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INTRODUCTION EN FRANÇAIS

L'objectif de cette thèse est l'étude des monoïdes plaxiques en utilisant la théorie de la réécriture et son interaction avec la structure cristalline de ces monoïdes. Par cette approche, nous montrons qu'étant donné une présentation convergente et finie d'un monoïde plaxique, son extension cohérente admet une sorte de structure cristalline compatible avec la structure cristalline du monoïde lui-même. De plus, une grande partie de l'information de ces présentations cohérentes de monoïdes plaxiques peut être comprise via certains éléments maximaux provenant d'une sorte de structure cristalline, appelés mots de plus hauts poids. Nous exploitons cette situation dans les types A et C en introduisant des outils combinatoires appelés arbres de Yamanouchi, qui paramètrent les mots de plus hauts poids, et utilisons leur combinatoire pour calculer de manière explicite explicitement les présentations cohérentes des monoïdes plaxiques.

Pour développer cela, la théorie de la réécriture et en particulier le travail de Squier dans [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] et de Malbos et Guiraud dans [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], décrivent une procédure pour étendre certaines présentations des catégories par des générateurs et des relations dans les dimensions supérieures. Le premier exemple de cela est le passage à la dimension 3, c'est-à-dire la description des syzygies ou des relations entre relations. Cette construction dépend de certaines propriétés non-dégénérées de la présentation donnée, à savoir la terminaison et la confluence, qui ensemble sont appelées la convergence. Étant donné une présentation convergente d'un monoïde M, avec des générateurs X 1 et des relations orientées X 2 , on peut l'étendre à une présentation cohérente de M, à savoir une (3, 1)-catégorie libre qui spécifie les générateurs, les relations génératrices, et les relations entre relations génératrices pour une telle présentations. De plus, cette (3, 1)-catégorie présente le monoïde M, dans le sens où, en collapsant les cellules de dimension 2 et 3, on retrouve le monoïde M.

Les monoïdes plaxiques bénéficient d'une structure riche car ils peuvent être caractérisés par deux approches différentes :

1. l'approche cristalline [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF] Kashiwara | On crystal bases[END_REF][START_REF] Littelmann | Paths and root operators in representation theory[END_REF][START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF] ; 2. présenté par des générateurs et des relations [START_REF] Lascoux | Le monoıde plaxique[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF].

L'approche cristalline a été introduite par Kashiwara dans son étude de la théorie des représentations intégrables des groupes quantiques complexes de type classique U q (g), et a ensuite été étendue dans les travaux de Littlemann à toutes les algèbres de Kac-Moody complexes symétrisables. L'approche par présentations a ses origines dans les travaux de Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF], Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], et Lascoux et Schützenberger [START_REF] Lascoux | Le monoıde plaxique[END_REF] dans le type A, et elle a précédé l'approche cristalline. Lecouvey dans [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF] a étendu de nombreux thèmes et constructions classiques déjà existants du type A aux types B, C, D, en donnant notamment des présentations des monoïdes plaxiques correspondants par générateurs et relations. Cette approche a été encore étendue dans [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF][START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] par l'introduction des présentations convergentes finies des monoïdes plactiques de types classiques, appelées les présentations colonnes. Ces présentations ouvrent une piste à l'étude des monoïdes plaxiques par la théorie de la réécriture. Cette approche a été utilisée par Hage et Malbos dans [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] pour donner une présentation cohérente pour le monoïde plactique de type A.

Les constructions dans cette thèse sont réalisées dans un cadre plus général que celui des monoïdes plaxiques. En particulier, nous considérons des cristaux à la [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], que nous appelons K-graphes dans ce travail, et un produit tensoriel sur de tels objets qui donne une structure de K-graphe sur le monoïde libre engendré par les sommets d'un K-graphe. Nous considérons certaines congruences sur le monoïde libre qui sont compatibles avec la structure de K-graphe, et montrons que si un tel monoïde est présenté par une présentation compatible avec la structure de K-graphe, alors l'étude de certaines propriétés de la réécriture est réduite aux mots de plus hauts poids. Les monoïdes plaxiques de type classique et leurs présentations colonnes s'inscrivent dans ce schéma comme un cas particulier.

Les arbres de Yamanouchi sont ensuite utilisés pour paramétrer la réécriture aux mots de plus hauts poids dans les types A et C. Ces objets ont été initialement conçus dans [START_REF] Meha | C-trees and a coherent presentation for the plactic monoid of type C[END_REF] pour faciliter le calcul des relations entre les relations génératrices de la présentation colonnes pour le type C, où la combinatoire tend à être plus difficile à gérer. Ensuite, ils ont été adaptés au type A également, et dans ce type, ils ressemblent beaucoup à d'autres outils combinatoires tels que GT-patterns et hives, voir [START_REF] Gelfand | Finite-dimensional representations of the group of unimodular matrices[END_REF][START_REF] Berenstein | Tensor product multiplicities and convex polytopes in partition space[END_REF]6].

MODÈLES POUR LA THÉORIE DES REPRÉSENTATIONS DES ALGÈBRES DE LIE

Théorie des représentations des algèbres de Lie. La théorie des représentations des algèbres de Lie semi-simples complexes a été développée au cours du 20ème siècle, dans un prolongement des travaux de W. Killing et E. Cartan sur la classification des algèbres de Lie semi-simples complexes de dimension finie à la fin du 19ème siècle. Une notion clé dans la classification des représentations est celle de poids, qui peut être vu comme des valeurs propres généralisées. Dans deux articles de 1946 et 1947, E. Dynkin a introduit la notion de diagrammes de Dynkin qui exprime la classification des algèbres de Lie semi-simples complexes de dimension finie en termes de graphes très simples, qui correspondent à leurs systèmes de racines. Cette classification contient quatre familles infinies appelées respectivement les types A, B, C, et D, ainsi qu'un nombre fini de types exceptionnels E, G, et F. Les algèbres de Lie correspondantes de types A, B, C, et D sont respectivement notées par sl n , o 2n , sp 2n , et o 2n+1 . Les travaux de Dynkin ont suggéré une approche combinatoire pour décrire les algèbres de Lie et leurs représentations, une approche qui a été fortement poursuivie et développée depuis lors. Des traitements concis de ces notions classiques peuvent être trouvés dans [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF], [START_REF] Knapp | Lie groups, Lie algebras, and cohomology[END_REF], et [START_REF] Hall | Lie groups, Lie algebras, and representations[END_REF]. Algèbres de Kac-Moody et groupes quantiques. La construction et l'étude de la théorie des représentations ont été étendues à une nouvelle classe d'algèbres introduite dans les années 1960, appelée les algèbres de Kac-Moody [START_REF] Kac | Simple irreducible graded Lie algebras of finite growth[END_REF], [START_REF] Moody | A new class of Lie algebras[END_REF]. La nature combinatoire de ces algèbres est très similaire à celle des algèbres de Lie semi-simples, et de nombreuses techniques et constructions des algèbres de Lie semisimples s'étendent au cas de Kac-Moody. Dans les années 1980, motivés par certains problèmes de la physique, Drinfeld [START_REF] Drinfel | Hopf algebras and the quantum Yang-Baxter equation[END_REF] et Jimbo [START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF] ont indépendamment introduit une déformation U q (g) de l'algèbre enveloppante U(g) d'une algèbre de Kac-Moody complexe g, avec paramètre q, et appelée group quantique. Un avantage de ces nouvelles structures est que pour q = 1, on retrouve les algèbres de Lie complexes semi-simples classiques, alors que pour q = 0 la théorie des représentations cristallise, un phénomène qui a été exploité par Kashiwara [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF] et Lusztig [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] pour fournir des bases cristallines (ou canoniques) pour les représentations intégrables des algèbres de Kac-Moody.

Règle de Littlewood-Richardson. Pendant tout ce temps, une question non résolue dans le domaine est restée la règle de Littelwood-Richardson. Énoncée pour la première fois comme un théorème dans [START_REF] Dudley | Group characters and algebra[END_REF] pour le type A, cette régle donne une description combinatoire des multiplicités des poids ν dans le produit tensoriel V(λ) ⊗ V(µ) de deux représentations intégrables irréductibles de l'algèbre de Kac-Moody de plus hauts poids λ et µ respectivement. Une preuve de ce théorème dans le type A n'a été réalisée qu'en [START_REF] Schützenberger | La correspondance de Robinson[END_REF] par Schützenberger, après que la théorie combinatoire des monoïdes plaxiques ait été développée par Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF], Schützenberger [START_REF] Schützenberger | Quelques remarques sur une construction de Schensted[END_REF], et Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]. Une preuve de la règle de Littelwood-Richardson dans les autres types classiques est restée introuvable jusqu'à ce que la théorie des cristaux soit introduite par Kashiwara [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF].

Les types classiques : Bases cristallines. Considérons une algèbre de Lie simple g de type A n , B n , C n , D n , et soit U q (g) le groupe quantique associé à g. Kashiwara dans [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF] et Lusztig dans [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] montrent que pour une représentation V de dimension finie de U q (g), pour q = 0 l'espace vectoriel V admet un base cristalline B λ , qui est un graphe étiqueté et dirigé dont les arêtes sont étiquetées par les racines simples de g. Ce graphe fournit un modèle pour la décomposition en poids du g-module V. Les sommets du graphe représentant une base de la décomposition en espaces de poids de V, et une arête x α -→ y signifie que le poids de y est égal au poids de x plus la racine simple α. Intuitivement, on peut considérer le cristal comme un squelette de la représentation, codant sa structure de poids. De plus, on peut interpréter le produit tensoriel de deux g-modules V 1 et V 2 par une notion de produit tensoriel de cristaux, qui est définie purement en termes de théorie des graphes. Le produit tensoriel des cristaux donne lieu à un monoïde sur l'ensemble λ h.w.

B λ

où le produit x 1 * x 2 de x 1 ∈ B λ 1 et x 2 ∈ B λ 2 se trouve dans le cristal B λ 1 ⊗ B λ 2 , et est déterminé par la règle du produit tensoriel des cristaux. Ce monoïde est appelé le monoïde plaxique pour g, et est noté Pl(g) ou Pl(Γ ), où Γ = A n , B n , C n , D n .

Cas général de Kac-Moody : Modèle de chemin de Littelmann. L'approche cristalline de la théorie des représentations des algèbres de Lie semi-simples complexes a été étendue par Littelmann dans une série d'articles dans les années 1990 [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF][START_REF] Littelmann | Paths and root operators in representation theory[END_REF][START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF] aux algèbres de Kac-Moody symétrizables complexes g. Il y parvient en introduisant un modèle de chemins pour de telles algèbres. Dans son modèle, les sommets du cristal sont des chemins linéaires par morceaux dans un espace vectoriel R, et les arêtes x α -→ y sont explicitement décrites par des transformations géométriques des chemins. En utilisant cette approche explicite de la construction des cristaux, Littelmann a prouvé une règle de Littlewood Richardson pour le cas général des algèbres de Kac-Moody symétriques, et a introduit une algèbre plaxique associée à g. Alors que les algèbres plaxiques généralisées sont définies en termes de cristaux, pour les types classiques A n , B n , C n , D n Littelmann donne une présentation de l'algèbre plaxique correspondante par générateurs et relations dans le Théorème B de [START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF].

THÉORIE DE LA REÉCRITURE

Contexte historique. La théorie de la réécriture est un domaine de mathématiques et de l'informatique qui étudie les relations d'équivalence par une approche combinatoire. Cette théorie présente de nombreuses facettes selon le contexte dans lequel elle est définie. Dans une approche de ensembliste, la réécriture est utilisée pour étudier les monoïdes et les catégories via des présentations par générateurs et relations. Dans un cadre linéaire, elle est utilisée pour étudier les algèbres par présentations, par exemple pour tester l'appartenance d'éléments à des idéaux dans des anneaux de polynômesdans idéaux dans les anneaux des polynômes via les bases de Gröbner. Récemment, elle a également trouvé des applications dans le calcul de bases linéaires en catégorification.

L'occurrence algébrique la plus simple de la théorie de la réécriture consiste à donner un contexte dans lequel le problème des mots est décidable. Le problème du mot consiste en la question suivante, posée pour la première fois en 1914 par Thue dans [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln[END_REF],

Étant donné un monoïde M avec une présentation finie par des générateurs X 1 et des relations X 2 , existe-t-il un algorithme qui, pour deux mots quelconques u, v ∈ X * 1 , détermine s'ils sont égaux dans le monoïde M ? Cette question a reçu une réponse négative en 1947, indépendamment par Post [START_REF] Post | Recursive unsolvability of a problem of Thue[END_REF] et Markov [START_REF] Markov | The impossibility of certain algorithms in the theory of associative systems[END_REF].

Considérons un monoïde M avec une présentation X = (X 1 , X 2 ) où X 1 sont les générateurs, et X 2 sont des relations orientées génératrices. Une étape de réécriture est une relation tuv tαv =⇒ tu ′ v, où t, v sont des mots dans X * 1 , et α : u =⇒ u ′ est un élément de X 2 . Une telle paire est appelée un 2-polygraphe. Une condition suffisante pour que le problème de mot soit décidable pour M est que les deux propriétés suivantes soient satisfaites: ⋄ (terminaison) il n'existe pas de suite infinie de réécriture

w 1 f 1 =⇒ w 2 f 2 =⇒ w 3 f 3 =⇒ • • •
où f i sont étapes de réécriture; ⋄ (confluence) si u peut être réduit à v et w via les relations f, g respectivement dans X 2 , il existe u ′ tel que v et w se réduisent à u ′ ∈ X * 1 via les relations f ′ , g ′ respectivement, qui viennent de X 2 . Diagrammatiquement, nous le présentons comme suit

v f ′ " u f . 6 g ' / u ′ . w g ′ > F (1)
Nous appelons les propriétés de terminaison et confluence ensemble convergence. La décidabilité consiste ici à prouver que chaque mot a une forme normale unique. L'existence est assurée par la terminaison, et l'unicité par la confluence. La terminaison assure que vérifier si un mot est une forme normale peut être fait en temps fini, puisqu'il existe un nombre fini de règles de réécriture.

Dans cette thèse, nous utiliserons la théorie de la réécriture dans une cadre ensembliste, c'est-à-dire que nous étudierons certaines présentations des monoïdes plaxiques par réécriture.

Présentations cohérentes des monoïdes. L'étude de la cohérence, à savoir l'identification des relations entre les relations, est généralement une tâche difficile. Il existe de nombreuses approches pour attaquer cette question. Loday dans [START_REF] Loday | Homotopical syzygies[END_REF] décrit une approche homotopique des syzygies pour les groupes, et la relie à d'autres approches des syzygies, c'est-à-dire aux Igusa pictures et aux syzygies homologiques.

Une approche plus récente dans l'étude de la cohérence et des relations entre relations est celle via la théorie de la réécriture. Dans [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], Gaussent, Guiraud, et Malbos étudient les présentations cohérentes des monoïdes d'Artin au moyen de la théorie de la réécriture.

Plus précisément, la théorie de la réécriture fournit une approche calculatoire pour l'étude de la cohérence et des propriétés homologiques des monoïdes présentés par des 2-polygraphes convergents. On peut considérer les données X = (X 1 , X 2 ) d'un 2-polygraphe comme des informations dans les dimensions 1 et 2 du monoïde M présenté par X, appelées respectivement 1-cellules génératrices et 2-cellules génératrices. Cependant, les relations génératrices de X 2 ne sont pas nécessairement libres, ce qui signifie qu'un mot w ∈ X * 1 peut être réduit à une forme normale via des étapes de réécriture de plusieurs manières. On peut donc parler de relations entre relations. Comme c'est le cas avec les données dans X, à savoir que X 1 engendre toutes les 1-cellules, et que X 2 engendre toutes les 2-cellules, on cherche un ensemble X 3 qui engendre toutes des relations entre relations. Dans la présentation graphique comme ci-dessus, les 1-cellules, c'est-à-dire les mots, correspondent aux sommets, les 2-cellules aux chemins obtenus par concaténation de =⇒, et les relations entre relations aux diagrammes de confluence comme dans [START_REF] Baader | Term rewriting and all that[END_REF].

Cette notion est formalisée dans le cadre des (3,1)-catégories, qui sont des 3-catégories dont toutes les cellules de dimension 2 et 3 sont inversibles. Ici, le fait que les cellules de dimension 2 et 3 sont inversibles est avantageux dans le sens suivant. Si l'on considère un ensemble de relations entre relations génératrices, la partie génératrice signifie que toutes relations entre relations peut être exprimée en termes de relations génératrices par un processus qui peut être considéré comme un pavage dans l'interprétation graphique. Plus précisément, une présentation cohérente d'un monoïde M est une (3,1)-catégorie libre engendrée par un triple X = (X 1 , X 2 , X 3 ) tel que (X 1 , X 2 ) présente M, et tout diagramme de confluence dans (X 1 , X 2 ) peut être pavé avec des 3-cellules de X 3 et leurs inverses. On peut considérer cela comme une information de dimension 3 sur le monoïde M.

Théorème de cohérence de Squier. Squier [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] décrit une procédure pour étendre une présentation convergente X d'un monoïde M en une présentation cohérente. Cela implique de spécifier des diagrammes de confluence minimaux, qui sont les diagrammes de confluence des branchements critiques, à savoir des objets de la forme w ′ w f / 7 g ' / w ′′ Dans le cas où X est un polygraphe réduit, c'est-à-dire un polygraphe qui n'a pas de relations superflues dans X 2 , et que les cibles des relations dans X 2 sont des formes normales, alors il existe un choix déterministe d'une stratégie de normalisation, appelée la stratégie normalisation la plus à gauche. Ces constructions donnent une approche algorithmique pour expliciter la complétion cohérente d'un polygraphe convergent.

D'un point de vue homologique, une présentation cohérente X = (X 1 , X 2 , X 3 ) d'un monoïde M donne lieu à une résolution libre partielle de longueur 3

ZM[X 3 ] d 3 -→ ZM[X 2 ] d 2 -→ ZM[X 1 ] d 1 -→ ZM ε -→ Z -→ 0. (2) 
On peut donc considérer le théorème de complétion de Squier et les stratégies de normalisation de Guiraud et Malbos comme une méthode algorithmique pour le calcul de l'homologie en petite dimension des monoïdes. En fait, dans [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], Guiraud et Malbos prouvent plus. Ils étendent les constructions de [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] pour obtenir une résolution polygraphique à partir de présentations convergentes, qui une fois abélianisée donne lieu à une résolution libre du monoïde M.

PRÉSENTATIONS DES MONOÏDES PLAXIQUES

Les algèbres plaxiques associées aux algèbres de Kac-Moody symétrisables générales, et en particulier les monoïdes plaxiques de types classique A,B,C, et D, ont été définis en termes de cristaux dans [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF] et [START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF]. Cependant, le monoïde plaxique de type A a été introduit avant la théorie des cristaux de Kashiwara. L'émergence originale de Pl(A n ) se faisait en termes de présentations par générateurs et relations. Nous récapitulons ici ces développements, ainsi que les présentations des autres monoïdes plaxiques.

Le monoïde plaxique de type A. Dans son article [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] de 1961, Schensted a considéré le problème de l'identification des longueurs des plus longs sous-mots (non)-décroissants et croissants d'un mot donné w dans un alphabet totalement ordonné A n = {1, 2, . . . , n}. Pour répondre à cette question, il a construit un algorithme, qui porte aujourd'hui son nom, à savoir l'algorithme de Schensted. Il s'agit d'un algorithme qui, à chaque mot w dans un tel alphabet, associe un tableau semi-standard de Young, par exemple 1 2 2 3 5 2 3 3 5 3 5 6 5 avec des entrées de A n croissantes dans les lignes, et strictement croissantes dans les colonnes. Schensted répond alors à sa question en identifiant la longueur des plus longs sous-mots non-décroissants (respectivement croissants) de w par le nombre de lignes (respectivement de colonnes) du tableau résultant P(w).

Knuth dans son article [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] de 1970 a identifié des relations génératrices dans A * n qui engendrent la congruence ∼ définit par w ∼ w ′ si P(w) = P(w ′ ). Ces relations sont yzx ≡ yxz for x ≤ y < z, xzy ≡ zxy for x < y ≤ z, et sont appelées les relations de Knuth. En 1981, dans [START_REF] Lascoux | Le monoıde plaxique[END_REF], Lascoux et Schützenberger ont formalisé ces idées en introduisant le monoïde plaxique (de type A) comme le quotient

Pl(A n ) = A * n / ∼ .
Présentations à la Knuth pour les monoïdes plaxiques de types B,C,D. Suite à l'introduction des monoïdes plaxiques de type B, C, D via la théorie des cristaux de Kashiwara, le besoin s'est fait sentir de réaliser ces monoïdes à la manière de Knuth, c'est-à-dire par des générateurs et des relations. Dans [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF], Lecouvey a réalisé cela en adaptant de nombreux thèmes classiques du type A aux autres types classiques, tels qu'une notion d'algorithme de Schensted, une correspondance Robinson-Schented-Knuth, et une présentation des monoïdes plaxiques des types B, C, D au moyen de générateurs et de relations à la Knuth. Comme la combinatoire est plus compliquée dans les autres types par rapport au type A, les présentations de ces monoïdes plaxiques sont par conséquent plus compliquées. L'idée de Lecouvey pour étendre ces notions à d'autres types était de considérer le point de vue colonne, plutôt que le point de vue ligne comme c'était le cas pour les développements classiques pour Pl(A n ). Plus précisément, ses constructions sont formulées en termes de colonnes admissibles, une notion introduite par Kashiwara et Nakashima dans [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF]. Les approches par colonnes et par lignes sont en quelque sorte duales duales l'une de l'autre, comme l'ont noté Lebed dans [START_REF] Lebed | Plactic monoids: a braided approach[END_REF], et Hage et Malbos dans [START_REF] Hage | Coherence of monoids by insertions and Chinese syzygies[END_REF].

Présentations colonnes des monoïdes plaxiques. Dans les années 2010, une approche de réécriture pour l'étude des monoïdes plaxiques a été employée par Bokut, Chen, Chen, et Li dans [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF], Hage dans [START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF], Hage et Malbos dans [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], et Cain, Gray et Malheiro dans [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]. Ce dernier article introduit des présentations convergentes finies Col(Γ ) = (Col(Γ ) 1 , Col(Γ ) 2 ) pour les monoïdes plaxiques Pl(Γ ), où Γ = A n , B n , C n , D n , G 2 , appelées les présentations colonnes. Ici, l'approche est à nouveau basée sur les colonnes, suivant les travaux de Lecouvey, les générateurs sont les colonnes admissibles dans le type particulier, et les relations sont de la forme c 1 c 2 =⇒ (c 1 ←-c 2 ), où (c 1 ←-c 2 ) est l'insertion de la colonne c 2 dans c 1 , comme définie par Lecouvey dans [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF]. Une observation utile dans les preuves de [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] est que dans les types A, B, C, et D le mot (c 1 ←-c 2 ) consiste en au plus 2 colonnes, rendant la présentation presque quadratique.

Dans [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] Hage et Malbos ont étendu la présentation colonnes pour Pl(A n ) à une présentation cohérente, montrant que les relations génératrices entre relations sont de la forme

t ′ u ′ v t ′ α u ′ v + 3 t ′ u ′′ v ′ α t ′ u ′′ v ′ ' tuv tαuv % - α tu v 1 9 t ′′ u ′′′ v ′ . tu 1 v 1 α tu 1 v 1 + 3 t 1 u 2 v 2 t 1 αu 2 v 2 9 A

RÉSUMÉ DE LA THÈSE ET CONTRIBUTIONS PRINCIPALES

Cette thèse porte sur l'étude des monoïdes plaxiques via la théorie de la réécriture, avec une attention particulière sur l'interaction des deux manières de décrire ces monoïdes :

1. via les cristaux ;

2. via les présentations convergentes.

Nous montrons que la procédure de complétion de Squier pour la présentation colonne peut être réduite à une complétion au plus haut poids, et nous introduisons des outils combinatoires dans les types A et C qui paramètrent les mots de plus haut poids. De cette façon, nous réduisons l'étude des propriétés de réécriture de ces présentations à la combinatoire des mots de de plus haut poids.

Préliminaires. Dans la première partie du chapitre 2, nous rappelons les notions et constructions pertinentes de la théorie de la réécriture applicables à l'étude des monoïdes présentés par des présentations convergentes. Dans la deuxième partie de ce chapitre, nous rappelons les deux approches pour réaliser les monoïdes plaxiques : via des cristaux ; et via des présentations. Nous nous intéresserons plus particulièrement aux cristaux de types classiques Γ = A n , B n , C n , D n , et aux présentations en colonnes Col(Γ ) de Pl(Γ ) telles qu'introduites dans [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF].

K-graphes. Dans la première partie du chapitre 3, nous introduisons la catégorie des K-graphes, notée Graph K . La notion de K-graphes a été adaptée de [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] où ils sont appelés cristaux. Ils sont plus généraux que les cristaux au sens de Kashiwara, car nous n'imposons aucun axiome de poids. Nous montrons que la catégorie Graph K est fermée en prenant les sous-objets, les sommes directes, et les produits tensoriels. Le produit tensoriel dans Graph K est adapté du produit tensoriel des cristaux, et nous notons que Graph K est une catégorie monoïdale.

K-monoids. Dans la deuxième partie du chapitre 3 nous introduisons la catégorie des K-monoïdes, notée Mon K , dont les objets M sont des monoïdes avec une structure de K-graphe, telle que le produit de M est compatible avec le produit tensoriel de son K-graphe sous-jacent. Nous construisons deux foncteurs T, C : Graph K -→ Mon K pour lesquels T (Γ ) est un K-monoïde libre, et C(Γ ) est le K-monoïde minimal contenant le K-graphe Γ . Le K-monoïde C(Γ ) est défini par une congruence ∼ Γ qui identifie deux composantes connexes isomorphes de T (Γ ).Nous caractérisons ensuite tous les objets M de Mon K comme M = (T (Γ )/ ∼) pour un certain Γ ∈ Graph K , où ∼ est une sous-congruence de la congruence ∼ Γ qui définit le monoïde C(Γ ).

Une classe de K-graphes d'un intérêt particulier pour nous est celle des K-graphes propres. Ce sont les K-graphes tels que chaque composante connexe de T (Γ ) contient un mot unique de plus haut poids. Dans ce cas, pour un K-sous-graphe Γ 1 de T (Γ ), nous notons le sous-ensemble de Γ 1 constitué de mots de plus haut poids par Γ 0 1 . Nous montrons que les bases cristallines de type classique sont toutes des K-graphes propres, et de plus nous obtenons le résultat suivant pour les présentations colonnes des monoïdes plactiques.

Théorème 3.4.4. Soit Γ = A n , B n , C n , D n . Alors i) les ensembles Col(Γ ) 1 et Col(Γ ) 2 sont K-graphes propres,
ii) les applications de source et but s, t : Col(Γ ) 2 -→ Col(Γ ) * 1 sont morphismes de Kgraphes.

Présentations des K-monoïdes. Au chapitre 4, nous introduisons une notion de 2-polygraphe adaptée à la catégorie des K-monoïdes, appelée K-2-polygraphe. l s'agit de 2-polygraphs tels que les 1-cellules et 2-cellules forment des K-graphes, et les applications source et but sont des moprhismes de K-graphes. Nous montrons que les K-2-polygraphes présentent des objets de Mon K . Nous montrons que la structure de K-graphe d'un K-2-polygraphe s'étend de manière compatible à son ensemble de suites de réécriture. Nous utilisons cette observation pour montrer que pour un K-2-polygraphe propre, c'est-à-dire un Kgraphe propre où l'ensemble des 1-cellules est un K-graphe propre, la preuve des propriétés de réécriture de la terminaison, de la confluence et de la confluence locale se réduit à la preuve de ces propriétés pour les mots de plus haut poids.

Dans la section 4.3, nous étendons la structure de K-graphe d'un K-2-polygraphe X, à la (2,1)catégorie libre X ⊤ 2 engendrée par X. De plus, nous interprétons le théorème de cohérence de Squier pour les K-2-polygraphes propres en montrant que l'extension cohérente est entièrement déterminée par les 3-cellules génératrices dont les sources sont les mots de plus haut poids. Nous exprimons cela en termes de stratégies de normalisation comme suit :

Théorème 4.3.18. Soit X = (X 1 , X 2 ) un K-2-polygraphe propre convergent et X le K- monoïde qu'il présente. Soit r 0 : X -→ (X *
1 ) 0 une section au plus haut poids, et σ 0 : (X * 1 ) 0 -→ (X ⊤ 2 ) 0 une stratégie de normalisation au plus haut poids. Soit Λ l'ensemble des diagrammes de confluence de Crit(R) 0 déterminé par σ 0 (u). Alors pour

K.Λ = {k.A | k ∈ K X , A ∈ Λ} où e i .(f, g) = (e i .
f, e i .g), le 3-polygraphe (X 1 , X 2 , K.Λ) est une présentation cohérente de X.

Ce résultat ainsi que le théorème 3.4.4 réduisent le problème du calcul des extensions cohérentes de Col(Γ ), pour Γ = A n , B n , C n , D n au calcul des diagrammes de confluence des branchements critiques au plus haut poids. Cette tâche réduite est en général plus facile à gérer que le calcul des diagrammes de confluence de tous les branchements critiques. En effet, le problème est de nature combinatoire, et cette réduction signifie que l'on doit seulement travailler avec la combinatoire de chaque type au plus haut poids. Nous facilitons la résolution de ce problème réduit dans le chapitre 5 en introduisant des outils pour la combinatoire en plus haut poids.

Monoïdes plaxiques quadratiques. Suivant le théorème 4.3.18, afin de calculer l'extension cohérente des présentations colonnes Col(Γ ) pour Γ = A n , B n , C n , D n , on doit avoir une bonne compréhension des mots de plus haut poids dans Col(Γ ) * 1 , et des règles de réécriture sur de tels mots. Il s'avère qu'un cadre plus pratique pour comprendre ces idées est offert par un version quadratique adapté de la présentation colonnes et du monoïde plaxique respectivement. La raison est que Col(Γ ) est presque quadratique, ce qui signifie que les mots de longueur 2 sont réécrits en mots de longueur inférieure ou égale à 2, et pour paramétrer les mots de poids le plus élevé, il est plus pratique d'avoir des règles de réécriture qui préservent la longueur.

À cette fin, dans la section 4.5, nous introduisons la présentation colonne quadratique, qui est obtenue à partir de Col(Γ ) en ajoutant un générateur ǫ signifiant une colonne vide, et en ajoutant des règles de réécriture qui assurent que ǫ est un non-facteur dans le calcul des formes normales. L'approche consistant à considérer une présentation quadratique adaptée est une approche qui apparaît dans le travail de Dehornoy et Guiraud sur les stratégies de normalisation quadratique dans [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF], et dans le travail de Lebed sur le monoïde plaxique de type A par tresses dans [START_REF] Lebed | Plactic monoids: a braided approach[END_REF], qui a en fait motivé notre définition.

Nous montrons ensuite que Col q (Γ ) est un K-2-polygraphe convergent fini et propre, et donc on peut utiliser le Théorème 4.3.18 pour étudier son extension cohérente. Arbres de Yamanouchi. Au chapitre 5, nous introduisons un outil graphique, appelé les arbres de Yamanouchi, qui sert les deux objectifs suivants : i) ils paramètrent les mots de plus haut poids dans Col

q (A n ) * 1 et Col q (C n ) * 1 , ii) certaines règles de réécriture des K-2-polygraphes Col q (A n ) et Col q (C n ) peuvent être calculées
directement sur les arbres de Yamanouchi.

Dans le type A, on considère l'arbre ∆ A = avec une application d'étiquetage s : V(∆ A ) -→ N, qui à chaque sommet de ∆ A associe un entier naturel. Nous désignons par Yam(A n ) l'ensemble des étiquetages sur T = (∆ A , s) satisfaisant certaines conditions, et nous définissons une application de lecture

ω : Yam(A n ) -→ Col q (A n ) *
1 , qui à chaque niveau horizontal de ∆ A associe une colonne définie en fonction des étiquetages de ce niveau.

Nous donnons ensuite une formule pour calculer la forme normale du mot ω(T ) pour les arbres de Yamanouchi de type A :

Théorème 5.3.12. Soit T ∈ Yam k (A n ), et q j := q j (T ) = q((k -j)j). Alors [ω(T )] = k-1 j=0 c(q j ). Explicitement on a [ω(T )] = ω([T ]) où • • • • • • • • • • q 0 q 1 -q 0 q 0 q 2 -q 1 q 3 -q 2 q 0 q 0 q 1 -q 0 q 2 -q 1 q 1 -q 0 [T ] :=
Ici, les paramètres q j sont calculés en additionnant les valeurs sur le jième brin diagonal de T en allant de droite à gauche. La notation c(q) représente la colonne c(q) = 12 • • • q.

(3)

Ce résultat est prouvé en calculant certaines règles de réécriture directement sur l'arbre. Nous obtenons alors la caractérisation suivante des mots de plus haut poids dans Col q (A n ) * 1 :

Théorème 5.3.26. L'application de lecture ω : 

Yam(A n ) -→ (Col q (A n ) * 1 ) 0 est une bijec- tion. En type C nous considérons l'arbre • • • 1 • 11 • 11 - • 12 • 12 - • 13 • 13 - • 14 • 14 - • 2 • 21 • 21 - • 22 • 23 • 23 - • 22 - • 3 • 31 • 31 - • 32 • 32 - • 4 • 41 • 41 - • 5 ∆ C = avec une application d'étiquetage s : V(∆ C ) -→ N,
Soit T ∈ Yam k (C n ), et q j := q j (T ) = q((k -j)j -). Alors [ω(T )] = k-1 j=0 c(q j ). Explicitement on a [ω(T )] = ω([T ]) où • • • q 0 • q 1 -q 0 • q 2 -q 1 • q 3 -q 2 • q 4 -q 3 • q 0 • q 1 -q 0 • q 2 -q 1 • q 3 -q 2 • q 0 • q 1 -q 0 • q 2 -q 1 • q 0 • q 1 -q 0 • q 0 [T ] = où l'étiquetage sur les sommets v = ij -est de 0.
Ici, les paramètres q i sont calculés de manière similaire au cas du type A, mais nous mettons un signe moins devant s(ij -), et la notation cons(q) est comme dans [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF]. Ce résultat est prouvé en calculant certaines règles de réécriture directement sur l'arbre. Nous obtenons alors la caractérisation suivante des mots de plus haut poids dans Col q (C n ) * 1 :

Théorème 5.5.40. L'application de lecture ω :

Yam(C n ) -→ (Col q (C n ) * 1 ) 0 est une bijec- tion.
Dans la section 5.6, nous soulignons la connexion entre les arbres de Yamanouchi de type A et les GT-patterns.

Présentations cohérentes de

Pl(A n ) et Pl(C n ). Soit Γ = A n , C n .
Dans le chapitre 6, nous utilisons les constructions des chapitre 4 et 5 pour calculer l'extension cohérente de Squier de Col(Γ ). Nous travaillons avec Col q (Γ ) et Col(Γ ) en parallèle. Nous fixons les stratégies de normalisation les plus à gauche de Col q (Γ ) et Col(Γ ), et en utilisant le Théorème 4.3.18 nous réduisons le calcul de l'extension cohérente de Col q (Γ ) et Col(Γ ) au calcul des diagrammes de confluence de la forme

[c 1 c 2 ]c 3 + 3 c ′ 1 [c 2 c 3 ] + 3 • • • + 3 d 1 d 2 d 3 $ , c 1 c 2 c 3 [-]c 3 0 8 c 1 [-] & . [c 1 c 2 c 3 ] c 1 [c 2 c 3 ] + 3 [c 1 c ′ 2 ]c 3 + 3 • • • + 3 d ′ 1 d ′ 2 d ′ 3 2 : avec c 1 c 2 c 3 ∈ Col q (Γ ) * 1 ou c 1 c 2 c 3 ∈ Col(Γ ) *
1 un mot de plus haut poids. Nous montrons ensuite qu'en calculant les formes des diagrammes de confluence pour Col q (Γ ), on obtient automatiquement les formes des diagrammes de confluence pour Col(Γ ). Enfin, nous calculons les diagrammes de confluence en utilisant les arbres de Yamanouchi, et nous obtenons les deux résultats suivants, dont le premier a déjà été prouvé par Hage et Malbos dans [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] Théorème 6.2.2. Les 3-cellules génératrices de l'extension cohérente de Squier de la présentation colonnes de Pl(A n ), sont de la forme

t ′ u ′ v t ′ α u ′ v + 3 t ′ u ′′ v ′ α t ′ u ′′ v ′ & tuv tαuv % - α tu v 1 9 t ′′ u ′′′ v ′ tu 1 v 1 α tu 1 v 1 + 3 t 1 u 2 v 2 t 1 αu 2 v 2 9 A
où certaines des flèches peuvent être des identités.

et Théorème 6.3.2. Les 3-cellules génératrices de l'extension cohérente de Squier de la présentation colonnes de Pl(C n ), sont de la forme

t ′ u ′ v tα u ′ v + 3 t ′ u ′′ v ′ α t ′ u ′′ v ′ + 3 t ′′ u ′′′ v ′ t ′′ α u ′′′ v ′ & tuv α tu v 1 9 tαuv % - t 0 u 0 v 0 tu 1 v 1 α tu 1 v + 3 t 1 u 2 v 1 t 1 αu 2 v 1 8 @
où certaines des flèches peuvent être des identités.

Enfin, nous utilisons les travaux de Dehornoy et Guiraud dans [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] pour donner des bornes supérieures sur les longueurs des séquences de réécriture dans

Col(A n ) et Col(C n ).
Notations et conventions. Dans cette thèse, nous désignons par N l'ensemble des entiers naturels incluant 0. Pour un 2-polygraphe X = (X 1 , X 2 ) présentant un monoïde M, nous désignons la classe d'équivalence de w ∈ X * 1 par [w], et l'unité dans M par ∅ pour signifier le mot vide.

CHAPTER 1 INTRODUCTION

The objective of this thesis is the study of plactic monoids by the use of rewriting theory and its interaction with the crystal structure of these monoids. Via this approach we show that given a finite convergent presentation of a plactic monoid, its coherent extension admits a kind of crystal structure compatible with the crystal structure of the monoid itself. Moreover much of the information about these coherent presentations of plactic monoids can be understood via certain maximal elements of a kind of crystal structure, called words of highest weight. We exploit this situation in types A and C by introducing combinatorial tools called Yamanouchi trees, which parameterize the words of highest weight, and use their simplified combinatorics to explicitly compute coherent presentations of the plactic monoids.

To expand on this, rewriting theory and more specifically Squier's work in [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] and later works by Malbos and Guiraud in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], describe a procedure for extending certain well-behaved presentations of categories by generators and relations to higher dimensions. The first instance of this is the passage to dimension 3, that is describing the syzygies or relations between relations. This construction depends on certain non-degenerate properties of the given presentation, namely termination and confluence which together are called convergence. Given a convergent presentation of a monoid M, with generators X 1 and oriented relations X 2 , one can extend it to a coherent presentation of M, namely a free (3, 1)-category which specifies the generators, generating relations, and generating relations between relations for such presentations. Moreover this (3, 1)-category presents the monoid M, in the sense that collapsing the cells of dimension 2 and 3, we recover the monoid M.

The plactic monoids enjoy a rich structure due to them admitting characterizations via two different approaches:

1. the crystal approach [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF] Kashiwara | On crystal bases[END_REF][START_REF] Littelmann | Paths and root operators in representation theory[END_REF][START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF]; 2. presented by generators and relations [START_REF] Lascoux | Le monoıde plaxique[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF].

The crystal approach was introduced by Kashiwara in his study of the integrable representation theory of complex quantum groups of classical type U q (g), and was later extended in the works of Littlemann to all symmetrizable complex Kac-Moody algebras. The approach by presentations has its roots in the works of Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF], Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], and Lascoux and Schützenberger [START_REF] Lascoux | Le monoıde plaxique[END_REF] for type A, and it preceded the crystal approach. Lecouvey in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF] extended many of the existing classical themes and constructions from type A to types B, C, D, in particular giving presentations of the corresponding plactic monoids by generators and relations. This approach was further extended in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF][START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] by the introduction of finite convergent presentations of plactic monoids of classical types, called the column presentations.

The column presentations open up a direction of studying the plactic monoids via rewriting theory. This approach was used by Hage and Malbos in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] to give a coherent presentation for the plactic monoid of type A.

The constructions in this thesis are done in a more general setting than that of plactic monoids. Namely we consider crystals as in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], which we call K-graphs in this work, and a tensoring operation on such objects which in particular gives a K-graph structure on the free monoid generated by the vertices of a K-graph. We consider certain congruences on the free monoid which are compatible with the Kgraph structure, and show that if such a monoid is presented by an appropriate presentation compatible with the K-graph structure, then the study of certain rewriting properties is reduced to words of highest weight. The plactic monoids of classical type and their column presentations fit into this scheme as a particular case.

The Yamanouchi trees are then used to parameterize the rewriting at words of highest weight in types A and C. These combinatorial objects were initially designed in [START_REF] Meha | C-trees and a coherent presentation for the plactic monoid of type C[END_REF] to facilitate a computation of the generating relations between relations of the column presentation of the plactic monoid of C, where the combinatorics tends to be more difficult to handle. Later they were adapted to type A as well, and in this type they bear a close resemblance to other combinatorial tools such as GT-patterns and hives, see [START_REF] Gelfand | Finite-dimensional representations of the group of unimodular matrices[END_REF][START_REF] Berenstein | Tensor product multiplicities and convex polytopes in partition space[END_REF]6].

MODELS FOR REPRESENTATION THEORY OF LIE ALGEBRAS

1.1.1. Representation theory of Lie algebras. Representation theory of complex semisimple Lie algebras was developed during the 20th century, as a continuation to the works of W. Killing and E. Cartan on the classification of finite dimensional complex semisimple Lie algebras at the conclusion of the 19th century. A key notion in the classification of representations is that of weights, which serve as sort of generalized eigenvalues.

In two papers in 1946 and 1947, E. Dynkin introduced the notion of Dynkin diagrams which express the classification of finite dimensional complex semisimple Lie algebras in terms of very simple graphs corresponding to their root systems. This classification contains four infinite families called respectively types A, B, C, and D, as well as a finite number of exceptional types E, G, and F. The corresponding Lie algebras of types A, B, C, and D are respectively denoted by sl n , o 2n , sp 2n , and o 2n+1 . Dynkin's work suggested at a combinatorial approach for describing Lie algebras and their representations, an approach which has been strongly pursued and developed since then. Concise treatments of these classical notions can be found in [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF], [START_REF] Knapp | Lie groups, Lie algebras, and cohomology[END_REF], and [START_REF] Hall | Lie groups, Lie algebras, and representations[END_REF].

1.1.2. Kac-Moody algebras and quantum groups. The construction and study of representation theory was extended to a new class of algebras introduced in the 1960s, called Kac-Moody algebras [START_REF] Kac | Simple irreducible graded Lie algebras of finite growth[END_REF], [START_REF] Moody | A new class of Lie algebras[END_REF]. The combinatorial nature of these algebras is very similar to that of semisimple Lie algebras, and many techniques and constructions of semisimple Lie algebras extend to the Kac-Moody case.

In the 1980s, motivated by certain problems in physics, Drinfeld [START_REF] Drinfel | Hopf algebras and the quantum Yang-Baxter equation[END_REF] and Jimbo [START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF] independently introduced a deformation U q (g) of the universal enveloping algebra U(g) of a complex Kac-Moody algebra g, with parameter q, and called a quantum group. The upshot of these new structures was that at q = 1 one recovers the classical semisimple Lie algebras, while at q = 0 the representation theory crystallizes, a phenomenon that was exploited by Kashiwara [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF] and Lusztig [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] to provide crystal (or canonical) bases for the integrable representations of Kac-Moody algebras.

1.1.3. The Littlewood-Richardson rule. Throughout this time, an unsolved question in the area remained the Littelwood-Richardson rule. First stated as a theorem in [START_REF] Dudley | Group characters and algebra[END_REF] for type A, it gives a combinatorial description of the multiplicities of weights ν in the tensor product V(λ) ⊗ V(µ) of two irreducible integrable representation of the Kac-Moody algebra of highest weights λ and µ respectively. A proof of this theorem in type A was only achieved in [START_REF] Schützenberger | La correspondance de Robinson[END_REF] by Schützenberger after the combinatorial theory of plactic monoids had been developed by Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF], Schützenberger [START_REF] Schützenberger | Quelques remarques sur une construction de Schensted[END_REF], and Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]. A proof for Littelwood-Richardson rule in the other classical types remained elusive until the crystal theory was introduced by Kashiwara [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF].

1.1.4. Classical types: Crystal bases. Consider a simple Lie algebra g of type A n , B n , C n , D n , and let U q (g) be the quantum group associated to g. Kashiwara in [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF] and Lusztig in [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] show that for a finite dimensional representation V of U q (g), at q = 0 the vector space V admits a crystal base B λ which is a directed labeled graph with edges labeled by the simple roots of g. This graph provides a model for the weight decomposition of the g-module V, with the vertices of the graph representing a basis of the weight-space decomposition of V, and an edge x α -→ y signifies that the weight of y is equal to the weight of x plus the simple root α. Intuitively one may view the crystal as a skeleton of the representation, encoding its weight structure. Moreover one can interpret the tensor product of two g-modules V 1 and V 2 by a notion of tensor of crystals, which is defined in purely graph theoretical terms. The tensoring of crystals gives rise to a monoid structure on the set λ h.w.

B λ

where the product x 1 * x 2 of x 1 ∈ B λ 1 and x 2 ∈ B λ 2 lies in the crystal B λ 1 ⊗ B λ 2 , and is determined by the tensor product rule crystals. This monoid is called the plactic monoid for g, and denoted by Pl(g) or Pl(Γ ), where Γ = A n , B n , C n , D n .

1.1.5. General Kac-Moody case: Littelmann path model. The crystal approach to the representation theory of complex semisimple Lie algebras was extended by Littelmann in a series of papers in the 1990s [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF][START_REF] Littelmann | Paths and root operators in representation theory[END_REF][START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF] to complex symmetrizable Kac-Moody algebras g. He achieves this by introducing a path model for such algebras. In his model, the vertices of the crystal are piecewise linear paths in an R-vector space, and the edges x α -→ y are explicitly described by geometric transformations of the paths. Using this explicit approach to the construction of crystals, Littelmann proved a Littlewood Richardson rule for the general case of symmetrizable Kac-Moody algebras, and introduced a plactic algebra associated to g. While the generalized plactic algebras are defined in terms of crystals, for the classical types A n , B n , C n , D n Littelmann gives a presentation of the corresponding plactic algebra by generators and relations in Theorem B of [START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF].

REWRITING THEORY

1.2.1. Historical overview. Rewriting theory is an area of mathematics and computer science that studies equivalence relations from a combinatorial point of view. There are many facets to this theory depending on the context on which it is defined. In a set-theoretic approach, rewriting is used to study monoids and categories via presentations by generators and relations. In a linear setting it is used to study algebras via presentations, for instance to test membership of elements in ideals in polynomial rings via Gröbner bases. Recently it has also found applications in computing linear bases in the are of categorifications.

The simplest algebraic occurrence of rewriting theory is in giving a context in which the word problem is decidable. The word problem consists of the following question, first asked in 1914 by Thue in [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln[END_REF],

Given a monoid M with a finite presentation by generators X 1 and relations X 2 , does there exist an algorithm, which for any two words u, v ∈ X * 1 , determines whether they present the same element in the monoid M?

This question was answered in the negative in 1947 independently by Post [43] and Markov [START_REF] Markov | The impossibility of certain algorithms in the theory of associative systems[END_REF].

Consider a monoid M with a presentation X = (X 1 , X 2 ) where X 1 are the generators, and X 2 are generating oriented relations. A rewriting step is a relation tuv tαv =⇒ tu ′ v, where t, v are words in X * 1 , and α : u =⇒ u ′ is an element of X 2 . Such a pair is called a 2-polygraph or a string rewriting system. If a 2-polygraph is finite, namely X 1 and X 2 are finite sets, and the two following conditions are satisfied: ⋄ (termination) there exists no infinite rewriting sequence

w 1 f 1 =⇒ w 2 f 2 =⇒ w 3 f 3 =⇒ • • • with f i rewriting steps;
⋄ (confluence) if u can be reduced to v and w via relations f, g respectively in X 2 , there exists u ′ ∈ X * 1 such that v and w reduce to u ′ via relations f ′ , g ′ respectively. Diagrammatically we present it as follows

v f ′ ! u f . 6 g ' / u ′ w g ′ ? G (1.1)
then the word problem is decidable for M. The properties of termination and confluence together are called convergence. Decidability here consists of proving that every word has a unique normal form. The existence is ensured by termination, and unicity by confluence. Finiteness ensures that verifying whether a word is a normal form can be done in finite time, as there are finitely many rewriting rules.

In this thesis we utilize rewriting theory from a set-theoretic point of view, that is we shall study certain presentations of the plactic monoids by rewriting.

Coherent presentations of monoids.

The study of coherence, namely of identifying relations between relations, is generally a difficult task. There are many approaches to attacking these questions. For instance, Loday in [START_REF] Loday | Homotopical syzygies[END_REF] describes a homotopical approach to syzygies for groups, and relates it to other approaches to syzygies, that is to Igusa pictures and homological syzygies.

