
HAL Id: tel-03542802
https://theses.hal.science/tel-03542802v2
Submitted on 7 Feb 2022 (v2), last revised 22 Feb 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to Decentralized and Privacy-Preserving
Machine Learning

Aurélien Bellet

To cite this version:
Aurélien Bellet. Contributions to Decentralized and Privacy-Preserving Machine Learning. Machine
Learning [cs.LG]. Université de Lille, 2021. �tel-03542802v2�

https://theses.hal.science/tel-03542802v2
https://hal.archives-ouvertes.fr

Contributions to Decentralized and
Privacy-Preserving Machine Learning

Université de Lille

Habilitation à Diriger des Recherches

Spécialité : Informatique

présentée par

Aurélien Bellet

Soutenue publiquement à Lille le 30/11/2021 après avis des rapporteurs,

Francis Bach Inria / École Normale Supérieure
Kamalika Chaudhuri University of California San Diego
Catuscia Palamidessi Inria

et devant le jury composé de :

Francis Bach Inria / École Normale Supérieure
Claude Castelluccia Inria / CNIL
Kamalika Chaudhuri University of California San Diego
Brendan McMahan Google Research
Catuscia Palamidessi Inria
Peter Richtárik King Abdullah University of Science and Technology
Adam Smith Boston University
Marc Tommasi Université de Lille

Abstract

This manuscript presents, in a unified way, some of my contributions to the topic of decentral-
ized and privacy-preserving machine learning. Decentralized learning, also known as federated
learning, aims to allow a set of participants with local datasets to collaboratively train machine
learning models while keeping their data decentralized. A key challenge in this context is to
design decentralized algorithms that (i) can efficiently solve a variety of learning tasks on highly
heterogeneous local datasets, and (ii) provide rigorous privacy guarantees while minimizing the
impact on the utility of the learned models. To tackle these challenges, I describe three sets of
contributions. First, I present a decentralized approach to collaboratively learn a personalized
model for each user. Second, I address the problem of decentralized estimation and learning
with pairwise loss functions. In both cases, privacy-preserving versions of these algorithms are
introduced under the strong model of local differential privacy. Finally, to reduce the cost in util-
ity induced by local differential privacy, I propose two approaches to improve the privacy-utility
trade-offs of decentralized learning through appropriate relaxations of the local model.

Keywords: decentralized learning; federated learning; differential privacy.

Résumé

Ce manuscrit présente, de manière unifiée, certaines de mes contributions sur le thème de
l’apprentissage automatique décentralisé et respectueux de la vie privée. L’apprentissage dé-
centralisé, également appelé apprentissage fédéré, permet à un ensemble de participants avec des
données locales d’entraîner des modèles d’apprentissage de manière collaborative tout en gardant
leurs données décentralisées. Un défi important dans ce contexte est de concevoir des algorithmes
décentralisés qui (i) peuvent résoudre efficacement une variété de tâches d’apprentissage sur des
données locales hétérogènes, et (ii) donnent des garanties de confidentialité rigoureuses tout en
minimisant l’impact sur l’utilité du modèle appris. Pour relever ces défis, je décris trois ensem-
bles de contributions. Premièrement, je présente une approche décentralisée pour apprendre, de
manière collaborative, un modèle personnalisé pour chaque utilisateur. Deuxièmement, j’aborde
le problème de l’estimation et de l’apprentissage décentralisés avec des fonctions de perte sur
des paires. Dans les deux cas, des versions de ces algorithmes respectueuses de la vie privée
sont introduites, en considérant le modèle local de la confidentialité différentielle. Enfin, pour ré-
duire le coût en utilité induit par la confidentialité différentielle locale, je propose deux approches
pour améliorer les compromis vie privée-utilité de l’apprentissage décentralisé via des relaxations
appropriées du modèle local.

Mots clés : apprentissage décentralisé ; apprentissage fédéré ; confidentialité différentielle.

Acknowledgments

First of all, I would like to thank the members of the committee, especially the re-
viewers, for their time and consideration. It was a great pleasure and honor to present
my work to leading experts on the various dimensions involved in my work, from both
academia and industry. The Q&A session was intense and full of valuable feedback.

My deepest thanks go to Marc Tommasi. Beyond our fruitful scientific collaborations
(some of which are presented in this thesis), I have learned a lot from Marc about how
to be a researcher, from supervising PhD students to prioritizing things that actually
matter. He has always encouraged me to pursue the directions he knew were important
to me. As head of the Magnet team, he has also shielded me (and others) from a lot of
administrative burden so I could focus more on my research.

I would like to thank all of my collaborators: a great part of the pleasure I get from
doing research comes from these scientific and social interactions.

Finally, I would like to thank my family, in particular my parents and my brother for
their continued interest and support, and my wife Marion, who always has my back.

Table of Contents

1 Introduction 9
1.1 Key Concepts and Notations . 10

1.2 Overview of Featured Contributions . 13

1.3 Other Contributions . 15

2 Decentralized and Private Learning of Personalized Models 17
2.1 Proposed Formulation . 19

2.2 Learning Personalized Models for Fixed Graph 21

2.2.1 Decentralized Coordinate Descent Algorithm 21

2.2.2 Communication-Efficient Decentralized Frank-Wolfe Algorithm . . 24

2.3 Learning the Graph for Fixed Models . 26

2.4 Incorporating Differential Privacy Constraints 29

2.4.1 Privacy Model . 29

2.4.2 Privacy-Preserving Decentralized Coordinate Descent 29

2.4.3 Differential Privacy for the Full Alternating Procedure 31

2.5 Experiments . 32

3 Decentralized and Private Learning with Pairwise Loss Functions 35
3.1 Gossip Algorithms for Pairwise Estimation 37

3.2 Gossip Algorithms for Pairwise Optimization 40

3.2.1 Reminder on Centralized Dual Averaging 41

3.2.2 Proposed Approach . 42

3.3 Locally Private Protocols for Pairwise Estimation 44

3.3.1 Problem Setting . 44

3.3.2 Generic Locally Private Protocol from Quantization 45

3.3.3 Locally Private Protocol for Area under the ROC Curve 47

3.3.4 Beyond Local DP: Protocols from 2-Party Secure Computation . . . 51

3.4 Experiments . 52

7

4 Better Privacy-Utility Trade-offs for Decentralized Learning 57
4.1 An Accurate, Scalable and Verifiable Protocol for Decentralized Differen-

tially Private Averaging . 60

4.1.1 Problem Setting . 60

4.1.2 Proposed Protocol . 61

4.1.3 Differential Privacy Guarantees . 63

4.1.4 Correctness Against Malicious Users 66

4.2 Privacy Amplification by Decentralization 67

4.2.1 Network Differential Privacy . 68

4.2.2 Decentralized Computation Model 69

4.2.3 Privacy Amplification for Walking on a Ring 69

4.2.4 Privacy Amplification for Walking on a Complete Graph 72

4.2.5 Experiments on Private Stochastic Gradient Descent 76

5 Future Research 79

Bibliography 85

Appendix 101
A Reminders on Differential Privacy . 101

B Reminders on Notions of Regularity and Curvature 102

8

Chapter 1

Introduction

Machine Learning (ML) is at the heart of the innovative AI-based services and tech-
nology deployed on the Internet, in people’s home and in public space. It is also routinely
used in many data-oriented scientific fields such as medicine, neuroscience, biology, eco-
nomics, marketing and the social sciences. State-of-the-art ML models, notably deep
neural networks, must be trained on a large number of observations to be able to learn
complex patterns that generalize well to unseen data. In the classic approach to ML, one
assumes centralized access to the training data, be it on a single machine or in a tightly
coupled system like a data center or “the cloud”.

This stands in contrast to the fact that data is inherently decentralized in many use-
cases of ML: medical data is collected by several hospitals, consumer data is collected
by different companies, user data is generated by personal devices, etc. Collecting and
storing data from multiple parties on a central server can incur high communication and
infrastructure costs, and may not even be feasible in data-intensive applications.1 Perhaps
more crucially, centralized ML assumes the existence of a trusted curator who securely
collects, stores and processes the raw data. As modern devices collect ever more sensitive
personal data (e.g., browsing/purchase logs, geolocation data, speech utterances) and
privacy scandals regularly make the news, many users of digital services are looking
for more privacy-preserving solutions that do not require to hand over their data to the
service provider. Situations where data owners may not be willing to share their raw
data also arise when keeping control of data represents a competitive advantage (e.g., in
business or research), and when data sharing is restricted by legal constraints (related to
intellectual property or data privacy regulations).

Decentralized learning, also known as federated learning, has recently emerged as a way
to address the limitations of centralized ML. This fast-growing research area aims to
allow a set of participants with local datasets to collaboratively train machine learning
models while keeping their data decentralized [AB-Journal2]. Decentralized learning

1For instance, a self-driving car is expected to generate several terabytes of data a day (Heinrich, 2017).

9

effectively moves most of the computation from the data center to where data is naturally
located (e.g., on user devices). Like their centralized counterparts, decentralized learning
algorithms are typically iterative procedures: participants update the current model in
parallel using their local data, and these updates are then aggregated to form a new
version of the model (McMahan et al., 2017). The aggregation step can be performed
globally through communication with a central coordinator, or locally via peer-to-peer
exchanges among subsets of users in the network (Lian et al., 2017).

Decentralized learning comes with its own set of challenges, which are distinct from
those arising in traditional parallel/distributed ML designed to run in a cluster environ-
ment (see e.g., Bekkerman et al., 2011). I highlight here two main challenges (see the
survey [AB-Journal2] for a more complete discussion). First and foremost, local datasets
exhibit large heterogeneity as they reflect the usage and production patterns specific to
each participant. In other words, they are not independent and identically distributed
(non-IID). Intuitively, this makes decentralized learning harder because participants may
largely disagree about how the model should be updated (Karimireddy et al., 2020). An
important challenge is then to design decentralized algorithms that can solve a variety of
ML tasks on highly heterogeneous local datasets, while operating under low communi-
cation budget and scaling gracefully with the number of participants.

A second challenge in decentralized learning is related to protecting the privacy of par-
ticipants with respect to other parties. Avoiding to share raw data is a good starting
point to design privacy-preserving solutions but is not sufficient to obtain robust privacy
guarantees. In centralized ML, where a trusted curator only releases the trained model,
information about individual training data points can be extracted from the model or
its predictions (Shokri et al., 2017). This information can turn out to be very sensitive,
as illustrated for instance by my work on reconstructing genotypes in private genomic
databases from genetic risk score models [AB-Conf6]; [AB-Journal3]. Compared to the
centralized setting, decentralized ML provides an additional attack surface as participants
get to observe intermediate model updates instead of only the final model (Nasr et al.,
2019). A key challenge is thus to design decentralized algorithms with rigorous privacy
guarantees, minimizing the impact on the utility (accuracy) of the resulting models.

To summarize, it is crucial to design ML algorithms that can learn from heterogeneous
decentralized datasets under rigorous privacy requirements, and to formally character-
ize the underlying trade-offs between utility, privacy, and efficiency. This manuscript
presents some of my contributions towards achieving this goal.

1.1 Key Concepts and Notations

In this section, I introduce the main technical concepts and notations that will be used
throughout the manuscript. Given an integer n, I will use JnK to denote the set {1, . . . , n}.

10

Decentralized learning. Consider a set of n users (participants) involved in a decen-
tralized learning process. Unless otherwise noted, users are assumed to behave honestly
(i.e., they follow the protocol). Each user u ∈ JnK holds a local dataset Du composed of
mu = |Du| data points lying in a data domain X which is kept abstract for now. Each
local dataset Du should be thought of as being drawn from a local distribution specific to
user u. Crucially, the joint dataset D = ∪n

u=1Du of size m = |D| = ∑n
u=1 mu will never be

centralized: it will remain distributed across users.
I will focus on machine learning problems that can be formulated in the Empirical

Risk Minimization (ERM) framework, which is motivated by statistical learning theory
and encompasses many existing ML tasks (Shalev-Shwartz and Ben-David, 2014). For-
mally, consider a family of models with parameters θ ∈ C, representing for instance the
weights of a linear classifier or deep neural network. Given a differentiable loss function
f : C × X → R+ measuring how well a model θ ∈ C fits a data point x ∈ X , a standard
ML objective is to solve the following optimization problem:

arg min
θ∈C

{
F(θ;D) = 1

m ∑
x∈D

f (θ; x)
}

. (1.1)

In other words, the goal is to find the parameters that minimize the average loss over
the joint dataset D. In the context of decentralized learning, the objective function
F(θ) in (1.1) can be equivalently formulated as a weighted average of local objectives
F1(θ;D1), . . . , Fn(θ;Dn) that each depend on the data of one user:

F(θ;D) =
n

∑
u=1

mu

m
Fu(θ;Du), where Fu(θ;Du) =

1
mu

∑
x∈Du

f (θ; x). (1.2)

To collaboratively find an (approximate) solution to (1.1) in a decentralized fashion,
users can perform local computations and communicate results by sending messages to
other parties. Leveraging the separable structure in (1.2), the local computations of each
user u will typically consist of gradient updates to the model with respect to his/her local
objective Fu, while communication steps aim to aggregate local model parameters across
users. Communication can rely on a central coordinator in a standard client-server architec-
ture organized in a star topology. In this case, users send messages (i.e., model updates)
to the coordinator, who aggregates them and sends the result (i.e., the new version of
the model) back to the users (McMahan et al., 2017). Another approach is to consider a
fully decentralized setting: users exchange information directly in arbitrary network topol-
ogy represented as a graph G = (JnK, E) where nodes correspond to users and an edge
{u, v} ∈ E ⊆ JnK× JnK indicates that users u and v can exchange messages. Fully decen-
tralized algorithms are only able to perform local aggregations among neighboring users
in G, but generally scale better to the large number of users seen in “cross-device” appli-
cations [AB-Journal2]. Indeed, while the central coordinator may become a bottleneck as
the number of users increases, the topology G used in fully decentralized algorithms can

11

remain sparse enough (i.e., with constant or logarithmic degree) such that all users need
only to communicate with a small number of other users (Lian et al., 2017). Most of the
contributions presented in this manuscript consider the fully decentralized setting.

Differential privacy. In this work, privacy will be measured by Differential Privacy
(DP), a mathematical definition which comes with rigorous guarantees as well as a pow-
erful algorithmic framework. First introduced by Dwork et al. (2006b), DP has become
a gold standard metric of privacy in fundamental science but also in real-world deploy-
ments, as evidenced by its recent adoption by the US Census Bureau (Abowd, 2018) and
some big tech companies (Erlingsson et al., 2014; Fanti et al., 2016; Ding et al., 2017).
DP relies on a neighboring relation over pairs of datasets, which can be adapted to the
context. The relation most commonly used in ML says that two datasets D and D′ of
same size are neighboring, denoted by D ∼ D′, if they differ on a single data point.

Definition 1.1 (Differential privacy). Let A be a (randomized) algorithm taking a dataset as
input. Given real parameters ε, δ ≥ 0, we say that A is (ε, δ)-differentially private, or (ε, δ)-DP,
if for all possible pairs of neighboring datasets D ∼ D′ and for all O ⊆ range(A), we have:

Pr(A(D) ∈ O) ≤ eε Pr(A(D′) ∈ O) + δ. (1.3)

Differential privacy requires that the distribution of the possible outputs of A is al-
most the same regardless of whether a particular data point was part of the input. This
formalizes the intuitive requirement that the output of a private algorithm should not re-
veal too much information about individual data points. The requirement gets stronger
as ε and δ approach 0, and the special case of δ = 0 is known as pure ε-DP. DP possesses
a number of desirable properties, among which robustness to post-processing (any function
of an ε-DP algorithm remains ε-DP) and composition (the ability to keep track of privacy
guarantees across multiple analyses). For instance, given K algorithms that each satisfy
(ε, δ)-DP, releasing their combined outputs on the same data is (Kε, Kδ)-DP.

Crucially, A must be randomized to satisfy DP. This gives rise to a classic trade-off
between privacy and utility, where privacy is measured by (ε, δ) and utility represents
the usefulness of the output compared to the ideal non-private output (as measured for
instance by the mean squared error). A simple way to achieve differential privacy is via
output perturbation, which consists in adding properly calibrated noise to the output of a
non-private (potentially deterministic) algorithm. For instance, the Gaussian mechanism
relies on the addition of centered Gaussian noise. For completeness, Appendix A recalls
a few standard properties and results related to DP. More details can be found in the
excellent textbook by Dwork and Roth (2014).

Privacy model for decentralized ML. In the context of privacy-preserving ML in the
centralized setting (Chaudhuri et al., 2011), one assumes the presence of a trusted curator

12

who can collect and process the raw dataset D: the output of an algorithm A thus solely
consists of a machine learning model trained on D. However, in decentralized learning
there is no trusted curator and one should thus adapt the privacy model appropriately. In
this manuscript, I will generally assume that each user does not trust any other party and
seeks to protect against an adversary that may observe everything he/she communicates.
In the sense of Definition 1.1, the output of A will thus consist of the transcript of all
messages exchanged by users during training, which is usually referred to as the local
model of differential privacy (Kasiviswanathan et al., 2008; Duchi et al., 2013). Note that
some relaxations of this strong model will be studied in Chapter 4.

Remark 1.1 (User-level DP). In the context of decentralized learning where D = ∪uDu and
D′ = ∪uD′u, I will sometimes consider a stronger variant of DP by defining the neighboring
relation D ∼ D′ to be such that D and D′ differ on a single user’s local dataset. This effectively
hides the influence of a user’s whole dataset rather than a single of its data points. This variant is
sometimes referred to as user-level DP (McMahan et al., 2018), as opposed to the classic record-
level DP. Unless otherwise noted, I will consider record-level DP.

1.2 Overview of Featured Contributions

In this manuscript, I focus on a representative set of contributions which reflect my
current research interests and form a consistent whole. Relevant related work is discussed
in the introduction of each chapter.

Chapter 2 is devoted to decentralized and private learning of personalized models. The key
idea is to tackle the high heterogeneity of local datasets by learning a specific model
for each user, rather than a single global model as in (1.2). Inspired by multi-task
learning, we model the underlying relationships between the users’ tasks as a graph
and propose an objective function to learn the relationship graph together with per-
sonalized models leveraging this graph. We design fully decentralized and asyn-
chronous algorithms to optimize this objective in a scalable and communication-
efficient manner, and analyze their convergence rates. We also propose a differen-
tially private variant to bound the amount of leakage from the messages sent by
each user and formally characterize the resulting privacy-utility trade-offs. To the
best of our knowledge, our work was the first to propose to learn personalized
models for decentralized learning.

The work covered in this chapter was published in a series of three conference
papers. [AB-Conf15] was done during the Masters internship of P. Vanhaesebrouck
that I co-supervised with M. Tommasi. [AB-Conf13] was done in collaboration
with R. Guerraoui’s group at EPFL. Finally, [AB-Conf9] was done during a visit of
V. Zantedeschi (PhD student at Univ. St-Etienne) at Inria, which I co-supervised
with M. Tommasi.

13

Chapter 3 deals with decentralized and private learning with pairwise loss functions, where
each term in the objective involves a pair of data points. Such pairwise objectives,
commonly used in ML problems like ranking and metric learning, are challenging
to solve in the decentralized setting because they do not decompose into a sum
of local objective functions as in (1.2). We propose the first efficient decentralized
algorithms to learn with pairwise objectives. Our algorithms are based on an itera-
tive data propagation step which allows each user to access data points from other
users, and can operate in an asynchronous setting. Interestingly, our convergence
results are able to capture some degree of data and network-dependence in the
rates. To address privacy constraints raised by data propagation, we propose pro-
tocols to estimate pairwise statistics in the local model of differential privacy, from
which we can readily obtain private versions of the above decentralized algorithms.

The work covered in this chapter was published in a series of three conference
papers. [AB-Conf21] and [AB-Conf16] were part of the PhD thesis of I. Colin, who
I worked with during my postdoc at Télécom Paris. [AB-Conf3] was done during a
visit of T. Kulkarni (PhD student at Warwick Univ.) at Inria under my supervision,
and in collaboration with J. Bell and A. Gascón (The Alan Turing Institute).

Chapter 4 presents two approaches to achieve better privacy-utility trade-offs for decentral-
ized learning than what is possible in the local model of differential privacy. Our
first contribution focuses on the subproblem of decentralized differentially private
averaging, the key primitive needed in decentralized learning with an untrusted
aggregator. We propose a protocol in which pairs of users securely exchange corre-
lated Gaussian noise, and show that it can nearly match the privacy-utility trade-off
of the trusted curator setting with only logarithmic communication cost per user.
We also show how to guarantee the correctness of our protocol in the presence of
malicious users by relying on standard cryptographic primitives. Our second con-
tribution is the first work to show that fully decentralized algorithms can formally
amplify privacy guarantees. To this end, we introduce a novel relaxation of lo-
cal DP that naturally arise in the fully decentralized setting and design algorithms
operating on ring and complete topologies. For tasks like real summation, discrete
histogram computation and learning with stochastic gradient descent, we show that
the privacy-utility trade-offs of our algorithms significantly improve upon local DP,
in some cases matching the performance of the trusted curator setting.

The work covered in this chapter is available in two recent preprints. [AB-
Preprint7] was done in collaboration with Inria colleagues J. Ramon and PhD stu-
dent C. Sabater. [AB-Preprint6] was done with E. Cyffers during her Masters in-
ternship. She started a PhD under my supervision in October 2021.

The practical relevance of our methods is illustrated by numerical experiments on

14

synthetic and real data. To conclude the manuscript, Chapter 5 presents the future I
envision for decentralized and privacy-preserving machine learning and describes a short
to mid-term research project to address some of the remaining challenges in this area.

1.3 Other Contributions

The intersection of machine learning, privacy and distributed algorithms lies at the
heart of my current research interests. I briefly mention here some contributions and
activities that are not described in this manuscript to favor conciseness and consistency.
I have participated to a collaborative literature survey on decentralized and federated
learning [AB-Journal2]. I have studied the privacy of decentralized algorithms for ru-
mor spreading [AB-Conf4], and how to mitigate leakage from data-dependent com-
munications [AB-Preprint2]. Beyond decentralized learning, I have contributed to par-
allel/distributed ML for cluster computing [AB-Conf19]; [AB-Journal7]; [AB-Conf11]
and private optimization in the centralized setting [AB-Preprint3]. I have also worked
on more applied questions related to privacy and ML. This includes work on speaker
anonymization in speech [AB-Conf10]; [AB-Conf8]; [AB-Conf7]; [AB-Conf5]; [AB-
Preprint4] (through the co-supervision of the PhD thesis of B. Srivastava and postdoc
of M. Maouche), studying the privacy risks of releasing ML models in genomics [AB-
Conf6]; [AB-Journal3] (in collaboration with researchers at The Alan Turing Institute),
and a recent project with Lille University Hospital to deploy decentralized learning for
multi-centric medical studies (with co-supervision of an engineer: Y. Bouillard). Finally,
I am teaching an MSc-level course on privacy-preserving ML at the University of Lille.2

Some of the contributions presented in this manuscript relate to my work on (central-
ized, non-private) ML. Chapter 3 draws upon my work on learning with pairwise objec-
tives [AB-Journal9]; [AB-Conf23]; [AB-Conf14]; [AB-Conf11]; [AB-Conf2] (through the
co-supervision of the PhD thesis of R. Vogel). The idea of learning pairwise relationships
between users in Chapter 2 is related to metric learning, which has been one of the main
topics of my early research. I am the co-author of a popular survey [AB-Preprint10] and
book [AB-Book1] on this topic. I am also one of the maintainers of metric-learn,3 an
open source Python package for metric learning [AB-Journal4]. The development was
driven in part by an engineer (W. de Vazelhes) that I supervised, and benefited from
collaborations with the scikit-learn community.

Finally, I have contributed to several other problems in machine learning, among
which scalable kernel methods [AB-Journal6], representation learning for NLP [AB-
Conf12] and fairness in machine learning [AB-Conf2]. The full list of my scientific
contributions can be found in the bibliography part at the end of the manuscript.

2http://researchers.lille.inria.fr/abellet/teaching/private_machine_learning_course.html
3https://github.com/scikit-learn-contrib/metric-learn

15

http://researchers.lille.inria.fr/abellet/teaching/private_machine_learning_course.html
https://github.com/scikit-learn-contrib/metric-learn

Chapter 2

Decentralized and Private Learning
of Personalized Models

Dealing with data heterogeneity is one of the main challenges in decentralized learn-
ing, as discussed in Chapter 1. When learning a global model θ as in (1.1) on highly
heterogeneous local datasets, there is typically a lack of consensus in the model updates
across users, which can lead to a slow convergence and/or a suboptimal model (Karim-
ireddy et al., 2020; Hsieh et al., 2020). As we have shown in recent work [AB-Preprint1],
this is even more pronounced in fully decentralized approaches as they rely on local ag-
gregation in sparse topologies. More fundamentally, the very existence of a global model
that is accurate for all users is at odds with the heterogeneity of local datasets.

In this chapter, we take a different route to the problem of data heterogeneity in
decentralized learning and propose to learn personalized models θ1, . . . , θn for each user in
a collaborative fashion. Our idea is to leverage the fact that in many large-scale ap-
plications (e.g., predictive modeling in smartphones apps), each user exhibits distinct
behaviors/preferences but is sufficiently similar to some other users to benefit from shar-
ing information with them. We thus propose to discover the relationships between the
users’ tasks in the form of a sparse collaboration graph and learn personalized models that
leverage this graph to achieve better generalization performance. Inspired by multi-task
learning, we formulate this problem as a joint objective function over the models and
the graph and design fully decentralized and asynchronous algorithms to solve it by
alternating optimization over the two sets of parameters.

To update the models given a fixed graph, we propose a fast decentralized coor-
dinate descent algorithm which is particularly well-suited to learn linear models. We
also propose a decentralized Frank-Wolfe algorithm to learn nonlinear models as com-
binations of pre-trained models in a boosting fashion, with logarithmic communication
complexity. In these algorithms, the collaboration graph serves as an overlay to restrict
the communication to pairs of users who appear to be sufficiently similar so as to ensure
that our algorithms scale well with the number of users. To update the collaboration

17

graph given the models, we design a decentralized algorithm in which users update
their neighborhood by communicating only with small random subsets of other users
obtained through a peer sampling service (Jelasity et al., 2007). Our approach is flexible
enough to accommodate various graph regularizers, which allow to easily control the
sparsity of the learned graph (and thereby ensure the scalability of the model update
step). We provide formal convergence guarantees for all our algorithms under convex
loss functions, with explicit rates. Finally, we propose a differentially private version of
our approach to guarantee that the messages sent by the users over the network during
the execution of the algorithm do not reveal significant information about any individ-
ual data point. We provide a formal analysis of the utility loss due to privacy, showing
that our formulation naturally tone down the influence of users with small datasets (who
propagate more noisy information). The practical relevance of our approach for dealing
with heterogeneous local datasets is illustrated by numerical experiments.

This chapter provides a unified treatment of the work published in a series of three
conferences papers [AB-Conf15]; [AB-Conf13]; [AB-Conf9].

Related work. Standard federated learning approaches train a unique model for all
users (McMahan et al., 2017; Konečný et al., 2016; Li et al., 2020; Karimireddy et al.,
2020; Mohri et al., 2019; Hsieh et al., 2020). This is also the case for fully decentralized
approaches, which have seen a recent surge of interest (Lian et al., 2017; Jiang et al., 2017;
Tang et al., 2018; Lian et al., 2018; Assran et al., 2019; Koloskova et al., 2019; Scaman et al.,
2019; Hendrikx et al., 2019; Koloskova et al., 2020). While some of these approaches are
designed to mitigate the impact of data heterogeneity on the convergence, none of them
studies the interplay with privacy constraints (on this topic, see our recent work [AB-
Preprint5]). More crucially, learning a single global model may not adequately capture
the idiosyncrasies of each user.

To the best of our knowledge, our initial paper [AB-Conf15] was the first to learn
personalized models in the context of federated/decentralized learning. In work done
independently of ours, Smith et al. (2017) proposed a similar formulation, although the
task relationships do not form a valid weighted graph and are typically not sparse. Their
algorithm relies on a central coordinator: the relations are updated in a centralized way
by the server who must regularly access all user models. This can represent a significant
communication and computation bottleneck when the number of users is large.

Learning personalized models is now widely regarded as a very effective way to deal
with heterogeneous data in federated/decentralized learning. Recent approaches have
proposed to derive personalized models from a global “meta-model” (Jiang et al., 2019;
Fallah et al., 2020; Khodak et al., 2019), which works only when local distributions are
sufficiently close to the global distribution (Deng et al., 2020). Clustered FL (Sattler et al.,
2020; Ghosh et al., 2020; Mansour et al., 2020) addresses the potential lack of a global
model by assuming that users can be partitioned into several clusters and learning an

18

independent model for each cluster. Our formulation allows for more nuanced relations
among users’ models. While our approach is best suited to learn linear models (or linear
combinations of pre-trained models), recent approaches (Hanzely and Richtárik, 2020;
Hanzely et al., 2020; Dinh et al., 2020) target more general models with nonconvex losses
at the cost of considering simpler penalization terms (e.g., the distance to the average
model), thereby losing the capability to capture complex relations among users.

While privacy constraints have been studied for decentralized learning of a single
global model (see e.g., McMahan et al., 2018; Girgis et al., 2021), we are not aware of
other privacy-preserving approaches for learning personalized models.

Outline of the chapter. In Section 2.1, we introduce our formulation for learning per-
sonalized models and the fully decentralized setting in which we propose to solve the
problem. Section 2.2 presents our decentralized algorithms to learn the models given a
fixed collaboration graph. Section 2.3 then introduces an algorithm to update the graph
given the models. Section 2.4 shows how to incorporate differential privacy constraints
to the proposed approach. Finally, Section 2.5 presents some numerical experiments.

2.1 Proposed Formulation

As introduced in Chapter 1, each user u ∈ JnK holds a local dataset Du of mu data
points, which we assume to be drawn from a distribution specific to user u. The true goal
of user u is to learn a model parameterized by θu ∈ C which generalizes well to unseen
data points drawn from its personal distribution. Instead of learning a single global
model as in (1.1), which could perform arbitrarily bad for some users, we introduce a
new decentralized learning approach where users learn personalized models by leveraging
relationships between the users’ tasks that are learned together with the models.

