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Abstract

Digital signatures were first introduced in the work of Diffie and Hellman,
dated back in 1976. It is a scientific art replacing the traditional way of written
signatures. Each signer has a “personal knowledge,” or a signing key, to produce
signatures. And as the same as handwritten signatures, anyone seeing this signa-
ture would be convinced that it belong to a certain person (and no one else). In
order to produce such a signature, the signing key is indispensable, and the secret
of this entity is usually protected by the hardness assumption of some computa-
tional problems. In the earliest stage, these are number theoretic problems such
as factoring large integer numbers or computing the discrete logarithm of an ele-
ment with respect to some prime modulus. However, with the rapid development
of technology, these problems will be solved efficiently when the era of quantum
computer arrives. Then comes the next stage in the progressing course of digital
signatures when most of the attention is given to the decoding problem (and many
of its variants), of which the hardness resists even the quantum computer. This
problem, however, takes part in two important branches of cryptography, namely,
lattice-based cryptography and code-based cryptography due to the main object
it is related to.

This thesis mainly concerns with signatures in the latter branch, i.e., the code-
based cryptography. It proposes two main contributions.

The first of which is a signature scheme in the Hamming metric context.
The scheme is achieved as an application of a chameleon hash function, which is
constructed entirely from classical code-based hardness assumptions. The most
notable feature of this scheme is that it is proved to be secure in the standard
model. While security of code-based schemes in the random oracle model is still
unclear, such property is highly desirable.

The second contribution is a group signature scheme in the rank metric context.
In general, the construction of the scheme follow the frame devised for the Ham-
ming metric. At the core, this frame uses two permutations which are designed
from a random vector. Though quite efficient for the binary case, that is, the base
field is F2, this method shows its disadvantages when the base field is changed.
A natural question arises out of this situation: How can we construct schemes
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in another fields? We answer this question by proposing a different method of
permuting. Our method has the advantage that it can be applied regardless the
metric being in consideration.



Résumé

Les signatures numériques ont été introduites pour la premiere fois dans les travaux
de Diffie et Hellman en 1976. C’est un art scientifique remplaçant la méthode
traditionnelle des signatures écrites. Chaque signataire possède un “secret per-
sonnel ”, aussi appelé clé de signature, pour produire des signatures. Tout comme
les signatures manuscrites, chaque signature numérique est unique et peut être
rattachée à la personne qui l’a signée aux yeux d’un observateur. Afin de produire
une telle signature, la clé de signature est indispensable, et le secret de cette clé
est généralement protégé par une hypothèse difficile de certains problèmes calcu-
latoires. Parmi les problèmes possibles, on peut citer par exemple en théorie des
nombres, la factorisation de grands entiers ou le calcul d’un logarithme discret
dans un module premier. Cependant, ces problèmes seront résolus efficacement
lorsque l’ère de l’ordinateur quantique arrivera. On peut alors se tourner vers
d’autres types de problèmes, qu’on pourrait qualifier comme étant des problèmes
de décodage (et de leurs variantes), qui résistent à l’ordinateur quantique. Ces
problèmes font partie de deux branches importantes de la cryptographie, à savoir
la cryptographie basée sur les réseaux et la cryptographie basée sur les codes
correcteurs d’erreur.

Cette these concerne principalement les signatures basées sur des problèmes
dans cette dernière branche, à savoir la cryptographie basée sur les codes cor-
recteurs d’erreur. Elle propose deux contributions dans ce domaine.

La première est un schema de signature dans la métrique de Hamming. Ce
schema résulte d’une fonction de hachage caméléon qui est construit à partir des
problèmes difficiles de code. La caractéristique la plus notable de ce schema est
qu’il s’avère sûr dans le modèle standard. Bien que la sécurité des schémas basés
sur les codes dans le modèle d’oracle aléatoire ne soit pas toujours claire, une telle
propriété est hautement souhaitable.

La seconde contribution est un schéma de signature de groupe basé sur la
métrique rang. En général, la construction d’un schéma de ce type suit plutôt
le cadre conçu pour la métrique de Hamming. Essentiellement, ce cadre utilise
deux permutations qui sont conçues a partir d’un vecteur aléatoire. Bien qu’assez
efficace pour le cas binaire, c’est à dire dans le corps F2, les inconvénients de cette
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méthode se révèlent lorsque le corps de base est modifié. Une question naturelle
surgit dans cette situation : Comment pouvons-nous construire des schémas dans
d’autres corps ? Nous répondons à cette question en proposant une méthode
différente de permutation. Notre méthode a l’avantage de pouvoir être appliquée
quelle que soit la métrique considérée.
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Chapter 1

Introduction

1.1 Motivations

In 1994, Peter Shor [Sho94] introduced the first quantum algorithm to factorize
integer numbers. This algorithm runs in polynomial time which means that most
of the cryptosystems such as RSA [RSA78], ElGamal [ElG84] would become
insecure when the quantum computer era comes. Since then, numerous post-
quantum cryptosystems have been devised.

The activity was really blooming out after the breakthrough work of Ajtai
[Ajt96]. The hardness of lattice problems such that the short integer solution
problem (and its variants) and sepecially the learning with error problem are
studied thoroughly with the typical works of Regev [Reg05], Micciancio and
Regev [MR04], and many others. Together with these studies are schemes and
constructions which plays an essential role for new coming schemes. Particularly
in the signature aspect are the hash-and-sign scheme of Gentry et al. [GPV08]
(GPV for short) and the signing without trapdoor scheme of Lyubashevsky
[Lyu12]. Lattice-based cryptography has gained much of favor while it seems not
the case for cryptography based on coding theory.

The history of code-based cryptography can be said to begin in 1978 with the
invention of Robert McEliece–the famous McEliece cryptosystem [McE78].
(This scheme had been invented even before Schor’s algorithm!) The scheme uses
a structured Goppa code which is scrambled to encrypt message. The decoding
algorithm of this code is the key for the decryption algorithm. The difficulties of
attacking this cryptosystem lie in the hardness of solving the underlying decoding
problem and in the indistinghuishability of Goppa codes and random codes. De-
spite almost 50 years of attacking effort, this scheme is still surviving. The only
criticism this scheme receives is that its key size is comparatively large (compared
to number-theoretic schemes). However, in the near future, with the development
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1.1. Motivations 2

of technology, this problem would be easily resolved.

There have many attempts to improve McEliece scheme on the key size
aspect. In 2005, Gaborit [Gab05] proposed to use quasi-cyclic codes instead of
Goppa codes. The structure of quasi-cyclic codes serves as great advantage in
decreasing the key size. The public key now does not contain a whole matrix but
just a few row vectors. This method was also used in [MTSB12] with additional
properties on the parity-check matrix of the codes, i.e., the codes being used are
(quasi) moderate density parity-check codes (MDPC). Also in rank metric, several
constructions are built in this spirit. The first of this line is the construction in
[GMRZ13] which uses low rank parity-check codes (LRPC) and can be viewed as
a rank equivalent version of the MDPC construction. And most recently is the
rank quasi-cyclic cryptosystem [ABD+16] in which, first, quasi-cyclic codes, and
then, ideal codes are used. It seems to be an appropriate place to mention here
that its twin, the Hamming quasi-cyclic cryptosystem, also constructed on the
same principle, has found its way to appear in the 3rd round of the NIST’s call
for post-quantum cryptography.

In the aspect of signature, the first notable one is the Stern’s identification
protocol [Ste94]. Briefly speaking, this scheme allows one party to convince other
party of the fact that the former possesses some secret information without giving
this information to the latter. Though this is not a signature scheme, however,
when being combined with the Fiat-Shamir transform [FS87], one can produce
signatures. The signature is a proof of knowledge on the secret information. Se-
curity of signatures of this type is tightly reduced to the well-known difficult
problems in coding theory. Stern’s idea has its impact even in lattice-based
cryptography, which is visible in the work of Kawachi et al. [KTX08] and Ling
et al. [LNSW13]. Recent development of Stern’s protocol in the code-based field
is a concatenated version and could be found in the work of [ABCG16a]. Stern’s
identification scheme has shown itself to be extremely versatile.

The second construction which also has a great impact is the signature scheme
designed by Kabatiansky, Krouk, and Smeets [KKS97]. The interesting fea-
ture of this scheme is that it allows a signer to sign a message without the use of
any decoding algorithm. Two pieces of information are needed for the designing
of such scheme, namely, lower bounds of the probability that a random linear code
has the minimum distance at least d and the probability that a random linear code
lies between two spheres of prescribed radii. Though the initial parameters and
those of other variants such that [KKS05] and [BMS11] are all broken, the hard-
ness assumption is still intact. This means that there are still mysterious aspects
about this scheme waiting for exploring. All existing schemes are in Hamming
metric, thus, one could wonder what does a scheme in rank metric look like?

Next comes the scheme designed by Courtois, Finiasz, and Sendrier (CFS)



3 1.2. Contributions and Organization

[CFS01]. In the essence, the scheme is based on the McEliece encryption scheme
(or more precisely, on the Niederreiter encryption scheme)1. The difference
is that CFS scheme allows less errors than the classical McEliece. With this
setting, finding a preimage, i.e., a signature, for a message would be feasible.
This scheme has been generalized as in [Fin11] and [BCMN11] and also used as a
building-block in another constructions such as [ABCG16a] or [BGSS17].

Recently, progress has been made with two proposals: Durandal [ABG+19], a
digital signature scheme in rank metric, and WAVE [DST19]. The former is an
adaptation of Luybaschevsky’s scheme mentioned above in a suitable way and
the latter is constructed from a code-based trapdoor pre-image function, thus is
in the line of GPV. There is no doubt that these scheme would still have many
hidden properties to explore and, in particular, how they can be applied for the
designing of other constructions.

All in all, code-based cryptography has shown that it is a fruitful field of re-
search; code-based schemes have parameters which are comparable with those of
other schemes in other cryptography’s branches, especially lattice-based cryptog-
raphy, and above all, there are still many deep secrets in itself.

1.2 Contributions and Organization

The main part of this thesis resides in Chapter 3 and 4, which present two of our
contributions. The third contribution is in Chapter 5. The rest of this thesis is
organized in the following way.

• Chapter 2 provides basic notions on coding theory and modern cryptography.
The fundamental code-based hardness assumptions are also provided. This
chapter is concluded with some cryptosystems constructed based on these
assumptions. These protocols, on one hand, can be regarded as examples
for the notions and assumptions just provided and, on the other hand, will
serve as preliminaries to our works.

• Chapter 3 presents our first contribution to post-quantum cryptography. At
the core, it is a chameleon hash function which is constructed entirely from
code-based hardness assumptions. As an application, we construct a digital
signature scheme in the hash-and-sign paradigm, where the ordinary hash
function is replaced by the chameleon hash function.

• Chapter 4 describes our second contribution, a static group signature scheme
in the rank metric context. The scheme makes use of the RQC cryptosystem

1The Niederreiter cryptosystem is usually regarded as dual to the McEliece’s whereas
parity-check matrix is used instead of generator matrix.
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and a signature scheme in the Stern’s frame. These two pieces are “glued”
together by a zero-knowledge protocol. The task of designing such a protocol
is handled by two permutations which are derived from the multiplication
operation of polynomials.

• Chapter 5 is a minor contribution compared to the two in the above chap-
ters; its is a reparation of the blind signature scheme which is designed in
[BGSS17]. First, the flaw will be precised. Briefly speaking, it is a lack
in the construction and hence, the collision problem as well as the use of
a successful adversary in the unforgeability proof cannot be efficiently han-
dled. Then, comes the reparation scheme, which differs from the previous
by adding a proof of knowledge of the used randomness.

• Chapter 6 will conclude this thesis. It recaptures the whole thesis and draws
a sketch of future works.





Chapter 2

Prerequisites

2.1 Hamming Metric Codes

2.1.1 Linear Codes

Let q be a power of a prime number and Fq the finite field of q elements. A
linear code of length n over Fq is a subset C of Fnq such that 0 ∈ C, and for all
x,y ∈ C, the sum x + y is also in C. With these properties, such a set C is indeed
a vector subspace of Fnq . Let k be the dimension of C and {c1, . . . , ck} a set of
linearly independent elements of C over Fq, then each element c of C is uniquely
represented as

c = x1c1 + · · ·+ xkck, (2.1)

where x1, . . . , xk ∈ Fq. Now, let G be the matrix whose rows are the ci’s, then
Equation 2.1 can be rewritten as c = (x1, . . . , xk) ·G. The matrix G is called a
generator matrix of the code C, and from now on, the elements of C are called
the codewords of C. (Other elements of Fnq , which are not in C, are usually called
words.) Thus, from generator matrix, a linear code can be defined as follows.

Definition 2.1. Let G be a k × n matrix of rank k with entries in Fq. Define

C = {x ·G | x ∈ Fkq}.

Then C is called a linear (n, k) code over Fq.

Example 1. Consider the case q = 2, and let

G =

(
0 1 0 1
1 0 1 0

)
.

The code C generated by G is of length n = 4 and consists of 4 codewords. That
is,

C =
{

(0, 0, 0, 0); (0, 1, 0, 1); (1, 0, 1, 0); (1, 1, 1, 1)
}
.

6



7 2.1. Hamming Metric Codes

For a given matrix G, let H be the (n− k)× n matrix such that H ·GT = 0.
From this equation, one can easily see that for any codeword c of the code defined
by G,

H · cT = 0T

holds true. Therefore, a linear code can also be defined as follows.

Definition 2.2. Let H be an (n−k)×n matrix whose entries are elements of Fq.
The following set

C = {c ∈ Fnq | H · cT = 0T}

is called a linear (n, k) code over Fq. The parameter n is usually referred to as the
length, the parameter k the dimension of C. The matrix H is called a parity-check
matrix of C.

Example 2. One can easily verify that the matrix G of Example 1 satisfies

G ·GT = 0.

Therefore, the matrix G can also be viewed as a parity-check matrix of C. Such a
code is called self-dual code.

The origin of linear codes springs from the purpose of communication through
a “noisy” channel. In reality, a message is a string of 0’s and 1’s, which are the
elements of the field of two elements F2. More generally, a message can be a string
of symbols that are elements of a finite field. Now, such a message is transmitted.
Due to the fact that the channel is not ideal, some symbols of the message may
be altered and thus, the received message is not the same as the transmitted one.
This leads to the problem: how to recover the original message from the received
one. That is where linear codes play their role by offering a solution. The idea is
that the message is stretched in a particular way before transmitted.

Let (a1, . . . , ak) be the message, where ai’s are the elements of some finite field
Fq. This message is stretched or coded into a codeword c = (c1, . . . , cn) of some
code C over Fq. The essential constraint here is that n > k. The codeword c suffers
from the alteration caused by a noisy channel and is changed into c + e. This is
the received message, and after the recovering process, which is decoding, one gets
the message (a1, . . . , ak). This whole process is best illustrated by the following
figure.
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Message
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Encoded Meassage
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g

Figure 2.1: A communication system.

Besides its length and dimension, one is usually concerned with the minimal dis-
tance of a code. For two codewords x,y of a code C, the Hamming distance
between x and y is defined to be equal to the number of nonzero coordinates of
the codeword x−y. Letting y = 0, one gets the distance between x and 0, or the
Hamming weight of x. These notions are rephrased in the following definition.

Definition 2.3. Let x,y be two codewords of a linear code C over Fq. Then

(i) the distance between x and y, denoted by d(x,y), is the number of nonzero
coordinates of x− y;

(ii) the weight of x, denoted by w(x) or sometimes by ‖x‖, is the number of
nonzero coordinates of x.

Since a linear code C is a subset of Fnq , so the above definition is, in fact, applied
for Fnq . The Hamming distance has the following basic properties.

Proposition 2.1. Let x,y, z be vectors of Fnq . Then

(i) d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x);

(iii) d(x,y) + d(y,x) ≥ d(x, z).

Proof. The first two statements clearly come from the definition. For (iii), let
k be a position where xk 6= yk. The statement follows from the fact that either
xk 6= zk or yk 6= zk.
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The above proposition shows that Hamming distance is indeed a metric on
Fnq . The minimum distance of a code C is the least positive number dC such that
d(x,y) ≥ dC for all codewords x,y of C. Since 0 is a codeword of C, so the minimum
distance of C is indeed the minimum weight of nonzero codewords of C, i.e.,

dC = min
c∈C\{0}

{w(c)}.

The minimum distance of a code characterizes its capacity of decoding. Assume
that c is a transmitted codeword through a “noisy” channel and one receives a
word y. Then y is of the form c + e for some small weight word e of Fnq . The
rule to decode y is to find the codeword c that minimizes w(y − c), or in other
words, to find the nearest codeword of C to y. This rule is called nearest neighbour
decoding [LN94].

Definition 2.4. Let C ⊆ Fnq be a linear code and t a positive integer. Then C is
called t-error-correcting if for any y ∈ Fnq , there is at most one codeword c ∈ C
such that d(c,y) ≤ t.

From the above definition, one sees at once that a linear code C with minimum
distance dC ≥ 2t+ 1 is t-error-correcting. Indeed, for a vector x ∈ Fnq , let

Bt(x) = {v ∈ Fnq | d(x,v) ≤ t}

be the ball of radius t centered at x. Because of the property that dC ≥ 2t+1, such
a ball contains at most one codeword of C; otherwise, let c1, c2 be two codewords
which are in the same ball Bt(x), then

2t+ 1 ≤ d(c1, c2) ≤ d(c1,x) + d(c2,x) ≤ 2t,

which is a contradiction. The minimum distance of a code can be determined by
simple observation as in the following lemma.

Lemma 1. Let C be an (n, k)-linear code and H a parity-check matrix of C. Then,
dC ≥ d if and only if any d− 1 columns of H are linearly independent.

Proof. Let h1, . . . ,hn be the columns of H, and consider the following equation

x1h1 + · · ·+ xnhn = 0. (2.2)

Assume that c = (c1, . . . , cn) ∈ Fnq be a solution of Equation 2.2, and thus a
codeword of C. The statement of the lemma comes from the fact that ci1 , . . . , cij
are all nonzero coordinates of c for i1, . . . , ij ∈ {1, . . . , n} means that hi1 , . . . ,hij
are linearly dependent.
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The inequality in Lemma 1 becomes an equality when the smallest sets (there
may have more than one such sets) of linearly dependent columns of H have
cardinality d + 1. Let S be such a set and hi an arbitrary element of S. By the
minimality, the set S \{hi} consists of linearly independent columns of the matrix
H, and since the code C is of dimension k, so rank H = n − k. From the last
equality, one concludes that |S \ {hi}| ≤ n− k or |S| ≤ n− k + 1. Consequently,
one gets a simple upper-bound for the minimum distance of C, i.e., dC ≤ n−k+1.
This bound is commonly known as the Singleton bound [Sin64].

Theorem 2.1 (Singleton Bound). Let C be an (n, k)-linear code over Fq. Then
the minimum distance of C satisfies dC ≤ n− k + 1.

Example 3. (i) The code C in Example 2.1 has minimum distance dC = 2.

(ii) Consider the following matrix

H =


1 0 1 1 0 0
0 1 0 1 0 1
1 1 0 0 1 0
1 1 1 1 1 1

 .

Let C1 be the code whose parity-check matrix is H. Then C1 is a (6, 4) linear
binary code. It is easy to check that the sum of any two columns is nonzero.
The last row is the all-one vector, hence the sum of any three columns is
also nonzero. One sees that h2 + h3 + h4 + h5 = 0. Therefore, the minimum
distance is dC1 = 4.

In the following paragraph, a simple idea to decode linear codes is described.
As above, let C be an (n, k)-linear code over Fq. Assume that the cosets of C are
a0 + C, . . . , am + C, where a0, . . . , am are elements of Fnq and m = qn−k − 1. Since

Fnq =
(
a0 + C

)
∪ · · · ∪

(
am + C

)
,

so each word w of Fnq belongs to a unique coset of C. Therefore, a received word
y must also lie in a unique coset. One sees that if c is the transmitted codeword,
then the error e = y − c and the received word y must be in the same coset.
Among the possible values for e, the most likely one is the one with minimum
weight. (Channels are designed so that the probability of noise is as small as
possible.) Hence, the word y is decoded as y − e. Such a word e with minimum
weight is usually referred to as a coset leader of the coset of y. And as same as
describing a code, there are two ways to determine the coset of a word y. The
obvious way is simply adding the codewords of C to y, i.e., the coset of y is the
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set Cy = y +C. The second way is via a parity-check matrix H of the code C, that
is

Cy =
{
x ∈ Fnq | HxT = HyT

}
.

This way of determining coset leads to the notion of syndrome of a word. It is
defined as following.

Definition 2.5. Let H be a parity-check matrix of an (n, k)-linear code C and y
a word in Fnq . The vector HyT is called the syndrome of y.

By this definition, the coset of y can be described as the set of vectors whose
syndromes are the same as y’s.

2.1.2 Cyclic and Quasi-cyclic Codes

Two classes of linear codes, which are used intensely in cryptography, are cyclic
codes and quasi-cyclic codes. (The latter can be regarded as a generalisation of
the former.) Their algebraic structure is quite simple, and closely connected with
polynomials over a finite field.

We start with cyclic codes. Suppose that we have a word a(0) = (a0, . . . , an−1) ∈
Fnq . By repeatedly doing the right-shift, one entry at a time, we get other n − 1

words, namely, a(i) = (ai, ai+1, . . . , an−1−i) for i = n − 1, n − 2, . . . , 0.1 Here, the
total number of different words may be less than n and the count is taken with
multiplicity. These words, by the nature of the operation, can be called the right-
shift words of a(0). If a linear code C over Fq has the property that a = a(0) ∈ C
implies that a(1), . . . , a(n−1) are also the codewords of C, then C is called a cyclic
code. This can be summarized in the following definition.

Definition 2.6. Let C be an (n, k)-linear code over Fq. If for any codeword a of
C, all of its right-shift words are also in C, then C is called a cyclic code.

Let (xn − 1) denote the ideal of Fq[x] generated by xn − 1. Elements of Fnq are
mapped to the polynomial ring Fq[x]/(xn − 1) by the following map

φ : Fnq −→ Fq[x]/(xn − 1)

(a0, . . . , an−1) 7−→ a0 + · · ·+ an−1x
n−1.

