
HAL Id: tel-03544727
https://theses.hal.science/tel-03544727

Submitted on 26 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical and Computational Complexities of Robust
and High-Dimensional Estimation Problems

Jules Depersin

To cite this version:
Jules Depersin. Statistical and Computational Complexities of Robust and High-Dimensional Es-
timation Problems. Statistics [math.ST]. Institut Polytechnique de Paris, 2021. English. �NNT :
2021IPPAG009�. �tel-03544727�

https://theses.hal.science/tel-03544727
https://hal.archives-ouvertes.fr


574

N
N

T
:2

02
1I

P
PA

G
00

9

Statistical and Computational
Complexities of Robust and

High-Dimensional Estimation Problems
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CHAPTER 1

Introduction: Robustness and Complexity

This thesis tries to assess the complexity of some robust statistical tasks. In the introduction,
the meaning and the use of this overall goal will be analysed and hopefully precised. First the
two main terms at stake, robustness and complexity, will be successively discussed. Then the five
works that make up this thesis will be presented, situated with respect to the general context,
and their respective contributions and limitations will be exposed.
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1.5.3 Finding algorithms for estimation in any norms . . . . . . . . . . . . . . 26

1.1 What is Robust Statistics?

The main goal of a statistician is to extract useful information from observational data, for instance
inferring patterns, identifying causal effects, in a word learning about a given phenomenon from
the data. Most of the time the statistician has to make some assumptions about the given data
in order to get some guarantees that her procedures will indeed lead to trustworthy information.
The most common assumptions are :

– that the data are independant and identically distributed, meaning that they are produced
from the same process, and independently from one another, they are different realisations
of the same random variable,

– this random variable is assumed by the statistician to have some given property (for instance
a finite expected value),

– that the distribution of the random variable from which the observations are supposed
to be drawn belongs to a specific family of distributions determined beforehand by the
statistician (for instance, the family of normal distributions) and called the statistical
model. When making this kind of assumption, the statistics at stake are called parametric
because in this framework, the different distributions of the given family are often labeled
with a parameter (and can by entirely described with this parameter), so searching for the
right distribution among the family boils down to searching for the right parameter.

We note that these assumptions are increasingly strong. One could say that the overall goal
of Robust Statistics as a field is to question these assumptions, to study if it is possible to give
some guarantees under weaker and more realistic assumptions. To be more precise, the field of
robust statistics tries to study

– what happens to classical non-robust procedures when the assumptions under which they
were created are loosened,

– what are the minimal assumptions one has to make on the data so that it is theoretically
possible to retrieve some information from those,

– and how to find procedures that still hold when making minimal assumptions.

Hampel et al. (1986) gives the following summary: “robust statistics is a body of knowledge
relating to deviations from idealized assumptions in statistics.”

1.1.1 Why Robust Statistics?

One might ask what is the use of such a theory. It has been largely justified by a rich literature
pioneered in the sixties by Tukey (1960), Huber (1964) and Hampel (1973), and numerous
grounds for such a theory are exposed with great details in a number of books (see for instance
Huber (1981), Hampel et al. (1986), Huber and Ronchetti (2009), or Maronna et al. (2006a)).
We recall and illustrate two of the main arguments they develop, which can serve as starting
points to understand the contributions of this thesis.
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Gross error. That is a point made by both Huber (1981) and Hampel et al. (1986): the samples
collected in physical, natural or social science contain “good data”, that are well described by the
model of the statistician, but they are mixed with a fraction of “bad data”, also called gross error
or blunders - typically in the range between 1% and 10% according to Huber (1981) for dataset
of that time (that might have changed in magnitude with internet data and declarative data).
These errors can come from mistakes in copying, in computation, inattention of the experimenter,
and so on, they could also come from an adversary trying to lure the statistican. These bad data
or “outliers” are not well described by the statistician model, and can be orders of magnitude
away from the phenomenon which she wants to quantify.

For instance, a part of the data can be expressed in the wrong unit: when asked in on-line
surveys about their monthly salary, a fraction of the survey respondents rather give their annual
salary. Such mistakes can be very costly: one can think about the failed launch of the Mars
Climate Orbiter in 1999 by NASA that was caused by some key data being expressed in non-
metric units. Classical estimators are very sensitive to this kind of gross error: for instance,
consider a series of observations of the height of people, with 99 observations expressed in meters
and 1 observation mistakenly expressed in centimeter. The empirical mean of this series taken
carelessly could lead to conclude that the average human size is around 3.3 meters high, showing
that it only takes a small fraction of bad data to get a very wrong idea about the phenomenon
at stake when using non-robust estimators.

Gross error are a violation of the first classical assumption that all data are produced from the
same process. When there are gross errors, all observations do not have the same informational
value. Most of classical statistical procedures only present guarantees when the data are i.i.d.
(independant and identically distributed), thus the presence of blunders is a first argument to
justify the need to develop new robust procedures.

Heavy-tail data. Another argument can be found to give grounds for the need of a robust
theory: the presence of heavy-tail phenomena. Heavy tails are characteristic of phenomena where
there is a significant probability of observing a single huge value, that is order of magnitudes away
from other. In contrast to gross error, this huge value is not a mistake and contains information
about the phenomenon at stake. Insurance losses, financial returns, social contagion, the retweet
activity of a tweet are all examples of heavy-tailed phenomena, see Resnick (2007) for more
examples and detailed explanations. The following example illustrates the problem raised by
heavy-tailed data. Take a random variable X that is equal to 0 with probability 999/1000, and
1000 with probability 1/1000, so that its mean value is 1 (and its standard deviation around 32).
When given 10 observations of this random variable, one has about a 1% chance of seeing the
value 1000 which is an extra-ordinary event. When observing such an event among the 10 data,
the statistician desiring to estimate the mean value of the phenomenon faces a dilemma: should
she take into account this observation? Including this observation, the empirical mean of the
observations is 100, which is a few standard deviation away from the true mean. Excluding this
observation before taking the empirical mean allows to get a better estimate of the mean in this
case, but on what ground should the statistician discard some values? Robust theory tries to
answer such questions.

Even if this heavy-tail argument has mainly been explored in the robust literature for the
last decade following the pioneer work of Catoni (2012), it is already mentioned in Huber (1981).
The presence of heavy-tail data breaks the assumption, very common in statistics, that the
observations are drawn from an underlying Gaussian (or sub-Gaussian) distribution; that is a
distribution with good concentration properties.
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What about outlier rejection? From the examples presented above, one could be under
the impression that it is enough to pre-process the data to remove outliers before applying
standard procedures, rather than finding new robust procedures. The example of heavy-tail
data shows that it is not always simple to tell when an observation is an outlier, and it becomes
even more complicated when the observations are multi-dimensional, as we will see throughout
this thesis. While in some cases outlier rejection might be a good idea, it is often complicated
to implement (see Diakonikolas et al. (2019b) for instance) and providing guarantees for such
procedures requires the theoretical tools developed by robust statistics.

1.1.2 Models for gross errors

In order to give guarantees about their procedures, statisticians working on robust statistics have
to make some assumptions about the data, even if these are weaker and more realistic than the
classical ones. In this part we present the main models adopted by robust statistics and precise
the framework that will be used throughout this thesis.

Huber’s contamination model. The first generation of statisticians working on robust
statistics proposed to take into account gross errors with the following model, which is sometimes
called Huber’s contamination model (presented and studied for instance in Huber (1981)): the
observations are supposed to be i.i.d. realizations drawn from a random variable with cumulative
distribution function

F = (1− ε)Fθ + εH,

where Fθ belongs to a parametric family known in advance by the statistician (for instance
the Gaussian family) but where H can be any cumulative distribution function, and where ε
represents the contamination rate, the assumed fraction of gross error (for which an upper bound
is often assumed to be known). Most of the work of early robust statistics was concerned with
finding estimators that were efficient in this framework, that is somehow close to a parametric
framework. This model is still an active research area, see for instance Chen et al. (2017). We
note that a lot of work dealing with this first model focus on providing asymptotic results,
together with non-asymptotic properties such as the breakdown point. In contrast, the point
of view adopted in this thesis is solely non-asymptotic, inspired by recent trends in robust
statistics initiated by Catoni (2012) and by works from the computer science community such as
Diakonikolas et al. (2016).

Adversarial contamination model. The model that we deal with in this work is more general
than Huber’s contamination model and is sometimes referred to as “adversarial contamination”.
It is difficult to trace back, but it seems to have been described and popularised by the computer
science community, for instance in Diakonikolas et al. (2016). The samples are generated from the
following process: First, N samples are drawn independently from some unknown distribution.
Then, an adversary is allowed to look at the samples and arbitrarily corrupt an ε-fraction of
them before turning the corrupted data to the statistician. The setting can be described more
formally as follows :

Setting 1.1. There exists N i.i.d random variables distributed like X denoted (X̃i)Ni=1 in R
which are independent. These variables are not directly observed by the statistician, they are first
given to an “adversary” who is allowed to modify up to bεNc of these variables before returning
a modified dataset (Xi)Ni=1 to the statistician.

The only information that the statistician have is that there exists a (possibly random, possibly
data-dependant) set O such that, for any i ∈ Oc, Xi = X̃i. The only assumption on the set O
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concerns its size: the statistician knows that |O| ≤ bεNc (the statistician may in some cases not
even know ε and adapt to it). The statistician does not know which data has been modified, so
the set Oc is unknown. The statistician tries to acquire some knowledge (such as the mean or
the variance) about the random variable X from the corrupted dataset (Xi)Ni=1.

In this setup, not only can outliers be correlated to each other and to inliers, but inliers can
also be correlated to one another (because the adversary can choose which original samples to
keep and in doing so correlating the samples that he keeps, for instance only keeping the largest
samples when they are real-valued), which can not be the case in the Huber’s contamination
model.

This model generalizes Huber’s one, and it has been used, as Huber’s one, to deals with
deviations from a parametric model, for instance in Du et al. (2017), Diakonikolas et al. (2019c)
or Cheng et al. (2019b), where the inliers are supposed to follow a Gaussian distribution. In
contrast this thesis, along with a modern line of work in robust learning opened by Catoni (2012),
deals with non-parametric statistics (we often try to estimate the mean of a sample distribution),
with a particular emphasis put on heavy-tail data, as will be explained below. The adversarial
contamination model is used here in a non-parametric way, the general form of the distribution
that the inliers follow is not assumed to be known in advance.

1.1.3 Dealing with heavy-tail data

The two models described above (Huber and adversarial contaminations) allow to deal with gross
errors, but they do not directly address the problems raised by heavy-tail phenomena. Let us
get back to our example, where a statistician wants to estimate the mean value of the random
variable X that equals either 0 (with high probability) or 1000 (with small probability), when
given N = 10 observations. If she uses the usual empirical mean, which is the standard tool in
classical statistics to estimate a mean, she will be “close” to the true value with probability 99%
and drastically wrong (∼ 3σ) with probability 1%, a small but not negligible probability. Catoni
(2012) raises the following questions: when given a “precision radius” r, what is the smallest
failure probability δ(r) such that it is possible to find an estimator that lies with probability
1 − δ(r) within a radius r of the true mean value of the random variable? In our example,
for a radius ∼ σ for instance, is it possible to get a better failure probability than 1%? What
estimation procedures can lead to such an estimator? And what are the minimal assumptions
one has to make on the distribution of the random variable?

What assumptions on the underlying distribution? To capture the heavy-tail phe-
nomenon, we want to obtain statistical properties without making either boundedness or gaussian
assumptions on the data (or any other strong concentration assumptions), and it is in this sense
that we will call our estimators robust to heavy-tails. What weaker assumption should we make
on the underlying distribution of the data, that would be weak enough not to limit severely the
applicability of the results, and strong enough to lead to interesting and significant results? This
question is investigated in details in Devroye et al. (2016): authors show that, in order to reach
a rate that resembles the one asymptotically reached with the central limit theorem, rate which
can be proven to be “essentially optimal” and that will be discussed in greater details below, the
minimal assumption to make on the data is the existence of a finite second moment: E(X2) <∞.
Like a large majority of the robust literature that deals with heavy-tail data, the better part of
this thesis complies with this analysis (Chapter 3, 4 and 5)
Setting 1.2. The random variable X from which are sampled the N variables (X̃i)Ni=1 in R
has a mean µ, which we try to estimate, and a (possibly unknown) second order moment
σ2 = E[(X − µ)2].
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Most of the work presented deals with the case where the underlying distribution has a
-sometimes known, sometimes unknown- second-order moment. We however note that some
recent papers investigate cases where the second moment does not even exists and is replaced by
moments of order 1 + α with α < 1 for instance Cherapanamjeri et al. (2020b). The end of this
thesis also presents new settings that does not require the existence of a finite second moment
(in parts of Chapter 6 and 7), using as inspiration other asymptotic results than the Central
Limit Theorem.

The empirical mean. Let us come back to our example, and to the insufficiency of the
empirical mean. If we are given N independent realizations of a random variable with mean µ
and variance σ2, Chebyshev’s inequality tells that the empirical mean µ̂ satisfies, with probability
greater than 1−δ, |µ̂−µ| ≤ σ/

√
Nδ. Catoni (2012) states that this rate is sharp for the empirical

mean in general, so one can not give a better inequality for the empirical mean that holds for
all distributions with a variance. So for the empirical mean r(δ) = σ/

√
Nδ, or equivalently

δ(r) = σ2/(Nr2). This bound rapidly deteriorates for small values of δ: if one wants to get
high-probability results, for instance with δ ∼ 10−5, with about a thousand data points, one gets
a radius of ' 10 σ. Is it possible to do better, can one find procedures that gives smaller radius?
This question was raised and answered in Catoni (2012).

Sub-Gaussian estimation. Catoni (2012) states that the rate attained by the empirical mean
can indeed be drastically improved. The rate he proposes is inspired by asymptotic theory.
Indeed, when the data have a finite second moment σ, the central limit theorem guarantees the
empirical mean has Gaussian tails, asymptotically, without making further assumptions on the
data, so, when N →∞,

P
(
|µ̂− µ| < σφ−1(1− δ/2)√

N

)
→ δ, (1.1)

where φ is the cumulative distribution function of the standard normal distribution. Catoni
(2012) also proves that this asymptotic rate cannot be improved: no non-asymptotic estimator
can achieves better-than-Gaussian tails for all distributions in a class that is “large enough” (that
contains at least all Gaussian distributions with a given variance σ2). The main finding from
Catoni (2012) is that it is possible to find non-asymptotic estimators reaching the rate (1.1), up
to universal multiplicative constants.

Note that the rate σφ−1(1− δ/2)
√
N obtained in (1.1) is the rate achieved by the empirical

mean when the data is a N -sample of i.i.d. Gaussian variables. We thus say that an estimator
achieves a subgaussian rate if it achieves the rate (1.1) up to multiplicative constants. In a sense,
we want our estimators to be as good as if the data were Gaussian, even when the real sample is
heavy tailed (it is only assumed to have a second moment).

Remark 1.1. We know that φ−1(1 − δ/2) ≤
√

2 ln(2/δ), and for small δ, φ−1(1 − δ/2) ∼√
2 ln(2/δ). As our results are all formulated up to multiplicative constants1, we use the explicit

formulation C
√

ln(1/δ) in most of our results.

Coming back to the example, the rate (1.1) with δ ∼ 10−5 and N ∼ 1000 gives a radius of
around 0.15σ, and the crucial logarithmic dependence allows it to deteriorate drastically slower
than the rate obtained by Chebychev’s inequality when δ goes to 0.

1In this thesis, we have not tried to optimize the constants, even though it is an important and interesting
problem, see Section 1.5.
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Catoni (2012) builds a subgaussian estimator θ̂ implicitly, as a solution of the following
equation: ∑

i

ψ
[
α(Xi − θ̂)

]
= 0,

where α is a carefully chosen positive real, and ψ is a bounded influence function such that
ψ(x) ∼ x when x is close to 0. In contrast, this thesis mainly studies an other way to build such
subgaussian estimator, the Median-Of-Mean (MOM) heuristic.

The Median-Of-Mean heuristic. This approach which was first described in Nemirovsky
and Yudin (1983) and Jerrum et al. (1986), and has received a lot of attention in the statistical
and machine learning communities in the last decade, for instance in Bubeck et al. (2013), Lerasle
and Oliveira (2011), Devroye et al. (2016), Minsker and Strawn (2017) or Minsker (2015). This
approach was originally designed to build estimators that are robust to heavy-tail data in various
settings (see Alon et al. (1999), Jerrum et al. (1986) and Birgé (1984) for instance). It can
be defined as follows: we first randomly split the data into K blocks B1, . . . , BK of equal-size
m = bN/Kc (if K does not divide N , we just remove some data), K being chosen of order
log(1/δ) with δ the failure probability desired by the statistician. We then compute the empirical
mean within each block: for k = 1, . . . ,K,

X̄k = 1
m

∑
i∈Bk

Xi.

The final estimator µ̂K is the median of the latter K empirical means. The first paper that
formally proves that this estimator has sub-Gaussian tails is Devroye et al. (2016).

Theorem 1.1 (Devroye et al. (2016)). The estimator µ̂K has subgaussian deviations: with
probability ≥ 1− e−K/32,

|µ̂K − µ| ≤

√
8σ

2K

N

The main idea lies in the switch from an unbounded variable to a bounded one thanks to
the median operator. Indeed, to know whether the median is within an interval I, we compute
Z := ∑K

k=1 1X̄k∈I : when this quantity is greater than K/2, the median lies in I. The quantity
Z, unlike the empirical mean, is a sum of bounded variable, thus the Hoeffding inequality (see
Hoeffding (1963)) states that it is close to its mean with exponentially low failure probability,
leading to the subgaussian rate in Theorem 1.1.

Note that this procedure does not hold simultaneously for all δ: one has to compute a different
estimator for each value of δ. This issue can be overcome using Lepskii adaptation method
presented in Lepskĭı (1990), as explained in greater details in Chapter 3.

This technique allows to fully handle the one-dimensional case, and to deal with both heavy-
tail data and adversarial contamination. However, the rapid development of machine learning
and the growing amount of available high-dimensional data has led many statisticians to focus on
high-dimensional tasks. In these settings, the given data are not observations of a one-dimensional
random variable, but rather observations of a d-dimensional random vector, with d� 1. The
field of robust statistics has taken up this issue, raising new questions: what rate can we reach in
this case? What role does the dimension play? How to change and adapt the procedures for
this setting? We note that the extension of the one dimensional result is not trivial since there
exist several possible generalizations of the median in multi-dimensional set-ups (for instance the
geometric median, see Minsker (2015) for a definition, or the coordinate-wise median).



16 CHAPTER 1. INTRODUCTION: ROBUSTNESS AND COMPLEXITY

1.2 High-dimensional Robustness

1.2.1 The subgaussian rate in high dimension: decoupling complexity and
deviation.

What rates is it possible to reach in high-dimensional setups? One can still try to reach a rate
inspired by the asymptotic normality of the empirical mean of observations with finite second
moment, which is the rate achieved by the empirical mean when the data is a N -sample of
i.i.d. Gaussian variable, that we will still call subgaussian rate. We compute this rate using
Borell-TIS’s inequality (see (Ledoux, 2001, Theorem 7.1)): if Z1, Z2, ..., ZN are independent
identically distributed Gaussian variables N (µ, Id), it follows from this inequality that with
probability at least 1− δ,∥∥∥Z̄N − µ∥∥∥2

= sup
‖v‖2≤1

〈
Z̄N − µ, v

〉
≤ E sup

‖v‖2≤1

〈
Z̄N − µ, v

〉
+ γ

√
2 log(1/δ),

where γ = sup‖v‖2≤1

√
E
〈
Z̄N − µ, v

〉2. It is elementary knowledge about multivariate Gaussian
distributions that E sup‖v‖2≤1

〈
Z̄N − µ, v

〉
≤
√
d/N and γ =

√
1/N , which leads to the following

subgaussian rate (where C is an absolute constant),

∥∥∥Z̄N − µ∥∥∥2
≤

√ d

N
+

√
2 log(1/δ)

N

 := Crδ. (1.2)

Whether it was possible to reach such a rate with heavy-tail and corrupted data was an open
problem during a few years. The first attempts to adapt the Median-Of-Mean heuristic, using for
instance the geometric median (also called Fermat point) instead of the one-dimensional median,
and presented in Minsker (2015) or in Hsu and Sabato (2016), led to estimators µ̂ achieving with
probability larger than 1− δ,

‖µ̂− µ‖2 ≤ d log(1/δ)
N

, (1.3)

where ‖ · ‖ is the canonical Euclidean norm on Rd. This bound is proportional to log(1/δ), thus
the estimators are somehow robust to heavy tails, but they do not quite achieve the subgaussian
rate. Indeed, in the subgaussian rate, the complexity term d, which captures how involved is the
ambient space, and the failure-dependant factor log(1/δ) are not multiplied, but added instead,
and are thus in a way decoupled from each other.

After a few years, the seminal paper of Lugosi and Mendelson (2019c) described the first
estimator to reach the subgaussian rate only assuming finite second moment, using the Median-
Of-Mean heuristic coupled with a tournament procedure. An idea is to make a clever use of a
generalization of the Hoeffding inequality used in Theorem 1.1, called the Bounded Difference
inequality (also called McDiarmid or Hoeffding/Azuma inequality), that we recall here (see for
instance Theorem 6.2 in Boucheron et al. (2013)):

Theorem 1.2 (McDiarmid’s inequality). Consider independent random variables X1, · · · , Xn ∈
E and a mapping ψ : En 7→ R. If for all i ∈ J1, nK and for all x1, · · · , xn, x′i

|ψ(x1, · · · , xi, · · · , xn)− ψ(x1, · · · , x′i, · · · , xn)| ≤ ci ,

then for every t > 0,

P
(∣∣ψ(X1, · · · , Xn)− E[ψ(X1, · · · , Xn)]

∣∣ ≥ t) ≤ exp
(
− 2t2∑n

i=1 c
2
i

)
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This inequality can be found in McDiarmid (1997) and it allows to deal with functions φ
more general than the simple sum of random variables. In the problem at stake, we use this
inequality to bound the high-dimensional equivalent of the quantity Z defined above,

Z̃ := sup
v∈Sd−1

2

 ∑
k∈[K]

1(|
〈
Xk − µ, v

〉
| > r)

 , (1.4)

which is this time a supremum over all possible d-dimensional direction, but remains a supremum
of bounded quantity. Theorem 1.2 states that Z̃ is exponentially likely to be close to its
expectation. The remaining steps of the proof, that are detailed in Chapter 3, are about
bounding this expectation E(Z̃), using tools from empirical processes theory.

This pioneer paper, while answering an open question, opens two main research directions
that are at the heart of this thesis, and that both deals with notions of complexity. The first one
is about computational complexity: to compute the estimator described in Lugosi and Mendelson
(2019c), one needs a number of steps that grows exponentially with the dimension, so this
estimator cannot be computed in practice, even for moderate values of d. Thus our first question
is the following one: can we find tractable subgaussian estimators in high-dimensions? Chapter
3 and 4 mainly deal with this question. The second one is about statistical complexity in broad
sense and asks whether it is always possible to find procedures that reach a Gaussian rate for
other estimation tasks, such as estimation with respect to non-euclidean norms for instance.
Chapter 5, 6 and 7 follow that second direction.

1.2.2 Computational complexity

The first kind of complexity this thesis explores is a computational one. Diakonikolas et al. (2016)
is one of the first papers to raise the question of tractability for robust mean estimation in high
dimension, and to show that high-dimensional robust learning is algorithmically possible. Before
this pioneer paper, the computational considerations were mainly hardness results, showing that
traditional robust estimators such as the Tukey median, although provably robust, are provably
hard to compute (see for instance Johnson and Preparata (1978) or Bernholt (2006)). Using
new techniques, Diakonikolas et al. (2016) opens the way to computational, tractable robust
statistics and leaves many exciting questions to explore. Indeed, even though estimators proposed
in Diakonikolas et al. (2016) are robust to adversarial contamination, they fail with constant
probability (for instance 1/100), and do not achieve the aforementioned subgaussian rate. A
similar observation can be made about the works of Minsker (2015) or Hsu and Sabato (2016).
In these two papers, the estimators are very fast to compute: the geometric median of mean
can be computed as fast as the empirical mean up to multiplicative factors logarithmic in the
dimension and the number of point. However as pointed out earlier, the estimators proposed fail
to achieve the subgaussian rate. A large part of this thesis focus on developing procedures that
are computationally efficient and reach the subgaussian rate.

1.3 Statistical complexities

A second question that this work tackles is to know whether it is still possible to find estimators
that behaves as if the data were Gaussian for other estimation tasks, or if it is only possible in a
few special sub-cases as estimating the mean with respect to the usual euclidean norm.

Let us illustrate that question with an example. We now want to estimate the mean with
respect to a sparse norm: we denote the set of s-sparse vectors Us, and consider the following
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norm:
‖a‖s = sup

u∈Us,‖u‖2=1
〈a, u〉 .

In a sense we aim to replace the supremum over the euclidean ball Bd2 by a supremum over
some other set, here Us∩Bd2 . We see, taking again the Gaussian variables Zi, that with probability
at least 1− δ, (still from (Ledoux, 2001, Theorem 7.1))∥∥∥Z̄N − µ∥∥∥

s
= sup
‖v‖2≤1,v∈Us

〈
Z̄N − µ, v

〉
≤ E sup

‖v‖2≤1,v∈Us

〈
Z̄N − µ, v

〉
+ γ

√
2 log(1/δ)

≤ C
(
s log(ed/s)

N
+ log(1/δ)

N

)1/2
. (1.5)

The subgaussian rate for the sparse mean estimation problem (1.5) is different from (1.2):
the “deviation term” containing the failure probability δ remains unchanged, but the “complexity
term” (the one that does not depend on δ) goes from d to s log(ed/s). Can this rate be reached
only assuming second order moment on the random variables? While this question is answered
in this thesis for the special case of the supremum over Us ∩ Bd2 , its generalisation to other set V
is still an open question, that is only partly answered in Chapter 5, 6 and 7. We can rephrase
this question in another way: is the complexity term coming from the Gaussian perspective
reachable for non-Gaussian variables, or is there some other complexity measure intrinsically
linked to the non-Gaussian situation? We now give a first overview of the tools used to think
about this question and to measure the complexity of a set V , that mainly come from empirical
processes theory (see Ledoux and Talagrand (2011), Koltchinskii (2011) and van der Vaart and
Wellner (1996)).

1.3.1 Gaussian complexity

The first notion of complexity that naturally arise from the comparison with the Gaussian set
up used as a benchmark (always because of the central limit theorem, that is wished to be
made non-asymptotic in a sense) is the Gaussian complexity, also called Gaussian Mean-Width
when talking about sets V ⊂ Rd. It is the complexity that appears when using the Borell-TIS
inequality:

w∗(V ) = E sup
v∈V

〈
G, v

〉
, (1.6)

where G ∼ N (0, Ip). This quantity is often used in Banach space theory, see Vershynin (2018),
Ledoux and Talagrand (2011), Pisier (1989) or Holmes (2012). One can think of the Gaussian
mean-width as one of the basic intrinsic geometric quantities associated with sets V ⊂ Rp,
such as volume, surface area,... The Gaussian mean-width of various sets V is known, see
for example Vershynin (2018). It is easily computable in some cases: for any subspace F of
dimension k, w∗(Bd2 ∩ F ) = k, so the Gaussian Mean-Width captures well the usual dimension of
a subspace. We have already mentioned that for the set of sparse vector with unit euclidean
norm w∗(Us ∩ Bd2) = s log(d/s). It can be more involved and hard to compute in some other
cases.

Even if this notion of complexity naturally appears using a Gaussian benchmark, it is for now
unclear whether such a Gaussian rate can be attained only assuming second order moment on
the data, aside from the case V = Bd2 . Recent research, including works presented in this thesis,
show that one can reach different but closely related rates, where the deviation term remains the
same but where the complexity of the set V comes into play in another form.
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1.3.2 Rademacher complexity

In the early 2000 several papers including for instance Koltchinskii (2001) and Bartlett and
Mendelson (2003) proposed a new way to measure the complexity of a class of functions called
the Rademacher complexity. This measure somehow arises from the symmetrization lemma,
which is much earlier and can be traced back to Vapnik and Chervonenkis (1971).

Definition 1.1 (Rademacher complexity). Let X1, · · · , Xn be independent random variables
taking values in a measurable space (E, E). Let F be a class of functions from E to R. The
Rademacher complexity of the class F is defined as

Rn(F) = E
[

sup
f∈F

( 1
n

n∑
i=1

σif(Xi)
)]

,

where the variables σ1, · · · , σn are i.i.d Rademacher random variables (P(σ1 = 1) = P(σ1 = −1) =
1/2) independent of X1, · · · , Xn. The expectation is taken with respect to both the Rademacher
random variables and the data X1, · · · , Xn.

The Rademacher complexity of a class F quantifies the extent to which one can find, for any
given Bernoulli noise sequence, a function in F that correlates with this particular sequence. The
richer the class of functions, the more likely to find for each given noise sequence one function
that correlates well with it (see Koltchinskii (2011)). In the usual learning setting, choosing
classes that are ”too big” and that can mimic any noise usually leads to over-fitting.

In order to come back to the setting presented in this introduction, one can identify a set
V ⊂ Rd with the class of linear functions FV = {

〈
v, ·
〉

: v ∈ V ⊂ Rd}, so that

Rn(V ) = E
[

sup
v∈V

( 1
n

n∑
i=1

σi 〈v,Xi〉
)]

. (1.7)

As stated above, the symmetrisation lemma is one of the tools that make this complexity
measure popular. It is used throughout this work (in Chapter 3 and 5 for instance), for instance
to bound expectations of suprema such as Z̃ introduced earlier in equation (1.4).

Lemma 1.1 (Symmetrization). Let F be a class of functions from E to R. Then,

E
[

sup
f∈F

∣∣∣∣E[f(X)]− 1
n

n∑
i=1

f(Xi)
∣∣∣∣] ≤ 2Rn(F) .

We note that, contrary to the Gaussian complexity, the Rademacher complexity depends not
only on the set V , but also on the distribution of the random variables Xi.

1.3.3 VC-dimension.

The Vapnik–Chervonenkis (VC) dimension is one of the first way ever proposed to measure
the richness and the flexibility of a class of functions. It was first introduced in Vapnik and
Chervonenkis (1971). Unlike the Rademacher complexity, it is restricted to class F of classifiers
(or boolean functions) that take values in the set {0, 1}. It is a fundamentally combinatorial
measure of the complexity, and its combinatorial nature often makes it loose when compared
with finer measure such as the Gaussian complexity. We will however see throughout Chapter 5
that it can at time give lead to state-of-the-art results. The definitions and facts that we state
here can be found in a lot of textbooks, see for instance Vapnik (2013) or Ahsen and Vidyasagar
(2019) and references therein.
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Definition 1.2. Let F be a set of Boolean functions on a space X . We say that a finite set S ⊂ X
is shattered by F if, for every subset B ⊂ S, there exists f ∈ F such that S ∩ f−1({1}) = B. We
call VC-dimension of F (and note VC(F)) the largest integer n such that there exists a set S of
cardinality n that is shattered by F .

Once again, in order to deal with the setting presented in this introduction we abusively
call VC-dimension of a set V ⊂ Rd and note VC(V ) the VC-dimension of the set of half-spaces
generated by the vectors in V :

VC(V ) = VC({x ∈ E → 1〈x,v〉≥0, v ∈ V }).

We give a few examples to illustrate what this notion does and does not capture.

1. VC(Rd) = d+ 1. More generally, if F is a set of real-valued functions in a k-dimensional
linear space, then Pos(F ) = {x→ 1f(x)≥0, f ∈ F} has VC-dimension k+ 1 (see for instance
Dudley (1978), Theorem 7.2), so when it comes to linear sub-spaces, the VC-dimension
captures the dimension.

2. VC(Bd2) = d+1: when it comes to VC-dimension, the unit euclidean ball and the whole space
Rd have the same complexity. The diameter of the set does not matter ; the combinatorial
complexity of the structure only is measured. For instance the set V and the set αV
for α ∈ R∗+ always have the same VC-dimension, while it is not the case for Gaussian or
Rademacher complexity: Rn(αV ) = αRn(V ), and w∗(αV ) = αw∗(V ). Even more, if A is
any invertible matrix, then VC(AV ) = VC(V ). In consequence the VC-dimension can not
measure any fine details of problems where there are no scale/rotational invariance.

3. Sparse vectors: Let e1, ..., ed ∈ Rd be the canonical basis of Rd note Us = {∑i λivi | λi ∈
R & ∑

i 1λi 6=0 ≤ s} the set of s-sparse vectors, then

C1s log2(ed/s) ≤ VC(Us) ≤ C2s log2(ed/s),

where C1 and C2 are universal constants. This can be found for instance in Theorem 3 in
Ahsen and Vidyasagar (2019). In this case, the VC-dimension captures well the Gaussian
complexity of the set.

We note that, unlike the Rademacher complexity, the VC-dimension does not depend on the
distribution of the random variable Xi.

1.3.4 Entropy-based complexity.

Entropy-based complexity has been used since the fifties to measure how complex a set is,
see for instance Kolmogorov (1959). The principle is the following one: we denote N(V, ηBd2)
or N(V,Bd2 , η) the minimal number of translated ηBd2 balls needed to cover the set V . This
quantity measures how many points it takes to “discretize” the set V within radius η. This
number is usually called the η-covering numbers of V , and are also frequently used in geometric
functional analysis and in empirical processes theory (see for instance Vershynin (2018), Ledoux
and Talagrand (2011) or van der Vaart and Wellner (1996)).

How to use such a family of numbers to describe the complexity of a set? The behaviour of
N(V,Bd2 , η) when η goes to 0 often gives an idea about the complexity of V . For instance, for a
linear sub-space F of dimension k, (1/η)k ≤ N(F ∩ Bd2 ,Bd2 , η) ≤ (3/η)k (this can be found in lot
of textbooks, for instance Vershynin (2018) p.85). As the dimension appears in the exponent, we
are prone to turn to the logarithm of covering numbers, which is sometimes called the entropy:

H(V,Bd2 , η) = logN(V,Bd2 , η) .



1.4. MAIN CONTRIBUTIONS 21

For the case of linear subsets, we see that H(F,Bd2 , η) ∼ k log(1/η) when η goes to 0. One way to
measure the complexity of V is thus to study the behavior of H(V,Bd2 , η) when η goes to 0. Two
quantities related to entropy appears naturally in empirical process theory: Sudakov’s bound
and Dudley’s entropy integral. This two quantities are often used to bound below and above the
Gaussian complexity, thanks to the two following theorems (see Ledoux and Talagrand (2011)):

Theorem 1.3 (Sudakov’s minoration inequality). Let V ⊂ Rd. Then, for any η, we have

E sup
t∈V
〈G, t〉 ≥ cη

√
H(V,Bd2 , η),

where G ∼ N (0, Ip) and c is a universal constant.

We thus define the Sudakov’s bound as ς(V ) = supη η
√
H(V,Bd2 , η), so that w∗(V ) ≥ ς(V ).

We note that for the case of linear subset, we will capture the right behaviour up to universal
constants: ς(H(V,Bd2 , η)) ∝ k. The second theorem bounds by above the Gaussian complexity and
it features the whole range of entropy numbers within an integral instead of using a supremum.

Theorem 1.4 (Dudley integral). Let V ⊂ Rd. Then there exist an absolute constant c such that

w∗(V ) ≤ c
∫ ∞

0

√
H(V,Bd2 , η)dη.

Theorem 1.4 derives from chaining techniques (detailed for instance in Ledoux and Talagrand
(2011) or Vershynin (2018)), that can be further refined using “generic chaining” techniques
developed by Talagrand (1996).

1.4 Main contributions

With the main concepts, tools and questions introduced we present the various contributions of
the five works that make up this thesis.

1.4.1 Robust Subgaussian Estimation of a Mean Vector in Nearly Linear
Time

The first contribution of this thesis, detailed in Chapter 3, deals with the computational complexity
of subgaussian mean estimation, with respect to the traditional euclidean norm. As this thesis
began, two very important papers were released, that were the firsts to propose procedures
achieving the subgaussian rate (1.2) while running in polynomial time in both variables N
and d: Hopkins (2018) and Cherapanamjeri et al. (2019). They both run in polynomial time:
O(N24 + Nd) for Hopkins (2018) and O(N4 + N2d) for Cherapanamjeri et al. (2019) (see
Cherapanamjeri et al. (2019) for more details on these running times). They do not consider an
adversarial contamination of the dataset even though their results easily extend to this setup. The
first chapter of this thesis thus proposes the third polynomial algorithm reaching the subgaussian
rate for mean estimation, and the first one to explicitly deal with adversarial contamination.
Moreover, it improves the run time of the first procedures proposed: we construct an algorithm
running in time Õ(Nd+ u log(1/δ)d) which outputs an estimator of the true mean achieving the
subgaussian rate (1.2) with confidence 1− δ − (1/10)u (for exp(−c0N) ≤ δ ≤ exp(−c1|O|)) on a
corrupted database and under a second moment assumption only. In the worst case, the run
time is thus of Õ(N2d).

In order to do so, this paper uses the Median of Mean heuristic, like the two previous
polynomial-time procedures. Our approach in fact takes ideas from two communities: the
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median-of-means principle from the statistics community and a SemiDefinite Programming
(SDP) relaxation used in the Computer Science community by Cheng et al. (2019a) which can
be theoretically computed fast. The computational time improvement upon the procedure in
Cherapanamjeri et al. (2019) is due to the use of this covering Semidefinite program (SDP)
studied in Allen-Zhu et al. (2014), Peng et al. (2012), and Cheng et al. (2019a), and popularised
in the robust statistic field by Cheng et al. (2019a), at each iteration of the robust gradient
descent algorithm. While in Cheng et al. (2019a) this SDP leads to procedures failing with
constant probability and thus failing to reach the subgaussian rate, we show that using this
kind of SDP on block means rather than on the data themselves leads not only to reach the
subgaussian rate, but also to improvement in the computational cost of the algorithm. So the
median of mean heuristic presents in this case a stochastic advantage and a computational one.

