 1.9.5, page 76f.], which is

why we just need to ask for smoothness of the product.

As known, the set of left invariant vector fields' on a Lie group form a Lie algebra.

IThis can be identified with the tangent space at the unit element as it is well-known.

17
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Definition 2.1.3: Lie algebra, [4, Definition 1.4.1, page 36|

Let g be a vector space together with a map
[ largxg—g,
(z,y) = [z,9];

This pair (g, [, ] g) is called a Lie algebra with Lie bracket [, ], when the following
hold:

. [ ~]g is bilinear.
o [], is antisymmetric.
o [,], satisfies the Jacobi identity, i.c.

[l )+ [l alg] + [0 [e)] =0

for all z,y, z € g.

Such an algebra is characterized by the following constants.

Definition 2.1.4: Structure constants, [4, Definition 1.4.17; page 38|

Let (g, [, -]g) be a Lie algebra. Then the structure constants C}’. € C*°(R) are defined
by

[ea; €v]y = Capec (2.1)

for a given basis (eq),.

Remarks 2.1.5. [, Definition 1.4.17 et seq.; page 38|
The antisymmetry and Jacobi identity of [-, -] o imply

Cl()Lc = - gb’ (22)
0=CLCe +Cloe, +clce 2.3
— Yae“'bc + be“'ca + ce~ab* ( . )

For defining couplings we also need Lie group and Lie algebra representations.

Definition 2.1.6: Lie group representation, [4, Definition 2.1.1; page 84]

Let G be a Lie group and W a vector space. Then a representation of G on W is a Lie

group homomorphism

UG — Aut(W).

18
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Definition 2.1.7: Lie algebra representation [4, Definition 2.1.5; page 85|

Let g be a Lie algebra and W a vector space. Then a representation of g on W is a Lie

algebra homomorphism

¥ g — End(W).

As known, these can be related as in the following lemma.

Lemma 2.1.8: Every Lie group representation induces a Lie algebra represen-

tation [4, Proposition 2.1.12; page 86]

Every representation ¥ of a Lie group G on W defines a Lie algebra representation ¢ by
Y =V, =DV, where e is the unit element of G.

We will focus on the following examples of Lie algebra representations. The first example

shows the homomorphism property directly, while the second one uses Lemma 2.1.8.

Example 2.1.9: su(2)-action,

[5, §6.2 et seq., page 586ff.; and §6.6 et seq.; page 633ff.]

Here we will view the Lie algebra g = su(2) as R3: Let e1, e, e3 denote the standard unit
vectors corresponding to the coordinates x', 22, z3. Then the Lie bracket is given by the

cross product, i.e.
[ei, ej]su(Q) = @ K @ = Eynen (2.4)
where ¢;;;. is the Levi-Civita tensor. The representation on W := R3 is given by
P)(w) = v x w = e Ev'wes (2.5)
for all v,w € R3. This is a homomorphism by

w([u, v]su(2)> (w) = i wk BT B = uiwivjej — dwivle;,

=0;10im—0imIjk

where 0;; is the Kronecker delta, and
([1/1(11), w(”)]End(RS)) (w) = (Ui@jﬁilmﬁjkl - Uivjfjlmeikl>wk€m
= (—uivi + uivi>wmem + uivjwiej —uvlwle;
= ([, V)guz) ) ()

for all u,v,w € R3.
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Example 2.1.10: Electroweak interaction coupled to a Higgs field,

[4, Example 8.1.9; page 449f.; and §8.3.1; page 465ff.]

The electroweak interaction coupled to a Higgs field is defined as g := su(2) ®u(1)
acting on W := C?(= R*). Let i be the imaginary number and n~ be a non-zero natural
number (a normalization constant). The Lie algebra representation v is then defined as

the induced representation W, of the Lie group representation ¥ given by
(SU(2) x U(1)) x C% — C2,
(A,eio‘,w> > \I'(A,eia) (w) == (A,eia) cw = e™M%Aw

for all w € C2. This is clearly a Lie group representation.

Another important examples are the adjoint representations.

Example 2.1.11: Adjoint representations,
[4, Theorem 2.1.45 and abstract before that; page 101] & [4,

Theorem 2.1.52; page 105]

We have the well-known adjoint representation of a Lie group G: For an element

g € G we define the conjugation c, as a map by

G — G,
h > cg(h) = ghg™".

It is easy to check that ¢, is a Lie group automorphism, i.e. a diffeomorphism and a
homomorphism; moreover, the map G x G — G, (g, h) — c4(h), is a left action of G on
itself, especially we have cg;, = ¢4 0 ¢, for all g,h € G. All of those properties lead to the
definition of the adjoint representation (of G) Ad : G — Aut(g), a G-representation on g
defined as map by

G — Aut(g),
g — Ad(g) = Decy,

where e € G is the neutral element; we defined Lie group representations with values in
vector bundle automorphisms, but due to the properties of the conjugation one can also
understand Aut(g) here as the space of Lie algebra automorphisms, especially Ad(g) is
additionally a homomorphism of the Lie bracket of g for all g € G.

The induced Lie algebra representation of Ad is given by ad : g — End(g), X — [X, -] .
the adjoint representation of g.
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Representations can be generalized to actions on manifolds N.

Definition 2.1.12: Left action on manifold, [4, §3.2, Definition 3.2.1; page 130]

A smooth left action of a Lie group G on a smooth manifold N is a smooth map
GxN—> N,
(9:p) = g-p=gp,
where G X N is equipped with the canonical product structure, and we demand:

e Forallghe Gandpe N
(9-h)-p=g-(h-p)
e For all p € N and e the neutral element of G

€-p=Dn.

Remarks 2.1.13. [1, §3.4; page 141{f]
One may try to think about a left action as a generalization of Lie group representation when
replacing the space of automorphisms of a vector space W with the space of diffeomorphisms
N, Diff(N), and then rewriting the left action as a map G — Diff(N), g — [p — gp] € Diff(N).
The definition of a left action then implies that this map would be a group homomorphism.
Keep in mind that the definition of a representation of a Lie group demands smoothness
of the representation such that we would need to define a smooth structure on (in general)
infinite-dimensional sets like Diff (V') which we would like to avoid. Hence, when we also want
to derive a Lie algebra action we just motivate it in the following way. Denote the action by
(9,p) — ¥(g,p) == g - p, then take any Lie algebra element X € g to conclude for t,s € R, by
using Def. 2.1.12,

()|, =er=p

\I]<e(t+s)X,p) _ ‘I,(etX _ eSX,p) _ \I](etX’\I/(esXJ)))?

where t — e*X denotes the 1-parameter subgroup through X. Thence, R x N — N, (¢, p)
v (etX, p) defines the flow of a (complete) vector field v(—X) € X(IV), defined at p by v(—X),, :=

% o [t — W (etX,pﬂ . This defines a map g — X(N), X — ~v(X), which is known as the map to
fundamental vector fields, and the change of the sign is needed to define v as a homomorphism
of Lie algebras, see e.g. [1, Proposition 3.4.4; page 144]. In fact, we are going to prove that in

Prop. 2.1.16, too, in the special situation of N = W for some vector space W.

Thence, we motivated the following definition.
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Definition 2.1.14: Lie algebra action, [2, §16.2, Example 5; page 114]

A Lie algebra action of a Lie algebra g on a smooth manifold N is a Lie algebra

homomorphism
79— X(N)
such that the map
N x g — TN,
(p, X) = 7(X)p

is smooth, equipping N X g with the canonical structure of product manifolds.

Remarks 2.1.15.
If 7y is induced by a (left) Lie group action as in Remark 2.1.13, then we also call v the induced

Lie algebra action.

We can show that all Lie algebra representations define a Lie algebra action, not assuming

any integrability to a Lie group representation.

Proposition 2.1.16: Lie algebra representation — Lie algebra action,

[4, generalisation of parts of Example 3.4.2; page 143f.]

Every Lie algebra representation v on a vector space W defines a Lie algebra action v by

Y(X)o = —p(X)(v) (2.6)

for all X € g and v € W, where we view the right hand side as an element of T, W,
making use of T,W = W.

Remark 2.1.17

We then say that v is induced by .

Remarks 2.1.18.
A few words about using T,W = W: In the following we will denote a basis of W by (e,),,
v = v, for all v € W, which we will also identify as a (constant) frame of TW, i.e. 9, <> e,

for some coordinate vector fields (9,),. Then the definition contained in Prop. 2.1.16 reads

Y(X) = =y (X),
where T € X(W) for T € End(W) is defined by

W — TW,
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v T(v) = TP D) .-

Normally, we will omit this notation most of the time and write T = T since the identification
in T,W =2 W is very natural. But until the proof of Prop. 2.1.16 we are going to keep this

notation.

To prove Prop. 2.1.16 we need to show the following Lemma and Corollary; these are basically
the statements as for fundamental vector fields, [, §3.4; page 141ff.], but just looking at g =
End(W) with ¢ = Tgpq(w) as representation on W, which is all one needs to prove Prop. 2.1.16.

Lemma 2.1.19: End(W) a Lie subalgebra of X(1W),

[4, §3.4; page 141ff.; especially second equation in Remark
3.4.5; page 145]

Let W be a vector space. Then End(W) is a Lie subalgebra of X(W), and we have

[T, L]End(W) - {T, f} (2.7)

for all T, L € End(W).

Proof.
That it is a subspace is clear due to 0 € End(W) and

aT +bL = aT + bl

for all T, L € End(W) and a,b € R. We also get for v = v%e, € W

= = b o Fa b 4 e
T.Z] = (T" &L ~L" &T")| ul, = [T Llisnaw () dal, = = [T Ll ,
=0p[v—>LEv°]=L
which also shows that it is a subalgebra. |

In fact, we can identify the endomorphisms of W with this subalgebra.

Corollary 2.1.20: Lie algebra isomorphism End(W) = End(WW),

[4, simplified Proposition 3.4.3; page 144]

Let W be a vector space. Then there is a natural Lie algebra isomorphism

End(W) = End(W). (2.8)

Proof.
Define F' : End(W) — End(W) by
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for all L € End(W). Then observe for T, L € End(WW) that

[F(T),F(L)} _ {* *} Lem.:'2.1.19 [

T,L -7, L]End(W) = F([T, L}End(w))v

hence, F' is a homomorphism of Lie algebras, and it is clearly an isomorphism by definition
(2.9). |

Using Lemma 2.1.19 we can finally prove Prop. 2.1.16.

Proof of Prop. 2.1.16.
Smoothness is clearly inherited by the smoothness of ©¥). We need to show that v defined by

Y(X) == —¢(X) for all X € g is a homomorphism of Lie algebras. Then use the sign change of
Lemma 2.1.19 to show for X,Y € g

% Homom. 2.1.19

(1%, 7]y) = v (1X,Y],) " E —B ) W gnaory = [2X0), 8(V)] = (X), 7 (V).
[ |

Prop. 2.1.16 immediately implies the following corollary.

Corollary 2.1.21: Lie group representation defines actions,

[4, Example 3.4.2, page 143f.]

Every Lie group representation ¥ on a vector space W defines a Lie group and Lie algebra

action on W.

Proof.

As it is well-known, every Lie group representation ¥ defines a left action by
GxW —=W,
(g:v) = g-v="¥(g)(v).

The Lie algebra action + is canonically given by the fundamental vector fields related to this

action,

. [t (7% 0)] = —w.(X)(v)

for t € R, for all X € g and v € W. This is a Lie algebra action by Prop. 2.1.16. |

2.2. Isotropy

Of a special importance in this work will be the isotropy subalgebra of a Lie algebra g. We
will define this without using group actions because we won’t assume integrability in general

throughout this work.
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Definition 2.2.1: The Isotropy Subalgebra,

[4, infinitesimal version of Definition 3.2.4; page 132]

Let g be a Lie algebra, and v : g — X(NN) a Lie algebra action on a smooth manifold N.
Then the isotropy subalgebra g, at p € N is defined as

g ={X€g|v(X),=0}. (2.10)

We also often call it just isotropy (at p).
When we have a Lie algebra representation v : g — End(W) on a vector space W, then

its isotropy is related to its induced Lie algebra action as given in Prop. 2.1.16.

Remarks 2.2.2.

Normally the isotropy subalgebra is defined by assuming a (left) Lie group action ¥ : G x N —
N,¥(g,p) = g - p, of a Lie group G. Then the isotropy group at p € N, [1, Definition 3.2.4;
page 132], is defined as

Gp={9€Glg-p=p}. (2.11)

By [, Proposition 3.2.9; page 134], G, is an embedded Lie subgroup of G, and, by [/, Proposition
3.2.10; page 134], one can show that the Lie algebra of G, is the kernel of a map g — T, N,
defined by

X|—>g

4] o)

t=0

which is precisely the canonical action of fundamental vector fields defined by V¥, evaluated at
p. That is the motivation for Def. 2.2.1.

In case of an integrable Lie algebra action we have the following relationship of isotropies.

Corollary 2.2.3: Isotropy of integrable Lie algebra actions,

[4, infinitesimal version of the abstract before Proposition

3.2.10; page 134]

Let G be a Lie group with a (left) Lie group action ¥ : Gx N — N, (g,p) — ¥(g,p) = gp,

on a smooth manifold N. Then

Ad(g)(gp) = 9gp (2.12)

for all g € G and p € N, where g, and gy, are the corresponding isotropy subalgebras

related to the Lie algebra action induced by V. Especially, g, and g4, are isomorphic as

Lie algebras.

Proof.

This corollary is the infinitesimal version of the other well-known relationship of isotropy groups,
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see [1, abstract before Proposition 3.2.10; page 134],
cg(Gp) = Ggp (2.13)

for all g € G and p € N, especially, ¢, : G, — G, is a Lie group isomorphism; this is easy to
check. Because the isotropy algebras are here now induced by the Lie group action, we know
that the induced Lie algebra action  is given by the fundamental vector fields, and, so, the
isotropy subalgebras are the Lie algebras of the isotropy groups, recall Remark 2.2.2.

First let us show that Ad(g)(gp) C ggp- Observe, making use of Eq. (2.13),

Cq (etX) € Gy

forallg e G,pe N, X € gp, and t € R. [R St cg(etx) € Ggp} is clearly a Lie group

homomorphism as a composition of homomorphisms, especially a 1-parameter subgroup. Hence,

dgp 3 % [t cg(e™)] = Ad(9)(X),

t=0

and therefore Ad(g)(g,) C ggp-°

That we have Ad(g)(gp) = ggp simply comes from the fact that everything is finite-dimensional,
so, Ad(g)(gp) is a finite-dimensional subspace of g4y, and by the Lie group isomorphism in
Eq. (2.13) we have dim(g,) = dim(ggp). Thus, Ad(g)(gp) = ggp follows, and that describes a Lie

algebra automorphism g, = g, because Ad(g) is a Lie algebra automorphism. |

For the last statement we needed integrability. One may assume that isotropy subalgebras are
in general ideals of the Lie algebra g due to that result, by using that the induced Lie algebra
representation of Ad is given by ad. But the isotropy subalgebra is in general not an ideal,
i.e. we have in general not [ X Y]g cgpforallpe N, X € g, and Y € g. Given those, fix local

coordinates (0;); on N around p and a g-action v on N, then

([X.Y)) = (X)W,

= ~Z,m)| (VX)) 8,

forallp e N, X € g, and Y € g, where we locally write v = 4" 8;. Therefore gp would be an
ideal, if there is a coordinate system such that 4%(X) are constant along v around p; we will
come back to this condition about constancy in another chapter. However, we will later see that
the isotropy subalgebra is always an ideal of another Lie bracket, the bracket of a vector bundle

which we will call a Lie algebroid. But let us now first shortly introduce the physical quantities.

2 Alternatively, use the well-known equation c,(exp(tX)) = exp(tAd(g)(X)), see [4, Theorem 1.7.16; page 59].
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2.3. Yang-Mills-Higgs gauge theory

As introduced, we will only assume trivial principal bundles. Hence, the field of gauge bosons
will be represented by an element A € Q'(M;g), where g is a Lie algebra and M is usually a
spacetime (but often just a smooth manifold in the following).

We also need the following definition.

Definition 2.3.1: Graded extension of the Lie bracket,

[4, generalization of Definition 5.5.3; page 275]

Let M be a smooth manifold, W and W’ vector spaces and F € A>W* ® W’. Then
for w € QF(M; W) and n € Q(M; W) (k,I € Ng) we define F(w? n) as an element of
QM (M W) by

(Fwbdn) (X1, Xpg1)

1

= AT Z SgH(U)F(w <Xg(1), e Xg(k)) ) U(Xg(k_,_l), e ,Xg(k+l)>) (2.14)

UESk+l

for all Xy,..., Xk € X(M), where Sg; is the group of permutations of {1,...,k +[}.

When either w or 7 is a zero-form, then we may also write F'(w,n) instead.

Remarks 2.3.2.
It is easy to check that F(w % n) is well-defined, i.e. that it is an element of Q*¥+(M;W’) by
construction.

For W = g and F' = [, -] observe that we have for A € QY (M;g)

— [A(Y), A(X)]y = 2 [A(X), A(Y)]

(A% AJ(X,Y) = F(AY A)(X,Y) = [A(X), A(Y)] o

g g

for all X,Y € X(M). Making use of the structure constants C', with respect to a given basis

(€q), of g, we can also write
[AY Al = A*NA"® [eq, @]y = A A A® @ Cec. (2.15)

Let us now define the field strength.

Definition 2.3.3: Field strength, [4, Theorem 5.5.4; page 275]

Let g be a Lie algebra and M a smooth manifold. The field strength F'(A) of A €
QY(M:;g) is defined by

F(A) = dA+ %[A 24, (2.16)

We view the field strength also as a map F : Q1(M;g) — Q*(M;g), A — F(A).
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The field strength satisfies the Bianchi Identity, encoding the homogeneous Maxwell equations

in the case of electromagnetism.

Theorem 2.3.4: Bianchi identity of the field strength,

[4, Theorem 5.14.2; page 311]

Let g be a Lie algebra and M a smooth manifold. Then the field strength F satisfies the
Bianchi Identity

d(F(A)) + [A " F(A)], =0 (2.17)

for all A € QY(M;g).

Remarks 2.3.5.
See the reference for a proof for now. We will later prove a more general Bianchi identity which

will recover this statement; see Thm. 5.1.42.

Let us now define the needed Lagrangians; we are going to state later the typical conditions for
gauge invariance, which is why we do not yet clarify any invariance of the used scalar products

in the following.

Definition 2.3.6: Yang-Mills Lagrangian, [4, Definition 7.3.1; page 414|

Let g be a Lie algebra, equipped with a scalar product x, and M a spacetime with
spacetime metric 7. Then we define the Yang-Mills Lagrangian £yy as a map
Q1 (M; g) — QI (M) by

Sym(A) = — K(F(A) ) xF(A)) (2.18)

for all A € QY(M;g), where * is the Hodge star operator with respect to 7.%

“As a reference, see for example [/, Definition 7.2.4; page 408].

We also want to look at the Higgs field. The Higgs field is a map ® € C*°(M; W), where W
is some vector space, and the field of gauge bosons A are coupled to fields like the Higgs field

via the minimal coupling.

Definition 2.3.7: Minimal coupling,
[4, Definition 5.9.3; page 292; Definition 7.5.5 et seq.; page

426]

Let g be a Lie algebra, M a smooth manifold, and W a vector space. Furthermore, let
¥ : g — End(WW) be a g-representation on W. Then we define the minimal coupling ©
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as a map given by
C®(M; W) x QN (M;g) — Q' (M; W),
(@, A) —» D(D,A) =D'D = dd + h(A)(P), (2.19)

where 1)(A)(®) is an element of Q' (M; W) given by

forallpe M and Y € T, M.

Remarks 2.3.8.

In [4] and other literature, minimal coupling also often just refers to the term ¢ (A)(¥).

With that we can now define the Yang-Mills-Higgs Lagrangian.

Definition 2.3.9: Yang-Mills-Higgs Lagrangian, [4, Definition 8.1.1; page 446f.]

Let g be a Lie algebra, equipped with a scalar product x, M a spacetime with spacetime
metric 77, and W a vector space, also equipped with a scalar product g. Furthermore,
let V€ C°(W), the potential of the Higgs field, and ¢ : g — End(W) be a g-
representation on W. Then we define the Yang-Mills-Higgs Lagrangian vy as a
map C®(M; W) x QY (M; g) — QImA) (M) by

Syrm(®, A) = _% R(F(A) ) *F(A)) + (D49 ) +D4®) — #(V 0 @) (2.20)

for all (®,A) € C®°(M; W) x Q' (M;g), where * is the Hodge star operator with respect
to 7.

The Higgs mechanism is needed for allowing masses of gauge bosons while keeping gauge
invariance. We will not introduce and discuss this because it would exceed the scope of this
thesis and it is already elaborated elsewhere, see for example [1, §8; page 445ff.]. However,
let us summarize the Higgs effect: The essential idea and result is that the components of A
along the isotropy subalgebras g, (p € W) describe the massless gauge bosons, while the other
components may describe the bosons with masses due to a non-trivial minimal coupling. That
is, fix a point p € W, take a basis (f,), of gp, and extend that basis to a basis of g, denoted by
(eq),- Then write A = A% ® e, and define Ajs, = A* ® fq, and denote with ~ the Lie algebra
action induced by v as in Prop. 2.1.16, such that

'V(Ai50|p(y))p = Ao lp(Y) @7(fa)p =0
\:6_/

forall p e U and Y € T,M. It is possible to extend that argument to certain open subsets of
W, leading to that Ajs, has a trivial (=0) coupling to any ® such that Ajs, is going to describe
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the massless gauge bosons like the photon and the gluons. While the remaining components
of A may be massive. Thus, in order to allow masses of gauge boson, one needs that the
isotropy subalgebras are non-trivial subalgebras of g at certain subsets of W (especially around

the minimum of the potential V). That is called symmetry breaking.

However, that is not the only factor needed, on one hand one needs a special form of the
potential, and on the other hand there is also the known unitary gauge which essentially fixes
the components of the Higgs field along the orbits of ¥ such that the gauge bosons only really
couple to the components along the transversal structure. The components of the Higgs field
along the orbits of ¢ generally describe the Nambu-Goldstone bosons, while the transversal
components are the actual Higgs bosons. Therefore we would not have a Higgs effect without a

transversal structure, and, thus, no masses of gauge bosons.

As mentioned, we will not prove or introduce anything of this in detail; see the given reference
for an elaborated discussion. But after we will have introduced the generalized and new gauge
theory, using Lie algebroids, we will very shortly revisit this behaviour, and it will be easier
to formulate due to the fact that the new formulation supports Lie algebra bundles and vector

bundles known as action Lie algebroids.

2.4. Infinitesimal Gauge Invariance

Let us now turn to gauge invariance. We will only focus on its infinitesimal formulation because
the generalized gauge theory we want to go to will not assume integrability in general. We will
still follow [1, especially §5; page 257ff.], while we first give the observed space of fields in order

to make following notations more compact.

Definition 2.4.1: The space of fields

Let M be a smooth manifold, W a vector space, and g a Lie algebra. Then we define the
space of fields by

My (M; W) = {(<I>,A) \ B e C°(M;W) and A € Ql(M;g)} . (2.21)

Definition 2.4.2: Infinitesimal gauge transformation of the Higgs field and the
field of gauge bosons,
[4, infinitesimal version of Theorem 5.3.9, see also comment

afterwards; page 269f.] and [4, infinitesimal version of Theo-

rem 5.4.4; page 273]

Let M be a smooth manifold, W a vector space, and g a Lie algebra, equipped with a Lie
algebra representation ¢ : g — End(W). Moreover, let ¢ € C*°(M;g).
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Then we define the infinitesimal gauge transformation §.® of the Higgs field
& € C°(M; W) also as an element of C*°(M; W) by

5.® = () (D). (2.22)

The infinitesimal gauge transformation J.A of the field of gauge bosons A €
QY(M:; g) is defined as an element of Q(M;g) by

6 A =g, A]; — de. (2.23)

With that one can define the infinitesimal gauge transformation of functionals.

Definition 2.4.3: Infinitesimal gauge transformation of functionals,

[4, motivated by statements like Theorem 7.3.2; page 414ff.]

Let M be a smooth manifold, W, K vector spaces, and g a Lie algebra, equipped with a
Lie algebra representation 1 : g — End(W). Moreover, let e € C*°(M;g).

Then we define the infinitesimal gauge transformation 6.L of L : M (M; W) —
QF(M; K) (k € Ng) as a map 9y(M; W) — QF(M; K) by

(5.L)(®, A) = di _[to L@+ 16,8, A+ t6.4) (2.24)

for t € R, where d/dt is defined using the canonical flat connection on M x K — M.

Remarks 2.4.4.
This definition leads to (5.L)(®, A) € QF(M; K), because the vector space W is viewed as a
trivial vector bundle over M such that one uses the canonical flat connection for the definition of
d/dt, that is, one fixes a global trivialization, and then differentiates the components with respect
to that trivialization separately. Thus, one actually uses a very trivial horizontal projection in
that definition.

This definition is basically nothing else than a differential of functionals along the direction

given by (6:®,6-A). But we want to keep it as presented in order to emphasize something later.

One then calculates the typical formulas of the infinitesimal gauge transformations of the field

strength and minimal coupling

Proposition 2.4.5: Infinitesimal gauge transformations of the field strength

and minimal coupling,

[4, infinitesimal version of Theorem 5.6.3; page 280] and [4,

infinitesimal version of Lemma 7.5.8; page 428]

Let M be a smooth manifold, W a vector space, and g a Lie algebra, equipped with a Lie
algebra representation v : g — End(W). Moreover, let e € C*°(M;g).

31



CHAPTER 2. GAUGE THEORY Simon-Raphael Fischer

Then we have
(0cF) (P, A) = [E,F(A)]g, (2.25)
(0-9)(@, 4) = y(e) (D) (2.26)

for all (P, A) € MG (M; W).

Remarks 2.4.6.
The infinitesimal gauge transformation of A can also motivated by conditioning that the gauge
transformation of the minimal coupling has to look like as in this proposition. We will discuss

this later in more detail in the general setting.

Proof of Prop. 2.4.5.
We get?

- F(A+ 1.4
3|, [t F(A+ 8.4
4 !
d =g 2

PHMA+@M+ m+w¢QA+@44

1 1
= A A+510.A 5 Al + 5[4 6.
=l[e,A],—de

g

= [de, Al + [=,dA] + [e, Al — de 2 4]

:kﬂAb+UaAbGAL

making use of Eq. (2.15) which implies that we have a product rule with respect to the two

arguments in [- ) -] in sense of wedge products and the differential, and we clearly have [w /) 7] g =

g
7 w] g forallw,m € QY(M:; g) due to the antisymmetry of the Lie bracket; see also Appendix
A for their proof (as slightly generalized versions). Again using Eq. (2.15), the Jacobi identity

of the Lie bracket and a basis (e4), of g, we arrive

4,5 A] =2 A A0 [feaserlgrec],

_ €aAb AAC® ([ea, [eb,ec]g}g + [[emec}g’@b}g)

& 4l 5 4] =5[elan 4]

3F is independent of ®, so, one can omit it there.
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hence,

(0.F)(A) = |e,dA + %[A 2l =l P,

For the minimal coupling observe, also now using additionally a basis (f), of W,
do:® = d(¥(e)(®))

= d(e"®* ¥(ea)(fa))
cs

= de” (I)aw(ea)(fa) + Eadcbaw(ea)(foc)
= ¢(de)(®) + ¢ (e)(dP),

and, thus,

(6.9)(®, A) di [ (@ 4 15.0) + (A + 15, A)(® +16,0)

= 0@ + (0. A)(®) + () (6-2)
= $(de)(®) + 1(e)(dD) + ¢ [z, Al — de ) () + B(A) (1 (2)(®))

= p(e)(d®) + [(e), ¥ (Al + ¥ (A)(L(e) (D))
=() (V(A)(®))

= v(e)(D"2),
where we used that ¢ is a homomorphism of Lie brackets. |

That leads to the typical well-known statement about the infinitesimal gauge invariance of
the Yang-Mills-Higgs Lagrangian. For that we shortly recall what it means that a scalar product

is invariant under a Lie algebra representation.

Definition 2.4.7: Scalar products invariant under Lie algebra representations,

[4, Definition 2.1.36; page 96]

Let g be a Lie algebra, W a vector space and v : g — End(W) a g-representation on W.

Then we say that a scalar product g on W is ¥-invariant

9@ (X)(v),w) + g(v, ¥(X)(w)) =0 (2.27)

for all X € g and v,w € W.
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Theorem 2.4.8: Infinitesimal gauge invariance of the Yang-Mills-Higgs La-

grangian,

[4, infinitesimal version of Theorem 7.3.2; page 414] and [4,

infinitesimal version of Theorem 7.5.10; page 429]

Let g be a Lie algebra, equipped with a scalar product k, M a spacetime with spacetime
metric n, and W a vector space, also equipped with a scalar product g. Furthermore, let
Ve C®(W) and : g — End(W) be a g-representation on W, whose induced Lie algebra
action is denoted by v. If we have

k is ad-invariant, (2.28)
g is Y-invariant, (2.29)
0=ZLVod (2.30)

for alle € C*(M;g) and ® € C°(M;W), then
deLymvu =0 (2.31)

for alle € C*(M;g).

Remarks 2.4.9.
Condition (2.30) may be reduced to Z,)V' = 0; however, we will not discuss the potential, and

that "weaker” formulation may be a good starting point if one wants to restrict the set of ®.

Proof of Thm. 2./.8.
We will prove the more general statement in more detail later, see Thm. 4.4.3, but it is a trivial
consequence of Prop. 2.4.5: We need to calculate

d

& [R >t — SYMH(<D +t6. P, A+ t(;EA)]

t=0

and we can do that on each summand in Def. 2.3.9 separately. Applying the product rule when
calculating % and using Prop. 2.4.5, it is clear that the first two summands, the Yang-Mills
Lagrangian and the kinetic part of the Higgs field, vanish because of the imposed invariances on

k and g. For the potential V' observe

(d
dt

which is also zero by the assumed condition on the potential. Hence, the infinitesimal gauge

it V(@ +t5s¢”)‘p = (do)V) @) (@) =1 — 2V,

=0 )’

transformation of all three summands of the Yang-Mills-Higgs Lagrangian is zero.* |

Remarks 2.4.10.

In [1] one assumes a function V € C°(R) instead of the general potential we took. There the

4The Hodge star operator can be ignored because the spacetime metric is independent of the fields ® and A.
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potential is then given by V(w) == V(g(w,w)) for all w € W, e.g. V is a polynomial of the

scalar product on W. Due to the ¥-invariance of g we get

(d
dt

[b%ld@+¢@@ﬂ)

= Dytatm a7 (9(4E(®) 20)) + 9(2(p). w() @)y

t=0 p

=0
for all ® € C°(M; W), e € C*°(M;g) and p € M. In the proof we also have seen
(d
dt

thus, Eq. (2.30) is satisfied for such potentials. See [1, §8; especially also the box at the top

HHV@+w&D‘=—$mmV
p

t=0 o(p)’

of page 450] for a thorough discussion about how the potential looks like for Yang-Mills-Higgs
Lagrangians; in this work the potential will not play any important role, and besides conditions

like Eq. (2.30) it is not going to appear anywhere here.

2.5. Infinitesimal Gauge Invariance using connections

We want to introduce and redefine infinitesimal gauge invariance in a different way now, already
pointing out what the next sections will be about. Therefore this section also serves as a first
step towards Lie algebroids and the new gauge theory. As we have seen, the common idea is to
interpret infinitesimal gauge transformations as derivations of functionals, parametrised by Lie
algebra valued functions €.

In this section we want to show that the infinitesimal gauge transformations can be viewed as
a “connection-like” object on the infinite-dimensional spaces arising in the calculus of variations,
but the connection will be inherited by a connection of a finite-dimensional vector bundle. Before
we discuss this, let us introduce the connections we look at in the finite-dimensional situation;
those will be a first step towards a generalization of typical vector bundle connections. In some
sense, those are like Lie algebra actions, but as connections instead of a Lie derivative along a

vector field.

Definition 2.5.1: Lie algebra connection,

[6, special situation of §2, Definition 2.2]

Let g be a Lie algebra, and v : g — X(N) be a Lie algebra action on a smooth manifold

N. Then a g-connection on a vector bundle £ — N is an R-bilinear map 8V
g x I(E) = T'(E),
(X,v) = *Vxv,
satisfying
Wx(fv)=fVxv+Zyx)(f) v (2.32)
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for all X € g,v € I'(E) and f € C*°(N), where Z,(x)(f) is the action of the vector field
7(X) on the function f by derivation.

Remarks 2.5.2.
Similar to typical vector bundle connections, the Leibniz rule in the difference of two g-connections
will cancel each other, resulting into an R-linear map g — &»z<(F); this is trivial to check.

It is on purpose that there is no separate imposed C°°(N)-linearity in the g-argument, it is
then in more alignment with the definition of g-actions. However, that is quickly recovered by
defining

(QVEVNP = (Bve(p)u) ’p

for all e € C>®(N;g), v € I'(E) and p € N. Furthermore, we will generalize this and the
following concepts to Lie algebroid connections which will look more familiar again with the

typical definition.

Example 2.5.3: Lie algebra action as a Lie algebra connection,

[7, special situation of first example in Example 2.8]

A major example is the Lie algebra action +y itself: Let £ — N be a trivial vector bundle
over a smooth manifold NV, whose global trivialization we denote by (e,),. As usual, also
let g be a Lie algebra, and v : g — X(NN) be a Lie algebra action on N. Then define #V
by

Wxvi=Zyx) (V) eq

for all X € g and v = v, € I'(E). Consider the canonical flat connection V of E with

respect to the chosen trivialization, i.e. defined by Ve, = 0, then

gVXI/ = SW(X)(Va) €q = vq/(X)V

for all X € g and v € I'(E). This also proves that this defines a g-connection because it is
trivial to check that all vector bundle connections V' give rise to a g-connection defined
by ¢V’ = V’V( x) for all X € g, regardless of triviality of E or flatness of V.

In general we therefore denote such connections by

Y =V

Example 2.5.4: Basic connection,

[6, special situation of §2, Definition 2.9]

Let E = NxW — N be again a trivial bundle over N with fibre type W, denote with (e, ),

a global constant frame of F, and with V its canonical flat connection. Also now assume
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that the Lie algebra action v is induced by a Lie algebra representation ¢ : g — End(W).

Then define a g-connection on E, denoted as V"2, by

V})?Su

= 0w) + VW(X)V‘p (2.33)

for all X € g, v € I'(E) and p € N. This defines clearly a g-connection, viewing ¢ (X)(v)
as an element of I'(E) by p — #(X)(vp) such that we can view ¢ as an R-linear map
g — &nd(F); for this recall Rem. 2.5.2.

Observe that for constant sections v we get
VR = (X)),

Of special importance is W = g and ¢ = ad.
Those g-connections are related to the notion of what is known as basic connections,
which we will introduce with more details later and which will be very important through-

out this work.

Let us now assume that N is a vector space W. Recall Def. 2.4.3 and Rem. 2.4.4; the
infinitesimal gauge transformation was essentially defined by expressing the differential as a
derivative along a certain curve in My(M; W), differentiating with d/d¢ using a canonical flat
connection of the involved finite-dimensional trivial vector bundles. However, especially because
the aim of this work is also to present a covariantized formulation of gauge theory, one might want
to reformulate this using general connections, not just the canonical flat connection, naturally
supporting general vector bundles and manifolds as a result, while avoiding the problem of
having horizontal components in some tangent bundle. The connections we want to use for that
for now are the g-connections. But those are defined for vector bundles over N = W, not for
a vector bundle over the spacetime M (in which our functionals have values in); that is simply
due to that the image of a Lie algebra action, used in the Leibniz rule, is a vector field on N.
Therefore, in order to define a g-connection acting on forms of the spacetime M, we need to
make a pullback to M, and the only map we have so far from M to N = W is ®. In other words,
we want to define a ”connection-like” object on functionals, which is inherited by a connection
of some finite-dimensional vector bundle by making a pullback, and the differentiation of such
a connection on functionals is along Miy(M; W). Moreover, one could naively view functionals
LM (M; W) — QF(M; K) (k € Ny, K a vector space) as sections of a bundle over 90, (M; W)
which has in general an infinite rank; more about that in a later chapter. Thus, we want to

construct a “connection” on infinite-dimensional bundles coming from a finite-dimensional world.

Let us only focus on pullbacks along curves in this section for simplicity. By the Leibniz rule
Eq. (2.32) the direction of the derivative is along the Lie algebra action v, while the idea of a
pullback of a connection is that it differentiates pullbacks of sections along the differential of
the curve. Hence, one expects a technical obstacle when allowing every curve for the pullback,

because the typical motivation is that the Leibniz rule is inherited by the pullbacked connection.
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So, we just allow certain curves, whose differential is in alignment with ~.

Definition 2.5.5: Lie algebra paths,

[7, §2, special situation of the Definition 2.4]

Let g be a Lie algebra, and vy : g — X(NN) be a Lie algebra action on a smooth manifold V.
Then a g-path o with base path f is a pair of smooth curves («, 3), where o : [ — g
and §: I — N, I an open interval of R, such that

] d
B(t) = aﬁt

= 8" (v(@(®)], = 7(@(®) |5, (2:34)

We also say that § is lifted to a.

Remarks 2.5.6.
If N =W is a vector space and + is induced by a Lie algebra representation ¢ : g — End(W),
then, by Prop. 2.1.16, we would also have

(@)

Proposition 2.5.7: Pullbacks of g-connections along g-paths,

= —(a(1))(B(2)) (2.35)

t
for all w € W.

[7, §2, special situation of the comment before Definition

2.4]

Let g be a Lie algebra, v : g — X(N) be a Lie algebra action on a smooth manifold N,
and 8V a g-connection on a vector bundle E — N. Also fix a g-path o : I — g with base
path B : I — N, I CR an open interval. Then there is a unique vector bundle connection

B*(°V) on B*E — I with

(B*(°V)) 4 (B'v) = B*(*Vcav) (2.36)

Cat

forallveT(E),ceR andt e I.

Proof.

The proof is basically the same as for pullbacks of vector bundle connections. The idea is the
following: As usual, the idea is that the pullbacks of sections, §*v (v € I'(E)), generate I'(5*E).
Thus, Eq (2.36) defines the connection uniquely, that is, sections p of 5*FE are determined by
sums of elements of the form f-3*v, f € C*°(I), and by the Leibniz rule any connection 5*(#V)
satisfying Eq. (2.36) also satisfies

(569, (7 ) = ¢ 5

for all ¢ € R and t € I, such that uniqueness follows by linearity, assuming existence is given,

ﬂ*lj + f 5*(gvcoﬂ/)

d
Cat

but for the existence one can simply take this equation as a possible definition for 5*(?V). Thus,
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let 8*(#V) locally be defined by

a

(6*(QV))C%M = du B ea + p 6*(gvcaea) (237)

dt

for all 4 = p® B*eq, where (e4), is a local frame of E. Linearity in all arguments and the Leibniz
rule follow by construction, also observe that for a function h € C*°(N) and v € I'(E) we can

calculate

B (ngOé(hy))Lg = 6*(=(Zc('yooc)(h))‘t v + B*(h gvcay)’t

Def. 2.5.5

Zs(h),
_ (c d(hd‘; ) gy 4 (hop) g (gvmu)> t (2.38)
for all £ € I, thus,
(5 (09), (50) 2 ¢ WP e 4 (10 ) (0 aen) 27 50V,

so, Eq. (2.36) is satisfied. Finally, by Eq. (2.38) it also follows that (2.37) is independent of the
chosen frame and, thus, globally defined. To see this, observe that any other frame (f3), of E,

intersecting the neighbourhood of (e4),, is given by e, = M!f,, where M? is a local invertible

a’

matrix function on N. Then
_a p%* _ b a _ . ~b
p=p freq = (MaOﬁ)u Jo =2 [0 fo,

such that pu® = ((M_l)g ) ﬁ) i, and, thus, as a direct consequence of Eq. (2.38),

(59, 2 e W rey 1 it 5 (Vi)
—1)@ ~d
=c d<((M Cztd B)M) 6*(M2fb)

+((r7) 2 8)a" 5 (Vea (M21))
Eq. (2.38)

d~b
= c Ti B*fo + ﬂb B*(*Veafs)

d(M]lZ o ﬁ)

S e T ((M1)205>
bO
(o) 05
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dNb * ~ *
=c g Bh i B (Veafy),

using formulas of the differential of the inverse like M dM ! = —dM M~! (similar for f*M =
M o j3). Hence, Def. (2.37) is frame-independent, and this finishes the proof. |

Remark 2.5.8: Essential condition for pullbacks of connections

Observe that the essential part of the proof is Eq. (2.38), everything follows either by this
equation or by the standard construction in (2.37). This will be important later because
we are going to generalise such statements about the pullbacks of connections. To avoid
doing the same all over again, we will just refer to this proof and remark, essentially
one only needs to check something like Eq. (2.38). Eq. (2.38) essentially proves that
the Leibniz rule inherited by 8V is in alignment with the Leibniz rule of vector bundle
connections on S*E — I.

Eq. (2.38) also motivates why g-paths are precisely the objects one needs to provide a

pullback of g-connections along curves.

Typically, this leads to the following construction.

Proposition 2.5.9: Derivations of sections along g-paths,

[7, special situation of §2, beginning of subsection 2.3; there

D/dt is denoted as V¢]

Let g be a Lie algebra, v : g — X(N) be a Lie algebra action on a smooth manifold N,
and ®V a g-connection on a vector bundle E — N. Also fix a g-path o : I — g with base
path B : I — N, I C R an open interval. Then there is a unique differential operator
D T(B*V) = T(B*V) with

D
T linear over R, (2.39)
D . df D
D= ars 2 (2.40)
D * *g
at (8%v) = B*(°*Vav)|, (2.41)
t

foralls e T'(p*V),vel(V), fe C®() andt € I.

Proof.
Define

D

R — *(8

o= (V) (2.42)
where *(8V) is given by Prop. 2.5.7. This operator satisfies the needed properties by Prop. 2.5.7,

and the uniqueness will follow by the uniqueness given in Prop. 2.5.7. |
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In the context of the previously introduced setting of gauge theory, we have N = W a vector
space, and E will be a trivial vector bundle over W. Later, when we are going to introduce
the generalized infinitesimal gauge transformation for the general theory, we will allow general
manifolds and vector bundles. But to avoid certain difficulties, which we will face later, we keep
it that simple most of the time in the following.

As argued earlier we want to make the pullback using ®, the Higgs field. But this is a
field affected by the calculus of variations, and we want to show that a certain pullback of a
g-connection describes infinitesimal gauge transformations, hence, ® is a ”coordinate” in that
context. So, the map we make a pullback with is a different one, but strongly related to ®. Let

us clarify with which map we actually make the pullback.

Definition 2.5.10: The evaluation map

Let M be a smooth manifold, W a vector space, and g a Lie algebra. Then we define the
evaluation map ev : M x M (M; W) — W by

ev(p, @, A) == ®(p) (2.43)

for all (p, ®, A) € M x My(M;W).

Given a g-connection 9V, we may try ev*(V) because the functionals we look at are of the
form L : My(M; W) — QF(M;K) (k € Ng, K a vector space), so, L : M x My(M; W) —
/\k T*M ® K. However, as we argued earlier, the pullback of a g-connection is not always given.
Thus, the idea is to take a curve n in M x 9My(M; W) such that evon can be lifted to a g-path.
Then we can define (evon)*(*V); in other words, we want to make the pullback with ev but
the resulting pullback-connection just differentiates along certain directions.

Of course, we do not want to take any suitable curve. We want to identify this construction
with the infinitesimal gauge transformations, which we denoted earlier by (6®,0A) (omitting the
parameter ¢ for now) for the fields ® and A. Viewing (6®,54) as a vector field on My (M; W),
one wants to define 1 as the (local) flow of that vector field. That is, we take a curve n parallel
to My (M; W), so, the M-component is constant.

Remark 2.5.11: Tangent spaces of M (M; W)

A note about the tangent bundle of My (A; W): In the general setup, presented later, we
need to study it, see Prop. 4.1.2. Due to that we assume vector spaces and trivial vector

bundles for the values, it is trivial to check that we get
T(,4) (Mg (M; W) = Dy (M; W),

Hence, 0® € C®°(M;W) and 64 € Q!(M;g) makes sense, even when interpreted as

components of a vector field; still omitting the parameter e.

5(6®,8A) is the value of that vector field at (®, A).
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Trivially, this comes from that one thinks of tangent vectors as velocities of curves in
Mg (M; W), which is basically just a pair of curves in W and g (after point evaluation,
e.g. a curve in C®(M; W), t — &y, then viewed as t — ®,(p) € W). As usual, one uses
then the canonical flat connections for TW = W x W and Tg = g x g such that the veloc-
ities of the curves can be viewed as curves in the corresponding vector space. It is unusual
to formulate it like this, or to even mention this, but with that we want to emphasize that
one cannot expect that the vector field behind all of that has values (6®,0A) € My (M; W)
(globally) if canonical flat connections are not given. Especially, later in this work we will
have W = N an arbitrary smooth manifold such that C*°(M;N) > ® will not carry a

vector space structure in general, and, so, one could not even argue with an overall vector

space structure of the infinite-dimensional space itself.

. J

Fix now (®g, Ag) € M (M;W) and p € M. Then take a curve n = (p,®,A4) : [ - M x
My (M; W) (I CR an open interval), I 3t — n, = (p, P4, Ay), with

Ni=o0 = (p, o, Ao).
Observe then
evon=®(p) = [t — Dp)].

Given a Lie algebra action v : g — X(W),% ev o7 can be lifted to a g-path, if there is a g-path
—€(p) : I — g,t — —€(p), such that

d
dt

t((p(p)) = —fy(et(p))’q>t(p)‘

The sign is a convention, because if v is induced by a Lie algebra representation ¢ : g — End(W),

then this equation can be written as, recall Rem. 2.5.6,

d
dt

(@(p)) =¥ (e(p)) (Pe(p)),

t

which resembles strongly the infinitesimal gauge transformation of the Higgs field (evaluated at
p), here for the fixed ®¢ if ¢ = 0; recall Def. 2.4.2. Therefore we want to interpret the gauge
transformation of the Higgs field as the "velocity” of those curves in C°°(M; W) which can be
lifted to a g-path, that is

00 = — | (2(0)) = —7(et=0(P))| g p)-

Since such lifts are in general not unique, we get naturally the parametrization of d®y with

respect to g : M — g,p — eo(p) = Gt:O(P)-

In general, the Lie algebra behind that action does not have to be related to the same Lie algebra as in the

definition of My (M; W) for the following definitions and constructions. But for simplicity we assume that.
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Definition 2.5.12: Infinitesimal gauge transformation of the Higgs field

Let M be a smooth manifold, W a vector space, and g a Lie algebra with Lie algebra
action v on W, induced by a Lie algebra representation . Then we define the subspace

T () (Mg (M; W) of Tg_a) (Mg(M;W)) for all (®, A) € My(M; W) by

T ) (Mg(M; W) = { (0, 64) € T(g)(Mg(M; W) | e € C=(M;9) : 3@ = (€)(@)} .
(2.44)

Its sections by X¥(My(M;W)).

To emphasize the relation of the first component, d®, with €, we also write
0D = 1(e)(P) (2.45)

instead of d®. We call this the infinitesimal gauge transformation of the Higgs
field .

Remarks 2.5.13.
For U € X¥(9My(M;W)) observe that there is a smooth & : My(M; W) — C>®(M;g) with

for all (®,A) € My(M; W), where 64 € QY(M;g) and € == (@, A) € C°(M;g); and each
such € defines a ¥ € X¥(My(M;W)). With that one can easily see that X¥(My(M;W)) is a
submodule of X(My(M;W)), respectively; but X¥ (9, (M; W)) is in general not a subalgebra,
due to the fact that ¢ itself depends on My(M;W). To emphasize the relation between ¥ and
€ we also often write ¥ =: U.. Keep in mind that ¥, is not unique for a given £ because we
did not fix §A yet. Also observe the difference to the previous section: The parameter of the
infinitesimal gauge transformation is going to be a functional M (M; W) — C°(M;g), while

the typical formulation uses just e € C°°(M;g) (basically a constant functional one could say).

To summarize, we have:

Corollary 2.5.14: Flows of X¥(9,(M;W))

Let M be a smooth manifold, W a vector space, and g a Lie algebra with Lie algebra
action v on W, induced by a Lie algebra representation 1. Also let U. € X¥(IMy(M;W))
for an e : My(M; W) — C°(M;g) whose local flow through (®o, Ag) € Mg(M; W) we
denote by 1|, o) = (2, 4) : I = MG(M; W), t = 1l 4,) () = (P, 4) (I C R an
open interval).

Then there is a smooth curve € : I — C®(M;g),t — €, with e, = (Po, Ag) and such
that

—€(p) = [t — —€(p)]
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is a g-path for all p € M with base path

®(p) = [t — D:(p)],

that is
d
1|, (2@) = ¥(«@) (®u(p) = (3 1) (p)- (2.46)
Proof.
By construction and definition, i.e. there is an € : I — C°°(M; g),t — €, such that
) = i(er) (P)
M (@, 40)) AN

where U() is the first component of ¥, the one along the ”®-direction”; thus, Eq. (2.46) follows
by the definition of flows of vector fields, and one can take € in such a way that e,—9 = €(®g, Aop)

because we have at t =0

\Il(l) \Ijggon) = ¢(5(®07A0))(<I>0).

M (@g,40)(0)

Let us conclude this section with the definition of the infinitesimal gauge transformation of
the studied functionals, making use of the previously-discussed relation between g-paths and
the infinitesimal gauge transformation of the Higgs field. It is especially about pullbacks of g-
connections, which were uniquely defined by their differentiation on pullbacks, but the definitions
of the typical functionals like the field strength or the minimal coupling do not contain any visible
pullback as if they do not live in a pullback bundle. But we will use a trivial bookkeeping trick:
The bundle those functionals have values in is a trivial bundle over M, and trivial bundles are
always trivially isomorphic to the pullback of another trivial bundle with the same fibre type,
e.g. M x g = ®*(W x g), W x g the trivial bundle over N = W. That is the following:

Let K be a vector space, we viewed it as a trivial vector bundle over M, but we can do the
same for N = W, so, K can also be viewed as trivial vector bundle over W, and elements of K
are just constant sections of such a bundle. For bookkeeping, let us denote with ¢j; and ¢y maps
K — I'(M x K) and K — I'(W x K), respectively, which embed elements of K canonically
into the space of constant sections of the trivial bundles M x K and W x K, respectively. Then
take a smooth map L : My(M; W) — Q¥(M; K) (k € Ny) and a basis (e,), of K. Previously

we expressed L then as, making use of ¢py,
L=L"®up(eq),
where L% : My (M; W) — QF(M). Fix (®, A) € My(M; W), then we can trivially identify

tu(€a) = @7 (e (€a))
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because e, is viewed as a constant section in both trivial vector bundles. Then observe

v (1w (ea) | op) = (el = 2" (w(ea))l, = 1ar(ea)l,
for all (p, ®, A) € M x My(M;W). Thus, we can also write
L=L"®ev" (tw(eq)) = (L),
and that interpretation of L we denote as ¢(L) for bookkeeping reasons. Observe

(L)(Yr,....Y,) = L*(Y1,...,Yk) ev'(tw(eq)) € T(ev(W x K))

€C° (M xMy(M;W))

for all Y1,...,Y, € X(M); therefore also «(L)(®, A) € QF(M;®*K). With that we can now
finally explicitly state the idea of describing infinitesimal gauge transformations as a certain

pullback of a g-connection.

Proposition 2.5.15: Functional derivative along XV (90,(M;W))

Let M be a smooth manifold, W, K wvector spaces, and g a Lie algebra with Lie algebra
action v on W, induced by a Lie algebra representation 1. Moreover, let ®°V be a g-
connection on the trivial vector bundle W x K over W, and W, € X¥(IMy(M; W)) for an
e:My(M; W) = C®°(M;g).

Then there is a unique R-linear operator oy, : I'(ev*(W x K)) — I'(ev*(W X K)) with

ow.(fs) =Zuw.(f) s+ [ du.s, (2.47)
Sy_(evd) = —ev* (°V.0) (2.48)

for all f € C®°(M x Mg(M;W)), s € I'(ev*(W x K)) and ¥ € T'(W x K), where we

denote

eV*(gveﬁ)‘(p,%,Ao) - (QV‘E@O’AO)IPﬂ) @o(p)

for all (p, ®o, Ag) € M x Mg(M;W).

Remarks 2.5.16.

This emphasizes that dy,_ is the "ev-pullback of ¢V combined with a contraction along ¥.” (up
to a sign), and that combination leads to that we do not need an overall pullback with ev. When
we show this in the general setting, then we give a general condition about in which situations
one can do such pullbacks, avoiding the ansatz using flows and curves, making the approach

cleaner.

Proof of Prop. 2.5.15.
For W, let n : I x U — IMy(M; W) be its local flow on an open subset U C My (M; W),
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where I C R is an open interval containing 0, and we denote its flow through (®y, Ag) € U by
N(@g,40) = (2, A4),1 >t = (P4, Ay). For the flow 1|(g, 4,) wWe can apply Cor. 2.5.14, that is,
there is an € : I — C°°(M;g),t — €, such that ®(p) := [t — P:(p)] is the base path of a g-path
—e(p) = [t = —e&(p)], and we have ¢—¢ = &(Pp, Ag). Hence, fixing such a lift to a g-path, we

can define by Prop. 2.5.7
((pm!(%,Ao))*S)

0w (.0, 49) = ((evo (pvn(cbo,Ao)»*(gV))

=(®(p))*

= ((2)" (7))

il

dt lt=0
J ((p,nl(cpo,Ao)) 8) (2.49)
E‘t:o

for all s € I'(ev*(W x K)) and p € M, where (p,7]|(q>0,AO))*s is by definition a section of
(ev o (pm’(cpo,Ao))) (W x K), especially,

(P,TI|(¢>0,AO)) S|, = 8l (p,, ) € {2e(P)} X K,

and, thus, it can also be seen as a section of (®(p))" (W x K). Then Def. 2.49 is nothing else
than the (restricted) definition of D/dt|,_, related to V and using the given g-path —e(p) with
base path ®(p), see Prop. 2.5.9 and its proof. That is

(0w, s)(p, Po, Ao) = z'tzo((p,n!(¢o,Ao))*s)

so, everything follows by Prop. 2.5.9, i.e. R-linearity is clearly implied, and

d D
(r20.40) = G, (f o (py"?\(cpo,Ao)» 8l(p.00,49) T £ (P, Po, Ag) T

((p,ﬁk%,Ao))*S)

du.(fs)

t=0

= (g\lls(f) s+ f 6‘1158)’(1),@0,140)

for all f € C°°(M x My (M;W)), and finally

. D
(5\1/5 (eV 0)‘(1),@0,140) - a

((ev o (p, n‘(éo,Ao)>)*19)

((®(p)™?)
t=0

t=0

D
dt

= —(2(p))"(*"Vero?)

et=0=¢(Po,A *
t=0 Eé 0,40) ev (gvaﬂ)’(p,¢07Ao)

for all 9 € I'(W x K). Uniqueness also follows by Prop. 2.5.9, although this D/dt¢ operator
only differentiates sections of the form (p,n\(%’ AO))*S; the vector space of such sections has
(®(p))"(D(W x K)) as a subset, the generators of sections of (®(p))* (W x K), which was visible
by having s = ev*d, that is

(P2 1l@0.10)) (ev°9) = (v 0 (pl(wo.a0)) ) ¥ = (@(0))"0.
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Therefore the argument about uniqueness in the proof of Prop. 2.5.9 applies here, too.” |

Now we extend it to functionals. We will now also recall the infinitesimal gauge transformation
of the field of gauge bosons A as in Def. 2.4.2 and take that still as a definition; at this point
there is nothing new to tell about that part of the infinitesimal gauge transformation, except
that e : My (M; W) — C°(M; g), and, thus, the derivation will be along a vector field W,

Vel(g,4) = (0P, 6cA) (2.50)

for all (®,A4) € My(M; W), where € := (P, A) and 6.A = [¢, A], — de. We shortly write
for now ¥. = (0.®,0.A). However, in the general setting later we need to discuss the gauge

transformation of A and how to define it, and therefore we will come back to this.

Definition 2.5.17: Infinitesimal gauge transformation

Let M be a smooth manifold, W, K vector spaces, and g a Lie algebra with Lie algebra
action v on W, induced by a Lie algebra representation . Moreover, let 8V be a g-
connection on the trivial vector bundle W x K over W, and ¥, = (§.®,5.A) for an
e:My(M; W) = C*°(M;g).

Then we define the infinitesimal gauge transformation 6.L for L : M (M; W) —
QF(M; K) (k € No) as a map My(M; W) — QF(M; K) by

(55L)(Y1, 500 ,Yk) = (5‘115 (L(L)(Yl, cey Yk)) (251)

for all Y1,...,Y, € X(M), where dy_ is the unique operator given in Prop. 2.5.15 with
respect to 9V and V..

Remarks 2.5.18.
Recall that «(L) was the bookkeeping trick, and, thus,

u(L)(Y1,...,Y,) € T(ev(W x K))

for all Y1,...,Y, € X(M). Hence, this definition is well-defined; that . L is a map My (M; W) —
QF(M; K) also follows by construction. Especially observe that C°°(M )-multilinearity follows
because Zy_f = 0 for all f € C*°(M) because V. is a vector field on My(M; W), viewed as
a vector field in M x My(M;W). So, C*°(M) is not affected by the Leibniz rule in dy_. The
vector fields Y7,...,Y} are similarly unaffected by the Lie derivative of Zg_; hence, this is a

valid construction.

We now compare it with the classic definition of the infinitesimal gauge transformation as in
Def. 2.4.3; for this also recall Ex. 2.5.3.

7 Alternatively, one shows it directly in the same fashion, using again that ev-pullbacks of sections generate
I(ev* (W x K)), such that Eq. (2.48) uniquely defines the operator because Eq. 2.47 declares how the operator

acts on the generated sections of pullbacks.
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Theorem 2.5.19: Recover of classical definition of infinitesimal gauge transfor-

mation

Let M be a smooth manifold, W, K wvector spaces, and g a Lie algebra with Lie algebra
action v on W, induced by a Lie algebra representation 1. Moreover, let 8V = V. be
the g-connection induced by the canonical flat connection V of the trivial vector bundle
W x K —W asin Ex. 2.5.3, and V. = (0:®,6.A) for an e : My(M; W) — C>*(M;g).
Then we have

(5.L)(®, A) = di o L@+ 168, A+ 15 4) (2.52)

for all L : Mg(M; W) — QF(M;K) (k € Ny) and (®,A4) € My(M; W), where € =
e(®,A), t eR, and 0. is as defined in Def. 2.5.17 with respect to V. and V..
In other words, we recover Def. 2.4.3, especially when taking an e € C*°(M;g), i.e. a

constant €, “constant” in sense of
e(®,A) = (P, 4
for all (®, A), (', A") € My(M; W).

Remark 2.5.20: 6. A as transformation of a functional

Recall that d/dt is with respect to the canonical flat connection of M x W — M. Also
observe that 0. A is here trivially also given by d.ww9, where wy (P, A) := A, the projection

onto the second factor in ;. Viewing the field of gauge bosons as the functional ws,
one may want to define the infinitesimal gauge transformation of A as the infinitesimal

gauge transformation of ws; since ws is g-valued, we would have
t(w2)(Y) € T'(ev* (W x g))

for all Y € X(M), and, thus, t(A) = u(w)(®, A) € QY(M;d*(W x g)) for any fixed
®. For the infinitesimal gauge transformation of the field strength one also applies the
bookkeeping trick such that it has values in ev*(W x g), so, as we mentioned before, we

want to view the Lie algebra as a bundle over W instead of a bundle over M.

Proof of Thm. 2.5.19.
Let (eq), be a basis of K, that especially implies

V(ww(eq)) = 0.
For L : My(M; W) — QF(M; K) we then write

L(L) =L* ®ev*(tw(eq))
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for Lo : 9, (M; W) — QF (M), so, L* € QF(M x My(M; W)), and, thus, by using Prop. 2.5.15,
(6EL)()/1’ ce ’Yk‘)|(<I>,A) = 6‘1’5 (L(L)(Ylv s 7Yk))|(<1>,,4)

= Zy. (L'(N1,..., Yk))‘(cb,A) ev” (w (eq)) ’(<1>,A)

=®*(vy(eq))=trr(ea)

- (La(Yl, oY) ev? (Vw(e>(bw(ea))>)‘

=0

(®,4)

- (’(Z)‘Pe\@,m (L@ LM(ea)) (Y1, V)

_<d
o\ dt

for all (@, A) € My(M; W) and Y1,..., Yy € X(M), using that Wefg 4y = (6P, dcA). [ |

[t L(® + 5.0, A+ uu)]) (Vi V)
t=0

This concludes this section, we have shown how to write the infinitesimal gauge transformation
using g-connections. One can even show that the gauge invariance of the Yang-Mills-Higgs
Lagrangian can be shown with the same calculation of the previous section if € is allowed to
depend on My (M;W). Such a dependency starts to matter when applying the infinitesimal
gauge transformation twice, which we will discuss later in full generality. Let us now shortly
discuss what we have learned.