This map is an isomorphism and hence each word of Fnq can be thought of as a

polynomial of degree less than n, and vice-versa. Now, let a(0) = (a0, . . . , an−1)
be a word of Fnq and a(x) = φ(a(0)). It is not hard to see that the i-th right-shift
word ai of a0 satisfies that

φ(a(i)) = xn−ia(x).

1The indices are taken modulo n.
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From this observation, a class of (n, k)-cyclic code can be defined as in the following
proposition.

Proposition 2.2. Let g(x) = g0 + · · ·+ gn−kx
n−k be a divisor of xn − 1 and

G =


g(x)
xg(x)
...

xk−1g(x)

 =


g0 g1 · · · gn−k 0 0 · · · 0
0 g0 g1 · · · gn−k 0 · · · 0

. . .
. . .

0 0 · · · g0 g1 · · · gn−k

 .

Then the code C generated by G is an (n, k)-cyclic code.

Such a code C as in the above proposition is said to be generated by g(x). The
next proposition shows that this class, indeed, contains all (n, k)-cyclic codes of
Fnq .

Proposition 2.3. Let C be an (n, k)-cyclic code over Fq. Then there exists a
polynomial g(x) of degree n− k such that

φ(C) =
(
g(x)

)
.

Proof. We think of C as a subset of Fq[x]/(xn − 1). Thus, we need to prove that
there exists a polynomial g(x) of degree n− k such that C =

(
g(x)

)
.

As above, we saw that if a(x) ∈ C, then xia(x) ∈ C for i = 1, . . . , n− 1. Since
C is a linear code, this means that b(x)a(x) ∈ C for all b(x) ∈ Fq[x]/(xn − 1).

Now, let g(x) ∈ C be the monic polynomial, i.e., with leading coefficient equal
to 1, whose degree is minimal. Such polynomial exists since |C| is finite. Obviously,
we have

(
g(x)

)
⊆ C. If there were a polynomial g1(x) ∈ C \

(
g(x)

)
, then, by

linearity, r(x) = gcd(g, g1) would be in C. This is a contradiction, since deg r(x) <
deg g(x). Therefore, C =

(
g(x)

)
.

Finally, let d = deg g(x). Since C =
(
g(x)

)
is an ideal of Fq[x]/(xn− 1) so g(x)

must be a divisor of xn−1. On the other hand, since dim C = k and C =
(
g(x)

)
, so

g(x), . . . , xk−1g(x) are linearly independent over Fq. Let h0, . . . , hk−1 be elements
of Fq, not all of which are equal to 0, such that

h0g(x) + · · ·+ hk−1x
k−1g(x) + xkg(x) = 0. (2.3)

Define h(x) = h0 + · · ·+ hk−1x
k−1 + xk, then Equation 2.3 means that

h(x)g(x) ≡ 0 mod xn − 1.

Compare the degrees of both sides, we have k ≥ n − d. Let p(x) = xn−1
g(x)

, then

deg p(x) = n−d, and thus g(x), . . . , xn−dg(x) are linearly independent. From this,
we deduce that n− d ≥ k, and therefore, k = n− d or deg g(x) = n− k.



13 2.1. Hamming Metric Codes

A linear code can be defined through parity check matrix, thus one can think
of a similar way to define a cyclic code via polynomial, which generates parity-
check matrix. Let C be the cyclic code generated by a polynomial g(x), and
h(x) = h0 + · · ·+ hkx

k = xn−1
g(x)

. It is not hard to see that the matrix

H =


0 0 · · · 0 hk · · · h1 h0

0 · · · 0 hk · · · h1 h0 0

. .
.

. .
.

hk · · · h1 h0 0 · · · 0 0


satisfies the equation H ·GT = 0. In other words, H is a parity-check matrix of
the code C. We have the following definition.

Definition 2.7. Let C =
(
g(x)

)
be an (n, k)-cyclic code over Fq. Then, the poly-

nomial g(x) is called the generator polynomial of C; the polynomial h(x) = xn−1
g(x)

is called the parity-check polynomial of C.

To illustrate these notions, we give a simple example.

Example 4. Let n = 4 and q = 3. In F3, we have the following factorization

x4 − 1 = (x− 1)(x+ 1)(x2 + 1).

The cyclic code C generated by g(x) = 1+x2 has the following matrix as a generator
matrix.

G =

(
1 0 1 0
0 1 0 1

)
.

The code C has h(x) = x2 + 2 as a parity-check polynomial, and thus its corre-
sponding parity-check matrix is

H =

(
0 1 0 2
1 0 2 0

)
.

In the following paragraph, we consider a generalization of cyclic codes, namely
quasi-cyclic codes. We saw that a cyclic code C has the property that if a word
a ∈ C, then all of its right-shift words are also in C. Now, a word of length 2n can
be thought of as consisting of two components, each of which is a word of length n.
Thus, if c(0) = (c0, . . . , c2n−1), then its two components are c1 = (c0, . . . , cn−1) and
c2 = (cn, . . . , c2n−1). The right-shift words of c(0) are c(0), c(1), . . . , c(n−1), where

c(i) =
(
c

(i)
1 , c

(i)
2

)
, i.e., each component is the i-th right-shift word of that compo-

nent of c(0). If a linear code C of length 2n has the property that c ∈ C implies
that all of its right-shift words are also in C, then C is called a quasi-cyclic code of
order 2. If the number 2 is replaced by a general positive integer `, one gets the
following definition.
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Definition 2.8. Let ` ∈ N and C be a linear code of length `n over Fq. If C is
closed under the right-shift operation, then C is called a quasi-cyclic code of order
`.

If we take ` = 1, we get the definition of cyclic codes. In code-based cryptog-
raphy, two types of quasi-cyclic codes are often used, namely, quasi-cyclic codes
of order 2 and 3 whose parity-check matrices are of the following forms

H2 =
(
In | H

)
and H3 =

(
In 0 H1

0 In H2

)
, (2.4)

respectively. Here, H,H1,H2 are circulant matrices, i.e., square matrices in which
the next row is the right-shift of the previous row.

2.1.3 Goppa Codes

Definition 2.9. Let g(x) be a polynomial of degree at most n−1 over an extension
Fqm of Fq and L = {α0, . . . , αn−1} a set of n distinct elements of Fqm which does
not contain any root of g(x). Define

Γ(L, g) =

{
(c0, . . . , cn−1) ∈ Fnq

∣∣∣∣∣
n−1∑
i=0

cig(αi)
−1 g(x)− g(αi)

x− αi
= 0

}
.

The set Γ(L, g) is called the Goppa code with Goppa polynomial g(x).

The Goppa Γ(L, g) code has the following property.

Theorem 2.2. Let t be the degree of the Goppa polynomial g(x). Then, the
dimension of Γ(L, g) is at least n−mt and its minimum distance is at least t+ 1.

Proof. See [LN94].

2.2 Rank Metric Codes

2.2.1 Rank Metric and Rank Codes

This section provides some basic facts on rank metric. Comparisons of notions in
rank metric and those in Hamming metric are often made. Let m,n be positive
integers and Fqm a finite extension of degree m over Fq. Furthermore, let B =
{β1, . . . , βm} be a basis for Fqm over Fq. Then, for each element a in the extension
field Fqm , it can be uniquely represented as

a = a1β1 + · · ·+ amβm,
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with a1, . . . , am belong to Fq. By this way, a vector a = (a1, . . . , an) in the vector
space Fnqm can be thought of asa1

...
am

 = A ·

β1

...
βm

 ,

where A is an n × m matrix with entries in Fq. It is clear that when the basis
B is fixed, then a and A correspond one-to-one to each other. As in Section 2.1,
the Hamming weight of a is the number of nonzero coordinates of a, the rank
weight of a, however, is defined to be the rank of A over Fq; it is denoted by
rank(a).

(
When there is no ambiguity, it can also be denoted as ‖a‖, or w(a).

)
A

trivial observation shows that rank(a) ≤ min{m,n} for all a ∈ Fnqm .
The distance between two vectors x and y is the rank of x−y, or equivalently,

of X−Y, and denoted by d(x,y). One has the following properties

Proposition 2.4. Let x,y, z be vectors of Fnqm . Then

(i) d(x,y) = 0 if and only if x = y,

(ii) d(x,y) = d(y,x),

(iii) d(x,y) ≤ d(x, z) + d(z,y).

Proof. The first and second are straightforward. The thirds is in fact equivalent
to the result

rank A + rank B ≥ rank(A + B)

for any two matrices A and B of the same size. The last inequality comes from the
fact that the image of Fmq under A + B is a subspace of the vector space formed
by taking the sum of the images of Fmq under each matrix.

Another way to define the rank of a vector in Fnqm is through its coordinates,
that is, the rank of a is the maximal number of its coordinates that are linearly
independent over Fq. One sees at once that this number is equal to the maximal
number of rows of the matrix A that are linearly independent over Fq, and thus
the two ways are equivalent. Moreover, the maximal number of linearly indepen-
dent coordinates of a is obviously less than or equal to the number of nonzero
coordinates of a, and thus, the rank weight of a is at most the Hamming weight
of a. The Fq-subspace of Fqm (viewed as an m-dimensional vector space over Fq)
spanned by the coordinates of a is called the support of a. Thus, rank a is equal
to the Fq-dimension of the support of a.
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Example 5. Let q = 3,m = 3, n = 5, and α a root of the polynomial x3 − x− 1.
We have F3[α] = F33 , and let {1, α, α2} be a basis of F33 over F3. The word
x = (1, α + 2, 0, α2 + 1, α) has rank weight 3 since 1, α + 2, α2 + 1 are linearly
independent over F3. On the other hand, its Hamming weight is 4. In terms of
matrix, one has 

1
α + 2

0
α2 + 1
α

 =


1 0 0
2 1 0
0 0 0
1 0 1
0 1 0

 ·
 1
α
α2

 .

And indeed, the matrix A =


1 0 0
2 1 0
0 0 0
1 0 1
0 1 0

 has rank equal to 3, since the 1st, 4th and

5th rows are linearly independent over F3.

Similar to Hamming linear codes, a rank linear code can be defined by a
generator matrix or a parity-check matrix.

Definition 2.10. Let G be a k× n matrix of rank k with entries in Fqm . The set

C =
{
xG | x ∈ Fkqm

}
is a (rank) linear code of length n and dimension k.

If H is a dual matrix of G, then one has

Definition 2.11. Let H be an (n − k) × n matrix of rank n − k with entries in
Fqm . Then

C =
{
c ∈ Fnqm | HcT = 0T

}
is an (n, k)-rank linear code.

Definition 2.12. Let C be an (n, k)-rank linear code over Fqm . The minimum
distance of C is defined by

dC = min
{
w(c) | c ∈ C \ {0}

}
.

From the above observation, one can deduce that dC ≤ n− k + 1.
In the (binary) Hamming case, the number of words of weight k is

(
n
k

)
, repre-

sented by a binomial coefficient. In the rank case, we have an analogue to binomial
coefficient, that is, Gaussian coefficient. For k ≤ n, the Gaussian coefficient

[
n
k

]
q

is defined as follows [
n

k

]
q

=
(qn − 1) · · · (qn − qk−1)

(qk − 1) · · · (qk − qk−1)
,
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and
[
n
0

]
q

= 1.
(
Recall that

(
n
k

)
= n·(n−1)···(n−k+1)

k·(k−1)···1 .
)

The Gaussian coefficient
[
n
k

]
q

represents the number of different subspcaces of dimension k of Fqn . Indeed, there
are (qn − 1) · · · (qn − qk−1) ways of choosing k linearly independent elements of
Fqn , and in each space of dimension k, there are (qk − 1) · · · (qk − qk−1) ways of
choosing a basis. Thus, the number of different subspaces of dimension k is

[
n
k

]
q
.

From the above result, one can deduce that the number of vectors of rank k
in Fnqm is

T = (qn − 1) · · · (qn − qk−1)

[
m

k

]
q

.

This can be done in this way. Let V be a subspace of Fqm of dimension k, and
{α1, . . . , αk} a basis for V over Fq. Then, each vector x, whose coordinates are in
V, can be represented as

x = (α1, . . . , αk) ·M,

where M is a full rank k×n matrix over Fq. It is not hard to see that the number
of such matrices is (qn − 1) · · · (qn − qk−1). From this, the statement follows. The
above arguments can be stated in the following proposition.

Proposition 2.5. Let k be a positive number such that k ≤ min{m,n}, and

Sn,mk =
{
x ∈ Fnqm | rank x = k

}
the sphere of radius k centered at 0. Then |Sn,mk | = (qn − 1) · · · (qn − qk−1)

[
m
k

]
q
.

The formula of |Sn,mk | can be bounded as follows.

Proposition 2.6 ([Loi06]). Let k be a positive number such that k ≤ min{m,n}.
Then,

qk(m+n−k−2) ≤ |Sn,mk | ≤ qk(m+n−k+1).

In most cases, the above result can somewhat be improved. Indeed, one has(
1− 1

qN−k+1

)k
≤
(

1− 1

qN−k+1

)
· · ·
(

1− 1

qN

)
≤ 1

for all integer N ≥ k. Letting N = n,m and multiplying the obtained inequalities,
it turns out that(

1− 1

qn−k+1

)k (
1− 1

qm−k+1

)k
≤

k−1∏
i=0

(
1− 1

qn−i

)(
1− 1

qm−i

)(
1− 1

qk−i

) ≤
(

1− 1

q

)−k
.

The upper-bound can be rewritten as b1 = qk
(

1−logq(q−1)
)
, and the lower-bound

b0 = qk
(

logq(q
n−k+1−1)+logq(q

m−k+1−1)+2k−m−n−2
)
. Thus, one has the following propo-

sition.
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Proposition 2.7. Let k be a positive number such that k ≤ min{m,n}. Then,

qk
(

logq(q
n−k+1−1)+logq(q

m−k+1−1)+k−2
)
≤ |Sn,mk | ≤ qk

(
m+n−k+1−logq(q−1)

)
.

This section is concluded with the following proposition.

Proposition 2.8. Let `,m, n, w1, . . . , w` be positive integers such that m,n > d,
where d = w1 + · · · + w`. Let ti be randomly chosen from Sn,mwi

for i = 1, . . . , `,

and U = Supp

(∑`
i=1 ti

)
. Then, we have

Pr[dimU = d] ≥ 1− 1

qm−d
− 1

qn−d
.

Proof. Let {α1, . . . , αm} be an arbitrary basis for Fqm over Fq. For i = 1, . . . , `,
let {βi1, . . . , βiwi} be a basis for Ui = Supp(ti) over Fq, and Ai ∈ Fwi×mq such that βi1

...
βiwi

 = Ai ·

α1

...
αm

 .

Assume that for i = 1, . . . , `, one has ti = (ti,1, . . . , ti,n) and ti,j = vi,j·(βi1, . . . , βiwi)
T ,

where vi,j ∈ Fwiq . For j = 1, . . . , n, form the vector vj = (v1,j, . . . ,v`,j) ∈ Fdq , and
let V = SpanFq(v1, . . . ,vn). Let A = [AT

1 | · · · |AT
` ]T ∈ Fd×mq , then

U =

v ·A ·

α1

...
αm


∣∣∣∣∣∣∣ v ∈ V

 .

Let X be the event that a randomly chosen matrix A satisfies rank A = d, and
Y the event that randomly chosen matrices Ai’s satisfy rank Ai = wi for all
i = 1, . . . , `. By Bayes’s formula, we have

Pr[X|Y ] =
Pr[Y |X] · Pr[X]

Pr[Y ]

=
Pr[X]

Pr[Y ]

=
Pr[rank A = d | A← Fd×mq ]∏`

i=1 Pr[rank Ai = wi | Ai ← Fwi×mq ]
.

We need the following lemma.
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Lemma 2. Let t ≤ m be positive integers and M a random matrix in Ft×mq . Then

Pr[rank M = t] =

(
1− 1

qm

)
· · ·
(

1− 1

qm−t+1

)
.

Proof. There are qm − 1 possibilities for the choice of the first row, qm − q for the
second, . . . , and qm − qt−1 for the tth row. Thus the number of matrices of full
rank makes up to (qm − 1) · · · (qm − qt−1). Therefore, one has

Pr[rank M = t | M← Ft×mq ] =
(qm − 1) · · · (qm − qt−1)

qtm

=

(
1− 1

qm

)
· · ·
(

1− 1

qm−t+1

)
.

From Lemma 2, one easily sees that

Pr[X|Y ] ≥ Pr[rank A = d | A← Fd×mq ]

≥ 1− 1

qm−d+1
− · · · − 1

qm

≥ 1− 1

qm−d
.

By the same argument, one obtains

Pr[V = Fdq ] ≥ 1− 1

qn−d
.

Let
U = {v ·A | v ∈ V } .

The event dimU = d is equivalent to the event dimU = d, and thus equivalent to
the event

(
V = Fdq ∩ rank A = d

)
. By the independence of ti’s, we see that the

two events V = Fdq and rank A = d are independent. Therefore,

Pr[dimU = d] = Pr[V = Fdq ] · Pr[rank A = d]

≥
(

1− 1

qn−d

)
·
(

1− 1

qm−d

)
≥ 1− 1

qm−d
− 1

qn−d
.
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2.2.2 Gabidulin Codes

In this section, we implicitly assume that n ≤ m.

Definition 2.13. Let g = (g1, . . . , gn) ∈ Fnqm be a vector of rank n. The (n, k)
Gabidulin code Gg,k of support g is the linear code generated by the matrix

Gg,k =


g1 g2 · · · gn
gq1 gq2 · · · gqn
...

...
...

...

gq
k−1

1 gq
k−1

2 · · · gq
k−1

n

 .

Connected to this matrix is the notion of q-polynomials.

Definition 2.14. Let d be a non-negative integer. A q-polynomial of q-degree d
over Fqm is a polynomial of the form

f(x) = a0x+ a1x
q + · · ·+ adx

qd ,

where a0, . . . , ad ∈ Fqm and ad 6= 0. The q-degree of f(x) is denoted by degq(f).

One can verify that for any α, β ∈ Fqm , a ∈ Fq, one has f(aα) = af(α) and
f(α+ β) = f(α) + f(β). 2 Thus, q-polynomials are also known as linearized poly-
nomials. In the language of q-polynomials, Gabidulin codes can be interpreted
as follows.

Definition 2.15. Let g = (g1, . . . , gn) ∈ Fnqm be a vector of rank n. The (n, k)
Gabidulin code of support g is the set

Gg,k =
{(
f(g1), . . . , f(gn)

)
| f(x) ∈ Fqm [x], degq(f) ≤ k − 1

}
.

The code Gg,k has the following property.

Proposition 2.9. Let dr be the minimum (rank) distance of Gg,k. Then, dr =
n− k + 1.

Proof. Let f(x) be a q-polynomial of q-degree d ≤ k−1 and c =
(
f(g1), . . . , f(gn)

)
.

We will show that rank(c) ≥ n− d.

By the linearity of f, we can think of f as a linear map. Thus,

rank(c) = dim Im(f) ≥ n− dim ker(f).

2These come from the fact that aq = a and (α+ β)q = αq + βq.
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(The equality holds when ker(f) ⊆ SpanFq(g1, . . . , gn).) Since degq(f) = d, so
dim ker(f) = d. The inequality follows.

We have rank(c) ≥ n−d ≥ n−k+ 1 for any c ∈ Gg,k, and thus dr ≥ n−k+ 1.
On the other hand, we already have dr ≤ n − k + 1. Therefore, one must have
dr = n− k + 1.

2.3 Modern Cryptography

This section covers the very basic notions of modern cryptography related directly
to our works.

Notation. By writing x ← X, we mean that x is drawn according to the
distribution X, if X is a distribution; or drawn uniformly at random from X
when X is a set, or the output of the algorithm X, if X is an algorithm.

2.3.1 The Computational Model

Definition 2.16 (Asymptotic functions). Let f, g : N→ N be two functions. Then

� g(n) = O(f(n)) if there exists a constant c > 0 such that g(n) ≤ c · f(n) for
every large enough n.

� g(n) = o(f(n)) if for every c > 0, g(n) ≤ c · f(n) for every large enough n.

� g(n) = Ω(f(n)) if f(n) = O(g(n)), i.e., there exists a constant c > 0 such
that g(n) ≥ c · f(n) for every large enough n.

� g(n) = ω(f(n)) if f(n) = o(g(n)), i.e., for every c > 0, g(n) ≥ c · f(n) for
every large enough n.

Negligible Functions. A function f : N → R is negligible if for every poly-
nomial p(x), there exists a positive integer n0 such that for all n > n0, it holds
that

f(n) ≤ 1

p(n)
.

Example 6. 1. The function f(x) = 2−n is a negligible function.

2. Any polynomial is not a negligible function.

Now, let D be a distribution over a countable set Ω. For an element x ∈ Ω,
the notation D(x) signifies the probability that an element of Ω chosen according
to D is equal to x.
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Statistical Distances. Let D1 and D2 be two distributions over Ω. The statistical
distance between D1 and D2 is defined as

∆(D1, D2) =
1

2

∑
x∈Ω

∣∣D1(x)−D2(x)
∣∣.

Two distributions are said to be statistically indistinguishable if there exists a
negligible function µ(·) (in the security parameter n) such that

∆(D1, D2) ≤ µ(n).

In terms of distinguisher, i.e., a probabilistic polynomial-time algorithm whose
output is either 0 or 1, statistical distance can be stated as follows.

Definition 2.17. The statistical distance between D1 and D2 is

∆(D1, D2) = max
A

∣∣ Pr
x←D1

[A(x) = 1]− Pr
y←D2

[A(y) = 1]
∣∣,

where the maximum is taken over all possible distinguishers A.

Computational Distances. Let {xn}n∈N and {yn}n∈N be a two sequences of ran-
dom variables and A a probabilistic polynomial-time algorithm that either outputs
0 or 1. The computational distance between {xn}n∈N and {yn}n∈N is defined to be
the quantity ∣∣Pr[A(xn) = 1]− Pr[A(yn) = 1]

∣∣.
As similar as statistically indistinguishable, two sequences of random variables

are said to be computationally indistinguishable if there exists a negligible function
µ(·) such that ∣∣Pr[A(xn) = 1]− Pr[A(yn) = 1]

∣∣ ≤ µ(n).