A more recent approach in studying coherence and relations between relations is that via rewriting theory. In [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], Gaussent, Guiraud, and Malbos study coherent presentations of Artin monoids via this approach. More precisely, rewriting theory provides a computational approach the study of coherence and homological properties of monoids presented by convergent 2-polygraphs. One may view the data X = (X 1 , X 2 ) of a 2-polygraph as 1-and 2-dimensional information about the monoid M presented by X, called generating 1-cells and generating 2-cells respectively. However the generating relations X 2 are not necessarily free, meaning that a word w ∈ X * 1 may be reduced to a normal form via rewriting steps in multiple ways, thus one may talk about relations between relations. As is the case with the data in X, namely that X 1 is used to generate all the 1-cells, and X 2 is used to generate all the 2-cells, one searches for a set of X 3 of generating relations between relations. In the graphical presentation as above, the 1-cells, namely words, correspond to vertices, 2-cells to paths obtained by concatenating =⇒, and the relations between relations to confluence diagrams as in (1.1).

The study of coherence in this context is formalized in the setting of (3, 1)-categories, namely 3categories with all the cells of dimension 2 and 3 being invertible. Here considering the 2-and 3-cells as invertible is advantageous in the following sense. Considering a set of generating relations between relations, the generating part means that any relation between relations can be expressed in terms of the generating ones by some process that can be seen as gluing in the graphical interpretation. More precisely a coherent presentation of a monoid M is a free (3, 1)-category generated by a triple X = (X 1 , X 2 , X 3 ) such that (X 1 , X 2 ) presents M, and any confluence diagram arising from (X 1 , X 2 ) can be filled with a gluing of 3-cells from X 3 . One may view this as 3-dimensional information about the monoid M.

1.2.3. Squier's coherent completion theorem. Squier [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] describes a procedure for extending a convergent presentation X of a monoid M into a coherent presentation. This involves specifying minimal confluence diagrams, which are the confluence diagrams of critical branchings, namely objects of the form

w ′ w f / 7 g ' / w ′′
that are minimal with respect to the order (f, g) ❁ (tfu, tgu) for t, v ∈ X * 1 and f, g ∈ X 2 . Thus for a convergent presentation of a monoid, there is an algorithmic way of describing the generating relations between relations.

A point that should be addressed is the choice of the confluence diagrams of critical branchings. In [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], Guiraud and Malbos give a an approach to constructing such confluence diagrams via normalization strategies. Roughly a normalization strategy for a 2-polygraph presenting a monoid M consists of specifying representatives of the equivalence classes of M, and reduction paths for each word to the chosen representative. In case X is a reduced polygraph, namely one that has no superfluous relations in X 2 , and that the targets of the relations in X 2 are normal forms, then there exists a deterministic choice of a normalization strategy, called the leftmost normalization strategy. These constructions give an algorithmic approach to expliciting the coherent completion of a convergent polygraph.

From a homological point of view, a coherent presentation X = (X 1 , X 2 , X 3 ) of a monoid M gives rise to a partial free resolution of length 3

ZM[X 3 ] d 3 -→ ZM[X 2 ] d 2 -→ ZM[X 1 ] d 1 -→ ZM ε -→ Z -→ 0. (1.2) 
Thus one may view Squier's completion theorem along with the normalization strategies of Guiraud and Malbos as an algorithmic way for the computation of the lower dimensional homology of monoids. In fact in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], Guiraud and Malbos prove more. They extend the constructions of [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] to obtain a polygraphic resolution from convergent presentations, which when abelianized gives rise to a free resolution of the monoid M.

PRESENTATIONS OF PLACTIC MONOIDS

The plactic algebras for the general symmetrizable Kac-Moody algebras, and in particular the plactic monoids of classical type A,B,C, and D, were defined in terms of crystals in [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF] and [START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF]. However the plactic monoid of type A was introduced ahead of Kashiwara's crystal theory. The original emergence of Pl(A n ) was in terms of presentations by generators and relations. Here we recap these developments, and also the presentations for the other plactic monoids.

1.3.1. Plactic monoid of type A. Schensted in his paper [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] of 1961 considered the problem of identifying the lengths of the longest non-decreasing and increasing subwords of a given word w in a totally ordered alphabet A n = {1, 2, . . . , n}. To answer this question, he constructed an algorithm, which today bears his name, namely Schensted's algorithm. This is an algorithm that to each word w in such an alphabet associates a semi-standard Young tableaux, that is an object of the form with entries from A n such that they are weakly increasing along rows, and strictly increasing along columns. Then Schensted answers his question by identifying the length of the longest non-decreasing (respectively increasing) subwords of w by the number of rows (respectively columns) of the resulting tableau P(w).

Knuth in his article [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] of 1970 identified generating relations in A * n which generate the congruence ∼ define by w ∼ w ′ if P(w) = P(w ′ ). These generating relations are yzx ≡ yxz for x ≤ y < z, xzy ≡ zxy for x < y ≤ z, and are called the Knuth relations. In 1981 in [START_REF] Lascoux | Le monoıde plaxique[END_REF], Lascoux and Schützenberger formalized these ideas by introducing the plactic monoid (of type A) as the quotient Lecouvey's insight in extending these notions to other types was to consider column point of view, rather than a row point of view as was the case for the classical developments for Pl(A n ). More precisely his constructions are phrased in terms of admissible columns, a notion introduced by Kashiwara and Nakashima in [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF]. The column and row approaches are in some sense dual to one another, as noted by Lebed in [START_REF] Lebed | Plactic monoids: a braided approach[END_REF] and Hage and Malbos in [START_REF] Hage | Coherence of monoids by insertions and Chinese syzygies[END_REF].

Pl(A n ) = (A * n / ∼).
1.3.3. Column presentations of plactic monoids. In the 2010s a rewriting approach to the study of plactic monoids was employed by Bokut, Chen, Chen, and Li in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF], Hage in [START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF], Hage and Malbos in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], and Cain, Gray, and Malheiro in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]. The latter of these introduces finite convergent presentations Col(Γ ) = (Col(Γ ) 1 , Col(Γ 2 )) for the plactic monoids Pl(Γ ), where Γ = A n , B n , C n , D n , G 2 , called the column presentations. Here the approach is again column-based, following the work of Lecouvey, the generators are the admissible columns in the particular type, denoted c, and the relations are of the form

c 1 c 2 =⇒ (c 1 ←-c 2 ),
where (c 1 ←-c 2 ) is the column insertion of c 2 into c 1 , as defined by Lecouvey in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF]. A useful observation in the proofs of [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] is that in types A, B, C, and D the word (c 1 ←-c 2 ) consists of at most 2 columns, making the presentation almost quadratic.

In [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] Hage and Malbos extended the column presentation for Pl(A n ) into a coherent presentation, showing that the generating relations between relations are of the form

t ′ u ′ v t ′ α u ′ v + 3 t ′ u ′′ v ′ α t ′ u ′′ v ′ ' tuv tαuv % - α tu v 1 9 t ′′ u ′′′ v ′ . tu 1 v 1 α tu 1 v 1 + 3 t 1 u 2 v 2 t 1 αu 2 v 2 9 A

THESIS SUMMARY AND MAIN CONTRIBUTIONS

This thesis is concerned with the study of plactic monoids via rewriting theory, with particular focus on the interaction of the two ways to describe these monoids, namely:

1. via crystals;

2. via convergent presentations.

We show that Squier's completion procedure for the column presentation can be reduced to a completion at highest weight, and we introduce combinatorial tools in types A and C which parameterize the words of highest weight. This way we reduce the study of rewriting properties of these presentations to combinatorics of words of highest weight. The notion of K-graphs has been adapted from the notion of crystals as in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]. They are more general than crystals in the sense of Kashiwara, as we impose no weight axioms. We show that the category Graph K is closed under taking subobjects, direct sums, and tensor products. The tensor product in Graph K is adapted from the tensor product of crystals, and we note Graph K is a monoidal category.

1.4.3. K-monoids. In the second part of Chapter 3 we introduce the category of K-monoids, denoted Mon K , whose objects M are monoids with an underlying K-graph structure, such that the product of M is compatible with the tensor product of its underlying K-graph. We construct two functors T, C : Graph K -→ Mon K for which T (Γ ) is a free K-monoid, and C(Γ ) is the minimal K-monoid containing the K-graph Γ . The K-monoid C(Γ ) is defined via a congruence ∼ Γ which identifies any two isomorphic connected components of T (Γ ). We then characterize all objects M of Mon K as M = (T (Γ )/ ∼) for some Γ ∈ Graph K , where ∼ is a subcongruence of the congruence ∼ Γ which defines the monoid C(Γ ).

A class of K-graphs of particular interest is that of proper K-graphs. These are those K-graphs such that each connected component of T (Γ ) contains a unique word of highest weight. In that case, for Γ 1 a K-subgraph of T (Γ ), we denote the subset of Γ 1 consisting of words of highest weight by Γ 0 1 . We show that the crystal bases of classical type are all proper K-graphs, and moreover we obtain the following result for the column presentations of the plactic monoids. 1.4.4. Presentations of K-monoids. In Chapter 4 we introduce a notion of a 2-polygraph adapted to the category of K-monoids, called K-2-polygraphs. These are 2-polygraphs such that their defining data, namely the 1-cells, 2-cells, and the source and target maps are all in Graph K . We show that K-2polygraphs present objects of Mon K . We show that the K-graph structure of a K-2-polygraphs extends compatibly to its set of rewriting sequences. We use this observation to show that for a proper K-2polygraph, namely one where the set of 1-cells is a proper K-graph, proving the rewriting properties of termination, confluence, and local confluence is reduced to proving these properties for words of highest weight.

In Section 4.3 we extend the K-graph structure of a K-2-polygraph X, to the free (2, 1)-category X ⊤ 2 generated by X. Further we interpret Squier's coherence theorem for proper K-2-polygraphs by showing that the coherent extension is entirely determined by the generating 3-cells whose sources are words of highest weight. We phrase this in terms of normalization strategies as follows:

Theorem 4.3.18. Let X = (X 1 , X 2 ) be a convergent proper K-2-polygraph and X the Kmonoid it presents. Let r 0 : X -→ (X * 1 ) 0 be a section at highest weight, and σ 0 : (X * 1 ) 0 -→ (X ⊤ 2 ) 0 a normalization strategy at highest weight. Let Λ be the set of confluence diagrams of Crit(R) 0 determined by σ 0 (u). Then for

K.Λ = {k.A | k ∈ K X , A ∈
Λ} where e i .(f, g) = (e i .f, e i .g), the 3-polygraph (X 1 , X 2 , K.Λ) is a coherent presentation for X. This result along with Theorem 3.4.4 reduces the problem of computing the coherent extensions of Col(Γ ), for Γ = A n , B n , C n , D n to the computation of the confluence diagrams of critical branchings at highest weight. This reduced task is in general more manageable than computing the confluence diagrams of all critical branchings. Indeed, the problem is of a combinatorial nature, and this reduction means that one has to only work with the combinatorics of each type at highest weight. We facilitate a solution for this reduced problem in Chapter 5 by introducing tools for highest weight combinatorics in types A and C. 1.4.5. Quadratic plactic monoids. Following Theorem 4.3.18, in order to compute the coherent extension of the column presentations Col(Γ ) for Γ = A n , B n , C n , D n , one needs to have a good understanding of the words of highest weight in Col(Γ ) * 1 and the rewriting rules on such words. It turns out that a more practical setting for understanding these notions is offered by an adapted quadratic version of the column presentation and plactic monoid respectively. The reason for this is that Col(Γ ) is almost quadratic, meaning that words of length 2 are rewritten into words of length less than or equal to 2, and in parameterizing words of highest weight it is more convenient to have rewriting rules that preserve length.

For this purpose in Section 4.5 we introduce the quadratic column presentation, denoted Col q (Γ ), with the superscript q signifying quadraticity, which is obtained from Col(Γ ) by adding a generator ǫ signifying an empty column, and adding rewriting rules which ensure ǫ is a non-factor in computing normal forms. The approach of considering an adapted quadratic presentation is one that appears in Dehornoy and Guiraud's study of quadratic normalization strategies in [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF], and in Lebed's study of the plactic monoid of type A via braidings in [START_REF] Lebed | Plactic monoids: a braided approach[END_REF], which in fact was the motivation for our definition.

We then show that Col q (Γ ) is a proper finite convergent K-2-polygraph, hence one can use Theorem 4.3.18 to study its coherent extension.

1.4.6. Yamanouchi trees. In Chapter 5 we introduce a graphical tool, called the Yamanouchi trees, which serve the two following purposes: i) they parameterize the words of highest weight in Col q (A n ) * 1 and Col q (C n ) * 1 ;

ii) certain rewriting rules of the K-2-polygraphs Col q (A n ) and Col q (C n ) can be computed directly on the Yamanouchi trees.

In type A, we consider the tree ∆ A = along with labelings s : V(∆ A ) -→ N, which to each vertex of ∆ A associate a natural number. We denote by Yam(A n ) the set of labelings on T = (∆ A , s) satisfying certain conditions, and we define a reading map

ω : Yam(A n ) -→ Col q (A n ) * 1 ,
which to each horizontal level of ∆ A associates a column defined in terms of the labelings on that level. We then give a formula for computing the normal form of the word ω(T ) in Col q (A n ) * 1 :

Theorem 5.3.12. Let T ∈ Yam k (A n ), and set q j := q j (T ) = q((kj)j). Then

[ω(T )] =

k-1 j=0 c(q j ).

Explicitly we have [ω(T )] = ω([T ])

where

• • • • • • • • • • q 0 q 1 -q 0 q 0 q 2 -q 1 q 3 -q 2 q 0 q 0 q 1 -q 0 q 2 -q 1 q 1 -q 0 .
[T ] := Here the parameters q j , called the valuations of T , are computed by summing the values on the j-th diagonal strand ւ of T , numbered from left to right. The notation c(q) for q ∈ A n stands for the column

c(q) = 12 • • • q. (1.3)
This result is proved by computing certain rewriting rules directly on the tree. We then obtain the following characterization of the words of highest weight in Col q (A n ) * 1 :

Theorem 5.3.26. The map ω :

Yam(A n ) -→ (Col q (A n ) * 1 ) 0 is a bijection.
In type C we consider the tree

• • • 1 • 11 • 11 - • 12 • 12 - • 13 • 13 - • 14 • 14 - • 2 • 21 • 21 - • 22 • 23 • 23 - • 22 - • 3 • 31 • 31 - • 32 • 32 - • 4 • 41 • 41 - • 5 ∆ C =
along with a labeling s : V(∆ C ) -→ N, which to each vertex of ∆ C associates a natural number. We denote by Yam(C n ) the set of labelings on T = (∆ C , s) satisfying certain conditions, and we define a reading map ω :

Yam(C n ) -→ Col q (C n ) * 1
which to each horizontal level of ∆ C associates an admissible column defined in terms of the labelings on that level. We then give a formula for computing the normal form of the word ω(T ) in Col q (C n ) * 1 :

Theorem 5.5.25. Let T ∈ Yam k (C n ), and set q j := q j (T ) = q((kj)j -). Then

[ω(T )] =

k-1 j=0 c(q j ).

Explicitly we have [ω(T )] = ω([T ])

where

• • • q 0 • q 1 -q 0 • q 2 -q 1 • q 3 -q 2 • q 4 -q 3 • q 0 • q 1 -q 0 • q 2 -q 1 • q 3 -q 2 • q 0 • q 1 -q 0 • q 2 -q 1 • q 0 • q 1 -q 0 • q 0 [T ] =
with the labeling on the vertices of from v = ij -being 0.

Here the parameters q i , called valuations of T , are computed similarly to the type A case, but we set a minus sign in front of s(ij -), and the notation c(q) is as in (1.3). This result is proved by computing certain rewriting rules directly on the tree. We then obtain the following characterization of the words of highest weight in Col q (C n ) * 1 :

Theorem 5.5.40. The map ω : Yam(C n ) -→ (Col q (C n ) * 1 ) 0 is a bijection. In Section 5.6 we point out the connection between the Yamanouchi trees of type A and GT-patterns.

1.4.7. Coherent presentations for Pl(A n ) and Pl(C n ). Let Γ = A n , C n . In Chapter 6 we use the constructions of Chapter 4 and 5 to compute Squier's coherent extension of Col(Γ ). We work with Col q (Γ ) and Col(Γ ) in parallel. We fix the leftmost normalization strategies of Col q (Γ ) and Col(Γ ), and using Theorem 4.3.18 we reduce the computation of the coherent extension of Col q (Γ ) and Col(Γ ) to the computation of the shapes of the confluence diagrams of the form

[c 1 c 2 ]c 3 + 3 c ′ 1 [c 2 c 3 ] + 3 • • • + 3 d 1 d 2 d 3 $ , c 1 c 2 c 3 [-]c 3 0 8 c 1 [-] & . [c 1 c 2 c 3 ] c 1 [c 2 c 3 ] + 3 [c 1 c ′ 2 ]c 3 + 3 • • • + 3 d ′ 1 d ′ 2 d ′ 3 2 :
with c 1 c 2 c 3 ∈ Col q (Γ ) * 1 or c 1 c 2 c 3 ∈ Col(Γ ) * 1 a word of highest weight. We then show that computing the shapes of the confluence diagrams for Col q (Γ ) one obtains automatically the shapes of the confluence diagrams for Col(Γ ). Finally we compute the confluence diagrams using Yamanouchi trees, and we obtain the two following results, the first of which has already been proven by Hage and Malbos in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]. Theorem 6.2.2. The generating 3-cells of Squier's coherent extension of the column presentation for Pl(A n ) are of the form

t ′ u ′ v t ′ α u ′ v + 3 t ′ u ′′ v ′ α t ′ u ′′ v ′ & tuv tαuv % - α tu v 1 9 t ′′ u ′′′ v ′ tu 1 v 1 α tu 1 v 1 + 3 t 1 u 2 v 2 t 1 αu 2 v 2 9 A
where we allow for some of the arrows to be the identity. and Theorem 6.3.2. The generating 3-cells of the Squier's coherent extension of the column presentation for Pl(C n ) are of the form

t ′ u ′ v tα u ′ v + 3 t ′ u ′′ v ′ α t ′ u ′′ v ′ + 3 t ′′ u ′′′ v ′ t ′′ α u ′′′ v ′ & tuv α tu v 1 9 tαuv % - t 0 u 0 v 0 tu 1 v 1 α tu 1 v + 3 t 1 u 2 v 1 t 1 αu 2 v 1 8 @
where we allow for some of the arrows to be the identity.

Finally we use the work of Dehornoy and Guiraud in [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] to give upper bounds on the lengths of rewriting sequences in Col(A n ) and Col(C n ).

1.4.8. Notation and conventions. In this thesis by N we denote the set of natural numbers including 0. For a 2-polygraph X = (X 1 , X 2 ) presenting a monoid M, we denote the equivalence class of w ∈ X * 1 by [w], and the unit in M by ∅ to signify the empty word.

CHAPTER 2 PRELIMINARIES

In this chapter we recall the main notions of the two areas of study around which this thesis is centered, that is rewriting theory and plactic monoids. This chapter is intended as a collection of the alreadyexisting relevant constructions and theorems in these areas, and provides the framework for phrasing the main results and contributions of this thesis.

In the first section of this chapter we recall the basic notions of rewriting theory, presentations of categories by 2-polygraphs, and coherent presentations of categories. We begin by recalling the first notion of rewriting theory, namely abstract rewriting systems (ARS). There are two properties of an ARS called termination and confluence, which, informally, qualify the ARS as non-degenerate. An ARS that satisfies these two properties is called convergent. We recall the notion of branchings of an ARS and in Theorem 2.1.12 we recall Newman's Lemma which states that under the termination hypothesis, an ARS is confluent if and only if it is locally confluent. Further on, we recall the notion of a 2-polygraph X which is a combinatorial data encoding presentations of categories by generators and oriented relations. To each 2-polygraph X one associates a rewriting system R(X) via which one formalizes the notions of termination and (local) confluence of a 2-polygraph. We recall the notion of critical branchings, which are branchings that are minimal with respect to a certain order on the source of the rewriting rules. The Critical Pair Lemma, stated in Theorem 2.1.25 asserts that a 2-polygraph X is locally confluent if and only if all of its critcal branchings are confluent. Generalizing the notion of a 2-polygraph, we recall the notion of a (3, 1)-polygraph which is a combinatorial data encoding presentations of 1-categories by generators, oriented relations, and oriented relations between relations. In particular the (3, 1)-polygraphs provide a framework for defining the notion of a coherent presentation of categories. We then recall Squier's coherent completion Theorem 2.1.31 which extends a convergent 2-polygraph X into a (3, 1)-polygraph, with the generating relations between relations obtained by the confluence diagrams of the critical branchings of X.

In the second section of this chapter we recall the relevant notions about plactic monoids. We begin by giving a brief historical overview of the definition of the plactic monoid Pl(A n ), highlighting the work of Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF], Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], and Lacoux and Schützenberger [START_REF] Lascoux | Le monoıde plaxique[END_REF]. We then discuss Kashiwara's work in [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF], where he defines a more general class of plactic monoids, with particular focus on the types A n , B n , C n , D n . These constructions were originally done in terms of Kashiwara's theory of crystal bases, though in this chapter we express them in the style of Cain, Gray, Malheiro as in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], which is a graph-theoretical approach without reference to representation theory. We then recall Lecouvey's work in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF] where he realized the plactic monoids Pl(B n ), Pl(C n ), and Pl(D n ) in the style of Knuth, that is by generators and relations. Finally we recall the column presentations of the plactic monoids Pl(A n ), Pl(B n ), Pl(C n ), and Pl(D n ) as introduced in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]. These are reduced, finite, convergent 2-polygraphs presenting the plactic monoids, hence one can study the monoids by means of rewriting theory.

REWRITING THEORY AND POLYGRAPHS

2.1.1. Abstract rewriting systems. Here we recall the main notions of rewriting theory. A more complete exposition can be found in [START_REF] Baader | Term rewriting and all that[END_REF][START_REF] Willem | Term rewriting systems from Church-Rosser to Knuth-Bendix and beyond[END_REF].

We begin with the following basic notion of rewriting theory.

Definition 2.1.2. An abstract rewriting system (ARS for short) is the data (A, →), where A is a set, and → is a binary relation on A.

For a pair (a, b) ∈ A × A in the relation →, we write a → b, and call it a rewriting step of (A, →). We call a the source and b the target of the rewriting step. A sequence (finite or infinite) of the form

a 1 → a 2 → • • • → a k → • • • , (2.1) 
with a i ∈ A for i ∈ N, and a i → a i+1 rewriting steps, is called a rewriting sequence. We call a i the i-th entry of s. If the relation → contains finitely many elements, we call (A, →) finite. For a rewriting system (A, →), we denote by Step(A), Seq fin (A), and Seq(A) respectively the set of rewriting steps, the set of finite rewriting sequences, and the set of rewriting sequences of (A, →). For an abstract rewriting system (A, →) we have a natural length function on Seq(A) which to a rewriting sequence s associates its length denoted |s|, which could be infinite. Note that we can write

Step(A) = {s ∈ Seq(A) | |s| = 1} and Seq fin (A) = {s ∈ Seq(A) | |s| < ∞}.
The set of rewriting sequences is naturally equipped with a source map

s : Seq(A) -→ A by mapping a rewriting sequence a 1 → a 2 → • • • ∈ Seq(A) to a 1 ∈ A. The target map t : Seq fin (A) -→ A
is similarly defined by mapping a finite rewriting sequence

a 1 → • • • → a k to a k . For a rewriting system (A, →), its dual (A, →) ∨ := (A, ←) is the ARS defined by a ← b if and only if a → b.
Example 2.1.3. Consider the abstract rewriting system D = (N, →) where the relations are

n → d if d is a non-trivial divisor of n.
This is an ARS, and we note that

Seq(A) = {n = d 0 → d 1 → • • • → d k | d i divides d i-1 , and 1 < d i-1 < d i , for i = 1, 2, . . . , k}.
For instance 12 → 6 → 3 is a rewriting sequence of length 2 in D.

2.1.4. Termination. We recall the following property of abstract rewriting systems.

Definition 2.1.5. An abstract rewriting system (A, →) is terminating if Seq(A) = Seq fin (A).

Example 2.1.6. Consider the abstract rewriting system D as in Example 2.1.3. Then D is terminating. Indeed, we see that a rewriting step a → b implies a > b, thus by a descent argument, every rewriting sequence must terminate. The dual rewriting system D ∨ is not terminating, as the rewriting sequence

2 → 2 2 → • • • → 2 n → • • • shows.
2.1.7. Branchings. A branching of an ARS (A, →) is a pair of rewriting sequences (f, g) in Seq fin (A) with the same source. Graphically we present branchings as follows

c a f P P g C C b.
If f and g are rewriting steps, we call (f, g) a local branching. We denote by Br(A) and LBr(A) respectively the sets of branchings and local branchings of A. 2.1.9. Confluence. A branching (f, g) of (A, →) is called confluent if there exists a pair of finite rewriting sequences (p, q) such that

s(p) = t(f), s(q) = t(g), t(p) = t(q).
Graphically we present this by a 1 p ( (

a f P P g D D a 3 a 2 q d d (2.2)
and call it a confluence diagram of (f, g).

We recall the two following properties of abstract rewriting systems.

Definition 2.1.10. An abstract rewriting system (A, →) is (locally) confluent if every (local) branching of (A, →) is confluent.

Example 2.1.11. Consider the abstract rewriting system D as in Example 2.1.3. We claim that D is not locally confluent. Indeed, for p, q ∈ N distinct prime numbers, the local branching p pq

P P D D q (2.3)
does not admit a confluence diagram. However if we modify D into a new ARS, denoted D ′ , by including rewriting steps n → 1 for all n ∈ N, then the branching in 2.3 can be completed into the following confluence diagram in

D ′ p ' ' pq Q Q C C 1. q h h
Note that the notion of a locally confluent rewriting system is weaker than that of a confluent rewriting system. Nevertheless, these two notions happen to coincide under the hypothesis of termination. This result is due to Newman [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF] from 1942, and is one of the early classical results in the area of rewriting theory.

Theorem 2.1.12 ([42], Newman's Lemma). Let (A, →) be a terminating abstract rewriting system. Then (A, →) is confluent if and only if it is locally confluent.

2.1.13. Normal forms and convergence. An element a ∈ A is called a normal form (or simply normal) if there exist no rewriting steps with source a. We denote by Nf(A) the set of normal forms of the rewriting system (A, →). The rewriting system (A, →) is normalizing if for any a ∈ A, there exists a rewriting sequence f ∈ Seq fin (A) such that s(f) = a, and t(f) ∈ Nf(A), that is if a can be rewritten into a normal form. If every a ∈ A admits a unique normal form, we say (A, →) is uniquely normalizing. We recall now a key property of abstract rewriting systems, and a consequence of said property. In what follows, we recall a generalized notion of abstract rewriting system, which meshes rewriting theory with presentations of lower dimensional categories, and in particularly presentations of monoids.

2.1.17. 1-polygraphs. A 1-polygraph is a pair of sets X = (X 0 , X 1 ) along with source and target maps

X 0 t 0 ← -- ← -- s 0 X 1 .
One may view a 1-polygraph X as a directed graph. We note that there is a bijective correspondence between 1-polygraphs and abstract rewriting systems, given by

{1 -polygraphs} ←→ {Abstract rewriting systems} X = (X 0 , X 1 ) -→ (X 0 , {s 0 (f) -→ t 0 (f) | f ∈ X 1 } ). (2.4)
We call the elements of X 0 the generating 0-cells of X, and the elements of X 1 the generating 1-cells of X.

The elements of Seq(X) are called 1-cells of X. We call X finite if both X 0 and X 1 are finite. In particular, by the correspondence in 2.4, the notions and properties of abstract rewriting systems can be carried over to 1-polygraphs. This theme remains relevant when we consider higher dimensional polygraphs.

2.1.18. Free categories from 1-polygraphs. Let X = (X 0 , X 1 ) be a 1-polygraph. We define the free 1-category generated by X, denoted by X * 1 , as follows: ⋄ objects are the elements of X 0 ; ⋄ for x, y ∈ X 0 , the corresponding hom-space is given by hom

X * 1 (x, y) = {f ∈ Seq fin (X) | s(f) = x, t(f) = y};
⋄ identities are the empty rewriting sequences;

⋄ composition is given by concatenation of rewriting sequences.

A particular case of this construction is when the 1-polygraph X has a single 0-cell, that is X 0 = { * }. In that case, the free 1-category X * 1 generated by X is simply the free monoid generated by X 1 . Given a category C and a 1-polygraph X, we say that X generates C if there exists an functor π :

X * 1 -→ C such that ⋄ π is the identity on the 0-cells, ⋄ for any x, y ∈ X 0 , the map π : hom X * 1 (x, y) -→ hom C (x, y) is a surjective.
If X is a finite 1-polygraph, we say that C is finitely generated.

Congruences on categories.

A sphere in a category C is a pair γ = (f, g) of 1-cells in C such that s 0 (f) = s 0 (g) and t 0 (f) = t 0 (g). We call such 1-cells f and g parallel, and we note that by definition, there exist 0-cells x, y of C such that f, g ∈ hom C (x, y).

We call f the source of γ, and g the target of γ. Graphically we present a sphere γ = (f, g) by an arrow γ =⇒ as follows

x f 4 4 g Y Y y. γ (2.5)
A congruence on a category C is an equivalence relation ∼ on the parallel 1-cells of C that is compatible with the composition in C, i.e. such that for any 1-cells w ∈ hom C (u, x), f, g ∈ hom C (x, y), and

w ′ ∈ hom C (y, z) such that f ∼ g, we have w ⋆ f ⋆ w ′ ∼ w ⋆ g ⋆ w ′ .
Graphically this means that if the sphere in (2.5) is in the relation ∼, then the sphere w⋆γ⋆w ′ , graphically

z x G G w f 4 4 g `y γ t, G G w ′
is also in the relation ∼.

Given a congruence ∼ on C, we define the quotient category of C by the congruence ∼, denoted C/ ∼, as follows:

⋄ objects of C/ ∼ are the objects of C; ⋄ for 1-cells x, y, the corresponding hom-space is given by hom C/∼ (x, y) = (hom C (x, y)/ ∼) .

A cellular extension of C is a collection of spheres of C, or more precisely it is a set Ω along with 1-source and 1-target maps

C t 1 ← -- ← -- s 1 Ω
such that for any γ ∈ Ω, the pair (s 1 (γ), t 1 (γ)) is a sphere of C. This condition can be described by the globular relations

s 0 s 1 = s 0 t 1 , t 0 s 1 = t 0 t 1 .
Given a cellular extension Ω of C, consider the congruence generated by Ω, denoted ∼ Ω , which is the smallest congruence on the 1-cells of C such that s 1 (γ) ∼ Ω t 1 (γ) for all γ ∈ Ω. The quotient category C/ ∼ Ω is then denoted by C/Ω. The canonical projection is denoted by π Ω : C -→ C/Ω, and we denote the images under π simply as u := π Ω (u) for u an object or morphism of C.

We remark here that the notion of a cellular extension provides a natural framework for considering oriented generating relations in the presentations of categories. If the category C has a single 0-cell, i.e. is a monoid, we have that ∼ Ω is a congruence on the monoid, and C/Ω is the corresponding quotient monoid of C. Moreover, if we consider a triple X = (X 0 , X 1 , Ω), with (X 0 , X 1 ) a 1-polygraph with a single 0-cell, and Ω a cellular extension of the free monoid X * 1 , we can then consider the pair (X 1 , Ω) as generators and oriented relations for the monoid X * 1 /Ω. Objects of this form are the topic of the following subsection.

2-polygraphs.

Here we recall the notion of a 2-polygraph, as briefly described at the end of the previous subsection.

Definition 2.1.21. A 2-polygraph is a triple X = (X 0 , X 1 , X 2 ) such that (X 0 , X 1 ) is a 1-polygraph, and X 2 is a cellular extension of the free category X * 1 . Thus a 2-polygraph X is a 2-graph X 0 t 0 ← -- ← -- s 0 X * 1 t 1 ← -- ← -- s 1 X 2
whose 0-cells and 1-cells form a free category, and the globular relations

s 0 s 1 = s 0 t 1 , t 0 s 1 = t 0 t 1 are satisfied. The elements of X 2 are called generating 2-cells of X. Given a 2-polygraph X = (X 0 , X 1 , X 2
), the category presented by X is defined as the quotient category

X := X * 1 /X 2 .
The 0-cells X 0 of X are the objects of X; the 1-cells X 1 of X are the generating morphisms of X; and the 2-cells X 2 of X are the generating relations between the morphisms of X.

2.1.22. Free 2-categories from 2-polygraphs. Similar to how 1-polygraphs are used to generate free 1-categories, a 2-polygraph can be used to produce a generate 2-category. More precisely, given a 2polygraph X = (X 0 , X 1 , X 2 ), the free 2-category generated by X, denoted X * 2 , is the 2-category defined as follows:

⋄ objects of X * 2 are the 0-cells of X;

⋄ for x, y ∈ X 0 , the hom-space hom X * 2 (x, y) is equipped with a categorical structure as follows:

⋄ objects of hom X * 2 (x, y) are the 1-morphisms hom X * 1 (x, y) in X * 1 ; ⋄ the morphisms in hom X * 2 (x, y) are generated by X 2 , i.e. are of the form w ⋆ 0 α ⋆ 0 w ′ for w, w ′ ∈ X * 1 and α : f =⇒ g ∈ X 2
, which we graphically present as

z x G G w f 4 4 g `y α t, G G w ′
and then quotiented by the congruence on hom X * 2 (x, y) generated by the cellular extension consisting of the relations

(A1) αwv ⋆ 1 u ′ wβ ∼ uwβ ⋆ 1 αwv ′ (2.6) for α : u =⇒ u ′ , β : v =⇒ v ′ in X 2 , and w ∈ X * 1 .
⋄ for x ∈ X 0 , the identity 1-cell 1 x is that of X * 1 ;

⋄ the ⋆ 0 composition of 2-cells is given by

(u 1 α 1 u ′ 1 ⋆ 1 • • • ⋆ 1 u m α m u ′ m ) ⋆ 0 (v 1 β 1 v ′ 1 ⋆ 1 • • • ⋆ 1 v n β n v ′ n ) (A2) = u 1 α 1 u ′ 1 v 1 s(β 1 )v ′ 1 ⋆ 1 • • • ⋆ 1 u m α m u ′ m v 1 s(β 1 )v 1 ⋆ 1 • • • ′ ⋆ 1 u m t(α m )u ′ m v 1 β 1 v ′ 1 ⋆ 1 • • • ⋆ 1 u m t(α m )u ′ m v n β n v ′ n .
(2.7)

2.1.23. Rewriting with 2-polygraphs. Let X = (X 0 , X 1 , X 2 ) be a 2-polygraph. We consider the rewriting system R(X) := (X * 1 , =⇒ X 2 ), where the rewriting steps are of the form wαw ′ :

wfw ′ =⇒ X 2 wgw ′ for w, w ′ ∈ X * 1 and α : f =⇒ g ∈ X 2 . Graphically this looks like z x G G w f 4 4 g `y α t. G G w ′
Via R(X) we carry over notions of ARS to 2-polygraphs. More precisely, we say that the 2-polygraph X has a rewriting property P if its associated rewriting system R(X) has the rewriting property P. Thus in particular, we have notions of Step(X), Seq(X), Br(X), and also of a terminating 2-polygraph, and a (locally) confluent 2-polygraph This approach of associating a rewriting system to a 2-polygraph, allows one to measure certain non-degeneracy aspects of the presentation. If the 2-polygraph is convergent one can then deduce low dimensional homological and homotopical properties of the object it presents, see [START_REF] Squier | A finiteness condition for rewriting systems[END_REF].

2.1.24. Branchings of a 2-polygraph. Let X = (X 0 , X 1 , X 2 ) be a 2-polygraph. We explicit the notions of branchings of the 2-polygraph X as indicated in the previous paragraph.

A branching of X is a branching of the rewriting system R(X), i.e. it is a pair of 1-cells (f, g) ∈ X * 1 with same source. Graphically we present this as

v u f -5 g ( 0 w.
If f and g are rewriting steps, we call it a local branching.

If there exist 2-cells f ′ , g ′ such that s 1 (f ′ ) = t 1 (f), s 1 (g ′ ) = t 1 (g), and t 1 (f ′ ) = t 1 (g ′ ),
we call the branching confluent. Graphically this looks like

v f ′ " u f . 6 g ' / u ′ . w g ′ > F
We distinguish the different types of local branchings. They belong to one of the following families:

⋄ aspherical u f f ? G v
with f a rewriting step;

⋄ orthogonal/Peiffer u ′ v uv fv / 7 ug ' / uv ′
with f, g rewriting steps;

⋄ overlapping as the remaining branchings. Graphically these are presented as

t ′ u ′ v tuv fv / 7 tg & . tu ′′ v ′ ,
with f, g rewriting steps with sources s 0 (f) = tu and s 0 (g) = uv.

The aspherical branchings do not reveal much about the nature of X as they are trivial. Further for the Peiffer branchings, by the relation (2.6), it can be trivially completed into a confluence diagram

u ′ v 1 u ′ ⋆ 0 g % uv f⋆ 0 1v / 7 1u⋆ 0 g ' / u ′ v ′ . uv ′ f⋆ 0 1 v ′ [ c
Thus the overlapping branchings are the ones that should contain crucial information about X. This is made precise in Theorem 2.1.25 below. Denote by LBr(X) the set of local branchings of the 2-polygraph X. Consider the partial order ⊑ on LBr(X) generated by the relations

(f, g) ⊑ (ufv, ugv) for (f, g) ∈ LBr(X) and u, v ∈ X *
1 . An overlapping local branching that is minimal with respect to the order ⊑ is called a critical branching or a critical pair. We denote the set of critical branchings of the polygraph X by Crit(X). We note that a 2-polygraph has two types of critical branchings:

⋄ inclusion branchings w & & t G G u 1 u u u G G v G G , α J R β ⋄ overlapping branchings K S α w ′ " " t G G w ′′ q q u G G v G G . β
The following result shows how the critical branchings of a polygraph X store crucial information about X. This result along with Newman's Lemma 2.1.12 shows that a terminating 2-polygraph X is confluent if and only if all of its critical branchings are confluent.

2.1.26. Free (2,1)-categories from 2-polygraphs. Let X be a 2-polygraph. In the previous section we have seen how to generate a free 2-category by X. Here we shall use X to generate another type of a free 2-category, that is a free (2, 1)-category. One can think of this as a generalization of the concept of how a presentation of a monoid can also be used as a presentation of a group.

A (2, 1)-category is a 2-category C whose 2-cells are invertible for the 1-composition. More precisely, for any 2-cell f :

u =⇒ v there exists a 2-cell f -: v =⇒ u such that f ⋆ 1 f -= 1 u , f -⋆ 1 f = 1 v . Given a 2-polygraph X, consider its dual 2-polygraph X -:= (X 0 , X 1 , X - 2 )
, where X - 2 consists of rewriting steps of the form t 1 (α) =⇒ s 1 (α) for α ∈ X 2 . Then the free (2,1)-category generated by X is defined as follows:

⋄ the 0-cells and 1-cells of X ⊤ 2 are those of X * 2 ;

⋄ for x, y ∈ X * 1 , the corresponding hom-space is given as the quotient category

hom X ⊤ 2 (x, y) := hom (X⊔X -) * (x, y)/Inv(X 2 ),
where X ⊔ X -:= (X 0 , X 1 , X 2 ⊔ X - 2 ) and Inv(X 2 ) is a cellular extension of (X ⊔ X -) * consisting of the relations

uαv ⋆ 1 uα -v ∼ 1 us(α)v and uα -v ⋆ 1 uαv ∼ 1 ut(α)v for u, v ∈ X * 1 and α ∈ X 2 .
We note that by definition, every 2-cell of X ⊤ 2 is invertible. Moreover for u, v ∈ X we have u = v if and only if there exists a 2-cell f : u =⇒ v in X ⊤ 2 . Note that such a 2-cell is a zig-zag rewriting sequence composed of the rewriting steps of X 2 , i.e. is of the form

u = u 1 α 1 =⇒ u 2 α 2 ⇐= u 3 α 3 =⇒ • • • α k ⇐= u k+1 = v. 2.1.27. Congruences on 2-categories. Let C be a 2-category. A 2-sphere of C is a pair (f, g) of 2-cells of C such that s 1 (f) = s 1 (g) = p and t 1 (f) = t 1 (g) = q,
for some p, q ∈ X * 1 , that is f, g are parallel 2-cells. Graphically this looks as follows

x p 8 8 q V V y. f g (2.8) 
A congruence on the 2-category C is an equivalence relation ∼ on the parallel 2-cells of C, i.e. the relations are of the form f ⇛ g, which we present graphically as

x p 8 8 q V V y, f g α * 4
(2.9) such that for any 2-cells h, k such that h ⋆ 1 f ⋆ 1 k is defined, and

1-cells w, w ′ of C such that w ⋆ 0 (h ⋆ 1 f ⋆ 1 k) ⋆ 0 w ′ is defined, we have w ⋆ 0 (h ⋆ 1 f ⋆ 1 k) ⋆ 0 w ′ ∼ w ⋆ 0 (h ⋆ 1 g ⋆ 1 k) ⋆ 0 w ′ .
Graphically this means that if f ∼ g in (2.9), then the following 2-sphere is also in the relation

∼ w G G x % % i i 7 7 W W y w ′ G G . f g h k α ′ * 4
Given a congruence on C, we define the quotient category of C by the congruence ∼, denoted C/ ∼, as follows:

⋄ the 0-cells and 1-cells are those of C; ⋄ the 2-cells are the equivalence classes of the 2-cells of C under the congruence ∼.

A cellular extension of C is a collection of 2-spheres of C. More precisely, it is a set Ω along with a 2-source and a 2-target map

C t 2 ← -- ← -- s 2 Ω
satisfying the globular relations

s 1 s 2 = s 1 t 2 and t 1 s 2 = t 1 t 2 .
For a cellular extension Ω of C, denote by ∼ Ω the congruence on C generated by the relations

f ∼ g if γ : f * 4 g ∈ Ω.
We then denote by C/Ω the quotient category of C by the congruence ∼ Ω .

2.1.28. (3,1)-polygraphs and coherent presentations. Extending the notions of 1-and 2-polygraphs, we define a (3,1)-polygraph to be a quadruple

X = (X 0 , X 1 , X 2 , X 3 ) such that ⋄ (X 0 , X 1 , X 2 ) is a 2-polygraph, ⋄ X 3 is a cellular extension of the free (2, 1)-category X ⊤ 2 .
We realize this definition via the graph

X 0 t 0 ← -- ← -- s 0 X * 1 t 1 ← -- ← -- s 1 X ⊤ 2 t 2 ← -- ← -- s 2 X 3
such that the globular relations s i s i+1 = s i t i+1 and t i s i+1 = t i t i+1 i = 0, 1 are satisfied.

We are now ready define the notion of a coherent presentation, which is a notion that will be relevant Chapters 4 and 6.

Definition 2.1.29. Let C be a 1-category and D a 2-category.

i) A cellular extension Ω of D is called acyclic if for any 2-sphere (f, g) of D we have f ∼ Ω g. ii) A coherent presentation for C is a (3, 1)-polygraph X = (X 0 , X 1 , X 2 , X 3
) such that the underlying 2-polygraph presents C, and X 3 is an acyclic cellular extension of the free (2, 1)-category X ⊤ 2 .

2.1.30. Squier's completion theorem. Here we recall Squier's completion theorem, which describes how to obtain a coherent presentation of a category from a convergent presentation. This theorem is significant in that it opens a framework for concretely and algorithmically studying higher dimensional homotopical properties of categories, and in particular of monoids, see [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF].

Let X be a convergent 2-polygraph. A family of generating confluences of X is a cellular extension Ω of the free (2, 1)-category X ⊤ 2 that contains precisely one 3-cell

v f ′ ! A f,g u f . 6 g ' / u ′ w g ′ ? G
for each critical branching (f, g) of X. We note that since X is confluent, then there exists a a family of generating confluences, though it is not uniquely determined. Later in this section we shall see the notion of normalization strategies for monoids, which gives a procedure for a deterministic construction of confluence diagrams in that context. Next we recall a result that shows one obtains coherent presentations out of convergent 2-polygraphs. A Squier's completion of a 2-polygraph X is a (3, 1)-polygraph (X, Ω), where Ω is a family of generating confluences. We then have the following.

Theorem 2. 1.31 ([47]). Let X be a convergent 2-polygraph presenting a category C. Then Squier's completion (X, Ω) of X is a coherent presentation for C.

Normalization strategies.

Here we describe the notion of normalization strategies for 2-polygraphs with a single 0-cell. This is a procedure that allows one to algorithmically determine the 3-cells in Squier's coherent completion of a convergent 2-polygraph.

Let X = (X 0 , X 1 , X 2 ) be a 2-polygraph with a single 0-cell, and let M be the monoid it presents. Denote by π : X * 1 -→ M the canonical projection, and denote the image π(u) simply by u. Let s : M -→ X * 1 be a section, i.e. a map which to each element u of the monoid M associates a representative of its equivalence class, denoted by u. In other words the map s satisfies π • s = id M . We also assume that 1 = 1.

A normalization strategy for the pair (M, s) is a map

σ : X * 1 -→ X ⊤ 2 which to each 1-cell u ∈ X * 1 associates a 'path' in X ⊤ 2 from u to the chosen representative u. More precisely σ(u) = σ u : (u =⇒ u) such that σ( u) = 1 u for all 1-cells u ∈ X * 1 .
The normalization strategy σ is called left, (resp. right), if the following is satisfied

σ uv = (σ u ⋆ 0 v) ⋆ 1 σ uv , (resp. σ uv = (u ⋆ 0 σ v ) ⋆ 1 σ u v ) for all u, v ∈ X * 1 .
Proposition 2. 1.33 ([11]). Every 2-polygraph admits a left (resp. right) normalization strategy.

We specify now two normalization strategies which are particularly useful from a technical point of view. For this we need the following notion.

Definition 2.1.34. A 2-polygraph X = (X 1 , X 2 ) is called reduced if it satisfies the following conditions: i) if u =⇒ v ∈ X 2 , then u is a normal form for the 2-polygraph X 1 , X 2 \ {u =⇒ v} ; ii) if u =⇒ v ∈ X 2 , then v is a normal form for the 2-polygraph X.
In literature, a 2-polygraph X that satisfies condition i) above is called left-reduced, and if it satisfies condition ii) it is called right-reduced.

Let X be a reduced 2-polygraph, and consider the set

Step(X)

u := {f ∈ Step(X) | s(f) = u}.
We define an order on this set by writing f g if f acts more to the left of u than g, that is if there exist

t, t ′ , v, v ′ ∈ X * 1 and α, β ∈ X 2 such that f = tαt ′ , g = vβv ′ , and |t| < |v|.
If the polygraph X is finite, then Step(X) u is also finite, and since X is reduced, the order is total, thus there exist a minimal element λ u and a maximal element ρ u in Step(X) u . We call these respectively the leftmost and rightmost rewriting steps with source u. Moreover if the polygraph X is terminating, then an iteration of λ (resp. ρ) gives rise to a normalization strategy called the leftmost (resp. rightmost) normalization strategy of X given by

σ u = λ u ⋆ 1 σ t(λu) resp. σ u = ρ u ⋆ 1 σ t(ρu) .
We can use the leftmost and rightmost normalization strategies to obtain a family of generating confluences for a finite convergent 2-polygraph X presenting a monoid M. Indeed, let X = (X 1 , X 2 ) (omitting the single 0-cell from the notation) be a convergent 2-polygraph and M the monoid it presents. Let σ be the leftmost (or rightmost) normalization strategy of X as described above. We can then construct Squier's completion of X via the confluence diagrams

v σv ! A u f . 6 g ' / u ′ w σw ? G (2.10) obtained from σ.
In the next section we recall a class of monoids called plactic monoids. The rest of this thesis consists in developing the tools for computing confluence diagrams as in (2.10) for plactic monoids, and finally explicitly computing them in two special cases.

PLACTIC MONOIDS: PRESENTATIONS AND THE CRYSTAL APPROACH

In this section we recall the relevant concepts around plactic monoids. We begin with a brief overview of the plactic monoid in type A, and later we recall the generalizations by Kashiwara, the work of Lecouvey [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF] Lecouvey | Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF], and the work of Cain, Gray, Malheiro [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] which give presentations of the plactic monoids by generators and relations. For a more detailed account in type A see [START_REF] Lothaire | Algebraic combinatorics on words[END_REF][START_REF] Fulton | London Mathematical Society Student Texts. With applications to representation theory and geometry[END_REF].

Young tableaux.

Consider the alphabet A n = {1, 2, . . . , n}, and let A * n be the free monoid of words over the alphabet A n , i.e.

A * n = {x 1 x 2 • • • x k | x i ∈ A n , k ∈ N}.
For k = 0 above, we recover the empty word, often denoted by ∅, which is the unit element of the monoid.

A collection of boxes, arranged into left justified rows, such that the number of horizontally aligned boxes is non-increasing from top to bottom, is called a Young diagram. For instance .

( ii) the entries on each column are strictly increasing from top to bottom.

We denote the set of semi-standard Young tableaux by SSYT(A n ), and its elements by capital letters P, Q, T , etc. For consistency purposes, we consider the empty tableaux η (one with no boxes) as an element of SSYT(A n ). We extend the notion of shape to Young tableaux by setting sh(T is a Young tableau in SSYT(A 5 ), but it is not standard as for instance the first row contains a repetition of 1.

