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Chapter 1

INTRODUCTION

This chapter introduces the thesis. It defines the learning outcomes and measures of achieve-
ments. Along with this, the motivation of the work is defined, and a summary of the contribution of the
research work. The chapter also includes background section on monitoring systems in Intensive Care

Units (ICUs) and typical systems weak points. Finally, the chapter outlines the structure of the thesis.

1.1 DMotivation

In ICUs a large number of variables relevant to patient monitoring like physiological variables,
laboratory data, device parameters, etc. [4] must be controlled by the physician. So, for one patient,
a physician is confronted to a flood of recorded variables during his typical morning round. This high
dimensional data exceed the human ability to identify and develop a solution considering all the ob-
servations [32]. As Miller in [57], even a senior physician is unable to provide a systematic solution to
any problem involving more than seven variables. Furthermore, human ability to identify the degree of
relatedness is limited to only two variables [48].

The use of clinical information systems (CIS) is unavoidable. On the one hand, because they
allow real time improved acquisition and storage of the electronic patient records and analyze them in
order to improve the quality of therapy and care. On the other hand, they provide physicians with
all information they need at the bedside computers. Such computers are so-called on-line monitoring
systems.

Nowadays, maost of on-line monitoring systems, which are widely used in practice, are based on
fixed thresholds alarm systems [33]. This kind of systems produce about 86% of false alarms [81] this is
mainly due to measurement artifacts such as patient movements [32] or transient fluctuations [5].

To allow for more reliable approach to intensive care therapy and on-line bedside decision sup-
port, intelligent alarm systems have been suggested [44]. These systems’ principle is to detect automati-
cally and on-line critical states from high dimensional data. Therefore, new methodological approaches

are suggested with quite different tools like a time series analysis, a statistical and automatic process
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Figure 1.2: Variance changes

control, neural networks, system theory, digital signal processing, artificial intelligence, fuzzy control [5].
Most data in CIS come in the form of time series which is a set of repeated observations of the

same physiological variable X, such as Electrocardiogram or blood pressure, where

K= gk, t=1,2,..T (1.1)

and z; is a random variable. Hence, time Series employed for automatic on-line monitoring systems
gives an option for more reliable evaluation of the patient state in ICUs. Because, time-series consists of
interesting models for the joint distribution of X. The models impose structure, which we must evaluate
to see if it captures and on-line detects the features we think are present in the data such as level changes

(see fig. 1.1), variance changes (see fig. 1.2), trends (see fig. 1.1) and outliers (see fig. 1.1).
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Actually, in critical care, a multitude of variables are measured in the course of time (e.g. heart
rate (HR), Arterial Blood Pressure (ABP), pulmonary Arterial Pressure (PAP), Central Venous Pressure
(CVP) Blood Temperature (BTemp), pulsoximetry or Arterial hemoglobin oxygen saturation (SpO2), ...
). Each variable presents a time series. But at any time ¢, if we consider a vector x¢ = (21,,Z2,, ..., Tn,)’
where cach j,, i = 1,...,n represents the observation of the variable x; at time ¢, we can observe some
interactions between its parameters. To exemplify the concept, we consider distincet clinical states already
presented in [39]. Pulmonary hypertension, septic shock, congestive hart failure and vasopressor support.
Those states are accompanied by different pathophysiological aspects of the circulation system. those
aspects may be the result of differences in the interaction between vital signs. In normal state there
are strong associations between distinct kinds of blood pressure(ABP, PAP, CVP) and week associations
between each of them and the hart rate (HR). In contrast, no association is supposed between SpO2 or
BTemp and any of the other variables (see fig. 1.3). Giving the example of pulmonary hypertension.
This clinical state is characterized by an elevated PAP. Since CVP also influences the right ventricle,
one expects strong interactions between CVP and PAP. On the other hand, the higher resistance within
the pulmonary bloodstream diminishes the interactions between PAP and ABP. As changes in ABP will

have a less than normal effect on CVP. And a weak interaction between SpO2 and BTemp with the other
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variables (see fig. 1.4). In consequence, the expected associations of vital signs show another picture for
the state of pulmonary hypertension than the associations under normal physiological conditions. The
same thing with the congestive hart failure (see fig 1.5) and the vasopressor support (see fig.1.6). We can
conclude that the medical data is not a set of univariate time series working separately, but there are a lot
of interactions between them and we have to treat them as a multivariate time series with interdependent

componenuts (see fig. 1.7).

Much research works have gone into the development of Multivariate Time Series (MTS) analy-
sis. Such works can be divided into two main classes: statistical approach and Artificial Intelligence (AI)
approach [54]. Statistical MTS modelling methods include the Vector Auto-Regressive (VAR) process
[85], graphical models [20], [39], [2], and dimension reduction [7], [4]. Such approaches have several limits,
in particular, they need a lot of memory and time execution. So, they are not appropriate to develop
ouline systems. Therefore,they can’t be suggested for a monitoring system which must be a real time
one. Al methods have been developed in the purpose of avoiding statistical MTS modelling methods
complexity. They aim to resolve interaction detection in MTS variables [67], [54]. So an adequate intel-
ligent monitoring system must be achieved by combining some time series techniques with methods of

artificial intelligence [58].

1.2 The Subject of the research

Our research consists of evaluating current monitoring systems and tries to propose new way of
dealing with this problem. The authentification problem described in chapter 2 has directed implication

to the bedside decision in ICUs. The research aims to combine time series techniques with intelligent

10
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agents. Instead of using production rules, the agents will use statistical evaluation techniques to detect
anomalies. When anomaly is detected, the agent sends a request as a message to the supervisor agent
which has its own production rules base that provides it the guidance to know the physiological variables
interdependence and so which agents’ requests must it be waiting before generating alarm. Time series
analysis are used to evaluate physiological variable features and forecast its future behavior.

Our research is based on three important parameters:

1. Systems theory based architecture,
2. Agent based theory,

3. Signal processing and forecasting.

1.2.1 Systems theory based architecture

In systems theory. all systems can be viewed as a part of a system, composed of systems and
interacting with other systems (see fig.1.8). System’s theory focuses on internal and external behavior
of a system. It takes an interest in subsystems arrangement just as their relationships. Quite simply, we
can say that systems theory studies the interactions between the system and its environment which is
another system. A system is an organized structure or a collection of systems; put together, they present
functionality which is absent when they are separate. We can classify the included subsystems into three

systems (sce fig.1.9):
e Sensor system :detects data coming from the environment so-called input.

e Transformer system: transforms the input perceived by the sensor system into output. Such

transformation is so-called throughput.
e Deliverer system: delivers output to the environment.

We can find three kinds of classifications according to the systems:
1. Open, closed and isolated systems,
2. Reactive and cognitive systems,

3. Static and dynamic systems.

According to Bartalanffy in [11] an open system is a system that can’t survive without continuous
interaction and exchange with its environment. Such interaction is performed via two components: input
and output. Hence, an open system is open to the environment and finds its behavior affected directly
by the outside changing. In general, a system has many types of input such as energy, information or

organization.
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A system is said to be closed when it doesn’t let one or more input pass through the system.
For example, systems closed to energy are referred to autark systems, systems closed to information are
called independent systems, and systems closed to organization are called autonomous systems [11].

An isolated system has no interaction at all with the environment. Hence, during the process,
no data are exchanged with the external environment and the variations remain purely internal. This
kind of system is incontrollable [11].

On the other hand, a reactive system acts immediately in response to the input and uses
predefined mechanisms [11].

A cognitive system can be thought as a system able to react through its reasoning mechanism,
such as knowledge base, believe functions. .. [11].

A system is called static when it finds its behavior affected only by the input data entered from
the environment [11].

A dynamic system, in contrast, finds its behavior changing not only as a result of the actions

taken by the environment but also by an internal changing [11].

1.2.2 Agent based system

As we said above, this research aims to resolve the problem of interactions between variables
in MTS by using artificial intelligence. We thought so to use intelligent agents. Each agent will deal

with one physiological variable, it incorporates univariate time series technology to evaluate and forecast

14
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subsequent values in order to detect time series feature or anomalies.
With regard to system’s theory that we introduced above, our system will be composed of three

subsystems :

")

the sensor that we call the acquisition system,

8

the transformer that we call the monitoring system,

W]

. and the deliverer called the alarm system.

Each component or system is based around software agents. The acquisition agents are deployed
across the acquisition system, a set of control agents and graphical agents are deployed on the monitoring
system and the alarm agent is deployed on the alarm system. Each control agent is responsible for

monitoring the behavior of each physiological variable.

1.2.3 Signal processing and forecasting

The research uses a statistical model which allows for evaluating the variable behavior in a fast
and highly adoptable system. The first aim of this research is to forecast future patient state in order to
take action at once. So the most important for us is to use an efficient forecasting model. A big num-
ber of forecasting methods exists in the literature and the number of studies examining the forecasting
performance of each method is appreciably huge. Hence, a natural question to ask in this thesis is which
forecasting method is best overall? The decision was based on a survey of the forecasting competitions
between linear and nonlinear models held in the literature. Several papers devoted to comparing fore-

casting methods. Zhang et al. in [88] provide a survey of comparing time series forecasts from Neural
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Network (NN) and linear models. Stock and Watson in [75] conducted a forecasting comparison between
an impressive number of models. The contribution of this study included the use of 215 time series data
at three forecasting horizons over the period 1959-1996, the use of 121 linear and nonlinear models which
are divided into two different sets of forecasts: the linear models (AR and smooth exponential (EX));
the nonlinear models (STAR and NN), the investigation of unit root pretested models, and an extensive
investigation of forecasting pooling procedures. They concluded that the nonlinear forecasting models
fared relatively poorly for the time series they considered. In addition they prove that simple linear AR
model made the lesser degree of forecast errors. Tkacz in [80], Marcellino in [56], Rech in [73] and Heravi
et al. in [41] examine time series forecasting with linear and NN models. The general conclusion from the
papers cited above appears to be that, there is non significant gain from using NN models for forecasting
instead of the simple linear AR model. Teriisvirta et al. in [79] re-examined these issues. They used 47
nonlinear time series. Their results show that STAR models forecast considerably and consistently more
than AR models and conclude that it is essential to first test linearity of time series before considering
any model and conclude that the data used in [75] contained a linear components, that is, they fit a
linear AR model. Thus, we can conclude that AR models come at the top of the linear models list and
STAR at the top of nonlinear one.

In literature dealing with medical time series, AR models were used in their extended and general
form ARIM A(p,d, q), [49], [45], [65], [?], d can be different to zero in the case of non-stationarity [78].
In this thesis we will use, hence, the ARIM A(p, d, q)z(P, D,Q), form in concern to have non stationary

and seasonal time series under control.

1.3 Some definitions

In this section we will clarify some concepts. Often authors use one of the terms as methodology
and method or technology and technique as though they were synonymous. But they aren’t. So, in order
to correctly use them, we shall start by proposing a distinction between them. Agazzi in [1] thought
that the suffix "ology" that we find in both terms methodology and technology, gives a theoretical
dimension or a scientific aspect that is usually bound up with it's use. In fact, the term methodology
is already included this theoretical aspect as it’s defined in some dictionaries. It’s defined in WordNet
2.1 as : " the branch of philosophy that analyzes the principles and procedures of inquiry in a particular
discipline", or "the system of methods followed in a particular discipline”" and in Merriam-Webster’s
Online Dictionary, as : "a body of methods, rules, and postulates employed by a discipline : a particular
procedure or set of procedures" . The Free Dictionary, defines methodology as "the theoretical analysis
of the methods" or as "the body of methods and principles particular to a branch of knowledge". Tt adds
that, in recent years, "methodology has been increasingly used as a pretentious substitute for method in
scientific and technical contexts”, and replies that " the misuse of methodology obscures an important
conceptual distinction between the tools of scientific investigation (properly methods) and the principles

that determine how such tools are deployed and interpreted". In an other section, it defines a method as
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" means or manner of procedure, especially a reqular and systematic way of accomplishing something".

“a systematic procedure, technique,

A method is also defined in Merriam-Webster’s Online Dictionary as
or mode of inquiry employed by or proper to a particular discipline or art". A technique is defined in
WordNet 2.1 as "a practical method or art applied to some particular task" and in [1] as the "knowledge
of doing or making". Agazzi in [1] defines also a technology as a "science that furnishes the theoretical
grounds for offictous doing" and adds that technology is "not only rapidly led to detailed knowledge
of the natural world, which allowed for more adequate explanations of the success of many techniques
already used; it also inaugurated o process by which newly acquired knowledge was immediately applied
toward the creation of new techniques and was even sought for the sake of some technical application".
In encyclopaedia Britannica technology is "the application of scientific knowledge to the practical aims
of human life or, as it is sometimes phrased, to the change and manipulation of the human environment.
Technology includes the use of materials, tools, lechnigques, and sources of power to make life easier or
more pleasant and work more productive. Whereas science s concerned with how and why things happen,
technology focuses on making things happen. Technology began to influence human endeavour as soon as
people began using tools. It accelerated with the Industrial Revolution and the substitution of machines
Sfor amimal and human labour. Accelerated technological development has also had costs, in terms of air
and water pollution and other undesirable environmental effects".

We found also that authors use interchangeably the two terms prediction and forecasting. In
wordNet 2.1 The term forecasting has one sense : "prediction, foretelling, forecasting, prognostication -
(a statement made about the future)" and the verb forecast has three senses : "1. forecast, calculate -
(predict in advance), 2. calculate, estimate, reckon, count on, figure, forecast — (judge to be probable),
3. bode, portend, auspicate, prognosticate, omen, presage, betoken, foreshadow, augur, foretell, prefigure,
forecast, predict — (indicate by signs; "These signs bode bad news")". So prediction or forecasting are two
terms discussing the same statistical concept. So it was agreed that we use the term forecasting all along

the thesis.

1.4 Learning outcomes of the thesis

The four main learning outcomes as defined by the Scottish Qualifications Authority (SQA) and

presented in [15] for the thesis are :

LO1 "The creation and interpretation of new knowledge, through original research, or other advanced
scholarship, of a quality to satisfy peer review, extend the forefront of the discipline, and merit
publication".

