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Résumé

La thèse a pour objectif l’implémentation d’approches computationnelles dédiées
à l’étude des propriétés optiques non linéaires (ONL) du second ordre de molécules or-
ganiques π-conjuguées de type "push-pull" dans leurs états solvaté et agrégé. Dans une
première partie, la première hyperpolarisabilité de quatre séries de mérocyanines forte-
ment dipolaires est calculée en utilisant la théorie de la fonctionnelle de la densité (DFT)
avec différentes fonctionnelles d’échange-corrélation (FXCs). En particulier, les perfor-
mances de FXCs hybrides appartenant à la famille "Minnesota 2006", ainsi que les FXCs
à séparation de portée LC-BLYP, ωB97X-D et CAM-B3LYP, sont analysées par rapport
à des valeurs de référence obtenues à partir de calculs Møller−Plesset du second ordre, et
à des données expérimentales provenant de mesures de diffusion Hyper-Rayleigh (HRS).
Cette étude se concentre principalement sur deux effets : l’influence du taux d’échange
Hartree-Fock exact inclus dans la FXC sur l’intensité des réponses HRS statiques, et
l’impact de l’optimisation du paramètre de séparation de portée dans les FXCs à sépa-
ration de portée, effectuée selon une procédure non-empirique et spécifique au système
considéré. Les effets de dispersion en fréquence sont également étudiés, ainsi que leur rôle
crucial dans la comparaison entre données théoriques et expérimentales. La deuxième par-
tie de la thèse présente une étude de l’organisation structurelle et les propriétés ONL du
second ordre de nanoparticules organiques fluorescentes (FONs) formées de chromophores
dipolaires π-conjuguées. Des simulations de dynamique moléculaire sont couplées à des
calculs DFT afin d’étudier le processus d’agrégation moléculaire, l’orientation moléculaire
des chromophores dipolaires au sein des nanoparticules, ainsi que l’effet des fluctuations
dynamiques sur leurs propriétés ONL. Ces calculs permettent de rationaliser la forte
augmentation de la première hyperpolarisabilité induite par l’agrégation, et mettent en
évidence l’impact des effets de polarisation mutuelle et des couplages intermoléculaires
sur les réponses ONL.



Abstract

The present thesis aims to implement computational approaches dedicated to the
investigation of the second-order nonlinear optical (NLO) properties of π-conjugated push-
pull organic molecules in their solvated and aggregated states. In a first part, the per-
formance of various density functional theory (DFT) exchange-correlation functionals
(XCFs) to evaluate the first hyperpolarizability of four series of highly dipolar merocya-
nines is reported. In particular, the performance of the 2006 Minnesota family of hybrid
XCFs, as well as the LC-BLYP, ωB97X-D and CAM-B3LYP long-range (LR) corrected
XCFs, is discussed in regard to reference second-order Møller−Plesset calculations and
experimental data obtained from Hyper-Rayleigh Scattering (HRS) measurements. This
study focuses on two particular effects: the influence of the amount of exact Hartree-
Fock exchange included in the XCF on the magnitude of the static HRS responses, as
well as to the impact of tuning the range-separation parameter in LR-XCFs, according to
a system-specific non-empirical procedure. Frequency dispersion effects are also investi-
gated, as well as their crucial role in the comparison between theoretical and experimental
data. In a second part, the structural organization and second-order NLO properties of
fluorescent organic nanoparticles (FONs) based on dipolar chromophores incorporating
a hydrophobic triphenylamine electron-donating unit and a slightly hydrophilic aldehyde
electron-withdrawing unit at their extremities are studied. Molecular dynamics simula-
tions are coupled with quantum chemical calculations in order to study the molecular
aggregation process, the molecular orientation of the dipolar dyes within the nanoparti-
cles and the dynamical behavior of their NLO properties. The strong enhancement of the
first hyperpolarizability upon aggregation of the dyes is evidenced, as well as the high
impact of mutual polarization effects and intermolecular couplings on the NLO responses.



Résumé en français

Le développement de composés organiques présentant de fortes réponses optiques
non-linéaires (ONL) du second ordre a suscité de nombreux travaux de recherche au
cours des trente dernières années, en raison de leur application potentielle dans les do-
maines de l’opto-électronique et de la (bio)imagerie. Les molécules organiques capables
de générer des premières hyperpolarisabilités (β) importantes sont par exemple utilisées
en tant qu’éléments actifs dans les systèmes à base de polymères pour la modulation
électro-optique, ou comme sondes en imagerie par génération de seconde harmonique
(SHG) de lipides et membranes celullaires. Bien que les systèmes octupolaires peuvent
également avoir de fortes réponses ONL quadratiques, les grandes valeurs de β sont plus
souvent associées aux chromophores dipolaires de type "push-pull", possédant une struc-
ture de type D-π-A dans laquelle un groupe électro-donneur (D) intéragit avec un groupe
électro-attracteur (A) par l’intermédiare d’un pont π-conjugué. Ces molécules présentent
en général un transfert de charge important entre les sites donneur et accepteur, don-
nant lieu à une absorption intense dans le domaine du visible. En variant la nature des
groupes D et A ou la longueur du pont conjugué, il est possible de moduler l’amplitude
des réponses ONL.

Au delà de la conception de molécules capables de générer des réponses ONL im-
portantes, de nombreuses applications requièrent le développement d’architectures plus
complexes telles que des surfaces fonctionnalisées et des nanoparticules (NPs), qui perme-
ttent de concentrer spatialement un grand nombre de diffuseurs moléculaires. Maitriser
les propriétés de tels édifices supramoléculaires représente un défi important, tant sur le
plan expérimental que de la simulation numérique. Cette thèse a pour objectif l’étude
théorique des propriétés ONL du second ordre de différents systèmes organiques de type
push-pull, depuis la molécule isolée jusqu’aux nanoparticules constituées de plusieurs cen-
taines d’unités moléculaires. Dans une première partie, la première hyperpolarisabilité de
chromophores individuels est déterminée à différents niveaux de calcul. En particulier, les
performances de différentes fonctionnelles d’échange-corrélation (FXCs) utilisées dans la
théorie de la fonctionnelle de la densité (DFT) sont analysées par rapport à des valeurs de
référence obtenues à partir de calculs ab initio et à des données expérimentales provenant



de mesures de diffusion Hyper-Rayleigh (HRS). Dans une seconde partie, des nanopar-
ticules organiques formées de chromophores dipolaires sont étudiées en combinant des
simulations de dynamique moléculaire et des calculs DFT, afin de rationaliser le rôle des
fluctuations dynamiques et des interactions intermoléculaires sur les réponses ONL. Ce
chapitre rédigé en français constitue un résumé des principaux résultats obtenus lors de
ces deux études. Les résultats détaillés sont présentés dans le corps du manuscrit, après
une brève introduction des principes de l’optique non linéaire et des méthodes théoriques
utilisées.

Performance des fonctionnelles DFT pour le calcul des premières

hyperpolarisabilités de mérocyanines fortement dipolaires

Dans cette étude, nous avons évalué les performances de différentes fonctionnelles
d’échange-corrélation pour le calcul des réponses ONL quadratiques de mérocyanines dipo-
laires récemment synthétisées dans le groupe de M. Blanchard-Desce (Université de Bor-
deaux). Ces dernières comportent des groupes accepteurs de type tricyanopropylidène
connectés à des groupes donneurs de type dihexylaminophényle ou dihexylaminothio-
phényle par des chaînes polyéniques de différentes longueurs (Figure 1). Des mesures de
diffusion Hyper-Rayleigh (HRS) ont démontré que ces molécules fortement dipolaires pos-
sèdent de grandes premières hyperpolarisabilités. En particulier, le dérivé II’[4], incluant
des substituants terminaux dihexylaminothiophényle et tricyanopropylidène, présente une
valeur record de première hyperpolarisabilité, ainsi qu’une alternance de longueur de liai-
son (Bond length Alternation, BLA) négligeable le long du pont conjugué, en apparente
contradiction avec le paradigme associant les fortes réponses ONL quadratiques à une
valeur optimale non nulle de BLA.
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Figure 1 – Structures des mérocyanines de type tricyanopropylidène étudiées dans ce
travail. La longueur de la chaîne polyénique varie de n = 0 à n = 4.



La description précise des premières hyperpolarisabilités (β) de tels chromophores, qui
présentent un fort transfert de charge à l’état fondamental ainsi que des états excités
de basse énergie, constitue un challenge pour la théorie de la fonctionnelle de la densité
(DFT). Dans cette étude, nous avons évalué la précision de FXCs hybrides incorporant
différents taux d’échange Hartree-Fock (XHF), ainsi que celle de FXCs hybrides à sépa-
ration de portée (SP), dont les domaines à courte et longue portées sont définis à l’aide
d’un paramètre (ω). Suite à différentes études ayant démontré que l’optimisation de ω
améliorait la description des premières hyperpolarisabilités des composés à transfert de
charge, nous avons comparé les hyperpolarisabilités calculées avec les valeurs standards
de ω à celles calculées avec des valeurs de ω ajustées selon une procédure non-empirique
et spécifique à la molécule considérée.

La performance des différentes fonctionnelles est évaluée en fonction de leur capac-
ité à reproduire les données HRS expérimentales, ainsi que les valeurs de β calculées en
utilisant la méthode Møller-Plesset à l’ordre 2 (MP2). Des études théoriques antérieures
ont en effet montré que le niveau MP2 inclut la majeure partie des effets de corrélation
électronique et reproduit correctement les premières hyperpolarisabilités de systèmes π-
conjugués obtenues avec la méthode CCSD(T). Les valeurs βMP2

HRS sont donc utilisées en
tant que références théoriques par la suite. Par ailleurs, nous avons également mené des
calculs au niveau CPHF (Coupled-Perturbed Hartree-Fock), afin d’évaluer l’ampleur des
effets de corrélation électronique sur les valeurs de β. Dans la série de molécules étudiées,
la corrélation électronique exalte la première hyperpolarisabilité d’un facteur compris en-
tre 1.97 et 3.43. Le rapport βMP2

HRS /β
CPHF
HRS est dépendant du système, ce qui démontre la

nécessité d’inclure les effets de corrélation électronique dans les calculs, car ces derniers
introduisent une correction non systématique des valeurs de βHRS qui pourrait affecter les
interprétations qualitatives. Comme affiché Figure 2, les ratios βMP2

HRS /β
CPHF
HRS augmentent

de manière progressive avec la taille n du pont polyénique jusqu’à une valeur maximale
obtenue pour n = 3, et ensuite diminuent légèrement. Bien qu’elle suive la même ten-
dance, la série II’[n] , qui contient la plus forte paire D/A, montre de plus fortes variations
du rapport βMP2

HRS /β
CPHF
HRS en fonction de n.
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de dérivés mérocynanines.

Les premières hyperpolarisabilités calculées avec les fonctionnelles hybrides de la
famille Minnesota-2006, ainsi que les FXCs à SP, sont comparées aux résultats HF et
MP2 ab initio et aux données expérimentales issues des mesures HRS. L’évolution des
réponses βHRS en fonction de la nature des substituants terminaux ou de la longueur du
pont conjugué est rationalisée à partir de l’approximation à deux états, dont la fiabilité
concernant les interprétations qualitatives a été démontrée.

Les hyperpolarisabilités statiques calculées avec les FXCs à SP se situent globale-
ment entre les valeurs calculées au niveau coupled perturbed Hartree-Fock (CPHF) et
celles calculées au niveau MP2 (Figure 3). Le plus souvent, les valeurs de βHRS cal-
culées aux niveaux LC-BLYP et ωB97X-D avec des paramètres de SP optimisés sont plus
proches des résultas MP2 que celles obtenues avec les valeurs standards de ω, bien que
cette amélioration ne soit pas systématique et dépende du système. Contrairement à ce
qui a été montré avec LC-BLYP et ωB97X-D, l’optimisation du paramètre de SP dans
CAM-B3LYP se traduit par une augmentation des valeurs de ω, et donc du taux d’échange
HF dans la fonctionnelle, ce qui diminie légèrement l’accord avec les résulats MP2.
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Figure 3 – Evolution des hyperpolarisabilités HRS statiques (en 104 u.a.) avec la longueur
de la chaîne polyénique dans les quatre séries de mérocyanines, calculées dans le chloro-
forme aux niveaux HF et MP2, combinés avec la base 6-311+G(d), ainsi qu’au niveau
DFT en utilisant des FXCs à séparation de portée avec des paramètres de SP standards
(std) et optimisés (opt).

Les calculs effectués avec les fonctionnelles de la famille Minnesota montrent que
le pourcentage d’échange HF dans la FXC impacte fortement l’ampleur des réponses
βHRS. M06-2X présente des valeurs de βHRS proches ce celles obtenues avec les FXC à
SP optimisées, ce qui indique qu’un pourcentage proche de 50% d’échange HF constitue
le meilleur compromis pour calculer les propriétés ONL de ces chromophores "push-pull"
conjugués fortement dipolaires (Figure 4).

De manière générale, ces calculs illustrent également la difficulté de comparaison
entre les premières hyperpolarisabilités dynamiques calculées et les données expérimen-
tales mesurées dans des conditions de résonance. Aucune des FXCs de DFT considérées
dans cette étude ne reproduit de façon satisfaisante l’intensification des réponses βHRS à
la fréquence de résonance, ce qui entrave toute comparaison quantitative de leur évolu-
tion relative en fonction de la longueur de la chaîne. L’utilisation d’un modèle à deux
états atténué pour extrapoler les hyperpolarisabilités statiques expérimentales ne permet
pas d’améliorer l’accord entre les réponses théoriques et expérimentales de cette série de
composés hautement dipolaires.



Figure 4 – Evolution des hyperpolarisabilités HRS statiques (en 104 u.a.) avec la longueur
de la chaîne polyénique dans les quatre séries de mérocyanines, calculées dans le chloro-
forme en utilisant des FXCs corrigées à longue portée avec des paramètres de SP optimisés
et la base 6-311+G(d). Les résultats obtenus aux niveaux HF, MP2 et M06-2X sont égale-
ment reportés pour comparaison.

Agrégation, structure et propriétés optiques non linéaires de nanopar-

ticules organiques dans l’eau

La deuxième partie de la thèse présente l’étude de nanoparticules organiques for-
mées de chromophores de type "push-pull" incluant un fort groupe électro-attracteur. En
changeant la nature de ce groupe électro-accepteur (parmi lesquels l’aldéhyde, légèrement
hydrophyle, comme illustré Figure 5) et celle des systèmes π-conjugués, des nanopartic-
ules (NP) possédant une émission ajustable (du vert au proche infrarouge) et une bonne
stabilité colloïdale dans l’eau ont été synthétisées dans le groupe de M. Blanchard-Desce.
L’analyse des spectres d’émission de fluorescence et des durées de vie de ces NPs a sug-
géré la possibilité d’une orientation locale spécifique des chromophores au voisinage de la
surface des NPs. Cette hypothèse a été confirmée par des mesures de seconde harmonique
de NPs formées à partir de la molécule dipolaire schématisée Figure 5. Ces mesures ont
montré que, contrairement à ceux des molécules constitutives, les signaux de diffusion
de seconde harmonique (SHS) des NP proviennent exclusivement de la partie dipolaire
de l’hyperpolarisabilité, avec une contribution négligeable de la partie octupolaire. Ces



résultats ont été attribués à la présence d’arrangements polaires de type H des molécules
à l’interface avec l’eau, avec le groupe terminal hydrophobe triphénylamine pointant vers
le centre de la NP et le groupe formyle pointant vers l’eau.

N

S S H

O

φTT
φTP

Figure 5 – Structure chimique de la molécule dipolaire étudiée dans cette thèse, avec les
angles dihèdres φTT = S-C-C-S et φTP = C-C-C-S.

L’objectif de cette étude théorique est de compléter ces investigations expérimentales en
corroborant ou non leurs conclusions. Des simulations de dynamique moléculaire (MD)
de la formation des NPs dans l’eau pure sont associées à des calculs quantiques (QM)
basés sur la DFT, afin d’offrir un aperçu du processus de formation des nanoparticules,
de l’orientation des molécules dipolaires au sein des agrégats et de leurs propriétés ONL.
Les réponses ONL de NPs composés d’une centaine de chromophores sont évaluées en
utilisant une implémentation simplifiée de la méthode DFT dépendante du temps (sTD-
DFT-vTB). Cette approche permet une réduction drastique des ressources calculatoires
et le calcul des réponses optiques de structures composées de plusieurs milliers d’atomes.

Les simulations de dynamique moléculaire confirment la formation spontanée de
NPs amorphes à base de molécules dipolaires organiques en solution aqueuse, ainsi que
l’apparition de domaines à l’interface avec l’eau dans lesquels les chromophores dévelop-
pent des interactions intermoléculaires de type π-stacking. Les NPs finales ont une forme
ellipsoïdale plus ou moins allongée, dont la structure globale fluctue largement au cours
de la dynamique. (Figure 6).

L’orientation des molécules dipolaires à l’intérieur d’une NP représentative est il-
lustrée Figure 7. Les groupes triphénylamine hydrophobes des molécules pointent majori-
tairement vers le centre de la NP, alors que les groupes formyles (hydrophiles) pointent
vers l’extérieur. Cette orientation préférentielle est également illustrée sur le graphique
de la Figure 7, qui reporte la concentration des différents groupes atomiques en fonction
de la distance avec le centre de la NP.



Figure 6 – Evolution temporelle de la nanoparticule 1 au cours de la simulation MD.

L’évolution de la densité moyenne de voisins N(rij) à l’intérieur des NPs en fonction
de la distance rij entre les centres de masse des molécules (Figure 8) révèle que les pre-
miers voisins d’une molécule sont situés en moyenne à une distance d’environ 6 Å. Il est à
noter qu’après 50 Å, N(rij) tombe à zéro lorsque la distance excède la taille de l’agrégat,
ce qui permet d’estimer la taille moyenne des NPs à environ 5 nm. L’évolution du cos-
inus moyen de l’angle θij entre dipoles moléculaires, également illustré Figure 8, donne
des informations complémentaires sur l’orientation des molécules a l’intérieur des NPs,
avec des valeurs positives (négatives) correspondant à une orientation parallèle (antipar-
allèle). Comme indiqué Figure 8, la valeur moyenne 〈cos θij〉 est positive à la distance
correspondant aux premiers voisins, suggérant un arrangement parallèle à l’origine des
moments dipolaires globalement non nuls des NPs. A de plus grandes distances, 〈cos θij〉
est proche de zéro, indiquant que cette corrélation orientationelle a disparu. L’ordre par-
allèle préférentiel à courte portée des molécules dipolaires est confirmé par la distribution
des valeurs de 〈cos θij〉 pour des molécules plus proches que 7.5 Å, qui montre un léger
maximum pour 〈cos θij〉 = 1. Il est à noter que la distribution présente un deuxième max-
imum à 〈cos θij〉 = −1, montrant également la propension des chromophores à adopter
une configuration antiparallèle.

La nature flexible des NPs permet des variations de forme importantes (Figure 6),
qui se reflètent dans de larges fluctuations temporelles de leurs réponses ONL. Dans une
première approche, nous avons évalué le tenseur de première hyperpolarisabilité des NPs
évalué comme la somme des tenseurs des molécules individuelles constitutives calculés
au niveau TD-DFT. Bien que cette approximation néglige les couplages électroniques
intermoléculaires et les effets de polarisation, elle intègre les effets liés à l’organisation
spatiale des molécules à l’intérieur des NPs, et à leurs fluctuations géométriques. Les
premières hyperpolarisabilités statiques calculées pour 8 NPs (NP1-8) présentent une
vaste gamme de valeurs, avec des écarts-types importants dans leurs distributions :
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Figure 7 – En haut à gauche: Exemple de NP ellipsoïdale composée de 100 molécules
agrégées illustrant l’orientation des groupes formyle (en rouge) vers l’extérieur, et les
domaines d’empilements π (en jaune); En haut à droite: Potentiel électrostatique calculé
à partir de la distribution des charges atomiques (les isovaleurs varient de −4 (bleu) à
+4 (rouge) kT/e, avec T = 300 K); En bas: Densité radiale des différents fragments
moléculaires en fonction de la distance depuis le centre de la NP (valeurs moyennées sur
les 100 molécules des 8 NPs finales (NP1-NP8)).

〈βHRS〉 = (43.8 ± 11.9)103 u.a. Les valeurs des βHRS dynamiques, incluant les effets
de la dispersion en fréquence, sont environ trois fois plus élevées que les valeurs statiques
(〈βHRS〉 = (189.1 ± 70.5)103 u.a.) avec une plus large distribution. L’impact de la dis-
persion en fréquence sur les rapports de dépolarisation (DR) est moins systématique, soit
augmentant soit diminuant les valeurs des DR selon la NP considérée. Malgré ces fluc-
tuations irrégulières, les DR statiques et dynamiques moyens sont très proches (4.5-4.6),
indiquant que les réponses ONL de ces structures supramoléculaires présentent globale-
ment un caractère 1D, typique des systèmes pour lesquels le tenseur d’hyperpolarisabilité
est dominé par une seule composante diagonale. Les réponses ONL des NPs individuelles
au sein d’une même simulation montrent également de fortes fluctuations temporelles,
induites par les fluctuations géométriques au cours de la simulation de MD. L’évolution
dans le temps des moyennes cumulatives des βHRS et des DR est illustrée Figure 9 pour
les NP1, 5, 7 et 8, en commençant à partir de l’instant où les 100 molécules s’agrègent en
une seule structure. Pour la NP5, même si les valeurs individuelles varient fortement au
cours du temps, les moyennes cumulatives convergent à 〈βHRS〉 = 204 u.a. et 〈DR〉 = 4.3.



qij
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Figure 8 – Définition de l’angle θij entre dipoles moléculaires et la distance rij entre leurs
centres de masse (haut), et évolution de la densité moyenne de voisins N(rij) (milieu) et
du cosinus moyen de θij (bas) en fonction de rij.

Figure 9 – Evolution temporelle des moyennes cumulatives du βHRS (gauche) et du DR
(droite) pour les NP1, 5, 7 et 8, calculés à partir de l’approximation du tenseur somme
au niveau TD-DFT:M06-2X/6-311+G(d).



A l’exception de la NP7, les valeurs des βHRS et des DR statiques évaluées à partir de
l’approximation du tenseur somme au niveau sTD-DFT-vTB sont très proches de celles
estimées en utilisant le niveau TD-DFT complet. Dans le cas des calculs dynamiques,
la valeur moyenne du βHRS obtenue avec sTD-DFT-vTB est 1.7 fois plus grande que
celle obtenue en TD-DFT (Tableau 4.2), alors que le DR moyen augmente de 4.6 à 5.0.
Comparer les données sTD-DFT-vTB évaluées à partir de l’approximation du tenseur
somme avec celles issues des calculs sur la totalité de la structure supramoléculaire donne
une mesure directe des effets des interactions intermoléculaires. Dans le cas statique, tenir
compte des interactions intermoléculaires induit une baisse de 20% de l’hyperpolarisabilité
HRS. Au contraire, en raison des effets de résonance, les valeurs des βHRS dynamiques
présentent des variations très grandes et non systématiques, allant d’une baisse de ∼
80% pour la NP7 à une augmentation de ∼ 900% pour la NP1. En considérant les
données moyennées sur les 8 NPs, les interactions intermoléculaires amplifient globalement
la réponse βHRS dynamique d’un facteur 3, alors que le DR est abaissé de 5.0 à 4.2. Nous
soulignons cependant que les très fortes valeurs βHRS calculées pour les NP1 et NP4, et
donc la valeur moyenne de βHRS, devraient être interprétées avec prudence, puisque les
réponses divergent à la fréquence harmonique induisant ainsi des instabilités numériques.

Table 1 – Premières hyperpolarisabilités dynamiques (λ = 1064 nm, βHRS en 103 u.a.)
et rapports de dépolarisation (DR) des nanoparticules finales issues des 8 trajectoires
de MD, évaluées en utilisant l’approximation du tenseur somme aux niveaux TD-DFT
et sTD-DFT-vTB , ainsi que des calculs sTD-DFT-vTB réalisé sur les nanoparticules
entières.

TD-DFTa (tenseur somme) sTD-DFT-vTBb (tenseur somme) sTD-DFT-vTBb (calcul complet)
βHRS DR βHRS DR βHRS DR

NP1 317.0 6.3 325.8 5.8 3194.5 4.8
NP2 112.0 3.7 248.2 3.4 106.4 3.0
NP3 110.7 3.0 161.2 3.8 616.9 3.6
NP4 160.1 5.1 238.9 5.2 2259.4 5.1
NP5 237.6 5.9 343.1 7.2 369.9 4.7
NP6 185.0 3.6 238.7 4.5 212.7 4.9
NP7 234.0 3.4 827.6 5.0 156.6 2.1
NP8 156.4 5.5 167.9 5.3 634.3 5.0
av.± std. dev. 189.1 ± 70.5 4.6 ± 1.3 318.9 ± 215.4 5.0 ± 1.2 943.8 ± 1145.4 4.2 ± 1.1
a M06-2X/6-311+G(d) en phase gas.
b En utilisant yJ = 4.0, yK = 2.0 et Eth = 5.0 eV.

La forte augmentation de la première hyperpolarisabilité mesurée au moment de
l’agrégation des molécules est bien reproduite par l’implémentation de la méthode sTD-
DFT-vTB, employée ici pour la première fois pour caractériser les propriétés ONL de
NPs en tenant pleinement compte de leurs fluctuations dynamiques grâce à un schéma
MD+QM séquentiel. Cette approche permet de mettre en évidence le fort impact des
effets de polarisation mutuelle et des couplages intermoléculaires sur les réponses ONL.
En particulier, les interactions intermoléculaires sont à l’origine de l’émergence d’états
excités de faible énergie entrant en résonance avec le fasiceau lumineux à la fréquence de
seconde harmonique. Ces états sont responsables de la forte augmentation du signal SHS



lors de l’agrégation des molécules.

Cette thèse montre également la difficulté de comparer les réponses ONL calculées
et expérimentales de telles assemblées supramoléculaires grandes et flexibles. Les limites
de la méthodologie computationnelle sont principalement liées à l’échelle temporelle et à
la taille des objets qui peuvent être étudiés, aux instabilités numériques dues aux effets de
résonance, ainsi qu’à la probable sous-estimation de l’amplitude des champs électriques
locaux puisque la première couche de solvatation n’est pas prise en compte. Par con-
séquent, ce travail ne constitue qu’une première étape vers la simulation rigoureuse des
réponses ONL de grandes architectures moléculaires.
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Introduction

The design of organic compounds that exhibit large quadratic second-order nonlin-
ear optical (NLO) responses has fueled a number of research works over the past thirty
years, owing to their broad field of applications ranging from smart materials (including
optical telecommunications, data storage, information and signal processing) to biology
(including in vivo bioimaging and therapy). In particular, organic compounds exhibit-
ing large first hyperpolarizabilities (β) are used as active elements in electric field poled
polymer-based systems for electro-optic modulation,[1] or as probes for second-harmonic
generation (SHG) imaging of lipids and cell membranes.[2, 3, 4, 5] Although octupolar sys-
tems can also display large quadratic NLO responses,[6, 7] high β values are most often
associated to dipolar push–pull chromophores having a D-π-A architecture, in which an
electron-donating group (D) interacts with an electron-withdrawing group (A) through a
π-conjugated linker. These molecules usually display significant charge transfer between
the D and A sites giving rise to intense absorption in the visible region. Varying the
nature of the D and A groups or the length of the conjugated bridge by chemical design
allows to modulate the magnitude of the second-order NLO responses.[8, 9, 10, 11, 12]

Since they provide insights on the relationships linking the chemical structure of
the chromophores to their optical properties, computational approaches are highly useful
to design novel NLO materials, by providing rational guidelines for eventual syntheses. In
particular, computational chemistry provides insights on various factors not individually
accessible from experiments, including the impact of the nature of D and A groups, of the
size of the π-conjugated linker, as well as of frequency-dispersion and solvent effects. The
present thesis aims to implement computational approaches dedicated to the investigation
of the NLO properties of different organic systems, ranging from solvated molecules to
supramolecular aggregates composed of several hundreds of chromophores.

The first Chapter presents a detailed introduction to the nonlinear optical phe-
nomena, from their mathematical description to examples of molecules possessing large
second-order NLO responses. This Chapter also includes a brief description of the experi-
mental tools allowing the determination of the NLO properties. Then, the basic concepts
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of the computational methods employed in this work, including quantum chemistry and
classical force-field methods, are reviewed in Chapter 2.

Chapter 3 presents an accurate investigation of the second-order NLO responses of
a series of recently designed dipolar merocyanines. As detailed in this Chapter, the size of
these systems prohibits using highly accurate ab initio methods such as coupled-cluster,
so that density functional theory (DFT) remains the only alternative for investigating
their NLO properties at a reasonable computational cost. However, the accurate descrip-
tion of such NLO chromophores, which exhibit large ground-state charge transfer as well
as low-lying charge-transfer excited states, is highly challenging for DFT, and the various
approximations introduced through the exchange-correlation functional (XCFs) have to
be carefully assessed. In this Chapter, we report an extensive study of the performance of
various XCFs for describing the first hyperpolarizabilities of these systems, including the
2006 Minnesota family of hybrids, as well as the LC-BLYP, ωB97X-D and CAM-B3LYP
long-range (LR) corrected XCFs. Particular focus is given to the influence of the amount
of exact Hartree-Fock exchange included in the XCF on the magnitude of the NLO re-
sponses, as well as to the impact of tuning the range-separation parameter in LR-XCFs,
according to a system-specific nonempirical procedure. Additional issues encompass the
interpretation of the first hyperpolarizabilities by resorting to the two-state approximation
and the analysis of their frequency dispersion. This work was conducted in collaboration
with the group of Dr. Eduard Matito (University of San Sebastian) and of Prof. Benoît
Champagne (University of Namur), and was the object of an article published in 2020
[Phys. Chem. Chem. Phys. 2020, 22, 16579–16594].

Finally, Chapter 4 reports a comprehensive study of fluorescent organic nanopar-
ticles (FONs). In recent years, molecular-based organic nanoparticles emerged as highly
promising systems in the fields of optoelectronics and biology, because they offer alterna-
tives to inorganic ones that suffer from toxicity and biodegradability issues. Although a
large number of studies were dedicated to the design and characterization of new systems
with targeted absorption, fluorescence or nonlinear optical (NLO) properties, the com-
plete and rational development of the field remains limited by the difficulty to support
and guide the experimental investigations by theoretical simulations. Indeed, owing to the
large size and flexible nature of such supramolecular assemblies, theoretical calculations
remain highly challenging and out of the reach of standard computational schemes. In
this Chapter, we propose a new modelling strategy that enables a drastic reduction of
the computational cost. By combining molecular dynamics simulations with a simplified
Time-Dependent DFT method, we were able to rationalize the Second-Harmonic Scatter-
ing (SHS) responses of nanoparticles based on organic dipolar chromophores, following
a recent experimental investigation reported by the groups of Prof. Vincent Rodriguez
and Dr. Mireille Blanchard-Desce.[13] This theoretical approach allowed us to describe the
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spontaneous formation of amorphous nanoparticles in water solution, as well as the onset
of polar π-stacked domains at the water interface. We also disentangled the influence of
the supramolecular organization of the dyes and of the polarization effects on the NLO
responses. In particular, we demonstrated that intermolecular interactions are at the
origin of the emergence of low-lying excited states entering into resonance with the sec-
ond harmonic light, which are responsible for the experimentally observed enhancement
of the SHS signal upon aggregation and for the appearance of a red shifted tail in the
linear absorption spectrum. This work was carried out in collaboration with Dr. Marc de
Wergifosse (University of Bonn) and the groups of Prof. Benoît Champagne (University
of Namur) and Prof. Luca Muccioli (University of Bologna), and was recently published
[Phys. Chem. Chem. Phys. 2021, 23, 23643–23654].
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Chapter 1
General aspects of nonlinear optics

We present in this chapter the physical and mathematical descriptions of nonlin-
ear optical (NLO) properties of molecules and materials. We focus in particular on the
molecular second-order NLO responses characterized by the first hyperpolarizability, and
give emphasis on the consequences of symmetry aspects on the mathematical description
of this property. After a review of some common second-order NLO processes, we focus
on the second harmonic generation. In the last part of the chapter, we present few rep-
resentative examples of molecules possessing nonlinear optical properties. Rather than
providing an exhaustive review of the existing classes of NLO molecules, we aim here at
highlighting some key aspects of the relationship between the chemical structure and the
strength of the second-order NLO responses.

1.1 Origin of optical nonlinearities in dielectric media

1.1.1 At the microscopic level

In this section, we describe the response of a molecule to an external oscillating (or
dynamic) electric field. The electric field is vectorial and composed of a static component
and a time-oscillating component according to:

Fz(t) =
∑
ω

F ω
z (e−iωt + e+iωt) (1.1)

where F ω
z are the Fourier amplitudes of the electric field along the molecular axis z. In the

presence of such a field, all charged particles in the molecule, electrons as well as atomic
nuclei, experience a force that perturbs their motions. In a classical picture, the charges
are expected to follow the time-oscillations of the laser field, their oscillations giving rise
to an induced dipole moment that can be expressed to first order in terms of the linear
electric polarizability:
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µi = µ0
i + αijFj︸ ︷︷ ︸

Induced dipole moment

(1.2)

where µ0
i is the permanent electric dipole moment of the molecule in the Cartesian direc-

tion i, Fj the optical field applied in direction j and αij the corresponding component of
the linear electric polarizability tensor:

α =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 (1.3)

When the intensity of the applied field is large, the induced dipole moment is not
anymore linear with respect to the electric field strength and can be expressed as a Taylor
series[1]:

µi = µ0
i + αijFj +

1

2!
βijkFjFk +

1

3!
γijklFjFkFl + ... (1.4)

where βijk and γijkl are the second- and third-order nonlinear polarizabilities, also re-
ferred to as the first and second hyperpolarizabilities. Similarly to the linear response,
the vectorial property of the electric field implies that the first- and second-order hyper-
polarizabilities are third-rank and fourth-rank tensors, respectively. Thus, the β tensor
contains 27 components and is generally expressed as a rectangular 9x3 matrix:

β =

βxxx βxyy βxzz βxyz βxzy βxzx βxxz βxxy βxyx

βyxx βyyy βyzz βyyz βyzy βyzx βyxz βyxy βyyx

βzxx βzyy βzzz βzyz βzzy βzzx βzxz βzxy βzyx

 (1.5)

where the β tensor components can be calculated as:

βijk =
∂2µi

∂Fj∂Fk

∣∣∣∣
F=0

= − ∂3E

∂Fi∂Fj∂Fk

∣∣∣∣
F=0

(1.6)

Due to the fact that the response of the oscillating charges in the molecules depends on
the frequency of the electric fields, the linear and nonlinear polarizabilities also depend on
the frequency of the applied fields. Inserting the expression 1.1 into equation 1.4 yields:

µi = µ0
i +

∑
ω

αij(−ω, ω)F ω
j (e−iωt + e+iωt)

+
1

2!

∑
ω1,ω2

βijk(−ωσ;ω1, ω2)F ω1
j F ω2

k (e−iωσt + e+iωσt)

+
1

3!

∑
ω1,ω2,ω3

γijkl(−ωσ;ω1, ω2, ω3)F ω1
j F ω2

k F ω3
l (e−iωσt + e+iωσt) + ...

(1.7)

where the frequency-dependence of the (hyper)polarizabilities has been exemplified. In
this expression, ω1, ω2 and ω3 are the frequencies of the incident fields respectively ap-
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plied in the j, k and l directions, while ωσ =
∑
i

ωi. Equation 1.7 provides the fundamental

origin of nonlinearities at the microscopic level.

It is worth mentioning that the Taylor series expansion in equation 1.4 is sometimes
replaced by a simple power series expansion. In this case, the numerical factors 1

n!
are

implicitly integrated in the hyperpolarizability tensor components.

µi = µ0
i + αijFj + βijkFjFk + γijklFjFkFl + ... (1.8)

These different conventions (referred to as the T convention for the Taylor expansion
and B convention for the power series expansion) have often been causes of confusion
in the community when comparing the hyperpolarizability values obtained from different
experimental or computational tools.[2] All hyperpolarizability values reported in this
thesis are given in atomic units (1 a.u. of β = 3.6310−42 m4V−1 = 3.2063 × 10−53

C3m3J−2 = 8.641× 10−33 esu) in the T convention.

1.1.2 At the macroscopic level

The collective reorganization of the electron density of the molecules under the effect
of the external electrical field is characterized, at the macroscopic level, by the polariza-
tion P of the material. When neglecting electric field gradient effects, the macroscopic
polarization can be expanded as power series of the Maxwell fields F :[3]

P = χ(1)F + χ(2)F 2 + χ(3)F 3 + ... (1.9)

where the expansion coefficients χ(1), χ(2) and χ(3) are respectively the linear suscepti-
bility and the second- and third-order nonlinear susceptibilities. As their microscopic
analogues, the optical susceptibilities are expressed as second-, third- and fourth-rank
tensors, respectively. For example, for the second-order susceptibility:

χ(2) =

χ
(2)
xxx χ

(2)
xyy χ

(2)
xzz χ

(2)
xyz χ

(2)
xzy χ

(2)
xzx χ

(2)
xxz χ

(2)
xxy χ

(2)
xyx

χ
(2)
yxx χ

(2)
yyy χ

(2)
yzz χ

(2)
yyz χ

(2)
yzy χ

(2)
yzx χ

(2)
yxz χ

(2)
yxy χ

(2)
yyx

χ
(2)
zxx χ

(2)
zyy χ

(2)
zzz χ

(2)
zyz χ

(2)
zzy χ

(2)
zzx χ

(2)
zxz χ

(2)
zxy χ

(2)
zyx

 (1.10)

It is important to note that, as macroscopic quantities, P and F correspond to
averages of their microscopic counterparts over a region of the material that is large with
respect to its building blocks, but small enough with respect to the wavelengths of the
applied fields. In particular, although the same notation F is used for the field in equations
1.4, 1.8 and 1.9, the macroscopic Maxwell field is in general different from the local field
that is really felt by the molecule within its environment. This constitutes one of the
main difficulties in predicting the optical properties of a material from the properties of
its microscopic constituents.
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1.2 Common second-order NLO processes

Original property of photons in comparison of other elementary particles is that they
do not interact directly with one another. Therefore, when transformations of photons into
others are observed, it always occurs through interaction with another element, namely
the electrons that constitute the matter and that are characterized by discrete energetic
levels. So, the matter can absorb, emit or scatter photons, and by consequence give
rise to optical displacements. The scattering processes must be distinguished from the
absorption processes in the sense that they do not imply electronic transitions towards
any stationary electronic excited states of the system. By analogy to classical absorption
processes, optical scattering is often defined as the "absorption" and re-emission of one
or more photons through a virtual excited state. Second-order NLO scattering processes
involve various forms of 3-waves mixing, by frequency summation or difference. The
mixing of two optical waves within a medium can give rise to a scattered one, with
frequency:

ωσ = ω1 ± ω2 (1.11)

where ω1 and ω2 are the frequencies of the incident beams. The above summation is noted
(−ωσ;ω1, ω2), where the minus sign traduces the energy conservation principle.

Different values of the frequencies ω1 and ω2 give rise to different second-order NLO
phenomena. The most common ones are shown in Figure 1.1. Sum Frequency Generation
(SFG, χ(2)(−(ω1 +ω2);ω1, ω2)) implies the creation of a photon of frequency equal to the
sum of the frequencies of the incident fields. The particular case where the two incident
fields are degenerated (ω1 = ω2 = ω) corresponds to the phenomenon of Second Harmonic
Generation (SHG, χ(2)(−2ω;ω, ω)), in which the generated photon has a frequency which
is exactly the double of the one of the applied fields. The Difference Frequency Generation
(DFG, χ(2)(−(ω1 − ω2);ω1,−ω2)) process is related to the generation of a photon of
frequency corresponding to the difference between the frequencies of the incident fields.
Again, if the two incident fields are degenerated, this process is referred to as Optical
Rectification (OR, χ(2)(0;ω,-ω)), where a static field (ω=0) is generated. Finally, the
Electro-Optical effect (EO, χ(2)(−ω;ω, 0)), also called Pockels effect, corresponds to the
combination of a static field with an optical excitation field to provide an optical field
response.
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Figure 1.1 – Schemes of the most common second-order NLO phenomena. Horizontal
arrows represent static fields (ω=0).

1.3 Second Harmonic Generation

Among all the second-order phenomena, this thesis work mainly focuses on SHG,
firstly demonstrated by Franken and his colleagues in 1961.[4] As discussed in the previous
section, SHG, also called frequency doubling, is a nonlinear optical process, in which pho-
tons interacting with a nonlinear material are effectively combined to form new photons
having twice the frequency (or half the wavelength) of initial photons.

SHG has a broad field of applications, inluding photonics. One example of photonic
application is the data storage. The possibility to store information in coumarin-based
copolymer thin films by using photo-induced dimerization[5, 6] have been recently demon-
strated. Namely, the dimerization of coumarin moieties results in a local modification of
the SHG efficiency, which is, in turn, used to store the data. Molecular NLO switches,
namely nanoscale structures, including molecules, supramolecules, polymers, function-
alized surfaces, and crystalline/amorphous solids, have high potential for applications
in data storage, signal processing, and sensing.[7] They can commute between two or
more forms, displaying contrasts in their NLO properties. SHG is also widely used in
electro-optic (EO) devices.[8, 9] In particular, EO modulators based on organic materials
are preferred because of their ultra-high bandwidth and ultra-low energy.

Another very interesting application of SHG is the imaging microscopy. The first
biological sample observed by the SHG microscope was a rat-tail tendon, which has a
non-centrosymmetric structure owing to the alignment of polar collagen.[10] As the SHG
microscope is able to selectively observe the region in a sample where the spatial in-
version symmetry is broken, it is a valuable tool for investigating the molecular order-
ing and structural organization in biological samples.[11, 12] The main sources of endoge-
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nous SHG in biological samples are collagen,[13, 14] myosin[15, 16] and microtubule,[17] since
their polar structures are organized by non-centrosymmetric structural proteins. SHG
microscope has also been used for various medical applications such as the diagnosis
of collagen-related diseases and the detection of tumor-associated collagen as a cancer
biomarker.[18, 19] Besides imaging by endogenous SHG, exogenous staining enables visual-
ization of the plasma membranes and monitoring the change in the membrane potential
under the SHG microscope.[20, 21, 22, 23, 24, 25, 16] The distribution of lipid molecules between
the outer and inner leaflet of the membrane bilayer is asymmetric.[26, 27] This implies that
the cellular membranes are non-centrosymmetric, i.e., SHG-active. However, the SHG
signal generated by these membranes is not strong enough to be observed. To enhance
the SHG signal, the membranes are stained with amphiphilic polar dye molecules whose
chromophore consists of one π-conjugated chain terminated by electron donating and
accepting moieties (D-π-A conjugation).[28] Compared to two-photon absorption, the ad-
vantages of SHG microscopy are the absence of saturation (limitation in the maximum
number of photons that can be emitted in a given time), bleaching (destructive process
that arises when the dye is excited to a reactive state) and blinking (fluctuation in the
fluorescence from a transition to a dark state that cannot emit photons).[29]

1.4 Importance of symmetry

Both for molecules or materials, symmetry is a key aspect in the description of NLO
properties. In general, the number of independent components in the β or χ(2) tensors
(equations 1.5 and 1.10) are completely determined by symmetry. Hyperpolarizabilities
and macroscopic susceptibilities exhibit various types of symmetry: permutation symme-
try, time-reversal symmetry and symmetry in space.[30] The time-reversal and permutation
symmetries are fundamental properties of the NLO properties themselves, whereas the
spatial symmetry reflects the structural properties of the molecule/material. The conse-
quences of these three types of symmetry on the form of the β tensor are discussed below
in the case of a molecular SHG process.

