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Over the last few decades, wearable technologies have several bioengineering applications. In this thesis, a Multi-channel surface electromyography (sEMG) wearable armband has been used: (1) to control a 3D bionic arm, and we have designed (2) for an access control system in biometrics. The first application is related to bionics, whereas the second application is related to the security field.

Regarding our first contribution, 920 EMG signals have been collected from 23 volunteer subjects where the purpose was to train an EMG based gesture recognition model. The bionic control approach has been validated and optimized for a right arm amputee. In terms of processing, numerous Machine-Learning classifiers have been applied. It has been found that the Support Vector Machine classifier exhibit 90.5% success rate.

On the other hand, in the second contribution, we explored new experiments where the application consists of using EMG signals for both verification and identification purposes. More specifically, each subject is asked to perform a sequence of specific hand gestures. Each hand gesture allows the generation of one character of a global signature (i.e., password). Therefore, when considering verification mode, features are extracted from the EMG signals in both frequency and time domains. Three classifiers have been used, namely: K-nearest Neighbors (KNN), Linear Discernment Analysis (LDA), and Ensemble of Classifiers. Results show that the KNN classifier allows performance of 97.4%. While in the user's identification system, three previous classifiers have been considered as well. Experiments show that best performance (accuracy is 86.01%) have been obtained using KNN.

In this thesis, the Deep-learning approach has been considered by achieving what is known as "Data augmentation". Therefore, Convolutional Neural Network (CNN) is used to train the model from EMG scalograms. When considering verification mode, performances of 98.31% has been reached. On the other hand, in the identification case, two CNN structures have been evaluated, namely squeeze-net structure and Alex-net structure. Results show that squeeze-net allows a promising performance of 81.84%.
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Introduction

Wearable technologies are new technology raised in the last decades. With the advancement in this technology, its applications are immersed in several fields includes sports, health monitoring, biomedical and biometrics applications. In this thesis, the research focuses on using a wearable multi-channel armband in bionic arm control and biometrics applications.

Myo armband is a wearable armband that includes eight dry sEMG electrodes. The sEMG signal measures the electrical potential of the muscles.

It has been reported that the amputee cases are rising, and there are around 50 million arm amputees in the world, around 40 million arm amputees in the developing nations. The arm amputees are suffering in doing their primary daily life activities. The prices of a functional bionic arm range around 25000$. The research in bionics aims to detail designing a customizable sEMG-controlled wearable 3D printed bionic arm for an arm amputee. For this purpose, a 3D printed bionic arm is wholly designed, simulated, and implemented considering the bionic arm's cost and weight. Machine learning classifiers are optimized to achieve an accurate gesture recognition system to control the bionic arm.

On the other hand, it is known that electrical bio-signals can be used as biometric traits due to their hidden nature and ability to facilitate liveness detection. As a second application of this thesis, the viability of utilizing the sEMG signal as a hidden-biometric modality for user verification and identification is investigated. Several classifiers are applied in a trial to establish an accurate anti-spoofing biometrics system based on combinations of hand actions.

Specifically, in the field of electromyography-based biometrics systems, deep learning algorithms are seldom employed as they require an unreasonable amount of effort from a single person to generate tens of thousands of examples. In this work, data augmentation is used to extend the classical machine learning approach's database by augmenting multiple users' signals, thus reducing the recording burden. Convolutional Neural Network (CNN) is used to train the users in the EMG biometrics system. Squeeze net neural network structure is selected due to its faster training time as it requires fewer parameters while maintaining the accuracy level. Continuous wavelet transforms (CWT) are applied to the database to estimate the EMG signals' scalograms.

Objectives of the Thesis

The thesis focuses on the application of wearable 8-channel sEMG armband in Bionic arm control and biometrics applications.

The objective of the research conducted in the bionic arm:

• Detail a design of an affordable price 3D printed bionic arm for upper limb amputees.

• Design of adjustable socket to be attached with an amputee's arm with a maximum comfortable feeling.

• Construct a gesture recognition system based on sEMG signals.

• Create a database of sEMG signals represent gestures for the generic control scheme of the bionic arm.

• Extract the features of sEMG signals to detect four hand gestures (Fist, Open, Wavein, and Wave-out)

• Optimize the Machine Learning algorithm's accuracy and select the best model to be used with the sEMG database.

• Perform testing on the bionic arm design and the algorithm used in the control of the bionic arm.

The design of the bionic arm should fulfill these points to ensure its success

• Affordable: The systems should be accessible for amputees since the selling price is one of the main factors to be considered during the design phase. The bionic arms available in the market are expensive compared to the 3D printed arm.

• Portable: The designed arm should be comfortable to wear for amputee cases.

• Lightweight: The lightweight design has been achieved by optimizing the system and using 3D printing technology in the arm's manufacturing process.

• Generic: To develop a bionic arm used by different amputees, database collected from different users, and machine learning algorithms applied.

Biometric authentication includes verification, and identification of users from sEMG signals has been studied. The thesis focuses on biometric systems' behavioral approach by defining a new hidden biometric system based on sEMG signals.

The objective of the research conducted in the biometric system:

• Verify the users from their hand actions as a new biometric system.

• Use the hidden biometric approach based on users' muscle actions to define an antispoofing biometric system.

• Construct a database from 8-channels sEMG signals. The database consists of hand gestures defining a password for each user.

• Extract the sEMG signals' main features to verify users from their hand action after declaring their identity.

• Optimize the accuracy of sEMG signals machine learning model and compare the accuracy of different machine learning models.

• Identify the users from sEMG signals without declaring their identity by extracting the main features from the sEMG signals.

• Optimize the accuracy of the machine learning models in the identification system.

• Apply deep learning algorithm after augmenting the sEMG data to find a technique of applying machine learning without extracting the features from sEMG signals, the proposed system to be used in biometrics verification and identification.

• Analyze the performance of the biometric system by calculating the false acceptance rate and false rejection rate to find the equal error rate of each proposed system.

• Accurate: The system must be accurate in the result. For biometrics verification, the result is access granted or denied, while in identification, the result is the user's identity. Therefore, the most precise algorithms to be chosen, and the success rate have been demonstrated after testing and calculating the False Acceptance Rate (FAR) and False Rejection Rate (FRR).

Thesis Contribution

The main contributions of this thesis are mentioned as follows:

• Affordable price, lightweight, and 3-D printed bionic arm controlled by gestures:

Detailed design of an affordable price and lightweight bionic arm that comes with a bionic hand for right arm amputee cases. The bionic arm is equipped with four linear actuators that make it able to close the fingers to perform several grasping requirements.

The 3D printed bionic arm was designed, simulated, and implemented for an affordable price and lightweight. The control of the bionic arm is performed by sEMG signals that are generated by the arm muscles.

• Biometrics verification and identification system based on hand actions:

Due to its live detection nature and anti-spoofing behavior, a biometrics system based on hand actions is optimized for the user's verification and identification. 

Thesis Structure

The thesis starts with generalities about the nature of the sEMG signal and the wearable technology systems available on the market in chapter 1. Literature survey about results of the research done in wearable technologies, gesture recognition system based on sEMG signals,

and biometric system based on behavioral of users in Chapter 2. Chapter 3 focuses on the detailed description of the bionic arm, including the detailed design of the arm, the amputee case involved in the study, the data collection of sEMG signals defining gestures, and the application of machine learning models. Chapter 4 explains the verification process of users from the sEMG signal represents a hidden biometric system. The features extraction parameters will be mentioned in detail. Machine learning models and discussion of the results obtained are presented. Chapter 5 will discuss the Identification approach, including the features extraction process and the identification system results utilizing the same dataset used for the verification approach. Chapter 6 details the application of deep learning in the biometrics system in verification and identification approaches after augmenting the users' sEMG signals. First, an introduction to wearable technologies is presented in section 1.1 and followed by studying the available systems on the market that offer a wearable system in section 1.2. The EMG signal selected to be studied in detail in this thesis is explained in section 1.3. The wearable technologies in the bionic arm and biometrics are described in sections 1.4 and 1.5. The chapter ended by listing the thesis's objective, thesis contribution, and thesis structure in sections 1.6, 1.7, and 1.8.

Introduction

Wearable technologies applications in the biomedical, biometrics research, biomechatronic, and different fields are gaining significant interest over the last years (V. [START_REF] Enzo | Recent Advances on Wearable Electronics and embedded computing systems for biomedical applications[END_REF]. Comfortable to wear, optimum size, and lightweight monitoring systems with smart-power consumption for collecting physiological and behavioral data in ecological scenarios (e.g., at home, during daily activities like driving or sleep, during specific tasks, while driving) with comfort for different users. As a result, the quality of life can be improved by the patients monitoring care, especially for patients with chronic disease, possibly preventing the habit of going to hospitals and paying unnecessary costs.

Within this context, wearable systems have reached a level to be ready for clinical applications (P. [START_REF] Bonato | Wearable Sensors/Systems and Their Impact on Biomedical Applications[END_REF]. Many companies are investing funds for the research and development department to focus on a wearable system for clinical application. They are encouraging researchers in that field to focus more and more on improving people's life. This technology grows in a stable trend, showing a promising result that wearable systems will soon be part of everyone's daily life.

The enthusiasm for wearable frameworks starts from the need to observe people over broad timeframes. This case emerges when doctors need to screen people whose incessant condition incorporates the danger of sudden intense occasions. Wearable technology opens the door to different applications.

Research in prosthetic and medical devices has generated significant attraction in the last decade because of the increasing demand for robust bionic arm, fulfilling the patient's need to perform various tasks. Generally, gesture recognition techniques enabled the manufacturer to improve both the accuracy and functionality of bionic hands, allow the patient control over delicate operations in dangerous situations, or help patients with movement disorders and disabilities, as well as in the rehabilitation training process. The application of wearable sensors allows a more compact design and a more straightforward implementation of upper limbs.

Wearables that are equipped with embedded bio-sensors are very well suited for biometric verification and offer advantages compared to traditional biometric systems. A significant advantage is that the wearable systems are made to be always with the owner; at the same time, conventional biometric systems are installed generally at a fixed location. Wearable biometric systems can effectively perform continuous verification of the user. Another advantage is that the owners shouldn't share their biometric traits, generally considered compassionate information, with a third party for storage since all data can be stored inside the wearable device.

Wearable systems on the market

There are many systems available on the market that offer the user the ability to acquire biosignals. Several requirements and criteria differentiate between these systems. The cost of the system is one of the most important criteria. The connectivity with the processor either wireless or with wires. The accuracy of the bio-sensors in the system. The battery consumption rate

gives the system the ability to stay powered for a long time. The Software Development Kit (SDK) is available with the design, allowing the researchers to quickly develop their systems and access the raw signals for further development.

BITalino Kit

BITalino development bio-medical kit is one of the most potent kits available on the market. It Electrodermal Activity (EDA) is defined as a transient change in the skin's electrical properties associated with the sweat gland activity and elicited by any stimulus that evokes an arousal or orienting response. The EDA sensor can measure skin activity with high sensitivity measurement power in a miniaturized form factor. With low noise signal conditioning and amplification circuitry, the EDA sensor provides accurate sensing capability and detects even the feeblest electrodermal skin response events using two electrodes. Some of this sensor's applications include the detection of changes in the conservative, cognitive, and emotional states. EDA sensors were also used for relaxation biofeedback, sympathetic nervous system reaction detection, among many others.

The triaxial accelerometer is based on MEMS (Micro-Electro-Mechanical Systems)

technology and has been developed for biomedical applications where kinematic and motion measurements are required. This sensor can measure accelerations relative to free fall, and the model available can detect the magnitude and direction of this same acceleration as a vector quantity. This resulting vector can then be used to sense position, vibration, shock, and fall.

Attaching the accelerometer to a limb, for example, acceleration can be measured within the sensor's dynamic range.

The revolutionary kit comes with a Microcontroller Unit (MCU) in a tiny size that can connect all the sensors. The MCU has six analog input ports 4 (10-bit), 2 (6-bit), and it has eight digital ports, four ports digital input (1-bit), four ports digital output (1-bit). All acquired signals can be transmitted wirelessly using Bluetooth V2.0.

The BITalino kit has some advantages in terms of the number of sensors embedded inside it and the wireless communication with the central processor. Also, the size of the sensors is tiny to be embedded inside any wearable device. This system's shortcoming is that the electrodes are wet since it needs a gel and are connected via wires to the human skin, making uncomfortable feeling to the user. (S. Said, S. Alkork, T. Beyrouthy, and M. Fayek, 2017)

MySignals Kit

MySignals is a development platform for medical devices and eHealth applications. n.d.). These electrodes don't need any gel to be added to human skin to acquire the signal.

However, since the electric potential of muscle is small in the range of sub millivolts, signals 

Wearable Technologies in Bionic arm

Many people have difficulty in their lives because of disability, which stops them from performing their daily activities. The statistics study stated that 15% of the world's population having some forms of disability. Amputee's number is around 10 million out of the world's population, of which 30% of them are arm amputees [START_REF] Hawking | World Report on disability Geneva: World Health Organization[END_REF]. The total number of amputees and limb dysfunction patients are increasing due to many reasons. Arm amputation is classified as either born without an arm or portion of it or wholly lost of the arm due to disease or accident. Both cases are suffering while performing their daily life activities, indeed help from others (S. Hasan, K. Al-Kandari, E. Al-Awadhi, A. Jaafar, B. Al-Farhan, M. Hassan, S. [START_REF] Hasan | Wearable Mind Thoughts Controlled Open Source 3D Printed Arm with Embedded Sensor Feedback System[END_REF].

There are different solutions to help the amputees, but these solutions have some drawbacks like being costly to the point that not everyone can afford it or hard to install or maintain or require surgical operations. Surgical arms rely on the nerves, which, might be damaged, in some cases (Junhua Li, Gong Chen, Pavithra Thangavel, Haoyong Yu, Nitish Thakor, Anastasios Bezerianos, and Yu Sun, 2016). The mind-controlled made of the 3D printed material arm has the requirements to help amputees perform many of their daily activities, provide a better life, and improve the quality of life. Besides, it uses brain-signals and thoughts to allow amputees to control the arm actuators. There are also several existing solutions, such as surgical arm, myoelectric-controlled arm, and cosmetic restoration. Each type has advantages and drawbacks. One of the solutions for amputees is having a prosthetic arm. The prosthetic arm needs to be customized to the patient's needs. The second solution is the surgical limbs, where the patient will have to undergo a surgical operation to attach the arm to the bones and nerves. The surgical method is very costly. Some problems may happen due to the surgical arm. For example, sometimes the nerves may cause a problem when they are damaged totally, making it hard to perform surgery. Also, the surgical method causes heart disease and back pain in some patients. The amputees face nociceptive and neuropathic pain due to bone and soft tissue injury.

On the other hand, the prosthetic arm has fewer problems when compared to the surgical arm.

Prosthetic arm avoids many medical issues that may result from the surgery procedure. 

Wearable Technologies in Biometrics

The growing popularity of wearable devices leads to new ways to interact with the environment (J. Blasco, T. M. Chen, J. Tapiador and P. Peris-Lopez, 2016), with other smart devices, and with other people. Wearables equipped with an array of sensors can capture the owner's physiological and behavioral traits, thus are well suited for biometric systems to control other devices or digital access services. However, wearable biometrics have substantial differences from traditional biometrics for computer systems, such as fingerprints, eye features, or voice.

Biometric recognition can be viewed as a pattern recognition problem in which a user who wants to be authenticated provides a set of physiological and behavioral characteristics to match a previously registered signature (or reference). Biometrics takes advantage of the fact that humans have natural diversity and certain traits are unique for everyone. Biometric systems, whether traditional or not, are usually composed of the three main functional components:

(i) Sensor or set of sensors that capture raw biometric signals (r).

(ii) A signal-processing unit that pre-processes and extracts feature vectors from the signals.

(iii) Recognition system, which usually includes a signature (or template) database and The matching phase depends on the mode of operation, either verification or identification.

Biometric verification systems are configured by a sole user to verify the user's identity later.

In biometric identification, the system is presented with a biometric signal and must decide who is the owner of that signal from a pool of registered users

A biometric system should fulfill the following requirements:

• Performance: The system should respond promptly to queries with satisfactory accuracy

• Acceptance: The system must be accepted by its intended users to be practical. If a sensor or device is not comfortable enough, it will not be used.

• Circumvention: The system should not be easy to circumvent. This implies that the system should be protected against unauthorized access to any of its components. The wearable biometric system in which its primary user controls all the system components, including the signature database. A wearable biometric system requires owners to wear the sensor that captures their biosignals continuously. The signal processing and recognition units can also be embedded in the same wearable device or a different smart device (e.g., a smartphone, pc). The resources unlocked when the wearable successfully recognizes the use right include the rest of the services provided by the wearable or a cryptographic key that can be used to prove the identity of the user to other systems [START_REF] Rathgeb | A survey on biometric cryptosystems and cancelable biometrics[END_REF]. In any case, the process triggered after verification is out of the scope of this survey.

In this configuration, wearable sensors are capable of reading signals from the subject at any time. This enables the biometric system to authenticate the wearer continuously. Figure 123shows the process of biometrics systems to verify a user.

Wearable biometric systems are generally used for identity verification processes. In this case, the subject's biometric traits never leave the user; they are stored in the wearable or a smart device in the user's possession. This avoids other entities accessing the user's biometric traits provided that the devices are correctly configured and protected against external

attackers. An example of a commercial product implementing this philosophy is Nymi (https://nymi.com/, n.d.). Nymi is a biometric verification wristband that includes one electrode in direct contact with the wrist and a second electrode that the user must touch with a finger from the opposite hand. When the user identity is verified, it has access to previously stored security tokens that can be used to verify the user against other devices, such as a car or a lock. With advancements in biometrics technology nowadays, some biometric systems don't meet security levels' requirements to support their operations in different scenarios. Among the existing difficulties are the sensitivity to spoofing persons who act as others to get illegal access to protected information, services, or facilities [START_REF] Hadid | Biometrics Systems Under Spoofing Attack[END_REF]) [START_REF] Evans | Handbook of Biometric Anti-spoofing: Presentation Attack Detection[END_REF]. While the study of spoofing, or rather antispoofing, has attracted growing interest in recent years, the problem is still requiring more research in the coming years. Table 1-1 shows various crimes or falsifying biometrics identity. The EMG signal is used in the biometrics verification system due to its live detection and hidden nature.