The research work has defined a new agent-based system, based on an application of monitoring

and forecasting method. It has merited publication at several key points:

1. Nouira K. and Trabelsi A., (2010), Online Multiagent Monitoring in Intensive Care Units, to appear

in proceedings of International Colloquinm on Computing, Communication, Control, and Man-
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LO2

LO3

agement(CCCM 2010), IEEE Catalog Number: CFP1048E-PRT; ISBN: 978-4244-7380-9, August
20-22, 2010, Yangzhou China.

Nouira K., Ferchichi A. and Trabelsi A., (2007), Temporal Multi-Agent Based Architecture for
Medical Monitoring Systems in Intensive Care Units: a Unified Systemic Approach, In proceedings
of the Septiemes Journées Scientifiques des Jeunes Chercheurs en Génie Electrique et Informatique
(GEI'2007), CPU, pp 109-118.

Nouira K. and Trabelsi A., (2007), Time Series technology in pattern recognition: case study in
medical support systems, In proceedings of the 4th International Multi-Conlerence on Systems,
Signals & Devices (SSD-07). IEEE. Conference on Communication and Signal Processing(CSP),

volume 3.

. Nouira K., Ferchichi A. and Trabelsi A., (2007), Temporal multi-agent system in intensive care

monitoring, In proceedings of the 24th Annual Conference and Exhibition HEALTHCARE COM-
PUTING (HC2007). British Computer Society (BCS), pp. 38-46.

. Nouira K. and Trabelsi A., (2006), Temporal Multi-Agent System in Intensive care Monitoring,

Poster in International Symposium on Computational Biology & Bioinformatics, Bhubaneshwar,
India.

. Nouira K., Ferchichi A. and Trabelsi A.. (2006), Architecture of Temporal Online Monitoring Multi-

Agent System in Intensive Care Units, In the 7th Tunisia-Japan Symposium on Society, Science &
Technology (TJSSST 2006), Sousse, Tunisia.

Nouira K. and Trabelsi A., (2006), Time Series Analysis and Outlier Detection in Intensive Care
Data, In proceedings of the 8th International Conference on Signal Processing (ICSP’06). IEEE,
2006, ISBN: 0-7803-9736-3, vol 4, pp 2499-2502.

"A systematic acquisition and understanding of a substantial body of knowledge, which s at the

forefront of an academic discipline or area of professional practice".

The work has involved investigating actual medical monitoring systems, and methods used to
improve them. From this, an agent-based model was created for the new method. These experiments
used a large amount of physiological variables and processed them to prove that the system can

handle all kinds or information loads.

"The general ability to conceptualize, design and implement a project for the generation of new
knowledge, applications or understandings at the forefront of the discipline, and to adjust the project
design in the light of unforeseen problems".

The project idea started from the observation of how stressful and risky, an ICU when the actual

monitoring systems decide to sound a huge number of alarms of which the majority are insignifi-

cant. The research also involved modelling typical physiological variables behavior using time series
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LO4

1.5

technology. The research also used software agent technology that is most suitable for multivariate
time series. Software agents are robust and highly adoptable software entities and, if used correctly,

have minimum impact on the use of computational power, and memory usage of the system.

"4 detailed understanding of applicable techniques for research and advanced academic inquiry".

In this research project, many new ideas and technologies were used from different disciplines :
Intelligent agent technology, Time series technology and monitoring technologies in the intensive

care units.

Structure of this thesis
The format of the thesis is as follows:

Chapter 1: Introduction. This provides an introduction of the thesis. It defines the motivation

for the work, and how well the research has matched the learning outcomes.

Chapter 2: Intensive Care Units Monitoring Systems Issues. This outlines the different
weak points of current monitoring systems in [CUs. It will highlight some important and dangerous

aspects of the monitoring systems risks.

Chapter 3: Time Series Analysis in Medical Data. This deals with Time Series Analysis, and
gives a brief overview of statistical methods used to deal with Time Series Features. A particular

focus will be on explaining anomalies detection methods, as these are used in the proposed model.

Chapter 4: Online Multi-Agent Monitoring System for Intensive Care Units. This ex-

plains, in detail, the system architecture, the different parts running.

Chapter 5: Experimental Study. This outlines the different components’ development and the

results of the experimentations as compared with results from other systems.

Chapter 6: Conclusions and future research. This is the final chapter and deals with the main

conclusions from the rescarch, how successful it was, and proposes future resecarch plans.
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Chapter 2

MONITORING ISSUES IN
INTENSIVE CARE UNITS

2.1 Introduction

An Intensive Care Unit (ICU) is a demanding environment due to the critical condition of
patients and the variety of equipment necessary to monitor and support patients. ICU equipment may
include : 1) patient monitoring equipment, 2) life support and therapeutic equipment, 3) diagnostic

equipment.

e Patient monitoring equipment. Include the following:

Physiologic monitor. Can be configured to continuously measure and display a number of

vital signs or physiological variables via electrodes and sensors that are connected to the
patient. These may include the Electro Cardiogram (ECG), Respiration Frequency, Blood
pressure and Blood Temperature. Physiologic monitors generate alarms in any change of

patient conditions.

Pulse orimeter. Monitors the arterial hemoglobin oxygen saturation (SpO2) of the patient’s
blood with a sensor clipped over the finger.

— Intracranial pressure monitor. Measures the pressure of fluid in the brain.

Apnea monitor, Continuously monitors breathing via electrodes or sensors placed on the
patient’s thorax. Tt displays respiration parameters, and generates an alarm if a certain

amount of time passes without a patient’s breath being detected.

e Life support and therapeutic equipment. Intensive care equipment for life support include

the following:

— Ventilator. Also called respirator, assists pulmonary ventilation in patients who cannot breath

on their own. It’s microprocessor-controlled and programmable. It regulates the volume,
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pressure, and flow of patient respiration. Ventilator have also a physiologic monitoring
functionality and generates alarms in case of therapeutic malfunction.

— Infusion pump. Infusion pumps employ automatic, programmable pumping mechanisms to
deliver continuous anaesthesia, drugs. and blood infusions to the patient. It can also
generate alarms in case of therapeutic malfunction.

— Crash cart. Emergency equipment includes a defibrillator, airway intubation devices, a resus-
citation bag or mask, and medication box. Crash carts are strategically located in the

ICU for immediate availability in case of cardiorespiratory failure.

Intra-aortic balloon pump. A device that increases cardiac output and coronary blood flow for
patients with unstable angina, myocardial infarction (heart attack), or patients awaiting
organ transplants. It has a console which displays heart rate, pressure, and electrocardio-

gram (ECG) readings.
e Diagnostic equipment. Intensive care equipment for diagnostic include the following :

— Maobile X-ray units are used for bedside radiography on patients who cannot easily get to an
X-ray room.

— Portable clinical laboratory equipment, are used for blood analysis at the bedside.

Both monitoring and therapeutic equipment have alarm capabilities and generate optic and
acoustic alarms each time when a change of patient’s condition or a malfunction of the equipment occurs.

Most of the time, alarms from therapeutic equipment are technically correct because they result
from technical measurements inside the device. But they may not always match the criticability of the
clinical situation despite the correct measure. On the other hand, alarms from monitoring equipment
can be also technically incorrect in that the signal acquisition may be distorted [47].

Unfortunately, a lot of defects are present in ICU and medical errors occur with alarming
frequency. There is a strong evidence that practically every patient admitted to an ICU will experience
a potentially life-threatning medical error [26]. Such errors, according to Donchin and Seagull in [27], are
due to the difficult working conditions in the ICU. In fact the high volume of patient data, the ambient
noise, the lighting level and the scheduling were all identified as likely factors contributing to the errors
in ICUs.

¢ High volume of patient data. In ICUs the staff is confronted to a flood of recorded variables
relevant for patient monitoring such as physiological variables, laboratory data, device parameters,
cte. This high dimensional data exceceds the human ability to identify and develop a solution

considering all the observations [32].

e Ambient noise. In today’s ICUs cnvironment, monitoring systems revolve around information

that is recorded by electronic patient monitoring devices. Such devices have steadily advanced in
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recent vears. In fact significant improvements have been made in their ability of measurements [17].
But they still typically incorporate a basic algorithm using a standard threshold filter which sounds
an alarm as soon as a monitored value (single signal) goes above the set upper limit or below the
set lower limit [74] defined beforehand by the medical staff (see fig.2.1). Hence, depending on the
boundary-based alarm [74], current monitoring systems are perceived as unhelpful by medical staff
because of the huge number of alarms which are result of erroneous readings or with no clinical
significance [17], [74]. Indeed, we can obviously say that it is not the best method of event detection.
Because, in many cases, it is not the alarm itself but rather the clustering of repetitive alarms from
multiple devices that attracts attention [74] and the information that a physician needs, is not
the crossing a threshold by a single signal, but it is the detection of relevant abnormalities and
changes which are reflected by the analysis of the evolution of a combination of some physiological
parameters working together[17]. In other hand, we can say that available monitoring systems can
wonitor more than 40 physiological variables [17], [89] and automatically set an alarm for each
one. In addition to that, the present technology consists of sounding audible alarm and each alarm
produces noise louder than 80 dB [17]. Moreover, whatever degree of the emergency, the monitoring

system produces the same audible alarm [82].

e Long hours schedule. According to the Association of Professional Sleep Society, the night-time
operator’s fatigue contributed to the disasters such as Chernobyl and three-mile island. This is due
to the fact that a single night of continuous sleep deprivation causes deterioration in performance
similar to that induced by a blood alcohol level of 0.1% [19], [52]. Hence, the extended hours
typically worked by nurses, interns and residents, when combined with the challenging working
conditions of the ICU, are likely to produce medical errors and that the consequence are apt to be

more serious, given the vulnerability of ICU patients [19].

According to Donchin et al. in [26], human errors in ICUs cause 29% of patient status deterio-
ration and 12% of deaths. Because those defects are common, they feel normal and inevitable. Instead of
trving to fix them, people accept them. Many nurses, doctors, patients and families are all too familiar
with what went wrong in ICU and think that completely preventing errors is a hopeless task [12]. [30]
proved that errors are not only human but in 17.2% were due to technical equipment failure. Equipment
failure in ICU represents a very common source of serious adverse incidents. This is due to the fact that
1) there is no regular checking and maintenance even for old and new equipment [71]. 2) There is an
incomplete staff training and education before using of new equipment inserted into ICU [71]. 3) And
probably a manufactured dysfunctioning [59].

This chapter provides an understanding of ICU issues and the efforts used, in the first hand,
to improve the quality, safety, efficacy, and cost of health care, and in the second hand, to promote
information technology. It outlines various weaknesses present in current ICUs and how they reverberate

on the patient state and ICU staff working conditions.
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Figure 2.1: Data Flow Diagram of Alarm System in Intensive Care Monitoring System

Our contribution is focused on improving [CU work conditions and more exactly reducing noise
produced by patient monitoring equipment alarms. For this, many different technigues are employed to
tackle the same point of failure: filtering insignificant alarms. Our proposal deals with the condition
when patient monitoring equipment record data, but start to misbehave either to read wrongly or to

trigger insignificant alarms.

2.2 Patient monitoring systems issues

As Hudson "Monitering is making repeated or continuous observations or measurements of the
patient, his or her physiological function and the function of life support equipment, for the purpose of
guiding management decisions, including when to make interventions and assessment of those inlerven-
tions" [42, p 630].

Monitoring systems can loosely be described as a set of high-technology patient monitoring
devices whose job is to report every physiologic signal that may possibly be measured. Such systems are
present in ICUs, where we need to monitor the patient current state. Technological advances, in this
field, hold great potential in improving patient care but in an other hand the current stage of algorithm
development represents a big trouble in the ICU. In fact, alarm soundings in the ICU are frequent but

unfortunately insignificant more commonly than significant [82]. Tsien in [83] asks about 86% of all alarm

23



Chapter 2
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Category Significance Exemple
True Positive, Clinically Rele- | Alarm was appropriate given | Hart rate = 200 beal per
vant (TPR) Alarm the actual data value as com- | minut (bpm). monitor set

pared to the set threshold
value, and the patien’s condi-
tion required attention

with an upper threshold at
160 bmp, and the monitor
sounds an alarm

True Positive, Clinically Irrel-
evant (TPI) Alarm

Alarm was appropriate given
the actual data value as com-
pared to the set threshold
value, but the patients condi-
tion had not changed in a way
that requires additional med-
ical attention

Patient’s systolic blood pres-
sure transiently crosses the set
upper threshold during endo-
tracheal suctioning

False Positive (FP) Alarm

Alarm inappropriate
given the actual data value

wWas

Hart rate = 80 bpm, and the
monitor sounds an alarm

False Negative (FN) Alarm

Acute patient condition oc-
cured but no alarm was trig-
gered

Hart rate = 200 bpm, and no
alarm is generated

True Negative (TN) Alarm

Appropriate monitor silence
when no alarms were expected

Hart rate = 80 bpm, and no
alarm is generated

Table 2.1: Tsien classification of alarms [78]

soundings are insignificant and Schoenberg et al. in [74] said that, in some cases, over 90% of all alarms
produced by most devices are false. Here, the term false alarm is used to point out both technically false
alarms as well as alarms based on true readings but are considered to be clinically insignificant. Tsien in
[83] classified the recorded alarms into one of the following categories (see table2.1).

In a separate classification, all alarms were categorized where possible as either "

significant
alarms" or "insignificant alarms". Significant alarms refer to those alarms clearly associated with an
intervention of the ICU staff. Insignificant alarms, on the other hand. refer to those alarms clearly not
associated with the staff intervention [17], [74].

In the following we present some monitoring algorithms proposed in the literature trying to

decrease the number of insignificant alarms.

2.3 Attempts to reduce false alarms using statistics

Existing monitors, as mentioned earlier, have exorbitant false alarm rates. And when nurses
and physicians are frustrated by the flood of the noise, they will try to find their own solution either by
muting notorious devices or setting alarm limits that are unlikely to be exceeded [74]. As Schoenberg
et al. in [74], no studies has qualified the effects of this action on patients but it is evident that events
are missed and therefore decision can be erroneous. So it is obvious that the development of better and

smarter algorithm is still needed. The aim of this algorithm is to point out those alarms designed as
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meaningful by the ICU staff and filter out all others. Such attempts to decrease the number of [alse
alarms in ICUs seem worthwhile. But are those filters reducing the insignificant alarms without missing
the significant ones? So, efforts to Improve alarm specificity, however, must not overlook the need to
maintain alarm sensitivity [82]. And an ideal algorithm is that both sensitivity and specificity of the
alarm system are 100%. Sensitivity means that all significant alarms are triggered and specificity means
that all alarms triggered are significant. Some attempts, as presented in [81], are based on filters such as

moving average filter, moving median filter, delay filter and Sampling rate filter.

e Moving average filter based algorithm. The moving average filter based algorithm takes as
input a window size of value N and calculates the relative average which is compared against
the threshold limits. Once the value N + 1 have been read, the window is translated and the
algorithm will compute the newly average. If the average value is outside the limits, the alarm will

be generated.