1.4.1 Intrinsic symmetry of permutation

In the most general case, where the two excitations are non degenerate, the first
hyperpolarizability tensor contains 27 independent components, collected in a 9×3 matrix
(equation 1.5). In the case of two indiscernible incident photons, the following permutation
can be applied on the components of the β tensor:

βijk = βikj (1.12)
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Consequently, the number of independent components in the β can be reduced from 27
to 18:

β =

βxxx βxyy βxzz βxyz βxxz βxxy

βyxx βyyy βyzz βyyz βyxz βyxy

βzxx βzyy βzzz βzyz βzxz βzxy

 (1.13)

1.4.2 Kleinman’s symmetry

If the frequencies (incident and scattered ones) implied in NLO processes are far from
any absorption band of the molecule under study, the overall permutation symmetry can
be applied on the Cartesian components of the hyperpolarizability tensor, without any
changes of their values. This property is known as the time-reversal symmetry and was
first introduced by Kleinman:[31]

βkji = βijk (1.14)

Assuming the Kleinman’s conditions, the number of independent (nonzero) components
in the β tensor is reduced to 10:

β =

βxxx βxyy βxzz

βyxx βyyy βyzz

βzxx βzyy βzzz

+
[
βxyz

]
(1.15)

Note that the Kleinman’s permutation rule is an approximation, which is strictly verified
only in the static limit (ω = 0).

1.4.3 Molecular symmetry

Finally, the number of independent components in the β tensor also depends on
the symmetry of molecules. Let’s consider first the particular case of centrosymmetric
molecules, i.e. possessing a symmetry of inversion. Under this symmetry, the atomic
coordinates transform as:

x→ −x, y → −y, z → −z (1.16)

Consequently, the induced dipole and electric field components transform as:

µx = −µx, µy = −µy, µz = −µz
Fx = −Fx, Fy = −Fy, Fz = −Fz

(1.17)

Let’s now examine the effect of this symmetry on the β tensor components. From equation
1.8:

− µi = −µ0
i + αij(−Fj) + βijk(−Fj)(−Fk) + γijkl(−Fj)(−Fk)(−Fl) + ... (1.18)
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or
µi = µ0

i + αijFj − βijkFjFk + γijklFjFkFl + ... (1.19)

In virtue of the Neumann principle[32], which states that if a system is invariant with
respect to certain symmetry elements, any of its physical properties must also be invari-
ant with respect to the same symmetry elements, equalizing equations 1.8 and 1.19 leads
necessary to βijk = 0 whatever i, j and k. As a general rule, all even-order nonlinear
properties vanish in centrosymmetric systems.

To obtain all non-vanishing β tensor components for each group of symmetry, F. G.
Fumi has derived a simple scheme[33] called the “direct inspection method” based on the
fact that the components of a tensor always transform as the product of their respective
coordinates. As a consequence, a tensor component will be zero if its index changes sign
after a symmetry operation. As illustrative examples, the hyperpolarizability tensors for
the Td, C3v, C2v and C∞v point groups are given below:

β(Td) =

0 0 0 βxyz βxyz 0 0 0 0

0 0 0 0 0 βxyz βxyz 0 0

0 0 0 0 0 0 0 βxyz βxyz

 (1.20)

β(C3v) =

 0 0 0 0 0 βxzx βxxz −βyyy −βyyy
−βyyy βyyy 0 βxxz βxzx 0 0 0 0

βzxx βzxx βzzz 0 0 0 0 0 0

 (1.21)

β(C2v) =

 0 0 0 0 0 βxzx βxxz 0 0

0 0 0 βyyz βyzy 0 0 0 0

βzxx βzyy βzzz 0 0 0 0 0 0

 (1.22)

β(C∞v) =

 0 0 0 0 0 βxzx βxxz 0 0

0 0 0 βxxz βxzx 0 0 0 0

βzxx βzxx βzzz 0 0 0 0 0 0

 (1.23)

1.5 Experimental measurements of molecular second-

order NLO responses

1.5.1 Electric Field-Induced Second Harmonic Generation

Historically, the first technique developed to measure molecular second-order NLO
responses is the Electric Field-Induced Second Harmonic (EFISH) generation. EFISH
has been first observed in solids in 1962[34] and in gases few years later (1971).[35, 36] The
first hyperpolarizability β of chromophores in solution were measured for the first time by
Levine and Bethea in 1975.[37, 38] In the EFISH technique, the centrosymmetry is broken
by applying a static external electric field. By action of this external static field, the
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dipolar molecules align themselves along the direction of the field. The light intensity
scattered by this oriented solution is then measured at a frequency twice the fundamental
frequency of an incident laser pulse. (Figure 1.2)

Figure 1.2 – Principle of the EFISH technique.

Since three external fields (one static and two optical) are implied in the process,
EFISH is a third-order technique. The intensity of the light at 2ω is thus proportional to
the square of the third-order term γEFISH :

I2ω ∝ (γEFISH)2 (1.24)

The γEFISH term can be written as the sum of two contributions:

γEFISH = γ//(−2ω;ω, ω, 0) +
µβ//(−2ω;ω, ω)

3kT
(1.25)

where the first term is a third-order contribution, implying two optical fields at frequency
ω and a static field (ω = 0). The second term is a second-order contribution, which
depends on the temperature and implies the dipole moment of the dyes and the quantity
β//. β// is the projection of the β vector onto the dipole moment axis of the molecules,
and can be expressed as:

β//(−2ω;ω, ω) =
3

5

x,y,z∑
i

µiβi
‖−→µ ‖ =

1

5

x,y,z∑
i

µi
‖−→µ ‖

x,y,z∑
j

(βijj + βjij + βjji) (1.26)

where ‖−→µ ‖ is the norm of the dipole moment, µi are the components of the dipole mo-
ment and βi are the components of the vector representation of β, which are expressed
by a simple sum of the β-tensor components (βi = βijj + βjij + βjji).

In order to experimentally obtain the two contributions of the γEFISH response,
γ// and β//, experiments should be carried out at different temperatures. However, this
is scarcely done because the range of accessible temperatures is narrow and because, in
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practice, the third-order contribution γ// is considered as negligible with respect to the
second-order term. In many experimental data analyses, the EFISH response is thus
interpreted as an effective second-order response:

γEFISH ≡
[µβ//(−2ω;ω, ω)]eff

3kT
(1.27)

Note that, although this assumption was substantiated for highly dipolar compounds
with large β responses, recent calculations demonstrated that the γ// contribution cannot
be always omitted because it can be large, or even dominant with respect to the β//
counterpart.[39]

1.5.2 Hyper-Rayleigh Scattering

Unlike EFISH, the Hyper-Rayleigh Scattering (HRS) technique enables direct esti-
mates of the second-order NLO properties of molecules, without contamination of higher-
order responses. In HRS experiments, the first hyperpolarizability is derived from the
intensity of the scattered light at optical frequency 2ω on incidence of a laser pulse at ω.
Contrary to EFISH, the HRS signal originates from incoherent fluctuations of individual
molecules that do not exhibit specific phase relations with respect to the others. Another
important advantage of HRS over EFISH lies in the fact that it is applicable to nonpolar
and ionic molecules. The principle of HRS is illustrated on Figure 1.3, where (X,Y,Z) is
the laboratory frame.

Figure 1.3 – Principle of the HRS technique.

1.5.2.1 Intensity of the harmonic light

For a non-polarized incident light of frequency ω, the intensity of the vertically
polarized (parallel to the Z axis of the laboratory frame) SHG signal, scattered at 90◦

with respect to the propagation direction (parallel to the Y axis), is proportional to the
square of the HRS hyperpolarizability:

βHRS(−2ω;ω, ω) = βHRS =
√
〈β2

HRS〉 =
√
〈β2

ZZZ〉+ 〈β2
ZXX〉 (1.28)
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where 〈β2
ZZZ〉 and 〈β2

ZXX〉 are averages of β tensor components that describe the isotropic
distribution of molecular orientations in dilute solutions. The 〈β2

ZZZ〉 and 〈β2
ZXX〉 quan-

tities are respectively related to the scattered HRS intensities obtained when the incident
light is vertically (V) polarized (parallel to the Z axis, i.e. for a polarization angle Ψ = 90◦)
and horizontally (H) polarized (parallel to the X axis, with Ψ = 0◦). For a sample made
of two components, a solute and a solvent, the intensity of the second-harmonic light in
the VV and HV configurations is is given as a simple sum of contributions of both species:

IV V2ω = Gf 2
L

[〈(
βSZZZ

)2
〉
CS +

〈(
βXZZZ

)2
〉
CX

]
I2
ω 10−A(2ω)CX (1.29)

IHV2ω = Gf 2
L

[〈(
βSZXX

)2
〉
CS +

〈(
βXZXX

)2
〉
CX

]
I2
ω 10−A(2ω)CX (1.30)

where G includes all the experimental factors, CS and CX are respectively the solvent and
solute concentrations, Iω is the intensity of the incident light, and the term 10−A(2ω)CX

accounts for the possible absorption at frequency 2ω. fL is a local field correction, which
accounts for the effects of induced dipoles in the medium through electronic polarization.
It is usually approximated using the high frequency Lorentz–Lorenz spherical cavity ex-
pression, which includes the refractive indices of the liquid at the optical frequencies ω
and 2ω.[40]

In order to obtain solely the β response of the solute, the contribution of the solvent
has to be removed. To this end, two methods can be used. The first and most simple one
is the internal reference method, which consists in using a series of samples with different
concentrations CX . According to equations 1.29 and 1.30, the intensity at 2ω plotted
against CX gives a straight line whose intercept corresponds to the contribution of the
solvent. Note that this method can only be employed when the solvent has a significant
HRS signal. If the solvent has no or weak HRS response, a molecule with a known HRS
response is used as external reference.

As also demonstrated by equations 1.29 and 1.30, the intensity of the second-
harmonic light has a quadratic dependence on the intensity of the incident light and
a linear dependence on the solute concentration. The evolution of the HRS intensity
with respect to the solute concentration and to the incident power is illustrated in Fig-
ure 1.4. Orientational averages of the molecular tensor components, 〈β2

ZZZ〉 and 〈β2
ZXX〉,

are extracted from the best fit (blue surface) to experimental results in the VV and HV
geometries, respectively.
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Figure 1.4 – Experimental (points) and fitted curves (lines) of the second-harmonic light
intensity, as a function of the incident power and concentration of a typical NLO chro-
mophore.

Assuming a more general elliptically polarized incident light and a phase retardation
of π/2 (in accordance with the setting used by our collaborators), the intensity of the
harmonic light collected perpendicular to the incident beam and vertically (V) polarized
is given by the following expression:[41]

IΨV
2ω ∝ 〈β2

ZXX〉 cos4 Ψ + 〈β2
ZZZ〉 sin4 Ψ + 〈(βZXZ + βZZX)2 − 2βZZZβZXX〉 cos2 Ψ sin2 Ψ

= 〈β2
ZXX〉 cos4 Ψ + 〈β2

ZZZ〉 sin4 Ψ + (7〈β2
ZXX〉 − 〈β2

ZZZ〉) cos2 Ψ sin2 Ψ

(1.31)

The evolution of the HRS intensity IΨV
2ω with respect to the polarization angle Ψ of the

incident light is exemplified in Figure 1.5 for a typical NLO chromophore.
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The orientationally averaged tensor quantities 〈β2
ZZZ〉, 〈β2

ZXX〉 and 〈(βZXZ + βZZX)2 −
2βZZZβZXX〉 can be expressed in terms of molecular β tensor components by the equations
below:

〈β2
ZZZ〉 =

1

7

x,y,z∑
ζ

β2
ζζζ +

4

35

x,y,z∑
ζ 6=η

β2
ζζη +

2

35

x,y,z∑
ζ 6=η

βζζζβζηη

+
4

35

x,y,z∑
ζ 6=η

βηζζβζζη +
4

35

x,y,z∑
ζ 6=η

βζζζβηηζ +
1

35

x,y,z∑
ζ 6=η

β2
ηζζ

+
4

105

x,y,z∑
ζ 6=η 6=ξ

βζζηβηξξ +
1

105

x,y,z∑
ζ 6=η 6=ξ

βηζζβηξξ

+
4

105

x,y,z∑
ζ 6=η 6=ξ

βζζηβξξη

+
2

105

x,y,z∑
ζ 6=η 6=ξ

β2
ζηξ +

4

105

x,y,z∑
ζ 6=η 6=ξ

βζηξβηζξ

(1.32)

〈β2
ZXX〉 =

1

35

x,y,z∑
ζ

β2
ζζζ +

4

105

x,y,z∑
ζ 6=η

βζζζβζηη −
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35

x,y,z∑
ζ 6=η

βζζζβηηζ

+
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105

x,y,z∑
ζ 6=η
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ζζη +

3

35
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ζ 6=η

β2
ζηη −
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35
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βζζηβηζζ

+
1
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βζηηβζξξ −
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ζ 6=η 6=ξ

βζζξβηηξ
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(1.33)

〈(βZXZ + βZZX)2 − 2βZZZβZXX〉 =
3

35

x,y,z∑
ζ

β2
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1

105
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ζ 6=η

βζζζβζηη +
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70
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(1.34)
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1.5.2.2 Depolarization ratio

The depolarization ratio, corresponding to the ratio between the HRS intensities
collected in the VV and HV optical geometries, is also measured as an important indicator
of the symmetry of the NLO response:

DR =
〈β2

ZZZ〉
〈β2

ZXX〉
(1.35)

As discussed in section 1.4.3, in the Td symmetry, βxyz is the only non-zero component.
Therefore, the orientationally averaged tensor quantities 〈β2

ZZZ〉 and 〈β2
ZXX〉 are calcu-

lated as:
〈β2

ZZZ〉 =
36

105
β2
xyz (1.36)

〈β2
ZXX〉 =

24

105
β2
xyz (1.37)

which gives:

DR =
36

105
× 105

24
= 1.50 (1.38)

The DR value of 1.5 thus corresponds to the response of a purely octupolar system.

Another typical example is the C2v symmetry, which is often assumed for describing
planar push-pull molecules. For a molecule lying in the xz plane with z the charge transfer
axis, βzxx, βzyy and βzzz are the three independent tensor components. Assuming that the
out-of-plane component is negligible with respect to the in-plane components (βzyy = 0),
the DR can be written as:

DR =
15 + 18R + 27R2

3− 2R + 11R2
(1.39)

with R = βzxx/βzzz. In the limit case where R−→0, i.e. when the hyperpolarizability
tensor is reduced to its single diagonal component along z, the corresponding DR is equal
to 5.00, and the system is said to have a 1D NLO response.

If we look now at the C∞v symmetry, βzxx and βzzz are the two independent tensor
components, and the DR becomes:

DR =
15 + 36R + 72R2

3− 4R + 20R2
(1.40)

with R = βzxx/βzzz. Again, when R−→0, the corresponding DR is equal to 5.00 and the
system has a 1D NLO response, while when R = 1/3, the DR is equal to 9.00 and the
response is said to be purely dipolar. The evolution of the DR with respect to R in the
case of the C2v and C∞v symmetries is illustrated in Figure 1.6.
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Figure 1.6 – Evolution of the depolarization ratio (DR) with respect to R in the case of
the C2v and C∞v symmetries.

The DR, and more globally the shape of the normalized HRS intensity with respect
to the polarization angle of the incident laser beam, provide therefore important infor-
mation on the symmetry of the NLO-responsive part of the molecule. This is illustrated
in Figure 1.7 for a set of small reference molecules, differing by their symmetry.[42] As
the symmetry is progressively decreased from CCl4 (which has a pure octupolar symme-
try and a Td point group) to acetonitrile (which is almost a pure dipolar molecule if we
consider that the methyl group has a negligible contribution to the NLO response), the
DR increases from 1.5 to 9. Accordingly, the shape of the normalized HRS intensity as a
function of the polarization angle of the incident beam is changing progressively from a
four-lobes to a two-lobes pattern.
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Figure 1.7 – DR (up) and normalized HRS intensity (down) of small reference molecules.

1.5.2.3 Irreducible spherical representation of the hyperpolarizability

From an experimental point of view, there are several obvious drawbacks to use
Cartesian coordinates to study isotropic media. Indeed, the use of Cartesian coordinates
implies symmetry assumptions about the different β-components of the molecules. On
the other hand, the arbitrary orientation of the Cartesian axes used in theoretical calcula-
tions is a possible source of misfit with experimental data. For low-symmetry structures,
it is often more convenient to use the irreducible spherical representation of the hyper-
polarizability β tensor based on a mixed spherical-Cartesian formalism to analyze HRS
measurements in terms of multipolar components. The use of spherical invariants allows
the β-tensor to be decomposed as the sum of dipolar (βJ=1) and octupolar (βJ=3) ten-
sorial components. With this formalism, the three HRS invariants 〈β2

ZZZ〉, 〈β2
ZXX〉 and

〈(βZXZ + βZZX)2 − 2βZZZβZXX〉 involved in equation 1.31 can be rewritten as:

〈β2
ZZZ〉 = |βJ=1|2

(
9

45
+

6

105
ρ2

)
(1.41)

〈β2
ZXX〉 = |βJ=1|2

(
1

45
+

4

105
ρ2

)
(1.42)

〈(βZXZ + βZZX)2 − 2βZZZβZXX〉 = |βJ=1|2
(
− 2

45
+

22

105
ρ2

)
(1.43)

and equation 1.31 becomes:

I2ω
ΨV ∝|βJ=1|2

(
1

45
+

4

105
ρ2

)
×
[
cos4 Ψ + (DR) sin4 Ψ + (7−DR) cos2 Ψ sin2 Ψ

] (1.44)
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where the nonlinear anisotropy parameter, ρ = |βJ=3|/|βJ=1| denotes the relative mag-
nitude of the octupolar and dipolar contributions to the first hyperpolarizability tensor,
and provides an alternative to DR for classifying the studied systems in terms of their oc-
tupolar or dipolar character. The relationships between βHRS and DR and the multipolar
contributions are the following:

βHRS = |βJ=1|
√

2

3

(
1

3
+

1

7
ρ2

)
(1.45)

DR =
9(1 + 2

7
ρ2)

1 + 12
7
ρ2

(1.46)

1.6 Examples of organic molecules with large second-

order NLO properties

In their review of 1994,[43] Kanis, Ratner and Marks proposed to categorize the
materials displaying NLO properties in three generic classes: multilayered semiconductors,
molecular based macroscopic assemblies and inorganic solids, each class possessing its own
fields of potential or existent application. Traditionally the NLO materials of choice were
the inorganic solids, such as LiNbO3 and KH2PO4 for example. However, many research
works conducted in the last 20 years showed that the organic π-electron assemblies possess
attractive NLO characteristics, which can be combined with their intrinsic advantages
such as flexibility, tailored synthesis, low cost or easy processing.[44, 45, 46, 47, 48] We give
here a short review of the main classes of organic compounds that have been shown of
interest regarding their second-order NLO properties.

1.6.1 π-conjugated donor-acceptor molecules

Organic chromophores having the ability to deliver high β values are most often
associated to dipolar push–pull chromophores having a D-π-A architecture, in which an
electron-donating group (D) interacts with an electron-withdrawing group (A) through a
π-conjugated linker. These molecules usually display significant charge transfer between
the D and A sites giving rise to intense absorption in the visible region. A large series
of such push-pull chromophores were studied according to their second-order nonlinear
properties, including benzobisthiazoles,[49] phthalocyanines,[50] polyaniline oligomers,[43]

push-pull polyenes[51, 52, 53] and polymethineimines.[54] Figure 1.8 reports information on
the magnitude of second-order responses in some representative π-conjugated molecules,
in relation with their structural properties. These data evidence that second-order NLO
responses can be enhanced either by increasing the electronic asymmetry (using stronger
donating or accepting moieties), or by increasing the conjugation length between the sub-
stituents.
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values (in 10−30 cm5 esu−1) of small compounds were obtained from EFISH measurements
using an incident laser beam of 1910 nm (ref. [43]). Compounds with very large second-
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Another related structural parameter having a direct impact on the first hyperpolar-
izability of push-pull molecules is the bond-length alternation (BLA) along the conjugated
backbone, i.e. the average difference in length between single and double bonds. For in-
stance, considering the polyene oligomers with the resonance structures shown in Figure
1.9, the BLA can be defined as the difference between the average length of the C=C
bonds and the average length of the C–C bonds. By performing semi-empirical calcula-
tions on the Me2N-(CH=CH)n-CHO oligomers, Marder and collaborators first evidenced
the structure-property relationship linking the first hyperpolarizability to the BLA.[59, 60]

As a representative example, the evolution of β with the BLA for n = 5 is reported in
Figure 1.9 and shows that β exhibits a positive peak between the neutral (a) and the cya-
nine (b) limits, crosses through zero at roughly the cyanine limit, and exhibits a negative
peak between the cyanine and zwitterionic (c) limits.
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Figure 1.9 – Top: Neutral (a), cyanine (b) and zwitterionic (c) resonance structures that
contribute to the electronic structure of polyene molecules. Bottom: Correlation of the
first-hyperpolarizability with BLA in the Me2N-(CH=CH)5-CHO molecule (adapted from
ref. [60]).

The relationship between the BLA and the magnitude of the β responses was also
evidenced recently in merocyanine derivatives[61] (see Figure 1.10). In this case, a quasi-
linear β-BLA relationship was evidenced when varying the nature of the chemical sub-
stituents. The larger β values and more positive BLA are associated with a more aromatic
structure whereas the opposite trend corresponds to a quinoid ring structure.
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The change in the BLA is also often invoked in experimental works to explain
the dependence of the NLO responses on the solvent. In fact, interactions with solvent
induce geometrical changes in the conjugated part of the solute, resulting in changes
in the BLA, which in turn lead to a modification of its NLO properties. This is also
true in the case of the second hyperpolarizability γ. For instance, the solvent-dependent
second hyperpolarizabilities observed in a variety of unsaturated organic compounds by
Marder and collaborators were associated with changes in the BLA, from a highly bond-
length alternated structure for a formyl-substituted compound in non-polar solvents to a
cyanine-like structure, with little bond-length alternation, for a dicyanovinyl-substituted
compound in polar solvents.[62]

1.6.2 Octupolar molecules

Whereas there have been countless efforts in the optimization of the NLO dipolar
derivatives, octupolar derivatives have been much less investigated. Yet, compared to
their dipolar counterparts, they possess several characteristics that are quite favorable
for electro-optical applications: increased transparency, absence of dipole moment, and
insensitivity to polarization. Among octupolar derivatives, two-dimensional derivatives
with ternary symmetry have proven to be of major interest, leading to potentially very
high β values. A typical example of this type of molecules is the 1,3,5-triamino-2,4,6-
trinitro-benzene (TATB) shown in Figure 1.11. Theoretical investigations carried out by
Brédas et al.[63] have shown that the β response of the TATB is twice larger than the one
obtained for the paranitroaniline (pNA) molecule, its dipolar counterpart.

25



Figure 1.11 – Structure of the 1,3,5-triamino-2,4,6-trinitrobenzene (a) and paranitroaniline
(b) molecules.

Other examples of octupolar NLO-phores have been designed. As shown in Figure
1.12, they are generally built from either an electron-withdrawing core (such as tricyano
or trinitrobenzene, triazines, isocyanurates, boroxines, truxenone, etc.)[64] or an electron-
donating core (trimethoxy-benzene, triphenylbenzene, triphenylamine, etc.).[64] Crystal
violet (CV in Figure 1.12), the prototypical compound of this kind, has been studied
by Wenseleers and collaborators by means of tunable wavelength HRS measurements.[65]

Octupolar meroocyanine dyes 1-4 displayed in Figure 1.12 were also shown to exhibit
high HRS responses.[66]
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Chapter 2
Theoretical methods

This chapter reviews the theoretical methods employed in this thesis, based on
quantum mechanics and classical dynamics. The principles of these methods, as well
as the key equations are given to facilitate the understanding. First, the wavefunction
methods are introduced from the Schrödinger equation. Then, one of the earliest method,
the Hartree-Fock (HF) method, is described, followed by post HF methods accounting for
electron correlation. Next, Density Functional Theory (DFT) is described. Methods to
evaluate and analyze the second-order NLO properties are presented, the Time-Dependent
DFT approach (TD-DFT), a simplified TD-DFT approach and the Finite Field (FF)
approach. In the last part, the principles of classical Molecular Dynamics (MD) simulation
are presented.

2.1 Wavefunction methods

At the end of the 19th century, electromagnetism and classical mechanics were
successful in rationalising all physical phenomena. However, it became soon clear that
the behaviour of elementary particles was not governed by classical laws. The Planck
“quantisation” (1900)[1] being the first crack of the classical edifice, it was not long before
Newton’s old suggestion of light consisting in particles revived through Einstein’s key
experiment of the photoelectric effect (1905)[2] and subsequent avant-garde light quantum
hypothesis. Unravelling the schizophrenic behaviour of light paved the way for the ground
breaking proposition of De Broglie who postulated that matter was also subject to the
so-called wave-particle duality (1924).[3] The need for a wave equation to support a wave
theory of matter was fulfilled two years later when Schrödinger came up with the most
fundamental equation of quantum mechanics.

2.1.1 Schrödinger equation and wavefunction

As a consequence of the probabilistic aspect of the quantum theory, a new math-
ematical tool, the wavefunction Ψ, was introduced to treat the possible positions of the
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particles. This function depends on all the space (ri) and spin (σi) coordinates of the
particles i constituting the system, as well as on the time t. For a system of N particles,
the notation Ψ(x, t) is used in the following, where x = {x1, ...,xN} is a contraction of
the 4 spin-space coordinates of particle i. Having no physical meaning itself, the square
modulus of Ψ represents the probability density for the particles to be distributed in given
points of space r = {r1, ..., rN} at a time t. Because of this probabilistic interpretation, a
normalization constraint is imposed to the wavefunction at any time t:

〈Ψ(x, t)|Ψ(x, t)〉 =

∫
...

∫
|Ψ(x, t)|2dx = 1 (2.1)

As stated by the first postulate of quantum mechanics, the wavefunction completely de-
fines the state of the system of particles and is sufficient to calculate any of its proper-
ties. Considering a typical molecular system composed of N electrons and M nuclei (of
coordinates R = {R1, ...,RM}), the wavefunctions Ψ(x,R, t) are found by solving the
time-dependent Schrödinger equation:

i~
∂

∂t
Ψ(x,R, t) = Ĥ(r,R, t)Ψ(x,R, t) (2.2)

with ~ the reduced Planck constant and Ĥ(r,R,t) the Hamiltonian of the system. How-
ever, one is usually dealing with stationary states so that the Ĥ operator does not ex-
plicitly depend on time. The Schrödinger equation reduces then to its time-independent
formulation:[4]

ĤtotΨ(x,R) = EtotΨ(x,R) (2.3)

where Ψ(x,R) is the time-independent wavefunction, Etot is the total energy and Ĥtot the
total Hamiltonian of the system. The latter can be written as the sum of the kinetic and
potential energies of the nuclei and electrons:

Ĥtot = T̂n + T̂e + V̂ne + V̂ee + V̂nn (2.4)

with T̂n and T̂e the nuclear and electronic kinetic energy operators, V̂ne the attractive
interaction between nuclei and electrons, V̂ee the repulsive electron-electron interaction
and V̂nn the repulsive interaction between nuclei. In atomic units, Ĥtot is defined as:

Ĥtot = −
M∑
a=1

1

2ma

∇2
a −

N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
a=1

Za
ria

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
a=1

M∑
b>a

ZaZb
Rab

(2.5)

where ma is the mass of the atom a, Za and Zb the nuclei charges of atom a and b respec-
tively, Rntab the distance between the nuclei a and b, ria the distance between the nucleus
a and electron i and rij the distance between electrons i and j.
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Because of the complexity associated with interdependency in the motion of the
particles, exact solutions of the Schrödinger equation only exist for a small set of simple
quantum systems such as the hydrogen atom or hydrogenoïd ions. Therefore, several
approximations are typically used, as described below.

2.1.2 Born-Oppenheimer approximation

Considering that the nuclei are moving much more slowly than the electrons, be-
cause neutrons and protons are more than 1800 times heavier in mass than electrons, one
can assume that the electronic cloud somehow instantaneously adapts to the molecular
geometry. Born and Oppenheimer proposed in 1927 to decouple the electronic and nu-
clear motions.[5] This approximation, referred to as the Born-Oppenheimer or adiabatic
approximation, results in neglecting the kinetic energy of the nuclei (Tn) and considering
the interactions between nuclei (Vnn) to be a constant for a given geometry. The remaining
electronic Hamiltonian depends explicitly on the electron coordinates (only parametrically
on the nuclear positions) and is defined as:

Ĥel = T̂e + V̂ne + V̂ee (2.6)

The total molecular wavefunction can then be factorized as follows:

ΨBO(r,R) = Ψelec(r,R)Ψnuc(R) (2.7)

with Ψelec the electronic wavefunction and Ψnuc the nuclear wavefunction. Ψelec is de-
termined by solving the Schrödinger equation for the electrons alone in the field of the
fixed nuclei. In this picture, nuclei are moving on a potential energy surface (PES) that
is solution of the electronic Schrödinger equation.

In the framework of the Born-Oppenheimer approximation, one still cannot find
solutions to the electronic Schrödinger equation for polyatomic systems containing more
than one electron and further approximations have to be introduced.

2.1.3 Hartree-Fock method

Based on the variational principle,[6] which states that the energy of an approximate
wavefunction is always higher than the exact energy E0, the Hartree-Fock model[7, 8] allows
the determination of the “best” electronic wavefunction Ψelec, considering that it can be
approximated by an antisymmetrised product of N one-electron wavefunctions, i.e., a
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unique Slater Determinant:

ΨHF(x1, ...xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) ... φN(x1)

φ1(x2) φ2(x2) ... φN(x2)

... ... ... ...

φ1(xN) φ2(xN) ... φN(xN)

∣∣∣∣∣∣∣∣∣∣
(2.8)

where the spin-orbitals φ(xi) are defined as the product between a molecular orbital (MO)
and a spin function: φ(xi) = ϕ(ri)ξ(σi). From a trial Slater Determinant, the variational
principle can be applied to generate the “best” one that minimises the electronic energy,
the expected energy being calculated as:

E = 〈ΨHF
trial|Ĥ|ΨHF

trial〉 ≥ E0 (2.9)

The HF energy is the expectation value of the electronic Hamiltonian operator on the ΨHF

wavefunction. Introducing equation 2.8 into 2.9 gives rise to the following expression:

EHF =
N∑
i=1

hii +
N∑
i=1

N∑
j=1

(Jij −Kij) (2.10)

where the sums run over the N occupied spin-orbitals φi and where different integrals are
introduced:

hii = 〈φi(ri)|ĥ|φi(ri)〉 (2.11)

is the average energy of an electron in the field of the nuclei (i.e., the sum of the kinetic
energy of the electron and the attractive interaction), where ĥ = −1

2
∇2
i −
∑m

a=1
Za
ria

is the
one-electron Hamiltonian from the independent model,

Jij = 〈φi(ri)φj(rj)|
1

rij
|φi(ri)φj(rj)〉 (2.12)

is the Coulomb integral, describing the electrostatic repulsion between two the electronic
density distributions |φi(ri)|2 and |φj(rj)|2 created by electrons i and j, and

Kij = 〈φi(ri)φj(ri)|
1

rij
|φj(rj)φi(rj)〉 (2.13)

is the exchange integral, which has no classical equivalent and arises from the antisym-
metry condition imposed to the wavefunction.

By minimising the expectation value of the energy via the variational method, one
can show that the optimal spin-orbitals φi are eigenfunctions of the effective one-electron
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Fock operator f̂i and satisfies the so-called Hartree-Fock equations:

f̂iφi = εiφi (2.14)

where εi is the energy of the spin-orbital φi and the Fock operator is expressed as:

f̂i = ĥi +
N∑
j=1

(Ĵj − K̂j) (2.15)

in which Ĵj and K̂j are the Coulomb and Exchange operators, defined below with respect
to their action on a spin-orbital φi:

Ĵjφi(ri) =

(
〈φj(rj)|

1

rij
|φj(rj)〉

)
φi(ri) (2.16)

K̂jφi(ri) =

(
〈φj(rj)|

1

rij
|φi(rj)〉

)
φj(ri) (2.17)

As evidenced by the above equations, the Coulomb operator, which accounts for the
interaction between an electron at position ri and the average charge distribution of an-
other electron in the spin-orbital φj, is multiplicative, while the exchange operator is
non-multiplicative as it involves a permutation between the coordinates of electrons i and
j.

The equations above clearly evidence that, in the HF framework, each electron is
moving in the average electrostatic field created by all the other electrons. Moreover,
one can notice that the term i = j is allowed in the double summation of equation 2.9,
meaning that the HF energy includes the interaction of an electron with itself. As a con-
sequence, the Coulomb integral will not be equal to zero even if one computes the energy
of a one-electron system, where there is obviously strictly no electron-electron repulsion.
This physical nonsense, known as the self-interaction error, is well handled in the HF for-
malism as for i = j Coulomb and exchange terms are strictly equal and therefore exactly
cancel. But we will see in Section 2.2 that the balance between exchange and correlation
becomes a major issue in the Density Functional Theory (DFT).

As the Fock operator depends on the orbitals that themselves enter the expression
of the Coulomb and exchange operators, the problem has to be solved by an iterative
procedure referred to as the Hartree-Fock Self-Consistent Field (SCF). Starting from a
set of N trial spin-orbitals φ(trial)

i , the energy E(trial) is calculated. In a second step, the
Fock operator f̂ (1)

i is formed and the Hartree-Fock equations solved, giving a new set of
spin-orbitals φ(1)

i that is used in the next iteration where a new energy E(1) is calculated, as
well as a new Fock operator f̂ (2)

i . This cycle continues until the new set of orbitals differs
by less than a predefined threshold from the orbitals used to build the Fock operator, i.e.
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until self-consistency is reached.

2.1.4 Roothaan-Hall approximation

If the method briefly described above is sufficient in the case of atoms and some
diatomic molecules, one has to rely on the Roothaan-Hall approximation[9, 10] to solve
the Hartree-Fock equations for non linear molecules. In this formalism, the molecular
orbitals ϕi are expanded as linear combinations of a finite number of known basis functions
χp centered on the atomic nuclei, usually referred to as atomic orbitals even if their
mathematical definition is more general:

ϕi =
K∑
p

Cpiχp (2.18)

The expansion coefficients Cpi gives the weight of the p-th atomic orbital χp in the i-th
molecular orbital ϕi and K is the dimension of the basis set, i.e. the number of basis
functions. Note that the use of a complete basis set (i.e. K =∞) leads to the wavefunc-
tion corresponding to the lowest possible energy within the HF approach, referred to as
the Hartree-Fock limit.

Substituting the MO expansion (equation 2.18 ) in the Hartree-Fock equations
yields:

f̂i

(
K∑
p

Cpiχp

)
= εi

K∑
p

Cpiχp (2.19)

Multiplying by χq on both sides and integrating leads to the Roothaan-Hall equations:

K∑
p

Cpi〈χp|f̂i|χq〉 = εi

K∑
p

Cpi〈χp|χq〉 (2.20)

That can be expressed in the matrix form:

fC = εSC (2.21)

where S is the overlap matrix with elements Spq = 〈χp|χq〉 and f is the Fock matrix with
elements fpq given by :

fpq = 〈χp|ĥ|χq〉+
N∑
j

(
2〈χp|Ĵj|χq〉 − 〈χp|K̂j|χq〉

)
(2.22)

Using the expressions of the Coulomb and exchange operator (equations 2.16 and 2.17)
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and the Roothan expansion of the MOs ϕj(rj),

fpq = hpq +
N∑
j

K∑
r

K∑
s

CjrCjs[2(pq|rs)− (pr|qs)] (2.23)

where the first term hpq = 〈χp|ĥ|χq〉 accounts for the one electron part, while the (pq|rs)
and (pr|qs) terms correspond respectively to the two-electron Coulomb and exchange
integrals, written using the standard chemist’s notation:

(pq|rs) =

∫∫
χp(ri)χ

∗
q(ri)

1

rij
χr(rj)χ

∗
s(rj)dridrj (2.24)

The orbitals χp and χq associated to electron number 1 are centered on atoms p and q,
and equivalently, the orbitals χr and χs associated to electron number 2 are centered on
the atoms r and s.

The expansion coefficients obtained by solving the Roothaan-Hall equations also
appear in the definition of the Fock operator, so that these coefficients serve as adjustable
parameters in a SCF iteration procedure. Given a defined basis set, an initial guess is
made for the Cpi coefficients and the fpq elements are calculated. By diagonalisation of
the fpq − εiSpq matrix, one can determine the εi and generate a new set of expansion
coefficients, used in turn to define a new Fock operator and so on. The procedure stops
when a predefined convergence criterion is reached (generally comparing the difference in
the “new” and “old” total energies).

2.1.5 Electron correlation and post Hartree-Fock methods

By considering, through the Fock operator, that each electron is moving in the
average electrostatic field created by all the other electrons, the Hartree-Fock method
improperly treats the correlation between the motion of the electrons, as the instantaneous
repulsion between them is neglected. Consequently, electrons virtually get “too close” to
one another and the electron-electron repulsion energy is overestimated, and so is the
electronic energy. The difference between the HF limit EHF and the exact energy Eexact
is the so-called electron correlation energy:

Ecorr = Eexact − EHF (2.25)

Two contributions to the correlation are generally distinguished: the Fermi correlation,
that deals with electrons of same spin, and the Coulomb correlation, that accounts for
interactions between all electrons. While the HF approximation accounts for exchange
interactions (inherent to the antisymmetric nature of the wavefunction, i.e. the Slater
Determinant) and Fermi correlation, the Coulomb correlation is completely neglected.
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As a matter of fact, provided one is using an extended basis set to solve the HF
equations, 99% of the total energy can be accounted for. However, the missing ∼1%
corresponding to Coulomb correlation may turn out to be determining in the description
of some properties, including the NLO responses that are the subject of this thesis. Using
HF method as starting point, several post Hartree-Fock methods[11] have been developed
to improve Ecorr to various extents. Among these, the Møller-Plesset Perturbation Theory
(MPx), used in this thesis, is reviewed in detail in the following section. Note that
other approaches, not described here, are also available such as Configuration Interaction
(CI), Multi-Configuration Self-consistent Field (MCSCF), and Coupled-Cluster Theory
(CC).[11, 12]

2.1.6 Møller-Plesset Perturbation Theory

The Møller-Plesset (MPx) Perturbation Theory method is based on the Rayleigh-
Schrödinger perturbation theory. It treats electron correlation as a perturbation to the
zeroth-order Hartree-Fock Hamiltonian. The total and exact Hamiltonian is divided into
the unperturbed Hamiltonian Ĥ0 and the perturbation λĤ ′, as follows:

Ĥ = Ĥ0 + λĤ ′ (2.26)

where λ is an ordering parameter that is eventually set equal to 1 and λĤ ′ is small
with respect to Ĥ0. The unperturbed Hamiltonian Ĥ0 is defined as the HF Hamiltonian,
expressed as the sum of Fock operators defined in equation 2.15:

Ĥ0 =
N∑
i=1

f̂i (2.27)

Thus, the perturbation λĤ ′ is the difference between the exact electronic Hamiltonian
and the HF Hamiltonian. From the Schrödinger equation, the problem to be solved is:

(Ĥ0 + λĤ ′)|Ψ〉 = E|Ψ〉 (2.28)

According to the Rayleigh-Schrödinger perturbation theory, the exact wavefunction and
energy can be expanded in Taylor series of λ:

|Ψ〉 = |Ψ(0)〉+ λ|Ψ(1)〉+ λ2|Ψ(2)〉+ λ3|Ψ(3)〉+ · · · (2.29)

E = E(0) + λE(1) + λ2E(2) + λ3E(3) + · · · (2.30)

For non-degenerated states, the nth-order energy terms E(n) are expressed in term
of the (n− 1)th order wavefunction |Ψn−1〉):
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E(0) = 〈Ψ(0)|Ĥ0|Ψ(0)〉 (2.31)

E(1) = 〈Ψ(0)|λĤ ′|Ψ(0)〉 (2.32)

E(2) = 〈Ψ(0)|λĤ ′|Ψ(1)〉 (2.33)

· · ·

Thus, the HF ground state energy is simply the sum of the zeroth- and first-order energies:

EHF = E(0) + λE(1) (2.34)

The correlation energy can then be written as:

Ecorr = λ2E(2) + λ3E(3) + λ4E(4) + · · · (2.35)

The first improvement to the HF energy, and the dominant one, is the second-order energy
E(2), expressed as:

E(2) =
∑
i>j

∑
a>b

|〈ab|ij〉 − 〈ab|ji〉|2
εi + εj − εa − εb

(2.36)

where i, j stand for occupied MOs, while a, b stand for unoccupied ones. E(2) contains
the major part of the electron correlation correction. The highest order corrections are
generally smaller. The MP2 energy is finally given by a sum of two terms:

EMP2 = EHF + λ2E(2) (2.37)

MPn methods (MP2 and higher orders: MP3, MP4, · · · ) are known to demonstrate
an oscillatory convergence behavior, in which the MPn energies can either underestimate
or overestimate the exact energy as illustrated in Figure 2.1.

Figure 2.1 – Oscillating convergence behavior of the total ground state energy ob-
tained with MPn methods. The true value is the exact electronic energy in the Born-
Oppenheimer approximation (Figure inspired from ref. [13]).
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2.2 Density Functional Theory

Although the wavefunction Ψ is the key to all information one would like to obtain
about a particular system, this is a rather unintuitive and complex quantity that depends
on three spatial and one spin coordinates for each electron. From now on, the coordinates
of a single electron, previously noted ri and rj, will be written r and r′ for simplicity.
Recalling that the Hamiltonian only depends on the positions and charges of the nuclei
and on the number of electrons in the system, the the one-electron density of the system,
ρ(r), appears to be a good alternative to the N -electron wavefunction for describing the
state of a system, since it is a function of only three spatial coordinates, which does not
grow in complexity as a function of the number of electrons N . The integration of ρ(r)
over all space gives the total number of electrons N of the system:∫

ρ(r)dr = N (2.38)

The year 1927 marks the very first step of electron density based approaches with
the work of Thomas[14] and Fermi.[15] In their model, a classical expression is used for
the nuclear-electron and electron-electron potentials while the kinetic energy of electrons,
based on an uniform electron gas (i.e. constant electron density), is derived from a
quantum statistical model. The Thomas-Fermi expression of the energy as a function of
ρ(r) yields:

ETF [ρ] =
3

10
(3π2)2/3

∫
ρ(r)5/3dr− Z

∫
ρ(r)

r
dr +

1

2

∫∫
ρ(r)ρ(r′)

|r− r′| drdr
′ (2.39)

Improvement was attempted by Dirac,[16] who included an exchange term in the expression
(first derived by Bloch[17]), yielding the Thomas-Fermi-Dirac model, which proved to be
still not satisfactory.[18] Although these models are not showing themselves to be reliable
and practically useful, as they predict molecules to be unstable relative to their separated
constituents (no chemical bonds!), they constituted the first attempts to express the
energy solely from the electron density of the system. Decades later, Hohenberg and
Kohn were to lay the foundations of modern density functional theory.[19]

2.2.1 Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem, often referred to as the “proof of existence”,
states that, considering a system of electrons moving in an external field vext(r), “the
external potential vext(r) is (to within a constant) a unique functional of ρ(r); since, in
turn vext(r) fixes Ĥ we see that the full many particle ground state is a unique functional of
ρ(r)”. In other terms, a given electron density ρ(r) uniquely determines the Hamiltonian
operator and consequently the wavefunction and all electronic properties of the system.

42



In this framework, the electronic energy is expressed as a functional of ρ(r):

E[ρ] = Te[ρ] + Eee[ρ]︸ ︷︷ ︸
FHK [ρ]

+Ene[ρ] (2.40)

While the nuclear-electron attractive potential Ene[ρ] is system dependent, the Hohenberg-
Kohn functional FHK [ρ], constituted by the kinetic energy term and the repulsion between
electrons, is a universal functional.

According to the second theorem, “E[ρ] assumes its minimum value for the correct
ρ(r), if the admissible functions are restricted by the condition N =

∫
ρ(r)dr”. It is

nothing but a statement of the variational principle, already used in the wavefunction
models, for the density. It implies that any trial electron density ρtrial will always give an
energy larger than the true ground-state energy. Assuming that the FHK [ρ] functional is
exact, it delivers the ground-state energy minimum of the system if and only if the input
electron density is the true ground-state density.

2.2.2 Kohn-Sham formalism

The main reason for the failure of Thomas-Fermi like approaches lies in the expres-
sion of the kinetic energy Te[ρ] within the homogeneous gas model as well as in the classical
treatment of electron interactions. On the basis of the cornerstone’s HK theorems, Kohn
and Sham[20] proposed in 1965 an approach to recast the equations into a solvable and
practical form.