) := λ for T ∈ SSYT(A n ), if λ = (λ 1 , • • • , λ k ) is

Schensted's insertion algorithm. Given two words

u = x 1 • • • x k and w = y 1 • • • y l in A * n ,
we say that u is a subword of w if the letters of u appear in the same order in w, not necessarily consecutively. If the letters of u appear consecutively in w, we call it a strict subword of w. In that case we have w = tuv for some t, v ∈ A * n . We call a word u = x 1 • • • x k (strictly) increasing (resp. decreasing), if the sequence (x 1 , x 2 , . . . , x k ) is (strictly) increasing (resp. decreasing).

In [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] Schensted considers the following problem.

Question 2.2.5 ([44]). Given a word w ∈ A * n , what is the length of its longest non-decreasing and increasing subwords?

His answer is given in [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] in terms of an algorithm that bears his name, which to each word in A * n associates a Young tableau. More precisely it is a map ins r :

A n × SSYT(A n ) -→ SSYT(A n )
with ins r (x, T ) inductively defined as follows:

1. for x ∈ A n , set ins r (x, η) = x ; 2. for x ∈ A n , T ∈ SSYT(A n ), denote by x 1 , x 2 , . . . , x λ 1 the entries of the first row of T , and by T 1 the tableau obtained by deleting the first row from T . Then ins r (x, T ) = T ′ where T ′ is determined as follows 2a. if x ≥ x λ 1 , T ′ is obtained by adding a box x at the end of the first row of T ; 2b. if x < x λ 1 , let j be minimal with the property x < x j . Then the first row of T ′ is obtained by replacing x j with x, and its remaining rows are given by the tableau ins r (x j , T 1 ).

Using the map ins r (•, •) we define a map P r : A * n -→ SSYT(A n ) inductively on the lengths of words of A * n by setting P r (x) = x x ∈ A n ; P r (wx) = ins r (x, P(w)) w ∈ A * n , x ∈ A n . We call the map ins r (•, •) Schensted's row insertion algorithm, where the subscript r indicates that the insertion is done by row. Later in this section we shall recall a column-based insertion, hence the distinction by the subscript. Then Schensted proves the following result: Theorem 2.2.6 ( [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF]). Let w ∈ A * n . Then i) the maximal length of a non-decreasing subword of w is equal to the number of columns of P r (w),

ii) the maximal length of an increasing subword of w is equal to the number of number of rows of P r (w).

The map P r establishes a construction of tableaux from words. We explicit this by defining a reading map l r : SSYT(A n ) -→ A * n as follows. For C ∈ SSYT(A n ) a tableau consisting of one column, with entries x 1 , x 2 , . . . , x k , we set

l r (C) := x k x k-1 • • • x 2 x 1 ,
and for T ∈ SSYT(A n ) whose columns, from left to right are C 1 , . . . , C m , we set

l r (T ) = l r (C 1 )l r (C 2 ) • • • l r (C m ).
For instance for T as in Example 2.2.3 we have l r (T ) = 5321 431 532 53 4.

The following result shows that taking a tableau T , and inserting the word l r (T ) into a tableau via Schensted's insertion algorithm, we recover the same tableau T . Proposition 2.2.7 ( [START_REF] Fulton | London Mathematical Society Student Texts. With applications to representation theory and geometry[END_REF]). For the tableau map P r and the reading map l r , we have P r • l r = id SSYT(An) . In particular, P r is a surjective map.

2.2.8. Knuth's relations and the plactic monoid. In his seminal paper [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], Knuth considers the following problem. Question 2.2.9 ( [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]). Given w 1 , w 2 ∈ A * n , under what condition do we have P r (w 1 ) = P r (w 2 )?

He answers this question by exhibiting the generating relations for the congruence on A * n defined by P(w) = P(w ′ ). Knuth's relations were formalized algebraically by Lascoux and Schutzenberger in [START_REF] Lascoux | Le monoıde plaxique[END_REF] as follows.

Definition 2.2.10 ( [START_REF] Lascoux | Le monoıde plaxique[END_REF]). The plactic monoid of type A n is the quotient Pl(A n ) = (A * n / ≡), where ≡ is the congruence generated by the Knuth relations

xzy ≡ 1 zxy (x ≤ y < z), yxz ≡ 2 yzx (x < y ≤ z).
We have the following answer to Question 2.2.9. Proposition 2.2.11 ([26]). Let w 1 , w 2 ∈ A * n . Then P r (w 1 ) = P r (w 2 ) if and only if w 1 ≡ w 2 in A * n . In particular, for any w ∈ A * n we have w ≡ l r (P r (w)).

Via this proposition, SSYT(A n ) admits a monoid structure as follows. For T 1 , T 2 ∈ SSYT(A n ) we set

T 1 * T 2 := P r (l r (T 1 )l r (T 2 )).
2.2.12. Robinson-Schensted-Knuth correspondence. The Schensted insertion algorithm gave rise to a surjective map P r : A * n -→ Pl(A n ), which is nevertheless not injective. One is interested in determining the fibers of this map, that is the sets

P -1 r (T ) = {w ∈ A * n | P r (w) = T } for T ∈ SSYT(A n ).
The Robinson-Schensted-Knuth (RSK) algorithm provides an algorithmic solution to this problem. The RSK algorithm is the map

σ : A * n -→ SSYT(A n ) × SYT(N ≥1 )
where SYT(N ≥1 ) is the set of standard Young tableau with entries from N ≥1 . The map σ is defined inductively on the length of words as follows. For x ∈ A n we set σ(x) = ( x , 1 ), and for w ∈ A * n and x ∈ A n we set σ(wx) = (P r (wx), Q r (wx)).

Here the tableau P r (wx) is obtained by inserting the element x into the tableau P r (w). The tableau Q r (wx) is a standard tableau obtained from Q r (w) as follows:

⋄ P r (w) and Q r (w) have the same shape, ⋄ add a box to Q r (w) in the same position that P(wx) has one more box than P r (w),

⋄ fill this new box with the entry |wx|.

We then have the following result Theorem 2.2.13 ([26]). The Robinson-Schensted-Knuth algorithm σ is a bijection such that P r (w) and Q r (w) have the same shape for all w ∈ A * n .

Next we introduce plactic monoids of different types. For this purpose we use the language of crystals, which we recall in the following subsection.

2.2.14. Crystal bases and the Kashiwara operators. In the early 1990s, in the study of the representation theory of complex quantum groups U q (g), Kashiwara and Lusztig independently introduced the notion of a crystal base (called canonical base by the latter). This notion allows one to define a plactic monoid associated to any of the classical complex simple Lie algebras sl n , so 2n+1 , sp 2n and so 2n , as a monoid encoding their representation theory along with the tensor product of representations. These simple Lie algebras are also known respectively as the simple Lie algebras of type A n , B n , C n and D n and the plactic monoids associated to them are denoted by Pl(A n ), Pl(B n ), Pl(C n ), and Pl(D n ) respectively. We recall these notions in the language of crystals in the style of [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], that is using an abstract combinatorial and graph theory approach.

A labeled directed graph Γ , with vertex set V(Γ ) and edge set E(Γ ) such that the two following conditions are satisfied (P1) for any x ∈ V(Γ ) and i ∈ I, there exists at most one edge e with source (target) x and label i, (P2) for any i ∈ I there exist no infinite path in Γ with edges labeled by i, is called a crystal base.

Remark 2.2.15. The original abstract notion of crystal bases as introduced by Kashiwara in [START_REF] Kashiwara | On crystal bases[END_REF] is slightly more involved, see [START_REF] Hong | Introduction to quantum groups and crystal bases[END_REF]. The two axioms listed above are the first two axioms identified by Stembridge in [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF] in his search of identifying the axiomatics which ensure that a crystal arises from the representation theory of complex symmetrizable Kac-Moody algebras.

Denote by e i , f i : Γ -→ Γ the partial maps defined by

x = e i .y if (x i -→ y) ∈ E(Γ ), y = f i .x if (x i -→ y) ∈ E(Γ ).
Note that e i and f i are well defined from (P1) and they are called the Kashiwara operators.

Given a crystal base Γ , one defines a labeled directed graph with vertex set V(Γ ) * and edges of the form w i -→ f i .w (or equivalently e i .w i -→ w), where e i , f i are partial maps from V(Γ ) * to itself defined inductively on the length of words by

e i .(uv) = (e i .u)v if ϕ i (u) ≥ ε i (v), u(e i .v) if ϕ i (u) < ε i (v), and 
f i .(uv) = (f i .u)v if ϕ i (u) > ε i (v), u(f i .v) if ϕ i (u) ≤ ε i (v),
where ϕ i (u) = #{f i .u, f 2 i .u, . . . }, and ε i (u) = #{e i .u, e 2 i .u, . . . } are also inductively defined. Note that by (P2), the quantities ϕ i (u) and ε i (u) are finite for all i ∈ I and u ∈ V(Γ ) * . The partial maps e i and f i are again called the Kashiwara operators. For brevity, we denote the directed labeled graph on V(Γ ) * , as well as the underlying free monoid, simply by Γ * .

A weight-function is a morphism of monoids wt : Γ * -→ P where P is a weight monoid, i.e. a monoid with a partial order ≤ not necessarily compatible with multiplication in P, such that the following conditions hold:

i) if e i .u is defined, then wt(u) < wt(e i .u), ii) if f i .u is defined, then wt(u) > wt(f i .u).
Given a crystal base Γ , denote by B Γ * (w) the connected component of w in the graph Γ * . We consider an equivalence relation ∼ Γ on Γ * by setting w ∼ Γ w ′ for w, w ′ ∈ Γ * if there exists a labeled directed graph isomorphism φ : B Γ * (w) -→ B Γ * (w ′ ) such that φ(w) = w ′ and wt(w) = wt(w ′ ). Denote by ≡ Γ the congruence on Γ * generated by ∼ Γ . Definition 2.2. 16 ([4]). The crystal monoid associated to a crystal base Γ is

Cr(Γ ) := (Γ * / ≡ Γ ) .
We denote by [w] the equivalence class of ≡ Γ containing the word w. By definition of the congruence ≡ Γ , we note that the graph structure of Γ * descends to the monoid M = Cr(Γ ). Namely for i ∈ I and w ∈ Γ * we have that e i .w (resp. f i .w) is defined if and only if e i .[w] (resp. f i .[w]) is defined, and in that case we have e

i .[w] = [e i .w] (resp. f i .[w] = [f i .w]).
Next we recall a particular type of words in Γ * . Definition 2.2.17. Let Γ be a crystal base. A word w ∈ Γ * is called a word of highest weight if e i .w is undefined for all i ∈ I.

2.2.18. Crystal bases of classical types. Lecouvey's work in [START_REF] Lecouvey | Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF] shows that the plactic monoids of classical types A n , B n , C n , and D n arise as crystal monoids for certain appropriate crystal bases and weight functions. Here we shall omit the weight considerations, and simply write down the crystal bases as in each type.

The crystal base of type A n is

A n : 1 1 -→ 2 2 -→ • • • n-2 -→ n -1 n-1 -→ n (2.12)
and the crystal monoid corresponding to A n is Cr(A n ), which also denote by Pl(A n ). This notation is justified by the following.

Proposition 2.2. 19 ([22]). Let A n be the crystal bases as in (2.12). Then the monoids Cr(A n ) and Pl(A n ) are isomorphic.

The crystal base of type B n is

B n : 1 1 -→ 2 2 -→ • • • n-1 -→ n n -→ 0 n -→ n n-1 -→ • • • 2 -→ 2 1 -→ 1 (2.13)
and maintaining the analogy with the case in type A, we denote the crystal monoid Cr(B n ) by Pl(B n ) and call it the plactic monoid of type B n . The crystal base of type C n is D n :

C n : 1 1 -→ 2 2 -→ • • • n-1 -→ n n -→ n n-1 -→ • • • 2 -→ 2 1 -→ 1 (2.
1 1 G G 2 2 G G • • • • • • n-2 G G n -1 n-1 ǹ 4 4 n -1 n-2 G G • • • • • • 2 G G 2 1 G G 1 n n-1 a a
and maintaining the analogy with the case in type A, we denote the crystal monoid CrD n ) by Pl(D n ) and call it the plactic monoid of type D n . We note here also the particular case of type G 2 . The crystal base of type G 2 is

G 2 : 1 1 -→ 2 2 -→ 3 1 -→ 0 1 -→ 3 2 -→ 2 1 -→ 1 (2.15)
and maintaining the analogy with the case in type A, we denote the crystal monoid C(G 2 ) by Pl(G 2 ) and call it the plactic monoid of type G 2 .

We note here a property that the classical crystal bases satisfy. while in 2.2.14 we have seen definitions of plactic monoids of all classical types using the language of crystals. Here we recall the work of Lecouvey [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF] where he realizes the plactic monoids of types B n , C n , D n via Knuth-like presentations, and the work of Cain, Gray, Malheiro [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] where they realize the plactic monoids of types A n , B n , C n , D n via finite convergent presentations. Two crucial notions for expressing these constructions are those of admissible columns, and of Schensted's column insertion for all classical types. We recall first the notion of columns by following the exposition in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF].

Let Γ = A n , B n , C n , D n be a crystal base of classical type as in 2.2.18. To Γ we associate the ordered alphabet (V(Γ ), ≤) where the ≤ is defined as x ≤ y if y = f i .x for some i ∈ I.

Note that the alphabets associated to types A n , B n , C n are totally ordered by ≤, while for D n the letters n and n are not comparable.

A column of type A n is a tableau of the form x 1

x 2 . . . ⋄ β -has entries from {n, . . . , 1} and is strictly increasing from top to bottom, ⋄ γ + has entries from {1, . . . , n} and is strictly increasing from top to bottom, ⋄ γ -has entries from {n, . . . , 1} and is strictly increasing from top to bottom, ⋄ δ + has entries from {1, . . . , n -1} and is strictly increasing from top to bottom, ⋄ δ admits n and n as entries, with adjacent boxes containing distinct letters, ⋄ δ -has entries from {n -1, . . . , 1} and is strictly increasing from top to bottom.

x k with x 1 < x 2 < • • • < x k . A column of type B n , C n ,
For a column β of any type, denote by |β| the length of β, that is the number of boxes in the column.

Admissible columns.

Here we recall a restricted notion of columns, as first defined in [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF].

Let β be a column of any type, and let z ≤ n. We set

Set z (β) := {x ∈ β | x ≤ z or x ≥ z},
and denote its cardinality by N z (β).

Definition 2.2.23. A column β (of any type) is called admissible if it satisfies the following:

i) N z (β) ≤ z for all z ≤ n; ii) if β is of type B n and 0 ∈ β, then |β| ≤ n.
We note that all the columns of type A are admissible. As our considerations shall be restricted to admissible columns, we denote the set of such columns in types

Γ = A n , B n , C n , D n by Col(Γ ) 1 := columns of type Γ .
The significance of the subscript 1 is that the set of admissible columns forms the 1-cells of a presentation of plactic monoids that we shall see soon, namely the column presentation.

Remark 2.2.24. We represent the columns in Col(Γ ) by letters c, as well as by words c = x 1 x 2 

i) β contains a letter z ≤ n with N z (β) > z, ii) β is of type B, 0 ∈ β and |β| > n.
2.2.26. Knuth-like presentation for Pl(B n ), Pl(C n ) and Pl(D n ). Here we briefly recall the Knuthlike presentations of the plactic monoids of types B n , C n , and D n as in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF].

For the plactic monoid of type B n we have the following. For the plactic monoid of type D n we have the following. We remark that there is a notion of tableaux for each of the plactic monoids Pl(B n ), Pl(C n ), and Pl(D n ). Here we shall only explicitly describe the ones in type C, as the main results of Chapters 5 and Chapters 6 only concern Pl(A n ) and Pl(C n ).

Column insertion in type A.

We recall here a dual notion of Schensted's insertion based on columns, see [START_REF] Fulton | London Mathematical Society Student Texts. With applications to representation theory and geometry[END_REF], [START_REF] Lecouvey | Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF].

Recall that Schensted insertion algorithm described in 2.2.4 was defined in terms of the rows of tableaux. Nevertheless one may view tableaux as a concatenation of columns as well. In [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF] Lecouvey | Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF], Lecouvey adopts a column-based approach in defining Schensted-like insertion algorithms for the other plactic monoids Pl(B n ), Pl(C n ), and Pl(D n ). An indicator of why it is beneficial to view tableaux as concatenation of columns rather than rows is that the set Col(A n ) 1 is a finite set, while the set of Young tableaux consisting of a single row is infinite, as one always has a row

R = 1 1 1 . . . 1
for any number of 1s.

We describe here the column insertion algorithm in type A n as follows. Consider the map

ins c : A n × SSYT(A n ) -→ SSYT(A n )
with ins c (x, T ) defined iteratively as follows. More precisely

1. for x ∈ A n , η ∈ SSYT(A n ), set ins c (x, η) = x ;
2. for x ∈ A n , T ∈ SSYT(A n ), denote by x 1 , x 2 , . . . , x k the entries of the first column of T , and by T 1 the tableau obtained by deleting the first column from T . Then ins c (x, T ) = T ′ where T ′ is determined as follows:

2a. if x > x k , T ′ is obtained by adding a box x at the end of the first column of T ; 2b. if x ≤ x k , let j be minimal with the property x ≤ x j . Then the first column of T ′ is obtained by replacing x j with x, and its remaining columns are given by the tableau ins c (x j , T 1 ).

Using ins c , we can define a map

P c : A * n -→ SSYT(A n ) (2.16)
inductively on the length of words of A * n by setting

P c (x) = x for x ∈ A n ; P c (wx) = ins c (x, P c (w)) for w ∈ A * n , x ∈ A n .
We call the map ins c Schensted's column insertion algorithm in type A, where the subscript c indicates the that insertion is done on columns. Similarly to the row point of view, we define a reading map l c : SSYT(A n ) -→ A * n as follows. For C ∈ SSYT(A n ) a tableau consisting of one column, with entries x 1 , x 2 , . . . , x k , we set

l c (C) := x 1 x 2 • • • x k ,
and for T ∈ SSYT(A n ) whose columns, read from left to right, are

C 1 , • • • , C m , we set l c (T ) = l c (C m )l c (C m-1 ) • • • l c (C 2 )l c (C 1 ).
We then have the following result: [START_REF] Fulton | London Mathematical Society Student Texts. With applications to representation theory and geometry[END_REF]). For the tableau map P c and the reading map l c , we have P c • l c = id SSYT(An) .

Proposition 2.2.31 ([
In particular, P c is a surjective map.

We note that in particular we have the insertion of a tableau T 2 into a tableau T 1 via

(T 1 ← T 2 ) := (η ← l c (T 1 )l c (T 2 )).
The Robinson-Schensted-Knuth correspondence in 2.2.12 was defined in terms of the row insertion P r . We remark here that there exists an analogous version of this correspondence defined in terms of the column insertion P c . More precisely, there exists a bijection

σ c : A * n -→ SSYT(A ( A n ) × SYT(N ≥1 )
where σ c (w) = (P c (w), Q c (w)), with Q c (w) defined completely analogously to Q r (w).

Next we recall the notion of tableaux and insertion by column in type C.

2.2.32. Tableaux in type C. To define the suitable notion of tableaux for type C, we first recall the order on

Col(C n ) 1 as follows. Let c = x 1 • • • x k , d = y 1 • • • y l ∈ Col(C n ) 1 . We write c d if i) k ≥ l and x i ≤ y i for i = 1, . . . , l,
ii) there exists no pair of numbers (a, b) such that 1 ≤ a ≤ b ≤ n and that the following conditions are satisfied:

ii.1) x p = a, y q = b, y r = b, y s = a or x p = a, x q = b, x r = b, y s = a for some

1 ≤ p ≤ q < r ≤ s ≤ l; ii.2) (s -r) + (q -p) ≥ b -a.
The second condition is from [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF], and any such pair (a, b) is called an (a, b)-configuration. Then the elements of Pl(C n ) are parameterized by symplectic tableaux, which are Young diagrams with entries from C n , denoted by a letter T , such that if the columns of T , read from left to right, are c 1 , c 2 , . . . , c k , then

i) c i ∈ Col(C n ) 1 for i = 1, . . . , k, ii) c i c i+1 for i = 1, . . . , k -1.
We denote the set of symplectic tableau in C n by ST (C n ).

2.2.33. Column insertion in type C. We recall here the column insertion in type C as defined in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF]. Let c ∈ Col(C n ) 1 , x ∈ C n , and consider the word w = cx. Then the highest weight w 0 of w admits one of the forms

w 0 =     
12 . . . p(p + 1), 12 . . . p1, 12 . . . pp, for some 1 ≤ p ≤ n. The insertion of the letter x into the column c, denoted (c ← x), is defined as follows: 

1. if w 0 = 12 • • • p(p + 1), then (c ← x) = w ∈ Col(C n ) 1 ; 2. if w 0 = 12 • • • p1, then (c ← x) = yc ′ , where y ∈ C n , c ′ ∈ Col(C n ) 1 ,
(T ← x) = (c 1 c 2 . . . c k-1 ← y)c ′ k ;
3. if w 0 = 12 . . . pp, and

(c k ← x) = c ′ k = y 1 • • • y l with y i ∈ C n , then (T ← x) = (((c 1 . . . c k-1 ← y 1 ) ← y 2 ) ← • • • ← y l ).
We remark in that in step 3 above, there is no occurrence of R C 3 as in Theorem 2.2.28. This algorithm is called the Schensted insertion algorithm in type C. Via the insertion algorithm, we can define a map

P C c : C * n -→ ST (C n ) by setting P C c (x) = x for x ∈ C n ; P C c (wx) = (P C c (w) ← x) for w ∈ C * n , x ∈ C n .
Similarly to the case of type A, we define a reading map l C c : ST (C n ) -→ C * n as follows. For C ∈ ST (C n ) a tableau consisting of one admissible column with entries x 1 , x 2 , . . . , x k we set

l C c (C) := x 1 x 2 • • • x k ,
and for a symplectic tableau T whose columns read from left to right are C 1 , . . . , C m , we set

l C c (T ) := l C c (C m )l C c (C m-1 ) • • • l C c (C 2 )l c c (C 1 ).
We then have the following result.

Proposition 2.2.34 ( [START_REF] Lecouvey | Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]). For the tableau map P C c and the reading map l C c in type C we have P c • l c = id ST (Cn) . In particular P c is a surjective map.

In particular we have the insertion of a symplectic tableau T 2 into a symplectic tableau T 1 via

(T 1 ← T 2 ) := (η ← l C c (T 1 )l C c (T 2 )).
To simplify notation, we often remove the superscript C when denoting the maps P C c and l C c . We also remark here that there exists a notion of a Robinson-Schensted-Knuth correspondence for Pl(C n ) as well, see [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF].

We illustrate here the column insertion with an example. One verifies directly that c is an admissible column. We compute now two insertions (c ← 1) and (c ← 2). For the first insertion, we note that the word cx = 135421 is an almost admissible column.

Hence we compute the insertion (c ← 1) by applying the rule R C 3 to the word cx. We note that the lowest 1 ≤ z ≤ 5 such that z, z ∈ cx is z = 1. In fact z = 1 is the only such letter. Thus we obtain (c ← 1) = cx, which gives us Cain, Gray, and Malheiro prove Proposition 2.2.37 and use it to define the column presentation of Pl(Γ ), as a 2-polygraph

(c ← x) =
Col(Γ ) = (Col(Γ ) 1 , Col(Γ ) 2 ),
where Col(Γ ) 1 is the set of admissible columns of type Γ , and the set Col(Γ ) 2 of generating 2-cells is defined as

Col(Γ ) 2 = β 1 β 2 =⇒ P c (β 1 β 2 ) | if β 1 β 2 = P c (β 1 β 2 ) .
They then prove the following result. Theorem 2.2.38 realizes the plactic monoids of types Pl(A n ), Pl(B n ), Pl(C n ), and Pl(D n ) in terms of a 2-polygraph carrying many useful properties. In particular this opens up a direction of study of the plactic monoids via the tools of rewriting theory. The rest of this thesis consists in exploiting the connections between the different realizations of plactic monoids that we have seen, and using these observations to compute Squier's coherent completion for Col(A n ) and Col(C n ).

We conclude this chapter by recalling that Littelmann defined a notion of plactic monoids, or rather plactic algebras in his context, for all complex symmetrizable Kac-Moody algebras. His achieved his construction in [START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF] by using a path model for the representation theory of such algebras that he introduced in [START_REF] Littelmann | Paths and root operators in representation theory[END_REF][START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF]. In particular, in Theorem B of [START_REF] Littelmann | A plactic algebra for semisimple Lie algebras[END_REF], he proves in an algebraic context that Col(Γ ) presents Pl(Γ ) for Γ = A n , B n , C n , D n .

CHAPTER 3 CATEGORIES OF K-GRAPHS AND K-MONOIDS

In this chapter we introduce the category of K-graphs denoted Graph K , and the category of K-monoids denoted Mon K . The category of K-graphs is a variation of the category of crystals introduced by Kashiwara in [START_REF] Kashiwara | On crystal bases[END_REF], whose axiomatics were later investigated by Stembridge in [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF]. In our context, we do not require weight considerations of the directed labeled graphs, and they need not necessarily arise from integrable representations of Kac-Moody algebras. The approach we take here is adopted from [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], where the idea is to specify those axioms which suffice to define a monoid associated to the K-graph. As these objects are defined independently of a notion of weights, we adopt a new name from them, that is we call them K-graphs.

In Section 3.1 we define the category of K-graphs, denoted Graph K , whose objects are directed Ilabeled graphs Γ which satisfy the first two axioms of Stembridge classification in [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF], also used by Cain, Gray, and Malheiro in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], and the morphisms are directed labeled graph morphisms φ : Γ 1 -→ Γ 2 , such that φ restricted to a connected component of Γ 1 is an isomorphism onto its image. We then show that Graph K is a monoidal category.

In Section 3.2 we consider the category Mon K of K-monoids, namely those monoids M whose underlying set is a K-graph, and such that the product of the monoid models the tensoring of K-graphs. The morphisms in this category are morphisms of monoids that are also morphisms of their underlying K-graphs. We consider two functors T, C : Graph K -→ Mon K which to any K-graph Γ associate a free K-monoid T (Γ ), also denoted Γ * , and a K-monoid C(Γ ) which is minimal among the K-monoids that contain Γ . Here minimality reflects the fact that C(Γ ) consists of the isomorphism classes of connected components of Γ * . We then show that every K-monoid lies in between a T (Γ ) and a C(Γ ), in the sense that there exists Γ ∈ Graph K , and p 1 , p 2 surjective morphisms in Mon K such that T (Γ )

p 1 -→ M p 2 -→ C(Γ ).
In Section 3.3 we consider a particular class of K-graphs in Graph K called proper K-graphs. They are characterized by the property that each connected component of T (Γ ) admits a unique element of highest weight. The advantage of proper K-graphs is that certain global properties of a K-monoid can be understood by studying them locally at highest weights.

In Section 3.4 we show that for the classical crystal bases Γ = A n , B n , C n , D n , the sets of 1-cells and 2-cells of the 2-polygraph Col(Γ ) are K-graphs, and the source and target maps are K-graph morphisms. In particular we note that the property of being a proper K-graph is not evident from the initial K-graph Γ .

We remark that many of the results appearing in this chapter are adaptations from the well-established theory of crystals. As the proofs in our context can be obtained from the theory of crystals by simply neglecting the weight considerations, many of the proofs have been omitted.

CATEGORY OF K-GRAPHS

Crystal structures were initially introduced by Kashiwara in [START_REF] Kashiwara | On crystal bases[END_REF] in his study of the representation theory of quantum groups for the classical simple complex Lie algebras. They are directed colored graphs, along with a weight map, and satisfy certain properties reflecting the representation theory of quantum groups. In [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF], Stembridge determines axioms for directed colored graphs to be crystal structures arising from complex simply-laced symmetrizable Kac-Moody algebras. In [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], an abstract definition of crystal monoids in terms of directed labeled graphs is given by using the first two axioms of Stembridge.

3.1.1. K-graph and connected components. Here we adopt the notion of crystals used by Cain, Gray, Malheiro in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], which we call K-graphs and in particular we consider the category of K-graphs. Definition 3.1.2 ([49], [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]). A K-graph is a labeled directed graph Γ , with vertex set V(Γ ), edge set E(Γ ), and edges labeled from an index set I, satisfying the two following axioms:

(P1) for any x ∈ V(Γ ) and i ∈ I, there exists at most one edge e with source (target) x and label i;

(P2) for any i ∈ I, there exists no infinite directed path in Γ with edges labeled by i.

By (P1) we can represent the edges of Γ via two partial maps e i , f i : Γ -→ Γ defined by setting

y = f i .x if (x i -→ y) ∈ E(Γ ) x = e i .y if (x i -→ y) ∈ E(Γ ).
We call e i and f i the Kashiwara operators. For x ∈ Γ , denote the connected component of x in Γ by B Γ (x), or simply B(x) if no confusion arises.

We describe here a practical way for denoting the elements of a connected component in a K-graph Γ . Given a K-graph Γ with labeling set I, denote by K Γ be the free group generated by I. It is convenient to consider it via the following presentation

K Γ = e i , f i i ∈ I |e i f i = f i e i = 1 . (3.1)
We shall often omit Γ from the notation, and simply write K if the choice of Γ is obvious. We consider a partial action of K Γ on Γ , which is a partial map K Γ × Γ -→ Γ defined as follows. Let k ∈ K Γ be a reduced word, say k = k 1 k 2 • • • k t with k j ∈ {e i , f i } for j = 1, . . . , t, and x ∈ Γ . If t = 1 we have k = e i (resp. k = f i ) for some i ∈ I. In that case we say that k t .x is defined if e i .x (resp. f i .x) is defined. For t > 1, we say that k.x is defined if:

i) k t .x is defined; ii) k t-i .((k (t-i+1) • • • k t-1 k t ).x) is defined for i = 1, . . . , t -1.
Using this approach, for x ∈ Γ we can write B(x) = K.x, so that any element of B(Γ ) can be written as k.x for some k ∈ K Γ . Note that such a k is uniquely determined.

A weak morphism from a K-graph Γ 1 to a K-graph Γ 2 with the same indexing set I is a map φ : V(Γ 1 ) -→ V(Γ 2 ) such that for any i ∈ I and x ∈ Γ 1 with e i .x (resp. f i .x) defined, we have that e i .φ(x) (resp. f i .φ(x)) is defined, and

φ(e i .x) = e i .φ(x) (resp. φ(f i .x) = f i .φ(x)).
If moreover φ is such that for any w ∈ Γ 1 the restriction

φ : B Γ 1 (w) -→ B Γ 2 (φ(w))
is an isomorphism of directed labeled graphs, we call φ a strong morphism, or simply a morphism. Given x ∈ Γ and i ∈ I, by (P2) there exists a finite string of maximal length of the form

e k i .x i -→ • • • i -→ e i .x i -→ x i -→ f i .x i -→ • • • i -→ f l i .x (3.2)
which we call the i-string through x. We define ε i , ϕ i : Γ -→ N by setting ε i (x) = k and ϕ i (x) = l if the i-string through x is as in (3.2). The following equations are direct consequences of (3.2)

ε i (e i .x) = ε i (x) -1, ε i (f i .x) = ε i (x) + 1, ϕ i (e i .x) = ϕ i (x) + 1, ϕ i (f i .x) = ϕ i (x) -1. (3.3) 
for any i ∈ I.

The following result establishes certain properties of strong morphisms, which allows us to define a category of K-graphs.

Proposition 3.1.3. Let p : Γ 1 -→ Γ 2 , q : Γ 2 -→ Γ 3 be weak morphisms of K-graphs. Then: i) if p is an isomorphism , then p and p -1 are strong morphisms, ii) let p be a strong morphism. Then q • p is a strong morphism if and only if q is a strong morphism.

Proof. i) If p : Γ 1 -→ Γ 2 is an isomorphism, then for w ∈ Γ 1 its restriction to B Γ 1 (w) is an injection into B Γ 2 (p(w)). For any w 1 ∈ B Γ 2 (p(w)), there exists k ∈ K such that w 1 = k.p(w) = p(k.w), with k.w ∈ B Γ 1 (w).
Hence p is surjective as well. Thus we have

p : B Γ 1 (w) ∼ = -→ B Γ 2 (p(w))
is an isomorphism of K-graphs, which shows that p is indeed a strong morphism.

Proof for ii) is omitted.

3.1.4. Category of K-graphs. Kashiwara defines a category of crystals in [START_REF] Kashiwara | On crystal bases[END_REF] , which was later studied by Stembridge [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF], and also by Henriques and Kamnitzer [START_REF] Henriques | Crystals and coboundary categories[END_REF]. Here we define a category of K-graphs as an adaptation of the category of crystals to our context. For the rest of this chapter fix an indexing set I, which in turn fixes a free group K. The category of K-graphs, denoted Graph K is defined as follows:

⋄ the objects of Graph K are K-graphs as in Definition 3.1.2; ⋄ the morphisms in Graph K are strong morphisms of K-graphs.

Next we shall describe several ways to obtain new K-graphs from given ones.

3.1.5. K-subgraphs. We say that a K-graph Γ 1 is a K-subgraph of Γ 2 if there exists an injection Γ 1 ֒→ Γ 2 which is a morphism of K-graphs. It is clear that Γ 1 is a K-graph itself, thus Graph K is closed under taking subobjects.

3.1.6. Direct sums of K-graphs. For {Γ j | j ∈ J} a family of K-graphs. We denote the disjoint union of the Γ j by Γ = j∈J Γ j .

(3.4)

We call Γ as above the direct sum of Γ j , j ∈ J. We then have the following result.

Proposition 3.1.7. Let {Γ j | j ∈ J} be a family of K-graphs and let Γ be as in (3.4). Then Γ is a K-graphs.

3.1.8. Tensor product of K-graphs. For Γ 1 , Γ 2 two K-graphs, we define the tensor product Γ 1 ⊗ Γ 2 of Γ 1 and Γ 2 to be the K-graph with vertex set V(Γ 1 ) × V(Γ 2 ), and vertices denoted by u ⊗ v or simply uv, and with edges of the form uv i -→ f i .(uv) or e i .(uv) i -→ uv defined as follows

e i .(uv) = (e i .u)v if ϕ i (u) ≥ ε i (v), u(e i .v) if ϕ i (u) < ε i (v), (3.5) 
and

f i .(uv) = (f i .u)v if ϕ i (u) > ε i (v), u(f i .v) if ϕ i (u) ≤ ε i (v). (3.6) 
We have the following result.

Proposition 3.1.9. Let Γ 1 , Γ 2 be K-graphs.

Then Γ = Γ 1 ⊗ Γ 2 is also a K-graph.
Proof. We verify that Γ satisfies (P1) and (P2). As the operators e i and f i are well-defined, (P1) is satisfied.

To show (P2), assume that we have an infinite directed sequence

uv i -→ u 1 v 1 i -→ • • • i -→ u k v k i -→ • • • ,
i.e. we have f i .(u j v j ) = u j+1 v j+1 for j = 1, 2, . . . . By definition of the operators e i and f i , there exist subsets A, B ⊂ N such that A ⊔ B = N and

f i .(u j v j ) = (f i .u j )v j , for j ∈ A, u j (f i .v j ), for j ∈ B.
Then at least one of the sets A and B is infinite. Suppose that A is infinite, say A = {j 1 , j 2 , . . . }. We then obtain a sequence

u i -→ u j 1 i -→ u j 2 i -→ • • • i -→ u j k i -→ • • • in Γ 1
, which is impossible by (P2) as Γ 1 is a K-graph. Analogously we reach a contradiction if we assume that B is infinite. We similarly prove that there are no infinite i-labeled directed paths which go on to the left via the e i operators, i.e. of the form

• • • i -→ u k v k i -→ • • • i -→ u 1 v 1 i -→ uv.
Thus indeed Γ satisfies (P2) and is a K-graph.

3.1.10. i-strings in Γ 1 ⊗ Γ 2 . We investigate now the i-strings in tensor products of K-graphs. First we introduce a notation for the map which takes as input an integer, and returns it if positive, and otheriwse returns 0. More precisely, we define • : Z -→ N by x =

x if x > 0, 0 otherwise.

Let u ∈ Γ 1 and v ∈ Γ 2 . We want to compute ε i (uv) and ϕ i (uv) in terms of ε i (u), ε i (v), ϕ i (u), and ϕ i (v). We start off with the e i part of the i-string through uv. We distinguish two cases:

1. ε i (v) ≤ ϕ i (u).
Let s ≤ ε i (u). Then by (3.3) we have

ϕ i (e s i .u) = ϕ i (u) + s ≥ ε i (v),
and by (3.5) we get e i .((e s i .u)v) = (e s+1 i .u)v. This shows that the e i -part of the i-string of uv in Γ 1 ⊗ Γ 2 is (e

ε i (u) i .u)v i -→ • • • i -→ (e i .u)v i -→ uv,
and in this case we have

ε i (uv) = ε i (u). 2. ε i (v) > ϕ i (u). Let k = ε i (v) -ϕ i (u). By (3.3) for l ≤ ε i (v) we have that ε i (e l i .v) = ε i (v) -l.
In particular for l < k by (3.5) we have e i .(u(e l i .v)) = u(e l+1 i .v). For l = 0, 1, . . . , k -1 we obtain the following e i -part of the i-string through uv in

Γ 1 ⊗ Γ 2 u(e k i .v) i -→ • • • i -→ u(e 2 i .v) i -→ u(e i .v) i -→ uv.
Note now that by (3.3) that we have

ε i (e k i .v) = ε i (v) -k = ϕ i (u),
thus by using the first case above, we complete the i-string of uv in Γ 1 ⊗ Γ 2 into (e

ε i (u) i .u)(e k i .v) i -→ • • • i -→ (e i .u)(e k i .v) i -→ u(e k i .v) i -→ • • • i -→ u(e i .v) i -→ uv. (3.7) 
In particular we have

ε i (uv) = ε i (u) + k = ε i (u) + ε i (v) -ϕ i (u).
Analogously we show that the f i -part of the i-string through uv in Γ 1 ⊗ Γ 2 is given as follows for the two different cases:

1. ϕ i (u) ≤ ε i (v). Then the f i part of the i-string through uv in Γ 1 ⊗ Γ 2 is uv i -→ u(f i .v) i -→ • • • i -→ u(f ϕ i (v) i .v) and thus ϕ i (uv) = ϕ i (v). 2. ϕ i (u) > ε i (v). Let k = ϕ i (u) -ε i (v). Then the f i -part of the i-string through uv in Γ 1 ⊗ Γ 2 is uv i -→ (f i .u)v i -→ • • • i -→ (f k i .u)v i -→ (f k i .u)(f i .v) i -→ • • • i -→ (f k i .u)(f ϕ i (v) i .v) (3.8)
and thus

ϕ i (uv) = ϕ i (v) + ϕ i (u) -ε i (v).
We collect this information in the following result.

Proposition 3.1.11. Let Γ 1 and Γ 2 be two K-graphs indexed by the same set I. Let u ∈ Γ 1 and v ∈ Γ 2 . Then:

i) ε i (uv) = ε i (u) + ε i (v) -ϕ i (u); ii) ϕ i (uv) = ϕ i (v) + ϕ i (u) -ε i (v);
iii) the e-part of the i-string through x is as in

(3.7) with k = ε i (v) -ϕ i (u); iv) the f-part of the i-string through x is as in (3.8) with k = ϕ i (u) -ε i (v).
Next we give a result, without proof, which shows that the connected component of uv in Γ 1 ⊗ Γ 2 is entirely determined by the connected components of u in Γ 1 and v in Γ 2 .

Proposition 3.1.12. Let u 1 , u 2 ∈ Γ 1 and v 1 , v 2 ∈ Γ 2 such that

B Γ 1 (u 1 ) ∼ = B Γ 1 (u 2 ), and 
B Γ 2 (v 1 ) ∼ = B Γ 2 (v 2 ).
Then

B Γ 1 ⊗Γ 2 (u 1 v 1 ) ∼ = B Γ 1 ⊗Γ 2 (u 2 v 2 ).
A more general statement is proven below in Proposition 3.1.17. In subsections 3.1.5,3.1.6, and 3.1.8 we have seen that Graph K is closed under taking K-subgraphs, direct sums, and tensor products of two K-graphs. The following result asserts that the tensor product is associative in Graph K . Proposition 3.1.13. Let Γ 1 , Γ 2 , Γ 3 be K-graphs. Then the map

Γ 1 ⊗ (Γ 2 ⊗ Γ 3 ) -→ (Γ 1 ⊗ Γ 2 ) ⊗ Γ 3 x ⊗ (y ⊗ z) -→ (x ⊗ y) ⊗ z is a K-graph isomorphism. In particular, Graph K is a monoidal category.
This proposition is proved similarly to the analogous result for the category of crystals in the sense of Kashiwara [START_REF] Kashiwara | On crystal bases[END_REF], except that there are no weight considerations in this context.

We note now a direct consequence of the action of K on tensor products.

Proposition 3.1.14. Let Γ 1 , . . . , Γ n be K-graphs, and consider the K-graphs such that for k (r) := j∈Lr k j , with the product taken in increasing order of indices, we have k.x = (k (1) x 1 ) ⊗ (k (2) x 2

Γ = Γ 1 ⊗ • • • ⊗ Γ n . Let x = x 1 ⊗ • • • ⊗ x n ∈ Γ , and k = k 1 k 2 • • • k t ∈ K such that k j ∈ {e i , f i | i ∈ I} for j = 1, . . . ,
) ⊗ • • • ⊗ (k (n) x n ).
3.1.15. Operations with morphisms. We note here how morphism interact with the direct sum and tensor product in Graph K .

Proposition 3.1.16. Let {φ j : Γ j -→ Γ ′ j | j ∈ J} be a family of morphisms in Graph K . Then

φ = j∈J φ j : j∈J Γ j -→ j∈J Γ ′ j
defined by φ| Γ j = φ j is a morphism of K-graphs.

Proposition 3.1.17.

Let φ : Γ 1 -→ Γ ′ 1 and ψ : Γ 2 -→ Γ ′ 2 be morphisms of in Graph K . Then the map φ ⊗ ψ : Γ 1 ⊗ Γ 2 -→ Γ ′ 1 ⊗ Γ ′ 2 x ⊗ y -→ φ(x) ⊗ ψ(y), is a morphism in Graph K .
Proof. We need to show that ξ = φ ⊗ ψ commutes with the action of K, and is an isomorphism when restricted to connected components. For notational convenience, we replace the tensor ⊗ with concatenation. Let x ∈ Γ 1 and y ∈ Γ 2 . Since φ and ψ are morphisms of K-graphs, we have Similarly we prove that ξ(f i .xy) = f i .ξ(xy)

φ : B Γ 1 (x) ∼ = B Γ ′ 1 (φ(x)) and ψ : B Γ 2 (y) ∼ = B Γ ′ 2 (φ(y)). In particular, given any i ∈ I we have ε i (x) = ε i (φ(x)), ϕ i (x) = ϕ i (φ(x)), ε i (y) = ε i (ψ(y)),
which shows that ξ is a weak morphism of K-graphs.

To complete the proof we need to show that ξ is a strong morphism, i.e. that 

ξ : B Γ 1 ⊗Γ 2 (xy) ∼ = -→ B Γ ′ 1 ⊗Γ ′ 2 (ξ ( 
= k -1 1 k 2 , we have ξ(xy) = ξ(k -1 1 .(k 1 .(xy))) = k -1 1 .ξ(k 1 .(xy)) = k -1 1 .ξ(k 2 .(xy)) = ξ(k.(xy)). By Proposition 3.1.14, we have that k.(xy) = (k ′ .x)(k ′′ .y) for some k ′ , k ′′ ∈ K. This gives us φ(x) ⊗ ψ(y) = ξ(xy) = ξ((k ′ .x)(k ′′ .y)) = φ(k ′ x)) ⊗ ψ(k ′′ .y)).
from where we obtain φ(x) = φ(k ′ .x) and ψ(y) = ψ(k ′′ .y). Since both φ and ψ are isomorphisms, we obtain x = k ′ .x and y = k ′′ .y. 

CATEGORY OF K-MONOIDS

In this section we introduce a class of monoids that carry a K-graph structure called K-monoids. In particular we investigate two processes to obtain such monoids from a given K-graph Γ ∈ Graph K . Definition 3.2.1. A K-monoid is a monoid M whose underlying set is a K-graph, and such that for any m 1 , m 2 ∈ M we have

B M (m 1 m 2 ) ∼ = B M⊗M (m 1 ⊗ m 2 ).
The category of K-monoids, denoted Mon K , is defined as follows:

⋄ the objects of Mon K are K-monoids M;

⋄ the morphisms in Mon K are simultaneously morphisms of monoids and of their underlying Kgraphs.

We recall here that in Section 3.1 we have already fixed an indexing set I. We note now some properties of Mon K which are obtained directly from the investigations on Graph K in Section 3.1 and the nature of the category of monoids. In what follows we construct two functors

T, C : Graph K -→ Mon K .
The first functor T associates to Γ the free monoid on the set of vertices V(Γ ) of Γ , denoted T (Γ ) or simply Γ * , which inherits the K-graph structure from Γ via tensoring as in (3.5) and (3.6). The second functor C associates to Γ a K-monoid C(Γ ) that is, in some sense, the minimal monoid describing the product of T (Γ ) with respect to its underlying K-graph.

The free monoid T (Γ ).

Given a K-graph Γ , by Propositions 3.1.9 and 3.1.13 we have that for any n ∈ N

Γ ⊗n = Γ ⊗ Γ ⊗ • • • ⊗ Γ n times
is also a K-graph. By Proposition 3.1.7 we obtain that

T (Γ ) := n∈N Γ ⊗n
is a K-graph. We call T (Γ ) the free K-monoid generated by Γ . The product in T (Γ ) is given by concatenation, i.e.

(x 1 ⊗ • • • ⊗ x k )(y 1 ⊗ • • • ⊗ y l ) = x 1 ⊗ • • • ⊗ x k ⊗ y 1 ⊗ • • • ⊗ y l .
As a monoid T (Γ ) is the free monoid generated by V(Γ ) and moreover it inherits a K-graph structure from Γ . Here the notation T (Γ ) is adapted from the tensor algebra notation, though we also use the more common notation Γ * for T (Γ ). The K-graph structure on T (Γ ) is defined inductively on the lengths of words w = uv ∈ T (Γ ) as follows:

e i .(uv) = (e i .u)v if ϕ i (u) ≥ ε i (v), u(e i .v) if ϕ i (u) < ε i (v), and 
f i .(uv) = (f i .u)v if ϕ i (u) > ε i (v), u(f i .v) if ϕ i (u) ≤ ε i (v).
As T (Γ ) is a K-graph, we have notions of connected components B(w) for w ∈ T (Γ ), and of the maps ε i and ϕ i . Moreover the Kashiwara group K Γ * with the partial action on T (Γ ) is the same as the one of Γ , namely K Γ .

3.2.4. The K-monoid C(Γ ). The free monoid T (Γ ) contains information about the initial K-graph Γ , especially about the K-graphs that are obtained when tensoring Γ with itself. In particular it often happens that T (Γ ) contains disjoint K-subgraphs which are isomorphic to one another. This leads to the following question:

⋄ What are the isomorphism classes of the connected components of T (Γ )?

For this purpose we consider the relation ∼ Γ on Γ * . We set w ∼ Γ w ′ for w, w ′ ∈ Γ * if there exists an isomorphism φ : B(w) -→ B(w ′ ) such that φ(w) = w ′ . As ∼ Γ is defined in terms of isomorphisms, it is an equivalence relation. We call ∼ Γ the full K-congruence.

An equivalence relation on a monoid is not always enough to ensure that taking the quotient is a well-defined monoid, as it has to be compatible with the product, i.e. be a congruence. However in this setting it turns out that the equivalence relation ∼ Γ is indeed enough to define a quotient, i.e. we have the following result. Theorem 3.2.5. ( [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]) Let Γ be a K-graph and ∼ Γ be the K-congruence on Γ * . Then ∼ Γ is a congruence on Γ * . Remark 3.2.6. This result, which is a slight modification of that in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], differs from its original counterpart in that the definition of the congruence ∼ Γ does not require weight considerations. The proof in this more general context can be obtained from the former by forgetting the weight considerations.

We consider a K-monoid associated to a K-graph Γ , called the minimal K-monoid of Γ by setting whenever e i .w (resp. f i .w) is defined, for i ∈ I and w ∈ Γ * . We show that this definition is independent of the choice of representative of the equivalence class. Indeed, let [w 1 ] = [w 2 ] for w 1 , w 2 ∈ Γ * . Then by definition of C(Γ ) there exists an isomorphism B Γ * (w 1 ) ∼ = B Γ * (w 2 ) which maps w 1 to w 2 . In particular, if e i .w 1 is defined, then so is e i .w 2 , and we have that this isomorphism maps e i .w 1 to e i .w 2 , thus we indeed have [e i .w 1 ] = [e i .w 2 ]. The analogous statement for f i is proven similarly. Note that in particular, the canonical projection p : Γ * -→ C(Γ ) is a morphism in Mon K . One may think of C(Γ ) as the monoid of isomorphism classes of connected components of Γ * . Next we give a result which emphasizes the minimality of C(Γ ), and may be seen as a Schur's lemma in the context of K-monoids. Proposition 3.2.7. Let Γ 1 , Γ 2 ∈ Graph K , and φ : C(Γ 1 ) -→ C(Γ 2 ) a morphism in Mon K . Then φ is injective. Moreover if such a morphism φ exists, it is unique.

C(Γ ) := (Γ * / ∼ Γ ) .