Objective function. We assume that all users learn models from the same hypothesis
class. Since users have datasets of different sizes we introduce a notion of “confidence”
cu ∈ R+ for each user u, which should be thought of as proportional to mu (in practice
we simply set cu = mu/ maxv∈JnK mv). The relationships between users are encoded in
the form of an undirected and weighted collaboration graph Gw = (JnK, w) in which nodes
correspond to users and nonnegative edge weights wu,v ≥ 0 reflect the similarity between
the learning tasks of users u and v, with wu,v = 0 indicating the absence of edge.

We propose to learn the personalized classifiers Θ = (θ1, . . . , θn) and collaboration
graph w by minimizing the following joint optimization problem:

arg min
Θ∈Cn

w∈W

{
J(Θ, w) =

n

∑
u=1

du(w)cuFu(θu;Du) +
λ1

2 ∑
1≤u<v≤n

wu,v‖θu − θv‖2 + λ2g(w)
}

, (2.1)

19

where C and W = {w ∈ Rn(n−1)/2 : w ≥ 0} are the feasible domains for the models
and the graph respectively, d(w) = (d1(w), . . . , dn(w)) ∈ Rn is the degree vector with
du(w) = ∑n

v=1 wu,v, and λ1, λ2 ≥ 0 are trade-off hyperparameters.
The joint objective function J(Θ, w) in (2.1) is composed of three terms. The first one

is a (weighted) sum of local objective functions F1(θ1;D1), . . . , Fn(θn;Dn), each involving
only the personal model θu and local dataset Du of a single user. The second term
involves both the models and the graph: it enables collaboration by encouraging two
users u and v to have a similar model for large edge weight wu,v. This principle, known
as graph regularization, is well-established in the multi-task learning literature (Evgeniou
and Pontil, 2004; Maurer, 2006). Importantly, the factor du(w)cu in front of the local
objective Fu of each user u implements a useful inductive bias: users with larger datasets
(large confidence) will tend to connect to other nodes as long as their local objective
remains small so that they can positively influence their neighbors, while users with small
datasets (low confidence) will tend to disregard their local objective and rely more on
information from other users. Finally, the last term g(w) introduces some regularization
on the graph weights w used to avoid degenerate solutions (e.g., edgeless graph) and
control structural properties such as sparsity (see Section 2.3 for a concrete example).
Note that we do not enforce the graph to be connected: different connected components
can be seen as modeling clusters of unrelated users.

Remark 2.1 (Flexibility of the formulation). Our objective (2.1) allows for very flexible no-
tions of relationships between the users’ tasks. For instance, as λ1 → +∞ the problem becomes
equivalent to learning a shared model for all users in the same connected component of the graph,
by minimizing the sum of local objectives independently in each component. On the other hand,
setting λ1 = 0 corresponds to having each user u learn its classifier θu based on its local dataset
only (no collaboration). Intermediate values of λ1 let each user learn its own personal model with
the models of other (strongly connected) users acting as a regularizer.

Decentralized setting. We aim to solve (2.1) problem in a fully decentralized way with-
out relying on a central coordinator. We consider the asynchronous time model (Boyd et al.,
2006): each user regularly becomes active at the ticks of an independent local clock which
follows a Poisson distribution. This is in contrast to the synchronous model where users
wake up jointly according to a global clock (and thus need to wait for everyone to finish
each round). As local clocks are i.i.d., we can equivalently consider a single clock which
ticks when one of the local clocks ticks. This provides a convenient way to state and
analyze the algorithms in terms of a global clock counter t.

We assume that each user can send messages to any other user (like on the Internet).
However, in order to scale to a large number of users and achieve fruitful collaboration,
we will generally restrict the message exchanges to pairs of users whose tasks are most
similar according to the collaboration graph Gw. In other words, we use Gw as a seman-

20

Algorithm 2.1 Decentralized alternating optimization procedure to solve (2.1).

Input: Dataset Du for each user u ∈ JnK; Number of alternating steps T
1: Initialize personalized models Θ = (θ1, . . . , θn) ∈ Cn and graph weights w ∈ W
2: for t = 1 to T do
3: Update Θ given w, with Algorithm 2.2 or Algorithm 2.3
4: Update w given Θ, with Algorithm 2.4
5: return Θ, w

tic overlay on the communication layer: a user k can only send messages to its direct
neighbors Nu = {v : wu,v > 0} in Gw. Recall that in our approach, the collaboration
graph is not known beforehand and will iteratively evolve. Therefore, when updating
the collaboration graph, we will also allow users to communicate with a small random
set of peers. This can be implemented via a classic distributed systems primitive called a
peer sampling service (Jelasity et al., 2007).

Alternating optimization. In general, (2.1) will not be jointly convex in Θ and w, but
will be bi-convex if the local objectives and graph regularizer are convex. We thus propose
to solve (2.1) by alternating optimization, as shown in Algorithm 2.1). The idea is to iterate
between updating the models Θ given the current graph w (Section 2.2) and updating
the graph given the current models (Section 2.3). Alternating optimization converges
to a local optimum under technical conditions, see (Tseng, 2001; Tseng and Yun, 2009;
Razaviyayn et al., 2013).

2.2 Learning Personalized Models for Fixed Graph

In this section, we propose decentralized algorithms for solving (2.1) for fixed graph
weights w. Throughout this section, we will denote the corresponding objective function
by M(Θ) = J(Θ, w) and drop the explicit dependence of the degrees on w, writing du

instead of du(w) for conciseness.
We first propose a decentralized coordinate descent algorithm which is most useful

to learn linear models. Then, we propose a decentralized Frank-Wolfe algorithm that
can learn nonlinear models as sparse combinations of base classifiers in a boosting-like
manner with logarithmic communication complexity. Both algorithms rely on broadcast-
based communication (Aysal et al., 2009; Nedic, 2011), where users send messages to all
their neighbors in Gw at once without expecting a reply.

2.2.1 Decentralized Coordinate Descent Algorithm

In this section, we present and analyze a decentralized algorithm based on Coordinate
Descent (CD) techniques (Richtárik and Takác, 2014; Wright, 2015).

21

Algorithm 2.2 Decentralized coordinate descent algorithm to learn personalized models.

Input: Dataset Du for each user u ∈ JnK; Graph weights w ∈ W ; Number of iterations T
1: Each user u ∈ JnK initializes its local model θu(0) ∈ Rp

2: for t = 1 to T do
3: u← random user from JnK // a random user wakes up
4: User u generates a new version θu(t) of its local model via the CD update (2.3)
5: User u sends θu(t) to each user v ∈ Nu
6: for each user v 6= u do
7: θv(t)← θv(t− 1) // other models remain unchanged
8: return Each user has θu(T)

Setup and notations. In this part, we assume that C = Rp for some integer p ≥ 1,
hence for all u ∈ JnK we have θu ∈ Rp and Θ = (θ1, . . . , θn) ∈ Rnp. We also make a
number of standard assumptions on the regularity and curvature of the objective (see
Appendix B for formal definitions of these notions). For any u ∈ JnK, we assume that
the local objective function Fu of user u is convex in its first argument with Lloc

u -Lipschitz
continuous gradient. This implies that M is convex in Θ.1 If we further assume that each
Fu is µloc

u -strongly convex with µloc
u > 0 (which is the case for instance when Fu includes

`2-regularization), then M is µ-strongly convex with µ ≥ min1≤u≤n[ducuµloc
u] > 0. The

partial derivative of M(Θ) w.r.t. the variables θu is given by

[∇M(Θ)]u = du(λ1θu + cu∇Fu(θu;Du))− λ1 ∑
v∈Nu

wu,vθv. (2.2)

For u ∈ JnK, we denote by Lu = du(λ1 + cuLloc
u) the block Lipschitz constant Lu of∇M(Θ)

with respect to block θu. We let Lmin = minu Lu and Lmax = maxu Lu.

Decentralized CD algorithm. We propose a decentralized coordinate descent algorithm
to minimize M (Algorithm 2.2). First, each user u initializes its local model θu(0) ∈ Rp.
Then, at time step t, a random user u wakes up and performs two consecutive actions:

• Update step: user u updates its local model based on the most recent information
θv(t) received from its neighbors v ∈ Nu:

θu(t) = θu(t− 1)− (1/Lu)[∇M(Θ(t− 1))]u

= (1− α)θu(t− 1) + α
(

∑
v∈Nu

wu,v

du
θv(t− 1)− cu

λ1
∇Fu(θu(t− 1);Du)

)
, (2.3)

where α = λ1
λ1+cu Lloc

u
∈ (0, 1].

• Communication step: user u sends its updated model θu(t) to its neighborhood Nu.

1This follows from the fact that the second term in (2.1) is a Laplacian quadratic form, hence convex in Θ.

22

The update step (2.3) consists in a block coordinate descent update with respect to
θu and only requires user u to know the models θv(t − 1) previously broadcast by its
neighbors v ∈ Nu. Note that the user does not need to know the global iteration counter
t, hence no global clock is needed. Algorithm 2.2 is thus fully decentralized and asyn-
chronous. Interestingly, notice that this block CD update is adaptive to the confidence
level of each user in two respects: (i) globally, the more confidence, the more importance
given to the gradient of the local objective Fu compared to the neighbors’ models, and
(ii) locally, when θu(t− 1) is close to a minimizer of Fu (which is the case for instance if
we initialize θu(0) to such a minimizer), users with low confidence will trust their neigh-
bors’ models more aggressively than users with high confidence (which will make more
conservative updates).2 This is in line with the intuition that users with low confidence
should diverge more quickly from their local minimizer than those with high confidence.

Convergence analysis. Under our assumption that the local clocks of users are i.i.d.,
the above algorithm can be seen as a randomized block coordinate descent algorithm
(Wright, 2015). It enjoys a fast linear convergence rate when M is strongly convex.

Proposition 2.1. For T > 0, let (Θ(t))T
t=1 be the sequence of iterates generated by Algorithm 2.2

running for T iterations from an initial point Θ(0) ∈ Rnp. Let M? ∈ minΘ∈Rnp M(Θ). When
M is µ-strongly convex, we have:

E [M(Θ(T))−M?] ≤
(

1− µ

nLmax

)T
(M(Θ(0))−M∗) .

Proof. This follows from a slight adaptation of the proof of Wright (2015, Theorem 1

therein) to the block coordinate descent case.

Remark 2.2. For general convex M, an O(1/T) rate can be obtained, see Wright (2015).

Proposition 2.1 shows that each iteration shrinks the suboptimality gap by a constant
factor. While this factor degrades linearly with the number of users n, this is compensated
by the fact that the number of iterations done in parallel also scales roughly linearly with
n (because users operate asynchronously and in parallel). We thus expect the algorithm
to scale gracefully with the size of the network if the number of updates per user remains

constant. The value µ
Lmax
≥ min1≤u≤n[ducuµloc

u]
max1≤u≤n[du(λ1+cu Lloc

u)]
> 0 is the ratio between the lower and

upper bound on the curvature of M. Focusing on the relative differences between users
and assuming constant µloc

u ’s and Lloc
u ’s, it indicates that the algorithm converges faster

when the degree-weighted confidence of users is approximately the same. On the other
hand, two situations can represent a bottleneck for convergence: (i) a high-confidence and
high-degree user (the progress is then very dependent on the updates of that particular
user), and (ii) a low-confidence, poorly connected user (hence converging slowly).

2This second property is in contrast to a (centralized) gradient descent approach which would use a
constant, more conservative step size (equal to the global Lipschitz constant of M) for all users.

23

Remark 2.3 (ADMM-based algorithm). In [AB-Conf15], we introduced an algorithm based
on asynchronous decentralized ADMM (Wei and Ozdaglar, 2013) by reformulating the problem
as a partial consensus over neighbors’ models. The algorithm relies on gossip communication (i.e.,
bidirectional exchanges between pairs of users) and is more general than decentralized CD (e.g., it
does not assume that the local objectives are smooth). However, its convergence rate is slower in
theory and in practice in the strongly convex case (see [AB-Conf13] for an empirical comparison).

2.2.2 Communication-Efficient Decentralized Frank-Wolfe Algorithm

As an alternative to the previous algorithm, in this section we propose a decentral-
ized Frank-Wolfe algorithm for learning personalized nonlinear classifiers in a boosting
manner with logarithmic communication complexity in the number of model parameters.

Setup and notations. For simplicity, we focus on binary classification where each data
point x ∈ X is associated with a binary label y ∈ {−1, 1}. We propose that each user
u ∈ JnK learns a personal classifier as a weighted combination of a set of K real-valued
base predictors H = {hk : X → R}K

k=1, i.e., a mapping x 7→ sign(∑K
k=1[θu]khk(x)) pa-

rameterized by θu ∈ RK. The base predictors may be weak classifiers as in standard
boosting, or stronger predictors pre-trained on separate data (e.g., public, crowdsourced,
or collected from users who opted in to share personal data). We denote by Au ∈ Rmu×K

the matrix whose (i, k)-th entry gives the margin achieved by the k-th base classifier on
the i-th data point (xi, yi) in Du, so that for i ∈ JmuK, [Auθu]i = yi ∑K

k=1[θu]khk(xi) gives
the margin achieved by the personalized combination θu. Only user u has access to Au.

Drawing inspiration from `1-Adaboost (Shen and Li, 2010; Wang et al., 2015), we
instantiate the local objective Fu(θu;Du) for each user u as follows:

Fu(θu;Du) = log
(mu

∑
i=1

exp(−[Auθu]i)
)

, (2.4)

and let the feasible domain C = {θ ∈ RK : ‖θ‖1 ≤ β} where β ≥ 0 is a hyperparameter
to favor sparse models by controlling their `1-norm. Note that with the log loss function
(2.4) the objective M(Θ) = J(Θ, w) is convex and continuously differentiable, and the
domain Cn is a compact and convex subset of (RK)n. The partial derivative of M(Θ)

w.r.t. the variables θu is given by

∇[M(Θ)]u = −ducuπ>u Au + λ1

[
duθu −

n

∑
v=1

wu,vθv

]
, with πu =

exp(−Auθu)

∑mu
i=1 exp(−Auθu)i

. (2.5)

Decentralized FW algorithm. We propose a decentralized algorithm based on Frank-
Wolfe (FW), also known as conditional gradient descent (Frank and Wolfe, 1956; Clark-
son, 2010; Jaggi, 2013). Our approach, shown in Algorithm 2.3, proceeds as follows. Each

24

Algorithm 2.3 Decentralized Frank-Wolfe algorithm to learn personalized models.

Input: Dataset Du for each user u ∈ JnK; Graph weights w ∈ W ; Number of iterations T; Step
sizes (γ(t))t≥1

1: Each user u ∈ JnK initializes its local model θu(0) ∈ C
2: for t = 1 to T do
3: u← random user from JnK // a random user wakes up
4: User u generates a new version θu(t) of its local model via the FW update (2.6)
5: User u sends θu(t) to each user v ∈ Nu
6: for each user v 6= u do
7: θv(t)← θv(t− 1) // other models remain unchanged
8: return Each user has θu(T)

personal classifier is initialized to some feasible point θu(0) ∈ C (such as the zero vector).
Then, at each step t, a random user u wakes up and performs the following actions:

1. Update step: user u performs a FW update on its local model based on the most
recent information θv(t− 1) received from its neighbors v ∈ Nu:

θu(t) = (1− γ(t))θu(t− 1) + γ(t) su(t), (2.6)

where γ(t) = 2n
t+2n and su(t) = β sign(−(∇[M(Θ(t− 1))]u)ku(t))eku(t), with ku(t) =

arg maxk[|∇[M(Θ(t− 1))]u|]k and eku(t) the unit vector with 1 in the ku(t)-th entry.

2. Communication step: user u sends its updated model θu(t) to its neighborhood Nu.

By inspecting the form of the partial gradient ∇[M(Θ(t− 1))]u in (2.5), we see that
the proposed update (2.6) has an intuitive interpretation. First, it preserves the flavor of
classical boosting by incorporating a single base classifier at a time: the one performing
best on the local dataset Du of user u reweighted by πu (i.e., points that are poorly
classified get more importance). On the other hand, it incorporates an additional bias
towards selecting base predictors that are popular amongst neighbors in the collaboration
graph. The relative importance of the two terms is ruled by the user confidence cu.

As in our previously introduced decentralized CD algorithm (Algorithm 2.2), the
update (2.6) only requires the knowledge of the models of neighboring users. Since the
number of neighbors is typically small, updates can occur in parallel in different parts of
the network, ensuring that the procedure scales well with the number of users.

Convergence analysis. The above algorithm achieves an O(1/t) convergence rate, as
shown by the following result.

Proposition 2.2 ([AB-Conf9]). Algorithm 2.3 takes at most 6n(C⊗M + p0)/ε iterations to find
an approximate solution Θ ∈ Cn that satisfies, in expectation, M(Θ) − M(Θ∗) ≤ ε, where
C⊗f ≤ 4β2 ∑n

u=1 du(cu‖Au‖2 + λ1) and p0 = M(Θ(0))−M(Θ∗).

25

Sketch of proof. We essentially follow the proof technique proposed by Jaggi (2013) and
refined by Lacoste-Julien et al. (2013) for the case of block coordinate Frank-Wolfe. It
is based on defining a surrogate for the optimality gap M(Θ) − M(Θ∗), where Θ∗ ∈
arg minΘ∈M M(Θ). Under an appropriate notion of smoothness for M over the feasible
domain, the convergence is established by showing that the gap decreases in expectation
with the number of iterations, because at a given iteration t the block-wise surrogate gap
at the current solution is minimized by the greedy update su(t).

Proposition 2.2 shows that large degrees for users with low confidence and small
margins penalize the convergence rate less than users with large confidence and large
margins. This is rather intuitive as users in the latter case have greater influence on the
overall objective (2.1).

Communication and memory costs. Remarkably, using a few tricks in the representa-
tion of the sparse updates, the communication and memory cost needed by our algorithm
to converge to an approximate solution of arbitrary precision can be shown to be linear
in the number of edges of the graph and logarithmic in the number of base predictors (see
[AB-Conf9] for details). For the classic case where base predictors consist of a constant
number of decisions stumps per feature, this translates into a logarithmic cost in the di-
mensionality of the data leading to significantly better complexities than the coordinate
descent algorithm introduced in Section 2.2.1 (see [AB-Conf9] for experimental results).

Remark 2.4 (Other loss functions). While we focused on the Adaboost-style loss (2.4) for its
nice connection to boosting and its ability to learn nonlinear models in a convex formulation, the
proposed algorithm and analysis readily extend to other convex loss functions.

2.3 Learning the Graph for Fixed Models

In the previous section, we have proposed and analyzed two algorithms to learn the
model parameters Θ given a fixed collaboration graph w. To make our fully decentral-
ized alternating optimization scheme complete, we now turn to the converse problem of
optimizing the graph weights w given fixed models Θ. We will work with flexible graph
regularizers g(w) that are weight and degree-separable:

g(w) = ∑
u<v

gu,v(wu,v) +
n

∑
u=1

gu(du(w)),

where gu,v : R → R and gu : R → R are convex and smooth. This allows to regularize
weights and degrees in a flexible way,3 while maintaining a separable structure which is

3For instance, it encompasses some regularizers recently introduced in the graph signal processing com-
munity (Dong et al., 2016; Kalofolias, 2016; Berger et al., 2018).

26

Algorithm 2.4 Decentralized algorithm to learn the collaboration graph.

Input: Dataset Du for each user u ∈ JnK; Models Θ = (θ1, . . . , θn) ∈ Cn; Number of iterations T
1: Initialize graph weights w(0) ∈ W
2: for t = 1 to T do
3: u← random user from JnK // a random user wakes up
4: V ← random set of ρ users // obtained by peer sampling
5: User u requests θv, Fv(θv;Dv) and dv(w) from each user v ∈ V
6: User u updates its weights w(t)u,V via the update (2.8)
7: For each v ∈ V , user u sends w(t)u,v to v
8: for each pair of users z, z′ /∈ V ∪ {u} do
9: w(t)z,z′ ← w(t− 1)z,z′ // other weights remain unchanged

10: return Graph weights w(T)

key to the design of an efficient decentralized algorithm. We denote the graph learning
objective function by G(w) = J(Θ, w) for fixed models Θ. Note that G(w) is convex in w.

Decentralized algorithm. Our goal is to design a fully decentralized algorithm to up-
date the collaboration graph Gw. We thus need users to communicate beyond their cur-
rent direct neighbors in Gw to discover new relevant neighbors. In order to preserve
scalability, a user will only communicate with small random batches of other users.
In a decentralized system, this can be implemented by a classic primitive known as
a peer sampling service (Jelasity et al., 2007; Kermarrec et al., 2011). The peer sam-
pling services allows a user u wakes up to sample uniformly and without replace-
ment a set V of ρ ∈ Jn − 1K users from the set JnK \ {u}. We will denote by wu,V
the ρ-dimensional subvector of a vector w ∈ Rn(n−1)/2 corresponding to the entries
{(u, v)}v∈V . Let ∆u,V = (‖θu − θv‖2)v∈V , pu,V = (cuFu(θu;Du) + cvFv(θv;Dv))v∈V and
vu,V (w) = (g′u(du(w)) + g′v(dv(w)) + g′u,v(wu,v))v∈V . The partial derivative of the objec-
tive G(w) with respect to the variables wu,V can be written as follows:

[∇G(w)]u,V = pu,V + (λ1/2)∆u,V + λ2vu,V (w). (2.7)

We denote by Lu,V is the Lipschitz constant of ∇G with respect to block wu,V .
Our decentralized algorithm, given in Algorithm 2.4, works as follows. We start from

some arbitrary weight vector w(0) ∈ W , each user having a local copy of its n− 1 weights.
At each time step t, a random user u wakes up and performs the following actions:

1. Draw a set V of ρ users and request their current models, loss value and degree.

2. Update the associated weights:

w(t)u,V ← max
(
0, w(t− 1)u,V − (1/Lu,V)[∇G(w(t− 1))]u,V

)
. (2.8)

3. Send each updated weight w(t)u,v to the associated user in v ∈ V .

27

Again, Algorithm 2.4 is fully decentralized: the information requested at step 1 above
is sufficient to compute (2.7) and thereby (2.8). Therefore, updates can occur asyn-
chronously and in parallel.

Convergence, communication and memory. For the case where g is strongly convex,
we obtain the following linear convergence rate. Note that in for the general convex case,
we can obtain a slower O(1/T) convergence rate.

Theorem 2.1 ([AB-Conf9]). Assume that the graph regularizer g(w) is µ-strongly convex. Let
T > 0 and G∗ be the optimal objective value and Lmax = max(u,V) Lu,V . The iterates (w(t))T

t=1
of Algorithm 2.4 satisfy:

E[G(w(T))− G∗] ≤
(

1− 2ρµ

n(n− 1)Lmax

)T
(G(w(0))− G∗).

Sketch of proof. We show that Algorithm 2.4 can be seen as an instance of proximal co-
ordinate descent (PCD) (Tseng and Yun, 2009; Richtárik and Takác, 2014) on a slightly
modified objective function. Unlike the standard PCD setting which focuses on disjoint
blocks, our coordinate blocks exhibit a specific overlapping structure that arises as soon
as ρ > 1 (as each weight is shared by two users). We build upon the PCD analysis due to
(Wright, 2015), which we adapt to account for our overlapping block structure.

Theorem 2.1 shows that our algorithm cuts the expected suboptimality gap by a con-
stant factor at each iteration. This convergence rate is of the same order as the one for
learning the models with our decentralized CD algorithm (Proposition 2.1) and typically
faster than the sublinear rate of our decentralized FW approach (Proposition 2.2). This
suggests to run a small number of graph updates per user before re-updating the models
given the new graph. We note that the parameter ρ rules a trade-off between communi-
cation/memory costs and convergence rate, see [AB-Conf9] for details.

Example graph regularizer. In our experiments, we use a graph regularizer inspired
from (Kalofolias, 2016), defined as g(w) = λ3‖w‖2 − 1> log(d(w)) with λ3 > 0. The log
term ensures that all nodes have nonzero degrees without preventing the graph from
having several connected components. This choice of regularizer has a number of advan-
tages. First, λ3 provides a direct way to tune the sparsity of the graph: the smaller λ3, the
more concentrated the weights of a given user on the users with the closest models. This
allows us to control the trade-off between accuracy and communication in the model up-
date step (Section 2.2). The resulting objective is also strongly convex and block-Lipschitz
continuous4 and thus matches the assumptions of Theorem 2.1. Finally, as discussed by
Kalofolias (2016), tuning the importance of the log-degree term with respect to the other
graph terms has simply a scaling effect, thus we can simply set λ2 = λ1 in (2.1).

4In practice we add a small positive constant inside the log to make it smooth (Koriche, 2018).

28

Remark 2.5. To reduce the number of variables to optimize, each user can keep to 0 the weights
corresponding to users whose current model is most different to theirs. This heuristic has a negli-
gible impact on the solution quality in sparse regimes (small λ3).

2.4 Incorporating Differential Privacy Constraints

In the previous sections, we have proposed an alternating optimization approach to
jointly learn the personalized models and the collaboration graph. While there is no
direct exchange of data between users, the sequence of iterates broadcast by a user may
reveal information about its private dataset through the gradient of the local objective.

In this section, we propose a differentially private version of our approach. We first
define the privacy model, then introduce a differentially private variant of our decen-
tralized coordinate descent algorithm of Section 2.2.1. Finally, we show how differential
privacy guarantees can be obtained for the full alternating optimization procedure.

2.4.1 Privacy Model

As explained in Chapter 1, we aim to protect users from an eavesdropping adversary
who can observe all the information sent over the network during the execution of the
algorithm (but cannot access the users’ internal memory). Note that this covers the case
where n− 1 users collude to learn information about the remaining user. This is a very
strong privacy model known as local DP (Kasiviswanathan et al., 2008; Duchi et al., 2013):
each user does not trust anyone to process his/her data, hence the privacy-preserving
mechanism must be implemented locally by each user. Some general relaxations of this
strong model will be studied in Chapter 4.

We want to ensure that the adversary cannot learn much information about any in-
dividual data point of any user’s dataset. We instantiate this using differential privacy,
adapting it to our context. Following the notations in Definition 1.1, we view each user
u ∈ JnK as running an algorithmAu(Du) which takes as input its local datasetDu and out-
puts all the information sent by u over the network during the execution of the algorithm.
As our approach is based on an alternating procedure between updating the models and
updating the graphs, the output of Au(Du) includes in particular the sequence of model
parameters and graph weights broadcast by the user across all alternating optimization
steps. Given the privacy budget (εu, δu) of each user u ∈ JnK, our goal is to ensure that
Au(Du) satisfies (εu, δu)-DP for all users simultaneously.

2.4.2 Privacy-Preserving Decentralized Coordinate Descent

The critical step for privacy is the model update step. Here, we propose and analyze
a differentially private version of our decentralized coordinate descent algorithm pre-

29

sented in Section 2.2.1 (Algorithm 2.2). Our approach is based on the standard Laplace
mechanism (see Appendix A). Formally, it consists in replacing the update step (2.3) by:

θ̃u(t) = (1− α)θ̃u(t− 1)+ α
(

∑
v∈Nu

wu,v

du
θ̃v(t− 1)− cu

λ1

(
∇Fu(θ̃u(t− 1);Du)+ ηu(t)

))
, (2.9)

where ηu(t) ∼ Lap(su(t))p ∈ Rp is a noise vector drawn from a centered Laplace distri-
bution with finite scale su(t) ≥ 0.5 We allow the noise to potentially depend on the global
iteration number t. Note that the only difference with the non-private update (2.3) is that
user u adds appropriately scaled Laplace noise to the gradient of its local loss Fu. The
rest of the algorithm proceeds as in the non-private version described in Algorithm 2.2:
in particular, user u sends the resulting (noisy) iterate θ̃u(t) to its neighbors.

Privacy guarantees. Assume that update (2.9) is run Tu times by user u within the total
T > 0 iterations across the network. Let Tu = {tk

u}Tu
k=1 be the set of iterations at which user

u woke up and consider the mechanism ACD
u (Du) = {θ̃u(tu) : tu ∈ Tu}. The following

result shows how to scale the noise at each iteration so as to provide the desired overall
differential privacy guarantees.

Proposition 2.3 (Privacy guarantee for ACD
u [AB-Conf13]). Let u ∈ JnK and assume that

Fu(θ;Du) = 1
mu

∑x∈Du
f (θ; x) where f (·; x) is L0-Lipschitz with respect to the `∞-norm for all

x ∈ X . For any tu ∈ Tu, let su(tu) = 2L0
εu(tu)mu

for some εu(tu) > 0. Given an initial point

Θ̃(0) ∈ Rnp independent of Du, the mechanism ACD
u (Du) is εu-DP with εu = ∑Tu

tu=1 εu(tu).

Sketch of proof. For tu ∈ Tu, we first study the base mechanism which releases a single
iterate θ̃u(tu). We bound the sensitivity of the non-private update rule (2.3) using the fact
that the Lipschitz property of f implies that its gradients have `1-norm bounded by L0

(see Lemma B.1), and show that the noise scale su(tu) is sufficient to ensure εu(tu)-DP
according to the Laplace mechanism (see Theorem A.4). The DP guarantee for Au then
follows from simple composition.

Remark 2.6. We can obtain a similar (ε, δ)-DP result if we assume L0-Lipschitzness of f w.r.t.
`2-norm (instead of `1) and use the Gaussian mechanism (instead of the Laplace mechanism).

For simplicity, Proposition 2.3 uses the simple composition property of DP. A sublin-
ear scaling of εu with respect to Tu can be obtained under approximate (ε, δ)-DP using
advanced composition theorems (see Appendix A). In any case, the noise scale needed
to guarantee DP for a user u is inversely proportional to the size mu of its local dataset
Du. While this is often the case in differentially private machine learning, it is especially
appealing in our formulation as the confidence weights cu’s tune down the importance of
users with small datasets (preventing their overly noisy information to spread) and give
more importance to users with larger datasets (who propagate useful information).

5We use the convention Lap(0) = 0 w.p. 1.

30

Utility guarantees. The next result quantifies how the added noise affects the conver-
gence of the algorithm and illustrates our previous point.

Theorem 2.2 (Utility loss [AB-Conf13]). For any T > 0, let (Θ̃(t))T
t=1 be the sequence of

iterates generated by T iterations of update (2.9) from an initial point Θ̃(0) ∈ Rnp. For µ-
strongly convex M, we have:

E
[
M(Θ̃(T))−M?

