
HAL Id: tel-03542389
https://theses.hal.science/tel-03542389

Submitted on 25 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioral Pattern Mining for Flexible Processes
Mehdi Acheli

To cite this version:
Mehdi Acheli. Behavioral Pattern Mining for Flexible Processes. Data Structures and Algorithms
[cs.DS]. Université Paris sciences et lettres, 2021. English. �NNT : 2021UPSLD001�. �tel-03542389�

https://theses.hal.science/tel-03542389
https://hal.archives-ouvertes.fr

Préparée à Université Paris Dauphine

Behavioral Pattern Mining for Flexible
Processes

Soutenue par

Mehdi Acheli
Le 25/10/2021

École doctorale no543
ED de Dauphine

Spécialité

Informatique

Composition du jury :

Allel HADJALI
Professeur,
ISAE - ENSMA Président du jury

Salima BENBERNOU
Professeure,
Université Paris Descartes Rapporteure

Walid GAALOUL
Professeur,
Télécom SudParis (ex INT) Rapporteur

Matthias WEIDLICH
Professeur,
Humboldt-Universität zu Berlin Examinateur

Pavlos DELIAS
Associate Professor,
International Hellenic University Examinateur

Daniela GRIGORI
Professeur
Université Paris-Dauphine-PSL Directrice

À mon père, mon vieil ami et à ma mère...

Remerciements
Au tout commencement, j’aimerais remercier Mme. Daniela Grigori. Pour moi, l’arrivant en
France sans attaches ni famille, elle a joué le rôle de figure maternelle. S’inquiétant pour moi et
veillant toujours à mon bien être. Je ne saurais fidèlement décrire sa gentillesse, sa bienveillance
et sa disponibilité. Week-ends ou vacances, matin ou soir, nous avons toujours été en contact pour
notre travail de recherche. Ce travail dont elle m’a transmis les ficelles. Orienté détails comme je
le suis, ce qui peut être handicapant, elle m’a appris à abstraire et hiérarchiser la complexité dans
mes écrits. Elle m’a également appris comment me mettre à la place du lecteur pour garantir la
compréhension de nos travaux. Je suis reconnaissant à Daniela pour ses remarques pertinentes
qui, souvent, échappaient à celui qui s’est embourbé dans les technicités.

Au Pr. Matthias Weidlich, j’adresse mes remerciements les plus sincères. Ses capacités de
synthèse et son style de rédaction ont sûrement pesé dans la balance quand nos articles ont été
acceptés. Même si Matthias n’était pas mon encadrant officiellement, il s’est impliqué tout autant
et a cosigné l’intégralité de nos travaux de thèse. J’ai eu beaucoup de chance d’avoir rencontré
celui qui a précisé et défini un thème à ma thèse et avec lequel on se comprenait en l’espace de
quelques secondes.

Ensuite, j’aimerais exprimer ma gratitude envers Pr. Walid Gaaloul et Pr. Salima Benbernou
qui ont accepté d’être les rapporteurs de mon modeste travail et ont donc investi de leur temps
et montré leur intérêt pour ma recherche. Particulièrement, je les remercie pour les questions
pertinentes qu’ils m’ont posées, leur rigueur, leurs remarques et les différentes perspectives qu’ils
ont soulevées. De même, mes remerciements vont à Dr. Pavlos Delias pour les différentes
réflexions et les séances de brainstorming que nous avons eues durant ma thèse mais aussi pour
avoir accepté d’être un membre de mon jury de thèse me faisant bénéficier de son expérience et
expertise.

Un grand merci au président de mon jury de thèse: Pr. Allel Hadj Ali qui, pour l’anecdote, a été
l’encadrant de mon stage de fin d’études et la personne qui m’a recommandé à Daniela. Ainsi,
quatre années plus tard, le maître est revenu évaluer mon travail.

Cette thèse a été un combat que je n’ai pas mené seul. J’avais à mes côtés des camarades fidèles et
tout aussi vaillants. Des camarades qui ont rejoint mon navire à différents moments de ma vie
mais qui, chacun, ont su recoudre une voile, remplacer une planche ou pour certains, même me
faire changer de cap. Je pense notamment à mes plus vieux amis, ma classe de lycée et que je
connais maintenant depuis plus de dix ans. Je pense à Tarek, l’un de mes meilleurs amis, qui m’a
appris le sens de la responsabilité et Dalil, le sens du calme. Je remercie également Abdelmalek
pour son sourire et sa bonne humeur inextinguibles. Je pense à Chakib, l’artiste de notre groupe
qui m’a toujours encouragé à libérer ma créativité et a apprécié, plus que nécessaire, mes maigres
contributions. Je n’oublierai pas de citer Djamel, mon hébergeur officiel quand je suis arrivé en
France qui m’a guidé dans cette nouvelle aventure avec ses conseils et recommandations. Il s’agit
de la personne la plus courageuse et la plus battante que j’ai connue. Ma gratitude va aussi vers
Salim, un autre ami de ce vieil âge qui m’a aidé à travers bien des péripéties. Il m’est également

2

impensable de ne pas remercier Tarek (Kassar) qui a été là pour moi à bien des occasions.

Ensuite viennent mes amis de mon école d’ingénieur, L’ESI. Ceux que j’ai côtoyés pendant cinq
années. Que dire de la force des liens qui se sont tissés. Tout d’abord, je remercie ma bande
joyeuse zaltonienne: Salah, Cherif et Amine complétée par le cinquième mousquetaire Ali. Nos
retrouvailles qui ont ponctué mes quatre années de thèse ont été à chaque fois un tremplin qui
me revigorait, effaçait ma fatigue et me propulsait vers les étapes supérieures. C’est avec ces
personnes là et seulement avec elles que j’ai discuté des sujets les plus complexes et les plus
profonds, de mes soucis et de mes questionnements. Je les remercie pour leur patience, leur
absence totale de jugement et d’être mes chers amis avec qui je peux être pleinement moi-même et
partage tellement de passions. J’ouvre une parenthèse pour dire à Ali que mes visites à Compiègne
étaient un moment de paix dans une vie bien chargée. Tu ne peux pas savoir à quel point cela
me faisait du bien de venir te voir et d’apprécier tes compétences culinaires. Pour ce qui est de
mes autres camarades de L’ESI, séparés par notre nouvelle vie d’adultes et le train-train de la vie
quotidienne, je suis content que nous nous soyons débrouillés pour organiser au moins une sortie
annuelle. Vous retrouver ou vous parler, même par message, m’a toujours fait beaucoup de bien,
Wissem, Billel, Islem, Rida, Abdelkader, Walid, Chahine, Amjed, Hani, Hadjer, Youcef, Nassim,
Lotfi, Mehdi, Imene, Yacine, Dob, Aymen et bien d’autres. Je remercie particulièrement Sara qui
a su m’écouter et que la distance ne nous a pas séparés. Merci pour ton écoute, ton support et tes
conseils quand le morale était au plus bas. Enfin, la beauté de l’ESI fait qu’on ne se limite pas à sa
génération mais qu’on côtoie les plus vieux et les moins vieux. C’est ainsi que j’ai retrouvé en
Mourad, l’un de mes meilleurs amis et l’une des personnes qui font mon quotidien. Je ne saurais
oublier Dahmane ou Amine (Remache) avec lesquels j’ai partagé tellement de bons moments.
Parmi mes autres camarades, je peux citer Nassim (Ait Ali), Yasmine et Adnene. Tout ce lot
joyeux a rendu possible ce travail de thèse.

Je voudrais également parler de ma dernière aventure au LAMSADE, le laboratoire de recherche
qui m’a accueilli. Je peux dire sans exagération que ma thèse m’a apporté maintes fois plus
sur le plan personnel que professionnel. Elle a été une aventure humaine extra-ordinaire. J’ai
rencontré des personnes hors du commun qu’aucun autre endroit ne pourrait rassembler. Je
remercie donc tous mes camarades lamsadiens pour nos débats, nos conversations mondaines
ou plus sophistiquées, nos délires et nos rires, nos sorties, nos jeux et nos combats de lutte et
bien d’autres choses. Je pense particulièrement à Mehdi, la gentillesse et l’innocence incarnée,
Amine, le calme au milieu de la tempête, George, le tempétueux au milieu du calme, Axel, le
droit, Hossein, le serviable, Ons, l’Hadja, Raja, la souriante, Beatrice, le rayon de soleil et la
flamme du labo. Je remercie Nicolas et Felipe pour leur bonne humeur, Charles pour nos délires
post-cinéma et enfin Pierre qui m’a accompagné dans un processus développemental compliqué
qui ne s’est pas toujours fait en douceur. Merci également à Hiba en qui j’ai trouvé une amie
et confidente ainsi que Diana qui m’a conseillé en sa qualité de prédécesseuse chez Daniela.
Je ne me permets pas d’oublier Satya, Yassine, Justin et Nikos ainsi que toutes nos nouvelles
recrues qui sont bien parties pour sauvegarder notre ambiance: Virginia, Ariane, Théo, Lucas,
Alexandre, Marie, Louise et bien d’autres. Enfin, le labo ne pourrait exister sans le travail des
équipes administratives, enseignantes et complémentaires. Je remercie tout ce grand monde qui
m’a assisté et a assisté tout le monde durant notre passage. Je peux mentionner Marie, Eleni et

3

Tatiana pour n’en citer que quelques-uns. Enfin, je n’ai pas de mots pour remercier Céline pour
toutes les raisons qu’elle saura reconnaître.

On est souvent tentés de prendre leur présence pour acquis mais ce n’est aucunement le cas. Je
salue l’effort de ma famille qui a tout fait pour moi et a été là à chaque étape de ma vie, un allié
dans l’ombre qui ne me quitte jamais et un lien infaillible et sacré. Particulièrement, je remercie
ma tante, ma seconde mère qui a veillé à ce que je ne manque de rien. Ensuite, je remercie
Amirouche, mon voisin, cousin et meilleur ami, la pilule dopante et l’injection de remontants. Je
remercie mon frère Ali, ma petite soeur Hadjer, ma cousine Lylia et ma cousine adoptive Sabrina
pour tous nos délires.

Enfin, à sa mémoire, je dédie ce mémoire. L’homme qui m’a tout appris, qui m’a inculqué
ses valeurs et m’a sommé de ne jamais abandonner. Je lui avais promis de ne jamais arrêter
d’apprendre et c’est ce que je compte faire. Pour ma mère, je ne trouve pas de mots. Par sa seule
voix, elle m’a aidé durant les moments durs de cette thèse et félicité durant les épisodes de bonheur.
Elle pleurait quand j’étais triste et riait aux éclats quand j’étais content. Ma force c’est d’elle que
je la puisais et puiserai encore.

Je sais que j’ai beaucoup écrit, peut-être même un peu trop mais je tiens à retourner la faveur à
ceux qui m’ont aidé, au moins par reconnaissance écrite. Néanmoins, n’étant qu’humain, peut-être
ai-je omis des personnes. Donc, merci à ceux qui de près ou de loin m’ont accordé de leur temps
ou égayé ma journée.

4

Résumé
Nous assistons aujourd’hui à une explosion de données manipulées par les systèmes informatiques.
Des mesures de capteurs aux publications postées sur les réseaux sociaux, le flux de données est
sans précédent. Un type particulier de ces données sont les journaux d’évènements que stockent
les systèmes d’information dans le cadre d’exécution de différents processus. Le Process Mining
est une discipline de recherche relativement jeune qui vise à extraire des connaissances à partir de
ces journaux. Une des tâches les plus importantes est la construction de modèles décrivant le
cheminement du processus. Ces modèles peuvent être structurés avec des chemins d’exécution
bien clairs ou alors plus en "spaghetti" avec des branchements complexes et des structures de
choix.

Différents algorithmes ont été proposés pour découvrir des modèles de processus de bout en
bout mais peu réussissent à apprivoiser les processus non structurés. Pour ces cas particuliers,
des techniques qui extraient des informations plus granulaires sont préconisées. Par exemple, à
travers l’abstraction des évènements et de leurs relations ou alors par l’éclatement des journaux en
clusters plus faciles à gérer.

C’est dans ce cadre que s’inscrit notre travail. Il tourne autour de la notion de patterns
comportementaux. Il s’agit de modèles relativement petits qui décrivent des fragments importants
dans l’exécution du processus; la mesure de l’importance étant la fréquence. Premièrement, nous
proposons un algorithme rapide et robuste pour les extraire avec des stratégies d’élagage, plusieurs
optimisations et garantissant certaines propriétés sur les patterns découverts. L’analyste peut alors
avoir une vue d’ensemble sur le processus en étudiant les comportements fréquents qu’il contient.

En deuxième lieu, nous proposons un framework d’analyse des patterns découverts qui prenne en
compte le contexte d’exécution. Il s’agit d’attributs accompagnant les journaux d’évènement et
donnant des informations supplémentaires sur chaque exécution. Nous proposons une définition
formelle des contextes, découvrons des patterns dans chaque contexte et définissons des types
particuliers de pattern qui se chevauchent entre contextes. Cette approche permet une étude plus
poussée des patterns découverts hors contexte mais aussi l’extraction de patterns complètement
nouveaux nichés à l’intérieur des contextes. De plus, nous proposons des règles comportementales
ainsi qu’une analyse de causalité entre attributs et occurrence des fragments. Une méthodologie
qui sert de "guide d’utilisation" du framework est également fournie.

Finalement, nous apportons plusieurs améliorations sur l’algorithme initial de découverte classique
ou hors contexte des patterns comportementaux. Elles viennent réduire encore plus les temps
d’exécution et corriger le problème de difficulté d’analyse non contextuelle des fragments.
Premièrement, nous avons proposé un algorithme incrémental qui permet d’évaluer la fréquence
des patterns en profitant des informations déjà recueillies sur d’autres patterns augmentant ainsi
nettement la vitesse d’exécution. De même, nous construisons une étape de post-traitement qui
vient réduire le nombre de patterns découverts par l’élimination des redondances. Par la suite,
ce dernier ensemble de patterns est affiché dans un graphe intéractif et intuitif. Il propose des
relations intéressantes entre patterns et offre une vue globale dessus qui permet leur exploration.

5

L’algorithme initial, le framework et l’algorithme amélioré (ou avancé) ont été évalués sur des
journaux réels et ont prouvé être efficients et efficaces. Dans de futurs travaux, nous prévoyons
de chercher des patterns dans la dimension ressources plutôt que sur les structures de contrôles
du processus. Nous voudrions aussi exploiter des framework de calcul distribué afin de gérer les
journaux les plus volumineux. Finalement, nous comptons utiliser les patterns construits comme
attributs dans des tâches de Machine Learning.

6

Résumé Étendu

Introduction

Contexte et Motivation
Nous assistons aujourd’hui à une explosion du nombre de données produites, stockées, manipulées
et traitées dans les systèmes informatiques. Ce phénomène appelé "Big Data" se manifeste par cinq
caractéristiques appelées les "5V" du Big Data [81]: le volume ou la taille des données, leur variété
(structurées comme les bases de données relationnelles, non structurées comme du texte brut ou
alors semi-structurées à mi-chemin entre les deux), la vélocité dans le cas de flux de données, la
véracité ou l’incertitude sur les données dues aux facteurs incontrôlables et finalement la valeur
de ces dernières et leurs capacité à dégager des informations utiles, pertinentes et effectivement
exploitables. La composante valeur est donc l’ultime objectif et la raison du grand intérêt qu’on
porte au Big Data.

La Science des Données, considérée le quatrième paradigme de la science, vient concrétiser cette
valeur à travers des méthodes statistiques, de fouille et de visualisation permettant de réaliser des
prédictions, classifications, catégorisations et d’extraire diverses formes de renseignements utiles.

D’un autre côté, dans le secteur commercial, les systèmes d’information sont étroitement liés aux
processus métiers. Ces derniers sont un ensemble d’activités corrélées et exécutées dans le but
d’atteindre un objectif métier tel qu’un produit ou un service. Une instance de processus ou un cas
se définit comme une exécution unique du processus. Comme le rôle des systèmes d’information
est de collecter, d’enregistrer et de traiter de l’information, chaque instance est représentée par une
séquence d’évènements stockée et identifiée de manière unique dans un journal d’évènement. On
appelle une telle séquence une trace. L’évènement renvoie à l’activité exécutée, à son horodatage,
parfois à la ressource qui a entrepris la tâche mais aussi à des attributs donnant des informations
sur l’environnement ou sur le contexte de l’exécution. Notez que ce dernier type d’attributs peut

7

également accompagner les traces [82].

Le Process Mining est une discipline relativement jeune qui extrait des informations utiles à partir
des journaux d’exécution des processus s’intégrant ainsi dans le thème général de la Science
des Données. Elle est divisée en quatre branches principales. La première (Process Discovery)
vise à extraire des modèles décrivant l’exécution des processus, la deuxième (Conformance
Checking) étudie la conformité du journal par rapport à un modèle pré-établi , la troisième (Process
Enhancement) utilise les journaux pour procéder à des améliorations, modifications et extensions
sur des modèles déjà construits et enfin la dernière (Predictive Process Monitoring) tente de
délivrer des informations sur l’état futur des processus. La première branche est la plus étudiée.
Divers algorithmes ont déjà été proposés afin d’extraire des modèles de bout-en-bout représentant
l’entièreté du processus gouvernant le journal. On peut citer α-miner [83], Flexible Heuristics
Miner [88] et Genetic Miner [16]. Même si ces algorithmes offrent un bon moyen d’analyse des
processus structurés, à comprendre, ceux avec des chemins d’exécutions clairs et simples tel que
celui présenté dans Fig. 1.1, ils n’arrivent pas à apprivoiser les modèles les plus complexes qu’on
appelle "flexibles", "non structurés"ou "spaghetti" dont Fig. 1.2 est un exemple. En effet, ces
derniers se présentent sous la forme de chemins d’exécutions enchevêtrés, difficile à appréhender
et comportant de nombreuses structures de contrôle telles que les choix et les boucles. Pour ce type
particulier, d’autres méthodes ont été proposées. Par exemple,le clustering des traces en groupes
homogènes qui se traduisent chacun de manière isolée par des processus structurés [13, 15, 38, 73]
ou l’application de différents niveaux d’abstraction pour diminuer l’effet "spaghetti" [39].

Un travail intéressant qui a constitué l’inspiration pour notre recherche est la fouille de patterns
comportementaux ou la fouille de LPMs [80, 78]. Il s’agit de modèles de processus qui capturent
des épisodes d’exécution relativement petits et fréquents dans le journal. L’idée de base est
illustrée dans Fig. 1.3. Pour le journal d’exemple, décrivant les étapes de traitement d’un patient
dans un hôpital, un algorithme de découverte traditionnel tel que le Flexible Heuristics Miner
(FHM) [88] produit un modèle complexe. Cependant, on peut observer que les traces présentent
un pattern comportemental spécifique : une exécution de l’activité BT suivie de CO et RB en
parallèle. La détection d’un tel pattern permet de comprendre les régularités dans l’exécution des
processus. Notez cependant qu’il ne peut pas être détecté en utilisant les techniques standard de
fouille de patterns séquentiels, telles que PrefixSPAN [61] car celles-ci rateraient des dépendances
comportementales complexes telles que la concurrence et les choix exclusifs.

Cependant, ces travaux pionniers sur l’extraction de patterns comportementaux ou LPMs présentent
plusieurs failles qui ont un impact sur les temps d’exécution et sur la qualité des patterns
dérivés. Dans cette thèse, nous améliorons leurs extractions tout en veillant à exploiter tous les
renseignements qu’ils peuvent offrir. La section suivante décrit nos objectifs de recherche.

Objectifs de Recherche
Les algorithmes existants [80, 78] souffrent de l’imprécision et de la redondance des patterns extraits,
ainsi que d’un effort de calcul comparativement élevé. En effet, même si certains comportements
sont fréquents, les modèles peuvent capturer (i) seulement une partie du comportement fréquent

8

(c’est-à-dire qu’ils ne sont pas maximaux), ou (ii) une combinaison de comportements fréquents
et de comportements non fréquents (on appelle de tels modèles non compacts). Par exemple, dans
Fig. 1.3, le pattern seq(BT, and(CO,RB)) est fréquent. On peut affirmer que la découverte d’autres
patterns tels que seq(BT,CO)) et seq(BT, xor(CO,I)) n’apporterait aucune nouvelle information
sur le processus. Il est donc suffisant de découvrir le premier. En même temps, les algorithmes
existants souffrent d’un temps d’exécution élevé car les fréquences des patterns candidats sont
évaluées sur le journal en entier. Le premier objectif de recherche que nous définissons est donc le
suivant :

• G1: Optimiser le temps d’exécution de l’extraction des patterns comportementaux tout en
évitant les arbres inintéressants.

Une fois les patterns comportementaux découverts, un deuxième objectif consiste à en tirer toutes
les informations possibles.

• G2: S’inspirer des domaines fondamentaux tels que la fouille de patterns fréquents
et la fouille de patterns séquentiels pour découvrir d’autres utilisations des patterns
comportementaux utiles à l’analyse des processus.

Sur un sujet orthogonal, les algorithmes existants sont limités à une seule dimension d’étude, à
savoir, le flux de contrôle, c’est-à-dire les interdépendances entre les activités. Cependant, la
dimension des données ou le contexte d’exécution des activités et des instances est de la plus haute
importance. D’où l’objectif de recherche suivant :

• G3: Inclure la dimension données dans la procédure de fouille.

Contributions
Pour atteindre l’objectif formulé dansG1, nous proposons COBPAM (COmbination Based PAttern
Mining algorithm) [5], un nouvel algorithme basé sur une opération de combinaison pour extraire
des patterns formalisés en tant qu’arbres de processus [46] (une notation de modélisation de
processus) et ce à travers une approche de génération et de test. Elle identifie tous les arbres dont
le comportement peut être retrouvé dans un certain nombre de traces du journal des événements,
empruntant ainsi la notion bien établie de support de patterns dans les bases de données de
séquences [36]. De plus, la métrique de précision connue du Conformance Checking [82] est
utilisée pour évaluer le degré de matérialisation d’un arbre (si l’arbre apparaît sous les nombreuses
formes permises par le modèle, alors il est fortement présent dans le journal). Par ailleurs,
COBPAM définit un ordre partiel qui permet d’extraire uniquement des patterns maximaux et
compacts. Il explore également l’espace de recherche en utilisant des stratégies d’élagage tout en
évaluant la fréquence des patterns sur un nombre de traces limité. Tout cela le rend très efficient
mais aussi efficace.

D’autre part, comme il est de pratique dans la fouille de patterns séquentiels, les patterns renvoyés
par COBPAM pourraient servir dans une autre procédure d’analyse de données. A savoir, l’étude
des associations entre les patterns eux-mêmes. Il s’agit d’une évolution naturelle pour COBPAM
avec l’introduction de règles comportementales équivalentes aux règles séquentielles. Dans

9

l’exemple ci-dessus, la règle comportementale : BT→ et(CO,RB) indiquerait que BT ne peut
apparaître sans que et(CO,RB) ne le suive et et(CO,RB) ne peut pas apparaître sans que BT ne le
précède. L’exploration de règles comportementales remplit l’objectif G2.

Dans une autre contribution, nous nous intéressons à l’objectif G3 et étendons COBPAM avec une
perspective de données. Considérons le journal d’exécution enrichi d’attributs dans Fig. 1.4. Il y a
deux attributs représentant des informations contextuelles : le niveau de revenu du patient (faible
ou élevé) et le groupe d’âge (<70 ou 70+). Dans un tel journal, une approche de découverte de
patterns qui ne tient pas compte du contexte est grandement limitée en termes d’informations que
l’on peut obtenir sur le processus. Les épisodes de comportement du processus qui sont communs
pour un contexte d’exécution spécifique, mais qui ne sont pas fréquents dans tous les contextes, ne
sont pas détectés. Par exemple, si l’on considère uniquement les patients à faibles revenus, on
observe un modèle où BT, suivi de SW, est à nouveau suivi par la concurrence entre CO et RB.
La détection de ce modèle contextuel fournit des renseignements pertinents. Ici on observe que
les patients à faibles revenus ont tendance à discuter de la politique de remboursement avec un
travailleur social. Cette information passerait inaperçue si l’on négligeait les attributs contextuels.
Ainsi, les patterns contextuels permettent une analyse granulaire et fine des corrélations entre les
facteurs contextuels et l’exécution du processus. De plus, on pourrait s’intéresser à répondre à
des questions telles que : "Quels patterns comportementaux sont fréquents chez les patients à
faible revenu exclusivement ?" ou "Quels sont les patterns comportementaux fréquents parmi les
patients à hauts revenus, quel que soit leur âge ?". Pour ce faire, on peut définir différents types de
fréquence. De fait, en répondant à ces questions, les données sont prises en compte de manière
intrinsèque dans le processus d’extraction et les dépendances entre les données et les patterns sont
découvertes sous forme de modèles contextuels.

Dans le cas où un pattern apparaît exclusivement dans une population, il est naturel de se demander
si les attributs de cette population causent l’apparition de ce pattern. La corrélation et la causalité
sont différentes. La première signifie que deux variables sont liées ou dépendantes l’une de l’autre,
tandis que la causalité signifie qu’un changement dans la variable de cause entraîne un changement
dans la variable de résultat. Nous proposons ainsi une étude de la causalité entre les attributs du
journal et l’apparition d’un pattern, inspirée des études de cohortes rétrospectives.

En résumé, nous étendons COBPAM avec un framework d’analyse sensible aux données (DAF
pour Data-aware Analysis Framework) [6] qui construit des dépendances, des causalités et des
associations autour de patterns. Il inclut un algorithme CCOBPAM (Contextual COBPAM) qui
découvre des patterns contextuels ; autrement dit, en relation avec des contextes. Il offre aussi
la possibilité d’extraire des règles comportementales ou causales et définit une méthodologie
complète sur la façon d’utiliser efficacement le framework pour transformer les résultats qu’il
produit en informations utiles.

Enfin, après avoir proposé COBPAMqui a déjà réduit demanière significative les temps d’exécution,
nous avons entrepris d’améliorer encore plus les performances, toujours dans l’esprit de satisfaire
l’objectif G1. Ainsi, nous avons introduit ACOBPAM (Advanced COBPAM) qui utilise les
alignements des arbres plus anciens pour évaluer les fréquences des arbres plus complexes. Notons
que les alignements sont un outil qui permet d’affirmer qu’un pattern apparaît dans une trace. Par

10

exemple, ils permettent d’affirmer que le pattern dans Fig. 1.3c apparaît dans trace 1 du journal
dans Fig. 1.3a. De plus, le nouvel algorithme inclut une étape de post-traitement qui réduit le
nombre d’arbres retournés par COBPAM en éliminant la redondance de manière encore plus
restrictive que dans l’algorithme classique. Pour cela, de nouveaux concepts comme l’équivalence
des arbres de processus ou la maximalité généralisée sont définis.

D’autre part, dans une dernière tentative pour satisfaire davantage G2, nous avons proposé une
analyse approfondie des modèles retournés après le post-traitement. En effet, nous avons imaginé
de nouvelles relations ou dépendances entre les patterns finaux. Le tout a été assemblé sous
la forme d’une carte ou d’un graphe où les patterns sont des nœuds et les arêtes, des relations.
Interactif et exhaustif, il permet de tirer le maximum de renseignements des patterns découverts
en offrant une vue globale et navigable.

Nos contributions [5, 6] ont été publiées respectivement dans CAISE (International Conference on
Advanced Information Systems Engineering) et IEEE TKDE (IEEE Transactions on Knowledge
and Data Engineering) avec la collaboration du Pr. Matthias Weidlich. Le troisième travail
concernant ACOBPAM est en cours de soumission à TKDE.

Définitions
Définition (Cas). Soit C l’univers des cas (l’ensemble de tous les identifiants de cas possibles).
Un journal d’événements est composé de cas. Chaque cas a des attributs. Pour un cas particulier
c ∈ C et n ∈ ANC (ANC l’ensemble des noms d’attributs), un nom d’attribut, #n(c) dénote la
valeur de l’attribut n pour le cas c. Si le cas n’a pas de valeur pour un attribut n, on utilise la valeur
nulle : #n(c) =⊥. Un attribut particulier obligatoire pour un cas est sa trace associée #trace(c) et
nous y référons par ĉ = #trace(c).

Définition (trace, journal d’évènements). Soit A un ensemble d’activités et A∗ l’ensemble de
toutes les séquences sur A. Un journal d’évènements L est un ensemble de cas c où l’attribut
de trace est donné par ĉ ∈ A∗, une séquence d’activités. |L| désigne la taille de L, c’est-à-dire le
nombre de cas qu’il contient.

Définition (Arbres de Processus). Un arbre de processus est un arbre ordonné où les feuilles
représentent des activités et les nœuds internes des opérateurs. En considérant un ensemble
d’activités A, un ensemble d’opérateurs binaires Ω = {seq, and, loop, xor} (séquence, concurrence,
boucle et choix exclusif respectivement), un arbre de processus est défini de manière récursive
comme :

• a ∈ A est un arbre de processus.

• considérant un opérateur x ∈ Ω et deux arbres de processus P1, P2, x(P1, P2) est un arbre de
processus ayant x comme racine, P1 comme fils gauche et P2 comme fils droit.

La profondeur d’un nœud (activité ou opérateur) dans l’arbre est la longueur du chemin vers
sa racine. La profondeur de l’arbre correspond à la profondeur maximale de n’importe lequel

11

de ses nœuds. Σ(P) est le langage du modèle de processus; autrement dit, les traces qu’il peut
générer. Par ailleurs, comme la taille du langage d’un arbre contenant une boucle est infini, nous
considérons le n-langage où on se limite à traverser chaque boucle au plus une fois.

Fouille de Patterns Comportementaux

Opérations et Structures Algébriques sur des Arbres de Processus
Dans le but de construire des arbres de processus de manière incrémentale, nous proposons de
combiner deux arbres composés de n activités pour obtenir un autre de n + 1 activités. Ces arbres
doivent être similaires sauf au niveau d’une seule feuille. Nous imposons des conditions sur la
position de ces feuilles.

Définition (Feuille de Combinaison Potentielle). Soit un arbre de processus P de profondeur i.
Une feuille a de profondeur d est appelée feuille de combinaison potentielle si d ≥ i − 1 et il
n’existe aucune autre feuille b de profondeur d′ sur la gauche de a tel quel d > d

Définition (graines). Deux arbres de processus P1 et P2 sont appelés graines si P1 contient une
feuille de combinaison potentielle a et P2 en contient une autre a′ tel que quand on remplace a′

par a dans P2, on obtient P1. Seules des graines peuvent être combinées.

Définition (Opération de Combinaison). Une combinaison de deux graines P1 et P2 à travers un
opérateur x est une opération générant deux arbres de processus. À partir de P1, la feuille de
combinaison a est remplacée par l’opérateur x, dont les enfants sont fixés à a et a′. a devient
l’enfant de gauche dans un des arbres résultants, et l’enfant de droite dans l’autre. a et a′ sont
appelés les feuilles de combinaison et x est appelé l’opérateur de combinaison.

Fig. 3.1 montre un exemple de cette opération. Par ailleurs, grâce aux conditions imposées sur les
feuilles de combinaison potentielles, obtenons le théorème suivant :

Théorème. Pour un arbre de processus P de profondeur i ≥ 1, il existe une paire unique de graines
P1 et P2, dont la combinaison par un opérateur x donne P. P1 et P2 sont appelés ’les’ graines de P
et x est appelé l’opérateur de définition de P.

En appliquant le théorème en cascade à partir d’un arbre P, on obtient :

Définition (Arbre de construction). Étant donné un arbre de processus P de profondeur i ≥ 1,
nous définissons son arbre de construction. Les nœuds de cet arbre sont des arbres de processus :
La racine est P, les feuilles sont des arbres avec des nœuds d’activité unique ; les enfants d’un
nœud interne sont ses graines.

Fig. 3.1b exemplifie l’arbre de construction de l’arbre de processus seq(BT, et(CO, RB)).

Définition (Graphe de construction). Nous définissons le graphe de construction sur l’ensemble
des activités A. Il s’agit d’un graphe acyclique dirigé. Son ensemble (infini) de nœuds est donné

12

par tous les arbres de processus possibles. Une arête est définie entre les nœuds n1 et n2, si n1 est
une graine de n2. On dit que n2 contient n1 par l’opérateur de définition de n2.

Pour identifier un arbre, COBPAM utilise le concept de mot représentatif.

Définition (Mot représentatif). À chaque arbre de processus P est attribué un mot représentatif
RW(P). Il s’agit d’une séquence de caractères construite par impression des activités et opérateurs
pendant une traversée pré-ordre de ses nœuds.

Par exemple, le mot représentatif de seq(BT, et(CO,RB)) est ‘(BT (CO RB et) seq)’.

Métriques de Qualité
Cette section définit lesmétriques qu’on utilise pour évaluer la qualité des patterns comportementaux
extraits d’un journal d’évènements. Nous considérons qu’une trace ĉ contient un arbre de processus
P s’il existe un mot ω ∈ Σ(P) du langage de P tel que ω ≤ ĉ. Par exemple, Trace 1 affiche
l’arbre de processus dans Fig. 1.4c. En appliquant une technique de Conformance Checking
appelée alignement (un algorithme A∗), il est possible de définir les fonctions suivantes : ε(ĉ, P),
une fonction booléenne, qui retourne vrai quand la trace ĉ contient P et une fonction υ(ĉ, P) qui
retourne le comportement exact de P présent dans la trace ĉ. À partir de là, nous définissons:

Définition (Projection). Une projection est un sous-ensemble d’un journal d’événements L
associée à un arbre de processus P qui contient les cas dont les traces peuvent être alignées avec P :

pro j(P, L) = {c ∈ L | ε(ĉ, P) = 1}.

Définition (Fréquence et support). Étant donné un journal d’événements L, la fréquence d’un
arbre de processus P est le nombre de cas qui présentent son comportement :

frequency(P, L) =
∑
c∈L

ε(ĉ, P) = |pro j(P, L)|.

Son support est la fréquence sur la taille du log :

support(P, L) =
frquence(P, L)

|L|
.

Définition (Précision). Étant donné un journal d’événements L, la prcision d’un arbre de processus
P est le rapport entre le comportement vu dans le journal et tous les comportements autorisés par
le modèle. Si P ne contient pas d’opérateurs de boucle, il est défini comme :

precision(P, L) =
|{υ(ĉ, P) | c ∈ L ∧ ε(ĉ, P) = 1}|

|Σ(P)|
.

Si P contient des opérateurs de boucle, son langage sera infini et sa précision tendra donc vers
zéro. Dans ce cas, on utilise le n-langage de P :

precision(P, L) =
|{υ(ĉ, P) | c ∈ L ∧ ε(ĉ, P) = 1}|

|Σn(P)|

13

Découverte de Patterns Comportementaux avec COBPAM
L’idée de l’algorithme est de parcourir le graphe de construction grâce à l’opération de combinaison.
Chaque arbre est évalué contre un sous-ensemble du journal où le pattern pourrait exister. Nous
employons des règles d’élagage et de projection pour optimiser les temps d’exécution.

Une Propriété de Monotonicité

L’opération de combinaison remplace une feuille de combinaison potentielle par un sous-arbre
représentant une partie d’un comportement qui soit étend le comportement de l’arbre original
lors de l’utilisation de l’opérateur de choix, soit le contraint lors de l’utilisation d’un opérateur
de séquence, de boucle ou de concurrence qu’on appelle restrictif. Dans ce dernier cas, le
comportement partagé entre un arbre de processus et ses graines représente un contexte auquel le
comportement supplémentaire est joint. Par conséquent, si une trace ne présente pas le contexte, il
n’est pas nécessaire d’évaluer le comportement supplémentaire.

De ce qui précède, il s’ensuit que, si l’une des graines n’est pas fréquente, il n’est pas nécessaire
d’évaluer l’arbre, car il sera également non fréquent. C’est là, notre première règle d’élagage.

Arbres de Processus Compacts et Maximaux

Nous orientons notre recherche de patterns comportementaux vers les arbres de processus utiles
du point de vue de l’analyse, à savoir, compacts et maximaux.

Définition (Arbre de processus compact). Étant donné un journal d’événements L, un arbre de
processus P est compact, s’il satisfait toutes les conditions suivantes :

1. L’arbre P ne présente pas l’opérateur de choix comme nœud racine. Si cette condition est
invalide, l’arbre de processus serait l’union de comportements complètement séparés. Bien
que cela puisse résulter en un arbre fréquent, il a sans doute peu d’intérêt.

2. P ne résulte pas d’une combinaison par un opérateur de choix, où l’une des graines est
fréquente. En effet, si un arbre P1 est fréquent, le combiner avec tout autre arbre P2 à travers
l’opérateur de choix résulte en un arbre fréquent. Cette addition n’a donc aucune valeur.

3. P ne contient pas d’opérateur de boucle loop(P1, P2), de sorte que seul le comportement de
P1 apparaît dans L. Alors que d’un point de vue de langage, ce pattern existe en effet dans
la trace, la notion de boucle perd son sens sans l’existence de P2.

Notez que de la condition (2), nous dérivons immédiatement une deuxième règle d’élagage :
lorsqu’on effectue une combinaison par l’opérateur de choix, les deux graines doivent être non
fréquentes.

En plus de la compacité, les patterns doivent être maximaux. Cette propriété découle de la
monotonicité. Si un pattern défini par un opérateur restrictif est fréquent alors ses graines le sont
aussi. Il est donc suffisant de retourner le pattern complexe, dit maximal, car il contient toutes les
informations de fréquence. D’où la définition suivante:

14

Définition (Arbre de processus maximal). En considérant tous les patterns comportementaux
de profondeur au plus égale à i, un pattern est maximal, s’il est fréquent et non contenu par un
opérateur restrictif dans un autre arbre fréquent de profondeur inférieure ou égale à i.

Règles de Projection

La complexité d’exécution est régie par la taille du graphe de construction, qui est exponentielle
par rapport au nombre d’activités, et par la taille du journal utilisé pour évaluer la qualité des
arbres. Pour faire face à ce dernier point, nous présentons les règles de projections suivantes:

• Lors de l’exécution d’une combinaison par un opérateur restrictif, le comportement associé
aux arbres résultants ne peut apparaître que dans l’intersection des projections des graines.
Par conséquent, les métriques de qualité sont calculées uniquement sur la base de ladite
intersection. De plus, la taille de l’intersection des projections des graines représente une
limite supérieure de la fréquence des arbres résultants. Il en résulte une troisième règle
d’élagage : Si la limite supérieure est inférieure au seuil de fréquence, la combinaison n’est
plus considérée.

• Lorsqu’on effectue une combinaison par l’opérateur de choix, la projection associée aux
arbres résultants est l’union des projections des graines.

L’algorithme COBPAM

L’idée de l’algorithme COBPAM est de construire de manière incrémentale des ensembles d’arbres
de processus. Compte tenu des règles d’élagage, nous maintenons deux types d’ensembles,
l’un contenant des arbres fréquents et l’autre non fréquents. Le premier type sert de base aux
combinaisons effectuées par les opérateurs restrictifs, tandis que le second sert aux combinaisons
basées sur le choix. Tous les arbres d’un ensemble sont identiques, à l’exception d’un seul nœud
feuille, ce qui permet de les combiner.

