Mathieu Lamard 
  
Keywords: 

R L'analyse d'images médicales assistée par ordinateur est cruciale pour l'aide au diagnostic, au pronostic et au suivi thérapeutique. En particulier, le récent développement de techniques issues de l'intelligence artificielle appliquées au diagnostic et au dépistage représente une perspective prometteuse. Pour faire face aux limites des systèmes traditionnels de diagnostic assisté par ordinateur (CAD), nous avons proposé dans cette thèse un ensemble de méthodes d'apprentissage profond efficaces et automatisées, visant à améliorer la prise en charge personnalisée des patients. Dans les contextes de dépistage du cancer du sein et de la rétinopathie diabétique, nous avons principalement étudié trois défis associés à l'analyse d'images médicales assistée par ordinateur : (1) l'identification et la segmentation de lésions à partir d'images acquises à haute résolution, (2) la fusion d'informations multi-vues pour un diagnostic amélioré, et (3) la prédiction longitudinale de changements de grade de sévérité. Notre contribution au premier défi a été de développer deux méthodes dédiées à la segmentation de masses à partir de mammographies natives, à haute résolution. Dans un premier temps, nous avons proposé un pipeline de segmentation entraîné de bout en bout consistant à exploiter le contexte spatial multi-échelle grâce à une cascade d'encodeur-décodeurs convolutifs exploitant le paradigme de l'auto-contexte. Ensuite, nous avons développé une approche alternative à deux étapes, combinant la localisation de masses basée sur l'image entière et exploitant une stratégie de fusion des prédictions effectuées à multiples résolutions et la segmentation de masses sur les régions d'intérêts extraites au moyen d'un réseau profond avec connexions imbriquées et denses. Le deuxième défi a été relevé en tirant profit des informations issues des vues craniocaudale (CC) et médiolatérale-oblique (MLO) des examens mammographiques. Deux méthodes ont ainsi été proposées. Tout d'abord, une nouvelle approche basée sur l'apprentissage multi-tâches a été introduite fournissant des détections de masses précises ainsi que des correspondances entre masses issues des deux vues. Ensuite, nous avons développé une approche d'apprentissage actif exploitant la cohérence inter-vues pour diminuer la charge d'annotations des cliniciens. Ces méthodes ont démontré l'efficacité de l'intégration d'informations issues de multiples vues pour la détection ou la segmentation. Pour le dernier défi, nous avons analysé des paires d'images de fond d'oeil consécutives pour la détection de changements de grade de sévérité de la rétinopathie diabétique. Ces contributions permettent d'analyser automatiquement différentes images médicales dans diverses situations et promettent de fournir un support pertinent pour le développement de systèmes de CAD nouvelle génération. III

A

Computer-aided medical image analysis is essential to support clinicians in diagnosis, prognosis and therapy-related decisions through fast, repeatable and objective measurements made by computational resources. In particular, the latest development of artificial intelligence applied to diagnosis and screening represents a promising perspective. In this thesis, we addressed the current limitations of traditional computer-aided diagnosis (CAD) systems by providing efficient and fully-automated deep learning methods towards better interaction-free and more personalized medical care. In the contexts of breast cancer and diabetic retinopathy screening, we investigated three main challenges associated with computer-assisted medical image analysis: (1) identification and segmentation of lesions from high-resolution images, (2) multi-view information fusion for improved diagnosis, and (3) longitudinal prediction of severity grade changes. Our initial contribution to the first challenge was to propose an end-to-end mass segmentation pipeline that exploits long-range multi-scale spatial context through a cascade of convolutional encoderdecoders embedding the auto-context paradigm. Then, as a second contribution, we proposed a two-stage framework combining a deep coarse-scale mass localization involving a multi-scale fusion strategy and a fine-scale mass segmentation. The second challenge was addressed by fusing information arising from two standard mammography views, namely craniocaudal (CC) and mediolateral-oblique (MLO). Two methods were proposed towards this goal. First, a novel approach based on multi-task learning was introduced, combining mass classification with dual-view mass matching between CC/MLO mammograms.

Then, we applied a label-efficient deep active learning approach that exploits dual-view consistency to mitigate the labeling workload of clinicians. These methods demonstrate the effectiveness of integrating multi-view information for detection or segmentation purposes. For the last challenge, we incorporated the prior screening of fundus images to address the referable diabetic retinopathy severity change detection.

All these contributions can automatically analyze different medical images in various situations and are promising to provide relevant support for the development of the next generation of CAD systems.
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Currently, medical image analysis can benefit from precise, fast, repeatable and objective measurements made by computer technology. Using these computational resources, computer-assisted medical image analysis aims at providing clinicians and medical practitioners with the information they need to analyze and evaluate abnormalities in the shortest possible time. Efficient and precise medical imaging analysis is very crucial for identifying diseases at the earliest possible stage. [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF].

Under this circumstance, computer-aided diagnosis (CAD) has rapidly entered the radiology mainstream. CAD systems have been designed for supplemental lesion detection, classification and segmentation purposes as a "second opinion" to assist radiologists in their image interpretation tasks. Fig. 1.1 illustrates the general process flowchart of a typical CAD system. Generally, raw clinical images are firstly pre-processed to enhance the accuracy of the following feature extraction process. The output of a CAD system may be the likelihood of a single task or multiple tasks. The output of a CAD system may be to identify and mark suspicious areas, to outline potential lesions or to report the probability that the lesion is malignant, etc. It may also be a combination of multiple tasks. It is generally accepted that the first large-scale and systematic study and development of various CAD schemes started at the Kurt Rossmann Laboratory for Radiologic Image Research at the University of Chicago in the early 1980s [START_REF] Doi | Computer-aided diagnosis in medical imaging: historical review, current status and future potential[END_REF]. Subsequently, with the continuous progress of digital imaging and the optimization of machine performance, CAD systems have been greatly developed and applied to various image modalities, such as X-ray, ultrasound imaging, CT, MRI, etc. [START_REF] Abe | 1 Introduction Mammography screening involves two standard views acquired for left and right breasts: craniocaudal (CC), extracted from top-down, and mediolateral-oblique (MLO), an oblique view taken under 45[END_REF] preliminarily demonstrated the usefulness of CAD. Afterwards, CAD systems were widely promoted and quickly adopted, and have further proven to outperform medical experts in certain tasks [START_REF] Esteva | Dermatologist-level classification of skin cancer with deep neural networks[END_REF][START_REF] Gulshan | Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[END_REF]. However, due to the quality requirements in clinical practice, some studies report that current CAD systems are for some applications inefficient and not automatic enough to significantly improve diagnosis guidance [START_REF] Lehman | Diagnostic accuracy of digital screening mammography with and without computer-aided detection[END_REF]. CAD is therefore still a field to be improved in medical image analysis. [START_REF] Asiri | Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey[END_REF][START_REF] Chan | Computer-aided diagnosis in the era of deep learning[END_REF][START_REF] Cong | Deep learning model as a new trend in computer-aided diagnosis of tumor pathology for lung cancer[END_REF]. The main advantage lies in avoiding the need for hand-crafted features by automatically learning representative features directly from data.

Despite potential benefits reported in the literature, CAD methods are generally subject to certain limitations and challenges in their applications [START_REF] Santos | Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine[END_REF]. First of all, CAD systems integrated 
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and diabetic retinopathy. For each of the two pathologies, we first introduce their clinical context and the current technical limitations. Then, the imaging modality and the employed datasets are described.

Finally, we introduced in detail the pre-processing procedures which are employed to process each dataset.

In Chapter 3, we present deep learning related concepts that are exploited later in the thesis. In Sect.

3.1 we describe the key evolution and concepts of CNNs. In Sect. In this chapter, we focus on presenting the context of the two key clinical applications: the diagnosis of breast cancer (Sect. 2.1) and diabetic retinopathy (Sect. 2.2). Each section begins with the introduction of the clinical contexts of the pathology and the discussion of current limitations. Then, we describe the imaging modalities and the datasets employed to develop and evaluate our algorithms. Last but not least, we introduce in detail the pre-processing procedures applied to each dataset.

Breast cancer

Clinical context

Breast cancer is ranked as the leading cause of global cancer incidence among women in 2020, with an estimated 2.3 million new cases, representing about 25% of all cancers in women [START_REF] Sung | Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians[END_REF].

It is also the leading cause of cancer death among women from ages 20 to 59 [START_REF] Singel | Cancer statistics[END_REF]. To reduce the mortality rate, it is recommended that women over the age of 40 or women with breast tumors who recover after treatment should have a breast screening every year. Digital X-ray mammography is recognized as a key imaging modality for radiologists to detect breast abnormalities since it allows early detection of breast cancer in women who have no symptoms, and helps women prevent breast cancer and get promptly treated. The development of massive screening has allowed earlier diagnosis and better cancer management with a significant improvement in terms of survival [START_REF] Myers | Benefits and harms of breast cancer screening: a systematic review[END_REF]. Nonetheless, the proportion of women recalled for further examinations after screening remains significant (100 per 1000) while only 5 are truly affected. Moreover, due to the lack of a second reading by other radiologists, a substantial number of them are given heavy treatments by mistake [START_REF] Myers | Benefits and harms of breast cancer screening: a systematic review[END_REF].

Mammography analysis is mainly related to the detection and classification of lesions including masses, calcifications, asymmetries of the two breasts or distortion of breast tissues. Among those abnormalities, breast masses are the most important clinical symptoms of carcinomas. Characterized by medium gray to white regions within the breast area, masses exhibit a great diversity of size, shape (irregular, oval, lobulated, round), contours (circumscribed, ill-defined, spiculated, obscured) and texture, which makes them difficult to be distinguished from surrounding healthy tissues. Texture, shape and margin characteristics of masses play a key role for further breast tissue analysis [START_REF] Virmani | Effect of despeckle filtering on classification of breast tumors using ultrasound images[END_REF] such as benign and malignant classification, lesion segmentation or cancer evolution prediction.

The standard terminology of breast cancer severity used in mammography reports is named BI-RADS (the Breast Imaging Reporting and Data System) [START_REF] D'orsi | The American college of radiology mammography lexicon: an initial attempt to standardize terminology[END_REF], which was developed by the American College of Radiology (ACR) based on the level of suspicious findings.

Mammograms are usually analyzed manually by a radiologist. This task is time-consuming and prone to strong inter-expert variability [START_REF] Hamidinekoo | Deep learning in mammography and breast histology, an overview and future trends[END_REF], resulting in up to 10%-30% undetected lesions [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF]. Moreover, it is difficult and impractical for clinicians to perform double reading in most screening situations. To assist clinicians for mammogram interpretation and also to avoid time-consuming and tedious second opinions, there is an urgent need for an efficient and automatic Computer-aided diagnostic (CAD) system which is able to automatically detect and segment breast masses from the full mammogram.

Digital mammography

Digital mammography, also known as full-field digital mammography (FFDM), replaces X-ray films with solid-state detectors which convert X-rays into electrical signals. These electrical signals can be printed on special films similar to conventional film-screen mammograms. They can also be preserved in digital format and be displayed on a computer screen, facilitating radiologists to review and storage.

Current FFDM systems are greatly improved with higher image resolution and contrast, making it easier to view dense breast tissue and small tumors (Stanford Health Care, 2017).

Standard mammography views include the bilateral craniocaudal (CC) and the mediolateral-oblique (MLO) (Fig. 2.1), which are the two views concerned in this study. The CC view is obtained by sending X-rays from a source above the breast to a detector below the breast (Fig. 2.2 (a)). The MLO view is Digital mammograms are usually saved in the DICOM (Digital Imaging and Communications in Medicine) format that gathers both a set of images and the meta-data related to the acquisition process.

Datasets

Several publicly-available mammography databases such as the MIAS (the Mammographic Image Analysis Society Digital Mammogram Database) [START_REF] Suckling | The mammographic image analysis society digital mammogram database[END_REF], INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF], DDSM-CBIS (Digital Database for Screening Mammography) [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF] or the BancoWeb LAPIMO Database [START_REF] Matheus | Online mammographic images database for development and comparison of CAD schemes[END_REF] are being widely used by researchers and specialists in breast cancer research. MIAS and BancoWeb LAPIMO were not used in our work, since they consist only of annotations in the form of regions of interest (ROIs), which is not sufficient for us to learn tasks that require mass delineations. Therefore, we employ the INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] and the DDSM-CBIS [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF] datasets in our mammography analysis studies. The data distribution will be described in detail in the corresponding chapters.

INbreast

DDSM-CBIS

The DDSM (Digital Database for Screening Mammography) database [START_REF] Bowyer | The digital database for screening mammography[END_REF] of the same size as their associated mammograms. However, since the annotations for the abnormalities were provided to indicate a general position of lesions, the precision is insufficient for validating or comparing segmentation algorithms [START_REF] Song | Hybrid segmentation of mass in mammograms using template matching and dynamic programming[END_REF]. In this work, we used the total amount of images containing masses, i.e., 1514 mammograms. This dataset was used in Chapter 4 and Sect. 5.1 as the training set, and in Sect. 5.2 as the training set as well as the simulated unlabeled pool. More details regarding data distribution will be introduced in the corresponding chapters. [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] and DDSM-CBIS [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF].

original INbreast image pre-processed 2048 × 1024 image Figure 2.7 -Mammogram pre-processing example from original to 2048x1024 images.

Mammogram pre-processing

Due to computational limitations or in order to speed up the process, mammograms are often resized to a lower resolution as a pre-processing step [START_REF] Al-Antari | A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification[END_REF][START_REF] Dhungel | Fully automated classification of mammograms using deep residual neural networks[END_REF]. In this study, in order to preserve the original resolution as much as possible towards more precise subsequent detection, segmentation or classification results, the only pre-processing step applied to the whole image is to crop most of the blank area (a whole non-breast region) from the original image and resize the remaining area to 2048×1024 (see Fig. 2.7).

In the subsequent proposed methods that incorporate ROI processing, mammogram patches are normalized according to the dataset mean and standard deviation (Sect. 4.2). Specifically, in Chapter 5, we implemented the proposed methods using the PyTorch library. We first scaled pixels between 0 and 1, then, the single channel of grayscale image was copied to three channels and normalized with respect to the ImageNet dataset [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] as done in Torch .

Diabetic retinopathy 2.2.1 Clinical context

Statistics from the International Diabetes Federation [START_REF] Saeedi | Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas[END_REF] show that the global prevalence of diabetes in 2019 is estimated to be 9.3% (463 millions) and will rise to 10.9% by 2045 (700 millions). As a common and high-risk complication of diabetes, diabetic retinopathy (DR) is a leading cause of visual impairment and blindness worldwide [START_REF] Ogurtsova | IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040[END_REF], affecting 146 million of people according to the report of the World Health Organization (WHO) in 2019 (World Health Organization, 2019). The overall prevalence of DR is up to 27.0%, comprising non-proliferative DR (NPDR) for 25.2% and proliferative DR (PDR) for 1.4% [START_REF] Thomas | IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018[END_REF]. A regular annual DR screening for diabetic patients is recommended since the initial stages of the disease are subtle and hardly detectable. Moreover, considering the increasing numbers of diabetic patients and the limited numbers of specialists, developing an automatic CAD system that can analyze eye screening in an efficient and automatic fashion is a worthwhile endeavor.

In general retinal screening, color fundus photography (CFP) is commonly used for DR diagnosis by examining the presence of retinal lesions such as microaneurysms, hemorrhages, soft exudates and hard exudates. Microaneurysms (Fig. 2.8 (a)) are the first sign of DR. They consist of dilations of the venous end of retinal capillaries, appearing as small dark red dots detached from blood vessels, usually between 10 and 100 . Hemorrhages (Fig. 2.8 (b)) are blood leaks which appear like dark red regions within the retina. Exudates (Fig. 2.8 (c)) are the accumulation of lipid deposits in the retina, which appear as yellow bright areas in color retinal images. The proposed international clinical DR severity scale includes: no apparent retinopathy, mild NPDR, moderate NPDR, severe NPDR, and PDR [START_REF] Wilkinson | Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[END_REF].

NPDR is the early-to-middle stage of DR and is a progressive microvascular disease characterized by small vessel damages and occlusions. PDR corresponds to the period of potential visual loss due to massive hemorrhage. Fig. 2.9 illustrates the evolution from mild to severe NPDR. 

Color fundus photography (CFP)

Color Fundus Retinal Photography uses specially designed fundus cameras in order to record their conditions, document the presence of retina abnormality signs related to diabetic retinopathy (DR), age related macular degeneration (AMD), macular edema or retinal detachment, and monitor their progression over time.

A fundus camera is a specialized low power microscope with an attached camera that enables illuminating and imaging the retina at the same time. Through the dilated pupil, fundus cameras photograph the inside surface of the eye, including the retina, the retinal vasculature, the optic nerve head (optic disc), the macula, and the posterior pole. Fig. 2.10 shows an example of a fundus photograph from a normal left eye with a clear visualization of these structures.

Currently, advances in fundus imaging and technology have allowed modern fundus cameras to capture high-resolution digital images with automated eye alignment and electronic illumination control.

The ultra-wide field retinal imaging [START_REF] Patel | Ultra-widefield retinal imaging: an update on recent advances[END_REF] is able to capture up to 200°of the fundus or approximately 82% of the retina in a single capture. Fundus imaging remains the primary method of retinal imaging at documenting retinal abnormalities thanks to its safety and cost-effectiveness [START_REF] Abràmoff | Retinal imaging and image analysis[END_REF].

Dataset

OPHDIAT

The OPHDIAT dataset is a massive CFP database collected from the OphDiaT (Ophthalmology Diabetes Telemedicine) network [START_REF] Massin | OPHDIAT©: A telemedical network screening system for diabetic retinopathy in the Île-de-France[END_REF], which was established in 2004 at AP-HP for diabetic retinopathy screening. This database was constructed by extracting examinations between 01/01/2004 and 01/10/2017, in an anonymized fashion. A total of 164,659 examinations were collected over the defined examination contains at least two images for each eye. Images laterality ("left eye" or "right eye") were then identified using the algorithm developed in [START_REF] Quellec | Instant automatic diagnosis of diabetic retinopathy[END_REF]. Expert annotations (DR severity grade for each eye along with the related text comments) as well as contextual information fields (patient age, screening date, diabetes history...) are included in the diagnosis reports. Double reading was adopted to ensure the annotation quality, and 6,850 exams were read at least twice. In the case of disagreement, a senior ophthalmologist has read for the third time to take a final decision. This dataset was used in Chapter 6 for training, validation and test purposes. The data distribution is also described in Chapter 6.

Retinal image pre-processing

In view of the diversity of image resolution, color, contrast, illumination, etc. presented in the OPHDIAT database, several pre-processing steps are performed as specified by [START_REF] Quellec | Deep image mining for diabetic retinopathy screening[END_REF].

Firstly, images are adaptively cropped to the width of the field of view (the eye area in CPF image).

Secondly, in order to attenuate the great intensity variations of the dataset, the background of images is estimated by a large Gaussian filter in each color channel with standard deviation of 8.5 pixels, then subtracted from the image. Finally, the field of view is eroded by 5% to eliminate illumination artifacts around its edges. The resulting images are resized and cropped to × pixels, and are then adjusted to adapted sizes depending on the employed deep model. 

Conclusion

In this chapter, we presented the two targeted clinical applications, including breast cancer and diabetic retinopathy. For each application, we introduced their clinical background and the related limitations we aim to target. Then, we described the relevant databases used in this work. We carefully compared the two mammography databases INbreast and DDSM-CBIS. In addition, we provided the pre-processing approaches followed to normalize these datasets. In this chapter, we present deep learning related concepts that are exploited later in this thesis. In Sect. 3.1, we describe the key evolution and concepts of convolutional neural networks (CNN). In Sect.
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3.2 we investigate several state-of-the-art CNN architectures that are often employed for the development of computer-aided diagnosis (CAD) systems for classification, segmentation, detection and/or matching purposes. Sect. 3.3 gathers several deep learning strategies employed in this thesis. Sect. 3.4 concludes this chapter.

Deep learning concepts

Whatever the application under investigation, image processing techniques usually aim at detecting and extracting representative image features such as specific patterns or textures. The extraction of representative features from data is critical in building successful machine learning models. As a result, traditional machine learning methods are employed to focus on discovering, understanding, characterizing and improving hand-crafted features that can be extracted from images, by means of Support Vector Machine (SVM) [START_REF] Hearst | Support vector machines[END_REF], Scale Invariant Feature Transform (SIFT) [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF], or K-NN [START_REF] Cover | Nearest neighbor pattern classification[END_REF] algorithms.