Let us note a few properties of C(Γ ). If we denote by

Proof. Let t 1 , t 2 ∈ C(Γ 1 ) and suppose that φ(t 1 ) = φ(t 2 ). Since φ is a strong morphism, we have

B C(Γ 1 ) (t 1 ) ∼ = B C(Γ 2 ) (φ(t 1 )) and B C(Γ 1 ) (t 2 ) ∼ = B C(Γ 2 ) (φ(t 2 )) implying B C(Γ 1 ) (t 1 ) ∼ = B C(Γ 1 ) (t 2 ). Since C(Γ 1
) is obtained by identifying all the isomorphic connected components of Γ * with one another, we necessarily have t 1 = t 2 , showing that φ is indeed injective.

To show that there exists at most one morphism φ : C(Γ 1 ) -→ C(Γ 2 ) in Mon K , let φ ′ : C(Γ 1 ) -→ C(Γ 2 ) be any other morphism. Then for any t ∈ C(Γ 1 ) we have

B C(Γ 2 ) (φ(t)) ∼ = B C(Γ 1 ) (t) ∼ = B C(Γ 2 ) (φ ′ (t)).
Similarly to the first part of the proof, arguing for C(Γ 2 ) we conclude that φ(t) = φ ′ (t), thus indeed φ = φ ′ which is what we wanted to show.

3.2.8. Some properties of Mon K . In this subsection we note certain properties of the category Mon K . Proposition 3.2.9. T, C : Graph K -→ Mon K are functors which preserve injections and surjections. Moreover, for any morphism φ ∈ Graph K , the morphism Cφ is injective.

Proof. We have already seen the definition of T and C on objects of Graph K . Let now φ : Γ 1 -→ Γ 2 be a morphism in Graph K . Let φ ⊗n : Γ ⊗n 1 -→ Γ ⊗n 2 be the induced morphism of tensors, and let

T (φ) = φ * = n∈N φ ⊗n : T (Γ 1 ) -→ T (Γ 2 ),
which is a morphism of K-graphs by Proposition 3.1.16. We also have that φ * is a morphism of monoids since

φ * (x 1 x 2 • • • x n ) = φ(x 1 )φ(x 2 ) • • • φ(x n ).
The fact that if φ is injective (resp. surjective), then φ * is also injective (resp. surjective) follows directly from the definition of φ * and the fact taht T (Γ 1 ) and T (Γ 2 ) are free monoids. We define the morphism Cφ : C(Γ 1 ) -→ C(Γ 2 ) by setting

Cφ([w] Γ 1 ) = [Tφ(w)] Γ 2 . (3.9)
First we show that this definition is independent of choice of representative. Indeed if It remains to show that C preserves surjections and injections. For surjectivity, if φ is surjective, then by the first part of the proof we have that Tφ is surjective. Moreover, [-] Γ 2 is always surjective, and since Cφ([-] Γ 1 ) = [-] Γ 2 • Tφ, we conclude that Cφ is also surjective. For injectivity, given any morphism φ : Γ 1 -→ Γ 2 in Graph K we obtain a morphism Cφ : C(Γ 1 ) -→ C(Γ 2 ) in Mon K . Then by Proposition 3.2.7 we have directly that Cφ is injective. This completes the proof.

[w 1 ] Γ 1 = [w 2 ] Γ 1 we have B Γ * 1 (w 1 ) ∼ = B Γ * 1 (w 2 ). Since Tφ is a strong morphism, we have B Γ * 2 (Tφ(w 1 )) ∼ = B Γ * 2 (Tφ(w 2 )) giving us [Tφ(w 1 )] Γ 2 = [Tφ(w 2 )] Γ 2 . Next, Cφ
We note that in the proof of the Proposition 3.2.9, we have actually shown that if the morphism φ * : Γ * 1 -→ Γ * 2 obtained from φ : Γ 1 -→ Γ 2 is surjective, then so is Cφ. This holds even if the map Γ * 1 -→ Γ * 2 does not come from a φ ∈ Graph K . Thus we have the following consequence of the proof of Proposition 3.2.9. Corollary 3.2.10. Let Γ 1 , Γ 2 ∈ Graph K , and φ : T (Γ 1 ) -→ T (Γ 2 ) a morphism in Mon K . Then φ descends to a morphism Cφ : C(Γ 1 ) -→ C(Γ 2 ). Moreover if φ is surjective, then so is Cφ.

Let us describe here via a graphical scheme the two previous results. Let φ : Γ * 1 -→ Γ * 2 be a morphism in Graph K . If the map φ comes from a morphism φ 0 : Γ 1 -→ Γ 2 , we have a diagram

Γ 1 φ 0 G G ı Γ 2 ı T (Γ 1 ) Tφ 0 G G [-] Γ 1 T (Γ 2 ) [-] Γ 2 C(Γ 1 ) Cφ 0 G G C(Γ 2 ), (3.10) 
where both squares are commutative. Indeed, the top square is trivially commutative. The bottom square is commutative by the definition of Cφ in (3.9). If the top horizontal map φ 0 is surjective, then so are the two bottom horizontal maps Tφ 0 and Cφ 0 . The map Cφ 0 is always injective. In particular we note the following consequence of Proposition 3.2.7 and Corollary 3.2.10.

Corollary 3.2.11. Let Γ 1 , Γ 2 ∈ Graph K and φ : T (Γ 1 ) -→ T (Γ 2 ) a surjective morphism in Mon K . Then C(Γ 1 ) ∼ = C(Γ 2 ).
3.2.12. Decomposing K-graphs into connected components. Here we interpret Corollary 3.2.11 in terms of repeated connected components. Let φ : Γ 1 -→ Γ 2 be surjective morphism in Graph K , and consider the decomposition

Γ 2 = j∈J Γ j (3.11)
where Γ j are the connected components of Γ 2 . More precisely, the relation ≡ Γ 2 on Γ 2 defined by setting

x ≡ Γ 2 y if B Γ 2 (x) = B Γ 2 (y)
, is an equivalence relation and its equivalence classes are precisely the isomorphism classes of the connected components in Γ 2 . For each j ∈ J, set Γ ′ j := φ -1 (Γ j ) ⊂ Γ 1 . Similarly we decompose Γ ′ j into a direct sum of its connected components as in (3.11), that is

Γ ′ j = l∈L j Γ ′ l .
Then for any l ∈ L j and x l ∈ Γ ′ l we have φ :

B Γ ′ l (x l ) -→ Γ j is an isomorphism in Graph K . Since B Γ ′ l (x l ) = Γ ′ l , we have Γ ′ l ∼ = Γ j , thus we can write Γ ′ j = l∈L j Γ l ,
and finally we obtain a similar decomposition for Γ 1 , that is

Γ 1 = j∈J Γ ′ j = j∈J l∈L j Γ l .
By this observation, we see that given a surjective morphism Γ 1 -→ Γ 2 , the decomposition of Γ 1 into connected components can be expressed in terms of the decomposition of Γ 2 . This discussion also implies the following result.

Proposition 3.2.13. Let F = {Γ j | j ∈ J} be a family of K-graphs, and let ≡ F be the equivalence relation identifying isomorphic K-graphs in F. Let F 1 = {Γ j | j ∈ J ′ } be a family of representatives of the equivalence classes of ≡ F . We have

C Γ ∈F Γ ∼ = C   Γ ∈F 1 Γ   .
In particular, copies of connected components of K-graphs do not affect the K-monoid C(Γ ).

3.2.14. Characterizing objects and subobjects in Mon K . Here we characterize K-monoids and their submonoids in terms of Graph K and the functors T and C. We begin with the following result. Proof. We prove the equations for objects of Graph K first, and then for morphisms in Graph K . Let Γ ∈ Graph K , and consider T (Γ ) and C(Γ ) as K-graphs. Since the canonical projection p : T (Γ ) -→ C(Γ ) is surjective, by Proposition 3.2.9 and Corollary 3.2.11 we have

C(T (Γ )) ∼ = C(C(Γ )), (3.12) 
thus CT = CC holds for objects.

For the second part of the equation, consider the morphism φ : T (T (Γ )) -→ T (Γ ) given by

φ(w 1 w 2 • • • w n ) = w 1 w 2 • • • w n ,
where the argument of φ is a word on the letters of T (Γ ) (which in turn are words in the letters of Γ ), and the right side of the equation is the reading of the argument in the letters of Γ . Then φ is a surjective morphism in Mon K , and by Corollary 3.2.11 we obtain that

Cφ : C(T (Γ )) -→ C(Γ )
is an isomorphism of K-monoids. Thus we indeed have that CT = C, which is what we wanted to show.

To prove that these equations hold for morphisms of Graph K as well, we proceed as follows. Consider a morphism φ : Γ 1 -→ Γ 2 in Graph K . We then obtain two morphisms

CTφ : (CT )(Γ 1 ) -→ (CT )(Γ 2 ) and CCφ : (CC)(Γ 1 ) -→ (CC)(Γ 2 ).
By the first part of the proof, we have that

(CT )(Γ 1 ) = (CC)(Γ 1 ) = C(Γ 1 ) and similarly (CT )(Γ 2 ) = (CC)(Γ 2 ) = C(Γ 2 )
. Thus the morphisms CTφ and CCφ can be written as

CTφ : C(Γ 1 ) -→ C(Γ 2 ) and CCφ : C(Γ 1 ) -→ C(Γ 2 )
From Proposition 3.2.7, we have that there exists at most one morphism C(Γ 1 ) -→ C(Γ 2 ) which is in fact Cφ, hence indeed we have

CTφ = CCφ = Cφ
which is what we wanted to show.

We now characterize the objects of Mon K via the functors T and C.

Theorem 3.2.16. Let M be a K-monoid. Then there exists Γ ∈ Graph K and surjective morphisms

T (Γ ) p -→ M q -→ C(Γ ).
in Mon K .

Proof. Let M ∈ Mon K . Then the canonical projection

p : T (M) -→ M
is a morphism of monoids, and also of the underlying K-graphs, hence a surjective morphism of Kmonoids.

Consider now the map

q : M ı -→ T (M) -→ CT (M) = C(M).
To note that q is surjective, take any

t ∈ C(M) = (CT )(M). Assume that t = [w] M = [m 1 ⊗ m 2 ⊗ • • • ⊗ m k ] M
, where m i ∈ M for i = 1, . . . , k. But then since by definition of K-monoids we have

B M (m 1 m 2 • • • m k ) ∼ = B T (M) (m 1 ⊗ • • • ⊗ m k ) ∼ = B C(M) ([w] M ), we obtain q(m 1 m 2 • • • m k ) = [w] T (M)
. Thus q is surjective. Thus indeed we have surjective maps

T (Γ ) p -→ M q -→ C(Γ ) in Mon K for Γ = M.
Note that the proof of the theorem above explicitly identifies a K-graph Γ by setting Γ = M. This Γ however is not unique, and one would ideally choose a Γ as small as possible. Next we note a consequence of this theorem, which further describes the objects of Mon K . Corollary 3.2.17. Let M ∈ Mon K . Then there exists Γ ∈ Graph K and a subcongruence ∼ of ∼ Γ such that M = (T (Γ )/ ∼)

Proof. Let Γ be as in Theorem 3.2.16, and consider the relation ∼ on T (Γ ) defined by setting

w ∼ w ′ if p(w) = p(w ′ )
for w, w ′ ∈ T (Γ ). Then ∼ is clearly a congruence on T (Γ ), and since p is a morphism in Mon K , we have that if p(w) = p(w ′ ), then

B T (Γ ) (w) ∼ = B M (p(w)) = B M (p(w ′ )) ∼ = B T (Γ ) (w ′ ), thus we have w ∼ Γ w ′ . Hence ∼ is indeed a subcongruence of ∼ Γ .
The fact that M = T (Γ )/ ∼ follows directly from the definition of ∼.

Finally we note another consequence of Theorem 3.2.16 which describes all the submonoids of C(Γ ) for Γ ∈ Graph K . Corollary 3.2.18. Let Γ be a K-graph. Then M is a K-submonoid of C(Γ ) if and only if M = C(A) for some K-subgraph A of T (Γ ).

PROPER K-GRAPHS

Here we consider a class of K-graphs Γ such that every connected component of C(Γ ) contains a unique maximal element, called the highest weight.

Definition 3.3.1. Let Γ be a K-graph. i) An element x ∈ Γ is called of highest weight if e i .w is undefined for all i.
ii) If every connected component of Γ * has a unique highest weight, we call Γ a proper K-graph.

In the following result we note that the property of highest weight behaves well with respect to the tensor product. Its proof follows directly by the defining equations for the operator e i . where x 0 is the unique element of highest weight in Γ ′ .

For a K-graph Γ we set

Γ 0 := {x ∈ Γ | x = x 0 }, (3.13) 
that is Γ 0 consists of the elements of highest weight in Γ . If Γ is proper, for any x ∈ Γ * we can write x = k.x 0 for some k ∈ K. Note that k here is not necessarily uniquely determined. Adopting the orbit notation for the partial action of K, we can write

Γ = K.Γ 0 := {k.x 0 | k ∈ K, x 0 ∈ Γ 0 }. (3.14) 
In particular we can consider the set of highest weight elements of Γ * , namely

(Γ * ) 0 := {w ∈ Γ * | w = w 0 }. (3.15) 
By Proposition 3.3.2 we have that (Γ * ) 0 is a (non K-) submonoid of Γ * , and there is a natural projection

-0 : Γ * -→ (Γ * ) 0
given by w -→ w 0 . Further, the K-congruence ∼ Γ descends to (Γ * ) 0 , and we define the highest weight monoid of Γ by

C 0 (Γ ) := ((Γ * ) 0 / ∼ Γ ) = C(Γ )/ w ≡ e i .w | w ∈ Γ * , i ∈ I .
The following result asserts that the property of being proper is preserved under certain constructions.

Proposition 3.3.3. Let Γ be a K-graph.

i) Γ is proper if and only if every connected component of C(Γ ) contains a unique highest weight.

ii) If Γ is proper, then so is any K-subgraph of Γ * . In particular so are Γ * and C(Γ ).

iii) If φ : Γ 1 -→ Γ 2 is a strong morphisms of K-graphs, and Γ 2 is proper, then Γ 1 is proper. 

2.

We note that Γ is indeed a K-graph, and it has a single element of highest weight, namely 0. Nevertheless, the connected component of the word 00 in Γ * is We now show that the sets of generating 1-cells and generating 2-cells of the column presentations naturally inherit the K-graph structure of Γ . in Col(Γ ) 2 if and only if we have a generating 2-cell e i .α : e i .(c 1 c 2 ) =⇒ e i .P(c 1 c 2 ), and similarly for f i . Moreover we know that for any two admissible columns c 1 , c 2 there exists at most one 2-cell with source c 1 , c 2 . This means that we can equip Col(Γ ) 2 with a K-graph structure by setting e i .α : e i .s(α) =⇒ e i .t(α),
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and f i .α : f i .s(α) =⇒ f i .t(α)
if e i .s(α) (resp. f i .s(α)) is defined. Then the conditions (P1), (P2) are satisfied by Col(Γ ) 2 and we get that Col(Γ ) 2 is indeed a K-graph.

ii) By definition of the K-graph structure on Col(Γ ) 2 , we have

B Col(Γ ) 2 (α) s ∼ = B Col(Γ ) * 1 (s(α)), and 
B Col(Γ ) 2 (α) t ∼ = B Col(Γ ) *
1 (s(α)), which completes the proof of the theorem.

In subsection 2.2.18 we recalled that in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], for a K-graph Γ in our terminology, the authors define a crystal congruence on T (Γ ) equipped with a weight function. We note that the crystal monoid they associate to Γ , denoted by Cr(Γ ) in 2.2.18 may be larger than C(Γ ). Indeed, for Γ = A n and for the K-congruence ∼ Γ we have that

B A * n (12 • • • n) ∼ = B A * n (∅) = { * }, hence (12 • • • n) ∼ Γ ∅, which can be expressed as [12 • • • n] = [∅] ∈ C(A n ).
On the other hand, for the crystal congruence which keeps track of weight, we have

[12 • • • n] = [∅] ∈ Cr(A n ).
This is due to the word 12 • • • n being assigned a non-zero weight in the context of crystals as in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF].

Next we give a consequence of Theorem 3.2.16.

Corollary 3.4.5. Let Γ = A n , B n , C n , D n be a classical crystal base. Then the crystal congruence on Γ * as in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] is a subcongruence of the K-congruence on Γ * .

The two properties i), ii) of the 2-polygraph Col(Γ ) specify a kind of polygraph, to be called a K-2-polygraph. In the following chapter we investigate such polygraphs and their rewriting properties following the exposition in 2.1.

CHAPTER 4 PRESENTATIONS OF K-MONOIDS

In the previous chapter we have introduced the category of K-graphs, denoted Graph K , with respect to the two defining axioms (P1), (P2) as in Definition 3.1.2. We have also introduced the category of Kmonoids, denoted Mon K , in Section 3.2 and along with functors T, C : Graph K -→ Mon K . In this chapter we continue the study of K-monoids via presentations. A machinery that allows one to do this is that of presentations of monoids by convergent polygraphs, as seen in the first chapter. Given a K-monoid M, we have shown in Corollary 3.2.17 that there exists a K-graph Γ and a subcongruence ∼ of ∼ Γ such that M = Γ * / ∼. The idea is to have generating oriented relations for the congruence ∼ so that we can realize M via a presentation with generators Γ , and such relations. For a general Γ ∈ Graph K , finding generating relations and choosing an orientation is not a straightforward task. However the plactic monoids admit such presentations that are finite and convergent as seen in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF].

In 4.1 we introduce the notion of a K-2-polygraph which is a 2-polygraph X = (X 1 , X 2 ) with one 0-cell, and with X 1 , X 2 being K-graphs, and the source and target maps X 2 s -→ -→ t X * 1 being K-graph morphisms. The motivation for these objects are the Knuth-like presentations for the plactic monoids as in [START_REF] Lascoux | Le monoıde plaxique[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types B n and D n[END_REF] and the finite convergent column presentations as in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]. Both these presentations fit the definition of a K-2-polygraph. We study the rewriting system associated to K-2-polygraphs, and show that the sets of rewriting sequences Seq(X) and branchings Br(X) are stable under the Kashiwara operators, and in fact these sets admit a K-graph structure naturally through the source (and target) maps.

In 4.2 we use these constructions to show that proving rewriting properties such as termination, confluence, and local confluence of X, is reduced to words of highest weight.

In 4.3 we show that given a K-2-polygraph X, its Squier completion as in 2.1.30, namely the (3, 1)poygraph (X, Ω) with Ω a family of generating confluences, or a homotopy basis, is such that the free (3, 1)-category Ω ⊤ naturally admits a K-graph structure via the source and target maps. In particular, the homotopy basis Ω can be chosen so that it is itself a K-graph, and we can explicitly describe such a homotopy basis by basis elements of highest weight.

In this chapter all the 2-polygraphs we consider contain a single 0-cell { * }. We denote them by X = (X 1 , X 2 ) where X 1 are the generating 1-cells, and X 2 are the generating relations. As there is a single 0-cell, any two 1-cells are 0-composable, and thus we often write uv for u ⋆ 0 v, for u, v ∈ X * 1 .

K-2-POLYGRAPHS

4.1.1. Definition of K-2-polygraphs. In this subsection we introduce a notion of a 2-polygraph which presents objects in Mon K .

Definition 4.1.2. A K-2-polygraph is a 2-polygraph X = (X 1 , X 2 ) such that i) X 1 and X 2 are K-graphs,
ii) the source and target maps s, t : X 2 -→ TX 1 (= X * 1 ) are strong morphisms. In other words, a K-2-polygraph is a 2-polygraph X so that the defining data of X, namely the sets of 1-cells, of 2-cells, and the source and target maps, are all in Graph K .

Let X be a K-2-polygraph, and let α :

w 1 =⇒ w 2 be a generating 2-cell in X 2 . By Definition 4.1.2 ii) we have B X 2 (α) ∼ = B X * 1 (s(α)) ∼ = B X * 1 (t(α)), (4.1) 
and in particular Recall from Corollary 3.2.17 that K-monoids are all of the form T (Γ )/ ∼, for some Γ and ∼ a subcongruence of the K-congruence ∼ Γ . The following result shows that the monoid X presented by a K-2-polygraph is in fact a K-monoid. Proposition 4.1.4. Let X be a K-2-polygraph. Then X is a K-monoid.

B X * 1 (w 1 ) ∼ = B X * 1 (w 2 ). For k ∈ K we have s(k.α) = k.s(α), t(k.α) = k.t(
Proof. As in Definition 3.2.1, we need to show that X is a K-graph, and that its product is compatible with the tensoring of K-subgraphs.

Let c ∈ X, and let w 1 , w 2 ∈ X * 1 be two representatives of c in X * 1 . This means that there exists a zig-zag rewriting sequence in X from w 1 to w 2

w 1 = u 1 α 1 =⇒ u 2 α 2 ⇐= u 3 α 3 =⇒ • • • α k-1 ⇐= u k = w 2 , with α i ∈ X 2 . By (4.1) we have B X * 1 (w 1 ) ∼ = B X * 1 (w 2 ). (4.2)
We equip X with a K-graph structure by setting

B X (c) ∼ = B X * 1 (w)
, where w is any representative of c ∈ X. From (4.2) we see that the K-graph structure on B X (c) is independent of the choice of representative.

Consider now the action of K on X. Let k ∈ K and c 1 , c 2 ∈ X. Let w 1 , w 2 ∈ X * 1 be representatives of c 1 and c 2 respectively. Then w 1 w 2 is a representative for c 1 c 2 and by construction we have

B X (c 1 c 2 ) ∼ = B X * 1 (w 1 w 2 ).
Then by Proposition 3.1.12, if we denote

Γ 1 = B X * 1 (w 1 ) and Γ 2 = B X * 1 (w 2 ) we have B X (c 1 c 2 ) ∼ = B Γ 1 ⊗Γ 2 (w 1 w 2 ) ∼ = B X⊗X (c 1 c 2 ),
which shows that X is indeed a K-monoid, which is what we wanted to show.

We note that the converse of this proposition is trivially true, i.e. that given a K-monoid M, there exists a K-2-polygraph presenting it. Indeed, let M = Γ * / ∼, with Γ a K-graph, and ∼ a subcongruence of the K-congruence ∼ Γ . We set X = (Γ, X 2 ), with X 2 consisting of rewriting steps α w 1 ,w 2 : w 1 =⇒ w 2 for any w 1 , w 2 ∈ X * 1 with w 1 ∼ w 2 .. Then X is a K-2-polygraph that presents M. We interpret Definition 4.1.2 in another fashion here. Given α : w =⇒ w 1 and i ∈ I such that e i .w is defined, there exists a unique 2-cell e i .α as follows

w α + 3 i w 1 i e i .w e i .α
+ 3 e i .w 1

(4.3)
where α ∈ X 2 , e i .w is defined, and w ′ = e i .w. We have a similar commutative diagram for f i with the orientation of the arrows i -→ reversed. In the rest of this section, we work towards showing that ⋄ The rewriting properties of termination, local confluence, and confluence of a K-2-polygraph X are stable under the action of K.

This shall be made precise in the following section by equipping Seq(X) and Br(X) with a K-graph structure.

4.1.5. Rewriting systems of K-polygraphs. Let X be a K-2-polygraph. Consider the abstract rewriting system R = R(X) associated to X as in Subsection 2.1.20, and the associated sets Step(X), Seq(X), Br(X), and Crit(X). We remark here that we sometimes replace X with R in this notation. In what follows we show that these sets naturally admit a K-graph structure via the source maps. Consider Step(X). Let tαv : tuv =⇒ tu ′ v ∈ Step(X) for t, v ∈ X * 1 and α ∈ X 2 . Then as

B X * 1 (u) ∼ = B X * 1 (u ′ ), and 
∼ X 1 is the K-congruence in X * 1 , we have B X * 1 (tuv) ∼ = B X * 1 (tu ′ v).

Thus we equip

Step(X) with a K-graph structure by setting

B Step(X) (α) ∼ = B X * 1 (s(α)). Explicitly for k ∈ K, t, v ∈ X *
1 and α ∈ X 2 , by Proposition 3.1.14 we have that there exist

k 1 , k 2 , k 3 ∈ K such that k.(ts(α)v) = (k 1 .t)(k 2 .s(α))(k 3 .v), hence k.(tαv) : (k 1 .t)(k 2 .u)(k 3 .v) =⇒ (k 1 .t)(k 2 .u ′ )(k 3 .v).

Consider Seq(X). Let

s : w 0 α 1 =⇒ w 1 α 2 =⇒ • • • αn =⇒ w n α n+1 =⇒ • • •
be a rewriting sequence. Since α i are rewriting steps, from the previous consideration about Step(X) we have that B X * 1 (w 0 ) ∼ = B X * 1 (w k ) for all the words w k appearing in s. Thus we equip Seq(X) with a K-graph structure by setting

B Seq(X) (s) ∼ = B X * 1 (w).
Explicitly for k ∈ K, and s ∈ Seq(X) we have

k.s : k.w k.α 1 =⇒ k.w 1 k.α 2 =⇒ • • • k.αn =⇒ k.w n k.α n+1 =⇒ • • •
In particular, we have the following .

Proposition 4.1.6. Let X be a K-2-polygraph, s 1 , s 2 ∈ Seq(X), k ∈ K such that k.s 1 and k.s 2 are defined, and m, n ∈ N. Then

i) k.s 1 (n) = k.(s 1 (n))
, where s 1 (n) denotes the n-th entry of s 1 , ii) k.s 1 is finite if and only if s 1 is finite, and in that case len(s 1 ) = len(k.s 1 ),

iii) s 1 (m) = s 2 (n) if and only if (k.s 1 )(m) = (k.s 2 )(n).
Consider Br(X). We note that if

v u α -5 β ( 0 w is a branching, then B X * 1 (u) ∼ = B X * 1 (v) ∼ = B X * 1 (w). In particular we have B Seq(X) (α) ∼ = B Seq(X) (β)
, and thus we equip Br(X) with a K-graph structure by setting

B Br(X) ((α, β)) ∼ = B X * 1 (s(α)).
Explicitly, for k ∈ K and (α, β) ∈ Br(X) with k.s(α) defined, we have that the branching k.(α, β) is defined and is given by k

.v k.u k.α . 6 k.β ' / k.w.
The next result shows that specific types of branchings are preserved by the action of K. We recall that LBr(X) denotes the set of local branchings of the 2-polygraph X.

Proposition 4.1.7. Let X be a K-2-polygraph, (α, β) ∈ Br(X), and Proof. The statements i), ii), and iii) follow directly from the definitions of different types of branchings.

k ∈ K. Then i) (α, β) ∈ LBr(X) if and only if k.(α, β) ∈ LBr(X); ii) (α, β) is confluent if and only if k.(α, β) is confluent, iii) (α,
Here we prove iv). Consider first the case of k = e i . Let (α, β) be a critical branching of X so that e i .(α, β) = (e i .α, e i .β) is defined. By i) we see that e i .(α, β) is a local branching, and by iii) it is overlapping. We need to show that (e i .α, e i .β) is minimal with respect to the order ❁ as defined in 2.1.24. Suppose the contrary, that (e i .f, e i .g) is not minimal and thus there exists a branching (γ, δ) ❁ (e i .α, e i .β). Without loss of generality we may assume that (δ, γ) is itself minimal with respect to the order ❁, thus it is a critical branching.

Since (γ, δ) ❁ (e i .α, e i .β) we have that e i .α = pγq and e i .g = pδq,

for some p, q ∈ X * 1 . By applying the f i Kashiwara operator to the branching (e i .α, e i .β), we get α = f i .(pγq) and g = f i .(pδq).

By definition of the Kashiwara operators f i , we have that the action of f i on the 2-cells pγq and pδq is entirely determined by the action of f i on their sources, which coincide and are equal to puq with u = s 1 (γ) = s 1 (δ) We consider now the three possible cases for the action of f i on the word puq.

⋄ f i .(puq) = (f i .p)uq. We then have that f i .(pγq) = (f i .p)γq and f i .(pδq) = (f i .p)δq, and thus

(α, β) = ((f i .p)γq, (f i .p)δq) ❂ (γ, δ)
implying that (α, β) is not critical, thus a contradiction.

⋄ f i .(puq) = p(f i .u)q. We then have that f i .(pγq) = p(f i .γ)q and f i .(pδq) = p(f i .δ)q, and thus

(α, β) = (p(f i .γ)q, p(f i .δ)q) ❂ f i .(γ, δ)
implying that (α, β) is not critical, thus a contradiction.

⋄ f i .(puq) = pu(f i .q). We then have that f i .(pγq) = pγ(f i .q) and f i .(pδq) = pδ(f i .q), and thus

(α, β) = (pγ(f i .q), pδ(f i .q)) ❂ (γ, δ)
implying that (α, β) is not critical, thus a contradiction.

The assumption that e i .(α, β) is not a critical branching leads to a contradiction in each of these cases, hence we conclude that e i .(α, β) is indeed a critical branching. The case of k = f i is proven entirely analogously. For a general k = k 1 k 2 • • • k t with k j ∈ {e i , f i | i ∈ I}, the conclusion follows by induction on t.

Thus in particular we have that Crit(X) is a K-subgraph of Br(X).

REWRITING WITH PROPER K-2-POLYGRAPHS

In this section we prove two classical rewriting results in the context of proper K-2-polygraphs, namely Newmann's Lemma 2.1.12, and the Critical Pair Lemma 2.1.25. Here, as in the context of Definition 4.2.2, a K-2-polygraph X possesses components of highest weight, which we can then use as a starting point to study the global rewriting properties of X. 

4.2.2. A K-2-polygraph X is called proper if X 1 is a proper K-graph.
We note that properness of the K-graph of 1-cells in a K-2-polygraph X implies properness of the K-graph of 2-cells of X. Proposition 4.2.3. Let X be a proper K-2-polygraph. Then X 2 is a proper K-graph. Theorem 4.2.8 (Critical Pair Lemma). Let X be a proper K-2-polygraph. Then X is locally confluent if and only if all the critical branchings of R 0 are confluent.

Proof. By Newman's Lemma for K-polygraphs 4.2.7, we see that if X is locally confluent, then the critical branchings Crit(R) are confluent. Since Crit(R 0 ) ⊂ Crit(R), we have that the critical branchings of R 0 are confluent.

Conversely, assume that the critical branchings in Crit(R 0 ) are confluent. We then have

Crit(R) = K.(Crit(R 0 )).
Then by Proposition 4.1.7 we have that the critical branchings in Crit(R) are confluent, and by Theorem 2.1.25 we obtain that X is locally confluent, which is what we wanted to show.

K-GRAPH STRUCTURE ON SQUIER'S COMPLETION

In Sections 4.1 and 4.2 we have investigated the rewriting properties of termination and confluence of K-2-polygraphs with respect to the action of Kashiwara operators. In particular we showed that if X is a proper K-2-polygraph, then the conditions for Newman's Lemma, and the Critical Pair Lemma need only be verified at highest weight. This was enabled by noting that certain relevant sets arising from rewriting on X, that is Seq(R) and Br(R), admit a K-graph structure, and further showing that the global behavior of these rewriting properties depends entirely on their local counterparts at highest weight.

In what follows, we shall take this approach a step further and establish a K-graph structure on ⋄ the free 2-category generated by X, ⋄ the free (2, 1)-category generated by X, ⋄ the free (3, 1)-category generated by the Squier's completion (X, Ω) of a convergent K-2-polygraph X.

Up to this point we have considered K-graphs that carry a monoidal structure, i.e. are equipped with one kind of product (or composition ⋆ 0 ). As we increase the dimension, the structure will contain higher dimensional parts, and there will be more ways of composing, so special care should be taken to describe the interaction between the Kashiwara operators and these compositions. For this reason, the approach taken here is more hands on, meaning that we explicitly define the action of the operators e i and f i on the objects.

4.3.1. Crystal monoids of dimension 2 and 3. We introduce here the dimension 2 and 3 counterparts of K-monoids. Recall first that for m, n ∈ N ∪ {∞} with m ≤ n, and (n, m)-monoid is an (n, m)category with a single 0-cell such that all l-cells for l ≥ m are invertible.

Definition 4.3.2. Let m ≤ 2. A (2, m)-K-monoid is a (2, m)-monoid C that admits a K-graph structure as follows i) the set of 1-cells of C form a K-monoid with ⋆ 0 , ii) the set of 2-cells of C form a K-graph,
iii) the source and target maps from the 2-cells of C to the 1-cells in C are morphisms of K-graphs, iv) for α, β 2-cells in C and k ∈ K we have

iv.1) k.(α ⋆ 0 β) = (k 1 .α) ⋆ 0 (k 2 .β) if k.(s(α) ⋆ 0 s(β)) = (k 1 .s(α)) ⋆ 0 (k 2 .s(β)) iv.2) k.(α ⋆ 1 β) = (k.α) ⋆ 1 (k.β).
We remark here that as there is a single 0-cell in a (2, m)-K-monoid, any two 1-cells are ⋆ 0composable. Hence often times we denote the composition u ⋆ 0 v by a concatenation uv.

The functionality of Definition 4.3.2 is that given a K-2-polygraph X, the free 2-monoid X * 2 and the free (2, 1)-monoid X ⊤ 2 both satisfy Definition 4.3.2. It also establishes an approach to generalizing the category Mon K .

As we shall be studying Squier's completion, which is a free (3, 1)-monoid associated to a convergent 2-polygraph, we introduce here the notion of a K-3-monoids. 

⋆ 0 β) = (k 1 .α) ⋆ 0 (k 2 .β) if k.(s(α)s(β)) = (k 1 .s(α))(k 2 .s(β)), iv.2) k.(α ⋆ i β) = (k.α) ⋆ i (k.β). for i = 1, 2. 4.3.4. K-graph structure on X * 2 . Let X = (X 1 , X 2
) be a K-2-polygraph, and consider the free 2category X * 2 generated by X. In particular we have a K-graph structure on X * 1 , and also on the generating 2-cells X 2 . Here we extend the action of K to all the 2-cells of X * 2 . This may be viewed as an algebraic variant of equipping Seq(X) with a K-graph structure. By definition of the free category X * 2 , the 2-cells of X are generated by the elements of X 2 via the ⋆ 0 and ⋆ 1 compositions. We then define an I-labeled directed graph structure on the 2-cells of X * 2 progressively as follows: firstly on the identity 2-cells of X * 2 , secondly on the generating 2-cells in X 2 , and finally on 2-cells obtained by ⋆ 0 and ⋆ 1 composition of generating 2-cells. i) for u ∈ X * 1 , and i ∈ I, set e i .1 u = 1 e i .u (resp. f i .1 u = 1 f i .u ) if e i .u (resp. f i .u), is defined.

ii) for α : u =⇒ v ∈ X 2 , we say that e i .α (resp. f i .α) is defined if e i .u (resp. f i .u) is defined, and set e i .α : e i .u =⇒ e i .v, (resp. f i .α :

f i .u =⇒ f i .v)
We now define the action of the Kashiwara operators e i , f i with respect to the ⋆ 0 -composition of cells as follows. Let α, β ∈ X * 2 be 2-cells, and i ∈ I. Then ⋄ e i .(α ⋆ 0 β) is defined if and only if e i .s 1 (α ⋆ 0 β) = e i .(s 1 (α)s 0 (β)) is defined, and in that case

e i .(α ⋆ 0 β) = (e i .α) ⋆ 0 β if e i .(s 1 (α)s 1 (β)) = (e i .s 1 (α))s 1 (β), α ⋆ 0 (e i .β) if e i .(s 1 (α)s 1 (β)) = s 1 (α)(e i .s 1 (β)), ⋄ f i .(α ⋆ 0 β) is defined if and only if f i .s 1 (α ⋆ 0 β) = f i .(s 1 (α)s 1 (β)
) is defined, and in that case

f i .(α ⋆ 0 β) = (e i .α) ⋆ 0 β if f i .(s 1 (α)s 1 (β)) = (f i .s 1 (α))s 1 (β) α ⋆ 0 (f i .β) if f i .(s 1 (α)s 1 (β)) = s 1 (α)(f i .s 1 (β))
Namely the action of Kashiwara operators e i , f i on a ⋆ 0 composition of 2-cells α, β is entirely determined by the action of that operator on the 1-source of that cell, that is on the word s 1 (α

⋆ 0 β) = s 1 (α)s 1 (β).
We define the action of the Kashiwara operators e i , f i with respect to the ⋆ 1 -composition, as follows

⋄ e i .(α ⋆ 1 β
) is defined if and only if e i .s 1 (α ⋆ 1 β) = e i .s 1 (α) is defined, and in that case e i .(α ⋆ 1 β) = (e i .α) ⋆ 1 (e i .β). (4.5)

⋄ f i .(α ⋆ 1 β) is defined if and only if f i .s 1 (α ⋆ 1 β) = f i .s 1 (α)
is defined, and in that case

f i .(α ⋆ 1 β) = (f i .α) ⋆ 1 (f i .β). (4.6)
To show that e i and f i are indeed well defined operators on the 2-cells of X * 2 , we need to show that the actions of e i and f i are compatible with the defining axioms of X * 2 . We thus verify the axioms (A1) and (A2) as given in equations (2.6) and (2.7).

(A1) αwv ⋆ 1 u ′ wβ ≡ uwβ ⋆ 1 αwv ′ , for α : u =⇒ u ′ , β : v =⇒ v ′ in X *
2 , and w ∈ X * 1 . Let i ∈ I, and assume that e i .(αwv⋆ 1 u ′ wβ) is defined. By (4.5) we have that e i .s 1 (αwv⋆ 1 u ′ wβ) is defined, and from (A1) we have

s 1 (αwv ⋆ 1 u ′ wβ) = s 1 (uwβ ⋆ 1 αwv ′ ),
hence e i .s 1 (uwβ ⋆ 1 αwv ′ ) is defined, and thus so is e i .(uwβ ⋆ 1 αwv ′ ). We then obtain The operator e i acts on αwv ′ by acting on precisely one of the components α, w, or v ′ . We distinguish these three cases as follows. By Proposition 3.1.12, if e i acts on αwv by acting on its l-th component for l ∈ {1, 2, 3}, then e i acts on the u ′ wβ, uwβ, and αwv ′ by acting on their l-th components as well. Thus we have l = 1 : e i .(αwv ⋆ 1 u ′ wβ) = (e i .α)wv ⋆ 1 (e i .u ′ )wβ e i .(uwβ ⋆ 1 αwv ′ ) = (e i .u)wβ ⋆ 1 (e i .α)wv ′ l = 2 : e i .(αwv

⋆ 1 u ′ wβ) = α(e i .w)v ⋆ 1 u ′ (e i .w)β e i .(uwβ ⋆ 1 αwv ′ ) = u ′ (e i .w)β ⋆ 1 α(e i .w)v ′ l = 3 : e i .(αwv ⋆ 1 u ′ wβ) = αwe i .v ⋆ 1 u ′ w(e i .β) e i .(uwβ ⋆ 1 αwv ′ ) = u ′ w(e i .β) ⋆ 1 αw(e i .v ′ )
and we see that in each of these cases we indeed have

e i .(αwv ⋆ 1 u ′ wβ) ≡ e i .(uwβ ⋆ 1 αwv ′ ).
In a completely analogous fashion we obtain that

f i .(αwv ⋆ 1 u ′ wβ) ≡ f i .(uwβ ⋆ 1 αwv ′ ) if f i .(αwv) is defined.
Thus the definition of the Kashiwara operators e i and f i on X * 2 is compatible with (A1).

(A2) (u 1 α 1 u ′ 1 ⋆ 1 • • • ⋆ 1 u m α m u ′ m ) ⋆ 0 (v 1 β 1 v ′ 1 ⋆ 1 • • • ⋆ 1 v n β n v ′ n ) = u 1 α 1 u ′ 1 v 1 s(β 1 )v ′ 1 ⋆ 1 • • • ⋆ 1 u m α m u ′ m v 1 s(β 1 )v ′ 1 ⋆ 1 u m t(α m )u ′ m v 1 β 1 v ′ 1 ⋆ 1 • • • ⋆ 1 u m t(α m )u ′ m v n β n v ′ n .
(4.7)

Denote by L respectively R the expression to the left respectively to the right of ⋆ 0 in the first line of (4.7), and by F the expression in the second and third lines of (4.7). In other words, we rewrite (4.7) as L ⋆ 0 R = F.

Let i ∈ I be such that e i .(L ⋆ 0 R) is defined. We then have that e i .(L ⋆ 0 R) = (e i .L) ⋆ 0 R or e i .(L ⋆ 0 R) = L ⋆ 0 (e i .R). We consider here the first case, as the second one is handled similarly. Since e i .(L ⋆ 0 R) = (e i .L) ⋆ 0 R, we have that e i .(s(L ⋆ 0 R)) = e i .(s(L)s(R)) = (e i .s(L))s(R). This implies that for any 1 ≤ k ≤ m and 1 ≤ l ≤ n we have

e i .(u k α k u ′ k v 1 s(β 1 )v ′ 1 ) = e i .(u k α k u ′ k )v 1 s(β 1 )v ′ 1 (4.8)
Then by (4.5) and (A2) we obtain

e i .(L ⋆ 0 R) = (e i .L) ⋆ 0 R = (e i .(u 1 α 1 u ′ 1 ) ⋆ 1 • • • ⋆ 1 (e i .(u m α m u ′ m ))) ⋆ 0 R = = (e i .(u 1 α 1 u ′ 1 ))v 1 s(β 1 )v ′ 1 ⋆ 1 • • • ⋆ 1 (e i .(u m α m u ′ m ))v 1 s(β 1 )v ′ 1 ⋆ 1 (e i .(u m t(α m )u ′ m ))v 1 β 1 v ′ 1 ⋆ 1 • • • ⋆ 1 (e i .(u m t(α m )u ′ m ))v n β n v ′ n
and finally from (4.8) we obtain

e i .(L ⋆ 0 R) = (e i .(u 1 α 1 u ′ 1 v 1 s(β 1 )v ′ 1 )) ⋆ 1 • • • ⋆ 1 (e i .(u m α m u ′ m v 1 s(β 1 )v ′ 1 )) ⋆ 1 (e i .(u m t(α m )u ′ m v 1 β 1 v ′ 1 )) ⋆ 1 • • • ⋆ 1 (e i .(u m t(α m )u ′ m v n β n v ′ n )) = e i .F.
This shows that the action of the Kashiwara operators e i on 2-cells is compatible with the defining axioms (A1) and (A2) of the free 2-category X * 2 generated by X as seen in 2.1.20. A completely analogous proof shows the action of f i is also compatible with (A1) and (A2).

Note that up to this point, we have defined the action of e i and f i on the 2-cells of X * 2 with respect to ⋆ 0 and ⋆ 1 compositions. In particular we have proved that the relations (A1) and (A2) are preserved by e i and f i .

We can then naturally extend these actions to all k ∈ K in the usual way, viewing K as the free group generated by the e i s.

Thus we have proved the following.

Theorem 4.3.5. Let X be a K-2-polygraph and let X * 2 be the free 2-monoid generated by X. Then X * 2 is a K-2-monoid.

4.3.6. K-graph structure on X ⊤ 2 . Let X = (X 1 , X 2 ) be a K-2-polygraph.
In the previous subsection we established a K-graph structure on the free 2-category X * 2 . Here we describe such a structure on the free

(2, 1)-category X ⊤ 2 . Consider the 2-polygraph X ± = (X 1 , X 2 ⊔ X - 2 ), where X - 2 = {α -: t 1 (α) =⇒ s 1 (α) | α ∈ X 2 }.
We define the operators e i and f i on X -as follows. For α ∈ X 2 and i ∈ I such that e i .α, (resp. f i .α), is defined, we set e i .α -:= (e i .α) -(resp.f i .α -:= (f i .α) -).

Then X ± is a K-2-polygraph and by Theorem 4.3.5 we have that (X ± 2 ) * is a K-2-monoid . The following proposition shows that the operators e i and f i descend to the 2-cells of

X ⊤ 2 . Proposition 4.3.7. Let X be a K-2-polygraph. Let α ∈ X 2 , u, v ∈ X *
1 , and i ∈ I such that e i .(uαv) respectively f i .(uαv) is defined. Then

e i .(uαv ⋆ 1 uα -v) ≡ 1 e i .(us(α)v) and e i .(uα -v ⋆ 1 uαv) ≡ 1 e i .(ut(α)v) resp. f i .(uαv ⋆ 1 uα -v) ≡ 1 f i .(us(α)v) and f i .(uα -v ⋆ 1 uαv) ≡ 1 f i .(ut(α)v) .
Proof. We prove here the part about the e i operator, the part for f i is done analogously. We consider the three possibilities of the action of e i on uαv.

If e i .(uαv) = (e i .u)αv, we have that e i .(us(α)v) = (e i .u)s(α)v. This means that e i .(ut(α -)v) = (e i .u)t(α -)v hence we get

e i .(uαv ⋆ 1 uα -v) = (e i .u)αv ⋆ 1 (e i .u)α -v ≡ 1 (e i .u)s(α)v) = 1 e i .(us(α)v) .
Similarly we prove the case of e i acting on v.

If e i .(uαv) = u(e i .α)v. We then have e i .(uα -v) = u(e i .α -)v = u(e i .α) -v, thus indeed we get

e i .(uαv ⋆ 1 uα -v) ≡ 1 e i .(us(α)v)
which is what we wanted to show. The second relation is proven symmetrically by assuming

α ∈ X - 2 ⊔ (X - 2 ) -= X 2 ⊔ X - 2 .
Thus X ⊤ 2 also admits a K-graph structure, and it is a 2-monoid with all the 2-morphisms being invertible. This in combination with Theorem 4.3.5 and Proposition 4.3.7, and extending the action of e i , f i to all of K, gives the following.

Corollary 4.3.8. Let X be a K-2-polygraph. Then X ⊤ 2 is a K-(2, 1)-monoid. We note that given a 2-cell α ∈ X ⊤ 2 , we have a notion of connected components B X ⊤ 2 (α), and moreover B X ⊤ 2 (α) ∼ = B X * 1 (s 1 (α)) ∼ = B X * 1 (t 1 (α)
). We note now that if X is proper, then X * 2 and X ⊤ 2 contain subcategories of highest weight.

Definition 4.3.9. Let X be a proper K-2-polygraph, and let X * 2 and X ⊤ 2 respectively be the free K-2monoid and K-(2, 1)-monoid generated by X. The subcategories of X * 2 and X ⊤ 2 consisting of all the highest weight 1-cells and 2-cells are full subcategories, called the highest weight subcategories of X * 2 and X ⊤ 2 , and are denoted by (X * 2 ) 0 and (X ⊤ 2 ) 0 .

4.3.10. K-graph structure on free (3, 1)-categories. Let X be a K-2-polygraph. Consider a cellular extension of X ⊤ 2 , i.e. a set Ω along with a map

Ω z -→ Sph(X ⊤ 2 ) to the spheres of X ⊤ 2 . Note that Sph(X ⊤ 2 ) is a K-graph via k.(f, g) = (k.f, k.g).
In the language of cellular extensions, a K-2-polygraph X = (X 1 , X 2 ) may be viewed as a K-cellular extension X 2 of the free K-1-monoid X * 1 . Indeed, the rewriting rules in X 2 are pairs (w 1 , w 2 ) of 1cells that share the same source and target, thus are objects in Sph(X * 1 ). In the following definition we introduce the notion of a K-cellular extension for the free K-(2, 1)-monoids.

Definition 4.3.11. A cellular extension Ω of X ⊤ 2 is called a K-cellular extension if the image z(Ω) ⊂ Sph(X ⊤
2 ) is closed under the Kashiwara operators e i and f i . Consider now a 3-polygraph (X 2 , Ω) with X a K-2-polygraph and Ω a K-cellular extension of X. We then have a free (3, 1)-monoid Ω ⊤ generated by (X, Ω). As the underlying (2, 1)-monoid of Ω ⊤ is X ⊤ 2 , we already have actions of the Kashiwara operators on the 1-and 2-cells of Ω ⊤ . We define these operators on all the 3-cells of Ω ⊤ as follows.

1. for α ∈ X ⊤ 2 , and i ∈ I, we say that e i .1 α (resp. f i .1 α ) is defined if and only e i .α (resp. f i .α) is defined, and in that case we set e i .1 α := 1 e i .α (resp. f i .1 α := 1 f i .α ).

2. for ω, τ ∈ Ω ⊤ and i ∈ I, we say that e i .(ω ⋆ 0 τ) is defined if and only if e i .s 1 (ω ⋆ 0 τ) = e i .(s 1 (ω)s 1 (τ)) is defined, and in that case we set

e i .(ω ⋆ 0 τ) = (e i .ω) ⋆ 0 τ if e i .(s 1 (ω)s 1 (τ)) = (e i .s 1 (ω))s 1 (τ) ω ⋆ 0 (e i .τ) else.
Similarly, f i .(ω ⋆ 0 τ) is defined if and only if f i .s 1 (ω ⋆ 0 τ) = f i .(s 1 (ω)s 1 (τ)) is defined, and in that case we set

f i .(ω ⋆ 0 τ) = (f i .ω) ⋆ 0 τ if f i .(s 1 (ω)s 1 (τ)) = (f i .s 1 (ω))s 1 (τ) ω ⋆ 0 (f i .τ) else.
3. Let j = 1, 2, ω, τ ∈ Ω ⊤ such that ω ⋆ j τ is defined, and i ∈ I. Then e i .(ω ⋆ j τ) is defined if and only if e i .ω or equivalently e i .τ is defined, and we set e i .(ω ⋆ j τ) = (e i .ω) ⋆ j (e i .τ).

