
HAL Id: tel-03542085
https://theses.hal.science/tel-03542085v1

Submitted on 25 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Native support for parallel and distributed computing
by the network

Junior Dongo

To cite this version:
Junior Dongo. Native support for parallel and distributed computing by the network. Networking
and Internet Architecture [cs.NI]. Université Paris-Est, 2020. English. �NNT : 2020PESC0053�. �tel-
03542085�

https://theses.hal.science/tel-03542085v1
https://hal.archives-ouvertes.fr

École doctorale MSTIC

Native Support for Parallel and
Distributed Computing by the Network

THÈSE

présentée et soutenue publiquement le 22 Mai 2020

pour l’obtention du

Doctorat de l’Université Paris Est

(mention informatique)

par

Junior Dongo

Composition du jury

Rapporteurs : Pascal Lorenz GRTC - Université de Haute-Alsace (Professeur)
Martin Theobald University of Luxembourg (Professeur)

Examinateurs : Daniele Varacca LACL - Université Paris Est (Professeur)
Chantal Keller LRI - Université Paris-Sud (Mâıtresse de conférence)

Encadrant : Charif Mahmoudi Siemens Corporate Technology (Software Architect)

Directeur : Fabrice Mourlin LACL - Université Paris Est (Mâıtre de conférence HDR)

Laboratoire d’Algorithmique, de Complexité et Logique — EA 4219

Mis en page avec la classe thesul.

Acknowledgments

First, I would like to thank my thesis advisor Fabrice Mourlin for agreeing to supervise this thesis.
Thank you for your kindness, your availability, your advice, and your permanent encouragement.
This thesis owes you a lot. Thank you for believing in me.

I also thank Charif Mahmoudi, who supervised me throughout this thesis and who shared
his brilliant ideas. Thank you also for the various invitations for my stay in the United States (3
months at the National Institute of Science and Technology, and 6 months at Siemens Corporate
Technology). I have learn a lot from you and thanks to you. Thank you for this confidence in
me.

I would also like to thank Pascal Lorenz and Martin Theobald for agreeing to review this
thesis.

Thanks to Daniele Varacca, Chantal Keller for agreeing to be part of my jury.
I extend my sincere thanks to the LRI verification team, in particular to Véronique Benzakem,

Evelyne Contejean and Chantal Keller for their availability and their great help in my verification
approach in Coq. This part of my thesis was possible thanks to you.

Many thanks to Kevin Mills and James Filliben from NIST for introducing me to the sensi-
tivity analysis and for their help in the evaluation phase of my approach.

My thanks also go to my colleagues at LACL, in particular, Flore Tsila and Nicolas Herniou,
thank you for always ensuring that I do not miss anything in the accomplishment of my work.

I thank my mother, my brothers, and sisters for their encouragement and their prayers.
Thanks to all those whose names I did not mention, who supported me by any means during

these thesis years.
Finally, a big thanks to the one who on October 12, 2018, became my wife. Thank you for

your support. Thank you also for this beautiful gift (Jayden Nathanael) that you gave me.

i

ii

I dedicate this thesis
to the Lord for his support

and help till where I am now.

iii

iv

Abstract

In the Big data community, MapReduce has been considered as one of the main approaches
to answer the permanent increasing computing resources demand imposed by the large data
amount. Its importance can be explained by the evolution of the MapReduce paradigm which
permits massively parallel and distributed computing over many nodes.

Information-Centric Networking (ICN) aims to be the next Internet architecture. It brings
many features such as network scalability and in-network caching by moving the networking
paradigm from the current host-centric to content-centric where the resources are important not
their location. To benefit from the ICN property, Big Data architecture needs to be adapted to
comply with this new Internet architecture. One dominant of these CCN architectures is Named
Data Networking (NDN) which has been financed by the American National Science Foundation
(NSF) in the scope of the project Future Internet Architecture (FIA).

We aim to define Big Data architecture operating on Named Data Networking (NDN) and
capitalizing on its properties. First, we design a fully distributed, resilient, secure and adaptable
distributed file system NDFS (NDN Distributed File System) which is the first layer (Data Layer)
in the Big Data stack. To perform computation on the data replicated using a Distributed File
System, a Big Data architecture must include a Compute Layer. Based on NDN, N-MapReduce
is a new way to distribute data computation for processing large datasets of information. It
has been designed to leverage the features of the data layer. Finally, through the use of formal
verification, we validate our Big Data architecture.

Keywords: NDN, Big Data, DFS, Distributed Computing

v

Résumé

Dans la communauté du Big Data, le squelette MapReduce a été considéré comme l’une des
principales approches permettant de répondre à une demande permanente et croissante des
ressources informatiques imposées par des données massives. Son importance peut être expliquée
par l’évolutivité du paradigme MapReduce qui permet une exécution massivement parallèle et
distribué sur un grand nombre de noeuds de calcul.

Le réseau centré sur l’information (ICN) vise à être la prochaine architecture Internet. Il
apporte de nombreuses fonctionnalités telles que la mise à l’échelle du réseau et l’utilisation de
cache réseau en déplaçant le paradigme de communication actuel centré sur l’hôte, vers une
approche de communication centrée sur la donnée, où les ressources sont importantes et non leur
emplacement.

Pour tirer profit des propriétés des réseaux ICN dans le domaine Big Data, l’approche
d’architecture Big Data doit être adaptée pour se conformer à cette nouvelle architecture réseau.
L’une des dominantes de ces architectures ICN est Named Data Networking (NDN) qui a été fi-
nancée par l’American National Science Foundation (NSF) dans le cadre du projet d’architecture
de l’Internet du Future (FIA).

Notre objectif est de définir une architecture Big Data fonctionnant sur NDN et capitalisant
sur ses propriétés. Premièrement, nous concevons un système de fichiers distribués NDFS (NDN
Distributed File System) entièrement distribué, résilient, sécurisé et adaptable qui est la première
couche (Data Layer) de la pile Big Data. Pour effectuer le calcul sur les données répliquées à
l’aide d’un système de fichiers distribués, une architecture Big Data doit inclure une couche de
calcul. Basé sur NDN, N-MapReduce est une nouvelle façon de distribuer le calcul de données
pour traiter de grands volume de données. Il a été conçu pour tirer profit des fonctionnalités de
la couche de données. Enfin, grâce à l’utilisation de la vérification formelle, nous vérifions un
ensemble de propriétés temporelles sur notre architecture Big Data.

Mots-clés: NDN, Big Data, Calcul parallele, Calcul Distribué.

vi

Contents

Chapter 1

Introduction 1

1.1 Context and thesis motivation . 1

1.2 Problem statement . 2

1.3 Contributions and thesis plan . 3

Chapter 2

State of the Art 5

2.1 Big Data . 6

2.1.1 Big Data Definition . 6

2.1.2 Big Data Characteristics . 6

2.1.3 Big Data Architecture . 7

2.1.4 Technologies . 8

2.1.5 Applications . 9

2.1.6 Challenges . 10

2.2 Distributed File Systems . 12

2.2.1 DFS Definition . 12

2.2.2 DFS Characteristics . 12

2.2.3 HDFS . 13

2.3 Distributed Computing . 14

2.3.1 Distributed Computing Definition . 15

2.3.2 Programming Models . 15

2.3.3 MapReduce . 16

2.4 Named Data Networking . 17

2.4.1 NDN Architecture . 17

2.4.2 Naming . 19

2.4.3 Security . 19

2.4.4 Forwarding and Routing . 20

vii

Contents

2.4.5 Caching . 21

2.4.6 NDN Testbed . 21

2.4.7 Big Data on NDN . 21

2.4.8 Simulation on NDN . 21

2.5 Summary . 22

Chapter 3

Architecture and Specification 25

3.1 Named Data Networking Distributed File System 26

3.1.1 Architecture Overview . 26

3.1.2 Data replication . 26

3.1.3 Failure, Heartbeats and after failure replication 27

3.1.4 Protocol . 28

3.2 Computation distribution (NMapReduce) . 30

3.2.1 Architecture Overview . 30

3.2.2 Principle . 31

3.2.3 Protocol . 31

3.3 Formal Language . 33

3.3.1 Symbol . 34

3.3.2 Alphabet . 34

3.3.3 Word or String . 34

3.3.4 Formal language definition . 34

3.3.5 Grammar . 34

3.3.6 Context Free Grammar (CFG) . 34

3.4 Coq Proof Assistant . 35

3.4.1 Presentation . 35

3.4.2 Coq programming language . 35

3.5 Replication and computation language parser . 37

3.5.1 Parser definition . 37

3.5.2 Approach . 38

3.5.3 Coq Specification . 38

3.6 Theorems and proofs . 41

3.6.1 Correctness . 41

3.6.2 Completeness . 42

3.6.3 Consistency . 42

3.7 Summary . 42

viii

Chapter 4

Model Checking for System Verification 47

4.1 Real Time System Verification . 48

4.1.1 Automaton System Specification . 48

4.1.2 Time in Automaton . 49

4.1.3 Temporal Logic . 50

4.2 UPPAAL model-checking tool . 52

4.2.1 UPPAAL Automaton Formal Representation 52

4.2.2 Modeling and Validation with UPPAAL 53

4.2.3 Verification using UPPAAL . 55

4.3 System Modeling . 56

4.3.1 NDFS . 57

4.3.2 NMapReduce . 62

4.4 System Verification . 65

4.4.1 Communication properties . 66

4.4.2 Completeness properties . 70

4.4.3 Recovery properties . 72

4.5 Summary . 74

Chapter 5

Prototyping, Implementation and Simulation 77

5.1 Software Architecture . 78

5.1.1 Requirements . 78

5.1.2 Component diagram . 80

5.1.3 Scenarios . 81

5.2 Implementation . 88

5.2.1 Model based approach . 88

5.2.2 Prototype version . 90

5.2.3 Concrete version . 90

5.3 Simulation . 92

5.3.1 Tools . 92

5.3.2 Experiment . 94

5.3.3 Results and discussion . 95

5.4 Summary . 98

ix

Contents

Chapter 6

Experimentation and Results 101

6.1 Experimental Platform . 101

6.1.1 NDN experimental platform . 101

6.1.2 Hadoop experimental platform . 103

6.2 Evaluation and Comparison . 103

6.2.1 NDFS vs HDFS . 104

6.2.2 Hadoop MapReduce vs NMapReduce . 106

6.3 Use Case . 107

6.3.1 IoT . 107

6.3.2 Smart Grid . 111

6.3.3 Building Management System . 113

6.4 Summary . 116

Chapter 7

Conclusion and Perspectives 119

7.1 Summary of contributions . 119

7.1.1 Formal definition of a software architecture 120

7.1.2 Development of a framework . 120

7.1.3 Measurements for evaluation . 120

7.2 Future works . 121

Appendices 123

Appendix A

Replication language parser in Coq 123

Appendix B

Automation scripts 143

B.1 Framework installation . 143

B.2 Install NDN node from source . 144

B.3 Install NLSR from source . 144

B.4 Deploy Hadoop cluster . 146

Appendix C

NMapReduce WordCount script (JavaScript) 149

x

Appendix D

MapReduce WordCount source code (Java) 151

D.1 Mapper Class Code . 151

D.2 Reducer Class Code . 151

D.3 Main Class Code . 151

Appendix E

R script for simulation response computation 153

Bibliography 159

xi

Contents

xii

List of Figures

2.1 Big Data 5 Vs Characteristics . 6
2.2 Lambda Architecture . 8
2.3 Kappa Architecture . 9
2.4 Big Data layers . 12
2.5 HDFS Architecture . 14
2.6 Word count using MapReduce model . 17
2.7 NDN node Structure . 18
2.8 NDN Interest and Data packets . 19
2.9 Forwarding . 20
2.10 NDN Testbed (43 nodes, 121 links with NLSR costs) 23

3.1 NDFS Architecture . 27
3.2 Data replication in NDFS . 28
3.3 NMap Reduce Architecture . 31
3.4 Vernacular’s partial syntax of sentences . 36
3.5 Function example . 37
3.6 Parser generation process overview . 38
3.7 Coq model of a component . 39
3.8 Replication Language AST data structure . 40
3.9 Computation Language AST data structure . 40
3.10 Parser extraction commands . 41
3.11 Input and output specification for replication language 41
3.12 Input and output specification for computation language 41
3.13 Parser correctness proof . 42
3.14 Parser completeness proof . 42
3.15 Parser consistency proof . 43
3.16 Replication language grammar specification . 44
3.17 Computation language grammar specification . 45

4.1 Global scope declaration in UPPAAL . 54
4.2 UPPAAL timed automaton model GUI representation 55
4.3 UPPAAL timed automaton User model . 55
4.4 System declaration UPPAAL . 56
4.5 Storage node automata network . 57
4.6 Storage model . 58
4.7 Replication model . 59
4.8 HeartbeatChecker model . 60

xiii

List of Figures

4.9 HeartbeatResponder model . 61
4.10 Compute node automata network . 62
4.11 Compute model . 63
4.12 Processor model . 64
4.13 ComputationClient model . 65
4.14 Code model . 65
4.15 Property P1 UPPAAL verification . 66
4.16 Property P2 UPPAAL verification . 67
4.17 Property P3 UPPAAL verification . 68
4.18 Property P4 UPPAAL verification . 68
4.19 Property P5 UPPAAL verification . 69
4.20 Property P6 UPPAAL verification . 70
4.21 Property P7 UPPAAL verification . 70
4.22 Property P8 UPPAAL verification . 71
4.23 Property P9 UPPAAL verification . 72
4.24 Property P10 UPPAAL verification . 72
4.25 Property P11 UPPAAL verification . 73
4.26 Property P12 UPPAAL verification . 73
4.27 Property P13 UPPAAL verification . 74

5.1 Use Case diagram . 78
5.2 Component diagram . 80
5.3 Store data sequence diagram . 82
5.4 Retrieve data sequence diagram . 83
5.5 Delete data sequence diagram . 84
5.6 List all data sequence diagram . 85
5.7 Perform computation sequence diagram . 87
5.8 State design pattern structure . 89
5.9 Storage using state design pattern structure . 90
5.10 ndnSIM simulation package structure . 91
5.11 Fault tolerance sequence diagram . 94
5.12 Main Effect plot - Mean Replication Time . 96
5.13 Main Effect plot - Mean distance to data . 97
5.14 Main Effect plot - Mean Retrieval Time . 98

6.1 Cluster Architecture . 102
6.2 HDFS runtime vs NDFS . 105
6.3 IoT Big Data Architecture . 108
6.4 Average packet rate . 109
6.5 Compute request vs Execution - IP . 109
6.6 Compute request vs Execution - NDN . 110
6.7 Smart Grid Scenario Architecture . 111
6.8 Architecture . 114
6.9 Architecture with NDN . 115
6.10 Number of request vs cache hit . 116

xiv

List of Tables

2.1 Operational Big Data Vs Analytical Big Data . 9

5.1 ndnSIM Metrics . 93
5.2 Input Parameters and value simulated . 93
5.3 System Responses . 95

6.1 Evaluation parameters . 104
6.2 HDFS Throughput vs HDFS (Mbits/s) . 106
6.3 Hadoop MapReduce wordcount execution time vs NMapReduce (s) 107
6.4 Average packet rate in the case of IP-network, NDN-Network with cache and NDN

with DFS . 112

xv

List of Tables

xvi

Chapter 1

Introduction

Contents
1.1 Context and thesis motivation . 1
1.2 Problem statement . 2
1.3 Contributions and thesis plan . 3

This thesis has for title "Native Support for Parallel and Distributed Computing by the
Network" and deals with how future distributed systems should be designed and operate due to
the changes introduced by the evolution of computer networks to Information-Centric Networking
(ICN) protocols, and more specifically Big Data applications over Named Data Networking
(NDN). In this introduction, we first present the context and the motivations for this subject,
then we present the problem we address. Finally, we briefly present the specific contributions
of this work and how this document is organized. Our main objective is to provide useful
information that helps the reader to familiarize themselves with Named Data Networking, Big
Data, and also how to perform formal verification of systems from these domains.

1.1 Context and thesis motivation

Introduced as a Future Internet Architecture, NDN (Named Data Networking) is deeply changing
the way network communications are performed. Applications have to adapt to this new net-
working paradigm and these adoptions sometimes imply a complete change of how applications
are built.

This is the case for IM (Instant Messaging) for which, a new implementation has been pro-
posed with a serverless design approach, that enables IM clients to chat with each other without
infrastructure support over NDN [1].

Video Streaming is a widely used application over Internet today. An implementation of
NDNVideo was proposed for video streaming, it can provide reliable and rate-adaptive playback
with no session negotiation necessary between parties using NDN [2].

Big Data is a hot topic for almost all domains. In fact, every domain is looking for a way to
gain insight from data or simply find a way to manage huge volume of data. One of the most used
architecture in Big Data is the Lambda architecture [3]. This architecture has three layers: the
batch layer, the speed layer, and the service layer. Incoming data go through both the batch layer
and the speed layer. The data in the batch layer are immutable, it is never updated and new data
are added to the end of the file. Results that meet the business requirements are precomputed
using distributed processing systems. The speed layer deals with real-time data flow processing.

1

Chapter 1. Introduction

In this layer, stream processing frameworks such as Spark Stream or Storm are used. In the
service layer, the data from the batch views and those from the speed layer views are merged.
The Lambda architecture is independent of the technologies to be implemented. Beyond the
different architectures and technical solutions, to provide added value, we need to understand
the data lifecycle management. This data management can be viewed in two layers: a Data
layer used as a storage and a Compute layer used to perform computation on the stored data or
data coming in real-time. Both of them work at the application level when considering TCP/IP
communication. NDN enables in-network caching, meaning that the data are meaningful at the
network layer. Data here represent information from files or applications, but also the script
of any program and more generally any useful resource. This is a great advance in networking
and it also offers great possibilities such as moving the data management from the application
layer to the network layer. Managing data at the network level may have a significant impact on
data processing and also data availability. Data locality becomes then an important property.
This brings new challenges such as data freshness. Some data last longer than others, whereas
freshness is a constant associated with the data.

The objective of this thesis is to propose a Big Data architecture based on NDN. This will
respond to two subgoals: first, fill a gap concerning Big Data over NDN, and provide a continuity
of services; being able to perform duties while moving from TCP/IP to NDN (adopting NDN
as communication mechanism). We also capitalize and leverage NDN dissemination capabilities
to improve how Big Data is performed today (for example, dealing with small files). We first
propose a Distributed File System which we called NDFS (Named Data Networking Distributed
File System) for the data layer and also a Computation Distribution mechanism based on the
MapReduce paradigm called NMapReduce (Named Data Networking MapReduce).

1.2 Problem statement

In this doctoral thesis, we study the new content-centric architecture designed and proposed to be
the basis for the future Internet architecture. Named Data Networking architecture addresses the
data rather than the hosts of the network, implying that the routing mechanisms, applications
used in IP networks are no longer adequate for this new architecture.

Thus, NDN can not be fully functional without a redesign of applications and can not be
deployed to replace the current architecture of the Internet. In fact, the removal of IP ad-
dresses in the NDN approach and the adoption of a content-centric communication lead to data
dissemination on the network instead of a point to point communication pattern. Existing ap-
plications can’t function as they are, especially applications needing network communications.
It is therefore essential to propose new application mechanisms that are adapted to this network
architecture. This redesign will consist of changing the way applications are built, in such a way
that the network communication matches the one provided by NDN.

We focus in this thesis on Big Data architecture, namely a Distributed File System and a
Computation mechanism.

This architecture must also take advantage of new features provided by NDN architecture,
such as content caching. In-network caching is a technique that helps to accelerate content
distribution. It consists of storing part of data at the network level and then use it to satisfy
future requests for the data. There exist cache replacement mechanisms that are used to manage
the content of the cache when it gets full.

2

1.3. Contributions and thesis plan

1.3 Contributions and thesis plan

In this PhD thesis, we study the Named Data Networking Architecture and we propose a new
Big Data architecture based on this network architecture.

This is done by studying the problem considering different aspects. First, we start by defining
a software architecture using formal specifications. We then prove properties on the specification
to ensure invariants in the specified behaviors. Implementations for experimental validation of the
expected results are performed and finally, we consider performing measurements for comparison
purposes.

In this manuscript, we start by presenting in Chapter 2 the state of the art of Big Data,
Distributed System, Distributed Computing, and introducing the Named Data Networking,
its mechanism and methods of content distribution. Our Big Data architecture (NDFS and
NMapReduce) and a formal specification of its components in Coq are presented in Chapter 3.
In Chapter 4, we formally verify our architecture using formal methods. We prove properties
about it using the UPPAAL model checker. Chapter 5 presents the implementations of our
architecture and we evaluate the performance of our approach using simulation experiments on
a prototype version to highlight the main factor impacting the system. In Chapter 6, we eval-
uate our solution using some experimentations and present the different results which are then
compared with the Hadoop platform. We also consider three use cases where our approach is
used in real-life situations.

Finally, we conclude this work in Chapter 7 where we summarize our contributions and
present possible future research directions. We also list the various publications performed during
this thesis period.

3

Chapter 1. Introduction

4

Chapter 2

State of the Art

Contents
2.1 Big Data . 6

2.1.1 Big Data Definition . 6
2.1.2 Big Data Characteristics . 6
2.1.3 Big Data Architecture . 7
2.1.4 Technologies . 8
2.1.5 Applications . 9
2.1.6 Challenges . 10

2.2 Distributed File Systems . 12
2.2.1 DFS Definition . 12
2.2.2 DFS Characteristics . 12
2.2.3 HDFS . 13

2.3 Distributed Computing . 14
2.3.1 Distributed Computing Definition . 15
2.3.2 Programming Models . 15
2.3.3 MapReduce . 16

2.4 Named Data Networking . 17
2.4.1 NDN Architecture . 17
2.4.2 Naming . 19
2.4.3 Security . 19
2.4.4 Forwarding and Routing . 20
2.4.5 Caching . 21
2.4.6 NDN Testbed . 21
2.4.7 Big Data on NDN . 21
2.4.8 Simulation on NDN . 21

2.5 Summary . 22

In this chapter, we first present the Big Data domain and its challenges. Then, we present
the two main components of Big Data architecture, which are a Distributed File System (DFS)
(Section 2.2) and a Distributed Computing (2.3), and discuss the state of the art related to
each research domains. Finally, we conclude with a description of the Named Data Networking
paradigm (Section 2.4).

5

Chapter 2. State of the Art

2.1 Big Data

In this section, we define Big Data as it is pertinent to our work. We highlight its characteristics,
its main applications and the research challenges in this domain.

2.1.1 Big Data Definition

Several definitions for Big Data have been proposed over time as efforts have been made to
understand this domain [4][5][6][7]. Those definitions have been based on different concepts
related to big data such as the volume of the data, the engineering needed to process the data or
the value of the data, etc. The most popular among them which tries to combine almost all the
concepts is the one from Gartner [8]. According to this definition, Big Data is high-volume, high-
velocity and/or high-variety information assets that demand cost-effective, innovative forms of
information processing that enable enhanced insight, decision making, and process automation.
Called the "3Vs" definition, this definition characterizes big data according to three aspects
namely the Volume, the Velocity and the Variety of the data. Big Data is a large relative concept
that is evolving. Today’s big data may not be tomorrow’s big data. A big data challenge for an
organization may not be a big data challenge for another organization.

From all of these, we provide our definition of big data. Big data for an organization is a
collection of large volumes of data, coming from a variety of sources, fast and in complex formats
that cannot be processed using traditional computing techniques at the given organization.

2.1.2 Big Data Characteristics

Big Data is generally characterized by the Volume, the Velocity, the Value, the Veracity and the
Variety of the data. These are commonly referred to as the Big Data five Vs (Figure 2.1).

Figure 2.1: Big Data 5 Vs Characteristics

6

2.1. Big Data

Volume

This aspect is related to the scale of the data. With current technologies, the hard disk size is
growing faster than their read speed. The volume refers to the size of the data sets that need
to be stored, read, analyzed and processed. Depending on an organization to another, the size
of the data is frequently ranging from gigabytes to petabytes. Due to that size, the data re-
quire particular processing technologies than commonly used storage and processing capabilities.
Namely, the data sets are too large to be processed using a simple computer. The 26 billion
emails per day Yahoo has to deal with for its users is an example of a high-volume data set.

Velocity

This aspect is related to the analysis of the data. It refers to the speed and frequency at which
the data to be processed is generated. According to this aspect, an analysis approach [9] (batch,
real/near time, stream processing) will be chosen. The batch processing approach is no longer
enough, and one might think of a computation where the data represent a potentially infinite
stream of data processed as soon as elements appeared. Facebook status updates or Twitter
messages are examples of data generated with high velocity.

Value

This aspect is related to the usefulness of the data. It refers to the worth of the data. When
collecting data, unless the collected data are turned into value, it is useless. This value is very
often the reason why the data are stored or not.

Veracity

This aspect is related to the uncertainty of the data. It refers to data reliability. Low veracity
data, is data containing a high percentage of meaningless information also referred to as noise.
High veracity data are data containing a high percentage of information that is trustworthy.

Variety

This aspect is related to the different forms of data. The data can be structured, unstructured
or semi-structured.

Structured data generally refer to relational data. These data reside in a specified format.
As an example, name, phone number, address, date amount, etc. These are the data contained
in relational databases and spreadsheets.

Unstructured data refer to data that don’t have a predefined data model. Data like PDF,
Word, Text, audio, video, Media Logs, fall into this category.

Semi-structured data are data that have some organizational properties which ease their
processing but do not reside in a relational database. Very often, some processing on the data
can allow one to store them in a relational database. CSV data are an example of semi-structured
data. NoSQL databases (often non-relational) are preferred for some data such as timestamped
data.

2.1.3 Big Data Architecture

Many architectures have been considered for Big Data. The two dominant ones are Lambda
Architecture and Kappa Architecture.

7

Chapter 2. State of the Art

Lambda Architecture

Lambda architecture (Figure 2.2) has been proposed by Nathan Maz [3]. It has three layers: the
batch layer, the speed layer, and the service layer. Incoming data go through both the batch
layer and the speed layer. The data in the batch layer are immutable, they are never updated
and new data are added to the end of the file. Results that meet the business requirements are
precomputed using distributed processing systems. The speed layer deals with real-time data
flow processing. In this layer, stream processing frameworks such as Spark Stream or Storm are
used. In the service layer, the data from the batch views and those from the speed layer views
are merged. These operations involve data locks at runtime and could involve latencies.

Figure 2.2: Lambda Architecture

Kappa Architecture

Kappa architecture (Figure 2.3) has been proposed by Jay Kreps [10]. In this architecture,
everything is considered as a stream. It has two layers: a real-time layer and a serving layer.
The real-time layer is used for data processing of the incoming data streamed through this layer.
The serving layer receives the results from the real-time layer and is used for queries regarding
these results. This architecture reduces the data locks, but the data storage is limited to the use
of log files. In this context, a message broker like Apache Kafka can play the role of a distributed
file system. Every queue has an address and is bound to a topic of exchange.

2.1.4 Technologies

Provided by different vendors such as Hortonworks, IBM, Amazon, Cloudera, Microsoft, etc.,
these technologies are important in providing infrastructures and means to manage and process
huge volumes of structured, unstructured and semi-structured data. Big data technologies are
divided into two categories: Operational Big Data and Analytical Big Data. Table 2.1 gives an
overview of both classes.

8

2.1. Big Data

Figure 2.3: Kappa Architecture

Operational Big Data

Operational Big Data applications include MongoDB and Cassandra databases. The goal is to
provide a faster and better way to deal with a large amount of data distributed over many sources.
This is generally done using cloud computing architectures, allowing efficient and inexpensive
massive computation. This makes operational big data workloads cheaper, faster to implement
and much easier to manage. They also have capabilities for real-time analysis through the use
of streaming frameworks such as Spark [11] or Flink [12].

Analytical Big Data

Analytical Big Data applications are systems that analyze data in a batch or interactive pro-
cessing for retrospective and complex analysis. Analytical Big Data systems include Massively
Parallel Processing database systems [13] and MapReduce (Section 2.3.3).

Operational Analytical
Latency 1 ms - 100 ms 1 min - 100 min

Concurrency 1000 - 100,000 1 - 10
Access Pattern Writes and Reads Reads

Queries Selective Unselective
Data Scope Operational Retrospective
End User Customer Data Scientist
Technology NoSQL MapReduce, MPP Database

Table 2.1: Operational Big Data Vs Analytical Big Data

2.1.5 Applications

Big Data is in use in every domain today. Most of the time, the use of Big Data is to enable
processing for high volume or high-velocity data to increase productivity. In this section, we will
give some application domain examples.

Banking

In this sector, Big Data is used for many purposes. It helps to improve employees’ performance
and management [14], improve cybersecurity and risk management, detect fraud and illegal
activities [15][16]. It is also used for cost-saving and reduces the risk of failure by optimizing and

9

Chapter 2. State of the Art

automating business processes [15]. In the stock market, it is used for short and medium-term
predictive analytics [17].

Healthcare

The advent of many healthcare connected devices has increased the amount of data generated
which organizations in this sector have to deal with. Big Data is used to predict the number of
patients visiting at specific times to improved staffing [18]. It helps to improve medical screening,
prognosis and diagnosis [19]. Big data applications are also used to predict locations where there
is a chance of specific disease to spread [20].

E-commerce

In this domain, Big Data is used to increase the overall profitability [21], by helping to decrease
product returns, offer customized promotions to customers, for example when a product is added
to cart but was not bought by the customer, increasing the average revenue per customer. It is
used to learn what customers really want and then deliver them accordingly [22].

Government

Governments need to deal with various complex issues on a daily basis at many levels. Big
data has a very wide range of applications such as fraud detection, environmental protection,
national security, scientific research, financial debts data management, taxes and tax categories
management, cybersecurity, crime prediction and prevention, and financial market analysis [23].

Social Media

This sector can be seen as a cross-sector between all the others, as the data from this sector are
also of benefit to the others. Marketing is one of the most impacted, where big data from social
media can be used to better understand users, by analyzing their preferences, behaviors [24], in
geo-marketing, challenge zones are recast based on visitors surfing in a commercial zone. Big
data is also used to support healthcare in detecting disease spread [25].

2.1.6 Challenges

Big data came with many challenges and some of them are still prevalent. Those challenges are
technical and non-technical. We will focus only on the technical ones in this part. The main
challenges include storage, integration, processing, privacy, and security. In this section, we will
discuss these challenges and the proposed solutions.

Storage

This is the most obvious challenge associated with big data. How to store the rapidly growing
data in an efficient way that can ease the processing, while preserving the CAP theorem (Consis-
tency, Availability, Partition Tolerance) introduced by Eric A. Brewer [26]. Traditional storage
approaches consist of storing data in flat files as a record of various fields which are delimited
by a space, comma, pipe, or any special character directly on the operating system’s file system.
Another approach is the use of traditional databases such as MySQL. These traditional storage
approaches are difficult to apply in a big data context due to the increase in data generation.
Advanced techniques such as cloud storage [27] (including Distributed File System) have been

10

2.1. Big Data

proposed as a solution to deal with data in a Big Data context. The use of data replication along
with data integrity preserved by data consistency in all the location, help users and applications
to access the data consistently. New schema-free databases approaches such as Apache HBase
[28], and Apache Cassandra [29] are emerging and becoming core technology for Big Data. They
provide replication, consistency and support large scale data.

Integration

Big Data integration is an important phase in a big data project [30]. How to combine data
coming from different sources, under different formats and being able to give a unified view of
the data. ETL (Extract, Transform, and Load) [31] technologies such as Flume [32], are used to
provide a way to move data from one or many sources and send them to another data environment
in traditional data warehouses [33]. These technologies need to be improved to work within big
data environments, due to the increasing variety and volume when dealing with big data [34].
To reduce the load time, new approaches have been considered [35]. ELT (Extract, Load, and
Transform), opposed to traditional ETL approaches, is an approach for data integration process
consisting of transferring raw data from the sources directly into the target and then perform
the transformation there. Tools in this context, usually enable batch integration processes and
real-time integration across several sources. Tools such as Talend [36], Sqoop [37] and Scribe [38]
are the most used.

Processing

After the successful integration of the data and their storage, the next step is to get useful
information from the data. How to efficiently process the generated large data sets. Data
processing is a real challenge due to the volume of the data and their complexity (structured,
unstructured, semi-structured, ...) [39]. Traditional approaches based on local processing lack
the capacity to handle such data. Distributed computing such as MapReduce [40] is now widely
used for processing large data sets. It consists of parallelizing the computation on a cluster of
nodes. This aspect will be cover in detail in Section 2.3. Other applications such as Spark [11],
Hive [41], Flink [12] are also used to support the data processing.

Security and privacy

Security and privacy are also big challenges to deal with in big data context [42]. The replication
of the data and the use of distributed computation on many nodes create an environment difficult
to secure but highly vulnerable to attack [43]. Data integrity and confidentiality implementation
are also difficult and complex [43]. The value of a big data deployment can be interesting for
attackers. Valuable information can be used, sold if an unauthorized user succeeds to gain access
to a big data platform. Nowadays ransom demands related to information systems are increasing.
Data might be lost in case of a successful ransomware attack, recovering from such an attack
can be very challenging and costly. Traditional security tools are improved to cope with the
scalable aspect of big data, with the ability to secure multiple types of data in different stages.
Tools are for example encryption [44], Access Control [45], Intrusion Detection and Prevention
[46], ... We also have Apache Ranger [47] which provides comprehensive security across the
Apache Hadoop ecosystem and Apache Knox [48] which provides a secure way for interacting
with Hadoop clusters.

11

Chapter 2. State of the Art

2.2 Distributed File Systems

Storage is the first layer in a Big Data architecture (Figure 2.4). Many works [49] [50] have been
conducted to be able to deal with the scalability of the data, and also the velocity at which data
are being produced. The proposed approaches tend to improve how data are stored in such a
way that ease big data processing. In this section, we define DFS, their characteristics and give
examples of the most used ones.

Figure 2.4: Big Data layers

2.2.1 DFS Definition

Before defining a DFS, it is good to know what a distributed system is. A distributed system
is a collection of autonomous computing elements (hardware devices or software processes),
collaborating and appears as a single coherent system (users or applications perceive a single
system) [51]. From this definition, we define a distributed file system which is a type of distributed
system [52]. A DFS is a file system residing on a collection of nodes but appears as a single
integrated file system. It allows users to store and share data, but also working capability with
the data as if the data were located on the user’s computer.

2.2.2 DFS Characteristics

A distributed file system should have the following characteristics [52].

Transparency

A DFS has to provide different types of transparencies for the user such as access, location,
relocation, migration, replication, concurrency failure. The DFS has to hide differences in data
representation and the way data are accessed, the true location of the data. If the data are
moved from a location to another one, that moving has to occur discretely. The fact that the
data are replicated has to be hidden to the user, and also nodes failure and recovery.

Performance

The amount of time needed by a DFS to satisfy client requests such as data replication or data
retrieval has to be good on average. This should also be the case when dealing with a large
number of users. Also, the performance of a DFS should not depend on explicit file placement
[53].

Scalability

A good Distributed File System should be able to support an increase in the number of nodes
without causing any disruption of service or being noticed by the users. This characteristic

12

2.2. Distributed File Systems

also includes the fact that the system should cope with a high service load and being able to
accommodate the growth of the number of users or the resources. The scalability can be up and
down.

High availability

A distributed file system should be resistant to failure. It should continue to operate in case of
partial failures such as a storage device failure, a link failure, or even a node failure. Availability
can be achieved through the use of file replication.

High reliability

A DFS should have a low probability of stored data loss. The System should provide a data
recovery mechanism in the event of a loss. Having a good failover mechanism can help to achieve
this goal.

Data integrity

A DFS should preserve the accuracy and consistency of the data when dealing with concurrent
access requests from multiple users.

Security

The nature of a distributed system makes it much more prone to attack. Communication through
the network can be intercepted. A DFS must provide data security to preserve data confidential-
ity and privacy. The resources must be protected from misuse and malicious use. Stored data
protection mechanisms should be implemented.

2.2.3 HDFS

In this section, we present one of the most used DFS. This DFS is compared to our DFS in
Chapter 6.2.

HDFS is a distributed, scalable, and portable file-system used in the Hadoop framework. It is
used to store large files across multiple commodity hardware. It has a master/slave architecture
(Figure 2.5). All servers are connected and the communication between them is made using
TCP/IP based protocol. A master server, called NameNode is responsible for keeping and main-
taining the file system namespace, storing file system metadata and coordinates the operations
on the cluster such as finding where to store the replicated files and ensuring that the system
performs correctly. The slave servers are called DataNodes. Their role is to store application
data and provide access to the data.

HDFS supports data replication. In fact, when storing data on the DFS, the data are repli-
cated on many DataNodes for reliability based on the replication factor, which is 3 by default.
When there is a need for a client application to read or write data, the client sends a message
to the NameNode which checks where the operation should be performed. The NameNode then
sends the information about the location to the client which can directly read or write to the
DataNodes specified by the NameNode.

With all the functionalities and the position of the NameNode within the cluster, it can be
considered as a Single Point of Failure (SPOF) [54]. The loss of the NameNode would result
in a loss of the entire cluster. To try to solve this issue, the Apache Software Foundation

13

Chapter 2. State of the Art

has introduced an active/passive mechanism with the use of a second NameNode which is in a
passive mode [55]. The active NameNode manages the clients’ operations in the cluster, while
the passive NameNode is in standby mode, acting as a slave, and having similar data as the
active NameNode. It is used to provide failover in case of an issue with the active NameNode.
Thus, when the active NameNode fails, the passive NameNode takes control and replaces the
active node for the cluster to continue working. This approach brings some issues in terms of
data consistency. In fact, there should always exist a perfect synchronization between the active
and passive NameNodes to re-instantiate the cluster to the same state in case of a crash of the
active NameNode [56]. Also, only one NameNode should be active at a time on the cluster.
Having both NameNodes active will result in data corruption [57].

Furthermore, HDFS is inefficient in dealing with small data [58]. In fact, Big Data archi-
tectures may be required to handle a large collection of smaller datasets [59]. HDFS still faces
challenges in this field of Big Data, for example, the lack of efficiency in the random reading of
small files. The problem is that HDFS can’t handle lots of files. Every file, directory, and block
in HDFS is represented as an object in the NameNode’s memory, each of which occupies 150
bytes. So 10 million files, each using a block, would use 3 Gigabytes of memory. Scaling up much
beyond this size is a problem with current hardware.

Figure 2.5: HDFS Architecture

2.3 Distributed Computing

After storing the data, one needs to gain insight from them. Distributed computing is the key to
handle the deluge of data we have seen coming in recent years. It constitutes the second layer in
a Big Data architecture (Figure 2.4). In this section, we define distributed computing, we give
the main idea behind programming models and finally, we present MapReduce.

14

2.3. Distributed Computing

2.3.1 Distributed Computing Definition

Born in the late 1970s, distributed computing can be defined as an approach of using distributed
entities (usually called processors, nodes, processes, actors, agents, sensors, peers, etc.) to solve
computational problems [60]. The problem is generally divided into many tasks, which are
executed by one or more entities communicating with each other on a network [61]. This is done
in such a way that each entity has only partial knowledge of the parameters involved in the
problem that has to be solved. Data replication is also used to make sure that the failure of one
node does not cause the failure of the entire computing. This approach is used when the working
data set or problem to solve will take too long to execute on a single machine or fit on a single
machine in memory.