¢ Moving median filter based algorithm. The moving median filter based algorithm is working
identically as the moving average, except that in this time the median value is used for checking

against threshold limits rather than the average.

¢ Delay filter based algorithm. The delay filter based algorithm takes as parameter an integer

N and sounds an alarm only when a sequence of N values are outside the limits.

e Sampling rate filter based algorithm. The sampling rate filter based algorithm takes also as

parameter an integer N and only one value in each N values will be tested against the limits.

In considering the results presented in [81], those filters eliminate significant alarms to a greater
extent than false and insignificant alarms. In other hand, the experimentations were done on data with
a big number of alarms and when there are very few alarms for a particular physiologic signal type,
significance of the results is difficult to ascertain. An other significant drawback of such filters is the fact
that it works on a single signal. So nothing can prove if they will have the same effectiveness when used

on data in conjunction with other signals.

2.4 Attempts to reduce false alarms using artificial intelligence

In medicine, symptoms are usually based on a combination of many physiological signals’ trends.
Hence, when we try to filter alarms in ICUs, the more efficient filter may be the multi-signal one. Artificial
intelligence has offered a lot of algorithms in this field. But, until few years ago, the monitoring devices
in ICUs were discrete and not interconnected. Hence, the employment of such meaningful algorithms
based on multi-signal control was impossible. This is due to the fact that those algorithms require that
data be saved over time in a central data base. It was not until recently that PC-based computer systems

targeted these goals and allowed real-time data acquisition from multiple devices are brought into the
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Attempts to reduce false alarms using standardization

Traditional System | Trend-based system
Number of alarms generated 6872 544
number of insignificant alarms | 6575 302
Number of significant alarms | 297 242
Sensitivity 100% 81.4%
Specificity 4.2% 44.4%

Table 2.2: Comparision between single parameter boundary-based moduleand trend-based module

ICUs [74]. Hence, the availability of data in a programmable environment made implementation of all
those algorithms developed before this area in artificial intelligence possible.

In this section we will present a trend-based algorithm presented in [74]. This algorithm was
used to develop a computerized module that implemented as part of iIMD soft’s MetaVision paperless
ICU suite [43]. Such system acquires the data directly from monitors, ventilators and infusion pumps and
records it into a central SQL data base. The aim of this algorithm is to identify the physiological trends
that are determinal to the patient. Each trend, even when it crosses the limit, will not be considered,
as long as there is no other physiologic trends to show a specific state. Hence, alarms are based on the
identification of a combination of trends and not a singular one. Such algorithm reduces significantly the
false alarms due to erroneous readings because they are unlikely to produce a trend and even it will be
produced, it will be without correlation with other variables. Instead of comparing each value with a
threshold, this algorithm uses the physionomy trend, defined by the user, for each signal. For example,
the change of the systolic blood pressure between the current minute and five minutes ago. Then a
criterion will be assigned for each physiologic trend (e.g., systolic blood pressure > 160 mgh). Each
criterion can be true, false or unknown (if missing value). After that a score is affected for each criterion
value. And so, the sum of a predefined combination of scores at any point in time is compared with a
threshold value to determine whether or not an alarm should be activated.

The performance characteristics of this module are compared to traditional single parameter
boundary-based module and results are resumed in table2.2.

Considering that the yield of those alarms depends on their sensitivity and specificity, we can
say that the algorithm has reduced the insignificant alarms (so increased the specificity) but it is not
accurate enough to point all significant ones. In fact, the module’s sensitivity was 81.4% and it is failing
to detect 18.6% of significant alarms as defined by the ICU staff. Hence, as Schoenberg et al. in [74], it's
obvious that "reaching a consensus on the right logic to identify a significant alarm and the definition of

significance is an inacheivable goal".

2.5 Attempts to reduce false alarms using standardization

As seen above, available monitoring systems provide a great number of potential audible alarms.

Thus, both major event, that was related to worsening for the patient status, and minor ones, as alarms
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Priority Description Exemple
High Urgent situation which leads | Electric or pneumatic failure,
immediatly to a vital problem | Paw high, continuous pressure
and requires an immediate at-
tention from the medical staff
Medium Potentially serious situation | SpO2high or low, perfusion
and needs prompt attention pump empty, nutrition pump
empty
Low Minor condition and so only | Sensor  failure,  perfusion
an attention is needed pump low, nutrition pump
low

Table 2.3: Significace of alarm level priority

generated by the perfusion or the nutrition pump, sound the same. Such situation can be confusing for
medical personnel trying to determine the source of the alarm. This is due to the fact that there is no
standard for alarm setting [17]. Here, the use of priority in alarm management is proposed to recognize
the kind of the alarm, if it is major and needs an immediate intervention from the staff or if it is a minor
one. The concept of priority was treated by several committees for normalization that define standards
for medical devices [17]. These standards provide on the first side, a classification of the alarms according
to a level of emergency (high, medium and low) with audible characteristics corresponding to each of
these levels see table2.3. On the other side, for each monitoring system, the events or parameters that
should provide an audible alarm with a given degree of emergency [17].

Very few monitoring systems currently use these standards, we can hold up as an example a
prototype of a system for patient monitoring in ICU called MetaMonitor developed in Carnegie Mellon
University. This system, even if it doesn’t attempt to reduce the number of alarms, it reduces the number
of alarm sounds by providing easily accessible information. In fact, in current systems, data is displayed
into small monitors hanging on the wall. So, because it’s difficult to see from a distance such system
requires audible alarm triggering.

But in MetaMonitoring system, see fig.2.2, we can see networked displays which can access any
information anywhere in the unit, in addition to that, lights outside each room flash different colors for
different types of alarms and single speakers replacing audible alarm on each monitoring device. We
see, also, wearable armband devices providing individual alarm notification for each nurse and contains
speaker, vibrating motor, LCD touch screen, etc...

Metamonitor knows which nurse is responsible for which patient. Different Alarm notifications
are given to each via the armband device. It knows also where nurses are within the unit by using
a real time location system. This information is used to give different notifications when a nurse is
already in the patients room, to automatically silence alarms when nurses enter rooms, and to show
relevant information on the networked display nearest to nurses. By reserving general audio alarms for

emergencies, metamonitor cuts down on the noise in the ICUs, easing stress on patients.
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b

Figure 2.2: MetaMonitor devices. Source [29)]

The review of the current monitoring system permits the conclusion that the alarm generation
is still the source of a big number of false alarms only considered as low or may be medium priority

alarms.

2.6 Conclusion

With all of these shortcomings of current monitoring systems in ICU and the attempts to reduce
insignificant alarms, what are some possible directions for improving the situation? Several approaches
to intelligent monitoring techniques seen above look appealing. But, which of these approaches is likely
to be most promising? It is difficult to say. What is not as clear is how to go about effectively decreasing
the insignificant alarm rate without missing significant ones. In other terms, how can we increase the
specifity of those systems without decreasing their sensitivity.

In this work we try to implement an alternative approach to the problem. Our exploration will
especially be the combinations of statistical technology as well as of multi-agent one. This work seems

imperative for continued progress in the area of ICU patient monitoring.
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TIME SERIES ANALYSIS IN
MEDICAL DATA

Principal results of this chapter are published in the 8th International Conference on Signal
Processing (ICSP’06) [61].

3.1 Introduction

Our special focus is the use of time series technology in intensive care monitoring not only to
detect critical states but also to forecast future states in order to take the efficient decision. Time series
analysis allows to detect characteristic features such as outliers, level changes, trends and changepoints
which are important for assessing critical states [32]. Usually the detection of a changepoint which means
the occurrence of a level change, a trend, a variance change or any other characteristic features change
[21] in a system leads to an alert, which allows the physician to check the situation and possibly take
some therapeutic actions. A well known problem here is the occurrence of isolated and patchy outliers
which make time series noisy. They can produce false alerts and can mask changepoints (see fig.3.1).
Moreover, "outliers may be of fundamental interest in themselves and therefore their identification should
also be considered as a goal in itself" |9, p947]. "Hence there is a necessity for an automatic detection

of outliers in on-line monitoring data” [5, p2].

There are various statistical approaches such as nonlinear time series analysis, neural networks
frequency domain analysis [5] and genetic algorithms [3] which are dealing with time series. Outliers
have been already treated by using ARIMA models [45], state space models [4], [5], dynamic models [76],
graphical models [39], Gibbs sampling [49] and some robust estimators [10], [9], [49].

Several procedures are available in the literature to handle changepoints in time series. A
prominent method for the detection of changepoints is the multiprocess kalman filter [23], [22], [76] we

can find also some stochastic models as described in [21].
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Figure 3.1: Outliers give false alert and mask changepoints

Some authors dealt with level change detection by using analytical methods based on phase
space reconstruction [4] and simple median filtering [84].

Some studies were concerned with automated model detection in on-line monitoring data [32],
(39], [78], [70], [51], [69]. [86]. [34], [37], [45], [72] in order to forecast the patient state and avoid disasters.

Because intensive care on-line monitoring data is generally high dimensional and multivariate,
a lot of literature [7], [38], [35], [16] and [87] dealt with the dimension reduction which reduces the
dimension of the vector by taking the most important data without loss of information [87] in order to
be able to take decision.

We find an increasing amount of literature in this field and there seem to be two major ap-

proaches :
e Patient data can be seen as a set of univariate time series and we analyze each series alone.

e Patient data must be seen as a multivariate time series and we must find the adequate framework

for analyzing this series.

This paper is organized as follows. In the following section we present some works dealt with

outlier detection. Section 3 contains works dealt with level change detection. Section 4 deals with
changepoint detection. Section 5 presents some model recognition in on-line monitoring time series and
finally in section 6 we will try to present solutions to high dimensionality and multivariate time series in

intensive care on-line monitoring, some conclusions are given in section 7.
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3.2 Outlier detection

Data from intensive care patient monitoring may be noisy and exhibits outliers. Hence, auto-
mated detection of outliers will play a prominent role in on-line monitoring. Therefore, we see a lot of
literature dealing with outlier detection namely [4] which proposed a new graphical approach for model
recognition in univariate time series from on-line monitoring systems in intensive care. This approach is
based on phase space reconstruction which allows time series to be a multivariate sample.

Let {yt i1, ,nybe a time series, the m-dimensional vectors which are the time delayed obser-

vations are defined as follows :

Y = (Yot (m=1)Ts > Yta2T Y41, Y1) € R™ (3.1)

with T and m € N\{0}, and t = 1,..., N — (;n — 1)T. T is called the time delay and must be chosen such
that Corr(Y:, Yiyr) = 0v7r = T [5]. m is called the embedded dimension and recommended to be chosen
®(\) # 0} and ®()) is the Partial Autocorrelation Function (PACF) [5]. So

that the univariate Time series is transformed into an m-dimensional space and the set

such that m =

[Yift=1,..,N = (m - 1)T} (3.2)

forms the phase space reconstruction. Thls concept presents a potential in outlier detection. In fact, if an
outlier arises in the phase space vectors chmd Y,chese vectors extrude from the regular observations
and cause typical movement through the phase space.

Later, [5] demonstrate that neither state space models nor ARIMA-models are robust against
multiple or patchy outliers. They said that if outliers arise within less than w time interval distance of
each other those models can fail to detect them. Hence they constructed an automatic procedure so-called
a-outlier concept for the detection of outliers in on-line monitoring time series. This concept leads to a
multivariate sample with dependent ohservations. So they used the phase space reconstruction.

The main idea of this concept is that a-outliers may have an extreme position in a region

so-called a-outlier region defined by :

out(c, 1, £) := {x € R™; (& — p)’ e — ) > X?n_lfa} (3.3)

with respect to N (u, £).
For a sample of N elements we can speak of ay-outlier region which must respect the following

condition :

N
P ('anl € R"\out{an, ,u,,E)}) =1-a (3.4)

with X; ~ N (1, X) (i=1,...N) and o € (0,1).
To identify all outliers in data we must evaluate ap-outlier region. But this region depends

on two unknown parameters such as g and ¥. Therefore, we must estimate this region. In their paper
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they discussed the Minimum Volume Ellipsoid (MVE) estimators which can be used to calculate robust
estimators of the process parameters.

Becker and Gather investigated a-outliers concept in order to improve outlier identification
rules. They used the masking breakdown point criterion in [9] and maximum asymptotic bias in [§]
despite their failure to detect outliers when some extremely outlying observations happen. They thought
that it’s possible to improve this criterion by using some estimators.

Because outlier identification means outlier region evaluation as said above, and an outlier region
depends on two unknown parameters g and ¥ that we must estimate by respectively m and S-estimators.
Either [9] or [8] used high breakdown estimators. They found a good result in [9] where they used S-
estimators. But in [8] they found that the use of MVE, MCD and S-estimators with maximum asymptotic
bias to get an outlier identifier in presence of high breakdown points does not succeed.

[10] discussed the behavior of three outlier identifiers based on robust estimators such as Min-
imum Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD) and S-estimators based on
beweight function (BW) such identifiers are so-called respectively ORyv g, ORpyep, ORpw. By varying
the sample size, results differ but they conclude that ORpy should be favoured in the case of a sample
of moderate dimension.