Several kinds of research conducted in that field with different machine learning and deep learning applications are stated in the chapter to provide the reader with the previous study conducted in the area.

The chapter starts with a general introduction about the EMG signals application in the bionic arm and biometrics system in section 2.1. A detailed literature study about the gesture recognition system in section 2.2. Different 3D printed research work utilizing the technology of 3D printers is in section 2.2.2. The state of the art on the sEMG biometrics system is written in section 2.3.

Introduction

Wearable technologies, consisting of a smart device that is to be worn by the users and equipped with biosensors embedded inside them, are the focus of the majority of researchers in this modern era. Smart-textile or contactless electrodes and algorithms that are effective for signal processing in embedded systems, along with sensing platforms and machine learning algorithms, are a short glimpse of examples of such technologies. Few types of research results will be stated in the wearable systems field in this chapter.

Moreover, in biosensors or wireless body sensors networks, special efforts have been made

for harvesting energy and small-scale integration of analog and digital sensor signal conditioning. Published researches during the last few decades also confirm the massive impact of wearable technologies.

This chapter focused on the state-of-the-art in the fields of applications of the wearable sEMG sensors. sEMG based bionic arm for amputee cases and biometrics identity based on the sEMG signals.

State of the Art on EMG Gesture Recognition System and Bionic Arm

Review of EMG Gesture Recognition System

The increase in computing power has brought the presence of many computing devices in human beings' daily lives. A broad spectrum of applications and interfaces have been developed so that humans can interact with them. The interaction with these systems is more comfortable when they tend to be performed naturally (i.e., just as humans interact with each other using voice or gestures). Hand Gesture Recognition (HGR) is a significant element of Human-Computer Interaction (HCI), which studies computer technology designed to interpret commands given by humans.

Hand gestures are communication tools considered non-verbal. The communication is through the human hand combinations of actions. This modality is used either independently or with other communication methods such as speech [START_REF] Kendon | Gesture: Visible action as utterance[END_REF]. Hand gestures are extensively used on different applications, varying from human applications' safety, for example, using hand gestures to direct flight operations to applications that are made for controlling purposes, like using hand actions in controlling electronics devices [START_REF] Yasen | A systematic review on hand gesture recognition techniques, challenges and applications[END_REF].

The increase in computing power has brought the presence of many computing devices in human beings' daily lives. A broad spectrum of applications and interfaces have been developed so that humans can interact with them. The interaction with these systems is more comfortable when they tend to be performed naturally (i.e., just as humans interact with each other using voice or gestures). Hand Gesture Recognition (HGR) is a significant element of Human-Computer Interaction (HCI), which studies computer technology designed to interpret commands given by humans. Hand gestures, one of the most famous human-computer interaction applications (Aashni, H., Archanasri, S., Nivedhitha, A., Shristi, P., and Jyothi, S.

N., 2017). It does have a wide range of applications that grant the speed of communication with the computer, provide a user-friendly environment to attract users, provide private use of the computer from a distance for user safety and comfort, and control complex and virtual environments more efficiently.

Hand gesture applications require the user to undergo training to be an expert at understanding and employing the mapping of different gestures [START_REF] Yasen | A systematic review on hand gesture recognition techniques, challenges and applications[END_REF]. There are countless numbers of combinations of hand gestures; therefore, for each particular application, a diverse group of gestures is used to perform its functions.

The PC can recognize different users. It can also detect the other environmental factors affecting its surrounding. Hand gesture recognition is a considered perceptual computing user interface used in HCI to provide the computers with the capability to interpret and capture hand gestures and execute commands according to the understanding made for a particular gesture. [START_REF] Panwar | Hand gesture recognition for human computer interaction[END_REF].

Hand gesture recognition requires steps to accomplish it that vary based on the desired application from simple to complex applications. These steps are categorized: first-hand gesture frame acquisition, followed by hand tracking, then feature extraction, and at the end classification to reach the detect the gesture.

Hand gesture frame acquisition is to record the human hand gesture and store it on the computer. Hand tracking is the computer's ability to recognize the hand and separate it from other items' background in image processing. The extracted features differ from one application to another [START_REF] Sharrma | Vision based static hand gesture recognition techniques[END_REF]. In artificial intelligence, machine learning aims to allow the computers to learn without being pre-programmed to adapt to new input and make decisions according to the trained model. There are two types of learning; supervised machine learning, in which the algorithms reflect the gestures that have been learned in advance in the training phase to new gestures, and unsupervised machine learning, in which the algorithms draw inferences from the gestures.

Classification aims to build a model to classify new hand gestures based on previous training gestures. This can be accomplished using simple vision-based recognition, which doesn't require a unique setup, and a web camera or a depth camera is used. Also, special tools can be used like wired or wireless gloves that capture the movements of the wearer's hand and motion sensings input devices such as Leap Motion or Kinect from Microsoft.

The hand tracking process is defined as the computer's capability to detect the hand and exclude it from the background and recognize it. Multi-scale color feature hierarchies give the users hand and the different background shades of colors to identify and remove the background. Also, clustering algorithms can be used to treat each finger as a cluster by itself, removing the empty spaces detected between them.

The features extracted differ based on the required application; some parameters should be taken into consideration are thumb status, finger status, alignments of fingers, skin color, and the palm position. These features, along with other features, are extracted using several techniques available, such as the centroid method, which is used to capture the hand's main structure, or the Fourier descriptor method, which captures the palm, the fingers, and the fingertips [START_REF] Matsumoto | An algorithm for real-time stereo vision implementation of head pose and gaze direction measurement[END_REF].

The extracted features are input to training and testing the classification algorithm (such as), K-nearest neighbor (KNN), Artificial Neural Networks (ANN), Support Vector Machine (SVM), Naive Bayes (NB)) to detect the output gesture. proposed a CMSWVHG (Control MS Windows via hand Gesture). An internal or external camera is used for taking input instead of a mouse by performing numerous windows actions using hand gestures. This system controls OS on the projected screen for a virtual mouse system without the hardware requirement rather than a camera.

A wearable hand gesture recognition system in real-time, which receives data from surface electromyography (sEMG) has been extensively used in hand gesture recognition system by most of the researchers within the last three years (J. [START_REF] Sapienza | On-Line Event-Driven Hand Gesture Recognition Based on Surface Electromyographic Signals[END_REF].

• Features Extraction Techniques for Gestures Recognition System

Generally, the feature extraction and pattern recognition stages are crucial for the gesture recognition systems to capture gestures well. In the feature extraction stage [START_REF] Liu | A novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injury[END_REF]Zhou, P., 2013), the eigenvalues and the feature vectors for each sEMG sample are selected for classifying the gestures. This procedure can be achieved using several approaches, such as time-domain, frequency-domain, and time-frequency-domain features. Li et al. [START_REF] Li | Identification of finger force and motion from forearm surface electromyography[END_REF] combined force prediction with finger motion recognition, which the time domain and autoregressive methods were both used to extract features along with a principal component analysis (PCA) approach, was used for further dimensionality reduction. [START_REF] Khezri | Real-time intelligent pattern recognition algorithm for surface EMG signals[END_REF] proposed a system based on the adaptive neuro-fuzzy inference system to recognize six hand gestures. For the feature extractions, the time and frequency domains, and their combination were used to extract eigenvectors, and the system provided a recognition rate of 92%. • No assembly is required since it is possible to build up products out of one part.

• With the flexibility in the design, therefore, highly complex geometries can be made.

• The designs can be modified and personalized; there is no need to change the machine.

• Parts can be produced quickly and easily from conceptual design to the final product, giving rapid prototyping and design improvements. The prosthetics arm's weight is one of the most critical factors that affect the device's comfort level. The weight is the point that led to the use of the 3d printing technology in the bionic arm.

The most massive device is the Roboarm developed by Unlimited Tomorrow [START_REF] Roboarm | Roboarm[END_REF], with a weight of 2000 g. Most of the bionic hand's weight ranging from 240 g to 450 g.

All the active hands are categorized as underactuated, which means that they have more Degree of Freedom (DOF)'s than the number of actuators. This is because of the coupling of the phalanges in the fingers. Most of the body-powered prostheses' fingers are composed of three phalanges that are coupled to each other through cables or cords. The wires from all the separate fingers are attached to one linkage, which guarantees that all the fingers move synchronically. For externally powered prostheses, the phalanges are coupled to each other with cables or mechanical connections and are directly connected to electric motors. The motors control the fingers separately.

An adaptive grip is the fingers' ability to hold the object within the hand and conform to that object's shape. In this case, the force is distributed among the fingers, which guarantees that some fingers can still apply a force when an item halts the other fingers. The precision grip and power grip are the two basic grasps a human use (Napier, J. R., 1956).

Moreover, these basic grasps, there are four other standard methods of holds used to perform daily living (ADLs). These four types are the hook grip, spherical grip, tripod grip, and lateral grip [START_REF] Weir | The Design of artificial arms and hands for prosthetic application[END_REF].

The prices from only a small number of hands are known. These prices are based on material costs, which range to a maximum of $100. These costs can't be compared with commercially available non-3D-printed upper limb prostheses since these prices consist of more than only the material costs. Two well-known companies are selling prosthesis as a commercial product.

Youbionic (Youbionic [Internet], [cited 2015

Jun 29]) sells its bionic arm for $1000 and Open Bionics (Latest Bionic arm [Internet], cited 2015 Jun 24), aiming for a price of $3000 for their latest developed Bionic Arm. These hands are both myoelectric controlled hands, which are controlled by muscle activities. There is a vast difference in prices with the commercially available myoelectric hands priced at $25,000 to $75,000. The development of cheap hand prostheses can especially be a significant benefit for child prostheses. Children with amputation need to change their hand prosthesis faster due to their growth by nature. By 3D-printing a cheap prosthesis every time, there is no need to buy an expensive prosthesis regularly. A prosthesis can be scaled to match the right size and 3D-printed easily.

State of the Art of EMG biometrics system

The properties of biometric systems mainly depend on the specific traits they use. Fingerprint, iris or retina, and facial features are the three most common biometric traits [START_REF] Kaur | A review on biometric recognition[END_REF]. Systems based on these modalities have already been widely used in our daily lives, such as mobile phones, laptops, and smart pads. These traits need to be exposed during recognition, providing the chance to be captured, and then spoofing might happen.

Although biometric technology has seen significant advances, some biometric systems fail to meet security and robustness requirements in specific real-world situations. By way of an example, the susceptibility to spoofing-persons who pretend to be others to obtain illegal access to private information or services (Abdenour Hadid, Nicholas Evans, Sébastien Marcel, and Julian Fierrez, 2015) (Evans, 2019) (Pinto, J. R., Cardoso, J. S., and Lourenço, A., 2018).

The study and prevention of spoofing are considered an active area of research and development.

As wearable devices utilizing sEMG can capture the human muscles' detailed characteristics and is thus useful in human gesture recognition applications. Kurogi, T., Aburada, K., Kubota, S. I., Katayama, T., Park, M., and Okazaki, N., 2018). To identify pass-gestures, four time-domain features were extracted, a maximum and minimum value of raw s-EMG and their associated time t-min and t-max. SVM classifier is used in the classification of each subject, which were trained under these four features, and crossvalidation was carried out using the same raw data.

Conclusion

The research on the applications of wearable technologies in the biomedical field and 3D printing technology offers significant advantages in manufacturing complex shapes, prototyping is easy with 3-D printing, and the flexibility of change the design and reproduce the parts is a way more efficienct when using 3-D printing techniques. The prices of producing parts with 3D printing technology decrease the cost of manufacturing the parts and ease the processes. All these advantages are utilized in the production of bionic arms and hands. The 3D printed hands and arms are equipped with actuators to be able to perform grasping actions.

Small-scaled sensors and actuators are essential in the advancement of bionics.

The thesis proposes a detailed design of a 3-D printed bionic arm with an artificial hand. The bionic arm is implemented and tested on an amputee case. According to the state-of-the-art systems, a gesture recognition based on sEMG signals has been implemented. A database of sEMG was created for generic control of a bionic arm. 3-D printing technology offered an affordable price solution. Real-time testing of a bionic arm with a gesture recognition system is presented. Machine learning classifiers are tested, and results are compared to find the optimum algorithm to be used with sEMG data.

The biosignals are introduced as biometrics identities in research. In this work, the sEMG signals are studied as a biometrics identity for user verification. The sEMG signals have a hidden nature, which can be treated as hidden biometrics. In the review on sEMG biometrics system review, different sEMG systems have been applied, such as the single-channel and multi-channel. The researchers tested the system on limited users for verification purposes.

Several machine learning have been presented in the researches about sEMG signals as biometrics traits. The research presented in this works proposes a biometrics system for verification and identification of the users. The biometric device used to acquire the sEMG signal is a wearable multi-channel armband consisting of 8 electrodes. Multiple users volunteered to test the biometric system. Different classifiers have been applied to optimize the system's results. The system will grant/deny access to the user from the captured sEMG biometrics identity as a signature-based hand gesture. Performance analysis of the biometrics system has been presented to validate the system's capacity by estimating both the false acceptance rate (FAR) and the false rejection rate (FRR). 

Introduction

Research into advanced medical and prosthetic devices has generated significant attention in recent years due to the increasing demand for reliable bionic hands capable of manifesting patients' intentions to perform various tasks. In general, gesture recognition techniques have emerged as a key enabling feature for improving both the accuracy and functionality of bionic hands, allowing the patient control over delicate operations in dangerous situations, or to help patients with movement disorders and disabilities, as well as in the rehabilitation training process.

The use of bionic hands is not only limited to medical use but has also found numerous applications in industrial settings; artificial bionic hands can perform certain tasks in hazardous or restricted environments while maintaining the user's level of dexterity and natural response In this chapter, a customizable wearable 3D-printed bionic arm is designed, fabricated, and optimized for a right arm amputee. An experimental test has been conducted for the user, where control of the artificial bionic hand is accomplished successfully using sEMG signals acquired by a multi-channel wearable armband. The 3D-printed bionic arm was designed for the low cost and light-weight. To facilitate a generic control of the bionic arm, sEMG data were collected for a set of gestures (fist, spread fingers, wave-in, wave-out) from twenty-three participants. The collected data were processed, and features related to the gestures were extracted to train a classifier. In this study, several classifiers based on neural networks, support vector machine, and decision trees were constructed, trained, and statistically compared. The support vector machine classifier was found to exhibit an 89.93% success rate. Real-time testing of the bionic arm with the optimum classifier is demonstrated.

Bionic Arm

Amputees are suffering while doing their necessary daily life activities. The presented bionic arm is a solution for upper limb amputees. Considering all the facts that most of the amputees are suffering from. The proposed arm is a low-cost, comfortable, and easy to use the bionic arm.

Methodology

The bionic arm implemented and tested was customized for a specific user to fit with his amputation conditions. It was made to provide the user with the ability to perform necessary grasping actions and effectively participate in his daily activities. The user was born with a small portion of his right arm, as shown in Figure 3-1. The user is a 24-year-old male with no other significant health issues. He used several previous prosthetic arms, whose components and make are not detailed. He found that all these arms are not sufficiently functional or heavy or are uncomfortable or expensive. The user gave his informed consent for inclusion before he participated in the study. Myo is to enable a more generic arm design for any amputee with a similar arm amputation.

The bionic arm proposed aims to be used for any amputee suffering from upper-limb amputation, not only limited to a specific user who has been involved in this study. Myo's combination of the eight different sEMG electrodes allowed more sEMG signal data for a better gesture recognition system. 

Bionic Arm Mechanical Design

Amputees with limb amputation may be disappointed with aspects of available limbs in the market due to their limitations. Customized design for the user through a unique design process has been undertaken here, which has the capacity to target a design that fulfills the need of an individual amputee case, particularly in terms of its low cost and lightweight. The current devices are available in the market range from 4000 to 20,000 USD (Zuniga). Some researched compiled a detailed market analysis of the cost associated with prosthetic limbs. A simple cosmetic arm and hand may cost between 3000 and 5000 USD. The cost of a functional prosthetic arm, on the other hand, may cost between 20,000 to 30,000 USD.

The main target is to optimize manufacturing a bionic arm to have an affordable bionic arm for amputees costing around 295 USD. Nowadays, the advancement of and easy access to 3Dprinting technology has reduced the cost of manufacturing bionic arms and provides more straightforward solutions for prosthetic arms customized for users. Simultaneously, the advancement in the materials used in the 3D printing arm products allows a robust design able to withstand various loading conditions. The user's left arm dimensions were measured to fabricate the right arm with the same dimensions for an asymmetric look and balanced design.

The balance in loads between the not affected arm and the bionic arm provides a comfortable feeling and avoids pain in the right should be due to the bionic arm's load. Thus, make the bionic arm more comfortable for a long time without feeling pains in the muscles. A mirrored geometry was assumed using computer-aided design (CAD) software. The dimensions of the affected arm were taken into consideration and used in the design to develop a wearable arm with enough room for the Myo armband to fit and be concealed from view. The user was heavily involved in the design process, especially in the socket design. The socket is the contact point between the bionic arm and the user's affected hand. That is why the comfortable feeling will come from the optimized design of a socket that fulfills the arm's ergonomics. The 3D model design for the bionic arm is shown in Figure 3-4. The design consists of different parts, the artificial hand, the arm, the adjustable socket. The details of each part will be explained in the upcoming sections. The design is based on different criteria, as listed and described below:

• Adjustable socket
The adjustable socket is the portion that joins the limb (stump) to the bionic arm. A strap adjusts the socket designed for this arm. The user is wearing the Myo armband at a set location on his arm before adjusting the socket's size to have a tight fit. Designs were iteratively created, tested, and the subject's feedback was considered until an improved design was reached, implemented, and tested. The comfort feeling is one of the most important points considered in the socket's design, allowing the user to mount the bionic arm for up to four hours with the help of the bicep support.