2.3.2 Programming Models

A distributed application consists of a set of programs that are distributed over several nodes,
which execute a script on data. In most cases, a parallel algorithm is obtained by splitting the
data into pieces and defining a task for each part of the data. Each task is then assigned to
a particular node. It is necessary to implement communications between the nodes executing
the dependent tasks, except in the case where the processing of a task does not depend on the
other tasks. Algorithms can, therefore, be broken down into calculation steps and communication
steps. One of the main goals for distributing an algorithm is to reduce its execution time. During
the execution, two requirements have to be constantly checked: minimize the communication and
balance the workload between the available nodes.

The life-cycle of a distributed application can be described in 5 steps as follow:

• System initialization using user-supplied settings

• Data pre-processing

• Computation distribution on a maximum of available nodes

• Parallel processing at each node.

• Results collecting and post-processing for final result computation.

The master-slave paradigm is one of the simplest approaches for creating a distributed appli-
cation. This consists of creating a "master" program that triggers other programs, called "slave",
and waits for the end of their execution to retrieve their results. The process running the master
program deals with the results one by one or aggregates them to start subroutines (slaves) or
finalize the computation.

In the remainder of this section, we present some of the most popular and important pro-
gramming models which can be used to design distributed computing applications.

Message passing

The concept of message is the main abstraction with this paradigm. In this model, several
processes work on local data. Each process has its own variables and does not have direct access
to the variables of other processes. To exchange data, processes explicitly encode the data in the
form of a message and send them to each other. The content and structure of a message vary
according to the model. Message Passing Interface (MPI) [62] is considered as the standard for
parallel message exchange programming. Another example of this model is the OpenMP (Open
Multi-Processing) [63].

15

Chapter 2. State of the Art

Remote Procedure Call (RPC)

This paradigm extends the concept of procedure call at a multi-process level. It allows the
execution of code in remote processes located on another entity on a shared network as if it
were a local procedure call. This approach relies on a client/server architecture. A server
component is hosted by a remote process that allows client processes to request the invocation of
methods, and the server returns the result of the execution requested. Communications between
server and clients are often handled by a middleware. An example is the Common Object
Request Broker Architecture (CORBA) [64]. CORBA is a specification standardized by the
Object Management Group (OMG). It provides automation of communication tasks, location,
activation of objects, and the transmission of messages exchanged between systems irrespective
of the platform and language used to develop. Another example is the ESB (Enterprise Service
Bus) in SOA architecture 1.

Shared memory

The concept of shared memory is very often based on threads provided by operating systems.
In this model, several tasks (threads) run in parallel, communicating with each other by reading
and writing in physically or virtually shared memory. This programming model is the one
implemented within Spark [11], where the context is distributed among the computing nodes.

2.3.3 MapReduce

The MapReduce programming model is derived from the map and reduce combiners of functional
languages like Lisp [65]. In this type of languages, a map goes through a list of elements and
independently applies an operation on each element. Reduce combines the elements of a list using
a binary operator. To use the MapReduce model, the developer must define a Map function that
processes input data and a Reduce function that processes the results of the Map function, to
produce the final result. Figure 2.6 shows the data flow when applying the MapReduce model.
First, the input data are divided into blocks and distributed over the compute nodes. Nodes are
classified into two categories: those that perform the Map function (called Mapper) and those
that perform the Reduce function (called Reducer). Mapper nodes apply the Map function to
each data block. The result of this execution is a list of pairs that associate a key k with a value
v (list (k, v)). These new data generated are called intermediate results. Each Reducer node
retrieves all the values v that are associated with a key k and applies the Reduce function to all
the values ((k, list (v)). Finally, the results computed by the Reducer nodes are assembled to
give a final result.

The Open Source Hadoop project [55] provides an implementation of the MapReduce model.
It defines two types of components: a jobtracker and several tasktrackers. They control the
process of executing a MapReduce operation, which is called a job in Hadoop.

The jobtracker coordinates the execution of jobs across the cluster. It communicates with
tasktrackers by assigning them execution tasks (Map or Reduce). It allows having a global vision
on the progression or the state of the treatment distributed via an administration console. The
jobtracker is a process that runs on the same node as the namenode. This is the case because the
jobtracker should run on a master node and also because the namenode stores metadata about
the data. So there is only one instance per cluster.

1https://www.opengroup.org/soa/source-book/soa/p1.htm

16

2.4. Named Data Networking

Tasktrackers perform the tasks (Map or Reduce) within a new JVM (Java Virtual Machine)
that they instantiate for each task. A tasktracker is configured with a set of slots. A tasktracker
can accept a task per slots such as a Map, a Reduce or a Shuffle. Thus, a crash of the vir-
tual machine will not impact the tasktracker. In addition, tasktrackers periodically inform the
jobtracker of the progress level of a task or errors so that it can reprogram and assign a new
task. A tasktracker is a process that runs on the same node as a datanode. This is because the
datanodes store the actual data, and the goal is to perform the computation very close to the
data. So there are as many instances as there are datanodes. The communications between the
different nodes (namenode / datanode, jobtracker / tasktracker) are carried out by RPC.

Figure 2.6: Word count using MapReduce model

2.4 Named Data Networking

Part of the Information-Centric Networking (ICN), the Named Data Networking architecture
[66] is a fork of the CCN project originally proposed by Van Jacobson [67] in 2006. The CCN
(Content-Centric Networking) project [68], initiated by the Palo Alto Research Center (PARC)
has a proprietary architecture and has been acquired and managed now by CISCO. The NDN
project is managed by UCLA with an open-source code. Many other architectures such as the
Data-Oriented Network Architecture (DONA) [69], (Publish-Subscribe Internet Technologies)
PURSUIT [70], and the Network of Information (NetInf) [71] have been proposed in the ICN
context. In this section, we present NDN in more detail.

2.4.1 NDN Architecture

NDN architecture moves the current host-to-host communication model to a general-purpose net-
work model supporting requests for named data. NDN has two types of applications: Producers

17

Chapter 2. State of the Art

and Consumers. Producers advertise name prefixes for the content they can serve. Consumers
send Interest packets to retrieve data by name. In this approach of network communication, we
lose the notion of source and destination addresses.

Each NDN node has three main components (Figure 2.7):

• Forwarding Information Base (FIB): The FIB stores the different available routes to forward
an Interest packet toward the requested content potential source (Producer). It is similar
to IP routing tables with a difference in that it maintains data name prefixes instead of
IP addresses. Instead of having a single best next-hop (next closest node a packet can go
through) as in IP, FIB in NDN contains a ranked list of multiple interfaces and forwarding
decisions for each Interest packet is based on a forwarding strategy module. The forwarding
mechanism is discussed in more detail in Section 2.4.4.

• Pending Interest Table (PIT): The PIT allows a node to keep a list of Interest packets that
have been forwarded and are waiting for a response. It also stores the interfaces on which
they were received. One of the main objectives of the PIT is to avoid the forwarding of the
same Interest. There is an entry for each pending content name so that if two Interests for
the same content are received, it will be forwarded once. PIT entries are also used so that
Data messages can use the reverse path of the Interest packets.

• Content Store (CS): the CS is a cache memory that allows the storage of Data packets
received. It is in this table that all the answers that could potentially satisfy future Interest
packets are stored. Each NDN node can answer directly an Interest request if the data are
available in its Content Store. Its management can be done using different cache strategies.
Many researches have been performed to manage the CS [72] [73] [74].

Figure 2.7: NDN node Structure

18

2.4. Named Data Networking

In the NDN architecture, for a user to get a content, he sends an Interest packet (Figure 2.8)
on the network, using the node network interface (Face0 or Face1 on Figure 2.7) which will be
answered with a Data packet (Figure 2.8) on the same interface. Interest packet contains the
name of the data (representing the prefix of the data), as well as a nonce (randomly-generated
4-octet long byte-string) and several fields possible options such as the validity period of the
request or the owner’s public key who signed the message. Data packets are composed of the
name of the data (the same prefix as the Interest packet), the content itself and the signature
of the content. The network has an important task to resolve name queries in order to allow
the routing of the data to the user. The NDN architecture enables caches, several copies of the
same content may be present in different nodes of the network. Data can then be served from
different nodes in the network.

Figure 2.8: NDN Interest and Data packets

2.4.2 Naming

The basis of the exchanges in NDN is data. Each content is identified by a name or prefix which
has a hierarchical structure like Unified Resource Identifiers (URI) [75]. This naming has the
advantage of having a semantic meaning for users. For example, the prefix /lacl/papers/2019/
stored in a forwarder may allow a node to properly forward all the Interests for the papers
published the year 2019 by researchers from our laboratory. The hierarchical naming system
offers the possibility for prefix aggregation. For example /lacl/data/audio/call.mp3/part1/
and /lacl/data/audio/call.mp3/part2/ identify two data that can be aggregated by the same
prefix /lacl/data/audio/call.mp3/.

2.4.3 Security

NDN secures the content itself instead of the communication channel as in IP architecture.
When created by an application, each piece of data is signed together with its name. With this
approach, data integrity, pertinence and provenance can be verified by any node on the network
using the data producer’s public key, which allows users to trust data independently from where
and how the data are obtained. This aspect is important because of the possibility NDN offers
to retrieve already available data from cache with an intermediate node instead of forwarding
the Interest to the producer. One question that can be asked is how to prevent access to certain
data, as there is no information about the source and the destination in Interest or Data packet.

19

Chapter 2. State of the Art

Content access control can be managed using encryption and the decryption keys distributed as
encrypted data [76]. Thus only nodes allowed to access that data will have the decryption key
and able to access the data.

2.4.4 Forwarding and Routing

The routing is performed by an application called NDN Forwarding Daemon (NFD). When a
forwarder receives an Interest packet (Figure 2.9), it first checks its Content Store (CS) if the
data are already available. If the data are found, they are sent back using the incoming interface
of the Interest and the Interest is not forwarded because it is considered satisfied and dropped.
Otherwise, the forwarder performs a PIT entries lookup. When an entry is found, that entry is
interpreted and an action performed. If it’s a duplicate Interest, it is dropped. If it’s an Interest
retransmitted by the consumer, it can be forwarded using a different outgoing interface. In the
case of an Interest for the same data from another consumer, then the incoming interface of the
Interest is added to the requesting list in the existing PIT entry, and the Interest is dropped.
When the data are found, a copy is sent back using the Interest incoming interfaces. If the
Interest name is not in the PIT, a new PIT entry for the incoming Interest is created by the
forwarder, and it looks up for the Interest name in the FIB table. If no FIB entry matches the
Interest name, the Interest is dropped and a NACK is sent on the incoming interface. Otherwise,
the incoming Interest will be forwarded using the interface provided by the forwarding strategy
module based on the active forwarding strategy. When a forwarder receives a Data packet, it
performs a PIT entries lookup. If a matching entry is found, the forwarder sends the Data packet
to all the interfaces from which the Interest was received and clears the entry from the PIT. The
Data packets take the same paths of Interests in the reverse direction. If no match is found, the
Data packet is discarded. Each Interest also has an associated lifetime set by the consumer; a
PIT entry is removed if the Interest is not satisfied before its lifetime expires. According to its
caching policy, a forwarder stores the received Data packet in its CS. Many routing protocols such
as Hyperbolic routing [77] and the NDN Link State Routing (NLSR) [78] have been designed to
help the forwarder.

Figure 2.9: Forwarding

20

2.4. Named Data Networking

2.4.5 Caching

NDN enables automatic in-network caching. Nodes in the network can keep a copy of the content
that has been forwarded through them. The contents are disseminated in the network and are
closer to the users. Thus, the Interest will potentially encounter a closer node holding the content
and not be propagated to the original producer, which will reduce the load on this producer and
limit the impact of a search in the network. Delays in accessing content are reduced for the users
and their quality of experience is improved.

2.4.6 NDN Testbed

An open platform of shared resources has been created for research purposes. The NDN testbed
allows researchers to design, test and deploy new NDN-based solutions at large scale. This testbed
includes software routers and has several participating institutions, application host nodes, and
other devices. The Algorithmic, Complexity and Logic Laboratory (LACL) is part of the testbed
(Figure 2.10). Participating in this testbed is a great opportunity for us to test applications on
a real scale.

2.4.7 Big Data on NDN

Adopting NDN as the Future Internet architecture [68] [79], implies a rethought of applications in
almost all domains [80] [81] [2]. Big Data topic is also concerned by this move. In [82], a big data
platform running on NDN has been proposed by porting Hadoop on NDN. NDN is data-centric
and Hadoop is designed for address-based IP architecture. Therefore, Hadoop native code must
be modified to run on NDN. While it has been possible to run Hadoop on NDN, the single point
of failure issue of Hadoop still holds.

In [83], a Named Data Storage System (NDSS) has been proposed for NDN architecture.
NDSS adopts named data to describe network packets and local storage. Data blocks are stored
on the local machines in the file system, and metadata of blocks are managed by a central node.
There is no replication of the data and NDSS implies a redesign of NDN architecture. Finally,
NDSS nodes can’t be used for another purpose. This work shows the advantages of the use of
NDN in a distributed context. Based on that, our approach is to avoid the use of a central
component in the DFS architecture.

The project NDNFS aims to provide a file system over an NDN network and support effi-
cient data access [84] by local and remote applications. This result is essential for many data
usages; but in the case of big data applications, rules such as data availability through the use
of replication and failover modes are added.

2.4.8 Simulation on NDN

Simulation has been for a long time a good way to run network experiments. In fact, they allow
the execution of multiple scenarios for testing and validation purposes quickly, without the need
to buy costly network equipment. ndnSIM [85] has been developed based on ns-3 [86] to provide
a simulation environment for NDN experiments. This simulator meets the latest advances in
NDN development.

In military communications [87], L. Zhang et al. studied the Army’s Warfighter Informa-
tion Network-Tactical (WIN-T) and the Navy’s Automated Digital Networking System (ADNS)
through emulations. They showed that NDN provides better efficiency in terms of average de-
livery delay, maximum delivery delay and bandwidth consumption than TCP-Based FTP.

21

Chapter 2. State of the Art

Other network simulators have since been adapted to be able to run NDN experiments with
them. This is to benefit from specificities proposed by those simulators. This is the case for
example for the OPNET simulator [88], wherein [89], Hafnaoui TALEB et al. used it to eval-
uate their NDN proposed multi-layer architecture for energy-aware Wireless Sensor Networks
integration on the cloud computing.

2.5 Summary

In this chapter, we have presented the state of the art related to the context of the research in
which this thesis is situated. Big data is in use in every domain. A lot of challenges related to
big data still exist today. For example, the SPOF in distributed file systems, also transparency
in distributed computing needs to be improved. NDN enables in-network caching which leads
to improving data transfer across the network and improves computation in big data. NDN
appears to be a good candidate to improve big data storage and processing. In the next chapter,
we propose a big data architecture based on NDN with a fully distributed approach to maintain
the replication coherence without any need for a central component.

22

2.5. Summary

F
ig
ur
e
2.
10

:
N
D
N

T
es
tb
ed

(4
3
no

de
s,

12
1
lin

ks
w
it
h
N
LS

R
co
st
s)

23

Chapter 2. State of the Art

24

Chapter 3

Architecture and Specification

Contents
3.1 Named Data Networking Distributed File System 26

3.1.1 Architecture Overview . 26
3.1.2 Data replication . 26
3.1.3 Failure, Heartbeats and after failure replication 27
3.1.4 Protocol . 28

3.2 Computation distribution (NMapReduce) 30
3.2.1 Architecture Overview . 30
3.2.2 Principle . 31
3.2.3 Protocol . 31

3.3 Formal Language . 33
3.3.1 Symbol . 34
3.3.2 Alphabet . 34
3.3.3 Word or String . 34
3.3.4 Formal language definition . 34
3.3.5 Grammar . 34
3.3.6 Context Free Grammar (CFG) . 34

3.4 Coq Proof Assistant . 35
3.4.1 Presentation . 35
3.4.2 Coq programming language . 35

3.5 Replication and computation language parser 37
3.5.1 Parser definition . 37
3.5.2 Approach . 38
3.5.3 Coq Specification . 38

3.6 Theorems and proofs . 41
3.6.1 Correctness . 41
3.6.2 Completeness . 42
3.6.3 Consistency . 42

3.7 Summary . 42

25

Chapter 3. Architecture and Specification

In this chapter, we aim to define an architecture for Big Data application processing based
on NDN [79]. Based on best practices and guidelines on big data applications development using
the Hadoop framework [49], two layers are considered: a data layer where data are split into
segments and a compute layer where the application reads the data and computes a new view.
First, the data are imported from the local file system into a distributed file system. Next,
computation over the stored data is launched over the network. When the computation is done,
the results are saved over the NDN nodes and finally exported into the local file system if needed.

We define the architecture of these layers (Section 3.1 and 3.2), define formal languages
(Section 3.3) and formally specify each component using Coq proof assistant (Section 3.4 and
3.5). We also formally verify each component by proving properties about them (Section 3.6).

3.1 Named Data Networking Distributed File System

In this section, we present NDFS (Named Data Networking Distributed File System), a fully
distributed, resilient, and scalable DFS (Distributed File System). Our solution is not based on
TCP/IP Internet architecture as we aim to deploy it on NDN. Our DFS protocol uses only NDN
architecture defined messages (Interest and Data) (Section 2.4) to manage the communications
between the nodes. We first present the different components of the architecture, the main
operating principle, and the failover mechanism. We then through an example explain and
illustrate the different prefixes of the Interest messages used by the protocol.

3.1.1 Architecture Overview

NDFS is a DFS based on NDN. It consists in a cluster of a set of nodes called Storage (Figure 3.1)
whose function is to replicate data, manage the file system and ensure that the system performs
in good conditions. They perform the functions of both a namenode and a datanode in HDFS
[49]. A ReplicationClient node is a node running an application which is used to load data into
the DFS (Distributed File System).

NDFS has a client/server architecture between the ReplicationClient and the Storages, and
a peer to peer architecture between the Storage nodes. All the Storage nodes play the same role.
This approach avoids the use of a central component for the DFS management, avoiding a Single
Point of Failure issue (SPOF).

3.1.2 Data replication

The working context considered is where the data are replicated for better availability. The data
block size and replication factor are configurable in big data context.

An application can only specify the number of replicas of a file (replication factor). This
number should be chosen by the user when importing the file into the DFS unlike Hadoop where
this feature is fixed by the big data platform administrator for all the files.

The placement of replicas is crucial for reliability and performance. The purpose of a node
replica placement policy is to improve data reliability, availability, and network bandwidth uti-
lization. The caching availability of NDN (Section 2.4.5) gives the possibility to not bind the
replica distribution to the node location as it’s the case with HDFS where two replicas should
not be distributed on the same rack [55]. The current implementation for the replica placement
policy consists of a node set which advertises their storage capability. These nodes called Stor-
age Nodes are the ones responsible for replicating the data and are those holding copies of the

26

3.1. Named Data Networking Distributed File System

Figure 3.1: NDFS Architecture

data. The ReplicationClient advertises the name of the data it wants to replicate and sends an
Interest to store this data on the DFS with a replication factor. Because of their capability, the
Storage nodes will maintain full or partial copies of the data and advertise the data name over
the network. By the end of this dissemination, the data will be replicated as much as requested
by the ReplicationClient, which receives an Interest about the end of this deployment which in
turn allows for the start of a first computation with the data.

3.1.3 Failure, Heartbeats and after failure replication

By maintaining data on many nodes, a potential failure on the nodes may occur. Therefore, the
system needs to protect itself from data loss by using a failover strategy. A heartbeat algorithm
already exists in frameworks such as ZooKeeper [90]. In a cluster architecture, its role is essential
because it guarantees an error recovery of nodes. Thus, when the nodes host data, they advertise
a recovery name which allows one to check whether a given node is alive. In case of a lack of
answer, another node is looked for a new storage capability with an Interest for a new replication
demand. Of course, such a test of liveness should be done before sending any storage Interest.
This heartbeat mechanism is performed in a circular way with all the nodes participating in the
replication. For example, in Figure 3.2, StorageA checks StorageB which checks StorageC, and
finally, StorageC checks StorageA.

27

Chapter 3. Architecture and Specification

Figure 3.2: Data replication in NDFS

3.1.4 Protocol

For the design of our system, we chose to express a first view of our protocol with the UML col-
laboration diagram notation. The collaboration diagrams are used when we want to understand
the message flow and the structural organization. Here, a message flow represents the sequence
of control from one node to another and structural organization means the visual organization of
the elements in a NDN network. It allows us to show explicitly the requests and the advertised
names. The Figure 3.2 displays a simple topology with four nodes: ReplicationClient pilots the
loading and the replication of the data on the NDN network. The links between the nodes play
the role of the network configuration. The square over a line displays the weight of this link in a
best route strategy[91]. The message routing strategy follows the minimum cost path. When an
Interest is transmitted, then the request is not broadcasted on the network but a path is selected
depending on the lowest cost. When multiple choices occur then the rule of longest prefix match
is applied as used in NDN protocol.

An arrow pointing from the starting node to the destination node shows the interaction
between these nodes. The number represents the order/sequence of this requests. Therefore,
two arrows with the same number are sent in the same broadcast exchange. The resulting data
is displayed as another arrow in the opposite direction with a bullet on the source side. Its
label starts with a hierarchical number which shows the relationship between the request and
the response.

The initial advertised names are displayed in the box of each node. After the importation
of the data from its local file system, the ReplicationClient node sends an Interest over the

28

3.1. Named Data Networking Distributed File System

network with the name /lacl/data/heartbeat/3. This Interest allows the ReplicationClient
node to check whether a node has already advertised this name. It would mean that the third
replication of the data is already done. After a timeout event (arrow labeled 2.1), it knows such
node does not exist. As a second consequence, the ReplicationClient node emits the following
Interest /lacl/storage/3/3/lacl/data/0/9 where:

• /lacl is the domain name,

• /storage is the precise demand. It expresses an Interest of storage capability for loading
the data,

• /3/3 is the replication factor, followed by the rank in the replication process. This rank
is essential for the heartbeat strategy.

• /lacl/data/0/9 is the name of the data followed by the index of the first segment and
the index of the last segment.

The configuration of our example has enough nodes for three replications per data with a
weight over the edges. In case of a lack of Storage node, the ReplicationClient node will receive
an Interest with the name /lacl/data/error/0/9.

At the beginning of the scenario, three nodes have an advertised name called /lacl/storage.
With the computation of the lowest cost path StorageA receives the Interest (arrow labeled
2.2) and then sends an acknowledgement (arrow labeled 2.2.1) to the ReplicationClient node.
Therefore, the responding node called StorageA on Figure 3.2, sends an Interest about the data
to be saved (/lacl/data/0) for the first segment and (/lacl/data/9) for the last segment. On
Figure 3.2, the arrow labelled 3 gathers all the segment requests from the StorageA node. Only
the ReplicationClient node has advertised the right name, which means it’s the only node able
to satisfy this Interest at this time. It returns the data and a first replication is done. Next
the StorageA node advertises a new data name about the received data (arrow labeled 3.2) and
another name for the failover algorithm (/lacl/data/heartbeat/3). This name is used to check
that the node is always alive. If it fails, then a Storage node will send a storage Interest to find
another node with a storage capability able to handle the data managed by the failed node.

In parallel, the StorageA node sends an Interest about the existence of a second replication
of the data with the Interest /lacl/data/heartbeat/2. When it receives a timeout (arrow
labelled 4.1), it creates another storage Interest by decrementing the replication factor which
has the value 2 (arrow labeled 4.2). As previously, one node with the right capability answers
(arrow labeled 4.2.1). The message process follows the same pattern as before and the data is
replicated for the second time on the StorageB node (arrow labeled 5.1). New advertised names
are registered. One for the new data access (/lacl/data), another name for the heartbeat
algorithm (/lacl/data/heartbeat/2). Because the replication factor is greater than 0, the
StorageB node sends an Interest to check the existence of the first replication (arrow labeled 6).
After a timeout, a last replication request is sent by StorageB over the network (arrow labeled
6.2). When the StorageC node receives the data (arrow labeled 7.1), it advertises also new names
for the data access and the heartbeat control and decrements the replication factor. Its value
becomes 0 and this stops the replication process. StorageC node sends an Interest to end the
process (arrow labeled 8) with the name /lacl/data/stop/0/9. Only the ReplicationClient
node can filter this request. It then removes all the advertised names and ends its activity.

The heartbeat monitoring continues and every 10 seconds (this interval has been chosen based
on NDN Interest default timeout), each Storage node sends an Interest to check a replication

29

Chapter 3. Architecture and Specification

data existence. As an example, the StorageA node sends the Interest /lacl/data/heartbeat/2
(arrow labeled 4) to control that the StorageB node is always alive. If it receives a timeout,
then it will trigger a new request with the same Interest as it did during the first deployment:
/lacl/storage/3/2/lacl/data/0/9.

The heartbeat does not apply to ReplicationClient as it represents a file loading task initiated
by the administrator of the system. If ReplicationClient fails, the administrator of the system
must manage the fail over. The Storage nodes will keep trying to retrieve the missing segments.
One solution to fix such issue is to make the segments available by running again the Repli-
cationClient in recovery mode. It will advertise the segments and wait for the stop command
without sending any replication request. Algorithm 1 presents a pseudo code of the protocol.

Algorithm 1 Replicas distribution (Storage node)
Replication request Interest received
if node capacity is not OK then

Forward the replication request Interest
EXIT

end if
Send acknowledgment
Send Interest to retrieve Data packets
Advertise data name
Advertise heartbeat name
if replication is needed then

Send next replication request
else

Send stop Interest to end the replication process
end if
if errors then

Send error Interest
end if

3.2 Computation distribution (NMapReduce)

In this section, we present the computation distribution NMapReduce. Our solution is based on
NDN architecture and aims to provide a way for parallel and distributed computation based on
the MapReduce [40] approach, through the use of NDN architecture Interest and Data messages
(Section 2.4). We first present the different components of the architecture, the main operating
principle and the underlying protocol.

3.2.1 Architecture Overview

Based on NDN, It consists in a cluster of nodes called Compute (Figure 3.3) whose function is to
orchestrate data computation distribution, perform the computation in a parallel and distributed
way for data replicated on a NDFS. Computation requests are sent to the cluster using a Compu-
tationClient. The NMapReduce has a client/server architecture between the ComputationClient
application and the Compute nodes, and a peer to peer architecture between the Compute nodes.
Moreover, it is good to mention that a node can be both a Storage and Compute at the same
time.

30

3.2. Computation distribution (NMapReduce)

Figure 3.3: NMap Reduce Architecture

3.2.2 Principle

The computation distribution aspect has been introduced to take advantage of the replicated
data. The idea is to distribute the computation and also avoid executing the same computation
twice. Similar approach is used in the Hadoop framework where computations are performed on
stored data using programming skeleton such as MapReduce [40]. The current implementation
for the computation distribution policy consists of a set of nodes which advertise their compu-
tation capability. These nodes called Compute nodes are the ones responsible for performing
the computation on the data. When a ComputationClient node sends an Interest for data com-
putation, it is received by a Compute node which will perform a computation and using the
same approach as in the replication, will find another node to compute another part if needed.
Ultimately, the end result is consolidated by a node and sent back to the ComputationClient.

3.2.3 Protocol

The computation distribution is an incremental process. Similar to the traditional MapReduce,
it is performed in two phases: a map phase and a reduce phase. In our approach, the script of
the program to be computed is considered to be a data available on the cluster over the network.
For example, such script can be available through the name /domain/code/name. Every node
able to perform computation advertises a special name: /domain/compute.

Let’s consider data available under the name /lacl/data. This data has 9 segments, labeled
from 0 to 9. To perform computation on this data, replica of the data are available over the
network on the Storage nodes.

31

Chapter 3. Architecture and Specification

The compute command used by the ComputationClient to request computation on the data
is of the form /domain/compute/domain/data/start/end/domain/code where :

• /domain/data is the name of the data

• /domain/compute is a keyword to qualify the command as a compute command

• /domain/code/name is the script to apply on the data

• /start is the first segment

• /end is the last segment

For the map phase, when a compute command is emitted on the network, it is forwarded to
a compute node based on the network configuration using the lowest path cost. This node is
then responsible for performing map computation for the first segment (start) of the data. The
node increases the start index, if the new start is not equal to the end index, a compute request
is sent with this new value to find a node for the map computation of the next segment. An
Interest will be sent to retrieve the script for the computation if it is not already present locally.
The same apply to the segment that the node is expected to compute. This process is repeated
until the last segment is processed.

By default, we have one node in charge of the reduce phase. The first node to perform the
map is the one responsible for this phase. It advertises a special name
/domain/code/domain/data/heartbeat/reduce, with:

• /domain/code is the name of the script to apply on the data;

• /domain/data is the name of the data

• /heartbeat/reduce is a keyword to qualify the heartbeat for the reduce.

This name is used to inform the other nodes about this task.
When a node completes a map, it advertises a name to inform that it holds a result for the

map on a given segment. This name has the following structure:
/domain/code/domain/data/map/segment, with :

• /domain/code is the name of the code to apply on the data;

• /domain/data is the name of the data

• /map is a keyword to qualify the command as a map result

• /segment is the identifier of the segment on which the map has been performed

During the map phase, we provide a heartbeat Interest to check if the map is still working
and to find another node if not. This Interest can be used to have information about a job
status. This Interest is of the form
/domain/code/domain/data/heartbeat/map/segment. It also sends an Interest of the
form /domain/code/domain/data/heartbeat/reduce/map/segment to the reducer to in-
form him about the availability of the result. These names mean:

• /domain/code is the name of the script to apply on the data;

32

3.3. Formal Language

• /domain/data is the name of the data

• /heartbeat/map/segment is a keyword to qualify the command as a map heartbeat
check

• /heartbeat/reduce/map/segment is a keyword to qualify the command as a command
to notify a reducer about a map availability.

The reduce phase starts in parallel with the maps. When receiving an Interest about the
completion of a map by a node, the reducer sends a result retrieval using the name advertised
by that node.

Algorithm 2 presents a pseudo code of the protocol.

Algorithm 2 Computation distribution (Compute node)
Computation request Interest received
Send acknowledgment
if first segment then

Advertise reduce name
Advertise name for the result

end if
if computation is needed then

Send next computation request
end if
if node has not data then

Send Interest to retrieve data packet
end if
if node has not code then

Send Interest to retrieve code
end if
Advertise map name
Advertise heartbeat names
Perform the computation
Send Interest to reducer

Different commands are used to communicate with the system and to send orders to perform
different actions. As an example from Figure 3.2, to initiate a replication request, the replica-
tionClient had to issue the following command:
/lacl/storage/3/3/lacl/data/0/9.
The command needs to have a specific format. Semantically speaking, this command can be
considered as a formal language [92] where semantic actions are computed.

3.3 Formal Language

In this section, we recall what a formal language is, and its different components. From these
definitions, and regarding the semantic of the replication and computation commands, we identify
two languages: the replication language and the computation distribution language (Section 3.5).

33

Chapter 3. Architecture and Specification

3.3.1 Symbol

A symbol is an abstract thing that represents something else [93]. In formal language theory,
the most commonly used symbols are letters from alphabets, special characters and digits.

3.3.2 Alphabet

An alphabet is considered to be a finite set of symbols [92]. An alphabet is very often named.
The most frequently used name for an alphabet is Σ. For example:

• an alphabet of two symbols, 0 and 1 is denoted A = {0, 1}

• Z = {x, y, z} is an alphabet of three symbols, x, y and z.

3.3.3 Word or String

A word, also denoted string is defined as a finite sequence of symbols from an alphabet [92]. As
an example, 0011 and 11111 are words from the previous alphabet A. An example of strings
from the alphabet Z are zzzxxyyy and xy. A particular string is the null which is a string with
no symbol and is noted ε.

3.3.4 Formal language definition

A formal language L consists of a set of words whose letters are taken from an alphabet and are
well-formed according to a specific set of rules. There exist different types of formal languages
[94]. The set of all possible strings over some alphabet Σ is defined Σ∗. The notation for a
language defined by a grammar G is L(G). The grammar G recognizes a certain set of strings,
which all belongs to the language.

3.3.5 Grammar

A language is characterized by a grammar. It’s a way to define which words belong to the
language and those which do not.

3.3.6 Context Free Grammar (CFG)

Definition 3.1 (Context Free Grammar). A CFG is a set of recursive rules used to generate
patterns of strings [95].

It is a 4-tuple (V, N , P, S) where:

• V is a set of terminal symbols; the characters of the alphabet that are present in the words
generated by the grammar.

• N is a set of nonterminal symbols, which are placeholders for patterns of terminal symbols
that can be generated by the nonterminal symbols.

• P is a set of productions (each production has the form V → (V∪N∗)), which are rules
for rewriting nonterminal symbols (on the left side of the production) in a word with other
nonterminal or terminal symbols (on the right side of the production).

• S is a start symbol, which is a special nonterminal symbol that appears in the initial string
generated by the grammar.

34

3.4. Coq Proof Assistant

The generation of a string of terminal symbols from a CFG, first, starts with a string consist-
ing of the start symbol; then apply one of the productions with the start symbol on the left hand
side, rewriting the start symbol with the right hand side of the production. Repeat the process
of selecting nonterminal symbols in the string, and replacing them with the right hand side of
some corresponding production, until all nonterminals have been replaced by terminal symbols.
A language generated by a context-free grammar is called a Context Free Language.

3.4 Coq Proof Assistant

In this section, we provide a short introduction to the Coq Proof Assistant, in which the repli-
cation and computation language parsers are specified, implemented and formally verified. This
presentation is designed to be a quick introduction to understand the notation used in this chap-
ter. For a complete introduction to Coq and more technical aspects, the reader can refer to the
following materials [96][97][98][99].

3.4.1 Presentation

Coq (meaning Calculus Of Constructions) is a proof assistant developed in 1984 by Thierry
Coquand and Gérard Huet. It has been since then improved and maintained by a INRIA team
in France and also by its large users community. It allows the user to write formal specifications,
functional programs and do proofs. It also offers through an extraction mechanism the possibility
to produce ML (such as Ocaml) programs. Coq is based on a typed lambda-calculus with
dependent types and inductive types. In fact, programs and proofs are formalized in the same
language, the Calculus of Inductive constructions. The user can interact with Coq proof assistant
using a basic shell command (coqtop), a graphical interface (coqide) or using emacs editor with
access to the same functionality available in the graphical interface.

Coq has been used in many projects for different purposes. For example, Coq has been used
to certify theorem provers [100] [101], as a framework for formalizing programming environments
[102], to develop certified program such as the optimizing C compiler CompCert [103], and in
mathematics for theorem proving [104] [105].

Many other proof assistants exist, such as Isabelle [106], HOL4 [107] and PVS [108]. They
are all based on higher-Order Logic. Our choice for Coq is mainly based on the extraction feature
it offers which enables a verified application, and also its large community of users. Coq is the
proof assistant used in our laboratory [109] [110].

3.4.2 Coq programming language

The programming language of Coq is called Gallina [111]. It allows the development of math-
ematical theories built from axioms, hypotheses, parameters, lemmas, theorems and definitions
of constants, functions, predicates and sets. It enables one to prove specifications of programs.
The language of commands for Gallina is called the Vernacular (Figure 3.4). A sentence of the
vernacular language begins with a capital letter and ends with a dot.

The language generated by this grammar permitted us to write the function in Figure 3.5
and the ASTs in Figures 3.8 and 3.9.

35

Chapter 3. Architecture and Specification

Figure 3.4: Vernacular’s partial syntax of sentences

Types

Every expression in Coq has a type. There exist many predefined types in Coq that can be
used when programming. The use of these predefined types very often requires loading specific
packages. For example, to use boolean type and functions on them, one needs to load the Bool
package using the syntax: RequireImportBool. To use Natural numbers, RequireImportArith.
Integers are enabled using RequireImportZArith. Coq also provides a powerful mechanism for
defining new data types. This is done using the Inductive command. We used this mechanism
when defining the inputs and outputs in Figures 3.8 and 3.9.

To verify if an expression is well-formed in Coq, one can use the Check command. This
command also gives the type of the expression in case it is well-formed.

Functions

The definition of a function is performed by the use of the Definition command. The arguments
and the return type of this function are explicitly declared. Coq can perform type inference,
figuring out these types when they are not given explicitly. But it is a good practice to define

36

3.5. Replication and computation language parser

them, as they improve the readability of the code.
Coq offers the possibility to define intermediate results which are forgotten after returning

the main result. This can be done using the syntax let x := ...in... . After having defined a
function, it is possible to check that it works on some examples using the Compute command
and also the Eval command.

Figure 3.5 gives an example of a function which takes a number, decreases its value and
checks whether the result is 0 or not. This function is used in the replication process to check if
another replication request is needed.

1 De f i n i t i o n rep l i ca t i on_needed (n : nat) : bool :=
2 match dec r ea s e_rep l i c a t i on_fac t o r n with
3 | 0 => f a l s e
4 | _ => true
5 end .

Figure 3.5: Function example

Proofs

The ability to write proofs of properties is an important aspect of the language. Coq provides a
set of commands to deal with the proof development, and also uses specialized commands called
tactics which allow the user to deal with logical reasoning. When writing a proof, there is a list
of goals to prove at each stage. Initially, the list consists only in the theorem itself. After having
applied some tactics, sub-goals are generated and included in the list of goals. A proof starts
with the command Proof and is closed with a closing Qed (Quod Erat Demonstrandum).

3.5 Replication and computation language parser

In order to use a formal language, one needs to provide a parser which recognizes expressions of
that language. In this section, we explain the role of a parser, and then present our approach
for building the parsers for the replication and computation languages after having defining the
grammar related to these languages.

3.5.1 Parser definition

A parser is a component of an interpreter or a compiler used to determine if an input data is
part of a language defined by a grammar [112]. The parsing process is done at three stages:

• Lexical Analysis: A lexical analyzer is used to produce tokens from the stream of input
string characters, which are then broken into small pieces to form meaningful expressions.

• Syntactic Analysis: Checks whether the tokens generated from the lexical analysis form a
lexeme.

• Semantic Parsing: The final parsing stage in which the meaning and implications of the
validated expression are determined and necessary actions are taken.

Two parsing approaches exist, which are:

37

Chapter 3. Architecture and Specification

• Top-Down Parsing [113]: this approach involves searching a parse tree to find the left
most derivations of an input stream by using a top-down expansion. LL (Left-to-right,
Leftmost derivation) parsers and recursive-descent parsers are some examples based on
this technique.

• Bottom-Up Parsing [114]: in this technique, the input is rewritten back to the start symbol.
This type of parsing is also known as shift-reduce parsing. LR (Left-to-right, Rightmost
derivation) parser are built using this approach.

3.5.2 Approach

The idea is to build a verified parser (LR) which will then be integrated to the different compo-
nents of our architecture (ReplicationClient, Storage, ComputationClient Compute).

For this purpose, we use Menhir [115] to generate the parser from the grammar and the
Abstract Syntax Tree. We validate the generated parser using the approach from Jacques-Henri
Jourdan, François Pottier and Xavier Leroy [116], consisting in a posteriori validation of an
LR(1) automaton produced by a parser generator.

Menhir is a parser generator. It is able to generate a parser (LR) whose correctness can be
formally verified using the Coq proof assistant [96]. This feature is used to construct the parser
of the CompCert verified compiler [117].

Figure 3.6 gives an overview of our generation process. The first step is the specification of
the grammar of our language. We use the grammar specification language provided by Menhir.
Then, we define an AST (Abstract Syntax Tree) using Coq language. We generate the parser in
Coq using Menhir and its coq backend and using the Coq proof assistant, we verify our parser by
writing theorems and proving them. Finally, we extract an Ocaml version of the verified parser
to be integrated into our components at the development phase.