Intuitively, the above definition can be understood in a way that any prob-
abilistic polynomial-time algorithm outputs 1 with almost the same probability
whether its input is from the first or the second sequence.

2.3.2 Public-key Encryption

Suppose that Bob and Alice want to exchange messages through a public channel,
say the Internet. Since it is a public channel, so anyone could see the exchanged
messages. This undesirable property compels both of them to encrypt their mes-
sages before sending. Of cause, the kind of encryption should allow each of them
to be able to read other’s messages. One way to accomplish this task is that Bob
and Alice agree with each other beforehand on a single key which is used to en-
crypt as well as decrypt. This kind of encryption is called symmetric encryption.



23 2.3. Modern Cryptography

Another solution is that Alice generates a pair consisting of a public key pk and a
secret key sk. The key pk is sent to Bob regardless of the fact that others can learn
about it. Bob uses this key to encrypt his message while Alice uses her secret key
sk to decrypt Bob’s encrypted message. As for Bob, he also generates his own key
pair, and does as Alice. This kind of encryption is called asymmetric encryption
or public-key encryption. To provide the basic definition and security requirement
of a public-key encryption scheme is the aim of this section.

An intuitive figure of public-key encryption is already described in the above
paragraph, its formal definition is as follows.

Definition 2.18. A public-key encryption (PKE) scheme E is a tuple E =
(Set,Enc,Dec) of three algorithms:

� Set(1λ) outputs public and secret keys (pk, sk) for a security parameter λ,

� Enc(pk,m) on input public key pk and a message m ∈M, the allowed mes-
sage space, outputs ciphertext ct,

� Dec(sk, ct) on input secret key sk and ciphertext ct, outputs messages m′.

It is required that for any m ∈M,

Pr
m∈M

[
Dec(sk,Enc(pk,m)) 6= m

]
≤ negl(λ).

The security of a public key scheme is usually analyzed with the chosen plain-
text attack (CPA) experiment (or game).

The CPA indistinguishability experiment PubcpaA,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk as well as ability to access to Enc(pk, ·), and outputs
a pair of messages m0,m1 of the same length.

3. A random bit b ← {0, 1} is chosen, and then a ciphertext c ← Enc(pk,mb)
is computed and given to A. Ciphertext c is called the challenge ciphertext.

4. A continues to have access to Enc(pk, ·), and finally, outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition 2.19. A public-key encryption scheme Π = (Gen,Enc,Dec) has indis-
tinguishable encryption under a chosen-plaintext attack (or is CPA secure) if for all
probabilistic polynomial-time adversaries A, there exists a negligible function negl
such that

Pr[PubcpaA,Π(n) = 1] ≤ 1

2
+ negl(n).
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2.3.3 Zero-Knowledge Proof Systems

This section provides some basic notions on zero-knowledge proofs. The main
purpose is to give an intuitive idea of these proof systems, which will serve for
later sections and chapters. Most of the notions are also taken from [Gol01].

Throughout this section, P and V will stand for interactive machines, and
on common input x, the notion 〈P, V 〉(x) denotes the (probabilistic) output of V
after interacting with P.

2.3.3.1 Interactive Proofs

Definition 2.20. Let L ⊆ {0, 1}∗ be a language. A pair of interactive machines
(P, V ) is called an interactive proof system for L if V is a probabilistic polynomial-
time machine and the following properties hold.

(i) Completeness. For every x ∈ L,

Pr[〈P, V 〉(x) = 1] ≥ 2

3
.

(ii) Soundness. For every x 6∈ L and any interactive machine P ∗,

Pr[〈P ∗, V 〉(x) = 1] ≤ 1

3
.

The second property says that a cheating prover can fool a verifier with prob-
ability at most 1

3
. By repeating the protocol many times, this probability can be

made negligible. Thus, a cheating prover essentially cannot fool a verifier to accept
an input that is not in L.

2.3.3.2 Computationally Sound Proofs

In Definition 2.20, if we restrict the power of the prover to be polynomial-time
and relax the soundness property to be infeasible to fool the verifier, we get the
notion of computationally sound proofs.

Definition 2.21 (Computationally Sound Proof System). A pair of interactive
machines (P, V ) is called a computationally sound proof system (or an argument)
for a language L if both machines are polynomial-time (with auxiliary inputs) and
the following conditions hold.

� Completeness. For any x ∈ L, there exists a string y such that for every
string z (as auxiliary input of V ),

Pr[〈P (y), V (z)〉(x) = 1] ≥ 2

3
.
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� Computational soundness. For every polynomial-time machine P ∗ and for
all sufficiently long x /∈ L, and any y, z,

Pr[〈P ∗(y), V (z)〉(x) = 1] ≤ 1

3
.

2.3.3.3 Zero-Knowledge Proofs

Zero-knowledge proofs were first introduced by Goldwasser et al. [GMR85].
Zero-knowledge is an additional property of the prover P of an interactive system
(P, V ). Intuitively, this property can be understood in a way that the interaction
with P does not help V to be more efficient in any computing task related to
the common input x (of the interaction), or whatever can be computed efficiently
after the interaction, V can also do it without interacting with P. This notion is
captured by simulation paradigm. It is as follows.

Definition 2.22. Let L ⊆ {0, 1}∗ and (P, V ) an interactive proof system for
L. The prover P is said to be perfect zero-knowledge if for every probabilistic
polynomial-time interactive machine V ∗, there exists a probabilistic polynomial-
time algorithm S∗ such that for any x ∈ L, the following conditions hold.

1. Machine S∗ outputs a special symbol, denoted by ⊥, with probability at most
1
2
.

2. Let s∗(x) denote the variable describing the output of S∗ conditioned on
S∗(x) 6= ⊥. Then the following variables are identically distributed.

� 〈P, V ∗〉(x), i.e., the output of V ∗ after interacting with P on common
input x.

� S∗(x), i.e., the output of algorithm S∗ on input x.

S∗ is called a simulator for the interaction between P and V ∗.

In the above definition, if the condition identical is relaxed by statistically
close or even weaker by computationally close, we get the notion of statistical
zero-knowledge and computational zero-knowledge, respectively.

2.3.3.4 Proofs of Knowledge

Definition 2.23. Let R be a binary relation and κ : N → [0, 1] a function. An
interactive machine V is called a knowledge verifier for R with knowledge error κ
if the following conditions hold:
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� Non-triviality. There exists an interactive machine P such that for every
(x, y) ∈ R, every possible interaction of V with P on the pair (x, y) are
accepted.

� Validity. There exist a polynomial q(·) and a probabilistic machine K such
that for every interactive machine P, every x ∈ LR, and every y, r ∈ {0, 1}∗,
machine K satisfies the condition: Denote by p(x, y, r) the probability that V
accepts when interacting with the prover specified by Px,y,r, i.e., the function
describes messages sent by P on input x, auxiliary input y, and random input
r. If p(x, y, r) > κ(|x|), then, on input x and with access to Px,y,r, machine
K outputs a solution s ∈ R(x) with an expected number of steps bounded
by q(x, y, r)/

(
p(x, y, r)− κ(|x|)

)
. (The machine K is called a knowledge ex-

tractor.) An interactive pair (P, V ) in which V is a knowledge verifier for a
relation R and P satisfies the non-triviality condition is called a system for
proofs of knowledge for the relation R.

2.4 Hardness Assumptions

This section recall some problems which are widely believed to be inefficient to
solve. These problems are parted in the Hamming metric class and rank metric
class with respect to the involved metric.

2.4.1 Hamming Metric Problems

In 1978, Berlekamp et al. [BMvT78] showed that the problem of decoding
linear codes and the problem of finding small weight codewords of a linear code
are both NP-complete. This result suggests that this problem can be used for
cryptography design. The general decoding problem is as follows.

Problem 1 (Computational Syndrome Decoding Problem). Let H be a matrix

in F(n−k)×n
q , y a word in Fnq , and w a positive integer. Find (if any) a word x of

Hamming weight w such that HxT = yT?

For abbreviation, this problem is traditionally denoted by CSD(n, k, w) or
CSD(H,y, w). The problem of finding small weight codewords of a linear code
is a specialization of Problem 1 by letting y = 0. It is stated as follows.

Problem 2. Let H be a matrix in F(n−k)×n
q and w a positive integer. Find (if

any) a word x of Hamming weight w such that HxT = 0T?

For the designing of cryptosystems, the decisional version of Problem 1 is
usually used.
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Definition 2.24 (Syndrome Decoding Distribution). Let n, k, and w be positive
integers. The syndrome decoding distribution, denoted by SD(n, k, w), chooses

H← F(n−k)×n
q and x← Snw, and outputs

(
H,H · xT

)
.

Problem 3 (Decisional Syndrome Decoding Problem). Let (H,y) be an instance

either from the SD(n, k, w) distribution or the uniform distribution over F(n−k)×n
q ×

Fnq . Decide which is the case?

Problem 1 and Problem 3 are fundamental elements for designing code-based
cryptography. The principal attack on Problem 1 and 2 is the information set
decoding algorithm which was initiated by Prange [Pra62] and then Stern
[Ste89]. Recent developments of these algorithms could be found in [BLP11] and
[BJMM12]. In some cases, in which matrix H has specific structures such as it is
a parity-check matrix of a Goppa code or of the form H2 or H3 as in Equation 2.4,
these two problems are also (heuristically) considered to be inefficient to solve.

2.4.2 Rank Metric Problems

By changing the metric and fixing attention on a finite extension Fqm instead of
Fq, Problem 1 changes itself in the following problem:

Problem 4 (Rank Syndrome Decoding Problem). Let H be a matrix in F(n−k)×n
qm ,

y a word in Fnqm , and w a positive integer. Find (if any) a word x of rank weight
w such that HxT = yT?

In the literature, Problem 4 is usually referred to as RSD problem, or more
specifically, RSD(n, k, w). The hardness of the above problem is probabilistically
reduced to that of Problem 1 [GZ16]. In Definition 2.24, if Hamming metric is
replaced by rank metric, one gets the rank syndrome decoding distribution. The
distinguishing problem for rank metric is stated as follows.

Problem 5 (Decisional Rank Syndrome Decoding Problem). Let (H,y) be an
instance either from the RSD(n, k, w) distribution or the uniform distribution over

F(n−k)×n
qm × Fnqm . Decide which is the case?

There are two main methods for efficiently solving Problem 4, namely, the
combinatoric attacks [GRS16, AGHT18] and the algebraic attack [BBC+20]. The
matrix H in Problem 4 and Problem 5 is completely random and has no structure.
These problems in the cases which H takes on the quasi-cyclic or the ideal form
are also consider to be hard. The ideal form of a matrix is a generalization of the
quasi-cyclic form and will be defined in Section 4.2.2.
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2.5 Code-based Cryptosystems

This section presents cryptosystems based on codes, some of which are directly re-
lated to our works. These cryptosystems are McEliece’s cryptosystem, Stern’s
identification protocol in both Hamming and rank metric, and the Hamming
quasi-cyclic (HQC) encryption scheme.

2.5.1 McEliece’s Cryptosystem

This cryptosystem was introduced by McEliece in 1978 [McE78].

1. Key Generation. This algorithm performs the following steps:

– Select a matrix G of an [n, k]-Goppa code. This code can decode up
to t errors.

– Randomly choose an invertible matrix S of size k×k and a permutation
matrix P of size n× n over Fq.

– Compute Ĝ = S ·G ·P.
– Output pk = (Ĝ, t) and sk = (S,G,P).

2. Encryption. To encrypt a message m, choose a random vector e of weight
at most t and compute the ciphertext

c = mĜ + e.

3. Decryption. A ciphertext c is decrypted in the following way:

– First, the matrix P is used to compute

c ·P−1 = mS ·G + e ·P−1.

– Next, the decoding algorithm of the Goppa code C is used to recover
m · S.

– Finally, by right-multiplying with S−1, the message m is recovered.

2.5.2 Stern Identification Protocol

In 1994, Jacques Stern introduced an identification scheme based on codes
[Ste94]. The underlying hard problem is the syndrome decoding problem. The
scheme is an interactive 3-move protocol between a prover and a verifier. The
prover P , who possesses a piece of secret information, tries to convince the verifier
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V of that possession without showing the secret itself. The common inputs to
both parties consist of a random binary matrix H of size (n − k) × n and a
syndrome s ∈ Fn−k2 . The secret information of the prover is a vector x in Fn2 of
small Hamming weight t satisfying that HxT = sT . The scheme is as follows.

1. Commitment. The prover P randomly chooses a vector y ← Fn2 and a
permutation σ ← Sn. He computes

c1 = h
(
σ,HyT

)
,

c2 = h
(
σ(y)

)
,

c3 = h
(
σ(x + y)

)
,

where h is a public hash function. Then, P sends cmt = (c1, c2, c3) to the
verifier V .

2. Challenge. Upon receiving cmt, V randomly picks a bit b ← {1, 2, 3} and
sends it to P .

3. Response. P responses as follows.

(a) If b = 1, then P releases σ(x) and σ(y).

(b) If b = 2, then P releases σ and x + y.

(c) If b = 3, then P releases σ and y.

4. Verify. V verifies as follows.

(a) If b = 1, then V checks for the validity of c2 and c3, and w
(
σ(x)

)
= t.

(b) If b = 2, then V checks for the validity of c1 and c3.

(c) If b = 3, then V checks for the validity of c1 and c2.

If all the checks are correct, then P outputs 1; otherwise, it outputs 0.

2.5.3 HQC Scheme

The HQC cryptosystem was introduced by Aguilar et al. [ABD+16] and has
reached the 3rd round of NIST’s call for post-quantum cryptography. The scheme
makes use of two types of codes as defined in Definition 2.8 with ` = 2, 3, i.e.,
codes defined by H2 and H3. The multiplication of two vectors of length n is
defined through the multiplication of two corresponding polynomials in the ring
F2[x]/(xn − 1) for a suitable n. That is,

x · y = φ−1
(
φ(x) · φ(y)

)
,
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where φ is the map described in Section 2.1.2 with q = 2. The structure of quasi-
cyclic codes makes the scheme’s public key size quite small. The detailed descrip-
tion of the scheme is as follows.

1. HQC.Setup(1λ): Generate parameters n = n(λ), k = k(λ), δ = δ(λ), w =
w(λ), we = we(λ), wr = wr(λ). The plaintext space is Fk2. Output param =
(n, k, δ, w, we, wr).

2. HQC.KeyGen(param): Generate h ← Fn2 ,x,y ← Snw, a generator matrix
G ∈ Fk×n2 of a public code C, which is capable of correcting up to δ errors.
Output pkHQC = (h, s = x + h · y,G) and skHQC = (x,y).

3. HQC.Enc(pkHQC,m): To encrypt a message m ∈ Fk2, randomly choose r1, r2 ←
Snwr and e← Snwe Compute{

c1 = r1 + h · r2,

c2 = s · r2 + e + m ·G.

Return c = (c1, c2).

4. HQC.Dec(skHQC, c): Apply the decoding algorithm of the code C to

y · c1 − c2 = x · r2 − y · r1 + e + m ·G.

Security of HQC scheme relies on the hardness assumptions concerning 2- and
3-quasi cyclic codes.

2.5.4 Rank Stern Identification Protocol

In 1995, Kefei Chen proposed an identification scheme in the rank metric context
with a remarkable property that it does not make use of random oracles, i.e., hash
functions [Che96]. However, sixteen years later, this scheme was broken by the
attacks of Gaborit et al. [GSZ11]. Also, an identification scheme was introduced
in [GSZ11]. This scheme, in its essence, can be regarded as the rank version of
the Stern’s identification protocol. Despite of this fact, the scheme differentiates
itself from the latter by the use of a new operation. It is defined in the next
paragraph.

As in Section 2.2.1, let B = {β1, . . . , βm} be a basis for Fqm over Fq. Then, each
vector x can be uniquely mapped to a matrix Ax of the size m × n over Fq. Let
us call this map ϕB. For an invertible matrix Q of size m over Fq, the operation
Q ? x is defined to be equal to the vector whose image under ϕB is Q ·Ax. This
operation is formally stated in the following definition.
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Definition 2.25. Let Q be an element of GL(m, q) and B = {β1, . . . , βm} a basis
for Fqm over Fq. Let ϕB : Fnqm → Fm×nq be the map associating each vector to its
representation matrix with respect to B. Then, for each x ∈ Fnqm

Q ? x = ϕ−1
B

(
Q · ϕB(x)

)
.

This operation has the following properties.

Proposition 2.10. Let x and y be two vectors in Fnqm . Then

(i) rank(x) = rank(Q ? x) for any Q ∈ GL(m, q);

(ii) (Q ? x)P = Q ? (xP) for any Q ∈ GL(m, q) and P ∈ GL(n, q);

(iii) if rank(x) = rank(y), then, there exist matrices Q ∈ GL(m, q) and P ∈
GL(n, q) such that y = Q ? xP.

Proof. (i) By the definition, we have

rank(Q ? x) = rank
(
Q · ϕB(x)

)
.

Since Q is invertible, rank
(
Q · ϕB(x)

)
= rank

(
ϕB(x)

)
= rank(x).

(ii) Observe that ϕB(xP) = ϕB(x)P for any P ∈ GL(n, q). By applying the
map ϕB to both (Q ? x)P and Q ? (xP), we get the same value. Thus
(Q ? x)P = Q ? (xP).

(iii) Let U and V be the supports of x and y, respectively. Assume that rank(x) =
rank(y) = d, so we have dimU = dimV = d. Let {e1, . . . , ed} and {f1, . . . , fd}
be bases for U and V over Fq, respectively. Here, ei’s and fi are thought of
as elements of Fmq .

Since U and V are subspaces of Fqm , so their bases can be extended to bases
for Fqm over Fq. Assume that

e = {e1, . . . , ed, ed+1, . . . , em} and f = {f1, . . . , fd, fd+1, . . . , fm}

are two such bases. Let Q be the change-of-basis matrix, which changes e to
f. The image of U under Q is obviously V, and thus Q?x ∈ V. The existence
of P is guaranteed by the following statement.

Claim. If x and y have the same support and rank, then there exists a
matrix P ∈ GL(n, q) such that y = xP.
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Proof. We prove the equality for ϕB, i.e., there exists P ∈ GL(n, q) such
that ϕB(y) = ϕB(x)P. Without loss of generality, assume that rank(x) =
rank(y) = d, and that the first d columns of both ϕB(x) and ϕB(y) are lin-
early independent over Fq, all the rest n−d columns of both matrices are the
all-zero vectors. (These assumptions can be achieved by right-multiplying
with matrices corresponding to the elementary column operations.)

Since the columns of ϕB(x) and ϕB(y) generate the same space, so by ex-
pressing each column of ϕB(y) in terms of the columns of ϕB(x), one get an

invertible matrix P of size d×d. Now, it is clear that with P =

(
P 0
0 In−d

)
,

one has ϕB(x) ·P = ϕB(y).

From the claim, (iii) is completely proven.

This operation can be regarded as the rank-equivalent permutation of the or-
dinary permutation, i.e., permutation that permutes coordinates of vectors. Cor-
respondingly, the rank-metric scheme is described as follows.

Common inputs: A matrix H ∈ F(n−k)×n
qm , a syndrome u ∈ Fn−kqm , and a public

hash function h.
Output: P proves in zero-knowledge that he knows a vector s ∈ Fnqm of rank
weight r such that HsT = uT .

1. Commitment. The prover P randomly picks a vector x,P ∈ GL(n, q),Q ∈
GL(m, q), and computes

c1 = h
(
P,Q,HxT

)
,

c2 = h
(
Q ? xP

)
,

c3 = h
(
Q ? (x + s)P

)
.

Then, P sends cmt = (c1, c2, c3) to the verifier V .

2. Challenge. V randomly picks an element b ∈ {1, 2, 3} and sends it to P .

3. Response. P responses according to the value b.

(a) If b = 1, P releases Q ? xP and Q ? sP.

(b) If b = 2, P releases P,Q and x + s.

(c) If b = 3, P releases P,Q and x.

4. Verify. V does the verification procedure as follows.
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(a) If b = 1, V checks the values of c2, c3 and the condition w(Q ? sP) = r.

(b) If b = 2, V checks the values of c1 and c3.

(c) If b = 3, V checks the values of c1 and c2.

If all checks pass, then V outputs 1; otherwise, it outputs 0.





Chapter 3

Chameleon Hash Signatures

One method to design digital signatures is the use of hash-and-sign paradigm.
The use of hash functions in a scheme means that the security of the designed
scheme is being considered in the random oracle model. In post-quantum code-
based cryptography, security against quantum adversary in the (quantum) random
oracle model is still unknown. Thus, it would be more desirable if the scheme does
not make use of hash functions, i.e., truly random functions.

Motivated by this task, that is, constructing a code-based signature scheme
without the use of hash functions, we designed a type of functions from stan-
dard code-based assumptions, which has some features similar to those of a hash
function, and therefrom, succeeded in deriving a code-based signature scheme.
This kind of functions is called chameleon hash function, whose notion was first
introduced by Krawczyk and Rabin [KR00].

This work is a joint work with Olivier Blazy, Philippe Gaborit, Ayoub
Otmani, and Jean-Pierre Tillich, and was presented in the International
Workshop on Coding and Cryptography 2018 (WCC 2018).

3.1 Introduction

In 1997, Kabatiansky, Krouk, and Smeets proposed in [KKS97] a signature
scheme based on the difficulty of decoding an [N,K] binary random code. The
public key of the scheme consists in a parity-check matrix of this code together with
k syndromes of errors whose supports are all included in a small support of size n.
The corresponding errors form the secret key of the scheme. They allow to sign
a binary message of length k by taking the corresponding linear combinations of
these errors. This linear combination is typically an error of rather small weight
(since it has weight ≈ n

2
) whose syndrome can be computed by a verifier from

the k public syndromes. Later on, several variants of this scheme were proposed

35
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[KKS05, BMS11].

However, in 2011, Otmani and Tillich [OT11] devised attacks against these
schemes. They showed that if k

n
is not significantly smaller than K

N
, then there is

an efficient attack on these schemes. This did not undermine the security of the
whole scheme since the attack is still exponential in nature but just showed that
the parameters of the scheme have to be chosen carefully.