]
≤
(

1− µ

nLmax

)T(
M(Θ̃(0))−M?

)
+

1
nLmin

T−1

∑
t=0

n

∑
u=1

(
1− µ

nLmax

)t(
ducusu(t)

)2.

This result shows that the error of the private algorithm after T iterations decomposes
into two terms. The first term is the same as in the non-private setting and decreases with
T. The second term gives an additive error due to the noise, which takes the form of a
weighted sum of the variance of the noise added to the iterate at each iteration (note that
we indeed recover the non-private convergence rate of Proposition 2.1 when the noise
scale is 0). The number of iterations T thus rules the trade-off between the two terms and
should thus be tuned to balance the two sources of error.

In practical scenarios, each user u has an overall privacy budget (εu, δu). Assume
that the users agree on a value for T (e.g., using Proposition 2.1 to achieve the desired
precision). Each user u is thus expected to wake up Tu = T/n times, and can use
Proposition 2.3 to appropriately distribute its privacy budget across the Tu iterations and
stop after Tu updates. A simple and practical strategy is to distribute the budget equally
across the Tu iterations. Yet, Theorem 2.2 suggests that better utility may be achieved if
the noise scale increases with time. We refer to [AB-Conf13] for a characterization of the
noise allocation policy which minimizes the utility loss.

Remark 2.7. Theorem 2.2 implies that a good warm start point Θ(0) is beneficial. However,
Θ(0) must be obtained in a DP fashion. We show in [AB-Conf13] how to efficiently generate a
private warm start in a decentralized manner by propagating perturbed versions of locally trained
models in the network, adapting the model propagation approach proposed in [AB-Conf15].

2.4.3 Differential Privacy for the Full Alternating Procedure

While the previous results give DP guarantees for the model update step, we must
also ensure that the graph update step satisfies DP. Interestingly, the latter can essentially
be seen as a post-processing step of the model parameters already shared in the model
update step. For any u ∈ JnK, the only quantity which requires a new query to the
local dataset Du is the value of the loss function Fu(θu;Du) involved in the term pu,V of
the graph update (2.7). As θu is fixed during a graph update step, this only needs to
be computed once. Under the classic assumption of bounded loss function f , we can

31

(a) Average test accuracy. (b) Per-user test accuracy w.r.t. local dataset size (p = 100).

Figure 2.1: Learning personalized models for linear classification, for different dimen-
sions and several privacy regimes. Results are averaged over 5 runs. Best seen in color.

use a small part of the overall privacy budget of user u to compute a private estimate
of Fu(θu;Du) using the Laplace or Gaussian mechanism. Finally, to obtain differential
privacy guarantees for the full alternating optimization procedure, we apply (simple or
advanced) composition over all alternating steps.

2.5 Experiments

In this section, we briefly illustrate the practical behavior of our approach. More
results and details can be found in [AB-Conf15]; [AB-Conf13]; [AB-Conf9].

Learning personalized models under known graph. We first show experiments on
a linear classification task with n = 100 users. Each user has a target linear sepa-
rator in Rp. The weight between two users u and v is known and given by wu,v =

exp((cos(φu,v)− 1)/γ), where φu,v is the angle between the target models and γ = 0.1
(negligible weights are ignored). Each user u receives a random number mu of training
points (between 10 and 100), where each point is drawn uniformly around the origin and
labeled according to the target model. We then add some label noise (random flipping
with prob. 0.05). We use the `2-regularized logistic loss (which is 1-Lipschitz), and the
regularization parameter of user u is set to 1/mu > 0 to ensure overall strong convexity.
The hyperparameter λ1 is tuned to maximize accuracy of the non-private algorithm on a
validation set of random problems instances. For each user, the test accuracy of a model
is estimated on a separate sample of 100 points. When we enforce privacy constraints,
the overall privacy budget is the same for all users, i.e., εu = ε. A small part of the budget
(ε′ = 0.05) is used to initialize models with a good warm start (see Remark 2.7).

Figure 2.1a shows results obtained with our decentralized CD algorithms for prob-
lems of increasing difficulty (by varying the dimension p) with various privacy budgets.

32

Oracle Graph

Learned Graph

54

47

43

43

34

53

65

39

42

46

125

129

139

136

152

137

125
125

146

148

153

130

149

132

141

136
144

129

147
141

315

301

327 332

335

320

310

291

325

335

329

314

309

323

318

284

313

309
324

314

308

308

313

288

318

298

321

284
323

318
232

213

230

230 226
237

214

223

203

242
236

234

231

221

222

242
238

228

226

260

217

208

226

223

225
219 210

214

219

228

236

212

210

229

217

246

226
225

223 225

Figure 2.2: Graph learned by our approach on synthetic data. Left: Graph weights for
the oracle and learned graph (with users grouped by cluster). Right: Visualization of
the learned graph. The node size is proportional to the user confidence cu and the color
reflects the relative value of the local loss (greener = smaller loss). Nodes are labeled with
their rotation angle, and a darker edge color indicates a higher weight. Best seen in color.

The number of iterations per user was tuned based on a validation set of random problem
instances. We clearly observe the privacy-utility trade-off, with non-private CD perform-
ing best and the test accuracy decreasing with the privacy budget ε. However, we see that
even in high privacy regimes (ε = 0.15) the resulting models significantly outperform the
purely local models (a perfectly private baseline), showing the benefits of collaboration.
As can be seen in Figure 2.1b, all users (irrespective of their local dataset size) get an im-
provement in test accuracy. The improvement is especially large for users with small local
datasets. By providing more balanced accuracies across users, our approach effectively
corrects for the imbalance in dataset size and leads to fair models.

Joint learning of models and graph. We now turn to learning the personalized models
and the collaboration graph jointly. For simplicity, we consider a non-private setting. We
consider several variants of our algorithms: Perso-Linear learns linear models using
our decentralized CD algorithm, and Perso-Boost learns nonlinear models using our
decentralized FW algorithm (using decision stumps as base classifiers). Then, in each
case, the suffix Learned (resp. Oracle) denotes the variant where the graph is learned
(resp. where an oracle graph is given as input). We compare against various competitors,
which learn global or personalized models in a centralized or decentralized manner.
Global-Boost and Global-Linear learn a single global `1-Adaboost model (resp. linear

33

Dataset Harws Vehicle Sensor Computer Buyers School

Global-Linear 93.64 87.11 62.18 57.06

Local-Linear 92.69 90.38 60.68 70.43

Perso-Linear-Learned 96.87 91.45 69.10 71.78
Global-Boost 94.34 88.02 69.16 69.96

Local-Boost 93.16 90.59 66.61 70.69

Perso-Boost-Learned 95.57 91.04 73.55 72.47

Table 2.1: Test accuracy (%) on real datasets, averaged over 3 runs. Best results in bold-
face, second best in italic.

model) over the centralized dataset D = ∪uDu. Local-Boost and Local-Linear learn
purely local personalized models independently for each user. Models are initialized to
zero vectors and the initial graphs of Perso-Linear-Learned and Perso-Boost-Learned

are learned using the purely local models, and then updated after every 100 iterations of
optimizing the models, with κ = 5.

We first illustrate the behavior of Perso-Boost on a synthetic problem constructed
from the classic two interleaving Moons dataset which has nonlinear class boundaries.
We consider n = 100 users, clustered in 4 groups of 10, 20, 30 and 40 users. Users in the
same cluster are associated with a similar rotation of the feature space and hence have
similar tasks. To assess the effectiveness of our graph learning procedure, we construct
an “oracle” collaboration graph based on the difference in rotation angles between users.
Each user u obtains a training sample whose size mu is drawn randomly between 3 and
15. The data dimension is 20 and the number of base predictors is K = 200. Perso-Boost-
Learned outperforms all other approaches on this problem, except Perso-Boost-Oracle

for it makes use of the oracle graph computed from the true data distributions. Figure 2.2
(left) shows that the graph learned by Perso-Boost-Learned is able to approximately
recover the ground-truth cluster structure. Figure 2.2 (right) provides a more detailed
visualization of the learned graph, which shows the effect of the inductive bias brought by
the confidence-weighted loss term in our objective function (2.1) discussed in Section 2.1.
Indeed, users with high confidence and high loss values tend to have small degrees while
users with low confidence or low loss values are more densely connected.

Finally, we present results on real datasets that are naturally collected at the user
level: Human Activity Recognition With Smartphones (Harws, n = 30), Vehicle Sensor

(n = 23), Computer Buyers (n = 190) and School (n = 140).6 As shown in Table 2.1,
our methods Perso-Boost-Learned and Perso-Linear-Learned achieve the best perfor-
mance. This demonstrates the relevance and usefulness of our approach when dealing
with heterogeneous local datasets, even when no prior information is available to build
a predefined collaboration graph.

6Anguita et al. (2013), Duarte and Hu (2004), Goldstein (1991), https://github.com/probml/pmtkdata/.

34

https://github.com/probml/pmtkdata/

Chapter 3

Decentralized and Private Learning
with Pairwise Loss Functions

Existing decentralized learning algorithms designed for the empirical risk minimiza-
tion framework, including those presented in Chapter 2, assume that the data-dependent
term in the objective function can be written as a sum of local objectives ∑n

u=1 Fu(θu;Du),
see (1.2) and (2.1). This separable structure plays a key role in the design of decentralized
algorithms, as it implies that each user u can locally evaluate her part of the global ob-
jective and compute gradients of Fu with respect to the model parameters. This naturally
leads to the classic structure of decentralized algorithms, which is to alternate between
local update steps performed independently by each user, and communication steps to
aggregate and synchronize their local parameters so as to ensure convergence to an op-
timum (or stationary point) of the global objective [AB-Journal2]. While the separability
assumption allows to efficiently tackle a large class of ML problems in a decentralized
manner, many learning objectives do not fit into this framework.

In this chapter, we are interested in the design of decentralized learning algorithms
that can solve problems that involve a pairwise loss function h : C × X ×X → R:

arg min
θ∈C

{
H(θ;D) = 1

m2

n

∑
u,v=1

∑
x∈Du,x′∈Dv

h(θ; x, x′)
}

. (3.1)

Many machine learning problems can be cast as (3.1), see (Kar et al., 2013) [AB-Journal9].
Notable examples include bipartite ranking (Clémençon et al., 2008) [AB-Conf2], metric
learning (Kulis, 2013) [AB-Book1], clustering (Clémençon, 2014) and graph inference
(Biau and Bleakley, 2006) [AB-Conf18]. Unfortunately, the objective in (3.1) does not de-
compose into a sum of local objectives, since most of the terms involve pairs of data points
coming from different local datasets. For such problems, some form of data exchange ap-
pears to be necessary, and this may be at odds with the objectives of decentralized and
privacy-preserving machine learning.

35

Setting aside privacy issues for the moment, our first contribution to propose efficient
decentralized methods to estimate and optimize pairwise objectives of the form (3.1). Our al-
gorithms belong to the family of randomized gossip protocols (Kempe et al., 2003; Boyd
et al., 2006), which are lightweight decentralized algorithms where each user commu-
nicates with a randomly chosen neighbor in the network graph G at each step.1 Our
methods combine two types of iterative information exchange: a classic averaging step
to aggregate local estimates, and a novel data propagation step which allows each user to
access data points from other users. We first show how to design synchronous and asyn-
chronous gossip algorithms for decentralized pairwise estimation, where the goal is to
evaluate a pairwise objective of the form (3.1) for fixed θ. This is an interesting problem
in its own right as it corresponds to estimating U-statistics (Lee, 1990), a general class
of estimates which include popular quantities such as the sample variance, Gini mean
difference, Kendall’s tau coefficient, Wilcoxon Mann-Whitney hypothesis test (Mann and
Whitney, 1947), Rényi-2 entropy (Acharya et al., 2015) and Area under the ROC Curve
(AUC) (Bradley, 1997). We then combine our data propagation step with ideas from dual
averaging optimization (Nesterov, 2009) to design gossip protocols to solve (3.1) in the
convex setting. We formally prove the convergence of our algorithms, and show that our
analysis allows to capture some degree of data and network-dependence in the rates.

The above algorithms require users to share individual data points, which raises pri-
vacy issues when data is sensitive. To address such privacy constraints, we consider the
local model of differential privacy in which users share only perturbed versions of their
data. We propose a generic locally private protocol to estimate pairwise statistics, which
can be readily used to obtain private versions of our gossip algorithms. We also propose
a specific protocol to compute the AUC based on hierarchical histograms, and a protocol
which operates in a slightly relaxed model where pairs of users can rely on 2-party se-
cure computation to obtain better utility. The practical behavior of all our approaches is
illustrated on a series of experiments on pairwise estimation and learning tasks.

This chapter provides a unified treatment of the work published in a series of three
conferences papers [AB-Conf21]; [AB-Conf16]; [AB-Conf3].

Related work. In the centralized setting, empirical risk minimization with pairwise
losses has been extensively studied as it raises specific statistical and algorithmic chal-
lenges. Clémençon et al. (2008) [AB-Journal9] provided statistical learning guarantees,
Kar et al. (2013) and Boissier et al. (2016) studied the online learning setting, and [AB-
Conf23] designed efficient SGD-based algorithms. Recent work also studied how to en-
force differential privacy in the trusted curator model (Huai et al., 2020; Yang et al., 2021).

In decentralized learning, existing work has focused on the estimation and optimiza-
tion of objectives that are separable across users, see (Lian et al., 2017; Tang et al., 2018;

1Note that in contrast to the approach presented in Chapter 2, here the network graph G is fixed and
simply encodes communication constraints (i.e., it does not carry any semantic information).

36

Assran et al., 2019; Scaman et al., 2019; Koloskova et al., 2020) for recent work and [AB-
Journal2] (Section 2.1 therein) for an overview. More specifically, gossip protocols have
been proposed for computing averages, sums, quantiles and other separable aggregate
statistics (Kempe et al., 2003; Boyd et al., 2006; Mosk-Aoyama and Shah, 2008), see Shah
(2009) and Dimakis et al. (2010) for surveys. Gossip algorithms have then been pro-
posed to optimize sums of local objectives (see Nedic and Ozdaglar, 2009; Ram et al.,
2010; Duchi et al., 2012; Wei and Ozdaglar, 2012; Tsianos et al., 2015; Lian et al., 2018;
Koloskova et al., 2019; Hendrikx et al., 2019, among others). Our work [AB-Conf16]
was the first one to propose decentralized algorithms for pairwise optimization. In [AB-
Conf11], we proposed scalable distributed pairwise optimization algorithms for cluster
computing, where communication constraints and efficiency trade-offs are different.

To the best of our knowledge, our work [AB-Conf3] is the first to propose protocols
to estimate pairwise statistics in the local model of DP. Most previous work has focused
on computing quantities that are separable across individual users, such as sums and
histograms (see e.g., Bassily and Smith, 2015; Wang et al., 2017; Kulkarni et al., 2019;
Cormode et al., 2018; Bassily et al., 2017). These existing protocols cannot be directly
used to compute U-statistics due to the pairwise nature of the terms. Still, we are able to
re-use some ideas, in particular the use of private hierarchical histograms.

Outline of the chapter. Section 3.1 presents our gossip algorithms for decentralized
pairwise estimation, before moving to pairwise optimization in Section 3.2. Section 3.3
introduces locally private algorithms for pairwise estimation. Finally, Section 3.4 presents
some numerical experiments.

Remark 3.1. For simplicity of presentation, throughout this chapter we will focus on the case
where each user holds a single data point (representing its personal data), i.e., D = {x1, . . . , xn}
with Du = {xu} for each user u ∈ JnK. Our methods naturally extend to the general case.

3.1 Gossip Algorithms for Pairwise Estimation

In this section, we focus on the problem of decentralized pairwise estimation without
privacy constraint. Let h : X × X → R be a measurable function, symmetric in its two
arguments and with h(x, x) = 0, ∀x ∈ X . Let x1, . . . , xn ∈ X where xu is the data point
held by user u ∈ JnK. The goal is to compute the following quantity, known as a degree
two U-statistic with kernel h (Hoeffding, 1948; Lee, 1990):2

Uh,n =
1
n2

n

∑
u,v=1

h(xu, xv). (3.2)

2The usual definition of U-statistic is the average over the n(n− 1)/2 pairs of distinct points. For conve-
nience, in this section we consider the sum over all n2 pairs, which is equivalent up to a factor of (n− 1)/2n.

37

Algorithm 3.1 GoSta-sync: synchronous gossip algorithm for computing (3.2).

Input: Network graph G = (JnK, E); Data point xu for each user u ∈ JnK
1: Each user u ∈ JnK initializes its auxiliary observation au = xu and its estimate zu = 0
2: for t = 1, 2, . . . do
3: for u = 1, . . . , n do
4: Set zu ← t−1

t zu +
1
t h(xu, au)

5: Draw {u, v} uniformly at random from E
6: Set zu, zv ← 1

2 (zu + zv)
7: Swap auxiliary observations of users u and v: au ↔ av
8: return Each user u has zu

U-statistics are commonly used as point estimators of various global properties of dis-
tributions and in statistical hypothesis testing (Lee, 1990; Mann and Whitney, 1947). For
instance, the Gini mean difference, a classic measure of dispersion, corresponds to the
case where X ⊂ R and h(x, x′) = |x− x′|. Note that computing (3.2) can be seen as eval-
uating the objective function in (3.1) at a fixed θ,3 and is thus a natural stepping stone
towards solving (3.1).

In this section, we propose and analyze algorithms to efficiently compute (3.2) in a
decentralized manner. As explained in Chapter 1, we consider a fixed network topology
encoded as a connected undirected graph G = (JnK, E), where nodes correspond to users
and the presence of an edge {u, v} ∈ E means that users u and v can exchange messages.
Our algorithms belong to the family of (randomized) gossip protocols (Boyd et al., 2006),
where each user exchanges information with a single (random) neighbor at a time.

Algorithm. For simplicity, we focus here on a synchronous setting: users have access
to a global clock with counter t so that they can all update their local estimate at each
time instance. We stress the fact that the users need not be aware of the global network
topology as they will only interact with their direct neighbors in the graph G.

Our approach is based on the observation that Uh,n = 1
n ∑n

u=1 hu, with hu =
1
n ∑n

v=1 h(xu, xv), and we write h = (h1, . . . , hn)>. Computing Uh,n is thus similar to the
classic decentralized averaging problem (Boyd et al., 2006), with the key difference that
each “local” value hu is itself an average which depends on the entire data sample D.
Consequently, our algorithm combines two steps at each iteration: a data propagation step
to allow each user u to estimate hu, and an averaging step to ensure convergence to the
desired value Uh,n.

Formally, let us denote by zu the (local) estimate of Uh,n by user u at a given time
step. In order to propagate data across the network, each user u maintains an auxiliary
observation au, initialized to xu. At each time step, each user u updates its local estimate
by taking the running average of zu and h(xu, au). Then, an edge {u, v} ∈ E of the

3It can also be seen as a special case of (3.1) for h(θ; x, x′) = (θ − h(x, x′))2.

38

network is drawn uniformly at random, and the corresponding pair of users u and v
average their local estimates zu and zv and swap their auxiliary observations au and av.
Each data point is thus performing a (coupled) random walk on the network graph. The
full algorithm, coined GoSta, is given in Algorithm 3.1.

Convergence analysis. We prove that the local estimates generated by Algorithm 3.1
converge to Uh,n and precisely characterize the convergence rate.

Theorem 3.1 ([AB-Conf21]). Let G be connected and non-bipartite, and denote by z(t) =

(z1(t), . . . , zn(t))> ∈ Rn the vector of local estimates generated by Algorithm 3.1 at iteration
t ∈N. For all u ∈ JnK, we have limt→+∞ E[zu(t)] = Uh,n. Moreover, for any t > 0,

‖E[z(t)]−Uh,n1n‖2 ≤
1

cG t
∥∥h−Uh,n1n

∥∥
2 +

(2
cG t

+ e−cG t
)∥∥H − h1>n

∥∥
2, (3.3)

where 1n = (1, ..., 1)> ∈ Rn, H = [h(xu, xv)]1≤u,v≤n ∈ Rn×n, and cG = βG/|E| > 0 where βG
is the spectral gap of the graph G.

Sketch of proof. To analyze Algorithm 3.1, we consider an equivalent reformulation which
allows us to model the data propagation and averaging steps separately. Specifically,
for each u ∈ JnK, we define a “phantom” Gu = (Vu, Eu) of the original graph G, with
Vu = {vu

i : 1 ≤ i ≤ n} and Eu = {(vu
i , vu

j) : (i, j) ∈ E}. We then create a new graph
G̃ = (Ṽ, Ẽ) where each node u ∈ JnK is connected to its counterpart vu

u ∈ Vu, as illustrated
in Figure 3.1. In this new graph, the nodes 1, . . . , n from the original graph will hold the
estimates z1(t), . . . , zn(t), while the role of each Gu is to simulate data propagation in
the original graph G. For i ∈ JnK, vu

i ∈ Vu initially holds the value h(xu, xi). At each
iteration of Algorithm 3.1, we draw a random edge {i, j} of G and nodes vu

i and vu
j swap

their value for all u ∈ JnK. To update its estimate, each node u will use the current
value at vu

u. This construction allows us to represent the system state at iteration t by
a vector S(t) = (S1(t)>, S2(t)>)> ∈ Rn+n2

. The first n coefficients, S1(t), are associated
with nodes in JnK and correspond to the estimate vector z(t) = [z1(t), . . . , zn(t)]>. The
last n2 coefficients, S2(t), are associated with nodes in (Vu)1≤u≤n and represent the data
propagation in the network. At a given step t > 0, we are interested in the transition
matrix M(t) such that E[S(t + 1)] = M(t)E[S(t)]. The transition matrix M(t) accounts
for three events: the averaging step (the action of G on itself), the data propagation (the
action of Gu on itself for all u ∈ JnK) and the estimate update (the action of Gu on node u
for all u ∈ JnK). Each event corresponds to a block in M(t). We precisely characterize
the matrix M(t) and the convergence result is then obtained by analyzing its spectrum,
similarly to standard gossip averaging (Boyd et al., 2006).

Theorem 3.1 shows that the local estimates generated by Algorithm 3.1 converge to
Uh,n at a rate of O(1/t). Furthermore, the constants in (3.3) reveal the rate dependency

39

(a) Original graph G. (b) Phantom graph G̃.

Figure 3.1: Illustration of the “phantom graph” construction used in our analysis.

on the particular problem instance. Indeed, the two norm terms are data-dependent and
quantify the difficulty of the estimation problem itself through a measure of dispersion
of the values of the kernel h across users. Assuming that h is Lipschitz, this captures
the impact of a certain form of data heterogeneity (the variance of data across users).
On the other hand, cG is network-dependent. The spectral gap βG is a measure of the
diffusion speed in the graph G, and graphs with a larger spectral gap typically have better
connectivity (Chung, 1997). This will be illustrated in the experiments of Section 3.4.

Remark 3.2 (Extension to the asynchronous setting). We also considered the asynchronous
setting, where there is no global clock to synchronize updates. Instead, each user has an indepen-
dent local Poisson clock and wakes up when it ticks. At any time step, a random user u wakes
up and exchanges information with a random neighbor v. In [AB-Conf21], we proposed an asyn-
chronous variant of our algorithm in which u and v use unbiased estimates of the global iteration
number to update zu and zv, and proved that this algorithm converges at a rate of O(log t/t).

3.2 Gossip Algorithms for Pairwise Optimization

We now turn to the problem of decentralized pairwise optimization, still setting aside
privacy concerns for now. Let θ ∈ Rp be the vector of model parameters, and let h :
Rp ×X ×X → R be a pairwise loss function which we assume to be differentiable and
convex in its first argument. We further assume that for any (x, x′) ∈ X 2, there exists
Lh > 0 such that h(·; x, x′) is Lh-Lipschitz (with respect to the `2-norm). Let ψ : Rp → R+

be a non-negative, convex, possibly non-smooth regularizer with ψ(0) = 0 for simplicity.
We aim at solving the following general optimization problem, which is equivalent to
(3.1) with an explicit (but optional) regularization term:

arg min
θ∈Rp

{
H(θ;D) = 1

n2 ∑
1≤u,v≤n

h(θ; xu, xv) + ψ(θ)
}

. (3.4)

Such pairwise objectives appear as empirical risk measures in many machine learning
problems (Kar et al., 2013) [AB-Journal9]. For instance, in bipartite ranking (Clémençon

40

et al., 2008) [AB-Conf2] and imbalanced classification (Herschtal and Raskutti, 2004; Zhao
et al., 2011), a popular objective is to maximize the Area under the ROC Curve (AUC).
Given binary labels y1, . . . , yn ∈ {−1, 1} associated with each data point, the goal is to
learn a scoring rule x 7→ sθ(x) which gives larger scores to positive data points than to
negative ones. This can be done by resorting to a convex surrogate of the AUC such as

h(θ; xu, xv) = I[yu > yv] log
(
1 + esθ(xv)−sθ(xu)

)
, (3.5)

where I[·] is the indicator function. The regularization term ψ(θ) can be the `2-norm of θ,
or non-smooth norms (e.g., `1-norm) when a sparse model is desired (Bach et al., 2012).

For notational convenience, we denote hu(·) = (1/n)∑n
v=1 h(·; xu, xv) for u ∈ JnK and

h̄n(·) = (1/n)∑n
u=1 hu(·). We can thus rewrite the objective as H(θ;D) = h̄n(θ) + ψ(θ).

Note that the function h̄n is Lh-Lipschitz, since all the hu are Lh-Lipschitz.
In the following, we will combine some ideas from our decentralized pairwise es-

timation algorithm of Section 3.1 (in particular the data propagation step) with dual
averaging techniques from convex optimization (Nesterov, 2009) to obtain the first de-
centralized algorithms for solving (3.4). Before presenting our approach, we start with a
quick reminder on centralized dual averaging.

3.2.1 Reminder on Centralized Dual Averaging

In this section, we review the stochastic dual averaging optimization algorithm (Nes-
terov, 2009; Xiao, 2010) to solve Problem (3.4) in the centralized setting. To explain the
main idea behind dual averaging, let us first consider the iterations of Stochastic Gradient
Descent (SGD), assuming ψ ≡ 0 for simplicity:

θ(t + 1) = θ(t)− γ(t)g(t),

where E[g(t)|θ(t)] = ∇h̄n(θ(t)), and (γ(t))t≥0 is a non-negative non-increasing step size
sequence. For SGD to converge to an optimal solution, the step size sequence must
satisfy γ(t) −→

t→+∞
0 and ∑∞

t=0 γ(t) = ∞. As noticed by Nesterov (2009), an undesirable

consequence is that new gradient estimates are given smaller weights than old ones. Dual
averaging aims at integrating all gradient estimates with the same weight.

Let (γ(t))t≥0 be a positive and non-increasing step size sequence. The dual averaging
algorithm maintains a sequence of iterates (θ(t))t>0, and a sequence (z(t))t≥0 of “dual”
variables which collect the sum of the unbiased gradient estimates seen up to time t.
The algorithm starts with θ(1) = z(0) = 0. Then, at each step t > 0, it computes an
unbiased estimate g(t) of the gradient of the differentiable part of the objective, in our
case ∇h̄n(θ(t)). The most common choice is to take g(t) = ∇h(θ(t); xut , xvt) where ut

and vt are drawn uniformly at random from JnK. One then sets z(t + 1) = z(t) + g(t) and

41

generates the next iterate with the following rule:

θ(t + 1) = π
ψ
t (z(t + 1)), with π

ψ
t (z) = arg min

θ∈Rd

{
−z>θ +

‖θ‖2

2γ(t)
+ tψ(θ)

}
.

When clear from the context, we will drop the dependence in ψ and simply write πt(z).

Remark 3.3. Note that πt is related to the proximal operator of a function φ : Rd → R

defined by proxφ(x) = arg minz∈Rd

(
‖z− x‖2/2 + φ(x)

)
. Indeed, one can write πt(z) =

proxtγ(t)ψ (γ(t)z). For many functions ψ of practical interest, πt has a closed form solution
(Parikh and Boyd, 2013). For instance, when ψ = ‖ · ‖2, πt is a simple scaling, and when
ψ = ‖ · ‖1 it is a soft-thresholding operator. If ψ is the indicator function of a closed convex set C,
then πt is the projection operator onto C.

3.2.2 Proposed Approach

Our approach relies on the stochastic dual averaging method presented above. This
choice is guided by the fact that the structure of the updates makes dual averaging easier
to analyze in the decentralized setting than (sub)gradient descent when the problem is
constrained or regularized. Indeed, dual averaging maintains a simple sum of gradients,
while the (non-linear) smoothing operator πt is applied separately.

More precisely, our work builds upon the work of Duchi et al. (2012), who proposed
a distributed dual averaging algorithm to optimize an average of univariate functions
f (·; xu) as in (1.1). In their algorithm, each user u computes unbiased estimates of∇ f (·; xu)

that are iteratively averaged over the network. Unfortunately, in our setting, user u cannot
compute unbiased estimates of ∇hu(·) = ∇(1/n)∑n

v=1 h(·; xu, xv) as the latter depends
on all data points. To go around this problem, we rely on the gossip data propagation
step introduced for decentralized estimation (see Section 3.1) so that users can compute
biased estimates of ∇hu(·) while keeping small communication and memory overhead.

Algorithm. We consider here the synchronous setting where each user has access to a
global clock and every user execute updates simultaneously at each tick of the clock. We
assume that the step size sequence (γ(t))t≥0 is the same for every user. At any time, each
user u holds the following quantities in its local memory: a gradient accumulator zu, its
original observation xu, and an auxiliary observation au, which is initialized at xu but
will change throughout the algorithm as a result of data propagation.

Our randomized gossip algorithm, given in Algorithm 3.2, goes as follows. At each
time step, an edge {u, v} ∈ E is drawn uniformly at random. Then, users u and v average
their gradient accumulators zu and zv, and swap their auxiliary observations au and av.
Finally, every user of the network performs a dual averaging step, using their original
observation and their current auxiliary one to estimate the partial gradient.

42

Algorithm 3.2 Synchronous gossip dual averaging for solving (3.4).