First of all, we needed to do the bookkeeping trick. That was due to the Lie algebra action
v, which acts on N = W and not on M. Hence, the natural construction of g-connections
using y is defined on bundles over N. This was why we needed to make a pullback and to
think of functionals as having values in a pullback of a trivial bundle over IV, especially using
® € C°(M;N). For example, we thought of the Lie algebra g as a trivial bundle over M and
N, M x g and N x g, respectively, and it is more suitable to think of M x g as ®*(N x g). The
aim of the presented generalised gauge theory is also to generalise the trivial Lie algebra bundle,
especially getting rid of a global trivialisation by replacing it with some ”suitable” bundle F.
Hence, motivated by this section and as an ansatz, we are going to define F in place of N x g
later and ®*F will replace M x g. In the same manner other vector spaces may be replaced like
that, too.

Second, assume we have that non-trivial bundle £ now. Then we cannot impose the existence
of a canonical flat connection anymore as we did in all the basic definitions before, like in
Def. 2.4.3; defining d/dt¢ using the tangent map would lead to arising horizontal components
in the corresponding tangent bundle which may make further calculations more complicated
when a functional is used in other functionals, like in contractions using scalar products and
metrics, such that one may need to fix a horizontal distribution. Therefore the definition of
infinitesimal gauge transformation as provided here is a first step towards a formulation using

(g-)connections, e.g. taking a connection V and then defining ¢V = V.
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Third, one could argue that one could just look at vector bundle connections V for which there
is always a pullback, avoiding the problems discussed in this section. However, g-connections
are more general, which we will see later, and we will then have an even more general notion.
But, for example, allow infinite-dimensional Lie algebras, then take g = X(N) and v = 1, the
identity; then one clearly has the typical notion of a vector bundle connection. Especially when
thinking about that the infinitesimal gauge transformation are just certain, not all, vector fields
on Mg, one might argue why not using a different connection like a g-connection which is not
directly related to V. Recall Ex. 2.5.4, we could also take V"2, which is clearly different to
V., as discussed there, even though V., contributes to its definition. We will later see that
Vb2 does not necessarily have any notion of a parallel frame, even when it is assumed to be
flat.® Actually, we are going to use the basic connection later, also for the infinitesimal gauge
transformations. We will show that the gauge invariance of the Yang-Mills-Higgs Lagrangian
can still be shown although we use V"2, also in the context of the typical formulation of gauge
theory. The advantage of the basic connection will be that it is always flat in the context of
gauge theory, while V, might not be, which results into that we can generalize the well-known

relation
[55’62] = _6[6,6’]97

where the sign comes from our sign conventions defined earlier. We will see that a possible cur-
vature of V, will not result into a generalization of that equation, if we define the infinitesimal
gauge transformations using V.. Moreover, we have seen in Ex. 2.5.4 that Vb8 is a gener-
alization of a Lie algebra representation; this will lead to that the basic connection supports
the symmetries of gauge theories, leading to more convenient formulas of infinitesimal gauge
transformations.

Last, the Lie algebra g is not only important from an algebraic point of view, but also in sense
of a connection besides the field of gauge bosons A, playing the role of a "direction of derivative”
similar to the tangent bundle when defining typical vector bundle connections. Thus, let us now
introduce an object generalizing both aspects, aspects of Lie algebras and tangent bundles: Lie

algebroids.

8Flatness will be defined later for such connections, but the construction has the typical form.
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3. General theory of Lie algebroids

3.1. Lie algebroids

In the following we follow [2, §VII].

Definition 3.1.1: Lie algebroid, [2, reduced definition of §16.1, page 113]

Let £ — N be a real vector bundle of finite rank. Then E is a smooth Lie algebroid if
there is a bundle map p : E — TN, called the anchor, and a Lie algebra structure on
I'(E) with Lie bracket [-, |, satisfying

[U»fV]E:f[:u7V]E+3p(u)(f)V (31)

for all f € C°°(N) and p,v € I'(E), where Z,,)(f) is the action of the vector field p(u)
on the function f by derivation. We will sometimes denote a Lie algebroid by (E, p, [+, -] )

Remark 3.1.2: Transitive Lie algebroids, [2, very beginning of §17; page 123]

If the anchor p is surjective, then we say that E is transitive.

Remarks 3.1.3.

We often will just write "Let E¥ be a Lie algebroid.”, with that we canonically also denote the
anchor by p or pg and the Lie bracket by [-,:], without further clarifying these notations.
Furthermore, [2, §16.1, page 113] imposes that p is a homomorphism of Lie brackets as a part
of the definition of Lie algebroids, but we will see in the following that this is not needed, it will

be already a consequence of this reduced definition as explained in e.g. [3, page 68].
Example 3.1.4: [2, §16.2, page 114]
The two basic examples of Lie algebroids are the following.

1. Each finite dimensional real Lie algebra is a Lie algebroid over a point set {*} with

zero anchor.

2. The tangent bundle TN of any manifold N where the anchor is the identity map

and where the Lie bracket is the usual one of vector fields.

As shown by the basic examples above, the idea behind Lie algebroids is that they are a
simultaneous generalization of tangent bundles and Lie algebras, this allows a generalization of
specific terms of their calculus to Lie algebroids. We will also always view tangent bundles as

Lie algebroids given by the structure presented in Ex. 3.1.4.
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Definition 3.1.5: Basic calculus on Lie algebroids F

Let E — N be a Lie algebroid and V' — N a vector bundle, then we define the following:

o Structure functions, [?, §16.5, page 119]
Let (eq), be some local frame over some open subset U C N. Then the structure
functions C}. € C*°(U) are defined by

len, ec]E = Cheq. (3.2)

o FE-Lie derivatives, [7, §16.1; page 113]
One can define E-Lie derivatives, similar as in the situation of tangent bundles,
by

g#(y) = [:UH V]Ea (3'3>

gu(f) — gp(,u)(f) (3'4)

for all f € C°(N) and p,v € T'(E). The Leibniz rule (3.1) then reads

Zu(fv) = FLu(v) + Zu(f) v (3.5)

for all f € C*°(N) and p,v € T'(E). We will use both notations, £, and Z,,,; it

is clear by context which is meant.

o E-forms, [2, §18.1; page 131]
The antisymmetric parts of (0,s)-E-tensors define the E-forms, ie. Q°(E) =
I'(A°E*) (s € Np). The previously defined Lie derivative can be extended to
those forms (and general E-tensors) with the typical definitions by imposing the
Leibniz rule. As for typical forms, one can define EF-forms with values in V by
QUE;V)=T(A°E*QV).

o FE-differential, [2, §18.1, page 131]
The E-differential is defined as di : Q°(E) — Q*t1(E) by

(dpw)(vo, ..., vs) == Z(—l)i S (w(vo, ..., Viy. .oy Vs))

)

I Z(—l)i+j w([y,-, yj]E’ VQy ey Viyenns I//\j, soog Vs) (36)
1<j

for all w € Q*(E) and vy, ...,vs € I'(E).

Remarks 3.1.6.
e ['(E) is an infinite-dimensional Lie algebra w.r.t. [-, | g but it should be seen as a generaliza-

tion of finite dimensional Lie algebras whose "finite dimension” is the finite rank of E: Choose
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a local frame (eq), of E over an open subset U C N. As introduced, one gets in general now
structure functions Cf, € C*°(U) instead of structure constants and a base of the Lie algebra
is replaced by such a (local) frame on the vector bundle; recall the last section about classical
gauge theory where we viewed the basis of the Lie algebra as a global constant frame.

e In the following we will argue that the anchor of a Lie algebroid is a homomorphism of Lie
brackets (if viewed as a tensor acting on sections). With that one can then show d2E = 0 by
precisely the same calculation as one does with respect to the de-Rham differential. As argued in
[2, §18.1, page 131f.], there is a one-to-one correspondence between Lie algebroid structures and
such differential operators squaring to zero and satisfying the graded Leibniz rule with respect
to the wedge product. Moreover, there is also a correspondence to vector bundles admitting a
cohomological vector field; but we won’t use these relationships which is why we are not going

to state or explain these relationships explicitly.

In older works about Lie algebroids (also in [2]) one often sees that the definition also contains
the condition about that the induced map I'(p) : I'(E) — X(NN) (which we will still denote as p)
is a homomorphism of Lie algebras w.r.t. [-,-]5 and [-, -], the Lie bracket of vector fields X(IV).
But that is not needed, see e.g. [3, page 68]. To show this we want to introduce some measures

for the homomorphism property and the Jacobi identity. Let us start with the former.

Definition 3.1.7: Curvature of morphisms,

[3, variant of Definition 5.2.9; page 187]

Let Fq, E5 be two Lie algebroids over the same base manifold N. Then the curvature
of a vector bundle morphism ¢ : £y — Ep is a map R¢ : I'(F1) x I'(Ey) — I'(E»)
defined by

Re(p,v) = [€(1), £0)] i, — ([ V)i, ) (3.7)

for all p,v € I'(Ey).

Remarks 3.1.8.
R is clearly anti-symmetric.

For an anchor p of a Lie algebroid we therefore expect R, = 0 in case it is a homomorphism
of Lie brackets.

Later, in the sections about connections, we will see that it makes sense to call R¢ curvature,
though one may already see why by its definition. What we want to show is that R, = 0 for an
anchor p of a Lie algebroid. Hence, let us first show that those curvature are tensors if £ is an
anchor preserving vector bundle morphism, which basically describes a morphism related to the

structure given by the anchor:!

'In fact, one can also define vector bundles known as anchored vector bundles which are just vector bundles
with a bundle map like the anchor; see e.g. [9, §3, first part of Definition 3.1]. Then the following definition

is the definition of morphisms of anchored vector bundles.
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Definition 3.1.9: Anchor-preserving vector bundle morphism,

[3, §4.3, Equation (22); page 157]

Let B; % N; (i € {1,2}) be two Lie algebroids over smooth manifolds N;. Then we
say that a vector bundle morphism £ : Fy — FEs over a smooth map f : Ny — No® is

anchor-preserving if it satisfies

Dfopp =pm o (3.8)

“That means ma 0§ = f omy.

\.

Remark 3.1.10: Notations and base-preserving morphisms

e As it is well-known, £ does not necessarily induce a map I'(Ey) — T'(E2) on sections,

that depends on how f is structured. However, we have

:]lN1

for all v € I'(Ey), such that & induces a tensor on I'(Ey) — I'(f*Es) (the C°(Ny)-
linearity follows trivially); see e.g. [10, paragraph after Propositon 7.10], too. Recall,
that we introduced that already for maps like Df at the end of the introduction, that is,
Df € Q'(Ny; f*TNs), which is also trivially an anchor-preserving vector bundle morphism
over f. This is why we write equations like Eq. (3.8) often as

Dfo PE, = (f*pEz) o0& (3'9)

when we view that condition as an equation for sections, in order to emphasize the
relationship with the pullback; recall that f*pg, : I'(f*Ey) — T'(f*TN2). However,

sometimes we also omit the notation of that pullback in that case.

o If Fy, Fy are two Lie algebroids over the same base manifold N, then a vector

bundle morphism £ : Fy — F» is anchor-preserving if it satisfies

PE, = PE, ©&. (3.10)

For this recall, that in this case we always mean base-preserving morphisms if not men-
tioning otherwise, that is, f = 1. The anchor is therefore a trivial example for an

anchor-preserving morphism.

Remarks 3.1.11.

As in [3, Definition 5.2.5; page 186] one may also call such anchor-preserving morphisms (F1-)

connections; also here it will be clearer later why, but to avoid confusion with typical connections

carrying a Leibniz rule (also called Koszul connection in [3]), we will not denote those as such.
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Lemma 3.1.12: Curvatures are tensorial in case of anchor-preservation,

[3, variant of Lemma 5.2.8; page 187]

Let Ey, Ey be two Lie algebroids over the same base manifold N, and & : E1 — Eo an

anchor-preserving vector bundle morphism. Then R¢ is an anti-symmetric tensor, i.e. it
is C*°(N)-bilinear.

Remarks 3.1.13.
This also shows that one could test the homomorphism property of anchors in just one frame

around each point locally, because anchors are trivially anchor-preserving morphisms.

Proof of Lemma 5.1.12.
R¢ is clearly antisymmetric and, thus, we only need to show the C°°(N)-linearity with respect

to one argument. That is, applying the Leibniz rule on both summands,

Ry, fv) = [€(), 6], — & (s V], )

= Re(11,v) + Loty (F) W) = E(Lg, 0 (F) V)

| —
Zog, ()
= [Re(p,v)
for all pu,v € T'(Ey) and f € C®(N). [

Remarks 3.1.14.
By using what we discussed in Remark 3.1.10, one can define a curvature also for vector bundle
morphisms of Lie algebroids over different bases, and that notion should still be a tensor in case

of anchor-preserving morphisms, too.

There is a certain relationship between the curvature of an anchor p using the Jacobiator

which will help us to show that anchors are also Lie bracket homomorphisms.

Definition 3.1.15: Jacobiator, [10, Remark 6.12; page 35|

Let W be a vector space, not necessarily finite-dimensional, equipped with an antisym-
metric bilinear bracket [-,-]y, : W x W — W, (v,w) — [v,w];,. Then we define the
Jacobiator J: W x W x W — W by

J(,v,n) = [, [vonlwly + v, [0, wlywly + 0, s Vi gy (3.11)

for all p,v e W.

Remarks 3.1.16.
It is clear that J = 0 if W =I'(E) as Lie algebra, for E a Lie algebroid. It is also trivial to see

that J is R-trilinear and antisymmetric.
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Proposition 3.1.17: Relation of Jacobiator and anchor, [8, page 68|

Let E — N be a real vector bundle of finite rank, equipped with a bundle map p: E — TN
and an antisymmetric bi-linear bracket [-, -] on the space of sections I'(E) satisfying the

Leibniz rule (3.1) with respect to p. Then the following are equivalent:
o J is a tensor, where J is the Jacobiator related to I'(E) with bracket [-,-] .

« R,=0.

Remark 3.1.18: Anchor is a Homomorphism

This implies that the anchor of a Lie algebroid is a homomorphism of Lie algebras because

the definition of Lie algebroids assumes the Jacobi identity on [-, -], so, J = 0, the zero-
tensor. Vice versa, when we know that R, = 0, then we only need to check the Jacobi

identity in one frame around each point because J behaves like a tensor.

Proof of Prop. 3.1.17.
We have

J(p,v, fn) = [M? [V? fn]E]E + [Vv [fU,M]E]E + [f777 [:uv V]E]E

= [u, flvinlg +Zouw)(f) U]E + [% flnulg —ZLouw(f) W]E

+ £, [ VIElE — ZLoup ) (F) 1

= f ([, vsmlEele + v, 0, plele + 0, (1 V]E]E)

=J(p,v,m)

+ ZLo () Wonle + L) () 0, 1le — Lo (f) vonle + Low) () [1n]e
+ Lo (Lor (D) 1= L) (Lo () 1= Lotguai) (1)

= (v, + | Loty Zow)| (1) 1= Louane) (F) 1

= [T vsm) + Lo o) () 1= Lp(ue) () 1

= fJ(,vsm) = LR, (uw)(f) 0

for all p,v,n € I'(E) and f € C*°(N). Thus, we have

J(p, v, fn) = fJ (v, fn)

if and only if

Rp(/”” V) =Y
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where we use that a vector field of N is zero when it always acts as zero derivation. The same
argument holds for all arguments due to the antisymmetry of J. Hence, we get the desired

equivalence of statements. |

In the following we introduce other important examples of Lie algebroids which we need later,
see [2, §16.2].

Example 3.1.19: Bundle of Lie algebras,

[2, §16.2, Example 2; page 114] and [2, §16.3; page 116f.]

A bundle of Lie algebras, or BLA, is a bundle whose fibers consist of Lie algebras,
necessarily of the same dimension, giving rise to structure functions on the base manifold
which should be smooth.

Such a bundle is a Lie algebroid with the anchor p = 0.

The converse is also true, every Lie algebroid with zero anchor is a bundle of Lie algebras
because then [, -] ; behaves as a tensor due to the lack of a real Leibniz rule and is thence
a field of Lie algebra brackets. This is why BLAs may be just defined as Lie algebras with

zero anchor.

As argued in [3, Theorem 6.4.5; page 238f.], when the Lie algebras of each fibre of a bundle of
Lie algebras are isomorphic to each as Lie algebras, then we denote that as Lie algebra bundle
(in short LAB).

Definition 3.1.20: Lie algebra bundle (LAB), [3, Definition 3.3.8; page 104]

Let g be a Lie algebra. A Lie algebra bundle, or LAB, is a vector bundle K — N
equipped with a field of Lie algebra brackets [, -], : I'(K) x ['(K) — I'(K), i.e. [,]; €
I“(/\2 K*® K ) such that it restricts to a Lie algebra bracket on each fibre, and such that
K admits an LAB atlas {¢; : K|y, — U; x g} of LAB charts subordinate to some
open covering (U;); of N, that is, an atlas such that each induced map ; , : K, — g is a
Lie algebra isomorphism, where p € U;, K, the fiber at p, ¢; , = pry o 1| K, and pr, is

the projection onto the second factor.

We are going to discuss those later in more detail. For gauge theory the following example is

of special importance, and this example emphasizes why we are interested into Lie algebroids.

Definition 3.1.21: Action Lie algebroids, [2, §16.2, Example 5; page 114]

Let (g, [, -]g) be a Lie algebra equipped with a Lie algebra action v : g — X(N) on a
smooth manifold N. A transformation Lie algebroid or action Lie algebroid is
defined as the bundle E := N X g over N with anchor

p(,v) = y(v)lp (3.12)
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for (p,v) € E, and Lie bracket

[, V]E|p = [pp, Vp]g + (‘gv(u(p))(l/a) - gy(u(p))(#%) ‘p €q (3.13)

for all p € N and pu,v € T'(E), where one views a section y € I'(E) asamap p: N — g

and (eq), is some arbitrary frame of constant sections.

Remarks 3.1.22.
[-,-,] g is here clearly well-defined since one just allows global constant frames. That is, another

global and constant frame is just given by f, = M{'e,, where M are constants (and invertible

as matrix). Due to this constancy, (37@@))@@) - wa(l,(p))(,u“)) eq is clearly independent of
p

the chosen global constant frame.

Observe also that we have
p(v) =~(v),
[:ua V]E = [:U‘vy]g

for all constant sections u,v € I'(E). We can trivially view constant sections of E as elements
of g as we did in Chapter 2; doing so implies that action Lie algebroids encode the Lie algebra

and its action.

Proposition 3.1.23: Action Lie algebroids are Lie algebroids,

[2, §16.2, Example 5; page 114]

Let (g, [, -]g) be some Lie algebra equipped with a Lie algebra action v : g — X(N) on
a smooth manifold N. Then the action Lie algebroid as defined in Def. 3.1.21 is a Lie
algebroid structure on E = N x g. Moreover, it is the unique Lie algebroid structure on
E with

p(v) =), (3.14)

[:U’a V]E = [:U'vy]g (315)

for all constant sections p,v € I'(E).

Remarks 3.1.24.
The statement about uniqueness is equivalent to say that the action Lie algebroid is the unique

Lie algebroid structure on £ = N x g such that the map h, defined by
g — I'(E),

X h(X) =X,
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is a Lie algebra homomorphism with p o h = v, where we mean with h(X) = X that h(X) is
X as constant section in E. That emphasizes why we are interested into Lie algebroids when
we want to generalize gauge theory. Together with the uniqueness this also implies that action
Lie algebroids are the unique Lie algebroid structure related to classical gauge theory; which is

why we want to use those later to recover the classical theory.

Proof of Prop. 3.1.25.

First, let us show that we have a Lie algebroid structure. By construction it is clear that p is a
bundle map, [, ] is antisymmetric and satisfies the Leibniz rule w.r.t. p. Using a global frame
of constant sections (e,),, the curvature R, of p (see Def. 3.1.7) is zero, in fact, for any p € N

we have

Ryleasen)ly = [plea)s plellp = o [ear i)l

const.

=" 7(evlp)=7(en)

cogst. [

v(ea), v(e)]l, — 7([% 6b]9) ’p
—0,

where we used that v is a homomorphism for the last equality. Thence, p is a homomorphism.
Then by using Prop. 3.1.17 one can finally show that the Jacobi identity is satisfied. By using

again a global constant frame (e,), and [eq, €]z = [€q, €], We get

g’
J(ea,ep, ec) = [€a; [en; € gl + v, [€c, ea) gl + [€cs [€as €b) 5] 5 (P)

COgStA [eaa [eby BC}E] + [657 [607 ea]E] + [607 [6a’ eb]E]
g g !

const.

= [ea, les, ec]g}g + {eb, lec, ea]g}g + {ec, leas eb]g}g

=0.

Therefore we can conclude that this defines a Lie algebroid. Uniqueness comes by construction
because constant sections describe a global frame and since we require that the anchor is a
bundle morphism, and that the Lie bracket on I'(E) needs to satisfy the Leibniz rule; in other
words the definition of the action Lie algebroid comes precisely from the motivation to impose

those conditions. That is, assume that we have another bundle map p’ : E — TN with

for all constant sections v € I'(E). Then for all sections n = n%, € I'(F) we have

p'(n) = n"p'(ea) = n"plea) = p(n),

2Observe the similarity to the definition of anchor-preserving morphisms.
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hence, p’ = p follows trivially, and, so, we can assume the same anchor for any other Lie algebroid
structure. For the Lie bracket assume that there is another Lie bracket [-, ], on I'(E), satisfying

the Leibniz rule with respect to p’ = p, with

[M?V]/E = [ny]g = [M?V]E

for all constant sections ju,v. Therefore we can show for all sections 1 = n%e,, ¢ = &%, € T'(E)
that

[0,€ll = 1°€" [ea, en)lo + (Lo (€) = L) (1)) €a
=[ea,en] g

for all p € N, using the Leibniz rule of both brackets with respect to p’ = p. This proves the

uniqueness. [}

Recall Prop. 2.1.16, with that we can use previous examples of Lie algebra actions to construct

action Lie algebroids.

Example 3.1.25: su(2)-action Lie algebroid, recall Ex. and its references

Let E = R? x R® = R3; €z, €y, €, are the standard unit vectors (which we will also
denote by e1, e, e3, corresponding to ' = z,22 = y,23 = 2), the anchor is given by
ple;) = —ejkla:k 8/8ml, where €3, is the Levi-Civita tensor. The Lie bracket is given by
the cross product w.r.t. (e;);, i.e. [e;, €]z = e; X ej.

That this is an action Lie algebroid simply follows by that its Lie algebra action is induced
by the Lie algebra representation introduced in Ex. 2.1.9.

Example 3.1.26: Electroweak interaction coupled to a Higgs field,

recall Ex. and its references

The action Lie algebroid corresponding to the electroweak interaction coupled to
a Higgs field is defined as action Lie algebroid for g := su(2) x u(1) over N = C?(&
R*). Let i be the imaginary number, g,, and ¢’ be positive real numbers (the coupling

constants), n, be a non-zero natural number (a normalization constant) and

ﬁl = gw% & Su(2), l S {17273}7

i
Bs =g — €u(l),
2nV

where the o7 are the Pauli matrices

0 1 0 —i 1 0
o1 = , o9 = , 03 = .
7\ o 7\ o 57 \o -1
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x

1 1 5.2 2

w T +1x x

Writing C?2 3 w = o] = 5 .4l and denoting the coordinate vector
w T° +1x T

fields for the ("), by ;, the Lie algebra action v is then defined by

’Y(ﬁl)w = 9711} (33481 — xgag + x283 — x184)

Y
w

9
w

7(52)(‘, = 9710 (—$361 = $482 + I‘lag + .%‘264)

Y
w

v(Bs), = %ﬂ (33281 — 29y — 205 + x384)

/
v(B4),, = % (xlal + 220y 4+ 2305 + x464>

I
w

which is induced by the Lie algebra representation introduced in Ex. 2.1.10, hence, it

defines an action Lie algebroid.

J

Let us conclude this section by revisiting the isotropy introduced in Section 2.2. In order to
do so it is useful to start with action Lie algebroids £ = N x g — N related to a Lie algebra g
action 7 on a smooth manifold N. By Def. 2.2.1 the isotropy at p € N is given by the kernel of
~ with point evaluation at p. However, as we have seen, this is precisely the kernel of the anchor

then at point p. Hence, we can immediately generalize the definition of isotropies.

Definition 3.1.27: Isotropies of Lie algebroids,

[2, §16.1, comment after the remark on page 113]

Let E — N be a Lie algebroid over a smooth manifold N. Then the isotropy of F is
defined as the kernel of the anchor p, Ker(p).

Recall the discussion after Cor. 2.2.3, the isotropy at a point is in general not an ideal of g,

however, the isotropy as a kernel of the anchor is an ideal of E in the sense of

plad(v)) = p([v,]g) =0

for all v € T'(E) with p(v) = 0, using that p is a homomorphism of Lie brackets; one can
generalize this of course to open subsets of N. The Leibniz rule in [-, -] is basically canceling

the failure of being an ideal as it happened in the discussion after Cor. 2.2.3. Also observe that

[V7 fﬂ]E‘p = f(p) [V7 :U’]E’p + gp(v)p(f) Hp
=0

for all f € C*°(N) and v, € I'(E) such that p(v), = 0 at a fixed point p € N. Hence, the

Lie bracket becomes tensorial if restricted onto sections with values in the isotropy (at a point),
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therefore it is then a typical Lie bracket and it restricts onto each fibre such that Ker(p,) is a Lie
algebra at each point p € N, as also argued in [2, §16.1, comment after the remark on page 113].
However, the dimension of the isotropy is in general not constant which is why the isotropy is
in general not a bundle of Lie algebras; simply take an action Lie algebroid as in Ex. 3.1.26,
especially the action is induced by a Lie algebra representation on a vector space N = W. The
isotropy at 0 € W is then always the full Lie algebra while aside that this is in general of course
not the case; we called this symmetry breaking, recall the discussion after Def. 2.3.9.

If the anchor is always zero, then the rank of the isotropy is constant and equals the ranks
of E. Hence, a Lie algebroid with zero anchor is a bundle of Lie algebras, as also argued in [2,
second example in §16.2; page 114].

In general, the anchor gives rise to a singular foliation on N due to that it is a homomorphism
of Lie brackets; we will discuss this later. Let us first turn very shortly to morphisms and then

to Lie algebroid connections.

3.2. Morphism of Lie algebroids

It is of course a natural question what a morphism of Lie algebroids is; we will only need the
easier definition of morphisms for Lie algebroids over the same base, which is straightforward to

formulate.

Definition 3.2.1: Base-preserving morphism of Lie algebroids,

[3, §3.3, second part of Definition 3.3.1; page 100]

Let (El, PELs [ ]E1) and (Eg, PEys [ ]Ez) be two Lie algebroids over the same base man-
ifold N. Then a morphism of Lie algebroids ¢ : £y — FEs over N, or a base-

preserving morphism of Lie algebroids, is a vector bundle morphism with
PE; © ¢ = PE;

6 (11715, ) = [6(1), 6(v)],

for all p,v € I'(EY).
When ¢ is additionally an isomorphism of vector bundles then we call it an isomorphism

of Lie algebroids over N, or a base-preserving isomorphism of Lie algebroids.

Remarks 3.2.2.
For a Lie algebroid £ — N over a smooth manifold N its anchor p is therefore also a Lie
algebroid morphism £ — TN; recall Remark 3.1.18.

The first condition is actually the same as for anchor-preservation for morphisms over the

same base; recall the second point in Remark 3.1.10.

There is also a definition of morphisms for Lie algebroids over different bases, but we will not
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need it which is why we are going to omit its definition; see e.g. [10, §7].

We want to introduce connections as anchor-preserving morphisms; flatness is then equivalent
to say that connections are morphisms of Lie algebroids. In order to define connections like that

we need to introduce the derivations on vector bundles.

3.3. Derivations on vector bundles V

In Chapter 2 we defined Lie algebra connections to define infinitesimal gauge transformations.
Let us now start to reintroduce that concept for Lie algebroids, going towards Lie algebroid

connections, generalizing typical vector bundle connections.

Moreover, we want to view connections slightly different, as a certain morphism of Lie al-
gebroids. Before we can do this we need to introduce the Lie algebroid of derivations now,
which have a relationship to certain vector fields known as linear vector fields on a vector
bundle. The following constructions are motivated by [3, Example 3.3.4; page 102f.; and §3.4;
page 110fF.].

Definition 3.3.1: Derivations on a vector bundle at a fixed point,

[3, variation of Example 3.3.4, page 102f.]

Let V' — N be a vector bundle over a smooth manifold N and p € N; the fibre of V" at p
we denote with V},. Then a derivation on V at p is an R-linear map L : I'(V') — V/, for
which there exists a tangent vector a,(L) € T, N such that

L(fv) = f(p) L(v) + Lo,y (f) vp (3.16)

for all f € C*°(N) and v € I'(V)). We say that L lifts a,(L).
We define the space of all derivations on V' at p by

2,(V) ={L:T(V) =V, | L a derivation on V" at p}. (3.17)

Remarks 3.3.2.
It is clear that 2,(V) is a vector space, where the zero element is just the zero map with
ay(0) = 0, and all L € 2,(V) can be restricted to open subsets U around p with the typical

arguments.

Our aim is to show that the disjoint union (V') of 2,(V) admits a vector bundle structure

and even forms a Lie algebroid. Its sections have then the following form, formally already

denoted by I'(2(V)).
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Definition 3.3.3: Derivations on a vector bundle V,

[3, Example 3.3.4; page 102f.]

Let V. — N be a vector bundle over a smooth manifold N. Then a derivation on V is
an R-linear map I : I'(V) — I'(V') such that there is a smooth vector field a(J) € X(N)
with

T (fo) = f T (v) + Za)(f) v (3.18)

for all f € C*°(N) and v € I'(V)). We say that 7 lifts a(9).
We define the space of all derivations on V' by

NoWV))={7 :I'(V) - TI'(V) | T a derivation on V}. (3.19)

Remarks 3.3.4.
It is clear that &d(V) C T'(D(V)) with a(A) = 0 for all A € &Z(V), and that T'(2(V)) is a
C*°(N)-module.

The following result can be seen as a generalization of the section around Remark 2.1.18.

Proposition 3.3.5: Isomorphisms of the space of derivations of V at p,

[6, Example 3.10]

Let V. — N be a real vector bundle with non-zero finite rank and p € N whose fiber
we denote with V,,. Then each vector bundle connection V on V induces a vector space

isomorphism
Z,(V) =2 T,N & End(V},) (3.20)

Under such isomorphisms ap, : D,(V') — TpN, L — a,(L) is the projection onto the first

factor.

Remarks 3.3.6.
The last statement shows why we say that a,(L) is lifted by L € 2,(V).

Proof.
Define T': T,N @ End(V,,) — 2,(V) by

(X, A) = T(X, A),
(T(X, A)(v) = T(X, A)(v) == Vx|, + Av,) (3.21)

for all v € T'(V). T is clearly bilinear, and T'(X, A) clearly defines a derivation at p. For

injectivity, observe

VX = _A7
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for all (X, A) in the kernel of T', which is clearly a contradiction to the Leibniz rule in Vx when
X # 0 due to the fact that V has a non-zero rank. Thus, for such (X, A), X = 0 and then
clearly also A = 0; so, injectivity is given.

For surjectivity observe for all L € Z,(V),

L(v) = Vap(L)U‘p + L(v) — V%(L)v‘p

hence, use X = a,(L) € T,N and define A = L — V, (1), which is clearly an element of
End(V}). Hence, T is surjective, too.

That a, is under such an isomorphism the projection onto the first factor is clear by construc-
tion. |

Trivially extending that isomorphism to all p € IV, leads to a canonical vector bundle structure
inherited by the Whitney sum TN & End(V).

Lemma 3.3.7: Vector bundle of derivations,

[3, variation of the introduction in Example 3.3.4, page 102f.]

and [6, Example 3.10]

Let V. — N be a real vector bundle with non-zero rank. Then there is a unique vector
bundle structure on D(V') = [L,cny Dp(V) such that T'(D(V')) of Def. 3.3.3 is its space of
smooth sections, where [] is the disjoint union of sets.

Moreover, each connection V on V' defines a vector bundle isomorphism
(V) =ZTN @ End(V), (3.22)

where TN & End(V) is the Whitney sum of vector bundles.

Proof.
This follows by Prop. 3.3.5: Given a connection V, we can define an isomorphism 7" : X(N) @&
&nad(V) — T(2(V)) of C*°(N)-modules

T(X,A)=Vx+A (3.23)

for all (X,A) € X(N) ® &:(V). This shows that I'(Z(V)) is a locally free sheaf of modules
of constant rank, and it restricts to Z,(V) at p € N because T restricts to the isomorphism
of Prop. 3.3.5. Then we make use of the 1:1 correspondence of vector bundles and locally free
sheaf of modules of constant rank (over a sheaf of rings coming from a ringed space), which
implies a unique vector bundle structure on D (V) = [[,cy Dp(V) such that T'(D(V)) is its
space of smooth sections. Since T is clearly C°°(N)-linear, we also have an isomorphism of
vector bundles 2 (V) = TN ¢ End(V) by T [

This leads to the following definitions.
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Definition 3.3.8: The bundle of derivations,

[3, variation of Example 3.3.4, page 102f.]

Let V. — N be a real vector bundle with finite rank. Then we define the bundle of
derivations on V as the vector bundle &2 (V') equipped with the vector bundle structure

of Lemma 3.3.7, assuming that the rank of V' is non-zero; if the rank is zero, then we
define 2 (V) .= N x {0}.

Proposition 3.3.9: Lie algebroid structure on 2(V),

[3, Example 3.3.4, page 102f.]

Let V-— N be a real vector bundle. 2 (V') together with a defined by

(V) = TN, (3.24)
2,(V) 3 D — a(D) = ay(D), (3.25)
and [, |y defined by
L@(V)) xT(@2(V)) = T(@(V)), (3.26)
(F1,%2) = [91, Pl = T10 T2 — T2 0 T, (3.27)

is a Lie algebroid with anchor a and Lie bracket [-, ']@(V)' The anchor extended on sections

is exactly the same a as in Def. 3.3.3.

Remarks 3.3.10.
By Prop. 3.3.5, (V) is also transitive.

Proof.
For p € N and for all f € C*(N),veI'(V), a,8 € Rand Dy, Dy € Z,(V) we have

(aD1 + BD2)(fv) = f(p) (D1 + BD2)(v) + Lo, (aDi+8D2) (f) Vp

and
(aDy + BD2)(fv) = aDi(fv) + BDa(fv)
= [(p) (D1 + BD2)(v) + (aLay(p) (f) + BLay0) () v
= f(®) (aD1 + BD2)(0) + Loy (D1) 5ay(02)(F) v
and, hence,

Laay(D1)+Bap(D2) (f) Vp = ZLa,(aD14+8Ds) () Vp-
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For a non-zero rank we can therefore conclude
aap(D1) + Bap(D2) = ap(aDy + SD3).

That means that a extends on sections, which gives the a given in Def. 3.3.3 on sections by
Lemma 3.3.7 (= Def. 3.3.3 gives the sections of & (V') = point evaluation at p of 7 € I'(2(V))
gives a derivation of V' at p lifting the tangent vector a(J )|, which we therefore identify as
a,(J,)). While all of that is trivial for zero rank since then a = 0.

That [-, ']9(\/) is a Lie bracket is clear since it is just the typical commutator of linear operators
on a (infinite-dimensional) vector space. Thence, the only thing left is to show the Leibniz rule,

which simply follows by
(91, [ T2l g0y (v) = T1(fT2(v) — f T2(T1(v)) = [ [91, T2lgnn (V) + Lo (f) T2(v)
for all f € C*°(N), v e I'(V). [
As usual for differential operators, we will identify those derivations as certain vector fields,
following [9, beginning of §2; I'(2(V)) is there denoted as wZ(E)| and [3, §3.4 et seq.; page

110ff.]. For the following recall that for each vector bundle V' > N there is also a vector bundle
structure for TV 25 TN , and the following diagram describes a double vector bundle

TV 27y TN

J{WTV J{WTN

V —/—— N
that is, each horizontal and vertical line is a vector bundle, and the horizontal and vertical
scalar multiplications on TV commute, see e.g. [11, §3ff.]. Let us shortly recap the vector
bundle structure of TV 25 TN , following [3, discussion at the beginning of §3.4; page 110ff.]:
The linear structure at v € T,N (p € N) is basically given by the vertical structure of V'
prolonged along the fibre V,,, but as an affine space whose offset is given by v. That is, let
&,n e TV with
DWTV(&)W(@ = DWTV(”)W(n) =1

and, hence, due to mrx(v) = p,

p= (momry)(§) = (momry)(n).

Thus, one can take curves f,h: I — V (I € R an open interval around 0) with

d

f(0) = mrv (), e t:Of =,
d

h(0) = v (n), o t_oh =1,
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such that
mo f=moh,
because the condition on £ and n imply on the base paths mo f,mroh: I — N that

(o f)(0) =p = (7o h)(0),

d d

i, (7o) =Prrv©(&) = Drpy () = ;| (o).

Then the addition and scalar multiplication with A € R for TV DT TN is defined by

d

4= & t*O(f_Fh)’
d

A '§ = & t:O(Ah),

where the addition of curves is well-defined because of o f = 7 o h which implies 7(f + h) =

w(f) = m(h); so, one can take the sum of the curves and

D7({4n) = d

=1 (m(f +m) =Dr(©) =v.

t=0 ~——~—""
=n(f)

In other words, those operations come from interpreting tangent vectors as equivalence classes of
curves, assuming there are representatives of the classes sharing the same base path (mof = 7oh)
with which one can do those operations. It is trivial to show that we have a double vector bundle.
The operations of the linear structure in TV = V is still denoted in the same manner as usual,

and by definition one also gets
mry (€ 4n) = mrv(§) + v (n),

TFTV()\ : 5) =A 7TTv(ﬁ)-

Definition 3.3.11: Linear vector fields, [3, Definition 3.4.1; page 113]

Let V.5 N be a vector bundle over a smooth manifold N. Then a linear vector field
on V is a vector field £ € X(V') which is also a vector bundle morphism V' — TV over a

vector field X € X(N), i.e. on one hand the following diagram commutes

vV TV

lﬂ' . J{Dﬂ'
N —— TN
that is

Drof=Xonm=n"X, (3.28)
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and on the other hand we have additionally

‘fax-ﬁ-ﬁy = f:p '|'5 ° fy (3.29)

for all z,y € V with n(z) = n(y) and «, 5 € R.
We say that & lifts X.

J

Remark 3.3.12: Coordinates on TV

As usual, vector fields are locally determined by their action on coordinate functions, that

is, denote with 2’ coordinates on N, then coordinates on V are given by 7*z! and 3/,
where the latter are the fibre coordinates, given by a local trivialization, especially ¢/ are
(local) smooth and fibre-linear functions on V, elements of I'(V*), whose set we denote
by C3o(V) :=I'(V*) as in [3]. That means that (linear) vector fields on V' are uniquely
given by their action on 7*C*°(N) and C2(V) := I'(V*), we will emphasize this in the

following proposition.

The following proposition shows the idea behind the linear vector fields.

Proposition 3.3.13: Action of linear vector fields,

[3, first two statements of Proposition 3.4.2; page 113f.]

Let V.55 N be a vector bundle over a smooth manifold N, and ¢ € X(V). Then € is a
linear vector field on V' if and only if §(m*C°(N)) C 7*C*°(N) and {(CR(V)) C CRo(V).

Proof.
e We prove that by first showing that Eq. (3.28) is equivalent to £(7*C°(N)) C n*C*°(N)
for £ € X(V). Let f € C°°(N), then

§(r*f) = d(=" £)(€) = (7" df) (D7 (S)).
If Dr(§) = n*X for an X € X(N), then clearly
§(mf) = 7 (df (X)) € T (C(N)).

Therefore let us now show the other direction. We know that Dr(£) € I'(7*TN). Let (8; = 9/0x")

local coordinate vector fields on N, then we can write

and, so, we get the well-known formula (for f = z7)

f(w*a:j) = dn'(¢) ©* (@-xj) = dn?(¢).

69

i



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

Hence, when there is for all f an hy € C*°(N) with £(7* f) = n*hg,” then

D7 (¢) = dn'(¢) 7*0; = ¥ (Z B ai>.
S~ i
={(m*a?)
Since the coordinates #/ were arbitrary, we can conclude that there is a vector field X € X(NV)
such that D (§) = 7n*X; that is, define X = Y, h, 0;, and then show it is independent of
coordinates, that is, take another coordinate system (9}, = 9/9z%), of N. Then denote with M
the (local) invertible Jacobian with 8/, = M_’9;. Since terms like & (7*z%) describe the components
of ¢ along the coordinates 7*z!, we can immediately conclude

T hse = E(n°2%) = w*((M_l)j) g(rat) = (M) hye).

(2

Therefore
D haa 0= hyi 0y,

thence, X is well-defined. Thus, Eq. (3.28) is equivalent to £(7*C°°(N)) C #*C*°(N).

e Now let £ € X(V) satisfying Eq. (3.28) and lifting a vector field X € X(N), z,y € V with
m(z) = 7(y) (such that D,m(&;) = Dym(&,) by Eq. (3.28)), and let fz, fy : I = V, (I C R an
open interval around 0) be curves with f,(0) = z, f,(0) =y, 7(fz) = 7(fy) and

d d

dt t:Ufm =&, dt t:ofy = £y7
then observe for all A € CRo (V) that
d
(@& 48-6)N = (| _(afe+8£))

d

= at ()‘O(afx‘f’ﬁfy))
t=0 Y—————

A linear

=" a(Xofz)+B(Aofy)

=a &(A)+ 8 &)

for all a, 8 € R.
If £ satisfies Eq. (3.29), then by those results

gaerBy()‘) =« gx(A) + B éy(A)y

therefore {(\) € C5o(V) and the proof is finished (due to the previous bullet point).
If, on the other hand, £(\) € Cio(V), then also

faz—i—,@y()‘) =a &N+ p gy()‘) =(a- &+ gy)()\)

3That restricts trivially to local subsets, that is, it will work for f = 27, too.
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For an h € C*°(N) observe

(- & B &)(m"h)

(afs +51)) (="

(d
dt

d

dt

t=0

(homo (afa + Bfy))
—_——

=70 fy

t=0

= dph (Dom(&2))
3.28
B (:Sihr)DaIwLﬁyﬂ(gazwLﬁy)

= Lax+py(T"h).
This proves the claim by Remark 3.3.12; that is, fix additionally to the coordinates 7*z* fibre

coordinates y/ € C22(V), then express £ in those coordinates by

9
oyI

gam-ﬁ-ﬂy = focx-‘rﬂy (ﬂ-*xz) U (aiz) + fax-i-ﬁy (y])

ax+By az+Py

+(a-&+B-6)(v)

~(a-&s6) (1) ()

azr+PBy 8yj az+pBy

:a£$+ﬁé_y
|

As vector fields the linear vector fields carry a natural Lie algebroid structure when they are

a closed algebra, and this is trivial to check.

Corollary 3.3.14: Linear vector fields are a subalgebra,

[3, Corollary 3.4.3; page 114]

Let V.55 N be a vector bundle over a smooth manifold N, and &,¢ € X(V) linear vector
fields on V' lifting vector fields X,Y € X(N), respectively. Then [£,<] is a linear vector
field lifting [ X, Y].

Proof.
That [£,<] is a linear vector field trivially follows by Prop. 3.3.13, that is, compositions of

linear vector fields like £ o ¢ are clearly also lineary vector fields by Prop. 3.3.13, thus, also

[§,d]=8oc—g0o&.
We also have D7r(§) = 7*X and Dn(s) = #*Y. That immediately implies

Dr([¢, <) = = ([X, Y]),

which is a well-known fact, as also given in [, Proposition A.1.49; page 615].
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In case this is unknown for the reader: It can be quickly shown by first observing that

Ze(mf) = Ze(fom) = 7 (df(D7(€))) = 7 (£x ()

for all f € C°°(N), as also given in [/, Lemma A.1.48; page 615]; basically the same as for pull-
back connections. By definition we also clearly have D7 (§)(f) = Z¢(n* f). Therefore altogether

T ((Zx o Zy)([f)) = Ze(7" (Ly () = (ZLe o Z)(7 ),
thus,
(X, Y](f) = 7" (Zx 0 Ly — Ly 0 Zx)(f)) = Lieq(n"f) = Dr([€, <)) (f),
which finishes the proof. |

Finally we can relate it to the derivations of V', denoting the Lie algebra of linear vector fields
by «wz(V); the notation comes from that one can motivate that linear vector fields are the Lie
algebra of o##Z(V'), but we are neither going to prove nor use this, see e.g. the beginning of [9]

for a short motivation.

Theorem 3.3.15: Derivations as linear vector fields,

[3, Theorem 3.4.5; page 116]

Let V.5 N be a vector bundle over a smooth manifold N, and let D be a map defined by
ad (V) = T(2(V)),
§— Dg, (3.30)
where D¢ € T'(2(V')) is given by
A(Dev) = X(A(©)) = &,(N) (3.31)

forallv e (V) and A e T'(V*) = C2(V), and where X € X(N) is the vector field lifted

by €.
Then D is a bracket-preserving isomorphism of C°°(N)-modules.

Remarks 3.3.16.
Let us show that D is well-defined. Observe

A De(av + pw)) = X (Aav + Bw)) — Eavtpuw(N)
= a(X(A@) — &) +B(X (Aw)) — &)

=« )\(ng) + ,B )\(wa)
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= MaD¢v + SDgw)
for all v,w € I'(V), A € I'(V*), € € aet (V) (lifting X € X(N)) and o, 8 € R, using 7(v) = 1y =
m(w) and Prop. 3.3.13, that is, £(\) is linear. Similarly one shows for all f € C°°(NN) that

ADe(fv)) = X (M(fv)) =€pu(A)
————
=fA(v)

= [ (X(A()) = &) + Zx(f) Mv)
= AMDev) + Zx(f) Av)

= A(fDev + Zx(f) v).
Hence, D¢ € T'(2(V)).

Very short sketch for the proof of Thm. 3.3.15.

We are not going to show this because we will not need this statement, please see the reference;
the proof is relatively straightforward, but using several tricks. One first shows that ««Z(V') are
sections of a certain Lie algebroid isomorphic to 2(V*) such that one essentially needs to show
that 2(V) = Z(V*). For all L € T'(2(V)) one can define a T' € T'(2(V*)) as usual by forcing

the Leibniz rule as in

(T(A)(v) = a(L)(A(v)) = A(L(v))

for all A € I'(V*) and v € I'(V). This defines also an isomorphism of Lie algebroids @ (V')
D(V*); see more in [3, discussion after Corollary 3.4.3; page 114ff.]. |

I

3.4. Lie algebroid connections

In the following we will introduce the notion of E-connections, following partially [0, §2]. See
also [7, §2.5] e.g. for a discussion about an E-Levi-Civita connection and other similar terms
similar to Riemannian geometry. However, we want to introduce connections using the previous

section, as in [3].

Definition 3.4.1: F-connection, F-curvature and FE-torsion,
[3, variation of Definition 5.2.5; page 186]
[3, variation of Definition 5.2.9; page 187]

[3, §4.1, trivial generalization of Equation (14); page 154]

Let E — N be a Lie algebroid over a smooth manifold NV and V' — N be a vector bundle

over N.

1. An FE-connection on the vector bundle V is a base- and anchor-preserving vector
bundle morphism *V : E — 2(V), v+ £V,,.
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2. The E-curvature Rey of £V is defined as in Def. 3.1.7 by

Rev(p,v) = [Ev#,Evy}g — By (3.32)

W) 2

for all u,v € T'(E). £V is called flat if its curvature vanishes.

3. In the special case of V' = E we can define also the E-torsion try as an element of
T5H(E) given by

teg(p,v) = EV,w —FV,u— [y, vlg (3.33)

for all p,v € I'(E).

Remarks 3.4.2.

e The base- and anchor-preservation in the definition of an F-connection especially means
ao PV =p,
so, for all 1 € E we have that ¥ V, is R-linear and
EVu(fv) = f BV 0 + Ly (f) v,

for all f € C°(N) and v € I'(V'). That it is a base-preserving vector bundle morphism, implies
that one can extend £V to sections, giving rise to an R-linear map I'(E) — I'(2(V)), with

BV, (v) = f EV,0

for all v € I'(E), f € C®(N) and v € I'(V). This is precisely the typical definition of a
connection, besides that the Leibniz rule is along a more general anchor. In the case of E = TN,
especially pg = 11y, we have a typical vector bundle connection, and it is trivial to see that
both definitions are equivalent in that situation.

e As noted at the end of the introduction, when write ”connection” or ”vector bundle con-
nection”, then we always mean typical T/ N-connections.

e This clearly generalizes the concept of Lie algebra connections as in Def. 2.5.1, for example
look at an action Lie algebroid, but now with the tensorial behaviour again due to the bundle
structure.

e As for vector bundle connections, one can view the curvature as a map

Ry : T(E) x D(E) x D(V) — T(V),

(1, v,0) = R (1, v)v = PV, 5V 0 = P9,PV 0 = BV, ) 0.

In Lemma 3.1.12 we have that it is tensorial the first two arguments. For the third it is as for

vector bundle connections,

Rog (1. v)(£0) = | Reg (1,00 + (Lo (Lo () = Zot) (Lo (D) = Lt pen)

=0
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= f Reg(uv)v

for all f € C*°(N), p,v € I'(E) and v € I'(V), using that p is a homomorphism of Lie brackets.
To summarize, a o Rey = 0, and Rey can be viewed as an element of 73 (E).

e As in the situation of vector bundle connections it is trivial and straightforward to check
that tey is an anti-symmetric tensor because of the fact the Leibniz rules in the connections

and the Lie bracket cancel each other.

In Ex. 2.5.3 we had a canonical Lie algebra connection, induced by a Lie algebra action and

vector bundle connection. We can generalize this connection.

Example 3.4.3: Canonically induced E-connection,

[7, first example in Example 2.8]

Let E — N be a Lie algebroid over a smooth manifold N and V' — N be a vector bundle
over N, equipped with a vector bundle connection V. Then define ¥V on V by

EVM = VP(M) (3.34)

for all p € T'(F). This is a canonical example of an E-connection which we will denote as
V.

As for vector bundle connections, we can extend a given E-connection to 7] (V) (r,s € Np).

Example 3.4.4: Dual Lie algebroid connections,

very typical construction forcing the Leibniz rule as in [4, Def-

inition 2.1.36, but using connections; page 96|

Let E — N be a Lie algebroid over a smooth manifold N and V' — N be a vector bundle
over N, equipped with an E-connection #V. Then we define its dual F-connection on
V*, still denoted as PV, by

(Evyw) (v) =% (w()) —w (EV,,U) (3.35)

for all v € T(E), w € T'(V*) and v € T'(V). It is trivial to prove that £V, w € I'(V*) and
that this £V is an E-connection on V*. Similarly, as for vector bundle connections, one
extends PV to 77 (V) for all r, s € Ny, always denoted by £V.

Flatness just means trivially the following by definition.

Corollary 3.4.5: Flat connections, [3, §5.2, Definition 5.2.9; page 187]

Let E — N be a Lie algebroid over a smooth manifold N and V' — N a vector bundle.
Then an E-connection NV : E — @(V) on V is flat if and only if it is a (base-preserving)

morphism of Lie algebroids.
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Proof.
This simply follows by definition. |

Of special importance regarding curvatures are of course the Bianchi identities.

Theorem 3.4.6: Bianchi identities,
[12, Satz 8.3, generalization of second statement there; page
90]

[3, reformulation of Proposition 7.1.9; page 265]

Let E — N be a Lie algebroid over a smooth manifold N, and £V be an E-connection
on E. Then the curvature Rey satisfies both Bianchi identities, i.e. for all u,v,n € I'(E)
we have the first Bianchi identity

Rey(p,v)n + Rey(v,n)p + Rey (0, p)v
=tey(tey(p,v),n) +tey(tey(v,n), u) +tey(tey(n, p),v)

+ (PVuteg) o) + (PVitey) (0, 0) + (PVatey ) (u.v), (3.36)

and we also get the second Bianchi identity
0= <EVMREV) (v,m) + (E VVREv) (m, ) + (E VnREv) (k,v)

+ Rey (tEV(Mv V)v 77) + Rey (tEV(Vv 77)7 M) + Rey (tEV(n’ :u)v V) o (337)

Remarks 3.4.7.
Eq. (3.36) implies that tey satisfies the Jacobi identity if “V is flat and teg is covariantly
constant with respect to £V. Thence, it would define another Lie bracket on I'(E) which is

C*°°-bilinear. Moreover, this Lie bracket then also defines a Lie bracket on each fibre E,.

Proof of the first Bianchi identity.
The second Bianchi identity we will prove later by its generalization (see Thm. 3.8.6 and Remark
3.8.7). The former statement we can prove now by showing that it is equivalent to the Jacobi

identity for [-,-]g. First observe for u,v,n € I'(E) that
el = [ —teg (vin) + PV = "00]
= tog (i, teg (1) = PV, (b (1,) + F Vg @
~tog (1, 5Vn) + EV,EV g = FVeg,

+tey (u, EVUV) — EV,LEV,]V + EVEV"V/,L
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= —tog(tey (v, ), 1) = "V, (tog (v,0) + tog (P, 1) + teg (1, "Vy0)
+ 5V, BV - BN BV — BV .

With o we will denote the cyclic sum and thence by the Jacobi identity (and the cyclic property
of the total sum)

O0=0o ([M? [V7 n]E}E)
= o( = tey(tey (v,m),p) = PV, (teg (v, m) + tey (FVun, p)
t+tey (1, EVg0) + PV, PV — BV, V0 — B, 0)
= o ( = togltey (1,v),n) = PV, (tog (v,0) + tog (FV,0,n)
ttog (v 5Vun) + BV, B0 = BV EV,m = BV ,0,0)
_ E
& o(Rey(uv)n) = o (teo(tey(u,v),m) + (PVitey ) (nn) .
n

In Section 2.5 we have seen that pullbacks of Lie algebra connections were important to
define the infinitesimal gauge transformation. Hence, let us turn to pullbacks of Lie algebroid

connections.

3.5. Pullbacks of Lie algebroid connections

As in the discussion around Def. 2.5.5 we need to be careful about how and when we can make
a pullback of Lie algebroid connections. We want to generalize Prop. 2.5.7, especially recall its

proof and Remark 2.5.8. For simplicity let us first look again at curves.

Definition 3.5.1: E-paths, [7, §2, Definition 2.4]

Let (E,p,[,-]g) = N be a Lie algebroid and I C R an open interval. Then an E-path
is a smooth map « : [ — E with

d

(Vo)) = 27, (3.38)

where the curve v : I — N, t — m(«(t)), is the base path of a. We also say that v is
lifted by «.

Remarks 3.5.2.

Recall that for a vector bundle V2 N we say that a section of V along v is a smooth map
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v: 1 — V with prov = v, and that we identify sections of v*V with sections of V" along . That

means that an F-path o can be viewed as a section of v*FE.

Using this we can define a pullback E-connection and a derivation along an E-path.

Proposition 3.5.3: Pull-back of an EF-connection along an FE-path,

[7, §2, comment before Definition 2.4]

Let E — N be a Lie algebroid, V. — N a vector bundle and NV an E-connection on V.
Fiz an E-path o, I 5 t — «a(t) € E, with base path v. Then there is a unique vector
bundle connection v* (EV) on vV — I with

7 (59) 4 00 = 7 (Vo) (3.39)

for allv e (V) and c € R.

Remarks 3.5.4.
As introduced, we will view (FE-)connections as base- and anchor-preserving morphisms, and,
when acting on sections, as 1-forms. In the latter case, “Vv € Q'(E;V), and the pull-back
as a section gives then ~* (EVU> € I'((v*E)" @ y*V), therefore we define (7* (EVU))(CQ) =
y* <E Vcav) when viewing « as a section of v*E. One could also just write ¥V .qv when using
the interpretation of connections as morphisms, because Evm(t) is then a derivation of V at
~(t) such that it is immediate that we have a section along 7 and, hence, of v*V. However, most
of the time we prefer to write the pull-back as an accentuation.

When a = v*v for v € T'(V), then we write v* (EVCVU), although it looks ambiguous with

the notation just discussed previously,
(25 ) = (7 (55 e 30 = 7 (50 0) = (55r),

but the notation should be clear by the context.

Proof of Prop. 3.5.3.
As usual, the condition (3.39) uniquely defines v* (EV) by using that v*(I'(V')) generates I'(y*V)
and extending Eq. (3.39) by forcing the Leibniz rule, i.e. we define

)

(7 7ru) = e

¥ (Ev> - t

V@)l + F1 (1) 7 (FVeavs)|,

eil,

for all v; € T(V), fi € C®°(I), t € I and c € R, where the index i runs over an arbitrary range;
recall Def. (2.37) in the proof of Prop. 2.5.7. Every other connection satisfying Eq. (3.39) has
the same form by the Leibniz rule, and, so, uniqueness follows if existence is given. Hence, it
is only left to prove that this gives a well-defined connection, that is, we need to prove that
it is independent of the choice of generators v; as in the proof of Prop. 2.5.7 and that it is a

connection satisfying Eq. (3.39). Recall Remark 2.5.8, we especially need to check whether the
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Leibniz rule inherited by ¥V is compatible with the Leibniz rule of connections of v*V — I, for

this we need to calculate

Y (PVealh)], = Zeptainy(h) vy + (1) 7 (PVeav)|,

= Ley(0)

_ (C d(hd(; 20) 0 + (h o) V*(EVW,U))

for all v € I'(V) and h € C°°(N). Thus, the proof is then the same as for Prop. 2.5.7; linearity
and the Leibniz rule follow by construction, and Eq. (3.39) and the independence of the taken

t

generators follows by the previous calculation. |
As usual, one can use this to define parameter derivatives.

Proposition 3.5.5: Derivations of sections along F-paths,
[7, §2, beginning of subsection 2.3; there D/dt¢ is denoted

as V9]

Let E — N be a Lie algebroid, V. — N a vector bundle and V¥ an E-connection on V.
Fiz an E-path o, I 5t — «a(t) € E, with base path . Then there is a unique differential

operator 2 : T(v*V) = T'(v*V) with

D
T is linear over R, (3.40)
D df D
D * _ *(FE
ol = ( Vav)\t (3.42)

forall s eT(yv*V),vel(V), feC®() and t € I.

Proof.
Uniqueness will follow again by using that v*(I'(V)) generates I'(y*V') and extending Eq. (3.42)
by forcing the Leibniz rule, this is given by choosing

D E
— = * v
a7 < >%
and then everything follows by Prop. 3.5.3. |

Remarks 3.5.6.
When V = N x R, then we clearly have D/dt = d/dt, for this use the uniqueness and define

AvE= Vg, where V? = d is the canonical flat connection, and

) = (@6 @), = 7 (BVar)

——
=(r"p)(a(®))

d| d
al, 070 = oy (dt
=voy: I—=R

79



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

Prop. 3.5.3 can be generalized, using the notion defined in Def. 3.1.9.

Corollary 3.5.7: Pullbacks of Lie algebroid connections by anchor-preserving

morphisms

Let E; — N; (i € {1,2}) be two Lie algebroids over smooth manifolds N;, V. — Na a
vector bundle, and ¥2NV an Ey-connection on V. Also fix an anchor-preserving vector

bundle morphism & : E1 — FEs over a smooth map f : Ny — No. Then there is a unique
E; -connection f* (E2V> on f*V with

(£ (")), ) = £ (" Vo) (3.43)

for allv e I'(V) and v € T'(Ey).

Remarks 3.5.8.
This result is motivated by [10, Example 7.7] where it is shown that there is a 1:1 correspondence
of Lie algebroid paths and anchor-preserving morphisms. That is, let £; = T1I, where I C R is

an open interval. Then define

. g(i), (3.44)

which is a map I — Fs,t — £(d/dt|;), such that the anchor-preservation implies

d

(o)) = D1 (5 ) = 7

Hence, « is an Es-path lifting f. Vice versa one can define £ by Eq. (3.44) if « is given, and
then extending £ canonically to a tensor.

Furthermore, as one can see, the presented definitions of connections and their pullbacks can
also be extended to vector bundles with just an anchor, without the need of a Lie bracket (=
anchored vector bundle). But as we have seen before, for example recall Remark 2.5.16, one can

even generalize it further which we will do in the next statement.