To prove that the proposed procedure indeed reaches the subgaussian rate, we had to come
up with a new stochastic lemma interesting in its own, generalizing the one from Lugosi and
Mendelson (2019c) and Lerasle et al. (2019). This lemma has been used since in a variety of
other works and contexts, for instance in Regression in Cherapanamjeri et al. (2020b), or to
define the notion of Stability in Diakonikolas et al. (2020). The proof of this Lemma relies on a
Gaussian rounding technique similar to the one used in Grothendieck’s inequality.

Very recent works Lei et al. (2020); Hopkins et al. (2020); Depersin (2020a) obtain similar
results to the one from this work. They were also able to replace SDPs by spectral methods for
the computations of a robust descent direction at each step. Indeed, even though cover SDPs are
from a theoretical point of view computationally efficient (see Allen-Zhu et al. (2014),Peng et al.
(2012)) they are notoriously difficult to implement in practice whereas the power methods used
in Lei et al. (2020); Hopkins et al. (2020); Depersin (2020a) open the door to implementable
algorithms. It is interesting to note that the computational time proposed in this work is still
to this date the best run time known, and it is a conjecture that it might even be the fastest
possible way to reach the subgaussian rate.

1.4.2 A Spectral Algorithm for Robust Regression with Subgaussian Rates

The second contribution we make, detailed in Chapter 4 deals with the question of reaching
sub-Gaussian bounds in polynomial time, but for regression instead of mean estimation. We
recall quickly the standard linear regression setting where data are couples (Xi, Yi)i ∈ Rd × R
and where one looks for the best linear combination of the coordinates of an input vector X to
predict the output Y , that is we look for β∗ defined as follows.

β∗ = argmin
β∈Rd

`(β) = argmin
β∈Rd

E(Y1 − 〈β,X1〉)2.

Whether reaching sub-Gaussian rates in that framework, under weak moment assumptions,
was even possible was an open question for a long time. Indeed for a time the best known
polynomial algorithms were the one from Prasad et al. (2018) or from Hsu and Sabato (2016). The
guarantee for those two algorithms is the following: when the covariance of X is the identity and
when the noise ξ = Y −〈β∗, X〉 has bounded variance, `(f̂)−`(f∗) ≤ O( log(1/δ)d

N ) with probability
1− δ. This rate does not present this decoupling between complexity and deviation that we called
sub-Gaussian. The article from Cherapanamjeri et al. (2020a) has been the first to construct a
polynomial-time method achieving the sub-Gaussian rate of the OLS in the Gaussian setting
`(f̂)− `(f∗) ≤ O( log(1/δ)∨d

N ). When Chapter 4 was first published, Cherapanamjeri et al. (2020a)
was the only procedure running in polynomial algorithm achieving the optimal subgaussian rate.
However, Cherapanamjeri et al. (2020a) uses the Sum of Square (SoS) programming hierarchy to
design their algorithm. Even if SoS hierarchy runs in polynomial time, its reliance on solving
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large semi-definite programs makes it impractical and remains a theoretical result leaving still
open the question on the existence of a practical efficient algorithm achieving optimal subgaussian
rates.

In Chapter 4, we tackle this issue, showing that techniques from Lei et al. (2020) combined
with lemmas from Depersin (2020a) can be used to give the first practical, nearly quadratic
(and in fact in most cases nearly-linear) algorithm that reaches the subgaussian rate. We also
conduct numerical experiments on simulated data with our proposed procedure to show that it
is indeed practical and fast. Moreover, as predicted by our theoretical findings, our simulation
analysis shows that it is robust both to heavy-tailed data and to outliers. To the best of our
knowledge, this is the first time that numerical experiments implementing the exact formulation
of a sub-gaussian estimator are conducted for a regression algorithm with sub-gaussian rates and
polynomial time guarantees.

1.4.3 Robust subgaussian estimation with VC-dimension

The third contribution we make is detailed in Chapter 5, and it deals with statistical complexity
rather than computational complexity. We tried to show how one can use VC-dimension to get
state-of-the art bounds in non-euclidean estimation with heavy-tail data.

In this work, we show that the analysis presented in Lugosi and Mendelson (2019c), in Lecué
and Lerasle (2019), Lerasle (2019) or in Lecué and Lerasle (2020), and generalized in Lugosi
and Mendelson (2019b), all based on the Median-of-mean principle and the use of Rademacher
complexities, can be modified in order to achieve sub-gaussian rates for sparse or structured
problems assuming only bounded two-order moments. The method developed in Lerasle (2019)
or in Lecué and Lerasle (2020) requires data to have at least log(d) finite moments (where d is the
dimension of the space) in order to exploit the sparsity of the problem and offers no guarantees
without that requirement, and to the date is the best known. We show that we can drop this
condition by judiciously introducing VC-dimension in the different proofs, and exploit the sparsity
of the problem with only two moments. We show in Chapter 5 that classical approaches using local
Rademacher complexities cannot achieve this type of subgaussian bounds under only a second
moment assumption. Somehow the classical approach used so far does not capture the right
statistical complexity of high-dimensional problems under low-dimensional structural assumptions
and under only a second moment assumption: it seems that the Rademacher complexity
is not the right way to measure the complexity of the problem of structured mean
estimation in any norm. Our VC-dimension based approach allows to overcome this issue
and to go beyond this log d subgaussian moments assumption that has appeared in all works on
robust and subgaussian estimation in the high-dimensional framework Lerasle (2019). We also
show that this general technique can be easily replicated and give new robust estimators that
achieve state-of-the-art bounds for different estimation tasks such as Regression, Mean estimation
with non-Euclidean norms, Robust low-rank matrix estimation and Covariance estimation.

This Chapter is not the first to introduce VC-dimension in robust estimation problems: it has
been inspired by Chen et al. (2018) and Gao (2017) for instance. In those two papers, estimation
and regression with possible sparsity structure and outliers are also achieved with optimal rates,
using VC-dimension techniques, but their assumption and their framework is somehow different
from the one we studied in this thesis. For instance, Chen et al. (2018) estimates the center
of symmetric distributions without moment assumption. In comparison, our estimators are for
mean and covariance, thus moment assumption is needed, but we do not need the distributions
at stake to be symmetric.
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We note that VC-dimension has some advantages over Rademacher complexity in some cases,
but this forth Chapter shows that is does not leads to optimal rates in all cases, and thus that it
is not always the right way to measure the complexity of a robust estimation task. Indeed, using
VC-dimension in mean estimation, we lose a nice dependence of the risk bounds in the covariance
structure: our rates for (non-sparse) mean estimation depend on the ambient dimension d instead
of the effective rank Tr(Σ)/||Σ||op (that is captured by Rademacher Complexity). In particular,
the general VC-dimension approach does not generalize directly to infinite dimensional spaces. In
the last section of Chapter 5, we show that this issue can be overcome if we have some knowledge
on the covariance matrix, proposing a new procedure for that case.

1.4.4 On the robustness to adversarial corruption and to heavy-tailed data
of the Stahel-Donoho median of means

In Chapter 6, we deal with estimation with respect to the norm x ∈ Rd →
∥∥∥Σ−1/2x

∥∥∥
2
, where Σ

is the covariance matrix of the data, and we assume that this matrix is not known beforehand
by the statistician. So in a sense, we try to estimate with respect to an unknown norm, while
techniques derived in Chapter 5 mainly apply to known norms. We study this particular norm,
whose unit ball is the ellipsoid Σ1/2Bd

2 , because it is the best metric – that is the one leading to
minimal volume confidence sets for a given confidence – in the benchmark i.i.d. Gaussian case.

While the subgaussian rate could be obtained with estimators from Lugosi and Mendelson
(2019b) or Lerasle et al. (2019), these estimators would require knowledge about Σ in their
construction. One therefore has to consider other techniques. In this Chapter, we show that it
can be done thanks to a notion of depth/outlyingness introduced at the beginning of the 80’s
which uses a normalization by a robust estimation of the scale called Stahel-Donoho Outlyingness
(SDO), which has been first introduced in Donoho and Gasko (1992). We couple this notion of
outlyingness with the Median-Of-Mean heuristic to get subgaussian estimators with respect to
the metric

∥∥∥Σ−1/2·
∥∥∥

2
. On our way to our goal, we complement the results on the

√
n-consistency

and the asymptotic normality of Stahel-Donoho estimators that can be found in Maronna and
Yohai (1995) and Tyler (1994) by deriving the first non-asymptotic convergence rate for the SDO
median (as well as its median of means version). We also show that the robustness properties of
the original SDO median and its MOM version goes beyond the Huber’s contamination model
and that they still persist in the adversarial corruption model from Setting 1.1. We also use the
robust scaling from the Stahel-Donoho Outlyingness to build estimators of the covariance matrix
under some regularity assumption.

1.4.5 Optimal robust mean and location estimation via convex programs with
respect to any pseudo-norms

Our last contribution, detailed in Chapter 7, is to give a new lower bound for mean estimation in
any norm. Lugosi and Mendelson (2019b) gives the following lower bound on mean estimation :

Theorem 1.5. [Theorem 3 from Lugosi and Mendelson (2019b)] There exists an absolute
constant c > 0 such that the following holds. If µ̂ : RNd → Rd is an estimator such that for all
µ∗ ∈ Rd and all δ ∈ (0, 1/4),

PNµ∗ [‖µ̂− µ∗‖ ≤ r∗] ≥ 1− δ

where PNµ∗ is the probability distribution of (Xi)i∈[N ] when the Xi are i.i.d. N (µ∗,Σ) then

r∗ ≥ c√
N

(
sup
η>0

η
√

logN(Σ1/2B◦, ηBd
2) + sup

v∈B◦

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

)
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where N(Σ1/2B◦, ηBd
2) is the minimal number of translated of ηBd

2 needed to cover Σ1/2B◦.
The complexity term in this lower bound is thus measured using the Sudakov’s bound that

we defined in Theorem 1.3. However, there is a gap between this lower bound and the upper
bounds depending on the Gaussian mean width in the Gaussian case. This gap that comes
from the looseness of Sudakov’s inequality presented in Theorem 1.3. For ellipsoids for instance,
Sudakov’s bound is not sharp in general and therefore the lower bound from Theorem 1.5 fails to
recover the classical subgaussian rate for the standard Euclidean norm case (that is for S = Bd

2)
which is given in Lugosi and Mendelson (2019c) by√

Tr (Σ)
N

+

√
‖Σ‖op log(1/δ)

N
. (1.8)

Indeed, when ‖·‖ is the `d2 Euclidean norm then E
∥∥∥Σ1/2G

∥∥∥ = E
∥∥∥Σ1/2G

∥∥∥
2
∼
√

Tr(Σ). In
contrast the entropy of Σ1/2B◦ = Σ1/2Bd

2 w.r.t. ηBd
2 can be computed using equation (5.45) in

Pisier (1989) that

sup
η>0

η
√

log2N(Σ1/2Bd
2 , ηB

d
2) ∼ sup

n≥1,k∈[d]

√
n

2n/k

∣∣∣∣∣∣
k∏
j=1

√
λj

∣∣∣∣∣∣
1/k

∼

√√√√√ sup
k∈[d]

k

∣∣∣∣∣∣
k∏
j=1

λj

∣∣∣∣∣∣
1/k

(1.9)

where λ1 ≥ . . . ≥ λd are the singular values of Σ. In particular, when λj = 1/j, the entropy
bound (1.9) is of the order of a constant whereas the Gaussian mean width is of the order of√

log d. We fill this gap in Chapter 7 by showing a lower bound where the entropy is replaced by
the (larger) Gaussian mean width. In order to do so, we use Anderson’s Lemma, and analytic
arguments, intead of geometric and volumetric arguments used by Lugosi and Mendelson (2019b)
to get the Sudakov’s bound as a lower bound.

We also show that this rate can sometimes be achieved by a solution to a convex optimization
problem in the adversarial and L2 heavy-tailed setup by considering minimum of some Fenchel-
Legendre transforms constructed using the Median-of-means principle.

1.5 Unanswered Questions and Future Research Direction.

After those different contributions, there is still a number of exciting unanswered questions that
can be starting points for future research.

1.5.1 A new notion of complexity?

The different complexity measures mentioned in Section 1.3 gives standard tools to measure the
complexity of a set and give some ideas about the rates that could be achieved with heavy-tailed
data. However, it is plausible that none of these measures is the right one, and that the right
way to measure the complexity of robust estimation tasks is yet to be found. The quantity that
is crucial in all the works is

r → E
(

sup
v∈V

K∑
k=0

1〈Ȳk−µ,v〉≥r −KE(1〈Ȳk−µ,v〉≥r)
)
.

Bounding this quantity using the VC-dimension of V yields a bound independent of the
covariance of Y . On the other hand, bounding that quantity by the Rademacher complexity of
the Yi (like in Lecué and Lerasle (2020), Lugosi and Mendelson (2019b)) does not exploit the
boundedness of the indicator function and necessitates unnecessary stronger assumptions on data
(see Chapter 5). The ideal would be to conciliate both ideas, and to find a nice in-between that
would take into account both the boundedness and the dependency in the covariance structure.
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1.5.2 Tightening the constants

In most of the work we present in this thesis, the bounds are all given up to universal constants:
we have not focused on the constants but rather on how the rate depends on d, N , Σ, or other
parameters of interest, such as the sparsity s. In consequence, the constants we give in most
of this work are not optimized and analysed. However it seems that, when computed, they are
huge and make most of the theory not usable as such for practical implementation. Simulations
tends to show that the procedures proposed seem to reach in practice rates with much smaller
and practical constants.

Trying to optimize the constants to find the “sharp rate”, and search for procedures that
could lead to better constants, even in the most simple case of estimation with respect to the
euclidean norm, has not been done in the literature to the best of our knowledge. It seems to be
both challenging from a theoretical perspective and interesting from a practical point of view.

1.5.3 Finding algorithms for estimation in any norms

This thesis is somehow separated in two parts: a more practical one and a more theoretical
one. Chapter 3 and 4 mainly deal with tractable estimation in euclidean set-ups, and their
contributions are (mainly) algorithms, while Chapter 5, 6 and 7 mainly deal with theoretical
estimators in non-euclidean set-ups. It seems like it would be promising to build a bridge between
those two parts and to look for tractable procedures in various non-euclidean set-ups.

For instance, only very little is known on the theoretical computational side for the Stahel-
Donoho outlyingness. In Section 5 of Donoho and Gasko (1992), an algorithm running in time
O(Kd+1 logK) is mentioned but its time complexity is making this approach impractical for
dimensions larger than 5. There are to our knowledge no theoretical results of any kind on
the convergence of some approximate algorithm for the computation of the SDO of a point in
Rd that could be used in practice. As mentioned already in Donoho and Gasko (1992), “some
sort of computational breakthrough is necessary to make the estimators, as defined here, really
practical”. This looks to be still the case.

In the same way, there is very little known about the computational side of robust sparse
estimation. To the best of our knowledge, there is no tractable algorithm suitable for sparse mean
estimation with subgaussian rates. Knowing if it is even possible to find such an algorithm is one
of the main open question left unanswered by this thesis, and that seems like a very promising
research direction.



CHAPTER 2

Introduction en français : Robustesse et complexité

Cette thèse tente d’évaluer la complexité de certaines tâches statistiques robustes. Dans
l’introduction, la signification et l’utilité de cet objectif global seront analysées et précisées.
D’abord, les deux principaux termes en jeu, robustesse et complexité, seront successivement
discutés. Puis les cinq travaux qui composent cette thèse seront présentés, situés par rapport au
contexte général, et leurs apports et limites respectifs seront exposés.
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2.1 Qu’est-ce que la statistique robuste?

L’objectif principal d’un statisticien est d’extraire des informations utiles de données d’observation,
par exemple en déduisant des modèles, en identifiant des effets causaux, en un mot en apprenant
sur un phénomène donné à partir des données. La plupart du temps, le statisticien doit faire des

27
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hypothèses sur les données afin d’obtenir des garanties que ses procédures conduiront effectivement
à des informations fiables. Les hypothèses les plus courantes sont :

– que les données sont indépendantes et identiquement distribuées, ce qui signifie qu’elles
sont produites à partir du même processus, et indépendamment les unes des autres, qu’elles
sont différentes réalisations de la même variable aléatoire,

– que cette variable aléatoire est supposée par le statisticien avoir une certaine propriété
donnée (par exemple une esperance finie),

– que la distribution de la variable aléatoire dont les observations sont censées être tirées
appartient à une famille spécifique de distributions déterminée au préalable par le statisticien
(par exemple, la famille des distributions normales) et appelée le modèle statistique.
Lorsqu’on fait ce genre d’hypothèse, les statistiques en jeu sont dites paramétriques car
dans ce cadre, les différentes distributions de la famille donnée sont souvent identifiées par
un paramètre (et peuvent être entièrement décrites avec ce paramètre), de sorte que la
recherche de la bonne distribution parmi la famille revient à rechercher le bon paramètre.

Nous remarquons que ces hypothèses sont de plus en plus fortes. On pourrait dire que
l’objectif global de la statistique robuste en tant que domaine est de remettre en question ces
hypothèses et d’étudier s’il est possible de donner certaines garanties sous des hypothèses plus
faibles et plus réalistes. Pour être plus précis, le domaine des statistiques robustes tente d’étudier

– ce qui arrive aux procédures classiques (non robustes) lorsque les hypothèses sur lesquelles
elles ont été créées sont relâchées,

– quelles sont les hypothèses minimales que l’on doit faire sur les données pour qu’il soit
théoriquement possible d’en extraire des informations,

– et comment trouver des procédures qui fonctionnent toujours lorsqu’on fait des hypothèses
minimales.

Hampel et al. (1986) donne le résumé suivant : ”La statistique robuste est un ensemble de
connaissances relatives aux déviations des hypothèses idéalisées en statistique.”

2.1.1 Pourquoi des statistiques robustes?

On peut se demander quelle est l’utilité d’une telle théorie. C’est l’objet d’une littérature riche,
initiée dans les années 60 par Tukey (1960), Huber (1964) et Hampel (1973), et les fondements
théoriques de la robustesse sont exposés avec beaucoup de détails dans un certain nombre
d’ouvrage (voir par exemple Huber (1981), Hampel et al. (1986), Huber and Ronchetti (2009),
ou Maronna et al. (2006a)). Nous rappelons et illustrons deux des principaux arguments qu’ils
développent, qui peuvent servir de points de départ pour comprendre les apports de cette thèse.

OUtliers. C’est un point soulevé à la fois par Huber (1981) et Hampel et al. (1986) : les
échantillons collectés dans les sciences physiques, naturelles ou sociales contiennent de ”bonnes
données”, qui sont bien décrites par le modèle du statisticien, mais elles sont mélangées à une
fraction de ”mauvaises données”, également appelées erreurs grossières ou outliers - typiquement
dans une fourchette comprise entre 1% et 10% selon Huber (1981) pour les ensembles de données
de l’époque (dont l’ampleur a pu changer avec les données Internet et les données déclaratives).
Ces erreurs peuvent provenir d’erreurs de copie, de calcul, d’inattention de l’expérimentateur,
etc., mais aussi d’un adversaire qui tente de tromper le statisticien. Ces mauvaises données
ou ”valeurs aberrantes” ne sont pas bien décrites par le modèle du statisticien, et peuvent être
éloignées de plusieurs ordres de grandeur du phénomène qu’il veut quantifier.
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Par exemple, une partie des données peut être exprimée dans une unité erronée : lorsqu’on
leur demande leur salaire mensuel dans les enquêtes en ligne, une fraction des répondants donnent
plutôt leur salaire annuel. De telles erreurs peuvent être très coûteuses : on peut penser à l’échec
du lancement de l’orbiteur climatique de Mars en 1999 par la NASA, causé par l’expression
de certaines données clés dans des unités non métriques. Les estimateurs classiques sont très
sensibles à ce type d’erreur grossière : par exemple, considérons une série d’observations de la
taille des personnes, avec 99 observations exprimées en mètres et 1 observation exprimée par
erreur en centimètres. La moyenne empirique de cette série pourrait conduire à conclure que la
taille moyenne des personnes est d’environ 3, 3 mètres, ce qui montre qu’il suffit d’une petite
fraction de mauvaises données pour se faire une idée très erronée du phénomène en jeu lorsqu’on
utilise des estimateurs non robustes.

Les erreurs grossières sont une violation de la première hypothèse classique selon laquelle toutes
les données sont produites à partir du même processus. En présence d’erreurs grossières, toutes
les observations n’ont pas la même valeur informative. La plupart des procédures statistiques
classiques ne présentent des garanties que lorsque les données sont i.i.d. (indépendantes et
identiquement distribuées), ainsi la présence d’erreurs est un premier argument pour justifier le
besoin de développer de nouvelles procédures robustes.

Données à queue lourde. Un autre argument peut être trouvé pour justifier le besoin
d’une théorie robuste : la présence de phénomènes à queue lourde. Les queues lourdes sont
caractéristiques des phénomènes où il existe une probabilité significative d’observer une seule
valeur énorme, c’est-à-dire d’un ordre de grandeur différent des autres. Contrairement à l’erreur
grossière, cette valeur énorme n’est pas une erreur et contient des informations sur le phénomène
en jeu. Les pertes d’assurance, les rendements financiers, la contagion sociale, l’activité de retweet
d’un tweet sont tous des exemples de phénomènes à queue lourde, voir Resnick (2007) pour plus
d’exemples et des explications détaillées. L’exemple suivant illustre le problème soulevé par les
données à queue lourde. Prenons une variable aléatoire X qui est égale à 0 avec une probabilité
de 999/1000, et 1000 avec une probabilité de 1/1000, de sorte que sa valeur moyenne est de 1 (et
son écart-type d’environ 32). Lorsque l’on dispose de 10 d’observations de cette variable aléatoire,
on a environ 1% de chance de voir la valeur 1000, ce qui constitue un événement extraordinaire.
En observant un tel événement parmi les 10 de données, le statisticien désireux d’estimer la
valeur moyenne du phénomène est confronté à un dilemme : doit-il prendre en compte cette
observation ? En incluant cette observation, la moyenne empirique des observations est de 100,
ce qui se situe à quelques écarts types de la vraie moyenne. Exclure cette observation avant de
prendre la moyenne empirique permet d’obtenir une meilleure estimation de la moyenne dans ce
cas, mais sur quelle base le statisticien doit-il écarter certaines valeurs ? La théorie robuste tente
de répondre à ces questions.

Même si cet argument de la queue lourde a surtout été exploré dans la littérature robuste
au cours de la dernière décennie suite aux travaux de Catoni (2012), il est déjà mentionné
dans Huber (1981). La présence de données à queue lourde brise l’hypothèse, très courante en
statistique, selon laquelle les observations sont tirées d’une distribution gaussienne (ou sous-
gaussienne) sous-jacente, ou plus généralement d’une distribution présentant de bonnes propriétés
de concentration.

Rejet des outliers? D’après les exemples présentés ci-dessus, on pourrait avoir l’impression
qu’il suffit de prétraiter les données pour éliminer les valeurs aberrantes avant d’appliquer les
procédures standard, plutôt que de trouver de nouvelles procédures robustes. L’exemple des
données à forte queue de distribution montre qu’il n’est pas toujours simple de savoir si une
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observation est aberrante, et cela devient encore plus compliqué lorsque les observations sont
multidimensionnelles, comme nous le verrons tout au long de cette thèse. Si dans certains
cas le rejet des outliers peut être une bonne idée, il est souvent compliqué à mettre en œuvre
(voir Diakonikolas et al. (2019b) par exemple) et fournir des garanties pour de telles procédures
nécessite les outils théoriques développés par la statistique robuste.

2.1.2 Modèles pour les outliers

Afin de donner des garanties sur leurs procédures, les statisticiens travaillant sur la statistique
robuste doivent faire certaines hypothèses sur les données, même si celles-ci sont plus faibles et
plus réalistes que les hypothèses classiques. Dans cette partie, nous présentons les principaux
modèles adoptés par la statistique robuste et précisons le cadre qui sera utilisé tout au long de
cette thèse.

Modèle de contamination de Huber . La première génération de statisticiens travaillant
sur les statistiques robustes a proposé de prendre en compte les outliers avec le modèle suivant,
parfois appelé Modèle de contamination de Huber (présenté et étudié par exemple dans Huber
(1981)) : les observations sont supposées être des réalisations i.i.d. tirées d’une variable aléatoire
avec une fonction de distribution cumulative

F = (1− ε)Fθ + εH,

où Fθ appartient à une famille paramétrique connue à l’avance par le statisticien (par exemple
la famille gaussienne) mais où H peut être n’importe quelle fonction de distribution cumulative, et
où ε représente le taux de contamination, la fraction supposée de l’erreur brute (pour laquelle une
limite supérieure est souvent supposée connue). La plupart des premiers travaux en statistiques
robustes visaient à trouver des estimateurs efficaces dans ce cadre proche d’un cadre paramétrique.
Ce modèle est toujours un domaine de recherche actif, voir par exemple Chen et al. (2017). Nous
remarquons que de nombreux travaux traitant de ce premier modèle se concentrent sur l’obtention
de résultats asymptotiques, ainsi que de propriétés non asymptotiques telles que le point de
rupture. En revanche, le point de vue adopté dans cette thèse est uniquement non-asymptotique,
inspiré par les tendances récentes en statistique robuste initiées par Catoni (2012) et par des
travaux de la communauté informatique tels que Diakonikolas et al. (2016).

Modèle de contamination adversarial. Le modèle que nous traitons dans ce travail est
plus général que le modèle de contamination de Huber et est parfois appelé ”contamination
adversarial”. Il est difficile de le retracer, mais il semble avoir été décrit et popularisé par la
communauté informatique, par exemple dans Diakonikolas et al. (2016). Les échantillons sont
générés à partir du processus suivant : D’abord, N échantillons sont tirés indépendamment d’une
certaine distribution inconnue. Ensuite, un adversaire est autorisé à regarder les échantillons et
à en corrompre arbitrairement une fraction de ε avant de remettre les données corrompues au
statisticien. Le cadre peut être décrit plus formellement comme suit :

Setting 2.1. Il existe N variables aléatoires i.i.d. distribuées comme X notées (X̃i)Ni=1 dans R
qui sont indépendantes. Ces variables ne sont pas directement observées par le statisticien, elles
sont d’abord données à un “adversaire” qui est autorisé à modifier jusqu’à bεNc de ces variables
avant de retourner un jeu de données modifié (Xi)Ni=1 au statisticien.

La seule information dont dispose le statisticien est qu’il existe un ensemble (éventuellement
aléatoire, éventuellement dépendant des données) O tel que, pour tout i ∈ Oc, Xi = X̃i. La
seule hypothèse sur l’ensemble O concerne sa taille : le statisticien sait que |O| ≤ bεNc (le
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statisticien peut dans certains cas ne même pas connâıtre ε et s’y adapter). Le statisticien ne
sait pas quelles données ont été modifiées, l’ensemble Oc est donc inconnu. Le statisticien tente
d’acquérir certaines connaissances (telles que la moyenne ou la variance) sur la variable aléatoire
X à partir de l’ensemble de données corrompues (Xi)Ni=1.

Dans cette configuration, non seulement les valeurs aberrantes peuvent être corrélées entre
elles et avec les valeurs aberrantes, mais les valeurs non aberrantes peuvent également être
corrélées entre elles (car l’adversaire peut choisir les échantillons originaux à conserver et, ce
faisant, corréler les échantillons qu’il conserve, par exemple en ne conservant que les échantillons
les plus grands lorsqu’ils sont à valeur réelle), ce qui ne peut pas être le cas dans le modèle de
contamination de Huber.

Ce modèle généralise celui de Huber, et il a été utilisé, comme celui de Huber, pour traiter
les déviations d’un modèle paramétrique, par exemple dans Du et al. (2017), Diakonikolas et al.
(2019c) ou Cheng et al. (2019b), où les inliers sont supposés suivre une distribution gaussienne.
En revanche, cette thèse, ainsi qu’une ligne de travail moderne en apprentissage robuste ouverte
par Catoni (2012), traite des statistiques non-paramétriques. (nous essayons souvent d’estimer
la moyenne d’une distribution d’échantillon), avec un accent particulier mis sur les données à
forte queue de distribution, comme nous l’expliquerons ci-dessous. Le modèle de contamination
contradictoire est utilisé ici de manière non paramétrique, la forme générale de la distribution
que suivent les valeurs aberrantes étant supposée connue à l’avance.

2.1.3 Traitement des données mal concentrées

Les deux modèles décrits ci-dessus (contaminations de Huber et adversaires) permettent de
traiter les erreurs grossières, mais ils ne répondent pas directement aux problèmes soulevés par
les phénomènes de queue lourde. Revenons à notre exemple, où un statisticien veut estimer la
valeur moyenne de la variable aléatoire X qui est égale soit à 0 (avec une forte probabilité) soit
à 1000 (avec une faible probabilité), lorsqu’on lui donne N = 10 observations. Si elle utilise la
moyenne empirique habituelle, qui est l’outil standard en statistique classique pour estimer une
moyenne, elle sera ”proche” de la vraie valeur avec une probabilité de 99% et radicalement fausse
(∼ 3σ) avec une probabilité de 1%, une probabilité faible mais non négligeable. Catoni (2012)
soulève les questions suivantes : étant donné un “rayon de précision” r, quelle est la plus petite
probabilité d’échec δ(r) telle qu’il est possible de trouver un estimateur qui se situe avec une
probabilité 1− δ(r) dans un rayon r de la vraie valeur moyenne de la variable aléatoire ? Dans
notre exemple, pour un rayon ∼ σ par exemple, est-il possible d’obtenir une meilleure probabilité
de défaillance que 1% ? Quelles procédures d’estimation peuvent conduire à un tel estimateur
? Et quelles sont les hypothèses minimales que l’on doit faire sur la distribution de la variable
aléatoire ?

Quelles hypothèses sur la distribution sous-jacente? Pour capturer le phénomène des
queues lourdes, nous voulons obtenir des propriétés statistiques sans faire l’hypothèses que les
données soient gaussiennes ou bornées (ou toute autre hypothèse de concentration forte), et c’est
dans ce sens que nous appellerons nos estimateurs robustes aux queues lourdes. Quelle hypothèse
plus faible devrions-nous faire sur la distribution sous-jacente des données, qui serait suffisamment
faible pour ne pas limiter sévèrement l’applicabilité des résultats, et suffisamment forte pour
conduire à des résultats intéressants et significatifs ? Cette question est étudiée en détail dans
Devroye et al. (2016) : les auteurs montrent que, afin d’atteindre un taux qui ressemble à celui
atteint asymptotiquement avec le théorème central limite, taux dont on peut prouver qu’il est
“essentiellement optimal” et qui sera discuté plus en détail ci-dessous, l’hypothèse minimale à
faire sur les données est l’existence d’un second moment fini : E(X2) <∞. Comme une grande
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majorité de la littérature robuste qui traite des données à queue lourde, la majeure partie de
cette thèse se conforme à cette analyse (Chapitre 3, 4 et 5)

Setting 2.2. La variable aléatoire X à partir de laquelle sont échantillonnées les N variables
(X̃i)Ni=1 dans R a une moyenne µ, que nous essayons d’estimer, et un moment du second ordre
(éventuellement inconnu) σ2 = E[(X − µ)2].

La plupart des travaux présentés traitent du cas où la distribution sous-jacente a un moment
du second ordre, parfois connu, parfois inconnu. Nous notons cependant que certains papiers
récents étudient des cas où le second moment n’existe même pas et est remplacé par des moments
d’ordre 1+α avec α < 1 par exemple Cherapanamjeri et al. (2020b). La fin de cette thèse présente
également de nouveaux paramètres qui ne nécessitent pas l’existence d’un second moment fini
(dans certaines parties du chapitre 6 et 7), en utilisant comme inspiration d’autres résultats
asymptotiques que le théorème central limite.

La moyenne empirique. Revenons à notre exemple, et à l’insuffisance de la moyenne em-
pirique. Si l’on dispose de N réalisations indépendantes d’une variable aléatoire de moyenne µ et
de variance σ2, l’inégalité de Chebyshev nous dit que la moyenne empirique µ̂ vérifie, avec une
probabilité supérieure à 1− δ, |µ̂− µ| ≤ σ/

√
Nδ. Catoni (2012) indique que ce taux est net pour

la moyenne empirique en général, on ne peut donc pas donner une meilleure inégalité pour la
moyenne empirique qui soit valable pour toutes les distributions avec une variance. Ainsi, pour
la moyenne empirique, r(δ) = σ/

√
Nδ, ou de manière équivalente δ(r) = σ2/(Nr2). Cette limite

se détériore rapidement pour les petites valeurs de δ : si l’on veut obtenir des résultats à haute
probabilité, par exemple avec δ ∼ 10−5, avec environ un millier de points de données, on obtient
un rayon de ' 10 σ. Est-il possible de faire mieux, peut-on trouver des procédures qui donnent
un rayon plus petit ? Cette question a été soulevée dans Catoni (2012), qui donne également une
réponse.

Estimation sous-gaussienne. Catoni (2012) affirme que le taux atteint par la moyenne
empirique peut effectivement être amélioré de manière drastique. Le taux qu’il propose s’inspire
de la théorie asymptotique. En effet, lorsque les données ont un second moment fini σ, le théorème
central limite garantit que la moyenne empirique a des queues gaussiennes, asymptotiquement,
sans faire d’autres hypothèses sur les données, ainsi, lorsque N →∞,

P
(
|µ̂− µ| < σφ−1(1− δ/2)√

N

)
→ δ, (2.1)

où φ est la fonction de distribution cumulative de la distribution normale standard. Catoni
(2012) prouve également que ce taux asymptotique ne peut pas être amélioré : aucun estimateur
non-asymptotique ne peut atteindre des queues meilleures que gaussiennes pour toutes les
distributions d’une classe ”suffisamment grande” (qui contient au moins toutes les distributions
gaussiennes avec une variance donnée σ2). La principale conclusion de Catoni (2012) est qu’il
est possible de trouver des estimateurs non-asymptotiques atteignant le taux (1.1), à constantes
multiplicatives universelles près.

Notons que le taux σφ−1(1− δ/2)
√
N obtenu dans (1.1) est le taux atteint par la moyenne

empirique lorsque les données sont un échantillon de N de variables gaussiennes i.i.d.. Nous
disons donc qu’un estimateur réalise un taux subgaussien s’il réalise le taux (1.1) à constantes
multiplicatives près. En un sens, nous voulons que nos estimateurs soient aussi bons que si
les données étaient gaussiennes, même lorsque l’échantillon réel est mal concentré (on suppose
seulement qu’il a un second moment).
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Remark 2.1. Nous savons que φ−1(1− δ/2) ≤
√

2 ln(2/δ), et pour de petits δ, φ−1(1− δ/2) ∼√
2 ln(2/δ). Comme nos résultats sont tous formulés à constantes multiplicatives près1, nous

utilisons la formulation explicite C
√

ln(1/δ) dans la plupart de nos résultats.

Pour revenir à l’exemple, le taux (1.1) avec δ ∼ 10−5 et N ∼ 1000 donne un rayon d’environ
0, 15σ, et la dépendance logarithmique cruciale lui permet de se dégrader drastiquement moins
vite que le taux obtenu par l’inégalité de Tchebychev lorsque δ tends vers 0.

Catoni (2012) construit un estimateur subgaussien θ̂ implicitement, comme solution de
l’équation suivante : ∑

i

ψ
[
α(Xi − θ̂)

]
= 0,

où α est un réel positif soigneusement choisi, et ψ est une fonction d’influence bornée telle que
ψ(x) ∼ x lorsque x est proche de 0. Cette thèse au contraire étudie principalement une autre
manière de construire un tel estimateur subgaussien, l’heuristique Median-Of-Mean (MOM).

L’heuristique de la médiane des moyennes. Cette approche, décrite pour la première
fois dans Nemirovsky and Yudin (1983) et Jerrum et al. (1986), a fait l’objet d’une attention
particulière dans les communautés de la statistique et de l’apprentissage automatique au cours
de la dernière décennie, par exemple dans Bubeck et al. (2013), Lerasle and Oliveira (2011),
Devroye et al. (2016), Minsker and Strawn (2017) ou Minsker (2015). Cette approche a été
conçue à l’origine pour construire des estimateurs robustes aux données à queue lourde dans
divers contextes (voir Alon et al. (1999), Jerrum et al. (1986) et Birgé (1984) par exemple). Elle
peut être définie comme suit : on commence par diviser aléatoirement les données en K blocs
B1, . . . , BK de taille égale m = bN/Kc (si K ne divise pas N , on enlève juste quelques données),
K étant choisi d’ordre log(1/δ) avec δ la probabilité d’échec souhaitée par le statisticien. On
calcule ensuite la moyenne empirique au sein de chaque bloc : pour k = 1, . . . ,K,

X̄k = 1
m

∑
i∈Bk

Xi.

L’estimateur final µ̂K est la médiane des dernières K moyennes empiriques. Le premier article
qui prouve formellement que cet estimateur a des queues sub-gaussiennes est Devroye et al.
(2016).

Theorem 2.1 (Devroye et al. (2016)). L’estimateur µ̂K a des déviations subgaussiennes : avec
la probabilité ≥ 1− e−K/32,

|µ̂K − µ| ≤

√
8σ

2K

N

L’idée principale réside dans le passage d’une variable non bornée à une variable bornée
grâce à l’opérateur médian. En effet, pour savoir si la médiane est dans un intervalle I, on
calcule Z := ∑K

k=1 1X̄k∈I : lorsque cette quantité est supérieure à K/2, la médiane est dans I.
La quantité Z, contrairement à la moyenne empirique, est une somme de variables bornées, ainsi
l’inégalité de Hoeffding (voir Hoeffding (1963)) stipule qu’elle est proche de sa moyenne avec une
probabilité d’échec exponentiellement faible, ce qui conduit au taux sous-gaussien du théorème
2.1.

Notez que cette procédure n’est pas valable simultanément pour tous les δ : il faut calculer
un estimateur différent pour chaque valeur de δ. Ce problème peut être résolu en utilisant la

1Dans cette thèse, nous n’avons pas essayé d’optimiser les constantes, bien que ce soit un problème important
et intéressant, voir la section 1.5.
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méthode d’adaptation de Lepskii présentée dans Lepskĭı (1990), comme expliqué plus en détail
dans le chapitre 3.