L’algorithme s’articule autour de deux fonctions, addFreq, définie dans Alg. 1, qui ajoute l’arbre
de processus P à un ensemble Γ contenant uniquement des arbres fréquents et addInfreq, définie
dans Alg. 2, qui ajoute P à un ensemble γ contenant uniquement des arbres non fréquents. Par Θ,
nous désignons en outre l’ensemble des arbres maximaux, compacts et fréquents, qui représente
le résultat réel de notre algorithme. Notez que l’on peut utiliser une profondeur maximale de
récursion d limitant ainsi la profondeur des arbres découverts et forçant la terminaison.

Framework d’Analyse Sensible aux Données (DAF)

Règles Comportementales
Une première perspective pour répondre à l’objectif G2 est l’analyse de corrélations entre les
patterns eux-même, ce qui permettra une compréhension plus profonde du cours du processus.
En particulier, nous considérons un arbre fréquent dont la racine est une séquence. Pour cette

15

configuration, autrement dit, P = seq(P1, P2) avec P1, P2, deux sous-arbres, nous étudions
l’existence d’une règle comportementale P1 → P2 semblable à une règle d’association. À travers
la fréquence du pattern, nous déduisons que P2 suit souvent P1. Il est intéressant de se demander
alors s’ils sont fortement associés, c’est à dire que l’un n’apparaît jamais sans l’autre validant
ainsi la règle comportementale ou au cas contraire faiblement associés. On utilise la mesure du
odds ratio pour évaluer le degré de satisfaction de la règle. Par ailleurs, si le nœud racine est une
concurrence, la règle peut se traduire par une apparition significative des patterns parallèlement et
jamais séparément.

COBPAM Contextuel
Les Contextes

Définition (Journal d’événements contextuel). Considérons un journal d’événements simple L et
une relation R(D1, . . . ,Dn), telle que le i-ième attribut est un attribut de cas nommé di ∈ ANC
(l’ensemble des noms d’attributs), dont le domaine est Di et ∀c ∈ L, #di(c) ,⊥. Un journal
d’événements contextuel est alors une paire (L, χ) où χ est une fonction qui associe à chaque cas c
de L le tuple deR suivant : χ(c) = (v1, . . . , vn) avec vi ∈ Di, vi = #di(c).

Pour définir la notion de contexte, nous introduisons D′i comme une extension du domaine Di en
utilisant un symbole dédié et unique ‘∗’. On établit ensuite un ordre d’inclusion ⊂D′i = {(vi, ∗) |
vi ∈ Di}, avec ⊆D′i =⊂D′i ∪{(vi, vi) | vi ∈ Di} comme sa version réflexive. Le sens du symbole ‘∗’ est
qu’il regroupe n’importe quelle valeur possible vi ∈ Di. La paire (D′i ,⊂D′i) définit une hiérarchie
d’inclusionH(di) sur l’attribut de données di. Un exemple de hiérarchies est donné en Fig. 4.2.
Par la suite, un contexte est défini comme un tuple (v1, . . . , vn) avec vi ∈ D′i ,∀i ∈ {1, 2, . . . , n}. Les
contextes suivent un ordre d’inclusion ≤, tel que deux contextes C = (v1, . . . , vn),C′ = (v′1, . . . , v

′
n)

sont ordonnés, noté C ≤ C′, si vi ⊆D′i v′i ∀i ∈ {1, 2, . . . , n}. Si ∃1 ≤ i ≤ n, vi ⊂D′i v′i , alors le
contexte C′ est dit plus général que C, tandis que C est dit plus spécifique et on écrit C < C′

(ordre d’inclusion strict). Un contexte C = (v1, . . . , vn) est atomique, si vi ∈ Di,∀i ∈ {1, 2, . . . , n}.
Nous définissons également une décomposition d’un contexte C comme l’ensemble non vide des
contextes atomiques qui sont plus spécifiques que C.

Patterns Comportementaux Contextuels

Définition (Journal d’événements associé). Soit (L, χ) un journal d’événements contextuel et
C = (co1, . . . , con) un contexte. Le journal d’événements associé au contexte C est un journal
d’événements contextuel (L′, χ′) avec L′ ⊆ L et tel que le cas c ∈ L fait partie de L′ si et seulement
si χ(c) = (v1, . . . , vn) et ∀vi, vi ⊆D′i coi. En outre, χ′ est la restriction de χ à L′ tandis que la taille
du contexte C correspond à la taille de son journal associé.

Un arbre de processus est dit C-fréquent ou fréquent dans C, s’il est fréquent dans son journal
associé. En pratique, nous distinguons deux types de patterns pour un contexte non atomique :

• Pattern C-général: Ils sont fréquents dans C et dans chaque descendant de C. Appliqués à
notre exemple courant (voir Fig. 1.4), ils seraient des modèles répondant à des questions

16

telles que : quels sont les patterns fréquents dans la population à faibles revenus, quel que
soit l’âge ?

• Pattern C-exclusif Les patterns sont C-fréquents uniquement dans C et ses descendants.
Dans notre exemple, il s’agirait de modèles répondant à la question suivante : quels sont les
patterns comportementaux exclusivement présents chez les patients de plus de 70 ans, quel
que soit leur niveau de revenu ?

Si un pattern est C-fréquent dans au moins un contexte atomique et non C-général ou C-exclusif
ailleurs, il est appelé AC-frequent. Si un pattern est C-fréquent dans le contexte le plus général
(racine), c’est-à-dire que son journal associé est le journal des événements original, il est appelé
log-fréquent.

En adoptant le raisonnement adopté dans la fouille de patterns séquentiels contextuels [63], nous
observons ce qui suit : un arbre P est C-général si, et seulement si, il est fréquent dans les contextes
atomiques de la décomposition de C. De manière analogue, un pattern P est C-exclusif si, et
seulement si, il est fréquent dans les contextes atomiques de la décomposition de C et non fréquent
ailleurs. Par conséquent, la découverte des deux types de patterns, C-général et C-exclusif dans
tous les contextes doit commencer par la découverte de patterns dans les contextes atomiques. Il
suffit ensuite de vérifier les conditions ci-dessus pour détecter quel type de fréquence s’applique.

Découverte de Relations Causales entre Données et Patterns
Lorsqu’un pattern est C-exclusif dans un contexte C, on peut déduire qu’il y est fréquent de
manière exclusive. Considérons un tel arbre où C inclut un seul attribut d fixé à une valeur précise
v (contraint), les autres attributs étant génériques (affichant la valeur ’∗’). Cela veut dire que la
présence du pattern est indépendante des attributs génériques et que son occurrence est corrélée à
la valeur v. On est alors en droit de se demander si cette valeur cause l’apparition du pattern. La
causalité est différente de la corrélation dans le sens où un changement de la valeur causante, ou
l’exposition, entraîne un changement dans le phénomène causé ou la variable outcome.

Dans ce qui suit, nous développons une méthode pour vérifier une telle causalité en s’inspirant des
études de cohorte rétrospectives [51]. L’exemple suivant illustre chaque étape. Nous supposons
l’existence de trois attributs, d, a, b, dans le journal contextuel avec deux modalités pour d (v et v′)
et trois pour chacun des attributs a et b : ai, bi,∀1 ≤ i ≤ 3. Il s’ensuit les étapes suivantes :

(1) Nous transformons la relation R(D1,D2,D3) qui capture les contextes possibles en termes
de valeurs d’attributs en une relation booléennes B(B1, . . . , B8). Ici, les modalités de chaque
attribut d, a, b sont transformées en un ensemble de variables indicatrices booléennes. od
mise à vrai (resp. od′) si d = v (resp. d = v′) et ∀1 ≤ i ≤ 3 oai (resp. obi) mise à vrai si a = ai

(resp. b = bi).
(2) La variable booléenne od qui représente la valeur v de l’attribut d est définie comme la variable

d’exposition.
(3) Nous définissons une variable booléenne d’outcome t par cas c et pattern P qui est égale à

ε(c, P).

17

(4) Ensuite, nous identifions parmi les attributs présents dans le journal contextuel, ceux qui sont
corrélés avec la variable outcome, t, et donc les facteurs causaux possibles. Les variables
booléennes associées serviront de variables contrôlées. La raison est que nous voulons
évaluer si la variable od étant mise à vrai provoque la véracité de la variable t parmi d’autres
facteurs de causalité possibles. A cette fin, nous appliquons l’odds ratio comme mesure de
corrélation. Pour notre exemple, nous supposons que seules les variables, oa1, oa2, oa3, ob1,
ob2, présentent des règles d’association avec od.

(5) Le journal des événements est divisé en un groupe d’exposition (cas où od est vrai) et un
groupe de non-exposition (cas restants). Les groupes sont ensuite filtrés afin de s’assurer que
les variables contrôlées sont distribuées de manière égale dans dans les deux groupes et ainsi
atténuer leur effet.

(6) Pour chaque combinaison existante de valeurs des variables contrôlées, nous évaluons la
valeur de la variable outcome. Les cas avec un résultat positif dans le groupe exposé et négatif
dans le groupe non exposé fournissent des preuves d’une relation causale (soit n1 leur nombre).
Les cas avec un résultat négatif dans le groupe exposé et un résultat positif dans le groupe
non-exposé, quant à eux, fournissent des preuves contre une relation causale (leur nombre est
noté n2). Si le rapport entre le nombre de cas fournissant des preuves pour et ceux fournissant
des preuves contre une relation causale, n1

n2
, est significativement supérieur à un, on conclut

l’existence de la relation de cause à effet [51].

Méthodologie d’utilisation du DAF
Nous donnons dans ce qui suit les étapes d’utilisation de notre framework pour maximiser ses
bénéfices.

(1) Afin d’obtenir une première vue sur l’ensemble des régularités comportementales, des patterns
sont identifiés à l’aide de l’algorithme COBPAM (ou ACOBPAM) pour un seuil de support et
de précision donné.

(2) Ensuite, les attributs contextuels sont sélectionnés en tenant compte de leur sémantique et de
leurs modalités (continues ou discrètes). Si nécessaire, un prétraitement est appliqué pour
adapter, normaliser ou discrétiser les valeurs des attributs.

(3) Une taille minimale de contexte est définie. Les contextes qui ne la respectent pas sont écartés
car leurs traces associées ne sont pas considérées représentatives.

(4) Les modèles comportementaux contextuels sont extraits par l’algorithme CCOBPAM.
(5) Suivre les directives d’interprétation, détaillées ci-dessous, afin de tirer des des informations

sur le processus.
(6) Si ces directives le suggèrent, adapter le seuil de support, répéter la découverte des patterns

comportementaux, et noter les changements potentiels dans l’ensemble des patterns.
(7) Enfin, la présence de règles comportementales, puis de relations causales avec les données

contextuelles pour les patterns C-exclusifs sont évaluées selon les procédures ci-dessus.

Les directives d’interprétations suivantes complémentent la méthodologie. Premièrement, CCOB-
PAM révèle des modèles par rapport à une hiérarchie de contextes et considère différents types de
fréquence qui peuvent être interprétés comme suit :

18

• AC-frequent : Le pattern est fréquent dans au moins un contexte atomique et non C-général
ou C-exclusif ailleurs.

• C-exclusif : Le pattern est exclusivement fréquent dans le contexte et tous ses descendants,
ce qui signifie que son occurrence est indépendante des populations considérées à l’intérieur
du contexte.

• C-general : La même interprétation que pour un pattern C-exclusif s’applique. Cependant,
le pattern est également fréquent ailleurs dans la hiérarchie des contextes.

Deuxièmement, nous étudions les patterns retournés à la fois par COBPAM et CCOBPAM. Les
différents cas sont donnés ci-après :

1. Un pattern log-fréquent apparaît comme un pattern C-exclusif dans le contexte racine: Le
pattern est non seulement fréquent dans l’ensemble du journal, mais aussi dans chaque
contexte. Cela signifie qu’il est fortement fréquent, indépendamment de la population
considérée.

2. Un pattern log-fréquent apparaît comme C-exclusif ou C-général dans de gros contextes ou
C-fréquent dans de gros contextes atomiques: Le pattern est en fait fréquent dans certaines
parties du journal qui en représentent une partie significative, ce qui le rend log-fréquent.
Pourtant, il est peu fréquent dans d’autres contextes. Ainsi, l’occurrence d’un pattern qui se
produit très souvent (c.à.d. qu’il est fréquent dans le journal) peut être liée assez précisément
à des contextes spécifiques.

3. Un pattern log-fréquent apparaît comme C-exclusif ou C-général dans seulement quelques
petits contextes ou comme C-fréquent dans quelques petits contextes atomiques : Le pattern
est fréquent dans certaines parties du journal et presque fréquent dans d’autres parties. Cela
peut indiquer qu’il est nécessaire de revoir le seuil de support choisi.

4. Un pattern n’est pas fréquent lorsque le contexte est négligé, mais l’est dans un certain
contexte: Le comportement identifié est fréquent, mais s’applique uniquement à des
contextes spécifiques, ce qui démontre la pertinence d’une approche contextuelle.

Fouille de Patterns Comportementaux Avancée

Croissance d’Alignements
L’algorithme COBPAM parcourt l’espace de patterns de manière intelligente en utilisant les règles
d’élagage et de projection. Des informations sur les fréquences et sur les traces pouvant contenir
les patterns sont déduites à partir des informations disponibles sur les graines. Cependant, à
chaque fois qu’un arbre est évalué en utilisant l’alignement, l’entièreté de l’arbre et de la trace sont
considérées. En réponse à ce problème, ACOBPAM adopte le même fonctionnement décrit plus
haut sur les alignements. Plus précisément, il exploite des informations sur les alignements des
graines pour construire l’alignement de l’arbre candidat. Nous appelons l’opération "croissance
d’alignements". Ainsi, étant donné un arbre P et une trace ĉ, l’approche accomplit deux tâches
récursivement. La première est la détection des parties du comportement de l’arbre déjà présentes
dans la trace qu’on appelle contexte validé. La deuxième est de réaligner si nécessaire les autres

19

parties de l’arbre. Puisque on aligne une partie de l’arbre candidat sur une trace plus petite
et dénuée du contexte validé, les temps d’exécution sont substantiellement réduits. En effet,
l’exponentialité de l’algorithme A∗ de l’alignement est amoindrie.

Post-traitement
Le nombre de patterns retourné par COBPAM peut être handicapant et limiter sévèrement la
capacité d’analyse. Pour régler ce problème, nous rajoutant une opération de post-traitement
une fois l’extraction terminée. Elle repose sur deux concepts: la maximalité généralisée et
l’équivalence:

Maximalité Généralisée

Graines Alternatives L’opération de combinaison s’effectue toujours sur la position d’une
feuille de combinaison potentielle. Cela permet de définir l’ordre partiel et ainsi parcourir le
graphe de construction sans revenir sur le même arbre. Cependant, la propriété de monotonicité
reste valide si l’on applique la combinaison au niveau d’une autre position. Il suffit que l’opérateur
soit restrictif et les mêmes arguments qui expliquent la monotonicité resteront valides. Pour un
pattern P, nous pouvons donc le décomposer au niveau de n’importe quel opérateur restrictif en
deux autres arbres pouvant être combinés dans le chemin inverse. Ces arbres sont appelés graines
alternatives si différentes des graines, qu’on appelle régulières, présentées plus haut. En pratique,
les deux types de graines sont éliminées dans l’ensemble final de patterns.

Dans un souci de formalisation, nous définissons la fonction suivante:

Définition. Étant donné un arbre de processus P, nous définissons une fonction, f , qui associe à
P un ensemble d’arbres.

• Si P = a avec a ∈ A, une activité, alors f (P) = {a}.

• Si P = x(P1, P2) avec x un opérateur restrictif et P1, P2 des sous-arbres enfants, f (P) est
donné par l’union de :

– f (P1).

– f (P2).

– l’ensemble : {x(P′1, P
′
2) | P′1 ∈ f (P1), P′2 ∈ f (P2)}.

• Si P = xor(P1, P2) avec P1, P2 les sous-arbres fils de P, alors f (P) = {xor(P′1, P
′
2) | P′1 ∈

f (P1), P′2 ∈ f (P2)}.

Pour un arbre de processus de profondeur n ∈ N∗, les éléments dans f (P) \ {P} sont l’union de la
paire des graines régulières et des graines alternatives. En particulier, les graines alternatives sont
définies pour les arbres de profondeur n ≥ 2. La condition de profondeur est justifiée par l’absence
de graines pour la profondeur zéro et l’absence de graines alternatives (uniquement régulières)
pour la profondeur une.

20

Graines de boucles Lorsqu’un arbre de processus contient un opérateur de boucle alors il
contient deux comportements séquentiels aussi. En effet, l’apparition d’une boucle loop(a, b)
implique l’existence du comportement 〈a, b, a〉. Par conséquent les comportements seq(a, b) et
seq(b, a) existent aussi. Les arbres où l’une de ces séquences remplace ladite boucle sont éliminés.
Ils sont détectés syntaxiquement.

Équivalence

Non seulement nous supprimons tout type de graines dans l’étape de post-traitement mais nous
gardons aussi une seule version des arbres équivalents. De fait, il existe deux types d’équivalence.

• Équivalence syntaxique: Elle est le résultat de l’existence des opérateurs symétriques.
En effet, si l’on considère des arbres non sensible à l’ordre des opérateurs symétriques,
ils se déclinent en plusieurs manières considérant l’interchangeabilité des fils de ce genre
d’opérateurs.

• Équivalence comportementale: Deux arbres sont comportementalemnt équivalents ont le
même langage.

L’équivalence syntaxique est gérée au niveau de l’algorithme COBPAM (ou ACOBPAM) lui-même.
Durant la recherche, nous imposons un ordre sur les opérateurs symétriques pour que les arbres
soient acceptés dans l’ensemble finale. Ensuite dans le post-traitement, nous gardons une seule
version des arbres comportementalement équivalents.

Visualisation
Dans le souci de naviguer la multitude des arbres retournés par notre algorithme, nous concevons
un graphe de visualisation qui offre non seulement une vue globale et simultanée mais aussi
arbore des relations intéressantes entre les patterns eux-mêmes. Pour P1 et P2, deux patterns dans
l’ensemble final d’arbres retournés Ω, nous définissons:

Définition (Relation Follows). La relation Follows F ⊂ Ω2 est définie à l’aide d’une métrique de
support, support f (P1, P2) :

support f (P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βl(P2)}|

|L|

Pour un seuil τ f , on a, (P1, P2) ∈ F si et seulement si :

support f (P1, P2) ≥ τ f

Définition (Relation Inter-follows). Si (P1, P2) < F , la relation Inter-follows F ′ ⊂ Ω2 est définie
à l’aide d’une métrique de support, supporti f (P1, P2).

supporti f (P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βl(P2)}|

|pro j(P1) ∩ pro j(P2)|

21

Pour un seuil τi f , on a, (P1, P2) ∈ F ′ si et seulement si :

supporti f (P1, P2) ≥ τi f

Définition (Relation Spans). La relation Spans S ⊂ Ω2 est définie à l’aide d’une métrique de
support, supports(P1, P2) :

supports(P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βh(P2) ∧ βl(P1) > βl(P2)}|

|L|

Pour un seuil τs, on a, (P1, P2) ∈ S si et seulement si :

supports(P1, P2) ≥ τs

Définition (Relation Inter-spans). Si (P1, P2) < S, la relation Inter-spans S ′ ⊂ Ω2 est définie à
l’aide d’une métrique de support, supportis(P1, P2) :

supportis(P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βh(P2) ∧ βl(P1) > βl(P2)}|

|pro j(P1) ∩ pro j(P2)|

Pour un seuil τis, on a, (P1, P2) ∈ S ′ si et seulement si :

supportis(P1, P2) ≥ τis

Définition (Graphe de visualisation). Le graphe de visualisation G = (Ω,F ,S,F ′,S ′) est un
multigraphe orienté où Ω est l’ensemble final de patterns ou de nœuds retenus après l’étape de
post-traitement, F est la relation Follows, F ′ est la relation Inter-follows, S est la relation Spans et
S ′ est la relation Inter-spans. En considérant P1, P2 ∈ Ω, un nouvel arc de P1 à P2 est créé chaque
fois que (P1, P2) appartient à l’une des relations précédentes. Nous appliquons une réduction
transitive sur les relations Follows et Spans car ce sont des relations transitives.

Évaluation Expérimentale
Cette section est dédiée aux expérimentations qu’on a réalisé afin de prouver la faisabilité,
l’efficience et l’utilité ainsi que l’intérêt de nos algorithmes. Nous commençons par présenter
l’environnement et les jeux de données utilisés.

22

Environnement et Données

Les seuils utilisés sont les suivants: 0.7 pour le support et la précision ainsi que pour les différentes
relations dans le graphe de visualisation. 2 pour la profondeur maximale des arbres et 500 pour
le nombre de LPMs à découvrir concernant le LPM Miner. Par ailleurs, la taille minimale des
contextes a été fixée à 50. Les jeux de données suivants ont été utilisés:

• Sepsis : un journal pour le traitement du sepsis dans un hôpital (1050 cas, 15214 évènements
et 16 activités). Les attributs contextuels sont "InfectionSuspected" (une infection est-elle
suspectée) et "Infusion" (a-t-on administré une infusion).

• Traffic Fines : un journal d’un système d’information pour la gestion des amendes routières
(150370 cas, 561470 évènements et 11 activités). Les attributs sont "amount", la valeur de
l’amende, et "VehicleClass", la catégorie du véhicule.

• WABO : un journal lié aux demandes d’autorisation de construction aux Pays-bas (1434
cas, 8577 évènements et 27 activités). Les attributs sont : "department", le département
gérant la procédure, et "channel", le canal de communication.

• BPI_2019S1 et BPI_2019S2 : respectivement 30% et 40% d’un journal lié à la procédure
de traitement de commandes pour une multinationale (75519 cas, 479845 évènements et 41
activités et 105962 cas, 670583 évènements et 42 activités respectivement). Les attributs
sont "Item Category", la catégorie de l’article, et "Company", la filiale concernée.

Évaluation de COBPAM

Efficience

La Table 6.1 montre les temps d’exécution pour COBPAM et LPM Miner. Nous remarquons
que COBPAM a de meilleures performances avec des temps d’exécution un ordre de grandeur
plus petits. Pour COBPAM, ces temps dépendent de la taille du journal, le nombre d’activités et
d’évènements mais aussi la complexité des patterns présents.

Évaluation Quantitative

Maintenant, nous évaluons la qualité des patterns découverts par notre algorithme et par la
découverte de LPMs. À la lumières des résultats présentés dans Table 6.5 nous remarquons que,
pour le journal Sepsis, parmi les 500 patterns extraits par la découverte de LPMs, 336 patterns
satisfont les seuils de support et de précision fixés par COBPAM. Parmi ceux-ci, 194 ne sont pas
compacts et 17 ne sont pas maximaux. Ainsi, seulement 125 des patterns dérivés par la découverte
de LPMs sont maximaux et compacts, alors que COBPAM a découvert 375 patterns de ce type.
Des résultats similaires sont obtenus pour l’autre jeu de données. Nous concluons que les patterns
dérivés par le LPM Mining contiennent beaucoup de redondances, alors que COBPAM produit
des patterns beaucoup plus pertinents, à savoir, compacts et maximaux.

23

Évaluation Qualitative

La Fig. 6.1 montre les arbres retournés par LPM pour Sepsis tandis que Fig. 6.2 montre ceux
retournés par COBPAMpour le même log. Nous remarquons la différence entre les deux ensembles
d’arbres. Par exemple, l’arbre Fig. 6.1a n’a pas été retourné par COBPAM car il n’est pas maximal.
Il est contenu dans l’arbre Fig. 6.2a. De même Fig. 6.1c, Fig. 6.1d et Fig. 6.1e ne sont pas retournés
car non compacts. En effet, par exemple, l’arbre Fig. 6.1c est contenu dans Fig. 6.1a qui est déjà
fréquent.

Évaluation du DAF

Efficience

Table 6.6 rapporte les temps d’exécution de CCOBPAM, en ignorant le contexte (équivalent
à COBPAM), avec un attribut et ensuite avec les deux attributs susmentionnés. On remarque
d’abord que l’introduction de la contextualité augmente les temps d’exécution. Ensuite, nous
observons des irrégularités dans les temps d’exécution en augmentant le nombre d’attributs.
Ceci peut être expliqué par deux forces opposées. La première résulte du fait qu’en augmentant
les nombres d’attributs, les contextes deviennent plus petits et donc plus rapide à fouiller. La
deuxième est que les nouveaux contextes créés par cette augmentation comportent des graphes de
construction complètement nouveaux et différents et qui, parfois, contiennent des arbres fréquents
plus complexes étendant ainsi les temps d’exécution.

Efficacité

Tout d’abord, en ce qui concerne la causalité, nous avons étudié le journal Sepsis et avons
découverts 968 patterns dont 77 sont C-exclusifs. Parmi ces derniers, 35 affichent une relation
causale. Plus précisément, ils sont tous causés par la variable "InfectionSuspected = 1". Un
exemple de ces patterns est seq(seq(ER Triage, Leucocytes), CRP) et qui est donc causé par la
suspicion d’une infection chez le patient. Par ailleurs, nous donnons dans Table 6.7 et Table 6.8 le
nombre de règles comportementales découvertes dans chaque contexte. Comme exemple, pour
WABO, l’arbre (1) dans Fig. 6.4 affiche une règle comportementale entre les deux fils de la racine
(seq(T02, T04) et seq(T06, T10)). Notons que l’existence d’une règle dans un contexte n’implique
pas son existence dans un autre. Enfin, dans la Fig. 6.4, nous illustrons les quatre cas donnés dans
les directives d’interprétation discutées dans la méthodologie d’utilisation du DAF.

Évaluation de ACOBPAM

Efficience

Nous comparons d’abord les temps d’exécution de COBPAM et de ACOBPAM. Plus exactement,
nous nous limitons au temps d’exécution de la découverte sans tenir compte du post-traitement
et de la génération de la visualisation. Les résultats sont présentés dans Table 6.14 où deux
profondeurs sont considérées: deux et trois. Nous pouvons observer une diminution de 60% à

24

66% dans le temps d’exécution prouvant ainsi l’efficience de notre algorithme. Ensuite, nous
comparons dans Table 6.15 les temps d’exécution de notre dernière approche par rapport à la
méthode originelle de découverte de LPM. Les résultats montrent que notre algorithme est des
ordres de grandeur plus rapide. Ainsi le temps d’exécution pour Sepsis a été divisé par 100 et
celui de WABO par 1000. Pour les autres journaux, la découverte de LPM n’a pas retourné de
résultats. Enfin, nous reportons les temps d’exécution du post-traitement et de la visualisation
pour les deux profondeurs considérées dans Table 6.16. Les valeurs augmentent avec le nombre
d’arbres dans l’ensemble final car il est nécessaire de faire des comparaisons par paire pour vérifier
les équivalences et pour détecter les nouveaux types de graines que nous avons introduits. De
plus, ces temps sont exponentiels par rapport à la profondeur des arbres car plus celle-ci croît plus
le nombre de graines et la taille du langage augmentent.

Efficacité

Les résultats dans Table 6.17 mettent en évidence une diminution du nombre d’arbres retournés
de 35% à 73% de leur valeur initiale ce qui montre que le nombre de patterns redondants n’est
pas négligeable et que l’opération de post-traitement est nécessaire et bienvenue. De plus, on
peut également noter que le ratio d’arbres redondants augmente avec la profondeur. Cela est
dû à la multiplication des graines et des équivalences par arbre. Par ailleurs, nous donnons
dans Fig. 6.5 un ensemble de patterns découverts par COBPAM dans WABO. On peut voir un
exemple de graines alternatives : Fig. 6.5a et Fig. 6.5c le sont par rapport à Fig. 6.5b et Fig. 6.5d
respectivement. Ces graines ne sont pas conservés dans l’ensemble final. Enfin, nous joignons
une capture d’écran de notre application de visualisation dans Fig. 6.6 et Fig. 6.7 ainsi que la
légende des relations entre patterns dans Fig. 6.8.

Conclusions et Perspectives
La découverte de processus (Process Discovery), une branche du Process Mining, est un domaine
dans lequel on s’efforce d’extraire des modèles et des informations sur les processus en cours
d’exécution. Une caractéristique d’intérêt est le degré de structuration de ces processus. Lorsqu’il
existe peu de comportements en commun entre les instances de processus, on fait face à des
processus dits flexibles qui sont complexes et difficiles à analyser. Dans cette thèse, nous nous
sommes intéressés à l’étude de ces processus en proposant un résumé simplifiant l’analyse sous
forme de patterns comportementaux. Autrement dit, de petits modèles retraçant les régularités du
processus. Nous avons commencé par concevoir un algorithme d’extraction efficient et efficace
qui garantit certaines propriétés sur les patterns découverts, à savoir la maximalité et la compacité.
Ensuite, nous avons construit un framework d’analyse qui introduit des dépendances entre patterns
et données, entre les patterns eux-mêmes ainsi que des études de causalité; le tout agrémenté d’une
méthodologie d’analyse. Enfin, nous avons fourni un algorithme d’extraction avancé qui améliore
le premier avec une efficience poussée, une réduction maximale des arbres redondants et enfin une
technique de visualisation. Toutes nos approches ont été évaluées sur des journaux d’évènements
réels et testées pour leur efficience et efficacité quantitative et qualitative. Elles se sont avérées

25

supérieures à l’état de l’art. Par ailleurs, nos travaux laissent la porte ouverte à de nombreuses
perspectives. Premièrement, l’utilisation de frameworks de calcul parallèle pour gérer les journaux
les plus volumineux et complexes. Ensuite, il est possible d’impliquer la dimension données
liées aux évènements ou même la dimension ressource pour découvrir des comportements entre
agents exécuteur des activités. De manière orthogonale, nous prévoyons de filtrer et de classer
les patterns comportementaux en utilisant des fonctions d’utilité et des contraintes ou conditions.
Enfin, les patterns peuvent servir de variables dépendantes dans diverses tâches d’apprentissage
automatique et de mining. Dans le même esprit, les règles comportementales peuvent s’insérer
dans les systèmes de recommandation soit à un état statique ou de flux.

26

Abstract
In the last two decades, we assist to an explosion of readily available data; from sensors
measurements to web queries going through commercial transactions. One type of these data is
event logs recorded by information systems that capture process executions. Process Mining is
a new research discipline that caters for the analysis of such event logs. One of its tasks is the
discovery of process models which describe the process execution. Such models could appear
structured with clear execution paths or be more "spaghetti" like in the sense of a great complexity
and a big number of branchings and choice constructs.

Many algorithms were proposed to handle the extraction of end-to-end process models. Few
were successful in handling unstructured processes. For these special cases, techniques that
focus on more granular information about the process execution are preferred. Some leverage
the abstraction of events and their relationship while others aim at subdividing the log in more
manageable clusters.

Our work supplements these techniques with a new approach to extract insight from unstructured
processes. The contributions revolve around the notion of behavioral patterns; relatively small
process models that capture important fractions of the execution. The measure of importance is
the frequency of the behaviors. We propose in a first work a robust and rapid algorithm to extract
them leveraging pruning techniques, various optimizations and guaranteeing interesting properties
on the extracted models. The analyst can then use them to grasp a global view of the unstructured
process through the many frequent behaviors it exhibits.

In a second step, we propose a framework that analyzes dependencies, associations and causal
relationships while taking into account contextual data. We propose a formal definition of contexts
based on attributes introduced in the event log. We discover patterns in each context and provide a
characterization of interesting patterns that overlap many contexts. This approach offers additional
information on non context-aware behavioral patterns and actually reveals completely new patterns
nested in the different contexts. Moreover, we infer behavioral rules from mined patterns and
study causal relationships between data attributes and the occurrence of patterns.

Finally, we improve the initial context-agnostic algorithm in order to further decrease runtimes
and to reduce the difficulty of analyzing a big number of patterns. We propose an incremental
algorithm that takes advantage of previously assessed patterns to evaluate the frequency of the
new ones; reducing thus greatly the execution times. Moreover, we put in place a post-processing
step that reduces the number of discovered patterns by eliminating redundancy. The final set of
patterns is then displayed in an interactive and intuitive map or graph that harbors interesting
dependencies between the patterns and allows for an easy navigation.

The first algorithm, the framework and the revisited algorithm were assessed against real life logs
and proved efficient and effective compared to the state of the art. In future works, we intend to
explore behavioral patterns in resource utilization instead of the control flow dimension. We also
plan to exploit parallel computing framework in order to handle the most challenging and biggest
logs. Finally, we project to use behavioral patterns as features for various machine learning tasks.

27

28

Contents

1 Introduction 37
1.1 Context and Motivation . 37
1.2 Research Goals . 40
1.3 Contributions . 40
1.4 Layout of the Thesis . 42

2 Preliminaries and Related Work 47
2.1 Preliminaries . 47

2.1.1 Event Log . 48
2.1.2 Process Models . 51
2.1.3 Alignments . 56

2.2 Related Works . 59
2.2.1 Discovery of Structured Processes . 59
2.2.2 Pattern Mining . 62
2.2.3 Discovery of Insights in Flexible Processes 63
2.2.4 Data-aware Discovery of Insights in Flexible Processes 66
2.2.5 Discovery of Causality Relationships 69
2.2.6 Alignment and Conformance Checking 70

2.3 Conclusion . 72

3 Behavioral Pattern Mining with COBPAM 75
3.1 Algebraic Operations and Structures on Process Trees 75
3.2 Quality Metrics . 78
3.3 Behavioral Pattern Discovery with COBPAM 80

3.3.1 A Monotonicity Property . 80
3.3.2 Compact and Maximal Process Trees 80

29

3.3.3 Optimization Based on Projections . 81
3.3.4 The COBPAM Algorithm . 82

3.4 Conclusion . 84

4 Data-aware Analysis Framework 85
4.1 Behavioral Rules . 85
4.2 Contextual COBPAM . 86

4.2.1 Contexts . 86
4.2.2 Contextual Behavioral Patterns . 88
4.2.3 Contextual Pattern Discovery Approach 89

4.3 Causal Relationship between Data and Occurrences of Behavioral Patterns 91
4.4 Methodology for Using the Data-aware Framework 93
4.5 Conclusion . 94

5 Advanced Behavioral Pattern Mining 95
5.1 Alignment Growth . 96

5.1.1 Definitions . 96
5.1.2 Leftmost Occurrence First (LOF Property) 97
5.1.3 The Growth Procedure . 97
5.1.4 Changes, Limits and Intuitions . 99

5.2 Post-processing . 105
5.2.1 Generalized Maximality . 106
5.2.2 Trees Equivalency . 111

5.3 Visualization . 112
5.4 Conclusion . 114

6 Experimental Evaluation 117
6.1 Setup and Datasets . 118
6.2 COBPAM Evaluation . 119

6.2.1 Efficiency . 119
6.2.2 Quantitative Effectiveness . 122
6.2.3 Qualitative Effectiveness . 122

6.3 Data-aware Analysis Framework Evaluation . 127
6.3.1 Efficiency . 127
6.3.2 Effectiveness of Pattern Discovery . 128
6.3.3 Patterns Analysis . 129

6.4 Advanced COBPAM Evaluation . 131
6.4.1 Efficiency . 131
6.4.2 Effectiveness . 134
6.4.3 Visualisation . 135

6.5 Discussion . 135
6.6 Conclusion . 137

30

7 Conclusion and Future Works 141

31

32

List of Figures

1.1 Structured process for driving licence exam . 44
1.2 Spaghetti model mined with Flexible Heuristics Miner 45
1.3 (a) Event log; (b) sequential patterns discovered with PrefixSPAN [61]; (c)

behavioral pattern; (d) end-to-end model mined by FHM [88]. Patterns have a
support > 0.7 (i.e., occur in more than eight out of 12 traces). 45

1.4 (a) Data enhanced event log; (b) behavioral pattern for the whole log; (c) behavioral
pattern for the context [low, *]. Patterns have a support > 0.7. 46

2.1 Marked Petri net example with its different structures [82] 52
2.2 Example of a process tree with its different structures [82] 54
2.3 Converting process trees to WF-nets [82] . 55
2.5 (a) Alignment γ2a; (b) alignment γ2b; (c) alignment γ2c 57
2.4 Example of four WF-nets [82] . 73
2.6 Typical control flow structures and the ordering relations they leave in the event

log [82] . 74
2.7 A process model with a non-free choice construct [89] 74
2.8 A flower model allowing any sequence of activities [89] 74

3.1 (a) a combination operation of two process trees (b) the construction tree of the
process tree seq(BT, and(CO, RB)) . 76

4.1 Example of a non-valid behavioral rule. 87
4.2 Hierarchies on data attributes income and age 89
4.3 Exposure and non exposure groups construction. 93

5.1 A tree P (a) and its seeds: P1 (b) and P2 (c). 103
5.2 A tree R (a) and its seeds: R1 (b) and R2 (c). 104

33

LIST OF FIGURES

5.3 Construction tree of the template (h) according to the first definition of potential
combination leaves. (Definition 3.1). 106

5.4 Construction tree of the template (h) according to the second definition of potential
combination leaves. (Definition 5.7). 107

5.5 A tree T (a), its seeds: T1 (b) and T2 (c) and two alternative seeds: T3 (d) and T4 (e)108
5.6 A tree P (a) and one of its alternative seeds (b). 110

6.1 Behavioral Patterns mined by LPM discovery. 124
6.2 Behavioral Patterns mined with COBPAM. 125
6.3 Episodes mined with PROM’s Episode Miner 126
6.4 Illustrative examples of behavioral patterns mined with CCOBPAM 132
6.5 Behavioral Patterns mined by COBPAM for WABO 136
6.6 Visualisation graph of the patterns returned by WABO (support threshold of 0.7,

depth of 2)[Global view] . 138
6.7 Visualisation graph of the patterns returned by WABO (support threshold of 0.7,

depth of 2)[Zoomed-in view] . 139
6.8 Legend for the relationships edges . 140

34

List of Tables

2.1 Example of event log . 48
2.2 Alignment γ1 . 57
2.3 Alignment γ2d . 58
2.4 Alignment γ3 . 59

6.1 Execution times of COBPAM and LPM Discovery 120
6.2 Scalability analysis on Sepsis . 120
6.3 Scalability analysis on Traffic Fines . 121
6.4 Execution times of COBPAM on logs where repetitive events were removed . . . 122
6.5 Pattern statistics of LPM Discovery and COBPAM 122
6.6 Runtimes of CCOBPAM for different context definitions, including the numbers

of atomic contexts . 128
6.7 Contexts statistics for WABO . 128
6.8 Contexts statistics for BPI_2019S1 . 129
6.9 Presence of P1 and P2 in the traces of [low, *], the odds ratio being 7. 130
6.10 Presence of P1 and P2 in the traces of [low, <70], the odds ratio being 0.93. . . . 130
6.11 Presence of P1 and P2 in the traces of [low, 70+], the odds ratio being 0.6. 130
6.12 Pattern statistics of CCOBPAM and COBPAM for WABO 131
6.13 Pattern statistics of CCOBPAM and COBPAM for BPI_2019S1 131
6.14 Execution times of COBPAM and ACOBPAM (for a depth parameter of two and

three) . 133
6.15 Runtime decrease with respect to the state-of-the-art algorithm for mining behav-

ioral patterns (LPM) . 134
6.16 Runtimes of the post-processing operation and visualization graph generation . . 134
6.17 Number of returned trees w/o Post-processing 135

35

LIST OF TABLES

36

1
Introduction

Contents
1.1 Context and Motivation . 37

1.2 Research Goals . 40

1.3 Contributions . 40

1.4 Layout of the Thesis . 42

1.1 Context and Motivation
In one minute on the internet in 2020, Youtube users uploaded 500 hours of video, over 41 million
of messages were sent on Whatsapp, Twitter gained 319 new users and the social media users
were sending half a million tweets. In the same year, every person was generating 1.7 megabytes
in one second [1, 2]. Moreover, in 2018, IDC (International Data Corporation) predicted that the
world’s digital sphere would grow from 33 zettabytes to 175 zettabytes by 2025. If we were able
to stack this amount in DVDs, we would have enough to get to the moon 23 times [64].