Proof of Cor. 3.5.7.
We only give a sketch because the proof is exactly as in Prop. 3.5.3, and all other similar
5, (v for v € T'(E1) which

does neither change the structure nor the arguments of the proof. Making use of Def. 3.1.9 we

statements as in Section 2.5; instead of d/d¢ one has essentially &,

get

I (Ve () = (o 1) £ (B Vewpw) + 1" (Lipm, o100 (W) £
N———

- g(DfO/)El)(V)

= (ho f) F (V) + Lo, ) (o f) f7(0)
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for all h € C*°(N3), v € I'(V) and v € T'(E}), using the definition of total differentials, that is

Dpf(loEl (Vp»(h) = ngl (Vp)(h © f)
—_——
€T (p) N2

for all p € N1. As mentioned in the proof of Prop. 3.5.3 and Remark 2.5.8, this proves that
the inherited Leibniz rule of 2V is compatible with the Leibniz rule of Ei-connections on f*V.
Hence, the remaining proof is then precisely as in Prop. 3.5.3 and 2.5.7; locally, f* (E2V) is
defined by

(£7(9)) 1 = Lo, ) () Frea+ £ (P Veyea)

for all 1 = p* f*eq, where (eq), is a local frame of V. Linearity and the Leibniz rule follow by
construction, and the well-definedness and Eq. (3.43) additionally by the first calculation about
the compatibility of Leibniz rules. |

What we need is an even more general statement as in Section 2.5, with still precisely the

same proof as before; recall Prop. 2.5.15.

Corollary 3.5.9: Pullbacks of connections just differentiating along one vector
field

Let E; — N; (i € {1,2}) be two Lie algebroids over smooth manifolds N;, V- — Ny a vector
bundle, and 2V an Es-connection on V. Moreover, let f € C*°(Ny; No), vy € T'(E1) and
vy € T(f*E2) such that

Df(pe, (1)) = (f*pE,)(v2). (3.45)
Then there is a unique R-linear operator 8, : T(f*V) — D(f*V) with
8, (hs) = Ly, (h) s+ h 6,5, (3.46)
8, (f*v) = f* (Ezvmv) (3.47)
forall s e T(f*V), v € (V) and h € C*(Ny).

Remark 3.5.10: Commutating diagram behind pullbacks

Recall Remark 3.1.10, the pullback in (f*pg,)(r2) in Eq. (3.45) is just for emphasizing

that 15 is a section along f; one can omit this in the notation, especially if one views

sections like 9 as a map N; — Fs. Then we can equivalently write

Dfo PE; (Vl) = PE; O V2, (3'48)

that is equivalent to that the following diagram commutes
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NlL)EQ

PE, (VI)J JPEQ

TN, 25 TN,

Remarks 3.5.11.

e In general one may want to write J,, = ( f* (EQV))Vl, because it is precisely this by
uniqueness if a general pullback is possible. But to avoid confusion about the existence of a
general pullback we will stick with d,,, and it will be clear by context which connection and v»
is used for the definition of 9,,.

e Asin Remark 3.5.6, in the case of V = R x N, the trivial line bundle over N», we canonically

use 2V = VgEQ, where V0 := d. Then one can similarly show as before that

8oy = Lo,

Proof of Cor. 3.5.9.

That is precisely the same proof as in the previous statements and as in Section 2; the only
difference is just the meaning, v; are fixed sections, but that does not matter in the calculations.
Eq. (3.45) is just the condition about anchor-preservation in the case of a fixed pair of sections,
and one uses this equation in the same fashion to how we used an anchor-preserving morphism in

the previous proofs. Essentially replace v with 14 and {(v) with v in the proof of Cor. 3.5.7. N

The advantage of this weak formulation is that we do not need to know whether or not f can
be lifted to any morphism with certain properties like anchor-preservation. Eq. (3.45) states
what one needs to make a pullback of a Lie algebroid connection to just differentiate along one
direction. That was precisely the idea in the discussion around Prop. 2.5.15, but now more

compactly written down, not using flows of the involved vector fields.

3.6. Conjugated F-connections

Later we will introduce a Lie algebroid connection known as basic connection, and it has a
special form which we want to study in a more general sense of conjugated E-connections; the
name is motivated by [0, paragraph after Proposition 2.12], while we especially refer to [13]

where the conjugate connections are called dual connections.

Definition 3.6.1: Conjugated FE-connections,

[13, beginning of §4.6]

Let E — N be a Lie algebroid over a smooth manifold N, and V be an E-connection on

E. We define its conjugated E-connection v by

6“1/ = [u,v]g + Vou (3.49)
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for all u,v € T'(E). We also say that V and V are conjugate to each other.

Remarks 3.6.2.
It is straightforward to check that the conjugate is an F-connection on F, linearity over R is

clear, and we have

§#(fl/) = [,U>fV]E +nylu = f ﬁ,ul/"i'gp(u)(f) v,
Viar = [fu vVl + Vol fu) = f Vv — Loy (f) 1+ Loy (f) = f Vv

for all u,v € T'(F) and f € C*®(N), using the Leibniz rule of the Lie bracket, and that V is an
FE-connection. It also makes sense to say that both E-connections are conjugate to each other

because V is also the conjugate to v by definition, that is,

~

[:uay]EJer/l:ﬁMVa

and the conjugate of a connection is unique, that follows trivially by definition.

We need several relations between their curvatures and torsions throughout this work.

Corollary 3.6.3: Torsion of conjugated F-connections

[13, first statement in the first proposition of §4.6]

Let V and V be two E-connections, conjugate to each other, on a Lie algebroid E — N

over a smooth manifold N. Then we get for their torsions

to (i) = —te ) (3.50)

for all u,v € T(E).

Proof.
We have
tv(%V) = ﬁuV - ﬁuy — [u Vg
= (Vg + Vop — v ulp = Vir = [, v]g
= [ Vg +Vop— Vv
= —tg(u,v)
for all p,v € I'(E). [
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Lemma 3.6.4: Curvature of conjugated E-connections,

the first identity comes from [13, second statement of the first

proposition in §4.6]

Let V and V be two FE-connections, conjugate to each other, on a Lie algebroid E — N

over a smooth manifold N. Then we have for their curvatures
Re(p,v)n = (677756) (1, v) + R (s mv — Rg (v, m)p (3.51)

— —(@,7 (w,v]g) — [@n,u, V:|E — {,u, ﬁnV}E — @gwu + ﬁﬁlmu) (3.52)

for all p,v,n € T(E).

Remarks 3.6.5.
The second statement is a generalization of what is shown for a special type of connection in [0,

Proposition 2.12].

Proof of Lemma 3.6.4.
We will show Eq. (3.51) by first showing Eq. (3.52), but the latter for Rg instead of Rg; this
does not matter of course, because when we know the formula for one connection, then also for

the conjugated connection. Just by the definition of duality and the Jacobi identity we have
Vi tn.vlp) = [Vunv], = [0:5ur] , = Ve, + Ve,
= [Ma [777 V]E]E + [V7 [,Uv n}E]E + [777 [Vv /‘}E]E

~ ~

B {ﬁnu’y} N {n’§”M}E_ {Vmuﬂ?}E‘*‘ {V”’M’V}E

for all p,v,n € I'(E). Eq. (3.52) is therefore shown, and using this and Cor. 3.6.3 we also have
(ﬁnt§> (Ma V) == (@ntﬁ) (Mv V)
= _677 (tg(,u, V)) + tﬁ (@nu, V) -+ tﬁ (,U,, @UV>

= [ - VILV—I_VVM}E_FV[M’V]E — Vw4 V"

:vull«*vuﬂ

+ Ve, = Vo (0.1l +Vn) = |[n.ulp + Vim,v] |
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+V, ([n, Vg + vyn) - V%Vu — [;L, [n, V] g+ Vyn} o

u

nV

|
<l

g’

= R, v)n + Rg (v, n)u — Rg(p, n)v.

This gives Eq. (3.51). [

We are especially interested into the curvature if the conjugated E-connection is flat.

Corollary 3.6.6: Curvature of conjugated EF-connections where one connection

is flat,
[13, second and third statement of the first proposition in
§4.6]
Let V and V be two FE-connections, conjugate to each other, on a Lie algebroid E — N
over a smooth manifold N . If@ s flat, then
also written as
Rﬁ = Vt§. (3.54)
Proof.
This simply follows by Lemma 3.6.4. |

If both connections conjugate to each other are flat, then we have another Lie bracket by the
first Bianchi identity.

85



CHAPTER 3. GENERAL THEORY OF LIE ALGEBROIDS Simon-Raphael Fischer

Corollary 3.6.7: Torsion as Lie bracket

LetV and V be two flat E-connections, conjugate to each other, on a Lie algebroid E — N
over a smooth manifold N. Then their torsions are Lie brackets for I'(E) which restrict

to Lie brackets on the fibres, giving rise to a BLA structure on E.

Proof.
This follows by the flatness of both connections first Bianchi identity in Thm. 3.4.6 and Cor. 3.6.6,

the latter implies
Vt& =0,
and the former, the first Bianchi identity, then gives
te (ta (i v).n) + te (te ). 1) + 1o (te(m.n),v) = 0
for all u,v,n € T'(E). Bilinearity and antisymmetry is given, thus, tg is a Lie bracket for I'(E),

therefore also t& by Cor. 3.6.3. Since torsions are tensors we can conclude that the torsion

describes a Lie bracket on each fibre, too. |

3.7. Basic connection and the basic curvature

As mentioned and already introduced in a simplified form in Ex. 2.5.4, there is also another
canonical example of E-connection, the basic connection V"2. We follow mainly [6, §2.3];
however, in [14, §3.4] the basic connection is introduced as a certain Bott connection along
certain leaves given by the anchor, but we will neither use nor introduce that notion. The basic

connection is actually the conjugate connection of V.

Definition 3.7.1: Basic connection, [6, Definition 2.9]

Let E — N be a Lie algebroid over a smooth manifold IV, and let V be a vector bundle
connection on E. We then define the basic connection (induced by V) as a pair of
E-connections, one on F itself and the other one on TN, both denoted by V"%,

1. (Basic E-connection on E)

The basic connection on F is defined as the conjugate of V, that is,
VESY = [, Vg + V) u (3.55)
for all p,v € I'(E)

2. (Basic E-connection on TN)

The basic connection on TN is defined by
VX = [p(u), X] + p (Vxp) (3.56)
for all p € I'(E) and X € X(N)
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Remarks 3.7.2.
It is trivial to see that these are E-connections.

In the physics’ part, Chapter 4, we will discuss the use of this connection in physics, as also
arising in [I, discussion around Equation (17)]. Nevertheless one can see here already that one
gets the adjoint representation for bundle of Lie algebras, i.e. p = 0, because then the basic
connection on F is just the field of Lie brackets.

In the following we often just write of the "basic connection” or VP, while we then always
mean both connections. It should be clear by context which of both connections we mean then.
Similar for its curvature Ryvas; but the torsion tyrvas will only denote the torsion for the basic

connection on F since only on F the torsion is formulated.

We will use the following essential property of the basic connection very often.

Corollary 3.7.3: Compatibility of the basic connection with the anchor,

[6, comment after Definition 2.9]

Let E — N be a Lie algebroid over a smooth manifold N, and let V be a vector bundle

connection on E. Then

po VP = yhas o (3.57)
Proof.
We have
p(Viv) = p(l W] + Vo) = (), p0)] g + p(Vpit) = Vi (p(v))
for all u,v € T'(FE), using that the anchor is a homomorphism of Lie brackets. |
As in [1], we will later see that V"2 should be flat for a given V in order to formulate a gauge

theory (among other conditions). Thence, it is important to study the curvature of Vb, Its

curvature is encoded in another tensor, the basic curvature.

Definition 3.7.4: Basic curvature, [6, Definition 2.10]

Let E — N be a Lie algebroid over a smooth manifold N, and let V be a connection on
E. The basic curvature R%a‘s is then defined as an element of I" (/\2 E*QT*N ® E) by

R3*(p, )X = Vx([1,v]p) = [Vxp, vl = [, Vxvlp — Vpasxh + Vipaxv,  (3.58)

where p,v € I'(E) and X € X(N).

Remarks 3.7.5.
e As stated in [0] one may think of this as Vx([u, v|g) — [Vxu, Vg — (1, Vxv|g which is

a measure of the derivation property of V w.r.t. [-,:]g, but corrected in such a way that it
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is tensoriel in all arguments. For a zero anchor the basic curvature would be equivalent to
Vx([pvE) — [Vxu, Vg — [, VxV]E since then the basic connection on TN is identically zero.
e Compare the form of the basic curvature also with Lemma 3.6.4.
e It is trivial to see that the basic curvature is antisymmetric in the Lie algebroid arguments
and that it is trilinear. Also let f € C°°(N) and observe

R%as(/ﬁa v)(fX) = VfX([Ma V]E) - [VfXMa V]E —[n, vfXV]E - Vv‘;as(fX)ﬂ +VVBaS(fX)V
———— N —
:f[vX/tvy]E_gV(f) Vxup :fvvllgasxﬂ‘i’gu(.f) Vxp
= f R (p,v)X
for all p,v € I'(F) and X € X(N), and

RY*(n, fr)X = Vx(u, fv]p) = [Vxu, fvlp — 1, Vx (fv)] g - Ve x tt + Ve x (fV)
= fRYS (1, v) X
+Zx(f) [, Vg + Zp)(f) Vx ) + Lx Ly (f) v — Lo (f) v

— Lo () Vxv = Zx(f) [, Vg = Loy Lx (f) v+ Lonasx (f) v
—_———
=Llp(u), X140(V x 1) ()

= [RY (1, )X + Lx L) (F) v = Loy Zx (F) v = L1x o) () ¥
=0

= fRYS(u,v)X,

that the basic curvature is also tensorial in p follows by the antisymmetry.

Do not confuse this tensor with Ryuvas, the curvature of the basic connection, either on E or

TN. However, the curvatures are encoded in the basic curvature.

Proposition 3.7.6: Relations between the curvatures,

[6, Proposition 2.11], [1, Equation (9)], [13, generalization

of second statement of the first proposition in §4.6]

Let E — N be a Lie algebroid over a smooth manifold N, and let V be a connection on
E. Then one has:

1. The curvature of V°* on E is equal to —R'%as(-, ) o p.
2. The curvature of V" on TN is equal to —p o R]%as.

We also have an important relation to the curvature Ry of V,

R¥* (1, v)X = (Vxtyoas) (1,v) = Ry (p(p), X)v + Ry (p(v), X ) (3.59)
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for all p,v € T(E) and X € X(N), where tgvas is the E-torsion of the basic connection
on E.

Remarks 3.7.7.
This implies that both V2 are flat if R%as = 0. The converse is in general not true. But for

invertible p the converse would hold. For R%as = 0 one also gets

(Vixtgvas) (1, v) = Ry (p(p), X)v — Ry (p(v), X)pu, (3.60)

and by Cor. 3.6.3 we also have tgras = —ty, such that one can rewrite this with the torsion of
V.

Proof of Prop. 3.7.6.

For the curvature of VP® on E observe, using Cor. 3.7.3,
—R¥*(p,v)(p(n)) = _(Vp(n)([:uv VIE) = [Vt VIE = (1, V oy VIE — Vigas pny i + vaas,;(n)l/)

= —(Vp(n)([,ua vlg) — [Vp(n)/" V}E - [/" vp(n)’/] = Vp(wbasyft + vaE‘“n)”)

E

Lem. 3.6.

4
vaas (M, V)77

for all y,v,n € T'(E). In the same fashion as in the proof of Lemma 3.6.4, using the Jacobi

identity and that p is a homomorphism, we also have
P (Rl%as(u, I/)X) =p (Vx([u, Vi) — [Vxup,vlp — [, Vxv]e — VVBasXM + VVBaSXV)
+ (), p(W)], XT + [[p(v), XT, p()] + [[X; p(w)], p(v)]

= [p([, V]E), X] + p (Vx([11,V]E))

—ybas  x
[wvlg

+ (). [02), X1+ p(Vxp)] + p (Vgpeexv)
=Vbasx

= [p(w), [p(v), X] + p(Vxv)| = p (Vv‘gasxﬂ)
—vhasy

= VP, X + VSV X — Vv X
= _vaas ([L, I/)X
for all X € X(INV). By Cor. 3.6.3 we know that that tgbes = —ty,, thus,

(Vxtyoas) (1, v) = =(Vxty,) (1, v)
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= —Vx (tv, (1, V) +tv,(Vxp,v) +tv, (1, Vxv)

=Vx ([Ma vlg — Vv + Vp(u)u)
+ Vowxw? = Vo) Vxu = [Vxp,vlg
+ Vo Vxv = Vpwmk — [ Ve

=Vx ([ VE) = [Vxi, Vg — i VxVe + VvV — Vot
+ Ry (p(p), X)v + Vip.x1v — By (p(v), X)p — Vipw),x) 1

= R¥(u, )X + Ry(p(n), X)v — Ry (p(v), X)p.

The basic connection on E is conjugate to V, by definition, and it will be later very important
that the basic connection is flat for gauge theory as we will see. By our discussion about conjugate

Lie algebroid connections we can immediately derive the following by Cor. 3.6.6.
Assume R2S(-,-) o p =0, then we have
Ry, = VP*tybas, (3.61)
i.e.
Ry, (1, v)n = Ry (p(p), p(v))n = (Vﬁastvbas) (1, )

for all p,v,n € T'(E).

Proof.

By Prop. 3.7.6 we know that the assumption implies that VP® on F is flat. Thence, we can use
Cor. 3.6.6 because of that V" on E and V, are conjugate to each other. This concludes the
proof. |

3.8. Exterior covariant derivatives

As for standard connections one can now define exterior covariant derivatives related to Lie

algebroid connections.
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Definition 3.8.1: Exterior covariant derivatives using Lie algebroid connec-

tions,

[6, the discussion after Def. 2.2]

Let E — N be a Lie algebroid over a smooth manifold N, ¥V an E-connection on a
vector bundle V — N. Then we define the exterior covariant derivative d”V as an
operator QI(E; V) — QITYE; V) (q € Ng) by

(dva) (v, ..., 1) = Zq:(—l)i BV, (W (V0. Dy ey 1))

aF Z (—1)i+jw([yi, Vj]Ea Vs -y Uiy - ,I//\j, 00g I/q) (362)
0<i<j<q

for all w € QI(E;V) and vy,...,vy € I'(E).

Remarks 3.8.2.

That this is a well-defined operator can be shown as in the case of vector bundle connections.

Moreover, in the case of a connection V on E one has also the previously discussed basic
connection VP as E-connection on E and TN. V is typical vector bundle connection and VP2
a pair of E-connections. Hence, it may make sense to look at forms with two degrees, one for
TN and the other one with respect to E.

The following space is also developed and studied by Alexei Kotov, communicated to me in

private communication, his studies are planned to be published in 2021.

Definition 3.8.3: (p, ¢)-FE-forms

Let E — N be a Lie algebroid over a smooth manifold N, and V' — N a vector bundle.
Then the space of (p, q)-E-forms with values in V (p,q € INy), will is defined by

p q
QOPYN,E;V) =T </\ T*No \E*® V) : (3.63)

Let us study possible exterior covariant derivatives on this space in the case of £ = V.

Remark 3.8.4: Exterior covariant derivatives induced by V

Let E — N be a Lie algebroid over a smooth manifold N and V a connection on F.

e For ¢ = 0 one gets the space of p-forms with values in E, QP(N;E), or more

general, those are forms on N with values in A? E* ® E, i.e.

q
QPY(N,E; E) = QP (N; NE*® E) . (3.64)
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e Analogously

p
QPY(N,E; E) = Q1 (E; ATN*® E) : (3.65)

e Using Eq. (3.64), denote with V also the canonically induced connection on
A?E* ® E; then we have a canonical definition of dvV on QP4(N,E;E). Since the
canonically induced connection on A? E* ® E is defined by using the Leibniz rule, one
can rewrite the exterior covariant derivative d¥ of w € QP4(N, F; E) as an element of
OP+L4(N, E; E) by

(de> (Xo,. -y Xp,v1,..., 1)

0<i<j<p

where Xo,..., X, € X(N) and vy,...,y, € T'(E).

e Similarly one proceeds with VP using that the basic connection acts on both,
E and TN, such that there is a canonically induced notion of VP* on A\’ TN* ® E. By
Eq. (3.65) we have dV"™" : QP(N, E; E) — QP4tY(N, E; E) given by

(dvbasw) (X1, Xp, 10, .., 1)

+ Z (*1)i+jw(X1,...,Xp,[Vi,l/j]E,l/o,...,ﬁi,...,ﬁj,...,yq), (367)
0<i<j<q

where w € QP4(N, E; E), X1,...,Xp € X(N) and vy, ...,v, € I'(E).

e For LABs one can see that dV'™ acts as the Chevalley-Eilenberg differential
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dcg because the basic connection on TN is then identically to zero and the one on E is

just the adjoint.

The commutation of the basic curvature with the anchor carries over to the differential.

Lemma 3.8.5: Differential of basic curvature commutes with anchor

Let E — N be a Lie algebroid over a smooth manifold N and V a connection on E. Then

(Vo (oo 0)) ) ym) = (A7) (p0); - P, 1), (3.68)

p times

for allw € QP(N; E) (p € No) and p,v1,...v, € I'(E); in short

v (wo (p,...,p) = (47" w) o (p,. .., p, 1p). (3.69)

Proof.
Recall p o VP2 = Vbas o p by Cor. 3.7.3, then

(Vs @o (py o)) (1) = Vi (@), p(1))

= w(p). s p(V,) s 0l))

7j=1 N————
=Vhas(p(v4))

= (V}jasw) (p(v1),...,p(p))

(a7 w) (p(11), - p(vy), ).

Recall that we did not prove the second Bianchi identity in Thm. 3.4.6. We are going to prove

the second Bianchi identity using the following theorem.

Theorem 3.8.6: Second Bianchi identity,

[3, reformulation of Proposition 7.1.9; page 265]

Let E — N be a Lie algebroid over a smooth manifold N, V. — N a vector bundle, and let
EV be an E-connection on V, while we denote its naturally induced definition on End(V)

also V. Viewing its curvature Reg as an element of Q?(E;End(V)) we then have

d"VRey = 0. (3.70)

Proof of Thm. 3.8.6.
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Let p,v,n € I'(F) and v € I'(V), then
((a° Reg) (,v,m) (v) = (V4 (Reg (v,m) = BV, (Reg (m) + 2V, (Reg (1,1))
— Roy([n Vg, ) + Rey ([u,nl5,v) = Reg (v, nle, 1)) (v)
=PV, (Reg (v.n)v) = Reg(vm) (PV,0)
=V, (Reg (u,0)0) + Re (1) (“V,0)
+ 59 (Reg (1)) = Re(n,0) (PVy0)
— Reg ([, v]e,n)v + Reg([unle, v)v — Reg([v.nle, p)v
=V, VPV = PV, PV, P = B P
— 5V, BV EV 0+ BV BV EY 0 + BV, BV
— VNIV + VLIV BV 0 + BBV a0
Y VA v VAR v VA TR VAT vy
+ 5V, 5V, BV 0 = BV, BV BV 0 - BV BV, 00
e T VAT SRl Vi VRl VAR R S VAT B v
= IV e " Vv + EV0 PV 0150 + EV g0
+ EV[W}]EEVVU - EVVEV[WIJE” - Ev[[u,n]E,V]Ev
= IV + FVEV 00 + PV

VJ]}EHU‘]E‘/U

where we also used the Jacobi identity. |

Remark 3.8.7: Proof of the second Bianchi identity of Thm.

We can now finally prove the second statement of Thm. 3.4.6 by showing that it is
equivalent to Thm. 3.8.6 if V' = E; for p,v,n € T'(E) we have

(59, Beg) () + (PVuReg ) (0, 1) + (P, Rey ) (1, )

+ Rey (tey (i1, v),n) + Rey (tey(v,n), 1) + Rey (tey(n, 1), v)
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= PV, (Rey(v,n)) — Rey (Evuyv 77) — Rey (V’ Ev‘m)
+ PV, (Rey (n,1)) = Rey (PVon, 1) = Reg (1, " Von)
+ 5y (Reg (1,v)) = Re "V v) = Reg (1, 5 Vqv)
+ Rey (PVuw = PVyp — [1,v]e,n) + Rey (PVun — PV,0 — [v,0] 6, 1)
+ Ry ("Vau = "Vn — In, 1, v)
=V, (Beg (v,1) = PV (Reg (1) + PV (Reg (1, 1))
— Rey ([, v]p,n) + Rev([w,1)p,v) — Reg([v.1]e, 1)
= (dEVREV)(M» V1)

Thm. 3.8.6
= 0.

So, both formulations are equivalent for V = E, but Thm. 3.8.6 is valid for any vector

bundle V' and, thus, more general.

Remarks 3.8.8.
With a similar calculation as in Remark 3.8.7 one can also rewrite the first Bianchi identity of
Thm. 3.4.6 to

E
Reg (1, v)n+ Rey (v, + Reg(n, p)v = (d”Vtey ) (u,v,7)

for all u,v,n € T'(E). Be careful, the right hand side is not the same as e.g. in Thm. 3.7.8,
i.e. not the same as “Vtpg because the torsion is an element of Q%2(N, E; E) such that ©V
and 4"V do act differently.

It is now natural to ask whether there is some usable commutation relation between both

differentials, dV and aV"™ for a fixed connection V.

Proposition 3.8.9: Commutation relation

Let E — N be a Lie algebroid over a smooth manifold N and V a connection on E. Then

(dVdV"“w) (X0, Xpy 10, -1 V)

_ (dVbastw) (X07 ey Xpy 10, - ,Vq)

P q
= Z(—l)i—i_kR%as(ljk,w(Xo, a0 ,)?i, noc ,Xp,l/(), R 7/ .,Vq))Xi
=0 k=0
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I i i(—l)iJrkRv(Xi,p(w(Xo, ‘e ,XZ‘, e ,Xp,l/(), “. ,Dk, .. .,Vq>>)l/k

=0 k=0
P q - R R
I Z Z(—l)lJerrkw(p(Rv(Xi, Xj)l/k),X(), cee ,Xi, cee ,Xj, cee ,Xp, ) 00 0 ﬁk, 0000g I/q>
4,j=0 k=0
1<j
P q ' R
+ Z Z (—1)Z+k+lw(X0, ce ,XZ', ce ,Xp, R%as(l/k, l/l)Xi, vy, .- ,/V\k, ceey i/\l, ey I/q>
=0 k,[=0
k<l
(3.71)
for allw € QP9(N, E;E) (p,q € Ny), Xo,...,Xp € X(N) and vy, ...,vy € I'(E).
Remarks 3.8.10.
If V is flat and if R%as = 0, then one has simply
aVaV"w = dV"aVw. (3.72)

Both differentials, dV and dvbas, square to zero (recall Prop. 3.7.6)* and, so, also the differentials

wi djw = (dV + (—1)pdvbas) w, (3.73)
w i dyw = ((=1)7a7 +d7" ) w (3.74)
for all w € QP9(N, E; E), that can be seen by
dfw = dy (a7 + (-1)Pd"" ) w

— (dv + (_1)p+1dvbas> Ve & (dv I (_1)pdvbas) (_1>pdvbasw

= (dv>2 w+ (dvb‘“)2 w4 (=1)PHaV"adVw + (=1)PdVdY " w

0 0

_ (_1)p (dvdvbas B dvbasdv) w

similarly with do.
For v € I'(E) one gets

[dvb“, dv} v =1, R + 1, Ry, (3.75)

4 As for vector bundle connections, one can also show for general Lie algebroid connections that the square of their
exterior covariant derivatives is directly related to their curvature. We will not need this and the statements

about d; and dg, hence, we do not show this. But the calculation is precisely the same.
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here, ¢ denotes the contraction. Especially for flat V, R%as describes the commutation relation

of both exterior covariant derivatives.

Proof of Prop. 5.8.9.
That is an extremely long and tedious but completely straightforward calculation. There is no
trick to use, ”just” insert the definitions of all tensors and exterior covariant derivatives on both

sides of the equation and compare. |

We can immediately conclude the following.

Corollary 3.8.11: Commutation for vanishing basic curvature

Let E — N be a Lie algebroid over a smooth manifold N and V a connection on E. Then
R%as =0 if and only if

(dvdvbasw) (X0, s Xp,10,..., 1)

_ (dvbasde)(xoj,,,,Xp,yo,...,l/q)

p q
I Z(—l)i+kRV(Xi,p(W(X0,...,XZ‘,...,Xp,VQ,...,I//\k,...,Vq>>>Vk
1=0 k=0
p q o R =R
+ Y Z(—l)zﬂJrkw(p(Rv(Xi,Xj)l/k),Xg,...,Xi,...,Xj,...,Xp,VO,...,ﬁk,...,Vq>

4,j=0 k=0
i<j

(3.76)

for allw € QP4(N,E; E) (p,q € No), Xo,...,Xp € X(N) and vy, ...,vg € T(E).

Remarks 3.8.12.

The ”="-direction was also found by Alexei Kotov. While I have derived it with the more
general previous proposition, Alexei Kotov has directly shown it from the point of view of
differentialgraded manifolds. This was communicated in a personal communication but there is

a paper planned about that by Alexei Kotov and Thomas Strobl, planned for 2021.

Proof of Cor. 3.8.11.
The ”=" direction, i.e. we assuming a vanishing basic curvature, is clear by Prop. 3.8.9. For

the ”<=" direction we want to use Eq. (3.59) in Prop. 3.7.6. Observe that
bas
(a7 L) (n.v) = Viow = Vi3 1, ) = b, )
for all p,v € I'(E), and

(dv]lE>(X7 p) = (Vxlg)(p) =Vxp—Vxp=0
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for all X € X(N) and p € I'(E). Using these and by choosing w = 1 € Q%! (M, E; E) we have
by Eq. (3.76)

(A%t ) (X, 1 v) = (471 ) (X, p1,v) = Ro (X, p(v)) = R (X, p(w)v
o £ R (1,) X = (Vxtgnas) (1) =R (p(1), X)v + Ry (p(v), X ) = 0.
N———

:(dvtvbas ) (X,[L./V)

3.9. Direct product of Lie algebroids

We will also need to know how to define the direct products of Lie algebroids where we especially
refer to [10, Lemma 6.25] or [3, beginning of §4.2; page 155].

In the following we will have two Lie algebroids (Eu, [, ]g,, p1) = N1 and (Ea, [, ]g,, p2) —
Ny over two smooth manifolds N; and Np. With pr; : Ny x Ny — N; we will denote in the
following part of this section the projection onto the i-th factor (i € {1,2}), and T(N; x Na)
can be regarded as the Whitney sum of vector bundles pr(TN;i) @ prj(TN2), as usual and as
mentioned in [3]. We want to define a Lie algebroid structure on pri(E1) @ pri(FE2) — Nj X No
(Whitney sum of pr}(E;)), and, thus, a canonical candidate of the anchor is immediately given
by pripe, © prypp,.

Sections of pr}(E;) can be viewed as compositions of the form u® pr}(V), where V! € T'(E;)
and p® € C*°(Ny x N3), simply using that pullbacks of sections generate all sections. Using
such decompositions has the advantage that the frames are given by (pullbacks of) frames of
E;, especially, pr} (Val) (no sum over ) is constant along Nj, j # 7. We then say that we take a

frame induced by E; and Es.

Lemma 3.9.1: Uniqueness of the Lie algebroid structure on E; x F»,
[10, Lemma 6.25]

[3, beginning of §4.2; page 155]

Let (Ey, [, > p1) = N1 and (Es, [, | g,, p2) — Na be two Lie algebroids over two smooth
manifolds N1 and N2, and let By x Ey == pri(E1) @ pr5(E2) — N1 x Ny be the Whitney
sum of vector bundles, equipped with the direct product of anchors. Then there is a unique

Lie algebroid structure on Ey X Ey such that
F(El) D F(EQ) — F(El X Eg),
(1, v) = prip @ prav = (prip, prav) (3.77)

is a Lie algebra homomorphism, where I'(E;) are viewed as (infinite-dimensional) Lie

algebras.
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Remarks 3.9.2.

With the direct product of anchors we mean here
PE\xEy = PBy X PE, = Pr1PE, D Prapp,.

Sketch of the proof of Lemma 3.9.1.

We just give a sketch of the proof since the calculations are all very straightforward, but tedious
to write down explicitly; the construction is as usual, making use of that some certain subset of
sections generate all sections and that one knows how to define structures on that subset given
by the map in (3.77). The full structure then uniquely follows by forcing the Leibniz rule on the
Lie bracket.

In the following we will also omit all the pullback notations, so, when we write for example
that we take a section of I'(E}), then we actually mean a pullback of that section along pr;.
Especially, we understand I'(E;) @ I'(E2) as embedded in the sense of (3.77).

e For the existence we define the Lie bracket [,]p . p, as in the following: Let ( fé“)a be a
frame of E; (i € {1,2}) and their pullbacks give combined a frame of E; x E5 which we denote by
(€a),; note that e, € I'(E1) ® I'(E2). The bracket [eq, e, , g, of this frame is then canonically
defined as direct product of the brackets [-,-]p and [-,]g, given by the direct product of Lie
algebras I'(E1) @ I'(E2). Making use of that I'(E;) @ I'(Ey) generates I'(Ey x E3), we then write
for two sections pu = p%eq,v = v%e, € I'(Ey X E3), and we then apply the typical construction

to force the Leibniz rule on the full set of sections,

[M’ V]El X By 'uayb [60“ eb]El x Eo + 'uangl x By (€a) (Vb> € — ngﬂEl x By (eb)('ua) €a; (3'78)

where pg, xg, = pE, X pE, is the direct product of anchors. This is well-defined, because any
other frames ( féi))a are locally related by a matrix on NNV;, so, a change constant along N;
(j € {1,2}, i # j). Hence, E1-Fy-mixed terms of [eq, e, g, are unaffected by a change of
such frames, and, so, it is still a direct product of Lie brackets for another frame. Especially, it
follows that the bracket is the direct product of the brackets on I'(E}) @ I'(FEs). That the whole
bracket is independent of the chosen frame is also trivial and straightforward to check; that
essentially follows by construction since the Lie derivatives nglx By (€a) will cancel the Leibniz
rule of [eq, ep] p, » p, When changing the frame.

The calculations that this gives a Lie algebroid structure is now straightforward, similar to
the proof of Prop. 3.1.23. That is, the curvature of pg, x g, is trivially the direct product of the

curvature of pg, and pg,

R =Ry, xR

PE| xEqy PE,

recall Def. 3.1.7. That simply follows by the fact that the anchor is a direct product and that
the Lie bracket is a direct product on I'(E;) @ I'(Es), so, the curvature is a direct product
in the frame (e,), and therefore always because the curvature is a tensor (Lemma 3.1.12) and

I['(E1) @ I'(E>2) generates I'(E7 x Es). Since E; are Lie algebroids, the curvature is zero.
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The Lie bracket clearly satisfies the Leibniz rule with respect to pg, xg,, and hence by
Prop. 3.1.17, we can test the Jacobi identity in a given frame; by construction, with respect
to the frame (e,) the bracket is a direct product of Lie brackets given by the direct product of
Lie algebras I'(E}) @ I'(Es). So, Jacobi identity immediately follows.

e That the map defined in (3.77) is a Lie algebra homomorphism follows by construction since
the anchor and the Lie bracket are defined as direct products on I'(E) & I'( Es).

e Uniqueness will follow by using that I'(E; x E2) is generated by I'(E1) @ I'(E2) as a module
over C°°(Nj x N3) using the map defined in (3.77), now denoted by ®. Since & shall be a
homomorphism, the bracket on I'(Ey) @ I'(E2) embedded into I'(Ey x E3) is given by the direct
product of [,-] ;. and [, -] 5, in sense of Lie algebras; similarly as for X(N1) @ X(Nz2). Then take
any Lie algebroid bracket on F; x s such that @ is a homomorphism and express sections with
respect to (e4)q. Using the Leibniz rule, every other possible Lie bracket has then the form of

(3.78), therefore uniqueness is given. [

Hence, we define:

Definition 3.9.3: Direct product of Lie algebroids

Let (E1, [+, ]g,, p1) = N1 and (B, [, -] g,, p2) = Na be two Lie algebroids over two smooth
manifolds N and Ny, and let Ey x Ey := pri(E1) @ pri(E2) — N1 x Ny be the Whitney
sum of vector bundles.

Then we call the Lie algebroid structure as given in Lemma 3.9.1 the direct product of

Lie algebroids.

There are some examples of direct products, especially also the Higgs mechanism of the

standard model.

Example 3.9.4: Examples of direct products of Lie algebroids

We provide two canonical examples; the first one directly comes by the construction for
which we viewed T(N; x N3) as the Whitney sum pri(TN;) @ prs(TNa).

1. The first example is the direct product of two tangent bundles, F; := TN; where
the Lie brackets are the ones from the tangent bundles and p; = Lty,. Then
El X EQ = T(Nl X NQ).

2. Let E7 be the action Lie algebroid of the electroweak interaction, see Ex. 3.1.26,
and Fy be the Lie algebra su(3) — {x} over a point set {*} (with zero anchor).
Then E; x Es is called the Higgs mechanism of the standard model.

. J

As usual, if we have several structures given on both factors, then we can often take their
product to define a similar structure on the whole product of Lie algebroids. For tensors and

connections this is straightforward, however, we also have Lie algebroid connections and we
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have seen that pullbacks of those may not always been given; especially recall Cor. 3.5.7, that

is, anchor-preserving vector bundle morphisms are needed.

Lemma 3.9.5: Projections have lifts to anchor-preserving morphisms

Let (Ev, [ -]g,,p1) = N1 and (E2, [+, ]g,, p2) = N2 be two Lie algebroids over two smooth
manifolds N1 and No, and let Ey X Ey be the direct product of Lie algebroids.

Then the projections m; : E1 X Es — E; (i € {1,2}) are anchor preserving vector bundle
morphisms over pr; : N3 X No — Nj.

Remarks 3.9.6.
To clarify: m; project to E; — N; as Lie algebroid, not onto prjE; — N; x N. However,

extended to sections, m; maps to I'(prf E;); recall Remark 3.1.10.

Proof of Lemma 3.9.5.
m; are clearly vector bundle morphisms by definition. Denote with p; the projection of the bundle
E; 2 N;, similarly p the projection of E1 X FEy RN N1 X Ny, then

biom =pr;op

by definition, 7.e. using that £y x Ey = prjE; @ pr3E». Hence, m; are vector bundle morphisms
over pr;. Therefore we only need to check the anchor-preservation, that is, observe that with

precisely the same arguments
Dpry : priTN; @ prs TNy — TNy,
(X, V)~ X
is a vector bundle morphism over pr; as it is also well-known, similarly for Dpry.> Then
(Dpr; 0 ppyxk, ) (11, p2) = Dpry(pe < B, (11, p2))
= Dpr, (((pripe) (1), (Pr5pm,) (12)))
= (prjpe,) (1)
= (pr; pE, © mi) (11, pi2)
for all (u1,pu2) € T'(Ey X E3). Thus, 7; is anchor-preserving; also recall Remark 3.1.10. [ |

By Cor. 3.5.7 we can therefore also make pullbacks of Lie algebroid connections along those

projections. As a conclusion of this section, let us summarize and introduce the following.

5Essen’cially, the Dpr; are the "m; for E; = TN;".
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Remark 3.9.7: Products of inherited structures

Let (E1, [+, ]g,» p1) = N1 and (E2, [, ] g,, p2) = N2 be two Lie algebroids over two smooth
manifolds N7 and N, and let Fq X Es be the direct product of Lie algebroids. Furthermore,
let m; (i € {1,2}) be the projections Fy x Ey — E; as in Lemma 3.9.5.

Then, roughly in general, if we have some object B; on E;, then we define their product
by

By x By == pr] By @ pr5Bo, (3.79)

in case there is a well-defined notion for pr; B;. This is of course well-defined for tensors,
i.e. B € I (E;) (r,s € Np).

Another examples are vector bundle connections B; :== V* on E;, or F;-connections B; :=
Eiv on vector bundles V; — N; by using Cor. 3.5.7. Especially the latter means that we

always canonically use m; for the pullbacks of E;-connections, and observe

(pr1 (%)), oy PFF0) = 2rF (%V,.0)

for all v € I'(V;) and (u1, p2) € T'(Eq X E3). Thence, exactly what one naturally expects,

for example "mixed terms are zero”, that is, for example

(plr’lk (E1 V))m’m)(pr}{v) = 0.

That is of special usage if one uses that I'(Fy) @ T'(E2) generates I'(Ey x Fs) and that the
mentioned structures are uniquely given by how they act on I'(E;) @ I'(E2); also recall
Lemma 3.9.1. So, one just needs to take a frame induced by frames of E;, and if a given
structure restricts in that frame to a structure on FEj;, if just using the part of the frame
induced by F;, and has no "mixed terms”, then one knows that this object can be written
as direct product.

All of that above similarly for structures given by TN, and structures involving the
tangent bundles and the F; as in the case of the anchors.

For example, let us have vector bundle connections V¢ on E;, then we have the induced

basic connections VP25, We have a vector bundle connection on E; X Es by
V=V x V2

whose curvature also splits as it is well-known (trivial to check with a frame induced by
frames of E; and Es). With vhbas o y2bas ghe hag a pair of F7 X Fs-connections on
Ey x Es and TNy x TNy. Taking a frame induced by frames of E; and Es and TN
and TN, all of those connections and Lie algebroid connections restrict to the factors in
FE; x Es by definition. Using Lemma 3.9.1, also the Lie bracket and anchor are a direct
product on such a frame, for both E; x Es and TN; x TNs, hence,

(Vl > VQ)bas _ vl,bas % v2,bas
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and
R, s = R x 13,

Similarly the exterior covariant derivatives of V! x V2 and (V1 x Vz)bas split on products

of forms w; € QP9 (N, E; E) (p;, q; € Ng) given by
w1 X Wy = prllwl @ préwQ. (3.80)

The differentials of Dpr; are projections T(NN; x No) — TN; such that there is not really
a significant distinction between pr} and pr}. This is why we are not going to clarify in
such situations whether the product is using pullbacks in sense of sections or forms. It

will be clear by context.

3.10. Splitting theorem for Lie algebroids

Using the last section, one can locally formulate Lie algebroids as direct products of certain Lie
algebroids. Let us study that, but first we need some basic notions; we are mainly following [2]

now.

Definition 3.10.1: Singular and regular points of vector bundle morphisms,

[2, §4; generalization of third remark after Theorem 4.1;

page 17]

Let V; B Ny and V5 33 N, be vector bundles over smooth manifolds N; and Ny, re-
spectively. Also let P : V3 — V5 be a continuous vector bundle morphism over some
continuous map f : Ny — Na, i.e. mp0 P = f omy.

We call a point p € N; a regular point if there is an open neighbourhood around p onto
which rk(P), the rank of P, is constant. Singular points are points p € N; which are

not regular.

In our case P will be the anchor p, and since p is a homomorphism we know that the image
of p, Im(p), is closed under the Lie bracket of the tangent bundle such that we expect a foliation
related to the image of p by the Frobenius Theorem; however, since the rank of an anchor is not
constant as we pointed out earlier, the foliation induced by the image of the anchor is a singular
foliation. Formally, this is proven as a more general Frobenius theorem as also discussed in [2,
discussion after the definition in §16.1; page 113]; also see [9, beginning of §3.1]. Essentially, one
gets still a foliation if a subset of the tangent bundle is closed under the Lie bracket, but the
foliation is singular (non-constant dimension of the leaves). We are interested into those leaves
of the anchor, also called orbits, such that we need to study the rank of p. There is a statement

about that the amount of singular points is "small”.
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Proposition 3.10.2: Amount of singular and regular points,

[2, generalization of second remark after Theorem 4.1;

page 17]

Let the situation be as in Def. 3.10.1. Then the set of all reqular points is dense in Nj.

Proof.
Let Sreg and Sioemax be the sets of regular points and of local maxima of rk(P) in Ny, respectively.
It is clear that Sieg C Sioemax but we can also show Sipemax C Sreg: Let p € Ny be a local
maximum of rk(P) with value k € INg and let £ > 1 w.l.o.g. (since for k = 0 it is clear that then
P € Sieg). Then there is a minor m of order k of P such that m(p) # 0. By continuity of P there
is an open neighbourhood U C Nj containing p such that m|y # 0 and, thus, rk(P)|y > k.
Therefore also rk(P)|y = k due to p € Sipemax- Thence, p € Sreg and s0 Sreg = Sloemax = 5.
Now let zp € Ny \ S and U an open neighbourhood of zy. rk(P) reaches its upper bound on
U, i.e.

JyeU: VreU: (tk(P))(x) < (rk(P))(y).

This follows by the fact that sup,cy(tk(P))(x) = | < oo by the boundedness of rk(P) and
w.l.o.g. we can say that [ € INg by the INg-valuedness of rk(P); there must be a y € U such that
I = (rk(P))(y) since for any other upper bound I’ € Ny of the rank on U, for which there is no
y € U with I’ = (rk(P))(y), one can lower I’ by 1 such that I’ —1 is still an upper bound (follows
again by the INg-valuedness). This procedure is repeated until one gets an upper bound which

is the value of some element in U. Thus, the supremum is also a maximum. Thence
Vzg € N1\ S : V open neighbourhoods U of zp: dy € U : y € Sioemax = Sreg
= x0 is an accumulation point of Sieg
=N \ScS
= Sreg = N1,
where S denotes the closure of S = Sreg- |

Remarks 3.10.3.

This means, assuming N; is connected, one has ”walls of measure zero” of singular points
between the connected components of the set of all regular points, i.e. between zones of different
rank of P. By the previous proof one can also see that the rank of P is locally not maximal at

a singular point.

Around regular points of p, its distribution is also an integrable foliation since the rank is
constant. In general the natural question arises if one can split the Lie algebroid structure locally

along this distribution, in sense of “orbital plus transversal structure”. Indeed, there are several
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statements about such splitting theorems, starting with the important splitting theorem of

Poisson manifolds by Weinstein as in [2, Theorem 4.2; page 19|, another splitting theorem for
Lie algebroids can be found in [I4, Theorem 1.1]. If you are interested into a more general
approach and theorem then see [9]; in this paper the locality is just along the foliation while it

can be "arbitrary big” along the transversal direction.

To discuss the splitting theorem for Lie algebroids would certainly exceed the work of this
thesis. Hence, we will just state the most simplified statement around regular points without
further proof; see the listed references for a thorough discussion. Recall the discussion after
Def. 3.1.27, the kernel of the anchor at a point is a Lie algebra. Around regular points this
means that the kernel is a bundle of Lie algebras, Ker(p) — N, one makes use of that in the
following statement. For the following statement also recall that two submanifolds M7, Mo of N

are transversal if
T,My +T,My =T,N

for all p € My N M,. We speak of a direct transversal if the sum is a direct sum/product.

Theorem 3.10.4: Splitting theorem around regular points, [9, Corollary 4.2]

Let E — N be a Lie algebroid over a connected manifold N such that N only consists of
reqular points of the anchor p. Fixz a point p € N, and denote with L the leaf through p,
given by the foliation of p. Furthermore, take a submanifold S with p € S and which is

transversal to the foliation of the anchor and which is a direct transversal of L. Then

locally around p

E = TL x Ker(p)|s, (3.81)

where TL x Ker(p)|s is the direct product of Lie algebroids TL — L and Ker(p)|s — S
(the bundle of Lie algebras given by the Ker(p) restricted to S ).

Remark 3.10.5: Local frame of the splitting theorem

This theorem implies that around regular points p € N are coordinate vector field (9;),
of L, and a frame (e,), of Ker(p)|s such that

p(0;) = 0i,
p(ea) = 07
[81'7 6a]E = 07

using Lemma 3.9.1. We will later define the field of gauge bosons A as a form on the
spacetime with values in (the pullback of) a Lie algebroid; the components of A along
eq are then the massless gauge bosons, while the other ones may get mass. The Higgs

field will be a smooth map of the spacetime to /N, and its components along L are then
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the Nambu-Goldstone bosons, while the transversal components are the Higgs bosons;
for this recall the discussion about the Higgs mechanism after Def. 2.3.9 and the isotropy
around Def. 3.1.27.

Using such a frame we conclude this section with a short statement about the existence of

parallel frames of Lie algebroid connections.

Lemma 3.10.6: Parallel frames of flat Lie algebroid connections around regular

points,

[15, Lemma 2.9]

Let E — N be a Lie algebroid over a smooth manifold N, and £V be an E-connection
on a vector bundle V. — N. Moreover, assume that ®V,, = 0 for all v € E with p(v) = 0.

Then there is locally around each regular point a frame (eq), of E such that

EVe, = 0.

Sketch of the proof.
Fix a regular point p € N. We just give a short sketch of the proof, using a frame around

p as given in Remark 3.10.5, denoted by (f,),, such that a subset of the frame, denoted as

a’
(94);, satisfies p(g;) = 0; for some local coordinate vector fields (0;), of the leaf through p. The
remaining part of the frame, denoted as (hq),,, spans the kernel of the anchor, that is, p(ha) = 0.

Then
PV g0 = Loy (") fa + 0" PV fa = Lo (V%) fa+ 0 wipfe

for all v = v*f, € I'(V) and p € T'(E), where w, are smooth functions locally on N given by
Wiy fe = EVfbfa. Let us study the equation Vv = 0. If f, = ¢;, then

0= 8iva fa + ancc”' cy
that is just the standard well-known PDEs, which we can solve. However, if f;, = h,, then
0 = v, fe,

and that is an algebraic equation, which may or may not be solvable. By the condition £V, = 0
for all v € E with p(v) = 0 we know that “V;,_ = 0 and, so, w¢, = 0. This resolves the problem
of the algebraic equations which are now trivially satisfied. Hence, the remaining proof of the
existence of the parallel frame is then similar to flat vector bundle connections, making use of
the vanishing mixed components of the Lie bracket as given in the third equation in Remark
3.10.5 when studying the curvature with respect to such statements, in order to allow similar
arguments about parallel transport as for vector bundle connections; see the reference for the

remaining proof. |
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Especially the proof emphasizes why one cannot expect in general to have a parallel frame
for flat Lie algebroid connections. For example take an action Lie algebroid £ = N X g over a
smooth manifold NV, related to a Lie algebra g, and denote with V its canonical flat connection.

Then the basic connection on E gives
Vzasy = [u, 7],

for all constant sections p,v € I'(N x g). Therefore the basic connection is also flat because it
is just the Lie bracket (by the Jacobi identity); but it is a canonical flat connection if and only

if g is abelian. If the basic connection on E has a parallel frame (e,),, then

Vp(ea)eb = [€a7 eb]Ev

which may not necessarily hold for any frame. Since the left hand side is tensorial in e, we could

then derive for all sections v with (in that neighbourhood) p(v) = 0 that
0= leq, -

However, the important piece of information in this work is to know that the basic connection is
in general not the canonical flat connection for action Lie algebroids if V is already the canonical

flat connection.

3.11. Lie algebra bundles

Of special importance are the Lie algebra bundles (LABs), defined in Def. 3.1.20. As Lie
algebroids they are rather easy since the anchor is zero. But they will still play an important
role later; also the kernel of each anchor is a bundle of Lie algebras around regular points, which
is why it is important to study those. LABs are a special case of bundle of Lie algebras, but we
will see later why we are mainly interested into those.

We will summarise the most important results of this section in Ex. 3.11.15.

3.11.1. Notions similar to Lie algebras

Many constructions related to Lie algebras carry over to LABs. We will explain why.

Proposition 3.11.1: sub-LABs, [3, Proposition 3.3.9; page 105]

Let K — N be an LAB over a smooth manifold N with fibre type g as Lie algebra.
Moreover, let h be a Lie characteristic subalgebra of g, that is, a subalgebra of g such
that o(h) = b for all Lie algebra automorphism ¢ : g — g.

Then there is a well-defined sub-LAB L of K, that is, a subbundle L of K which is
also an LAB such that each LAB chart 1 : K|y — U X g restricts to an LAB chart
Ly — U x b, where U is an open subset of N on which an LAB chart is defined.
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Remarks 3.11.2.
It is an immediate consequence that the field of Lie brackets of L is given by the field of Lie
brackets of K restricted to L.

Proof of Prop. 3.11.1.

That is trivial. The essential thing to note is that we need ¢(h) = b for all Lie algebra au-
tomorphisms ¢ : g — g as a condition for gluing the canonical construction of a sub-LAB in
given a trivialization, 4.e. it is trivial to construct a sub-LAB for a trivial LAB, and for gluing
those constructions it is important that each LAB chart can restrict to a Lie algebra isomor-
phism L|y — U X b corresponding to the same subalgebra . To make this possible, the local
images/restrictions must be stable under transition maps in case two LAB charts of K overlap
in some open neighbourhood. The transition maps are Lie algebra automorphisms, and, so, if
two overlapping LAB charts of K restrict as stated, then their transition map is in alignment
with this due to p(h) = b for all Lie algebra automorphisms ¢ : g — g.

Hence, restricting the inverse of each LAB chart of K to U x b defines a subbundle L of K,
such that each fibre is essentially the subalgebra b and its bracket is canonically the restriction
of the field of Lie brackets of K all of that is well-defined by the previous paragraph, and that
gives an LAB structure on L. |

Example 3.11.3: Centres of LABs,

[3, first parapgraph after Proposition 3.3.9; page 105]

With this proposition we can quickly generalize certain constructions of Lie algebras to
the level of LABs. For example, possible subalgebras b of a Lie algebra g with ¢(h) = b for
all Lie algebra automorphisms ¢ : g — g are trivially, due to that ¢ is a homomorphism
of brackets, the centre Z(g) of g and [g, g],, the corresponding sub-LABs are denoted by
Z(K) and [K, K], respectively; we especially need the former. Moreover, the sections
of Z(K) are also the centre of the Lie algebra I'(K).

Example 3.11.4: Derivations of LABs,
[3, second and third parapgraph after Proposition 3.3.9, and

discussion around Proposition 3.3.10; page 105]

Another important LABs will be related to Lie bracket derivations Der(g) of a Lie algebra
g; those are as usual defined as those endomorphisms 7" € End(g) of g such that

T([z,yl,) = [T(@), ], + 2, TW)],
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for all z,y € g. Recall, that we derived the derivations of a vector bundle V. — N,
denoted by 2(V'), whose anchor was denoted by a and its kernel is trivially given by
End(V). Since the rank of End(V) is constant, so, a has constant rank, and the kernel of
anchors around regular points is a bundle of Lie algebras, we can conclude that End (V')
is an LAB, also because of that the Lie algebra fibre type is trivially given by End(W)
where W is the fibre type of of V.

In case of V = K an LAB over N, we have an LAB with fibre type End(g), and Der(g)
is a subalgebra as it is well-known and trivial to check. Now let ¢ € Aut(g), then take
T € Der(g), and observe for ¢ o T o ¢! that

(go oTo @‘1) ([x’ y]g) =(po T)([go—l(:r)’ 90_1(31)]g>

(oo, nw)

g

= [(poTo cp_l>(9:),y}g + |2 (poTo @‘1)(?;)]9

for all z,5 € g. Thus, ¢ o T o ¢! € Der(g); similar for the inverse of ¢ such that
¢ o Der(g) o o= = Der(g). The conjugation with ¢ is just a certain type of elements
in Aut(End(g)) such that it looks like that we cannot yet use Prop. 3.11.1. However,
the proof of Prop. 3.11.1 was just about transition maps and in case of End-bundles
the typical atlas® has such transition maps as we know in general, which is why we can
conclude similarly as in the proof of Prop. 3.11.1 that there is a well-defined sub-LAB
Der(K) of End(K) with fibre type Der(g).

Der(g) —— Der(K)

|

N

There is a special set of derivations, the ideal of inner derivations ad(g) of g; that is,
an inner derivation is of the form ad(x) for an x € g. It is trivially a derivation by the

Jacobi identity, and an ideal of Der(g) by

([2d(@), Tlper(iey ) @) = [z, T(W)]g = T ([, 9], )
N———
=[T(2) 9], +[z.T(v)],
= —(ad(T(2))) (y)

for all z,y € g and T € Der(g). As above, observe that for all ¢ € Aut(g) we have

(poad@) o)) = ([, ) = (d(e@)) W)

g
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hence, the discussed conjugation above restricts to inner derivations. Therefore we can
apply the same argument as above to derive that ad(g) gives rise to a sub-LAB of Der(K)
and of End(K), denoted by ad(K), the ideal of inner derivations of K.

“This is also clearly its LAB atlas.

Remarks 3.11.5.
As shown in [3, discussion around Proposition 3.3.10; page 105], one can quickly derive that
ad(K) is the image of ad : K — Der(K), which is just defined as the fibre-wise extended adjoint

map of ad on g. Since it is a tensor, the adjoint extends to sections.

ad(K) is trivially an ideal in the following sense.

Definition 3.11.6: Ideals of LABs, [3, Definition 3.3.11; page 106]

Let K — N be an LAB over a smooth manifold NV and L a sub-LAB of K. Then L is an
ideal of K if each fibre of L, is an ideal of K}, for all p € N.

One can construct a quotient of Der(K) over ad(K) in the usual way, but we need such
quotients a bit more general. For this we need to discuss extensions of tangent bundles where

LABs play an important role. Those are best described as certain short exact sequences.

3.11.2. Extensions of tangent bundles with Lie algebra bundles

Definition 3.11.7: Extension of tangent bundles by LABs and transversals,
[3, §7.1, Definition 7.1.11; page 266; and Definition 7.3.1;

page 277]

Let K — N be an LAB. Then an extension of TN by K is a short exact sequence of
Lie algebroids over N

0 K—*+FE-—"3TN ——0,

where F — N is a Lie algebroid and the sequence is exact as a sequence of vector bundles

but each arrow represents a Lie algebroid morphism, equivalently denoted as®
K —— E — TN. (3.82)

A transversal of (3.82) is a vector bundle morphism x : TN — E such that 7o x = Ly

“The hooked arrow emphasizes the inclusion, and the two-headed arrow the surjectivity.

Remarks 3.11.8.
e As in this definition, we will use those sequences also to define the corresponding notation

of the Lie algebroid morphisms, in order to avoid separately writing ”[...] where ¢ : K — E is a
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Lie algebroid morphism [...]” We also only give the sequence, implicitly meaning that K will
be an LAB and E a Lie algebroid over N without mentioning it further.

e Furthermore, ¢ is an injective Lie algebroid morphism, especially an embedding since it
is also vector bundle morphism. Hence, ¢ is up to Lie algebroid isomorphisms the inclusion
in this work and can be thought as such, which is why we often omit it. These notations
normally emphasize that a change of the explicit description of K is possible, in that case the
inclusion would be replaced by a composition of the corresponding inclusion with a Lie algebroid
isomorphism; however, we will not need this.

e We will, as usual, denote the Lie bracket of E by [-,:], and = is its anchor p due to that =
is anchor-preserving and that the anchor of TN is the identity. Therefore we will use the typical
notation of anchors in the following instead of m; we also clearly have ((K) = Ker(p) by the
exactness of the sequence.

e F is a transitive Lie algebroid because p = m is surjective in that case; in fact, by [3,
Theorem 6.5.1; page 248] each transitive Lie algebroid F is such a short exact sequence. The
rank of the anchor is constant for transitive Lie algebroids such that there are only regular
points and, so, the kernel of the anchor, Ker(p), is a bundle of Lie algebras. One can show that
Ker(p) is also a Lie algebra bundle by Thm. 5.1.1; the essential trick is to take a vector bundle
morphism x : TN — FE with pox = 11y, and then to define a connection V on Ker(p) by ado,
i.e. Vxv = [x(X),v] for all X € X(N) and v € Ker(p). This connection will be a Lie bracket
derivation of Ker(p) such that Thm. 5.1.1 can be used. We will not prove this, since we are not
going to need it, hence, see the reference; however, the essential calculations will be done later
in Section 5.1. Moreover, it is useful for the following constructions to keep this information in
mind, in order to understand why it is a useful simplification to assume transitive Lie algebroids.

e So, in our case, extensions are equivalent to transitive Lie algebroids, such that one may
wonder about the different name. Often, especially in Section 5.1, we will have a given K and
N, then there is the question whether there is an E in the sense of an extension involving K
and TN. Thence, the idea is that F extends TN by K in sense of Lie algebroids. The different
name here is especially to emphasize a different context. Moreover, the idea of extensions can
be generalized in the sense of replacing TN by an arbitrary Lie algebroid as in [3, Definition
3.3.19; page 109].

Example 3.11.9: Derivations as extension and connections as transversal,

[3, second statement of Corollary 3.6.11; page 140]

Let V' — N be a vector bundle over a smooth manifold N. Then Z(V) with anchor a

describes an extension as a transitive Lie algebroid as we have seen,
End(V) —— 2(V) —— TN. (3.83)

By definition, a vector bundle connection V of V' is then a transversal of (3.83), and each

transversal a connection.
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In the case of V = K an LAB, we can define 9., (/) as the subset of those derivations
generated by sections 7' € I'(2(K)) with

T([p, vIg) = [T(w), Vg + [ T(W)]

for all p,v € T'(K). Since [+, ]g k) is just defined as a commutator, it follows as trivial as
for Der(g) of a Lie algebra g that I'(Ppe (X)) is a subalgebra of I'(Z(K)); and at each
point p € N we have that Dpe,(K) is a subspace of D (K). It is also a Lie algebroid,
whose structure is inherited by 9 (K); for this take a connection V on K which is a Lie

bracket derivation, see Thm. 5.1.1 for its existence later. Then define a map
TN X Der(K) = Dpe(K),
(Xv A) = Vx + A,

which is clearly well-defined because of the fact that the difference of two connections is
always an element L of Q!'(N; End(K)); if then both of these connections are Lie bracket
derivations, then so also L such that L € Q!(N;Der(K)). Hence, Vx + A € Dpe(K). As
in the proof of Prop. 3.3.5, see also Lemma 3.3.7, this defines an isomorphism of vector
spaces at each point, and as for 2 (K) this leads to that Dpe;(K) has constant rank and
it admits a transitive Lie algebroid structure with precisely the same arguments as for
general derivations; since this structure is inherited by 2 (K'), we may say that Dpe, (K) is
a transitive Lie subalgebroid. The kernel of its anchor, a|g,,_ k), consists by definition of
those elements of End(K’) which are also Lie bracket derivations, so, the kernel is Der(K).