• Dimensions

The symmetry of arm length is critical for the user to avoid serious muscle asymmetry symptoms and muscle pain from disbalance. Consequently, the designed arm was engineered to match the dimensions of the physical left arm.

• 

• Bicep Support

An arm harness made of straps was added to release the socket joint pressure with bicep support made of a 25 mm width black nylon strap.

• Myo Integration

The Myo armband is integrated into the bionic arm to ensure correct surface electromyography signal capturing.

• Light Weight

The arm is made to be lightweight by strategically designing the arm to fulfill the design requirements ensuring the strength of the bionic arm at the same time. The material used in the manufacturing of the arm is PLA. PLA is biodegradable and made from renewable resources, for example, corn starch. This implies that PLA minimally affects the earth and doesn't produce poisonous vapor when dissolved. It likewise means that PLA is commonly non-poisonous when inadvertently devoured, which implies use around a little kid is not an unsafe circumstance. PLA is also a broadly utilized plastic, indicating that it will be genuinely modest to purchase. PLA typically brings about less distorting and doesn't require a heated bed well.

The arm's total weight, including the hand with the actuators and excluding the Myo armband, is 428 grams.

• Electronics and Battery

To ensure safe and organized assembly, the electronic wiring and cables were concealed, while the battery was placed in the user's pocket to minimize weight.

• Stress Analysis of the Arm

SOLIDWORKS Simulation is an easy-to-use portfolio of structural analysis tools that use Finite Element Analysis (FEA) to predict a product's physical behavior by virtually testing CAD models. The portfolio provides linear, non-linear static, and dynamic analysis capabilities. Using a simulation of the design to estimate the maximum load, the design can withstand after applying forces and check for the maximum yield stress.

Case 1:

Applying a point load of 0.35 kg (hand weight) and adding a 3 kg point load.

Case 2:

Applying a point load of 0.35 kg (hand weight) and adding a distributed load of 2 kg. Finite element analysis software is used to test the constructed prototype. The software analysis indicates that lifting a 3 kg load is possible with the fixture at the insertion point and the load on the far end while considering the 350-gram artificial hand. Experimental load tests indicated that the user could carry a maximum load of 4 kg for 10 seconds or 3 kg for 30 seconds before feeling stress on his muscles. A test conducted by the user is to carry a load of 1.5 kg for 60 seconds, as shown in Figure 3-11 After completing and evaluating the design, a large-scale industrial 3D printer (Bigrep Studio) was used to 3D print the hand parts to be assembled with actuators and electronics. The arm part until the socket was printed in one print. The arm's cost estimation includes the electronics, actuators, and the 3D-printed material used in hand. The whole arm's total cost with parts and electronics is less than 300USD, as detailed in Table 3-2, which is affordable compared to commercially available systems on the market. As the adoption of the proposed arm design will increase the arm's cost depending on the amputation case, the time for measuring, printing, and assembling is indicated. The final 3D-printed arm while the user wears it is shown in Figure 3-12.

Electronics and Control

The bionic hand actuators are controlled by a Chestnut board placed inside the bionic hand, featuring the ARM Cortex M0+ Processor. The board is designed to be embedded within robotic hands. It can control up to four motors simultaneously. The board's mass 15 g, and its

dimensions are small at 57×45×9 mm shown in Figure 3-13, allowing it to fit inside the bionic hand (Open Bionics lab, 2019). 

Feature Extraction and Classification

Data Collection Protocol

In this work, a Myo armband was used to collect the data of the selected four gestures from twenty-three participants (twelve males and eleven females with ages ranging from 18 to 45 years). First, the armband was connected wirelessly to the computer, and several numerical algorithms were used to transform the collected data from the official Myo software, called Myo-Connect, to a matrix data format. This procedure simplified the data collection process and allowed visualization of data while recording. Only data used to train and test the offline classifiers were collected using numerical tools, while the online implementation of this project was being performed using Python code. There are three distinct phases involved: Data collection, data processing, and rectification, and feature extraction.

As part of the data collection procedure, participants were instructed to keep an angle of 90° at the elbow joint during data collection. The dataset was collected in several sessions (within a period of two months), and every time the Myo armband was attached at the same location around the forearm of all participants. Data were collected from participants in several sessions in the first phase, where data associated with four hand gestures were recorded: Spread fingers, closed hand, wave-in, and wave-out. The participants were instructed to move their hand from the resting position to perform one of the proposed gestures and then move back to the resting position for around four seconds. The participants repeated this procedure more than 10 times for every single gesture. The same method was applied to all four gestures. As a result, a dataset of 7360 files was collected, where each file contains the signals of several gestures. In the second phase, the collected data were processed and rectified to simplify the third phase (the feature extraction phase).

Data Processing

The second phase shows the processing steps of raw sEMG signals. 

Features Extraction

In the feature extraction procedure, which is the third phase, the dimensionality of the processed data was reduced to simplify the classification step. Generally, sEMG data may contain relevant and irrelevant information, and mapping sEMG data can discard irrelevant information to another reduced space (reduced dimensionality). This step is known as feature extraction, and the main advantage of this step is the reduction of the dimensionality of the problem, which eventually simplifies the classification process. In this work, a combination of two statistical features, mean absolute value (MAV) and standard deviation (SD), along with the auto-regressive coefficients (AR) approach, is used to extract important information from the data, which reflects the targeted gestures (Baillie, D. C., & Mathew, J., 1996) (Vu, V. H., Thomas, M., Lakis, A. A., and Marcouiller, L., 2011) (Akhmadeev, K., Houssein, A., Moussaoui, S., Høgestøl, E. A., Tutturen, I., Harbo, H. F., and Gourraud, P. A., 2018). First, the Mean Absolute Value (MAV) method is used to extract muscle contraction levels from sEMG data. The mathematical expression of MAV is presented as the moving average of a rectified EMG signal:

𝑀𝐴𝑉 = 1 𝑁 ∑ |𝑥 𝑖 | 𝑁 𝑖=1
(3-1)

N represents the length segment of the EMG data, 𝑥 𝑖 is the value of the signal amplitude, and 𝑖 is the segment increment. Then, the standard deviation of EMG (SD), which is expressed as the square root of the EMG signal's power, is used to extract features from the EMG data. The SD is defined as:

𝑆𝐷 = √ 1 𝑁-1 ∑ (𝑥 𝑖 ) 2 𝑁 𝑖=1 (3-2)
Finally, an auto-regressive coefficients (AR) approach is adopted to extract features from sEMG data. The main idea is to use the sEMG data to fit an auto-regressive model, where the coefficients of the model and MAV and SD values, are then considered as inputs to the classifier for gesture recognition. For each sEMG envelope signal, the AR model is fitted, such as:

𝑥(𝑡) -∑ 𝑎 𝑘 𝑥(𝑡 -𝑘) = 𝑒(𝑡) 𝑚 𝑘=1 (3-3)
where 𝑎 𝑘 , k = 1, ..., m, are the AR model parameters, m is the order of the model, and 𝑒(𝑡)

is the error. Then, the parameters 𝑎 𝑘 , k = 1, ..., m are used to represent the EMG signal. In this work, the value of m = 8. As a result, a vector of size ten is needed to capture the 8 AR parameters, and both MAV and SD values. Furthermore, eight sEMG signals were involved in the collection procedure, and the classifier inputs are reduced to eighty entries.

Classification

In this section, the extracted features and the corresponding known outputs are used as the input data to train a classifier or recognition algorithms. Based on a pre-selected optimization algorithm, the classifier is prepared to learn and identify patterns in the data and respond to the inputs according to the given outputs. After successful training, the reliability of the classifier is tested with a different dataset.

Training and testing classifiers help to validate the results and obtaining an accurate classification model. In this section, three classifiers are investigated: The artificial neural network (ANN), support vector machine (SVM), and decision trees (DT) algorithms to identify which classifier is better suited for building the bionic hand.

• Artificial Neural Network

Artificial neural networks (ANN), also known as multi-layer perceptrons (MLP), are one of the main pattern recognition techniques; they comprise many neurons, and these neurons are connected in a layered manner. The training procedure of a neural network can be easily achieved by optimizing the unknown weights to minimize a pre-selected fitness function.

Generally, the neuron architecture can be summarized as the following: A neuron (or node) receives inputs, and then respective weights are applied to these inputs. Then, a bias term is added to the linear combination of the weighted input signals. The resulting mixture is mapped through an activation function.

Usually, the ANN consists of input and output layers and hidden layers that permit the neural network to learn more complex features. In this work, one of the most recognized ANN algorithms, the feed-forward neural network, is used as a supervised classifier for gesture 

• Support Vector Machine

A support vector machine (SVM) is a multi-class classifier that has been successfully applied in many disciplines. The SVM algorithm gained its success from its excellent empirical performance in applications with relatively large numbers of features. In this algorithm, the learning task involves selecting the weights and bias values based on given labeled training data. This can be achieved by finding the weights and biases that maximize a quantity known as the margin. Generally, the SVM algorithm was first designed for two-class classification.

However, it has been extended to multi-class classification by creating several one-against-all classifiers (in which the algorithm solves K two-class problems, and, each time, a class is selected and classified against the rest of the classes), or by formulating the SVM problem as a one-against-one classification problem (in this case, K(K -1)/2 binary classification problems are solved by considering all classes in pairs) (Fong, S. , 2012) [START_REF] Theodoridis | Machine learning: a Bayesian and optimization perspective[END_REF]. In this work, a multi-class SVM classifier is trained, tested, and used to classify gestures based on online data.

• Decision Tree

Recently, decision tree (DT) algorithms have become very attractive in machine learning applications due to their low computational cost [START_REF] Marsland | Machine learning: an algorithmic perspective[END_REF] . Furthermore, DT approaches are transparent and easy to understand since the classification process could be visualized as following a tree-like path until a classification answer is obtained. The decision tree algorithm can be summarized as follows: The classification is broken down into a set of choices, where each alternative is about a specific feature. The algorithm then starts at the tree's base (root) and keeps progressing to the leaves to receive the optimized classification result.

The trees are usually easy to comprehend and can be transformed into a set of if-then rules suitable for simplifying machine learning applications' training procedures. Generally, decision trees use greedy heuristic approaches to perform search and optimizations, where these algorithms evaluate their possible options at the current learning stage and select the solution that seems optimal at that instant. In this work, a decision tree algorithm is used to train and test a gesture dataset, and the results are compared with the SVM and ANN to select the best model to be used with the bionic arm.

Results

After selecting three different types of classifiers, the offline procedure was used to train and test these classifiers to select the model that will be used for the online recognition procedure.

The ANN classifier has two hidden layers, with the number of neurons used in each layer set Furthermore, the SVM classifier provided an average testing accuracy equal to 90.5% and a standard deviation of 1.75%. The decision tree algorithm produced a training accuracy of 73.46% with a standard deviation of 4.87%, while the testing results were equal to 70.5% with a standard deviation of 2.5%.

Finally, the ANN classifiers provided a training accuracy of 84.78%, with a standard deviation of 4.11%. The testing procedure's ANN accuracy was equal to 83.91%, with a standard deviation of 2.3%. The results are presented in Table 3-3. The confusion matrices for the SVM classifier's training and testing procedures are presented in Table 3-4 andTable 3- the bionic arm. The detected hand gestures are mapped with bionic hand actions. The fist will close all the artificial hand fingers; spread fingers will open all the artificial hand fingers, wavein will close one finger only of the artificial hand while wave-out will close two fingers.

The testing scenarios showed the user's ability to control the bionic hand accurately after the training phase. The bionic hand movements were optimized to allow the user to perform different activities (holding objects, grasping, drinking, and writing). In single-action testing, the user was asked to perform one action at a time. The single measures include making a fist, spreading the fingers, closing one finger, and closing two fingers, as shown in Figure 3-16.

The user performed each action repetitively for 20 consecutive times. The results of testing every single action show a detection rate varying from 85% up to 100%. In combining two actions, the user performed opening and closing with a success rate of 95%, opening and closing one finger with 90%, and opening and closing two fingers with 85%, as shown in Figure 3 17. 

Conclusion

A customized 3D-printed bionic arm was designed, fabricated, and tested for a right arm amputee. The 3D-printed bionic arm was designed to have a low cost, comfort, lightweight, durability, and appearance. sEMG data were collected for a set of four gestures (fist, spread fingers, wave-in, wave-out) from a wide range of participants to make the bionic arm control general for amputee cases. The collected data were processed, and feature extraction was performed to train the classifier. The support vector machine classifier was found to outperform the neural network and decision tree classifiers, reaching an average of 89.93% accuracy. Real-time testing of the bionic arm with the associated classifier software enabled the user to perform his daily activities.

Additional features are needed to improve further the bionic arm, such as a multi-degree-offreedom wrist joint connector. This can be achieved by using two servo motors with brackets or by utilizing a spherical manipulator. Furthermore, air-ducted adjustable sockets can allow the user to mount and dismount the bionic arm with ease. Also, attaching feedback sensors to sense the environment should be considered for further improvements.

Introduction

The study's primary purpose is to explore the concept of using sEMG signals in biometrics as a potential modality that can be used to verify individuals using a multi-channel EMG acquisition system. Using a multi-channel sEMG signal will significantly impact the accuracy and noise reduction of the biometrics system. Also, it contains more information that helps to detect the identity of the user. For example, in such systems, the Signal-to-Noise ratio (SNR) can be improved using numerous signal processing approaches such as: averaging, source separation, filtering, and decomposition techniques.

This chapter presents a detailed study using a multi-channel sEMG signal acquired by wearable bracelet Myo armband to be used in a biometric verification system based on the user's hand gestures. This chapter proposes a biometrics verification system for user's verification. The biometric identity studied in this research is sEMG. The biometric device used to acquire the sEMG signal is a wearable multi-channel armband consists of 8 electrodes.

Fifty-six users have been enrolled in the biometric system. The users enrolled trained to use the sEMG biometric system before data collection. Eighteen features have been extracted from the signals to distinguish between users, seven frequency domain features, and eleven timedomain features. The power spectral density of each channel is estimated by periodogram using

Welch's method first. Then, the signal's power, average frequency, kurtosis, median frequency, deciles, coefficient of dissymmetry, and peak frequency of PSD are calculated as frequencydomain features. The length or duration of data is calculated as a new feature Signal divided into ten equal-length segments, and the root means square (RMS) of each segment is calculated.

K-nearest neighbors (kNN), Linear discriminant analysis classifier (LDA), an ensemble of classifiers have been applied to optimize the system's results. The system will grant/deny access to the user from the sEMG biometrics identity of each user. The signature of each user based on hand gestures. Performance analysis of the biometrics system has been presented to validate the system's capacity by calculating the False Acceptance Rate (FAR) and False Rejection Rate (FRR).

In all biometrics systems, users must first register their identity with the system employing recording raw biometric data. This phase is called Enrolment and is consists of three distinct phases: Capture, Process, and Enroll [START_REF] Dantcheva | Bag of soft biometrics for person identification[END_REF].

to gather the data of user's sEMG signals that form a password. Each user has been asked to select three gestures out of 4 gestures and arrange them to create a password using hand actions.

A database of fifty-six participants has been collected (twenty-four males and thirty-two females with ages ranging from 16 to 62 years). The first step is to connect the armband wirelessly to the PC. Software is then developed to connect the Myo armband to the PC and visualize the data during the data acquisition phase. The recorded data is stored in a matrix data 

Features Extraction for sEMG Users Verification

In the feature extraction process, the raw data size was reduced to be able to input these parameters to the Machine Learning (ML) classification model. In general, sEMG data contains essential and irrelevant information. The extrinsic information should be discarded to reduce the features vector's dimensionality by mapping sEMG data to another space. This step is important to extract the main features from the data of each user, which aids in distinguishing between the enrolled users (Akhmadeev, K., Houssein, A., Moussaoui, S., Høgestøl, E. A., Tutturen, I., Harbo, H. F., and Gourraud, P. A., 2018) [START_REF] Chantaf | Single Channel Surface EMG Based Biometrics[END_REF].

The calculation of the Power Spectral Density (PSD) of the sEMG signal is vital since it is calculated by using the relevant parameters used for the authentication of users. The PSD depicts the density of a signal regarding the frequency. The primary purpose of spectral density calculation is to capture the spectral density of the sEMG signal from a series of time samples.

There are two different techniques used in the estimation of PSD, parametric and nonparametric. The estimated PSD is calculated directly from the signal in the Nonparametric methods. The most known simple method is called a periodogram. In the periodogram method, the discrete-time Fourier transform of the sampled signal is calculated first, then the magnitude squared of the result is calculated [START_REF] Kay | Modern spectral estimation: theory and application[END_REF]. In this research, the PSD is estimated by periodogram applying Welch's method [START_REF] Proakis | Digital signal processing: principles algorithms and applications[END_REF].

The power of the sEMG signal is estimated against frequency to reduce the noise. The signal is converted from the time domain to the frequency domain by using PSD. It is a direct application of using periodograms that convert a signal from the time domain to the frequency domain [START_REF] Barbé | Welch method revisited: nonparametric power spectrum estimation via circular overlap[END_REF]. This method is applied by dividing the time signal into successive blocks, forming the periodogram for each block, and calculating all the blocks' average.

Each block is divided as follow (4-1):

𝑥 𝑖 (𝑛) = 𝑥(𝑛 + 𝑖𝐷) (4-1)
such that n = 0, 1, ...........M -1 and i = 0, 1, ........... L-1 M is the length of the blocks after division. D is the shifting between blocks, and L is the number of blocks.

The periodogram for each block is given by (4-2):

𝑆 𝑖 ̂(𝑓) = 1 𝑀 𝑈 |∑ 𝑥(𝑛). 𝑤(𝑛)𝑒 -𝑗2𝜋𝑓𝑛 𝑀-1 𝑛=0 | 2 (4-2)
U is the normalization factor of the window used to divide the signal into blocks (4-3).