Similarly, f i .(ω ⋆ j τ) is defined if and only if f i .ω or equivalently f i .τ is defined, and we set

f i .(ω ⋆ j τ) = (f i .ω) ⋆ j (f i .τ).
We then extend the actions of e i and f i to actions of all elements of K, and we have thus established a K-graph structure on the 3-cells of Ω ⊤ . We have the following.

Theorem 4.3.12. Let X be a K-2-polygraph, and Ω a K-cellular extension of X ⊤ 2 . Then the free (3, 1)-

category Ω ⊤ is a K-(3, 1)-monoid.
In particular, given a 3-cell ω ∈ Ω ⊤ , we have a notion of the connected component of ω, and we have

B Ω ⊤ (ω) ∼ = B X * 1 (s 1 (ω)).
Next we specify a subcategory of Ω ⊤ similarly as in Definition 4.3.9 Definition 4.3.13. Let X be a proper K-2-polygraph, and let Ω be a K-cellular extension of X ⊤ 2 , and Ω ⊤ the free (3, 1)-category generated by (X, Ω). The subcategory of Ω ⊤ consisting of all the highest weight 1-cells, 2-cells, and 3-cells of Ω ⊤ is a full subcategory, called the highest weight subcategory of Ω ⊤ , and is denoted by (Ω ⊤ ) 0 . 4.3.14. Normalization strategies. Let X be a K-2-polygraph and X the K-monoid it presents. Recall that for a section r : X -→ X * 1 we often denote the image r(w) by w. Consider now a section r : X -→ X * 1 such that for any i ∈ I and w ∈ X such that e i .w (resp. f i .w) is defined, we have r(e i .w) = e i .r(w), i.e. e i .w = e i . w, (4.9) resp. r(f i .w) = f i .r(w), i.e. f i .w = f i . w. .

Let σ : X * 1 -→ X ⊤ 2 be a normalization strategy for r, i.e. a map associating to each u ∈ X * 1 a 2-cell σ(u) = (u =⇒ u). We then have σ(e i .u) = (e i .u =⇒ e i .u) = e i .(u =⇒ u) = e i .σ(u).

We call r a K-section and σ a K-normalization strategy.

Next we note that the Kashiwara operators e i and f i preserve left-normalizing and right-normalizing words in X * 1 , hence so do all k ∈ K.

Proposition 4.3.15. Let u, v ∈ X * 1 and i ∈ I such that e i .(uv) (resp. f i .(uv)) is defined, and e i .(uv

) = u ′ v ′ (resp. f i .(uv) = u ′ v ′ ). If uv is left-normalizing (resp. right-normalizing), then so is u ′ v ′ .
Proof. We prove this for the left-normalizing case, and for the operator e i . The other cases, namely for the right-normalizing case and for the operators f i are proved analogously. As uv is left-normalizing, we have σ(uv) = (σ(u) ⋆ 0 v) ⋆ 1 σ( uv).

Assume now that e i .(uv) = (e i .u)v. By definition of the action of Kashiwara operators on ⋆ 0 -and

⋆ 1 -compositions, we have σ(e i .(uv)) = e i .σ(uv) = e i .((σ(u) ⋆ 0 v) ⋆ 1 σ( uv)) = (e i .(σ(u) ⋆ 0 v)) ⋆ 1 (e i .σ( uv)).
Note now that as e i acts on u, we have e i .(σ(u) showing that indeed e i .(uv) is also left-normalizing.

⋆ 0 v) = (e i .σ(u)) ⋆ 0 v = σ(e i .u) ⋆ 0 v,
4.3.16. Squier's completion theorem. Let X = (X 1 , X 2 ) be a proper K-2-polygraph and X the Kmonoid it presents. Let r 0 : X 0 -→ (X * 1 ) 0 be a map from highest weight elements of X to highest weight 1-cells of X * 1 , and let σ 0 : (X * 1 ) 0 -→ (X ⊤ 2 ) 0 be a map that chooses a reduction path from u to r(u) = u for any u ∈ (X * 1 ) 0 , i.e. σ 0 (u) = (u =⇒ u). We call r 0 a section of X at highest weight and σ 0 a normalization strategy of r 0 at highest weight. We say that such σ 0 is left-normalizing respectively right-normalizing if σ 0 satisfies the equations defining these two notions. Proposition 4.3.17. Let X = (X 1 , X 2 ) be a proper K-2-polygraph, and r 0 , σ 0 a section and normalization strategy of the K-monoid X at highest weight. Then there exists a unique section r : X -→ X * 1 and normalization strategy σ : X * 1 -→ X ⊤ 2 such that r(w 0 ) = r 0 (w 0 ), and σ(u 0 ) = σ 0 (u 0 ) for all u ∈ X 1 * .

Moreover σ is left-normalizing (right-normalizing) if and only if σ 0 is such.

Proof. Define r and σ as follows. Let T ∈ X, and let T 0 be its corresponding highest weight. We then have that T ∈ B X (T 0 ) = K.T 0 , thus T = k.T 0 for some k ∈ K, and we set r(T ) = r(k.T 0 ) := k.r 0 (T 0 ).

Similarly for σ, set

σ(w) = σ(k.w 0 ) = k.σ(w 0 ) := k.(w 0 =⇒ w 0 ) = (k.w 0 =⇒ k.w 0 ).
The second part of the proposition follows directly from Proposition 4.3.15.

We are now ready to state and prove Squier's completion theorem in the setting of K-2-polygraphs.

Theorem 4.3.18. Let X = (X 1 , X 2 ) be a convergent proper K-2-polygraph and X the K-monoid it presents. Let r 0 : X -→ (X * 1 ) 0 be a section at highest weight, and σ 0 : (X * 1 ) 0 -→ (X ⊤ 2 ) 0 a normalization strategy at highest weight. Let Λ be the set of confluence diagrams of Crit(R) 0 determined by σ 0 (u). Then for

K.Λ = {k.A | k ∈ K, A ∈ Λ} where k.(f, g) = (k.f, k.g), the 3-polygraph (X 1 , X 2 , K.Λ) is a coherent presentation for X.
Proof. Let r and σ be the extension of r 0 and σ 0 to all of X respectively to X * 1 as in Proposition 4.3.17. We then have that r is a section of X and σ is a normalization strategy for r. Let Ω be the family of generating confluences of Crit(R) obtained via the normalization strategy σ. Then by Squier's completion theorem 2.1.31 for convergent 2-polygraphs, we have that (X, Ω) is a coherent presentation for X. Next we show how one obtains a homotopy basis of X ⊤ 2 via K and Λ. Let (f, g) be a critical branching of X, graphically

u w f -5 g ) 1 v
and let k ∈ K be such that k.s(f) = k.w is defined. Then by Proposition 4.1.7, we have that k.(f, g) = (k.f, k.g) is also a critical branching. Consider now the confluence diagrams A of (f, g) and B of (k.f, k.g) via the normalization strategy σ. Graphically they can be presented as follows.

u σ(u) ! w f . 6 g ( 0 A w v σ(v) ? G k.u σ(k.u) % k.w k.f 0 8 k.g ( 0 B k.w . v σ(k.v) < D
Since σ(k.u) = k.σ(u), we indeed have an action of K on Ω by setting for k ∈ K and

A : f ⋆ 1 σ(u) ⇛ g ⋆ 1 σ(v) a 3-cell as follows k.A = (k.(f ⋆ 1 σ u ) ⇛ k.(g ⋆ 1 σ v )) = ((k.f) ⋆ 1 σ(k.u) ⇛ (k.g) ⋆ 1 σ(k.v)) = B
i.e. k acts on A by acting on its source and target. This equips Ω with a K-graph structure, and since X is proper, by Proposition 3.3.3 we have that Ω is also proper. Let Ω 0 consist of the highest weight elements in Ω. We have that

Ω 0 = {ω ∈ Ω | ω = ω 0 } = {ω ∈ Ω | s(ω) = s(ω) 0 } = {confluence diagrams of Crit(R) 0 via r 0 and σ 0 }.
In other words, we have Λ = Ω 0 . Finally, since Ω is a proper K-graph, we have that

Ω = K.Ω 0 = K.Λ.
which is what we wanted to show.

We interpret this result by describing how one can pave a given 2-sphere (f, g) of X ⊤ 2 via the 3-cells of Λ and the action of K. We do this progressively in three steps.

1. Let (f, g) be a local branching with source w. Assume that f = tf 1 v and g = tg 1 v with (f 1 , g 1 ) a critical branching, s(f 1 ) = s(g 1 ) = u, and w = tuv. Let (f 1 , g 1 ) 0 = (f 0 1 , g 0 1 ) be the highest weight in B Crit(X) ((f 1 , g 1 )), and let A ∈ Λ be the corresponding confluence diagram of (f 1 , g 1 ) 0 . Let k ∈ K be such that k -1 .u = u 0 . We then obtain the following confluence diagram of (f, g)

w 1 ! w t(k.f 0 1 )v 1 9 t(k.g 0 1 )v % - t(k.A)v w . w 2 > F
We thus pave such 2-spheres via a 3-cell of the form t(k.A)v for t, v ∈ X * 1 , k ∈ K, and A ∈ Λ.

2. Let (f, g) be a sphere whose target is a normal form. We describe how to pave this 2-sphere via the basis Λ and the action of K inductively on the lengths of f and g.

Let f = f 1 ⋆ 1 f 2 and g = g 1 ⋆ 1 g 2 so that f 1 and g 1 are rewriting steps, (f 1 , g 1 ) is a local branching, and f 2 and g 2 have length one less than f and g respectively. Let now (f ′ 1 , g ′ 1 ) be the completion of (f 1 , g 1 ) into a confluence diagram as in the previous paragraph. Then by induction hypothesis, we can complete (f 2 , f ′ 1 ) and (g 2 , g ′ 1 ) into confluence diagrams B and C via the basis Λ and K. Graphically we have

w 1 f 2 ! ) f ′ 1 t(k.A)v w f 1 5 = g 1 ! ) w ′ + 3 u w 2 g 2 5 = g ′ 1 F N B C
and thus inductively we have that the 3-cell

t(k.A)v ⋆ 2 B ⋆ 2 C
has (f, g) as boundary, and it is obtained from compositions of 3-cells of the form

{t(k.A)v | k ∈ K, A ∈ Λ, t, v ∈ X * 1 }.
3. Next we show how to fill any 2-sphere of X ⊤ 2 via 3-cells from Λ and the action of K. Consider first a 2-cell f : u =⇒ v in X * 2 . Let

σ u : u =⇒ u, σ v : v =⇒ v = u.
the normalizing 2-cells for u and v determined by the normalization strategy. We note that f ⋆ 1 σ v : u =⇒ v =⇒ u, so f ⋆ 1 σ v and σ u form a 2-sphere whose target is a normal form. Hence by the second step above, we have a 3-cell

u f ' / σu # + σ f v u σ - v D L (4.11) 
with σ f being a ⋆ 0 , ⋆ 1 , ⋆ 2 composition of 3-cells of the form t(k.A)v. Thus for any 2-cell f of X *

2

we can always find a 3-cell obtained from K.Λ which fills a 2-sphere, one boundary of which is f.

Morevoer Ω ⊤ contains a 3-cell σ f -from f -to σ v ⋆ 1 σ - u as follows u σ - v σ - f v f - + 3 u σu 3 ; f / 7 v σv + 3 u σ - u + 3 u (4.12)
with this 3-cell being in Ω ⊤ , as it is a composition

f -⋆ 1 σ f -⋆ 1 σ v ⋆ 1 σ - u , and σ f -= σ - f is in Ω ⊤ from (4.11) Let now f : u =⇒ v be any 2-cell in X ⊤ 2 .
We can decompose this reduction sequence into a zig-zag, i.e.

u 1 f 1 =⇒ v 1 g - 1 =⇒ • • • g - n-1 =⇒ u n fn =⇒ v n g - n =⇒ v with f i , g i rewriting steps of X. We can then write u f 1 + 3 σu & v 1 g - 1 + 3 σv 1 & (• • • ) fn + 3 σu n & v n g - n + 3 σv n & v u σ - v 1 8 @ u σ - u 2 8 @ (• • • ) u σ - vn 8 @ u σ - v 8 @ σ f 1 σ g - 1 σ fn σ g - n = =
and as σ f and σ - f are in Ω ⊤ from (4.11) and (4.12), then this three cell from

f to σ u ⋆ 1 σ v -is in Ω ⊤ .
Finally given a 2-sphere (f, g) in X ⊤ 2 , we pave it with the three cell

f σ f ≡ ⇛ σ u ⋆ 1 σ - v σ - g ≡ ≡ ⇛ g, and it is a 3-cell in Ω ⊤ as the ⋆ 2 composition of these 3-cells over the boundary σ f ⋆ 1 σ - v ,
which is what we wanted to show.

PLACTIC MONOIDS VIA K-2-POLYGRAPHS

In this section we realize the the column presentations of the plactic monoids of classical type in the language of K-2-polygraphs.

Let Γ = A n , B n , C n , D n be one of the classical crystal bases as in 2.2.18. Recall from Proposition 3.4.4 and Example 4.1.3 that the 2-polygraph Col(Γ ) is a K-2-polygraph that presents the plactic monoid Pl(Γ ). Moreover, Theorem 2.2.38 recalls that Col(Γ ) is a finite convergent presentation as proven in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], and as the alphabet associated to X is finite, we can summarize all this in the following: Note that the critical branchings of Col(Γ ) are of the form

[c 1 c 2 ]c 3 c 1 c 2 c 3 [-]c 3 0 8 c 1 [-] & . c 1 [c 2 c 3 ]
and since it is reduced, we may consider its leftmost normalization strategy, which applied to this critical branching is graphically presented as follows:

[c 1 c 2 ]c 3 + 3 c ′ 1 [c 2 c 3 ] + 3 • • • + 3 w 1 # + c 1 c 2 c 3 [-]c 3 0 8 c 1 [-] & . [c 1 c 2 c 3 ] c 1 [c 2 c 3 ] + 3 [c 1 c ′ 2 ]c 3 + 3 • • • + 3 w 2 3 ; (4.13) 
By Theorem 4.3.18 we obtain obtain that the shapes of these confluence diagram are preserved by the action of Kashiwara operators. Thus we have the following. In the following chapter we introduce combinatorial tools in types A and C, respectively called the A-trees and the C-trees which serve the two following purposes: ⋄ they parameterize the words of highest weight in Col(Γ ) * 1 ,

⋄ they facilitate the computation of the confluence diagrams as in (4.13).

We do this in a slightly modified context as introduced in the following section.

QUADRATIC PLACTIC MONOIDS

Let Γ = A n , B n , C n , D n be one of the classical crystal bases as in 2.2.18, and let Col(Γ ) be the convergent proper K-2-polygraph presenting Pl(Γ ). Recall that the 2-column Lemmata 2.2.37 asserts that the rewriting rules in Col(Γ ) 2 are of the form

c 1 c 2 =⇒ w,
where |w| ≤ 2, namely we have

w = d 1 d 2 ∈ Col(Γ ) * 1 , or w = d ∈ Col(Γ ) 1 , or w = ∅ ∈ Col(Γ ) * 1 .
The study of rewriting properties of Col(Γ ) turns out to be more practical if the words of length 2 are rewritten into words of length 2, i.e. if the polygraph is quadratic. In this section we construct a quadratic variant of Col(Γ ), to be denoted Col q (Γ ), which satisfies the following conditions 1. it is a reduced convergent proper K-2-polygraph, 2. its study is combinatorially more practical, due to the rewriting steps preserving lengths of words, 3. the study of Col q (Γ ) facilitates the study of Col(Γ ).

Studying the quadratic variant of a presentation is an approach that appears in [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] and [START_REF] Lebed | Plactic monoids: a braided approach[END_REF].

In the rest of this section Γ always denotes one of the K-graphs A n , B n , C n , and D n .

4.5.1. Quadratic K-graphs of classical types. Let Γ = A n , B n , C n , D n , and Col(Γ ) the corresponding K-2-polygraph presenting Pl(Γ ). Consider the singleton K-graph {ǫ}, with one vertex and no edges, i.e. we have

ε i (ǫ) = ϕ i (ǫ) = 0
for all i ∈ I. Consider the K-graph Col q (Γ ) 1 = Col(Γ ) 1 ⊕ {ǫ}. By Proposition 3.1.7 we have that Col q (Γ ) 1 is indeed a K-graph, and Col q (Γ ) * 1 is the associated free K-monoid. Note that any word w of Col q (Γ ) * 1 can be uniquely written as

w = ǫ a 0 w 1 ǫ a 1 w 2 • • • ǫ a k w k ǫ a k+1 , (4.14) 
with k, a i ∈ N, and w i ∈ Col(Γ ) * 1 non-identity. The next result shows that the isomorphism class of the connected component of a word w in Col q (Γ ) * 1 is independent of the ǫ's that may appear on the word.

Proposition 4.5.2. Let Γ = A n , B n , C n , D n . For w ∈ Col q (Γ ) * 1 we have

B Col q (Γ ) * 1 (w) ∼ = B Col q (Γ ) * 1 (wǫ) ∼ = B Col q (Γ ) * 1 (ǫw).
4.5.5. The K-2-polygraph Col q (Γ ). Let Γ = A n , B n , C n , D n and recall that Col(Γ ) 1 admits a partial order . We extend this order to Col q (Γ ) 1 by setting c ǫ for all c ∈ Col q (Γ ) 1 .

Consider the 2-polygraph Col q (Γ ) = (Col q (Γ ) 1 , Col q (Γ ) 2 ), where

Col q (Γ ) 2 = {c 1 c 2 =⇒ d 1 d 2 | c 1 , c 2 ∈ Col q (Γ ) 1 , c 2 c 1 }
with d 1 , d 2 determined as follows

d 1 d 2 =            d 1 d 2 if c 1 c 2 =⇒ d 1 d 2 ∈ Col(Γ ) 2 , ǫd if c 1 c 2 =⇒ d ∈ Col(Γ ) 2 , ǫǫ if c 1 c 2 =⇒ ∅ ∈ Col(Γ ) 2 , ǫc 1 if c 2 = ǫ and c 1 = ǫ. (4.19) 
Example 4.5.6. Let Γ = A 5 , and consider the columns

c 1 = 1 2 3 c 2 = 4 5 
.

Since c 2 c 1 , we have a single rewriting rule in Col(A 5 ) 2 and Col q (A 5 ) 2 with source c 1 c 2 . In Col(A 5 ) we have

c 1 c 2 =⇒ (c 1 ← c 2 ),
and we see that

(c 1 ← c 2 ) = 1 2 3 4 5 = d
thus the rewriting rule is c 1 c 2 =⇒ d.

In Col q (A 5 ) 2 , from the second case in (4. [START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF] we have that the unique rewriting rule in Col q (A 5 ) 2 with source c 1 c 2 is c 1 c 2 =⇒ ǫd.

Thus we see that the 2-polygraph Col q (A 5 ) keeps track of the vanished column during the insertion of c 2 into c 1 .

Example 4.5.7. Let Γ = C 2 and consider the admissible columns

c 1 = 1 2 c 2 = 2 1 .
Since c 2 c 1 , we have a single rewriting rule in Col(C 2 ) 2 and Col q (C 2 ) 2 with source c 1 c 2 .

In Col(C 2 ) we have

c 1 c 2 =⇒ (c 1 ← c 2 ),
and we see that

(c 1 ← c 2 ) = (12 ← 21) = ((12 ← 2) ← 1) = (1 ← 1) = ∅ ∈ Col(C 2 ) * 1 ,
4.5.10. Rewriting properties of Col q (Γ ). Denote the map p Γ defined in (4.16) simply by p. Denote by | -| and | -| q respectively the length functions of Col(Γ ) and Col q (Γ ), which for an argument admit a word w or a rewriting sequence s. Given a word w ∈ Col q (Γ ) * 1 , denote by # ǫ (w) the number of letters ǫ that appear in w. Note that we have

|w| q = |p(w)| + # ǫ (w). (4.21) 
Next we extend the maps # ǫ and p to admit rewriting sequences as arguments. We do this progressively: First extend # ǫ and p to Step(Col q (Γ )) and then to Seq(Col q (Γ )).

Note first that given α ∈ Col q (Γ ) 2 , we have # ǫ (s(α)) = 0 in the first three cases of (4.19), and # ǫ (s(α)) = 1 in the last case. We set # ǫ (α) = # ǫ (s(α)).

If # ǫ (s(α)) = 1, note that we have p(s(α)) = p(t(α)).

If # ǫ (s(α)) = 0, then there exists a unique rewriting rule in Col(Γ ) of the form

p(c 1 c 2 ) = c 1 c 2 =⇒ p(t(α)) (4.22) 
which we denote by p(α). For practical purposes we assume that for a 2-polygraph X, the sets Step(X) and Seq(X) contain a unique empty rewriting step respectively unique empty rewriting sequence. We extend # ǫ to Step(Col q (Γ )) by setting

# ǫ (tαv) = # ǫ (α), # ǫ (∅) = 0,
and p to the map p :

Step(Col q (Γ )) -→ Step(Col(Γ )), defined on γ = tαv with t, v ∈ Col q (Γ ) * 1 and α ∈ Col q (Γ ) 2 by p(γ) = p(t)s(α)p(v) =⇒ p(t)p(t(α))p(v) if # ǫ (s(α)) = 0 ∅ otherwise,
which is possible by (4.22). We extend # ǫ to Seq(Col q (Γ )) as follows. For

s : w 1 γ 1 =⇒ w 2 γ 2 =⇒ • • • γ n-1 =⇒ w n γn =⇒ • • • (4.23) set # ǫ (s) = ∞ i=1 # ǫ (γ i ).
Thus # ǫ (s) counts how many rewriting rules in s contain ǫ in their source.

Example 4.5.11. Let Γ = A 2 , and consider the word w = 2ǫ1 in Col q (A 2 ) * 1 . We then have a rewriting sequence

s : 2ǫ1 α1 =⇒ ǫ21 ǫβ =⇒ ǫ12. Note that we have # ǫ (2ǫ1) = 1, # ǫ (s) = 1, p(2ǫ1) = 21, p(α1) = ∅, and p(ǫβ) = β.
We extend the map p to p : Seq(Col q (Γ )) -→ Seq(Col q (Γ ))

as follows. For s as in (4.23), let A := {j 1 , j 2 , . . . , j k , . . . } be the ordered set consisting of those indices for which # ǫ (γ j i ) = 0. We then set p(s) : p(w j 1 )

p(γ j 1 )
=⇒ p(w j 2 )

p(γ j 2 ) =⇒ • • • p(γ j n-1 ) =⇒ p(w jn ) • • • p(γ jn ) =⇒ • • • (4.24)
We show that p is well defined and a rewriting sequence in Seq(Col(Γ )). Indeed, assume without loss of generality that j 1 = 1, and set m = j 2 . By definition of the set A, we have # ǫ (γ i ) = 1 for all 1 < i < m, meaning that the rules γ i for 1 < i < m act on t(γ 1 ) by interchanging the positions of some ǫ with letters d ∈ Col(Γ ) 1 . Thus we have p(t(γ 1 )) = p(s(γ m )).

Thus we indeed have that p(w 1 )

p(γ 1 )
=⇒ p(w m ) is a rewriting step in Step(Col(Γ )). Note that p(s) is uniquely determined since A is uniquely determined, and moreover it is a rewriting sequence in Seq(Col(Γ )).

Intuitively, the map # ǫ counts how many ǫ's occur in a word, and how many rewriting rules in s have sources containing ǫ. The map p kills all of the ǫs that appear in a word, and all the rewriting rules in s whose source contains ǫ.

Similarly to the relation between | -|, | -| q , p, and # ǫ in (4.21), from (4.24) we obtain the following result.

Proposition 4.5.12. Let Γ = A n , B n , C n , D n and s ∈ Seq(Col q (Γ )). Then

|s| q = |p(s)| + # ǫ (s).
We exhibit this relation in an example. We then have a rewriting sequence in Seq(Col q (A 3 ))

s :

1 2 ǫ 3 ǫ 1 =⇒ ǫ 1 2 3 ǫ 1 =⇒ ǫ ǫ 1 2 3 ǫ 1 =⇒ ǫ ǫ ǫ 1 2 3 1 =⇒ ǫ ǫ ǫ 1 1 2 3
We have # ǫ (w) = 2, # ǫ (s) = 2, and p(s) :

1 2 3 1 =⇒ 1 2 3 1 =⇒ 1 1 2 3
Note that |s| q = 4, and |p(s)| = 2, so indeed we have

|s| q = |p(s)| + # ǫ (s).
Proposition 4.5.12 estimates the length of a rewriting sequence s of Col q (Γ ) in terms of a rewriting sequence of Col(Γ ) and the function # ǫ . Since Col(Γ ) is terminating, we have that |p(s)| is always finite. Thus in order to show that Col q (Γ ) is terminating, it suffices to shows that # ǫ (s) is finite for any rewriting sequence s ∈ Seq(Col q (Γ )). This is the content of the following result. 

s : w 1 γ 1 =⇒ w 2 γ 2 =⇒ • • • γ k-1 =⇒ w k γ k =⇒ • • • be a rewriting sequence in Seq(Col q (Γ )). Let t = |w 1 | q . Then # ǫ (s) ≤ t(3t 2 +5t+10) 4 .
Proof. For i = 1, 2, . . . , k, . . . set t i = # ǫ (w i ). By (4.19), for a generating 2-cell α ∈ Col q (Γ ) 2 we have # ǫ (s(α)) + 2 ≥ # ǫ (t(α)), namely α increases the number of ǫ's from the source to the target by at most 2. Thus in particular we have

t 1 ≤ t 2 ≤ • • • ≤ t k • • • . (4.25)
On the other hand, note that t i = # ǫ (w i ) ≤ |w i | q = t, thus this sequence of t i stabilizes at some point. Let j 1 < • • • < j l be all those indices for which we have t j i+1 > t j i . Since the t i stabilize, l is finite and we have l ≤ t. We can then write the sequence s as

s = s 1 δ 1 =⇒ s 2 δ 2 =⇒ • • • δ l-1 =⇒ s l δ l =⇒ s l+1 .
where s i :

w j i-1 +1 =⇒ • • • =⇒ w j i for i = 1, .
. . , l (here j 0 := 0), and δ i :

w j i =⇒ w j i +1
. By definition of the map # ǫ on Seq(Col q (Γ )) we have

# ǫ (s) = l+1 i=1 # ǫ (s i ) + l i=1 # ǫ (δ i ) ≤ l+1 i=1 # ǫ (s i ) + 2l, (4.26) 
as the maximal value of # ǫ (δ i ) is 2.

We now compute an upper bound for # ǫ (s i ). Without loss of generality, we do this for s 1 . For simplicity, set r := j 1 . We thus have a rewriting sequence

s 1 : w 1 ν 1 =⇒ w 2 ν 2 =⇒ • • • ν r-1 =⇒ w r such that t 1 = • • • = t r =: q. Let w 1 = c 1 • • • c t with c i ∈ Col q (Γ ) 1 ,
and denote by i 1 , . . . , i q the indices where ǫ appears in w, so that

c i 1 = c i 2 = • • • = c iq = ǫ.
Note that for m = 1, . . . , q we have that c im is preceded by i m -1 letters of Col q (Γ ), of which m -1 are equal to ǫ. Hence there are at most i mm of the rewriting rules ν i whose source contains c im = ǫ. Thus the number of ν i in s 1 containing ǫ in the source is bounded above by

# ǫ (s 1 ) ≤ q m=1 (i m -m).
Note that for each m we have that c i j for j = m + 1, . . . , q are letters of w 1 to the right of c im . Thus we have that i m ≤ tq + m, which gives us

# ǫ (s 1 ) ≤ q m=1 (t -q + m) = q(t -q) + q(q + 1) 2 . Since q(t -q) = t 2 2 -q -t 2 2 ≤ t 2 4
, and q ≤ t, we obtain

# ǫ (s 1 ) ≤ t 2 4 + t 2 + t 2 = t(3t + 2) 4 .
The computation of this upper bound was done for s 1 , but it holds valid for any of the s i for i = 1, 2, . . . , l + 1.

Plugging this bound into (4.26) and using the fact that l ≤ t we obtain

# ǫ (s) ≤ l+1 i=1 # ǫ (s i ) + 2t = (t + 1) t(3t + 2) 4 + 2t = t(3t 2 + 5t + 10) 4 ,
which is what we wanted to show.

We are now finally ready to complete the proof of Theorem 4.5.8.

Proof of Theorem 4.5.8. In Proposition 4.5.9 we have seen that Col q (Γ ) is a proper K-2-polygraph. We show here that it is convergent, namely terminating and confluent. For termination, let s ∈ Seq(Col q (Γ )) be a rewriting sequence. Since the lengths of the words appearing in s are constant, denote their length by t. By Proposition 4.5.12 we have

|s| q = |p(s)| + # ǫ (s),
and by Proposition 4.5.14 we have

|s| q = |p(s)| + t(3t 2 + 5t + 10) 4 .
Since Col(Γ ) is a convergent presentation, we have that |p(s)| is finite, thus s is also a finite rewriting sequence. Hence Col q (Γ ) is terminating.

To prove confluence of Col q (Γ ), we first prove that each word w ∈ Col q (Γ ) * 1 can rewritten into a unique normal form. Before we do this, consider the normal forms of Col q (Γ ).

Let w = c 1 • • • c k ∈ Col q (Γ ) *
1 be a normal form. If c i = ǫ for some 1 ≤ i ≤ k we then have c j = ǫ for all j ≤ i. Indeed, suppose that c j = d = ǫ with j maximal with this property. We would then have w = w 1 dǫw 2 and clearly w cannot be a normal form, as it is the source of the rewriting step

w 1 dǫw 2 =⇒ w 1 ǫdw 2 .
Thus we have that

w = ǫ a c 1 c 2 • • • c b
for some a, b ∈ N with a + b = t, where c i = ǫ. Since no rewriting rule can be applied to c i c i+1 , we have that c i+1 c i , thus

T = c 1 c 2 • • • c b ∈ Col(Γ ) * 1 is a normal form.
Recalling the notation for the set of normal forms in 2.1.13 we have Nf(Col q (Γ )) = N × Nf(Col(Γ )).

Since Col q (Γ ) is terminating, every word w ∈ Col q (Γ ) * 1 admits a normal form. We show that this is unique. Indeed, suppose that the following situation occurs

ǫ a T 1 w s 1 1 9 s 2 % -ǫ b T 2
with ǫ a T 1 and ǫ b T 2 normal forms. Applying the map p to the s 1 and s 2 we obtain two rewriting sequences

T 1 p(w) p(s 1 ) / 7 p(s 2 ) ' / T 2
Since Col(Γ ) is confluent, we necessarily have T 1 = T 2 . In particular, we have

a = |w| q -|T 1 | = |w| q -|T 2 | = b,
hence we get that ǫ a T 1 = ǫ b T 2 . Thus each word w ∈ Col q (Γ ) * 1 can be rewritten into a unique normal form ǫ a T .

To finally prove confluence as defined in the first chapter, given a branching

w 1 w s 1 / 7 s 2 ' / w 2
since the normal form of w is unique, we can complete it to a confluent diagram as follows

w 1 s 3 ! w s 1 0 8 s 2 & .
[w]

w 2 s 4 < D
where s 3 and s 4 respectively reduce w 1 and w 2 to the unique normal form [w] of w. Thus we have proven that Col q (Γ ) is a confluent polygraph.

Finally we can summarize and say that Col q (Γ ) is a convergent proper K-2-polygraph, which is what we wanted to show. 4.5.15. The quadratic plactic monoid Pl q (Γ ). Here we formally define the quadratic plactic monoid as follows.

Definition 4.5.16. Let Γ = A n , B n , C n , D n . The K-monoid presented by the 2-polygraph Col q (Γ ) is called the quadratic plactic monoid of type Γ , and is denoted Pl q (Γ ).

The following is a consequence of the proof of Theorem 4.5.8. Proposition 4.5.17. Let Γ = A n , B n , C n , D n . The underlying set of the quadratic plactic monoid of type

Γ is Pl q (Γ ) = {(a, T ) | a ∈ N, T ∈ Pl(Γ )},
and the product of Pl q (Γ ) is given by

(a 1 , T 1 ) * (a 2 , T 2 ) = (a 1 + a 2 + col(T 1 , T 2 ), T 1 * T 2 )
where T 1 * T 2 is the product in Pl(Γ ), and col(T

1 , T 2 ) = |T 1 | + |T 2 | -|(T 1 * T 2 )|.
Remark 4.5.18. The quadratic monoid Pl q (A n ) appears in Lebed's paper [START_REF] Lebed | Plactic monoids: a braided approach[END_REF] where she uses a braided approach to study the cohomology ring of Pl(A n ).

words of highest weight in Col q (A n ) * 1 . Thus we establish the Yamanouchi trees as a graphical model for the words of highest weight in Col q (A n ) * 1 . In Section 5.4 we begin an analogous treatment of Yamanouchi words in type C. We graphically encode highest weight words in C * n of the form w = c 1 c 2 with c 1 , c 2 ∈ Col(C n ). The model chosen for the Yamanouchi trees of type C reflects the expliciting of Lemma 5.1.6 in type C.

In Section 5.5 we extend the idea of Section 5.4 and introduce a tree ∆ C along with labelings s : V(∆ C ) -→ N on the vertices of ∆ C satisfying certain finiteness, column, and admissibility conditions. We denote the set of such pairs (∆ C , s) by Yam(C n ), and we define a reading map

ω : Yam(C n ) -→ Col q (C n ) *
1 . In Theorem 5.5.25 we give a formula for computing the normal form of the word ω(T ) in Pl q (C n ). This is done by expliciting the computation of certain rewriting rules of Col q (C n ) via the Yamanouchi trees. In Theorem 5.5.40 we show that the reading map ω induces a bijection between Yam(C n ) and the words of highest weight in Col q (C n ) *

1 . Thus we establish the Yamanouchi trees as a graphical model for the words of highest weight in Col q (C n ) * 1 . Finally in Section 5.6 we relate the Yamanouchi trees of type A to GT-patterns and the Robinson-Schensted-Knuth correspondence.

We remark here that the notion of Yamanouchi trees arose during a study of coherence of the plactic monoid of type C in [START_REF] Meha | C-trees and a coherent presentation for the plactic monoid of type C[END_REF]. Since then, they have been adapted to type A to facilitate their understanding due to the simpler combinatorics in type A. In this chapter we first introduce the Yamanouchi trees in type A and then in type C. The exposition in the two types contains some overlapping due to an embedding of Col q (A n ) in Col q (C n ).

PRELIMINARIES ON YAMANOUCHI WORDS

Let Γ = A n , B n , C n , D n be a crystal base of classical type as in 2.2.18. Since Γ is a proper K-graph by Proposition 3.4.3, we have that every connected component of Γ * contains a unique word of highest weight. The words of highest weight in A * n are called Yamanouchi words [START_REF] Lothaire | Algebraic combinatorics on words[END_REF]. We choose to employ the same terminology for all the classical types. 5.1.2. Kashiwara's algorithm for computing e i .w and f i .w. Here we describe an algorithm for computing the action of e i and f i on a word w ∈ Γ * for i ∈ I due to Kashiwara and Nakashima [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF].

Consider the alphabet Q = {+, -}, and Q * the free monoid on Q. Set Q := Q * / (+-) = 1 , where 1 is the identity in Q * , i.e. the empty word. As a set we have

Q = {-p + q | p, q ∈ N}, namely via the projection map Q * -→ Q, to each element of Q * corresponds an element in Q of the form -p + q . For i ∈ I, define a map ρ i : Γ * -→ Q by setting for x ∈ Γ ρ i (x) =      + if ϕ i (x) = 1, -if ε i (x) = 1, 1 otherwise. (5.1)
and then extending ρ i to all of Γ * by

ρ i (x 1 x 2 • • • x k ) = ρ i (x 1 ) • • • ρ i (x k ).
(5.2)

For w = x 1 x 2 • • • x k ∈ Γ *
, the expression ρ i (w) = -p + q is obtained by successively canceling out the subwords +-that appear on the right side of (5.2). We then have the following recipe for applying the Kashiwara operators e i and f i on w:

⋄ e i .w is defined if and only if p > 0, and in that case we have e i .w

= x 1 • • • x l-1 (e i .x l )x l+1 • • • x k ,
where l is such that ρ i (x l ) = -is not canceled, and is the rightmostappearing inp + q ; ⋄ f i .w is defined if and only if q > 0, and in that case we have

f i .w = x 1 • • • x l-1 (f i .x l )x l+1 • • • x k ,
where l is such that ρ i (x l ) = + is not cancelled, and is the leftmost + appearing inp + q . We thus have that e 3 .w and f 3 .w are both defined. To determine e 3 .w, we note that noor + were cancelled, and thus e 3 acts on w by acting on the letter which contributed the rightmost -, namely on 4. On the other hand since no + appears on ρ 2 (w) we have that f 2 .w is undefined. ii) ε i (w 2 ) ≤ ϕ i (w 1 ) for all i ∈ I.

This Lemma follows directly from the definitions of the action of e i in (3.5).

From this point onward, let Γ = A n , C n unless otherwise specified. In the rest of this chapter we shall employ Lemma 5.1.6 to establish a graphical model called Yamanouchi trees, parameterizing the words of highest weight in Col q (Γ ) * 1 , for which we also adopt the terminology Yamanouchi words. We recall also the following result which characterizes the tableaux of highest weight in types A and C.

Theorem 5. 1.7 ([23]). Let λ be a partition and n ∈ N. Let T A ∈ Pl(A n ) and T C ∈ Pl(C n ) be a semi-standard Young tableaux, respectively a symplectic tableau of shape λ. Then T A (resp. T C ) is a tableau of highest weight if and only if the entries on the i-th row of T A (resp. T C ) are all equal to i for all rows of λ.

LEVEL 2 YAMANOUCHI TREES IN TYPE A

In this section we introduce a graphical model for the words w ∈ A * n which satisfy the following conditions:

i) w is of highest weight, ii) w = c 1 c 2 for c 1 , c 2 ∈ Col(A n ).
by distinguishing the different factorizations. This will be done inductively on the length of the column word c 2 in A * n . 

Yamanouchi words in

A * n of the form cx. Let Γ = A n . Recall that a word c = x 1 x 2 • • • x p ∈ A * n with x i ∈ A n is called a column word if x 1 < x 2 < • • • < x p .
ε i (x) ≤ ϕ i (c) (5.4) 
for all i = 1, . . . , n. A direct computation of ϕ i (c) gives

ϕ i (c) = 1 if i = p < n, 0 otherwise.
Thus from (5.4) we obtain ε i (x) = 0 if i = p, and ε p (x) ∈ {0, 1}. We now distinguish two cases:

1. ε p (x) = 0. Then we have ε i (x) = 0 for all i = 1, . . . , n, which is only possible if x = 1. Thus we have w = 12 • • • p1. We describe this situation graphically by the tree

• p • 1 • 0 . ( 5.5) 
Explicitly, since x = 1 is the start of a new column, and not a continuation of the first column, we mark the right vertex with a 1, and the left vertex with 0.

Thus the first level of the tree reads out the first column c 1 = 12 • • • p and the second level reads out the column c 2 = 1 2. ε p (x) = 1. Then we have p < n, and ε i (x) = 0 for all i = p, which is only possible if x = p + 1.

Thus we have w = 12 • • • p(p + 1). We describe this situation graphically by the tree

• p • 0 • 1 . (5.6) 
Explicitly, since x = p + 1 is the continuation of the first column, rather than a continuation of it, we mark the left vertex with a 1, and the right vertex with 0.

Thus the first level of the tree reads out the first column c 1 = 12 • • • p and the second level reads out the column c 2 = p + 1.

Note that the word w = 12 • • • p(p + 1) can be considered as a single column in A * n , in which case we would denote it by p+1

• . Here however our goal is to work with Col(A n ), and Col q (A n ) where the factorization into columns matters.

Yamanouchi words in A *

n of the form cxy. Consider now a word w = cxy ∈ A * n such that i) c is a column word, ii) x, y ∈ A n and x < y, iii) w = cxy is a Yamanouchi word.

In other words, we have w = c 1 c 2 is a Yamanouchi word with c 1 , c 2 ∈ Col(Γ ) and |c 2 | = 2 in A * n . By Lemma 5.1.6 i) we have that cx is a Yamanouchi word, thus we have that cx is represented graphically by one of the trees in (5.5) and (5.6). Moreover by Lemma 5.1.6 ii) we have

ε i (y) ≤ ϕ i (cx).
Let us now distinguish the two possible cases.

1. cx = 12 • • • p1. We then have

ϕ i (cx) = 1 if i = 1, p, i = n, 0 otherwise.
This gives us ε i (y) = 0 for i = 1, p, and ε i (y) ∈ {0, 1} for i = 1, p. Evidently we have that at most one of ε 1 (y) and ε p (y) can be non-zero. We distinguish here between these cases.

1a. ε 1 (y) = 1, ε p (y) = 0. This is only possible if y = 2, thus we have

w = 12 • • • p12.
We describe this situation graphically by the tree

• p • 2 • 0 .
Explicitly, since y = 2 is a continuation of the first column, and not of the second column, we add +1 to the right vertex, and the left vertex remains unchanged.

Here the first level reads the first column c 1 = 12 • • • p, and the second level reads out the second column c 2 = 12.

1b. ε 1 (y) = 0, ε p (y) = 1. This is only possible if p = n and y = p + 1, thus we have

w = 12 • • • p1(p + 1).
We describe this situation graphically by the tree

• p • 1 • 1 .
Explicitly, since y = p+1 is a continuation of the second column, and not of the first column, we add +1 to the left vertex with, and the right vertex remains unchanged.

Here the first level reads out the first column c 1 = 12 • • • p, and the second level reads out the second column c 2 = 1(p + 1).

1c. ε 1 (y) = ε p (y) = 0. This is only possible if y = 1. But then we have c 2 = xy = 11 is not a column, which is impossible. Hence this case does not occur.

2. cx = 12 • • • p(p + 1). We then have

ϕ i (cx) = 1 if i = p + 1 < n, 0 otherwise.
This gives us ε i (y) = 0 for i = p + 1, and ε p+1 (y) ∈ {0, 1}. We distinguish between the two possible cases.

2a. ε p+1 (y) = 0. This is only possible if y = 1, thus we would have c 2 = (p + 1)1 which is not a column. Hence this case does not occur.

2b. ε p+1 (y) = 1. This is only possible if y = p + 2, thus we have

w = 12 • • • p(p + 1)(p + 2).
We describe this situation graphically by the tree

• p • 0 • 2 .
Explicitly, since y = p + 2 is the continuation of the first column, and not the start of a new column, we add +1 to the left vertex, and the right vertex remains unchanged.

Here the first level reads out the column c 1 = 12 • • • p, and the second level reads out the second column c 2 = (p + 1)(p + 2).

Similarly here the word w = 12 • • • p(p+1)(p+2) could be described by p+2

• if considered as a single column in Col(A n ). Here however our goal is to work with Col(A n ), and Col q (A n ) where the factorization into columns matters. In what follows we refer to such objects by the name of Y An 2 -trees. When the context is clear, we shall often omit the superscript A n and the subscript 2, and simply call these objects Y-trees.

We note right away some consequences of the definition.

Proposition 5.2.5. Let

• p • a • b T = (5.7)
be a Y-tree of level 2. Then i) the reading ω(T ) of T is a product of two columns c 1 , c 2 ∈ A * n , with each column read on each of the horizontal levels of T , ii) if w is the normal form of ω(T ) in A * n , then w = ω(T ′ ) where

• a

• a • p + b -a T ′ = (5.8) iii) ω(T ) is a Yamanouchi word in A * n .
Proof. i) By Definition 5.2.4 we see that the first horziontal level of T encodes the word

c 1 = 12 • • • p,
which is a column, and the second horizontal level of T encodes the word

c 2 = 12 • • • a(p + 1)(p + 2) • • • (p + b)
which is also a column since a ≤ p < p + 1.

ii) By the 2-column Lemmata 2.2.37, we have that the normal form of ω(T ) can be computed by the insertion (c 1 ← c 2 ), and the resulting word will be a product of at most 2 columns. We compute here this insertion (c 1 ← c 2 ). We split the insertion as follows

(c 1 ← c 2 ) = ((c 1 ← 12 • • • a) ← (p + 1)(p + 2) • • • (p + b))
For the first insertion we have

(c 1 ← 12 • • • a) = (12 • • • p ← 12 • • • a) = 12 • • • a12 • • • p,
and for the second insertion we have

w = (c 1 ← c 2 ) = ((12 • • • a12 • • • p) ← (p + 1) • • • (p + b)) = 12 • • • a12 • • • (p + b).
Note now that we can encode the word w into the Y-tree

• a • a • p + b -a T ′ =
Indeed, by Definition 5.2.4 the reading of T ′ is given by

ω(T ′ ) = (12 • • • a)(12 • • • a)((a + 1) • • • (a + p + b -a)) = w,
which is what we wanted to show.

iii) If in ii) we write the tableau corresponding to the word w, we have Note that this proposition asserts that we have a map

ω : {Y-trees of level 2} -→ (A * n ) 0 .
Nevertheless this map is not injective as the examples below show.

For simplicity, given a Y-tree of level 2 T as in (5.7), we call the Y-tree T ′ as in (5.8) the normal form of T , and denote it by [T ].

5.2.9. Constructing Y A -trees of level 2 from words of highest weight c 1 c 2 . In subsections 5.2.1 and 5.2.2 we have seen that given a Yamanouchi word w = c 1 c 2 ∈ A * n with c 1 , c 2 ∈ Col(A n ) such that |c 2 | ≤ 2, then there exists an A-tree T such that ω(T ) = w. In this subsection we prove that this construction holds for any length of c 2 . Proposition 5.2.10. Let w = c 1 c 2 ∈ A * n with c 1 , c 2 ∈ Col(A n ) be a Yamanouchi word. Then there exists a unique Y-tree of level 2

• |c 1 | • a • b such that ω(T ) = w.
Proof. We first prove unicity under the assumption of existence.

Note that if we have two Y-trees of level 2

• p • a 1 • b 1 • p • a 2 • b 2 T 1 = T 2 = with ω(T 1 ) = ω(T 2 ) it is clear that a 1 = a 2 and b 1 = b 2 , implying T 1 = T 2 .
We now prove existence by induction on |c 2 |. For |c 2 | = 1, 2 we have seen in subsections 5.2.1 and 5.2.2 that there exists a Y-tree of level 2 T such that ω(T ) = w.

Suppose that the statement of the proposition holds for

|c 2 | = k. Consider now a Yamanouchi word w = c 1 c 2 with c 1 , c 2 ∈ Col(A n ) and |c 2 | = k + 1. Set c 2 = c ′ 2 x with c ′ 2 ∈ Col(A n ) of length k and x ∈ A n . Set |c 1 | = p,
and by induction hypothesis, let

• p • a • b T = be the Y-tree of level 2 such that ω(T ) = c 1 c ′ 2 .
Then by Proposition 5.2.5 iii) we have that the reading of the normal form of T is

[w] = ω([T ]) = (1 • • • a)(1 • • • (p + b)).

Note that

ϕ i (w) = ϕ i ([w]) =
1 if i = a, p + b, i < n 0 otherwise. By Lemma 5.1.6 ii) we have ε i (x) ≤ ϕ i (w) for all i = 1, . . . , n -1. This means that

ε i (x) = 0 for i = a, p + b and ε i (x) ∈ {0, 1} for i = a, p + b.
We distinguish the possible cases.

1. ε i (x) = 0 for all i = 1, . . . , n -1. Then this means x = 1, but as c 2 is a column of length k + 1 > 2, the last letter of c 2 cannot be 1. Hence this case does not occur.

2. ε a (x) = 1. This implies that x = a + 1. If b = 0 then p + 1 is a letter in c 2 , and thus a + 1 cannot be the last letter of c 2 . Hence we have b = 0, and thus for the Y-tree

• p • a + 1 • 0 we have ω(T ) = w.
Example 5.3.3. Let n = 9. The column c = 34567 is a block, and we denote it by c [START_REF] Berenstein | Tensor product multiplicities and convex polytopes in partition space[END_REF][START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]. The column c ′ = 1234 is also a block, and we denote it by c(4). The column c ′′ = 235678 is not a block as it is missing the letter 4. 

V(∆ A ) = {ij | i, j ∈ N, i > 0}
and with edge set

E(∆ A ) = E(∆ A ) 1 ⊔ E(∆ A ) 2 = {(i0, (i + 1)0) | i ∈ N ≥1 } ⊔ {(ij, i(j + 1)) | i, j ∈ N, i > 0}
For a vertex v = ij ∈ ∆ A , we call its first coordinate i the strand of v, and the sum i + j the level of v. For k ∈ N, the finite subtree of ∆ A consisting of its vertices of level ≤ k is denoted by ∆ k A . A labeling of the ∆ A is a map s : V(∆ k A ) -→ N for some k ∈ N. Here for simplicity we assume that k is implicitly given by s, and we call it the height of (∆ A , s), or we say (∆ A , s) is of level k. For such a labeling, we draw the ∆ A only up to its k-th level.

For a labeling T = (∆ A , s) we define a new map q T : V(∆ A ) -→ N on the vertices of ∆ A called the valuation of (∆ A , s) by setting for v = ij q T (v) = q(v) := j l=0 s(il).

When the context is clear, we remove T from the notation and simply write q. Of particular importance are the valuations at the extremities of T = (∆ k A , s), that is the quantities q j = q j (T ) := q T ((kj)j).

For a natural number n and a labeling s of ∆ A we say that s is an n-labeling if q(v) ≤ n for all v ∈ V(∆ A ).