Therefore we arrive at another extension, basically the restriction of (3.83) onto Dpe, (K),
Der(K) «— Ppe(K) —%s TN, (3.84)

and also here, a vector bundle connection of K which is also a Lie bracket derivation is

equivalent to a transversal for (3.84).

\. J

As for Lie algebras, we want to take the quotient of Der(K) and Ppe,(K) over ad(K). That
is, as usual, done over ideals of Lie algebroids, which shall be subsets of the kernel of the anchor;
the reason behind this is to avoid problems in quotients with respect to the anchor. The typical
constructions for quotients will then apply because the anchor of an equivalence class is going

to be independent of the chosen representative.

Definition 3.11.10: Ideals of transitive Lie algebroids,

[3, Definition 6.5.6; page 250]

Let

K<‘“sE 24 TN.
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be an extension. Then an ideal L of F is a sub-LAB of K with

v, g € T(L)

for all v € I'(F) and p € T'(L).

(3.85)

Remarks 3.11.11.

As we know, the kernel of p, K, is a canonical example of an ideal.

Proposition 3.11.12: Quotient Lie algebroids of transitive Lie algebroids,

[3, Proposition 6.5.8]

Let

K<‘*sE -4 TN.

E/L(L), i pw+ (L), and |k, respectively. Then naturally define

K/L 5 E/yL),

and

#(v) = p(§(v)) = p(v),

and finally equip E/L(L) with the bracket |-, .]E/L(L)

40,800, 1) = Hs )
for allv,n € I'(E). Then
K/L — B/ L) —» TN

is an extension such that § is a surjective submersion with kernel v(L).

be an extension and L an ideal of E. Furthermore, we denote with E/L(L) and K/L

the quotient bundle as vector bundles, whose natural projections we denote by § : £ —

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)
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Remark 3.11.13

We call E / (L) the quotient (transitive) Lie algebroid of E over L. By definition
is a Lie algebroid morphism, as is f| x by Eq. (3.87) since 7 and ¢ are injective Lie algebroid

morphisms and embeddings.

Sketch of the proof of Prop. 3.11.12.

The proof is straightforward because the constructions are the typical ones for such structures.
We just give a sketch, one essentially needs to check that everything is well-defined, that we have
a Lie bracket in combination with an anchor and that the sequence of the quotients is exact.
First of all, everything has constant rank such that the taken quotients as vector bundles are

valid. Moreover, 7 is well-defined because ¢ is injective by the exactness of the sequence, hence,
let p, " € K with §|k (n) = §[ (1)

eu(L)

such that 7(8|x (1)) = 7(8|k (1')); similarly for 0,7 € E with §(2) = §(7)

p(0) = p(0 = D' +0') = p(¥'),
€ (L) C UK)

thus, p(4(2)) = p(§(2')), and, finally for v,v/, 0,7’ € T'(E) with #(v) = §(+/) and £(n) = #(n),

t(v.nlg) =8y —v +/ =0 +71e) = 8([V.7'] p),
EuL)CuK) eyL)Cu(K)

using that the kernel of the anchor is an ideal of the Lie bracket, therefore also [£(v), #(n)] Bun) =
(), ()] /Ly The (bi-)linearity of all those maps follows trivially, the bracket is also clearly

anti-symmetric, and

[0).§ 20) 5,00y = H0 )
=4(fn)

= ﬁ(f[l/a n]E +gp(u)(f) 77)
——

TLp(H()

= f ﬁ([”? n]E) + gﬁ(ﬁ(u))(f) ﬁ(ﬁ)
= F) 40 g,y + Lot () 1)

for all f € C*°(N). The Jacobi identity is clearly inherited by [-,-], so, it is a Lie bracket and

p is the anchor by Prop. 3.1.17. By construction, 7 is still injective, that is, assume

t(flx (1) = o(8lx (1))
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for two fixed p, ’ € K, then

0= £ — 1)),

thus, 4 — ¢/ € L such that #|x(u) = |k ('), which proves the injectivity of z. Moreover,

p(e(tlx(w)) = pH((1)) = p(u(p)) =0

for all 4 € K; the anchor p is clearly surjective by pof = p and because the quotient is just over
a subbundle of K = Ker(p), that is, for all X € X(IV) let v € I'(E) such that X = p(v), then

Thence, the sequence of the quotients is exact. That f is a surjective submersion with kernel

t(L) follows trivially by construction as natural projection of quotient spaces. |

Example 3.11.14: Outer bracket derivations of K,

[3, Definition 7.2.1 and Equation (7); page 271]

Let K — N be an LAB over a smooth manifold N. Then we have the following quotient
Der(K) /ad(K) —— Pper(K) /ad(K) —» TN, (3.91)

which we denote by

Out(K) «—— Out(Ppe:(K)) —2» TN, (3.92)

where Out(K) = Der(K)/ad(K) are the outer bracket derivations of K, and
Owt(Dper(K)) == Dper(K) / ad(K) are those derivations in 2 (K) which are also outer

bracket derivations. This quotient is possible because exactly as in Ex. 3.11.4 one can
show that ad(K) is also an ideal of Dpe(K) and not just of Der(K), that is, we get again
as in Ex. 3.11.4

[T,ad(v)] =ad(T(v)) (3.93)

EJZDer(K) -

for all v € I(K) and T € F(@Der(m).

Let us finish this chapter with a summary of this section, also recall Remark 3.11.13.
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Example 3.11.15: Summary of Section 5
[3, §7.2, Figure 7.1; page 272; we omit the labels of the

inclusion arrows]|

Let K — N be an LAB over a smooth manifold N. Then the main results of Section 3.11

can be summarized in the following commuting diagram

Z(K) Z(K)
K K
ad (394)

Der(K) —— Dper(K) —2—» TN
pr ; |

Out(K) —— Out(Ppe(K)) —2» TN

where both rows and columns are short exact sequences of Lie algebroid morphisms,
especially the last two rows are extensions, and the diagram serves as a definition of the
notation of the new Lie algebroid morphisms, for example #(*) denotes the projection of

derivations into the space of outer derivations.
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4. Generalized gauge theory

The purpose of the following sections is now to introduce a new and more general formulation
of gauge theory which we have introduced in Chapter 2. Especially recall the section about the
infinitesimal gauge transformation using Lie algebra connections, Section 2.5. Again, we do not
want to assume integrability, and so we only compare the new theory with a classical gauge
theory whose principal bundle is trivial and can thus be avoided completely by fixing a global

gauge.'

In that chapter we have used a "bookkeeping trick”, denoted by ¢;? that is, generalized, that
we had a spacetime M and the Higgs field ® is a smooth map M — N. The physical quantities
like the field strength then had values in ev*K and hence in ®*K after point evaluation at ®,
where ev was the evaluation map of Def. 2.5.10 and K was some vector bundle over N (like
the Lie algebra); also recall Remark 2.5.20 where we argued that one can do something similar
for the field of gauge bosons and its infinitesimal gauge transformation, we are going to do so,
thus, viewing the field of gauge bosons of the classical formulation as forms with values in a
®-pullback of a trivial Lie algebra bundle. Moreover, we used g-connections, where g is a Lie
algebra acting on N via a Lie algebra action . By Prop. 3.1.23 action Lie algebroids as bundle
over N are a good candidate describing that notion, or more general, Lie algebroids and the

notion of Lie algebroid connections.

This is why we are going to define the following physical quantities as having values in some
pullback using the evaluation map and ® as for the field of gauge bosons, why we are going to
use a Lie algebroid F over N instead of a Lie algebra g, and why we will compare the following
definitions with action Lie algebroids in order to allow a comparison with Chapter 2. We will see
that action Lie algebroids with their canonical flat connection will be the standard formulation

of gauge theory.

Although we speak of ® as the Higgs field it can be of course any other field with a similar
Lagrangian, since we never really discuss the potential term. The Higgs field is just a main

example.

If you are interested into the calculations of this and the following chapter, then read Appendix
A first and the proofs listed there; certain steps of calculations are explained there which will
be simply used in the following without further explanation. We also need a similar notation as

in Def. 2.3.1, but extended to more than two arguments.

"We will use Lie algebroids; their integration is more complicated than the integrability of Lie algebras, see
e.g. 2, §16.4; page 117].
2Recall the discussion about ¢ after Cor. 2.5.14.
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Definition 4.0.1: Graded extension of products,

[4, generalization of Definition 5.5.3; page 275]

Let | € N and Ey,...E+1 — N be vector bundles over a smooth manifold N, and
FeTl (( A E,"fn) ® El+1)- Then we define the graded extension of F' as

OFU(N; By) x -+ x Q(N; By) = QF(N; Bip),
(A1, A) = F(ALD L 0 Ay,

where k:=k; +...kjand k; € Ng for all : € {1,...,1}. F(A1 /) ...% Aj) is defined as an
element of QF(N; Ej,1) by

F(AL) ...} A) (Y., Yy) =

] > sgn(o ( (Ya(l)a"'aya(kl)) 5o <ol (Ycr(kflirl)a'-wYa(k)))
ogESy
for all Yi,...,Y, € X(N), where Sj, is the group of permutations of {1, ..., %k} and sgn(o)
the signature of a given permutation o.
A may be written just as a comma when a zero-form is involved.

Locally, with respect to given frames (eff}) of E;, this definition has the form
a;

al Y al

F(A1h ...} A)=F(eD,....eD) @ AP A... A A7 (4.1)

for all A, = A7 ® eé?, where A7 are k;-forms on N.

Remarks 4.0.2.

Using this notation, one has a useful way to compare pullbacks of forms, denoted by an excla-
mation mark, and pullbacks of sections, denoted by a star. That is, let & € C°°(M; N) and
F e QY(N;W) for W — N a vector bundle, then

1
P'F = o (PTF)(DE 4 .. 1 DP) (4.2)
. —/_/
[ times

by using the anti—symmetry of F' and Def. 4.0.1, 7.e.
o (@ F)De ) ... 2 De)) v, V)

p

:% > sen(o) (@ F)(D(Yoq)), .. DO (Vo)) )p

og€EeS;

—sgn(o) (&*F)(DE(Y1),...D8(Y)))

1 (£1) mo o). pn(33)

oES;

=l!
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- <<I>!F)(Y1,...,Yl)’p

forallpe M and Y1,...,Y; € X(M).

In case of antisymmetric tensors we of course preserve that.

Proposition 4.0.3: Graded extensions of antisymmetric tensors

Let Eq,Ey — N be real vector bundles of finite rank over a smooth manifold N, F €
O2(Ey; Eo). Then

F(A)B)=—(-1)""F(B " A) (4.3)

for all A € QF(N;Ey) and B € Q"(N; Ey) (k,m € Ngy). Similarly extended to all
F € QY Er; Bs).

Remarks 4.0.4.
This is a generalization of similar relations just using the Lie algebra bracket [-,] g of a Lie

algebra g, see [1, §5, first statement of Exercise 5.15.14; page 316].

Proof.
Trivial by using Eq. (4.1). [

4.1. Space of fields

Before we can define quantities like the field strength, we need to define and study the infinite-
dimensional manifold of the arising fields as we did in the classical situation; recall Def. 2.4.1.
Because of the non-triviality of the following bundles we need to take a closer look at this space.

Recall that we assume convenient settings when treating infinite-dimensional objects.

Definition 4.1.1: Space of fields

Let M, N be two smooth manifolds and £ — N a Lie algebroid. Then we denote the
space of fields by

My = Mp(M; N) = {(®, 4) | @ € C(M; N) and A € O'(M; 2" E) } (4.4)
which we sometimes view as a fibration over C*°(M; N)

Mg(M;N)
C>*®(M;N)

where the projection is given by Mg (M;N) > (9, A) — P.
We will refer to A € Q'(M; ®*E) as the field of gauge bosons and ® just as a physical
field of this theory.
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Let us look at the tangent space of Mg (M; N); we are interested into that because of the
identification of infinitesimal gauge transformations as tangent vectors. Also recall the discussion

about the double vector bundle structure before Def. 3.3.11 which we need now again.

Proposition 4.1.2: Tangent space of Mg (M;N)

s

Let M, N be two smooth manifolds and E — N a Lie algebroid. Then the tan-
gent space T, aq) (Me(M; N)) of Mp(M; N) at (®o, Ag) consists of pairs (v, «) with
v € T(®{TN) and @ € QY (M;v*TE), where v*TE is the pullback of TE T TN as a

vector bundle, viewing v as a map M — TN. This pair also satisfies
WTE(Q/) = Ao, (4.5)

where mrg denotes the projection of the vector bundle TE — E.

Remark 4.1.3: Total situation as commuting diagram

This implies that we have in total®

TE Dr TN
TE 2 M T
0]
ﬁo(y) \
) N

™

77 N

for all (®g, Ag) € Mp(M; N), (¢, @) € T(ay,a,)(Me(M;N)) and Y € X(M), that is,

7(4o(Y)) = By, (4.6)
mrn(2) = o, (4.7)
mre(e) = Ao, (4.8)

Dr(e(Y)) =v (4.9)

for all Y € X(M), where the projections of the vector bundles TE — E and TN — N

are denoted by mrg and 7y, respectively.

“Recall that we view sections of pullback bundles also as sections along maps; see Section 1.1.
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Remarks 4.1.4.
Especially for Eq. (4.9) recall the discussion about the double vector bundle structure before
Def. 3.3.11. That is,

a(fY+hZ)=f-a(Y)®h-a(2)

forall Y, Z € X(M) and f,h € C*°(M), because « has values in TE viewed as a vector bundle

over TN. Therefore also
Dr(e(fY +hZ)) = Dr(w(Y)).
This is also in alignment with Eq. (4.8) although it is about the vector bundle TE — E, so,
mre(e(fY +hZ)) =mrp(f e (Y)+h- a(2))
= fmre(e(Y)) + h mre(e(Z))
= Ao(fY + hZ).

Proof of Prop. 4.1.2.
We identify the tangent spaces of (®g, Ag) € Mp(M; N) with the set consisting of elements of
the form

d

a t:077

where v : I — 9Mp(M; N) is a curve with v(0) = (g, Ag) and I an open interval of R around 0.
Since we do not have any conditions on MM g(M; N) besides that Ay has values in ®GFE, we will
see that we just need to describe where the "velocity” of the curves live, and surjectivity will
then just follow by that we always can find curves with arbitrary initial conditions on position
and velocity. Let us write v = (®, A), t — v(t) = (D¢, Ay), with

o, € C°(M;N), Do = Do,

A € QI(M, (I):E), Ai—g = Ag

for all t € I. As usual, the tangent space consists of elements of the form
( d
dt

Hence, for all p € M we have a curve ®(p) := [t — D¢(p)] in N with

t— Oy, —

[t — At]>.

t=0

d
@ t:0(<1>(p)) € Toop) IV
such that for all curves ®
d
— [t — @] € ['(®;TN),
dt |;—o
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and besides ®;—o(p) = Po(p) there is no other condition on ®(p), thus, for all v € T,V there

is a curve ®(p) such that its "initial velocity” is v, i.e.

d

YT

(@(p)),
t=0

and extending this argument we can achieve that for all # € I'(®{TN) there is a curve ® such
that

o —

= a [t — q)t],

t=0

Now we fix such a curve ® for a fixed . Let us look at the curve A(Y) = [t — Ay(Y)] for
all Y € X(M), that is A(Y) : I x M — E, (t,p) — A p(Yp) with mo A(Y') = ®, where 7 is the
projection of E onto N. So,

T@o(p)N > vp =

(m(A4p(Yy))) = DAO(Y)|p7T((;it

— Ap(Yp)> = Doy, ™ (@p(¥2)),
dt ;= t=0

where

d
ap(Yp) = I

t_o[t — Atp(i/p)} S TAO(Y)\pE

for all p € M. Hence, we can also see ¢ equivalently as a form on M with values in TE such
that

for all Y € X(M), and we view « as an element of Q' (M;#*TE), too, where we view TE as the
vector bundle TE 2 TN; that is because of the following: Let Z € X(M) be another vector
field and f,h € C*°(M), then

ap(f(p) Yp + hip) Zp) [t = Avp(f(p) Yp + hip) Zp)]

t=0

_4d
Cdt

= | [t F0) Aup(Yp) + h(p) Arp(Zy)]

t=0

= f(p) - ap(Yp) *1(p) - @p(Zp),
because of
DAAY;,)”(‘%(ED)) =Up = DAp(Zp)ﬂ'(@p(Zp))

and since [t — Ay, (Y})] and [t — Ay ,(Z,)] are the representing curves of «,(Y,) and «,(Z,) as

tangent vectors, respectively, satisfying

T(Arp(Yp)) = Pu(p) = m(Atp(Zp)),
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such that we precisely get the definitions of - and .

As before, we can conclude that we can find a curve A for all @ € Q'(M;+*TE) such that

d

-2 a
dt|i=o

@

(In this proof, we make use of the homotopy lifting property of fibrations such that we can find
an A(Y): I x M — E for each ® : I x M — N for all (®g, Ag) € Mg(M; N) with the suitable
properties.) |

Think of (¢, @) again as candidates for the infinitesimal gauge transformations, for which we
wrote (0®,0A) in Chapter 2; also recall Remark 2.5.11. But other than in Remark 2.5.11 we
cannot assume canonical flat connections now which is why the last result shows that we cannot
view (¢, ) as an element of Mg (M; N) in general, thus, we changed the notation to (¢, ) for
now. So, we do not have any canonical horizontal distribution given, and therefore let us study
the vertical structure first.

Recall that there is the notion of a vertical bundle for fibre bundles ' > N (as e.g. intro-
duced in [4, §5.1.1, for principal bundles, but it is straightforward to extend the definitions]),
which is defined as a subbundle VF' of the tangent bundle TF — F' given as the kernel of
D : TF — TN. The fibres V. F of F' at e € F' are then given by

V' =T.F,,

where p == 7(e) € N and F, is the fibre of F' at p. Now consider a vector bundle £ > N, then

Ve.E =T.E, = E, because the fibres are vector spaces.

Proposition 4.1.5: Vertical bundle of Mg (M; N)

Let M, N be two smooth manifolds and E = N a Lie algebroid. Then the vertical bundle
of Me(M; N), viewed as a fibration over C*°(M; N), is given by

V(g.a) (Mp(M; N)) = {(v, 2) ‘ v =0€TD(TN), « € Q' (M; cb*E)} ~ OL(M; "E).
(4.10)

Proof of Prop. 4.1.5.
We have the bundle Mg(M; N) 5 C®(M; N), where w(®, A) := ® for all (®, A) € Mp(M; N).

Hence,
D yw(v,e) =1
for all (¢, @) € T(g 4yMp(M; N). The kernel of Dw at (@, A) € Mp(M; N) is then given by

Ker(D(@A)w) = {(v,a) € T 4Me(M;N) ‘ v = 0}.
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By Prop. 4.1.2, we then know that « has values in the vertical bundle VE, that is, for «,(Y}) €
Ta, v E (p€M,Y € X(M)) we have

Da,v,)m(@p(Yp)) =0

& @p(Yp) € Va,v,) B = Eap)-
Thus, we can view « equivalently as an element of Q! (M; ®*E), so,
Vo Mu(M; N) = {(2, ) ] #=0€T(P'TN), o € O (M; $*E) } = Q'(M; " E).

That is, we can in general only expect to have (¢, @) € Mpr(M; N) if at least = = 0. Recall
that we identified this component with the infinitesimal gauge transformation of the Higgs field
which was proportional to the Lie algebra representation, see Def. 2.4.2. Even when we do not
have yet the general definition of that infinitesimal gauge transformation, it is natural to assume
that this transformation is therefore only zero when there is no coupling of the gauge bosons
to the Higgs field (= zero action), but in general there will be of course a coupling. As already
mentioned, we circumvented that problem in Chapter 2 by choosing canonical flat connections;
moreover, observe that this condition about ¢ = 0 comes from that the field of gauge bosons
A has values in ®*F, as if we would have applied the "bookkeeping trick” to A in Section 2.5,
too. Thus, we are going to treat the infinitesimal gauge transformation of A similar to how
we defined the infinitesimal gauge transformation for functionals in Section 2.5, then we also
achieve that its transformation can be viewed again as an element of Q(M; ®*E), simplifying
further calculations, without really loosing information about the transformation of A; we will
explain this later. That the infinitesimal gauge transformation of the Higgs field is in general
not a smooth map M — N will be on the other hand actually less of a problem.

But before we can make that mathematical precise, we need to define at what type of func-
tionals we are going to look at. One key step is to look at M x Mg (M; N) as we did in Def. 2.5.10

and afterwards.

Definition 4.1.6: Evaluation map of M x Mg

Let M, N be manifolds, and £ — N a Lie algebroid over N. Then we define the evalu-

ation map ev by
M xMg(M;N) —- N
(D, 4) 1 ev(p, ®, 4) = B(p) (4.11)

for all p € M and (®,A) € Mg.
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Remark 4.1.7: Bigrading of forms on M x Mg

Let m; (i € {1,2}) be the projection onto the i-th factor in M x Mg, then
T(M x Mp) = 1 TM & mi TN . (4.12)

Gives rise to a bigrading of A* T*(M x Mg) (k € Np),

k p.q
AT (M xmg) = P (/\T*(szmE)>, (4.13)
P,q€No
p+q=k

where

Pyq P q

AT (M x Mp) ==} (/\T*M) ® Th </\T*£mE>. (4.14)
Similarly, for V' a vector bundle over M x Mg,

OF(M x Me; V)= P (UM x Mp; V), (4.15)

p,q€No
p+q=k

with
p q
QPUM X Mp; V) = F(vﬁf (/\ T*M) ® 5 </\ T*sz> ® V). (4.16)

When V is the trivial line bundle, then we just write QP9(M x Mpg).

If V' is instead a vector bundle over IV, then we have ev*V naturally as bundle over
M x 9Mp. Then, when taking a slice through (®, A) € Mg, i.e. evaluating a form at
points M x {®, A} while (®, A) € Mg is fixed,

Llprwqo,ay € ¥ (M;2*V) (4.17)

for all L € QPO(M x Mp;ev* V). Similarly, the de-Rham differential splits on QF(M x
MEg) as a differential along M and Mg, diotal = dar + don,. When using exterior deriva-
tives, then we focus on directions along M, and we will denote that de-Rham differential
by d, i.e. d = dyy.

Remarks 4.1.8.

Do not confuse notations like QP2(M x Mp; V) with the notation given in Def. 3.8.3; it will
be clear by the context which we mean, and, besides the next paragraphs, we actually will not
really use QP9(M x Mp; V) as notation anymore because we only want to motivate the next

and some following definitions with this notation.

Eq. (4.17) is precisely the space our functionals should take values in when evaluated at
(®,A) € Mg. This leads to the following definition.
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Definition 4.1.9: Space of functionals in gauge theory

Let M, N be two smooth manifolds, £ — N a Lie algebroid, and V' — N a vector bundle.
Then the space of functionals F£(M;*V) (k € Ny) is defined as

FEM;*V) = QFO(M x Mp(M; N);ev*V). (4.18)

If V= N x R is the trivial line bundle over N, then we just write F£(M) instead of
FE(M;*V).

Remarks 4.1.10.
We often write for L € FE(M;*V)

Mp 3 (D, 4) = L(®, A) = Ly, 19,47 € X (M; V)

especially when we do not evaluate at p € M; recall Eq. (4.17).

Example 4.1.11: Projection onto the field of gauge bosons

Besides the physical quantities which we will define later, we have an important and trivial
functional wy € 3‘7}%(M ;*F) given as the projection onto the field of gauge bosons, that

(@, A) = A (4.19)

for all (®,A) € M. We will especially need this functional to define the infinitesimal

gauge transformation of A and in several combinations with other functionals.

Example 4.1.12: Tangent map, total differential as functional

Also the total differential D can be viewed as a functional. That is D € FL(M;*TN) by

D(®, A) :== D® € Q'(M; ®*TN). (4.20)

Hence, when we just write D, then we mean precisely that.

For the following discussion and definitions we use a similar convention of notation as in
Section 3.9. That is, we have T(M x Mg) = 7iTM & m3TME as in Remark 4.1.7. If we
speak for example about TM, especially sections thereof, X(M), then we mean their canonical
embedding as a subalgebra of X(M x Mpg); so, X € X(M) is also viewed as an element of
X (M x 9Mg) but constant along Mg. For vector bundle morphisms defined on T(M x Mg) we

for example then also mean that forms restricted onto TM extend to maps acting on X(M).
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Remark 4.1.13: Notions on 975 and further pullbacks with ev

By Def. 4.1.9, we recover typical notions on the space of functionals, notions like wedge
products, Def. 4.0.1 and contractions etc. by restricting notions on Q*(M x Mg) and
Q*(M x Mg;ev*V) to QM x Mg) and Q*O(M x Mg;ev*V) (e as placeholder for
the degree), respectively. Hence, we will not need to define all those notions in that
setting, and, especially, I'(ev*V') is therefore generated by elements of the form ev*v,
where v € I'(V).

Now assume we have a vector bundle connection V on V', then ev*V is a connection
on ev*V. We want to restrict the exterior covariant derivative related to that connection
just to vector fields on M. Observe for all X € X(M) C X(M x Mg), with flow v in M
through a p € M, (t,p) — v(p) (t € I for some open interval in R containing 0),

d

=& evotm @)= 2| (@omm) =Dax) @2
t=0

D(p,cp,A)ev(X) = di o

for all (p,®,A) € M x Mg, where (y(p), P, A) is the flow of X € X(M) at (p, P, A),
viewed as an element of X(M x 9MMg). So, the pushforward of X with ev at (®, A) is the
same as the pushforward of X with ®, thus

(eV*V)X( = (‘I)*V)Xp

p,®,A)

for all (p, ®, A), viewing X as an element of X(M x 9Mg) on the left hand side and as an
element of X(M) on the right hand side. Hence, we then also have

(" V)x0) g,y = (@ V)x, vl@,)],

for all v € T'(ev*V), since X does not differentiate along Mg, and viewing v|(g 4y = [p —
| (p,@,4)] as an element of I'(®*V') on the right hand side. Therefore this naturally leads
on one hand to an exterior covariant derivative on the space of functionals by restricting
ev*V to TM because then the exterior covariant derivative of (ev*V)|y,, clearly restricts
to F5(M;*V'), and on the other hand

(a@™Dhwr)|  =d*V(L(®, 4)),

(2,4)

also recall Eq. (4.17).
Similarly, one shows for the pullback ev'w of forms w € QF(N; V) that

(ev!w) )(p@’A) (X1,...,Xp) = (@!w) ]p(Xl, o X3

for all Xy,..., Xy € X(M). Hence, also the ev-pullback of forms restricts to a ®-pullback

of forms when fixing (®, A) and just evaluating at vector fields along M.

Therefore we define pullback functionals as in the following definition.
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Definition 4.1.14: Pullbacks as functionals

Let M, N be smooth manifolds, £ — N a Lie algebroid, and V — N a vector bundle.
For all w € T'(V) we define its pullback functional *v as an element of F2(M;*V) by

*v = ev'u. (4.22)

For a vector bundle connection V on V' we define the pullback connection *V (to

functionals) by
*V = (ev*V)|pp- (4.23)

. . . . . * . . . . .
Its induced exterior covariant derivative d” ¥ we view as an exterior covariant derivative

on the space of functionals, especially
AV FEM; V) — FE (M V) (4.24)

for all k£ € Ny.
For all w € QF(N; V) (k € Ny) we define similarly its form-pullback functional ‘w as
an element of FE(M;*V) by

'wi= (evlw) ’/\k o (4.25)

Remark 4.1.15

Observe that

(*v)(CI),A)|p = (ev*v)|(p,3,4) = ®*Vp (4.26)

for all (p,®,A) € M x Mg. Especially, (*v)(®,A) = ®*v, similarly to what we al-
ready pointed out for ‘w and *V in Remark 4.1.13. By construction, and as argued in

Rem. 4.1.13, we also get
(4'VL)(@,4) = ™"V (L(®, 4)) (4.27)

for all L € FE(M;*V) (k € Np) and (®, A) € Mp(M;N).

We can also locally write, using a frame (eq), of V,

L=L1%® e, (4.28)
using that ev-pullbacks generate I'(ev*V), where L® € FE(M) = QFO(M x Mg)
(restriction on open neighbourhood omitted).

The first calculation of Remark 4.1.13 also shows that we have

D = Dev|y
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as functionals, where we view Dev|T)s as an element of F2(M;*TN) given by Eq. (4.21).

This implies that we can apply Eq. (4.2), that is,

) | (42) 1 N N
'y = (ev‘w)‘/\kTM =’ (ev'w)(Devirar 4 ... ) Devlry) = — ("w)(D % .../ D)

for all w € QF(N; V) (k € Ny). We are going to use this very often by just giving reference
to Eq. (4.2).

Example 4.1.16: Anchor as functional

Recall Ex. 4.1.11; the anchor gives also rise to a functional, especially needed for the

minimal coupling. (*p)(w2) is a functional in FA(M;*TN), that is

(("p)(w2)) (2, A) = (2"p)(A)

for all (¢, A) € Mp(M;N).

We have now the setup to finally define the physical quantities.

4.2. Physical Quantities

Let us first start with the definition of the field strength. The following definitions essentially
are motivated by [l], however, we completely reformulated it with the previously-introduced

notation in order to allow coordinate-free versions, also "free” with respect to (®, A) € Mg.

Definition 4.2.1: Field of gauge bosons and their field strength,

[1, especially Eq. (11); ® is denoted as X there]

Let M, N be smooth manifolds, and £ — N a Lie algebroid equipped with a connection
V on E. We define the field strength F as an element of F2(M;*E) by

. 1
F = d V’WQ — 5(*tvp)(WQ /,\ WQ), (429)

that is
F(®,A)=d®VA-— %(@*tvp)(A NA) (4.30)

for all ® € C°(M; N) and A € QY(M; ®*E).

Remarks 4.2.2.
e Recall Def. 3.7.1 and Prop. 3.7.6 which imply tv, = —tgbas, where VP2s is the basic con-
nection, such that

X 1
F - d Vw2 + 5(*tvbas)(w2 /,\ w2)
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We are going to use this often later.

e Let us recall the definition of the standard setting, recall Def. 2.3.3, and recall the bookkeep-
ing trick before Prop. 2.5.15, which we denoted by ¢: We then normally have A € Q'(M;g),® €
C>®(M;W) for a given Lie algebra g and W a vector space, then the field strength is normally
defined as

(4.31)

clas clas a 1
Fas(p A) = FI%(A) = dA Dea+ 54N Al

for some given basis (e,), of g. g is viewed as "trivial bundle” over M, M x g, and (e,), is a
constant frame.

Now, let us instead restrict Eq. (4.30) to an action Lie algebroid E = N X g equipped with
V as the canonical flat connection and (eq), a global frame of constant sections, especially
Ve, = 0. Then (®*e,), trivializes ®*FE such that ®*E = M x g, (®*e,), describes a constant
frame, especially (®*V)(®*e,) = ®'(Ve,) = 0, and all ®*FE-valued objects can be viewed as
g-valued. In that case, write A = A® ® ®*e,, and observe that

—%((I)*tvp)(A NA) = L (@t ) (e, Brey) AT A AY = %@* (Jeases] ) A A AP = S[A4 4 4]

1 1
=o* (tvp (ea,eb)) :[6a76b}g:ConSt'

g

and
d®VA =dA? @ BFe, — A @ B'(Ve,) = dA® @ De,
for all A € QY(M;®*E). Hence, we get
F=o(F).

As we have seen in the definition of the action Lie algebroid, the anchor p replaces the notion
of Lie algebra actions and representations such that we now use the anchor to define the minimal

coupling of A to ®.

Definition 4.2.3: Minimal coupling, [1, Eq. (3), ® is denoted as X there]

Let M, N be smooth manifolds and £ — N a Lie algebroid. Then we define the minimal
coupling D as an element of F1(M;*TN) by

D =D — ("p)(w2). (4.32)

We also say that ¢ is minimally coupled to A.

We also write
D(®,A) :=D"D :=Dd — (d*p)(A) (4.33)

for all ® € C*°(M; N) and A € Q' (M; ®*E).
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Remarks 4.2.4.
Restricting this to the standard situation gives back the standard definition: Assume N = W
where W is a vector space, E = W X g an action Lie algebroid over W, whose action is induced

by a Lie algebra representation ¢ : g — End(W). Then the minimal coupling is
@Acp\p = dp®* ® ©*0al, + P(Ap(Y)) (2(p))

for all (p, ®,A) € M x Mp(M;W) and Y € T,M, where we use some global coordinates (95),,
of W and Prop. 2.1.16. Now we make use of the canonical identification of W’s tangent spaces
with W itself, especially, v, = 0o for some basis (va), on W. Then the first summand is
clearly d®“ ® ®*0, = ¢(d®). Hence, also here we arrive at the classical definition (under the
bookkeeping trick), recall Def. 2.3.7.

Finally we turn to the Lagrangian.

Definition 4.2.5: Yang-Mills-Higgs Lagrangian,
[1, Eq. (2) and (16); but a different field strength there which

we will introduce later]|

Let M be a spacetime with a spacetime metric 7, N a smooth manifold, £ — N a
Lie algebroid, V a connection on E, and let x and g be fibre metrics on £ and TN,
respectively. Also let V' € C°°(N), which we call the potential of the Higgs field.
Then we define the Yang-Mills-Higgs Lagrangian £v1 as an element of & gim(M) (M)
by

Svam i= —3 (W)(F ) +F) + ("0)(® 4 +D) = +(V), (4.3
that is

Lymu(®, A) = —%(@*n)(F((I),A) NsF (B, A)) + (*g) (©A<1> A *©A<I>) —%(V o ®)
(4.35)

for all (@, A) € Mg(M; N), where * is the Hodge star operator with respect to 7.

A short summary:

Corollary 4.2.6: Standard theory as action Lie algebroid, as motivated in [1]

Let M be a spacetime with a spacetime metric n, N = W be a vector space, equipped with
a Riemannian metric g on TW =2 W x W canonically induced by a scalar product on W,
and E = N X g an action Lie algebroid for a Lie algebra g, equipped with its canonical
flat connection V and a fibre metric k which constantly extends a scalar product on g.
The g-action v is induced by a Lie algebra representation ¢ : g — End(W), and we have
a potential V- € C(W).
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Then Def. 4.2.1, 4.2.3 and 4.2.5 are the same as for the standard formulation of gauge
theory as introduced in Chapter 2.

Proof of Cor. 4.2.6.
By construction; also recall the remarks of Def. 4.2.1 and 4.2.3. For x take a constant frame
(€a), of E such that (®*e,), trivializes *E = M x g for all & € C*°(M; N) and (®*e,),, is also
a constant frame, and denote the scalar product on g by k. Then observe

(P*K) (D" eq, P ep) = P*(k(eq, €p)) = ¥ (K(eas €p)) = Rleq, €p),

————
=const.

hence, *k = (k) = K a constant extension of k; similarly for g. Thence, we arrive at the standard

definition of the Lagrangian, using the remarks of Def. 4.2.1 and 4.2.3,

1
Symnn(®, 4) = —SR(F(®, 4) h F (@, 4)) +§(D42 1 +D4D) — #(V 0 @),

where g is the scalar product on W; recall Def. 2.3.9. |

Now let us finally turn to the infinitesimal gauge transformation.

4.3. Infinitesimal gauge transformations

4.3.1. Infinitesimal gauge transformation of the Higgs field

We will now do precisely the same, but more general, as in Section 2.5. Infinitesimal gauge
transformations of a functional L € F*(M;*V) (k € Ny and V — N a vector bundle) are
derivatives along certain directions in Mg (M; N), while the components of these directions as
vector field will be identified with the infinitesimal gauge transformations of the corresponding
fields, ® and A. We want that these transformations satisfy the Leibniz rule, and we want
to study the commutator of such two transformations. In order to do that easily, we require
that such a derivative keeps a functional vertical, i.e. 0L € F k(M ;*V'), where § denotes such a
transformation, and for this we will use connections, especially ones induced by a Lie algebroid
connection on V itself. We will do that by using pull-backs, especially using Cor. 3.5.9. That is,
since functionals are forms on M x Mg, we want to make the pullback along ev, while avoiding
the issue of lifting the evaluation map to a suitable vector bundle morphism by restricting to
certain vector fields on Mg satisfying the condition given in Cor. 3.5.9; we will see that this will
precisely give the formula of the infinitesimal gauge transformation of the Higgs field.

The arguments are precisely the same as in the discussion before Def. 2.5.12. Hence, we start
now with a similar definition, but, as we also mentioned in the discussion of Def. 2.5.12, the
Lie algebroid used for the mentioned Lie algebroid connection on V' does not need to be the
same Lie algebroid used in the definition of 9z (M; N). This is why there is now a second Lie
algebroid B over N, equipped with a Lie algebroid connection 2V on V; but when we turn

to the infinitesimal gauge transformation of quantities like the minimal coupling, it is useful
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to have ¥ = B, which we are then going to assume. However, one may want to do a similar
construction using a typical vector bundle connection on V' which implies B = TN; in order to
allow those type of constructions we keep it that general for the basic definitions. Also recall
Prop. 4.1.2.

Definition 4.3.1: Vector fields along Lie algebroid paths

Let M,N be two smooth manifolds and (E,pg, [, |g), (B,pB,[,]g) two Lie alge-
broids over N. For (®,A) € Mgr(M;N) we define T%A)ﬁﬁE(M; N) as a subspace of
T(o,4)Me(M;N) by

Tl 1y Mu(M; N) = {(2,2) € T(g 4 (Mu(M; N)) | 3e € T(®*B) : 2 = —(@"pp)(e)}
(4.36)

Sections with values in these subspaces, called as the vector fields along B-paths, we
denote by X (Mg (M; N)).

Remarks 4.3.2.
As images of the pullback of the anchor, it is clear that T%A) (ME(M;N)) and X8 (Mg(M; N))
are subspaces of T(g 4)(9Mp(M; N)) and X(9Mge(M; N)), respectively.

For all ¥ € XB(90) there is by definition then an ¢ € F2(M;*B) such that

V= (=("pB)(e),0) (4.37)

where (*pp)(¢) is an element of F2(M;*TN) given by Mpe(M; N) > (P, A) — (®*pp)(c(®, A)),
and a is a map defined on Mg (M; N) such that | 4y is a tangent vector for all (@, A) €
Mp(M;N) as in Prop. 4.1.2. We will study a in more detail later, but now it will not be
important. We will write ¥ = U, to emphasize the relationship with an ¢ € gg(M; *B). As
in Remark 2.5.13, for a given ¢ there can be several V. as long as we do not fix a. Moreover,
since e € F2(M;*B) we cannot expect in general that XZ(9g(M;N)) is a subalgebra of
X(Mp(M;N)). One may be able to show that if just allowing e = *b (b € I'(B)), but since
those more general ¢ can have very general dependencies on (®, A) € Mg (M; N) one cannot
expect a sub-algebraic behaviour at this point. We will come back to this after we will have

defined the infinitesimal gauge transformation for the field of gauge bosons.

By construction, the flows of those vector fields carry the structure of Lie algebroid paths
which will allow us to do pullbacks of connections along these flows in order to define certain

connections on functionals.

Corollary 4.3.3: Flows of XZ(Mg(M; N))

Let M, N be two smooth manifolds and (E,pg,[-,|g), (B,pB,[,|g) two Lie algebroids
over N. For a ¥ € XB(Mp(M;N)) we denote its flow by v = (®, A) : [ — Mp(M;N),
t— y(t) = (D¢, Ar) € Me(M; N) through a fized point (o, Ag) € Mr(M;N) at t =0,
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where I is an open interval of R containing 0, and we write V|, = (—(®fpp)(et), @) €
Tgbt’At)imE(M;N), where ¢, € T'(®;B) and a4 € QY (M; e TE) (recall Prop. /.1.2).
Then —e(p) = [t — —€tlp], viewed as a curve I — B, is a B-path with base path ®(p) =
[t — §y(p)] for allp € M.

Proof.
For p € M fixed, it is clear by definition that the base path of —e(p) is given by ®(p) since
€tlp € By, (p) for all t € I, where Bg, ;) is the fibre of B at ®;(p). By definition of flows we have

d
dat t7 = ‘I’H(t)
for all t € I, and, so,
* X d
(@@)"pp) (=), = = (®ipp)(el, = o t@(p)),
which proves the claim. [ ]

As in Section 2.5, the first component of these vector fields also define the infinitesimal gauge

transformation of the Higgs field.

Definition 4.3.4: Infinitesimal gauge transformation of ®

Let M, N be two smooth manifolds, (E, pg, [-,"]5), (B, pB, [-,"]5) two Lie algebroids over
N, and € € FJ(M;*B). For a (®, A) € Mp(M; N) we define the infinitesimal gauge
transformation 5:_9(@ 4)® of © along g(®, A) as an element of I'(®*TN) by

Oeia,.0® = (=("pB) () (, 4) = —(2*pp) (e(®, 4)), (4.38)

shortly denoted as 68® :== —(*pp)(e) € F2H(M;*TN).
In the case of E' = B we just write J.® = —(*p)(e).

Remarks 4.3.5.

e Eq. (4.38) is also a generalization of a similar equation for a gauge transformation given in
[1, paragraph before Equation (10); we have a different sign in €.

e Finally let us observe why Eq. (4.38) recovers the standard formula of the infinitesimal gauge
transformation of @, Def. 2.4.2. As usual, use the setting as in Cor. 4.2.6, i.e. let W be a vector
space and N = W such that ® € C°(M; W), and E = N x g an action Lie algebroid for a Lie
algebra g whose Lie algebra action 7 is induced by a Lie algebra representation ¢ : g — End(W).
Also E'= B. Then we can simply use Prop. 2.1.16, using € :== ¢(®, A), to get

(6:®)(p) = —€(D) pap)(ea) = =€ () Y(ea)a(y) = €*(p) Y(ea) (P(p)) = 1¥(ep) (P(p))

for all p € M and e € I'(®*E) viewed as an element of C>°(M;g), where (e,), is a frame of

constant sections. This is precisely the standard formula.
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There is a relationship similar to Cor. 3.5.9, which summarizes the whole motivation of our

construction; also recall Remark 3.5.10.

Corollary 4.3.6: Infinitesimal gauge transformation as condition for allowing

pullbacks

Let M, N be two smooth manifolds and (E,pg,[-,]g), (B,pB,[,|g) two Lie algebroids
over N, and ¢ € F2(M;*B). Then ¥V € X(Mg(M;N)) is an element of XB(Mg(M; N))
if and only if there is an € € FR(M;*B) such that the following diagram commutes

M xMg(M;N) ——— B

J(O,\I/) lpB

T(M x Mp(M; N)) 225 TN
that is
Devo (0,¥) = —ppoce, (4.39)

where (0,0) € X(M) x X(Mp(M; N)) is the canonical embedding of ¥ as a vector field
on M x Mg (M;N).

Proof.

That is by construction. Let v = (®,A) : I — Me(M;N),t — v(t) = (P, Ar) (I C R an
open interval containing 0) be the flow of ¥ through (®g, Ag) € Mpr(M; N) at t =0, as e.g. in
Cor. 4.3.3. Then the local flow of (0, ¥) through (p, ®o, Ag) € M x Mg(M;N) is given by
(p, @, A). Thus,

d d
Doy age0.9) = G| (evip. 0. ) = G| [ ] = (9] | € Tayg

where ¥(®) is the first component of U, for this also recall Prop. 4.1.2. The commutation of the

diagram is then equivalent to say that there is an ¢ € F2(M;*B)
¥ =~ (pp)(e),
which is precisely the definition for XZ (9 g(M; N)) of Def. 4.3.1. [

That immediately leads to:

Proposition 4.3.7: Parametrised variations of functionals

Let M, N be two smooth manifolds, (E, pg,[,-g), (B,pB,[]g) two Lie algebroids over
N, V = N a vector bundle, BV a B-connection on V, and V. € XB(Mp(M;N)) for
e € F2M;*B). Then there is a unique R-linear map 6. : FH(M;*V) — FEH(M;*V)
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with
Sw.("v) = = (PV.v), (4.40)
Ly bw, = w ty (4.41)
du.(fAL)=ZLu.(f)NL+ f Aow. (L), (4.42)

forallY € X(M), v € T(V), L € FEM;*V), and f € F(M) (k,m € Np), where
FH(M;*V) = By, Fh(M;*V) while by, keeps a given degree invariant.

Remarks 4.3.8.
Since the notation of dy, does not emphasize the used connection, we will often roughly write:
For the functional space F5(M;*V) let dy. be the unique operator of Prop. 4.3.7,

using PV as a B-connection on V, where e denotes an arbitrary degree.

Proof of Prop. 4.53.7.
That is a trivial consequence of Cor. 4.3.6 and Cor. 3.5.9, that is, we have a unique R-linear
operator Sy, : Fo(M;*V) — FA(M;*V) such that

(5\115 (hs) = g\ps (h) s+h 5\1158,

5‘1’5 @ = —*(ngv)

=ev*v

for all s € T'(ev*V) = F2AM;*V),h € C®°(M x Mg), and v € T'(V). Eq. (4.41) and linearity
uniquely extends this operator to F5(M;*V), that is,

((5\1;€L)(Y1, e ,Yk) = 5\1;5 (L(Yl, e ,Yk))

for all L € FE(M;*V) and Y1, ...,Y; € X(M); similar to Def. 2.5.17 this is well-defined (recall
also the remark after Def. 2.5.17). This is not in violation with the desired Leibniz rule because
U, are vector fields on Mg (M; N) while Y7,..., Y are vector fields on M, thence, [¥.,Y;] =0
(i e{l,...,k}) in M x Mg (M; N). The Leibniz rule in Eq. (4.42) then just follows by this and
the Leibniz rule inherited by Cor. 3.5.9.

Alternatively, use the flows given by Cor. 4.3.3 and prove it in the same manner as in
Prop. 2.5.15 (in combination with Def. 2.5.17). [

Remarks 4.3.9.
e Given by Remark 3.5.11, for V = N x R we always take the canonical flat B-connection,

i.e. the canonical flat vector bundle connection VY = d and then 2V = VSB such that

oy, = Ly, .
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Thus,
oy, d =Py d =d%y, = diy_, (4.43)

since coordinates on M p(M; N) and M are independent; recall the end of Remark 4.1.7 for this.

The Leibniz rule for dy_ can be then rewritten to

(S\I/E(f/\L>:(S\I/E(f)/\L-i-f/\(s\ys(L). (4.44)

e For dual bundles V* we canonically take the dual connection to V in order to have
Leibniz rules as usual. That also means the following (still keeping the same notation): Let
L e FEM;*V)and T € FL(M;*(V*)), then in a frame (e,), of V and (), of V*, f(eq) = 0¢,
we locally write L = L% ® *e, and T = T}, - * f°, where L® € FE(M) and T}, € F2(M). Then
with these conventions, including the previous bullet point,

0w (T(L)) = 6w, (ToL®) = Ly (TuL®) = Ly (Ta) L* + Ty Lu. (1Y), (4.45)

~——

EFE(M)
hence, one achieves an independence of the chosen V. This emphasizes what we expect,
that we can freely choose the chosen connections for the variations of the tensors involved in
contractions, only the variations of their components matter in such situations; this is important
for the gauge invariance of the Lagrangian later. As we have discussed at the end of Section
2.5, we are going to take the basic connection to define dy_ for quantities like the field strength,
which will not be related to the canonical flat connection when imposing the classical theory;
also recall Thm. 2.5.19. That is possible because the infinitesimal gauge transformation of the
Lagrangian stays untouched by this, it is always just the Lie derivative. The connections only

get important in explicit calculations when applying the Leibniz rule as in

but the result will of course not change. Henceforth, the essential work is in defining ¥.; we did

not yet define the infinitesimal gauge transformation of A.

This recovers the classical idea of infinitesimal gauge transformation, ¢.e. it is a Lie derivative

of components with respect to flat connections; also recall Thm. 2.5.19.

Theorem 4.3.10: Parametrised variations in the flat case

Let M, N be two smooth manifolds, (E, pg, |-, |g), (B, pB,[:,"]5) two Lie algebroids over
N, and V — N a trivial vector bundle. Also let V be the canonical flat connection of V.,
U, € XB(Mp(M;N)) for an e € FAM;*B) and for Fp(M;*V) let Sy be the unique
operator of Prop. /.5.7, using BV = V,p as a B-connection on V.

Then we have

dv. L = (Lo L) @ “eq (4.46)
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for all L € Fg(M;*V), where (eq), is a global constant frame of V.

Proof.
That is basically the same proof as in Thm. 2.5.19. Take a global constant frame (eq), of V/,
then

Ve, =0,
and therefore
(®7V)(®%ea) = @'(Vea) =0
for all ® € C>°(M; N). Hence, (*V)(*es) = (Vea) = 0, such that, using the Leibniz rule,
dp. L = (ZLy. L) @ “eq.
|

As argued before, we can write U, = (—(*pp)(¢),a) (Eq. (4.37)) and we want to identify its
first and second component as the gauge transformation of ® and A, respectively. Right now
a is just fixed by Prop. 4.1.2 such that it is very arbitrary; as in the standard setting of gauge

theory, we want that it is parametrised, which will be by ¢, too.

4.3.2. Infinitesimal gauge transformation of the field of gauge bosons

Recall Prop. 4.1.5 and its discussion, the tangent vector along the ”A-direction” is only in the
same space as A if the first component is zero, which is §.® because we want to think of . A
as the second component of ¥.. We cannot expect this to be zero in general, not even in the
standard setting because a Lie algebra representation will not act trivially on ®, as we already
discussed after Prop. 4.1.5. However, as in the standard formulation, we want to formulate the
gauge transformation of A in such a way that it is somewhat in the same space; we will achieve
this by fixing a connection on E as we already did for functionals when defining dy_. Since A
has values in ®*F, its image is also now affected by the gauge transformation of @, this is why
we can do something similar as for functionals; also recall Remark 2.5.20.

One may argue that an involved horizontal projection in the definition for 4. A may lead to lost
information about that object, especially important when one may want to integrate this theory,
while we will not need the ”full formula” for 6. A for the infinitesimal gauge transformation of the
Lagrangian as we already argued earlier. However, since A has values in ®*F, one expects that
0 A encodes partially what 6.9 already encodes. Prop. 4.1.2 shows us that . A is still somewhat
vertical, because it is a form with values in the vector bundle TE — TN, whose linear structure
is essentially given by the vertical (prolonged) structure; . A is just shifted ”horizontally” by
9P due to Eq. (4.9) and Prop. 4.1.5. Henceforth, our idea is to shape the horizontal projection
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in such a way that we only ”loose” the information we already know by d.®; making use of
Prop. 4.1.2.

Let us make it precise: Let us first look at a local trivialization of the Lie algebroid E = N is
trivial. That is let us have base coordinates (wl)z of N, lifted to E by 7*z?, but we will omit all
the given pullbacks in the notation now in the following rough discussion for simplicity; also let
(yj)j be fibre coordinates. By Prop. 4.1.2, . A should be, for a given (®, A) € Mg, a form on M
with values in TE (along some function; but again, we omit the pullbacks and point evaluations

for simplicity now). Hence, we expect

A= (A 5+ (0.4 o
and 0. A is the second component of ¥, = (6.P,.A), which we used to define dy_. Again by
Prop. 4.1.2, also recall Remark 4.1.4, we know that
0
ox’
for all Y € X(M), where we used that 9/9y’ are vertical vector fields. Given that trivialization,

5.® = Dr((3.4)(Y)) = (8- A) (V)

0/0x" defines a canonical horizontal distribution. Hence, using that distribution for a horizontal
projection, one could define the infinitesimal gauge transformation of A in that trivialization
just with (6.A) a%i which can be identified with a form with values in E since 9/9y’ are
vertical. While the components we ”loose” because of the horizontal projection is something
already encoded by 6.®, such that those are easy to reconstruct if one needs the ”full formula”
of 6. A.

Globally that means we want to define §: A as a form with values in E using a Lie algebroid
connection on F as we did in Prop. 4.3.7 in such a way that U, is uniquely given. In order to do
that we need to view A as a functional, which is just wo of Ex. 4.1.11. So, we impose a formula
for d.wy in such a way that it uniquely defines ¥., and that we can derive the infinitesimal
gauge invariance of the Lagrangian as usual.

But how does one fix the infinitesimal gauge transformation of A normally when integrability
is not used? One of the arguments in the standard formulation is given by looking at the
transformation of the minimal coupling; we will do the same. Let us recall what that argument
was: Again, let N = W be a vector space, and F = N X g an action Lie algebroid associated
to a Lie algebra g whose Lie algebra action is induced by a Lie algebra representation ¢ : g —
End(W). Then, for an € € C*°(M;g), we have the infinitesimal gauge transformation 6.® =
Y(e)(®) for all @ € C°(M; W). The minimal coupling is then defined by D4® = D®+1)(A)(®),
where A € Q'(M;g); recall Def. 2.3.7. The (infinitesimal) gauge transformation of A is then
chosen in such a way that it is an element of Q' (M g), and such that one gets for the infinitesimal

gauge transformation of the minimal coupling
(0D)(®, A) = (e) (D40) (4.47)

among the category of gauge theories, where J. denotes again the classical formulation of the

infinitesimal gauge transformation as introduced in Chapter 2.
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In order to provide a similar argument and since the minimal coupling © is an element of
9-']%(]\4, *TN), we need to fix a connection on TN in order to use Prop. 4.3.7. We want to use
the basic connection, for this recall that for a given connection V on a Lie algebroid £ — N we

have the canonical basic connection VP2, Def. 3.7.1,
vzasy = [M? V]E‘ + vp(y),ua
VX = [p(p), X] + p(Vxp)

for all p,v € I'(E) and X € X(N). The reason why we want to use the basic connection is the
following corollary about the recovery of Eq. (4.47).

Corollary 4.3.11: Gauge transformation of the minimal coupling in the stan-

dard framework

Let N = W be a vector space, E = N X g be an action Lie algebroid of a Lie algebra
g whose action is induced by a Lie algebra representation 1 : g — End(W), E is also
equipped with its canonical flat connection V. Also let . € XE(OMp(M;N)) for an
e € FU(M;*E) and for the functional space Fa(M;*TN) let dy_ be the unique operator
of Prop. /.3.7, using V"2 as E-connection on TN. Then we have

(00.2)(@,4) =0 & (03,92, 4) = (v(e(2,4)(D42))"  (4.48)

for all (®,A) € Mr(M;N) and o € {1,...,dim(W)}, where the components are with
respect to global coordinate vector fields (0n), on W, and where we used the canonical
identification TW = W x W = ®*TW such that D4® can be viewed as an element of
QY (M;W).

Proof.
Let (eq), be a global and constant frame of E and J, coordinate vector fields on IV, then we
can write ® = D ® *0,, and, thus, by the Leibniz rule and with € := (P, A)

(60.07)(@. 4) ~ (Gu.2)(@.4)" = - ((92)" & (6. (9)(®. 1))
——
=0y (D)@ Do +D* @by (*0a)

Prop.:4.35.7_©* (VE‘“aﬁ)
B
= & (=007 + p”(Vosea) ) (970) (4.49)
for all . Let us write 0o, = 0/0w® for some coordinates (w®), on W. Then by Prop. 2.1.16,

~9g[w = pg(w)] = =Op[w = g (W)] = 9 |w > (Ylea) ()" = (V(ea)) (4.50)

for w € W, because the differential is then just the differential of a matrix vector-product

W 3 w — ¢(eq)(w). Since V is the canonical flat connection, constant sections are parallel,
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thus, we get in total

(50.D%)(@, 4) — ((30.0)(®, ) = ¢ &* (1(ca)} (D40)" = () (2"2))"

for all o, having e € C®°(M;g) and D4® € Q' (M;W). That shows that we have
(00.2%)(®, 4) = (1) (D))"
if and only if
dp D =

€

The right equation in the Equivalence (4.48) describes precisely the components of the ex-
pected infinitesimal gauge transformation of the minimal coupling in the standard formulation
of gauge theory, and it is no coincidence that this is equivalent to dg.® = 0 when using the

basic connection.

Lemma 4.3.12: Metric compatibilities and their imposed symmetries for gauge

theory, [1]

Let N = W be a vector space, E = N X g be an action Lie algebroid of a Lie algebra
g whose action is induced by a Lie algebra representation i : g — End(W), E is also
equipped with its canonical flat connection V. Also let k be a fibre metric on E which is
a constantly extended scalar product k of g; similarly, let g be a fibre metric which is a
constant extension of a scalar product g of W.

Then we have
VPSk =0 < R is ad-invariant, (4.51)
VPS¢ =0 < § is Y-invariant, (4.52)

and VP on E and TN are the adjoint and 1 representation, respectively, when restricted

on constant sections, i.e.
Vit = [u, Vg, (4.53)
VESY () () (4.54)

for all constant p,v € T'(E) and constant Y € TN W x W.

Remarks 4.3.13.
Here we see that the basic connection V"2 replaces the canonical representations arising in the

standard formulation of gauge theory. Moreover, we will later see that we need R%as =0 to
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formulate the gauge theory, that implies that V"2 is flat (both), recall Prop. 3.7.6, such that it

makes sense to think about it as a representation in the context of this thesis.

Proof.

Let (eq), be a frame of constant sections. Then r(eq, €5) = const., and hence
0= Ze,(k(ep,ec)).
We also have
[€q, eb]g = [eas €] g + Vp(e,)€a = Vsjseb,
because V is the canonical flat connection. Therefore

K 1s ad-invariant

& 0= 7([eas enlqs ec) + F(ens [earedly)
& Fealtlen,ee)) = ([ea ebly, ec) + 1 (en, [ear el
& Zeo(ilen, ec) = k(VE=ey, ) + e, Ve, )
& VP = 0.

For g recall Eq. (4.50), i.e.

~9p05 = (V(ea)) 5,

where we use coordinate vector fields (0y), on N which also describes a constant frame for
TW =2 W x W, and hence also, as before,

(¥(ca)) = [p(ea), D5] = [p(ca), Dp] + p(Vasea) = V=05,
and
0= Zea (g(aaa aﬁ))
Thus,

g is tY-invariant

. 0=g(¥(ea)(a),95) + (9a; t(ea)(0p))
& Zea(9(0a:05)) = g(¥(€a)(0a), 95) + 9(9a: ¥ (ea)(Tp))
& Ze(9(00,05)) = 9(V205,05) + 9 (00, VE=05)

& vPasg = 0.
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Hence, when using the basic connection, we want that dy_® = 0 such that we can recover the
classical formula in sense of Cor. 4.3.11. To study this and later results we need several auxiliary
results, recall also Ex. 4.1.11, 4.1.12 and 4.1.16.

Lemma 4.3.14: Several identities related to variations with the basic connec-

tion

Let M, N be two smooth manifolds, E — N a Lie algebroid over N, V a connection
on E, and V. € XE(Mp(M;N)) for an e € FL(M;*E). For both functional spaces,
FA(M;*E) and FH(M;*TN), let by, be the unique operator of Prop. J.3.7, using V"2

as E-connection on E and TN, respectively. Then

dy.D = —("p)("Ve), (4.55)

dw.(*p) =0, (4.56)

dw. (("p)(w@2)) = ("p) (Ow.w2), (4.57)
su. ({(Vi)) = —<! (V2Vh) + (Ve p)((*v)a)u)) (4.58)

for all p € T(E), where we view Vi as an element of Q' (N; E).