Input: Network graph G = (JnK, E); Data point xu for each user u ∈ JnK; Step sizes (γ(t))t≥1.
1: Each node u initializes au = xu, zu = θu = θ̄u = 0.
2: for t = 1, . . . , T do
3: Draw {u, v} uniformly at random from E
4: Set zu, zv ← zu+zv

2
5: Swap auxiliary observations: au ↔ av
6: for u = 1, . . . , n do
7: Update zu ← zu +∇θh(θu; xu, au)
8: Compute θu ← πt(zu)

9: Average θ̄u ←
(

1− 1
t

)
θ̄u +

1
t θu

10: return Each user u has θ̄u

Convergence analysis. The following proposition adapts the convergence rate of cen-
tralized dual averaging to our decentralized algorithm.

Theorem 3.2 ([AB-Conf16]). Let G be a connected and non-bipartite graph with n nodes, and
let θ∗ ∈ arg minθ∈Rd H(θ;D). Let (γ(t))t≥1 be a non-increasing and non-negative sequence. For
any u ∈ JnK and any t ≥ 0, let zu(t) ∈ Rd, θ̄u(t) ∈ Rd and au(t) ∈ X be generated according
to Algorithm 3.2. Then for any u ∈ JnK and T > 1, we have:

E[H(θ̄u;D)− H(θ∗;D)] ≤ C1(T) + C2(T) + C3(T), where

C1(T) =
1

2Tγ(T)
‖θ∗‖2 +

L2
h

2T

T−1

∑
t=1

γ(t), C2(T) =
3L2

h

T
(

1−
√

1− βG/|E|
) T−1

∑
t=1

γ(t),

C3(T) =
1
T

T−1

∑
t=1

Et[(πt(z̄n(t))− θ∗)>ε̄n(t)],

with ε̄n(t) = 1
n ∑n

u=1
(
∇h(θu(t); xu, au(t))− 1

n ∑n
v=1∇h(θu(t); xu, xv)

)
the average gradient

bias at time t, and βG the spectral gap of the graph G.

The rate of convergence in Theorem 3.2 is divided into three parts: C1(T) is a data
dependent term which corresponds to the rate of convergence of centralized dual aver-
aging, while C2(T) and C3(T) are network dependent terms. Indeed, C2(T) depends on
the spectral gap βG , similarly to the case of decentralized estimation (Theorem 3.1). The
convergence rate of our algorithm thus improves when the spectral gap is large, which is
typically the case for well-connected graphs (Chung, 1997). Setting γ(t) ∝ 1/

√
t ensures

that C1(T) and C2(T) converge to 0 at a rate of O(1/
√

T). Finally, the term C3(T) comes
from the bias of our partial gradient estimates. In practice, C3(T) vanishes quickly and
has a small impact on the rate of convergence, as shown in Section 3.4. For a formal
analysis of this bias term, see (Colin, 2016).

43

Remark 3.4 (Extension to the asynchronous setting). We also proposed and analyzed a variant
of our algorithm for the asynchronous setting. This is especially challenging because there is a
need for a common time scale to perform a suitable decrease in the step size γ(t). We use unbiased
estimates of t to maintain consistent step sizes across the network, and introduce appropriate
weights for the gradient update and model averaging steps to ensure that all users asymptotically
count equally in every gradient accumulator. Details can be found in [AB-Conf16].

3.3 Locally Private Protocols for Pairwise Estimation

The approaches presented so far for decentralized estimation and optimization did
not consider any privacy constraint. In fact, they are based on propagating data across
users, which is not possible when data is sensitive. In this section, we propose an ap-
proach for privacy-preserving pairwise estimation in the local model of differential pri-
vacy, in which each user randomizes its data point locally before sharing it.

3.3.1 Problem Setting

Statistical framework. We will consider the following statistical framework. Let ω be
an (unknown) distribution over an input space X and h : X × X → R be a pairwise
function (assumed to be symmetric for simplicity). Given a sample D = {xu}n

u=1 of n
data points drawn from ω, we are interested in estimating the following quantity:

Uh = EX1,X2∼ω[h(X1, X2)]. (3.6)

The unbiased estimate of (3.6) with minimum variance is the U-statistic of degree 2
(Hoeffding, 1948; Lee, 1990) with kernel h:

Uh,n =
2

n(n− 1) ∑
1≤u<v≤n

h(xu, xv). (3.7)

Up to a constant scaling factor, (3.7) is equivalent to the quantity (3.2) considered in our
decentralized pairwise estimation of Section 3.1, hence with a slight abuse of notation we
also denote it by Uh,n. As discussed in Section 3.1, U-statistics include many statistics of
interest, among which the sample variance, Gini mean difference, Kendall’s tau coeffi-
cient, Wilcoxon Mann-Whitney hypothesis test and Area under the ROC Curve (AUC).

Local Differential Privacy (LDP). We consider the local model of DP (Kasiviswanathan
et al., 2008; Duchi et al., 2013), which captures the setting where individuals do not trust
anyone and use a local randomizer to perturb their input data before sharing it. This is
formalized by the following definition, which is equivalent to standard DP (Definition 1.1)
in the case where datasets have size 1.

44

Algorithm 3.3 LDP protocol to estimate (3.7) using quantization and private histograms.

Public parameters: Privacy budget ε, number of bins k, quantization scheme Q : X → JkK
Input: Data point xu ∈ X for each user u ∈ JnK

1: for each user u ∈ JnK do
2: Form quantized input Q(xu) ∈ JkK
3: For β = k/(k + eε − 1), generate x̃u ∈ JkK s.t.

P(x̃u = i) =
{

1− β for i = Q(xu),
β/k for i 6= Q(xu),

(3.8)

4: Send x̃u to the untrusted aggregator
5: return Ûh,n computed from x̃1, . . . , x̃n and β as in (3.9)

Definition 3.1 (Duchi et al., 2013). Let R be a local randomizer which takes a single data point
as input. Given ε, δ > 0, we say that R is (ε, δ)-locally differentially private, or (ε, δ)-LDP, if for
all pairs of data points x, x′ ∈ X and for all O ⊆ range(R), we have:

Pr[R(x) ∈ O] ≤ eε Pr[R(x′) ∈ O] + δ.

Throughout this section we assume the presence of a (honest) untrusted aggregator
who collects the randomized inputs R(x1), . . . ,R(xn) and processes them to compute an
estimate of (3.6). Nevertheless, one of the protocols we will introduce can be directly used
to obtain private versions of the decentralized estimation and optimization algorithms
introduced in Section 3.1 and Section 3.2 (see Remark 3.5).

Note that due to the pairwise nature of the terms in (3.7), accurate LDP protocols
for computing U-statistics cannot be straightforwardly obtained by resorting to existing
protocols. Indeed, one cannot apply the local randomizer to the terms of the sum based
on the sensitivity of h (as each term is shared across two users), and perturbing the inputs
can lead to large errors when passed through the (potentially discontinuous) function h.

3.3.2 Generic Locally Private Protocol from Quantization

Discrete inputs. We first consider the case of discrete inputs taking one of k values.
The possible values of the kernel function can be written as a matrix A ∈ Rk×k where
Aij = h(i, j). In this case, we let the local randomizer R to be k-ary randomized response
(Kairouz et al., 2014): the perturbed input R(xu) is set to the true input xu with some
probability 1− β and a uniformly random value with probability β, as shown in (3.8). Let
ei denote the vector of length k with a one in the i-th position and 0 elsewhere. For each
perturbed input in one-hot encoding form eR(xu) we can deduce an unbiased estimate of
exu . As the discrete U-statistic is a linear function of each of these vectors, computing it

45

on these unbiased estimates gives an unbiased estimate Ûh,n which can be written as:

Ûh,n =
1
(n

2)
∑

1≤u<v≤n
ĥA(R(xu),R(xv)), (3.9)

and is itself a U-statistic with kernel ĥA given by

ĥA(R(x1),R(x2)) = (1− β)−2(eR(x1) − b)>A(eR(x2) − b), (3.10)

where b is the vector of length k with every entry β/k. Details and analysis of this process,
leveraging Hoeffding’s decomposition of U-statistics (Hoeffding, 1948; Lee, 1990), can be
found in the full paper [AB-Conf3]. The resulting bounds on the variance of Ûh,n are
summarized in the following theorem.

Theorem 3.3 ([AB-Conf3]). If h(x, x′) ∈ [0, 1] for all x, x′, then

Var(Ûh,n) ≤
1

n(1− β)2 +
(1 + β)2

2n(n− 1)(1− β)4 .

In order to achieve ε-LDP with a fixed k this becomes Var(Ûh,n) ≈ (1+k/ε)2

n + (1+k/ε)4

2n2 ≈ k2

nε2 .

Continuous inputs. For U-statistics on discrete domains, the above strategy can be
applied directly. More importantly however, it also leads to a natural protocol for the
continuous case. As shown in Algorithm 3.3. the local randomizer first quantizes the
input into k bins (for instance using simple or randomized rounding) before applying the
previous procedure.

There are two sources of error in this protocol. The first one is due to the random-
ization needed to satisfy LDP in the quantized domain as bounded in Theorem 3.3. The
second source of error is due to quantization. In order to control this error in a nontrivial
way, we rely on an assumption on the kernel function h (namely, that it is Lipschitz) or
the data distribution ω (namely, that it has Lipschitz density). Under these assumptions,
we can bound the error with respect to the original domain by a term in O(1/k2). This
leads to the following result.

Theorem 3.4 ([AB-Conf3]). For simplicity, assume bounded domain X = [0, 1] and kernel
values h(x, y) ∈ [0, 1] for all x, y ∈ X . Let Q correspond to simple rounding, ε > 0, k ≥ 1 and
β = k/(k + eε − 1). Then Algorithm 3.3 satisfies ε-LDP. Furthermore:

• If h is Lh-Lipschitz in each of its arguments, then

E[(Ûh,n −Uh)
2] ≤ 1

n(1− β)2 +
(1 + β)2

2n(n− 1)(1− β)4 +
L2

h
2k2 .

46

• If dω/dλ is Lω-Lipschitz w.r.t. some measure λ, then

E[(Ûh,n −Uh)
2] ≤ 1

n(1− β)2 +
(1 + β)2

2n(n− 1)(1− β)4 +
4L2

ω

k2 +
4L4

ω

k4 .

Setting k so as to balance the quantization and estimation errors leads to the following
corollary.

Corollary 3.1. Under the conditions of Theorem 3.4, for ε ≤ 1 and large enough n, taking k =

n1/4
√

Lε leads to E[(Ûh,n −Uh)
2] = O(L/

√
nε), where L corresponds to Lh or Lω depending

on the assumption.

This result gives concrete error bounds for U-statistics whose kernel is Lipschitz, for
arbitrary data distributions. One important example is the Gini mean difference, whose
corresponding kernel h(xu, xv) = |xu − xv| is 1-Lipschitz. On the other hand, for U-
statistics with non-Lipschitz kernels, the data distribution must be sufficiently smooth (if
not, it is easy to construct cases that make the algorithm fail).

Remark 3.5 (Combination with our decentralized algorithms). Algorithm 3.3 can be read-
ily used to obtain locally differentially private versions of the decentralized estimation and op-
timization algorithms introduced in Section 3.1 and Section 3.2. This is achieved by running
Algorithm 3.1 (resp. Algorithm 3.2) on the perturbed inputs x̃1, . . . , x̃n and computing unbiased
estimates of h(xu, au) (resp. ∇h(θ; xu, au)) using the formula in (3.10).

3.3.3 Locally Private Protocol for Area under the ROC Curve

In this section, we describe an algorithm for computing the Area under the ROC curve
(AUC). The AUC is a popular summary of the ROC curve which gives a single, threshold-
independent measure of the classifier goodness: it corresponds to the probability that the
predictor assigns a higher score to a randomly chosen positive point than to a randomly
chosen negative one. AUCs are widely used as performance metrics in machine learning
(Bradley, 1997) and have also been recently studied as fairness measures (Kallus and
Zhou, 2019) [AB-Conf2]. Formally, let X ⊂ R. Each xu ∈ D represent the score assigned
to point u and is associated with a binary label yu ∈ {−1, 1}. Let D+ = {su : yu = 1} and
D− = {su : yu = −1} with n+ = |D+| and n− = |D−|. The AUC is given by

AUC =
1

n+n− ∑
su∈D+

∑
sv∈D−

I[su > sv], (3.11)

where I[·] is the indicator function. Up to a n(n− 1)/2n+n− factor, it is easy to see that
AUC is a U-statistic of degree 2 with kernel h(xu, xv) = I[su > sv ∧ yu > yv] + I[su <

sv ∧ yu < yv]. Note that this kernel is discontinuous and therefore non-Lipschitz.

47

Hλ

H0

H00 H01

H1

H10 H11

=

5

2

1 1

3

2 1

Figure 3.2: Hierarchical histogramH for multiset {0, 1, 2, 2, 3} over the domain {0, 1, 2, 3}.

In the following, we assume X to be an ordered domain of size d, that is with each
data point in {0, . . . , d− 1}. Note that all data is in practice discrete when represented in
finite precision, so this is general. For simplicity of presentation we will assume that (i)
d = 2α for some integer α, and (ii) that the labels y1, . . . , yn are public.

Our solution for computing AUC in the local model relies on a hierarchical histogram
construction that has been considered in previous works for private collection of high-
dimensional data (Chan et al., 2012b), heavy hitters (Bassily et al., 2017), and range
queries (Kulkarni et al., 2019). A hierarchical histogram is essentially a tree data structure
on top of a histogram where each internal node is labeled with the sum of the values in
the interval covered by it (see Figure 3.2). This allows to answer any range query about
X by checking the value associated with O(log d) nodes in the tree.

Notation on trees. We represent a binary tree H of depth α with integer node labels
as a total mapping from a prefix-closed set of binary strings of length at most α to the
integers. We refer to the i-th node in level l of the tree by the binary representation of i
padded to length l from the left with zeros. With this notation, Hλ is the label of the root
node, as we use λ to denote the empty string, H0 (resp. H1) is the integer label of the left
(resp. right) child of the root of H, and in general Hp is the label of the node at path p
from the root, i.e. the label of the node reached by following left or right children from
the root according to the value of p (0 indicates left and 1 indicates right). Let bi be the
i-th node in the bottom level. For two binary strings p, p′ ∈ {0, 1}∗ we denote the prefix
relation by p′ � p, and their concatenation as p · p′.

Definition 3.2. Let D = {x1, . . . , xn} with xu ∈ {0, . . . , d− 1}. A hierarchical histogram of D
is a total mapping H : {0, 1}≤log(d) → Z defined as H(b) = |{x ∈ D | ∃b′ ∈ {0, 1}∗ : b · b′ =
bx}|. For simplicity, we denote H(b) by Hb.

Algorithm. We use hierarchical histograms to compute AUC as follows. Let H+ and
H− be hierarchical histograms for D+ and D−. Note that H+

λ = n+ and H−λ = n−.
We can now define the unnormalized AUC, denoted UAUC, over hierarchical histograms
recursively by letting UAUC(H+,H−, p) be 0 if p is a leaf, and otherwise setting:

UAUC(H+,H−, p) = H+
p·1H

−
p·0 + ∑

i∈{0,1}
UAUC(H+,H−, p · i) .

48

Level m

Level m + 1

X

X X

Recursed nodes at level m

Active nodes at level m + 1

Discarded nodes at level m

Figure 3.3: Our private AUC algorithm can be seen as a breath-first traversal of a tree,
where at each level some nodes are selected for their subtrees to be explored further.

Thus we have AUC(D+,D−) = AUC(H+,H−, λ) = 1
n+n− UAUC(H

+,H−, λ). The above defi-
nition naturally leads to an algorithm that proceeds by traversing the trees H+,H− top-
down from the root λ, accumulating the products of counts from H+,H− at nodes that
correspond to entries in H+ that are bigger than entries in H−.

We now define a differentially private analogue. We assume the existence of an effi-
cient frequency oracle which can be used to compute an LDP estimate Ĥ of a hierarchical
histogram H of n values in a domain of size 2α with the following properties (i) Ĥ is un-
biased, (ii) Var(Ĥ) ≤ V, with V defined as Cnα for some small constant C (iii) the Ĥp are
pairwise independent and (iv) Each level of Ĥ is independent of the other levels. Our
private algorithm for computing an estimate of UAUC is then defined in terms of param-
eters n+ and n−, V+ and V− (bounding the variance of Ĥ+ and Ĥ− respectively), and
a > 1 is a small number depending on n+, n−, α and C.

Let H̃±p = max(Ĥ±p ,
√

aV±/2), i.e. H̃+
p = max(Ĥ+

p ,
√

aV+/2) and H̃−p =

max(Ĥ−p ,
√

aV−/2). Given a threshold τ > 0, our private estimate of UAUC is defined
as follows. If p is a leaf then ÛAUC(Ĥ+, Ĥ−, p) is 0, else if H̃+

p H̃−p < τ then it is given by
1
2 ∑i∈{0,1} Ĥ+

p·i ∑i∈{0,1} Ĥ−p·i. Otherwise, it is given recursively by

Ĥ+
p·1Ĥ

−
p·0 + ∑

i∈{0,1}
ÛAUC(Ĥ+, Ĥ−, p · i).

As before, this definition leads to an algorithm. Note that the only difference with the
non-private one is that it does not recurse into subtrees whose contribution to the UAUC is
upper bounded sufficiently tightly. More concretely, the server starts by querying Ĥ+, Ĥ−
at the root, namely with p = λ. If p is a leaf then we return 0 as the AUC. Otherwise,
the algorithm checks whether H̃+

p H̃−p < τ. If so, then the algorithm concludes that
there is not much to gain in exploring the subtrees rooted at p · 0 and p · 1, and returns
1
2 ∑i∈0,1 Ĥ+

p·i ∑i∈0,1 Ĥ−p·i as an estimate of 1
2H+

pH−p . In this case we call p a discarded node.
On the other hand, if H̃+

p H̃−p ≥ τ, the algorithm proceeds as its non-private analogue,
accumulating the contribution to the UAUC from the direct subtrees of p and recursing
into nodes p · 0 and p · 1. In this case we refer to p as a recursed node. Thus every node

49

p ∈ {0, 1}≤α will be either recursed, a leaf or there will be a discarded node p′ such that
p′ � p. This is depicted in Figure 3.3.

Utility guarantee. Our algorithm has two sources of error: (i) the error in privately
estimating the contribution of the recursed nodes to UAUC, and (ii) the one incurred by
discarding nodes. The following result bounds the error of our protocol, where the
threshold τ has been carefully chosen to balance these two errors.

Theorem 3.5 ([AB-Conf3]). Consider α ≤
√

n and assume that the following holds:

1. E[Ĥ±p −H±p] = 0, i.e., frequency estimates are unbiased.

2. E[(Ĥ±p −H±p)2] ≤ V± = Cn±α, i.e., frequency estimates have bounded squared error.

3. For distinct p, p′ ∈ {0, 1}≤α with |p| = |p′|, Ĥ±p and Ĥ±p′ are independent, i.e., the
frequency estimates are pairwise independent.

4. ∀m ≤ log(d), the lists (Ĥ±p)p∈{0,1}≤m and (Ĥ±p)p∈{0,1}>m are independent of each other.

Then, we have:

E[(ÛAUC− UAUC)2] ≤ Cn−n+α2
(

2n + (4a + 1)min(n−, n+) +
21
√

2nCα√
a− 1

)
.

Sketch of proof. Our proof crucially relies on conditioning on previous levels when bound-
ing the error at a given level. To illustrate this, we briefly outline here how we bound
the error due to recursed nodes. For any m ∈ JαK, let Rm be the set of nodes recursed
on at level m and ER

m = ∑p∈Rm−1 Ĥ+
p·1Ĥ

−
p·0 − H

+
p·1H

−
p·0 be the contribution to the error

by recursed nodes at level m. We would like to bound the expected squared error
E[ER2

] = E[∑m∈JαK ∑m′∈JαK ER
mER

m′] incurred by recursed nodes across all levels. While
the frequency oracle is unbiased, ER

m and ER
m′ are not independent. Nevertheless, we can

show that for m′ > m, E[ER
mER

m′] = 0 because the conditional expectation of ER
m′ with

respect to the answers of the frequency oracle up to level m′ is 0, i.e., ER
1 , . . . , ER

m′ is a
martingale difference sequence. Thus, we have E[ER2

] = ∑m∈JαK E[ER
m

2
]. We then bound

the expected value of |Rm| by a quantity B that is independent of m, allowing us to bound
E[ER

m
2
], for any m, in terms of B.

Instantiating Ĥ. Theorem 3.5 does not yield a complete algorithm as it does not spec-
ify an frequency oracle for computing estimates Ĥ of a hierarchical histogram with the
required properties. Such a frequency oracle can be instantiated using the protocol pro-
posed by Kulkarni et al. (2019) in the context of range queries. In [AB-Conf3], we show
how to improve the communication and space complexity of this solution by combining
this protocol with ideas from Bassily et al. (2017), in particular the use of the Hadamard
transform. This leads to the following result.

50

Theorem 3.6. There is a one-round non-interactive protocol in the local model which achieves
E[(ÛAUC − UAUC)2] = O(α2 log(1/δ)/nε2) under (ε, δ)-LDP and E[(ÛAUC − UAUC)2] =

O(α3/nε2) under ε-LDP. Every user submits one bit, and the server does O(n log d) compu-
tation and requires O(log d) additional reconstruction space.

3.3.4 Beyond Local DP: Protocols from 2-Party Secure Computation

So far, we have proposed a specialized LDP protocol for the AUC, and a generic LDP
protocol which requires some assumption on the kernel function or the data distribution
to guarantee nontrivial error bounds. We conjecture that no LDP protocol can guarantee
nontrivial error for arbitrary kernels and distributions (we leave this as an open question).

In this section, we consider a specific relaxation of LDP by allowing pairs of users
u and v to compute a randomized version h̃(xu, xv) of their kernel value h(xu, xv) with
2-party secure computation (2PC).4 Unsurprisingly, by using advanced composition the-
orems (see Appendix A), we can easily show that in this relaxed model we can match
the MSE of O(ln(1/δ)

nε2) achievable for computing regular (univariate) averages in the (ε, δ)-
LDP model. However, such a protocol requires O(n2) communication as all pairs of users
need to compute h̃(xu, xv) via 2PC, and does not satisfy pure ε-DP.

Proposed protocol. To address these limitations, we propose that the aggregator asks
only a (random) subset of pairs of users (u, v) to submit their randomized kernel value
h̃(xu, xv). The idea is to trade-off between the error due to privacy (which increases as
more pairs are used due to composition) and the subsampling error (for not averaging over
all pairs). Given a positive integer P (which should be set to a small constant independent
of n) and assuming n to be even for simplicity, we propose the following protocol:

1. Subsampling: The aggregator samples P independent permutations s1, . . . , sP ∈ Sn

of the set of users {1, . . . , n}. This defines a (multi)set of Pn/2 pairs P = {(sp(2u−
1), sp(2u))}p∈[P],1≤u≤n/2.

2. Perturbation: For each pair of users (u, v) ∈ P , users compute h̃(xu, xv) via 2PC and
sends it to the aggregator.

3. Aggregation: The aggregator computes an estimate of Ûh,n as a function of
{h̃(xu, xv)}(u,v)∈P .

Analysis. We have the following result for the Laplace mechanism applied to real-
valued kernel functions (the extension to randomized response for discrete-valued ker-
nels is straightforward). The proof relies on an exact characterization of the subsampling
error by leveraging results on the variance of incomplete U-statistics (Blom, 1976).

4In practice, this implies that privacy guarantees only hold against computationally bounded adversaries.

51

Theorem 3.7 ([AB-Conf3]). Let ε > 0, P ≥ 1 and assume that the kernel h has values in
[0, 1]. Consider our subsampling protocol above with h̃(xu, xv) = h(xu, xv) + ηu,v where ηu,v ∼
Lap(P/ε), and Ûh,n = 2

Pn ∑(u,v)∈P h̃(xu, xv). Then the protocol satisfies ε-DP with a total
communication cost of O(Pn). Moreover:

E[(Ûh,n −Uh)
2] =

2
Pn

(
2(P− 1)

(
1− 1

n− 1
)
ζ1 +

(
1 +

P− 1
n− 1

)
ζ2

)
+

2P
nε2 ,

where ζ1 = Var(h(x1, X2) | x1)) and ζ2 = Var(h(X1, X2)).

The error in Theorem 3.7 is of O(1
Pn + P

nε2). Remarkably, this shows that the O(1/n)
variance of the estimate that uses all pairs is preserved when subsampling only O(n)
pairs. This is made possible by the strong dependence structure in the O(n2) terms
of the original U-statistic. As expected, P rules a trade-off between the errors due to
subsampling and to privacy: the larger P, the smaller the former but the larger the latter
(as each user must split its budget across P pairs). The optimal value of P depends on
the kernel function and the data distribution (through ζ1 and ζ2) on the one hand, and
the privacy budget ε on the other hand. In practice, P can be set to a small constant.

Implementing 2PC. Securely computing the randomized kernel value h̃(xu, xv) can be
done efficiently for many kernel functions and local randomizers of interest, as the num-
ber of parties involved is limited to 2 and parties are honest-but-curious. A suitable 2PC
technique are garbled circuits (Yao, 1986; Lindell and Pinkas, 2009; Evans et al., 2018),
which are well-suited to compute Boolean comparisons involved in the kernels of many
U-statistics of interest (e.g., AUC). The circuits for computing the kernels can then be
extended with output perturbation following ideas from Dwork et al. (2006a) and Cham-
pion et al. (2019). We refer to [AB-Conf3] for details on design and complexity.

3.4 Experiments

In this section, we briefly illustrate the practical behavior of the proposed algorithms.
More results and details can be found in [AB-Conf21]; [AB-Conf16]; [AB-Conf3].

Decentralized pairwise estimation. We focus on the decentralized estimation of the
AUC (3.11) on the SVMguide3 binary classification dataset which contains n = 1260
points in 23 dimensions.5 The scores are given by a simple linear scoring rule sθ(x) = θ>x
with θ set to the difference between the class means. We perform our simulations on three
types of network graphs of increasing connectivity: a 2D grid, a Watts-Strogatz random
graph (Watts and Strogatz, 1998) and the complete graph. For each network, we perform
50 runs of GoSta (Algorithm 3.1) and U2-gossip, a simple baseline which does not use

5http://mldata.org/repository/data/viewslug/svmguide3/

52

http://mldata.org/repository/data/viewslug/svmguide3/

Figure 3.4: Decentralized AUC estimation on the SVMguide3 dataset.

(a) Evolution of the objective function.

0 1e4 2e4 3e4 4e4 5e4
Number of iterations

-1e-3

0

1e-3

2e-3

3e-3

4e-3

5e-3

B
ia

s
te

rm

Complete
Watts
Cycle

(b) Evolution of the bias term.

Figure 3.5: Decentralized AUC maximization on Breast cancer dataset. Best seen in color.

averaging and instead relies on a double data propagation step so that each user may
observe all pairs of data points (Pelckmans and Suykens, 2009). Figure 3.4 shows the
evolution over time of the average relative error (solid lines) and the associated standard
deviation across users (filled areas) for both algorithms on each type of network. As sug-
gested by our theoretical analysis, GoSta converges faster on more connected networks.
Furthermore, it outperforms U2-gossip in all cases and the variance of its estimates across
users is also lower, thanks to the averaging step.

Decentralized pairwise optimization. We focus on learning a linear scoring rule
sθ(x) = θ>x by AUC maximization on the Breast Cancer dataset, which consists of
n = 699 points in 11 dimensions.6 We use the loss function defined in (3.5) and do
not apply any regularization (i.e., ψ ≡ 0). We perform our simulations on the same
types of graphs as for decentralized estimation, except that we use a cycle instead of a
2D grid. We run the asynchronous version of Algorithm 3.2 (see Remark 3.4) with step
size γ(t) = 1/

√
t over 50 runs. Figure 3.5a shows the evolution of the objective (solid

6https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)

53

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+ (Original)

23 24 25 26 27 28 29 210 211 212 213 214 215 216

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

st
d
 e

rr
o
r

= 1

= 5
= 2

(a) Generic LDP protocol. (b) AUC-specific protocol.

Figure 3.6: Private estimation of the AUC of a logistic regression model trained on the
Diabetes dataset. Mean and standard deviations of the errors are over 20 runs.

lines) and the associated standard deviation across users (filled areas) across iterations.
Again and as expected, the convergence rate on the complete and the Watts-Strogatz net-
works is much better than on the cycle network. The standard deviation across users
also decreases with the connectivity of the network. The good empirical convergence of
our algorithm comes from the fact that the bias term εn(t)>πt(z̄n(t) in Theorem 3.2 van-
ishes quite fast, as shown in Figure 3.5b. Moreover, its order of magnitude is negligible
compared to the objective.

Private pairwise estimation. We first present results on private estimation of the AUC.
We use the Diabetes dataset for the binary classification task of determining whether a
patient will be readmitted in the next 30 days after being discharged.7 We train a logistic
regression model s : X → [0, 1] which is used to score data points, and apply our protocol
to privately compute the AUC on the test set. Patients readmitted before 30 days form
the positive class, which is also the minority class (n+ = 693 and n− = 95985). We do not
consider the class information to be sensitive, as opposed to the score s(x) computed on
private user data x which includes detailed medical information. Figure 3.6a shows the
results of our generic LDP protocol (Algorithm 3.3). On this dataset, a fully trained logis-
tic regression model yields scores of positive and negative points that are well separated.
Hence, even the kernel is not Lipschitz, data can be quantized to a sufficiently small k and
the protocol is able to achieve small error. However, in practice this is difficult to assess
in advance, and we see that the error blows up for larger k. In contrast, Figure 3.6b shows
that our AUC-specific protocol introduced in Section 3.3.3 can work well even when the
domain size d (obtained by discretization of [0, 1] into {0, . . . , d− 1}) is large. Although
the generic LDP protocol can achieve lower error on this dataset, the better scalability of
our AUC protocol with the number of bins makes it very useful for problems that require

7https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008

54

https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008

0 2 4 6 8 10

10 4

10 3

10 2

10 1

S
ta

n
d

a
rd

 e
rr

o
r

2PC protocol with all pairs,

2PC protocol with subsampling,

2PC protocol with subsampling,

Generic LDP protocol (Algorithm 1)

Figure 3.7: Private estimation of Kendall’s tau coefficient on Tripadvisor dataset. Mean
and standard deviation of the errors are over 20 runs.

fine-grained discretization (see [AB-Conf3] for concrete examples).
To illustrate the utility gains that can be obtained with our 2PC protocol introduced

in Section 3.3.4, we present results on private estimation of Kendall’s tau coefficient,
which measures the ordinal association between two random variables X and X′. Let
X ⊂ R2 and D = {((x1, x′1), . . . , (xn, x′n))}. Kendall’s tau coefficient can be written as a
U-statistic (3.7) with kernel h((xu, x′u), (xv, x′v)) = sign(xu − xv) sign(x′u − x′v). We use the
Tripadvisor dataset, which consists of discrete user ratings (from scale -1 to 5) for hotels
in San Francisco over many service quality metrics such as room service, location, room
cleanliness, front desk service etc.8 After discarding the records with missing values, we
have over 246K records. Let (xu, x′u) be ratings given by user u to the room (xu) and the
cleanliness (x′u). We compare the privacy-utility trade-off of our generic LDP protocol
(Algorithm 3.3 without quantization, since inputs can take only 36 values), our 2PC
protocol based on subsampling, and the naive 2PC protocol that computes all pairs and
relies on advanced composition. The results shown in Figure 3.7 show that the naive 2PC
protocol performs worst due to composition. Our generic LDP protocol performs better
thanks to the small domain size. Finally, our 2PC protocol with subsampling achieves
the lowest error by roughly an order of magnitude in high privacy regimes (ε ≤ 2) while
keeping the communication cost linear in n. As predicted by our analysis, P = 1 is best in
high privacy regimes, where the error due to privacy dominates the subsampling error.
We also see that P > 1 can be used to reduce the overall error in low privacy regimes.
This result show that if one is willing to slightly relax the LDP model to allow pairwise
communication among users and the kernel can be computed efficiently via 2PC, our
third protocol performs best in terms of accuracy.