On the other direction of research, starting with the results of Krawczyk
and Rabin [KR00], the work of Bellare and Shoup [BS07], and Blazy et
al. [BKKP15], another method of constructing and a new notion of security of
signature scheme are proposed, i.e., chameleon signature and two-tier security.
Briefly speaking, a chameleon signature scheme consists of two ingredients: a
chameleon hash function, and a regular signature scheme. In this type of signature
scheme, the power of the recipient (i.e., possessing the trapdoor of the chameleon
hash function) gives the scheme extra properties such as non-transferability and
non-repudiation. In [BKKP15], this power is given to the signer to strengthen the
security, that is, their scheme achieves two-tier security in the standard model.

In this work, we combine the two directions to (i) construct a chameleon hash
function from the KKS assumption, and (ii) devise a code-based chameleon-hash
signature scheme using this function and also derive a corresponding binary tree-
based scheme by using the methods of [BKKP15]. This gives the first code-based
signature scheme with a security proof in the standard model. It is also worthwhile
to recall that obtaining an efficient and provably secure scheme in the much weaker
random oracle model is already quite a formidable challenge as illustrated by the
fact that all the recent code-based signature schemes to the NIST competition for
standardizing post-quantum public key cryptography were broken. The signature
we propose here is also a post-quantum candidate and the only other candidates
for being secure against a quantum computer in the standard model are lattice
based signature schemes using bonsai trees and variations of this approach.

The rest of this work is organized as follows. In Section 3.2, we recall basic
facts on signature schemes as well as some hard problems in coding theory; in
Section 3.3, we construct a chameleon hash function whose security is based on
the KKS scheme and other hard problems from coding theory; in Section 3.4, we
derive a signature scheme using the constructed chameleon hash function using
the techniques in [BKKP15]; and in the two last sections, we give some concrete
parameters for the scheme and draw some conclusions.
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3.2 Preliminaries

3.2.1 Notation

Throughout the work, vectors are written in row form and denoted by bold low-
case letters whereas matrices are denoted by bold capital letters. For a given
vector v and a subset J of indices, we let vJ = (vj)j∈J , the Hamming weight of
v is denoted by ‖v‖; its transpose is denoted by vT ; a similar notation is used for
the transpose of a matrix. By writing x← X, we mean that x is drawn according
to the distribution X, if X is a distribution; or drawn uniformly at random from
X when X is a set, or the output of the algorithm X, if X is an algorithm. For two
probability distributions A and B, A ≡ B means that the two distributions are

identical, and A
c≡ B means that A and B are computationally indistinguishable.

For a variable x ∈ (0, 1), the binary entropy function of x is denoted by h2(x).
Here, we recall that h2(x) = −x log2 x− (1− x) log2(1− x).

3.2.2 Signatures

We recall here the definition of a digital signature scheme.

Definition 3.1 (Signature scheme). A digital signature scheme Sig with message
spaceM is a triple of probabilistic polynomial-time algorithms, Sig = (Gen, Sign,Verify),
that satisfies:

• On input 1λ, algorithm Gen outputs a signing key sk and a verification key
pk.

• On input a signing key sk and a message m ∈ M, algorithm Sign outputs a
signature σ.

• On input consisting of a public key and a message-signature pair (m,σ),
algorithm Verify outputs 1 (accept) or 0 (reject).

Sig is correct if for any positive integer λ, all (pk, sk)← Gen(1λ), all m ∈M, and
all σ ← Sign(sk,m), it holds that Verify(pk,m, σ) = 1.

For the security of a signature scheme, we consider the notion of existentially
unforgeability.

Definition 3.2. A signature scheme, denoted by Sig, is (t, ε, q)-existential un-
forgeable under non-adaptive chosen-message attacks (EUF-NCMA) if

Pr
[
ExpEUF-NCMA

Sig,F ,q (λ) = 1
]
≤ ε
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holds for any probabilistic polynomial-time adversary F with running time t and
q signature queries, where ExpEUF-NCMA

Sig,F ,q (λ) is defined as follows. (We also give the
definition of Existential unforgeability under chosen-message attacks.)

Experiment ExpEUF-NCMA
Sig,F ,q (λ)

1: Q := (m1, . . . ,mq)← F(λ)
2: (pk, sk)← Gen(1λ)
3: for i = 1 to q do
4: σi ← Sign(sk,mi)
5: end for
6: (m∗, σ∗)← F(pk, σ1, . . . , σq)
7: if Verify(pk,m∗, σ∗) = 1 and m∗ /∈
Q then

8: return 1
9: else
10: return 0
11: end if

Experiment ExpEUF-CMA
Sig,F ,q (λ)

1: (pk, sk)← Gen(1λ)
2: (m∗, σ∗)← FSign(sk,·)(pk) with Q :=
{m1, . . . ,mq}, where mi is the i-th
message queried

3: if Verify(pk,m∗, σ∗) = 1 and m∗ /∈
Q then

4: return 1
5: else
6: return 0
7: end if

The notion of security which is stronger than the notion EUF is called strong
unforgeability, SUF. In the SUF experiment, the adversary is allowed to forge a
new signature on a message which has been already challenged. In order to do that,
we set Q = {(m1, σ1), . . . , (mq, σq)}. Now, a valid forgery is a pair (m∗, σ∗) /∈ Q.
This notion is applied for both adaptive and non-adaptive security, and are refered
to as SUF-CMA and SUF-NCMA, respectively.

3.2.3 Two-Tier Signatures

We recall the notion of two-tier signature schemes due to Bellare and Shoup
[BS07]. In a two-tier signature scheme, the key generation algorithm is split into
two algorithms: the primary (PriGen) and the secondary (SecGen) key generation
algorithms. The primary key is static and used for all signatures. The secondary
key is ephemeral and used for only one signature. The following definitions are
from [BKKP15], which is a generalization of two-tier signature.

Definition 3.3 (d-time two-tier signature scheme). A two-tier signature scheme,
TTSig, is a quadruple of probabilistic polynomial-time algorithms, TTSig = (PriGen,
SecGen,TTSign,TTVerify), satisfying that:

• On input 1λ, d, PriGen outputs a primary signing key psk and a primary
verification key ppk.
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• On input ppk and psk, SecGen outputs a fresh verification and signing key
pair (spk, ssk).

• On input psk, ssk and a message m, algorithm TTSign outputs a signature
σ. We denote the stateful variant by TTSign(psk, ssk,m; j), where 1 ≤ j ≤ d
is the state.

• On input ppk, spk, a message m and a signature σ, algorithm TTVerify deter-
ministically outputs 1 (accept) or 0 (reject). We denote the stateful variant
by TTVerify(ppk, spk,m, σ; j).

Security of two-tier signature scheme is stated in the following definition.

Definition 3.4 (Security of two-tier signature scheme). A two-tier signature
scheme TTSig is (t, q, d, ε)-existential unforgeable under non-adaptive chosen-message
attacks (TT-EUF-NCMA) if

Pr
[
ExpTT-EUF-NCMA

TTSign,F ,q (λ, d) = 1
]
≤ ε

holds for any probabilistic polynomial-time adversary F with running time t, where
ExpTT-EUF-NCMA

TTSign,F ,q (λ, d) is defined in Table 3.1. Existential unforgeability under adap-
tive chosen-message attacks (TT-EUF-CMA) is defined similarly.

Experiment ExpTT-EUF-NCMA
TTSign,F ,q (λ, d): Experiment ExpTT-EUF-CMA

TTSign,F ,q (λ, d):
(ppk, psk)← PriGen(1λ, d); (ppk, psk)← PriGen(1λ, d);
(m∗, σ∗, i∗)← FNTTSign(·)(ppk); (m∗, σ∗, i∗)← FOSKey(),TTSign(·,·)(ppk);
If TTVerify(ppk, spki∗ ,m

∗, σ∗) = 1 and m∗ /∈ Qi∗ , If TTVerify(ppk, spki∗ ,m
∗, σ∗) = 1 and m∗ /∈ Qi∗ ,

then return 1, else return 0. then return 1, else return 0.
Oracle OSKey():
i = i+ 1 and ji = 0;
(spki, sski)← SecGen(ppk, psk);

Oracle NTTSign(m1, . . . ,md): Return spki.
i = i+ 1 and (spki, sski)← SecGen(ppk, psk); Oracle TTSign(i′,m):
σj ← TTSign(psk, sski,mj) for j = 1, . . . , d; ji′ = ji′ + 1; mji′

:= m
Store (m1, . . . ,md) in the list Qi; If ji′ > d or (spki′ , sski′) is undefined then return ⊥;
Return (spki, σ1, . . . , σd). σ ← TTSign(psk, sski′ ,mji′

) and store mji′
in Qi′ ;

Return σ.

Table 3.1: TT-EUF-NCMA and TT-EUF-CMA experiments for two-tier signature
scheme.

Here, FO means that F is given access to oracle O. The strong unfogeability
security of two-tier signatures, i.e., TT-SUF-CMA and TT-SUF-NCMA, are defined
in the same ways as in the standard signatures.
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3.2.4 Chameleon Hash Functions

The notion of chameleon hash function was introduced by Krawczyk and Rabin
[KR00]. Here, we briefly recall the definition and some of its properties.

Definition 3.5. A chameleon hash function is defined as CHF = (CHGen,CHash,Coll),
where:

• CHGen(1λ) outputs a hash key chk and the corresponding trapdoor td.

• CHash(chk,m, r) outputs the hash value h on a message m and a randomness
r.

• Coll(td, (m, r), m̂) outputs a randomness r̂ such that

CHash(chk,m, r) = CHash(chk, m̂, r̂).

Security of chameleon hash function is stated as follows.

Definition 3.6. A chameleon hash function CHF is said to be (t, ε)-collision re-
sistant if for an adversary A running in time at most t, it holds that

Pr
(chk,td)←CHGen(1λ)

((m1,r1)6=(m2,r2))←A(chk)

[
CHash(chk,m1, r1) = CHash(chk,m2, r2)

]
≤ ε.

A chameleon hash function CHash(chk, ·, ·) with hash key chk and correspond-
ing trapdoor td has to meet the following properties:

1. Collision resistance: There is no efficient algorithm that can find two pairs
(m1, r1) and (m2, r2) with m1 6= m2 such that

CHash(chk,m1, r1) = CHash(chk,m2, r2).

2. Trapdoor collision: Given td, there exists an efficient algorithm that on
any pair (m1, r1) and a message m2 6= m1 finds a value r2 such that

CHash(chk,m1, r1) = CHash(chk,m2, r2).

3. Uniformity: All messages m induce the same probability distribution on
CHash(chk, ·, ·) for r chosen randomly. This statement can be relaxed to re-
quire that the distributions induced by different messages are computation-
ally indistinguishable. That is, for two given messages m1,m2, we require
that

{CHash(chk,m1, r1) | r1 ← D1}
c≡ {CHash(chk,m2, r2) | r2 ← D2},

where D1 and D2 are two appropriate distributions.
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3.2.5 Difficult Problems

Besides Problem 1 and Problem 3, which are stated in Section 2.4.1, we also
consider the case when the weight of errors varies in an acceptable interval, i.e.,
an interval in which the decoding is still hard.

Definition 3.7 (Extended Syndrome Decoding Distribution). For positive inte-
gers n, k, a, b, a ≤ b, the extended syndrome decoding distribution, extSD(n, k, a, b),

chooses H ← F(n−k)×n
q and x ← Fnq such that a ≤ ‖x‖ ≤ b, and outputs

(H, σ(x) = H · xT ).

Definition 3.8 (Extended Decisional Syndrome Decoding Problem). On an input

(H,yT )← F(n−k)×n
q ×Fn−kq , the decision extSD problem, extDSD(n, k, a, b), asks to

decide with non-negligible advantage whether (H,yT ) came from the extSD(n, k, a, b)

distribution or the uniform distribution over F(n−k)×n
q × Fn−kq .

Here, we make the assumption that the extDSD(n, k, a, b) problem is hard. In
[KKS97], besides providing that the weight of the error lies in the interval [t1, t2],
the authors also reveal a matrix F, which is closely related to the matrix H. The
problem above just provides the information on the weight of the error and nothing
more, and in fact, it can be seen as a corollary of Conjecture 3 in [Ale03].

3.3 The Transformation

3.3.1 The KKS Scheme

The KKS scheme uses two codes: a linear code defined by an (N−K)×N parity-
check matrix H over Fq (in most cases q = 2); a linear code Chid over Fq of length
n ≤ N and of dimension k which is defined by a k × n generator matrix G. The
code Chid has the property that there exist two positive integers t1 ≤ t2 such that
with high probability, t1 ≤ ‖c‖ ≤ t2 for any non-zero codeword c ∈ Chid. The
description of the scheme is as follows.

1. Gen(1λ): The signer

• chooses parameters N,K, n, k, t1, and t2 with respect to the security
parameter λ;

• draws a random (N − K) × N matrix H; chooses an n-subset J ⊂
{1, . . . , N};
• chooses a random k×n generator matrix G that defines a code Chid such

that with high probability, t1 ≤ ‖c‖ ≤ t2 for any non-zero codeword
c ∈ Chid;
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• defines F
def
= HJG

T , where HJ is the restriction of H to the columns
in J ;

• publishes H and F as the public key pk, and keeps J and G as the
secret key sk.

2. Sign(sk,x):

• On input a message x ∈ Fkq , the signer computes v = x ·G.

• Next, the signer defines the signature s = (s1, . . . , sN) as sJ = v, and
si = 0 for i /∈ J .

3 Verify(pk, (x, s)): On input a pair (x, s) ∈ Fkq × FNq , the verifier checks that
t1 ≤ ‖s‖ ≤ t2, and H · sT = F · xT .

As noticed in [KKS97], the code Chid can be chosen as a random code. A signature
corresponds to a random codeword of Chid and it is readily seen that its weight
lies in an interval [t1, t2] with high probability. This probability is estimated as in
the following propositions.

Proposition 3.1. Let C = [n, k] be a random binary code and 0 < d ≤ n
2

a
positive integer. The probability that the minimum distance dC ≥ d is at least

1− 2−(n−k)+n·h2
(
d−1
n

)
.

Proof. In this proof, an [n, k] binary code is identical with a subspace of Fn2 of
dimension k. Define

Br(x) =
{
v ∈ Fn2 | ‖x− v‖ ≤ r

}
.

For a given vector 0 6= x ∈ Fn2 , we have

Claim. The number of subspaces of dimension k which contain x is (2n−2)···(2n−2k−1)
(2k−2)···(2k−2k−1)

.

Recall that the number of subspaces of Fn2 of dimension k is

(2n − 1)(2n − 2) · · · (2n − 2k−1)

(2k − 1)(2k − 2) · · · (2k − 2k−1)
.

Putting these together, we see that the probability that a randomly chosen sub-
space V of dimension k contains x is 2k−1

2n−1
. Thus, the probability that a randomly

chosen subspace V of dimension k does not contain x is

Pr[x /∈ V ] = 1− 2k − 1

2n − 1

≥ 1− 1

2n−k
.
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From this estimation, it follows that for a given subset T of Fn2 , which does not
contain 0, the probability that a random subspace of dimension k does not intersect
T satisfies

Pr[V ∩ T = ∅] ≥
(

1− 1

2n−k

)|T |
. (3.1)

Therefore, the probability that a randomly chosen subspace V of dim = k does
not have common (non-zero) elements with Bd−1(0) satisfies

Pr[V ∩Bd−1(0) = {0}] ≥
(

1− 1

2n−k

)|Bd−1(0)|−1

≥ 1− |Bd−1(0)| − 1

2n−k

≥ 1− |Bd−1(0)|
2n−k

.

The statement of the theorem is implied from the following lemma.

Lemma 3. Let t ≤ n
2

be a positive integer. Then,

|Bt(0)| ≤ 2n·h2
(
t
n

)
.

Proof. Note that one has

|Bt(0)| =
(
n

0

)
+ · · ·+

(
n

t

)
,

and h2(x) = −x log2(x) − (1 − x) log2(1 − x) for 0 < x < 1. Thus, the inequality
is equivalent to (

n

0

)
+ · · ·+

(
n

t

)
≤ nn

tt · (n− t)n−t
.

Since t ≤ n
2
, so for all 0 ≤ i ≤ t, we have

tt · (n− t)n−t ≤ ti · (n− t)n−i.

Hence,

tt · (n− t)n−t ·
{(

n

0

)
+ · · ·+

(
n

t

)}
≤

t∑
i=0

(
n

i

)
ti · (n− t)n−i.

The sum on the right-hand side is obviously less than nn.
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The above proposition first appeared in [KKS97] without proof. Here, it is
supplied with a proof. The next proposition is a direct corollary.

Proposition 3.2. Let C = [n, k] be a random binary code in systematic form and
0 < t1 ≤ n

2
< t2 ≤ n. Then the probability that all codewords of C lie in the interval[

t1, t2
]

is at least

1− 2−(n−k)+n·h2
(
t1−1
n

)
− 2−(n−k)+n·h2

(
n−t2−1

n

)
.

Proof. In the proof, V is always understood to be a randomly chosen subspace of
Fn2 of dimension k. For n

2
< t ≤ n, let 1 = (1, 1, . . . , 1) and

Bn−t(1) = {x ∈ Fn2 | d(x,1) ≤ n− t} .

Obviously, we have
Bn−t(1) = {x ∈ Fn2 | w(x) ≥ t} .

By Lemma 3, we have

|Bn−t(1)| ≤ 2n·h2(
n−t
n ).

Note that the event V ∩ Bn−t(1) = ∅ is equivalent to V ⊆ Bt−1(0). By letting
t = t2 + 1 and

T = Bt1(0) ∪Bn−t2−1(1) \ {0},
we see that the event V ⊆ (Bt2(0) \Bt1(0))∪ {0} is equivalent to V ∩ T = ∅. By
applying Equation 3.1 and observe that

|T | ≤ 2n·h2(
t1−1
n ) + 2n·h2(

n−t2−1
n ) − 1,

one gets

Pr[V ∩ T = ∅] ≥
(

1− 1

2n−k

)2
n·h2( t1−1

n )+2
n·h2(n−t2−1

n )−1

≥
(

1− 1

2n−k

)2
n·h2( t1−1

n )

·
(

1− 1

2n−k

)2
n·h2(n−t2−1

n )

≥
(

1− 2−(n−k)+n·h2( t1−1
n )
)(

1− 2−(n−k)+n·h2(n−t2−1
n )

)
≥ 1− 2−(n−k)+n·h2( t1−1

n ) − 2−(n−k)+n·h2(n−t2−1
n ).

Therefore,

Pr[V ⊆ (Bt2(0) \Bt1(0)) ∪ {0}] ≥ 1− 2−(n−k)+n·h2( t1−1
n ) − 2−(n−k)+n·h2(n−t2−1

n ).

The proposition is proven.



45 3.3. The Transformation

As mentioned in the introduction, the original KKS schemes with its proposed
parameters (and some other variants) were efficiently attacked by Otmani and
Tillich in [OT11]. However, as already pointed out in [OT11], this attack is of
exponential nature and can be avoided if the parameters are chosen carefully. We
refer to Section 3.5 for such a selection. Therefore, we make use of the following
assumption.

Assumption 1 (KKS assumption). There is some region of parameters such that
the above scheme is one-time EUF-CMA.

3.3.2 A Chameleon Hash Function

In this section, we construct a chameleon hash function in the relaxed sense using
the KKS assumption. First, define two types of sets as

Sd
def
= { s ∈ FNq | ‖s‖ = d },

S[a,b]
def
= { s ∈ FNq | a ≤ ‖s‖ ≤ b }.

Now, we consider the function f(ppk, ·, ·) : Fkq × St −→ FN−Kq defined as

f(ppk,x, s)
def
= F · xT + H · sT ,

where ppk = (F,H) comes from a KKS signature scheme, x ∈ Fkq random, and
s ∈ St, where t is a positive integer which is defined later. On input a pair
(x1, s1) ∈ Fkq × St and a message x2 6= x1 ∈ Fkq , the one who possesses J,G (i.e.,
the trapdoor) can find an s2 ∈ S[t−t2,t+t2], with assumption that t ≥ t2, such that
f(ppk,x1, s1) = f(ppk,x2, s2) as follows:

1. Compute vT = xT1 − xT2 ∈ Fkq .

2. Solve the equation F · vT = H · sT for s ∈ S[t1,t2] (using the signing process
of the KKS scheme and set s to be the signature corresponding to v).

3. Define s2 = s + s1 ∈ FNq . It can be seen that ‖s2‖ ≤ ‖s‖+ ‖s1‖ ≤ t2 + t, and
‖s2‖ ≥ t− t2.

It is clear that

F · xT2 + H · sT2 = F · xT2 + H · (s + s1)T

= F · (−vT + xT1 ) + H · sT + H · sT1
= F · xT1 + H · sT1 .
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A collision is the two pairs (x1, s1) 6= (x2, s2) with x1,x2 ∈ Fkq , s1 ∈ St, and s2 ∈
S[t−t2,t+t2]. For the uniformity, given x1,x2 ∈ Fkq , the uniform property requires
that when s1 ← St and s2 ← S[t−t2,t+t2], the induced probability distributions are
computationally indistinguishable, i.e.,{

f(ppk,x1, s1) | s1 ← St
} c≡

{
f(ppk,x2, s2) | s2 ← S[t−t2,t+t2]

}
.

We claim that the function f is a chameleon hash function exactly in this sense.

Proposition 3.3. Let N,K, t, t1, t2, λ be positive integers such that t1 ≤ t2 ≤ t
and

N −K −N · h2

(
4t+ 2t2
N

)
> λ.

Assume that the DSD(N,K, t) and the extDSD(N,K, t − t2, t + t2) problems are
hard, and the KKS signature scheme for t1, t2,F,H is one-time secure with ad-
ditional property that each message has unique signature, then f is a chameleon
hash function.

Proof. We need to show that the function f defined as above satisfies the three
properties of a chameleon hash function.

Collision resistance: This property is guaranteed by the KKS assumption. If
an adversary can break the KKS assumption, then he can find a collision as above.