Figure 3.6: Parser generation process overview

3.5.3 Coq Specification

For our Coq specification, we use an abstract representation of a node as presented in Figure 3.7
A node is represented as a component which takes an input, parses this input, and based on the
semantic actions of the language, produces an output. Semantic actions are associated to the
parser. These are actions that are performed when a command is accepted. The model consists
of specifications of the input, the parser, lemmas, theorems with their proofs.

38

3.5. Replication and computation language parser

Figure 3.7: Coq model of a component

In the Figure 3.7, an example of input can be /lacl/storage/2/2/lacl/data/0/9, the
output will be two Interests (/lacl/storage/2/1/lacl/data/0/9 and /lacl/data/0/9), the
first for the next replication and the second to retrieve the data to replicate.

Grammar specification

First we specify the replication language, and then the one for the computation distribution.
The replication language can be formally defined using the CFG :

• Vr: {rootDomain, replicationParameter, dataName, domain, data, replicationFactor, repli-
cationIndex, firstSegment, lastSegment}

• Σr : { [’A-Z’ ’a-z’ 0-9]* , SLASH, STORAGE, EOL}

• Sr : main → SLASH rootDomain SLASH STORAGE replicationParameter dataName
EOL

The computation language CFG can be defined as follow:

• Vc: {rootDomain, dataName, codeName, domain, data, firstSegment, lastSegment}

• Σc : { [’A-Z’ ’a-z’ 0-9]* , SLASH, COMPUTE, EOF}

• Sc : main → SLASH rootDomain SLASH COMPUTE dataName codeName EOL

Figures 3.16 and 3.17 present the whole specifications which are used as input for Menhir as
described in Figure 3.6

Abstract Syntax Tree (AST)

The abstract syntax tree is a light version of the parse tree which only contains information
related to analyzing the input, and skipping extra syntactic information that are used while
parsing [114]. It is created as the final result of the syntax analysis phase. For Menhir to be
able to generate the parser, one needs to provide the data structure of the AST that is expected.
This AST data structure is constructed using elements from the grammar specification. It is
used by Menhir to carry the results of the syntax analysis phase and to provide a way for further
processing the obtained results. The AST data structure of the replication language (Figure
3.8) is obtained by defining 3 Inductive types. The first is the AST inductive type, which is

39

Chapter 3. Architecture and Specification

obtained by using three parameters, a string, a replicationParameter and a dataName. The
replicationParameter is the second inductive type which is built using 2 nat parameters. Finally,
the inductive type dataName is built using 2 string and 2 natural (nat) parameters. A similar
approach is used to build the computation language AST data structure (Figure 3.9). ASTs are
built using semantic actions associated with the grammar in Figure 3.16 and 3.17.

1 Require Import S t r ing .
2
3 Induct ive r ep l i c a t i onParamete r : Type :=
4 | Parameters : nat −> nat −> rep l i ca t i onParamete r .
5
6 Induct ive dataName : Type :=
7 |Name : s t r i n g −> s t r i n g −> nat −> nat −> dataName .
8
9 Induct ive as t : Type :=

10 | Main : s t r i n g −> rep l i ca t i onParamete r −> dataName −> ast .

Figure 3.8: Replication Language AST data structure

1 Require Import S t r ing .
2
3 Induct ive dataName : Type :=
4 |Name : s t r i n g −> s t r i n g −> nat −> nat −> dataName .
5
6 Induct ive codeName : Type :=
7 |Name : s t r i n g −> s t r i n g −> codeName .
8
9 Induct ive as t : Type :=

10 | Main : s t r i n g −> dataName −> codeName −> ast .

Figure 3.9: Computation Language AST data structure

Extracting Programs from Coq

Another interesting feature of Coq is its extraction feature. Extraction transforms a Coq program
into OCaml code, so that it can be used as a component of a larger OCaml program. We have
used this feature to extract an OCaml version of our parsers (Figure 3.10) which will be integrated
during the implementation phase. First we define the working directory. Next we import the
necessary modules and the Coq version of the Parser, specify the extraction target language.
Finally, we define the location where the extracted code should be saved.

Input and output

In order to have a complete representation of our model in Coq, we need to specify the input
and output. They are specified using Coq types. They are defined as message and data which
represent Interests and Data (Section 2.4). A message in the replication context can be of the
type Heartbeat, Replication or Stop (Figure 3.11). When dealing with the computation language,
a message can be a Computation, a Heartbeat, or a Code (Figure 3.12). These definitions are
used in the next section when proving properties about the components. The whole specification
of the parsers and details about them can be found in Appendix A .

40

3.6. Theorems and proofs

1 Add LoadPath "/home/ l a c l /Documents/coq/ ndfs " .
2 Require Import Parser .
3 Require Import S t r ing .
4
5 From Coq Require Import ex t r a c t i on . ExtrOcamlString .
6 Require Import ExtrOcamlBasic .
7
8 Extract ion Language OCaml .
9

10 Extract ion "/home/ l a c l /Documents/coq/ ndfs / par s e r . ml" main .

Figure 3.10: Parser extraction commands

1 Induct ive message : Type :=
2 | Heartbeat
3 | Rep l i c a t i on
4 | Stop
5 .
6
7 Induct ive data : Type :=
8 | Data
9 .

Figure 3.11: Input and output specification for replication language

1 Induct ive message : Type :=
2 | Heartbeat
3 | Computation
4 | Code
5 .
6
7 Induct ive data : Type :=
8 | Data
9 .

Figure 3.12: Input and output specification for computation language

3.6 Theorems and proofs

In this section, we give all the theorems and properties related to our parsers and provide their
proofs in Coq.

3.6.1 Correctness

The correctness property states that if a command (replication or computation) is accepted by
a parser, then the word is valid (with respect to the grammar) and the semantic value that
is constructed by that parser is valid as well. The Coq proof (Figure 3.13) of this property is
provided during the parser generation by mehnir.

41

Chapter 3. Architecture and Specification

Figure 3.13: Parser correctness proof

3.6.2 Completeness

The completeness property states that if a command (replication or computation) is valid (with
respect to the grammar), then it is accepted by the parser. The Coq proof (Figure 3.14) of this
property is provided during the parser generation by mehnir.

Figure 3.14: Parser completeness proof

3.6.3 Consistency

An expected behavior of our parser is the sending of a NDNmessage when a command is accepted.
This leads to formulate the following theorem:

If a word is accepted, then a message is sent and a data request is sent. We express the
theorem in Coq and also provide the proof of this property (Figure 3.15). To this extend, we
load the module Psatz [118] which gives access to several tactics for solving arithmetic goals.

3.7 Summary

In this chapter, we have defined the architecture of our Distributed File System and our approach
to computation distribution based on NDN. We have presented the main operating principles
of our protocols, their different initiation and transmission phases, and their algorithms. Our
approach doesn’t use a central component for the system management, but this task is distributed
among the different nodes. We use Interest and Data messages for which we design a specific

42

3.7. Summary

Figure 3.15: Parser consistency proof

naming prefixes to allow nodes to communicate. Considering this specific naming as a formal
language, we formally gave a grammar associated to the language, built a parser which accepts
expressions from the language, and using Coq, we were able to prove that each node has a
correct behavior. This formal verification is the first step in our approach for the architecture
formal verification. In the next chapter, we will formally verify the whole architecture from the
communication between components point of view.

43

Chapter 3. Architecture and Specification

1 (∗ exp r e s s i on example : / l a c l / s t o rage /3/2/ l a c l /data /0/9 ∗)
2 %{
3 Add LoadPath "/home/ l a c l /Documents/coq/ ndfs " .
4 Require Import a s t .
5 Require Import S t r ing .
6 %}
7 %token <nat> INT
8 %token <s t r i ng > STRING
9 %token SLASH

10 %token EOL
11 %token STORAGE
12 %type<s t r i ng > rootDomain
13 %type<rep l i ca t i onParamete r > rep l i c a t i onParamete r
14 %type<dataName> dataName
15 %type<s t r i ng > domain data
16 %type<nat> r ep l i c a t i o nFa c t o r r e p l i c a t i o n I nd ex f i r s tSegement lastSegment
17
18 %s t a r t <ast> main
19 %%
20 main :
21 | SLASH r = rootDomain SLASH STORAGE rp =
22 rep l i c a t i onParamete r dn = dataName EOL
23 { Main r rp dn } ;
24
25 rootDomain :
26 | s = STRING
27 { s } ;
28
29 r ep l i c a t i onParamete r :
30 | SLASH f a c t o r = r ep l i c a t i o nFa c t o r SLASH index = r ep l i c a t i o n I nd ex
31 { Parameters f a c t o r index } ;
32
33 r e p l i c a t i o nFa c t o r :
34 | r1 = INT
35 { r1 } ;
36
37 r e p l i c a t i o n I nd ex :
38 | r2 = INT
39 { r2 } ;
40
41 dataName :
42 | SLASH dom = domain SLASH dat = data SLASH seg1 = f i r s tSegement SLASH seg2 =

lastSegment
43 { Name dom dat seg1 seg2 } ;
44
45 domain :
46 | d = STRING
47 { d } ;
48
49 data :
50 | da = STRING
51 { da } ;
52
53 f i r s tSegement :
54 | seg1 = INT
55 { seg1 } ;
56
57 lastSegment :
58 | seg2 = INT
59 { seg2 } ;

Figure 3.16: Replication language grammar specification
44

3.7. Summary

1 (∗ exp r e s s i on example : / l a c l /compute/ l a c l /data /1/2/ l a c l / code
2 SLASH STRING SLASH COMPUTE SLASH STRING SLASH STRING SLASH INT SLASH INT SLASH

STRING SLASH STRING EOL ∗)
3 %{
4 Add LoadPath "/home/ l a c l /Documents/ coq_learning /nmap" .
5 Require Import a s t .
6 Require Import S t r ing .
7 %}
8 %token <nat> INT
9 %token <s t r i ng > STRING

10 %token SLASH
11 %token EOL
12 %token COMPUTE
13
14 %type<s t r i ng > rootDomain
15 %type<dataName> dataName
16 %type<codeName> codeName
17 %type<s t r i ng > domain data
18 %type<nat> f i r s tSegement lastSegment
19
20 %s t a r t <ast> main
21 %%
22 main :
23 | SLASH r = rootDomain SLASH COMPUTE dn = dataName
24 cn = codeName EOL
25 { Main r dn cn } ;
26
27 rootDomain :
28 | s = STRING
29 { s } ;
30
31 dataName :
32 | SLASH dom = domain SLASH dat = data SLASH seg1 = f i r s tSegement SLASH seg2 =

lastSegment
33 { Name dom dat seg1 seg2 } ;
34
35 codeName :
36 | SLASH dom = domain SLASH cod = code
37 { Name dom cod } ;
38
39 domain :
40 | d = STRING
41 { d } ;
42
43 data :
44 | da = STRING
45 { da } ;
46
47 f i r s tSegement :
48 | seg1 = INT
49 { seg1 } ;
50
51 lastSegment :
52 | seg2 = INT
53 { seg2 } ;

Figure 3.17: Computation language grammar specification

45

Chapter 3. Architecture and Specification

46

Chapter 4

Model Checking for System Verification

Contents
4.1 Real Time System Verification . 48

4.1.1 Automaton System Specification . 48
4.1.2 Time in Automaton . 49
4.1.3 Temporal Logic . 50

4.2 UPPAAL model-checking tool . 52
4.2.1 UPPAAL Automaton Formal Representation 52
4.2.2 Modeling and Validation with UPPAAL 53
4.2.3 Verification using UPPAAL . 55

4.3 System Modeling . 56
4.3.1 NDFS . 57
4.3.2 NMapReduce . 62

4.4 System Verification . 65
4.4.1 Communication properties . 66
4.4.2 Completeness properties . 70
4.4.3 Recovery properties . 72

4.5 Summary . 74

Software verification remains an essential element in the software development cycle. Un-
fortunately, many projects still don’t include this phase in their early development. In fact, a
verification phase can help to detect bugs early in the project. This is important as the cost
to fix a bug is lower if the bug is detected early, but higher if detected at a later phase of the
software development.

One approach used for system verification is formal methods. Formal method can be defined
as the use of mathematical modeling approach for the specification, development and verification
of a system. Our approach combines two verification techniques. In Chapter 3, we formally
verified the components (Storage and Compute) taken individually using Coq.

In this chapter, we aim to verify properties related to the whole system (communication
between components). Our system is obtained by components communicating (Figures 4.5 and
4.10) in order to perform the required actions. Real-time systems are systems including a timing
aspect. The verification of these systems should include temporal properties. This notion is
missing in Coq and it is not convenient for these types of verification. To this extend, we use

47

Chapter 4. Model Checking for System Verification

model checking techniques and the TCTL* (Timed Computational Tree Logic) temporal logic
to express system properties that need to be verified, and verify them using UPPAAL model
checking tool.

4.1 Real Time System Verification

System verification is the use of techniques to establish that a system under development complies
to some properties. Many approaches can be considered when one needs to verify a system. Peer
review is an approach consisting in the static inspection of the source code of the system by a
team of software engineers that were not involved in the development process. This approach
presents some limitations such as its handcrafted nature, and also the fact that it can not be
performed at a early stage of the process. Another approach consists instead of analyzing source
code without execution as in peer review, to run the developed application for testing purpose.
While this approach has good importance, it also, can not be applied at early stage. Moreover,
it only allows the detection of errors, but not their absence.

Model checking techniques is another approach which can be applied at a very early stage.
The system is modeled as a set of automata. The properties to be verified are then expressed
using a logic, basically a temporal logic.

4.1.1 Automaton System Specification

Model checking techniques [119] are generally performed by the use of finite state systems.
Good candidates for applying these techniques are systems that can be easily represented as
an automaton. This is the case for our systems (Named Distributed File System (NDFS) and
NMapReduce) specified in Chapter 3.

Definition 4.1 (Automaton). An automaton A can be defined as a 5-tuple <Q, E, T, q0, ` >,
where :

• Q is a finite set of states;

• E is the finite set of transition labels;

• q0 is the initial state of the automaton (q0 ∈ Q);

• T ⊆ Q × E × Q is the set of transitions;

• ` is the application that binds any state of Q with the finite set of elementary properties
verified in this state.

As in programming languages, when modeling real systems, the model needs sometimes to
keep record of some events such as tracking the number of times a transition has been fired,
the number of errors, or the value of specific properties related to the system under modeling.
To this extend, one can include variables which can be read, written, and subject to common
arithmetic operations. These variables are part of the state of the system.

A current trend in software development is the use of modular programming. This approach
consists in dividing a system into separate sub-systems (modules). It helps to circumvent the
system complexity and group in the same unit of programming code similar functions that can
be reused to compose different systems. The modeling of such system has to follow the same
concept, which is an automaton modeling of each sub-system composing a global system and

48

4.1. Real Time System Verification

then synchronize them to obtain the global system model. The synchronization can be performed
using different approaches, but the obtained result (called synchronous product) may lead to a
state explosion, which in this case makes the global system modeling difficult.

A state of the system is defined by the locations of all automata, and the values of the
variables. For our system modeling, we will consider the particularity offered by the message
synchronization approach, which is the use of a message sending/receiving mechanism for com-
munication between all the automata composing the global system.

4.1.2 Time in Automaton

Real application processes are subject to different phases in their execution. The process can for
example be in a waiting state (for a resource or a lost message to be resent). All these elements
can influence the run time, which aspect has to be taken into account for the modeling. Two
approaches exist for the time modeling: discrete time and continuous time. Some works [120]
[121] consider a discrete time based modeling approach while we will consider a continuous time
for this thesis.

Timed Transition System are used for expressing the timed model semantics. In this repre-
sentation, the time domain (T) is the natural number domain. The formal definition of a timed
transition system is the following:

Definition 4.2 (Timed Transition System). A timed transition system T T S can be defined as
a tuple (S, →,Act,s0) where :

• S is a finite set of control states;

• → ⊆ S × (T ∪ Act) × S is a transition relation;

• Act is the set of actions;

• s0 is the initial state of the automaton (s0 ∈ Q);

This timed transition system allows two types of transition:

• those which correspond to instant actions and are represented with α−→, where α ∈ Act

• transition ν−→, with ν ∈ T, expressing an amount of time flow which satisfies the following
conditions:

– zero delay: a 0−→ b if and only if b = a;

– associativity: if a ν−→ b and b ν′−→ c, then a ν+ν′−−−→ c;
– temporal determinism: if a ν−→ b and a ν−→ c, then b = c
– continuity: a ν−→ b, then for all ν’ and ν” ∈ T such that ν = ν’ + ν”, there exists c

such that a ν′−→ c ν′′−→ b.

A timed transition system can have a finite or infinite sequence of transitions of S. An
execution can be represented as follow:

σ = s0
ν0−→ s0’

α0−→ s1
ν1−→ s1’

α1−→ ... sn
νn−→ sn’ ...

The works of Alur and Dill [122] [123] have extended normal automaton (definition 4.2) with
a set of real-valued variables modeling clocks. The behavior of an automaton is restricted by the

49

Chapter 4. Model Checking for System Verification

use of constraints on the clock variables. This new type of automaton is called timed automaton
and is formally defined as follow:

Definition 4.3 (Timed Automata). A timed automaton T A can be defined as a tuple (S,T,A,
C,I,s0) where :

• S is a finite set of location or control states;

• A is the set of actions;

• C is a finite set of clocks;

• T ⊆ S × ϕ(C) × A × 2C × S is a finite set of transitions (ϕ(C) set of all clock constraints);

• I : S → ϕ(C) for each location, corresponding invariants;

• s0 is the initial state of the automaton (s0 ∈ S).

A clock constraint is a conjunctive formula of atomic constraints of a form x ∼ y, with x ∈
C, y a natural number and ∼ ∈ {= , <, ≤, >, ≥ }. It can be used as guard for a transition,
telling at which moment the transition can be fired, or used as a location invariant constraining
the amount of time that may be spent in that location.

To express the fact that a timed automaton can evolve from a location s0 to a location s1
when a clock constraint φ holds, and b an action associated to the transition, the representation

s0
φ,b,ϕ(C)−−−−−→ s1 is used. When firing the transition, all the clocks(ϕ(C)) are reset to zero and b is

performed.

4.1.3 Temporal Logic

Temporal logic (first introduced by Arthur Prior [124] in 1960) is a way for reasoning with
time-related propositions, using temporal quantifiers. It has then been extended for concurrent
systems global properties specification by Amir Pnueli [125].

Computation Tree Logic

Computational Tree Logic(CTL) has been first proposed by Edmund M. Clarke and E. Allen
Emerson [126] in 1981. It is used to express properties on the states of labeled transition systems.

Definition 4.4 (CTL Syntax). CTL formulas are generated by the following grammar:

φ, ϕ ::= p | ¬ φ | φ ∧ ϕ | φ ∨ ϕ | φ ⇒ ϕ | EXφ | EFφ | EGφ | EφUϕ | AXφ | AFφ | AGφ
| AφUϕ

where:

• p ranges over a set of atomic formulas;

• E means "for some path";

• X means next;

• F means sometime;

50

4.1. Real Time System Verification

• A means "for all paths";

• G means always;

• U until;

The following expressions are the basic CTL operators which are:

• EF φ: it is possible to get to a state where φ is true;

• AX φ: φ is Always true in the next state;

• EX φ: φ is Eventually true in the next state;

• AG φ : φ is Always true Globally;

• EG φ: there exists a path where φ is true Globally;

• AF φ: φ is Always true sometime (in the Future);

• AU φ: φ is Always true Until an event is true;

• EU φ: there exists a path where φ is true Until an event is true;

Timed Computation Tree Logic

With CTL temporal logic, it is not possible to reason about the duration related to events.
Timed Computation Tree Logic (TCTL) [127] has been introduced as an extension of CTL for
the specification of timed properties related to real-time systems.

Definition 4.5 (TCTL Syntax). TCTL formulas are generated as follow:

φ, ϕ ::= a | c | ¬ φ | φ ∧ ϕ | E(φ UK ϕ) | A(φ UK ϕ)

where:

• a is an atomic action;

• c is a clock constraint;

• E means "for some path";

• A means "for all paths";

• K is an interval whose bounds are natural numbers;

TCTL allows the expression of the following type of properties:

• Reachability properties: A specific condition holds in some state of the system. They are
expressed in the form : EF φ "Exists eventually φ" meaning there is an execution path in
which φ eventually holds.

• Safety properties: A specific condition holds in all the states of an execution path. They
are expressed using one of the two possible forms. Eφ "Exists globally φ" meaning there is
an execution path in which φ holds for all the states of the path, or Aφ "Always globally
φ" for each execution path φ holds for all the states of the path.

51

Chapter 4. Model Checking for System Verification

• Liveness properties: A specific condition is guaranteed to hold eventually. Two possible
expressions: Aφ “Always eventually φ”; For each execution path φ holds for at least one
state of the path, or φ - -> ϕ "ϕ always leads to φ"; Any path that "starts" with a state
in which ϕ holds, reaches later a state in which φ holds.

• Deadlock properties: A deadlock is a state system where it is impossible to move to a next
state by any mean.

TCTL* is the temporal logic which is used by UPPAAL model checker.

4.2 UPPAAL model-checking tool

Jointly developed by the Swedish University Uppsala and the Danish Aalborg University, UP-
PAAL is a tool box used for real-time systems modeling, validation and verification. The model-
ing and validation are performed using graphical simulations via a Graphical User Interface(GUI)
which runs on the user work stations. The verification is done using automatic model-checking
by a model-checker engine which is by default executed on the same computer as the GUI, but
can also run on a more powerful server.

UPPAAL uses a network of timed automata with properties expressed using temporal logics.
During the modeling phase, model validation is performed to detect errors in the model.

The first release [128] of the tool was in 1995. Since then, it has a growing community, and
many research activities such as [129] [130] [131] [132], and a lot of works for example [133] [134]
[135] [136] are related to the tool. Also, UPPAAL Graphical User Interface is very user friendly.
Due to all theses factors, UPPAAL is preferred instead of other model checking tools such as
TAPAAL[137], Kronos [138], HYTECH [139]. It’s the tool used in our research group and has
been used for system properties verification in many thesis [140] [141] [142].

4.2.1 UPPAAL Automaton Formal Representation

UPPAAL is mainly based on timed automata. We give a formal definition of the timed automaton
that it uses.

Definition 4.6 (Timed Automaton in UPPAAL). A Timed Automaton T can be defined as a
8-tuple <Q, V, C, F, Assign, Inv, KL, q0 >, where :

• Q is a finite set of locations;

• V is a set of Variables;

• C is a set of Clocks (C ∩ V = ∅);

• F ⊆ L × G(C, V) × Sync × Act × L is the finite set of transitions where G(C, V) is a
set of guard constraints, Sync is a finite set of actions (internal or synchronization), Act
is a set of clocks setting or resetting;

• Assign ⊆ Act is a set of assignment which set variables with initial value;

• L → Inv(C, V) is the application which for each location associates an invariant.

• KL : L → {n, u, c} assigns a type (normal, urgent, committed) to each location.

52

4.2. UPPAAL model-checking tool

• q0 is a location of type initial (q0 ∈ Q);

A transition between two locations l1 to l2 is defined by the tuple <l1, Select, Guard, action,
Assign, l2> where :

• Select: set of local variable related to the transition,

• Guard: set of guards,

• action: synchronization action,

• Assign finite set of variable assignment or function call.

In UPPAAL, a system is modeled as a Network of Timed Automaton. From the previous
definition, we give a formal definition of a Network of Timed Automaton in UPPAAL.

Definition 4.7 (Network of Timed Automaton in UPPAAL). A Network of Timed Automaton
N can be defined as a 7-tuple <

−→
T , Vq, Cg, Ch, KCh, Assigng, −→q0 >, where :

•
−→
T = (T 1, . . . , T n) is a vector containing n timed automata T i = <Qi, Vi, Ci, Fi,
Assigni, Invi, Ki

L, qi0 >

• Vq is a set of all the shared global variables by all the automata T i (i ranges from 1 to n);

• Cg is a set of clocks shared by all the automata T i (Cg ∩ Vg = ∅);

• Ch is a set of channels used by the timed automata T i to communicate (Cg ∩ Ch = ∅ and
Vg ∩ Ch = ∅)

• KCh: Ch → {n, u } assigns a type (normal or urgent) to each channel.

• Assigng is a set of assignments which sets initial value for global variables;

• −→q0 = (q0n, ..., qn0) is a vector of the initial locations;

4.2.2 Modeling and Validation with UPPAAL

An UPPAAL model is built as a set of concurrent processes. Each process is graphically designed
as a timed-automaton. During the modeling phase, different steps have to be performed:

• Global declarations: the user has the possibility to define types, constants, variables
and functions by placing them in the global section labeled Declarations. These elements
will be accessible by all the timed automata in the system. An example of global decla-
ration can be found in Figure 4.1. We define a constant FACTOR with value 100 of type
integer, two boolean arrays replica and waiting, with 10 and 5 elements respectively, an
integer variable count with the range [0, 10] initialized to 6, a clock time, a synchronization
channel shut_down, a new type definition whose variables range is [1, 100]. Finally, we
define a function which returns the sum of two integers.

53

Chapter 4. Model Checking for System Verification

1 const i n t FACTOR = 100 ; // constant d e f i n i t i o n
2
3 bool r e p l i c a [1 0] , wa i t ing [5] ; // d e f i n i t i o n o f two boolean ar rays
4
5 i n t [0 , 1 0] count=6; // an i n t e g e r v a r i a b l e d e f i n i t i o n
6
7 c l o ck t imer ; // a c l o ck d e f i n i t i o n
8
9 chan shut_down ; // a synchron i za t i on channel d e f i n i t i o n .

10
11 typede f i n t [1 , 1 0 0] i d_c l i en t ; //a new type d e f i n i t i o n
12
13 /∗ de c l a r a t i on o f a func t i on which r e tu rn s the sum of two i n t e g e r s ∗/
14 i n t add (i n t a , i n t b)
15 {
16 re turn a + b ;
17 }

Figure 4.1: Global scope declaration in UPPAAL

• Models definition: A timed-automaton is used to define a model also called template.
It is represented as a graph which has locations as nodes and transitions as oriented edges
between locations. The user has the possibility to define types, constants, variables and
functions related to the model, by placing them in the local section labeled Declarations
(Figure 4.4).

Edges can be annotated with guards, updates, synchronizations and selections.

– A guard is an expression which uses the model elements such as variables or clocks in
order to define when the transition is enabled.

– An update is an expression whose evaluation changes the state of the system. This
evaluation is performed as soon as the corresponding edge is fired.

– The synchronization is the basic mechanism used to coordinate the action of two or
more processes, by allowing them to take a transition at the same time. This is done
by the use of a channel. For example, declaring a channel c, then one process will have
an edge annotated with c! and the other process another edge annotated with c?.
There are three different kinds of synchronizations: Regular channel, Urgent channel
and Broadcast channel.

Locations can be of type Initial, Urgent, Committed or Normal and can have an optional
name and invariants.

– Initial location: identified with a double circle, it’s the location from which the process
starts.

– Urgent location: identified with a "U", location in which time is not allowed to pass.

– Committed location: identified with a "C", time is not allowed to pass when a process
is in a location of this type and no transition other than those leaving a committed
location can be enabled.

– Location name: identifier used to refer to the location during model checking and
when writing documentation for the model.

54

4.2. UPPAAL model-checking tool

– Invariant : conditions related to variables and clocks that must be fulfilled while the
automaton is in that location.

Figure 4.2 gives an example of a model using UPPAAL graphical user interface.

Figure 4.2: UPPAAL timed automaton model GUI representation

• System declarations: This step consists in the instantiation of one or more concurrent
processes which compose the system, each process having been previously modeled as a
template (timed-automaton). As in the Global declaration, channels, variables and func-
tions can be defined in the system declaration with a global scope. They are used when
giving arguments to the formal parameters of templates. Having been declared after the
templates, they are not directly accessible by any of them. An example of a system decla-
ration containing two concurrent processes is presented in Figure 4.4. One process defined
by the model ReplicationClient presented in Figure 4.2 and the second modeled by the
timed automaton User defined in Figure 4.3

Figure 4.3: UPPAAL timed automaton User model

UPPAAL model validation is performed through the use of a simulator. The simulator
permits the examination of the possible dynamic executions of a system after the modeling,
providing an inexpensive way of fault detection prior to verification by the model-checker. The
simulator is also used to display executions generated by the verification engine.

4.2.3 Verification using UPPAAL

After using the simulator to ensure that our model behaves as the system we wanted to model,
the next step is to check that the model verifies our properties. The first step is to decide the
properties to verify, formalize them and then translate them into UPPAAL query language which
is a subset of TCTL (Definition 4.5). This language gives way to the expression of very simple
properties directly. This design approach has been chosen by the UPPAAL designers instead of
allowing complex queries, with the objective of improving the efficiency of the tool. One can still
verify complex properties by checking many different simple queries.

UPPAAL allows for the verification of Reachability properties, Safety properties, Liveness
properties and Deadlock properties. Considering ϕ and ψ some atomic propositions, a property
that can be verified by UPPAAL is of the form:

55

Chapter 4. Model Checking for System Verification

Figure 4.4: System declaration UPPAAL

• E <> ϕ (Exists eventually ϕ): there is an execution path in which ϕ eventually (in some
state of the path) holds;

• E[] ϕ (Exists globally ϕ): there is an execution path in which ϕ holds for all the states of
the path;

• A[] ϕ (Always globally ϕ): for each (all) execution path, ϕ holds for all the states of the
path;

• A<> ϕ (Always eventually ϕ): for each (all) execution path, ϕ holds for at least one state
of the path;

• ψ –> ϕ (ψ always leads to ϕ) : any path, that "starts" with a state in which ψ holds,
reaches later a state in which ϕ holds.

An atomic proposition is one or a combination of the form:

• T .`, which states that the timed automaton T is in the state ` (if ` ∈ Q), or references the
value of the local variable ` of the timed automaton T (if ` ∈ V).

• variable or clocks values compared with a variable, clock or an integer. The comparison
operators used are : =, <, >, ≤ et ≥ .

Finally, deadlock-freeness is checked using the property A[] not deadlock.
In Section 4.4 we use this language to express properties related to our system.

4.3 System Modeling

In this section, we design each component that has been specified and verified using Coq (Section
3.5.3) as a timed automaton (model). We then use the automata to compose the whole system.
The next step will be the verification of properties related to the whole system.

56

4.3. System Modeling

To reduce space state explosion, we used some tricks during the modeling. We used wher-
ever applicable committed locations which reduce significantly the state space. The number of
variables plays an important role for the verification and simulation time. For each variable, we
provide a precise range for the integers. We also reset the shared variables when they are no
longer needed.

4.3.1 NDFS

The NDFS is composed by a set of Storage Nodes (Section 3.1). It is the first layer of our Big
data framework. In this section, we describe the timed automata templates used to define the
Distributed File System (DFS). The global system is composed by four automata describing a
Storage node (Figure 4.5). Two other automata modeled the ReplicationClient application to
request data replication on the DFS, and also a user application to retrieve, or delete data.

Figure 4.5: Storage node automata network

Storage Model

This model (Figure 4.6) represents a global view of the storage node. It has seven states:

• Idle: initial state, or inactivity state;

• Start: state in which the storage is able to process requests. It can be requested from a
ReplicationClient (for replication) or the user (for data retrieval).

• Ready: this state is reached after a synchronization on the channel
replication_request[inIndex][inData]? with the ReplicationClient (Figure 4.2). This state
corresponds to a state in which the storage has received a replication request from the Repli-
cationClient. All the necessary parameters are passed through the channel, with inIndex
for the replication index and inData used to identify the data to replicate.

57

Chapter 4. Model Checking for System Verification

• Replicating: this state is reached after the storage initiates a Replication model (Figure
4.7) to handle the request. The initiation is done through the use of a channel init_r[id]!
(id is the storage identifier). This state indicates that the node is processing the request.

• ReplicationComplete: this state is reached after the synchronization on the channel r_ack[id]?
(id is the storage identifier) by the Replication model, which uses that channel to notify
the completion of the replication process. The automaton can evolve to the Start state
waiting for another replication request, or request from a User (Figure 4.3). The node is
able to respond to data request.

• SendData: this state is reached after a synchronization on data_request[in]?, which cor-
responds to the reception of an Interest for a data (identified by the incoming identifier in)
replicated by the node. This request can be initiated by a User, or another Storage node
through it’s Replication template when replicating a data. The data are then sent to the
requester using a synchronization on the channel data_response[outDataChan]!.

• Failure: this state is used to simulate in a non deterministic way the failure of a node.

Figure 4.6: Storage model

Replication Model

This model (Figure 4.7) represents the process in charge of performing the replication for a
storage node. It has fourteen states. This large number of states can be explained by the fact
that UPPAAL doesn’t allow the use of multiple synchronization on a same channel. To be able
to achieve that, we use a sequence of committed states. Then they represent an atomic action.
This allows to execute all of them without time delay, when the first is enabled.

• Idle: initial state;

• Ready: this state is reached after the initialization by the Storage process using init_r[id]?
channel (Figure 4.6).

• Ack: this state is reached after the Replication automaton has responded with its ability to
deal with the replication. This acknowledgement is sent directly to the ReplicationClient
(Figure 4.2) using
replication_ack[FACTOR][data]! (with FACTOR representing the replication factor, and
data, identifies the data to replicate).

58

4.3. System Modeling

• Waiting: this state is reached after sending a request for the data to replicate;

• Replicating: when the data are received, the replication is performed;

• CompleteInitI: this state is reached when there is a need to send a replication request to
another node and after the initialization of the heartbeat process (Figures 4.8 and 4.9) in
the states InitResponderI and InitCheckerI (Figure 4.7);

• CheckNextReplica: in this state, an heartbeat Interest is sent to check if the replica related
to the next replication index doesn’t already exist.

• Replication: this state is reached when there is a need to send a replication request to
another storage;

• CompleteF: this state is reached after the initialization of the heartbeat process in the states
InitResponderF and InitCheckerF (Figure 4.7) and when there is no need to send a repli-
cation request to another node. From this state, a message is sent to the ReplicationClient
using the channel replication_stop! to complete the replication process.

Figure 4.7: Replication model

HeartbeatChecker Model

This model (Figure 4.8) represents a sub-process in the heartbeat process which consists in
checking the availability of a replica. This is done by the node which sent the replication request
for that replica.

This model has six states:

59

Chapter 4. Model Checking for System Verification

• Idle: initial state;

• Ready: state from which the heartbeat Interests are sent;

• Replication: state from which a replication Interest is sent in replacement of a node which
failed;

• CheckingNode: state in which a replica has been checked and response is waited;

• Detected: when a timeout for a heartbeat Interest is detected;

• Failure: This state is used to simulate the failure of the node. When a Storage automaton
goes into end, all processes related to it (HeartbeatChecker and HeartbeatResponder) do
the same.

Figure 4.8: HeartbeatChecker model

HeartbeatResponder Model

This model (Figure 4.9) represents the second sub-process in the heartbeat process which consists
in responding about the availability of a replica when checked by a HeartbeatChecker.

This model has three states:

• Idle is the initial state

• Ready: this state is reached after initialization using the synchronization channel called
init_hr[index][id_data]? (with index for the replication index and id_data used to iden-
tify the data to replicate) by a Replication automaton (Figure 4.7). During this initial-
ization, all the information about the replica to check are received. In the Ready state,
when the automaton receives an heartbeat Interest from the HeartbeatChecker via the
synchronization channel heartbeat_request[in][data]? (with in for the replication index
and data, the data identifier), it sends back a confirmation message using the channel
heartbeat_response!.

• Failure: this state represents the end of the process. It is reached when the Storage having
initialized the process fails.

60

4.3. System Modeling

Figure 4.9: HeartbeatResponder model

ReplicationClient Model

This model represents the ReplicationClient, which is used to send a replication request to
replicate data on the DFS. The automaton has six states.

• Idle: initial state;

• Start: state from which the automaton is ready to send replication Interest. This is done
by synchronizing with a Storage automaton using replication_request[FACTOR][data]!
(Figure 4.6) ;

• WaitAck: after sending a replication request, the automaton goes into this state and
waits for the acknowledgement that its request has been received by the Storage au-
tomaton. This is done by a Replication automaton through a synchronization on channel
replication_ack[FACTOR][data]?, the automaton then changes to the Wait state (Figure
4.2);

• Wait: state in which the ReplicationClient waits for an Interest request for the data to be
replicated, in this case it moves to the SendData state or receives an Interest about the
completion of the replication process, then it evolves to the End state.

• SendData: in this state, the ReplicationClient automaton sends a data message to the node
requesting the data. This is done using the synchronization channel data_response[data]!.

• End: This state is reached at the end of the replication process after receiving a confirmation
from a Replication automaton using the synchronization channel replication_stop?.

User Model

The User model (Figure 4.3) is used to represent data retrieval from the system. It has five
states:

• Idle: initial state;

• Start: state from which the automaton is ready to send Interest to retrieve data. This
is done by synchronizing with a Storage replicating the data using data_request[data]!
(Figure 4.3);

61

Chapter 4. Model Checking for System Verification

• WaitData: after sending data request, the automaton goes into this state and waits for
the data. The response will come by a Storage automaton through a synchronization on
channel data_response[data]?,then this automaton evolves to state DataReceived;

• DataReceived: state meaning that the User has received a copy of the data.

• End: This state is reached at the end of the data request process.

4.3.2 NMapReduce

The NMapReduce is composed by a set of Compute Nodes (Section 3.2). It is the second layer
of our Big data architecture. In this section, we describe the timed automata templates used to
define the NMapReduce. The global system is composed of four automata describing a Compute
node (Figure 4.10). Two other automata are used to modeled the ComputationClient application
used to request data computation on the system, and also a code application which contains the
script of the program to use. The HeartbeatChecher (Figure 4.8) and the HeartbeatResponder
(Figure 4.9) are shared components with the DFS.

Figure 4.10: Compute node automata network

Compute Model

This model represents a global view of the compute node. It has seven states:

• Idle: initial state, or inactivity state;

• Start: state in which the compute node is able to process requests. It can be requested
from a ComputationClient (for computation) or the other compute nodes (for map result
retrieval).

62

4.3. System Modeling

• Ready: this state is reached after a synchronization on the channel called
computation_request[inIndex][inData]? (with inIndex for the computation index and in-
Data used to identify the data) with the ComputationClient. This state corresponds to a
state in which the compute node has received a computation request from the Computa-
tionClient.

• Computing: this state is reached after the compute node initiates a Processor model to
handle the request. The initiation is done through the use of a channel init_r[id]!. This
state indicates that the node is processing the request.

• MapComplete: this state is reached after the synchronization on the channel r_ack[id]? by
the Processor model, which uses that channel to notify the completion of the map process.
The system can move to the Start state waiting for another computation request, or request
for the map it has just completed.

• SendMap: this state is reached after a synchronization on data_request[in]?, which cor-
responds to the reception of an Interest for a map computed by the node. The data are sent
to the requestor using a synchronization on the channel map_response[outDataChan]!.

• Failure: this state is used to simulate in a non deterministic way the failure of a node.

Figure 4.11 shows the model from UPPAAL.

Figure 4.11: Compute model

Processor Model

This model represents the process in charge of computing the map and the reduce for a storage
node. It has fourteen states.

• Idle: initial state;

• Ready: this state is reached after the initialization by the Compute process using init_r[id]?
channel.