However, for many tasks, it is difficult to determine what features need to be extracted. One solution is to rely on representation learning, where machine learning algorithms not only determine the mapping from representation to output, but also the representation itself. Representation learning tends to offer superior performance compared to strategies based on hand-designed representations [START_REF] Bengio | Deep learning[END_REF]. The deep learning paradigm, which is a sub-class of machine learning, enables to implicitly learn features through neural networks, where deep layers in these neural networks act as a set of feature extractors to automatically produce generic representations that are independent of a specific classification task [START_REF] Lecun | Deep learning[END_REF].

Deep learning models are typically based on a set of artificial neural networks (ANNs). ANNs are computing systems inspired by biological neural networks of the human brain. The power of neural networks comes from their ability to learn an accurate representation from training data and relate it to the desired output. An example of a simple ANN is a neuron or a perceptron, which is defined as:

( ) = ( • ) + (3.1)
where is the input, denotes a non-linear activation function, and respectively represent the weight and bias, and • is the doc product operation. The neuron attempts to find the combination of weights and bias that approximates the relation between the input and the corresponding output. The solution space of a neuron is limited in its linear separability. In order to extend the solution space, the multi-layer perceptron (MLP) was designed to connect several perceptrons and to map a set of input values to output

values. An MLP is formed by many neurons grouped into one or more non-linear layers, called hidden layers. An example of MLP with one hidden layer can be described as:

( ) = 2 ( 2 • 1 ( 1 • + 1 ) + 2 ) (3.2)
where , , respectively denote the activation function, weight and bias of the ℎ layer.

The predictive capability of neural networks comes from the hierarchical or multi-layered structure of MLP. Fig. 3.1 shows a one hidden layer MLP with a set of input neurons with ∈ {1, , }. Each neuron in the hidden layer transforms the values from the previous layer with a weighted linear summation

=1

, followed by a non-linear activation function (•). Each neuron of an MLP is fully connected to all neurons in the following layer. However, MLP is restricted to one-dimensional training sets. In order to better represent higher dimensional patterns (e.g. edges, contours), convolution operations can be used to enhance neural networks.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is by far the most popular and extensively used deep learning paradigm. The emergence of CNNs is inspired by biological processing, because the connection pattern between neurons is similar to the tissue of the visual cortex of animals. CNNs are commonly trained in a supervised manner and require a large amount of labeled data. CNNs can be considered as variants of MLPs. A simple example of a two-convolutional-layer CNN can be described as:

( ) = 2 ( 2 * 1 ( 1 * + 1 ) + 2 ) (3.3)
where * represents a convolution operation, , and respectively denote the activation function, weights and bias of the ℎ layer.

A CNN model is normally composed of a series of layers including convolutional layers, pooling layers, activation layers and fully-connected layers. Depending on different purposes, other types of layer can be employed including batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], regularization, Global Average Pooling (GAP), etc. Here, we briefly introduce the CNN layers involved in this work.

Convolutional layer. Convolutional layers extract feature maps from the input through learnable filters (kernels). Each filter outputs a weighted sum of each element of the input to its local neighbors. The local size of the input image related to the output is named the receptive field. Receptive field is an important concept in CNNs which is used to represent the range of perception by neurons of the original image within the network (Fig. 3.2). Since convolutional layers are locally connected through a sliding filter, a neuron can not perceive all the information from the original image. The larger a neuron's receptive field, the larger the range of the original image it can perceive, the more global and higher-level features it may contain. Conversely, the smaller the receptive field, the features it contains tend to be more localized and detailed. Activation layer. The convolutional layer only generates linear activation responses. In order to extend a network to represent the non-linearity, it is necessary to add non-linear activation functions such as ReLU (Eq. 3.4), sigmoid (Eq. 3.5), softmax (Eq. 3.6) or hyperbolic tangent (Eq. 3.7), etc. ReLU (Eq. 

( ) = (0, ) (3.4) 
( ) = 1 1 + - (3.5) Figure 3.3 -Global Average Pooling. ( ) = (3.6) ℎ( ) = 1 --2 1 + -2 (3.7)
Fully-connected layer. Fully-connected layers act as a "classifier" in the entire convolutional neural network. The aforementioned layers map the input data to the hidden-layer feature space, while the fullyconnected layer maps the learned distributed feature representation to the sample label space. Similar to MLP, each neuron in the fully-connected layer is connected to all neurons in the previous layer. The purpose of fully connected layers is to classify the output feature maps of the CNN into various classes.

Batch normalization layer.

The idea of batch normalization is to normalize the inputs of each layer in order to have a mean output activation of 0 and a standard deviation of 1. Batch normalization is a technique for improving the performance and stability of CNNs.

Global Average Pooling layer. Global average pooling (GAP) was originally proposed in M. [START_REF] Lin | Network in network[END_REF], with the goal of minimizing overfitting by reducing the total number of parameters in the model.

Overfitting often occurs when the training data is not big enough, or when the model is overtrained.

During the training process, the complexity of the model increases, the error in training data decreases, while validation data errors rise. GAP layers are used to turn a three-dimensional (ℎ × × ) tensor into a feature vector (1 × 1 × ) (Fig. 3.3). learning has also rapidly developed into a research hotspot in image analysis, with an incredible amount of research papers published every year. In this section, we will introduce some state-of-the-art CNN architectures that are employed or mentioned in this thesis. These models are also widely investigated in the field of medical image analysis, as well as in the design of computer-aided diagnosis systems.

State-of-the-art CNN architectures for medical image analysis

Image classification

The image classification network can also be defined as a feature extraction network, whose role is to encode the input image as a high-level feature representation in the latent space. Deep networks in this category, such as VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], ResNet (He et al., 2016a) or Inception [START_REF] Szegedy | Going deeper with convolutions[END_REF], are commonly adopted as a component or a backbone of other customized variants or as a comparison baseline.

VGG. The VGG model [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] was proposed by the Visual Geometry Group of the University of Oxford at ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2014. improvement of VGG16 compared to the previous success AlexNet ( [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] is the use of consecutive 3 × 3 convolution kernels to replace larger convolution kernels (11 × 11, 7 × 7, 5 × 5). This enables to increase the network depth while keeping the same receptive field. Thus, the main advantage of VGG is that it can learn more complex patterns by using multiple non-linear layers to increase the network depth, while the computational cost is smaller. 

ResNet

Image segmentation

In the domain of medical imaging, image segmentation often refers to semantic segmentation, which consists in classifying each pixel of an image into a certain class label. It can therefore be considered as a dense pixel-wise classification problem. However, CNN also struggled in dealing with such problems.

Despite pooling layers within deep models allow to increase the receptive field to aggregate the context as well as to reduce the number of parameters, semantic segmentation also requires the context information to be preserved. In 2014, fully convolutional networks (FCN) [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] popularized CNN architectures for dense predictions without any fully-connected layers. They added skips-connections between layers to fuse coarse semantic context with local appearance information to improve over the coarseness of up-sampling. This end-to-end architecture allowed segmentation maps to be generated for images of arbitrary sizes. Afterwards, huge efforts have been devoted to automatic segmentation based on variants of FCN. Derived architectures comprise a regular FCN to extract multi-scale features, followed by an up-sampling part that enables to recover the input resolution using deconvolutional layers. Fully connected layers are removed, whereas a pixel-wise classification layer is applied at the end to generate the final segmentation mask. This can be considered as the earliest form of convolutional encoder-decoder (CED). Fig. 3.7 shows an example of a typical CED architecture. Almost all the subsequent semantic segmentation methods follow this paradigm. In this section, we will introduce the most well-known CED architectures: U-Net (Ronneberger et al., 2015a), SegNet [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] and a state-of-theart UNet++ (Z. [START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF] which was employed in one of our works (Chapter 4).

U-Net. U-Net (Ronneberger et al., 2015a) is a widely used CED in the medical image analysis community. Its architecture (Fig. 3.7) is made of a contraction path (the encoder) which gradually reduces the spatial dimension using pooling layers and a symmetric expansion path (the decoder) which gradually recovers the object details and spatial dimension. To improve localization accuracy, U-Net employs skip connections which concatenate features between the contracting and expanding paths. By allowing information to flow from low to high-level feature maps, a faster convergence can be achieved. U-Net consists of sequential layers including 3×3 convolutional layers followed by Rectified Linear Unit (ReLU)

activations. Reducing the spatial size is handled by 2 × 2 max pooling layers. The first convolutional layer generates 32 channels. This number doubles after each pooling as the network deepens.

SegNet. Instead of copying the encoder features as in U-Net (Ronneberger et al., 2015a), SegNet [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] copied the max-pooling indices received from the encoder to the corresponding decoder to perform the non-linear up-sampling of the input feature maps. This makes SegNet more memory efficient than standard FCN. The architecture of the encoder network is identical to the 13 convolutional layers in the VGG16 network [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. SegNet requires more training samples and longer training time than U-Net. As a consequence, U-Net is more employed in the medical imaging community. UNet++. Rather than using simple shortcuts as in U-Net (Ronneberger et al., 2015a) or SegNet [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF], UNet++ (Z. [START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF] re-designed the skip pathways through a series of nested dense convolutional blocks as a convolutional pyramid to enhance feature fusion (Fig. 3.8).

The number of convolution layers depends on the pyramid level. Concatenating intermediate subsequent layers bridges the semantic gap between feature maps. Then, a deep supervision is applied to prevent gradient vanishing issues in the middle part of the model during back-propagation and gather multi-depth outputs to ensure a better segmentation accuracy. Nevertheless, the nested dense skip connections as well as the deep supervision also result in a larger number of parameters, which is computationally more expensive than the standard U-Net.

Image detection

There are two main object detector categories: two-stage and one-stage object detectors. The dominant paradigm in modern object detection is based on two-stage approaches, including R-CNN (Region-based Convolutional Neural Network) [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], Fast R-CNN [START_REF] Girshick | Fast R-CNN[END_REF], Faster R-CNN [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF], Mask R-CNN [START_REF] He | Mask R-CNN[END_REF], R-FCN [START_REF] Dai | R-FCN: Object detection via region-based fully convolutional networks[END_REF] etc. One-stage object detectors including YOLO [START_REF] Redmon | You Only Look Once: Unified, real-time object detection[END_REF], SSD (W. [START_REF] Liu | SSD: Single shot multibox detector[END_REF] and RetinaNet (T.-Y. [START_REF] Lin | Focal loss for dense object detection[END_REF] are preferred in the industrial domain for its good trade-off between accuracy and efficiency.

Two-stage detector

Namely, two-stage detectors have two stages to perform the detection: the first stage generates a sparse set of candidate region proposals that contains most of the objects, while filtering out the majority of negative locations (background). Then, the second stage classifies the region proposals into foreground classes or background and performs bounding box regression to refine the location and the size of objects.

Faster R-CNN. Faster R-CNN [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF] is a representative and well-performing two-stage detector. Detectors before Faster R-CNN such as R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] or Fast R-CNN [START_REF] Girshick | Fast R-CNN[END_REF] used classic algorithms such as selective search [START_REF] Uijlings | Selective search for object recognition[END_REF] to generate region proposals, which cost enormous computational resources. Faster R-CNN was introduced to include the generating region proposal process into the CNN architecture. Faster R-CNN introduced a Region Proposal Network (RPN) that simultaneously predicts object bounding boxes and scores at each position. RPN is a fully convolutional neural network that shares full-image convolutional features with the detection network, so it requires only a small additional computation cost for generating region proposals. This is a fundamental work for object detection because almost all the two-stage detectors after it adopt a similar structure.

Faster R-CNN also introduced the concept of anchor boxes, which acted as references as well as spatial constraints during classification and regression process. This "anchor-based" mechanism was also adopted in many recent proposed object detectors (e.g. [START_REF] Dai | R-FCN: Object detection via region-based fully convolutional networks[END_REF] 

One-stage detector

Despite the excellent detection performance, training and inference of two-stage detection models are usually less efficient owing to its complex network architecture. Thus, these models are not very applicable to high-resolution medical image analysis for computational efficiency consideration. Accordingly, onestage object detectors were introduced as an alternative.

YOLO. YOLO for You-Only-Look-Once [START_REF] Redmon | You Only Look Once: Unified, real-time object detection[END_REF], is an extremely efficient single-stage object detection model outperforming several more complex two-stage models in terms of detection speed and accuracy. Rather than performing independent processing for each potential region, YOLO posed detection as a regression problem (called "single-shot detection") and performed predictions for all objects at once with a single convolutional neural network applied to the entire image. For this reason, YOLO can see the larger context of the entire image and makes fewer background patch errors than the region-based methods. YOLO is extremely fast at test time, so that it can be used for real-time detection.

Recently proposed YOLOv3 [START_REF] Redmon | YOLOv3: an incremental improvement[END_REF] achieved higher accuracy and a much faster detection speed compared with more complex state-of-the-art detectors.

SSD.

The main idea of SSD (W. [START_REF] Liu | SSD: Single shot multibox detector[END_REF] is to combine Faster R-CNN [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF] and YOLO [START_REF] Redmon | You Only Look Once: Unified, real-time object detection[END_REF]: perform the one-stage approach and implement the concept of anchor boxes. Concretely, it used the convolution layers of VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] 

Image matching

Image matching has also been extensively used in computer vision. [START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF] presented MatchNet, a deep convolutional approach based on Siamese networks for patch-based matching between two images 1 and 2 . The MatchNet architecture consists of a feature network followed by a metric network. The former is a "two-tower" structure network which jointly processes two patches (one extracted from 1 , another from 2 ) and maps them to a feature representation. The latter estimates the similarity between the paired features through fully-connected (FC) layers and a softmax layer to get a matching score. [START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF] the two paired views using a cross-view relation region-based CNN for mass detection.

Siamese network. A Siamese model [START_REF] Koch | Siamese neural networks for one-shot image recognition[END_REF] includes two identical sub-networks with shared weights such that features from two different input images can be extracted simultaneously (Fig. 3.9 (a)). If the two sub-networks do not share weights, it is named pseudo-siamese network (Fig. 3.9

(b)). The purpose of the Siamese network is to measure how similar two inputs are. As is shown in Fig. 3.9, a Siamese network takes two inputs and feeds into two neural networks. These two sub-networks respectively convert both inputs into a "vector" which is mapped into a new representation space. Through the calculation of a predefined loss function, the similarity of the two inputs can be evaluated. Siamese networks prove effective in learning representation space by controlling the distance between pairs of similar and dissimilar instances [START_REF] Alaverdyan | Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening[END_REF]. Siamese network is used to deal with the situation where two inputs are "similar", whereas pseudo-siamese network is suitable for dealing with the situation where there is a certain difference between the two inputs. In other words, it is necessary to determine which loss function and which structure should be used according to the specific application.

Learning strategies

Whether it is strongly supervised, weakly-supervised or unsupervised learning, deep learning algorithms are always data-driven. Sufficient and qualified data allow a deep model to learn enough required knowledge and achieve good performance. In other words, all knowledge needs to be obtained from training data. However, this also means that for each individual task, we must first prepare a certain scale of training data, and these training data need to be consistent with the distribution of the real data. However, in practice, especially for clinical applications, it is usually difficult to meet the above requirements. The data distribution of the training task and the target task are often inconsistent, or the training data may not be big enough. The application of deep learning may suffer from these limitations and the performance will be greatly limited. Moreover, on many occasions, it is often needed for a model to quickly adapt to new tasks. In order to cope with the above challenges, various learning strategies such as transfer learning, active learning, multi-task learning, semi-supervised learning or meta-learning have attracted widespread attention. In this section, we introduce three learning strategies that are adopted in this thesis.

Transfer learning

Transfer learning is a technique used to leverage a model trained on task A to another related task B.

Given an insufficient dataset, training a model from scratch or using random weight initialization can not guarantee successful results. Therefore, for tasks that are difficult to obtain sufficient data, we can firstly train the model on other dataset collected for similar tasks, or use publicly available pre-trained weights, such as the ones based on ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], a large visual object recognition database with more than 14 million images. Then, we can fine-tune the model on the small task-specific dataset. Transfer learning is widely adopted in analyzing medical images since it is difficult to collect enough images due to privacy concerns.

Multi-task learning

Multi-task learning refers to learning multiple related tasks at the same time, allowing these tasks to share knowledge in the learning process, and using the correlation between multiple tasks to improve the performance and generalization of the model on each task. Multi-task learning can be regarded as a kind of inductive transfer learning, which is to improve generalization ability by using the information contained in related tasks as inductive bias [START_REF] Caruana | Multitask learning[END_REF]. By sharing representations between related tasks, we can enable our model to generalize better on our original task.

Hard and soft parameter sharing are the two methods typically used for multi-task learning (Fig. 3.10).
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Figure 3.11 -The process of active learning.

Hard parameter sharing is generally applied by sharing the hidden layers (usually low-level) between all tasks, while keeping several private task-specific high-level layers for each task. Soft parameter sharing, on the other hand, does not explicitly set the shared modules. Each task has its own model with its own parameters, while each task can "steal" some information from other tasks to improve its own capabilities.

A regularization process is then performed to make the model parameters similar.

Active learning

Supervised deep learning on medical imaging requires massive manual annotations, which are expertise-needed and time-consuming to perform. When only a few images can be labeled, it is possible to select the most relevant images for model training to be labeled by humans, which is the core idea of active learning (AL) [START_REF] Sener | Active learning for convolutional neural networks: A core-set approach[END_REF]. Active learning aims at reducing human annotation efforts by adaptively selecting the most informative samples for labeling, as shown in Fig. 3.11.

Acquisition functions can be designed to find diverse samples in the feature space, as extensively studied in various fields including language processing, anomaly detection or recommendation systems. AL has shown high potential in reducing the annotation cost [START_REF] Budd | A survey on active learning and human-in-the-loop deep learning for medical image analysis[END_REF].

Conclusion

This chapter mainly focuses on presenting the related deep learning concepts that are exploited later in this thesis. We first started by introducing the key concepts regarding deep learning and convolutional neural networks, then we listed the state-of-the-art CNN architectures for different image recognition tasks that we investigated in this work, including image classification, segmentation, detection and matching.

Finally, different deep learning strategies such as transfer learning, multi-task learning and active learning have been briefly introduced. As explained later, we actively integrated these strategies into our work to improve learning performance.

Introduction

Manual breast mass detection and segmentation from whole mammograms remains a time-consuming and tedious process. Compared to surrounding healthy tissues, the variability combined with low signal-tonoise ratio make mass segmentation from high-resolution whole mammograms challenging for traditional 

Cascaded multi-scale convolutional encoder-decoder 4.2.1 Background and motivation

In the past few years, statistical models [START_REF] Hizukuri | Segmentation method of breast Masses on ultrasonographic images using level set method based on statistical model[END_REF] and machine learning techniques [START_REF] Hmida | An Efficient Method for Breast Mass Segmentation and Classification in Mammographic Images[END_REF][START_REF] Liu | Breast tumors recognition based on edge feature extraction using support vector machine[END_REF] have been mainly used in lesion segmentation tasks to assist clinicians for computer-assisted diagnosis of breast cancer. Some studies also focused on mammographic density characterization [START_REF] Kanbayti | Is mammographic density a marker of breast cancer phenotypes?[END_REF][START_REF] Oliver | Breast density analysis using an automatic density segmentation algorithm[END_REF][START_REF] Skarping | Mammographic density is a potential predictive marker of pathological response after neoadjuvant chemotherapy in breast cancer[END_REF] (2020) also exploited GAN [START_REF] Goodfellow | Generative adversarial nets[END_REF] but as an augmentation strategy to generate synthetic breast images to simulate a larger dataset and therefore further improve deep segmentation. Byra et al.

(2020) developed a selective kernel U-Net to adjust receptive fields through an attention mechanism and fused feature maps with dilated and conventional convolutions. However, these strategies focus on local segmentation of suspicious areas only, assuming that non-mass regions are previously removed either manually or using a mass candidate extractor, thus neglecting crucial contextual information. To address the aforementioned limitations, we have focused on an ideal CAD scenario where masses are segmented from native high-resolution mammograms to benefit from high-level information without any pre-detection scheme. To take this direction, we need to cope with a strong class imbalance issue, huge diversity of mass size, shape, texture and contour as well as the limited receptive field of CED models.