[55] used Gibbs sampling to identify outliers in autoregressive models. Let {y;} be a set of data
points observed, say

yr = 616, + x4 (3.5)

where {x;} is an autoregressive process of order p, such that

O(B)xy = g + ay (3.6)
with
®B)=1-®,B' - ®,B*— ... - &,B” (3.7)
dg is a constant
and

a; is a white noise independently distributed N (0, o2)
d; is an outlier indicator it can take values Q or 1

d; = 1 if the t-th observation is an outlier (3.8)

d; = 0 otherwise

= = o AT i 3 3
we can consider d = (41, ...,d,) as an outlier indicators vector.
N Fra - E & - 7 /
A, denotes the magnitude of y; if it is an outlier and we can consider 3 = (3,,,,...,3,,) as an
Mt g Y ! i+41 1~n

outlier magnitude vector.
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Assume that the first outlier occurs at time t = 7 so we can say that the outlier indicator vector

becomes
6= (8ix1, .y 0n) (3.9)
and the outlier magnitude vector becomes
5: (ﬂ:f+1!“‘3-ﬁu)’ (310)
and the observed series becomes
Yy = & =il (3.11)
and
yt = (Stﬁt-{—l't t:?.-f'l,.?'b (312)
e Prior distributions
assume that
O = (P, ,,.,‘IJJ,)' (3.13)
and
pdr=1)=a (3.14)

it seems that each time point 3; has the same prior probability « of being an outlier for t = i+1, ..., n.

Hence, we can say that the prior distributions are :

O o~ NP, 2h (8.15]
d; —~  Bernoulli(c); t=p+1,...,n (3.16)
B, ~ N(0,7%) (3.17)
o «  Beta(yy,79) (3.18)
VA .
—= v X (3.19)
G-a
assume that $g, QA v, v, v, are known.
e Posterior distributions
The conditional posterior distribution of the AR parameter vector ® as given by
Bly,02,6,3 - N(@~, 0.1 (3.20)
12 e gt L ATy B
where Q, = Z%;l'—“ + or = (Z%ﬁlﬁ + Q) (Z%;LI‘D + Q‘I’U) .
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The conditional posterior distribution of the innovational variance o2 is
2 N S 2
aily, ®,0, 3 « inverted — x*.

The conditional posterior distribution of é; for j =i+ 1,...n

d; « Bernoulli(a)

with probability

p(6; =1y, ®,03,0(3):8,a) =

where (50) = (‘5i+1: éj"-l*éj-!»]s (5,1)!

1
T; =min(n,j + i) and e;(6;) = 2y — Pg — > Pyx+ 4 is the residual at time t
=1
The posterior distributions of the outlier magnitudes 3; for j =4+ 1,...,n are

B,ly, ®,8, B¢y, 02 ~ N (6;85,07)

where

BGy = (Bivyy-nBi-1:Bjs1r-Bn)
w22

2 g : 2 2 2
= ith v _-=(1 ST+ ...+ P ._-)
%4 Tzv%rjéj%—crg WA VT, + % TR
2
« %y
Bj == ;?' [Cj((]) - (I)1€j+1(0) g (I’fj},jqu"j (O)] ;

The conditional posterior distribution of « only depends on the vector &
a|d v Beta[y, + m,yq +n—1i—m]

mn
where m = Y 4.
t=i+1

(3.21)

(3.17)

(3.18)

(3.22)

(3.23)

(3.24)

(3.26)

This study solve problems with isolated outliers and since they come with patchy outliers it

fails. Justel et al. in [49] improved the Gibbs sampling based procedure described above to identify the

beginning and end patchy outliers in AR process. Thev proposed two Gibbs runs. the first run consists

of the application of Gibbs sampling to the data in order to identify outliers. The second run will be

applied to the results of the first one. It consists of two methods :

1. Adaptive method to treat identified outliers and to estimate their sizes when they are patchy.

2. Block interpolation method to reduce possible masking effects.
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The specification of the location and the block size of outlier patches is done by using a window
of large 2hp around the outlier identified by the first run. Let ¢; € (0,1) be a critical value, typically
¢1 = 0.5, and any observation with posterior probability greater than ¢; would be identified as outlier.
We must select an other critical value ¢y < ¢; to avoid the masking effects and to identify the beginning
and the end of a patchy outlier between the identified outliers. The proposed algorithm to specify outlier

patches as given in [49] is as follows :

1. Choose ¢; and identify isolated outlying observations y;, using posterior probability of y;, greater

Als) ; ; . i :
than ¢ (p,q > c]). Denote the time indexes of identified outliers by {#;,....t,}.

2. Specify h and ¢ where ¢ < ¢;. For each y,, identify a possible outlier patch (y,_{._‘_? ; .,..ytm_i)

using the procedure mentioned above with g and hp window.
3. Merge any overlapping or consecutive tentative patches.

4. If the total number of outliers is greater than n/2 then increase ¢o and go to step 2. If increasing
c2 cannot sufficiently reduce the total number of outliers increase h and go to step 2. If the total

number of outliers is less than 3, stop.

3.3 Level change detection

As seen in section 2, phase space reconstruction was used by [4] to detect outliers. It was also
used to detect level change. In fact when a level change occurs at time t, all observations yq1, ..., ¥ lie
outside the original ellipse and form a new one.

Median filtering [84] also used to detect level change. It’s principle is to move a window of large
h over the series and to take the median of the observations between it’s limits. This method decreases
the magnitude of outliers and make the series smoother and so we can detect the level change.

Gibbs Sampling was used also to detect level change in autoregressive process [55]. Let {y:} be
a sct of data points observed, say

Yt = He T Tt (3.27)

where {2} is an autoregressive process of order p, such that
@(B)J,‘p = ®g+ ay (328)

and
e = pre—y + 015, (3.29)

4y is level change indicator it can take values 0 or 1.

{ o = 1 if the t-th observation in the beginning of a level change

d; = 0 otherwise.
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We can consider § = (81, ...,4,)" as level change indicators vector.

3, denotes the magnitude of y if it is a beginning of a level change and we can consider
y 4 ! »
B=(Bi41,..,8,) as a level change magnitude vector.

Assume that the first level change occurs at time ¢ = ¢ so we can say that the level change

indicator vector becomes

6= (Gig1, .y 0p) (3.31)
and the outlier magnitude vector becomes
B = (Bists-esBn) (3.32)
and the obscrved series becomes
W o= p+x t=1,..,i (3.33)
with
B = iy = py_; =..is a constant (3.34)
and
Yo = fy_q 08 +ay =24 1, 1 (3.35)
e Prior distributions
assume that
Or= (B B (3.36)
and
pldy=1)=w (3.37)

it seems that each time point y; has the same prior probability & of being an outlier for £ = i+1, ..., n.

Hence, we can say that the prior distributions are :

d ~ N(P, 07 (3.38)
8¢ «~  Bernoulli(a); t=p+1,..,n (3.39)
B; « N(0,7%) (3.40)
a -« Beta(vyy,7s) (3.41)
VA . )

= ¥ X (3.42)

assumme that ®g, 0, A, v, 3, v are known.

e Posterior distributions
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The conditional posterior distribution of the AR parameter vector ¢ as given by

Dly,02,8,8 ~ N(®*, Q1) (3.43)
Ti—17T) T qTh -1 Ti_ix, -
where Q, = —Z—f(}—f’—l + Q; ¢ = (Z—-f;l’%‘ + Q) (Zﬁ;.u—_lq’ + QCI’O)
The conditional posterior distribution of the innovational variance o2 is
o2y, ®, 8,8 « inverted — x* (3.44)

The conditional posterior distribution of §; = (6;,9;41,...,0;4x—1) the subvector of § with k

elements has a probability

Z_a;_(é,ﬁ,@,y)Q
p (5;ly, ®,02,8(;), B, ) ox exp { —— r— al(1—a)*! (3.45)
_Ja
Jt+k—1

where 5(j) subvector of § without d;: l= > 4.
t=j

i
T; = min(n, j + 1) and e;(d;) = x; — $o — zl'bq:r,_q is the residual at time t.
q:

The posterior distributions of the level change magnitudes ﬁj for j =i+ 1,...,n are as follows :
i) If 6; = 0, then there is no information about /3 and the posterior distribution will be the same
that the prior one :

B, «~ N(0,72%) (3.46)

ii) If §; = 1, then there is information about 3, and the conditional posterior distribution :

By~ N(B.07) (3.47)
j+i-1
Y eju+(n—j—i+ gz
* t=j
By = prray (3.48)
o2+ 12 Z cf_j-!-(n—j—i—}-l)c?
t=]
- T zt
2= 32 (3.49)
t:j“n —j7—1i4+1
i
2 = (y—p)— Z“I)p(yi—'p = }U';Lp) A A’V(Ct—jjyﬁi) (3.50)
=1
where
1 ifl=20
1
g=1¢ 1-> % for I=1,... (3.51)
g=1
ci if 1 >i
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The conditional posterior distribution of a only depends on the vector 4
al|d «~ Beta[y; + m, vy +n—i—m] (3.52)

where

m = Z 8. (3.53)

t=i+1

3.4 Change point detection

[22] proposed a combination of different filters so-called Multiprocess Kamlman Filter for change-
point detection. They present an algorithm which allows to estimate the probability that a changepoint
has occurred, it is stable even in presence of outliers. They tried it in practice with an ECG measurements
taken every 5 seconds, from a patient undergoing skin transplantation. It presents a good potentiality
by detecting all changepoints and outliers very fast. So they conclude that it is adequate and reliable for
on-line applications.

[21] suggested the use of two criteria which are the most important for the quality of a change-

point detection algorithms such as:

ot

. the mean delay time 7 between the changepoint appearance and it’s detection.

]

the average run length which is the mean waiting time between two false alarms.

3.5 Models for on-line monitoring and forecasting medical time series

Some authors concentrated their studies on defining models for on-line monitoring time series
in order to facilitate statistical analysis and forecasting variables in the course of time.

[45] proposed to use ARIMA-models. This study investigated two applications in intensive care
medicine. Nineteen patients (13 males and 6 females, mean age: 52 years) were included in the first
application. After two hours of liver resection surgery measurements of lactate levels and some other
lab variables were started. All values were measured every 12 hours and in the second application
with 25 patients (20 males and 5 females, mean age: 58 years) having severe acute respiratory distress
syndrome after major gastrointestinal surgery. After the beginning of acute respiratory distress syndrome
the following measurements were recorded every hour : arterial and mixed venous blood gas analysis,
heart rate, arterial and pulmonary arterial pressure, central venous pressure, cardiac output, ventilatory
variables.

ARIMA-models were developed after 12 hours of measurements in acute respiratory distress
syndrome and after seven days of measurements in liver resection. Initial values of parameters p and q
were derived from the autocorrelation function and the partial autocorrelation function. But d was found
after differentiations in case of non stationarity. The final values were calculated by using Marquardt’s

algorithm. In general a simple model with p and ¢ < 2 is sufficient. In case more than one model appears
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satislactory, there is some criteria such as Goodness-of-fit Criterion, Akaike Information Criterion (AIC)
and Schwartz Bayesian Criterion (SBC) were computed and were useful to choose between different
models.

In the application of liver resection patients, for the forecasting period of 24 hours, the values
forecast by the model (including 95% confidence interval) were compared to the lab values. In the case
of a good forecasting, the new values were integrated into the model and thus the period will be enlarged
and the model improved progressively.

For the liver resection patients, ARTM A(1,0,0)-model was used in 12 cases , ARIM A(2,0,0)-
model in 5 cases , ARIMA(1,1,0)-model in one case and ARIM A(0,0,0)-model in the last case. In all
these cases lactate levels whatever be pathological or normal values did never surpass the 95% confidence
interval.

For the patients suffering from acute respiratory distress syndrome, 22 cases were described by
ARIMA(1,0,0), one case required ARIM A(2,0,0) and for the rest a linear model was used.

Later. Bauer et al. in [4] proposed a new graphical approach for pattern recognition in univariate
time series from online monitoring systems in intensive care. This approach is based on phase space
reconstruction. The chronological observations are combined in order to show the movement through
space. The dependence structure can be clearly recognized by the elliptic form of the vector cloud.
Typical disturbances of a time series like outliers, level changes and trends can be visualized by phase
space reconstruction, too. This approach has been successfully applied to controlled clinical studies but
not yet generalized to on-line monitoring. There are some research studies aiming to generalize this
approach to multivariate time series and combine it with procedures of dimension reduction.

[36] compared several statistical methods in order to do a classification between the most im-
portant kinds of states of physiological time series. They aim at distinguishing between the occurrence
of outliers, level change or trends in physiological monitoring data. They extend a case study described
in [46]. On the surgical intensive care unit, on-line monitoring data was acquired from 19 critically ill
patients (8 female and 11 male, mean age 65 years) with extended hemodynamic monitoring requiring
pulmonary artery catheters, in one minute intervals from a standard clinical information system. These
data was stored into SQL database and treated via a standard statistical software.

From a total of 550.000 single observations of 7 variables, scgments of 150 to 500 observations

for cach variable were visually classified into 5 patterns :
1. presence of outlier,
2. temporary level change,
3. permanent level change.
4. no change,

trend.
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AR(2) model Phase space model Dinamic linear model
All series with outliers are | All series with outliers are | All series with outliers are
identified, identified, identified with estimation in-

terval of 60 minuts,

All series with level changes | Identification of level changes | Level changes were detected
are identified, failed, best by moving an estimation
interval of 30 minuts through
the series.

All series without change are | All series without change are | All series without change are
identified, identified, identified with estimation in-
terval of 60 minuts,

Trend detection failed. Trend detection failed.

Table 3.1: Results of segments analysing

For a total of 134 time series : 23 were classified without change, 35 as containing change, 24 as
containing temporary level change, 42 as containing permanent level change and 10 as showing a trend
pattern. The segments were analyzed with AR(2)-models phase space models and dynamic linear models

and they obtained the following results in table 3.1.

3.6 Multivariate time series and dimension reduction

Most of these studies solve the smoothing problems but fail when we introduce high dimen-
sional real patient data (which arc present as multivariate time series [4]). Some proposals and much
progresses have been made to convert these models and techniques to deal with this kind of series. But
the multivariate time series structure, which presents a lot of directions for deviations from the steady
state system and a multitude of relations between the variables [39] cause their failure. Recently several
authors thought that it may be more efficient if they try other techniques for multivariate time series.
Graphical interaction models have been developed for analyzing these relations mentioned above.