• Ack: this state is reached after the Processor has answered with its ability to deal with the
computation. This acknowledgement is sent directly to the ComputationClient using
computation_ack[index][data]!.

• Waiting: this state is reached after sending a request for the script that has to be applied
on the data to the code node (Figure 4.14);

63

Chapter 4. Model Checking for System Verification

• ComputingMap: when the script is received, the map computation on the requested seg-
ment is performed in this state;

• CompleteInitI: this state is reached after the initialization of the heartbeat process in the
states InitResponderI and InitCheckerI (Figure 4.12) and when there is a need to send a
compute request to another node;

• CheckNext: in this state, an heartbeat Interest is sent to check whether the next index in
the computation process has already been processed or not.

• SendComputation: this state is reached when there is a need to send a computation request
to another compute node;

• ComputeReduce: this state is reached after the initialization of the heartbeat process in
the states InitResponderF and InitCheckerF (Figure 4.12) and when there is no need to
send a compute request to another node. In this state the reduce action will be per-
formed. After computation, the result is sent to the ComputationClient using the channel
computation_result!

• MapRequest: from this state a node sends an Interest to retrieve all the intermediate map
computation results in order to perform the reduce.

Figure 4.12: Processor model

ComputationClient Model

This model represents the ComputationClient, which is used to send a computation request on
data. The automaton has five states.

64

4.4. System Verification

• Idle: initial state;

• Start: state from which the node is ready to send computation Interest. This is done by
sending the request through computation_request[index][data]!;

• WaitAck: this state is reached after sending a compute request. The client is waiting for
the acknowledgement that its request has been received.

• Wait: this state is reached after the reception of the acknowledgment on channel
computation_ack[index][data]. The ComputationClient waits then for the result of its
data computation request (Figure 4.13).

• End: this state is reached at the end of the computation process after receiving a data corre-
sponding to the result of the computation on the synchronization channel computation_result?.

Figure 4.13: ComputationClient model

Code Model

The Code model (4.14) is used to represent a node holding the script for the computation. Has
described (Section 3.2), the script is considered as a data on the cluster. It has three states:

• Idle: initial state;

• Start: state from which the node is ready to respond to Interest for script retrieval. This
is done by sending a message on the channel code_request?;

• Sending: this state is reached after receiving an Interest for the script. The script is then
sent using code_response! to the requesting node.

Figure 4.14: Code model

4.4 System Verification

In this section, we are interested in the verification of system properties that our system must
satisfy. Those properties are proved by applying model checking to our previous models. Our
architecture is defined in two layers as presented in Section 4.3.1 and Section 4.3.2, with each layer

65

Chapter 4. Model Checking for System Verification

having its own properties. The properties are related to the replication and the computation
distribution. We have divided the properties into 3 categories, respectively communication,
completeness and recovery after failure. These are essential properties that a distributed system
should meet [51].

Figure 4.15: Property P1 UPPAAL verification

4.4.1 Communication properties

We have identified properties related to the communication between the ReplicationClient and
Storage (Section 4.3.1) and between the Compute and ComputationClient (Section 4.3.2). First,
we present those related to the NDFS and then those related the NMapReduce.

A replication message sent by a node is eventually received at some point in time by a Storage
node. This property is verified using three formulas, as we have three possible cases. The repli-
cation message can be sent by a ReplicationClient, a Storage automaton or a HeartbeatChecker.

P1: A<> ReplicationClient(1).WaitAck imply exists(i:id_s)(Storage(i).replicating
and Replication(i).ready)

This property covers the case where the replication message is sent by a ReplicationClient
node. It expresses the fact that when a ReplicationClient reaches the state WaitAck, a replication
message has been sent, a Storage reaches the state Replicating and the replication process is
Ready, meaning that the replication message has been received by this Storage. The property
has been specified as a query to the system in the upper section of the verifier in UPPAAL GUI
as displayed in Figure 4.15. The green bullet in the overview indicates that the system satisfies
the specified property. The lower part has logged the communication with the model-checking
engine and explicitly mentions the property satisfaction.

P2: A<> forall(i:id_s)Replication(i).Replication and
Replication(i).replication_sent == true imply exists(i:id_s)(Storage(i).Replicating
and Replication(i).Ready)

66

4.4. System Verification

Figure 4.16: Property P2 UPPAAL verification

This property concerns the case where the replication message is sent by a Storage node
during the replication process. It expresses the fact that when a Replication automaton reaches
the state Replication with the variable replication_sent is true, a replication Interest has been
sent by this node. A Storage then reaches the state Replicating and the replication process is
Ready, meaning that the replication message has been received by this Storage. The property
has been specified as a query to the system in the upper section of the verifier in UPPAAL GUI
as displayed in Figure 4.16. The green bullet in the overview indicates that the system satisfies
the specified property. The lower part has logged the communication with the model-checking
engine and explicitly mentions the property satisfaction.

P3: A<> forall(i:id_h)HeartbeatChecker(i).Replication imply exists(i:id_s)
(Storage(i).Replicating and Replication(i).Ready)

This property is for the case where the replication message is sent by a Storage node during
the Heartbeat process. It expresses the fact that when a HeartbeatChecker reaches the state
Replication, a replication Interest has been sent by this node. A Storage then reaches the state
Replicating and the Replication process is Ready, meaning that the replication message has
been received by this Storage. This property has been specified as a query to the system in
the upper section of the verifier in UPPAAL GUI as displayed in Figure 4.17. The green bullet
in the overview indicates that the system satisfies the specified property. The lower part has
logged the communication with the model-checking engine which explicitly mentions the property
satisfaction.

Another aspect of this property is the one related to the computation. A computation message
sent by a node is eventually received at some point in time by a Compute node. This property
is verified using three formulas, as we have three possible cases: the computation message can
be sent by a ComputationClient, a Compute automaton or a HeartbeatChecker.

P4: A<> ComputationClient(1).WaitAck imply exists(i:id_s)(Compute(i).Computing

67

Chapter 4. Model Checking for System Verification

Figure 4.17: Property P3 UPPAAL verification

Figure 4.18: Property P4 UPPAAL verification

and Processor(i).Ready)
This property covers the case where the computation message is sent by a computation

client node. It expresses the fact that when a ComputationClient reaches the state WaitAck,
a computation message has been sent and a Compute node reaches the state Computing and
the Processor process is Ready, meaning that the computation message has been received. This

68

4.4. System Verification

property has been specified as a query to the system in the upper section of the verifier in
UPPAAL GUI as displayed in Figure 4.18. The green bullet in the overview indicates that the
system satisfies the specified property.

P5: A<> forall(i:id_s)Processor(i).SendComputation and Processor(i).request_sent ==
true imply exists(i:id_s)(Compute(i).Computing and Processor(i).Ready)

This property concerns the case where the computation message is sent by a Compute node
during the computation process. It expresses the fact that when a Processor reaches the state
SendComputation with the variable request_sent is true, a computation Interest has been sent
by this node. A Compute automaton then reaches the state Computing and the Processor
process is Ready, meaning that the computation message has been received. This property has
been specified as a query to the system in the upper section of the verifier in UPPAAL GUI as
displayed in Figure 4.19. The green bullet in the overview indicates that the system satisfies the
specified property.

Figure 4.19: Property P5 UPPAAL verification

P6: A<> forall(i:id_h)HeartbeatChecker(i).Computation imply exists(i:id_s)
(Compute(i).Computing and Processor(i).Ready)

This property describes the case where the computation message is sent by the Heartbeat
process when a node fails. It expresses the fact that when a HeartbeatChecker reaches the
state Computation, a computation Interest has been sent. A Compute then reaches the state
Computing and the Processor process is Ready, meaning that the computation message has been
received. This property has been specified as a query to the system in the upper section of the
verifier in UPPAAL GUI as displayed in Figure 4.20. The green bullet in the overview indicates
that the system satisfies the specified property.

The communication properties from P1 to P6 related to our two layers are very important.
They prove with certainty that the protocols correctly transfer messages from ReplicationClient
to Storage, from ComputationClient to Compute, between Storages and between Computes.

69

Chapter 4. Model Checking for System Verification

Figure 4.20: Property P6 UPPAAL verification

Figure 4.21: Property P7 UPPAAL verification

4.4.2 Completeness properties

These properties are related to the execution of a request. The first one is about the completeness
of the replication process: the replication process completes.

P7: E<> (ReplicationClient(1).End and replicas[1]==FACTOR)

70

4.4. System Verification

This property means that after a replication Interest has been sent by a ReplicationClient, it
reaches the End state at some point in time and the number of replica requested is equal to the
number of replica available on the cluster. This property has been verified using the UPPAAL
verification system as shown in Figure 4.21. This property has been specified as a query to the
system in the upper section of the verifier. The green bullet in the overview indicates that the
system satisfies the specified property.

The second one is about the completeness of the computation process: the computation
process completes.

P8: E<> (ComputationClient(1).End)
This property means that after a computation Interest has been sent by a ComputationClient,

the ComputationClient at some point reaches the state End, meaning that it has received a
message from a Compute node. This property has been verified using the UPPAAL verification
system as shown in Figure 4.22. The green bullet in the overview indicates that the system
satisfies the specified property.

Figure 4.22: Property P8 UPPAAL verification

P9: A[] not deadlock
We also express a property regarding deadlock freeness. Deadlock is a very common problem

in distributed systems. It is a state of the system in which each component is forever waiting
for another component to take an action which will never occur. This property has been verified
using the UPPAAL verification system. We have faced some issues trying to run this property
using UPPAAL user interface. We used the command line version of the verifier to specify the
property as a query to the system. The output (Figure 4.23) shows the property, the result and
some metrics. The message "Formula is satisfied" indicates the property satisfaction.

The completeness properties from P7 to P9 related to our two layers guarantee that the
different components work correctly to perform the required actions without any deadlock.

71

Chapter 4. Model Checking for System Verification

Figure 4.23: Property P9 UPPAAL verification

4.4.3 Recovery properties

These properties highlight our heartbeat process and our failover approach.
P10: E<> Storage(1).Failure imply exists(i:id_h)(HeartbeatChecker(i).timer >

HeartbeatChecker(i).TIMEOUT) and HeartbeatChecker(i).Detected
This property means that when a Storage node fails, it is detected by the heartbeat. This

property has been verified using the UPPAAL verification system as shown in Figure 4.24. The
green bullet in the overview indicates that the system satisfies the specified property.

Figure 4.24: Property P10 UPPAAL verification

72

4.4. System Verification

P11: E<>Storage(1).Failure imply exists (i:id_s)(Storage(i).index==Storage(1).index)
This property verifies that when a data node fails, there is always a component which will

take over the data managed by this node. Figure 4.25 gives the proof from UPPAAL verification
system. The green bullet in the overview indicates that the system satisfies the specified property.

Figure 4.25: Property P11 UPPAAL verification

Figure 4.26: Property P12 UPPAAL verification

P12: A[](exists(i:id_s)Storage(i).nb_replica>=1)
There is always at least one replica on the cluster. After the replication is completed, the

number of replica related to a data is at least one. Figure 4.26 gives the proof from UPPAAL

73

Chapter 4. Model Checking for System Verification

verification system. The output of the command line version of the verifier displays the message
"Formula is satisfied", which indicates the property satisfaction.

P13: E<> (replicas[1]==1) imply replicas[1]==FACTOR
The whole replication can be rebuilt from one replica. If the number of replica related to

a data is one at some point in time, the number of replication will be the same as the number
initially requested by the client after some time. Figure 4.27 gives the proof from UPPAAL. The
green bullet in the overview indicates that the system satisfies the specified property. verification
system.

Figure 4.27: Property P13 UPPAAL verification

The recovery properties from P10 to P13 prove that our system is fault tolerant. In fact,
there is a continuity of services despite a node failure.

4.5 Summary

In this chapter, we have explored potential formal verification possibilities for our system.
Traditional approaches to system verification very often consider only the system in a global

view when proving properties about it. Properties related to the internal behavior of the different
components composing the system should also be proved. Combining model checking with Coq
proof assistant help us to achieve this goal. First in Chapter 3, we have proved properties
related to each components internal functionality and in this chapter, we considered properties
for the interaction between these components. Our system is modeled into a network of timed
automata, which allowed us to perform temporal system properties verification using model
checking techniques.

The properties to prove have been chosen regarding essential properties Big Data architectures
should satisfy, mainly recovery properties related to fail-over. Having nodes automatically taking
over when a node fails is important for DFS and computation distribution. Through these

74

4.5. Summary

properties, we have shown the fault tolerant aspect of our system. In fact, despite the inevitable
interruptions caused by problems with equipment, normal functions can be maintained. We have
also shown through communication properties verification that the different components of our
system communicate correctly to perform the desired functionalities which are then proved using
completeness properties. We were also able to prove that the system is free of communication
issues such as deadlock. All these proofs give us more confidence in the system to implement.
These properties should be preserved during the implementation phase. In the next chapter
(Chapter 5), we propose a prototype and then an implementation of the system based on the
specification, which satisfies the properties.

75

Chapter 4. Model Checking for System Verification

76

Chapter 5

Prototyping, Implementation and
Simulation

Contents
5.1 Software Architecture . 78

5.1.1 Requirements . 78

5.1.2 Component diagram . 80

5.1.3 Scenarios . 81

5.2 Implementation . 88

5.2.1 Model based approach . 88

5.2.2 Prototype version . 90

5.2.3 Concrete version . 90

5.3 Simulation . 92

5.3.1 Tools . 92

5.3.2 Experiment . 94

5.3.3 Results and discussion . 95

5.4 Summary . 98

To validate the different approaches introduced in Chapters 3 and 4, early in our work, we
propose a prototype version of our solution.

Our prototype is built with the following goal: evaluate and validate the network communi-
cation aspects implied by our approach using the network simulator ndnSIM. It helps us to save
time, but also to consider the validation of the scalability aspect of our approach that would be
difficult to perform using a concrete implementation due to resource limitations related to our
project. The implementation language is C++.

We then perform a concrete implementation of the solution. Our implementation is performed
to confirm the network communication results obtained through simulation, but also to have
a version that can run on physical devices for being able to compare our approach to existing
solutions. This version of our architecture is developed in JavaScript and can run on any platform
supported by the CCNx library.

In Section 5.1, we present the software architecture, Section 5.2 deals with our implementation
approach. Section 5.3 describes our simulation experiments.

77

Chapter 5. Prototyping, Implementation and Simulation

5.1 Software Architecture

In this section, we present our system requirements, the components involved in the construction
of our system, but also the relation between these components and the interfaces they expose.
Those components are coming from our formal specifications in Chapters 3 and 4.

Figure 5.1: Use Case diagram

5.1.1 Requirements

This section presents the requirements for our system. These requirements are grouped into
three categories: functional requirements, non-functional requirements, and constraints.

Functional requirements

The functional requirements are related to the functions the system has to accomplish. One way
to represent them is through the use of a Use Case Model (Figure 5.1). Our system is packaged
into subsystems: NDFS and NMapReduce. We describe the most important use cases for our
software architecture. The use cases that we have retained are the following:

• Store data: The user wants to save a file on the DFS. He sends a replication request and
defines the replication factor (number of replicas he wants to be available on the network),
he then receives a confirmation about his request.

• Retrieve data: The user or an application wants to get the content of data stored on the
DFS. It sends a retrieval request specifying the name of the file. A copy of the file is then
returned to the requester. It is good to mention that, as the DFS is based on NDN, any

78

5.1. Software Architecture

application able to send an NDN Interest using the name of the file can be used to get the
content of the data.

• Delete data: The user wants to remove a file previously stored on the DFS. He sends a
delete request specifying the name of the file to delete, and gets an acknowledgement about
it.

• List all data: The user needs to have an overview of the files stored on the DFS. He sends
a display request and gets a list of the different files stored on the DFS.

• Perform a computation: The user wants to perform a computation on data. He sends
a computation request, specifying the name of the file, the script to be applied to the data.
He receives back the name which has to be used for an Interest to get the result of the
computation.

Non-functional requirements

Non-functional requirements are properties that are not directly used by the user to interact with
the system but are important for its good performing. In our case, we have defined the following
non-functional requirements:

• Usability: The usage of the system should be intuitive to the end-users.

• Performance: Big data architects are looking for solutions which help them to quickly
get results from their data. Therefore, the system should operate in such a way that the
time needed to store a file or perform a computation is minimal.

• Reliability: The system should be fault-tolerant, and able to recover from a disaster. In
the case of replication, the system should be able to maintain the exact number of replica
requested by a user for every data replicated on the DFS.

• Portability: The system should be developed in such a way that it is platform indepen-
dent, and being able to operate on low constrained devices.

• Scalability: The system should support an increase in the number of users and also in
the number of physical devices.

Constraints

A constraint is a restriction on a part of the system or on the whole system. For our architecture,
we have the following constraints:

• the system should integrate the replication and computation parsers extracted in Ocaml
from the Coq specification (Section 3.5);

• the system should provide a Command Line Interface (CLI) for the end-user to interact
with the system.

79

Chapter 5. Prototyping, Implementation and Simulation

Figure 5.2: Component diagram

5.1.2 Component diagram

The component diagram describes the system as reusable components and highlights their de-
pendency relationships. The architecture that we propose is composed of two layers, the first
being the DFS (Section 3.1) and the second being the computation distribution (Section 3.2).
The different components for our system have been obtained from our specification in Chapter 3
and our model in Chapter 4. Figure 5.2 shows the component diagram, which can be organized
into 4 groups:

• NDFS: This package contains the different components related to the DFS. It is composed
with:

– ReplicationParser: This component is an implementation of the parser for the repli-
cation language. This component is extracted in Ocaml from the Coq specification
(Section 3.5.3).

– Storage: This component implements the management of a Storage node, activates the
replication mode, responds to replication requests and also sends data when replicas
are available at the node. It has been implemented from our specification from Chapter
4. It’s the implementation of the Storage model (Section 4.3.1).

– Replication: This component is the implementation of the Replication model (Section
4.3.1). It implements the process in charge of performing the replication for a storage
node.

• NMapReduce: This package contains the different components related to the computation
distribution.

80

5.1. Software Architecture

– ComputationParser: This component is an implementation of the parser for the com-
putation language. This component is extracted in Ocaml from the Coq specification
(Section 3.5.3).

– Compute: This component implements the management of a Compute node, activates
the computation mode, responds to computation requests. It is the implementation
of the Compute model (Section 4.3.2).

– Processor: Implemented from the Processor model (Section 4.3.2), this is the compo-
nent implementing the computation mechanism.

• Common : This package contains the different components shared between the DFS and
the NMapReduce.

– HeartbeatChecker: This component implements the heartbeat process used to check
the availability of an element (for example a replica in NDFS and a map in NMapRe-
duce). It’s the implementation of the HeartbeatChecker Model (Section 4.3.1). Mes-
sages are sent periodically to detect whether replica or map are still alive. Responses
are provided by a HeartbeatResponder.

– HeartbeatResponder: This component implements the heartbeat process used to send
a response about the availability of an element (this is the case for a replica in NDFS
and a map in NMapReduce). It has been implemented using the HeartbeatResponder
Model (Section 4.3.1). It responds to requests from HeartbeatChecker about avail-
ability of a replica or map.

– ndn-cxx: This component is a C++14 library implementing Named Data Networking
(NDN) primitives that can be used to write various NDN applications [143].

• Client: We also considered additional components for the different clients (Replication-
Client and ComputationClient).

– ReplicationClient: Implemented from the ReplicationClient Model (Section 4.3.1),
this component implements the process used to send a replication request to replicate
data on the DFS.

– ComputationClient: This component implements the process used to send a compu-
tation request on the data. It has been implemented from the ComputationClient
(Section 4.3.2).

5.1.3 Scenarios

In this part, we highlight interactions between the administrator actions and the system. For
each use case, we may have 3 parts. A normal course of events, which describes the ideal course
of actions, where everything is fine. Alternative courses, which are about describing the different
possible stages related to the choices of the administrator. This is the case for stages linked to
conditions. Exceptions, when stages of the normal course of events could be disrupted due to
abnormal events. We only present a sequence diagram for the normal course of events.

We abstract the communications with the forwarder (Section 2.4.4) which we consider outside
of the scope of our system. For this purpose, we use the UML notation related to messages by
presence of events, especially, the lost message and found message [144]. The lost messages are
messages ending with a small black circle and represent messages that are sent to an unknown

81

Chapter 5. Prototyping, Implementation and Simulation

object and can be interpreted as it has not reached its destination. The found messages are
messages starting with a small black circle to specify that the messages have been received by
an unknown object. It can be interpreted as the origin of the message is outside the scope of the
current description.

Figure 5.3: Store data sequence diagram

Store data

This scenario describes the Administrator exchanges with the system to store data on the DFS
(Figure 5.3). As a precondition, the system has enough Storage nodes to replicate the data (the
number of storage nodes is greater or equal to the number of replicas the administrator is looking
for). As a post-condition, the data are stored on the DFS and the requested number of replicas
is met.

- Normal Course of Events

1. An administrator sends a command to store data on the DFS

2. The ReplicationClient validates the command through the ReplicationParser.

3. The ReplicationClient sends a replication request Interest on the network

4. A storage (s1) receives the replication request Interest, sends an acknowledgment to the
ReplicationClient, performs the replication by sending an Interest to retrieve a copy of the
data and looks for the next replica by sending a new replication request (Figure 5.3).

82

5.1. Software Architecture

5. Another storage (s2) receives the replication request Interest, sends an acknowledgment to
the storage which had initiated the replication request, performs the replication by sending
an Interest to retrieve a copy of the data. It then sends a message to the ReplicationClient
to complete the replication process.

6. The administrator is then notified about the completion of the process.

- Exceptions

4.a No Storage node is available.

4.b After a timeout, an error Interest is sent to the ReplicationClient.

5.a The number of storages is less than the number of replicas requested by the Administrator.

5.b An error Interest is sent to the ReplicationClient.

Figure 5.4: Retrieve data sequence diagram

Retrieve data

This scenario describes the Administrator exchanges with the system to retrieve data from the
DFS (Figure 5.4). As a precondition, the data have been stored on the system before, and the
administrator knows the name of the data he wants to retrieve. As a post-condition, the stored
data are returned to the administrator.

- Normal Course of Events

1. An administrator sends a command to retrieve data on the DFS.

83

Chapter 5. Prototyping, Implementation and Simulation

2. The User application sends a data request Interest on the network.

3. A storage receives the data request Interest, then sends the data to the User application
which displays them to the administrator.

- Alternative Courses

2.a An intermediate node has the data available in cache. The data request Interest is not
forwarded to a storage node holding a replica of the data. The data are then sent from this node
to the User application.

- Exceptions

2.a No data are available for the specified name. An informative message is sent to the
administrator.

Figure 5.5: Delete data sequence diagram

Delete data

This scenario describes the Administrator exchanges with the system to remove data from the
DFS (Figure 5.5). As a precondition, the data have been stored on the system before, and the

84

5.1. Software Architecture

administrator knows the name of the data he wants to retrieve. As a post-condition, the list of
all data is returned to the administrator.

- Normal Course of Events

1. An administrator sends a command to delete data on the DFS.

2. The User application sends a data removal Interest on the network.

3. A storage replicating that data, receives the data removal Interest, performs the removal
and then sends a data removal Interest for the next replica.

4. Another storage node replicating the data, receives the Interest, performs the removal and
then notifies the User application as it was the last replica.

- Exceptions

3.a No data are available for the specified name. An informative message is sent to the
administrator.

Figure 5.6: List all data sequence diagram

List all data

This scenario describes the Administrator exchanges with the system to know the list of all data
that are stored on the DFS (Figure 5.6). As a post-condition, the list of all data is returned to
the administrator.

- Normal Course of Events

85

Chapter 5. Prototyping, Implementation and Simulation

1. An administrator sends a command to list all the data available on the DFS.

2. The User application sends a data list Interest on the network.

3. A storage receives the data list Interest, then sends the list to the User application which
displays it to the administrator.

- Alternative Courses

3.a No data have been stored on the DFS before. An empty list is sent to the administrator.

Perform computation

This scenario describes the Administrator exchanges with the system to request a data com-
putation (Figure 5.7). As a precondition, the data have been stored on the system before and
also, the computation script is available on the network. As a post-condition, the result of the
computation is returned to the administrator. The behavior of the Computes is quite identical.
We only present two Computes on the sequence diagram to keep it readable, knowing that more
Computes are involved. Maps start differently than Hadoop. A Compute node, when receiving
a computation request, starts another map if needed, by sending a new computation request
(Section 3.2).

- Normal Course of Events

1. An administrator sends a command to perform a computation on data stored on the DFS.

2. The ComputationClient validates the command through the ComputationParser.

3. The ComputationClient sends a computation request Interest on the network

4. A Compute (c1) receives the computation request Interest, in parallel, he sends an acknowl-
edgment to the ComputationClient, performs the map computation for the first segment,
and looks for another compute to perform the map for the next segment. These operations
are repeated at each node receiving a computation request.

5. Another Compute (c2) receives the computation request Interest, sends an acknowledgment
to the compute (c1) which had initiated the computation request, performs the map for
the given segment.

6. One Compute object (c1) starts the reduce phase and sends Interest to retrieve the result
for the different maps.

7. The compute object having performed the reduce computation sends the result back.

Alternative Courses

4.a The compute object doesn’t have the data. It uses the "retrieve data" use case (Figure
5.4) to get a copy of the data.

4.b The compute object doesn’t have the script for the computation. It sends an Interest to
retrieve the script.

86

5.1. Software Architecture

- Exceptions

4.a No Compute node is available.

4.b After a timeout, an error Interest is sent to the ComputationClient.

Figure 5.7: Perform computation sequence diagram

87

Chapter 5. Prototyping, Implementation and Simulation

5.2 Implementation

The implementation is an important phase in the design of a software system. This part describes
the implementation of the different versions of our system. We consider the different scenarios
presented in Section 5.1.3. The prototype version is implemented to run within the ndnSIM
simulator and evaluate the network communication aspects, while the concrete version is for
the logic evaluation. Similarities for both versions are described in Section 5.2.1. Section 5.2.2
provides specificities about the prototype implementation. Technical details about our concrete
implementation and a Command Line Interface (CLI) are provided in Section 5.2.3.

5.2.1 Model based approach

Our system has been modeled with timed automata, and properties about the system have been
verified using UPPAAL model checker. The verified properties should be preserved during the
implementation phase.

Automatic code generation is a technique that can be used in the implementation phase. It
consists of using models of the system obtained during the specification, generates source code.
The advantage of this technique is when the source code generator is formally proved, it ensures
that the generated source code preserves properties verified during the modeling phase.

We were able to partially use the code generation approach for our implementations. When
specifying our parsers (Section 3.5.3), the Coq specification has been used to generate the source
code for these parsers in OCaml2 which are then integrated with the other components of the
system.

Even though this approach is interesting, we didn’t have the chance to use it for our models
from UPPAAL since this approach requires a tool to support the source code generation. In our
case, a tool that would take as input a UPPAAL model and outputs a source code in our target
languages (C++ and JavaScript). Moreover, that tool should be proven.

In the literature, this problem has been considered before. This is the case for Sidra Sul-
tana, and Fahim Arif [145], which proposed automation of UPPAAL automaton into C++ code.
Unfortunately, no source code has been provided to the community and our efforts to reach the
authors remained unsuccessful. Another solution is found in [146], where a tool is presented to
generates embedded C code from UPPAAL models. The target language of this tool is differ-
ent from ours. Using this tool would require too much work for performing code refactoring to
adapt the output code to our target language. For this reason we didn’t use this tool for our
implementation.

Not having found a tool which satisfy our needs, we could build a tool for this purpose, and
prove that the code generator preserves properties when generating code. But, it would be very
time consuming while we are lacking time. We decide to perform the implementation manually
instead of investing our time into the building of a source code generator.

In our approach, we consider each automaton as a software component as described in Section
5.1.2 and shown in Figure 5.2. Based on the automaton definitions, we implement the logic behind
each component.

Introduced in 1994 by the Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides) [147], design patterns are generic design solutions responding to specific software
development problems. The state design pattern is a behavioral design pattern that allows an
object to change its behavior when its internal state changes, performs treatments based on the
current state and looks as if the class of the object has changed. The state design pattern is used

2https://github.com/mistersound/thesis-source-code/tree/master/system/parser

88

5.2. Implementation

where a state transitions diagram or state machines is possible. That is the case for our system
modeled as a set of automata (Section 4.3).

Figure 5.8: State design pattern structure

Figure 5.8 presents the structure of this design pattern:

• Create state classes that declare a common interface.

• Delegate operations depending on the states of the Context object to its current state
object.

• Ensure that the Context object points to a state object that reflects its current state.

Figure 5.9 presents the use of the design pattern for the building of the Storage component,
based on the Storage model (Section 4.3.1):

• Context (Storage) is a class which allows to use a state object and which manages an
instance of an object ConcreteState.

• State (StateStorage) defines an interface that encapsulates the behavior associated with a
particular state of Context.

• ConcreteState (Idle, Start, Ready, Replicating, ReplicationComplete, SendData) imple-
ments a behavior associated with the state of Context.

The different automata communicate using communication channels (Section 4.2.2). This
ensures synchronization between them. For our implementation, a communication channel be-
tween two automata gives place to an interface between the corresponding components (Figure
5.2).

For instantaneous states also called committed states (Section 4.2.2), for which no delay is
allowed, we have an immediate movement of the component concerned. Thus as soon as the

89

Chapter 5. Prototyping, Implementation and Simulation

Figure 5.9: Storage using state design pattern structure

system reaches a committed state, the operations are performed and an update is automatically
called to move to the next state.

Finally, the adoption of a structured coding approach helps to preserve properties from the
specification.

5.2.2 Prototype version

Early in our project, we were looking for a way to quickly test our approach and perform an
evaluation (Section 5.3). ndnSIM has been built for this purpose by the NDN community (Section
2.4.8). It helps to build test, and evaluate applications using the NDN architecture logics. The
advantage of using ndnSIM is that the whole NDN stack and the core NDN protocol interactions
such as receiving Interest and Data packets from upper and lower layers through Faces are
already integrated as shown in Figure 5.10.

A prototype often implies a reduction of the specification. This is the case for our prototype
where we only implemented the logic related to the different network messages exchanged by each
component based on our approach defined in Section 5.2.1, and using the template3 provided for
building application using ndnSIM. The implementation language of ndnSIM is C++, and the
template provided is in C++. Our prototype4 has then been built in C++. Our prototype has
been used for the simulation experiment described in Section 5.3, but also for the use cases in
Section 6.3.

5.2.3 Concrete version

Later, to run our solution on physical devices and also being able to compare our approach
to an existing solution, we decide to implement a concrete version (concrete because only this
implemented version can be run on physical device) of our approach for this purpose. The

3https://github.com/named-data-ndnSIM/scenario-template
4https://github.com/mistersound/simulation/tree/master/ndnSIM/ns-3/src/ndnSIM/apps

90

5.2. Implementation

Figure 5.10: ndnSIM simulation package structure

implementation is based on the approach described in Section 5.2.1 and here, the main difference
with the prototype version is the implementation of the business logic related to the replication,
the computation, and the fact that it is built to run on a physical device. The NDN community
has developed a library in JavaScript to ease the integration and the use of the NDN protocol
by applications.

Node.js5 is an open-source, cross-platform, JavaScript runtime environment that executes
JavaScript code outside of a browser.

Using Node.js and the JavaScript library from NDN, we have built a concrete version6 of the
system. This version has been used for the system evaluation and to compare our approach with
the Hadoop platform (Section 6.2).

Commands

This section presents the different commands that have been developed for our system. They
have been developed based on the requirements in Section 5.1.1. The commands of the CLI are
mainly used by the administrator to interact with the system.

• To store data:

$ node ReplicationClient.js /domain/storage/ReplicationFactor
/ReplicationIndex/domain/dataName

• To retrieve data:

$ node ndfs.js get /domain/dataName
5https://nodejs.org/en/docs/
6https://github.com/mistersound/thesis-source-code/tree/master/system

91

Chapter 5. Prototyping, Implementation and Simulation

• To delete data:

$ node ndfs.js remove /domain/dataName

• To get the list of all data:

$ node ndfs.js get /all

• To request computation on data:

$ node ComputationClient.js /domain/compute/domain/data/domain/sourceCode

5.3 Simulation

This section describes the experiment used to evaluate the architecture in a simulated environ-
ment using the prototype version (Section 5.2.2). Moreover, the methodology used is presented.
The goal is to determine and gain insight into the important parameters that impact our system
and potentially affect its performance. This helps to better understand and characterize our sys-
tem, but also better optimize it. Performance optimization is obtained by choosing the optimal
values for the important parameters affecting our system.

5.3.1 Tools

Our experiment was conducted in several steps. The first step was the development of our pro-
totype in C++, which is the language used by the simulator. We then designed the experiments
to be run. The next step consisted in the analysis of the data collected during the executions.
We present the simulation and the analysis tool used during this experiment.

Simulation tool

In the network domain, it is costly to deploy a complete testbed containing multiple nodes,
routers, and data links to check a network algorithm. A network simulator such as ndnSIM
[85] affords to test a network algorithm with various network topologies under a controlled
environment. Nowadays, the list of ndnSIM related papers on simulations and measurements
is impressive. ndnSIM implements the NDN protocol stack, to run simulations for a variety
of network topologies and scenarios (Section 2.4.8). We use it to simulate the behavior of our
architecture on different kind of topologies and provides tracers using libraries and packages to
collect information such as in table 5.1. We have implemented a prototype version [148] of our
architecture to run on ndnSIM.

Dataplot

Dataplot [149], is a statistical analysis tool developed and maintained by the National Institute
of Standard and Technology (NIST). It is a powerful tool for data analysis which supports both
quantitative and graphical statistical method. We have been introduced to dataplot during our
visit as guest researcher at NIST. This is one of the reasons why we have chosen this tool for our
analysis, but also because of its capability when dealing with sensitivity analysis.

92

5.3. Simulation

Type of measurement Description
InInterests measurements of incoming Interests
OutInterests measurements of outgoing Interests
InData measurements of incoming Data
OutData measurements of outgoing Data
SatisfiedInterests measurements of satisfied Interests
TimedOutInterests measurements of timed out Interests
InSatisfiedInterests measurements of incoming satisfied Interests
InTimedOutInterests measurements of incoming timed out Interests
OutSatisfiedInterests measurements of outgoing satisfied Interests
OutTimedOutInterests measurements of outgoing satisfied Interests

Table 5.1: ndnSIM Metrics

Factor Name Low (-1) High (+1)
X1 Network Size 64 100
X2 Number of Storage Nodes 20 40
X3 Size of File 5 Gb 10 Gb
X4 Number of Replication 3 5
X5 Content Store Size 10 packets 1000 packets
X6 Node Capacity 2 Tb 5 Tb
X7 MeanFailureTime 300 s 700 s
X8 MeanFailureDuration 30 s 100 s
X9 Number Of Producer (Admin) 1 3
X10 Number Of Consumer Users 5 10
X11 Number Of Failure Nodes 1 4
X12 Links Speed 10 Mbps 1000 Mbps
X13 Links Delay 1 ms 10 ms
X14 Cache Policy Lru Fifo
X15 Consumer Request Distribution Uniform Exponential

Table 5.2: Input Parameters and value simulated

93

Chapter 5. Prototyping, Implementation and Simulation

Figure 5.11: Fault tolerance sequence diagram

5.3.2 Experiment

The network topology used for this experiment is a grid topology that has to be implemented
programmatically. The experiment consisted of using a uniform distribution, select some nodes
on the network on which to start a set of ReplicationClients, Storage Nodes, and User application
(Figure 5.3). The User application is used to play the role of an application needing the data from
the DFS, such as NMapReduce application. The clients send replication requests to replicate
data in the DFS which will be satisfied by the Storage nodes. Also, User applications are
used to retrieve data from NDFS. The data retrieval is based on uniform distribution and an
exponential distribution (factor X15 from Table 5.2). Also, we randomly selected some nodes
to fail during the simulation. This was to test the fault tolerance of the system. Figure 5.11
presents a scenario with 3 storage nodes. Storage s1 and s2 are replicating the same data, and
check each other periodically using they HeartbeatChecker and HeartbeatResponder through
the heartbeat mechanism (Section 3.1.3) which has been initiated during the store data scenario
of an admin (Figure 5.3). When storage s2 fails (failure of hr2 and hc2), it is detected by the
HeartbeatChecker of storage s1 (hc1) which initiates a replication request to find a storage to
take over the data replicated by s2. Storage s3 responds to the replication request, replicates
the data and starts a heartbeat mechanism (hc3 and hr3) to check storage s1 and responds to
heartbeat requests.

To evaluate the performance of our proposed DFS, we identified 15 input parameters (Table
5.2) and 10 response parameters (Table 5.3) to run our simulation experiments. These parame-
ters and system responses have been identified by analyzing the available parameters in ndnSIM.
This is to analyze the impact of these input parameters on the system. For each input parameter,
we chose only two values: "low" and "high" [150]. Having 15 variables with two possible values
implies 215 possible combinations to run using a full factorial design (which consists of running
all the possible combinations). Using a full factorial design will give more precise information.
But this is difficult to run due to the time needed for a simulation to complete which requires
approximately 40 minutes per execution. To reduce the number of runs, we used the method of

94

5.3. Simulation

the fractional factorial [150] with a 215−8 design (design specification). This consisted of using a
part of the runs needed for a full factorial and still having good results. The 128 runs were chosen
carefully to be representative of the whole possibilities. We then measured 10 system responses
(Table 5.3) to capture the behavior of the DFS. After the execution of the simulations, the met-
rics are produced in files (3 files) on which R scripts (Appendix E) are applied to compute the
response parameters. Finally, the results are analyzed using the statistical tool dataplot [149].
Routing configuration is a crucial aspect of these experiments. As the NLSR (Section 2.4.4) is
not integrated into ndnSIM, the GlobalRoutingHelper [85] (a ndnSIM integrated function used
to perform the routing) is used to calculate the route weight. Each time that the system creates
a new route to the local application, a new origin route is added to the GlobalRoutingHelper
and all the route weights are recalculated. At the beginning of the experiment, all the FIBs are
empty. They are populated on-the-go by the ReplicationClient and the Storage applications.
As the existing routing strategies are not suitable for our system because of the replication con-
straints, a custom forwarding strategy is installed on each node for the storage prefix. The other
prefixes on the FIB are handled by the Best Route Strategy [91] that is used by default for the
data prefixes (Section 2.4.4).

Response Name Description
Y1 Replication Time Time between a storage Interest and the com-

pletion of the last replication
Y2 Mean Distance to data Mean hop count before an Interest reaches a

storage node
Y3 Mean Retrieval Time Average time used by a user to get the data.
Y4 Total Replication request Total number of replication requests
Y5 Number Of Exchanged Packets Total of exchanged packets over the network

(number of packets/s)
Y6 Data Rate (Kilobits/s)
Y7 Number Of Incoming Interests Total of Incoming Interest over the network
Y8 Number Of Outgoing Interests Total of Outgoing Interest over the network
Y9 Number Of Outgoing Data Total of Outgoing Data over the network
Y10 Number Of Incoming Data Total of Incoming Data over the network

Table 5.3: System Responses

5.3.3 Results and discussion

This section describes the experimental results obtained using ndnSIM to measure the perfor-
mance of the system.