𝑈 = 1 𝑀 ∑ 𝑤(𝑛) 2 𝑀-1 𝑛=0 (4-3)
The Welch PSD estimate is given by (4-4):

𝑆 𝑤 ̂(𝑓) = 1 𝐿 ∑ 𝑆 𝑖 L-1 𝑖=0 (4-4)
Upon estimating the PSD, the necessary parameters are extracted to be used to classify the users to verify their identity. The extracted features are signal power, kurtosis, median frequency, deciles, dissymmetry coefficient, and frequency peak.

• Power of signal A signal's power represents the distribution of energy M0 (order 0) on the frequency axis (4-5).

𝑀 𝑟 = 2 ∫ 𝑓 𝑟 ∞ 0 𝑆 𝑥 (𝑓) 𝑑𝑓 (4-5)
With Sx the estimation of the PSD by Welch method.

• Average frequency

Average frequency represents the statistical average of the signal (4-6)

𝑀𝑃𝐹 = 𝑀 1 𝑀 0 (4-6)
•

Kurtosis

Kurtosis measures the degree of peakedness of a distribution, defined as a normalized form of the fourth central moment μ4 M4 of a distribution (4-7).

𝐶𝐴 = 𝑀 4 * 𝑀 2 2 * (4-7)
• Median Frequency

The median divides the spectral density into two sections: 50% of data are less than the median, and 50% are greater. The median is calculated by (4-8):

∫ 𝑆 𝑥 (𝑓) 𝑑𝑓 = 𝐹 𝑚𝑒𝑑 0 ∫ 𝑆 𝑥 (𝑓) 𝑑𝑓 𝐹 𝑚𝑎𝑥 𝐹 𝑚𝑖𝑛 (4-8)
• Deciles

The median divides the distribution of the spectral density into two sections. The division of this distribution can be generalized into four, ten, one hundred, or n parts. The obtained values are named quartiles, deciles, percentiles, or quantiles (4-9)

∫ 𝑆 𝑥 (𝑓) 𝑑𝑓 = 𝐾 𝑓 𝐹 𝑓 𝐹-1 ∫ 𝑆 𝑥 (𝑓) 𝑑𝑓 𝐹 𝑚𝑎𝑥 0 0 < 𝑘 ≤ 1 (4-9)
•

Coefficient of dissymmetry

This parameter gives information about the shape of the spectral density from a symmetrical point of view. It is given by (4-10) and (4-11):

𝐶𝐷 = 𝑀 3 * √𝑀 2 3 * (4-10) 𝑀 𝑟 * = 2 ∫ (𝑓 -𝑀𝑃𝐹) ∞ 0 𝑆 𝑥 (𝑓) 𝑑𝑓 (4-11)
• Peak Frequency

The peak frequency is the frequency for which the spectral density function reaches its maximal amplitude. The extracted features are then fed into the classification algorithm in its reduced form rather than the raw data. The classification algorithm presented here will aim to verify or identify the enrolled users in the sEMG based biometrics system. 

Machine Learning Models

Machine-learning models are used widely in the biometrics verification system based on wearable technology systems. The result of machine-learning algorithms executed by the matching unit is a numerical value that estimates the similarity between the input signal and a registered user in the system. After getting this result, a threshold value is usually set to determine the biometrics system's final decision access granted, or access denied (Blasco, J., Chen, T. M., Tapiador, J., and Peris-Lopez, P, 2016). False acceptance rate (FAR) and false rejection rate (FRR) are considered the main biometrics performance analysis parameters used to estimate the system's accuracy. For optimization, three classifiers k-nearest neighbors (kNN), linear discriminant analysis classifier (LDA), and an ensemble of classifier or boosted trees were used to train this dataset and obtain the best model.

• K-nearest neighbor (KNN) Classifier

KNN classifier deals on the property that the classification of unknown instances can be accomplished by relating the unknown to the known according to similarity/distance function (Y. Paul, V. Goyal and R. A. Jaswal,, 2017). The unknown instance has a label with the same class label as of the known nearest neighbor. In this research, the Minkowski distance method has been applied in KNN algorithm applications.

The Minkowski distance is a method to find distance based on Euclidean space, defined by

𝑑 𝑠𝑡 = √∑ |𝑥 𝑠𝑗 -𝑦 𝑡𝑗 | 𝑝 𝑛 𝑖=1 𝑝 (4-12)
For the particular case of Minkowski distance p = 1, the Minkowski metric gives the city block distance, p = 2, the Minkowski metric gives the Euclidean distance, and p = ∞, the Minkowski metric provides the Chebychev with distance.

• Linear Discriminant Analysis (LDA) Classifier

Linear discriminant analysis (LDA) classifier is extensively used in sEMG pattern recognition for bionic arm control [START_REF] Zhang | An adaptation strategy of using LDA classifier for EMG pattern recognition[END_REF]. It depends on the Bayes classification rule, which states that for a given vector x, assign it to the class 𝑐 𝑘 when the following inequality is satisfied 𝑝(𝑐 𝑘 |𝑥) > 𝑝(𝑐 𝑗 |𝑥) for all 𝑘 ≠ 𝑗 (4-13)

These posterior probabilities cannot be directly measured but can be obtained from estimates of the prior probabilities and the distribution of the class according to the Bayes formula:

𝑝(𝑐 𝑘 |𝑥) = 𝑝(𝑐 𝑘 )𝑝(𝑥|𝑐 𝑘 ) 𝑝(𝑥) (4-14)
Where 𝑝(𝑐 𝑘 |𝑥) is the probability density function for the vector within 𝑘 class, 𝑝(𝑐 𝑘 ) is the prior probability for class 𝑘 and usually assumed to be equal for all classes, 𝑝(𝑥) is the probability density function of the input space and is also constant over all the classes. Then the decision rule referred to as equation (4-15) is simplified to:

𝑝(𝑥|𝑐 𝑘 ) > 𝑝(𝑥|𝑐 𝑗 ) for all 𝑘 ≠ 𝑗 (4-15)
In the LDA classifier implementation, the probability density functions for all the classes are assumed to follow a multivariate Gaussian distribution.

𝑝(𝑥|𝑐 𝑘 ) = 1 √(2𝜋) 𝑓 𝑑𝑒𝑡 (𝐶) 𝑒𝑥𝑝(- 1 2 (𝑥 -𝜇 𝑘 ) 𝑇 𝐶 -1 (𝑥 -𝜇 𝑘 )) (4-16)
where x is the vector to be classified, f is the dimension of the vector, C is the common covariance matrix of all the classes, k and 𝜇 𝑘 is the mean value of class k.

For a given training dataset, the parameters 𝜇 𝑘 and C is constant, and the LDA classifier is static. Therefore, the LDA classifier is challenging to maintain the classification accuracy constant when the EMG recordings are changing.

• Ensemble Classifier (Gentle AdaBoost Algorithm)

In collective classifiers, more than one singular classifier is brought together to enhance the classification performance. Algorithms such as decision trees, support vector machines, the Naive Bayes method, linear separators, and artificial neural networks are widely used as single classifiers [28].

Boosting is a general technique used in machine learning that aims to extract a robust classifier from a combination of weak classifiers. The Adaboost algorithm proposed by Freund and Schapire which was the first practical boosting algorithm [START_REF] Freund | A desicion-theoretic generalization of on-line learning and an application to boosting[END_REF], which serves in many fields of applications [START_REF] Freund | A short introduction to boosting[END_REF].

The Adaboost algorithm takes input a training set of m examples (𝑥𝑖, 𝑦𝑖), 𝑖 = 1: 𝑚, where 𝑥𝑖 ∈ 𝑋 is a vector-valued feature, 𝑦𝑖 ∈ {-1, +1} is the class label associated with 𝑥𝑖. The Adaboost algorithm calls a weak classifier repeatedly in a series of rounds 𝑡 = 1, … , 𝑇. On each round t, the distribution 𝐷𝑡 provided to weak learning algorithm over the training set. A given weak classifier is applied to find a weak hypothesis ℎ𝑡: 𝑋 → {-1, +1} matches with the distribution 𝐷𝑡 that indicates the necessity of examples in the data set for the classification.

The weights of each incorrectly classified example are increased or alternatively the weights of each correctly classified example (with low weighted error 𝜀 𝑡 relative to 𝐷𝑡) are decreased.

Once the weak hypothesis ℎ𝑡 has been received, Adaboost chooses a parameter 𝛼 𝑡 which measures the importance that is assigned to ht. For this, a coefficient 𝛼 𝑡 is calculated as:

𝛼 𝑡 = 1 2 𝑙𝑛 ( 1-𝜀 𝑡 𝜀 𝑡 ) (4-17)
The final hypothesis H computes the sign of a weighted combination of weak hypotheses:

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼 𝑡 𝑇 𝑡=1 ℎ 𝑡 (𝑥)) (4-18)
A weak classifier should satisfy two conditions; it should do better than random guessing and should have enough computational power to learn a problem. The simplest weak classifiers are decision stumps, decision trees with only one decision node. A decision stump has the following form: ℎ(𝑥) = 𝑠(𝑥 𝑘 > 𝑐) , where 𝑐 ∈ 𝑅, 𝑘 ∈ {1, … , 𝐾}: 𝐾 is the dimension of 𝑥 𝑘 , and

𝑠 ∈ {-1,1}.
In other words, the decision stump gives a prediction based on the value of a single input.

Many variants of the Adaboost algorithm were proposed to enhance the basic algorithm, such as Real Adaboost and Gentle Adaboost. Real Adaboost is more generalized from discrete Adaboost, where the weak learners can output a real value ℎ𝑡(𝑥) ∈ 𝑅. The sign of this output gives the predicted label {-1, +1} and its value provides a measure of confidence level in this prediction. Gentle Adaboost [START_REF] Friedman | additive logistic regression: A statistical view of boosting[END_REF] is a modified version of the Real AdaBoost algorithm. It utilizes a weighting scheme that exploits a function of margins, which decreases slower than the exponential function used by the Adaboost algorithm. Newton steps are used to minimize the exponential loss function of Adaboost [START_REF] Mekhalfa | Gentle Adaboost algorithm for weld defect classification[END_REF] . Gentle AdaBoost Algorithm nowadays the most successful boosting procedure because of its robustness and stability to noisy data.

Results

After selecting three different types of classifiers, the offline procedure was used to train and test these classifiers to select the model that will be best used for the verification system after calculating the performance analysis parameters. Testing the system has been conducted by the data that kept for testing, representing 30% of the database. As the system is designed to be used for user verification, the user should input the user name first and then enter the biometrics identity.

The parameter values for the three classifiers were selected after performing a crossvalidation process for each classifier. Each classifier was used to train and test the same dataset for a different set of parameters. Table 4-1 shows the selected parameter for each classifier used in the training and testing of the data. The best model for each version of the three classifiers was selected based on its performance. Next, a statistical study was used to compare the testing results to select the best classifier among the three classifiers (KNN, LDA, and Ensemble classifier). First, each classifier was run for thirty trials, and the testing accuracy for the classification was stored in a table. The Ensemble classifier algorithm produced the highest testing accuracy of 98.5%. The LDA classifier provided a testing accuracy equal to 98.3%.

Furthermore, The KNN classifier provided a mean value of the testing accuracy equal to 97.4%.

The results of the average accuracy for the three classifiers are presented in Figure 4-6. The FAR is the percentage of incorrect acceptance by unauthorized users requesting attempting to access the system. A system's FAR typically is stated as the ratio of the number of false acceptances divided by the number of identifications attempts, and it can be calculated as below:

𝐹𝐴𝑅 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑎𝑝𝑡𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 (4-19)
The FRR, on the opposite side, provides the percentage of rejected attempts of authorized users attempted to access the system. A system's FRR is calculated as the ratio of the number of false recognitions divided by the number of verification attempts. and it can be calculated as below:

𝐹𝑅𝑅 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 (4-20) 0% 1% 2% 3% 4% 5% 6% 7% KNN LDA Ensembler FAR FRR
For biometrics verification applications, the registered users need to declare their identity, a user name in this particular application, along with the biometric identifier. The authentication system then compares the input identity with the stored template in a database of various claimed identities to confirm or deny the authenticity claims [START_REF] He | Biometric From Surface Electromyogram (sEMG): Feasibility of User Verification and Identification Based on Gesture Recognition[END_REF]. As such, the verification mode is a binary classification. FAR and FRR evaluate the performance of the verification system. Table 4-2 detailed the user verification system results using three different classifiers models; for each model, the average accuracy, FAR, and FRR are calculated. In all the verification scenarios and for each type of classifiers presented in this research, FAR and FRR are calculated. For the KNN classifier, the average value of FAR is 0% means non of the users is able to access any other user even by mimicking the hand actions, and the FRR is 2.9%, which points out of 100 user, 2.9 users weren't able to access the system due to a deviation in the hand actions which represents the password of their own. For the LDA classifier, the FAR is 0.3%, and FRR is 1.9%. While applying Ensemble Classifier gave FAR 6.3% and FRR 1%. Figure 4-6 Shows the FAR and FRR of the three classifiers.

The ensemble classifier shows the best accuracy in the three classifiers, but the KNN classifier gave FAR of 0% and FRR of 2.9%. This makes the KNN is the best algorithm used in the verification biometrics system presented in this chapter.

A Graphical User Interface (GUI) is developed as a tool for the users to check the system's robustness. The system requires users to declare their identity by entering the user name. The user name entered is case sensitive to provide a more secure biometrics system. If the user entered the wrong user name, the system would deny access. If the user entered the correct user name, the system would ask the user to input the biometrics password, a combination of hand actions. The system extracts the features from the entered sEMG signals and compares the features with the stored database of trained models for this specific user. If the users entered a wrong password or the features didn't match the stored features, the system will deny this user access.

Table 4-3 Comparison between different research work of sEMG biometrics users verification system

Evaluated work on biometrics verification Accuracy

Seven frequency domain with Radial Basis Function Network using signle-channel (S. Chantaf,2011) 80 %

CNN with 8 users using multi-channel (R. Shioji, 2018) 94.9%

Frequency domain features and time domain features classified using SVM and KNN (Kim and Pan, 2017) 85%

Conclusion

The performance of sEMG signals as a biometric modality for user verification is investigated.

The users were able to perform a custom-set gesture code. The resulting sEMG signals were captured and proceed as a form of hidden biometric identity. The results indicated that the custom-set gesture code improves verification performance. The set of frequency and timedomain features extracted in this study allowed for improved classifier accuracy. The KNN classifier was found to be optimum, with an average accuracy of 97.4%. The FAR and FRR of the KNN classifier results are 0% and 2.9%, respectively.

Introduction

the muscle activation process produces an sEMG signal. It is usually measured through the surface differential or double differential electrodes, as explained in the previous chapters.

sEMG signal amplitude is always measured in millivolts. sEMG signal has a wide variety of applications. In this chapter, multi-users' biometrics identification systems will be explained in detail, showing the steps of implementing the system.

The physiology of the user is affecting the sEMG signal. Muscle position, orientation, shape, and size are altered during human movement while attaching the sensors to their muscles.

While neural activity, blood flow, and skin conductivity can differ depending on the user's mental state. These produce variability into the sEMG signal, which same hand gestures that look identical will always give you different EMG signals.

Everyone is different from others, and every reading is different, but ignoring which factors causes differences in the measurement, the reason that makes sEMG contains physiological dependent variables, provides it with the capability to be used for biometric identification [START_REF] Krishnamohan | GMM modeling of person information from EMG signals[END_REF].

EMG systems can work within four categories:

1) A single device used by a single user.

2) Multiple devices used by a single user.

3) Single device for multiple users.

4) Multiple devices for multiple users.

Systems that deal with single users using single devices are relatively advanced and have difficulties with EMG external factors, such as skin-electrode contact, electrodeposition, limb orientation, and temperature. If these parameters are kept unchanged, the user can train the system and use it perfectly until physiological factors change enough to affect classification.

Using multiple devices for one user will face a problem, that single users must train various systems. Each device might behave differently, as the training data will change every time.

Multiple users to use single devices will have the problem that each additional user enrolled in the system might affect other users' classification, especially if there are significant physiological differences between users. Category 4 contains the difficulties mentioned in category 2 and category 3.

All categories need a training session initially, and retraining after a user's physiological features change significantly to the point that affects classification accuracy. Categories 2, 3, and 4 would require additional training and calibration.

In the proposed biometrics identification system, category 3 is based on multiple users using a single device, Myo armband, consisting of eight-channel EMG sensors. sEMG based biometrics verification system has been analyzed and explained in detail. In this chapter, multiusers biometrics identification system performance will be studied. The biometrics users' identification system doesn't require declaring the identity of the users in advance. Only the user's password, which is formed by a combination of hand gestures, will be necessary. Myo armband was used to collect the data of the user's sEMG signals that create a password. Each user has been asked to select three gestures out of 4 gestures and arrange them in a way to form a password using hand actions. A database of fifty-six participants has been collected (twentyfour males and thirty-one females with ages ranging from 16 to 62 years). The database used in the biometrics identification system study is the same database used in the biometrics verification system.

The biometrics identification system aims to recognize the system's enrolled users based on specific features of the individual's passwords. The schematic chart illustrating the biometrics identification system's steps is shown in Figure 5-1. There are two paths of the diagram. The first path is to enroll the users in the system. A database of sEMG gestures that form a password of each user is created with all the units associated with signal processing, features extraction, and machine learning to characterize the signals required to identify the users without declaring their identity. The second path is to the user's identity by matching the enrolled users' identity with the stored database. The system output, in this case, is the user's names in the biometrics identification systems. A database of sEMG signals that form a password is collected from 56 users able-bodied users. The database collection protocol is explained in detail in the section Database Collection Protocol. Three machine learning models have been used to train the classifier and obtain the optimum model that produces maximum accuracy.

Features Extraction

Raw 

Results

After selecting three different classifiers, the offline procedure was used to train and test these classifiers to select the model that will be best used for the verification system after calculating the performance analysis parameters. The system test phase has been conducted by the data that kept for testing, representing 30% of the database. As the system is designed to be used for user identification, the user should input the biometric identity first, and then the system will then identify the individuals from their password (a combination of hand gestures) and output the user name. 