8http://www.preflib.org/data/combinatorial/trip/

55

http://www.preflib.org/data/combinatorial/trip/

Chapter 4

Better Privacy-Utility Trade-offs for
Decentralized Learning

The adoption of decentralized learning crucially depends on the ability to deliver ac-
curate models (utility) while protecting the privacy of users against untrusted participants
involved in the learning process. To guarantee privacy for the approaches presented in
the previous chapters, we have relied on (variants of) the notion of local differential pri-
vacy (LDP) (Kasiviswanathan et al., 2008; Duchi et al., 2013). LDP protects users against
an adversary that can observe everything except their local memory, hence it requires
that each user randomizes his/her contributions locally before sharing them. This very
strong model of privacy comes at a significant cost in utility: for real summation with
n users, the best possible error under LDP is a factor

√
n larger than in the centralized

model of DP, where a trusted curator handles the raw data (Chan et al., 2012a; Chen et al.,
2020). Large utility gaps between LDP and the trusted curator model are also known to
hold for machine learning (see e.g., Zheng et al., 2017; Wang et al., 2018).

In this chapter, we study relaxations of the local model of differential privacy in which
users can communicate through secure channels. Each user thus seeks to protect from
an adversary (e.g., a coalition of other users or an untrusted aggregator) who can only
observe a subset of the messages. We propose two novel approaches that leverage secure
channels to provably improve the privacy-utility trade-off of decentralized learning compared
to local DP, and in some cases even match the utility of the trusted curator model.

Our first contribution is targeted at decentralized learning with an untrusted aggre-
gator, where the key communication step is to privately aggregate model updates from
all (or a large number of) users. Indeed, popular federated learning algorithms (see e.g.,
McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020; Fallah et al., 2020; Hanzely
et al., 2020) that minimize a sum of local objectives of the form (1.2) all follow the same
high-level procedure: at round t, each user u computes a local update model θu(t) based
on Du and the current global model θ(t− 1), and an untrusted aggregator computes a
new global model as θ(t) = 1

n ∑u θu(t). We thus focus on the problem of decentralized

57

differentially private averaging under potentially colluding and malicious users. For this
challenging setting, we propose a protocol, called Gopa, in which pairs of users securely
exchange some correlated Gaussian noise terms along the edges of a network graph so as
to mask their private values without affecting the global average. Remarkably, we estab-
lish that our approach can achieve nearly the same privacy-utility trade-off as a trusted curator
who would average the values of honest (non-colluding) users. Furthermore, each user
needs only to communicate with a logarithmic number of other users, making the protocol
scalable to large numbers of users. Finally, leveraging standard cryptographic primitives
like commitment schemes and zero knowledge proofs, we can make Gopa verifiable by
providing users with the means of proving the correctness of their computations without
compromising the scalability or the privacy guarantees of the protocol.

Our second contribution is targeted at fully decentralized learning algorithms and
aims to show that the lack of central coordinator can amplify privacy guarantees. To this end,
we introduce network differential privacy, a novel relaxation of LDP that naturally arise in
the fully decentralized setting and effectively captures the fact that each user only ob-
serves information received from her/his neighbors. Under this relaxation, we study a
decentralized model of computation where a token containing the current estimate per-
forms a walk on the network graph and is updated sequentially by the user who receives
it. We start by analyzing the case of a walk over a directed ring and propose simple algo-
rithms for computing real summations and discrete histograms which achieve a privacy
gain of O(1/

√
n) compared to LDP, thereby matching the privacy-utility trade-off of a trusted

aggregator. We then consider the case of random walks over a complete graph. We provide
an algorithm for real summation and prove a privacy amplification result of O(1/n1/3)

compared to the same algorithm analyzed under LDP. We then propose a decentralized
SGD algorithm that achieves a privacy amplification of O(ln n/

√
n), nearly matching the

utility of centralized private SGD (Song et al., 2013; Bassily et al., 2014). Interestingly, our
two algorithms can tolerate a constant number of collusions at the cost of a reduction in
the privacy amplification effect. To the best of our knowledge, our work is the first to
show that formal privacy gains can be naturally obtained from full decentralization (i.e.,
from having no central coordinator). Our results imply that the privacy guarantees of
some fully decentralized algorithms have been largely underestimated, providing a new
incentive for using such approaches beyond the usual motivation of scalability.

The work covered in this chapter is available in two recent preprints [AB-Preprint7];
[AB-Preprint6].

Related work. Our contributions belong to the recent line of work which attempts to
relax the local DP model so as to improve utility without relying on a trusted curator.
This is usually achieved through the use of cryptographic primitives.1 A popular ap-

1Strictly speaking, relying on such primitives (including the use of secure channels) typically introduces
an additional assumption of computationally bounded adversaries. The resulting privacy notion is some-

58

proach is to rely on secure aggregation to average the individual contributions of all users,
see (Dwork et al., 2006a; Shi et al., 2011; Ács and Castelluccia, 2011; Bonawitz et al., 2017;
Chan et al., 2012b) for protocols and (Jayaraman et al., 2018) for a concrete example of
application to machine learning. While secure aggregation allows in principle to recover
the utility of the trusted curator model, it suffers from two main drawbacks. First, exist-
ing protocols require Ω(n2) total communication, which is hardly feasible beyond a few
hundred users. In contrast, we propose a protocol which requires only O(n log n) com-
munication.2 Second, combining secure aggregation with DP is nontrivial as the noise
must be added in a distributed fashion. Existing complete systems (Kairouz et al., 2021a)
assume an ideal secure aggregation functionality which does not reflect the impact of
colluding/malicious users. In these more challenging settings, it is not clear how to add
the necessary noise for DP and what the resulting privacy/utility trade-offs would be.

Recent work has also considered passing user contributions through a secure shuffler
to obfuscate the source of the messages, giving rise to the so-called shuffle model of DP
(Cheu et al., 2019; Erlingsson et al., 2019; Balle et al., 2019; Balle et al., 2020; Ghazi et al.,
2020; Feldman et al., 2020). The shuffle model allows to match the trusted curator utility
for some tasks, including differentially private averaging (Balle et al., 2020). However,
practical implementations of secure shuffling are not discussed in the above work. Exist-
ing solutions typically rely on multiple layers of routing servers (Dingledine et al., 2004)
with high communication overhead and non-collusion assumptions.

Local DP is convenient to work with in fully decentralized algorithms as random
perturbations are applied locally by each user. Despite its cost in utility, local DP has thus
been the standard model in existing work on private fully decentralized (see e.g. Huang
et al., 2015; Li et al., 2018; Cheng et al., 2019; Zhang et al., 2018; Xu et al., 2020). This
is also the approach we have taken in Chapter 2 and Chapter 3. Note that matching the
trusted curator utility with the secure aggregation or shuffling primitives discussed above
would require all users to interact with each other at each step and/or to rely on a central
coordinator. These solutions thus appear to be incompatible with full decentralization.

A related line of work has studied mechanisms that “amplify” the DP guarantees
of a private algorithm. Beyond privacy amplification by shuffling based on the shuffling
primitive mentioned above (Erlingsson et al., 2019; Balle et al., 2019; Feldman et al.,
2020), we can cite amplification by subsampling (Balle et al., 2018) and amplification by it-
eration (Feldman et al., 2018). These schemes are generally difficult to apply in a feder-
ated/decentralized setting: the former requires that the identity of subsampled partici-
pants remain secret, while the latter assumes that only the final model is revealed. Our
work actually allows to leverage these results in a novel context: this is made possible by
the restricted view of participants offered by fully decentralized algorithms and captured

times referred to as computational DP (Mironov et al., 2009).
2We note that, independently and in parallel to our work, Bell et al. (2020b) recently proposed a secure

aggregation protocol with O(n log n) communication.

59

by our notion of network DP.
A original aspect of our contributions is to match the privacy-utility trade-off of the

trusted curator model without resorting to the functionalities of secure aggregation or
secure shuffling. We are not aware of other work sharing this feature.

Outline of the chapter. This chapter consists of two parts: Section 4.1 presents our
protocol for differentially private averaging, while Section 4.2 studies how fully decen-
tralized protocols can amplify privacy guarantees.

4.1 An Accurate, Scalable and Verifiable Protocol for Decentral-
ized Differentially Private Averaging

In this section, we focus on the problem of decentralized differentially private averag-
ing, an essential building block of federated learning algorithms. Section 4.1.1 describes
the problem setting. In Section 4.1.2, we present a scalable protocol in which users ex-
change correlated Gaussian noise along the edges of a network graph, complemented by
independent noise added by each user. In Section 4.1.3, we analyze the DP guarantees of
our protocol, showing that we can nearly match the utility of the trusted curator model
with only logarithmic communication per user. Finally, Section 4.1.4 presents a method
to ensure the correctness of our protocol against malicious users without compromising
the efficiency and privacy guarantees of the protocol.

4.1.1 Problem Setting

We denote the set of users by U = JnK. Each user u ∈ U holds a private value
xu, which can be thought of as being computed from his/her private dataset Du. For
simplicity, we assume that xu lies in a bounded interval of R (without loss of generality,
we assume xu ∈ [0, 1]). The extension to the vector case is straightforward. We denote by
X = [x1, . . . , xn]> ∈ [0, 1]n the column vector of private values.

Users communicate over a network represented by a connected undirected graph
G = (U, E), where {u, v} ∈ E indicates that users u and v are neighbors in G and can
exchange secure messages. For a given user u, we denote by N (u) = {v : {u, v} ∈ E} the
set of its neighbors. We note that in settings where users can only communicate through
a central server, the latter can act as a relay that forwards (encrypted and authenticated)
messages between users, as done in secure aggregation (Bonawitz et al., 2017).

The users aim to collaboratively estimate the average xavg = 1
n ∑n

u=1 xu without re-
vealing their individual private values. Such a protocol can be readily used to privately
execute decentralized learning algorithms that interact with data through global aver-
ages over values computed locally by the participants, but do not actually need to see the

60

individual values. As discussed in the introduction of this chapter, most decentralized
learning algorithms which rely on a central coordinator fall into this category.

Threat model. In this part, we consider two commonly adopted adversary models for-
malized by Goldreich (1998). A honest-but-curious (honest for short) user will follow the
protocol specification, but may use all the information obtained during the execution to
infer information about other users. A honest user may accidentally drop out at any
point of the execution (in a way that is independent of the private values X). On the
other hand, a malicious user may deviate from the protocol execution (e.g, sending incor-
rect values or dropping out on purpose). Malicious users can collude, and thus will be
seen as a single malicious party (the adversary).

We want our protocol to satisfy differential privacy, where the output of our protocol
in the sense of Definition 1.1 will correspond to the view of the adversary (we will define
this explicitly in Section 4.1.3). Our DP guarantees will hold under the assumption that
honest users communicate through secure channels. In Section 4.1.4, we will also provide
correctness guarantees for our protocol that will hold under some form of the Discrete
Logarithm Assumption (DLA), a standard assumption in cryptography (see Chapter 7 of
Katz and Lindell, 2014).

For a given execution of the protocol, we denote by UO the set of the users who
remained online until the end (i.e., did not drop out). Users in UO are either honest or
malicious: we denote by UH ⊆ UO those who are honest, by nH = |UH | their number
and by ρ = nH/n their proportion with respect to the total number of users. We also
denote by GH = (UH, EH) the subgraph of G induced by the set of honest users UH, i.e.,
EH = {{u, v} ∈ E : u, v ∈ UH}. The properties of G and GH will play a key role in the
privacy and scalability guarantees of our protocol.

4.1.2 Proposed Protocol

In this section we describe our protocol called Gopa (GOssip noise for Private Av-
eraging). The high-level idea of Gopa is to have each user u mask its private value by
adding two different types of noise. The first is a sum of pairwise-correlated noise terms
∆u,v over the set of neighbors v ∈ N (u) such that each ∆u,v cancels out with the ∆v,u of
user v in the final result. The second type of noise is an independent term ηu which does
not cancel out. At the end of the protocol, each user has generated a noisy version x̂u of
its private value xu, which takes the form:

x̂u = xu + ∑
v∈N(u)

∆u,v + ηu. (4.1)

Algorithm 4.1 presents the detailed steps. Neighboring nodes {u, v} ∈ E contact each
other to draw a real number from the Gaussian distribution N (0, σ2

∆), that u adds to its

61

Algorithm 4.1 Gopa protocol for decentralized differentially private averaging.

Public Parameters: Network graph G = (U, E), noise scales σ2
∆, σ2

η ∈ R+

Input: Private value xu ∈ [0, 1] for each user u ∈ U
1: for all neighbor pairs {u, v} ∈ E s.t. u < v do
2: Users u and v draw a random ηu,v ∼ N (0, σ2

∆) and set ∆u,v ← ηu,v, ∆v,u ← −ηu,v
3: for all users u ∈ U do
4: User u draws ηu ∼ N (0, σ2

η) and reveals noisy value x̂u ← xu + ∑v∈N(u) ∆u,v + ηu

private value and v subtracts. Intuitively, each user thereby distributes noise masking its
private value across its neighbors so that even if some of them are malicious and collude,
the remaining noise values will be enough to provide the desired privacy guarantees. The
idea is reminiscent of uniformly random pairwise masks in secure aggregation (Bonawitz
et al., 2017) but we use Gaussian noise and restrict exchanges to the edges of the graph
instead of generating masks for all pairs of users. As in gossip protocols (see our algo-
rithms of Chapter 3), the pairwise exchanges can be performed asynchronously and in
parallel. Additionally, every user u ∈ U adds an independent noise term ηu ∼ N (0, σ2

η)

to its private value. This noise will ensure that the final estimate of the average satisfies
differential privacy (see Section 4.1.3).

Utility of GOPA. The protocol generates a set of noisy values X̂ = [x̂1, . . . , x̂n]> which
can then be publicly released to an untrusted aggregator. The estimated average is given
by X̂avg = 1

n ∑u∈U x̂u = xavg + 1
n ∑u∈U ηu, which has expected value xavg and variance

σ2
η /n. Recall that the local model of DP, where each user releases a locally perturbed

input without communicating with other users, would require σ2
η = O(1). In contrast,

we would like the total amount of independent noise to be of order O(1/nH) as needed to
protect the average of honest users with the Gaussian mechanism in the trusted curator
model (Dwork and Roth, 2014). We will show in Section 4.1.3 that we can achieve this by
choosing an appropriate graph and pairwise variance σ2

∆.

Dealing with dropout. A user u /∈ UO who drops out during the execution of the proto-
col does not actually publish any noisy value (i.e., x̂u is empty). The estimated average is
thus computed by averaging only over the noisy values of users in UO. Additionally, any
residual noise term that a user u /∈ UO may have exchanged with a user v ∈ UO before
dropping out can be “rolled back” by having v reveal ∆u,v so it can be subtracted from the
result (we will ensure this does not threaten privacy by having sufficiently many neigh-
bors, see Section 4.1.3). We can thus obtain an estimate of 1

|UO| ∑u∈UO xu with variance

σ2
η /|UO|. Note that even if some residual noise terms are not rolled back, e.g. to avoid

extra communication, the estimate remains unbiased (with a larger variance that depends
on σ2

∆). This is a rather unique feature of Gopa which comes from the use of Gaussian

62

noise rather than the uniformly random noise used in secure aggregation (Bonawitz et
al., 2017). We refer to [AB-Preprint7] for details on strategies to handle drop out.

4.1.3 Differential Privacy Guarantees

In this section, we prove differential privacy guarantees for Gopa. We start by defining
the view of the adversary, i.e., the knowledge acquired by colluding malicious users
during a given execution of the protocol. It consists of the following: (i) the noisy value
x̂u of all users u ∈ UO who did not drop out, (ii) the private value xu and the noise
ηu of the malicious users, and (iii) all ∆u,v’s for which u or v is malicious. We also
assume that the adversary knows the full network graph G and all the pairwise noise
terms exchanged by dropped out users (since they may be rolled back, as explained
in Section 4.1.2). The only unknowns are thus the private value xu and independent
noise ηu of each honest user u ∈ UH, as well as the ∆u,v’s exchanged between honest
users {u, v} ∈ EH. Letting NH(u) = {v : {u, v} ∈ EH}, from the above knowledge the
adversary can subtract ∑v∈N(u)\NH(u) ∆u,v from x̂u to obtain x̂H

u = xu + ∑u∈NH(u) ∆u,v + ηu

for every honest u ∈ UH. The view of the adversary can thus be summarized by the
vector X̂H = (x̂H

u)u∈UH and the correlation between its elements.
Now, adapting differential privacy (Definition 1.3) to our setting, for any input X

and any possible outcome X̂, we need to compare the probability of the outcome being
equal to X̂ when a (non-malicious) user v1 ∈ U participates in the computation with
private value xA

v1
to the probability of obtaining the same outcome when the value of v1 is

exchanged with an arbitrary value xB
v1
∈ [0, 1]. Since honest users drop out independently

of X, in our analysis we will fix an execution of the protocol where some set UH of nH

honest users have remained online until the end of the protocol. For notational simplicity,
we denote by XA the vector of private values (xu)u∈UH of these honest users in which a
user v1 has value xA

v1
, and by XB the vector where v1 has value xB

v1
. XA and XB differ in

only in the v1-th coordinate, and their maximum difference is 1.

Privacy guarantees In [AB-Preprint7], we show that Gopa can match the privacy-utility
trade-off of the trusted curator setting as long as GH (the subgraph induced by UH) is
connected and the variance σ2

∆ for the pairwise (canceling) noise is large enough. How
large it should be depends on the topology of GH. Here, we restrict our attention on a
practical instantiation of our general result where the graph G is obtained by a simple
randomized procedure such that GH will be well-connected with high probability, and
prove a DP guarantee for the whole process (random graph generation followed by Gopa).
The idea is to make each (honest) user select k other users uniformly at random among all
users. Then, the edge {u, v} ∈ E is created if u selected v or v selected u (or both).3 Such

3Note that Gopa can be conveniently executed while constructing this graph.

63

graphs are known as random k-out or random k-orientable graphs (Bollobás, 2001; Fenner
and Frieze, 1982; Yağan and Makowski, 2013). We have the following privacy guarantees.

Theorem 4.1 ([AB-Preprint7]). Let ε, δ ∈ (0, 1) and let G be obtained by letting all (honest)
users randomly choose k ≤ n neighbors. Let k and ρ = nH/n be such that ρn ≥ 81, ρk ≥
4 log(2ρn/3δ), ρk ≥ 6 log(ρn/3) and ρk ≥ 3

2 +
9
4 log(2e/δ). If ε, δ, ση and σ∆ satisfy

ε ≥ θ/2 + θ1/2, (4.2)

(ε− θ/2)2 ≥ 2 log(2/δ
√

2π)θ, (4.3)

with

θ =
1

nHσ2
η

+
1

σ2
∆

(1
b(k− 1)ρ/3c − 1

+
12 + 6 log(nH)

nH

)
,

then Gopa is (ε, 3δ)-differentially private, i.e., P(X̂ | XA) ≤ eεP(X̂ | XB) + 3δ.

Sketch of proof. Our analysis starts by deriving an abstract (ε, δ)-DP result which holds
for graphs GH with an arbitrary topology. We model the knowledge of the adversary as a
system of linear equations, which leads to a covariance structure for noisy values X̂H that
depend on the topology of GH. Requiring the privacy loss random variable to be smaller
than ε with probability at least 1− δ, we show that the privacy guarantees relate to the
ability to “spread” the difference between the two neighboring datasets XA and XB over
all vertices of GH. This result can then be concretely instantiated for specific topologies,
which involves identifying a spanning tree of GH with a large branching factor. While the
optimal spanning tree is easy to construct for the worst-case of paths and for complete
graphs, the case of random graphs is more involved and requires specific tools. We prove
our result by leveraging and adapting results on embedding spanning trees in random
graphs (Krivelevich, 2010).

In order to get a constant ε, inspecting the term θ shows that the variance σ2
η of the

independent noise must be of order 1/nH. This is in a sense optimal as it corresponds to
the amount of noise required when averaging nH values in the trusted curator model. It
also matches the amount of noise needed when using secure aggregation with differential
privacy in the presence of colluding users, where honest users need to add n/nH more
noise to compensate for collusion (Shi et al., 2011). In order to match the privacy-utility
trade-off of the trusted curator setting, further inspection of the inequalities in Theo-
rem 4.1 shows that k must be of order log(ρn)/ρ) so that GH is sufficiently connected
despite dropouts and malicious users, while σ2

∆ needs to be of order 1/kρ.4 Crucially,

4Recall that the pairwise noise cancels out, so it does not impact the utility of the final output. It only
has a minor effect on the communication cost (the representation space of reals needs to be large enough to
avoid overflows with high probability), and on the variance of the final result if some residual noise terms
of dropout users are not rolled back (see Section 4.1.2).

64

ρ = 1 ρ = 0.5

k-out graph (Theorem 4.1) σ∆ = 44.7, k = 105 σ∆ = 34.4, k = 203
k-out graph (simulation) σ∆ = 34.7, k = 20 σ∆ = 28.4, k = 40

Table 4.1: Values of σ∆ and k needed to ensure (ε, δ)-DP with trusted curator utility for
n = 10000, ε = 0.1, δ′ = 1/n2

H, δ = 10δ′ with a random k-out graph.

each user needs to exchange with only 2k = O(log n) peers in expectation, which is much
more scalable than the O(n) communication cost per user of classic secure aggregation
approaches (Bonawitz et al., 2017).

Scaling the noise in practice. Using Theorem 4.1, we can precisely quantify the amount
of independent and pairwise noise needed to achieve a desired privacy guarantee, as
illustrated by the following corollary.

Corollary 4.1. Let ε, δ′ ∈ (0, 1), and σ2
η = c2/nHε2, where c2 > 2 log(1.25/δ′). Given some

κ > 0, let σ2
∆ = κσ2

η nH(
1

b(k−1)ρ/3c−1 + (12 + 6 log(nH))/nH) with k satisfying the conditions

of Theorem 4.1. Then Gopa is (ε, δ)-DP with δ ≥ 3.75(δ′/1.25)κ/κ+1.

In Corollary 4.1, σ2
η is set such that after all noisy values are aggregated, the variance

of the residual noise matches that required by the Gaussian mechanism to achieve (ε, δ′)-
DP for an average of nH values in the centralized setting. The privacy-utility trade-off
achieved by Gopa is thus the same as in the trusted curator model up to a small constant
in δ, as long as the pairwise variance σ2

∆ is large enough. As expected, we see that as
σ2

∆ → +∞ (that is, as κ → +∞), we have δ → δ′. Given the desired δ ≥ δ′, we can
use Corollary 4.1 to determine a value for σ2

∆ that is sufficient for Gopa to achieve (ε, δ)-
DP. Table 4.1 shows a numerical illustration with δ only a factor 10 larger than δ′. We
report the values of σ∆ and k given by Theorem 4.1, as well as smaller (yet admissible)
values obtained by numerical simulation (see [AB-Preprint7] for details). Although the
conditions of Theorem 4.1 are a bit conservative (constants can likely be improved), they
still lead to practical values. Note that in practice, one often does not know in advance
the exact proportion ρ of users who are honest and will not drop out, so a lower bound
can be used instead.

Remark 4.1. Our privacy guarantees protect against an adversary that consists of colluding ma-
licious users. To simultaneously protect against each single honest-but-curious user (who knows
his own independent noise term), we can simply replace nH by n′H = nH − 1 in our results. This
introduces a factor nH/(nH − 1) in the variance, which is negligible for large nH.

65

4.1.4 Correctness Against Malicious Users

While the privacy guarantees of Section 4.1.3 hold regardless of the behavior of ma-
licious users, the utility guarantees discussed in Section 4.1.2 are not valid if malicious
users tamper with the protocol. In this section, we use existing cryptographic primitives
to ensure the correctness of the computations while preserving privacy. We only give a
high-level description of our approach and refer to [AB-Preprint7] for details.

While it is impossible to force a user to give the “right” input to the algorithm, this
also holds in the centralized setting. Our goal is thus to guarantee that given the input
vector X, we can identify malicious behavior and generate a truthfully computed X̂avg

which excludes any faulty contributions. Concretely, users will be able to prove the
following properties:

x̂u = xu + ∑
v∈N(u)

∆u,v + ηu, ∀u ∈ U, (4.4)

∆u,v = −∆v,u, ∀{u, v} ∈ E, (4.5)

ηu ∼ N (0, σ2
η), ∀u ∈ U, (4.6)

xu ∈ [0, 1], ∀u ∈ U. (4.7)

It is easy to see that the correctness of the computation is guaranteed if Properties (4.4)-
(4.7) are satisfied. Note that, as long as they are self-canceling and not excessively large
(avoiding overflows and additional costs if a user drops out), we do not need to ensure
that pairwise noise terms ∆u,v have been drawn from the prescribed distribution, as these
terms do not influence the final result and only those involving honest users affect the
privacy guarantees of Section 4.1.3. In contrast, Properties (4.6)-(4.7) are necessary to
prevent a malicious user from biasing the outcome of the computation. Indeed, (4.6)
ensures that the independent noise is generated correctly, while (4.7) ensures that input
values are in the allowed range.

Tools for verifying computations. Our approach consists in publishing an encrypted
log of the computation using cryptographic commitments and proving that it is performed
correctly without revealing any additional information using zero knowledge proofs. More-
over, signing the messages adds non-repudiation. These techniques are popular in a
number of applications such as privacy-friendly auditable financial systems like Zcash
and Findora. We here give a brief overview of the functionality of these tools and their
role in verifying Properties (4.4)-(4.7).

Commitments, first introduced by Blum (1983), allow users to commit to chosen val-
ues while keeping them hidden from others. After the commitment is performed, the
committer cannot change its value, but can later reveal it or prove properties of it. For
our protocol we use an optimized version (Franck and Großschädl, 2017) of the Peder-
sen commitment scheme (Pedersen, 1991). A commitment is obtained by transforming

66

the hidden statement using a hard-to-invert injective function Com, so that the recipient
cannot know the original statement but can be sure that the committer cannot change the
statement and still obtain the same commitment. Pedersen commitments additionally
satisfy the homomorphic property, meaning that Com(v1 + v2) = Com(v1) + Com(v2) for all
values v1, v2. This property facilitates the verification of summations without revealing
them, in our case Properties (4.4) and (4.5).

To verify other properties than the additive ones, we use another family of crypto-
graphic operations known as Zero Knowledge Proofs (ZKPs). Informally speaking, ZKPs
allow a user (prover) to effectively prove a true statement (completeness), but also allow
the other user (verifier) to discover with high probability if a cheating prover is trying
to prove a statement which is not true (soundness), in such a way that by performing
the proof no information other than the proven statement is revealed (zero knowledge).
Here, we use classic proof techniques (see e.g., Schnorr, 1991; Chaum and Pedersen,
1993; Fujisaki and Okamoto, 1997) as building blocks. In particular, these building blocks
support the verification of (4.4) and (4.5), and constitute the bulk of the verification of
(4.6) and (4.7). The only assumption needed to ensure the validity of the cryptographic
building blocks on which we rely is the Discrete Logarithm Assumption (DLA).

Verification protocol. In a setup phase, users agree on a commitment function and
generate random seeds. Then, while executing Gopa, users publish commitments of xu

and ηu for all u ∈ U and of ∆u,v for all {u, v} ∈ E. Due to the homomorphic property
of the Pedersen commitments, everyone can then verify the summation relations (4.4)
and (4.5). In a second phase, ZKPs are performed to prove the remaining parts of the
verification. We implement the publication of commitments using a public bulletin board
so that any party can verify the validity of the protocol, avoiding the need for a trusted
verification entity. Users sign their messages so they cannot deny them. Since the basic
cryptographic operations are integer-based, we use a fixed precision scheme, which is
efficient as our computations are mostly additive. The following result summarizes the
security guarantees.

Theorem 4.2 ([AB-Preprint7]). Under the DLA, a user u ∈ U that passes the verification
procedure proves that x̂u was computed correctly. Additionally, u does not reveal any additional
information about xu by running the verification, even if DLA does not hold.

4.2 Privacy Amplification by Decentralization

The previous approach was targeted to decentralized learning with an untrusted ag-
gregator. In this section, we focus on fully decentralized algorithms and show that they
can naturally amplify privacy guarantees through the introduction of novel relaxation of

67

local differential privacy. This relaxation, that we call network DP, is introduced in Sec-
tion 4.2.1. Section 4.2.2 presents the decentralized model of computation that we study,
in which a token performs a walk on the network graph and is updated sequentially by
the user who receives it. Section 4.2.3 and Section 4.2.4 introduce simple algorithms for
the ring and complete topologies and show that their privacy-utility trade-offs under net-
work DP significantly improve upon what is achievable under LDP (sometimes matching
the utility of the trusted curator model). Finally, Section 4.2.5 illustrates the improved
utility of our approach for decentralized training with stochastic gradient descent.