In fact, we can represent multivariate time series by a graph which contains vertices symbolizing
the random variables and a multitude of edges between them symbolizing the relations that exist between
the random variables. Let a graph G = (V| E) consists of a finite set of vertices V and a set of ordered
pairs of vertices so-called edges set £ C V x V. If a and b a pair of connected vertices were visualized by

a circle for each vertex and an undirected edge connecting them (see fig.3.2).

this means that (a,b) € E and (b,a) € E. But if only (a,b) € E then a directed edge is drown

from a to b (see fig.3.3).
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Figure 3.2: Undirected edge

Figure 3.3: Directed edge

In reality further types of associations can be present in a graph. There are direct and in-
duced associations, strength and weak associations etc. In statistical meaning, these associations rep-
resent the conditional dependence of the corresponding variables and a missing one represents the con-
ditional independence. Following the Pairwise Markov property we can say that two vertices a and
b may be indirectly connected or connected by a path if there exist aj,...,a; k& > 0 such that all
(a,a1), (ar,a2).....(ax_1,ax), (ay,b) € E and (a,b) ¢ E and following Global Markov property having
AcCcV,BCVand C C V. wesay that C separates A and B which are conditionally independent if any
path between two variables @ € A and b € B passes necessarily by ¢ € €. This property means that if
we control the effects of the separating set €' then A and B will be not associated hence we can control
better the system.

These models are developed for analyzing the relations between the components of multivariate
time series. For describing the interactions between the components of a multivariate time series they
used a partial spectral coherence as [20], which consists to measure the linear dependence between two
components of a multivariate time series after removing all the effects of the other variables [14]. [20]
proposed a method by combining this tool with the concept of graphical models in order to detect the
relations between the variables of a multivariate time series. Gather and Imhoff in [39] adopted this
technique to hemodynamic system of critically ill patients monitored in intensive care.

The biggest problem of multivariate time series techniques is the high-dimensionality. For this
purpose there were trials dealing with the so-called "dimension reduction” which consists of reducing the
number of variables without loss of information. Li in [53] proposed the following dimension reduction
model :

y=g(B'z,¢) =g (0=, ... 852,€) (3.54)
where :

y is a real-valued response variable,

x is the p-dimensional random vector of explanatory variables,
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and ¢ is a random error.

¢ unknown link function. ¢ : R¥1 — R,

3 is a p by k matrix with columns 3; (i = 1,...,k), k < p called effective dimension reduction
space,

B+ ..., B p-dimensional vectors called effective dimension reduction (edr) directions have to be
estimated from the data.

To forecast y we need to know ’z. Denote S(/3) the space spanned by the columns of the matrix
A so-called dimension reduction sub-space. The idea is to reduce the dimension of the forecasters from p
to k if we know 3 and find the smallest dimension reduction sub-space. But it is not always unique, that’s
why we must find the central dimension reduction sub-space which is unique when it exists. Following
[87, definition 1] :

A sub-space S is a central dimension reduction sub-space for the regression of y on x if:

(a) S is a dimension reduction subspace and

(h) S C Sy for all dimension reduction sub-spaces Sg, 5, i.e. S = NS 5.

It will be denoted by Sy,
The prominent technique for the dimension reduction is the Sliced Inverse Regression [38]. This

technique proposes the following algorithm to estimate edr-directions [38. p2]:

1. Standardization:
5 =572 (2;—%), i=1,..,n (3.55)

where ¥ and T denote the sample covariance matrix and the sample mean of z;. i = 1,...,n,
respectively.
2. Slicing :

Divide the range of y into H slices I, ..., I. Let ny, be the number of observations of y which fall

h

into Iy, h=1,...,H, and let p, = -2

3. Sample mean-vector within each slice :

Zi

7hh, = Ey(EIh = (356)
ny
4. Principle Component Analysis (PCA) :
Let
H
V= thm,,mg (3.57)
h=1

42



Chapter 3 3.7. Conclusion

and compute the eigenvalues SR )A\p and corresponding eigenvectors 7y, ... 1, of V with

il = 85 (3.58)
where ¢;; denotes the Kronecker symbol.
5. Retransformation :
The edr directions are estimated by
B, =% k=1,..K (3.59)

3.7 Conclusion
In this chapter, and after a large literature review we can see that :

e The individual model identification and statistical evaluation of a single patient is used and seems

to constitute a successful methodology in intensive care monitoring,.

e The use of ARIMA models for the analysis of univariate intensive care time series appears to be
very promising. Those models are used both for outlier detection and level change detection and

seem to have satisfactory results [45], [32].

e The pattern detection in multivariate time series is more difficult than in univariate series since

there are a big number of directions for deviations from the steady state [37].
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Chapter 4

ONLINE MULTTAGENT
MONITORING SYSTEM FOR
INTENSIVE CARE UNITS

Principal results of this chapter are published in the 7¢7*¢ Journées Scientifiques des Jeunes
Chercheurs en Génie Electrique et Informatique (GEI'2007) [63], and the proceedings of the 7th Tunisia-
Japan Symposium on Society, Science & Technology (TJSSST 2006) [62].

4.1 Introduction

Physiological data altogether form a complex system. Therefore monitoring such variables
inherits all the necessary characteristics to be modeled with the Multi-Agent System (MAS) approach.
These characteristics are modularity, interconnections and parallel processing [28]. Multi-agent approach
seems to be the only technique which can help to reduce the complexity of the system by creating
modular components, which solve private subtasks that constitute together the hole goal [77]. Every
agent utilizes its own technique for solving the subtask. In case the subtasks are interconnected, agents
have to communicate to each other. The system can be represented as a community of intelligent entities,
solving the private tasks and constituting a whole complex system.

On the other hand, monitoring and quick anomaly detection are essential to ICU staff. Quick
detection refers to the speed of data that move rapidly through the ICU information system, from
patient’s connected sensors to anomaly detection component, to alarm generation and finally to medical
staff. Considering a patient critical care requiring quick response, the monitoring system must quickly
detect anomalies to allow medical staff to make the appropriate decision concerning treatment. The aim
is to minimize health cost, to enhance care quality, to lower patient hospitalization time and to improve
medical staff work quality. In this context, a real-time method must be proposed to improve the quick

response capability.
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In this chapter, we present a hybrid multi-agent system to solve the patent’s critical state
monitoring problems in real time. The approach allows the integration of intelligent entities with time

series technology. This system will be called Online Multi-Agent Monitoring System (MAMS).

4.2 System description

Our system is created by a three layered MAS (see Fig.4.1), which is aimed to provide physio-
logical data. to analyze them and to generate alarm signals.

Following the architecture pattern presented in chapter 1, the proposed system is composed of :

° an acquisition System having a sensor role,
o a monitoring System having a transformer role,
° and an alarm System having a deliverer role.

The architecture of each component are described as follows (Fig.4.1):

e B
4 Hardware
Sensors

System

, ‘ |

] | Manitoring
i System i

\ |

Alarm
System

-~ MAMS -

Figure 4.1: Global MAMS Architecture

4.2.1 The Acquisition System Architecture

The Acquisition System is an agent-based system (see Fig. 4.2), it integrates static and reactive
agents working in parallel. Each agent, called Acquisition Agent, colleets data from the specific devise.

The Acquisition Agent is composed of (see Fig. 4.3):

° a scnsor called Digitizer that perceives data coming from the patient,

° a transformer called Time Series Converter that converts data into regularly spaced time

series,
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° a deliver called Time Series Dispatcher that dispatches deduced time series to the Moni-

toring System.

“"H. collectors ™

as
“H.collectors ;" H.collectors ™, . H. collectors

SR R - .:w“ - o
(”gfquisition“\ Acquisition ™ (ﬂquisiticn ) (" Pequisition ™
- Agent /N Agent /. Agent /.. Agent

W”’N/ﬂ

%

"

MM" Acquisition ‘Sy-.ilem i
i " “RegularlySpaced Time Series |
w ........................................ -

Monitoring System

Figure 4.2: The Acquisition System Architecture (a)

4.2.2 The Monitoring System Architecture

The Monitoring System is composed by a multitude of dynamic subsystems called Time Series
Monitoring Systems (TSMS) (see Fig. 4.4). Each TSMS has a dynamic and cognitive agent called Control

Agent and a static and reactive agent called Graphical Agent (see Fig. 4.5).

The Control Agent Architecture

The Control Agent is composed of:

° a sensor called Time Series Receiver that receives time series from the acquisition agent,

° a transformer called Pattern Detectors that detects series patterns as outliers, trends, level
changes...

° a deliverer called Anomalics Deliverer that sends alarm requests to the alarm system.

46



Chapter 4 4.2. System description

A
Digitaliser
! y
! Time Series
Converter i
| + !
/ Time Series
-.‘ k "y ) 4 / \jl/. Dispatd‘er
3 Tk 2N =
- Emvironment . Time Series \ Acquisition
L e e « Agemt ",/

Figure 4.3: The Acquisition System Architecture (b)

" Acquisition Systérn
Kequisition . A ;
..., Agent ..
i

""""""""""""" NumericTime SeriesData
1 |

OTSMS e "~ TsMSs ©TSMS

Fetpsitionr -w‘h}Wfﬂ-:ﬂ;w-' n
!

Graphics & Alarm request

Alarm System

TSMS

Figure 4.4: The Monitoring System Architecture (a)




Chapter 4 4.3. The System’s working principles

The Graphical Agent Architecture

The Graphical Agent is composed of:

° a sensor called the Time Series Receiver,
° a transformer called the graphical transformer that converts time series into graphical
models,
° a deliverer is the graphics displayer that displays graphics on the bedside data viewer.
T e
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: ¢ Graphics
l .\ displayer /¢

(-"Kﬁomali-e?‘\ i
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Dataviewer

Graphical
Agent

Control
Agent

Graphics

Figure 4.5: The Monitoring System Architecture (b)

4.2.3 The Alarm System Architecture

The Alarm System adopts the same pattern for its architecture as illustrated by Fig. 4.6 and
Fig. 4.7.

The Alarm System receives data from the Monitoring System and exactly from Control Agents.
The Alarm System embodies one static and reactive agent that works autonomously: the Alarm Agent.

The Alarm Agent collects alarm requests received through the Alarm receiver, decides about

these requests and activates alarm through the Loudspeaker.

4.3 The System’s working principles

As seen above, MAMS is a three layered MAS. Each layer is in turn an MAS which communicates
with other layers by Agent Communication Language (ACL) messages (see Appendix A). In the following,

we present the algorithm of each agent in the different system’s layers.
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StartingAgent Algorithm

A starting Agent collects physiological variables names as arguments and puts them in argv
table. It skims through the table and creates an Acquisition Agent for each variable. After that, it

creates the Alarm Agent and finally it destrovs itself (see Algorithm 1).

Algorithm 1 Starting Agents Algorithm

1. Algorithm StartingAgent(argv [])

2. Var i : integer

3. Begin

4. argumentsRecuperation () ;

5. for i =1 to length(argv) do

6. Create and start up an agent instance of AcquisitionAgent class;

& end for

8. Create and start up agent instance of AlarmAgent class;

9. doDelete () 5 // StartingAgent will destroy itself after achievement of his tasks.

10. End

AcquisitionAgent Algorithm

The AcquisitionAgent is a reactive agent and an instance of AcquisitionAgent class. It has the

following algorithm (see Algorithm 2):

Algorithm 2 Acquisition Agents Algorithm

1. Algorithm AcquisitionAgent(argv [])

2. Begin

3. argumentsRecuperation () ;

4. Create and start up agent instance of ControlAgent class;
9. Create and start up agent instance of GraphicalAgent class;
6. AddBehaviour(AcquisitionAgentBehaviour);

The Acquisition Agent whose name is received as argument is started up. It creates its corre-
g g
sponding Control Agent and Graphical Agent and acquires its own behavior as presented in Algorithm

3:
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Algorithm 3 Acquisition Agents Behavior Algorithm

1. Algorithm AcquisitionAgentBehavior ()

2, Var

3. §1 Sensor

4, val : integer

5. revCirl, revAf f o String

6. Begin

7 revCtri=constructControlAgentName() ;

8. revAf f= constructGraphicalAgentName() ;

9 while (not endOfRead(s)) do

10. val=read(s) ;

11, sendMessage(val, revCirl) ;  // Sending val by message to the rcvCirl agent.
12. sendMessage(val,revAff) ; // Sending val by message Lo the rcvAf [ agent.
13. sleep(n) ;  // pause of n milliseconds.

14. end while

15. doDelete();

16. End

The Acquisition Agent reads data from the sensor each n milliscconds (n is a parameter intro-
duced by the staff) and sends them to its corresponding Control Agent and Graphical Agent. When the

sensor is disconnected and no data is read the Acquisition Agent will destroys itself.

ControlAgent Algorithm

It’s a cognitive agent which instantiates the ControlAgent class and is a part of Monitoring
System. It has the following algorithm (Algorithm 4):

Each n milliseconds, the Control Agent receives a message having data from the Acquisition
Agent. It tests the presence of abnormal or critical state using a monitoring technique. In the presence
of 5 consecutive critical data, the Control Agent sends an Alarm request to the Alarm Agent. Otherwise,
it sends a Cancel request. When the Acquisition Agent is destroyed and stops sending messages, the

Control Agent will destroy itself.

GraphicalAgent Algorithm

The Graphical Agent is a reactive agent which instantiates the GraphicalAgent class and is a
part of the Monitoring System. It has the following algorithm (Algorithm 5):

Each n milliseconds, the Graphical Agent receives a message from Acquisition Agent having the
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Algorithm 4 Control Agents Algorithm

1. Algorithm ControlAgentBehavior ()
2. Var

3. msg: message

4, content, nbr Err : Integer

5. Cancel: boolean = false

6. Begin

7 msg=recieveMessage() ;

8. while (nsg/ = Null) do

9. content=contentRecuperation(msg) ;
10. if (abnormal(content)) then

11 nbrErr = nbrErr + 1 ;

12 else

13. nbrErr =0 ;

14. if (Cancel) then

15, sendMessage ("Cancel ", alamAgent) ;
16. RAZ = faulse ;

L7. end if

18. end if

19. if (nbrErr =5) then

20. Cancel = true ;

21. sendMessage (" Alarm ", Agent,larme) ;
22; end if

23. sleep (n) ; // pause of n milliseconds.
24. msg=recieveMessage() ;

25. end while

26. doDelete();

27. End

wn
[i)
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Algorithm 5 Graphical Agents Algorithm

1. Algorithm GraphicalAgentBehavior ()

2. Var

2 msg: message

4. content : integer

5. Begin

6. msg=recieveMessage () ;

7. while(msg/ = Null) do

8. content=contentRecuperation(msg) ;
9. drawGraphic(content) ;

10. sleep (n) ; // pause of n milliseconds.
11. msg=recieveMessage () ;

12 end while

13. doDelete():

14, End

same content as the Control Agent. The graphical Agent ads this content to its corresponding graph.
When the Acquisition Agent is destroyed and stops sending messages, the Graphical Agent will destroy
itsclf.