Conclusion

The performance of sEMG as a biometric trait for user identification was investigated. The users were able to perform a custom-set gesture code. The resulting sEMG signals were captured and proceed as a form of hidden biometric identity. The results indicated that the custom-set gesture code could significantly improve identification performance. The set of time-domain features extracted in this study allowed for improved classifier accuracy. The KNN classifier was found to be optimum, with an average accuracy of 86.2%.

The average classifier accuracy can be optimized by collecting 50 tests from each user enrolled in the system instead of 20 tests to have enough data to train the identification system's classifiers. The user's identification system's average accuracy reached 99% during testing the classifier when only 30 users out of 56 users are selected for training the classifier. • Less overhead when exporting new models to clients: For the self-driving vehicle applications, the well-known companies copy new models from their servers to the car's life. This process is called over-air updates update (Consumer Reports. Teslas new autopilot: Better but still needs improvements, 2016). Over-air-update using typical CNN models can require large data transfers. The smaller the parameters, requires less and faster communications.

Deep Learning for Biometrics Users Verification System

The schematics drawing shown in Figure 6-2 represents the phases followed in this work starting with input generation of sEMG signals then the squeeze net structure to the output layer, which will grant/deny access to the users. 

Data Augmentation

A limited amount of data is one of the main limitations in applying deep learning models like convolutional neural networks. Often, imbalanced classes can cause another problem; while there may be enough data for some classes, equally important but under-sampled classes will suffer from low class-specific accuracy. This phenomenon is intuitive. • Convolution Layer: This layer is the building block of CNN. In this layer, image or feature maps from the previous layer are convolved with sliding kernels to extract new features.

• ReLu Layer: This layer removes negative values from feature maps by applying activation function 𝑓(𝑥) = max (0, 𝑥) to introduce nonlinearity in feature maps.

• Pooling Layers: This layer reduces the dimensionality of feature maps by sliding windows, calculating the mean, max, or sum of values inside the window to make the network invariant to small transformations.

• Dropout Layer: This layer sets input elements to zero with a given probability to reduce overfitting.

• Fully Connected Layer: This layer is a traditional multi-layer perceptron which uses softmax activation function in the output layer. It classifies inputs images using features extracted by previous layers.

• Squeeze-net structure

The CNN architecture used in this work has a few parameters (Squeeze-net). It consists of a Fire module, a new building block out of which to build CNN architectures. The squeeze-net was constructed mainly from fire modules. The main objective of implementing squeeze-net to maintain accuracy with CNN structure with fewer parameters. To accomplish this target, three strategies applied in the structure of the squeeze-net:

• Use 1x1 filters instead of 3x3 filters: For an adequate number of convolution filters, most of the filters should be 1x1 since a 1x1 filter has nine times fewer parameters compared to a 3x3 filter.

• The number of input-channels to be reduced to 3x3 filters: A convolution layer composed of 3x3 filters. The total number of parameters in this convolutional layer is equal to (number of input channels) * (number of filters) * (3*3). To keep a low number of parameters in a CNN, the number of 3x3 filters must be decreased and reduce the number of input channels to the 3x3 filters.

• To increase the size of activation maps in the convolution layers by down sample late in the network: In the network, each convolution layer produces an output activation map with a spatial resolution that is at least 1x1 and often much larger than 1x1. The activation maps height and width are controlled by the input data size and the choice of layers to down-sample in the CNN architecture

The Fire module is composed of a squeeze convolution layer (which has only 1x1 filters),

inputting into an expand layer that has a combination of 1x1 and 3x3 convolution filters as illustrated in Figure 6-4. The freedom of use of 1x1 filters in Fire modules is to reduce the number of parameters inputting the network. In a Fire module, s1x1 is the filter number in the squeeze layer (all 1x1), e1x1 is the number of 1x1 filters in the expand layer, and e3x3 is the number of 3x3 filters in the expand layer. The rule here is if the fire modules set to be s1x1, it should be less than (e1x1 + e3x3), the squeeze layer assists in eliminating the number of input channels to the 3x3 filters. The obtained average accuracy of the CNN structure was found to be 98.3%. Next, a statistical study was used to evaluate the performance of the system. The FAR value is 1.03%, and the FRR value is 7.14 %. These results showed that using deep neural networks can be used in the sEMG biometrics verification system without extracting the signals' features.

Deep Learning for Biometrics Users Identification System

The main problem in user identification that doesn't exist in users' verification systems is that user verification is a binary-class classification problem while user identification is a multiclass classification problem. Therefore, although there is one classifier for each user in user verification, only one classifier predicts the identification system's users. The system flowchart is depicted in The parameter used for wavelet transform based denoising is given in Table 6-4. and scalograms are created from raw signals.

Wavelet-Based Denoising

The noisy signal can be modeled as a superposition of signal and noise as follow:

𝑋(𝑘) = 𝑆(𝑘) + 𝐸(𝑘) (6-6)

where, 𝑋(𝑘) is a noisy signal, 𝑆(𝑘) is the original signal, and 𝐸(𝑘) is white Gaussian noise.

Since Wavelet transform is a linear transform, wavelet coefficient of 𝑋(𝑘) still has two components. One component is from the original signal, and the other is from noise. Wavelet transform can intensify signal energy on large coefficients and distribute noise energy.

Therefore, it can be assumed that those large coefficients represent the original signal, and small coefficients represent noise. Based on this, wavelet-based denoising can be applied as follow:

• Choose the mother wavelet and decomposition level and corresponding computing coefficients.

• Choosing a threshold and threshold function, then calculating the estimated value of coefficients.

• Reconstructing the signal using an inverse discrete wavelet transform based on estimated coefficients.

Although there are many methods for determining the threshold, the universal threshold is the most used thanks to its simplicity. The universal threshold is calculated as follow:

𝜆 = 𝜎√2𝑙𝑛 (𝑁) (6-7)
where 𝜎 is the average variance of the noise, and 𝑁 is the length of the signal. 𝜎 can be calculated using the median estimate method. The formula is as follow: where 𝑊 1,𝐾 is all 1 st level wavelet coefficients. There are two well-known thresholding functions: hard and soft thresholding. Both functions remove small coefficients and lessen large coefficients [START_REF] Khmag | Additive and multiplicative noise removal based on adaptive wavelet transformation using cycle spinning[END_REF].

The equation of hard thresholding is mentioned in equation (6-9), and the soft thresholding is mentioned in equation (6-10). 

Testing and Results

After the CNN model is trained, the last step is to evaluate its performances. Performance evaluation is done using a pre-trained CNN model and test set. While the accuracy is calculated based on the prediction made by each CNN model. Results are given in Table 6-6 and Error! Reference source not found.. 

Conclusion

In was found to be 98.3%. The FAR value is 1.03%, and FRR value is 7.14 %. These results

showed that using deep neural networks can be used in the sEMG biometrics verification system without extracting the signals' features. In the biometrics user's identification system, both scalograms of the raw data and denoised sEMG signal are used as inputs to CNN.

Denoising is used to create slightly different signals and scalograms. Wavelet transform-based denoising with different decomposition is applied to each signal. As a result, several slightly altered signals are created from one signal. Two CNN structures have been applied to the data to compare between them. The CNN structures are squeezeNet and Alex-Net, which exhibits a testing accuracy of 81.84% and 78.87%, respectively.

Chapter Conclusion & Perspectives

The thesis presented the advances in wearable technology systems raised during the last decades. The wearable system that is available in the market is briefing its advantages and The research on biometrics systems, especially in the anti-spoofing system, showed great use of sEMG as a biometrics modality due to its hidden biometrics natures and liveness detection.

The research work proposed a biometrics authentication system for user's verification. The biometric identity studied in this research is based on the EMG signal. The biometric device used to acquire the sEMG signal is a wearable multi-channel armband consisting of 8 electrodes. A total of 56 users were enrolled in the biometric system to create a database of sEMG signals. The users enrolled trained to use the sEMG biometric system prior to data collection. Each user has been asked to select three gestures out of 4 gestures and arrange them in a way to form a password using hand actions. A database of fifty-six participants has been collected (twenty-four males and thirty-two females with ages ranging from 16 to 62 years). A total of 18 features were extracted from the signals to distinguish between users. Seven frequency domain features and eleven-time domain features were analyzed. Initially, each channel's power spectral density (PSD) was estimated using the periodogram function, implementing Welch's method. Subsequently, average frequency, kurtosis, the signal's power, median frequency, coefficient of dissymmetry, deciles, and peak frequency of PSD were calculated as frequency-domain features.

Furthermore, data's length or duration is calculated as a new feature by dividing the signal into ten equal length segments and calculating each segment's root mean square (RMS). The K-nearest neighbors (kNN), linear discriminant analysis classifier (LDA), and classifier ensemble have been applied to optimize the system's results.

The system will grant/deny access to the user from the captured sEMG biometrics identity as a signature-based on hand gestures. Performance analysis of the biometrics system has been presented to validate the system's capacity by estimating both the false acceptance rate (FAR) and the false rejection rate (FRR). The performance of sEMG signals as a biometric modality for user verification is investigated. The users were able to perform a custom-set gesture code.

The resulting sEMG signals were captured and proceed as a form of hidden biometric identity.

The results indicated that the custom-set gesture code improves verification performance. The set of frequency and time-domain features extracted in this study allowed for improved classifier accuracy. The KNN classifier was found to be optimum, with an average accuracy of 97.4%. The FAR and FRR of the KNN classifier results are 0% and 2.9%, respectively.

The performance of sEMG as a biometric trait for user identification was investigated as well in the research. The users were able to perform a custom-set gesture code. The resulting sEMG signals were captured and proceed as a form of hidden biometric identity. The results indicated that the custom-set gesture code could significantly improve identification performance. The set of time-domain features extracted in this study allowed for improved classifier accuracy.

The KNN classifier was found to be optimum, with an average detection accuracy of 86.2%.

The average classifier accuracy can be optimized by expanding the database by collecting 50 samples from each user enrolled in the system instead of 20 samples to have more data to train the classifiers for an improved identification system. The user's identification system's average 
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  extracted in the time domain from the signals to identify between the users from their biometrics identity without declaring their identity. The same three classifiers are used to classify the data; KNN, LDA, and Ensemble of Classifiers are constructed, trained, and statistically compared. The results obtained from the KNN classifier proved the concept of using the sEMG for user's verification and identification.• Deep Learning Algorithm for Biometrics system: Recently, deep learning algorithms have become increasingly prominent for their unparalleled ability to learn from large amounts of data automatically. In this thesis, data augmentation is used to create a giant database out of a smaller database used in the classical machine learning approach by augmenting multiple users' signals, thus reducing the recording burden while enhancing the recognition rate. Convolutional Neural Network (CNN) is used to train the users in the EMG biometrics system. Squeeze net neural network is selected due to its faster training time as it requires fewer parameters while maintaining the accuracy level. Continuous wavelet transforms (CWT) are applied to the database to estimate the EMG signals' scalograms. In the identification system, five wavelet denoting levels have been applied to the raw data to augment the data.

  gives the user the ability to work on physiological data. This kit comes with an sEMG sensor that monitors the muscle activation using three wet bipolar surface electrodes (plus a ground lead), Measuring the electrical activity in muscles and nerves. Surface electromyography (sEMG) is a technique that is used in many clinical and biomedical applications in areas like HCI, neurology, rehabilitation, orthopedics, ergonomics, and sports. It is widely used as a biofeedback tool to assess muscle fatigue; disorders of motor control and low-back pain is also possible with the EMG sensor. Sensing isometric muscular activity, where no movement is produced, enables a definition of classes of subtle motionless gestures to control interfaces without being noticed and without disrupting the surrounding environment. These signals can be used to control prosthetic devices such as prosthetic hands, arms, and lower limbs or as a control signal for an electronic device such as a mobile phone.Conduction of action potentials through the heart generates electrical currents that can be picked up by electrodes placed on the skin. A recording of the electrical changes that accompany the heartbeat is called an electrocardiogram (ECG). Variations in the size and duration of the waves of an ECG are useful in diagnosing abnormal cardiac rhythms and conduction patterns. The ECG works mostly by detecting and amplifying the tiny electrical changes on the skin that are caused during the heart muscle cycle during each heartbeat. The ECG sensor provided by BITalino uses only two electrodes to acquire the signal. The essential ECG sensor applications focus on the patient's wellness and include heart rate and stress monitoring, biometric verification, and live monitoring.

  are sensitive to other electric noise sources such as electric noise induced by wall-electricity. The content of potentials provided by the Myo armband is between -128 and 128 in units of activation. These units of activation are integer values of the amplification of the potentials measured by the sEMG sensors. The Myo armband can pull sEMG data at a sample rate of 200Hz.

Figure 1 - 1

 11 Figure 1-1 Myo armband structure Figure 1-2 sEMG signal generated by Myo Armband

  implements a pattern recognition function. The physical features include fingerprint, face recognition, and eye (Iris) scan. While the behavioral ones have gait recognition, voice recognition, Electrocardiography (ECG), Electromyography (EMG), and an electroencephalogram (EEG) (Moon, K. Y., 2005) (Bailey, K. O., Okolica, J. S., and Peterson, G. L, 2014).
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 13 Figure 1-3 Wearable Armband for biometrics verification
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 2 Figure 2-1 shows the steps of hand gesture recognition, image frame acquisition, or gesture acquisition to recognize the computer's human hand gesture image.
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 21 Figure 2-1 Basic Steps of Hand Gesture Recognition[START_REF] Yasen | A systematic review on hand gesture recognition techniques, challenges and applications[END_REF] 

  Similarly, Chu et al.[START_REF] Chu | A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand[END_REF] used a wavelet packet transform to extract the feature vectors, and then a dimensional reduction was performed using the PCA algorithm. The results show that the eigenvector extraction procedure has more impact on recognition accuracy than the classifiers' ability.[START_REF] Huang | A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses[END_REF] proposed a system for multi-limb movements using the Gaussian mixture model (GMM). The obtained results indicated that the GMM algorithm has a reasonable classification recognition rate at a low computational cost. Noce et al.[START_REF] Noce | EMG and ENG-envelope pattern recognition for prosthetic hand control[END_REF]) introduced a new approach for neural control of hand prostheses. This approach is based on pattern recognition applied to the envelope of neural signals. In this approach, sEMG signals were simultaneously recorded from one human amputee, and the envelope of the sEMG signals was computed. The results obtained in this study showed that well-known techniques of sEMG pattern recognition could be used to process the neural signal and pave the way to applying neural gesture decoding in upper limb prosthetics. Shi et al. (Shi, W. T., Lyu, Z. J., Tang, S. T., Chia, T. L., and Yang, C. Y., 2018) proposed a bionic hand controlled by hand gestures, while the gestures were recognized based on surface EMG signals. The proposed approach was based on extracting multiple features, such as absolute value, zero crossings, slope sign change, and waveform length. The results show that the KNN classifier was able to recognize four different hand postures. • Classifiers for sEMG Gestures Recognition System The classifier plays an essential role in the pattern recognition block. The features extracted (such as Artificial Neural Networks (ANN), K-nearest neighbor (KNN), Naive Bayes (NB), Support Vector Machine (SVM)) to be able to classify the gestures. Chun-Jen et al. (C. Tsai, Y. Tsai, S. Hsu, and Y. Wu,, 2017) proposed a 3D hand gesture identification using a synthetically-trained neural network. The training phase of a deeplearning neural network required a large amount of training data. Chenyang, Xin et al. (C. Li, X. Zhang and L. Jin, 2017) proposed using the LPSNet, an end-to-end deep neural network for hand gesture recognition with novel log path signature features. Some researchers depend on deep neural networks for hand gestures classification.Sungho et al.[START_REF] Shin | Dynamic hand gesture recognition for wearable devices with low complexity recurrent neural networks[END_REF] developed two techniques for dynamic hand gesture recognition applying low complexity recurrent neural network (RNN) algorithms utilizing wearable devices, the first approach is based on video signal using convolutional neural network (CNN) with RNN for classification, and the other system utilizing accelerometer data and applied RNN for classification. Also, Xinghao et al.[START_REF] Chen | Motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition[END_REF] used a bidirectional recurrent neural network (RNN) with the skeleton sequence to augment the motion features for RNN.[START_REF] Aditya | A probabilistic combination of CNN and RNN estimates for hand gesture based interaction in car[END_REF] tried to enhance the gesture detection rate by correcting the probability estimate of a Long-Short-Term Memory (LSTM) network by pose prediction performed by CNN. They applied Principal Component Analysis (PCA) as a training procedure to reduce the dimensionality of the labeled data of hand pose classification to improve CNN's initialization of weights.Support vector machine (SVM) was used for classification in hand gestures recognition system[START_REF] Zhu | Wrist-worn hand gesture recognition based on barometric pressure sensing[END_REF] [START_REF] Sugiura | Behind the palm: Hand gesture recognition through measuring skin deformation on back of hand by using optical sensors[END_REF] (R. A. Bhuiyan, A. K. Tushar, A. Ashiquzzaman, J. Shin and M. R. Islam, 2017) (Tian, Z., Wang, J.,[START_REF] Tian | WiCatch: A Wi-Fi based hand gesture recognition system[END_REF]

  Figure2-2. These can be categorized as three different levels of prostheses: Upper arm, the amputation level is above the elbow, Forearm, the amputation level is below the elbow and Hand, the amputation level is a partial hand.The various types of actuation for the different types of prostheses. Most of the prostheses for people with partial hand amputation are bodypowered. There are four actuation techniques for forearm prostheses: two are passive static, one is passively adjustable, are body-powered and externally powered. There are two categories for externally powered prostheses: electrically powered arms and one is powered by pressurized air. All the upper arm prostheses are externally powered, and all are electrically powered.
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 22 Figure 2-2 Models of 3D printed upper limb (Jelle ten Kate, Gerwin Smit & Paul Breedveld, 2017) (a) Andrianesis' Hand: an externally powered forearm prosthesis,(b) Body-powered hand prosthesis, (c) Scand: a passive adjustable forearm prosthesis,(d) IVIANA 2.0: a passive forearm prosthesis, (e) Adams Arm: EMG controlled Bionic Arm

  biometrics field has been increased over the last decades. The research in bionic arms controlled by arm gestures is of great importance. The gesture recognition system can be accomplished in several ways, vision-based systems, wearable gloves, and sEMG signals. The control of the bionic arm using gesture recognition system based on sEMG signal needs specific steps database of sEMG signals represents arm gestures, followed by signal preprocessing, features extraction, then the classification of signals using machine learning approaches. Several researches showed that the different sEMG signals acquisition varies from single-channel to multi-channel. The database is different from one research to another research. The research showed different machine learning classifiers in sEMG gesture recognition systems such as KNN, SVM, ANN, and DT.