Cette technique permet de traiter pleinement le cas unidimensionnel, ainsi que les données à
queue lourde et la contamination adverse. Cependant, le développement rapide de l’apprentissage
automatique et la quantité croissante de données hautement dimensionnelles disponibles ont
conduit de nombreux statisticiens à se concentrer sur les tâches en grande dimension. Dans ces
contextes, les données données ne sont pas des observations d’une variable aléatoire unidimen-
sionnelle, mais plutôt des observations d’un vecteur aléatoire à d dimensions, avec d � 1. Le
domaine de la statistique robuste s’est emparé de cette problématique, soulevant de nouvelles
questions : quel taux peut-on atteindre dans ce cas ? Quel rôle joue la dimension ? Comment
modifier et adapter les procédures pour ce cadre ? Nous notons que l’extension du résultat
unidimensionnel n’est pas triviale car il existe plusieurs généralisations possibles de la médiane
dans des configurations multidimensionnelles (par exemple la médiane géométrique, voir Minsker
(2015) pour une définition, ou la médiane coordonnées par coordonnées).

2.2 Robustesse en haute dimension

2.2.1 Le taux subgaussien en haute dimension : découplage de la complexité
et de la déviation

Quels taux est-il possible d’atteindre dans des configurations à haute dimension ? On peut
toujours essayer d’atteindre un taux inspiré de la normalité asymptotique de la moyenne empirique
des observations à second moment fini, qui est le taux atteint par la moyenne empirique lorsque
les données sont un échantillon N de variables gaussiennes i.i.d., que nous appellerons encore taux
subgaussien. Nous calculons ce taux en utilisant l’inégalité de Borell-TIS (voir (Ledoux, 2001,
Théorème 7.1)) : si Z1, Z2, ..., ZN sont des variables gaussiennes indépendantes identiquement
distribuées N (µ, Id), il découle de cette inégalité qu’avec une probabilité d’au moins 1− δ,∥∥∥Z̄N − µ∥∥∥2

= sup
‖v‖2≤1

〈
Z̄N − µ, v

〉
≤ E sup

‖v‖2≤1

〈
Z̄N − µ, v

〉
+ γ

√
2 log(1/δ),

où γ = sup‖v‖2≤1

√
E
〈
Z̄N − µ, v

〉2. Il est de connaissance élémentaire sur les distributions
gaussiennes multivariées que E sup‖v‖2≤1

〈
Z̄N − µ, v

〉
≤
√
d/N et γ =

√
1/N , ce qui conduit au

taux subgaussien suivant (où C est une constante absolue),

∥∥∥Z̄N − µ∥∥∥2
≤

√ d

N
) +

√
2 log(1/δ)

N

 := Crδ. (2.2)

La question de savoir s’il était possible d’atteindre un tel taux avec des données corrompues
et à forte queue de distribution a été un problème ouvert pendant quelques années. Les premières
tentatives d’adaptation de l’heuristique Median-Of-Mean, utilisant par exemple la médiane
géométrique (également appelée point de Fermat) au lieu de la médiane unidimensionnelle, et
présentées dans Minsker (2015) ou dans Hsu and Sabato (2016), ont conduit à des estimateurs µ̂
atteignant avec une probabilité supérieure à 1− δ,

‖µ̂− µ‖2 ≤ d log(1/δ)
N

, (2.3)

où ‖ · ‖ est la norme euclidienne canonique sur Rd. Cette limite est proportionnelle à log(1/δ),
donc les estimateurs sont en quelque sorte robustes aux queues lourdes, mais ils n’atteignent pas
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tout à fait le taux subgaussien. En effet, dans le taux subgaussien, le terme de complexité d,
qui capte le degré de complexité de l’espace ambiant, et le facteur dépendant de la défaillance
log(1/δ) ne sont pas multipliés, mais ajoutés, et sont donc en quelque sorte découplés l’un de
l’autre.

Quelques années plus tard, l’article fondateur de Lugosi and Mendelson (2019c) a décrit
le premier estimateur permettant d’atteindre le taux subgaussien en supposant uniquement
un second moment fini, en utilisant l’heuristique Median-Of-Mean couplée à une procédure de
tournoi. L’idée est d’utiliser une généralisation de l’inégalité de Hoeffding utilisée dans le théorème
2.1, appelée Inégalité de différence bornée. (également appelée inégalité de McDiarmid ou de
Hoeffding/Azuma), que nous rappelons ici (voir par exemple le théorème 6.2 dans Boucheron
et al. (2013)) :

Theorem 2.2 (Inégalité de McDiarmid). Considérons des variables aléatoires indépendantes
X1, · · · , Xn ∈ E et un mapping ψ : En 7→ versR. Si pour tous i ∈ J1, nK et pour tous
x1, · · · , xn, x′i

|ψ(x1, · · · , xi, · · · , xn)− ψ(x1, · · · , x′i, · · · , xn)| ≤ ci ,

alors pour chaque t > 0,

P
(∣∣ψ(X1, · · · , Xn)− E[ψ(X1, · · · , Xn)]

∣∣ ≥ t) ≤ exp
(
− 2t2∑n

i=1 c
2
i

)
Cette inégalité se trouve dans McDiarmid (1997) et elle permet de traiter des fonctions

φ plus générales que la simple somme de variables aléatoires. Dans le problème en question,
nous utilisons cette inégalité pour lier l’équivalent en haute dimension de la quantité Z définie
ci-dessus,

Z̃ := sup
v∈Sd−1

2

 ∑
k∈[K]

1(|
〈
Xk − µ, v

〉
| > r)

 , (2.4)

qui est cette fois un supremum sur toutes les directions possibles à d-dimensions, mais reste un
supremum de quantité bornée. Le théorème 2.2 stipule que Z̃ a une probabilité exponentielle
d’être proche de son espérance. Les étapes restantes de la preuve, qui sont détaillées dans le
chapitre 3, consistent à limiter cette espérance E(Z̃), en utilisant les outils de la théorie des
processus empiriques.

Cet article pionnier, tout en répondant à une question ouverte, ouvre deux directions de
recherche principales qui sont au cœur de cette thèse, et qui portent toutes deux sur des notions
de complexité. La première concerne la computational complexity : pour calculer l’estimateur
décrit dans Lugosi and Mendelson (2019c), il faut un nombre d’étapes qui crôıt exponentiellement
avec la dimension, de sorte que cet estimateur ne peut pas être calculé en pratique, même pour
des valeurs modérées de d. Notre première question est donc la suivante : Pouvons-nous trouver
des estimateurs subgaussiens traitables en haute dimension ? Les chapitres 3 et 4 traitent
principalement de cette question. La deuxième question traite de la complexité statistique
au sens large et demande s’il est toujours possible de trouver des procédures qui atteignent un
taux gaussien pour d’autres tâches d’estimation, comme l’estimation par rapport à des normes
non-euclidiennes par exemple. Les chapitres 5, 6 et 7 suivent cette deuxième direction.

2.2.2 Complexité informatique

Le premier type de complexité que cette thèse explore est une complexité computationnelle.
Diakonikolas et al. (2016) est l’un des premiers articles à soulever la question de la tractabilité de
l’estimation robuste de la moyenne en haute dimension, et à montrer que l’apprentissage robuste
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en haute dimension est algorithmiquement possible. Avant cet article pionnier, les considérations
calculatoires étaient principalement des résultats de dureté, montrant que les estimateurs robustes
traditionnels tels que la médiane de Tukey, bien que prouvés robustes, sont prouvés difficiles à
calculer (voir par exemple Johnson and Preparata (1978) ou Bernholt (2006)). En utilisant de
nouvelles techniques, Diakonikolas et al. (2016) ouvre la voie à la statistique robuste calculable
et traçable et laisse de nombreuses questions passionnantes à explorer. En effet, même si les
estimateurs proposés dans Diakonikolas et al. (2016) sont robustes à la contamination adverse,
ils échouent avec une probabilité constante (par exemple 1/100), et n’atteignent pas le taux
subgaussien mentionné ci-dessus. Une observation similaire peut être faite sur les travaux de
Minsker (2015) ou Hsu and Sabato (2016). Dans ces deux articles, les estimateurs sont très rapides
à calculer : la médiane géométrique de la moyenne peut être calculée aussi rapidement que la
moyenne empirique a des facteurs multiplicatifs logarithmiques près en la dimension. Cependant,
comme nous l’avons souligné précédemment, les estimateurs proposés ne parviennent pas à
atteindre le taux subgaussien. Une grande partie de cette thèse se concentre sur le développement
de procédures qui sont efficaces en termes de calcul et qui atteignent le taux subgaussien.

2.2.3 Complexité statistique

Une deuxième question à laquelle ce travail s’attaque est de savoir s’il est encore possible de
trouver des estimateurs qui se comportent comme si les données étaient gaussiennes pour d’autres
tâches d’estimation, ou si cela n’est possible que dans quelques sous-cas particuliers comme
l’estimation de la moyenne par rapport à la norme euclidienne habituelle.

Illustrons cette question par un exemple. Nous voulons maintenant estimer la moyenne par
rapport à une norme sparse : nous désignons l’ensemble des vecteurs s-sparse Us, et considérons
la norme suivante :

‖a‖s = sup
u∈Us,‖u‖2=1

〈a, u〉 .

En un sens, nous cherchons à remplacer le supremum sur la boule euclidienne Bd2 par un
supremum sur un autre ensemble, ici Us ∩ Bd2 . On voit, en reprenant les variables gaussiennes Zi,
qu’avec une probabilité d’au moins 1− δ, (toujours d’après (Ledoux, 2001, Theorem 7.1))∥∥∥Z̄N − µ∥∥∥

s
= sup
‖v‖2≤1,v∈Us

〈
Z̄N − µ, v

〉
≤ E sup

‖v‖2≤1,v∈Us

〈
Z̄N − µ, v

〉
+ γ

√
2 log(1/δ)

≤ C
(
s log(ed/s)

N
+ log(1/δ)

N

)1/2
.

Le taux subgaussien pour le problème d’estimation de moyenne sparse de la dernière equation
est différent de (2.2) : le ”terme d’écart” contenant la probabilité d’échec δ reste inchangé, mais
le ”terme de complexité” (celui qui ne dépend pas de δ) passe de d à s log(ed/s). Ce taux peut-il
être atteint en supposant un moment du second ordre sur les variables aléatoires ? Bien que
cette question soit traitée dans cette thèse pour le cas particulier du supremum sur Us ∩ Bd2 , sa
généralisation à d’autres ensembles V reste une question ouverte, qui n’est que partiellement
traitée dans les chapitres 5, 6 et 7. Nous pouvons reformuler cette question d’une autre manière :
le terme de complexité issu de la perspective gaussienne est-il atteignable pour des variables non
gaussiennes, ou existe-t-il une autre mesure de complexité intrinsèquement liée à la situation non
gaussienne ?
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2.3 Contributions principales

Après avoir introduit les principaux concepts, outils et questions, nous présentons les différentes
contributions des cinq travaux qui composent cette thèse.

2.3.1 Estimation subgaussienne robuste d’un vecteur moyen en temps quasi-
linéaire

La première contribution de cette thèse, détaillée dans le chapitre 3, porte sur la complexité
computationnelle de l’estimation subgaussienne de la moyenne, par rapport à la norme euclidienne
traditionnelle. Au début de cette thèse, deux articles très importants ont été publiés, qui ont été
les premiers à proposer des procédures atteignant le taux subgaussien (1.2) tout en fonctionnant
en temps polynomial dans les deux variables N et d : Hopkins (2018) et Cherapanamjeri et al.
(2019). Ils s’exécutent tous deux en temps polynomial : O(N24 +Nd) pour Hopkins (2018) et
O(N4 +N2d) pour Cherapanamjeri et al. (2019). (voir Cherapanamjeri et al. (2019) pour plus
de détails sur ces temps d’exécution). Ils ne considèrent pas une contamination adversariale
du jeu de données alors que leurs résultats s’étendent facilement à cette configuration. Le
premier chapitre de cette thèse propose donc le troisième algorithme polynomial atteignant
le taux subgaussien pour l’estimation de la moyenne, et le premier à traiter explicitement la
contamination adverse. De plus, il améliore le temps d’exécution des premières procédures
proposées : nous construisons un algorithme s’exécutant en temps Õ(Nd + u log(1/δ)d) qui
produit un estimateur de la vraie moyenne atteignant le taux subgaussien (1.2) avec une confiance
de 1− δ − (1/10)u (pour exp(−c0N) ≤ δ ≤ exp(−c1|O|)) sur une base de données corrompue et
sous une hypothèse de second moment uniquement. Dans le pire des cas, le temps d’exécution
est donc de Õ(N2d).

Pour ce faire, cet article utilise l’heuristique de la médiane de la moyenne, comme les deux
procédures précédentes en temps polynomial. Notre approche reprend en fait des idées de deux
communautés : le principe de la médiane des moyennes de la communauté des statistiques
et une relaxation de la programmation semi-définie (SDP) utilisée dans la communauté des
sciences informatiques par Cheng et al. (2019a) qui peut être théoriquement calculée rapidement.
L’amélioration du temps de calcul par rapport à la procédure de Cherapanamjeri et al. (2019)
est due à l’utilisation de ce programme semi-défini (SDP) couvrant étudié dans Allen-Zhu et al.
(2014), Peng et al. (2012), et Cheng et al. (2019a), et popularisé dans le domaine de la statistique
robuste par Cheng et al. (2019a), à chaque itération de l’algorithme de descente du gradient
robuste. Alors que dans Cheng et al. (2019a) ce SDP conduit à des procédures échouant avec une
probabilité constante et donc à l’impossibilité d’atteindre le taux subgaussien, nous montrons que
l’utilisation de ce type de SDP sur les moyennes de blocs plutôt que sur les données elles-mêmes
conduit non seulement à atteindre le taux subgaussien, mais aussi à une amélioration du coût de
calcul de l’algorithme. L’heuristique de la médiane de la moyenne présente donc dans ce cas un
avantage stochastique et un avantage computationnel.

Pour prouver que la procédure proposée atteint effectivement le taux subgaussien, nous avons
dû trouver un nouveau lemme stochastique intéressant en soi, généralisant celui de Lugosi and
Mendelson (2019c) et Lerasle et al. (2019). Ce lemme a été utilisé depuis dans divers autres
travaux et contextes, par exemple dans la régression dans Cherapanamjeri et al. (2020b), ou
pour définir la notion de stabilité dans Diakonikolas et al. (2020). La preuve de ce lemme repose
sur une technique d’arrondi gaussien similaire à celle utilisée dans l’inégalité de Grothendieck.

Des travaux très récents Lei et al. (2020); Hopkins et al. (2020); Depersin (2020a) obtiennent
des résultats similaires à celui de ce travail. Ils ont également réussi à remplacer les SDP par
des méthodes spectrales pour le calcul d’une direction de descente robuste à chaque étape. En
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effet, même si les SDP de couverture sont d’un point de vue théorique efficaces d’un point de
vue informatique (voir Allen-Zhu et al. (2014),Peng et al. (2012)), ils sont notoirement difficiles à
mettre en œuvre en pratique alors que les méthodes spectrales utilisées dans Lei et al. (2020);
Hopkins et al. (2020); Depersin (2020a) ouvrent la porte à des algorithmes implémentables. Il
est intéressant de noter que le temps de calcul proposé dans ce travail est encore à ce jour le
meilleur temps d’exécution connu, et on peut conjecturer qu’il pourrait même être le moyen le
plus rapide d’atteindre le taux subgaussien.

2.3.2 Un algorithme spectral pour la régression robuste avec des taux sub-
gaussiens

La deuxième contribution que nous apportons, détaillée dans le chapitre 4 traite de la question
de l’atteinte des limites subgaussiennes en temps polynomial, mais pour la régression au lieu de
l’estimation de la moyenne. Nous rappelons rapidement le cadre standard de la régression linéaire
où les données sont des couples (Xi, Yi)i ∈ Rd × R et où l’on cherche la meilleure combinaison
linéaire des coordonnées d’un vecteur d’entrée X pour prédire la sortie Y , c’est-à-dire que l’on
cherche β∗ défini comme suit.

β∗ = argmin
β∈Rd

`(β) = argmin
β∈Rd

E(Y1 − 〈β,X1〉)2.

La question de savoir s’il était même possible d’atteindre des taux sub-gaussiens dans ce cadre,
sous des hypothèses de moment faible, est restée longtemps ouverte. En effet, pendant un certain
temps, les algorithmes polynomiaux les plus connus étaient ceux de Prasad et al. (2018) ou de Hsu
and Sabato (2016). La garantie pour ces deux algorithmes est la suivante : lorsque la covariance de
X est l’identité et lorsque le bruit ξ = Y −〈β∗, X〉 a une variance bornée, `(f̂)−`(f∗) ≤ O( log(1/δ)d

N )
avec une probabilité de 1−δ. Ce taux ne présente pas ce découplage entre complexité et déviation
que nous avons appelé sub-gaussien. L’article de Cherapanamjeri et al. (2020a) a été le premier
à construire une méthode en temps polynomial permettant d’atteindre le taux subgaussien des
MCO dans le cadre gaussien `(f̂) − `(f∗) ≤ O( log(1/δ)∨d

N ). Lors de la première publication du
chapitre 4, Cherapanamjeri et al. (2020a) était la seule procédure fonctionnant en algorithme
polynomial atteignant le taux subgaussien optimal. Cependant, Cherapanamjeri et al. (2020a)
utilise la hiérarchie de programmation Sum of Square (SoS) pour concevoir son algorithme. Même
si la hiérarchie SoS s’exécute en temps polynomial, sa dépendance à l’égard de la résolution
de grands programmes semi-définis la rend peu pratique et reste un résultat théorique, laissant
toujours ouverte la question de l’existence d’un algorithme pratique efficace permettant d’obtenir
des taux subgaussiens optimaux.

Dans le chapitre 4, nous abordons cette question, en montrant que les techniques de Lei et al.
(2020) combinées aux lemmes de Depersin (2020a) peuvent être utilisées pour donner le premier
algorithme pratique, presque quadratique (et en fait dans la plupart des cas presque linéaire) qui
atteint le taux subgaussien. Nous réalisons également des expériences numériques sur des données
simulées avec la procédure que nous proposons pour montrer qu’elle est effectivement pratique
et rapide. De plus, comme prévu par nos résultats théoriques, notre analyse de simulation
montre qu’elle est robuste à la fois aux données à queue lourde et aux valeurs aberrantes. À
notre connaissance, c’est la première fois que des expériences numériques mettant en œuvre la
formulation exacte d’un estimateur sous-gaussien sont menées pour un algorithme de régression
avec des taux sous-gaussiens et des garanties de temps polynomial.
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2.3.3 Estimation subgaussienne robuste avec dimension VC

La troisième contribution que nous apportons est détaillée dans le chapitre 5, et elle concerne
la complexité statistique plutôt que la complexité informatique. Nous avons essayé de montrer
comment on peut utiliser la dimension VC pour obtenir des limites de pointe dans l’estimation
non-euclidienne avec des données à forte queue.

Dans ce travail, nous montrons que l’analyse présentée dans Lugosi and Mendelson (2019c),
dans Lecué and Lerasle (2019), Lerasle (2019) ou dans Lecué and Lerasle (2020), et généralisée
dans Lugosi and Mendelson (2019b), toutes basées sur le principe de la médiane des moyennes
et l’utilisation des complexités de Rademacher, peuvent être modifiées afin d’obtenir des taux
sub-gaussiens pour des problèmes épars ou structurés en supposant uniquement des moments
d’ordre deux bornés. La méthode développée dans Lerasle (2019) ou dans Lecué and Lerasle
(2020) nécessite que les données aient au moins log(d) de moments finis (où d est la dimension de
l’espace) afin d’exploiter la sparsité du problème et n’offre aucune garantie sans cette condition, et
est à ce jour la meilleure connue. Nous montrons que nous pouvons abandonner cette condition en
introduisant judicieusement la dimension VC dans les différentes preuves, et exploiter la sparsité
du problème avec seulement deux moments. Nous montrons au chapitre 5 que les approches
classiques utilisant les complexités locales de Rademacher ne peuvent pas atteindre ce type de
limites subgaussiennes sous l’hypothèse d’un second moment seulement. D’une certaine manière,
l’approche classique utilisée jusqu’à présent ne capture pas la complexité statistique correcte
des problèmes à haute dimension sous des hypothèses structurelles à basse dimension et sous
une hypothèse de second moment seulement : il semble que la complexité de Rademacher
ne soit pas la bonne façon de mesurer la complexité du problème de l’estimation
de la moyenne structurée dans une norme quelconque. Notre approche basée sur la
dimension VC permet de surmonter ce problème et d’aller au-delà de cette hypothèse de moments
subgaussiens log d qui est apparue dans tous les travaux sur l’estimation robuste et subgaussienne
dans le cadre de la haute dimension Lerasle (2019). Nous montrons également que cette technique
générale peut être facilement reproduite et nous donnons de nouveaux estimateurs robustes
qui atteignent des limites de pointe pour différentes tâches d’estimation telles que la régression,
l’estimation de la moyenne avec des normes non euclidiennes, l’estimation robuste de matrices à
faible rang et l’estimation de la covariance.

Ce chapitre n’est pas le premier à introduire la dimension VC dans les problèmes d’estimation
robuste : il a été inspiré par Chen et al. (2018) et Gao (2017) par exemple. Dans ces deux articles,
l’estimation et la régression avec une éventuelle structure de sparsité et des valeurs aberrantes
sont également réalisées avec des taux optimaux, en utilisant des techniques de dimension VC,
mais leur hypothèse d’une structure de sparsité et de valeurs aberrantes n’a pas été retenue.

Nous notons que la dimension VC présente certains avantages par rapport à la complexité de
Rademacher dans certains cas, mais ce quatrième chapitre montre qu’elle ne conduit pas à des
taux optimaux dans tous les cas, et donc qu’elle n’est pas toujours la bonne façon de mesurer
la complexité d’une tâche d’estimation robuste. En effet, en utilisant la dimension VC dans
l’estimation de la moyenne, nous perdons une dépendance intéressante des bornes de risque dans
la structure de covariance : nos taux pour l’estimation de la moyenne (non éparse) dépendent de
la dimension ambiante d au lieu du rang effectif Tr(Σ)/||Σ||op (qui est capturé par la complexité
de Rademacher). En particulier, l’approche générale de la dimension VC ne se généralise pas
directement aux espaces de dimension infinie. Dans la dernière section du chapitre 5, nous
montrons que ce problème peut être surmonté si nous avons une certaine connaissance de la
matrice de covariance, en proposant une nouvelle procédure pour ce cas.



40 CHAPTER 2. INTRODUCTION EN FRANÇAIS : ROBUSTESSE ET COMPLEXITÉ

2.3.4 Sur la robustesse de la médiane des moyennes de Stahel-Donoho à la
corruption contradictoire et aux données à queue lourde

Dans le chapitre 6, nous traitons de l’estimation par rapport à la norme x ∈ Rd →
∥∥∥Σ−1/2x

∥∥∥
2
, où

Σ est la matrice de covariance des données, et nous supposons que cette matrice n’est pas connue
au préalable par le statisticien. Ainsi, en un sens, nous essayons d’estimer par rapport à une
norme inconnue, alors que les techniques dérivées dans le chapitre 5 s’appliquent principalement à
des normes connues. Nous étudions cette norme particulière, dont la boule unitaire est l’ellipsöıde
Σ1/2Bd

2 , parce qu’il s’agit de la meilleure métrique – c’est-à-dire celle qui conduit à des ensembles
de confiance de volume minimal pour une confiance donnée – dans le cas de référence i.i.d.
gaussien.

Alors que le taux subgaussien pourrait être obtenu avec les estimateurs de Lugosi and
Mendelson (2019b) ou Lerasle et al. (2019), ces estimateurs nécessiteraient la connaissance de
Σ dans leur construction. Il faut donc envisager d’autres techniques. Dans ce chapitre, nous
montrons que c’est possible grâce à une notion de profondeur/extrémité introduite au début
des années 80 qui utilise une normalisation par une estimation robuste de l’échelle appelée
Stahel-Donoho Outlyingness (SDO), qui a été introduite pour la première fois dans Donoho and
Gasko (1992). Nous couplons cette notion d’excentricité avec l’heuristique Median-Of-Mean pour
obtenir des estimateurs subgaussiens par rapport à la métrique

∥∥∥Σ−1/2·
∥∥∥

2
. Sur le chemin de

notre objectif, nous complétons les résultats sur la cohérence
√
n et la normalité asymptotique

des estimateurs de Stahel-Donoho que l’on peut trouver dans Maronna and Yohai (1995) et Tyler
(1994) en dérivant le premier taux de convergence non-asymptotique pour la médiane SDO (ainsi
que sa version médiane des moyennes). Nous montrons également que les propriétés de robustesse
de la médiane SDO originale et de sa version MOM vont au-delà du modèle de contamination de
Huber et qu’elles persistent toujours dans le modèle de corruption adversariale de Setting 2.1.
Nous utilisons également l’échelonnement robuste de l’écart de Stahel-Donoho pour construire
des estimateurs de la matrice de covariance sous une certaine hypothèse de régularité.

2.3.5 Estimation robuste optimale de la moyenne et de l’emplacement via des
programmes convexes en respectant des pseudo-normes quelconques

Notre dernière contribution, détaillée dans le chapitre 7, consiste à donner une nouvelle borne
inférieure pour l’estimation de la moyenne dans toute norme. Lugosi and Mendelson (2019b)
donne la borne inférieure suivante pour l’estimation de la moyenne :

Theorem 2.3. [Théorème 3 de Lugosi and Mendelson (2019b)] Il existe une constante absolue
c > 0 telle que ce qui suit est vrai. Si µ̂ : RNd → Rd est un estimateur tel que pour tout µ∗ ∈ Rd
et tout δ ∈ (0, 1/4),

PNµ∗ [‖µ̂− µ∗‖ ≤ r∗] ≥ 1− δ

où PNµ∗ est la distribution de probabilité de (Xi)i∈[N ] lorsque les Xi sont i.i.d. N (µ∗,Σ) alors

r∗ ≥ c√
N

(
sup
η>0

η
√

logN(Σ1/2B◦, ηBd
2) + sup

v∈B◦

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

)

où N(Σ1/2B◦, ηBd
2) est le nombre minimal de translations de ηBd

2 nécessaires pour couvrir
Σ1/2B◦.

Le terme de complexité dans cette borne inférieure est donc mesuré en utilisant la borne
de Sudakov définie dans le 1.3. Cependant, il existe un écart entre cette borne inférieure et les
bornes supérieures dépendant de la largeur moyenne gaussienne dans le cas gaussien. Cet écart
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provient du manque de rigueur de l’inégalité de Sudakov présentée dans le théorème 1.3. Pour
les ellipsöıdes par exemple, la limite de Sudakov n’est pas nette en général et donc la limite
inférieure du théorème 2.3 ne permet pas de retrouver le taux subgaussien classique pour le cas
de la norme euclidienne standard (c’est-à-dire pour S = Bd

2) qui est donné dans Lugosi and
Mendelson (2019c) par : √

Tr (Σ)
N

+

√
‖Σ‖op log(1/δ)

N
. (2.5)

En effet, lorsque ‖·‖ est la norme euclidienne `d2, alors E
∥∥∥Σ1/2G

∥∥∥ = E
∥∥∥Σ1/2G

∥∥∥
2
∼
√

Tr(Σ).
En revanche, l’entropie de Σ1/2B◦ = Σ1/2Bd

2 par rapport à ηBd
2 peut être calculée en utilisant

l’équation (5.45) dans Pisier (1989) que

sup
η>0

η
√

log2N(Σ1/2Bd
2 , ηB

d
2) ∼ sup

n≥1,k∈[d]

√
n

2n/k

∣∣∣∣∣∣
k∏
j=1

√
λj

∣∣∣∣∣∣
1/k

∼

√√√√√ sup
k∈[d]

k

∣∣∣∣∣∣
k∏
j=1

λj

∣∣∣∣∣∣
1/k

(2.6)

où λ1 ≥ . . . ≥ λd sont les valeurs singulières de Σ. En particulier, lorsque λj = 1/j, la borne
d’entropie (1.9) est de l’ordre d’une constante alors que la largeur moyenne gaussienne est de
l’ordre de

√
log d. Nous comblons cette lacune dans le chapitre 7 en montrant une limite inférieure

où l’entropie est remplacée par la largeur moyenne gaussienne (plus grande). Pour ce faire, nous
utilisons le lemme d’Anderson et des arguments analytiques, au lieu des arguments géométriques
et volumétriques utilisés par Lugosi and Mendelson (2019b) pour obtenir la limite de Sudakov
comme limite inférieure.

Nous montrons également que ce taux peut parfois être atteint par une solution à un problème
d’optimisation convexe dans le cadre adversatif et L2 à queue lourde en considérant le minimum
de certaines transformées de Fenchel-Legendre construites en utilisant le principe de la médiane
des moyennes.
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CHAPTER 3

Robust Subgaussian Estimation of a Mean Vector in Nearly Linear Time
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3.1 Thorough introduction on the robust mean vector estima-
tion problem

Estimating the mean of a random variable in a d-dimensional space when given some of its
realizations is arguably the oldest and most fundamental problem of statistics. In the past few
years, it has received important attention from two communities: the statistics community, see
for instance Catoni (2012); Minsker (2015); Chen et al. (2018); Catoni and Giulini (2017); Lugosi
and Mendelson (2019c); Minsker (2018a); M. Lerasle and Lecué (2017); Hopkins (2018); Chera-
panamjeri et al. (2019); Lei et al. (2020); Dalalyan and Minasyan (2020) and the computer science
one, see Diakonikolas et al. (2016, 2019a, 2018a,b, 2019c); Cheng et al. (2019a); Diakonikolas
and Kane (2019); Hopkins et al. (2020). Both communities consider the problem of robust mean
estimation, focusing mainly on different definitions of robustness.

In recent years, many efforts have been made by the statistics community on the construction
of estimators performing in a subgaussian way for heavy-tailed data. As seen in the introduction,
such estimators achieve the same statistical properties as the empirical mean X̄N of (X1, · · · , XN ),
a N -sample of i.i.d. Gaussian variables N (µ,Σ) where µ ∈ Rd and Σ � 0 is the covariance
matrix. In that case, for a given confidence 1− δ, the subgaussian rate as defined in Lugosi and
Mendelson (2019c) is (up to an absolute multiplicative constant)

rδ =

√
Tr(Σ)
N

+

√
‖Σ‖op log(1/δ)

N
(3.1)

43
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where Tr(Σ) is the trace of Σ and ‖Σ‖op is the operator norm of Σ. Indeed, it follows from Borell-
TIS’s inequality (see Theorem 7.1 in Ledoux (2001) or pages 56-57 in Ledoux and Talagrand
(2011)) that with probability at least 1− δ,∥∥∥X̄N − µ

∥∥∥
2

= sup
‖v‖2≤1

〈
X̄N − µ, v

〉
≤ E sup

‖v‖2≤1

〈
X̄N − µ, v

〉
+ σ

√
2 log(1/δ)

where σ = sup‖v‖2≤1

√
E
〈
X̄N − µ, v

〉2 is the weak variance of the Gaussian process. It is
straightforward to check that E sup‖v‖2≤1

〈
X̄N − µ, v

〉
≤
√

Tr(Σ)/N and σ =
√
‖Σ‖op /N , which

leads to the rate in (3.1) (up to the constant
√

2 on the second term in (3.1)). In most of
the recent works, the effort has been made to achieve the rate rδ for i.i.d. heavy-tailed data
even under the minimal requirement that the data only have a second moment. Under this
second-moment assumption only, the empirical mean cannot1 achieve the rate (3.1) and one
needs to consider other procedures. As, recalled in the general introduciton, over the years, some
procedures have been proposed to achieve such a goal: it started with Catoni (2012) and Lerasle
and Oliveira (2011), then, a Le Cam test estimator, called a tournament estimator in Lugosi and
Mendelson (2019c), a minmax median-of-means estimator in M. Lerasle and Lecué (2017) and a
PAC-Bayesian estimator in Catoni and Giulini (2017) were constructed. The constructions in
Lerasle and Oliveira (2011); Lugosi and Mendelson (2019c); M. Lerasle and Lecué (2017) are
based on the median-of-means principle, a technique that we will also use.

On the other side, the computer science (CS) community mostly considers a different definition
of robustness and targets a different goal. In many recent CS papers, tractable algorithms (and
not only theoretical estimators) have been constructed and proved to be robust with respect to
adversarial contamination of the dataset seen in the general introduction. We recall now this
adversarial contamination model together with the heavy-tailed setup which will serve as our
unique assumption in this work.

Assumption 3.1. There exists N random vectors (X̃i)Ni=1 in Rd which are independent with
mean µ and covariance matrix E(X̃i − µ)(X̃i − µ)> � Σ where Σ is an unknown covariance
matrix. The N random vectors (X̃i)Ni=1 are first given to an ”adversary” who is allowed to
modify up to |O| of these vectors. This modification does not have to follow any rule. Then, the
”adversary” gives the modified dataset (Xi)Ni=1 to the statistician. Hence, the statistician receives
an ”adversarially” contaminated dataset of N vectors in Rd which can be partitioned into two
groups: the modified data (Xi)i∈O, which can be seen as outliers and the ”good data” or inliers
(Xi)i∈I such that ∀i ∈ I, Xi = X̃i. Of course, the statistician does not know which data has been
modified or not so that the partition O ∪ I = {1, . . . , N} is unknown to the statistician.

In the adversarial contamination model from Assumption 3.1, the set O can depend arbitrarily
on the initial data (X̃i)Ni=1; the corrupted data (Xi)i∈O can have any arbitrary dependance
structure; and the informative data (Xi)i∈I may also be correlated (for instance, it is the case,
in general, when the |O| data X̃i with largest `d2-norm are modified by the adversary). The
computer science community looks at the problem of robust mean estimation from algorithmic
perspectives such as the running time in this contamination model. A typical result in this line
of research is Theorem 1.3 from Cheng et al. (2019a) that we recall now.

Theorem 3.1 (Theorem 1.3, Cheng et al. (2019a)). Let X1, . . . , XN be a data points in Rd
following Assumption 3.1. We assume that the covariance matrix Σ of the inliers satisfies
Σ � σ2Id. We assume that ε = |O|/N is such that 0 < ε < 1/3 and N & d log(d)/ε. There exists

1Under only a second-moment assumption, the empirical mean achieves the rate
√

Tr(Σ)/(δN) which can not
be improved in general, see Catoni (2012).
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an algorithm running in Õ(Nd)/poly(ε) which outputs µ̂ε such that with probability at least 9/10,
‖µ̂ε − µ‖2 . σ

√
ε.

The notation Õ(Nd) stands for the computational running time of an algorithm up to log(Nd)
factors. The first result proving the existence of a polynomial time algorithm robust to adversarial
contamination may be found in Diakonikolas et al. (2016) and the first achieving such a result
under only a second moment assumption may be found in Diakonikolas et al. (2017). Theorem 3.1
improves upon many existing results since it achieves the optimal information theoretic-lower
bound with a (nearly) linear-time algorithm.

Finally, there are two recent papers for which both algorithmic and statistical considerations
are important. In Hopkins (2018); Cherapanamjeri et al. (2019), algorithms achieving the
subgaussian rate in (3.1) have been constructed. They both run in polynomial time: O(N24 +Nd)
for Hopkins (2018) and O(N4 +N2d) for Cherapanamjeri et al. (2019) (see Cherapanamjeri et al.
(2019) for more details on these running times). They do not consider a contamination of the
dataset even though their results easily extend to this setup. Some other estimators which have
been proposed in the statistics literature are very fast to compute but they do not achieve the
optimal subgaussian rate from (3.1). A typical example is Minsker’s geometric median estimator
Minsker (2015) which achieves the rate

√
Tr(Σ) log(1/δ)/N in linear time Õ(Nd). All the later

three papers use the median-of-means principle. We will also use this principle. What we mainly
borrow from the literature on MOM estimators is the advantage to work with local block means
instead of the data themselves. We will identify two such advantages by doing so: a stochastic
one and a computational one (see Remark 3.4 below for more details).

The aim of this work is to show that a single algorithm can answer the three problems:
robustness to heavy-tailed data, to adversarial contamination and computational cost. Assump-
tion 3.1 covers the two concepts of robustness considered in the statistics and computer science
communities since the informative data (data indexed by I) are only assumed to have a second
moment and there are |O| adversarial outliers in the dataset. Our aim is to show that the
rate of convergence (3.1) which is the rate achieved by the empirical mean in the ideal i.i.d.
Gaussian case can be achieved in the corrupted and heavy-tailed setup from Assumption 3.1
with a fast algorithm: we construct an algorithm running in time Õ(Nd+ u log(1/δ)d) which
outputs an estimator of the true mean achieving the subgaussian rate (3.1) with confidence
1− δ− (1/10)u (for exp(−c0N) ≤ δ ≤ exp(−c1|O|)) on a corrupted database and under a second
moment assumption only. It is therefore robust to heavy-tailed data and to contamination. Our
approach takes ideas from both communities: the median-of-means principle which has been
recently used in the statistics community and a SDP relaxation from Cheng et al. (2019a) which
can be theoretically computed fast. The baseline idea is to construct K equal size groups of
data from the N given ones and to compute their empirical means X̄k, k = 1, . . . ,K. These
K empirical means are used successively to find a robust descent direction thanks to a SDP
relaxation from Cheng et al. (2019a). We prove the robust subgaussian statistical property of
the resulting descent algorithm under only the Assumption 3.1.

The chapter is organized as follows. In the next section, we give a high-level description of
the algorithm and summarize its statistical and computation performance in our main result
Theorem 3.2. We also clearly identify how it improves upon existing results on the same subject.
In Section 3, we prove its statistical properties and give a precise definition of the algorithm.
In Section 4, we study the statistical performance of the SDP relaxation at the heart of the
descent direction. In Section 5, we fully characterize its computational cost. In Section 3.6, we
construct a procedure achieving the same statistical properties and can automatically adapt to
the number of outliers. This latter adaptive procedure is also proved to satisfy estimation results
in expectation.
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We will use the following notation [n] = {1, . . . , n} for any n ∈ N and `d2 stands for the
Euclidean space Rd endowed with its canonical Euclidean norm ‖·‖2 : x = (xj)dj=1 ∈ Rd →(∑

j x
2
j

)1/2. A `d2-ball centered in x ∈ Rd with radius r > 0 is denoted by Bd
2(x, r), the `d2 unit

ball is denoted by Bd
2 and the `d2 unit sphere is denoted by Sd−1

2 .