In this context, we propose to exploit long-range spatial context arising from lower resolution through a multi-scale cascade of deep CEDs (Sect. 3.2.2) embedding auto-context [START_REF] Tu | Auto-context and its application to high-level vision tasks and 3D brain image segmentation[END_REF] to fuse multilevel image information and various amounts of spatial context [START_REF] Roth | A Multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation[END_REF]. The pipeline (Fig. 4.2) is trained end-to-end to benefit from multi-scale segmentation refinements. It incorporates transfer learning from DDSM-CBIS [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF] to INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] datasets (Sect. 2.1.3) to further improve mass delineations.

Proposed model

Towards stacked convolutional encoder-decoders

Existing deep learning methods that used to segment breast masses remove healthy areas to process suspicious regions only. Exploiting entire high-resolution mammograms instead of small patches centered around mass candidates can better manage long-range spatial context while eliminating the risk of forgetting pathological areas. In this regard, increasing the network depth can help exploiting larger receptive fields. However, it can not be done ad-infinitum due to memory and computational issues.

Moreover, as the network goes deeper, we discard too many resolution details. In turn, we propose to process high-resolution mammograms using a cascade of two U-Net working at different scales [START_REF] Roth | A Multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation[END_REF] to exploit multi-level contextual information. In particular, we focus on how two U-Net resp.

processing low (512 × 256) and high-resolution (2048 × 1024) images can be optimally combined. 

Multi-scale cascade with auto-context

The proposed alternative (Fig. 4.2) consists in combining both U-Net with auto-context [START_REF] Tu | Auto-context and its application to high-level vision tasks and 3D brain image segmentation[END_REF]. The auto-context method combines low-level appearance features with high-level context such as the contour and implicit shape of an object, or various relationships between objects to integrate low-level and context information. In our context, the auto-context can be implemented using posterior probabilities resulting from the first U-Net as features for the second one (see Fig. 

Integrating transfer learning

Improved model generalizability can be achieved by taking into account several datasets. Thus, our framework incorporates transfer learning from DDSM-CBIS [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF] 

Experiments and results

To assess the end-to-end multi-scale cascade (E1-A/B) comparatively to standard strategies (F1, T1-A/B, S1-A/B), experiments focus on mass segmentation from high-resolution 2048 × 1024 INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] images. The performance reached using a single U-Net working at low-resolution (512 × 256) is also reported (F4-A/B) after up-sampling segmentation masks to high-resolution. Each setup is processed without (•-A) or with (•-B) transfer learning from DDSM-CBIS [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF] whose training is performed at 512x256. Tab.4.1 gives an overview of all tested methodologies.

A ratio of 70% is employed to split INbreast into training and test subsets containing 74 and 33 images, respectively. Five random splits are performed to provide averaged results with cross-validation.

Breast mass segmentation is quantified based on Dice ( We present in Tab.4.1 a comparative assessment of all previously described methods. Comparisons A significant gap is crossed when transfer learning from DDSM-CBIS images is considered. Gains concern all methods and vary from 6.5 (T1) to 14.1% (F4) in Dice. Except between F4 and S1, the same conclusions as without transfer learning arise: E1-B>F4-B>S1-B>T1-B>F1. The proposed multi-scale cascade with auto-context and transfer learning achieves the best scores in Dice and specificity with 70.04% and 99.61% against 66.38% (resp. 64.31%) and 99.57% (99.06%) for F4-B (S1-B). This reveals that our method efficiently takes advantage of both low-level broad context and high-level fine details.

Sensitivity for E1-B is slightly below S1-B but clearly outperforms F4-B.

Evaluation is supplemented by qualitative results given in Fig. 

From one-stage to two-stage

In this section, mass segmentation was achieved through a multi-scale cascade of deep convolutional encoder-decoders without any pre-detection scheme. Multi-scale information was integrated using autocontext to make long-range spatial context arising from lower scale impact training at higher resolution.

The pipeline was trained end-to-end to benefit from simultaneous segmentation refinement performed at each level. We incorporated transfer learning and fine-tuning from DDSM-CBIS to INbreast datasets to further improve mass delineations. The comprehensive evaluation provided for high-resolution INbreast images highlights promising model generalizability against standard encoder-decoder strategies. Further attempts of this strategy should involve cascading more CEDs to further refine the multi-scale information, which can be beneficial to the feature refinement.

Other than continuing to explore the in-depth combination of multi-scale CED models, we also investigated an alternative two-stage strategy. It is worth noting that, despite being complementary, localizing mass areas from mammograms and extracting precise boundaries for each mass are naturally two tasks with contradictory focuses: context-level semantic information for the former, resolution-level details for the latter. Addressing both challenges into one single network may lead to a sub-optimal trade-off and thus hinder precise full mammogram delineations. In this context, we came up with the idea of a two-stage method which is desired to imitate the realistic procedure in clinical scenarios, and we tried to automatize the candidate selection process using multi-scale fusion. Accordingly, in the following section, we present a two-stage solution for full mammogram segmentation, providing another option for accurate and automatic mass localization and segmentation CAD systems.

Two-stage breast mass detection and segmentation

It has been proven in Sect. 

Related works

Regarding breast mass detection, although many recently proposed object detection models [START_REF] Dai | R-FCN: Object detection via region-based fully convolutional networks[END_REF][START_REF] Girshick | Region-based convolutional networks for accurate object detection and segmentation[END_REF][START_REF] Redmon | YOLOv3: an incremental improvement[END_REF][START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF] have achieved great success on common object detection tasks, automatic mass detection still remains a challenge due to the low signalto-noise ratio and the unpredictable appearance of masses in X-ray mammograms. Image details are therefore lost during this process. In comparison, our approach aims at avoiding complex processing pipelines and human interventions, towards accurate and precise breast mass segmentation.

Image-level mass detection

Among existing deep detectors, YOLOv3 [START_REF] Redmon | YOLOv3: an incremental improvement[END_REF]) is adopted in this work for mass localization from full mammograms thanks to its good trade-off between accuracy and efficiency. 

Extension using multi-scale fusion

Although recently proposed detection models [START_REF] Dai | R-FCN: Object detection via region-based fully convolutional networks[END_REF][START_REF] Girshick | Region-based convolutional networks for accurate object detection and segmentation[END_REF][START_REF] Redmon | YOLOv3: an incremental improvement[END_REF][START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF] have achieved excellent results on public common object detection datasets such as Pascal VOC [START_REF] Everingham | The Pascal visual object classes challenge: A retrospective[END_REF] or Microsoft-COCO (T.-Y. [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF], they

are not optimal to be applied directly to mammograms for two reasons. First, they are still struggling with object size variance. Typically, most object detectors have worse performance for small objects than for medium or large structures. Especially in our context, this problem becomes more serious as the size and aspect ratio of masses vary greatly. Second, mass detection is more difficult than common object detection since masses are visually less obvious and less contrasted with respect to surrounding healthy tissues, combined with a great diversity of shape and texture. Therefore, single-scale prediction might not provide sufficiently good proposals, leading to the failure of the next stage dedicated to mass segmentation. is computed and normalized as follows:

= =1 × max( 1 , 2 , . . . , ) (4.1) 
Third, we consider an empirically selected threshold to implement majority voting (Fig. Through the proposed MSF, we focus on redundant information that appears in multiple scales.

From a statistical point of view, MSF allows to identify the most frequently detected regions in multiple predicted maps in order to limit false-positive predictions. Conversely, areas detected in few prediction maps or areas with low confidence scores are unlikely to be selected. Moreover, we analyze the effect of the empirical parameter in order to keep a high level of sensitivity while improving specificity.

Accordingly, we are able to remove most of the uncertainty and find the most reliable predictions. Final detections are resized to 256 × 256 patches and fed into our second stage. [START_REF] Redmon | YOLOv3: an incremental improvement[END_REF] on the INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] dataset using average precision (AP) scores. T1 to T5 correspond to 5 experimental test sets. positives, true negatives and false negatives. We use pre-trained weights from ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] and then train models until convergence.

Metrics

Mass localization

We evaluate the detection performance of YOLOv3 by calculating the average precision (AP) score for masses present in each test set. Fig. 4.8 shows precision-recall curves for each test set using an intersection over union ≥ 0.5. Precision-recall curves summarize the trade-off between the true positive rate and the positive predictive value using different probability thresholds. Then, we compute the average precision scores which summarize the weighted increase in precision with each change in recall for the thresholds in the precision-recall curve. From Fig. 4.8, we can clearly see that the precision-recall curves are fairly consistent between different test sets, which demonstrates the consistency of YOLOv3. Tab.4.2 displays the corresponding AP scores of each curve. YOLOv3 yields an averaged AP of 75.46% with a standard error of 1.7. For comparison, most state-of-the-art methods achieve a mean AP of 80% on PASCAL VOC and 60% on MS-COCO, which reveals very reasonable precision given the complexity of the mass detection task. True Positive Rate(TPR) 0.01 0.12 0.23 0.45 0.55 0.66 0.77 0.88 0.99 0.91@1.58 0.97@0.18 0.94@0.12 0.88@0.18

Free Response Operating Characteristic(FROC) Curve

Scale-1 Scale-2 Scale-3 Scale-4 threshold = 0 threshold = 0.5 threshold = 0.6 threshold = 0.7 threshold = 0.8 We fuse prediction results obtained at resolutions 160 × 320, 256 × 512, 320 × 640, 416 × 832 and 480 × 960 for multi-scale fusion (Sect. 4.3.3). We use free-response receiver operating characteristic (FROC) as evaluation criterion. Fig. 4.9 illustrates the performance of MSF for test set T1 as an example.

The FROC curve is created by plotting the true positive rate (TPR) against the average false positive per image (FPavg) using various thresholds. Since MSF uses an empirical threshold to make final decisions, we tested a set of thresholds ∈ {0, 0.5, 0.6, 0.7} to get different TPR@FPavg scores. = 0 means that we keep all the detections of YOLO, while = 0.5 means that we keep the part of mask ≥ 0.5 (Eq.4.1) and so on. Apart from displaying the FROC curve of each scale, we also use stars (Fig. 4.9)

to show the final detection TPR@FPavg scores of MSF under different thresholds . Fig. 4.9 indicates that TPR@FPavg scores of MSF are all located in the upper left corner of FROC space, showing that our MSF strategy largely boosts the accuracy of mass localization compared to single-scale detections, with a more reliable TPR and less FP proposals. Additionally, the TPR@FPavg scores shown in Tab.4.3 highlights the influence of . With a higher threshold, the false positives tend to be reduced while the TPR reaches the peak levels at around = 0.5 ∼ 0.6. We finally chose = 0.6 considering the trade-off between true-positives and false-positives proposals.

We also compare the image-based mass detection with respect to state-of-the-art using TPR@FPavg (Tab.4.4). Even if results are only for reference since datasets used for training and testing are not identical, it highlights that MSF (0.94@0.22) significantly outperforms [START_REF] Agarwal | Automatic mass detection in mammograms using deep convolutional neural networks[END_REF][START_REF] Ribli | Detecting and classifying lesions in mammograms with deep learning[END_REF][START_REF] Sapate | Breast cancer diagnosis using abnormalities on ipsilateral views of digital mammograms[END_REF] in both TPR and FPavg and shows consistent TPR with respect to Dhungel et al.

TPR@FPavg T1 T2 T3 T4 T5 = 0 0.91@1.58 0.97@1.39 0.89@1.30 0.91@1.55 1.0@0.87 = 0.5 0.97@0.18 0.94@0.27 0.91@0.18 0.92@0.36 0.97@0.12 = 0.6 0.94@0.12 0.94@0.24 0.91@0.18 0.92@0.30 0.97@0.06 = 0.7 0.94@0.09 0.89@0.27 0.91@0.15 0.89@0.18 0.97@0.06 4.4 -Detection performance comparisons between the proposed MSF and state-of-the-art. Our provided TPR@FPavg score is the average of T1 to T5 test sets at = 0.5.

Mass segmentation

To assess the final segmentation performance, we compute Dice scores over each test set on full mammograms for each different methodology (Tab. 4.5). Compared to U-Net (Ronneberger et al., 2015a) (89.20±0.5), results of cascaded U-Net (89.49±0.3) are slightly better since it employs a multi-scale cascade of U-Net combing auto-context. The gain is relatively low considering that cascaded U-Net (Sect. 4.2, Yan et al. (2019b)) has been designed to tackle mass segmentation from entire mammograms. cGAN [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF]) also brings slight benefits (90.02±0.2) to the original U-Net but less than v19U-Net++ (Z. [START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF] which yields the best results on all test sets with 90.86% as average Dice score.

To assess the final segmentation performance of the proposed two-stage system (Fig. 4.4), we compare the overall Dice on full mammograms from different methods. As a proof of concept, we test the second stage (Sect.4.3.4) using the candidate patches arising from the first stage (Sect. 4.3.3), which are resized to 256 × 256 pixels before feeding into segmentation models. Tab.4.6 presents comparative evaluations for each model: one-stage segmentation, two-stage segmentation without and with the proposed MSF on high-resolution full mammograms. In particular, in the two-stage without MSF setup, mass candidates are provided by a simple single-scale prediction of YOLOv3.

Comparisons between models indicate that v19U-Net++ yields better segmentation results for twostage segmentation, with an average Dice score of 70.96% without MSF and 80.44% with MSF. Compared Methods T1 T2 T3 T4 T5 average (%) U-Net (Ronneberger et al., 2015a) with one-stage segmentation, a significant gap is crossed when using a two-stage scheme, demonstrating the effectiveness of our two-stage localization-segmentation design. MSF brings Dice improvements to the two-stage scheme from 9.17% with U-Net to 9.76% with cGAN (9.48% with v19U-Net++), showing that adding the MSF strategy into the pipeline can further greatly improve performance. We also observe that one-stage segmentation methods reach various levels of robustness (Sect. 4.2, Yan et al. (2019a))

when applied to high-resolution mammograms: from 28.92% (cGAN) to 65.49% (cascaded U-Net).

Conversely, our two-stage scheme provides more stable and reliable results, which suggests that it could be very effective in clinical practice.

Evaluation is supplemented with qualitative results. Fig. 4.10 shows full mammogram detection and segmentation results using the proposed two-stage with MSF compared to two-stage without MSF. We observe that by using the MSF strategy, we have considerable improvements in both mass localization accuracy and mass delineation precision. It also shows that we can successfully detect multiple masses in a single mammogram. In addition, we compare in Fig. 4.11 the proposed method with cascaded U-Net (Yan et al., 2019a) which also addresses full mammogram segmentation. Our method obtains more accurate detections and boundary adherence, while almost all false-positive proposals are eliminated.

Moreover, the method is robust in dealing with masses of any size, shape or texture. This confirms that our methodology is very generalizable in handling the problem of strong class imbalance and tumor appearance variability.

Discussion

In this section, we proposed a two-stage framework combining a deep, coarse-scale mass detection with a new multi-scale fusion strategy and a fine-scale mass segmentation using dense and nested skip connections By fusing predictions performed at multiple scales, we avoided manual selection and drastically reduced the number of unsuccessful pre-detections while allowing a variable number of candidate regions to be automatically selected for segmentation. These results confirmed the model robustness and generalizability of the proposed pipeline, leading to more reliable full-mammogram mass segmentation without any user intervention, and thereby pushing forward the implementation of realistic CAD systems.

Conclusion

In this chapter, we studied the problem of automated mass segmentation from high-resolution full mammograms, towards realistic CAD systems that deal with lesion segmentation from native highresolution medical images. To cope with the ensuing problems such as strong class imbalance, huge diversity of lesion size, shape, texture and contour as well as limited receptive field, we put forward two approaches.

In Sect. 4.2, we extended standard segmentation pipelines to multi-scale cascades of deep convolutional encoder-decoders. Contextual information extracted at each level was combined using auto-context.

End-to-end training was followed to benefit from simultaneous multi-scale training. Results on INbreast showed promising model generalizability, especially when transfer learning is employed from DDSM-CBIS. This proof-of-concept using U-Net suggests that embedding robust residual or adversarial models in such cascaded setup could achieve a further step forward for better mammogram analysis.

In Sect. 4.3, we proposed a two-stage multi-scale framework, which works as an accurate and automatic mass localization and segmentation CAD system. First, the deep network roughly localizes masses of any size, position and shape from the whole image by fusing predictions at multiple scales. Second, we performed an effective patch-based deep segmentation method with nested and dense shortcuts to obtain the accurate delineation of mass contours. Our system showed promising accuracy as an automatic full-image mass segmentation system. Extensive experiments revealed robustness against the diversity of size, shape and appearance of breast masses, towards better interaction-free computer-aided diagnosis.

The proposed approaches can be easily integrated into clinical routine and is able to help diagnosis by acting as a relevant fully-automated second opinion. Future research should consider the potential effects of fusing multi-view and contralateral symmetry information to increase the robustness of breast lesion detection and delineation and therefore improve clinical guidance. Furthermore, our framework is generic enough to be extended to other medical imaging modalities for both anatomical and pathological structure segmentation.

These two views comprise routine screening mammography. The information presented in the paired CC/MLO views is highly complementary and could serve as a second source of decision [START_REF] Jouirou | Multi-view information fusion in mammograms: A comprehensive overview[END_REF]. Compared to single-view screening, examining the correspondence between suspicious findings in multiples views enables radiologists to reduce false-positive cases, improve clinical interpretations and subsequent decisions [START_REF] Vijayarajan | Breast cancer segmentation and detection using multi-view mammogram[END_REF], thus improving cancer detection rates [START_REF] Warren | The value of the second view in screening mammography[END_REF]. Therefore, the dual-view analysis is considered an effective way to reduce the morbidity and mortality associated with breast cancer [START_REF] Jørgensen | Breast cancer screening viewpoint of the IARC Working Group[END_REF] and is key to make decisions in clinical routine. However, due to breast deformation and different acquisition conditions combined with the lack of 3D information, multi-view fusion for dual-view mammogram analysis is challenging.

Therefore, only a few deep methods for breast screening consider learning jointly effective features from both views. The use of multi-view context is a known weakness of current CAD technology. Thus, there is a huge potential to improve the performance of CAD tools by integrating information from paired views.

The concept of multi-view information fusion was recently introduced to improve the performance of detection, classification or content-based mammogram retrieval tasks [START_REF] Jouirou | Multi-view information fusion in mammograms: A comprehensive overview[END_REF]). An increasing number of works focus on multi-view mammography analysis. [START_REF] Vijayarajan | Breast cancer segmentation and detection using multi-view mammogram[END_REF] extracted 2D features from whole mammograms, obtained the component location value from CC and MLO views and merged this information to get a 3D view of masses in the mammogram image. [START_REF] Carneiro | Unregistered multiview mammogram analysis with pre-trained deep learning models[END_REF] trained a separate CNN model for each view and finally applied a CNN classifier that estimates the BI-RADS score using features learned from unregistered CC and MLO mammograms, as well as respective mass delineations. [START_REF] Geras | High-resolution breast cancer screening with multi-view deep convolutional neural networks[END_REF] proposed to apply a CNN model separately to each view to obtain view-specific representations for further classification purposes. All the above studies are designed based on whole mammograms. However, there may be multiple different benign or malignant masses in a given examination. In order to simplify the complex analysis of whole mammograms, some studies assign a unique label (benign, malignant or normal) to the whole image. The drawback is that it avoids conducting a comprehensive analysis of each mammogram, comprising lesion types and locations.

In this chapter, we introduce two multi-view information fusion methods. Sect. 5.2 presents a dualview multi-tasking combined network for breast mass matching, classification and segmentation. Sect. Shen et al., 2019;[START_REF] Zhang | Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks[END_REF][START_REF] Zhu | Deep multi-instance networks with sparse label assignment for whole mammogram classification[END_REF] focus on whole mammograms which simplify such complex problem by providing a unique image-level label (normal, benign or malignant), without conducting a comprehensive analysis comprising lesion types and locations. Other works are mostly region-based methods [START_REF] Arevalo | Convolutional neural networks for mammography mass lesion classification[END_REF][START_REF] Choukroun | Mammogram classification and abnormality detection from nonlocal labels using deep multiple instance neural network[END_REF][START_REF] Lévy | Breast mass classification from mammograms using deep convolutional neural networks[END_REF][START_REF] Wang | Breast mass classification via deeply integrating the contextual information from multi-view data[END_REF][START_REF] Zhou | Mammogram classification using convolutional neural networks[END_REF], where images are first decomposed into regions to further distinguish normal from abnormal tissues. However, most of the above methods use single-view mammograms only, thus neglecting the rich information that can be extracted from multi-view images.