A sensitivity analysis has been adopted to evaluate the behavior of our model. Performing
this analysis permits us to determine for each system response, the factors which are the most
important for that system response and the best and worst settings for these factors (main
effect). We present the results for the replication time, the Mean distance to data and the Mean
Retrieval time which have a great interest in our study, as their values indicated how the DFS
performs. As soon as data are replicated, it can be involved in a computation process, also when
an application wants to access data, one wants this access to be fast.

95

Chapter 5. Prototyping, Implementation and Simulation

Figure 5.12: Main Effect plot - Mean Replication Time

Each factor was set at its high value for 64 runs and its low value for 64 runs within the
128-run design. The main effects plot graphed the average of these two sets. Figures give the
main effect plot for the replication time, the mean distance to data and the mean retrieval time.
The main effect plots have been produced using dataplot [149].

The mean plot is formed with:

• Horizontal Axis: we have the 15 factors and the two settings ("-" and "+") within each
factor.

• Vertical Axis: we have the mean response for a given setting ("-" or "+") of a factor, for
each of the 15 factors.

It is a sequence of 15 mean plots, with one mean plot for each factor. All of the mean plots
are on the same scale to permit comparison and relative importance. The vertical axis of each
mean plot is the mean response for each setting of the factor and the horizontal axis is the two
settings of the factor: "-" and "+" (-1 and +1). A huge difference in the two means (for the two
settings) implies that the factor is important while a small difference implies that the factor is
not important. For each of the 15 factors, the mean values for that factor are connected with
a line. The magnitude of that line indicates the factor effect. The longer line means that the
factor has effects while the shorter line indicates the factor has not. The slope of the line shows
whether there is an increasing or decreasing effect of the factor on the responses.

Figure 5.12 shows that the replication time (response Y1) is mainly affected by the number
of replication (factor X4). Its mean value was 34.11s during our experiment. The time needed to
perform the replication changes only with the number of replication. All the other factors don’t

96

5.3. Simulation

impact the time needed to replicate the data. This result contradicts our initial expectation,
which was that the replication time would be influenced by the size of the network, the number
of storage, the content store (cache) size or at least the size of the file to replicate. This result
is important as it shows that the system can highly scale with no impact on the time needed
to replicate data on the network. This also shows that the communication properties (Section
4.4.1) hold, as the replications are performed, meaning that the different nodes in charge of the
request are exchanging data to perform the request.

Figure 5.13: Main Effect plot - Mean distance to data

For the response Y2 (mean distance to data), we consider here how close are nodes running
an application on the cluster to a replica. Figure 5.13 shows that factors X5, X1 and X4 are the
most important. For the best settings X5 with a high value, X1 having low value and X4 a high
value. Its mean value was 5 nodes, during our experiment. The size of the content store, the
size of the network, and the number of replicas have an impact on the number of nodes that an
Interest has to reach before this Interest has been satisfied. Having a small value for the mean
distance to data means that the applications will quickly have access to the data. The size of
the content store, the network size and the number of replicas might be chosen appropriately.

In Figure 5.14, we can see that Response Y3 (Mean Retrieval time) is mainly affected by
Factors X13, X10, and X1. Its value was around 64 ms during our experiment. The size of the
network, the delays on the links and the number of Users (applications accessing the data in the
DFS) are affecting the time needed for the application to retrieve data from the DFS.

97

Chapter 5. Prototyping, Implementation and Simulation

Figure 5.14: Main Effect plot - Mean Retrieval Time

The two first results show that the system behaves as expected (Chapter 3) and the last one
shows how scalable the system can be (these satisfy our non-functional requirement related to
the system scalability in Section 5.1.1). In fact, increasing the number of users (Factor X10)
improves data retrieval time. Also, experiments show that having only one replica available in
NDFS, the system can move to a stable state if there are sufficient Storage nodes to replace
the failed ones. This shows that our recovery properties (Section 4.4.3), related to the fact that
failed nodes are detected and their processing are managed by other nodes, hold.

5.4 Summary

In this chapter, we presented the software architecture that we have proposed for our solution
in Chapter 3. We presented the different requirements the system must meet. Based on the
modeling performed in Chapter 4, we described the different components of the system. We have
then described our approach for the implementation in general and details about a prototype and
a concrete implementation. We have also considered a simulation of the prototype version of our
system and performed a sensitivity analysis to study the different factors impacting the system.
We found that the system is highly scalable with no impact on the replication time. We have also
shown that properties from Section 4.4 hold. This shows that the properties are preserved with
our implementations, and our approach of implementation despite its simple aspect is successful.

In the next chapter, we use the concrete implementation for an evaluation phase. We then
compare our solution to existing solutions from IP using classical metrics used to compare DFS

98

5.4. Summary

and computation distribution.

99

Chapter 5. Prototyping, Implementation and Simulation

100

Chapter 6

Experimentation and Results

Contents
6.1 Experimental Platform . 101

6.1.1 NDN experimental platform . 101
6.1.2 Hadoop experimental platform . 103

6.2 Evaluation and Comparison . 103
6.2.1 NDFS vs HDFS . 104
6.2.2 Hadoop MapReduce vs NMapReduce 106

6.3 Use Case . 107
6.3.1 IoT . 107
6.3.2 Smart Grid . 111
6.3.3 Building Management System . 113

6.4 Summary . 116

In Chapter 5, we have implemented our architecture for Big Data over NDN. Our architecture
is composed by a Distributed File System (Section 3.1) and a Computation distribution (Section
3.2). In this chapter, we perform the evaluation of our architecture. We analyze different statistics
by running experiments on our architecture and comparing the results with experiments from
an Hadoop architecture. In Section 6.1, we first describe the experimental environment, then
Section 6.2 gives the evaluation and comparison. Finally, we also consider in Section 6.3 three
use cases where our architecture have been used to consider real life problem.

6.1 Experimental Platform

As we are considering the evaluation of our architecture, which is compared to another archi-
tecture, we have built two identical experimental platforms (partially presented in Figure 6.1).
One for our architecture based on NDN and the second one for the Hadoop architecture based
on TCP/IP. Our experimental platforms have been built using a cloud platform available in our
laboratory.

6.1.1 NDN experimental platform

NDN possesses a testbed for applications evaluation and testing with real settings (Section 2.4.6).
Unfortunately, our solution is difficult to test on the testbed because of the software stack that

101

Chapter 6. Experimentation and Results

Figure 6.1: Cluster Architecture

has to be installed on the nodes. The management of a node in the testbed is operated by
the organization which holds that particular node, so we only have administrative power on the
LACL node. To get our environment as close as possible with what exist on the NDN testbed,
we have adopted the configuration settings used for the nodes on the testbed. We have then
built a mini testbed using a quarter of the number of nodes used in the current testbed. This
mini testbed is used only as a test environment and has no connection with our link in the NDN
testbed nor the NDN testbed itself. It is also good to mention that the number of nodes has
also been chosen to have a meaning when building a Big Data cluster as recommended in best
practices for building Big Data clusters [151].

The experimental cluster consisted of 16 nodes which are interconnected using a node called
router. One node was used as a client and the 15 others were used as Storage and Compute
nodes. The hardware information of the nodes is as follows:

• 15 nodes of storage / compute (receive replication, perform computation) with 8Go RAM,
50Go storage and 1 CPU

• 1 client (initiates replication, initiates computation) with 16Go RAM, 50Go storage and 2
CPU

At the software level, we have the following:

• OS is Ubuntu 16.04

• ndn-cxx has been installed [143]

• NFD has been installed [152]

• ndn-tools has been installed (essential command-line tools) [153]

102

6.2. Evaluation and Comparison

• NLSR (NDN Link State Routing Protocol) has been installed [154] (it requires ChronoSync
[155] and PSync [156])

• Nodejs has been installed [157].

Finally the JavaScript version of our Big Data framework was installed, that requires Nodejs
(version >= 10.15.3). Both the client and the 15 nodes have the same software stack, except
for our framework. The ReplicationClient and the ComputationClient were installed on the
client while the master versions (Storage and Compute) were installed on the other nodes. The
generated parsers (Section 3.5) were integrated into the deployed solution (Section 5.1.2) and
were giving satisfactory results.

In order to allow researchers working on NDN to reproduce our work easily, and also because
we have to repeat the experiments many times, we have built some scripts in order to automatize
the different tasks for the cluster deployment, specially the installation of the software stack. The
different scripts can be found in Appendix B, and the configuration script for the nodes on github
(https://github.com/mistersound/NDN-1/tree/master/configuration).

6.1.2 Hadoop experimental platform

Our goal is to be able to compare our solution with the one from Hadoop. For this reason, we have
to design the Hadoop experimental platform similar to the one we built for our framework. As
previously, the experimental cluster consists of 16 nodes interconnected with a node called router.
We consider a simple architecture with only one node as NameNode (master) and the other 15
nodes are designed to be DataNodes (slaves). We don’t consider any backup, nor secondary
NameNode. The master node manages the cluster and typically runs master components of
distributed applications. Slave nodes coordinate data storage as part of the Hadoop Distributed
File System (HDFS). The hardware information of the nodes is as follows:

• DataNodes: 8Go RAM, 50Go storage and 1 CPU

• NameNode: 16Go RAM, 50Go storage and 2 CPU

As mention in the previous section, the configuration is meaningful for a Hadoop cluster deploy-
ment [151]. We have used Ubuntu 16.04 as OS, the Hadoop-2.9.1 [158] and Java 7 [159] for HDFS
and MapReduce. In this context, we also keep the experiments reproducibility constraint in mind
while deploying the cluster. We then take this constraint into consideration by automating the
deployment and providing a script for this automation (Appendix B.4). Our platform can easily
be rebuilt.

6.2 Evaluation and Comparison

The evaluation is performed in two phases. Section 6.2.1 describes the evaluation of NDFS,
which consists in sending replication requests from the ReplicationClient to replicate a file on
NDFS. We then measure metrics such as the running time, and the throughput. This evaluation
is performed considering the experiment parameters in Table 6.1, while increasing each time the
size of the file and modifying the replication factor. Section 6.2.2 is for the evaluation of the
NMapReduce. Based on the replication performed in Section 6.2.1 a computation request on
the data is sent by the ComputationClient and we measure the runtime. In order to verify the
reliability of the results as well as their adequacy to a normal behavior, we compare in each
phase our result with the same experiment performed using the Hadoop framework.

103

Chapter 6. Experimentation and Results

Input Experiment 1 Experiment 2 Experiment 3 Experiment 4
File size 500 Mo 500 Mo 5 Go 5 Go

Replication factor 3 15 3 15

Table 6.1: Evaluation parameters

6.2.1 NDFS vs HDFS

In this section, we present the results of the comparison between NDFS and HDFS for data
replication. We present namely the replication time, and the throughput.

The execution of an experiment from Table 6.1 on NDFS consisted in performing a set of
actions. On the ReplicationClient, we first load the file to be replicated using ndnputchunks
[153].

This step is important as this permits to have the file available in NDN format. Then the
command for the replication request is issued:

For Experiment 1 & 3:

$ ndnputchunks /lacl/data < file500Mo.txt
$ node ReplicationClient.js /upec/storage/3/3/lacl/data

For Experiment 2 & 4:

$ ndnputchunks /lacl/data < file5Go.txt
$ node ReplicationClient.js /upec/storage/15/15/lacl/data

The ReplicationClient.js corresponds to an implementation of the specification of the Repli-
cationClient Model (Section 4.3.1).

In order to perform measurements for the runtime, we have modified the default behavior of
our application to include an aspect to detect the end of the replication. This aspect consisted
for each Storage participating to a replication, to send an Interest to the ReplicationClient as
an acknowledgement when they complete the replication (when the last segment of the file to
be replicated is received). We then compute the difference between the start of the replication
request and the reception of that acknowledgment

(Runtime = last_acknowledgement_time - start_time). For the second measurement which
is the throughput, we have used an output provided by ndntools which provides metrics on each
Storage node.

To perform the same experiment for HDFS, we have performed commands of the form:

$ time hdfs dfs -put (fileName) (destinationHDFS)

For example for Experiment 1:

$ time hdfs dfs -put /home/hadoop/file300Mo.txt /usr/jdongo/file300Mo.txt

In order to perform the measurements, we used the Linux time command. It is used when
one wants to determine how long a given command takes to run. In our case, how long does
the hadoop command takes to run. Each time, HDFS replication settings are adapted to the
replication factor of the experiment.

Each experiment was performed many times to confirm that results are stable over each
execution.

104

6.2. Evaluation and Comparison

Runtime

This measures the time spent for replicating a file on the cluster using the parameters in Table
6.1.

Figure 6.2: HDFS runtime vs NDFS

As we can see (Figure 6.2), for all the experiments, HDFS takes more time to perform the
replication. Increasing the replication factor has a little impact on the replication time for HDFS,
while it has a huge impact on the replication time for NDFS and decreases it considerably. This
can be explained by the use of a cache in NDFS, which enables the retrieval of the data from
many sources. We have also noticed that the client used for sending the replication in the
NDFS experiments always terminates and the exact number of requested replica is created in
the cluster. This confirms that our communication properties (Section 4.4.1) hold (P1, P2, P3) as
the replication request is received by the storage nodes and the requested operation is performed.
This also confirms that our property P7 which is about the completeness property (Section 4.4.2)
of the replication process holds.

Throughput

This measures the amount of data passing through the system. It depends on both parameters
(Table 6.1), the file size and the replication factor. For HDFS, increasing the replication factor
increases the throughput (Table 6.2), while the opposite effect is observed with NDFS. The
increase of the replication factor in NDFS decreases the throughput. One suspect of this behavior
is the NFD as presented in [160]. NDFS still presents good throughput compared to HDFS, as
for the same file size and same replication factor, the throughput from NDFS is almost two times
the one from HDFS.

Having good throughput shows that there is a communication between the ReplicationClient
and the different Storage nodes. Data to be replicated are first retrieved from the Replication-
Client and then from a Storage, from a cache at an intermediate node or from the Replication-
Client. This confirms that our communication properties set forth in Section 4.4.1 hold. This
also confirms the holding of our consistency property (Section 3.6.3) about the behavior of our

105

Chapter 6. Experimentation and Results

replication parser which sends a NDN message when a replication command is accepted.

NDFS HDFS
experiment1 373,38 64,45
experiment2 316,17 84,1
experiment3 349,46 153,42
experiment4 276,3 162,05

Table 6.2: HDFS Throughput vs HDFS (Mbits/s)

6.2.2 Hadoop MapReduce vs NMapReduce

In this section, we present the results from the comparison between Hadoop MapReduce and
NMapReduce while counting the number of times each word appears in a text data file. We
present the time used for the computation. The different files replicated on the DFS are text
files containing English books. After the replication, we perform two experiments using the result
of experiment 1 and 3 from Table 6.1.

For NMapReduce, the experiment consisted in using a ComputationClient to send a compu-
tation request for the data. The following command was used:

$ time node ComputationClient.js /upec/compute/lacl/data/lacl/WordCount

The ComputationClient.js corresponds to an implementation of the specification of the Com-
putationClient Model (Section 4.3.1).

As mentioned in Section 3.2, the script here is also considered as a data available on the
network. The script of the JavaScript program which was applied on the data is available in
Appendix C

For the Hadoop MapReduce the following command was used after implementing a Java
version of the WordCount program available in Appendix D

$ time hadoop jar wordCount.jar org.lacl.jdongo.WordCount /user/jdongo/file300Mo.txt
/user/jdongo/output

In order to perform the measurements, we used the Linux time. The time command is used
when one wants to determine how long a given command takes to run. Here, how long the
NMapReduce and MapReduce commands take to run.

Each experiment has been performed many times and the results are stable over the different
executions.

Runtime

This is the time spent by the application to perform the computation. The computation has been
performed using the parameters in Table 6.1. We only performed two experiments using settings
of experiment 1 and 3. Results revealed that the execution time increases with the size of the
input file (Table 6.3) in both applications. It can be noted that NMapReduce presented good
execution time compared to MapReduce. This can be explained by the fact that NMapReduce
somehow takes full advantage of data available in NDN cache. Getting the data quickly from
a closed node helps to decrease the overall time, as it reduces the time needed to get the data
when they are not available at the processing node. Having these results is a confirmation that

106

6.3. Use Case

the computation process ended. This shows that our completeness property P8 (Section 4.4.2)
related to the fact that the computation process completes, holds.

NDFS HDFS
experiment 1 310 380
experiment 2 1535 1850

Table 6.3: Hadoop MapReduce wordcount execution time vs NMapReduce (s)

Both approaches produced the same result for the word counting. This is an important
aspect, as it shows the validity of our implementation. Other examples such as data extraction
from a CSV file have been implemented but are not presented in this document.

6.3 Use Case

In this Section, we present three use cases considered to apply our approach. The first use case
is from the IoT field and is described in Section 6.3.1. It helps us consider the high variability
aspect of Big Data, where we process a large collection of small datasets.

The second use case is about Smart Grids and is described in Section 6.3.2. Nowadays, the
Smart Grid presents new opportunities to apply Big Data. As a matter of fact, it helps to
consider the volume aspect of Big Data as we have many nodes generating data to be stored and
analyzed.

The third use case is about Building Management Systems and is described in Section 6.3.3.
In a building environment, the transmitted data can easily vary from few kilobytes to several
gigabytes a day going back and forth between the sensors, actuators, and control processes.
That’s the reason why we choose this use case to apply our Big Data approach.

The comparison performed in Section 6.2 was based on a JavaScript implementation, while
all the use cases are performed using a C++ implementation. This is due to the fact that ndnSIM
doesn’t support JavaScript, and its simulation language is C++.

6.3.1 IoT

The development of big data is rapidly accelerating and affecting all areas of technologies and
businesses. As the Internet of Things (IoT) development is following this trend and producing
tremendous amount of data, it has played a major role on the big data landscape [161]. New
challenges are presented by the capability to analyze and use huge amounts of IoT data, including
applications in smart cities, smart transport and grid systems, energy smart meters, and remote
patient healthcare monitoring devices. Rethinking big data to enable built-in data aggregation
can benefit both the networking side, by reducing the network traffic, and the processing side by
sharing the results between the compute infrastructure at the edge of the network.

Description

For our use case, we consider an IoT temperature monitoring system. We have a set of devices
(smart temperature and humidity sensors) that are queried periodically to provide temperature
information. In this application, we have redundancy when requesting temperature informations.
In fact, all the nodes requesting a temperature value will directly query the IoT device, even if

107

Chapter 6. Experimentation and Results

the data had been requested before. This scenario is a good candidate for applying our big data
approach (Section 3.1 and 3.2).

Let’s take an example of a data name: /location/temperature/201803201000/TempY/ These
data are for the temperature value on March 20, 2018 at 10am from the IoT device TempY
located in a room in a building (location is formed using the building name and the room
number). Requesting these data will trigger an Interest for replicating the data on the DFS
located in the Big Data platform (Figure 6.3). The consequence of this replication is the fact
that future request for these data can be retrieved from the replicas, but also from some caches
along the network; as NDN enable in-network caching. This considerably alleviates the load of
the IoT devices.

Having these temperature measures on the DFS, we want now to make a computation us-
ing hourly historical values for a month. The compute request is issued from the cloud data
center and performed on the Big Data platform. With this approach, we mutualize the use
of the infrastructure and avoid redundancy in the computation. To evaluate the behavior and
validate our approach, we have implemented our use case in a simulator. Simulations have
been performed using the ndnSIM simulator [85]. We simulated a case with 20 IoT devices, 10
edge-storage/compute nodes, and 100 servers at the cloud data center. The simulation has been
performed using IP communication and then with our NDN Distributed File System approach.

The platform used for this simulation is different from the one presented in Section 6.1. This
is first due to the fact that we needed more nodes in this experiment and were bound by some
resource restrictions in the cluster in our lab. Also, this platform is more adapted to IoT Big data
computation as it includes the use of IoT devices and enables edge computing. Using ndnSIM,
we were able to easily perform simulations up to the number of desired nodes.

Figure 6.3: IoT Big Data Architecture

108

6.3. Use Case

Results and discussions

The simulations have been performed for both the Distributed File System approach (Section
3.1) and the computation distribution (Section 3.2). We examined the packets exchanged on the
network and the number of compute request Vs number of compute execution. NDN provides
a set of tools. The dumping tool ndndump [162] was created to provide a tcpdump-like tool for
Named Data Networking (NDN), for dumping data traffic between nodes over a NDN network.
So for our approach, we used the ndndump tool (used during the comparison in Section 6.2),
while using tcpdump for the IP based solution, to dump the traffic and perform analysis.

Figure 6.4: Average packet rate

Figure 6.4 shows the average packet rate on the network. The impact of replication factor on
requesting the data from the source is linear. That means that the Interests are aggregated by
NDN. That shows the efficiency of the system as only a minimal number of packets is transmitted.

Figure 6.5: Compute request vs Execution - IP

Figure 6.5 shows that using an IP based solution, if a computation for a data is requested

109

Chapter 6. Experimentation and Results

for a number of time, that computation will be executed at least the same number of time and
more if an error occurs during a computation. Our approach optimizes the computation and
reuses already executed results. In this case, partial results for data chunks that have already
evaluated and need to be reused in another evaluation, are not re-evaluated but the result is
retrieved directly on the network.

Figure 6.6: Compute request vs Execution - NDN

We can see in Figure 6.6 that based on our NDFS, the number of computation for the same
content is almost always 1 with an exception when errors occur.

These results confirm that our communication properties (Section 4.4.1) hold as the proto-
cols correctly transfer messages from ReplicationClient to Storage, from ComputationClient to
Compute, between Storages and between Computes. We can see that with the different packets
dumped.

Summary

This use case first strengthens our findings from Section 6.2, especially with the good throughput.
This good throughput helps in the request for computation of already evaluated data. Also, the
architecture considered in this use case highlights other benefits of our solution, which was not
observed during the evaluation phase. For example, the fact that less packets are exchanged on
the network using our approach.

110

6.3. Use Case

Figure 6.7: Smart Grid Scenario Architecture

6.3.2 Smart Grid

Since the emergence of the renewable energy sources, energy production scenario are evolving
toward adoption of such an energy sources to address the foreseen oil shortage and the increas-
ing demand for energy [163]. Therefore, stakeholders are changing their energy production and
distribution processes to provide judicious uses of energy resources and a more "green" produc-
tion [164]. This trend initiated a change in the model of the energy market. The transition
is begun from a monopolistic single-provider model to a competitive model where several play-
ers (providers, vendors, and even consumers themselves) become producers in an open model
[165]. Cheap photovoltaic panels and other affordable sources of renewable energy are heavily
supporting this trend.

Description

The Smart Grid is defined as an electrical grid in which a set of operations and energy measures
are performed for electricity production and distribution control [166]. It depends on measure-
ments to provide an accurate state estimation. As state estimation guarantees the balance by
controlling the production, gathering and processing these measurements is crucial to the Smart
Grid. Measurement within the Smart Grid is based on two main devices. Phasor Measurement
Units (PMUs), used to monitor and control the power system by measuring voltage angular and
magnitude as well as active and reactive power.[167]. The Smart Meter, used to monitor the
energy consumption at the consumer level (Residence in Figure 6.7) [168]. Communication is
crucial in the Smart Grid to provide a reliable delivery of power from the sources to the con-
sumers. Indeed, power delivery depends on reliable and real-time information sharing [169]. The
Smart Grid is considered as a network of computers and power infrastructures that monitors
and manages energy usage [170]. The use of advanced technologies and applications generates a
huge amount of data that is very important for the Smart Grid. For example consumption data,

111

Chapter 6. Experimentation and Results

billing information etc. Data in the Smart Grid need to be saved, shared among many entities
and need to be analyzed for control, real-time pricing etc. The data computation are repeated at
many nodes and should be fast. Let’s consider a network with a huge number N of subscribers.
An information that needs to be processed at each node will be requested from the central source
(measurement device) by the N subscribers and processed N times. New challenges are faced
by the Smart Grid such as how to alleviate the load of the measurement device, to preserve the
data in case of network failure and mutualise on the infrastructure for the data computation.
Our Big Data approach is a good candidate in order to address these challenges.

For our use case, we consider the topology in Figure 6.7. In the Smart Grid, many Com-
pute/Storage nodes are deployed at every Power plant, one storage/compute node at the micro-
grid level and a compute node at the User Home level. The compute nodes advertise /electrici-
ty/compute to inform about the computation capability, while Storage nodes advertise /electric-
ity/storage for storage capability. When a PMU receives an Interest for a measure, it sends an
interest to replicate that measure on the network. It defines the replication factor (number of
replica that should be available on the network) for the data. Our experiment consisted in start-
ing a set of Clients which hold a specific information such as the dynamic pricing of electricity
that will be replicated. For example, using a name such as /electricity/prices/8pm/ProvX, we
define the prices at 8:00 pm for the provider ProvX. A set of nodes which are storage/compute
nodes, will replicate the data after having received the replication interest /electricity/stor-
age/RepFactor/Rank/prices/8pm/ProvX (conforms with the language defined in Section 3.5).
The replication factor (RepFactor, which is the number of replicas for a data) is dynamically
determined by the Client. The rank (Rank) is essential for the heartbeat mechanism as discussed
in Section 3.1.4 . We then start another set of nodes (located at the Residence level of Figure 6.7)
that we will call User application which requested the replicated data. To evaluate the behavior
and validate our approach, we have implemented our use case in a simulator.

Results and discussions

We only consider one aspect; the packets exchanged on the network. The simulations were
concerning the Distributed File System approach. We compare our results with the ones from
a scenario using NDN and in-network storage [171] in Table 6.3.2. This shows that the use of
our approach significantly reduce the average number of packets exchanged on the network. We
also compare these results with the theoretical bandwidth used in case of IP-Network [172][173].
This result once again confirms the network optimization introduced by our approach. In fact,
the use of NDN cache, and the way replications are performed through our approach help a lot
in obtaining data very closely to the requesting node. This reduces the number of packets that
have to be forwarded to the producer of the data. These results confirm that our communication
properties (Section 4.4.1) hold.

NDN DFS NDN with cache IP
InData (kbits/s) 11.37 7.5 1810.9
OutData (kbits/s) 29.92 161.8 2117.5

Table 6.4: Average packet rate in the case of IP-network, NDN-Network with cache and NDN
with DFS

112

6.3. Use Case

Summary

The simulation of the architecture presented in this use case and the IP theoretical values con-
firmed our good throughput results presented in Section 6.2. Additionally, these results show
that our architecture considered in Chapter 3 and implemented in Chapter 5 is performing well
and has an added value to the NDN architecture. In fact the approach using our architecture
presented better results compared to a default NDN approach.

6.3.3 Building Management System

The development of the Internet of Things (IoT) is rapidly growing and leading ways for changes
and improvements in many areas of technology. Building Management System (BMS) is not an
exception as IoT devices are widely used as lower energy consumption equipment to sense and
actuate while reducing infrastructure costs. Moreover, those devices are enabler for interoper-
ability between proprietary systems [174] in an environment where communication is crucial for
the success of a solution.

The Edge Computing consists of placing the data collected by the sensors on the periphery
of the IoT infrastructure. There are many solutions for processing data near the sensors. Based
on event programming, a collector node does not necessarily send the data to the cloud and
starts the analysis process directly afterward. The Edge Computing architecture and the IoT
requirements reduce the processing time of sensor data placed on an industrial site. Because the
data are stored on edge nodes near the production sites, the processing functions might be hosted
directly on the local infrastructure. Such an approach allows manufacturers to obtain a near-
real-time treatment of the information collected [175]. Sectors such as energy and smart building
need this speed to handle huge amounts of often-critical data on productivity and security.

Description

In building management, several protocols are involved to build the control loop between the
sensors and actuators. As illustrated in Figure 6.8, usually protocols such as BACnet [176]
are used to implement the communications inter-controllers and protocols such as KNX [177]
or simple IO are used to connect devices including sensors and actuators to those controllers.
However, control is not limited to a single controller within its own control loop, but a control
application involves several controllers. Indeed, for an HVAC application, temperature regulation
might involve several local controllers regulating the temperature per room or per floor driven
by a common objective represented by a setpoint to maintain.

Implementing such a control system requires analysis and processing of data coming from all
over the system. That implies disseminating sensors generated data within the network. Our
proposed architecture leverages the dissemination property of NDN to reduce the interactions
between the sensors (Section 6.3.1). For the best exploitation of this property and to keep the
compatibility with the brownfield deployments, we propose to introduce two new components
to the architecture. The first component is the NDN-to-BACnet adapter. Its role on this
architecture is to be an extension to the local controller in such a way that it adapts every
request from/to the controller to NDN communication pattern. The second component is the
edge NDN forwarder that are designed to be deployed at the floor level.

As illustrated in Figure 6.9, the way those components are introduced to the architecture
is non-invasive to the established system. In addition to the classical provisioning path kept
unchanged between the engineering station and the controllers, the two layers containing the
adapters and the forwarders introduce the dissemination property to the system. The forwarding

113

Chapter 6. Experimentation and Results

Figure 6.8: Architecture

layer optimizes the way data packets are transmitted. As the sensors data flows between the
controllers, it keeps a copy on the Content Store within those floors’ forwarders. Data are
retrieved only once from the sensor using the NDN-to-BACnet adapter. After that the same
chunk of data is retrieved only once per floor and served from the controllers local to the floor
from the nearest common forwarder. This aspect of the architecture reduces drastically the
amount of network exchanged (as presented in Section 6.3.2) and enables a new dimension of
scalability to the system.

The processing decision at the edge might be driven by several techniques including stream
processing where the data runs over several pipes and filters to produce the result. On our
proposed architecture, we opted for a MapReduce model to process data and implement the
central control mechanism. The assumption on this processing model is driven by the building
management system style where a control application tries to orchestrate individual control loops
towards the same objective. We use the two newly introduced component as infrastructure to
run the map and the reduce operations. The NDN forwarders are used in this architecture as
compute node at the edge that runs the map and reduce operations. The NDN-to-BACnet nodes
are considered as storage nodes from which the compute nodes can retrieve the data chunks to
be processed.The data chunks here are NDN segments.

For our use case, we consider the "Jeddah Tower". This building which will be the world’s
next tallest skyscraper is under construction in Jeddah, Saudi Arabia. It is expected to be 1
kilometer height, and is designed to include 168 floors and 2 basements with around 59 elevators.
This building is a good candidate for applying our Building Management System approach.

Let’s consider the 168 floors, using traditional IP based controller, we will need 2 controllers
at each floor, which will result in 336 controllers for the whole building. This solution can be
costly, and also a controller will be able to manage only the devices located at the floor where
it is. Elevators are shared resources between all the floors of the building. This means that at
some point in time, controllers have to share data information regarding devices located in the

114

6.3. Use Case

Figure 6.9: Architecture with NDN

elevators. The management design has to take this aspect into consideration. In a building like
the "Jeddah Tower", elevator downtime is a crucial aspect. One wants to be able predict them
and avoid them as much as possible or be able to schedule them during a period for which there
is less traffic. Monitoring through the IoT devices can help improve. Using an approach based
on NDN, We use the NDFS (Section 3.1) to replicate data from these elevators device over the
network. When requesting data from an IoT device related to the elevator, the data generate
an Interest for replicating that data on the DFS. The use of replication has a great impact, as
future requests can be served from replicas, and from cache, thanks to NDN in-network caching.

We want to make a computation on a daily basis for the number of trips an elevator made
during a period of time. Having data available in NDN, we can apply the NMapReduce (Section
3.2) for the computation. With this approach we are able to make part and the whole result
available for another controller requesting the same computation or computation needing an
already evaluated part.

Our use case has been implemented and evaluated using simulations. The platform considered
in this simulation is the same as in Section 6.3.1. Based on the network simulator ns-3 [86],
ndnSIM [85] is a discrete event based network simulator for Named Data Networking. ndnSIM
matches the simulation platform with the latest advancements of NDN research, giving the
opportunity to simulate code for real application.

115

Chapter 6. Experimentation and Results

Results and discussions

During the experimentation, we consider the number of requests compared with the number
of cache hits. The requests concerned those for a data replicated and also request for already
evaluated data in the case of a computation. Figure 6.10 shows the number of request and
numbers of them have been satisfied by results available in cache. We can conclude that the
use of NDN and our replication approach help to reduce bandwidth consumption. These results
confirm that our communication properties (Section 4.4.1) hold.

Figure 6.10: Number of request vs cache hit

Summary

This use case brought the light and explained the results from Section 6.3.1 and Section 6.3.2. In
fact, we have presented one of the reasons why our architecture gave the previous results. This
has been done by comparing the number of requests issued and the number of requests satisfied
from a cache. In each case, most of the issued requests were satisfied from cache. This also
explains the good throughput from Section 6.2.

6.4 Summary

In this Chapter, we described our experimental platform by presenting its hardware architectures,
software as well as the test scenario which was executed in this environment. We also presented
the experimentation used to evaluate our solution, at the DFS level as well as the computation
distribution level. We found that the number of replica for a data can be scaled up without issue,
as the time used for the replication of a data decreases with the increase of the replication factor.
We have compared our results with experimentation results using the Hadoop architecture. We
have found that our approach presents good results compared to Hadoop when considering
replication time using a DFS and computation execution time for distributed computation.

Finally, we have considered three use cases in which we applied our solution to solve real life
problems and showing the benefit of our solution. The First use case showed that our solution
is suitable when considering Big Data variability aspect. The second one presented adequacy of

116

6.4. Summary

the solution when dealing with Big Data volume attribute. And the last use case highlighted
one of the reason why our solution presented these good results.

With all these results of experiments, we can conclude that our architecture fulfills well
the objectives that we had set ourselves, namely, to propose a Big Data architecture to NDN
(Chapter 3) satisfying the properties defined in Chapter 4.

In the next chapter, we present our conclusions and also the perspectives offered by our study.

117

Chapter 6. Experimentation and Results

118

Chapter 7

Conclusion and Perspectives

Contents
7.1 Summary of contributions . 119

7.1.1 Formal definition of a software architecture 120
7.1.2 Development of a framework . 120
7.1.3 Measurements for evaluation . 120

7.2 Future works . 121

The ICN paradigm is proposed as an architecture for the Future Internet in order to enable
the Internet to fulfill its new role with the increase of usages. This is done by focusing on the
data rather than on the hosts of the network, with the goal of moving data more efficiently to
users. Several ICN architectures are proposed and from our point of view, the NDN architecture
is the most advanced and brings together the largest community of researchers and companies
for its development. By providing its nodes with a caching capability, the NDN network allows
storing copies of the contents in the network to improve their distribution. The adoption of
NDN as the Future Internet architecture will have a big impact on how applications are designed
and implemented. This is due to the switching of the paradigm between IP based Network and
NDN architecture based on data naming. Considering the OSI model, Big Data computations
resides at the application layer. NDN enables the management of the data at the network layer
thanks to the in-network caching, name-based routing, native support of multicast, and easy
data access.

Our doctoral thesis work leads to the definition and implementation of a Big Data architecture
in which data and script code are in motion to ease computations based on the NDN network
architecture. In this chapter, we summarize our contributions and present future perspectives
for the rest of our work. Finally, we list the publications made during this PhD thesis. This
work fully integrates with the works on software mobility of our working group.

7.1 Summary of contributions

The main objective of this thesis is to provide a Big Data architecture for Named Data Networking
architecture. We primarily gave an overview of the state of the art for Big Data, distributed
system in general and distributed computation particularly, and presented the NDN paradigm.
From there, we defined a formal model for our architecture and developed a framework for our
architecture.

119

Chapter 7. Conclusion and Perspectives

7.1.1 Formal definition of a software architecture

For our architecture, we have two property families to deal with. First, properties related to the
parsers for our different languages and their implementation, and secondly, temporal properties
related to the whole system. This lead to the adoption of two proof approaches; one using Coq
and another one using timed automata.

Our formal specifications written in Coq provides a formal definition for the replication and
the computation languages. Ours timed automata model components of a software architecture
for parallel and distributed computing. The distributed file system derived from this architecture
can handle different types of data files and also support a high scale in terms of users. For the
computation, based on the traditional map-reduce model, we describe an architecture that can
adapt to the number of available resources and fully use the data available at the network level to
speed up the computations it has to deal with. All these properties have been formally proven.

7.1.2 Development of a framework

The formal modeling carried out in the first part of this thesis pilots the development of an
architecture for Big Data computation based on NDN. Our framework is composed of two layers,
a DFS, and a distributed computation mechanism. We have studied how to evolve a data layer
in a big data context. We have defined a specific naming which enforces the features of our
distributed file system: a replication factor and failover control. Using the specification of the
system, we have considered an approach of implementation from specification, which enables us
to implement a prototype and a concrete version of our solution. With the use of simulations,
we have shown that the deployment of large data over an NDN network is achieved in suitable
conditions under the control of a custom forwarding strategy. More importantly, we have shown
that the proposed approach is highly scalable and fault-tolerant. In fact, increasing the number
of user applications, decrease the meantime needed for these applications to access the data, and
from one replica the DFS moves to a stable state. We have also addressed the computation part
of the big data processing by providing a fully distributed and efficient approach on top of the
DFS.

7.1.3 Measurements for evaluation

Measurements have been performed for the evaluation of the developed framework through ex-
perimentations. These measurements show that our approach is highly scalable, as the network
size doesn’t have a negative impact on the replication time, which decreases when increasing the
number of replicas.

In Section 6.2.2, a Big Data computation has been performed using our framework and
produces the same result as Hadoop but with less execution time.

Our Big Data approach is correctly responding when considering the Big Data variability,
and volume aspects. It also guarantees consistency and availability regarding the CAP theorem.

To ensure reproducibility, each stage of the experimentations, have been controlled. Au-
tomation has been provided where possible and description otherwise. The reproducibility of
this experimental approach has been evaluated and the source code of our work made available
on github.

120

7.2. Future works

7.2 Future works

Our work presents many perspectives that could be considered. First, the aspect of the compu-
tation considered in this thesis is a batch processing approach. One future work could be the
extension of the computation mechanism to include streaming processing. Also, for data to be
replicated or computed in the network, these data have to be available in NDN packet format
7. In this thesis, we relied on tools such as ndnputchunks (Ndn essential tools) to have the
data available in NDN format. This tool has some bad performances. A possible work could
be the development of a tool with better performances. Nowadays, Machine Learning (ML) is
a hot topic and considered in almost all the domain. Another research possibility could be the
extension of our framework to provide Machine Learning capability using NDN.

Definitely, we can consider presenting at meetings, looking for industrial partnerships to push
this work as a standard when talking about Big Data in NDN, but also promote this solution
to companies to take advantage of it when they look for a solution to gain insight from their
data. I think we have to continue and look for partnerships to develop a complete approach of
Big Data on NDN. This work can be continued on a post-doc where the Big Data aspects will
be combined with predictive approaches for NDN network maintenance prediction.

Publications

• Distributed File System for NDN: an IoT Application
Dongo J, Atik Y, Mahmoudi C, Mourlin F.
In 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT) (pp.
138-141).

• NDN Log Analysis Using Big Data Techniques: NFD Performance Assessment.
Dongo J, Mahmoudi C, Mourlin F.
In 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (Big-
DataService) (pp. 169-175).

• Service Abstraction Layer for Smart Grid Measurement
Dongo J, Mahmoudi C, Mourlin F.
In 2018 Renewable Energies, Power Systems & Green Inclusive Economy (REPS-GIE) (pp. 1-6).