  ..................................................................... 61 3.3.1 Data Collection Protocol .................................................................................... 61 3.3.2 Data Processing .................................................................................................. 62 3.3.3 Features Extraction ............................................................................................ 63 3.3.4 Classification...................................................................................................... 64 3.4 Results ....................................................................................................................... 66 3.5 Real-time Implementation ......................................................................................... 68 3.6 Conclusion ................................................................................................................. 70 Summary: In this chapter, a customizable wearable 3D printed bionic arm is designed, fabricated, and optimized for a right arm amputee. An experimental test has been conducted for the user, where control of the artificial bionic hand is accomplished using surface electromyography (sEMG) signals acquired by the multi-channel wearable armband. The 3D printed bionic arm was designed for low cost and lightweight. sEMG signals are collected from different participants to control the hand by gestures. In this study, several classifiers based on neural networks, support vector machine, and decision trees were constructed, trained, and statistically compared. Real-time testing of the bionic arm with the optimum classifier is demonstrated to show the system's robustness. It starts with introducing the system and shows the specific user condition that the arm is customized to his amputation case in section 3.1. The detailed mechanical design of the bionic arm, the EMG database creation, and the electronic and control implemented are explained in section 3.2. section 3.3. describes feature extraction of the EMG signal for gesture recognition and the signals' classification. The classifier's testing results and the results of the tests conducted on the bionic arm are stated in section 3.4.

  time. Under such circumstances, vision-based gesture recognition using image detection could be enough to provide the correct hand motion. (Ben-Arie, J., Wang, Z.; Pandit, P., and Rajaram, S., 2002)[START_REF] Kapoor | A real-time head nod and shake detector[END_REF] [START_REF] Morency | Contextual recognition of head gestures[END_REF] [START_REF] Matsumoto | An algorithm for real-time stereo vision implementation of head pose and gaze direction measurement[END_REF] Recently, wearable devices based on sEMG have become quite attractive in the human gesture recognition domains, as these devices are used to capture the characteristics of the muscles. In general, the sEMG signals obtained from a human arm contain enough information concerning the intended and performed hand gestures (Saponas, T.m Tan, S.,[START_REF] Saponas | Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces[END_REF].[START_REF] Wheeler | Gesture-based control and EMG decomposition[END_REF] introduced a gesture-based control system utilizing sEMG signals taken from a forearm, where the proposed systems were successfully able to act as a joystick movement for virtual devices. Furthermore, Saponas et al.[START_REF] Saponas | Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces[END_REF] proposed a technique based on ten sEMG sensors worn in a narrow band around the upper forearm to separate finger presses' position and pressure.
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 31 Figure 3-1 Amputation case with the user wearing a Myo armband
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 32 Figure 3-2 Schematic chart of the process for bionic arm control

  Figure 3-3 shows the raw sEMG signals acquired by Myo while the user performs hand gestures prior to signal processing. The sEMG sensors of the armband are numbered from 1 to 8 to be able to match the signals with the muscles. Sensor 3 is placed in the area least affected by the surrounding muscles.
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 33 Figure 3-3 Eight (sEMG) sensors raw data for wave-out hand action

Figure 3 - 4

 34 Figure 3-4 Bionic arm 3D model on computer-aided design (CAD) software.

  Artificial HandA 3D model assembled of the open-source Brunel hand was made to ensure the fitting between the arm and the hand. The hand consists of 9 degrees of freedom and 4 degrees of actuation. It can perform complex tasks with precision. The four linear motors are attached to threads along with springs to allow smooth linear motion. These linear actuators consist of feedback that allows the control of the location of the fingers precisely. Most parts are printed with Polylactic Acid (PLA) material to provide a strong structure, whereas the outer layer and the joints are printed with Thermoplastic polyurethane (TPU) to provide a soft cushioning and flexible movement. Small printers were used for the small parts and an industrial-size printer for the larger pieces. The complete hand fabrication required less than 2 kg of filament. The total weight of the Brunel's hand adds up to just below 350 grams.
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  Figure 3-5 Case 1: Stress results at 3.350 Kg load
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 3 Figure 3-11 Bionic Arm load test Figure 3-12 Amputee wearing the bionic arm

  All the data acquired by Myo armband transferred wirelessly via Bluetooth at a fixed sampling rate of 200 Hz and transmitted serially to a PC. Each transmitted serial datum corresponds to a gesture. These signals are compared with the trained model of gestures. A graphical user interface (GUI) screen for interfacing with the user was developed to indicate the detected gesture. The GUI also shows the orientation of the arm in real-time. The Myo EMG sensors' detected gesture was mapped to perform hand movements; for example, closing the hand, opening the hand, closing one finger, or two fingers. These actions are achieved by precise control of the linear actuators' motion inside the bionic hand. The control signals are transferred through the Chestnut board to actuate the linear actuators of the hand. Although the bionic arm hardware was customized for a single user, the software was meant to be adaptable for any user. The chestnut board is programmed by Arduino based language. Consequently, sets of gesture data were collected from different participants to enable feature extraction and classification, as detailed in the following section. The flowchart explains the procedure of controlling the bionic arm shown in Figure 3-14.

Figure

  Figure 3-13 Chestnut board controller

  First, the raw sEMG signal which are acquired by a sampling rate of 200 Hz was modified by removing its mean value, resulting in an AC coupled signal. Next, a band-pass filter was used to remove distortions and non-EMG effects from the recorded signal. Generally, raw EMG signals have a frequency between 6-500 Hz. However, specific fast oscillations, which are caused by unwanted electrical noise, may appear within the signal frequency band. Furthermore, slow oscillations, which are caused by movement artifacts or electrical networks, may also contaminate the EMG signals. These unwanted signals can be removed from the original EMG signal using a bandpass filter with cut-off frequencies between 20 and 450 Hz. The resulting data signals may be further rectified by taking the absolute value of all EMG values. This step will ensure that negative and positive values of the EMG signals will not cancel each other upon further analysis, such as calculating the mean values of the absolute EMG signal or obtaining other features. Finally, the second phase was be concluded by capturing the envelope of the filtered and rectified EMG signal, as the obtained shape gives a better reflection of the forces generated by the muscles. The signal length is 1000 samples.
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 3 Figure 3-15 summarizes phase two steps: figure (a) shows a raw EMG signal obtained in one channel. Figure (b) illustrates the second step, in which the mean value of the signal was deducted from the signal. Figure (c) presented in the bottom left shows the signal after a passband filter was applied, and then the absolute values of the filtered signal were taken. Finally, figure (d) shows the envelope of the processed signal. These four steps will be used to process all sEMG signals.
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 3 Figure 3-15 Filtered and rectified EMG signal (a) Raw sEMG signal, (b) Mean value removed sEMG signal, (c) Filtered and rectified sEMG signal, (d) sEMG envelope signal

  to 116 and 48, respectively. The tanh, which is the hyperbolic tangent function, is considered the ANN's activation function. The training procedure is achieved using an optimizer called the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm. In the decision tree classifier, a Gini impurity was used to measure the split's quality. The lowest number of samples required to split an internal node is two, and only two samples are needed for every leaf node. To obtain an accurate SVM classier, one should select the correct value for the regularization parameter C, which is, in this case, C = 80, and the kernel parameter g = 0.04.The parameter values for the three classifiers were selected after performing a crossvalidation process for each classifier. Each classifier was used to train and test the same dataset for a different set of parameters. The best model for each version of the three classifiers was selected based on its performance. Next, a statistical study was used to compare the testing results to choose the best classifier among the three classifiers (ANN, SVM, and DT classifiers). First, each classifier was run for thirty trials, and the testing accuracy for the classification was stored in a table. The SVM classifier provided the highest classification result with a mean value of the training data equal to 91.21% and a standard deviation of 1.92%.

  5, respectively. The four gestures presented in the tables are close, open, wave-in, and wave-out and the reported results represent a classification trial based on the SVM classifier. As observed, the accuracy for both training and testing procedures was higher than 82%. The results also indicate that the misclassification between gestures is relatively low and mostly happens between the open and close gestures.
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 3 Figure 3-16 (a)Writing with the pen (two fingers closed action); (b) holding of a notebook (one finger closed action); (c) using the PC mouse (one finger closed action); (d) holding a ball (fist action).

Figure 3 -

 3 Figure 3-17 Success rate of hand actions.

  format. Features are extracted from the collected database. The extracted features are used to train and test the offline classifiers using numerical tools. There are three phases of data flowchart, data collection, data processing, and feature extraction (Said, S., Boulkaibet, I., Sheikh, M., Karar, A. S., Alkork, S., and Nait-ali, A., 2020) (Barioul, R., Ghribi, S. F., and Kanoun, O., 2016).
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 41 Figure 4-1 EMG Authentication System Schematic ChartA set of instructions is prepared to apply them for all users as a data collection protocol to ensure the 56 users' data. The users were instructed to adjust their elbow joint at an angle of 90° during the data acquisition. Each volunteer collected the dataset that forms the biometrics password in several sessions to ensure that the user can perform the same pattern, which

  Figure 4-3 shows the PSD of sEMG signal.

Figure 4 - 3

 43 Figure 4-3 PSD of EMG signal Figure 4-4 Segmentation of EMG signal
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 46 Figure 4-5 Average Testing Accuracy of Verification System

  -acquired EMG signals have a complicated wave-form. They are quasi-random. They contain important information, and features related to the users' identity and workings and contamination have always been a challenging task. That is why the sEMG signal needs to be processed initially. One of the most critical steps in sEMG processing is feature extraction. In feature extraction, the operations need to be applied to raw signals to transform the movement into a reduced representation set of features. This process will reduce the dimensionality of the input data and highlight only the needed information. There are three types of features in different domains; Time, Frequency, and Time-Frequency distribution, which each of these categories uses in specific applications. For the biometrics user's identification system, five different time-domain features are extracted from the signals in order to recognize the users enrolled in the database. These features are standard deviation, skewness, zero-crossing rate, mean absolute of the EMG signal, and the maximum value of the logarithm of absolute of EMG.
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 51 Figure 5-1 Biometrics Identification System Schematic Chart

  However, the ConvNets model shown in Figure 6-1 (Côté-Allard, U., Fall, C. L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K., and Gosselin, B, 2019) was complicated, and the LSTM model was introduced in (Wu, Y., Zheng, B., and Zhao, Y., 2018), which led to expensive computation in sEMG signal training and long-time training. Therefore, a simple network model with fewer parameters was needed to be used in the biometrics system.
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 61 Figure 6-1 Schematic diagram of ConvNet architecture (Chen, L., Fu, J., Wu, Y., Li, H., & Zheng, B., 2020) The sEMG signals are converted to images generated by a heat map continuous wavelet transform of signals, these images are called scalogram. The CNN model architecture used to train and test the sEMG signals dataset is called squeeze net (Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K., 2016). For a given accuracy level, multiple CNN structures are typically existing that achieve that accuracy level. For a given equivalent accuracy, a CNN architecture with fewer parameters has several advantages over the other structures.
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 62 Figure 6-2 Schematic Chart of Users verification System using Deep Learning6.2.1 Input Generation

  rejected class is formed by one image from the remaining user's images. The test set also is formed similarly. This time 30% of valid user's data is used for the training set. Since there are 56 users, the training set consists of 69 images (14 granted and 55 rejected), and the test set consists of 61 images (6 granted and 55 rejected) for each user.
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 63 Figure 6-3 Generated Scalograms of 6 different sEMG signals for different users, (a)User 1,(b)User 2, (c)User 3, (d)User 4, (e)User 5, (f)User 6.
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 64 Figure 6-4 Organization of Fire Modules in the Convolutional LayerThe Squeeze-Net starts with a separate convolution layer (conv1), then 8 Fire modules, and finishes with a final conv layer (conv10). The number of filters increases per fire module from

  Figure 6-5. It consists of three phases. In the first phase, both raw and denoised sEMG signals are used for the generation of scalograms. This is applied to training data to increase the number of samples for training the CNN model and it can be considered as an offline data augmentation to overcome the problem of data limitation as it is required to train a network to identify the users by sEMG signals without extracting the features in advance. After input generation, inputs are used for training and testing the CNN model, which is squeeze-net. Data augmentation is applied to the generated scalograms to increase the classifier's data input for better results.
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 65 Figure 6-5 Schematic Chart of Users Identification System using Deep Learning 6.3.1 Input Generation
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 66 Figure 6-6 Denoised Signal using Different Threshold Values6.3.3 Data Augmentation
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 67 Figure 6-7 Scalograms of Denoised Signal using Different Threshold Values

  recent years, deep learning has achieved great success in the field of image recognition. A deep neural network is used in the classification of bio-signal data. The sEMG signals of a channel can form a graph, by applying a wavelet transform of sEMG signals. This is a great concept to convert the sEMG signal into an image. This allowed for a generation of images to represent the signals. These images are called scalograms of sEMG signals. In deep learning algorithms, the final test accuracy is directly proportional to the size of the training data; one participant can't produce tens of thousands of sEMG signals to be enough to train the model with deep learning. Therefore, a large amount of data can be obtained by augmenting the recorded data of multiple participants so that the model can be well pre-trained to reduce the amount of data required to be obtained from hundreds of users. Meanwhile, designing a compact deep neural network structure to reduce the number of parameters can also reduce the need for big data size. The squeeze-net structure is used in the training of augmented sclaograms generated by sEMG signals. The obtained average accuracy of the CNN structure

  disadvantages. The work presented in this thesis is based on Multi-channel sEMG signals acquired by using Myo armband, which is a wearable bracelet contain eight dry sEMG electrodes.The thesis proposed a detailed design of a customized 3-D printed bionic arm with an artificial hand. The bionic arm is implemented and tested on an amputee case with right arm amputation from his born. According to the state-of-the-art systems, a gesture recognition based on sEMG signals has been implemented. A database of sEMG created for generic control of a bionic arm consists of four hand gestures (fist, spread fingers, wave-in, wave-out) from a wide range of participants to control four hand movements. The 3-D printing technology offered an affordable price solution for 295$. The collected data were processed, and feature extraction was performed to training a classifier. Real-time testing of a bionic arm with a gesture recognition system is presented. Machine learning classifiers are tested, and results are compared to find the optimum algorithm to be used with sEMG data. The support vector machine classifier was found to out-perform the neural network and decision tree classifiers, reaching an average of 90.5%% accuracy. Real-time testing of the bionic arm with the associated classifier software enabled the user to perform his daily activities

  accuracy reached 99% during testing the classifier when only 30 users out of 56 users are selected for training the classifier. In recent years, deep learning has achieved great success in the field of image recognition. A deep neural network is used in the classification of bio-signal data. The sEMG signals of a the pictures to augment them. Augmenting the sEMG signals by using gaussian noise has not been tested on this database.
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  The database is created from 56 able-bodied users. Features are extracted in the frequency domain and time domain to optimize the results. Several classifiers based on K-nearest

	Neighbours (KNN), Linear Discernment Analysis (LDA), and Ensemble of Classifiers
	are constructed, trained, and statistically compared. False acceptance rate (FAR) and
	False Rejection Rate (FRR) are calculated for each classifier to evaluate the biometrics
	verification system's performance. In the user's identification system, features are

  Data augmentation is a technique that helps to increase the database of sEMG signals to avoid data acquisition from more users and more samples from each user. The sEMG signals are converted into images by applying continuous wavelet transform. These images are augmented to provide more data to be fed into the deep neural network. The biometrics systems result in using deep learning will be presented. Chapter 7 presents the conclusion and perspectives of the thesis. Introduction ............................................................................................................... 24 1.2 Wearable systems on the market ............................................................................... 25 1.2.1 BITalino Kit ....................................................................................................... 25 1.2.2 MySignals Kit .................................................................................................... 26

	1 Chapter 1 Generalities about Wearable
	Technology systems
	Chapter Content
	1.1

1.2.3 Myo Armband .................................................................................................... 27 1.3 EMG Signal ............................................................................................................... 28 1.4 Wearable Technologies in Bionic arm ...................................................................... 29 1.5 Wearable Technologies in Biometrics ...................................................................... 30 1.6 Conclusion ................................................................................................................. 33 Summary: The chapter briefly introduces the wearable technologies applications in biomedical, biometrics research, and biomechatronic applications. The wearable devices nowadays are equipped with multiple biosensors. Research in prosthetic devices has generated great attraction in the last decade as the number of amputees is increasing. The advances in wearable devices help in the development of bionic devices. Utilizing the fact that the wearable devices are made to be always with the owner, this makes wearable systems can effectively perform the biometrics rule of authenticating a user. The chapter offers a brief introduction about different wearable systems available in the market that offer the user the ability to acquire different bio-signals. The chapter focused on the definition of EMG signal used in this work by acquiring it using Myo armband, which is explained in this chapter.