Considering a fictitious system of N non-interacting electrons moving in an external
potential vext(r), that can be exactly represented by a Slater determinant of N spin-
orbitals φi (referred to as the Kohn-Sham spin-orbitals), one can express the kinetic
energy of the non-interacting system:

Tni =
N∑
i=1

〈φi| −
1

2
∇2
i |φi〉 (2.41)

and define its electronic density as:

ρ(r) =
N∑
i=1

|φi(r)|2 (2.42)

Even if, as already mentioned, the universal functional FHK [ρ] is unknown, one can define
the effective potential veff (r) that will render the density and energy of the fictitious
non-interacting reference system identical to the one of the real interacting system such
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that the energy functional can be written as:

E[ρ] = Tni[ρ] + Eee[ρ] + Ene[ρ] + ∆T [ρ] (2.43)

where Tni[ρ] is the kinetic energy of the non-interacting system, Eee[ρ] = J [ρ]+Enc[ρ] (with
J [ρ] the classical electron-electron repulsion and Enc[ρ] the non-classical part including
exchange and electron correlation effects), Ene[ρ] is the nuclear-electron potential energy,
and ∆T [ρ] the correction to the kinetic energy, necessary to account for the interacting
nature of the electrons. One can rewrite the DFT energy as:

E[ρ] = Tni[ρ] + J [ρ] + Ene[ρ] + Exc[ρ] (2.44)

where Exc[ρ] is the so-called exchange-correlation term that exists, as demonstrated by
the HK theorem, but which exact expression remains unknown.

Assuming that Exc[ρ] is known, the problem can then be solved in a similar way
as done for the HF model. The Kohn-Sham orbitals φi (linear combination of the basis
functions) that minimise the energy satisfy the pseudo-eigenvalue equations:

f̂KSi φi = εiφi (2.45)

where the Kohn-Sham one-electron operator f̂KSi is defined as:

f̂KSi = −1

2
∇2
i + veff (r) (2.46)

and the effective external potential veff (r) is defined as:

veff (r) =

∫
ρ(r′)

|r− r′|dr
′ −

nuclei∑
a

Za
ria

+ vxc(r) (2.47)

with:
vxc(r) =

∂Exc[ρ]

∂ρ(r)
(2.48)

The KS potential veff (r) depends explicitly on the density via the Coulomb term and
just like in HF, the problem has to be solved iteratively. Given a trial density, one
can calculate the effective potential and solve the Kohn-Sham equations. The resulting
orbitals φi give a new electron density (equation 2.42) that can be used to calculate a
new effective potential and so on until a predefined threshold is reached. However, the
exact expression of Exc[ρ] is unfortunately not known and its approximate determination
constitutes the key issue to DFT improvement.
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2.2.3 Exchange-correlation functionals

If Exc[ρ] was exactly known, one would be able to calculate the true energy of a
system, electron correlation included. Exc[ρ] can formally be defined by making equivalent
the energies of the real and fictitious systems:

Exc[ρ] = (Te[ρ]− Tni[ρ]) + (Eee[ρ]− J [ρ]) (2.49)

Its name might be a bit misleading as it does not only account for the non classical portion
of the electron-electron interaction, but also includes the correction for the self-interaction
error, and the missing part of the true kinetic energy arising from the non-interacting elec-
trons approximation. Up to now, its exact expression remains the holy grail of DFT and
one has to rely on approximations, the quality of the resulting energy thus depending
on the accuracy of the functional form chosen. There exists no systematic strategy to
improve a functional, and even more dramatic, violation of required physical conditions
in its expression does not necessarily lead to less accurate results.

Several improvements have been achieved since exchange-correlation functionals
started being developed, and each new level of approximation has been associated by
John P. Perdew to the mythical Jacob’s ladder rungs,[21] each one allowing to recover the
results of lower rungs while adding capabilities (Figure 2.2).

Figure 2.2 – Jacob’s ladder of DFT.
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The assumption is generally made that exchange and correlation contributions are sepa-
rable and the exchange-correlation energy functional can conveniently be expressed as:

Exc[ρ] =

∫
ρ(r)εxc[ρ(r)]dr

= Ex[ρ] + Ec[ρ]

=

∫
ρ(r)εx[ρ(r)]dr +

∫
ρ(r)εc[ρ(r)]dr

(2.50)

where εx[ρ(r)] and εc[ρ(r)] are the exchange and correlation energy densities per particle.

2.2.3.1 Local (Spin) Density Approximation (L(S)DA)

The local density approximation is based on the model that gave birth to DFT,
the uniform electron gas, where the density is considered to be locally constant, and it is
assumed that the exchange and correlation potentials at a certain position depend only
on the local value of this density, so that the exchange-correlation energy functional can
be written as:

ELDA
xc [ρ] =

∫
ρ(r)[εLDAxc (ρ)]dr (2.51)

where the exchange part (of a uniform electron gas) is exactly known and given by the
Dirac formula[15]:

Ex[ρ] = −3

4

(
3

π

)1/3 ∫
ρ4/3dr (2.52)

while there is no explicit form known for the correlation energy. Monte Carlo simula-
tions of the homogenous electron gas have been performed by Ceperley and Alder[22] to
numerically determine the correlation energy at very high accruracy. From this work, cor-
relation functionals have been developed by Vosko, Wilk and Nusair[23] (VWN) or Perdew
and Wang (PW).[24]

Explicit introduction of the spin is achieved by defining εxc respective to a sum of
α and β densities:

ELSDA
xc [ρα, ρβ] =

∫
ρ(r)[εLDAxc (ρα(r), ρβ(r))]dr (2.53)

Being based on the crude approximation of the uniform electron gas, which might be
reasonable for metals, L(S)DA does not perform well for molecules, notably overestimating
the bond energies and describing very poorly breaking or forming of bonds.

2.2.3.2 Generalized Gradient Approximation (GGA)

In molecular systems, the electronic density is far from being uniform and improve-
ments over the L(S)DA have to account for the non-homogeneity of the true density. This
is done within the Generalized Gradient Approximation by considering a dependency for
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εxc not only on the density, but also on the gradient of the density ∇ρ, i.e. allowing the
density to locally change.

EGGA
xc [ρ,∇ρ] =

∫
ρ(r)[εGGAxc (ρ,∇ρ)]dr (2.54)

The majority of the GGA exchange-correlation functionals are constructed by adding
a correction term to the L(S)DA functional, treating separately exchange and correla-
tion parts. Note that these functionals have a rather complicated mathematical form
that is chosen upon the quality and accuracy of the results, not the physics behind.
Two approaches for their development have to be distinguished: a semi-empirical one,
with parameters fitted to reproduce experimental data, among which the popular BLYP
functional (Becke exchange functional[25] and Lee, Yang, Parr correlation functional[26]),
and a non-empirical one like PW91[27] (Perdew and Wang) and PBE[28] (Perdew-Becke-
Ernzenhof).

A step further was achieved with the meta-GGA functionals, which include a de-
pendency over the second-order derivatives of the density, though the associated compu-
tational cost and numerical stability problems do not necessarily translate into improved
results. Although all these functionals constitute a great improvement over the L(S)DA
method, some efforts were still to be made to reach better accuracy and this motivated
the development of hybrid functionals.

2.2.3.3 Hybrid functionals

Both LDA and GGA functionals poorly describe the exchange part. To correct this
shortcoming, Becke proposed to introduce a part of HF exchange into GGA exchange-
correlation functionals, because HF exhange is non-local and presents the exact −1/r

asymptotic behavior (with r = |r−r′|), thus allowing to compensate the Coulomb part and
to reduce the self-interaction error. That strategy provided the global hybrid functionals,
in which the % of the HF exchange (a) is constant for any inter-electronic distances:

Ehybrid
xc = aEHF

x + (1− a)EDFT
x + EDFT

c (2.55)

with 0 ≤ a ≤ 1. When a = 1, the electrons are totally uncorrelated and, a single Slater
Determinant of Kohn-Sham orbitals being the exact wavefunction of the system, the ex-
change energy that remains is given exactly by the HF theory. For a = 0, the fully
interacting system can be approximated by L(S)DA or GGA functionals.

Several attempts have been made where additional parameters weighting the con-
tributions of L(S)DA and GGA exchange and correlation are determined together with
the parameter a. Among the wide panel of hybrid functionals available, the most famous
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and widely used B3LYP[29] functional, has the following expression:

Exc = (1− a)ELSDA
x + aEHF

x + b∆EB
x + (1− c)ELSDA

c + cELY P
c (2.56)

where the parameters a, b and c, set respectively to 0.2, 0.72 and 0.81, have not been
optimised as they are simply taken from the older B3PW91 functional without further
fitting of experimental data. ELSDA

x and ELSDA
c are the exchange and correlation at the

LSDA level, EHF
x the HartreeFock exchange, EB

x the Becke exchange and ELY P
c the Lee,

Yang, Parr correlation energy. The average absolute error on atomisation energies (using
a large basis set) of the B3LYP functional is only of about 2 kcal.mol−1.[30] However, in
practice, one always has to chose the functional as carefully as possible accordingly to the
system treated and the properties investigated.

2.2.3.4 Long-range corrected functionals

Certain failures of the aforementioned functionals, such as the inability to deal with
charge-transfer excitations, are understood to arise from the incorrect long-range be-
haviour of the exchange potential. One way to achieve the correct asymptotic behaviour,
is to introduce a partitioning of the Coulomb operator, in the exchange interaction, into
short- and long-range components.

Contrary to global hybrids introduced in the previous section, in which the amount
of exact HF exchange is fixed, long-range corrected (LRC) functionals, also referred to as
range-separated (RS) hybrids, include HF exchange by means of a weighting function that
depends on the interelectron distance r. The Coulomb operator is thus split into local
and nonlocal parts using a smooth function, usually being the error function, together
with a range separation parameter ω, which damps the exchange contribution from the
density functional and complements it with exact HF exchange:

1

r
=

1− α1 − α2erf(ωr)
r

+
α1 + α2erf(ωr)

r
(2.57)

with 0 ≤ α1 + α2 ≤ 1 and 0 ≤ α2 ≤ 1. The first term accounts for the short-range part
of the Coulomb operator by DFT exchange while the second term describes long-range
interactions with the exact HF exchange.

Thus, at long range, the amount of HF exchange equals α1 + α2, and subsequently
the amount of DFT exchange equals 1− α1 − α2. The parameter α1 allows, if non zero,
to retain a fraction of DFT exchange in the asymptotic limit (r → ∞) and corresponds
to the amount of HF exchange at short range. The α1, α2 and ω parameters of LRC
functionals considered in this thesis are provided in Table 2.1. LC-BLYP[31] appoints
100% of HF exchange at infinite distance and no HF exchange at distance zero, CAM-
B3LYP[32] uses the Coulomb-attenuating method and includes 19% of HF exchange at
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short-range and 65% at long-range and ωB97X-D[33] includes respectively 22.20% and
77.80% of HF exchange at short- and long-range. This last functional also incorporates
empirical atom–atom dispersion corrections, though independent of applied external fields.

LRC functionals α1 α2 ωstd
LC-BLYP 0.000 1.000 0.470
CAM-B3LYP 0.190 0.460 0.330
ωB97X-D 0.222 0.778 0.200

Table 2.1 – LRC functionals employed in this thesis, with their standard parameters α1,
α2 and ωstd (bohr−1).

2.3 Calculation of the first hyperpolarizability

2.3.1 Coupled Perturbed Hartree-Fock (CPHF) and Coupled Per-

turbated Kohn-Sham (CPKS)

2.3.1.1 Static molecular properties

The CPHF and CPKS methods are applied in order to evaluate static molecular
properties. Consider the unperturbed molecular Hamiltonian Ĥ0 = T̂e + V̂ne + V̂ee and
apply a static perturbation V̂ (x):

Ĥ(x) = Ĥ0 + V̂ (x) (2.58)

where x represents the strength of the perturbation. The perturbation vanishes for x = 0,
i.e. V̂ (x = 0) = 0. The perturbed energy for the perturbed state considered Ψ(x) (usually
the ground state) can be expanded with respect to x:

E(x) =
〈Ψ(x)|Ĥ(x)|Ψ(x)〉
〈Ψ(x)|Ψ(x)〉 = E(0) + E(1)x+

1

2
E(2)x2 + · · · (2.59)

where E(0) is the unperturbed energy and E(1), E(2), · · · are the energy derivatives with
respect to x:

E(1) =
∂E

∂x

∣∣∣∣
x=0

; E(2) =
∂2E

∂x2

∣∣∣∣
x=0

; · · · (2.60)

These derivatives describe the static (or time-independent) molecular properties. In the
case of electric properties, the perturbation strengths x are the components of the exter-
nal static electric field Fi. The electric dipole moment, the polarizability and the first
hyperpolarisability are thus given by:

∂E

∂Fi

∣∣∣∣
F=0

= −µi (2.61)
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∂2E

∂Fi∂Fj

∣∣∣∣
F=0

= −αij (2.62)

∂3E

∂Fi∂Fj∂Fk

∣∣∣∣
F=0

= −βijk (2.63)

2.3.1.2 General static response theory

In order to compute such derivatives of the energy, two methods are available: fi-
nite field differentiation and analytical derivatives. Contrary to the finite-field method
(discussed in Section 2.3.4) where finite field differentiation is used, the derivatives of
the energy in the latter approach are calculated explicitly from analytical expressions.
This method is more difficult to implement but is more precise, generally less computer-
intensive and can also provide time-dependent molecular properties. A general static
response theory is necessary to obtain these analytical expressions. In an electronic-
structure method, the energy E(x) is obtained by optimizing parameters p = (p1, p2, ...)

in an energy function ε(x,p) for each fixed value of x. The energy is thus given by:

E(x) = ε(x,po(x)) (2.64)

where po(x) are the optimal values of the parameters. Note that the optimization is not
necessarily variational. Nevertheless, in the case of Coupled Perturbed Hartree-Fock[34, 35]

(CPHF) and Coupled Perturbated Kohn-Sham (CPKS), the optimization is variational
and p are the orbital rotation parameters, that will be defined in the next section. The
first-order derivative of E(x) with respect to x is:

∂E(x)

∂x
=

∂ε(x,po)
∂x︸ ︷︷ ︸

explicit dependence on x

+
∑
i

∂ε(x,p)

∂pi

∣∣∣∣∣
p=po

∂poi
∂x︸ ︷︷ ︸

implicit dependence on x

(2.65)

∂poi/∂x is called the linear-response vector and contains information about how the wave-
function changes when the system is perturbed. This term is not straightforward to
calculate, since the explicit dependence of poi on x is not known. If all the parameters
are variational, the zero electronic gradient condition simplifies the derivative, and the
linear-response vector does not need to be calculated owing to:

∂ε(x,p)

∂pi

∣∣∣∣
p=po

= 0 =⇒ ∂E(x)

∂x
=
∂ε(x,po)

∂x
(2.66)

The second-order derivative of E(x) is then expressed as:

∂2E(x)

∂x2
=
∂2ε(x,po)

∂x2
+
∑
i

∂2ε(x,p)

∂x∂pi

∣∣∣∣∣
p=po

∂poi
∂x

(2.67)
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Here, the linear-response vector ∂poi/∂x needs to be calculated. To obtain it when all the
parameters are variational, we start from the stationary condition which is true for all x:

∀x, ∂ε(x,p)

∂pi

∣∣∣∣
p=po

= 0 (2.68)

We can thus take the derivative of this equation with respect to x:

∂2ε(x,p)

∂x∂pi

∣∣∣∣
p=po

+
∑
j

∂ε2(x,p)

∂pi∂pj

∣∣∣∣
p=po

∂poj
∂x

= 0 (2.69)

which leads to the linear-response equations:

∑
j

∂2ε(x,p)

∂pi∂pj

∣∣∣∣
p=po

∂poj
∂x

= − ∂2ε(x,p)

∂x∂pi

∣∣∣∣
p=po

(2.70)

This is a linear system of equations for the linear-response vector ∂poi/∂x. Since we are
interested in energy derivatives evaluated at x = 0, we need to calculate the unperturbed
electronic Hessian ∂2ε(x = 0,p)/∂pi∂pj.

2.3.1.3 Coupled-perturbed Hartree-Fock (CPHF)

For optimizing the orbitals in the HF determinant wavefunction, it is convenient to
use an exponential parametrization:

|Ψ(κ)〉 = eκ̂(κ)|Ψ0〉 (2.71)

where eκ̂ is an unitary operator performing rotations between occupied and virtual spin-
orbitals in a reference determinant wave function Ψ0. This rotation operator is constructed
from a single-excitation operator, κ̂, which can be written in the second-quantization
formalism as:

κ̂(κ) =
occ∑
a

vir∑
r

(κarâ
†
râa − κ∗arâ†aâr) (2.72)

where â†k and âk are respectively the creation and annihilation operators of the spin-orbital
k and the indices a and r refer respectively to occupied and virtual spin-orbitals in the
reference determinant. The parameters κ = {κar} are called the orbital rotation param-
eters. In comparison to the orbital coefficients on the atomic basis functions, the orbital
rotation parameters have the advantage of providing a non-redundant parametrization of
the wave function, so that one can vary them independently without having to impose
any constraints. For the static case, we can take real-valued orbital rotation parameters,
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i.e. κar = κ∗ar. Without perturbation, the HF energy function is:

εHF (κ) =
〈Ψ(κ)|Ĥ0|Ψ(κ)〉
〈Ψ(κ)|Ψ(κ)〉 (2.73)

For linear response theory, we need first to calculate the HF electronic Hessian below:

∂2εHF (κ)

∂κar∂κbs

∣∣∣∣
κ=0

= 2(Aar,bs +Bar,bs) (2.74)

with:
Aar,bs = (εr − εa)δabδrs + 〈rb|as〉 − 〈rb|sa〉 (2.75)

Bar,bs = 〈rs|ab〉 − 〈rs|ba〉 (2.76)

where εa and εr are respectively the HF energies of the occupied and virtual spin-orbitals,
〈rb|as〉 and 〈rs|ab〉 are respectively two-electron integrals of exchange type and Coulomb
type.

Let’s consider now a perturbation by a static electric field F. The perturbed HF
energy is given by:

εHF (F,κ) =
〈Ψ(κ)|Ĥ0 − µ̂F|Ψ(κ)〉

〈Ψ(κ)|Ψ(κ)〉 (2.77)

where µ̂ is the dipole moment operator. The CPHF electric dipole polarizability is:

αCPHFij = − ∂2EHF
∂Fi∂Fj

∣∣∣∣
F=0

= −
[
∂2εHF
∂Fi∂Fj

+
occ∑
a

vir∑
r

(
∂2εHF
∂Fi∂κar

∣∣∣∣
κ=0

∂κar
∂Fj

)]
(2.78)

Since the explicit dependence of εHF (F,κ) on F is linear, we have ∂2εHF/∂Fi∂Fj = 0.
The HF perturbed electronic gradient is:

∂2εHF
∂Fi∂κar

∣∣∣∣
κ=0

= −2〈r|µ̂i|a〉 (2.79)

where 〈r|µ̂i|a〉 are the transition dipole moment one-electron integrals. The CPHF polar-
izability can thus be written as:

αCPHFij =
occ∑
a

vir∑
r

(
2〈r|µ̂i|a〉

∂κar
∂Fj

)
(2.80)

The linear-response vector ∂κar/∂Fj is obtained from the HF linear-response equations:

occ∑
b

vir∑
s

(
(Aar,bs +Bar,bs)

∂κbs
∂Fj

)
= 〈r|µ̂j|a〉 (2.81)
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In vector/matrix notations, we obtain finally:

αCPHFij = 2µTi (A + B)−1µj (2.82)

where µi is the vector of components µi,ar = 〈r|µ̂i|a〉, A and B are the so-called orbital
rotation Hessian matrices, respectively of elements Aar,bs and Bar,bs (see equations 2.75
and 2.76).

2.3.1.4 Coupled-perturbed Kohn-Sham (CPKS)

The KS-DFT energy function is expressed as:

εKS−DFT (κ) =
〈Ψ(κ)|T̂ + V̂ne|Ψ(κ)〉
〈Ψ(κ)|Ψ(κ)〉 + EH [ρ] + Exc[ρ] (2.83)

where EH [ρ] is the Hartree energy and Exc[ρ] is the exchange-correlation energy. The
KS-DFT electronic Hessian has a similar expression as in HF:

∂2εKS−DFT (κ)

∂κar∂κbs

∣∣∣∣
κ=0

= 2(Aar,bs +Bar,bs) (2.84)

with, for pure GGA functionals:

Aar,bs = (εr − εa)δabδrs + 〈rb|as〉+ 〈rb|fxc|as〉 (2.85)

Bar,bs = 〈rs|ab〉+ 〈rs|fxc|ab〉 (2.86)

where the 〈rb|fxc|as〉 terms are the response of the functional. fxc is the first-order XC
kernel, i.e. the functional derivative of the XC potential with respect to the density:

fxc(r, r
′) =

∂vxc[ρ](r)

∂ρ(r′)
=

∂2Exc[ρ]

∂ρ(r)∂ρ(r′)
(2.87)

In the case of hybrid approximations, mixing HF exchange and DFT exchange, Aar,bs and
Bar,bs are expressed differently:

Aar,bs = δabδrs(εr − εa) + 2(ar|bs)− ax(ab|rs) + (1− ax)(ar|fxc|bs) (2.88)

Bar,bs = 2(ar|sb)− ax(as|rb) + (1− ax)(ar|fxc|sb) (2.89)

where ax is the amount of HF exchange into the exchange-correlation functional and
ranges from 0 to 1. All the rest is identical to CPHF.
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2.3.2 Time-Dependent Hartree-Fock (TDHF) and Time-Dependent

DFT (TD-DFT)

2.3.2.1 Dynamic molecular properties and quasi-energy

We consider now a periodic time-dependent perturbation:

Ĥ(t) = Ĥ0 + x+V̂ e−iωt + x−V̂ †e+iωt (2.90)

where x+ and x− represent the perturbation strengths (ultimately x+=x−). The associ-
ated wave function |Ψ̄(t)〉 satisfies the time-dependent Schrödinger equation:[

Ĥ(t)− i ∂
∂t

]
|Ψ̄(t)〉 = 0 (2.91)

After extracting a phase factor, |Ψ̄(t)〉 = e−iF(t)|Ψ(t)〉, it can be reformulated as:[
Ĥ(t)− i ∂

∂t

]
|Ψ(t)〉 = Ḟ(t)|Ψ(t)〉 (2.92)

where Ḟ(t) = dF/dt is the time-dependent quasi-energy. The quasi-energy Q is defined
as the time average of Ḟ(t) over a period T = 2π/ω:[36]

Q =
1

T

∫ T

0

Ḟ(t)dt =
1

T

∫ T

0

〈Ψ(t)|
[
Ĥ(t)− i ∂

∂t

]
|Ψ(t)〉

〈Ψ(t)|Ψ(t)〉 dt (2.93)

The quasi-energy can be expanded with respect to the perturbation strengths x+ and x−:

Q = Q(0) +Q(10)x+ +Q(01)x− +
1

2
Q(20)x+2 +Q(11)x+x− +

1

2
Q(02)x−2 + · · · (2.94)

where Q(0) = E(0) is the unperturbed energy and the quasi-energy derivatives are calcu-
lated as:

Q(10) =
∂Q

∂x+

∣∣∣∣
x=0

;Q(01) =
∂Q

∂x−

∣∣∣∣
x=0

;Q(20) =
∂2Q

∂x+2

∣∣∣∣
x=0

;Q(11) = 2
∂2Q

∂x+∂x−

∣∣∣∣
x=0

; · · ·
(2.95)

They are the ω-dependent dynamic molecular properties. If we consider the specific case of
the electric dipole interaction perturbation, the Hamiltonian of the system can be writen
as:

Ĥ(t) = Ĥ0 − F+.µ̂e−iωt − F−.µ̂e+iωt (2.96)

where µ̂ is the dipole moment operator and F+ = F− is the amplitude of the oscillating
electric field. The dynamic electric dipole polarizability is defined as:

αij(ω) = − ∂2Q

∂F−i ∂F
+
j

∣∣∣∣∣
F=0

(2.97)
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Using time-dependent perturbation theory, we obtain the exact expression of the polariz-
ability:

αij(ω) = −
[∑
n6=0

〈Ψ0|µ̂i|Ψn〉〈Ψn|µ̂j|Ψ0〉
ω − ωn

−
∑
n6=0

〈Ψ0|µ̂j|Ψn〉〈Ψn|µ̂i|Ψ0〉
ω + ωn

]
(2.98)

where Ψn are the states of Ĥ0 and ωn are the excitation energies.

2.3.2.2 Polarizability from dynamic response theory

In a time-dependent electronic-structure method, the quasi-energy Q(F+,F−) is ob-
tained by plugging optimal parameters po(F+,F−) in a quasi-energy functionQ(F+,F−,po):

Q(F+,F−) = Q(F+,F−,po(F+,F−)) (2.99)

In contrast to the static case, the parameters now depend on time and take complex
values. They can be decomposed in Fourier modes:

p = p+e−iωt + p−e+iωt (2.100)

We consider only the case where all the parameters are variational, i.e. fulfilling the
following stationary conditions:

∂Q
∂p+

∣∣∣∣
p=po

= 0 and
∂Q
∂p−

∣∣∣∣
p=po

= 0 (2.101)

Thanks to the stationarity of the parameters, only the explicit dependence on F+ and F−

in Q contributes to first-order properties with respect to the quasi-energy:

∂Q

∂F−i
=

∂Q
∂F−i

+

[
∂Q
∂p+

∂p+

∂F−i
+

∂Q
∂p−

∂p−

∂F−i
+ c.c.

]
︸ ︷︷ ︸

=0

(2.102)

For second-order properties with respect to the quasi-energy, the implicit dependence on
F+ and F− via the parameters contributes. In particular, for the dynamic polarizability,
we get:

αij(ω) = − ∂2Q

∂F−i ∂F
+
j

= − ∂2Q
∂p+∂F−i

∂p+

∂F+
j

− ∂2Q
∂p−∂F−i

∂p−

∂F+
j

(2.103)

The linear-response vector (∂p+/∂F+
j , ∂p−/∂F

+
j ) is found from the linear-response equa-

tions: (
∂2Q

∂p+∂p+
∂2Q

∂p+∂p−

∂2Q
∂p−∂p+

∂2Q
∂p−∂p−

) ∂p+

∂F+
j

∂p−

∂F+
j

 = −

 ∂2Q
∂F+

j ∂p+

∂2Q
∂F+

j ∂p−

 (2.104)
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The dynamic polarizability has thus the general expression:

αij(ω) =

 ∂2Q
∂p+∂F−

i

∂2Q
∂p−∂F−

i

T (
∂2Q

∂p+∂p+
∂2Q

∂p+∂p−

∂2Q
∂p−∂p+

∂2Q
∂p−∂p−

)−1
 ∂2Q

∂F+
j ∂p+

∂2Q
∂F+

j ∂p−

 (2.105)

2.3.2.3 Time-Dependent Hartree-Fock (TDHF)

The TDHF quasi-energy function is:

QTDHF (F+,F−,κ) =
1

T

∫ T

0

〈Ψ(κ)|Ĥ(t)− i ∂
∂t
|Ψ(κ)〉

〈Ψ(κ)|Ψ(κ)〉 dt (2.106)

After calculating all the derivatives of QTDHF with respect to the orbital rotation param-
eters κar, we get the TDHF polarizability (for real-valued orbitals):

αTDHFij (ω) =

(
µi

µi

)T [(
A B

B A

)
− ω

(
1 0

0 −1

)]−1(
µj

µj

)
(2.107)

where A and B are the same matrices as introduced in CPHF (equations 2.75 and 2.76).

2.3.2.4 Time-Dependent Density Functional Theory (TD-DFT)

The TD-DFT quasi-energy function is:[37]

QTDDFT (F+,F−,κ) =
1

T

∫ T

0

〈Ψ(κ)|
[
ĥ(t)− i ∂

∂t

]
|Ψ(κ)〉

〈Ψ(κ)|Ψ(κ)〉 + EH [ρ] +Qxc[ρ]

 dt

(2.108)
where ĥ(t) is the one-electron Hamiltonian and Qxc[ρ] is the exchange-correlation quasi-
energy functional depending on the time-dependent density ρ. In practice, we always use
the adiabatic approximation:

Qxc[ρ] ≈ 1

T

∫ T

0

Exc[ρ] dt (2.109)

where Exc[ρ] is the ground-state exchange-correlation functional. We then obtain the
same equations as in TDHF with the same matrices A and B as in CPKS (equations
2.85 and 2.86, or equations 2.88 and 2.89). In exact TD-DFT, the exchange-correlation
kernel fxc should depend on ω but in the adiabatic approximation it does not. This has
the consequence that double or higher electronic excitations are not included.
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2.3.3 Simplified Linear-Response TD-DFT

The calculation of response properties for systems containing several thousands of
atoms remains a challenge for standard TD-DFT. In order to treat very large molecular
systems, we employed in this thesis the recently developed Simplified Time-Dependent-
Density Functional Theory (sTD-DFT) scheme, which provides response properties of
large systems at a much lower computational cost than its TD-DFT parent.[38, 39] Three
simplifications yield the sTD-DFT approach: i) Coulomb and exchange two-electron inte-
grals are approximated by short-range damped Coulomb interactions of transition/charge
density monopoles, ii) the response of the exchange-correlation functional is neglected in
A and B matrices and iii) the configuration space is restricted to a user-specified energy
range of excitations. The consequences of these approximations are briefly discussed be-
low.

The computationally demanding four-index two-electron integrals are approximated
using the expression below:

(ij|kl) =
N∑
A

N∑
B

qAijq
B
klγAB (2.110)

where the indices ijkl correspond to general (either occupied or virtual) orbitals, qApq and
qBrs are respectively transition density monopoles (atomic charges) centered on atom A
and B, and γAB is the Mataga-Nishimoto-Ohno-Klopman (MNOK) damped Coulomb
operator. The latter takes slightly different forms for Coulomb (J) and exchange (K)
integrals:

γJAB =

(
1

(RAB)yJ + (axη)−yJ

) 1
yJ

(2.111)

γKAB =

(
1

(RAB)yK + (η)−yK

) 1
yK

(2.112)

In these expressions, ax is the amount of exact HF exchange in the exchange-correlation
functional, η is the mean of the chemical hardness of atoms A and B (whose values are
tabulated), and yJ and yK are two adjustable parameters.

Therefore, the matrices A and B are replaced by simplified matrices A′ and B′ of
elements:

A′ar,bs = δabδrs(εr − εa) +
Natoms∑
A,B

(2qAarq
B
bsγ

K
AB − qAabqBrsγJAB) (2.113)

B′ar,bs =
Natoms∑
A,B

(2qAarq
B
sbγ

K
AB − axqAasqBrbγKAB) (2.114)
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Note that the amount of Hartree-Fock exchange is not appearing anymore in equation
2.113. Though, the MNOK Coulomb operator implicitly incorporates it. In addition
to the damping of two-electron integrals, the sTD-DFT scheme also involves a massive
truncation of the single-excitation expansion space, by selecting only those below a given
energy threshold Eth. The A′ and B′ matrices include all excitations up to this energy
threshold.

To further reduce the computational needs, the tight-binding implementation of the
sTD-DFT method (sTD-DFT-xTB), as well as its version restricted to valence molecu-
lar orbitals (sTD-DFT-vTB), were used in this work (Chapter 4). The above described
sTD-DFT scheme can be interfaced with the xTB tight-binding method,[40] providing
an ultra-fast approach to the response properties for large systems (sTD-DFT-xTB ap-
proximation). In this method, the KS-DFT orbitals and eigenvalues are replaced by
corresponding data from an extended basis set tight-binding calculation. vTB means
that the diffuse AO basis functions have been removed from the xTB basis set, leaving
only valence functions. It may be noted that a sTD-DFT calculation is more than 600
time faster with respect to a regular TD-DFT treatment while the xTB version speeds
up the entire calculation further by at least two orders of magnitude.

2.3.4 Finite-field method

The finite field (FF) method[41] is a straightforward, easy-to-implement technique
for the calculation of hyperpolarizabilities. In contrast to other methods, the property
of interest can be calculated simply from the knowledge of the energy at certain field
strengths, and no additional information is needed about excited states or analytical
derivatives with respect to the field components. These benefits render the FF method
an universally applicable technique to any level of theory, with no additional requirements
other than using a method allowing to compute field-dependent energies.

Similarly to the dipole moment (equation 1.4), the dependence of the energy E on
an external homogeneous static electric field F is written as a Taylor expansion of the
form:

E(F ) = E(0) +
∂E

∂F

∣∣∣∣
F=0

F +
1

2!

∂2E

∂F 2

∣∣∣∣
F=0

F 2 +
1

3!

∂3E

∂F 3

∣∣∣∣
F=0

F 3 +
1

4!

∂4E

∂F 4

∣∣∣∣
F=0

F 4 + ...

= E(0)− µF − 1

2
αF 2 − 1

6
βF 3 − 1

24
γF 4 + ...

(2.115)

The Taylor expansion of equation 2.115 can be splitted into an even and an odd part
introducing symmetric and antisymmetric linear combinations of the energy at equal
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positive and negative fields:

ES(F ) =
E(F ) + E(−F )

2
= E(0)− 1

2
αF 2 − 1

24
γF 4 +O(F 6) (2.116)

EA(F ) =
E(F )− E(−F )

2
= −µF − 1

6
βF 3 − 1

120
δF 5 +O(F 7) (2.117)

This allows a completely separated treatment of the even and odd order hyperpolarizabil-
ities. For the evaluation of β, the energy has to be known at two different field strengths,
chosen here to be F and 2F, besides the energy at zero field:

β(F ) =
2EA(F )− EA(2F )

F 3
= β +

1

4
δF 2 +O(F 4) (2.118)

However, the FF method has also certain downsides. It is, for example, limited to
the evaluation of static molecular properties, as time-dependent fields cannot be handled
in a straightforward manner. Most crucial, nevertheless, is the dependence of the outcome
of a FF calculation on the initially chosen field strength. It is well-known that too small
fields introduce numerical noise on the calculated properties due to the finite precision
arithmetics of every computer, and can only be mitigated at most. At the other end of
the scale, there is also an upper bound for feasible field strengths. A field chosen too
strong leads to an inaccurate evaluation of molecular properties driven by two different
factors. First of all, the higher-order terms in the Taylor expansion of equation 2.115 lead
to non-negligible contributions to the overall energy with increasing field strength. This
effect is systematic and can be cancelled out by linear combination of properties obtained
at different field strengths, which is usually applied in literature. In conclusion, choosing
a reasonable field strength for an FF calculation requires to cope with a rather delicate
balance between the two extremes of too weak fields, leading to numerical errors that can
be several orders of magnitude larger than the actual property of interest, and too strong
fields causing the calculation of properties for an excited state.

In order to remove higher-order contaminations in the FF method, the Romberg
differentiation procedure[42, 43] can be applied. It consists in combining energy values
obtained for a succession of k external electric fields, of which the amplitudes form a
geometric progression given by F (k) = akF0, where F0 is the smallest field value and a
the common ratio. For the different types of β tensor components, the finite difference
expression corresponding to the zero-order iteration reads:

βijm(k, 0) =

(
[E(F−i−j−m(k))− E(Fijm(k))] + [E(Fij−m(k))− E(F−i−jm(k))]

+ [E(Fi−jm(k))− E(F−ij−m(k))] + [E(F−ijm(k))− E(Fi−j−m(k))]

)
8(akF0)3

(2.119)
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To remove the contaminations from higher-order hyperpolarizabilities, successive “Romberg
iterations” are carried out using a recursive expression where n is the number of iterations:[44, 45]

β(k, n) =
a2nβ(k, n− 1)− β(k + 1, n− 1)

a2n − 1
(2.120)

which leads to the so-called “Romberg triangle” where the convergence of the numerical
derivative can be monitored (Figure 2.3). Because these expressions are based on molec-
ular energies, their physicochemical nature can impact the convergence of the Romberg
procedure. As mentioned in ref. [44], for any molecule there exists a field window where
the finite differentiation is stable. Upper and lower bounds define this window.

Figure 2.3 – Scheme of the Romberg procedure. The first column is evaluated according
to equation 2.119. The other columns correspond to the successive “Romberg iterations”
and are calculated using equation 2.120, each column corresponding to an iteration.

2.3.5 Sum-over-states method and the two-state model

The first hyperpolarizability β can also be evaluated using the Sum-Over-States
(SOS) method. The SOS formalism defines the response of a system in terms of the linear
optical spectroscopic quantities, namely excitations energies and transition moments be-
tween various electronic states. The sum-over-state expression of the static second-order
NLO response is given by:

βijk =
∑
n,m 6=0

〈0|µi|n〉〈n|µj|m〉〈m|µk|0〉
∆E2

0n

− 〈0|µi|0〉
∑
n

〈|µj|n〉〈n|µk|0〉
∆E2

0n

(2.121)

where µi = 〈0|µi|n〉 are the transition dipole moments from the ground state |0〉 to ex-
cited state |n〉, 〈n|µj|m〉 the transition dipole moments between excited states |n〉 and
|m〉, 〈0|µi|0〉 the dipole moment of the ground state, and ∆E0n the excitation energies
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from |0〉 to |n〉.

Under the assumption that there are few states which contribute more than others,
the summation over the whole spectrum of the Hamiltonian can be reduced to those
states. In the case of push-pull π-conjugated compounds, Oudar and Chemla[46] showed
that one low-energy charge-transfer excited state often provides a dominant contribution
to β. In such a case, one may apply the two-state approximation (TSA), which assumes
that only one electronic excited state dominates the molecular response and contributes to
the SOS expression of the second-order NLO response. Moreover, as discussed in Chapter
1, the hyperpolarizability tensor of push-pull π-conjugated derivatives can be reduced to
its single βzzz diagonal component, with z being the charge transfer axis. Thus, assuming
an ideal 1D character of the second-order NLO response and using the TSA in which βzzz
is expressed as a function of the absorption properties of the S1 state, the static HRS
hyperpolarizability can be expressed as:

βTSAHRS = 9

√
6

35
× f01∆µ01

∆E3
01

(2.122)

where ∆E01 is the S0 → S1 excitation energy, f01 = 2
3
∆E01µ

2
01 is the associated oscillator

strength with µ01 = 〈0|µz|1〉, and ∆µ01 = ||−→µ S1 − −→µ S0|| is the dipole moment variation
between the two electronic states. To gain deeper insight on the origin of the light-
induced intramolecular charge transfer (ICT), ∆µ01 can be further decomposed as the
product of the photo-induced charge displacement (∆q01) and charge transfer distance
(∆r01): ∆µ01 = ∆q01 × ∆r01.[47, 48] The dynamic HRS hyperpolarizability can be easily
obtained by multiplying the static one by a frequency dispersion factor F TSA

disp :

F TSA
disp =

∆E4
01

(∆E2
01 − (~ω)2)(∆E2

01 − (2~ω)2)
(2.123)

with ~ω the photon energy of the incident beam. From equation 2.123, F TSA
disp is equal

to 1 in the static limit (~ω = 0), to ∼0.5 if ~ω = ∆E01/3, and tends to infinite in the
resonance limit (~ω = ∆E01/2).

2.4 Basis sets

As presented in previous sections, the LCAO expansion of molecular orbitals yields
the best result within a given method when an infinite basis set is used. However, achiev-
ing this optimal description of the system is beyond the computational capacities available
and various basis sets have been developed, constituted by a limited number of mathe-
matical functions, Slater-type orbitals[49] (STOs) or Gaussian-type orbitals[50] (GTOs),
to reach accurate results as efficiently as possible. The STOs, although physically more
attractive as they are directly deduced from the hydrogenoid orbitals, suffer from calcula-
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tory complexity when dealing with polyatomic molecules, as multi-center integrals cannot
be efficiently treated. To circumvent this issue, Boys proposed to use GTOs instead.[50]

Computationally convenient as they ensure analytical solutions for all integrals, they are,
however, not so well adapted to the description of the shape of the orbital: no discontinuity
for r = 0 (i.e. at the nucleus) and too fast decay for r →∞ (Figure 2.4).

Figure 2.4 – Shape comparison between GTO and STO basis functions.

For these reasons, GTOs are used in a linear combination to reproduce as close as
possible a STO. As an example, the STO-nG minimal basis set, in which a single basis
function is used for each atomic orbital in the atom, combine n primitive GTOs into a
contracted GTO to fit an STO, the most used and optimal being for n = 3 (Figure 2.5).

Figure 2.5 – Construction of the STO-3G basis function.

Clearly, the more primitives combined, the better will be the fit with the STO,
but the larger the computational effort associated. However, one can reasonably assume
that from a chemical point of view, a correct description of the valence orbital is more
determining than of the core ones. As a consequence, more flexibility to assess properly
for different molecular environment was achieved by Pople and coworkers[51, 52] with the
so-called split-valence basis sets of the type C-v1v2G. The core orbitals are described by
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one contracted GTO from C primitives, while two contracted functions are used for the
valence orbitals, developed over v1 and v2 primitives respectively, for instance as in the
6-31G basis set. Note that basis sets in which there are multiple basis functions corre-
sponding to each valence atomic orbital are called valence double, triple, quadruple-zeta,
and so on. One can add diffuse or polarisation functions for better flexibility and reach
a more accurate description.[53] A polarization function is any higher angular momentum
orbital used in a basis set that is not normally occupied in the separated atom. For exam-
ple, for the hydrogen atom, the only orbital type that is occupied is s-type. Therefore, if
p-type or d-type basis functions were added to the hydrogen atom they would be known
as polarization functions. For first row elements like carbon, d-type and f-type basis
functions would be considered to be polarization functions. For transition metals with
occupied d-type orbitals, only f-type or higher functions would be considered polarization
basis functions. Polarization functions are not thought to be formally fully occupied in
molecules. They are included solely to improve the flexibility of the basis set, particularly
to better represent electron density in bonding regions. One set of d-type polarization
functions can be added to each non-hydrogen atom in the molecule (6-31G(d)), and in
addition one set of p-type polarization functions can be added to hydrogens (6-31G(d,p)).
Diffuse basis functions are extra basis functions (usually of s-type or p-type) that are
added to the basis set to represent very broad electron distributions. They are especially
important in representing the electron density in anions or in intermolecular complexes
(where there may be particularly long bonds with electron density spread over a large
region). The use of diffuse functions in a Pople basis set is indicated by the notation +
or ++. The + notation, as in 6-31+G(d), means that one set of sp-type diffuse basis
functions is added to non-hydrogen atoms (4 diffuse basis functions per atom: s, px, py,
pz). The ++ notation, as in 6-31++G(d), means that one set of sp-type diffuse functions
is added to each non-hydrogen atom and one s-type diffuse function is added to hydrogen
atoms.

Another class od widely used basis sets are those developed by Dunning and
coworkers.[54] They were designed for converging Post-Hartree–Fock calculations system-
atically to the complete basis set limit using empirical extrapolation techniques. Those
basis sets are denoted as cc-pVXZ, where "cc" stands for correlation-consistent, "p" in-
dicates that polarization functions are used for all atoms, and ’V’ indicates they are
valence-only basis sets, X=D,T,Q,5,6,... (D=double, T=triple, Q=quadruple, ...) means
double-, triple- or quadruple- zeta. Diffuse functions can be added by means of augmented
correlation-consistent basis sets, aug-cc-pVXZ. While the usual Dunning basis sets are for
valence-only calculations, the sets can be augmented with further functions that describe
core electron correlation. These core-valence sets (cc-pCVXZ) are necessary for accurate
geometric and nuclear property calculations.
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2.5 Solvent effects: the polarizable continuum model

The vast majority of chemical reactions as well as experimental measurements take
place in solutions. Molecular properties may be greatly affected by the surrounding con-
densed phase and it is therefore of utmost importance to take properly into account these
effects. The most straightforward approach to mimic a solution is to simply add explic-
itly the solvent molecules around the system investigated. However, as a single solvation
shell would clearly be insufficient (absence of long-range effects), it is evident that the
system constituted of the solute surrounded by explicit solvent molecules would quickly
become enormous and computationally impossible to treat. To cope with this problem,
one usually resorts to the use of implicit solvent models in which the solute is treated
explicitly, while the solvent molecules are replaced by a continuous medium characterised
by the properties of the solvent and surrounding the cavity occupied by the solute (Figure
2.6). Specific solute-solvent interactions can be accounted for by introducing few solvent
molecules in the explicit system to give a more reliable and accurate picture. Two types
of continuum approaches are commonly used : dielectric Polarizable Continuum Model
(PCM) or conductor-like PCM. Implicit solvation has been extensively reviewed and fur-
ther details are to be found in ref. [55] and [56]. In this work, we have used the PCM
in its integral equation formulation (IEFPCM) developed by Tomasi and co-workers,[57]

which falls into the category of dielectric continuum methods.