3.2 Construction of the algorithms and main result

The construction of our robust subgaussian descent procedure is using two ideas. The first
one comes from the median-of-means (MOM) approach which has recently received a lot of
attention in the statistical and machine learning communities, see for instance Bubeck et al.
(2013); Lerasle and Oliveira (2011); Devroye et al. (2016); Minsker and Strawn (2017); Minsker
(2015); Nemirovsky and Yudin (1983); Alon et al. (1999); Jerrum et al. (1986); Birgé (1984). The
MOM approach often yields robust estimation strategies (but usually at a high computational
cost). Let us recall the general idea behind that approach already exposed in the introduction: we
first randomly split the data into K equal-size blocks B1, . . . , BK (if K does not divide N , we just
remove some data). We then compute the empirical mean within each block: for k = 1, . . . ,K,

X̄k = 1
|Bk|

∑
i∈Bk

Xi

where we set |Bk| = Card(Bk) = N/K. In the one-dimensional case, we then take the median
of the latter K empirical means to construct a robust and subgaussian estimator of the mean
(see Devroye et al. (2016)). It is more complicated in the multi-dimensional case, where there is
no definitive equivalent of the one dimensional median but instead there are several candidates:
coordinate-wise median, the geometric median (also known as Fermat point), the Tukey Median,
among many others (see Small (1990)). The strength of this approach is the robustness of the
median operator, which leads to good statistical properties even on corrupted databases. For
the construction of our algorithm, we use the idea of grouping the data and compute iteratively
some median of the bucketed means X̄k, k = 1, . . . ,K.

In Cherapanamjeri et al. (2019), the authors propose to use these block means for a gradient
descent algorithm: at the current point xc of the iterative algorithm, a ”robust descent direction”
well aligned with xc−µ is constructed with high probability. Note that xc−EX is the best descent
direction towards EX starting from xc; we can also re-write that as a matrix problem: a top
eigenvector (i.e. an eigenvector associated with the largest singular value) of (EX−xc)(EX−xc)>
is the optimal descent direction (xc − EX)/ ‖xc − EX‖2. As a consequence, a top eigenvector of
a solution to the optimization problem

argmax
M�0,Tr(M)=1

〈
M, (EX − xc)(EX − xc)>

〉
(3.2)

also yields the best descent direction we are looking for (note that
〈
A,B

〉
= Tr(A>B) is the

inner product between two matrices A and B). Optimization problem (3.2) may be seen as a
SDP relaxation for the problem of finding a top eigenvector and it is the reason why we go into
SDP optimization techniques. Recently, this SDP relaxation has been bypassed thanks to the
power method in Lei et al. (2020) whose aims is also to approximate a top eigenvector.

Of course, we don’t know (EX − xc)(EX − xc)> in (3.2) but we are given a database of N
data X1, . . . , XN (among which |I| of them have mean µ). We use these data to estimate in
a robust way the unknown quantity (EX − xc)(EX − xc)> in (3.2). Ideally, we would like to
identify the informative data and their block means (1/|K|)∑k∈K(X̄k − xc)(X̄k − xc)>, where
K = {k : Bk

⋂
O = ∅}, to estimate this quantity but this information is not available either.
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To address this problem we use a tool introduced in Cheng et al. (2019a); Diakonikolas et al.
(2016) adapted to the block means. The idea is to endow each block mean X̄k with a weight ωk
taken in ∆K defined as

∆K =
{

(ωk)Kk=1 : 0 ≤ ωk ≤
1

9K/10 ,
K∑
k=1

ωk = 1
}
.

Ideally we would like to put 0 weights to all block means X̄k corrupted by outliers. But, we
cannot do it since K is unknown. To overcome this issue, we learn the optimal weights and
consider the following minmax optimization problem

max
M�0,Tr(M)=1

min
w∈∆K

〈
M,

K∑
k=1

ωk(X̄k − xc)(X̄k − xc)>
〉
. (Exc)

This is the dual problem from Cheng et al. (2019a) adapted to the block means. The key insight
from Cheng et al. (2019a) is that an approximate solution Mc of the maximization problem in
(Exc) can be obtained in a reasonable amount of time using a covering SDP approach Cheng et al.
(2019a); Peng et al. (2012) (see Section 3.4). We expect a solution (in M) to (Exc) to be close to
a solution of the minimization problem in (3.2) – which is M∗ = (µ− xc)(µ− xc)>/ ‖µ− xc‖22
– and the same for their top eigenvectors (up to the sign). We note that in order to find a
good descent direction the authors of Cherapanamjeri et al. (2019) also use a (different) SDP
relaxation. Theirs costs O(N4 +Nd) to be computed.

At a high level description, the robust descent algorithm we perform outputs µ̂K after at most
log d iterations of the form xc− θcv1 where v1 is a top eigenvector of an approximate solution Mc

to the problem (Exc) and θc is a step size. It starts at the coordinate-wise median of the bucketed
means X̄1, . . . , X̄K . In Algorithm 4, we define precisely the step size and the stopping criteria
we use to define the algorithm (it requires too much notation to be defined at this stage). This
algorithm outputs the vector µ̂K whose running time and statistical performance are gathered in
the following result.

Theorem 3.2. Grant Assumption 3.1. Let K ∈ {1, . . . , N} be the number of equal-size blocks
and assume that K ≥ 300|O|. Let u ∈ N∗ be a parameter of the covering SDP used at each
descent step. With probability at least 1 − exp(−K/180000) − (1/10)u, the descent algorithm
finishes in time Õ(Nd+Kud) and outputs µ̂K such that

‖µ̂K − µ‖2 ≤ 808

1200

√
Tr(Σ)
N

+

√
1200 ‖Σ‖opK

N

 .
To make the presentation of the proof of Theorem 3.2 as simple as possible we did not

optimize the constants (better constants have been obtained in Catoni (2012); Catoni and Giulini
(2017)). Theorem 3.2 generalizes and improves Theorem 3.1 in several ways. We first improve
the confidence from a constant “9/10” to an exponentially large confidence 1− exp(−c0K) (when
u ∼ K), which was a major technical challenge (note however that the confidence 9/10 in Cheng
et al. (2019a) can be increased to any desired confidence at the expense of deteriorating the rate
of convergence – see footnote of page 2 in Cheng et al. (2019a)). We obtain the result for any
covariance structure Σ and µ̂K does not require the knowledge of Σ for its construction. We
obtain a result which holds for any N (even in the case where N ≤ d). The construction of µ̂K
does not require the knowledge of the exact proportion of outliers ε in the dataset, but it requires
an upper bound in the number of outlier, so that we can chose K & |O|. Moreover, using a
Lepskii adaptation method Lepskĭı (1991, 1990) it is also possible to automatically choose K



48 CHAPTER 3. ROBUST ESTIMATION OF A MEAN IN NEARLY LINEAR TIME

and therefore to adapt to the proportion of outliers if we have some extra knowledge on Tr(Σ)
and ‖Σ‖op (see Section 3.6 for more details). Moreover, if we only care about constant 9/10
confidence, our runtime does not depend on ε and is nearly-linear Õ(Nd). We also refer the
reader to Corollary 3.2 for more comparison with Theorem 3.1.

Remark 3.1 (Nearly-linear time). We identify two important situations where the algorithm
from Theorem 3.2 runs in nearly-linear time, that is, in time Õ(Nd). First, when the number
of outliers is known to be less than

√
N , we can choose K ≤

√
N and u = K. In that case,

the algorithm runs in time Õ(Nd) and the subgaussian rate is achieved with probability at least
1− 2 exp(−c0K) for some constant c0 (see also Corollary 3.3 for an adaptive to K version of this
result). Another widely investigated situation is when we only want to have a constant confidence
like 9/10 as it is the case in the CS community such as in Theorem 3.1. In that case, one may
choose u = 1 and any values of K ∈ [N ] can be chosen (so we can have any number of outliers up
to a N/300) to achieve the rate in Theorem 3.2 with constant probability and in nearly-linear time
Õ(Nd) (see also Corollary 3.2 for an adaptive to K version of this result). Finally, it is possible
to get a subgaussian estimator for the all range of K ∈ [N ] which is also robust to adversarial
outliers up to a constant fraction of N when we take u = K. In that case, the running time is
Õ(Nd+K2d) which is at worst Õ(N2d). So algorithm outputs µ̂K in time between Õ(Nd) and
Õ(N2d) depending on the number of outliers and the probability deviation certifying the result
we want.

Theorem 3.2 improves the result from Hopkins (2018); Cherapanamjeri et al. (2019) since µ̂K
runs faster than the polynomial times O(N24 +Nd) and O(N4 +Nd) in Hopkins (2018) and
Cherapanamjeri et al. (2019). The algorithm µ̂K also does not require the knowledge of Tr(Σ)
and ‖Σ‖op. Finally, Theorem 3.2 provides running time guarantees on the algorithm unlike in
Lugosi and Mendelson (2019c); M. Lerasle and Lecué (2017); Catoni and Giulini (2017) and it
improves upon the statistical performance from Minsker (2015). The main technical novelty lies
in Proposition 3.1, necessary to improve analysis from Cheng et al. (2019a) toward exponentially
large confidence 1− exp(−c0K). Proposition 3.1 may be of independent interest. Theorem 3.2
also improves the running time in Cheng et al. (2019a) Õ(Nd/ε6) and the constant probability
deviation (see Theorem 3.1 for more details) – both probability estimates and computational time
have been improved by using bucketed means in place of the data themselves (see Remark 3.4
below for more details). The computational time improvement from Theorem 3.2 upon the one
in Cherapanamjeri et al. (2019) is due to the use of covering SDP Allen-Zhu et al. (2014); Peng
et al. (2012); Cheng et al. (2019a) at each iteration of the robust gradient descent algorithm.
Very recent works Lei et al. (2020); Hopkins et al. (2020); Depersin (2020b) obtain similar results
to the one of Theorem 3.2. They were also able to replace SDPs by spectral methods for the
computations of a robust descent direction at each step. Even though cover SDPs are from
a theoretical point of view computationally efficient, see Allen-Zhu et al. (2014); Peng et al.
(2012), they are notoriously difficult to implement in practice whereas the power methods used
in Lei et al. (2020); Hopkins et al. (2020); Depersin (2020b) open the door to implementable
algorithms. For more references on robust mean estimation, we refer the reader to the survey
from Diakonikolas and Kane (2019).

3.3 Proof of the statistical performance in Theorem 3.2

In this section, we prove the statistical performance of µ̂K as stated in Theorem 3.2. We first
identify an event E onto which we will derive the rate of convergence of the order of (3.1).
This event is also used to compute the running time of µ̂K in the next section as announced in
Theorem 3.2.
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Proposition 3.1. Denote by E the event onto which for all symmetric matrices M � 0 such
that Tr(M) = 1, there are at least 9K/10 of the blocks for which

∥∥∥M1/2(X̄k − µ)
∥∥∥

2
≤ 8r where

r = 1200

√
Tr(Σ)
N

+

√
1200 ‖Σ‖opK

N
. (3.3)

If Assumptions 3.1 holds and K ≥ 300|O| then P[E ] ≥ 1− exp(−K/180000).

Proposition 3.1 contains all the stochastic arguments we will use in this chapter (constants
have not been optimized). In other words, after identifying the event E , all the remaining
arguments do not involve any other stochastic tools. The proof of Proposition 3.1 is based on a
rounding argument similar to the one used to prove Grothendieck’s inequality (see Grothendieck
(1953); Pisier (2012)) or in the Goemans and Williamson’s analysis of a SDP relaxation of the
Max-Cut problem (see Goemans and Williamson (1995)) or in Nesterov’s theorem (see Nesterov
(1997)). Before proving Proposition 3.1, let us first state a result that is of particular interest
beyond our problem.

Corollary 3.1. On the event E, for all symmetric matrices M ∈ Rd×d such that M � 0 and
Tr(M) = 1 there are at least 9K/10 blocks k for which

∥∥∥M1/2(X̄k − µ)
∥∥∥

2
≤ 8r and for all such

k’s and all xc ∈ Rd,∥∥∥M1/2(µ− xc)
∥∥∥

2
− 8r ≤

∥∥∥M1/2(X̄k − xc)
∥∥∥

2
≤
∥∥∥M1/2(µ− xc)

∥∥∥
2

+ 8r. (3.4)

Let us now turn to a proof of Proposition 3.1. We first remark that if we were to only consider
matrices M of rank 1, Proposition 3.1 would boil down to showing that for all v ∈ Sd−1

2 (the unit
sphere in `d2) on more than 9K/10 blocks |

〈
v, X̄k − µ

〉
| ≤ 8r. This is a “classical” result in the

MOM literature which has been proved in Lugosi and Mendelson (2019c) and M. Lerasle and
Lecué (2017). We recall now this result and the short proof from M. Lerasle and Lecué (2017)
adapted to the adversarial contamination setup from Assumption 3.1. We will use it to prove
Proposition 3.1.

Lemma 3.1. Grant Assumption 3.1 and assume that K ≥ 300|O|. With probability at least
1 − exp(−K/180000), for all v ∈ Sd−1

2 , there are at least 99K/100 of the blocks k such that
|
〈
v, X̄k − µ

〉
| ≤ r.

Proof. We use the notation introduced in Assumption 3.1 and we considered the following
bucketed means X̃k = |Bk|−1∑

i∈Bk X̃i for k ∈ [K]. They are the K means constructed on the
N independent vectors X̃i, i ∈ [N ] before contamination (whereas X̄k are the ones constructed
after contamination).

In the following, we show that with probability at least 1− exp(−K/180000), for all v ∈ Sd−1
2 ,

∑
k∈[K]

I(|
〈
X̃k − µ, v

〉
| > r) ≤ 2K

300 . (3.5)

The result from Lemma 3.1 follows from (3.5) because the adversary is allowed to change at most
|O| data points among the X̃i’s. Hence, there are at most |O| bucketed means X̃k containing an
outliers and so K − |O| ≥ 299K/300 means X̃k which are unchanged that is for which X̃k = X̄k.
So, if (3.5) holds then they are at least 298K/300 means X̃k for which |

〈
X̃k − µ, v

〉
| ≤ r and so,

at least 297K/300 = 99K/100 means X̄k for which |
〈
X̄k − µ, v

〉
| ≤ r.
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As in Koltchinskii et al. (2003), we define φ(t) = 0 if t ≤ 1/2, φ(t) = 2(t− 1/2) if 1/2 ≤ t ≤ 1
and φ(t) = 1 if t ≥ 1. We have I(t ≥ 1) ≤ φ(t) ≤ I(t ≥ 1/2) for all t ∈ R and so∑

k∈[K]
I(|
〈
X̃k − µ, v

〉
| > r)

≤
∑
k∈[K]

I(|
〈
X̃k − µ, v

〉
| > r)− P[|

〈
X̃k − µ, v

〉
| > r/2] + P[|

〈
X̃k − µ, v

〉
| > r/2]

≤
∑
k∈[K]

φ

 |〈X̃k − µ, v
〉
|

r

− Eφ

 |〈X̃k − µ, v
〉
|

r

+ P[|
〈
X̃k − µ, v

〉
| > r/2]

≤ sup
v∈Sd−1

2

 ∑
k∈[K]

φ

 |〈X̃k − µ, v
〉
|

r

− Eφ

 |〈X̃k − µ, v
〉
|

r

+
∑
k∈[K]

P[|
〈
X̃k − µ, v

〉
| > r/2].

For all k ∈ [K], we have

P[|
〈
X̃k − µ, v

〉
| > r/2] ≤

E
〈
X̃k − µ, v

〉2
(r/2)2 ≤ 4Kv>Σv

Nr2

≤
4K supv∈Sd−1

2
v>Σv

Nr2 =
4K ‖Σ‖op
Nr2 ≤ 1

300
because r2 ≥ 1200K ‖Σ‖op /N .

Next, we use several tools from empirical process theory and in particular, for a symmetrization
argument, we consider a family of N independent Rademacher variables (εi)Ni=1 independent of the
(X̃i)Ni=1. In (bdi) below, we use the bounded difference inequality (Theorem 6.2 in Boucheron et al.
(2013)). In (sa-cp), we use the symmetrization argument and the contraction principle (Chapter 4
in Ledoux and Talagrand (2011)) – we refer to the supplementary material of M. Lerasle and
Lecué (2017) for more details. We have, with probability at least 1− exp(−K/180000),

sup
v∈Sd−1

2

 ∑
k∈[K]

φ

 |〈X̃k − µ, v
〉
|

r

− Eφ

 |〈X̃k − µ, v
〉
|

r


(bdi)
≤ E sup

v∈Sd−1
2

 ∑
k∈[K]

φ

 |〈X̃k − µ, v
〉
|

r

− Eφ

 |〈X̃k − µ, v
〉
|

r

+

√
K2

360000

(sa−cp)
≤ 4K

Nr
E sup
v∈Sd−1

2

〈
v,
∑
i∈[N ]

εi(X̃i − µ)
〉

+ K

600

= 4K√
Nr

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ)

∥∥∥∥∥∥
2

+ K

600 ≤
K

300

because r ≥ 1200E
∥∥∥∑i∈[N ] εi(X̃i − µ∗)

∥∥∥
2
/
√
N since

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ)

∥∥∥∥∥∥
2

≤

√√√√√E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ)

∥∥∥∥∥∥
2

2

≤
√

Tr(Σ).

As a consequence, when K ≥ 300|O|, with probability at least 1− exp(−K/180000), for all
v ∈ Sd−1

2 , ∑
k∈[K]

I(|
〈
X̃k − µ, v

〉
| > r) ≤ |K|300 + K

300 ≤
2K
300 ,

which is (3.5).
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Proof of Proposition 3.1: Let M ∈ Rd×d be such that M � 0 and Tr(M) = 1. Denote by
AM = {k ∈ [K] :

∥∥∥M1/2(X̄k − µ)
∥∥∥

2
≥ 8r} and assume that |AM | ≥ 0.1K. Let G be a Gaussian

vector in Rd with mean 0 and covariance matrix M (and independent from X1, . . . , XN ). We
consider the random variable Z = ∑

k∈[K] I
(
|
〈
X̄k − µ,G

〉
| > 5r

)
. We work conditionally to

X1, . . . , XN in this paragraph.

For all k ∈ [K],
〈
X̄k−µ,G

〉
is a centered Gaussian variable with variance σ2

k :=
∥∥∥M1/2(X̄k − µ)

∥∥∥2

2
.

In particular, for all k ∈ AM , if we denote by g a standard real-valued Gaussian variable, we have
PG
[
|
〈
X̄k − µ,G

〉
| > 5r

]
≥ PG

[
|
〈
X̄k − µ,G

〉
| > 5σk/8

]
= 2P[g > 5/8] ≥ 0.528 (where PG (resp.

EG) denotes the probability (resp. expectation) w.r.t. G conditionally on X1, . . . , XN ). Hence,
EGZ ≥ 0.528|AM | ≥ 0.0528K. Since |Z| ≤ K a.s., it follows from Paley-Zygmund inequality
(see Proposition 3.3.1 in de la Peña and Giné (1999)) that

PG[Z > 0.01K] ≥ (EGZ − 0.01K)2

EGZ2 ≥ (0.0428)2 = 0.0018.

Moreover, it follows from the Borell-TIS inequality (see Theorem 7.1 in Ledoux (2001)
or pages 56-57 in Ledoux and Talagrand (2011)) that with probability at least 1 − exp(−8),
‖G‖2 ≤ E ‖G‖2 + 4

√
‖M‖op. Moreover, E ‖G‖2 ≤

√
Tr(M) ≤ 1 and ‖M‖op ≤ Tr(M) ≤ 1, so

‖G‖2 ≤ 5 with probability at least 1− exp(−8) ≥ 0.9996. Since 0.9996 + 0.0018 > 1 there exists a
vector GM ∈ Rd such that ‖GM‖2 ≤ 5 and ∑k∈[K] I

(
|
〈
X̄k − µ,GM

〉
| > 5r

)
> 0.01K. We recall

that this latter result holds when we assume that |AM | ≥ 0.1K.
Next, we denote by Ω0 the event onto which for all v ∈ Sd−1

2 , there are at least 99K/100 blocks
such that |

〈
X̄k − µ, v

〉
| ≤ r. We know from Lemma 3.1 that P[Ω0] ≥ 1− exp(−K/180000). Let

us place ourselves on the event Ω0 up to the end of the proof. Let M ∈ Rd×d be such that M � 0
and Tr(M) = 1 and assume that |AM | ≥ 0.1K. It follows from the first paragraph of the proof
that there exists GM ∈ Rd such that ‖GM‖2 ≤ 5 and ∑k∈[K] I

(
|
〈
X̄k − µ,GM

〉
| > 5r

)
> 0.01K.

Given that we work on the event Ω0, we have for vM = GM/ ‖GM‖2, that for more than 99K/100
blocks |

〈
X̄k−µ, vM

〉
| ≤ r and so |

〈
X̄k−µ,GM

〉
| ≤ ‖GM‖2 r ≤ 5r which contradicts the fact that∑

k∈[K] I
(
|
〈
X̄k − µ,GM

〉
| > 5r

)
> 0.01K. Therefore, we necessarily have |AM | ≤ 0.1K, which

concludes the proof.
Proof of Corollary 3.1: Let us assume that the event E holds up to the end of the proof.

Let M ∈ Rd×d be such that M � 0 and Tr(M) = 1. Let KM = {k ∈ [K] :
∥∥∥M1/2(X̄k − µ)

∥∥∥
2
≤

8r}. On the event E , we have |KM | ≥ 9K/10. Let xc ∈ Rd. For all k ∈ KM , we have∥∥∥M1/2(µ− X̄k)
∥∥∥

2
≤ 8r and so∥∥∥M1/2(X̄k − xc)

∥∥∥
2
∈
∥∥∥M1/2(µ− xc)

∥∥∥
2

+
[
−
∥∥∥M1/2(µ− X̄k)

∥∥∥
2
,
∥∥∥M1/2(µ− X̄k)

∥∥∥
2

]
⊂
∥∥∥M1/2(xc − µ)

∥∥∥
2

+ [−8r, 8r] .

Let us now turn to the study of the optimization problem (Exc) on the event E . Like in
Cheng et al. (2019a), we denote by OPTxc the optimal value of (Exc) and by

hxc : M → min
w∈∆K

〈M,
∑
k∈[K]

ωk(X̄k − xc)(X̄k − xc)>〉

its objective function to be minimized over {M ∈ Rd×d : M � 0,Tr(M) = 1}.
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Remark 3.2. For a given M , the optimal choice of w ∈ ∆K in the definition of hxc(M) is
straightforward: one just have to put the maximum possible weight on the 9K/10 smallest〈
M, (X̄k − xc)(X̄k − xc)>

〉
, k ∈ [K]. Formally, we set SM = σ({1, 2, · · · , 9K/10}), where σ is a

permutation on [K] that arranges the (X̄k − xc)>M(X̄k − xc), k ∈ [K] in ascending order:∥∥∥M1/2(X̄σ(1) − xc)
∥∥∥

2
≤
∥∥∥M1/2(X̄σ(2) − xc)

∥∥∥
2
≤ · · · ≤

∥∥∥M1/2(X̄σ(K) − xc)
∥∥∥

2
.

Then we get hxc(M) = (1/|SM |)
∑
k∈SM (X̄k − xc)>M(X̄k − xc).

The first lemma deals with the optimal value of (Exc) when the current point xc is far from
the mean µ.

Lemma 3.2. On the event E, for all xc ∈ Rd, if ‖xc − µ‖2 > 16r then

(8/9)(‖xc − µ‖2 − 8r)2 ≤ OPTxc ≤ (‖xc − µ‖2 + 8r)2.

Proof. Let M be a matrix such that M � 0 and Tr(M) = 1. Set KM = {k ∈ [K] :∥∥∥M1/2(X̄k − µ)
∥∥∥

2
≤ 8r}. On the event E , we have |KM | ≥ 9K/10 and it follows from Corollary 3.1

that for all k ∈ KM and all xc ∈ Rd,∥∥∥M1/2(µ− xc)
∥∥∥

2
− 8r ≤

∥∥∥M1/2(X̄k − xc)
∥∥∥

2
≤
∥∥∥M1/2(µ− xc)

∥∥∥
2

+ 8r. (3.6)

Then we define a weight vector ω̃ ∈ ∆K by setting for all k ∈ [K]

ω̃k =
{

1/|KM | if k ∈ KM
0 else.

It follows from the definition of hxc and (3.6) that

hxc(M) ≤
∑
k∈[K]

ω̃k(X̄k − xc)>M(X̄k − xc) (3.7)

= 1
|KM |

∑
k∈KM

∥∥∥M1/2(X̄k − xc)
∥∥∥2

2
≤
(∥∥∥M1/2(µ− xc)

∥∥∥
2

+ 8r
)2
.

Taking the maximum over all M ∈ Rd such that M � 0 and Tr(M) = 1 on both side of the
latter inequality yields the right-hand side inequality of Lemma 3.2.

For the left-hand side inequality of Lemma 3.2, we let xc ∈ Rd be such that ‖xc − µ‖2 > 16r
and let M be such that M � 0 and Tr(M) = 1. We use the notation and observation from
Remark 3.2: we note that |KM

⋂
SM | ≥ 8K/10 so that it follows from Corollary 3.1 that

hxc(M) = 1
9K/10

∑
k∈SM

∥∥∥M1/2(X̄k − xc)
∥∥∥2

2
≥ 1

9K/10
∑

k∈AM
⋂
SM

∥∥∥M1/2(X̄k − xc)
∥∥∥2

2

≥ 8K/10
9K/10

(∥∥∥M1/2(µ− xc)
∥∥∥

2
− 8r

)2
.

Then, taking the maximum over all M � 0 such that Tr(M) = 1 on both sides, finishes the proof.

The next lemma shows that the top eigenvector of an approximate solution to (Exc) is
aligned with the best possible descent direction (µ− xc)/ ‖µ− xc‖2. It is taken from the proof
of Lemma 3.3 in Cheng et al. (2019a). We reproduce here a short proof for completeness.
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Proposition 3.2. On the event E, if M is a matrix such that M � 0, Tr(M) = 1 and
hxc(M) ≥ (β ‖xc − µ‖2 +8r)2 for some 1/

√
2 ≤ β ≤ 1, then any top eigenvector v1 of M satisfies∣∣∣∣∣〈v1,

xc − µ
‖xc − µ‖2

〉∣∣∣∣∣ >
√

2β2 − 1.

Proof. Let M be a matrix such that M � 0 , Tr(M) = 1 and hxc(M) ≥ (β ‖xc − µ‖2 +8r)2

for some 1/
√

2 ≤ β ≤ 1. We use the same argument as in the proof of Lemma 3.2: on the event
E , |KM | ≥ 9K/10 where KM = {k ∈ [K] :

∥∥∥M1/2(X̄k − µ)
∥∥∥

2
≤ 8r} and so ω̃ ∈ ∆K where for all

k ∈ [K], ω̃k = 1/|KM | if k ∈ KM and ω̃k = 0 if k /∈ KM . It follows from the definition of hxc that

hxc(M) ≤
∑
k∈[K]

ω̃k(X̄k − xc)>M(X̄k − xc) = 1
|KM |

∑
k∈KM

∥∥∥M1/2(X̄k − xc)
∥∥∥2

2

and so from Corollary 3.1, hxc(M) ≤
(∥∥∥M1/2(µ− xc)

∥∥∥
2

+ 8r
)2

. Since, we assumed that

hxc(M) ≥ (β ‖xc − µ‖2 + 8r)2, it follows that
∥∥∥M1/2(µ− xc)

∥∥∥2

2
≥ β2 ‖µ− xc‖22.

Let λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 denote the eigenvalues of M and let v1, . . . , vd denote cor-
responding eigenvectors. The conditions on M imply that ∑j λj = 1 and BM = (v1, . . . , vd)
is an orthonormal basis of Rd. We denote v = (µ − xc)/ ‖µ− xc‖2. We decompose v in BM
as v = ∑

j αjvj with ∑j α
2
j = 1. Using this decomposition, we have v>Mv = ∑

j λjα
2
j . We

have λ1 = λ1
∑
j α

2
j ≥

∑
j λjα

2
j ≥ β2, so λ1 ≥ β2. Moreover, since ∑j λj = 1, we have

β2∑
j α

2
j ≤

∑
j λjα

2
j ≤ λ1α

2
1 + (1−λ1)(1−α2

1) ≤ α2
1 + (1−β2)∑j α

2
j , so we have α2

1 ≥ (2β2− 1).
As we know that α1 =

〈
v1, v

〉
, we get the result.

Proposition 3.2 is the first tool we need to construct a descent algorithm since it provides a
descent/ascent direction (depending on the sign of the top eigenvector of an approximate solution
to (Exc)). It remains to specify three other quantities to fully characterize our algorithm: a
starting point, a step size and a stopping criteria. We start with the starting point. Here we
simply use the coordinate-wise median-of-means. The following statistical guarantee on the
coordinate-wise median-of-means is known or folklore but we want to put forward that in our
case it holds on the event E . This again shows that E is the only event we need to fully analyze
all the building blocks of the algorithm. We recall that the coordinate-wise median-of-means is
the estimator µ̂(0) ∈ Rd whose coordinates are for all j ∈ [d], µ̂(0)

j = med(X̄k,j : k ∈ [K]) where
X̄k,j is the j-th coordinate of the block mean X̄k for all k ∈ [K].

Proposition 3.3. On the event E, we have
∥∥∥µ̂(0) − µ

∥∥∥
2
≤ 8
√
dr.

Proof. Let us place ourselves on the event E during all the proof. For all directions,
v ∈ Sd−1

2 , there are at least 9K/10 blocks k such that |
〈
X̄k − µ, v

〉
| ≤ 8r. In particular, for all

j ∈ [d], |
〈
X̄k−µ, ej

〉
| ≤ 8r where (e1, . . . , ed) is the canonical basis of Rd. That is for at least 9K/10

blocks |X̄k,j − µj | ≤ 8r. In particular, the latter result is true for the median of {X̄k,j : k ∈ [K]},
that is, for µ̂(0)

j . We therefore have
∥∥∥µ̂(0) − µ

∥∥∥
∞
≤ 8r and so

∥∥∥µ̂(0) − µ
∥∥∥

2
≤ 8r

√
d.

Proposition 3.3 guarantees that starting from the coordinate-wise median-of-means we are off
by a

√
d proportional factor from the optimal rate r. This will play a key role to analyze the

number of steps we need to reach µ within the optimal rate r. Indeed, if we prove a geometric
decay of the distance to µ along the descent algorithm then only log d steps (up to a multiplicative
constants) would be enough to reach µ by a distance at most of the order of r.
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Let us now specify the step size we use at each iteration. At the current point xc we compute
a top eigenvector v1 of an approximate solution M to (Exc) (i.e. M such that hxc(M) ≥
(β ‖xc − µ‖2 + 8r)2 for some 1/

√
2 ≤ β ≤ 1). The next iteration is xc+1 = xc − θcv1 where the

step size is
θc = −Med

(〈
X̄k − xc, v1

〉
: k ∈ [K]

)
. (3.8)

In particular, since θcv1 does not depend on the sign of v1 (the product θcv1 is the same if we
replace v1 by −v1), we do not care which top eigenvector of M we choose.

Let us now prove a geometric decay of the algorithm while xc is far from µ. Again, this result
is proved on the event E .

Proposition 3.4. On the event E, the following holds. Let xc ∈ Rd (be the current point of
the algorithm). Assume that M is an approximate solution of (Exc): M is such that hxc(M) ≥
(β ‖xc − µ‖2 + 8r)2 for some 0.78 ≤ β ≤ 1 and let v1 be one of its top eigenvectors. Then, we
have

‖xc+1 − µ‖22 ≤ 0.8 ‖xc − µ‖22 + 64r2

when xc+1 = xc − θcv1 for θc defined in (3.8).

Proof. Let us assume that the event E holds up to the end of the proof. Let M be an
approximate solution to (Exc) such that hxc(M) ≥ (β ‖xc − µ‖2 + 8r)2 for some 0.78 ≤ β ≤ 1
and let v1 be a top eigenvector of M .

In direction v1, there are at least 9K/10 blocks such that |
〈
X̄k−µ, v1

〉
| ≤ 8r (see Lemma 3.1).

Hence, on these blocks, we also have

|θc −
〈
xc − µ, v1

〉
| = |Med

(〈
µ− X̄k, v1

〉
: k ∈ [K]

)
|

≤ Med
(
|
〈
µ− X̄k, v1

〉
| : k ∈ [K]

)
≤ 8r. (3.9)

Let v = (µ − xc)/ ‖µ− xc‖2 denote the optimal normalized descent direction. We write
v = λ1v1 + λ2v

⊥
1 where v⊥1 is a normalized orthogonal vector to v1. We have λ2

1 + λ2
2 = 1 and it

follows from Proposition 3.2 that |λ1| = |
〈
v1, v

〉
| >

√
2β2 − 1. We conclude that

‖xc+1 − µ‖22 = ‖xc − µ− θcv1‖22 =
∥∥∥(〈xc − µ, v1

〉
− θc)v1 +

〈
xc − µ, v⊥1

〉
v⊥1

∥∥∥2

2

= (
〈
xc − µ, v1

〉
− θc)2 +

〈
xc − µ, v⊥1

〉2 ≤ (8r)2 + λ2
2 ‖xc − µ‖

2
2

As λ2
2 = 1− λ2

1 < 2− 2β2 < 0.8 we get the result.

We now have almost all the building blocks to fully characterize the algorithm. The last
and final step is to find a stopping rule. The idea we use to design such a rule is based on
Proposition 3.4: we know that when the current point xc is not in a `d2-neighborhood of µ with
a radius 80r then the `d2-distance between the next iteration xc+1 and µ should be less than√

0.81 times the `d2-distance between xc and µ – that is a geometric decay of the distance to µ.
Moreover, if the current iteration xc is in a `d2-ball centered in µ with the radius 80r then, it
follows from Proposition 3.4 that the next iteration xc+1 will also be in a `d2-ball centered in
µ with radius at most 80r. So once the algorithm enters the ball Bd

2(µ, 80r) it never leaves it.
We therefore have a geometric decay of the distance to µ along the iterations until we reach
the ball Bd

2(µ, 80r). Starting from the coordinate-wise median(-of-means) which is in a 8
√
dr

neighborhood of µ (see Proposition 3.3), we only have to do log(8
√
d)/ log(1/

√
0.81) iterations

to output a current point which at most 80r-close to µ w.r.t. the `d2-norm.
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We are now in a position to write an “almost final” pseudo-code of our algorithm. In the
next section, we will dive a bit deeper in this pseudo-code (and in particular on the covering
SDP algorithm used to construct an approximate solution to (Exc)) in order to provide a final
pseudo-code together with its total running time.

input :X1, . . . , XN and a number K of blocks
output : A robust subgaussian estimator of µ

1 Construct an equipartition B1 t · · · tBK = {1, · · · , N}
2 Construct the K empirical means X̄k = (N/K)∑i∈Bk Xi, k ∈ [K]
3 Compute µ̂(0) the coordinate-wise median-of-means and put xc ← µ̂(0)

4 for T = 1, 2, · · · , log(8
√
d)/ log(1/

√
0.81) do

5 Compute Mc an approximate solution to (Exc) such that

hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)2

6 Compute v1 a top eigenvector of Mc

7 Compute a step size θc = −Med
(〈
X̄k − xc, v1

〉
: k ∈ [K]

)
8 Update xc ← xc − θcv1
9 end

10 Return xc

Algorithm 1: “Almost final” pseudo-code of the robust sub-gaussian estimator of µ

Algorithm 1 is “almost” our final algorithm. There is one last step we need to check
carefully: given a current point xc we need to find a way to construct Mc satisfying “hxc(Mc) ≥
(0.78 ‖xc − µ‖2 + 8r)2” without knowing r or µ. This is the last issue we need to address in order
to explain how step 5 from Algorithm 1 can be realized in a fully data-dependent way in a good
time. This issue is answered in the next section together with the computation of its running
time.

3.4 Approximately solving the SDP (Exc
)

The aim of this section is to show that, on the event E , it is possible to construct in a reasonable
amount of time a matrix Mc such that “hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)2” without any extra
information than the data. To that end we construct in an efficient way an approximate solution
to the optimization problem (Exc) using covering SDP as in Cheng et al. (2019a). The main
result of this section is the following.

Theorem 3.3. Let u ∈ N∗. On the event E, for every xc ∈ Rd such that ‖xc − µ‖2 ≥ 800r,
given input xc, we can either compute, in time Õ(Kud), with probability > 1− (1/10)u+5/

√
d :

• A matrix Mc such that
hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)2

• Or directly a subgaussian estimate of µ, using only the block means X̄1, . . . , X̄K as inputs.

Theorem 3.3 answers the last issue raised at the end of Section 3.3 and provides the running
time for step 5 of Algorithm 1. It therefore concludes the statement that there exists a fully
data-driven robust subgaussian algorithm for the estimation of a mean vector under the only
Assumption 3.1 (the total running time of Algorithm 1 is studied in Section 3.5).
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Remark 3.3. Theorem 3.3 states that we either find an approximate solution Mc to (Exc) or a
good estimate of µ (at the current point xc). As we will see in this section, this second case is
degenerate as it is not the typical situation.

Before turning to the proof of Theorem 3.3, we recall the definition of the following quantities
to ease the reading of the proof:

OPTxc = min
M�0:Tr(M)=1

hxc(M) where hxc : M → min
w∈∆K

〈M,
∑
k∈[K]

ωk(X̄k − xc)(X̄k − xc)>〉

and (Exc) refers to the optimization problem minM (hxc(M) : M � 0,Tr(M) = 1).
We now turn to the proof of Theorem 3.3. It is decomposed into several lemmas adapted from

techniques developed by Cheng et al. (2019a) to approximately solve the SDP problem (Exc)
in time Õ(Kud) as announced in Theorem 3.1. To that end, we first introduce the following
covering SDP

minimize
M ′,y′

Tr(M ′) +
∥∥y′∥∥1

subject to M ′ � 0, y′ ≥ 0,
∀k ∈ [K], ρ(X̄k − xc)>M ′(X̄k − xc) + 9K/10 y′k ≥ 1

(Cρ)

where ρ > 0 is some parameter that we will show how to fine-tune later. Then, we show that, for
a good choice of ρ, we can turn a good approximate solution for (Cρ) into a good approximate
solution for (Exc).