Remarks 4.3.15.
We already introduced the notation for Eq. (4.58) (also recall Remark 3.5.4), but let us shortly
write down what it is for each (®, A) € Mg(M; N),

(5\1/6 (!(VM))) (®,4) =— (‘D! (VE‘%(VM)) + @~ (v(@*p)((q)*V)E),u))

Eq. (A.2)

where € = £(®, A). When ¢ = *v for a v € T'(E), then (®*V)(®*v) =" &' (Vv), so,
(*V)(*v) = '(Vv). Thus, we can then write
5‘1’*1/ ('(V,u)) = ! (VBaSVu + vp(vy),tL). (4.59)

Proof for Lemma 4.3.14.
In the following (e,), denotes a local frame of E, and 0, are local coordinate vector fields on
N, and (®, A) € Mpr(M; N). Regarding e € FLA(M;*E) we also write € := &(®, A).

e For Eq. (4.55) we write locally

D® = do* ® *0,,

where we view (®, A) — ®* as an element of F2(M) (on an open subset of M), such that by
6:® = —(*p)(e), and by using ddy, = dy.d and dy, = Ly, on Fo(M) (recall the discussion
around Eq. (4.43)),

(0ed[(®, A) = 2°))(®, A) = (dZy.[(D, A) = ©°)(P, A) = —d((pg

a

o ®) €%
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then by Eq. (4.40) and the Leibniz rule of dy,

(0. D)(@, 4) = ~d((p2 0 B) ) & D°0, — B @ @ 0 (V70

= —(d(pf 0 ®) € + (o 0 ) de”) ® "Dy
———

= (9ppgo®) AP
—dP?* ® € P* (—Oapg s + /)(Vaaea)>
= —(pf 0 ®) de* @ 8"0o — A @ & (p 0 ®) (wf 0 ®) 0,
= —(pYo®) (de“ + € (wgﬁ o CID) d@'g) ® "0,
— (@) (2°V)e).
e By Eq. 4.40,
du.("p) = =*(VE*p),
and by po VP = VP% o p we get
(V) (1) = V"™ (p(w)) = p(V**1) =0
for all p € I'(E). Hence,
dw.("p) = 0.
e By the Leibniz rule and the previous result we also have

dw. ((p)(@2)) = ("p) (dw.m2).

e We view terms like Vyu as elements of Q(N; E) for all u € T(E), X(N) Y — (Vu)(X) =
V xt, and therefore we can use the Leibniz rule on '(Vu) = (*(Vu))(D) = *(Vpp), i.e. due to

0! (Vp) = (0 (V1)) (D®)
we can view '(Vyu) as a contraction of the functionals *(Vu) and D. Hence,

ou. ((V)) = (Bu.(*(Vi) (D) + (Vi p10)

Eq. (4.40) <* (v?aSVu» (D) +* (V&pEDM)

Eq. (455) (! (Vlgasvlu) 4o (V(*p)((*v)s)u))
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Let us now fix the gauge transformation of A using these results. Recall that we write ¥ = W,
for a W € X¥(Mp(M;N)), where e € FL(M;*E) such that we can write (recall Eq. (4.37))

Ve = (=("pB)(e), a)

where a is a map on Mg (M; N) such that ¥|p 4y is a tangent vector for all (@, A) € Mp(M; N),
i.e. satisfying the diagram of Prop. 4.1.2 for all (®, A). For a given € such a ¥, is in general not
unique. Recall that for a local frame (e,), of E and local coordinate functions (J,), on N we

have

leb, ec) p = Cpr€as Vep = wj ® eq, Va.eb = Wiy €a-

Proposition 4.3.16: Gauge transformation of the field of gauge bosons

Let M, N be two smooth manifolds, E — N a Lie algebroid over N, V a connection on F,
e € FAUM;*E), and for the functional space FL(M;*E) let Sy. be the unique operator
of Prop. /.3.7, using V’* as E-connection on E and any ¥, € XF (Mp(M;N)). Then
there is a unique V. € XE(9Mp(M; N)) such that

dp. w2 = —(*V)e. (4.60)
Locally with respect to a given frame (eg),
(650, 8)(B, A) = (Cf 0 ®) PA° + (wf, 0 B) (4% 0 B) PA° — de® — & BH(wf)
_ (b gc * (7bas s a
= (h4° @ ®*(VEre, ) — (@ V)e) (4.61)

for all (B, A) € Me(M;N), where e := (P, A).
Moreover, if we also have o, 8 € R and ¥ € ?}%(M; *E), then

\I/a€+319 = a¥, + ¥y, (4.62)

where the vector fields are the ones uniquely given by Eq. (4.60).

Proof of Prop. 4.3.16.

Since it is about a vector field on Mp(M; N), we will classify W, by its flow, using Cor. 4.3.3:
We denote its flow through a fixed point (®g, Ag) € Me(M;N) by v : I — Me(M;N), t —
v(t) = (P, Ar) € ME(M;N), where I is an open interval of R containing 0, and we write
Ulywy = (—(Fp)(er), et) € TgbhAt)me(M;N), where ¢ = (P4, A;) € I'(P;E), and <4 is a
morphism TM — TEFE satisfying the diagram in Prop. 4.1.2. So, we have a curve v with

7(0) = (®o, Ao),

d

37 = Yhoy = (= (@p)(er), @),
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(®g, Ag) and —(Pfp)(e) are fixed, and we show that Eq. (4.60) will fix ;. Without loss of
generality let us assume that everything is small and local enough such that we have frames and

coordinates, like a frame (e,), of E.*> Making use of Prop. 4.3.7, we get
(80, 2) (1, Ar) = L, (8]0, @ P — A7 © D} (Vieq ).
Let us first assume Eq. (4.60) does hold. Then
Lo (@)|(0, 4, @ Prea
= A5 @ 0} (VEe.) — (8 V)e,
= (G0 @) f A7 + (who 0 Do) (9 0 1) fAF — def — &} BY(wf)) © Dfea
which proves Eq. (4.61) (insert t = 0). By the definition of v and the Lie derivative we also get

a d a d a
Lo (@)|(@, 4, = 7; (@3 07) = [t = Af],

dt dt
and, thus,
d
qplt = At = (Che o @y) VAL + (Wi 0 B1) (P2 0 By) AT — de® — € By(wf). (4.63)

So, Eq. (4.60) is equivalent to a set of coupled differential equations: We have a curve ~(t) =
((I)t, At), with (I)t:() = (I)O and
d

&[t —> <I>t] = _(Cb;fkp)(et)y

and At:() = Ao, while

=Y )= %[t > A ® Bley].

t — ®; and ¢t — A? are uniquely given by this system and the differential equation (4.63), and,
so, t — Ay = AY @Pje, is uniquely given, too. Hence, «, is unique, and, thus, V.. Alternatively,
the differential equations for d/dt ® and d/dt A* are the action of the vector field ¥, on the
coordinates of Mg, and therefore defining V..

The linearity of ¢, in € over R simply follows by the linearity given in the differential equations
above: Define © := oW+, for o, 3 € Rand ¥ € FA(M;*E), where ¥, and Wy are the unique
vector fields as given above, i.e. dy_we = —(*V)e and oy, w2 = —(*V)¥, respectively. Observe
that © € X¥ (Mg (M; N)), where the component along the ”®-direction” is by definition given
by

—a ("p)(e) = B (*p)(¥) = —(*p)(ae + B),

30ne could even fix a point p € M because we just need an interval for ¢ for d/dt.
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then, using the linearity of Eq. (4.63) in ¢,
_ a * a o * bas
5@’@2 = g@(@g) & "eq — Wy ® (Va£+5ﬂea)

= (au, + %0,)(5) @ "ea — w5 @ " (Vo2 syca)

Eq. (4.63) . . .
= g\lja6+ﬂ0 (wg) ® "eq — wg @ (VgiiBﬁQI)

ac+89 P2-

By the shown uniqueness of vector fields like W, gy, we get

O = \Ijas+ﬁz9-

Remarks 4.3.17.

Eq. (4.61) is also e.g. defined in [, Eq. (10); opposite sign of €], but in this reference it was
not known how a coordinate-free version can look like. This equation recovers the standard
formula of the infinitesimal gauge transformation of A. In order to see why this restricts to the
standard formula, let us look again at the standard setting: When - = N x g is an action Lie
algebroid with Lie algebra g, equipped with its canonical flat connection V, then we get the

classical formula of gauge transformation by using a constant frame (e,), for E, i.e.
(60.5)(@, 4) = 2"l A° — de” = ([ed Al =" Ve)’

for all (®, A) € Mp(M; N), because wi’ = 0 and ®*C}, = C}.. = const., the structure constants
of g. We can understand e as an element of C*°(M; g) as usual in the standard setting. That is
precisely the typical formula of the classical setting, because ®*V is the standard flat connection

of ®*E = M x g. Moreover, we get in that situation
o* (VEaSea) = ® *([ey, el ),

which is the main reason why the transformations of the components recover the classical formula
although the total formula, Eq. (4.60), just carries the differential (as we saw in the proof). As
already discussed, only the transformation of the components need the ”correct form” when it

is about the gauge invariance of the Lagrangian.

Using such a W, results into an infinitesimal gauge transformation of the minimal coupling as
in Cor. 4.3.11.
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Proposition 4.3.18: Infinitesimal gauge transformation of the minimal Cou-

pling

Let M, N be two smooth manifolds, E — N a Lie algebroid over N, V a connection
on E, and ¢ € FL(M;*E) together with the unique V. € XE(Mp(M;N)) as given in
Prop. /.3.16. For both functional spaces, Fp(M;*E) and FL(M;*TN), let dy_ be the
unique operator of Prop. /.3.7, using VP® as E-connection on E and TN, respectively.

Then we have

5y, D =0, (4.64)

€

Remarks 4.3.19.

We already have derived the variation of the components of 2, for this recall the general calcu-
lation for Eq. (4.49): Let (eq), be a local frame of E and 9, coordinate vector fields on NN, then
we can write ® = D% ® *0%, and, thus, with ¢ :=¢(®, 4),

(00.D%)(®, A) = € " (~0aps + p*(Va,ea) ) (@A@)B. (4.65)

That is precisely the same formula as given in [1, Eq. (12), different sign for e there], but there

only the formula for the components was known.

Proof of Prop. 4.3.18.
This quickly follows by Lemma 4.3.14, especially Eq. (4.55) and (4.57),

Prop. 4.3.16

50,0 = 8y (D — (*p)(@2)) = —(*p) (*Ve) — (*p) (B w2) 0.

Remarks 4.3.20.

Following the proof of Prop. 4.3.18 and using the uniqueness of Prop. 4.3.16 one could argue that
U, is the unique element of X¥ (Mg (M; N)) with dgy_D = 0 for a given ¢ in the category of Lie
algebroids, because this must then e.g. hold for the tangent bundle £ = TN as Lie algebroid,

too, whose anchor is the identity.

By this result and Cor. 4.3.11 we define the following.

Definition 4.3.21: Infinitesimal gauge transformation of gauge bosons

Let M, N be two smooth manifolds, £ — N a Lie algebroid over N, V a connection
on E, and ¢ € FY(M;*E) together with the unique ¥, € X¥(Mg(M;N)) as given in
Prop. 4.3.16. For the functional space F5(M;*E) let dgy_ be the unique operator of
Prop. 4.3.7, using VP as E-connection on E.

For a (®, A) € Mp(M; N) we define the infinitesimal gauge transformation J. (¢ 4)A
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of A as an element of Q'(M; ®*E) by
5€(¢,,A)A = (5\115732)((1), A) = —((I)*V) (8((1), A)), (466)

shortly denoted as 6.4 = dy.wp = —(*V)e. Given a local frame (e,), of E, we also

similarly define 6. A* = dw$.

Remarks 4.3.22.
As discussed in Remark 4.3.17 we have seen that 6. A% (using a frame (e,), of E) recovers the
classical formula of the infinitesimal gauge transformation. However, the total formula, §. A, does
not recover it which is no problem due to that the Lagrangian just depends on the variation of
the components; for this also recall that arising differentials of A commute with J., Eq. (4.43),
which is needed for the variation of the field strength. Later we will see this explicitly when
showing the gauge invariance of the Lagrangian.

Alternatively, one could use V, as E-connection on E instead of VP for the definition of dy_;
especially because of results like Thm. 4.3.10 and Thm. 2.5.19, which imply that one recovers

classical formulas when V is additionally flat.* When using V,, the same W, leads to
6\115722 = —(*tvp)(a,WQ) — (*V)€, (467)

where ty, is the torsion of V,. As we have seen before, V will be the canonical flat connection in
the standard setting such that then dy_A* = (dgy_A)" by flatness and Thm. 4.3.10. With similar
calculations as before one also shows that the variation of the components, dg_tw§, recovers the
classical formula of the infinitesimal gauge transformation of the field of gauge bosons, thus,
0w, w2 would restrict to the classical formula in the standard setting, too. Hence, V, would look
like the canonical choice, not V2. But we will later see that V, is in general not flat, while
Vb2 will be flat, such that only for the latter the infinitesimal gauge transformations in form of
the operator dy_ will give rise to a Lie algebra in general. Moreover, we are not going to fix any
separate connection on TN which would be identified with a canonical flat connection in the
standard situation, such that the only canonical connection there is the basic connection; using

the basic connections also for E-valued tensors is then in alignment to TN-valued tensors.

Hence, we finally arrived at defining the infinitesimal gauge transformation of functionals.

Definition 4.3.23: Infinitesimal gauge transformation of functionals

Let M, N be two smooth manifolds, ¥ — N a Lie algebroid over N, V" — N a vector
bundle, V a connection on E, ¥V an E-connection on V, and ¢ € F2(M;*E) together
with the unique ¥, € X¥(9Mp(M; N)) as given uniquely in Prop. 4.3.16. For the func-
tional space Fa(M;*V) let dy_ be the unique operator as in Prop. 4.3.7, using £V as

4A flat connection is locally canonically flat with respect to the trivialization given by a parallel frame; later we
will also see that then E is locally an action algebroid and V its canonical flat connection, if V is flat and has

vanishing basic curvature.
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E-connection on V.
Then we define the infinitesimal gauge transformation §.L of L € F5(M;*V) as an
element of F5(M;*V) by

5.L =6y L. (4.68)

For V. = E or V.= TN we take 'V = V"» on E and TN, respectively; for all further
tensor spaces constructed of £ and TNV, like their duals, we take the canonical extension

of the basic connections.

Remarks 4.3.24.
In the following we will have just one connection V on E and ¥V on V given. Without men-
tioning it further, we always use these connections for the definition of §. because it should be

clear by context.

We can quickly list two properties about 0,.

Corollary 4.3.25: Linearity in ¢

Let us assume the same as for Def. /.3.23. Then
5a€+519 = ad. + By (4'69>

for all a,B € R and ,9 € FAM;*E).

Proof.
Let k € No, L € FE(M;*V) and (e,)

Leibniz rule,

a local frame of V. Then, using Eq. (4.62) and the

a

Sactpol = Ly, 5L " ® T — L@ (Evas+ﬂz9€a>
—_————

Eq. (4.62)
= aVe+pYy

=a (Lo L@ s — L@ (PVeea)) + B (Zu, L7 © oo — L0 * (FV0ea))
= (0455 + ﬁ5ﬁ>L7

where vector fields like W, are given by Def. 4.3.23. |

Corollary 4.3.26: Independence of V

Let us assume the same as for Def. /.3.23, and let L € FE(M;*V) (k € Ny) be indepen-
dent of A, i.e. L(®,A) = L(®, A") for all (P, A),(P,A") € Me(M;N).
Then the definition of d:L is independent of V.¢

“But not of V, so, when £V = VP then there is still the dependency on V in the role of V.
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Remarks 4.3.27.

The independence mentioned in Remark 4.3.9 is about 'V, not V. Eq. (4.61) shows clearly that
V contributes to J. in general, that is, the definition of W, is certainly dependent on V, where
U, is given by Def. 4.3.23.

Proof.
Let (eq), be a local frame of V, and write L = L ® *e,, then, using that 6. = Ly. on FE(M)
(recall Remark 4.3.9, and V. is given by Def. 4.3.23),

0L = FLy L@ ey — L@ (PVeea).

The second summand is already independent of V, so, let us look at the first summand. Recall
that W, contains two components, the first is the differentiation along the ”®-direction”, given
by —(*p)(e), and the second for the ”A-direction”, fixed by Prop. 4.3.16 using V. Due to the
independence of L with respect to A we can conclude that L* must be independent of A since

*eq 18 already independent of A, thus,
Pyl = Ly L*

for all U, ¥ € X(Mg(M;N)) whose first component, the derivative along ”®”-coordinates,
coincide. Hence, regardless which connection V we choose to fix the second component of W,
the definition of d.L will be unaffected by this choice. |

4.3.3. Curvature of gauge transformations

We want to calculate
61958 - 55619

for all e,9 € FA(M;*E), and we want a behaviour similar to representations. For ® €
C*®(M;N), ®*F is in general not a Lie algebroid, see [9, §3.2ff.] or [10, §7.4; page 42ff]
about conditions on ® which imply a natural Lie algebroid structure on ®*FE. Therefore we
cannot expect to have a Lie bracket on sections of ®*FE. The essential problem is that we do not
have an anchor on ®*E — M in general such that one cannot try to construct first a bracket
on pullbacks of sections and then to canonically extend such a bracket (similar to previous con-
structions), and this problem extends to F2(M;*E). But there is a better object measuring a
"bracket-like” behaviour on this functional space; we will see at the end that this will be actually
a Lie bracket.

Definition 4.3.28: Pre-bracket on F2(M;*E)

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on F.
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Then we define the pre-bracket A : F2(M;*E) x F2(M;*E) — F2(M;*E) by

for all e,9 € FL(M;*E).

Remarks 4.3.29.

Given an E-connection V on E, Lie brackets can be expressed as
[, V] = PV = PV — tog (u,v)

for all u,v € T'(E). Recall that § is strongly related to a certain pullback of VP: then the
idea of the pre-bracket is to use the right-hand side as a definition. Since we know under which
conditions and how to make pullbacks of F-connections and tensors, we circumvent the problem

of defining a Lie bracket and anchor on a pullback bundle.

Let us study this bracket.

Proposition 4.3.30: Properties of the pre-bracket

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E.

Then we have

A is antisymmetric, (4.71)
A is R-bilinear, (4.72)
ACw,*v) =*([u, V|g) (4.73)

for alle, 9 € FA(M;*E), f € FAM), p,v € T(E), and, when expressing everything with
respect to a pull-back of a local frame (e,), of E, we get

A(D,€) = 5:9% *eq — 69 *eq + 9%° *([ea, eb)g) (4.74)

for all ¥,e € FAUM;*E).

Moreover, A(¥,¢€) is independent of the chosen connection ¥V when both, ¢ and 9, are
independent of A, that is, e(®, A) = e(®, A") for all (®, A), (P, A") € Mp(M; N); similar
for 9.

Remarks 4.3.31.
Eq. (4.73) and (4.74) emphasize that we have a suitable candidate in A as bracket.

Let E = N x g be an action Lie algebroid, the usual relationship in classical gauge theory is
for e, € C*°(M;g) that

g5, 55/2%| A = —tl%) A,

152



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

where 59 is given by Def. 2.4.3, and the negative sign on the right hand side is due to our choice
of sign with respect to €, which we prove later in full generality. As we discussed, we apply the
"bookkeeping trick” to formulate infinitesimal gauge transformations, also recall Def. 2.5.17 and
Thm. 2.5.19. That is, for a constant frame (e;), of E, we have the "bookkeeping trick” ¢(e)
given by

t(e) =& "eq,

hence, the bookeeping trick is essentially a frame-dependent embedding of the functionals given
in the classical gauge theory into F5. €% are in this case only functions depending on M, but
not on Mp(M; N), especially, §52%¢* = 0. By Eq. (4.74) we then have

A((9), 1e)) = 0" * ([ea esly) = ([0, €], )

which is precisely what we want and expect of a generalized bracket.

Proof of Prop. 4.53.50.
The antisymmetry is clear, and the bilinearity follows by the linearity of §. for alle € F(M;*E),
recall Cor. 4.3.25. We have

(“tmne) (1, *v) = * (b (1)) = * (Vv = V™1 = [1,1] )
for all p,v € I'(E), and
B = = (V2 n),
therefore
A ) =" (Virsv) = (Vi) = (Vi = Vi = [nvlp) =" (1. v]p).
which proves Eq. (4.73). For e,9 € F2(M;*E) we have, with respect to a frame (e,), of E,
8ge = 0ge® *eq — e™9® *(ngsea),
and so
AV, e) = 5.9 *eq — 9ol *(Vz‘;“sea) — 59 Feq + £M0° * (V}gfsea)
— g * (ngseb — ngsea — lea, eb}E)
= 6.9 *eq — 09e® *eq + 9" *([ea, ep) )

This expression for A(¥,e) shows that its value is independent of the chosen V, when the
functionals € = e*®*e, and ¥ = ¥*® *e, are independent of A, since then also their components
with respect to (*eq), are independent of A because *e, is already independent of A. Then apply
Cor. 4.3.26. [
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Corollary 4.3.32: A a Lie bracket on the pull-backs of I'(E)

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E.

Then the restriction of A on pullback functionals is a Lie bracket.

Proof.
The antisymmetry, the bilinearity over R and the closedness follow by Prop. 4.3.30, the same
also for the Jacobi identity by observing

ACHACY ) " E ACw @) " E T (s )

for all u,v,n € T'(E). Hence, the Jacobiator of the restriction of A on pullback functionals is
given by the pullback of the Jacobiator of [-, -], the latter is of course zero. |

We will see that A is actually always a Lie bracket, but for proving this we do not want to
show the Jacobi identity directly, due to how we constructed it we rather are going to use the
equivalence with Bianchi identities of curvatures; recall the proof of Thm. 3.4.6. Hence, let us

define the curvature we are interested into.

Definition 4.3.33: Curvature of infinitesimal gauge transformations along

functionals

Let M, N be smooth manifolds, ¥ — N a Lie algebroid, V' — NN a vector bundle, V a
connection on E, and ¥V an E-connection on V.

Then we define the curvature R; along L € FE(M;*V) as a map Rs(-,)L :
FOM;*E) x FY(M;*B) x FE(M;*V) — FEM;*V) (k € No) by

(19, &, L) = R(S(ﬂ’ €)L,
R5(19, E)L = 090:L — 0:09L + 5A(1975)L (4.75)

for all 9,e € FA(M;*E).
In alignment to Def. 4.3.21 we denote R;(-,-)A = Rs(:,-)w2, and Rs(-,)A* = Rs(-, - )w$§

with respect to a frame (e,), of E.

Remarks 4.3.34.
The sign in front of the third term depends on which sign one takes in the definition of é..
Changing the sign € in the definitions of the gauge tranformations would lead to a minus sign

in front of the third summand.

Using a frame of ¥ we can apply the Leibniz rule.
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Corollary 4.3.35: Relationships between curvatures

Let M, N be smooth manifolds, E — N a Lie algebroid, V — N a vector bundle, V a

connection on E, and PV an E-connection on V. Then locally
Rs(-, )L =Rs(-,")L* ® *eq + L* @ *(Rey (-, )eaq) (4.76)

forall L € FE(M;*V) (k € Ny), where (eq), is a local frame of E and viewing Rey (-, )eq
as an element of O*(E; E).

Proof.
Let us first study terms like Rs(,e)(*h) for e,9 € FL(M;*E) and h € I'(V), using a local

frame (e,), of E,
090-(*h) = =0y (2 *(PVe,h) ) = —bye” *(PVe,h) + %0 *(PV,, Ve, ),
and
5aioe)(h) T ET (500 5pet 40" < (*(lensecl)”) *(PVe,h)
= 69" *(PVe,h) = 00" * (Ve ) — &0 * (P, 01, ),
in total

Ro(9,2)('h) = 0 * (“Ve, "V h = PV, PVeyh — PV, i, h) = ((Reg (o)1) (0,).

REv(ebaea)h

Therefore we arrive at
Rs5(9,e)(L* @ *eq) = 090 L* @ *eq + 0L ® 09(¥eq) + dyL® ® 0:(Teq) + L @ d90-(Teq)
— (0 ¢)
+ AW, L @ e + L @ 0a9,e) €a
= Rs(0,e)L* ® *eq + L* ® Rs(9,¢)(*eq)
— Rs( )L @ e+ L@ (*(Reg (- )ea)) (0,)
for all L € FE(M;*V). u

Keep in mind that Rs is not a typical curvature, for example J. is not C'°°-linear with respect
to &, such that it is not immediately clear whether this curvature is a tensor in the other
arguments, so, we need to prove this if we want to simplify calculations. We are first focusing

on Rs(-,-)A.
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Proposition 4.3.36: Rs is a tensor

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E.

Then Rs(-,-)A is an anti-symmetric tensor, i.e. anti-symmetric and Fo(M)-bilinear, and

we have

Rs(e,9)A = Rs(e,9) A% ® *eq + (*Ryas) (€, 9) A (4.77)

for all e,9 € FAM;*E).

Proof.
e The antisymmetry is clear by Prop. 4.3.30. Fix a local frame (e,), of E, then we have

5907 AT —55((V) (f2)
= —dg(df ® e+ f ("V)e)
= —6ydf ®e—df ® dge — 6pf (*V)e — f39((*V)e)
= Spdf @ e — df @ 6pe *eq + df @ %P * (vgjsea) —69f (*V)e + f646.A
for all ¥,e € FL(M;*E) and f € FOU(M), and
—5169A = 6-((*V)0)
= b (0" @ *eq + 9" (Vey))

L 5400 @ ey — 40" @ f< 7 (VEe,)

+ 850" {(Vey) = 0" H(VES(Ven) ) = 0" *(Vepyemysenen)

:df@*(V(*p)(g)eb)'f'f'(- .. )
——

indep. of f

= 07edV” @ *eq + 050" {(Vey) — 09°e°df @ * (Vpienyen) + - ().
~——

independent of f

Since we want to check the tensorial property, we can ignore the terms proportional to f; we

also have

5A(19,fs)A = ("V)(A(fe,9))

Eq. (4.74) a * . a,gb *
TET (V) (00f 4 92" T — 050 ey + fED *([ewrerl )

BB 50df @ e+ 0pf ("V)e + Af @ 9e® *eq — 87.d0° @ *ep — 079" {(Vep)
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+ &% df @ *([easep]g) + F-(--.).

——
independent of f

Hence, we get in total

Rs(9, fe)A = e"0*df @ * (VEeq = Vyienyes + leas bl )+ ()

——
independent of f

=Vbase, —Vbase,=0

—f(..)

~——
independent of f

for all ¥,e € FA(M;*E) and f € F2(M). Using the antisymmetry proves that Rs(-,-)A is a
tensor because the shown equation also holds for f = 1 such that the remaining terms in the
f-independent bracket are precisely giving rise to Rs(¥, ) A.

e Eq. (4.77) just follows by Cor. 4.3.35. |

Due to the tensorial behaviour, we can study Rs(+,-)A just with respect to pullback function-

als, such that the notations and calculations can be simplified.

Theorem 4.3.37: Curvature of the infinitesimal gauge transformation mea-

sured by the basic curvature

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E. Then

Rs(*p,"v)A = = (R¥ () (4.78)

for all p,v € T(E), viewing R2(u,v) as an element of QY(N; E).

Remarks 4.3.38.
e One can then derive with Eq. (4.2) that

!(Rl%aS('u’ V)) _ (*( l%aS(,u’ u)))D _ (*Rl%as)(*u’*y)D’

viewing D as an element of Fx(M;*TN); recall Ex. 4.1.12. Using that Rs(-,-)A is tensorial and

that pullbacks are generators as usual, we get
Ry(e,0)A = —("R¥") (e, 9)D

for all e,9 € FL(M;*E).

e One could also view this theorem as a physical interpretation of the basic curvature.

Proof of Thm. 4.3.37.
We have

8- (8-, A) (@, A) = =0-,,({(V) ) (@, 4)
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e !(VZaS(VV) + V/J(Vu)”)7
and
(VE=(V0) + Vywpv) (V) = VESVy v = Vgpay v + V (v, ¥
= 1, Vylp + Vo@yn i = Vip v

for all Y € X(M). In total we would then look at the pull-back of the following form

(Vh(V0) + Vwmy = VE=(Vi) = Vi = V([ 1]6) ) (V)

= [ Vyvlg + V)b = Vipuy1v — [ Vy il g = Voo,V + Vige), vk — Vy (1, v]g)

=~ (Vv (I vlp) = [Vy i, V] = [, Vvl = Vigpuey tt + Vgrasy v
Def._3.7.4 RS, 1)V
Therefore we arrive at

Rs(*p,"v) A = = (R¥(p,1)Y).

We get immediately the following statement.

Corollary 4.3.39: Flat infinitesimal gauge transformation

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E with
Rl%as = 0. Then

Rs(-,)A =0. (4.79)
With respect to a frame (e,), of E we then also have
Rs(-,-)A =0 (4.80)

for all u,v e T(E).

Remarks 4.3.40.

e This discussion, especially Cor. 4.3.39 and Thm. 4.3.37, are generalizations of statements
in [16, especially Prop. 8 and Thm. 1] and [17, especially Eq. 9, 10 and 11; there the S denotes
the basic curvature].” In both of these works a coordinate-free formulation of §.A was not
known, just 0. A% It was known that d.A® is dependent on coordinates, but not how it can
be written/defined such that it is again an element of Q'(M;®*E). [16] tries to formulate

5The sign of € in the gauge transformations there is the opposite of our sign.
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infinitesimal gauge transformations in a covariant way with a completely different approach
by assuming a weaker form of equality, but only for a special situation and only for € as an
element of ®*(I'(E)) (i.e. they only looked at pullback functionals, when we express that in our
languages). [17] looks at the set I'(®*F) for £ but assumes that £* is independent of ® and A
which is clearly a coordinate-dependent description, because a change of the pull-back frame
would introduce a ®-dependency of the components € (in our words, they choose a coordinate-
dependent embedding of I'(®*FE) as functionals). In one way or the other, both works arrive
at Eq. (4.80), but only evaluated at pullback functionals, that is, Rs(*u,*r)A* = 0 for all
w,v e I'(E).

What we provide is a coordinate-independent and -free definition of such infinitesimal gauge
transformations. Moreover, we have generalized Eq. (4.80) in form of Eq. (4.79), in sense of not
only assuming pullback functionals by defining the pre-bracket A.

e Recall Remark 4.3.22: One could also take V, to define .. It has the advantage that
then ;A directly restricts to the standard formula when restricting ourselves to the classical
setting. When defining and calculating Rs in a similar manner, we also get Eq. (4.77) where
the curvature-term will be replaced with the curvature of V, due to Cor. 4.3.35. Therefore one
needs to impose at least flatness of V, in order to get a similar result like Eq. (4.79); actually,
one can check that one still needs a vanishing basic curvature, too. But we will later see that
the basic connection will be in general flat, while V, will not; especially we will see that the
basic curvature will always vanish for the presented gauge theory. Thence, another reason for

our choice to use the basic connection for the definition of §.

Proof of Cor. }.3.39.
That is a trivial consequence of Thm. 4.3.37 and Prop. 4.3.36, using R%as = 0 (and that then
the basic connection is flat by Prop. 3.7.6) and that Rs(-,-)A is F2(M)-bilinear such that one

just needs to look at pullback functionals. |

These results motivate even further why we use the basic connection to define the infinitesimal
gauge transformation. Moreover, R%as = 0 is also a condition which we will need for gauge
invariance; see later. However, we also have this condition in the standard formulation of gauge

theory such that it is not a newly imposed condition:

Theorem 4.3.41: Relation of the basic curvature and action Lie algebroids,
[1, discussion around Eq. (9)], [6, Prop. 2.12], and [13, §2.5,

Theorem A|]

Let E — N be a Lie algebroid. Then E is locally an action Lie algebroid if and only if
it admits locally a flat connection V with R'%as = 0. If there is such a local isomorphism,

then it can be chosen in such a way that V describes the canonical flat connection.

Remarks 4.3.42.

As clarification of the last sentence, under that isomorphism we have (locally) E = N x g for
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some Lie algebra g, and a basis of g, that is, a constant frame of F, will be parallel with respect
to V. Especially, the canonical flat connection of every action Lie algebroid has a vanishing
basic curvature. Furthermore, over a simply connected base the isomorphism is global as we will

see in the proof (because one can then construct a global parallel frame for V; see the proof).

Proof.
This basically follows by Eq. (3.59), i.e.

RS (1, v)Y = (Vytgias) (1, v) — Ry (p(p),Y)v + Ry (p(v),Y )

for all p,v € I'(F) and Y € X(N).
"=": Assume E|y = U x g is an action Lie algebroid for some open subset U of N for some

Lie algebra g. Over U take the canonical flat connection V, and let (e,), be a frame of constant
sections on U. Then by Eq. (3.59)

R'%as(ea, ep) = (Vignas)(€a, €p) = V(tybas(€a, €p)) = dC5 @ e, =0
—— ——

=[ea,eb] g

where Cf, are the structure constants of g.

’<": Assume we have a flat connection V over some open subset U with R%as =0. W.lo.g.
assume there is a parallel frame (e,), for V on U (otherwise restrict U to a smaller subset).
Then again by Eq. (3.59)

0= V(tvbas (ea, eb)) == dcgb & €c,

thus, the structure functions related to the parallel frame are constant. Therefore the parallel
frame spans the same Lie algebra g at each fibre, so, E|y = U x g as vector bundles. Identifying
elements of g with constant sections, the anchor p defines clearly an action for g on N, and [, |5

clearly restrict to [-,-]. on constant sections. The Lie algebroid is thence of the action type by

g
the uniqueness given in Prop. 3.1.23. |

We now want to generalize Cor. 4.3.39 by using Cor. 4.3.35, especially we need to under-
stand the behaviour for scalar-valued functionals. For such functionals the infinitesimal gauge
transformation is nothing else than the Lie derivative of some vector field in 9Mg, which we
denoted by W.. Recall Remark 4.3.2, we do in general not expect that U, € X¥ (M g(M; N))
builds a subalgebra; however, since we restricted the set of those vector fields by defining 6. A

in Prop. 4.3.16, there may be hope for the structure of a subalgebra; this will be discussed now.

Theorem 4.3.43: Bracket of gauge transformations a gauge transformation

Let M, N be smooth manifolds, E — N a Lie algebroid, V a connection on E with
Rl%a‘s = 0. Furthermore let ¥, and Wy for e,9 € FL(M;*E) be the unique elements of
XE(ME(M;N)) as given by Prop. /.5.16.%
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Then
[Te, Uy] = —Pna(e,) (4.81)

for alle, 9 € FY(M;*E), where W p (. g) is also the unique element of X% (Mp(M;N)) as
given by Prop. 4.3.16.

“Recall that those W. are the vector fields describing the infinitesimal gauge transformation; see
Def. 4.3.23.

Proof.
First recall that we have by Remark 4.3.9

dew = Ly _w

for all w € FA(M) and € € F2(M;*E). Therefore we want to use Cor. 4.3.39. As vector fields
of Mp(M; N), the action of Ly, is uniquely given by its action on coordinates of Mg (M; N),
and these are essentially given by the components of the fields (®, A) € Mp(M; N): Let (z%)

be local coordinate functions on N and let (e,), be a local frame of E, then coordinates of

i
IMp(M; N) are given by the functionals *(z') and w$ because of
(=)

ws (P, A) = A°

= @'

(®,4)

)

for all (®,A4) € Mr(M;N). Recall the first calculation in the proof of Cor. 4.3.35, we get

similarly

Rs(e,9)(*(2)) = "0 " (Lot Zotent" = Zoten Zotea)® = Zy(tementy) ™) = 0

= (g[l’(ea)vp(eb)] _gp([ea,eb]E)) CCIZO

for all e, € F2(M;*E), using that p is a homomorphisma and Remark 4.3.9 such that
5 (*(2%)) = —&® *(S’p(ea)xi). By Cor. 4.3.39 we also get

R(;(E,ﬁ)wg = 0.
By 0. = Zy_ on scalar-valued functionals we therefore get

([3%»3\1&9] + g‘I’A(s,ﬂ)>f =0

for all f € C°(Mg(M;N)), which finishes the proof. [ |
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Remark 4.3.44: Curvature of 6 on @

Keeping the same situation and notation as in the previous proof, observe that we have

Fu0ou® = =8 (o)) = * (Vo)) = (V1))

for all u,v € I'(E), hence,”

8e1 0@ = oo ® 4 0. g 1B =" (p(v'gasu — Vs — [y, M]E)) = (p(tvbas(l/, u))).

Therefore, if we want that this is zero, too, we would need that the torsion of the
basic connection has values in the kernel of the anchor which is in general not the case.
However, it is no harm that we do not have a zero value in general here. That is due
to the fact that on one hand ® just contributes via pull-backs, as we will also see in the
following sections; on the other hand @ is not vector-bundle valued and hence will not
arise in any other form than as the map for the pullbacks in any Lagrangian or physical
quantity. Even in the classical case, recall Prop. 2.1.16, a Lie algebra representation

acting on ® is just the evaluation of its induced action at ®.

However, as we have seen in the proof, we got Rs(-,-)(*(2%)) = 0, and *(xi)‘((b A= o
for all (®,A) € Me(M; N). That is, for the components of the Higgs field we have the

desired behaviour, which is all we need.

“Recall Eq. (4.73).

Finally, we can generalize Cor. 4.3.39.

Theorem 4.3.45: Curvature of § on arbitrary functionals

Let M, N be smooth manifolds, E — N a Lie algebroid, V a connection on E with
R'%as = 0. Furthermore let V. — N be a vector bundle, equipped with an E-connection ¥V
on V. Then

Rs(e,9)L = (*Ruy)(e, 9)L (4.82)

for all L € FE(M;*V) (k € Ny) and e,9 € FL(M;*E). In short, Rs = *Rey.
E E v

Remarks 4.3.46.

This also shows that Rs is a tensor. Moreover, as expected, for flat £V we would get
Rs(e,9)L = 0. (4.83)

Proof of Thm. /.3.5.

We want to use Cor. 4.3.35, so, for a given frame (e,), we have

Rs(e,9)L = Rs(e,9)L° ® *e, + (*Rey)(e, 9)L
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for all L € FE(M;*V) (k € Np) and ¢,9 € FA(M;*E). Hence, we just need to show that
Rs(e,9)L* = 0. Again by Remark 4.3.9 we have §. = Py, on scalar-valued functionals, where
U, still denotes vector fields as uniquely given by Prop. 4.3.16. W, are elements of X (Mg (M; N)),

hence,

(0-LYp(Y, -, Vi) = Zu (Lo(Vi, -, Vi)
=Py L°

forallp € M and Y3,...,Y; € T,M. We know that L* € FE(M), and therefore Ly(Y1,...,Yg) €
C>™(Mg(M;N)), so, we just need to use Thm. 4.3.43 to get

(Rs(e, )L, (1, ..., Vi) = (L., Lu,) + %A@,M)L“)p(Yh LY

= ([3\1’573‘1’0] + g‘I’A(a,ﬂ)) (LZ(Yl’ T Yk))

Thm. 4.3.43
= ()7

which concludes the proof. |

Let us conclude this section by showing that this finally implies that A is a Lie bracket.

Theorem 4.3.47: Pre-bracket a Lie bracket

Let M, N be smooth manifolds, E — N a Lie algebroid, V a connection on E with
R'%as = 0. Then A is a Lie bracket.

Proof.

By Prop. 4.3.30 we already know antisymmetry and R-bilinearity. Thus, only the Jacobi identity
is left to show, and the calculation is very similar to the calculation of the first Bianchi identity
in Thm. 3.4.6,

A(n, A0, €)) = A(n, 6.0 — dge — (“tgwas) (W, €))

= (555197’] — 5519677 - 5<*tvbas)("975)77

INCY!
50+ e+ () 1 (e 0,0)
+ 0y (("ynas ) (9, €)) = ("yoas) (0, 80) + (“tgas ) (7, 09e)
= 0p09e — 0500 + GA(9,)7

+ 0 (("tgwas) (9, €)) = (Ftgwas) (0, 0:0) + (tgbas) (0, de)
—_— ———

= (*tvbas> (6195777)
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+ ("tgees) (0, (("towas) (9, €)))

for all ¢,9,n € FL(M;*E). Taking the cyclic sum, we collect the terms as in the proof of
Thm. 3.4.6, and hence we get, using that V" is used for the definition of § on FE-valued

functionals,
A(n, A9, €)) + A, A(e, n)) + Ale, An, 9))

= R(S(Th 0)5 + R5<€7 77)19 + Rﬁ(ﬂ7 5)77

Thm. 4.3.45
= 0

+ (*tvbas)<’l7, (*tvbas)(’ﬁ,e)) + (*tvbas) (8, (*tvbas)(n,’ﬁ))
+ (Mtgvas ) (9, ("tgmas) (£,1))

+ 0y (Ttgeas)) (0,€) + (0 (“tgrns)) (0, 0) + (09 ("tgras)) (€, 1)
—_———

— (Ttgmae)

= —9abpe (tvbas (tgbas (€ay €h),s €c) + trgbas (Egbas (€p, €c), €q) + tybas (Eybas (e, €4), €p)

+ (V2 b ) (eas €0) + (VEStgma ) (en, e0) + (VEStgms ) (ec, ea))

Thm. 3.4.6
= 0

for all e,9,n € FL(M;*E), where (e,), is a local frame of E, and we also used that vbas ig flat
by Prop. 3.7.6; the flatness was applied when we used Thm. 3.4.6 and Thm. 4.3.45.° Thence,
the Jacobi identity follows. |

Remarks 4.3.48.

The proof is essentially based on the first Bianchi identity of curvatures. Hence, taking any other
E-connection V' on E one could define the bracket A by using the torsion of V' instead of VP25,
and then also define the § operator with respect to V/ on E-valued form. By Thm. 4.3.45 we
could not expect Rs = 0 in general, but A should be nevertheless a Lie bracket due to the fact
that the first Bianchi identity always holds and that Thm. 4.3.45 provides the needed curvature

terms for the Bianchi identity.

4.4. Infinitesimal gauge invariance

Let us now calculate the infinitesimal gauge transformations needed for the Lagrangian.

5But flatness is not actually needed here; see also the following remark.
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Proposition 4.4.1: Infinitesimal gauge transformations of the field strength

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E. Then

we have

1
5.F = — (2 (“Ry)(® 4 D)e + ("R¥*)(c h @2 ) D)) (4.84)
for alle € F2(M;*E), where we write T(E)xT(E)x X(N) 3 (u,v,Y) — R¥S(u,1,Y) =

RES (1, )Y

Proof.
Let (eq), be a frame of E, then by Eq. (4.61)

dd.w§ ® "eq = d(sbwg ®* (ngsec) - (*V)e)a ® *eq
=deP A ™ (ngsec> + & dos®* (ngsec>

— et nd(*(VEe.))" © Fen — d((*V)e)" @ *eq

also recall Eq. (4.43), and (4.58) (and also the calculation for Eq. (4.59)), then, using the previous

calculation,
O (d*vwz) =0, (dwg ® *eq — wg A !(Veb))
=di.wy ® eq —dw§ @ * (Vl?asea) — 6wy N (Vey)

+ w5 A <<* (V?aS(Veb))) D)+~ (V(*p)((*v)s)eb))

=e® !(VEES(V%))"'EG (Vp(earen) +de®" (Vp(eq)e0)

=de? A wg ®* (stseb — Vp(ea)eb)

=t gbas (¢ascn)

— e Ad(” (v'gjsec))b ® *ep — d((*V)e)’ @ *ep
- (w5 @ (Vhe) - (V)e) Al (Ver)
+e%wh A (v‘ng(veb) + vp(wa)e,,>

= de® A @ *(tgbas (€, €5)) — e Ad Y (* (VE:S€C>> - (d*v)25
=Reg(-)e

Eq. é\.Z)! (V(vsgsec))
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+ ey A (V'gjs(Veb) + Vp(Vea)eb>
= dEa /\ wg *(tvbas(ea, eb)) - 8(1 '(RV(7 ')ea)

+ €awg A ! (Vlé’js(veb) — V(Vlgjseb) + Vp(wa)eb),

x(N)BYD—>[ea,Vyeb]E-‘rvp(vYEb)ea—V[p(ea)’y]eb—Vy([ea,eb}E)—Vyvp(eb)ea

using the second calculation in the proof of Thm. 4.3.37. Moreover,

(Vi) (o7

for all u,v,n € T'(E), such that, also using Eq. (4.40),

Thm. 3.7.8
) =" Ry,(u,v)n

J. (;(*tvbas)(wQ A w2)> — _% ((* (vleoastvbas)) (w2 4 w2)

+Cton) (V)2 4 ) + (o) (@24 (V)2))

=("tgbas) (" V)ehw2)

= 5 By, )ea)) (@2 4 w2)

— de® A b * (tgvas (€, €0)) + € @ A (tgvas(Veq, €))
where we used that the torsion is anti-symmetric such that by Prop. 4.0.3
(tmes) (2 5 (*V)e) = (“tguan) ("V)e 4 w2), (4.85)
because both arguments are 1-forms. We also have
leas Vyepl g + Vovyen)€a = Vipea),v1€ — Vy ([€a, €] g) — Vy Ve, €a + tybas(Vyeq, )
= lea; Vyeplp + Vivye,)a = Viplea),v1€ — Vy ([€as €] g) — VY Vp(e,)€a
+ [Vyea elp — Vpyea) + Ve, Vyea

= —Vy(lea bl p) + [€as Vyes g + [Vyea el + vagsyea — Vngsyeb

* Vo(en) Vya = VY Vp(e)€a = Vip(e,),Y]Ca

P24 _Rbas(e, €)Y + Ry(p(en), Y)eq

for all Y € X(N), and we are going to view Y > —RR(e4, €)Y + Ry (p(ep), Y)e, as an element
of QY(N; E) (locally). Hence, altogether

Def. 4.2.1

0. F — !(Rv(-, )eaq)

_ % (*(Ry, (- -)ea)) (w2 ) @)
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+eah A (Ry(ples), )ea — R (ea, o))

Ba. (4-2) _% ((R9)(D A D)e + (*Ry,) (w2 ) w»)e)

=("Re)((*p)(w2) } (*p)(w2))e

+ ("Rv)((*p)(w2) 5 D)e —("RY*)(e ) w2 1 D)

:%((*Rv)((*p)(m) 2 D)e(Re)(D 4 Co)(wa))e)

Def. 4.2.3 1

5 (CRY)(® 12 D) — (Re)(@ 4 (*p)(w2))e)

~ ("R¥*) (e h =2 ) D)

1
_ (2 (‘Re)(® 2 D)e + ("R¥) (e w2 ) D)),
where we introduced the notation I'(E)x(E)x X(N) 3 (u,,Y) = R¥S(u,v,Y) = R (u,v)Y
in order to emphasize the anti-symmetrization when applying the graded extension on R, and

we used the same argument on (*Ry)((*p)(w2) » D)e as in Eq. (4.85). |

Remarks 4.4.2.

These formulas look different when comparing it with the standard formulas, but that is again
related to that we use the basic connection for the variations instead. As introduced, we should
look at the variation of the components to see how the variation affects the variation of the
Lagrangian.

e In order to define gauge invariance the idea is as in [1], J;F* should be proportional to F
which is not the case here for both terms. Explicitly we need that 6.F = 0; in that case we
would have for the components (with respect to a frame (e,), of E)

B = (0F)" ~F* (0("er))" = (*(92es)) P = (*(leeres]p + Vpienpee) ) F* - (4.86)
=0
such that the variation of the components is proportional to themselves and we can then formu-
late the symmetry on scalar products as usual as a symmetry under (infinitesimal) "rotations”,
see also the next theorem.

In the proof we saw that we can also write
0-F = L *Rv)(D ) D *R A
:F=—5 (CR9)(D 2 D)+ (“Ry, ) (w2 ! @2)e)

+ ("Rv)(("p)(w2) 4 D)e — ("R¥*)( 1 @2 4 D).

Since ® and A are regarded as the fields with respect to which the theory gets varied and
M, N etc. are completely arbitrary up to this point, so, thinking about the whole category of

possible manifolds, D and ws can be viewed as (in general) independent functionals while
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is very arbitrary. Thus, in order to get 0. = 0 we need Ry = 0 and R%as = 0 in general.
R%as = 0 sounds reasonable as we discussed in the previous section, recall the discussion around
Cor. 4.3.39, but the condition that V is flat is not a good condition because this will lead to
that we have locally the standard formulation of gauge theory which is not the aim of this new
formulation. The problems with flatness we are going to discuss later, instead let us discuss
why this formula recovers the standard formula when using again action Lie algebroids with
canonical flat connections.

e As usual we use again Cor. 4.2.6, for this assume that £ = N x g is an action Lie algebroid for
some Lie algebra g, equipped with the canonical flat connection V; as in the proof of Thm. 4.3.41
the canonical flat connection satisfies R%as = 0. Thus, we have then d.F' = 0, and by the previous

calculation

5€Fa — &€ (I)*([ec,eb]g)a Fb = ([E,F}g)a
NI

const.
for (e,), a constant frame. This is again precisely the expected formula, recall Prop. 2.4.5, and
this is also shown and argued in [I, see the second paragraph after Eq. (11), keep in mind that
the different sign for €], where also the general formula with the curvature got stated, but again

only for the components without knowing the full tensor.

Using this and Remark 4.4.2 we can finally formulate what we need to have a gauge-invariant

Lagrangian; for this we need to calculate d.Lynm (Def. 4.2.5).

Theorem 4.4.3: The gauge invariance of the Lagrangian,

[1, especially the discussion around Eq. (16)]

Let M be a spacetime with a spacetime metric 1, N a smooth manifold, E — N a Lie
algebroid, V a connection on E, k and g fibre metrics on E and TN, respectively. Also
let V.e C*®°(N) and assume that the following compatibility conditions hold:
Ry =0, (4.87)
RS — ), (4.88)
Vvbhasg =0, (4.89)
vbhasg = 0, (4.90)
(LepeV) =0 (4.91)
for all e € FY(M;*E). Then we have
S-Sy =0 (4.92)
for all e € FY(M;*E).
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Remarks 4.4.4.
Since Lie derivatives describe the canonical flat connection on smooth functions (canonical flat-
ness with respecto to the trivial line bundle over N, the notation of Eq. (4.91) is the same as

introduced in Remark 3.5.4 and as in other similar terms, ¢.e.

(* (%m(a)‘/))(@% A)\p = o (g(cp*p)(e)‘/) \p = L))V
for all (p,®,A) € M x Mr(M;N), where € := (P, A) € I'(P*E). It is clear that Eq. (4.91)

generalizes Eq. (2.30) if F is an action Lie algebroid.

Proof.
Observe that *(*V) = *V dvol,, where dvol, is the canonical volume form of 1 and the sign
might differ depending on the definition of the Hodge star operator. Using that, we only need

to look at the variation of *V because dvol,, is clearly not affected by d, hence,
0-(V) = = (L py)V) =0
for all e € FA(M;*E), where we used the last condition. Up to a sign we also have’
w A *p = (w, ) dvol,
for all w,v € QF(M) (k € Ng), where (-,-) is the standard scalar product defined on QF(M)

using 7, ©.e.

1
<wv¢> = E Wa1,...,ak¢a17m7ak

where we express the forms with respect to coordinate vector fields (J,), on M and raising an
index is done by using n; especially, J. satisfies the Leibniz rule on (-, -) because d.n = 0. Hence,

similar to before,
e (w A xp) = 0 ((w, ¢) dvol,) = ((dew, ) + (w, d:1))) dvoly = dew A xtp 4+ w A *(6:9)

for all e € F2(M;*E). This clearly extends to Def. 4.0.1 by the Leibniz rule (e.g. this is

immediate by the coordinate expression of graded extensions), in the sense of
0c(("R)(F 4 +F) = (0("R))(F Y xF) + ("K) (0 F § +F) + ("6) (F ) #(3:F))

for all e € FR(M;*E), similarly for other all terms of that form. Observe that we have 6.F = 0
additionally to 6:® = 0 by Prop. 4.3.18 and 4.4.1 and due to Ry = 0 and R%as = 0. So, we get
in total, using the result of the variation of the potential V,

0:Lymu = Oc (—;(*/{)(F A *F) + (*g)(@ A *@) - *(*V)>

_ 7%(55(*5))(1; N HF) + (6:(*9)) (D 4 +D)

"As also defined in [4, §7.2, Definition 7.2.4; page 408].
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B L0 2 () ) ) — (2 (7)) @ 4 +2)

=0
for all ¢ € F2(M;*E), using the metric compatibilities in the assumed conditions. |

Lie algebroids equipped with a connection with vanishing basic curvature are also called
Cartan algebroids as e.g. defined in [13, §2.3]; hence, this special type of Lie algebroid seems
to be the relevant one for gauge theories, as we already have noticed in the discussion about
gauge transformations. Let us collect all the results we got along the way in relation to the

standard formulation.

Theorem 4.4.5: Standard formulation of gauge theory is recovered, [1]

Assume that N = W is a vector space, E = N x g an action Lie algebroid for a Lie algebra
g whose Lie algebra action ~y is induced by a Lie algebra representation ¢ : g — End(WW),
and assume that V is the canonical flat connection of E. Moreover, let k be a fibre metric
of E which is a canonical extension of an ad-invariant scalar product of g, similarly g
is a metric on TW Z W x W constantly extending an -invariant scalar product of W.
Finally, let V€ C*>°(N) such that it satisfies Eq. (4.91).

Then the compatibility conditions of Thm. 4.4.3 are satisfied, and we recover the standard
theory: The Lagrangian £ynvmu 4s as in the standard formulation and gauge-invariant, as
does the field strength F, the minimal coupling ®, the field of gauge bosons A, the field P,

and its variation §.®; with respect to a constant frame (ey), of E and a constant frame

a

(0a), of TW, 6.A% coincide with the components of the variation of A of the standard

formulation, as does 6.F® and 6-(D)“.

Remarks 4.4.6.

As discussed in subsection 4.3, the infinitesimal gauge transformation of the Lagrangian is just
0cLymu = Ly _Lymu. Thence, the definition of U, is of importance for the gauge invariance
of the Lagrangian, that is, how ® and how the components of A transform; recall Prop. 4.3.16.
Given that unique ¥, of Prop. 4.3.16 (for a fixed V) one can take any other connection on F
to formulate d. A and J. in general, one will always get the gauge invariance of the Lagrangian,
and the components of A etc. will also transform the same. Hence, the statement about the
transformations of the components could also be formulated as that W, reduces to the same
vector field on the space of fields as in the classical situation.

However, as already mentioned before, the definition of ¥, depends on V; but given a ¥,
the choice of connections for the definition of d. does not affect the gauge invariance of the
Lagrangian.

When we would use V, to define the gauge transformations of E-valued functionals, then
many of the total formulas would also restrict to standard formulas due to the flatness of V in

the standard situation, not just their components, recall Thm. 4.3.10. That is especially due
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to that V, will be a canonical flat connection, while the basic connection is flat but it may
not have a parallel frame due to the kernel of the anchor. If we would use V,, we would loose
the flatness of the gauge transformations as discussed in Cor. 4.3.39 whenever V, is not flat
anymore. However, we have now seen that V needs to be flat for the gauge invariance of the
Lagrangian such that this does seemingly not matter; but we will see later that there is the

possibility to allow non-flat V.

Proof of Thm. 4.4.5.

First recall Thm. 4.3.41, especially, the canonical flat connection satisfies R%as = 0; the metric
compatibilities follow by Lemma 4.3.12, hence, all compatibility conditions of Thm. 4.4.3 are
satisfied. That the formulas restrict to the standard ones we have discussed in Cor. 4.2.6 and
4.3.11, and Remarks 4.3.5, 4.3.17, and 4.4.2. |

But due to the compatibility condition about the flatness we arrive locally now at an action
Lie algebroid, regardless of the specific choice of F; and as we have seen multiple times, action

Lie algebroids recovers the classical theory.

Corollary 4.4.7: Gauge invariance implies standard theory,

[1, the discussion around Eq. (9)ff.]

Let us have the same conditions as in Thm. 4.4.3. Then E is locally isomorphic to an
action Lie algebroid N x g such that V is its canonical flat connection and N = W is
a vector space, also, 0. A% are then of the form as in the standard formulation of gauge

theory with respect to a constant frame (eg),, as does §oF.

a’

Remarks 4.4.8.
Using Thm. 4.4.5 one can also derive the other classical formulas depending on the conditions
about the structure, like a given Lie algebra representation. But those are just technicalities,

the important part is to have an action Lie algebroid and its canonical flat connection.

Proof of Cor. J.4.7.

By Thm. 4.3.41 we immediately know that £ = N x g is an action Lie algebroid for a Lie algebra
g with Lie algebra action v : g — X(/N) on some open neighbourhood around each point, in such
a way that V is its canonical flat connection. Restricting the neighbourhood even further results

into N = W for some vector space W. The remaining proof is exactly as in Thm. 4.4.5. |

Hence, we arrive locally always at the standard situation; at least at something very similar
to it. The Lie algebra action might not come from a Lie algebra representation and the metrics
might look exotic, but these are just technicalities which are not important for us, especially
when one recalls that the aim of this theory is that gauge theory is covariantized in order to
easily replace V with non-flat connections. However, there is a possibility in allowing non-flat
connections, and for this we need to change the field strength to compensate the curvature term

in Prop. 4.4.1 which is mainly the reason behind the compatibility condition about flatness, as
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also argued as an ansatz in [I, second paragraph after Equation (11)]. We want to motivate this
change by a field redefinition instead, a transformation which keeps the Lagrangian invariant
after a modification, but breaking the condition about flatness.

Before we do this let us shortly summarize an aspect of the classical theory which is now

obvious due to this formulation.

Corollary 4.4.9: Abelian Lie algebras and zero torsion

Let E = N X g be an action Lie algebroid over N for a Lie algebra g, equipped with the

canonical flat connection V. Then

tyvas = 0 & g is abelian. (4.93)

Remarks 4.4.10.
Given a fixed fibre metric s such that V"*k = 0, as in one of the compatibility conditions, we

would therefore know that VP2 is an E-Levi-Civita connection if and only if g is abelian.®

Proof.
We only need to check under which conditions the tensor of the torsion of the basic connection is

zero for constant sections p, v since these generate all sections, especially we have Vu = Vv =0

and [M?V}E = Lu7 V]g:

O - tvbas (,LL, V)
—_————

:_th(ny)
& 0=tv,(u 1)
< 0= [p, v,

4.5. Field redefinition

We study the following transformation which keeps the action invariant; for this recall Sylvester’s
determinant theorem ([18, Appendix B; page 271]), also called Weinstein-Aronszajn identity,

which says
det(1,, + CB) = det(1,, + BC), (4.94)

where n, m € N, 1,, and 1,,, are the identity matrices on R™ and R™, respectively, and C € R"*™
and B € R™*",
Abstractly spoken, the typical idea of field redefinitions is the same as for covariantizing

physical theories and definitions. One applies a non-constant change of coordinates in such a

8See e.g. [7, §2.5] for a definition of such Levi-Civita connections. However, it is precisely defined as usual.
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way that one leaves the ”inertial frame” as in classical mechanics, resulting to that one gets
extra terms in several formulas like contributions coming from ”inertial forces”; but one still has
the same physics, because the Lagrangian is actually invariant under that change of coordinates.
Usually one reformulates the same theory naturally supporting those extra terms, leading to a
theory naturally invariant under the observed changes of coordinates in all definitions, which is
often referred to as covariantization by physicists. Up to this point it is just something aesthetic
one could say, however, the next step is then study whether the mentioned extra terms always
vanish in some coordinate system. Think e.g. of connection 1-forms of connections and one
started with a theory with an underlying flat connection such that the initial coordinate system
was also the parallel frame where the 1-forms are zero, and the connection 1-forms then arise
as those extra terms in other coordinate systems. Studying whether those connection 1-forms
always can vanish in some coordinate system, means, whether or not non-trivial curvatures are

possible.

In our case the "coordinates” we speak of is the structural data, especially A, a coordinate
of Mg, but also for example V, and, so, the extra terms are going to be in the compatibility
condition about the curvature of V. To keep the same physics, that is, the Lagrangian stays
invariant, we need to correct especially the field strength since the field strength is of course
directly affected by non-trivial changes of A. Since the previously-discussed flatness of V is given
by the infinitesimal gauge transformation of the field strength, there is the hope that whatever
we need to add to ”correct” the field strength will also lead to a gauge invariant theory allowing
non-flat connections. As a next step it is then natural to rewrite gauge theory allowing those
extra terms, leading to a theory naturally invariant under the chosen change of “coordinates”
(as in coordinate-independence), while the classical theory is just the same theory, written with
respect to “coordinates” where those extra terms are zero. Finally, one may want to discuss what
happens when these extra terms actually never vanish, even after such changes of ”coordinates”.
So, precisely the same as in the previous paragraph, just happening with a different type of

“coordinate”, which is why we are not going to say covariantization but field redefinition.

Let us start defining that field redefinition.

Definition 4.5.1: Field redefinition

Let M, N be smooth manifolds, E — N a Lie algebroid, V a connection on F, and x and
g fibre metrics on E and TN, respectively. Also let A € Q(N; E) such that A := 1g—Xop
is an element of 24 (E). We then define the field redefinition by

@ = (*A)(w2) + ', (4.95)
VA=V + (Aod”™ 0 A7), (4.96)
P i=ro (ATH AT, (4.97)
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P =go (A—l, 7\—1), (4.98)

where A = Ity —po A

Remarks 4.5.2.

e A and A are already endomorphisms by definition, and, so, by Eq. (4.94) we know that
A€ et (TN) if and only if A € ot(E). Also recall that we view elements of QY(N;E)
also as elements of QY0(N, E; E), Def. 3.8.3, therefore (Aodvbas oAfl))\ c QVY(N,E;F)
QY(N;End(E)).

e We can rewrite @2 to

32 = (M) + '3 LY - (Fhop) (@) + (WD) = e+ (VD). (4.99)

With respect to points (P, A) € Mg(M; N) this implies
(221) (@, 4) = 4" = (®*A)(4) + @'\ = A+ (@°1)(D0). (4.100)

Viewing A and ws as coordinates on Mp(M; N), the idea of the field redefinition is a change
of coordinates, consisting of a translation and a rotation with A which is basically a first order
approximation of the typical rotation given by an exponential. The other formulas of the field
redefinition are taken in such a way to keep all compatibility conditions in Thm. 4.4.3 but the
one about the curvature of V. We will see this in the following.

o If we additionally have R%as = 0, then we have

(dvb“)2 =0

by Prop. 3.7.6, thus, also
as 2 as\ 2
(Aod™™ oA™") = A0 (d7) oAt =0,

hence, we add then an exact term to V.

e Eq. (4.95) was suggested by one of my supervisors, Thomas Strobl, and the first task
of my PhD was to calculate all the remaining formulas and properties needed for the following
discussions. In [1, the example at the very end, right before the conclusion| some transformation
was discussed which is a special and simplified situation of the field redefinition. Thomas Strobl

got this special example of the field redefinition after a private dialogue with Edward Witten.