• Distributed Edge Solution for IoT based Building Management System with NDN
Dongo J, Foltete L, Mahmoudi C, Mourlin F.
In 2019 Global Information Infrastructure and Networking Symposium (GIIS 2019)

• Elastic Gigabit NDN Forwarder for Big Data Applications
Dongo J, Mahmoudi C, Mourlin F.
In 2019 Global Information Infrastructure and Networking Symposium (GIIS 2019)

7https://irl.cs.ucla.edu/ cawka/spec/index.html

121

Chapter 7. Conclusion and Perspectives

• NDFS: The Named Data Networking Distributed File System
Dongo J, Mahmoudi C, Mourlin F.
Submitted

122

Appendix A

Replication language parser in Coq

1
2 Add LoadPath "/home/ l a c l /Documents/ coq_learning / ndfs " .
3 Require Import a s t .
4 Require Import S t r ing .
5
6 Require Import Notat ions .
7 Require Import Logic .
8 Require Import Spe c i f .
9

10
11 From Coq . L i s t s Require Import L i s t .
12 From Coq . Numbers . Cyc l i c . Int31 Require Import Int31 .
13 From Coq . Program Require Import Syntax .
14 From MenhirLib Require Import Tuples .
15 From MenhirLib Require Import Alphabet .
16 From MenhirLib Require Grammar .
17 From MenhirLib Require Automaton .
18
19 Unset El iminat ion Schemes .
20
21 Module Import Gram <: Grammar .T.
22
23 Local Obl igat ion Tact ic := l e t x := f r e s h in i n t r o x ; case x ; r e f l e x i v i t y .
24
25 Induct ive te rmina l ’ : Set :=
26 | EOL ’ t
27 | INT ’ t
28 | SLASH ’ t
29 | STORAGE’ t
30 | STRING ’ t .
31 De f i n i t i o n te rmina l := termina l ’ .
32
33 Program Ins tance terminalNum : Numbered termina l :=
34 { i n j := fun x => match x return _ with
35 | EOL ’ t => Int31 .On
36 | INT ’ t => Int31 . In
37 | SLASH ’ t => (twice Int31 . In)
38 | STORAGE’ t => (twice_plus_one Int31 . In)
39 | STRING ’ t => (twice (twice Int31 . In))
40 end ;
41 s u r j := (fun n => match Int31 . phi n re turn _ with
42 | 0 => EOL ’ t

123

Appendix A. Replication language parser in Coq

43 | 1 => INT ’ t
44 | 2 => SLASH ’ t
45 | 3 => STORAGE’ t
46 | 4 => STRING ’ t
47 | _ => EOL’ t
48 end)%Z ;
49 inj_bound := 5%int31 } .
50 Ins tance TerminalAlph : Alphabet te rmina l := _.
51
52 Induct ive nonterminal ’ : Set :=
53 | data ’ nt
54 | dataName ’ nt
55 | domain ’ nt
56 | f i r s tSegement ’ nt
57 | lastSegment ’ nt
58 | main ’ nt
59 | r e p l i c a t i o nFa c t o r ’ nt
60 | r e p l i c a t i o n I nd ex ’ nt
61 | r ep l i c a t i onParamete r ’ nt
62 | rootDomain ’ nt .
63 De f i n i t i o n nonterminal := nonterminal ’ .
64
65 Program Ins tance nonterminalNum : Numbered nonterminal :=
66 { i n j := fun x => match x return _ with
67 | data ’ nt => Int31 .On
68 | dataName ’ nt => Int31 . In
69 | domain ’ nt => (twice Int31 . In)
70 | f i r s tSegement ’ nt => (twice_plus_one Int31 . In)
71 | lastSegment ’ nt => (twice (twice Int31 . In))
72 | main ’ nt => (twice_plus_one (twice Int31 . In))
73 | r e p l i c a t i o nFa c t o r ’ nt => (twice (twice_plus_one Int31 . In))
74 | r e p l i c a t i o n I nd ex ’ nt => (twice_plus_one (twice_plus_one Int31 . In))
75 | r ep l i c a t i onParamete r ’ nt => (twice (twice (twice Int31 . In)))
76 | rootDomain ’ nt => (twice_plus_one (twice (twice Int31 . In)))
77 end ;
78 s u r j := (fun n => match Int31 . phi n re turn _ with
79 | 0 => data ’ nt
80 | 1 => dataName ’ nt
81 | 2 => domain ’ nt
82 | 3 => f i r s tSegement ’ nt
83 | 4 => lastSegment ’ nt
84 | 5 => main ’ nt
85 | 6 => r ep l i c a t i o nFa c t o r ’ nt
86 | 7 => r ep l i c a t i o n I nd ex ’ nt
87 | 8 => rep l i ca t i onParamete r ’ nt
88 | 9 => rootDomain ’ nt
89 | _ => data ’ nt
90 end)%Z ;
91 inj_bound := 10%int31 } .
92 Ins tance NonTerminalAlph : Alphabet nonterminal := _.
93
94 Inc lude Grammar . Symbol .
95
96 De f i n i t i o n terminal_semantic_type (t : t e rmina l) : Type:=
97 match t with
98 | STRING ’ t => (s t r i n g)%type
99 | STORAGE’ t => uni t%type

100 | SLASH ’ t => uni t%type
101 | INT ’ t => (nat)%type

124

102 | EOL ’ t => uni t%type
103 end .
104
105 De f i n i t i o n nonterminal_semantic_type (nt : nonterminal) : Type:=
106 match nt with
107 | rootDomain ’ nt => (s t r i n g)%type
108 | r ep l i c a t i onParamete r ’ nt => (rep l i c a t i onParamete r)%type
109 | r e p l i c a t i o n I nd ex ’ nt => (nat)%type
110 | r e p l i c a t i o nFa c t o r ’ nt => (nat)%type
111 | main ’ nt => (as t)%type
112 | lastSegment ’ nt => (nat)%type
113 | f i r s tSegement ’ nt => (nat)%type
114 | domain ’ nt => (s t r i n g)%type
115 | dataName ’ nt => (dataName)%type
116 | data ’ nt => (s t r i n g)%type
117 end .
118
119 De f i n i t i o n symbol_semantic_type (s : symbol) : Type:=
120 match s with
121 | T t => terminal_semantic_type t
122 | NT nt => nonterminal_semantic_type nt
123 end .
124
125 Induct ive product ion ’ : Set :=
126 | Prod ’ rootDomain ’ 0
127 | Prod ’ r ep l i c a t i onParamete r ’ 0
128 | Prod ’ r e p l i c a t i o n I nd ex ’ 0
129 | Prod ’ r e p l i c a t i o nFa c t o r ’ 0
130 | Prod ’main ’ 0
131 | Prod ’ lastSegment ’ 0
132 | Prod ’ f i r s tSegement ’ 0
133 | Prod ’ domain ’ 0
134 | Prod ’ dataName ’ 0
135 | Prod ’ data ’ 0 .
136 De f i n i t i o n product ion := product ion ’ .
137
138 Program Ins tance productionNum : Numbered product ion :=
139 { i n j := fun x => match x return _ with
140 | Prod ’ rootDomain ’ 0 => Int31 .On
141 | Prod ’ r ep l i c a t i onParamete r ’ 0 => Int31 . In
142 | Prod ’ r e p l i c a t i o n I nd ex ’ 0 => (twice Int31 . In)
143 | Prod ’ r e p l i c a t i o nFa c t o r ’ 0 => (twice_plus_one Int31 . In)
144 | Prod ’main ’ 0 => (twice (twice Int31 . In))
145 | Prod ’ lastSegment ’ 0 => (twice_plus_one (twice Int31 . In))
146 | Prod ’ f i r s tSegement ’ 0 => (twice (twice_plus_one Int31 . In))
147 | Prod ’ domain ’ 0 => (twice_plus_one (twice_plus_one Int31 . In))
148 | Prod ’ dataName ’ 0 => (twice (twice (twice Int31 . In)))
149 | Prod ’ data ’ 0 => (twice_plus_one (twice (twice Int31 . In)))
150 end ;
151 s u r j := (fun n => match Int31 . phi n re turn _ with
152 | 0 => Prod ’ rootDomain ’ 0
153 | 1 => Prod ’ r ep l i c a t i onParamete r ’ 0
154 | 2 => Prod ’ r e p l i c a t i o n I nd ex ’ 0
155 | 3 => Prod ’ r e p l i c a t i o nFa c t o r ’ 0
156 | 4 => Prod ’main ’ 0
157 | 5 => Prod ’ lastSegment ’ 0
158 | 6 => Prod ’ f i r s tSegement ’ 0
159 | 7 => Prod ’ domain ’ 0
160 | 8 => Prod ’dataName ’ 0

125

Appendix A. Replication language parser in Coq

161 | 9 => Prod ’ data ’ 0
162 | _ => Prod ’ rootDomain ’ 0
163 end)%Z ;
164 inj_bound := 10%int31 } .
165 Ins tance ProductionAlph : Alphabet product ion := _.
166
167 De f i n i t i o n prod_contents (p : product ion) :
168 { p : nonterminal ∗ l i s t symbol &
169 arrows_le f t (map symbol_semantic_type (rev (snd p)))
170 (symbol_semantic_type (NT (f s t p))) }
171 :=
172 l e t box := ex i s tT (fun p =>
173 arrows_le f t (map symbol_semantic_type (rev (snd p)))
174 (symbol_semantic_type (NT (f s t p))))
175 in
176 match p with
177 | Prod ’ data ’ 0 => box
178 (data ’ nt , [T STRING ’ t])
179 (fun da =>
180 (da)
181)
182 | Prod ’ dataName ’ 0 => box
183 (dataName ’ nt , [NT lastSegment ’ nt ; T SLASH ’ t ; NT f i r s tSegement ’ nt ; T SLASH ’ t ;

NT data ’ nt ; T SLASH ’ t ; NT domain ’ nt ; T SLASH ’ t])
184 (fun seg2 _7 seg1 _5 dat _3 dom _1 =>
185 (Name dom dat seg1 seg2)
186)
187 | Prod ’ domain ’ 0 => box
188 (domain ’ nt , [T STRING ’ t])
189 (fun d =>
190 (d)
191)
192 | Prod ’ f i r s tSegement ’ 0 => box
193 (f i r s tSegement ’ nt , [T INT ’ t])
194 (fun seg1 =>
195 (seg1)
196)
197 | Prod ’ lastSegment ’ 0 => box
198 (lastSegment ’ nt , [T INT ’ t])
199 (fun seg2 =>
200 (seg2)
201)
202 | Prod ’main ’ 0 => box
203 (main ’ nt , [T EOL ’ t ; NT dataName ’ nt ; NT rep l i c a t i onParamete r ’ nt ; T STORAGE’ t ; T

SLASH ’ t ; NT rootDomain ’ nt ; T SLASH ’ t])
204 (fun _7 dn rp _4 _3 r _1 =>
205 (Main r rp dn)
206)
207 | Prod ’ r e p l i c a t i o nFa c t o r ’ 0 => box
208 (r e p l i c a t i o nFa c t o r ’ nt , [T INT ’ t])
209 (fun r1 =>
210 (r1)
211)
212 | Prod ’ r e p l i c a t i o n I nd ex ’ 0 => box
213 (r e p l i c a t i o n I nd ex ’ nt , [T INT ’ t])
214 (fun r2 =>
215 (r2)
216)
217 | Prod ’ r ep l i c a t i onParamete r ’ 0 => box

126

218 (r ep l i c a t i onParamete r ’ nt , [NT r ep l i c a t i o n I nd ex ’ nt ; T SLASH ’ t ; NT
r ep l i c a t i o nFa c t o r ’ nt ; T SLASH ’ t])

219 (fun index _3 f a c t o r _1 =>
220 (Parameters f a c t o r index)
221)
222 | Prod ’ rootDomain ’ 0 => box
223 (rootDomain ’ nt , [T STRING ’ t])
224 (fun s =>
225 (s)
226)
227 end .
228
229 De f i n i t i o n prod_lhs (p : product ion) :=
230 f s t (projT1 (prod_contents p)) .
231 De f i n i t i o n prod_rhs_rev (p : product ion) :=
232 snd (projT1 (prod_contents p)) .
233 De f i n i t i o n prod_action (p : product ion) :=
234 projT2 (prod_contents p) .
235
236 Inc lude Grammar . Defs .
237
238 End Gram.
239
240 Module Aut <: Automaton .T.
241
242 Local Obl igat ion Tact ic := l e t x := f r e s h in i n t r o x ; case x ; r e f l e x i v i t y .
243
244 Module Gram := Gram.
245 Module GramDefs := Gram.
246
247 De f i n i t i o n nul lable_nterm (nt : nonterminal) : bool :=
248 match nt with
249 | rootDomain ’ nt => f a l s e
250 | r ep l i c a t i onParamete r ’ nt => f a l s e
251 | r e p l i c a t i o n I nd ex ’ nt => f a l s e
252 | r e p l i c a t i o nFa c t o r ’ nt => f a l s e
253 | main ’ nt => f a l s e
254 | lastSegment ’ nt => f a l s e
255 | f i r s tSegement ’ nt => f a l s e
256 | domain ’ nt => f a l s e
257 | dataName ’ nt => f a l s e
258 | data ’ nt => f a l s e
259 end .
260
261 De f i n i t i o n f i r s t_nterm (nt : nonterminal) : l i s t t e rmina l :=
262 match nt with
263 | rootDomain ’ nt => [STRING ’ t]
264 | r ep l i c a t i onParamete r ’ nt => [SLASH ’ t]
265 | r e p l i c a t i o n I nd ex ’ nt => [INT ’ t]
266 | r e p l i c a t i o nFa c t o r ’ nt => [INT ’ t]
267 | main ’ nt => [SLASH ’ t]
268 | lastSegment ’ nt => [INT ’ t]
269 | f i r s tSegement ’ nt => [INT ’ t]
270 | domain ’ nt => [STRING ’ t]
271 | dataName ’ nt => [SLASH ’ t]
272 | data ’ nt => [STRING ’ t]
273 end .
274
275 Induct ive n on i n i t s t a t e ’ : Set :=

127

Appendix A. Replication language parser in Coq

276 | Nis ’ 26
277 | Nis ’ 25
278 | Nis ’ 24
279 | Nis ’ 23
280 | Nis ’ 22
281 | Nis ’ 21
282 | Nis ’ 20
283 | Nis ’ 19
284 | Nis ’ 18
285 | Nis ’ 17
286 | Nis ’ 16
287 | Nis ’ 15
288 | Nis ’ 14
289 | Nis ’ 13
290 | Nis ’ 12
291 | Nis ’ 11
292 | Nis ’ 10
293 | Nis ’ 9
294 | Nis ’ 8
295 | Nis ’ 7
296 | Nis ’ 6
297 | Nis ’ 5
298 | Nis ’ 4
299 | Nis ’ 3
300 | Nis ’ 2
301 | Nis ’ 1 .
302 De f i n i t i o n non i n i t s t a t e := non i n i t s t a t e ’ .
303
304 Program Ins tance noninitstateNum : Numbered non i n i t s t a t e :=
305 { i n j := fun x => match x return _ with
306 | Nis ’ 26 => Int31 .On
307 | Nis ’ 25 => Int31 . In
308 | Nis ’ 24 => (twice Int31 . In)
309 | Nis ’ 23 => (twice_plus_one Int31 . In)
310 | Nis ’ 22 => (twice (twice Int31 . In))
311 | Nis ’ 21 => (twice_plus_one (twice Int31 . In))
312 | Nis ’ 20 => (twice (twice_plus_one Int31 . In))
313 | Nis ’ 19 => (twice_plus_one (twice_plus_one Int31 . In))
314 | Nis ’ 18 => (twice (twice (twice Int31 . In)))
315 | Nis ’ 17 => (twice_plus_one (twice (twice Int31 . In)))
316 | Nis ’ 16 => (twice (twice_plus_one (twice Int31 . In)))
317 | Nis ’ 15 => (twice_plus_one (twice_plus_one (twice Int31 . In)))
318 | Nis ’ 14 => (twice (twice (twice_plus_one Int31 . In)))
319 | Nis ’ 13 => (twice_plus_one (twice (twice_plus_one Int31 . In)))
320 | Nis ’ 12 => (twice (twice_plus_one (twice_plus_one Int31 . In)))
321 | Nis ’ 11 => (twice_plus_one (twice_plus_one (twice_plus_one Int31 . In)))
322 | Nis ’ 10 => (twice (twice (twice (twice Int31 . In))))
323 | Nis ’ 9 => (twice_plus_one (twice (twice (twice Int31 . In))))
324 | Nis ’ 8 => (twice (twice_plus_one (twice (twice Int31 . In))))
325 | Nis ’ 7 => (twice_plus_one (twice_plus_one (twice (twice Int31 . In))))
326 | Nis ’ 6 => (twice (twice (twice_plus_one (twice Int31 . In))))
327 | Nis ’ 5 => (twice_plus_one (twice (twice_plus_one (twice Int31 . In))))
328 | Nis ’ 4 => (twice (twice_plus_one (twice_plus_one (twice Int31 . In))))
329 | Nis ’ 3 => (twice_plus_one (twice_plus_one (twice_plus_one (twice Int31 . In))))
330 | Nis ’ 2 => (twice (twice (twice (twice_plus_one Int31 . In))))
331 | Nis ’ 1 => (twice_plus_one (twice (twice (twice_plus_one Int31 . In))))
332 end ;
333 s u r j := (fun n => match Int31 . phi n re turn _ with
334 | 0 => Nis ’ 26

128

335 | 1 => Nis ’ 25
336 | 2 => Nis ’ 24
337 | 3 => Nis ’ 23
338 | 4 => Nis ’ 22
339 | 5 => Nis ’ 21
340 | 6 => Nis ’ 20
341 | 7 => Nis ’ 19
342 | 8 => Nis ’ 18
343 | 9 => Nis ’ 17
344 | 10 => Nis ’ 16
345 | 11 => Nis ’ 15
346 | 12 => Nis ’ 14
347 | 13 => Nis ’ 13
348 | 14 => Nis ’ 12
349 | 15 => Nis ’ 11
350 | 16 => Nis ’ 10
351 | 17 => Nis ’ 9
352 | 18 => Nis ’ 8
353 | 19 => Nis ’ 7
354 | 20 => Nis ’ 6
355 | 21 => Nis ’ 5
356 | 22 => Nis ’ 4
357 | 23 => Nis ’ 3
358 | 24 => Nis ’ 2
359 | 25 => Nis ’ 1
360 | _ => Nis ’ 26
361 end)%Z ;
362 inj_bound := 26%int31 } .
363 Ins tance NonInitStateAlph : Alphabet n on i n i t s t a t e := _.
364
365 De f i n i t i o n last_symb_of_non_init_state (n on i n i t s t a t e : n on i n i t s t a t e) : symbol :=
366 match non i n i t s t a t e with
367 | Nis ’ 1 => T SLASH ’ t
368 | Nis ’ 2 => T STRING ’ t
369 | Nis ’ 3 => NT rootDomain ’ nt
370 | Nis ’ 4 => T SLASH ’ t
371 | Nis ’ 5 => T STORAGE’ t
372 | Nis ’ 6 => T SLASH ’ t
373 | Nis ’ 7 => T INT ’ t
374 | Nis ’ 8 => NT r ep l i c a t i o nFa c t o r ’ nt
375 | Nis ’ 9 => T SLASH ’ t
376 | Nis ’ 10 => T INT ’ t
377 | Nis ’ 11 => NT rep l i c a t i o n I nd ex ’ nt
378 | Nis ’ 12 => NT rep l i ca t i onParamete r ’ nt
379 | Nis ’ 13 => T SLASH ’ t
380 | Nis ’ 14 => T STRING ’ t
381 | Nis ’ 15 => NT domain ’ nt
382 | Nis ’ 16 => T SLASH ’ t
383 | Nis ’ 17 => T STRING ’ t
384 | Nis ’ 18 => NT data ’ nt
385 | Nis ’ 19 => T SLASH ’ t
386 | Nis ’ 20 => T INT ’ t
387 | Nis ’ 21 => NT f i r s tSegement ’ nt
388 | Nis ’ 22 => T SLASH ’ t
389 | Nis ’ 23 => T INT ’ t
390 | Nis ’ 24 => NT lastSegment ’ nt
391 | Nis ’ 25 => NT dataName ’ nt
392 | Nis ’ 26 => T EOL ’ t
393 end .

129

Appendix A. Replication language parser in Coq

394
395 Induct ive i n i t s t a t e ’ : Set :=
396 | I n i t ’ 0 .
397 De f i n i t i o n i n i t s t a t e := i n i t s t a t e ’ .
398
399 Program Ins tance initstateNum : Numbered i n i t s t a t e :=
400 { i n j := fun x => match x return _ with
401 | I n i t ’ 0 => Int31 .On
402 end ;
403 s u r j := (fun n => match Int31 . phi n re turn _ with
404 | 0 => I n i t ’ 0
405 | _ => In i t ’ 0
406 end)%Z ;
407 inj_bound := 1%int31 } .
408 Ins tance In i tS ta teAlph : Alphabet i n i t s t a t e := _.
409
410 Inc lude Automaton . Types .
411
412 De f i n i t i o n start_nt (i n i t : i n i t s t a t e) : nonterminal :=
413 match i n i t with
414 | I n i t ’ 0 => main ’ nt
415 end .
416
417 De f i n i t i o n act ion_tab le (s t a t e : s t a t e) : a c t i on :=
418 match s t a t e with
419 | I n i t I n i t ’ 0 => Lookahead_act (fun termina l : t e rmina l =>
420 match termina l re turn lookahead_action te rmina l with
421 | SLASH ’ t => Shi f t_act Nis ’ 1 (eq_re f l _)
422 | _ => Fai l_act
423 end)
424 | Nin i t Nis ’ 1 => Lookahead_act (fun termina l : t e rmina l =>
425 match termina l re turn lookahead_action te rmina l with
426 | STRING ’ t => Shi f t_act Nis ’ 2 (eq_re f l _)
427 | _ => Fai l_act
428 end)
429 | Nin i t Nis ’ 2 => Default_reduce_act Prod ’ rootDomain ’ 0
430 | Nin i t Nis ’ 3 => Lookahead_act (fun termina l : t e rmina l =>
431 match termina l re turn lookahead_action te rmina l with
432 | SLASH ’ t => Shi f t_act Nis ’ 4 (eq_re f l _)
433 | _ => Fai l_act
434 end)
435 | Nin i t Nis ’ 4 => Lookahead_act (fun termina l : t e rmina l =>
436 match termina l re turn lookahead_action te rmina l with
437 | STORAGE’ t => Shi f t_act Nis ’ 5 (eq_re f l _)
438 | _ => Fai l_act
439 end)
440 | Nin i t Nis ’ 5 => Lookahead_act (fun termina l : t e rmina l =>
441 match termina l re turn lookahead_action te rmina l with
442 | SLASH ’ t => Shi f t_act Nis ’ 6 (eq_re f l _)
443 | _ => Fai l_act
444 end)
445 | Nin i t Nis ’ 6 => Lookahead_act (fun termina l : t e rmina l =>
446 match termina l re turn lookahead_action te rmina l with
447 | INT ’ t => Shi f t_act Nis ’ 7 (eq_re f l _)
448 | _ => Fai l_act
449 end)
450 | Nin i t Nis ’ 7 => Default_reduce_act Prod ’ r e p l i c a t i o nFa c t o r ’ 0
451 | Nin i t Nis ’ 8 => Lookahead_act (fun termina l : t e rmina l =>
452 match termina l re turn lookahead_action te rmina l with

130

453 | SLASH ’ t => Shi f t_act Nis ’ 9 (eq_re f l _)
454 | _ => Fai l_act
455 end)
456 | Nin i t Nis ’ 9 => Lookahead_act (fun termina l : t e rmina l =>
457 match termina l re turn lookahead_action te rmina l with
458 | INT ’ t => Shi f t_act Nis ’ 10 (eq_re f l _)
459 | _ => Fai l_act
460 end)
461 | Nin i t Nis ’ 10 => Default_reduce_act Prod ’ r e p l i c a t i o n I nd ex ’ 0
462 | Nin i t Nis ’ 11 => Default_reduce_act Prod ’ r ep l i c a t i onParamete r ’ 0
463 | Nin i t Nis ’ 12 => Lookahead_act (fun termina l : t e rmina l =>
464 match termina l re turn lookahead_action te rmina l with
465 | SLASH ’ t => Shi f t_act Nis ’ 13 (eq_re f l _)
466 | _ => Fai l_act
467 end)
468 | Nin i t Nis ’ 13 => Lookahead_act (fun termina l : t e rmina l =>
469 match termina l re turn lookahead_action te rmina l with
470 | STRING ’ t => Shi f t_act Nis ’ 14 (eq_re f l _)
471 | _ => Fai l_act
472 end)
473 | Nin i t Nis ’ 14 => Default_reduce_act Prod ’ domain ’ 0
474 | Nin i t Nis ’ 15 => Lookahead_act (fun termina l : t e rmina l =>
475 match termina l re turn lookahead_action te rmina l with
476 | SLASH ’ t => Shi f t_act Nis ’ 16 (eq_re f l _)
477 | _ => Fai l_act
478 end)
479 | Nin i t Nis ’ 16 => Lookahead_act (fun termina l : t e rmina l =>
480 match termina l re turn lookahead_action te rmina l with
481 | STRING ’ t => Shi f t_act Nis ’ 17 (eq_re f l _)
482 | _ => Fai l_act
483 end)
484 | Nin i t Nis ’ 17 => Default_reduce_act Prod ’ data ’ 0
485 | Nin i t Nis ’ 18 => Lookahead_act (fun termina l : t e rmina l =>
486 match termina l re turn lookahead_action te rmina l with
487 | SLASH ’ t => Shi f t_act Nis ’ 19 (eq_re f l _)
488 | _ => Fai l_act
489 end)
490 | Nin i t Nis ’ 19 => Lookahead_act (fun termina l : t e rmina l =>
491 match termina l re turn lookahead_action te rmina l with
492 | INT ’ t => Shi f t_act Nis ’ 20 (eq_re f l _)
493 | _ => Fai l_act
494 end)
495 | Nin i t Nis ’ 20 => Default_reduce_act Prod ’ f i r s tSegement ’ 0
496 | Nin i t Nis ’ 21 => Lookahead_act (fun termina l : t e rmina l =>
497 match termina l re turn lookahead_action te rmina l with
498 | SLASH ’ t => Shi f t_act Nis ’ 22 (eq_re f l _)
499 | _ => Fai l_act
500 end)
501 | Nin i t Nis ’ 22 => Lookahead_act (fun termina l : t e rmina l =>
502 match termina l re turn lookahead_action te rmina l with
503 | INT ’ t => Shi f t_act Nis ’ 23 (eq_re f l _)
504 | _ => Fai l_act
505 end)
506 | Nin i t Nis ’ 23 => Default_reduce_act Prod ’ lastSegment ’ 0
507 | Nin i t Nis ’ 24 => Default_reduce_act Prod ’ dataName ’ 0
508 | Nin i t Nis ’ 25 => Lookahead_act (fun termina l : t e rmina l =>
509 match termina l re turn lookahead_action te rmina l with
510 | EOL ’ t => Shi f t_act Nis ’ 26 (eq_re f l _)
511 | _ => Fai l_act

131

Appendix A. Replication language parser in Coq

512 end)
513 | Nin i t Nis ’ 26 => Default_reduce_act Prod ’main ’ 0
514 end .
515
516 De f i n i t i o n goto_table (s t a t e : s t a t e) (nt : nonterminal) :=
517 match state , nt re turn opt ion { s : n on i n i t s t a t e | NT nt =

last_symb_of_non_init_state s } with
518 | I n i t I n i t ’ 0 , main ’ nt => None | Nin i t Nis ’ 1 , rootDomain ’ nt => Some (e x i s t _

Nis ’ 3 (eq_re f l _))
519 | Nin i t Nis ’ 5 , r ep l i c a t i onParamete r ’ nt => Some (e x i s t _ Nis ’ 12 (eq_re f l _))
520 | Nin i t Nis ’ 6 , r e p l i c a t i o nFa c t o r ’ nt => Some (e x i s t _ Nis ’ 8 (eq_re f l _))
521 | Nin i t Nis ’ 9 , r e p l i c a t i o n I nd ex ’ nt => Some (e x i s t _ Nis ’ 11 (eq_re f l _))
522 | Nin i t Nis ’ 12 , dataName ’ nt => Some (e x i s t _ Nis ’ 25 (eq_re f l _))
523 | Nin i t Nis ’ 13 , domain ’ nt => Some (e x i s t _ Nis ’ 15 (eq_re f l _))
524 | Nin i t Nis ’ 16 , data ’ nt => Some (e x i s t _ Nis ’ 18 (eq_re f l _))
525 | Nin i t Nis ’ 19 , f i r s tSegement ’ nt => Some (e x i s t _ Nis ’ 21 (eq_re f l _))
526 | Nin i t Nis ’ 22 , lastSegment ’ nt => Some (e x i s t _ Nis ’ 24 (eq_re f l _))
527 | _, _ => None
528 end .
529
530 De f i n i t i o n past_symb_of_non_init_state (n on i n i t s t a t e : n on i n i t s t a t e) : l i s t symbol

:=
531 match non i n i t s t a t e with
532 | Nis ’ 1 => []
533 | Nis ’ 2 => []
534 | Nis ’ 3 => [T SLASH ’ t]
535 | Nis ’ 4 => [NT rootDomain ’ nt ; T SLASH ’ t]
536 | Nis ’ 5 => [T SLASH ’ t ; NT rootDomain ’ nt ; T SLASH ’ t]
537 | Nis ’ 6 => []
538 | Nis ’ 7 => []
539 | Nis ’ 8 => [T SLASH ’ t]
540 | Nis ’ 9 => [NT r ep l i c a t i o nFa c t o r ’ nt ; T SLASH ’ t]
541 | Nis ’ 10 => []
542 | Nis ’ 11 => [T SLASH ’ t ; NT r ep l i c a t i o nFa c t o r ’ nt ; T SLASH ’ t]
543 | Nis ’ 12 => [T STORAGE’ t ; T SLASH ’ t ; NT rootDomain ’ nt ; T SLASH ’ t]
544 | Nis ’ 13 => []
545 | Nis ’ 14 => []
546 | Nis ’ 15 => [T SLASH ’ t]
547 | Nis ’ 16 => [NT domain ’ nt ; T SLASH ’ t]
548 | Nis ’ 17 => []
549 | Nis ’ 18 => [T SLASH ’ t ; NT domain ’ nt ; T SLASH ’ t]
550 | Nis ’ 19 => [NT data ’ nt ; T SLASH ’ t ; NT domain ’ nt ; T SLASH ’ t]
551 | Nis ’ 20 => []
552 | Nis ’ 21 => [T SLASH ’ t ; NT data ’ nt ; T SLASH ’ t ; NT domain ’ nt ; T SLASH ’ t]
553 | Nis ’ 22 => [NT f i r s tSegement ’ nt ; T SLASH ’ t ; NT data ’ nt ; T SLASH ’ t ; NT domain ’ nt

; T SLASH ’ t]
554 | Nis ’ 23 => []
555 | Nis ’ 24 => [T SLASH ’ t ; NT f i r s tSegement ’ nt ; T SLASH ’ t ; NT data ’ nt ; T SLASH ’ t ;

NT domain ’ nt ; T SLASH ’ t]
556 | Nis ’ 25 => [NT rep l i ca t i onParamete r ’ nt ; T STORAGE’ t ; T SLASH ’ t ; NT rootDomain ’

nt ; T SLASH ’ t]
557 | Nis ’ 26 => [NT dataName ’ nt ; NT rep l i ca t i onParamete r ’ nt ; T STORAGE’ t ; T SLASH ’ t ;

NT rootDomain ’ nt ; T SLASH ’ t]
558 end .
559 Extract Constant past_symb_of_non_init_state => " fun _ −> as s e r t f a l s e " .
560
561 De f i n i t i o n state_set_1 (s : s t a t e) : bool :=
562 match s with
563 | I n i t I n i t ’ 0 => true

132

564 | _ => f a l s e
565 end .
566 Extract I n l i n ed Constant state_set_1 => " a s s e r t f a l s e " .
567
568 De f i n i t i o n state_set_2 (s : s t a t e) : bool :=
569 match s with
570 | Nin i t Nis ’ 1 => true
571 | _ => f a l s e
572 end .
573 Extract I n l i n ed Constant state_set_2 => " a s s e r t f a l s e " .
574
575 De f i n i t i o n state_set_3 (s : s t a t e) : bool :=
576 match s with
577 | Nin i t Nis ’ 3 => true
578 | _ => f a l s e
579 end .
580 Extract I n l i n ed Constant state_set_3 => " a s s e r t f a l s e " .
581
582 De f i n i t i o n state_set_4 (s : s t a t e) : bool :=
583 match s with
584 | Nin i t Nis ’ 4 => true
585 | _ => f a l s e
586 end .
587 Extract I n l i n ed Constant state_set_4 => " a s s e r t f a l s e " .
588
589 De f i n i t i o n state_set_5 (s : s t a t e) : bool :=
590 match s with
591 | Nin i t Nis ’ 5 => true
592 | _ => f a l s e
593 end .
594 Extract I n l i n ed Constant state_set_5 => " a s s e r t f a l s e " .
595
596 De f i n i t i o n state_set_6 (s : s t a t e) : bool :=
597 match s with
598 | Nin i t Nis ’ 6 => true
599 | _ => f a l s e
600 end .
601 Extract I n l i n ed Constant state_set_6 => " a s s e r t f a l s e " .
602
603 De f i n i t i o n state_set_7 (s : s t a t e) : bool :=
604 match s with
605 | Nin i t Nis ’ 8 => true
606 | _ => f a l s e
607 end .
608 Extract I n l i n ed Constant state_set_7 => " a s s e r t f a l s e " .
609
610 De f i n i t i o n state_set_8 (s : s t a t e) : bool :=
611 match s with
612 | Nin i t Nis ’ 9 => true
613 | _ => f a l s e
614 end .
615 Extract I n l i n ed Constant state_set_8 => " a s s e r t f a l s e " .
616
617 De f i n i t i o n state_set_9 (s : s t a t e) : bool :=
618 match s with
619 | Nin i t Nis ’ 12 => true
620 | _ => f a l s e
621 end .
622 Extract I n l i n ed Constant state_set_9 => " a s s e r t f a l s e " .

133

Appendix A. Replication language parser in Coq

623
624 De f i n i t i o n state_set_10 (s : s t a t e) : bool :=
625 match s with
626 | Nin i t Nis ’ 13 => true
627 | _ => f a l s e
628 end .
629 Extract I n l i n ed Constant state_set_10 => " a s s e r t f a l s e " .
630
631 De f i n i t i o n state_set_11 (s : s t a t e) : bool :=
632 match s with
633 | Nin i t Nis ’ 15 => true
634 | _ => f a l s e
635 end .
636 Extract I n l i n ed Constant state_set_11 => " a s s e r t f a l s e " .
637
638 De f i n i t i o n state_set_12 (s : s t a t e) : bool :=
639 match s with
640 | Nin i t Nis ’ 16 => true
641 | _ => f a l s e
642 end .
643 Extract I n l i n ed Constant state_set_12 => " a s s e r t f a l s e " .
644
645 De f i n i t i o n state_set_13 (s : s t a t e) : bool :=
646 match s with
647 | Nin i t Nis ’ 18 => true
648 | _ => f a l s e
649 end .
650 Extract I n l i n ed Constant state_set_13 => " a s s e r t f a l s e " .
651
652 De f i n i t i o n state_set_14 (s : s t a t e) : bool :=
653 match s with
654 | Nin i t Nis ’ 19 => true
655 | _ => f a l s e
656 end .
657 Extract I n l i n ed Constant state_set_14 => " a s s e r t f a l s e " .
658
659 De f i n i t i o n state_set_15 (s : s t a t e) : bool :=
660 match s with
661 | Nin i t Nis ’ 21 => true
662 | _ => f a l s e
663 end .
664 Extract I n l i n ed Constant state_set_15 => " a s s e r t f a l s e " .
665
666 De f i n i t i o n state_set_16 (s : s t a t e) : bool :=
667 match s with
668 | Nin i t Nis ’ 22 => true
669 | _ => f a l s e
670 end .
671 Extract I n l i n ed Constant state_set_16 => " a s s e r t f a l s e " .
672
673 De f i n i t i o n state_set_17 (s : s t a t e) : bool :=
674 match s with
675 | Nin i t Nis ’ 25 => true
676 | _ => f a l s e
677 end .
678 Extract I n l i n ed Constant state_set_17 => " a s s e r t f a l s e " .
679
680 De f i n i t i o n past_state_of_non_init_state (s : n on i n i t s t a t e) : l i s t (s t a t e −> bool) :=
681 match s with

134

682 | Nis ’ 1 => [state_set_1]
683 | Nis ’ 2 => [state_set_2]
684 | Nis ’ 3 => [state_set_2 ; state_set_1]
685 | Nis ’ 4 => [state_set_3 ; state_set_2 ; state_set_1]
686 | Nis ’ 5 => [state_set_4 ; state_set_3 ; state_set_2 ; state_set_1]
687 | Nis ’ 6 => [state_set_5]
688 | Nis ’ 7 => [state_set_6]
689 | Nis ’ 8 => [state_set_6 ; state_set_5]
690 | Nis ’ 9 => [state_set_7 ; state_set_6 ; state_set_5]
691 | Nis ’ 10 => [state_set_8]
692 | Nis ’ 11 => [state_set_8 ; state_set_7 ; state_set_6 ; state_set_5]
693 | Nis ’ 12 => [state_set_5 ; state_set_4 ; state_set_3 ; state_set_2 ; state_set_1]
694 | Nis ’ 13 => [state_set_9]
695 | Nis ’ 14 => [state_set_10]
696 | Nis ’ 15 => [state_set_10 ; state_set_9]
697 | Nis ’ 16 => [state_set_11 ; state_set_10 ; state_set_9]
698 | Nis ’ 17 => [state_set_12]
699 | Nis ’ 18 => [state_set_12 ; state_set_11 ; state_set_10 ; state_set_9]
700 | Nis ’ 19 => [state_set_13 ; state_set_12 ; state_set_11 ; state_set_10 ;

state_set_9]
701 | Nis ’ 20 => [state_set_14]
702 | Nis ’ 21 => [state_set_14 ; state_set_13 ; state_set_12 ; state_set_11 ;

state_set_10 ; state_set_9]
703 | Nis ’ 22 => [state_set_15 ; state_set_14 ; state_set_13 ; state_set_12 ;

state_set_11 ; state_set_10 ; state_set_9]
704 | Nis ’ 23 => [state_set_16]
705 | Nis ’ 24 => [state_set_16 ; state_set_15 ; state_set_14 ; state_set_13 ;

state_set_12 ; state_set_11 ; state_set_10 ; state_set_9]
706 | Nis ’ 25 => [state_set_9 ; state_set_5 ; state_set_4 ; state_set_3 ; state_set_2 ;

state_set_1]
707 | Nis ’ 26 => [state_set_17 ; state_set_9 ; state_set_5 ; state_set_4 ; state_set_3 ;

state_set_2 ; state_set_1]
708 end .
709 Extract Constant past_state_of_non_init_state => " fun _ −> as s e r t f a l s e " .
710
711 De f i n i t i o n lookahead_set_1 : l i s t t e rmina l :=
712 [STRING ’ t ; STORAGE’ t ; SLASH ’ t ; INT ’ t ; EOL ’ t] .
713 Extract I n l i n ed Constant lookahead_set_1 => " a s s e r t f a l s e " .
714
715 De f i n i t i o n lookahead_set_2 : l i s t t e rmina l :=
716 [SLASH ’ t] .
717 Extract I n l i n ed Constant lookahead_set_2 => " a s s e r t f a l s e " .
718
719 De f i n i t i o n lookahead_set_3 : l i s t t e rmina l :=
720 [EOL ’ t] .
721 Extract I n l i n ed Constant lookahead_set_3 => " a s s e r t f a l s e " .
722
723 De f i n i t i o n items_of_state_0 : l i s t item :=
724 [{ | prod_item := Prod ’main ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=

lookahead_set_1 | }] .
725 Extract I n l i n ed Constant items_of_state_0 => " a s s e r t f a l s e " .
726
727 De f i n i t i o n items_of_state_1 : l i s t item :=
728 [{ | prod_item := Prod ’main ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_1 | } ;
729 { | prod_item := Prod ’ rootDomain ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=

lookahead_set_2 | }] .
730 Extract I n l i n ed Constant items_of_state_1 => " a s s e r t f a l s e " .
731

135

Appendix A. Replication language parser in Coq

732 De f i n i t i o n items_of_state_2 : l i s t item :=
733 [{ | prod_item := Prod ’ rootDomain ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_2 | }] .
734 Extract I n l i n ed Constant items_of_state_2 => " a s s e r t f a l s e " .
735
736 De f i n i t i o n items_of_state_3 : l i s t item :=
737 [{ | prod_item := Prod ’main ’ 0 ; dot_pos_item := 2 ; lookaheads_item :=

lookahead_set_1 | }] .
738 Extract I n l i n ed Constant items_of_state_3 => " a s s e r t f a l s e " .
739
740 De f i n i t i o n items_of_state_4 : l i s t item :=
741 [{ | prod_item := Prod ’main ’ 0 ; dot_pos_item := 3 ; lookaheads_item :=

lookahead_set_1 | }] .
742 Extract I n l i n ed Constant items_of_state_4 => " a s s e r t f a l s e " .
743
744 De f i n i t i o n items_of_state_5 : l i s t item :=
745 [{ | prod_item := Prod ’main ’ 0 ; dot_pos_item := 4 ; lookaheads_item :=

lookahead_set_1 | } ;
746 { | prod_item := Prod ’ r ep l i c a t i onParamete r ’ 0 ; dot_pos_item := 0 ;

lookaheads_item := lookahead_set_2 | }] .
747 Extract I n l i n ed Constant items_of_state_5 => " a s s e r t f a l s e " .
748
749 De f i n i t i o n items_of_state_6 : l i s t item :=
750 [{ | prod_item := Prod ’ r e p l i c a t i o nFa c t o r ’ 0 ; dot_pos_item := 0 ; lookaheads_item

:= lookahead_set_2 | } ;
751 { | prod_item := Prod ’ r ep l i c a t i onParamete r ’ 0 ; dot_pos_item := 1 ;

lookaheads_item := lookahead_set_2 | }] .
752 Extract I n l i n ed Constant items_of_state_6 => " a s s e r t f a l s e " .
753
754 De f i n i t i o n items_of_state_7 : l i s t item :=
755 [{ | prod_item := Prod ’ r e p l i c a t i o nFa c t o r ’ 0 ; dot_pos_item := 1 ; lookaheads_item

:= lookahead_set_2 | }] .
756 Extract I n l i n ed Constant items_of_state_7 => " a s s e r t f a l s e " .
757
758 De f i n i t i o n items_of_state_8 : l i s t item :=
759 [{ | prod_item := Prod ’ r ep l i c a t i onParamete r ’ 0 ; dot_pos_item := 2 ;

lookaheads_item := lookahead_set_2 | }] .
760 Extract I n l i n ed Constant items_of_state_8 => " a s s e r t f a l s e " .
761
762 De f i n i t i o n items_of_state_9 : l i s t item :=
763 [{ | prod_item := Prod ’ r e p l i c a t i o n I nd ex ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=

lookahead_set_2 | } ;
764 { | prod_item := Prod ’ r ep l i c a t i onParamete r ’ 0 ; dot_pos_item := 3 ;

lookaheads_item := lookahead_set_2 | }] .
765 Extract I n l i n ed Constant items_of_state_9 => " a s s e r t f a l s e " .
766
767 De f i n i t i o n items_of_state_10 : l i s t item :=
768 [{ | prod_item := Prod ’ r e p l i c a t i o n I nd ex ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_2 | }] .
769 Extract I n l i n ed Constant items_of_state_10 => " a s s e r t f a l s e " .
770
771 De f i n i t i o n items_of_state_11 : l i s t item :=
772 [{ | prod_item := Prod ’ r ep l i c a t i onParamete r ’ 0 ; dot_pos_item := 4 ;

lookaheads_item := lookahead_set_2 | }] .
773 Extract I n l i n ed Constant items_of_state_11 => " a s s e r t f a l s e " .
774
775 De f i n i t i o n items_of_state_12 : l i s t item :=
776 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=

lookahead_set_3 | } ;

136

777 { | prod_item := Prod ’main ’ 0 ; dot_pos_item := 5 ; lookaheads_item :=
lookahead_set_1 | }] .