  Complete Kit includes seventeen sensors that allow the user to measure 20 different biometric parameters. The parameters are oxygen in the blood, pulse rate, breath rate, oxygen in the blood, electrocardiogram signals, blood pressure, muscle electromyography signals, glucose levels, galvanic skin response, lung capacity, snore waves, patient position, airflow, and body scale parameters (weight, bone mass, body fat, muscle mass, body water, visceral fat, Basal Metabolic Rate, and Body Mass Index). With all the sensors and features allow MySignals Kit to be the complete eHealth platform in the market. All the data acquired by

	Unlike other EMG sensors, the Myo armband does not require the wearer to shave the area
	around which the armband electrodes will be worn. This allows for more comfortable setup
	procedures in real-world environments. The Myo armband weighs 93 grams, which gave it the
	ability to be wearable for a long time without uncomfortable feeling to the wearer. The Myo
	armband design is thin with a thickness of 0.45 inches (1.14 cm), which allows it to be worn
	under the shirts.
	The Myo armband structure shown in Figure 1-1 has eight medical dry grade stainless steel
	MySignals is encrypted for personal information security and sent to the user's private account EMG sensors like other surface electrodes (sEMG), the EMG signals returned by the sensors
	at Libelium Cloud through Wi-Fi or Bluetooth. The data can be visualized in any smart devices represent the electric potential of the muscles because of muscle activation (Myo Armband,
	ranging from smartphones to PCs.
	1.2.3 Myo Armband
	Myo Armband is the basic concept of Human-Computer Interaction (HCI) in which humans
	interact with computers and design technologies that let humans interact with computers
	interactively. Hence Myo is a new way that is used to control the real-life applications by the
	human. The structure of Myo consists of the EMG (electromyography) sensor and an Inertial
	Measurement Unit (IMU), which includes a gyroscope, accelerometer, and a magnetometer (S.
	Rawat, S. Vats and P. Kumar, 2016) (Myo Armband, n.d.).
	Thalamic Labs developed Myo Armband. Myo is an armband that can be worn on the forearm
	below the elbow controlled by human gestures and movements. With Myo's help, many tasks
	are done easily, like controlling lights, robots, drones, and change slides of the presentation by
	just waving a hand in lectures. Myo can be used to interface with software and electronics by
	their gestures and hands movement. Myo plays a vital role in the medical field; doctors can
	examine the EMG reports and control their electronic devices (S. Rawat, S. Vats and P. Kumar,
	2016).
	Myo Armband detects the electrical activity in forearm muscles just below the elbow. The
	human forearm has different types of muscles, each of which has another arrangement, and
	these muscles control the movement of the wrist, such as moving fingers, making a fist, turning
	left or right.
	Myo armband is designed in a wearable way. It can fit in the human forearm easily. Sizing
	clips are available, which allow for a more constrained grip, better suited for smaller arms. The
	sizing clips enable it to expand between 7.5 -13 inches (19 -34 cm) forearm circumference.

It is used to develop eHealth web or even to build new medical wearable devices. MySignals hardware (HW)

1.3 EMG Signal

  

	of more than one muscle simultaneously. (Qingqing Li, Penghui Dong and Jun Zheng, 2020)
	(Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., and Whittlesey, 2014).
	There are two types of EMG: surface EMG (sEMG) and intramuscular EMG (imEMG).
	sEMG signals which are used in this work are obtained by measuring muscle activities on the
	skin surface. On the other hand, imEMG signals are recorded from the muscle tissue acquired
	by percutaneous wire needle electrodes inserted into a muscle with a surface electrode on the
	skin as a reference. Compared with imEMG, sEMG is a way more convenient to acquire and
	is non-invasive. In this study, sEMG signals are recorded from the forearm muscle as the
	biometric information for user verification. The sEMG signals are obtained using the 8-channel
	wearable bracelet. Figure 1-2 shows the raw sEMG signal from one electrode acquired by Myo
	armband, while the user performs three hand gestures before signal processing.
	EMG signals record the electric potential activities generated by skeletal muscles, which
	usually have a potential difference when the muscles are electrically or neurologically
	activated. Therefore, when recording EMG signals, at least one pair of electrodes are needed
	to capture the signal. Sometimes an array of multiple electrodes is used to record the activities

Table 1 -1

 1 Examples of crimes using physical features

	Country	Details
	USA	Hacking using live images of the registered user's face
	Brazil	Passing through the entrance using fake silicon fingerprint
	Korea	Korea Financial accidents 3-Dimensional (3-D) printed fake fingerprint
	Japan	Japan Electronic passports using fake fingerprint
	Russia	Russia Hacking using the iris reproduced from the president's photo
	1.6 Conclusion	
	Wearable systems are used in several applications such as biomedical devices control and
	biometrics systems to control user and clinical applications access. sEMG sensors are used to
	record the electric potential activities generated by skeletal muscle. Different available methods
	on the marker are presented, focusing on the Myo armband, which will be used in this research.
	The applications of sEMG signals in the bionic arm are important to control the devices'
	actuation by the users' muscles. Also, sEMG signals in biometrics applications are discussed
	in this chapter. The thesis focuses on sEMG signal applications to control a 3D printed Bionic
	arm and control users' access to the biometrics system.
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  Gesture Acquisition SystemsSeveral hand acquisition systems have been proposed aiming to detect hand gestures. The work in (Gunawardane, P. D. S. H., and Medagedara, N. T., 2017) compared to the Leap Motion Controller's use to track the human hand's motion with a data glove using flex sensors, gyroscopes, and vision data. The results showed that the Leap Motion Controller had high

potential and high repeatability for soft finger type applications. Researches showed that the Leap Motion controller is used to detected gestures

[START_REF] Pramunanto | Classification of hand gesture in Indonesian sign language system using Naive Bayes[END_REF] 

[START_REF] Canavan | Hand gesture recognition using a skeleton-based feature representation with a random regression forest[END_REF]

. Siji Rani et al. (Rani, S. S., Dhrisya, K. J., and Ahalyadas, M., 2017) used a new Hand Gesture Control in the Augmented Reality System (HGCARS). A secondary camera is used in gesture recognition, and the reality is recorded using an Internet Protocol (IP) camera. The video obtained from the IP camera is fed with a virtual object and controlled using the position and depth of hand, measured using a webcam. Hafiz et al. (2017) (H. M. Abdul-Rashid, L. Kiran, M. D. Mirrani and M. N. Maraaj, 2017)

  [START_REF] Zhao | A miniaturized wearable wireless hand gesture recognition system employing deep-forest classifier[END_REF] recognized the pattern of hand gestures using a modified deep forest algorithm.In the research conducted by Jinxing, Jianhong et al.[START_REF] Yang | sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model[END_REF], the hand gesture was modeled and decomposed using Gaussian Mixture Model-Hidden Markov Models (GMMHMM); GMMs are used as sub-states of HMMs to decode the sEMG feature of gesture.Whereas Marco et al.[START_REF] Benalcázar | Hand gesture recognition using machine learning and the Myo armband[END_REF] used the dynamic time warping algorithm along with the k-nearest neighbor rule together for the classification. Naive Bayes is applied as the training method for classification

	3D-printing is categorized as an additive manufacturing technique. The products are built up
	layer by layer, which is different from other manufacturing processes based on removing
	material from a large piece of material, such as in Computer Numerically Controlled (CNC)
	milling. 3D-printing has several benefits in comparison with other manufacturing techniques

). Jian et al. (J. Zhao, J. Mao, G. Wang, H.

[START_REF] Pramunanto | Classification of hand gesture in Indonesian sign language system using Naive Bayes[END_REF]

. Multiple linear discriminant analysis (LDA) classifier was adopted to classify different hand gestures

[START_REF] Bulugu | Higher-order local autocorrelation feature extraction methodology for hand gestures recognition[END_REF]

.

2.2.2 Review of 3D printed Bionic Arm

3D printing of upper limb prostheses has been significantly developed over the last five years. All over the world, people customize the designs and printing new devices that can easily fit an amputee's arm. Several kinds of research have been published in 3D-printed upper-limb prostheses (Gretsch, K. F., Lather, H. D., Peddada, K. V., Deeken, C. R., Wall, L. B., and Goldfarb, C. A., 2016) (O'Neill C., 2014).

The cost of a commercial body-powered prosthetic hand ranges from $4000 to $10,000

[START_REF] Resnik | Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation[END_REF] 

while the cost of an externally powered prosthetic hand can range from $25,000 to $75,000 (van der Riet, D.,

[START_REF] Van Der Riet | An overview and comparison of upper limb prosthetics[END_REF]

. The development of a 3D-printed hand prosthesis aimed to offer an affordable low-cost commercial prosthesis for people who cannot afford an expensive prosthesis.

[START_REF] Doubrovski | Optimal design for additive manufacturing: opportunities and challenges[END_REF] 

  with a two-channel electrode system's assistance. A set of metrics, such as the mean, length, variation, zero crossings, and median frequency, were extracted from the signals to enhance the identification rate and formulate a machine learning algorithm. The artificial Neural Network (ANN) algorithm showed a relatively high accuracy of 81.6%. Holi et al.Steps in analyzing the EMG signals have been presented by Sakshi Sharma et al.[START_REF] Sharma | Feature extraction and classification of surface EMG signals for robotic hand simulation[END_REF]. Initially, the surface EMG signal is captured from the subject's forearm using a discrete wavelet transform. Then, the singular value decomposition is used for feature extraction.

	(Krishnamohan, P. G., and Holi, M. S., 2011) used vector quantization and the Gaussian Moreover, classifiers based on fuzzy-logic are used to recognize various hand gestures in the
	mixture model to obtain the EMG signals for biometric applications. The identification rate of context of linguistic terms. Zainal Arief et al. (Arief, Z., Sulistijono, I. A., and Ardiansyah, R.
	97.9% was achieved, with an average of 73.33% obtained from 49 individuals. The experiment A., 2015) used Myo armband with eight channels electromyography (EMG) located on forearm
	demonstrated that EMG signals alone could produce user distinguishable biometric data. Al-muscles and extracted five different features to obtain significant differences in hand gestures.
	Mulla et al. (Al-Mulla, M. R., and Sepulveda, F., 2014) presented a novel Pseudo-Wavelet The time-series features extraction that evaluated are Mean Absolute Value (MAV), Variance
	function for MMG signal extraction during dynamic fatiguing contractions. 8-electrode bio-(VAR), Willison Amplitude (WAMP), Waveform Length (WL), and Zero Crossing (ZC).
	Development and optimization of the sEMG feature extractions and classification for the
	control of prostheses and biometrics applications is today an active research topic, even though
	the analysis is mainly performed from a machine learning perspective (Benatti, S., Milosevic,
	The information extracted from B., Farella, E., Gruppioni, E., and Benini, L., 2017) (Englehart, K., and Hudgins, B., 2003)
	sEMG signals obtained via a human arm is sufficient for classifying intended hand gestures (Englehart, K., Hudgins, B., Parker, P. A., and Stevenson, M., 1999). The feature extraction
	(Saponas, T.m Tan, S., Morris, D., and Balakrishnan, R, 2008). This work's primary objective phase transforms the raw signal data into a valuable data structure by removing noise and
	is to demonstrate the utilization of the sEMG multi-channel wearable armband in verifying

individuals' identity with the application of Machine learning algorithms. subjects impedance analysis (BIA) wrist band has been used to measure to identify users. The success rate with BIA was 85%, and by adding circumference with 1mm accuracy, they pulled up the result to 90%. Hisaaki Yamaba et al.

[START_REF] Yamaba | Evaluation of feature values of surface electromyograms for user authentication on mobile devices[END_REF] 

presented a method that uses a list of gestures as a password for EMG user's verification system for mobile phone access. Fourier transform has been used to extract the features from the EMG signals. James Cannan et al.

[START_REF] Cannan | Automatic user identification by using forearm biometrics[END_REF] 

presented a method for enhancing EMG usability based on identifying a user.

Experiments were performed to identify small group sizes of 4, 10, and 19. The results show average identification accuracies across all 11 gestures of 55.32%, 75.44%, and 90.32% for groups of 19,10 and 4 subjects, respectively. Ryohei Shioji et al.

(Shioji, R.

, Ito, S. I., Ito, M., and Fukumi, M., 2017) used eight dry sensors to measure EMG from the wrist and carry out personal verification approach. A convolutional neural network (CNN) is used in the learning phase for verification. Data collected from 8 individuals, 40 data for everyone. The average accuracy of the two-class separation was 94.9 % by CNN.

detecting the crucial data. There are three divisions of features essential in the processing of an EMG based control system. These features might be in the time domain, frequency domain, and the time-frequency domain

[START_REF] Zecca | Control of multifunctional prosthetic hands by processing the electromyographic signal[END_REF]

.

MAV and WL are found to be giving a better recognition rate.

[START_REF] Chantaf | ECG modelling using wavelet networks: application to biometrics[END_REF] 

captured EMG signals from the BIOPAC system.

Then, seven frequency domain features (e.g., average frequency, kurtosis, median frequency) are extracted and classified using a Radial Basis Function (RBF) network. The system accuracy estimated was 80%. Yamaba et al. presented a method that is based on a list of gestures as a pass-gesture (i.e., password). They manifested that the same gestures obtained from the same person are similar in behavior, but they are different from those of other persons

(Yamaba, H., 
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Table 3 -1 Stress Analysis Results Force Apply Stress [MPA] Displacement [mm] Strain

 3 

		Max	Min	Max	Min	Max	Min
	350 grams on the edge	0.16	0	0.017	0	5.38×10 -5	0
	350 g + 2 Kg on the edge	1.087	0	0.117	0	3.65×10 -4	0
	350 g + 3Kg point	1.549	0	0.167	0	5.20×10 -4	0
	350 g + 2kg distributed	1.76	0	0.1456	0	5.68×10 -4	0

Table 3 -2

 3 Detailed cost analysis of the bionic arm

	Index	Property	Value
	1	Time to print and assemble the hand	28 h
	2	Time to print the arm	10 h
	3	Total weight without support material	78.78 g
	4	Material Cost	$32.4
	5	Hand print	$20
	6	Electronics	$20
	7	Actuators	$240
		Total Cost	$295

Table 3 -3

 3 Training and testing results for the three classifiers

	Method	Training	Testing
	SVM	91.21% ± 1.92%	90.5 % ± 1.75%
	ANN	84.78% ± 4.11%	83.91% ± 2.3%
	DT	73.46% ± 4.87%	70.51% ± 2.51%

Table 3

 3 

	-4 Confusion Matrix for the Support
	Vector Machine (SVM Classifier) Training
	(93.75%)

Table 3 -

 3 

	Gesture	Close	Open	Wave-In	Wave-out	Gesture	Close	Open	Wave-In	Wave-out
	Close	91.23% 5.26%	0%	3.51%	Close	94.64 %	0%	3.57%	1.79%
	Open	3.34%	95%	0%	1.66%	Open	6.35%	88.89%	0%	4.76%
	Wave-In	0%	3.64% 96.36%	0%	In Wave-	3.75%	0%	96.30%	0%
	Wave-out	4.41%	0%	2.94% 92.65%	out Wave-	8.45%	0%	20%	91.55%

5 Confusion matrix for the SVM classifier: Testing (accuracy: 92.62%).

Table 4 -

 4 1 Selected Parameters for the Classifiers in Users Verification System

	k-nearest Neighbors	
	Number of neighbors	2
	Distance metric	Minkowski
	Distance Weight	Inverse
	Exponent	0.57
	Linear Discriminant Analysis	
	Delta	0.01
	Gamma	0.7
	Discriminant Type	PseudoLinear
	Ensemble Classifier	
	Weak Learner	Decision Tree
	Method	GentleBoost
	Number of Learning Cycles	11

Table 4 -

 4 2 Results of Biometrics Users verification System

			kNN			Discriminant			Ensemble	
	User Name									
		Acc.	FAR	FRR	Acc.	FAR	FRR	Acc.	FAR	FRR
	User 1	98.4	0	1.8	98.4	0	1.8	98.4	0	1.8
	User 2	98.4	0	1.8	96.7	0	3.6	98.4	0	1.8
	User 3	90.2	0	10.9	93.4	16.7	5.5	100	0	0
	User 4	98.4	0	1.8	100	0	0	100	0	0
	User 5	96.7	0	3.6	96.7	0	3.6	98.4	0	1.8
	User 6	98.4	0	1.8	100	0	0	100	0	0
	User 7	93.4	0	7.3	100	0	0	98.4	0	1.8
	User 8	95.1	0	5.5	100	0	0	98.4	16.7	0
	User 9	98.4	0	1.8	100	0	0	98.4	16.7	0
	User 10	96.7	0	3.6	100	0	0	96.7	33.3	0
	User 11	100	0	0	100	0	0	98.4	0	1.8
	User 12	95.1	0	5.5	100	0	0	100	0	0
	User 13	96.7	0	3.6	95.1	0	5.5	100	0	0
	User 14	96.7	0	3.6	96.7	0	3.6	98.4	0	1.8
	User 15	93.4	0	7.3	98.4	0	1.8	100	0	0
	User 16	100	0	0	100	0	0	98.4	0	1.8
	User 17	93.4	0	7.3	95.1	0	5.5	93.4	33.3	3.6
	User 18	100	0	0	100	0	0	98.4	16.7	0
	User 19	100	0	0	98.4	0	1.8	100	0	0
	User 20	100	0	0	98.4	0	1.8	100	0	0
	User 21	95.1	0	5.5	95.1	0	5.5	95.1	33.3	1.8
	User 22	95.1	0	5.5	98.4	0	1.8	98.4	0	1.8

  Table 5-1 shows the selected parameter for each classifier used in the data's training and testing.

Table 5 -

 5 1 Selected Parameters of the Classifiers in Identification System

	k-nearest Neighbors	
	Number of neighbors	2
	Distance metric	Minkowski
	Distance Weight	Inverse
	Exponent	0.57
	Linear Discriminant Analysis	
	Delta	0.01
	Gamma	0.7
	Discriminant Type	PseudoLinear
	Ensemble Classifier	
	Weak Learner	Decision Tree
	Method	GentleBoost
	Number of Learning Cycles	11
	Learning Rate	0.95
	Minimum Leaf Size	22
	Maximum number of Split	1

  The best model for each version of the three classifiers (KNN, LDA, and Ensemble classifier) was selected based on its performance. Next, a statistical study was used to compare the testing results to choose the best classifier among the three classifiers (KNN, LDA, and Ensemble classifier). First, each classifier was run for thirty trials, and the average testing accuracy for the classification was stored in a table. The KNN algorithm produced the highest testing accuracy of 86.01%. The LDA classifier provided a testing accuracy equal to 82.74%. Furthermore, the ensemble classifier provided a mean value of the testing accuracy equal to 75.89%. The results of the three classifiers' average accuracy are presented in Table5-2. The detailed results of the biometrics users identification system analyzed user by user are shown in Table5-3.