Remark 4.5.3: An important note about notation

Due to A € QY°(N, E; E) one may want to write
(A ® dVbas ® A_l))\ — (A ® vbas ® A_l))\ _ dAoVbaSoA’lk’

but the first equality is not correct with our notation! Keep in mind that we have two
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degrees in form of the spaces QP4(N, E; E) (p,q € Ny), so, there are Leibniz rules involved
on the p-degree if p # 0, here p = 1. That is, for Y € X(V) and v € T'(E), compare

((Aod™™ o A1 )N)(¥v) = A((Vo (A7 0 2) ) (1))
= A(VE=((A7 o 0)(1))) = A(VEY)
= (Ao Vi o AT ) (A(Y)) — A(VE™Y)
with
(@7 AN (¥, v) = (Ao VE= o AT (A(Y)) = A((A 0 VE= 0 ATH)Y).

Hence, due to the Leibniz rules, a composition of maps with connections is not the same
as usual compositions of maps, here with a differential. With A o VP20 A=! we mean the
whole object as a connection, so, acting on A, extending Ao VP o A~! as an E-connection
to QY(N; E). While each component in A o dV™™ o A= acts separately on forms like A,
and V"2 is extended as E-connection to Q'(N; E) (without the conjugation). Therefore
one needs to be very careful about how to use conjugations like Ao ...o A~! and how to

put square brackets, especially when connections are involved. Thus, also
((Aod™™ o AT )N) () = A(VE(A7 0 2)) # (Ao VE™o A7) (4.101)

If one always wants to write dV™"" = VP for elements of OPO(N, E; E) as at the begin-
ning of this remark, then one needs to introduce a notation for extensions as of VP to

QY(N; E) in order to avoid precisely the confusion of notation discussed here.

We have actually the following corollary relating both notations/notions.

Corollary 4.5.4: Conjugation of differentials

Let N be smooth manifolds, E — N a Lie algebroid, and V a connection on E. Also let
A€ QYN E) such that A =15 — Ao p is an element of skt (E). Then

A Vbas A1
(do ° w)(Xl,...,Xp,VQ,...,Vq)

= <(A 0dV™ o Afl) (w o (/AX; .t;n;;sj\,]lE; tm;s]l;g))) (/A\fl(Xl), e ,/A\*l(Xp),l/o, ... ,I/q)

(4.102)

for allw € QP4(N,E;E) (p,q € Ny), X1,...,X, € X(N) and vy, ...,vy € T'(E). Equiva-
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lently,

p times q times
—Ao (dvb‘“w) o (7\—1, A1, ,nE). (4.103)
p times q+1 times

Remarks 4.5.5.
The second formulation emphasizes that it is roughly about a commutation relation between

the conjugation with A and the differential with the basic connection.

Proof of Cor. 4.5.4.
That is a straightforward calculation, writing EV = AoVPaso A1

(dE%w> (X1, Xpo 10, .., 1)

1
[]=
~—~
—
~
N
&
<
S
/N
&
VS
VS
=
O
-
L
N———
(s
u\/
Py
-
(]
=)
L
N——
~—~
<
S
X
X
N—
N—

_ ((Aodv"“ oA_l) (wo (K,...,K,nE,...,nE))) (K—l(Xl),...,K—l(Xp),yo,...,uq)

p times q times

for all w € QPI(N,E; E) (p,q € Ny), X1,...,X, € X(N) and vy, ...,v; € I'(E). The second

equation is of course just that formula applied to

Aowo(Kﬁl,...,f&*l,]lE,...,]lE).

p times q times

Before we can study and discuss this field redefinition let us list several useful properties.

Proposition 4.5.6: Properties of A and A

Let N be a smooth manifold, E — N a Lie algebroid, V a connection on E, and k and g
fibre metrics on E and TN, respectively. Also let X\ € QY (N; E) such that A = 1g — Xop
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is an element of Skt (E). Then we have

l l

AT =3 op) + A o (hop) T, AT =D (po N + AT o (po V)T,
k=0 k=0
(4.104)
~ 1\ bas ~ 1\ bas ~ PN
(VA> —AoVPS oAl (VA) =AoVP=s oAl (4.105)
poA=2RAop, Aod=AoA, (4.106)
poA ' =A"1op, A lor=AoA™! (4.107)

for all | € Ny, where we mean the basic connection on E on the left and the one on TN
on the right in the second line. Moreover, we have several identities for the redefinition

of the connection
VA=V — (dV'A) o (lpw, p) + Aoty, o (A—l o\, nE), (4.108)
where V! .= AoV oA~ and
V= AVt = [(A o A) (V)4 ) + A, p(w) (4.109)
forall p e T'(E) and Y € X(N), finally also

VA =vi+dV (4.110)

Remarks 4.5.7.

We especially need the formulas of the inverse for [ = 0, i.e.
At=1g+AtoNop,
AL :]ITN—G-/A\*lo)\op.

Proof.
e The Eq. (4.106) simply follow by definition, and inverting these with respect to A and A
gives Eq. (4.107). Using these, we also have

l

l
Ao <Z(>\Op)k+/\_1 ° (AOP)lH) => (g —Xop)o(Aop)+ (Aop)™
k=0 k=0

=(Aop)*—(rop)*t!

telescoping sum

(Ao p)’=(Nop) ™ 4+ (Nop)Ht

= ]lE7
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which proves the claim. In the same manner one shows the formula for AL,
e We have

((A0d™ oA 1)N) (Vi) = A(V';aS((Al oA (V) — (A1 o) (VTSYD
= A(S[(A N 0)b] i pagyt) + A )

—Aop(Vyp) +Vyp—=Vypu
A(Vyp)

= A<Vx1(y)ﬂ - |:(A_1 o )‘> (Y), ,U:| E) + )‘([Y7 p(:u)]) — Vyu,
which proves Eq. (4.109) by using Def. (4.96). Let V' := Ao V o A~!, then by Prop. 4.5.6
= (AVN) (Y p() + A(t, (AT AY), 1) )

= Vyu = Vy((Aop) (1) + V0 (AY)) + A([Y, p(w)])

=V (A(n)

n A( ~ (Ao n)(v), u]E + Vipoa-ton )8 = Vo (A0 A) (Y))>

= A(Vioagyn— (AT e N)(V),n] ) + AV o)
comparing it with the previous formula, we arrive at
VA=V = (dV'A) o (L7, p) + Aoty o (A1 o A, 1p).
For I == (Aod¥"™ o A~1)\ € Q(N; End(E)) = QLL(N, E; E) we also have

I(Y,v) = (A o Vgas oA tod—)o Vgas) (V) Bq. (4.96) 63}/ -V,Y

for all v € T(E) and Y € X(N); especially with p o VP% = VP2 o p we get

[(A(Y),v) = (Ao VI oA = Ao Vb= 0 A)(Y)

(
(VBaSO)\—)\oVBaS—)\opoVEaSo)\+)\oVEaSopo)\>(Y)
= (V™o =0 VE™)(Y)

= (a¥" ) (v,v),

which proves the last equation. Alternatively, use Cor. 4.5.4.
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e Finally, using the things just shown,

(@A)basv = [V + Vup

12

= (71 + AV 3yt~ [(A 0 X0 0) @)on] ) + A(0(0): 00)

E

il [ (37202 00) 1] ATy )

=[wA W)

+ep)([(A o xop) )] )+ (Ao p) (v, i)

=(xop) (A1 ().l )

= A([,u, A_l(y)] > + A(V(poA_l)(l,),u)

E

O O))

for all p,v € I'(E). Similarly,

(@)Z%Y = [p(w), Y] + p(Vin)

+(poA)(K7vlopoA (Y)+Y,p(u)D

~(poN) ([p(1) A1 (V)])

_ K(v};ﬁs (K—%m))

for all p € I'(E) and Y € X(N). [ |

We will use these small results all the time, and we will not necessarily mention each equation

each time when we use it. Using the formulas of the inverse, we can show the following.

Lemma 4.5.8: Invertible field redefinition

Let M, N be smooth manifolds, E — N a Lie algebroid, V a connection on E, and k and
g fibre metrics on E and TN, respectively. Also let A € QY(N; E) such that A = 1 g —Xop
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is an element of St (E). Then

Ty = wy, (4.111)
V2 =v, (4.112)
R =k, (4.113)
=g, (4.114)
where we denote
@ﬂ\ _ 7,;V;)\—/rlox

and so on.

Remarks 4.5.9.
All following formulas implied by the field redefinition, like a field redefinition of the basic
connection, are defined by taking their typical definition and replacing the terms with the field

redefinitions given in Def. 4.5.1. That will imply similar inversion formulas for those terms.

Proof.
First observe that, using Prop. 4.5.6,

flelE_(_A_lo’\)OP:1E+A_1O/\O/)=A_1,
f= ]1TN—PO(_A710>‘> =lry+A T odop=A"0

Those are invertible, thus, we can apply the field redefinition using —A~' o A. Using these

formulas, we get trivially,

= (s (14 o (157) =i

similarly for g. Moreover,

= (H(CA) (@) +'2) (A1 o)
=@+ (A7 on) = (Ao )

and

VA=V - (f 0d™)7 o f—l) (A1)
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Cor o4 g 4 (A odV™ o A‘l))\ ~ (dvb“)\) o (K—l, nE)

LY g (Aod™™ oA A - (A0d™ 0 A7)

=0,

viewing dV"\ as an element of QOLYN,E; E). [ |

4.6. Redefined gauge theory

We now want to calculate what the field redefinition changes, especially with respect to the field

strength.

Theorem 4.6.1: Field redefinition of the field strength

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E. Also
let A € QY(N; E) such that A = 1g — Ao p is an element of skt (E). Then we have

D = (*A)(®), (4.115)
P = () (F- 30901 9)), (4.116)
where
=D - (p)(F2), (4.117)
P =d Ve - ;(*t@) (&4 &), (4.118)
c=A1olo (K,K) (4.119)

and f’\ is an element of Q*(N; E) defined by
-~ N T
(=00 (R,R))(x,Y) = (dV A= tgy 0 ()\,)\))(X,Y)

= (dVA) (X, ¥) + A(V5%)Y — V3% X ) — (X, A(V)]g
(4.120)

for all XY € X(N).

Remarks 4.6.2.
When we define the formal torsion’ tgbas of Vs X(N) x I'(E) 3 (Y,v) = VE\?;)V, as an

Tt is formal because V3 is not a connection due to the fact that po XA # Lry, otherwise A=0 and, so, A

181



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

element of Q?(N;TN) by

tyras (X, Y) = V35)Y — V3 X — [X,Y] (4.121)
for all X,Y € X(N), then recall Def. 3.1.7 for

RA(X,Y) = [AX), A(Y)] = A([X, V),
hence, we can write
(M) = Ba) (X, Y) = A (TR Y = VRE)X) = MO0, AW,

in total arriving to
—0* o (A,R) = %A+ A(tgre ) — Ry (4.122)

Observe the (very rough) similarity with the Maurer-Cartan equation; especially for Lie algebra
bundles, that is, zero anchor, this will look like a covariantized Maurer-Cartan equation with

inhomogeneity. We will see this later.

Proof of Thm. 4.6.1.
In the following let (®, A) € Mp(M; N).
e The field redefinition of the minimal coupling directly follows by Def. (4.95), so,

D0 = D () (2" A)(A4) + (6"1)(DD))
=(2*1rn)(DP)

= (@*R) (@) — (#* (R0 p))(4)
= (@*A)(9%2).

e With respect to a local frame (e,), of E and viewing terms like V» — V as an element of
QL(V; End(E)),

4 (@ 4)(4)) = d¥ (V) (@24 ()

Eq'éA'S)dq’*v(Aa ® CI)*(A(ea))) + P (6)\ . V) A (Aa ® (A(ea)))

= dA® @ B*(A(e,)) — A% A (V(A(ea)))

—_——
=(VA)(ea)+A(Veaq)

— A A DTN (Aea)) — (VA)(ea) — A(Ven)))

would not be invertible by Sylvester’s determinant theorem. Therefore the Leibniz rule is not as usual. That

is, V%% : TN — D(F) is in general not anchor-preserving.
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= dA" @ D*(A(e,)) — A A D'(A(Vey)) +q>z(€A(A(eQ)) - A(Vea))) A AC
———

=(®*A)(®'(Vea))
— (®*A) (dq’*vA> 4 (<I>! (@ oA—Ao v)) (A)
Eq-:(4.2) ((I)*A) (ch*VA) + (CI)*(%)‘ oA — Ao V))(D‘I) A A),
and

e (<I>!/\> Ba. (A2) o (d@)\) Eq. (4.2) ;(q)* (d%*/\» (D® / D®),

also

;(qﬁt%) (A% g AN Proncto? ;((wteé) ((B°A)(A) 4 (B7A)(A)) + (q»*t%) (®'A7 m))

4 (cp*@) (@27 (@°4)(4))

1 *
+5 <q> <t@ o (, A))) (D@ 4 D®).
So, in total we get, adding the missing term of the torsion in the definition of the field strength,

(@, 4) = (@) (a¥ 7 4) - %(@*A)(((I)*tvp)(/l A A))

_l’_

+ ;<q>* <d%AA)> (D® ) D®) — ;(qf‘ (t%é o (A, A))) (AL A)

(@A) ((D*ty,) (A A) + (27 (VAo A= Ao V) ) (DD ) A)

N |

_ (@* (t% o (), A))) (DD A A) — % (cp* (t% o O\ A))) (D® A D)

= (P"A)(F)

+ (@*(?AoA—AoV—t%o(A,A)))(D(Iﬂ,\A)

+;<©*(Aotvp - 15, O(A,A)>>(AQA)
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1 of ;or
= (@ (dv A= teyo (0 A))) (DB 2 D).
Now we need to insert the definition of %)‘,

(d@)\> (X.v) = <dV+(AodVbaSoA1>)\)\> (X.7)

B (@) Y) + A (TR (A 00 00) = (A7 o) (785X )

- A(VR“&) (At or)()) = (A71on) (vg?;)y))
= (AVA)(X,Y) + A(V55)Y = V35 X)
+A(Vi (410 ) 00)) = Vi (A7 o X)) )
= A(Vx (A(Y))) = A(Vy (A(X))) +A([A(V), X ] +[(po N)(X), Y1)
+ A(vi?;) (A o n) () - T35, (A1 o ) (Y)))
for all X,Y € X(N), and, by using the results about the field redefinition of the basic connection,

15, (XA =t e

bas (A(X), A(Y))
_ A<V§?§Q (Ao A)(Y))) - A<v§?sy) ((A2on) (X))> — ) A
Then
(=00 (R,A))(x,7) = (dg*A ~tgy0 () A)) (X,Y)
= (dVA) (X, ¥) + A (VR Y = V3% X ) — XD, A(Y)]g
and, using p o V" = V% 6 p and by, = tybas,
(A ote, =t 0 (4.8 ) 1:0) = 1 e (M) AW)) = (A0 ) 10)
= A(VRE) Y — VR — Vi + Vi)
= [AW), AW)] g + Al v E)

= AVl = VS Y) — (Ao p) (), (Ao p) ()]
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— [ V] + (Ao p) (), Vg + 1, (Ao p) (V)] 5
+ [, vl — (Ao p) ([, vp)

= MVBE) 00 (o) = V0 (1)) = (A0 p) (1), (Ao ) ()] 5
+1(e ) (), il + Vo (Ao p) (1)
= (Ao p) ()] = Vi) (Ao p) (1))
+[(Aop) (1), v]g + [, (Ao p) ()] g — Allp(1), p(v)])

= (dA) (p(1), p(1)) + A (V13500 (02)) = V3200 (0(1)) )
— (Ao p)(1), (o p) ()]

= (=C*o (A.A) ) (o), p(v))

= (-0 (Aop,Aop))(m)

for all p,v € T'(E). In a similar very straightforward fashion,
(@ oA — AoV —tg,o ()\,A))(Y,u)

= (v oA—AoV + t(%)m(A, A)+ ((A0d¥™ o A™)A) o (Trw, A)) (Y, p)

= Uy (M) = ATy p) + A (V35 1) — (Ao Ve o AT (A(Y)) = A(Y), A()] g

+ (Ao VR 0 AT (A(Y)) = A(VRE,Y)
— MY, (Vo (=) ()] + M5 (=) = VS oY)
= (dVA) (Y, =p() + A (VR (=p(1) = VS oY) = YD, (o (=p)) ()]

= (-0 o (R Ao (—p))) (Vo)

for all p € T'(E) and Y € X(NV). Finally, we can therefore conclude, by using that —E Ao (1A\, [A\)
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is clearly an antisymmetric tensor by definition,

FN®, A) = (D*A)(F) + <<1>* (-8 o (m o (_p))>> (DD 1 A)

Prop. 4.0.3¢

= (27 (<o (AA))) (DEE (@) (4)) + (@ (~CPo (AR) ) ) (~(@7p)(4)1D2))

(@* (-8 o (7\ opjop)))(A A A) % (@*(-? o (K,K)))(D@ A D®)

=(* (-0 (AA))) (—(@*p) (AL —(@*p)(A))

+

N | =

= (®*A)(F) + % <<I>* <—ZA o (7\, 7\))) (@Acb A @Acp)

= (D*A) (F - ;(@* (Al oMo (A, K))) (9401 @Acp))

= (3*A) (F - %((I)*{) (9404 @Arb)).
]

Let us now look at the compatibility conditions of Thm. 4.4.3 and how they change under

the field redefinition. For this we need the following auxiliary results.

Proposition 4.6.3: Change of (basic) curvature under a change of the connec-

tion

Let E — N be a Lie algebroid, equipped with a vector bundle connection V. For any other
connection V' write V! =V + I where I € QY(N;End(E)). Then we have

Rb2s = R _ gV T — T A (po ). (4.123)
For the curvatures of the connections we get

Ry =Ry +dVI+IAL (4.124)

Remarks 4.6.4.
I N (pol) is similarly defined to Def. (A.1) although p o I has values in TN, the first factor I
simply acts on the TN part then, 4.e. I A (po ) is an element of Q2(N, E; E) defined by

(T A (po D)(Ys 1) = T((p o D)(Y,0), ) — I((po ) (¥ 10),0)
for all p,v € I'(E) and Y € X(N).
INT € Q*(N;End(E)) makes direct use of Def. (A.1), but the second factor is directly

contracted with a section of E, that is

(IAID)(X,Y,v)=I(X,I(Y,v)) — I(Y,I(X,v))
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for all v € I'(F) and X,Y € X(NV). Using the definition of derivations (V') of vector bundles

V one could also write
for all X,Y € X(N).

Proof of Prop. 4.6.5.
We have

bas
(V)Y = [p(v), Y]+ p(Vyv) = V™Y + p(I(Y,v)),
for all p,v € I'(E) and Y € X(N). Using these identities we get

R%a;s(lu’ V)Y = V/Y'([M7 V}E) - [vlyl,b, V]E - [/"[’7 VS/V}E - v/(v/)sasylu’ + V/(V')EESYV

= Vy([u,V]g) = [Vyu, Vg — 1, Vyv]g — Vgpasy p + Vgbasy v

=Rb8S ()Y
— (V1) V] — i IV + (Y, [ ] )
= Vipon)(v) + V(por) (v u)V
— (V5 ) + 1(VE=Y,v) = I((po D(Y,v), 1) + I((po I)(Y, 1), v)
— RYS ()Y
VIS ) = I(VEY )

— VES(I(Y,v)) + I(vgaSY, y)

+ 1Y, [, v]g) = I((po D(Y,v), ) + 1((po D)(Y 1), v)
5 bas
= (R%ab _dv I—1IA (POI))(YaM,V)
for all u,v € T'(F) and Y € X(IV). For the curvatures we get
Ryi(- v =dY (V'v)
Eq. (A.3)

="adY(V'v) + I AV'Y

= Ry(-, )w+dV(I(v))+ IAVv+TANI(-v)
N———
LD (a9 1) () - 1Avw
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= (Ry +d"I+ 1A T)(v)
for all v € T'(F), where we used that T Av =T (v) € Q*(N; E) for all T € Q*(N;End(E)). W

Let us first look at the compatibility conditions besides the curvature of V; we want that

these are preserved with the field redefinition.

Theorem 4.6.5: Field redefinition of the compatibility conditions except cur-

vature

Let N be smooth manifolds, E — N a Lie algebroid, V a connection on E, and k and
g fibre metrics on E and TN, respectively. Assume that the compatibility conditions of
Thm. 4.4.3 are satisfied, but V is allowed to be non-flat. Also let X € Q'(N; E) such that
A =1 — Xop is an element of sk (E). Then we have

~ bas
(VA) " =0, (4.125)
=\ bas_y
(V)8 =0, (4.126)
RZS = 0. (4.127)

Proof.
For the compatibilities with the metrics use Eq. (4.97), (4.98) and (4.105), so,

=d(g(X,Y)) — g(VbasX, Y) - g(X, VbaSY)
(7))
=0,

for all X,Y € X(N), similarly for 5. For I := (Aod""" oA"1)X € QNN;End(E)) =
QLY(N, E; E) we also have

(Y. 0) Eq. (4.96) Y v,y

forall v €e T'(F) and Y € X(N), and

s ~ ~y\bas Eq. (4.105)
V1 (p(2), ) = vl + Vi = (91) 5 P &
——

:[Vvﬂ]E""vp(u)V

(A o Vb o Afl)u

v
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for all u,v € I'(E). Using these identities and R2* = 0, we can show

(@7 T+ 1A (po D)) (Y, ) = Vi (I(Y,v)) — I(V}Y,v)
= V() + TV, )
— 1Y, [p,v]g) + 1((po D)(Y,v), p) = I((po I)(Y, ), v)
_ (A oV o A*1> (I(Y,v)) — J(V';aSY, y)
— (Ao Vi o AT (I(Y, 1) + (V1Y 1)

— (Y, [, )

(A 0dV"™ o A*l)I) (Y, v, )

(
_ ((A 0dV™ o A‘1>2)\> (Y, v, p)

=0.

for all p,v € I'(E) and Y € X(N). Using this and R¥* = 0, we get

R%af Prop. 4.6.3 R'%as I\l S N (pol)=0.

Let us now look at what happens with the curvature of V.

Theorem 4.6.6: Flatness breaking

Let N be smooth manifolds, E — N a Lie algebroid, and V a connection on E with
vanishing basic curvature. Also let X\ € QY (N; E) such that A = 1 — X o p is an element
of et (E). Then

bas
o~

Rey=AoRyo (A1 A7) —a™) &, (4.128)

where E’\ is defined as in Thm. /.6.1 and viewing the curvatures as elements of

O?(N;End(E)).

Sketch of the proof.

e The proof of this theorem is extremely tedious and long, but very straightforward. Essen-

tially, just insert all the formulas of the field redefinition on both sides, then compare both sides,
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making use of the vanishing of the basic curvature. However, you may want to use certain tricks
to make the calculation less tedious (but it is still extremely tedious with tricks). Hence, we

show the first steps until one ”just” needs to insert all definitions.

=~ bas
First let us observe that we can rewrite d(vk) ¢ % using Cor. 4.5.4, also recall Remark 4.6.2,
~\ bas ~ as ~ ~ ~
- (d(VA) <A> ( (X),A(Y), y) - ((A 0dV"™ o A—l) (CA o (A, A))) (X,Y,v)

_ ((AOdVbas oAfl) (dv>\+)\(tv§as> — R)\)>(X,Y, v)

for all X,Y € X(N) and v € I'(E), where —(* o (K,K) is given by Eq. (4.120), also recall
Eq. (4.122). We also have

(A0 d™™ o A~) (A(tgrae) - RA)) (X.Y,v)

= (Ao Vi o A1) (M(Vhi%)Y — VB, X) — ACK). A
— A (VR x) Y — V5 V"*‘SX) [A(VbasX) )

(T TY = P X) + POOATY)]

Now let us start to calculate the left hand side given by Rz

S, using the second equation in

Prop. 4.6.3, especially we need to calculate
a¥((Aod"™ o AT)A),
and for this we want to use Cor. 3.8.11. Using the commutator of operators, we see
[dv, AodV™ o A*l] — [dv, A} 0dV™ oA+ Ao [dv, dvbﬂ oA +A0dV™ o [dv, A*I} :
with that we can write
d¥((Aod™™ o AT )A) = [d¥, A 0d™" o AT (N) + (A0 d™™ 0 AT (aVA).

One needs to calculate the first summand, the summand in the middle in the formula of
[dv, AodV™ o A_l} is given by Cor. 3.8.11 due to the vanishing basic curvature of V, so,

{dv,dvbﬂ (A_l o)\)(X,Y,V) = RV(X, (poA_1 o)\)(Y))V - Rv( (poA O)\)(X))l/

- (A*l oo p) (Ry (X, Y)v)
for all X, Y € X(N) and v € I'(F), and

[dV,A} — [dv,nE—AOp] :—[dV,AOP],
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and for the last summand in the second equation of Prop. 4.6.3 we have, also recall Remark
4.6.4 and Eq. (4.110),

~

TR0, ) (A ) ) = V¥ -aweny AED) = MV r v -awen X

— (Y <> X of all previous lines).

Now the purely tedious but straightforward part comes. Insert X,Y,v everywhere'’ and the
definition of the basic connection on both sides of the desired equation; although you may
already recognize some similar terms of the calculation of the right hand side at the beginning,
for those terms one does not need to insert the definition of the basic connection. Also make
heavily use of Prop. 4.5.6, and also directly use the vanishing of the basic curvature on the
right hand side (which implies flatness of the basic connection). We already got three curvature

terms, and there is one additional by Prop. 4.6.3; there is actually one missing, but that term

bas »
Vbas *

e As a proof of concept, you can also look at [19, proof of Theorem 3.6, the first equation

will be produced by the other remaining terms, for example by some of the form "V

for the transformed curvature there] where I have calculated this for Lie algebra bundles; the
structure of the calculation there is, abstractly-spoken, the same, but extremely shorter and
less tedious due to a vanishing anchor. However, we will actually not need this theorem for the
gauge invariance of the transformed Lagrangian as we are going to see, and we will argue later
why the gauge invariance of the Lagrangian in general proves this theorem, too, avoiding the

tedious calculation. [ ]

Therefore we see that the curvature is not necessarily flat after a field redefinition. We
have seen that the other remaining compatibility conditions are still satisfied, but what about
infinitesimal gauge invariance when flatness is gone? Eq. (4.116) shows us that we get an offset
in the field strength, which one may want to correct for preserving gauge invariance and the
Lagrangian itself, and Thm. 4.6.6 motivates that the derivative of this offset using a basic
connection has something to do with the curvature of V such that there is hope that the offset
compensates the curvature, leading to a gauge invariant theory with a non-flat connection! Let

us prove this.

Theorem 4.6.7: Infinitesimal gauge transformation after field redefinition

Let M, N be smooth manifolds, E — N a Lie algebroid, and V a connection on E. Also
let A € QY(N; E) such that A = 1 — Xo p is an element of skt (E). Then

2 ="ANod.o*(A7) (4.129)
on E and

2 =*Ros.o*(A) (4.130)

101 general use K(X) instead of X, similar for Y, as we did at the beginning and at the end, then it will be

easier to compare the terms since a lot of A will get canceled.
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on TN for all e € FY(M;*E), where gé‘ is similarly defined to 0. but using V?» instead
of V and @2 instead of wo in Def. 4.3.23.% Moreover, on scalar-valued functionals we

have
02 =Ly, =6, (4.131)

where W, € XE(OMp(M;N)) is the vector field behind the definition of 6., recall
Def. 4.3.23.

2o, was needed for fixing the vector fields like ¥, € ¥ (SDTE (M; N)) by Prop. 4.3.16.

Remarks 4.6.8.
Observe how W, is unaffected by the field redefinition although ws and V transform by the field
redefinition, both of which were essential in the construction of infinitesimal gauge transforma-

tions.

Proof of Thm. 4.6.7.
We will prove this by using the uniqueness behind the construction of operators like ., especially
recall Prop. 4.3.7 and 4.3.16. We write

oL ="Aos.o*(A7)

and first observe that

L0 =6 (5 (47109))) = AL (T (a7 0))) T (9)7)

for all v € I'(E). Hence, it shares this property with Sg, 0L is also clearly R-linear and satisfies
Eq. (4.41). In order to use the uniqueness of Prop. 4.3.7 we need to check the Leibniz rule (4.42).
0. certainly satisfies the Leibniz rule by

oL(f L) = *A(o.(f (AT (L))

= a(ra () @)+ 2ut) (A7) W)

= [ OL+ %y, (f) L

forall L € FA(M;*E) and f € C°(M x Mg(M; N)). Therefore 8. is of the type of operator as
in Prop. 4.3.7, it even uses precisely the same vector field ¥.. So, we only need to check whether
U, is the same vector field as the one behind the definition of 5.

For this let us use the uniqueness given in the Prop. 4.3.16, there it was about the uniqueness
of vector fields like W, € X¥(9Mpg(M; N)) behind the Leibniz rule. The component along the
direction of the Higgs field is of course always (*p)(¢) by definition. Hence, we only need to

check the second component fixed by Eq. (4.60). So, using Prop. 4.3.16 for .,

5. L 6L (8 () + )
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Ba. (4.2) (*A 0d.0" (Afl)) (("A)(w2) + (*A)(D))

—*A (55@ + 6. (( (Ao A))(D)))

4.55) *A(—(*V)s B (* <vl€3as (A—l o /\)>> (D) — (* (A—l o ,\)) ((*M((*V)z—:)))

Eq.

—~

= (MY = (o) (9)e) - (*(A(T(a o)) ) )

=—(*V)e

EE L1 (vi(Aton)))

Eq. (:4.101) _ (* (6)‘))6

using that *(V’) = *V 4TI for all other connections V' = V 4 I, where I € Q!(N;End(E)); this
just follows by the definition of pullbacks of vector bundle connections. Hence, the vector field
behind Sg is precisely the one of 0., that is, U, using the uniqueness of Prop. 4.3.16.

Finally, we have shown everything what we need to use the uniqueness of Prop. 4.3.7, hence,

o =6

3 "

Similarly one shows this for the one on TN, and that Sg = Zy_ on scalar-valued functionals
we have already shown by observing that W, is behind the definition of g?, also recall Remark

4.3.9. |

That leads to the following important statement.

Theorem 4.6.9: Still a gauge theory after field redefinition

Let M be a spacetime with a spacetime metric 1, N a smooth manifold, E — N a Lie
algebroid, V a connection on E, k and g fibre metrics on E and TN, respectively. Also
let Ve C*°(N), assume that the compatibility conditions of Thm. 4./.5 hold, and let
A € QYN E) such that A = 1 g — Ao p is an element of st (E). Then we have

=~ bas __

Rey = —d(V) &, (4.132)
RZY =0, (4.133)

(~)\ basN)\
V) TR =0, (4.134)

=\ Pas_y
(V)¢ =0, (4.135)
(LeneV) =0 (4.136)
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for all e € FL(M;*E). Then we have
Lovn = Lymn, (4.137)
and
02 Ly = 0 (4.138)
for all e € FY(M;*E), where
S = —;( (%A)) (G x(EY)) + < (?)) (24 #(D%)) — (V). (4.139)
with

G = F 1 ;( (ZA)> (9* 4D (4.140)

and ﬁ)‘, Z’\ and D are defined in Thm. /.6.1.

Remarks 4.6.10.
Recall our discussion about Cor. 4.3.39, where we mentioned that the vanishing basic curvature

is essential.

Proof of Thm. 4.6.9.
The first four equations we have proven by Thm. 4.6.5 and 4.6.6, for the first equation recall
that the first compatibility condition in Thm. 4.4.3 imposes that V is flat, and the fifth equation
is just the same compatibility condition as of Thm. 4.4.3.

Using Thm. 4.6.1,

M=+ 5 (1) (2210 8) = () (F - 50@ 1 9)) + 5 (10 (820 D) = ()P

2
(4.141)
where ¢ = A~1o @‘ o (/A\, 7\) Thence, we immediately have by Def. 4.5.1 and Thm. 4.6.1
Lmu = Lymm,
and finally, by Thm. 4.6.7,
02 =6,
such that by Thm. 4.4.3

g?Z:Q'N[H — 55£Y]\{H — 0
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That theorem is a good starting point of formulating a new version of gauge theory allowing
non-flat connections, especially because the physics stay the same due to the invariance of the
Lagrangian under the field redefinition. Indeed, using theorems like Thm. 4.6.7 and 4.6.6 we
could have shown the gauge invariance of the adjusted and transformed Lagrangian similarly to
Thm. 4.4.3.

Let us now redefine gauge theory, using these results.

4.7. Curved Yang-Mills-Higgs gauge theory

Let us first redefine the field strength adding the correction term in Eq. (4.140).

Definition 4.7.1: New field strength, [1, Equation (14)]

Let M, N be smooth manifolds, ¥ — N a Lie algebroid equipped with a connection V on
E, and ¢ € Q*(N; E), the primitive of V. We define the (generalized) field strength
G as an element of FA(M;*E) by

1

Gi=F+5(")®19). (4.142)

Let us quickly state its infinitesimal gauge transformation.

Corollary 4.7.2: Infinitesimal gauge transformation of the new field strength

Let M, N be smooth manifolds, E — N a Lie algebroid equipped with a connection V on
E, and ¢ € Q*(N; E). Then

5.G = — (; ((*Rv)(i) 2 @)+ (*(v2¢)) (@ 4 @)) + (“R¥*) (e h @2 ) D)) (4.143)

for all e € FA(M;*E).

Remarks 4.7.3.

That is a generalized version of [, Equation (15)].

Proof.
Observe, using Prop. 4.3.18 and 4.3.7,

5 ()@ 4 D)) = ~(*(V2*¢) ) @ 1 D),

such that the statement follows by Prop. 4.4.1.

Now towards the Lagrangian.
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Definition 4.7.4: Curved Yang-Mills-Higgs Lagrangian,

[1, Eq. (2) and (16)]

Let M be a spacetime with a spacetime metric 7, N a smooth manifold, £ — N a Lie
algebroid, V a connection on E, ¢ € Q?(N; E), and let xk and g be fibre metrics on F
and TN, respectively. Also let V' € C°°(N), which we still call the potential of the
Higgs field. Then we define the curved Yang-Mills-Higgs Lagrangian Loy as
an element of ggim(M)(M) by

1

LoyMH = —5(*n)(G NG+ (Fg) (D 4 *D) — x(*V), (4.144)

where * is the Hodge star operator with respect to 7.

The gauge invariance is immediate by the previous results.

Theorem 4.7.5: Infinitesimal gauge invariance of the curved Yang-Mills-Higgs

Lagrangian
Let M be a spacetime with a spacetime metric n, N a smooth manifold, E — N a
Lie algebroid, V a connection on E, ( € Q*(N;E), k and g fibre metrics on E and
TN, respectively. Also let V€ C°(N) and assume that the following compatibility
conditions hold:
Ry = —dV™¢, (4.145)
RYS =0, (4.146)
Vvbas, =0, (4.147)
vhasg =0, (4.148)
(LepeV) =0 (4.149)
for all e € FR(M;*E). Then we have
deLoymu = 0 (4.150)
for all e € FY(M;*E).

Remark 4.7.6
We call a setup like this a curved Yang-Mills-Higgs gauge theory, short as CYMH,

or also CYMH GT for emphasizing the part with gauge theory.
We speak of that we have found a CYMH GT structure, if we were able to define V, k

196



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

and g for F — N satisfying the first four compatibility conditions. The spacetime and
the potential are not our focus and thoroughly discussed elsewhere, so, we always assume

that these exist in a suitable way.

Remarks 4.7.7.
This is basically the essential statement of [1, especially the discussion around Equation (16)],
but Eq. (4.145) has there a different form, see [!, Equation (13)]. We have reformulated that
equation, and this equation and the other compatibility conditions naturally arise if using the
basic connection in the definition of the infinitesimal gauge transformation.

Eq. (4.145) means

Ry(-,)v = =V}
for all v € T'(E).

Proof of Thm. 4.7.5.
By Eq. (4.145), the vanishing of the basic curvature and Cor. 4.7.2 we immediately get

0:G=0

for all ¢ € F2(M;*E). Therefore the remaining part of the proof is precisely as in Thm. 4.4.3.
|

Finally, we now arrived at a covariantized formulation of gauge theory allowing non-flat V.
We can still apply Thm. 4.3.41, so, a flat connection locally still applies the structure of an
action Lie algebroid such that one may argue that flatness already implies a classical theory.
However, ( is not necessarily zero, it is then just constant with respect to the basic connection
by compatibility condition (4.145); we will actually see some examples for this later. Hence, one
cannot expect that the field strength looks as in the classical formulation if V is flat, and, so, we

can only apply Thm. 4.4.5 if both, Ry and ¢ vanish. This motivates the following definitions.

Definition 4.7.8: Classical gauge theory

Let us assume the same structure as in Thm. 4.7.5. Then we say that we have a pre-
classical gauge theory, if V is flat.

If we have additionally ¢ = 0, then we say that we have a classical gauge theory.

Remarks 4.7.9.
If we have a classical CYMH GT, then also a pre-classical one by compatibility condition 4.145.

However, we motivated ¢ by the field redefinition; there might be of course a field redefinition
making V flat and/or ¢ zero. This is what we mainly study in the remaining part of this thesis.
We have seen that we needed to add the part with ¢ to the classical field strength F' after the

field redefinition in order to get the same Lagrangian. That can be seen as that the "actual field
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redefinition” of F' was not just given by the field redefinition of wy and V; or, in other words,
that means we need a field redefinition of {, too, while { was zero in Thm. 4.6.9 and ?‘ was the

field redefinition of { = 0.

Definition 4.7.10: Field redefinition of the primitive

Let E — N a Lie algebroid over a smooth manifold N, V a connection on E, ¢ € Q%(N; E),
and A € Q'(N; E) such that A = 1—)\op € 9 (F). Then we define the field redefinition
¢* of ¢ by

$i=Ao¢o (A7LAT) + Y (4.151)
where @‘ is given as in Thm. 4.6.1, that is,

P (R0, A1) = AL Y)) - (472 (K1) + £, M) AT))

= AL(X,Y)) = (dVA) (X, Y) = A (V550 Y — V3% X) + X, A )]

for all X, Y € X(N).

Remark 4.7.11: Field redefinition of CYMH GTs

The field redefinition is therefore given by using Def. 4.5.1 and 4.7.10 altogether, so, when

we speak of the field redefinition of anything else besides the quantities in these definitions,
then it is just canonically given; for example the field redefinition of something depending
on ( is then the same definition but replacing ¢ with Z’\; similarly for dependencies on V,
wy and the metrics Kk on F and g on TN as we already did before. We call this procedure
the field redefinition of a CYMH GT on a given spacetime M, a smooth manifold
N and Lie algebroid E — N. We are going to show that the Lagrangian stays invariant
under the field redefinition and that this describes an equivalence relation of CYMH GTs
on given M, N and E.

For the invariance of the Lagrangian we do not need to prove everything again, we just need
to check the field redefinition of the field strength G and whether compatibility condition (4.145)

stays form-invariant.

Lemma 4.7.12: Field redefinition of the new field strength and compatibility

condition

Let M, N be smooth manifolds, E — N a Lie algebroid, V a connection on E, ( €
QO?(N;E), and A € QY(N; E) such that A =1 — \o p € @t (E). Then we have

G = (*A) (@), (4.152)
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where
&= P45 (+(2)) (8219, (4.153)

for which F> and D are given by Thm. 4.6.1.

If the basic curvature of V wanishes additionally and satisfies Ry = — Vbasg“, then we
have
S bas
Re, = —d(V) 2 (4.154)
Proof.

Those results are an immediate consequence of our calculations in the previous section, that is,

M= P45 ((0)) (8 18Y) 45 ((a 0o (R1A7)) ) (3219

Eq. (4.141)

(*A)(F)

T L6 ey () %(*(A °()(D D)

and, by Thm. 4.6.6 (for which we need the vanishing of the basic curvature), Prop. 4.5.6 and
compatibility condition (4.145),

bas
~

Rgy=AoRyo (jA\_l,/AX_l) — d(%A) %

) . N ~ bas __
— Ao dvbabc o (A_l,A_l) o d(V*) é-)\

Corit5d _g(™)™ (xo¢o (R1,A71)) —a(™) 702

_ _d(%/\)bas (g)\) |

Hence, we immediately get:

Theorem 4.7.13: Gauge theory invariant under the field redefinition

Let M be a spacetime with a spacetime metric 1, N a smooth manifold, E — N a Lie
algebroid, ¥V a connection on E, ¢ € Q*(N; E), k and g fibre metrics on E and TN,
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respectively. Also let V€ C*°(N), assume that the compatibility conditions of Thm. 4.7.5
hold, and let A € QY(N; E) such that A = 1 — X o p is an element of sk (E). Then we

have

S bas
Rey = —d(V) &, (4.155)
RZY =0, (4.156)
(~)\ basNA
V) TR =0, (4.157)
=\ Pas_y
(V)78 =0, (4.158)
(LepeV) =0 (4.159)
for all e € FY(M;*E). Then we have
Sdvun = Lovum, (4.160)
and
02 L¢yam = 0 (4.161)

for all e € FR(M;*E), where

B = =5 (7)) (64 +(6Y) + () ) (B 1 4(8Y)) - x(V).  @162)

and where G* is given as in Lemma 4.7.12, D s defined as in Thm. 4.6.1 and Sg as in

Thm 4.6.7.

Remarks 4.7.14.

It is important to note for future proofs that the field redefinition already preserves the vanishing
of the basic curvature if V has vanishing basic curvature, so, this is independent to whether or not
the other compatibility conditions are satisfied. Similar for the metric compatibilities. However,
for the invariance of compatibility condition (4.145) one not only needs the condition itself but
also additionally the vanishing of the basic curvature as stated in Lemma 4.7.12. We sometimes
make use of this information when speaking about compatibility conditions in the context of
the field redefinition. However, we will not necessarily mention it again; recall the previous

calculations and proofs.

Proof.
This is precisely the same proof as in Thm. 4.6.9, using Lemma 4.7.12 and 8‘ instead of just
e ]

200



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

Remark 4.7.15: Avoidance of the calculation in the proof of Thm.

As we have seen in the proofs for Thm. 4.7.13 and 4.6.9 we only needed Thm. 4.6.6 for
the proof about the relationship of Ry with ( after the field redefinition, everything else
follows independent of Thm. 4.6.6, especially the other compatibility conditions and the
gauge invariance of the Lagrangian. Hence, one may want to argue, given the gauge
invariance of the Lagrangian and the other compatibility conditions after the field redef-
inition, that the gauge transformation of the transformed field strength has to vanish,
using similar calculations. By Cor. 4.7.2 one may then be able to argue in general that
the compatibility condition of ¢ has to be preserved by the field redefinition. However,
for this one needs to discuss certain edge cases and that the contraction with x can be
ignored (to avoid an argument about orthogonality). If one is able to argue like this, then

one can avoid the tedious calculation behind the proof of Thm. 4.6.6.

Therefore the field redefinition is now a transformation of the curved Yang-Mills-Higgs (in-
finitesimal) gauge theory which keeps the Lagrangian invariant. Furthermore, the field redefini-
tion is an equivalence of CYMH GTs, which we now prove. We start with something similar to

Lemma, 4.5.8 but for the primitive.

Lemma 4.7.16: Invertible behaviour of the field redefinition of the primitive

Let E — N a Lie algebroid over a smooth manifold N, V a connection on E, ( €
O?(N;E), and A € QY(N; E) such that A =15 — Ao p € @t (E). Then
=X
=, (4.163)
where
~—A—lo)
__A ~
T
Proof.

That is similar to the proof of Lemma 4.5.8, hence, let us summarize what we have derived

there,

ji= 1oy —po (—A—l o /\> =AY,

those are invertible, thus, we can apply the field redefinition using —A~'o\. Then by Def. 4.7.10,
especially also recall Def. (4.120),
—~—A"1o)
——)\ ~ ~ o~ =
Ch=foo (i) +0
where, recalling Eq. (4.108),

folo (L) =¢+A 0o (R.A)
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- ( )

(dAVAl/\—i—D/\)\ te ()\,A))
=(AodVoA~1)A

||J>

zg—dV(AfloA)
—i—dv(A_l o)\) o (Lrn,po) —i—dv(A_l o)\> o(poA1ryn)
—ty, 0 (A_l oA, )\) —ty, 0 ()\,A_l o )x) +A 1o t%,ﬁ o (A A)

viewing D == — (dAOVOA*l/\) o(Lyn, p)+Aoty, o (A~ oA 1g) as an element of Q' (N; End(E)),
and, using Prop. 4.5.6,

(—tvp ) (Afl o, A) —ty, 0 (/\,Af1 o )\) + A tots, o), )\)) (X,Y)

= Vim0 (A7 0 A) (1) + Vpea-tono) (M) + [AX), (A7 0N ) (1)
+ Viponm) (A7 0 M) (X)) = Vipon-1ax 0 (A1) + [ (A0 A)(X), A7) |
~ V55 (A7 o 0) (1) + V855 (A1 0 2) (1)) + AL (IMX), A(Y)] )

= =Vion) (A0 A) (1) + Vpon-ran o) (AX)) + M), (Ao X)) (V)]
+ Vonm) (AT 0 A) (X)) = Vipentonn A1) + [(A71 0 0) (), A7) |
= [, (AT o M) ()] = Vipen-tonr) (X))
+ M), (AT o) (X)}E + VY (pon-10)(x) (A(Y))
+ATH(MX), M) R)

= Vo) (A0 X) (1) + Vigonyw) (A 0 A) (X)) + AT (M), A(Y)] )

for all X,Y € X(N), and, using additionally Lemma 4.5.8,

:\—A_lo/\ Soa
A - (dV (A"oA) +tgao (At or A o )\)) o
P

/N

%1}4)
= (dv (A_l o )\) +ty, 0 (A_1 oM A to )\)) o (/AX, /A\>

=qdv (Afl o )\) o (/A\, jAX) +ty, 0 (N A)
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Therefore altogether, using A= Ity — po A and again Prop. 4.5.6,

Y)Y = X Y) +d7 (A0 A) (00 N(X), (90 N(Y)) + t, (AX), A(Y))
= Vipon ) (A0 M) (V) + Vpory (A0 ) (X)) + A7HIAX), AY)] )
= (X, Y) +dV (A7 o A) ((po N(X), (po N)(Y))
+ Vipon () (AY)) = V(ponyv) (AMX)) = [AX), AY)]
= Vipon ) (A0 M) () + Vpory) (A0 A) (X)) + A7HINX), AY)] )
= C(X,Y) +dV (A7 o A) ((po N (X), (po N(Y))
= Viponx) (A0 X0 p 0 N) (V) + Viponyay (A7 0 Ao pod) (X))

4 (A‘l olo p)([)\(X)a A(Y)]E)

=(AoN) ([(poN) (X),(poN) (V)] )

= ((X,Y) +d% (A e M) ((po N)(X), (po M) (Y))

— V(AT oA) ((po N(X). (po N)(Y)

=((X,Y).

The field redefinition, Def. 4.5.1 and 4.7.10, is also transitive.

Lemma 4.7.17: Transitivity of the field redefinition

Let M, N be smooth manifolds, E — N a Lie algebroid, V a connection on E,
¢ € Q*N;E), k and g fibre metrics on E and TN, respectively. Moreover, let
AN €QYNGE) such that A =15 — X op, N :=15 — XN op € st(E).

Then the field redefinition with X' composed with the field redefinition of X\ is equivalent
to a field redefinition with A+ X — XN opo \.

Remarks 4.7.18.
With this one can also quickly show Lemma 4.5.8 and 4.7.16 by defining X := —A~! o X such
that

AN =Nopod=A-AloA+A T odopor=0,
=—A—1loAoA

which gives trivial transformations.
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Proof of Lemma 4.7.17.
First observe that

ANoA=(1g—XNop)o(lg—Aop)
=lp—Xop—XNop+XNopodop
=1lg—(A+XN —=XNopod)op

::f

s0, A+ N — N opois a valid element of Q' (N; E) with which one can apply the field redefinition
due to the fact that A’ o A € it (F), thence, also f € 2t(E); we also define and calculate

similarly
?Z:KIOK:]ITN—pO()\—F)\,—)\/OpO)\)
which is an element of @#Z(TN) (similarly to why A is), where we denote A’ := Lpy — po N.

By Remark 4.7.11 we only need to check the basic field redefinition of Def. 4.5.1 and 4.7.10, so,

)\l

5 = () (M) (@) + A ) +'X

2 )
= ("N o *A)(w2) + (*(A 0 1)) (D) + N

— ——
=!(Ao))

= (")(w2) +' A+ X =N opo).

For the metrics we immediately have

/

—~
A =ko (A_l,A_l) o ((A/)—l7 (A/)—l) — ko (f_l,f_:L),
similarly for g. Recall again Prop. 4.5.6 and Cor. 4.5.4, then

S22 + (A’ 0d™) g (A/)1>)\’
=V + (A 0dV™ o Afl))\—i—A’ oAo ((dvbas oA lo (A/)fl) (/\/ ) /AX)) ) (Kil, ]lE>

—(a) o (jea™"™ o1 ) (a'e)

:V+(fodvb”of’l) (A+Xofx)

—_——
=A+N—XopoA

_ (fodwas ofﬁl) (XOpO)\)
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A e e ((foa™ o) a'e )
F((oa™ o ) (X oR)) o (R0 porip)

_ SN —Nopor
—(jod¥™)(F o X 0po)
+)\'opvodvbaS(A_1o)\)
((oa™ o) (WoR))o (A o porip)

_ AN —Nopor
oV 0§ loNopo At NoporoVhs
+XNopoAoVP™ oAt od—NopoAoA T oroVP®

—{—fovbasofilO)\/OKO//iilopOA—fOfilOA/OKOVbaSO//iilOpO)\

Cor. 3.7.3

poAoVPasop—1

e AN =X opoX
=V P ,

rewriting definitions like VPN = VPSS o X — Ao Vb2 where the basic connection in the first

summand is the one on E and the one on TV in the second summand, i.e.

(a7 N) (V,v) = VP (A(Y)) = A(VE=Y)

forall v € I'(E) and Y € X(NV). Finally let us look at the field redefinitions of ¢, the calculation

is very similar to the proof of Lemma 4.7.16; the calculation is purely straightforward, just

—~\

compare the definitions of ZA with ZA‘H‘,_)‘IOPO’\. However, it is very tedious and long, hence,

we will omit the calculation; we are going to motivate it differently, using the field redefinition

of the field strength provided in Lemma 4.7.12. That is,

AN =X opod _ A+ =N opod 1 s [ ZA+N =X opo AN =N opod A AAAFN =N opod
a pA _ [ X~ (*(¢ P D POA N B por)

2

but also Lemma 4.7.12
GANTNOA = ()(G) = () 0 (")(G) = (W) (G*) = &>

By the previous results we immediately get

)\/

FAFN—NopoX _ }%}

9
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because F is independent of . Similarly as for G we get by Thm. 4.6.1
AN —NopoX _ 5? .

~ RV =X
Then simply compare both sides in GMA =AoreA = GA {0 get

- =\ ~ ~
<* (C/\+/\/)\,Opo)\ — A )) (®A+,\u>\'0po,\ A Q,\Jr,\u,\’oPoA) —0.

Since Dev and ® are in general non-zero, and by ® = D — (*p)(w2) (so, the minimal coupling

stays non-zero if it was initially non-zero), one can conclude

XN =NopoX _ EXA
however, there are edge cases where this argument fails: M could be a point for example, but
it is clear that the field redefinition of ¢ is independent of the choice of M such that one can
quickly circumvent this problem. Another edge case is N as a point, but then ¢ = 0 such that

everything is trivially concluded. |

Remark 4.7.19: Field redefinition as equivalence of CYMH GTs

This finally shows that the field redefinition is an equivalence of CYMH GTs (for fixed
M,N and F). Reflexivity simply follows due to that A = 0 is a valid parameter for
the field redefinition, symmetry by Lemma 4.5.8 and 4.7.16, and transitivity by Lemma
4.7.17. Furthermore, by Thm. 4.7.13, the physics stay the same after a field redefinition,

which is why one may speak of a physical equivalence.

As we already argued, starting with a non-flat V and/or a non-zero ¢, it is now natural to ask
whether or not there is a field redefinition making V flat and/or { zero, equivalently, whether or
not there is an equivalence class with pre-classical and/or classical representative, respectively.
We will do this in the next chapter, but let us first state some basic properties of a CYMH GT.

4.8. Properties of CYMH GT

Theorem 4.8.1: Curvature closed under basic connections, by Alexei Kotov

Let E — N be a Lie algebroid over a smooth manifold N, and V be a connection on E

with vanishing basic curvature. Then

dV" Ry = 0. (4.164)

Remarks 4.8.2.

Alexei Kotov has found this identity, too, with a different approach; this was communicated in
a private communication but there is a paper planned about that by Alexei Kotov and Thomas
Strobl, planned for 2021.

206



CHAPTER 4. GENERALIZED GAUGE THEORY Simon-Raphael Fischer

Proof of Thm. 4.8.1.

We know how the connection acts on the Lie bracket of E due to the vanishing of the basic
curvature, hence, let us look at how the curvature acts on the Lie bracket, also using the Jacobi
identity of [-, ],

Ry (Y, Z)([n,v]p) = Ve =0
= [VyVzu,vlg+[Vzu, Vyvly, + Vbasy Vit — VVI%a;uYy + [Vyu, Vzvlg
+ (1, Vy Vgl + Vv%a;yu — Vghasy Vzv + Vy Vgbas g1t — Vy Vigbas 71/
— (Y < Z of previous two lines)

= [Vivamr] = [ Vwav] , = Vopeqeapn+ Vopeqray
= Ry (V3. Z)u+ Ry (Y, VI Z)u - Ry (VY. Z)v - Ry (Y, V= 2)v

+ V[Vsasxz},u +V[Y’VBaSZ]/«L - V[VBaSY,Z]V - V[Y,anSZ]V
—_——

=Vo), Y1+p(Tyv), 2] H

+ Vi s V1093 T b = Vo s, v} o(0y vV — (Y Z)

Vo) V2040V i) T Y o) ¥, Z+0(V 2y ) P
+ [ Ry (Y, Z)v] — [v, Ry (Y, Z)u
= Ry (vBaSY, Z),u + Ry (Y, v‘;asz) it — Ry (VB“Y, Z)y ~ Ry (Y, v};asz)y
+ VS (Ry (Y, Z)v) = V) (Ry (Y, Z)n)
= (4" Ry ) (V. Z, p,v) + Ro (Y, Z)(In, ] )
& 0= (a""Ro)(Y,Z pv)
forallY,Z € X(N) and v,u € I'(E) [

So, we know that the basic connection is flat when the basic curvature vanishes, recall
Prop. 3.7.6, and that the curvature Ry is closed with respect to the differential induced by
the basic connection. The compatibility condition 4.145 then imposes that the curvature even
needs to be exact in order to formulate a gauge theory.

We know that curvatures satisfy a Bianchi identity, let us therefore check what this implies
about (.
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Theorem 4.8.3: Bianchi identity for the primitives of the connection

Let E — N be a Lie algebroid over a smooth manifold N, and V a connection on E

with vanishing basic curvature and for whose curvature there is a ¢ € Q2(N; E) such that
Ry = —dV™¢. Then

0= (Vb(d¥¢) ) (Yo, Y1, Y2) — (Vie*(C o (L1w, p 0 0)) ) (Yo, Y1, Vo)

— (VE=(Co (w, po €))) (11, Y2, Yo) — (V225(C 0 (T, p o 0)) ) (Ya, Yo, Y1)
(4.165)

for all Yo, Y1,Ys € X(N) and vy € I'(E), where

(Co(Lpn,po())(Yo,Y1,Y2) = (Yo, (po{)(Y1,Y2)).

Proof.
Ry satisfies the Bianchi identity, i.e.

4V Ry =0,
where we view the curvature as an element of Q%(N; End(E)). Then use Cor. 3.8.11 to get

0= (~dVRy) (Yo, V1,3, 10)
= (a¥a¥"¢) (%, Y1, Y2, )
= (47" dV¢) (Yo, Y1, Yo, o)
+ Ry (Yo, (p 0 ¢) (Y1, Y2))ro — Ry (Y1, (p 0 ) (Yo, Y2))vo + Ry (Ya, (p 0 {)(Yo, V1)) w0
—(((p o Ry) (Yo, Y1)vo, Ya2) + C((p © Ry) (Yo, Ya)ro, Y1) — C((p © Ry)(Y1, Y2)wo, Yo)
= (47" dV¢) (Yo, 11, Ya, 1)
— (9525¢) (Y. (p 0 Q) (V1. Y2) + (V525¢) (Y2, (0 ) (¥, Y2)
= (V05°¢) (Y. (p 0 ) (Y0, V1)
+¢((VE(p0 Q) (Yo, Y1), Y2 ) = ¢((VER(p 0 Q) (Yo, Y2), Y1)

+¢((Vi(po Q) (V1,Y2), Yo)

for all Yp,Y1,Ys € X(N) and vy € T'(E), using that ¢ € Q*°(N,E;E) = Q?>(N;E), Ry =
—dVbaSC and p o VP2 = VP2 o p such that

(po VE=C) (Yo, Y1) = p((VERC) (Yo, Y1)
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AT () ()
= V2 ((po O)(Yo, Y1) = (po O)(VEYo, Y1) = (po O) (Yo, ViieYs )

= (Vi(p0 O)) (Yo, 11).
We can also write

(V52¢) (¥, (p 0 O)(11,Y2)) = V22 (¢ (Yo, (0 Q) (Y1, Ya)) )

= ¢(VEEY0, (00 O(¥,Y)) = ¢(Yo, VI ((p 0 ) (11, 12)) ).
and (again)
(VE=(p 0 Q) (Yo, Y1) = V2 ((p o Q) (Y0, Y1) — (po Q) (VE2Yo, Y1) — (p o O) (Yo, Vi1 ),
such that in total

0= (d¥"aV¢) (¥, V1, Ya, o)

= V(¢ (0, (po (Y1, 12)) ) + ¢(ViYo, (00 (Y1, Ya) ) + ¢(Yo, Vi (p 0 ) (11, Y2)))
+ VI (¢, (00 O(Y0,%2)) ) = C(V2Y3, (p 0 ) (¥, ¥2) ) = ¢ (Y, V2 ((p 0 ) (%0, 2)))
=V (C(Yas (p o O (Yo, Y1) ) + C(V02Ya, (p o Q) (Y, Y1) ) + ¢ (Y, Vi ((p 0 O) (Y0, Y1)
—C(YQ,VBS‘S((poc)(%,Yl)) 0 O)(VhaYo, v1) = (po Q) (Yo, Vii1A )
+ (V. V5 (00 O (Y0, Y2)) = (po Q) (VE3Y0, Y2 ) = (00 O) (Yo, ViiY2))
— (Yo, VB (00 O (¥1,72)) — (po Q) (VE2Y1,Y2) = (p0 ) (V1, VEEY2))

_ (dvbanVC) (Yo, Y1, Yo, 19)

~(Th(a70) (o1 Y2)
= Vs (C(¥o: (00 O(¥1,Y2)) ) + ¢ (VE5Y0, (po () (11, Y2))
+¢(Yo, (00 O (VE2Y1,%2) + (po O (Y1, VY2 ) )
= Vi (C(¥1 (p 0 (Y2, Y0)) ) + ¢ (VI Y1, (o () (Y2, Vo))
+ (Y1, (o O (VI Y2, Y0) + (p o ) (Y2, V1Y) )

= Vi (¢ (Y, (po O(Yo, Y1) ) + ¢ (VEYa, (po O (¥, Y1)
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+¢(Ya, (p 0 O (V020,11 + (p o ) (Yo, Viaov1 ) )
= (V5(a¥¢)) (0, Y1, ¥a) — (V52 (C o (T, p 0 0)) ) (Yo, Vi, Ya)

- (VBSLS(C o(lrn,po C)))(Yl,YQ,Yo) - (VB(?S(C o(lrn,po C)))(Y2,Y(),Y1)-

Recall Thm. 3.7.8 for the following statement.

Theorem 4.8.4: Primitives of the connection along the foliation of the anchor

Let E — N be a Lie algebroid over a smooth manifold N, and V a connection on E with
vanishing basic curvature. Then all ¢ € Q*(N; E) satisfying

Co(p,p) = —tyvas + H, (4.166)
where H € Q%(E; E) with VP H =0, also satisfy

Ry o (p7 p) = _(dVbaSC) © (p7p7 ]1E>7 (4167)

that is,

Ry (p(), p(@))n = = (d77°C) (p(12), p(), )

for all p,v,n € I'(E).

Proof of Thm. 4.8.4.