4.2.1 Network Differential Privacy

We consider a set JnK of users, which are assumed to be honest-but-curious (i.e.,
they truthfully follow the protocol). Each user u holds a private dataset Du, and we
denote by D = D1 ∪ · · · ∪ Dn the union of all user datasets. In this work, we consider
user-level DP (see Remark 1.1): two datasets D = D1 ∪ · · · ∪ Du ∪ · · · ∪ Dn and D′ =
D1 ∪ · · · ∪ D′u ∪ · · · ∪ Dn are neighboring if they differ only on user u’s data, which we
denote by D ∼u D′. This relation is weaker than the one used in record-level DP and
thus provides stronger privacy guarantees.

We consider a fully decentralized setting, in which users are nodes in a network graph
G = (JnK, E) and an edge (u, v) ∈ E indicates that user u can send messages to user v.
Here, the graph may be directed or undirected, and could in principle change over time
although we will restrict our attention to fixed topologies. For the purpose of quantify-
ing privacy guarantees, a decentralized algorithm A will be viewed as a (randomized)
mapping which takes as input a dataset D and outputs the transcript of all messages ex-
changed between users over the network. We denote the (random) output in an abstract
manner by A(D) = ((u, m, v) : user u sent message with content m to user v).

We introduce a new relaxation of LDP whose key idea is to consider that a given user
does not have access to the full transcript A(D) but only to the messages he/she is involved in,
which can be enforced by the use of secure communication channels. We denote the
corresponding view of a user u by

Ou(A(D)) = ((v, m, v′) ∈ A(D) : v = u or v′ = u). (4.8)

Definition 4.1 (Network Differential Privacy [AB-Preprint6]). An algorithm A satisfies
(ε, δ)-network DP if for all pairs of distinct users u, v ∈ JnK and all pairs of neighboring datasets
D ∼u D′, we have:

Pr(Ov(A(D))) ≤ eε Pr(Ov(A(D′))) + δ. (4.9)

Network DP essentially requires that for any two users u and v, the information
gathered by user v during the execution of A should not depend too much on user u’s
data. Network DP can be thought of as analyzing the composition of the operatorOv with

68

A. We will show that for some algorithms, Ov ◦ A is more private than A (i.e., applying
Ov amplifies the privacy guarantees of A). Note that if Ov is the identity map (i.e., if each
user is able to observe all messages), then (4.9) boils down to local DP.

Definition 4.1 can be naturally extended to account for potential collusions between
users. We consider an upper bound c on the number of users that can possibly collude.
In this setting, we would like to be private with respect to the aggregated information
OV = ∪v∈VOv acquired by any possible subset V of c users, as captured by the following
generalization of Definition 4.1.

Definition 4.2 (Network DP with collusions [AB-Preprint6]). An algorithm A is (c, ε, δ)-
network DP if for any user u ∈ JnK, all subsets V ⊂ JnK such that |V| ≤ c and u /∈ V, and all
pairs of neighboring datasets D ∼u D′, we have:

Pr(OV(A(D)) ≤ eε Pr(OV(A(D′)) + δ. (4.10)

4.2.2 Decentralized Computation Model

We will use network DP to study the privacy guarantees of decentralized algorithms
that perform computations via sequential updates to a token τ walking through the nodes
by following the edges of the graph G. At each step, the token τ resides at some user u
and is updated by

τ ← τ + xk
u, with xk

u = gk(τ; Du), (4.11)

where xk
u = gk(τ; Du) denotes the contribution of user u. The notation highlights the fact

that this contribution may depend on the current value τ of the token as well as on the
number of times k that the token visited u so far. The token τ is then sent to another user
v such that (u, v) ∈ E.

Provided that the walk follows some properties (e.g., corresponds to a deterministic
cycle or a random walk that is suitably ergodic), this model of computation allows to
optimize sums of local objective functions of the form (1.2) using (stochastic) gradient
descent (Ram et al., 2009; Johansson et al., 2009; Mao et al., 2020; Ayache and El Rouay-
heb, 2021).5 In this case, the token τ holds the model parameters and xk

u is a (stochastic)
gradient of the local objective of user u evaluated at τ. Such decentralized algorithms
can also be used to compute summaries of the users’ data, for instance any commutative
and associative operation like sums/averages and discrete histograms. In these cases, the
contributions of a given user may correspond to different values acquired over time.

4.2.3 Privacy Amplification for Walking on a Ring

In this section, we analyze a simple case where the graph is a directed ring, i.e.,
E = {(u, u + 1)}n−1

u=1 ∪ {(n, 1)}. The token starts at user 1 and goes through the ring K

5These algorithms are sometimes referred to as incremental gradient methods.

69

Algorithm 4.2 Private real summation on the ring.

Public Parameters: Ring graph on JnK; Noise scale σloc ∈ R+; Number of rounds K
Input: Contributions x1

u, . . . , xK
u ∈ R for each user u ∈ JnK

τ ← 0; a← 0
for k = 1 to K do

for u = 1 to n do
if a = 0 then

τ ← τ + Perturb(xk
u; σloc); a← n− 2

else
τ ← τ + xk

u; a← a− 1
return τ

times. The ring (i.e., ordering of the nodes) is assumed to be public.

Real summation. We first consider the task of estimating the sum x̄ = ∑n
u=1 ∑K

k=1 xk
u

where the x’s are bounded real numbers and xk
u represents the contribution of user u at

round k. For this problem, the standard approach in local differential privacy (LDP) is
to add random noise to each single contribution before releasing it. For generality, we
consider an abstract mechanism Perturb(x; σ) which adds centered noise with standard
deviation σ to the contribution x (e.g., the Gaussian or Laplace mechanism). Let σloc be
the standard deviation of the noise required so that Perturb(·; σloc) satisfies (ε, δ)-LDP.

Consider now the simple decentralized protocol in Algorithm 4.2, where noise with
the same standard deviation σloc is added only once every n − 1 hops of the token. By
leveraging the fact that the view of each user u is restricted to the values taken by the
token at each of its K visits to u, combined with advanced composition (Dwork et al.,
2010b), we have the following result.

Theorem 4.3 ([AB-Preprint6]). Let ε, δ > 0. Algorithm 4.2 outputs an unbiased estimate of x̄
with standard deviation

√
bKn/(n− 1)cσloc, and satisfies (

√
2K ln(1/δ′)ε + Kε(eε − 1), Kδ +

δ′)-network DP for any δ′ > 0.

To match the same privacy guarantees, LDP incurs a standard deviation of
√

Knσloc.
Therefore, Algorithm 4.2 provides an O(1/

√
n) reduction in error or, equivalently, an

O(1/
√

n) gain in ε. In fact, Algorithm 4.2 achieves the same privacy-utility trade-off as
a trusted central aggregator that would iteratively aggregate the raw contributions of all
users at each round k and perturb the result before sending it back to the users, as done
in federated learning algorithms with a trusted aggregator [AB-Journal2].

Remark 4.2. We can design variants of Algorithm 4.2 in which noise addition is distributed across
users. Using the Gaussian mechanism, each user can add noise with std. dev. σ′loc = σloc/

√
n,

except for the very first contribution which requires std. dev. σloc to properly hide the contributions

70

Algorithm 4.3 Private discrete histogram computation on the ring.

Public Parameters: Ring graph on JnK; Noise parameter β ∈ [0, 1]; Number of rounds K
Input: Contributions x1

u, . . . , xK
u ∈ JdK for each user u ∈ JnK

Initialize τ ∈Nd with βn random elements
for k = 1 to K do

for u = 1 to n do
yk

u ← RRβ(xk
u)

τ[yk
u]← τ[yk

u] + 1
for i = 0 to d− 1 do

τ[i]← τ[i]−β/d
1−β

return τ

of users in the first cycle. The total added noise has std. dev.
√
bKn/(n− 1)c+ 1σloc, leading to

same utility as Algorithm 4.2 (up to a constant factor that is negligible when K is large).

Discrete histogram computation. We now turn to histogram computation over a dis-
crete domain JdK = {1, . . . , d}. The goal is to compute h ∈ Nd s.t. hi = ∑n

u=1 ∑K
k=1 I[xk

u =

i], where xk
u ∈ JdK and I[·] is the indicator function. A classic approach in LDP is based on

d-ary randomized response (Kairouz et al., 2014), where each user submits its true value
with probability 1− β and a uniformly random value with probability β.6 We denote this
primitive by RRβ : JdK→ JdK.

In our setting with a ring network, we propose Algorithm 4.3, where each contribution
of a user is randomized using RRβ before being added to the token τ ∈Nd. Additionally,
τ is initialized with enough random elements to hide the first contributions. Note that
at each step, the token contains a partial histogram equivalent to a shuffling of the con-
tributions added so far, allowing us to leverage results on privacy amplification by shuffling
(Erlingsson et al., 2019; Balle et al., 2019; Feldman et al., 2020). In particular, we can prove
the following utility and privacy guarantees for Algorithm 4.3.

Theorem 4.4 ([AB-Preprint6]). Let ε < 1
2 , δ ∈ (0, 1

100), and n > 1000. Let β =

d/(exp(12ε
√

log(1/δ)/n) + d − 1). Algorithm 4.3 outputs an unbiased estimate of the his-
togram with βn(K + 1) expected random responses. Furthermore, it satisfies (

√
2K ln(1/δ′)ε +

Kε(eε − 1), Kδ + δ′)-network DP for any δ′ > 0.

Achieving the same privacy guarantees in LDP would require β to be constant in
n, hence

√
n times more random responses. Equivalently, if we fix utility (i.e., β), The-

orem 4.4 shows that Algorithm 4.3 again provides a privacy gain of 1
n

√
n/ ln(1/δ) =

O(1/
√

n) compared to LDP.

6Recall that we used this local randomizer in Chapter 3 to privately compute U-statistics in the local
model, see Algorithm 3.3.

71

Remark 4.3. For simplicity of presentation, Theorem 4.4 relies on the amplification by shuffling
result of Erlingsson et al. (2019) which has a simple closed-form. A tighter and more general
result (with milder restrictions on the values of n, ε and δ) can be readily obtained by using the
results of Balle et al. (2019) and Feldman et al. (2020).

Remark 4.4. Algorithm 4.2 (real summation) could also be used to perform histogram compu-
tation. However, for domains of large cardinality d (e.g., d � n), Algorithm 4.3 requires fewer
random numbers and maintains a sparse (thus more compact) representation of the histogram.

Discussion. We have seen that decentralized computation over a ring provides a simple
way to achieve utility similar to a trusted aggregator thanks to the sequential communi-
cation that hides the contribution of the previous users in a summary. We stress the fact
that this is achieved without relying on a central server (only local communications) or
resorting to costly multi-party computation protocols (only two secure communication
channels per user are needed). We observe that the ring topology is often used in practi-
cal deployments and theoretical analysis of (non-private) decentralized algorithms (Lian
et al., 2017; Tang et al., 2018; Koloskova et al., 2020; Neglia et al., 2020; Marfoq et al.,
2020), owing to its simplicity and good empirical performance. Finally, we note an inter-
esting connection between the specific case of network DP over a ring topology and the
pan-privacy model for streaming algorithms (Dwork et al., 2010a), see [AB-Preprint6].

Despite these important advantages, the use of a fixed ring topology has some limita-
tions. First, our algorithms are not robust to collusions: in particular, if two users collude
and share their view, Algorithm 4.2 does not satisfy DP. While this can be mitigated by
distributing the noise addition across users (Remark 4.2), a node placed between two
colluding nodes would get largely degraded privacy guarantees. A similar reasoning
holds for Algorithm 4.3. Second, a fixed ring topology is not well suited to extensions to
gradient descent, for which we would like to leverage privacy amplification by iteration
(Feldman et al., 2018). In this amplification scheme, the privacy guarantee for a given
user (data point) grows with the number of gradient steps that come after it. In a fixed
ring, the privacy of a user u with respect to another user v would thus depend on their
relative positions in the ring (e.g., there would be no privacy amplification when v is the
user who comes immediately after u). These limitations motivate us to consider random
walks on a complete graph.

4.2.4 Privacy Amplification for Walking on a Complete Graph

In this section, we consider the case of a random walk on the complete graph. In
other words, at each step, the token is sent to a user chosen uniformly at random among
V. We consider random walks of fixed length T > 0, hence the number of times a given
user contributes is itself random.

72

Algorithm 4.4 Private real summation on a complete graph.

Public Parameters: Noise scale σloc ∈ R+; Number of steps T
Input: Contributions x1

u, . . . , xT
u ∈ R for each user u ∈ JnK

τ ← 0, k1 ← 0, . . . , kn ← 0
for t = 1 to T do

Draw u ∼ U (1, . . . , n)
ku ← ku + 1
τ ← τ + Perturb(xku

u ; σloc)
return τ

Remark 4.5. For simplicity, in this section we slightly depart from the notion of view defined
in (4.8). Specifically, we assume that the path taken by the token is fully hidden from a given
user, i.e., the user does not know the identity of the sender (resp. receiver) of messages that he/she
receives (resp. sends). We discuss how this assumption can be lifted at the end of the section.

Real summation. For real summation, we consider the simple and natural protocol
shown in Algorithm 4.4: a user u receiving the token τ for the k-th time updates it with
τ ← τ + Perturb(xk

u; σloc). As in Section 4.2.3, σloc is set such that Perturb(·; σloc) satisfies
(ε, δ)-LDP, and thus implicitly depends on ε and δ. The next theorem gives network DP
guarantees, which rely on the intermediate aggregations of values between two visits of the
token to a given user and the secrecy of the path taken by the token. For clarity, we state below
an asymptotic result to give the main order of magnitude, but stress the fact that it is
derived from a non-asymptotic (albeit more complex) formula given in [AB-Preprint6].

Theorem 4.5 ([AB-Preprint6]). Let ε < 1 and δ > 0. Algorithm 4.4 outputs an unbiased
estimate of the sum of T contributions with standard deviation

√
Tσloc. Furthermore, for large

enough n and T = Ω(n), it satisfies (ε′, Nvδ + δ′ + δ̂)-network DP for all δ′, δ̂ > 0 with

ε′ = O
(√

Nv ln(1/δ′)ε/n1/3
)

, where Nv =
T
n
+

√
3
n

T ln(1/δ̂). (4.12)

Sketch of proof. We fix a user v and quantify how much information about the private data
of another user u is leaked to v from the visits of the token. The number of contributions
from u follows a binomial law B(T, 1/n): we can bound it by Nu with prob. 1− δ̂ using
Chernoff. Then, for a contribution of u at time t, it is sufficient to consider the cycle
formed by the random walk between the two successive passages in v containing t. We
distinguish whether the contribution is part of a “small cycle” (i.e., aggregated with less
than c2n2/3 between two visits to v), or in a larger cycle. For small cycles, we can use
amplification by subsampling Balle et al., 2018 thanks to the secrecy of the cycle. For
larger cycles, the contribution of u is aggregated with at least c2n2/3 other contributions,
hence the privacy loss of this contribution towards v is bounded by O(ε/n1/3). The total
privacy loss across the Nu contributions follows from advanced composition.

73

Algorithm 4.5 Private SGD on a complete graph.

Public Parameters: Privacy parameters ε, δ > 0; Number of steps T; Step sizes (γ(t))T
t=1

Input: Dataset Du for each user u ∈ JnK
1: Initialize τ ∈ C
2: for t = 1 to T do
3: Draw u ∼ U (1, . . . , n)
4: η = [η1, . . . , ηp], with ηi ∼ N

(
0, 8L2 ln(1.25/δ)

ε2

)
5: τ ← ΠC

(
τ − γ(t)[∇τ Fu(τ;Du) + η]

)
6: return τ

The same algorithm analyzed under LDP yields ε′ = O(
√

Nv ln(1/δ′)ε), which is
optimal for averaging Nv contributions per user in the local model. Theorem 4.5 thus
shows that network DP asymptotically provides a privacy amplification of O(1/n1/3)

over LDP. While this theoretical gain is not as strong as the one obtained for the fixed
ring topology, we show in [AB-Preprint6] that our non-asymptotic formula improves
upon local DP as soon as n > 100, and that the gains are significantly stronger in practice
than what our theoretical results guarantee.

Remark 4.6 (Extension to discrete histogram computation). We can obtain a similar result
for histograms by bounding the privacy loss incurred by larger cycles in the proof of Theorem 4.5
using amplification by shuffling (Erlingsson et al., 2019; Balle et al., 2019; Feldman et al., 2020),
similar to what we did for the ring in Section 4.2.3.

Optimization with stochastic gradient descent (SGD). We now turn to decentralized
learning with SGD. Let C ⊆ Rp be a convex set and F1(·;D1), . . . , Fn(·;Dn) be a set of
convex L-Lipschitz and s-smooth local objective functions over C (see Appendix B for a
reminder on these notions). We denote by ΠC(θ) = arg minθ′∈C ‖θ − θ′‖ the Euclidean
projection onto the set C. We aim to privately solve the following optimization problem:

θ∗ ∈ arg min
θ∈C

{
F(θ) =

1
n

n

∑
u=1

Fu(θ;Du)
}

. (4.13)

Note that (4.13) corresponds to the classic decentralized learning objective (1.2), where
we have ignored the weights for simplicity.

To privately approximate θ∗, we propose Algorithm 4.5. Here, the token τ ∈ C rep-
resents the current iterate. At each step, the user u with the token performs a projected
noisy gradient step and sends the updated token to a random user. We rely on the Gaus-
sian mechanism to ensure that the noisy version of the gradient ∇τ Fu(τ;Du) + η satisfies
(ε, δ)-LDP: the variance σ2 of the noise η in line 4 of Algorithm 4.5 follows from the
fact that gradients of L-Lipschitz functions have `2-sensitivity bounded by 2L (this is a
consequence of Lemma B.1). We have the following network DP guarantee.

74

Theorem 4.6. Let ε < 1, δ < 1/2. Algorithm 4.5 with step size η ≤ 2/s achieves (ε′, δ + δ̂)-
network DP for all δ̂ > 0 with

ε′ =
√

2q ln(1/δ)ε/
√

ln(1.25/δ), (4.14)

where Nu = T
n +

√
3
n T ln(1/δ̂) and q = max

(2Nu ln n
n , 2 ln(1/δ)

)
.

Sketch of proof. The proof tracks the evolution of the privacy loss using Rényi Differential
Privacy (RDP) (Mironov, 2017) and leverages amplification by iteration (Feldman et al.,
2018) in a novel decentralized context. We give here a brief sketch. Let us fix two users
u and v and bound the privacy leakage of u from the point of view of v. The number
of contributions of user u is bounded by Nu as in Theorem 4.5. We then compute the
network RDP guarantee for a fixed contribution of u at time t. Crucially, it is sufficient
to take into account the first time that v receives the token at a step t′ > t. Privacy
amplification by iteration tells us that the larger t′, the less is learned by v about the
contribution of u. Note that t′ follows a geometric law of parameter 1/n. Using the weak
convexity of the Rényi divergence proved in (Feldman et al., 2018, Lemma 25 therein), we
can bound the Rényi divergence Dα(Yv||Y′v) between two random executions Yv and Y′v
stopping at v and differing only in the contribution of u by the expected divergence over
the geometric distribution. Combining with amplification by iteration eventually gives
us Dα(Yv||Y′v) ≤ 4αL2 ln n/σ2n. We conclude by applying the composition property of
RDP over the Nu contributions of u and converting the RDP guarantee into (ε, δ)-DP.

Algorithm 4.5 is also a natural approach to private SGD in the local model, and
achieves ε′ = O(

√
Nu ln(1/δ′)ε) under LDP. Thus, for T = Ω(n2

√
ln(1/δ)/ ln n) itera-

tions, Theorem 4.6 gives a privacy amplification of O(ln n/
√

n) compared to LDP. Mea-
suring utility as the amount of noise added to the gradients, the privacy-utility trade-off
of Algorithm 4.5 in network DP is thus nearly the same (up to a log factor) as that of
private SGD in the trusted curator model!7 For smaller T, the amplification is still much
stronger than suggested by the closed-form in (4.14): we can numerically find a smaller
ε′ that satisfies the conditions required in the proof, see [AB-Preprint6] for details.

We note that we can easily obtain utility guarantees for Algorithm 4.5 in terms of
optimization error. Indeed, the token performs a random walk on a complete graph
so the algorithm performs the same steps as a centralized (noisy) SGD algorithm. We
can for instance rely on a classic result by Shamir and Zhang (2013, Theorem 2 therein)
which shows that SGD-type algorithms applied to a convex function and bounded convex
domain converge in O(1/

√
T) as long as gradients are unbiased with bounded variance.

7Incidentally, the analysis of centralized private SGD (Bassily et al., 2014) also sets the number of iterations
to be of order n2.

75

Proposition 4.1. Let the diameter of C be bounded by D. Let G2 = L2 + 8pL2 ln(1.25/δ)
ε2 , and

τ ∈ C be the output of Algorithm 4.5 with step size γ(t) = D/G
√

t. Then we have:

E[F(τ)− F(θ∗)] ≤ 2DG(2 + log T)/
√

T.

A consequence of Proposition 4.1 and Theorem 4.6 is that for fixed privacy budget
and sufficiently large T, the expected error of Algorithm 4.5 is O(ln n/

√
n) smaller under

network DP than under LDP.

Discussion. An advantage of considering a random walk over a complete graph is that
our approach is naturally robust to the presence of a (constant) number of colluding
users. Indeed, when c users collude, they can be seen as a unique node in the graph with
a transition probability of c

n instead of 1
n . We can then easily adapt the proofs above using

the fact that the total number of visits to colluding users follows B(T, c/n) and that the
size of a cycle between two colluding users follows a geometric law of parameter 1− c/n.
Hence, we obtain the same guarantees under Definition 4.2 as for the case with n/c non-
colluding users under Definition 4.1. Interestingly, these privacy guarantees hold even if
colluding users bias their choice of the next user instead of choosing it uniformly.

The assumption that users do not know the identity of the previous sender and the
next receiver (see Remark 4.5) may seem quite strong. It is however possible to lift this
assumption by bounding (with high probability) the number of times a contribution of
a given user u is directly observed by a given user v and accounting for the resulting
privacy loss separately. When T = Ω(n2), this term is negligible and the results of
Theorems 4.5-4.6 still hold. In practical implementations, we can enforce a deterministic
bound on the number of times any edge (u, v) is used, e.g., by contributing only noise
along (u, v) after it has been used too many times. We refer to [AB-Preprint6] for details.

4.2.5 Experiments on Private Stochastic Gradient Descent

We present some numerical experiments that illustrate the practical significance of
our privacy amplification results in the complete graph setting (Section 4.2.4). We focus
on the task of training a logistic regression model in the decentralized setting. Logistic re-
gression corresponds to solving (4.13) with C = Rp and Fu(θ;Du) =

1
|Du| ∑(x,y)∈Du

ln(1 +

exp(−yθ>x)) where x ∈ Rp and y ∈ {−1, 1}. We use a binarized version of UCI Housing
dataset.8 We standardize the features and further normalize each data point x to have
unit L2 norm so that the logistic loss is 1-Lipschitz for any (x, y). We split the dataset
uniformly at random into a training set (80%) and a test set, and further split the training
set across n = 2000 users, resulting in each user u having a local dataset Du of size 8.

We compare three private SGD approaches which are all based on gradient pertur-
bation with the Gaussian mechanism. Centralized DP-SGD is the centralized version of

8https://www.openml.org/d/823

76

https://www.openml.org/d/823

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ob
je

ct
iv

e
fu

nc
tio

n

Centralized DP-SGD (= 10)
Local DP-SGD (= 10)
Network DP-SGD (= 10)

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Centralized DP-SGD (= 10)
Local DP-SGD (= 10)
Network DP-SGD (= 10)

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ob
je

ct
iv

e
fu

nc
tio

n

Centralized DP-SGD (= 1)
Local DP-SGD (= 1)
Network DP-SGD (= 1)

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Centralized DP-SGD (= 1)
Local DP-SGD (= 1)
Network DP-SGD (= 1)

Figure 4.1: Comparing three settings for SGD with gradient perturbation. We plot the
mean/std. dev. of the objective function and test accuracy over 20 runs.

differentially private SGD (Centralized DP-SGD) introduced by Song et al. (2013) and
Bassily et al. (2014), which assumes the presence of a trusted curator/aggregator. Local
DP-SGD corresponds to Algorithm 4.5 with noise calibrated for the LDP setting. Finally,
Network DP-SGD is Algorithm 4.5 with noise calibrated according to network DP (see
Theorem 4.6). To make the comparison as fair as possible, all approaches use the full
dataset Du of a randomly chosen user u as the mini-batch at each step.

Given the overall privacy budget (ε, δ), each of the three methods leads to a different
choice for σ that parametrizes the level of noise added to each gradient. In our experi-
ments, we consider ε = 10 (low privacy) and ε = 1 (stronger privacy), and fix δ = 10−6.
Recall that we consider user-level DP. Note that due to composition, more iterations in-
crease the per-iteration level of noise needed to achieve a fixed DP guarantee. As the
number of contributions of a given user is random, we upper bound it in advance with
a tighter bound than used in our theorems, namely cT/n where c is a parameter to tune.
If a user is asked to participate more times than budgeted, it simply forwards the token
to another user without adding any contribution. In the case of Network DP-SGD, the
user still adds noise as the privacy guarantees of others rely on it. Note that the best
regime for network DP is when the number of contributions of a user is roughly equal to
n, see Theorem 4.6. In our experiments, we are not in this regime but the privacy ampli-
fication effect is stronger than the closed form of the theorem. In practice, we compute
numerically the smallest σ needed to fulfill the conditions of the proof.

Figure 4.1 shows results for T = 20, 000, where the step size η was tuned separately
for each approach in the interval [10−4, 2]. We see that Network DP-SGD nearly matches
the privacy-utility trade-off of Centralized DP-SGD for both ε = 1 and ε = 10 without
relying on a trusted curator. Network DP-SGD also clearly outperforms Local DP-SGD,
which actually diverges for ε = 1. These empirical results are consistent with our theory
and show that Network DP-SGD significantly amplifies privacy guarantees compared to
local DP-SGD even when the number of iterations T is much smaller than O(n2/ ln n), a
regime which is of much practical importance.

77

Chapter 5

Future Research

I am convinced that personal data should be controlled and stored by the individual who
produces it, rather than being practically monopolized by data brokers and tech giants.
This view is in line with recent calls in favor of a more “decentralized Internet” (Berners-
Lee, 2018) and various initiatives that promote the idea of self-sovereign data (see e.g.,
the Solid project and the Sovrin Foundation).1 Regaining control of one’s personal data
is now being facilitated by the GDPR’s right for citizens to retrieve a copy of the data
collected about them by any platform, and by the ongoing development of secure per-
sonal data management systems (Anciaux et al., 2019). This context provides a timely
opportunity to develop machine learning frameworks that can learn from a huge number of de-
centralized personal datasets in a privacy-by-design manner. In the long run, such approaches
will help to unlock the power of machine learning for applications that are fueled by large-scale
and highly sensitive individual level data, ranging from industrial applications such as home
assistants and smart energy meters to research studies in fields like medicine, mobility,
economics and the social sciences. They can also make ML and AI accessible to citizens for
collaborative computations at local, national and worldwide levels by keeping individuals in
control of their personal data and enabling them to decide how it is used and for which
purpose. The work presented in this habilitation thesis, and more broadly the recent
advances in decentralized and privacy-preserving ML, are steps towards the above ob-
jective. Nevertheless, many research, technological and regulatory challenges must be
addressed before one could hope for broad adoption.

Below, I translate the above long-term vision into a short to mid-term research project
focused on the design of scalable and privacy-preserving algorithms for learning from
decentralized personal datasets, with the main objective of narrowing the utility gap with
the trusted curator setting. This project will be funded in part by a 4-year grant from the
French National Research Agency (ANR) that I was awarded in 2020.

1See https://solid.mit.edu/ and https://sovrin.org/

79

https://solid.mit.edu/
https://sovrin.org/

Overview. I will mostly consider fully decentralized algorithms, as they appear to be
well-suited to collaborative computations over a large number of personal datasets: they
scale nicely with the number of participants and avoid the costs of setting up and running
a powerful central server. The general theme underlying the proposed research is to
strengthen differential privacy guarantees at no additional cost in utility by exploiting the way
individual contributions are communicated within decentralized ML algorithms. More precisely,
I will consider the following three complementary research objectives:

1. broaden the scope of “privacy amplification by decentralization”, proving that pop-
ular decentralized ML algorithms operating on general topologies naturally rein-
force differential privacy guarantees;

2. propose novel algorithms at the intersection of decentralized ML and secure multi-
party computation which scale to an arbitrary number of participants;

3. design data-adaptive communication schemes to speed up the convergence of de-
centralized ML algorithms operating on a large number of heterogeneous datasets.

Broadening the scope of privacy amplification by decentralization. I believe that the
results presented in Section 4.2 of Chapter 4, which show that some decentralized al-
gorithms achieve significantly better privacy-utility trade-offs than what is captured by
local DP, are quite promising. I plan to push this line of research further and extend
these initial results in several respects. A first objective is to consider general topolo-
gies beyond the ring and the complete graph to strike a good balance between privacy,
scalability and robustness. Graph theoretic notions like the hitting time can provide ad-
equate tools to quantify the relation between privacy gains and structural properties of
the graph. Note that in an arbitrary graph, users are likely to leak more information
to closer peers than to distant ones. Therefore, obtaining nontrivial privacy gains will
require to consider appropriate relaxations of DP, such as metric-based DP (Andrés et al.,
2013; Chatzikokolakis et al., 2013) or Pufferfish (Kifer and Machanavajjhala, 2014; Song
et al., 2017). Another approach to mitigate such asymmetries is to allow the topology
to evolve over time, which can also help to improve robustness to collusions for sparse
topologies. A second objective is to prove privacy amplification guarantees for decen-
tralized algorithms that allow more parallel computations across users (and are therefore
more efficient). A natural extension of the algorithms we studied is to consider multiple
tokens walking on the graph in parallel. I also plan to study randomized gossip proto-
cols (Boyd et al., 2006), which are very efficient and quite popular for decentralized ML
(see e.g., Lian et al., 2018; Hendrikx et al., 2019). Our preliminary work in the context
of rumor spreading protocols [AB-Conf4] shows that gossip dissemination of a message
provides differential privacy guarantees with respect to the identity of the sender. I plan
to explore the possible connection with privacy amplification by shuffling (Erlingsson et

80

al., 2019), as gossip communication could be seen as providing approximate anonymity
(or approximate shuffling when each user disseminates a message in parallel). Finally,
I would like to study the fundamental limits of network DP in the different settings to
establish the tightness of the analysis and hopefully identify decentralized protocols that
provide optimal amplification.