To address the limitation of single-view processing, we aim at taking advantage of information arising from CC and MLO mammograms, as do clinicians when making decisions in clinical practice [START_REF] Vijayarajan | Breast cancer segmentation and detection using multi-view mammogram[END_REF]. Several multi-view fusion schemes learn full images from each view separately and concatenate respective features afterwards. Based on MatchNet [START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF], [START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF] proposed a dual-view Siamese network (Koch et al., 2015) (Sect. 3.2.4) that learns patch representations and similarity for lesion matching. This suggests a potential added value of multi-view matching to improve breast mass detection, with respect to single-view detection strategies. However, these are single-task studies dedicated to mass detection [START_REF] Ma | Cross-view relation networks for mammogram mass detection[END_REF] or mass matching [START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF] only.

To design a more comprehensive and efficient CAD system, we aim at exploiting the multi-tasking properties of deep CNN. Multi-task learning processes multiple tasks jointly with many advantages such as saving computation time and resources as well as improving robustness against overfitting (Ruder, 2017) (Sect. 3.3.2). The network parameters from feature extraction layers are updated through the optimization of a combined loss dealing with both mass/non-mass classification and matching. Contrary to [START_REF] Ma | Cross-view relation networks for mammogram mass detection[END_REF][START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF], our method can provide both classification and matching results. 

Methods

In this section, we propose a novel multi-tasking Siamese deep model that combines CC and MLO mammograms to improve breast mass detection. We first formally define the problem settings and provide an overview of the proposed unified framework for mass classification and matching in Sect.5.2.2.1.

Multi-view mass matching combining Siamese networks (Sect. 3.2.4) and contrastive learning is described in Sect.5.2.2.2. Multi-task learning (Sect.5.2.2.3) is followed to obtain better predictive breast mass classification performance, towards improved mass detection than traditional single-task learning schemes.This methodology is then extended to address classification, matching and segmentation simultaneously (Sect.5.2.2.4) as a supplementary test.

Overview

Our multi-tasking framework (Fig. 5.1) takes unregistered CC/MLO view pairs as inputs and provides as output accurate mass detections along with correspondences between mass regions in both views.

Among existing deep detectors including Faster R-CNN [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF] or SSD (W. [START_REF] Liu | SSD: Single shot multibox detector[END_REF],

YOLOv3 [START_REF] Redmon | YOLOv3: an incremental improvement[END_REF]) is adopted for candidate patch generation and selection from full mammograms, since it offers a good trade-off between accuracy and efficiency (Sect. 3.2.3).

Given a pair of mammograms { , }, YOLO predicts two sets of candidate mass patches = { 1 , ..., to reach the same level of performance when applied to medical images, especially mammograms. The following reasons arise. First, object size variance may affect the performance. In our context, mass sizes and aspect ratios may strongly vary [START_REF] Yan | Cascaded multi-scale convolutional encoder-decoders for breast mass segmentation in highresolution mammograms[END_REF]. Second, mass detection is generally more difficult than common object detection since masses are visually less obvious and less contrasted with their surrounding healthy tissues, combined with a great diversity of shape and texture. On top of that, we should also struggle with the barrier between true and false masses to retain as much as possible true positives while reducing false positives.

To further finely select mass candidates and discover the latent relation between CC and MLO views, we design a combined model through a Siamese network that jointly deals with patch-level mass/nonmass classification and matching (Fig. 5.1). We sample candidate mass patches and to the same size via a data sampler, while performing data augmentation to prevent from overfitting. These samples are then fed into our combined network. Based on robust generic feature extraction, the result of our model is whether each patch of the two views contains mass as well as the correspondence between two patches arising from each of the two views. Subsequently, we can visualize final detection results on both views to further guide clinicians in their mammogram interpretation task.

Dual-view mammogram matching

Inspired by [START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF] and [START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF], we employ a Siamese framework to identify correspondences between masses in both CC/MLO views. The deep architecture for multi-view mammogram matching is shown in Fig. 5.2. Patch pairs from CC and MLO views are fed separately to the two branches of the network. The feature network A is a Siamese model in which two fully convolutional networks with shared weights are employed for feature extraction. For illustration (Fig. 5.2), we use a VGG16 architecture [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] with repeated 3 × 3 convolutions followed by an activation function (ReLU) and 2 × 2 max pooling. To reduce the number of parameters while avoiding overfitting, we apply a global average pooling layer before subsequent FC layers [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF]. Particularly, different widely used deep convolutional models such as VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], ResNet50, ResNet101 [START_REF] He | Deep residual learning for image recognition[END_REF], InceptionV3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] and EfficientNet [START_REF] Tan | EfficientNet: rethinking model scaling for convolutional neural networks[END_REF]) can be exploited for feature extraction purposes. For feature comparison, two manners are explored based on different loss functions. First, one can use a metric network as in [START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF] and [START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF] consisting of several FC layers and softmax layers, trained with a cross-entropy loss. Alternatively, we can rather employ a contrastive loss [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF] to improve the representation ability of network A to extract discriminative features.

Contrastive loss for matching. Contrastive learning, whose labels are used to guide the choice of positive and negative pairs, is employed to learn powerful feature representations. The contrastive loss is usually exploited for image retrieval tasks, along with Siamese networks to learn paired data relationships.

During training, an image pair is fed into the model with their ground truth relationship Y. The loss function is defined as follows:

( , 1 , 2 ) = 1 2 =1 ( 1 , 2 ) 2 + (1 -) max ( - ( 1 , 2 ) , 0) 2 (5.1)
where ( 1 , 2 ) = 1 -2 2 represents the Euclidean distance between two sample features 1 and softmax layers. Moreover, compared to cross-entropy which learns the patch "match" or "not match" in an inexplicable manner, the contrastive loss optimizes the mass matching task by manipulating the distance between pairs in feature space. Therefore, the contrastive loss is more in line with matching requirements than binary sample classification. The loss function (Eq.5.1) is minimized using stochastic gradient descent (SGD).

Combined classification and matching

Mass classification and dual-view matching are two tasks of a very different nature. The challenge is thus to learn generic features for both tasks. We propose to exploit Siamese networks towards simultaneous deep patch-level matching and classification. In this direction, we design a multi-tasking learning model (Fig. 5.3) referred to as Combined Matching and Classification Network (CMCNet). Positive and negative patch samples of CC/MLO views arising from YOLOv3 detector are fed into the two-branch feature network (Fig. 5.3A) to compute robust patch representations. Apart from the matching network (Sect.5.2.2.2, Fig. 5.3B), we incorporate into the pipeline two branches (Fig. 5.3C) for CC/MLO mass classification purposes. Each of these branches has its own FC layers. We not only jointly learn representations from the two views but also simultaneously learn matching and classification tasks to exploit the potential relationship between view-points.

The combined learning of classification and matching refers to the idea of multi-task learning which has been proven to improve learning efficiency and generalization performance of task-specific models.

We expect thus that the dual-view matching task can improve the robustness of mass classification, towards better predictive results than classification-only strategies. The designed loss is the sum of three loss terms to optimize the entire CMCNet parameters through SGD:

= , + , + (5.2) 
where , and , represent the classification losses (cross-entropy) for CC and MLO view respectively. is the matching loss which can be cross-entropy or contrastive loss (Eq.5.1). , and are coefficients balancing the loss terms.

Combined classification, matching and segmentation

Once the combined classification and matching step has been completed, our second goal is to integrate the mass segmentation task into the multi-tasking network, i.e., to build a final network which simultaneously performs three tasks: classification, matching and segmentation of breast masses.

Apart from mass classification and matching, mass segmentation is another task that plays an essential role in mammogram analysis. In contrast to these previous tasks which are performed at the patchlevel, the segmentation task deals with pixel-level classification, that is, the dense classification of each pixel to identify whether it is part of a mass. Deep methods for breast mass segmentation are Skip connections are usually designed to combine corresponding encoder and decoder feature maps to better recover high-level details.

As illustrated in Fig. 5.4, in the basis of the aforementioned CMCNet (Fig. 5.3), we added a decoder after each feature extraction branch of the Siamese network network. We used skip connections between each encoder-decoder as done in many other deep CED models (Ronneberger et al., 2015a;[START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF]. The final network is therefore composed of two feature extraction branches followed by two symmetrical decoder branches sharing the same weights. We expect thus that the dual-view matching task can improve the robustness of both mass classification and segmentation tasks. The segmentation task is supervised by the combination of binary cross-entropy ( ) and Dice ( ) losses following = + 1 with: ResNet101 [START_REF] He | Deep residual learning for image recognition[END_REF], InceptionV3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] and EfficientNet [START_REF] Tan | EfficientNet: rethinking model scaling for convolutional neural networks[END_REF].

= 1 - 2| • | | | + | | (5.3)
The feature size varies depending on the model used. Let be the number of feature map channels and denote the batch size. The FC layers of each classification branch will turn the input vector ( , ) into ( , 2) and pass it to the Softmax layer to transfer logits into probabilistic predictions. The input of the metric network (Fig. 5.3B) is the concatenation of two feature vectors. For VGG16, = 512. For ResNet50 and ResNet101, = 2048. For EfficientNet, it has 8 pre-trained models from EfficientNet-B0 to B7 where is respectively {1280, 1280, 1408, 1536, 1792, 2048, 2304, 2560}. All deep models are initialized using pre-trained weights [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF] from the ImageNet dataset [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] and trained using the SGD optimizer. Optimal hyper-parameters vary depending on the network.

For the global loss function, we choose = = 1 as well as = 1 for cross-entropy and = 0.1 and margin ∈ {5, 10, 15} for contrastive loss (Eq.5.1). The detailed hyper parameters used are shown in Tab.5.2.

significant (acc = 0.9084, p < 1 -6 ), followed by ResNet50 (acc = 0.9049), InceptionV3 (acc = 0.90)

and EfficientNet-B3 (acc = 0.8979), showing that using deeper networks is not necessary to reach better performance.

Multi-task learning versus segmentation-only. We compare in Tab. 5.4 the segmentation performance in dice score and the classification performance in accuracy (acc) to assess the proposed combined classification, matching and segmentation framework. Since negative patches have no segmentation mask, the dice score is calculated only on patches that contain mass. Among above-mentioned deep backbones (e.g. Tab. 5.3), we evaluated this framework on VGG16 and ResNet50 as preliminary tests. We noticed from Tab. 5.4 that combining classification and multi-view matching did not bring robust and significant improvements to the segmentation task. Best dice score (0.7386) is achieved by segmentation-only with VGG16, 1 = 0.5. For the classification task, results combining classification and matching tasks without the segmentation task (Tab. 5.5, underlined results) is still slightly better, with acc = 0.9084 compared to 0.8916 for VGG16, and acc = 0.9049 compared to 0.9007 for ResNet50, showing that the segmentation task could not bring further improvement to the classification performance. The lack of improvement may be due to differences in the nature of the segmentation task with respect to classification/matching tasks, i.e., pixel-level classification for the former, image-level classification based on global context for the latter. Moreover, general segmentation tasks normally include patches containing a mass, while the multi-tasking initiative introduces negative patches (i.e. patches with no mass), resulting in adding more negative samples (pixels) to the segmentation task. This undoubtedly increases the bias of the segmentation model. However, it is still worth noting that the model achieves better performance when the loss coefficient 1 = 0.5 for both multi-tasking (dice = 0.7119 for VGG16, dice = 0.7369 for ResNet50)

and segmentation-only (dice = 0.7386 for VGG16, dice = 0.7349 for ResNet50). For the ResNet50 setting with 1 = 0.5, the multi-task learning achieves comparable dice (0.7369) with respect to the best dice (0.7386) with negligible calculation increase.

Full detection pipeline. To further prove the effectiveness of our method, we conduct experiments with a full detection pipeline. Here we employed the CMCNet without including the segmentation task as it brings no improvement to the other tasks. Instead of extracting positive candidates using ground truth mass delineations while using YOLO as a negative patch generator, we use YOLO to generate all candidate patches.

Specifically, coarse mass YOLO detections [START_REF] Yan | Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention[END_REF] are performed on INbreast images to generate testing samples. YOLO is pre-trained on ImageNet and fine-tuned on 1514 DDSM-CBIS images. Thereafter, we use a small threshold (10 -4 ) on detection probabilities to ensure that predictions with high and low confidence are both selected. The averaged inference time per image is 78.7ms. We finally obtained 350 candidates, labeled as positive (125 cases) or negative (225 cases) according to IoU (≥ or < than 0. for the test set and all combinations are evaluated. The performance of each setting (classification-only, CMCNet with cross-entropy and CMCNet with contrastive loss using different backbones) is measured using the AUC (Area Under the receiver operating characteristics Curve).

Results for full-pipeline experiments (Tab. 5.5) show that the classification performance is highly improved over the baseline models by combining classification with dual-view matching. In terms of AUC, the performance of VGG16 (resp. ResNet101) increases from 90.47% (71.46%) to 94.78% (92.82%), which corresponds to a gain of 4.31% (21.36%). These results prove the appropriateness of our contributions. The best AUC score (94.78%, p = 0.001) is obtained using the VGG16 model trained with contrastive loss, with an overall accuracy of 0.8791. Results using the contrastive loss are slightly better than cross-entropy in most cases, except for ResNet50. InceptionV3 using cross-entropy and EfficientNet using both losses improve moderately without statistical significance (p > 0.05). Compared to Tab.5.3, the advantages of combining classification and matching are more highlighted with full-pipeline experiments.

Higher AUC indicates that we can significantly reduce false positive proposals resulting from YOLO. We also compute the inference time per image to compare computing time costs of each method (Tab.5.5).

This includes testing all possible pairs. The inference time of the CMCNet varies from 2.7 (VGG16) to 25.4ms (EfficientNet-B3). Since no significant improvement arises when using deeper models, models 
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----.-- Additionally, we provide mass matching performances during inference. As shown in Tab.5.6, mass matching performance is measured using accuracy (acc) and AUC. We compare mass matching using our multi-task learning (with cross-entropy and contrastive losses) versus matching-only. The matching-only scheme refers to the matching Siamese network illustrated in Fig. Table 5.7 -Final detection performance comparisons on INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] between the proposed method (CMCNet with VGG16 and contrastive loss) and state-of-the-art approaches.

(a) (b) (c) (a) (b) (c) (4) 
(2017a) obtaining respectively 0.94@0.22 and 0.95@5, while additionally providing accurate dual-view mass correspondences.

Evaluation is supplemented with qualitative results on full mammograms (Fig. 2), the number of false positive detections decreased from 7 to 1 from (a) to (b) and further decreased to 0 without any false negatives. In addition, the CMCNet (c) also successfully identifies the matching patches in both views, which can provide clinicians with reference to further rule out false positives that are difficult to detect, as in Fig. 5.5 (4). Fig. 5.5 also demonstrates that variable mass sizes and shapes can be correctly managed. All these findings suggest that exploiting multi-view relationships and multi-tasking learning can greatly guide mammogram interpretation, towards better breast cancer diagnosis and management.

Deep active learning for dual-view mammogram analysis

Based on supervised learning using convolutional neural networks (CNN), recent studies have achieved impressive performance regarding mass segmentation [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF][START_REF] Yan | Cascaded multi-scale convolutional encoder-decoders for breast mass segmentation in highresolution mammograms[END_REF][START_REF] Yan | Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention[END_REF] or detection [START_REF] Agarwal | Automatic mass detection in mammograms using deep convolutional neural networks[END_REF]Dhungel et al., 2017a;[START_REF] Kooi | Large scale deep learning for computer aided detection of mammographic lesions[END_REF][START_REF] Ribli | Detecting and classifying lesions in mammograms with deep learning[END_REF][START_REF] Yan | Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention[END_REF]. Despite such success, supervised deep learning still faces obstacles, including data acquisition and high-quality manual annotations which are expertise-needed and time-consuming.

The current rise of deep learning made the analysis of mammograms more automatic and accurate thanks to effective training methods, advances in hardware, and most importantly, large amounts of annotated training data [START_REF] Kooi | Large scale deep learning for computer aided detection of mammographic lesions[END_REF]. Computational analysis of dual-view mammograms [START_REF] Gu | Multi-view learning for mammogram analysis: Auto-diagnosis models for breast cancer[END_REF][START_REF] Ma | Cross-view relation networks for mammogram mass detection[END_REF][START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF][START_REF] Yan | Multi-tasking Siamese networks for breast mass detection using dual-view mammogram matching[END_REF] has been validated as an effective way to reduce falsepositive cases and improves screening performance. Nevertheless, the labeling workload of radiologists is further increased. Therefore, it is greatly needed to develop an effective annotation suggestion algorithm to alleviate this issue. In this section, we propose a novel approach of deep active learning (AL) for dual-view mammogram analysis including breast mass segmentation and detection, where the dual-view prediction consistency is integrated as selection criterion. Second, two task-specific neural networks are carefully designed for more effective mammogram mass segmentation and detection. Third, extensive experiments are conducted to reveal the relationship between dual-view consistency and mammogram informativeness.

Active learning

Extensively studied in various fields including language processing, anomaly detection or recommendation systems, active learning (AL) aims at reducing human annotation efforts by adaptively selecting the most informative samples for labeling. As for medical imaging, AL has shown high potential in reducing the annotation cost [START_REF] Budd | A survey on active learning and human-in-the-loop deep learning for medical image analysis[END_REF].

Recent studies (H. [START_REF] Li | Attention, suggestion and annotation: A deep active learning framework for biomedical image segmentation[END_REF][START_REF] Shen | Deep Active Learning for Breast Cancer Segmentation on Immunohistochemistry Images[END_REF] propose AL frameworks for breast cancer segmentation, respectively on immunohistochemistry and biomedical images. However, AL methods have not been widely exploited in X-ray mammography analysis. [START_REF] Zhao | Mammographic image classification system via active learning[END_REF] first introduced AL into a mammography classification system based on a support vector machine (SVM) classifier. R. is to score the dual-view mammograms according to their prediction consistency. Our work can be seen as a complement to existing methods and proves that combining inter-view information can bring further improvements.

Network architectures for mass segmentation and detection

To reduce the labeling efforts dealing with breast masses in mammograms, we propose a novel approach of deep active learning for dual-view mammogram analysis. Specifically, we consider two scenarios: mass detection and segmentation. The key insight of our method is to use the consistency of mass detection or segmentation results arising from CC/MLO view-points as active learning criterion.

The proposed AL process starts by pre-training the model on a small labeled subset . Then, we perform model inference on the unlabeled dataset to select the most informative mammogram pairs according to the calculated dual-view prediction consistency. These selected pairs are then sent to an oracle (i.e. the radiologists) for annotation and appended to , where the model is consequently fine-tuned on.

Such AL cycle (Fig. 5.6) is repeated several times to gradually improve the model performance, until the annotation budget is exhausted. The key feature of AL is the query algorithm for the informativeness ranking of unlabeled images, which in our work is the scoring function related to the dual-view prediction consistency.

Breast mass segmentation and detection are two main tasks in mammogram analysis. We take inspiration from recent advances of deep neural networks (He et al., 2016a;[START_REF] Lin | Focal loss for dense object detection[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and design simple and efficient networks for each of these tasks (Fig. 5.7).

Mass segmentation network

The architecture is composed of an encoder network for feature extraction, a decoder network for spatial detail reconstruction, and several skip-connections between both branches to recover spatial information. Instead of using a standard symmetric encoder-decoder architecture [START_REF] Conze | Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], we apply an alternative asymmetric architecture where residual blocks are integrated into the encoder and 1 × 1 convolution layers are part of the decoder (Fig. 5.7). This design enables the encoder to extract features from inputs, while the decoder maintains the same performance of recovering context information, while the network complexity is greatly reduced. The optimization is supervised by the combination of binary cross-entropy ( ) and Dice ( ) losses following = + 1 (Eq. 5.3,Eq. 5.4), where the empirical factor 1 is set to 0.5 to prevent the combined loss from degenerating into . 

Mass detection network

We designed a single-stage mass detection network, where a multi-scale prediction strategy is applied However, we need to check if this paradigm remains valid in the field of medical imaging and especially for mammogram analysis. To this end, we implement three AL strategies: random (rand), best consistency (bestC) and worst consistency (worstC) selections. For each AL cycle, rand strategy randomly selects mammogram pairs from unlabeled dataset , while bestC (worstC) selects pairs with the highest (lowest) consistency score (Eq. 5.10).

We visualize in Fig. 5.9 the mammogram pairs selected by different AL strategies. Specifically, each point represents a CC/MLO mammogram pair, and red (green) points are pairs selected by worstC (bestC) strategy. We also estimate the linear regression between consistency score with mass segmentation / detection accuracy. It can be observed that the consistency score is a reasonable reference of the prediction quality.