Now, assume that there exists an adversary A who, given (F,H), could find
two pairs (x1, s1) ∈ Fkq×St and (x2, s2) ∈ Fkq×S[t−t2,t+t2], x1 6= x2 with probability
ε such that

F · xT1 + H · sT1 = F · xT2 + H · sT2 . (3.2)

We construct an algorithm F that breaks the KKS signature scheme with probabil-
ity ε. After receiving the pair of matrices (F,H) from the KKS scheme, algorithm
F proceeds as follows:

1. Send (F,H) to A.

2. On receiving two pairs (x1, s1), (x2, s2) from A, compute σ = s1 − s2.

3. Output (x2−x1, σ) as a pair of forged message-signature for the KKS scheme.

We show that (x2 − x1, σ) is a legitimate pair of message-signature for the KKS
scheme, i.e., σ ∈ S[t1,t2]. Let v = x2 − x1 be regarded as known and consider the
following equation in the unknown s

F · vT = H · sT for 0 ≤ ‖s‖ ≤ 2t+ t2. (3.3)
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Since s1 ∈ St and s2 ∈ S[t−t2,t+t2] so

‖s1 − s2‖ ≥ 0,

‖s1 − s2‖ ≤ t+ (t+ t2) = 2t+ t2.

Thus σ is a solution of Equation 3.3. From Proposition 3.1, the code defined by
H has minimum distance greater than 2(2t+ t2) with probability at least

1− 2−N+K+N ·h2
(

4t+2t2
N

)
≥ 1− 2−λ.

As a consequence, Equation 3.3 has unique solution with probability at least
1 − 2−λ. On the other hand, we have already known that this equation has a
solution s ∈ S[t1,t2], which can be found by using the trapdoor on the pair (x1, s1)
and x2. From these arguments, we deduce that

σ = s1 − s2 ∈ S[t1,t2].

Therefore, (x2 − x1, σ) is a legitimate message-signature of the KKS scheme.
Trapdoor collision: One who has the trapdoor, i.e., the pair (G, J), can find

a collision as above.
Uniformity: Define

D1 =
{
f(ppk,x1, s1) | s1 ← St

}
,

D2 =
{
f(ppk,x2, s2) | s2 ← S[t−t2,t+t2]

}
.

Using hybrid arguments, we show that D1 and D2 are computationally indistin-
guishable as follows.

1. For i = 1, 2, let Ui be the induced distribution of f(ppk,xi, s) over FN−Kq ,
where s← FNq . Since H is of full rank, thus for a random vector v ∈ FN−Kq ,

Pr
s←FNq

[
f(ppk,x1, s) = vT

]
= Pr

s←FNq

[
H · sT = v − F · xT1

]
=
qN−K

qN

= q−K .

The same equality holds true when x1 is replaced by x2. Therefore, we have
that U1 ≡ U2. (The parameters are chosen such that K = N −K, therefore,
U1 and U2 are identical with the uniform distribution over FN−Kq .)

2. By the hardness of DSD(N,K, t) problem, D1 and U1 are computationally
indistinguishable.
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3. By the hardness of extDSD(N,K, t − t2, t + t2) problem, D2 and U2 are
computationally indistinguishable.

Consequently, we conclude that D1 and D2 are computationally indistinguishable.

3.4 A Signature Scheme using f

In this section, we describe a signature scheme constructed from the function f.
We follow the methodology from [BKKP15]: first, we show how f can be used to
build a one-time two-tier signature scheme, then in a black-box manner we move
from the one-time two-tier construction to a non-adaptive signature scheme, and
with an extra use of f, we can obtain a regular signature scheme in the standard
model.

3.4.1 A One-time Two-tier Scheme

Our first step is to establish a one-time two-tier signature scheme, called TTSigf .
The descriptions of f, St, and S[t−t2,t+t2] are as in Section 3.3. The message space
is Fkq .

• PriGen(1λ): Use the setting procedure of the KKS scheme. The primary
public key is ppk = (H,F) and the primary secret key is psk = (G, J).

• SecGen(ppk, psk): Choose ŝ ← St, and compute h = CHash(ppk, x̂, ŝ) for
some arbitrary public x̂ ∈ Fkq . The secondary public key is spk = h, and the
secondary secret key is ssk = ŝ.

• TTSign(psk, ssk,x): The signer uses trapdoor (G, J) to compute a collision
as s = Coll(psk, x̂, ŝ,x). The signature on x is s ∈ S[t−t2,t+t2].

• TTVerify(ppk, spk,x, s): The verifier checks the condition CHash(ppk,x, s) =
h.

The security of the scheme is stated in the following theorem.

Theorem 3.1. If f is a (t, ε)-collision resistant chameleon hash function, then
for any positive integer q, TTSigf is a (t′, q, 1, ε′)-TT-EUF-NCMA signature, where
ε′ = ε, and t′ = t−O(q).

Proof. Let F be a probabilistic polynomial-time adversary that (t′, q, 1, ε′)-breaks
the TT-EUF-NCMA security of TTSigf . Then we construct an adversary B that
(t, ε)-breaks the collision resistance of f . Formally, B is given the challenge
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chameleon hash key chk and asked to come up with two pairs (x, s), (x′, s′) such
that x 6= x′ and CHash(chk,x, s) = CHash(chk,x′, s′).

Simulation. B simulates PriGen(1λ) as follows: it sets ppk = chk and returns
ppk to F . Now, B does not have the chameleon hash trapdoor and psk is empty.
Upon receiving the i-th message xi from F , B simulates NTTSign(xi) as follows: it
picks a random si ← S[t−t2,t+t2] and computes hi = CHash(ppk,xi, si); defines the
secondary public key spki = hi and returns spki and the signature si. The simu-
lation is computationally indistinguishable from the real execution. Firstly, chk is
from the chameleon hash challenge and, thus, the simulation of PriGen is identi-
cal to the definition. Secondly, in the original definition spki = CHash(ppk,0, ri),
where ri ← St and spki = CHash(ppk,xi, si) in the simulation. These two distribu-
tions are computationally indistinguishable based on the uniformity of f . Thirdly,
it is easy to see the simulated signatures are well-formed.

Extracting collision. Once F outputs a forgery (x∗, s∗, i∗), B aborts if
spki∗ is undefined. Otherwise, B checks if

CHash(ppk,xi∗ , si∗) = spki∗ = CHash(ppk,x∗, s∗).

If that is the case, then B returns the collision
(
(x∗, s∗), (xi∗ , si∗)

)
. By the un-

forgeability of TTSigf , we have x∗ 6= xi∗ . Thus, if F outputs a successful forgery,
then B finds a collision for the chameleon hash with probability ε = ε′.

3.4.2 A Non-adaptive Signature Scheme

By adapting the generic constructions from [BKKP15] for the above one-time
two-tier scheme, we immediately obtain a stateful scheme BinTree[TTSign] =
(Gen, Sign,Verify) using a binary tree of height ` where we assume the message
space to be of size 2`.

The signer will implicitly hold a binary tree of depth `. Every node v ∈ {0, 1}≤`
has a label Lv which is a secondary public key of the two-tier scheme. All nodes
can be computed “on the fly.” Each leaf is used to sign a single message. When
signing message m, the signer takes the leftmost unused leaf v` ∈ {0, 1}` in the
tree and generates the label Lv` ← SecGen(ppk, psk). Define Lv`+1

= m. Then the
path from the root v0 to v` is computed. For each undefined node vi on the path,
the signer assigns label Lvi ← SecGen(ppk, psk). After that, every node on the
path is signed using the label of its parent.

When signing the nodes on the path, the signer takes the node vi in the top-
down manner and signs both children of vi under Lvi ,

σi+1 ← Sign(psk, sskvi ,Childl||Childr),
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Figure 3.1: Nodes in black are used in the i-th Signature with BinTree[TTSign].

where sskvi is the secondary secret key associated with node vi, and Childl and
Childr are the left and right children of node vi, respectively. The signer outputs
the path and the two-tier signatures on the path as the signature of m.

3.4.3 Wrapping-up

To obtain a signature scheme, one can now use the classical transformation from
[KR00] using an extra chameleon hash, so another use of the function f on the
leaves. In other words, we pick a fresh s ← St, set Lv`+1

= f(ppk,m, s), proceed
as before to build the tree (using Lv`+1

as the target message), and output both
s and this non-adaptive signature. The resulting signature is stateful. Depending
on the applications, one might prefer to move to a stateless scheme, once again,
there exist generic techniques, like the one presented by Goldreich in [Gol87],
where basically every randomness is generated through a pseudo-random function.
However, as here, we need to keep only the ` active nodes, there is not a huge
blow up in memory for the signer, so it is not really worth the trade-off.

3.5 Parameters

We have chosen the parameters of the scheme such that the best practical informa-
tion set decoding algorithm has complexity at least 2λ for solving DSD(N,K, t),
extDSD(N,K, t− t2, t+ t2) or breaking the KKS assumption.
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To obtain the security level λ = 128, we chose

N = 48948, K = N/2, n = 892, k = 43, t1 = 219, t2 = 674, t = 893, q = 2.

By Proposition 3.2, the probability that signatures (of the KKS scheme) do not
lies in the interval [t1, t2] is at most 2−133.4.

The size of pk and the signature are given as follows:

� The public key is pk = (ppk, spkε), where ppk = (F,H), and spkε = SecGen(ppk, psk).
The size of pk is dominated by the size of ppk = (H,F). Note that the ma-
trix H is of size (N −K) ×N, the matrix F = HJ ·GT and thus is of size
(N −K)× k, hence the size of ppk is (N + k) · (N −K).

� If one wants to be able to sign 2` times, then the signature is of the form

σ =
(
vh, (Lv0 , σ0), . . . , (Lv` , σ`), (Lv`+1

, s)
)
,

where each Lvi , 0 ≤ i ≤ ` is an output of SecGen(ppk, psk) and thus is
a vector in FN−K2 , and hence of size about N − K; the size of Lv`+1

=
f(ppk,m, s) ∈ FN−Kq is N − K. Each σ∗, s is a chameleon hash opening so
of size N ; vh is the node in used and of size `. Hence, the size of σ is
`+ (2N −K) · (`+ 1) +N +N −K = `+ (`+ 2) · (2N −K) = O(`N).

Table 3.2 provides some examples of parameters for a security parameter λ = 128.

` Size of public key |pk| (bytes) Size of signatures |σ| (bytes)
4 227.2 56080
8 227.2 93466
12 227.2 130853

Table 3.2: Examples of parameters for the tree-based scheme.

3.6 Some Observations

The key size and signature size of the scheme are quite large. This is because
those of the underlying KKS scheme are comparatively large also.

There might be two possible ways to overcome this disadvantage that one can
think of.
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(i) As mentioned in [OT11], when choosing parameters, the ratio R = k
N

should
be significantly greater than r = k

n
. In this work, R ≈ 10.37r, and we did not

make the attempt to optimize this ratio. Thus, one could try to decrease
this ratio and find the best trade-off between parameters and security.

(ii) Another direction could be carrying out the entire construction to rank met-
ric. It is often the case that with the same scheme, rank metric provides
smaller size of objects than those in the Hamming metric.

We do not dive in detail here and leave these speculations for the future works.





Chapter 4

Group Signatures in the Rank
Metric

The second contribution is a code-based group signature scheme in the rank metric
context. Following the same track as that of Ezerman et al. [ELL+15], still, our
scheme differs from the previous by giving another solution to the same problem.
The solution of [ELL+15] makes use of the special structure of F2, i.e., this field
has only two elements 0 and 1, and thus would lose its elegant or even become
inefficient when being applied to other fields. Because of this limitation, this
method clearly could not be used to derive the rank version. On the other hand,
our solution does not rely on any specific field structure like the previous solution.
The main purpose of this solution is for the construction of a scheme in the rank
metric; however, it can also be feasible for the Hamming case. In general, the
parameters of our scheme are quite in the same level as those of [ELL+15], and in
some cases ours are better.

This is a joint work with Olivier Blazy and Philippe Gaborit and ap-
peared in CBCrypto 2021.

4.1 Introduction

Designing group signature is one of the most intriguing problem in cryptography.
The ultimate goal is schemes which satisfy the fundamental requirements of a
group signature scheme, and meet practicable purposes. Especially that the era of
quantum computing is coming, which would make number-theoretic based group
signature schemes insecure, the search for post-quantum schemes has become ac-
tive than ever. Much of proposals are published in both lattice-based assumptions
and code-based assumptions.

On the lattice-based side, there have schemes such as [LLNW14, NZZ15]. The-

54
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oretically, these schemes provide efficient public key size and signature size in the
asymptotic sense. (The size of signature is only linear in logarithm of the number
of users.) However, as pointed out in [ELL+15], when being instantiated with
practical parameters, they suffer from large key and signature sizes.

On the code-based side, there have constructions on both static and dynamic
group, e.g., [ABCG16a, ABCG16b, ELL+15]. The scheme presented in [ABCG16b]
used the RankSign primitive. However, RankSign signature scheme was broken
in [DT18]. Thus, actually, there is no group signature scheme based on rank met-
ric. The first static code-based group signature scheme in Hamming metric was
designed by Ezerman et al. [ELL+15]. This scheme provides public key and
signature sizes being linear in the number of users which really is a weak point
compared to those of lattice-based. Despite this fact, at the same level of security
(λ = 80), their parameters are remarkably smaller than those of lattice schemes.
Take a closer look, their construction uses 3 cryptographic layers:

1. The first layer is a signature scheme derived from Stern’s identification
protocol through Fiat-Shamir transform.

2. The second layer is the randomized McEliece encryption scheme which is
used to encrypt identity of the signer.

3. The third layer is a zero-knowledge (ZK) protocol that links the two above
layers together. It allows one to show that a given signature is generated by
a certain user in the group who honestly encrypts his identity information.

It was emphasized also in their paper that “Constructing such protocol is quite
challenging.”

Our contribution. In this work, we revisit that challenge and show how to
adapt it in the rank context. Since [ABCG16b] is broken, our scheme becomes
the first rank metric group signature scheme, which, moreover, relies on generic
problems. When being instantiated with concrete parameters at the same security
level λ = 128, the size of signatures of our scheme are smaller than those of
[ELL+15]; and when the values of ` are not too large, e.g., ` = 4, 8, 12, the size
of public keys are also less than those of [ELL+15]. Our parameters are set as
in Section 4.5. For the schemes of [ELL+15] to attain security level 128, we take
(n, k, t) = (212, 3604, 41) as in [FS09], and for the syndrome decoding problem
(Problem 1), we try to set (m, r, w) = (4097, 721, 162) so that it also satisfies
Lemma 1 in [ELL+15].

Overview of Our Techniques. Let k, `,m,m0, n, n0, r0, wr, ws be positive
integers. We consider a group of N−1 = q`−1 users, where q is a power of a prime
number. (The reason for this way of denoting will be clear in the sequel.) Each
user is indexed by an integer j ∈ {1, . . . , N − 1} and has a signing key sj, which
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`
PK size Signature size

Our scheme [ELL+15] Our scheme [ELL+15]
4 16.71 KB 2.22 MB 2.94 MB 3.05 MB
8 77.68 KB 2.24 MB 2.95 MB 3.05 MB
12 1.05 MB 2.58 MB 3.06 MB 3.12 MB
16 16.57 MB 8.12 MB 4.74 MB 4.85 MB

Table 4.1: Comparison with [ELL+15].

is randomly chosen from Sn0,m0
ws , i.e., the set of vectors of rank wight ws in Fn0

qm0 .

A part of the public key contains a matrix H ∈ Fr0×n0
qm0 , which is the parity matrix

in the systematic form of an ideal code, and N − 1 syndromes y1, . . . ,yN−1 ∈ Fr0qm
such that H · sTj = yTj . Our three layers are as follows.

1. The signature layer. Let A =
[
yT1 | · · · |yTN−1

]
∈ Fr0×(N−1)

qm0 , and x = δN−1
j

- the vector of dimension N − 1 with 1 at the jth position and 0 elsewhere.
In this layer, the user uses Stern’s framework in the rank context to prove
that he possesses a pair (s,x) satisfying

H · sT −A · xT = 0. (4.1)

Then, the protocol is transformed into a Fiat-Shamir signature.

2. The encryption layer. We use RQC encryption scheme to encrypt the
identity information of the users. Each index j ∈ {1, . . . , N − 1} is mapped
to a vector in Fkqm , the message space of an RQC scheme, by function I2V(·).
The ciphertext is of the form c = (c1, c2) such that{

c1 = r1 + h · r2,

c2 = r3 + s · r2 + I2V(j) ·G,
(4.2)

where h, s ∈ Fnqm is the public key, G ∈ Fkqm is a generator matrix of a public
code, and ri ∈ Sn,mwr for i = 1, 2, 3.

3. The third layer. This ingredient is a ZK protocol that allows the user to
show that the vector x = δN−1

j used in the first layer and the hidden plaintext
I2V(j) used in the second layer both point to the same j ∈ {1, . . . , N − 1}.
Our solution to this problem is as follows. Let f1 : {1, . . . , N − 1} → F`q be
the function that maps each element of {1, . . . , N −1} to a different element
of F`q, f2 : F`q → Fkqm be a function that map each vector in F`q to a vector

in Fkqm ; their inverses are denoted by f−1
1 , f−1

2 , respectively. The map I2V
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is defined as I2V(j) = f2 ◦ f1(j). For every v ∈ F`q \ {0}, we construct two

permutations Pv : FN−1
q → FN−1

q and P ′v : S → S, where S =
{
I2V(j) | j ∈

{1, . . . , N − 1}
}
∪ {0}, such that for any j ∈ {1, . . . , N − 1} we have

x = δN−1
j ⇐⇒Pv(x) = δN−1

f−1
1

(
f1(j)·v

),
m = I2V(j)⇐⇒P ′v(m) = I2V

(
f−1

1

(
f1(j) · v

))
.

In the protocol, the user randomly picks a non zero vector v ∈ F`q \ {0}
and sends v′ = f1(j) · v. The verifier, seeing that Pv(x) = δN−1

f−1
1 (v′)

and

P ′v(m) = I2V
(
f−1

1 (v′)
)
, should be convinced that x and m link to the same

j ∈ {1, . . . , N − 1}, yet the value of j is completely hidden. Here, vector
v also acts as a one-time pad as in the case of addition, i.e., the operation
⊕/ + . We remark that our method can be applied very well in the case of
[ELL+15]. Note that the technique used in [ELL+15] heavily relies on the
particular value q = 2. When the binary field is replaced by any finite field,
this technique would lose its efficiency.

With this technique embedded in Stern’s framework, the user can convince the
verifier that he possesses a tuple (j, s,x, r1, r2, r3) satisfying 4.1 and 4.2. By re-
peating this protocol many times, and making non-interactive, we get a ZK proof
of knowledge Π. The final signature is of the form (c,Π). In the random oracle
model, the anonymity of the scheme relies on the zero-knowledge of Π and the
CPA-security of the RQC; its traceability relies on the hardness of Rank Syndrome
Decoding problem.

4.2 Preliminaries

4.2.1 Notations

We use bold low-case letters to denote vectors and bold capital letters for matrices.
The transpose of a vector x is denoted by xT . The same notation is used for
matrices. The rank weight of a vector x is denoted by ‖x‖. The set of invertible
matrices of size m over Fq is denoted by GL(m, q). For a positive integer N > 1,

[N − 1]
def
= {1, . . . , N − 1}. The sphere of radius r centered at 0 in Fnqm is denoted

by Sn,mr . By writing x← X, we mean that x is drawn according to the distribution
X, if X is a distribution; or drawn uniformly at random from X when X is a set;
or output of the algorithm X, if X is an algorithm.
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4.2.2 Background on Code-Based Cryptography

The basic notions on rank metric are already provided in Section 2.2. Now, let
f(X) ∈ Fqm [X] be a polynomial of degree n and Fqm [X]/〈f〉 = Rf . Consider the
following map:

φ : Fnqm −→ Rf

(a0, . . . , an−1) 7−→ a0 + · · ·+ an−1X
n−1.

The inverse map, denoted by φ−1, simply maps a polynomial to the vector formed
by its coefficients. For the sake of simplicity, if a = (a0, . . . , an−1) ∈ Fnqm , we let
φ(a) = a0 + · · ·+ an−1X

n−1 = a(X). For a,b ∈ Fnqm , their product a · b is defined
as

a · b = φ−1
(
a(X) · b(X)

)
.

Clearly, we have a · b = b · a. It is also not hard to see that

a · b = (a0, . . . , an−1) ·

 φ−1
(
b(X)

)
...

φ−1
(
Xn−1b(X)

)
 . (4.3)

Consider the case when f(X) is irreducible over Fqm , then g(X) and f(X) are
coprime for any nonzero g(X) ∈ Rf . Thus, for an arbitrary nonzero g(X) ∈ Rf ,
if we define

g · Rf =
{
g(X) · a(X) mod f | a(X) ∈ Rf

}
,

then we have g · Rf = Rf . From this observation, we deduce that g · Fnqm = Fnqm
(here, g = φ−1(g) 6= 0), that is to say, g together with the multiplication operation
defined above form a permutation over Fnqm . (This permutation fixes 0.) For our
purpose, it is enough to consider m = 1 and f(X) is irreducible over Fq.

The right-most term on the right hand side of Equation 4.3 is usually referred
to as the ideal matrix generated by b(X) with respect to f(X). For ease of notation,
vectors are identical with their corresponding polynomials, i.e., Xkb is understood
to be φ−1

(
Xkb(X)

)
. Thus, the ideal matrix of a vector b with respect to f is

written as

b =


b

X · b
...

Xn−1 · b

 .

In our construction, we will use 2-ideal codes and 3-ideal codes. A 2-ideal code of
length 2n over Fqm is a code whose parity matrix is of the form

H =
[
In | hT

]
, (4.4)
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where h is the ideal matrix of a vector h in Fnqm . Similarly, a 3-ideal code of length
3n over Fqm is a code whose parity matrix is of the form

H =

(
In 0 hT1
0 In hT2

)
. (4.5)

Next, we recall some definitions concerning code-based hardness assumptions re-
lated to this type of codes. These are, in fact, particular cases of Problem 4 and
Problem 5 in which completely random matrices are replaced by ideal matrices.
In the following definitions, ν ∈ {2, 3} and S(n, ν) is the set of all matrices of
the form as in Equation 4.4 or 4.5 corresponding to the case ν = 2 or ν = 3,
respectively.