That is a trivial consequence of Cor. 3.6.6 and Lemma 3.8.5, that is,

as vbas (=0 as Lem. 3.8.5 bas
Ryo(p,p) =Ry, =V tgms = =  =V"(Co(p,p)). "= (—dv C)O(p,p)-

Therefore one can view the negative of the torsion of the basic connection as a canonical
choice for ¢ along the foliation of the anchor. In case we decide to take ¢ € Q2(N; E) such that
Co(p,p) = —tymes, we get:

Corollary 4.8.5: Certain classical CYMH GTs implying an abelian structure

Let us have the same setup and notation as in Thm. 4.7.5, i.e. let us assume a CYMH
GT. Moreover, assume we have ¢ o (p, p) = —tyvas and that N is simply connected.

If this CYMH GT is classical, then it is isomorphic to an abelian action Lie algebroid
such that V is its canonical flat connection.

In case of tangent bundles, E = TN, this statement is an equivalence, that is, this CYMH

GT is classical if and only if it is isomorphic to an abelian action Lie algebroid such that
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l V is its canonical flat connection. J

Remarks 4.8.6.

In general one could study whether it is possible to have a connection with vanishing basic
curvature on a Lie algebroid which is locally never an action Lie algebroid; in that case the
connection could not be flat by Thm. 4.3.41. However, this is a difficult task; this statement
may simplify that, one could just look at abelian action Lie algebroids. With that particular
choice for ¢ one would have then a non-classical gauge theory, in case one has a Lie algebroid

which is not isomorphic to an abelian action Lie algebroid.

Proof of Cor. 4.8.5.
Classical means that V is flat, and, thus, we have a global isomorphism to an action Lie algebroid
N x g for a Lie algebra g, using that IV is simply connected and Thm. 4.3.41; also recall Remark
4.3.42. V is then its canonical flat connection.

Classical also implies that ¢ = 0, hence, the torsion of VP vanishes.'! By Cor. 4.4.9, g is
abelian.

If we have E = TN, then just use the equivalence in Cor. 4.4.9, so, assuming that E is
isomorphic to an abelian action Lie algebroid and V is its canonical flat connection, implies that

the basic connection has no torsion; since the anchor is now bijective we have ¢ = 0. |

Along the transversal directions it will be a bit more difficult as we will see in the next chapter.
However, as a first approach one can look at the following proposition, which is based on the
assumption that one has partially a parallel frame of the basic connection along the foliation,
also using Thm. 4.8.4; recall Section 3.9, and also recall that BLA means bundle of Lie algebras.
The setup of the following proposition is basically for Lie algebroids restricted on a suitable

neighbourhood of regular points.

Proposition 4.8.7: Local mixed terms of the primitive of the connection

Let N be a parallelizable smooth manifold, K — S a BLA over a smooth manifold S, and
E=TN x K — N x S as direct product of Lie algebroids, equipped with a connection V
with a vanishing basic curvature. Furthermore, assume that there is a global trivialisation

(fi); of TN such that VP2 f; = 0 (on E) for alli, and assume that we have a { € Q*(N; E)

with ¢ o (p, p) = —tybas.
If ¢ additionally satisfies ((Y, f;) = Vy fi for all Y € X(S) C X(N x 5), then

Ry (Y, p(w)v = = (d¥"¢) (¥, p(w), v) (4.168)

for all p,v €e T(E) and Y € X(9).

"By the metric compatibility with x, VP is an E-Levi-Civita connection, as we also discussed in Rem. 4.4.10.
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Remarks 4.8.8.
With X(S) C X(IV x S) we emphasize that we view vector fields of a factor of the base, here S,
as vector fields on N x S with values in .S and constant along N, ¢.e. the canonical embedding.
That is important to keep in mind if one sees notations like X(S) in this context.

A word on why we wrote VP2 f; = 0 (on E)”. One needs to be careful here, with the basic
connection we always mean two connections. However, we have for example p(f;) = f; such that
both versions of the basic connection can act on f;, and as long as K has not zero rank we can

not expect that both connections give the same, that is, let v € I'(K), then, on E,
VSfi = filp + Vi,
and, on TN,
Vosfi = p(V i),

which is clearly different, even if [v, fi], = 0. However, our imposed condition is about that
fi as an element of I'(E) should be parallel to the basic connection, then we use the usual

commutation with the anchor to get

0= p(V™ i) = V" (p( ),

where we did not write p(f;) as f; to emphasize that f; is viewed as an element of X(V) on the
right hand side. Hence, VP® f; = 0 in sense of TN is implied here. In the proof we sometimes

write p(f;) for similar reasons of accentuation.

Proof of Prop. 4.8.7.

We prove Eq. (4.168) locally using frames due to its tensorial nature. Let (f,), be a local frame
of E, which is given by the frame (f;), of TN and by a frame (f,), of K, both frames are
canonically embedded into E; that is, f; are constant along S, and f, along N. Other Latin
indices still denote the frame of TN, and other Greek ones the part of K, and we clearly have

o(fi) = fi, p(fa) = 0; especially, f; also span the image of the anchor. Then

VEY = [, Y]+ o(Vy fi) = p(Vy fi),
=0

VY = [p(fa), Y]+ p(Vy fa) = p(Vy fa),
=0

= VY = p(Vy fa)
for all Y € X(S). By the vanishing of the basic curvature we get

VY([faa fb]E) = [va(l; fb]E + [faa vab]E + Vv?:syfa - vv?zsyfb

= [Vy fo, folp + o, Vy fol g + Vowy i) fa = Voy 1) for
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such that, additionally using tgbas Cor 3.6.3 —tv, and the assumptions about ¢,

(=V520) (Vin(£)) = =V (Yo p(f) +C(VEY, o)) +¢ (Y. V= (0(£)))
Lhpk) L VD)

—— —/™—™—
=Vyfi —C(p(Vy fa) o) =p(V§aefi)=0
= —[fa: Vv filg = Vpvy s fa

+ VP(VYfa)fi —ViVyfo— [Vy fa, fi]

Vy ([fis falg) =V £ Vy fa
—_———

:_v?zsfi—"vfz‘f“

= vafifa - vfivaa

Y, fi]=0
ML= R (Y, fi) fa

= RV(Ya P(fz’))fa-
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5. Obstruction for CYMH GT

Let us finally turn to the question whether or not there is always a field redefinition making
V flat or ¢ zero. As we know by the splitting theorem of Lie algebroids, Thm. 3.10.4, around
regular points every Lie algebroid is the sum of a tangent bundle and a bundle of Lie algebras
(BLAs). The discussion about general Lie algebroids is very difficult, hence, let us first focus on

both factors separately.

5.1. Lie algebra bundles

We only want to discuss Lie algebra bundles (LABs) actually, not BLAs in general. That is

motivated by the following theorem.

Theorem 5.1.1: BLA = LAB,
[3, Theorem 6.4.5, see also the last note at the beginning of

§6.4; page 238f.]
[6, Proposition 2.13]

Let K — N be a bundle of Lie algebras (BLA) over a connected manifold N whose field
of Lie brackets is denoted by [-,-] . Then K is an LAB if and only if it admits a vector

bundle connection ¥V with vanishing basic curvature, that is

VY([:Ua V]K) = [VY/-% V]K + [M? VYl/]K

for all p,v e T'(K) and Y € X(N).

Remarks 5.1.2.
Even if the Lie algebras of the fibres of a BLA are not isomorphic as Lie algebras recall that

each BLA is a vector bundle, hence, the rank is constant.

Sketch of the proof.
For =", that is, K is assumed to be an LAB, just take locally the canonical flat connection
related to a local trivialization K|y = U X g, where U is an open subset of N and g the Lie
algebra describing K as LAB; recall Def. 3.1.20. Such a connection has trivially a vanishing
basic curvature, e.g. use that the basic curvature is a tensor and test the vanishing against a
frame of constant sections. Then use a partition of unity subordinate to a covering of such
trivializations in order to get a globally defined connection with vanishing basic curvature.
The essential idea for the other direction is to observe that in the case of BLAs (zero anchor)

we have

Cor. 3.6.3
tvbas OI: ’ _th — [‘, ]K
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for all vector bundle connections V on K. In case of a vanishing basic curvature we get by
Eq. (3.59)

i.e. the field of Lie brackets is parallel with respect to all V with vanishing basic curvature. In
[3, §6.4; page 236ff.] it is then shown that [-,-] is deformable under the conjugation of vector
space isomorphisms between two fibres of K, that is, the bracket of u,v € E,, at p» € N can
be calculated by the value of the bracket at another base point p; € N using a conjugation of
the bracket;' given an vector space isomorphism ¢ : E, — E,, the mentioned conjugation is
given by £([¢71 (1), (v)] ;). That implies that £ must be a Lie algebra isomorphism, and,
extending this, K is an LAB. This argument can be proven with arguments of the holonomy
theory of connections, especially one uses that the values of a parallel section at two points
connected by a curve are related by the parallel transport along that curve, or, in other words,
the value at one point is the value at the other point conjugated by the parallel transport.
Alternatively (but very similar), one argues as in [0, Proposition 2.13]; that is, as we have
seen, Vx is a linear vector field on K as a derivation on a vector bundle (recall Section 3.3,
especially Thm. 3.3.15). One can argue that linear vector fields are infinitesimal automorphisms
of a vector bundle.” Since the vanishing of the basic curvature is just the infinitesimal version
of a Lie algebra homomorphism, the connection encodes the infinitesimal information of a Lie
algebra isomorphism, therefore one can show that parallel transports by V are then Lie algebra

isomorphisms with which one can construct a suitable LAB trivialization of K. |

So, this theorem implies that a vanishing basic curvature means that a bundle of Lie algebras
is an LAB (over a connected base manifold). So, in our context bundle of Lie algebras are not

so important, which is why we just want to focus on LABs.

5.1.1. CYMH GT for LABs

Let us now start to look at the situation of LABs; recall Def. 3.1.20. Let us summarize the
important previous results about CYMH GTs restricted onto LABs. The following section
about LABs is also discussed in my paper [19], slightly differently written. Also observe that for
a zero anchor the basic connection VP on TN is just zero, making the compatibility condition
on the metric g on TN trivial, and on F it is the adjoint representation. This and the zero

anchor in general simplifies all the involved equations:

Situation 5.1.3: CYMH GT for Lie algebra bundles

Let g be a real finite-dimensional Lie algebra with Lie bracket [-, -] g With

Ip1, p2 need to be connected by a path which is why one assumes a connected base manifold.
2See also the beginning of [9].
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g — (K7 ['a ]K)

|

N

we denote LAB over a smooth manifold N with Lie algebra structure inherited by g, with
its field [-, ], € F(/\2 K*® K) of Lie brackets which restricts on the Lie bracket [-, -]  on
each fibre. The gauge theory we look at is then now with respect to £ = K.

In the classical setting that would be a gauge theory where the gauge bosons are not
paired to another fields via the minimal coupling because LABs are action Lie algebroids
with zero action.

Let (M,n) be a spacetime M with its spacetime metric n, and ® : M — N a smooth
map, representing the Higgs field. ®*K has also the structure of an LAB with a field of
Lie brackets denoted by [-, ] g« € 1“(/\2 O*(K*) ® <I>*K), which restricts to [+, -], on each

g
fibre, too. This bracket is given by

[‘7 ']@*K = (I)*([7 }K)

Let us also fix a vector bundle connection V on K for which there is a ¢ € Q?(N; K) such
that

Vy ([ vlg) = [Vym, vig + (1, Vyvig, (5.1)

Ry (Y, Z)u = [C(K Z)nu]K (5'2)

forall Y, Z € X(N) and p,v € T'(K).
The field of gauge bosons (for a given Higgs field) will be represented by

A€ QYM;P*K).
The field strength G is then defined as an element of F2(M;*K) by

G(®,A) =d*VA+ %[A N Alper + %(@*g)(m ADO)

. 1
—d*'VA+ A D Al + D'¢. (5.3)

The curved Yang-Mills-Higgs Lagrangian is then defined as a top-degree-form ZLcyny €

gﬁim(M) (M) given by

Zoymu (P, A) = —%(@*H)(G N xG) 4+ (9% g) (DD » xDP) + *(V o @), (5.4)

where x is the Hodge star operator w.r.t. ton, V€ C*°(N) is the potential for @, g is
a Riemannian metric on NV and k a fibre metric on K.
We only allow Lie algebras g admitting an ad-invariant scalar product to which & shall

restrict to on each fibre. Doing so, we achieve infinitesimal gauge invariance for Zcymm-
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Remarks 5.1.4.

e In the following we want to test whether a given connection V satisfies the compatibility
conditions (5.1) and (5.2). Especially about the latter we say that a connection V satisfies
compatibility condition (5.2) if there is a ¢ € Q?(N; K) such that this condition is satisfied.
So, we are not going to study this condition with respect to a fixed (. Moreover, for simplicity
for LABs we only mean (5.1) and (5.2) with compatibility conditions because the compatibility
conditions on the metrics are either trivial or well-understood.

e Recall Remark 4.3.40; if we would use V, in general to define the infinitesimal gauge
transformation for K-valued forms, then we can only expect Rs(-,)A = 0 if the basic curvature
vanishes and V, is flat; the latter is now trivially satisfied, while the former is one of the
compatibility conditions. If doing so, the essential gauge transformations have again the very

familiar form,
Oua.)A = (0:2) (@, A) = [(®, A), Alg g — 4"V (e(2, 4)), (5.5)
5.8 =0 (5.6)
for all e € FL(M;*K) and (@, A) € Mg (M; N). As usual, the infinitesimal gauge transforma-
tion §.G of G is then given by (recall Thm. 2.5.19 and 4.3.10)

(6.G)(@, 4) = L

o [t s G(<I>, A+t 55@7,@14)] (5.7)

t=0
for t € R. Because of the compatibility conditions (5.1) and (5.2) we can derive that J.G has

the following form
(5€G)(@7A) = [g(cva)vG(q)?A)]@*K‘ (58)
However, we will not need those since we have discussed the gauge transformations thoroughly

before, which is why we do not prove this; but it is easy to check as an exercise.

That is the situation regarding gauge theory and its formalism on Lie algebra bundles. The
field redefinition defined earlier has the following simplified form. Recall its properties shown

earlier.

Field redefinition 5.1.5: In the situation of LABs

Let A € Q'(NV; K), then the field redefinition in the case of LABs leads to the following
formulas
AN = A+ (P*N)(DD) = A+ d'), (5.9)
=) vy 1
P == d"A+ SN N, (5.10)
and
V= Vypu—MY), plx (5.11)

218



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

for all Y € X(N) and p € I'(K). The metrics x and g stay the same.

Remarks 5.1.6.

For Eq. (5.11) we can write
VA=V —ado), (5.12)

where ad o A € Q' (N;End(K)), (ad o M) (Y) (1) = [AN(Y), ulf for all Y € X(N) and p € T'(K).
This implies that

(ad o A) () = [\ plge = (A2 bl
Similarly, we get ad o w € Q'(N; End(K)).
5.1.2. Relation of vector bundle connections in gauge theories with certain Lie

derivation laws

Starting with a CYMH GT using LABs, there is the natural question whether or not one arrives
at a (pre-)classical gauge theory by using the field redefinition 5.1.5. We now especially need
what we have discussed in Section 3.11, most importantly Ex. 3.11.15 which was about the

following commuting diagram of Lie algebroid morphisms:

Z(K) Z(K)
K=——K
ad (513)

Der(K) —— Dpe(K) —%—» TN

- ; H
Out(K) —— Out(Ppe(K)) —2» TN

where K — N is an LAB over a smooth manifold N, Z(K) its centre, Dpe,(K) derivations of
K which are also Lie bracket derivations, Der(K) are the same but as endomorphisms, so, the
kernel of a; and the Out denotes the quotient over the adjoint of K, ad(K).

In order to understand CYMH GT using LABs, it is important to understand what type of
connection V we have due to the compatibility conditions (5.1) and (5.2). We understand vec-
tor bundle connections as an anchor-preserving (and base-preserving) vector bundle morphism
TN — 2(K). For all Y € X(N), compatibility condition (5.1) implies that Vy is a derivation
of the Lie bracket [+, ], and so of [-,-]; on each fibre. Thence, the vector bundle morphism V
has values in Dpe;(K).

Dper(K) is also a Lie subalgebroid of & (K) as discussed earlier. So, by compatibility condition

(5.1), we arrive at that V has to be what we will call a Lie derivation law:
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Definition 5.1.7: Lie derivation law,

[3, §7.2, special form of Definition 7.2.9, page 275.]

Let K — N be an LAB. A Lie derivation law for TN with coefficients in K is an
anchor- and base-preserving vector bundle morphism V : TN — Dpe(K), that is, a

connection V on K in the usual sense such that

Vy([,d, V]K) = [Vy,u, V]K + [:U’? VYV]K (5'14>

forall Y € X(N) and p,v € I'(K).

Remarks 5.1.8.
By Thm. 5.1.1 such a connection always exists for LABs.

In [3, §5.2, second part of Example 5.2.12; page 188f.] such a connection is also called
Lie connection; Lie derivation laws are actually a bit more general defined, using general Lie
algebroids in place of TN. However, we will not need this generalization, but all the references
in the following are actually about more general connections; in order to make it easier for the
reader who looks up those references, we decided to still use the term Lie derivation law instead

to avoid confusion.

Now about understanding the compatibility condition (5.2): In the context of the field re-
definition, if it would be possible to make V flat by a field redefinition, then there would be a
parallel frame (e,), locally for V* such that by Eq. (5.11)

Vyea = [MY), eal g

for all Y € X(N). That is, with respect to that frame, the Lie bracket derivation Vy looks
like an adjoint of A(Y’), an inner Lie bracket derivation. Thence, it makes sense to look at the
previously discussed Lie algebroid of outer derivations etc., which is why we emphasize again to
recall the discussion around diagram (5.13) in Section 3.11.

With diagram (5.13) we can now also study compatibility condition (5.2). The curvature Ry
of a Lie connection V : TN — Dp,(K) is clearly an element of Q?(N; Dpe,(K)) since

Ry(Y,Z) = [Vy,Vzlg, )~ Viv.iz) € I(Dpe:(K))
——
€ I_‘(gDer([()) € F(gDer(K))

for all Y, Z € X(IN). Compatibility condition (5.2) is then equivalent to
f(Rv(Y,2)) =0 (5.15)

for all Y, Z € X(N). We will show that this implies that V is a Lie derivation law covering what
is called a pairing of TN with K. For that we need to define what a pairing is.?

3Mackenzie called the following construction a coupling and not pairing. I renamed it to avoid confusion with

couplings in a physical context. Thanks for this suggestion, Alessandra Frabetti.

220



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

Definition 5.1.9: Pairing of TN, [3, §7.2, Definitions 7.2.2; page 272]

A pairing of TN is a pair of an LAB K — N together with a (base-preserving) morphism
of Lie algebroids E: TN — Out(Ppe;(K)). We also say that TN and K are paired by

Now we can define a special type of connection.

Definition 5.1.10: Lie derivation law covering =,

[3, §7.2, see discussion after Definition 7.2.2; page 272]

Let K — N be an LAB and V : TN — 9p(K) a Lie derivation law. Assume
that TN and K are paired by a (base-preserving) Lie algebroid morphism = : TN —
Out(Dper(K)). Then we say that V is a Lie derivation law covering E if

oV =E. (5.16)

Remarks 5.1.11.
So, while a Lie derivation law is not necessarily a morphism of Lie algebroids, f o V is of that

type when V covers a pairing.

This type of connection is exactly the type we need for gauge theory on LABs.

Theorem 5.1.12: (C)YMH GT only allows Lie derivation laws covering =

Let K — N be an LAB. Then a map V : TN — Dpe,(K) is a Lie derivation law covering
some (base-preserving) Lie algebroid morphism Z : TN — Out(Dpe(K)) if and only if it

is a connection on K satisfying the compatibility conditions (5.1) and (5.2), i.e.
VY([M, V]K) = [VYMaV}K + [,LL,VYV]K,
f(Rv(Y,Z)) =0

forallY,Z € X(N) and pu,v € T'(K).

Remarks 5.1.13.
So, we have seen that compatibility condition (5.1) implies that V has to be a Lie derivation

law, and compatibility condition (5.2) then implies that it covers a pairing of TN and K.

As argued in [3, §7.2, discussion after Definition 7.2.2, replace the A there with TN; page
272], for a given = there is always a Lie derivation law covering it. As a sketch, that follows
by the construction and definition of f§ given by Prop. 3.11.12, 4.e. it is a surjective submersion,
such that the existence of a map V : TN — Dpe(K) with § o V = = follows, V is a vector

bundle morphism, since § and E are; finally, we have by diagram (5.13) @o§ = a and E is
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anchor-preserving, so, @ o Z = Iy, such that we can apply @ on both side of o V = = to get
aoV =1rpn.
Therefore V is also anchor-preserving and, thus, a vector bundle connection.

Proof.
We already have seen that a connection V satisfying compatibility condition (5.1) has a 1:1
correspondence to an anchor-preserving vector bundle morphism V : TN — Dpe,(K), i.e. a Lie
derivation law. So, we only have to care about compatibility condition (5.2).

7<": So, let us have a Lie derivation law with additionally #(Rv(Y,Z)) =0 for all Y, Z €
X(N). Define = := § 0V, and recall that § : Dpe(K) — Out(Dpe(K)) is a Lie algebroid
morphism such that = is an anchor-preserving vector bundle morphism by definition, using that

V is a Lie derivation law,
agoZ=aoffoV=a0oV=1Lpy.

Using that # is a homormorphism of Lie brackets, and by #(Ry (Y, Z)) =0 for all Y, Z € X(N),

we also get
=([Y, 2)) = 4(Viv.z))
= #(IVv, Vo, ()
= [(Vy), 8V 2)lout(@pe ()

= [E(Y), E(2)]out(@pe (1))

i.e. =2 is a Lie algebroid morphism (base-preserving), and it is covered by V due to its definition.
”=-": This part of the proof is as in [3, §7.2, discussion after Definition 7.2.2; page 272] and
similar to the previous calculation. Let V be a Lie derivation law covering some Lie algebroid

morphism =, especially, o V = Z. That implies
{(Ry (Y. 2)) = 4(IVy, Valay, )~ Viva)
= 1Y) #V D) our(@pa ) — §(Vivz)

= 20, 2(2)]ouamuiy — S Z)

for all Y, Z € X(N), using that both, § and =, are homomorphisms of the corresponding Lie
brackets. This finishes the proof. |
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Given a Lie derivation law covering some =, we get that V is an anchor-preserving vector
bundle morphism and oV = = is a Lie algebroid morphism. When we want that V is not flat,
in the hope of finding a new gauge theory (recall Cor. 4.4.7), we do not want that V itself is a
Lie algebroid morphism by Cor. 3.4.5, while § is a Lie algebroid morphism and = = § o V, too.
That looks like a tightrope walk. But there are a lot of non-flat Lie derivation laws covering
some =, we may see some in the following parts, so, constructing non-flat connections for a
gauge theory is not impossible. But the field redefinition 5.1.5 may still lead to a flat connection
while keeping the same physics, 7.e. the Lagrangian stays the same.

To study this we now need to construct an invariant for the field redefinition. Observe the

following, using the notation as introduced in (5.13).

Proposition 5.1.14: Field redefinition preserves the pairing

Let (K,Z) be a pairing of TN, V be a Lie derivation law covering = and ¢ € Q*(N; K)
satisfying compatibility condition (5.2) with respect to V.

Then the field redefinition 5.1.5 preserves the pairing, i.e. V* is also a Lie derivation
law covering Z for all A\ € QY(N; K). Moreover, for every other Lie derivation law V'
covering = there is a A € Q'(N; K) such that

v/ — 6)\
and for its curvature

Ry =ado 8.

Remarks 5.1.15.

These are exactly the same formulas as in [3, §7.2, Proposition 7.2.7, identifying Mackenzie’s 1-
form [ with — A\, also keep in mind that Mackenzie defines curvatures with an opposite sign; page
274]. In this reference Mackenzie studies the form given by the difference of two Lie derivation
laws covering the same pairing and arrives exactly at our formulas of the field redefinition which
we have derived from a more general context of gauge theory on Lie algebroids.

In this work the context is given by field redefinitions of a gauge theory, while Mackenzie
studies these connections in the context of extending Lie algebroids by Lie algebra bundles (over
the same base) such that their Whitney sum admits a Lie algebroid structure. Hence, in the
following we will see that Mackenzie’s study about extensions has a 1:1 correspondence to the

question whether one can find a field redefinition such that Vv is flat.

Proof of Prop. 5.1.1).
By Thm. 4.7.13 we know that the field redefinition preserves the compatibility conditions (5.1)
and (5.2), i.e.

Vil vlg) = [Vinv|  + [ V30
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Re, (Y, Z)n = [NV, 2), ] .

that implies by Thm. 5.1.12 that V* is a Lie derivation law covering = = fo V>, Moreover,

using the notation (5.13),
foVA=fo(V—adol) =foV =5

for all A € QY(N; K), using # o ad = 0. This shows that V* covers E.

Now let V’ be another Lie derivation law covering =, then clearly
algy, () (Vy —=Vy) =Y =Y =0
for all Y € X(N), such that V' — V € QY(N;Der(K)) by (5.13), and

0=E—-E=foV —foV=4o(V -V)=4"0(V -V).

———
€ QY(N;Der(K))

Again by (5.13), there is a u(Y) € I'(K) such that Vi, — Vy = ad(u(Y)) for all Y € X(NV),
and due to the C™-linearity w.r.t. Y we get V' — V = ad oy for a p € QY(N; K). By field
redefinition 5.1.5 we can take A = —u to get V/ = VA,

Since V satisfies compatibility condition (5.2) by Thm. 5.1.12 and since this condition is
preserved by a field redefinition, the last statement follows, Ry/(Y,Z) = ad (E)‘(Y, Z )) for all
Y, Z € X(N). n

Locally we can say the following.

Corollary 5.1.16: Local existence of a flat Lie derivation law covering a pairing

Let K be an LAB. Then locally there is always a flat Lie derivation law covering some

(base-preserving) Lie algebroid morphism Z: TN — Out(Dper(K)).

Remarks 5.1.17.
So, locally, by using Prop. 5.1.14, the question whether or not one can transform to a flat
connection with the field redefinition breaks down to the question if there is a flat connection

covering the same pairing.

Proof.
Locally there is a trivialization K = U x g as LABs on some open subset U C N. Then define
V as the canonical flat connection, and by Thm. 4.3.41 we know that it has vanishing basic
curvature, so, it satisfies compatibility condition (5.1); compatibility condition (5.2) is trivially
satisfied by the flatness.

By Thm. 5.1.12 the statement follows. |
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5.1.3. Obstruction for non-pre-classical gauge theories

Using the previous subsection, let us now look at whether or not we can make the connection
flat by a field redefinition. For such questions it is useful to have an invariant; actually, dV¢ is

invariant under the field redefinition.

Proposition 5.1.18: dV¢ an invariant of the field redefinition,

[3, §7.2, Proposition 7.2.11, last statement, there ( is de-
noted by A and dV¢ by f(V,A); page 276]

Let (K,Z) be a pairing of TN and V be a Lie derivation law covering =. Also let ¢ be
any element of Q*(N; K) that satisfies compatibility condition (5.2) with respect to V.
Then dV ¢ is invariant under the field redefinition 5.1.5, i.e.

AV = ave. (5.17)

Proof.

Recall that in general curvatures satisfy
v\ 2
(d ) w=RyAw
for all w € Q!(N; K), viewing Ry as an element of Q?(N; End(K)). Then we have

(5.2) Eq. (A.5)

(dV)ZAZRVMEq‘z (ado () AN (¢ A Ny
A0 ™ E ] = [paTa] P [T
(adoX) A O LD [a ] P [paa] B CLOY peay p[avan ]

and, by combining everything, we arrive at
dVA A = @V ader () B A2 10 gv (g — v+ %[)\ Y K) —(adoA) A CF = aY¢
for all A € Q1(NV; K). [
Therefore let us study dV¢. Earlier we have shown what the (second) Bianchi identity for

Ry, dVRy = 0, implies for ¢ under using the compatibility condition (5.2); recall Thm. 4.8.3.

Let us state what this means in the situation of LABs.

Proposition 5.1.19: Bianchi identity for (

Let (K,Z) be a pairing of TN and V be a Lie derivation law covering Z. Also let ¢ be
any element of Q?(N; K) that satisfies compatibility condition (5.2) with respect to V.
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Then we have
dV¢ € Q¥(N; Z(K)),

i.e. dV¢ has always values in the centre of K.

Remarks 5.1.20.
This is equivalent to [3, §7.2, Lemma 7.2.4,  is denoted as A there; page 273]. Mackenzie shows
it by direct calculation in that special situation, while we derive it from the previous, more

general result.

Proof.
By Thm. 4.8.3, which clearly reduces to the following in the case of LABs (insert p = 0)

v _
[a¥¢(v, Y2, Y3), ] =0
for all Y1,Y5,Ys € X(N), and p € I'(K). That proves the claim. [
In fact, dV is a differential on centre-valued forms.

Theorem 5.1.21: Differential on centre-valued forms,
[3, §7.2, Definition 7.2.3 and the discussion directly before;

page 273]

Let (K,E) be a pairing. Then every Lie derivation law V covering E restricts to a flat
connection V45 on Z(K).

Moreover, Z induces a differential d= : Q*(N; Z(K)) — Q*tL(N;Z(K)) by choosing
d& = dv* = v
of the choice of V.

We call this differential central representation of =.

for any Lie derivation law ¥ covering 2. d= is independent
Q*(N;Z(K))

Remarks 5.1.22.
Recall the second paragraph of Remark 5.1.13, i.e. there is a Lie derivation Law V : TN —

Dper(K) covering Z. Hence, d= always exists for a given Z.

Proof of Thm. 5.1.21.
By Thm. 5.1.12 V satisfies compatibility conditions

Vy ([ V) = [Vyps Vg + [ Vy vy,
Ry(Y,Z) = ad(((Y, 2))

for all Y, Z € X(N), p,v € T(K) and for some ¢ € Q?(N; K). Let u € T(Z(K)), then the first

compatibility condition implies

0= [VY/MV}K
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forall Y € X(N), v € I'(K) and p € I'(Z(K)). That implies that Vypu € I'(Z(K)) such that

(K)

V is also a connection on I'(Z(K)), which we now denote by VZ(5). Restricting the second

compatibility condition onto Z(K) then immediately implies
Ryz) =0,

i.e. VZK) is flat, and therefore, by the definition of the exterior covariant derivative,

dE — dv — dVZ(K>
’ Q*(N;Z(K))

is a differential. Now take any other Lie derivation law V' covering =Z. By Prop. 5.1.14, there is
a A € QY(N; K) such that

V' =V —ado),
i.e.
Vyu = Vyp
for all Y € 2(N) and p € I'(Z(K)). Hence, d= is independent of the choice of V. [

One can now check that dV¢ is closed under d=. Be aware of that for non-flat Lie derivation
laws V covering = this is not an obviously trivial question; due to compatibility condition (5.2),

¢ is not centre-valued in general such that dV¢ cannot be written as d=¢.

Lemma 5.1.23: Closedness of dV(¢ under the central representation,
[3, §7.2, Lemma 7.2.5, dV( is denoted by f and d* as d, and

without written proof there; page 274]

Let (K,Z) be a pairing of TN and V be a Lie derivation law covering =. Also let ¢ be
any element of Q*(N; K) that satisfies compatibility condition (5.2) with respect to V.
Then

d=dV¢ =0 (5.18)

i.e. dV¢ € Q3(N; Z(K)) is closed under d=.

Proof.
We have
2 Eq. (5.2) Eq. (A.5)
(d¥)¢=Ron¢ =" @do ) ACTT =T [0 i,
but also, using that ¢ € Q%(N; K),
Eq. (A.7)
€A=" =10 g
2 2
such that (dv) (=— (dv) ¢. Hence, the last statement follows. |

We need to know how dV( changes by varying C.
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Lemma 5.1.24: Varying ¢ in dV(,
[3, §7.2, Lemma 7.2.6, Mackenzie denotes ¢ by A, dV( by f

and d= by d; page 274]

Let (K,Z) be a pairing of TN and V be a Lie derivation law covering Z. Also let ¢ and
¢’ be two elements of Q>(N; K) which satisfy compatibility condition (5.2) with respect to
V.

Then

¢ —CeQ(N; Z(K)). (5.19)

Especially, dV¢' — dV(¢ is d=-exact.

Proof.
This simply follows by the compatibility condition (5.2), i.e.

[C'(Y,Z2) = C(Y, Z), 1] jp = Rv(Y, Z)p — Ry (Y, Z)p =0

for all Y, Z € X(N) and p € T'(K). Thence, ¢ := ¢’ — ¢ is an element of Q?(N; Z(K)). By Thm.
5.1.21 we get
d¢' = dV¢=aY (¢~ ¢) =d3(¢" - ¢),

N—_——
€N?(N;Z(K))

i.e. dV¢' —dV( is exact with respect to d= since ¢’ — ¢ has values in Z(K). [ |

Since dV( is invariant under the field redefinition, this finally shows that dV ¢ is a useful object
to study in the context of the field redefinition. By Lemma 5.1.23 this is a closed form, and
it is clear that in the flat situation ¢ has values in Z(K) by compatibility condition (5.2). By
Thm. 5.1.21 we would get dV¢ = d=¢, i.e. dV¢ would be then exact. Hence, it makes sense to
study the cohomology class of dV¢ with respect to d= if one is interested into whether or not
the gauge theory can be transformed into a pre-classical* gauge theory by the field redefinitions.

We denote the space of cohomology classes of d=-closed elements of Q°(N; Z(K)) by
7* (TN, d%, 2(K)) (5.20)

as in [3, Theorem 7.2.12, replace A with TN and p= with d=; page 277], and the classes by []
Thus,

7]

using that dV¢ is d=-closed by Lemma 5.1.23.

cw? (TN, dz, Z(K)),

[1]

4Recall Def. 4.7.8.
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Theorem 5.1.25: Cohomology of dV( an invariant,
[3, §7.2, Theorem 7.2.12, Mackenzie denotes d= with p=, ¢

with A, dV¢ with f(V,A), and replace A with TN; page 277]

Let (K,Z) be a pairing of TN and V be a Lie derivation law covering =. Also let ¢ be
any element of Q?(N; K) that satisfies compatibility condition (5.2) with respect to V.
Then {dvd only depends on = and not on the particular choice of V and (.

Proof.
This follows by Lemma 5.1.24 and Prop. 5.1.18. The former shows that changing { with another
element ¢’ of O?(N; K) satisfying compatibility condition (5.2) results into

V¢ =a¥¢+dY (¢ - Q) € [dY¢]
————

d=-exact

i.e. [dvg’} = [dvq , and the latter shows

e

Thence, by using Prop. 5.1.14, i.e. one can reach every other Lie derivation law covering = by

= [a%¢|..

using the field redefinition 5.1.5, one can freely change the Lie derivation law covering = by
Prop. 5.1.18, and by Lemma 5.1.24 it does not matter which ( is used. |
This clearly motivates the following definition of Mackenzie’s obstruction class.

Definition 5.1.26: The obstruction class of pairings,

[3, §7.2, comment after Theorem 7.2.12; page 277]

Let (K,Z) be a pairing of TN, and let V be any Lie derivation law covering =. Also let
¢ be any element of Q?(N; K) that satisfies compatibility condition (5.2) with respect to
V.

Then we define the obstruction class of = by

Obs(Z) := [d7¢] _. (5.21)

[1]

We immediately get a first result related to CYMH GT.

Corollary 5.1.27: First approach of obstruction for CYMH GT on LABs

Let (K,E) be a pairing of TN, and let V be a fized Lie derivation law covering Z.

Then we have
3 a field redefinition as in 5.1.5: V> is flat = Obs(E) =0 e #° (TN, d=, Z(K))

0.

Or, equivalently, if there is a flat Lie derivation law covering =, then Obs(E)
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Proof of Cor. 5.1.27.
Let ¢ be any element of Q2(N; K) that satisfies compatibility condition (5.2) with respect to V.
When there is a field redefinition such that V* is flat then we can conclude that EA has only
values in Z(K) by compatibility condition (5.2). But then we arrive at

Obs(2) = [av¢|_ = [dwp

] Thm._5.1.21 [da?\}a —0.

The equivalence to the last statement simply follows by using Prop. 5.1.14. |

5.1.4. Mackenzie's theory about extensions of tangent bundles

We now want to study when the obstruction is zero and when it implies the existence of a
flat Lie derivation law covering =. To understand this, we need to understand why Mackenzie
studied this obstruction class. Mackenzie was interested into whether or not a Lie algebroid can
be extended by an LAB; we are going to state Mackenzie’s statements in the special situation
of having TN as the Lie algebroid. But the arguments and calculations do not really differ; in
the context of gauge theory we just need to study TN. Recall Def. 3.11.7 about extensions and
transversals; there will be now another Lie algebroid E besides the LAB K, and the anchor of
E we will denote by 7 instead of p to avoid confusion with p = 0 of K. This E is not the same
E as in the context of CYMH GT; the Lie algebroid for CYMH GT in this section is K as we
have introduced it.

To a given transversal we are able to define a Lie derivation law covering some Lie algebroid
morphism = : TN — Out(Dpe; (K)).

Proposition 5.1.28: Lie derivation law of a transversal,
[3, §7.3, Proposition 7.3.2 and Lemma 7.3.3, replace A

with TN and A’ with E; page 278]

Let
K F "% TN.

be an extension of TN by an LAB K — N, and let x be any transversal. Then a

connection VX on K, given by

UVynu) = X(Y),uw)g (5.22)

for all Y € X(N) and p € I'(K), describes a Lie derivation law covering some Lie
algebroid morphism Z : TN — Out(Pper(K)).

Proof.
Let us discuss why Eq. (5.22) is well-defined and giving rise to a vector bundle morphism

VX : TN — D(K). ¢ is an injective’ Lie algebroid morphism and embedding such that we

5This follows by the exactness of the given sequence.
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can identify K and ((K) as LABs; since the kernel of 7 is given by the image of + we know
that any element £ € I'(E) with m(§) = 0 is also an element of I'(¢(K)) and has, thus, a 1:1
correspondence in I'(K) given by +~1(¢). Due to that 7 is a homomorphism of of Lie brackets

and by mo ¢ =0, we have

(X (Y), e(w)]g) =0

for all Y € X(N) and p € I'(K). It follows that the right hand side of Eq. (5.22) defines an
element of I'(K'). Hence, it is valid to define V{ as some map on I'(K) by using Eq. (5.22) for
all Y € X(N). Additionally, for all Y, Z € X(N), p,v € I'(K), f,h € C®°(N) and o, f € R we

have
(Vv inztt) = IUFY + 0 2), ()]
= [£X(Y) + hx(2), o(p)] g
TEF I )] g+ b (Z), )]

= u(fVyp+hVyp),
also
LT (ap+ BY)) = (V) sl + Bu)] g = alx(V), o)) g + BIX(Y), o)) = eV + V),
and

(V) = ), Fu] ™= f (V) + Ly (f) ) = ol f Vi + Ly (f) w).

Moreover,

= [(Vn), e()] g + (1), L(VEV)]
= (Ve V) + (1, Virg)
= o([Vyu, Vg + 1, Vyrlg)

using the Jacobi identity for [-,-] ;. Thence, VX is a Lie derivation law. By Thm. 5.1.12 we are

left showing whether § o Ryx = 0,

UBx (Y, Z)p) = X(Y), X(2), i)l gl p = X(2), IX(Y), el gl g = IX(TY; 21), ()] 2
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= [X(Y), x(D)] s e()] g = (Y, 21), ()]

= [IX(Y), x(2)] g = x([Y, Z]), ()]

=Ry (Y,2)
= [RX<Y7 Z)7L(M)]Ea (523)
using again the Jacobi identity for [-,-]; and that ¢ is a Lie algebroid morphism, where R, is

the curvature of x as defined in Def. 3.1.7, which is a tensor by Lemma 3.1.12 and by the fact

that x is a transversal, that is, x is anchor-preserving. Observe
mox=1
T(Ry(Y, 2)) = [(7 0 0)(V), (w0 )(2)] - (w0 ([ 2]) "= 0,

using that 7 is a Lie algebroid morphism. Therefore R, (Y, Z) € «(K) for all Y, Z € X(N), and,
so, Eq. (5.23) implies

Rox (Y, Z) = (ad o7 1) (Ry(Y, 2)) (5.24)

using that ¢ is an injective Lie algebroid morphism. By (5.13) we get § o Ryx = 0, and the

statement follows. |
Furthermore, the pairing covered by VX is the same for all transversals x.

Corollary 5.1.29: All transversals results into the same covered pairing,
[3, §7.3, comment after Lemma 7.3.3, replace A with TN

and A’ with E; page 278]

Let
K——‘“*sF "4 TN.

be an extension of TN by an LAB K — N, and let x and X' be two transversals.
Then

HoVX=HoVWX.

Proof.

Since x and ' are transversals we get
mo(x(Y)=X(Y) =Y -Y =0,

for all Y € X(N), such that, again by the exactness of the sequence, there is a u(Y) € T'(K)
with x(Y) = x'(Y) = ¢((Y)). Due to the C*-linearity of the transversals we even have a vector
bundle morphism g : TN — K such that

X—x =top,

232



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

such that

5.22)

Vw2 ), 0] g = O, 60)] g+ [0 (0), 1) = (Vv + [n(Y), v] )

for all Y € X(N) and v € I'(K). Therefore
VX =VX +adop,
thus, by (5.13),

o VX =foVWX.

This immediately leads to the following definition.

Definition 5.1.30: Pairing induced by an extension,
[3, §7.3, Definition 7.3.4, replace A with TN and A’ with F;

page 278]

Let
K—‘* FE —"% TN.

be an extension of TN by an LAB K — N, and let x be any transversal.
Then the pairing Zext == § 0 VX : TN — Out(Dpe;(K)) is the pairing of TN with K

induced by the extension.

Finally we can state what Mackenzie has shown about the obstruction class.

Theorem 5.1.31: Obstruction of an extension,
[3, §7.3, Proposition 7.3.6, page 279, Corollary 7.3.9 and the

comment afterwards, page 281; replace A with TN and A’
with F)|

Let (K, Z) be a pairing of TN.

Then there is an extension
K—‘*-sF "% TN

of TN by K such that Zexy = Z if and only if Obs(E) = 0 € 7/3<TN, dE,Z(K)).
Moreover, given such an extension, then for all Lie derivation laws V covering Z there is

a transversal x such that

V = VX
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Proof.

We only give a sketch; for the full proof please see the reference. We especially need the part
of the proof starting with a zero obstruction class. Given a zero obstruction class, fix a Lie
derivation law V covering =, and let ¢ be any element of Q?(N; K) that satisfies compatibility
condition (5.2) with respect to V. First, additionally following [3, Proposition 7.2.13; page 277],
that is, Obs(Z) = 0 implies that there is an h € Q?(N; Z(K)) with

de _ dEh Thm.:5‘1.21

dVh,
then define ¢’ := ¢ — h such that clearly dV¢’ = 0. Observe,

Rv(g) ado(¢ =ado (.

(@23

Define
E=TNoK

be the vector bundle given as the Whitney sum of K and TN. The anchor is just the projection
onto the first factor, and define the bracket by

[(K V)a (Zwu)]E = ([Y? Z]’ [V7/J’]K +VY:U’_ VZV— CI(K Z))

for all (Y,v),(Z,pn) € E. It is trivial to check that the Leibniz rule is with respect to the chosen
anchor, bilinearity and antisymmetry are also clear. Hence, one essentially needs to check the
Jacobi identity: This is a straightforward calculation resulting into a big sum. All the terms will
cancel each other by the Jacobi identity of [-,:],; and there will be terms where V will act on
the Lie bracket and terms where adjoints act on V such that these cancel each other by using
that V has values in Ppe,(K); moreover, one also gets clearly the curvature of V and adjoints
of ¢’ which will cancel the curvature terms by Ry = ad o (’; finally, there are also terms where
V acts on ¢’ and ¢’ is contracted in one factor with terms like [Y, Z], and all these terms will
result into dV¢’ which is zero by construction. Hence, Jacobi identity will be given and, thus, a
Lie algebroid structure.

For the other direction, that is, now assume that we have an extension with Z¢xt = =, one
first shows that there is a transversal x with VX = V; this is as in the proof of [3, Proposition
7.3.6; page 279], and we also omit the notation of « now again, assuming the standard inclusion,
for simplicity in the notation. For any transversal x’ we have foV = fo VX' due to B = By,
that leads to that there is a field redefinition by Prop. 5.1.14 with A\ € Q'(N; K) such that

V=vX+adoA=ado (x +A) = VX,

using the definition of connections like VX', where X = X'+ X and ad is of course using the Lie
bracket of E, possibly restricting onto the bracket of K. Recall Def. 3.1.7, by the calculation of
Eq. (5.23) we have

Rv = va = adORx,
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hence, R, is a possible primitive (which is how we actually called (), satisfying compatibility

condition (5.2) with respect to V. We want to calculate dV* R, in order to study Obs(E), so,

(¥ Ry ) (XY, 2) = VX (Ry(Y, 2)) =V¥(Ry(X, 2)) + V3(Ry(X,Y))

:[X(X)vRX(sz)}E

- RX([X7 Y}v Z) + RX([Xv Z]7Y) - RX([Ya Z]aX)
= o (IX(X), (V) X(D] g — [X(X), (1Y 20)]
— [([X,Y]), X(2)] , + X (X, Y], 2) )
=0

for all X,Y,Z € X(N), where o denotes the cyclic sum through X, Y, Z and where we used the
Jacobi identity of [-,] and [, -] 5. Thus, trivially Obs(Z) = 0. |

By Cor. 5.1.27 we see that the question about whether there is a field redefinition in sense of
5.1.5 to arrive at a pre-classical gauge theory, i.e. when V is flat, is related to the existence of
an extension of TN by K.

When we are just interested into local behaviours then we might assume that IV is contractible.

Theorem 5.1.32: Extensions over contractible manifolds,
[3, §8.2, Theorem 8.2.1, replace A with F, L with K and TM

with TN; page 314ff.]

Let
K—‘“*+FE "% TN.

be an extension of TN by an LAB K over a contractible manifold N. Then there is a flat

Lie derivation law covering Zpyt.”

“Mackenzie stated that F admits a flat connection, with that they actually mean that it is a flat Lie

derivation law covering Egxt.

Proof.

The proof of this theorem is very long and needs a lot of preparation, therefore this would sadly
exceed this work; thence, see the reference of this statement. The essential idea is that this is
the generalization of the infinitesimal analogue about that a principal bundle admits a global
section over a contractible base. Mackenzie’s proof is about generalizing the proof of principal
bundles where the base is contracted and homotopy classification of bundles is used. In order to
do something similar, Mackenzie introduces a certain cohomology theory in [3, §7; page 2571f.];

in parts we already introduced the basics for it. |
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5.1.5. Results

In total we derive therefore the following two statements, the first can be seen as a generalization
of Cor. 5.1.16.

Theorem 5.1.33: Local existence of pre-classical gauge theory

Let (K, =) be a pairing of TN over a contractible manifold N, and let V be a fized Lie
derivation law covering =.

Then we have a field redefinition in sense of 5.1.5 making V flat, i.e. there is a A €
QY(N; K) such that V* is flat.

Proof.
We only need to show that Obs(Z) = {dvd
condition (5.2) is satisfied. As given in Thm. 5.1.21 the central representation d= of = is basically
aV”"™ where VZ(K) is V restricted on the subbundle Z(K), and we have shown that VZ(5) ig
flat by compatibility condition (5.2). Due to the fact that N is contractible, we have a global
parallel frame (e,), for Z(K) with respect to VZ(),

By Prop. 5.1.19 we have dV¢ € Q3(N; Z(K)), thence, we can write dV¢ = w? ® e, with
w?® € Q3(N). We arrive at

=0, where ¢ € Q?(N; K) such that compatibility

[

d=dV¢ = dw® ® eq,

where d is the standard de-Rham differential. So, the differential breaks down to the standard
differential in each component, especially closedness and exactness mean to be closed and exact

in each component with respect to (e,),, respectively. By Lemma 5.1.23 we have d=dV({ = 0,

a’
thus, dw® = 0. Again due to that N is contractible, we can conclude that closedness implies
exactness by the Poincaré lemma. Thence, Obs(E) = 0.

By Thm. 5.1.31 we have an extension
K —— E —"—» TN.

such that Zey = =, and, hence, a flat Lie derivation law covering = by Thm. 5.1.32. By

Prop. 5.1.14 the existence of the field redefinition to a flat derivation law covering = follows. W

Theorem 5.1.34: Possible new and curved gauge theories on LABs

Let (K,Z) be a pairing of TN with Obs(Z) # 0 and such that the fibre Lie algebra g
admits an ad-invariant scalar product.
Then we can construct a CYMH GT for which there is no field redefinition with what it

would become pre-classical.

Proof.

Take any Lie derivation law V covering = (recall the second paragraph of Remark 5.1.13 about
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the existence of V for a given Z). By Thm. 5.1.12 this connection satisfies compatibility con-
ditions (5.1) and (5.2). Together with the existence of an ad-invariant scalar product we have
everything what we need to construct a CYMH GT in sense of 5.1.3.

Due to Obs(E) # 0 and Cor. 5.1.27 the statement follows. |

Hence, we have shown that Obs(Z) is not just an obstruction for extensions of TN, it also
leads to an obstruction for the question about whether or not a CYMH GT can be transformed
to a pre-classical gauge theory by a field redefinition. However, Mackenzie also has shown that
there are examples with zero obstruction class but without a flat Lie derivation law covering the
pairing. Thus, there is in general only for contractible N an equivalence of Obs(Z) = 0 and the

existence of flat Lie derivation laws covering a pairing.

Example 5.1.35: The isotropy of a Hopf fibration,

[3, Example 7.3.20; page 287]

e Let P be the Hopf fibration

Then for the adjoint bundle
K = P xgy()su(2) = <$7 X su(2))/SU(2)
we have the Atiyah sequence
K —— E:=TP/SU(2) — TS".

of TS* by K. We can view this sequence as an extension.

Then Obs(Zgxt) = 0 because of the fact that K is semisimple, but there is no flat deriva-
tion law, especially no flat derivation law covering Zpy.

e We are not going to prove this, because introducing Atiyah sequences etc. would cer-
tainly exceed this work, since we will not need these notions in the following again. Hence,
see the reference for the proof; for the definition of Atiyah sequences see [3, §3.1 and §3.2;
page 86ff.]. The main idea about the definition of Atiyah sequences however is to observe
that the Lie group behind the definition of a principal bundle P % N, N a smooth mani-
fold, also acts on TP by the differential of left- (or right-) multiplication. Due to how the
Lie group acts on P it is trivial to see that it also restricts to an action on the vertical
bundle, which is isomorphic to P x g since its trivialization are the induced fundamental
vector fields. Dp projects TP onto T$* and the vertical bundle is its kernel; one can show
that this is preserved by the chosen quotients over the Lie group action. This leads to

such short exact sequences, the Atiyah sequences.
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e In case you do not know the construction of this Hopf bundle, see e.g. [, Example
4.2.14; page 214ff.]; the construction is basically that we view $7 as unit octonions and
SU(2) = $2 as unit quaternions, an action of $3 on $7 is then canonically given. Taking
the quotient of $7 over $2 is precisely the quaternionic projective line which is isomorphic
to S*.

e As other Hopf fibrations, this Hopf fibration is not trivial. Hence, the idea of the proof
is to show that a flat Lie derivation law covering Zey¢ would imply a trivialization of
this Hopf fibration. A sketch: First observe that the adjoint of E of any section of E
induces an element of Ppe;(K) if restricted onto K; due to that K is the kernel of E’s
anchor, this even defines an E-connection on K. Since su(2) is semisimple this induces
an isomorphism E — Ppe;(K). Then one can argue that a flat Lie derivation law would
induce a flat connection on the Hopf bundle; $* is simply connected such that this implies

a trivialization of this Hopf bundle. Which would be clearly a contradiction.

J

Remark 5.1.36: Hopf bundle as an example for CYMH GT

The fibre of K is given by su(2), and, thence, the existence of an ad-invariant scalar

product is given. Therefore this gives an example of a CYMH GT as in 5.1.3 by taking
any fibre metric x on K which restricts to an ad-invariant scalar product on each fibre, and
taking any Lie derivation law V covering Zgy¢, and, so, the existence of a ¢ € Q?(N; K) as
in compatibility condition (5.2) is given. By Prop. 5.1.14 this example shows that there
is no field redefinition as in 5.1.5 such that this gauge theory would become pre-classical.
In [20] is a relationship of two-qubit systems, as arising in quantum computational sci-
ence, and precisely this Hopf fibration shown. This may or may not prove any physical
significance of this example. At least it may give hints towards a further study related to

this example.

. J

Remarks 5.1.37.

Observe that a trivial semisimple LAB would not work: Fix any global frame (e, ), of the trivial
LAB, then we would have Ve, = [\, e,]x for a A € Q1(IV; K) because all bracket derivations
are inner derivations for semisimple Lie algebras; for this, simply view the connection 1-forms
wl, given by Ve, = w® ® e;, as matrices acting on constant (w.r.t. (e,),) sections. Then e
would be flat, and its parallel frame is e.g. given by (eq),. This argument just depends on the
triviality of the LAB, regardless whether the base is contractible or not. The obstruction class

is of course always trivial for semisimple LABs because their centre is zero.

5.1.6. Existence of non-vanishing primitives stable under the field redefinition

When one is interested into perturbation theory, especially just in a local theory, then Thm. 5.1.33
seems to show that locally one can not hope for new gauge theories, especially ones related to

non-flat V. However, we still have the two-form (. We can transform every CYMH GT locally
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to pre-classical ones by Thm. 5.1.33, but not always to classical ones as we are now going to see.

Theorem 5.1.38: Existence of LABs giving rise to non-classical gauge theories

Let K — N be an LAB , V a connection satisfying compatibility conditions (5.1) and (5.2)
with respect to a given ¢ € Q2(N; K) such that dV¢ # 0.
Then there is no A € Q' (N; K) as in 5.1.5 such that ¢* = 0.

Proof.
We have a 2-form ¢ € Q?(N; K) such that

dV¢ #o.

By Prop. 5.1.18 we have d@@ = dV(¢ for all A € QY(N;K). When there would be a field
redefinition leading to a classical gauge theory, then 5)‘ = 0 but then also dV° E A = 0. Thence,
by dV¢ # 0 the statement follows. |

Starting with a standard Yang-Mills gauge theory with an additional free physical field ®
with a Lagrangian similar to the Higgs field, we have a canonical construction when the centre

of the Lie algebra is non-trivial.

Corollary 5.1.39: Canonical construction of non-classical gauge theories

Let g be a Lie algebra with non-zero centre and admitting an ad-invariant scalar product.
Also let (N, g) be any Riemannian manifold with at least three dimensions, and K = N x g
be a trivial LAB over N, equipped with the canonical flat connection V and a metric k
which restricts to an ad-invariant scalar product on each fibre.

Then there is a ¢ € Q2(N; Z(K)) in sense of 5.1.3, with dV¢ # 0, such that this set-up de-
scribes a non-classical CYMH GT with respect to an arbitrary spacetime M. Additionally,
there is no A € QY(N; K) as in 5.1.5 such that 6)‘ = 0.

Proof.

By the assumptions we have everything we need to formulate a YMH GT for a given spacetime
M, following 5.1.3; by Thm. 4.3.41 compatibility condition (5.1) follows. For compatibility
condition (5.2) just take any element of Q2(N;Z(K)), denoted as ¢, then this condition is
trivially satisfied because V is flat and ¢ only has values in the centre of K.

Since N is three-dimensional and Z(K) is non-zero, we can then conclude the existence of
dV¢ # 0. For this recall that dV(¢ is still a centre-valued form by Prop. 5.1.19 and that dV is
then just the differential d= for = := $0V as in Thm. 5.1.21. Therefore we only need to take any
non-d=-closed centre-valued form ¢, of which there are plenty. The non-existence of a A with
¢* = 0 then follows by Thm. 5.1.38. ]
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5.1.7. The Bianchi identity of the new field strength

We conclude this paper with an interpretation of dV(¢, and for this we need to calculate the

Bianchi identity of the field strength. Hence, we need to understand how ®*V behaves.

Proposition 5.1.40: Pull-Back of a Lie derivation law covering a pairing

Let K — N be an LAB, equipped with a connection V satisfying compatibility condi-
tion (5.1); also let M be another smooth manifold and ® : M — N a smooth map. Then
O*V also satisfies compatibility condition (5.1) with respect to P*K.

When V satisfies compatibility condition (5.2) with respect to a ¢ € Q*(N; K), not neces-

sarily assuming (5.1), then this extends to ®*K, too, i.e.
Rgwy = ad* o ®'¢, (5.25)

viewing the curvature as an element of Q?(M;End(®*K)) and ad* denotes the adjoint of
P*K.

Remarks 5.1.41.
By Thm. 5.1.12, we get that the pull-back of a Lie derivation law of K covering the Lie algebroid

morphism f o V is a Lie derivation law of ®*K covering the Lie algebroid morphism o ®*V.

Proof.
e We can show
. R Eq. (A.10)
OV ([0, @ V]gr) = PNV, V]k))
= (I)*([/"U}K)
Eq. (5.1)
= (I)!([V,u, V]K + [M)VV]K)

Eq-g\.ﬁ) [q)'(vpl)’ (I)*Vi| . + |:(I)*ILL, (I)'(VV):| .
Eq. (A.10)

= UV ), @7V e + [P 11, (PTV) (D) g e
for all u,v € I'(K). Since pull-backs of I'(K') generate I'(®*K) and since (5.1) is a tensorial

equation, we can derive that ®*V also satisfies compatibility condition (5.1) with respect to the
LAB ¢*K.

e Now let V satisfy compatibility condition (5.2), and recall that in general curvatures satisfy
2
Ry (v = Ry = (V) v € Q*(N; K)

for all v € T'(K) (see also [4, §5, third part of Exercise 5.15.12; page 316]). Then apply Eq. (A.2)
to get

Ropey (*0) = (d‘b*V)z((I)*l/) — 3 ((dv)Q,/) Eq. (5.2) (I)!([Cv V) Eq. (A.6) {‘D!Ca q)*y}

9

P*K
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such that Rg«v = ad*o®'( follows, by using again that pull-backs of T'(K) generate I'(®*K). M

Using this we calculate the Bianchi identity for the field strength G.

Theorem 5.1.42: Bianchi identity of the field strength

Let M and N be smooth manifolds, K — N an LAB, ® € C*°(M; N), and V a connection
satisfying compatibility conditions (5.1) and (5.2) with respect to a given ¢ € Q*(N; K).
Then

d*'V(G(®, 4) + [A 4 G(®, A)]g e = @' (dV¢), (5.26)
where
G(®,A) = d" A+ J[AN Algyc +2'C

was the field strength.

Remarks 5.1.43.

This clearly generalizes the standard Bianchi identity for field strengths as in Thm. 2.3.4: Take
a trivial LAB K equipped with its canonical flat connection and { = 0. Then we arrive at the
typical Bianchi identity. In general, we get d* VG +[A ) G]g.jc = 0 if dV¢ = 0, which resembles
strongly the standard Bianchi identity, but covariantized. Hence, we say that G satisfies the
Bianchi identity if and only if d®"VG + [A ) G]g.; = 0.

Proof.

The calculation is similarly to the standard calculation of the standard formulation of the Bianchi
identity as in [4, §5, Theorem 5.14.2; page 311], making use of compatibility condition (5.1)
needed for Eq. (A.11). We have, viewing the curvature Rg+y as an element of Q%(M; End(®* K)),

(d‘b*v)QA = Rgeg A ATHE) (ad” 0 @'¢) A A Ea. (8.5) [@cra) Ba (A7) _ [Aned
AVV(AN Algey) T E A VAR A] —[anavVa] PP o anatVa]
AN AN Alge gl 20,
d@*v(@lc) Eq. (A.2) P (dv<)7
and, using all of these, we arrive at
4"V (G(®, A)) + [A1 C(@, A)go i 2B (a¢).
n
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Thence, dV¢ measures the failure of the Bianchi identity of the field strength G. For example,
applying Cor. 5.1.39 to the Yang-Mills gauge theory of electromagnetism, i.e. the Lie algebra is
given by g = u(1), would result into a gauge theory where there is no (vector) potential of the
field strength as usual, so, G could not be written as dVA for some A € Q'(N;®*K).5 This
concludes our discussion about LABs in the context of CYMH GTs.

5.2. Tangent bundles
Let us look at the next extreme of possible Lie algebroids: The tangent bundles themselves.

5.2.1. General situation

Let us quickly summarize what we need for tangent bundles in the context of CYMHG GT.

Situation 5.2.1: Compatibility conditions for tangent bundles

We now have E = TN, and, thus, the Lie bracket is just the typical one for vector
fields. The anchor is the identity on TN, p = 11y. Therefore there is now a coupling
between the fields of gauge bosons and the Higgs field; however, since tangent bundles are
transitive Lie algebroids, there is no transversal structure, hence, no Higgs bosons, only
Nambu-Goldstone bosons if assuming a classical structure.” Thus, also now we still have
no real Higgs effect.