Experiments and results

Implementation details

We use two publicly-available datasets for our experiments: DDSM-CBIS [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF] and

INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF], with respectively 1514 and 107 cases containing ground truth mass delin- The proposed framework was implemented using PyTorch. We use a SGD optimizer with a learning rate of 0.1 combined with a cosine annealing schedule. The proposed MSN (MDN) has 45,705 (80,202) learnable parameters in total. With a batch size set to 32 and an input image resolution of 512 × 256, the training process takes 2,217 (2,199) MiB of GPU memory for the segmentation (detection) task.

Each experiment is repeated 5 times using randomly initialized labeled subset , and we report their average performance and the standard error. We adopt the Dice coefficient to evaluate the segmentation performance and the Average Precision (AP) score to evaluate the detection performance. Dice coefficient is defined as 1-(Eq.5.3). AP score is calculated by taking the area under the precision-recall curve.

For each AL experiment, we start by training an initial model on a random labeled subset containing pairs. During each AL cycle, we adaptively select the next pairs from DDSM-CBIS using three different AL strategies (rand, bestC or worstC) from the unlabeled dataset . These images are assigned with annotations and appended to for fine-tuning at the next AL cycle. We fix an annotation budget B to end AL cycles. Concretely, we set to 8 (16 images) for all experiments. Noting that the annotation cost for segmentation is much higher than for detection, we set B to 40 (80 images) for the mass segmentation task and 56 (112 images) for the detection task. In other words, we implement 4 (6)

active cycles for segmentation (detection). Each cycle for segmentation (detection) adds 1.37% of labeled data, and the whole segmentation (detection) AL process takes 6.83% (9.56%) of labeled data in the training set. 

Results

We conducted extensive experiments to evaluate the performance of rand, bestC and worstC AL strategies. Averaged results are shown in Fig. 5.10. It can be seen that the model performance is improved progressively cycle by cycle, and that bestC (dice=37.00%, AP=52.83%) is consistently better than the other strategies. bestC presents 1.62% dice improvement and 4.02% AP gains with respect to the rand baseline. Conversely, worstC (dice=34.37%, AP=43.51%) does not outperform the baseline.

From Fig. 5.10 (b) and (d) we observe that the standard errors of rand for dice and AP remain both relatively high, while both bestC and worstC reduce the performance instability of rand strategy to a certain extent. In particular, with only 6.83% (9.56%) labeling budget for mass segmentation (detection), bestC achieves comparable performance with respect to fully-supervised models (37.00 vs 37.59% for segmentation, 52.83 vs 54.33% for detection), showing the great potential of our method in alleviating the annotation burden. Besides, we observe greater performance gaps for detection than segmentation.

Since detection annotations only provide sparse box-level supervision, the detection task is more critical in terms of the amount of training images.

In the common practice of traditional AL, examples with high consistency scores provide better prediction quality, and could be seen as well-learned examples, which are normally not included into AL cycles. Our results seem to contradict this common practice since pairs with higher consistency seem more useful than those with lower consistency. For this finding, we propose some explanations: mammography analysis is actually more difficult than general natural image analysis tasks since it is difficult for humans without clinical knowledge to distinguish masses from surrounding healthy tissues.

Medical imaging datasets can also be very biased due to different acquisition conditions. Learning with a small amount of medical images is challenging, especially for the first few AL cycles. For detection, 

Discussion

We propose a label-efficient deep learning approach that explores the prediction consistency arising from dual-view mammograms. The main novelty is the combination between multi-view mammogram analysis and active learning, which has not been studied in the field of medical imaging to our knowledge.

Our contributions significantly alleviate the burden of manual labeling in breast mass segmentation and detection tasks, which is beneficial to the development of CAD tools. As a future work, more complex query factors of the multi-view consistency can potentially be exploited. Another future possible extension to this work is to integrate existing single-view criteria into our current framework, towards a unified active learning system.

Conclusion

In clinical routine, radiologists usually confirm the diagnosis through cross information arising from both views. In this chapter, we studied the potential of multi-view information fusion to the improvement of CAD systems. We investigated two different perspectives by presenting (1) a multi-view multi-tasking framework that improves breast mass detection by exploiting the dual-view mass matching and (2) a labelefficient deep active learning approach that explores the dual-view mammogram consistency. Extensive experiments of both studies reveal great effectiveness and promising robustness of multi-view information fusion in various aspects of mammogram analysis, including mass detection, classification, segmentation, matching and data labeling problems. The great potential of information fusion in the field of medical imaging is greatly highlighted through these studies. In the following chapter, we will bring this topic to another extent: longitudinal information fusion for the prediction of severity grade changes. 

Introduction

Diabetic retinopathy (DR) recognition has been an active research area over the last few decades and has been exploited in many aspects over the years. Early detection and adapted treatment, especially in the mild to moderate stage of non-proliferative DR (NPDR), helps to slow down the progression of DR, thereby preventing the occurrence of diabetes-related visual impairment and blindness.

Recently, deep learning (DL) has been widely adopted in various tasks of retinal image analysis.

For the prediction of the severity of lesions, many studies have focused on the DR grading classification at image-level, as severity labels can be easily extracted from radiology reports. [START_REF] Gulshan | Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[END_REF] applied InceptionV3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] architecture for automated detection of DR in retinal fundus photographs. [START_REF] Quellec | Deep image mining for diabetic retinopathy screening[END_REF] proposed a multiple-instance learning framework that is supervised using only image-level labels for both automatic prediction of DR scale and DR-related. They further developed an instant automatic diagnosis system of DR [START_REF] Quellec | Instant automatic diagnosis of diabetic retinopathy[END_REF] which incorporates multiple CNN models and targets three classification tasks: laterality identification, referable DR detection and DR severity assessment. [START_REF] Gharaibeh | An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images[END_REF] proposed an effective and automatic screening system for DR detection through a series of processes: image pre-processing, optic disc detection and removal, Previous studies have demonstrated the potential of fusion methods in medical imaging, such as multi-view [START_REF] Geras | High-resolution breast cancer screening with multi-view deep convolutional neural networks[END_REF][START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF][START_REF] Yan | Multi-tasking Siamese networks for breast mass detection using dual-view mammogram matching[END_REF] or bilateral [START_REF] Geras | High-resolution breast cancer screening with multi-view deep convolutional neural networks[END_REF] fusion using a squeeze-and-excitation network (SENet) comprising an attention mechanism. We conduct a comprehensive evaluation of each fusion network on a large dataset from the OphDiaT telemedical network [START_REF] Massin | OPHDIAT©: A telemedical network screening system for diabetic retinopathy in the Île-de-France[END_REF] for the comparison of performance. This work has been accepted in the 8th

Ophthalmic Medical Image Analysis (OMIA8) MICCAI workshop (Yan et al., 2021e).

Data

The proposed models are trained and evaluated using the OPHDIAT dataset (Sect. 2.2.3). Tab.6.1

shows the codification of DR severity grade. In this work, we study the grade change from normal/mild NPDR (grade = 2 or 3) to more severe DR (grade ≥ 4). In Fig. 6.1, we show some examples of retina fundu images arising from the same patient, captured from left (L) and right (R) eyes and from different viewpoints from a series of times.

Data for longitudinal fusion

From the 763,848 images of 101,383 patients in the entire OPHDIAT database, we first select patients with up to two-year follow-up screenings and whose severity grade changes from grade = 2 or 3 to grade Image pair selection. Image pairing and registration are fundamental pre-processing steps for longitudinal analysis [START_REF] Saha | Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: A review[END_REF]. In order to avoid the influence of position shifts, image scales or other factors related to the heterogeneity of retinal images from the OPHDIAT dataset, we first need to select image pairs captured from almost the same viewpoint from two consecutive images series { -1 , }. The calculation process is as follows: for each image from and each image from -1 , we use an affine transformation to align to and obtain (Fig. 6.2). This transformation could not be done inversely (i.e. from to ) because lesions may appear between time t-1 (image ) and time t (image ), such as the example illustrated in Fig. 6.2. Instead of warping images with underlying lesions, we hope to preserve as much original characteristics of lesions as possible, so that allowing the network to focus more on lesion areas. Then, we calculate a mean square error (MSE) between { , } (i.e. the sum of the squared difference between images and ). The image that minimizes MSE ( , )

is considered as a correspondence of image . The image pairing is necessary for all proposed fusion schemes, while in particular, only the early fusion scheme requires the registered image as the input, as the registration allows the network to focus more on the tissue modification area, where is likely to be lesions. 

Data for pre-training

Among the 101,383 patients from the OPHDIAT database, about 70% have no follow-up. Moreover, the proportion of normal cases exceeds 79%. This means that most of the data are not used in the longitudinal study. Nevertheless, the remaining data can be used for pre-training purposes. The effectiveness of pre-training on a large dataset and then fine-tuning on a specific small subset has been widely demonstrated. Accordingly, we finally use 649,365 images for pre-training by excluding images with grade = 1 (status unknown), without annotations, and the images used for the longitudinal study (Sect. 6.2.1). We randomly choose 80% as training set and 20% as validation set.

Methods

In this section, we first introduce in Sect. 6.3.1 the DL models on which the proposed methods are based. Then, we present three pre-training strategies in Sect. 6.3.2. Finally the proposed longitudinal fusion schemes for early-grade DR severity change detection are described in detail in Sect. 6.3.3.

Deep learning models

Two backbone networks are investigated in this study: VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and InceptionV4 [START_REF] Szegedy | Inception-V4, inception-resnet and the impact of residual connections on learning[END_REF]. These DL architectures have been proven effective in various image 

Pre-training strategies

Three pre-training strategies are proposed:

(1) ImageNet: using pre-trained weights from the ImageNet dataset [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF].

( 

Longitudinal fusion schemes 6.3.3.1 Early fusion

As shown in Fig. 6.3, given a pair of consecutive images { -1 , }, we firstly perform registration from -1 to using affine transformation and obtain -1 . Afterwards, we concatenate { -1 , } as an input tensor with a dimension of 6. Accordingly, the first convolutional layer of different models are adjusted, while the other layers remain unchanged with respect to standard VGG16 or InceptionV4 architectures.

The output of the network is the confidence score of whether there is a grade change between timepoints -1 and . 9. https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html . Specifically, the STN modules are inserted before the 8th convolutional layer for VGG16 and before the first Inception-C module for InceptionV4. Thereafter, a fusion operation is applied to the two sets of feature maps, which can allow the back-propagation of loss which minimizes the difference in feature maps. Hence, a mean square error loss (MSELoss) is used as the fusion operator. Finally, the transformed feature maps 1 and 2 are processed with the remaining layers of the network. In practice, we use cross-entropy loss to optimize both branches of the Siamese network. The final loss function is defined as: = + • , where = 100 to balance the loss terms.

Intermediate fusion

Late fusion

Similar to the intermediate fusion scheme, the late fusion is also performed using a Siamese network (Fig. 6.5). We provide the Siamese network with non-registered image pairs { -1 , }. The reason why we do not need a registration of { -1 , } is that the fusion operation is in the feature vector level, which is invariant to spatial transformation of inputs. Two identical branches with shared weights are trained simultaneously, so that the training parameters and weights can be largely reduced. We concatenated the extracted feature vectors of size 1 × into a 1 × 2 • vector ( =512 and 1536 resp. for VGG16 and InceptionV4), which is used for the final classification of severity grade change between -1 and . 

Late fusion with an attention mechanism

On the basis of the simple late fusion of feature vectors, we propose to investigate an inter-attention mechanism. Our motivation is to enable the information from the prior image -1 to contribute to the DR severity grade classification of the current image . Theoretically, not all spatial information of the image is equally important in contribution to the task. Only the information related to the task should be of concern. The key of the attention mechanism is to find useful information related to the task while neglecting other information (spatial transformation, noise...). In view of this, we add a squeeze-andexcitation network (SENet) [START_REF] Hu | Squeeze-and-excitation networks[END_REF] in the Siamese network as attention module (Fig. 6.6).

Squeeze-and-Excitation Network (SENet).

The SENet is a channel-wise attention block which models the interdependencies between channels and adaptively recalibrates the contribution of each feature channel, thereby improving or removing different channels based on different tasks, and strengthening the representation performance of CNNs. The SE block first performs a squeeze operation (•), which compresses the spatial dimensions ( × ) of feature map to obtain an embedding of the global distribution of the channel feature (i.e. each two-dimensional feature map becomes a real number, which is equivalent to a pooling operation). The number of channels remains unchanged. Subsequently, an excitation operation (•) produces a collection of channel-wise weights on the global features. In the case of self-attention, these weights are applied to the feature maps using a channel-wise multiplication networks. The performance of each method is measured using the classification accuracy (acc) and area under the receiver operating characteristics curve (AUC) (Sect 3.2). The statistical significance was estimated using DeLong's t-test [START_REF] Robin | pROC: an open-source package for R and S+ to analyze and compare ROC curves[END_REF] to analyze and compare ROC curves.

Fusion results comparison. To explore the performance of the proposed longitudinal image fusion, we perform comparative experiments between different fusion schemes on two CNN architectures: VGG16 and InceptionV4. Three pre-training strategies are investigated for each model and each fusion scheme. In order to fairly compare these methods, we list in Tab. 6.4 their classification acc and AUC for VGG16 and InceptionV4, respectively. The baseline of each longitudinal fusion scheme is to train a CNN classifier using a single image , without involving prior images.

According to our experimental results from Tab. 6.4, we can tell that the late fusion achieved the best performance for both models (acc = 0.8696, AUC = 0.9296, p = 0.007 for VGG16, acc = 0.8756, AUC = 0.9293, p = 0.006 for InceptionV4). The incorporation of the attention mechanism did not improve the classification performance. Surprisingly, for both models, incorporating the fusion of longitudinal studies in prior to the network (early fusion) or in the middle of the network (intermediate fusion) showed a considerable decrease compared to the no-fusion baseline. Nevertheless, it is noteworthy that the late fusion scheme remains a relevant strategy for both models, with better performance than other fusion schemes. In particular, the late fusion brings 0.2% -0.9% AUC improvements to the baseline, with This requires high-quality registration of the images to make sure that the lesion areas are well aligned.

Moreover, due to the diversity of DR lesions and the subtlety of early lesions, it is more difficult for the network to target the lesion evolution. For the late fusion, the network firstly extract their respective effective features, followed by a Global Average Pooling layer, then the fusion operation is performed to the subsequent feature vectors that contain no spatial information. Accordingly, the mis-alignment will not affect the fusion results.

The main limitation of this work is the image registration of the input pair. As a pre-processing step, it requires higher registration quality; as a feature-level step, it is difficult to achieve automatic alignment in the middle of the network. From the current point of view, late fusion is still the simplest and most efficient method of image fusion. Experimental results validate that incorporating prior DR studies can improve the early-grade DR severity classification performance. In particular, the late fusion brings 0.2% -0.9% AUC improvements to the baseline, with statistical significance (p < 0.05). This conclusion can also be extended to other medical imaging classification tasks. In the future, our method can be further investigated using multiple previous studies, or for other longitudinal pathology analysis, towards more accurate early diagnosis CAD systems. In this thesis, we addressed the current limitations of traditional CAD systems by providing efficient and fully-automated DL methods, towards better interaction-free and more personalized medical care.

C

In this work, we investigated three main challenges associated with computer-assisted medical image analysis: (1) identification and segmentation of lesions from high resolution images, (2) multi-view information fusion for improved diagnosis, and (3) longitudinal prediction of severity grade changes.

Specifically, we provided solutions through a comprehensive study of two clinical applications in screening dealing with the diagnosis of breast cancer and diabetic retinopathy (DR). In this thesis, we firstly presented the related clinical context in Chapter 1 and 2 and deep learning background in Chapter 3. Then, in each of the subsequent chapters, we carefully introduced our motivations, methodologies and experiments to each proposed approach. We elaborated and discussed the results obtained at the end of each chapter.

To deal with the first challenge, we studied automated mass segmentation from high-resolution full mammograms. To this end, two solutions from different perspectives were proposed. We first proposed to use a multi-scale cascade of convolutional encoder-decoders (CEDs) for segmentation without any pre-detection step. Multi-scale information was integrated using auto-context to make long-range spatial context arising from lower scale impact training at higher resolution. Our second contribution was to use a fully automated two-stage framework comprising a coarse-scale mass detection and a fine-scale mass segmentation, which are combined through a newly proposed multi-scale fusion strategy to eliminate false detections. By optimizing the performance of each stage, we achieved a good robustness against the diversity of size, shape and appearance of breast masses. Both solutions are capable of identifying and segmenting lesions from high resolution images and have their own pros and cons: the first onestage model is an end-to-end pipeline so that segmentation refinement was performed at each level simultaneously. Nevertheless, multiple deep CEDs need to be cascaded in order to make better use of the different context levels, which is less flexible and requires further research. The two-stage solution is more robust to lesions of any size, eliminating a large amount of false-positives proposals, but is substantially more complex to apply due to its multiple steps.

As we studied the second challenge, we attempted to take advantage of information arising from craniocaudal (CC) and mediolateral-oblique (MLO) multi-view mammograms to provide better diagnosis.

Two methods were proposed for this purpose. First, a novel approach based on multi-view and multi-task learning was introduced. Specifically, we combined mass/non-mass classification with dual-view mass matching between complementary CC/MLO mammograms. Based on Siamese networks and contrastive learning, the integration of multi-view information has proved to be effective. By integrating mass detection, classification and matching, our method showed encouraging abilities to generalize to different deep models. Then, a second contribution based on active learning was subsequently proposed. As part of the multi-view information fusion, we applied a deep active learning approach that exploits dualview consistency to mitigate the lack of labeled data, thereby reducing the workload of clinicians. Our contribution in this part was to combine the multi-view mammogram analysis with active learning, which to our knowledge have never been addressed before. Based on this method, it is possible to alleviate the burden of manual labeling in other multi-view medical image analysis scenarios, thereby contributing 

Future works

This thesis demonstrated that medical image analysis with deep learning is a powerful tool for clinical guidance in the fields of mammography and ophthalmology. We believe that it is a successful proof of concept for the development of more efficient and automated CAD systems. In particular, the latest development of artificial intelligence applied to diagnosis and screening represents a promising perspective. In this thesis, we addressed the current limitations of traditional computeraided diagnosis (CAD) systems by providing efficient and fully-automated deep learning methods towards better interaction-free and more personalized medical care. In the contexts of breast cancer and diabetic retinopathy screening, we investigated three main challenges associated with computer-assisted medical image analysis: (1) identification and segmentation of lesions from high-resolution images, (2) multi-view information fusion for improved diagnosis, and (3) longitudinal prediction of severity grade changes. Our initial contribution to the first challenge was to propose an end-to-end mass segmentation pipeline that exploits long-range multi-scale spatial context through a cascade of convolutional encoder-decoders embedding the autocontext paradigm. Then, as a second contri-bution, we proposed a two-stage framework combining a deep coarse-scale mass localization involving a multi-scale fusion strategy and a fine-scale mass segmentation. The second challenge was addressed by fusing information arising from two standard mammography views, namely craniocaudal (CC) and mediolateral-oblique (MLO). Two methods were proposed towards this goal. First, a novel approach based on multi-task learning was introduced, combining mass classification with dual-view mass matching between CC/MLO mammograms. Then, we applied a label-efficient deep active learning approach that exploits dual-view consistency to mitigate the labeling workload of clinicians. These methods demonstrate the effectiveness of integrating multi-view information for detection or segmentation purposes. For the last challenge, we incorporated the prior screening of fundus images to address the referable diabetic retinopathy severity change detection. All these contributions can automatically analyze different medical images in various situations and are promising to provide relevant support for the development of the next generation of CAD systems.
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Figure 1

 1 Figure 1.1 -General steps involved in a computer-aided diagnosis (CAD) system. The mammogram used for illustration is from the INbreast dataset (Moreira et al., 2012).

Figure 2 .Figure 2 . 2 -

 222 Figure 2.1 -Standard mammogram image views .The craniocaudal (CC) and mediolateral-oblique (MLO) views are in blue.
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 2324 Figure 2.3 -Mammogram examples from the INbreast (Moreira et al., 2012) dataset: (a) craniocaudal (CC) view of the right breast; (b) CC view of the left breast; (c) mediolateral-oblique (MLO) view of the right breast; (d) MLO view of the left breast. Green lines indicate mass delineations, yellow arrow indicates calcifications.
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 25 Figure 2.5 -Mammogram examples from the DDSM-CBIS dataset: (a) craniocaudal (CC) view of the right breast; (b) CC view of the left breast; (c) mediolateral-oblique (MLO) view of the right breast; (d) MLO view of the left breast. Green lines indicate mass delineations.
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 133 Figure 2.6 -Comparison between mass ground truth delineations (red) from DDSM-CBIS (left) and INbreast (right) datasets.