Definition 4.1 (ν − IRSD Distribution). Let n,w be positive integers, P (X) ∈
Fq[X] be an irreducible polynomial of degree n. The ν − IRSD(n,w) distribution
chooses uniformly at random a matrix H ∈ S(n, ν) together with a vector x ∈ Fνnqm
such that ‖x‖ = w and outputs

(
H,H · xT

)
.

Definition 4.2 (Computational ν− IRSD Problem). Let n,w be positive integers,
P (X) ∈ Fq[X] be an irreducible polynomial of degree n, H ∈ S(n, ν) be a random
matrix, and y ← Fnqm . The computational ν − IRSD(n,w) problem asks to find a
vector x ∈ Fνnqm such that ‖x‖ = w and H · xT = yT .

Definition 4.3 (Decisional ν − IRSD Problem). The decisional ν − IRSD(n,w)
problem asks to decide with non-negligible advantage whether (H,yT ) came from
the ν − IRSD(n,w) distribution or the uniform distribution over S(n, ν)× Fnqm .

The RQC scheme. In the Encryption layer, we make use of the RQC scheme
[ABD+16]. It is as follows.

� RQC.Setup(1λ): Generate parameters m = m(λ), n = n(λ), k = k(λ), wr =
wr(λ), an irreducible polynomial P [X] ∈ Fq[X], which is also irreducible in
Fqm [X]. The plaintext space is Fkqm . Output param = (m,n, k, wr, P ).

� RQC.KeyGen(param): Generate h ← Fnqm ,x,y ← Sn,mwr sharing the same

support, a generator matrix G ∈ Fk×nqm of a public code C. Output pkRQC =
(h, s = x + h · y,G) and skRQC = (x,y).

� RQC.Enc(pkRQC,m): To encrypt a message m ∈ Fkqm , choose r1, r2, r3 ←
Sn,mwr , which belong to the same support. Compute{

c1 = r1 + h · r2,

c2 = s · r2 + r3 + m ·G.
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� RQC.Dec(skRQC, c): Apply the decoding algorithm of the code C to

y · c1 − c2 = x · r2 − y · r1 + r3 + m ·G.

For the sake of convenience, define

H1 =

(
In
0

)
, H2 =

(
hT

sT

)
, H3 =

(
0
In

)
, H4 =

(
0

GT

)
,

then we have
[
H1| · · · |H4

]
· (r1, r2, r3,m)T =

(
c1, c2

)T
.

The RQC scheme is CPA-secure; its security relies on the hardness of the de-
cisional 2 − IRSD(n,wr) and 3 − IRSD(n,wr) problems as has been proven in
[ABD+16]. (Although the proof therein is applied for quasi-cyclic codes, a proof
for ideal codes can be derived straightforwardly.)

4.2.3 Group Signatures

In this section, we recall some definitions of group signatures following [BMW03]
on the case of static groups.

Definition 4.4. A group signature scheme GS =
(
KeyGen, Sign,Verify,Open

)
con-

tains four polynomial-time algorithms:

1. KeyGen takes as input (1λ, 1N), where λ is the security parameter and N is
a positive integer which is the number of group users, and returns a tuple
(gpk, gmsk, gsk), where gpk is the group public key, gmsk is the group man-
ager’s secret key, and gsk = {gsk[j]}j∈[N−1] with gsk[j] being the secret key
of the group user of index j.

2. Sign takes as input a message M, a secret key gsk[j] in the set gsk and returns
a group signature Σ on M.

3. Verify takes as input the group public key gpk, a message M, a signature Σ
on M, and returns either 1 (Accept) or 0 (Reject).

4. Open takes as input the group manager’s secret key gmsk, a signature M,
a signature Σ on M, and returns an identity j or the symbol ⊥ to indicate
failure.

Correctness: The correctness of a group signature scheme requires that for
all positive integers λ,N, all output (gpk, gmsk, gsk) of KeyGen, all identity j, and
all message M ∈ {0, 1}∗,{

Verify(gpk,M, Sign(gsk[j],M)) = 1,

Open(gmsk,M, Sign(gsk[j],M)) = j.
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Security Notions: A secure group signature scheme must satisfy two security
requirements:

1. Traceability requires that all signatures can be traced back to the identity
of its signer, even in the case there is a collusion between the group users.

2. Anonymity requires that signatures generated by two users are computa-
tionally indistinguishable to an adversary who knows all the secret keys.

We follow [ELL+15] by stating the security definitions.

Definition 4.5. A group signature scheme GS =
(
KeyGen, Sign,Verify,Open

)
is

CPA-anonymous if for all polynomial N(·) (in λ) and any probabilistic polynomial-
time adversary A, the advantage of A in the following experiment is negligible in
λ:

1. Run (gpk, gmsk, gsk)← KeyGen(1λ, 1N) and send (gpk, gsk) to A.

2. A outputs two identities j0, j1 ∈ [N − 1] together with a message M. Choose
a random bit b and give Sign(gsk[jb],M) to A. Then A outputs a bit b′.

A succeeds if b′ = b. The advantage of A is defined to equal
∣∣Pr[A succeeds]− 1

2

∣∣.
Definition 4.6. A group signature GS =

(
KeyGen, Sign,Verify,Open

)
is traceable

if for all polynomial N(·) and any adversary A, the success probability of A in the
following experiment is negligible in λ:

1. Run (gpk, gmsk, gsk)← KeyGen(1λ, 1N) and send (gpk, gsk) to A.

2. A may query the following oracles adaptively and in any order:

– An OCorrupt oracle that on input j ∈ [N − 1], outputs gsk[j].

– An OSign oracle that on input j and a message M, returns Sign(gsk[j],M).

Let CU be the set of identities queried to OCorrupt.

3. A outputs a message M∗ and a signature Σ∗.

A succeeds if (i)Verify(gpk,M∗,Σ∗) = 1 and (ii)Sign(gsk[j],M∗) was never queried
for j /∈ CU, and yet (iii)Open(gmsk,M∗,Σ∗) /∈ CU.
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4.2.4 Transform of Index

Let N − 1 = q` − 1 be the number of users, B = {α1, . . . , αm} be a basis for Fqm
over Fq, p(X) be an irreducible polynomial of degree ` over Fq, and B ∈ F`×mkq be
a generator matrix of the systematic form of some q-ary linear code C. We define
a map I2V : [N − 1] −→ Fkqm as follows.

1. f1 : [N − 1] −→ F`q is any public injective map such that f1(j) 6= 0. For
example, let α be a primitive element of Fq, i.e., Fq = {0, α, . . . , αq−1}, and
f : [q − 1] ∪ {0} → Fq the map such that f(0) = 0 and f(i) = αi for i =
1, . . . , q−1, then f1(j) =

(
f(x0), . . . , f(x`−1)

)
, where j = x0 + · · ·+x`−1q

`−1

is the representation of j in the base q.

2. f2 : F`q −→ Fkqm defined as follows: for a vector (a0, . . . , a`−1) ∈ F`q, compute

(b0, . . . , bmk−1) = (a0, . . . , a`−1) ·B

and form the matrix

A =

 b0 · · · bm−1

...
...

...
b(k−1)m · · · bmk−1

 .

Then

f2(a0, . . . , a`−1) := (α1, . . . , αm) ·AT .

3. Define I2V(j) := f2 ◦ f1(j), where ◦ denotes the composition of mapping.

Let S denote the image of I2V, then S is a subset of cardinality N of Fkqm . Con-
versely, for each vector m = (m1, . . . ,mk) ∈ S, there is a unique j ∈ [N − 1]∪{0}
such that I2V(j) = m. (If m = 0, then j is set to be equal to 0.) The inverse map
is denoted by V2I := f−1

1 ◦ f−1
2 .

4.2.5 Permutations

Let v ∈ F`q \ {0} be a random vector. We define two permutations:

� Pv : FN−1
q −→ FN−1

q transforms x = (x1, . . . , xN−1) to x′ = (x′1, . . . , x
′
N−1),

where xi = x′
f−1
1

(
f1(i)·v

). Here, the multiplication is defined with respect to

p(X). Therefore,

x = δj ⇐⇒ Pv(x) = δN−1

f−1
1

(
f1(j)·v

).
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� P ′v : S −→ S as follows. For a vector z ∈ S, let z1 = f−1
2 (z) ∈ F`q. Let

z2 = v · z1 and define P ′v(z) = f2(z2). Since f−1
2

(
I2V(j)

)
= f1(j), so clearly,

m = I2V(j)⇐⇒ P ′v(m) = f2

(
f1(j) · v

)
.

Our construction also makes use of the operation “ ? ” as defined in Section 2.5.4.

4.3 The Underlying Interactive Protocol

4.3.1 The Interactive Scheme

This section is devoted to our zero-knowledge argument of knowledge. Let k, `,m,
m0, n, n0, r0, wr, ws be positive integers. The number of group users is N−1 = q`−
1. The common input contains matrices H ∈ Fr0×n0

qm0 ,H1, . . . ,H4, N−1 syndromes
y1, . . . ,yN−1 ∈ Fr0qm0 , a ciphertext c = (c1, c2) ∈ F2n

qm , a basis B = {α1, . . . , αm}
of Fqm over Fq, a generator matrix B ∈ F`×mkq of a code C, and an irreducible
polynomial p(X) of degree ` over Fq[X], the two maps f1 and f2 described as
above. The output of the protocol is that prover P simultaneously convinces
verifier V in zero-knowledge that P possesses a vector s ∈ Sn0,m0

ws corresponding
to a certain syndrome yj ∈ {y1, . . . ,yN−1} with hidden index j, and that c is a
correct encryption of m = I2V(j) using the RQC scheme described by H1, . . . ,H4.
More precisely, the secret witness of P is a tuple (j, s, r1, r2, r3) ∈ [N −1]×Fn0

qm0 ×
Fnqm × Fnqm × Fnqm such that{

H · sT = yT ∧ s ∈ Sn0,m0
ws ,

H̃ ·
(
r1, r2, r3, I2V(j)

)T
= cT ∧ ri ∈ Sn,mwr , i = 1, 2, 3,

where H̃ = [H1| · · · |H4]. Let A =
[
yT1 | · · · |yTN−1

]
∈ Fr0×(N−1)

qm0 ,m = I2V(j), and

x = δN−1
j be the index representation vector of j. Then, the above equations can

be expressed as{
H · sT −A · xT = 0 ∧ x = δN−1

j ∧ s ∈ Sn0,m0
ws ,

H̃ ·
(
r1, r2, r3,m

)T
= cT ∧ m = I2V(j) ∧ ri ∈ Sn,mwr , i = 1, 2, 3.

A ZKAoK for the above relations is obtained as follows:

� To prove that x = δN−1
j and m = I2V(j) without revealing j, prover P

randomly picks a vector v ∈ F`q \ {0}, sends v′ = f1(j) · v and shows that

Pv(x) = δN−1
j′ and P ′v(m) = I2V(j′),

where j′ = f−1
1 (v′).
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� To prove in zero-knowledge that s ∈ Sn0,m0
ws , prover P chooses random ma-

trices Q0 ← GL(m0, q), P0 ← GL(n0, q), and shows that Q0 ? sP0 ∈ Sn0,m0
ws .

To prove in zero-knowledge that ri ∈ Sn,mwr and that they share the same
support, P samples randomly Q ← GL(m, q),Pi ← GL(n, q) and shows
that Q ? riPi ∈ Sn,mwr having the same support, for i = 1, 2, 3. We refer the
reader to [BBB+21] for more details.

� To prove the linear equations in ZK, P samples (vs,vx,v1,v2,v3,vm) ran-
domly and shows that{

H · (s + vs)
T −A · (x + vx)T = H · vTs −A · vTx ,

H̃ ·
(
r1 + v1, r2 + v2, r3 + v3,m + vm

)T − cT = H̃ ·
(
v1,v2,v3,vm

)T
.

Finally, let h : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function, the protocol
is described as follows.

1. P samples
Q0 ← GL(m0, q),Q← GL(m, q); P1,P2,P3 ← GL(n, q); P0 ← GL(n0, q);

v1,v2,v3 ← Fnqm ,vm ← S; vx ← FN−1
q ,vs ← Fn0

qm0 ,v← F`q;
ρ1, ρ2, ρ3 ← 1λ,

and sends the commitment CMT = (c1, c2, c3), where
c1 = h

(
v,Q,Q0,P0, . . . ,P3,H · vTs −A · vTx , H̃ ·

(
v1,v2,v3,vm

)T
, ρ1

)
,

c2 = h
(
Q0 ? vsP0, Pv(vx), P ′v(vm), (Q ? viPi)

3
i=1, ρ2

)
,

c3 = h
(
Q0 ? (s + vs)P0, Pv(x + vx), P ′v(m + vm), (Q ? (ri + vi)Pi)

3
i=1, ρ3

)
.

2. V sends a random challenge Ch ∈ {1, 2, 3} to P .

3. P replies as:

– If Ch = 1, reveal c2 and c3. Let v′ = f1(j) · v.{
v̂s = Q0 ? vsP0,

ŝ = Q0 ? sP0

v̂x = Pv(vx), v̂m = P ′v(vm),

{
v̂i = Q ? viPi,

r̂i = Q ? riPi,

P sends RSP =
(
v′, ŝ, v̂s, v̂x, v̂m, (v̂i)

3
i=1, (r̂i)

3
i=1, ρ2, ρ3

)
to V .

– If Ch = 2, reveal c1 and c3. Let{
v′′ = v,E = Q,E0 = Q0,Fi = Pi, 0 ≤ i ≤ 3,

zs = s + vs, zx = x + vx, zm = m + vm, zi = ri + vi, 1 ≤ i ≤ 3.

P sends RSP =
(
v′′,E,E0, (Fi)

3
i=0, zs, zx, zm, (zi)

3
i=1, ρ1, ρ3

)
to V .
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– If Ch = 3, reveal c1 and c2. Let{
v′′′ = v,U = Q,U0 = Q0,Vi = Pi, 0 ≤ i ≤ 3,

ys = vs,yx = vx,ym = vm,yi = vi, 1 ≤ i ≤ 3.

P sends RSP =
(
v′′′,U,U0, (Vi)

3
i=0,ys,yx,ym, (yi)

3
i=1, ρ1, ρ2

)
to V .

4. V performs the following checks:

– If Ch = 1, let wx = δf−1
1 (v′) ∈ FN−1

q and wm = f2(v′) ∈ Fkqm . Check

that ŝ ∈ Sn0,m0
ws and r̂i ∈ Sn,mwr have the same support, and that{
c2 = h

(
ŝ, v̂x, v̂1, v̂2, v̂3, v̂m, ρ2

)
,

c3 = h
(
ŝ + v̂s, v̂x + wx, v̂m + wm, (r̂i + v̂i)

3
i=1, ρ3

)
.

– If Ch = 2, check that{
c1 = h

(
v′′,E,E0,F0, . . . ,F3,H · zTs −A · zTx , H̃ ·

(
z1, z2, z3, zm

)T − cT , ρ1

)
,

c3 = h
(
E0 ? zsF0, Pv′′(zx), P ′v′′(zm), (E ? ziFi)

3
i=1, ρ3

)
.

– If Ch = 3, check that{
c1 = h

(
v′′′,U,U0,V0, . . . ,V3,H · yTs −A · yTx , H̃ ·

(
y1,y2,y3,ym

)T
, ρ1

)
,

c2 = h
(
U0 ? ysV0, Pv′′′(yx), P ′v′′′(ym), (U ? yiVi)

3
i=1, ρ2

)
.

5. V outputs 1 it all checks are passed; otherwise, it outputs 0.

4.3.2 Analysis

Proposition 4.1. The above interactive protocol has perfect completeness, and
has communication cost bounded by C = (` + N − 1 + m2

0 + m0n0 + n2
0 + m2 +

3mn + 3n2 + km) log q + 5λ. It is a statistical zero-knowledge argument in the
random oracle model.

Communication Cost:

� The commitment CMT has bit-size 3λ.

� For Ch = 1, we have C1 = (`+ 2n0m0 +N − 1 + km+ 6nm) log q + 2λ.

� For Ch = 2 or 3, we have

C2,3 = (`+N − 1 +m2
0 +m0n0 + n2

0 +m2 + 3mn+ 3n2 + km) log q + 2λ.
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The total cost is bounded by

C = (`+N − 1 +m2
0 +m0n0 + n2

0 +m2 + 3mn+ 3n2 + km) log q + 5λ.

Zero-knowledge Property.

Lemma 4. In the random oracle model, there exists an efficient simulator S in-
teracting with a verifier V̂ , such that, given only the public input of the protocol,
S outputs with probability negligibly close to 2

3
a simulated transcript that is sta-

tistically close to the one produced by the honest prover in the real interaction.

Proof. Simulator S, given the public input (H,H1, . . . ,H4,A, c), starts by picking
a random Ch ∈ {1, 2, 3}. Next, we consider 3 cases.

Case 1: Ch = 1, S proceeds as follows:

1. Compute s′ ∈ Fn0
qm0 and x′ ∈ FN−1

q satisfying H · s′T = A · x′T , and m′ ∈
S, r′1, r

′
2, r
′
3 ∈ Fnqm such that H̃ ·

(
r′1, r

′
2, r
′
3,m

′)T = cT .

2. Sample random objects, compute and send a commitment as in the real
scheme. Namely, S samples

Q0 ← GL(m0, q),Q← GL(m, q); P1,P2,P3 ← GL(n, q); P0 ← GL(n0, q);

v1,v2,v3 ← Fnqm ,vm ← S; vx ← FN−1
q ,vs ← Fn0

qm0 ,v← F`q;
ρ1, ρ2, ρ3 ← 1λ,

and sends the commitment CMT = (c′1, c
′
2, c
′
3), where

c1 = h
(
v,Q,Q0,P0, . . . ,P3,H · vTs −A · vTx , H̃ ·

(
v1,v2,v3,vm

)T
, ρ1

)
,

c2 = h
(
Q0 ? vsP0, Pv(vx), P ′v(vm), (Q ? viPi)

3
i=1, ρ2

)
,

c3 = h
(
Q0 ? (s + vs)P0, Pv(x + vx), P ′v(m + vm), (Q ? (ri + vi)Pi)

3
i=1, ρ3

)
.

Receiving a challenge Ch from V̂ , the simulator responds as follows:

� If Ch = 1: Output ⊥, and abort.

� If Ch = 2: Send

RSP =
(
v,Q,Q0,P1,P2,P3, s

′ + vs,x
′ + vx,m

′ + vm, (r
′
i + vi)

3
i=1; ρ1, ρ3

)
.

� If Ch = 3: Send

RSP =
(
v,Q,Q0,P1,P2,P3,vs,vx,vm,v1,v2,v3; ρ1, ρ2

)
.
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Case 2: Ch = 2, S samples
j′ ← [N − 1], s′ ← Sn0,m0

ws , r′1, r
′
2, r
′
3 ∈ Sn,mwr ;

Q0 ← GL(m0, q),Q← GL(m, q); P1,P2,P3 ← GL(n, q); P0 ← GL(n0, q);

v1,v2,v3 ← Fnqm ,vm ← S; vx ← FN−1
q ,vs ← Fn0

qm0 ,v← F`q;
ρ1, ρ2, ρ3 ← 1λ,

and let x′ = δN−1
j′ , and m′ = I2V(j′). S sends the commitment computed as in the

case Ch = 1. After receiving a challenge Ch from V̂ , it responds as follows:

� If Ch =: 1 Send

RSP =
(
I2V(j′)+v,Q0?sP0,Q0?vsP0, Pv(vx), P ′v(vm),Q?viPi,Q?r

′
iPi; ρ2, ρ3

)
,

which contains all i = 1, 2, 3.

� If Ch = 2: Output ⊥, and abort.

� If Ch = 3: Send RSP computed as in the case (Ch = 1,Ch = 3).

Case 3: Ch = 3, the simulator performs the preparation as in the case Ch = 2. It
sends the commitment CMT = (c′1, c

′
2, c
′
3), where c′2 and c′3 are computed as usual,

while

c′1 = h
(
v,Q,Q0,P0, . . . ,P3,H · (s′ + vs)

T −A · (x′ + vx)T , H̃ · zT , ρ1

)
,

where z =
(
r′1 + v1, r

′
2 + v2, r

′
3 + v3,m

′ + vm

)
. Next, after receiving a challenge

Ch, S responds as follows:

� If Ch = 1: Send RSP as in the case (Ch = 2,Ch = 1).

� If Ch = 2: Send RSP as in the case (Ch = 1,Ch = 2).

� If Ch = 3: Output ⊥, and abort.

Since the challenge is a random value from {1, 2, 3}, so the probability that S
outputs ⊥ is 1

3
. In the cases that S does not output ⊥, one can easily verify that

the distribution of its output is identical to that in the real interaction.

Soundness Property.
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Lemma 5. Given the public input of the protocol, a commitment CMT and 3
valid responses RSP1,RSP2,RSP3 to all possible values of the challenge Ch, one
can efficiently construct a knowledge extractor E that outputs a tuple

(j′, s′, r′1, r
′
2, r
′
3) ∈ [N − 1]× Fn0

qm0 × Fnqm × Fnqm × Fnqm

such that {
H · s′T = y′T and s′ ∈ Sn0,m0

ws ,

H̃ ·
(
r′1, r

′
2, r
′
3, I2V(j′)

)T
= cT and r′i ∈ Sn,mwr , i = 1, 2, 3.