This phenomenon, coined "Big Data", is defined as the exponential growth of data, their processing
or in a more general way, any step involved in the extraction of interesting insight from the vast
amount of raw data [81]. In 2011, the McKinsey Global Report [56] defined it as data whose scale,
diversity and temporal distribution require new technical architectures and more in-depth analyzes
in order to extract knowledge that represents a new source of entrepreneurial value. Although the
definitions differ, they revolve around certain characteristics that the data share. It is originally
the “3V” of Big Data: Volume, Velocity and Variety [68] then extended to cover “Veracity” and
“Value” thus becoming the “5V” of Big Data [81].

Every day, more data is produced than all that is available in print media around the world [81].
The Volume is the most important feature of Big Data. Today, all fields produce hundreds of

37

CHAPTER 1. INTRODUCTION

terabytes. The phenomenon evolves all the more easily because of the low cost of data storage.
Furthermore, the more the data, the more precise are analysis results which makes it a precious
material. Yet, most systems have to adapt to the enormous size by ensuring scalability and
parallel computing. The Velocity property is due to the high speed at which the data is generated,
collected and ingested or analyzed [68]. The phenomenon also called Data Flow represents a
second challenge for Big Data systems. Variety is another characteristic of Big Data. It refers to
the heterogeneity of the data manipulated; either it is structured (relational databases tables, CSV
format, etc), unstructured (images, audio, texts, etc) or semi structured (XML). As for Veracity,
it refers to the uncertainty around the data collected as well as, consequently, the results of the
analysis. The correctness, precision and quality of data becomes doubtful due to sometimes
unreliable sources and too much variety. Finally, The Value of data represents what it can bring in
gain, both to the scientific community and to the industry and business sectors through the effective
study of the markets and the application of the fourth paradigm of science: Data Science [81].

Data Science is a new discipline that spans many fields. Most important are statistics, data mining,
machine learning, visualization and visual analytics. As defined in [82], Data Science is an
interdisciplinary field aiming to turn data into real value. Data may be structured or unstructured,
big or small, static or streaming. Value may be provided in the form of predictions, automated
decisions, models learned from data, or any type of data visualization delivering insights. Data
science includes data extraction, data preparation, data exploration, data transformation, storage
and retrieval, computing infrastructures, various types of mining and learning, presentation of
explanations and predictions, and the exploitation of results taking into account ethical, social,
legal, and business aspects.

On another hand, in companies, information systems are closely following business processes. A
business process is a set of linked activities which, when executed, deliver a certain organizational
goal, either a product or a service. A business activity or task is any action executed by a resource
which participates in the unfolding of a process. A process instance or case represents a single
execution of the process. These processes are intensively studied in Process Science. It is an
interdisciplinary field utilizing information technology and management science to run, monitor,
control, analyze, model and improve organizational processes [82]. Some branches are business
process management, stochastics and operations management and research.

Since one of the roles of information systems is to collect, store and process information, the
business activities executions are stored as events in event logs. Each process instance is represented
by a series of events recorded and identified in an event log in the form of a trace. The main
information provided by an event are the activity executed, the timestamp and sometimes the
resource which enacted the event. There may be many timestamps recorded for each activity such
as start time and completion time. Besides, other relevant attributes either associated to a trace or
to the events indicating the execution context may appear in the event log.

Process Mining, one branch of Process Science, is the research discipline which studies event
logs. It uses machine learning and data mining techniques to extract knowledge from execution
data and in doing so links the two domains of Process Science and Data Science. While Process
Science is model-driven and Data Science is process agnostic, Process Mining considers both

38

CHAPTER 1. INTRODUCTION

the process models and the evidence in the form of data behind their execution. There are four
important research areas among the process mining community. Process Discovery which mines
process models describing the execution of processes. Conformance Checking which checks for
discrepancies and deviations between an existing model and an event log. Process Enhancement
which updates a process model according to an event log either by modifying it to adjust to the
event log or extending it and finally, Predictive Process Monitoring which provides the user with
constant information about the future of a process execution [32].

The most explored branch of Process Mining is Process Discovery. It aims to reveal process
models holding insight about the execution of the process. Some of the algorithms proposed
extract end-to-end process models like the α-algorithm [83], Flexible Heuristics Miner [88] and
Genetic Miner [16]. The goal is to describe the whole execution of the process from start to end.
This method works well on structured processes like the one shown in Figure 1.1. One can note
that the execution paths are few and clearly defined. However, they do not cater for what is called
flexible processes.

A flexible process contains too many different execution paths and is highly unstructured. The
execution behavior cannot be represented by a one-fit-all global model. In fact, the use of
algorithms such as Flexible Heuristics Miner yields "spaghetti" models such as the one depicted in
Figure 1.2. Other algorithms may also be prone to over-generalization [82]. Namely, they generate
models that allow for more instances than those present in the log and permissible by the process.

With the aim of handling flexible processes, specific methods specializing in getting other forms
of insight than a global model have emerged. Some propose to group homogeneous traces into
clusters and extract structured models from each cluster [13, 15, 38, 73]. Others try to propose
models with different level of abstraction to mitigate the spaghetti effect [39].

An interesting work is the mining of behavioral patterns [80, 78]. These patterns are formalized
as process models, yet they capture only comparatively small episodes of a process’ behavior
that occur frequently. The basic idea is illustrated in Fig. 1.3. For the example log, depicting
treatment steps a patient undergoes in a hospital, a traditional discovery algorithm such as the
Flexible Heuristics Miner (FHM) [88] would yield a complex model. However, one may observe
that the traces show a specific behavioral pattern: An execution of activity BT is followed by CO
and RB in parallel. Detecting such a pattern provides a general understanding of the regularities in
process execution. Note though, that such a pattern cannot be detected using standard techniques
for sequential pattern mining, such as PrefixSPAN [61], as those would miss complex behavioral
dependencies such as concurrency and exclusive choices.

However, these seminal works on behavioral pattern mining endure several drawbacks that impact
the runtimes and the quality of derived patterns. In this thesis, we improve over the mining of such
behavioral patterns while making sure to exploit all the data available. The next section describes
the research goals we aim at.

39

CHAPTER 1. INTRODUCTION

1.2 Research Goals
Existing algorithms [80, 78] to mine behavioral patterns suffer from imprecision and redundancy
of the mined patterns, and a comparatively high computational effort. That is, even though certain
behavior is frequent, patterns may capture (i) only a part of the frequent behavior (i.e., they are not
maximal), or (ii) a combination of frequent behavior with infrequent behavior (i.e., patterns are
not compact). For instance, in Fig. 1.3, the pattern seq(BT, and(CO,RB)) is frequent. Arguably,
discovery of further patterns seq(BT,CO)) and seq(BT, xor(CO,I)) would not lead to any new
insights on the process, so that it is sufficient to discover the former one. At the same time, existing
algorithms suffer from high run-times since pattern candidates are evaluated based on the complete
event log. The first research goal we address is:

• G1: Optimize run-times of behavioral pattern mining while avoiding uninteresting trees.

Once we discover behavioral patterns, a second objective is to get all available insights from them.

• G2: Take inspiration from seminal fields such as Frequent Pattern Mining and Sequential
Pattern Mining to uncover additional analysis-driven usage of behavioral patterns.

On an orthogonal subject, while existing algorithms for behavioral patterns mining [80, 78]
discover patterns that are frequent, they are constrained to one dimension of study, namely,
the control flow perspective i.e. the inter-dependencies between activities. However, the data
dimension, i.e., the context of execution of activities and instances, is of utmost interest and
Process Mining involves considering all evidence available behind process execution. Hence, the
next research goal:

• G3: Include the data dimension in the mining procedure.

1.3 Contributions
To meet the goal formulated in G1, we propose COBPAM (COmbination Based PAttern Mining
algorithm) [5], a novel combination-based algorithm tomine behavioral patterns that are formalized
as process trees [46] (a process modelling notation) through a generate and test approach. It
identifies all trees of which the behavior can be found in a certain number of traces of the event
log, which takes up the well-established notion of support for patterns in sequence databases [36].
Moreover, the metric precision as known from Conformance Checking [82] is used to assess how
strongly a tree materializes (if the tree appears under the many forms allowed by the model, then it
is strongly present in the log). Based thereon, the contributions of COBPAM are threefold:

1. It defines a partial order on pattern candidates to discover only those that are maximal and
compact, thereby improving effectiveness of pattern mining. The partial order further allows
to avoid multiple generation of the same patterns.

2. It efficiently explores the pattern search space by pruning strategies, exploiting that complex
patterns are combinations of simpler patterns.

40

CHAPTER 1. INTRODUCTION

3. It further improves efficiency by considering only a subset of traces, when evaluating the
support and precision of a pattern candidate.

On another hand, as in Sequential Pattern Mining, patterns returned by COBPAM could serve in
another data analysis procedure. Namely, the study of associations between patterns themselves.
This comes as a natural evolution for COBPAM with the introduction of behavioral rules as
equivalents of sequential rules. In the example above, the behavioral rule BT → and(CO,RB)
would indicate that BT cannot appear without and(CO,RB) following it and and(CO,RB) cannot
appear without BT preceding it. Behavioral rule mining fulfills G2.

In another contribution, we tackle G3 and extend COBPAM with a data perspective. Let’s
consider the data enhanced event log in Fig. 1.4. There are two attributes representing contextual
information: The income level of the patient (low or high) and the age group (<70 or 70+). In such
a log, a context-agnostic approach to pattern discovery constitutes a severe limitation in terms of
the insights that may be gained about the process. Episodes of process behavior that are common
for a specific execution context, but not frequent over all contexts remain undetected. For example,
considering solely low income patients, there is a pattern of BT, followed by SW, which is again
followed by the concurrent appearance of CO and RB. Detecting this contextual pattern provides
insights (i.e., low income patients show a tendency to discuss the refund policy with a social worker)
that would go unnoticed when neglecting context information. As such, contextual patterns enable
fine-granular analysis of the correlations of contextual factors and process execution. Moreover,
one could be interested in answering questions like: "What behavioral patterns are frequent
among low income patients exclusively?" or "What behavioral patterns are frequent among high
income patients whatever their age?". This can be accomplished by defining different types of
frequentiality. By answering these questions, data is intrinsically considered in the mining process
and dependencies between data and patterns are discovered in the form of contextual patterns.

In the case where a pattern appears exclusively in a population, it is wise to ask whether attributes
of that population cause the appearance of the behavioral pattern. Correlation and causation are
different. Correlation means that two variables are related or dependent on each other whereas
causation means a change in the cause variable yields a change in the outcome one. In the spirit of
attending to G3, we also propose a study of the causation between contextual event log attributes
and the occurrence of a pattern inspired by retrospective cohort studies.

To sum up, we extend COBPAM with a data-aware analysis framework [6] that builds depen-
dencies, causations and associations around patterns while considering the data dimension. The
contributions are:

1. We introduce a model for contextual behavioral patterns. It includes different notions to link
a behavioral pattern with contextual information of traces, such as contextual frequency,
generality, and exclusiveness.

2. We present an algorithm CCOBPAM (Contextual COBPAM) to discover contextual behav-
ioral patterns from an event log.

3. We discover behavioral rules akin to sequential rules in Sequential Pattern Mining.

41

CHAPTER 1. INTRODUCTION

4. We assess the existence of causal relationships between data and behavioral patterns
occurrences.

5. We present a complete methodology on how to use effectively our framework and transform
the obtained results into useful insights.

Finally, after proposing COBPAM which has already significantly reduced runtimes, we set out to
improve the performances even more; always in the spirit of reaching G1. As such, we introduced
ACOBPAM (Adanced COBPAM) that makes use of the alignments of older trees to assess the
frquencies of the more complex ones. Note that alignments are a tool that allows to assert whether
a pattern appears in a trace. For example, they allow to claim that the pattern in Fig. 1.3c appears
in trace 1 of the log in Fig. 1.3a. Moreover, the new algorithm includes a post-processing step that
prunes the number of returned trees by COBPAM by eliminating redundancy further than what
was detected in the classical algorithm. For that, new concepts like equivalency of process trees or
generalized maximality are defined.

On another hand, in a last attempt to further satisfy G2, we proposed an in-depth analysis of the
returned patterns after post-processing. In fact, we devised new relationships or dependencies
between the final patterns. The whole was integrated in the form of a map or a graph where patterns
are nodes and edges, relationships. Interactive and exhaustive, it helps getting the maximum of
insights from the discovered patterns by offering a global navigable view. We recapitulate the
major features of ACOBPAM:

1. ACOBPAM uses an incremental algorithm to compute alignments taking advantage of
previously computed ones.

2. A pruning of the final returned trees in a post-processing step is realized. It caters for
resolving the issues of high numbers of patterns initially returned by eliminating redundancy.

3. A visualization graph is proposed. It offers an interactive and navigable view on the patterns
while harboring interesting dependencies. It comes as an attempt to facilitate analysis
especially when there still is a high number of trees after the post-processing step.

Our contributions [5, 6] were published respectively in CAISE (International Conference on
Advanced Information Systems Engineering) and IEEE TKDE (IEEE Transactions on Knowledge
and Data Engineering) with the collaboration of Pr. Matthias Weidlich. The third work concerning
ACOBPAM is under submission to TKDE.

1.4 Layout of the Thesis
This thesis is structured as follows. In Chapter 2, we present preliminary notions necessary to
understand the following chapters and go over the state of the art in Process Discovery, Sequential
Pattern Mining and Association Rule Mining, data-aware Process Discovery, Causality and finally
Conformance Checking. Chapter 3 discusses behavioral pattern mining with COBPAM. It shows
how the combination operation allows for adequate optimizations and the satisfaction of the target

42

CHAPTER 1. INTRODUCTION

properties while presenting the core of the algorithm. Next, Chapter 4 details the data-aware
analysis framework. It starts by defining the behavioral rules. Then, it explicits the model we
adopt for the definition of contexts and their interdependency with patterns. Afterwards, it presents
an algorithm for the discovery of contextual patterns and finishes with a data-driven analysis
of discovered patterns corroborated with a handy methodology enhanced with interpretation
guidelines. The third contribution is presented in Chapter 5. The first section details the incremental
algorithm which performs what we call the alignment growth. Afterwards, we proceed to specify
the type of trees that we prune in post-processing and finish by presenting the visualization map
along with its dependencies. Finally an experimental study that confirms the general feasibility of
our algorithms and the effectiveness and efficiency of the different contributions is presented in
Chapter 6 before we conclude and give perspectives for our work in Chapter 7.

43

CHAPTER 1. INTRODUCTION

Figure 1.1: Structured process for driving licence exam

44

CHAPTER 1. INTRODUCTION

Figure 1.2: Spaghetti model mined with Flexible Heuristics Miner

Trace ID Event Sequence

1 EI ET PS ED BT GP TD SW CO RB
2 ET EI CV XS BT SW CS D RB CO
3 CI PS CV I BT XS SW E CO RB I
4 CI CV PS XS BT D SW CS GP RB CO
5 CI PS EI ED I XS GP TD CV
6 EI ET PS ED BT GP TD CO RB
7 ET EI CV XS BT CS D CO RB
8 CI PS CV I BT XS E CO RB I
9 CI CV PS XS BT D CS GP CO RB
10 CI PS EI ED I XS GP TD CV
11 ET PS ED BT GP TD SW CO RB
12 CI PS EI ED I XS GP TD CV

SW: Meet with social worker, CO: Checkout, BT: Blood test, CI: Check-In, GP: Give prescription,
CS: Recheck sec. number, EI: Emergency intubation, ET: Emergency transfusion,
PS: Process sec. number, CV: Check Vitals, XS: X-ray Scan, TD: Temp. Diagnosis, D: Diagnosis,
ED: Emergency defibril., I: Infusion, E: Echography, RB: Retrieve belongings

(a)

Sequential Patterns

BT RB
BT CO

(b)

seq

and

RBCO
BT

(c)

(d)

Figure 1.3: (a) Event log; (b) sequential patterns discovered with PrefixSPAN [61]; (c) behavioral
pattern; (d) end-to-end model mined by FHM [88]. Patterns have a support > 0.7 (i.e., occur in
more than eight out of 12 traces).

45

CHAPTER 1. INTRODUCTION

Trace Context Event
ID [Income, age] Sequence

1 [low, <70] EI ET PS ED BT GP TD SW CO RB
2 [low, <70] ET EI CV XS BT SW CS D RB CO
3 [low, <70] CI PS CV I BT XS SW E CO RB I
4 [low, <70] CI CV PS XS BT D SW CS GP RB CO
5 [low, <70] CI PS EI ED I XS GP TD CV
6 [high, <70] EI ET PS ED BT GP TD CO RB
7 [high, <70] ET EI CV XS BT CS D CO RB
8 [high, <70] CI PS CV I BT XS E CO RB I
9 [high, <70] CI CV PS XS BT D CS GP CO RB
10 [high, <70] CI PS EI ED I XS GP TD CV
11 [low, 70+] ET PS ED BT GP TD SW CO RB
12 [high, 70+] CI PS EI ED I XS GP TD CV

SW: Meet with social worker, CO: Checkout, BT: Blood test, CI: Check-In, GP: Give prescription,
CS: Recheck sec. number, EI: Emergency intubation, ET: Emergency transfusion,
PS: Process sec. number, CV: Check Vitals, XS: X-ray Scan, TD: Temp. Diagnosis, D: Diagnosis,
ED: Emergency defibril., I: Infusion, E: Echography, RB: Retrieve belongings

(a)

seq

and

RBCO
BT

(b)

seq

and

RBCO
seq

SWBT

(c)

Figure 1.4: (a) Data enhanced event log; (b) behavioral pattern for the whole log; (c) behavioral
pattern for the context [low, *]. Patterns have a support > 0.7.

46

2
Preliminaries and Related Work

Contents
2.1 Preliminaries . 47

2.1.1 Event Log . 48
2.1.2 Process Models . 51
2.1.3 Alignments . 56

2.2 Related Works . 59
2.2.1 Discovery of Structured Processes . 59
2.2.2 Pattern Mining . 62
2.2.3 Discovery of Insights in Flexible Processes 63
2.2.4 Data-aware Discovery of Insights in Flexible Processes 66
2.2.5 Discovery of Causality Relationships 69
2.2.6 Alignment and Conformance Checking 70

2.3 Conclusion . 72

Even though the Process Mining field is relatively young, it has gained a big interest within
the research community. Many methods spanning different issues were proposed. This chapter
is dedicated to basic notions about Process Mining needed to understand the breakthroughs
mentioned later in the works related to our thesis. It is divided in Section 2.1 which presents the
preliminaries and Section 2.2 which discusses the state of the art relevant to our work.

2.1 Preliminaries
This section covers some definitions necessary to understand the next material. We start by the
origin of it all, the evidence behind process executions: the event log [7, 82]. We move then to
talk about process models and notations in general.

47

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Table 2.1: Example of event log

Case ID Event ID Properties
Timestamp Activity Resource Transaction type . . .

1 10005 08-04-2020 17:32 Apply for Licence Mehdi Complete . . .
1 10006 11-04-2020 07:15 Attend Classes Ride Motorbikes Mehdi Complete . . .
1 10007 15-04-2020 08:00 Do Theoretical Exam Mehdi Complete . . .
1 10008 27-04-2020 08:15 Do Practical Exam Ride Motorbikes Mehdi Complete . . .
1 10009 01-05-2020 10:23 Get Result Mehdi Complete . . .
2 9008 13-04-2020 11:45 Apply for Licence Ali Complete . . .
2 9009 16-04-2020 07;30 Attend Classes Drive Cars Ali Complete . . .
2 9010 17-04-2020 08:00 Do Theoretical Exam Ali Complete . . .
2 9011 18-04-2020 08:15 Do Practical Exam Drive Cars Ali Complete . . .
2 9012 01-05-2020 09:27 Get Result Ali Complete . . .
2 9013 01-05-2020 10:30 Receive License Ali Complete . . .
. .

2.1.1 Event Log
An event log records information about the execution of an organizational process. We suppose
that each log records information about one distinct process. An example of an event log is given
in Table 2.1. The events related to a single case of the process are grouped together in what is
called a trace. Inside traces, events are ordered. To each event, a set of attributes is associated. The
bare minimum in process mining are the activity represented by the event and its case identifier. In
the example event log of Table 2.1, activities can be : Apply for License, Get Result, etc. However,
other attributes can exist in the event log. They include:

• Timestamp: the time at which the event was enacted.

• Transaction type: the execution of activities spans a period of time. The transaction type
indicates the current step in the life cycle of the activity. It can be for example: "start" or
"complete".

• Resource: the organizational entity executing the activity. It can be a physical entity, e.g., a
person or an abstract one, e.g., a program.

It is to be noted that any other property on the event can constitute an attribute. Besides, Not all
events need to have the same attributes, although the events associated to the same activity tend to
have the same.

In the following, we formalize the various notions around event logs [7, 82].

Definition 2.1 (Complex event, attribute). Let E be the universe of events (the set of all possible
event identifiers) and AN the set of the attributes names. The value of the attribute n ∈ AN for the
event e ∈ E is given by #n(e). If the event isn’t associated to an attribute n, we use the null value
#n(e) =⊥. In particular, the standard attributes mentioned above are given by :

• #activity(e) is the activity associated to the event e.

• #time(e) is the time of execution or timestamp.

48

CHAPTER 2. PRELIMINARIES AND RELATED WORK

• #resource(e) is the resource that executed the event.

• #trans(e) is the transaction type of e, e.g., "complete".

The activity and timestamp attributes yield a control-flow perspective on the event log; meaning,
the different structures of execution of the underlying business process. The resource attribute
yields an organizational perspective while other contextual attributes represent a data perspective.

An event log represents a set of traces where each trace represents a unique case. Generally, the
execution of a case doesn’t directly influence other cases. For example, a loan application is
handled for each person independently of the other applications. As such, we consider the events
in each case in isolation during analysis.

Remark 2.2 (Sequence). In order to represent traces, we use a convenient way in the form of
sequences [7, 82]. This notation will also be useful in modeling behaviors when defining semantics
in Petri nets. A∗ is the set of finite sequences over a set A. A finite sequence over A of length n
is a mapping σ ∈ {1, 2, . . . , n} → A and we write σ = 〈a1, a2, . . . , an〉 where ai = σ(i). |σ| = n
denotes the length of σ. σ ⊕ a denotes the sequence where a is appended to the end of σ. By
extension, σ2 appended to σ1 is written σ1.σ2.

Considering a sequence σ = 〈a1, a2, . . . , an〉, a subsequence of σ is a sequence
γ = 〈aω(1), aω(2), . . . , aω(m)〉 where m ≤ n and ω : N → N an increasing function. We say that σ
contains γ and we write γ ≤ σ.

hdk(σ) = 〈a1, a2, . . . , amin(k,n)〉 denotes the prefix or the head of size k of σ. The set of prefixes of
σ is given by pre f (σ) = {hdk(σ) | 0 ≤ k ≤ n}.

tlk(σ) = 〈amin(k,n), amin(k,n)+1, . . . , an〉 is the suffix or tail of σ starting from σ(k), inclusive.

Inl
k(σ) is the subsequence of σ starting from σ(k) to σ(l) (inclusive).

σ ↑ X is the projection of σ over a set X ⊂ A. For example, 〈a, a, b, a, b, c, a〉 ↑ {b, c} = 〈b, b, c〉.

δset(σ) represents the set of the elements present in σ, e.g., δset(〈a, a, b, a, b, c, a〉) = {a, b, c}.
δmultiset(σ) or the Parikh vector represents the multiset containing the elements of σ, e.g.,
δmultiset(〈a, a, b, a, b, c, a〉) = [a4, b2, c].

Remark 2.3 (Multiset). A multiset [7, 82] or bag is similar to a set but can contain multiple
occurrences of one element. [a2, b, c3] is a multiset that contains two elements of a, one of b and
three of c. Formally, the set of bags over a set P is given as B(P) = P→ N. So if M ∈ B(P) then
M(p) gives the number of elements p in the bag.

Operations on multisets are defined in a straightforward manner : the addition, e.g., [a2, b, c3]]
[a, b] = [a3, b2, c3]; the difference, e.g., [a2, b, c3] \ [a, b] = [a, c3]; the presence of an element in
the multiset, e.g., a ∈ [a, b] and the notion of subset, e.g., [a, b] ≤ [a2, b]. These operations are
directly applicable on sets by considering a set as a multiset where each element occurs only once.

Definition 2.4 (Case, complex event log). Let C be the universe of cases (the set of all possible
case identifiers). An event log is composed of cases. Each case has attributes as for events. For a

49

CHAPTER 2. PRELIMINARIES AND RELATED WORK

particular case c ∈ C and n ∈ ANC, an attribute name, #n(c) denotes the value of the attribute n
for the case c. If the case doesn’t have a value for an attribute n, we use the null value: #n(c) =⊥.
A particular mandatory attribute for a case is its associated trace #trace(c) ∈ E∗ and we refer to it
by ĉ = #trace(c).

A trace is a finite sequence of events ĉ ∈ E∗ such that :

• There is no two identical events in the trace. For 1 ≤ i < j ≤ |ĉ|, ĉ(i) , ĉ(j).

• Events in the trace ĉ are ordered according to their timestamp. For 1 ≤ i < j ≤
|ĉ|, #time(ĉ(i)) < #time(ĉ(j))

A complex event log L ⊂ C is a set of cases. There are no two identical events in the event log,
meaning, for any c1, c2 ∈ L, δset(ĉ1) ∩ δset(ĉ2) = ∅.

An example of a trace from the event log of Table 2.1 could be: 〈 10005, 10006, 10007, 100058,
10009 〉

On another hand, Process Mining is about the analysis of event logs. Discovery algorithms start
from such logs and yield models such as the one depicted in Fig. 1.1. In order to do that, events
must be transformed into activities in the modelling language. Since events in our formalism
are identifiers associated with attributes, they need to be converted into names used by a process
model. For that, we propose the notion of classifiers.

Definition 2.5 (Classifier). A classifier is a function that maps each event e ∈ E to a representative
name denoted e which will be used in analysis.

For example, the representative name could be the activity attribute: e = (#activity(e)) or a
combination of two attributes e = (#activity(e), #trans(e)). In the latter case, we could see in the
model depicted in Fig. 1.1 new activities like Do theoritical Exam_Start. We consider the former
classifier the default one and we will use it unless specified otherwise.

In the following, we propose a simpler definition of event logs. It is the one we use in our work.

Definition 2.6 (Simple event log). Let A be a set of activity identifiers (activities), and A∗ the set
of all sequences over A. An event log L is a set of cases c where the trace attribute is given by
ĉ ∈ A∗, a sequence of activities. |L| denotes the size of L i.e., the number of cases it contains.

It is straightforward to convert a complex event log to a simpler one using classifiers.

Definition 2.7 (Transform a complex event log into simple event log). Let L ⊂ C be a complex
event log over a complex event universe E. We convert each trace ĉ = 〈e1, e2, . . . , e|ĉ|〉 from L
using a classifier to ĉ = 〈e1, e2, . . . , e|ĉ|〉. The simple event log is then given as S L = {c | c ∈
L ∧ #trace(c) = ĉ}.

For example, for the case one (c = 1) in Table 2.1, its associated trace would be: ĉ = [〈 Apply
for License, Attend Classes Ride Motorbikes, Do Theoretical Exam, Do Practical Exam Ride
Motorbikes, Get Result 〉, 〈 Apply for License . . . 〉, . . .].

50

CHAPTER 2. PRELIMINARIES AND RELATED WORK

2.1.2 Process Models

First of all, we want to stress some important notions we stumbled upon in our work. That is, the
types of process models. From our search in the literature, we distinguish three types:

• Procedural process models: Those are models that define exactly and explicitly the
behavior to execute at any moment during the process evolution. They give a procedure to
follow or orders. That’s why they are also called imperative. The next steps in the execution
of the process are defined through control flow structures: sequence, loops, concurrence,
etc [82].

• Declarative processmodels: Amodel is declarative if it specifies a set of rules or constraints
that must be satisfied during the execution. Any behavior that is not forbidden by these rules
is allowed. As such, this kind of process models don’t specify a procedure to follow. At any
moment during the execution, we have no explicit order to execute, just conditions not to
transgress [82].

• Descriptive process models: Another kind of proces models is descriptive [43]. Process
models that fall under this definition cannot be called declarative nor procedural. For
instance, behavioral patterns do not prescribe a procedure to follow nor do they prohibit
certain behavior. They just describe a process model in the sense where they give information
about its execution. In our case, these information are frequent patterns. Even though the
discovery of all these types of models share similarities like the use of frequency to assert
significance, the underlying reasoning is not the same. For declarative and procedural model
discovery, if a behavior is frequent, it still means that it is mandatory. Indeed the absence of
the behavior is considered noise. Conversely, in behavioral pattern discovery, the absence
of behavior is not considered noise but just what it is. We can only say that the behavior is
frequent or not from what we are observing, we do not infer on the requirements imposed
by the underlying process.

Second, it is important to know that many of the branches related to Process Science rely heavily
on process modelling. A formal process representation allows to pursue in-depth analysis on
the execution of processes. In Operations Management, such process models are used to realize
simulations, predict bottlenecks and evaluate effectiveness of a process. They are mainly used
to mitigate the complexity of business processes that grew out of the evolution of information
technology allowing cross-organizational processes and complicated event chains. Moreover, a
process notation represents a common ground on which stakeholders can converge and can be
used either for first time design or in a renewal procedure.

Understanding how important a process model is, it is not surprising to observe the plethora of
notations that exist. In the following, we only present notations that we use and mention in this
thesis.

51

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Petri Nets

Petri nets are a well investigated model among the oldest allowing concurrency. It is executable
and offers a large set of analysis tools [65]. Petri nets use simple and intuitive notations as shown
in Fig. 2.1. They are a bipartite graph composed of places and transitions. Transitions can be
labelled with activities. A Marked Petri net adds dynamism through tokens assigned to the places.
The state of the Petri net is given by the distribution of such tokens. In Fig. 2.1, there is only one
token in the start place. Formally, a Petri net is defined as [82, 7] :

Figure 2.1: Marked Petri net example with its different structures [82]

Definition 2.8 (Petri net, Marked Petri net, Accepting Petri net). Let A ⊂ A (A is the universe
of activities) and Aτ the set of activities to which τ is added. τ represents an empty label or a
silent transition. A Petri net N over A is a tuple (P,T, F, α,mi,m f) where P is a finite set of places
and T a finite set of transitions. F ⊂ (P × T) ∪ (T × P) is called the flow relation. α : T → Aτ is
a mapping function from transitions to labels. Finally, mi and m f represent the initial and final
marking respectively.

A marked Petri net is a pair (N,M) where N is a Petri net and M ∈ B(P) the marking defined as a
multiset of places.

An accepting Petri net is a Petri net (P,T, F, α,mi,M f) with a set of possible final markings
M f ⊂ B(P) instead of just one. It is to be noted that ∀m1,m2 ∈ M f ,m1 � m2

To be dynamic, Petri nets follow a firing rule. A transition is enabled at a marking M denoted
(N,M)[t〉 if there is at least a token for each of its input places. Upon firing, the transition consumes

52

CHAPTER 2. PRELIMINARIES AND RELATED WORK

one token from each place in the input and produces one token in each output place.

In order to formalize this, we call elements of P ∪ T nodes. A node x is an input to node y if
(x, y) ∈ F. •y is then defined as •y = {x | (x, y) ∈ F}. Similarly, a node x is an output to node y if
(y, x) ∈ F and y• = {x | (y, x) ∈ F}. In the example of Fig. 2.1, •e = {c3, c4} and e• = {c5}.

We have that (N,M)[t〉 iff •t ≤ M. M
t
−→N M′ denotes the firing of transition t from the old

marking M to the new marking M′ and we have M′ = M] •t \ t•. N can be ommitted if the
context is clear.

A sequence σ ∈ T ∗ such that σ = 〈σ1, σ2, ..., σn〉 is called a firing sequence from M to M′ iff
there exists M1,M2, . . . ,Mn−1 such that M

σ1
−−→N M1

σ2
−−→N M2 . . .

σn
−−→N M′ abbreviated M

σ
−→N M′.

We also overload the notation (N,M)[σ〉 to signify that σ is indeed a firing sequence and enabled
at marking M. σ is a complete firing sequence if mi

σ
−→N m f .

Example 2.9. Let N be the Petri net shown in Fig. 2.1. At the initial marking mi = [start], the
empty firing sequence ε = 〈〉 is enabled and we have mi

ε
−→ mi. Also, upon firing a then b from the

initial marking, we move to a new marking M = [c3, c2] and we write mi
〈a,b〉
−−−→ M.

A marking M′ is reachable from a marking M if and only if there exists a firing sequence σ from
M to M′. The set of reachable markings from M is denoted (N,M〉. In the Petri net of Fig. 2.1,
there are 7 reachable markings from the initial marking [82, 7].

Workflow Nets

Worfklow nets (WF-nets) [83] are a subtype of Petri nets satisfying certain properties that make
them suitable to model business processes. Indeed, this type of processes has a clear begining and
ending. The process is executed many times through instanciation and for each instance a case
with a start and an end is generated. Take the process of handling some type of applications. Many
candidates hand their files and the process is executed for each one. It follows certain activities
until reaching the end point, i.e., the acceptation or rejection of the application. The Petri net in
Fig. 2.1 is a WF-net.

Definition 2.10 (WF-nets). Let A ⊂ A be a set of activities. Let N = (P,T, F, α,mi,m f) be a Petri
net over A. N is a WF-net if and only if [82, 7]:

• There is a single source place pi ∈ P, i.e., {p ∈ P | •p = ∅} = {pi}.

• There is a single sink place ps ∈ P, i.e., {p ∈ P | p• = ∅} = {ps}.

• The source and sink place are the initial and final marking respectively, i.e. mi = [pi],m f =

[ps].

• Every node is traversed by a path from pi to ps.

There are many properties that are interesting in the analysis and modelling of processes through
WF-nets. A correctness property is that of soundness.

53

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Definition 2.11 (Soundness). Let A ⊂ A be a set of activities. Let N = (P,T, F, α,mi,m f) be a
WF-net over A. N is sound if and only if [82, 7]:

• (safeness) places cannot hold multiple tokens at the same time.

• (proper completion) for any marking M ∈ (N,mi〉, m f ∈ M implies M = [m f]

• (option to complete) for any marking M ∈ (N,mi〉, [m f] ∈ (N,M〉

• (absence of dead parts) there is no dead transitions in (N, [mi]). Meaning, for any transition
t ∈ T , there is a firing sequence enabling t.

Soundness allows for a proper and simple execution of business processes facilitating modelling
and analysis.

Process Trees

Process trees are a block structured process models known for their soundness. They are composed
of activities in the leaf nodes and operators in the non-leaf nodes. Fig. 2.2 gives an example of a
process tree with the different possible operators: choice or exclusive choice (xor), parallelism
or concurrence (and), sequence (seq) and finally loop (loop). The silent activity τ cannot be
observed. It can also indicate that no activity is executed. The set of traces generated by this tree,
or its language, is equivalent to that of the WF-net in Fig. 2.1. Process trees can be represented
textually by performing an inorder traversal of the tree. Example seq(a, and(b,c)). We propose in
the following a formal definition of process trees [82, 7].

Figure 2.2: Example of a process tree with its different structures [82]

54

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Definition 2.12 (Process tree). Let A ⊂ A be a set of activities with τ < A. {seq, and, xor, loop}
are the process tree operators.

• if a ∈ A ∪ {τ} then Q = a is a process tree.

• if n ≥ 1 Q1,Q2, . . . ,Qn are process trees and ⊕ ∈ {seq, and, xor} then ⊕(Q1,Q2, . . . ,Qn) is
a process tree.

• if n ≥ 2 Q1,Q2, . . . ,Qn are process trees then loop(Q1,Q2, . . . ,Qn) is a process tree.

The loop operator is composed of at least two children, the do part and the redo part. The
process starts by executing the do part then looping over any of the children of the redo
part. Take the tree loop(a, b, c). The possible traces generated or the language of the tree is
{〈a〉, 〈a, b, a〉, 〈a, c, a〉, 〈a, b, a, b, a〉,
〈a, b, a, c, a〉 . . . }. Activity a is always executed. It is followed by either b or c in any cycle of the
loop. As a side note, the loop operator is the same as the redo_loop operator shown in Fig. 2.2 and
Fig. 2.3.

Process trees can easily be converted to WF-nets as shown in Fig. 2.3. The transformations can be
applied recursively in order to convert a more complex process tree. Thanks to the structuredness
of process trees, they can also be straightforwardly converted to other modelling languages like
BPMN, YAWL, EPCs, UML activity diagrams, etc.

Figure 2.3: Converting process trees to WF-nets [82]

Next, we formalize the semantics of the operators and how they generate the language of the tree.

First, we define the concatenation (.) operator. Let σ1, σ2 ∈ A∗ be two sequences. σ1.σ2

represents the concatenation of the two sequences, eg, 〈a, b〉.〈a〉 = 〈a, b, a〉. Applied to sets,

55

CHAPTER 2. PRELIMINARIES AND RELATED WORK

the operator is written and defined as : if S 1, S 2, . . . , S n ⊂ A∗ then �1≤i≤nS i = S 1.S 2S n =

{σ1.σ2σn | σ1 ∈ S 1, σ2 ∈ S 2, . . . , σn ∈ S n}, e.g, if S 1 = {〈a, b〉}, S 2 = {〈c, d〉, 〈e, f 〉} then
�1≤i≤2S i = {〈a, b, c, d〉, 〈a, b, e, f 〉}.

The shuffle operator (�) generates the set of interleaved sequences, e.g., 〈a, b〉 � 〈c, d〉 =

{〈a, b, c, d〉, 〈c, d, a, b〉, 〈a, c, b, d〉, 〈a, c, d, b〉, 〈c, a, d, b〉, 〈c, a, b, d〉, }. The order between the ele-
ments of the original sequences is preserved. When applied to sets, the operator is defined as : if
S 1, S 2 ⊂ A∗ then S 1�S 2 = {σ ∈ σ1�σ2 | σ1 ∈ S 1, σ2 ∈ S 2}, e.g., if S 1 = {〈a〉}, S 2 = {〈b, c〉, 〈d, e〉}
then S 1 � S 2 = {〈a, b, c〉, 〈b, a, c〉, 〈b, c, a〉, 〈a, d, e〉, 〈d, a, e〉, 〈d, e, a〉}. Since the operator is as-
sociative and commutative, we generalize it to a set of sets : if S 1, S 2, . . . , S n ⊂ A∗ then
�1≤i≤nS i = S 1 � S 2 · · · � S n.