Figure 2

 2 Figure 2.8 -Clinical signs of diabetic retinopathy. Images from OPHDIAT (Massin et al., 2008) dataset.

Figure 2 .

 2 Figure 2.10 -Fundus photograph of normal left eye with no sign of disease or pathology. Image acquired at Gävle Hospital in Sweden on a healthy 25-year-old male volunteer[START_REF] Haggstrom | Medical gallery of mikael haggstrom 2014[END_REF] 
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 2 11 shows an example of a pre-processed retinal image.
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 2 Figure 2.11 -Retinal image pre-processing example. Images from OPHDIAT[START_REF] Massin | OPHDIAT©: A telemedical network screening system for diabetic retinopathy in the Île-de-France[END_REF] dataset.
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 3 Figure 3.1 -One hidden layer multi-layer perceptron (MLP).
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 32 Figure 3.2 -An example of the receptive field after two convolution filters (one 3 × 3 filter followed by one 2 × 2 filter).

3. 4 )

 4 activation function preserves the properties of linear models for optimization, while modeling nonlinear transformations as well. Another group of non-linear layers such as sigmoid, softmax or hyperbolic tangent function are usually used at the end of the networks for predicting a probability distribution. The sigmoid function sigmoid (Eq. 3.5) is commonly used for logistic regression, while the softmax function (Eq. 3.6) is an extension of the logistic regression model to multi-classification problems. The hyperbolic tangent function (Eq. 3.7) can be used to normalize data into the range [-1, 1].
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 34 Figure 3.4 -The architecture of VGG16.

From

  the initial definition to the current highly sophisticated architecture, CNN has undergone significant evolution. In 1989, CNN received attention for the first time (LeCun et al., 1989) for a 3-layer "ConvNet". Since the AlexNet (Krizhevsky et al., 2012) made a breakthrough in the image classification competition in 2012, deep learning has entered a period of rapid development. During the following years, a variety of CNN models targeting different image processing tasks have been proposed. Deep
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 35 Figure 3.5 -A residual block (He et al., 2016a).

.

  ResNet was proposed byHe et al. (2016a) which won the challenge of ILSVRC 2015 in image classification, detection, and localization. ResNet adopts the design of the residual module (Fig.3.5), which solves the problem of gradient vanishing/exploding when the convolutional network gets deeper. The design of neural networks generally focuses on increasing the network depth, since the depth greatly impacts the network performance. However, the deeper the neural network, the more difficult for training due to gradient vanishing or exploding during back-propagation. To solve this limitation, a skip connection (Fig.3.5) was designed to add the input from the previous layer to the next layer without any modification of the input. The output is thus ( ) = ( ) + , accordingly, the weight layer is actually learning a residual mapping ( ) = ( ) -. Even if the gradient vanished in the weight layer, we can still transfer the back to an earlier layer. This simple step enables training to converge faster, and to successfully train much deeper CNNs. Depending on the number of repetitions of the residual module and the number of layers in each module, ResNet can be designed to lighter (ResNet18, ResNet34) or heavier (ResNet50, ResNet101, ResNet152) networks.

Figure 3 .

 3 Figure 3.8 -UNet++: nested U-Net architecture for medical image segmentation. Image extracted from Z. Zhou et al. (2018).

  network as the feature extractor, and added convolutional feature layers to the end of the truncated base network. These layers progressively decreased in size and allow predictions of detections at multiple scales. Then, SSD associated a set of default bounding boxes (anchor boxes) with each feature map cell, for multiple feature maps at the top of the network. After that, for each anchor box, SSD computed scores for each class and the 4 offsets relative to the original default box shape. Feature maps from different levels within a network are known to have different spatial resolutions and receptive field sizes. Performing convolution on these different feature maps can therefore detect objects of different scales. RetinaNet. RetinaNet (T.-Y. Lin et al., 2017b) is the current state-of-the-art one-stage detector, since it manages to match the accuracy of two-stage detectors while running at similar speeds with respect to other one-stage methods. As all other one-stage detectors, RetinaNet consists of a backbone network and two task-specific sub-networks (one for object classification and the other for bounding box regression). RetinaNet adopted a feature pyramid network (FPN) (T.-Y. Lin et al., 2017a) on top of the ResNet (He et al., 2016a) architecture as its backbone. To this backbone, RetinaNet attached two sub-networks, one for classifying anchor boxes and the other for regressing from anchor boxes to ground-truth object bounding boxes. RetinaNet also addressed the extreme foreground-background class imbalance problem, which is the main cause of the accuracy gap between one-stage and two-stage detectors. A novel loss function, referred to as focal loss, was proposed to address this class imbalance issue. Compared to common loss functions (e.g. balanced cross entropy), focal loss reduces the loss contribution from easy examples and extends the range in which an example receives low loss, and finally largely improves the accuracy of a one-stage detector.

  Figure 3.9 -Siamese and pseudo-siamese networks.

Figure 3 .

 3 Figure 3.10 -Hard parameter sharing versus soft parameter sharing for multi-task learning. Images are extracted from https://ruder.io/multi-task/.

  skip connections, towards fully-automatic and highly precise mass segmentation from native resolution mammograms. This work was presented at the International Symposium on Biomedical Imaging (ISBI 2021,Yan et al. (2021a)) and was published in the journal of Biocybernetics and Biomedical Engineering[START_REF] Yan | Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention[END_REF]).

  to target breast cancer management. In particular,[START_REF] Oliver | Breast density analysis using an automatic density segmentation algorithm[END_REF] proposed a pixel-based support vector machine (SVM) classifier for breast density segmentation.[START_REF] Hizukuri | Segmentation method of breast Masses on ultrasonographic images using level set method based on statistical model[END_REF] introduced a level set method which is based on an energy function defined with region, edge and regularizing terms to segment breast masses.[START_REF] Hmida | An Efficient Method for Breast Mass Segmentation and Classification in Mammographic Images[END_REF] performed mass segmentation using a fuzzy active contour model obtained by combining fuzzy C-means and Chan-Vese models before classifying masses based on possibility theory.All these tasks are now routinely carried out in a purely data-driven fashion through convolutional neural networks (CNN). Deep CNN models have shown the most promising performance in recent breast cancer mammography-related competitions[START_REF] Hamidinekoo | Deep learning in mammography and breast histology, an overview and future trends[END_REF]. Specifically, many contributions have been proposed for breast imaging segmentation purposes, as it is an important and active research area.The convolutional encoder-decoder (CED) paradigm has been widely adopted by most of the recent approaches designed for breast mass segmentation. Owing to large but highly similar contextual features of mammograms and unpredictable shapes and sizes of masses, most segmentation techniques focus on pre-segmented ROIs. H.[START_REF] Li | Improved breast mass segmentation in mammograms with conditional residual u-net[END_REF] integrated the benefits of residual learning to improve the performance of U-Net to address gradient vanishing and exploding issues arising when increasing CNN depth.Dhungel et al. (2017a) combined deep belief networks, Gaussian mixture models with convolutional neural networks as potential functions into structured prediction models. Adversarial learning based on end-to-end FCN with position a-priori followed by conditional random fields[START_REF] Zhu | Adversarial deep structured nets for mass segmentation from mammograms[END_REF] have shown a better ability to handle small datasets while reducing over-fitting.[START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF] advocated conditional GAN with mass ROI as conditioning inputs to make delineations more realistic.Caballo et al. 
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 42 Figure 4.2 -Multi-scale cascade of deep convolutional encoder-decoders combining auto-context (Tu & Bai, 2010) and transfer learning for breast mass segmentation in high-resolution mammograms.

  The most common setup (T1-A) consists in training the low-resolution U-Net and to use the weights of the resulting model as initialization of the high-resolution U-Net through transfer learning (Sect.3.3.1) and fine-tuning. Although this strategy can greatly speed up convergence, the ability of the high-resolution U-Net to extract long-range contextual features remains limited as for a single U-Net configuration (F1) processing high-resolution data only. The idea of stacking the two deep CEDs to further integrate multilevel information directly arises naturally. To our knowledge, no other study has recovered this concept for mammogram analysis. To deal with class imbalance, we rely on Dice instead of cross-entropy as loss function.

  4.2)[START_REF] Salehi | Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging[END_REF]. In practice, the low-resolution U-Net is trained to capture the largest amount of context based on downsampled images provided as inputs. After training, the sigmoid activation used in the last 1 × 1 convolution layer (Fig.3.7) to generate low-resolution binary segmentation masks is replaced by a linear function to get continuous output maps. These maps are normalized, upsampled from low to high-resolution and concatenated to high-resolution mammograms. Stacked images are given as inputs of the high-resolution U-Net which is trained from scratch (i.e. with random weights as initialization) to finally provide high-resolution binary segmentation masks.By this way, long-range context arising from lower scale can thus have a strong impact at higher resolution. Making the first U-Net generating continuous instead of binary outputs allows propagating pixel-wise confidence information to the second U-Net. This postpones the final segmentation decision at the high-resolution level. Both models can be trained separately (S1-A) as in[START_REF] Choi | Fast and robust segmentation of the striatum using deep convolutional neural networks[END_REF][START_REF] Salehi | Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging[END_REF] but this two-steps manner prevents refining the low-resolution model from the high-resolution one during back-propagation. Therefore, our pipeline (Fig.4.2) is trained end-to-end (E1-A) in order to exploit simultaneous multi-level segmentation refinement. The low-resolution U-Net is thus improved according to the analysis performed at high-resolution and vice-versa.

  to INbreast(Moreira et al., 2012) (Sect. 2.1.3). Since training a large dataset at high-resolution is tedious, a model trained for downsampled DDSM-CBIS images is used to provide a relevant initialization to the low-resolution U-Net dedicated to downsampled INbreast images (Fig.4.2). This procedure is achieved through transfer learning and fine-tuning and concerns all previously described training schemes (T1-B, S1-B, E1-B).

  ( + ) and specificity ( + ) scores where TP, FP, TN and FN are the number of true or false positive and negative pixels. Models are trained with 300 epochs, a batch size of 2 images (10 for F4-A/B), an Adam optimizer with 10 -5 as learning rate and a fuzzy Dice loss function. Training undergoes data augmentation including random scaling, rotation, shearing and shifting. Once training is performed, predictions for high-resolution images take around 140ms only, which is suitable for clinical practice.

F1Figure 4 . 3 -

 43 Figure 4.3 -Automatic mass segmentation for high-resolution INbreast (Moreira et al., 2012) images through CED-based strategies including our end-to-end multi-scale cascade with auto-context (E1-A/B). Ground truth and estimated delineations are respectively in green and red.

  4.3 for all methods. Provided examples report inconsistent shapes combined with false positive areas located far-away from ground truth mass locations for F1 and T1-A/B. Despite better shape integrity, F4-A/B, F1-A/B and E1-A setups are prone to under-segmentation, especially without pre-training. Conversely, we notice a much more accurate boundary adherence and subtle contour delineation using E1-B for both small and large masses. This confirms that our contributions provide good model generalizability despite the class imbalance issue and large as well as mass appearance variability.

  4.2 that the end-to-end training of a multi-scale cascaded CEDs model can achieve mass segmentation without any pre-detection scheme. However, the strong mass size variation (Sect. 2.1.3) is still a limitation factor to the performance, since the reception field of deep models tends to be limited to segment very large masses and very small masses at the same time. Alternatively from one-stage segmentation approaches[START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF] Yan et al., 2019a), we proposed a two-stage pipeline where masses are firstly localized before being precisely delineated. The proposed framework (Fig.4.4) consists of two modules: image-based mass localization (Sect.4.3.2) followed by region-based mass segmentation (Sect.4.3.4). The former is based on a deep detection model extended based on a novel multi-scale fusion procedure(Sect.4.3.3) to alleviate wrong proposals and further improve detection accuracy. This stage performs coarse mass detection on entire mammograms and provides suspicious regions to the second stage. The latter conducts refined mass segmentation on extracted areas relying on a deep convolutional encoder-decoder architecture with nested and dense skip connections. An image reconstruction step is finally followed to visualize both mass location and segmentation results in highresolution full mammograms.

  [START_REF] Agarwal | Automatic mass detection in mammograms using deep convolutional neural networks[END_REF] analyzed the performance of popular deep CNN architectures in terms of mass/non-mass classification.Alternatively,[START_REF] Jung | Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network[END_REF] proposed a mass detector based on RetinaNet (T.-Y.[START_REF] Lin | Focal loss for dense object detection[END_REF] exploiting a feature pyramid network optimized through a focal loss.[START_REF] Yap | Breast Ultrasound Region of Interest Detection and Lesion Localisation[END_REF] automated breast lesion detection using Faster-RCNN[START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF] with Inception-ResNet-v2[START_REF] Szegedy | Inception-V4, inception-resnet and the impact of residual connections on learning[END_REF].However, these learning-based detectors may fail in identifying masses of any size, position or shape from the whole image. Existing detectors might therefore not produce sufficiently good proposals for further breast mass segmentation purposes.Many studies focus on building multi-stage networks or integrating a series of steps together.Dhungel et al. (2017a) proposed a cascade of deep belief networks and Gaussian mixture models to provide mass candidates, followed by two cascades of CNN and random forest to refine detection results. Once suspicious areas are identified, they employ deep structured learning to perform mass segmentation.Alantari et al. (2018) proposed an integrated mass detection, segmentation and classification pipeline from downsampled mammograms. Although their system could assist radiologists in multi-stage diagnosis, they still manually eliminated false localized candidate masses before the segmentation stage, which is impractical as an automatic CAD system. Apart from that, they exploited low-resolution mammograms.
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 44 Figure 4.4 -Two-stage multi-scale pipeline for mass localization and segmentation from high-resolution X-ray mammograms. Red (green) lines indicate estimated (ground truth) delineations. MSF deals with the proposed multi-scale fusion strategy for automatic mass selection.

Figure 4 . 5 -Figure 4

 454 Figure 4.5 -YOLOv3 predictions performed at multiple scales for one given mammogram. Red boxes correspond to mass ROI candidates with associated probabilities in magenta. Green contours arise from ground truth annotations.

  4.6c) to the fusion mask by keeping areas where ≥ . All connected regions of are assigned the same integer label. We measure the properties of labeled and find bounding box(es) that describe the fusion mask most properly (Fig.4.6d), i.e. we find box tuples (min , min , max , max ) such that pixels of the same label belong to the same box in the half-open intervals [min ; max ) and [min ; max ).
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 4 Figure 4.8 -Precision-recall curves of the YOLOv3 (Redmon & Farhadi, 2018) detection results on 5 test sets (from T1 to T5) extracted from the INbreast (Moreira et al., 2012) dataset.
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 4 Figure 4.9 -Free response operating characteristic (FROC) curves of detection results on INbreast[START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF], representing true positive rate (TPR) and average false positive per image (FPavg). Curves from Scale-1 to Scale-4 display results of single-scale predictions at 160 × 320, 256 × 512, 320 × 640 and 480 × 960. Stars show TPR@FPavg of the final decision at fixed thresholds.
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 44 Figure 4.10 -Mass segmentation using our two-stage method without (a) and with (b) multi-scale fusion (MSF). Yellow, red and green stand for final detection, segmentation and ground truth.

5. 3

 3 proposes an active learning based dual-view mammogram analysis approach where the dual-view prediction consistency is integrated as selection criterion. The work described in Sect. 5.2 has been published in the journal of Medical Image Analysis[START_REF] Yan | Towards improved breast mass detection using dual-view mammogram matching[END_REF] whereas Sect. 5.3 has been presented at the Machine Learning in Medical Imaging (MLMI 2021) MICCAI workshop(Yan et al., 2021c) .

  single-image to dual-view mammogram analysisIn recent years, CAD systems that employ deep learning have demonstrated stronger robustness in clinical implementation than traditional methodologies. Nevertheless, breast mass detection, segmentation and classification are still open issues due to the strong variations in mass appearance. Some studies (L.

  [START_REF] Geras | High-resolution breast cancer screening with multi-view deep convolutional neural networks[END_REF] proposed to apply CNN models to each view separately to obtain view-specific representations for further classification purposes. Nevertheless, such late-fusion schemes only exploit image-level view-specific representations. Alternatively, we propose a novel multi-tasking Siamese deep model that combines CC and MLO mammograms to improve breast mass detection. Our contributions are two-folds. First, we propose a new deep learning algorithm that capitalizes on multi-view fusion and multi-task learning to improve breast mass detection. To the best of our knowledge, our framework is the first that exploits multi-tasking abilities of deep learning models to improve mass detection using multi-view matching. Second, we conduct a comprehensive evaluation of various networks towards multi-task learning on public datasets. Both quantitative and visual results prove the effectiveness of the proposed strategy.
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 51 Figure 5.1 -Proposed multi-tasking deep pipeline. In images, green contours indicate ground truth delineations, red and yellow boxes respectively indicate false and true detections.

2 }.

 2 Although recent deep learning-based detectors have yielded impressive accuracy for object detection in natural images, it still remains difficult
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 52 Figure 5.2 -Matching Siamese network. A: Two-branch feature network which takes as input both positive (green patch) and negative (red patch) patch samples of CC and MLO views separately to compute features. Resulting features 1 and 2 are concatenated for patch comparison. B: Metric network. Green contours indicate ground truth delineations.
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 53 Figure 5.3 -The proposed Combined Matching and Classification Network (CMCNet). Green (red) patches correspond to positive (negative) samples. Green contours indicate ground truth delineations.
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 54 Figure 5.4 -Extension of CMCNet from two to three tasks: mass matching, classification and segmentation.

  Data sampling and augmentation. In our multi-task framework, sampling in training is crucial. However, regions of healthy tissues in a whole mammogram are much larger than the mass areas, leading to inevitable false positive YOLOv3 proposals. Similarly, sample imbalance can make the deep classification model very biased. To minimize these effects, data sampling is conducted as follows. For classification training, positive samples are extracted according to provided ground truth segmentation masks, while negative patches are generated by YOLOv3 (Sect.5.2.2.1). In particular, we randomly generate K patches per image with an intersection over union (IoU) with the ground truth box larger than 0.5. In practice, =5 (respectively 10) for DDSM-CBIS (INbreast) since the INbreast dataset is much smaller. Likewise, we choose K negative patches from false YOLO predictions. We thus use a very small threshold (<10 -4 ) on detection probabilities to retain as many predictions as possible and select the K false candidates achieving the highest probabilities. All patches are resized to 64 × 64 pixels, as in[START_REF] Han | MatchNet: Unifying feature and metric learning for patch-based matching[END_REF] and[START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF]. Random rotations of 25 degree, random horizontal flips and random resized crops are applied for data augmentation. For matching, we consider a pair of positive patches of the same mass from the two views as a matching sample. If one of the patches is labeled negative, they are considered as a negative match. The detailed data distribution is shown in Tab.5.1 for both DDSM-CBIS and INbreast datasets.Training patch-level classification and matching. As a proof of concept, we conduct experiments using various model backbones for the feature network: VGG16(Simonyan & Zisserman, 2014), ResNet50, 

  with low time complexity (VGG, ResNet) are more appropriate. Multi-tasking methods do not cost more time than classification-only schemes. Computing time increases significantly with model complexity, whereas no significant improvement arises. The time increase with respect to the YOLO detector (78.7ms per image) is almost negligible. ----.--CC -----MLO ----.--
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 55 Figure 5.5 -Full-pipeline mass detection: (a) YOLO detection only, (b) YOLO followed by a classification-only model, (c) YOLO followed by the proposed CMCNet (with VGG16 and contrastive loss). Red and blue boxes are detected mass bounding boxes. Green labels represent ground truth annotations. Blue boxes show the matching pair selected through dual-view matching. Visual examples are labeled from (1) to (4).
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 52 scheme refers to the matching Siamese network illustrated in Fig.5.2. Results show that the proposed multi-task learning brings gain from 0.62% to 8.64% in AUC and from 0.9% to 11.12% in acc. Best results are achieved by ResNet50 (AUC = 94.30%, acc = 89.49). On the basis of the experimental results, we can draw the conclusion that not only matching can improve classification, classification can also improve matching, proving that the multi-tasking properties and the multi-view learning can help towards better breast cancer diagnosis and management.Using the INbreast dataset, we also compare the overall mass detection performance using the true positive rate (TPR) at the average false positive per image (FPavg) with state-of-the-art methods (Tab.5.6). Since there is no official split of INbreast, each study has its own split between training, testing and validation subsets. Results shown in the top part of Tab.5.6 give an idea of the overall detection performance without giving a relevant comparison with these studies. For a fair comparison with the state-of-the-art, we re-implemented the recently published method of Agarwal et al. (2019) and conducted experiments using the same data as used in our work (80% DDSM-CBIS for training, 20% DDSM-CBIS for validation and 70 INbreast images for testing) to obtain the Free Response Operating Characteristic (FROC) curve of final detections. The bottom part of Tab.5.7 includes results obtained on the same testing data. In particular, it displays the best TPR@FPavg score achieved using Agarwal et al. (2019):0.74@0.99. The best TPR@FPavg score (0.96@0.23) is reached by the proposed framework (CMCNet with VGG16 and contrastive loss). It outperforms the classification-only model (0.89@0.29) and shows consistent performance with respect to existing approaches such as[START_REF] Yan | Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention[END_REF] andDhungel et al. 