Proof. Assume that we have a commitment CMT = (c1, c2, c3) and 3 responses
RSP1 =

(
v′, ŝ, v̂s, v̂x, v̂m, (v̂i)

3
i=1, (r̂i)

3
i=1, ρ2, ρ3

)
,

RSP2 =
(
v′′,E,E0, (Fi)

3
i=0, zs, zx, zm, (zi)

3
i=1, ρ1, ρ3

)
,

RSP3 =
(
v′′′,U,U0, (Vi)

3
i=0,ys,yx,ym, (yi)

3
i=1, ρ1, ρ2

)
that satisfy all the verification conditions with respect to Ch = 1, 2, 3, respectively.
Thus, we have the following relations:

ŝ ∈ Sn0,m0
ws ,wx = δN−1

f−1
1 (v′)

,wm = f2(v
′), r̂i ∈ Sn,mwr ,

c1 = h
(
v′′,E,E0,F0, . . . ,F3,H · zTs −A · zTx , H̃ ·

(
z1, z2, z3, zm

)T − cT , ρ1

)
,

c1 = h
(
v′′′,U,U0,V0, . . . ,V3,H · yTs −A · yTx , H̃ ·

(
y1,y2,y3,ym

)T
, ρ1

)
,

c2 = h
(
ŝ, v̂x, v̂1, v̂2, v̂3, v̂m, ρ2

)
,

c2 = h
(
U0 ? ysV0, Pv′′′(yx), P

′
v′′′(ym), (U ? yiVi)

3
i=1, ρ2

)
,

c3 = h
(
ŝ+ v̂s, v̂x +wx, v̂m +wm, (r̂i + v̂i)

3
i=1, ρ3

)
,

c3 = h
(
E0 ? zsF0, Pv′′(zx), P

′
v′′(zm), (E ? ziFi)

4
i=1, ρ3

)
.

Since h is a collision-resistant hash function, it must be that:

v′′ = v′′′,E = U,E0 = U0,Fi = Vi,

δN−1

f−1
1 (v′)

= wx = Pv′′(zx)− Pv′′′(yx) = Pv′′(zx − yx),

f2(v
′) = wm = P ′v′′(zm)− P ′v′′′(ym) = P ′v′′(zm − ym),

ŝ = E0 ? zsF0 −U0 ? ysV0 = E0 ? (zs − ys)F0 ∈ Sn0,m0
ws ,

r̂i = E ? ziFi −U ? yiVi = E ? (zi − yi)Fi ∈ Sn,mwr ,

H · (zs − ys)
T −A · (zx − yx)

T = 0,

H̃ ·
(
z1 − y1, z2 − y2, z3 − y3, zm − ym

)T
= cT .

Now, let

� j′ = f−1
1 (zx − yx) ∈ [N − 1],
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� s′ = zs − ys ∈ Sn0,m0
ws ,

� r′i = zi − yi ∈ Sn,mwr ,

It is easy to see that they satisfy the lemma.

4.4 Our Code-Based Group Signature Scheme

1. KeyGen(1λ, N − 1): On input a security parameter λ and an expected
number of group users N − 1 = q` − 1, the algorithm first prepares as
follows:

– A primitive element α of Fq to describe the map f1.

– Parametersm = m(λ), n = n(λ), k = k(λ), t = t(λ) for a rank Gabidulin
code [n, k, 2t+ 1] over Fqm . In addition, it chooses an irreducible poly-
nomial F (X) ∈ Fq[X] of degree m to define Fqm as Fq[X]/〈F 〉, and an
irreducible polynomial F0(X) ∈ Fq[X] of degree m0 to define Fqm0 as
Fq[X]/〈F0〉.

– Parameters wr = wr(λ) and an irreducible polynomial P (X) ∈ Fq[X]
of degree n such that P (X) is also irreducible over Fqm .

– Parameters n0 = n0(λ), r0 = r0(λ), ws = ws(λ) for the syndrome de-
coding problem. We choose r0 = 1

2
n0.

– An irreducible polynomial p(X) of degree ` over Fq.
– A generator matrix M ∈ F`×mkq of systematic form of a public linear

code C over Fq.
– Two collision-resistant hash functions h andH used for generating com-

mitments and random challenges, respectively.

Then the algorithm performs the following steps:

1. Run RQC(m,n, k, wr, P (X)) for a key pair
(
pkRQC = (H1, . . . ,H4), skRQC

)
.

2. The matrix H is constructed in the following way: Choose an irre-
ducible polynomial P0(X) ∈ Fq[X] of degree r0 so that it is also ir-
reducible over Fqm0 , a random vector h0 ∈ Fr0qm0 ; then H is the ideal

matrix generated by
(
h0, P0(X)

)
.

3. For each j ∈ [N − 1], choose sj ← Sn0,m0
ws and let yTj = H · sTj , set

A =
[
yT1 | · · · |yTN−1

]
.

4. Set H̃ =
[
H1| · · · |H4

]
and output

gpk = (H, H̃,A, p, P, P0, F, F0,M, α), gmsk = skRQC, gsk = (s1, . . . , sN−1).
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2. Sign(gsk[j],M): To sign a message M ∈ {0, 1}∗ under gpk, the group user
of index j performs the following steps:

– Encrypt the representation vector of j, i.e., the vector I2V(j) ∈ Fkqm ,
using pkRQC.

– Generate an NIZKAoK Π to simultaneously prove the possession of a
vector s ∈ Sn0,m0

ws corresponding to a certain syndrome y ∈ {y1, . . . ,yN−1}
with hidden index j, and that c = (c1, c2) is a correct RQC encryption
of I2V(j). This is done by using the interactive protocol in the above
section with public input (H,H1, . . . ,H4,A, c) and prover’s witness
(j, s, r1, r2, r3) which satisfy{

H · sT = yTj and s ∈ Sn0,m0
ws ,[

H1| · · · |H4

]
·
(
r1, r2, r3, I2V

(
j)
)T

=
(
c1, c2

)T
.

The protocol is repeated κ = ω(log λ) times to achieve negligible sound-
ness error, and then made non-interactive, i.e., we have

Π = (CMT1, . . . ,CMTκ; (Ch1, . . . ,Chκ);RSP1, . . . ,RSPκ),

where(Ch1, . . . ,Chκ) = H(M ;CMT1, . . . ,CMTκ; gpk, c).

– Output the group signature Σ = (c,Π).

3. Verify(gpk,M,Σ): Parse Σ as (c,Π), and parse Π as above, and proceed as
follows:

– If (Ch1, . . . ,Chκ) 6= H(M ;CMT1, . . . ,CMTκ; gpk, c), then return 0.

– For i = 1 to κ, run the verification step of the interactive protocol with
public input (H,H1, . . . ,H4,A, c) to check the validity of RSPi with
respect to CMTi and Chi. If any of the verification does not hold true,
then return 0.

– Return 1.

4. Open(gmsk,M,Σ): Parse Σ as (c,Π) and run RQC.Dec(gmsk, c) to decrypt
c. If the decryption fails, then return ⊥. If the decryption outputs v ∈ Fkqm ,
then return j = V2I(v) ∈ [N − 1].

The security of the scheme is stated in the following theorem.

Theorem 4.1. In the random oracle model:

� If the decisional 2− IRSD(n,wr) and 3− IRSD(n,wr) problems are hard, then
the scheme is CPA- anonymous.

� If the ideal rank syndrome decoding problem 2− IRSD(n0, ws) is hard, then
the scheme is traceable.
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4.4.1 Efficiency and Correctness

Efficiency. The size of gpk is dominated by T · log q, where

T = r0m0N + (k + 2)nm+ (`+ n+ r0 +m0 +m) + `km.

The length of the NIZKAoK is κ times the communication cost of the underlying
interactive protocol. Therefore, the size of Σ is bounded by(

(`+N − 1 +m2
0 +m0n0 + n2

0 +m2 + 3mn+ 3n2 + km) log q + 5λ
)
· κ+ n.

Correctness. By guaranteeing that the user is honest and the underlying in-
teractive protocol is perfectly complete, the correctness of the scheme is easily
verified.

4.4.2 Anonymity

Let A be a PPT adversary attacking the CPA-anonymity of the scheme with ad-
vantage ε. We prove that ε is a negligible function of λ by considering the following
sequence of experiments.

Experiment G
(b)
0 . The challenger runs KeyGen to obtain
gpk =

(
H, H̃,A, p, P, P0, F, F0,M, α

)
,

gmsk = skRQC,

gsk = (s1, . . . , sN−1),

then gives gpk and gsk to A. In the challenge phase, A outputs a message M∗ and
two indices j0, j1 ∈ [N − 1]. The challenger sends back a challenge signature

Σ∗ = (c∗,Π∗)← Sign(sjb ,M
∗).

The adversary outputs b with probability 1
2

+ ε.

Experiment G
(b)
1 . The challenge simulates Π∗ as follows:

1. Compute c∗ as in the Experiment G
(b)
0 .

2. Run the simulator of the underlying interactive protocol and programming
H accordingly.

3 Output the simulated of Π∗.

By the property of the simulator, we have G
(b)
0 and G

(b)
1 are statistically closed.
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Experiment G
(b)
2 . In this experiment, the vector s is replaced by a random

vector in Fnqm . By the hardness of the decisional 2-IRSD(n,wr) problem, the adver-
sary cannot distinguish a real public key s from a random one. Thus, Experiments
G

(b)
2 and G

(b)
1 are computationally indistinguishable.

Experiment G
(b)
3 . The vectors r1, r2, r3 are replaced by random vectors

r1, r2, r3 ← Fnqm . By the hardness of the decisional 3 − IRSD(n,wr) problem,
we have r1 + h · r2 and r3 + s · r2 are computationally indistinguishable from
r1 + h · r2 and r3 + s · r2, respectively. As a consequence, r3 + s · r2 + I2V(jb) ·G
and r3 + s · r2 + I2V(jb) · G are computationally indistinguishable. Therefore,

Experiments G
(b)
2 and G

(b)
3 are computationally indistinguishable.

Experiment G4. In this experiment, the ciphertext is set as c∗ ← F2n
qm . It is

evident that the distribution of c∗ in Experiments G
(b)
3 and G4 are identical, and

hence, G
(b)
3 and G4 are statistically indistinguishable. Observe that the ciphertext

now no longer depends on the challenger’s bit b, therefore, A’s advantage in this
experiment is 0.

The above arguments show that the advantage of A in G
(b)
0 is negligible, i.e.,

ε is negligible. Thus, the scheme is CPA-anonymous.

4.4.3 Traceability

The proof of this property is quite similar to that of [ELL+15]. The only difference
is that our proof is for rank metric. We include it here for the sake of completeness.

Assume that A is a PPT traceability adversary against our group signature
scheme with success probability ε. We construct an algorithm F that solves the
RSD(n0, r0, ws) problem with success probability polynomially related to ε.

At first, F receives a challenge from a decisional 2− IRSD(n0, ws) instance,
i.e., a random pair (H,y) ∈ Fr0×n0

qm0 × Fr0qm0 , where H is an ideal matrix (together
with its description (h0, P0)). The task of F is to find a vector s ∈ Sn0,m0

ws such

that H · sT = yT . It then proceeds as follows:

1. Pick a guess j∗ and set yj∗ = y.

2. Set H = H. For each j ∈ [N − 1] \ {j∗}, sample sj ← Sn0,m0
ws and set

yj = sj ·HT .

3. Run RQC.KeyGen(n, k, wr) to obtain a key pair (pkRQC, skRQC).

4. Send gpk = (H, H̃,A, p, P, P0, F, F0,M, α) and gmsk = skRQC to A.

Here, since the decisional 2− IRSD(n0, ws) is hard, so the view ofA on the instance
produced by F is computationally indistinguishable to its view on the instance



73 4.4. Our Code-Based Group Signature Scheme

from the real protocol. Next, F responds to the queries from A. It initializes a set
CU = ∅, and proceeds as follows:

1. For queries to the random oracle H, it returns uniformly random values in
{1, 2, 3}κ. Suppose that A makes QH queries to the random oracle, then for
each η ≤ QH, we let rη be the answer to the η-th query.

2 For query to OCorrupt(j), if j = j∗, then F aborts; if j 6= j∗, then F sets
CU := CU ∪ {j} and gives sj to A.

3 For query to OSign(j,M), for j ∈ [N − 1] and any message M :

• If j 6= j∗, then F honestly computes a signature by using sj.

• If j = j∗, then F returns a simulated signature Σ∗.

At some point, A outputs a forged signature Σ∗ on some message M∗, where

Σ∗ =
(
c∗,CMT(1), . . . ,CMT(κ);Ch(1), . . . ,Ch(κ);RSP(1), . . . ,RSP(κ)

)
.

This signature must satisfy all the requirements of the traceability experiment.
Now F uses skRQC to open Σ∗. It aborts if the opening algorithm does not output
j∗. The probability that F aborts is at most N−1

N
+(2

3
)κ. Therefore, with probability

at least 1
N
− (2

3
)κ, it holds that{

Verify(gpk,M∗,Σ∗) = 1,

Open(skRQC,M
∗,Σ∗) = j∗.

Assume that the above equalities hold, we denote ∆ the tuple(
M∗;CMT(1), . . . ,CMT(κ); H,H1, . . . ,H4,y1, . . . ,yN−1, c

∗).
Observe that with probability at least p = ε− 3−κ, there exists a certain η∗ ≤ Qη

such that ∆ was the input of the η∗-th query. F picks η∗ as the target forking
point and replays A many times with the same random tape and input. In each
run, for the first η∗− 1 queries, A is given the same answers r1, . . . , rη∗−1 as in the
initial run; from the η∗-th query onwards, F answers with fresh random values in
{1, 2, 3}κ. With probability greater than 1

2
and within 32 ·QH/p executions of A,

algorithm F can obtain a 3-fork, say

r1,η∗ =
(
Ch

(1)
1 , . . . ,Ch

(κ)
1

)
,

r2,η∗ =
(
Ch

(1)
2 , . . . ,Ch

(κ)
2

)
,

r3,η∗ =
(
Ch

(1)
3 , . . . ,Ch

(κ)
3

)
.
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Note that one has

Pr
[
i ∈ {1, . . . , κ}|{Ch(i)

1 ,Ch
(i)
2 ,Ch

(i)
3 } = {1, 2, 3}

]
= 1−

(
7

9

)κ
.

Conditioned on the existence of such index i, one parses the 3 forgeries correspond-
ing to the fork to obtain (RSP

(i)
1 ,RSP

(i)
2 ,RSP

(i)
3 ). They are three valid responses to

three different challenges of the same commitment CMT(i). By using the knowledge
extractor as in Lemma 5, one can efficiently find a valid solution to the challenge
RSD(n0, r0, ws) instance

(
H,y

)
.

Finally, if A has success probability ε and running time T in attacking the
traceability of our group signature scheme, then F has success probability at least
1
2
·
(

1
N
− (2

3
)κ
)
·
(
1− (7

9
)κ
)

and running time 32 · T ·QH/(ε− 3−κ) + poly(λ,N).

4.5 Parameters

In this section, we give a few examples of parameters for our code-based group
signature scheme. The parameters are chosen so that the attacks in [AGHT18]
and [BBC+20] have complexity at least at level 2128 to solve the RSD(n0, r0, ws)
problem or to break the RQC scheme.

� We consider q = 2, and thus log 2 = 1. In this case, the map f1 becomes the
representation map with respect to the base 2.

� Parameters for the RQC scheme: m = 139, n = 101, k = 5 which are taken
from [AAB+17].

� Parameter for the syndrome decoding problem corresponding to the matrix
H: m0 = 47, r0 = 43, n0 = 86, ws = 7.

� The number of users N − 1 = q` − 1 for ` ∈ {4, 8, . . . , 24}.

Recall that the size of public key is

T = r0mN + (k + 2)mn+ (`+ n+ r0 +m0 +m) + `km,

and the size of signature is(
`+N − 1 +m2

0 +m0n0 + n2
0 +m2 + 3mn+ 3n2 + km+ 5λ

)
· κ+ n.

We have the following table (κ = 220)
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` PK Size Signatures Size
4 16.71 KB 2.94 MB
8 77.68 KB 2.95 MB
12 1.05 MB 3.06 MB
16 16.57 MB 4.74 MB
20 264.9 MB 31.78 MB
24 4.24 GB 464.3 MB

Table 4.2: Example of parameters.

4.6 Conclusion

In this work, we have constructed a code-based group signature scheme in the
rank metric context. In some cases, our parameters are better than those of the
previous work as in [ELL+15].

One feature of our scheme may be noteworthy, that is, in the second layer, we
made use of RQC, however, one can can use HQC due to the same structure as
RQC. The only shortcoming is that the signature size would be larger.





Chapter 5

Blind Signatures from CFS
Signatures

This chapter presents a code-based blind signature scheme which is constructed
from CFS signatures and Stern’s identification protocol. To be more accurate,
the scheme here is a correction of the one in [BGSS17].

This is a joint work with Olivier Blazy and Philippe Gaborit and was
presented at CBCrypto 2021.

5.1 Introduction

Blind signatures were first introduced by Chaum in 1982 [Cha82]. Unlike usual
signatures, the signed message is hidden from the signer (blindness). With this
property, blind signatures have found many applications such that electronic vot-
ing, electronic cash [Cha82]. There has been many blind signature protocols most
of which use the RSA approach [Oka93, PS97] and thus are not considered to be
post-quantum secure. The task of constructing post-quantum secure blind signa-
ture schemes was first successfully handled by Hauck et al. [HKLN20]. Their
construction is based on lattice assumptions aided by linear hash functions.

In the code-based field, blind signatures were first considered by Overbeck
[Ove09]. Still, the construction has many issues to be reflected on. The second
notable attempt was made in 2017, a code-based blind signature scheme was pro-
posed by Blazy et al. [BGSS17]. However, there is a flaw in the proof of the
unforgeability property due to a lack in the construction. Thus, the proof therein
is invalid. The goal of this work is to give a new blind signature scheme based on
the one in [BGSS17], which is supported by correct proofs of security.

Organization. The rest of the work is organized as follows. In Section 5.2, we
briefly recall some basic notions in code-based cryptography, which are required

77
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for our construction. Section 5.3 describes the security model for our scheme.
Section 5.4 recalls the previous scheme and provides the explanation of the flaw in
its proof. A new scheme having correct proofs of security and a set of parameters
are presented in Section 5.5. Finally, we draw some remarks in Section 5.6.

5.2 Background on Code-Based Cryptography

Let Fq denote the finite field with q elements, H ∈ F(n−k)×n
q a parity-check matrix

of some linear code of length n and dimension k, and Snw the sphere of Fnq of radius
w. Throughout the chapter, h(·) will stand for a cryptographic hash function.

5.2.1 Syndrome Decoding

Definition of the syndrome decoding problem is already provided in Section 2.4.
Beside this problem, another important parameter in code-based cryptography is
the Gilbert-Varshamov bound, it is defined as follows.

Definition 5.1. The volume of a ball of radius w in the Hamming space Fnq is

Vn(w) =
w∑
i=0

(q − 1)i
(
n

i

)
.

For given n and k, the smallest integer bGV such that Vn(bGV ) ≥ qn−k is called the
Gilbert-Varshamov (GV) bound.

Definition 5.2. We call w-bounded decoder associated to H a procedure Fn−kq →
Fnq which returns for all u ∈ Fn−kq solution of CSD(H,u, w) (or fails if this set is
empty).

For given n and k and for almost all codes, a w-bounded decoder fails for a
proportion approximately exp(−Vn(w)/qn−k) of the instances. If we choose an
integer w > bGV , a w-bounded decoder almost never fails1. We will speak of a
complete2 decoder.

5.2.2 Trapdoor Digital Signatures

Let w0 be the smallest integer such that CSD(H,u, w0) 6= ∅ with high probability
(i.e., from the previous section w0 = dbgve or dbgv + 1e). We assume here that

1Most of the time w = bGV is enough, exceptionally w = bGV + 1.
2The word complete is used here for convenience, the decoder may fail but for a negligible

proportion of the instances.
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the linear code defined by the parity check matrix H has some hidden algebraic
structure (for instance a binary Goppa code) which enables a trapdoor complete
w0-bounded decoder DH(·).

CFS Signatures. Obtaining a practical complete decoder is not an easy task
because the desired decoding bound w0 is above the algebraic error correcting
capability. It is possible for binary Goppa codes of high rate (i.e., the ratio k/n
between dimension and length is close to 1) [CFS01]: the resulting complete de-
coder is complex but still has an exponential advantage in complexity compared
with the best generic algorithms for solving CSD.

Let H be the parity check matrix of a CFS code, let DH(·) be the trapdoor
CFS decoding function. The CFS problem is defined as given q accesses to
a CFS oracle (given x, it returns y = DH(x)), and u∗ the adversary has to
return y∗ such that Hy∗T = u∗T and wt(y∗) = w in polynomial time after at
most q queries to the oracle, on words different from u∗.

Figure 5.1: The CFS problem.

Security of CFS Signatures. Parity-check matrices of high rate Goppa
codes can be distinguished from random matrices [FGO+10]. Still, this distin-
guishing attack does not lead to an efficient key recovery attack (recovering DH

from H), however it invalidates the security reduction given in [CFS01]. We refer
to [LS12] for more details on the security of CFS.

Parallel CFS. It was proposed by Finiasz [Fin11]. It consists in producing λ
signatures (3 or 4) of related digests. If done correctly, the cost for an existential
forgery attack can be made arbitrarily close to the cost for a universal forgery
attack.

5.2.3 Stern’s Identication Protocol

This section is dedicated to Stern’s idenentication protocol and, specially, to a
concatenated Stern authentication protocol. The Stern’s identification protocol
is already introduced in Section 2.5.2. In the following paragraph, we focus on the
latter, which is the randomized version of the one given in [ABCG16a] and will
serve as a building-block in our construction.

For ease of notations, from now on, k (and k′ in the next sections) will have
the equal meaning of co-dimension. Let us consider Q a k × n1 binary matrix
and R a k × n2 binary matrix. Suppose that there exist a vector (x,y) with
x,y of respective lengths n1, n2 and of weight w1, w2, and a syndrome s such that
[Q|R] · (x,y)T = sT = Q · xT + R · yT . The (randomized) concatenated Stern
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authentication protocol is a zero-knowledge (ZK) protocol which allows the prover
P to prove that he knows a vector (x,y), for x and y of respective weight w1 and
w2 such that

[Q|R] · (x,y)T = sT = Q · xT + R · yT .
In the following, Sn denotes the permutation group of length n, and | stands for
concatenation. The protocol works as described in Figure 5.2.

Concatenated Stern zero-knowledge authentification protocol
Public data: two matrices Q and R of respective size k × n1 and k × n2, a
syndrome s.
Prover P : a vector (x,y) for x and y of respective weight w1 and w2 such
that

[Q|R] · (x,y)T = sT = Q · xT + R · yT .