Example 5.3.5. For n = 10, the following are n-labeled Y-trees of level 2 and 3 respectively

• 3 • 1 • 2 • 5 • 3 • 4 • • 5 • 1 • 1
Note that in Example 5.3.8 the words ω i (T ) for i = 1, 2, 3 are all columns, but this is not always the case. For instance if one replaces the label 1 at the lower rightmost vertex with 3, then ω 3 (T ) = 1233456789 which is not a column. In the next subsection we specify the condition for ω i (T ) to be columns for any T . 5.3.9. Column condition. Let n ∈ N and T = (∆ A , s) with s an n-valuation. We call T a Yamanouchi tree or Y-tree for short if the reading of each of its levels is a column. Explicitly T is a Y-tree of k levels if q(ij) ≤ q((i -1)j) for all i, j with i + j ≤ k.

(5.11)

Denote by Yam k (A n ) the set of Yamanouchi trees with k levels, and

Yam(A n ) = k∈N Yam k (A n ).
Graphically this condition looks as follows where the arrow v ←-v ′ stands for the inequality q(v) ≥ q(v ′ ).

• • • • • • • • • •
Example 5.3.10. Let n ∈ N and consider an n-labeling on ∆ A of 2 levels

• p • a. • b T = We have that T is in Yam 2 (A n ) if a ≤ p, and p + b ≤ n.
Thus the elements of Yam 2 (A n ) coincide with the Y-trees of level 2 we considered in Section 5.2.

Note that for T as in Example 5.3.8 we have that these inequalities are satisfied, hence ω i (T ) for i = 1, 2, 3 are all elements of Col q (A n ) [START_REF] Baader | Term rewriting and all that[END_REF] .

In what follows, we prove that the map

ω : Yam k (A n ) -→ Col q (A n ) * 1
induces a bijection between Yam k (A n ) and the words of highest weight in Col q (A n ) * 1 .

5.3.11. Normal form of readings of Y-trees of type A. For the rest of this section fix n ∈ N. Here we describe a formula for the computation of the normal form of the words ω(T ) of Y-trees T in Pl q (A n ).

Namely we state and prove the following result.

Theorem 5.3.12. Let T ∈ Yam k (A n ), and set q j := q j (T ) = q((kj)j). Then

[ω(T )] =

k-1 j=0 c(q j ).

Explicitly we have [ω(T )] = ω([T ]) where

• • • • • • • • • • q 0 q 1 -q 0 q 0 q 2 -q 1 q 3 -q 2
q 0 q 0 q 1q 0 q 2q 1 q 1q 0

[T ] := (5.12)

The tree [T ] associated to T as in (5.12) is uniquely determined, and is called the normal form of T . Before we prove this result, we illustrate it for k = 2, 3. and we have q 0 = a, q 1 = p + b.

By Theorem 5.3.12, the normal form of ω(T ) is

[ω(T )] = 1 i=0 c(q i ) = c(q 0 )c(q 1 ) = c(a)c(p + b) = (12 • • • a)(12 • • • (p + b))
and this agrees with Proposition 5.2.5. In particular, [ω(T )] is the reading of the tree

• q 0 • q 0 • q 1 -q 0 [T ] = For instance if n = 7 we have • 4 • 3 • 2 • 3 • 3 • 3 T = [T ] = ω(T ) = (1234)(12356) ω([T ]) = (123)(123456)
Example 5.3.14. Let n ∈ N and consider a Y-tree of level 3

• p • a • b • • c • d • e T =
The reading of T is

ω(T ) = (1 • • • p) (1 • • • a)((p + 1) • • • (p + b)) (1 • • • c)((a + 1) • • • (a + d))((p + b + 1) • • • (p + b + e)).
We have q 0 = c, q 1 = a + d, q 2 = p + b + e.

Then by Theorem 5.3.12 the normal form of ω(T ) is

[ω(T )] = 2 i=0 c(q i ) = c(q 0 )c(q 1 )c(q 2 ) = c(c)c(a + d)c(p + b + e)
In particular, the normal form [ω(T )] is the reading of the Y-tree

• q 0 • q 0 • q 1 -q 0 • • q 0 . • q 1 -q 0 • q 2 -q 1 [T ] =
For instance if n = 12 we have 12)(1234567)(123456789 [START_REF] Gelfand | Finite-dimensional representations of the group of unimodular matrices[END_REF]).

• 5 • 3 • 3 • • 2 • 4 • 2 • 2 • 2 • 5 • • 2 • 5 • 3 T = [T ] = ω(T ) = (12345)(123678)(1245679(10)) ω([T ]) = (
We break down the proof of Theorem 5.3.12 into three smaller propositions.

The following result shows that the Y-tree in (5.12) is indeed an element of Yam k (A n ).

Proposition 5.3.15. Let T ∈ Yam k (A n ), and let [T ] be as in (5.12). Then [T ] is indeed an Y-tree. Moreover we have q j (T ) = q j ([T ]).

for all j = 0, 1, . . . , k -1.

Proof. Let s and q, respectively s ′ and q ′ , be the labeling and valuation of T , respectively [T ]. For simplicity set q j := q((kj)j) for j = 0, 1, . . . , k -1, and q -1 := 0, and similarly for q ′ . Note that s ′ is given by s ′ (ij) = q jq j-1 for all vertices ij with i + j ≤ k, which gives

q ′ (ij) = j l=0 s ′ (il) = j l=0
(q lq l-1 ) = q j . This implies q ′ j = q ′ ((kj)j) = q j ≤ n showing that s ′ is an n-labeling of ∆ A . Moreover we have q ′ ((i -1)j) = q ′ (ij) j = 0, . . . , k -1

showing that [T ] satisfies the column conditions.

Hence indeed

[T ] ∈ Yam k (A n )
which is what we wanted to show.

More generally, given any q 0 ≤ q 1 ≤ • • • ≤ q k , a labeling of ∆ A as in (5.12) is a Yamanouchi tree. We call such Y-trees normal.

The following result shows that given a Y-tree T ∈ Yam k+1 (A n ), we can replace its subtree V consisting of the first k-levels of T , with its normal form [V], and the resulting labeling of ∆ A is still an object of Yam k+1 (A n ). Proposition 5.3.16. Let T ∈ Yam k+1 (A n ) be a Y-tree with labeling s and valuation q, and let V be its subtree consisting of vertices ij with i + j ≤ k. Set v j := q j (V) for j = 0, 1, . . . , k -1, and for simplicity set v -1 := 0. Consider the labeling s ′ on ∆ k+1 A given by

s ′ (ij) = v j -v j-1 if i + j ≤ k, s(ij) if i + j = k + 1.
Then T ′ = (∆ A , s ′ ) ∈ Yam k+1 (A n ) and q i (T ′ ) = q i (T ) for all i = 0, 1, . . . , k.

Proof. Before we begin the proof, we illustrate the statement with an example of a Y-tree of level 3 denoted T

• p • a • b • • c • d • e • a • a • v 1 -a • • c. • d • e V [V] T = T ′ =
The proposition asserts that T ′ ∈ Yam 3 (A n ). Back to the proof. Let T and T ′ as in the statement of the proposition, and denote by q ′ the valuation of (∆ A , s ′ ). In order to show that T ′ ∈ Yam k+1 (A n ) , we need to show that s ′ is an n-labeling i.e. q i (T ′ ) ≤ n for i = 0, . . . , k, and that it satisfies the column conditions, i.e. q ′ (ij) ≤ q ′ ((i -1)j) for all vertices ij.

By definition of the maps q and q ′ we have

q j (T ′ ) = q ′ ((k + 1 -j)j) = q ′ ((k + 1 -j)(j -1)) + s ′ ((k + 1 -j)j).
(5.13)

We express the quantities on the right side of (5.13) as follows. Note first that by definition of the map s ′ we have s ′ ((k + 1j)j) = s((k + 1j)j), and secondly we have

q ′ ((k + 1 -j)(j -1)) = q [V] ((k + 1 -j)(j -1)) = q j-1 ([V]).
By Proposition 5.3.15 we have that q j-1 ([V]) = q j-1 (V), and plugging these into (5.13) we obtain q j (T ′ ) = q j-1 (V) + s((k + 1j)j) = q j (T ).

(5.14)

The fact that s ′ is an n-labeling of ∆ A is obtained directly by (5.14) and the fact that s is an n-valuation.

The column conditions for s ′ on vertices ij with i + j ≤ k follow from the fact that [V] ∈ Yam k (A n ), and for the vertices of level k + 1 we have

q T ′ ((k + 1 -j)j) = q j (T ′ ) = q j (T ) ≤ q T ((k -j)j) = q j (V) = q j ([V]) = q T ′ ((k -j)j)
which is what we wanted to show.

The following result computes the insertion (ω k (T ) ← ω k+1 (T )) for a Y-tree whose first k-levels form a standard Y-tree. Proposition 5.3.17. Let T ∈ Yam k+1 (A n ) with labeling s and valuation q, and V be its subtree consisting of vertices ij with i + j ≤ k. Suppose that V is a normal tree, i.e. V = [V]. Set v j := q j (V) for j = 0, 1, . . . , k -1 and for simplicity set v -1 := 0. Consider the labeling s ′ on ∆ k+1 A given by

s ′ (ij) =      s((i + 1 -j)j) if i + j = k, v i-1 -v i-2 + s((i + 1)(k -i)) -s(i(k -i + 1)) if i + j = k + 1 s(ij)
otherwise.

Then

T ′ = (∆ A , s ′ ) ∈ Yam k+1 (A n ), q i (T ′ ) = q i (T ), and 
ω(T ′ ) = k-3 l=0 ω k (T ) [ω k (T )ω k+1 (T )].
Proof. Since V is a normal tree, we can draw the last 3 levels of T as follows.

• v 0 • v 0 • v 1 -v 0 • • a 0 • a 1 • a 2 • v 1 -v 0 • a 3 • v k-3 -v k-4 • v k-2 -v k-3 • a k-1 • a k • v 2 -v 1 • v k-2 -v k-3 • v k-1 -v k-2 • • • • • • • • • for the notation s((i + 1)(k -i)) = a i for i = 0, 1, . . . , k.
The readings of the words of levels k and k + 1 are respectively

ω k (T ) = c(v k-1 )
and

ω k+1 (T ) = c(a 0 ) k-1 l=0 c(v l , a l+1 ).
Note that for any l = 0, 1, . . . , k -2 by the column conditions we have

v l + a l+1 ≤ v l+1 ≤ v k-1
and we compute the insertion (ω k ←-ω k+1 ) in two steps. First we have

c(v k-1 ) ← c(a 0 ) k-2 l=0 c(v l , a l+1 ) = c(a 0 ) k-2 l=0 c(v l , a l+1 )c(v k-1 ). Further, since (c(v k-1 ) ← c(v k-1 , a k+1 )) = c(v k-1 + a k+1 ) = c(q k (T )), we finally compute (ω k (T ) ← ω k+1 (T )) = c(a 0 ) k-2 l=0 c(v l , a l+1 )c(q k (T )).
Set δ i = a i+1a i for i = 1, 2, . . . , k. Consider now the labeling s ′ on ∆ k+1 A as in the statement of the proposition. The last 3 levels of T ′ are drawn as follows

• v 0 • a 0 • a 1 • • a 0 . • • v 0 + δ 0 v 1 -v 0 + δ 1 • v 1 -v 0 • v 2 -v 1 + δ 2 • v k-3 -v k-4 • v k-2 -v k-3 • v k-2 -v k-3 + δ k-2 • v k-1 -v k-2 + δ k-1 • a 2 • a k-2 • a k-1 Verifying that T ′ ∈ Yam k+1 (A n ) is done directly. Moreover we see that ω k (T ′ ) = c(a 0 ) k-2 l=0 c(v l , a l+1 ), ω k+1 (T ′ ) = c(q k (T )) proving that ω(T ′ ) = k-3 l=0 ω k (T ) [ω k (T )ω k+1 (T )].
Finally we have

q i (T ′ ) = v i-2 + a i-1 + v i-1 -v i-2 + a i -a i-1 = v i-1 + a i = q i (T ).
and this completes the proof of the proposition.

We illustrate this result with an example of a Y-tree of level 4, and we show how one can practically compute the tree T ′ . Example 5.3.18. Let n = 12 and consider the Y-tree T of level 4

• 2 • 2 • 4 • • 2 • 4 • 3 • 1 • 2 • 3 • 3 T = = V (5.15)
Clearly V is a normal Y-tree of level 3 thus T satisfies the conditions of Proposition 5.3.17. In terms of Finally taking the normal form of the first 3 columns we obtain

• 0 • 0 • 2 • • 0 • 2 • 7 • 0 • 7 • 1 • 2 T ′′′ =
which we can see is a normal tree.

In terms of columns, we have We can see that the rightmost collection of columns is in fact an element of highest weight in Pl q (A n ). The rightmost column which is empty represents the element ǫ. 

(A n ) * 1 . Corollary 5.3.21. Let T ∈ Yam k (A n ). Then ω(T ) is a word of highest weight in Col q (A n ) * .
Proof. Let T ∈ Yam k (A n ), and consider the word w = ω(T ) ∈ Col q (A n ) * 1 . By Theorem 5.3.12 we have that the normal form of ω(T ) in Pl

q (A n ) is [w] = k-1 l=0 c(q l (T )).
Suppose that a ≤ k is such that fr l = 0, 1, . . . , a we have q l (T ) = 0, and q l (T ) > 0 for l > a. We can then write

[w] = ǫ a T,

where T ∈ Pl(A n ). Since T = k-1 l=a c(q l (T )) = (12 • • • q a (T ))(12 • • • q a+1 (T )) • • • (12 • • • q k-1 (T ))
and q i (T ) ≤ q i+1 (T ), we have that T is a tableau of highest weight by Theorem 5.1.7. Recall that the projection map p :

Col q (A n ) * 1 -→ Col(A n ) * 1 

LEVEL 2 YAMANOUCHI TREES OF TYPE C

Similar to the Section 5.2, we introduce here a graphical model for the words w ∈ C * n which satisfy the following conditions:

i) w is of highest weight, ii) w = c 1 c 2 for c 1 , c 2 ∈ Col(C n ).
by distinguishing the different factorizations. This will be done inductively on the length of the column word c 2 in C * n . The exposition of this section follows that of Section 5.2. for all i = 1, . . . , n. A direct computation of ϕ i (c) gives

ϕ i (c) = 1 if i = p, 0 otherwise.
Thus from (5.17) we obtain ε i (x) = 0 if i = p, and ε p (x) ∈ {0, 1}. We now distinguish two cases:

1. ε p (x) = 0. Then we have ε i (x) = 0 for all i = 1, . . . , n, which is only possible if x = 1. Thus we have w = 12 • • • p1. We describe this situation graphically by the tree

• p • 1 • 0 • 0 . ( 5.18) 
Explicitly, similar to type A, since x = 1 is the start of a new column, and not a continuation of the first column, we mark the right vertex with a 1, and the left and middle vertices with 0.

Remark 5.4.2. Note that the drawing of this situation differs from that in type A by the inclusion of the horizontal bar and the extra vertex. This is to signify that x may admit 3 values in type C, as opposed to 2 in type A, due to the alphabet C n containing the barred letters which are not present in A n .

2. ε p (x) = 1. Then we have ε i (x) = 0 for all i = p, which is only possible if x = p + 1 or x = p. If x = p + 1 we have w = 12 • • • p(p + 1). We describe this situation graphically by the tree

• p • 0 • 1 • 0 . ( 5.19) 
Explicitly, similar to type A, since x = (p + 1) is the continuation of the first column, and not the start of a new column, we mark the left vertex with a 1, and the left and middle vertices with 0.

If x = p we have w = 12 • • • pp. We describe this situation graphically by the tree

• p • 0 • 0 • 1 . (5.20)
Explicitly, since x = p is the first barred letter that appears in w, and is a non-admissible continuation of the first column, we mark the middle vertex with a 1 and the left and right vertices with a 0. In other words, we have w

= c 1 c 2 is a Yamanouchi word in C * n with c 1 , c 2 ∈ Col(C n ) and |c 2 | = 2 in C * n .
By Lemma 5.1.6 i) we have that cx is a Yamanouchi word, thus we have that cx is represented by one of the trees in (5.18), (5.19), or (5.20). Moreover by Lemma 5.1.6 ii) we have

ε i (y) ≤ ϕ i (cx)
for all i = 1, 2, . . . , n. Let us now distinguish the possible cases.

1. cx = 12 • • • p1. We then have ϕ i (cx) = 1 if i = 1, p 0 otherwise
This gives us ε i (y) = 0 for i = 1, p, and ε i (y) ∈ {0, 1} for i = 1, p. Evidently we have that at most one of ε 1 (y) and ε p (y) can be non-zero. We distinguish here between these cases.

1a. ε 1 (y) = 1, ε p (y) = 0. This is only possible if y = 2 or y = 1, thus we have

w = 12 • • • p12 or w = 12 • • • p11.
The second option is not possible by our assumption that xy = 11, hence we have w = 12 • • • p12. We note this situation graphically by the tree

• p • 2 • 0 • 0 
Explicitly, since y = 2 is a continuation of the second column, and not of the first column, we add +1 to the label of the rightmost vertex, and leave the other labels unchanged.

1b. ε 1 (y) = 0, ε p (y) = 1. This is only possible if y = p + 1 or y = p, thus we have

w = 12 • • • p1(p + 1)
which we note graphically by the tree

• p • 1 • 1 • 0 or we have w = 12 • • • p1p
which we note graphically by the tree

• p • 1. • 0 • 1 
Explicitly, since y = p + 1 is a continuation of the first column, and not of the first column, we add +1 to the label of the leftmost vertex, and leave the other labels unchanged. For the other case, since y = p is a non-admissible continuation of the first column, and not of the second column, we add +1 to the middle vertex and leave the other labels unchanged.

1c. ε 1 (y) = ε 1 (y) = 0. This is only possible if y = 1. But then we have c 2 = xy = 11 is not an admissible a column, which is impossible. Hence this case does not occur.

2. cx = 12 • • • p(p + 1). We then have

ϕ i (cx) = 1 if i = p + 1 0 otherwise
This gives us ε i (y) = 0 for i = p + 1, and ε p+1 (y) ∈ {0, 1}. We distinguish between the possible cases.

2a. ε p+1 (y) = 0. This is only possible if y = 1, thus we would have c 2 = (p + 1)1 which is not an admissible column. Hence this case does not occur.

2b. ε p+1 (y) = 1. This is only possible if y = p + 2 or y = p + 1, thus we have

w = 12 • • • p(p + 1)(p + 2).
which we note graphically by the tree

• p • 0 • 2 • 0 or we have w = 12 • • • p(p + 1)p + 1
which we note graphically by the tree

• p • 0. • 1 • 1 
Explicitly, since y = p + 2 is a continuation of the first column, we add +1 to the label of the leftmost vertex, and leave the rest unchanged. For the other case, since y = p + 1 is a non-admissible continuation of the first column, we add +1 to the label of the middle vertex, and leave the rest unchanged. 

• p • a • b • c T =
such that the following conditions are satisfied

(C1) p + b ≤ n, (C2) a + c ≤ p.
The reading of T is the word

ω(T ) := (12 • • • p)(12 • • • a)((p + 1)(p + 2) • • • (p + b))((p + b)(p + b -1) • • • (p + b -c + 1)).
In what follows we refer to such objects by the name of Y Cn 2 -trees. When the context is clear, we shall often omit the superscript C n and the subscript 2, and simply cal these objects Y-trees.

We note right away some consequences of the definition. We remark that since the admissibility condition is non-trivial in type C, and the combinatorics are more involved, the proof of the following proposition is more technical than that of its counterpart in type A. Recall that for w ∈ C * n and z ∈ {1, 2, . . . , n} we denote by Set z (w) the letters x of w satisfying x ≤ z or x ≥ z. 

, ii) if w is the normal form of ω(T ) in C * n , then w = ω(T ′ ) where • a • a, • p + b -c -a • 0 T ′ = (5.22)
iii) ω(T ) is a Yamanouchi word in C * n . Proof. i) By Definition 5.4.6 we see that the first horziontal level of T encodes the word

c 1 = 12 • • • p,
which is an admissible column. The second horizontal level of T encodes the word

c 2 = 12 • • • a(p + 1)(p + 2) • • • (p + b)(p + b)(p + b -1) • • • (p + b -c + 1).
Clearly the letters of c 2 are increasing. We verify that it is an admissible column. For 1 ≤ z ≤ a we have N z (c 2 ) = z because a ≤ p + bc. For the rest of values of z, we distinguish two cases.

1. b > c. We then decompose the interval [a + 1, n] as follows

[a + 1, n] = [a + 1, p] ⊔ [p + 1, p + b -c] ⊔ [p + b -c + 1, p + b] ⊔ [p + b + 1, n]. Then for z ∈ [a + 1, p] we have N z (c 2 ) = a ≤ z. For z ∈ [p + 1, p + b -c] we have Set z (c 2 ) = {1, . . . , a, p + 1, . . . , z} hence N z (c 2 ) = a + z -p = z -(p -a). By (C2) we have p -a ≥ 0, hence N z (c 2 ) ≤ z. For z ∈ [p + b -c + 1, p + b] we have Set z (c 2 ) = {1, . . . , a, p + 1, . . . , z, z, . . . , p + b -c + 1} hence N z (c 2 ) = a + z -p + z -(p + b -c) = 2z -2p + a -b + c. Note that z -N z (c 2 ) = (p + b) -z + (p -a -c). Since z ≤ p + b and a + c ≤ p by (C2), we have z -N z (c 2 ) ≥ 0, hence N z (c 2 ) ≤ z. For z ∈ [p + b + 1, n] we have N z (c 2 ) = a + b + c ≤ p + b ≤ z.
Hence c 2 is indeed admissible in this case.

2. b ≤ c. We then decompose the interval [a + 1, n] as follows

[a + 1, n] = [a + 1, p + b -c] ⊔ [p + b -c + 1, p] ⊔ [p + 1, p + b] ⊔ [p + b + 1, n] For z ∈ [a + 1, p + b -c] we have N z (c 2 ) = a ≤ z. For z ∈ [p + b -c + 1, p] we have Set z (c 2 ) = {1, . . . , a, z, . . . , p + b -c + 1} hence N z (c 2 ) = a + z -p -b + c = z -(p + b -a -c). Since a + c ≤ p ≤ p + b by (C2) we have that N z (c 2 ) ≤ z. For z ∈ [p + 1, p + b] we have Set z (c 2 ) = {1, . . . , a, p + 1, . . . , z, z, . . . , p + b -c + 1} hence N z (c 2 ) = a + z -p + z -p -b + c. Note that z -N z (c 2 ) = (p + b) -z + p -(a + c). Since z ≤ p + b and a + c ≤ p by (C2) we have z -N z (c 2 ) ≥ 0, hence we obtain N z (c 2 ) ≤ z. For z ∈ [p + b + 1, n] we have N z (c 2 ) = a + b + c ≤ p + b ≤ z.
Hence c 2 is admissible in this case.

Thus we have that indeed both c 1 and c 2 are admissible columns, which is what we wanted to show.

ii) By the 2-column Lemmata 2.2.37, we have that the normal form of ω(T ) can be computed by the insertion (c 1 ← c 2 ), and the resulting word will be a product of at most 2 columns. We compute here this insertion. For simplicity denote

c ′ 2 = 12 • • • a(p + 1) • • • (p + b), c ′′ 2 = p + b • • • p + b -c + 1.
We then have

(c 1 ← c 2 ) = (c 1 ← c ′ 2 ) ← c ′′ 2 .
By the proof of Proposition 5.2.5 ii) we have that

(c 1 ← c ′ 2 ) = 12 • • • a12 • • • (p + b).
It remains to insert c ′′ 2 into this word. By the definition of column insertion in subsection 2.2.33, since (12

• • • (p + b) ← p + b) = 12 • • • (p + b -1), we have (w ← p + b) = (12 • • • a ← 12 • • • (p + b -1)) = 12 • • • a12 • • • (p + b -1).
Inserting the rest of the letters of c ′′ 2 , since p + bc + 1 ≥ a, we obtain

w = (c 1 ← c 2 ) = (12 • • • a)(12 • • • (p + b -c))
.

Note now that we can encode the word w into the Y-tree

• a • a • p + b -c -a • 0 T ′ =
Indeed, by Definition 5.4.6 the reading ω(T ′ ) is given by

ω(T ′ ) = (12 • • • a)(12 • • • a)((a + 1) • • • (a + p + b -c -a)) = w,
which is what we wanted to show.

iii) If in ii) we write the tableau corresponding to the word ω(T ′ ), we have where q 1 = p + bc, and by Theorem 5.1.7 we see that ω(T ′ ) is indeed a Yamanouchi word. Since ω(T ) and ω(T ′ ) are representatives of the same element in Pl(C n ), we have that ω(T ) is a Yamanouchi word as well, which is what we wanted to show.

Note that this proposition asserts that we have a map

ω : {Y-trees of level 2} -→ (C * n ) 0 .
Nevertheless this map is not injective as the examples below show. Given a Y-tree of level 2 T as in (5.7), we call the Y-tree T ′ as in (5.22) the normal form of T , and denote it by [T ].

Example 5.4.8. Let n = 5 and consider the Y-trees of level 2 T 1 , T 2 , T 3 given by

• 3 • 0 • 2 • 2 • 4 • 0 • 1 • 2 • 2 • 0 • 3 • 2 
Proposition 5.4.12. Let w = c 1 c 2 ∈ C * n with c 1 , c 2 ∈ Col(C n ) be a Yamanouchi word. Then there exists a unique Y-tree of level 2

• |c 1 | • a • b • c such that ω(T ) = w.
Proof. We first prove unicity under the assumption of existence.

Note that if we have two Y-trees of level 2 

• p • a 1 • b 1 • d 1 • p • a 2 • b 2 • d 2 T 1 = T 2 = so that ω(T 1 ) = ω(T 2 ), it is clear that a 1 =
[w] = ω([T ]) = (1 • • • a)(1 • • • (p + b -c)).
Note that

ϕ i (w) = ϕ i ([w]) = 1 if i = a, p + b -c 0 otherwise.
By Lemma 5.1.6 ii) we have ε i (x) ≤ ϕ i (w) for all i = 1, . . . , n. This means that

ε i (x) = 0 for i = a, p + b -c and ε i (x) ∈ {0, 1} for i = a, p + b -c.
We distinguish the possible cases.

1. ε i (x) = 0 for all i = 1, . . . , n. Then this means x = 1, but as c 2 is a column of length k + 1 > 2, the last letter of c 2 cannot be 1. Hence this case does not occur.

2. ε a (x) = 1. This implies x = a + 1 or x = a.

Suppose first that x = a + 1. Note that if b = 0 then p + 1 is a letter in c 2 , and thus a + 1 cannot be the last letter of c 2 . Hence we have b = 0. Similarly we have that c = 0 and thus for the Y-tree

• p • a + 1 • 0 • 0 T =
The reasons we consider Col q (C n ) over C * n are as follows. The construction of the Y-trees of level 2 is based on writing words of C * n as products of 2 admissible columns. This suggests considering Col(C n ) * 1 . Computing the normal form of the words of Y-trees as in Proposition 5.4.7 ii) turns out to be more convenient if the size of the Y-tree does not change. In order to cover the situations (c 1 ← c 2 ) = d and (c 1 ← c 2 ) = ∅ for c 1 , c 2 , d ∈ Col(C n ), it is more convenient to have a notion of the empty column ǫ. This is reflected on the Y-tree by allowing for a level to be labeled with only 0s.

We remark that the exposition in this section resembles that of Section 5.3 on the Yamanouchi trees of type A. The reason for this is that the constructions in this section may be followed with reference to the simpler situation in type A.

Block columns.

Recall the quadratic 2-polygraph Col q (C n ) as introduced in Section 4.5, and the quadratic plactic monoid Pl q (C n ) it presents.

Definition 5.5.2. An admissible column c ∈ Col q (C n ) is called a block column, or simply a block, if c = ǫ, or if c = x 1 x 2 • • • x k ∈ Col q (C n ) is such that for each i = 1, . . . , k-1, there exists j i ∈ {1, . . . , n} such that x i+1 = f j i .x i .
In other words, a block is an admissible column c if the letters of c appear consecutively in the alphabet C n .

We now fix some notation for blocks. Then c 1 = 3455 is a block, and we write it as c(2; 3, 1). The word c 2 = c(3, 2; 2) = 4554 is also a block. Nevertheless c 3 = c(1; 4, 2) = 234554 is not a block as it is not an admissible column.

5.5.4. Products of block columns. We investigate columns that are products of blocks and we describe a criterion for checking their admissibility. This result will be used later in this section to simplify the verification of admissibility of certain columns once we introduce the Yamanouchi trees of type C.

Proposition 5.5.5. Let c 1 , . . . , c t and d 1 , . . . , d r be blocks in Col q (C n ) such that i) c i consist of unbarred letters for i = 1, . . . , t,

ii) d j consist of barred letters for j = 1, . . . , r,

iii) w = c 1 • • • c t d 1 • • • d r is a column word in C * n .
Denote by x i the largest (i.e. rightmost) letter in c i , and by y j the smallest (i.e. leftmost) letter in d j .

Then w is admissible if and only if N z (w) ≤ z for all z = x i , y j .

(5.23)

We make here note of a computational result, which can be proved by making direct computations of the column insertion as defined in subsection 2.2.33. In terms of columns we have Here E(∆ C ) 1 are the south-east oriented edges, that is ց, E(∆ C ) 2 are the south-west oriented edges, that is ւ, and E(∆ C ) 3 are the horizontal edges.

For convenience purposes, we shall often denote the vertices of ∆ C by v = ij ± , where ij = ij + , and i0 -= i0.

For a vertex v = ij ± ∈ ∆ C , we call its first coordinate i the strand of v, and the sum i + j the level of v. For k ∈ N, the finite full subtree of ∆ C consisting of its vertices of level ≤ k is denoted by ∆ k C . A labeling of the tree ∆ C is a map s : V(∆ k C ) -→ N for some k ∈ N. Here for simplicity we assume that k is implicitly given by s, and we call it the height of (∆ C , s), or we say that (∆ C , s) is of level k. For such a labeling, we draw the tree ∆ C only up to its k-th level.

For notational convenience let us define an order on the vertices of ∆ C by i(j + 1) > ij -> ij for i, j ∈ N ≥1 . In other words, for two vertices v, v ′ ∈ ∆ C we have v > v ′ if the vertex v ′ appears earlier and on the same strand as v.

For a labeling T = (∆ C , s) we define a map q T : V(∆ C ) -→ N on the vertices of ∆ C , called the valuation of T by setting for v ∈ V(∆ C )

q T (v) := ij ∈ ∆ C ij ≤ v s(ij) - ij -∈ ∆ C ij ≤ v s(ij -)
When the context is clear, we remove T from the notation and simply write q. Of particular importance are the valuations at the extremities of T = (∆ k C , s), that is the quantities q j := q T ((kj)j -).

For a natural number n and a labeling s of ∆ C we say that s is an n-labeling if 0 ≤ q(v) ≤ n for all v ∈ V(∆ C ).

Example 5.5.10. For n = 10 the following are n-labelings on ∆ 2 C and ∆ 3 C respectively

• 4 • 3 • 2 • 5 • 5 • 4 • 3 • 2 • • 1 • • 4 • 4 • 4 5
Indeed, for ∆ 2 C we have q(10) = 4, q(11) = 4 + 2 = 6, q(11 -) = 4 + 2 -5 = 1, q(20) = 3, and for ∆ 3 C we have q(10) = 5, q(11) = 5 + 3 = 8, q(11 -) = 5 + 3 -2 = 6, q(12) = 5 + 3 -2 + 4 = 10, q(12 -) = 5 + 3 -2 + 4 -4 = 6, q(20) = 4, q(21) = 4 + 5 = 9, q(21 -) = 4 + 5 -4 = 5, q(30) = 1

For both (∆ 2 C , s) and (∆ 3 C , s) we have q(v) ≤ 10 for all vertices, hence s on ∆ 2 C and ∆ 3 C are 10-valuations.

5.5.14. Column conditions. Fix n ∈ N and s an n-labeling of ∆ C . In this section, we give the condition under which the reading ω k = ω k (∆ C , s) of the k-th level of ∆ C is itself a column. Denote by a 0 l and a 1 l respectively the leftmost and rightmost elements of the block ρ((kl)l), and by b 0 l and b 1 l respectively the leftmost and rightmost elements of the block ρ(l(kl) -). Then ω k is a column if and only if a 1 l < a 0 l+1 and b 1 l < b 0 l+1 .

(5.25)

Note that a 0 l = q((kl)(l -1) -) + 1, a 1 l = q((kl)(l -1) -) + s((kl)l) = q((kl)l), b 0 l = q(l(kl)), b 1 l = q(l(kl) -) + 1 Thus the inequalities (5.25) become q((kl)l) ≤ q((kl -1)(l + 1) -)

(5.25 ′ ) and q(l(kl)) ≤ q((l -1)(kl + 1) -).

(5.25 ′′ ) which we can summarize into q(ij) ≤ q((i -1)(j + 1) -) and q(ij) ≤ q((i -1)j -). q(ij) ≤ q((i -1)(j + 1) -) and q(ij) ≤ q((i -1)j -) for all i, j with i + j = k.

Graphically the condition look as follows where for two vertices v, v ′ ∈ V(∆ C ) an arrow v←-v ′ stands for the inequality q(v) ≥ q(v ′ ). Note that as q((kl)l) = q((kl)(l -1) -) + s((kl)l), we can write (5.26) as follows l-1 i=0 s((ki)i) + s((ki)i -) + s((kl)l -) ≤ q((kl)(l -1) -).

(5.26 ′ )

The condition in this form is cumbersome hence we illustrate it graphically for clarity. Given k, for l ≤ k, the right side of the inequality (5.26) is the map q evaluated at the vertex (kl)l. The left side of the inequality is the sum of all the labels s(v) over the level k vertices v which are to the right of and including the vertex (kl)l.

We add green edges to ∆ C as follows.

1. Label the inner vertices, i.e. v = ij -of level k -1 with q(v).

2. Label the inner vertices of level k, with p(v) := s(v), where the v runs over the vertices of level k to the right of, and including, v.

3. Draw a green edge v -→ v ′ to signify p(v) ≤ q(v ′ ).

Graphically for k = 5 this is illustrated as • p(14 -)

• q(40)

• q(31 -)

• q(22 -)

• q(13 -)

This way, given n ∈ N we have specified conditions for an n-labeling s of ∆ C to be such that ω k (∆ C , s) ∈ Col q (C n ). Then we consider the reading map ω as a map

ω : Yam(C n ) -→ Col q (C n ) * 1 .
In particular, by construction we have that |ω(T )| q = k for all T ∈ Yam k (C n ).

We give some examples of Yamanouchi trees of type C. • 5

• 4 • 2 • 1 • • 2. • • 2 • 4 • 2 0 T 2 =
One verifies that T 2 satisfies the column and admissibility conditions, and its reading in terms of columns,

The last equality holds because we set q -1 = 0, and in general we which is what we wanted to show. Since q l ≤ q l+1 we see that ω(T ) is indeed a normal form, thus

[ω([T ])] = ω([T ]),
and in particular we also have q j ([T ]) = q j (T ). This completes the proof of the proposition.

More generally, given q 0 ≤ q 1 ≤ • • • ≤ q k-1 , a labeling T = (∆ C , s) as in (5.27) is a Yamanouchi tree of type C. We call such Y-trees normal.

The following result shows that given a Y-tree T ∈ Yam k+1 (C n ), we can replace its subtree consisting of the first k-levels and denoted V, with its normal form [V] and the resulting tree is still an object of Yam k+1 (C n ). Proposition 5.5.29. Let T ∈ Yam k+1 (C n ) and let V be its subtree consisting of vertices ij ± with i + j ≤ k. Set v j := q j (V) for j = 0, 1, . . . , k -1, and for simplicity set v -1 := 0. Consider the labeling s ′ on ∆ C given by

s ′ (ij ± ) = s [V] (v) if i + j ≤ k, s (ij) otherwise. 
Then T ′ = (∆ C , s ′ ) ∈ Yam k+1 (C n ), q j (T ) = q j (T ′ ), and ω(T ′ ) = ω([V])ω k+1 (T ).

Proof. Before we begin with the proof, we illustrate the statement with the situation for Y-trees of rank 3. For T ∈ Yam 3 (C n ), we normalize the subtree consisting of its first 2 levels, and we obtain T ′ as follows.

• p

• a • b • c • • d • • h • f • g e • a • a • q 1 -a • • • d • • h • f • g e T = T ′ = V [V]
with v 0 = a and v 1 = p + bc. Back to the proof. To show that T ′ ∈ Yam k+1 (C n ) we need to show that s ′ is an n-valuation, i.e. q i (T ′ ) ≤ n, and that it satisfies the column and admissibility conditions.

Since for i + j ≤ k we have s ′ (ij ± ) = s [V] (ij ± ), by Proposition 5.5.28 we see that s ′ satisfies the column and admissibility conditions on vertices ij ± with i + j ≤ k. It remains to verify these conditions for vertices v = ij ± with i + j = k + 1.

Since q i ([V]) = q i (V), we have q T ′ ((ki)i -) = q i ([V]) = q i (V) = q T ((ki)i -). Moreover, we have q i (T ′ ) = q i (V) + s((k + 1i)i)s((k + 1i)i -) = q i (T ).

Hence the conditions of n-labelings, columns, and admissibility for the vertices v = ij ± with i+j = k+1 in T ′ are identical to those for T . Hence s ′ is an n-labeling on ∆ k+1 C that satisfies the column and admissibility conditions, thus T ′ ∈ Yam k+1 (C n ). Moreover we clearly have ω(T ′ ) = ω([V])ω k+1 (T ), and this completes the proof of the proposition.

The following result computes the insertion (ω k (T ) ←-ω k+1 (T )) for a Y-tree T whose first klevels form a normal Y-tree. Proposition 5.5.30. Let T ∈ Yam k+1 (C n ) with valuation s and V be its subtree consisting of vertices ij with i + j ≤ k. Suppose that V is a normal tree, i.e. V = [V]. Set v j := q j (V) for j = 0, 1, . . . , k -1, and for simplicity set v -1 := 0. Consider the valuation s ′ on ∆ k+1 C given by

s ′ (v) =      s((i + 1)(k -i))
if v = i(ki) i = 1, . . . , k, q i (T )q((i + 1)(ki)) if v = i(k + 1i) i = 1, . . . , k, s(v)

otherwise.

Then T ′ ∈ Yam k+1 (C n ), q i (T ′ ) = q i (T ), and

ω(T ′ ) = k-1 l=0 ω l (T )[ω k (T )ω k+1 (T )].
Proof. Since V is a normal tree, we can draw the last 3 levels of T as follows

• v 0 • v 0 • v 1 -v 0 • • • a 0 • • b 1 • a 2 • b 2 a 1 • v 1 -v 0 • v 2 -v 1 • • a 3 • b 3 • v k-3 -v k-4 • v k-2 -v k-3 • • a k-1 • b k-1 • v k-2 -v k-3 • v k-1 -v k-2 • • a k • b k
Here we have chosen the notation For the first insertion, note first that for any l = 0, 1, . . . , k -1 by the column conditions we have

v l-1 + a l ≤ v l ≤ v k-1
hence we obtain c(v k-1 ) ←- We compute now the insertion of η into (ω k ←-µ). Denote by η l for l = 0, 1, 2, . . . , k -1 the blocks in η, namely η l = c(v k-l-1 + a k-l , b k-l ).

Since η consists of only barred letters, we have we successively compute the insertions of η l into c(v k-1 + a k ) by Lemma 5.5.7 as follows. First we have

(c(v k-1 + a k ) ←-η 0 ) = (c(v k-1 + a k ) ←-c(v k-1 + a k , b k )) = c(v k-1 + a k -b k ) = c(q k ).
To compute the insertion (c(q k ) ←-η 1 ), note first that since q k-1 + b k = v k-2 + a k-1 we have

c(q k ) = c(q k-1 )c(q k-1 , b k )c(v k-2 + a k-1 , q k -v k-2 -a k-1 )
and we obtain (c(q k ) ←-η 1 ) = (c(q k ) ←-c(v k-2 + a k-1 , b k-1 )) = c(q k-1 )c(v k-2 + a k-1 , q kv k-2a k-1 ).

Inserting η 2 , . . . , η k-1 successively into c(q k ) we obtain (c(q k ) ←-η) = c(q 1 ) k l=2 c(v l-2 + a l-1 , q lv l-2a l-1 ).

Thus if we set δ l = v l-2 + a l-1 we finally have Consider now the valuation s ′ on ∆ C as in the statement of the proposition. Graphically we have

• v 0 • a 0 • a 1 • • • a 0 • • • q 2 -δ 2 • q 1 -δ 1 • v 1 -v 0 • a 2 • • q 3 -δ 3 • • v k-3 -v k-4 • a k-2 • • q k-1 -δ k-1 • • v k-2 -v k-3 • a k-1 • • q k -δ k •
and we have ω k (T ′ )ω k+1 (T ′ ) = (ω k (T ) ←-ω k+1 (T )).

Moreover by construction of T ′ we have q j (T ′ ) = q jδ j + a j-1 + v j-2 = q j = q j (T ), which completes the proof of the proposition.

We illustrate Proposition 5.5.30 with an example of height 4, and we show how one can practically compute the tree T ′ .

CONNECTION TO GT-PATTERNS AND RSK CORRESPONDENCE

In this section we briefly discuss connections between the Yamanouchi trees of type A with GT-patterns and the column Robinson-Schensted-Correspondence. 5.6.1. GT-patterns. In their study of branchings rules in the representation theory of GL n , Gelfand and Tsetlin introduced a triangular array of non-negative integers called GT-patterns in [START_REF] Gelfand | Finite-dimensional representations of the group of unimodular matrices[END_REF]. For a more detailed account see [START_REF] Stanley | Enumerative combinatorics[END_REF]. These are triangular arrays as follows

x n1
x n2 such that the entries x ij satisfy the conditions x i+1,j ≥ x ij and x ij ≥ x i+1,j+1 .

(5.29)

Consider a Yamanouchi tree of 4 levels in type A

• p • a • b • • c • d • e • t. • u • v • x T =
For any vertex ij set y ij := q(ij), and replace the labels s(ij) with q(ij) in the tree T , i.e. we have ∆ 4 A with a labeling on the vertices as follows Then this triangular array is a GT-pattern, and the conditions in (5.29) are equivalent to the column conditions for the Yamanouchi trees in type A. Conversely given a GT-pattern, we can construct a unique Yamanouchi tree which via the process described above produces the given GT-pattern. We thus have the following result. Proposition 5.6.2. There exists a bijection between the GT-patterns and the Yamanouchi trees in type A.

We remark that in [START_REF] Berenstein | Tensor product multiplicities and convex polytopes in partition space[END_REF], Berenstein and Zelevinsky use the GT-patterns in type A, and introduce anaologues in types B, C, D to prove that the Littelwood-Richardson coefficients can be counted via integral points in certain polytopes. We note here that the Yamanouchi trees in type A can also be used for the same purpose. Using Yamanouchi trees, we can rephrase this proposition as follows. 5.6.5. The Robinson-Schented-Knuth correspondence. Recall that the column insertion algorithm in type A induces a bijection between the words in A * n and pairs of tableaux (P, Q) with the same shape, where P is a semi-standard Young tableau with entries in A n , and Q is a standard tableau with entries in N.

Given a Yamanouchi word w ∈ (A * n ) 0 , it is entirely determined by a pair (P, Q). By Theorem 5.1.7 we know that P will consist of only letters i on its i-th row. In particular if w is given as the reading of a Yamanouchi tree, we have seen in Theorem 5.3.12 how to construct P. Here we show how we can construct Q with an example of rank 3.

Consider a Yamanouchi tree

• p • a • b • • c • d • e
so that ω(T ) contains no ǫ. Then computing the normal form of ω(T ) by inserting it into an empty tableau, we can see that the standard tableau Q corresponding to ω(T ) is given by

Q(ω(T )) = x p1 x p2
. . . .

We illustrate this with an example. Consider the Yamanouchi tree

• 3 • 2 • 1 • • 1. • 2 • 1 T
We then have that P(ω(T )) = We thus define two maps L q , R q : Crit(Col q (Γ )) -→ N by setting for a critical branching (f, g) with source c 1 c 2 c 3 L q (f, g)) = 1 + |σ q ([c 1 c 2 ]c 3 )| q R q (f, g) = 1 + |σ q (c 1 [c 2 c 3 ])| q .

Note that L q counts the number of rewriting steps needed to be applied to c 1 c 2 c 3 to bring it to normal form, provided that the first rewriting step is c 1 c 2 c 3 =⇒ [c 1 c 2 ]c 3 , and the rest is the leftmost normalization strategy applied to [c 1 c 2 ]c 3 . Since the first rewriting step is applied to the leftmost pair, we name the map L q with the letter L signifying left.

On the other hand R q counts the number of rewriting steps needed to be applied to c 1 c 2 c 3 to bring it to normal form, provided that the first rewriting step is c 1 c 2 c 3 =⇒ c 1 [c 2 c 3 ], and the rest is the leftmost normalization strategy applied to c 1 [c 2 c 3 ]. Since the first rewriting step is applied to the rightmost pair, we name the map R q with the letter R signifying right.

Thus the pairs (L q (f, g), R q (f, g)) for (f, g) ∈ Crit(Col q (Γ )) determine the homotopy basis of the coherent extension of Col q (Γ ). In particular, by Theorem 4.3.18 we have that these shapes are entirely determined by Crit(Col q (Γ )) 0 , since L q (k.(f, g)) = L q (f, g) and R q (k.(f, g)) = R q (f, g) for any critical branching (f, g) ∈ Crit(Col q (Γ )) and k ∈ K.

In the rest of this chapter, we shall compute upper bounds for the values of L q (f, g) and R q (f, g).

6.1.5. The leftmost normalization strategy for Col(Γ ). Here we fix a section r and the leftmost normalization strategy σ for Col(Γ ), and show the relation between (σ, r) and (σ q , r q ). Consider the section r : Pl(Γ ) -→ Col(Γ ) * So in particular r restricted to Pl(Γ ) 0 is a section of Pl(Γ ) at highest weight. Similarly to the previous subsection about Pl q (Γ ), we fix the leftmost normalization strategy defined by σ(u) = λ u ⋆ 1 σ(t(λ u )).

In Theorem 5.3.26 we have established a bijection between the Yamanouchi trees of type A of height 3, and the words (c 1 c 2 c 3 ) 0 ∈ (Col q (A n ) * 1 ) 0 . Thus let

• p • a • b • • c • d • e T =
be the Yamanouchi tree such that ω(T ) = (c 1 c 2 c 3 ) 0 . Set q i := q i (T ).

We compute L q (ω(T )). Computing the insertion (ω 1 (T ) ←-ω 2 (T )) amounts to finding the normal form of the subtree V of T consisting of the first 2-levels. If we set v 1 = p + b, by Theorem 5.3.12 we obtain the tree

• a • a • v 1 -a • • c • d • e T ′ =
Next we calculate the insertion (ω 2 (T ′ ) ←-ω 3 (T ′ )) via Proposition 5.3.17 and we obtain the tree

• a • c • d • • c • t • u T ′′ =
where t, u are determined by the equations c + t = q 1 (T ′′ ) = q 1 (T ′ ) = a + d impyling t = a + dc = q 1c, and a + d + u = q 2 (T ′′ ) = q 2 (T ′ ) = v 1 + e implying u = v 1 + ead = q 2q 1 , thus we have

• a • c • d • • c. • q 1 -c • q 2 -q 1
T ′′ = Next we compute the insertion (ω 1 (T ′′ ) ←-ω 2 (T ′′ )) and we obtain the tree

• c • c • q 1 -c • • c • q 1 -c • q 2 -q 1 T ′′′ =
Approches combinatoires à la cohérence des monoïdes plaxiques via les cristaux et arbres de Yamanouchi Résumé. Les monoïdes plaxiques sont des objets qui décrivent la théorie des représentations des algèbres de Lie semi-simples complexes de dimension finie. Dans ce contexte, les monoïdes plaxiques admettent une réalisation via l'approche cristalline, et il existe une notion d'éléments de plus haut poids du monoïde. Une autre approche pour réaliser les monoïdes plaxiques est celle par des présentations convergentes finies par les générateurs et les relations, appelées présentations de colonnes. Cette approche ouvre une direction d'étude des monoïdes plaxiques via la théorie de la réécriture. Dans cette thèse, nous étudions l'interaction entre ces deux approches, et nous prouvons que l'étude des monoïdes plaxiques via la théorie de la réécriture peut effectivement être réduite à son étude aux éléments de plus haut poids. Plus précisément, nous introduisons les notions de graphes, de monoïdes, et de polygraphes cristallins, qui sont particulièrement adaptées au monde des monoïdes plaxiques. Nous prouvons ensuite que pour certains cristaux propres, c'est-à-dire ceux qui contiennent tous les éléments de plus haut poids, la vérification des propriétés de réécriture de la terminaison et de la confluence (locale) d'un polygraphe donné se réduit à leur vérification aux éléments de plus haut poids. Cela conduit à des versions cristallines du lemme de Newman, du lemme de les paires critiques, et du théorème de cohérence de Squier. En particulier, pour expliciter l'extension cohérente d'un polygraphe propre cristallin convergent revient à certains calculs de règles de réécriture sur les éléments de plus haut poids. Nous introduisons ensuite une version quadratique de la présentation en colonnes et des monoïdes plaxiques dans les types A, B, C, D, et montrons qu'elle est un polygraphe cristallin convergent fini. De plus, on peut étudier la présentation en colonnes et sa version quadratique simultanément, car elles sont fortement liéesnéanmoins la version quadratique a un avantage du fait que sa combinatoire est plus maniable. Nous introduisons ensuite des outils combinatoires dans les types A et C, appelés arbres de Yamanouchi, qui paramètrent les éléments de plus haut poids dans la présentation quadratique en colonnes, et facilitent le calcul de certaines règles de réécriture. Enfin, via le théorème de Squier de type cristal, et des calculs via les arbres de Yamanouchi, nous concluons que la base d'homotopie de les présentations cohérentes des monoïdes plaxiques de type A, respectivement de type C, est constituée de cellules de la forme [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF], respectivement [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF].