Figure 2.6 – The PCM model. The solute molecule is embedded in a cavity (red dots)
which is formed in the continuum with a dielectric constant ε.

Within a continuum approach of solvation, the total Hamiltonian can be written
as:

Ĥeff = Ĥsolute + V̂int (2.124)

with Ĥsolute the Hamiltonian of the isolated solute and V̂int the interaction term describing
the solute-solvent interactions.

Solvation is the process by which solvent molecules interact with the solute they
surround and is characterised by the free energy of solvation ∆Gsol that corresponds to
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the change in free energy associated with the transfer of a molecule from the gas phase
to the solvent environment. This free energy is partitioned into different contributions as
follows:

∆Gsol = ∆Gcav + ∆Grep + ∆Gdisp + ∆Gelec (2.125)

and the interaction potential V̂int is equivalently a sum of operators each corresponding
to a term of this partition. Here, ∆Gcav is the cavitation free energy necessary to create
a cavity for the solute in the continuous dielectric medium with an appropriate shape for
the solute, which should reproduce as well as possible its molecular shape while excluding
the solvent. Many definitions have been proposed for the cavity, reflecting compromises
between accuracy and computational cost, as well as the diverse physical requirements for
a given system. In the PCM model, the cavity is defined as a superposition of interlocked
spheres centred on the solute nuclei assigned with suitable radii. The cavitation energy is
not related to the electronic properties of the solute but only depends on its geometry and
is evaluated independently according to Pierotti’s modified formula (details can be found
in ref. [58] and [59]). ∆Grep is associated to solute-solvent repulsion interactions arising
from electron exchange contributions while ∆Gdisp accounts for the dispersion contribution
owing to the interactions between instantaneous multipoles due to electrons correlated
motion. These quantities are computed in the PCM model according to expressions
from Amovilli and Mennucci.[60] Finally, the last contribution ∆Gelec is the free energy
associated to the solute-solvent electrostatic interactions and is at the heart of the self-
consistent reaction field (SCRF) procedure. Bringing in solution a solute characterised
by a given charge distribution in the gas phase will cause a polarisation of the charges in
the surrounding dielectric medium, inducing in turn an extra electric field, the so-called
reaction field,[61] in the vicinity of the solute, that will affect its electronic structure. The
electrostatic problem relative to a charge distribution inside a cavity surrounded by a
dielectric continuum can be solved by considering the Poisson equation and associated
boundary conditions:

Within the cavity: −∆V = 4πρsol (2.126)

Outside the cavity: − ε∆V = 0 (2.127)

On the cavity surface: Vin = Vout (2.128)

On the cavity surface:
(
∂V

∂n

)
in

= ε

(
∂V

∂n

)
out

(2.129)

with the total electrostatic potential V , sum of the electrostatic potential generated by
the solute’s charge distribution ρsol and the solvent reaction potential, ε the dielectric
constant of the solvent, n the unit vector perpendicular to the cavity surface and pointing
outwards, and the subscript in and out to indicate the regions inside and outside the cavity.
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Several approaches are available to solve this electrostatic problem such as the
apparent surface charge (ASC) method used in the PCM model. Here, the second con-
tribution to the total electrostatic potential aforementioned is the interaction potential
of the solute electrons with an apparent surface charge due to the polarisation of the
dielectric medium spread on the cavity surface. In practice, this surface is divided into
a number of finite triangular non-overlapping elements of known area, called tesserae, at
the centre of which is placed a punctual charge. By definition, there is a mutual polar-
isation between the solute and surrounding solvent, as the solvent reaction field acting
upon the solute results from the polarisation it induces in the solvent, and the problem
has to be solved iteratively (Poisson equation coupled to Schrödinger equation for the
solute). Basically, starting from ρ0

sol the charge density of the solute without solvent, one
can obtain a set of apparent charges by solving the electrostatic problem at the cavity
surface. These charges are used to define the interaction potential in Ĥeff and solve the
corresponding Schrödinger equation, leading to a new ρ1

sol for the solute that will be used
to solve the new electrostatic problem, and so on, until self-consistency.

2.6 Molecular dynamics simulations

Molecular dynamics[62, 63] (MD) is a simulation method often used to study the
conformational rearrangements of molecules and their interactions with other molecular
species in a range of environments. A standard MD computer simulation consists in the
computation of the trajectory in the phase space of a system of N interacting bodies. MD
generates a list of phase points Pi in the phase space (r,p) and ordered in time, where r
and p are respectively the positions and momenta. The workflow of an MD simulation
is described in Figure 2.7. First, the system is initialized by selecting initial positions
and velocities. Then, the forces on all particles i=1, 2, 3, ..., N are computed. Newton’s
equations of motion are integrated numerically to obtain new positions and momenta.
This step and the previous one make up the core of the simulation. They are repeated
until we have computed the time evolution of the system for the desired length of time.
After completion of the central loop, the averages of measured quantities are computed
and printed.
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Figure 2.7 – Workflow of an MD simulation.

In MD simulations the collective properties are then determined from the trajectory
of all particles, i.e., from the time evolution of positions r ≡ ri and momenta p ≡ pi.
The method relies on the assumption that stationary values of every average observable
A can be defined as time integrals over the trajectory in the phase space:[64]

< A >= lim
τ→∞

1

τ

∫ τ

0

A[r(t),p(t)]dt (2.130)

In practice, the classical mechanics trajectory is computed at discrete times t=0, t=∆t,
..., t=τ=Nt∆t, with Nt the number of frames and τ the length of the simulation. The
discrete time step ∆t determines the time resolution of the trajectory and has to be
sufficiently small to ensure proper integration of the equations of motion. For instance,
the popular velocity–Verlet integrator (Figure 2.8) is a three step algorithm solving the
Newton’s equations and can be described in the following way:
1. The momenta at half time step t+ ∆t

2
are computed from those at time t and the forces

at time t:
pi(t+

∆t

2
) = pi(t) +

∆t

2
fi(t) (2.131)

2. The new coordinates at time t + ∆t are computed from those at time t and the
momenta at half time step t+ ∆t

2
:

ri(t+ ∆t) = ri(t) +
∆t

m
pi(t+

∆t

2
) (2.132)
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3. The new momenta at time t + ∆t are computed from those at half time step t+ ∆t
2

and the forces at time t+ ∆t:

pi(t+ ∆t) = pi(t+
∆t

2
) +

∆t

2
fi(t+ ∆t) (2.133)

Figure 2.8 – Flowchart of the velocity–Verlet algorithm for the evolution of position r and
linear momentum p.

The atomic or particle positions and momenta produced by MD simulations are
the starting point for the calculation of a variety of physical properties. To prepare the
sample, one selects a model system consisting of N particles and solves Newton’s equations
of motion for this system until its properties no longer change with time, i.e until the
equilibration of the system. After equilibration, the actual measurement is performed. It
should be mentioned that to measure an observable quantity in a MD simulation, we must
first of all be able to express this observable as a function of the positions and momenta of
the particles in the system. Then, the instantaneous values of a certain physical observable
A(t) can be computed from the phase points to estimate the corresponding time average,
in practice replacing the integral in Equation (2.130) with a discrete summation:

< A >≈ 1

Nt

Nt∑
n=1

A(n∆t) (2.134)

The knowledge of a mathematical expression for internal energy V, also called inter-
action potential, is a necessary condition to perform simulations. Every success or failure
of the simulation is ascribable to a success or a failure of the interaction potential model.
Constructing this model requires many simplifications and approximations. The internal
energy of a system of molecules is a complex function of the positions and momenta of
all nuclei and electrons. If one is interested in studying the morphology and dynamics at
the molecular scale, an effective way of tackling this difficult task is to describe atoms as
charged classical particles and completely neglect electrons. Without any approximation,
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the potential energy of the system can be expanded into a series of many-body interaction
terms:

V =
∑
i

Vi +
∑
i<j

Vij +
∑
i<j<k

Vijk +
∑

i<j<k<l

Vijkl + ... (2.135)

where the terms represent the self-energy of the atoms, the pairwise interaction between
two atoms, and so on. The assumption of fixed connectivity between the atoms allows for
further dividing the energy terms between those belonging to the same molecule, giving
rise to a set of intramolecular interactions, typically approximated with up to four-body
terms, and those belonging to different molecules, responsible of intermolecular interac-
tions. In order to limit the number of interactions to be computed, the intermolecular
expansion is usually truncated at the two-body term, although three-body contributions
are not negligible. This level of truncation determines the computational cost, growing
then proportionally with the number of pair interactions, so roughly with the square of
the number of particles. To compensate for neglecting higher terms, some adjustable pa-
rameters (e.g., the atomic size and the interaction strength when representing the atoms)
are normally fitted to reproduce basic thermodynamic properties, giving rise to effective
pairwise potentials rather than exact ones.

Figure 2.9 – Strategies to get a potential model for simulations.

Different strategies are possible to get a potential model for simulations (Figure
2.9). The set of mathematical functions and parameters used to express the interaction
potential is in fact referred to as force field. In the simplest category of force fields,
so-called “Class I”, the interactions between atoms have a direct physical meaning. For
example, the total energy of the system is divided into bonded (bonds, angles and torsions)
and non-bonded (repulsion, dispersion and electrostatic) interactions:

Vtotal = Vbonded + Vnon−bonded (2.136)
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The force fields of this kind rely on intramolecular potential energy functions like the
following:

Vbonded =
∑
bonds

Kr(r− req)2 +
∑

angles

Kθ(θ− θeq)2 +
∑

dihedrals

∑
n

Vn [1 + cos(nφ− γn)] (2.137)

where the three contributions represent bond stretching, bending, and internal rotations
or torsions. The first two terms are described with simple harmonic potentials, char-
acterized by the equilibrium bond distances req and angles θeq, with force constants Kr

and Kθ. The third term is a cosine expansion, with coefficients Vn and phases γn, of
the torsional potential for each internal rotation angle γ. Note that the three functions
involve respectively two-, three-, and four-body intramolecular interactions, referring to
the expansion in (2.135). Non-bonded atom–atom interactions are instead assumed to be
pairwise additive and include the sum of Lennard–Jones terms, allowing for steric repul-
sion Aij/r

12
ij , dispersive Van der Waals attraction Bij/r

6
ij , and unscreened electrostatic

Coulomb terms between the partial charges qi, qj lying on two atoms i, j at distance rij:

Unon−bonded =

i<j∑
atoms

[
Aij
r12
ij

− Bij

r6
ij

+
qiqj
rij

]
(2.138)

These charges reflect local differences in electronegativity and chemical environment inside
the molecule. In practice, partial charges are obtained, often together with the geomet-
rical parameters in (2.137), from preliminary quantum chemistry calculations on isolated
molecules. Non-bonded interactions are normally excluded for directly bonded atoms
(also labeled as 1–2 interactions) and for atoms sharing a common bonded atom (1–3),
while for atoms which are 1–4 connected they are often reduced, with respect to 1–5 or
other intramolecular or intermolecular ones, by a factor which depends on the adopted
force field. In general, atomistic force fields can offer an adequate description or, in the
most favorable cases, prediction of the properties of complex molecular systems at equilib-
rium. However, it should not be overlooked that parameterization and validation of force
fields is carried out on certain classes of compounds and that their transferability to other
categories should not be taken for granted. When exploiting the force field for modeling a
compound not present in the original training set, its performance should be thoroughly
cross-checked against experimental data for the target system, such as density, diffusion
coefficient, crystal structures or other physical properties which depend on the correct
description of both intra and intermolecular terms. This is discussed in more details in
the study reported in Chapter 4 of this thesis, in which refinement of existing force fields
was necessary to improve the description of intra and intermolecular interactions within
supramolecular assemblies of dipolar π-conjugated dyes.
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Finally, the so-called Periodic Boundary Conditions (PBC) are routinely employed
in MD simulations to simulate bulk material and remove surface effects. PBC means
surrownding the simulation box with its translational images in the 3 directions of space,
as illustrated (Figure 2.10). An atom which passes over the cell boundary comes back on
the other side. PBC are usually used in conjunction with the minimum image convention
for short ranged forces. Here, we only consider interactions between each molecule and
the closest periodic image of its neighbours. For consistency with the minimum image
convention, the maximum inter-atomic distance which is taken into account, also called
cut-off distance rcut, must be equal to half the box length (rcut=L/2).

Figure 2.10 – Schematic representation of periodic boundary conditions.
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Chapter 3
Performance of DFT functionals for
calculating the second-order NLO properties
of dipolar merocyanines

3.1 Introduction

In this Chapter, we explore the performance of various DFT exchange-correlation
functionals (XCFs) for predicting the quadratic NLO responses of recently designed dipo-
lar merocyanines,[1, 2, 3] in which tricyanopropylidene-based acceptor units are connected
to dihexylaminophenyl or dihexylaminothiophenyl donor moieties through polyenic bridges
of different lengths (Figure 3.1). HRS measurements demonstrated that these highly dipo-
lar dyes exhibit large first hyperpolarizabilities together with an apparently antagonistic
cyanine-like behavior. In particular, the longest derivative incorporating dihexylaminoth-
iophenyl and phthalimide-substituted tricyanopropylidene terminal groups (II’[4]) was
found to display a record hyperpolarizability together with a negligible bond length al-
ternation (BLA),[1] in apparent contradiction with the paradigm linking large quadratic
NLO responses to an optimal (non zero) BLA value[4, 5] (see Chapter 1).

The accurate description of the first hyperpolarizabilities of such NLO chromophores,
which exhibit large ground-state charge transfer as well as low-lying charge-transfer ex-
cited states, is highly challenging for DFT. Many works have reported the inadequacy of
exchange-correlation functionals (XCFs) based on the local density approximation (LDA)
or the generalized gradient approximation (GGA) for computing the first hyperpolariz-
abilities of such extended π-conjugated systems. This failure has been attributed to the
self-interaction error or overdelocalization of the response to external fields, and originates
from the short-range treatment of exchange, as opposed to the exact exchange used in
Hartree-Fock theory.[6, 7, 8] Global hybrid functionals incorporating a low amount of exact
exchange were also proved unsuitable for the evaluation of β of conjugated chains termi-
nated by D/A pairs, showing a nearly catastrophic behavior with respect to increasing
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the chain length.[6, 9, 10, 11] This issue can be partially alleviated by using range-separated
(RS) hybrids, which offer the possibility to restore the correct asymptotic behavior of the
exchange potential at large distances.[7]
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Figure 3.1 – Structures of the tricyanopropylidene-based merocyanines studied herein.
The length of the polyenic chain varies from n = 0 to n = 4.

Here, we examine the relevance of hybrid exchange–correlation functionals (XCFs)
incorporating different rates of exact Hartree-Fock exchange (HFX), as well as of sev-
eral RS hybrids. Since optimizing the range separation parameter ω in RS-XCFs has
been shown to improve the description of first hyperpolarizabilities of some prototypical
charge-transfer compounds,[10, 11] hyperpolarizabilities calculated using default ω values
are compared to those calculated using ω values tuned according to a system-specific,
nonempirical procedure. Still, in this study, more complex, chemically-designed com-
pounds are chosen in order to assess the performance of XCFs, extending the earlier
works on prototypical systems like α, ω-nitro,amino-polyenes and -polyynes.[7, 9] Here,
the smallest compound (I’[0]) contains 30 atoms while the largest one (II[4]) has 61.
The accuracy of the various functionals is discussed depending on their ability to repro-
duce experimental HRS data, as well as MP2 calculations, used as theoretical references.

3.2 Levels of approximation

Molecular structures were optimized using DFT together with the hybrid M06-2X[12]

XCF and the 6-311G(d) basis set. As shown in previous reports[13, 14] the M06-2X XCF
reliably describes the BLA of extended π-conjugated systems, which is prerequisite for
accurate predictions of optical properties. Each structure was characterized as a minimum
on the potential energy surface based on its real harmonic vibrational frequencies. Note
that terminal N,N-dihexylamino donor groups present in the compounds characterized
experimentally have been replaced by simpler N,N-dimethylamino groups in all calcula-
tions (see Figure 3.1).
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Absorption properties, as well as static and dynamic (frequency-dependent) second-
order nonlinear optical responses, were determined using TD-DFT[15] with the 6-311+G(d)
basis set in combination with various XCFs. The 2006 Minnesota family of functionals[12]

was first considered, in order to evaluate the impact of increasing the amount of exact HFX
from M06L (0%) to M06 (27%), M06-2X (54%), and M06-HF (100%). The BLYP XCF
was employed as well for comparison purposes. Since they have been shown to improve
the description of second-order NLO properties of extended π-conjugated systems,[7, 8, 11]

we also addressed the performance of different classes of LRC XCFs. The LRC-XCFs
considered in this study are i) LC-BLYP, ii) CAM-B3LYP and iii) ωB97X-D (see Chapter
2 for a detailed description). In addition to calculations using standard values of the RS
parameter, we carried out calculations using optimally-tuned ω values in order to obtain a
more accurate description of charge-transfer (CT) excitation energies and NLO responses.
The procedure used to determine optimal system-dependent ω values is described in the
next section.

In addition to DFT, hyperpolarizabilities were calculated using the CPHF method,
as well as using MP2 in combination with a finite field (FF) procedure. A fully autom-
atized Romberg scheme was used to improve and control the accuracy of the numerical
derivatives, using field amplitudes ranging from ±0.0008 to ±0.0032 a.u. for compounds
with n = 0, and from ±0.0002 to ±0.0032 a.u. for compounds with n = 1 − 4.[16] Since
the MP2 method was shown to closely reproduce the NLO responses obtained with refer-
ence CCSD(T) calculations for push−pull π-conjugated systems,[7] MP2 values are used
as theoretical references in this study.

Solvent effects were included in both geometry optimizations and calculations of the
optical properties by using the Integral Equation Formalism (IEF) version of the Polar-
izable Continuum Model (IEF-PCM).[17, 18] In line with experimental characterizations,
chloroform was used as solvent, with dielectric constants ε0 = 4.711 in the static limit and
ε∞ = 2.091 at infinite frequency. All calculations were performed with the Gaussian16
package.[19]

3.3 Optimal tuning of the range separation parameter

The range-separation parameters ω were optimized according to a standard nonem-
pirical system-specific procedure, such that Koopmans’ theorem for both neutral and
anion is obeyed as closely as possible.[20, 21, 22, 23] Optimal ω values, denoted as ωopt in the
following, corresponds to the minimum of the function below, which is found using the
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golden section-search algorithm:[24]

J(ω) =
√
J2

0 (ω) + J2
1 (ω) (3.1)

where
J0(ω) = |εHOMO(N) + IP (N)| (3.2)

J1(ω) = |εHOMO(N + 1) + EA(N)| (3.3)

εHOMO(N) and εHOMO(N+1) are the HOMO energies of the system with N (neutral) and
N + 1 electrons (anion), respectively. The ionization potential (IP) and electron affinity
(EA) are calculated as the differences between ground-state energies of systems with N
and N ± 1 electrons:

IP (N) = E(N − 1)− E(N) (3.4)

EA(N) = IP (N + 1) = E(N)− E(N + 1) (3.5)

Two different ω-tuning schemes were employed, differing in the computation of IP
and EA. In the first one, these two quantities are calculated using the standard attenuat-
ing parameter (ωstd) of the functional, so that their values are kept fixed throughout the
optimization procedure. In the second one, IP and EA are calculated self-consistently,
i.e. using the optimal value of the RS parameter (ωopt) at each step of the process. This
second procedure is the most common way of optimizing ω, but results in larger compu-
tational times. To the best of our knowledge, we report here the first study comparing
the performance of self-consistent (SC) and non self-consistent (NSC) ω-tuning schemes.

While ω-tuning schemes were shown to provide improved fundamental gaps and
absorption properties,[22, 25, 23, 26, 10, 27] the conclusions are more controversial regarding
second-order NLO responses. In recent studies, Sun and Autschbach,[10] as well as Scuse-
ria and coworkers[11] concluded that LRC-XCFs using physically-adjusted RS parameters
lead to improved description of the first hyperpolarizabilities of D-A-substituted organic
molecules. Improved correlation with reference CCSD(T) second-hyperpolarizability val-
ues was also obtained by Matito, Luis et al. by empirically tuning the RS parameter of the
LC-BLYP functional for a benchmark set of 60 medium-size molecules.[28] In contradiction,
other investigations reported that the tuning of ω to enforce Koopmans’ theorem does not
offer real improvement in the description of NLO properties.[27, 29] In this work, ω values
were optimized in the gas phase for the LC-BLYP, CAM-B3LYP and ωB97X-D LRC hy-
brids. Since it was also demonstrated in previous works that ω values optimized in solvent
media using PCM provide reliable hyperpolarizabilities compared to experiments,[11] the
ω values of the LC-BLYP functional were also optimized in the presence of a dielectric
continuum.

80



3.4 Experimental reference data

Experimental UV/Vis data as well as HRS hyperpolarizabilities measured in chlo-
roform using an incident wavelength of 1907 nm are gathered in Table 3.1. Experimental
βHRS values are given according to convention T, and are relative to the HRS response
of the DR1 reference molecule provided in ref. 30 (see also note ref. 31). As reported in
ref. 30, λmax = 481 nm and β∞zzz = 160× 10−30 esu = 18516 a.u. for DR1 in chloroform.
Assuming that DR1 has a quasi C∞v symmetry, β∞HRS =

√
6
35
× β∞zzz = 7667 a.u. At 1907

nm, F TSA
disp = 1.43, so that β1907

HRS = β∞HRS × F TSA
disp = 7667× 1.43 = 10963 a.u.). Static first

hyperpolarizabilities (i.e. at infinite wavelength) were extrapolated from the dynamic
ones according to the two-state model, after introducing a homogeneous damping Γ into
the frequency dispersion factor (eq 2.123) to attenuate the resonance effects:

F TSA
disp (Γ) =

β1907
HRS

β∞HRS
=

∆E2
01(∆E01 − iΓ)2

{(∆E01 − iΓ)2 − (~ω)2}{(∆E01 − iΓ)2 − (2~ω)2} (3.6)

In line with previous studies including a previous report on these derivatives[32, 33, 34, 3],
the static first hyperpolarizabilities were extrapolated by setting Γ to 1.2 times the half
width at half maximum (HWHM) of the first absorption band (Table 3.1), in order to
account for the change in the absorption bandwidth from one compound to another. For
comparison, β∞HRS values were also extrapolated in the absence of homogeneous damping
(Γ = 0).
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Table 3.1 – Experimental data (all measured in chloroform) used as references for
calculations.[1, 3] Maximal absorption wavelengths (λmax, nm), half widths at half max-
imum (HWHM, cm−1) of the main absorption band, dynamic first hyperpolarizabilities
(β1907

HRS, a.u.), and static ones extrapolated using eq 3.6 with Γ = 0 (β∞HRS(0), a.u.) and
Γ = 1.2×HWHM (β∞HRS(Γ), a.u.). Relative β[n]/β[0] values are reported in parentheses
for each series of compounds.

λmax HWHM β1907
HRS F TSAdisp (0) β∞HRS(0) F TSAdisp (Γ) β∞HRS(Γ)

I[0] 470 1700 5800 (1.0) 1.41 4140 (1.0) 1.38 4220 (1.0)
I[1] 529 2350 9190 (1.6) 1.56 5852 (1.4) 1.47 6270 (1.5)
I[2] 565 2550 17900 (3.1) 1.69 10570 (2.6) 1.53 11660 (2.8)

I’[0] 515 950 8710 (1.0) 1.52 5730 (1.0) 1.51 5770 (1.0)
I’[1] 614 850 10640 (1.2) 1.91 5601 (1.0) 1.87 5680 (1.0)
I’[2] 704 1500 24670 (2.8) 2.54 9700 (1.7) 2.27 10870 (1.9)
I’[3] 712 2250 71590 (8.2) 2.62 27250 (4.8) 2.04 35070 (6.1)
I’[4] 720 2550 418430 (48.1) 2.71 154330 (27.0) 1.95 214220 (37.1)

II[0] 566 1100 21280 (1.0) 1.69 12580 (1.0) 1.66 12830 (1.0)
II[1] 668 1025 27090 (1.3) 2.24 12120 (1.0) 2.15 12620 (1.0)
II[2] 759 1400 277670 (13.0) 3.24 85690 (6.8) 2.71 102280 (8.0)

II’[0] 581 650 22740 (1.0) 1.75 12960 (1.0) 1.74 13080 (1.0)
II’[1] 690 450 37730 (1.7) 2.41 15630 (1.2) 2.39 15800 (1.2)
II’[2] 803 415 304760 (13.4) 4.18 72980 (5.6) 4.04 75410 (5.8)
II’[3] 916 400 1886590 (83.0) 16.77 112530 (8.7) 11.19 168620 (12.9)

3.5 Molecular structures

As mentioned above, reliable predictions of the optical properties of π-conjugated
systems require an accurate description of the geometrical parameters associated to the
electronic delocalization along the molecular backbone, in particular the bond length
alternation (BLA). BLA values were calculated at the IEFPCM:M06-2X/6-311G(d) level
for the four series of derivatives, according to the following expression:

BLA =
1

2n+ 1

N−2∑
i=1

(−1)i+1 × (di+1 − di) (3.7)

where di is the ith interatomic distance within the polyenic linker of length n connecting
the donor and acceptor units (see Figure A.1 and Table A.1). Note that this expression
provides BLA values that are negative for all compounds. For simplicity, only the ampli-
tudes are reported in the following.

As shown in Figure 3.2, the evolution of BLA with chain length differs from one
series to another. In compounds incorporating a dimethylaminophenyl as donor group
(I[n] and II[n]), BLA values display small variations with n, with values ranging from
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0.066 to 0.074 Å for I[n] and from 0.052 to 0.064 Å for II[n]. In series I’[n] and II’[n] that
include a dimethylaminothiophene donor, BLA values show much larger variations (from
0.024 to 0.067 Å for I’[n], and from 0.002 to 0.054 Å for II’[n]). Consistently with the
decrease of the π-electron conjugation with respect to increasing n, the pyramidalization
angle of the dimethylamino substituent increases, as reported in Table A.2.
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Figure 3.2 – Bond length alternation (in Å) calculated along the polyenic bridge of the
four series of derivatives at the IEFPCM:M06-2X/6-311G(d) in chloroform.

3.6 Static first hyperpolarizabilities

3.6.1 Reference ab initio calculations

Table 3.2 reports the static HRS hyperpolarizability of the four merocyanine series
calculated at the CPHF and MP2 levels. Previous theoretical investigations demonstrated
that the MP2 level, as a result of cancellations between higher-order contributions, in-
cludes the largest part of electron correlation effects and closely reproduces the first hyper-
polarizability of push−pull π-conjugated systems obtained with the CCSD(T) scheme.[7]

βMP2
HRS values are thus used as theoretical references in the following, while comparison to
βCPHFHRS values provides a direct measure of the magnitude of electron correlation effects.
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Table 3.2 – Static HRS hyperpolarizabilities (β∞HRS, a.u.) and relative β∞HRS[n]/β∞HRS[0]
values calculated at the CPHF/6-311+G(d) and MP2/6-311+G(d) levels in chloroform.

CPHF MP2
β∞HRS β∞HRS[n]/β∞HRS[0] β∞HRS β∞HRS[n]/β∞HRS[0]

I[0] 4372 1.0 9797 1.0
I[1] 9530 2.2 24979 2.5
I[2] 16782 3.8 47273 4.8
I[3] 25344 5.8 72384 7.4
I[4] 33739 7.7 94967 9.7
I’[0] 3917 1.0 8299 1.0
I’[1] 11120 2.8 29722 3.6
I’[2] 24024 6.1 71680 8.6
I’[3] 35675 9.1 106571 12.8
I’[4] 42662 10.9 123604 14.9
II[0] 7173 1.0 17364 1.0
II[1] 15553 2.2 43885 2.5
II[2] 27055 3.8 82765 4.8
II[3] 40143 5.6 125463 7.2
II[4] 53090 7.4 163570 9.4
II’[0] 5587 1.0 10982 1.0
II’[1] 13591 2.4 32228 2.9
II’[2] 35754 6.4 112592 10.3
II’[3] 67724 12.1 232020 21.1
II’[4] 76914 13.8 250702 22.8

As expected from previous works,[7, 35, 36, 34, 37, 16] electron correlation enhances the
first hyperpolarizability by a factor ranging between 1.97 and 3.43. The βMP2

HRS /β
CPHF
HRS

ratio is system-dependent, which demonstrates the need of including electron correla-
tion effects since the latter introduce a non systematic scaling of the βHRS values that
might impact qualitative interpretations. As shown in Figure 3.3, the βMP2

HRS /β
CPHF
HRS ra-

tios smoothly increase with the size n of the polyenic bridge up to a maximum value
obtained for n = 3, and then slightly decrease. Although it follows the same trend, the
II’[n] series, which incorporates the strongest D/A pair, displays stronger variations of
the βMP2

HRS /β
CPHF
HRS ratio as a function of n.
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Figure 3.3 – βMP2
HRS /β

CPHF
HRS ratio as a function of chain length in the four series of deriva-

tives.

n = 4n = 3

n = 0 n = 2n = 1

Figure 3.4 – Unit sphere representation of the static first hyperpolarizability tensor for
compounds II’[n] (n = 0 − 4), as calculated at the CPHF level. Arrows represent the

effective second-order induced dipoles −→µ eff =
−→←→
β :
−→
F 2(θ, φ) plotted at each point (θ, φ)

of the surface of a sphere centered at the center of mass of the molecules, where
−→←→
β is

the first hyperpolarizability tensor and
−→
F a unit vector of the incident electric field with

polarization defined in the spherical coordinates (θ, φ).

As reported in Tables A.25 and A.26, the computed depolarization ratios are typical
of one-dimensional push−pull π-conjugated systems; they range from 4.0 to 4.8 at the HF
level, and are systematically larger (from 4.5 to 5.0) when introducing electron correlation
effects at the MP2 level. Noteworthy, both levels of calculation evidence that increasing
the conjugation length from n = 0 to n = 4 within a molecular series reinforces the 1D
character of the NLO response, as also highlighted by unit sphere representations[38] of
the β tensor (see Figure 3.4 for the II’[n] series).

85



3.6.2 Two-state approximation

We address in this section the reliability of the two-state approximation, by com-
paring the static βTSAHRS values calculated using eq 2.122 with those calculated using full-
featured CPHF calculations (βCPHFHRS ). As shown in Figure 3.5a, the two sets of values
correlate well (with correlation coefficients R2 ≥ 0.99, see Table A.11b), which proves
the suitability of the TSA for describing qualitatively the variations of βHRS. Note
that the correlation remains very good (R2 = 0.986) when considering the four series
of molecules altogether (Figure A.11). However, as illustrated in Figure 3.5b for the four
series of compounds, the relative error is not systematic, the TSA providing underesti-
mated βHRS values for small molecules, and overestimated ones for larger compounds.
Besides, large relative errors (ranging between 40% and 46%) are obtained for the largest
systems (n = 4). The same conclusions hold when the first hyperpolarizabilities are com-
puted at the Coupled-Perturbed Kohn-Sham (CPKS) level. Interestingly, varying the XC
functional within a given series of compounds does not induce significant changes in the
evolution of βTSAHRS with respect to βCPKSHRS , and gives rise to linear regression equations with
very similar slope coefficients (Table A.43). This indicates that the evolution of the error
made on the HRS hyperpolarizabilities when using the TSA (see also Tables A.41 and
A.42) hardly depends on the level of calculation, which further confirms the robustness
of the two-state approximation for qualitative interpretations.
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Figure 3.5 – a) Static βHRS values of the four merocyanine series evaluated using the
two-state approximation, plotted against the values calculated using CPHF/6-311+G(d)
calculations in chloroform. Lines are linear fits. b): Evolution of the relative error (defined
as Err = (βTSAHRS − βCPHFHRS )/βCPHFHRS × 100) with the length of the polyenic bridge.

3.6.3 Effect of the amount of exact HF exchange

The static HRS hyperpolarizabilities calculated using the Minnesota family of XCFs
are collected in Table 3.3 for the four series of compounds. We first discuss the evolution
of β∞HRS with respect to the percentage of HF exchange (%HFX) included in the func-
tional for a given compound. As shown in Figure 3.6, β∞HRS of shorter derivatives hardly
depends on %HFX, while it has a strong impact for the larger ones, since the latter are
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more affected by conjugation effects.[39] In series incorporating a dimethylaminophenyl
as donor group (I[n] and II[n]), β∞HRS linearly decreases with %HFX, as previously re-
ported for other extended NLO chromophores.[8] The series I’[n] and II’[n] that include
a dimethylaminothiophene donor exhibit a less usual behavior: β∞HRS linearly increases
with %HFX for shorter compounds (n = 0− 2), whereas it evolves non monotonically for
I’[3] and II’[4], for which a maximum is found for %HFX= 54% (M06-2X). In the case
of I’[4], β∞HRS displays a slightly marked maximum for a lower amount of HF exchange
(%HFX= 27%), corresponding to the M06 functional.

These different behaviors can be rationalized by analyzing the independent evolu-
tion of the spectroscopic quantities entering in the two-state expression of β∞HRS (eq 2.122).
As shown in Figures A.3 and A.5, the first charge-transfer excitation energy (∆E01) lin-
early increases with %HFX in the I[n] and II[n] series, as a result of the increase of
the HOMO-LUMO gap. With few exceptions, the dipole moment variation between the
ground and first dipole-allowed CT state (∆µ01) also increases linearly for shorter com-
pounds (n = 0− 2), while the variation becomes non monotonic for I[3], I[4] and II[4].
Combined with the saturation of the oscillator strengths, these different behaviors result
in the regular decrease of β∞HRS with %HFX in these two series. The unexpected increase
of β∞HRS observed for the shortest compounds in the I’[n] and II’[n] series mainly origi-
nates from the weak dependence of ∆E01 on %HFX (Figures A.4 and A.6), while ∆µ01

and f01 globally increase. In derivatives with longer polyenic chains, ∆E01 displays a more
pronounced increase with %HFX, which translates into the lowering of β∞HRS.
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Table 3.3 – Static HRS hyperpolarizabilities (β∞HRS, a.u.) and relative β∞HRS[n]/β∞HRS[0]
values calculated in chloroform using the M06 series of XCFs in combination with the
6-311+G(d) basis set.

M06L M06 M06-2X M06-HF

β∞HRS β[n]/β[0] β∞HRS β[n]/β[0] β∞HRS β[n]/β[0] β∞HRS β[n]/β[0]

I[0] 7800 1.0 7331 1.0 7550 1.0 7215 1.0
I[1] 19261 2.5 18431 2.5 19104 2.5 17318 2.4
I[2] 42325 5.4 39177 5.3 38422 5.1 30792 4.3
I[3] 84258 10.8 72671 9.9 64572 8.6 44320 6.1
I[4] 154269 19.8 120043 16.4 94611 12.5 55179 7.6

I’[0] 4529 1.0 4832 1.0 5676 1.0 6730 1.0
I’[1] 11033 2.4 12869 2.7 16829 3.0 22388 3.3
I’[2] 27713 6.1 33115 6.9 42661 7.5 48973 7.3
I’[3] 63288 14.0 71646 14.8 80109 14.1 66169 9.8
I’[4] 128361 28.3 128759 26.6 117205 20.7 71644 10.6

II[0] 13021 1.0 12522 1.0 12766 1.0 12435 1.0
II[1] 29405 2.3 29581 2.4 31297 2.5 30440 2.4
II[2] 61853 4.8 61284 4.9 62881 4.9 54822 4.4
II[3] 120983 9.3 113035 9.0 106273 8.3 78372 6.3
II[4] 223158 17.1 190547 15.2 157463 12.3 96263 7.7

II’[0] 5836 1.0 6476 1.0 7272 1.0 8769 1.0
II’[1] 11525 2.0 13773 2.1 17496 2.4 25773 2.9
II’[2] 26435 4.5 33966 5.2 49182 6.8 87460 10.0
II’[3] 69848 12.0 90972 14.0 126131 17.3 158799 18.1
II’[4] 162471 27.8 192302 29.7 208061 28.6 150724 17.2
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Figure 3.6 – Static HRS hyperpolarizabilities (in 104 a.u.) of the four series of merocya-
nines, calculated in chloroform using the Minnesota’s family of functionals (M06L, M06,
M06-2X, M06-HF) in combination with the 6-311+G(d) basis set. Results are reported
as a function of the percentage of HF exchange included in the XCF.

It is also informative to compare the evolution with chain length of β∞HRS obtained
using the Minnesota functionals and the evolution obtained at the CPHF and MP2 levels
(Figure 3.7). For series I[n] and II[n], the M06L and M06 XCFs overestimate the size
effects and significantly deviate from MP2 reference results for larger compounds. This be-
havior is consistent with previous investigations that have reported the nearly catastrophic
evolution of mild hybrid XCFs with respect to increasing the conjugation length.[6, 9, 10, 11]

Reversely, M06-HF closely follows the size evolution obtained at the CPHF level, as ex-
pected owing to the fact that β∞HRS values are hardly impacted by the correlation part
of the functional. Nevertheless, one notes that the CPHF and M06-HF β∞HRS values
are significantly different, possibly due to the kinetic energy functional. As also shown
in previous works,[8] M06-2X closely reproduces the results obtained at the MP2 level,
demonstrating that this XCF incorporates the adequate balance between DFT and HF
exchange for computing the NLO properties in conjugated push-pull chromophores.

The situation is more complex for series I’[n] and II’[n]. Both CPHF and MP2
β∞HRS values show a saturation for long chains, which is more pronounced for II’[n]. This
behavior is reproduced only by M06-HF, the other XCFs (including M06-2X) showing a
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monotonic increase of the static first hyperpolarizability. The difference in the evolution of
β∞HRS with system size between series including a dimethylaminophenyl and those includ-
ing a dimethylaminothiophenyl can be directly ascribed to the difference in the evolution
of the bond length alternation (Figure 3.2), and qualitatively interpreted using a two-
form model mixing neutral and zwitterionic forms.[40, 41, 42] In this model, the evolution
of β∞HRS with BLA exhibits a peak between the polyene and the cyanine limits, crosses
through zero at the cyanine limit (where BLA = 0), and exhibits another peak between
the cyanine and zwitterionic limits. Whereas the BLA hardly changes with n in series
I[n] and II[n], it strongly increases in series I’[n] and II’[n], starting closer to the cyanine
limit in the case of II’[0]. When increasing n in the latter series, the BLA increases and
shifts the two-form equilibrium close to the polyene limit, where β∞HRS saturates before
reaching its maximum value.
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Figure 3.7 – Evolution of the static HRS hyperpolarizabilities (in 104 a.u.) with the length
of the polyenic bridge in the four series of merocyanines, calculated in chloroform at the
HF, MP2 and DFT levels using Minnesota’s family of functionals in combination with
the 6-311+G(d) basis set.
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3.6.4 Optimal tuning of the range-separation parameter in RS-

XCFs

Optimal values of the RS parameters obtained in the gas phase using the self-
consistent (SC) and non-self-consistent (NSC) optimization schemes (see Section 3.3) are
collected in Table A.3a for the four series of merocyanines. The differences in the ωopt
values obtained using the two tuning schemes, as well as the induced differences on the
optical properties of the investigated compounds, are discussed in detail in the Appendix
A in Figure A.7. Summarizing the main findings, for a given functional, SC and NSC
optimization schemes provide close optimal ω values and similar evolution of the first hy-
perpolarizabilities with chain length. Nevertheless, the accuracy of the NSC scheme with
respect to the SC one depends on the choice of the XCF. Significant differences in the
βHRS values computed using the two procedures were notably obtained with LC-BLYP,
where deviations can reach 15% and 20% for static and dynamic βHRS, respectively. From
now on, only properties computed using the self-consistent method will be discussed.

For LC-BLYP and ωB97X-D, the optimally-tuned ω values are comprised in the
ranges 0.16-0.20 bohr−1 and 0.11-0.15 bohr−1, respectively, both smaller than the stan-
dard ω values. Conversely, ω values optimized for CAM-B3LYP are larger than ωstd and
range between 0.41 and 0.95 bohr−1. As mentioned in earlier works[22, 25, 23, 10, 43, 27] ωopt

decreases for all XCFs when increasing the system size. Whatever the functional, the
variation of ωopt with chain length is larger for series I[n] and II[n] than for series I’[n]
and II’[n]. For a given molecular family, ω values optimized for LC-BLYP and ωB97X-D
display much smaller variations with the system size than CAM-B3LYP, as previously
reported by Garret et al. for other organic chromophores.[27]

Table 3.4 reports the β∞HRS values calculated at the LC-BLYP, ωB97X-D and CAM-
B3LYP level using default and optimally-tuned ω values. The evolution of β∞HRS with
chain length is illustrated in Figure 3.8 for the four families of merocyanines. If one
excepts some results calculated with LC-BLYP and ωopt for the larger compounds, the
static hyperpolarizabilities computed using LRC functionals globally lie in between val-
ues computed at the CPHF and MP2 levels. β∞HRS values computed using LC-BLYP and
ωB97X-D with optimally-tuned RS parameters are quite similar, while they differ more
significantly when using the default ω values (in part because ω values are getting more
similar after optimization).
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Table 3.4 – Static HRS hyperpolarizabilities (β∞HRS, a.u.) and relative β∞HRS[n]/β∞HRS[0]
values calculated in chloroform using RS-XCFs in combination with the 6-311+G(d) basis
set, using standard (ωstd) and optimally-tuned (ωopt) RS parameters.

LC-BLYP ωB97X-D CAM-B3LYP
ωstd ωopt ωstd ωopt ωstd ωopt

I[0] 6703 1.0 7770 1.0 6964 1.0 7178 1.0 7159 1.0 6157 1.0
I[1] 16121 2.4 19818 2.6 17263 2.5 18079 2.5 17943 2.5 15418 2.5
I[2] 28744 4.3 40508 5.2 33452 4.8 36778 5.1 35769 5.0 30692 5.0
I[3] 41654 6.2 69994 9.0 53769 7.7 63309 8.8 59596 8.3 5847 8.3
I[4] 52244 7.8 106174 13.7 74881 10.8 95694 13.3 86062 12.0 72699 11.8
I’[0] 6068 1.0 5630 1.0 5346 1.0 5166 1.0 5335 1.0 4815 1.0
I’[1] 19971 3.3 16146 2.9 16101 3.0 14743 2.9 15762 3.0 15142 3.1
I’[2] 43944 7.2 41454 7.4 40318 7.5 37859 7.3 40058 7.5 38600 8.0
I’[3] 60735 10.0 82071 14.6 71132 13.3 74817 14.5 74530 14.0 68981 14.3
I’[4] 67029 11.0 128900 22.9 96112 18.0 116851 22.6 107262 20.1 94970 19.7
II[0] 11408 1.0 13295 1.0 11775 1.0 12295 1.0 12148 1.0 11105 1.0
II[1] 27817 2.4 32548 2.4 28631 2.4 29732 2.4 29551 2.4 27460 2.5
II[2] 50036 4.4 66785 5.0 55580 4.7 60259 4.9 58774 4.8 54520 4.9
II[3] 71721 6.3 117219 8.8 89194 7.6 104703 8.5 98087 8.1 90140 8.1
II[4] 88713 7.8 183070 13.8 124654 10.6 162191 13.2 143376 11.8 129897 11.7
II’[0] 8113 1.0 7142 1.0 7162 1.0 6692 1.0 6976 1.0 6822 1.0
II’[1] 23511 2.9 15899 2.2 17700 2.5 14988 2.2 16543 2.4 16873 2.5
II’[2] 75923 9.4 42440 5.9 51012 7.1 39570 5.9 46665 6.7 48615 7.1
II’[3] 137749 17.0 115381 16.2 123406 17.2 106369 15.9 119329 17.1 121414 17.8
II’[4] 135183 16.7 218829 30.6 177326 24.8 197960 29.6 191549 27.5 184919 27.1

In series I[n] and II[n], the static hyperpolarizabilities computed using LC-BLYP
and ωB97X-D with optimally-tuned RS parameters are closer to reference MP2 results
than those obtained using default ω values. This originates from the fact that ωopt < ωstd,
so that the fraction of HFX in those two XCFs is smaller after ω optimization, which in-
creases the β∞HRS values. However, optimally-tuned LC-BLYP and ωB97X-D functionals
overestimate the enhancement of the first hyperpolarizability with chain length compared
to MP2. The situation is reversed in the case of CAM-B3LYP, for which ω-tuning in-
creases the part of HFX in the XCF. In this case, β∞HRS values calculated using default
ω are closer to MP2 references. Moreover, the increase of β∞HRS values with n is better
reproduced.