778 Extract I n l i n ed Constant items_of_state_12 => " a s s e r t f a l s e " .
779
780 De f i n i t i o n items_of_state_13 : l i s t item :=
781 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_3 | } ;
782 { | prod_item := Prod ’ domain ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=

lookahead_set_2 | }] .
783 Extract I n l i n ed Constant items_of_state_13 => " a s s e r t f a l s e " .
784
785 De f i n i t i o n items_of_state_14 : l i s t item :=
786 [{ | prod_item := Prod ’ domain ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_2 | }] .
787 Extract I n l i n ed Constant items_of_state_14 => " a s s e r t f a l s e " .
788
789 De f i n i t i o n items_of_state_15 : l i s t item :=
790 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 2 ; lookaheads_item :=

lookahead_set_3 | }] .
791 Extract I n l i n ed Constant items_of_state_15 => " a s s e r t f a l s e " .
792
793 De f i n i t i o n items_of_state_16 : l i s t item :=
794 [{ | prod_item := Prod ’ data ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=

lookahead_set_2 | } ;
795 { | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 3 ; lookaheads_item :=

lookahead_set_3 | }] .
796 Extract I n l i n ed Constant items_of_state_16 => " a s s e r t f a l s e " .
797
798 De f i n i t i o n items_of_state_17 : l i s t item :=
799 [{ | prod_item := Prod ’ data ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_2 | }] .
800 Extract I n l i n ed Constant items_of_state_17 => " a s s e r t f a l s e " .
801
802 De f i n i t i o n items_of_state_18 : l i s t item :=
803 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 4 ; lookaheads_item :=

lookahead_set_3 | }] .
804 Extract I n l i n ed Constant items_of_state_18 => " a s s e r t f a l s e " .
805
806 De f i n i t i o n items_of_state_19 : l i s t item :=
807 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 5 ; lookaheads_item :=

lookahead_set_3 | } ;
808 { | prod_item := Prod ’ f i r s tSegement ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=

lookahead_set_2 | }] .
809 Extract I n l i n ed Constant items_of_state_19 => " a s s e r t f a l s e " .
810
811 De f i n i t i o n items_of_state_20 : l i s t item :=
812 [{ | prod_item := Prod ’ f i r s tSegement ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_2 | }] .
813 Extract I n l i n ed Constant items_of_state_20 => " a s s e r t f a l s e " .
814
815 De f i n i t i o n items_of_state_21 : l i s t item :=
816 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 6 ; lookaheads_item :=

lookahead_set_3 | }] .
817 Extract I n l i n ed Constant items_of_state_21 => " a s s e r t f a l s e " .
818
819 De f i n i t i o n items_of_state_22 : l i s t item :=
820 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 7 ; lookaheads_item :=

lookahead_set_3 | } ;

137

Appendix A. Replication language parser in Coq

821 { | prod_item := Prod ’ lastSegment ’ 0 ; dot_pos_item := 0 ; lookaheads_item :=
lookahead_set_3 | }] .

822 Extract I n l i n ed Constant items_of_state_22 => " a s s e r t f a l s e " .
823
824 De f i n i t i o n items_of_state_23 : l i s t item :=
825 [{ | prod_item := Prod ’ lastSegment ’ 0 ; dot_pos_item := 1 ; lookaheads_item :=

lookahead_set_3 | }] .
826 Extract I n l i n ed Constant items_of_state_23 => " a s s e r t f a l s e " .
827
828 De f i n i t i o n items_of_state_24 : l i s t item :=
829 [{ | prod_item := Prod ’dataName ’ 0 ; dot_pos_item := 8 ; lookaheads_item :=

lookahead_set_3 | }] .
830 Extract I n l i n ed Constant items_of_state_24 => " a s s e r t f a l s e " .
831
832 De f i n i t i o n items_of_state_25 : l i s t item :=
833 [{ | prod_item := Prod ’main ’ 0 ; dot_pos_item := 6 ; lookaheads_item :=

lookahead_set_1 | }] .
834 Extract I n l i n ed Constant items_of_state_25 => " a s s e r t f a l s e " .
835
836 De f i n i t i o n items_of_state_26 : l i s t item :=
837 [{ | prod_item := Prod ’main ’ 0 ; dot_pos_item := 7 ; lookaheads_item :=

lookahead_set_1 | }] .
838 Extract I n l i n ed Constant items_of_state_26 => " a s s e r t f a l s e " .
839
840 De f i n i t i o n items_of_state (s : s t a t e) : l i s t item :=
841 match s with
842 | I n i t I n i t ’ 0 => items_of_state_0
843 | Nin i t Nis ’ 1 => items_of_state_1
844 | Nin i t Nis ’ 2 => items_of_state_2
845 | Nin i t Nis ’ 3 => items_of_state_3
846 | Nin i t Nis ’ 4 => items_of_state_4
847 | Nin i t Nis ’ 5 => items_of_state_5
848 | Nin i t Nis ’ 6 => items_of_state_6
849 | Nin i t Nis ’ 7 => items_of_state_7
850 | Nin i t Nis ’ 8 => items_of_state_8
851 | Nin i t Nis ’ 9 => items_of_state_9
852 | Nin i t Nis ’ 10 => items_of_state_10
853 | Nin i t Nis ’ 11 => items_of_state_11
854 | Nin i t Nis ’ 12 => items_of_state_12
855 | Nin i t Nis ’ 13 => items_of_state_13
856 | Nin i t Nis ’ 14 => items_of_state_14
857 | Nin i t Nis ’ 15 => items_of_state_15
858 | Nin i t Nis ’ 16 => items_of_state_16
859 | Nin i t Nis ’ 17 => items_of_state_17
860 | Nin i t Nis ’ 18 => items_of_state_18
861 | Nin i t Nis ’ 19 => items_of_state_19
862 | Nin i t Nis ’ 20 => items_of_state_20
863 | Nin i t Nis ’ 21 => items_of_state_21
864 | Nin i t Nis ’ 22 => items_of_state_22
865 | Nin i t Nis ’ 23 => items_of_state_23
866 | Nin i t Nis ’ 24 => items_of_state_24
867 | Nin i t Nis ’ 25 => items_of_state_25
868 | Nin i t Nis ’ 26 => items_of_state_26
869 end .
870 Extract Constant items_of_state => " fun _ −> as s e r t f a l s e " .
871
872 End Aut .
873
874

138

875 From MenhirLib Require Import Main .
876
877 Module Parser := Main .Make Aut .
878 Theorem sa f e :
879 Parser . s a f e_va l i da to r () = true .
880 Proof eq_re f l true <:Parser . s a f e_va l i da to r () = true .
881
882 Theorem complete :
883 Parser . complete_val idator () = true .
884 Proof eq_re f l true <:Parser . complete_val idator () = true .
885
886 De f i n i t i o n main := Parser . parse s a f e Aut . I n i t ’ 0 .
887
888 Theorem main_correct i t e r a t o r bu f f e r :
889 match main i t e r a t o r bu f f e r with
890 | Parser . I n t e r . Parsed_pr sem buffer_new =>
891 e x i s t s word ,
892 bu f f e r = Parser . I n t e r . app_str word buffer_new /\
893 inhab i t ed (Gram. parse_tree (NT main ’ nt) word sem)
894 | _ => True
895 end .
896 Proof . apply Parser . parse_correct . Qed .
897
898 Theorem main_complete (i t e r a t o r : nat) word buffer_end (output : (a s t)) :
899 f o r a l l t r e e :Gram. parse_tree (NT main ’ nt) word output ,
900 match main i t e r a t o r (Parser . I n t e r . app_str word buffer_end) with
901 | Parser . I n t e r . Fail_pr => False
902 | Parser . I n t e r . Parsed_pr output_res buffer_end_res =>
903 output_res = output /\ buffer_end_res = buffer_end /\
904 l e (Gram. pt_size t r e e) i t e r a t o r
905 | Parser . I n t e r . Timeout_pr => l t i t e r a t o r (Gram. pt_size t r e e)
906 end .
907 Proof . apply Parser . parse_complete with (i n i t :=Aut . I n i t ’ 0) ; exact complete . Qed .
908
909 (∗ adding s t u f f to prove message sending ∗)
910
911
912 Induct ive message : Type :=
913 | Rep l i c a t i on
914 | Stop
915 .
916
917 Induct ive data : Type :=
918 | Data
919 .
920
921 (∗ Function used to dec r ea se the r e p l i c a t i o n f a c t o r ∗)
922 De f i n i t i o n de c r ea s e_rep l i c a t i on_fac to r := fun x => x − 1 .
923
924
925 (∗ Function to determine when a r e p l i c a t i o n i s needed accord ing to the r e p l i c a t i o n

f a c t o r ∗)
926 De f i n i t i o n rep l i ca t i on_needed (n : nat) : bool :=
927 match dec r ea s e_rep l i c a t i on_fac t o r n with
928 | O => f a l s e
929 | _ => true
930 end .
931
932 (∗ send the c o r r e c t message accord ing to the need f o r r e p l i c a t i o n or not ∗)

139

Appendix A. Replication language parser in Coq

933 De f i n i t i o n send_message (a : a s t) : message :=
934 match a with
935 | Main c d e => match d with
936 | Parameters n m => match rep l i ca t ion_needed m with
937 | t rue => Rep l i c a t i on
938 | f a l s e => Stop
939 end
940 end
941 end .
942
943 (∗ Always send a data reques t ∗)
944 De f i n i t i o n send_data_request (a : a s t) : data :=
945 match a with
946 | Main c d e => Data
947 end .
948
949
950 (∗This normally i s c r ea ted by coq when de f i n i n g the type message , but don ’ t know

why i t ’ s not .
951 So Copy paste from another te rmina l where i t ’ s created , the r e s u l t o f Check

message_ind
952 ∗)
953 Axiom message_ind
954 : f o r a l l P : message −> Prop , P Rep l i c a t i on −> P Stop −> f o r a l l m : message ,

P m
955 .
956
957 (∗ any message type i s n e c e s s a r i l y one o f the l e a s t known . ∗)
958
959 Theorem message_equal :
960 f o r a l l m : message ,
961 m = Rep l i c a t i on \/ m = Stop .
962 Proof .
963 i n t r o m. pattern m.
964 apply message_ind .
965 induct i on m. auto . auto . auto .
966 Qed .
967
968
969 (∗ I f a word i s in the as t (accepted by the par s e r) , then a message i s sent and a

data reques t i s sent ∗)
970 Theorem accepted_implies_message i t e r a t o r bu f f e r (m: (message)) :
971 match main i t e r a t o r bu f f e r with
972 | Parser . I n t e r . Parsed_pr sem buffer_new =>
973 f o r a l l sem : ast ,
974 (send_message sem = Rep l i c a t i on \/ send_message sem = Stop) /\ (

send_data_request sem = Data)
975 | _ => True
976 end .
977
978
979 Proof .
980 i n t r o s .
981 induct ion main .
982 auto . auto .
983 i n t r o sem .
984 con s t ruc to r .
985 pattern sem .
986 induct ion sem .

140

987 apply message_equal .
988 pattern sem .
989 induct ion sem .
990 con s t ruc to r .
991 Qed .

141

Appendix A. Replication language parser in Coq

142

Appendix B

Automation scripts

B.1 Framework installation

1 #INSTALL NODEJS
2
3 #download i t from https : // node j s . org /en/download/
4 #unzip the binary arch ive to / usr / l o c a l / l i b / node j s
5 sudo mkdir −p / usr / l o c a l / l i b / node j s
6 sudo ta r −xJvf node−v10 .15.3− l inux−x64 . ta r . xz −C /usr / l o c a l / l i b / node j s
7
8 #se t the environment va r i ab l e ~/. p r o f i l e , add below to the end
9 export PATH=/usr / l o c a l / l i b / node j s /node−v10 .15.3− l inux−x64/bin :$PATH

10
11 #t e s t i n s t a l l a t i o n
12 node −v
13 npm ve r s i on
14 npx −v
15
16 #(opt ionna l) to c r e a t e sudo l i n k (because " export " i s not p e r s i s t e n t)
17 sudo ln −s / usr / l o c a l / l i b / node j s /node−v10 .15.3− l inux−x64/bin /node / usr /bin /node
18 sudo ln −s / usr / l o c a l / l i b / node j s /node−v10 .15.3− l inux−x64/bin /npm /usr /bin /npm
19 sudo ln −s / usr / l o c a l / l i b / node j s /node−v10 .15.3− l inux−x64/bin /npx / usr /bin /npx
20
21 #download the framework
22 g i t c l one https : // github . com/mistersound /ndfs−eva lua t i on . g i t
23
24 #cr ea t e two d i r e c t o r y f o r the app
25 cd ndfs−eva lua t i on /
26 mkdir conf #f o r conf f i l e s
27 mkdir s t o r e #to stock r e p l i c a t i o n f i l e s
28
29 #make shure "nfd−s t a r t " i s running
30 #c l i e n t adv e r t i s i n g f o r / l a c l
31
32 #ON NODE 1
33 #the adv e r t i s i n g must be /upec/ s to rage on nodes
34 node s to rage . j s
35
36 #ON CLIENT
37 #ndnputchunks f i leName < f i l e
38 #node c l i e n t . j s /domain/ s to rage /repF/ repI / f i leName
39 ndnputchunks / l a c l /data /0/9 < h e l l o . txt
40 node c l i e n t . j s /upec/ s to rage /2/2/ l a c l /data /0/9

143

Appendix B. Automation scripts

B.2 Install NDN node from source

1
2 // i n s t a l l g i t
3 apt−get i n s t a l l g i t
4
5 //download ndn−cxx (main dependence o f NFD)
6 g i t c l one https : // github . com/named−data/ndn−cxx
7
8 //download NFD
9 g i t c l one −−r e c u r s i v e https : // github . com/named−data/NFD

10
11 //download ndn−t o o l s (ping , dump . . .)
12 g i t c l one https : // github . com/named−data/ndn−t o o l s
13
14 // i n s t a l l ndn−cxx l i b r a r y and i t s requi rements
15 apt−get i n s t a l l bui ld−e s s e n t i a l pkg−c on f i g l i bboo s t−a l l −dev l i b s q l i t e 3 −dev l i b s s l −

dev l ibpcap−dev l ibsystemd−dev
16
17 //(op t i ona l) i n s t a l l va l g r i nd
18 apt−get i n s t a l l va l g r i nd va lgr ind−dbg kcachegr ind a l l eyoop va l ky r i e
19
20 // to bu i ld manpages and API documentation
21 apt−get i n s t a l l doxygen graphviz python−sphinx
22
23 // to bu i ld ndn−cxx
24 cd ndn−cxx/
25 . / waf c on f i gu r e
26 . / waf
27 sudo . / waf i n s t a l l
28
29 // i f ndn−cxx l i b r a r y i s i n s t a l l e d in to a non−standard path
30 export PKG_CONFIG_PATH=/user / l o c a l / l i b / pkgconf ig /
31
32 #to bu i ld NFD
33 cd NFD/
34 . / waf c on f i gu r e
35 . / waf
36 sudo . / waf i n s t a l l
37 sudo l d c on f i g
38
39 #to bu i ld ndn−t o o l s
40 cd ndn−t o o l s /
41 . / waf c on f i gu r e
42 . / waf
43 sudo . / waf i n s t a l l
44 sudo l d c on f i g
45
46 #to c r ea t e proper c on f i g f i l e
47 cp / usr / l o c a l / e t c /ndn/nfd . conf . sample / usr / l o c a l / e t c /ndn . nfd . conf

B.3 Install NLSR from source

144

B.3. Install NLSR from source

1
2 #NFD and i t s requi rements must be i n s t a l l
3 #INSTALLATION PART
4
5 #i n s t a l l requ i rements
6 g i t c l one https : // github . com/named−data/ChronoSync
7 cd ChronoSync/
8 . / waf c on f i gu r e
9 . / waf

10 sudo . / waf i n s t a l l
11
12 g i t c l one https : // github . com/named−data/PSync
13 cd PSync/
14 . / waf c on f i gu r e
15 . / waf
16 sudo . / waf i n s t a l l
17
18 #i n s t a l l NLSR (Named Data Link State Routing)
19 g i t c l one https : // github . com/named−data/NLSR
20 cd NLSR/
21 . / waf c on f i gu r e
22 . / waf
23 sudo . / waf i n s t a l l
24
25 sudo l d c on f i g
26
27 #to c r ea t e d i r f o r n l s r f i l e (i n c lude n l s r . conf maked by n l s r)
28 mkdir /var / l i b / n l s r
29
30 #to get r i g h t s to n l s r to wr i t e in
31 chmod 777 /var / l i b / n l s r
32
33 #SETTING UP THE SECURITY
34
35 #generate the route r key
36 ndnsec−key−gen /ndn/edu/ uas lp/%C1 . Router/ routerX > routerX . key
37
38 #generate the c e r t i f i c a t e f o r the route r key
39 ndnsec−cer t−dump − i /ndn/edu/ uas lp/%C1 . Router/ routerX > routerX . c e r t
40
41 #i n s t a l l the route r c e r t i f i c a t e
42 ndnsec−cer t− i n s t a l l −f routerX . c e r t
43
44 #to v e r i f y that the c e r t i f i c a t e s have been i n s t a l l e d
45 ndnsec− l i s t
46
47 #CONFIGURING NFD
48
49 #t e s t phy s i c a l network c on f i gu r a t i on
50 ping 192 . 1 68 . 1 0 . 2
51
52 #remember to s t a r t "nfd−s t a r t " in an other te rmina l
53 nfd−s t a tu s
54
55 #con f i gu r e each f a c e that a computer uses to connect to a ne ighbor ing computer
56 nfdc f a c e c r e a t e udp4 : / / 1 92 . 1 6 8 . 1 0 . 2
57
58 #to d i sp l ay the f a c e id

145

Appendix B. Automation scripts

59 nfdc f a c e l i s t
60
61 #to v e r i f y the s t a tu s o f the f a c e
62 nfdc f a c e show id 265 #because <face−id> = 265
63
64 #SETTING UP THE CONFIGURATION FILE
65
66 #see https : //named−data . net /doc/NLSR/ cur rent /ROUTER−CONFIG. html
67 touch n l s r . conf
68
69 #STARTING NLSR
70
71 #gene ra l command (recommended to open in other te rmina l)
72 n l s r −f n l s r . conf
73
74 #to v e r i f y what i s NLSR doing
75 export NDN_LOG=n l s r .∗=TRACE && n l s r −f n l s r . conf
76
77 #TURNING EVERYTHING OFF
78
79 #1 − stop n l s r p roce s su s by p r e s s i n g Ctrl−C
80 #2 − dest roy the f a c e to the remote computers
81 nfdc f a c e des t roy 265
82
83 #3 − stop NFD
84 nfd−stop

B.4 Deploy Hadoop cluster

1 #!/ bin /bash
2 namenode=192.168 .20 .254
3 d1 =192 .168 .20 .1
4 d2 =192 .168 .20 .2
5 d3 =192 .168 .20 .3
6 d4 =192 .168 .20 .4
7 d5 =192 .168 .20 .5
8 d6 =192 .168 .20 .6
9 d7 =192 .168 .20 .7

10 d8 =192 .168 .20 .8
11 d9 =192 .168 .20 .9
12 d10 =192 .168 .20 .10
13 d11 =192 .168 .20 .11
14 d12 =192 .168 .20 .12
15 d13 =192 .168 .20 .13
16 d14 =192 .168 .20 .14
17 d15 =192 .168 .20 .15
18 d16 =192 .168 .20 .16
19
20 ##INSTALLATION
21
22 #check where java i s i n s t a l l e d
23 path=‘which java ‘
24
25 #remove the l a s t two components (bin / java) o f the path
26 path=‘ r e ad l i nk −f $path | rev | cut −d / −f 3− | rev ‘ /
27

146

B.4. Deploy Hadoop cluster

28 #se t the environment va r i ab l e (add t h i s l i n e to ~/. bashrc to get i t permanently)
29 export JAVA_HOME=$path
30
31 #download the Hadoop 2 . 9 . 1 ve r s i on
32 wget −O ~/hadoop −2 . 9 . 1 . ta r . gz http :// mirror . ibcp . f r /pub/apache/hadoop/common/

hadoop −2.9.1/ hadoop −2 . 9 . 1 . ta r . gz
33
34 #ext ra c t f i l e s
35 ta r xz f ~/hadoop −2 . 9 . 1 . ta r . gz
36
37 ##CONFIGURATION
38
39 #add property to core−s i t e . xlm
40 f i l e =~/hadoop −2.9.1/ e t c /hadoop/ core−s i t e . xml
41 head −n −3 $ f i l e > temp . txt
42 mv temp . txt $ f i l e
43 echo "
44 <con f i gu ra t i on >
45 <property>
46 <name>f s . d e f au l t . name</name>
47 <value>hdfs : // $namenode :9000</ value>
48 </property>
49 </con f i gu ra t i on >" >> $ f i l e
50
51 #cr ea t e d i r e c t o r y who conta in s data
52 mkdir data
53 mkdir data/namenode
54 mkdir data/datanode
55
56 #ed i t hdfs−s i t e . xml
57 f i l e =~/hadoop −2.9.1/ e t c /hadoop/hdfs−s i t e . xml
58 head −n −4 $ f i l e > temp . txt
59 mv temp . txt $ f i l e
60 echo "
61 <con f i gu ra t i on >
62 <property>
63 <name>df s . namenode . name . d ir </name>
64 <value>home/ user /data/nameNode</value>
65 </property>
66
67 <property>
68 <name>df s . datanode . data . d i r </name>
69 <value>home/ user /data/dataNode</value>
70 </property>
71
72 <property>
73 <name>df s . r e p l i c a t i o n </name>
74 <value >3</value>
75 </property>
76
77 <property>
78 <name>df s . namenode . datanode . r e g i s t r a t i o n . ip−hostname−check</name>
79 <value>f a l s e </value>
80 </property>
81 </con f i gu ra t i on >" >> $ f i l e
82
83 #the f i l e "workers " i s used to s t a r t r equ i r ed daemons on a l l nodes
84 f i l e =~/hadoop −2.9.1/ e t c /hadoop/workers
85 echo "$d1

147

Appendix B. Automation scripts

86 $d2
87 $d3
88 $d4
89 $d5
90 $d6
91 $d7
92 $d8
93 $d9
94 $d10
95 $d11
96 $d12
97 $d13
98 $d14
99 $d15

100 $d16" > $ f i l e
101
102 #dup l i c a t e c on f i g f i l e s on each node
103 ssh−keygen
104 f o r node in $d1 $d2 $d3 $d4 $d5 $d6 $d7 $d8 $d9 $d10 $d11 $d12 $d13 $d14 $d15 $d16

; do
105 ssh−copy−id − i ~/. ssh / id_rsa . pub user@$node
106 ssh−add
107 scp hadoop−∗. t a r . gz $node :~
108 ssh user@$node ’ ta r −xz f hadoop −2 . 9 . 1 . ta r . gz ’
109 scp ~/hadoop −2.9.1/ e t c /hadoop/∗ $node :~/hadoop −2.9.1/ e t c /hadoop / ;
110 done
111
112 #HDFS needs to be formatted l i k e any c l a s s i c a l f i l e system
113 ~/hadoop −2.9.1/ bin / hdfs namenode −format

148

Appendix C

NMapReduce WordCount script
(JavaScript)

1
2 // mapper func t i on
3 var map = func t i on (s t r) {
4 re turn s t r . s p l i t (" ") .map(func t i on (s t r) {
5 re turn [s t r , [1]] ;
6 }) . f i l t e r (func t i on (array) {
7 re turn array [1] [0] > 0 ;
8 }) ;
9 }

10
11 // Shu f l l e f unc t i on
12 var s h u f f l e = func t i on (a r r) {
13 var sortedArray = arr . s o r t () ;
14 var s i z e = sortedArray . l ength − 1 ;
15 f o r (var i = 0 ; i < s i z e ; i++) {
16 i f (sortedArray [i] [0] == sortedArray [i +1] [0]) {
17 sortedArray [i] [1] . push (1) ;
18 sortedArray . s p l i c e (i +1, 1) ;
19 s i z e −−;
20 i −−;
21 }
22 }
23 return sortedArray
24 }
25
26 // reducer func t i on
27 var reduce = func t i on (a r r) {
28 f o r (var j = 0 ; j < shu f f l edArray . l ength ; j++)
29 {
30 shu f f l edArray [j] [1] = shu f f l edArray [j] [1] . reduce (func t i on (x , y) {
31 return x + y ;
32 }) ;
33 }
34 }

149

Appendix C. NMapReduce WordCount script (JavaScript)

150

Appendix D

MapReduce WordCount source code
(Java)

D.1 Mapper Class Code

1 pub l i c s t a t i c c l a s s Map extends MapReduceBase implements Mapper {
2 p r i va t e f i n a l s t a t i c IntWritab le one = new IntWritab le (1) ;
3 p r i va t e Text word = new Text () ;
4 pub l i c void map(LongWritable key , Text value , OutputCol lector output , Reporter

r epo r t e r)
5 throws IOException {
6 St r ing l i n e = value . t oS t r i ng () ;
7 St r ingToken ize r t ok en i z e r = new Str ingToken ize r (l i n e) ;
8 whi l e (t ok en i z e r . hasMoreTokens ()) {
9 word . s e t (t ok en i z e r . nextToken ()) ;

10 output . c o l l e c t (word , one) ;
11 }
12 }
13 }

D.2 Reducer Class Code

1
2 pub l i c s t a t i c c l a s s Reduce extends MapReduceBase implements Reducer {
3
4 pub l i c void reduce (Text key , I t e r a t o r values , OutputCol lector output ,
5 Reporter r epo r t e r) throws IOException {
6
7 i n t sum = 0 ;
8 whi l e (va lue s . hasNext ()) {
9 sum += va lue s . next () . get () ;

10 }
11 output . c o l l e c t (key , new IntWritab le (sum)) ;
12 }
13 }

D.3 Main Class Code

151

Appendix D. MapReduce WordCount source code (Java)

1
2 pub l i c s t a t i c void main (St r ing [] a rgs) throws Exception {
3 JobConf conf = new JobConf (WordCount . c l a s s) ;
4 conf . setJobName ("WordCount") ;
5
6 conf . setOutputKeyClass (Text . c l a s s) ;
7 conf . setOutputValueClass (IntWritab le . c l a s s) ;
8
9 conf . setMapperClass (Map. c l a s s) ;

10 // conf . setCombinerClass (Reduce . c l a s s) ;
11 conf . se tReducerClass (Reduce . c l a s s) ;
12
13 conf . setInputFormat (TextInputFormat . c l a s s) ;
14 conf . setOutputFormat (TextOutputFormat . c l a s s) ;
15
16 FileInputFormat . set InputPaths (conf , new Path (args [0])) ;
17 FileOutputFormat . setOutputPath (conf , new Path (args [1])) ;
18
19 JobCl ient . runJob (conf) ;
20 }
21 }

152

Appendix E

R script for simulation response
computation

1 # i n s t a l l . packages (’ ggplot2 ’)
2 l i b r a r y (ggp lot2)
3
4 l i b r a r y (p ly r)
5 l i b r a r y (s t r i n g r)
6 l i b r a r y (dplyr)
7
8 n = 57
9

10 df <− data . frame (experiment = numeric (n+1) , Repl icat ionTime =
11 numeric (n+1) , nbNodeBeforeRes = numeric (n+1) , RetrieveTime =
12 numeric (n+1) , Tota lRep l i ca t i on = numeric (n+1))
13
14 #import f i l e s
15
16 f o r (exp in 0 : n) {
17
18 pathElems <− c ("~/data/dump−t race−" , " . txt ")
19 #pathElems <− c (" /home/ l a c l /Dropbox/ s imu la t i on /dump−t race −", " . txt ")
20
21
22
23 f i l e <− paste (pathElems , c o l l a p s e=toS t r i ng (exp))
24
25 i f (f i l e . e x i s t s (f i l e) && f i l e . s i z e (f i l e) > 0) { #check f i l e e x i s t e n c e
26 data = read . t ab l e (f i l e , header=T, sep=" ; ")
27
28
29
30
31
32
33 # Y1 Rep l i c a t i on time
34
35
36 s to rL ine <− grep (" s to rage " , data$Name) #s t o r e s t o r ag e s
37
38 stopLine <− grep (" stop " , data$Name) #s t o r e stop
39

153

Appendix E. R script for simulation response computation

40 part1 <− data [s torL ine ,]
41 part2 <− data [stopLine ,]
42
43 #g l oba l <− rbind (part1 , part2)
44
45 #r e s u l t s <− cbind (part , s t r_s p l i t_f i x ed (part $V3 , "/ " , I n f))
46
47
48 #re s <− c ("Time" ," ID" ," Value ") # w i l l generate a warning due to NA when

loop ing
49 re s1 <− data . frame (cha rac t e r () , cha rac t e r () , cha rac t e r ())
50 r e s2 <− data . frame (cha rac t e r () , cha rac t e r () , cha rac t e r ())
51 f o r (i in 1 : nrow (part1)) {
52
53 #keep only rows cor respond ing to s t a r t and stop r e p l i c a t i o n command from an

admin node l a c l −AdminID
54 i f (l ength (grep (paste0 (" l a c l " , part1 [i , 2] , "/") , part1 [i , 4])) == 1) {
55 re s1 <− rbind (res1 , part1 [i ,])
56 #re s <− rbind (res , dump . t r a c e . 1 [grep (paste0 (" l a c l " , i) , part [i , 3]) ,])
57 }
58
59 }
60
61 f o r (i in 1 : nrow (part2)) {
62
63 #keep only rows cor respond ing to s t a r t and stop r e p l i c a t i o n command from an

admin node l a c l −AdminID
64 i f (l ength (grep (paste0 (" l a c l " , part2 [i , 2] , "/") , part2 [i , 4])) == 1) {
65 re s2 <− rbind (res2 , part2 [i ,])
66 #re s <− rbind (res , dump . t r a c e . 1 [grep (paste0 (" l a c l " , i) , part [i , 3]) ,])
67 }
68
69 }
70
71 #re s <− r e s [−1 ,] #remove the f i r s t row wich conta in s the NA
72
73
74 i f (nrow (r e s2) !=0) {
75 X <− s p l i t (r e s1 $Time , r e s1 $Node) #keep only the min and max time which

r ep r e s en t the s t a r t and complet ion time
76 Y <− s p l i t (r e s2 $Time , r e s2 $Node)
77 va l <− data . frame (repTime = numeric (min (l ength (X) , l ength (Y)))) #value f o r the

r e p l i c a t i o n Time f o r every reques t in the experiment
78 f o r (i in 1 : min (l ength (X) , l ength (Y))) {
79
80 #maxi = as . numeric (max(X [[i]]))
81 #mini = as . numeric (min (X [[i]]))
82 #d i f = maxi−mini
83 # pr in t (d i f)
84 va l $repTime [i] <− as . numeric (min (Y [[i]])) − as . numeric (min (X [[i]]))
85
86 moy = mean(va l $repTime)
87 }
88 } e l s e
89 {
90 moy = NA
91 }
92
93

154

94
95
96
97 df $ experiment [exp+1] = exp
98 df $Repl icat ionTime [exp+1] = moy
99

100 # Mean d i s t ance be f o r e an i n t e r e s t reach a Storage
101
102 da t a In t e r e s t <− f i l t e r (data , ! g r ep l (" I n t e r e s t " , data$Name)) #keep only l i n e s

from data reques t i n t e r e s t
103
104 da t a In t e r e s t <− f i l t e r (da ta In t e r e s t , ! g r ep l ("data" , da t a In t e r e s t $Type)) #added

4/21 remove the data l i n e s
105
106 data_count <− ddply (da ta In t e r e s t , c ("Name") , summarise ,
107 nbNodes=length (Name))
108
109 t = mean(as . numeric (data_count$nbNodes))
110
111 df $nbNodeBeforeRes [exp+1] = round (t)
112
113 #begin mean r e t r i e v e
114 dat <− f i l t e r (data , ! g r ep l (" stop " , data$Name))
115 dat <− f i l t e r (dat , ! g r ep l (" s to rage " , dat$Name))
116 dat <− f i l t e r (dat , ! g r ep l (" heartbeat " , dat$Name))
117
118 v <− dat [c (1 , 3 , 4)]
119
120 re <− data . frame (cha rac t e r () , cha rac t e r () , cha rac t e r ())
121 re <− rbind (re , v [1 ,])
122
123
124 cur rent <− v [1 , 2]
125 f o r (i in 1 : nrow (v)) {
126
127 i f (v [i , 2] !=cur rent) {
128
129 re <− rbind (re , v [i ,])
130 cur rent <− v [i , 2]
131 }
132
133 }
134
135 cmp <− data . frame (rep=numeric (nrow (re)))
136 f o r (i in 1 : nrow (re)) {
137 i f (i %%2 == 0) {
138 cmp$ rep [i]=NA
139 next ()
140 }
141 cmp$ rep [i] = re [1+ i , 1] − re [i , 1]
142
143 }
144 cmp <− cmp [complete . c a s e s (cmp) ,]
145
146 #end mean r e t r i e v e
147
148 a = mean(cmp)
149
150

155

Appendix E. R script for simulation response computation

151 df $RetrieveTime [exp+1] = a
152 #Tota lRep l i ca t i on Total number o f r e p l i c a t i o n r eque s t s
153 part1 = part1 [grep (" i n t e r e s t " , part1 $Type) ,]
154 tDt = as . numeric (l ength (unique (part1 $Name)))
155 df $ Tota lRep l i ca t i on [exp+1] = tDt
156
157
158
159 }# end i f
160 e l s e
161 {
162 df $ experiment [exp+1] = exp
163 df $Repl icat ionTime [exp+1] = NA
164 df $nbNodeBeforeRes [exp+1] = NA
165 df $RetrieveTime [exp+1] = NA #
166 df $ Tota lRep l i ca t i on [exp+1] = NA
167
168 }
169
170 }
171
172
173 f o r (exp in 0 : n) {
174
175 #pathElemsRate <− c (" /home/ l a c l /work_ndn/dump−t race −", " . txt ")
176 pathElemsRate <− c ("~/data/ rate−t race−" , " . txt ")
177
178 f i l eR a t e <− paste (pathElemsRate , c o l l a p s e=toS t r i ng (exp))
179
180 i f (f i l e . e x i s t s (f i l eRa t e) && f i l e . s i z e (f i l eR a t e) > 0) { #check f i l e e x i s t e n c e
181 dataRate = read . del im (f i l eRa t e , header=T, sep="\ t ")
182
183 dataRate$Node = f a c t o r (dataRate$Node)
184 dataRate$FaceId <− f a c t o r (dataRate$FaceId)
185 dataRate$ K i l o b i t s <− dataRate$ Ki lobytes ∗ 8
186 dataRate$Type = f a c t o r (dataRate$Type)
187 dataRate$Time = f a c t o r (dataRate$Time)
188
189 idata = subset (dataRate , Type %in% c (" I n I n t e r e s t s " , " Out In te r e s t s " ,
190 "InData" , "OutData"))
191 idata = subset (idata , FaceDescr %in% c ("appFace : //"))
192
193 df $ experiment [exp+1] = exp
194
195 df $NbPackets [exp+1] <− sum(idata $Packets) #number o f packets per s ec
196
197 df $Rate [exp+1] <− sum(idata $ K i l o b i t s) #K i l o b i t s / s
198
199 #df $ Rep l i ca t i onFacto r [exp+1] <− i
200
201 ##
202
203 Test = subset (dataRate , Type %in%
204 c (" I n S a t i s f i e d I n t e r e s t s " , " Ou tS a t i s f i e d I n t e r e s t s " , "

InTimedOutInterests " , "OutTimedOutInterests "))
205 Test = subset (Test , FaceDescr %in% c ("appFace : //"))
206 Test = subset (Test , Packets >0)
207
208

156

209
210 out = subset (idata , Packets >0)
211
212 #i n I n t e r e s t
213 i n I n t e r e s t = subset (out , Type %in% c (" I n I n t e r e s t s "))
214 df $ nb In In t e r e s t [exp+1] = length (i n I n t e r e s t $Type)
215
216 #ou t I n t e r e s t
217 ou t I n t e r e s t = subset (out , Type %in% c (" Out In te r e s t s "))
218 df $ nbOutInterest [exp+1] = length (ou t I n t e r e s t $Type)
219
220
221 #outData
222 outData = subset (out , Type %in% c ("OutData"))
223 df $nbOutData [exp+1] = length (outData$Type)
224
225 #inData
226 inData = subset (out , Type %in% c ("InData"))
227 df $nbInData [exp+1] = length (inData$Type)
228
229 #i n S a t i s f i e d I n t e r e s t s
230 i nSa t i = subset (Test , Type %in% c (" I n S a t i s f i e d I n t e r e s t s "))
231 l ength (i nSa t i $Type)
232
233 #o u t S a t i s f i e d I n t e r e s t s
234 outSat i = subset (Test , Type %in% c (" Ou tS a t i s f i e d I n t e r e s t s "))
235 l ength (outSat i $Type)
236
237 #inTimedOutInterests
238 inTime = subset (Test , Type %in% c (" InTimedOutInterests "))
239 l ength (inTime$Type)
240
241 #out TimedOutInterests
242 outTime = subset (Test , Type %in% c ("OutTimedOutInterests "))
243 l ength (outTime$Type)
244
245
246 #################################3
247
248 }#end i f
249 e l s e
250 {
251 df $ experiment [exp+1] = exp
252 df $NbPackets [exp+1] = NA
253 df $Rate [exp+1] = NA
254 df $ nb In In t e r e s t [exp+1] = NA
255 df $ nbOutInterest [exp+1] = NA
256 df $nbOutData [exp+1] = NA
257 df $nbInData [exp+1] = NA
258
259 }
260
261 }# end f o r
262
263 wr i t e . csv (x = df , f i l e = "~/ r e s u l t . csv " , sep = " ; ")

157

Appendix E. R script for simulation response computation

158

Bibliography

[1] J. Wang, C. Peng, C. Li, E. Osterweil, R. Wakikawa, P.-c. Cheng, and L. Zhang, “Imple-
menting instant messaging using named data,” in Proceedings of the Sixth Asian Internet
Engineering Conference. ACM, 2010, pp. 40–47.