We denote by g(ρ) the optimal objective value of (Cρ). We begin with a first lemma that
shows how to link the two optimization problems (Exc) and (Cρ). The proof can be found in
Lemma 4.2 from Cheng et al. (2019a). We adapt it here for our purpose.

Lemma 3.3. Let ρ > 0. From a feasible solution (M ′, y′) for (Cρ) that achieves Tr(M ′)+‖y′‖1 ≤
1, we can construct a feasible solution M for (Exc) with objective value hxc(M) ≥ 1/ρ. The
reverse is also true. In particular, if g(ρ) (resp. OPTxc) denotes the optimal value achieved by
the objective function in (Cρ) (resp. (Exc)), we have g(ρ) ≤ 1 iff 1/ρ ≥ OPTxc.

Proof. We first note that the optimization problem (Exc) is equivalent to the following one:

maximize
M,y,z

z − ‖y‖1
9K/10

subject to M � 0, Tr(M) = 1, y ≥ 0, z ≥ 0
∀k ∈ [K], (X̄k − xc)>M(X̄k − xc) + yk ≥ z

(Ẽxc)

Indeed, for a given M � 0 such that Tr(M) = 1, one can notice that the optimal value is achieved
in (Ẽxc) for yk = max(0, z−(X̄k−xc)>M(X̄k−xc)), k ∈ [K] and z = Q9/10

(
(X̄k − xc)>M(X̄k − xc)

)
the 9/10-th quantile of {(X̄k − xc)>M(X̄k − xc) : k ∈ [K]}, so that z − ‖y‖1 /(9K/10) = hxc(M)
which gives the equivalence between (Exc) and (Ẽxc).

Then, let a feasible solution (M ′, y′) for (Cρ) be such that Tr(M ′) + ‖y′‖1 ≤ 1. We define

M = M ′

Tr(M ′) , z = 1
ρTr(M ′) and y = (9K/10)

(ρTr(M ′))y
′.

We can check that (M,y, z) is feasible for (Ẽxc) and z − ‖y‖1 /(9K/10) ≥ 1/ρ. Hence, given
the equivalence between (Exc) and (Ẽxc), we obtain that M is feasible for (Exc) and that
hxc(M) ≥ 1/ρ.



3.4. APPROXIMATELY SOLVING THE SDP 57

Conversely, if M is feasible for (Exc) such that hxc(M) ≥ 1/ρ then we define y and
z such that for all k ∈ [K], yk = max(0, z − (X̄k − xc)>M(X̄k − xc)), k ∈ [K] and z =
Q9/10

(
(X̄k − xc)>M(X̄k − xc)

)
. We check that (M,y, z) is feasible for (Ẽxc) with objective

values equals to hxc(M) and so it is larger than 1/ρ. Next, by defining

M ′ = M

ρz
and y′ = y

(9K/10)z ,

we see that (M ′, y′) is feasible for (Cρ) and its objective values is less than 1.

From Lemma 3.3, it is enough to solve (Cρ) – for a good choice of ρ – to find a good
approximate solution for (Exc). It therefore remains to find such a good ρ. To do so, we rely
on the next two lemmas. The first one is adapted from Lemma 4.3 in Cheng et al. (2019a); we
recall that g(ρ) is the optimal value achieved by the objective function in (Cρ).

Lemma 3.4. For every ρ > 0 and α ∈ (0, 1), g((1− α)ρ) ≥ g(ρ) ≥ (1− α)g((1− α)ρ).

Proof. A feasible pair (M ′, y′) for (C(1−α)ρ) is also feasible for (Cρ), which gives the first
inequality. If (M ′, y′) is a feasible pair for (Cρ), then (M ′/(1− α), y′/(1− α)) is a feasible pair
for (C(1−α)ρ), which gives the second inequality.

It follows from Lemma 3.4 that g is continuous, non increasing and g(1/OPTxc) = 1 (this
follows from Lemma 3.3 since we have that g(ρ) ≤ 1 iff 1/ρ ≥ OPTxc and the continuity of g).
So in order to find a good solution, we must find a ρ such that g(ρ) is as close to 1 as possible.
Unfortunately, we do not know how to solve (Cρ) exactly for a given ρ > 0, but we can compute
efficiently a good approximation (M ′, y′) and a top eigenvector of M ′ thanks to the following
result which can be found in Peng et al. (2012) or Allen-Zhu et al. (2015) and is detailed in
Cheng et al. (2019a) (see Section 4 and Remark 3.4).

Lemma 3.5. [Peng et al. (2012), Allen-Zhu et al. (2015)] Let u ≥ 1 be an integer. For
every ρ > 0 and every fixed η > 0, we can find with probability > 1 − (1/10)u+10/d a feasible
solution to (Cρ) that is η-close to the optimal, that is to say a feasible pair (M ′, y′) so that
Tr(M ′) + ‖y′‖1 ≤ (1 + η)g(ρ) in time Õ(uKd). Moreover, it is possible to find an approximate
top eigenvector of M ′ in Õ(Kd).

We compute (u+ 3 log(d) + 10) times independently the (randomized) algorithm from Peng
et al. (2012) (or the one from Allen-Zhu et al. (2015)) that has a runtime of Õ(Kd) and that
outputs an η-close feasible solution with probability 9/10. By taking the largest of the output’s
objective value, we have an η-close feasible solution with probability 1− (1/10)u+3 log(d)+10, in
time Õ(uKd), proving Lemma 3.5.

Let us call ALGρ the algorithm from Lemma 3.5, that takes as input ((X̄k)Kk=1, xc, ρ, η, u) and
returns a feasible pair (M ′, y′) for (Cρ) satisfying Tr(M ′) + ‖y′‖1 ≤ (1 + η)g(ρ) in Õ(uKd), with
probability > 1− (1/10)u+10/d. Next, in order to find a good ρ, we have to get some additional
information on the function g. We will get it on the event E .

Lemma 3.6. On the event E, for all xc ∈ Rd, if ‖xc − µ‖2 > 8r then

g(ρ) ≤ 1
ρ OPTxc

(
1 + ρOPTxc

(
9(‖xc − µ‖2 + 8r)2

8(‖xc − µ‖2 − 8r)2 − 1
))

.

Proof. We use the same notation as in the proof of Lemma 3.3. For any ν > 0, we can choose
a triplet (M,y, z) feasible for (Ẽxc) such that z−‖y‖1 /(9K/10) > OPTxc−ν and z and y are the
optimal solutions of the problem (Ẽxc) given by yk = max(0, z− (X̄k−xc)>M(X̄k−xc)), k ∈ [K]
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and z = Q9/10
(
(X̄k − xc)>M(X̄k − xc)

)
the 9/10-th quantile of {(X̄k − xc)>M(X̄k − xc) : k ∈

[K]}.

On the event E , Lemma 3.2 yields OPTxc > (8/9)(‖xc − µ‖2 − 8r)2 and we have from
Corollary 3.1 that

z = Q9/10
(
(X̄k − xc)>M(X̄k − xc)

)
= Q9/10

(∥∥∥M1/2(X̄k − xc)
∥∥∥2

2

)
≤
(∥∥∥M1/2(xc − µ)

∥∥∥
2

+ 8r
)2
≤ (‖xc − µ‖2 + 8r)2

because M � 0 and Tr(M) = 1. Let M ′ = M/(ρz), y′ = y/[z(9K/10)]. Since (M ′, y′) is feasible
for (Cρ), we have

g(ρ) ≤ Tr(M ′) +
∥∥y′∥∥1 ≤

1 + ρ ‖y‖1 /(9K/10)
ρz

<
1 + ρ(z −OPTxc + ν)

ρz
≤

1 + ρν + ρOPTxc

(9(‖xc−µ‖2+8r)2

8(‖xc−µ‖2−8r)2 − 1
)

ρ(OPTxc − ν) .

By taking ν → 0, we get the result.

Proof of Theorem 3.3. Let us place ourselves on the event E so that we can apply
Lemma 3.6. Let xc ∈ Rd and assume that ‖xc − µ‖2 > 800r. It follows from Lemma 3.6 that
g(ρ) ≤ 1/(ρ OPTxc) + 0.171. Therefore, if we can find a ρ such that g(ρ) ≥ 1 − ε + 0.171 for
some 0 < ε < 1, then necessarily 1/ρ ≥ OPTxc(1 − ε). Let us take ε = 0.173, and η = 0.0001.
Then if ALGρ returns a feasible pair (M ′, y′) for (Cρ) so that 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1, then,
since 0.9981 > 1.0001 × 0.998 = (1 + η)(1 − ε + 0.171) we will know that, with probability
> 1− (1/10)u+10/d,

(1 + η)g(ρ) ≥ Tr(M ′) +
∥∥y′∥∥1 ≥ (1 + η)(1− ε+ 0.171)

hence 1/ρ ≥ OPTxc(1− ε), and by Lemma 3.3, we can construct a feasible solution Mc for (Exc)
with objective value satisfying hxc(Mc) ≥ OPTxc(1− ε). Next, using Lemma 3.2, we obtain that
when ‖xc − µ‖2 ≥ 800r,

hxc(Mc) ≥ OPTxc(1− ε) ≥ (1− ε)(8/9) (‖xc − µ‖2 − 8r)2 ≥ (0.78 ‖xc − µ‖2 + 8r)2

for ε = 0.173, solving step 5 from Algorithm 1.

Therefore, it only remains to show how to find a ρ such that ALGρ returns a pair (M ′, y′)
(feasible for (Cρ)) satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1. We do it first by assuming that
we have access to an initial ρ0 such that ALGρ0 returns a feasible pair (M ′, y′) for (Cρ) (for
ρ = ρ0) so that Tr(M ′) + ‖y′‖1 ≤ 1 and to a maximal number T of iterations (we will also
see later how to choose such ρ0 and T ). The following algorithm (which is a binary search)
taking as input (X̄1, . . . , X̄K , xc, ρ0, u, T ) returns a feasible pair (M ′, y′) for (Cρ) so that 0.9981 ≤
Tr(M ′) + ‖y′‖1 ≤ 1 (when T is large enough). This is simply due to the fact that g is continuous,
non increasing, g(0) = 10/9 > 1 and g(ρ) ≤ 2/8 when ρ→ +∞ and ‖xc − µ‖2 > 800r (because
of Lemma 3.6). For this to work, we need that for each iteration, ALGρ returns a feasible pair
(M ′, y′) for (Cρ) (for ρ = ρ0) so that Tr(M ′) + ‖y′‖1 ≤ (1 + 0.0001)g(ρ). We will suppose that
it is the case for the rest of the proof. By union bound, this happens with probability at least
> 1− T (1/10)u+10/d
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input : X̄1, . . . , X̄K , xc, ρ0, u, T
output : A feasible pair (M ′, y′) for (Cρ) satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1

1 ρm ← 0, ρM ← ρ0, V ← ALGρ0(xc, u, η = 0.0001) , i← 0
2 while V /∈ [0.9981, 1] and i < T do
3 if V < 0.9981 then
4 ρM ← (ρM + ρm)/2
5 end
6 else
7 ρm ← (ρM + ρm)/2
8 end
9 V ← objective(ALG ρm+ρM

2
(xc, u, η = 0.0001)) , i← i+ 1

10 end
11 Return ALG ρm+ρM

2
(xc, u, η = 0.0001)

Algorithm 2: The BinarySearch algorithm to find a ρ so that ALGρ returns a pair
(M ′, y′) feasible for (Cρ) satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1.

If we can find a ρ0 (such that ALGρ0 returns a feasible pair (M ′, y′) for (Cρ) so that Tr(M ′) +
‖y′‖1 ≤ 1) and a large enough number of iterations T in BinarySerach, Algorithm 2 returns a
feasible pair (M ′, y′) for (Cρ) from which we can construct an approximating solution Mc for
(Exc) with objective value hxc(Mc) larger than (0.78 ‖xc − µ‖2 + 8r)2 whenever ‖xc − µ‖2 ≥ 800r.
This is exactly what we expect in step 5 of Algorithm 1. Next, the last and final step that
remains to be explained is to show how one can get such a ρ0 and T using only the block means
(X̄k)Kk=1 in Õ(Nd+ uKd).

Let us consider µ̂(0) the coordinate-wise median(-of-means) and let us define δ = Med(
∥∥∥X̄k − µ̂(0)

∥∥∥
2

:
k ∈ [K]) – both quantities can be computed in time Õ(Kd). On the event E , it follows
from Corollary 3.1 (for M = Id/d) and Proposition 3.3 that δ ≤ 16

√
d × r. So if one takes

ρ0 = d/δ2 ≥ 1/[(16)2r2], and if ‖xc − µ‖2 > 800r, Lemma 3.2 and Lemma 3.6 guarantee that
OPTxc ≥ (8/9) (‖xc − µ‖2 − 8r)2 ≥ (8/9)(792)2r2 and so

g(ρ0) ≤ 1
ρ OPTxc

+ 0.171 ≤ 162

(8/9)(792)2 + 0.171 < 0.18

so ALGρ0 ≤ (1 + η)g(ρ) < 1.0001× 0.18 < 1 (for the same choice of η = 0.0001).
Now we tackle the question of the number T of iterations, which is crucial for the runtime.

We know from Lemma 3.4 and Lemma 3.6 that the interval I of all ρ’s such that 0.9981 ≤
objective(ALGρ) ≤ 1 is at least of size 0.001/OPTxc when ‖xc − µ‖2 > 800r. Indeed, since
g(ρ) ≤ objective(ALGρ) ≤ (1 + η)g(ρ), if ρ is such that 0.9981 ≤ g(ρ) ≤ 1/(1 + η) then
0.9981 ≤ objective(ALGρ) ≤ 1. Now, if we let ρ1 > 0 and 0 < α < 1 be such that g(ρ1) = 0.9981
and g((1− α)ρ1) = 1/(1 + η) the interval I is at least of size αρ1. Moreover, from Lemma 3.4
we have 1/(1 + η) ≤ g((1− α)ρ1) ≤ g(ρ1)/(1− α) and so 0.9981 = g(ρ1) ≥ (1− α)/(1 + η), i.e.
α ≥ 1− 0.9981(1 + η) > 0.001. Finally, since g(ρ1) ≤ 1, g(1/OPTxc) = 1 and g is non-increasing,
we conclude that ρ1 ≥ 1/OPTxc and so the length of I is at least αρ1 ≥ 0.001/OPTxc .

So, in the case where ‖xc − µ‖2 > 800r, log2(ρ0 × OPTxc/0.001) iterations are enough to
ensure that BinarySearch outputs (M ′, y′) (from ALGρ for a well-chosen ρ) feasible for (Cρ) and
such that 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1. Moreover, on the event E it is possible to show that
for all iterations xc of the algorithm we have ‖xc − µ‖2 < C

√
dr for a constant C ≤ 800 (we

may take that as an induction hypothesis for the firsts iterates xc, and the proof of Theorem 3.2



60 CHAPTER 3. ROBUST ESTIMATION OF A MEAN IN NEARLY LINEAR TIME

below in Section 3.5 shows that it will still holds for xc+1). So if δ > r/d then ρ0 < d3/r2,
and since OPTxc < (C2d+ 8)r2 (this follows from Lemma 3.2), the binary search ends in time
T = log2(C̃d4) with C̃ < 106.

Thus, if the binary search has not ended in that time, we have either δ < r/d (which is
a degenerate case) or ‖xc − µ‖2 < 800r (or both). If ‖xc − µ‖2 > 800r and δ < r/d, then,
taking ρ1 = 1/(dδ)2, we have, by Lemma 3.6, ALGρ1 < 1/2. So, if we can not end our binary
search in time log2(C̃d4), we compute ALG1/(dδ)2 : if this gives something smaller than 1, that
means that 1/(dδ)2 > 1/OPTxc ⇒ δ <

√
(C2d+ 8)r/d < (C + 1)r/

√
d. We notice that on E ,∥∥∥µ̂(0) − µ

∥∥∥
2
< δ + 8r, so if ALG1/(dδ)2 < 1, then µ̂(0) is a good estimate for µ. If on the contrary

we have ALGρ1 > 1, it means that ‖xc − µ‖2 < 800r, so we stop the algorithm and return xc.

Let us write now in pseudo-code the procedure we just described. This is an algorithm,
named SolveSDP, running in Õ(Kud) which takes as inputs X̄1, . . . , X̄K , xc, u and which
outputs, on the event E , with probability > 1− log(C̃d4)(1/10)u+10/d, for every xc ∈ Rd such
that ‖xc − µ‖2 ≥ 800r either a matrix Mc such that

hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)2

or a subgaussian estimate of µ. It therefore describes step 5 from Algorithm 1.

input : X̄1, . . . , X̄K , xc and u
output : A feasible solution for (Exc)

1 Compute the coordinate wise MOM µ̂(0) and δ = Med(
∥∥∥X̄k − µ̂(0)

∥∥∥
2

: k ∈ [K])
2 T ← log(C̃d4), ρ0 ← d/δ2

3 (M ′, y′)← BinarySearch(T, ρ0, u, xc)
4 if Tr(M ′) + ‖y‖1 ∈ [0.9981, 1] then
5 M ←M ′/Tr(M ′)
6 Return (True, M)
7 end
8 else
9 if ALG1/(dδ)2(xc, u, η = 0.0001) < 1 then

10 Return (False, µ̂(0))
11 end
12 else
13 Return (False, xc)
14 end
15 end

Algorithm 3: SolveSDP

Remark 3.4. [Two advantages of block means] During the whole algorithm, we solve the program
(Cρ) up to a factor (1+η) where η is fixed (here we take it equal to 0.0001). This differs crucially
from the work of Cheng et al. (2019a) where η depends on the fraction of outliers, which decreases
the performance of the algorithm in Lemma 3.5, the true running time being Õ(Kd/Poly(η)).
This is a first advantage of using bucketed means instead of the data themselves: we work with
a constant fraction of corrupted blocks (we took it equal to 1/10). The second advantages is of
stochastic nature, it is revealed by Proposition 3.1 or Lemma 3.1: most of the bucketed means
have a nice subgaussian behavior in all directions. Working with bucketed means has therefore
two advantages: a stochastic one, which is to exhibit a subgaussian behavior for 9K/10 blocks
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even under a L2-moment assumption and a computational one, which is to make the proportion
of corrupted blocks constant.

3.5 The final algorithm and its computational cost: proof of
Theorem 3.2

We are now in a position to fully describe our robust subgaussian descent algorithm running in
Õ(Nd+ uKd). One may check that its construction is fully data-dependent, in particular, we do
not need to know the value of r or the proportion of outliers.

input :X1, . . . , XN , K ∈ [N ] and u ∈ N∗
output : A robust subgaussian estimator of µ

1 Construct an equipartition B1 t . . . tBK = {1, . . . , N}
2 Construct the K empirical means X̄k = (N/K)∑i∈Bk Xi, k ∈ [K]
3 Compute µ̂(0) the coordinate-wise median
4 xc ← µ̂(0), Bool ← True, T ← 0
5 while Bool and T < log(8

√
d)/ log(1/0.81) do

6 Bool, A ←SolveSDP(X̄1, . . . , X̄K , xc, u)
7 if Bool then
8 Mc ← A
9 Compute v1 a top eigenvector of Mc

10 Compute a step size θc = −Med
(〈
X̄k − xc, v1

〉
: k ∈ [K]

)
11 Update xc ← xc − θcv1
12 T ← T + 1
13 end
14 else
15 xc ← A
16 end
17 end
18 Return xc

Algorithm 4: Final Algorithm: covSDPofMeans

Proof of Theorem 3.2. From Theorem 3.3, we know that on E , when, ‖xc − µ‖2 > 800r,
we get, with probability > 1− (1/10)u+5/

√
d, an Mc so that hxc(Mc) ≥ (0.8 ‖xc − µ‖2 + 8r)2 (or

directly a subgaussian estimate, in which case our work is done). Proposition 3.4, states that in
that case ‖xc+1 − µ‖22 ≤ 0.8 ‖xc − µ‖22 + 64r2 ≤ 0.81 ‖xc − µ‖22. So we have a geometric decays
and Proposition 3.3 guarantees that our starting point is at most 8

√
dr far away from the mean

so that in at most log(8
√
d)/ log(1/0.81)) steps the algorithm outputs its current point which

is r-close to µ, with probability > 1− (1/10)u+5 log(8
√
d)/(log(1/0.81))

√
d) > 1− (1/10)u (by

union bound).

The last thing to do is to control what happens when ‖xc − µ‖2 < 800r. Then, we have no
guarantees on v1, but using the similar argument as in the proof of Proposition 3.4 we know that

|θc −
〈
xc − µ, v1

〉
| = |Med

(〈
µ− X̄k, v1

〉
: k ∈ [K]

)
| ≤ Med

(
|
〈
µ− X̄k, v1

〉
| : k ∈ [K]

)
≤ 8r

(3.10)
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and (for some v⊥1 a normalized orthogonal vector to v1)

‖xc+1 − µ‖22 = ‖xc − µ− θcv1‖22 =
∥∥∥(〈xc − µ, v1

〉
− θc)v1 +

〈
xc − µ, v⊥1

〉
v⊥1

∥∥∥2

2

= (
〈
xc − µ, v1

〉
− θc)2 +

〈
xc − µ, v⊥1

〉2 ≤ (8r)2 + ‖xc − µ‖22 .

Hence, ‖xc+1 − µ‖2 ≤ (8r) + ‖xc − µ‖2. Therefore, in the worst case scenario where ‖xc − µ‖2 >
800r at the last iteration, the algorithm outputs the next iteration µ̂K = xc+1 so that ‖µ̂K − µ‖2 ≤
808r.

We end this proof with the computation of the running time of Algorithm 4. We detail
the computation cost for each line of Algorithm 4: line 1 cost N , line 2 costs Nd, line 3 costs
O(dK log(K)). The while loop in line 5 is running at least log d times (up to constant) so that
the computational cost of all remaining lines of Algorithm 4 are at worst to be multiplied by
log d. Line 6 costs log(C̃d4) steps, each of cost Õ(Kud) (that comes from Lemma 3.5). Line 9
can be computed in Õ(Nd) thanks to Lemma 3.5. Finally, line 10 costs O(Kd). Other lines take
time at most d. We thus recover the running time announced in Theorem 3.2.

3.6 Adaptive choice of K and results in expectation

Given a number of blocks K ∈ {1, . . . , N}, a parameter u ≥ 1 (so that the covering SDPs from
Peng et al. (2012) (used in Lemma 3.5) run in u + 3 log d + 10 times) and the (adversarially
corrupted and heavy-tailed) dataset {X1, . . . , XN}, Algorithm 4 returns a vector µ̂K in Rd and
Theorem 3.2 ensures that µ̂K estimates the true mean µ at the subgaussian rate (??) with large
probability as long as K ≥ 300|O|. As a consequence, we have certified statistical guarantees
for µ̂K only when some a priori knowledge on the number |O| of outliers is provided (such as
“the corruption of this database is less than 5%” ) or if we choose K like N - but, in this later
case the rate (??) may be too pessimistic. The aim of this section is to overcome this issue by
constructing a procedure which can automatically adapt to the number of outliers. The resulting
procedure (denoted later by µ̂(Ĵ)) satisfies the same statistical bounds as µ̂K for all K ≥ 300|O|
without knowing |O| (up to constants). We also show that it satisfies results in expectation.

The adaptation method we use is based on the Lepski method Lepskĭı (1990, 1991) which is
another tool used by the “statistical community” working on robustness issues since Lugosi and
Mendelson (2019c); Catoni (2012). The price we pay for this adaptation is the a priori knowledge
of the rate (??) for all K which means that we know in advance Tr(Σ) and ‖Σ‖op – this is for
instance the case when it is known that Σ is the identity matrix Id. Of course, one can design
robust estimators for Tr(Σ) and ‖Σ‖op but this requires stronger assumptions (more than four
moments) that we want to avoid at this stage.

Lepski’s method proceeds as follows. We set for allK ∈ {1, . . . , N} and all j ∈ {0, 1, . . . , log2N}

r∗K = 808

1200

√
Tr(Σ)
N

+

√
1200 ‖Σ‖opK

N

 and r(j) = r∗dN/2je

the rate of convergence from Theorem 3.2. For a given parameter uj ∈ N∗, we construct from
Algorithm 4

µ̂(j) ← covSDPofMeans(X1, . . . , XN ,K = dN/2je, u = uj). (3.11)

Classical Lepski’s method considers the largest J such that ⋂Jj=0B
d
2(µ̂(j), r(j)) is none-empty

and then take any point µ̂ in this none-empty intersection. Standard analysis of Lepski’s method
shows that µ̂ estimates µ at the rate r∗K (up to an absolute constant) simultaneously for all
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K ∈ {300|O|, . . . , N} without knowing |O|. Given that checking that the intersection of several
`d2-balls may not be straightforward, we use a slightly modified version of Lepski’s method as
described in the following algorithm.

input :X1, . . . , XN and {uj : j = 0, 1, 2, . . . , log2N} ⊂ N∗
output : A robust subgaussian estimator of µ with adaptive choice of K
init : J = 0 and µ̂(0) = covSDPofMeans(X1, . . . , XN ,K = N, u = u0)

1 while
∥∥∥µ̂(J) − µ̂(j)

∥∥∥
2
≤ r(J) + r(j), j = J − 1, J − 2, . . . , 0 do

2 J ← J + 1
3 µ̂(J) ← covSDPofMeans(X1, . . . , XN ,K = dN/2Je, u = uJ)
4 end
5 Return µ̂(J)

Algorithm 5: Adaptive choice of K in covSDPofMeans

Unlike for the traditional Lepski’s method we check that µ̂(J) is in ⋂J−1
j=0 B

d
2(µ̂(j), r(J) + r(j))

instead of checking that ⋂Jj=0B
d
2(µ̂(j), r(j)) is none-empty – this simplifies the adaptation step. It

is also possible to speed up the whole procedure by constructing iteratively the bucketed means.
Indeed, given that we consider a dyadic grid for K, i.e. K ∈ {N, dN/2e, dN/4e, . . .}, for all j ∈ N,
we can construct the block means {X̄(j+1)

k , k = 1, . . . , dN/2j+1e} at step K = dN/2j+1e using
the block means from the previous step K = dN/2je by simply averaging two successive block
means: X̄(j+1)

k ← (X̄(j)
2k + X̄

(j)
2k+1)/2.

Let us now turn to the statistical analysis of the output µ̂(Ĵ) from Algorithm 5 where

Ĵ = max

J ∈ {0, 1, . . . , log2N} : µ̂(J) ∈
J−1⋂
j=0

Bd
2(µ̂(j), r(J) + r(j))

 .
Theorem 3.4. Let {uj : j = 0, 1, 2, . . . , log2N} ⊂ N∗ be the family of parameters used to
construct the family of estimators {µ̂(j), j = 0, 1, . . .} in Algorithm 5 (see also (3.11)). For all
K ∈ {600|O|, . . . , N}, with probability at least

1− 2 exp(−K/360000)−
log2(N/(K−1))∑

j=0
(1/10)uj (3.12)

the output µ̂(Ĵ) of Algorithm 5 is such that
∥∥∥µ̂(Ĵ) − µ

∥∥∥
2
≤ 3r∗K .

Proof. For all j ∈ {0, 1, . . . , log2N} denote by Ej the event onto which Theorem 3.2 is
valid for K = dN/2je and for u = uj : that is on Ej , if dN/2je ≥ 300|O|,

∥∥∥µ̂(j) − µ
∥∥∥

2
≤ r(j) and

P[Ej ] ≥ 1−exp(−dN/2je/180000)−(1/10)uj . LetK ∈ {600|O|, . . . , N} and J ∈ {0, 1, . . . , log2N}
be such that dN/2Je ≤ K < dN/2J−1e. On the event ⋂Jj=0 Ej , we have

∥∥∥µ̂(j) − µ
∥∥∥

2
≤ r(j) for

all j = 0, 1, . . . , J , in particular, for all j = 0, 1, . . . , J − 1,
∥∥∥µ̂(J) − µ̂(j)

∥∥∥
2
≤ r(J) + r(j) and so

µ̂(J) ∈
⋂J−1
j=0 B

d
2(µ̂(j), r(J) +r(j)). As a consequence Ĵ ≥ J therefore

∥∥∥µ̂(Ĵ) − µ̂(J)
∥∥∥

2
≤ r(Ĵ) +r(J) ≤
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2r(J) ≤ 2r∗K . Finally, we have

P
[ J⋂
j=0
Ej
]
≥ 1−

J∑
j=0

exp(−dN/2je/180000)− (1/10)uj

≥ 1− 2 exp(−K/360000)−
log2(N/(K−1))∑

j=0
(1/10)uj .

We can see in Algorithm 5 that µ̂(Ĵ) does not use any information on the number of outliers
|O| for its construction but it can still estimate µ at the optimal rate r∗K for all deviation
parameters K in {600|O|, . . . , N}. The maximum total running time of Algorithm 5 is achieved
when Ĵ = log2N ; in that case, it is at most Õ(Nd +∑log2 N

j=0 dN/2jeujd). In particular, if one
chooses uj = 2j for all j = 0, 1, . . . , log2N then the total running time for the construction of
µ̂(Ĵ) is nearly-linear Õ(Nd). For this choice of uj , the probability deviation in (3.12) is constant
and so one should choose the smallest possible K allowed in Theorem 3.4, that is K = 600|O|.
Let us write formally this result.

Corollary 3.2. If one takes uj = 2j for all j = 0, 1, . . . , log2N in Algorithm 5 then, in nearly-
linear time Õ(Nd), with probability at least 1− 2 exp(−600|O|/360000)− 1/11, the output µ̂(Ĵ)

from Algorithm 5 satisfies

∥∥∥µ̂(Ĵ) − µ
∥∥∥

2
≤ 2r∗600|O| = 1616

1200

√
Tr(Σ)
N

+ 850

√
‖Σ‖op |O|

N

 .
In particular, considering the setup from Theorem 3.1, if |O| = εN for some ε ≤ 1/600 then

the rate achieved by µ̂(Ĵ) in Corollary 3.2 is of the order of√
Tr(Σ)
N

+
√
‖Σ‖op ε (3.13)

which is like
√
‖Σ‖op ε when N ≥ (Tr(Σ)/ ‖Σ‖op)/ε. As a consequence, the result from Corol-

lary 3.2 improves the one from Theorem 3.1 by removing an extra log d factor in the sample
complexity in the case considered in Theorem 3.1 that is when Σ � σ2Id. Moreover, Corol-
lary 3.2 also shows that the sample complexity depends on the effective rank Tr(Σ)/ ‖Σ‖op of
Σ. This ratio can be much smaller than d if the spectrum of Σ decays sufficiently fast. Finally,
Corollary 3.2 also covers the case where the sample size N is less than the sample complexity
– that is when N ≤ (Tr(Σ)/ ‖Σ‖op)/ε. In that case, the estimation rate is given by

√
Tr(Σ)/N

which is the complexity coming from the estimation of µ in the none corrupted case. As a
consequence, Corollary 3.2 exhibits a phase transition happening at N ∼ (Tr(Σ)/ ‖Σ‖op)/ε above
which corruption is the main source of estimation mistakes and below which corruption does not
play any role.

Corollary 3.2 covers the case where µ̂(Ĵ) is computed in nearly-linear time and with statistical
guarantees happening with constant probability. In the following final result, we show that
µ̂(Ĵ) can estimate µ at the optimal rate r∗K for all K ≥ 600|O| with a subgaussian deviation
1−2 exp(−K/360000) if we perform more iterations uj of the covering SDP from Lemma 3.5. The
price we pay for this subgaussian behavior of µ̂(Ĵ) is on the total running time which goes from
nearly-linear time Õ(Nd) to Õ(N2d) by taking uj = dN/2je for j = 0, 1, . . . , log2N (uj = N
would do as well). We write formally this statement in the next corollary which follows directly
from Theorem 3.4.
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Corollary 3.3. If one takes uj = dN/2je for all j = 0, 1, . . . , log2N in Algorithm 5 then, in
time Õ(N2d), for all K ≥ 600|O|, with probability at least 1 − 4 exp(−K/360000), the output
µ̂(Ĵ) from Algorithm 5 satisfies

∥∥∥µ̂(Ĵ) − µ
∥∥∥

2
≤ 2r∗K = 1616

1200

√
Tr(Σ)
N

+

√
1200 ‖Σ‖opK

N

 .
As a consequence µ̂(Ĵ) is a subgaussian estimator of µ for all range of K from 600|O| to

N which can handle up to |O| outliers in the database (even when |O| ∼ N) and that can be
constructed in time Õ(N2d). It does not require any knowledge on |O| for its construction.

Let us now show that the algorithm µ̂(Ĵ) constructed in Corollary 3.3 also satisfies estimation
results in expectation. So far all the statistical properties have been given with large probability;
for µ̂(Ĵ) it is also possible to obtain a result in expectation.

The benchmark result we use here is the rate achieved by the empirical mean in a non-
corrupted setup but unlike the result in deviation we don’t need i.i.d. Gaussian variables since
E
∥∥∥X̃n − µ

∥∥∥
2
≤
√

Tr(Σ)/N where X̃n = n−1∑
i X̃i and X̃1, . . . , X̃N are the non-corrupted data

points from Assumption 3.1. Hence,
√

Tr(Σ)/N is the rate we aim to achieve but we also may
expect a price to pay for the adversarial corruption, in particular, when ε = |O|/N is above the
phase transition exhibited in (3.13), that is for ε ≥ (Tr(Σ)/ ‖Σ‖op)/N .

Theorem 3.5. Under Assumption 3.1, and if N ≥ 600|O|, the following holds. If one takes
uj = dN/2je for all j = 0, 1, . . . , log2N in Algorithm 5 then, in time Õ(N2d), Algorithm 5
outputs µ̂(Ĵ) satisfying

E
∥∥∥µ̂(Ĵ) − µ

∥∥∥
2
≤ (3 + 16c2

0)r∗600|O| ≤ (3 + 16c2
0)808× 1200

√Tr(Σ)
N

+

√
‖Σ‖op |O|

2N


as long as and N ≥ 4c0 log(c0d+ c0) where c0 = 360000.

Proof. We denote µ̃ = µ̂(Ĵ) and c0 = 360000. We know from Corollary 3.3 that for all
600|O| ≤ K ≤ N , with probability at least 1 − 4 exp(−K/c0), ‖µ̃− µ‖2 ≤ 2r∗K . So we know
how to control the estimation property of µ̃ up to an event of probability measure at most
4 exp(−N/c0). On that event, we only need a crude upper bound on ‖µ̃− µ‖2 to get the result.
This is what we do now.

We know that by construction that µ̃ ∈ Bd
2(µ̂(N), 2r∗N ). Moreover, µ̂(N) starts from µ̂

(N)
0 ,

the coordinate wise median of the data Xi (because K = N blocks here) and makes at most
T = log(8

√
d)/ log(1/0.81) descent iterations like xc+1 = xc − θcv1 where v1 ∈ Sd−1

2 and
θc = −Med

(〈
Xi − xc, v1

〉
: i ∈ [N ]

)
. In particular, one has at every iteration

‖xc+1 − µ‖2 ≤ 2 ‖xc − µ‖2 + Med(‖Xi − µ‖2 : k ∈ [K]).

Hence, µ̂(N) satisfies∥∥∥µ̂(N) − µ
∥∥∥

2
≤ 2T+1

(∥∥∥µ̂(j)
0 − µ

∥∥∥
2

+ Med(‖Xi − µ‖2 : i ∈ [N ])
)

≤ 16d
(∥∥∥µ̂(N)

0 − µ
∥∥∥
∞

+ Med(‖Xi − µ‖∞ : i ∈ [N ])
)
. (3.14)

In the adversarial contamination model from Assumption 3.1, as we assumed that N ≥ 600|O|,
there are at least N−|O| ≥ (599/600)N indices i such that Xi = X̃i, hence for at least (599/600)N
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i’s we have, for all p ∈ [d],

|Xi,p − µp| ≤ max
i∈[N ]

|X̃i,p − µp| and ‖Xi − µ‖∞ ≤ max
i∈[N ]

∥∥∥X̃i − µ
∥∥∥
∞

where Xi,p (resp. µp) denotes the p-th coordinate of Xi (resp. µ). Hence, in (3.14), we get∥∥∥µ̂(N) − µ
∥∥∥

2
≤ 32dmax

i∈[N ]
max
p∈[d]
|Xi,p − µp|.

Let us now turn to the stochastic argument to upper bound the right-hand side in the last
inequality.

E(max
i∈[N ]

max
p∈[d]
|Xi,p − µp|2) ≤ E(max

i∈[N ]
||Xi − µ||22) ≤ N Tr(Σ).

Hence,
E(‖µ̃− µ‖22) ≤ 2048d2N Tr(Σ) + 8(r∗N )2. (3.15)

We are now in a position to obtain an estimation result in expectation for µ̃. We denote
KO = 600|O|:

E ‖µ̃− µ‖2 =
N−1∑
k=KO

E
[
‖µ̃− µ‖2 I(2r∗k ≤ ‖µ̃− µ‖2 ≤ 2r∗k+1)

]
+E

[
‖µ̃− µ‖2 I(‖µ̃− µ‖2 ≤ 2r∗KO)

]
+ E [‖µ̃− µ‖2 I(‖µ̃− µ‖2 ≥ 2r∗N )]

≤ 2r∗KO +
N−1∑
k=KO

2r∗k+1 × 4 exp(−k/c0) + E [‖µ̃− µ‖2 I(‖µ̃− µ‖2 ≥ 2r∗N )]

≤ 2r∗KO + 16c2
0r
∗
KO exp(−KO/c0) + 25c0d

√
N Tr(Σ) exp(−N/(2c0))

where, in the last inequality, we used that

E [‖µ̃− µ‖2 I(‖µ̃− µ‖2 ≥ 2r∗N )] ≤
(
E
[
‖µ̃− µ‖22

])1/2
(P [‖µ̃− µ‖2 ≥ 2r∗N ])1/2

≤ (64d
√
N Tr(Σ) + 3r∗N )× 2 exp(−N/(2c0)) ≤ 25c0d

√
N Tr(Σ) exp(−N/(2c0))

from (3.15). When N ≥ 4c0 log(c0d + c0), then N ≥ 2c0 log[c0dN ], so E ‖µ̃− µ‖2 ≤ (3 +
16c2

0)r∗KO .