Both basic connections clearly now coincide, especially we have for a connection V on FE,
sz =Y, Z]+ VY

for all Y, Z € X(N), so, V"2 is also a vector bundle connection and has a 1:1 correspon-
dence with V. The compatibility condition (4.146) reduces to

vaas = 0 (527)

by Prop. 3.7.6, hence, VP shall be a flat connection as compatibility condition.

The other compatibility conditions do not really change their form. However, we assume
for simplicity that the fibre metric x on E and Riemannian metric ¢ on TN coincide,
such that the number of compatibility conditions is reduced by one; thus, we only have

compatibility condition related to the metrics
vbasg = 0. (5.28)
Moreover, for a gauge invariance of the theory we need ¢ € Q?(N; E) such that

Ry = —dV™¢. (5.29)

SRecall that dV is a differential since V is flat in that situation.
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That a ( exists in this situation we already know by Thm. 4.8.4 and Cor. 3.6.3 that { = ty
is a solution of this compatibility condition; this also implies that V. Choosing that (,
what we do, means that we only have two compatibility conditions. Essentially we only
need to construct a flat metric connection V", and due to the 1:1 correspondence to
V we have then everything needed for a CYMH GT as in Thm. 4.7.5, modulo the potential
which is not important for the discussion since we always assume that a suitable potential
is given.

Every other structure needed for a CYMHG GT still looks the same in its form. Hence,
we will now not recall the field strength and the Lagrangian as we did for LABs.

“Recall, that the components of the Higgs field along the orbits are the Nambu-Goldstone bosons which
can often be ”gauged away” by the unitary gauge, thus, not relevant for the Higgs effect; see [4, §8;
page 445ff.].

Remarks 5.2.2.

We used a lot of exterior covariant derivatives in the past, especially we had two degrees in
forms like QP9(N, E; E) (p,q € Np), hence, a degree with respect to both TN and E. Now
both bundles coincide, but for the purpose of calculating with such forms it is still important to
distinguish them. For example the combatibility condition about ¢ € Q?(N; E) = Q?>9(N, E; E)

reads
(4"¢)(X,Y, 2) = VE*(C(X, V) = ¢(VE=X,Y) = ¢(X, V§*Y)

forall X,Y,Z € X(N), but "only Z as a section of E”. If we view all three arguments as sections
of E, that is, ¢ as an element of Q?(E; E) = Q%2(N, E; E), we would get instead that

(a¥"™C) (XY 2) = VR (Y, 2)) — V¥(L(X, 2)) + TE(((X. V)

- C([X7 Y],Z) + C([Xa Z],Y) - C([Y7 Z]7X)7

which is clearly different. Hence, it is still important to distinguish between TN as the Lie
algebroid E and as tangent bundle TN. However, in that case, for ¢ € Q?(N; E) we know that

dvbasc — Vba,SC7

and the right hand side would be in alignment with both interpretations of ¢ as form.

For the field redefinition there is not much to say additionally, besides that for A € Q'(N; E)
we have A = 1gp — A\ = A. There are important results with respect to whether we have a

(pre-)classical gauge theory.
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Corollary 5.2.3: Pre-classical theories have constant torsion

Let N be a smooth manifold, equipped with a connection V on E = TN with vanishing
basic curvature. Then there is a A € QY (N; E) such that VA is flat if and only if there is

~ .\ b
a X € QYN; E) such that t )bas = —lg, is constant with respect to (VA) as, that is,

&

(%A)bast Gy =0 (5.30)

V)

Remarks 5.2.4.
Recall Cor. 3.6.7; in the case of a flat V,, = V (or its field redefinition) its torsion would be

another Lie bracket on E, but tensorial.

Proof of Cor. 5.2.3.
That quickly follows by Cor. 3.6.6, using the vanishing of the basic curvature which is here
equivalent to that V"2 is flat, i.e.

Rv = vbastvbas7

hence, V is flat if and only if VP®tgpas = 0. By Thm. 4.7.13 and its remark afterwards the

vanishing of the basic curvature is preserved, hence,

~ +\ bas
_ (oA
R%/\ - (V ) t(%k)bas.
Hence, the statement follows immediately. |

Of special importance is the next theorem.

Theorem 5.2.5: Certain classical CYMH GTs are Lie groups,

[13, §3.1 and the references therein] and [6, Comment after

Proposition 2.12]

Let N be a smooth compact and simply connected manifold, and assume we have a con-
nection V on E :="TN such that V is flat and has vanishing basic curvature. Then N is

diffeomorphic to a Lie group.

Sketch of the proof for Thm. 5.2.5.

We only give a sketch of the proof, see the references for all details. First of all, as we already
discussed, the vanishing of the basic curvature and the fact that N is simply connected imply
there is an isomorphism to an action Lie algebroid N x g, g a Lie algebra, such that V is its
canonical flat connection by Thm. 4.3.41. Then define w € Q'(N;g) by the composition of
the given isomorphism” TN — N x g and the projection onto the second factor N x g — g.

wp : TpN — g is then clearly an isomorphism of vector spaces for all p € N; such forms are also

"We will use this isomorphism all the time in the following, without further extra notation.
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equivalent to absolute parallelisms, a trivialization of the tangent bundle, because specifying
such a form gives clearly a trivialization (also in the case if g is just a vector space).

The idea is that the parallel frames of V will be left-invariant vector fields of a Lie group. Let
us denote the parallel frame of V by (e,),, which is also a constant frame of N x g, making it
obvious why that frame will be the left-invariant vector fields (their generators); it is global due

to the fact that N is simply connected. So, Ve, = 0 and let us study
(dw) (X, Y) = (47w)(X, V) = Vx (@(¥)) = Vy (@(X)) - w([X,Y))
for all X,Y € X(V). In coordinates, especially for the constant frame, we have by definition
wlv)=v

for all constant v € I'(IV x g) = X(N), thus,

(@) 112) =~ ([121,) = ~lpsy =~y = = (5l ol ) (1.0)

——
const.

for all constant p, v € T'(N x g). Since this is a tensorial equation this holds for all sections/vector
fields, so, the Maurer-Cartan equation is satisfied. Hence, w will be the Maurer-Cartan form,
infinitesimally decoding the Lie group structure related to the differential of the Left multiplica-
tion. The Maurer-Cartan equation is the integrability condition, that is, one can locally define
an exponential, generating a Lie group structure locally.® By compactness and conectedness one

can do this globally leading to that M is diffeomorphic to a Lie group integrating g. |

Especially looking at manifolds which are not Lie groups can help to find CYMH GTs on

tangent bundle which are not pre-classical, also under the field redefinition.

5.2.2. Local picture

=

Having Thm. 5.2.5 in mind, one expects that tangent bundles as CYMH GT are locally always
a pre-classical CYMH GT.

Theorem 5.2.6: Tangent bundles are locally pre-classical as CYMH GT

Let N =R" (n € Ny) be an Euclidean space as smooth manifold and V a connection on
E = TN with vanishing basic curvature. Then there is a A € QY(N; E) such that V? s

flat.

Proof.
That will essentially follow by Cor. 5.2.3, we need to find a field redefinition such that

(%)\)bast _ O,

(%)\)bas

8The Maurer-Cartan equation as a ”zero curvature condition” encodes basically the infinitesimal information

about that there is a unique group element connecting two other group elements.

245



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

- ~ \b
so, VX is flat if and only if ¢ )bas is constant w.r.t. (V)‘) . As we have discussed in 5.2.1 we

(¥
know that there is a parallel frame (e, ), of E for VP globally defined since N = R, especially

simply connected. Then also

tvbas(ea, eb) - - [6a7 eb]E = - gb €c;

where C¢, are structure functions, and
vbas _ vbas _ _vbas | c
typas ) (€qs€p) = (tyves (eq, €p)) = ([easep]p) = (Cap) ® ec.

When the structure functions are already constants we’re done, otherwise we will now use the
transformation formulas in Def. 4.5.1. By Eq. (4.105) it is clear that e, = A(e,) defines a

parallel frame for Vbas and, thus, similarly
~ 4\ bas~ o ~y \bas ~c _
((V)‘> t(%k)bas>(ea7eb) = —(V)‘) ([as b)) = —d( ab) ® €,

where égb are the structure functions related to (€,),. Thence, V* is flat if and only if 6’31) are
constants.
A € out(E) can be taken in such a way that (A(eq)), are global coordinate vector fields 9;,

because then
A=Tpy — A

is a valid definition for A € Q'(V; E). Using such a A implies
[€q; €] =0,

thus, 6;17 = 0. So, we have found a field redefinition to a flat connection by Cor. 5.2.3. |

5.2.3. Unit octonions

By Thm. 5.2.5, we now show that there is an example for a CYMH GT by using a manifold
which is not a Lie group; of course we study the canonical example of such a manifold, the seven
dimensional sphere $7. $7 can be understood as the set of unit octonions. It would certainly
exceed the purpose of this thesis to discuss those in full detail, hence, we only introduce and
show parts of the basics needed for the proof such that one should be able to understand the
motivation and structure behind the following definitions. See the following reference for a
thorough discussion. We will follow [1, §3.10, page 170ff.; Exercise 3.12.15, page 189f.; Example
4.5.10, page 229], using the exceptional Lie group G to define octonions.

In this subsection let V := R”, and we denote its standard Euclidean scalar product by (-, ),
its orthonormal base by (ej);':1 and (wi)i?:1 its dual basis, i.e. w'(e;) = &%, the Kronecker delta.
We also define a shorter notation for products of w*, for example

w = w' Aw?,

similar with more than two factors.
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Definition 5.2.7: Multiplication form for octonions,

[4, Definition 3.10.1; page 171]

We define a 3-form ¢ € A3 V* by

¢ = w'? 4w A (w45 + w67) +w? A (w46 - w57) —w? A (w47 4 w56) . (5.31)

This 3-form will essentially define the multiplication table for octonions; but before we do so,
let us define Gy for which we need a GL(7,R)-action on A¥ V*.

Definition 5.2.8: GL(7,R)-action on NV,

[4, comment before Definition 3.10.3]

We define
(ga)(v1, ... vg) = a(q_lvl, ... ,q_lvk) (5.32)

for all @« € AFV* (k € Np), ¢ € GL(7,R), and vy, ...,v, € V, where g acts on V as usual

by the standard representation.

Using this notion, we can define Gs.

Definition 5.2.9: Exceptional Lie group Gs, [4, Definition 3.10.3; page 171]

We define the exceptional Lie group G, as a subset of GL(7,R) by

Gy = {q € GL(T,R) | q¢ = ¢}. (5.33)

Remarks 5.2.10.

G is clearly a subgroup of GL(7,R) as the isotropy of ¢. As argued in [1], it is therefore also a
closed embedded Lie subgroup; furthermore, in [1, Corollary 3.10.7; page 173] it is also shown
that G2 is a compact embedded Lie subgroup of SO(7). That also implies that

{qz,qy) = (z,y) (5.34)

for all x,y € V and ¢ € G2. We will not prove this because because it is on one hand straighfor-
ward but a bit tedious to prove, and we assume that the exceptional Lie group G is a known

object for the reader.

Definition 5.2.11: [4, Definition 3.10.8; page 175]

Let us define a map P: V XV — V by
(P(z,y),2) = ¢(z,y, 2) (5.35)

for all z,y,z € V.
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By definition we get.

Proposition 5.2.12: Properties of P, [4, Proposition 3.10.9]

The map P is antisymmetric, bilinear and G2-equivariant, that is

q(P(z,y)) = P(qz,qy) (5.36)

for all g € Gy and x,y € V.

Proof.
Antisymmetry and bilinearity follow immediately by definition. For the third property we use
that G2 C SO(7) and the definition of G, so,

(@(Pla,)), 2) = (Ple,y).a7'2) = 6(w.9,0712) = (@0)(a.ay, 2) = (Plaw. ap). 2)
=¢

for all z,y,z € V and q € Gs. |
We will also need some additional technical result for P.

Lemma 5.2.13: Additonal properties of P,

[4, first part of Exercise 3.12.16; page 190]

We have
P(z, P(z,y)) = —(z,2)y + (z,y)z (5.37)

for all xz,y € V.

Sketch of proof for Lemma 5.2.13.
e Let z,y € V. Then there is a ¢ € G5 such that

qr = x1€1, qy = y1e1 + y2e2

for some w1, y1, y2 € R? (not necessarily the components of = and y, which is why the indices are
at lower position). This is given in [4, first part of Exercise 3.12.15; page 189]; we only give a
sketch of this part of the proof actually, see the references for all the calculations. First assume
that = and y are linear independent, then apply the Gram-Schmidt process to get orthonormal
vectors

' z , y— (o', y)x’

x =, Y =
|| ly — (', y)a']]

Let

VQ(]R7) = {(Ul,vz) ‘ v; € R, (v, v5) = 51-]-}
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where i,j € {1,2}; this is known as a certain Stiefel manifold, see for example [/, Example
3.9.1; page 168] for an introduction and discussion. We have (2/,1/), (e1, e2) € Va(R"), and then
there is an element g € G4 such that gz’ = e; and qy’ = ey; this is given by [1, Theorem 3.10.15;
page 177], where it is shown that Go acts transitively on Vo(R") by ¢ - (v1,v2) = (qu1,qu2) for
all ¢ € Gy and (v1,v2) € VQ(R7). With that we can derive

gz = q(||z|| 2') = z1€1,

qy = q((&' y)a’' + |ly — (&', 9)2'|| ¥') = yre1 + yaea

where z1 = ||z||,y1 = (2, y),y2 = ||y — («/, y)2'||. Hence, we have found the desired element
q € Go; in case x and y are linear dependent and one element is unzero (it is a trivial task if
both are zero), one extends the non-zero element first to a basis of a 2-dimensional subspace of
R” and applies then the same argument as in the previous situation.

e We now want to fix such a ¢ for a given pair x and y; it allows us to simplify the calculation

by reducing the involved dimensions, using the Ga-equivariance of P. So,
(P(z, P(x,y)),z) = (¢P(z, P(z,y)), q2)
= (P(qz,qP(2,y)), qz)
= (P(qz, P(qz, qy)), q2)

%ys P(eq, Pley, e2)), qZ>

) yaea + (x1)%yre1 — (x1)*yrer, qZ>

= ()
= ((21)°y2 Pler, es),47)
(e
(-

2(y1e1 + yoea) + 11 T1e1, QZ>

=(qx,qx)qy =(qz,qy)qx
= —(z,7){(qy, qz) + (z,y)(q7, ¢2)

= <_<‘T7 x>y + <‘T7 y>(E, Z>

for all x,y,z € V, using Gy C SO(7), the antisymmetry of P, and the definition of ¢ to calculate
that

<P(€1,€2),’U> = ¢(617627’U) =

for all v € V| such that P(ej, e2) = e3, and similarly one derives P(ej, e3) = —ea. Therefore

P($>P($7y)) = —<.1‘,.%'>y—{— <x,y>$.
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Now let us define the octonions.

Definition 5.2.14: Octonions, [4, third part of Exercise 3.12.15; page 189f.]

We define the octonions O by
O:=Reg @V = RE, (5.38)

where Rey denotes R emphasizing that ey denotes a basis along that factor, and define

an R-bilinear multiplication - on O by
€o * €o = €, €T =T €y =T, Ty = —(z,y)eo + P(z,y), (5.39)
7

for all z,y € V. Furthermore, let (-,-) be the scalar product on O sucht that (e,),_ is

its orthonormal basis.

Remarks 5.2.15.
As one trivially sees and pointed out in [/, last part of Example 4.5.10; page 229], one has

2—_
6]-— 60

for all j € {1,...,7}, using the antisymmetry of P.

With the norm || - || induced by (-, -) one can show that O is a normed division algebra, but
- is not an associative multiplication, see e.g. [, third and sixth part of Exercise 3.12.15; page

189f.]. This especially means that
[z - wl = [2[] [|wl]]
for all z,w € O, and by defining the octonionic conjugation
Z i =xp€g) — I
for z = 2% + x, where 2° € R and = € V, one can show that
2-Z2=%-2=||2||? eo,

such that every non-zero octonion has a multiplicative inverse. Especially, the multiplication is
closed on the elements with norm 1, that is, for all z,w € O = R® with ||z|| = ||w|| = 1 we have
||zw|| = 1. $7 can be then interpreted as those octonions with unit norm, the unit octonions,
and henceforth it carries their non-associative algebra. It is a well-known fact that $7 does not
admit a Lie group structure, so, especially one cannot get rid of the non-associativity.

These properties are straightforward calculations and very well-known, hence, we are not
proving these explicitly, see the mentioned reference for example. But the non-associativity can
be quickly seen by (recall the end of the proof of Lemma 5.2.13 in order to see how to calculate

values of P),

(e1-e2)-eqs=Pler,ez) -es =e3-eq4 = Ples,eq) = —e7
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and
e1-(e2-eq) =e1- Pleg,eq) =e1-eg = P(e1,ep) = er,

hence, (e1 - e2) - eq # e1 - (e2 - e4), as also mentioned in [4, sixth part of Exercise 3.12.15; page
190].

S7 is a parallelizable manifold. To see this we also need the following.

Proposition 5.2.16: Compatibility of the multiplication in O with (-,-),

[4, motivated by Example 4.5.10; page 229]

We have
(ejz,w) = —(z, e5w) (5.40)

for all z,w e O and j € {1,...,7}.

Proof.
For z,w € O let us write z = 2% + = and w = 3% + y, where 2%, 4" € R and z,y € V. Then,
using 4,5 € {1,...,7},

ejz = 2%, — (ej,z)eq + P(ej,z) = 2% — 2leq + 2' P(ej,e:),
then, using k € {1,...,7},
0

(ejz,w) = (:c ej —a'eg + 2’ Plej,ei), yeo + ykek)

= 2% — 27y’ + 2'y* (P(ej, e:), ex)
(S —
=(P(ej,e:).ex)

= 2% — 29y + 2k (e, e, er)
—_———

=—d(ej,ex.ei)=—(P(ej.ex).ei)
= — (279 — 2% + 2"y (e:, Plej,en)) )

= —(z,ejw).

With that one can construct a trivialization of TS”.

Theorem 5.2.17: TS is trivial, [4, last part of Example 4.5.10; page 229]

87 is a parallelizable manifold, and a possible trivialization is given by vector fields Y; €
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X(87) (G €{1,...,7}), defined by
=2 (5.41)

for all z € 87, which is also a orthonormal frame for (-,-) (restricted to a scalar product
for TST).

Proof.
Observe

Prop. 5.2.16

(Yjlz:2) = (ej - 2, 2) —(2,¢52) = —(¢jz,2) = =(Yjl, 2)

for all z € $7, hence, (Y;|., 2) = 0, so, perpendicular to z, which is why one can view Y; € X(S7).

We also have, k also an element of {1,...,7},
(Y37Yk) = (e] 2 Z)

Prop.:5.2.16 —(Z, e (6k ) Z))

= —(z, e - (fcoek — zFeq 4+ 2t Pley, ei)>)
= —(acoeg +x,—2%req + 2" P(ej, er) — x¥e; — 2’ (e, Pley, ei)) eo + 2" P(e;, Plex, ei))>

2 . . . .
= (g;o) 8+ 2%2%(e;, Plex, e;)) — 2%2 (e;, P(ej, ex)) +aFa? — (m,le(ej,P(ek,ei)))
[ ——

=o¢(ej,en.ei)=¢(er,eire;)=(e;j,P(ex,ei))
2 A .
= (xo) djk 4okl — (x,:v’P(ej,P(ek,ei)D

writing z = 2% + , where 2° € R and = € V; also recall similar calculations of the previous

proofs like at the beginning of the proof of Prop. 5.2.16. Using Lemma 5.2.13,
(2,2 P(ej, Plex, e:)) = (@, P(ej, Plex,2)))
= ¢(ej, Plex, ), x)
= ¢(z, P(z,er), ¢j)
= (P(x, P(z,er)), €5)

Lemm%5.2.13 <—<$,$>€k + <5137€k>-73,€j>

= —(z,2)0; + aFad,
and, so,

3% = ((2°)" + o) ) = Il 65 = 33
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using that z is a unit octonion. Hence, (Y])j is an orthonormal frame, globally defined, especially

linear independent by the orthogonality. Thus, we have a global trivialization of TS”. |

We can therefore finally prove that the unit octonions as $7 give rise to a CYMH GT.

Theorem 5.2.18: Global example: Unit octonions

87 admits a CYMH GT as in Thm. /.7.5 such that the related connection V on E = TS’
is not flat. Moreover, there is no field redefinition VA of V such that VA s flat, where
A€ QYN E) such that A = Ipgr — A € et (E).

Remarks 5.2.19.
The following constructions for this CYMHG GT structure is also very similar to the construction

of a flat metric connection in [21, §4], where a Clifford algebra is used instead.

Proof of Thm. 5.2.18.
Recall the situation as described in 5.2.1; we only need to construct a flat metric connection
Vb2 on TS, because we are going to assume that the metrics on TS as Lie algebroid and
tangent bundle are the same. The connection V is then uniquely given by VP* and we will
define the primitive of V by ¢ = ty.

The construction follows by Thm. 5.2.17, so, let (Yj); (j € {1,...,7}) be the global trivial-
ization of TS defined by $7 2 2 — ej - z for all j. Then define Vvbas by

vbaSY"j — O,

uniquely extended to a connection of T$’, using that Y; is a global frame. Flatness is an
immediate consequence, since (Y;)] is a parallel frame by definition.

Moreover, (Y])] are an orthonormal frame of (-,-); hence, for the CYMH GT we take (-,-)
restricted on TS” as fibre metric. Then

(V925()) (13, Yi) = (15, Y3) = (V95,74 ) = (¥, V*Y, ) =0
—
=0k

for all j,k. Thus, we have now everything for a CYMH GT, especially, we have a V with
vanishing basic curvature. Moreover, by Thm. 5.2.5 V cannot be flat, otherwise $” would admit
a Lie group structure. Furthermore, by Thm. 4.7.13 the field redefinition preserves the vanishing
of the basic curvature such that we can apply the same argument to 6)‘, thence, V2 cannot be
flat for all A € QY(N; E). [

Remark 5.2.20: Stability with respect to other transformations

As one can see by the proof, the base ingredient is Thm. 5.2.5. Hence, one can probably
apply the same statement to every transformation preserving the vanishing of the basic

curvature.
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Hence, we have a CYMH GT on 87 which is not pre-classical (stable under the field redef-
inition). It was essential that $” cannot admit a Lie group structure, strongly related to the
non-associativity. As we also have seen in Cor. 5.2.3 and 3.6.6, also recall the proof of the
former, the flatness of V is equivalent to the constancy of the structure functions with respect
to a parallel frame of VP25, The parallel frame we took in the last proof was the trivialization
(Y;); (G € {1,...,7}) given in Thm. 5.2.17; summarising all of that, we can conclude that the
non-associativity is directly related to the non-constancy of the structure functions for (Yj) i
In [22, Equation (4); an ArXiv preprint] is a formula derived for precisely those structure func-
tions, emphasizing this argument since the non-constant term there is directly related to the
non-associativity.

This concludes our discussion of tangent bundles; let us now turn to general Lie algebroids.
The octonions will not appear anymore, hence, the notation will not be used anymore and the

following notation will resemble the previous notations again.

5.3. General Lie algebroids

5.3.1. General situation

Let us now go to more general Lie algebroids as also used in the discussion until and around
Thm. 4.7.5.
The previously discussed constancy of the torsion and its relationship to flatness in the case

of tangent bundles we also have partially for general Lie algebroids.

Corollary 5.3.1: Pre-classical theories have constant torsion

Let E — N be a Lie algebroid over a smooth manifold N, equipped with a connection V
on E with vanishing basic curvature. Then there is a A € Q' (N; E) such that 6;‘ is flat

if and only if there is a A € QY(N; E) such that t )bas = —tg, is constant with respect
P

(¥
to (6’\)]038, that is,

(?A)bast Gy = (5.42)

Remarks 5.3.2.
As for tangent bundles also recall here Cor. 3.6.7; in the case of a flat V, (or its field redefinition)
its torsion would be another Lie bracket on E, but tensorial. One could clearly generalize this

statement by just imposing flatness of VP on E.

Proof of Cor. 5.3.1.
The proof is exactly as in Cor. 5.2.3, the only exception is that Cor. 3.6.6 (in combination with

Prop. 3.7.6) in general implies

RVP - vbastvbas,
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which is why we can extend Cor. 5.2.3 only to V, in general. |

5.3.2. Direct products of CYMH GTs

As we know, Lie algebroids are the direct product of a tangent bundle and a bundle of Lie
algebras around regular points, Thm. 3.10.4. Hence, there is hope to extend some of the previous
results to direct products of Lie algebroids. Therefore let us first define the direct product of
CYMH GTs, especially recall Remark 3.9.7, Lemma 3.9.1 and Section 3.9 in general. We will
make use of the direct product of Lie algebroids without further explaining again how the anchor

and bracket etc. are defined.

Theorem 5.3.3: Direct products of CYMH GTs is a CYMH GT

Let i € {1,2} and E; — N; be Lie algebroids over smooth manifolds N;, both equipped
with a connection V', a fibre metric k; on E; and a Riemannian metric g; of N; such
that the compatibility conditions are satisfied for each i, where we denote the primitives
of Ryi by C'.

Then the direct product of Lie algebroids E1 x Ey is a CYMH GT, equipped with V =
V! x V2, k1 X ka, and g1 X ga, where the primitive of the curvature Ry w2 is for example

given by ¢ x ¢2.

Proof.

That is trivial to see by recalling Remark 3.9.7, especially we have
(VI y V2)loas _ (Vl)bas y <v2)bas’
RYF o2 = RY x RYS,
Ryiyve = Ry1 X Ry,
q(vixv2) (Cl y Cz) _ gy (@) (¥ (Cz)
Hence, using the compatibility conditions on Ej;,
Ry = —VPss (CI « C2)7
R¥® =0,

and

similarly for g x g¢2. |

255



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

Definition 5.3.4: Direct product of CYMH GT

Assume the same as in Thm. 5.3.3. Then we call F; x Ey with its natural CYMH GT
structure defined there the direct product of CYMH GTs.

In the following statement we study a certain CYMH GT, as it is given around regular points,
and we will not always denote all the structures; for example, we just denote the connections

when we are not going to use the compatibilities with the metrics.

Theorem 5.3.5: Direct products of CYMHG GTs around regular points are

flat
Let N :=R" (n € Ny) be a smooth manifold such that its tangent bundle admits a CYMH

GT, whose connection satisfying the compatibility conditions we denote by VY, and let
K — S be an LAB over a smooth contractible manifold S which also admits a CYMH
GT, equipped with a connection VX satisfying the compatibility conditions.

Then there is a field redefinition with respect to the direct product of CYMH GTs, E =
TN x K — N x S, such that V* is flat, where V = VN x VX and )\ € QYN; E) such
that A=1g — Ao p € s (E).

Proof.
We need to check whether we can apply Thm. 5.1.33 and 5.2.6 separately. We will do so by
studying the field redefinition only for V with respect to A of the form

A=A x A = prll()\N) eapr‘z(AK),

where pr; (i € {1,2}) is the projection onto the i-th factor in N x S, AV € Q'(N; TN), and
M€ Q1(S; K). Using such a A implies

N K
A=Trnxg —Ao PTNx K =AY x A",
——
=lry X1k =prNXpr=L1N X0

where AN == 11xy — A\ and AKX .= 1. Therefore
A= (AN)*1 « (AK)”,
similarly for A. Again by Remark 3.9.7 we have
has _ (VN)bas « (VK)b387
and, so, the following completely splits as direct product
(A odV"™ o A‘l))\ = ((AN 0d(¥)"™ o (AN)_1>)\N> X ((AK 0 d(V)™ o (AK)_1>)\K>,
by Def. (4.96) we get, using V = V¥ x V¥,

= (T« (99)
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This means that we can calculate the field redefinition of the curvature as if we would just look

at either TV or K as in the previous sections because then the curvature splits, too, as usual.

~ AN
So, define AV in such a way that (VN ) is flat by using Thm. 5.2.6; in the same fashion choose

~ MK
M such that (VK> is flat using Thm. 5.1.33. |

As one has seen in the proof, the idea is to take a A = AN x AX. It is natural to assume
that we can extend and generalize previous statements which were just about the existence of
a A. However, statements about the stability of a CYMH GT under the field redefinition like
Thm. 5.1.38 and 5.2.18, or the construction of the obstruction class for LABs. The reason for
this are the mixed terms in the formulas of the field redefinition if A # A x AX such that the
connection of K could contribute to the curvature of TN, for example assume, using the same
notation as in the previous statement and proof, A € Q'(N; K), so, a form along N but having
values in K. Then by Eq. (4.109), similar calculations as before and using that A has values in
K,

(%N);aj - A<V]AAV—1<81~)8]' - [A(ai)’aj]’f)
=(1- /\)(Vg@) — [A9), 05l
= V50; = M(V0;) = M), 0y .

observe that A = 1 such that every A € QY(N; K) is allowed by Sylvester’s determinant theorem.
The first summand has values in TN and the second and third in K. Hence, in general the
formulas will not split anymore for general \. However, I personally hope and assume the

following conjecture.

Conjecture 5.3.6: Existence of a splitted field redefinition

Let N be a smooth manifold such that its tangent bundle admits a CYMH GT, and let
K — S be an LAB over a smooth manifold S which also admits a CYMH GT.

If there is a field redefinition such that the direct product of CYMH GTs, £ := TN x K —
N x S, is pre-classical or classical, then there is also a field redefinition with respect to
a A of the form AV x AKX such that the direct product of CYMH GTs is pre-classical or
classical, respectively, where AV € QY(N; TN) and \* € Q1(S; K) are valid parameters

for field redefinitions for each factor.

If it is possible to show this, then the whole discussion about field redefinition towards pre-
classical or classical structures would reduce to parameters of the form A = AV x AX | essentially,
one could look at both factors separately in a direct product of CYMH GTs.

Due to the fact that the general situation is very difficult to study this is the final conclusion

of CYMH GTs. What will follow are loose ideas and ansatzes, very loosely structured, for
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a possible following discussion and study after the thesis. Hence, the reader can ignore the

following subsection if wanted.

5.3.3. Loose ideas and ansatzes

As a first ansatz one may want to assume a connection which can restrict to the isotropy of the
anchor, in the hope to generalize the discussion about the LABs; especially recall the discussion
about LABs in the context of CYMH GTs, we will strongly refer to that without much further

notice.

Lemma 5.3.7: Invariance of connection restricting on the isotropy

Let E — N be a Lie algebroid over a smooth manifold N, and L a subbundle of E
with p(v) = 0 and [v,pulp € T'(L) for allv € T'(L) and p € I'(E), d.e. I'(L) is an ideal
of I'(E), living in the kernel of p. Moreover, let V be a connection on E and L with
V(T(L)) c T(L).

Then

VMNI(L)) € T(L). (5.43)

Proof.
By Eq. (4.109) we have

Vi =A(Vi gy = (A o) V), 1] ) + AV o)

for all 4 € T'(E) and Y € X(N). The statement follows now for u € I'(L) because of the
assumptions and Alger(p) = Lker(p)- |

Let us interpret this algebraically for the flat situation; recall Def. 3.1.27 and its discussion.

Proposition 5.3.8: Algebraic meaning in the flat situation

Let E = N X g be an action Lie algebroid over a smooth manifold N of a Lie algebra
g, whose Lie algebra action is induced by a Lie group action of a Lie group G on N,
G x N 3 (g,p) = gp € N. Moreover, let V be the canonical flat connection for which we
assume p(Vv) =0 for all v € T'(E) with p(v) = 0.

Then Ker(p,) = Ker(p,), and Ker(pp) is an ideal of g, where p,q € N are arbitrary

reqular points of the same connected component of reqular points.

Remarks 5.3.9.
Recall Thm. 4.3.41: Having a flat connection V with vanishing basic curvature implies that
locally we have a similar situation as in this proposition, just with additional integrability of the

underlying Lie algebra assumed here.

258



CHAPTER 5. OBSTRUCTION FOR CYMH GT Simon-Raphael Fischer

Since every action Lie algebroid can be integrated to a Lie groupoid and due to a generalization
of Ad as in [3, Section 3.7, especially Prop. 3.7.1 (iii); page 141ff.], one might be able to proof
that statement (locally) for any Lie algebroid with a flat CYMH-compatible connection V.

Proof of Prop. 5.5.8.

By definition parallel sections of V are precisely constant sections, so, fix a basis (eq), of g,
constantly extended to E, such that Ve, = 0. W.l.o.g. assume that N is connected and just
consists of regular points (fix e.g. a connected component of regular points on N), hence, K :=
Ker(p) has constant rank and describes a bundle of Lie algebras. Then due to V(I'(K)) C I'(K)
by assumption, we know that V|x is also flat which implies that a subset of the parallel sections
(= constant sections) describes a frame of K. Thus, we can choose (eq), in such a way that
there is a subframe (f,), (locally) spanning K. Since (f,), consists of constant sections, we

can conclude that the isotropy subalgebra of g is the same for all points of N, i.e.
Ky =gp =9, = K,

for all p,q € N, where K, = g, and K, = g, is the isotropy algebra at p and g, respectively.
Also recall Cor. 2.2.3, that is, also using the just shown equality K, = K, for all p € N and
g € G, we get

= Ad(exp(tv))(w) € K
gp closed sgalgebra of g [’U, w]g c Kp,
forallpe N,ge G,we g, = K,,t€R, and v € g. Thus, K, is an ideal of g. |

Remarks 5.3.10.

For simplicity assume now that the rank of the anchor is constant. Also assume we have an
action Lie algebroid, related to a Lie algebra g, with a non-flat connection V such that we
have a CYMH gauge theory and V(I'(K)) C I'(K), where K := Ker(p). Moreover, assume
that the action behind the anchor can be integrated to a Lie group action. If the anchor has a
non-trivial kernel (so, nonzero and not all of the Lie algebroid), then one may try the following
argument: Assume there is a A € Q!(N; E) such that V* is flat. By Lemma 5.3.7 we have
VMI(K)) € T(K). Locally we still have an action Lie algebroid related to a Lie algebra g’ by
Thm. 4.3.41 such that V* is the canonical flat connection. Then by Prop. 5.3.8 we know that
the kernel of p, at a regular point p € N is an ideal of the Lie algebra g’ of the new action Lie

algebroid; this ideal is nontrivial (not zero and not g') because the anchor’s kernel is nontrivial.

9Technical: A space of parallel sections are finite-dimensional subspaces of, here, I'(E), whose basis is e.g. the
frame we choose here. Then one can just apply standard analysis of vector spaces, i.e. take any finite-

dimensional basis of parallel sections of K, and then extend that basis to a basis of parallel sections of E.
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When we start e.g. with a simple Lie algebra g, we get clearly a contradicion if the new Lie
algebra g’ is still simple.

However, we cannot expect that g’ is of a similar type as g when the anchor is nonzero. For
example take the two dimensional non-abelian Lie algebra g := R? = span(ey, e2), [e1, 2] g = €2,

equipped with an action v on N := R? defined by
7(61) = ax7

7(62) = 07

where we denote the coordinates of N by x and y. It is trivial to check that ~ is a Lie algebra
action, hence, we have a corresponding action Lie algebroid £ = N x g with anchor p induced
by v and Lie algebroid bracket [-, -] ; induced by [-, -] g €1 and e are a global frame when viewed
as constant sections.
Now we make a change of the frame: é; := ej, and é3 = e ""ey. We still have p(é;) = 0, and
p(é2) = 0, but by the Leibniz rule we arrive at
[€1,62]p =€ " ler,ealg—e Tea = 0.

——
=e9

Therefore, the frame given by €, and é; gives rise to an isomorphism E = N x g’ as action Lie
algebroid, where g’ is the two-dimensional abelian Lie algebra. So, we could have also started
with the abelian Lie algebra instead of the non-abelian one to define precisely the same action
Lie algebroid, both equipped with an action inducing the same anchor.

This ambiguous behaviour depends on the rank of the anchor. For a zero anchor, that is, for
bundle of Lie algebras, like the BLA induced by the kernel of an anchor around regular points,
that can certainly not happen. But recall the splitting theorem, Section 3.10, one part of the
Lie algebroid also comes from the tangent bundle of the leaves, and as we know, the structure
functions of a tangent bundle can be very arbitrary. For example start with the coordinate vector
fields, hence, zero structure functions (abelian). Then there is obviously a non-constant change
of the frame such that the structure functions are not zero anymore because of the Leibniz rule

in the bracket; for example choose a frame which is not a full set of coordinate vector fields.

As in the case of LABs, having a connection restricting to the kernel (or an ideal of it) would
imply that we have an LAB structure there due to the vanishing of the basic curvature; recall

the the isotropy is a bundle of Lie algebras around regular points.

Corollary 5.3.11: Lie derivation laws and vanishing basic curvature

Let E — N be a Lie algebroid, where N is a connected manifold just consisting of reqular
points, L be a subbundle of Lie algebras of K = Ker(p), and V a connection on E with
V(I(L)) C T(K). Then

Vhasy — ¢ (5.44)
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forallv € T(L) and Y € X(N).
If we additionally have V(I'(L)) C T'(L), then the following are equivalent:

1. V a Lie derivation law on L.

2. The basic curvature of V restricted on L is zero, i.e.
R%as(:uv V)Y =0

for all p,v € T'(L) and Y € X(N).

Proof.
Those are trivial consequences of V(I'(L)) C T'(K), i.e.

p(Vv) =0
for all v € T'(L), hence,

VESY = [p(v), Y] + p(Vyv) = 0

N——
=0 =0

for all v € I'(L) and Y € X(NN). With additionally V(I'(L)) C I'(L) then also

RE*(1,v)Y = Vy ([, v]p) = [Vy vl — [ Vy vl —Vapey i+ Vpaeyv
——
er(r) ~

= VY([/%V}L) - [VY/%V}L - [MavYV]L

for all p,v € I'(L) and Y € X(N). Therefore, V has a vanishing basic curvature restricted on L

if and only if it is a Lie derivation law on L (a Lie bracket derivation of L). |

Using Thm. 5.1.1, L has to be an LAB in such a case; hence having such an L and V there is
hope to generalize our results with respect to LABs. In the study about LABs, the obstruction
class was given by dV(¢ and we have argued that this is exact with respect to d in the case of
flatness, which was the differential for centre-valued forms induced by a pairing = of an LAB
with a tangent bundle, induced by V which restricted to centre-valued forms by the vanishing of
the basic curvature. The essential argument about the exactness of dV¢ was the compatibility
condition for ¢, implying that ¢ is centre-valued in the case of LABs and flatness, and another
argument was that V restricts to such centre-valued sections. In general, flatness now implies
closedness of ¢ with respect to the basic connection. Therefore let us study whether V restricts

to closed forms also in general.
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Corollary 5.3.12: V preserving V"*-closedness

Let E — N be a Lie algebroid over a smooth manifold N, and V a connection on E with

vanishing basic curvature. Then we have
V"™ d%w =0 (5.45)

for allw € QI(E;E) (q € Ny) with d¥""w = 0 and p(w) = 0.

Remarks 5.3.13.
By Cor. 3.8.11 we immediately have

V"™ dVw = dVaV""w (5.46)
for all w € QOPY(N, E; E) (p,q € Ny), when V is flat. Thus,
dV"™avw =0 (5.47)
for all V*_closed w € QP4(N, F; E) and flat V with vanishing basic curvature.

Proof of Cor. 5.3.12.
That is a trivial consquence of Cor. 3.8.11, using Q4(F; E) = Q(pZO’Q)(N, E;E),
dvl)asde p(oi:[) dv dvbasw _ 0

0

Hence, in general it is natural to assume that it is about exactness with respect to the basic
connection, a replacement of the centre-valued forms in the study about LABs. However, in
order to define a differential on such parallel sections similar to d=, we require flatness of V
restricted to these sections, regardless whether V itself was flat; otherwise it is difficult to study
non-flat V similar to the discussion for LABs. In the case of LABs this was trivially given
by the compatibility condition between the curvature and ¢, which immediately implied that

Ry (-,-)v = 0 for all centre-value sections v. But in general this would mean
0= Ry(-, )y =—-Vb3¢

for all v. Hence, centre-valued sections, onto which V shall restrict, seems not only be about
closed sections, but also about sections v with VBaS = 0,'” which makes sense, because the basic
connection on F is in the case of LABs an adjoint representation in both arguments, so, there

is an ambiguity in how to generalize centre-valued sections in this context.

10Recall the similarity to the condition in Lemma 3.10.6.
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Definition 5.3.14: The centre of basic connections

Let £ — N be a Lie algebroid over a smooth manifold N, V' — N a vector bundle, and
BN an E-connection on V. Then we define the centre Z(EV> of £V by

2(®v) ={ve B |"v,=0}. (5.48)

In the case of PV = V"* we mean both, V** on E and TN, i.e. Vb = 0 for both

connections simultaneously when v € Z (Vbas>.

Remarks 5.3.15.
Since £V, is tensorial in v, we can restrict this definition to a point p € N, giving rise to a

definition of the centre at p, denoted by Z, (E V); the tensorial behaviour clearly also implies

that this is a vector space. Similarly, sections with values in Z (E V) are a vector space subset
of I'(E) by definition, but it is not necessarily a module with constant rank as we are going to
see.

Thus, for the following proofs about the structure of Z (Vbas> we will often use (local) sections

v € I'(F) with values in Z (Vbas), extending a certain element of F. That is mainly for
convenience due to the fact how connections are normally denoted, and in order to use the
definition of VP23,

Recall that the kernel of the anchor p at a point p € N is a Lie algebra, whose Lie algebra is
inherited by [, -], and that we denote centres of Lie algebras g by Z(g) (similar for Lie algebra
bundles). We denote the Lie bracket of [-,:]; on the kernel by [, ']Ker(p) (similar for the Lie
algebra structure on each fibre or for any subalgebras). Around regular points of E the kernel
of the anchor is a bundle of Lie algebras as previously mentioned, and by Thm. 5.1.1 it will be

a Lie algebra bundle (LAB) when there is a Lie derivation law.

Proposition 5.3.16: Properties of the centre

Let E — N be a Lie algebroid over a smooth manifold N, V.— N a vector bundle of at
least rank 1, and PN an E-connection on V.. Then Zy <EV) is a subset of Ker(pp) for all
peN.

If we have a vector bundle connection V on E, then Z, (Vbas> is an abelian subalgebra of

Z(Ker(pp)). Moreover, we have
p(Vr) =0 (5.49)

for all (local) sections v of E with values in Z(Vbas), that is Vv is an element of the

kernel of the anchor.

Remarks 5.3.17.

The dimension of the kernel of p is in general not constant such that we cannot expect that
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Z (E V) gives rise to a module with constant rank; but even if we just look at neighbourhoods
around regular points of E we cannot expect a constant rank. For example take £ = TN x K —
N xS, where we mean the direct sum of Lie algebroids of TN — N and K — S, where K — S'is
a Lie algebra bundle (zero-anchor) over a manifold S. Then take a coordinate frame (9;), of TN
and (fa), of K, both constantly extended to E such that [0;, fo| = 0 and the total collection
is denoted by (eq),. Let us look at Z(Vbas) > v =v*f, (using Prop. 5.3.16, especially v is an

element of the kernel)

0= vlljasai =% V?zsaz = v(')ifa — Vawgéi €a,
——

=w?

‘Wai €a

where we viewed 0; as an element of the tangent bundle as Lie algebroid, i.e. we took the
definition of VP on Lie algebroids (denoted by E usually). Hence, this is then a purely algebraic
equation and depends also on the kernel of w{, such that a general statement about the rank of

the centre is not possible without further information about V.

Proof of Prop. 5.5.16.

We have, using the definition of F-Lie derivatives,

0= Evy(fv) =Z(f)v+f EYOVU =Z(f)v= gp(u)(f) v

forallve I'(V), v € Z(EV) and f € C*°(N). Since V has at least rank 1, we can conclude
that p(v) = 0. Hence, v, € Ker(p,) for all p € N.

Furthermore, in the case of VP we get additionally

0= Vzk/);jsﬂp = [Vp, tip] p = [V, Mp]Ker(pp)

for all p,, € Ker(p,) and p € N, where we used that VBES is tensorial due to p(vp) = 0 such that
VBZ‘S can be viewed as a tensor (similar for [-,];), and that the basic connection on E is just
the Lie bracket when acting on the kernel of the anchor. Hence, v, € Z,(Ker(p,)), and, since
Zp(Ker(pp)) is abelian, it immediately follows that Z, (Vbas) is an abelian subalgebra.

Finally, let v € T'(E) with values in Z (Vbas), then we have
0= V™Y = [p(v),Y] + p(Vyv)

for all Y € X(N). Previously we have shown that p(r) = 0, this implies p(Vyr) = 0, which
finishes the proof. |

Around regular points we can say a bit more, recall Thm. 3.10.4.
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Lemma 5.3.18: Centre of the basic connection around regular points

Let N be a smooth manifold and K — S be a bundle of Lie algebras over a smooth
manifold S such that Z(K) is a subbundle of abelian Lie algebras, that is Z(K) has
constant rank. Then define the Lie algebroid E as the direct product of Lie algebroids,
E :=TN x K — N x S, equipped with a connection V = VTN x VE where VTV and

VE are connections on TN and K, respectively. Then

Z(VP) = Z(K). (5.50)

Remarks 5.3.19.
In that case, Z (Vbas> has constant rank and is independent of the choice of V.

Proof of Lemma 5.5.18.

By definition of E, there are coordinates (0;), of N and a frame of E consisting of two parts, (f;),
locally spanning TN (as Lie algebroid) and (f),, locally spanning K, both (locally) constantly
extended along the base of the other factor in £ = TN x K, such that

p(fi) = 0; p(fa) =0,
[fi: filp = 0, [fis falp = 0.

Since Z(K) is a subbundle of Lie subalgebras of K we can assume that (f,), contains a subframe
(fr), spanning Z(K). Then for all v = v f,. € T'(E) (v* € C*°(N x S)) with values in Z(K)

we then have by definition,
Vg =0 VS =0 ([ff, £+ vp(fi)ff) =V Vot VPf=[v,falx =0. (5.51)

Similar to before, Vb is a tensor due to p(r) = 0 such that Eq. (5.51) are fully encoding V52
on E. Therefore we are interested into whether Vb2 f; is zero. By definition V, is flat when
restricted onto Z(K), i.e. on Z(K)-valued sections of K which are constantly extended along
N, that is, we have

Vofr=0.
Then for all v =v”f, (v can depend on N) we get by Eq. (5.51)
VR fi=v" Vo fr=0
for all 7. By definition we also have
Vv e I'(K)
for all sections v with values in the centre of K. Therefore, by Cor. 5.3.11, we know

Vhasy =0
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for all v € T'(F) with values in Z(K) and Y € X(N).

Hence,
vhas =0

for all section v with values in Z(K). So, Z(K) C Z(Vbas>. Recall Prop. 5.3.16 such that we
already know that

Z(V) c 2(K),
hence, Z( V) = Z(K). u

As already motivated, we have then a flat curvature in the case of CYMH GT.

Corollary 5.3.20: Zero curvature on the centre

Let E — N be a Lie algebroid over a smooth manifold N, and V a connection on E such
that Ry is exact with respect to dvbas, i.e. there is a ( € Q2(N; E) with Ry (-, )p = —VBaSC
for all w € T'(E).“ Then

Ry(-, v =0 (5.52)

for allv e Z(Vbas>.

bas
“Here dV is not necessarily a differential.

Proof.
That is a simple consequence of the dV"™ _exactness and Vvbas = for all v € Z (Vbas). |

The vanishing of the basic curvature also implies in the general situation that V preserves

such centres, similar to LABs.

Lemma 5.3.21: Stability of the kernel of the adjoint representation

Let E — N be a Lie algebroid over a smooth manifold N, and V a connection on E with

o o o o . bas
vanishing basic curvature and such that Ry is exact with respect to dV . Moreover, we

TequiTe
p(Vr) =0
for all v € T(E) with p(v) = 0.
Then
Vs — (5.53)

for all v € T(E) with V5 = 0, where we mean with VP both connections, on E and on

TN.
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Proof.

We have, using Cor. 5.3.20 and the vanishing basic curvature,
V%a;u,u = [Vy]/, M]E + vp(u)vYV

= [VyV, N]E + Vy vp(,u)y +V[P(ﬂ)7y}y
N——
:[M7V]E
= [Vyv,plp + (1, Vy vl g +[Vyu, v + Vybasy 1t _VVB“YV + Vip(.y1¥

——
=0 =0 ==V,

Vyu)
=-V,*Vyp

=0

for all y,v € T'(E), where Vb = 0, and Y € X(N). Hence, only the basic connection on TN
is left. We know p(Vv) = 0 by Eq. (5.49), hence, by the condition on V about kernel-valued

sections we have
p(VXVyV) =0
for all X € X(N), and so

v%a;uX = [,O(VYV), X] + p(vaYV)
=0

This proves the claim. |

With Cor. 5.3.12, Lemma 5.3.21 and Cor. 5.3.20 we may have everything for doing something
similar as for LABs. However, another important result for LABs was that dV( is centre-valued:;
this was given by the Bianchi identity 4.8.3. This identity does now not immediately imply that
dV ¢ is closed with respect to the basic connection; and even if, for example because it has values
in the isotropy, we would still need that dV¢ has also values in the centre of the basic connection
in order to use Cor. 5.3.20 to define a cohomology class. This is not given, not even by the
Bianchi identity.

Summarizing, the problem is that we cannot simply generalize the discussion about LABs.
The Bianchi identity for ¢ suggests that a possible differential for a cohomology is a differential
induced by V restricted on VP®-closed forms. But the compatibility condition on Ry and ¢
only implies flatness on sections with values in the centre of the basic connection. Even if we are
able to construct suitable ¢, satisfying all of that for dV¢, it is not given that this construction
is ”"stable enough” under the field redefinition, which is important in order to show that dV¢ is
an invariant of the field redefinition.

Concluding, this means one needs in general a (completely?) different construction; maybe
hoping for that Conjecture 5.3.6 holds. Nevertheless, one may see that the general situation is

highly more complicated.
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6. Future works

One may take these results as a motivation to always assume that a CYMH GT is pre-classical.
There is hope to generalize the construction of the obstruction class to every Lie algebroid by
assuming that the isotropy of the Lie algebroid is stable under the chosen connection. As we
have seen, this stability condition is invariant under the field redefinition, and it may allow to
reduce the study ”roughly” to a study of Lie algebra bundles because the isotropy is a Lie algebra
bundle around regular points in our case, also recall Thm. 5.1.1. Of course, a Lie algebroid
consists of more than an isotropy. To take care of the remaining structure one could "decouple”
the Lie algebroid along the foliation and along a transversal submanifold using the splitting
theorem. However, we also have seen that there are certain difficulties in that approach.

Future plans for research could be studying a possible generalized definition of the obstruction
class, using the previously-mentioned idea or another ansatz; in general, there are still a lot of
open questions regarding general Lie algebroids which need to be answered. The question about
the (physical) significance of the tensor ( is interesting, too. For this it is also necessary to
quantize this theory.

One could also think about integrating this theory, probably using Lie groupoids instead of Lie
groups. Often it is of advantage if underlying curvatures are flat when it is about integrability,
which may mean that V needs to be flat for a suitable integration and that may be a further
argument for assuming that the theory is already pre-classical. However, since we used the basic
connection to define infinitesimal gauge transformations, which is always flat in our context, we
may or may not have solved a certain problem in integrating CYMH GTs.

Another possible plan is to go back to the example of unit octonions. S’ is a Moufang
loop and its corresponding tangent space at its neutral element is an algebra known as Malcev
algebra. Hence, this example may show that a suitable new formulation of gauge theory may be
in replacing Lie groups and Lie algebras with Moufang loops and Malcev algebras, respectively.
In a private talk to Alessandra Frabetti I learned that one seemingly only needs the structure
of Moufang loops for renormalizations such that it might be fruitful to develop a gauge theory
using that notion.

Thanks for reading and your support! Do not hesitate to ask me further questions. I wish
you a nice and pleasant time.
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A. Certain useful identities

A.1. Lie algebra bundles

In this appendix we prove and define very basic notions, which are often direct generalizations
of typical relations known in gauge theory. It is recommended to read this part at the beginning
of Chapter 4, especially if one is interested into all the calculations. Recall the following wedge
product! of forms with values in a vector bundle E and values in its space of endomorphisms

End(E),
A QF(N;End(E)) x Q(N; E) — QFTY(N; B)
(Tyw)—» T Aw

for all k,1 € Ny, given by

(T Aw)(Ya,...,Yew) :Zﬁ 3" sgn(o) T(Ya(l),...,Ya(k))(w(Ya(kH),...,Yo.(kH))), (A1)

where Si; is the group of permutations {1,...,k+1}. This is then locally given by, with respect

to a frame (e,), of F,
TAw="T(es) Nw?,

where T acts as an endomorphism on e,, i.e. T(e,) € QF(N; E), and w = w® ® e,. Also recall
that there is the canonical extension of V on End(E) by forcing the Leibniz rule. We still denote

this connection by V, too.

Proposition A.1.1: Several useful identities

Let M and N be two smooth manifolds, K — N a vector bundle, ® : M — N a smooth

map, V a connection on K, and k,l,m € Nyg. Then we have

a*V (') = @' (d%w), (A.2)
AV HPw=dvw+ D Aw,, (A.3)
V(T Aw)=d"TAw+ (-1)" TArdvw (A.4)

for allw € QYN; K), ¢ € QF(N; K), D € QY(N;End(K)), and T € Q™(N; End(K)).

! As also defined in [4, §5, third part of Exercise 5.15.12; page 316].
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If K is additionally an LAB, then we also have

(adow) A = [w 2 P, (A.5)
' (w ) glx) = [Pwh @'Y (A.6)
[wh Yl = =(=D)% [¥ } wlg, (A7)

w4 w4 Wkl =0, (A.8)
ad* o ®'w = @' (ad o w) (A.9)

for allw € QYN; K), ¢ € Q¥(N; K), and smooth maps ® : M — N, where we write ad*

for the adjoint representation with respect to [-, ]« -

Remarks.

Eq. (A.7) and Eq. (A.8) are generalizations of similar expressions just using the Lie algebra
bracket [-, ] o of a Lie algebra g, which basically is the formulation on trivial LABs, see [, §5, first
and second statement of Exercise 5.15.14; page 316]. Eq. (A.4) is of course the typical Leibniz
rule of the exterior covariant derivative just extended to the wedge-product with End(K)-valued
forms, and Eq. (A.2) is a generalization of the well-known ®' od = do®', where d is the de-Rham

differential (we omit to clarify on which manifold; this should be given by the context).

Proof.
e Recall that we have the following property of the pullback connection

(@ V)y (@) = @~ (VDq:(Y)M)
for all Y € X(M), smooth maps ® : M — N, connections V, and p € I'(K), shortly writing as®
(2*V)(2"p) = ©*(Vpon) = 2(Vh), (A.10)

viewing terms like Vu as an element of Q'(N; K), X(N) 2 € + Vepu, such that we can apply
Eq. (4.2). That extends to exterior covariant derivatives by fixing a local frame (e,), of K (also
used in the following), then we have w?® € QY(U) (I € Np) such that locally

w=w'®e,
for all w € Q(N; K). The exterior covariant derivative generally (locally) writes

d®Vw = dw® @ ®*eq + (—1) w A (B*V)(P%ey) = dw® @ ey + (—1)'w® A B (Vey)
N—————

Eq. (:A.w)q)l(vea)

2Recall that the pull-back of forms is denoted with an exclamation mark.
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for all w € QY(M; ®*K), and the pull-back of forms clearly splits over this tensor product by its

definition, i.e.

Plw = d'w @ d*e,,

and, so,
A"V (Pw) = d(P'uw) @ Breq + (—1) D'w A @ (Veq)
NS
=®!(dw?)
— 3 (dw“ ®eq + (=) W A Vea>
= ¢! (de).
e Observe

dVHPu = dw? ®@eq + (=1) W A (V+ D)eg =dVw+ D Aw

for all w € QY(N; K), D € QY(N; K), and connections V on K.
e Now let 7' € Q"(N;End(K)) and (L,), a frame of End(K), such that we can write T' =
T% ® Ly, then

dV(T Aw) = dV (T(eq) Aw?) = dV(T(eq)) Aw® 4+ (—=1)™ T(ey) A dw®
for all w € Q/(N; K), and

(4Y7)(ea) = AT" @ Ly(ea) + (—1)™ T" A (VL) (ea)
—_————
= V(Ly(ea))~Lo(Vea)

=dY(T(eq)) — (—1)™ T® A Ly(Veq)

= d¥(T(ea) = (=)™ (T°® Ly(ec) ) A (Vea)*
= T(ec)

=dY(T(eq)) — (—1)™ T A Ve,
. ¥ (T(ea)) = (A7) (ea) + (=)™ T A Ve,
Combining both equations, we arrive at
A¥(T A w) = d¥T Aw + (=1)" T(ea) A (dw + (1) w® A (Ve,)?)
=dVTAw+ (1) T AdVw.

In the following let K also be an LAB.
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e We also have

((adow) A 9)(Y1,...
N——
€ QY(N; End(K))

7Y2+k’)

Def. (A1) 1
= Z sgn(o) [W(Yo(l)a
o O'Gsk+l
ef. 4.0.
P :40 1[w/>¢]K(}/ia"'a}/2+k)

for all w € QY(N; K), ¢ € Q¥(N;K), and Y,
permutations {1,...,k +(}.
e By definition of ®*K we have

CRTR L.

for all smooth maps ® : M — N and p,v € I'(K).

e ,Yo(l)) ; ¢<Ya(l+1)7 o 7YU(H’“))] K

o, Y € X(N), where Si4; is the group of

= @ ([w, Vk)

Let (eq), be again a fixed frame of K,

w=w'®e, € W(N;K) and ¢ = 9* @ e, € QF(N; K), then, again using Def. 4.0.1,

A
)

CI)!([w

Vi) = ' ([eas el c @ W AP = @ (ea, €3] ) @Dw A B'YP = [0l b D'y
= [®*

K’

ea7q>*eb]q>*K

e The antisymmetry of the Lie bracket generalizes to

WPl = [ea, ] ® W
———

= 7[eb7e”‘}K = (_1

for all w € QY(N; K) and ¢ € QF(N; K).
e Let (eq), be still a local frame of K, then

~(-1?

AP == (D)% [ hw]

)lkd}b/\wa

P {lw h wlg 2wl

[[6a76b]Kvec]K & wa/\wb/\wc

—_———

Jacobi

ea

A
)

[

—[w

& w4 b wlgly =0

for all w € QY(N; K).
e We also have

L0 @ (w, i )

[(I)!w’ q)*‘u]cb*K

whw

= 0'((ad o w)(p))

1[eb7eC]K]K+[eb7[eC7ea]K]K

]K]K - [eba [ecaea]K}K ® w? /\wb A w€

2
= (—1)2" WP Awe AW

=2 W wh okl

(0'(ad o w)) (@)
[ ——
€ Q'(M; End(®*K))
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for all 4 € I'(K), w € QY(N; K), and smooth maps ® : M — N, where we used (®*T)(®*u) =
O*(T'(p)) for all T' € I'(End(K)) for the last equality. Since sections of ®*K are generated by

pullbacks of sections of K, we can conclude

ad* o ®'w = ®'(ad o w).

When we add the compatibility conditions (5.1), then we have a few more identities.

Corollary A.1.2: Identities related to Lie bracket derivations

Let K — N be an LAB, equipped with a connection V satisfying compatibility condi-
tion (5.1); also let M be another smooth manifold and ® : M — N a smooth map. Then

dY(fw ) ¢lg) = [de > w]K + (-1 [w > de}K’ (A-11)

dV(adow) =ad o dVw (A.12)

for allw € QYN; K) and ¢ € Q¥(N; K).

Remarks.
Eq. (A.11) is a direct generalization of [, §5, third statement of Exercise 5.15.14 where it is
stated for g (trivial LAB with canonical flat connection); page 316].

Proof.
e Using compatibility condition (5.1) and a local frame (e,), of K,

a4 ([w 4 ¥l g) = ¥ ([eas ] g @ " A1)

= V(eaweng) Aw' AP+ [eq, ep]f @ dw® A
— ——

= [Vea,ep] g +[ea,Vep] i
+ (—1)l [€q, €] g @ W A dyp®
= [eas bl ® (Veo)* Aw® AP + (1)) [eq, €] @ w* A (Vee)” A1
+ [eq, €p] g © dw® A Q/Jb + (fl)l [€q, €b) fr @ W A d@bb

= [ea,€p] x @ <( (Vee)" ANw®+ dwa) AP 4 (=1)F w® A ((Vec)b NP+ dwb))
— (d%w)"

= [aVw ] + (1) [whaVy]

for all w € QY(N; K) and ¥ € QF(N; K).
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e Then by Eq. (A.4) and (A.5), we get
dV([wr ¢¥lg) = d¥((adow) A9p) = dV(ad o w) A + (=1)" (ad o w) A dV e,
and we can rewrite Eq. (A.11)
V(w2 ¥l) = (ad e d¥w) A+ (~1)! (ad ow) ATy
Combining both, we have
d¥(ad o w) Ap = (adode) A

for all w € QY(N; K) and ¢ € QF(N; K). By (locally) using the O-forms 1) = e, for all a, this
implies Eq. (A.12). |
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