Definition 2.13 (Semantics of operators). Let A ⊂ A be a set of activities. Let Q be a process
tree. The language of Q, Σ(Q) is given recursively by :

• if Q = τ then Σ(Q) = {〈 〉}

• if Q = a then Σ(Q) = {〈a〉}

• if Q1,Q2, . . . ,Qn are process trees and Q = seq(Q1,Q2, . . . ,Qn) then Σ(Q) = �1≤i≤nΣ(Qi)

• if Q1,Q2, . . . ,Qn are process trees and Q = xor(Q1,Q2, . . . ,Qn) then Σ(Q) = ∪1≤i≤nΣ(Qi)

• if Q1,Q2, . . . ,Qn are process trees and Q = and(Q1,Q2, . . . ,Qn) then Σ(Q) = �1≤i≤nΣ(Qi)

• if Q1,Q2, . . . ,Qn are process trees and Q = loop(Q1,Q2, . . . ,Qn) then

Σ(Q) = {σ1.σ
′
1.σ2.σ

′
2.σm | m ≥ 1,∀1≤ j≤mσ j ∈ Σ(Q1),∀1≤ j≤mσ

′
j ∈ ∪2≤i≤nΣ(Qi)}

Example 2.14.

• Σ(seq(a, and(b, c))) = {〈a, b, c〉, 〈a, c, b〉}

• Σ(xor(a, and(b, c))) = {〈a〉, 〈b, c〉, 〈c, b〉}

In the remainder of the thesis, we consider trees with binary operators solely where each activity
appears only once. Any process tree could be converted to another with binary operators in a
straightforward manner. Also, we use the term word to designate each potential trace generated by
the model, meaning the elements of its language.

2.1.3 Alignments
Conformance Checking is the branch of Process Mining that caters for the discovery of deviations
between a certain process model and an event log. It could be used in the context where an
organization has a standard business process to follow and would like to check if it is correctly
applied in reality. Another use is to check how well does a discovered process model represent the
traces in the event log.

Alignments [7] are a tool that uncovers such incompatibility between the log and the process
model. An alignment replays a model and finds a matching between a modeled behavior (a word)

56

CHAPTER 2. PRELIMINARIES AND RELATED WORK

and an observed behavior (a trace). Let’s take an example to explain this notion. We consider
the trace σ = 〈a, d, b, e, h〉 and the four WF-nets in Fig. 2.4. We notice that σ is one of the words
generated by N1 and N4 but isn’t one of those generated by N2 and N3. We say that σ perfectly fits
N1 and N4.

σ a d b e h
Complete firing sequence of N1 a d b e h

Table 2.2: Alignment γ1

An optimal alignment is the best matching between a trace and a word of the language of the model.
The optimal alignment between σ and N1 is depicted in Table 2.2. The top row corresponds to σ
and the bottom row corresponds to a complete firing sequence of N1.

As for σ and N2, there exists three possible optimal alignments given in Fig. 2.5. When replaying
the model, the symbol "�" means matching couldn’t be performed between the model and the
trace. In alignment γ2a, activity a was observed both in the model and in the trace. Then, activity
d of the trace couldn’t be executed in the model, so b is executed and we insert a move on model;
meaning a move in the model execution that can’t be matched to an event in the trace. Subsequently,
d is executed synchronously in the model and in the log. Afterwards, b was observed but has no
matched executed activity in the model. Thus, we perform a move on log. Finally e and h are
executed synchronously.

a � d b e h
a b d � e h

(a)

a � d b e h
a c d � e h

(b)

a d b � e h
a � b d e h

(c)

Figure 2.5: (a) Alignment γ2a; (b) alignment γ2b; (c) alignment γ2c

Ignoring the symbol "�", the top row always represents the trace σ and the bottom one always
represents a complete firing sequence. When the symbol appears on top, it means a move on
model; otherwise, it is a move on log.

When replaying a model on a trace, a move on model leads to a firing of a transition thus bringing
the model to a new marking, a move on log advances the position of the next event to match and a
synchronous move does both.

Alignments allow us to closely analyze the differences between an instance of the model and a
trace. In fact, a move on model points to an activity that is supported by the model and should
be present in the trace but is skipped while a move on log indicates a superfluous event that
shouldn’t exist. Both moves on log and on model symbolize deviations except for a move on a
silent transition in the model which doesn’t impact the fitness of the trace.

57

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Definition 2.15 (move, alignment). A move (x, (y, t)) is a couple where x represents an event, t, a
transition and y, its label. In case of no duplicate transitions, the move is shortened to (x, y).

A move is legal:

• if x = y and y is a label of a visible transition t (synchronous move)

• if x =� and y is a label of a visible transition t (visible move on model)

• if x =� and y = τ and t is a silent transition (invisible move on model)

• if x ,� and (y, t) =� (move on log)

An alignment is a sequence of legal transitions such that by removing all "�" symbols, the top
row yields the trace to be aligned and the bottom row yields a complete firing sequence of the
model [82, 7].

For a certain trace and a model, there can be multiple (if not an infinite number) alignments. Take
σ and N2. We could consider the alignment γ2d in Table 2.3. Obviously, alignments γ2a, γ2b and
γ2c do a better job at bringing together the model and the trace since they use less "�" symbols. In
order to rank alignments, costs on moves can be introduced so that undesirable moves are avoided.
A standard cost function δ could be [82, 7]:

• δ((x, (y, t))) = 0 if (x, (y, t)) is synchronous. Indeed, this is a perfect matching move and
their number should be maximized.

• δ((x, (y, t))) = 0 if (x, (y, t)) is an invisible move on model. This is because as stated earlier,
a move on a silent transition in the model doesn’t impact the fitness of a trace.

• δ((x, (y, t))) > 0 if (x, (y, t)) is a visible move on model or a move on log. These behaviors
are undesirable and should be penalized. The cost can be different for each of these moves
and for each considered activity. For example, skipping the activity "decide" is a more
serious deviation then superfluous executions of "check casually".

a d b � � e h
a � � c d e h

Table 2.3: Alignment γ2d

The cost of the alignment is the sum of the costs of its moves. An optimal alignment is one that
minimizes the cost function. There can be multiple optimal alignments for a given trace and model.
For example, between σ and N2 there is three optimal alignments (see Fig. 2.5). An algorithm to
compute an optimal alignment is presented in [7]. It uses an A∗ algorithm that explores a graph
where arcs represent all possible alignment moves weighted with their cost and nodes represent
a pair of a model marking and a position in the event trace resulting from those moves. The
goal is to find a shortest path to a final state which represents a valid alignment (a pair of a final
model marking and the end position of the trace) uncovering thus an optimal alignment. The time

58

CHAPTER 2. PRELIMINARIES AND RELATED WORK

complexity of the algorithm is exponential with respect to the complexity of the Petri net and the
size of the trace.

Log Move Only Alignment

In the case where the purpose of alignments is not to find a best matching between a trace and
a word of the language of the model but to check whether a trace contains (in the sense of
subsequence containment defined above) such a word, we use log move only alignments [80].

Since we search for a complete modelled behavior in the trace, we forbid moves on a visible
transition in the model. In the case where no word is a subsequence of the trace, no valid alignment
exists since the final marking is never reached in the model (no complete firing sequence is formed
in the bottom row). Take the trace ω = 〈a, e, d, f , b, e, e, h〉. A log move only alignment between ω
and N1 could be the one depicted in Table 2.4. Such alignment allows us to know which behavior
among all the words of the language of N1 is present in the trace. In our thesis, we leverage the log
move only alignment algorithm presented in [80].

a e d f b e e h
a � d � b e � h

Table 2.4: Alignment γ3

2.2 Related Works
In this section, we go over the state of the art pertaining to our work on behavioral patterns [78, 80].
We start by a quick overview over the first works in Process Discovery in order to show the
limitations of these in catering for flexible processes.

2.2.1 Discovery of Structured Processes

α-algorithm

A seminal work in Process Discovery was the α-algorithm [83]. Considering an event log L over a
set of activities A, the algorithm searches for the existence of particular relationships between
pairs of activities a and b. There exists four ordering relations possible defined in what follows.

• a >L b if the log contains a trace σ = 〈σ1, σ2, . . . , σn〉 and 1 ≤ i < n such that σi = a and
σi+1 = b (Directly follows relation).

• a→L b if and only if a >L b and b ≯L a (causality relation).

• a#Lb if and only if a ≯L b and b ≯L a.

• a ‖L b if and only if a >L b and b >L a.

59

CHAPTER 2. PRELIMINARIES AND RELATED WORK

The α-algorithm uses these ordering relations to extract control flow patterns and transform them
into a WF-net. Fig. 2.6 shows basic ideas behind these transformations.

The α-algorithm discovers a large class of WF-nets assuming the completeness of the log with
respect to directly follows relation. This is a strong condition that is not always satisfied in today’s
event logs. Besides, the basic algorithm is unable to discover short-loops (of length one or two)
which was corrected in the α+-algorithm [27] and non-local dependencies which was partially
addressed in [90]. Moroever, the discovery of WF-nets containing duplicate and silent transitions
is not supported. Finally, the algorithm is very sensitive to noise since it has no consideration for
frequency.

Heuristics Miner

The Heuristics miner [89] comes as a consistent improvement to the α-algorithm where it handles
noisy event logs. It doesn’t provide a formal characterization of the types of models it can discover
but its extensions are the most widely used in the construction of end-to-end process models. As
for α-algorithm, Heuristics Miner defines some ordering relations. Considering two activities
a, b ∈ A and a log L over A:

• a >L b if the log contains a trace σ = 〈σ1, σ2, . . . , σn〉 and 1 ≤ i < n such that σi = a and
σi+1 = b.

• a �L b if and only if the log contains a trace σ = 〈σ1, σ2, . . . , σn〉 and 1 ≤ i < n − 1 such
that σi = a, σi+1 = b and σi+2 = a.

• a≫L b if and only if the log contains a trace σ = 〈σ1, σ2, . . . , σn〉 and 1 ≤ i < j < n such
that σi = a and σ j = b.

Heuristics Miner uses these relations to build a dependency graph where each node is an activity
and the existence of an arc means the existence of a dependency relationship between two activities.
The dependency relationship is subjected to the computation of the following metric where |a >L b|
represents the number of ordering relations of type a >L b:

a⇒L b =
|a >L b| − |b >L a|
|a >L b| + |b >L a| + 1

(2.1)

A high value in absolute denotes the presence of a dependency relationship between a and b. The
algorithm uses heuristics and thresholds to define what is a high value.

Similarly, Heuristics Miner uses two additional metrics to uncover short loops (length one or two).
They are given in the following.

a⇒L a =
|a >L a|

|a >L as| + 1
(2.2)

a⇒2L b =
|a �L b| + |b �L a|
|a �L b| + |b �L a| + 1

(2.3)

60

CHAPTER 2. PRELIMINARIES AND RELATED WORK

After mining the dependency graph, the algorithm uses the following metric to check whether two
activities b and c preceded by a form an AND construct or a XOR one.

a⇒L b ∧ c =
|b >L c| + |c >L b|
|a >L b| + |a >L c| + 1

(2.4)

Using this metric, the algorithm creates a causality matrix [89] which is converted to a Petri net in a
straightforward manner. Heuristics Miner also mines long-distance relationships (non free choices
or non local dependencies). This type of dependency is depicted in Fig. 2.7. After the execution
of D, there is a choice between E and F which is conditioned however by the earlier execution of
B or C. So this is not a free choice. This kind of structure can’t be mined by considering local
dependencies between an activity and the next one solely.

Heuristics Miner was followed by other algorithms such as Heuristics Miner++ [18] which takes
into consideration non punctual events that span a certain interval, [19] which is adapted to handle
streaming event data, Flexible Heuristics Miner [88] which mines a Causal net - an improved
representational notation and finally Fodina [86] which improves on robustness against noise and
flexibility of configuration.

Other Algorithms

The Inductive Miner [46] is a discovery algorithm that mines block-structured process models
(process trees) in a recursive manner. It ensures correctness and soundness of the extracted
models which makes it a well used algorithm for process discovery. The algorithm works by
subdividing the log into different parts, discovering the process model in each sublog and then
recursively joining the discovered process models to construct a tree. The Inductive Miner was
extended to navigate through infrequent behavior [47] and incomplete event logs [48]. The IMd
frameword [49] works on the directly follows graph (based on the ordering relation proposed in
the α-algorithm) and can handle scalability issues.

Genetic Process Miners [28, 16] are algorithms based on the evolutionary natural process. They
involve many steps where an initial population of process models is constructed. The initial
population then undergoes operations like crossover or mutation to generate children. The fittest
children are selected as the next generation and the process reiterates from this new population.
The algorithm stops when the individuals (process models) are fit enough, meaning, correctly
represent the event log. This process is not deterministic and is largely based on randomness.
The method is flexible and robust. It handles noise and incompleteness and allows a great deal
of customization. It is however inadapted for large logs because of the big number of models
handled. It is to be noted that genetic mining can be coupled with heuristics mining in order to
reduce runtimes and to deliver better results.

The α-algorithm, Genetic Miners and the Heuristics Miner algorithms family do not do well with
unstructured processes. That is, processes that have too much variability in their behavior. The
result of executing the FHM algorithm on a log pertainig to an unstructured process is given in

61

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Fig. 1.2. One can easily see how its complexity prevents all kinds of analysis. The Inductive
Miner family has problems with under-fitting and can produce flower models such as the one
depicted in Fig. 2.8. In other terms, the model discovered allows far more behavior than what is
allowed by the business process model. It is said to be more generalizing.

In the next section, we introduce the field of pattern mining and particularly sequential pattern
mining before talking about approaches dedicated to the discovery of insights in flexible processes.

2.2.2 Pattern Mining
Frequent itemset mining and association rule mining are two research areas introduced by the
seminal work of [8]. Frequent itemset mining consists in finding patterns in transactional databases
such as a retail store database. One could find that the itemset {milk, cookies} is frequent meaning
these two items are often bought together. A support metric for the presence of the pattern is used
with a threshold to attest for its frequency. After the A-priori algorithm [8], many other methods
were proposed to accelerate runtimes, handle scalability and optimize memory usage [37, 40, 91].

Association rules are derived from these itemsets. For example, the association rulemilk→ cookies
indicates that if one bought milk, there is a strong chance that they also bought cookies. These
insights are used for decision making and marketing strategies like co-promoting products or
offering discounts. There are many metrics used to assess the validity of a rule. Confidence and
odds ratio are two examples but many other measures exist [77].

Sequential pattern mining was introduced by [75] and is the problem of finding frequent
subsequences with respect to a defined support in a database of sequences. Database sequences
could be the set of sentences in a text or of words in sentences, sequences of items purchased
by customers or of web-clicks of users while visiting a website. As for frequent itemset mining,
various algorithms were proposed to cater for finding these frequent subsequences. It is to be
noted that their output is the same and the only difference is the strategy and data structures used
for the discovery. One of this algorithms is GSP [75]. It follows a generate and test approach
where the search space of candidate sequences is explored in a breadth-first fashion. It finds all
k-sequential patterns (patterns of k element) and uses them to construct candidate k + 1-sequences
by combining those that have k − 1 common items. In its workings, the algorithm benefits from
the monotonicity property stating that all subsequences of a frequent pattern are frequent as well.
As it will be discussed later, we adopt the combination principle for COBPAM when generating
behavioral patterns. Moreover, we adopt the maximality principle as discussed for sequential
patterns in [36].

The GSP algorithm generates candidate patterns that may not be present in the database. In order to
avoid that, PrefixSpan [61] uses a pattern-growth approach where it recursively scans the database
while growing a pattern. It introduces the concept of projected database which is a subset of the
dataset where a pattern appears. Except for the particular property that the projected database is a
shifted or suffix version of the original database. The algorithm uses a depth-first search where
the projected database of a k-sequential pattern is scanned to find frequent items. These items are
then appended to the k-sequential patterns to form k + 1-sequential patterns. The k + 1-sequential

62

CHAPTER 2. PRELIMINARIES AND RELATED WORK

pattern’s projected database is a suffix version starting right after the item just appended and is
then used to form larger patterns and so on. With respect to our works, in a first time, in COBPAM
we borrow the concept of a projected database in the form of log projections to evaluate the pattern
candidates on the minimal number of traces possible. Then again, in ACOBPAM, we use the idea
of suffixes to further shorten the traces that will be used for evaluation.

Lastly, approaches to incorporate contextual data in procedures for sequential pattern mining
have been proposed, which include a formal definition of contexts, a characterization of different
notions of frequentiality with respect to context hierarchies (e.g., a proposed notion of generality
and exclusiveness) and an algorithm to mine the sequential patterns [63]. We later argue that the
results exploited by this algorithm can be adapted to the discovery of behavioral patterns.

2.2.3 Discovery of Insights in Flexible Processes
To cope with event logs that show a large degree of variability in the behavior, it was suggested
to first employ trace clustering before process discovery. Trace clustering is an active research
area concerned with inferring insights from logs of flexible processes [13, 15, 38, 73, 76]. These
techniques group traces into homogeneous clusters such that process discovery techniques applied
on each cluster yield comparatively structured models. Such techniques do not cater for cases
where subdivision is impossible.

Let’s take the example of [76]. The authors propose a clustering approach that discovers clusters
while reducing the complexity of the process models in each one and later on improves their
accuracy. They use a top-down greedy method where the log is recursively divided into two
sublogs with optimal complexity. The sublog with the highest complexity is then chosen to
continue the division. The algorithm uses the notion of trace behaviors which simply represents a
sequential pattern. The log is divided into the two sublogs according to the presence or absence of
the trace behavior that optimizes complexity. In the second step, the algorithm HIF [4] is used
to improve the fitness of the generated sub-processes. It searches for behavioral patterns in the
event log that can’t be expressed in the model and converts them into more expressible behavioral
structures.

The Fuzzy miner [39] targets the domain of flexible processes and generates simplified and
abstracted process models describing only the most significant behavior. It employs two metrics
in doing so: significance which indicates the importance given to activities or to a relationship
between a pair of them. For example, the importance can be based on a frequency metric, meaning,
the more frequent is an event, the more interesting it is. The second metric is correlation which
measures how closely related are two events. It can be expressed in terms of similarity of data
attributes, of event names, etc. In the simplification step, highly significant behavior is kept as it
is. Less significant but highly correlated behavior is aggregated in clusters. Less significant and
poorly correlated behavior is abstracted, meaning removed from the final model. The simplified
model is enhanced with an emphasis concept where the most significant parts are highlighted.
Nevertheless, the algorithm fails to mine certain behavioral structures, such as concurrence and
choices.

63

CHAPTER 2. PRELIMINARIES AND RELATED WORK

The Episode Miner [45] is an algorithm that discovers frequent patterns with partial ordering
constructs. An episode consists of a set of activities linked by order relationships. The algorithm is
akin to Apriori with a two stage approach. At first, episodes with activity nodes only are generated
and in the second phase, the partial orders are generated. Episodes of overlapping k − 1 activities
are combined to construct episodes of k + 1 activities and episodes of overlapping k − 1 partial
orders are combined to get episodes of k + 1 partial orders. A monotonicity property is applied for
pruning. Once, the episodes are discovered, episode rules can be extracted. They are assessed
using the confidence metric and a magnitude metric which denotes how much complexity does
the left part of the rule adds to the right part. This method, however, does not support loops and
choices constructs.

Declare [54] discovers a set of rules that are satisfied by a certain share of traces. These rules
adhere to templates represented in Linear Temporal Logic formulas and capture presence, absence,
succession and exclusiveness between two activities. The process model is thus specified as a
compact set of rules rather than in procedural conventional notations. Any behavior that doesn’t
violate the rules is allowed which offers more flexibility (see Section 2.1.2). The LTL templates
are also more expressive than the partial orders in episode mining. The algorithm generates
all possible constraints and checks their validity in the log while handling noise. In order to
reduce runtimes, a percentage of the most frequent events can be specified for rules generation.
A thorough comparison between behavioral patterns mining and Declare mining is available in
Section 6.2.3.

Following Declare, an extension, TBDeclare [31] was proposed. Instead of having one activity
only in the target part of the declarative constraints (consequent of the constraint), it offers the
possibility to mine disjunctions of target activities. It follows that many event classes are branched
out of the activation activity (antecedent of the constraint). The algorithm relies on two metrics
for the constraints: support and confidence as they are defined in Association Rule Mining. It
also exploits two key properties: set-dominance, in the sense where if a rule states that b or c
follow a and another states that b or c or d follow a, then the former rule is discarded because
the target set is contained in the latter rule. The second property is subsumption hierarchy where
certain templates of rules imply others. So the discovery of one rule may imply the discovery of
the second one. The former one is then kept and the second one discarded. On another note, even
though the number of activities is no longer constrained within the consequent of a constraint, the
operator on that side is limited to an exclusive choice while the activation side still holds a unique
activity. In COBPAM, however, there is no bounds to the number of activities.

The notion of behavioral patterns used in our work has first been proposed in [80] under the
term Local Process Models (LPMs). The authors propose a generate and test algorithm where
process trees are grown by replacing an activity with a small behavior in the form of a subtree.
They propose different metrics to evaluate the interestingness of a process tree, namely, support,
confidence, converage, determinism and language fit. They also use a pruning strategy to reduce
the number of trees evaluated. During this evaluation they use log move only alignments. This
first discovery algorithm was not grounded in the traditional definition of support, as known from
sequential pattern mining. In addition, by following its specific generate-and-test approach, the

64

CHAPTER 2. PRELIMINARIES AND RELATED WORK

respective algorithm incurred the overhead of redundant testing of pattern candidates, and suffers
from runtime issues due to the computation of alignments on the entire log. Compared to the
mining of LPMs, our COBPAM algorithm adopts a well-established definition of support for
behavioral patterns. It further provides several innovations. Mined patterns are guaranteed to
show desirable properties (maximality and compactness), while the discovery algorithm also
leverages pruning strategies and explores pattern candidates solely on a subset of the traces of a log.
Some patterns that were missed by LPM disocvery like ones that are an exclusive choice between
two infrequent behaviors are also uncovered. In a second step, ACOBPAM further improves the
runtimes and the relevancy of the discovered patterns. It also provides a global visualization of the
discovered trees leveraging different dependencies between them. To the best of our knowledge,
such visualization of behavioral patterns was never proposed in the litterature.

The initial approach to discover LPMs has been extended to include goal-driven strategies to mine
patterns based on their utility and constraints satisfaction [78]. An initiative which is orthogonal to
our work. The discovery is oriented towards answering business questions through the definition
of constraint and utility functions. A constraint function defines a requirement that either holds or
not. It is a strong preference. The utility function however is a soft measure of how interesting
a pattern is in answering the business question at hand. Both types of functions can be defined
on four scopes : trace-level, event-level, activity-level and model-level and can be combined to
indicate the total utility of an LPM. In the following, we present the characteristics of each scope:

• The trace-level scope deals with the parts of the trace that fit the LPM. More exactly, the
events, the event properties in these parts and the case properties where they appear. For
example, a utility function on this scope could be used to discover LPMs whose events hold
the lion’s share of the financial costs in the trace.

• The event-level scope is related to utility and constraint functions that involve event properties
without needing case information. For example, a constraint function in this scope could be
the discovery of LPMs executed solely by a certain set of resources.

• Activity-level utility and constraint functions are defined with respect to the frequency of
activities in the log and the parts of the log that fit the LPMs.

• Model-level utility and constraint functions define structural properties of the LPM and are
independent of the log.

There is another mention of behavioral patterns in the literature defined in another way than
in our work. In [33], the authors propose an algorithm to mine behavioral patterns describing
resource-annotated activities (an activity a executed by resource R1 becomes a new activity [a,
R1]). The method needs a general describing process consisting of resource-agnostic activities.
So, it uses Process Discovery techniques such as Inductive Miner to construct one. From there,
it generates instance graphs based on traces including resource data. It is to be noted that this
generation uses information from the mined end-to-end model. If there is discrepancies, the
instance graphs are repaired. The particular resource-annotated traces yield an unstructured
process model from which behavioral patterns are extracted in the form of frequent sub-graphs
among the set of instance graphs. Two measures of interest are defined for the sub-graphs. The

65

CHAPTER 2. PRELIMINARIES AND RELATED WORK

occurrence frequency and the sub-graph complexity. The more complex, a behavioral pattern
is, the more insight it holds. In order to discover the sub-graphs, the algorithm uses hierarchical
clustering where the sub-graphs are organized in a lattice such that lower-level sub-graph contain
top-level ones as nodes. Each discovered sub-graph is the representative of the cluster of instance
graphs containing the sub-graph. Here, the behavioral patterns are frequent subgraphs of a global
process model that needs to be discovered whereas in our case, no such model is needed as only
the frequency of generated patterns is important. Also, the method [33] involves the resource
perspective in the discovery contrary to our work.

2.2.4 Data-aware Discovery of Insights in Flexible Processes
In the continuity of the aforementioned algorithms, there are a few that take into account contextual
data in the discovery process.

[53] propose the first data-aware Declare Miner. Declarative rules are enhanced by data attributes
using a First-Order Linear Temporal Logic notation. An example of a data enhanced rule would be,
if activity A appears and condition x holds then B must follow. The approach exploits the concept
of constraint activation which indicates the occurrence of the activation activity (antecedent of the
constraint) in the trace. Then, if the target activity appears, the constraint is fulfilled. If not, it is
violated. The method first mines the set of declarative rules from the log then performs a replay
on it to detect the fulfilled and the violated rules in each trace. Afterwards, it uses a classification
technique to discriminate between fulfillments and violations using the data attributes. The method
presented in [23] is used to discover conjunctive expressions allowing the discrimination while
decision trees are used to discover disjunctive ones.

In [69], the authors extend the work of [53] with other types of conditions. They incorporate the
notion of payload which is the set of pairs attribute/value associated to an activity and use it to
define the following:

• activation condition: is a statement that must hold when the activation occurs. For example,
a constraint could be: whenever A is executed and condition x holds, then B follows.
This type of conditions can be discriminative allowing to differentiate the fulfillments and
violations of constraints or descriptive in the sense that they describe the values of the
attributes connected to fullfilments regardless of the violations.

• target condition: a condition is imposed on the payload of the target activity when the
constraint is activated. For example: if A is executed then B follows with condition x.

• correlation condition: is a statement that must be valid in the target activity involving the
payloads of both the target and the activation.

• temporal conditions: specifies a minimal and maximal time distance between the activation
and target activity’s timestamps.

The authors use two metrics to validate rules : support and confidence. Moreover, they propose a
highly customizable SQL based discovery of all the types of conditions. The queries must however

66

CHAPTER 2. PRELIMINARIES AND RELATED WORK

be manually specified.

[50] tackle a related problem of finding correlations between activation and target conditions. An
example of a such enhanced rule would be, if A occurs with condition x then B will eventually
follow with condition y. The authors propose two approaches. Both rely on already discovered
data-agnostic constraints.

The first one constructs fulfillment and violation feature vectors out of the target and activation
payloads. Then, the target payloads of the fulfillment feature vectors are clustered. A rule-based
classification algorithm called RIPPER is used to extract target payloads representative of each
cluster. The fulfillment feature vectors are subsequently labeled with the representatives and
projected on activation payloads. The projected labeled fulfillment feature vectors and the
violation feature vectors are used by RIPPER again to find correlations between activation and
target conditions.

The second approach relies on a method from unsupervised descriptive knowledge discovery
called redescription mining. It takes as input the set of fulfillment feature vectors and outputs
correlations between attributes of the activation payloads and attributes of the target payloads.

Another method [14] uses event correlations to assess the relevance of a constraint. It defines
events correlations as relationships between event attributes. These relationships can help:

• prune uninteresting constraints. The authors suppose that events in significant rules share
attributes.

• disambiguate events. For example, in a trace 〈A, A, B,C〉, the rule "if A is executed then B
must follow" is ambiguous. Which activity A in the trace is concerned by the rule ?

• extract insights about the process. For example, if some event correlations hold for most of
the traces where the constraint is fulfilled, the remaining ones could be considered outliers.

On another note, the authors propose a categorization of correlations:

• Property-based correlations: events are grouped together based on a function on their
attributes.

• Reference-based correlations: two events are correlated if the attribute of one is connected
through a function to an attribute of the other.

• Moving time-window correlations: two events are correlated if they occur within a specific
duration from one another.

The algorithm starts by generating all possible correlations for a given constraint. Then, for each
constraint, the ambiguous rules are discarded and the support of a correlation is computed as the
number of non-ambiguous constraints where the correlation is satisfied over the total number
of non-ambiguous rules. A correlation is significant if its support exceeds a certain threshold.
The significant correlations are then used to disambiguate ambiguous activations or as features in
machine learning approaches in order to reach the above goals.

67

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Notice that the majority of the previous data-aware declarative methods utilize event data not trace
attributes which makes them orthogonal to our work. Besides, our focus is not on an enhancement
of discovered rules with data conditions, but on the discovery of novel patterns that would be
missed by a non-data-aware discovery approach. We need also to consider the intrinsic differences
between the Declare constraints mining and behavioral pattern mining (see Section 2.2.3).

Another interesting work that could be leveraged for dealing with contextual data in flexible
processes is [11]. The authors present a formalization of a framework revolving around a process
cube representation of event collections similar to what is done in OLAP. It exploits several
notions:

• An event base is a set of independent events characterized by properties.

• A process cube structure contains many data attributes organized in dimensions and
hierarchies.

• A mapper function creates a relation between the event base properties and the process cube
structure attributes.

• A process cube view represents the visible part or the perspective of the process cube after
applying typical OLAP operations such as slice, dice, roll up, etc.

• A cell set is the set of visible cells of a process cube and represents pairs attribute/values
that satisfy the realized operations.

• A materialized process cube view places events satisfying cell sets’ attribute/value pairs
inside process cube cells.

The method allows to manipulate the process cube using OLAP operations to observe the events
under different perspectives in order to get different insights and enable comparisons. Particular
process mining algorithms can be executed on each perspective or view. For instance, COBPAM
could be executed on each view to extract data-dependent behavioral patterns. Our work, however,
links the attributes and the hierarchies in the view to the behavioral patterns by defining many
types of frequencies discovering correlations and dependencies between behavioral patterns and
context data.

Other algorithms that consider data attributes are geared towards delivering end-to-end process
models and are hence not suitable for flexible processes. They include [52] which mines finite
state machines annotated with data. Yet, the approach lacks concurrency support which is a
main operator in business processes. Decision Miner [67] is an algorithm that annotates choice
constructs with data conditions on a pre-built process model. Finally, Context-aware Inductive
Miner [71] integrates contextual data while discovering the model. It delivers process trees
enhanced with a data operator.

68

CHAPTER 2. PRELIMINARIES AND RELATED WORK

2.2.5 Discovery of Causality Relationships

Causal relationships discovery is a well explored research area. One main branch is probabilistic
causality which makes use of Bayesian networks [59] and other similar probabilistic models.
Though many works used Bayesian networks for the discovery of causal structures [3, 42], they are
computationally heavy. Some methods [22, 72] can be more efficient by constraining the search to
some local structures instead of discovering the whole network but in doing so are limited.

Since our proposal is inspired from medical studies, namely, cohort studies, we present in the
following the different methods for assessing causal relationships in the medical field [41]. They
are ordered from the ones providing the weakest to the ones providing the strongest evidence of
causality as presented in the Evidence-Based Medicine pyramid [66]. The firsts belong to the
observational studies category. Unlike the experimental studies, they simply observe phenomena
without acting on their course. We can mention case reports and case series where data from
medical records is collected and the evolution of the patients is analyzed, for instance after the
administration of treatment, without the presence of a control group where such treatment was not
given. They are mostly used to establish hypothesises rather than to confirm causality. Indeed,
in the case where an outcome was observed after treating the patients, it cannot be associated
with certainty with this treatment since other factors could have played a role. In the absence of a
control group, we cannot speak of causality.

Cohort studies are another type of observational studies. They usually monitor two groups of
patients where the exposure factor/treatment appears in one and not in the other. This allows
for a comparison of their effects on a specified outcome. Although, researchers try to keep the
characteristics of the two groups identical, there may be hidden confounding variables. Those are
variables that cause the outcome while being correlated to the exposure (treatment). For example,
a strong correlation can be observed between high coffee consumption and lung cancer. The reason
is the presence of a causal relationship between smoking and higher coffee consumption [10] as
well as between smoking and the incidence of lung cancer [62]. A cohort study that misses the
hidden variable, smoking, could conclude on a causal link between high coffee consumption and
lung cancer which is evidently false. Note that there are two types of cohort studies, prospective
where patients are followed in real time and assessed for the appearance of the outcome or
retrospective where data is retroactively picked and analyzed.

Case-control studies analyze medical records and pick two groups of patients, one with the
presence of the outcome and another without. The data about the exposure/treatment factor is
then retrospectively analyzed. This type of study is commonly used to assess treatment failures.

Finally, the experimental study, randomized controlled trials, is one of the strongest causal study
types and lies at the top of the Evidence-Based Medicine pyramid. It consists in constructing
two groups where one is specifically administered a treatment as part of the study protocol. The
patients are randomly affected to their groups in order to mitigate the confounding variables.
An aspect that represents the strength of this method. The appearance of the outcome is then
monitored.

69

CHAPTER 2. PRELIMINARIES AND RELATED WORK

On a final note, since in our work, we deal with observational correlated data, causal association
rules discovery [51] caught our attention for its simplicity, intuitivity and efficiency. It uses
retrospective cohort studies that are one of the most trustworthy observational studies that look
into readily available data. Again, one should keep in mind that the methods presented here are
tailored for causality studies. By adopting them, our approach finds the cause of patterns rather
than predict or explain behavior based on case features as proposed in other works [30, 29].

2.2.6 Alignment and Conformance Checking
As stated earlier, Conformance Checking is the sub-field of process mining concerned about the
studies of deviations between models and event logs. Given those two, conformance checking
algorithms give a measure of the discrepancies encountered. Many metrics were proposed; the
first and most important to us being the fitness. It indicates how well a log trace can be affiliated
to a model. In other terms, how sure are we that this specific trace was generated by the handled
model. The precision is a second metric that we use in our thesis. A low value indicates that the
discovered model allows far more behavior than what is actually authorized by the underlying
process model. In turn, the metric generalization describes how well does the discovered model
allow for behaviors that are part of the underlying process model although nonexistent in the event
log. The goal is thus to find a balance between the two metrics. The discovered model must be
precise enough as to not allow behavior nonexistent in the underlying process (avoid under-fitting)
and general enough as to allow for additional behavior not present in the log but still backed-up
by the underlying process (avoid over-fitting). The last metric is simplicity which applies the
Ockham’s Razor stating that the simpler the model discovered the better. Indeed, simplicity allows
for ease of analysis and quality insights [82]. Along with frequency, the precision metric is used
to evaluate our behavioral patterns.

Coming back to the fitness metric, traditionally, two main categories of methods are employed to
compute it. The first makes use of alignments as defined in Section 2.1.3. The second is coined
Log Replay. In one method of this category, called token-based log replay, the trace is replayed by
the model such that additional tokens may be inserted to reach the final markings when the trace
doesn’t allow the completion. In turn, there may still stay leftover tokens in the model that were
not consumed. Both types of tokens represent unwanted deviations [34]. A third category that
made its appearance is constraint-based conformance checking where instead of an imperative
model, a set of constraints or rules, such as in a Declare model, are tested for satisfaction by the
log traces [12, 20]. Some of these works incorporate multi-perspective conformance checking
that takes into account various dimensions like data or organization [12].

Alignment-based conformance checking represents the de facto standard in the field. Contrary
to the log replay techniques, they provide more precise and valuable results. Most commonly,
the techniques are designed for procedural or imperative models. Besides, since the alignment
operation uses the A* algorithm, works propose different forms of cost functions. We can mention
the ones based on: manually defined costs for specific process deviations [25], probabilities [44],
region theory and state similarity [17], etc.

70

CHAPTER 2. PRELIMINARIES AND RELATED WORK

In the following, we will mention some contributions that leverage alignments in different settings.
By detecting the spurious activities or missing links in the model, [35] are able to repair process
models so that they become more in line with reality. Moreover, alignments can be leveraged
to adapt to multi-dimensional settings. In [55] authors use advanced alignments to include the
resource and data dimensions. Cost functions may also be extended to take into account data and
agents information, such us [25] where the optimization problem is solved through integer linear
programming. Another work uses data-enhanced causal nets for a multi-perspective alignment of
BPMN process models [26]. On another hand, there is a handful of methods that use alignments
on declarative models such as [24, 21].

In order to cater for large scale event logs and/or models, other approaches use a divide-and-conquer
strategy where they aim to align parts of the model instead of the whole one [58, 74, 87]. Since
the parts or submodels are aligned individually, parts only of the traces are used. However, the
results are only an appoximation of the complete traditional alignment. These techniques can still
be used to locate fitness problems in a large model and focus on the most interesting parts for the
stakeholders. It is important to precise that ACOBPAM uses somehow the divide-and-conquer
approach by decomposing the trees and trying to separate the already aligned behaviors from the
ones that need realignment.

A particular work of interest for us is [85] where authors propose an incremental framework for
aligning process models in the context of online conformance checking. Instead of a complete
event log recording past behavior of a process until its termination, the study of deviations is
performed on event streams, meaning, conformance is realized in real-time concurrently with the
process execution. In this setting and given a process model, a prefix-alignment is computed upon
receiving each event. This particular alignment takes into account the fact that subsequent events
may still bring synchronous moves and append them into the alignment reducing potentially its cost.
As such, a notable property is satisfied by the technique, prefix-alignments always underestimate
the real cost of the complete alignment between the presently received trace and the model. If the
stream for a certain case comes to an end, the prefix-alignment already calculated is not guaranteed
to be optimal although it represents a lower bound for the actual optimal alignment. The degree of
deviation can hence be bounded. In some cases, the new prefix-alignment uses the last step of the
A* algorithm of the previous prefix-alignment; hence the incremental denomination.

Compared with the last contribution, our ACOBPAM algorithm has some key differences. First
we have at disposal a complete log containing information about already terminated cases. So,
in our case, each alignment computed is guaranteed to be optimal. Next, there is not only one
process model to align but several process trees. In fact, instead of using an incomplete alignment
(prefix-alignment) and adapt it to the same process model, we use complete alignments to construct
those ofmore complex trees. In fact, the new alignments in our method are not created by resuming
from a certain step in the A* algorithm from the alignment before. A complete new algorithm is
enacted which may or may not re-execute a complete A* star algorithm. Besides, instead of the
incrementality based on continuing the A* algorithm, the incrementality in ACOBPAM uses the
"results" of a previous independent alignment. These results include a specification of the already
aligned behaviors along with their occurrences in the traces. If these behaviors are also part of the

71

CHAPTER 2. PRELIMINARIES AND RELATED WORK

tree to evaluate, we call them validated context because they don’t need to be replayed for the new
model. Moreover, our alignment uses log moves only and searches for a complete occurrence of a
word of the language of the model in the trace.