We therefore recover the same rate of convergence in expectation in Theorem 3.5 as the one
in deviation in Corollary 3.3 for the adaptive estimator µ̂(Ĵ), it is also the rate achieved by the
non adaptive estimator µ̂K for the minimal value of K = 600|O|. In particular, the same phase
transition phenomena occurs in expectation as in the discussion following Equation (3.13).
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A Spectral Algorithm for Robust Regression with Subgaussian Rates
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4.1 Introduction

Much work concerning the prototypical problem of regression focuses on the study of error rates
of a given statistical procedure while making strong assumptions on the underlying distributions
of samples, assuming for instance that they are i.i.d. and subgaussian or bounded (see for
instance, Koltchinskii (2011); Massart (2007); Lecué and Mendelson (2013)). It is however
of fundamental importance to understand what happens when the data violates such strong
assumptions, for instance, when the underlying distribution of samples is heavy-tailed and/or
when the dataset is corrupted by outliers. In such cases – which are everyday cases for real-world
datasets – classical estimators such as OLS or MLE exhibit, at best, far-from-optimal statistical
behaviours and at worst completely non-sens outputs. In this work, we study the statistical
properties (non-asymptotic estimations and predictions results) of algorithms coming with actual
working code constructed on this type of real-word datasets. We want to put forward that it
is an algorithm and not only a purely theoretical estimator and that this algorithm can be

67
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coded efficiently (we provide a simulation study in the following) since its most time consuming
fundamental building block is to find a top singular vector of a reasonable size matrix. On top
of these practical considerations, our theoretical results show that even though the dataset is
far from the ideal i.i.d. subgaussian framework and even though we study an actually codable
algorithm, the resulting estimator achieves the very same minimax bounds with (exponentially)
high probability as the MLE/OLS does in the ideal i.i.d. Gaussian framework (i.e. Gaussian
design and independent Gaussian noise), (see Lecué and Mendelson (2013) for deviation optimal
result in the ideal framework). On top of that, we prove a theoretical running time for that
algorithm which can be linear O(Nd) (where N is the sample size and d is the number of features)
and at most quadratic O(N2d).

For a statistical problem such as mean estimation, regression or covariance estimation, we are
given a loss function and an associated risk function ` (for instance, for the problem of estimation
of the mean vector µ∗ := E(X) ∈ Rd tackled in the general introduction, the loss function is
`µ(X) = ‖µ−X‖22 ,∀µ ∈ Rd and the associated risk is `(µ) = E`µ(X)). For robust estimators
the emphasis is not put on the expected risk E(`(µ̂)) – where the expectation is taken w.r.t. the
data – but rather on the dependence of the risk bound rδ on the confidence level 1− δ ∈ [0, 1]: we
want to find the smallest rδ so that P(`(µ̂) > rδ) ≤ δ and the way rδ depends on δ is paramount
in this approach (this is a key property of the estimator µ̂ that cannot be revealed when its
expected risk is studied). An estimator, as we have seen, is robust to heavy-tailed data if the
rate rδ does not grow ”too quickly” when δ goes to 0: we look for the optimal “subgaussian-rate”
defined in the Introduction. Here we consider the standard linear regression setting where data
are couples (Xi, Yi)i ∈ Rd × R and we look for the best linear combination of the coordinates of
an input vector X to predict the output Y , that is we look for β∗ defined as follows.

β∗ = argmin
β∈Rd

`(β) = argmin
β∈Rd

E(Y1 − 〈β,X1〉)2.

The theoretical question of finding robust to heavy-tailed estimators reaching optimal rates
for the regression problem has attracted much attention during the last ten years. It first started
with the study the standard procedures in this heavy-tailed framework, such as Empirical Risk
Minimization or its regularized versions Lecué and Mendelson (2016); van de Geer and Muro
(2014); Lecué and Mendelson (pear); Oliveira (2016). Several results showed the negative but
unavoidable impact of heavy-tailed data on these classical procedures Lecué and Mendelson
(2016). In the mean time, new estimators have been introduced. For instance, the pioneer
work of Audibert and Catoni (2011) has considered weak moment conditions, such as a L2 − L4
norm equivalence, under which the subgaussian rate could be reached. It was then followed by
a rich literature such as Lugosi and Mendelson (2016); Lecué and Lerasle (2019); Lecué and
Lerasle (2020); Oliveira (2016); van de Geer and Muro (2014). The remaining issue is that
naive methods to compute these new theoretically-optimal estimators take exponential time
in the number of dimension d, partly because some of them are based on non-convex optimization.

Recent advances have shown that, for the problem of mean estimation, one could find com-
putationally efficient procedures (that is to say polynomial in both the dimension d and the
number of data N) that are statistically nearly optimal, meaning that they reach -up to universal
constants- the optimal radius rδ =

√
Tr(Σ)+‖Σ‖op log(1/δ)

N for every confidence level δ ∈ [0, 1] (see
Hopkins (2018); Cherapanamjeri et al. (2019); Depersin and Lecué (2019)). More recently, Lei
et al. (2020) introduce a spectral method reaching the optimal sub-gaussian rates without using
Semi-Definite Programming, making somehow robust mean estimation easier to understand, eas-
ier to interpret and easier to code while still keeping optimal statistical and computational results.
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The question of whether reaching similar bounds (matching the one of the OLS in the
Gaussian setting without the Gaussian and i.i.d. assumptions – thus allowing for corrupted and
heavy-tailed datasets) in polynomial time was possible for other statistical problems such as
regression or covariance matrix estimation had been open for a long time. Indeed, up to recently,
the best known polynomial algorithms were the one from Prasad et al. (2018) or from Hsu and
Sabato (2016). The guarantee is the same for those two algorithms: when the covariance of X is
the identity and when the noise ξ = Y −〈β∗, X〉 has bounded variance `(f̂)− `(f∗) ≤ O( log(1/δ)d

N )
with probability 1− δ, and they need a number of sample of order N & log(1/δ)d. The article
Cherapanamjeri et al. (2020a) has been the first to construct a polynomial-time method achieving
the rate of the OLS in the Gaussian setting `(f̂)− `(f∗) ≤ O( log(1/δ)∨d

N ). To the date, it is the
only procedure running in polynomial algorithm achieving the optimal subgaussian rate. However,
Cherapanamjeri et al. (2020a) uses the Sum of Square (SoS) programming hierarchy to design
their algorithm. Even if SoS hierarchy runs in polynomial time, its reliance on solving large
semi-definite programs makes it impractical and remains a theoretical result leaving still open
the question on the existence of a practical efficient algorithm achieving optimal subgaussian rates.

In this chapter, we tackle this issue, showing that techniques from Lei et al. (2020) can be used
to give the first practical, nearly quadratic (and in fact in most cases nearly-linear) algorithm that
reaches the subgaussian rate. We also conduct numerical experiments on simulated data with our
proposed procedure to show that it is indeed practical and fast. Moreover, as predicted by our
theoretical findings, our simulation analysis shows that it is robust both to heavy-tailed data and
to outliers. To the best of our knowledge, this is the first time that numerical experiments are
conducted for a regression algorithm with sub-gaussian rates and polynomial time guarantees.

From a theoretical point of view, our main result (that we will prove later) can be stated as
follows (see Setting 4.1 for the precise set of assumptions and next sections for the construction
of the algorithm).

Theorem 4.1. There are universal constants A,B,C so that the following hold. Let δ ≥ e−AN
and K ≥ B(blog(1/δ)c ∨ d∨ |O|) where |O| is the number of outliers. Given N ≥ K points, there
is an algorithm running in time

O
(
(Nd+K2d)× log(||β∗||Σ)× polylog(K, d)

)
that outputs an estimate β̂ ∈ Rd such that with probability at least 1− δ

`(β̂)− `(β∗) ≤ C
supu∈BΣ E(ξ2

1 〈u,X1〉2)K
N

.

So for K = B(blog(1/δ)c ∨ d∨ |O|), we get, up to universal constants the (deviation minimax
optimal) subgaussian rate achieved by OLS in the Gaussian framework (see Lecué and Mendelson
(2013)). This rate was achieved previously under similar assumptions by Median-of-means
estimators in Lugosi and Mendelson (2016); Lerasle (2019); Lecué and Lerasle (2020); Lecué and
Lerasle (2019) but none of them come with computational time guarantees.

To construct estimator β̂ from Theorem 4.1 and to prove its theoretical properties as stated
in Theorem 4.1, we outline now the role of the following key tools:

• The Median of Means framework, that has already been explained in the general
introduction, and which is still a very important tool in this chapter.
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• The Furthest hyperplane problem was first adapted to compute median-of-mean
estimators very recently by Lei et al. (2020). Authors from Lei et al. (2020) adapt to the
problem of robust mean estimation a procedure initially proposed by Karnin et al. (2012)
to find the approximate furthest hyperplane, that is to say the hyperplane that separate 0
from most of the data and that is the furthest possible from 0. The method from Karnin
et al. (2012) is based on the multiplicative weight update method (see Arora et al. (2012)
for a survey), a technique which allows to compute efficiently approximations of quantities
such as infwi∈∆ supu

∑
iwi 〈u, xi〉

2 where ∆ is a convex set of positive weights.

The combination of these two techniques is at the heart of both the construction and the statistical
and computational time studies of the algorithm satisfying Theorem 4.1.

In Section 4.2 we present the assumptions we make on the data and provide all the stochastic
lemmas that will be needed for the algorithm. In Section 4.3 we will present our descent algorithm,
give its precise statistical performance and make some connexion with the furthest hyperplane
problem. In Section 4.4 we present some empirical results on simulated data.

4.2 Assumptions and preliminary stochastic results

4.2.1 Assumptions

As explained in the previous section, the observed dataset (X̃i, Ỹi)Ni=1 ∈ Rd × R is a corrupted
version of the i.i.d. dataset {(Xi, Yi)i, i ∈ {1, . . . , N}} in a possibly adversarial way. The
assumptions made on good data (Xi, Yi)i are gathered in the following setting: (see also Lerasle
(2019) or Audibert and Catoni (2011)).

Setting 4.1. We assume that the following ”heavy-tailed setting” holds:

1. X1 is centered and has finite second moments; we write its L2-moments matrix Σ =
E(X1X

T
1 ) and we assume that Σ is known. Let also BΣ = {x ∈ Rd| 〈x,Σx〉 ≤ 1} be the

ellipsoid associated with this L2 structure and, for u ∈ Rd ‖u‖2Σ = 〈u|Σu〉.

2. Let ξ1 = Y1 − 〈β∗, X1〉 and assume that σ2 := supu∈BΣ E(ξ2
1 〈u,X1〉2) is such that σ2 <∞.

3. There exists an universal constant γ such that, for all u ∈ Rd, γE(〈u,X〉2) ≥
√
E(〈u,X〉4).

We assume adversarial contamination on the data: (X1, Y1), · · · , (XN , YN ) denote N i.i.d. random
vectors in Rd × R. The vectors (X1, Y1), · · · , (XN , YN ) are not observed, instead, there exists
a (possibly random) set O such that, for any i ∈ Oc, (X̃i, Ỹi) = (Xi, Yi). The set of indices of
outliers O can be arbitrarily correlated with the data (Xi, Yi) – for instance, only the 9N/10 data
with the largest ‖Xi‖2 are observed – and the outliers (X̃i, Ỹi)i∈O can be anything (they can be
arbitrarily correlated between themselves and with the non-corrupted data (Xi, Yi), i = 1, . . . , N).
The only constraint on O is on its size: we suppose that we know an upper bound of |O| (even
though, this constraint may be dropped out if we use an adaptive scheme on K such as Lepski’s
method in the end). The observed dataset is therefore {(X̃i, Ỹi) : i = 1, · · · , N}, and we want to
recover β∗ out of it.

Let us now comment on Setting 4.1. The first three assumptions deal with the heavy-tailed
setup. It involves at most the existence of a fourth moment on the noise ζ and the functions class
{u ∈ Rd →

〈
u,X

〉
}. The strongest assumption among them is the third one which is a L2/L4

norm equivalence assumption. This type of assumption has been used from the beginning for the
statistical study of ERM and other classical methods in the heavy-tailed scenario for instance in
Oliveira (2016); van de Geer and Muro (2014); Lecué and Mendelson (pear) or in Audibert and
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Catoni (2011). It is also related to the small ball assumption from Koltchinskii and Mendelson
(pear). It has been systematically used for the study of Median-of-means estimators (see Lerasle
(2019)). The remaining of Setting 4.1 deals with the adversarial contamination model, that has
been presented in the introduction.

4.2.2 Bounds on three stochastic processes

In this section, we introduce three stochastic processes that play a central role in our analysis.
We provide a high probability control for the supremum of the three of them into three lemmas.
All the stochastic tools that we will need later will be related to one of the three processes. So
that all the stochastic part of this work is gather into this section and in the end we will identify
a single event onto which the study of the algorithm will be using purely deterministic arguments.

We now state the three lemmas. The two first one deal with the classical quadratic and
multiplier processes which already appeared in the study of ERM in Lecué and Mendelson (2013).
They naturally show up when the quadratic loss is used. The last one is new and is related to
the descent algorithm we are studying below.

We split the data in K blocks denoted by Bk, k ∈ {1, . . . ,K}, in agreement with the
Median-of-Mean framework. We note m = N/K the number of data in each blocks, and we
set Xk = (Xi)i∈Bk and X̃k = (X̃i)i∈Bk . Yk and Ỹk are defined the same way. We start with
(Depersin, 2020a, Lemma 2), presented in greater details later in Chapter ??, that we will use
several times in what follows. We use the definition of VC-dimension presented in the general
introduction for what follows.

Lemma 4.1. Let F be a set of Boolean functions satisfying the following assumptions.

• For all f ∈ F , P (f(X1,Y1) = 0) ≥ 31/32.

• K ≥ C(VC(F) ∨ |O|) where C is a universal constant.

Then, with probability at least 1 − exp(−K/512), for all f ∈ F , there are at least 19K/20
blocks Bk on which f(X̃k, Ỹk) = 0.

This lemma is used as a baseline to prove the three following lemmas that will define the
three stochastic events A, B and E that are needed for our algorithm to give a good estimate. We
state in this section that all three fail with exponentially low probability. We introduce the rate

r = 8σ
√
K

N
. (4.1)

Lemma 4.2 (Multiplier process). There is a universal constant C1 so that the following hold.
If K ≥ C1(d ∨ |O|), then the following event E holds with probability at least 1− exp(−K/512) :
for all u ∈ BΣ, there exist more than 19/20K blocks Bk so that

1
m
|
∑
i∈Bk

(Ỹi − 〈β∗, X̃i〉) 〈u, X̃i〉 | ≤ r.

This can also be also written as: for all u ∈ Rd there exist more than 19/20K blocks Bk so
that :

1
m
|
∑
i∈Bk

(Ỹi − 〈β∗, X̃i〉) 〈u, X̃i〉 | ≤ r||u||Σ.



72 CHAPTER 4. A SPECTRAL ALGORITHM FOR ROBUST REGRESSION

Lemma 4.3 (Quadratic process). There is C1 a universal constant so that the following hold.
If K ≥ C1(d ∨ |O|) then the following event B holds with probability at least 1− exp(−K/512):
for all u, v ∈ Rd, there exists more than 19/20K blocks Bk so that

| 1
m

∑
i∈Bk

〈u, X̃i〉 〈v, X̃i〉 − 〈u,Σv〉 | ≤ 6γ
√

1
m
‖u‖Σ ‖v‖Σ

In particular, when m ≥ 360 000γ2, on the event B, for all u ∈ Rd

99/100 〈u,Σu〉 ≤ 1
m

∑
i∈Bk

〈u, X̃i〉
2 ≤ 101/100 〈u,Σu〉 .

Lemma 4.4. There is C1 a universal constant so that the following hold. If K ≥ C1(d ∨ |O|)
and m ≥ 128γ, then the following event A holds with probability at least exp(−K/512). For all
βc ∈ Rd, there are more than 19/20K blocks Bk so that

∥∥∥Z̃k(βc)∥∥∥2
≤ 8

√
E(||(ξ1Σ−1/2X1||22)

m
+
√
d ‖βc − β∗‖Σ ≤

√
d(r + ‖βc − β∗‖Σ)

where
Z̃k(βc) = 1

m

∑
i∈Bk

(Ỹi − βcX̃i)Σ−1/2X̃i

with r defined as in (4.1).

We assume for the rest of this work, that K ≥ C1(d ∨ |O|) and m ≥ 360 000γ2. We
moreover assume that events A, B and E hold.

4.3 Analysis of the algorithm

Starting from βt, the ideal descent direction is u∗ = (βt − β∗)/||βt − β∗||Σ, and the associated
step size is ||βt − β∗||Σ. Of course, none of those two quantities can be exactly computed,
but they give a sense of what one should look for : a good descent direction v should check
〈v,Σβt − β∗〉 ≥ c0||βt−β∗||Σ and ||v||Σ = 1 for some constant c0 < 1, and a good step size should
check dt ∈ [c1 ‖βt − β∗‖Σ , c0 ‖βt − β∗‖Σ] with 0 < c1 < c0 so that, taking βt+1 = βt + dtvt,

||βt+1 − β∗||2Σ ≤ (1− 2c0c1 + c2
1)||βt − β∗||2Σ ≤ α||βt − β∗||2Σ

with α < 1. In order to find a good descent direction, we will be using the central quantity

Zk(βc) = 1
m

∑
i∈Bk

(Yi − βcXi)Σ−1/2Xi

already mentioned in the previous section (see Lemma 4.4). Remember that we assume Σ to be
known. We decompose Zk as Zk(βc) = 1

m

∑
i∈Bk ξiΣ

−1/2Xi +∑
i∈Bk 〈β

∗ − βc, Xj〉Σ−1/2Xi. The
first term has mean zero by definition of β∗, but the expectation of the second one is Σ1/2(β∗−βc),
so one might hope the Σ−1/2Zk(βc) to point toward the right direction.

In fact we can be a little more precise using the previous section. For any u such that
||u||2 = 1, we can see using Lemma 4.2 and 4.3 that, for at least 9/10K of the block,
〈Zk(βc), u〉 ' 〈Σ1/2(β∗ − βc), u〉 (up to errors of magnitude max(r, ||Σ

1/2(β∗−βc)||2
100 )). So if one

were to find the vector u which maximise Q1/10(〈Zk(βc), u〉)k, where we denote by Q1/10 the
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first decile of a sequence, we could find a vector u well aligned with Σ1/2(β∗ − βc). This unusual
and non-convex maximisation has been tackled under the name of furthest hyperplane problem
in Karnin et al. (2012), where it shown that one can approximately solve such a maximization
using spectral methods. This method has been first used in the context of robust estimation by
Lei et al. (2020), where authors use the spectral algorithm from Karnin et al. (2012) to solve
efficiently the problem of robust mean estimation. The introduction of the quantity Zk, which
allows to adapt the procedures of Lei et al. (2020) to the regression problem, is one of the novelty
of this work. We will see in the rest of this section that finding such a direction indeed leads to a
nice descent, and we will show how to find it efficiently.

The general algorithm, as in Lei et al. (2020), is a basic descent procedure :

input : X̃1, Ỹ1 . . . , X̃N , ỸN , K ≥ C1(d ∨ |O|), and Tdes.
output : A robust estimator of β∗

1 Initialize β0 = 0
2 for t = 1, ..., Tdes do
3 dt = stepSize(X̃, Ỹ ,K, βt, Tdes)
4 gt = descentDirection(X̃, Ỹ ,K, βt, dt, Tdes)
5 βt+1 = βt − dtgt
6 end
7 Return βTdes .

Algorithm 6: Meta descent algorithm for robust linear regression

More precisely, we will show that the algorithms stepSize and descentDirection are good
step size and descent direction. The main tool is a modification of the algorithm APPROXBREGMAN
from Lei et al. (2020) (which is in turn an adaptation from Karnin et al. (2011)), that we called
BregmanRegression

We summarize the properties of this descent direction in the following theorem :

Theorem 4.2. On the event E ,A,B, each iteration of Algorithm 6 satisfies the following with
probability at least 1− exp(−K)/Tdes

• Whenever ||βc − β∗||Σ ≥ 100r,

‖βc+1 − β∗‖Σ ≤ (1− 2/100.000) ‖βc − β∗‖Σ

• Whenever ||βc − β∗||Σ ≤ 100r,

‖βc+1 − β∗‖Σ ≤ 102r

Moreover, each iteration runs in time O((Nd+K2d)× polylog(d,K))

Note that even if we are on the right set of event, our bound holds with a high probability,
but not with probability 1. This is because our algorithm is stochastic in itself, and it has some
chance to fail even if E ,A, and B hold.

To prove this theorem, we need a few intermediate lemma and algorithms. All the results
presented hold on the event A ∩ B ∩ E . We first state some essential remarks about pruning.
Because A holds, we know that 9/10K blocks check

∥∥∥Z̃k(βc)∥∥∥2
≤
√
d(r + ‖βc − β∗‖Σ). For
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simplicity, we will just denote Z̃k(βc) = Z̃i. We set K ′ = b9/10Kc, and we note Z ′1, ..., Z ′K′ the
K ′ smallest Z̃i, as returned by algorithm 7. For the rest of this part we will mainly work with
the pruned data, so that, on A, R := maxk≤K′ ||Z ′k||2 <

√
d(r + ‖βc − β∗‖Σ).

input : Z̃1, ..., Z̃K
output : Pruned Z̃σ(1), ..., Z̃σ(K′)

1 Compute the norms ||Z̃i||2 and sort them Z̃σ(1) < Z̃σ(2) < ... < Z̃σ(K)
2 Remove the top 1/20
3 Return Z̃σ(1), ..., Z̃σ(K′) := (Z ′k)k∈{1,...,K′}.

Algorithm 7: Pruning algorithm

The first lemma of this section states that ifQ8/10 is the 8/10 quantile of a serie, maxu∈Bd2 Q
8/10(〈Z ′i, u〉)

is a good estimate of the distance ||βc−β∗||Σ (Bd2 denote the unit ball for the canonical euclidean
distance on Rd)

Lemma 4.5. There is u ∈ Bd2 so that, for at least 8/10 of the k ∈ {1, ...,K ′}

〈Z ′k, u〉 ≥ θ1

with θ1 := 99/100||βc − β∗||Σ − r
Moreover, for any u ∈ Bd2, at least 8/10 of the pruned blocks check, 〈Z ′i, u〉 ≤ r+101/100||βc−

β∗||Σ.

Now we recall the main lemma from Lei et al. (2020), that states that it is possible to
approximate maxu∈B2 Q8/10(〈Z ′k, u〉) with exponentially high probability in polynomial time.

Lemma 4.6 (Lemma 5.2 of Lei et al. (2020)). There is a universal constant C such that the
following holds. Suppose there is u ∈ Bd2 so that, for at least 8/10 of the k

〈Z ′k, u〉 ≥ θ > 0

and that, for all k, Z ′k < R. Then, when T ≥ 2 log(K ′)R2/θ2, with probability at least
1 − exp(−T/C), algorithm 8 applied with T and θ outputs a vector ũ ∈ Bd2 so that, for at
least 2/10 blocks, 〈ũ, Z ′k〉 ≥ θ/10 (and returns ”fail” with probability exp(−T/C) ). Moreover,
each of the T iteration of algorithm 8 costs at most K × d+ polylog(d) operations.

Remark: Algorithm 8 always return either a vector u ∈ Bd2 so that, for at least 2/10 of the k,
〈u, Z ′k〉 ≥ θ/10 or ”fail”. If there is no u so that for at least 2/10 blocks 〈u, Z ′k〉 ≥ θ/10, then it
will always return ”fail”
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input :Z ′1, . . . , Z ′K , θ and T .
output : A good descent direction or ”Fail”.

1 R = max(||Z ′i||2)
2 Initialize weights ω1 = (1, ..., 1)/K ∈ RK
3 for t = 1, ..., T do
4 Let At be the K × d matrix whose ith row is

√
ωt(i)Z ′i and ut be the approximate top

right singular vector of At × Σ−1/2, computed with a PowerMethod (see Lei et al.
(2020)).

5 Set σi = 〈Z ′i, ut〉
2.

6 ωt+1(i) = ωt(i)× (1− σi/2)
7 Normalize a = ∑

i ωt+1(i), ωt+1 = ωt+1/a
8 Compute the Bregmann projection ωt+1 = Bregmann(ωt+1)
9 end

10 Return ROUND(Z ′, θ, (ut)t).
Algorithm 8: BregmanRegression

Remark 4.1. Lemma 4.6 has a failure probability even if A∩B∩E holds: it is because Algorithm
8 calls two random algorithms, PowerMethod (see Lei et al. (2020)), which fails with constant
probability, and ROUND, which fails with exponentially low probability ∝ exp(−cT ) with c a
constant (Karnin et al. (2012); Lei et al. (2020)). Algorithm 8 can tolerate at most 0.1T among
T mistakes in the computation of the top eigenvectors of the matrices At, and the event where
more than 0.1T of the power methods fail happens with probability exponentially low in T . The
failure probability of algorithm 8 and the algorithm itself are explained in depth in Lei et al.
(2020).

The computation of the Bregman projection is described in Barak et al. (2009), and appears to
be a building block in Lei et al. (2020), the rounding algorithm is also given in Lei et al. (2020).

The following lemma states that finding a direction ”aligned” with most of the Z ′k grants a
good descent direction.

Lemma 4.7. If for at least 2/10 blocks , 〈u, Z ′k〉 ≥ θ/10, then v = Σ−1/2u satisfies 〈v,Σβc − β∗〉 ≥
θ/10− r − ||βc − β∗||Σ/100 (and of course ||v||Σ = 1 ).

Proof of Theorem 4.2. We now have all the right tools to perform our analysis.

• Whenever ||βc − β∗||Σ ≥ 100r, then by Lemma 4.5, there exists u so that for at least
8/10K ′ of the (pruned) blocks 〈Z ′i, u〉 ≥ 98/100||βc − β∗||Σ. So algorithm 8 with θ ∈
[49/100 ‖βc − β∗‖Σ , 98/100 ‖βc − β∗‖Σ], and with T ≥ 6 log(K ′)K ≥ 6 log(K ′)d ≥ 2 log(K ′)R2/θ2

does not output ”Fail” (Lemma 4.6).
We also recall that if there is no u so that for at least 4/10 blocks , 〈u, Zi〉 ≥ θ/10, then it
will always return ”Fail”. Thus whenever θ ≥ 10(101/100 ‖βc − β∗‖+ r), by Lemma 4.5 ,
the algorithm returns ”Fail”.
So our binary search stepSize returns a θ ∈ [49/100||βc−β∗||Σ , 10(102/100 ‖βc − β∗‖Σ)]×
2/100 × (1/10) × (100/102), in less than log(R/||βc − β∗||Σ) . log(d) iterations. The
vector u returned by descentDirection is so that v = Σ−1/2u checks 〈v,Σβc − β∗〉 ≥
2||βc − β∗||Σ/100, with high probability (Lemma 4.7).
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So we have, if c1 = 49/100× 1/10× 2/100× 100/102 and c0 = 2/100

‖βc+1 − β∗‖Σ ≤ (1− 2c0c1 + c2
1) ‖βc − β∗‖Σ ≤ (1− 2/100.000) ‖βc − β∗‖Σ

• Whenever ||βc−β∗||Σ ≤ 100r, whenever θ ≥ 10(101/100 ‖βc − β∗‖+r), by Lemma 4.5 , the
algorithm returns ”Fail”, so our binary search stepSize returns a θ ≤ 10(102/100 ‖βc − β∗‖Σ)×
2/100× (1/10)× (100/102) = 2/100 ‖βc − β∗‖Σ). We have

‖βc+1 − β∗‖Σ ≤ 102/100 ‖βc − β∗‖Σ ≤ 102r

Once again, we recall that there is no effort made here to optimize the constants.

4.4 Experiments

In this section, we present the results of some synthetic numerical experiments. Our first aim
is to show that our algorithm comes with actual code and that it can be computed efficiently.
This is a important feature of our approach that we want to put forward because, even though
there are polynomial time algorithms (even linear time ones for the problem of mean estimation)
they usually do not come with efficient code. Our second aim is to show the robustness (to
heavy-tailed and outliers) properties of our algorithms as predicted by our theoretical findings in
Theorem 4.2.

4.4.1 Experiments with heavy-tailed data and outliers

Data generating process. We fix the contamination level ε = |O|/N . Then, we generate
(1− ε)N ”clean” input vectors Xi following a multivariate Student’s standard t-distribution with
parameter 3 and we generate the corresponding ”clean” responses following the linear model
Y = 〈β∗, X〉+ σξ where β∗ = [1, . . . , 1] ∈ Rd and where ξ also follows Student’s t-distribution
and is independent from the feature vector X, and σ is the inverse signal to noise ration (SNR).
We simulate an outliers attack by adding on the εN remaining data an arbitrary large number
(109) to some cordinates of the input vectors, or multiplying them by 109. We also set some
responses to 0 and some other to 109. The total number of samples is set to be N = 50d. We
note that the sample size we choose increases with the dimension. We conduct 200 independent
simulations.

Metric. We measure the parameter error in `d2 norm, which is also the estimation norm ‖.‖Σ
as we take Σ = Id.

Baselines. As our baselines, we use the Ordinary Least Square, the Huber-loss M-estimator,
RANdom SAmple Consensus (RANSAC) and the MOM-estimator from Hsu and Sabato (2016),
that we name metric MOM. The first three are implemented in the python library sci-kit learn,
and we coded the last one.

Results. We summarize our main findings here.

• Error vs dimension d: We fix ε = 0.005, and we choose, for both our algorithm and the one
from Hsu and Sabato (2016) to take K = d. We do not include the OLS in our graphic
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(a) Parameter error vs d

(b) Mean parameter error vs σ (c) Mean parameter error vs σ

Figure 4.1: Parameter error variations

because its very poor performance (due to the presence of contamination) would prevent
us to compare the four others. We notice that for all the algorithms but the one presented
in this chapter, the prediction error grows quickly with the dimension. On the opposite,
for our algorithm, the performance does not depend on the dimension. This does not come
as a surprise, as the error is ∝ σK/N , which we chose to be d/N , which is a fixed quantity
in this setup.

• Error vs the inverse SNR σ: We fix ε = 0.005, d = 200 , we still choose K = d and we study
how the algorithms perform for a range of SNR σ. We do not include OLS and we do not
include RANSAC, because its error explodes for large σ. We notice that our algorithm’s
error depends linearly on σ, which is predicted by Theorem 4.2.

4.4.2 Which choice of K ?

From a theoretical point of view, we answered the question of how one should choose the
parameter K in the previous section: K should me at least K ≥ C1(d ∨ |O| ∨ log(1/δ)) for our
algorithm to work with probability ≥ 1− δ, but it should not be too large because we do not
want our bound ∝ K/N to explode.
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(a) Mean parameter error vs K (d = 100) (b) Maximum parameter error vs K

Figure 4.2: Choice of K

Setup. In Figure 4.2, we fix the contamination level ε = |O|/N to be 0 (there is no outlier).
Then, we generate the covariates of dimension d = 100 from a multivariate Student’s t-distribution
with parameter 3 and we generate the corresponding clean responses using y = 〈β∗, x〉+ ξ where
β∗ = [1, · · · , 1] and where ξ follows Student’s t-distribution and is independent from the covariates.
The number of samples is set to 10000. We conduct 50 independent simulations.

Results. We can recover a kind of trade-off from numerical experiment. It seems indeed that
when K � d, our algorithm can not seize the complexity of the regression task, and that when
K � d, there are not enough data per block and thus the block are ”not informative enough”.
Those two opposite phenomenons lead to a sort of bias-variance trade-off.

4.5 Conclusion

We can outline the main benefits and limitations of our algorithm. On the practical side, the
main benefit is its low computational complexity and that it comes with efficient actual code.
On the theoretical side, the algorithm is robust to adversarial outliers and robust to heavy-tailed
data and it achieves the subgaussian rate. It avoids the pitfall of SOS or SDPs since it uses
spectral methods. This makes our algorithm both easy to understand easy to code, and that
is the reason why this work comes with a simulation study unlike many other works in this
literature.

The main limitation for now is that we need to know the variance matrix Σ of the co-variates
(whereas sub optimal algorithms such as Hsu and Sabato (2016) do not require knowledge of Σ).
An other limitation of this work lies in the choice of K: we need prior knowledge on the number
of outliers for our procedure to work. It might be possible to improve this with a Lepski-type
procedure Lerasle (2019).

A final comment is that, while we choose the descent procedure from Lei et al. (2020) for its
simplicity and practical performances, the procedures from Depersin and Lecué (2019) or from
Cherapanamjeri et al. (2020a) applied with our Z̃k’s would probably work just as well and give
similar rates but may be harder to code efficiently in practice.

An interesting perspective would be to extend this work to other estimation problems such as
covariance estimation, as presented in Cherapanamjeri et al. (2020a). To do so, one would have
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to find an efficient way to compute supu∈B2

∑
i 〈u,Aiu〉

2 for any symmetric matrices Ai. While
it is simple to compute supu∈B2

∑
i 〈u, vi〉

2 with the power method, this other problem seems
harder. We may also wonder if it is possible to adapt this kind of spectral procedure in order
to recover sparse signals or, more generally, if it is possible to introduce any regularisation to
recover structured signal.

4.6 Proofs

4.6.1 Stochatic proofs

We state a theorem and its direct corollary that will be useful to bound the different VC-dimensions
at stake.

Theorem 4.3 (Warren (1968)). Let P = {P1, ..., Pm} denote a set of polynomials of degree at
most ν in n real variables with m > n, then the number of sign assignments consistent for P is
at most (4eνm/n)n.

We denote by Rnν [X] the set of polynomials of dergree at most ν in n real variables.

Corollary 4.1. Assume that the set of functions F can be written F = {P ∈ Rnν [X] →
1P (x)≥0, x ∈ Rn}, then VC(F) ≤ 2n log2(4eν).

Let us also recall that, if g : Y → X is a function and F ◦ g = {f ◦ g | f ∈ F}, then
VC(F ◦ g) ≤ VC(F).

Proof of Lemma 4.2. Let F = {(x,y) ∈ R(d+1)×m → 1〈u,∑
i
(yi−〈β∗,xi〉)xi〉

2≥m2r2 , u ∈ BΣ}. This
is not a set of indicators of half-spaces, but F is the composition of g : (x,y) ∈ R(d+1)×m → (u→
〈u,
∑
i(yi − 〈β∗, xi〉)xi〉

2 −m2r2) ∈ Rd2[X] and of {P ∈ Rd2[X]→ 1P (u)≥0, u ∈ Rd}. By Corollary
4.1 , there exists an absolute constant c such that VC(F) ≤ cd.

For all u ∈ BΣ,

P

 1
m
|
∑
i∈B1

(Yi − 〈β∗, Xi〉) 〈u,Xi〉 | ≥ r

 ≤ E(ξ2
1 〈u,X1〉2)
mr2 ≤ 1

32 .

By Lemma 4.1 applied with F , it follows that the following event E has probability ≥
1− exp(−K/512): for all u ∈ BΣ, there exist more than 3/4K blocks k where

|
∑
i∈Bk

(Ỹi − 〈a, X̃i〉) 〈u, X̃i〉 | ≤ mr.

Proof of Lemma 4.3. We note that, by bilinearity, it is enough to prove this result when ||u||Σ =
||v||Σ = 1.

Let G = {(xi) ∈ Rd×m → 1|∑〈xi,u〉〈xi,v〉−uΣv|2≥c||u||2Σ||v||
2
Σ
, u, v ∈ Rd}. Once again, G is a

composition of g : (x,y) ∈ R(d+1)×m → (u, v → |∑ 〈xi, u〉 〈xi, v〉−uΣv|2−c||u||2Σ||v||2Σ) ∈ R2d
4 [X]

and of {P ∈ R2d
4 [X] → 1P (u)≥0, u ∈ Rd}, so there exists an absolute constant c such that

VC(G) ≤ cd (Corollary 4.1).
Let r1 = 6γ

√
1
m ‖u‖Σ ‖v‖Σ .



80 CHAPTER 4. A SPECTRAL ALGORITHM FOR ROBUST REGRESSION

P

| 1
m

∑
i∈B1

〈u,Xi〉 〈v,Xi〉 − 〈u,Σv〉 | ≥ r1

 ≤ E(〈u,X1〉2 〈v,X1〉2)
mr2

1
≤ 1

32

because E(〈u,X1〉2 〈v,X1〉2) ≤ E(〈u,X1〉4)1/2E(〈v,X1〉4)1/2 ≤ γ2 ‖u‖2Σ ‖v‖
2
Σ (this is from the

L2 − L4 norm equivalence). We conclude with Lemma 4.1.

Proof of Lemma 4.4. We define Zk(βc) = ∑
j∈Bk(Yj − βXj)Σ−1/2Xj .