In series I’[n] and II’[n], optimally-tuned LRC XCFs all fail to reproduce the evo-
lution of β∞HRS values as provided by MP2 calculations. Only LC-BLYP with the default
ω value reproduces the saturation observed for larger compounds at the CPHF and MP2
levels. Once again, this behavior is linked to the amount of HFX included in the XCF.
Optimizing ω lowers the fraction of HFX, so that the saturation of β∞HRS with chain length
is expected to appear for chain lengths larger than n = 4. It is also interesting to note
that ωB97X-D using optimally-tuned RS parameters provides β∞HRS values very similar
to those calculated at the M06-2X level for the four series of compounds (see Figure A.8).
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Figure 3.8 – Evolution of the static HRS hyperpolarizabilities (in 104 a.u.) with the length
of the polyenic bridge in the four series of merocyanines, calculated in chloroform at the
HF, MP2 levels in combination with the 6-311+G(d) basis set, as well as at the DFT level
using long-range corrected XC functionals with standard (std) and optimally-tuned (opt)
RS parameters.

Finally, static hyperpolarizabilities calculated with LC-BLYP using RS parameters
optimized in the presence of chloroform are collected in Table A.20c. Consistently with
previous calculations carried out in media of similar optical dielectric constant,[11] the ω
values optimized in chloroform (ωPCM) are three times smaller than those optimized in gas
phase (Table A.3b), which drastically reduces the fraction of exact HFX in the functional.
Not surprisingly, the resulting β∞HRS values and their evolution with chain length are very
similar to that obtained using the BLYP XCF including only DFT exchange (Table A.20c).

3.7 Frequency dispersion effects

The dynamic HRS hyperpolarizabilities calculated using the Minnesota and long-
range corrected functionals, as well as with TDHF are collected in Tables A.27-A.37 for
the four series of compounds. In line with experimental characterizations, the dynamic
(frequency-dependent) β tensor components were calculated using an infrared incident
wavelength (photon energy) of 1907 nm (0.65 eV). Frequency dispersion factors calculated
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as Fdisp = β1907
HRS/β

∞
HRS, are gathered in Tables A.38-A.39, while those estimated from the

TSA (F TSA
disp , eq 2.123) are collected in Tables A.4-A.14. Whatever the functional, the

two series of values are linearly correlated, which further illustrates the suitability of the
TSA to describe this family of compounds. Note that Fdisp values are systematically
smaller than F TSA

disp , which originates from the fact that Fdisp values implicitly include
the contribution of higher energy excited states. Note also that the dynamic dielectric
constant of chloroform is smaller than the static one, which damps the solvent-induced
enhancement of βHRS when going from λ = ∞ to λ = 1907 nm, artificially reducing the
value of Fdisp. The same effect is present in F TSA

disp , since ∆µ01 values are calculated using
a non-equilibrium solvent approach.

As a result of the lowering of the transition energy, Fdisp increases with chain length
in all families of compounds, with a more pronounced enhancement for the II and II’ series
than for I and I’. In the Minnesota series of functionals, Fdisp decreases when increas-
ing the amount of HF exchange, as a result of the increase of the transition energy. As
for LRC functionals, optimizing the RS parameter induces an exaltation of frequency
dispersion effects with LC-BLYP and ωB97X-D, while the ω tuning has no significant
effect on Fdisp values with CAM-B3LYP. For a given compound, frequency dispersion
factors calculated using optimally-tuned ω values evolve in the following order: CAM-
B3LYP < ωB97X-D < LC-BLYP. Among the Minnesota XCFs, Fdisp values calculated
using M06-2X display the best agreement with those provided by optimally tuned LRC
functionals. Thus, M06-2X performs similarly to RS-XCFs not only for evaluating static
hyperpolarizabilities as discussed above, but also for gauging the intensification of the
NLO responses due to resonance effects. However, none of the selected XCFs reproduces
the experimental frequency dispersion ratios (Fdisp(0) values in Table 3.1). Although
their global increase with chain length is qualitatively reproduced, frequency resonance
effects are largely underestimated for the larger chains, since excitation energies are sys-
tematically overestimated. This discrepancy partly originates from the fact that vertical
transitions provided by TD-DFT calculations are not strictly comparable to experimental
wavelengths of maximal absorption. More physically sound comparisons would require to
compute the full vibronic spectra.

3.8 Comparison to experiments

Comparing calculated first hyperpolarizabilities to experimental data measured in
or nearby resonant conditions is very tricky. We make here two attempts, both consid-
ering relative βHRS[n]/βHRS[0] rather than absolute βHRS values to enable more reliable
comparisons. On the first hand, static βHRS values are compared, where the experimental
ones are extrapolated from HRS measurements by using the two-state model (eq 2.122),
either with Γ = 0 or Γ = 1.2×HWHM (see the β∞HRS(0) and β∞HRS(Γ) values in Table
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3.1). However, the calculated β∞HRS values cannot be strictly compared to experimental
extrapolations, since they are computed using the static dielectric constants ε0, which dif-
fers from the optical dielectric constant that applies for experimental measurements. The
solution we adopted to circumvent that issue is to also determine the theoretical static
β∞HRS values from the dynamic ones computed at 1907 nm by using the TSA extrapolation
procedure (Tables A.44 and A.45).

On the second hand, experimental β1907
HRS values are directly compared to the com-

puted dynamic results. Dynamic MP2 values (Tables A.40a-b) have been obtained by
applying a multiplicative approximation in which the static MP2 values are corrected by
the F TSA

disp ratio calculated at the DFT level using the different XCFs, thus assuming that
frequency dispersion and electron correlation effects can be treated independently:[44]

β1907
MP2 = β∞MP2 × F TSA

disp (3.8)

As illustrated in Figures 3.9, the evolution with chain length of theoretical static β∞HRS[n]/

β∞HRS[0] ratios correlates at most qualitatively with the experimental data (whether the
latter are extrapolated using a damping factor or not). In series I[n] and I’[n], the
experimental relative hyperpolarizabilities grows more slowly with n than all computed
values for small chain lengths. In I’[n] they abruptly increase for n = 4 as a result of
frequency resonance, and get larger than the computed values. The same behavior is ob-
served from n = 3 in the II[n] series. The agreement between computed and experimental
β∞HRS[n]/β∞HRS[0] ratios is better in series II’[n]. In particular, relative hyperpolarizabili-
ties calculated using hybrid XCFs having a predominant local character (M06L and M06)
well reproduces experimental extrapolations issued from the damped TSA. Note that
CPHF results are also in good agreement with experiments in this series of compounds.

The evolution with chain length of experimental and theoretical relative β1907
HRS values

are compared in Figures A.9-A.10. The conclusions do not differ much from the static
case. Overall, all calculation levels reproduce qualitatively well the enhancement with
chain length of the dynamic first hyperpolarizabilities in the four series of compounds,
but fail to reproduce specific results measured in the resonance regime. Whether using
the Minnesota (Figure A.9) or LR-XCFs (Figure A.10), DFT calculations overestimate
the β1907

HRS[n]/β1907
HRS[0] ratios compared to the experimental ones, except in the resonant

cases (I’[4], II[2] and II’[3]). Dynamic MP2 values obtained using the multiplicative
scheme (eq 3.8) show a similar enhancement with n as that obtained at the DFT level
(Figure 3.10). Note that, except for larger chains (n = 4), the choice of the DFT XCF
for calculating the frequency dispersion factor F TSA

disp has no significant impact.
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Figure 3.9 – Evolution of the relative static HRS hyperpolarizabilities (βHRS[n]/βHRS[0])
with the length of the polyenic bridge in the four series of merocyanines, calculated in
chloroform using various theoretical levels. Results extrapolated from HRS measurements
by using the two-state model either with Γ = 0 or Γ = 1.2× HWHM are also reported.
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Figure 3.10 – Evolution of the relative dynamic HRS hyperpolarizabilities
(βHRS[n]/βHRS[0]) with the length of the polyenic bridge in the four series of merocya-
nines, calculated in chloroform at the HF and MP2 levels together with the 6-311+G(d)
basis set. MP2 values have been obtained using eq 3.8 with frequency dispersion fac-
tors calculated using Minnesota and LR-XCFs. Experimental values obtained from HRS
measurements are also reported.
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3.9 Conclusions

This work investigates the performance of various theoretical levels of approximation
to evaluate the second-order NLO responses of recently designed push-pull merocyanine
dyes. First hyperpolarizabilities calculated using Minnesota hybrids as well as long-range
corrected exchange-correlation functionals are compared to ab initio HF and MP2 results,
as well as to experimental data obtained from HRS measurements. The evolution of βHRS
responses with the nature of the terminal substituents or with the length of the conju-
gated linker is rationalized by means of the two-state approximation, whose robustness
for qualitative interpretations is demonstrated.

The static hyperpolarizabilities calculated using range-separated XCFs globally lie
in between values computed at the CPHF and MP2 levels. In most cases, βHRS val-
ues computed using LC-BLYP and ωB97X-D with optimally-tuned RS parameters are
closer to MP2 results than those obtained using default ω values, although the improve-
ment is not systematic and system-dependent. Interestingly, the ω-tuning is shown to
attenuate the intrinsic differences in these two XCFs, the βHRS values computed with
optimally-tuned RS parameters being closer than those calculated using the default ω
values. Contrary to what was found with LC-BLYP and ωB97X-D, optimizing the RS
parameter in CAM-B3LYP increases the ω values and thus the amount of exact HF ex-
change in the XCF, which reduces the agreement with MP2 reference results.

Calculations performed using the Minnesota family of functionals evidence that the
percentage of exact HF exchange in the XCF strongly impacts the magnitude of the βHRS
responses. Interestingly, M06-2X is shown to provide βHRS values in close agreement with
optimally tuned range-separated functionals, which indicates that a percentage of nearly
50% between DFT and HF exchange is the adequate balance for computing the NLO
properties of these highly dipolar conjugated push-pull chromophores.

This work also illustrates the difficulty to compare the calculated dynamic first
hyperpolarizabilities to the experimental data measured in resonance conditions. None
of the DFT XCFs considered in this study satisfactorily reproduces the frequency reso-
nance enhancement of the βHRS responses, which hampers any quantitative comparison
of their relative evolution with chain length. Using a damped two-state model instead
to extrapolate experimental static hyperpolarizabilities does not turn out to be a better
strategy to compare theoretical and experimental responses in this series of highly dipolar
compounds.
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Chapter 4
Self-assembling, structure and nonlinear
optical properties of fluorescent organic
nanoparticles in water

4.1 Introduction

Imaging technologies play a critical role in biological applications such as cancer
detection, stem cell transplantation and tissue engineering. Among them, fluorescence
imaging has attracted attention because of its capacity to provide strong signal intensity
and high resolution images at subcellular level. Molecular fluorescent dyes are widely
used, but are limited by the fact that they contain only a single luminescent center that
can absorb and emit a limited number of photons per time and space units. In contrast,
fluorescent nanoparticles (NPs) concentrate a huge number of fluorescent centers in a
narrow region of space, which enables intense and bright spotlight emission. Therefore in
the last decades, nanoparticles have attracted increased interest in biology and optoelec-
tronics fields, in particular luminescent metal- and semiconductor-based nanoparticles.
A number of them however raise toxicity and biodegradability issues, which are critical
with regard to biomedical applications and environmental concerns. In that perspective,
molecular-based fluorescent organic nanoparticles (FONs) emerged as a promising less
toxic alternative to inorganic ones, offering appealing ways towards the realization of ex-
ogenous probes for biomaging applications.[1, 2, 3, 4]

Some years ago, Blanchard-Desce and coworkers reported bright near-infrared emit-
ting FONs made from dipolar push−pull chromophores incorporating a strong electron-
withdrawing group.[2] By varying the nature of the electron-accepting unit (among which
the slightly hydrophilic aldehyde as illustrated in Figure 4.1) and of the π-conjugated
systems, FONs showing tuneable emission (from green to near infrared) and exhibiting
good colloidal stability in water were obtained.[5, 6, 7] The analysis of the fluorescence emis-
sion spectra and lifetimes of these nanoparticles suggested possible nanostructuration of
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dipolar dyes within the FONs, that could result from a specific local organization and ori-
entation of the chromophores in the vicinity of the nanoparticles surface. This hypothesis
was further addressed by measuring the second-order nonlinear (NLO) responses of the
FONs made from the dipolar dye shown in Figure 4.1, by means of polarization-resolved
Hyper-Rayleigh Scattering (HRS) experiments, which is a powerful selective method to
investigate interfacial properties.[8] In contrast to that of constitutive dyes, the measured
Second-Harmonic Scattering (SHS) signals of the FONs arise exclusively from the dipolar
hyperpolarizability component, with negligible contribution of the octupolar one. These
results were attributed to the presence of correlated polar H-type arrangements of the dyes
at the water interface, with the hydrophobic triphenylamine end-group pointing toward
the center of the NP and the formyl end-group pointing toward water.

N

S S H

O

φTT
φTP

Figure 4.1 – Chemical structure of the dipolar dye investigated in this thesis, with the
dihedral angles φTT = S-C-C-S and φTP = C-C-C-S.

The objective of this computational study is to complement these experimental
investigations by substantiating or not the results and conclusions that were disclosed
for NPs based on the dye sketched on Figure 4.1. Molecular dynamics simulations of
the nanoparticles formation[9, 10, 11, 12] in pure water are associated to quantum chemical
calculations based on Density Functional Theory (DFT), in order to provide insights on
the NPs formation process, the molecular orientation of dipolar dyes within the NPs, as
well as the dynamical behavior of their NLO properties. For the first time, the optical
response properties of nanoparticles are evaluated fully quantum mechanically by using
the tight-binding version of the simplified TD-DFT (sTD-DFT) method, which enables
a drastic reduction of computational costs for structures involving several thousands of
atoms.[13, 14]

4.2 Molecular dynamics simulations

Classical MD simulations were carried out using the NAMD software[15] and ana-
lyzed with VMD.[16] Organic chromophores were modeled using a modified version of the
General AMBER Force Field.[17] Atomic charges were obtained by fitting the electrostatic
potential calculated at the B3LYP/cc-pVTZ level of theory, after geometry optimiza-
tion, using the Gaussian 16 software.[18] The relaxed B3LYP/cc-pVTZ torsional potentials
around the Thienyl-Thienyl and Thienyl-Phenyl dihedrals (φTT and φTP , Figure 4.1) were
calculated and implemented in the force field with the methodology described in ref. [19].
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Water molecules were described by the flexible variant of the simple point charge model
(SPC/Fw),[20] which well reflects the dynamical and dielectric properties of bulk water.
Details on the parameterization of the force fields are provided in the Appendix B.

MD simulations were first performed for 1000 ns in the NPT ensemble (p = 1 atm
and T = 300 K) by employing periodic boundary conditions with a cubic simulation box
containing one single organic dye and 1000 water molecules. The self-aggregation of the
dyes was simulated by using a 117.2 Å edge cubic simulation box constituted of 100 dipolar
dyes surrounded by 46850 water molecules. The initial random spatial distribution of the
organic molecules was obtained using the Packmol software.[21] Then, a MD equilibration
procedure was performed on this system for 1 ns within the NpT ensemble and 1 ns within
the NVT ensemble, using a temperature of 300 K. To avoid the aggregation of the dyes
during this step, the position of their atoms was fixed. In a second step, 8 replicas of the
equilibrated system (Figure B.3) were created, and used as starting guesses for 8 different
MD simulations performed at 300 K for 250 or 300 ns in the NpT ensemble. A multiple
time-stepping integration scheme was used, with a time step of 1 fs for the bonded forces,
2 fs for the Lennard-Jones forces and 4 fs for electrostatic ones. A cutoff of 10 Å was
used for intermolecular Lennard-Jones interactions, for which standard Lorentz-Berthelot
mixing rules were also applied. Long range electrostatic interactions were evaluated with
the Particle Mesh Ewald method with a grid spacing of 1.5 Å. Temperature was controlled
with the simple velocity scaling algorithm and pressure with Berendsen barostat.

4.3 Calculation of second-order NLO properties

The static and dynamic (frequency-dependent) components of the first hyperpo-
larizability tensor of single dyes in solution were computed using the TD-DFT at the
M06-2X/6-311+G(d) level.[22, 23] As evidenced in previous theoretical works, the M06-
2X[24] exchange-correlation functional is well suited for calculating the NLO responses of
push–pull conjugated dyes, owing to its substantial amount (54%) of long-range Hartree–Fock
(HF) exchange.[25, 26] Besides, in the case of the chromophore investigated here, M06-2X
yields static first hyperpolarizabilities in close agreement with the ones calculated at the
second-order Moller-Plesset (MP2) level (see Appendix B).

Frequency-dependent hyperpolarizabilities were calculated using an incident radia-
tion at 1064 nm (1.16 eV), to match the Q-switched Nd:YAG laser source used in the HRS
experiments. Solvent effects were included in all TD-DFT calculations by using the inte-
gral equation formalism of the polarized continuum model (IEF-PCM).[27, 28] In order to
include the effect of geometry fluctuations, NLO responses calculated using molecular ge-
ometries optimized at the DFT level were compared to averaged NLO responses obtained
from a statistical sampling of molecular structures extracted at regular time intervals of
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the MD trajectories. This sequential MD/DFT scheme was used in previous works for
evaluating the second-order NLO responses of dyes in solution[29, 30, 31] or embedded in
complex environments such as biological membranes[32] or self-assembled monolayers.[33, 34]

The NLO responses of nanoparticles were calculated using two approaches. The
first and crudest approximation consisted in evaluating the first hyperpolarizability of the
nanoparticles through the simple summation of the tensor components of the constitu-
tive molecules, using the molecular orientations provided by the MD trajectories. This
approach captures the impact of dynamical geometry fluctuations constrained by steric
interactions on the NLO properties of the supramolecular structures, but it neglects all
mutual polarization effects and intermolecular electronic couplings. In a second step, to
take into account these effects, we employed the recently developed sTD-DFT scheme,
which provides response properties of large systems at a much lower computational cost
than its TD-DFT parent.[13, 14]

To further reduce the computational needs, the tight-binding implementation of the
sTD-DFT method (sTD-DFT-xTB), as well as its version restricted to valence molecular
orbitals (sTD-DFT-vTB), were used. Note that the sTD-DFT-xTB default parameteri-
zation was primarily fitted to globally reproduce excited state properties and not NLO
ones. The strategy consists in fitting the adjustable parameters to reproduce reference
calculations on small model systems that retain most of the physics of larger structures,
giving to the sTD-DFT-xTB method a similar accuracy as the reference one.[13, 35] In
this spirit, preliminary calculations were performed on the isolated dye as well as on
supramolecular clusters containing 12 chromophores, in order to define the optimal val-
ues of the yJ , yK and Eth parameters involved in the sTD-DFT equations with respect
to M06-2X/6-311G(d) reference calculations. Because of the rather similar performances
of the sTD-DFT-xTB and sTD-DFT-vTB methods for this kind of systems, the less
computational-demanding sTD-DFT-vTB approach was selected to perform calculations
on the NPs. Optimal sTD-DFT-vTB parameters for the systems investigated here are:
yJ = 0.4, yK = 2.0 and Eth = 5 eV (see Appendix B for the full discussion).

4.4 Aggregation and structural properties

4.4.1 Aggregation energy of molecular pairs in water

The free-energy profile of a pair of dyes in water was determined as a function
of the distance separating their centers of mass, using the dynamically adapted biasing
force (ABF) method.[36] As shown in Figure B.21, the profile clearly shows a minimum
around 5 Å, indicating a tendency for the two molecules to aggregate. The aggregation
energy, i.e. the free-energy difference between their aggregated and separated states, is
equal to −6.2 kcal.mol−1, which demonstrates that even the smallest possible aggregate
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is thermodynamically more stable than the corresponding solvated molecules. This result
suggests that, contrary to the standard cases described by classical nucleation theory
(CNT),[37, 38] there is no critical nucleus size after which supramolecular clusters become
stable. According to CNT, the strong driving force for aggregation also indicates that
many nuclei can form in a small volume of water, and that the aggregation rate should
be very fast.

4.4.2 Self-aggregation of the dyes in water

Figure 4.2 – Snapshots of the simulation box showing supramolecular aggregation over
time for NP7. Water molecules are not displayed. A video of the time-evolution of the
aggregation is provided in Appendix B.

As a consequence of the high aggregation rate in water, the dyes, initially ran-
domly dispersed in the simulation box, start to self-assemble in the first few nanoseconds
of the simulation. The first-formed molecular clusters merge to form bigger ones until
they all aggregate into a single nanoparticle, as shown in Figure 4.2. However, this pro-
cess becomes increasingly slow as the size of the aggregates increases, since it is governed
by Brownian diffusion that slows down at increasing mass. This is illustrated on Figure
4.3, which reports the number of nanoparticles and the number of dyes composing the
biggest aggregate as a function of the simulation time, for the 8 replicated MD trajecto-
ries. Figure 4.3 also shows that all MD runs lead to complete aggregation in less than
250 ns, giving rise to nanoparticles (NP1-8) composed of 100 dyes each. To ensure good
equilibration of the structure of the NPs, MD trajectories were extended at least 50 ns
after the complete dye aggregation, i.e. up to 250 ns for replicas NP1, NP3, NP6, NP7
and NP8, and up to 300 ns for NP2, NP3 and NP5.
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Figure 4.3 – Evolution of the number of NPs (top) and of the size of the biggest NP
(bottom) with simulation time for the 8 replicated MD simulations. Abrupt rises in
the evolution are due to the coalescence of two "large" aggregates. Two molecules are
considered to be in the same aggregate if at least a couple of non-hydrogen atoms is closer
than 4.0 Å.

4.4.3 Structure of the nanoparticles

The final nanoparticles globally exhibit an ellipsoidal, nearly spherical shape, more
or less elongated depending on the replica (see details in Appendix B), and fluctuating
in time (Figures B.22 and B.23). The orientation of the dipolar dyes within a typical NP
structure is illustrated on Figure 4.4. Not surprisingly, the hydrophobic triphenylamine
groups of the dyes mainly point toward the center of the NP, while the hydrophilic formyl
groups point towards the outside. This preferential orientation is also illustrated in the
graph of Figure 4.4, which reports the concentration of the different atomic groups as a
function of the distance from the NP center.

Interestingly, the time evolution of the average total dipole moment (Figure 4.5)
shows that the NPs have a strong polar character (50 D vs 6.5 D for the isolated molecule),
further evidencing their non-centrosymmetric shape and distribution of molecular orienta-
tions. This is also clearly illustrated in Figure 4.4 by the map of the electrostatic potential
of NP1, calculated from the atomic charge distribution. Moreover, Figure 4.4 also high-
lights the presence of domains involving several π-stacked dyes. A statistical analysis of
these aggregates, conducted over the 8 final NPs, is detailed in the Appendix B.
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Figure 4.4 – Top Left: Example of ellipsoidal nanoparticle composed of 100 aggregated
dyes highlighting the orientation of formyl groups (in red) towards the outside, and the
π-stacked domains (in yellow); Top Right: Electrostatic potential calculated from the
atomic charge distribution (isovalues range from −4 (blue) to +4 (red), in kT/e units,
with T = 300 K); Bottom: radial number density of the different molecular moieties as
a function of the distance from the center of the nanoparticle. Values averaged over the
100 molecules of the 8 final nanoparticles (NP1-NP8).

It reveals that more than 80% of the molecules within a NP develop π-stacking interac-
tions with at least one of their direct neighbour, through at least one of the three central
conjugated rings (Figure 4.6). The size of the π-stacked domains is comprised between
2 and 20 molecules. A detailed picture of the relative orientation of π-stacked molecular
pairs is provided in Figure 4.7, which evidences that 35% of the dimers adopt a parallel
orientation, consistent with the preferential orientation of the hydrophobic triphenylamine
termination towards the center of the NPs. However, it is also found that a significant
amount (29%) of the dimers stack antiparallelly, as a result of stabilizing electrostatic
interactions, or even in herringbone-like (16%) or cross (22%) configurations.
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Figure 4.5 – Evolution of the mean dipole moment with simulation time of an isolated
dye and of the nanoparticles, divided by the number of their constitutive dyes.
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Figure 4.6 – Left: Probability distribution of the number of neighbours (blue) and of
the number of π-stacked neighbours (red), assuming the definitions given in the text.
Values averaged over the 100 molecules of the 8 final nanoparticles (NP1-NP8). Right:
Probability distribution of the number of molecules in the π-stacked aggregates. The blue
box on the left panel corresponds to molecules that do not have π-stacked neighbours.

To further characterize the morphology of the NPs at the atomistic scale, statis-
tical distributions of intra- and intermolecular structural parameters were calculated for
the 8 replicas along the last 50 ns of the MD trajectories, i.e. after full aggregation of
all dyes. Figure 4.8 illustrates the distribution of the torsional angle φTT associated to
the cis (φTT = 0◦) or trans (φTT = 180◦) configuration of the bithiophene unit (Figure
4.1), for a single dye in water and for aggregated dyes. In the case of the isolated dye,
the probability distribution of φTT values shows two maxima with equal amplitude at 0◦

and 180◦, indicating that cis and trans configurations are equiprobable, consistently with
the close energies of the two isomers and the low rotational energy barriers around the
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single bond connecting the thienyl groups (Figure B.2a). The relative magnitude of the
two peaks is slightly modified within the NPs, with the cis configuration increasing its
probability at the expense of the trans one. However, the variations with respect to the
isolated dye are weak, indicating that aggregation hardly affects the configurational iso-
merism of the dipolar dyes. The same observation holds true regarding the φTP dihedral
angle, which describes the rotation around the single bond connecting the thienyl and
phenyl groups (Figure 4.1). The time auto-correlation functions (ACFs) of φTT and φTP
angles, calculated for the isolated and aggregated dyes, are plotted in Figure 4.9. The
ACF decays provide the time scale of the rotational motions about the thienyl-thienyl and
phenyl-thienyl bonds. Compared to molecules in water solution, the ACFs of molecules
inserted in nanoparticles show a much slower decay time (approximately 30 ns, versus 1
ns in solution), owing to the sterically hindered environment, but also show that these
intramolecular rotations are still possible.
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Figure 4.7 – Number of π-stacked molecular pairs as a function of their relative orientation
(see the definitions given in the text), as averaged over the 8 final nanoparticles (NP1-
NP8). The labels on the left plot correspond to an arbitrary classification of the relative
orientation of the long axes of the pair as parallel (+)/ antiparallel (-) or π-stacked (π)
or herringbone (hb).
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Figure 4.8 – Distribution of the φTT (top) and φTP (bottom) dihedral angles (Figure 4.1)
for a single dye in water solution (in black, monitored over 1000 ns) and embedded into
a nanoparticle (in red, averaged for the 100 constitutive dyes of the 8 final NPs, over the
last 50 ns).

Figure 4.9 – Time autocorrelation function of the dihedral angles φTT and φTP dihedrals,
defined as C(φi) = 〈cos[φi(t) − φi(0)]〉 = 〈cos[φi(0)] cos[φi(t)]〉 + 〈sin[φi(0)] sin[φi(t)]〉,
calculated for the isolated and aggregated dyes.
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The evolution of the mean density of neighbours within the nanoparticles as a func-
tion of the distance rij between the centers of mass of molecules (Figures 4.10 and 4.11)
reveals that first molecular neighbours are located at average distances of about 6 Å. Note
that after 50 Å, N(rij) falls to zero as the distance exceeds the size of the aggregate (Fig-
ure B.25), which allows to estimate the average diameter of the NPs to about 5 nm. The
evolution of the mean cosine of the angle θij between molecular dipoles, also plotted in Fig-
ure 4.11, gives complementary information on the orientation of the molecules within the
NPs, with positive (negative) values corresponding to parallel (antiparallel) orientation.
As shown in Figure 4.11, 〈cos θij〉 is positive at the first neighbours distance, suggesting a
parallel orientation between first neighbours, which is at the origin of the overall non-zero
dipole moments of the NPs (Figure 4.5). At larger distances, 〈cos θij〉 approaches zero,
indicating that this correlation is lost. The short range preferential parallel ordering of
the dipolar dyes is confirmed by the distribution of 〈cos θij〉 values for molecules closer
than 7.5 Å (Figure B.26), which shows a weak maximum for 〈cos θij〉 = 1. Note that
the distribution displays a second maximum at 〈cos θij〉 = −1, showing the propensity of
neighbouring chromophores to also stack with an anti-antiparallel configuration.

qij

rij

Figure 4.10 – Definition of the angle θij between molecular dipoles and the distance rij,
between their centers of mass.
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Figure 4.11 – Evolution of the mean density of neighbours N(rij) (top) and of the mean
cosine of θij (bottom) as a function of rij.

4.5 Nonlinear optical properties

4.5.1 NLO responses of solvated dyes

The dynamic HRS properties calculated at the DFT level for the cis and trans forms
of the isolated molecule (as well as "averaged" values estimated using relative trans/cis
Boltzmann populations at room temperature) are compared to those measured in di-
lute chloroform and acetonitrile solutions in Table 4.1. Although the computed HRS
hyperpolarizabilities are about three times larger than the experimental ones, the slight
enhancement of the βHRS values from chloroform to acetonitrile is well reproduced. DFT
calculations performed in water show that increasing further the solvent polarization ef-
fects has no impact on the NLO properties of the dye. Unlike experimental results which
show that the NLO response of the dye in chloroform is slightly dominated by its oc-
tupolar contribution (ρ > 1), DFT calculations predict a low predominance of dipolar
character in both solvents, with weak solvatochromism effect. This small discrepancy
likely originates from the theoretical treatment of solute-solvent interactions by means a
continuum solvation model, where intermolecular interactions are not treated explicitly.
DFT calculations and HRS measurements are further compared on the polar plots show-
ing the evolution of the harmonic light intensity as a function of the polarization angle
Ψ of the incident beam (Figure 4.12). In acetonitrile, the theoretical curve calculated
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using equation 1.31 quasi perfectly matches the experimental fits, while the agreement is
worse for data in chloroform, where the thinner shape of the theoretical curve reveals an
overestimated dipolar character. Note that part of the discrepancy between experimental
and theoretical data might also arise from the lower quality of the experimental fits in the
Ψ = 0◦ and Ψ = 180◦ zones. Moreover, the large overestimate of calculated βHRS values
compared to experiments in both chloroform and acetonitrile may also arise from the
increased probability of the formation of small molecular aggregates with a pseudo cen-
trosymmetrical shape (i. e. stacked dimers, for which a head-to-tail relative orientation
is favored by the dipole-dipole interactions and the better overlap between the conjugated
cores).

Table 4.1 – Total dynamic HRS hyperpolarizabilities (βHRS), dipolar (|βJ=1|) and octupo-
lar (|βJ=3|) components (all values in 103 a.u.), as well as the associated depolarization
(DR) and anisotropy (ρ) ratios deduced from HRS measurements at 1064 nm in chlo-
roform (chl) and acetonitrile (ace), and calculated at the DFT level in chloroform and
acetonitrile, and at the DFT and MD+DFT levels in water.

βHRS DR ρ |βJ=1| |βJ=3|
Exp.a (chl) 12.5 3.6 1.22 ± 0.03 20.7 25.3
DFTb (trans,chl) 37.5 4.8 0.85 69.5 59.2
DFTb (cis,chl) 32.3 5.0 0.82 60.4 49.5
DFTb,c (av,chl) 34.1 4.9 0.83 63.5 52.9
Exp.a (ace) 13.3 4.6 0.91 ± 0.03 24.2 22.0
DFTb (trans,ace) 37.9 4.9 0.85 70.3 59.6
DFTb (cis,ace) 34.2 5.0 0.82 63.9 52.2
DFTb,c (av,ace) 36.7 4.9 0.83 63.5 52.9
DFTb (trans,water) 38.0 4.9 0.85 70.5 59.7
DFTb (cis,water) 34.1 5.0 0.82 63.9 52.2
DFTb,c (av,water) 36.7 4.9 0.84 63.8 57.2
MD+DFTd (water) 28.3 ± 14.7 5.0 ± 0.1 0.83 ± 0.03 52.7 ± 27.3 43.8 ± 22.7
a Taken from ref. [8].
b IEFPCM:M06-2X/6-311+G(d) calculations using the IEFPCM:B3LYP/cc-pVTZ ge-
ometries.
c av : averaged values estimated using relative trans/cis Boltzmann populations at room
temperature.
d Averaged over 100 molecular geometries extracted from the MD trajectories.

To gain insight on the impact of thermally-induced geometry distortions, we also
compare in Table 4.1 the NLO properties calculated using the DFT-optimized geometries
of the dye in water solution to those averaged over 100 molecular geometries extracted
from MD trajectories (MD+DFT). The two approaches provide similar DR and ρ values,
suggesting that structural fluctuations do not induce significant change in the multipolar
character of the NLO responses. On the contrary, the MD-averaged βHRS values show
a 30% decrease compared to DFT ones. This is consistent with the low energy barri-
ers for the rotation around the Thienyl-Thienyl and Thienyl-Phenyl bonds (Figures B.2a
and B.2b). In fact, many structures extracted from MD runs display non planar shapes,
corresponding to lower conjugation along the molecular backbone and damped second-
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order NLO response. A similar decrease of the βHRS response when moving from DFT
to MD+DFT calculations was observed previously for a push-pull indolino-oxazolidine
derivative also incorporating a bithiophene unit.[39, 29] The strong impact of the dynami-
cal fluctuations is further testified by the large standard deviation of the βHRS values.
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Figure 4.12 – Normalized polar representations of the evolution of the harmonic light
intensity as a function of the polarization angle Ψ of the incident beam, as measured in
chloroform (left) and acetonitrile (right). Red circles correspond to measured values. Red
lines are the best experimental fitted curves. Black lines are calculated using equation
1.31 with β-components calculated at the IEFPCM:M06-2X/6-311+G(d) level.

4.5.2 NLO responses of the nanoparticles

In a first approach, we estimated the first hyperpolarizability tensor of the NPs as
the sum of the tensors of the individual constitutive dyes calculated at the TD-DFT level.
As mentioned above, although this approximation neglects intermolecular electronic cou-
plings and polarization effects on the NLO properties, it integrates the effects related to
the spatial organization of the dyes within the NPs, and to their geometrical fluctuations.
As reported in Table B.4, static first hyperpolarizabilities for NP1-8 are spread over a
broad range of values, as reflected in the large standard deviation of their distributions
〈βHRS〉 = (43.8± 11.9)103 a.u. As a result of frequency-dispersion effects, dynamic βHRS
values are about three times larger than the static ones (〈βHRS〉 = (189.1± 70.5)103 a.u.)
with a larger distribution (Table 4.2). The impact of frequency dispersion on the depolar-
ization ratios is less systematic, either increasing or decreasing the DR values depending
on the considered NP. Despite these irregular fluctuations, the average static and dynamic
depolarization ratios are very close (4.5-4.6), indicating that the NLO responses of the
supramolecular structures globally exhibit a 1D character, typical of systems for which
the hyperpolarizability tensor is dominated by a single diagonal component.

Data reported in Table B.6 and Figure B.28 show that the NLO responses of indi-
vidual nanoparticles also display large fluctuations with respect to dynamical geometry
fluctuations along the MD simulation. The evolution over time of the cumulative averages
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of βHRS and DR values is illustrated in Figure 4.13 for NP5, starting from the time (140
ns) where the 100 molecular dyes collapse into a single structure. Even though individual
values vary strongly over time, the cumulative averages rapidly converge to 〈βHRS〉 = 204

a.u. and 〈DR〉 = 4.3.

Table 4.2 – Dynamic (λ = 1064 nm) first hyperpolarizabilities (βHRS in 103 a.u.) and
depolarization ratios (DR) of the final nanoparticles issued from the 8 replicated MD
trajectories, evaluated using the tensor sum approximation at the TD-DFT and sTD-
DFT-vTB levels, as well as from sTD-DFT-vTB caculations performed on the whole
nanoparticles.

TD-DFTa (tensor sum) sTD-DFT-vTBb (tensor sum) sTD-DFT-vTBb (full calculation)
βHRS DR βHRS DR βHRS DR

NP1 317.0 6.3 325.8 5.8 3194.5 4.8
NP2 112.0 3.7 248.2 3.4 106.4 3.0
NP3 110.7 3.0 161.2 3.8 616.9 3.6
NP4 160.1 5.1 238.9 5.2 2259.4 5.1
NP5 237.6 5.9 343.1 7.2 369.9 4.7
NP6 185.0 3.6 238.7 4.5 212.7 4.9
NP7 234.0 3.4 827.6 5.0 156.6 2.1
NP8 156.4 5.5 167.9 5.3 634.3 5.0
av.± std. dev. 189.1 ± 70.5 4.6 ± 1.3 318.9 ± 215.4 5.0 ± 1.2 943.8 ± 1145.4 4.2 ± 1.1
a M06-2X/6-311+G(d) in gas phase.
b Using yJ = 4.0, yK = 2.0 and Eth = 5.0 eV.
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Figure 4.13 – Time evolution of βHRS (left) and DR (right) values for NP5 (empty dots)
and of their cumulative moving averages (full dots), as calculated using the tensor-sum
approximation at the TD-DFT:M06-2X/6-311+G(d) level.

With the exception of NP7, the static βHRS and DR values evaluated using the
tensor-sum approximation at the sTD-DFT-vTB level are very close to those estimated
using the full-featured TD-DFT level (the R1 ratios in Table B.4 and the linear correlation
in Figure B.27). In the case of dynamic calculations, the average βHRS value obtained
with sTD-DFT-vTB is 1.7 times larger than the TD-DFT one (Table 4.2), while the mean
DR value increases from 4.6 to 5.0.
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Comparing sTD-DFT-vTB data evaluated using the tensor-sum approximation
with those issued from calculations on the whole supramolecular structure provides a
direct measure of the effects of intermolecular interactions. In the static case, a good cor-
respondance is found between first hyperpolarizabilities evaluated using the tensor-sum
approximation at the TD-DFT and sTD-DFT-vTB levels (Figure B.27), while account-
ing for intermolecular interactions induces a 20% lowering of the HRS hyperpolarizability.
As evidenced in the case of π-stacked dimers (Table B.7 and Figure B.30), this decrease
can be ascribed to the slight blue-shift of the main absorption band upon aggregation
of the dyes. On the contrary, as a result of resonance effects, dynamic βHRS values dis-
play very large and non systematic variations, going from a ∼ 80% decrease for NP7 to
a ∼ 900% increase for NP1. Considering data averaged over the 8 NPs, intermolecular
interactions enhance the dynamic βHRS response by about a factor 3, while the DR value
is lowered from 5.0 to 4.2. We stress however that the very large βHRS values calculated
for NP1 and NP4, and therefore the average βHRS value, should be taken with caution,
since the response functions diverge at the harmonic frequency inducing numerical in-
stabilities. These results also highlight the important effects of intra and intermolecular
structural variations, which reflect in the large standard deviation of the NLO responses.
As reported in Table B.6, the relative standard deviations on βHRS calculated for the 8
replicated MD trajectories range from 22% to 47%, and are of similar magnitude (from
26% to 48%) for the depolarization ratio.

4.6 Absorption properties

In order to investigate further the origin of the large enhancement of the dynamic
NLO response upon molecular aggregation, we investigated the absorption properties of
the dyes in their isolated and aggregated states. In a first step, the vertical excitation
energies and oscillator strengths towards low-lying excited states were calculated for three
representative π-stacked dimers extracted from the NPs (Figure B.28). As reported in
Table B.7 and Figure B.30, TD-DFT calculations performed at the M06-2X/6-311+G(d)
level show that, compared to the isolated monomer, dipole-allowed red-shifted transitions
appear in the three dimerized structures. Additional calculations using a Boys localization
scheme[40] to decompose the electronic eigenstates into a set of pure (diabatic) intramolec-
ular and intermolecular charge-transfer (CT) electronic configurations further evidenced
that some low energy electronic transitions with large oscillator strength have a domi-
nant intermolecular CT character (see details in Appendix B). As also shown in Table
B.7 and Figure B.30, despite a global blue-shift of the main absorption bands compared
to TD-DFT, the appearance of these new low-energy excited states is qualitatively well
reproduced by sTD-DFT-vTB calculations using the same yJ , yK and Eth parameters as
those used in NLO calculations.

119



In a second step, we thus calculated the electronic excited states of a represen-
tative NP composed of 100 chromophores using the same sTD-DFT-vTB scheme. The
absorption spectrum of the NP (Figure 4.14) is much wider than that of the isolated dye,
owing to the structural variety of the constitutive molecular units and, as shown above,
the possibility of intermolecular CT excitations.[41, 42] The global shape of the absorption
spectrum is fully consistent with the one measured for FON suspensions in water (see
Figure 4 of ref. [5]), which exhibits a red-shifted and broadened main absorption band
as compared to dyes dissolved in organic solvents, as well as a residual absorption in the
long-wavelength region (500-550 nm ≡ 2.25-2.50 eV). These low-energy absorption bands,
in part attributed to intermolecular CT excitations, resonate with the second harmonic
light at 532 nm (2.32 eV) and are thus at the origin of the enhancement of the dynamic
βHRS response upon aggregation.
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Figure 4.14 – Electronic transitions towards the excited states in NP1 (black bars) and
in the trans isolated dye (red bars), as calculated at the sTD-DFT-vTB level.

4.7 Comparison to experiments and further discussion

With respect to experiments, this computational study offers complementary in-
sights on the origin of the NLO properties of the molecular-based NPs that are worth
being discussed. As reported in ref. [8], the total second-harmonic signal radiated by the
nanoparticles in solution can be partitioned in two contributions, respectively ascribed to
the bulk and interfacial areas of the NPs:

βNP = βbulk + βinterf (4.1)

The bulk contribution is related to the NLO response of molecular dyes constituting the
inner shell of the nanoparticules, i.e. not directly in contact with water molecules. A
comparison with the three orders of magnitude larger hyperpolarizabilities measured for
noncentrosymmetric BaTiO3 or PbTiO3 ferroelectric nanocrystals with comparable diam-
eters, suggests that the NPs investigated here exhibit a negligible βbulk contribution.[43]
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On the contrary, owing to their limited size, the NPs issued from the simulations can be
considered as having no bulk, with all organic dyes being part of the interfacial region.
The interfacial term in equation 4.1 results from second-order and third-order contribu-
tions:

βinterf = β + (γφ0)EFISH (4.2)

The second-order term, β, was previously attributed to the locally non-centrosymmetric
H-type structuring of the dyes at the water interface.[8] Our MD simulations confirmed
such a specific arrangement, as resulting of π-stacking interactions between the central
conjugated rings (Figure 4.4). The second term, referred to as electric field induced second
harmonic (EFISH), involves the third-order hyperpolarizability (γ) of the chromophores
(which is expected to be strong for such two-photon absorbing dyes) and the interfacial
local electric field φ0, arising from the surface charge density. It is important to note
that this term is neglected in the tensor sum approximation, which only considers the
second-order (β ≡ βHRS) contribution. On the contrary, sTD-DFT calculations are in
principle able to capture the full NLO response of the NPs, including the third-order
contribution. However, since water molecules in the interfacial area are not included in
the calculations, the magnitude of local field effects is likely underestimated, and so for
the third-order response. Note also that the water molecules in the vicinity of the NP
are expected to be partially aligned by the electric field of the charged interface, and thus
to contribute themselves to the EFISH response. However, the latter contributions due
to water molecules is weak and cannot be detected by an experimental setup featuring a
picosecond excitation laser source as used in ref. [8]. Therefore, only the NLO signal due
to the organic dyes is accounted for in the βNP = (3700 ± 37)103 a.u. value issued from
SHS measurements.

The calculated NLO response of nanoparticles in water is about 30 times larger
than that calculated for a single molecular dye. This result is consistent with SHS mea-
surements, although the experimental βNP/βdye ratio is one order of magnitude larger.
The underestimation of the simulated βNP is directly related to the smaller size of the
nanoparticles (of average diameter ∼5 nm versus 36 nm for the experimental one, i.e.
with a surface area approximately 50 times smaller) and to the incomplete treatment of
local field effects in equation 4.2.

For the same reasons, the DR values predicted by sTD-DFT-vTB calculations,
(DRNP = 4.2 ± 1.1), are also underestimated compared to SHS measurements (DRNP

= 8.7 ± 0.9). As detailed in ref. [8], it is worth mentioning here that SHS measurements
of NPs are expected to generate interferences between the partial waves scattered by the
individual molecules, inducing retardation effects at the fundamental and harmonic fre-
quencies. This collective coherent signal, which scales quadratically with the number of
correlated molecules, becomes rapidly dominant over the non-coherent one as the size of
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the nanoparticle increases. In the present case, the very high experimental DR value is
partly attributed to the coherent part of the NLO signal, while calculations do not ac-
count for any phase relation between the NLO signals scattered by the various molecules.