2.3 Conclusion
In this chapter, we started by laying the ground for the presentation of different algorithms in
Process Mining through preliminary definitions; mainly, event logs, Petri nets, process trees and
alignments. Afterwards, we gave a quick tour of the related work. Particularly, we presented the
classical methods for Pattern Discovery in structured processes as well as the new methods more
geared towards flexible processes either with or without the data dimension. We saw that the latter
are quite diverse with little to no similarity. Nevertheless, for each approach, we discussed the
limits and how our contributions differentiate from them. We also discussed subsidiary fields like
Pattern Mining, alignments and causality study, the last one being an additional and interesting link
between data and pattern. The next chapter introduces our first approach COBPAM for extracting
behavioral patterns out of flexible processes.

72

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Figure 2.4: Example of four WF-nets [82]

73

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Figure 2.6: Typical control flow structures and the ordering relations they leave in the event
log [82]

Figure 2.7: A process model with a non-free choice construct [89]

Figure 2.8: A flower model allowing any sequence of activities [89]

74

3
Behavioral Pattern Mining with COBPAM

Contents
3.1 Algebraic Operations and Structures on Process Trees 75

3.2 Quality Metrics . 78

3.3 Behavioral Pattern Discovery with COBPAM 80

3.3.1 A Monotonicity Property . 80

3.3.2 Compact and Maximal Process Trees 80

3.3.3 Optimization Based on Projections . 81

3.3.4 The COBPAM Algorithm . 82

3.4 Conclusion . 84

We recall that we introduced COBPAM as a response to the research goal G1 which is to improve
over the state-of-the-art algorithm LPM Discovery [80]. Inspired from the Sequential Pattern
Mining algorithm, GSP [75], this first algorithm uses a combination based approach to construct
behavioral pattern, i.e., process trees present in most of the traces in the event log. In the following,
we present in Section 3.1 the said combination operation and its supporting structures. Then, we
list the quality metrics we use to evaluate insightful process trees in Section 3.2. Finally, Section
3.3 discusses the core of the algorithm, its target properties, optimizations and pseudocode.

3.1 Algebraic Operations and Structures on Process Trees
In this section, we devise a method for constructing process trees incrementally. We propose to
combine two process trees composed of n activities to derive process trees of n + 1 activities.
The process trees combined must be identical except for a single leaf node. We further impose
conditions on these leaves, as follows:

75

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

Figure 3.1: (a) a combination operation of two process trees (b) the construction tree of the process
tree seq(BT, and(CO, RB))

Definition 3.1 (Potential Combination Leaf). Given a process tree P of depth i, a leaf node a of
depth d is called potential combination leaf, if d ≥ i − 1 and there is no leaf b of depth d′ on the
left of a such that d′ > d.

Two process trees that can be combined are called seeds.

Definition 3.2 (Seeds). Process trees P1 and P2 are called seeds, if they contain two potential
combination leaves, a in P1 and a′ in P2, such that by replacing a in P1 with a′, we obtain P2.

The above notion requires that both process trees are identical except at the level of the leaves
a and a′. For instance, from our running example in Fig. 1.3, seq(BT, CO) and seq(BT, RB) are
seeds. Next, we formally define the algebraic operation of combination.

Definition 3.3 (Combination operation). A combination of two seeds P1 and P2 through an
operator x is an operation generating two process trees. Starting from P1, the combination leaf a
is replaced by the operator x, whose children are set to a and a′. a becomes the left child in one
resulting tree, and the right child in another one. a and a′ are called the combination leaves and x
is called the combination operator.

Fig. 3.1a shows an example of a combination of two process trees seq(BT, CO) and seq(BT, RB)
through the concurrency operator, which results in two trees: seq(BT, and(CO, RB)) and seq(BT,
and(RB, CO)).

Thanks to the conditions characterizing the potential combination leaves, the following theorem
holds true: t

Theorem 3.4. For a process tree P of depth i ≥ 1, there is a unique pair of seeds P1 and P2,
whose combination through an operator x results in P. P1 and P2 are called ‘the’ seeds of P and
x is called the defining operator of P.

76

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

Proof. Let’s consider a process tree P of depth i. It will contain at least two leaves of depth i since
all operators have two children. Let 2n (n ≥ 1) be the number of leaves of depth i in P. We will
consider two cases:

n = 1: P has only two leaves a j and ak of depth i that are children nodes of some operator x. In
parallel, let us consider two process trees P1 and P2 which are the same as P except that the node
x is replaced with the activity a j in P1 and with ak in P2 leaving thus P1, P2, a j and ak with depth
i − 1. Now, since there are no deeper leaves on the left of a j (resp. ak) in P1 (resp. P2), P can be
obtained by applying the combination operation on P1 and P2 through the operator x.

Moreover, there is only a unique couple of seeds whose combination results in P. To prove that,
we suppose that there exists another couple P′1, P′2 that can produce P when combined. This means
that P′1, P′2 are similar except for a single leaf (a′j in P′1 and a′k in P′2). The two leaves appear in P
under a certain operator x′ which corresponds to the combination operator. Besides, considering
how the combination is realized, any other branch in P appears both in P′1 and P′2 which means
the depth of these two processes is i since the branches in P leading to a j and ak are of depth i.

However, the combination being performed means that, in P′1 and P′2, a′j and a′k are of at least
depth i − 1. This leaves two cases:

• a′j and a′k are of depth i − 1 in P′1 and P′2 meaning their depth in P after the combination is i
which contradicts the hypothesis that there exists only two leaves a j and ak of depth i in P.

• a′j and a′k are of depth i in P′1 and P′2 meaning their depth in P after the combination is i + 1
which contradicts the hypothesis that P is of depth i.

We conclude that P′1 and P′2 cannot exist and that P1 and P2 are the unique seeds that produce P.

n > 1: In this case, P has at least four leaves of depth i. Let a j be the leftmost deepest leaf, x its
parent operator and ak the other child of x. We then consider two process trees P1 and P2 that are
the same as P except that x is replaced with a j in P1 and with ak in P2. These process models are
of depth i and contain 2(n − 1) leaves of the same depth. Moreover, by construction, there are no
deeper leaves on the left of a j (resp. ak) in P1 (resp. P2) and a j (resp. ak) is of depth i − 1 in P1

(resp. P2). That means P1 and P2 can be combined resulting in P.

In addition, these two processes are the unique pair whose combination outputs P. Again, to prove
this, we will consider another pair P′1 and P′2 which, when combined results in P. This means, the
only difference between them is a single leaf (a′j in P′1 and a′k in P2). These two leaves appear in P
under a certain operator x′ which corresponds to the combination operator between P′1 and P′2.
Besides, any branch leading to a leaf different than a′j and a′k present in P also appears in P′1 and
P′2. Hence, the depth of the two fragments is also i and the leaves a′j and a′k are of at least depth
i − 1 in P′1 and P′2. We will separate the cases :

• a′j and a′k are of depth i − 1 in P′1 and P′2 meaning their depth in P is i and since a j is the
leftmost deeper leaf, then it’s on the left of a′j and a′k in P. Thus, there exists a deeper leaf
(of depth i) on the left of a′j (resp. a′k) in P′1 (resp P′2) which means P′1 and P′2 are not seeds
and that contradicts the combination conditions.

77

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

• a′j and a′k are of depth i in P′1 and P′2 meaning their depth in P is i + 1 which contradicts the
hypothesis that P is of depth i.

We conclude that P′1 and P′2 can’t exist and that P1 and P2 are the unique couple of process trees
that produce P. In conclusion, any process tree of depth i ≥ 1 is the result of a combination of two
unique seeds. �

Given that every process tree of depth larger than zero results from the combination of two unique
seeds, we introduce additional structures.

Definition 3.5 (Construction tree). Given a process tree P of depth i ≥ 1, we define its construction
tree. The nodes of this tree are process trees: The root is P, the leaves are trees with single activity
nodes; the children of a non-leaf node are its seeds.

Fig. 3.1b exemplifies the construction tree of the process tree seq(BT, and(CO, RB)).

Definition 3.6 (Construction graph). We define the construction graph over the set of activities A.
It is a directed acyclic graph. Its (infinite) set of nodes is given by all possible process trees. An
edge is defined between nodes n1 and n2, if n1 is a seed of n2. We say that n2 contains n1 through
the defining operator of n2.

To identify a tree, COBPAM uses the concept of representative word.

Definition 3.7 (Representative word). Each process tree P is assigned a representative word
RW(P), a sequence of characters. It is constructed by pre-order traversal of its nodes, outputting
activities and operators.

For example, the representative word of seq(BT, and(CO,RB)) is ‘(BT (CO RB and) seq)’.

3.2 Quality Metrics
This section defines metrics to evaluate the quality of a behavioral pattern with respect to a log in the
form of a set of cases (we adopt the definition of simple event log). Following the reasoning given
in [80], we consider quality metrics that are based on a notion of behavioral containment. That is,
given a case c and its associated trace ĉ, the behavior of a process tree P is exhibited by the trace, if
there exists a word w ∈ Σ(P) of the language of P, such that w is a subsequence of ĉ. For example,
in Fig. 1.4, the process tre defines the language {〈BT, S W,CO,RB〉, 〈BT, S W,RB,CO〉}. Trace 1
of the event log in Fig. 1.4a exhibits this behavior, since 〈BT, S W,CO,RB〉, is a subsequence of
Trace 1. Trace 8, in turn, is a counter-example. It does not exhibit the behavior since neither of the
two words are subsequences of it.

Using the log move only alignments defined in Section 2.1.3, we define two functions: a boolean
one ε(ĉ, P) that returns one, if ĉ exhibits P, i.e., trace ĉ fits the process tree P; otherwise, it returns
zero. A second one, υ(ĉ, P), returns the exact behavior exhibited by the trace ĉ among all the
words generated by the process tree P .

78

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

We employ these functions to define the concept of projection and several quality metrics that
provide the foundation for the COBPAM algorithm.

Definition 3.8 (Projection). A projection is a subset of an event log L associated with a process
tree P that contains the cases of which the traces can be aligned with P:

pro j(P, L) = {c ∈ L | ε(ĉ, P) = 1}.

Definition 3.9 (Frequency and Support). Given an event log L, the frequency of a process tree P
is the number of cases that exhibit its behavior:

frequency(P, L) =
∑
c∈L

ε(ĉ, P) = |pro j(P, L)|.

Its support is the frequency over the size of the log:

support(P, L) =
frequency(P, L)

|L|
.

Definition 3.10 (Precision). Given an event log L, the precision of a process tree P is the ratio of
the behavior seen in the log and all the behavior allowed for by the model. If P does not contain
loop operators, it is defined as:

precision(P, L) =
|{υ(ĉ, P) | c ∈ L ∧ ε(ĉ, P) = 1}|

|Σ(P)|
.

If P contains loop operators, its language will be infinite, so that its precision will tend to zero. In
this case, we use the n-language of P:

precision(P, L) =
|{υ(ĉ, P) | c ∈ L ∧ ε(ĉ, P) = 1}|

|Σn(P)|

Here, a low n value allows for loops being ‘precise’ with little repetition, whereas a higher value
imposes more repetitions before a model is considered to represent the log behavior well. This
decision has to be taken manually by an analyst and offers control over the number of repetitions
observed in the log that shall be taken as evidence for the presence of an actual loop in the model.
The question is how many forms does the loop need to appear in before it becomes an actual loop
model; not just ad-hoc repetitions observed and not backed-up by the underlying process model.
In other words, at which point, do we consider that at some moment a decision is made to repeat a
set of activities again? Indeed, a loop model gives the possibility to execute even more repetitions
when some conditions are met. So, incorporating the right loops in the discovered models will
ensure a higher generalization when considering new traces.

79

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

3.3 Behavioral Pattern Discovery with COBPAM
This section presents a new algorithm to discover process trees that represent frequent behavior in
a log. Our idea is to explore a construction graph, starting from process trees of single activities.
Each process tree is evaluated against a part of the log that may exhibit its behavior to calculate the
aforementioned quality metrics. We also introduce a projection based optimization and pruning
rules to limit the number of process trees to evaluate and the number of traces used for evaluation.

In Section 3.3.1, we discuss a monotonicity property that is later exploited in our pattern search.
We also define what we consider compact and maximal process trees in Section 3.3.2, and introduce
optimization based on projections in Section 3.3.3. Finally, in Section 3.3.4, a detailed view of the
algorithm is given.

3.3.1 A Monotonicity Property
The combination operation introduced in Section 3.1 replaces a potential combination leaf with a
sub-tree representing a portion of a behavior that either extends the behavior of the original tree
(when using the choice operator) or constrains it (when using a sequence, loop, or concurrency
operator). When evaluating a process tree whose defining operator is a constraining operator
(sequence, loop, concurrency), we essentially want that the trace exhibits all the behavior of its
seeds except at the position of the combination leaf. At this position, additional behavior shall
replace the appearance of an activity in the trace. The shared behavior between a process tree and
its seeds represents a context to which the additional behavior is joined. Hence, if a trace does not
exhibit the context, there is no need to evaluate the added behavior.

From the above, it follows that, if one of the seeds is not frequent, there is no need to evaluate the
tree, as it will be infrequent too. This is a monotonicity property of the support metric. Based
thereon, we specify a first pruning rule: If a seed is infrequent, it should not be combined using
a constraining operator.

3.3.2 Compact and Maximal Process Trees
We further direct our search for behavioral patterns towards process trees that are useful from an
analysis point of view. We therefore define compactness of process trees, as follows:

Definition 3.11 (Compact process tree). Given an event log L, a process tree P is compact, if it
satisfies all of the following conditions:

1. P does not exhibit the choice operator as a root node. If this condition is violated, the
process tree would be the union of completely separate behaviors. While this may result in
a frequent tree, the tree is arguably of little interest.

2. P does not result from a combination through a choice operator, where, given L, one of the
seeds is frequent. This is motivated as follows: If a tree P1 is frequent, combining it with any

80

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

other tree P2 through the choice operator results in a frequent tree. Yet, P2 adds complexity
by means of behavior that may not even appear in the log.

3. P does not contain a loop operator loop(P1, P2), such that only the behavior of P1 appears
in L. While having only the behavior of P1 yields a valid trace of the respective process
tree, the derivation of an operator loop(P1, P2) is not meaningful, if L does not contain the
behavior of P2.

Note that from condition (2), we immediately derive a second pruning rule for the exploration of
candidate patterns: When performing a combination through the choice operator, both seeds must
be infrequent.

In addition to compactness, there is a second property that is desired for behavioral patterns. It is
motivated by the monotonicity property. The latter states that a frequent process tree P whose
defining operator is a constraining operator must have two frequent seeds. Hence, we shall return
solely P, as the seeds can simply be derived from P and are known to be frequent. In other
words, we consider P to be the representative of its seeds. Furthermore, by transitivity, P is a
representative of the paths in the construction tree composed solely of trees defined by constraining
operators. As a consequence, discovery shall be limited to the largest representatives, which we
call maximal behavioral patterns.

Definition 3.12 (Maximal process tree). Considering all behavioral patterns of at most depth i, a
behavioral pattern is maximal, if it is frequent and not contained through a constraining operator
in another frequent process tree of depth smaller or equal to i.

In the example of Fig. 1.3, the trees seq(BT, CO) and seq(BT, RB) are frequent, but not maximal,
since they are contained in seq(BT,and(CO, RB)). When seq(BT,and(CO, RB)) is discovered, all
the frequent trees it represents, such as seq(BT, RB), can be deduced.

3.3.3 Optimization Based on Projections
We recall that we aim at the discovery of frequent process trees. The runtime complexity of a
method to solve this problem is governed, among other factors, by the size of the construction
graph, which increases exponentially when the number of activities increases, and by the size of
the log used to evaluate the quality of the trees. To cope with the latter, we present an optimization
that complements the two pruning rules introduced in Section 3.3.1 and Section 3.3.2. Our
optimization uses projections to assess the frequency of a tree based on a small number of traces:

• When performing a combination through a constraining operator, the behavior associated
with the resulting trees may only appear in the intersection of the projections of the seeds. As
a result, quality metrics are calculated solely based on the said intersection. Moreover, the
size of the intersection of the seeds projections represents an upper bound for the frequency
of the resulting trees. This yields a third pruning rule: If the upper bound is less than the
frequency threshold, the combination is not considered further.

• When performing a combination using the choice operator, the projection associated with
the resulting trees is the union of the projections of the seeds. Moreover, the frequency

81

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

Algorithm 1: COBPAM: Function addFreq
input : P, a process tree; Γ, set of frequent process trees;

Θ, a set of frequent compact maximal process trees;
τS , a support threshold; τL, a precision threshold.

1 Γ′ ← ∅;
2 for P′ ∈ Γ do
3 Γ′ ← combine P, P′ through operators {and,loop,seq} with pruning rules;
4 for R ∈ Γ′ do
5 if τS < support(R, L) (Definition 3.9) then
6 if τL < precision(R, L) (Definition 3.10) then
7 Θ← Θ ∪ R;
8 Θ′ ← trees on constraining operat. paths in construction tree of R;
9 Θ← Θ \ Θ′ ;

10 for each potential combination leaf a in R do
11 RW ← create representative word, replace a with ‘_’ in RW(R);
12 ΓRW ← set containing frequent trees identified by RW;
13 addFreq(R,ΓRW ,Θ, τS , τL);

14 else
15 for each potential combination leaf a in R do
16 RW ← create representative word, replace a with ‘_’ in RW(R);
17 γRW ← set containing infrequent trees identified by RW;
18 addInfreq(R, γRW ,Θ, τS , τL);

19 Γ← Γ ∪ P;

of the resulting trees can be precisely derived and corresponds to the size of the union of
the seeds projections. On another hand, the language of the new trees is the union of the
languages of the seeds.

3.3.4 The COBPAM Algorithm
Now we are ready to present COBPAM, an algorithm that strives for efficient discovery of
behavioral patterns that are frequent, compact and maximal. In order to achieve high efficiency,
it largely neglects infrequent activities. More precisely, it discovers process trees that are built
from frequent activities as well as frequent combinations of two infrequent activities through the
choice operator. Here, a frequent combination of two infrequent activities is considered as a single
activity in the remainder of the algorithm.

Note that pruning of infrequent trees, in general, implies a certain loss of patterns. Due to the
choice operator, trees that are infrequent at some point can be combined to get frequent ones at a
later stage. Hence, pruning infrequent trees potentially leads to missing some frequent patterns
that comprise a choice operator. Despite this, COBPAM applies the respective pruning, since
without it, a large number of infrequent process trees would need to be evaluated. Moreover,
the loss of frequent behavioral patterns in the discovery process is limited to process trees that
comprise the choice operator. Completeness of the discovery result for trees built of constraining
operators is not affected.

82

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

Algorithm 2: COBPAM: Function addInfreq
input : P, a process tree; γ, set of infrequent process trees;

Θ, a set of frequent compact maximal process trees;
τS , a support threshold; τL, a precision threshold.

1 γ′ ← ∅;
2 for P′ ∈ γ do
3 γ′ ← combine P and P′ through choice operator;
4 for R ∈ γ′ do
5 if τS < support(R, L) (Definition 3.9) then
6 if τL < precision(R, L) (Definition 3.10) then
7 Θ← Θ ∪ R;
8 for each potential combination leaf a in R do
9 RW ← create representative word, replace a with ‘_’ in RW(R);

10 ΓRW ← set containing frequent trees identified by RW;
11 addFreq(R,ΓRW ,Θ, τS , τL);

12 else
13 for each potential combination leaf a in R do
14 RW ← create representative word, replace a with ‘_’ in RW(R);
15 γRW ← set containing infrequent trees identified by RW;
16 addInfreq(R, γRW ,Θ, τS , τL);

17 γ ← γ ∪ P;

The idea of the COBPAM algorithm is to incrementally build up sets of process trees. In the
light of the pruning rules, we maintain two kinds of sets, containing only frequent and infrequent
trees, respectively. The former kind serves as the basis for combinations through the constraining
operators, whereas the latter serves for choice-based combinations. All trees inside a set are
identical except for a single leaf node. In fact, any two trees in a set are seeds and can be combined.
Moreover, since the difference between two seeds is a single leaf, we associate each set with an
identifier in the form of a representative word that applies to any of the representative words of
the contained trees. Take, for example, the tree seq(BT, CO). Its representative word is (BT CO
seq). The process tree can be added to the set defined by (BT _ seq), where the underscore is
a placeholder for any activity. So, any other tree, e.g., seq(BT, RB), can be added to the set by
replacing the placeholder with an activity. The placeholder is always at the position of a potential
combination leaf.

The algorithm revolves around two functions, addFreq, defined in Alg. 1, that adds the process tree
P to a set Γ containing only frequent trees; and addInfreq, defined in Alg. 2, that adds P to a set γ
containing only infrequent trees. By Θ, we further denote the set of frequent compact maximal
trees, which represents the actual result of our algorithm. As such, the respective trees must satisfy
a given precision threshold. Moreover, since the result shall contain only maximal trees, each time
a frequent tree defined by a constraining operator is added to it, parts of its construction tree are
deleted.

The COBPAM algorithm starts by creating the set of frequent process trees identified by the word
‘_’, i.e., any frequent tree with a single activity is added to it. We apply function addFreq on

83

CHAPTER 3. BEHAVIORAL PATTERN MINING WITH COBPAM

this set for each frequent activity. The algorithm then proceeds recursively, switching between
addFreq and addInfreq. Les deux fonctions réalisent constamment des opérations de combinaison.
Note that one may use a maximum recursion depth d, which then also limits the maximum depth
for the discovered trees to force termination.

3.4 Conclusion
In this chapter, we presented COBPAM, a context-agnostic approach for the discovery of particular
behavioral patterns that are meaningful and non redundant. We first introduced important notions
revolving around the combination operation, a central element to our approach. Then, we discussed
the metrics we use to evaluate the relevance of our patterns before turning to the algorithm itself.
We also covered its different optimizations through the pruning of the search space and the use of
projection rules. We finally discussed the wanted properties of maximality and compactness. In
the following chapter, we include the data dimension to enrich our study of flexible processes.

84

4
Data-aware Analysis Framework

Contents
4.1 Behavioral Rules . 85
4.2 Contextual COBPAM . 86

4.2.1 Contexts . 86
4.2.2 Contextual Behavioral Patterns . 88
4.2.3 Contextual Pattern Discovery Approach 89

4.3 Causal Relationship between Data and Occurrences of Behavioral Patterns 91
4.4 Methodology for Using the Data-aware Framework 93
4.5 Conclusion . 94

Our second contribution is a complete analysis framework that takes into account the data attributes
in the event log. It extends COBPAM with the study of different types of dependencies in order to
validate research goals G2 and G3. In the first section of this chapter, Section 4.1, we discuss
correlations between behavioral patterns themselves through the discovery of behavioral rules that
express strong links between patterns. We then present in Section 4.2, CCOBPAM, a data-aware
process discovery method that builds over COBPAM in order to discover patterns with relation to
contexts. Finally, we turn to a study of causality between data and the occurrence of behavioral
patterns in Section 4.3 before providing a general methodology for the usage of our framework in
Section 4.4.

4.1 Behavioral Rules
A first perspective for the analysis of discovered patterns are correlations between the patterns
themselves. Understanding the interplay between patterns, again, provides deeper insights into the
conduct of the considered process.

85

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

In particular, we explore the interplay of behavioral patterns that are part of a frequent behavioral
pattern, which includes a sequence or concurrence operator as the root node. For such a setting,
we investigate the presence of correlations between child patterns.

First, consider a discovered pattern P = seq(P1, P2) with P1, P2 being subtrees. For such a
pattern, we investigate whether there is evidence for an association rule P1 → P2. From the
existence of P, we know that the behavior of P2 appears after the behavior of P1 during process
execution. Two cases are possible; either P2 is strongly associated with P1, meaning P2 is observed
always and only when P1 is observed; or it is loosely associated, if that is not the case. We
compute the odds ratio to evaluate the potential correlation which should be greater than one.
For an association rule R→ Q, the odds ratio is given as (support(R ∧ Q) ∗ support(¬R ∧ ¬Q))/
(support(¬R ∧ Q) ∗ support(R ∧ ¬Q)) while the confidence interval’s lower bound at 95% writes
as in (4.1). If this latter value exceeds one then the association rule holds.

exp(log(oddsRatio)−1.96∗

√
1

supp(R ∧ Q)
+

1
supp(¬R ∧ ¬Q)

+
1

supp(¬R ∧ Q)
+

1
supp(R ∧ ¬Q)

)

(4.1)

Fig. 4.1 gives an example of a process configuration where there is no interplay (odds ratio is
below one). It is to be noted that the computation of the odds ratio is done efficiently based on
the results of the actual pattern discovery. Since the root of P is a sequence operator and due to
monotonicity, P1 and P2 are also frequent and the set of traces in which they appear are already
known.

The same procedure is applied to behavioral patterns that have the concurrency operator as a root
node, P = and(P1, P2). The sole difference is that the semantics of the concurrency operator have
to be incorporated: positive evidence for a correlation is provided by traces, in which the behavior
of P1 appears in parallel with the one of P2, and never without it. Also, if the behavior of P1 is not
observed in a trace, neither is the behavior of P2.

4.2 Contextual COBPAM
This section presents our approach for taking into account contexts when discovering behavioral
patterns. In order to obtain fine-granular insights into the behavior of a process, behavioral patterns
can be associated to different contexts specified through conditions based on attributes that are
attached to traces. This way, it is revealed whether a pattern is specific to a context, or materializes
independently of any execution context.

4.2.1 Contexts
As a first step, we clarify the notion of a contextual event log. It includes attribute values that
represent the context in which a case was recorded. It is to be noted that such attributes could be

86

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

Figure 4.1: Example of a non-valid behavioral rule.

related to the intrinsic features concerning a case, e.g., the age group of the patient undergoing
treatment, or could concern properties of the execution environment and the interdependencies
between cases, e.g., how many patients checked in within the same time interval as the patient
under consideration [70]. In our case, the possible attribute values are defined by a relation
R(D1, . . . ,Dn) with Di being the domain of the i-th attribute. In the remainder, we write di for the
name of the i-th attribute. A tuple of this relation is assigned to a case of the event log, as follows:

Definition 4.1 (Contextual event log). Given a simple event log L and a relationR(D1, . . . ,Dn),
such that the i-th attribute is a case attribute named di ∈ ANC (the set of attribute names) and
∀c ∈ L, #di(c) ,⊥. A contextual event log is then a pair (L, χ) where χ is a function that maps
each case c of L to χ(c) = (v1, . . . , vn), with vi ∈ Di, vi = #di(c), i.e, a tuple ofR.

To define the notion of a context, we introduce D′i as an extension of the domain Di with a
dedicated, unique symbol ‘∗’, which represents a wildcard. We capture this semantics by an
inclusion order ⊂D′i = {(vi, ∗) | vi ∈ Di}, with ⊆D′i =⊂D′i ∪{(vi, vi) | vi ∈ Di} as its reflexive version,
so that the wildcard symbol includes any value vi ∈ Di. The pair (D′i ,⊂D′i) defines an inclusion
hierarchy H(di) on data attribute di. An example for two such hierarchies of our initial example is
given in Fig. 4.2.

A context is defined as a tuple (v1, . . . , vn) with vi ∈ D′i ,∀i ∈ {1, 2, . . . , n}. Contexts are organized
through an inclusion order ≤, such that two contexts C = (v1, . . . , vn),C′ = (v′1, . . . , v

′
n) are ordered,

denoted as C ≤ C′, if vi ⊆D′i v′i ∀i ∈ {1, 2, . . . , n}. If ∃1 ≤ i ≤ n, vi ⊂D′i v′i , then context C′ is said
to be more general than C, while C is referred to as being more specific and we write C < C′

(strict inclusion order). A context C = (v1, . . . , vn) is atomic, if vi ∈ Di,∀i ∈ {1, 2, . . . , n}. We also

87

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

designate a decomposition of a context C as the non-empty set of atomic contexts that are more
specific than C.

For illustration purposes, consider the example of Fig. 4.2. The context (*,<70) is more general
than (low, <70). As stated earlier, ‘∗’ is a wildcard symbol that represents any value vi; meaning
the context (*, <70) represents all the population with the age being smaller than 70, independent
of the income. Contexts are derived directly from the data attribute values assigned to the traces
in a log, and their hierarchy is well-defined due to the inclusion order over these values.

Note that the granularity of the contexts definition is controlled by the size of the domains of the
data attributes and their number. In particular, for continuous data attributes, discretization may
be employed, which divides the domain into several intervals, as to avoid generating a big number
of contexts. The age attribute of our example illustrates such a discretization by considering solely
two age groups (<70 and 70+) instead of the actual age values.

4.2.2 Contextual Behavioral Patterns

Now that we introduced contexts, we link a context to a contextual event log. That is, we consider
the set of traces for which the contextual information is contained in the context.

Definition 4.2 (Associated event log). Let (L, χ) be a contextual event log and C = (co1, . . . , con)
a context. The associated event log of context C, is a contextual event log (L′, χ′) with L′ ⊆ L,
such that case c ∈ L is part of L′ if χ(c) = (v1, . . . , vn) and for all vi it holds that vi ⊆D′i coi; and χ′
is the restriction of χ to L′.

Moreover, we define the size of the context C with respect to (L, χ) as the size of the associated
event log (L′, χ′).

A process tree is said to be C-frequent or frequent in C, if it is frequent in its associated log. In
fact, we distinguish two types of behavioral patterns for a non-atomic context:

• C-general behavioral patterns: The patterns are frequent in C and in every descendant
of C. Applied to our running example (see Fig. 1.4), these would be patterns answering
questions such as what patterns are frequent in the low income population whatever their
age?

• C-exclusive behavioral patterns: The patterns are C-frequent only in C and its descendants.
In our example, these would be patterns answering the question what behavioral patterns
are exclusively present for patients that are older than 70, whatever their level of income?

If a pattern is C-frequent in at least an atomic context and not C-General or C-exclusive in any
context, it is called AC-frequent. If a pattern is C-frequent in the most general context, i.e., the
associated event log is the original event log, it is called log-frequent.

88

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

*

low high
H(income)

*

<70 ≥70
H(age)

Figure 4.2: Hierarchies on data attributes income and age

4.2.3 Contextual Pattern Discovery Approach
Based on the notions of context and contextual behavioral patterns, we are ready to define the
problem of discovering these patterns from a given event log. We first formulate the problem
explicitly, before we discuss how to tackle it.

Problem 4.3 (Contextual Behavioral Pattern Discovery). Given a contextual event log, (L, χ),
the problem of contextual behavioral pattern discovery is to find the set Φ of C-general and
C-exclusive behavioral patterns in each context of the hierarchy induced by the mapping function
χ. Φ contains the C-frequent patterns in the atomic contexts as well.

The objective here is to exploit the data dimensions present in the event log, which have been
ignored by previous methods for behavioral pattern discovery. To address the above problem, we
introduce Contextual COBPAM (short CCOBPAM), as an adaptation of the COBPAM algorithm.
Before defining the algorithm, we motivate the underlying design choices. Adopting the reasoning
presented for sequential pattern mining with contexts [63], we observe the following: A behavioral
pattern P is C-general, if and only if, it is frequent in the atomic contexts in the decomposition of
C. In the same vein, a pattern P is C-exclusive, if and only if, it is frequent in the atomic contexts in
the decomposition of C and not frequent in any other atomic context. Consequently, discovery of
the two types of patterns, C-general and C-exclusive, in all contexts shall start with the discovery
of behavioral patterns in atomic contexts.

The CCOBPAM algorithm takes as input the data attributes di that shall be considered for the
definition of contexts, and a contextual event log. It returns a set of discovered behavioral patterns
Φ, and three functions atomLoc, genLoc, and excLoc. These functions map each behavioral
pattern P to, respectively, the atomic contexts, in which it is C-frequent; the contexts, in which it
is C-general; and the contexts, in which it is C-exclusive.

CCOBPAM is based on two functions executed sequentially. The first one, atomMine, defined
in Alg. 3, extracts the behavioral patterns from the atomic contexts by applying COBPAM. It
returns the set of contextual behavioral patterns and, for each contextual pattern, the set of atomic
contexts in which it is frequent (through atomLoc). Note that ACOBPAM could be applied here.
In case the precision of the contextual behavioral patterns is important, COBPAM is recommended
because as we will see in Chapter 5, the precision metric has been deleted in ACOBPAM.

A contextual behavioral pattern could be the one in Fig. 1.4c, noted Pex. It is discovered in both
contexts [low, <70] and [low, 70+] resulting in atomLoc(Pex) = {[low, <70], [low, 70+]}

89

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

Algorithm 3: CCOBPAM: Function atomMine
input : AC, the set of atomic contexts;

τS , a support threshold; τL, a precision threshold;
τD, a depth threshold.

output
:

Φ, set of behavioral patterns;

atomLoc.

1 for C ∈ AC do
2 Γ← COBPAM(C, τS, τL, τD), derive maximal compact C-frequent behavioral patterns;
3 for P ∈ Γ do
4 add P to Φ;
5 add C to atomLoc(P);

Algorithm 4: CCOBPAM: Function nonAtomMine
input : NC, the set of non atomic contexts;

Φ, set of behavioral patterns.
output
:

genLoc; excLoc.

1 for P ∈ Φ do
2 for C ∈ NC do
3 if the decomposition of C is contained strictly in atomLoc(P) then
4 add C to genLoc(P)

5 else if the decomposition of C equals atomLoc(P) then
6 set excLoc(P) to C

A second function, nonAtomMine, defined in Alg. 4, iterates over the non-atomic contexts to
discover the C-general and C-exclusive patterns thus returning genLoc and excLoc. We recall that
a pattern P is C-general in a context C if P is C-frequent in each context of the decomposition
of C and is C-exclusive if it is only frequent in that decomposition. Since atomLoc(P) points
to the atomic contexts where it is frequent, then a C-general pattern in C is one such that the
decomposition of C is part of atomLoc(P) and a C-exclusive pattern in C is one such that the
decomposition of C is equal to atomLoc(P). Coming back to our running example, when executing
nonAtomMine, for Pex, we iterate over the non-atomic contexts. Encountering [low, *], we
realize that atomLoc(Pex) is equal to the decomposition of [low, *]. As such, Pex is considered
C-exclusive in [low, *] and excLoc will be set to [low, *].

The support and precision of any pattern on a non atomic context NC is directly inferred from the
aggregation of the frequencies and language seen in the decomposition of NC. Particularly, the
support of a pattern in context NC is the sum of its frequencies in the atomic contexts from the
decomposition of NC over the size of NC. The precision of a pattern in NC is the size of the union
of the words seen in the atomic contexts of the decomposition of NC over the size of its language.

90

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

4.3 Causal Relationship between Data and Occurrences of Be-
havioral Patterns

C-exclusive patterns are frequent solely in some context C and its descendants. This suggests that
the frequency of the patterns is independent of the unconstrained attributes (i.e., set to ’∗’) and
is, in fact, correlated to the constrained ones. Knowing this, in order to interpret a pattern, it is
useful to assess whether the traces actually suggest a causal relation between the context C and the
occurrence of the pattern. Below, we limit ourselves to such causal relations for contexts that define
a specific value for one of the attributes, while leaving the other attributes unconstrained. This
restriction is motivated by the potential existence of causal relations between multiple constrained
attributes, which would compromise the analysis. Specifically, if context C assigns a specific
value v to some attribute d, the question is whether the occurrence of pattern P that is frequent
in just context C and its descendants, is caused by the value v. The derivation of such a causal
relation helps to interpret the discovered pattern and provides further insights into how the context
influences the execution of the process.

We approach the analysis of causal relations between the context and a behavioral pattern by
adopting the idea of a cohort study, as known in the medical domain. We recall that it aims to
assess the impact of a risk factor, called the exposure variable, on an outcome variable. The
procedure follows two groups with common characteristics apart from the risk factor. The group
with the risk factor is the exposure group, the other one the non-exposure group. The common
characteristics must be evenly distributed among the two groups and serve as controlled variables.
A study may be a perspective study, if the groups are followed until the outcome appears, or a
retrospective study, if it is conducted after the outcome has been observed as in our case.

In our context, a C-exclusive pattern P induces a certain correlation. With two variables for each
trace, one indicating whether attribute d is set to value v and one indicating whether the behavior
of P is exhibited, we may formalize the dependency as an association rule linking these variables.
As a next step, we are interested in the presence of a causal association rule between the variables,
which we assess following common procedures for cohort studies [51]. Causality is a stronger
notion than correlation which states that a change in the exposure variable provokes a change in
the outcome. However, for any point in time, concerning an individual in a population, we cannot
observe the outcome in the presence and in the absence of the risk factor. The observed event is
called factual and the hidden one is called counterfactual. To prove causality, the outcome should
appear in the presence of the exposure and disappear otherwise (either if the presence of the
exposure is the factual or the counterfactual). A cohort study works with observational data. For
each data point in the exposure group, meaning an individual with some characteristics (controlled
variables) where the risk factor is present, we simulate the counterfactual by choosing another
data point with exactly the same characteristics in the non-exposure group. This concordance of
the characteristics is, of course, an assumption of the method as some variables can be unrecorded.
On another hand, if the outcome is clearly independent of some variable, there is no use to it as its
value has no impact on the observed outcome. We can, in fact, use an individual with a different
value for that variable as counterfactual because the outcome will not change.

91

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

In the following, we develop the method based on the above principles. A running example will
illustrate each step. We suppose the existence of three attributes, d, a, b, in the contextual event log
with two modalities for d (v and v′) and three for each of a and b, ai, bi,∀1 ≤ i ≤ 3. The following
steps ensue:

(1) We transform the relation R(D1,D2,D3) that captures possible contexts in terms of attribute
value combinations into a relation of Boolean variables B(B1, . . . , B8). Here, the modalities
of each attribute d, a, b are transformed into a set of Boolean indicator variables, od set to true
(resp. od′) if d = v (resp. d = v′) and oai (resp. obi) set to true ∀1 ≤ i ≤ 3 if a = ai (resp.
b = bi).

(2) The Boolean variable od that represents value v of attribute d is defined as the exposure
variable.

(3) We define a Boolean outcome variable t per case c and pattern P that is equal to ε(c, P), i.e., it
is true if the pattern is part of the trace, and false otherwise.

(4) Next, we identify among the attributes present in the contextual log, the ones that are correlated
with the outcome variable, t and thus possible causal factors. These variables will serve as
controlled variables. The reason is that we want to assess if, variable od being set to true,
causes variable t being set to true among other possible causal factors. To this end, we apply
the odds ratio defined previously as a measure of correlation. For our example, we suppose
that only oa1, oa2, oa3, ob1, ob2 hold association rules with od.

(5) The event log is divided into an exposure group (cases where od is true) and non-exposure
group (remaining cases). The groups are then filtered to ensure that the controlled variables
are evenly distributed in both groups, in order to mitigate their effect. As it can be seen in
Fig. 4.3, cases 6 and 11 were filtered out because both of their controlled variables could not
be found in the opposite groups. By eliminating them, we ensure an equal distribution of the
controlled variables values between the groups.

(6) For each existing combination of values of the controlled variables, we assess the value of the
outcome variable. Cases with a positive outcome in the exposure group and a negative one in
the non-exposure group provide evidence for a causal relation (let their number be n1). Cases
with a negative outcome in the exposure group and a positive one in the non-exposure group,
in turn, provide evidence against a causal relation (their number is noted n2). If the ratio of
the number of cases providing evidence for and those providing evidence against a causal
relation, n1

n2
, is larger than one, we conclude on the existence of the causal relation. The lower

bound of the confidence interval of the latter ratio is given by exp(log(n1
n2

) − 1.96 ∗
√

1
n1

+ 1
n2

) .
A value higher than 1 confirms the causal relationship [51].