The prover P interacts with a verifier V in 3 steps and a verification:

1. Commitments. P generates σ1 ← Sn1 , σ2 ← Sn2 , u1 ← Fn1
2 ,u2 ← Fn2

2

and r1, r2, r3 ← 1λ.

P sends three commitments:
c1 = h(σ1(u1)|σ2(u2)|r1),
c2 = h(σ1|QuT1 + RuT2 |σ2|r2),
c3 = h(σ1(x + u1)|σ2(y + u2)|r3).

2. Challenge. V responds with b ∈ {0, 1, 2}.

3. Answer. There are three possibilities:

� If b = 0, P reveals σ1(u1), σ2(u2), σ1(x), σ2(y), r1, and r3.

� If b = 1, he reveals σ1, σ2, x + u1, y + u2, r2, and r3.

� If b = 2, he reveals σ1, u1, σ2, u2, r1, and r2.

4. Verification.

� if b = 0 checks c1 and c3;

� if b = 1 checks c2 and c3;

� if b = 2 checks c1 and c2.

Figure 5.2: Concatenated Stern zero-knowledge protocol.

Theorem 5.1. The concatenated Stern zero-knowledge protocol is a ZK protocol
with cheating probability 2

3
.

Proof. The protocol we describe is an adaptation of the one described in [ABCG16a]
to which we added random values r1, r2 and r3. By doing so, the protocol cannot
be testable and leaks no information (see [ABCG16a] for details on testable Stern
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protocol). For verification, the only non trivial check is (as for Stern’s original
protocol) for b = 1 and the value c2, which is checked with the public syndrome s,
one recovers QuT1 + RuT2 as QuT1 + RuT2 = Q(x + u1)T + R(y + u2)T − sT . The
proof is straightforward from [ABCG16a] with the ZK properties obtained from
the random values r1, r2, and r3.

5.3 Blind Signatures

As formalized by Pointcheval and Stern [PS00], a blind signature scheme
involves two parties, a user U and a signer S. The user submits a masked (or
blinded) message that the signer will sign with a digital signature scheme whose
public key is known. This part is named BSProtocol. The user unmasks this
signature to build a signature of the unmasked message which is valid for the
signer’s public key. A verification can be made on the final signature with the
signer’s public key.

More precisely, we can derive the definition of blind signatures from that of
digital signatures. Instead of having a signing phase Sign(sk,M ;µ), we have an
interactive phase BSProtocol〈S,U〉 between the user U(vk,M ; ρ) who will (prob-
ably) transmit a masked information on M under some randomness ρ in order to
obtain a signature valid under the verification key vk, and the signer S(sk;µ), who
will generate something based on this value, and his secret key which should lead
the user to a valid signature. Such signatures are correct if when both the user
and signer are honest then BSProtocol〈S,U〉 does indeed lead to valid signature
on M under vk. There are two additional security properties, one protecting the
signer, the other the user.

� On one hand, there is an Unforgeability property, which states that a mali-
cious user should not be able to compute n+ 1 valid signatures on different
messages after at most n interactions with the signer.

� On the other hand, the Blindness property says that a malicious signer who
signed two messages M0 and M1 should not be able to decide which one was
signed first.

These properties are described in Figure 5.3.
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Expbl−bBS,S∗(K)
1. (param)← BSSetup(1K)
2. (vk,M0,M1)← A(FIND :param)
3. σb ← BSProtocol〈A,U(vk,Mb)〉
4. σ1−b ← BSProtocol〈A,U(vk,M1−b)〉
5. b∗ ← S∗(GUESS :M0,M1);
6. RETURN b∗ = b.

ExpufBS,U∗(K)
1. (param)← BSSetup(1K)
2. (vk, sk)← BSKeyGen(param)
3. For i = 1, . . . , qs, BSProtocol〈S(sk),A(INIT :vk)〉
4.
(
(m1, σ1), . . . , (mqs+1, σqs+1)

)
← A(GUESS :vk);

5. IF ∃i 6= j,mi = mj OR ∃i,Verif(pk,mi, σi) = 0
RETURN 0

6. ELSE RETURN 1

Figure 5.3: Security games for blind signatures.

In the above games, queries of the adversary are required to be well-formed.

5.4 The Previous Scheme

In this section, we recall the old scheme in [BGSS17] and point out its flaw. The
previous scheme is as follows.

KeyGen(k, k′, n, n′) :
From some integer parameters k, k′, n and n′, generate:

� H a trapdoor parity check matrix of size k × n and its trapdoor DH(·),
only available to the signer S.

� A a random matrix of size k × n′.

� B a random matrix of size k′ × n′.

Figure 5.4: Key generation.
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BSProtocol(wx) :
1) Blinding step
The user U

� generates uniformly at random a vector x in Fn′2 of weight wx.

� sends µ = h(M |BxT ) + AxT to S.

The signer S returns y = DH(µ) of weight wy to the user U . If DH(µ) returns
⊥, then U can send another request.

2) Blind Signature step: U sends the couple (BxT ,PoK), where PoK is a
transcript of the proof of knowledge that U knows a pair of vectors (x,y) of
weight wx and wy such that(

A H
B 0

)
·
(

xT

yT

)
=

(
h(M |BxT )

BxT

)
.

The proof of knowledge is obtained through the concatenated ZK Stern

protocol of Section 5.2.3, by taking Q =

(
A
B

)
and R =

(
H
0

)
.

Figure 5.5: The blind signature protocol.

Verification: Upon receiving the message M and the signature
(
BxT ,PoK

)
,

the verifier checks that the proof of knowledge PoK is correct and that the
weights wx and wy of x and y are correct.

Figure 5.6: Verification protocol.

As mentioned above, with this scheme, there is a flaw in the proof of unforge-
ability property, that is, we can no longer use an adversary, who can break the
soundness of the scheme, to solve the CFS problem or break the soundness of the
underlying zero-knowledge proof. The reason is that after answering queries for
the adversary, the simulator still does not know the values x’s. Thus, two prob-
lems follow. First, in the rewinding step, “output another random value” does not
guarantee that there are no collisions. Note that the queries to the signing oracle
are of the form h(M |BxT ) + AxT , which also contains the term AxT . Second,
since the simulator does not know the values x’s, which were used by the adver-
sary, there is no way he can accomplish “ setting h(Myj |Bj) to u∗ − Axj .” Thus
the adversary could not be used to solve the CFS problem.
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5.5 A New Scheme

5.5.1 The Scheme

In this section, we propose a scheme, which corrects the above flaw. The key
generation algorithm remains as in the above scheme, the blind and verification
protocols are as follows.

BSProtocol(wx) :
1) Blinding step
The user U

� generates uniformly at random a vector x in Fn′2 of weight wx.

� generates π(x), a proof of knowledge for x with respect to BxT .

� sends µ = h
(
M |BxT |π(x)

)
+ AxT to S.

The signer S returns y = DH(µ) of weight wy to the user U . If DH(µ) returns
⊥, then U can send another request.

2) Blind Signature step: U sends the triple (BxT , π(x),PoK), where PoK
is a transcript of the proof of knowledge that U knows a pair of vectors (x,y)
of weight wx and wy such that(

A H
B 0

)
·
(

xT

yT

)
=

(
h
(
M |BxT |π(x)

)
BxT

)
.

The proof of knowledge is obtained through the concatenated ZK Stern

protocol by taking Q =

(
A
B

)
and R =

(
H
0

)
.

Figure 5.7: The corrected blind signature protocol.

Verification: Upon receiving the message M and the signature(
BxT , π(x),PoK

)
, the verifier checks that the proofs of knowledge π(x),PoK

are correct and that the weights wx and wy of x and y are correct.

Figure 5.8: The corrected verification protocol.

In this scheme, we add a proof of knowledge of x in the hash queries, i.e., a
hash query consists of a message M, the value BxT , and a Stern-like proof of
knowledge π(x) of x with respect to BxT . In order to obtain this proof, one has to
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query the random oracle three times to get the values of commitments. From these
queries, the one in control of the random oracle would certainly know the value x.
This argument guarantees that in our proof, the simulator would know the values
x’s and with this knowledge, he could efficiently manipulate the random oracle to
avoid collisions. Note that π(x) only needs to have one round. The verification
protocol is considered to be successful if both π(x) and PoK are valid.

5.5.2 Unforgeability

Theorem 5.2. If there exists an adversary against the soundness of the blind
signature scheme, then there exists an adversary for either the CFS problem, the
syndrome decoding problem, or the soundness of the underlying zero-knowledge
proof.

Proof. If an adversary A can win the game of unforgeability of the blind signature,
then he can produce N+1 blind signatures with N requests to the blind oracle. To
exploit this adversary, we build a simulator in the following way. We first receive
the matrix H and a hash function h from the challenge oracle for CFS problem
and generate normally the other parameter of our blind signature. The hash and
signing queries are treated as follows.

• Receiving signing queries, on string ci, we forward it to the CFS oracle, and
receive yi such that HyTi = cTi .

• Receiving hash queries, the simulator answers with a random value, and
stores it to answer in the same way to similar queries.

After at most N signing queries and n random oracle queries, the adversary sends
us N + 1 signatures σj on messages Mj, by sending us values Bj, πj, and zero-
knowledge proofs PoKj, that he knows xj,yj such that Bj = BxTj , πj = π(xj),
and HyTj = h(Mj|Bj|πj) − AxTj . As this is a valid forgery against the blind
signature scheme, then all the N + 1 signatures are valid. This means that either
the adversary manages to break the soundness of one of the proofs, or by using
the random oracle, the simulator manages to extract the values xj,yj.

If two values yj1 and yj2 are equal, then the adversary has managed to find a
collision on h(Mjb|Bjb|πjb)−Ajb , where Ajb = AxTjb . In this case, we simply rewind
to the furthest random oracle query on Mjb|Bjb|πjb and output another random
value such that there is no longer a collision (neither with the query corresponding
to jb, nor with any queries done before to the random oracle). Note that the
queries contain π(x), a proof of knowledge of x with respect to BxT . In order to
obtain these proofs, the adversary has to query the random oracle on the values
of commitments. In this way, the simulator always knows the pairs (x,BxT ), as
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long as A would like to generate π(x). Now, the forking lemma ensures us that
the adversary’s advantages is approximately the same, after k rewinding where k
is upper-bounded by min(N, n).

After this, we are sure that all the N+1 values yj’s are different, so there exists
at least one yj that does not come from the challenge oracle. Rewinding one last
time, and setting h(Myj |Bj|πj) to u∗T −AxTj (this can always be done since the
simulator knows the value xj), and invoking the forking lemmas, allows to recover
an yj such that HyTj = h(u∗) and so it allows to solve the CFS challenge.

5.5.3 Blindness

Theorem 5.3. If there exists an adversary against the blindness of the blind sig-
nature, then there exists an adversary under the zero-knowledge property of the
Stern protocol or the decisional syndrome decoding problem.

Proof. If an adversary A can win the game of blindness of the blind signature
scheme, then he can break the decisional syndrome decoding problem. To exploit
this adversary, we build a simulator in the following way. We first receive a
decisional syndrome decoding instance C, s and have to guess whether there exists
a small x such that C · xT = sT . The simulator splits the matrix C into A and
B of size k × n′ and k′ × n′, respectively (as in the scheme), generates a matrix
H honestly and publishes them as the public keys of the scheme, and gives H’s
trapdoor to the adversary. The adversary then sends two messages M0 and M1 to
the simulator. The simulator picks a random bit b← {0, 1}, and proceeds to send
the requests on Mb and M1−b, and then outputs the signature on M0.

With advantage ε, the adversary guesses whether b = 0 or not. Next, the
simulator proceeds to a sequence of games.

Game G1. In this game, the simulator proceeds honestly, however, instead of
outputting the real π(x0) and PoK0, he outputs simulated proofs π0 and Π0. At
this step, the adversary’s view is BxT0 , π0, and h

(
Mb|BxTb |π∗

)
+ AxTb , where π∗ ∈

{π0, π(xb)}. We can assume that AxT1 +h
(
M1|BxT1 |π(x1)

)
6= h

(
M0|BxT0 |π(x0)

)
+

AxT0 . (Controlling the random oracle allows to make sure of that, anyway it hap-
pens with overwhelming probability.)

Game G2. In this game, the simulator makes the following change. He splits
s into s1, s2, sets the value of AxT0 to be equal to sT1 , and the value of BxT0 to be
equal to sT2 .

We analyze the answer of the adversary as follows. If the answer to the chal-
lenge was yes, we are still in the previous game G1. On the contrary, if it was
no, it leads us to the last game G2, where the vector s does not come from the
SD distribution. The last game G2 yields a completely simulated answer (note
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that PoK0 has already been simulated as Π0), with random public values, so the
adversary has no advantage against the blindness in G2. The difference between
G2 and G1 is the decisional syndrome decoding problem, while the zero-knowledge
property differentiates G1 from the real game, i.e., between PoK0 and Π0. Hence
ε ≤ AdvZK + AdvDSD. Therefore, there is either an adversary against the DSD
problem or the zero-knowledge property of the Stern protocol.

5.5.4 Parameters

Overall, the best practical attacks against forgery is the attack against the in-
vertible trapdoor function DH(·), and the best practical attack for blindness is
retrieving a small weight vector x of weight wx from the syndrome BxT , for a
random matrix B. Hence, we choose parameters according to these constraints.
The size of the public key is P = kn+ (k + k′)n′. The size of the signature is the
total size of BxT , π(x), and PoK, which is

S = k′ + n′(log n′ + 1) + ` ·
(
n(log n+ 1) + n′(log n′ + 1) + 5λ

)
,

where ` satisfies (2/3)` = 2−λ for λ the security parameter.
We now give example of parameters for our scheme, considering parameters

for which a word of weight wx is unique with very strong probability:
We consider the parallel CFS signature scheme with parameters n = 218, wy =

9 and k = 162, n′ = 6000, k′ = 300 and wx = 30. For that case, the security
of parallel CFS is 282 and 291 for the cost of recovering a unique (with strong
probability) x of weight 30 from its syndromes by matrices A and B. We choose
λ = 80 and ` = 137 so the size of public key is P = 5.65 MB, the size of signature
is S = 86.7 MB.

5.6 Conclusion

We have proposed a new blind signature scheme to repair the one proposed by
Blazy et al. [BGSS17]. In general, the size of public key and signature differ
only slightly from that of the previous scheme. Only the signature size increases
a bit due to the addition of the proof of knowledge of the randomness.

The blinding step of our scheme makes use of the trapdoor function DH(·) of a
CFS signature scheme. It might be tempting to try another primitives such that
Durandal [ABG+19] or WAVE [DST19].





Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This thesis presented three contributions to the post-quantum cryptography based
on coding theory.

(i) The first contribution is a code-based signature scheme in the standard
model. We designed a chameleon hash function from classical code-based
assumptions. The signature scheme follows the hash-and-sign paradigm in
which the constructed function plays the role of hash functions. The secu-
rity of the scheme is guaranteed by the collision-resistant property of the
function and is considered in the standard model.

(ii) The second contribution is a group signature scheme in the rank metric
context. The scheme consists of three layers: a digital signature scheme in
the Stern’s frame, the RQC cryptosystem, and a zero-knowledge protocol
connecting the first two. Though closely following [ELL+15], the design of
permutations of the third layer makes our scheme different from the previous
scheme. Moreover, our method can be applied for both rank metric and
Hamming metric which seems not to be the case for the method of [ELL+15].

(iii) The last contribution is a blind signature scheme which is a corrected version
of the one in [BGSS17].

6.2 Perspectives

We conclude this thesis by a sketch for future works.

(i) Improving the scheme from the first work, i.e., the chameleon signature
scheme. As mentioned in Section 3.6, the chosen parameters for the scheme

89
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were rather raw, and thus, refining these parameters is the task we wish to
carry out in the near future.

(ii) Constructing chameleon hash function in the rank metric. There are two
main challenges (or probably one). The first task is to estimate the prob-
ability that a random rank code has the minimum distance at least d; and
the second is to estimate the probability that all codewords of a random
rank code have weight in a given interval [t1, t2]. Once these questions are
settled, one can derive a KKS-like scheme in the rank metric and hence, a
chameleon hash function.

(iii) Perfecting the RQC cryptosystem. In all versions of this system up to now
[ABD+16, AAB+17, AAB+20], the error vectors share the same support. (In
the NIST’s 2nd round version, two of the three errors have the same support.)
This assumption is also applied for the secret key vectors. The reasons
for this condition are due to the formulation of the hardness assumptions
and to guarantee the success of decoding, i.e., the word obtained from the
knowledge of the secret key and a ciphertext is within the decoding capability
of the public code being used. We observe that by using Proposition 2.8, the
above condition could be removed. The consequence is that the hardness
assumptions should be reformulated.
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proved zero-knowledge proofs of knowledge for the ISIS problem,
and applications. In Kaoru Kurosawa and Goichiro Hanaoka, edi-
tors, PKC 2013, volume 7778 of LNCS, pages 107–124, Nara, Japan,
February 26 – March 1, 2013. Springer, Heidelberg, Germany.

[Loi06] Pierre Loidreau. Properties of codes in rank metric. CoRR,
abs/cs/0610057, 10 2006.

[LS12] Gregory Landais and Nicolas Sendrier. Implementing CFS. In
Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012,



97 Bibliography

volume 7668 of LNCS, pages 474–488, Kolkata, India, December 9–
12, 2012. Springer, Heidelberg, Germany.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 738–755, Cambridge, UK, April 15–19,
2012. Springer, Heidelberg, Germany.

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic
coding theory. The deep space network progress report 42-44, Jet
Propulsion Laboratory, California Institute of Technology, January/
February 1978. https://ipnpr.jpl.nasa.gov/progress_report2/
42-44/44N.PDF.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on Gaussian measures. In 45th FOCS, pages 372–381,
Rome, Italy, October 17–19, 2004. IEEE Computer Society Press.

[MTSB12] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S.
L. M. Barreto. MDPC-McEliece: New McEliece variants from mod-
erate density parity-check codes. Cryptology ePrint Archive, Report
2012/409, 2012. https://eprint.iacr.org/2012/409.

[NZZ15] Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler ef-
ficient group signatures from lattices. In Jonathan Katz, editor,
PKC 2015, volume 9020 of LNCS, pages 401–426, Gaithersburg, MD,
USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification
schemes and corresponding signature schemes. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 31–53, Santa Bar-
bara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany.

[OT11] Ayoub Otmani and Jean-Pierre Tillich. An efficient attack on all
concrete KKS proposals. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, pages
98–116, Tapei, Taiwan, November 29 – December 2 2011. Springer,
Heidelberg, Germany.

[Ove09] Raphael Overbeck. A step towards QC blind signatures. Cryptology
ePrint Archive, Report 2009/102, 2009. https://eprint.iacr.org/
2009/102.

https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://eprint.iacr.org/2012/409
https://eprint.iacr.org/2009/102
https://eprint.iacr.org/2009/102


Bibliography 98

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes.
IEEE Transactions on Information Theory, 8:5–9, 1962.

[PS97] David Pointcheval and Jacques Stern. New blind signatures equiv-
alent to factorization (extended abstract). In Richard Graveman,
Philippe A. Janson, Clifford Neuman, and Li Gong, editors, ACM
CCS 97, pages 92–99, Zurich, Switzerland, April 1–4, 1997. ACM
Press.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. Journal of Cryptology, 13(3):361–
396, June 2000.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors,
37th ACM STOC, pages 84–93, Baltimore, MA, USA, May 22–24,
2005. ACM Press.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, feb 1978.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete log-
arithms and factoring. In 35th FOCS, pages 124–134, Santa Fe, NM,
USA, November 20–22, 1994. IEEE Computer Society Press.

[Sin64] Richard Singleton. Maximum distance q-nary codes. IEEE Interna-
tional Symposium on Information Theory, 10(2):116–118, 1964.

[Ste89] Jacques Stern. A method for finding codewords of small weight.
In Coding Theory and Applications, pages 106–113. Springer-Verlag,
1989.

[Ste94] Jacques Stern. A new identification scheme based on syndrome de-
coding. In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of
LNCS, pages 13–21, Santa Barbara, CA, USA, August 22–26, 1994.
Springer, Heidelberg, Germany.


	List of Symbols
	Introduction
	Motivations
	Contributions and Organization

	Prerequisites
	Hamming Metric Codes
	Linear Codes
	Cyclic and Quasi-cyclic Codes
	Goppa Codes

	Rank Metric Codes
	Rank Metric and Rank Codes
	Gabidulin Codes

	Modern Cryptography
	The Computational Model
	Public-key Encryption
	Zero-Knowledge Proof Systems
	Interactive Proofs
	Computationally Sound Proofs
	Zero-Knowledge Proofs
	Proofs of Knowledge


	Hardness Assumptions
	Hamming Metric Problems
	Rank Metric Problems

	Code-based Cryptosystems
	McEliece's Cryptosystem
	Stern Identification Protocol
	HQC Scheme
	Rank Stern Identification Protocol


	Chameleon Hash Signatures
	Introduction
	Preliminaries
	Notation
	Signatures
	Two-Tier Signatures
	Chameleon Hash Functions
	Difficult Problems

	The Transformation
	The KKS Scheme
	A Chameleon Hash Function

	A Signature Scheme using f
	A One-time Two-tier Scheme
	A Non-adaptive Signature Scheme
	Wrapping-up

	Parameters
	Some Observations

	Group Signatures in the Rank Metric
	Introduction
	Preliminaries
	Notations
	Background on Code-Based Cryptography
	Group Signatures
	Transform of Index
	Permutations

	The Underlying Interactive Protocol
	The Interactive Scheme
	Analysis

	Our Code-Based Group Signature Scheme
	Efficiency and Correctness
	Anonymity
	Traceability

	Parameters
	Conclusion

	Blind Signatures from CFS Signatures
	Introduction
	Background on Code-Based Cryptography
	Syndrome Decoding
	Trapdoor Digital Signatures
	Stern's Identication Protocol

	Blind Signatures
	The Previous Scheme
	A New Scheme 
	The Scheme
	Unforgeability
	Blindness
	Parameters

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives
	Bibliography