Mots-clés : Réécriture, présentations cohérentes, monoïdes plaxiques, cristaux, mots de plus haut poids, arbres de Yamanouchi

  qui à chaque sommet de ∆ C associe un nombre naturel. Nous désignons par Yam(C n ) l'ensemble des étiquetages sur T = (∆ C , s) satisfaisant certaines conditions, et nous définissons une application de lecture ω : Yam(C n ) -→ Col q (C n ) * 1 qui à chaque niveau horizontal de ∆ C associe une colonne admissible définie en termes d'étiquetages sur ce niveau. Nous donnons ensuite une formule permettant de calculer la forme normale du mot ω(T ) pour les arbres de Yamanouchi de type C. Théorème 5.5.25.

Theorem 3 . 4 . 4 .

 344 For Γ = A n , B n , C n , D n . Then i) the sets Col(Γ ) 1 and Col(Γ ) 2 are proper K-graphs, ii) the source and target maps s, t : Col(Γ ) 2 -→ Col(Γ ) * 1 are K-graph morphisms.
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 218 Consider the abstract rewriting system D as in Example 2.1.3. A local branching for D
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 2114 Consider the abstract rewriting system D as in Example 2.1.3. Then D is normalizing. Its normal forms are the prime numbers, as they do not have non-trivial divisors. Its dual rewriting system D ∨ is clearly not normalizing, while D ′ as in Example 2.1.11 is normalizing, and Nf(D ′ ) = {1}.

Definition 2 . 1 . 15 .

 2115 An abstract rewriting system (A, →) is convergent if it is terminating and confluent. Proposition 2.1.16 ([24]). A convergent rewriting system (A, →) is uniquely normalizing.

Theorem 2 . 1 .

 21 25 ([1], Critical Pair Lemma). A 2-polygraph X is locally confluent if and only if all its critical branchings are confluent.

  the shape of the underlying Young diagram of T . A Young tableau whose entries in each row are strictly increasing is called a standard Young tableau.

Example 2 . 2 . 3 .

 223 Let n = 5. Then 1

  [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] and maintaining the analogy with the case in type A, we denote the crystal monoid Cr(C n ) by Pl(C n ) and call it the plactic monoid of type C n .The crystal base of type D n isn n 4 4

Theorem 2 . 2 . 5 :

 225 27 ([29]). The monoid Pl(B n ) is the quotient of the free monoid B * n by the relations: R B 1 : if x = z and x < y < z: yzx B ≡ yxz and xzy B ≡ zxy; R B 2 : if x = y and x < y: xyx B ≡ xxy for x = 0 and xyy B ≡ yxy for y = 0; R B 3 : if 1 < x ≤ n and x ≤ y ≤ x: y(x -1)(x -1) B ≡ yxx, xxy B ≡ (x -1)(x -1)y, and 0n B let β be an almost admissible column. If β satisfies Remark 2.2.25 i), let z be the lowest letter such that z, z ∈ β and N z (β) > z, otherwise set z = 0. Then β B ≡ β where β is the column obtained by erasing the pair (z, z) in β if z ≤ n, or by erasing z = 0 otherwise. For the plactic monoid of type C n we have the following. Theorem 2.2.28 ([31]). The monoid Pl(C n ) is the quotient of the free monoid C * n by the relations: R C 1 : if z = x: yzx C ≡ yxz for x ≤ y < z, xzy C ≡ zxy for x < y ≤ z; R C 2 : if 1 < x ≤ n and x ≤ y ≤ x: y(x -1)(x -1) C ≡ yxx and xxy C ≡ x -1(x -1)y; R C 3 : let β be an almost admissible column, and let z be the lowest unbarred letter such that z, z ∈ β, and N z (β) = z + 1. Then β ≡ β, where β is obtained by erasing the pair (z, z) from β.

Theorem 2 . 2 .≡

 22 29 ([29]). The monoid Pl(D n ) is the quotient of the free monoid D * n by the relations:R D 1 : if x = z: yzx D ≡ yxz for x ≤ y < z, and xzy D ≡ zxy for x < y ≤ z; R D 2 : if 1 < x < n and x ≤ y ≤ x: y(x -1)(x -1) D ≡ yxx, xxy D ≡ (x -1)(x -1)y; R D 3 : if x ≤ nn -1(n -1)n, nnn D ≡ n -1(n -1)n,and nn -1(n -1) D ≡ nnn, nn -1(n -1) D ≡ nnn; R D 5 : let β be an almost admissible column and let z be the lowest unbarred letter such that z, z ∈ β and N z (β) = z + 1. Then β D ≡ β where β is the column obtained by erasing the pair (z, z) in β if z < n, or by erasing a pair (n, n) of consecutive letters otherwise.

  and yc ′ is the word obtained by successively applying plactic relations of the form R C 1 and R C 2 to the word wx ∈ C * n from right to left; 3. if w 0 = 12 • • • pp, then (c ← x) = cx via a plactic relation R C 3 . Using the insertion of a letter into a column we can define the insertion of a letter into a symplectic tableau. Let x ∈ C n and T be a symplectic tableau with columns c 1 , c 2 , . . . , c k read from left to right. Here the c i are admissible columns such that c i+1 c i for all i = 1, 2, . . . , k -1. Consider the word w = c k x ∈ C * n . The insertion of x into T , denoted (T ← x), is a new symplectic tableau T ′ defined as follows 1. if w 0 = 12 . . . p(p + 1), and (c k ← x) = w, then the columns of T ′ = (T ← x) read from left to right are c 1 , c 2 , . . . , c ′ k = w; 2. if w 0 = 12 . . . p1, and (c 1 ← x) = yc ′ k , then

Example 2 . 2 . 35 .

 2235 Let n = 5 and consider the following column word in C *

2 . 36 .

 236 To compute the insertion (c ← x) for x = 2, we first note that cx is neither admissible, nor almostadmissible. Hence it is computed by the second case in the Schensted insertion algorithm. That is, we consider the word cx = 135422 and we seek to apply a rule of the form R C 1 or R C 2 to cx from right to left. First, for the rightmost subword of cx consisting of 3 letters, that is the subword 422 of cx, by R C 2 we obtain 422 ≡ 433, hence cx ≡ 135433. Next we seek to apply such a rule to the word 543. By R C 1 we obtain 543 ≡ 534, hence cx ≡ 135343. Similarly we have cx ≡ 133543, and finally we get cx ≡ 313543. Thus we have (c ← 2) Column presentation of plactic monoids. We recall here the column presentations of the plactic monoids of classical types. Let Γ = A n , B n , C n , D n be a classical crystal base as in 2.2.18. The following result describes the symplectic tableau P c (w) of a word w ∈ C * n that is a product of two admissible columns. Proposition 2.2.37 ([4], 2-column lemmata). Let Γ = A n , B n , C n , D n and β 1 , β 2 be two admissible columns in type Γ . Then the tableau P c (β 1 β 2 ) consists of at most two columns.

Theorem 2 . 2 .

 22 38 ([4]). Let Γ = A n , B n , C n , D n . The 2-polygraph Col(Γ ) is a finite convergent reduced presentation of Pl(Γ ).

  and ϕ i (y) = ϕ i (ψ(y)). In particular by Proposition 3.1.11 we have ⋄ e i .(xy) is defined if and only if e i .(φ(x)ψ(y)) is defined, ⋄ e i .(xy) = (e i .x)y if and only if e i .(φ(x)ψ(y)) = (e i .φ(x))ψ(y). as well as the analogous statements for f i . Thus if e i .(xy) is defined and ϕ i (x) ≥ ε i (y), we have ξ(e i .(xy)) = ξ((e i .x)y) = φ(e i .x)ψ(y) = e i (φ(x)ψ(y)) = e i .ξ(xy), and if ϕ i (x) < ε i (y) we have ξ(e i .(xy)) = ξ(x(e i .y)) = φ(x)ψ(e i .y) = e i .(φ(x)ψ(y)) = e i .ξ(xy). Thus in both cases we have ξ(e i .xy) = e i .ξ(xy).

  xy)).To prove surjectivity of ξ note that for k ∈ K such that k.ξ(xy) is defined, we havek.ξ(xy) = ξ(k.(xy)) ∈ ξ(B Γ 1 ⊗Γ 2 (xy)),thus ξ is indeed surjective. To prove injectivity of ξ, suppose that two elements of B Γ 1 ⊗Γ 2 (xy), say k 1 .(xy) and k 2 .(xy), are mapped to the same element via ξ. If we set k :

  Finally we obtain k.(xy) = (k ′ .x)(k ′′ .y) = xy, which implies k 1 .(xy) = k 2 .(xy), thus indeed the map ξ is injective, and induces an isomorphism of the connected components, and thus is a strong morphism, which is what we wanted to show.

Proposition 3 . 2 . 2 .

 322 The category Mon K is a monoidal category closed under taking K-submonoids, and direct sums.

  [w] Γ (or simply [w]) the equivalence class of w ∈ Γ * in C(Γ ), then C(Γ ) naturally inherits a K-graph structure from Γ * via e i .[w] = [e i .w] and f i .[w] = [f i .w]

  is a weak morphism of K-graphs via Cφ(e i .[w]) = [Tφ(e i .w)] = [e i .Tφ(w)] = e i .[Tφ(w)] = e i .Cφ([w]). Since C([-] Γ 1 ) = [-] Γ 2 • Tφ, we have that Cφ is a morphism of monoids. Finally since [-] Γ 1 and Tφ are morphisms in Mon K , we have that Cφ is a strong morphism by Proposition 3.1.3 ii), thus Cφ ∈ Mon K .

Theorem 3 . 2 . 15 .

 3215 The functors T, C : Graph K -→ Mon K satisfy the equations CT = CC = C.

3. 3 . 4 .Example 3 . 3 . 5 .

 34335 A non-proper K-graph. Here we exhibit an example of a non-proper graph, despite Γ itself having a single vertex of highest weight. Consider the following directed labeled graph Γ

Theorem 3 . 4 . 4 .

 344 Let Γ = A n , B n , C n , D n . Then i) the sets Col(Γ ) 1 and Col(Γ ) 2 are K-graphs, ii) the source and target maps s, t :Col(Γ ) 2 -→ Col(Γ ) * 1 are K-graph morphisms. Proof. i) We claim that Col(Γ ) 1 = ∪ c∈Col(Γ ) 1 B Γ * (c). (3.17)Indeed, the inclusionCol(Γ ) 1 ⊂ B Γ * (c)is trivial. On the other hand, given c ∈ Col(Γ ) 1 , by Proposition 3.4.2 we have thatB Γ * (c) ⊂ Col(Γ ) 1 .thus (3.17) is satisfied, and we have that Col(Γ ) 1 is a K-graph.To see that Col(Γ ) 2 is a K-graph, consider any two admissible columns c 1 , c 2 ∈ Col(Γ ) 1 and i ∈ I such that e i .(c 1 c 2 ) (resp. f i .(c 1 c 2 )) is defined. By (3.16) we see that c 1 c 2 = P c (c 1 c 2 ) if and only if e i .(c 1 c 2 ) = P c (e i .(c 1 c 2 )) (resp. f i .(c 1 c 2 ) = P c (f i .(c 1 c 2 ))). Thus we have a generating 2-cell α : c 1 c 2 =⇒ P c (c 1 c 2 ).

4. 2 . 1 .

 21 Proper K-2-polygraphs. In Section 3.3 we have seen the notion of proper K-graphs. Here we consider K-2-polygraphs whose underlying K-graphs are proper.

Definition

  

Definition 4 . 3 . 3 .

 433 Let m ≤ 3. A K-(3, m)-monoid is a (3, m)-monoid C that admits a K-graph structure as follows i) the underlying (2, m)-monoid of C is a K-(2, m)-monoid, ii) the set of 3-cells of C form a K-graph, iii) the source and target maps from the 3-cells of C to the 2-cells of C are morphisms of K-graphs, iv) for α, β 3-cells in C and k ∈ K we have iv.1) k.(α

  e i .(αwv ⋆ 1 u ′ wβ) = (e i .(αwv)) ⋆ 1 (e i .(u ′ wβ)) and e i .(uwβ ⋆ 1 αwv ′ ) = (e i .(uwβ)) ⋆ 1 (e i .(αwv ′ ))

  and e i .σ( uv) = σ(e i .( uv)) = σ((e i . u)v) = σ( e i .uv). Thus we obtain σ(e i .(uv)) = (σ(e i .u) ⋆ 0 v) ⋆ 1 σ( e i .uv)

Theorem 4 . 4 . 1 .

 441 Let Γ = A n , B n , C n , D n be one of the classical crystal bases. Then Col(Γ ) is a finite reduced convergent proper K-2-polygraph presenting the plactic monoid Pl(Γ ).

Theorem 4 . 4 . 2 .

 442 Let Γ = A n , B n , C n , D n be one of the classical crystal bases. Then the generating 3cells of the coherent extension of Col(Γ ) are entirely determined by the confluence diagrams as in (4.13) with c 1 , c 2 , c 3 such that P(c 1 c 2 ) = c 1 c 2 , P(c 2 c 3 ) = c 2 c 3 , and (c 1 c 2 c 3 ) 0 = c 1 c 2 c 3 .

Example 4 . 5 . 13 .

 4513 Let Γ = A 3 and consider the word

Proposition 4 . 5 . 14 .

 4514 Let Γ = A n , B n , C n , D n and

Definition 5 . 1 . 1 .

 511 Let Γ = A n , B n , C n , D n . A Yamanouchi word of type Γ is a word w ∈ Γ * that is of highest weight.

Example 5 . 1 . 3 .

 513 Let Γ = A 5 and consider the word w = 245313. For i = 3 we have ρ 3 (w) = ρ 3 (2)ρ 3 (4)ρ 3 (5)ρ 3 (3)ρ 3 (1)ρ 3 (3). By (5.2) we have ρ 3 (1) = ρ 3 (2) = ρ 3 (5) = 1, ρ 3 (3) = +, and ρ 3 (4) = -. We then have ρ 3 (245313) = 1(-)1(+)1+ = -+ + = -+ 2 .

e 3 .Example 5 . 1 . 4 .

 3514 (245313) = 2(e 3 .4)5313 = 235313 Similarly, f 3 acts on w by acting on the letter which contributed the leftmost +, namely on the first 3 appearing in w. Thus we have f 3 .(245313) = 245(f 3 .3)13 = 245413. Let Γ = C 4 and consider the word w = 2134312. For i = 2 we haveρ 2 (w) = ρ 2 (2)ρ 2 (1)ρ 2 (3)ρ 2 (4)ρ 2 (3)ρ 2 (1)ρ 2 (2). By (5.2) we have ρ 2 (1) = ρ 2 (4) = ρ 2 (1) = 1, ρ 2 (2) = ρ 2 (3) = +, and ρ 2 (3) = ρ 2 (2) = -. We obtain ρ 2 (2134312) = (+)(-)(+)1(-)1 = + -+ --= -= -1 + 0Thus we have that e 2 .w is defined, and e 2 acts on w by acting on its last letter, i.e. we have e 2 .(2134312) = 2134313.

•

  We represent such words by Young tableau consisting of a single column Since column words are readings of Young tableau, by Theorem 5.1.7 we have that the Yamanouchi column words are of the form p = 1, . . . , n.Graphically we note this word by a graph with the single vertex labeled by p, namelyp Consider now a word w = cx in A * n such that i) c is a column word, ii) x ∈ A n , iii) w = cx is a Yamanouchi word.In other words, we have w = c 1 c 2 is a Yamanouchi word with c 1 , c 2 ∈ Col(A n ), and |c 2 | = 1 in A * n . By Lemma 5.1.6 i) we have that c is a Yamanouchi word, and by (5.3) we have that c = 12 • • • p for some p = 1, 2, . . . , n. By Lemma 5.1.6 ii) we have that

5. 2 . 3 .Definition 5 . 2 . 4 .

 23524 Level 2 Yamanouchi trees of type A. In the two previous subsections 5.2.1 and 5.2.2 we have described a graphical model for encoding the Yamanouchi words in A * n of the form w = c 1 c 2 with c 1 , c 2 ∈ Col(A n ), and |c 2 | ≤ 2. Here we formalize the notion of a Yamanouchi tree and use it to show that every Yamanouchi word of the form w = c 1 c 2 with c 1 , c 2 ∈ Col(A n ) can be encoded into such a tree. Let n ∈ N. A Yamanouchi tree of type A and level 2 is a tree with N-labeled vertices of the form • p • a • b T = such that the following conditions are satisfied a ≤ p, p + b ≤ n. The reading of T is the word ω(T ) := (12 • • • p)(12 • • • a)((p + 1)(p + 2) • • • (p + b))

  5.1.7 we see that w is indeed a Yamanouchi word.

5. 3 . 4 .

 34 The tree ∆ A . Consider the following tree Explicitly, it is the tree ∆ A with vertex set

Example 5 . 3 . 13 .

 5313 Let n ∈ N and consider a Y-tree of level 2 The reading of T is ω(T ) = (12 • • • p)(12 • • • a)((p + 1) • • • (p + b)).

5. 3 . 20 .

 320 Weights of words of Yamanouchi trees in type A. Here we show that the readings of Y-trees are words of highest weight in Col q

Remark 5 . 4 . 3 . 5 . 4 . 4 .

 543544 The fact that the Yamanouchi words w = cx in C * n are of one of the forms 12 • • • p1, 12 • • • p(p + 1), 12 • • • pp was noted by Lecouvey in [31]. He uses this observation to define an insertion algorithm in C * n . Yamanouchi words in C * n of the form cxy. Consider now a word w = cxy ∈ C * n such that i) c is an admissible column word, ii) x, y ∈ C n and x < y with xy = 11, iii) w = cxy is a Yamanouchi word.

5. 4 . 5 .

 45 Level 2 Yamanouchi trees of type C. In the two previous subsections 5.4.1 and 5.4.4 we have described a graphical model for encoding the Yamanouchi words in C * n of the form w = c 1 c 2 with c 1 , c 2 ∈ Col(C n ), and |c 2 | ≤ 2. Here we formalize the notion of a Y-tree of type C and level 2 and use it to show that every Yamanouchi word of the form w = c 1 c 2 with c 1 , c 2 ∈ Col(C n ) can be encoded into such a tree. Definition 5.4.6. Let n ∈ N. A Y-tree of type C and level 2 is a tree with N-labeled vertices of the form

  be a Y-tree of level 2. Then i) the reading ω(T ) of T is a product of two admissible columns c 1 , c 2 ∈ C * n , with each column corresponding to the horizontal levels of T

  a 2 and b 1 = b 2 , and d 1 = d 2 , implying T 1 = T 2 . We now prove existence by induction on the length of the column word c 2 in C * n , denoted by |c 2 . For |c 2 | = 1, 2 we have seen in subsections 5.4.1 and 5.4.4 that there exists a Y-tree of level 2 T such that ω(T ) = w.Suppose that the statement of the proposition holds for|c 2 | = k. Consider now a Yamanouchi word w = c 1 c 2 with c 1 , c 2 ∈ Col(C n ) and |c 2 | = k + 1. Set c 2 = c ′ 2 x with c ′ 2 ∈ Col(C n ) of length k and x ∈ C n . Set |c 1 | = p,and by induction hypothesis, let the Y-tree of level 2 such that ω(T ) = c 1 c ′ 2 . By Proposition 5.4.7 iii) we have that the reading of the normal form of T is

  For a, b, c ∈ {0, 1, . . . , n} if c ≤ a + b ≤ n, and b, c = 0 we set c(a; b, c) := (a + 1)(a + 2) . . . (a + b)a + b a + b -1 • • • a + bc + 1. If b = c = 0, we adopt the notation c(a; b, c) = c(a, b) := (a + 1) • • • (a + b), and if c = b = 0 we adopt the notation c(a; b, c) = c(a, c) := a a -1 • • • ac + 1. It is clear that c(a, b) and c(a, c) are blocks and if a + b = n, then c(a; b, c) is a block. Example 5.5.3. Let n = 5.

Lemma 5 . 5 . 7 .

 557 Let a ≤ p. Then i) (c(p) ← c(a)) = c(a)c(p) ii) (c(p) ← c(p; 0, a)) = c(pa) Example 5.5.8. Let n = 8. Then for p = 5 and a = 4 by Lemma 5.5.7 we have (c(5) ← c(4)) = c(4)c(5) and (c(5) ← c(5; 0, 4)) = c(5 -4) = c(1).

1 5. 5 . 9 .

 159 The tree ∆ C . Consider the following tree Explicitly it is the tree ∆ C with vertex setV(∆ C ) = {ij | i, j ∈ N, i > 0} ⊔ {ij -| i, j ∈ N ≥1 } and with edge set E(∆ C ) = E(∆ C ) 1 ⊔ E(∆ C ) 2 ⊔ E(∆ C ) 3whereE(∆ C ) 1 = {(i0, (i + 1)0) | i ∈ N ≥1 }, E(∆ C ) 2 = {(10, 11)} ⊔ {(ij -, i(j + 1)) | i, j ∈ N ≥1 }, E(∆ C ) 3 = {(ij, ij -) | i, j ∈ N ≥1 }.

( 5 .

 5 25 ′′′ ) This way we have obtained the following Proposition 5.5.15. (Column conditions) Let s be an n-labeling on ∆ C . Then the reading ω k = ω k (∆ C , s) of the k-th level is a column if and only if

Example 5 . 5 . 16 .

 5516 Let n ∈ N and consider an n-labeling s of level 2 on ∆ C • p • a. • b • c

Definition 5 . 5 . 19 .

 5519 Let n ∈ N and k ∈ N ≥1 . A pair T = (∆ k C , s) with s an n-labeling, is called a Yamanouchi tree of type C n if ω l (T ) is the reading of an admissible column for all l = 1, 2, . . . k. We denote the set of Yamanouchi trees of height k by Yam k (C n ), and Yam(C n ) = k≥1 Yam k (C n ).

Example 5 . 5 . 20 .• c T 1 = 2 • 5 • 4 • 4 • 1 T 1 =Consider the following labeling on ∆ 3 C

 552012544113 Let n ∈ N and consider the following labeling on ∆ C of height 2• p • a. • bIf T 1 is a Yamanouchi tree, we have the following conditions:⋄ n-labeling: a ≤ n, p ≤ n, 0 ≤ p + b ≤ n, p + bc ≤ n, ⋄ column conditions: a ≤ p, ⋄ admissibility conditions: a + c ≤ p.We can summarize these conditions into(C1) p + b ≤ n, (C2) a + c ≤ p,thus they are precisely the conditions we introduced in subsection 5.4.5 when we introduced the Y-trees of rank 2.For instance for n = 10, the following is a Yamanouchi tree of type C and height whose reading expressed in terms of columns read from right to left is

  have c(a, b)c(a + b, c) = c(a, b + c). The reading of [T ] is ω([T ]) =

  a i := s((k + 1i)i) for i = 0, 1, . . . , k, b i := s((k + 1i)i -) for i = 1, 2, . . . , k.The readings of levels k and k + 1 of T are respectivelyω k (T ) = c(v k-1 ) k-l-1 + a k-l , b k-l ) ηWe now compute the insertion (ω k (T ) ←-ω k+1 (T )) by computing(ω k ←-ω k+1 ) = ((ω k ←-µ) ←-η).

  l-1 , a l )c(v k-1 ).Further we have(ω k (T ) ←-µ) = k-1 l=0 c(v l-1 , a l )c(v k-1 ) ←-c(v k-1 , a k ) = k-1 l=0 c(v l-1 , a l ) ω k (T ′ ) c(v k-1 + a k )

  l-1 , a l )c(v k-1 + a k ) ←-η = k-1 l=0 c(v l-1 , a l ) (c(v k-1 + a k ) ←-η),

(

  ω k (T ) ←-ω k+1 (T )) = l , q lδ l ) ω k+1 (T ′ )

Proposition 5 . 6 . 3 .

 563 [START_REF] Lothaire | Algebraic combinatorics on words[END_REF] Let λ, µ, ν be weights of gl n and let c ν λ,µ be the corresponding Littelwood-Richardson coefficient. Let T ν , T λ , and T µ respectively be the Young tableau of highest weight of shapes ν, λ, and µ respectively. Then we havec ν λ,µ = # (T 1 , T 2 ) ∈ B Pl(An) (T λ ) ⊗ B Pl(An) (T µ ) | T ν = T 1 * T 2 .

Proposition 5 . 6 . 4 .

 564 Let λ, µ, ν be weights of gl n and let c ν λ,µ be the corresponding Littelwood-Richardson coefficient. Consider the setYam ν λ,µ (A n ) ⊂ Yam(A n )consisting of Yamanouchi trees of |λ| + |µ| levels such that the first |λ| levels read out T λ , and the last |µ| levels read out a tableau of shape µ. Then c ν λ,µ = #Yam ν λ,µ (A n ).

  parts of the three columns of Q(ω(T )) are blocks c(z ′ , z) the pairs (z ′ , z) are from the list (0, p), (p, a), (p + a, b) (p + a + b, c), (p + a + b + c, d), (p + a + b + c + d, e).

10 3 [-]c 3 0 8 c 1

 381 Thus the Yamanouchi trees in type A give a direct way for computing the pair (P(ω(T )), Q(ω(T )) associated to ω(T ) via the column Robinson-Schensted-Knuth correspondence.Putting (6.2) and (6.3) into one place, we obtain the confluence diagram[c 1 c 2 ]c 3 σ([c 1 c 2 ]c 3 ) [-] & . [c 1 c 2 c 3 ]. c 1 [c 2 c 3 ] σ(c 1 [c 2 c 3 ]) 1 9

Proposition 6 . 1 . 6 .

 616 ) = c 1 c 2 • • • c k ,for T ∈ Pl(Γ ) and where c 1 , c 2 , . . . , c k are the columns of T read from right to left. The following result can be proved directly. Let Γ = A n , B n , C n , D n . The section r : Pl(Γ ) -→ Col(Γ ) as defined above is a K-morphism.

  In the first part of Chapter 3 we introduce the category of K-graphs, denoted Graph K .

	1.4.1. Preliminaries. In the first part of Chapter 2 we recall the relevant notions and constructions from
	rewriting theory applicable to the study of monoids presented by convergent presentations. In the second
	part of this chapter we recall the two approaches to realizing the plactic monoids: via crystals; and via
	presentations. Of particular interest are the crystals of classical types Γ = A n , B n , C n , D n , and the
	column presentations Col(Γ ) of Pl(Γ ) as introduced in [4].
	1.4.2. K-graphs.

  .11) is a Young diagram. The horizontal alignments of boxes are called rows of the Young diagram, and the vertical alignments of boxes are called columns of the Young diagram. If a Young diagram has k rows, with respective lengths λ i , i = 1, 2, . . . , k, we call the k-tuple λ = (λ 1 , . . . , λ k ) the shape of the Young diagram. Since by definition we have λ 1 ≥ λ 2 ≥ • • • ≥ λ k , we see that Young diagrams are a graphical model for integer partitions, also known as Ferrer diagrams. For instance the Young diagram in (2.11)

has shape λ =

[START_REF] Dehornoy | Quadratic normalization in monoids[END_REF][START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Baader | Term rewriting and all that[END_REF]

. Definition 2.2.2. A semi-standard Young tableau is a Young diagram with entries from A n in its boxes such that: i) the entries on each row are non-decreasing from left to right;

  contains a unique word of highest weight. We call it the word of highest weight of w and denote it by w 0 .2.2.21. Columns inA * n , B * n , C * n ,and D * n . In subsections 2.2.1-2.2.8 we have seen two equivalent realizations of the plactic monoid of type A n as follows: ⋄ Pl(A n ) admits a presentation by generators and relations as in Definition 2.2.10, ⋄ the elements of Pl(A n ) are parameterized by semi-standard Young tableaux, and the product by Schensted's insertion algorithm.

Proposition 2.2.20.

[START_REF] Lecouvey | Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF] 

Let Γ = A n , B n , C n , D n , and B ⊂ Γ * a connected component of the crystal graph. Then there exists a unique word of highest in B.

Given a word w ∈ Γ * for Γ a classical crystal base, by Proposition 2.2.20 we have that the connected component B Γ * (w) of w in Γ *

  and D n is respectively a Young diagram of the form + has entries from {1, . . . , n} and is strictly increasing from top to bottom, ⋄ β 0 admits only 0s as entries,

	β +	,	γ +	, and	δ +
	β 0		γ -		δ
	β -				δ -

, where β • , γ • , and δ • are (vertically arranged) words in B * n , C * n , and D * n respectively, such that ⋄ β

  • • • x k , where x i ∈ Γ are the letters of c read from top to bottom. Finally, a column β of any type is called almost admissible if β is not admissible, but every strict subcolumn of β is admissible. Remark 2.2.25 ([29]). By Definition 2.2.23 if β is a non-admissible column then one of the following is satisfied:

  .[START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF]. COLUMN PRESENTATIONS OF PLACTIC MONOIDS AS CRYSTALSLet Γ = A n , B n , C n , D n be a classical crystal base as in 2.2.18, and consider the column presentation of Pl(Γ ), that is the 2-polygraph Col(Γ ) = (Col(Γ ) 1 , Col(Γ ) 2 ) as in 2.2.36. We note that by Stembridge's work in[START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF] and by the work of Cain, Gray, Malheiro in[START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF], we have the following Theorem 3.4.1([4]). Let Γ = A n , B n , C n , D n be a classical crystal base. Then Γ is a K-graph. Let β be a column of type Γ , and i ∈ I such that e i .β (resp. f i .β) is defined. Then β is admissible if and only if e i .β (resp. f i .β) is admissible. The classical crystal bases Γ = A n , B n , C n , D n are proper K-graphs.Moreover, recall that for any word w ∈ Γ * , if P c (w) is the tableau corresponding to w, we have for any i ∈ I that e i .w (resp. f i .w) is defined if and only if e i .P c (w) (resp. f i .P c (w)) is defined, and we have e

	We note now certain combinatorial properties of columns.
	Proposition 3.4.2 ([30]). Proposition 3.4.3 ([30]).

1 2 2 2 22 21 12 11

with 01 and 02 being words of highest weights. Thus B Γ * (00) contains 3 words of highest weights.

3i .P c (w) = P c (e i .w) (resp. f i .P(w) = P(f i .w)).

(3.16)

  5.1.5. A Lemma on computing Yamanouchi words. We recall two results on Yamanouchi words. Lemma 5.1.6. ([START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF]) Let Γ = A n , B n , C n , D n . For w 1 , w 2 ∈ Γ * the word w 1 w 2 is of highest weight if and only if i) w 1 is a word of highest weight,

  5.4.1. Yamanouchi words in C * n of the form cx. Let Γ = C n . Recall from Section 2.2.22 that a word c = x 1 x 2

  • • • x p ∈ C * n with x i ∈ C n is called an admissible column word if it is a column word, i.e. x 1 < x 2 < • • • < x p ,and it is admissible, that is N In other words, we have w = c 1 c 2 is a Yamanouchi word with c 1 , c 2 ∈ Col(C n ), and |c 2 | = 1. By Lemma 5.1.6 i) we have that c is a Yamanouchi word, and by (5.3) we have that c = 12 • • • p for some p = 1, 2, . . . , n. By Lemma 5.1.6 ii) we have that

	ε i (x) ≤ ϕ i (c)	(5.17)
		x 1	
	c =	x 2 . . .	.
		x p	
	Since admissible column words are readings of Young tableau, by Theorem 5.1.7 we have that the Ya-
	manouchi column words are of the form		
			1	(5.16)
	c =	2 . . .
			p
	for some p = 1, . . . , n.		
	Graphically we denote this word by a singleton graph with the single vertex labeled by p, namely
		p • .	
	Consider now a word w = cx in C * n such that		
	i) c is an amissible column word,		

z (c) ≤ z for all z ∈ {1, 2, . . . , n}, where N z (c) denotes the number of letters x i ∈ c such that

x i ≤ z or x i ≥ z.

Similar to type A, we represent such words by Young tableau consisting of a single column ii) x ∈ C n , iii) w = cx is a Yamanouchi word.

  If we flip the tree along a horizontal axis, and mark down just the labels of the vertices, we obtain a

					• y 10		
			y 11	•		• y 20 •
		y 12	•		y 21	•	• y 30
	y 13	•	y 22	•	y 31	•	• y 40 .
	triangular array						
		y 13		y 22	y 31	y 40
			y 12		y 21	y 30
					y 11	y 20
						y 10	

Proposition 3.3.2. Let Γ 1 and Γ 2 be K-graphs, and x ∈ Γ 1 , y ∈ Γ 2 be elements of highest weight. Then x ⊗ y is an element of highest weight inΓ 1 ⊗ Γ 2 .The study of proper K-graphs is facilitated by the advantage they possess in that the study of certain properties of proper K-graphs can be reduced to the highest weights. For instance given a connected component Γ ′ ⊂ Γ * and x ∈ Γ ′ , we have Γ ′ = B Γ * (x). If the K-graph Γ is proper, then we have a canonical choice for these representatives x, i.e. we writeΓ ′ = B Γ * (x 0 )

Proof. Since X 1 is proper, by Proposition 3.3.3 ii) that X * 1 is also proper. Since the source map s : X 2 -→ X *

1 is a K-graph morphism, by Proposition 3.3.3 iii) we have that X 2 is indeed proper.

Next we note that a proper K-2-polygraph is entirely determined by its highest-weight components.

Proposition 4.2.4. Let X be a proper K-2-polygraph. Then X = (K.(X * 1 ) 0 , K.X 0 2 ).

Proof. Follows directly from the notational conventions in (3.13)- (3.15) In the remainder of this section we work towards proving the following ⋄ The rewriting properties of termination, local confluence, and confluence of a K-2-polygraph X are determined by the highest weight components, namely by the abstract rewriting system R 0 = ((X * 1 ) 0 , X 0 2 ).

4.2.5. Rewriting on highest weights. Let X = (X 1 , X 2 ) be a proper K-2-polygraph, and R the rewriting system associated to X. In the previous section we have shown that the sets Step(X ), Seq(X ), Br(X), Crit(X) admit a K-graph structure from X 1 , and the source maps from each of these sets to X * 1 are Kgraph morphisms. Since X 1 is proper, by Proposition 3.3.3 all of these K-graphs are also proper. Thus we can speak of the highest weights components of each of these K-graphs, namely

Step(X) 0 , Seq(X) 0 , Br(X) 0 , Crit(X) 0 .

Consider now the following abstract rewriting system

i.e. the rewriting rules, their sources, and their targets are all elements of highest weight. Explicitly, the sources and targets are words of the form w 0 for w ∈ X * 1 , and the rewriting steps are of the form α 0 : w 0 1 =⇒ w 0 2 , for α : w 1 =⇒ w 2 ∈ Step(X). We remark that R 0 is an abstract rewriting system rather than a string rewriting system. Nevertheless, the notions of branchings, local branchings, and critical branchings are carried over to R 0 from R via LBr(R 0 ) := LBr(X) ∩ Br(R 0 ), and Crit(R 0 ) := Crit(X) ∩ Br(R 0 ).

We interpret two classical results from rewriting theory, namely Theorems 2.1.12 and 2.1.25 in the context of proper K-2-polygraphs. For this purpose, we first introduce the following notion. Definition 4.2.6. Let X be a proper K-2-polygraph, and P a rewriting property. We say that X satisfies hw-P if the rewriting system R 0 as in (4.4) satisfies P. Theorem 4.2.7 (Newmann's Lemma). A proper K-2-polygraph X is terminating respectively (locally) confluent if and only if it is hw-terminating respectively hw-(locally) confluent. In particular, hwtermination and hw-local confluence of X imply convergence of X.

Proof. Let (α, β) be a pair in Seq(R). By Proposition 4.1.6 ii) we have that R is terminating if and only if R 0 is terminating. By Proposition 4.1.7 i) we have that (α, β) is a (local) branching of R if and only if (α 0 , β 0 ) is a (local) branching of R 0 . Proposition 4.1.7 ii) shows that (α, β) is confluent in R if and only if (α 0 , β 0 ) is confluent in R 0 . Thus indeed we have that R has the property of termination/confluence/local confluence if and only if R 0 has that property.

Finally, if R 0 is terminating and locally confluent, then so is R, and by Newman's Lemma 2.1.12 we obtain that R is convergent, thus X is convergent.

Proof. Let i ∈ I. Since ϕ i (ǫ) = ε i (ǫ) = 0, we have that e i .(wǫ) is defined if and only if e i .w is defined, and in that case we have e i .(wǫ) = (e i .w)ǫ. Similarly f i .(wǫ) is defined if and only if f i .w is defined, and in that case we have f i .(wǫ) = (f i .w)ǫ. More generally, for k ∈ K we have that k.(wǫ) is defined if and only if k.w is defined, and in that case have k.(wǫ) = (k.w)ǫ.

Consider now the map f : B Col q (Γ ) * 1 (w) -→ B Col q (Γ ) * 1 (wǫ) given by f(w ′ ) = w ′ ǫ. Clearly this is a bijective map, and if w ′ = k.w then for any k ′ ∈ K we have

showing that f is a K-graph isomorphism. By Proposition 3.1.3 i) we have that f is indeed a strong morphism, hence we have B Col q (Γ ) * 1 (w) ∼ = B Col q (Γ ) * 1 (wǫ). In a completely analogous manner we show that B Col q (Γ ) * 1 (w) ∼ = B Col q (Γ ) * 1 (ǫw) and this completes the proof of the proposition.

Next we study the K-graph structure of Col q (Γ ) * 1 and compare it with that of Col(Γ ) * 1 .

4.5.3. Comparing the K-monoids Col(Γ ) * 1 and Col q (Γ ) * 1 . We have two natural maps between Col(Γ ) * 1 and Col q (Γ ) * 1 . From the inclusion Col(Γ ) 1 ֒→ Col q (Γ ) 1 we obtain a map ı Γ :

We also have the projection p Γ : Col q (Γ ) * 1 -→ Col(Γ ) * 1 .

(4. [START_REF] Henriques | Crystals and coboundary categories[END_REF] given by p Γ (ǫ) = 1, and p Γ (c) = c for c ∈ Col(Γ ) 1 , and then extended to all of Col q (Γ ) * 1 via p Γ (c 1 c 2 ) = p Γ (c 1 )p Γ (c 2 ) for all c 1 , c 2 ∈ Col q (Γ ) 1 . More precisely for w as in (4.14), we have p Γ (w) = w 1 w 2 • • • w k .

(4.17)

The next result shows that the maps ı Γ and p Γ are morphisms of K-monoids. Proof. By definition, ı Γ and p Γ are both morphisms of monoids. We show that they are strong morphisms of the underlying K-graphs. Indeed, for w ∈ Col(Γ ) * 1 we have that

showing that ı Γ is a strong morphism of K-graphs.

Let w ∈ Col q (Γ ) * 1 , say w = ǫ a 0 w 1 ǫ a 1 w 2 • • • ǫa k w k ǫ a k+1 .

Then p Γ (w) = w 1 • • • w k , and by Proposition 4.5.2 we have that

) which shows that p Γ is indeed a morphism of K-monoids which is what we wanted to show.

When the choice of Γ is evident, we shall often omit it from the notation of ı Γ and p Γ and simply write ı and p.

Next we consider a 2-polygraph whose set of generating 1-cells is Col q (Γ ) 1 .

thus the rewriting rule is c 1 c 2 =⇒ ∅.

In Col q (C 2 ), from the third case in (4. [START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF] we have that the unique rewriting rule in Col q (C 2 ) 2 with source c 1 c 2 is c 1 c 2 =⇒ ǫǫ. Thus we see that Col q (C 2 ) keeps track of the two vanished columns during the insertion of c 2 into c 1 .

Next we work towards proving the main result of this section. Theorem 4.5.8. Let Γ = A n , B n , C n , D n . Then Col q (Γ ) is a finite reduced convergent proper K-2polygraph.

We prove first that Col q (Γ ) is a proper K-2-polygraph. The convergence of Col q (Γ ) is then proved in the following subsection, by investigating the rewriting properties of Col q (Γ ) with respect to Col(Γ ). The fact that Col q (Γ ) is finite and reduced is evident. Proposition 4.5.9. Let Γ = A n , B n , C n , D n . Then Col q (Γ ) is a proper K-2-polygraph.

Proof. We prove first that Col q (Γ ) 1 is proper. By Proposition 3.4.3 we have that Γ , thus alsoCol(Γ ) 1 are proper K-graphs. By Proposition 4.5.4 we have that p Γ : Col q (Γ ) * 1 -→ Col(Γ ) * 1 is a morphism of K-graphs, hence by Proposition 3.3.3 iii) we have that Col q (Γ ) * 1 is proper. Then as Col q (Γ ) 1 injects into Col q (Γ ) * 1 , we have that Col q (Γ ) 1 is a proper K-graph, which is what we wanted to show. For the second part of the proposition, we need to show that Col q (Γ ) satisfies the two conditions of Definition 4.1.2.

By definition of Col q (Γ ) 1 we have that it is a K-graph. Let now α : c 1 c 2 =⇒ d 1 d 2 be a generating 2-cell in Col q (Γ ) 2 . We show that

To prove (4.20), we distinguish between the three cases in (4. [START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF], and utilize Propositions 4.5.2, 4.5.4, and the fact that Col(Γ ) is a K-2-polygraph.

and we have

). Thus Col q (Γ ) 2 admits a K-graph structure by defining e i .α : (e i .s(α)) =⇒ (e i .t(α)) for all i ∈ I and α ∈ Col q (Γ ) 2 such that e i .s(α) (or equivalently e i .t(α)) is defined). Similarly we define f i .α, and we have that Col q (Γ ) 2 is a K-graph.

By definition for any α ∈ Col q (Γ ) 2 we have

What remains to complete the proof of Theorem 4.5.8 is to show that Col q (Γ ) is convergent. We prove next the convergence of Col q (Γ ) by comparing the lengths of its rewriting sequence with those of Col(Γ ).

CHAPTER 5 YAMANOUCHI TREES IN TYPES A AND C

Let Γ = A n , B n , C n , D n be a crystal base of classical type as in 2.2.18. In Section 4.4 we have seen that the column presentations Col(Γ ) of the plactic monoids Pl(Γ ) as introduced in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] are finite reduced convergent proper K-2-polygraphs. We have seen that the quadratic version Col q (Γ ) of Col(Γ ) is also a finite reduced convergent proper K-2-polygraph. Moreover, we have seen how the study of Col q (Γ ) can give information about Col(Γ ) via a map p :

In particular, as we shall see in the next chapter, Squier's coherent extension of Col q (Γ ) gives information on Squier's coherent extension of Col(Γ ). In this chapter we introduce a combinatorial tool in types A and C, called Yamanouchi trees, which facilitate the computation of Squier's completion of Col q (A n ) and Col q (C n ). The reason we work with Col q (Γ ) over Col(Γ ) is that the combinatorics are easier to manage in the quadratic setting. The function of Yamanouchi trees is that i) they parameterize the words of highest weight in Col q (A n ) * 1 and Col q (C n ) * 1 ,

ii) they facilitate a direct computation of certain generating rewriting rules

In Section 5.1 we recall the notion of Yamanouchi words, which are the words of highest weight in Γ * for Γ = A n , B n , C n , D n and we recall certain results regarding such words. Of particular use shall be Lemma 5.1.6 which we use iteratively to parameterize the Yamanouchi words in Col q (A n ) * 1 and Col q (C n ) * 1 . In Section 5.2 we introduce the first instance of a Yamanouchi tree in type A, as a graphical encoding of highest weight words in A * n of the form w = c 1 c 2 , with c 1 , c 2 ∈ Col(A n ). The model chosen for the Yamanouchi trees reflects the expliciting of Lemma 5.1.6 in type A.

In Section 5.3 we extend the idea of Section 5.2 and introduce a tree ∆ A along with labelings s : V(∆ A ) -→ N on the vertices of ∆ A satisfying certain finiteness and column conditions. We denote the set of such pairs (∆ A , s) by Yam(A n ), and we define a reading map

In Theorem 5.3.12 we give a formula for computing the normal form of the word ω(T ) in Pl q (A n ). This is done by expliciting the computation of certain rewriting rules of Col q (A n ) via the Yamanouchi trees. In Theorem 5.3.26 we show that the reading map ω induces a bijection between Yam(A n ) and the Example 5.2.6. Let n = 7 and consider the Y-trees of level 2 T 1 , T 2 , T 3 given by

We have that ω(T 1 ) = ω(T 2 ) = ω(T 3 ) = 1234567, and the normal forms of these Y-trees are

This happens due to the fact that the word w = 1234567 is itself a column, and we can factorize it into a product of 2 columns in many different ways. In particular this shows that ω is not an injective map. Note however that we can extract an injection from the map ω from Proposition 5.2.5.

Corollary 5.2.8. The reading map ω restricted to the subset consisting of Y-trees of level 2 of the form

3. ε p+b (x) = 1. This implies that x = p + b + 1, and thus for the Y-tree

Thus indeed there exists a Y-tree of level 2 T such that ω(T ) = w. The proposition then follows by induction.

Combining Propositions 5.2.5 and 5.2.10 we obtain the following result.

Theorem 5.2.11. Denote by Yam 2 (A n ) the set of Yamanouchi trees of level 2 in type A n . We have a bijection

YAMANOUCHI TREES IN TYPE A

In Section 5.2 we have introduced a graphical model for parameterizing the Yamanouchi words in A * n along with their factorizations into two columns. In particular, we have defined a set of trees along with a reading map ω : {Y-trees} -→ A * n such that ω(T ) is a Yamanouchi word. We have seen in Example 5.2.6 that ω is not injective to allow for the different factorization a word may admit. Moreover in Subsection 5.2.9 we have seen how to construct a Y-tree T such that ω(T ) = w, for a given Yamanouchi word w ∈ A * n which can be written as w = c 1 c 2 for c 1 , c 2 ∈ Col(A n ). In this section we extend these constructions and introduce a graphical model for all the Yamanouchi words of A * n , or more precisely in our context, as a model for the words in (Col q (A n ) * 1 ) 0 . The strategy we employ towards completing this goal is outlined as follows.

1. We define an infinite tree ∆ A , which generalizes the graph of Y-trees of level 2.

2. We consider certain labelings of the vertices of the ∆ A , similar to the graph for Y-trees of level 2.

3. We define a reading map ω from the labelings on ∆ A to Col q (A n ) * 1 , and show that ω induces a bijection between the labelings on ∆ A and the words of highest weight in Col q (A n ) *

1 . The reasons we consider Col q (A n ) over A * n are as follows. The construction of the Y-trees of level 2 is based on writing words of A * n as products of 2 columns. This suggests considering Col(A n ) * 1 . Computing the normal form of the words of Y-trees as in Proposition 5.2.5 ii) turns out to be more convenient if the size of the Y-tree does not change. In order to cover the situations

it is more convenient to have a notion of the empty column ǫ. This is reflected on the Y-tree by allowing for a level to be labeled with only 0s.

Block columns.

Recall the quadratic 2-polygraph Col q (A n ) as introduced in Section 4.5, and the quadratic plactic monoid Pl q (A n ) it presents.

In other words a block is an admissible column whose entries are letters that appear consecutively in the alphabet A n . Given a block c ∈ Col(A n ) whose first letter is a and length whose length is |c| = b, we denote it by c(a -1, b). If a = 1 we write c(b) := c(0, b).

Indeed, for the first Y-tree of height 2 we have q(10) = 3, q(11) = 3 + 2 = 5, q(20) = 1.

and for the second Y-tree of level 3 we have q(10) = 5, q(11) = 5 + 4 = 9, q(12) = 5 + 4 + 1 = 10, q(20) = 3, q(21) = 3 + 1 = 4, q(30) = 5.

For both trees we have q(v) ≤ 10, hence s is a 10-labeling on ∆ A . 5.3.6. Reading of labelings on ∆ A . Fix n ∈ N. Let (∆ A , s) be a n-labeling on ∆ A . To each vertex of v = ij of (∆ A , s) with s(ij) = 0 we associate a column ρ(ij) defined as follows

Since s is an n-labeling on ∆ A , we see that ρ(v) is well defined for all vertices v of ∆ A .

We define the reading of the k-th level of (∆ A , s) by setting

where the product runs over those vertices v with s(v) = 0. If s(v) = 0 for all vertices v of level k, we set ω k (∆ A , s) = ǫ.

Next we define the reading of an n-labeling of ∆ A .

Definition 5.3.7. Let n ∈ N and s and n-labeling on ∆ A of level k. The reading (word) of (∆ A , s) is

with ω l (∆ A , s) as in (5.9).

The reading of n-labelings on ∆ A is a map

While the definition of the reading map of an n-labeling on ∆ A may cumbersome, we can summarize it as follows.

1. Construct a column ρ(v) for each vertex v with s(v) = 0 as follows. If v = i0 for some i, then set

2. For k ∈ N, if the labels on the k-th level are not all 0, the reading of the k-th level of ∆ A is the product of ρ(v) for v = ij ∈ ∆ A with i + j = k, with the vertices on the k-th level read from right to left.