Following this procedure, we are able to identify whether the context information of attribute d (or
od, respectively) can indeed be seen as the cause of the occurrence of pattern P.

92

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

Exposure group

Case od oa1 oa2 oa3 ob1 ob2 t

1 1 1 0 0 0 0 1
3 1 0 0 1 0 0 1
4 1 0 1 0 0 0 0
12 1 0 1 0 1 0 0
6 1 0 0 1 1 0 0

Non-exposure group

Case od oa1 oa2 oa3 ob1 ob2 t

9 0 1 0 0 0 0 0
2 0 0 0 1 0 0 1
8 0 0 1 0 0 0 1
5 0 1 1 0 1 0 0
11 0 0 1 0 0 1 0

Figure 4.3: Exposure and non exposure groups construction.

4.4 Methodology for Using the Data-aware Framework

Finally, we integrate the presented approach for the discovery of behavioral patterns with the
procedures for the analysis of discovered patterns in a general methodology, as follows:

(1) To get a first overview of behavioral regularities, context-agnostic behavioral patterns are
identified with the COBPAM algorithm (or ACOBPAM), given a configuration of thresholds
for the support and precision.

(2) Next, contextual attributes are selected, paying attention to their semantics and modalities
(continuous or discrete). If needed, pre-processing is applied to adapt, normalize, or discretize
the attribute values.

(3) A minimal context size is defined, in relation to the size of the log and, potentially, knowledge
about the process under investigation. Contexts that don’t meet the minimal size are discarded
from the analysis and their associated traces deemed not representative enough of the context.

(4) Contextual behavioral patterns are mined with the CCOBPAM algorithm.
(5) Follow the interpretation guidelines, detailed below, to derive insights on the process.
(6) If suggested by these guidelines, adapt the support threshold, repeat the discovery of behavioral

patterns, and note potential changes in the set of patterns.
(7) Finally, the presence of behavioral rules, then of causal relations with context data for

C-exclusive patterns are evaluated according to the aforementioned procedures.

To complete the above methodology, we provide guidelines for the interpretation of discovered
contextual behavioral patterns. CCOBPAM reveals patterns with respect to a hierarchy of contexts
and considers different types of frequency that can be interpreted as follows:

93

CHAPTER 4. DATA-AWARE ANALYSIS FRAMEWORK

• AC-frequent: The pattern is frequent in at least an atomic context and not C-General or
C-exclusive somewhere else.

• C-exclusive: The pattern is exclusively frequent in the context and all its descendants,
meaning that its occurrence is independent of the populations considered inside the context.

• C-general: The same interpretation as for a C-exclusive pattern applies. Yet, the pattern is
also frequent somewhere else in the context hierarchy.

Moreover, patterns that are discovered by context-agnostic discovery with COBPAM and context-
aware discovery with CCOBPAM are particularly interesting to derive insights on the process. In
the following, we characterize the possible cases and provide an interpretation:

• A log-frequent pattern appears as a C-exclusive pattern in the root context: The pattern is
not only frequent in the whole log, but also frequent in every context. This means that the
pattern is strongly frequent, independent of the considered population.

• A log-frequent pattern appears as C-exclusive or C-general in large contexts or C-frequent
in large atomic contexts: The pattern is actually frequent in some parts of the log that
represent a significant portion of the log, which renders the pattern log-frequent. Yet, it is
infrequent in other contexts. As such, the occurrence of a pattern that occurs very often (i.e.,
it is log-frequent) can be linked rather accurately to specific contexts.

• A log-frequent pattern appears as C-exclusive or C-General in only some small contexts
or as C-frequent in some small atomic contexts: The pattern is frequent in some parts of
the log and close to frequent in other parts. This may point to a need to revisit the chosen
support threshold.

• A pattern is infrequent when the context is neglected, but is frequent under some context:
The identified behavior is frequent, but applies solely to specific contexts, showing the
relevance of a contextual analysis.

4.5 Conclusion
This chapter was dedicated to the Data-aware Analysis Framework. We started by discussing the
behavioral rules which were inspired by Sequential Rule Mining. We then presented our model
for contexts definition and the different types of frequency we considered such as C-generality
and C-exclusivity. We used interesting theorems to devise the search algorithm and continued
with a causality study. Finally, the exhaustive methodology for the analysis is detailed. In the
next chapter, we went back to the context-agnostic setting and set out to further improve execution
times and to maximize the insights extracted.

94

5
Advanced Behavioral Pattern Mining

Contents
5.1 Alignment Growth . 96

5.1.1 Definitions . 96

5.1.2 Leftmost Occurrence First (LOF Property) 97

5.1.3 The Growth Procedure . 97

5.1.4 Changes, Limits and Intuitions . 99

5.2 Post-processing . 105

5.2.1 Generalized Maximality . 106

5.2.2 Trees Equivalency . 111

5.3 Visualization . 112

5.4 Conclusion . 114

In this chapter, we look into Advanced COBPAM (ACOBPAM), an upgrade of the initial COBPAM
algorithm that aims at bringing an improvement on three aspects: the runtime, the number of
returned patterns and finally the analysis difficulty, thereby further satisfying the research goal G1.
It also provides additional dependencies between patterns helping in realizing research goal G2.
One section is dedicated to each facet of the improvements brought by ACOBPAM. Section 5.1
presents the alignment growth procedure which we applied to significantly reduce runtimes. It
relies on using past established alignments in computing new ones. We recall that alignments
allow to compute the quality metrics. Then in Section 5.2, we introduce a post-processing step
to reduce the number of returned trees further eliminating irrelevancy. Finally, in Section 5.3,
we devise a graph that allows for an interactive and intuitive visualization with the most relevant
patterns discovered.

95

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

5.1 Alignment Growth
The COBPAM algorithm browses the construction graph while outputting frequent trees. It
chooses paths in an intelligent manner by applying the pruning and projection rules. Also, seeds
are combined to get more complex trees. The information on the frequency of the complex trees
are aggregated from the frequencies of those seeds. The same with the set of traces that are
susceptible to welcome the trees resulting from the combinations. This particular set is determined
from the seeds’ projections. However, each time a tree is evaluated and its frequency assessed, the
whole tree is aligned using the A* algorithm with the complete trace. Advanced COBPAM applies
the same reasoning on frequencies and projections mentioned above on alignments. Practically,
we will use the already computed seeds’ alignments to extract the one of the tree at hand. We call
this procedure the alignment growth.

Given a process tree P, a case c and its associated trace, ĉ, the alignment growth recursively
accomplishes two tasks. First, it detects which part of the behavior of the tree is already present in
the trace, named validated context. This is the behavior previously aligned in the children of P.
The second task is to decide, if needed, to re-align other parts of the tree. The re-alignment is
applied on a version of the trace stripped of the validated context. In the end, we are aligning
smaller trees on smaller traces taking advantage of the older alignments. The execution times are
thus substantially reduced.

In the following, we will introduce necessary definitions, an interesting property on which the
alignment growth is built and then detail the growth procedure. Finally, we dedicate a section
to the concessions we made and the limits of our new alignment algorithm while divulging the
intuitions behind it.

5.1.1 Definitions
Definition 5.1 (Shadow Map). Given a sequence of events σ = 〈σ1, σ2, . . . , σn〉, a case c and
its associated trace ĉ where σ ≤ ĉ, we call the shadow map of σ on ĉ the increasing mapping
function s : {1, 2, . . . , n} → {1, 2, . . . , |ĉ|} where ∀i, j ∈ N, 1 ≤ i ≤ n, 1 ≤ j ≤ |ĉ|, s(i) = j if and
only if σi = ĉ(j). We may also write s(σi) to refer to s(i) when σi is unique in the trace. Moreover,
we call s(i) the shadow of σi.

During the execution of Advanced COBPAM, a shadow map of each discovered behavior υ(ĉ, P)
for each case in pro j(P) is stored. This shadow map is also called for simplification the shadow
map of P on ĉ. Note that when we mention υ(ĉ, P), we automatically imply that the pattern appears
in a trace. In other words, ε(ĉ, P) = 1.

Definition 5.2 (Behavioral Context). A behavioral context of a pattern P is a subsequence of a
word of the language of P. Meaning, σ is a behavioral context of P if and only if σ ≤ w where
w ∈ Σ(P). This subsequence is named "context" because it could be interleaved or concatenated
with another sequence to generate the word w. In fact, σ serves as a context in which new activities
are incorporated.

96

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

Definition 5.3 (Validated Context). Given a process tree P, a case c and its associated trace ĉ, a
validated context V(ĉ, P) is a behavioral context of P whose existence in ĉ can be asserted without
recourse to the classical alignment of P. We can give the validated context by its shadow map on
ĉ. Besides, if the context is clear, we can write V(P).

Definition 5.4 (Boundary of a Pattern). The boundary of a pattern P contained in a trace ĉ
associated to a case c, symbolized by β(ĉ, P) is a couple (s(1), s(|υ(ĉ, P)|)) where s is the shadow
map of P on ĉ. The lowest index βl(ĉ, P) is called lower boundary and the highest βh(ĉ, P), the
highest boundary. If the context is clear, we may write βl(P), βh(P) and β(P).

Definition 5.5 (The Loop Block). For a given leaf a for a process tree P, the loop block of a in
P, called L(a, P), is a subtree of P whose root, noted r, is an ancestor operator of a. r is a loop
operator and no ancestor of r is a loop operator. When no ancestor of a is a loop operator or
when P is a leaf, L(a, P) = a.

5.1.2 Leftmost Occurrence First (LOF Property)
Essentially, the job of the alignment algorithm is to find a word of the language of the process tree
with which it is possible to construct a shadow map for the current trace. While doing so, the
alignment growth algorithm guarantees a certain property. If several shadow maps are applicable
for the same word of the language of the process tree, it chooses the one with the lowest indexes
for each activity. We can formally describe it as:

Property 5.6. Let a process tree P, a case c and its associated trace ĉ. We suppose the process
tree P appears in ĉ in the form of the word w = υ(P, ĉ). The shadow map s returned by the
algorithm satisfies:if s(i− 1) = j′, s(i) = j,∀2 ≤ i ≤ |w| then @ j′ < k < j such that w(i) = ĉ(k) and
@1 ≤ k < s(1) such that w(1) = ĉ(k).

This property, coined, the LOF property, is verified thanks to the workings of the classical alignment
and is preserved throughout the alignment growth. During the classical alignment, when reading
the trace from left to right, if an activity is susceptible to contribute to the construction of υ(P, ĉ),
it is aggregated right away and the reading continues. The property can be formulated differently:
the classical alignment algorithm and a fortiori the new one find the first occurrence of υ(P, ĉ) in
the trace. For example, in the trace 〈a, b, c, b, a〉, the occurrence discovered for seq(a, and(b, c)) is
〈a, b, c, b, a〉 even though 〈a, b, c, b, a〉 is a valid occurrence too. Thus, when aligning a sequence
behavior, if the precedent: a is already aligned, we can search for the consequent directly after it
since that’s the only way for the behavior to be validated.

5.1.3 The Growth Procedure
First we need to precise that the trees containing a choice operator are aligned classically. The
reason will be specified later. An exception is the trees combined through the xor operator whose
frequency can be directly inferred (see Section 3.3.3). For the other operators, having at disposal a
new pattern P constructed out of the combination of two frequent seeds P1 and P2 (according to
the monotonicity property), the objective is to determine for each trace, the validated context and

97

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

the behaviors to realign. Of course, in the case where P is a leaf, a simple classical alignment is
applied (in reality, it is a simple reading of the trace from left to right until the leaf is found). If
not, we set a as the combination leaf in P1 and b, the combination leaf in P2.

Let c a case and ĉ its associated trace and s1 (resp. s2) the shadow map of P1 on ĉ (resp. P2). We
execute the following algorithm initialized with P′ = P and ĉ′ = ĉ. We bring attention on the
fact that the alignment issued from this algorithm respects the LOF property which is proved
recursively. Moreover, any alignment of P′ is executed on ĉ′ ↑ A(P′) since the other activities
can’t be in the alignment result anyway. For simplification, this is implied when not mentioned.

The objective is to align a tree P′ using the growth method on a trace tail ĉ′. In other terms, we are
searching for a validated context while replaying some parts of P′. We suppose P′ is constructed
out of the combination of two seeds P′1 and P′2 where a and b are the respective combination
leaves. P′1 and P′2 have thus already been aligned. We face the following cases:

Case 1: if P′1 is not a leaf and P′ writes as seq(Q′,Q′′) with Q′, Q′′ two subtrees. Then, we will
enumerate two cases:

Case 1.1: if L(a, P′1) is contained in Q′′, then according to the workings of the combination
operation P′1 writes as, P′1 = seq(Q′,Q′′1) and P′2 = seq(Q′,Q′′2) with Q′′1 ,Q

′′
2 , the two seeds of

Q′′. As such Q′ was already aligned on ĉ′ while respecting the LOF property: the occurrence
computed is the leftmost one. This implies that Q′ has the same shadow map in both seeds.
Consequently, all we need to do is to align Q′′ using the alignment growth algorithm after Q′,
meaning on tlβh(Q′)+1(ĉ). Indeed, since the occurrence of Q′ considered is the leftmost one, any
occurrence of Q′′ that validates seq(Q′,Q′′) comes after Q′. Moreover, since both alignments
respect the LOF property then the whole alignment of P′ respects it too. It is to be noted that the
shadow map of Q′ on ĉ′ is part of the validated context of P′ and that the seeds of Q′′, Q′′1 and Q′′2 ,
were aligned on tlβh(Q′)+1(ĉ).

Finally, We set P′ to Q′′ and ĉ′ to tlβh(Q′)+1(ĉ) and repeat the alignment growth algorithm.

Case 1.2: if L(a, P′1) is contained in Q′, then, according to the combination operation, P′1 =

seq(Q′1,Q
′′) and P′2 = seq(Q′2,Q

′′) with Q′1, Q′2 the seeds of Q′. This means that Q′′ was aligned
in both seeds. However, they don’t necessarily share the same shadow map, as in P′1, Q′′ was
aligned after Q′1 and in P′2 after Q′2. We will note β1 the boundary of the appearance of Q′′ during
the alignment of P′1 and β

2 that of its appearance during the alignment of P′2. On the same subject,
while it is true that Q′′ is aligned in ĉ′, we have no guarantee that Q′ exists in ĉ′ before the already
calculated appearances of Q′′ (either before β1

l or β
2
l). So we have to align Q′ using the growth

algorithm on ĉ′ (we set P′ to Q′ and repeat the growth procedure. ĉ′ stays unchanged). Once
that done, we check if βh(Q′) < min(β1

l , β
2
l) and if not, we check βh(Q′) < max(β1

l , β
2
l). If the first

condition is met, then the leftmost occurrence of Q′′ calculated in the seeds is the one aggregated
into the validated context. Else, it is the second leftmost occurrence calculated in the seeds. That
is because in those cases, Q′ still precedes Q′′ in ĉ′. If neither conditions are met, we realign
classically Q′′ on the trace tlβh(Q′)+1(ĉ). On another note, since both the alignment of Q′ and Q′′

adhere to the LOF property, the whole alignment does.

98

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

Case 2: if P′1 is not a leaf and P′ writes as P′ = and(Q′,Q′′) with Q′, Q′′ two subtrees, we test
if Q′′ contains L(a, P′1). In that case, we swap Q′ and Q′′ since the operator is symmetric and
that has neither an impact on the language of the tree nor on the alignment. As a result, we have
P′1 = and(Q′1,Q

′′) and P′2 = and(Q′2,Q
′′) with Q′1, Q′2, the two seeds of Q′. Since the seeds were

already aligned then Q′′ was too. Besides, when aligning P′, there is no order constraint between
Q′′ and Q′. As such, the already calculated alignment of Q′′ serves as a validated context for P′.
The next step is to align Q′ using the growth algorithm on ĉ′. The trace we align on doesn’t change
because of the absence of an order enforcement. So we set only P′ to Q′. Finally, the alignment of
P′ respects the LOF property because both the alignments of Q′ and Q′′ do.

Case 3: P′1 is not a leaf and P′ is L(a, P′1). In this case, a classical alignment of P′ is required.
There is no validated context V(P) and the LOF property is respected thanks to the classical
algorithm.

Case 4: P′ = seq(a, b). We know that a and b have already been aligned. So, we test if
βl(b) > βh(a). In that case, no classical alignment is needed and the shadow maps of a and b are
part of the validated context. Else, b is realigned classically after a. In other words, b is re-aligned
on tlβh(a)+1(ĉ). In both cases, the LOF property is respected because we use the classical procedure
right after a leftmost first occurrence and/or use already calculated alignments.

Case 5: P′ = and(a, b). We know that a and b are aligned. Since there is no order constraint
between them then P′ is aligned too. No classical alignment is needed and the shadow maps of
both a and b are included in V(P). In this particular case, the whole alignment of P is directly
constructed and υ(ĉ, P) is a validated context in its whole. It can be proven straightforwardly by
backtracking. Here too, the LOF property is satisfied.

Case 6: P′ = loop(a, b). There is no validated context and P′ is aligned classically satisfying thus
the LOF property.

A hidden feature that is not directly visible is that when excluding the validated context from
the alignment, we end up excluding its alphabet from the trace. As we mentioned earlier, the
realignment of any behavior is realized on a version of the trace containing only the relevant
activities. So, in addition to truncating the trace and using only its tail, the number of activities to
align on is reduced. The classical alignment on the other hand proceeds using the alphabet of the
entire tree which is less than optimal.

5.1.4 Changes, Limits and Intuitions

Compactness

Our first modification was to further precise the compactness property. A fourth condition was
added:

• For a tree P constructed out of the combination of two seeds P1, P2, with the respective
combination leaves being a and b, if the defining operator is a concurrence operator, then
both the behaviors 〈a, b〉 and 〈b, a〉 have to appear in the log. Indeed, in the previous version

99

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

of COBPAM, there were cases where only one of the orderings appeared, say 〈a, b〉, and the
tree with the concurrence was still considered frequent alongside the tree with the sequence,
seq(a, b). Yet, the and operator indicates the absence of an order constraint between the two
activities and that can only be deduced if both orderings appear in the log.

Loop Language

In this section, we give more information about the loop alignment. In fact, we changed
the way we search for loops in the log. Actually, if multiple iterations of a loop exist in a
trace ĉ associated to a case c, the behavior discovered υ(ĉ, P) is shortened to one iteration.
For example, for the pattern loop(a,b) and the trace σ = 〈a, b, e, a, d, b, a, c, d, a, f , g, h, e, k〉,
the behavior discovered is 〈a,b, e, a, d, b, a, c, d, a, f , g, h, e, k〉 whereas COBPAM discovers
〈a,b, e, a, d,b, a, c, d, a, f , g, h, e, k〉. While this has no impact on the frequency of the pat-
terns and the ε function is still equal to 1, it influences the accuracy of the discovery. Indeed,
using the alignment growth algorithm, we cannot detect the exact behavior of the pattern that
materializes in the trace.

Considering this change, the metric precision loses its meaning. Since we do not precisely detect
the word of the language of the pattern that appears in the trace, we cannot assert how strongly a
pattern is contained in the log. Consequently, we no longer compute this metric nor do we use a
threshold on it when returning trees. Moreover, as we described in Chapter 4, the n parameter
when defining the n_language of a tree allowed us to indicate at which moment a loop in the
traces is considered a loop in the model. For example, if we chose n = 5, then the loops in the
traces should appear in a range of one to five iterations to validate the precision metric. Meaning,
the returned trees incorporate a model loop only if a maximum of different numbers of iterations
from one to five is observed. The idea is, if different numbers of iterations are observed, then
there really is a task that can be repeated x times according to some decision; the higher n is, the
higher the probability of such looping. Now, the change we made in ACOBPAM removes this
degree of control on the semantics of the loops. All loops appear in the same way as one iteration.
In other words, if 〈a, b〉 appeared in the log and in a consistent manner, a followed as in 〈a, b, a〉,
it will be considered a loop even though in the model there is no looping; meaning, there is no
possibility to add new iterations. It is just a simple and systematic re-execution of a after 〈a, b〉.
The risk of returning patterns that are loosely represented in the log , due to the absence of the
second metric, is the only limit to the new algorithm and we made this concession because, often
times, it is more important to find frequent patterns than to find out how they appear exactly. Just
as it is more interesting to have false positives than to miss out on some patterns or not being
able to discovering them at all. ACOBPAM allows us to make the exploration possible thanks to
feasible and, order of magnitude reduced, runtimes.

Let’s now justify this one iteration limitation. We suppose we didn’t apply it and consider the
aforementioned trace σ. We introduce the following seeds: seq(loop(a, b), c), seq(loop(a,b), d)
which have already been aligned on σ. Following the alignment growth procedure, P1, P2 ap-
pear respectively as: 〈a,b, e, a, d,b, a, c, d, a, f , g, h, e, k〉 and 〈a,b, e, a, d,b, a, c,d, a, f , g, h, e, k〉.
Indeed, the loop in these two trees were aligned classically and in its working, the alignment

100

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

finds the longest word of the language of the tree that exists in the trace, i.e. the appearance that
yields the less deviations with respect to the model, see optimal alignment in Section 2.1.3. Next,
we combine P1 and P2 to generate the following pattern: P = seq(loop(a, b), seq(d, c)). When
attempting to align P, the subtree loop(a, b) will be considered a validated context since it was
already aligned (Case 1.2). d is also a validated context (Case 4), so the algorithm searches for
c right after d: 〈a,b, e, a, d,b, a, c,d, a, f , g, h, e, k

−−−−−−−−−−−→
〉. As there is no occurrence of c after d, then

ε(σ, P) = 0 and the pattern is deemed non existent in the trace, which is false. Indeed, if we loop
only once, we get: 〈a,b, e, a,d, b, a, c, d, a, f , g, h, e, k〉. The problem is, when the loop appears
before the new behavior that needs to be classically aligned, it is considered a validated context.
In fact, the loop itself is a validated context, but the form it takes is not. The number of iterations
may change to adapt to the new behavior added since we are searching for an appearance of the
process and that its appearance has many variants. In a sense, here, the alignment of the loop
doesn’t respect the spirit of the LOF property. We recall that the property allows us to search for a
consequent without looking back again at the precedent.

In order to cater for this problem, two solutions are possible: the first is to realign the precedent if
it contains a loop when encountering Case 1.2. The other is to make sure the validated context is
the shortest possible, so that the consequent has all the space to appear after it. Hence, the choice
to restrict the loops to one iteration only since it is the minimum for a loop behavior and we also
don’t have to recompute the actual iterations that can make space for the consequent behavior. We
adopted the latter option because the main goal of ACOBPAM was to reduce runtimes and the
validated contexts are the way to do that, especially considering how time consuming it is to align
loops (see Section 5.1.4). Also, we think the drawback is minor since as we mentioned above, the
change has no impact on the frequency of the patterns.

The Xor Case

The xor operator puts us in a position similar to that of the previous section. Indeed, let
P1 = seq(xor(a, seq(b, c)), d), P2 = seq(xor(a, seq(b, c)), e) and the traceσ = 〈a, d, b, c, e, a, d, f 〉.
P1 and P2 appear respectively in σ as: 〈a, d,b, c, e, a,d, f 〉 and 〈a, d,b, c, e, a, d, f 〉 since this is the
alignment that occupies most of the trace and is a leftmost occurrence (leftmost optimal alignment).
However, for P = seq(xor(a, seq(b, c)), seq(d, e)), if we’re tempted to apply the growth procedure,
we find L(d, P) = d and the appearance of the xor subtree as well as the leaf d is considered a
validated context. As such the realignment would take the form: 〈a, d,b, c, e, a,d, f

−→
〉. Of course,

it would be an unfructuous one. Yet, the trace does contain the pattern P, albeit on a different xor
path. The shadow map can be given as: 〈a,d, b, c, e, a, d, f 〉. As in the loop case, the xor subtree
is indeed a validated context but it doesn’t appear necessarily the same way.

Another issue with the xor operator can be observed in the following case. Let P′1 =

seq(xor(a, b), d), P′2 = seq(xor(a, c), d) and a trace σ′ = 〈c, b, a, d〉. P′1 and P′2 appear re-
spectively as: 〈c,b, a,d〉 and 〈c, b, a,d〉. Our objective is to align P′ = seq(xor(a, seq(b, c)), d).
On another hand, in the growth algorithm, we tend to realign the changes, while mostly leaving the
leftmost validated context untouched. However, aligning the changes below the choice operator is

101

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

not the right thing to do. Indeed, the realignment would take the form 〈c,b, a, d
−−→
〉 and wouldn’t

yield a result. Conversely, adopting an other path in the xor subtree allows us to determine an
appearance of P : 〈c, b, a,d〉. This path will bypass the new changes that are non existent in the
trace. It is important to know that the a path was not chosen initially because the other path was
encountered earlier in the trace.

In conclusion, if we would want to apply the growth procedure, the alignment of the choice
operator must be the one that leaves the most space on the right for new behaviors in the tail of the
trace. Only in that case, can it serve as an appropriate validated context. Also, the xor subtree
needs to be reevaluated when its offsprings are modified. Contrary to the loop case presented
earlier, we cannot guarantee the suitable alignment for the growth method by limiting a static
parameter like the number of iterations. The path to choose is really case-dependent and a unique
algorithm cannot cover them all without adding too much complexity that may be detrimental
in the long term. Facing this, we decided to align classically trees containing xor operators and
guarantee this way the detection of the pattern in the trace.

The Loop Block

This section is dedicated to the intuition behind the loop block. First, we consider the pattern P in
Fig. 5.1 and its two seeds P1 and P2. Let the following trace σ = 〈a, c, a, b, c, b, d, e〉 where both
P1 and P2 appear in the respective forms: σ = 〈a, c, a, b, c, b,d, e〉 and σ = 〈a, c, a,b, c,b,d, e〉.

Now, if we want to align P, the left child of the loop becomes seq(b, a); meaning, we have to
find the word 〈b, a〉, followed by c and then a repetition of 〈b, a〉. So, with respect to the seeds,
the combination operation brought two changes in what we are searching for, one before the
right child of the loop c and another after; whereas the sequence and the concurrence operators
bring only one change. Both these alterations need to be aligned and the validated context is
minimal: b. Indeed, we search for 〈a, c, b, a〉 in σ = 〈a, c, a,b, c, b,d, e

−−−−−−→
〉 which doesn’t exist in

this case. In the end, most of the behavior we are searching for needs a complete alignment
and detecting a validated context comes down to assessing a lot of individual cases with a low
probability of seeing actual gains. An extreme example is having a cascade of loops like :
P′ = loop(loop(loop(seq(a, b), c), d), e). When we align this tree, the change introduced is only
at the level of seq(a, b) but it has a repercussion on all the higher loops. Each one of them has to
modify the first occurrence of the left child as well as its repetition. A complete realignment of the
highest loop containing the change is necessary; which is exactly the definition of the loop block.

An alignment unwrapping

We present in the following an instance of an alignment using the growth procedure. The tree
to align is R depicted in Fig. 5.2 along with its seeds R1 and R2. We suppose the trace to align
on is: σ = 〈a, e, f , c, b, c, a, b, c, d, f , e〉. The seed R1 is contained as: 〈a, e, f , c, b, c, a, b, c,d, f, e〉
and R2 as: 〈a, e, f , c,b, c, a, b, c,d, f, e〉. Here’s the alignment’s recursive evolution. We first set
P′ = R and ĉ′ = σ.

102

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

seq

and

ed
loop

cseq

ab

(a)

seq

and

ed
loop

ca

(b)

seq

and

ed
loop

cb

(c)

Figure 5.1: A tree P (a) and its seeds: P1 (b) and P2 (c).

1. (Case 1.2.) We have P′1 = R1 is not a leaf and P′ = R writes as a sequence. As
L(a,R1) = a is contained in the first child, we realign and(seq(seq(a, b), c), d) on σ. We
set P′ = and(seq(seq(a, b), c), d), P′1 = and(seq(a, c), d) and P′2 = and(seq(b, c), d) and
ĉ′ = σ.

(a) (Case 2.) We have P′1 is not a leaf and the root of P′ is a concurrence operator. As
such, d is a validated context. The shadow map of P′ and a fortiori of R contains
〈a, e, f , c, b, c, a, b, c,d, f , e〉. We align P′ = seq(seq(b, a), c) with P′1 = seq(a, c),
P′2 = seq(b, c) and ĉ′ = σ.

i. (Case 1.2.) We have L(a, P′1) = a contained in the left child of P′. So we have to
align the first child P′ = seq(b, a) on ĉ′ = σ. In this case, P′1 = a and P′2 = b.

A. (Case 4.) We have P′1 is a leaf and P′ = seq(b, a). b and a have already been
aligned in the forms: 〈a, e, f , c, b, c, a, b, c, d, f , e〉 and
〈a, e, f , c,b, c, a, b, c, d, f , e〉 respectively. However, we notice that in this
alignment a is not after b. So we have to align a after b:
〈a, e, f , c,b, c, a, b, c, d, f , e

−−−−−−−−−−−−−→
〉; (the actual trace aligned is the projection on the

considered alphabet: 〈a, e, f , c,b, a
−→
〉) which results in

〈a, e, f , c,b, c, a, b, c, d, f , e〉. That is the alignment of seq(b, a).

ii. (Follow-up of (i), Case 1.2.) The left child seq(a, b) of P′ has just been
aligned. We have that P′1 = seq(a, c) and P′2 = seq(b, c) have already been
aligned in the seeds in the respective forms: 〈a, e, f , c, b, c, a, b, c, d, f , e〉 and
〈a, e, f , c,b, c, a, b, c, d, f , e〉. Both the occurrences of c in these two forms are
before the occurrence of seq(b, a). So we have to realign c after the latter
occurrence: 〈a, e, f , c,b, c, a, b, c, d, f , e

−−−−−−−−→
〉 (here too, the actual trace realigned:

〈a, e, f , c,b, c, a, c
−→
〉) which results in 〈a, e, f , c,b, c, a, b, c, d, f , e〉. This is the

alignment of P′ = seq(seq(b, a), c).

103

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

(b) (Follow-up of (a), Case 2.). The only thing to do here is to incorporate the validated
context d and construct the alignment of P′: 〈a, e, f , c,b, c, a, b, c,d, f , e〉

2. (Follow-up of (1), Case 1.2.) The first child of R, and(seq(seq(a, b), c), d) has been aligned.
Now we test if the already computed occurrence of the right child and(f,e) exists after the
first child. That is the case and the occurrence is considered a validated context. Finally, the
complete alignment of R is 〈a, e, f , c,b, c, a, b, c,d, f, e〉.

seq

and

fe
and

dseq

cseq

ab

(a)

seq

and

fe
and

dseq

ca

(b)

seq

and

fe
and

dseq

cb

(c)

Figure 5.2: A tree R (a) and its seeds: R1 (b) and R2 (c).
In conclusion, we took advantage of the validated contexts and aligned just two times a single leaf
on a single leaf trace. We reduced an exponentially hard alignment problem to two if conditions.
In fact, the more the validated context alignment is time consuming, the higher the gains.

The Redefinition of the Potential Combination Leaves

We revised the definition of the potential combination leaves to take full advantage of the alignment
growth procedure. We present in the following the new definition before elaborating on the
justification. It is to be noted that Theorem 3.4 is still valid and can be demonstrated following an
analogous proof to the one in Section 3.1.

Definition 5.7 (Potential Combination Leaves). Given a process tree P of depth i, a leaf node a of
depth d is called potential combination leaf, if d ≥ i − 1 and there is no leaf b of depth d’ on the
right of a (instead of left) such that d′ > d.

First of all, it is important to note that, apart from Case 5., where the alignment of the pattern
doesn’t involve classical alignment at all, the most beneficial case we can encounter during the
alignment growth is Case 1.1. Indeed, it allows us to detect a structural validated context, meaning
a context that doesn’t depend on the trace plus the realignment being executed on a partial trace.
There are two other cases that show a gain in the form of validated contexts. Case 1.2 which is

104

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

not as interesting because the existence of the validated context depends on the trace and Case 2
which is structural in nature too but doesn’t shorten the realignment trace.

Knowing this, let’s analyze Fig. 5.3 and Fig. 5.4. They represent a sequence of templates. X
represents leaves while Y represents operators. The leaves don’t necessarily share the same values;
the same for operators. The two symbols are more of a placeholder. Actually, the trees are
templates of structures and each tree (for example (d)) is the template for the seeds of the next tree
(for example (e)). The red X indicates the position for the next combination operation and the
blue Y indicates the defining operator of the current tree. Starting from the tree (h), and going
back, each tree represents the structure shared by all the seeds in the corresponding level of the
construction tree of (h). The tree (h) for the level 0, the tree (g) for the level 1, ... and the tree (a)
for level 7.

The only difference between the two figures is that the first used the old definition of potential
combination leaves and the second the new one. Since the rules are no longer the same, the unique
path that must be followed to construct a certain pattern (the construction tree) is not the same
which is clearly visible in the two figures. If we look closely, we notice that in the first, patterns
are constructed from right to left; meaning, the structures on the right of the trees remain static
while new behavior is added progressively on the left. During the alignment process, it means that
we have to align the new behavior which is on the left and align after it the static behavior on the
right (of course, it depends on the actual operators in the tree but we are more concerned here
with the general tendency). This generally falls under Case 1.2 which is an unwanted behavior
as it is rare to detect a validated context and a classical realignment is often required after the
occurrence of the changed behavior. To sum up, using Definition 3.1, the right portion of the tree
complexifies while new behavior appears on the left side. The order of the changes in the tree
doesn’t follow the order of the exploration of the traces.

On the opposite, by adopting Definition 5.7, the complexification process follows the order of
reading of the trace: from left to right. Indeed, the left parts remain static while new behaviors are
added on the right. This allows to use previous alignments through Case 1.1. when the operators
permit it. As stated earlier, this the most favorable case. In the remainder of the chapter, we use
Definition 5.7.

5.2 Post-processing

The number of behavioral patterns returned by COBPAM may be overwhelming. In order to cater
for this issue, we include further processing steps at the end of the execution. We operate on two
aspects, Maximality and Equivalence. In Section 5.2.1, we define extended types of maximality
that we coin generalized. In all these types as in the original one, the idea is to avoid outputting
trees that can be deduced from others. In Section 5.2.2, we present definitions of equivalent trees.
Of course, equivalent trees should be outputted only once.

105

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

X

(a)

→

Y

XX

(b)

→

Y

Y

XX
X

(c)

→

Y

Y

XX
Y

XX

(d)

Y

Y

Y

XX
X

Y

XX

(e)

→

Y

Y

Y

XX
Y

XX

Y

XX

(f)

→

Y

Y

Y

XX
Y

XX

Y

Y

XX
X

(g)

→

Y

Y

Y

XX
Y

XX

Y

Y

XX
Y

XX

(h)

Figure 5.3: Construction tree of the template (h) according to the first definition of potential
combination leaves. (Definition 3.1).

5.2.1 Generalized Maximality
In the following, we present two new types of maximality. A maximal tree is one that can replace
its seed/seeds in the output of COBPAM/ACOBPAM. It serves as a representative. Therefore, we
define the generalized maximality through the different kinds of seeds.

Alternative Seeds

In Section 3.3.2, we introduced maximal process trees as ones that are the largest representatives of
a group of trees of smaller size. As such, a maximal tree aggregates all the information about that
group in one big pattern. Maximal trees are defined with respect to their construction trees and in
a small measure to their seeds. However, the monotonicity property on which the maximality
property is built can be extended. Indeed, in the case where a maximal tree is generated from a
pair of seeds, the latter serve as a context that will be constrained. The seeds of a pattern in our
method are well defined and unique according to Theorem 3.4 and allow for a smooth traversal of
the construction graph without redundant construction. But when we consider an isolated frequent
tree P, many of what we call alternative seeds can be combined to construct it and they also serve
as a context to P. Alternative seeds differ in only one leaf just like the regular seeds albeit that leaf
is not at a position of a potential combination leaf. We give in Fig. 5.5 an example of a tree T with

106

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

X

(a)

→

Y

XX

(b)

→

Y

XY

XX

(c)

→

Y

Y

XX
Y

XX

(d)

Y

Y

XX
Y

XY

XX

(e)

→

Y

Y

XX
Y

Y

XX
Y

XX

(f)

→

Y

Y

XY

XX

Y

Y

XX
Y

XX

(g)

→

Y

Y

Y

XX
Y

XX

Y

Y

XX
Y

XX

(h)

Figure 5.4: Construction tree of the template (h) according to the second definition of potential
combination leaves. (Definition 5.7).

its two seeds T1 and T2. However, we can also see two alternative seeds that can be combined
to get T : T3 and T4. The alternative seeds of a tree P are not combined following a potential
combination leaf.

In Alg. 1, we can see that when adding a pattern P in the final frequent patterns set, its offspring
seeds are deleted. However, the alternative seeds are not accessible since they follow another
construction path that respects Theorem 3.4. They are actually on another portion of the
construction graph browsed by the algorithm and there is no connection between them and P
because the edges symbolize a regular seed relationship. However, If the ancestor trees that are
on their path, and thus constructed out of them, are frequent, then they are deleted by the same
mechanism. In the other case, they stay in the final set even though they are perfectly deductible
from other trees. So the idea is to delete them once the discovery finished in a post-processing
step.

In the following, we first give a formalization of the alternative seeds, then prove their monotonicity
property.

Definition 5.8. Given a process tree P, we define a function, f , that maps P to a set of trees.

• if P = a with a ∈ A, an activity, then f (P) = {a}.

107

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

seq

seq

dc
seq

ba

(a)
↙ ↘

seq

cseq

ba

(b)

seq

dseq

ba

(c)

seq

seq

dc
a

(d)

seq

seq

dc
b

(e)

Figure 5.5: A tree T (a), its seeds: T1 (b) and T2 (c) and two alternative seeds: T3 (d) and T4 (e)

• if P = x(P1, P2) where x is a constraining operator and P1, P2 children subtrees, f (P) is
given as the union of:

– f (P1).

– f (P2).

– the set: {x(P′1, P
′
2) | P′1 ∈ f (P1), P′2 ∈ f (P2)}.

• if P = xor(P1, P2)with P1, P2 children subtrees, then f (P) = {xor(P′1, P
′
2) | P′1 ∈ f (P1), P′2 ∈

f (P2)}.

For a process tree of depth n ∈ N∗, the elements in f (P) \ {P} are the union of the pair of "the"
seeds of P with its alternative seeds. In particular, alternative seeds are defined for trees of at least
depth two. If we consider such a tree P then its alternative seeds are the elements of f (P) \ {P}
minus the regular seeds defined through the combination operation (see Theorem 3.4). The depth
condition is justified by the absence of seeds for depth zero and the absence of alternative seeds
(only regular) for depth one.

A generalized monotonicity property states that if a process tree P is frequent then all its alternative
seeds are frequent too. As such, in the output of ACOBPAM, we make sure that none of the
patterns discovered are alternative seeds for others. We prove the generalized monotonicity as
well as the regular one through recursion.