[2] J. Burke, “Video streaming over named data networking,” E-LETTER, 2013.

[3] N. Marz and J. Warren, Big Data: Principles and best practices of scalable real-time data
systems. New York; Manning Publications Co., 2015.

[4] J. Manyika, “Big data: The next frontier for innovation, competition, and
productivity,” http://www. mckinsey. com/Insights/MGI/Research/Technol-
ogy_and_Innovation/Big_data_The_next_frontier_for_innovation, 2011.

[5] T. H. Davenport and J. G. Harris, Analytics and Big Data: The Davenport Collection (6
Items). Harvard Business Review Press, 2014.

[6] B. Staff, “Big data isn’t a concept — it’s a problem to solve,” https://datascience.berkeley.
edu/blog/what-is-big-data/, accessed: 2019-10-20.

[7] E. T. from the arXiv, “The big data conundrum: How to define it?” https:
//www.technologyreview.com/s/519851/the-big-data-conundrum-how-to-define-it/, ac-
cessed: 2019-10-20.

[8] GARTNER, “Big data - gartner glossary,” https://www.gartner.com/en/
information-technology/glossary/big-data, accessed: 2019-10-20.

[9] Talend, “Stream processing defined - talend real-time open source data integration soft-
ware,” https://www.talend.com/resources/stream-processing-defined/, accessed: 2019-10-
20.

[10] J. Kreps, “Questioning the lambda architecture,” https://www.oreilly.com/radar/
questioning-the-lambda-architecture/.

[11] A. Foundation, “Apache spark- unified analytics engine for big data,” https://spark.apache.
org/, accessed: 2019-10-20.

[12] ——, “Apache flink — stateful computations over data streams,” https://flink.apache.org/,
accessed: 2019-10-20.

[13] J. L. Potter, The massively parallel processor. MIT press, 1985.

159

https://datascience.berkeley.edu/blog/what-is-big-data/
https://datascience.berkeley.edu/blog/what-is-big-data/
https://www.technologyreview.com/s/519851/the-big-data-conundrum-how-to-define-it/
https://www.technologyreview.com/s/519851/the-big-data-conundrum-how-to-define-it/
https://www.gartner.com/en/information-technology/glossary/big-data
https://www.gartner.com/en/information-technology/glossary/big-data
https://www.talend.com/resources/stream-processing-defined/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://spark.apache.org/
https://spark.apache.org/
https://flink.apache.org/

Bibliography

[14] J. Eiloart, “Big data in banking: How bnp paribas is answer-
ing questions with its data,” https://www.globalbankingandfinance.com/
big-data-in-banking-how-bnp-paribas-is-answering-questions-with-its-data/, accessed:
2019-10-20.

[15] M. Terekhova, “Jpmorgan takes ai use to the next level,” https://www.businessinsider.
com/jpmorgan-takes-ai-use-to-the-next-level-2017-8, accessed: 2019-10-20.

[16] S. Kessler, “Mckinsey: Robots can do about 30won’t necessarily take jobs,” https://qz.com/
1034873/mckinsey-robots-can-do-about-30-of-the-work-at-banks-but-they-wont-necessarily-take-jobs/,
accessed: 2019-10-20.

[17] Z. Peng, “Stocks analysis and prediction using big data analytics,” in 2019 International
Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). IEEE, 2019,
pp. 309–312.

[18] B. Marr, “Big data in healthcare: Paris hospitals predict admission rates us-
ing machine learning,” https://www.forbes.com/sites/bernardmarr/2016/12/13/
big-data-in-healthcare-paris-hospitals-predict-admission-rates-using-machine-learning/
#1521146079a2, accessed: 2019-10-20.

[19] H. Elshazly, A. T. Azar, A. El-Korany, and A. E. Hassanien, “Hybrid system for lym-
phatic diseases diagnosis,” in 2013 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). IEEE, 2013, pp. 343–347.

[20] E. Rees, V. Ng, P. Gachon, A. Mawudeku, D. McKenney, J. Pedlar, D. Yemshanov,
J. Parmely, and J. Knox, “Early detection and prediction of infectious disease outbreaks,”
CCDR, vol. 45, p. 5, 2019.

[21] S. Akter and S. F. Wamba, “Big data analytics in e-commerce: a systematic review and
agenda for future research,” Electronic Markets, vol. 26, no. 2, pp. 173–194, 2016.

[22] L. Carrel, “Listening to customers makes big change at expe-
dia,” https://www.investors.com/news/management/leaders-and-success/
chad-richison-paycom-turns-trending-needs-big-business/, accessed: 2019-10-20.

[23] MapR, “Government use cases,” https://mapr.com/solutions/industry/
government-use-cases/, accessed: 2019-10-20.

[24] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed, “Social media big data analytics:
A survey,” Computers in Human Behavior, vol. 101, pp. 417–428, 2019.

[25] M. Moessner, J. Feldhege, M. Wolf, and S. Bauer, “Analyzing big data in social media:
text and network analyses of an eating disorder forum,” International Journal of Eating
Disorders, vol. 51, no. 7, pp. 656–667, 2018.

[26] E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7. Portland, OR,
2000.

[27] D. Agrawal, A. El Abbadi, S. Antony, and S. Das, “Data management challenges in cloud
computing infrastructures,” in International Workshop on Databases in Networked Infor-
mation Systems. Springer, 2010, pp. 1–10.

160

https://www.globalbankingandfinance.com/big-data-in-banking-how-bnp-paribas-is-answering-questions-with-its-data/
https://www.globalbankingandfinance.com/big-data-in-banking-how-bnp-paribas-is-answering-questions-with-its-data/
https://www.businessinsider.com/jpmorgan-takes-ai-use-to-the-next-level-2017-8
https://www.businessinsider.com/jpmorgan-takes-ai-use-to-the-next-level-2017-8
https://qz.com/1034873/mckinsey-robots-can-do-about-30-of-the-work-at-banks-but-they-wont-necessarily-take-jobs/
https://qz.com/1034873/mckinsey-robots-can-do-about-30-of-the-work-at-banks-but-they-wont-necessarily-take-jobs/
https://www.forbes.com/sites/bernardmarr/2016/12/13/big-data-in-healthcare-paris-hospitals-predict-admission-rates-using-machine-learning/#1521146079a2
https://www.forbes.com/sites/bernardmarr/2016/12/13/big-data-in-healthcare-paris-hospitals-predict-admission-rates-using-machine-learning/#1521146079a2
https://www.forbes.com/sites/bernardmarr/2016/12/13/big-data-in-healthcare-paris-hospitals-predict-admission-rates-using-machine-learning/#1521146079a2
https://www.investors.com/news/management/leaders-and-success/chad-richison-paycom-turns-trending-needs-big-business/
https://www.investors.com/news/management/leaders-and-success/chad-richison-paycom-turns-trending-needs-big-business/
https://mapr.com/solutions/industry/government-use-cases/
https://mapr.com/solutions/industry/government-use-cases/

[28] T. A. S. Foundation, “Apache hbase,” http://hbase.apache.org/, accessed: 2019-10-20.

[29] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” ACM
SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[30] Y. Demchenko, C. De Laat, and P. Membrey, “Defining architecture components of the
big data ecosystem,” in 2014 International Conference on Collaboration Technologies and
Systems (CTS). IEEE, 2014, pp. 104–112.

[31] S. Bergamaschi, F. Guerra, M. Orsini, C. Sartori, and M. Vincini, “A semantic approach
to etl technologies,” Data & Knowledge Engineering, vol. 70, no. 8, pp. 717–731, 2011.

[32] A. Foundation, “Apache flume,” https://flume.apache.org/, accessed: 2019-10-20.

[33] C. White, “Data integration: Using etl, eai, and eii tools to create an integrated enterprise,”
Business Intelligence Journal, vol. 10, no. I, 2005.

[34] J. S. Saltz, “The need for new processes, methodologies and tools to support big data teams
and improve big data project effectiveness,” in 2015 IEEE International Conference on Big
Data (Big Data). IEEE, 2015, pp. 2066–2071.

[35] D. Loshin, Big data analytics: from strategic planning to enterprise integration with tools,
techniques, NoSQL, and graph. Elsevier, 2013.

[36] Talend, “Talend - a cloud data integration leader (modern etl),” https://www.talend.com/,
accessed: 2019-10-20.

[37] T. A. S. Foundation, “Apache sqoop,” http://sqoop.apache.org/, accessed: 2019-10-20.

[38] TIBCO, “Tibco cloud integration - connect,” https://www.tibco.com/products/
cloud-integration/connect?source=scribesoft.com, accessed: 2019-10-20.

[39] H. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan,
and C. Shahabi, “Big data and its technical challenges,” Communications of the ACM,
vol. 57, no. 7, pp. 86–94, 2014.

[40] J. Zhao and J. Pjesivac-Grbovic, “Mapreduce: The programming model and
practice,” 2009, tutorial. [Online]. Available: https://research.google.com/archive/papers/
mapreduce-sigmetrics09-tutorial.pdf

[41] A. Foundation, “Apache hive tm,” https://hive.apache.org/, accessed: 2019-10-20.

[42] A. Cuzzocrea, “Privacy and security of big data: current challenges and future research
perspectives,” in Proceedings of the First International Workshop on Privacy and Secuirty
of Big Data. ACM, 2014, pp. 45–47.

[43] V. N. Inukollu, S. Arsi, and S. R. Ravuri, “Security issues associated with big data in cloud
computing,” International Journal of Network Security & Its Applications, vol. 6, no. 3,
p. 45, 2014.

[44] Y. Li, K. Gai, L. Qiu, M. Qiu, and H. Zhao, “Intelligent cryptography approach for secure
distributed big data storage in cloud computing,” Information Sciences, vol. 387, pp. 103–
115, 2017.

161

http://hbase.apache.org/
https://flume.apache.org/
https://www.talend.com/
http://sqoop.apache.org/
https://www.tibco.com/products/cloud-integration/connect?source=scribesoft.com
https://www.tibco.com/products/cloud-integration/connect?source=scribesoft.com
https://research.google.com/archive/papers/mapreduce-sigmetrics09-tutorial.pdf
https://research.google.com/archive/papers/mapreduce-sigmetrics09-tutorial.pdf
https://hive.apache.org/

Bibliography

[45] V. C. Hu, T. Grance, D. F. Ferraiolo, and D. R. Kuhn, “An access control scheme for
big data processing,” in 10th IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing. IEEE, 2014, pp. 1–7.

[46] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and big heterogeneous
data: a survey,” Journal of Big Data, vol. 2, no. 1, p. 3, 2015.

[47] T. A. S. Foundation, “Apache ranger,” https://ranger.apache.org/.

[48] ——, “Apache knox,” https://knox.apache.org/.

[49] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,”
in Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium on. IEEE,
2010, pp. 1–10.

[50] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” 2003.

[51] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and paradigms.
Prentice-Hall, 2007.

[52] E. Levy and A. Silberschatz, “Distributed file systems: Concepts and examples,” ACM
Computing Surveys (CSUR), vol. 22, no. 4, pp. 321–374, 1990.

[53] M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Sidebotham, A. Z. Spector, and
M. J. West, “The itc distributed file system: Principles and design,” ACM SIGOPS Oper-
ating Systems Review, vol. 19, no. 5, pp. 35–50, 1985.

[54] B. Jena, M. K. Gourisaria, S. S. Rautaray, and M. Pandey, “Name node performance
enlarging by aggregator based hadoop framework,” in I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC), 2017 International Conference on. IEEE, 2017, pp. 112–
116.

[55] T. White, Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[56] S. Gupta and V. Giri, “Ensure high availability of data lake,” in Practical Enterprise Data
Lake Insights. Springer, 2018, pp. 261–295.

[57] J. Kumari, T. Biswas, and S. Vuppala, “Enhancing replica synchronization in hadoop dis-
tributed file system,” in 2018 9th International Conference on Computing, Communication
and Networking Technologies (ICCCNT). IEEE, 2018, pp. 1–5.

[58] L. Jiang, B. Li, and M. Song, “The optimization of hdfs based on small files,” in Broadband
Network and Multimedia Technology (IC-BNMT), 2010 3rd IEEE International Conference
on. IEEE, 2010, pp. 912–915.

[59] J. A. Sacristán and T. Dilla, “No big data without small data: learning health care sys-
tems begin and end with the individual patient,” Journal of evaluation in clinical practice,
vol. 21, no. 6, pp. 1014–1017, 2015.

[60] M. Raynal, Distributed algorithms for message-passing systems. Springer, 2013, vol. 500.

[61] G. R. Andrews, Foundations of multithreaded, parallel, and distributed programming.
Addison-Wesley Reading, 2000, vol. 11.

162

https://ranger.apache.org/
https://knox.apache.org/

[62] P. Pacheco, Parallel programming with MPI. Morgan Kaufmann, 1997.

[63] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, E. Su, P. Unnikrish-
nan, and G. Zhang, “A proposal for task parallelism in openmp,” in International Workshop
on OpenMP. Springer, 2007, pp. 1–12.

[64] Z. Yang and K. Duddy, “Corba: a platform for distributed object computing,” ACM
SIGOPS Operating Systems Review, vol. 30, no. 2, pp. 4–31, 1996.

[65] J. McCarthy, S. Russell, T. P. Hart, M. Levin, A. Arc, and C. L. Clojure, “Lisp program-
ming language,” 1985.

[66] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopoulos, L. Wang,
B. Zhang et al., “Named data networking,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 3, pp. 66–73, 2014.

[67] V. Jacobson, “A new way to look at networking,” Google Tech Talk, vol. 30, 2006.

[68] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Bray-
nard, “Networking named content,” in Proceedings of the 5th international conference on
Emerging networking experiments and technologies. ACM, 2009, pp. 1–12.

[69] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Sto-
ica, “A data-oriented (and beyond) network architecture,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 4, pp. 181–192, 2007.

[70] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing information networking
further: From psirp to pursuit,” in International Conference on Broadband Communica-
tions, Networks and Systems. Springer, 2010, pp. 1–13.

[71] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl, “Network of
information (netinf)–an information-centric networking architecture,” Computer Commu-
nications, vol. 36, no. 7, pp. 721–735, 2013.

[72] V. S. Mai, S. Ioannidis, D. Pesavento, and L. Benmohamed, “Optimal cache allocation
under network-wide capacity constraint,” in 2019 International Conference on Computing,
Networking and Communications (ICNC). IEEE, 2019, pp. 816–820.

[73] D. Nguyen, K. Sugiyama, and A. Tagami, “Congestion price for cache management in
information-centric networking,” in 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2015, pp. 287–292.

[74] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasché, and Y. C. Tay, “A utility op-
timization approach to network cache design,” IEEE/ACM Transactions on Networking,
2019.

[75] T. Berners-Lee, R. Fielding, L. Masinter et al., “Uniform resource identifiers (uri): Generic
syntax,” 1998.

[76] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li, A. Afanasyev, and L. Zhang,
“An overview of security support in named data networking,” IEEE Communications Mag-
azine, vol. 56, no. 11, pp. 62–68, 2018.

163

Bibliography

[77] V. Lehman, A. Gawande, B. Zhang, L. Zhang, R. Aldecoa, D. Krioukov, and L. Wang, “An
experimental investigation of hyperbolic routing with a smart forwarding plane in ndn,” in
2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS). IEEE,
2016, pp. 1–10.

[78] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang, “Nlsr: named-
data link state routing protocol,” in Proceedings of the 3rd ACM SIGCOMM workshop on
Information-centric networking. ACM, 2013, pp. 15–20.

[79] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang,
G. Tsudik, D. Massey, C. Papadopoulos et al., “Named data networking (ndn) project,”
Relatório Técnico NDN-0001, Xerox Palo Alto Research Center-PARC, 2010.

[80] H. Zhang, Z. Wang, C. Scherb, C. Marxer, J. Burke, L. Zhang, and C. Tschudin, “Sharing
mhealth data via named data networking,” in Proceedings of the 3rd ACM Conference on
Information-Centric Networking. ACM, 2016, pp. 142–147.

[81] G. Grassi, D. Pesavento, G. Pau, R. Vuyyuru, R. Wakikawa, and L. Zhang, “Vanet via
named data networking,” in 2014 IEEE conference on computer communications workshops
(INFOCOM WKSHPS). IEEE, 2014, pp. 410–415.

[82] M. Gibbens, C. Gniady, L. Ye, and B. Zhang, “Hadoop on named data networking:
Experience and results,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, pp. 2:1–2:21,
Jun. 2017. [Online]. Available: http://doi.acm.org/10.1145/3084439

[83] S. Chen, J. Cao, and L. Zhu, “Ndss: A named data storage system,” in 2015 International
Conference on Cloud and Autonomic Computing, Sept 2015, pp. 196–199.

[84] W. Shang, Z. Wen, Q. Ding, A. Afanasyev, and L. Zhang, “Ndnfs: An ndn-friendly file
system,” NDN Technical Report NDN-0027, Revision 1, 2014.

[85] A. Afanasyev, I. Moiseenko, L. Zhang et al., “ndnsim: Ndn simulator for ns-3,” University
of California, Los Angeles, Tech. Rep, vol. 4, 2012.

[86] M. Lacage and T. R. Henderson, “Yet another network simulator,” in Proceeding from the
2006 workshop on ns-2: the IP network simulator. ACM, 2006, p. 12.

[87] B. Etefia, M. Gerla, and L. Zhang, “Supporting military communications with named
data networking: An emulation analysis,” in MILITARY COMMUNICATIONS CONFER-
ENCE, 2012-MILCOM 2012. IEEE, 2012, pp. 1–6.

[88] O. P. Team, “Opnet network simulator,” http://opnetprojects.com/
opnet-network-simulator/.

[89] H. Taleb, S. Hamrioui, P. Lorenz, and A. Bilami, “Integration of energy aware wsns in cloud
computing using ndn approach,” in 2017 Ninth International Conference on Ubiquitous and
Future Networks (ICUFN). IEEE, 2017, pp. 188–192.

[90] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination
for internet-scale systems.” in USENIX annual technical conference, vol. 8. Boston, MA,
USA, 2010, p. 9.

164

http://doi.acm.org/10.1145/3084439
http://opnetprojects.com/opnet-network-simulator/
http://opnetprojects.com/opnet-network-simulator/

[91] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, Y. Huang, J. P.
Abraham, S. DiBenedetto et al., “Nfd developer’s guide,” Technical report, NDN-0021,
NDN, 2014.

[92] A. V. Aho and J. D. Ullman, “The theory of languages,” Mathematical systems theory,
vol. 2, no. 2, pp. 97–125, 1968.

[93] M. A. Harrison, Introduction to formal language theory. Addison-Wesley Longman Pub-
lishing Co., Inc., 1978.

[94] G. Rozenberg and A. Salomaa, Handbook of Formal Languages: Volume 3 Beyond Words.
Springer Science & Business Media, 2012.

[95] J. E. Hopcroft, J. D. Ullman, M. Rabin, and D. Scott, “Introduction to automata theory,
languages, and computation,” IBM Journal of Research and Development, vol. 3, pp. 114–
125.

[96] INRIA, “The coq reference manual,” https://coq.inria.fr/distrib/current/refman/, ac-
cessed: 2019-05-20.

[97] B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, and
B. Yorgey, “Software foundations,” Webpage: http://www. cis. upenn. edu/bcpierce/sf/cur-
rent/index. html, 2010.

[98] Y. Bertot and P. Castéran, Interactive theorem proving and program development: Coq’Art:
the calculus of inductive constructions. Springer Science & Business Media, 2013.

[99] A. Chlipala, Certified programming with dependent types: a pragmatic introduction to the
Coq proof assistant. MIT Press, 2013.

[100] É. Contejean, P. Courtieu, J. Forest, A. Paskevich, O. Pons, and X. Urbain, “A3pat, an
approach for certified automated termination proofs,” 2010.

[101] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner, “A modular
integration of sat/smt solvers to coq through proof witnesses,” in International Conference
on Certified Programs and Proofs. Springer, 2011, pp. 135–150.

[102] B. Chetali and Q.-H. Nguyen, “About the world-first smart card certificate with eal7 formal
assurances,” Slides 9th ICCC, Jeju, Korea (September 2008), www. commoncriteriaportal.
org/iccc/9iccc/pdf B, vol. 2404, 2008.

[103] X. Leroy, “Formal certification of a compiler back-end or: programming a compiler with a
proof assistant,” in ACM SIGPLAN Notices, vol. 41, no. 1. ACM, 2006, pp. 42–54.

[104] H. Geuvers, F. Wiedijk, and J. Zwanenburg, “A constructive proof of the fundamental
theorem of algebra without using the rationals,” in International Workshop on Types for
Proofs and Programs. Springer, 2000, pp. 96–111.

[105] G. Gonthier, “Advances in the formalization of the odd order theorem,” in International
Conference on Interactive Theorem Proving. Springer, 2011, pp. 2–2.

[106] I. D. Team, “Isabelle,” http://isabelle.in.tum.de/, accessed: 2019-05-20.

165

https://coq.inria.fr/distrib/current/refman/
http://isabelle.in.tum.de/

Bibliography

[107] H. P. project, “Hol interactive theorem prover,” https://hol-theorem-prover.org/, accessed:
2019-05-20.

[108] P. D. Team, “Pvs specification and verification system,” http://pvs.csl.sri.com/, accessed:
2019-05-20.

[109] Y. Marquer, L. Maignan, and J.-B. Yunès, “Proving formally a field-based fssp solution,”
2018.

[110] F. Loulergue and J. Tesson, “Certified Parallel Program Calculation in Coq: A Tutorial,”
in International Conference on High Performance Computing and Simulation (HPCS), ser.
HPCS. Bologna, Italy: IEEE, 2014. [Online]. Available: https://hal.inria.fr/hal-00966632

[111] INRIA, “The gallina specification language coq 8.9.1 documentation,” https://coq.inria.fr/
refman/language/gallina-specification-language.html, accessed: 2019-05-20.

[112] A. V. Aho and J. D. Ullman, The theory of parsing, translation, and compiling. Prentice-
Hall Englewood Cliffs, NJ, 1972, vol. 1.

[113] T. Parr and K. Fisher, “Ll (*): the foundation of the antlr parser generator,” in ACM
Sigplan Notices, vol. 46, no. 6. ACM, 2011, pp. 425–436.

[114] T. Anderson, J. Eve, and J. J. Horning, “Efficientlr (1) parsers,” Acta Informatica, vol. 2,
no. 1, pp. 12–39, 1973.

[115] Y. R.-G. François Pottier, “Menhir reference manual (version 20181113),” http://gallium.
inria.fr/~fpottier/menhir/manual.html, accessed: 2019-05-20.

[116] J.-H. Jourdan, F. Pottier, and X. Leroy, “Validating lr (1) parsers,” in European Symposium
on Programming. Springer, 2012, pp. 397–416.

[117] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, and C. Ferdinand, “Compcert-a
formally verified optimizing compiler,” 2016.

[118] INRIA, “Psatz,” https://coq.inria.fr/refman/addendum/micromega.html, accessed: 2019-
05-20.

[119] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[120] M. Magnin, “Réseaux de petri à chronomètres: temps dense et temps discret,” Ph.D.
dissertation, Nantes, 2007.

[121] M. BENDIAF, “Spécification et vérification des systèmes embarqués temps réel en util-
isant la logique de réécriture,” Ph.D. dissertation, UNIVERSITE MOHAMED KHIDER
BISKRA, 2018.

[122] R. Alur and D. Dill, “Automata for modeling real-time systems,” in International Collo-
quium on Automata, Languages, and Programming. Springer, 1990, pp. 322–335.

[123] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer science, vol.
126, no. 2, pp. 183–235, 1994.

[124] A. N. Prior, Past, present and future. Clarendon Press Oxford, 1967, vol. 154.

166

https://hol-theorem-prover.org/
http://pvs.csl.sri.com/
https://hal.inria.fr/hal-00966632
https://coq.inria.fr/refman/language/gallina-specification-language.html
https://coq.inria.fr/refman/language/gallina-specification-language.html
http://gallium.inria.fr/~fpottier/menhir/manual.html
http://gallium.inria.fr/~fpottier/menhir/manual.html
https://coq.inria.fr/refman/addendum/micromega.html

[125] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977). IEEE, 1977, pp. 46–57.

[126] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic,” in Workshop on Logic of Programs. Springer, 1981, pp.
52–71.

[127] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking for real-
time systems,” Information and computation, vol. 111, no. 2, pp. 193–244, 1994.

[128] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 1, no. 1, pp. 134–152, 1997.

[129] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’argenio, A. David, A. Fehnker, T. Hune,
B. Jeannet, K. G. Larsen, M. O. Möller et al., “Uppaal-now, next, and future,” in Summer
School on Modeling and Verification of Parallel Processes. Springer, 2000, pp. 99–124.

[130] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal
implementation secrets,” in International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems. Springer, 2002, pp. 3–22.

[131] A. David, G. Behrmann, K. G. Larsen, and W. Yi, “New uppaal architecture,” in Workshop
on Real-Time Tools, Uppsala University Technical Report Series, 2002.

[132] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen, “Uppaal smc tutorial,”
International Journal on Software Tools for Technology Transfer, vol. 17, no. 4, pp. 397–
415, 2015.

[133] D. Basile, M. H. ter Beek, and V. Ciancia, “Statistical model checking of a moving block
railway signalling scenario with uppaal smc,” in International Symposium on Leveraging
Applications of Formal Methods. Springer, 2018, pp. 372–391.

[134] C. Nigro, L. Nigro, and P. F. Sciammarella, “Modelling and analysis of multi-agent systems
using uppaal smc,” International Journal of Simulation and Process Modelling, vol. 13,
no. 1, pp. 73–87, 2018.

[135] J. Arias, M. Desainte-Catherine, and C. Rueda, “Exploiting parallelism in fpgas for the
real-time interpretation of interactive multimedia scores,” 2015.

[136] K. G. Larsen, B. Steffen, and C. Weise, “Continuous modeling of real-time and hybrid
systems: from concepts to tools,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 1, no. 1, pp. 64–85, 1997.

[137] J. Byg, K. Y. Jørgensen, and J. Srba, “Tapaal: Editor, simulator and verifier of timed-
arc petri nets,” in International Symposium on Automated Technology for Verification and
Analysis. Springer, 2009, pp. 84–89.

[138] S. Yovine, “Kronos: A verification tool for real-time systems,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 1, no. 1, pp. 123–133, 1997.

[139] T. A. Henzinger and P.-H. Ho, “Hytech: The cornell hybrid technology tool,” in Interna-
tional Hybrid Systems Workshop. Springer, 1994, pp. 265–293.

167

Bibliography

[140] C. Mahmoudi, “Orchestration d’agents mobiles en communauté,” Ph.D. dissertation, 2014.

[141] C. Dumont, “Système d’agents mobiles pour les architectures de calculs auto-adaptatifs,”
Ph.D. dissertation, 2014.

[142] G. L. Djiken, “La mobilité du code dans les systèmes embarqués,” Ph.D. dissertation, Paris
Est, 2018.

[143] N. Team, “ndn-cxx: Ndn c++ library with experimental extensions,” https://github.com/
named-data/ndn-cxx, accessed: 2019-11-2.

[144] D. J. Mala, Object Oriented Analysis and Design Using UML. Tata McGraw-Hill Educa-
tion, 2013.

[145] S. Sultana and F. Arif, “From verification to implementation: Uppaal to c++,” American
Journal of Engineering Research (AJER), e-ISSN, pp. 2320–0847, 2016.

[146] arieleiz, “Uppaal2c,” https://github.com/arieleiz/UPPAAL2C.

[147] E. Gamma, Design patterns: elements of reusable object-oriented software. Pearson Edu-
cation India, 1995.

[148] J. Dongo, “Prototype version ndfs and nmapreduce,” https://github.com/mistersound/
simulation/tree/master/ndnSIM.

[149] N. Heckert and J. J. Filliben, “Nist handbook 148: Dataplot reference manual, volume i:
Commands,” National Institute of Standards and Technology Handbook Series, 2003.

[150] K. Mills, J. Filliben, and C. Dabrowski, Assessing Effects of Asymmetries, Dynamics, and
Failures on a Cloud Simulator, 2015.

[151] D. S. Summit, “Real world archirecture and deployment best practices,” https://www.
slideshare.net/HadoopSummit/real-world-archirecture-and-deployment-best-practices,
accessed: 2019-10-15.

[152] N. Team, “Named data networking forwarding daemon,” https://github.com/named-data/
NFD, accessed: 2019-11-2.

[153] ——, “Ndn essential tools,” https://github.com/named-data/ndn-tools, accessed: 2019-11-
2.

[154] ——, “Nlsr - named data link state routing protocol,” https://github.com/named-data/
NLSR, accessed: 2019-11-2.

[155] ——, “sync library for multiuser realtime applications for ndn,” https://github.com/
named-data/ChronoSync, accessed: 2019-11-2.

[156] ——, “Psync,” https://github.com/named-data/PSync, accessed: 2019-11-2.

[157] O. Foundation, “Getting started guide,” https://nodejs.org/en/docs/guides/
getting-started-guide/, accessed: 2019-10-15.

[158] A. S. Foundation, “Hadoop apache hadoop 2.9.2,” https://hadoop.apache.org/docs/r2.9.2/,
accessed: 2019-09-12.

168

https://github.com/named-data/ndn-cxx
https://github.com/named-data/ndn-cxx
https://github.com/arieleiz/UPPAAL2C
https://github.com/mistersound/simulation/tree/master/ndnSIM
https://github.com/mistersound/simulation/tree/master/ndnSIM
https://www.slideshare.net/HadoopSummit/real-world-archirecture-and-deployment-best-practices
https://www.slideshare.net/HadoopSummit/real-world-archirecture-and-deployment-best-practices
https://github.com/named-data/NFD
https://github.com/named-data/NFD
https://github.com/named-data/ndn-tools
https://github.com/named-data/NLSR
https://github.com/named-data/NLSR
https://github.com/named-data/ChronoSync
https://github.com/named-data/ChronoSync
https://github.com/named-data/PSync
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://hadoop.apache.org/docs/r2.9.2/

[159] O. Technology, “Java se 7 archive downloads,” https://www.oracle.com/technetwork/java/
javase/downloads/java-archive-downloads-javase7-521261.html, accessed: 2019-09-12.

[160] J. Dongo, C. Mahmoudi, and F. Mourlin, “Ndn log analysis using big data techniques:
Nfd performance assessment,” in 2018 IEEE Fourth International Conference on Big Data
Computing Service and Applications (BigDataService). IEEE, 2018, pp. 169–175.

[161] K. Hwang and M. Chen, Big-data analytics for cloud, IoT and cognitive computing. John
Wiley & Sons, 2017.

[162] N. Team, ndndump, https://github.com/named-data/ndn-tools/tree/master/tools/dump.

[163] J. Twidell and T. Weir, Renewable energy resources. Routledge, 2015.

[164] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication in-
frastructures: Motivations, requirements and challenges,” IEEE communications surveys
& tutorials, vol. 15, no. 1, pp. 5–20, 2013.

[165] J. Sanz, G. Matute, H. Bludszuweit, and E. Laporta, “Microgrids, a new business model
for the energy market,” in International Conference on Renewable Energies and Power
Quality, 2014.

[166] M. E. El-Hawary, “The smart grid—state-of-the-art and future trends,” Electric Power
Components and Systems, vol. 42, no. 3-4, pp. 239–250, 2014.

[167] A. G. Phadke and J. S. Thorp, “Phasor measurement units and phasor data concentrators,”
in Synchronized Phasor Measurements and Their Applications. Springer, 2017, pp. 83–109.

[168] X. Liu, L. Golab, W. Golab, I. F. Ilyas, and S. Jin, “Smart meter data analytics: systems,
algorithms, and benchmarking,” ACM Transactions on Database Systems (TODS), vol. 42,
no. 1, p. 2, 2017.

[169] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke,
“Smart grid technologies: Communication technologies and standards,” IEEE transactions
on Industrial informatics, vol. 7, no. 4, pp. 529–539, 2011.

[170] S. Borlase, Smart grids: infrastructure, technology, and solutions. CRC press, 2017.

[171] H. Bilil, C. Mahmoudi, and M. Maaroufi, “Named Data Networking for Smart Grid Infor-
mation Sharing,” in International Renewable and Sustainable Energy Conference, 2017.

[172] Cisco, “Bandwidth, packets per second, and other network performance metrics,”
https://tools.cisco.com/security/center/resources/network_performance_metrics.

[173] I. E. T. F. (IETF), “Internet protocols for the smart grid,” https://tools.ietf.org/html/
rfc6272, accessed: 2018-05-5.

[174] A. McGibney, S. Rea, and J. Ploennigs, “Open bms-iot driven architecture for the internet
of buildings,” in IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 2016, pp. 7071–7076.

[175] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

169

https://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
https://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
https://tools.ietf.org/html/rfc6272
https://tools.ietf.org/html/rfc6272

Bibliography

[176] D. G. Holmberg and D. Evans, BACnet wide area network security threat assessment. US
Department of Commerce, National Institute of Standards and Technology, 2003.

[177] W. S. Lee and S. H. Hong, “Implementation of a knx-zigbee gateway for home automation,”
in 2009 IEEE 13th International Symposium on Consumer Electronics. IEEE, 2009, pp.
545–549.

170

	Introduction
	Context and thesis motivation
	Problem statement
	Contributions and thesis plan

	State of the Art
	Big Data
	Big Data Definition
	Big Data Characteristics
	Big Data Architecture
	Technologies
	Applications
	Challenges

	Distributed File Systems
	DFS Definition
	DFS Characteristics
	HDFS

	Distributed Computing
	Distributed Computing Definition
	Programming Models
	MapReduce

	Named Data Networking
	NDN Architecture
	Naming
	Security
	Forwarding and Routing
	Caching
	NDN Testbed
	Big Data on NDN
	Simulation on NDN

	Summary

	Architecture and Specification
	Named Data Networking Distributed File System
	Architecture Overview
	Data replication
	Failure, Heartbeats and after failure replication
	Protocol

	Computation distribution (NMapReduce)
	Architecture Overview
	Principle
	Protocol

	Formal Language
	Symbol
	Alphabet
	Word or String
	Formal language definition
	Grammar
	Context Free Grammar (CFG)

	Coq Proof Assistant
	Presentation
	Coq programming language

	Replication and computation language parser
	Parser definition
	Approach
	Coq Specification

	Theorems and proofs
	Correctness
	Completeness
	Consistency

	Summary

	Model Checking for System Verification
	Real Time System Verification
	Automaton System Specification
	Time in Automaton
	Temporal Logic

	UPPAAL model-checking tool
	UPPAAL Automaton Formal Representation
	Modeling and Validation with UPPAAL
	Verification using UPPAAL

	System Modeling
	NDFS
	NMapReduce

	System Verification
	Communication properties
	Completeness properties
	Recovery properties

	Summary

	Prototyping, Implementation and Simulation
	Software Architecture
	Requirements
	Component diagram
	Scenarios

	Implementation
	Model based approach
	Prototype version
	Concrete version

	Simulation
	Tools
	Experiment
	Results and discussion

	Summary

	Experimentation and Results
	Experimental Platform
	NDN experimental platform
	Hadoop experimental platform

	Evaluation and Comparison
	NDFS vs HDFS
	Hadoop MapReduce vs NMapReduce

	Use Case
	IoT
	Smart Grid
	Building Management System

	Summary

	Conclusion and Perspectives
	Summary of contributions
	Formal definition of a software architecture
	Development of a framework
	Measurements for evaluation

	Future works

	Appendices
	Replication language parser in Coq
	Automation scripts
	Framework installation
	Install NDN node from source
	Install NLSR from source
	Deploy Hadoop cluster

	NMapReduce WordCount script (JavaScript)
	MapReduce WordCount source code (Java)
	Mapper Class Code
	Reducer Class Code
	Main Class Code
	R script for simulation response computation

	Bibliography