  5.4). The additional classification stage (b) helps in eliminating most of false YOLO detections (a). The improvement reached by the combined model (c) compared to the classification-only scheme (b) is highlighted with further wrong proposal removals. For instance, in Fig.5.5 (

Figure 5

 5 Figure 5.6 -Proposed deep active learning workflow.
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 57 Figure 5.7 -Proposed network architectures for mass segmentation (a) and detection (b). A downsampling (upsampling) block is applied in each red (green) arrow.

Figure 5

 5 Figure 5.8 -Examples of mass segmentation (left half) and mass detection (right half) for CC/MLO pairs from DDSM-CBIS and corresponding dual-view consistency.and are respectively consistency scores of mass numbers and mass sizes, higher score for higher consistency. Green delineations represent ground truth mass annotations.

Figure 5

 5 Figure 5.9 -Visualization of mammogram pairs selected by different AL strategies for mammogram segmentation (a) and detection (b) tasks by plotting the average dice score of a mammogram pair against the consistency score. Here, the dice scores for mass segmentation (detection) are calculated between the predicted masks (bounding boxes) with respect to the ground truth masks. Red (green) points are picked by worstC (bestC) strategy. The straight line estimates the linear regression.

Figure 5 .

 5 Figure 5.10 -Mass segmentation and detection performance with rand (blue), bestC (green) and worstC (red) AL strategies. Black dashed lines indicate results using the complete training set. We report average dice score of mass segmentation (a), dice score standard error (b), average AP score of mass detection (c) and AP standard error (d).

Fig. 5 .

 5 Fig.5.10 (c) shows an AP drop for the first AL cycle of worstC, indicating that not all labeled data are beneficial when the model does not yet have a full understanding of what masses are. Picking examples with good prediction results helps to consolidate what has been learned while avoiding corner cases.
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  blood vessel segmentation and removal, elimination of fovea, feature extraction, selection and classification. More recently, Shankar et al. (2020) applied a synergic deep learning (SDL) model incorporating histogram-based region-of-interest segmentation for DR classification. H. Liu et al. (2020) trained three hybrid models using an improved loss function to improve the performance of basic DR classification models, including EfficientNetB4, EfficientNetB5, NASNetLarge, Xception, and InceptionResNetV2. Sikder et al. (2021) dealt with DR severity classification from noisy retinal images using an ensemble learning technique named Extreme Gradient Boosting (XGBoost) based on the gray-level intensity and texture features extracted from fundus images. However, instead of more extensive DR grading classification, existing methods focus more on DR/non-DR detection or classification of high-level DR (severe NPDR or PDR), and only use a single study without considering previous studies.

  photographs (CFP).[START_REF] Bernardes | Computerassisted microaneurysm turnover in the early stages of diabetic retinopathy[END_REF] use a microaneurysm-tracker to evaluate DR progression in a follow-up study based on computer-assisted earmarking of microaneurysms.[START_REF] Adal | An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images[END_REF] presented a robust and flexible multistage approach for tracking retinal changes due to small red DR lesions such as microaneurysms and dot hemorrhages in longitudinal fundus images. They measure the absolute difference between the extremes of the multiscale blobness responses of fundus images from two time points, then identify the DR related changes based on several intensity and shape features by a support vector machine classifier.In this regard, we aim to integrate longitudinal information of CFP images to help detect the referable DR severity change. Specifically, we target the change detection between no DR/mild NPDR and more

≥ 4 .

 4 Afterwards, to train our longitudinal fusion frameworks, the input image pairs { -1 , } should meet the following conditions: (1) arising from the same patient; (2) captured from the same viewpoint of the ipsilateral eye: (3) coming from two different screening times { -1, }. The prediction of severity grade change will be the binary output.

Figure 6 . 1 -

 61 Figure 6.1 -Examples of retina fundu images arising from the same patient, captured from left (L) and right (R) eyes, from different viewpoints from a series of times. The notations in the figure indicate screening year-laterality-severity grade.

Figure 6 . 3 -

 63 Figure 6.3 -Early fusion network architecture

  ) K-label classification model: based on (1), training a K-label classification model trained with cross-entropy loss. The output of the softmax layer is K scores of DR grade (Tab. 6.1). We set K = 5 representing five classes: grade = 2, 3, 4, 5 and grade ≥ 6. (3) K-logistic multi-classifier model: based on (1), training a K-logistic multi-classifier model trained with BCEWithLogits loss. In this setting, K = 4 represents four binary classifiers, which respectively correspond to grade ≥ 3, grade ≥ 4, grade ≥ 5 and grade ≥ 6.

Figure 6 . 4 -Figure 6 . 5 -

 6465 Figure 6.4 -Intermediate fusion network architecture

  Figure 6.6 -Late fusion with an attention mechanism

Figure 6

 6 Figure 6.7 -Grad-CAM results illustration. From left to right are respectively the input images, heatmaps and guided back-propagation maps in the case of training with single images, heat-maps and guided back-propagation maps in the case of training using the late fusion scheme. Prediction results are labeled as TRUE or FALSE in the figure.

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96ConclusionsComputer-aided medical imaging analysis has become an indispensable part of disease diagnosis, screening and treatment. To cope with the manual analysis of voluminous medical images which is inefficient, error-prone and highly expert-dependent, the application of deep learning (DL) based computer-aided diagnosis (CAD) is key. Automatic image processing techniques for disease diagnosis and pathological follow-up would be beneficial to the adaptive screening and management of each patient.

  to the development of CAD tools. Extensive experiments of both studies reveal great effectiveness and promising robustness of multi-view information fusion in various aspects, thus highlighting the great potential of information fusion in medical imaging. Regarding the third challenge, we intended to integrate longitudinal information of images to help analyze the lesion evolution. Deep learning based diabetic retinopathy (DR) classification that incorporates prior screening was exploited to address the referable DR severity change detection. Extensive experiments revealed that the early and intermediate fusion perform poorly in predicting severity change, while a simple late fusion have shown stable performance improvement. From an experimental point of view, our contribution lies in the comprehensive analysis of how fusion operations affect network performance, as well as the benefice of pre-training.
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6.2 Distribution of pairs with change/non-change in each subset. . . . . . . . . . . . . . . . 6.3 Hyper-parameters used for each deep network . . . . . . . . . . . . . . . . . . . . . . . 6.4 Quantitative results using VGG16 (Simonyan & Zisserman, 2014) and InceptionV4 (Szegedy et al., 2017) backbones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents 1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Context and motivations With the continuous development and progress of non-invasive imaging technologies over the last decades, medical image analysis has become an indispensable tool in medical research, clinical disease screening, diagnosis and treatment. Medical image analysis deals with the in-depth study of one or more medical images in order to make a medical decision related to diagnosis, prognosis or therapy. When clinicians perform quantitative analysis or real-time monitoring of a specific internal tissue and organ, the objective is to answer questions based on what they observe from images. Is the patient normal or abnormal? What kind of disease does this patient have? What is the prognosis for this patient's disease?

  into routine requires high accuracy due to clinical requirements, i.e. high true positive rate combined with low false positive rate. Meanwhile, feasibility is also a key aspect that should not be overlooked towards efficient deployment. Another challenge is dealing with small lesions in high-resolution medical images. Pixel-wise segmentation has become a crucial task with numerous applications such as surgery

planning, image-guided interventions or extraction of quantitative indices from images. Rather than using downsampled images or manually extracted regions of interests as in

[START_REF] Al-Antari | A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification[END_REF][START_REF] Byra | Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network[END_REF]

,

[START_REF] Caballo | Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence[END_REF]

,

Dhungel et al. (2017a), and[START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF] 

or in

[START_REF] Zhu | Adversarial deep structured nets for mass segmentation from mammograms[END_REF]

, an ideal CAD system should be able to take into account the spatial context and detect lesions of any sizes to help with diagnosis, without any additional radiologist guidance. Moreover, in contrast to radiologists' practice, most CAD systems are based only on a single view, or a single image arising from time-series screenings. They analyze each image independently without considering the potential dependency information arising from multi-view or prior examinations, when available. This restricts the performance of CAD systems, and prevents them from reaching and exceeding the capabilities of human experts. Their practical applicability in realistic clinical scenarios is thus limited. To this end, eliminating those limitations and moving forwards on expanding the use of CAD tools in the daily routines of physicians are highly required.

In this context, the main objective of this work is to develop DL methods for medical image analysis and information fusion, able to detect, characterize, segment and predict the evolution of pathological structures from medical images. From a clinical perspective, automatic image processing for disease diagnosis and pathological follow-up would be beneficial to the adaptive management and therapeutic screening of each patient, towards more personalized medical care. DL applied to diagnosis and therapeutic follow-up represents a promising prospect. In this work, we mainly focus on two key clinical applications targeted in the research activities of LaTIM (Laboratory of Medical Information Processing, UMR 1101) of French National Institute of Health and Medical Research (Inserm), consisting of the diagnosis of breast cancer (Sect. 2.1) and retinal pathologies such as diabetic retinopathy (DR) (Sect. 2.2).
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	3.2 we investigate several state-of-
	the-art CNN architectures that are often employed for the development of Computer-aided diagnosis
	(CAD) regarding classification, segmentation, detection and matching tasks. Sect. 3.3 gathers several
	deep learning strategies employed in this thesis.
	Chapter 4 and Chapter 5 focus on developing highly automatic and efficient CAD systems for
	mammography analysis. Mammography is the main imaging modality used by radiologists to detect

breast abnormalities. Chapter 4 presents two strategies, a "one-stage" approach and a "two-stage" pipeline, to tackle the problem of automated mass segmentation from high-resolution full mammograms. We further extend mammogram analysis by integrating multi-view information fusion in Chapter 5. In particular, Sect. 5.2 studies the dual-view benefits by presenting a multi-tasking network dedicated to breast mass matching, classification and segmentation; Sect. 5.3 proposes an active learning-based dualview mammogram analysis approach where the dual-view prediction consistency is used as the selection criterion to maximize the mass detection and segmentation training performance while using the minimum amount of labeled data. Chapter 6 integrates longitudinal information of images to help analyze the lesion evolution. Specifically, we address the referable DR severity change detection by analyzing the fusion of two consecutive longitudinal follow-up images. We first study several pre-training strategies (Sect. 6.3.2), then, we dive through an extensive exploration of image fusion schemes (Sect. 6.3.3) including early-fusion, intermediate-fusion and late-fusion to incorporate current and prior studies. Finally, we conclude this thesis by discussing limitations and potential future works in Chapter 7. T Contents 2.1 Breast cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Clinical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Digital mammography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3.1 INbreast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3.2 DDSM-CBIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3.3 INbreast versus DDSM-CBIS . . . . . . . . . . . . . . . . . . . . . 11 2.1.3.4 Mammogram pre-processing . . . . . . . . . . . . . . . . . . . . . 12 2.2 Diabetic retinopathy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1
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1 -Statistics of INbreast

  Evolution from mild to severe NPDR. Yellow, red and magenta boxes respectively highlight microaneurysms, hemorrhages and exudates. Images from OPHDIAT[START_REF] Massin | OPHDIAT©: A telemedical network screening system for diabetic retinopathy in the Île-de-France[END_REF] dataset.

	(a) mild NPDR	(b) moderate NPDR	(c) severe NPDR
	Figure 2.9 -		
	The Laboratory of Medical Information Processing (LaTIM) has focused on DR since 2005. LaTIM
	has participated in the MESSIDOR project for the development of a reference DR database under a
	consortium comprising AP-HP (Public Assistance Hospitals of Paris), ADCIS and Mines ParisTech.
	7. http://www.adcis.net/en/third-party/messidor2/	
	8. https://www.adcis.net/en/home/		
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  Table 4.1 -Assessment of various CED-based strategies, including our end-to-end multi-scale cascaded strategy with auto-context (E1-A/B). Cross-validation results are provided for 2048×1024 INbreast (Moreira et al., 2012) mammograms. Best results are in bold. Underlined scores highlight best results among schemes employed without DDSM-CBIS (Lee et al., 2017) transfer learning.

		setup	resolution	architecture	CED #1	CED #2	dice	sens	spec
	no DDSM	transfer	F1 F4-A 512 × 256 2048 × 1024 single U-Net single U-Net T1-A 2048 × 1024 single U-Net S1-A 2048 × 1024 serial separately	-from scratch -F4A	from scratch -pre-train F4A 47.56±6.1 64.82±5.7 98.46±0.9 43.66±5.7 61.15±7.3 98.00±1.1 52.30±3.8 58.50±6.9 99.40±0.2 from scratch 53.78±4.6 61.99±6.7 98.53±0.6
			E1-A 2048 × 1024 serial end-to-end from scratch	from scratch	58.27±3.3 65.64±5.1 99.38±0.2
	DDSM	transfer	F4-B 512 × 256 T1-B 2048 × 1024 single U-Net single U-Net S1-B 2048 × 1024 serial separately	pre-train DDSM --pre-train F4B 54.05±4.0 58.69±6.1 99.34±0.3 66.38±6.3 69.57±8.5 99.57±0.1 F4B from scratch 64.31±6.4 72.31±6.0 99.06±0.6
			E1-B 2048 × 1024 serial end-to-end pre-train DDSM from scratch	70.04±5.1 72.19±7.0 99.61±0.1

Table 4 .

 4 2 -Performance of YOLOv3

	T1	T2	T3	T4	T5	average
	AP (%) 78.64 70.24 76.11 79.05 73.28 75.46±1.7

Table 4 .

 4 3 -Performance of the proposed MSF method on INbreast[START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] using TPR@FPavg scores with different . T1 to T5 correspond to the 5 experimental test sets.

	(Dhungel et al., 2017a) (0.95@5) while providing less FP.	
	Methods	TPR@FPavg dataset	images
	Sapate et al. (2020)	0.88 @1.51 DDSM	148
	Ribli et al. (2018)	0.90 @ 0.3	INbreast 107
	Dhungel et al. (2017a)	0.95 @ 5	INbreast 410
	Agarwal et al. (2019)	0.92 @ 0.5	INbreast 410
	YOLOv3+MSF (ours, = 0.5) 0.94 @ 0.22 INbreast 107
	Table		

.94 91.42 90.56 90.23 91.13 90.86±0.2Table 4 .

 4 5 -Average Dice score (%) of different patch-based deep segmentation methods on INbreast (Moreira et al., 2012) mass patches centered around ground truth masses. Best scores are in bold.

		90.47 89.76 88.16 87.97 89.66 89.20±0.5
	cGAN (Singh et al., 2020)	90.30 90.53 89.70 89.33 90.22 90.02±0.2
	cascaded U-Net (Yan et al., 2019a) 89.20 90.40 88.83 89.18 89.82 89.49±0.3
	v19U-Net++ (Z. Zhou et al., 2018) 90Method Setup	T1	T2	T3	T4	T5	average (%)
		one-stage	43.66 44.12 45.93 40.79 47.36	44.37±1.1
	U-Net (Ronneberger et al., 2015a)	two-stage w/o MSF 70.59 68.46 70.56 74.66 66.06	70.07±2.8
		two-stage with MSF 77.40 83.07 75.45 77.80 82.47	79.24±1.5
		one-stage	25.27 30.91 24.74 23.21 40.45	28.92±3.2
	cGAN (Singh et al., 2020)	two-stage w/o MSF 70.28 66.93 70.22 74.93 63.73	69.22±3.7
		two-stage with MSF 75.66 81.66 76.70 77.44 83.45	78.98±1.5
		one-stage	64.37 61.56 65.63 65.35 70.55	65.49±1.5
	cascaded U-Net (Yan et al., 2019a)	two-stage w/o MSF 70.89 67.78 70.01 73.35 65.02	69.81±3.4
		two-stage with MSF 75.76 82.51 76.78 77.69 83.16	79.18±1.5
		one-stage	53.38 49.38 47.44 48.85 61.80	52.17±2.6
	v19U-Net++ (Z. Zhou et al., 2018)	two-stage w/o MSF 72.18 68.55 72.27 76.10 65.69	70.96±3.6
		two-stage with MSF 77				

.51 84.38 77.39 78.80 84.12 80.44±1.6Table 4

 4 

.6 -Average Dice score (%) obtained on final delineations from 2048×1024 full INbreast

[START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] 

mammograms. Best scores are in bold.

  . Our system achieves an overall average Dice of 80.44% on INbreast test images, which sets the state-of-the-art performance in mass segmentation on the publicly available INbreast dataset,

	outperforming one-stage segmentation schemes such as cGAN (Singh et al., 2020) (28.92%), U-Net
	(Ronneberger et al., 2015a) (44.37%) or cascaded U-Net (Yan et al., 2019a)) (65.49%). The newly de-
	signed MSF brings Dice improvements to the two-stage scheme from 9.17% (U-Net) to 9.76% (cGAN).

Table 5 .

 5 2 -Optimal hyper-parameters employed for each backbone.

	Network	learning rate batch size margin ( )	
	VGG16	0.0005	128	15	0.1
	ResNet50	0.0005	128	15	0.1
	ResNet101	0.001	64	10	0.1
	InceptionV3	0.001	32	10	0.1
	EfficientNet-B3	0.001	128	10	0.1

Table 5 .

 5 5) between RoIs and ground truth. All 350 candidate patches arising from INbreast are 4 -Combined classification, matching and segmentation versus segmentation-only. Underlined scores highlight the results without the segmentation task (i.e. the proposed CMCNet) using VGG16 and ResNet50 backbones for easy comparison. Results include the average segmentation dice score (calculated on patches containing mass) as well as overall classification accuracy (acc). Best results are in bold.

	0.7369 0.8972

Table 5 .

 5 5 -Full detection pipeline results including overall classification accuracy (acc), AUC scores, statistical significance p-values of AUC scores with respect to the classification-only baseline, as well as inference times per image. Best results per network are in bold.

	Network	matching matching loss overall acc AUC (%) AUC p-value runtime (ms)
	VGG16 (Simonyan & Zisserman, 2014)	× √ √	-cross-entropy contrastive	0.8260 0.8761 0.8791	90.47 94.17 94.78	-2 -5 0.001	2.7 2.7 2.7
	Resnet50 (He et al., 2016b)	× √ √	-cross-entropy contrastive	0.6814 0.8555 0.8496	70.03 91.98 90.30	-< 1 -6 < 1 -6	8.4 8.3 8.4
	Resnet101 (He et al., 2016b)	× √ √	-cross-entropy contrastive	0.7080 0.8555 0.8584	71.46 91.74 92.82	-< 1 -6 < 1 -6	16.2 15.8 16.3
		× √	-	0.8112	89.75	-	17.2
	InceptionV3 (Szegedy et al., 2016)	√	cross-entropy contrastive	0.8201 0.8702	89.86 93.61	0.9142 0.009	16.7 16.8
	EfficientNet-B3 (Tan & Le, 2019)	× √ √	-cross-entropy contrastive	0.8142 0.8378 0.8466	87.97 89.80 88.91	-0.1795 0.5735	25.2 25.4 24.7

Table 5 .

 5 Networkmatching classification matching loss matching AUC(%) matching acc Perek et al.[START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF] 6 -Mass matching AUC with the proposed CMCNet model (with cross-entropy and contrastive losses) versus matching-only schemes including[START_REF] Perek | Siamese network for dual-view mammography mass matching[END_REF]. Best results per network are in bold.