3. The word of ∆ A is the product of the readings of its levels.

Example 5.3.8. Let n = 10 and T = (∆ A , s) the following N-labeling on ∆ A of level 3

• 4

First we compute the values of q on each vertex of T q(10) = 4, q(11) = 4 + 3 = 7 q(12) = 4 + 3 + 2 = 9 q(20) = 2, q(21) = 2 + 5 = 7 q(30) = 1

If we label each vertex of T with the pair (s(v), q(v)) we have

.

(5.10)

We illustrate first the reading of the vertices via the map ρ, represented by G G as follows

We then form the word ω(T ) in Col q (A 10 ) by reading the columns associated to the vertices of T in the following order

• 1234

Thus the reading of T is

which written in terms of columns, read from right to left, is .

By Proposition 5.3.17, to compute the tree corresponding to the word c 1 c 2 (c 3 ← c 4 ) with c i = ω i (T ), we first lift the three rightmost entries of the fourth level, namely the ones in the blue rectangle in (5.15), to the third level i.e. we have

To compute x, y, z, we use the fact that q i (T ) = q i (T ′ ), namely we have

Thus we finally obtain

In terms of columns, the Y-tree T ′ reads out the following columns from right to left We are now ready to prove Theorem 5.3.12.

Proof of Theorem 5.3.12. We show that given T ∈ Yam k (A n ), then the normal form of the word ω(T ) can be computed via the following formula

We prove the theorem by induction on k. For k = 1 it is trivial. For k = 2, in Example 5.3.10 we have seen that the set of Yam 2 (A n ) consists of exactly the Y-trees of level 2 introduced in Definition 5.2.4. The statement of the theorem then follows from Proposition 5.2.5 ii).

Suppose now that the statement holds for some k ∈ N, and consider a Y-tree T ∈ Yam k+1 (A n ). Let V be its subtree consisting of the first k levels of V. Let T ′ be the tree obtained by replacing V with V ′ := [V] as in Proposition 5.3.15. We then have that ω(T ′ ) = ω(V ′ )ω k+1 (T ) and q j (T ) = q j (T ′ ) j = 0, 1, . . . , k.

Denote now by T ′′ the tree obtained by computing the insertion (ω k (T ′ ) ← ω k+1 (T ′ )) as in Proposition 5.3.17. We then have

ω l (T ′′ )c(q k (T ′ )) and q j (T ′ ) = q j (T ′′ ) j = 0, 1, . . . , k.

Finally, by applying Proposition 5.3.15 to the first k levels V ′′ of T ′′ we obtain a new Y-tree

Note now that the words ω(T ′ ), ω(T ′′ ), and ω(T ′′′ ) are by applying rewriting rules in Col q (A n ) to the word ω(T ). Thus we have

We show now that ω(T ′′′ ) is a normal form in Col q (A n ) * 1 . Indeed, with the same notation as in the proof of Proposition 5.3.17, and writing V ′′′ for [V ′′ ] we can see that q 0 (V ′′′ ) = a 0 , and q i (V ′′′ ) = v i + a i+1 for i = 1, 2, . . . k -1.

By induction hypothesis we have

Now since v i + a i+1 = q i (T ′′ ) and q i (T ′′ ) = q i (T ′ ) = q i (T ), we obtain that q i (T ) ≤ q i+1 (T ) ≤ q k (T ) for i = 0, 1, . . . , k -1 hence the word

is normal and ω(T ) = ω(T ′′′ ), which is what we wanted to show.

We illlustrate Theorem 5.3.12 with an example of a Y-tree of level 4.

Example 5.3.19. Let n = 10 and consider the Y-tree of level 4

Taking the normal form of the first 3 levels we have

Inserting the 4th column into the 3rd column we have

On the other hand, the word [w] is the normal form of w in Col q (A n ) * 1 , meaning that [w] is obtained by a zigzag sequence of rewriting steps of the K-2-polygraph Col q (A n ) applied to the word w. Since the rewriting steps with source of highest weight have target of highest weight, this implies that w itself is a word of highest weight in Col q (A n ) *

1 which is what we wanted to show.

This way we have shown that the reading map ω takes its values in (Col q (A n ) * 1 ) 0 . Thus we can write this map as

One proves the following result directly.

Proposition 5.3.22. The reading map ω :

We note here a consequence of Theorem 5.3.12 for the action of the Kashiwara operators on words of Y-trees.

Corollary 5.3.23. Let T ∈ Yam k (A n ) be a Yamaounchi tree. Then for i = 1, 2, . . . , n -1, we have that

) is a highest weight word, the only possible actions of f i are on the largest element of each column, namely on q l (T ). This proves the corollary.

5.3.24.

Constructing Yamanouchi trees from highest weight words. Next we show that the map ω is surjective. To do this, for a given word of highest weight w ∈ Col q (A n ) *

1 we construct a Y-tree T such that ω(T ) = w.

We prove this result by a nested induction, namely by induction on the length k = |w| q in Col q (A n ) * 1 and on the length |c k | in A * n . For k = 1, 2 we have seen the proof of this in subsection 5.2.9. Suppose that the statement of the proposition holds for k ∈ N.

and by induction hypothesis let

Suppose first that c k+1 = ǫ. We define T = (∆ k+1 A , s) by setting

It is clear that for this T we have

Suppose now that c k+1 = ǫ. We construct the tree T by induction on the length of the column word c k+1 in A * n . If c k+1 = x for x ∈ A n , since w is a word of highest weight, by Lemma 5.1.6 we have

for all i = 1, 2, . . . , n -1. By Corollary 5.3.23 we have

Thus we obtain

and otherwise ε i (x) = 0. This means that

Set for simplicity q -1 (T ′ ) = 0. We can then write

Let now r be maximal with the property x = q r (T ′ ) + 1. We then set

The maximal choice of r ensures that T ∈ Yam k+1 (A n ) and

which proves the proposition for the case

Suppose that the statement of the proposition holds for lengths

x for x ∈ A n , and w ′′ = w ′ c ′ k+1 . By induction hypothesis, let T ′′ ∈ Yam k+1 (A n ) be such that ω(T ′′ ) = w ′′ . Since w ′′ x is a word of highest weight, by Lemma 5.1.6 we have

and by Corollary 5.3.23 we have

As c k+1 is a column of length ≥ 2, clearly we have x = 1. Let then 0 ≤ r ≤ k -1 be maximal with the property x = q r (T ′′ ) + 1. We then define T = (∆ k+1 A , s) via the labeling

The maximal choice ensures that T ∈ Yam k+1 (A n ), and clearly we have ω(T ) = w. Thus indeed, given any word w ∈ (Col q (A n ) * 1 ) 0 , there exists a Yamanouchi tree T ∈ Yam(A n ) such that ω(T ) = w.

Putting together Propositions 5.3.22 and 5.3.25 we obtain the following Theorem 5.3.26. The map ω :

0 is a bijection. Thus the Yamanouchi trees are indeed a graphical model for the words of highest weight in Col q (A n ) * 1 , and they facilitate the computation of rewriting rules of highest weight in Col q (A n ).

We have that ω(T 1 ) = ω(T 2 ) = 1234554, and the normal forms of these trees are

This happens due to the fact that the word w = 1234554 admits distinct factorizations into 2 admissible columns. In particular this shows that ω is not an injective map.

Example 5.4.9. Let n = 7 and consider the Y-tree of level 2

• 5

Then by Proposition 5.4.7 the normal form of T is

Writing the words ω(T ) and ω([T ]) in terms of columns, we have Note however that we can extract an injection from the map ω.

Corollary 5.4.10. The reading map ω restricted to the subset consisting of Y-trees of level 2 of the form

with a > 0 is injective.

5.4.11.

Constructing Y-trees of level 2 from words of highest weight c 1 c 2 . In subsections 5.4.1 and 5.4.4 we have seen that given a Yamanouchi word

then there exists a Y-tree T such that ω(T ) = w. In this subsection we prove that this construction holds for any length of c 2 .

we have ω(T ) = w.

Suppose that x = a. Then c 2 would contains the letters 1, 2, . . . , a, a, which is impossible since c 2 is admissible.

Then since x is the last letter in the column c 2 and it is unbarred, we have c = 0, and thus for the Y-tree

Suppose that x = p + bc. Then for the Y-tree

Thus indeed there exists a Y-tree of level 2 T such that ω(T ) = w. The full statement of the proposition then follows by induction.

Combining Propositions 5.4.7 and 5.2.10 we obtain the following result.

Theorem 5.4.13. Denote by Yam 2 (C n ) the set of Yamanouchi trees of level 2 in type C n . We have a bijection

YAMANOUCHI TREES IN TYPE C

In Section 5.4 we have introduced a graphical model for parameterizing the Yamanouchi words in C * n along with their factorizations into two admissible columns. In particular, we have defined a set of trees along with a reading map ω : {Y-trees in type C} -→ C * n such that ω(T ) is a Yamanouchi word. Moreover in Subsection 5.4.11 we have seen how to construct a Y-tree T such that ω(T ) = w, for a given Yamanouchi word w ∈ C * n that can be written as w = c 1 c 2 for c 1 , c 2 ∈ Col(C n ). In this section we extend these constructions and introduce a graphical model for all the Yamanouchi words of C * n , or more precisely in our context, as a model for the words in (Col q (C n ) * 1 ) 0 . The strategy we employ towards completing this goal is outlined as follows.

1. We define an infinite tree ∆ C , which generalizes the graph of Y-trees of level 2 in type C.

2. We consider certain labelings of the vertices of the ∆ C , similar to the graph for Y-trees of level 2.

3. We define a reading map ω from the labelings on ∆ C to Col q (C n ) * 1 , and show that ω induces a bijection between the labelings on ∆ C and the words of highest weight in Col q (C n ) * 1 .

Proof 

and c is admissible if and only if

Let z ∈ {1, 2, . . . , n} such that z ∈ w or z ∈ w. Here we consider the case z ∈ w, while the case z ∈ w is completely analogous. As z is unbarred, there exists some

Since c i are blocks, we have {z + 1, . . . , x i } ⊂ Set x i (w), and let

and we get

showing that w indeed satisfies the admissibility condition for z.

We then have Set

If l or m does not exist, then the left set, respectively the right set, is empty. Since z > x l , y m , we obtain

which shows that w satisfies the admissibility condition for all z = 1, 2, . . . , n, hence w is admissible which is what we wanted to show. is a column word in C * n in the sense that the letters of w are increasing. Thus w satisfies the conditions of Proposition 5.5.5. To check admissibility we thus need to verify whether

We see right away that N 2 (w) = 3 > 2, hence w is not admissible.

Consider now

Again w ′ satisfies the conditions of Proposition 5.5.5 thus to check admissibility of w ′ we need to verify whether N z (w ′ ) ≤ z for z = 5, 8

We have

thus in both cases we have N z (w ′ ) ≤ z, thus w ′ is an admissible column.

5.5.11. Reading of labelings on ∆ C . Fix n ∈ N. Let s be an n-labeling on ∆ C . We define a map

Since s is an n-labeling on ∆ C , we see that ρ(v) is well defined for all vertices v of ∆ C .

We define the reading of the k-th level of (∆ C , s) by setting

where the product runs over those vertices v with s(v) = 0. If s(v) = 0 for all vertices of level k, we set w k (∆ C , s) = ǫ. We note right away that ρ(v) are blocks for all v ∈ V(∆ C ), and w k (∆ C , s) are products of blocks.

Definition 5.5.12. Let n ∈ N and s an n-labeling on ∆ C . The reading (word) of (∆ C , s) is

with ω l (∆ C , s) as in (5.24).

Thus we have defined a map

While the definition of the reading map on an n-labeling of ∆ C may seem cumbersome, we can summarize it as follows.

1. Construct a column ρ(v) for each vertex v with s(v) = 0 as follows. If v = i0 for some i, then

2. For k ∈ N, if the labelings on the k-th level of (∆ C , s) are not all 0, the reading of the k-th level of ∆ C is the product of ρ(v) for v ∈ ∆ C , with the outer vertices ij read from right to left first, and then the inner vertices ij -read from left to right. Otherwise the reading of the k-th level is ǫ.

3. The word of ∆ C is the product of the readings of its levels from top to bottom.

Example 5.5.13. Let n = 10 and consider the n-labeled tree T = (∆ C , s) of rank 3 given by

First we compute the values of q on each vertex of T q(10) = 4, q(11)

We illustrate first the reading of the vertices of T via the map ρ, represented by G G as follows

We then compute the word ω(T ) in Col q (C 10 ) * 1 by reading the columns associated to the vertices of T in the following order

which written in terms of columns read from right to left, is Note that in Example 5.5.13 the words ω 1 (T ) and ω 2 (T ) are a admissible columns, but ω 3 (T ) is not. In the following subsection we specify the conditions on labelings s for ω i (T ) to be admissible columns for every level of T .

We have that (∆ C , s) satisfies the column conditions if a ≤ p. Note that this condition is the same as (C1) in subsection 5.4.5. However this is not sufficient for ω k to be admissible. For instance for n = 5 and a labeling s on ∆ C given by

with ω 2 a non-admissible column.

Note that the labeling of ∆ C in Example 5.5.13 satisfies the column conditions, as the readings of each of its levels are columns. 5.5.17. Admissibility conditions. Fix n ∈ N and s an n-labeling of ∆ C . Assume that (∆ C , s) satisfies the column condition. Here we specify the condition under which the reading of the k-th level of ∆ C is an admissible column.

Recall that the reading of the k-th level of (∆ C , s) is given by

and it is a product of blocks. Thus to check admissibility of ω k , by Proposition 5.5.5, it suffices to verify whether N z (ω k ) ≤ z for z the rightmost element of a column ρ((kl)l), or z such that z is leftmost element of a column ρ(l(kl) -). The rightmost element of ρ((kl)l) is q((kl)l), and the leftmost element of ρ((kl)l -) is q((kl)l). Thus ω k is admissible if and only if the following hold

Note that for a given l = 0, 1, . . . , k -1, we have

thus we have

where we set s(k0 -) = 0. By definition of ρ, we have

This way we obtain the following.

Proposition 5.5.18. (Admissibility conditions) Let s be an n-labeling on ∆ C that satisfies the column conditions. Then ω k is admissible if and only if for all l ≤ k -1 we have 

Note that in Example 5.5.13 the column corresponding to the third level is not admissible, hence the pair (∆ C , s) there is not a Yamanouchi tree.

Relation between Yam(A n ) and Yam(C n ).

To facilitate the study of words of highest weight in Col q (C n ) * 1 , we note here a relation between the Yamanouchi trees in types A and C. Note that the Yamanouchi trees in type C differ to those in type A by the horizontal bars and the extra vertices they contain in each level. The extra vertices are there to encode the barred letters, and the extra edge indicates the order in which letters appear in columns. In this subsection we explicit the relation between Col q (C n ) and Col q (A n ), and interpret it via this similarity of the Yamanouchi trees.

The following result follows from the definition of words of highest weight, and from the combinatorics of type A appearing in type C.

1 such that c i i = 1, 2, . . . , k, do not contain any barred letters. Then we can consider w as a word in Col q (A n ) * 1 and we have

Explicitly, given a word w in Col q (C n ) * 1 whose columns contain no barred letters, to verify whether w is of highest weight and normal in Col q (C n ) is equivalent to verifying these conditions for w in Col q (A n ). The next result shows that Yam(A n ) is precisely the subset of Yam(C n ) consisting of Y-trees of type C with valuation s such that it is 0 on the inner vertices v = ij -. Proposition 5.5.23. The map

In what follows, we prove that the map ω :

1 induces a bijection between Yam(C n ) and the words of highest weight in Col q (C n ) * 1 .

5.5.24. Normal form of readings of Yamanouchi trees. For the rest of this section fix n ∈ N. Here we describe a formula for the computation of the normal form of the words ω(T ) of Y-trees T . Namely we state and prove the following.

Theorem 5.5.25. Let T ∈ Yam k (C n ), and q j = q j (T ) = q((kj)j -). Then

Explicitly we have [ω(T )] = ω([T ]) where

with the labeling on the vertices of the form v = ij -being 0.

The tree [T ] in (5.27) is uniquely determined, and is called the normal form of T . Before we prove this result, we illustrate it for k = 2, 3.

Example 5.5.26. Let n ∈ N and consider a Y-tree of rank 2

The reading of T is

We have q 0 = a, q 1 = p + bc. By Theorem 5.5.25 the normal form of ω(T ) is

and this agrees with Proposition 5.4.7. In particular, [ω(T )] is the reading of the tree

For instance if n = 6 we have

Example 5.5.27. Let n ∈ N and consider a Y-tree of rank 3

The reading of T is

where

and

where

By Theorem 5.5.25 the normal form of ω(T ) is

In particular the normal form [ω(T )] is the reading of the Y-tree

For instance if n = 10 we have We break down the proof of Theorem 5.5.25 into three smaller propositions, and finally complete it by passing to type A as indicated in subsection 5.5.21.

The following result shows that the pair (∆ C , s) as in (5.27) is a Yamanouchi tree and computes its reading.

Proposition 5.5.28. Let T ∈ Yam k (C n ) and let [T ] be as in (5.27). Then [T ] is indeed a Yamanouchi tree. Moreover we have q j (T ) = q j ([T ]) and

Proof. Denote by s and q, respectively s ′ and q ′ , the labeling and the valuation of T , respectively [T ]. For simplicity set q j = q T ((kj)j) for j = 0, 1, . . . , k -1 and q -1 = 0. Note that s ′ is given by s ′ (ij) = q jq j-1 , s ′ (ij -) = 0.

In particular for v = ij ± we have

(q lq l-1 ) = q j ≤ n,

(5.28) hence s ′ is indeed an n-labeling of ∆ C . To show that [T ] ∈ Yam(C n ), we need to show that [T ] satisfies the column and admissibility conditions. For the column conditions, we need to check whether q ′ (ij) ≤ q ′ ((i -1)j -) and q ′ (ij) ≤ q ′ ((i -1)(j + 1) -) hold for all i, j. By (5.28), we see that q ′ (ij) = q j , hence the inequalities become q j ≤ q j , q j+1 , both of which hold due to the q j being non-decreasing.

For the admissibility conditions, we need to check whether the inequality

holds for all r ≤ l-1 ≤ k-1. Again, from our computations of s ′ and q ′ we have q ′ ((l-r)(r-1) -) = q r-1 , and r-1 i=0 s((li)i) = r-1 i=0 (q iq i-1 ) = q r-1 . Thus the admissibility inequality becomes q r-1 ≤ q r-1 , which holds for all l, r, hence [T ] satisfies the admissibility conditions as well. Thus we indeed have

Note now that the reading of the l-th level of [T ] is as follows

c(q j-1 , q jq j-1 ) = c(q l ).

Example 5.5.31. Let n = 13 and consider Y-tree of type C and height 4

Clearly V is a normal Y-tree of height 3 thus T satisfies the conditions of Proposition 5.5.30. In terms of columns, the tree T reads out the following columns from right to left By Proposition 5.5.30, to compute the tree corresponding to the word c 1 c 2 (c 3 ← c 4 ) with c i = ω i (T ), we first lift the three green entries of the fourth level to the third level, i.e. we have

for some x, y, z ∈ N. To compute x, y, z we use the fact that q i (T ) = q i (T ′ ), namely we have q 1 (T ) = 3 + 2 -1 = 4 and q 1 (T ′ ) = 1 + x implying x = 3, q 2 (T ) = 3 + 4 + 1 -3 = 5 and q 2 (T ′ ) = 3 + 2 + y = 5 + y implying y = 0, q 3 (T ) = 3 + 4 + 2 + 4 -1 = 12 and q 3 (T ′ ) = 3

thus we finally obtain

In terms of columns, the Y-tree reads out the following columns from right to left We note here a special case of Proposition 5.5.30.

Corollary 5.5.32. Let T ∈ Yam k (C n ) with valuation s such that s(ij -) = 0 for all i + j ≤ k. Then

[ω(T )] =

k-1 j=0 c(q j ).

Proof. For a Y-tree T as in the statement of the corollary, by Proposition 5.5.23 we view T as a Yamanouchi tree of type A. Then by Theorem 5.3.12 we have

in Col q (A n ). By Proposition 5.5.22 we have that

in Col q (C n ) as well, which is what we wanted to show.

We are now ready to prove Theorem 5.5.25

Proof of Theorem 5.5.25. We show that given T ∈ Yam k (C n ), the normal form of the word ω(T ) is computed via the following formula

We prove the theorem by induction on k. For k = 1 it is trivial.

For k = 2, in Example 5.5.20 we have seen that the set Yam 2 (C n ) consists of exactly the Y-trees of rank 2 introduced in Definition 5.4.6. The statement of the theorem then follows by Proposition 5.4.7 ii).

Suppose now that the statement holds for k and consider a Y-tree T ∈ Yam k+1 (C n ). Let V be its subtree consisting of the first k levels of T . Let T ′ be the tree obtained by replacing V with V ′ := [V] as in Proposition 5.5.29. We then have

Denote now by T ′′ the tree obtained by computing the insertion (ω k (T ′ ) ←-ω k+1 (T ′ )) as in Proposition 5.5.30. We then have

In particular if s ′′ is the valuation of T ′′ by the proof of Proposition 5.5.30 we have s ′′ (ij -) = 0. Then by Corollary 5.5.32, we have

On the other hand, we have q l (T ) = q l (T ′ ) by Proposition 5.5.29 and q l (T ′ ) = q l (T ′′ ) by Proposition 5.5.30, thus we finally have

which is what we wanted to show.

We illustrate Theorem 5.5.25 with an example of rank 4.

Example 5.5.33. Let n = 9 and consider the Y-tree of rank 4

We first normalize V. For this purpose we compute v j = q((3j)j) for 0 ≤ j ≤ 2, namely we have

thus we obtain the Y-tree

Inserting the 4th column into the 3rd column we obtain the Y-tree

At this point, the Y-tree of type C may be considered as a Y-tree of type A as we have seen in subsection 5.5.21 and Corollary 5.5.32. Since the columns of ω(T ) do not contain any barred letters, the rewriting rules are computed exactly as in type A. Thus we follow the procedure for T ′′ as in Example 5.3.19. We have

Next we normalize the last two columns as in type A and obtain

Finally we normalize V ′′′′ and we obtain

which is the normal form of T .

In terms of columns we have 

Let a ≤ k such that for l = 0, 1, . . . , a we have q l (T ) = 0, and q l (T ) > 0 for l > a. We can then write

and q i (T ) ≤ q i+1 (T ), we have that T is a tableau of highest weight by Theorem 5.1.7. Recall that the projection map p :

as defined in Section 4.5 is a morphism of K-graphs. Now since

On the other hand, the word [w] is the normal form of w in Col q (C n ) * 1 meaning that [w] is obtained by a zigzag sequence of rewriting steps of the K-graphs 2-polygraph Col q (C n ) applied to the word w. This implies that w itself is a word of highest weight in Col q (C n ) *

1 which is what we wanted to show.

This way we have shown that the reading map ω takes its values in (Col q (C n ) * 1 ) 0 . Thus we can write this map as ω : Yam(C n ) -→ (Col q (C n ) * 1 ) 0 . One proves the following result directly Proposition 5.5.36. The reading map ω : Yam(C n ) -→ (Col q (C n ) * 1 ) 0 is injective. We note here a consequence of Theorem 5.5.25 for the action of the Kashiwara operators on words of Y-trees.

Corollary 5.5.37. Let T ∈ Yam k (C n ) be a Yamanouchi tree. Then for i = 1, 2 . . . , n -1, n we have that f i .ω(T ) is defined if and only if i = q l (T )

Proof. We know that f i .ω(T ) is defined if and only if

) is a highest weight word, the only possible actions of f i are on the largest element of each column, namely on q l (T ). This proves the corollary.

Constructing

Yamanouchi trees from highest weight words. Next we show that the map ω is surjective. To do this, for a given word of highest w ∈ (Col q (C n ) * 1 ) 0 we construct a Y-tree T such that ω(T ) = w. Proposition 5.5.39. Let w ∈ (Col q (C n ) * 1 ) 0 . Then there exists a Yamanouchi tree

We prove this result by a nested induction, namely by induction on the length k = |w| q in Col q (C n ) * 1 , and on the length |c k | in C * n . For k = 1, 2 we have seen the proof of this in subsection 5.4.11. Suppose that the statement of the proposition holds for k ∈ N.

and by induction hypothesis let T ′ ∈ Yam k (C n ), with labeling s ′ be such that ω(T ′ ) = w ′ . We construct a Y-tree T ∈ Yam k+1 (C n ) such that ω(T ) = w.

Suppose first that c k+1 = ǫ. We define T = (∆ k+1 C , s) by setting

It is clear that for this T we have

Suppose now that c k+1 = ǫ. We construct the tree T by induction on the length of the column word c k+1 in C * n . If c k+1 = x for x ∈ C n , since w is a word of highest weight, by Lemma 5.1.6 we have

for all i = 1, 2, . . . , n. By Corollary 5.5.37 we have

for some 0 ≤ l ≤ k -1. Thus we obtain

and otherwise ε i (x) = 0. This means that

x ∈ 1, q l (T ′ ) + 1, q l (T ′ ) | l = 0, 1, . . . , k -1 .

For simplicity, we write 1 = 1 + q -1 (T ), with q -1 (T ) = 0, though note that q -1 (T ) is not defined. Let x = 1+q l (T ) for some l = -1, 0, . . . , k-1. Let r be maximal with the property x = 1+q r (T ). We then set

The maximal choice of r ensures that T ∈ Yam k+1 (C n ). Let now x = q l (T ) for some l = 0, 1, . . . , k-1.

Let r be minimal with the property x = q r (T ). We then set

The minimal choice of r ensures that T ∈ Yam k+1 (C n ).

Suppose that the statement of the proposition holds for lengths

x for x ∈ C n , and w ′′ = w ′ c ′ k+1 . By induction hypothesis, let T ′′ ∈ Yam k+1 (C n ) be such that ω(T ′′ ) = w ′′ . Since w ′′ x is a word of highest weight, by Lemma 5.1.6 we have

and by Corollary 5.5.37 we have

Suppose that x = q l (T ′′ ) + 1 for some l = 0, 1, . . . , k -1. Since x is the last letter of c k+1 and is unbarred, so are all the letters of c k+1 . Let now r be maximal with the property x = q r (T ′′ ) + 1. We then define T = (∆ k+1 A , s) via the labeling

The maximal choice of r ensures that T ∈ Yam k+1 (C n ). Suppose now that x = q l (T ) for some l = 0, 1, . . . , k -1. Let r be minimal with the property x = q r (T ). Note that r > 0, otherwise c k+1 would not be admissible. We then define T = (∆ k+1 A , s) via the labeling

The minimal choice of r ensures that T ∈ Yam k+1 (C n ), and clearly we have ω(T ) = w. Thus indeed, given any word w ∈ (Col q (C n ) * 1 ) 0 , there exists a Yamanouchi tree T ∈ Yam(C n ) such that ω(T ) = w.

Putting together Propositions 5.5.36 and 5.5.39 we obtain the following Theorem 5.5.40. The map ω : Yam(C n ) -→ (Col q (C n ) * 1 ) 0 is a bijection. Thus the Yamanouchi trees are indeed a graphical model for the words of highest weight in Col q (C n ) * 1 , and they facilitate the computation of rewriting rules of highest weight in Col q (C n ).

CHAPTER 6 COHERENT PRESENTATIONS FOR Pl(A n ) AND

Pl(C n )

In Chapter 4 we have seen how one can study K-monoids via K-2-polygraphs. In particular, we have seen that if X = (X 1 , X 2 ) is a convergent proper K-2-polygraph, then the computation of Squier's coherent completion of X is reduced to computations at highest weight. We have seen that for Γ = A n , B n , C n , D n a crystal base of classical type, the 2-polygraphs Col(Γ ) and Col q (Γ ) are finite reduced convergent proper K-2-polygraphs. Thus Squier's completion for Col(Γ ) and Col q (Γ ) suffices to be computed at highest weight, and the reduced part allows us to choose a canonical normalization strategy for this computation.

In Chapter 5 we have introduced the Yamanouchi trees in types A and C, which are graphical models for the words of highest weight in Col q (A n ) * 1 and Col q (C n ) * 1 . In particular in the proofs of Theorems 5.3.12 and 5.5. [START_REF] Knapp | Lie groups, Lie algebras, and cohomology[END_REF] we have seen how one can compute certain rewriting rules of Col q (A n ) and Col q (C n ) directly on the Yamanouchi trees.

In this chapter we apply the constructions of Chapters 4 and 5 to explicitly describe Squier's coherent extensions of Col q (A n ) and Col q (C n ), and from these descriptions we obtain coherent presentations for Pl(A n ) and Pl(C n ).

In Section 6.1, following Theorem 4.3.18 we specify K-sections and K-normalization strategies r q and σ q for Col q (Γ ) and r and σ for Col(Γ ), where Γ = A n , B n , C n , D n . We then show that the generating confluence diagrams of Col q (Γ ) and Col(Γ ) are of the form

In particular the shape of the diagram is determined by the lengths of the upper and lower rewriting sequences in (6.1). We denote these lengths by L q (c 1 c 2 c 3 ) (resp. L(c 1 c 2 c 3 )) and R q (c 1 c 2 c 3 ) (resp. R(c 1 c 2 c 3 )) for Col q (Γ ) (resp. Col(Γ )). In Proposition 6.1.7 we show that L ≤ L q ≤ L + 1 and R ≤ R q ≤ R + 1, showing that the shapes of confluence diagrams of Col q (Γ ) and Col(Γ ) can be studied simultaneously. Moreover, the shapes of these confluence diagrams are preserved by the action of the Kashiwara operators k ∈ K, thus it suffices to compute the diagrams whose source c 1 c 2 c 3 is a word of highest weight.

In Section 6.2 we compute the quantities L q (c 1 c 2 c 3 ) and R q (c 1 c 2 c 3 ) for words c 1 c 2 c 3 ∈ (Col q (A n ) * 1 ) 0 in Proposition 6.2.1 and show that L q ≤ 3 and R q ≤ 3. We thus conclude in Theorem 6.2.2 that the generating confluences of Squier's coherent extension of Col(A n ) are of shape [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF].

In Section 6.3 we compute the quantities L q (c 1 c 2 c 3 ) and R q (c 1 c 2 c 3 ) for words c 1 c 2 c 3 ∈ (Col q (C n ) * 1 ) 0 in Proposition 6.3.1 and show that L q ≤ 4 and R q ≤ 3. We thus conclude in Theorem 6.3.2 that the generating confluences of Squier's coherent extension of Col(C n ) are of shape [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF].

Finally in Section 6.4 we recall the work of Dehornoy and Guiraud in [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] on quadratic normalizations for monoids. We show that the polygraphs Col q (A n ) and Col q (C n ) fit into the context of their work, and use their results to give upper bounds on the lengths of rewriting sequences of these two 2-polygraphs.

6.1. NORMALIZATION STRATEGIES FOR Col q (Γ ) AND Col(Γ ) Let Γ = A n , B n , C n , D n . In Sections 4.4 and 4.5 we have considered two K-2-polygraphs associated to Γ . The first is Col(Γ ), as defined by Cain, Gray, and Malheiro in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n , D n , and G 2[END_REF] and it presents the plactic monoid Pl(Γ ). The second is a quadratic version of Col(Γ ), denoted Col q (Γ ) and it presents the quadratic plactic monoid Pl q (Γ ), as introduced in 4.5. In Theorems 4.4.1 and 4.5.8 we have seen that Col(Γ ) and Col q (Γ ) are finite reduced convergent proper K-2-polygraphs. In particular we have seen that there exists a Kmonoid morphism p : Col q (Γ ) * 1 -→ Col(Γ ) * 1 which ignores the appearances of ǫ, and extends to a K-graph morphism p :

Theorem 4.3.18 shows that given a finite convergent K-2-polygraph, one can obtain Squier's coherent extension by identifying a family of generating confluences of highest weight. Both polygraphs Col q (Γ ) and Col(Γ ) fit into this scheme. In this section, we show how one can obtain a homotopy basis of Col(Γ ) from a homotopy basis of Col q (Γ ).

6.1.1. A morphism from Pl q (Γ ) to Pl(Γ ). Let Γ = A n , B n , C n , D n . In Section 4.5 we have exhibited K-morphisms p : Col q (Γ ) * 1 -→ Col(Γ ) * 1 and p : Seq(Col q (Γ )) -→ Seq(Col(Γ )). We show here that this map descends to the monoids presented by Col q (Γ ) and Col(Γ ).

Proof. We show that p : Pl q (Γ ) -→ Pl(Γ ) defined by

is well defined, and is a K-monoid morphism. Let [w 1 ] q = [w 2 ] q for w 1 , w 2 ∈ Col q (Γ ) * 1 . By Proposition 4.5.17, we have [w 1 ] q = ǫ a T for some a ≥ 0 and T a standard Young tableaux. In fact we have

showing that p indeed descends to a morphism of monoids p : Pl q (Γ ) -→ Pl(Γ ). We show next that p is a K-graph morphism. Indeed, we have

showing that p is indeed a K-graph morphism. Thus p is indeed a K-monoid morphism, which is what we wanted to show.

6.1.3. The leftmost normalization strategy for Col q (Γ ). Next we fix a section r q and a normalization strategy σ q for Col q (Γ ), and show that they are K-graph morphisms.

Consider the section r q : Pl q (Γ ) -→ Col q (Γ ) * 1 given by

, and where c 1 , c 2 , . . . , c k are the columns of T read from right to left. The following result is a direct consequence of the fact that [r q (ǫ a T )] q = ǫ a T . Proposition 6.1.4. Let Γ = A n , B n , C n , D n . The section r q : Pl q (Γ ) -→ Col q (Γ ) * 1 is a K-section.

So in particular, r q restricted to Pl q (Γ ) 0 is a section of Pl q (Γ ) at highest weight.

Recall from subsection 4.3.14 that reduced 2-polygraphs admit a leftmost-normalization strategy, and from Theorems 4.4.1 and 4.5.8 that Col(Γ ) and Col q (Γ ) are reduced. We thus fix the leftmost normalization strategy σ q : Col q (Γ ) * 1 -→ Col q (Γ ) ⊤ 2 , which is a K-normalization strategy by subsection 4.3.14 and in particular σ q restricted to highest weights (Col q (Γ ) * 1 ) 0 is a normalization strategy at highest weight. We recall that it is defined via

where λ u is the leftmost applicable rewriting step to u.

Consider now the set Crit(Col q (Γ )). Since Col q (Γ ) is quadratic, the critical branchings of Col q (Γ ) are of the form

In particular, the critical branchings at highest weight have the form

Note now that the leftmost normalization strategy of Col q (Γ ) produces the normal form of a word w = c 1 c 2 • • • c k by acting on the leftmost pair of columns c i c i+1 such that

with the source of the rewriting rules alternating between the first pair and second pair of columns, until the target is a normal form. Similarly we have that the leftmost normalization strategy applied to c 1 [c 2 c 3 ] is a sequence

Consider now the set of critical branchings Crit(Col(Γ )). Since Col(Γ ) is almost quadratic, the critical branchings of Col(Γ ) are of the form

and the critical branchings at highest weight have the form

Via the normalization stategy σ we can compute the confluence diagram of (f, g) with source c 1 c 2 c 3 by computing σ(c 1 [c 2 c 3 ]) and σ([c 1 c 2 ]c 3 ), and we obtain

We then define L, R : Crit(Col(Γ )) -→ N by setting for (f, g) with source c 1 , c 2 , c 3

and we have that

for any (f, g) ∈ Crit(Col(Γ )) and k ∈ K so that k.f is defined. Note now that we can naturally consider Crit(Col(Γ )) as a K-subgraph of Crit(Col q (Γ )). Indeed, a critical branching of Col(Γ ) is a critical branching of Col q (Γ ) whose source contains no ǫ, and the K-graph structure is preserved via this inclusion. The following result asserts how one can compare L(f, g) and R(f, g) with L q (f, g) and R q (f, g).

Proof. Let (f, g) ∈ Crit(Col(Γ )) with source c 1 c 2 c 3 . Then we have (f, g) ∈ Crit(Col q (Γ )) as noted in the paragraph above. Consider now the rewriting sequences

in Seq(Col q (Γ )) and

in Seq(Col(Γ )). Note that if no ǫ appears in the first sequence (6.4), then we have L(f, g) = L q (f, g).

If there is an ǫ that appears in (6.4) after a normalization of the leftmost pair, then the normalization sequence σ q will look like

hence again we have L(f, g) = L q (f, g) as there is no rewriting step in σ q with source containing ǫ. If on the other hand an ǫ appears after a normalization of the rightmost pair, the normalization sequences σ q and σ on [c 1 c 2 ]c 3 will look like

. Thus in this case we have that σ q contains an extra rewriting step, denoted in red above, thus we have L q (f, g) = L(f, g) + 1. We can summarize this into the following inequalities

In a completely analogous fashion we show that for any (f, g) ∈ Crit(Col(Γ )) we have

and this completes the proof of the proposition.

This result shows that information of the coherent extension of the K-2-polygraph Col(Γ ) or of Col q (Γ ) provides information about the coherent extension of the other K-2-polygraph.

In what follows, we shall compute upper bounds on L q (f, g) and R q (f, g) in types A and C using the Yamanouchi trees introduced in Chapter 5. Then by Proposition 6.1.7 we obtain upper bounds on L(f, g) and R(f, g).

COHERENT PRESENTATIONS FOR Pl q (A n ) AND Pl(A n )

In this section we compute upper bounds for L q (f, g) and R q (f, g) for Col q (A n ), and use them to compute upper bounds for L(f, g) and R(f, g). This way we exhibit the general shape of the homotopy basis of Squier's coherent extension for Col q (A n ) and Col(A n ). We remark that this result has already been proven by Hage and Malbos in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] using different techniques. Proposition 6.2.1. The generating 3-cells of Squier's completion of Col q (A n ) are of the form

& .

[c 1 c 2 c 3 ]

where some of the arrows may be identity.

Proof. Let c 1 , c 2 , c 3 ∈ Col q (A n ) such that [c 1 c 2 ] = c 1 c 2 and [c 2 c 3 ] = c 2 c 3 , i.e. the word w = c 1 c 2 c 3 is the source of a critical branching. In the previous section we saw that the shape of the confluence diagram of critical branchings is determined by the quantities L q (c 1 c 2 c 3 ) and R q (c 1 c 2 c 3 ), and that moreover these quantities are stable under the action of Kashiwara operators. Thus here we compute L q ((c 1 c 2 c 3 ) 0 ) and R q ((c 1 c 2 c 3 ) 0 ).

which we can see is a normal form. Thus we have L q (c 1 c 2 c 3 ) ≤ 3, and we have computed the confluence diagram of ω(T ) = c 1 c 2 c 3 up to the following shape

Note that the normal form of ω(T ) may already be reached in ω(T ′ ) or ω(T ′′ ), implying that some of the arrows here may be the identity. We now compute the other side of the confluence diagram, and in particular its length R q (f, g). We first identify T 1 which is the tree corresponding to the word ω 1 (T )(ω 2 (T ) ←-ω 3 (T )). Note that such a tree exists since the Schensted insertion commutes with the Kashiwara operators, hence the word obtained after the insertion is also of highest weight. Note that

and

We compute the insertion (ω 2 (T ) ←-d 1 d 2 d 3 ) as follows. First, noting that d 1 = c(c), we have

To compute the rest of the insertion we distinguish between two cases: Then the Yamanouchi tree corresponding to the word ω Thus the Yamanouchi tree corresponding to the word ω 1 (T )(ω 2 (T ) ←-ω 3 (T )) is

We can describe both these trees at simultaneously as follows. Set b ∨ d := min{b, d} and

Note that in particular we have

Then in both cases above we have

Next we compute the insertion (ω 1 (T 1 ) ←-ω 2 (T 1 )) as in Theorem 5.3.12 and we obtain the tree

Finally computing the insertion (ω 2 (T 2 ) ←-ω 3 (T 2 )) as in Proposition 5.3.17 we obtain the tree

where we compute u via the equations c + q 1c + u = q 2 (T 3 ) = q 2 (T ) = q 2 giving us u = q 2q 1 , thus finally the Yamanouchi tree T 3 is

i.e. it is of normal form. Thus we have R q (c 1 c 2 c 3 ) ≤ 3, and we can complete the confluence diagram of (c 1 c 2 c 3 ) 0 into

showing that the 3-cells of Squier's completion of Col q (A n ) are indeed of a hexagonal shape. Note that the normal form of ω(T ) may already be reached in ω(T 1 ) or ω(T 2 ), implying that some arrows here may be the identity.

We now obtain the shape of confluence diagrams in the coherent extension of Col(A n ). Theorem 6.2.2. The generating 3-cells of Squier's completion of Col(A n ) are of the form

& .

[c 1 c 2 c 3 ]

where some of the arrows may be identity.

Proof. Proposition 6.2.1 shows for any critical branching (f, g) ∈ Crit(Col q (A n )) we have L q (f, g), R q (f, g) ≤ 3. By Proposition 6.1.7 we have that for any critical branching (f, g) ∈ Crit(Col(Γ )) we have L(f, g) ≤ L q (f, g) ≤ 3, and R(f, g) ≤ R q (f, g) ≤ 3.

Thus indeed we have the shapes of the generating confluence diagrams of Col(A n ) are of the same hexagonal shape. We illustrate with an example that these upper bounds are optimal for Col(A n ) with n ≥ 3, namely both upper bounds for L and R are reached.

For c 1 = 1, c 2 = 2, c 3 = 3 ∈ Col(A n ) in terms of columns we have the following confluence diagram

In this section we compute upper bounds for the parameters L q (f, g) and R q (f, g) for the polygraph Col q (C n ), and use it to compute upper bounds for L(f, g) and R(f, g) for Col(C n ). This way we exhibit the general shape of the homotopy basis of Squier's coherent extension for Col q (C n ) and Col(C n ).

Proposition 6.3.1. The generating 3-cells of Squier's completion of Col q (C n ) are of the form

& .

[c 1 c 2 c 3 ]

where some of the arrows may be identity.

1 is the source of a critical branching. In Section 6.1 we have seen that the shape of the confluence diagram of critical branchings is determined by the quantities L q (c 1 c 2 c 3 ) and R q (c 1 c 2 c 3 ), and that moreover these quantities are stable under the action of Kashiwara operators. Thus here we compute L q ((c 1 c 2 c 3 ) 0 ) and R q ((c 1 c 2 c 3 ) 0 ).

In Theorem 5.5.40 we have established a bijection between the Yamanouchi trees of type C of height 3, and the words

be the Yamanouchi tree such that ω(T ) = (c 1 c 2 c 3 ) 0 . Set q i := q i (T ).

We compute L q (ω(T )) first. Computing the insertion (ω 1 (T ) ←-ω 2 (T )) amounts to finding the normal form of the subtree V of T consisting of the first 2 levels. If we set v 1 = p + bc, by Theorem 5.5.25 we obtain the tree

Next we calculate the insertion (ω 2 (T ′ ) ←-ω 3 (T ′ )) via Proposition 5.5.30 and we obtain the tree

and we compute x and y via the equations d + x = q 1 (T ′′ ) = q 1 implying x = q 1d and a + e + y = q 2 (T ′′ ) = q 2 implying y = q 2ae thus we have

Next we compute again the insertion (ω 1 (T ′′ ) ←-ω 2 (T ′′ )) and we obtain the tree

Finally we compute the insertion (ω 2 (T ′′′ ) ←-ω 3 (T ′′′ )) as in Proposition 5.5.30 and we obtain the tree

with z determined by the equation d + q 1d + z = q 2 (T ′′′ ) = q 2 (T ) = q 2 implying z = q 2q 1 , thus we have

which is a normal form. Thus we have L q (c 1 c 2 c 3 ) ≤ 3, and we have computed the confluence diagram of c 1 c 2 c 3 up to the following shape

Note that the normal form of ω(T ) may already be reached in ω(T ′ ), ω(T ′′ ), or ω(T ′′′ ) implying that some arrows here may be the identity. We now compute the other side of the confluence diagram, and in particular its length R q (f, g). We first identify T 1 which is the tree corresponding to the word ω 1 (T )(ω 2 (T ) ←-ω 3 (T )). Note that such a tree exists since the Schensted insertion commutes with the Kashiwara operators, hence the word obtained after the insertion is also highest weight. Suppose that the Yamanouchi tree obtained this way is

We first remark on the values of a 1 and h 1 .

Claim. a 1 = d 1 = d, h 1 = 0, and e 1 = q 1d.

We note right away that since [ω(T )] = [ω(T 1 )] we have d 1 = q 0 (T 1 ) = q 0 (T ) = d.

Next we note that a 1 = d. In general we have d = d 1 ≤ a by the column conditions. Suppose that d < a 1 . Then the first d + 1 rows of the two columns ω 2 (T 1 ) and ω 3 (T 1 ), read from right to left, are Finally we show that h 1 = 0. Indeed, if h 1 > 0 then we have that the column ω 3 (T 1 ) contains the letters 1, 2, . . . , d, d + 1, . . . , d + e 1 , d + e 1 , . . . , d + e 1h 1 + 1 which is impossible since ω 3 (T 1 ) is an admissible column.

Thus indeed we have a 1 = d 1 = d and h 1 = 0. Now since q 1 (T 1 ) = q 1 (T ) we obtain d + e 1 = q 1 (T 1 ) = q 1 implying e 1 = q 1d.

We can now write the Yamanouchi tree T 1 as follows

Next to compute the insertion (ω 1 (T 1 ) ←-ω 2 (T 1 )) amounts to finding the normal form of the first two levels, and by Theorem 5.5.25 we obtain

Next we compute the insertion (ω 2 (T 2 ) ←-ω 3 (T 2 )) as in Proposition 5.5.30 and we obtain

where the value of u by the equation

thus we can write

Which we can see is a normal form. Note that the normal form of ω(T ) may already be reached in ω(T 1 ) or ω(T 2 ).

Thus we have R q (c 1 c 2 c 3 ) ≤ 3, and we can complete the confluence diagram of (c

which is what we wanted to show.

We now obtain the shape of confluence diagrams in the coherent extension of Col(C n ). where some of the arrows may be identity.

Proof. Proposition 6.3.1 shows that for any critical branching (f, g) ∈ Crit(Col q (C n )) we have L q (f, g) ≤ 4 and R q (f, g) ≤ 3. Then by Proposition 6.1.7, for any critical branching (f, g) ∈ Crit(Col(C n )) we have L(f, g) ≤ L q (f, g) ≤ 4, and R(f, g) ≤ R q (f, g) ≤ 3.

Thus indeed we have the shapes of the generating confluence diagrams of Col(C n ) are shape at most (4, 3), as in Col q (C n ). We illustrate with an example that these upper bounds are optimal for Col(C In this section we recall the constructions and results of Dehornoy and Guiraud in [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] and apply them to obtain results on the complexity of the rewriting systems of Col(A n ) and Col(C n ). Given a normalization (S, N) we denote by N its restriction to the set of length 2 words in S * , denoted S [2] . For i ∈ N, denote by N i the (partial) map from S * to itself which consists of applying N to the positions i, i + 1 on the given word. Dehornoy and Guiraud then consider a specific type of normalization, defined by two local conditions as follows. ii) for any word w ∈ S * , there exists a finite sequence u of positions such that N(w) = N u (w).

They relate the notion of normalizations to quadratic reduced polygraphs, and they prove the following in Proposition 3.2.1 (ii), which we rephrase here in the language of polygraphs. Proposition 6.4.4. [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] Let X = (X 1 , X 2 ) be a reduced, quadratic, convergent 2-polygraph presenting a monoid M. Then we obtain a quadratic normalization (X 1 , N) for M by setting N(w) := w ′ where w ′ is the normal form of w in X * 1 .

6.4.5. Class of normalizations. Let X be a reduced, quadratic, convergent 2-polygraph, and let (X 1 , N) be the corresponding quadratic normalization as in Proposition 6.4.4. Denote by X 1 -→ X where N(x 2 x 3 x 4 ) = x ′ 2 x ′ 3 x ′ 4 . They then prove the following results about quadratic normalizations, which we rephrase here in terms of polygraphs via Proposition 6.4.4. Theorem 6.4.6. [5] Let X = (X 1 , X 2 ) be reduced, quadratic, convergent 2-polygraph. Let Γ = A n , C n . Recall that Col q (Γ ) is a reduced, quadratic, convergent 2-polygraph, hence there exists a quadratic normalization (Col q (Γ ) 1 , N) as in Proposition 6.4.4. We note that this normalization can be expressed in terms of the rewriting system as

which may be the identity if c 1 c 2 is normal, or a rewriting step otherwise. Note that the notion of class in this context coincides precisely with the shapes of the confluence diagrams that we have computed in Sections 6.2 and 6.3. Thus we have the following Proposition 6.4.8. The 2-polygraph Col q (A n ) is of class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF], and the 2-polygraph Col q (C n ) is of class (4, 3).

Then from the fact that the map p : Seq q (Γ ) -→ Seq(Γ ) is a surjective map such that |s| q ≥ |p(s)|, and from Theorem 6.4.6 we obtain the following result. Corollary 6.4.9.

i) The maximal length of a rewriting sequence in Col q (A n ) or in Col(A n ) with source of length p is p(p -1)/2.

ii) The maximal length of a rewriting sequence in Col q (C n ) or in Col(C n ) with source of length p is 2 pp -1.

iii) Col q (C n ) is of p-class (4, 3) for any p ∈ N ≥3 .

These results show that the complexity of the rewriting system Col(C n ) is considerably higher than that of Col(A n ).