We can write ‖Zk(βc)‖2 ≤
∥∥∥ 1
m

∑
j∈Bk(Yj − β∗Xj)Σ−1/2Xj

∥∥∥
2
+
∥∥∥ 1
m

∑
j∈Bk((β∗ − βc)Xj)Σ−1/2Xj

∥∥∥
2
,

we will bound those two quantities :
First E((Yj − β∗Xj)Σ−1/2Xj) = 0, so, if a = 8

√
E(||(ξ1Σ−1/2X1||22)

m

P(|| 1
m

∑
j∈B1

(Yj − βcXj)Σ−1/2Xj ||2 ≥ a) ≤ E(||(ξ1Σ−1/2X1||22)
ma2 ≤ 1

64

Then, if we note Vk = 〈(β∗ − βc)Xj〉Σ−1/2Xj we notice that E(Vk) = Σ1/2(β∗ − βc), and
that E(||Vk||2) ≤ E(〈Σ−1/2X,Σ−1/2X〉2)1/2 E(〈βc − β∗, X〉2)1/2. As X checks the L4 − L2 norm
equivalence, Σ−1/2X checks the same equivalence, so E(

∥∥∥Σ−1/2X
∥∥∥4

2
)1/2 ≤ γE(

∥∥∥Σ−1/2X
∥∥∥2

2
) = γd,

and E(〈βc − β∗, X〉2)1/2 = ‖βc − β∗‖Σ, so

E(|| 1
m

∑
i∈B1

Vi||22) = ||E(V1)||22+ 1
m
E(||Vi−E(Vi)||22) ≤ ||E(V1)||22+ 1

m
E(||Vi||22) ≤ ‖βc − β∗‖2Σ+ 1

m
γd ‖βc − β∗‖2Σ

So, as m ≥ 128γ, if b =
√
d ‖βc − β∗‖Σ

P(|| 1
m

∑
i∈B1

Vi|| ≥ b) ≤
1
64

So the probability that one of the two bounds fails is ≤ 1/32. We then just use lemma 4.1,
with the functions F = {(x,y) ∈ R(d+1)×m → 1||∑

i
(yi−〈β,xi〉)xi||2≥d(r2+‖βc−β∗‖2Σ), β ∈ Rd}. Again,

we use Corollary 4.1 to state that there exists an absolute constant c such that VC(G) ≤ cd.

4.6.2 Algorithmic proofs

Proof of Lemma 4.5. In fact, we just know that, if we take u = Σ1/2(βc−β∗)
(||βc−β∗||Σ) , and v = (βc−β∗)

(||βc−β∗||Σ) ∈
BΣ

〈Z̃i, u〉 =
∑
i∈Bk

(Ỹi − 〈β∗, X̃i〉) 〈v, X̃i〉+
∑
i∈Bk

(〈β∗ − βc, X̃i〉) 〈v, X̃i〉 (4.2)

So for at least 9/10 blocks, 〈Z̃i, u〉 ≥ 99/100||βc − β∗||Σ − r := θ1. This is true for at least
9/10 of the blocks (Z̃i), it is true for at least 17/19 > 8/10 of the ”pruned blocks” (Z ′i).

The same way, for any u ∈ B2, we take v = Σ−1/2u ∈ BΣ

〈Z̃i, u〉 =
∑
i∈Bk

(Ỹi − 〈β∗, Xi〉) 〈v,Xi〉+
∑
i∈Bk

(〈β∗ − βc, Xi〉) 〈v,Xi〉

≤r + 〈β∗ − βc,Σv〉+ 1/100||βc − β∗||Σ
≤r + 101/100||βc − β∗||Σ
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for at least 9/10 of the blocks. Again, as this is true for at least 9/10 of the blocks, it is true for
at least 17/19 > 8/10 of the ”pruned blocks”

Proof of Lemma 4.7.

〈Z̃i, u〉 =
∑
i∈Bk

(Ỹi − 〈β∗, Xi〉) 〈v,Xi〉+
∑
i∈Bk

(〈β∗ − βc, Xi〉) 〈v,Xi〉

≤r + 〈β∗ − βc,Σv〉+ 1/100||βc − β∗||Σ

for at least 9/10 of the blocks Z̃i. Again, as this is true for at least 9/10 of the blocks, it is true
for at least 17/19 > 8/10 of the ”pruned blocks” Z ′i.

Their is at least one block that checks both 〈u, Z ′i〉 ≥ θ/10 and 〈u, Z ′i〉 ≤ r + 〈β∗ − βc,Σv〉+
1/100||βc − β∗||Σ (as 2/10 + 17/19 > 1), so

〈β∗ − βc,Σv〉 ≥ θ/10− r − ||βc − β∗||Σ/100

4.7 Appendix

input : Z̃1, . . . , Z̃K , θ and u1, ..., uT .
output : u.

1 while 〈Zi, u〉 ≤ θ/10 for more than 0.6K blocks do
2 gj ∼ N (0, 1) for j ∈ {1, ..., T}
3 u = ∑

j gjui/||
∑
j gjui||

4 Report ”Fail” and exit if more than T trials have been performed
5 end
6 Return u.

Algorithm 9: Round
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input : X̃1, Ỹ1 . . . , X̃N , ỸN , βc, K ≥ |O|, Tdes
output : A good distance estimation, dt

1 Let, for i ≤ K, Z̃i = 1
m

∑
j∈Bi(Ỹj − βcX̃j)Σ−1/2X̃j

2 Z ′ = prune(Z̃)
3 R = max(Z̃ ′i)
4 dhigh = R, dlow = 0
5 for j ∈ {1, 2, ..., blog(K)c} do
6 dm = (dhigh + dlow)/2
7 if BregmanRegression(Z ′, d, log(Tdes) + log(K)K) returns ”Fail” then
8 dhigh ← dm
9 end

10 else
11 dlow ← dm
12 end
13 end
14 Return dlow × 2/100× (1/10)× (100/102).

Algorithm 10: stepSize

input : X̃1, Ỹ1 . . . , X̃N , ỸN , βc, K ≥ |O|, Tdes, θ.
output : u.

1 Let, for i ≤ K, Z̃i = 1
m

∑
j∈Bi(Ỹj − βcX̃j)Σ−1/2X̃j

2 prune(Z̃)
3 u = BregmanRegression(Z̃, θ × 100/2× (10)× (102/100), log(Tdes) + log(K)K)
4 Return Σ−1/2u.

Algorithm 11: descentDirection
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Robust subgaussian estimation with VC-dimension
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5.1 Introduction

We stated in the general introduction that the subgaussian rate for the sparse mean estimation
problem (5.2) described below is different from (5.1): the “complexity term” (the one that does
not depend on δ) goes from d to s log(d/s). Can this rate be reached only assuming second order
moment on the random variables at stake ?

(
d

N
+ log(1/δ)

N

)1/2
(5.1)
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(
s log(d/s)

N
+ log(1/δ)

N

)1/2
(5.2)

In this work, we show that the analysis presented in Lugosi and Mendelson (2019c), in Lecué
and Lerasle (2019), Lerasle (2019) or in Lecué and Lerasle (2020), all based on the Median-of-mean
principle and the use of Rademacher complexities, can be modified in order to achieve sub-
gaussian rates for sparse or structured problems assuming only bounded two-order moments. The
method developed in Lerasle (2019) or in Lecué and Lerasle (2020) requires data to have at least
log(d) finite moments (where d is the dimension of the space) in order to exploit the sparsity of
the problem and offers no guarantees without that requirement, and to the date is the best known.
We show that we can drop this condition by judiciously introducing VC-dimension in the different
proofs, and exploit the sparsity of the problem with only two moments. Classical approaches
using local Rademacher complexities cannot achieve this type of subgaussian bounds under
only a second moment assumption in this setup. Indeed, as shown in the counter-example from
Section 3.2.3 of Chinot et al. (2018), local Rademacher complexities may scale like d1/8 whereas
the right Gaussian bound should be of the order of

√
log d. Somehow the classical approach

used so far does not capture the right statistical complexity of high-dimensional problems under
low-dimensional structural assumptions and under only a second moment assumption : it seems
that the Rademacher complexity is not the right way to measure the complexity of
the problem of mean estimation in any norm. Our VC-dimension based approach allows
to overcome this issue and to go beyond this log d subgaussian moments assumption that has
appeared in all works on robust and subgaussian estimation in the high-dimensional framework
Lerasle (2019). We also show that this general technique can be easily replicated and give new
robust estimators that achieve state-of-the-art bounds for different estimation tasks such as:

- Regression, already studied in Lecué and Lerasle (2020) where our estimator’s rate match
the one from Lecué and Lerasle (2020), and sparse regression where our estimator’s rate is
the first to match the one from Lecué and Lerasle (2020) with only two moments.

- Mean estimation with non-Euclidean norms, studied in Lugosi and Mendelson (2018),
where our analysis gives a different rate that is better for some norms.

- Robust low-rank matrix estimation.
- Covariance estimation, studied in Mendelson and Zhivotovskiy (2018) under L4 − L2 norm

equivalence: we do not need this assumption with our analysis, thus we give the first
subgaussian estimator without this assumption.

This paper is not the first to introduce VC-dimension in robust estimation problems: we have
been inspired by Chen et al. (2018) and Gao (2017) for instance. In those two papers, estimation
and regression with possible sparsity and outliers are also achieved with optimal rates, using VC
dimension techniques. The main differences lie in the model assumptions. For example, Chen
et al. (2018) estimates the center of symmetric distributions without moment assumption. In
comparison, our estimators is for mean and covariance, and thus moment assumption is needed,
but we do not need the distributions at stake to be symmetric.

Using VC-dimension in mean estimation, we lose a nice dependence of the risk bounds in
the covariance structure: our rates for (non-sparse) mean estimation depend on the ambient
dimension d instead of the effective rank Tr(Σ)/||Σ||op. In particular, the general approach does
not generalize directly to infinite dimensional spaces. In the last section, we show that this issue
can be overcome if we have some knowledge on the covariance matrix.
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5.2 Warm-up: MOM principle, VC-dimension and mean esti-
mation

We start with the mean estimation problem in Rd that illustrates our technique: the goal is to
estimate the mean E[Y ] of a random vector Y in Rd given a possibly corrupted dataset of i.i.d.
copies of Y . The precise setting is the following:

Setting 5.1. Let (Y1, ..., YN ) denote N independent and identically distributed random vectors
in Rd. We want to estimate E(Y1) = µ, assuming that Y1 has finite second moment. Let
Σ = E((Y1 − µ)(Y1 − µ)T ) denote the unknown covariance matrix of Y1.

The vectors Y1, . . . , YN are not observed, instead, this dataset may have been corrupted, and
this corruption may be adversarial: there exists a (possibly random) set O such that, for any
i ∈ Oc, Xi = Yi. The O satisfies |O| ≤ bεNc

The observed dataset is {Xi : i = 1, ..., N}, and we want to recover µ.

Notice that there are no assumption on the data {Xi, i ∈ O}. In particular these may be
dependent of {Yi : i = 1, ..., N}, and the {Xi : i ∈ O} may have arbitrary dependence structure.

5.2.1 VC-dimension

We start this part by recalling some basic facts about VC-dimension that appear for instance in
Ahsen and Vidyasagar (2019).

Definition 5.1. Let F be a set of Boolean functions on any space X . We say that a finite set
S ⊂ X is shattered by F if, for every subset B ⊂ S, there exists f ∈ F such that S∩f−1({1}) = B.
We call VC-dimension of F (and note VC(F)) the largest integer n such that there exists a set S
of cardinality n that is shattered by F .

Whenever E is a Euclidean space, we will sometimes abusively call VC-dimension of a set
C ⊂ E and note VC(C) the VC-dimension of the set of half-spaces generated by the vectors of
C:

VC(C) = VC({x ∈ E → 1〈x,v〉≥0, v ∈ C}).

Let us recall some basic facts about VC dimensions.

1. VC(Rd) = d + 1. More generally, if F a set of real-valued functions in a k-dimensional
linear space, then Pos(F ) = {x→ 1f(x)≥0, f ∈ F} has VC-dimension k+ 1 (see for instance
Dudley (1978), Theorem 7.2).

2. For a function g : Y → X , if we note F ◦ g = {f ◦ g | f ∈ F}, then we have VC(F ◦ g) ≤
VC(F).

3. For any r > 0, VC({x ∈ E → 1〈x,v〉≥r, v ∈ C}) ≤ VC(C − C) . VC(C), see Section 5.6.

4. Sauer’s Lemma Sauer (1972): Let F denote a set a functions with VC-dimension ν and let
S be a set of n ≥ s points. Let F ∗ S = {S ∩ f−1({1}), f ∈ F}, then

Card(F ∗ S) ≤
(
en

ν

)ν
.

This last lemma can be used to prove the following result that is useful to bound the VC
dimension of the set of sparse vectors.
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Lemma 5.1. Let F1, ..., Fn denote n sets of boolean functions, each having VC-dimension ≤ ν.
Then,

VC(F1 ∪ F2 ∪ ... ∪ Fn) ≤ 4ν + 2 log2(n).

Lemma 5.1 is a straightforward extension of Theorem 3 in Ahsen and Vidyasagar (2019).

Proof. Let S be a set shattered by F = F1 ∪ F2 ∪ ... ∪ Fn, and s = Card(S). Because S is
shattered, we have Card(F ∗ S) = 2s. But we also have F ∗ S = F1 ∗ S ∪F2 ∗ S ∪ ...∪Fn ∗ S, so
Card(F ∗ S) ≤ n

(
es
ν

)ν .
It follows that 2s ≤ n

(
es
ν

)ν or s ≤ ν log2(esn1/ν/ν). By technical Lemma 4.6 in Vidyasagar
(1997) if x ≤ a log2(bx), then x ≤ 2a log2(ab). Hence, s ≤ 2ν log2(en1/ν), which implies
Lemma 5.1.

Corollary 5.1. Fix v1, ..., vd ∈ Rn and note Us = {∑i λivi | λi ∈ R & ∑
i 1λi 6=0 ≤ s} the set of

s-sparse vectors, then
VC(Us) ≤ 4s log2(ed/s).

To prove Corollary 5.1, just write the set Us as a union of
(d
s

)
s-dimensional subspaces. As a

side remark, we note that Ahsen and Vidyasagar (2019) also shows that this bound is tight up to
multiplicative constants: there exists an absolute constant c such that VC(Us) ≥ cs log2(ed/s).
Besides, the result holds even if the set of vectors (v1, ..., vd) is not an orthogonal family or if it
is not a base. Let us now recall an important theorem that will be very useful in regression and
covariance estimation. Let P = {Pl, ..., Pm} denote a set of multivariate polynomials. A sign
assignment is an element s of {+,−}m. The sign assignment s is consistent with P if there exists
x ∈ Rn such that Pi(x) ≥ 0⇔ si = +.

Theorem 5.1 (Warren, Warren (1968)). Let P = {P1, ..., Pm} denote a set of polynomials of
degree at most ν in n real variables with m > n, then the number of sign assignments consistent
for P is at most (4eνm/n)n.

Corollary 5.2. Assume that the set of functions F can be written F = {P ∈ Rnν [X] →
1P (x)≥0, x ∈ Rn}, then VC(F) ≤ 2n log2(4eν).

The following example will be useful in some applications (we note that this is not a novelty,
a similar result can be found, for instance, in Wolf et al. (2007), Theorem 2 ).

Proposition 5.1. Let r ≥ 0 and call Mk
d(R) the set of rank k, symmetric, d-dimensional

matrices.
Let F = {M ∈ Md(R) → 1〈X,M〉≥r, X ∈ Mk

d(R)}. Then VC(F) = VC(Mk
d(R)) ≤ 2(d +

1)k log2(12e).

Proof. Any X ∈Mk
d(R) can be written X = ∑k

i=1 λi xix
T
i , with (λi, xi) ∈ R× Rd. Besides, for

any M , the function (λi, xi)i≤k → 〈X,M〉 − r is a polynomial of degree 3 in k(d+ 1) variables.
Hence, the result follows from Corollary 5.2.

Combining Lemma 5.1 applied with rank-one matrices of the form xxT , x ∈ Rs × {0}d−s and
Corollary 5.2 yields the following result.

Proposition 5.2. Let F = {M ∈Md(R)→ 1〈xxT ,M〉≥r, x ∈ Us}. Then VC(F) ≤ 16s log2(ed/s).
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5.2.2 Median-of-mean

This work uses the median-of-means (MOM) approach which was introduced in Nemirovsky and
Yudin (1983); Alon et al. (1999); Jerrum et al. (1986) and has received a lot of attention recently
in the statistical and machine learning communities Bubeck et al. (2013); Lerasle and Oliveira
(2011); Devroye et al. (2016); Minsker and Strawn (2017); Minsker (2015). This approach allows
to build estimators that are robust to both outliers and heavy-tail data in various settings Alon
et al. (1999); Jerrum et al. (1986); Birgé (1984). It can be defined as follows: we first randomly
split the data into K blocks B1, . . . , BK of equal-size m (if K does not divide N , we just remove
some data). We then compute the empirical mean within each block: for k = 1, . . . ,K,

X̄k = 1
m

∑
i∈Bk

Xi.

In the one-dimensional case, the final estimator is the median of the latter K empirical means.
This estimator has subgaussian deviations as shown in Devroye et al. (2016). The extension of
this result to higher dimensions is not trivial as there exist several possible generalizations of the
one dimensional median, see Minsker (2015).

For any k ∈ {1, . . . ,K}, let Xk := (Xi)i∈Bk and Yk := (Yi)i∈Bk . We start with a basic
observation.

Remark 5.1. When K ≥ |O|, there is at least K − |O| blocks Bk on which Xk = Yk.

For instance, if K ≥ 4|O|, then, there exist at least three quarters of the blocks Bk where
Xk = Yk. We can now state the main lemma.

Lemma 5.2. Let F be a set of Boolean functions satisfying the following assumptions.

• For all f ∈ F , P (f(Y1) = 0) ≥ 15/16.

• K ≥ C(VC(F) ∨ |O|) where C is a universal constant.

Then, with probability ≥ 1− exp(−K/128), for all f ∈ F , there is at least 3K/4 blocks Bk
on which f(Xk) = 0.

In words, if each property f is true for one non corrupted block with constant probability
(here 15/16 but it could be any fixed constant α ≥ 1/2) and K is large enough, then, with very
high probability, all properties are “true for most of the blocks”. The Boolean functions that we
will consider to construct estimators will measure whether the mean of the block is far from the
true mean. For instance, for mean estimation, we take the set

F = {(xi)i≤m → 1〈 1
m

∑
i
xi−E(Y1),v〉≥rK , v ∈ V }.

This result is an alternative to (Lugosi and Mendelson, 2018, Theorem 2) where the complexity
is measured with VC-dimension instead of the Rademacher complexity. We show below that this
difference yields to substantial improvements in some examples such as sparse multivariate mean
estimation compared with the bounds in Lugosi and Mendelson (2018). The strength of this
result is that it is uniform in F and gives an exponentially low failure probability, but its proof
is quite simple. The proof of this result is given in Section 5.6.2.

Clearly, the fraction 3/4 of the block is arbitrary in Lemma 5.2. In fact, up to some
modifications of the constants, the same result holds for any fixed fraction α < 1.
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5.2.3 Mean estimation

Let ‖·‖ denote a norm on Rd and let ‖·‖∗ denote its dual norm. Let B denote the unit ball for
the norm ‖·‖ and B∗ the one for the norm ‖·‖∗. Let B∗0 denote the set of extremal vectors of B∗.
Let |||A||| = supu∈B∗ ‖Au‖2 where ‖·‖2 is the Euclidean norm on Rd. Let

µ̂K = argmin
a∈Rd

max
u∈B∗0

Med(〈X̄k − a, u〉).

Theorem 5.2. There exists an universal constant C such that if K ≥ C(VC(B∗0) ∨ |O|), then,
with probability larger than 1− exp(−K/128),

‖µ̂K − µ‖ ≤ 8
∣∣∣∣∣∣∣∣∣Σ1/2

∣∣∣∣∣∣∣∣∣
√
K

N
.

In particular, for any δ ∈ [e−cN , 1/2], there exists an estimator µδ such that

‖µ− µδ‖ .
∣∣∣∣∣∣∣∣∣Σ1/2

∣∣∣∣∣∣∣∣∣
√VC(B∗0)

N
+

√
log(1/δ)

N
+
√
ε

 . (5.3)

The ’outlier’ term
√
ε can be shown to be optimal in important cases (see the remarks after

(Cheng et al., 2019a, Theorem 1.3)). The deviation term (
∣∣∣∣∣∣∣∣∣Σ1/2

∣∣∣∣∣∣∣∣∣√log(1/δ)/N) is the same as in
the Borel-TIS inequality,

∣∣∣∣∣∣∣∣∣Σ1/2
∣∣∣∣∣∣∣∣∣ being the weak variance term. It is optimal as shown in Lugosi

and Mendelson (2018). The difference with Lugosi and Mendelson (2018) is the complexity
term, which is here

∣∣∣∣∣∣∣∣∣Σ1/2
∣∣∣∣∣∣∣∣∣√VC(B∗0)/N . Neither Lugosi and Mendelson (2018) nor this work

build estimators achieving in every cases the true subgaussian rate, where this complexity is
E(‖G‖)/

√
N , G being a centered Gaussian vector with the same covariance as Y . For now it is

not known whether MOM estimators can or cannot achieve this rate in general, for all possible
norms. However, as we will show, our rate match the true subgaussian rate in some special cases
(so does the one from Lugosi and Mendelson (2018) for some other special cases)

Remark 5.2. The inequality VC(B∗0) ≤ d+ 1 gives a general bound on the complexity term.

The complexity term in Lugosi and Mendelson (2018), which can also be found in (Lerasle,
2019, Chapter 4, Lemma 47) is E(‖Ỹ ‖)/N where Ỹ = ∑

εi(Yi − µ), εi being i.i.d. Rademacher
variables. Here it is

∣∣∣∣∣∣∣∣∣Σ1/2
∣∣∣∣∣∣∣∣∣√VC(B∗0)/N . Which of them is the best depends on the situation.

For instance, when one wishes to estimate with respect to ‖·‖2, the Euclidean norm on Rd,
E(‖Ỹ ‖2)/N '

√
Tr(Σ)/N , while

∣∣∣∣∣∣∣∣∣Σ1/2
∣∣∣∣∣∣∣∣∣√VC(B∗0)/N =

√
λ1d/N , λ1 being the largest eigenvalue

of Σ, so the former is better. In this example, the bound in VC dimension loses the nice dependence
in the covariance structure. On the other hand, suppose that we want to estimate µ with respect
to the sup norm ‖a‖∞ = max{a1, ..., an} and assume that Σ = Id for simplicity. Then |||Id||| = 1
and VC(B∗0) . log(d) so ∣∣∣∣∣∣∣∣∣Σ1/2

∣∣∣∣∣∣∣∣∣√VC(B∗0)/N '
√

log(d)/N.

On the other hand, if we only have two moments on the coordinates of Y , then the best bound
on the Rademacher complexity is E(‖Ỹ ‖2)/N which is of order

√
d/N in general (to see that,

take for Y1 a random vector whose coordinates are independent, equal to
√
dN with probability

1/(dN) and 0 otherwise).
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Remark 5.3. The analysis of Section 5.6.2 and in particular Lemma 5.4’, shows that the estima-
tor µ̂K achieves the bound

∣∣∣∣∣∣∣∣∣Σ1/2
∣∣∣∣∣∣∣∣∣√K/N when K ≥ C ∨ |O|, where the complexity C is the min-

imum between the VC dimension VC(B∗0) and the Rademacher complexity E(‖Ỹ ‖)2/(N
∣∣∣∣∣∣∣∣∣Σ1/2

∣∣∣∣∣∣∣∣∣).
Therefore both our bounds and the bound of Lugosi and Mendelson (2018) hold simultaneously
and we can always keep the “best complexity term” among VC and Rademacher complexity. As
the main novelty here is the introduction of the VC-dimension, we do not remind this fact in each
application. The interested reader can have in mind that, in most examples, the same result holds
and the estimators have risk bounds smaller than both complexities. Our aim is to show that VC
type bounds are particularly efficient in structured scenarii, when Rademacher complexity fails to
achieve optimal bounds.

5.3 Sparse setting and other estimation tasks

This section shows that the methodology of Theorem 5.2 also applies to a great variety of
estimation tasks. Let us start with the example of sparse mean estimation for the Euclidean
norm.

5.3.1 Sparse mean estimation

For any v1, ..., vd ∈ Rn, let Us(v1, ..., vd) = {∑i λivi | λi ∈ R & ∑
i 1λi 6=0 ≤ s} denote the set of

s-sparse vectors over the dictionary {v1, ..., vd}. We fix for this part the vectors v1, ..., vd and we
note Us = Us(v1, ..., vd). We consider Setting 5.1 and assume furthermore that µ belongs to Us.
We note B2 the unit ball for the canonical Euclidean norm in Rn, and we propose the estimator

µ̂K = argmin
a∈Us

max
u∈U2s∩B2

Med 〈X̄k − a, u〉 .

Theorem 5.3. There exists an absolute constant C such that, if K ≥ C(s log(d/s) ∨ |O|), then,
with probability larger than 1− exp(−K/128),

‖µ̂K − µ‖2 ≤ 8

√
λ1(Σ)K
N

.

Here, λ1(Σ) is the largest eigenvalue of Σ.

The conclusion of Theorem 5.3 can be written as follows. For any δ ∈ [e−cN , 1/2], there exists
an estimator µδ such that

‖µ− µδ‖2 . λ1(Σ)(

√
s log(d/s)

N
+

√
log(1/δ)

N
+
√
ε).

We see that the complexity (s log(d/s)) is once again decoupled from the deviation (log(1/δ)),
which is not the case in works such as Hsu and Sabato (2016) where those two terms are multiplied
together. The complexity term s log(d)/N is not optimal because it does not depend on the
structure of Σ (see Section 5.4 for details). However, our complexity term is interesting for two
main reasons:

• This is the first sparsity dependent bound that holds without higher moments conditions
than the L2 ones. By contrast, Lerasle (2019) or Lecué and Lerasle (2020) need to assume
the existence log(d) subgaussian moments in order to make the sparsity appear, and offer
no guarantees without that requirement.
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• It comes close to the theoretic optimal when Σ ' λ Id.

Remark 5.4. This theorem can be obtain without resorting to VC-dimensions, simply by using
the analysis of Lugosi and Mendelson (2019c) on the

(d
s

)
subspaces of Us and a union bound. In

other words, we can get similar rates with the standard median-of-means approach and simple
manipulations. However, for other examples where the set considered is not a simple union of
subspaces, this kind of trick are no longer possible.

5.3.2 Regression

In this section, we consider the standard linear regression setting where data are couples
(Yi, Vi)i ∈ Rd × R and we look for the best linear combination of the coordinates of Yi to predict
Vi, that is we look for β∗ defined as follows: Given S ⊂ Rd (in practice, we will only study
S = Rd or S = Us),

β∗ = argmin
β∈S

l(β) = argmin
β∈S

E(V1 − 〈β, Y1〉)2.

As in the previous section, the observed dataset (Xi, Zi)i ∈ Rd × R is a corrupted version of the
i.i.d. dataset {(Yi, Vi)i, i ∈ {1, . . . , N}} in a possibly adversarial way. The assumptions made on
good data (Yi, Vi)i are gathered in the following setting: (see also Lerasle (2019) or Audibert
and Catoni (2011)).

Setting 5.2. There exists a (possibly random) set O such that, for any i ∈ Oc, (Xi, Zi) = (Yi, Vi),
where (Yi, Vi) are independent identically distributed observations in Rd×R. Let ξi = Vi−〈β∗, Yi〉,
we make four main assumptions:

• Y1 has finite second moment and write its L2-moments matrix Σ = E(Y1Y
T

1 ). Let also
BΣ = {x ∈ S − S| 〈x,Σx〉 ≤ 1} be the ellipsoid associated with this L2 structure.

• Let σ2 := supu∈BΣ E(ξ2
1 〈u, Y1〉2) and assume that σ2 <∞.

• There exists an universal constant γ such that, for all u ∈ S−S, E(| 〈u,X〉 |) ≥ γ
√
E(| 〈u,X〉 |2).

• E(ξ1Y1) = 0

Condition 2 is implied by Assumptions 3.5 and 3.7 in Audibert and Catoni (2011), the same
assumption is made in Lerasle (2019).

Condition 3 is called the “small ball hypothesis”, it is described in details in Mendelson
(2017a) or in Lecué and Mendelson (2016) for instance. It is implied by Condition 3.5 in Audibert
and Catoni (2011), it is stated similarly in Lerasle (2019).

Condition 4 is always true in the non sparse-case. In the sparse case, it is true in a number
of applications, for instance, the very important when the noise ξ and Y are independent.

The two last conditions may seem exotic, we refer to (Audibert and Catoni, 2011, Section
3) for detailed discussions and examples where these are satisfied. For the moment, we may
emphase that they involve only first and second moment conditions on ξ1 and 〈u, Y1〉

Our estimator is the following: Let B̂Σ = {u ∈ S − S | Qk1/4
1
m

∑
i∈Bk | 〈u,Xi〉 |2 ≤ 1}, where

Qk1/4 is the first quartile over k ≤ K: for any sequence x1, ..., xn ∈ R, if we note x∗1, ..., x∗n the
corresponding increasingly ordered sequence, Qk1/4xk = x∗bn/4c. Then,

β̂ = argmin
a∈S

max
u∈B̂Σ

Med
k

∑
i∈Bk

(Zi − 〈a,Xi〉) 〈u,Xi〉 .

This new estimator satisfies the following result.
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Theorem 5.4. There exists an absolute constant C such that the following holds. Let S = Rd
or Us and let Nγ2/64 ≥ K ≥ C(VC(S − S) ∨ |O|). Then, with probability ≥ 1− exp(−K/128),

〈β̂ − β∗,Σ(β̂ − β∗)〉 ≤ 128 σ2 K

Nγ4 .

For all β,

l(β) = l(β∗) + 2E(ξ1 〈β − β∗, Y1〉) + (β − β∗)Σ(β − β∗) ≤ l(β∗) + (β − β∗)Σ(β − β∗).

So, if r =
√

128 σ
√

K
N , then

l(β̂)− l(β∗) ≤ r2/γ4.

The conclusion of Theorem 5.4 can be written as follows: for any δ ∈ [e−cN , 1/2], there exists
an estimator µδ such that

〈β̂ − β∗,Σ(β̂ − β∗)〉 . σ(

√
VC(S)
N

+

√
log(1/δ)

N
+
√
ε).

Once again we notice the nice decoupling between complexity and deviation. This result is
interesting for a several reasons, the main one being that this work is the first that gives a bound
holding with exponential probability, that holds without assuming more than 2 moments on the
design Y1, even in the sparse setting. By comparison, Lecué and Lerasle (2020) or Lugosi and
Mendelson (2017) for instance, assume that at least log(d) subgaussian moments exist to achieve
this kind of rate and offers no guarantees without that requirement and are the best to the date.

5.3.3 Low rank matrix estimation

We now turn to the problem of matrix estimation, presented for instance in Zinodiny et al. (2017,
2018); Tsukuma (2010). We have observations in Md(R) (square matrices of size d) and we try
to recover their mean, assuming a kind low-ranked structure. The setting is the following: we
have, as in setting 5.1, N (corrupted) observations (Xi)i ∈ Md(R) of original (Yi) satisfying
E(Yi) = B and we try to recover the (non necessarily low rank) mean B. We will assume for
simplicity that E((Y ij −Bij)(Y kl −Bkl)) = σ2δ(i,j)=(k,l). We try to estimate B with respect to
the following norm :

||A||r = sup
U∈Mr

d
(R), ‖U‖F=1

〈U,A〉F ,

where we recall that Mk
d(R) is the set of rank k, symmetric, d-dimensional matrices.We will

try to show that this structure can not be recovered through the analysis based on Rademacher
complexity: we give this example to illustrate the benefit of our approach.

B̂K = argmin
M∈Md(R)

sup
U∈M2r

d
(R), ‖U‖F=1

Med
k

1
m

∑
〈U, X̄k −M〉F ,

Theorem 5.5. There exists an absolute constant C such that, if K ≥ C(kd ∨ |O|), then, with
probability larger than 1− exp(−K/128),

∥∥∥B̂K −B∥∥∥
r
≤ 8

√
σK

N
.
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The conclusion of Theorem 5.5 can be writen as follows. For any δ ∈ [e−cN , 1/2], there exists
an estimator B̂δ such that

∥∥∥B̂δ −B∥∥∥
r
. σ(

√
kd

N
+

√
log(1/δ)

N
+
√
ε).

While in Xi to be i.i.d. gaussian in Zinodiny et al. (2017), we only need second-order moments.
We want to show at this point that those results could not be obtained using standard analysis

with Rademacher complexity (Lugosi and Mendelson (2018); Lerasle (2019)). Indeed this analysis
would give a bound of order E(maxU∈M2r

d
(R), ‖U‖F=1 〈Ỹ , U〉)/N (with Ỹ = ∑

εi(Yi−B), εi being

i.i.d. Rademacher variables) instead of σ
√

kd
N , as mentionned in section 5.2.3. Let us show a case

where those two quantities have different behaviours.
We take for instance N = 1 and, independent identically distributed (Y kl)1≤k,l≤d so that

Y kl =


+σd with probability 1/(2d2)
−σd with probability 1/(2d2)
0 with probability 1− 1/d2,

If one of the Y kl is non zero, then maxU∈M2r
d

(R), ‖U‖F=1 〈Y,U〉)/N ≥ σd. Given that P(∀(k, l), Y kl =
0) = (1− 1/d2)d2

< e−1, we get that

E( max
U∈M2r

d
(R), ‖U‖F=1

〈Ỹ , U〉) ≥ σd(1− e−1).

In this case, the quantity we get from the Rademacher analysis scales as d whereas our bound
scales as

√
kd ! Moreover, use of union bounds (as in Section 5.3.1, Remark 4 for the sparse case)

is not possible here because M2r
d is not an union of linear subspaces.

5.3.4 Covariance estimation

This section studies the problem of robust covariance estimation. Consider Setting 5.1, and
assume that µ is known, fixed to 0 without loss of generality. We want to estimate Σ. This
problem has a number of applications: the bounds we present can for instance easily be transposed
(with the Davis–Kahan theorem) to the problem of robust PCA. It has already been studied
in Wei and Minsker (2017), or Hsu and Sabato (2016), but these estimators do not exhibit
any decoupling between complexity and deviation. In Mendelson and Zhivotovskiy (2018), the
authors propose a robust estimator for covariance using the MOM method, and get the optimal
complexity-deviation decoupling. They also give interesting comments and insights about this
estimation problem. However, they do not study the problem of low rank estimation that we
present here.

For any matrix A, define its spectral norm by

|||A||| = sup
x

‖Ax‖2
‖x‖2

.

Let Sym(d) denote the set of d dimensional symmetric positive matrices. Assume that

σ2 = sup
u∈B2

E
(
〈u, (Σ− Y1Y

T
1 )u〉2

)
<∞.

This quantity is sometime refered to as weak variance of a random matrix Mendelson and
Zhivotovskiy (2018). Our estimator is defined as follows

Σ̂ = argmin
M∈Symd

sup
‖u‖2=1

Med
k
〈u, ( 1

m

∑
XiX

T
i −M)u〉 .
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It satisfies the following bound.
Theorem 5.6. There exists an absolute constant C such that, if K ≥ C(d ∨ |O|), then, with
probability larger than 1− exp(−K/128),∣∣∣∣∣∣∣∣∣Σ̂K − Σ

∣∣∣∣∣∣∣∣∣ ≤ 8 σ
√
K

N
.

Corollary 5.3. Assume that R = supu
√

E〈u,Y 〉)4

E〈u,Y 〉2 <∞, then, for K ≥ C(d ∨ |O|)

∣∣∣∣∣∣∣∣∣Σ̂K − Σ
∣∣∣∣∣∣∣∣∣ ≤ 8 R|||Σ|||

√
K

N
.

The “bounded kurtosis assumption” R <∞ appears similarly in Hsu and Sabato (2016). In
Hsu and Sabato (2016), the estimator achieves a bound of order r(Σ)|||Σ|||

√
K/N where r(Σ) is

the effective rank of the covariance matrix: once again, the complexity r(Σ)|||Σ||| is multiplied by
the deviation term K ∝ log(1/δ) in this case, while here they are decoupled: the dimension does
not multiply K in our bound. In Mendelson and Zhivotovskiy (2018), authors give a better rate
(because they only need K to be larger than r(Σ) instead of d for the bound to hold) but they
use the L4 − L2 norm equivalence, which is an hypothesis we do not need here.

5.4 An algorithm to improve risk bounds

The different applications of Lemma 5.2 show that, in general, the complexity term derived from
this result is not optimal. For example, for mean estimation in Euclidean norm, the complexity
term reached by our estimator is proportional to

√
λ1(Σ)d/N , where the best rate would be√

Tr(Σ)/N .

In this section, we provide an algorithm that leads to better and in some cases optimal
complexity rates. The price to pay is that these new estimators require some knowledge on the
covariance matrix Σ. We will consider the example of sparse mean estimation for the sake of
clarity, but we argue that it also holds for sparse (and non-sparse) regression. We therefore use
the setting 5.1 and assume furthermore that the mean µ belongs to Us(v1, ..., vd), where the set
of vectors (v1, ..., vd) ∈ Rd is fixed and known.

Let λ1, λ2, ..., λd denote the eigenvalues of Σ in decreasing order, and let e1, ..., ed denote a
set of normalized corresponding eigenvectors. For any 1 ≤ n < blog2(d)c := nl, let sn denote
the largest index such that λsn ≥ λ1/2n. In particular, λ1 ≥ ... ≥ λs1 ≥ λ1/2 > λs1+1.... By
convention, let s0 = 0. Finally, we note En = Vect{esn−1+1, esn−1+2, ..., esn}, with convention
Enl = Vect(esnl−1+1, esnl−1+2, ..., ed). If we know the matrix Σ, we can identify the eigenspaces En
and thus compute the orthogonal projections of the data on these subspaces: Xi

k := projEi(Xk),
for i ∈ {1, ..., nl} and k ∈ {1, ...,K}.

In Section 5.3.1, we described a procedure that takes as input an integer K ≥ c0(s̃ log(d̃/s̃) ∨
|O|) and a (possibly corrupted) dataset Z1, ...ZN having common mean µ̃ which is s̃-sparse
relatively to a set of vectors (u1, u2, ..., ud̃) and common covariance matrix Σ̃. The procedure
returns µ̂K satisfying, with probability at least 1− exp(−c1K)

‖µ̂K − µ‖2 ≤ 8

√√√√∣∣∣∣∣∣∣∣∣Σ̃∣∣∣∣∣∣∣∣∣K
N

.
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Let proc(Z1, ..., ZN ,K, u1, u2, ..., ud̃, s̃) denote the output of this procedure. The idea of the
algorithm is to project on the subspaces Ei and apply this preliminary procedure on those
subspaces. Let di the dimension of Ei. The algorithm is formally defined as follows:

input :X1, . . . , XN and K ≥ |O|.
output : A robust subgaussian estimator µ̂δ.