		√ √ √	× × √	cross-entropy cross-entropy	79.92 91.05	0.7504 0.8523
	VGG16 (Simonyan & Zisserman, 2014)	√ √ √	√ × √	cross-entropy contrastive cross-entropy	91.49 92.97 92.77	0.8671 0.8714 0.8693
	ResNet50 (He et al., 2016b) ResNet101 (He et al., 2016b) InceptionV3 (Szegedy et al., 2016)	√ √ √ √ √ √ √ √ √	√ × √ √ × √ √ × √	cross-entropy contrastive cross-entropy cross-entropy contrastive cross-entropy cross-entropy contrastive cross-entropy	92.46 94.30 90.01 92.31 91.72 89.50 90.64 90.01 82.99	0.8775 0.8949 0.8345 0.8716 0.8758 0.8405 0.8536 0.8588 0.7391
	EfficientNet-B3 (Tan & Le, 2019)	√	√	cross-entropy contrastive	89.50 91.63	0.8379 0.8503

Table 6 .

 6 1 -Codification of DR severity grade in OPHDIAT database. severe DR through two consecutive longitudinal follow-ups of DR. To this end, we explore four image fusion methods that incorporate current and prior studies: (1) early fusion of input images; (2) intermediate fusion of feature layers using spatial transformer network (STN); (3) late fusion of feature vectors; (4) late

Table 6 .

 6 

	Following the above process, we finally obtained 25,843 pairs of images of 2668 patients as data
	for longitudinal fusion purposes. This dataset is further randomly divided into a training set (60%), a

validation set (20%) and a test set (20%). The number of pairs with and without grade change of each subset is shown in Tab. 6.2. Figure 6.2 -Example of image registration between image at time t-1 ( ) and image at time t ( ). An affine transformation is applied to align to to obtain . 2 -Distribution of pairs with change/non-change in each subset.

Table 6 .

 6 4 -Quantitative results using VGG16[START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and InceptionV4[START_REF] Szegedy | Inception-V4, inception-resnet and the impact of residual connections on learning[END_REF] backbones.

	Network	imsize learning rate batch size iteration
	VGG16	224	0.005	32	20k
	InceptionV4	299	0.005	16	20k
	Table 6.3 -Hyper-parameters used for each deep network
	Fusion	Pre-training ImageNet K-label K-logistic	VGG16 acc AUC	InceptionV4 acc AUC
					0.8594 0.9143 0.8510 0.9087
	no fusion (only )				0.8603 0.9261 0.8692 0.9206
					0.8555 0.9209 0.8632 0.9148
					0.7684 0.8034 0.8187 0.8742
	early fusion				0.8140 0.8618 0.8392 0.8995
					0.8179 0.8771 0.8383 0.8965
					0.7855 0.8513 0.7934 0.8451
	intermediate fusion				0.8483 0.9032 0.8623 0.9091
					0.8551 0.9151 0.8619 0.9088
					0.8580 0.9216 0.8392 0.8993
	late fusion				0.8696 0.9289 0.8756 0.9293
					0.8684 0.9296 0.8696 0.9168

(•)

.

  However, deep learning applied to medical images and pathology diagnosis is still a very large and untapped area, in which Titre : Analyse d'images médicales par apprentissage profond pour le diagnostic assisté par ordinateur dans un contexte de dépistage Mot clés : diagnostic assisté par ordinateur, dépistage, apprentissage profond, fusion d'informations, cancer du sein, rétinopathie diabétique Résumé : L'analyse d'images médicales assistée par ordinateur est cruciale pour l'aide au diagnostic, au pronostic et au suivi thérapeutique. En particulier, le récent développement de techniques issues de l'intelligence artificielle appliquées au diagnostic et au dépistage représente une perspective prometteuse. Pour faire face aux limites des systèmes traditionnels de diagnostic assisté par ordinateur (CAD), nous avons proposé dans cette thèse un ensemble de méthodes d'apprentissage profond efficaces et automatisées, visant à améliorer la prise en charge personnalisée des patients. Dans les contextes de dépistage du cancer du sein et de la rétinopathie diabétique, nous avons principalement étudié trois défis associés à l'analyse d'images médicales assistée par ordinateur : (1) l'identification et la segmentation de lésions à partir d'images acquises à haute résolution, (2) la fusion d'informations multi-vues pour un diagnostic amélioré, et (3) la prédiction longitudinale de changements de grade de sévérité. Notre contribution au premier défi a été de développer deux méthodes dédiées à la segmentation de masses à partir de mammographies natives, à haute résolution. Dans un premier temps, nous avons proposé un pipeline de segmentation entraîné de bout en bout consistant à exploiter le contexte spatial multi-échelle grâce à une cascade d'encodeurdécodeurs convolutifs exploitant le paradigme de l'auto-contexte. Ensuite, nous avons déve-loppé une approche alternative à deux étapes, combinant la localisation de masses basée sur l'image entière et exploitant une stratégie de fusion des prédictions effectuées à multiples résolutions et la segmentation de masses sur les régions d'intérêts extraites au moyen d'un réseau profond avec connexions imbriquées et denses. Le deuxième défi a été relevé en tirant profit des informations issues des vues craniocaudale (CC) et médiolatérale-oblique (MLO) des examens mammographiques. Deux méthodes ont ainsi été proposées. Tout d'abord, une nouvelle approche basée sur l'apprentissage multi-tâches a été introduite fournissant des détections de masses précises ainsi que des correspondances entre masses issues des deux vues. Ensuite, nous avons développé une approche d'apprentissage actif exploitant la cohérence inter-vues pour diminuer la charge d'annotations des cliniciens. Ces méthodes ont démontré l'efficacité de l'intégration d'informations issues de multiples vues pour la détection ou la segmentation. Pour le dernier défi, nous avons analysé des paires d'images de fond d'oeil consécutives pour la détection de changements de grade de sévérité de la rétinopathie diabétique. Ces contributions permettent d'analyser automatiquement différentes images médicales dans diverses situations et promettent de fournir un support pertinent pour le développement de systèmes de CAD nouvelle génération. Medical image analysis with deep learning for computer-aided diagnosis in screening Keywords: computer-aided diagnosis, pathology screening, deep learning, information fusion, breast cancer, diabetic retinopathy Abstract: Computer-aided medical image analysis is essential to support clinicians in diagnosis, prognosis and therapy-related decisions through fast, repeatable and objective measurements made by computational resources.
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estimated from 1 and 2 . is the label of whether the two samples match: = 1 if the two samples are similar (correspond to the same anatomical location) and 0 otherwise. > 0 is a margin that defines a radius: dissimilar pairs contribute to the loss only if their distance is within this radius. is the number of samples. Unlike conventional learning systems where the loss function is a sum over samples, the contrastive loss runs over pairs of feature vectors { 1 , 2 } such that there is no more need for FC and

=0.5 

Acknowledgements

V

 [START_REF] Szegedy | Going deeper with convolutions[END_REF]. [START_REF] Yan | Cascaded multi-scale convolutional encoder-decoders for breast mass segmentation in highresolution mammograms[END_REF].

Inception. The "Inception module" was firstly introduced by [START_REF] Szegedy | Going deeper with convolutions[END_REF] as the core component of GoogLeNet. GoogLeNet is also considered as the Inception-V1. The basic structure of the Inception module consists of four parallel components: a 1 × 1 convolution, a 3 × 3 convolution, a 5 × 5 convolution and a 3 × 3 maximum pooling (Fig. 3.6 (a)). By merging pooling layer outputs with convolution layers outputs, each layer in the network can learn "sparse" (3 × 3, 5 × 5) or "fine" (1 × 1) features, which not only increases the width of the network, but also increases the network's adaptability to multiple scales. [START_REF] Szegedy | Going deeper with convolutions[END_REF] also proposed an improved architecture using additional 1 × 1 convolutions (Fig. 3.6 (b)) to avoid the inevitable parameter growth occurring from stage to stage. Based on GoogLeNet, several improved versions of Inception were derived later. Inception-V2 [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] used two 3 × 3 convolutions instead of 5 × 5 convolutions to reduce the amount of parameters, and applied the batch normalization to accelerate the convergence and stabilize the training. Inception-V3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] adopted the idea of factorization to further reduce the amount of parameters, where a large two-dimensional convolution were split into two smaller convolutions (e.g. split 7 × 7 convolution into 1 × 7 convolution and 7 × 1 convolution). Afterwards, Inception-V4 and Inception-ResNet were designed [START_REF] Szegedy | Inception-V4, inception-resnet and the impact of residual connections on learning[END_REF] to further optimize the network performance.

CAD systems. Most existing CAD tools focus on segmentation from low-resolution mammograms (Alantari et al., 2018;Dhungel et al., 2017a) or from manually extracted suspicious areas [START_REF] Byra | Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network[END_REF][START_REF] Caballo | Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence[END_REF][START_REF] Li | Improved breast mass segmentation in mammograms with conditional residual u-net[END_REF][START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF][START_REF] Zhu | Adversarial deep structured nets for mass segmentation from mammograms[END_REF]. Even if those solutions largely simplify the segmentation process, they come at the cost of overall robustness and applicability in clinical routine. First, mass patches are less representative than the entire image. Second, accurate pre-selected mass regions are not available in a real screening scenario. 

Patch-level mass segmentation

After the image-based mass detection stage, we propose a region-based mass segmentation stage that performs refined mass delineation from candidate patches using a deep convolutional encoder-decoder.

Among recent advances of segmentation approaches, we implemented a powerful deep architecture with nested and skip connections, following U-Net++ (Z. Zhou et al., 2018) (Sect. 3.2.2).

The architecture (Fig. 4.7) is derived from standard U-Net : we employ in practice the vgg19 network as backbone for the encoder, which consists of 16 convolutional layers with repeated 3 × 3 convolutions followed by ReLU activation function and 2 × 2 max-pooling (3 fully-connected layers are not included).

The decoder is symmetrically designed. The proposed mass segmentation method is referred to as v19U-Net++. Since reaching a generic from scratch model without overfitting is difficult, we pre-train the encoder branch using ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] following [START_REF] Conze | Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoderdecoders[END_REF] to reduce the data scarcity issue while allowing faster convergence. We exhaustively implemented four segmentation models for comparison: U-Net (Ronneberger et al., 2015a), cGAN [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF], cascaded U-Net (Sect. 

Experiments and Results

In what follows, Sect. 4.3.5.1 presents the data used in this work. we report experimental settings (Sect.4.3.5.2) and results for image-based localization (Sect. 4.3.5.4) and segmentation (Sect. 4.3.5.3) of breast masses. In particular, evaluations of final segmentation results are carried out both quantitatively and qualitatively. All experiments are implemented using Keras backend with a single Nvidia GeForce GTX 1080Ti GPU.

Data

We focus on mass detection and segmentation from 2048 × 1024 full mammograms arising from

INbreast [START_REF] Moreira | INbreast: toward a full-field digital mammographic database[END_REF] and DDSM-CBIS [START_REF] Lee | A curated mammography data set for use in computer-aided detection and diagnosis research[END_REF] Table 5.1 -Data distribution setting for experiments. Each cell has the following format: number of positive samples / number of negative samples.

where and represent the prediction mask and the ground truth mask respectively, |.| and • the pixelwise sum and multiplication operations. The empirical factor 1 is a coefficient to balance the loss terms.

The designed combined loss is therefore the weighted sum of the losses of all tasks:

where , and , represent the classification loss (cross-entropy) for CC and MLO view respectively.

, and , denote the segmentation loss for the two views. is the contrastive loss (Eq.5.1) employed for matching purposes. , , , and are coefficients balancing the loss terms.

Experiments and results

Experimental setup

In this section, we evaluate the proposed approaches both quantitatively and qualitatively. Deep models for classification, matching and segmentation are implemented using pytorch. Experiments are performed with a single Nvidia GeForce GTX 1080Ti GPU (11GB/s). All experiments are initialized using pre-trained weights from ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] and trained using SGD as optimizer. To study the impact of adding the segmentation task to the combined network, we trained this model with and without taking into account the other two tasks (classification, matching) in parallel. We assessed different variations of the empirical loss coefficient 1 ∈ {0, 0.5, 1} to study the influence and complementarity of binary cross entropy and Dice loss ( 1 = 0 means Dice loss only while 1 = 1 means that the two loss functions account in the same proportion). For the combined loss (Eq. 5.5), we choose = = = = 1 and = 1 for cross-entropy and = 0.1 and margin = 10 for contrastive loss.

Data

Results

Multi-task learning versus classification-only. Classification performances are measured using classification accuracy (acc). We calculate the accuracy of each view separately (CC acc, MLO acc)

and collectively (overall acc). The statistical significance of the multi-tasking model with respect to the classification-only baseline is estimated using Student's t-tests (Tab.5.3). Overall, we observe better classification results on MLO than on CC views. In most cases, multi-tasking models that combine classification and matching are better than classification-only from 2% to 4% in accuracy with statistical significance (p < 0.05), which reflects the benefits of dual-view matching. Except for ResNet101, we obtain slight gains with the contrastive loss compared to cross-entropy. However, the difference between networks is not obvious. ResNet101 achieves the best overall accuracy with statistical significance (acc = 0.9098, p = 0.007 compared to baseline). Improvements obtained by VGG16 using the contrastive loss are also We finally obtained 56 false positive predictions whereas 590 true negatives were detected. Accordingly, the obtained specificity was 0.9133. Concerning the 56 false positive detections, only 6 pairs were considered as matched pairs. Thus, the other 44 patches can be further eliminated because there is no corresponding detection in the other view. These results confirm that our contributions can provide reliable detection results in a setup more similar to a screening process which could be conducted in real life.

Conclusion

To conclude, we proposed a novel multi-tasking approach that combines breast mass/non-mass classification with dual-view mass matching between complementary CC/MLO mammograms. We prove the effectiveness of integrating multi-view information within the breast mass detection pipeline by extensive experiments on public datasets. Based on Siamese networks and contrastive learning, our method generalizes well using different deep networks and shows impressive results as an integrated CAD system. We can thus easily address the problem of false detections without struggling with difficult whole-image detection schemes. We also extend this framework by associating detection and matching with segmentation techniques to further guide clinicians in multi-task interpretations. More globally, the proposed contributions pave the way for robust automatic second opinions in breast cancer diagnosis.

Even if multiple masses can still be detected using the classification network, dealing with more than one mass with respect to matching purposes should deserve further investigation. Furthermore, the integration of the segmentation task still needs further study to deal with the limitation of negative patches, so as to obtain a more complete and complex multi-tasking CAD system. Last but not least, it is essential to push further data fusion by extracting and integrating both multi-view and longitudinal information.

In the following section, we go further with the multi-view information fusion by exploiting the dual-view consistency as criterion for a novel deep active learning approach which addresses the common lack of labeled data, thereby reducing the labeling work of clinicians. 

Dual-view consistency

At the selection stage of each AL cycle, we aim at filtering the most informative mammograms in through the analysis of dual-view consistency. Theoretically, given a pair of mammograms { , } from the same breast, the analysis results should be consistent. Many latent relationships can potentially be exploited as query factors, such as the number of masses detected on both views or the mass size, position, shape, texture... In our work, we consider the first two factors as consistency criteria since their correlation is more obvious. In particular, the number of identified masses from both views { , } should be identical and their sizes { , } (i.e. number of pixels) should be similar. We define two scores ( and )to measure the following factors: 

Active learning strategies

The key of AL is to select the most informative samples to optimize a learnable model. However, the definition of informativeness is still an open question. In the common practice of AL, one considers

In this work, we opt for a late fusion using an attention mechanism SENet. The processing steps are as follows: the non-registered image pairs { -1 , } are sent to a Siamese network with no weights sharing between the two branches. The current image is used for attention extraction using an SE attention block. The output features of each branch are denoted as -1 and :

where , -1 are the model inputs, and represent the feature extraction layers of each branch.

Then, following the work of SENet [START_REF] Hu | Squeeze-and-excitation networks[END_REF], we opt for the global average pooling (GAP) as the squeeze operation (•), and a fully connected layer (denoted as F ) with sigmoid activation ( ) function as excitation operation (•). We model the weights of each feature channel of according to the DR severity grade change detection task:

Then, we apply channel-wise multiplication (•) (denoted as ⊗) to the feature vectors generating from -1 to increase or decrease the weight of each feature channel. We sum up the weighted features with to provide a bias to the final descriptor:

Experiments and Results

Data pre-processing

Primary pre-processing of the dataset has been introduced in Sect. 

Experiments and results

The various longitudinal fusion models for DR severity change detection are implemented using pytorch. Experiments are performed on an Nvidia GeForce GTX 1080Ti GPU (11GB/s) and trained using the SGD optimizer. We list in Tab. 6.3 the hyper-parameters used for VGG16 and InceptionV4 statistical significance (p < 0.05).

Pre-train comparison. We compare three pre-training strategies (Sect. 6.3.2) for all fusion schemes.

Apparently, regardless of the fusion scheme, pre-training on the OPHDIAT dataset largely boosts the classification performance, from 0.6% AUC (no fusion case) to 7.37% (intermediate fusion case with VGG16). The K-label pre-train brings average AUC improvements of 2.86% and 3.94% for VGG16 and InceptionV4, respectively, while the K-logistic pre-train brings about 3.36% and 3.58% gains. The proposed K-label model is slightly better than the K-logistic model in most cases.

Visual Explanations using Grad-CAM. The late fusion scheme achieves the best performance, but only slightly better than the no fusion benchmark. In order to find visual explanations for this conclusion, we visualize the activation maps using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm [START_REF] Selvaraju | Grad-cam: Visual explanations from deep networks via gradient-based localization[END_REF] and show some representative examples in Fig. 6.7.

The Grad-CAM algorithm is used to obtain a class activation map (similar to a heatmap), which can be used to locate sensitive areas related to the desired class in classification tasks. Given an input image and a class of interest, the image propagates through CNN with task-specific calculation to get a category score. Then, gradients are set to zero for all classes except the desired class. This signal is then back-propagated to the rectified convolutional feature maps, which will be combined to calculate the Grad-CAM (the blue heat-map in Fig. 6.7) which represents where the model pays attention to make particular decisions.

As shown in Fig. 6.7, three groups of Grad-CAM heat-map with the corresponding guided backpropagation feature map for three pairs of fundu images are presented. We compared the case of single image classification (classification individually of each image) and the late fusion scheme. Through observation, we can find the fact that when the model predict a normal case (RD grade = 2), the sensitive areas of the network are mostly concentrated in a centralized connected area . On the contrary, when the prediction is "pathological" or "grade change", the sensitive areas are mostly scattered around the image . Using late fusion, the difference of heat-maps (sensitive areas) between a pair of images is more obvious than no fusion. Nevertheless, we were also surprised to find that the sensitive areas of pathological image of the network are not exactly lesion areas, which is not what we expected. In view of this fact, we believe that more in-depth future work is needed to explore the interpretability of the network.

Discussion

In this study, we address the early-grade DR severity change detection by analyzing the fusion of two consecutive longitudinal follow-up images. Deep learning based DR classification that incorporates prior screening has not been exploited in existing studies, while the comparison with prior screening is an plenty of new technologies, network architectures or training strategies need to be further investigated and deeper explored.

Here are some perspectives that we would like to address in future works:

1. Regarding mass segmentation using multi-scale cascaded convolutional encoder-decoders (CEDs), it could be interesting to involve cascading more CEDs to further refine the multi-scale information, which can be beneficial to the feature refinement. For the two-stage approach, instead of performing detection and segmentation separately, it would be possible to investigate an end-toend pipeline that integrates both tasks.

2. Concerning the mammography study described in Sect. 5.1, future research should also take into account the potential impact of fusion of contralateral symmetry information to increase the robustness of breast lesion detection and description. Another potential subject is to deal with mass matching of multiple masses, which could be challenging but significant. Furthermore, the integration of the segmentation task within the pipeline dealing with combined classification and matching should deserve further investigation in dealing with the presence of negative patches, towards a more complete and complex multi-tasking CAD system.

3. As for the active learning-based approach (Sect. 5.2), further attempts of such strategy could focus on exploiting more complex query factors dealing with the multi-view consistency. Another future possible extension to this work is to integrate existing single-view criteria into our current framework, towards a unified active learning system.

4. Although our results in Chapter 6 demonstrated the potential of integrating a pair of longitudinal images, future research could continue to explore longitudinal fusion using multiple previous studies, instead of only pairs of consecutive examinations. We believe that future research on this topic might extend our explanations to the obtained results.