Finally, an additional difficulty in comparing theory and experiment lies in the need
to include the vibrational contributions, the so-called zero-point vibrational averaging.[44]

In principle, the MD+DFT computational scheme is able to catch, within the simulation
time scale, the effects of molecular vibrations, often causing large fluctuations of the NLO
responses. The impact of low energy phonon-like modes, associated to global variations
in the shape of the nanoparticles, is also taken into account since NLO properties are
calculated as averages over several independent trajectories.

4.8 Conclusions and perspectives

The molecular dynamics simulations reported here confirm the spontaneous forma-
tion of amorphous nanoparticles based on organic dipolar dyes in water solution, as well
as the onset of polar π-stacked domains at the water interface. The soft nature of the
nanoparticles allows for rather large shape variations, which are reflected in large fluctu-
ations in time of their second-order NLO responses.

The measured strong enhancement of the first hyperpolarizability upon aggrega-
tion of the dyes is well reproduced by the tight-binding implementation of the sTD-DFT
method, here employed for the first time to characterize the NLO properties of nanoparti-
cles while fully accounting for their dynamical fluctuations through a sequential MD+QM
scheme. This approach allowed to evidence the high impact of mutual polarization effects
and intermolecular couplings on the NLO responses. In particular, intermolecular interac-
tions are at the origin of the emergence of low-lying excited states entering into resonance
with the second harmonic light. These states are responsible for the high enhancement of
the SHS signal upon dyes aggregation.

This thesis also points the difficulty of comparing the calculated and experimental
NLO responses of such large and flexible supramolecular assemblies. Limitations of the
computational methodology are mainly related to the timescale and size of the objects
that can be investigated, to numerical instabilities due to resonance effects, as well as to
the probable underestimate of the magnitude of local electric fields since the first solvation
shell is not taken into account.

Therefore, this work should be seen as a first step towards accurate simulations
of NLO responses of large molecular-based architectures, paving the way toward future
calculations and method development. Explicitly including in the calculation the first
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shell of water molecules close to the NP interface, which, at least for small particles, may
be essential for the quantitative prediction of the EFISH signal, comes out as a natural
outlook. The implementation of damped response functions within the the sTD-DFT
scheme would also be of great interest in order to avoid disproportionate resonances.
Alternatively, the development of parameterized models on the basis of natural response
orbitals would allow investigating larger clusters at low computational cost. Finally, an
exhaustive study of the NLO responses of nanoparticles of different sizes would provide
insights on the relative magnitude of bulk and interfacial contributions.
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Conclusions and perspectives

In the present thesis, different computational approaches have been implemented for
the investigation of the NLO properties of different organic systems, ranging from isolated
molecules to nanoparticles composed of several hundreds of chromophores. As discussed
in Chapters 3 and 4, these computational approaches provide insights on the relation-
ships linking the chemical structure of the chromophores to their optical properties, as
well as, in the case of nanoparticles, on the role of the supramolecular organization, of the
geometrical fluctuations and of the electronic interactions existing between the molecular
units.

More specifically, Chapter 3 reports a comprehensive investigation of the second-
order NLO responses of a series of recently designed dipolar merocyanines. First hyper-
polarizabilities calculated using the 2006 Minnesota family of hybrids differing by the
incorporated amount of Hartree-Fock exchange (%HFX), as well as using the LC-BLYP,
ωB97X-D and CAM-B3LYP long-range corrected XCFs are compared to ab initio HF and
MP2 results, as well as to experimental data obtained from HRS measurements. The im-
pact of the nature of D and A groups, of the size of the π-conjugated linker, of the choice
of the XCFs, as well as of frequency-dispersion effects, has been evidenced. The donor
group strongly impacts the merocyanines behavior, as shown by the difference in the evo-
lution of the static limit of the HRS hyperolarizability (β∞HRS) with system size between
series including a dimethylaminophenyl and those including a dimethylaminothiophenyl.
This behavior has been directly ascribed to the difference in the evolution of the bond
length alternation. β∞HRS has also been shown to increase with the length of the polyenic
bridge within the four series of merocyanines. Moreover, we evidenced that the NLO
response of shorter derivatives hardly depends on %HFX, while it has a strong impact
for the larger ones, since the latter are more affected by conjugation effects. Regarding
the optimization of the RS parameters, in most cases, βHRS values computed using LC-
BLYP and ωB97X-D with optimally-tuned RS parameters are closer to MP2 results than
those obtained using default ω values. Contrary to what was found with LC-BLYP and
ωB97X-D, optimizing the RS parameter in CAM-B3LYP increases the ω values and thus
the amount of exact HF exchange in the XCF, which reduces the agreement with MP2
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reference results. Interestingly, M06-2X functional has shown to provide βHRS values in
close agreement with optimally tuned range-separated functionals, which indicates that a
percentage of nearly 50% between DFT and HF exchange is the adequate balance for com-
puting the NLO properties of these highly dipolar conjugated push-pull chromophores.
This study also illustrated the difficulty to compare the calculated dynamic first hyperpo-
larizabilities to the experimental data measured in resonance conditions. Indeed, none of
the DFT XCFs considered in this study satisfactorily reproduces the frequency resonance
enhancement of the βHRS responses.

In Chapter 4, we investigated the NLO responses of nanoparticles based on or-
ganic dipolar chromophores by means of an original cost-effective modelling strategy that
combines molecular dynamics simulations with a recently developed simplified Time-
Dependent DFT method (sTD-DFT). The MD simulations confirmed the spontaneous
formation of amorphous nanoparticles in water solution observed experimentally. It also
evidenced the onset of polar π-stacked domains at the water interface, and that the soft
nature of the nanoparticles allows for rather large shape variations, which are reflected
in large fluctuations in time of their second-order NLO responses. The sequential cou-
pling of MD simulations with sTD-DFT calculations allowed us to characterize for the
first time the second-harmonic scattering (SHS) responses of realistic nanoparticles at a
full quantum level, while accounting for their thermally-induced structural fluctuations.
Importantly, the high impact of mutual polarization effects and intermolecular couplings
on the NLO responses was evidenced. In particular, we demonstrated that intermolecular
interactions are at the origin of the emergence of low-lying excited states entering into
resonance with the second harmonic light, which are responsible for the experimentally
observed enhancement of the SHS signal upon aggregation and for the appearance of a red
shifted tail in the linear absorption spectrum. The proposed computational methodology
and its challenging application constitute a significant step towards the accurate simula-
tion of the NLO responses of realistic supramolecular assemblies, and should be helpful
for providing rational guidelines for the synthesis of new systems with targeted NLO prop-
erties. However, it also revealed some limitations, mainly related to the timescale and
size of the objects that can be investigated, to numerical instabilities due to resonance ef-
fects, as well as to the probable underestimate of the magnitude of local electric fields since
the first solvation shell was not explicitly taken into account in the sTD-DFT calculations.

As a whole, this thesis highlights the challenge that represents the modelling of
nonlinear optical properties of extended organic systems, even at the level of the isolated
molecule, and the subsequent difficulty of comparing theory and experiment. The large
number of electrons in such systems prohibits using highly accurate ab initio methods
such as coupled-cluster, so that DFT remains the only alternative for investigating their
NLO properties at a reasonable computational cost, which implies a careful assessment of
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the exchange-correlation functional, and most often to make compromises regarding the
expected accuracy. Investigating supramolecular systems requires to reduce further the
computational resources, at the cost of reducing further the accuracy of the theoretical
approximations. Large and flexible molecular aggregates of interacting molecules, such
as those considered in Chapter 4, constitute one of the most complicated challenges for
computational chemistry. We reported here a first step towards the accurate theoretical
description of such systems, though there are many rooms to improvement. The rapid
progresses of computers will naturally offer new possibilities for simulating nanoparticles
with more realistic size, and their evolution along longer time scales. Including explicit
solvent molecules in the quantum chemical calculation of the NLO responses, at least the
first solvation shell at the nanoparticle interface, is also one of the prerequisites to enable
reliable comparisons with experiments. Looking at the methods themselves, simplified
schemes such as sTD-DFT proved to be highly promising for these purposes, and their use
should be extended to the investigation of other systems, of various size and composition.
As noticed in Chapter 4, further development of the sTD-DFT scheme, such as for instance
the implementation of damped response functions, would also be of great interest in order
to remove the effects of disproportionate resonances. In another spirit but still with the
aim of reducing the computational needs, the development of parameterized models on
the basis of natural response orbitals represents an appealing alternative.
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Appendix A
Supporting information of Chapter 3

A.1 Molecular geometries
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Figure A.1 – Molecular structures of the II’[n] series and numbering of the bonds of the
conjugated segments (in blue) considered for the calculation of the BLA.

Table A.1 – Bond length alternation (in Å) calculated along the polyenic bridge (see
Figure A.1) of the four series of derivatives at the IEFPCM:M06-2X/6-311G(d) level in
chloroform.

n I[n] I’[n] II[n] II’[n]
0 0.066 0.024 0.052 0.002
1 0.063 0.035 0.049 0.008
2 0.066 0.048 0.054 0.020
3 0.070 0.059 0.059 0.038
4 0.074 0.067 0.064 0.054

132



Table A.2 – Dihedral angle Θ(C−C−N−C) (in degrees) characterizing the pyramidalization
of the NMe2 group (see Figure A.1), calculated at the IEFPCM:M06-2X/6-311G(d) level
in chloroform for the four series of derivatives.

n I[n] I’[n] II[n] II’[n]
0 0.5 2.1 -0.2 -1.3
1 -0.2 5.5 -0.2 0.0
2 -0.2 9.3 0.2 4.5
3 -0.3 11.6 0.6 8.8
4 0.0 12.4 2.2 11.5

A.2 Optimal range separation parameters

Discussion on the optimal range separation parameters obtained using NSC
and SC tuning schemes

As reported in Table A.3a, whatever the XCF used, self-consistent (SC) and non-self-
consistent (NSC) optimization schemes provide very close optimal ω values. At the LC-
BLYP and ωB97X-D levels, ωopt values obtained self-consistently deviate by -0.036 and
-0.018 bohr−1, respectively, from values calculated using the NSC scheme, with very weak
dependence on the molecular structure. Larger average deviations between the two sets
of values (+0.069 bohr−1) are obtained when using CAM-B3LYP, with a larger depen-
dence on the molecular structure. In particular, the differences between ωNSCopt and ωSCopt
are larger in the I[n] and I’[n] series, and decrease with increasing chain length in the
four families of molecules.

The differences between ωNSCopt and ωSCopt values translate into differences in the optical
properties of the compounds. S0 → S1 excitation energies computed at the LC-BLYP
and ωB97X-D levels using ωSCopt values are globally red shifted (by 0.06 and 0.03 eV, re-
spectively), compared to those calculated using ωNSCopt values (Tables A.9a and A.13a-b).
Reversely, as a result of the global increase of ωopt values, the self-consistent procedure
provides slightly blue-shifted (+0.02 eV) transition energies when using CAM-B3LYP
(Tables A.11a-b).

On the other hand, differences in the first hyperpolarizabilities can be more significant.
Whereas they do not exceed 8% (4%) when computed with ωB97X-D (CAM-B3LYP),
deviations on static βHRS values can be as large as 10-15% when using LC-BLYP (see
Tables A.20a-b, A.22a-b, andA.24a-b). Furthermore, dynamic βHRS values calculated
using LC-BLYP with the NSC and SC schemes can deviate by more than 20% (Tables
A.32a-b, A.34a-b, and A.36a-b). These calculations demonstrate that the accuracy of the
non-self-consistent ω-tuning scheme with respect to the self-consistent one depends on
the choice of the XCF, as well as on the chemical nature of the investigated molecules.
Nevertheless, for a given functional, calculations using ωNSCopt and ωSCopt provide similar
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evolution of βHRS values with increasing chain length (see Figure A.7).

Table A.3a – Optimized range separation parameters (ω, bohr−1), calculated for the
different LRC hybrid functionals, using the non-self-consistent (NSC) and self-consistent
(SC) tuning procedures.

LC-BLYP LC-BLYP CAM-B3LYP CAM-B3LYP ωB97X-D ωB97X-D
(NSC) (SC) (NSC) (SC) (NCS) (SC)

I[0] 0.236 0.200 0.792 0.950 0.165 0.153
I[1] 0.227 0.191 0.663 0.792 0.159 0.145
I[2] 0.221 0.183 0.593 0.696 0.154 0.137
I[3] 0.215 0.176 0.545 0.632 0.150 0.131
I[4] 0.211 0.170 0.512 0.588 0.146 0.126
I´[0] 0.216 0.199 0.578 0.936 0.152 0.152
I´[1] 0.210 0.188 0.512 0.681 0.147 0.141
I´[2] 0.206 0.179 0.472 0.588 0.143 0.134
I´[3] 0.203 0.173 0.445 0.545 0.140 0.128
I´[4] 0.201 0.168 0.427 0.521 0.138 0.123
II[0] 0.239 0.183 0.731 0.650 0.164 0.137
II[1] 0.225 0.175 0.590 0.572 0.156 0.130
II[2] 0.216 0.169 0.530 0.523 0.150 0.124
II[3] 0.211 0.162 0.497 0.489 0.146 0.119
II[4] 0.207 0.158 0.476 0.467 0.143 0.115
II´[0] 0.214 0.180 0.539 0.591 0.150 0.135
II´[1] 0.206 0.171 0.461 0.487 0.143 0.126
II´[2] 0.200 0.164 0.418 0.431 0.138 0.118
II´[3] 0.197 0.159 0.400 0.413 0.135 0.114
II´[4] 0.196 0.155 0.396 0.414 0.134 0.112
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Table A.3b – Range separation parameters (ω, bohr−1) optimized for LC-BLYP in gas
phase and in the presence of chloroform (chl).

LC-BLYP LC-BLYP LC-BLYP LC-BLYP
(NSC, gas) (SC, gas) (NSC, chl) (SC,chl)

I[0] 0.236 0.200 0.076 0.050
I[1] 0.227 0.191 0.075 0.050
I[2] 0.221 0.183 0.075 0.050
I[3] 0.215 0.176 0.177 0.176
I[4] 0.211 0.170 0.075 0.050
I´[0] 0.216 0.199 0.071 0.050
I´[1] 0.210 0.188 0.071 0.050
I´[2] 0.206 0.179 0.072 0.050
I´[3] 0.203 0.173 0.073 0.050
I´[4] 0.201 0.168 0.075 0.050
II[0] 0.239 0.183 0.079 0.050
II[1] 0.225 0.175 0.075 0.050
II[2] 0.216 0.169 0.073 0.050
II[3] 0.211 0.162 0.072 0.050
II[4] 0.207 0.158 0.073 0.050
II´[0] 0.214 0.180 0.071 0.050
II´[1] 0.206 0.171 0.070 0.050
II´[2] 0.200 0.164 0.070 0.050
II´[3] 0.197 0.159 0.071 0.050
II´[4] 0.196 0.155 0.072 0.050
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A.3 Absorption optical properties

Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.4 – IEFPCM:M06L/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 457 2.710 1.02 15.43 0.42 2.28 4.61 1.38
I[1] 533 2.327 1.43 25.03 0.44 3.21 6.81 1.58
I[2] 608 2.038 1.72 34.35 0.48 4.14 9.49 1.88
I[3] 685 1.811 1.91 43.06 0.52 5.07 12.57 2.37
I[4] 762 1.627 2.02 50.75 0.56 6.02 16.17 3.29
I´[0] 467 2.653 0.92 14.20 0.36 0.65 1.12 1.40
I´[1] 534 2.321 1.51 26.49 0.35 1.09 1.82 1.58
I´[2] 606 2.048 1.95 38.87 0.37 2.53 4.47 1.86
I´[3] 682 1.818 2.19 49.24 0.41 3.80 7.46 2.35
I´[4] 762 1.627 2.28 57.25 0.46 4.97 10.98 3.29
II[0]1 538 2.305 0.96 16.99 0.52 3.50 8.77 1.59
II[1]1 612 2.025 1.36 27.40 0.49 4.06 9.57 1.90
II[2] 693 1.788 1.56 35.68 0.52 5.02 12.51 2.44
II[3] 774 1.602 1.93 49.07 0.50 5.29 12.71 3.51
II[4] 861 1.439 2.07 58.66 0.53 6.10 15.37 6.83
II´[0]1 523 2.372 1.07 18.39 0.38 2.04 3.71 1.55
II´[1]1 593 2.091 1.64 31.95 0.34 1.83 3.01 1.80
II´[2]1 667 1.860 2.11 46.29 0.35 2.53 4.19 2.23
II´[3] 753 1.647 1.96 48.49 0.48 5.30 12.16 3.14
II´[4] 847 1.463 2.41 67.10 0.43 4.83 9.90 5.92

1Sg →Se≡S0 → S2
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.5 – IEFPCM:M06/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 431 2.877 1.10 15.65 0.51 2.24 5.44 1.32
I[1] 498 2.491 1.53 25.07 0.54 3.03 7.81 1.47
I[2] 557 2.227 1.90 34.86 0.58 3.90 10.88 1.66
I[3] 609 2.036 2.22 44.55 0.62 4.79 14.34 1.88
I[4] 654 1.896 2.49 53.63 0.67 5.66 18.17 2.14
I´[0] 456 2.717 1.01 15.12 0.42 0.94 1.92 1.38
I´[1] 527 2.353 1.52 26.42 0.43 1.57 3.27 1.56
I´[2] 591 2.099 1.96 38.10 0.47 2.74 6.25 1.79
I´[3] 646 1.921 2.29 48.70 0.54 3.97 10.24 2.08
I´[4] 690 1.796 2.54 57.70 0.61 5.13 14.97 2.42
II[0] 497 2.493 1.12 18.29 0.57 2.85 7.77 1.47
II[1] 569 2.179 1.57 29.47 0.56 3.29 8.80 1.70
II[2] 633 1.959 1.96 40.84 0.58 4.00 11.22 2.01
II[3] 689 1.799 2.28 51.84 0.62 4.83 14.45 2.41
II[4] 741 1.673 2.54 62.04 0.67 5.73 18.42 2.97
II´[0] 513 2.415 1.11 18.72 0.43 1.26 2.60 1.52
II´[1] 590 2.101 1.64 31.85 0.42 1.21 2.45 1.79
II´[2] 664 1.868 2.13 46.58 0.44 1.88 3.95 2.21
II´[3] 729 1.700 2.50 60.02 0.49 3.31 7.86 2.82
II´[4] 783 1.583 2.70 69.68 0.58 4.85 13.54 3.69
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.6 – IEFPCM:M06-2X/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 406 3.050 1.19 15.87 0.53 2.64 6.68 1.28
I[1] 465 2.665 1.62 24.81 0.57 3.47 9.55 1.40
I[2] 510 2.430 2.03 34.05 0.62 4.35 12.96 1.51
I[3] 544 2.278 2.40 43.08 0.66 5.14 16.22 1.61
I[4] 568 2.182 2.76 51.55 0.68 5.86 19.25 1.70
I´[0] 447 2.773 1.06 15.64 0.42 1.48 3.00 1.36
I´[1] 518 2.394 1.57 26.69 0.46 2.32 5.08 1.53
I´[2] 569 2.178 2.00 37.57 0.54 3.64 9.35 1.71
I´[3] 599 2.070 2.38 46.86 0.62 4.80 14.22 1.83
I´[4] 612 2.027 2.72 54.69 0.68 5.75 18.65 1.89
II[0] 466 2.660 1.22 18.70 0.58 3.01 8.32 1.40
II[1] 533 2.325 1.67 29.39 0.59 3.62 10.26 1.58
II[2] 584 2.122 2.08 40.08 0.63 4.43 13.44 1.77
II[3] 621 1.996 2.45 50.12 0.67 5.22 16.88 1.94
II[4] 647 1.915 2.78 59.17 0.71 5.97 20.34 2.10
II´[0] 505 2.456 1.16 19.25 0.43 1.36 2.78 1.49
II´[1] 588 2.109 1.69 32.68 0.43 1.50 3.10 1.78
II´[2] 661 1.875 2.18 47.53 0.47 2.56 5.80 2.19
II´[3] 705 1.759 2.57 59.65 0.58 4.31 11.91 2.55
II´[4] 713 1.740 2.85 66.83 0.68 5.70 18.72 2.63
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.7 – IEFPCM:M06-HF/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 385 3.217 1.22 15.49 0.59 2.68 7.58 1.25
I[1] 433 2.861 1.64 23.45 0.65 3.46 10.72 1.33
I[2] 462 2.684 2.07 31.53 0.68 4.17 13.56 1.39
I[3] 479 2.591 2.49 39.21 0.69 4.68 15.42 1.43
I[4] 487 2.547 2.89 46.32 0.68 4.99 16.38 1.45
I´[0] 448 2.769 1.06 15.62 0.49 1.76 4.10 1.36
I´[1] 518 2.392 1.52 25.98 0.58 2.78 7.70 1.53
I´[2] 544 2.281 1.96 35.00 0.70 3.97 13.28 1.61
I´[3] 536 2.312 2.38 42.02 0.73 4.75 16.74 1.59
I´[4] 521 2.378 2.82 48.42 0.72 5.14 17.69 1.54
II[0] 440 2.817 1.25 18.10 0.64 2.94 9.06 1.34
II[1] 499 2.486 1.68 27.58 0.69 3.61 12.02 1.48
II[2] 532 2.331 2.08 36.50 0.74 4.29 15.19 1.57
II[3] 548 2.264 2.46 44.33 0.76 4.78 17.44 1.63
II[4] 553 2.241 2.80 51.01 0.77 5.11 18.77 1.65
II´[0] 511 2.429 1.15 19.40 0.48 1.35 3.14 1.51
II´[1] 608 2.041 1.66 33.20 0.53 1.75 4.41 1.87
II´[2] 679 1.825 2.13 47.55 0.66 3.32 10.52 2.33
II´[3] 666 1.862 2.51 55.05 0.82 4.79 18.90 2.22
II´[4] 613 2.024 2.86 57.73 0.83 5.38 21.34 1.90
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.8 – IEFPCM:LC-BLYP(ωstd)/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 376 3.297 1.24 15.35 0.62 2.37 7.11 1.23
I[1] 423 2.931 1.69 23.48 0.68 3.14 10.23 1.31
I[2] 452 2.746 2.14 31.76 0.71 3.81 13.01 1.37
I[3] 469 2.646 2.57 39.67 0.72 4.30 14.87 1.40
I[4] 477 2.598 2.99 47.02 0.72 4.58 15.78 1.42
I´[0] 432 2.870 1.10 15.58 0.53 1.44 3.64 1.33
I´[1] 499 2.485 1.58 26.01 0.62 2.43 7.16 1.48
I´[2] 525 2.360 2.04 35.23 0.72 3.60 12.51 1.55
I´[3] 522 2.377 2.48 42.55 0.76 4.36 15.90 1.54
I´[4] 509 2.434 2.94 49.23 0.74 4.72 16.81 1.51
II[0] 427 2.905 1.29 18.06 0.68 2.61 8.50 1.32
II[1] 484 2.563 1.74 27.64 0.73 3.25 11.37 1.44
II[2] 517 2.400 2.16 36.75 0.77 3.89 14.43 1.53
II[3] 533 2.327 2.55 44.81 0.79 4.36 16.59 1.58
II[4] 539 2.298 2.91 51.76 0.80 4.69 17.94 1.60
II´[0] 490 2.533 1.20 19.40 0.55 1.12 2.92 1.45
II´[1] 580 2.136 1.73 33.10 0.59 1.49 4.27 1.75
II´[2] 647 1.915 2.22 47.27 0.71 2.90 9.93 2.10
II´[3] 639 1.940 2.62 55.10 0.85 4.32 17.65 2.04
II´[4] 594 2.088 2.98 58.35 0.85 4.92 20.11 1.81
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.9a – IEFPCM:LC-BLYP(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the NSC procedure.

λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)
I[0] 415 2.990 1.15 15.66 0.52 2.61 6.45 1.29
I[1] 473 2.620 1.59 24.73 0.56 3.44 9.25 1.41
I[2] 517 2.400 2.02 34.28 0.60 4.28 12.31 1.53
I[3] 549 2.257 2.42 43.83 0.62 5.03 14.99 1.63
I[4] 572 2.167 2.81 52.99 0.63 5.66 17.18 1.72
I´[0] 457 2.714 1.03 15.50 0.42 1.52 3.07 1.38
I´[1] 530 2.341 1.52 26.57 0.46 2.33 5.11 1.57
I´[2] 581 2.135 1.97 37.70 0.53 3.62 9.18 1.75
I´[3] 609 2.037 2.38 47.60 0.60 4.76 13.62 1.88
I´[4] 620 2.001 2.76 56.38 0.64 5.64 17.21 1.93
II[0] 481 2.576 1.18 18.66 0.55 3.00 7.93 1.43
II[1] 549 2.259 1.64 29.60 0.57 3.61 9.83 1.63
II[2] 599 2.071 2.07 40.72 0.61 4.39 12.75 1.83
II[3] 634 1.955 2.46 51.37 0.64 5.13 15.71 2.02
II[4] 659 1.882 2.82 61.21 0.66 5.82 18.48 2.17
II´[0] 521 2.381 1.11 19.08 0.42 1.39 2.79 1.54
II´[1] 605 2.050 1.64 32.57 0.42 1.47 3.00 1.86
II´[2] 679 1.825 2.13 47.66 0.46 2.48 5.52 2.33
II´[3] 724 1.713 2.54 60.64 0.56 4.25 11.35 2.75
II´[4] 730 1.699 2.88 69.21 0.65 5.64 17.57 2.83
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.9b – IEFPCM:LC-BLYP(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure.

λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)
I[0] 425 2.917 1.12 15.69 0.49 2.60 6.11 1.31
I[1] 486 2.550 1.56 25.03 0.53 3.45 8.76 1.45
I[2] 535 2.318 1.99 34.99 0.57 4.34 11.79 1.58
I[3] 574 2.159 2.39 45.14 0.59 5.16 14.63 1.73
I[4] 605 2.049 2.77 55.10 0.61 5.90 17.20 1.86
I´[0] 463 2.680 1.01 15.41 0.40 1.45 2.76 1.39
I´[1] 535 2.316 1.51 26.64 0.42 2.20 4.45 1.58
I´[2] 592 2.095 1.96 38.23 0.48 3.49 8.06 1.80
I´[3] 630 1.969 2.36 48.91 0.55 4.71 12.34 1.99
I´[4] 652 1.901 2.73 58.57 0.59 5.73 16.31 2.13
II[0] 494 2.508 1.15 18.74 0.53 3.05 7.70 1.47
II[1] 564 2.198 1.62 30.04 0.53 3.64 9.27 1.69
II[2] 620 2.000 2.04 41.74 0.56 4.44 11.97 1.94
II[3] 664 1.866 2.44 53.33 0.59 5.26 14.93 2.21
II[4] 700 1.771 2.80 64.46 0.62 6.08 18.03 2.51
II´[0] 526 2.356 1.09 18.96 0.40 1.42 2.69 1.56
II´[1] 608 2.039 1.62 32.41 0.39 1.42 2.68 1.88
II´[2] 683 1.814 2.12 47.63 0.42 2.31 4.63 2.36
II´[3] 738 1.679 2.53 61.60 0.49 4.04 9.49 2.94
II´[4] 764 1.622 2.86 72.03 0.58 5.61 15.53 3.33
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.10 – IEFPCM:CAM-B3LYP(ωstd)/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 402 3.082 1.19 15.78 0.55 2.43 6.37 1.27
I[1] 459 2.700 1.64 24.78 0.59 3.21 9.09 1.38
I[2] 502 2.467 2.07 34.18 0.63 4.02 12.24 1.49
I[3] 535 2.318 2.47 43.45 0.66 4.77 15.21 1.58
I[4] 557 2.224 2.85 52.22 0.68 5.41 17.75 1.66
I´[0] 442 2.806 1.07 15.59 0.45 1.28 2.75 1.35
I´[1] 511 2.424 1.58 26.61 0.49 2.06 4.80 1.51
I´[2] 561 2.209 2.03 37.56 0.56 3.32 8.95 1.67
I´[3] 588 2.107 2.43 47.07 0.64 4.44 13.58 1.78
I´[4] 599 2.070 2.80 55.27 0.68 5.32 17.46 1.83
II[0] 460 2.695 1.23 18.61 0.60 2.78 7.94 1.38
II[1] 525 2.361 1.70 29.30 0.61 3.33 9.84 1.55
II[2] 574 2.161 2.12 40.06 0.65 4.07 12.77 1.72
II[3] 608 2.038 2.51 50.24 0.69 4.78 15.86 1.88
II[4] 633 1.960 2.86 59.53 0.72 5.49 18.98 2.01
II´[0] 498 2.489 1.17 19.17 0.46 1.17 2.58 1.48
II´[1] 580 2.139 1.71 32.53 0.47 1.28 2.89 1.75
II´[2] 651 1.904 2.21 47.32 0.52 2.26 5.60 2.12
II´[3] 692 1.792 2.61 59.49 0.62 3.93 11.64 2.43
II´[4] 695 1.783 2.93 66.95 0.71 5.27 18.01 2.46
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.11a – IEFPCM:CAM-B3LYP(ωopt)/6-311+G(d) calculations with ωopt values cal-
culated using the NSC procedure.

λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)
I[0] 379 3.269 1.25 15.57 0.60 2.17 6.28 1.24
I[1] 437 2.838 1.70 24.40 0.64 2.96 9.04 1.34
I[2] 480 2.583 2.13 33.63 0.67 3.77 12.13 1.43
I[3] 512 2.423 2.53 42.68 0.69 4.50 14.95 1.51
I[4] 534 2.323 2.92 51.24 0.71 5.11 17.31 1.58
I´[0] 424 2.925 1.11 15.52 0.50 1.12 2.71 1.31
I´[1] 497 2.494 1.61 26.42 0.54 1.97 5.05 1.47
I´[2] 546 2.272 2.06 37.10 0.61 3.23 9.45 1.62
I´[3] 569 2.177 2.47 46.24 0.68 4.31 14.02 1.71
I´[4] 577 2.149 2.85 54.18 0.71 5.14 17.54 1.74
II[0] 441 2.814 1.27 18.46 0.64 2.59 7.93 1.34
II[1] 508 2.441 1.73 28.94 0.65 3.19 10.00 1.50
II[2] 557 2.225 2.15 39.49 0.69 3.93 12.99 1.66
II[3] 592 2.095 2.54 49.43 0.72 4.65 16.04 1.80
II[4] 616 2.014 2.89 58.49 0.74 5.31 18.93 1.91
II´[0] 486 2.552 1.20 19.22 0.50 1.03 2.48 1.44
II´[1] 572 2.166 1.73 32.60 0.50 1.22 2.94 1.72
II´[2] 646 1.918 2.22 47.34 0.54 2.26 5.90 2.09
II´[3] 684 1.812 2.63 59.17 0.65 3.94 12.23 2.36
II´[4] 683 1.815 2.94 66.14 0.74 5.21 18.43 2.36
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.11b – IEFPCM:CAM-B3LYP(ωopt)/6-311+G(d) calculations with ωopt values cal-
culated using the SC procedure.

λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)
I[0] 376 3.296 1.25 15.51 0.61 2.12 6.18 1.23
I[1] 433 2.867 1.71 24.33 0.64 2.87 8.87 1.33
I[2] 475 2.609 2.14 33.56 0.68 3.67 11.91 1.42
I[3] 507 2.446 2.55 42.61 0.70 4.39 14.69 1.50
I[4] 528 2.346 2.94 51.14 0.71 5.00 17.02 1.56
I´[0] 419 2.958 1.12 15.45 0.52 1.06 2.61 1.30
I´[1] 493 2.513 1.62 26.34 0.54 1.91 4.99 1.46
I´[2] 542 2.286 2.07 37.01 0.62 3.18 9.42 1.61
I´[3] 566 2.192 2.48 46.12 0.68 4.26 13.98 1.69
I´[4] 573 2.165 2.87 54.03 0.72 5.08 17.43 1.72
II[0] 437 2.837 1.28 18.41 0.64 2.55 7.87 1.34
II[1] 504 2.461 1.74 28.85 0.66 3.13 9.96 1.49
II[2] 553 2.243 2.16 39.35 0.70 3.88 12.94 1.64
II[3] 587 2.113 2.55 49.23 0.73 4.59 15.98 1.78
II[4] 610 2.032 2.90 58.21 0.75 5.25 18.83 1.89
II´[0] 483 2.566 1.21 19.19 0.51 1.01 2.45 1.44
II´[1] 571 2.172 1.73 32.58 0.51 1.21 2.94 1.71
II´[2] 645 1.921 2.23 47.32 0.55 2.26 5.92 2.08
II´[3] 683 1.815 2.63 59.10 0.65 3.94 12.29 2.36
II´[4] 680 1.823 2.95 65.96 0.74 5.20 18.49 2.33

145



Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.12 – IEFPCM:ωB97X-D(ωstd)/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 398 3.111 1.19 15.61 0.55 2.41 6.34 1.27
I[1] 452 2.742 1.65 24.52 0.60 3.18 9.07 1.37
I[2] 491 2.524 2.09 33.84 0.63 3.94 11.99 1.46
I[3] 519 2.388 2.52 43.04 0.65 4.60 14.46 1.53
I[4] 538 2.307 2.93 51.77 0.66 5.12 16.30 1.59
I´[0] 441 2.813 1.07 15.51 0.45 1.33 2.88 1.34
I´[1] 509 2.435 1.58 26.46 0.50 2.12 5.09 1.51
I´[2] 555 2.235 2.04 37.24 0.58 3.37 9.41 1.65
I´[3] 575 2.157 2.46 46.56 0.65 4.42 13.79 1.73
I´[4] 578 2.144 2.88 54.76 0.68 5.16 16.83 1.74
II[0] 454 2.729 1.23 18.44 0.60 2.76 7.92 1.37
II[1] 516 2.402 1.70 28.93 0.63 3.31 9.94 1.53
II[2] 560 2.214 2.14 39.46 0.66 4.01 12.78 1.67
II[3] 589 2.104 2.54 49.36 0.69 4.65 15.46 1.79
II[4] 608 2.040 2.92 58.38 0.71 5.20 17.76 1.87
II´[0] 497 2.492 1.17 19.10 0.47 1.21 2.71 1.47
II´[1] 579 2.140 1.70 32.49 0.49 1.35 3.15 1.75
II´[2] 650 1.907 2.21 47.22 0.55 2.39 6.26 2.11
II´[3] 681 1.820 2.63 58.86 0.66 4.05 12.78 2.34
II´[4] 671 1.848 2.98 65.78 0.73 5.19 18.20 2.26
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.13a – IEFPCM:ωB97X-D(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the NSC procedure.

λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)
I[0] 406 3.053 1.18 15.73 0.53 2.42 6.14 1.28
I[1] 464 2.673 1.63 24.91 0.57 3.21 8.77 1.39
I[2] 509 2.438 2.07 34.63 0.61 4.02 11.74 1.50
I[3] 543 2.282 2.48 44.41 0.63 4.77 14.47 1.61
I[4] 569 2.180 2.88 53.85 0.65 5.41 16.84 1.70
I´[0] 444 2.792 1.06 15.53 0.43 1.27 2.65 1.35
I´[1] 514 2.412 1.58 26.68 0.47 2.02 4.50 1.52
I´[2] 567 2.188 2.04 37.99 0.53 3.26 8.31 1.70
I´[3] 598 2.072 2.45 48.18 0.60 4.41 12.70 1.83
I´[4] 614 2.020 2.83 57.21 0.65 5.33 16.50 1.90
II[0] 468 2.651 1.21 18.67 0.57 2.83 7.76 1.40
II[1] 533 2.324 1.69 29.63 0.58 3.37 9.46 1.58
II[2] 584 2.122 2.12 40.84 0.62 4.10 12.18 1.77
II[3] 622 1.994 2.53 51.70 0.65 4.83 15.10 1.95
II[4] 650 1.908 2.89 61.91 0.68 5.54 17.99 2.11
II´[0] 502 2.468 1.15 19.10 0.44 1.22 2.57 1.49
II´[1] 582 2.129 1.69 32.47 0.44 1.28 2.73 1.76
II´[2] 655 1.894 2.20 47.45 0.48 2.17 4.99 2.14
II´[3] 702 1.766 2.62 60.58 0.56 3.84 10.41 2.52
II´[4] 715 1.734 2.96 69.57 0.66 5.26 16.57 2.66
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.13b – IEFPCM:ωB97X-D(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure.

λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)
I[0] 409 3.033 1.17 15.76 0.52 2.43 6.07 1.28
I[1] 468 2.648 1.62 25.04 0.56 3.22 8.65 1.40
I[2] 516 2.404 2.06 34.91 0.60 4.05 11.63 1.52
I[3] 554 2.240 2.46 44.89 0.62 4.83 14.47 1.65
I[4] 583 2.127 2.85 54.60 0.64 5.54 17.08 1.76
I´[0] 445 2.784 1.06 15.53 0.43 1.25 2.57 1.35
I´[1] 516 2.405 1.58 26.74 0.45 1.97 4.30 1.52
I´[2] 570 2.174 2.04 38.23 0.51 3.21 7.92 1.71
I´[3] 607 2.043 2.44 48.69 0.58 4.39 12.24 1.87
I´[4] 628 1.975 2.81 58.04 0.63 5.38 16.26 1.98
II[0] 472 2.626 1.21 18.73 0.56 2.85 7.72 1.41
II[1] 540 2.297 1.68 29.84 0.57 3.39 9.28 1.60
II[2] 594 2.089 2.11 41.29 0.60 4.14 11.93 1.81
II[3] 636 1.951 2.51 52.51 0.63 4.91 14.92 2.02
II[4] 669 1.853 2.87 63.19 0.66 5.68 18.04 2.25
II´[0] 504 2.461 1.15 19.09 0.43 2.53 2.53 1.49
II´[1] 583 2.126 1.69 32.46 0.43 1.26 2.61 1.76
II´[2] 656 1.890 2.20 47.49 0.46 2.10 4.61 2.15
II´[3] 708 1.750 2.62 61.04 0.53 3.75 9.58 2.59
II´[4] 732 1.695 2.94 70.77 0.62 5.25 15.72 2.85
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Transition wavelengths (λge, eV), transition energies (∆Ege, eV), oscillator strengths (fge)
and transition dipole moments (µge, D), as well as charge transferred (∆qge, |e|), charge
transfer distance (∆rge, Å), and dipole moment variation (∆µge, D) associated to the
first dipole-allowed transition (Sg → Se≡S0 →S1 otherwise specified) of the investigated
merocyanines. The last column reports the frequency dispersion factors calculated using
the two-state approximation.

Table A.14 – IEFPCM:HF/6-311+G(d) calculations.
λge ∆Ege fge µge ∆qge ∆rge ∆µge F TSA(ω)

I[0] 336 3.690 1.30 14.34 0.72 1.47 5.05 1.18
I[1] 381 3.254 1.80 22.56 0.73 1.91 6.71 1.24
I[2] 414 2.995 2.32 31.59 0.73 2.37 8.33 1.29
I[3] 437 2.837 2.83 40.68 0.73 2.74 9.58 1.34
I[4] 452 2.743 3.32 49.47 0.72 2.99 10.40 1.37
I´[0] 384 3.229 1.15 14.59 0.66 0.70 2.23 1.24
I´[1] 445 2.786 1.67 24.43 0.71 1.25 4.29 1.35
I´[2] 477 2.599 2.17 34.14 0.76 2.13 7.78 1.42
I´[3] 485 2.556 2.69 42.91 0.76 2.77 10.14 1.44
I´[4] 484 2.562 3.22 51.28 0.74 3.08 10.96 1.44
II[0] 376 3.297 1.36 16.80 0.77 1.63 6.00 1.23
II[1] 428 2.897 1.85 26.09 0.79 1.96 7.43 1.32
II[2] 463 2.678 2.34 35.71 0.80 2.37 9.10 1.39
II[3] 486 2.551 2.81 45.00 0.80 2.73 10.53 1.44
II[4] 501 2.475 3.26 53.71 0.80 3.02 11.66 1.48
II´[0] 428 2.897 1.29 18.18 0.71 0.51 1.73 1.32
II´[1] 551 2.250 1.85 30.51 0.76 0.66 2.43 1.64
II´[2] 558 2.222 2.37 43.60 0.83 1.44 5.72 1.66
II´[3] 569 2.179 2.84 53.13 0.87 2.57 10.74 1.70
II´[4] 548 2.262 3.30 59.44 0.85 3.16 12.83 1.63
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A.4 Static nonlinear optical properties

Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.15 – IEFPCM:M06L/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7800 67 4.5 1.00
I[1] 19261 166 4.7 2.47
I[2] 42325 366 4.9 5.43
I[3] 84258 728 4.9 10.80
I[4] 154269 1333 5.0 19.78
I’[0] 4529 39 4.3 1.00
I’[1] 11033 95 4.6 2.44
I’[2] 27713 239 4.8 6.12
I’[3] 63288 547 4.9 13.97
I’[4] 128361 1109 5.0 28.34
II[0] 13021 113 4.3 1.00
II[1] 29405 254 4.6 2.26
II[2] 61853 534 4.8 4.75
II[3] 120983 1045 4.9 9.29
II[4] 223158 1928 4.9 17.14
II’[0] 5836 50 3.7 1.00
II’[1] 11525 100 4.1 1.97
II’[2] 26435 228 4.5 4.53
II’[3] 69848 604 4.8 11.97
II´[4] 162471 1404 4.9 27.84
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.16 – IEFPCM:M06/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7331 63 4.4 1.00
I[1] 18431 159 4.7 2.51
I[2] 39177 339 4.8 5.34
I[3] 72671 628 4.9 9.91
I[4] 120043 1037 4.9 16.38
I’[0] 4832 42 4.3 1.00
I’[1] 12869 111 4.6 2.66
I’[2] 33115 286 4.8 6.85
I’[3] 71646 619 4.9 14.83
I’[4] 128759 1113 4.9 26.65
II[0] 12522 108 4.3 1.00
II[1] 29581 256 4.6 2.36
II[2] 61284 530 4.8 4.89
II[3] 113035 977 4.9 9.03
II[4] 190547 1647 4.9 15.22
II’[0] 6476 56 3.9 1.00
II’[1] 13773 119 4.2 2.13
II’[2] 33966 293 4.6 5.25
II’[3] 90972 786 4.9 14.05
II´[4] 192302 1662 4.9 29.70

Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.17 – IEFPCM:M06-2X/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7550 65 4.5 1.00
I[1] 19104 165 4.7 2.53
I[2] 38422 332 4.9 5.09
I[3] 64572 558 4.9 8.55
I[4] 94611 818 4.9 12.53
I’[0] 5676 49 4.4 1.00
I’[1] 16829 145 4.7 2.97
I’[2] 42661 369 4.9 7.52
I’[3] 80109 692 4.9 14.11
I’[4] 117205 1013 5.0 20.65
II[0] 12766 110 4.5 1.00
II[1] 31297 270 4.7 2.45
II[2] 62881 543 4.9 4.93
II[3] 106273 918 4.9 8.32
II[4] 157463 1361 5.0 12.33
II’[0] 7272 63 4.1 1.00
II’[1] 17496 151 4.4 2.41
II’[2] 49182 425 4.8 6.76
II’[3] 126131 1090 4.9 17.35
II´[4] 208061 1798 5.0 28.61
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.18 – IEFPCM:M06-HF/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7215 62 4.5 1.00
I[1] 17318 150 4.7 2.40
I[2] 30792 266 4.8 4.27
I[3] 44320 383 4.9 6.14
I[4] 55179 477 4.9 7.65
I’[0] 6730 58 4.5 1.00
I’[1] 22388 193 4.8 3.33
I’[2] 48973 423 4.9 7.28
I’[3] 66169 572 4.9 9.83
I’[4] 71644 619 4.9 10.65
II[0] 12435 107 4.6 1.00
II[1] 30440 263 4.8 2.45
II[2] 54822 474 4.9 4.41
II[3] 78372 677 4.9 6.30
II[4] 96263 832 5.0 7.74
II’[0] 8769 76 4.4 1.00
II’[1] 25773 223 4.6 2.94
II’[2] 87460 756 4.9 9.97
II’[3] 158799 1372 5.0 18.11
II´[4] 150724 1302 5.0 17.19

Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.19 – IEFPCM:LC-BLYP(ωstd)/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 6703 58 4.4 1.00
I[1] 16121 139 4.7 2.40
I[2] 28744 248 4.8 4.29
I[3] 41654 360 4.9 6.21
I[4] 52244 451 4.9 7.79
I’[0] 6068 52 4.4 1.00
I’[1] 19971 173 4.7 3.29
I’[2] 43944 380 4.9 7.24
I’[3] 60735 525 4.9 10.01
I’[4] 67029 579 4.9 11.05
II[0] 11408 99 4.5 1.00
II[1] 27817 240 4.7 2.44
II[2] 50036 432 4.9 4.39
II[3] 71721 620 4.9 6.29
II[4] 88713 767 4.9 7.78
II’[0] 8113 70 4.3 1.00
II’[1] 23511 203 4.6 2.90
II’[2] 75923 656 4.9 9.36
II’[3] 137749 1190 5.0 16.98
II´[4] 135183 1168 5.0 16.66
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.20a – IEFPCM:LC-BLYP(ωopt/6-311+G(d) calculations with ωopt values calcu-
lated using the NSC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 7634 66 4.5 1.00
I[1] 19381 167 4.7 2.54
I[2] 38523 333 4.9 5.05
I[3] 63803 551 4.9 8.36
I[4] 91616 792 4.9 12.00
I’[0] 5861 51 4.4 1.00
I’[1] 17429 151 4.7 2.97
I’[2] 43961 380 4.9 7.50
I’[3] 81434 704 4.9 13.89
I’[4] 117295 1014 5.0 20.01
II[0] 13119 113 4.4 1.00
II[1] 32403 280 4.7 2.47
II[2] 65045 562 4.8 4.96
II[3] 108968 942 4.9 8.31
II[4] 159290 1376 4.9 12.14
II’[0] 7498 65 4.1 1.00
II’[1] 17613 152 4.4 2.35
II’[2] 49391 427 4.7 6.59
II’[3] 129253 1117 4.9 17.24
II´[4] 215223 1860 5.0 28.70
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.20b – IEFPCM:LC-BLYP(ωopt/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 7770 67 4.5 1.00
I[1] 19818 171 4.7 2.55
I[2] 40508 350 4.9 5.21
I[3] 69994 605 4.9 9.01
I[4] 106174 917 4.9 13.66
I’[0] 5630 49 4.4 1.00
I’[1] 16149 140 4.7 2.87
I’[2] 41454 358 4.9 7.36
I’[3] 82071 709 4.9 14.58
I’[4] 128900 1114 5.0 22.89
II[0] 13295 115 4.4 1.00
II[1] 32548 281 4.7 2.45
II[2] 66785 577 4.8 5.02
II[3] 117219 1013 4.9 8.82
II[4] 183070 1582 4.9 13.77
II’[0] 7142 62 4.0 1.00
II’[1] 15899 137 4.3 2.23
II’[2] 42440 367 4.7 5.94
II’[3] 115381 997 4.9 16.16
II´[4] 218829 1891 5.0 30.64
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Static HRS hyperpolarizabilities (βHRS, in a.u.), depolarization ratios (DR), and relative
βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.20c – IEFPCM:LC-BLYP(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure in the presence of chloroform, and comparison to BLYP
results.