In the ideas outlined above, one considers the conservative assumption that parties
do not trust anyone. In many real-world scenarios however, each participant may personally
trust a small number of other peers in the network (e.g., family members, close friends, refer-
ring physician...). Trust means that information sent by a party to a trusted peer does not
need to satisfy DP (i.e., it is excluded from the view of the adversary), and could therefore
be processed in the clear. Local trust naturally fits the fully decentralized framework, as
the trust network (in which parties are connected if they trust each other) can be seen as
an overlay over the communication network. Leveraging this trust network has the po-
tential to further strengthen privacy amplification effects, but requires to deeply rethink
the protocols and formal analyses. For instance, one should guarantee that the algo-
rithms do not “propagate the trust” by transitivity to non-trusted parties (unlike what
may happen in Facebook’s image tagging system). I plan to study the effect of different
trust models and topologies (e.g., pairwise symmetric or asymmetric, community-based)
on the privacy guarantees.

Secure multi-party computation meets decentralized algorithms. Secure multi-party
computation (MPC) can in principle simulate the trusted curator of the centralized set-
ting but scales poorly with the number of parties, preventing its use for computations
involving all n participants. Strikingly, though, decentralized communication protocols
naturally break down the full problem into many steps involving a much smaller number
of parties (as few as two in gossip protocols). This motivates the use of MPC at interme-
diate steps to reduce the noise needed for DP. I propose to investigate how MPC may work
in concert with decentralized ML to improve utility with additional complexity independent of the
total number of participants. Characterizing the trade-offs between utility and complexity
to identify the sweet spots however requires to explore the huge combined search space
of decentralized protocols, ML algorithms and MPC primitives.

I propose to study a crucial parameter: the local scale at which MPC is used in decen-
tralized ML algorithms. At one extreme (local scale n) lies the high-utility but intractable
simulation of the trusted curator involving all n participants, while lightweight but in-
accurate DP-only decentralized ML approaches correspond to local scale 1. To explore
intermediate points on this trade-off line, I propose to reduce the search space of MPC
primitives by first focusing on secure aggregation with noise addition, which only reveals
the differentially private aggregated output (see e.g., Jayaraman et al., 2018). With this
primitive at hand, we can design variants of gossip SGD algorithms (Lian et al., 2018) in
which the parameter aggregation between pairs of parties is done with MPC. However,

81

the utility gains are quite limited as MPC is only applied at local scale 2 (leading to a fac-
tor
√

2 reduction only in the standard deviation of the noise). Going beyond two parties is
however challenging with existing decentralized ML algorithms. For instance, MPC must
be run for each possible weighted average involved in (non-gossip) decentralized SGD
(Lian et al., 2017), which ruins the benefits of MPC as each party learns more outputs
than necessary. To go around this problem, I plan to build upon a flexible generalization
of gossip protocols recently introduced by Loizou and Richtárik (2016) and Loizou and
Richtárik (2019). Based on this framework, the goal is to design novel optimization algo-
rithms that rely only on uniform averaging over a flexible number 2 ≤ s ≤ n of parties so
as to achieve the desired trade-off between utility and complexity in time and commu-
nication. A precise analysis of convergence and complexity will be needed to quantify
such trade-offs optimally.

I also aim to extend the scope of the above approach to ML problems for which secure ag-
gregation is too restrictive, such as robust aggregation schemes for reducing the influence
of byzantine updates by malicious parties (Blanchard et al., 2017). I plan to consider se-
cure shuffling (Erlingsson et al., 2019) but also tailored MPC primitives that may provide
better utility and/or lower computational cost for specific tasks.

Data-adaptive decentralized communication protocols. Data heterogeneity across
users is known to slow down the convergence of decentralized learning protocols, which
in turn damages the utility since the privacy loss composes across iterations. I propose
to address these issues by designing protocols where communication between parties adapts to
the content of previous exchanges so that users can adjust the weight they give to contribu-
tions sent by other peers. To the best of my knowledge, the design of optimal schemes
for data-adaptive communication has been seldom studied: the network topology and
associated mixing matrix W are typically chosen in a data-independent fashion.

I propose to start with a simplified setting in which the pairwise divergences between
local data distributions are known in order to provide a proof of concept and quantify the
expected gains. In recent preliminary work [AB-Preprint1], we have shown empirically
that an appropriate data-driven topology can compensate for imbalanced class distribu-
tions across users. The goal here is to tackle more general kinds of heterogeneity in a
principled manner by using the divergences to design a communication weight matrix W which
optimizes the convergence speed of the decentralized algorithm. To accelerate consensus to a
common model, the general intuition is that two parties with a large divergence should
have more weight. I plan to formulate the problem of finding the best W as a constrained
optimization problem (taking inspiration from Boyd et al., 2006, who only considered
communication constraints), design decentralized algorithms to solve it, and prove that
the resulting W leads to faster convergence. Several divergences between local distri-
butions can be considered, from simple proxy measures such as the distance between
local models trained in isolation or between a set of gradients (Karimireddy et al., 2020),

82

to complex divergences like Maximum Mean Discrepancy or the Wassertein distance. I
will also study how the proposed methods can be combined with so-called “accelerated”
gossip schemes (Cavalcante et al., 2011; Liu et al., 2013; Scaman et al., 2017).

In practical scenarios, divergences between local datasets are not known in advance
and must be estimated from messages received from other parties. The goal here is to
adapt W dynamically along iterations while training the models. Interestingly, there exists a
rich literature on decentralized averaging and optimization with time-varying networks
showing that convergence can be reached under very mild conditions on the sequence of
matrices (see e.g., Nedic and Ozdaglar, 2009; Koloskova et al., 2020). This gives consid-
erable freedom in the design of the updates schemes. To avoid long term dependencies, I
plan to focus on order 1 Markov chains to make W(t+1) depend only on W(t) and the new
information received at time t, which can be the observed discrepancy between updates
communicated by the parties.

Finally, I will extend the above approaches to learn personalized models. While the
approach presented in Chapter 2 provides a good starting point, I would like to inves-
tigate formulations based on clear statistical assumptions on the relation between local
data distributions. For instance, the local distributions could be clustered or generated
from a mixture of underlying distributions, as explored in a recent work [AB-Conf1].
This would open the way to the derivation of generalization bounds showing that when
distributions are related enough, the empirical divergences give enough information to
identify the underlying relations and therefore that the proposed approaches improve
the generalization performance.

Integration, validation and implementation. The contributions of the above three sci-
entific objectives are largely complementary. I believe that integrating them into one system
will yield the largest utility gains. I will carefully analyze how to build solutions with opti-
mal privacy-utility trade-off and low computational complexity, avoiding minor tensions
that might exist between some of the results (e.g., adaptive weights may slightly reduce
privacy amplification effects).

To support their strong theoretical guarantees, the proposed approaches will be empir-
ically validated to demonstrate that they provide significant practical improvements in settings
which approximate real-world use cases as realistically as possible. To avoid logisti-
cal and ethical issues, I plan to simulate the decentralized scenario by creating many small
personal datasets from public individual-level datasets, e.g., a medical dataset including the
characteristics of 100,000 patients2 and a purchase log dataset which contains the history
of 300,000 customers.3 Existing decentralized learning benchmarks such as LEAF (Caldas
et al., 2019) may also be used. The main objective will be to measure the trade-off between
privacy and utility achieved by the proposed approaches compared to (i) a differentially

2https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
3https://www.kaggle.com/c/acquire-valued-shoppers-challenge/

83

https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/

private model trained on the centralized data, and (ii) decentralized ML with baseline
DP. We expect to largely outperform (ii) and to approach the utility of (i). Utility will be
measured using prediction accuracy on unseen data. Privacy will be quantified by the
parameters (ε, δ) of DP, and by the performance of membership inference attacks (Nasr
et al., 2019) which provide a more concrete measure of protection. The impact of key
problem dimensions (number of users, number of model parameters, size of the personal
datasets, network topology) on the performance will also be evaluated.

The implementations and reproducible benchmarks will be distributed as open-source packages
shared on public repositories, building upon my previous experience in developing high-
quality packages. I also aim to disseminate the work in larger privacy-preserving ML
open-source projects for increased visibility and impact. For instance, I intend to leverage
existing contacts with the OpenMined community which develops the PySyft library.4

4https://github.com/OpenMined/PySyft

84

https://github.com/OpenMined/PySyft

List of Scientific Contributions

Books

[AB-Book1] Bellet, A., Habrard, A., and Sebban, M. (2015a). Metric Learning. Mor-
gan & Claypool Publishers (pp. 15, 35).

Articles in International Journals

[AB-Journal1] Bellet, A., Denis, P., Gilleron, R., Keller, M., and Vauquier, N. (2021a).
“Pour plus de transparence dans l’analyse automatique des consul-
tations ouvertes : leçons de la synthèse du Grand Débat National”.
Statistique et Société. To appear.

[AB-Journal2] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M.,
Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R.,
D’Oliveira, R. G. L., Eichner, H., Rouayheb, S. E., Evans, D., Gardner,
J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Har-
chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M.,
Javidi, T., Joshi, G., Khodak, M., Konecný, J., Korolova, A., Koushanfar,
F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür,
A., Pagh, R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song, D.,
Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S.
(2021b). “Advances and Open Problems in Federated Learning”. Foun-
dations and Trends® in Machine Learning 14.1–2, pp. 1–210 (pp. 9–11, 15,
35, 37, 70).

[AB-Journal3] Paige, B., Bell, J., Bellet, A., Gascón, A., and Ezer, D. (2021). “Recon-
structing Genotypes in Private Genomic Databases from Genetic Risk
Scores”. Journal of Computational Biology 28.5, pp. 435–451 (pp. 10, 15).

[AB-Journal4] de Vazelhes, W., Carey, C., Tang, Y., Vauquier, N., and Bellet, A. (2020).
“metric-learn: Metric Learning Algorithms in Python”. Journal of Ma-
chine Learning Research 21.138, pp. 1–6 (p. 15).

[AB-Journal5] Liu, K. and Bellet, A. (2019). “Escaping the Curse of Dimensionality in
Similarity Learning: Efficient Frank-Wolfe Algorithm and Generaliza-
tion Bounds”. Neurocomputing 333, pp. 185–199.

85

[AB-Journal6] May, A., Garakani, A. B., Lu, Z., Guo, D., Liu, K., Bellet, A., Fan, L.,
Collins, M., Hsu, D., Kingsbury, B., Picheny, M., and Sha, F. (2019).
“Kernel Approximation Methods for Speech Recognition”. Journal of
Machine Learning Research 20.59, pp. 1–36 (p. 15).

[AB-Journal7] Zheng, W., Bellet, A., and Gallinari, P. (2018). “A Distributed Frank-
Wolfe Framework for Learning Low-Rank Matrices with the Trace
Norm”. Machine Learning 107.8–10, pp. 1457–1475 (p. 15).

[AB-Journal8] Bellet, A., Bernabeu, J. F., Habrard, A., and Sebban, M. (2016). “Learn-
ing Discriminative Tree Edit Similarities for Linear Classification —
Application to Melody Recognition”. Neurocomputing 214, pp. 155–161.

[AB-Journal9] Clémençon, S., Colin, I., and Bellet, A. (2016). “Scaling-up Empirical
Risk Minimization: Optimization of Incomplete U-statistics”. Journal of
Machine Learning Research 17.76, pp. 1–36 (pp. 15, 35, 36, 40).

[AB-Journal10] Bellet, A. and Habrard, A. (2015). “Robustness and Generalization for
Metric Learning”. Neurocomputing 151.1, pp. 259–267.

[AB-Journal11] Bellet, A., Habrard, A., Morvant, E., and Sebban, M. (2014). “Learning
A Priori Constrained Weighted Majority Votes”. Machine Learning 97.1-
2, pp. 129–154.

[AB-Journal12] Bellet, A., Habrard, A., and Sebban, M. (2012a). “Good edit similarity
learning by loss minimization”. Machine Learning 89.1, pp. 5–35.

[AB-Journal13] Bellet, A., Bernard, M., Murgue, T., and Sebban, M. (2010). “Learn-
ing state machine-based string edit kernels”. Pattern Recognition 43,
pp. 2330–2339.

Articles in Peer-Reviewed International Conferences

[AB-Conf1] Marfoq, O., Neglia, G., Bellet, A., Kameni, L., and Vidal, R. (2021). “Fed-
erated Multi-Task Learning under a Mixture of Distributions”. NeurIPS
(p. 83).

[AB-Conf2] Vogel, R., Bellet, A., and Clémençon, S. (2021). “Learning Fair Scoring
Functions: Bipartite Ranking under ROC-based Fairness Constraints”.
AISTATS (pp. 15, 35, 41, 47).

[AB-Conf3] Bell, J., Bellet, A., Gascón, A., and Kulkarni, T. (2020a). “Private Proto-
cols for U-Statistics in the Local Model and Beyond”. AISTATS (pp. 14,
36, 37, 46, 50, 52, 55).

[AB-Conf4] Bellet, A., Guerraoui, R., and Hendrikx, H. (2020). “Who started this ru-
mor? Quantifying the natural differential privacy guarantees of gossip
protocols”. DISC (pp. 15, 80).

[AB-Conf5] Maouche, M., Srivastava, B. M. L., Vauquier, N., Bellet, A., Tom-
masi, M., and Vincent, E. (2020). “A Comparative Study of Speech
Anonymization Metrics”. INTERSPEECH (p. 15).

86

[AB-Conf6] Paige, B., Bell, J., Bellet, A., Gascón, A., and Ezer, D. (2020). “Recon-
structing Genotypes in Private Genomic Databases from Genetic Risk
Scores”. RECOMB (pp. 10, 15).

[AB-Conf7] Srivastava, B. M. L., Tomashenko, N., Wang, X., Vincent, E., Yamagishi,
J., Maouche, M., Bellet, A., and Tommasi, M. (2020a). “Design Choices
for X-vector Based Speaker Anonymization”. INTERSPEECH (p. 15).

[AB-Conf8] Srivastava, B. M. L., Vauquier, N., Sahidullah, M., Bellet, A., Tommasi,
M., and Vincent, E. (2020b). “Evaluating Voice Conversion-based Pri-
vacy Protection against Informed Attackers”. ICASSP (p. 15).

[AB-Conf9] Zantedeschi, V., Bellet, A., and Tommasi, M. (2020). “Fully Decen-
tralized Joint Learning of Personalized Models and Collaboration
Graphs”. AISTATS (pp. 13, 18, 25, 26, 28, 32).

[AB-Conf10] Srivastava, B. M. L., Bellet, A., Tommasi, M., and Vincent, E. (2019).
“Privacy-Preserving Adversarial Representation Learning in ASR: Re-
ality or Illusion?” INTERSPEECH (p. 15).

[AB-Conf11] Vogel, R., Bellet, A., Clémençon, S., Jelassi, O., and Papa, G. (2019).
“Trade-offs in Large-Scale Distributed Tuplewise Estimation and
Learning”. ECML/PKDD (pp. 15, 37).

[AB-Conf12] Ailem, M., Zhang, B., Bellet, A., Denis, P., and Sha, F. (2018). “A Proba-
bilistic Model for Joint Learning of Word Embeddings from Texts and
Images”. EMNLP (p. 15).

[AB-Conf13] Bellet, A., Guerraoui, R., Taziki, M., and Tommasi, M. (2018). “Person-
alized and Private Peer-to-Peer Machine Learning”. AISTATS (pp. 13,
18, 24, 30–32).

[AB-Conf14] Vogel, R., Bellet, A., and Clémençon, S. (2018). “A Probabilistic Theory
of Supervised Similarity Learning for Pointwise ROC Curve Optimiza-
tion”. ICML (p. 15).

[AB-Conf15] Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017). “Decentralized
Collaborative Learning of Personalized Models over Networks”. AIS-
TATS (pp. 13, 18, 24, 31, 32).

[AB-Conf16] Colin, I., Bellet, A., Salmon, J., and Clémençon, S. (2016). “Gossip
Dual Averaging for Decentralized Optimization of Pairwise Func-
tions”. ICML (pp. 14, 36, 37, 43, 44, 52).

[AB-Conf17] Lu, Z., Guo, D., Bagheri Garakani, A., Liu, K., May, A., Bellet, A., Fan,
L., Collins, M., Kingsbury, B., Picheny, M., and Sha, F. (2016). “A Com-
parison Between Deep Neural Nets and Kernel Acoustic Models for
Speech Recognition”. ICASSP.

[AB-Conf18] Papa, G., Bellet, A., and Clémençon, S. (2016). “On Graph Reconstruc-
tion via Empirical Risk Minimization: Fast Learning Rates and Scala-
bility”. NIPS (p. 35).

87

[AB-Conf19] Bellet, A., Liang, Y., Garakani, A. B., Balcan, M.-F., and Sha, F. (2015b).
“A Distributed Frank-Wolfe Algorithm for Communication-Efficient
Sparse Learning”. SDM (p. 15).

[AB-Conf20] Clémençon, S., Bellet, A., Jelassi, O., and Papa, G. (2015). “Scalability of
Stochastic Gradient Descent based on “Smart” Sampling Techniques”.
INNS-BigData.

[AB-Conf21] Colin, I., Bellet, A., Salmon, J., and Clémençon, S. (2015). “Extend-
ing Gossip Algorithms to Distributed Estimation of U-statistics”. NIPS
(pp. 14, 36, 39, 40, 52).

[AB-Conf22] Liu, K., Bellet, A., and Sha, F. (2015). “Similarity Learning for High-
Dimensional Sparse Data”. AISTATS.

[AB-Conf23] Papa, G., Clémençon, S., and Bellet, A. (2015). “SGD Algorithms
based on Incomplete U-statistics: Large-Scale Minimization of Empiri-
cal Risk”. NIPS (pp. 15, 36).

[AB-Conf24] Shi, Y., Bellet, A., and Sha, F. (2014). “Sparse Compositional Metric
Learning”. AAAI.

[AB-Conf25] Bellet, A., Habrard, A., and Sebban, M. (2012b). “Similarity Learning
for Provably Accurate Sparse Linear Classification”. ICML.

[AB-Conf26] Bellet, A., Habrard, A., and Sebban, M. (2011a). “An Experimental
Study on Learning with Good Edit Similarity Functions”. ICTAI.

[AB-Conf27] Bellet, A., Habrard, A., and Sebban, M. (2011b). “Learning Good Edit
Similarities with Generalization Guarantees”. ECML/PKDD.

Preprints & Technical Reports

[AB-Preprint1] Bellet, A., Kermarrec, A.-M., and Lavoie, E. (2021b). D-Cliques: Com-
pensating for Data Heterogeneity with Topology in Decentralized Federated
Learning. Tech. rep. arXiv:2104.07365 (pp. 17, 82).

[AB-Preprint2] Ladjel, R., Anciaux, N., Bellet, A., and Scerri, G. (2021). Mitigating Leak-
age from Data Dependent Communications in Decentralized Computing us-
ing Differential Privacy. Tech. rep. arXiv:2112.12411 (p. 15).

[AB-Preprint3] Mangold, P., Bellet, A., Salmon, J., and Tommasi, M. (2021). Differen-
tially Private Coordinate Descent for Composite Empirical Risk Minimization.
Tech. rep. arXiv:2110.11688 (p. 15).

[AB-Preprint4] Maouche, M., Srivastava, B. M. L., Vauquier, N., Bellet, A., Tommasi,
M., and Vincent, E. (2021). Enhancing Speech Privacy with Slicing. Tech.
rep. hal-03369137 (p. 15).

[AB-Preprint5] Noble, M., Bellet, A., and Dieuleveut, A. (2021). Differentially Private
Federated Learning on Heterogeneous Data. Tech. rep. arXiv:2111.09278

(p. 18).

88

[AB-Preprint6] Cyffers, E. and Bellet, A. (2020). Privacy Amplification by Decentralization.
Tech. rep. arXiv:2012.05326 (pp. 14, 58, 68–76).

[AB-Preprint7] Sabater, C., Bellet, A., and Ramon, J. (2020). An Accurate, Scalable and
Verifiable Protocol for Federated Differentially Private Averaging. Tech. rep.
arXiv:2006.07218 (pp. 14, 58, 63–67).

[AB-Preprint8] Dellenbach, P., Bellet, A., and Ramon, J. (Mar. 2018). Hiding in the Crowd:
A Massively Distributed Algorithm for Private Averaging with Malicious
Adversaries. Tech. rep. arXiv:1803.09984.

[AB-Preprint9] Lu, Z., May, A., Liu, K., Garakani, A. B., Guo, D., Bellet, A., Fan, L.,
Collins, M., Kingsbury, B., Picheny, M., and Sha, F. (Nov. 2014). How to
Scale Up Kernel Methods to Be As Good As Deep Neural Nets. Tech. rep.
arXiv:1411.4000.

[AB-Preprint10] Bellet, A., Habrard, A., and Sebban, M. (June 2013). A Survey on
Metric Learning for Feature Vectors and Structured Data. Tech. rep.
arXiv:1306.6709 (p. 15).

Ph.D. Thesis

[AB-PhD1] Bellet, A. (2012). “Supervised Metric Learning with Generalization
Guarantees”. PhD thesis. University of Saint-Etienne.

89

External References

Abowd, J. M. (2018). “The U.S. Census Bureau Adopts Differential Privacy”. KDD (p. 12).
Acharya, J., Orlitsky, A., Suresh, A. T., and Tyagi, H. (2015). “The Complexity of Estimat-

ing Rényi Entropy”. SODA (p. 36).
Ács, G. and Castelluccia, C. (2011). “I Have a DREAM! (DiffeRentially privatE smArt

Metering)”. Information Hiding (p. 59).
Anciaux, N., Bonnet, P., Bouganim, L., Nguyen, B., Pucheral, P., Popa, I. S., and Scerri, G.

(2019). “Personal Data Management Systems: The security and functionality stand-
point”. Information Systems 80, pp. 13–35 (p. 79).

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., and Palamidessi, C. (2013). “Geo-
indistinguishability: differential privacy for location-based systems”. CCS (p. 80).

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013). “A public domain
dataset for human activity recognition using smartphones”. ESANN (p. 34).

Assran, M., Loizou, N., Ballas, N., and Rabbat, M. (2019). “Stochastic Gradient Push for
Distributed Deep Learning”. ICML (pp. 18, 37).

Ayache, G. and El Rouayheb, S. (2021). “Private Weighted Random Walk Stochastic Gra-
dient Descent”. IEEE Journal on Selected Areas in Information Theory 2 (1), pp. 452–463

(p. 69).
Aysal, T. C., Yildiz, M. E., Sarwate, A. D., and Scaglione, A. (2009). “Broadcast Gossip

Algorithms for Consensus”. IEEE Transactions on Signal Processing 57.7, pp. 2748–2761

(p. 21).
Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). “Optimization with Sparsity-

Inducing Penalties”. Foundations and Trends® in Machine Learning 4.1, pp. 1–106 (p. 41).
Balle, B., Barthe, G., and Gaboardi, M. (2018). “Privacy amplification by subsampling:

tight analyses via couplings and divergences”. NeurIPS (pp. 59, 73).
Balle, B., Bell, J., Gascón, A., and Nissim, K. (2019). “The Privacy Blanket of the Shuffle

Model”. CRYPTO (pp. 59, 71, 72, 74).
Balle, B., Bell, J., Gascón, A., and Nissim, K. (2020). “Private Summation in the Multi-

Message Shuffle Model”. CCS (p. 59).
Bassily, R., Nissim, K., Stemmer, U., and Thakurta, A. G. (2017). “Practical Locally Private

Heavy Hitters”. NIPS (pp. 37, 48, 50).
Bassily, R. and Smith, A. (2015). “Local, private, efficient protocols for succinct his-

tograms”. STOC (p. 37).
Bassily, R., Smith, A. D., and Thakurta, A. (2014). “Private Empirical Risk Minimization:

Efficient Algorithms and Tight Error Bounds”. FOCS (pp. 58, 75, 77).

91

Bekkerman, R., Bilenko, M., and Langford, J. (2011). Scaling Up Machine Learning: Parallel
and Distributed Approaches. Cambridge University Press (p. 10).

Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., and Raykova, M. (2020b). “Secure
Single-Server Aggregation with (Poly)Logarithmic Overheads”. CCS (p. 59).

Berger, P., Buchacher, M., Hannak, G., and Matz, G. (2018). “Graph Learning Based on
Total Variation Minimization”. ICASSP (p. 26).

Berners-Lee, T. (2018). One Small Step for the Web... https://medium.com/@timberners_
lee/one-small-step-for-the-web-87f92217d085 (p. 79).

Biau, G. and Bleakley, K. (2006). “Statistical Inference on Graphs”. Statistics & Decisions
24, pp. 209–232 (p. 35).

Blanchard, P., Mhamdi, E. M. E., Guerraoui, R., and Stainer, J. (2017). “Machine Learning
with Adversaries: Byzantine Tolerant Gradient Descent”. NIPS (p. 82).

Blom, G. (1976). “Some properties of incomplete U-statistics”. Biometrika 63.3, pp. 573–580

(p. 51).
Blum, M. (1983). “Coin flipping by telephone a protocol for solving impossible problems”.

ACM SIGACT News 15.1, pp. 23–27 (p. 66).
Boissier, M., Lyu, S., Ying, Y., and Zhou, D.-X. (2016). “Fast Convergence of Online Pair-

wise Learning Algorithms”. AISTATS (p. 36).
Bollobás, B. (2001). Random Graphs (2nd edition). Cambridge University Press (p. 64).
Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage,

D., Segal, A., and Seth, K. (2017). “Practical Secure Aggregation for Privacy-Preserving
Machine Learning”. CCS (pp. 59, 60, 62, 63, 65).

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. (2006). “Randomized gossip algorithms”.
IEEE Transactions on Information Theory 52.6, pp. 2508–2530 (pp. 20, 36–39, 80, 82).

Bradley, A. P. (1997). “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. Pattern Recognition 30.7, pp. 1145–1159 (pp. 36, 47).

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečný, J., McMahan, H. B., Smith, V., and Tal-
walkar, A. (2019). “LEAF: A Benchmark for Federated Settings”. Workshop on Federated
Learning for Data Privacy and Confidentiality (p. 83).

Cavalcante, R. L. G., Rogers, A., and Jennings, N. R. (2011). “Consensus acceleration in
multiagent systems with the Chebyshev semi-iterative method”. AAMAS (p. 83).

Champion, J., Shelat, A., and Ullman, J. (2019). “Securely Sampling Biased Coins with
Applications to Differential Privacy”. CCS (p. 52).

Chan, T.-H. H., Shi, E., and Song, D. (2012a). “Optimal Lower Bound for Differentially
Private Multi-party Aggregation”. ESA (p. 57).

Chan, T.-H. H., Shi, E., and Song, D. (2012b). “Privacy-Preserving Stream Aggregation
with Fault Tolerance”. Financial Cryptography (pp. 48, 59).

Chatzikokolakis, K., Andrés, M. E., Bordenabe, N. E., and Palamidessi, C. (2013). “Broad-
ening the Scope of Differential Privacy Using Metrics”. PETS (p. 80).

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). “Differentially Private Empiri-
cal Risk Minimization”. Journal of Machine Learning Research 12, pp. 1069–1109 (p. 12).

Chaum, D. and Pedersen, T. P. (1993). “Wallet Databases with Observers”. CRYPTO
(p. 67).

92

https://medium.com/@timberners_lee/one-small-step-for-the-web-87f92217d085
https://medium.com/@timberners_lee/one-small-step-for-the-web-87f92217d085

Chen, W.-N., Kairouz, P., and Ozgur, A. (2020). “Breaking the Communication-Privacy-
Accuracy Trilemma”. NeurIPS (p. 57).

Cheng, H.-P., Yu, P., Hu, H., Zawad, S., Yan, F., Li, S., Li, H. H., and Chen, Y. (2019).
“Towards Decentralized Deep Learning with Differential Privacy”. CLOUD (p. 59).

Cheu, A., Smith, A. D., Ullman, J., Zeber, D., and Zhilyaev, M. (2019). “Distributed Dif-
ferential Privacy via Shuffling”. EUROCRYPT (p. 59).

Chung, F. (1997). Spectral Graph Theory. American Mathematical Society (pp. 40, 43).
Clarkson, K. L. (2010). “Coresets, sparse greedy approximation, and the Frank-Wolfe

algorithm”. ACM Transactions on Algorithms 6.4, pp. 1–30 (p. 24).
Clémençon, S. (2014). “A statistical view of clustering performance through the theory of

U-processes”. Journal of Multivariate Analysis 124, pp. 42–56 (p. 35).
Clémençon, S., Lugosi, G., and Vayatis, N. (2008). “Ranking and empirical risk minimiza-

tion of U-statistics”. The Annals of Statistics 36.2, pp. 844–874 (pp. 35, 36, 40).
Colin, I. (2016). “Adapting machine learning methods to U-statistics”. PhD thesis. Télé-

com ParisTech (p. 43).
Cormode, G., Kulkarni, T., and Srivastava, D. (2018). “Marginal Release Under Local

Differential Privacy”. SIGMOD (p. 37).
Deng, Y., Kamani, M. M., and Mahdavi, M. (2020). “Adaptive Personalized Federated

Learning”. arXiv: 2003.13461 (p. 18).
Dimakis, A. G., Kar, S., Moura, J. M. F., Rabbat, M. G., and Scaglione, A. (2010). “Gossip

Algorithms for Distributed Signal Processing”. Proceedings of the IEEE 98.11, pp. 1847–
1864 (p. 37).

Ding, B., Kulkarni, J., and Yekhanin, S. (2017). “Collecting Telemetry Data Privately”.
NIPS (p. 12).

Dingledine, R., Mathewson, N., and Syverson, P. (2004). Tor: The second-generation onion
router. Tech. rep. Naval Research Lab Washington DC (p. 59).

Dinh, C. T., Tran, N. H., and Nguyen, T. D. (2020). “Personalized Federated Learning with
Moreau Envelopes”. NeurIPS (p. 19).

Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P. (2016). “Learning Laplacian
matrix in smooth graph signal representations”. IEEE Transactions on Signal Processing
64.23, pp. 6160–6173 (p. 26).

Duarte, M. F. and Hu, Y. H. (2004). “Vehicle classification in distributed sensor networks”.
Journal of Parallel and Distributed Computing 64.7, pp. 826–838 (p. 34).

Duchi, J. C., Agarwal, A., and Wainwright, M. J. (2012). “Dual Averaging for Distributed
Optimization: Convergence Analysis and Network Scaling”. IEEE Transactions on Au-
tomatic Control 57.3, pp. 592–606 (pp. 37, 42).

Duchi, J. C., Jordan, M. I., and Wainwright, M. J. (2013). “Local Privacy and Statistical
Minimax Rates”. FOCS (pp. 13, 29, 44, 45, 57).

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. (2006a). “Our Data,
Ourselves: Privacy Via Distributed Noise Generation”. EUROCRYPT (pp. 52, 59).

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006b). “Calibrating Noise to Sensi-
tivity in Private Data Analysis”. TCC (p. 12).

93

https://arxiv.org/abs/2003.13461

Dwork, C., Naor, M., Pitassi, T., Rothblum, G. N., and Yekhanin, S. (2010a). “Pan-Private
Streaming Algorithms”. ICS (p. 72).

Dwork, C. and Roth, A. (2014). “The Algorithmic Foundations of Differential Privacy”.
Foundations and Trends® in Theoretical Computer Science 9.3–4, pp. 211–407 (pp. 12, 62,
101).

Dwork, C., Rothblum, G. N., and Vadhan, S. (2010b). “Boosting and Differential Privacy”.
FOCS (p. 70).

Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., and Thakurta, A.
(2019). “Amplification by Shuffling: From Local to Central Differential Privacy via
Anonymity”. SODA (pp. 59, 71, 72, 74, 80, 82).

Erlingsson, Ú., Pihur, V., and Korolova, A. (2014). “RAPPOR: Randomized Aggregatable
Privacy-Preserving Ordinal Response”. CCS (p. 12).

Evans, D., Kolesnikov, V., and Rosulek, M. (2018). “A Pragmatic Introduction to Se-
cure Multi-Party Computation”. Foundations and Trends® in Privacy and Security 2.2-3,
pp. 70–246 (p. 52).

Evgeniou, T. and Pontil, M. (2004). “Regularized multi-task learning”. KDD (p. 20).
Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020). “Personalized federated learning: A

meta-learning approach”. NeurIPS (pp. 18, 57).
Fanti, G., Pihur, V., and Erlingsson, Ú. (2016). “Building a RAPPOR with the unknown:

Privacy-preserving learning of associations and data dictionaries”. PoPETs (p. 12).
Feldman, V., McMillan, A., and Talwar, K. (2020). “Hiding Among the Clones: A Simple

and Nearly Optimal Analysis of Privacy Amplification by Shuffling”. arXiv: 2012.
12803 (pp. 59, 71, 72, 74).

Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. (2018). “Privacy Amplification by
Iteration”. FOCS (pp. 59, 72, 75).

Fenner, T. I. and Frieze, A. M. (1982). “On the connectivity of random m-orientable graphs
and digraphs”. Combinatorica 2.4, pp. 347–359 (p. 64).

Franck, C. and Großschädl, J. (2017). “Efficient Implementation of Pedersen Commit-
ments Using Twisted Edwards Curves”. Mobile, Secure, and Programmable Networking
(p. 66).

Frank, M. and Wolfe, P. (1956). “An algorithm for quadratic programming”. Naval Re-
search Logistics (NRL) 3, pp. 95–110 (p. 24).

Fujisaki, E. and Okamoto, T. (1997). “Statistical zero knowledge protocols to prove mod-
ular polynomial relations”. CRYPTO (p. 67).

Ghazi, B., Kumar, R., Manurangsi, P., and Pagh, R. (2020). “Private Counting from Anony-
mous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead”.
ICML (p. 59).

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. (2020). “An Efficient Framework for
Clustered Federated Learning”. NeurIPS (p. 18).

Girgis, A., Data, D., Diggavi, S., Kairouz, P., and Theertha Suresh, A. (2021). “Shuffled
Model of Differential Privacy in Federated Learning”. AISTATS (p. 19).

Goldreich, O. (1998). “Secure multi-party computation”. Manuscript. Preliminary version
(p. 61).

94

https://arxiv.org/abs/2012.12803
https://arxiv.org/abs/2012.12803

Goldstein, H. (1991). “Multilevel modelling of survey data”. Journal of the Royal Statistical
Society. Series D (The Statistician) 40.2, pp. 235–244 (p. 34).

Hanzely, F., Hanzely, S., Horváth, S., and Richtarik, P. (2020). “Lower bounds and optimal
algorithms for personalized federated learning”. NeurIPS (pp. 19, 57).

Hanzely, F. and Richtárik, P. (2020). “Federated Learning of a Mixture of Global and Local
Models”. arXiv: 2002.05516 (p. 19).

Heinrich, S. (2017). “Flash Memory in the emerging age of autonomy”. Flash Memory
Summit (p. 9).

Hendrikx, H., Bach, F. R., and Massoulié, L. (2019). “An Accelerated Decentralized
Stochastic Proximal Algorithm for Finite Sums”. NeurIPS (pp. 18, 37, 80).

Herschtal, A. and Raskutti, B. (2004). “Optimising area under the ROC curve using gra-
dient descent”. ICML (p. 41).

Hoeffding, W. (1948). “A class of statistics with asymptotically normal distribution”. An-
nals of Mathematics and Statistics 19, pp. 293–325 (pp. 37, 44, 46).

Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P. B. (2020). “The Non-IID Data
Quagmire of Decentralized Machine Learning”. ICML (pp. 17, 18).

Huai, M., Wang, D., Miao, C., Xu, J., and Zhang, A. (2020). “Pairwise Learning with
Differential Privacy Guarantees”. AAAI (p. 36).

Huang, Z., Mitra, S., and Vaidya, N. (2015). “Differentially Private Distributed Optimiza-
tion”. ICDCN (p. 59).

Jaggi, M. (2013). “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization”.
ICML (pp. 24, 26).

Jayaraman, B., Wang, L., Evans, D., and Gu, Q. (2018). “Distributed Learning without
Distress: Privacy-Preserving Empirical Risk Minimization”. NeurIPS (pp. 59, 81).

Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., and Steen, M. van (2007).
“Gossip-based peer sampling”. ACM Transactions on Computer Systems 25.3 (pp. 18,
21, 27).

Jiang, Y., Konečný, J., Rush, K., and Kannan, S. (2019). “Improving Federated Learning
Personalization via Model Agnostic Meta Learning”. arXiv: 1909.12488 (p. 18).

Jiang, Z., Balu, A., Hegde, C., and Sarkar, S. (2017). “Collaborative Deep Learning in Fixed
Topology Networks”. NIPS (p. 18).

Johansson, B., Rabi, M., and Johansson, M. (2009). “A Randomized Incremental Subgra-
dient Method for Distributed Optimization in Networked Systems”. SIAM Journal on
Optimization 20.3, pp. 1157–1170 (p. 69).

Kairouz, P., Liu, Z., and Steinke, T. (2021a). “The Distributed Discrete Gaussian Mecha-
nism for Federated Learning with Secure Aggregation”. ICML (p. 59).

Kairouz, P., Oh, S., and Viswanath, P. (2014). “Extremal mechanisms for local differential
privacy”. NIPS (pp. 45, 71).

Kairouz, P., Oh, S., and Viswanath, P. (2015). “The Composition Theorem for Differential
Privacy”. ICML (p. 102).

Kallus, N. and Zhou, A. (2019). “The Fairness of Risk Scores Beyond Classification: Bi-
partite Ranking and the xAUC Metric”. NeurIPS (p. 47).

Kalofolias, V. (2016). “How to learn a graph from smooth signals”. AISTATS (pp. 26, 28).

95

https://arxiv.org/abs/2002.05516
https://arxiv.org/abs/1909.12488

Kar, P., Sriperumbudur, B. K., Jain, P., and Karnick, H. (2013). “On the Generalization
Ability of Online Learning Algorithms for Pairwise Loss Functions”. ICML (pp. 35,
36, 40).

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. (2020). “SCAF-
FOLD: Stochastic controlled averaging for federated learning”. ICML (pp. 10, 17, 18,
57, 82).

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., and Smith, A. D. (2008).
“What Can We Learn Privately?” FOCS (pp. 13, 29, 44, 57).

Katz, J. and Lindell, Y. (2014). Introduction to Modern Cryptography, Second Edition. CRC
Press (p. 61).

Kempe, D., Dobra, A., and Gehrke, J. (2003). “Gossip-Based Computation of Aggregate
Information”. FOCS (pp. 36, 37).

Kermarrec, A., Leroy, V., and Thraves, C. (2011). “Converging Quickly to Independent
Uniform Random Topologies”. PDP (p. 27).

Khodak, M., Balcan, M.-F. F., and Talwalkar, A. S. (2019). “Adaptive gradient-based meta-
learning methods”. NeurIPS (p. 18).

Kifer, D. and Machanavajjhala, A. (2014). “Pufferfish: A framework for mathematical pri-
vacy definitions”. ACM Transactions on Database Systems 39.1, p. 3 (p. 80).

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. U. (2020). “A unified theory
of decentralized SGD with changing topology and local updates”. ICML (pp. 18, 37,
72, 83).

Koloskova, A., Stich, S., and Jaggi, M. (2019). “Decentralized Stochastic Optimization and
Gossip Algorithms with Compressed Communication”. ICML (pp. 18, 37).

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D. (2016).
“Federated Learning: Strategies for Improving Communication Efficiency”. arXiv:
1610.05492 (p. 18).

Koriche, F. (2018). “Compiling Combinatorial Prediction Games”. ICML (p. 28).
Krivelevich, M. (2010). “Embedding spanning trees in random graphs”. SIAM Journal on

Discrete Mathematics 24.4 (p. 64).
Kulis, B. (2013). “Metric Learning: A Survey”. Foundations and Trends® in Machine Learning

5.4, pp. 287–364 (p. 35).
Kulkarni, T., Cormode, G., and Srivastava, D. (2019). “Answering Range Queries Under

Local Differential Privacy”. SIGMOD (pp. 37, 48, 50).
Lacoste-Julien, S., Jaggi, M., Schmidt, M., and Pletscher, P. (2013). “Block-Coordinate

Frank-Wolfe Optimization for Structural SVMs”. ICML (p. 26).
Lee, A. (1990). U-statistics: Theory and practice. New York: Marcel Dekker, Inc. (pp. 36–38,

44, 46).
Li, C., Zhou, P., Xiong, L., Wang, Q., and Wang, T. (2018). “Differentially Private Dis-

tributed Online Learning”. IEEE Transactions on Knowledge and Data Engineering (p. 59).
Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020). “Federated

Optimization in Heterogeneous Networks”. MLSys (pp. 18, 57).

96

https://arxiv.org/abs/1610.05492

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017). “Can Decen-
tralized Algorithms Outperform Centralized Algorithms? A Case Study for Decen-
tralized Parallel Stochastic Gradient Descent”. NIPS (pp. 10, 12, 18, 36, 72, 82).

Lian, X., Zhang, W., Zhang, C., and Liu, J. (2018). “Asynchronous Decentralized Parallel
Stochastic Gradient Descent”. ICML (pp. 18, 37, 80, 81).

Lindell, Y. and Pinkas, B. (2009). “A Proof of Security of Yao’s Protocol for Two-Party
Computation”. Journal of Cryptology 22.2, pp. 161–188 (p. 52).

Liu, J., Anderson, B. D., Cao, M., and Morse, A. S. (2013). “Analysis of accelerated gossip
algorithms”. Automatica 49.4, pp. 873–883 (p. 83).

Loizou, N. and Richtárik, P. (2016). “A new perspective on randomized gossip algo-
rithms”. GlobalSIP (p. 82).

Loizou, N. and Richtárik, P. (2019). “Revisiting Randomized Gossip Algorithms: General
Framework, Convergence Rates and Novel Block and Accelerated Protocols”. arXiv:
1905.08645 (p. 82).

Mann, H. B. and Whitney, D. R. (1947). “On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other”. Annals of Mathematical Statistics
18.1, pp. 50–60 (pp. 36, 38).

Mansour, Y., Mohri, M., Ro, J., and Suresh, A. T. (2020). “Three Approaches for Personal-
ization with Applications to Federated Learning”. arXiv: 2002.10619 (p. 18).

Mao, X., Yuan, K., Hu, Y., Gu, Y., Sayed, A. H., and Yin, W. (2020). “Walkman: A
Communication-Efficient Random-Walk Algorithm for Decentralized Optimization”.
IEEE Transactions on Signal Processing 68, pp. 2513–2528 (p. 69).

Marfoq, O., Xu, C., Neglia, G., and Vidal, R. (2020). “Throughput-Optimal Topology De-
sign for Cross-Silo Federated Learning”. NeurIPS (p. 72).

Maurer, A. (2006). “The Rademacher Complexity of Linear Transformation Classes”.
COLT (p. 20).

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Agüera y Arcas, B. (2017).
“Communication-efficient learning of deep networks from decentralized data”. AIS-
TATS (pp. 10, 11, 18, 57).

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L. (2018). “Learning Differentially
Private Recurrent Language Models”. ICLR (pp. 13, 19).

Mironov, I. (2017). “Rényi Differential Privacy”. CSF (pp. 75, 102).
Mironov, I., Pandey, O., Reingold, O., and Vadhan, S. P. (2009). “Computational Differen-

tial Privacy”. CRYPTO (p. 59).
Mohri, M., Sivek, G., and Suresh, A. T. (2019). “Agnostic Federated Learning”. ICML

(p. 18).
Mosk-Aoyama, D. and Shah, D. (2008). “Fast Distributed Algorithms for Computing Sep-

arable Functions”. IEEE Transactions on Information Theory 54.7, pp. 2997–3007 (p. 37).
Nasr, M., Shokri, R., and Houmansadr, A. (2019). “Comprehensive Privacy Analysis of

Deep Learning: Passive and Active White-box Inference Attacks against Centralized
and Federated Learning”. IEEE Symposium on Security and Privacy (pp. 10, 84).

Nedic, A. (2011). “Asynchronous broadcast-based convex optimization over a network”.
IEEE Transactions on Automatic Control 56.6, pp. 1337–1351 (p. 21).

97

https://arxiv.org/abs/1905.08645
https://arxiv.org/abs/2002.10619

Nedic, A. and Ozdaglar, A. E. (2009). “Distributed Subgradient Methods for Multi-Agent
Optimization”. IEEE Transactions on Automatic Control 54.1, pp. 48–61 (pp. 37, 83).

Neglia, G., Xu, C., Towsley, D., and Calbi, G. (2020). “Decentralized gradient methods:
does topology matter?” AISTATS (p. 72).

Nesterov, Y. (2009). “Primal-dual subgradient methods for convex problems”. Mathemati-
cal Programming 120.1, pp. 261–283 (pp. 36, 41).

Parikh, N. and Boyd, S. (2013). “Proximal algorithms”. Foundations and Trends® in Machine
Learning 1.3, pp. 1–108 (p. 42).

Pedersen, T. P. (1991). “Non-interactive and information-theoretic secure verifiable secret
sharing”. CRYPTO (p. 66).

Pelckmans, K. and Suykens, J. (2009). “Gossip Algorithms for Computing U-Statistics”.
IFAC Workshop on Estimation and Control of Networked Systems, pp. 48–53 (p. 53).

Ram, S., Nedić, A., and Veeravalli, V. (2010). “Distributed Stochastic Subgradient Projec-
tion Algorithms for Convex Optimization”. Journal of Optimization Theory and Applica-
tions 147.3, pp. 516–545 (p. 37).

Ram, S., Nedić, A., and Veeravalli, V. (2009). “Incremental stochastic subgradient al-
gorithms for convex optimization”. SIAM Journal on Optimization 20.2, pp. 691–717

(p. 69).
Razaviyayn, M., Hong, M., and Luo, Z.-Q. (2013). “A Unified Convergence Analysis of

Block Successive Minimization Methods for Nonsmooth Optimization”. SIAM Journal
on Optimization 23.2, pp. 1126–1153 (p. 21).

Richtárik, P. and Takác, M. (2014). “Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function”. Mathematical Programming
144.1-2, pp. 1–38 (pp. 21, 28).

Sattler, F., Müller, K.-R., and Samek, W. (2020). “Clustered Federated Learning: Model-
Agnostic Distributed Multitask Optimization Under Privacy Constraints”. IEEE Trans-
actions on Neural Networks and Learning Systems (p. 18).

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié, L. (2017). “Optimal Algo-
rithms for Smooth and Strongly Convex Distributed Optimization in Networks”.
ICML (p. 83).

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié, L. (2019). “Optimal Conver-
gence Rates for Convex Distributed Optimization in Networks”. Journal of Machine
Learning Research 20.159, pp. 1–31 (pp. 18, 37).

Schnorr, C. P. (1991). “Efficient signature generation by smart cards”. Journal of Cryptology
4.3, pp. 161–174 (p. 67).

Shah, D. (2009). “Gossip Algorithms”. Foundations and Trends® in Networking 3.1, pp. 1–
125 (p. 37).

Shalev-Shwartz, S. (2012). “Online Learning and Online Convex Optimization”. Founda-
tions and Trends® in Machine Learning 4.2, pp. 107–194 (p. 104).

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press (p. 11).

Shamir, O. and Zhang, T. (2013). “Stochastic Gradient Descent for Non-smooth Optimiza-
tion: Convergence Results and Optimal Averaging Schemes”. ICML (p. 75).

98

Shen, C. and Li, H. (2010). “On the dual formulation of boosting algorithms”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 32.12, pp. 2216–2231 (p. 24).

Shi, E., Chan, T.-H. H., Rieffel, E. G., Chow, R., and Song, D. (2011). “Privacy-Preserving
Aggregation of Time-Series Data”. NDSS (pp. 59, 64).

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). “Membership Inference At-
tacks Against Machine Learning Models”. IEEE Symposium on Security and Privacy
(p. 10).

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017). “Federated Multi-Task
Learning”. NIPS (p. 18).

Song, S., Chaudhuri, K., and Sarwate, A. D. (2013). “Stochastic gradient descent with
differentially private updates”. GlobalSIP (pp. 58, 77).

Song, S., Wang, Y., and Chaudhuri, K. (2017). “Pufferfish Privacy Mechanisms for Corre-
lated Data”. SIGMOD (p. 80).

Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. (2018). “D2: Decentralized Training over
Decentralized Data”. ICML (pp. 18, 36, 72).

Tseng, P. (2001). “Convergence of a block coordinate descent method for nondifferen-
tiable minimization”. Journal of Optimization Theory and Applications 109.3, pp. 475–494

(p. 21).
Tseng, P. and Yun, S. (2009). “Block-coordinate gradient descent method for linearly con-

strained nonsmooth separable optimization”. Journal of Optimization Theory and Appli-
cations 140.3, pp. 140–513 (pp. 21, 28).

Tsianos, K., Lawlor, S., and Rabbat, M. (2015). “Push-Sum Distributed Dual Averaging for
convex optimization”. CDC (p. 37).

Wang, C., Wang, Y., E, W., and Schapire, R. (2015). “Functional Frank-Wolfe Boosting for
General Loss Functions”. arXiv: 1510.02558 (p. 24).

Wang, D., Gaboardi, M., and Xu, J. (2018). “Empirical Risk Minimization in Non-
interactive Local Differential Privacy Revisited”. NeurIPS (p. 57).

Wang, T., Blocki, J., Li, N., and Jha, S. (2017). “Locally Differentially Private Protocols for
Frequency Estimation”. USENIX Security Symposium (p. 37).

Watts, D. J. and Strogatz, S. H. (1998). “Collective dynamics of small-world networks”.
Nature 393.6684, pp. 440–442 (p. 52).

Wei, E. and Ozdaglar, A. (2012). “Distributed Alternating Direction Method of Multipli-
ers”. CDC (p. 37).

Wei, E. and Ozdaglar, A. E. (2013). “On the O(1/k) Convergence of Asynchronous Dis-
tributed Alternating Direction Method of Multipliers”. GlobalSIP (p. 24).

Wright, S. J. (2015). “Coordinate descent algorithms”. Mathematical Programming 151.1,
pp. 3–34 (pp. 21, 23, 28).

Xiao, L. (2010). “Dual Averaging Methods for Regularized Stochastic Learning and Online
Optimization”. Journal of Machine Learning Research 11, pp. 2543–2596 (p. 41).

Xu, J., Zhang, W., and Wang, F. (2020). “A(DP)2SGD: Asynchronous Decentralized Paral-
lel Stochastic Gradient Descent with Differential Privacy”. arXiv: 2008.09246 (p. 59).

99

https://arxiv.org/abs/1510.02558
https://arxiv.org/abs/2008.09246

Yağan, O. and Makowski, A. M. (2013). “On the Connectivity of Sensor Networks Under
Random Pairwise Key Predistribution”. IEEE Transactions on Information Theory 59.9,
pp. 5754–5762 (p. 64).

Yang, Z., Lei, Y., Lyu, S., and Ying, Y. (2021). “Stability and Differential Privacy of Stochas-
tic Gradient Descent for Pairwise Learning with Non-Smooth Loss”. ICML (p. 36).

Yao, A. C.-C. (1986). “How to Generate and Exchange Secrets (Extended Abstract)”. FOCS
(p. 52).

Zhang, X., Khalili, M. M., and Liu, M. (2018). “Improving the Privacy and Accuracy of
ADMM-Based Distributed Algorithms”. ICML (p. 59).

Zhao, P., Hoi, S., Jin, R., and Yang, T. (2011). “Online AUC Maximization”. ICML (p. 41).
Zheng, K., Mou, W., and Wang, L. (2017). “Collect at Once, Use Effectively: Making Non-

interactive Locally Private Learning Possible”. ICML (p. 57).

100

Appendix

A Reminders on Differential Privacy

In this appendix, we recall some standard properties and results pertaining to differ-
ential privacy that we use throughout the manuscript. These results, along with many
others, can be found in the textbook by Dwork and Roth (2014).

To remain abstract, in the following we denote the data domain by X and a represent
a dataset D as a member of N|X | (i.e., a histogram indicating the number of times each
element of X occurs in D).

A.1 Properties of Differential Privacy

Differential privacy comes with a number of properties that are instrumental in the
design of complex private algorithms. We start with the postprocessing property, which
states that a function evaluated on the output of a differentially private is itself differen-
tially private (with the same parameters).

Theorem A.1 (Postprocessing). Let A : N|X | → O be (ε, δ)-DP and let f : O → O′ be an
arbitrary (randomized) function. Then f ◦ A : N|X | → O′ is (ε, δ)-DP.

The composition property allows to control the cumulative privacy loss over multiple
differentially private analyses of the same dataset. This holds even if the sequence of
analyses is selected adaptively, i.e., if the next analysis is chosen based on the output of
previous ones.

Theorem A.2 (Simple composition). Let A be an algorithm which takes as input a dataset D
and outputs the result of a sequence (A1(D), . . . ,AK(D)) of K adaptively chosen algorithms. If
at each step k ∈ {1, . . . , K}, the selected algorithm Ak is guaranteed to satisfy (εk, δk)-DP, then
A is (ε, δ)-DP with ε = ∑K

k=1 εk and δ = ∑K
k=1 δk.

Simple composition is known to be tight for pure ε-DP. For approximate (ε, δ)-DP
with small enough ε, advanced composition gives a sublinear scaling of ε in K.

101

Theorem A.3 (Advanced composition). Let A be an algorithm which takes as input a dataset
D and outputs the result of a sequence A1, . . . ,AK of K adaptively chosen algorithms on D. If
at each step k ∈ {1, . . . , K}, the selected algorithm Ak is guaranteed to satisfy (ε, δ)-DP, then for
any δ′ > 0 A is (ε′, Kδ + δ′)-DP with

ε′ =
√

2K ln(1/δ′)ε + Kε(eε − 1).

The above advanced composition result was refined by Kairouz et al. (2015), allowing
to compose over algorithms with different privacy budgets.

A.2 Laplace and Gaussian Mechanisms

A standard way to evaluate a function f in a differentially private fashion is via
output perturbation, i.e., adding noise to the output of f . The simplest way to calibrate
the noise to the global sensitivity of f . In the definition below, recall that ∼ denotes the
neighboring relation used in the definition of DP.

Definition A.1 (Global `p sensitivity). The global `p sensitivity of a function f : N|X | → RK

is given by
∆p(f) = max

D∼D′
‖ f (D)− f (D′)‖p.

The Laplace mechanism adds centered Laplace noise whose scale is calibrated to the
`1 sensitivity and the privacy parameter ε, guarantees pure ε-DP.

Theorem A.4 (Laplace mechanism). Let f : N|X | → RK. Let η = [η1, . . . , ηK] ∈ RK be a
vector where each ηk ∼ Lap(∆1(f)/ε) is drawn from the centered Laplace distribution with scale
∆1(f)/ε. The algorithm A(·) = f (·) + η is ε-DP.

The Gaussian mechanism uses Gaussian noise calibrated to the `2 sensitivity and the
privacy parameters ε and δ. It guarantees (ε, δ)-DP.

Theorem A.5 (Gaussian mechanism). Let f : N|X | → RK. Let η = [η1, . . . , ηK] ∈ RK be a
vector where each ηk ∼ N (0, σ2) is drawn from the centered Gaussian distribution with standard

deviation σ =

√
2 ln(1.25/δ)∆2(f)

ε . The algorithm A(·) = f (·) + η is (ε, δ)-DP.

Note that for the specific case of the Gaussian mechanism, composition results tighter
than those given in Theorem A.3 can be obtained through the framework of Rényi Dif-
ferential Privacy (Mironov, 2017).

B Reminders on Notions of Regularity and Curvature

In this appendix, we recall some classic notions of regularity and curvature of func-
tions that are routinely used in the design and analysis of optimization algorithms for
machine learning (and their differentially private versions).

102

We assume throughout this section that the set C is a convex subset of Rp. We first
define Lipschitz continuity, which bounds how fast a function can change.

Definition B.1 (Lipschitz function). A function f : C → R is L-Lipschitz with respect to a
norm ‖ · ‖ if for all θ, θ′ ∈ C, we have:

| f (θ)− f (θ′)| ≤ L‖θ − θ′‖.

We can also define Lipschitzness with respect to blocks of coordinates, which is useful
in the context of coordinate descent methods.

Definition B.2 (Block Lipschitz function). Let p ∈N∗ and P1, . . . , Pb be a partition of the set
JpK into b nonempty subsets of coordinates with pi = |Pi|. Let Si ∈ p× pi be the column subma-
trix of the p× p identity matrix Ip corresponding to the coordinates in Pi, i.e., (S1, . . . , Sb) = Ip.
The function f : Rp → R is called (L1, . . . , Lb)-block Lipschitz with respect to a norm ‖ · ‖ if for
each i ∈ JbK, we have for any θ, τ ∈ Rp:

| f (θ + Siτ)− f (θ)| ≤ Li‖τ‖.

Smoothness refers to the fact that the gradient of a differentiable function is Lipschitz,
which provides an upper bound for the function’s curvature.

Definition B.3 (Smooth function). A differentiable function f : C → R is β-smooth with
respect to a norm ‖ · ‖ if its gradient ∇ f is β-Lipschitz, i.e., for all θ, θ′ ∈ C, we have:

|∇ f (θ)−∇ f (θ′)| ≤ β‖θ − θ′‖.

If f is twice differentiable and β-smooth, then for any θ ∈ C, we have:

∇2 f (θ) � βI.

The inverse of the smoothness constant gives the largest (constant) step size for which
gradient descent converges. Block-wise smoothness constants can be defined from Defi-
nition B.2 and play a similar role in coordinate descent algorithms.

Convexity is a desirable property in optimization, as it ensures that any local mini-
mum is also a global minimum.

Definition B.4 (Convex function). A function f : C → R is convex if for all θ, θ′ ∈ C and
α ∈ [0, 1], we have:

f (αθ + (1− α)θ′) ≤ α f (θ) + (1− α) f (θ′).

If f is differentiable, then f is convex if and only if for all θ, θ′ ∈ C we have:

f (θ′) ≥ f (θ) + 〈∇ f (θ), θ′ − θ〉.

103

Strong convexity further guarantees that the function has at most one local optimum
(i.e., if it exists then it is a global optimum). It also provides a lower bound for a function’s
curvature.

Definition B.5 (Strongly convex function). A differentiable function f : C → R is µ-strongly
convex with respect to some norm ‖ · ‖ if for all θ, θ′ ∈ C we have:

f (θ′) ≥ f (θ) + 〈∇ f (θ), θ′ − θ〉+ µ

2
‖θ′ − θ‖2.

If f is twice differentiable and µ-strongly convex, then for any θ ∈ C, we have:

∇2 f (θ) � µI.

The condition number κ = β/µ of a β-smooth and µ-strongly convex function plays
a key role in the convergence rate of first-order methods.

We conclude this section with a useful lemma showing an equivalence between (con-
vex) Lipschitz functions and bounded gradients. This result is often used in differentially
private optimization to bound the sensitivity of the gradients of Lipschitz loss functions.

Lemma B.1 (Shalev-Shwartz, 2012). Let f : C → R be a convex and differentiable function.
Then f is L-Lipschitz with respect to norm ‖ · ‖ if and only if for all θ ∈ C we have ‖∇ f (θ)‖∗ ≤ L,
where ‖ · ‖∗ is the dual norm.

104

	Introduction
	Key Concepts and Notations
	Overview of Featured Contributions
	Other Contributions

	Decentralized and Private Learning of Personalized Models
	Proposed Formulation
	Learning Personalized Models for Fixed Graph
	Learning the Graph for Fixed Models
	Incorporating Differential Privacy Constraints
	Experiments

	Decentralized and Private Learning with Pairwise Loss Functions
	Gossip Algorithms for Pairwise Estimation
	Gossip Algorithms for Pairwise Optimization
	Locally Private Protocols for Pairwise Estimation
	Experiments

	Better Privacy-Utility Trade-offs for Decentralized Learning
	An Accurate, Scalable and Verifiable Protocol for Decentralized Differentially Private Averaging
	Privacy Amplification by Decentralization

	Future Research
	Bibliography
	Appendix
	Reminders on Differential Privacy
	Reminders on Notions of Regularity and Curvature