AlarmAgent Algorithin

The Alarm Agent which is an instance of AlarmAgent class, is a cognitive agent and has the
following algorithm (Algorithm 6) :

Each n milliseconds, the Alarm Agent receives messages from all the Control Agents. Each
Alarm request causes the addition of the Control Agent Name in the Alarm list and each Cancel request
causes the removal of the Control Agent Name from the Alarm list. After that, and using its rules base,

the alarm Agent decides about triggering alarm or not.

4.4 Conclusion

In this chapter an approach to develop an agent-based monitoring system has been introduced.
The software agents use time series technology for anomaly discovery, which will be used as a foundation
for alarm generation.

Based on the observation that UML doesn’'t provide currently sufficient means for the design
of MAS, we have used AUML formalism. In the specification phase we identified agents and their
relationships in the actor’s model. goals and roles of each agent in the agent goal diagrams and the agent

interaction with its environment in the use case and activity diagrams. In the design phase we used class
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Algorithm 6 Graphical Agents Algorithm

1. Algorithm AlarmAgentBehavior()

2. Var

3. MSg : Mmessage

4. content : integer

B, delay : integer

6. nbCirl : integer

7. Begin

3. nbCtrl = ControlAgentNumber;

9. while (true) do

10. for each ControlAgent do

11. msg=recieveMessage() ;

12. if (msg = Null) then

13. nbCtrl — —;

14. end if

15. content=contentRecuperation(msg) ;
16. if (content = "Alarm") then

17. addMessageSourceToAlarmSourceList() ;
18. else

19. if (content= "Cancel") then

20. deleteMessageSourceFromAlarmSourceList() ;
21. end if

22, end if

23. end for

24. if (nbCtrl =0) then

25. doDelete();

26. end if

27. rulesBaseConsultation();

28. sleep(n);

29. end while

30. End
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diagram. For modeling dynamic behavior, a sequence diagram is used. Finally we presented details on

algorithms.

(]
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Chapter 5

EXPERIMENTAL STUDY

Principal results of this chapter are published in the proceedings of the 4th International Multi-
Conference on Systems, Signals & Devices (SSD-07) [65], the proceedings of the 24th Annual Conference
and Exhibition HEALTHCARE COMPUTING (HC2007) [64], as poster in the International Symposium
on Computational Biology & Bioinformatics (ISBB06) [60] and will appear in proceedings of International

Colloguium on Computing, Communication, Control, and Management(CCCM 2010) [66].

5.1 Introduction

This chapter outlines the range of experiments for the proposed monitoring system, and details
the experimental cycles. It covers the nature of our experiments, and describes the aims of these. The

main objectives of our experiments are the evaluation of the following.

I. The Control Agent performance : the Control Agent performance is measured by monitoring
one variable at a time. In order to assess the performance, sensitivity and specificity must be
measured. The sensitivity could be measured by comparing the number of detected anomalies

versus the number of missed ones. For this purpose we define the ratio CtrlAgtSensitivity as:

AnomaliesDetected

CtriAgtSensitivity = (5.1)

Anomalies

The specificity is measured by the number of significant anomalies detected (TPAn) versus
irrelevant anomalies detected(FPAn). It's the ratio of significant anomalies detected to all significant

ones.
TPAn

TPAn + FPAn (5:2)

CtrlAgtSpeci ficity =

2 The Alarm Agent performance : the Alarm Agent performance is measured by monitoring
several variables at a time. In this case, the sensibility is measured by the number of signifi-

cant generated alarms (TP) versus the number of not generated ones. It's the ratio of significant
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generated alarms to all significant ones.

TP
AlAgtSensitivity = 5.3
ST G Swgnificant Alarms (53)

The specificity is measured by the number of significant generated alarms(TPA) versus irrelevant
generated alarms (FP). It is defined as the ratio of true positive alarms to all generated ones.
i o

_ 5.4
TP+ FP 4

AlAgtSpeci [icity =

3. The global system performance: the global system performance is inferred from the Alarm
Agent performance (i.e. from its sensitivity and specificity). In addition to assess the capability
of the global system, the time elapsed, between the anomaly detection and the alarm generation,

must be calculated.

5.2 Control Agent functionality

The main objective of Control Agent is to detect anomalies. Anomaly detection assumes that
the critical state will always reflect some deviations from normal patterns [18]. Hence, the Control Agent
will be in charge of fitting in the data and detecting the deviations from the normal pattern.

To evaluate the Control Agent functionality, we need to integrate one of the monitoring tech-
niques in the core of the agent to replace the behavior rules. In fact, the agent functioning is described by
a set of behavior rules which are similar to production rules. The main disadvantage of the rules based
detection systems is that they only detect the anomalies for which they were trained. Novel anomalies,
unknown anomalies or even variants of common anomalies often go undetected [18].

There are several monitoring techniques that could be used in our work:

1. Fixed threshold based technique : each agent uses fixed thresholds defined previously by the
physician. The contribution of fixed threshold based system in comparison with the usually used

system is the presence of agents which solve the interdependence problem.

2. Traditional and modern statistical machine learning techniques: unlike rule based tech-
niques, some machine learning based systems can detect novel, unknown and variants of known

anomalies. Here are some examples of time series and machine learning technigues.

(a) Time Series technology. As seen in chapter 3, time series technology is widely used in
medical data monitoring considering the serial correlation between the physiological observations [32].
Especially Autoregressive (AR) models [36], [4] and Autoregressive Integrated Moving Average (ARIMA)
models which are the most adequate to medical data as [45] and the most often used time series models

as (32].
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(b) Artificial Neural Networks. Neural networks have the advantage of easier representation
of non-linear relationships between input and output but the defects are that their computational load
is very heavy [18].

(c) Support Vector Machines. Support Vector Machines are learning based algorithms
designed for binary classification and regression [50]. Support Vector Machines have proven to be a good
candidate for anomaly detection because of their speed and scalability [18].

Both Artificial Neural Networks and Support Vector Machines have the disadvantage of being
designed for a supervised learning, This means that the classification is based on labeled training input
vectors. But in ICUs, data are not labeled. Hence, those techniques cant be used in intensive care

monitoring.

In this chapter. only Fixed threshold and time series based techniques are retained.

Relating to time series techniques, we rely on results and conclusions derived in [45] and [32].
The finding of these studies show that ARIMA models appear to be very promising for intensive care
time series analysis. We follow the same approach.

The primary goal of our system is to be automatic. Hence, both modeling steps (identification

and estimation) and anomalies detection have been be totally automated.

5.3 The ARIMA model

ARIMA-models have proven themselves to be relatively robust and very promising for medical
time series analysis. Imhoff et al. in [45] present some reasons for that.

ARIMA-models are flexible and applied to a wide spectrum of time series analysis. The abbrevi-
ation ARIMA stands for Auto Regressive Integrated Moving Average. The general ARTM A(p. d, g)-model
is a combination of three processes: Autoregression (AR), differentiation in order to climinate integration

(trend) of a time series (I), and moving average (MA).

5.3.1 Autoregressive (AR) process

A stochastic process (x;) is an autoregressive process of the order p, indicated by the notation
AR(p) or ARIM A(p,0,0),

where
Ty =00 + ¢ %1 + - + DpTe—p + &1, teN (5.5)
or
(1—¢pB—...— c;)pr’):ct =+ & (5.6)
or
O(B)x; = by + £4, (5.7)
where
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(B)=(1-¢,B —...— ¢,BP), (5.8)

r

B is the backshift or lag operator such that

Bﬂ,‘g = Tt-1 (59)
and
Bigy =z, (5.10)
{e¢}a white noise process « i.i.d.R(0, 02, (5.11)
bo=(1-¢B~—.. —¢,B")u. (5.12)
e = E(xy) (5.13)

1y is the mean function of z;.
In the case of stationary process, since the distribution function is the same for all ¢, the mean
function

j; = j 1s a constant. (5.14)

and ¢, ...,¢, are unknown weights measuring the influence of the past observations on the

P
current observation.
In fact, each value in an AR(p)-process is determined by p preceding values plus a random
disturbance. In an AR(1), for example, the value at time ¢ is a function of the preceding value at
timet — 1, and the value at time ¢ — 1 is a function of the preceding value at time ¢t — 2, and so on.
®(B)=(1-¢,B—..—¢,B") is a polynomial in B of degree p. in AR model it is assumed that
the polynomial ®(B) = 0 have all its roots outside the unit circle. In terms of AR(1)-process it implies
that
|| < 1. (5.15)

For an AR(2)-process
®(B)=1-¢,B—¢yB2 =0 (5.16)

must lie the unit circle, which implies that the parameters ¢; and ¢, must lie in the triangular region

o1+ ¢y < 1, (5.17)

P —¢p < 1 (5.18)
and

—l<¢y <L (5.19)
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5.3.2 Moving Average (MA) process

A stochastic process (z;) is a moving average process ol the order g, indicated by the notation
MA(q) or ARIMA(0,0,q),

where
=00+ (1+61B+..+60,B%¢ (5.20)
or
Ty = 90 + e(B)Et, (521)
where
O(B)=(1-6B—-..—-04B7), (5.22)
o= p (5.23)
and
f1; .28 (5.24)

are unknown weights measuring the influence of the past disturbances £ on the current observation.

Because
1-6}— ... — 602 <o, (5.25)

a finite moving average process is always stationary.

The difference between an autoregressive process and a moving average process is important.
Each part in an autoregressive model relates the actual value to past values in a linear fashion. The
moving-average model relates the actual value to the errors or disturbances of previous ones. Since
these values in turn are weighted averages of the previous ones, the effect of a given disturbance in an
autoregressive process dwindles as time passes. In a moving average process, a disturbance affects the

system for a finite number of periods after that it ceases to affect it.

5.3.3 Integration

The stationarity of a series is necessary for the estimation of AR and MA processes. Therefore,
time series that show a trend, due to a reflect of a cumulative effect of some processes, should be
differenced, until stationarity is accomplished.

Differencing means to calculate the increments (x; — 24—1) between subsequent values as much
as possible until the ARIMA model follows a stationary ARMA one. d represents the number of times we
need to differentiate the time series before being stationary. So if d = 1, it means that we differentiated

only one time and y; = vy — x4 or y = (1 — B)xzy is an ARIM A(p,1,q)-process and if d = 2, it means
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that we differentiated twice, the first one, y; = oy — ;-1 and the second one z; = y; —yp—1.2¢ = (1 — B)z;z:t
is an ARIM A(p, 2, q) process.

An ARM A(p, q) model assumes that z; can be presented as
(1-¢yB—.. —¢,BP)z; =0+ (1 + 61 B +... +8,B%¢ (5.26)

or

and an ARIM A(p, d, q) model assumes that x; can be presented as

&(B)(1 — B)%x; = 6g+O(B)e;. (5.28)

5.3.4 Seasonality

The seasonality is a pattern in a series that repeats regularly. The seasonal part of an ARIMA
model has the same structure as the non-seasonal part. A seasonal ARIMA model is classified as an

ARIMA(p,d,q)z(P, D,Q)s model.

5.3.5 Building ARIMA models

In this section we will outline the practical steps which need to be undertaken to use ARIMA
models. We will consider Box and Jenkins [13] approach which is embodied in the model-building
procedure described in figure 5.1. The initial values for p, d, ¢ (and probably P, D and () when there is

presence of seasonality) were derived from the Sample Autocorrelation Function (SACF)

V(s — 2)(2epn — E)
=N (2 — T)(% — Z)
1

g = =3 g, (5.30)
N

(5.29)

b

:ah

and the Sample Partial Autocorrelation Function (SPACF) of the original series, and after some
order differentiations if necessary. The SACTF estimates the unknown autocorrelation function of the
process. While the SPACF estimates the autocorrelation between x; and .y, for an AR(p) process
the SACF should be exponentially declining and SPACF should be about zero all the time lags h > p.
Conversely, for an M A(q) process the SACF should be about zero from time lag g + 1, while the SPACF
should be exponentially declining. For mixed ARM A(p,q) process the SACF and SPACF show more
complex patterns. Their identification often takes several cycles of the procedure.

In the estimation phase, the unknown parameters ¢, ...,gﬁp,&], ..., 0, are estimated from the
data. If more than one model appeared suitable for the series, all models were estimated. Commonly we
estimate SACF and SPACF of the residual series. Models were accepted only when the residual SACF
and SPACF values do not exceed the 95% confidence limits. This indicates the absence of correlations

between the residuals and therefore they present a white noise process.
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Figurc 5.1: ARIMA-model building procedure

In the validation phase, for cach model cocfficient the t-statistics were determined to test their
significance. Only models in which the coefficients were significant, were selected.

Finally, if many models are sclected the Akaike Information Criterion (AIC) or Bayesian Infor-
mation Criterion (BIC) will also be computed to select the more reliable one. If the model turns out
to be satisfactory we can use it for further analysis such detecting anomalies in the series or forecasting
subsequent values. Otherwise, we should modify it according to the impressions gained in the diagnosis
stage and then iterate until a satisfactory model is derived.

A different approach is the application of several number of models where the orders vary over
a wide range. The models are then compared by a calculated goodness of fit criterion and so the best
model will be selected [45] .

5.4 Automation of the modeling steps

To automate the modeling steps detection we developed an identification and estimation pro-

cedures, in R language. It consists of the generation of different values of ARIMA(p.d, q)z(P, D, Q)
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orders. The ARIMA model is expressed as :

(1 - B)%,(B)(1 — B*)P2p(B*)Z, = 0,(B)Oq(B")ar, (5.31)
with
@F(B)—l—qblB—QgBQ — ¢, BP
Op(B) = B — ¢oB* — ... — ¢,pB? (5.32)
aq(B) 9 B —6,B% — —quq '
Og(B)=1- HslB& — 052B% — .. — 0,0B?