LC-BLYP (ωopt) BLYP
βHRS (a.u.) DR βHRS[n]/βHRS[0] βHRS (a.u.) DR βHRS[n]/βHRS[0]

I[0] 8453 4.5 1.0 8536 4.5 1.0
I[1] 20646 4.7 2.4 20689 4.7 2.4
I[2] 45242 4.9 5.4 45304 4.9 5.3
I[3] 69994 4.9 8.3 90341 4.9 10.5
I[4] 159379 5.0 18.9 166505 5.0 19.4
I’[0] 4862 4.3 1.0 4828 4.3 1.0
I’[1] 11729 4.6 2.4 11452 4.6 2.4
I’[2] 29663 4.8 6.1 28497 4.8 5.9
I’[3] 67996 4.9 14.0 64962 4.9 13.4
I’[4] 136691 5.0 28.1 132448 5.0 27.2
II[0] 13700 4.3 1.0 13778 4.3 1.0
II[1] 30653 4.6 2.2 30509 4.6 2.2
II[2] 64822 4.8 4.7 64169 4.8 4.7
II[3] 126785 4.9 9.3 126117 4.9 9.2
II[4] 231361 4.9 16.9 233824 4.9 17.0
II’[0] 5935 3.6 1.0 5896 3.6 1.0
II’[1] 11457 4.0 1.9 11306 4.0 1.9
II’[2] 26707 4.5 4.5 25868 4.5 4.4
II’[3] 73145 4.8 12.4 68880 4.8 11.7
II´[4] 173542 4.9 29.4 161808 4.9 27.4
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.21 – IEFPCM:CAM-B3LYP(ωstd)/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7159 62 4.4 1.00
I[1] 17943 155 4.7 2.51
I[2] 35769 309 4.8 5.00
I[3] 59596 515 4.9 8.33
I[4] 86062 744 4.9 12.02
I’[0] 5335 46 4.3 1.00
I’[1] 15762 136 4.7 2.95
I’[2] 40058 346 4.9 7.51
I’[3] 74530 644 4.9 13.97
I’[4] 107262 927 5.0 20.11
II[0] 12148 105 4.5 1.00
II[1] 29551 255 4.7 2.43
II[2] 58774 508 4.8 4.84
II[3] 98087 848 4.9 8.07
II[4] 143376 1239 4.9 11.80
II’[0] 6976 60 4.1 1.00
II’[1] 16543 143 4.4 2.37
II’[2] 46665 403 4.7 6.69
II’[3] 119329 1031 4.9 17.10
II´[4] 191549 1655 5.0 27.46
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.22a – IEFPCM:CAM-B3LYP(ωopt)/6-311+G(d) calculations with ωopt values cal-
culated using the NSC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 6323 55 4.3 1.00
I[1] 15997 138 4.6 2.53
I[2] 31872 275 4.8 5.04
I[3] 52792 456 4.9 8.35
I[4] 75517 653 4.9 11.94
I’[0] 4993 43 4.3 1.00
I’[1] 15522 134 4.6 3.11
I’[2] 39298 340 4.8 7.87
I’[3] 70360 608 4.9 14.09
I’[4] 97346 841 4.9 19.50
II[0] 11333 98 4.4 1.00
II[1] 28056 242 4.7 2.48
II[2] 55737 482 4.8 4.92
II[3] 92318 798 4.9 8.15
II[4] 133496 1154 4.9 11.78
II’[0] 6887 60 4.1 1.00
II’[1] 16909 146 4.4 2.46
II’[2] 48521 419 4.7 7.05
II’[3] 121439 1049 4.9 17.63
II´[4] 186592 1612 5.0 27.09
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.22b – IEFPCM:CAM-B3LYP(ωopt)/6-311+G(d) calculations with ωopt values cal-
culated using the SC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 6157 53 4.3 1.00
I[1] 15418 133 4.6 2.50
I[2] 30692 265 4.8 4.99
I[3] 50847 439 4.9 8.26
I[4] 72699 628 4.9 11.81
I’[0] 4815 42 4.2 1.00
I’[1] 15142 131 4.6 3.14
I’[2] 38600 334 4.8 8.02
I’[3] 68981 596 4.9 14.33
I’[4] 94970 821 4.9 19.72
II[0] 11105 96 4.4 1.00
II[1] 27460 237 4.7 2.47
II[2] 54520 471 4.8 4.91
II[3] 90140 779 4.9 8.12
II[4] 129897 1122 4.9 11.70
II’[0] 6822 59 4.1 1.00
II’[1] 16873 146 4.4 2.47
II’[2] 48615 420 4.7 7.13
II’[3] 121414 1049 4.9 17.80
II´[4] 184919 1598 5.0 27.11

158



Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.23 – IEFPCM:ωB97X-D(ωstd)/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 6964 60 4.4 1.00
I[1] 17263 149 4.7 2.48
I[2] 33452 289 4.8 4.80
I[3] 53769 465 4.9 7.72
I[4] 74881 647 4.9 10.75
I’[0] 5346 46 4.4 1.00
I’[1] 16101 139 4.7 3.01
I’[2] 40318 348 4.9 7.54
I’[3] 71132 615 4.9 13.30
I’[4] 96112 831 4.9 17.98
II[0] 11775 102 4.4 1.00
II[1] 28631 247 4.7 2.43
II[2] 55580 480 4.8 4.72
II[3] 89194 771 4.9 7.57
II[4] 124654 1077 4.9 10.59
II’[0] 7162 62 4.1 1.00
II’[1] 17700 153 4.4 2.47
II’[2] 51012 441 4.8 7.12
II’[3] 123406 1066 4.9 17.23
II´[4] 177326 1532 5.0 24.76
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.24a – IEFPCM:ωB97X-D(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the NSC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 7125 62 4.4 1.00
I[1] 17874 154 4.7 2.51
I[2] 35855 310 4.8 5.03
I[3] 60531 523 4.9 8.50
I[4] 89048 769 4.9 12.50
I’[0] 5218 45 4.4 1.00
I’[1] 15111 131 4.7 2.90
I’[2] 38654 334 4.9 7.41
I’[3] 74315 642 4.9 14.24
I’[4] 111379 962 4.9 21.35
II[0] 12194 105 4.4 1.00
II[1] 29543 255 4.7 2.42
II[2] 59187 511 4.8 4.85
II[3] 100443 868 4.9 8.24
II[4] 150544 1301 4.9 12.35
II’[0] 6817 59 4.0 1.00
II’[1] 15626 135 4.3 2.29
II’[2] 42309 366 4.7 6.21
II’[3] 111914 967 4.9 16.42
II´[4] 195014 1685 5.0 28.61
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.24b – IEFPCM:ωB97X-D(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 7178 62 4.4 1.00
I[1] 18079 156 4.7 2.52
I[2] 36778 318 4.8 5.12
I[3] 63309 547 4.9 8.82
I[4] 95694 827 4.9 13.33
I’[0] 5166 45 4.3 1.00
I’[1] 14743 127 4.7 2.85
I’[2] 37859 327 4.8 7.33
I’[3] 74817 646 4.9 14.48
I’[4] 116851 1010 5.0 22.62
II[0] 12295 106 4.4 1.00
II[1] 29732 257 4.7 2.42
II[2] 60256 521 4.8 4.90
II[3] 104703 905 4.9 8.52
II[4] 162191 1401 4.9 13.19
II’[0] 6692 58 4.0 1.00
II’[1] 14988 130 4.3 2.24
II’[2] 39570 342 4.7 5.91
II’[3] 106369 919 4.9 15.90
II´[4] 197960 1711 5.0 29.58
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Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.25 – IEFPCM:HF/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 4372 38 4.0 1.00
I[1] 9530 82 4.3 2.18
I[2] 16782 145 4.5 3.84
I[3] 25344 219 4.6 5.80
I[4] 33739 292 4.7 7.72
I’[0] 3917 34 4.0 1.00
I’[1] 11120 96 4.4 2.84
I’[2] 24024 208 4.6 6.13
I’[3] 35675 308 4.7 9.11
I’[4] 42662 369 4.8 10.89
II[0] 7173 62 4.2 1.00
II[1] 15553 134 4.4 2.17
II[2] 27055 234 4.6 3.77
II[3] 40143 347 4.7 5.60
II[4] 53090 459 4.8 7.40
II’[0] 5587 48 4.0 1.00
II’[1] 13591 117 4.2 2.43
II’[2] 35754 309 4.5 6.40
II’[3] 67724 585 4.8 12.12
II’[4] 76914 665 4.8 13.77

Static HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.26 – IEFPCM:MP2/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 9797 85 4.6 1.00
I[1] 24979 216 4.8 2.55
I[2] 47273 408 5.0 4.83
I[3] 72384 625 5.0 7.39
I[4] 94967 821 5.0 9.69
I’[0] 8299 72 4.5 1.00
I’[1] 29722 257 4.8 3.58
I’[2] 71680 619 5.0 8.64
I’[3] 106571 921 5.0 12.84
I’[4] 123604 1068 5.0 14.89
II[0] 17364 150 4.7 1.00
II[1] 43885 379 4.9 2.53
II[2] 82765 715 5.0 4.77
II[3] 125463 1084 5.0 7.23
II[4] 163570 1413 5.0 9.42
II’[0] 10982 95 4.5 1.00
II’[1] 32228 278 4.7 2.93
II’[2] 112592 973 4.9 10.25
II’[3] 232020 2005 5.0 21.13
II’[4] 250702 2166 5.0 22.83
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A.5 Dynamic nonlinear optical properties

Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.27 – IEFPCM:M06L/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7687 66 4.6 1.0
I[1] 20803 180 4.8 2.7
I[2] 52507 454 4.9 6.9
I[3] 126715 1095 5.0 16.6
I[4] 303904 2626 5.0 39.8
I’[0] 4236 37 4.4 1.0
I’[1] 11015 95 4.7 2.6
I’[2] 31486 272 4.9 7.4
I’[3] 86474 747 5.0 20.2
I’[4] 229492 1983 5.0 53.6
II[0] 14584 126 4.5 1.0
II[1] 37190 321 4.7 2.6
II[2] 100835 871 4.9 6.9
II[3] 258887 2237 5.0 17.8
II[4] 741008 6403 5.0 50.8
II’[0] 6019 52 3.9 1.0
II’[1] 12959 112 4.3 2.2
II’[2] 34807 301 4.7 5.8
II’[3] 127067 1098 4.9 21.1
II´[4] 443179 3830 5.0 73.6
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.28 – IEFPCM:M06/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7098 61 4.5 1.0
I[1] 19407 168 4.8 2.7
I[2] 45974 397 4.9 6.5
I[3] 96694 836 4.9 13.6
I[4] 183448 1585 5.0 25.8
I’[0] 4524 39 4.4 1.0
I’[1] 12953 112 4.7 2.9
I’[2] 37636 325 4.9 8.3
I’[3] 94388 816 4.9 20.9
I’[4] 200301 1731 5.0 44.3
II[0] 13225 114 4.5 1.0
II[1] 34726 300 4.7 2.6
II[2] 86922 751 4.9 6.6
II[3] 188923 1632 4.9 14.3
II[4] 386216 3337 5.0 29.2
II’[0] 6408 55 4.0 1.0
II’[1] 14734 127 4.4 2.3
II’[2] 42560 368 4.7 6.6
II’[3] 150557 1301 4.9 23.5
II´[4] 407457 3521 5.0 63.6

Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.29 – IEFPCM:M06-2X/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 7185 62 4.6 1.0
I[1] 19515 169 4.8 2.7
I[2] 42585 368 4.9 5.9
I[3] 77738 672 4.9 10.8
I[4] 123048 1063 5.0 17.1
I’[0] 5292 46 4.5 1.0
I’[1] 16825 145 4.8 3.2
I’[2] 47240 408 4.9 8.9
I’[3] 98502 851 5.0 18.5
I’[4] 157782 1363 5.0 29.6
II[0] 12968 112 4.6 1.0
II[1] 34801 301 4.8 2.7
II[2] 77666 671 4.9 6.0
II[3] 145738 1259 5.0 11.2
II[4] 238357 2060 5.0 18.4
II’[0] 7054 61 4.3 1.0
II’[1] 18400 159 4.6 2.6
II’[2] 60193 520 4.9 8.5
II’[3] 182005 1573 5.0 25.8
II´[4] 340347 2941 5.0 48.2
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.30 – IEFPCM:M06-HF/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 6827 59 4.5 1.0
I[1] 17525 151 4.8 2.6
I[2] 33155 286 4.9 4.9
I[3] 50261 434 4.9 7.4
I[4] 65196 563 5.0 9.5
I’[0] 6342 55 4.6 1.0
I’[1] 22846 197 4.8 3.6
I’[2] 54358 470 4.9 8.5
I’[3] 77681 671 5.0 12.2
I’[4] 87066 752 5.0 13.7
II[0] 12407 107 4.7 1.0
II[1] 33117 286 4.8 2.7
II[2] 66021 570 4.9 5.3
II[3] 99987 864 5.0 8.1
II[4] 128031 1106 5.0 10.3
II’[0] 8497 73 4.5 1.0
II’[1] 27803 240 4.7 3.3
II’[2] 112623 973 4.9 13.3
II’[3] 228913 1978 5.0 27.1
II´[4] 215590 1863 5.0 25.5

Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.31 – IEFPCM:LC-BLYP(ωstd)/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 6273 54 4.5 1.0
I[1] 16052 139 4.8 2.6
I[2] 30352 262 4.9 4.9
I[3] 46224 399 4.9 7.4
I[4] 60337 521 4.9 9.7
I’[0] 5601 48 4.5 1.0
I’[1] 19794 171 4.8 3.6
I’[2] 47214 408 4.9 8.5
I’[3] 69149 598 4.9 12.4
I’[4] 79215 684 5.0 14.3
II[0] 11173 97 4.6 1.0
II[1] 29471 255 4.8 2.6
II[2] 57091 493 4.9 5.1
II[3] 86708 749 4.9 7.7
II[4] 111969 968 5.0 10.0
II’[0] 7621 66 4.4 1.0
II’[1] 24137 209 4.7 3.2
II’[2] 90932 786 4.9 11.9
II’[3] 180546 1560 5.0 23.6
II´[4] 180212 1557 5.0 23.6
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.32a – IEFPCM:LC-BLYP(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the NSC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 7343 63 4.6 1.0
I[1] 20088 174 4.8 2.8
I[2] 43299 374 4.9 5.9
I[3] 77674 671 4.9 10.7
I[4] 119925 1036 5.0 16.4
I’[0] 5559 48 4.6 1.0
I’[1] 17851 154 4.8 3.2
I’[2] 49997 432 4.9 9.0
I’[3] 102526 886 5.0 18.5
I’[4] 160585 1388 5.0 28.9
II[0] 13586 117 4.6 1.0
II[1] 36989 320 4.8 2.7
II[2] 85704 741 4.9 6.3
II[3] 158883 1373 5.0 11.7
II[4] 254405 2198 5.0 18.8
II’[0] 7451 64 4.2 1.0
II’[1] 19179 166 4.5 2.6
II’[2] 63595 550 4.8 8.6
II’[3] 207394 1792 5.0 28.0
II´[4] 384872 3326 5.0 52.0
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.32b – IEFPCM:LC-BLYP(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 7521 65 4.6 1.00
I[1] 20738 179 4.8 2.76
I[2] 46347 400 4.9 6.16
I[3] 87906 760 5.0 11.69
I[4] 146151 1263 5.0 19.43
I’[0] 5362 46 4.5 1.00
I’[1] 16599 143 4.8 3.10
I’[2] 47608 411 4.9 8.88
I’[3] 105939 915 5.0 19.76
I’[4] 185381 1602 5.0 34.57
II[0] 13964 121 4.5 1.00
II[1] 37870 327 4.8 2.71
II[2] 91307 789 4.9 6.54
II[3] 181689 1570 5.0 13.01
II[4] 322016 2783 5.0 23.06
II’[0] 7167 62 4.1 1.00
II’[1] 17451 151 4.5 2.43
II’[2] 55147 477 4.8 7.69
II’[3] 192115 1660 4.9 26.80
II´[4] 428268 3701 5.0 59.75
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u.), depolarization ratios (DR), and rela-
tive βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.32c – IEFPCM:LC-BLYP(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure in the presence of chloroform, and comparison to BLYP
results.

LC-BLYP (ωopt) BLYP
βHRS (a.u.) DR βHRS[n]/βHRS[0] βHRS (a.u.) DR βHRS[n]/βHRS[0]

I[0] 8579 4.6 1.00 8730 4.6 1.01
I[1] 23135 4.8 2.70 23518 4.8 2.71
I[2] 58630 4.9 6.85 60634 4.9 6.99
I[3] 87906 5.0 10.26 152753 5.0 17.60
I[4] 316635 5.0 36.97 398666 5.0 45.93
I’[0] 4682 4.5 1.01 4651 4.4 1.00
I’[1] 12156 4.7 2.63 11885 4.7 2.57
I’[2] 35512 4.9 7.67 34473 4.9 7.45
I’[3] 98835 5.0 21.35 97800 5.0 21.13
I’[4] 257367 5.0 55.60 277689 5.0 59.99
II[0] 16119 4.5 1.00 16607 4.5 1.00
II[1] 40996 4.7 2.55 42601 4.7 2.56
II[2] 112240 4.9 6.98 121229 4.9 7.27
II[3] 284325 5.0 17.68 340791 5.0 20.45
II[4] 750247 5.0 46.64 1243741 5.0 74.63
II’[0] 6411 3.8 1.01 6471 3.8 1.00
II’[1] 13616 4.3 2.14 13851 4.3 2.14
II’[2] 37894 4.7 5.95 38508 4.7 5.94
II’[3] 145421 4.9 22.85 150017 4.9 23.15
II´[4] 509315 5.0 80.02 624050 5.0 96.29
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.33 – IEFPCM:CAM-B3LYP(ωstd)/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 6790 59 4.5 1.0
I[1] 18238 158 4.8 2.7
I[2] 39287 339 4.9 5.8
I[3] 70695 611 4.9 10.4
I[4] 109580 947 5.0 16.0
I’[0] 4954 43 4.5 1.0
I’[1] 15676 135 4.8 3.2
I’[2] 43965 380 4.9 8.8
I’[3] 90210 780 5.0 18.1
I’[4] 140937 1218 5.0 28.3
II[0] 12231 106 4.6 1.0
II[1] 32462 281 4.8 2.6
II[2] 71332 616 4.9 5.8
II[3] 131138 1133 4.9 10.7
II[4] 209441 1810 5.0 17.1
II’[0] 6675 58 4.2 1.0
II’[1] 17070 148 4.5 2.5
II’[2] 55971 484 4.8 8.3
II’[3] 167625 1448 5.0 25.0
II´[4] 300444 2596 5.0 44.8
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.34a – IEFPCM:CAM-B3LYP(ωopt)/6-311+G(d) calculations with ωopt values cal-
culated using the NSC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 5925 51 4.4 1.0
I[1] 16039 139 4.7 2.7
I[2] 34414 297 4.9 5.8
I[3] 61272 529 4.9 10.4
I[4] 93584 809 5.0 15.9
I’[0] 4582 40 4.4 1.0
I’[1] 15301 132 4.7 3.3
I’[2] 42715 369 4.9 9.2
I’[3] 83828 724 5.0 18.1
I’[4] 124864 1079 5.0 27.0
II[0] 11247 97 4.5 1.0
II[1] 30393 263 4.8 2.7
II[2] 68738 594 4.9 6.1
II[3] 124736 1078 4.9 11.1
II[4] 195813 1692 5.0 17.4
II’[0] 6509 56 4.2 1.0
II’[1] 17331 150 4.5 2.7
II’[2] 58147 502 4.8 9.0
II’[3] 177533 1534 5.0 27.4
II´[4] 298895 2583 5.0 46.1
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.34b – IEFPCM:CAM-B3LYP(ωopt)/6-311+G(d) calculations with ωopt values cal-
culated using the SC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 5756 50 4.4 1.00
I[1] 15401 133 4.7 2.68
I[2] 32975 285 4.9 5.73
I[3] 58634 507 4.9 10.19
I[4] 89378 772 5.0 15.53
I’[0] 4400 38 4.4 1.00
I’[1] 14866 128 4.7 3.38
I’[2] 41790 361 4.9 9.50
I’[3] 81777 707 4.9 18.59
I’[4] 121031 1046 5.0 27.51
II[0] 10984 95 4.5 1.00
II[1] 29607 256 4.8 2.70
II[2] 66790 577 4.9 6.08
II[3] 120771 1044 4.9 11.00
II[4] 188528 1629 5.0 17.16
II’[0] 6427 56 4.2 1.00
II’[1] 17246 149 4.5 2.68
II’[2] 58155 503 4.8 9.05
II’[3] 176982 1529 5.0 27.54
II´[4] 294371 2544 5.0 45.80
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.35 – IEFPCM:ωB97X-D(ωstd)/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 6596 57 4.5 1.0
I[1] 17459 151 4.8 2.6
I[2] 36321 314 4.9 5.5
I[3] 62443 540 4.9 9.5
I[4] 92287 797 5.0 14.0
I’[0] 4965 43 4.5 1.0
I’[1] 16008 138 4.8 3.2
I’[2] 44026 380 4.9 8.8
I’[3] 84645 731 5.0 17.0
I’[4] 122195 1056 5.0 24.6
II[0] 11841 102 4.6 1.0
II[1] 31257 270 4.8 2.6
II[2] 66332 573 4.9 5.6
II[3] 115545 998 4.9 9.8
II[4] 173213 1497 5.0 14.7
II’[0] 6869 59 4.2 1.0
II’[1] 18258 158 4.5 2.7
II’[2] 61164 529 4.9 9.0
II’[3] 170576 1474 5.0 25.0
II´[4] 264574 2286 5.0 38.7
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.36a – IEFPCM:ωB97X-D(ωopt/6-311+G(d) calculations with ωopt values calcu-
lated using the NSC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 6787 59 4.5 1.0
I[1] 18273 158 4.8 2.7
I[2] 39692 343 4.9 5.8
I[3] 72603 627 4.9 10.6
I[4] 115149 995 5.0 16.9
I’[0] 4870 42 4.5 1.0
I’[1] 15118 131 4.8 3.1
I’[2] 42776 370 4.9 8.8
I’[3] 91128 787 5.0 18.7
I’[4] 149280 1290 5.0 30.7
II[0] 12412 107 4.5 1.0
II[1] 32902 284 4.8 2.7
II[2] 75839 655 4.9 6.1
II[3] 142340 1230 4.9 11.5
II[4] 234702 2028 5.0 19.0
II’[0] 6607 57 4.2 1.0
II’[1] 16365 141 4.5 2.5
II’[2] 51562 446 4.8 7.8
II’[3] 169265 1463 4.9 25.7
II´[4] 332253 2871 5.0 50.4
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.36b – IEFPCM:ωB97X-D(ωopt)/6-311+G(d) calculations with ωopt values calcu-
lated using the SC procedure.

βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]
I[0] 6847 59 4.5 1.00
I[1] 18533 160 4.8 2.71
I[2] 40973 354 4.9 5.98
I[3] 76859 664 4.9 11.23
I[4] 126380 1092 5.0 18.46
I’[0] 4824 42 4.5 1.00
I’[1] 14753 127 4.8 3.06
I’[2] 41995 363 4.9 8.70
I’[3] 92549 800 5.0 19.18
I’[4] 159817 1381 5.0 33.13
II[0] 12571 109 4.5 1.00
II[1] 33334 288 4.8 2.65
II[2] 78371 677 4.9 6.23
II[3] 152286 1316 4.9 12.11
II[4] 263857 2280 5.0 20.99
II’[0] 6502 56 4.1 1.00
II’[1] 15725 136 4.4 2.42
II’[2] 48301 417 4.8 7.43
II’[3] 163193 1410 4.9 25.10
II´[4] 350811 3031 5.0 53.96
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Dynamic HRS hyperpolarizabilities (βHRS, in a.u. and 10−30 esu), depolarization ratios
(DR), and relative βHRS[n]/βHRS[0] values for the investigated merocyanines.

Table A.37 – IEFPCM:HF/6-311+G(d) calculations.
βHRS (a.u.) βHRS (10−30 esu) DR βHRS[n]/βHRS[0]

I[0] 3985 34 4.1 1.00
I[1] 9181 79 4.4 2.30
I[2] 17102 148 4.6 4.29
I[3] 27113 234 4.8 6.80
I[4] 37589 325 4.8 9.43
I’[0] 3480 30 4.1 1.00
I’[1] 10463 90 4.5 3.01
I’[2] 24497 212 4.7 7.04
I’[3] 38675 334 4.8 11.11
I’[4] 48275 417 4.9 13.87
II[0] 6745 58 4.3 1.00
II[1] 15588 135 4.5 2.31
II[2] 29569 256 4.7 4.38
II[3] 46316 400 4.8 6.87
II[4] 63988 553 4.9 9.49
II’[0] 4970 43 4.1 1.00
II’[1] 12611 109 4.3 2.54
II’[2] 37685 326 4.7 7.58
II’[3] 81368 703 4.9 16.37
II’[4] 96147 831 4.9 19.35

Table A.38 – Frequency dispersion factors, defined as F (ω) =
βHRS(−2ω;ω, ω)/βHRS(0; 0, 0), as calculated at the CPHF level, and using the
Minnesota XC functionals.

HF M06L M06 M06-2X M06-HF
I[0] 0.91 0.99 0.97 0.95 0.95
I[1] 0.96 1.08 1.05 1.02 1.01
I[2] 1.02 1.24 1.17 1.11 1.08
I[3] 1.07 1.50 1.33 1.20 1.13
I[4] 1.11 1.97 1.53 1.30 1.18
I’[0] 0.89 0.94 0.94 0.93 0.94
I’[1] 0.94 1.00 1.01 1.00 1.02
I’[2] 1.02 1.14 1.14 1.11 1.11
I’[3] 1.08 1.37 1.32 1.23 1.17
I’[4] 1.13 1.79 1.56 1.35 1.22
II[0] 0.94 1.12 1.06 1.02 1.00
II[1] 1.00 1.26 1.17 1.11 1.09
II[2] 1.09 1.63 1.42 1.24 1.20
II[3] 1.15 2.14 1.67 1.37 1.28
II[4] 1.21 3.32 2.03 1.51 1.33
II’[0] 0.89 1.03 0.99 0.97 0.97
II’[1] 0.93 1.12 1.07 1.05 1.08
II’[2] 1.05 1.32 1.25 1.22 1.29
II’[3] 1.20 1.82 1.65 1.44 1.44
II’[4] 1.25 2.73 2.12 1.64 1.43
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Table A.39 – Frequency dispersion factors, defined as F (ω) =
βHRS(−2ω;ω, ω)/βHRS(0; 0, 0), as calculated using LRC XC functionals (wih ωopt
values calculated using the SC procedure).

LC-BLYP LC-BLYP CAM-B3LYP CAM-B3LYP ωB97X-D ωB97X-D
(ωstd) (ωopt) (ωstd) (ωopt) (ωstd) (ωopt)

I[0] 0.94 0.97 0.95 0.93 0.95 0.95
I[1] 1.00 1.05 1.02 1.00 1.01 1.03
I[2] 1.06 1.14 1.10 1.07 1.09 1.11
I[3] 1.11 1.26 1.19 1.15 1.16 1.21
I[4] 1.15 1.38 1.27 1.23 1.23 1.32
I’[0] 0.92 0.95 0.93 0.91 0.93 0.93
I’[1] 0.99 1.03 0.99 0.98 0.99 1.00
I’[2] 1.07 1.15 1.10 1.08 1.09 1.11
I’[3] 1.14 1.29 1.21 1.19 1.19 1.24
I’[4] 1.18 1.44 1.31 1.27 1.27 1.37
II[0] 0.98 1.05 1.01 0.99 1.01 1.02
II[1] 1.06 1.16 1.10 1.08 1.09 1.12
II[2] 1.14 1.37 1.21 1.23 1.19 1.30
II[3] 1.21 1.55 1.34 1.34 1.30 1.45
II[4] 1.26 1.76 1.46 1.45 1.39 1.63
II’[0] 0.94 1.00 0.96 0.94 0.96 0.97
II’[1] 1.03 1.10 1.03 1.02 1.03 1.05
II’[2] 1.20 1.30 1.20 1.20 1.20 1.22
II’[3] 1.31 1.67 1.40 1.46 1.38 1.53
II´[4] 1.33 1.96 1.57 1.59 1.49 1.77
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Table A.40a – MP2 dynamic HRS hyperpolarizabilities (a.u.) evaluated using the multi-
plicative scheme (β1907

MP2=β∞MP2×F(ω)) using frequency dispersion factors calculated with
the various functionals.

M06L M06 M06-2X M06-HF LC-BLYP
(ωstd)

I[0] 9655 9486 9323 9270 9169
I[1] 26979 26302 25516 25278 24872
I[2] 58645 55475 52395 50901 49918
I[3] 108858 96312 87143 82087 80325
I[4] 187081 145127 123511 112207 109678
I’[0] 7762 7770 7738 7821 7660
I’[1] 29674 29916 29715 30330 29459
I’[2] 81439 81466 79374 79562 77014
I’[3] 145614 140399 131040 125112 121335
I’[4] 220987 192282 166396 150211 146075
II[0] 19448 18339 17639 17325 17006
II[1] 55504 51518 48798 47744 46494
II[2] 134926 117390 102225 99672 94435
II[3] 268474 209695 172054 160066 151680
II[4] 543143 331537 247601 217550 206450
II’[0] 11326 10867 10653 10641 10316
II’[1] 36238 34477 33893 34766 33086
II’[2] 148250 141080 137799 144986 134850
II’[3] 422089 383989 334801 334463 304106
II’[4] 683850 531197 410099 358595 334210

LC-BLYP CAM-B3LYP CAM-B3LYP ωB97X-D ωB97X-D
(ωopt) (ωstd) (ωopt) (ωstd) (ωopt)

I[0] 9483 9292 9159 9279 9345
I[1] 26139 25390 24951 25263 25606
I[2] 54087 51922 50789 51327 52665
I[3] 90908 85865 83469 84061 87876
I[4] 130724 120918 116755 117042 125420
I’[0] 7904 7706 7584 7708 7750
I’[1] 30550 29560 29180 29550 29742
I’[2] 82321 78671 77604 78272 79511
I’[3] 137564 128992 126340 126816 131829
I’[4] 177764 162410 157523 157148 169053
II[0] 18238 17483 17175 17461 17754
II[1] 51061 48208 47316 47910 49202
II[2] 113155 100449 101392 98776 107647
II[3] 194467 167739 168097 162529 182481
II[4] 287716 238940 237400 227289 266100
II’[0] 11020 10508 10346 10533 10670
II’[1] 35374 33255 32940 33244 33813
II’[2] 146303 135045 134687 134999 137435
II’[3] 386325 325925 338209 320706 355969
II’[4] 490646 393225 399090 374052 444277
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Table A.40b – Relative β1907
MP2[n]/β1907

MP2[0] values calculated using β1907
MP2 values reported in

Table A.40a.

M06L M06 M06-2X M06-HF LC-BLYP
(ωstd)

I[0] 1.00 1.00 1.00 1.00 1.00
I[1] 2.79 2.77 2.74 2.73 2.71
I[2] 6.07 5.85 5.62 5.49 5.44
I[3] 11.27 10.15 9.35 8.85 8.76
I[4] 19.38 15.30 13.25 12.10 11.96
I’[0] 1.00 1.00 1.00 1.00 1.00
I’[1] 3.82 3.85 3.84 3.88 3.85
I’[2] 10.49 10.48 10.26 10.17 10.05
I’[3] 18.76 18.07 16.94 16.00 15.84
I’[4] 28.47 24.75 21.51 19.21 19.07
II[0] 1.00 1.00 1.00 1.00 1.00
II[1] 2.85 2.81 2.77 2.76 2.73
II[2] 6.94 6.40 5.80 5.75 5.55
II[3] 13.80 11.43 9.75 9.24 8.92
II[4] 27.93 18.08 14.04 12.56 12.14
II’[0] 1.00 1.00 1.00 1.00 1.00
II’[1] 3.20 3.17 3.18 3.27 3.21
II’[2] 13.09 12.98 12.94 13.62 13.07
II’[3] 37.27 35.34 31.43 31.43 29.48
II’[4] 60.38 48.88 38.50 33.70 32.40

LC-BLYP CAM-B3LYP CAM-B3LYP ωB97X-D ωB97X-D
(ωopt) (ωstd) (ωopt) (ωstd) (ωopt)

I[0] 1.00 1.00 1.00 1.00 1.00
I[1] 2.76 2.73 2.72 2.72 2.74
I[2] 5.70 5.59 5.55 5.53 5.64
I[3] 9.59 9.24 9.11 9.06 9.40
I[4] 13.79 13.01 12.75 12.61 13.42
I’[0] 1.00 1.00 1.00 1.00 1.00
I’[1] 3.87 3.84 3.85 3.83 3.84
I’[2] 10.42 10.21 10.23 10.16 10.26
I’[3] 17.40 16.74 16.66 16.45 17.01
I’[4] 22.49 21.07 20.77 20.39 21.81
II[0] 1.00 1.00 1.00 1.00 1.00
II[1] 2.80 2.76 2.75 2.74 2.77
II[2] 6.20 5.75 5.90 5.66 6.06
II[3] 10.66 9.59 9.79 9.31 10.28
II[4] 15.78 13.67 13.82 13.02 14.99
II’[0] 1.00 1.00 1.00 1.00 1.00
II’[1] 3.21 3.16 3.18 3.16 3.17
II’[2] 13.28 12.85 13.02 12.82 12.88
II’[3] 35.06 31.02 32.69 30.45 33.36
II’[4] 44.52 37.42 38.57 35.51 41.64
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A.6 Two-state approximation

Table A.41 – Static HRS hyperpolarizabilities (βTSAHRS, in a.u.) calculated with the two-
state approximation (equation 2.122 of the main text) using the spectroscopic data cal-
culated at the HF level, and using the Minnesota family of XCFs. % Errors with respect
to full-featured TDHF or TD-DFT calculations are also reported.

HF M06L M06 M06-2X M06-HF
βTSA
HRS Err(%) βTSA

HRS Err(%) βTSA
HRS Err(%) βTSA

HRS Err(%) βTSA
HRS Err(%)

I[0] 3860 -12 7012 -10 7426 1 8245 8 8179 13
I[1] 10353 9 22775 18 22836 24 24108 25 22120 28
I[2] 21253 27 56766 34 55282 41 54088 38 42899 39
I[3] 35066 38 119378 42 111419 53 97129 46 65400 48
I[4] 49417 46 224179 45 196181 63 150895 52 84740 54
I’[0] 2251 -43 1639 -64 2856 -41 4402 -18 6056 -10
I’[1] 9785 -12 6468 -41 11268 -12 17181 9 25212 13
I’[2] 28398 18 29967 8 39130 18 53391 30 64944 33
I’[3] 48229 35 80395 27 97768 36 112732 43 95086 44
I’[4] 62014 45 171945 34 193856 51 180216 51 109340 53
II[0] 6723 -6 20305 56 16592 33 15920 15 14952 20
II[1] 16703 7 46292 57 39432 33 40210 24 38887 28
II[2] 32756 21 101019 63 86337 41 86296 33 73730 34
II[3] 52642 31 175931 45 167137 48 153498 39 109424 40
II[4] 74083 40 314985 41 294984 55 237355 43 137749 43
II’[0] 2712 -51 8772 50 6051 -7 6437 -21 7468 -15
II’[1] 11655 -14 15920 38 12803 -7 16507 -5 25500 -1
II’[2] 36504 2 40582 54 38100 12 56595 22 108716 24
II’[3] 87086 29 157239 1251 118192 30 166228 36 217195 37
II’[4] 107987 40 224553 38 272379 42 299716 44 217888 45

1 The large error (125%) obtained with M06L for II’[3] is due to the fact that the S1 (∆E01 = 1.647 eV,
f01 = 1.957) and S2 (∆E02 = 1.670 eV, f02 = 0.447) electronic excited states are quasi degenerate and
both contribute to the NLO response.
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Table A.42 – Static HRS hyperpolarizabilities (βTSAHRS, in a.u.) calculated with the two-
state approximation (equation 2.122 of the main text) using the spectroscopic data cal-
culated using LRC XC functionals with ωopt values obtained using the SC procedure. %
Errors with respect to full-featured TD-DFT calculations are also reported.

LC-BLYP(ωstd) LC-BLYP(ωopt) CAM-B3LYP(ωstd)
βTSA
HRS Err(%) βTSA

HRS Err(%) βTSA
HRS Err(%)

I[0] 7268 8 8148 7 7632 7
I[1] 20226 25 24395 26 22343 25
I[2] 39661 38 55562 44 49677 39
I[3] 60959 46 102554 61 89162 50
I[4] 79566 52 163434 78 135488 57
I’[0] 4982 -18 4291 -27 3938 -26
I’[1] 21827 9 16015 -8 15684 0
I’[2] 57270 30 50781 16 49716 24
I’[3] 86619 43 112561 38 103975 40
I’[4] 101124 51 191143 63 162845 52
II[0] 13162 15 16610 27 14733 21
II[1] 34617 24 41740 29 37516 27
II[2] 66638 33 90412 39 79351 35
II[3] 99392 39 165550 52 138669 41
II[4] 127219 43 268081 68 213385 49
II’[0] 6392 -21 6658 -11 5778 -17
II’[1] 22413 -5 15140 -14 14944 -10
II’[2] 92606 22 48514 -2 52919 13
II’[3] 187035 36 150036 16 156028 31
II´[4] 194850 44 307579 43 274553 43

CAM-B3LYP(ωopt) ωB97X-D((ωstd) ωB97X-D((ωopt)
βTSA
HRS Err(%) βTSA

HRS Err(%) βTSA
HRS Err(%)

I[0] 6391 1 7372 6 7524 6
I[1] 18999 19 21419 24 22355 25
I[2] 42506 33 45973 37 50828 42
I[3] 75693 43 78952 47 93713 55
I[4] 114424 52 115264 54 149204 68
I’[0] 3338 -33 4096 -23 3719 -29
I’[1] 15043 -3 16437 2 14380 -5
I’[2] 48268 23 50862 26 46368 20
I’[3] 97084 38 99952 41 103308 39
I’[4] 145420 49 145061 51 175185 57
II[0] 13024 15 14128 20 15175 24
II[1] 34310 22 35981 26 37956 28
II[2] 73218 31 74439 34 81721 38
II[3] 127522 38 124360 39 148935 48
II[4] 192121 44 180646 45 240297 60
II’[0] 5158 -25 6033 -16 5777 -15
II’[1] 14702 -13 16110 -9 13547 -13
II’[2] 54976 13 58884 15 44318 5
II’[3] 159551 31 164520 33 138114 23
II´[4] 265541 42 253949 43 280320 44
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Table A.43 – Slopes and intercepts (a.u.), as well as correlation coefficients (R2) obtained
after performing linear regressions between HRS hyperpolarizabilities computed using the
two-state approximation and using TD-DFT in the four series of merocyanines.

XC functional Serie Slope Intercept R2

HF

I 1.560 -4024 0.998
I’ 1.547 -6191 0.992
II 1.472 -5522 0.997
II’ 1.455 -8892 0.990

M06L

I 1.487 -5534 1.000
I’ 1.393 -7366 0.999
II 1.389 7143 0.998
II’ 1.426 10680 0.9241

M06

I 1.682 -8026 0.999
I’ 1.551 -8953 0.998
II 1.570 -6856 0.999
II’ 1.443 -7899 0.999

M06-2X

I 1.643 -6776 0.998
I’ 1.578 -9258 0.996
II 1.535 -7165 0.999
II’ 1.463 -10291 0.997

M06-HF

I 1.599 -4831 0.998
I’ 1.573 -7805 0.993
II 1.466 -4918 0.999
II’ 1.456 -10308 0.995

LC-BLYP (ωstd)

I 1.591 -4742 0.998
I’ 1.566 -7570 0.994
II 1.476 -5482 0.999
II’ 1.459 -10356 0.995

LC-BLYP (ωopt)

I 1.850 -10945 0.999
I’ 1.667 -13704 0.987
II 1.719 -13788 0.994
II’ 1.434 -14595 0.988

ωB97XD (ωstd)

I 1.593 -5573 0.999
I’ 1.555 -7940 0.994
II 1.478 -5648 0.999
II’ 1.459 -10013 0.997

ωB97XD (ωopt)

I 1.733 -8224 0.997
I’ 1.614 -10314 0.993
II 1.630 -9922 0.997
II’ 1.456 -11830 0.994

CAM-B3LYP (ωstd)

I 1.627 -6331 0.999
I’ 1.561 -8629 0.996
II 1.515 -6871 0.999
II’ 1.457 -10209 0.997

CAM-B3LYP (ωopt)

I 1.566 -5568 0.998
I’ 1.541 -8283 0.996
II 1.470 -6321 0.999
II’ 1.451 -10425 0.998

1 the smaller correlation coefficient obtained for series II’ with M06L is due to the fact
that the NLO properties of II’[3] cannot be described using the two-state model owing
to the close degeneracy of the S1 and S2 excited states. See comment on Table A.41.
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Table A.44 – Static HRS hyperpolarizabilities (a.u.) extrapolated using the dynamic ones
computed at 1907 nm by using the two-state approximation.