Table 5 -

 5 2 Classifier Accuracy for users identification system

	Classifier	Accuracy (%)	Number of Correctly Classified Signals	Number of Incorrectly Classified Signals
	kNN	86.01	289	
	Discriminant Analysis	82.74	278	
	Ensemble Classifier	75.89	255	

Table 5 -3

 5 Results of EMG Identification System

	User		kNN			LDA			Ensemble
	Name	Correct	Incor.	Accu.	Correct	Incor.	Accu. Correct	Incor.	Acc.
	User 1	6	0	100	0	6	0	1		16.67
	User 2	3	3	50	0	6	0	0		0
	User 3	6	0	100	6	0	100	6		100
	User 4	6	0	100	6	0	100	6		100
	User 5	6	0	100	0	6	0	0		0
	User 6	6	0	100	6	0	100	6		100
	User 7	6	0	100	6	0	100	6		100
	User 8	6	0	100	6	0	100	6		100
	User 9	6	0	100	6	0	100	6		100
	User 10	6	0	100	6	0	100	6		100
	User 11	6	0	100	6	0	100	6		100
	User 12	6	0	100	6	0	100	6		100
	User 13	6	0	100	6	0	100	6		100
	User 14	6	0	100	6	0	100	6		100
	User 15	6	0	100	6	0	100	5		83.33
	User 16	6	0	100	6	0	100	6		100
	User 17	5	1	83.33	1	5	16.67	0		0
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	6.1 Introduction
	applying a convolutional neural network (CNN) instead of classical machine learning (ML) is
	Utilizing deep neural networks in the classification of sEMG signals has been proposed by to avoid the features extraction phase needed in classical machine learning. CNN extracts the
	researchers. Wu et al. (Wu, Y., Zheng, B., and Zhao, Y., 2018) proposed LCNN and features from input data by itself. However, the time-frequency representation of input signals
	CNN_LSTM models. The main advantage of these models is that it can be thought of as is useful when training the CNN model (Madhavan, S., Tripathy, R. K., and Pachori, R. B.,
	autoencoders for automatic feature extraction, which does not require traditional feature 2019).
	extraction. The features extraction process requires all efforts and time to optimize the
	parameters to get the maximum training and testing accuracy in the classical machine learning AlexNet deep neural network proposed by Krizhevksy et al. (Krizhevsky, A., Sutskever, I.,
	approaches. and Hinton, G. E., 2012) who won the ImageNet challenge in 2012, deep learning proposed
	has achieved great success in speech recognition image classification, and other fields. Images
	Summary: Recently, deep learning algorithms have become increasingly more prominent for their In recent years, deep learning has achieved great success in the field of image recognition. A can be accurately classified by training the neural network model to learn the characteristics of
	unparalleled ability to learn from large amounts of data automatically. In the field of fantastic idea was presented in (Côté-Allard, U., Fall, C. L., Drouin, A., Campeau-Lecours, A., images. Nowadays, exploring network architecture has become part of deep learning.
	electromyography-based biometrics systems, deep learning algorithms are seldom employed as they Gosselin, C., Glette, K., and Gosselin, B, 2019), (Cote-Allard, U., Fall, C. L., Campeau-
	require an unreasonable amount of effort from a single person to generate tens of thousands of Lecours, A., Gosselin, C., Laviolette, F., and Gosselin, B., 2017) ta channel's sEMG signals Currently, sEMG signal classification deploying deep learning has been successfully used by
	examples. In this chapter, data augmentation is used to create a big database out of a smaller database can form a graph after the short-time Fourier transform or wavelet transform of sEMG signals. some researchers and explored several effective network frameworks (Zia ur Rehman, M.,
	used in the classical machine learning approach by augmenting multiple users' signals, thus reducing This is a great concept to convert the sEMG signal into an image. This allowed for a generation Waris, A., Gilani, S. O., Jochumsen, M., Niazi, I. K., Jamil, M., and Kamavuako, E. N., 2018).
	the recording burden while enhancing the recognition rate. Convolutional Neural Network (CNN) is of images to represent the signals. Utilizing CNN to classify sEMG signals, researchers in (Atzori, M., Cognolato, M., and Müller,
	used to train the users in the EMG biometrics system. Squeeze net neural network structure is selected
	due to its faster training time as it requires fewer parameters while maintaining the accuracy level.
	Continuous wavelet transforms (CWT) are applied to the database to estimate the EMG signals'

Researchers such as Côté-

[START_REF] Côté-Allard | Deep learning for electromyographic hand gesture signal classification using transfer learning[END_REF]

, who regarded the original sEMG signals as H., 2016) used the raw signals as input space. The spectrograms of raw sEMG signals were extracted by applying Short-Time Fourier Transform (STFT) and input into the convolutional network (Conv-Nets)

(Allard, U. C., Nougarou, F., Fall, C. L., Giguère, P., Gosselin, C., 

Table 6 -1

 6 Parameters of CWT After inputs are generated, they are treated in the same way as the previous system. Images are arranged to form a training and test set for each user. In the training set, there are two

	Wavelet Family	Analytic Morlet
	Voices Per Octave	10
	Time Bandwidth	60
	Labels, titles, and other information are removed from scalograms because this info doesn't
	have positive effects on CNN's performance.	

classes: granted and rejected. Granted class is created by 70% of valid user's data, and the

  If the model learns from a few examples of a given class, it is less likely to predict the class invalidation and test applications. Many ways can address limited data problems in machine learning. Image augmentation is an essential approach in building up convolutional neural networks that can increase the training set's size without acquiring new data from multiple users or the same users. The idea is straightforward; duplicate images with variation so the model can learn from more examples. In this study, training images are randomly translated (shifted) and scaled during training.Ioffe, S., Vanhoucke, V., and Alemi, A., 2016) family of architectures use 1x1 filters in some layers. It is an adjective to manually select the dimensions of the filter for each layer to design deep CNNs. Various higher-level modules consist of multiple convolution layers with a specific fixed organization that have been presented to accomplish this. Szegedy et al.The convolutional neural network is a deep neural network class principally applied to images for classification, object detection, segmentation, and image processing (Mahajan, N.V., Deshpande, A. S., and Satpute, S. S., 2019). A CNN can consist of several types of layers: convolution, rectified linear unit (ReLu), pooling, dropout, fully connected (FC).

	(Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A., 2016) proposed inception modules in
	GoogLeNet, which contains a set of different dimensionalities of filters, usually including 1x1
	and 3x3, plus sometimes 5x5 and sometimes 1x3 and 3x1.

6.2.4 Convolutional Neural Network Structure and Training

For around 28 years, the term Convolutions have been used in artificial neural networks. CNN has been used for a digital recognition application by

[START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF]

, which populate CNN's use at that time. The convolution filters mostly are 3D in neural networks with height, width, and channels as the key dimensions. Applying CNN filters to the images typically has three channels in their first layer, such as RGB, and the filters have the same number of channels in each subsequent layer Li. Simonyan et al.

[START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] 

proposed VGG, which are architectures extensively use 3x3 filters. Models such as Network-in-Network

[START_REF] Lin | Network in network[END_REF] 

and the GoogLeNet

(Szegedy, C., 

  Table 6-2. When CNN models are being trained, early stopping is applied to avoid over-fitting of the models. Therefore, each CNN model is trained with a different number of iterations.

Table 6 -

 6 2 Parameters for training fine-tuned Squeeze-Net

	Optimizer	Adam
	Mini Batch Size	20
	Learning Rate	10 -4
	L2 Regularization	10 -4
	6.2	

.5 Testing and Results After

  CNN models are trained, the last step is to evaluate their performances. Performance evaluation is performed using a retrained CNN model and a test set of each user. Accuracy, false acceptance rate, and false rejection rate are calculated based on the prediction made by each CNN model. The results are given inTable 6-3.

Table 6 -

 6 3 CNN Performance results for Users Verification

	User Name	Accuracy	FAR	FRR
	User 1	0.983607	0.018182	0
	User 2	0.967213	0.018182	0.166667
	User 3	0.967213	0	0.333333

Table 6 -4

 6 Parameters selected for Wavelet Denoising After several denoised versions of raw EMG signals are created, the denoised sEMG signals and raw signals are represented as images (scalograms) using CWT. Some denoised signals and their scalograms are given in Figure 6-6, and Figure 6-7. Since this procedure is employed to increase the number of training samples, the procedure is only applied to training data, namely 70% of the signals. The remaining 30% of signals, test datasets, are used as raw signals,

	Mother Wavelet	Sym4
	Denoising Method	Bayes
	Threshold Rule	Median
	Noise Estimation	Level independent
	Decomposition Level	1, 2, 3, 4, 5

Table 6 -5

 6 Parameters for Training Fine-Tuned SqueezeNet

	Table 6-6 Performance Result for User
	Identification System

I would like to thank Prof. Yacine AMIRAT, the director of LISSI Lab, for all the support he offered to me during the Doctorate study period.

Recently, there has been a growing interest in using electrical bio-signals as biometric traits, such as electroencephalogram (EEG), electrocardiogram (ECG). The demonstration of electrical activities related to the heart and brain [START_REF] Gui | A survey on brain biometrics[END_REF]. The hidden nature of electrical bio-signals makes them harder to capture than the three common modalities mentioned, synthesize, and imitate, and the inherent liveness nature ensures their robustness in distinguishing the artifacts from the real biological targets. Moreover, compared to extensive studies done on EEG and ECG, little attention was paid to the application of sEMG in biometrics.

Surface electromyogram signals (sEMG) are used as a bio-signal in hand and wrist gesture recognition [START_REF] Englehart | A robust, real-time control scheme for multifunction myoelectric control[END_REF]. However, the high performance of gesture recognition systems is limited to the condition that the training and testing data are acquired from the same user. It is concluded that even with the same settings, the control performance would drop significantly when a classifier was trained by the data from one user and used to predict the gestures from a different individual. This is due to the existence of some differences in sEMG features [START_REF] Matsubara | Bilinear modeling of EMG signals to extract userindependent features for multiuser myoelectric interface[END_REF]. This small difference makes it harder to establish calibration-free sEMG-based gesture recognition. Interestingly, such differences also suggest the possibility of sEMG signals as a potential biometric trait. sEMG signals have a hidden nature, and it is working correctly in live gesture detection. Also, the high performance of sEMG signals reached when applied in gesture recognition gives an advantage of sEMG as a biometrics modality versus EEG and ECG: the user can set their actions based on different wrist and hand combinations gestures to form a password. In this case, the system can provide two levels of protection, physiology-based and knowledge-based, appealing for high-level security targeted applications. Some researches based on the ECG/EMG sensors fusion to verify the users [START_REF] Faragó | A Correlation-based Biometric Identification Technique for ECG[END_REF]. [START_REF] Belgacem | A novel biometric authentication approach using ECG and EMG signals[END_REF] studied the usefulness of a biometric system utilizing information obtained via ECG and EMG physiological data. A non-intrusive one-lead ECG setup was adapted into the palm of the user to collect ECG biometric data. Subsequently, the authors used Fourier descriptors for feature extraction. Finally, an optimum-path forest classifier was used to distinguish between individuals.

Siho [START_REF] Shin | A study of an EMG-based authentication algorithm using an artificial neural network[END_REF] proposed a non-contact secure private verification based on EMG signals. A total of fifty signals were extracted from the arm of Furthermore, the t-test is used to identify a significant difference between the results of all three classifiers. The obtained P-values were found to be relatively small (less than 5%), which indicates that there is a significant difference between the classification results. The Holm approach was then used in the statistical investigation to show that there are statically substantial differences among the three classifiers' results, and the SVM classifier provides better accuracy than both the ANN and the DT classifiers. As a result, the SVM classification model is adopted for online classification.

In Table 3-6, various classifiers accuracies are stated to compare the results obtained with other researchers' work. In the capture phase, raw EMG signals are acquired by wearable 8-channel EMG armband.

In the process phase, features that are unique to users and distinguish individuals from one another are extracted from the raw sEMG signals and transformed into each user's signature.

This process is done in two steps, the first one is signal preprocessing, and the second one is feature extraction. The processed template is stored as a database in the hard disk, SD Card, or any other storage device for later comparisons in the Enroll phase.

Once Enrollment is complete, the system can authenticate users by means of using the prerecorded stored template (Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., and Kumar, B.

V., 1998). Verification is when a new biometric sample is captured by the individual who is authenticating with the system and compared to the stored biometric template. There are two types of users biometrics systems Verification and Identification.

Verification involves matching the captured biometric sample with the enrolled template saved and requires the user to present a specific identity claim such as a user name / unique key or card (Yamaba, H., Nagatomo, S., Aburada, K., Kubota, S., Katayama, T., Park, M., and Okazaki, N., 2015). Identification performs the process of identifying an individual from their biometric features without declaring their identity.

The biometrics verification system aims to provide enrolled users access to the system based on the individuals' specific features. The schematic chart illustrating the biometrics system steps shown in Figure 4-1. There are two paths of the diagram. The first path is to enroll the users in the system. A database of sEMG gestures that form a password of each user is created with all the units associated with signal processing, feature extraction, and machine learning to catalog the signals required to identify the user. The second path is to authenticate the user's identity by matching the enrolled users' identity with the stored database. The system grant/deny access to the users. In the biometrics verification systems, the user needs to declare his identity first, then declaring his/her biometrics identity, which is the sEMG signal in this system. A database of sEMG signals that forms a password is collected from 56 users ablebodied user.

Database Collection Protocol

The database of sEMG signal is collected from different volunteers for diverse purposes. All The characteristics of the database have a significant impact on the outcome of the evaluation.

The amount of information available that could be used to characterize the features being compared is what determines the biometrics performance later. 

Summary:

In the user's identification system, a total of 5 features are extracted from the signals to identify between the users from their biometrics identity without declaring their identity. Three classifiers are used to classify the data, KNN, LDA, and Ensemble of Classifiers as well. The average accuracy of the KNN classifier proved the concept of using the sEMG for the user's identification system.

The chapter starts with an introduction to the identification system based on the sEMG signal in section 5.1. The five extracted features in the time-domain are explained in section 5.2. Section 5.3 describes the three machine learning models. The results of the sEMG biometrics identification system are presented in section 5.4.

• Standard deviation of EMG

One of the features that are used in the detection of movements of the muscles is the standard deviation of the sEMG signal. SD is expressed as the square root of the EMG signal's power and is used to extract features from the EMG data. The SD is defined as:

(5-1)

• Coefficient of dissymmetry of EMG

Skewness is the inclination distribution of the data. It is one of the sEMG signal features that is used in the time domain function. If the average value's location, the median value, and the data model on a line in the curve, the data is called, they are typically distributed. But if these values are not located in one line in the curve occurs the skewness

(5-2)

(5-3)

(5-4)

• Zero crossing rate of EMG Zero-Crossing (ZC) is one of the features that characterize the sEMG signal. It represents the number of times the amplitude points of sEMG signal crosses zero in the x-axis. In the sEMG feature, to avoid the background noise, a threshold condition is set. Zero-Crossing gives an estimate of frequency domain properties. The calculation is defined as:

(5-5)

• Mean absolute of EMG (5-6)

• Maximum value of the logarithm of the absolute value of EMG

After calculating the absolute of the logarithmic value of the sEMG signal, the maximum value is used as one of the features that will input the classifier along with the other calculated features. Figure 5-2 shows the absolute value of the sEMG signal and the Log absolute of the sEMG signal.

)

(5-7)

Figure 5-2 Absolute and log absolute value of EMG signal

Machine Learning Models

The The chapter organized as follows, starting with an introduction to the deep learning for sEMG signals as a biometrics modality in section 6.1. The biometrics verification system applying deep learning steps are listed in section 6.2, while the biometrics identification system utilizing the deep learning approach is explained in section 6.3. The chapter ended up with a conclusion for both systems in section 6.4.

Continuous Wavelet Transform (CWT)

To input data to CNN models, time-frequency representation is used. Scalograms of channel 1 of each EMG signal are used as inputs to CNN. Scalograms are generated using a heat map of continuous wavelet transform (CWT) of the signal.

The Continuous Wavelet Transform (CWT) is used to decompose a signal into wavelets.

Wavelets are small oscillations that are highly localized in time. The Fourier Transform decomposes a signal into infinite length cosines and sines; this will cause a loss in all timelocalization information. The CWT's basic functions are scaled and shifted versions of the timelocalized mother wavelet. The CWT is used to construct a time-frequency representation of a signal that offers a good time and frequency localization. CWT can be calculated as follow:

𝑐(𝑠, 𝜏) = ∫ 𝑓(𝑡)𝛹 𝑠,𝜏 (𝑡) * 𝑑𝑡 𝑅 (6-1)

Here, 𝛹 𝑠,𝜏 (𝑡) * is the complex conjugate of mother wavelet, 𝑐(𝑠, 𝜏), is wavelet coefficients, 𝑓(𝑡) is the original signal, 𝑠 is scale, and 𝜏 is translation.

CWT is calculated by the following steps:

1. Choose a mother wavelet and measure similarity.

2. Use equation given to calculate wavelet coefficients using initial scale and translation.

3. Repeat 2 nd step by changing translation (shift) until the complete signal is covered. Here, 𝑗 is the number of scale values, and 𝑘 is the number of translation values. The same steps are followed to calculate the Discrete Wavelet Transform. 

Perspectives

In this thesis, we have encountered many challenges, and plenty of questions have been raised that lead us to further improvement and future works. These future perspectives are presented below:

• Increasing the degree of freedom of bionic arm: The bionic arm design shown in the thesis is directly attached to an artificial hand. The artificial hand has a 9 DOF that makes it able to perform the required grasping features. Adding a wrist joint mechanism will enhance the arm's functionality and make it able to do roll and yaw actions that will help perform more of the daily life activities.

• Adding feedback sensors to the bionic hand: Adding feedback sensors to the bionic hand to make it able to feel the environment. These embedded sensors to be attached to the fingertips and palm, such as pressure, heat to provide further feedback of the user surrounding objects.

• Autonomous adjustable socket: The adjustable socket presented in the thesis is adjusted by the user manually to fit his/her arm. A pressure pump with valve control can be used to adjust the fit of the socket autonomously. This section of the bionic arm is critical, as this is the contact point between the arm and the user's skin.

•