The optimal order selection is based on usual goodness of fit criteria. In order to save compu-
tation time, as suggested by[36] and [45] who have pointed out that physiological time series processes
are characterized by short memory, values between 0 and 3 are assigned to ARIMA parameter orders
(p.d,q)(P,D,Q). Akaike Information Criterion (AIC) and mean squared error Criteria are used for
optimal selection of those parameters.

The selection procedure is based on the first encountered stable part of the series consisting of

60 observations.

5.5 Anomaly detection

The first 60 observations are used to identify the orders and to estimate the parameters of the
ARIMA model (¢s and 6s). The selected model is then used to generate one step ahead point forecast and
95% interval forecast for period T+ 1. This one step forecast value is compared to the observed value for
the same period T+1. If the newly recorded value for T+1 lies within the interval forecast obtained earlier,
the new value is then integrated into the updating of model parameters. Therefore, continuous updating
of the sample size on which are based the model building and forecasting is performed. However, a very
large estimnation period can increase the computation time. Hence, a moving window of 600 observations
was used.

Usually, changes of variables over time (such as level changes, trends and variance changes)
are more important than a single pathological value at the time of observation (outlier). Hence, the
online detection of qualitative patterns such as outliers, level changes, trends and variance changes is
important for assessing the patient’s state. So, only level changes, trends and variance changes need

medical intervention. Qutliers generate insignificant alarms.

5.5.1 Outliers’ detection rule

An outlier means only one value deviates from the forecast model (outside the 95% confidence

interval); in this case the forecast value will be integrated into the model instead of the observed one.
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5.5.2 Level change, trends and variance change detection rules

Level change, trend and variance change mean persistence of deviations from the forecast value.
In order to not consider patchy outliers as anomalies, we set the system to declare anomaly after 5
consecutive values deviating from the forecast model as in [36]. This procedure was integrated in the

Control Agent behavior using Java to R Interface (JRI).

5.6 Alarm Agent functionality

To evaluate the Alarm Agent functionality, use of several patient’s variables has been done. Each

variable will be affected to a Control Agent. The Control Agents use the same monitoring technique.

5.7 Data description

It's essential to test the system with real data. But. in Tunisia, data is not available. This is
due to the fact that in ICUs most of the time monitors don’t have a recording unit. In addition there
is a lack of sufficient number of monitors in ICUs and some times only one functional monitor is used
for monitoring the state of many patients. Therefore, the staff shares it among all the patients and
so, there is no continuous data-recording data for patients. Hence, resorting to Physiobank [40] was
the obvious solution. In this site, MIMIC (Multiparameter Intelligent Monitoring for Intensive Care)
database was used. This database contains data from hemodynamically unstable patients hospitalized in
1996 in ICU of the cardiology division of the Teaching Hospital of Harvard Medical School. It includes 100
patient records, each typically contains 11 hours 43 minutes and 8 seconds of continuous data recorded
each second (42188 records for each physiological variable). Each recording is accompanied by detailed
annotations or labels that point to specific locations and describe events at those locations.

From this base, several patient records are used to test performance of our system. Two of these
patient records are presented as examples in this chapter. The peculiarity of these data is the presence

of the different qualitative patterns such as outliers, level changes gradual and abrupt trends.

5.8 Experimental topology

In the first set of experiments, only Control Agents are tested. We used two kinds of monitoring
techniques, the fixed thresholds technique, and the time series techniques. They will be compared to the
usually used system in the ICUs. Each patient record of the MIMIC database has informations about
the used thresholds. We notice, that the staff widen the tolerance interval during the monitoring period
when the fixed threshold causes a lot of generated alarms. For example, in some patient records, the
threshold of the Arterial Pressure which in reality must not exceed 140 mmHg, the staft changes it to

220 mmH g when it persists high without caring about what happens to the patient.
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5.9. First set of experiments

In the second set of experiments, we used the same systems, but this time, Alarm Agent will be

tested. In each time, we will compare the generated alarms, with respect to their significance, their type

and their detection ( number of significant ones, false ones and the number of non-detected anomalies).

5.9 First set of experiments

5.9.1 Patient 1

Paticent 1 has four variables to monitor : Noninvasive Blood Pressure (NBP), Blood Temperature

(BTemp), Arterial hemoglobin oxygen saturation {SpO2), Respiration Frequency (Resp) (see fig. 5.2).
Each variable has its own Control Agent called respectively CtrINBP, CtrlBTemp, CtrlSpO2, CtriResp.

40 60 80 100

20

BTemp
Resp
Spo?
T T T T T T
200 400 600 800 1000

Time

Figure 5.2: Subset of Patient 1 variables

As a first attempt, time series monitoring technique has been used as a procedure for the

online detection of patterns in univariate time series and applied it to the observations of the four

physiological variables seen above. Then each control agent identified and estimated the ARIMA model

and so monitored around 42000 values. The results are presented in table 5.1.
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Model identified Sensitivity Specificity Compnting  Time Model Detection Computing Time after Maodel
before Model De- Computing Time Detection
tection
CtrINBP ARIMA(3.1.2) 100% 98% 5 to 6 oms 75182 ms if forecasting and model updat-

ing 50 to 60 ms clse 5 Lo 6 ms

CerlBTemp ARIMA(3.1,3) 64% GO 5 to 6Goms Gs 747 ms if forecasting and model updar-
ing 300 to 300 ms else 5 to 6 ms
Crl§p0?2 ARIMA(3.1,3) DRY 97.5% 5 to fi ms 55 562 s if forecasting and model updat-

ing 300 to 300 ms else 5 to 6 ms

-1
-1

1 s il forecasting and model updat-

~1

CtrlResp ARIMAC(LL ) 100% 08% 5 1o 6 ms 5

ing 140 to 150 ms else 5 to 6 s

Table 5.1: Patient 1 data monitored by Time Series based Control Agents

” ” Thresholds l Sensitivity | Specificity [ Computing Time ”
CtrINBP 90<NBP<220 94% 9,62% 5 to 6 ms
CtrlBTemp || 37<BTemp<37,9 | 4% 10,72% b to 6 ms
CtriSpO2 85<Spo2<100 91% 27% 5 to 6 s
CtrlResp 5<Resp<25 47% 4,87% 5to 6 ms

Table 5.2: Patient 1 data monitored by Threshold based Control Agents

The intuitive rule that we adopted for the detection of simple and patchy outliers, level changes
and abrupt trends is to compare the incoming observation to the one-step ahead forecasting based on

such model. This approach failed in tow cases :

1. In the presence of a gradual trend, when the first change point is not detected and so integrated
into the updating of model parameters. In this case, the model will follow the trend and doesn’t
detect it. This deficiency implies that CtrlBTemp and CtrlSpO2 have respectively 64% and 98%

sensitivity.

2. In the presence of a short outlier. If this outlier lies within the interval forecast, it will be integrated
into the updating of the model parameters and so all the model will deviate and the normal values
recorded after that will be considered as anomalies. This deficiency implies that all the Control

Agents don’t have a 100% specificity.

As a second attempt, a threshold based technique is used keeping the same limits mentioned in
the annotation of the database (see table 5.2).

Because of the widening of the tolerance interval during the monitored period, the Control
Agents were not able to detect all the anomalies, this may explain in some sense the performance of the

Control Agent of not achieving a 100% sensitivity level.
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Figure 5.3: Subset of patient 2 variables’ values

In this system, Control Agents, deal with a single value at a time and not with the usually

changes of the variable over time. This would imply the how specificity levels performed.

5.9.2 Patient 2

Patient 2 has seven variables : Arterial Blood Pressure (ABP), Pulmonary Arterial Pressure
(PAP), Heart Rate (HR), NBP, ART, Resp, SpO2 (see fig.5.3) . Each variable has its own Control Agent
called respectively CtrlABP, CtrlPAP, CtrlHR, CtrINBP, CtrlART, CtrlResp, CtrlSpO2.

The peculiarity of this database is the use of thresholds conform to safety standards. From the
results in tables 5.3 and 5.4, it is casy to sce that threshold based agents (CtrlPAP, CtrlART, CtrlSpO2)
have a good sensitivity as well as the time series based agents. In contrast, time series based CtrlIABP
agent outperforms threshold based agent in terms of the sensitivity criterion. This could be explained
by the fact that ARIMA models can detect abrupt changes even when these occur within the tolerance
interval.

For variables such as NBP, HR and Resp no anomalies have been detected. Hence, no sensitivity
and specificity computation was performed.

Time series based Control Agents are responsible for executing sequentially the following tasks:

1. Data collection,

2. Model identification and estimation, and one step ahead forecasting.

67



Chapter 5 5.9. TFirst set of experiments

Model identified Sensitivity Specificity Computing Time he- Maodel Detection Computing  Time alter
fore Model Detection Computing Time Model Detection
CirlABP ARINMA(3,1,1) 97% 84% H Lo 6 ms G s 870 ms if Torecasting and model

updating 140 to 200 ms

else 5 1o 6 ms

CuINBP ARIMA(L,1,1) 5 to i ms 15 538 ws if forecasting and model
npdating 70 to 90 ms else

5 to Goms

CirlPAP ARIMA(1,1,1) 100% 89,6% 5to 6 ms 45 765 ms if forecasting and maodel
8
updating 80 to 100 ms else

5 to 6 ms

CurlART ARIMA(2,1,2) 100% 23% 5 Lo G s 7 5 9406 ms il forecasting and model
updating 150 to 300 ms

else 5 to 6 ms

CtrlHR ARIMA(2,1.2) 5 to G ms 6 s 30 wms if forecasting and model
updating 250 to 100 ms

else 5 to 6 wms

Ctrlltesp ARIMA(1,1.1) 5 oto G oms 45750 ms il forecasting and model
updating 20 to 30 ms else

5 to 6 oms

CurlSp0O2 ARIMA(3,1.3) 100% 13.5% ioms 856756 wms if forecasting and model

e
@

updating 800 to 900 ms

else 5 to 6 ms

Table 5.3: Patient 2 data monitored by Time Series based Control Agents

Computing Thne “

Thresholds Sensitivity | Specificity
CtrIABP 90<ABP<140 | 63.2% 29% 5 to 6 ms
CtrINBP || 60<NBP<120 5to 6 ms
CtrlPAP || 20<PAP<65 | 100% 0,1% 5 to 6 ms
CtrlART || 60<ART<120 | 100% 37% 5 to 6 ms
CtrlHR 80<HR <150 5 to 6 ms
CtrlResp || 5<Resp<25 to 6 ms
CtrlSpO2 || 89<Spo2<100 | 100% 1,5% 5 to 6 ms

ot

Table 5.4: Patient 2 data monitored by Threshold based Control Agents
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5.10. Second set of experiments

Usually  used || Threshold Time Series
system based MAS || based MAS
Alarms generated number 29317 6563 1809
Significant generated Alarms number || 504 504 769
Significant missed Alarms number 319 319 54
False Alarms number 28494 5740 1040
Alarms generated reduction - 8% 94%
False alarms reduction - 80% 96,4%
Sensitivity 61% 61% 93.5%
Specificity 1,7% 7,6% 45,5%
Alarm Computing Time 5 to 6 ms 7 ms 7 ms

Table 5.5: Systems outputs using Patient 1 data

3. Data reception and comparison with the forecast values:

if the received value lies with the interval forecast. it will be integrated into the updating of the
model parameters and so the future one step ahead forecast value will be computed,

if the received value exceeds the interval forecast, the forecast value will be retained without
neither updating nor new forecasting.

In tables 5.1 and 5.3 we present the agents computing time when they run on a Dual 2 Core
CPU T5200 at 1,6GHz and 1GO RAM.

Despite the time that the Control Agent lost in the model identification, it makes up for it just
after that when it waits for the future incoming values.

Threshold based Control Agents spend just the time of comparing incoming data to the limits

and so the computing time is usually between 5 to 6 ms (see tables 5.2 and 5.4).

5.10 Second set of experiments

This section deals with assessing the value of the proposed alarm agent functionality. We test
its ability to take into account the correlation structure over time of the variables being involved. The
output of our system is compared with the output of the usually used system.

Considering correlations, threshold based multi-agent systems improve the specificity in com-
parison with the usually used system (sce tables 5.5 and 5.6).

Introducing time dependant serial correlation and variability as depicted by our time series
based multi-agent system resulted in a considerable gain as exemplified by the obtained specificity and
sensibility ratio (see tables 5.5 and 5.6). This means that the number of false alarms decreased and the
number of significant alarms increased.

The time spent to generate an alarm is between 5 to 6 ms for the usually used system. The

time spent by the threshold based multi-agent system is the sum of the time spent by the Control Agent
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a.ll.

Conclusion

Usually  used || Threshold Time Series
system based MAS | based MAS
Alarms generated number 100382 39250 37444
Significant generated Alarms number || 795 795 1019
Significant missed Alarms number 281 281 a7
False Alarms number 99313 38181 36368
Alarms generated reduction - 61% 63%
False alarms reduction 2 61,5% 63,4%
Sensitivity 74% 74% 94,7%
Specificity 0,8% 2% 3%
Alarm Agent Computing Time 5 to 6 ms 7 ms 7 ms

Table 5.6: Systems outputs using Patient 2 data

(5 to 6 ms) and the time spent by the Alarm Agent for the rule base consulting (7 ms). Likewisc, the

time spent by the time series multi-agent system is the sum of the time spent by the control agent in

casc of anomaly (5 to 6 ms) and the time spent by the Alarm Agent.

5.11 Conclusion

In conclusion, we can notice that considering physiological variable correlation and variability

over the time has improved medical monitoring performance from sensitivity and specificity point of view

without decreasing the online aspect.
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CONCLUSIONS AND FUTURE
RESEARCH

6.1 Conclusions

In this work we presented ICU issues and medical stafl concerns. We focused on the large
number of variables that a physician has to deal with, and the monitoring system alarms which are
numerous. Such alarms are produced by online monitoring systems based on fixed thresholds. This kind
of systems produce alarmns each time that a change point (as outlier, level change or trend) occurs and

exceeds the threshold. In practice, we can see that:

1. A large number of false alarms; that are due to the presence of non-symptomatic outliers.

2. A large nuber of missed significant alarms; that are due to the width of the tolerance interval or

to the non-detected abrupt changes that have occurred within the tolerance interval.