M06L M06 M06-2X M06-HF LC-BLYP
(ωstd)

I[0] 5570 5377 5613 5462 5100
I[1] 13166 13202 13939 13177 12253
I[2] 27929 27695 28202 23853 22155
I[3] 53466 51433 48284 35148 33017
I[4] 92372 85723 72381 44963 42491
I’[0] 3026 3278 3891 4663 4211
I’[1] 6972 8303 10997 14932 13374
I’[2] 16928 21026 27626 33763 30461
I’[3] 36797 45379 53826 48856 44902
I’[4] 69754 82769 83483 56536 52460
II[0] 9172 8997 9263 9259 8464
II[1] 19574 20427 22026 22376 20466
II[2] 41326 43245 43879 42052 37314
II[3] 73757 78391 75123 61342 54878
II[4] 108493 130039 113503 77595 69981
II’[0] 3883 4216 4734 5627 5256
II’[1] 7199 8231 10337 14868 13793
II’[2] 15609 19258 27485 48336 43301
II’[3] 40467 53389 71375 103114 88503
II’[4] 74861 110422 129410 113468 99565

LC-BLYP CAM-B3LYP CAM-B3LYP ωB97X-D ωB97X-D
(ωopt) (ωstd) (ωopt) (ωstd) (ωopt)

I[0] 5741 5346 4680 5194 5349
I[1] 14302 13216 11580 12744 13238
I[2] 29334 26367 23222 24877 26956
I[3] 50813 44744 39089 40812 46581
I[4] 78576 66012 57294 58042 71807
I’[0] 3858 3670 3385 3705 3573
I’[1] 10506 10381 10182 10601 9706
I’[2] 26449 26326 25957 26682 24558
I’[3] 53236 50680 48389 48928 49491
I’[4] 87033 77015 70367 70227 80716
II[0] 9499 8863 8197 8643 8916
II[1] 22408 20943 19870 20429 20834
II[2] 47065 41472 40726 39720 43299
II[3] 82212 69754 67849 64550 75389
II[4] 128293 104200 99750 92627 117270
II’[0] 4594 4510 4463 4673 4364
II’[1] 9282 9754 10085 10433 8935
II’[2] 23367 26401 27959 28988 22466
II’[3] 65345 68981 74992 72896 63009
II’[4] 128609 122132 126339 117068 123092
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Table A.45 – Relative static HRS hyperpolarizabilities (βHRS[n]/βHRS[0]) extrapolated
using the dynamic ones computed at 1907 nm by using the two-state approximation.

M06L M06 M06-2X M06-HF LC-BLYP
(ωstd)

I[0] 1.00 1.00 1.00 1.00 1.00
I[1] 2.36 2.46 2.48 2.41 2.40
I[2] 5.01 5.15 5.02 4.37 4.34
I[3] 9.60 9.56 8.60 6.44 6.47
I[4] 16.58 15.94 12.89 8.23 8.33
I’[0] 1.00 1.00 1.00 1.00 1.00
I’[1] 2.30 2.53 2.83 3.20 3.18
I’[2] 5.59 6.41 7.10 7.24 7.23
I’[3] 12.16 13.84 13.83 10.48 10.66
I’[4] 23.05 25.25 21.45 12.12 12.46
II[0] 1.00 1.00 1.00 1.00 1.00
II[1] 2.13 2.27 2.38 2.42 2.42
II[2] 4.51 4.81 4.74 4.54 4.41
II[3] 8.04 8.71 8.11 6.63 6.48
II[4] 11.83 14.45 12.25 8.38 8.27
II’[0] 1.00 1.00 1.00 1.00 1.00
II’[1] 1.85 1.95 2.18 2.64 2.62
II’[2] 4.02 4.57 5.81 8.59 8.24
II’[3] 10.42 12.66 15.08 18.32 16.84
II’[4] 19.28 26.19 27.33 20.16 18.94

LC-BLYP CAM-B3LYP CAM-B3LYP ωB97X-D ωB97X-D
(ωopt) (ωstd) (ωopt) (ωstd) (ωopt)

I[0] 1.00 1.00 1.00 1.00 1.00
I[1] 2.49 2.47 2.47 2.45 2.47
I[2] 5.11 4.93 4.96 4.79 5.04
I[3] 8.85 8.37 8.35 7.86 8.71
I[4] 13.69 12.35 12.24 11.18 13.42
I’[0] 1.00 1.00 1.00 1.00 1.00
I’[1] 2.72 2.83 3.01 2.86 2.72
I’[2] 6.86 7.17 7.67 7.20 6.87
I’[3] 13.80 13.81 14.30 13.21 13.85
I’[4] 22.56 20.99 20.79 18.95 22.59
II[0] 1.00 1.00 1.00 1.00 1.00
II[1] 2.36 2.36 2.42 2.36 2.34
II[2] 4.95 4.68 4.97 4.60 4.86
II[3] 8.65 7.87 8.28 7.47 8.46
II[4] 13.51 11.76 12.17 10.72 13.15
II’[0] 1.00 1.00 1.00 1.00 1.00
II’[1] 2.02 2.16 2.26 2.23 2.05
II’[2] 5.09 5.85 6.26 6.20 5.15
II’[3] 14.22 15.29 16.80 15.60 14.44
II’[4] 27.99 27.08 28.31 25.05 28.21
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Figure A.2 – Evolution of the relative values of the static HRS hyperpolarizabilities
(βHRS[n]/βHRS[0]) with the length of the polyenic bridge in the four series of merocya-
nines, calculated in chloroform at the HF, MP2 and DFT levels using the Minnesota’s
family of functionals in combination with the 6-311+G(d) basis set.
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Figure A.3 – Evolution of a) the S0→S1 transition energy, b) oscillator strength c), dipole
moment variation and d) and static HRS hyperpolarizabilities (in 104 a.u.) in the mero-
cyanine series I[n], calculated in chloroform using the Minnesota’s family of functionals
(M06L, M06, M06-2X, M06-HF) in combination with the 6-311+G(d) basis set. Results
are reported in function of the percentage of HF exchange included in the XCF.
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Figure A.4 – Evolution of a) the S0→S1 transition energy, b) oscillator strength c), dipole
moment variation and d) and static HRS hyperpolarizabilities (in 104 a.u.) in the mero-
cyanine series I’[n], calculated in chloroform using the Minnesota’s family of functionals
(M06L, M06, M06-2X, M06-HF) in combination with the 6-311+G(d) basis set. Results
are reported in function of the percentage of HF exchange included in the XCF.
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Figure A.5 – Evolution of a) the S0→S1 transition energy, b) oscillator strength c), dipole
moment variation and d) and static HRS hyperpolarizabilities (in 104 a.u.) in the mero-
cyanine series II[n], calculated in chloroform using the Minnesota’s family of functionals
(M06L, M06, M06-2X, M06-HF) in combination with the 6-311+G(d) basis set. Results
are reported in function of the percentage of HF exchange included in the XCF.
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Figure A.6 – Evolution of a) the S0→S1 transition energy, b) oscillator strength c), dipole
moment variation and d) and static HRS hyperpolarizabilities (in 104 a.u.) in the mero-
cyanine series II’[n], calculated in chloroform using the Minnesota’s family of functionals
(M06L, M06, M06-2X, M06-HF) in combination with the 6-311+G(d) basis set. Results
are reported in function of the percentage of HF exchange included in the XCF.
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Figure A.7 – Evolution of the static HRS hyperpolarizabilities (in 104 a.u.) with the length
of the polyenic bridge in the four series of merocyanines, calculated in chloroform with
the long-range corrected functionals using optimally-tuned RS parameters (obtained using
the self-consistent (SC) and non-self-consistent (NSC) procedures) and the 6-311+G(d)
basis set. Results obtained at the HF, MP2 and M06-2X levels are also reported for
comparison.

189



Figure A.8 – Evolution of the static HRS hyperpolarizabilities (in 104 a.u.) with the
length of the polyenic bridge in the four series of merocyanines, calculated in chloroform
with the long-range corrected functionals using optimally-tuned RS parameters (obtained
using the self-consistent procedure) and the 6-311+G(d) basis set. Results obtained at
the HF, MP2 and M06-2X levels are also reported for comparison.
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Figure A.9 – Evolution of the relative dynamic HRS hyperpolarizabilities
(βHRS[n]/βHRS[0] in a.u.) with the length of the polyenic bridge in the four series
of merocyanines, calculated in chloroform at the HF level, and with the Minnesota series
of XCFs together with the 6-311+G(d) basis set. Experimental values obtained from
HRS measurements are also reported.
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Figure A.10 – Evolution of the relative dynamic HRS hyperpolarizabilities
(βHRS[n]/βHRS[0] in a.u.) with the length of the polyenic bridge in the four series of
merocyanines, calculated in chloroform at the HF level, and with the long-range cor-
rected functionals using standard and optimally-tuned RS parameters (obtained using
the self-consistent procedure) together with the 6-311+G(d) basis set. Experimental val-
ues obtained from HRS measurements are also reported.
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Figure A.11 – Static βHRS values of the whole set of compounds evaluated using the
two-state approximation, plotted against the values calculated using CPHF/6-311+G(d)
calculations in chloroform. The line is a linear fit; R2 = 0.986.
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Appendix B
Supporting information of Chapter 4

B.1 Force field parameterization and MD simulations

B.1.1 Validation of the force field used for water

In order to validate the force field used to describe water, preliminary MD simulations
were run for pure solvent molecules, from which key physical observables were extracted
and compared to experimental data. Bulk properties such as the mass density and local
structure were first calculated. The mass density ρm is defined as:

ρm =
ZM
NAV

where Z is the number of molecules in the simulation box, M is the molar mass of the
water molecule, NA is the Avogadro constant and V is the volume of the simulation box.
The local structure is characterized by radial distribution functions (RDF) g(r) between
atoms or mass centers of molecules, given by:

g(r) =
N(r, r + dr)
Z
V

4πr2dr

where N is the number of water molecules at a distance comprised between r and r + dr

from a reference one. As shown in Table B.1 and Figure B.1, the water model SPC/Fw[1]

reproduces very well the mass density and water bulk properties, giving results very close
to the experimental ones.
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typically used for linear and cyclic ethers[10].

Table 1: Calculated and experimental physical properties at T = 300 K of water and THF.
Simulations at equilibrium were run for 20 ns on a box of 500 solvent molecules, using the NpT
ensemble at p = 1.01325 bar, except for the surface tension where the NVT ensemble was used.
Experimental data are from references [11], [12] and [13].

Water THF
Physical property Calc Exp Calc Exp
ρm (g·cm−3) 1.002 0.997 0.864 0.880
D (10−8m2·s−1) 0.231 0.245 0.265 0.240
ϵ 80.0 77.4 4.9 7.6
Ea (kJ·mol−1) 17 18 10 13
γ (mN·m−1) 61 72 21 26
Ufilm(kcal·mol−1) -4.8·103 +7.4·103

Ubulk(kcal·mol−1) -5.0·103 +7.1·103

γU(mN ·m−1) +104 +74
γS(mN ·m−1) -43 -53

Figure 8: RDF between oxygens for water a) and between mass centers (MC) for THF b) at
300 K, comparing simulation and experiment. Simulations at equilibrium were run for 20 ns
on a box of 500 solvent molecules, using the NpT ensemble at p = 1.01325 bar. Experimental
data were extracted from references [14] and [15].

These models should also reproduce the self-diffusion coefficient and the static dielectric
constant, which are important because they are directly related to the solvent dynamics and
solvent-mediated electrostatic interactions. The self-diffusion coefficient D is defined by:

D = lim
t→∞

1

6t
< [r(t) − r(0)]2 > (14)

where t is the elapsed time, r is the position of all particles and < [r(t) − r(0)]2 > is the mean

14

Figure B.1 – RDF between oxygens at 300 K, comparing simulation and experiment.
Simulations at equilibrium were run for 20 ns on a box of 500 solvent molecules, using
the NpT ensemble at p = 1.01325 bar. Experimental data were extracted from ref. [2].

The self-diffusion coefficient and the static dielectric constant, which are directly related to
the solvent dynamics and solvent-mediated electrostatic interactions, were also evaluated.
The self-diffusion coefficient D is defined by:

D = lim
n→∞

1

6t

〈
[r(t)− r(0)]2

〉
where t is the elapsed time, r is the position of all particles and

〈
[r(t)− r(0)]2

〉
is the

mean square displacement. The static dielectric constant ε can be written as:

ε = 1 +
1

3ε0

∑
i µi

V kBT
+

Nα
V ε0

where ε0 is the vacuum permittivity, µi is the dipole moment of the water molecule, V is
the volume of the simulation box, kB is the Boltzmann constant, T is the temperature, N
is the number of solvent molecules and α is the molecular polarizability. The second term
in the right-hand side describes the permanent dipole contribution, while the last term
describes the induced dipole contribution. The latter term is neglected in non-polarizable
force fields. Results presented in Table B.1 show that all the experimental and calculated
values of the self-diffusion coefficient and static dielectric constant are in the same range.

Moreover, the self-diffusion activation energy was deduced from the self-diffusion coeffi-
cient D, which follows an Arrhenius-like relation with temperature T :[3]

lnD = lnD0 −
EA
kBT
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where EA is the self-diffusion activation energy, D0 is the diffusion coefficient at infinite
temperature. The calculated activation energy, deduced from the linear evolution of the
self-diffusion coefficient as a function of the reciprocal of temperature, is very close to the
experimental value (Table B.1).

Table B.1 – Calculated and experimental physical properties of water at T = 300 K.
Simulations at equilibrium were run for 20 ns on a box of 500 solvent molecules, using
the NpT ensemble at p = 1.01325 bar. Experimental data are from references [4] and [5].

Physical property Calc. Exp.
ρm (g/cm3) 1.002 0.997
D (10−8m2/s) 0.231 0.245
ε 80.0 77.4
EA(kJ/mol) 17 18

B.1.2 Torsional energy profiles of organic chromophores
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Figure B.2a – Comparison of the free energy profile associated to the rotation around
the Thienyl-Thienyl dihedral angle (φTT = S-C-C-S, see Figure 4.1), obtained at the
B3LYP/cc-pVTZ level in gas phase at T=300K (dots) and using the reparameterized
force field (line).
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Figure B.2b – Comparison of the free energy profile associated to the rotation around the
Thienyl-Phenyl dihedral angle (φTP , see Figure 4.1), obtained at the B3LYP/cc-pVTZ
level in gas phase at T=300K (dots) and using the reparameterized force field (line).

B.1.3 MD simulations of organic chromophores in water

Figure B.3 – Starting configuration of the 8 simulations in pure water.
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B.2 Determination of the optimal parameters of the

sTD-DFT method

This section reports calculations of the first hyperpolarizability of the isolated dye in three
different geometries randomly extracted from the MD trajectory (Figure B.4a), and on
a supramolecular cluster containing 12 chromophores (Figure B.4b). These benchmarks
have for objective of defining the optimal values of the yJ and yK parameters used to
damp the two-electron Coulomb and exchange integrals (equations 2.111-2.112). The
energy threshold Eth used to truncate the number of configuration state functions in the
SCI (Configuration Interaction Singles) procedure is also optimized.

B.2.1 Test molecular and supramolecular geometries

Figure B.4a – Different geometries of the isolated dyes considered in the sTD-DFT bench-
marks.

Figure B.4b – Geometry of the aggregate composed of 12 dyes considered in the sTD-DFT
benchmarks.
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B.2.2 Optimization of the sTD-DFT-xTB parameters

In this Section, the yJ and Eth parameters of the sTD-DFT-xTB method are adjusted
by comparison to reference TD-DFT/M06-2X/6-311G(d) calculations in gas phase, while
yK is kept fixed to its default value of 2.0. The yJ parameter is first tuned on the three
test geometries of the isolated molecule (Figures B.5, B.6 and B.7). It can be observed
that default parameter value yJ = 4.0 satisfactorily reproduces the evolution of the first
hyperpolarizabilities with the energy of the incident light (E = ~ω), as calculated using
the reference TD-DFT level. Numerical β values calculated at the TD-DFT and sTD-
DFT-xTB levels using ω = 0.000 eV, ω = 0.827 eV and ω = 1.165 eV are reported in Table
B.2. For ω = 1.165 eV, the absolute errors of the sTD-DFT-xTB approach compared to
the TD-DFT reference are lower than 5% whatever the geometry. Smaller ω values lead
to larger errors, which however remain acceptably small (< 17%).

In a second step, we addressed the impact of varying the energy threshold in sTD-DFT-
xTB calculations, using default parameters. As shown in Figures B.8, B.9 and B.10 for
the isolated molecules, the frequency dispersion curves of the first hyperpolarizabilities
calculated using sTD-DFT-xTB are downshifted compared to reference TD-DFT calcu-
lations. Moreover, reducing Eth from 10 to 6 eV negligibly impacts the sTD-DFT-xTB
results, while those obtained with Eth = 5.0 eV show larger deviations. A similar conclu-
sion can be drawn for calculations performed for the supramolecular aggregate (Figure
B.11). Therefore, an energy threshold value of Eth = 6.0 eV can be used to minimize the
calculation time in sTD-DFT-xTB calculations without any significant loss of accuracy.

Figure B.5 – Tuning of the yJ parameter for the geometry 1 of the isolated molecule (Fig.
B.4a). In all sTD-DFT-xTB calculations, yK = 2.0 and Eth = 10 eV.
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Figure B.6 – Tuning of the yJ parameter for the geometry 2 of the isolated molecule (Fig.
B.4a). In all sTD-DFT-xTB calculations, yK = 2.0 and Eth = 10 eV.

Figure B.7 – Tuning of the yJ parameter for the geometry 3 of the isolated molecule (Fig.
B.4a). In all sTD-DFT-xTB calculations, yK = 2.0 and Eth = 10 eV.
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Table B.2 – Comparison between static and dynamic first hyperpolarizabilities calculated
at the sTD-DFT-xTB and TD-DFT levels for the three test geometries of the isolated
molecule shown Figure B.4a. First hyperpolarizabilities β are calculated at three different
excitation energies ω. In all sTD-DFT-xTB calculations, yJ = 4.0, yK = 2.0 and Eth =
10 eV.

Geometry 1
β(-2ω;ω,ω) sTD-DFT-xTB TD-DFT error
ω = 0.000 eV 3 478 4 126 -16%
ω = 0.827 eV 5 727 6 381 -10%
ω = 1.165 eV 11 827 11 490 +3%

Geometry 2
β(-2ω;ω,ω) sTD-DFT-xTB TD-DFT error
ω = 0.000 eV 2 540 3 075 -17%
ω = 0.827 eV 4 524 5 263 -14%
ω = 1.165 eV 10 524 11 063 -5%

Geometry 3
β(-2ω;ω,ω) sTD-DFT-xTB TD-DFT error
ω = 0.000 eV 4 374 5 159 -15%
ω = 0.827 eV 8 012 9 151 -12%
ω = 1.165 eV 21 439 21 613 -1%

Figure B.8 – Tuning of the energy threshold Eth for the geometry 1 of the isolated molecule
(Fig. B.4a). In all sTD-DFT-xTB calculations, yJ = 4.0 and yK = 2.0.
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Figure B.9 – Tuning of the energy threshold Eth for the geometry 2 of the isolated molecule
(Fig. B.4a). In all sTD-DFT-xTB calculations, yJ = 4.0 and yK = 2.0.

Figure B.10 – Tuning of the energy threshold Eth for the geometry 3 of the isolated
molecule (Fig. B.4a). In all sTD-DFT-xTB calculations, yJ = 4.0 and yK = 2.0.
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Figure B.11 – Tuning of the energy threshold Eth for the supramolecular aggregate shown
Figure B.4b. In all sTD-DFT-xTB calculations, yJ = 4.0 and yK = 2.0.
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B.2.3 Optimization of the sTD-DFT-vTB parameters

We compare now the first hyperpolarizabilites calculated using the sTD-DFT-vTBmethod,
restricted to valence-shell molecular orbitals, with those computed using the TD-DFT and
sTD-DFT-xTB approaches. The yJ parameter is first tuned on the three test geometries
of the isolated molecule, while yK is kept fixed at 2.0. Figures B.12, B.13 and B.14 show
that reference TD-DFT β values are well reproduced when using yJ = 0.4, a much smaller
value than that optimized in the case of sTD-DFT-xTB.

Then, the sTD-DFT-vTB method with yJ = 0.4 and yK = 2.0 is tested using energy
thresholds decreasing from 10 to 5 eV. As shown in Figures B.15, B.16 and B.17, de-
creasing Eth slightly shifts upward the frequency dispersion curves, without any change
in their shape. All Eth values provide frequency dispersion profiles of β in quite good
agreement with TD-DFT, which allows us to consider the smallest Eth value for speeding
up calculations. Again, the conclusion drawn for the isolated dyes can be extended to the
case of larger aggregates, as shown in Figure B.18. Therefore, one can conclude that a
threshold of 5 eV can be used for sTD-DFT-vTB calculations on large aggregates.

Finally, the frequency dispersion curves of the first hyperpolarizability, calculated at the
sTD-DFT-xTB (yJ = 4.0, yK = 2.0 and Eth = 6 eV) and sTD-DFT-vTB (yJ = 0.4, yK
= 2.0 and Eth = 5 eV) levels for the three test geometries of the isolated molecule, are
compared in Figure B.19. Results obtained for the supramolecular aggregate are displayed
in Figure B.20. The curves show that restricting the MO space to the valence shell from
sTD-DFT-xTB to sTD-DFT-vTB does not introduce significant loss in accuracy, while
the execution times are reduced by a factor 2.
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Figure B.12 – Tuning of the yJ parameter for the geometry 1 of the isolated molecule
(Fig. B.4a). In all sTD-DFT-vTB calculations, yK = 2.0 and Eth = 10 eV.

Figure B.13 – Tuning of the yJ parameter for the geometry 2 of the isolated molecule
(Fig. B.4a). In all sTD-DFT-vTB calculations, yK = 2.0 and Eth = 10 eV.
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Figure B.14 – Tuning of the yJ parameter for the geometry 3 of the isolated molecule
(Fig. B.4a). In all sTD-DFT-vTB calculations, yK = 2.0 and Eth = 10 eV.

Figure B.15 – Tuning of the energy threshold Eth for the geometry 1 of the isolated
molecule (Fig. B.4a). In all sTD-DFT-vTB calculations, yJ = 0.4 and yK = 2.0.
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Figure B.16 – Tuning of the energy threshold Eth for the geometry 2 of the isolated
molecule (Fig. B.4a). In all sTD-DFT-vTB calculations, yJ = 0.4 and yK = 2.0.

Figure B.17 – Tuning of the energy threshold Eth for the geometry 3 of the isolated
molecule (Fig. B.4a). In all sTD-DFT-vTB calculations, yJ = 0.4 and yK = 2.0.
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Figure B.18 – Tuning of the energy threshold Eth for the supramolecular aggregate shown
Figure B.4b. In all sTD-DFT-vTB calculations, yJ = 0.4 and yK = 2.0.

Figure B.19 – Frequency dispersion curves of the first hyperpolarizability for the three
test geometries of the isolated molecule (Fig. B.4a), as calculated at the sTD-DFT-xTB
(yJ = 4.0, yK = 2.0 and Eth = 6 eV) and sTD-DFT-vTB (yJ = 0.4, yK = 2.0 and Eth =
5 eV) levels.
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Figure B.20 – Frequency dispersion curves of the first hyperpolarizability for the
supramolecular aggregate (Fig. B.4b), as calculated at the sTD-DFT-xTB (yJ = 4.0,
yK = 2.0 and Eth = 6 eV) and sTD-DFT-vTB (yJ = 0.4, yK = 2.0 and Eth = 5 eV) levels.
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B.3 Free energy of pairs of chromophores in water

Figure B.21 – Free-energy as a function of the distance d between mass centers of the
two dyes (a), as well as counts of distance values along the dynamics, showing that every
distance d is statistically explored. Simulations at equilibrium were run for 20 ns on boxes
containing two dipolar dyes in solvent, using the NpT ensemble at p = 1.01325 bar and
T = 300 K, and the adaptive biasing force method for the calculation of free energy.[6]

B.4 Morphology of the nanoparticles

B.4.1 Global shape of the nanoparticles

Figure B.22 – Shape of the nanoparticles issued from the 8 replicated MD trajectories.
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Figure B.23 – Time evolution of the shape of NP1 along the MD simulation.

B.4.2 Characterization of the shape of the nanoparticles

The moment of inertia tensor was calculated as a function of time for the largest nanoparti-
cles for the 8 aggregation experiments and diagonalized, obtaining the eigenvalues Izz>Iyy
>Ixx, from which the corresponding component of the radius of gyration was obtained as
ri =

√
Iii/M where M is the NP mass (Figure B.24). Following Varga and coworkers,[7]

the shape of the particles was further characterized by calculating the two aspect ratios
κ1 = rz/rx > κ2 = rz/ry > 1 and the biaxiality parameter θ =(κ1 − 1)−1(κ1/κ2 − κ2),
which takes the value of -1 for a perfectly uniaxial disc, +1 for a perfectly uniaxial rod,
and 0 for a perfectly biaxial ellipsoid (Table B.3). Most NPs assume nearly spherical
shape (with aspect ratios close to 1) with a certain disc-like character θ<0), without any
evident correlation between the orientation of the electric dipole moment and the ones
the principal inertia axes, although a much larger number of simulations would be needed
to confirm this result.

Table B.3 – Components of the radius of gyration (ri, in Å), aspect ratios (κ1, and κ2)
and biaxiality parameter θ, calculated over the last 50 ns of the trajectories for each NP,
and (last line) averaged over the 8 NPs.

rx ry rz κ1 κ2 θ
NP1 14.3±0.1 14.5±0.1 15.6±0.3 1.10±0.02 1.02±0.01 0.6±0.3
NP2 13.5±0.2 15.5±0.2 16.2±0.2 1.20±0.02 1.15±0.02 -0.5±0.1
NP3 12.8±0.2 16.1±0.3 16.8±0.2 1.32±0.03 1.25±0.04 -0.6±0.1
NP4 13.2±0.1 15.8±0.1 16.7±0.2 1.26±0.01 1.20±0.02 -0.5±0.1
NP5 13.7±0.1 15.1±0.1 15.7±0.1 1.15±0.02 1.10±0.02 -0.4±0.1
NP6 13.9±0.2 15.1±0.2 15.5±0.1 1.12±0.02 1.09±0.02 -0.6±0.2
NP7 13.5±0.1 15.6±0.1 15.9±0.2 1.17±0.02 1.15±0.02 -0.7±0.1
NP8 13.8±0.1 14.9±0.1 16.0±0.1 1.16±0.01 1.08±0.01 0.0±0.1
Av. 13.6±0.4 15.3±0.5 16.0±0.5 1.18±0.07 1.13±0.07 -0.4±0.4
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Figure B.24 – Time-evolution of the size and radius of gyration of the biggest nanoparticle
with simulation time for the 8 replicated MD simulations.
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B.4.3 Time-evolution and statistical distributions of structural

and electronic properties

Figure B.25 – Evolution of the mean density of neighbours as a function of the distance
rij between the centers of mass of molecules.

Figure B.26 – Distribution of cosθij, where θij is the angle between the dipole moment
vectors of any pair of dyes at a distance lower than 7.5 Å.
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B.4.4 π-aggregation of the molecular units

In this section, the π-stacking of the molecular units within the NP is investigated, using
the following definitions:

Neighbour: a molecule with at least one non-H atom at a distance lower than 4 Å from
the non-H atoms of the target molecule.

π-stacked neighbour: a molecule which is neighbour and has at least ten interatomic
distances below 4 Å. Only distances between atoms 14, 15, 16, 17, 18, 19, 20, 35, 36,
37, 38, 41, 42, 43, 44, 45 of the two molecules are considered (see the scheme below for
atom labels). Note that this is actually a loose definition, which includes also possible
herringbone situations.

z-axis: unit vector parallel to the atom 14-atom 43 distance vector.
y-axis: unit vector perpendicular to z, obtained from the atom 35-atom 37 distance vec-
tor (removing its projection along z).

Relative orientation of π-stacked neighbours: defined by the scalar products be-
tween the unit vectors of the pair of interacting molecules:

−→z 1.
−→z 2 = cos(−→z 1,

−→z 2)

|−→y 1.
−→y 2| = |cos(−→y 1,

−→y 2)|

N

S

S H

O

z

y
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B.5 NLO properties of the nanoparticles

B.5.1 NLO properties of the final nanoparticles of each MD run

Table B.4 – Static first hyperpolarizabilities (βHRS, in 103 a.u.) and depolarization ratios
(DR) of the final nanoparticles issued from the 8 replicated MD trajectories (Figure B.21),
evaluated using the tensor sum approximation at the TD-DFT and sTD-DFT-vTB levels,
as well as from sTD-DFT-vTB calculations performed on the full nanoparticles.

TD-DFTa sTD-DFT-vTBb sTD-DFT-vTBb
(tensor sum) (tensor sum) (full calculation)
βHRS DR βHRS DR βHRS DR R1

c R2
d

NP1 58.3 5.5 55.2 4.9 45.9 4.8 0.9 0.83
NP2 23.4 2.9 22.1 3.4 22.4 4.3 0.9 1.01
NP3 31.4 4.1 31.1 4.3 19.6 2.7 1.0 0.63
NP4 39.0 5.1 31.5 4.3 25.2 5.1 0.8 0.80
NP5 56.1 5.6 63.7 6.3 55.5 6.2 1.1 0.87
NP6 47.9 3.7 51.5 4.4 40.4 4.4 1.1 0.78
NP7 46.8e 3.6e 44.9 4.2 34.3 4.7 1.0 0.76
NP8 47.8 5.6 43.0 5.0 33.5 5.1 0.9 0.78
av. 43.8 4.5 42.9 4.6 34.6 4.7 1.0 0.8
± std. dev. ± 11.9 ± 1.1 ± 14.0 ± 0.8 ± 12.3 ± 1.0 ± 0.10 ± 0.11

a M06-2X/6-311+G(d) in gas phase
b using yJ = 0.4, yK = 2.0 and Eth = 5.0 eV
c R1 = βsTD−DFT−vTBHRS (tensor sum)/βTD−DFTHRS (tensor sum)
d R2 = βsTD−DFT−vTBHRS (full calc.)/βsTD−DFT−vTBHRS (tensor sum)
e one molecule was removed from the calculations due to numerical instability
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Figure B.27 – Linear correlations between (a) static first hyperpolarizabilities (in 103

a.u.) evaluated using the tensor sum approximation at the TD-DFT and sTD-DFT-vTB
levels, and between (b) sTD-DFT-vTB static first hyperpolarizabilities calculated using
the tensor sum approximation and calculations performed on the full nanoparticles.
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Table B.5 – Dynamic (λ = 1064 nm) first hyperpolarizabilities (βHRS, in 103 a.u.) and
depolarization ratios (DR) of the final nanoparticles issued from the 8 replicated MD
trajectories (Figure B.21), evaluated using the tensor sum approximation at the TD-DFT
and sTD-DFT-vTB levels, as well as from sTD-DFT-vTB calculations performed on the
full nanoparticles.

TD-DFTa sTD-DFT-vTBb sTD-DFT-vTBb
(tensor sum) (tensor sum) (full calculation)
βHRS DR βHRS DR βHRS DR R1

c R2
d

NP1 317.0 6.3 325.8 5.8 3194.5 4.8 1.0 9.81
NP2 112.0 3.7 248.2 3.4 106.4 3.0 2.2 0.43
NP3 110.7 3.0 161.2 3.8 616.9 3.6 1.5 3.83
NP4 160.1 5.1 238.9 5.2 2259.4 5.1 1.5 9.46
NP5 237.6 5.9 343.1 7.2 369.9 4.7 1.4 1.08
NP6 185.0 3.6 238.7 4.5 212.7 4.9 1.3 0.89
NP7 234.0 3.4 827.6 5.0 156.6 2.1 3.5 0.19
NP8 156.4 5.5 167.9 5.3 634.3 5.0 1.1 3.78
av. 189.1 4.6 318.9 5.0 943.8 4.2 / /
± std. dev. ± 70.5 ± 1.3 ± 215.4 ± 1.2 ± 1145.4 ± 1.1

a M06-2X/6-311+G(d) in gas phase
b using yJ = 0.4, yK = 2.0 and Eth = 5.0 eV
c R1 = βsTD−DFT−vTBHRS (tensor sum)/βTD−DFTHRS (tensor sum)
d R2 = βsTD−DFT−vTBHRS (full calc.)/βsTD−DFT−vTBHRS (tensor sum)

215



B.5.2 Evolution in time of the NLO properties

Table B.6 – Evolution in time of the dynamic (λ = 1064 nm) first hyperpolarizabilities
(βHRS, in 103 a.u.) and depolarization ratios (DR) of the nanoparticles along the 8
replicated MD trajectories, evaluated using the tensor sum approximation at the TD-
DFT/M06-2X/6-311+G(d) level in gas phase. The starting time is taken when the 100
molecules collapse into a single structure.

NP1
Simulation time (ns) βHRS DR

100 104.2 2.0
110 111.5 3.5
120 95.0 5.1
130 172.9 5.8
140 77.9 3.7
150 119.3 3.4
160 102.3 3.5
170 118.6 2.5
180 89.6 3.6
190 102.3 3.9
200 196.1 5.8
210 223.9 4.9
220 260.6 6.4
230 115.5 4.7
240 193.8 6.5
250 317.0 6.3

av. ± std. dev. 156.1 ± 72.9 4.48 ± 1.42

NP2
Simulation time (ns) βHRS DR

250 178.8 4.9
260 172.3 8.7
270 234.4 5.6
280 142.7 2.5
290 116.1 2.9
300 112.0 3.7

av. ± std. dev. 172.7 ± 70.1 4.72 ± 2.28

NP3
Simulation time (ns) βHRS DR

190 126.8 2.3
200 126.3 2.7
210 155.2 1.9
220 142.3 5.0
230 165.3 5.5
240 162.6 4.8
250 110.7 3.0

av. ± std. dev. 132.7 ± 30.5 3.6 ± 1.5
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NP4
Simulation time (ns) βHRS DR

250 140.9 2.1
260 156.8 2.8
270 105.8 3.0
280 205.0 3.0
290 111.4 2.0
300 160.1 5.1

av. ± std. dev. 135.3 ± 43.4 3.0 ± 1.1

NP5
Simulation time (ns) βHRS DR

140 186.4 4.3
150 197.4 3.3
160 171.4 3.1
170 166.5 4.2
180 184.8 3.3
190 190.3 3.6
200 215.5 4.1
210 285.4 6.8
220 230.3 3.5
230 243.6 5.4
240 198.9 5.4
250 204.6 5.1
260 155.5 3.2
270 171.9 3.7
280 232.5 4.0
290 144.1 3.6
300 237.6 5.9

av. ± std. dev. 204.4 ± 39.1 4.3 ± 1.1

NP6
Simulation time (ns) βHRS DR

140 251.0 7.0
150 116.4 5.8
160 137.4 3.8
170 167.2 4.3
180 175.0 6.1
190 211.6 5.3
200 115.5 1.7
210 179.7 3.0
220 179.8 2.2
230 208.6 3.4
240 170.9 4.6
250 185.0 3.6

av. ± std. dev. 174.8 ± 39.1 4.2 ± 1.6
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NP7
Simulation time (ns) βHRS DR

130 267.7 5.7
140 188.4 4.1
150 277.8 7.0
160 166.4 3.4
170 207.2 4.6
180 178.7 3.6
190 206.6 3.4
200 203.9 5.1
210 318.6 8.1
220 242.0 7.3
230 356.7 6.4
240 180.8 4.4
250 234.0 3.4

av. ± std. dev. 233.0 ± 57.9 5.1 ± 1.6

NP8
Simulation time (ns) βHRS DR

120 134.8 3.5
130 102.2 1.8
140 157.7 2.5
150 161.9 4.8
160 171.2 4.9
170 156.8 6.7
180 178.2 6.6
190 116.2 2.9
200 215.4 7.7
210 179.9 6.6
220 143.4 4.2
230 238.7 7.1
240 193.3 4.2
250 156.4 5.5

av. ± std. dev. 164.7 ± 36.3 4.9 ± 1.8
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Figure B.28 – Time evolution of the cumulative averages of βHRS (left) and DR (right)
values for NP1, 5 7 and 8, as calculated using the tensor-sum approximation at the TD-
DFT:M06-2X/6-311+G(d) level.

B.6 Absorption properties of π-stacked dimers

B.6.1 Comparison between TD-DFT and sTD-DFT-vTB calcu-

lations

Figure B.29 – Representative π-stacked dimer structures extracted from the NPs.
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Table B.7 – Excitation energies (∆E, eV) and oscillator strengths (f) associated to the
main low-lying S0 → Si electronic transitions (∆E ≤ 4 eV, f ≥ 0.1) calculated for the
isolated dye and of the π-stacked dimers.

TD-DFTa sTD-DFT-vTBb

Si ∆E f Si ∆E f
Monomer c S1 3.15 1.28 S1 3.17 1.16

D1 S1 2.74 0.10 S3 3.07 0.24
S2 3.05 1.81 S3 3.34 2.59
S3 3.23 0.23 S3 3.73 0.17

D2 S2 2.85 1.30 S3 2.86 0.21
S3 3.14 0.58 S4 3.24 1.20
S4 3.30 0.09 S5 3.40 1.22

S6 3.80 0.13
D3 S1 2.49 0.82 S1 2.58 1.14

S3 3.10 1.25 S4 3.32 1.54
S5 3.54 0.10

a M06-2X/6-311+G(d) calculations in B3LYP/cc-pVTZ geometry. b Using yJ = 4.0, yK

= 2.0 and Eth = 5.0 eV. c In the trans form.
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Figure B.30 – Absorption spectra of π-stacked dimer structures represented in Figure
B.28, calculated at the TD-DFT (top) and sTD-DFT-vTB (bottom) levels.
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B.6.2 Diabatization of low-lying excited states

Diabatization of the electronic transitions was performed for singlet excited states of three
representative π-stacked dimers extracted from the NPs (Figure 4.14), by means of the
Boys localization scheme[8] implemented in the Q-Chem program.[9] Computation of the
diabatic states ({Zi}) was performed on the basis of adiabatic states calculated in vacuum
at the M06-2X/6-311+G(d) level using the Tamm–Dancoff approximation (TDA),[10] since
the localization scheme is not implemented for TD-DFT states. The number of adiabatic
states considered corresponds to the number of intramolecular and intermolecular charge-
transfer contributions. In practice, only the lowest 4 excited singlets (S1-S4) involving
transitions from the HOMO-1 and HOMO to the LUMO and LUMO+1 were considered
for dimers D1 and D2. For D3, S5 has been considered instead of S4.

Dimer D1

Table B.8a – Energies of adiabatic (Si) states (in eV), oscillator strengths, and contribu-
tions of electronic excitations (in %) in dimer D1, as calculated using TD-DFT and TDA.
H = HOMO; L = LUMO.

TD-DFT TDA
∆E f ∆E f contributions

S1 2.742 0.098 2.849 0.096 81% H→L
S2 3.053 1.810 3.191 1.242 82% H→L+1

08% H→L
S3 3.237 0.238 3.298 1.414 81% H-1→L
S4 3.442 0.076 3.466 0.213 81% H-1→L+1

06% H-1→L
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Figure B.31 – Sketch of the frontier orbitals of dimer D1.

Table B.8b – Energies of the TDA adiabatic (Si) states (in eV, oscillator strength in
parenthesis) of dimer D1, and their diabatic composition in terms of intra (in blue) and
intermolecular (in orange) contributions and Zi states: Zintra = Z1 + Z2 and Zinter = Z3

+ Z4.

i Si Zintra Zinter Z1 Z2 Z3 Z4

1 2.85 (0.10) 73 27 47 26 21 6
2 3.19 (1.24) 52 48 6 47 34 13
3 3.30 (1.41) 57 43 47 10 43 0
4 3.47 (0.21) 18 82 1 17 1 81

Table B.8c – Excitation energy (in eV) and relative Mulliken fragment charges of diabatic
states of dimer D1 with respect to the ground state charge distribution.

molecule 1 molecule 2
i Zi nature e- h+ e- h+
1 3.08 intra -0.0251 0.0233 -0.9748 0.9767
2 3.16 intra -0.9758 0.9754 -0.0239 0.0247
3 3.17 inter -0.0387 0.9652 -0.9615 0.0344
4 3.39 inter -0.9766 0.0409 -0.0231 0.9589
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Dimer D2

Table B.9a – Energies of adiabatic (Si) states (in eV), oscillator strengths, and contribu-
tions of electronic excitations (in %) in dimer D2, as calculated using TD-DFT and TDA.
H = HOMO; L = LUMO.

TD-DFT TDA
∆E f ∆E f contributions

S1 2.501 0.027 2.614 0.022 90% H→L
S2 2.859 1.290 2.980 0.871 89% H→L+1
S3 3.139 0.594 3.226 1.606 80% H-1→L

05% H-1→L+1
S4 3.294 0.089 3.325 0.232 82% H-1→L+1

06% H-1→L
05% H-3→L+1

Figure B.32 – Sketch of the frontier orbitals of dimer D2.
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Table B.9b – Energies of the TDA adiabatic (Si) states (in eV, oscillator strength in
parenthesis) of dimer D2, and their diabatic composition in terms of intra (in blue) and
intermolecular (in orange) contributions and Zi states: Zintra = Z1 + Z3 and Zinter = Z2

+ Z4.

i Si Zintra Zinter Z1 Z2 Z3 Z4

1 2.61 (0.02) 67 33 41 20 26 13
2 2.98 (0.87) 36 64 9 37 28 27
3 3.23 (1.61) 62 38 47 37 15 1
4 3.33 (0.23) 34 66 3 7 31 59

Table B.9c – Excitation energy (in eV) and relative Mulliken fragment charges of diabatic
states of dimer D2 with respect to the ground state charge distribution.

molecule 1 molecule 2
i Zi nature e- h+ e- h+
1 2.95 intra -0.9875 0.9706 -0.0124 0.0293
2 3.02 inter -0.9935 -0.0038 -0.0064 1.0038
3 3.03 intra -0.0135 0.0055 -0.9865 0.9945
4 3.14 inter -0.0151 0.9779 -0.9853 0.0218

Dimer D3
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Table B.10a – Energies of adiabatic (Si) states (in eV), oscillator strengths, and contri-
butions of electronic excitations (in %) in dimer D3, as calculated using TD-DFT and
TDA. H = HOMO; L = LUMO.

TD-DFT TDA
∆E f ∆E f contributions

S1 2.490 0.827 2.675 1.014 89% H→L
S2 2.920 0.026 2.931 0.094 91% H-1→L
S3 3.106 1.262 3.239 1.712 47% H→L+1

38% H-1→L+1
S4 3.295 0.001 3.365 0.001 50% H-17→L

29% H-17→L+2
S5 3.552 0.063 3.566 0.109 41% H-1→L+1

39% H→L+1
05% H-18→L+1

Figure B.33 – Sketch of the frontier orbitals of dimer D3.

Table B.10b – Energies of the TDA adiabatic (Si) states (in eV, oscillator strength in
parenthesis) of dimer D3, and their diabatic composition in terms of intra (in blue) and
intermolecular (in orange) contributions and Zi states: Zintra = Z1 + Z3 + Z4 and Zinter
= Z2.

i Si Zintra Zinter Z1 Z2 Z3 Z4

1 2.67 (1.01) 89 11 83 11 5 0
2 2.93 (0.09) 11 89 11 89 0 0
3 3.24 (1.71) 100 0 4 0 87 9
4 3.57 (0.11) 100 0 1 0 7 91
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Table B.10c – Excitation energy (in eV) and relative Mulliken fragment charges of diabatic
states of dimer D3 with respect to the ground state charge distribution.

molecule 1 molecule 2
i Zi nature e- h+ e- h+
1 2.74 intra -0.8357 0.8358 -0.1642 0.1639
2 2.90 inter -0.9929 0.0023 -0.0078 0.9981
3 3.24 intra -0.1860 0.1812 -0.8140 0.8189
4 3.54 intra -0.9995 0.9995 -0.0003 0.0004

B.7 Assessment of M06-2X with respect to MP2

Table B.11 – Static βHRS (103 a.u.) and DR values computed at the M06-2X/6-311G(d)
and MP2/6-311G(d) levels, for the molecule in gas phase in the three geometries illustrated
in Figure B.4a.

Geometry 1 Geometry 2 Geometry 3
βHRS DR βHRS DR βHRS DR

TD-DFT; M06-2X/6-311G(d); gas phase 4126 4.7 3075 4.4 5159 4.7
FF-MP2/6-311G(d); gas phase 4373 4.9 2651 4.5 4902 4.9
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