Monotonicity. We will prove by induction that ∀n ∈ N∗ the following statement is true:
S(n): "if a process tree P of depth n is frequent then any process tree P′ in f (P), the set of regular
and alternative seeds, is frequent too. More precisely, considering a case c and its trace ĉ, if
ε(ĉ, P) = 1 then ε(ĉ, P′) = 1"

Base case: When n = 1: P writes as P = x(a, b) with a, b ∈ A two activities. If x is:

108

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

• a constraining operator: Whatever the constraining operator x is (seq, and or loop) we
have, if ε(ĉ, P) = 1 then υ(ĉ, P) ∈ {〈ab〉, 〈ba〉, 〈aba〉, 〈ababa〉, 〈abababa〉 . . . }. If the trace
exhibits any of the words in the previous set, then it surely exhibits:

– 〈a〉. So, for P′ = a ∈ f (P), ε(ĉ, P′) = 1.

– 〈b〉. The same reasoning as above is followed.

Finally, for P′ = x(a, b) ∈ f (P), we have P′ = P and ε(ĉ, P′) = ε(ĉ, P) = 1 �

• the xor operator: For P′ = xor(a, b) ∈ f (P), we have P′ = P and ε(ĉ, P′) = ε(ĉ, P) = 1
�

We conclude that S(1) is true. �

Induction step Let n ∈ N∗ and we suppose S (l) is true ∀l ≤ n. We aim to prove S (n + 1). Let
P = x(P1, P2), a tree of depth n + 1. P1, P2 are two subtrees with the respective depths d and d′.
We suppose ε(ĉ, P) = 1. According to x, we have:

x is a constraining operator: This means that P1, P2 are present in ĉ. We set w1 = υ(ĉ, P1) and
w2 = υ(ĉ, P2). For P′ ∈ f (P), we separate three cases:

• if P′ ∈ f (P1), then according to S (d) and since P1 is present in the trace, P′ is frequent too
and we have ε(ĉ, P′) = 1 �

• if P′ ∈ f (P2), we follow the same reasoning as above since P2 is interchangeable with P1

�

• P′ = x(P′1, P
′
2) where P′1 ∈ f (P1) and P′2 ∈ f (P2). Depending on x, we separate the following

cases:

– x = seq. We have that υ(ĉ, P) = w1.w2. Meaning, P1 is present in σ1 = hdβh(ĉ,P1)(ĉ).
By applying S (d) on P1 and the trace head σ1, we conclude that P′1 is present in σ1

and we set w′1 = υ(σ1, P′1). Similarly, we know that P2 is present in σ2 = tlβl(ĉ,P2)(ĉ).
We apply S (d′) on P2 and σ2 and conclude: ε(σ2, P′2) = 1. We also set w′2 = υ(σ2, P′2).
Finally, we can deduce that ε(ĉ,w′1.w

′
2) = 1 and ε(ĉ, P′) = 1 �

– x = loop. Using the definition of the loop operator, we have
υ(ĉ, P) = w1.(w2.w2

1).(w2
2.w

3
1).(w3

2.w
4
1). . . . where w1,w2

1,w
3
1,w

4
1, · · · ∈ Σ(P1) and

w2,w2
2,w

3
2, · · · ∈ Σ(P2). We can assert that :

∗ P1 is present in the trace σ1 = hdβh(ĉ,P1)(ĉ) and by applying S (d) on P1 and the
trace head σ1, we conclude that P′1 is present in σ1 and we set w′1 = υ(σ1, P′1).

∗ P1 is present in the trace σ3 = tlβh(ĉ,P2)+1(ĉ) and by applying S (d) on P1 and the
trace tail σ3, we conclude that P′1 is present in σ3 and we set w′21 = υ(σ3, P′1)

∗ P2 is present in the trace σ2 = Inβh(ĉ,P2)
βl(ĉ,P2) (ĉ) and by applying S (d′) on P2 and the

trace σ2, we conclude that P′2 is present in σ2 and we set w′2 = υ(σ2, P′2)

109

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

loop

and

seq
GFE

seq

and

DC
loop

BA
(a)

loop

and

GE
D

(b)

Figure 5.6: A tree P (a) and one of its alternative seeds (b).

Thanks to the constructions of the tracesσ1, σ2 andσ3, we can state thatw′ = w′1.w
′
2.w

′2
1

exists in ĉ. Since w′ ∈ Σ(loop(P′1, P
′
2)), we conclude that ε(ĉ, P′) = 1 �

– x = and. Using the definition of the concurrence operator, we have υ(ĉ, P) ∈ w1 � w2.
On another hand, if we apply S (d) (resp. S (d′)) on P1 (resp. P2) and ĉ, we get
ε(ĉ, P′1) = 1 (resp. ε(ĉ, P′2) = 1). We set then w′1 = υ(ĉ, P′1) and w′2 = υ(ĉ, P′2). Since
both P′1 and P′2 are present in ĉ, then an interleaving w′ of w′1 and w′2 exists in the trace.
In other words, w′ ∈ w′1 � w′2 Which implies: ε(ĉ, and(P′1, P

′
2)) = ε(ĉ, P′) = 1 �

x is a choice operator: Meaning P = xor(P1, P2). We know that P′ writes as: P′ = xor(P′1, P
′
2)

where P′1 ∈ f (P1) and P′2 ∈ f (P2). On another hand, Since P is present in the trace, either P1 or
P2 is present in the trace (or both). If P1 is present, in other terms, ε(ĉ, P1) = 1, by applying S (d)
on P1, we have ε(ĉ, P′1) = 1. This means that one path in P′ is satisfied which translates ultimately
to: ε(ĉ, P′) = 1 �

In the case where P2 is present without P1, we apply an analogous reasoning.

We have proven that for P of depth n+1, P′ ∈ f (P) and for a trace ĉ, if ε(ĉ, P) = 1 then, ε(ĉ, P′) = 1.
We conclude that S(n+1) is true. �

Finally, by the principle of induction, S(n) is true ∀n ∈ N∗. �

Concerning the post-processing step, in order to discard alternative seeds from the output set, we
compare the patterns pairwise. For two process trees, P′ the less deep one and P, we test if P′

belongs to f (P). We remove it if that is the case. This is realized through the function isSeed(P’,
P) in Alg. 5.

Loop Seeds

The loop operator exhibits the particular property that its behavior cannot appear without involving
that of another operator: the sequence. Indeed, when respecting the compactness property and the
changes we introduced in Section 5.1.4, the behavior of loop(a, b) is Σ(loop(a, b)) = {〈a, b, a〉}.
If a trace contains this behavior (the next statement is also valid in the case of several iterations
as in the classical COBPAM algorithm), it automatically contains Σ(seq(a, b)) = {〈a, b〉} and
Σ(seq(b, a)) = {〈b, a〉}. Therefore, outputting the three trees seq(a, b), seq(b, a) and loop(a, b) is
one of the redundancies we strive to avoid.

110

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

Algorithm 5: Function isSeed
input : P, a process tree ;

P′, a process tree.
output : res, a boolean.

1 if depth(P′) ≤ depth(P) then
2 if P is a leaf then
3 res← (P′ = P);
4 else if P = x(P1, P2) with P1, P2, two subtrees then
5 if x is a constraining operator AND (isSeed(P′,P1) OR isSeed(P′,P2)) then
6 res← true;
7 else if P′ = x(P′1, P

′
2) where P′1, P′2 two subtrees AND isSeed(P′1,P1) AND isSeed(P′2,P2) then

8 res← true;

9 else
10 res← f alse;

In fact, if in the final set, a sequence operation in a tree P′ is already accounted for in another
pattern P through a loop, then we remove P′. That is because P′ with its sequence operators can
serve as a context for looping. We call P′ a loop seed. Of course, the difference between P and P′

is at the level of the loop operator with potentially inverted children.

Detecting a loop seed is performed syntactically. If P′ is a loop seed of a tree P, then the difference
between their representative words must be a loop operator in P instead of a sequence operator as
in P′ with a potential inversion of leaves.

5.2.2 Trees Equivalency
Not only do we eliminate non maximal trees in the post-processing operation but we also detect
equivalent trees. We distinguish two notions of equivalency between behavioral patterns:

• Syntactical equivalency: This equivalence appears as a direct result to the existence of
symmetrical operators in the process trees. Indeed, the same order-insensitive process tree
can be depicted in more than one way considering the interchangeability of the children of
every symmetrical operator.

• Behavioral equivalency: two behavioral patterns are behaviorally equivalent if their
languages are equal. In other words, the set of traces they generate are the same.

In order to achieve the objective behind our post-processing, we eliminate redundant equivalent
trees. It is to be noted that syntactically equivalent process trees were already taken care of in the
main algorithm of COBPAM. This was handled through the definition of a unified representative
word that is unique to all syntactically equivalent trees. It works by forcing an order on the children
of each symmetrical operator. We adopt the lexicographical order of the leaves so that the left
child must be inferior to the right child. In the case where either or both children are subtrees, the
comparison is performed according to what we call representative leaves. The representative leaf

111

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

of a subtree is the lowest leaf in the lexicographical order among all the leaves it contains. The
unified representative word is then generated by the pre-order traversal of the tree while respecting
the previous order. For example, the unified representative word of the tree seq(and(d, c), a) is ‘(c
d and a seq)’. Going back to the COBPAM algorithm, each time we add a new tree to Θ, we make
sure that it doesn’t contain a tree with the same unified representative word as the new tree.

Post-processing, in turn, makes sure to avoid outputting trees exhibiting a behavioral equivalency.
Accordingly, all trees outputted are behaviorally unique. Moreover, if an alternative or loop seed
is removed, all its equivalent trees are removed too. Behaviorally equivalent trees are detected by
comparing their languages.

5.3 Visualization
In order to navigate the behavioral patterns uncovered by our method, we conceive a graph-based
visualization. Not only does it ensure a global and simultaneous view of all patterns but also
harbors interesting relationships between them.

In the visualization graph, nodes represent patterns in the final set of retained trees after the post-
processing step. The boundaries of patterns will be utilized in the definition of the relationships
binding them. We consider four types of relationships:

For Ω, the final set of behavioral patterns and P1, P2 two behavioral patterns in Ω:

Definition 5.9 (Follows relationship). The Follows relationship F ⊂ Ω2 is defined using a support
metric, support f (P1, P2) :

support f (P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βl(P2)}|

|L|

For a threshold τ f , we have, (P1, P2) ∈ F if and only if:

support f (P1, P2) ≥ τ f

In other words, if the relative frequency of the traces inside the log where the appearance of P2 is
after the appearance of P1 is greater than the threshold τ f then, (P1, P2) ∈ F and we say that P2

follows P1.

This relationship can be translated by: P1 followed by P2 is an order frequently seen in the log.

Definition 5.10 (Inter-follows relationship). If (P1, P2) < F , the Inter-follows relationshipF ′ ⊂ Ω2

is defined using a support metric, supporti f (P1, P2).

supporti f (P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βl(P2)}|

|pro j(P1) ∩ pro j(P2)|

For a threshold τi f , we have, (P1, P2) ∈ F ′ if and only if:

112

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

supporti f (P1, P2) ≥ τi f

In other words, if the relative number of traces inside the shared traces between P1 and P2

where the appearance of P2 is after the appearance of P1 is greater than the threshold τi f then,
(P1, P2) ∈ F ′ and we say that P2 inter-follows P1.

In the case where there is no Follows relationship between P1 and P2, we can conclude that P1, P2

don’t appear in this order frequently. However, this can be due to the fact that they do not frequently
appear together at all. In this case, if the Inter-follows relationship is validated, that means that
when they do occur together, they always appear in that order. This is an interesting insight too.
We can give the following real life example to illustrate our point. Imagine a senior consultant who
always intervenes with his assistant and a junior consultant who intervenes alone. We suppose
both senior and junior consultant are called up for missions frequently. In a hypothetical log, the
relation of hierarchy (analogous to the order in the traces) between the senior consultant and his
assistant is frequent in the whole log. However, since the senior and junior consultants rarely work
on the same mission, the hierarchy relationship between them cannot be seen at the level of the
log. Yet, if we study the rare occurrences where they did work together, we can see a frequent
hierarchical relationship. Arguably, this is an important information. That is what the Inter-follows
relationships captures.

Definition 5.11 (Spans relationship). The Spans relationship S ⊂ Ω2 is defined using a support
metric, supports(P1, P2):

supports(P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βh(P2) ∧ βl(P1) > βl(P2)}|

|L|

For a threshold τs, we have, (P1, P2) ∈ S if and only if:

supports(P1, P2) ≥ τs

In other words, if the relative number of traces inside the log where the appearance of P1 fits inside
the interval defined by the boundaries of P2 is greater than the threshold τs then, (P1, P2) ∈ S and
we say that P2 spans P1.

The Spans relationship can be translated by: It is frequently observed in the log that the occurrence
of P1 spans the occurrence of P2.

Definition 5.12 (Inter-spans relationship). If (P1, P2) < S , the Inter-spans relationship S ′ ⊂ Ω2 is
defined using a support metric, supportis(P1, P2):

supportis(P1, P2) =
|{c ∈ L | ε(c, P1) = 1 ∧ ε(c, P2) = 1 ∧ βh(P1) < βh(P2) ∧ βl(P1) > βl(P2)}|

|pro j(P1) ∩ pro j(P2)|

113

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

For a threshold τis, we have, (P1, P2) ∈ S ′ if and only if:

supportis(P1, P2) ≥ τis

In other words, if the relative number of traces inside the shared traces of P1 and P2 where
the appearance of P1 fits inside the interval defined by the boundaries of P2 is greater than the
threshold τis then, (P1, P2) ∈ S ′ and we say that P2 inter-spans P1.

The intuition behind the Inter-spans relationship is the same as for the Inter-follows relationship.

Finally, we define the visualization graph.

Definition 5.13 (Visualization graph). The visualization graph G = (Ω,F ,S,F ′,S ′) is a directed
multigraph where Ω is the final set of retained patterns or nodes after the post-processing step, F
is the Follows relationship, F ′ is the Inter-follows relationship, S is the Spans relationship and S ′
is the Inter-spans relationship. Considering P1, P2 ∈ Ω, a new arc from P1 to P2 is created, each
time (P1, P2) belongs to one of the previous relationships. We apply a transitive reduction on the
relationships Follows and Spans as they are transitive relationships.

The resulting graph can be seen as a descriptive, non imperative, hierarchical and simplified
process model of L where instead of activities, behavioral patterns are used as nodes. The hierarchy
is induced by the Spans and Inter-spans relationships. Moreover, the relationships in this graph
operate at two levels of granularity. One between patterns as discussed in the definitions above
and the other between activities themselves inside the patterns. This offers even more analytical
information. Indeed, in the case of "spaghetti" processes, such a structure is highly useful in
reducing the difficulty of the analysis while fostering interesting insights. We recall that this
isn’t an abstraction from low-level events to high-level activities which is a separate subject of
research [9, 57, 79]. Our visualization technique can be adapted to any event log unlike in this
research branch where the orderings of fine-granular events must have an atomic and clear semantic
which is translated afterwards to activities. For example, the sequence "open dishwasher", "put
plates", "close dishwasher" can be transformed to a high-level activity: "use dishwasher". This
transformation is not always possible in our case as can be seen in Fig. 1.3d; a pattern that can’t be
labelled by such a self-explanatory title. Furthermore, we insist on the fact that our goal is not to
discover an end-to-end process model with abstraction properties but just to offer a global view of
the discovered patterns.

5.4 Conclusion
In this chapter, we detailed our last contribution, named ACOBPAM. First, we introduced the
alignment growth procedure where we defined important notions, presented the algorithm and
then gave some of our intuitions along with the changes we had to incorporate. Particularly, we
defined new types of seeds that respect also the monotonicity property and tried to detect all cases
of process equivalency. Second, we defined the generalized maximality and equivalency notions
for our post-processing purposes. Finally, we devised four relationships between patterns and

114

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

integrated them in an interactive visualization graph. The following chapter validates our methods
through a thorough investigation and experimentation.

115

CHAPTER 5. ADVANCED BEHAVIORAL PATTERN MINING

116

6
Experimental Evaluation

Contents
6.1 Setup and Datasets . 118

6.2 COBPAM Evaluation . 119

6.2.1 Efficiency . 119

6.2.2 Quantitative Effectiveness . 122

6.2.3 Qualitative Effectiveness . 122

6.3 Data-aware Analysis Framework Evaluation 127

6.3.1 Efficiency . 127

6.3.2 Effectiveness of Pattern Discovery . 128

6.3.3 Patterns Analysis . 129

6.4 Advanced COBPAM Evaluation . 131

6.4.1 Efficiency . 131

6.4.2 Effectiveness . 134

6.4.3 Visualisation . 135

6.5 Discussion . 135

6.6 Conclusion . 137

This chapter presents the evaluation of our algorithms both in terms of efficiency and effectiveness
on real life event logs. We start by presenting our setup along with the logs used in Section 6.1.
Then, we experiment on each contribution: COBPAM in Section 6.2, the Data-aware Analysis
Framework in Section 6.3 and finally, ACOBPAM in Section 6.4. We also discuss the limitations
of the experiments in Section 6.5.

117

CHAPTER 6. EXPERIMENTAL EVALUATION

6.1 Setup and Datasets
All our algorithms were implemented as a plugin in the ProM framework [84] as the package
BehavioralPatternMining except for the visualization graph generation. Due to the limited
capabilities of the ProM framework in terms of graph drawing, we extract a JSON model of the
visualization graph (containing behavioral patterns and their interdependencies) and use it to
generate the graph interface itself through the library GraphViz and Pydot. The Python script
is publicly available1. Note that we ran the experimental evaluation on a PC with an i7-2.2Ghz
processor, 16GB RAM and Windows 10.

Our experiments used the following real-world event logs. They cover different domains and are
publicly available.2 Moreover, they are related to flexible processes, are of reasonable size to be
explored and include data attributes with clear semantics.

• Sepsis: A log of a treatment process for Sepsis cases in a hospital. It contains 1050 traces
with 15214 events that have been recorded for 16 activities.

• Traffic Fines: A log of an information system managing road traffic fines, containing 150370
traces, 561470 events, and 11 activities.

• WABO: A log of a building permit application process in the Netherlands. It contains 1434
traces with 8577 events, recorded for 27 activities.

• BPI_2019S1: A 30% sample of the BPI Challenge 2019 log. The log belongs to a
multinational company working in the area of coatings and paints and records the purchase
order handling process. The sample regroups 479845 events distributed over 75519 traces
with 41 event classes.

• BPI_2019S2: A 40% sample of the previously mentioned event log, BPI Challenge 2019.
The sample regroups 670583 events distributed over 105962 traces with 42 event classes.

For the above event logs, we derived possible contexts based on the recorded attributes. Moreover,
we considered a minimal size for each possible context, set to 50. Since in real-world data, the
associated log of a certain context may not be representative of all possible behavior of the context
population, such a minimal size helps to avoid the discovery of non-relevant behavioral patterns.
The contexts considered for the event logs are summarized as follows.

• Sepsis: Two attributes were considered: ‘InfectionSuspected’, which is a Boolean variable
stating if an infection is suspected, and ‘Infusion’, a Boolean variable stating if an infusion
has been administered.

• Traffic Fines: Contexts were constructed from two attributes, ‘amount’, the amount of the
fine, and ‘VehicleClass’, the type of the vehicle.

1https://github.com/Alchimehd/ACOBPAM-Vis-
2https://data.4tu.nl/search?q=:keyword:"real%20life%20event%20logs"

118

https://github.com/Alchimehd/ACOBPAM-Vis-
https://data.4tu.nl/search?q=:keyword:"real%20life%20event%20logs"

CHAPTER 6. EXPERIMENTAL EVALUATION

• WABO: From all data attributes available, we chose ‘department’ and ‘channel’ to construct
contexts. The former represents the department working on the procedure. The latter refers
to the channel of communication with the applicants.

• BPI_2019S1 and BPI_2019S2: Each trace refers to a line item of a certain purchase order.
The first attribute considered was the item category, ’Item Category’, which specifies the
method of invoice handling. The four categories are: ‘3-way matching, invoice after goods
receipt’, ‘3-way matching, invoice before goods receipt’, ‘2-way matching (no goods receipt
needed)’, and ‘Consignment’. The second attribute is the company concerned, ’Company’.
We observed two values: ‘companyID_0000’ and ‘companyID_0003’.

The discovery algorithms were configured with a threshold of 0.7 for the support and precision
(precision in COBPAM and CCOBPAM) and two for the maximal depth of the patterns, unless
stated otherwise.

The implementation of LPM discovery in ProM has a single parameter of interest, i.e., the bound
for the number of LPMs to discover. We set this bound to 500, the maximal possible value.

For the Episode Miner, for which we presented a qualitative comparison on WABO, the frequency
threshold was set to 70% and the 70% most frequent activities were used to construct the episodes.
Moreover, as the Episode Miner uses a maximum distance between two events for them to be
partially ordered, we set this parameter to 100. Since the size of traces in WABO is below this
number, the partial orders become equivalent to the sequence operator in COBPAM.

Concerning the visualization graph, we chose the following thresholds: τs = τis = τ f = τi f = 0.7.

6.2 COBPAM Evaluation
In this section, we evaluate the efficiency and effectiveness (quantitative and qualitative) of
COBPAM by comparing it to the previous, state-of-the-art, behavioral pattern discovery algorithm
(LPM discovery) [80]. We also include a qualitative comparison with Declare and Episode Miners.

6.2.1 Efficiency
Running both algorithms for behavioral pattern discovery, we observed the execution times
reported in Table 6.1. They depend on the size of the log, the number of activities and events, and
the complexity of the behavioral patterns in the log. COBPAM generally turns out to be more
efficient. Its runtimes are an order of magnitude smaller than those of LPM discovery, which fails
to complete for one of the logs due to memory issues. COBPAM fails to complete for BPI_2019S2
for the same reason. That is because in this first version of our behavioral pattern discovery
algorithm, the languages and exact behaviors seen in the log are stored for each evaluated pattern
in order to be used later for the computation of the precision metric in the different contexts under
CCOBPAM. For some logs, due to the complexity of their construction graph, there is simply not
enough memory.

119

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.1: Execution times of COBPAM and LPM Discovery

Sepsis Traffic Fines WABO BPI_2019S1 BPI_2019S2

COBPAM 49s 3m 8s 9.1mn Insuff.Mem
LPM discovery 13mn Insuff.Mem 19mn >24h >24h

Table 6.2: Scalability analysis on Sepsis

Sample nbAct nbEvents Q1 Q2 Q3 nbTrees nbEva nbAlig nbChoice runtime

10 15 1434 9 13 16 382 17916 9780 5830 9260
20 15 2892 8 13 16 287 8501 5218 0 14
30 16 4416 8 13 17 476 38151 12679 8972 8289
40 16 5685 9 13 17 370 8692 5476 5 27
50 16 7045 9 13 17 356 8727 5499 5 31
60 16 8904 10 13 17 484 13645 8387 1642 85
70 16 10144 9 13 16 344 8624 5428 0 40
80 16 11632 8 13 16 352 8022 4914 0 37
90 16 12693 9 13 16 377 8093 4992 6 41
100 16 15214 9 13 16 375 8029 4967 0 49

Scalability

Next, we aim to study the impact of the size of the log on runtimes and how COBPAM handles
scaling up. For that, we sampled two logs, Sepsis and Traffic Fines, to get 9 other logs for each
(from 10% to 90% of the size of the whole log). In Table 6.2 and Table 6.3, we report the execution
time for each log with other information:

• nbAct: the number of activities in the log.

• nbEvents: total number of events.

• Q1, Q2, Q3: First, second and third quartile on the size of the trace series.

• nbTrees: number of trees returned.

• nbEva: number of trees evaluated.

• nbAlig: number of alignments performed.

• nbChoice: number of choice alignments (alignments performed on trees containing a
choice operator).

Table 6.2 shows the results on Sepsis. We notice that the execution times are very random in
comparison with the size of the log. This is because the size of the log isn’t the only factor
influencing the execution times. The specific frequent patterns present in the log along with their
complexity are another factor. The number of trees kept in the search process which had to be
evaluated plays a role too. In fact, the alignments represent the bottleneck of the algorithm (the
derivation of the optimal alignment is computationally hard with respect to the size of the trace

120

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.3: Scalability analysis on Traffic Fines

Sample nbAct nbEvents Q1 Q2 Q3 nbTrees nbEva nbAlig nbChoice runtime

10 11 55913 2 5 5 4 290 149 149 9
20 11 112247 2 5 5 4 290 145 145 20
30 11 168709 2 5 5 4 290 146 146 34
40 11 224244 2 5 5 4 290 142 142 42
50 11 280529 2 5 5 4 290 142 142 52
60 11 337111 2 5 5 4 290 145 145 76
70 11 393139 2 5 5 4 290 150 150 90
80 11 449320 2 5 5 4 290 139 139 105
90 11 504971 2 5 5 4 290 148 148 141
100 11 561470 2 5 5 4 290 141 141 164

and the complexity of the tree). The more trees are evaluated, the more alignments are performed
and the more time is consumed as can be seen in lines 1, 3 and 6 which represent the highest
runtimes. To be more precise, the number of alignments that contain choice operators is the factor
that increases runtimes the most as can be seen in line 1 and 3 where the ratio of the number of
choice alignments to the number of alignments is high. Also, the difference between lines 1,3 and
6 is that in line 6, there was mostly trees containing only one choice operator which decreased
runtime. The choice operator reveals to be the most expensive in runtimes; not only because
of the alignment but also because of the computation of its language during the assessment of
the precision metric. In terms of expensiveness, comes next the loop operator whose impact is
evaluated in the next section.

The previous findings are confirmed in Table 6.3. Since the number of evaluated trees stays the
same (which means the same trees were explored), then the same frequent trees are present in each
portion of the log. The number of activities is also constant. In this case, the only impacting factor
is the size of the log and the size of the traces. The size of the traces follows the same distribution
as shown by the quartiles. Consequently, the runtime increases with the size of the log.

Impact of repetitive events

We call repetitive events those that occur more than one time in a trace and may create a loop
pattern. Table 6.4 gives the runtimes of COBPAM for the feasible logs while leaving only the first
occurrence of a repetitive event in the trace. For each log we give R1: the ratio of the number of
removed events to the global number of events in the log. We also give R2: the mean ratio of the
number of removed events to the size of the trace.

We notice that there is a reduction in runtime when the loop triggering events are removed. This is
due to the overhead of computing an alignment with a loop involving backtracking and to the call
to the function that computes the language of a process tree which is particularly consuming in the
case of a tree containing a loop operator.

121

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.4: Execution times of COBPAM on logs where repetitive events were removed

Sepsis Traffic Fines WABO BPI_2019S1

Runtime 14s 3m 6s 6.3mn
R1 37% 1% 3% 18%
R2 52% 1% 2% 28%
Relative runtime 28% 100% 75% 69%

Table 6.5: Pattern statistics of LPM Discovery and COBPAM

COBPAM LPM Discovery
Relevant Non-Maximal Non-Compact

Sepsis 375 125 17 194
WABO 33 21 5 235

6.2.2 Quantitative Effectiveness

Now, we assess the relevance of patterns discovered by our algorithm and LPM discovery. While
COBPAM guarantees that discovered patterns are compact and maximal, we check how many
patterns derived by LPM discovery also satisfy these properties. Given the above execution times
(Table 6.4), we focus on the two feasible logs: Sepsis and WABO.

The results are summarized in Table 6.5. For instance, for the Sepsis log, among the 500 patterns
mined by the LPM discovery, 336 patterns satisfy the support and precision thresholds set by
COBPAM. Among these, 194 are not compact and 17 are not maximal. So, only 125 of the
patterns derived by LPM discovery are maximal and compact, whereas COBPAM discovered 375
such patterns. Similar results are obtained for the other dataset. We conclude that the patterns
derived by LPM discovery contain much redundant information, whereas COBPAM yields many
more relevant patterns.

6.2.3 Qualitative Effectiveness

Next, we conducted a qualitative analysis on the patterns derived by COBPAM and LPM discovery
as well as on the episodes extracted by ProM’s Episode Miner and the rules discovered by Declare
Miner. All algorithms were executed on Sepsis. Episode and Declare Miner were chosen because
they represent alternative methods for dealing with flexible processes (see Section 2.2).

Sepsis is well-suited for our analysis as its end-to-end process model obtained with the FHM
algorithm shows that the process is highly unstructured with intertwined execution paths, a high
number of choice and loop constructs, and many edges.

122

CHAPTER 6. EXPERIMENTAL EVALUATION

COBPAM versus LPM Discovery

In Fig. 6.1, we show some patterns derived by LPM discovery that satisfy the thresholds set to
COBPAM. Patterns found by COBPAM are shown in Fig. 6.2. We notice the difference in the trees
derived by the two algorithms. For instance, the tree Fig. 6.1a was not extracted by COBPAM,
because it is not maximal. In fact, it is contained in tree Fig. 6.2a. Knowing that Fig. 6.2a
is frequent, one knows that "ER Registration" followed by "CRP" followed by "Leucocytes" is
frequent. Hence, it follows that "CRP" followed by "Leucocytes", as in tree Fig. 6.1a, is frequent
too.

The trees Fig. 6.1c, Fig. 6.1d, and Fig. 6.1e are not discovered by COBPAM either, as they are
not compact. Trees Fig. 6.1c and Fig. 6.1d are obtained from Fig. 6.1a by replacing activity
"CRP" by a choice that includes activity "CRP" and some other behavior. Then, knowing that
tree Fig. 6.1a is frequent, one concludes that the trees Fig. 6.1c and Fig. 6.1d are also frequent.
Hence, they do not give new information. In fact, we do not know if the path seq(ER Registration,
Leucocytes) is frequent in Fig. 6.1c or even if it exists in the log. Similarly, tree Fig. 6.1e can
be constructed from tree Fig. 6.1b. The construction and evaluation (support, language fitness,
coverage, determinism and confidence) of such trees lead to execution time being wasted without
gaining further information about the process.

COBPAM versus Episode Miner

Now that we have compared our method to the closest concurrent in flexible processes oriented
process discovery, we turn to less similar methods. First, we’ll take a look at Episode Miner.

Using Episode Miner, we obtained the partially ordered sets of activities shown in Fig. 6.3. The
episodes Fig. 6.3b and Fig. 6.3c can be explained by the episode Fig. 6.3d where the activity "ER
Sepsis Triage" follows "ER Triage" which follows "ER Registration". Indeed, the two episodes
contain partial orders that can be obtained by transitivity from the fourth episode. Moreover, with
respect to Fig. 6.3b which suggests a parallel execution (or absence of order) after ER Registration,
the parallelism cannot be confirmed as it could be just a result of Fig. 6.3d. No other episode
discovered shows the second ordering ER Triage follows ER Sepsis Triage. That does not mean it
is nonexistent, it just means it is not frequent. COBPAM, on the other hand, is able to confirm the
parallelism as demonstrated in Fig. 6.2c thanks to the precision metric which is equal to 1.

Moreover, Fig. 6.3a can be interpreted as an execution of ER Registration followed by the
concurrence of CRP and Leucocytes. Neither of the orderings of the parallel activities appear
in other episodes. Meaning, neither of them are frequent. From the existence of Fig. 6.3a, we
conclude that both orderings appear in the log without being frequent. Here, the parallelism can
be deduced from the Episode Miner.

Finally we recall that more complex structures like loops and exclusive choices cannot be discovered
by Episode Miner.

123

CHAPTER 6. EXPERIMENTAL EVALUATION

seq

LeucocytesCRP
(a)

seq

CRPLeucocytes
(b)

seq

Leucocytesxor

ER RegistrationCRP
(c)

seq

Leucocytesxor

and

ER TriageER Registration

CRP

(d)

seq

CRPxor

seq

ER TriageER Registration

Leucocytes

(e)

Figure 6.1: Behavioral Patterns mined by LPM discovery.

124

CHAPTER 6. EXPERIMENTAL EVALUATION

seq

Leucocytesseq

CRPER Registration
(a)

seq

and

LeucocytesCRP

and

ER TriageER Registration
(b)

seq

and

ER Sepsis TriageER Triage

ER Registration

(c)

Figure 6.2: Behavioral Patterns mined with COBPAM.

125

CHAPTER 6. EXPERIMENTAL EVALUATION

ER Registration

CRP

Leucocytes

(a)

ER Registration

ER Triage

ER Sepsis Triage
(b)

ER Registration ER Triage ER Sepsis Triage

(c)

ER Registration ER Triage ER Sepsis Triage
(d)

Figure 6.3: Episodes mined with PROM’s Episode Miner

COBPAM versus Declare Miner

Contrary to behavioral trees and episodes, the Declare Miner generates a set of rules. These rules
constitute a declarative process model representing the log in the sense that any behavior that is not
explicitly prohibited by them can be part of the underlying process model. It is process defining
where as the behavioral patterns and episodes are process descriptive. Indeed, the latter does not
aim at defining the process model governing the log, whether it is by imperatively specifying the
behavior to execute or by specifying a set of rules to not transgress.

In order to explain further our point, let’s take the example where Declare Miner generated a rule
response(ER Registration, ER Triage) using a support threshold of 0.7 while leaving the other
parameters untouched. This means that the Declare Miner proposes this rule as one governing the
execution of the process. Every trace should comply to this constraint. The remaining 30% of the
traces are considered noise by the algorithm.

Now, if we consider a tree seq(ER Registration, ER Triage) returned by COBPAM using the same
support threshold, the behavior is considered frequent if it exceeds a 70% occurrence. However,
the remaining traces are valid altogether. They just don’t contain the behavior. The tree is not a
rule to blindly follow. There is a semantics difference.

Keeping this essential difference in mind, we will compare some of the rules generated with the
COBPAM patterns. We use the same parameters as above.

The previous rule, response(ER Registration, ER Triage) translates as: if ER Registration appears
in the trace, then ER Triage will eventually follow. As it can be noted, the rules are formulated in
Linear Temporal Logic; meaning, the previous rule holds true when ER Registration is absent in

126

CHAPTER 6. EXPERIMENTAL EVALUATION

the trace. This is the first difference with behavioral pattern discovery. The frequency of the rule
does not imply anything on the frequency of the activities mentioned. Hence, the monotonocity
property is not valid. Consequently, if the rule is discovered, we cannot conclude on the existence
of the pattern P = seq(ER Registration, ER Triage). For example, by considering the same
threshold for COBPAM, if the tree P has a threshold of 60% and the ER Registration does not
appear in at least 10% of the traces, then the pattern is deemed non frequent while the previous
rule is declared valid.

Another obvious difference is the number of activities present in each rule which is limited to two.
Behavioral pattern mining however does not impose such a condition although a low number is
recommended for facilitating analysis and ensuring feasible runtimes. On that matter, the low
number of activities in the rules allows the algorithm to generate and then test negative constraints.
For example, the not co-existence(A, B) means that A and B never appear together in a trace. It
comes as a counterpart to the rule co-existence(A,B) which means if either A or B appear in the
trace, then the other activity must appear too. Considering the complexity of behavioral trees, the
generation of negative patterns is generally unfeasible. Note though that TB-Declare [31] extends
the number of activities in the rules but there is still key differences with our behavioral patterns
as detailed in Section 2.2.

6.3 Data-aware Analysis Framework Evaluation
This section presents an evaluation of our techniques for the discovery and analysis of contextual
patterns as well as for the discovery of behavioral rules.

6.3.1 Efficiency
We start by evaluating the influence of the introduction of contexts on the baseline algorithm
COBPAM. Note that the Data-aware Analysis Framework can use either COBPAM or ACOBPAM
as its building block to uncover behavioral patterns in the atomic contexts. The results presented
in this section are valid for either algorithms.

Table 6.6 reports a break-down of the runtimes of the discovery of contextual patterns with
CCOBPAM . For each log, we first list the runtime without incorporating context (0-attribute,
corresponds to COBPAM on the whole log). Then, a 1-attribute experiment considers solely
the first attribute mentioned for each event log in Section 6.1 while the 1-attributeS experiment
considers the second attribute mentioned. The 2-attribute experiments incorporated two attributes.
The table also includes information on the number of atomic context, given in brackets after the
runtime. This number of atomic contexts depends on the number of attributes considered and
their domain.

First, we can observe that extending COBPAM to take into account contexts increases execution
time. Second, the change in runtime introduced by adding a new attribute can be explained by two
opposite forces. Contexts are smaller when increasing the number of attributes, which, in general,

127

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.6: Runtimes of CCOBPAM for different context definitions, including the numbers of
atomic contexts

Sepsis Traffic Fines WABO BPI_2019S1

0-attribute 49s (0) 3m (0) 8s (0) 3.4mn (0)
1-attribute 93s (2) 4.4h (49) 10s (1) 57mn (4)

1-attributeS 94s (2) 6.5mn (3) 12s (3) 5.3mn (2)
2-attribute 2m (3) 3.5h (66) 13s (3) 57mn (4)

Table 6.7: Contexts statistics for WABO

Size C-exclusive AC-frequent Rules

[General, Internet] 1211 / 8 9
[General, Post] 53 / 2 19
[General, desk] 105 / 2 9
[General, *] 1369 30 / 19
[*, *] 1369 30 / 19

reduces the required runtime. On the other hand, when increasing the number of attributes, i.e.,
when increasing the number of atomic contexts, new construction graphs, along with the specific
set of frequent trees they contain, are observed in each additional context. In some cases, these
construction graphs are bigger or contain more frequent and/or complex trees and need to be
explored, which requires additional runtime. As can be seen in Table 6.6, both of these effects
have varying impact, depending on the considered event log. The scale of the change in runtimes
depends on the number of atomic contexts added.

The previous statements are corroborated by the scalability study in Section 6.2.1. Indeed, since
the contexts are subsets of the contextual event log, they can be assimilated to the samples we
defined in Table 6.2 and Table 6.3. Our analysis showed great variability in execution times with
respect to the size of the samples/potential atomic contexts. The factors are discussed in the same
section.

6.3.2 Effectiveness of Pattern Discovery
Next, we conducted a quantitative analysis on the patterns returned by CCOBPAM for the WABO
and BPI_2019S1 logs. For the other logs, without further domain knowledge, the number of
possible contexts and patterns turned out to be overwhelming. Our observations are summarized
in Table 6.7 and Table 6.8. First, we analyze the contexts constructed with respect to the minimal
context size in WABO. There are three atomic contexts, as shown in the hierarchy in Table 6.7.
Overall, 30 patterns are C-exclusive in the root context. Some patterns are neither C-exclusive
nor C-general. They are AC-frequent and their number is indicated in the corresponding column.
Concerning BPI_2019S1 log, there are 4 atomic contexts and only one pattern is C-exclusive. All
the other 319 patterns discovered are AC-frequent.