Some cfforts were considered to improve ICU conditions. Several works tackled this problem
but they didn’t come to sizable conclusions. This alarming situation compelled us to suggest our online
multi-agent monitoring system which tries to filter artifacts that cause false alarms in the first hand and
produce significant ones in the second hand.

Because intensive care online monitoring data is generally high dimensional and multivariate,
the more appropriate representation could be a multivariate time series approach. But, multivariate time
series techniques have several limits; we cite as example the fact that they need a lot of memory and
time exccution. So, they are not appropriate to be used in online monitoring systems. Morcover, the
peculiarity of multivariate time series is the presence of serial correlations. Hence, a change point means
a change point at the same time in several variables (so called contemporaneous correlation) or a change
point at different times (so called cross correlation). The detection of such points in multivariate time

series is very difficult because there is a large number of directions for cross correlations.
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To alleviate to this problem, we proposed to combine univariate time series technology which
can be helpful to interpret data coming from the clinical information system, with multi-agent technaol-
ogy which can be helpful to consider contemporaneous and cross correlations and avoid dealing with
multivariate time series.

Univariate time series analysis allows detecting change points which are important for assessing
critical states. Usually the detection of a change point in a system leads to an alert, and so, the physician
can check the situation and possibly take some therapeutic actions. A well known problem here is the
occurrence of isolated and patchy outliers which make time series noisy and can produce false alerts.
Hence there is a necessity for an automatic detection of outliers in online monitoring data.

For this purpose, we suggested to develop a new online multi-agent monitoring system. This
system’s principle is to automatically detect in real time, critical states efficiently from high dimensional
data. We began by defining a new architecture. This architecture is based on a unified systemic approach.
We have appointed that all components in the architecture at all levels have the same structure with 3

types of components:

1. a sensor,

o

. a transformer,

3. and a deliver.

In this architecture some components are considered as software agents within specific behavior.
The time series technology is incorporated in our architecture to handle the false and significant missed
alarms problem.

An ontology has been described and a general system structure with detailed explanation of the
roles and interactions in accordance with AUML paradigm has been presented. The levels of the system
architecture, logically and functionally connected, have been presented.

For the online recognition of anomalies, we identified and estimated ARIMA models during
the equilibrium or steady patient’s state and found the measure to detect deviations from the steady
state. The nature and peculiarities of experimental data have been discussed.

In clinical practice, the physician typically sclect the most important variables (according to
the experience) and bases his decision on the patterns found in these variables. In the presence of this
kind of systems, the physician will not worry about the variables to be selected. He can sclect as many
variables as he wants. In this case, even hidden anomalies present the other variables can be detected.

Because the system used in usual practice is not available, an effort has been made to redevelop
it. We have also developed the threshold multi-agent system. Both of these two systems have been
compared to our time series multi-agent system in terms of forecasting performance.

The previous three systems were developed in Java language, the multi-agent aspect is developed
under the JADE (Java Agent DEvelopment) platform and the time series modules are developed in R

language.
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Figure 6.1: Comparision between purely java program and a java program calling R method

R language is an Object Oriented language dealing with statistical programming. The peculiar-
ity of this language is the fact that it is faster than Java in presence of statistical methods.

To support this choice, we developed two programs (see fig. 6.1) calculating the average of
10000000 values, the first program uses only Java language and the sccond calls R average method. We
found that the second program took less time than the first.

To be able to access to R methods via Java programs, we used an interface called Java to R
Interface (JRI).

In conclusion, we can say that ARIMA models have the ability to filter the outliers from the
series, to detect change levels and abrupt trends. The weakness of this model is the graduate trends and

short outliers.

6.2 Future research

From a theoretical point of view, a possible imporvement of our system could be obtained by

introducing other statistical modeling strategies based on adaptative algorithm for tracking trends and
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pattern recognition. These mothodologies have the potential of enhancing the capacity of the onlline
monitoring system that we proposed by reducing the number of false alarms and improving its ability to
adapt to new situation when new flows of data are entered to the system. In this case structural models
and state space models could be considered as alternative to ARIMA specifications.

It is important to notice that the theoretical as well as the programming frameworks developed
in this thesis could be easily adapted to implement the previousely mentioned modeling strategies.

The proposed online monitoring system may be generalized and applied to other areas, such as
econormics, sociology, finance, environment, agriculture, etc. Some specific machine learning techniques,

for example Support Vector Machine can be used in this kind of applications.
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Appendix A

MAMS ANALYSIS AND DESIGN
WITH AUML

There are many alternative agent-based system engineering methodologies including Agent UML
(AUML) formalism [6], Prometheus [68], Multi-agent System Engineering methodology (MaSE) [25],
among others. In this work, the analysis and design of the MAMS was made under AUML formalism.

The process of creating a multi-agent system in accordance with AUML, consists of two phases,

which are :

1. System Specification, aimed to the identification of the system actors, goals, actions, scenarios

and roles. In general, use case, activity,and class diagram extensions are used for this purpose.

2. System analysis, centered in the description and refinement of agent roles, general system struc-

ture and interaction protocols. Often sequence diagrams are used.

A.1 System Specification

A.1.1 Actors Model

MAMS agents communicate between them by messages using an ACL based protocol. The

messages are sent to inform about the patient state or to request a specific treatment (see Fig. A.1).

A.1.2 Goals definition

The system is aimed to fulfil the enumeration of general goals. This enumeration includes a set
of scenarios starting from physiological data reception and finishing with relevant monitoring patient (see
Fig.A.2).
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In our system there is a lot of secondary subgoals gathered form the main goal of the system
which is the patient monitoring. The specification has led to the identification of the number of those

goals and the actors in charge to make them :

1. Acquisition System: has as actors physiological variables to monitor. Those actors are reactive

agents called Acquisition Agents and have as goals :

e Control Agent creation.
e Graphical Agent creation.
e physiologic values reception from sensors linked to patient.

e physiologic values emission to the monitoring system.

2. Monitoring System: has two kinds of actors created by the Acquisition Agents. Each Acquisition

Agent creates its own Control Agent and Graphical Agent.
Control Agent is a cognitive actor and has as goals :

1. e Values reception from Acquisition Agent.
e Analysis and anomaly detection.

Alarm request emission to Alarm System.

Change color request emission to the Graphical Agent in order to turn red the graph in the

case of anomaly detection and to restore the original color when the anomaly goes.
The Graphical Agent is a reactive actor, having as goals :

1 e Values reception from Acquisition Agent.
e Change color reception from Control Agent.

e Graphics display in the data viewer.
3. Alarm System: has one cognitive actor which is the alarm agent. Its goals are :
e Alarm request reception from Control Agents.

e Alarm request analysis.

e Alarm generation decision.
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A.1.3 Roles definition

In addition to the goals, agents can perform various roles during their existence. Therefore, the
implementation of an agent can satisfy different roles. Each Agent is identified by its goal and the ability
that it needs to play its role. According to the system'’s goals we suggest the following roles: (1) Creator,
(2) Emitter, (3) Receiver, (4) Analyzer, (5) Displayer, (6) Decision-maker.

The Acquisition Agent (see Fig. A.3) can be a receiver in order to receive values from sensor,
an emitter to emit values to Control and graphical Agents or creator to create its corresponding Control

and Graphical Agents.

PatientMoniloring

Alarm

Graphics
| generation generation
Values
analysis

[ Values
| Emission

Agent
creation

[ Receiver ] [ Emitter ] { Creator }

Acquisition Agent

>

Figure A.3: Acquisition Agent goal diagram

The Control Agent (see Fig. A.4)can satisfy a receiver role to receive values from Acquisition
Agent, an analyzer role to analyze data and an emitter role to emit Alarm and change color requests

respectively to Alarm and Graphical Agents.

A Graphical Agent (see Fig. A.5) can be a receiver to receive values from Acquisition Agent

and change color requests from Control Agent or a displayer to display generated graphics on the screen.

The Alarm Agent (see Fig. A.6) plays a receiver and a decision maker roles for the purposes of

alarm request reception and alarm generation respectively.
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Figure A.6: Alarm Agent goal diagram

A.1.4 Use case model

Following the UML-based design approach, use case diagrams are applied to capture the inter-
actions of the system with the user. In order to take into account the notion of agency, we distinguish
between ordinary users and agents when they are modeled as actors. The following models will clarify
how the system interacts with external actors in the first hand, and the intern agents interacts with the

various sub-systems, in the second hand.

A.1.5 MAMS use case diagram

Figure A.7 illustrates the general MAMS use case diagram. In this diagram we present three
use cases that a medical staff can do on the system. In fact, the medical staff as external actor, composed
of physicians and nurses, acts on the system either to activate and deactivate it or to monitor patient’s

state. Each use case can in turn be detailed as follows.

Figure A8 illustrates the svstem activation use case diagramn. In this diagram we explain the
sequence of events to activate the system. When the patient is connected to the system via the sensors,
an agent called Starting agent is created having as goal to create the Acquisition Agents and the Alarm
Agent. The Acquisition Agents will act in the Acquisition System and the Alarin Agent will act in the

Alarm System.

Figure A.9 presents the different use cases done by each Acquisition Agent present in the Ac-

quisition System. And Figure A.10 illustrates the interaction between the monitoring System and the
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Monitoring System
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A 5

Control Agent Graphic Agent

Figure A.11: Control Agent use case diagram

Acquisition agents as external actors. The interaction is represented by an ACL message, containing the

received value, sent by the Acquisition Agent to its corresponding Control and Graphical Agents.

In the monitoring System, Control Agents receive values from Acquisition Agents and treat
them using monitoring techniques (see Fig. A.11). In case of anomaly detection as seen in Fig. A.12,
an alarm request is sent to the Alarm Agent and a change color request is sent to the corresponding
Graphical Agent in order to turn red the graphic color. And in case of normal state, an alarm cancel
request (RAZ) is sent to the Alarm agent and a change color request to the corresponding Graphical

Agent in order to restore the original color.

In Figure A.13 we see the interaction using ACL messages between Monitoring System intern
actors such as Control and Graphical Agents. And Fig. A.14 represents the graphical Agent behavior

towards the ACL messages received from Acquisition and Control Agents.

The Control Agent interacts with the Alarm System using ACL message in the aim of sending

an alarm request (see Fig. A.15) or a RAZ request (see Fig. A.16).

The sensor disconnecting, as seen in Fig.A.17, causes the Acquisition Agent destruction. For
each Acquisition Agent destroyed the corresponding Control and graphical agents will be destroyed. If

all the Control Agents are destroved, the alarin Agent will be destroyed in turn.

The global use case in Fig. A.18 presents the different kinds of ACL messages circulated through

the different layers of the system.

We will end the system specification by an activity diagram presented in Fig. A.19. The diagram
shows the operational step by step workflow of several agents of our svstem (Starting agent, Acquisition

Agent, Control Agent, Graphical Agent and alarm Agent).
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When turn on, the system will instantiate an agent from the Starting System Class. This
agent is called the Starting Agent. Its aim is to create the necessary Acquisition agents and the Alarm
Agent. When finished it destroys itself. Each Acquisition Agent creates in turn its corresponding Control
and Graphical Agents in the aim of sending to them an ACL message containing values received from
the sensor in a regular time interval. The Control Agent models the collected values using monitoring
techniques, detects the anomaly. When five (5) consecutive values are detected, the Control Agent decides
that the patient presents an anomaly and sends two ACL messages. one to the Graphical Agent in order
to redden the relative graphic and the second to the Alarm Agent demanding an alarm generation. The
Alarm Agent decides in function of the collected requests. The Alarm Agent bases its decision on a rule

base presenting the interdependence of the physiological variables. When the requests coming from a list
of interdependent variables the Alarm Agent generates an alarm.

Cannect to
<<agent>> B
GraphicAgent

1\g
~%
e,
g Lo,
3 ~E
s
< 1
1|® <agent>>
1 AcquisitionAgent
<<agent>> 1 Create Co
ControlAgent
e
i .,
g
?"' b
‘ﬁ’f‘
%
)
e
1.
<<agent>> X <<agent>>
N
1.6 AlarmAgent % StartingAgent
1

Figure A.20: Global class diagram

Fig. A.20 shows the different classes of the system and their relationships

A.2 System Analysis

In the analysis phase we introduce the sequence diagrams which depicts the interaction between
the different roles of the agents.

The Acquisition Agent has an initial role to create ontrol and Graphical agents (see lig. A.21).
After that, it becomes responsible for data trasmission every m milliseconds (m will be defined by the
stafl in function of the desease) to the Control and Graphical Agents (see fig. A.22).
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A2, System Analysis

Sd Agent creation J
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Figure A.21:

Agent creation sequence diagram
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Figure A.22: Information reception from Acquisition Agent sequence diagram
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A.2. System Analysis

Sd values treatment J

<<change role>>

Receiver: Analyzer: Transmitter: Receiver: Receiver:
ControlAgent ControlAgent ControlAgent || GraphicalAgent AlarmAgent
i <<change role>> % ; i 1
Gt e > i : :

i j <<change role>> i i j
: o G : :

' Parallel | 1 i
: i : REQUEST : i
i i B :

REQUEST

Figure A.23: Values treatment sequence diagram

Control Agent plays, in turn, several roles. Initially it is receiver, it receives data from Acquisi-

tion Agent. Immediatly after that, it becomes analyzer, it analysis data. In case of anomaly or RAZ it

changes role to transmitter and sends in parallel requests to Graphical and Alarm Agents (see fig. A.23).

After that, it restors its initial role.

The Graphical Agent as receiver, receives requests from Control Agent changes its role to dis-

player in order to change graphic color (see fig.A.24) and restors its initial role. As receiver, the Alarm

Agent receives requests from the Control Agent, changes role to Decision Maker and so decides to trigger

or simply save alarm information. After that, it restors its initial role waiting for another request (see

fig.A.25).In case of RAZ, the Control Agent as transmitter, sends request to both Graphical and Alarm

Agents. The Graphical Agent follows the "change graphic color request" sequence diagram of fig. A.24).

The Alarm Agent as receiver, receives the request, changes its role and so cancels the Alarm (see fig. A.26).
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System Analysis

Sd change graphic color request J
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Figure A.24: Change graphic color
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Figure A.25: Alarm generation sequence diagram
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