128

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.8: Contexts statistics for BPI_2019S1

Size C-exclusive AC-frequent Rules

[Consignment, comp.ID_0000] 4331 / 0 0
[inv. before GR, comp.ID_0000] 66318 / 41 20
[inv. after GR, comp.ID_0000] 4565 / 279 10
[2-way match, comp.ID_0003] 304 / 2 1
[Consignment, *] 4331 / / 0
[invoice before GR, *] 66318 / / 0
[*, companyID_0003] 304 / / 0
[2-way match, *] 1369 / / 0
[*, companyID_0000] 75214 1 / 0
[invoice after GR, *] 4565 / / 0
[*, *] 75518 / / 0

6.3.3 Patterns Analysis
Causal Relations between Data and Patterns

For the WABO event log, causal relations between context data and patterns, see Section 4.3,
could not be found due to the peculiar hierarchy of contexts (the counterfactual of the constrained
attribute in the unique context that can hold C-exclusive patterns is only present in discarded
small-sized contexts). We, therefore, considered the Sepsis event log and explored causality
of context data and patterns. Based on the two Boolean attributes ‘InfectionSuspected’ and
‘Infusion’, three contexts were constructed: [true, true], [true, false] and [false, false]. The
total number of patterns discovered was 968 and 77 of those were C-exclusive. We found causal
relations for 35 of the C-exclusive patterns. Specifically, they were caused by the exposure variable
InfectionSuspected = true, highlighting that a suspected infection can be seen as the root cause of
various behavioral regularities like seq(seq(ER Triage, Leucocytes), CRP). As for BPI_2019S1, the
only C-exclusive pattern discovered did not show any causal dependencies while no C-exclusive
patterns were accounted for in Traffic Fines.

Interplay of Behavioral Patterns (Rules)

The column Rules in Table 6.7 and Table 6.8 indicates how many association rules that describe
the interplay of the discovered patterns were found in each context in WABO log and BPI_2019S1
respectively, see Section 4.1. Specifically, the number represents the number of patterns that hold
a rule. An example of those patterns for WABO is Tree (1) in Fig. 6.4 which holds a rule in all
contexts of the log. In fact, there is a strong dependency between seq(T02, T04) and seq(T06, T10)
(child subtrees of the root) in all contexts, in which the tree is frequent. Note, however, that the
presence of a rule in a context does not mean that the same rule is present also in a more general
context. The opposite does not hold either. The existence of a rule is independent between contexts.
This is known as the Simpson’s Paradox [60]. We give the example of a process P = seq(P1, P2),
with P1, P2, two subtrees which is C-General in [low, *] while holding a rule in that context (as
shown in Table 6.9). The pattern, however, does not satisfy a rule in the more specific contexts
[low, <70] (see Table 6.10) and [low, 70+] (see Table 6.11). Discovering the occurrences of the
Simpson’s Paradox is another upside of the contextual technique. Uncovering statistical association

129

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.9: Presence of P1 and P2 in the traces of [low, *], the odds ratio being 7.

P2 P2

P1 70 10
P1 10 10

Table 6.10: Presence of P1 and P2 in the traces of [low, <70], the odds ratio being 0.93.

P2 P2

P1 28 6
P1 5 1

that is not verified when stratifying the data prevents the analyst from considering misleading
interplays. Indeed, the strong association between P1 and P2 in [low, *] is spurious as neither the
"<70" nor the "70+" population confirms it. It is to be noted that when variables are missing, there
is a risk of taking fallacious interplays for real ones. This happens when stratifying the data on the
missing variables brings opposite results on the behavioral rules.

Methodology in practice: Interpretation of Patterns

In this section, we apply our methodology to the patterns discovered. As the procedure needs
to determine which patterns were discovered both by CCOBPAM (on the two attributes) and
COBPAM (on the whole log) and in which contexts, manually, we could only apply it on WABO
and BPI_2019S1 due to the limited number of patterns to inspect. For WABO, Table 6.12
shows that CCOBPAM discovered 40 contextual patterns, whereas COBPAM discovered 33
context-agnostic patterns. All of these were also discovered by CCOBPAM, so that they are listed
in the Common column. Of the common patterns, 30 are C-exclusive and three AC-frequent. So,
these three patterns are frequent in the log. Yet, they are frequent solely in some contexts, not
in all of them. Seven patterns were revealed only by our novel CCOBPAM algorithm and are
AC-frequent: They are frequent in some atomic contexts, but not in the whole log. Hence, they
are missed by context-agnostic discovery. Table 6.13 shows on its turn that the only C-exclusive
pattern discovered by CCOBPAM for BPI_2019S1 is not log-frequent. Moreover, among the 319
AC-frequent patterns returned, 28 were also log-frequent.

For a more concrete example on the contextual patterns analysis methodology, we illustrate in
Fig. 6.4, a discovered pattern for each of the cases of pattern frequentiality presented in the end

Table 6.11: Presence of P1 and P2 in the traces of [low, 70+], the odds ratio being 0.6.

P2 P2

P1 42 10
P1 7 1

130

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.12: Pattern statistics of CCOBPAM and COBPAM for WABO

CCOBPAM Common

C-exclusive / 30
AC-frequent 7 3

Table 6.13: Pattern statistics of CCOBPAM and COBPAM for BPI_2019S1

CCOBPAM Common

C-exclusive 1 0
AC-frequent 291 28

of Section 4.4. It is important to note that any tree discovered in WABO or BPI_2019S1 falls
under one of the four categories we are going to exemplify. The trees we present here were
selected randomly. Tree (1) is observed in all contexts. Since the tree is C-exclusive in the whole
population, it is frequent regardless of the department and communication channel used in the
building permit application process, thereby representing generic, recurring behavior. Tree (2), in
turn, exemplifies a log-frequent behavior that occurs solely in two small atomic contexts, specific
to applications handled by desks and through the post office. The total size of these contexts is
only 158 traces, while the whole log contains 1434 traces. This indicates that the pattern is close
to frequent in the other contexts suggesting a potential need to re-calibrating the support threshold.

Tree (3) is log-frequent and frequent in the largest atomic context concerning communication
channel (i.e., the internet channel). This is another insight regarding the specific set of traces
in which a pattern is frequent. Another interesting tree is (4), which is not discovered when
neglecting contextual information, because it is only frequent in cases handled via the internet
channel. As such, it exemplifies that context-aware discovery reveals patterns that are otherwise
missed since they relate to a small set of traces.

6.4 Advanced COBPAM Evaluation
Our last experiments pertain to the evaluation ofACOBPAM.As the algorithm brings improvements
on three aspects (runtimes, number of returned trees and difficulty of analysis), we evaluate each
change separately. We start with the execution times.

6.4.1 Efficiency
Our aim is to evaluate the alignment growth method and assess how much it shortens runtimes.
However, some of the modifications we introduced in Section 5.1 impacted the construction graph
of each log. Indeed, some portions of the construction graph were no longer explored due to
the update in the compactness property. Trees that were kept in the search before were deemed
non compact with respect to the fourth compactness condition (see Section 5.1.4) and were

131

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.4: Illustrative examples of behavioral patterns mined with CCOBPAM

discarded. Moreover, other trees that were removed from the search in the previous version for not
respecting the precision threshold are now preserved as we deleted this metric. Consequently, the
number of trees evaluated and a fortiori returned changed. In these conditions, we cannot compare
the classical alignment with the growth algorithm in isolation. For this reason, we echoed the
changes we made in ACOBPAM into COBPAM. COBPAM now finds trees that are compact
according to the latest definition and is not bound by a precision threshold. (In the remainder of
the section, by COBPAM, we refer to the version incorporating the changes.) As a result, the same
trees are evaluated and explored in both algorithms. The number of returned trees is equal too.
Consequently, the only difference between the two tested algorithms is the method of alignment
which makes it possible to directly compare them in a fair configuration.

Of course, in ACOBPAM only the time needed to return the initial set of trees is considered since
that is the end point of COBPAM as well. The post-processing and visualization are orthogonal

132

CHAPTER 6. EXPERIMENTAL EVALUATION

and depend only on the returned set. The comparison results are presented in Table 6.14. For each
algorithm and each log, there were two executions with a depth of two for the discovered trees at
first and then with a depth of three. The gain in execution time with respect to the initial runtime
is also given. For Traffic Fines, there was no reduction in runtimes since all the trees evaluated
contained the xor operator which is treated classically. Yet, for the most time consuming logs,
there was a highly substantial decrease, between 60% and 66%, in execution times, proving the
efficiency of the alignment growth algorithm. However, the extraction of behavioral patterns for
Sepsis under depth 3 was not possible.

Furthermore, for the most demanding logs, the gap in runtimes between COBPAM and ACOBPAM
widens when we increase the depth. That is only logical because the new trees constructed of
depth 3 are way more numerous than those of depth 2. The entire structure of each tree needs to be
evaluated on each complete trace in COBPAM. There is an exponentiallity property on two aspects
when moving from depth two to three in COBPAM: the number of trees to evaluate increases
exponentially, but also the runtime of the alignment operation on the new trees (of depth three)
increases exponentially. That is because the classical alignment algorithm is hard with respect to
the complexity/size of the tree. On the contrary, the exponentiallity in ACOBPAM still applies on
the number of new trees to evaluate but is less strong with respect to the alignment as, mostly, the
alignments are grown incrementally.

Yet, for BPI_2019S2, the gap didn’t widen but shortened on the contrary. We thoroughly
investigated this behavior and we observed that this particular log consumed a lot of memory.
The garbage collector which is a java program that frees unused space to increase the memory
available was called a lot. As such, more time was dedicated to freeing memory than to executing
the algorithm. Finally, the supposed gain in runtime thanks to the alignment growth method was
spoiled by the garbage collector interventions.

Table 6.14: Execution times of COBPAM and ACOBPAM (for a depth parameter of two and
three)

Sepsis Traffic Fines WABO BPI_2019S1 BPI_2019S2

Depth 2
COBPAM 34s 13s 2s 2.45mn 5.8mn
ACOBPAM 12s 13s 1s 59s 2mn
Runtime decrease 65% 0% 50% 60% 66%

Depth 3
COBPAM >24h 13s 3s 5.81mn 14.9mn
ACOBPAM >24h 13s 2s 98s 6.9mn
Runtime decrease N/A 0% 33% 72% 49%

To sum up, we give in Table 6.15 the decrease in runtime observed with respect to the original
algorithm of LPM Discovery. We used the results for ACOBPAM with depth 2 because the trees
with this parameter contain at most four activities which corresponds to the number of activities
composing the LPMs. We can see that the execution times of our algorithm are order of magnitude
lower than the state of the art. Indeed, we divided the runtime of Sepsis by 100 and that of WABO

133

CHAPTER 6. EXPERIMENTAL EVALUATION

by 1000. Moreover, LPM was not able to return any results for three out of the five evaluated logs
(Traffic Fines, BPI_2019S1 and BPI_2019S2).

Table 6.15: Runtime decrease with respect to the state-of-the-art algorithm for mining behavioral
patterns (LPM)

Sepsis Traffic Fines WABO BPI_2019S1 BPI_2019S2

Runtime decrease 99% N/A 99.9% N/A N/A

Next, we report in Table 6.16 the runtimes of the post-processing operation and visualization graph
construction for both considered depths. The most time consuming part is the post-processing
operation. Its runtime increases with respect to the initial number of trees returned. Indeed, there
is a need of pairwise comparison to check equality of languages and existence of generalized
maximality seeds. This can be verified by analyzing Table 6.17. On another hand, the computation
of the language, the detection of the loop seeds and the detection of the alternative seeds are all
computationally hard with respect to the depth. That is because the tree gets exponentially more
complex and the number of its subtrees (which are used in the definition of alternative seeds)
grows exponentially too when it gets deeper. This last statement is confirmed in the depth 3
runtime of BPI_2019S2 seen in Table 6.16. It is the time needed for the pairwise comparison
of the 79 trees returned. However, its value: 1.8mn is almost equivalent to the time needed to
compare 597 trees for Sepsis under depth 2 (1.95mn).

Table 6.16: Runtimes of the post-processing operation and visualization graph generation

Sepsis Traffic Fines WABO BPI_2019S1 BPI_2019S2

Depth 2 1.95mn 0s 3s 14s 19s
Depth 3 N/A 0s 1s 14s 1.8mn

6.4.2 Effectiveness

Quantitative Effectiveness

We give in Table 6.17 the number of trees returned before and after the application of post-
processing for each considered depth along with the ratio between the initial number and the
final one. Except for Traffic Fines which returned initially only one tree, the post-processing
operation managed to reduce the number of trees returned by ACOBPAM and appearing during
the visualization to between 35% to 73% their initial number. This demonstrates that the number
of redundant trees in the first set is non negligible and that the generalized maximality with
the equivalency study are indeed welcome and necessary. An other interesting observation
is that the gain is higher in depth 3; that is because, each tree of such depth has a higher
number of alternative/loop seeds and equivalent trees which are undoubtedly initially returned and
consequently eliminated.

134

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.17: Number of returned trees w/o Post-processing

Sepsis Traffic Fines WABO BPI_2019S1 BPI_2019S2

Depth 2 Without 597 1 32 36 37
With 439 1 16 26 27
Ratio 73% 100% 50% 72% 73%

Depth 3 Without N/A 1 26 47 79
With N/A 1 9 26 31
Ratio N/A 100% 35% 55% 39%

Qualitative Effectiveness

We show in Fig. 6.5, a subset of the trees returned by COBPAM for WABO. It corresponds to the
trees returned before the post-processing operation. Arguably, since trees Fig. 6.5a and Fig. 6.5c
represent the alternative seeds of Fig. 6.5b and Fig. 6.5d respectively, only Fig. 6.5b and Fig. 6.5d
were kept in the final set returned and visualized in ACOBPAM.

6.4.3 Visualisation
We give in Fig. 6.6 a global view of the generated visualization graph for WABO (support threshold
of 0.7 and depth of 2) as well as a zoomed-in version in Fig. 6.7. The behavioral patterns are
represented in their tree form inside the nodes of the graph. The node is circular and its size is
proportional to the support of the pattern. The support can be displayed by hovering over it. There
are four edge shapes and colors to depict each of the four relationships: Follows, Inter-follows,
Spans and Inter-spans relationships. The legend, which also appears in the interface, is given in
Fig. 6.8. Note that the edges are weighted with the supports of the relationships. Obviously, this
graph contains only Spans relationships.

Moreover, the activities inside the trees are replaced by numbers to avoid cluttering and complexity
which is the opposite of what we expect from the visualization graph. The legend for these
numbers is also given in the interface.

6.5 Discussion
The experimental study we conducted has several limitations. We enumerate them in the following:

• Unavailability of contextual logs: The scarcity of real life logs containing contextual data
prevented us from doing more extensive experiments to study the influence of contexts. Even
when data attributes are present in some logs, they are not documented and their meaning
stays obscure. An industrial use case would allow us to do a more in-depth analysis.

• Missing values for context attributes: In our experiments, traces whose context attributes
have no values, have not been included in the discovery. In a real application, the missing
values could be handled using methods known from databases in order to infer them.

135

CHAPTER 6. EXPERIMENTAL EVALUATION

seq

and

T05T10

Confirmation of receipt

(a)

seq

and

T05T10

seq

T02Confirmation of receipt
(b)

seq

seq

T10T06

Confirmation of receipt

(c)

seq

and

T10T06

seq

T02Confirmation of receipt
(d)

Figure 6.5: Behavioral Patterns mined by COBPAM for WABO

136

CHAPTER 6. EXPERIMENTAL EVALUATION

Alternatively, a Null value context could be defined and the discovered patterns in it could
help in identifying causes of missing values.

• User validation: While the effectiveness evaluations showed that our methods give a
compact, concise and relevant view of the behavior of a flexible process, a user-assisted
evaluation should be conducted to conclude that business analysts find indeed a significant
aid using our approaches.

6.6 Conclusion
As does any scientific work, our contributions needed validation, which was the objective of this
chapter. We proved the feasibility of our algorithms through an extensive efficiency evaluation;
not only in comparison to the state of the art but also with respect to certain parameters such as the
size of the logs through a scalability study, the repetition ratio in the log, the number of considered
attributes and the depth threshold. We also gave statistics about the results of our algorithms,
making sure to highlight the relevance and effectiveness of our methods and the different insights
they provide. Additionally, we made sure to give concrete and immediate examples of our results
and methodologies and how they advance the understanding of flexible processes compared to the
existing work. Lastly we discussed the limits of our experimentations. In the following and final
chapter, we conclude our thesis and list future directions for research.

137

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.6: Visualisation graph of the patterns returned by WABO (support threshold of 0.7, depth
of 2)[Global view]

138

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.7: Visualisation graph of the patterns returned by WABO (support threshold of 0.7, depth
of 2)[Zoomed-in view]

139

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.8: Legend for the relationships edges

140

7
Conclusion and Future Works

Process mining is about setting a bridge between process-agnostic data mining and evidence-
lacking process management. Process discovery is a field where one strives to extract models and
insights into the processes under execution. These processes can be found in healthcare, education,
logistics, etc. One particular characteristic of interest is how structured they are; meaning, how
much of a common general layout, do the process instances follow. In the absence of such
commonalities between the instances, we are essentially dealing with what is coined spaghetti
processes due to their multiple interleaving paths of execution. Out of their complexity, this type
of processes poses a challenge for analysts as to grasp any useful information out of them.

In this thesis, we are interested in such flexible processes and we attempted to summarize them so
that they become understandable and clear for analysis. In order to do that, we revisited the notion
of behavioral patterns, small models representing recurrent commonalities between instances. We
proposed an extraction algorithm, an extensive analysis framework which builds upon it and an
advanced algorithm which improves on the first one. The contributions were as follows :

• A novel approach, named COBPAM, for discovering behavioral patterns yielding different
techniques for optimization and guaranteeing interesting properties on the discovered
patterns.

• A framework including a data-aware extraction of behavioral patterns nested in contexts.
We characterized different properties with respect to contexts such as frequency, generality
and exclusiveness. Finally, we studied correlations between patterns themselves and causal
relations between the data and the occurrence of patterns. A methodology for using the
framework along with interpretation guidelines are given.

• An advanced incremental algorithm, ACOBPAM, that enhances COBPAM in three aspects:
it further reduces runtimes, decreases the number of returned trees and helps analyze the
patterns through a visualization feature.

All our methods were evaluated through an extensive study of efficiency and effectiveness, both
quantitative and qualitative, on real life event logs and proved superior to the state of the art in

141

CHAPTER 7. CONCLUSION AND FUTURE WORKS

terms of runtime and the pertinence of the discovered insights as well as in terms of ease of
analysis.

Our work opens up many research avenues on the long term. A first perspective is the adaptation
of the algorithms to handle large event logs; further than what was already accomplished with
ACOBPAM. Indeed, right now, ACOBPAM is still unable to to guarantee scalability and fails
to mine logs with a big number of events due to a high runtime and logs with a large number of
activities since it runs on memory issues. CCOBPAM encounters the same difficulties and in
particular memory insufficiency because all memory structures need to be continuously stored
for each context. In order to solve these problems, distributed processing frameworks should be
investigated. Note that this would also allow to discover deeper behavioral patterns.

In addition, there is opportunity to propose a tool for managing context discretization. For instance,
considering an age attribute that we want to split into two intervals, an automatic procedure to
choose the split boundary would be interesting. The goal being to maximize patterns relevancy in
the resulting contexts. On the same subject, CCOBPAM uses only the contextual information
associated to cases. The data dimension associated to events is also rich in insights and should be
included in future extensions. Moreover, speaking of dimensions, we plan to extract patterns from
the resource perspective. Patterns would hence describe frequent behavior between the agents
enacting the events themselves.

Orthogonally, in the spirit of further facilitating the exploration of the discovered patterns, filtering
and ranking features should be introduced using constraints and utility measures.

Finally, since behavioral patterns are in a way a summary of the underlying process, one could
use them as features in various mining and machine learning tasks. Particularly, they can be
leveraged for trace clustering, quality of service and performance prediction, outcome prediction,
etc. Moreover, the behavioral rules discovered could be used in recommendation systems either in
a static or streaming setting.

142

Bibliography

[1] 25+ Impressive Big Data Statistics for 2021. https://techjury.net/stats-about/
big-data-statistics/[Accessed: 2021-07-15].

[2] Here’s What Happens Every Minute on the Internet in 2020.

[3] Bayesian network approach to making inferences in causal maps. European Journal of
Operational Research, 128(3):479–498, feb 2001.

[4] A novel heuristic method for improving the fitness of mined business process models.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 9936 LNCS, pages 537–546.
Springer Verlag, oct 2016.

[5] M. Acheli, D. Grigori, and M. Weidlich. Efficient discovery of compact maximal behavioral
patterns from event logs. In International Conference on Advanced Information Systems
Engineering, pages 579–594. Springer, 2019.

[6] M. Acheli, D. Grigori, and M. Weidlich. Discovering and analyzing contextual behavioral
patterns from event logs. IEEE Transactions on Knowledge and Data Engineering, 2021.

[7] A. Adriansyah. Aligning Observed and Modeled Behavior. PhD thesis, 2014.

[8] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc. of 20th
International Conference on Very Large Data Bases, {VLDB’94}, 1994.

[9] T. Baier and J. Mendling. Bridging abstraction layers in process mining by automated
matching of events and activities. In Business process management, pages 17–32. Springer,
2013.

[10] J. H. Bjørngaard, A. T. Nordestgaard, A. E. Taylor, J. L. Treur, M. E. Gabrielsen, M. R.
Munafò, B. G. Nordestgaard, B. O. Åsvold, P. Romundstad, and G. Davey Smith. Heavier

143

https://techjury.net/stats-about/big-data-statistics/
https://techjury.net/stats-about/big-data-statistics/

BIBLIOGRAPHY

smoking increases coffee consumption: findings from a Mendelian randomization analysis.
International Journal of Epidemiology, 46(6):1958–1967, 08 2017.

[11] A. Bolt and W. M. Van Der Aalst. Multidimensional process mining using process cubes. In
Lecture Notes in Business Information Processing, volume 214, pages 102–116. Springer
Verlag, 2015.

[12] D. Borrego and I. Barba. Conformance checking and diagnosis for declarative business
processmodels in data-aware scenarios. Expert Systemswith Applications, 41(11):5340–5352,
2014.

[13] R. J. C. Bose and W. M. Van der Aalst. Context aware trace clustering: Towards improving
process mining results. In Proceedings of the 2009 SIAM International Conference on Data
Mining, pages 401–412. SIAM, 2009.

[14] R. P. C. Bose, F. M. Maggi, and W. M. Van Der Aalst. Enhancing declare maps based on
event correlations. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8094 LNCS, pages
97–112. Springer, Berlin, Heidelberg, 2013.

[15] R. P. C. Bose and W. M. Van Der Aalst. Trace clustering based on conserved patterns:
Towards achieving better process models. In LNBIP, 2010.

[16] J. C. Buĳs, B. F. Van Dongen, and W. M. Van Der Aalst. A genetic algorithm for discovering
process trees. In CEC 2012, pages 1–8. IEEE, 6 2012.

[17] A. Burattin and J. Carmona. A framework for online conformance checking. In International
Conference on Business Process Management, pages 165–177. Springer, 2017.

[18] A. Burattin and A. Sperduti. Heuristics miner for time intervals. In Proceedings of the
18th European Symposium on Artificial Neural Networks - Computational Intelligence and
Machine Learning, ESANN 2010, 2010.

[19] A. Burattin, A. Sperduti, and W. M. van der Aalst. Heuristics miners for streaming event
data. arXiv preprint arXiv:1212.6383, 2012.

[20] A. Burattin, S. J. van Zelst, A. Armas-Cervantes, B. F. van Dongen, and J. Carmona. Online
conformance checking using behavioural patterns. In International Conference on Business
Process Management, pages 250–267. Springer, 2018.

[21] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich. Conformance checking. Springer,
2018.

[22] G. F. Cooper. A simple constraint-based algorithm for efficiently mining observational
databases for causal relationships. Data Mining and Knowledge Discovery, 1(2):203–224,
1997.

[23] M. De Leoni, M. Dumas, and L. García-Bañuelos. Discovering branching conditions from
business process execution logs. In Lecture Notes in Computer Science (including subseries

144

BIBLIOGRAPHY

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7793
LNCS, pages 114–129. Springer, Berlin, Heidelberg, 2013.

[24] M. De Leoni, F. M. Maggi, and W. M. van der Aalst. Aligning event logs and declarative
process models for conformance checking. In International Conference on Business Process
Management, pages 82–97. Springer, 2012.

[25] M. De Leoni and W. M. Van Der Aalst. Aligning event logs and process models for
multi-perspective conformance checking: An approach based on integer linear programming.
In Business Process Management, pages 113–129. Springer, 2013.

[26] M. De Leoni, W. M. Van Der Aalst, and B. F. Van Dongen. Data-and resource-aware
conformance checking of business processes. In International Conference on Business
Information Systems, pages 48–59. Springer, 2012.

[27] A. K. De Medeiros, W. M. Van Der Aalst, and A. J. Weĳters. Workflow Mining: Current
Status and Future Directions. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2888:389–406,
2003.

[28] A. K. A. de Medeiros, A. J. M. M. Weĳters, and W. M. P. van der Aalst. Genetic process
mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2):245–304,
4 2007.

[29] P. Delias, D. Grigori, M. L. Mouhoub, and A. Tsoukias. Discovering characteristics that
affect process control flow. In Decision Support Systems IV-Information and Knowledge
Management in Decision Processes, pages 51–63. Springer, 2014.

[30] P. Delias, A. Lagopoulos, G. Tsoumakas, andD. Grigori. Usingmulti-target feature evaluation
to discover factors that affect business process behavior. Computers in Industry, 99:253–261,
2018.

[31] C. Di Ciccio, F. M. Maggi, and J. Mendling. Efficient discovery of Target-Branched Declare
constraints. Information Systems, 56:258–283, mar 2016.

[32] C.Di Francescomarino, C.Ghidini, F.M.Maggi, and F.Milani. Predictive ProcessMonitoring
Methods: Which One Suits Me Best? In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 11080 LNCS, pages 462–479. Springer Verlag, sep 2018.

[33] C. Diamantini, L. Genga, and D. Potena. Behavioral process mining for unstructured
processes. Journal of Intelligent Information Systems, 47(1):5–32, 8 2016.

[34] S. Dunzer, M. Stierle, M. Matzner, and S. Baier. Conformance checking: a state-of-the-art
literature review. In Proceedings of the 11th international conference on subject-oriented
business process management, pages 1–10, 2019.

[35] D. Fahland and W. M. van Der Aalst. Model repair—aligning process models to reality.
Information Systems, 47:220–243, 2015.

145

BIBLIOGRAPHY

[36] P. Fournier-Viger, J. Chun, W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas. A Survey of
Sequential Pattern Mining. Ubiquitous International, 1(1):54–77, 2017.

[37] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le. A survey of
itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(4):e1207, jul 2017.

[38] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process models by
clustering log traces. IEEE TKDE, 2006.

[39] C. W. Günther andW.M. Van Der Aalst. Fuzzy mining–adaptive process simplification based
on multi-perspective metrics. In International conference on business process management,
pages 328–343. Springer, 2007.

[40] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation:
A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1):53–87, jan
2004.

[41] B. Hanson and B. Kopjar. Clinical studies in spinal surgery. European Spine Journal,
14(8):721–725, 2005.

[42] D. Heckerman. A bayesian approach to learning causal networks. arXiv preprint
arXiv:1302.4958, 2013.

[43] K. Johnson. A descriptive process model for open-source software development. Graduate
Studies, 2001.

[44] M. Koorneef, A. Solti, H. Leopold, and H. A. Reĳers. Automatic root cause identifica-
tion using most probable alignments. In International Conference on Business Process
Management, pages 204–215. Springer, 2017.

[45] M. Leemans and W. M. van der Aalst. Discovery of frequent episodes in event logs. In
Lecture Notes in Business Information Processing, volume 237, pages 1–31. Springer, Cham,
11 2015.

[46] S. J. Leemans, D. Fahland, and W. M. van der Aalst. Discovering block-structured process
models from event logs-a constructive approach. In International conference on applications
and theory of Petri nets and concurrency, pages 311–329. Springer, 2013.

[47] S. J. Leemans, D. Fahland, and W. M. van der Aalst. Discovering block-structured process
models from event logs containing infrequent behaviour. In International conference on
business process management, pages 66–78. Springer, 2013.

[48] S. J. Leemans, D. Fahland, and W. M. Van Der Aalst. Discovering block-structured process
models from incomplete event logs. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 8489 LNCS, pages 91–110. Springer Verlag, 2014.

146

BIBLIOGRAPHY

[49] S. J. Leemans, D. Fahland, and W. M. van der Aalst. Scalable process discovery and
conformance checking. Software and Systems Modeling, 17(2):599–631, may 2018.

[50] V. Leno, M. Dumas, F. M. Maggi, M. La Rosa, and A. Polyvyanyy. Automated discovery of
declarative process models with correlated data conditions. Information Systems, 89:101482,
mar 2020.

[51] J. Li, T. D. Le, L. Liu, J. Liu, Z. Jin, and B. Sun. Mining causal association rules. In
Proceedings - IEEE 13th International Conference on Data Mining Workshops, ICDMW
2013, pages 114–123. IEEE, dec 2013.

[52] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behavioral models.
In Proceedings - International Conference on Software Engineering, pages 501–510, New
York, New York, USA, 2008. ACM Press.

[53] F. M. Maggi, M. Dumas, L. García-Bañuelos, and M. Montali. Discovering data-aware
declarative process models from event logs. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 8094 LNCS, pages 81–96. Springer, Berlin, Heidelberg, 2013.

[54] F. M. Maggi, A. J. Mooĳ, and W. M. Van Der Aalst. User-guided discovery of declarative
process models. In CIDM 2011, pages 192–199. IEEE, 4 2011.

[55] F. Mannhardt, M. De Leoni, H. A. Reĳers, and W. M. Van Der Aalst. Balanced multi-
perspective checking of process conformance. Computing, 98(4):407–437, 2016.

[56] F. Mannhardt, M. De Leoni, H. A. Reĳers, and W. M. Van Der Aalst. Data-driven process
discovery - Revealing conditional infrequent behavior from event logs. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 10253 LNCS, pages 545–560, 2017.

[57] F. Mannhardt, M. De Leoni, H. A. Reĳers, W. M. Van Der Aalst, and P. J. Toussaint. From
low-level events to activities-a pattern-based approach. In International conference on
business process management, pages 125–141. Springer, 2016.

[58] J. Munoz-Gama, J. Carmona, and W. M. Van Der Aalst. Single-entry single-exit decomposed
conformance checking. Information Systems, 46:102–122, 2014.

[59] L. G. Neuberg. CAUSALITY: MODELS, REASONING, AND INFERENCE, by Judea
Pearl, Cambridge University Press, 2000. Econometric Theory, 19(04):675–685, aug 2003.

[60] J. Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
2000.

[61] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu.
Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions
on Knowledge and Data Engineering, 2004.

147

BIBLIOGRAPHY

[62] R. N. Proctor. The history of the discovery of the cigarette–lung cancer link: evidentiary
traditions, corporate denial, global toll. Tobacco control, 21(2):87–91, 2012.

[63] J. Rabatel, S. Bringay, and P. Poncelet. Mining sequential patterns: a context-aware approach.
In Advances in Knowledge Discovery and Management, pages 23–41. Springer, 2013.

[64] D. Reinsel, J. Gantz, and J. Rydning. The Digitization of the World From Edge to Core.
Technical report, 2018.

[65] W. Reisig and Wolfgang. Petri nets : an introduction. Springer Berlin Heidelberg, 1985.

[66] A. L. Rosner. Evidence-based medicine: revisiting the pyramid of priorities. Journal of
Bodywork and Movement Therapies, 16(1):42–49, 2012.

[67] A. Rozinat and W. M. Van Der Aalst. Decision mining in ProM. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 4102 LNCS, pages 420–425. Springer Verlag, 2006.

[68] S. Sakr. Big Data 2.0 Processing Systems. SpringerBriefs in Computer Science. Springer
International Publishing, Cham, 2016.

[69] S. Schönig, C. Di Ciccio, F. M. Maggi, and J. Mendling. Discovery of multi-perspective
declarative process models. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9936
LNCS, pages 87–103. Springer Verlag, oct 2016.

[70] A. Senderovich, C. Di Francescomarino, C. Ghidini, K. Jorbina, and F. M. Maggi. Intra
and inter-case features in predictive process monitoring: A tale of two dimensions. In
International Conference on Business Process Management, pages 306–323. Springer, 2017.

[71] R. Shraga, A. Gal, D. Schumacher, A. Senderovich, andM.Weidlich. Inductive context-aware
process discovery. In Proceedings - 2019 International Conference on Process Mining,
ICPM 2019, pages 33–40. Institute of Electrical and Electronics Engineers Inc., jun 2019.

[72] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal
structures. Data Mining and Knowledge Discovery, 4(2-3):163–192, 2000.

[73] M. Song, C. W. Günther, and W. M. Van Der Aalst. Trace clustering in process mining. In
Lecture Notes in Business Information Processing, 2009.

[74] W. Song, X. Xia, H.-A. Jacobsen, P. Zhang, and H. Hu. Efficient alignment between event
logs and process models. IEEE Transactions on Services Computing, 10(1):136–149, 2016.

[75] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In International Conference on Extending Database Technology, pages 1–17.
Springer, 1996.

[76] Y. Sun, B. Bauer, and M. Weidlich. Compound trace clustering to generate accurate and
simple sub-process models. In E. M. Maximilien, A. Vallecillo, J. Wang, and M. Oriol,
editors, Service-Oriented Computing - 15th International Conference, ICSOC 2017, Malaga,

148

BIBLIOGRAPHY

Spain, November 13-16, 2017, Proceedings, volume 10601 of Lecture Notes in Computer
Science, pages 175–190. Springer, 2017.

[77] P. N. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for association
analysis. In Information Systems, volume 29, pages 293–313. Pergamon, jun 2004.

[78] N. Tax, B. Dalmas, N. Sidorova, W. M. van der Aalst, and S. Norre. Interest-driven discovery
of local process models. Information Systems, 77:105–117, 9 2018.

[79] N. Tax, N. Sidorova, R. Haakma, and W. M. van der Aalst. Event abstraction for process
mining using supervised learning techniques. In Proceedings of SAI Intelligent Systems
Conference, pages 251–269. Springer, 2016.

[80] N. Tax, N. Sidorova, R. Haakma, and W. M. van der Aalst. Mining local process models.
Journal of Innovation in Digital Ecosystems, 3(2):183–196, 2016.

[81] R. Tudoran. High-Performance Big Data Management Across Cloud Data Centers. PhD
thesis, 2014.

[82] W. Van der Aalst. Process mining: Data science in action. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016.

[83] W. van der Aalst, T. Weĳters, and L. Maruster. Workflowmining: discovering process models
from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–1142,
9 2004.

[84] B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weĳters, and W. M. van Der Aalst.
The prom framework: A new era in process mining tool support. In International conference
on application and theory of petri nets, pages 444–454. Springer, 2005.

[85] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M. van der Aalst. Online
conformance checking: relating event streams to process models using prefix-alignments.
International Journal of Data Science and Analytics, 8(3):269–284, 2019.

[86] S. K. vanden Broucke and J. De Weerdt. Fodina: A robust and flexible heuristic process
discovery technique. Decision Support Systems, 100:109–118, 8 2017.

[87] H. Verbeek and W. M. van der Aalst. Decomposed process mining: The ilp case. In
International conference on business process management, pages 264–276. Springer, 2014.

[88] A. J. M. M. Weĳters and J. T. S. Ribeiro. Flexible heuristics miner (FHM). In CIDM 2011,
pages 310–317, 2011.

[89] a. J. M. M. Weĳters, W. M. P. van der Aalst, and A. K. A. de Medeiros. Process mining with
the HeuristicsMiner algorithm. Cirp Annals-manufacturing Technology, 166:1–34, 2006.

[90] L. Wen, W. M. Van Der Aalst, J. Wang, and J. Sun. Mining process models with non-free-
choice constructs. Data Mining and Knowledge Discovery, 15(2):145–180, oct 2007.

149

BIBLIOGRAPHY

[91] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge
and Data Engineering, 12(3):372–390, 2000.

150

RÉSUMÉ

Les journaux d’évènements stockent la trace de l’exécution des processus. Le Process Mining est la discipline de
recherche qui vise à analyser ce genre de données et à construire des modèles d’exécution décrivant le déroulement
des processus. Plusieurs algorithmes ont été proposés pour extraire de tels modèles mais ils se heurtent aux cas où le
modèle contient trop d’irrégularités parmi les différentes instances d’exécution.

Dans cette thèse, nous nous attelons à étudier ces cas où le processus est non structuré et nous nous concen-
trons sur une méthode particulière d’analyse qui est l’extraction de modèles comportementaux. Nous proposons un
nouvel algorithme plus efficace pour ce faire qui garantit certaines propriétés sur les fragments trouvés. Nous proposons
également un framework pour analyser et récupérer ces patterns dans une approche orientée données contextuelles
alliant corrélation et causalité. Enfin, nous mettons au point un nouvel algorithme de découverte des patterns encore
plus rapide avec des résultats visualisables plus concis et plus pertinents.

MOTS CLÉS

Process Mining, Journaux D’évènements, Processus Flexibles, Patterns Comportementaux, Données Con-
textuelles, Corrélation, Causalité

ABSTRACT

Event logs contain recorded data about business processes execution. Process Mining is the research discipline that
analyzes such event logs and aims to discover models describing the unfolding of the process. Many algorithms were
proposed but most of them don’t take into account cases of high irregularities between execution instances.

In this thesis, we focus on such cases where the processes are unstructured and more exactly on a particular
method to get insight from them. Namely, the mining of behavioral patterns. We propose a novel and more efficient
algorithm that guarantees certain properties on the extracted patterns. We also propose a framework to analyze and
retrieve such patterns in a contextual data-aware fashion manipulating correlation and causation. Lastly, we devise an
advanced algorithm for the pattern discovery that is further optimized. It yields more concise and relevant results while
offering a visualization interface for easy and interactive analysis.

KEYWORDS

Process Mining, Event logs, Flexible processes, Behavioral Patterns, Contextual data, Correlation, Causality

	Introduction
	Context and Motivation
	Research Goals
	Contributions
	Layout of the Thesis

	Preliminaries and Related Work
	Preliminaries
	Event Log
	Process Models
	Alignments

	Related Works
	Discovery of Structured Processes
	Pattern Mining
	Discovery of Insights in Flexible Processes
	Data-aware Discovery of Insights in Flexible Processes
	Discovery of Causality Relationships
	Alignment and Conformance Checking

	Conclusion

	Behavioral Pattern Mining with COBPAM
	Algebraic Operations and Structures on Process Trees
	Quality Metrics
	Behavioral Pattern Discovery with COBPAM
	A Monotonicity Property
	Compact and Maximal Process Trees
	Optimization Based on Projections
	The COBPAM Algorithm

	Conclusion

	Data-aware Analysis Framework
	Behavioral Rules
	Contextual COBPAM
	Contexts
	Contextual Behavioral Patterns
	Contextual Pattern Discovery Approach

	Causal Relationship between Data and Occurrences of Behavioral Patterns
	Methodology for Using the Data-aware Framework
	Conclusion

	Advanced Behavioral Pattern Mining
	Alignment Growth
	Definitions
	Leftmost Occurrence First (LOF Property)
	The Growth Procedure
	Changes, Limits and Intuitions

	Post-processing
	Generalized Maximality
	Trees Equivalency

	Visualization
	Conclusion

	Experimental Evaluation
	Setup and Datasets
	COBPAM Evaluation
	Efficiency
	Quantitative Effectiveness
	Qualitative Effectiveness

	Data-aware Analysis Framework Evaluation
	Efficiency
	Effectiveness of Pattern Discovery
	Patterns Analysis

	Advanced COBPAM Evaluation
	Efficiency
	Effectiveness
	Visualisation

	Discussion
	Conclusion

	Conclusion and Future Works