1 i← 1.
2 while i ≤ nl do
3 Compute Xi

1, ..., X
i
n.

4 Compute ui1, ui2, ..., uid the orthogonal projections of v1, v2, ...vd onto Ei.
5 Ki ← K × 2i−1.
6 if di < s log(d/s) then
7 µi ← proc(Xi

1, ..., X
i
n,Ki, esi−1+1, ..., esi , di).

8 end
9 else

10 µi ← proc(Xi
1, ..., X

i
n,Ki, u

i
1, u

i
2, ..., u

i
d, s).

11 end
12 i← i+ 1.
13 end
14 µ̂K ←

∑
j≤i µi.

15 Return µ̂K .
Algorithm 12: Pseudo-code of the robust sub-gaussian estimator of µ

The algorithm produces an estimator µ̂K satisfying the following result.

Proposition 5.3. Assume setup 5.1. There exists an absolute constant C such that, if K ≥
C[∑i 2−i(di ∧ s log(d/s)) ∨ |O|], the output µ̂K of Algorithm 12, satisfies, with probability ≥
1− 2 exp(−K/128),

‖µ̂K − µ‖2 ≤ 8 log(d)
√
λ1K

N
.

The complexity term in Proposition 5.3 is better than in Theorem 5.3, because ∑i 2−i(di ∧
s log(d/s)) ≤ s log(d/s). More importantly, this complexity term depends on the the covariance
structure of the data through the di. In the case of sparse mean estimation, we can deduce a
precise estimate of this complexity term: for any δ ∈ [e−cN , 1/2], there exists an estimator µ̂δ
such that:

‖µ̂δ − µ‖2 ≤ C log(d)

√ log(d/s)∑s
i=1 λi

N
+

√
λ1 log(1/δ)

N
+
√
λ1ε

 .
This estimate comes from the bounds ∑s

i=1 λi ≥
∑
i≤j+1 λ12−i−1di ∧ s, where j is such that∑

i≤j di ≤ s ≤
∑
i≤j+1 di. We then write ∑i 2−i(di ∧ s log(d/s)) ≤ log(d/s)∑i≤j+1 2−idi ∧ s +

2−js log(d/s) ≤ 4 log(d/s)∑s
i=1 λi.

This result is proved in Section 5.6.5. We argue that the very same proof can be replicated
for the regression problem, if E(ξ2

1Y1Y
T

1 ) has the same eigenspaces as E(Y1Y
T

1 ). This happens
for instance when ξ is independent of Y . We end up with the bound of Theorem 5.4, holding
whenever K ≥ C[∑i 2−i(di ∧VC(S) ∨ |O|] instead of K ≥ C[VC(S ∨ |O|]



5.5. CONCLUSION: CONCURRENT WORK AND DISCUSSION 95

5.5 Conclusion: concurrent work and discussion

This work is not the first to deal with robust estimation: a lot of results and algorithms have
been developed over the past few years for sparse estimation in presence of outliers (see for
instance Li (2017)) but most of these works assume that non-corrupted data are Gaussian. For
instance Chen et al. (2018) already deal with mean and covariance estimation using extensions
of the Tukey-depth (and using VC-dimension), but their methods rely on informative data being
Gaussian.

Robustness to heavy-tailed data has also been studied in various works, see Lugosi and
Mendelson (2019a) for a survey of recent developments. We already mentioned two articles that
this work tries to complete and improve: Lugosi and Mendelson (2018) for mean estimation
under any norm and Lecué and Lerasle (2020) for sparse regression. Though the techniques
involved are close, this work illustrates that using VC-dimension can drastically improve risk
bounds in various applications, in particular in the sparse setting.

Concurrent work: After the initial submission of this manuscript, we became aware of two
concurrent works Prasad et al. (2019) and Prasad et al. (2020). Authors use an approach based
on the 1/2-cover of the unit sphere to deal with mean and sparse-mean estimation for the
euclidean norm (Prasad et al. (2019)), and with covariance estimation for spectral norms (Prasad
et al. (2020)). They get close-to-optimal bounds for those two problems, with a remaining
extra-logarithmic term. They do not tackle mean estimation in any norms, regression or low-rank
covariance estimation.

There are still many exciting open questions. The quantity that is crucial in all the studies is

E
(

sup
f

K∑
k=0

f(Yk)−KE(f(Yk))
)

where f are boolean functions. In mean estimation for instance,

E
(

sup
v∈V

K∑
k=0

1〈Ȳk−µ,v〉≥r −KE(1〈Ȳk−µ,v〉≥r)
)

is the important quantity. Bounding this quantity using the VC-dimension of V yields a
bound independent of the covariance of Y . On the other hand, bounding that quantity by the
Rademacher complexity of the Yi (like in Lecué and Lerasle (2020), Lugosi and Mendelson (2018)
or here in Part 5.6.2) stating that

E(sup
v∈V

1〈Ȳk−µ,v〉≥r −KE(1〈Ȳk−µ,v〉)) < K

√
E(‖Ỹ ‖)
r
√
N

does not exploit the boundedness of the indicator function and necessitates unnecessary stronger
assumptions on data. The ideal would be to conciliate both ideas, and to find a nice in-between
that would take into account both the boundedness and the dependency in the covariance
structure.

The last point we make is about computational issues. The estimators presented can not be
implemented as is. Nevertheless, encouraging recent works have shown that “relaxed”, computable
estimators can be derived from this kind of work. For instance the pioneer work of Hopkins
(2018), followed by Depersin and Lecué (2019) and Cherapanamjeri et al. (2019) for instance,
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derived tractable estimators, in polynomial times, from the work of Lugosi and Mendelson (2019c).
Even more recently, some new tractable estimators for regression and covariance estimation with
heavy-tailed data have emerged in Cherapanamjeri et al. (2020a). We can hope for this work to
be made tractable as well, which seems to be quite a challenge.

5.6 Main Proofs

5.6.1 A fact about VC-dimension

For any Euclidean space E, and any C ∈ E

Lemma 5.3. VC({x ∈ E → 1〈x,v〉≥r, v ∈ C}) ≤ VC(C − C) ≤ c0 VC(C) where c0 is universal
constant.

Proof. Assume that a set x1, ..., xd ∈ E is shattered by F = {x ∈ E → 1〈x,v〉≥r, v ∈ C}. Then,
for any I ⊂ {1, 2, ..., d}, there is a vector v1 so that 〈v1, xi〉 ≥ r if and only if i ∈ I. There is
a vector v2 so that 〈v2, xi〉 < r if and only if i ∈ I. Then we have 〈v1 − v2, xi〉 ≥ 0 if and only
if i ∈ I, so {x ∈ E → 1〈x,v〉≥0, v ∈ C − C} shatters x1, ..., xd, and VC({x ∈ E → 1〈x,v〉≥r, v ∈
C}) ≤ VC(C − C).

Now we see that VC({(x, y) ∈ E2 → 1〈x,v〉+〈y,w〉≥0|(v, w) ∈ C × C}) ≥ VC(C − C) because
if x1, ..., xd ∈ E is shattered by {x ∈ E → 1〈x,v〉≥0, v ∈ C − C} then ((x1,−x1), ..., (xd,−xd)) ∈
E × E is shattered by {(x, y) ∈ E2 → 1〈x,v〉+〈y,w〉≥0|(v, w) ∈ C × C}. Theorem 1.1 in van der
Vaart and Wellner (2009) states that VC(C × C) ≤ c0 VC(C) for some constant c0, and that
concludes the proof.

5.6.2 General methodology

We begin by proving the main lemma 5.2 of Part 5.2.3

Proof. We want to prove that, with probability ≥ 1− exp(−K/128),

sup
f

K∑
k=0

f(Xk) ≤ K/4.

If C ≥ 16, K ≥ 16|O| and it is sufficient to show that supf
∑K
k=0 f(Yk) ≤ 3K/16 by Remark 5.1.

Now we write

sup
f

K∑
k=0

f(Yk) ≤ sup
f

K∑
k=0

f(Yk)− E
(

sup
f

K∑
k=0

f(Yk)
)

︸ ︷︷ ︸
Deviation=D

+E
(

sup
f

K∑
k=0

f(Yk)
)

︸ ︷︷ ︸
Magnitude=M

.

By the bounded difference inequality (Boucheron et al., 2013, Theorem 6.2), with probability
≥ 1− exp(K/128), D ≤ K/16.

For the magnitude term, we write

M ≤ E
(

sup
f

K∑
k=0

f(Yk)−KE(f(Yk))
)

+ sup
f
KE(f(Yk)).

By hypothesis, supf KE(f(Yk)) ≤ K/16. Then, we just have to use a classical result of
Vapnik-Chervonenkis theory, either in the version of (Vershynin, 2018, Theorem 8.3.23), or of
(van Handel, 2016, Corollary 7.18). There exists a universal constant C ′ such that
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E
(

sup
f

K∑
k=0

f(Yk)−KE(f(Yk))
)
≤ C ′K

√
VC(F)
K

.

Hence, if K ≥ 256 C ′2 VC(F),

E
(

sup
f

K∑
k=0

f(Yk)−KE(f(Yk))
)
≤ K

16 .

Putting everything together, we have the following. If C ≥ 256 C ′2, with probability
≥ 1− exp(K/128), supf

∑K
k=0 f(Yk) ≤ K/16 +K/16 +K/16. Therefore, by Remark 5.1, for all

f ∈ F

K∑
k=0

f(Xk) ≤ K/4.

We state a technical lemma that appears in most proofs. Let g be any measurable function
Rd → E so that E(g(Y1)) exists. We take

â = argmin
a∈U

max
v∈V

Med 〈 1
m

∑
i∈Bk

g(Xi)− a, v〉

where U, V are any sets of E. We have:

Lemma 5.4. If K ≥ C(VC(V ) ∨ |O|) and if E(g(Y1)) ∈ U , then, with probability ≥ 1 −
exp(−K/126),

max
v∈V
〈E(g(Y1))− â, v〉 ≤ 8 sup

u∈V
E
(
〈g(Y1)− E(g(Y1)), u〉2

)1/2
√
K

N

where C is a universal constant

supu∈V E
(
〈g(Y1)− E(g(Y1)), u〉2

)1/2
is the “weak variance” of the problem.

Proof. Let K ≥ C(VC(F)∨|O|) with C the universal constant from Lemma 5.2, let ḡ = E(g(Y1))
and let

rK = 4 sup
u∈V

E
(
〈g(Y1)− ḡ, u〉2

)1/2
√
K

N
.

Let F = {(xi)i≤m → 1〈 1
m

∑
i
g(xi)−E(g(Y1)),v〉≥rK , v ∈ V }. The function f ∈ F are compositions

of the function x→ 1
m

∑
i g(xi)− E(g(Y1)) and of the functions x→ 1〈x,v〉≥rK for v ∈ V . The

VC-dimension of the set of these compositions is smaller than the VC-dimension of the set of
indicator functions indexed by V , as recalled in the basic fact 2 at the beginning of Section 5.2.1.
We just use fact 3 to remove the rK and we get VC(F) ≤ c0 VC(V ) for some constant c0.

By Markov’s inequality, for any v ∈ V ,

P(| 〈 1
m

∑
i∈B1

g(Yi)− ḡ, v〉 | ≥ rK) ≤
E
(∑

i∈B1 〈g(Yi)− ḡ, u〉2
)

m2r2
K

≤ 1
16 .

By Lemma 5.2, applied with F , the following event E has probability P(E) ≥ 1−exp(−K/128).
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sup
v∈V

Med | 〈 1
m

∑
i∈Bk

g(Xi)− ḡ, v〉 | ≤ rK

For any a ∈ U if there exists v∗ ∈ V such that 〈ḡ − a, v∗〉 > 2rk, then, on E

Med 〈 1
m

∑
i∈Bk

g(Xi)− a, v∗〉 = 〈ḡ − a, v∗〉+ Med 〈 1
m

∑
i∈Bk

g(Xi)− ḡ, v∗〉

>rK ≥ max
v∈V

Med 〈 1
m

∑
i∈Bk

g(Xi)− ḡ, v〉 .

Therefore a 6= â. As this holds for any a ∈ U such that supv∈V 〈ḡ − a, v〉 > 2rk, it follows
that, on E ,

sup
v∈V
〈ḡ − â, v〉 ≤ 2 rK .

We can give a somewhat improved version of that lemma: let us note,

R(g, V ) = 1√
N

E(sup
v∈V
〈
∑
i

εig(Yi), v〉) , σ2 = sup
u∈V

E
(
〈g(Y1)− E(g(Y1)), u〉2

)
R is the Rademacher complexity associated to a given problem. The following lemma shows

that we can take the best term between the one given by a rescaled Rademacher complexity and
the one given by VC-dimension.

Lemma 5.5. general If K & C((VC(V ) ∧ (R(g, V )/σ)2) ∨ |O|) and if E(g(Y1)) ∈ U , then, with
probability ≥ 1− exp(−K/126),

max
v∈V
〈E(g(Y1))− â, v〉 ≤ 16σ

√
K

N

where C is a universal constant

Proof. We know that this holds when K ≥ C(VC(V ) ∨ |O|).

Now if K ≥ C(R(g, V )/σ)2 ∨ |O|, we only need to prove that, for rK = 8σ
√
K/N

sup
v∈V

∑
k

1〈 1
m

∑
i∈Bk

g(Xi)−E(g(Y1)),v〉≥rK ≤ K/2

and then we follow the path of the previous proof.
We do this in the classic way, that can be found, for instance in Depersin and Lecué (2019)

or the supplementary material of M. Lerasle and Lecué (2017)
As K ≥ 4|O|, we only need to show that

sup
v∈V

∑
k

1〈 1
m

∑
i∈Bk

g(Yi)−E(g(Y1)),v〉≥rK ≤ K/4
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We define φ(t) = 0 if t ≤ 1/2, φ(t) = 2(t− 1/2) if 1/2 ≤ t ≤ 1 and φ(t) = 1 if t ≥ 1. We have
I(t ≥ 1) ≤ φ(t) ≤ I(t ≥ 1/2) for all t ∈ R and so for v ∈ V

∑
k

I(|
〈 1
m

∑
i∈Bk

g(Yi)− ḡ, v
〉
| > rK)

≤
∑
k

I(|
〈 1
m

∑
i∈Bk

g(Yi)− ḡ, v
〉
| > rK)− P[|

〈 1
m

∑
i∈Bk

g(Yi)− ḡ, v
〉
| > rK/2]

+ P[|
〈 1
m

∑
i∈Bk

g(Yi)− ḡ, v
〉
| > rK/2]

≤
∑
k

φ

(
|
〈 1
m

∑
i∈Bk g(Yi)− ḡ, v

〉
|

rK

)
− Eφ

(
|
〈 1
m

∑
i∈Bk g(Yi)− ḡ, v

〉
|

rK

)

+ P[|
〈 1
m

∑
i∈Bk

g(Yi)− ḡ, v
〉
| > rK/2]

For all v ∈ V , we have

P[|
〈 1
m

∑
i∈Bk

g(Yi)− ḡ, v
〉
| > r/2] ≤

E
〈 1
m

∑
i∈Bk g(Yi)− ḡ, v

〉2
(rK/2)2 ≤ 1

16

Next, using the bounded difference inequality (Theorem 6.2 in Boucheron et al. (2013)), the
symmetrization argument and the contraction principle (Chapter 4 in Ledoux and Talagrand
(2011)) – we refer to the supplementary material of M. Lerasle and Lecué (2017) for more details
– with probability at least 1− exp(−K/128),

sup
v∈V

(∑
k

φ

(
|
〈 1
m

∑
i∈Bk g(Yi)− ḡ, v

〉
|

rK

)
− Eφ

(
|
〈 1
m

∑
i∈Bk g(Yi)− ḡ, v

〉
|

rK

))

≤ E sup
v∈V

(∑
k

φ

(
|
〈 1
m

∑
i∈Bk g(Yi)− ḡ, v

〉
|

rK

)
− Eφ

(
|
〈 1
m

∑
i∈Bk g(Yi)− ḡ, v

〉
|

rK

))
+ K

16

≤ 4K
NrK

E sup
v∈V

〈
v,

∑
i∈∪kBk

εi(g(Yi)− ḡ)
〉

+ K

16

=
√
K

2σ E 〈 1√
N

∑
i∈∪kBk

εi(g(Yi)− ḡ), v〉+ K

16 ≤
K

8

when
√
K ≥ 8R(g, V )/σ or K ≥ 64(R(g, V )/σ)2

As a consequence, when K ≥ 64(R(g, V )/σ)2, with probability at least 1 − exp(−K/126),
for all v ∈ V , ∑

k∈[K]
I(|
〈 1
m

∑
i∈Bk

g(Yi)− ḡ, v
〉
| > rK) ≤ K

8 + K

16 ≤
K

4 .

5.6.3 Proof of Theorem 5.2, 5.3, 5.5, 5.6

This proofs are very similar: we just apply lemma 5.4 with the right g, U and V . We begin with
Theorem 5.2 for estimating the mean with respect to a general norm.
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Proof of Theorem 5.2. We just use lemma 5.4 with g : x→ x, U = Rd and V = B∗0. We have

sup
u∈V

E
(
〈g(Y1)− E(g(Y1)), u〉2

)
= sup

u∈B∗0
‖Σu‖2 = |||Σ|||

and, for any a ∈ Rd
sup
v∈B∗0

〈E(Y1)− a, v〉 = ‖µ− a‖

so by Lemma 5.4 , we get that if K ≥ C(VC(V ) ∨ |O|), then, with probability ≥ 1 −
exp(−K/126)

‖µ̂− µ‖ ≤ 8|||Σ|||
√
K

N

We continue with the proof of Theorem 5.3 for estimating sparse means.

Proof of Theorem 5.3. We just use lemma 5.4, this time with g : x→ x, U = Us and V = U2s∩B2
We have

sup
u∈U2s∩B2

E
(
〈g(Y1)− E(g(Y1)), u〉2

)
= sup

u∈U2s∩B2

∥∥∥Σ1/2u
∥∥∥2

2
= λ1(Σ)

and, for any a ∈ Us (so a fortiori for µ̂ ∈ Us)

sup
v∈U2s∩B2

〈E(Y1)− a, v〉 = ‖µ− a‖2

because we assumed that µ ∈ Us. So by Lemma 5.4, as µ ∈ Us, we get that if K ≥ C(VC(U2s) ∨
|O|), then, with probability ≥ 1− exp(−K/126)

‖µ̂− µ‖2 ≤ 8λ1(Σ)
√
K

N

We recalled in part 5.2.1 that VC(U2s) ≤ 2s log(d/s), which concludes the proof.

Proof of Theorem 5.5. Let V = {U ∈M2r
d (R), ‖U‖F = 1}. This is just Theorem 5.2 , because

we recalled in part 5.2.1 (Proposition 5.1) that VC(V ) ≤ c0kd, for some universal constant c0,
which concludes the proof.

We move to the proof of Theorem 5.6, for estimating covariance with respect to the canonical
euclidean operator norm.

Proof of Theorem 5.6. This time, we take g : x→ xxT , U = Sym(d), and V = {uuT |u ∈ B2(Rd)}.
We notice that E(g(Y1)) = Σ

We have
sup
M∈V

E
(
〈g(Y1)− E(g(Y1)),M〉2

)
= σ2

by definition of σ2, and for any A ∈ Sym(d) (so a fortiori for Σ̂ ∈ Sym(d))

sup
M∈V

〈Σ−A,M〉 = |||Σ−A|||
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So by Lemma 5.4, as Σ ∈ Sym(d), we get that if K ≥ C(VC(V )∨ |O|), then, with probability
≥ 1− exp(−K/126)

∣∣∣∣∣∣∣∣∣Σ̂− Σ
∣∣∣∣∣∣∣∣∣ ≤ 8β

√
K

N

We recalled in part 5.2.1 (Proposition 5.1) that VC(V ) ≤ c0d, for some universal constant c0,
which concludes the proof.

Appendix

5.6.4 Proof of Theorem 5.4

This proof is a bit different from the rest because we will have to control two different events.

Proof. Let F = {(x,y) ∈ R(d+1)×m → 1〈u,∑
i
(yi−〈β∗,xi〉)xi〉

2≥m2r2 , u ∈ BΣ}. This is not a
set of indicators of half-spaces, but F is the composition of g : (x,y) ∈ R(d+1)×m → (u →
〈u,
∑
i(yi − 〈β∗, xi〉)xi〉

2−m2r2) ∈ Rd2[X] and of {P ∈ Rd2[X]→ 1P (u)≥0, u ∈ S −S}. By Lemma
5.3 there exists an absolute constant c such that VC(F) ≤ VC(S − S).

Let G = {(xi) → 1∑〈xi,u〉2≥r̃, u ∈ S − S}. The same way, by Lemma 5.3, there exists an
absolute constant c such that VC(G) ≤ cVC(S). Assume that K ≥ C(VC(F) ∨ VC(G) ∨ |O|)
where C is the universal constant introduced in Lemma 5.2.

Multiplier process: Let

r = 4

√
supu∈BΣ E(ξ2

1 〈u, Y1〉2)K
N

.

For all u ∈ BΣ,

P

 1
m
|
∑
i∈B1

(Vi − 〈β∗, Yi〉) 〈u, Yi〉 | ≥ r

 ≤ E(ξ2
1 〈u, Y1〉2)
mr2 ≤ 1

16 .

By Lemma 5.2 applied with F , it follows that the following event E has probability ≥
1− exp(−K/128): for all u ∈ BΣ, there exist more than 3/4K blocks k where

|
∑
i∈Bk

(Zi − 〈a,Xi〉) 〈u,Xi〉 | ≤ mr.

Quadratic process: From Chebyshev’s inequality, for any u ∈ S − S,

P

 1
m

∑
i∈B1

| 〈u, Yi〉 | ≤ E| 〈u, Y1〉 | − 4

√
E 〈u, Y1〉2

m

 ≤ 1
16 .

So, when K ≤ γ2N/64, by the small ball hypothesis,

P

 1
m

∑
i∈B1

| 〈u, Yi〉 | ≤ γ/2
√
E 〈u, Y1〉2

 ≤ 1
16 .

As 1
m

∑
i∈Bk | 〈u,Xi〉 | ≤

√
1
m

∑
i∈Bk | 〈u,Xi〉 |2, by Lemma 5.2 applied with G and r̃ = mγ2/4E 〈u, Y1〉2,

the following event A has probability probability ≥ 1− exp(−K/128): for all u ∈ S − S, there
exists more than 3/4K blocks k where
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1
m

∑
i∈Bk

| 〈u,Xi〉 |2 ≥ γ2/4 〈u,Σu〉 .

So we have Qk1/4
1
m

∑
i∈Bk | 〈u,Xi〉 |2 ≥ γ2/4× 〈u,Σu〉.

Conclusion of the proof. The event E ∩ A has probability at least 1− 2 exp(−K/128).
On A, if u ∈ B̂Σ, then 〈u,Σu〉 ≤ 4/γ2, so, on A ∩ E ,

max
u∈B̂Σ

Med
k

∑
i∈Bk

(Zi − 〈β∗, Xi〉) 〈u,Xi〉 ≤ 2/γ max
u∈BΣ

Med
k

∑
i∈Bk

(Zi − 〈β∗, Xi〉) 〈u,Xi〉 ≤ 2mr/γ.

For any β ∈ S such that Σ(β − β∗) 6= 0, let

u∗ = β − β∗√
Qk1/4

1
m

∑
i∈Bk | 〈β − β∗, Xi〉 |2

.

By construction u∗ ∈ B̂Σ, so for 3/4 of the blocks, on E ∩ A,

|
∑
i∈Bk

(Zi − 〈β∗, Xi〉) 〈u∗, Xi〉 | ≤ 2mr/γ.

On the other hand, by definition, for 3/4 of the blocks,
1
m

∑
i∈Bk

| 〈β − β∗, Xi〉 |2 ≥ Qk̃1/4
1
m

∑
i∈Bk̃

| 〈β − β∗, Xi〉 |2.

Therefore, for at least half the blocks, both inequalities hold, so, on E ∩ A,

∑
i∈Bk

(Zi − 〈β − β∗ + β∗, Xi〉) 〈u∗, Xi〉 ≥ −2mr/γ +m

√√√√Qk̃1/4 1
m

∑
i∈Bk̃

| 〈β − β∗, Xi〉 |2

≥ −2mr/γ +mγ/2
√

(β − β∗)Σ(β − β∗).

It follows that, on E ∩ A, if
√

(β − β∗)Σ(β − β∗) ≥ 8r/γ2, then ∑
i∈Bk(Zi − 〈β,Xi〉) ≥

−2mr/γ+4mr/γ ≥∑i∈Bk(Zi−〈β∗, Xi〉) and β can not be the chosen estimator. This concludes
the proof.

5.6.5 Proof of Proposition 5.3

Proof. We study separately what happens on each subspace Ei. The dimension of Ei is di and
the orthogonal projection µi of µ is s-sparse on the set of vectors ui1, ui2, ..., uid. µi is also generated
by esi−1+1, ..., esi which is a base of Ei. We choose which representation of µi leads to the best
bound: if di ≥ s log(d/s), we choose the first, else we choose the second. The preliminary bound
holds if Ki is larger than either di or s log(d/s). Let µ̃i denote our estimation on Ei:

µ̃i = proc(Xi
1, ..., X

i
n,Ki, esi−1+1, ..., esi , di)1di<s log(d/s)

+proc(Xi
1, ..., X

i
n,Ki, u

i
1, u

i
2, ..., u

i
d, s)1di≥s log(d/s).

If Ki ≥ (Cdi ∧ s log(d/s)) ∨ |O|, on an event Ei of probability ≥ 1− exp(−Ki/128),

‖µ̃i − µi‖2 ≤ 8

√√√√∣∣∣∣∣∣∣∣∣Σ̃i

∣∣∣∣∣∣∣∣∣Ki

N
=
√
λ1K

N
.
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Let E = ∩Ei, so P(E) ≥ 1 −∑ exp(−2iK/128) ≥ 1 − 2 exp(−K/128) if both K ≥ 128 and
K ≥ 2−iCdi∧s log(d/s) for all i. As the subspaces Ei are orthogonal to each other (as eigenspaces
of a symmetric matrix), by Pythagoras theorem,

‖µ̃− µ‖22 =
∑
i

‖µ̃i − µi‖22 ≤ log(d)
√
λ1K

N
.
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CHAPTER 6

On the robustness to adversarial corruption and to heavy-tailed data of the
Stahel-Donoho median of means
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6.1 Introduction

As mentioned in the general introduction, robust estimation of a mean vector has witnessed an
important renewal during the last decade. The aim here is to construct an estimator achieving
statistical bounds with the same confidence as if all the data were i.i.d. Gaussian even though
the data at hand are only assumed to have a second moment. For the mean estimation problem
in Rd, most of the results have been given w.r.t. the Euclidean `d2 distance. There is however no
statistical justification for this choice but that the `d2 metric is simply the most natural Hilbert
metric in Rd and so it seems natural to use it as a way to measure the statistical performance of
an estimator of a d-dimensional vector. The resulting confidence sets have therefore the form
µ̂+ r∗N,δB

d
2 where µ̂ is an estimator, Bd

2 = {x ∈ Rd : ‖x‖2 ≤ 1} is the unit Euclidean ball and

105
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r∗N,δ is the rate of convergence w.r.t. `d2 achieved by µ̂ with confidence 1− δ. When estimating
w.r.t. the `d2 metric, confidence sets are therefore `d2-balls. One may wonder if these confidence
sets are the best from a statistical point of view, for instance, the one with smallest volume for
a fixed confidence 1− δ. To answer this type of question, we usually go back to the ideal i.i.d.
Gaussian case, and use results obtained in that framework as benchmark results. We may also
consider this model to design optimal benchmark confidence sets, that could be used to define
more appealing estimation metric of a mean vector in Rd.

Let us now see what are the ”best” (in some sense given later) confidence sets in the i.i.d.
Gaussian case: let X1, . . . , XN be i.i.d. distributed like N (µ,Σ) where µ ∈ Rd is the mean and
Σ is a symmetric definite positive matrix (we assume here that Σ is invertible). The MLE is the
empirical mean X̄N and

√
N(X̄N − µ) ∼ N (0,Σ). The latter result holds asymptotically if the

data are only assumed to be in L2 thanks to the CLT. The key observation here is that Σ is
the inverse of the Fisher information in this model and thus there are no regular asymptotically
normal M -estimator that can estimate the mean with an asymptotic covariance matrix better
than Σ. Moreover, level sets of the standard Gaussian density function are Euclidean Bd

2 balls
centered at zero. As a consequence, the best confidence sets for µ with confidence 1 − δ are
ellipsoids Σ1/2Bd

2 with radius given by the quantile of order 1− δ of a chi-square variable with
parameter d centered at the estimator. This type of confidence region are equivalently written as
estimation results of µ with respect to the norm x ∈ Rd →

∥∥∥Σ−1/2x
∥∥∥

2
. It follows that the best

metric – that is the one leading to minimal volume confidence sets for a given confidence in the
benchmark i.i.d. Gaussian case – is the norm

∥∥∥Σ−1/2·
∥∥∥

2
whose unit ball is the ellipsoid Σ1/2Bd

2 .

Regarding our robust mean estimation problem, the two next natural questions are the
following: is it possible to construct robust mean estimators w.r.t. the

∥∥∥Σ−1/2·
∥∥∥

2
metric? and

what is the best convergence rate one can hope for? In the literature, see Lugosi and Mendelson
(2019b); Depersin and Lecué (2020), one may find estimators which can estimate in a robust way
a mean vector w.r.t. any metric of the type u ∈ Rd → ‖u‖S = supv∈S

〈
v, u

〉
where S ⊂ Rd. In

particular, for S = Σ−1/2Bd
2 , this metric coincides with the one we want to use, i.e.

∥∥∥Σ−1/2·
∥∥∥

2
. It

has also been proved that the optimal deviation minimax rate (the one obtained in the benchmark
i.i.d. Gaussian case) is for the mean estimation problem with respect to ‖·‖S given by (see
Depersin and Lecué (2020))√

`∗(Σ1/2S)
N

+ sup
v∈S

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

N
. (6.1)

For instance, for S = Bd
2 that is for ‖·‖S = ‖·‖2, the later rate is the classical

√
Tr(Σ)/N +√

‖Σ‖op log(1/δ)/N rate. The case that is interesting to us is when ‖·‖S =
∥∥∥Σ−1/2·

∥∥∥
2
, that is for

S = Σ−1/2Bd
2 . In that case, the subgaussian rate is√

d

N
+

√
log(1/δ)

N
. (6.2)

This is the rate we will try to reach from an adversarial corrupted and heavy-tailed dataset. We
will also have to take into account the price for corruption. There are indeed known information
theoretic lower bounds showing that there are no statistics that can do better than (|O|/N)α
where α ∈ [1/2, 1] is some exponent depending on properties of the ’good’ inliers data. For
instance, α = 1 for Gaussian variables and α = 1/2 for some L2 variables. However, we will see
that the best possible cost |O|/N (i.e. for α = 1) can be achieved even for variables which do
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not have a first moment as long as the cdfs of all one-dimensional projections of the centered
and normalized data are regular enough.

Unfortunately, all estimators known to achieve the subgaussian rate in (6.2) (the Le Cam
test estimator in Lugosi and Mendelson (2019b), the minmax MOM estimator with loss function
`(x, u) =

∥∥∥Σ−1/2(u− v)
∥∥∥ from Lerasle et al. (2019) or the Fenchel-Legendre estimators from

Depersin and Lecué (2020)) are using the set S in their construction. This is something we
cannot do here because S = Σ−1/2Bd

2 depends on Σ which is unknown in general. One therefore
has to consider other types of estimators than the ones cited above. In this work, we will do it
thanks to a notion of depth/outlyingness introduced at the beginning of the 80’s which, unlike
the last cited estimators, uses a normalization by a robust estimation of the scale.

There are several ways to measure how ’deep’ is a vector with respect to a cloud of points,
see for instance the half-space depth of Tukey (1975); Nagy et al. (2019), the simplicial depth in
Liu (1990); Liu and Singh (1992), Mahalanobis depth or the projection depth Liu (1992). Taking
a point with maximal depth is usually seen as a way to define a median in Rd (see Radon points
inBárány and Mustafa (2020) or Fermat Points in Haldane (1948)). There are therefore several
ways to define a median of a cloud of points in Rd. One depth has received a particular attention
both in theory and in practice and is known as the Stahel-Donoho outlyingness (SDO), see Stahel
(1981); Donoho (1982b). It can be used to construct estimators of multivariate location and
scatter known as the Stahel-Donoho estimators (SDE) which were the first equivariant estimators
with a high breakdown point. The aim of this work is to show that this notion of depth can be
used to construct estimator of a mean vector in Rd which is robust to adversarial contamination
and to heavy-tailed data with respect to

∥∥∥Σ−1/2·
∥∥∥

2
. Let us now define this notion of depth1 and

recall some of its properties.

There is a common approach to many notion of depths for a general d-dimensional set of
vectors: first, a definition of depth in R is given and second, this notion is extended to Rd simply
by applying this one-dimensional definition to the set of one-dimensional projections of the data
in all directions v ∈ Rd (or all v ∈ S for some subset S ⊂ Rd) and then by taking the supremum
over all v ∈ Rd (or v ∈ S). This approach is based on the idea that if a point in Rd is an outlier
then there must be some direction v such that it is an (univariate) outlier when projected into
that direction.

The SDO of z ∈ R with respect to a dataset {a1, . . . , aK} in R is defined as

SDO(z; {a1, . . . , aK}) = |z −Med(ak)|
Med(|ak −Med(ak)|)

(6.3)

and a natural extension to Rd is using the previous one for all one-dimensional projections of the
data and by taking the supremum over all directions: for any ν ∈ Rd and a dataset {Z1, . . . , ZK}
in Rd, we set

SDO(ν, {Z1, . . . , ZK}) = sup
v∈Rd

SDO(
〈
ν, v

〉
; {
〈
Z1, v

〉
, . . . ,

〈
ZK , v

〉
})

= sup
v∈Rd

|
〈
ν, v

〉
−Med(

〈
Zk, v

〉
)|

Med(|
〈
Zk, v

〉
−Med(

〈
Zk, v

〉
)|)
. (6.4)

A natural way to define a median of the Zk’s is obtained by taking a point with minimal
outlyingness (i.e. maximal depth):

µ̂SDO ∈ argmin
µ∈Rd

SDO(µ, {Z1, . . . , ZK}).

1The concepts of depth and outlyningness are expressing the same notion but in reverse order.



108 CHAPTER 6. ON THE ROBUSTNESS OF THE MOM STAHEL-DONOHO

We note that µ̂SDO is not the only possible choice to estimate some location of the Zk’s. The
Stahel-Donoho location estimator, for instance, is rather defined as a convex sums of the data:

µ̂SDEK =
∑K
k=1wkZk∑K
k=1wk

(6.5)

where the weights are some function of the outlyingness of the data, i.e. wk = w(SDO(Zk)) for
some (decreasing) weight function w : R+ → R+. The weights can also be used to estimate the
scatter of the set of points {Z1, . . . , ZK} by

Σ̂SDE
K =

∑
k wk(Zk − µ̂SDE)(Zk − µ̂SDE)>∑

k wk
. (6.6)

Note that there is a more general definition of SDO than the one considered in (6.3) with general
(one dimensional) definitions of location and scale statistics; in (6.3), we used the median Med(ak)
and Median Absolute Deviation (MAD) Med(|ak −Med(ak)|) for these statistics, see Hampel
(1974) for more details.

As mentioned previously several results on the Stahel-Donoho Estimator (SDE) have been
established during the last forty years. They are affine equivariant meaning that for any affine
transformation x ∈ Rd → Ax+ b of the dataset by a nonsingular matrix A ∈ Rd×d and a vector
b ∈ Rd the location estimator µ̂SDEK is following the same transformation and the scatter estimator
Σ̂SDE
K is transformed via M ∈ Rd×d → AMA>. SDE have been proved to have a finite-sample

breakdown point Donoho and Huber (1983) which is the ”smallest amount of contamination
necessary to upset an estimator entirely” from Donoho and Gasko (1992) in Donoho (1982a).
In Tyler (1994), it is proved that the SDE with MAD replaced by the average of the k1th and
k2th smallest absolute deviations about the median Med(ak) for k1 = d− 1 + [(K + 1)/2] and
k2 = d− 1 + [(K + 2)/2] achieves the best finite-sample replacement breakdown point among all
affine equivariant estimators obtained in Davies (1987) which is [(K − d+ 1)/2]/K (this result
holds when the weight function w is continuous and there is an absolute constant c0 such that
w(r) ≤ c0, w(r) ≤ c0/r

2 for all r ≥ 0). This result was later extended in Theorem 3.2 from
Zuo et al. (2004a). The influence function and the maximum bias of SDE and SD median have
been obtained in Zuo et al. (2004b), they can be used to prove robustness properties in Huber’s
contamination model but not in the adversarial contamination model considered here. These are
to our knowledge the only established non-asymptotic properties of Stahel-Donoho estimators.

There are however several asymptotic results for SDE such as a
√
n-consistency in Maronna

and Yohai (1995): if the Zk’s are i.i.d. then
√
K
(
(µ̂SDEK , Σ̂SDE

K )− (t,V)
)

tends to 0 in probability
when K → +∞ where t and V are some location and scatter parameters of the distribution of Z1.
This result holds when the weight function w is such as |w(r)−w(r′)| ≤ γmin(1, 1/min(r, r′)3)|r−
r′| for all r, r′ ∈ R and when for all v ∈ Rd the cumulative distribution function (cdf) of

〈
Z1, v

〉
denoted by Fv satisfies the following assumption: there exists some absolute constants c0 > 0
and c1 > 0 such that for all |ε| ≤ c0

|Fv(Med(Fv) + ε)−Fv(Med(Fv))| ≥ c1|ε| and |Fv(Med(Fv)±σv + ε)−Fv(Med(Fv±σv))| ≥ c1|ε|
(6.7)

where Med(Fv) = inf(x ∈ R : Fv(x) ≥ 1/2) is the median of Fv and σv = Med(Gv) where Gv is the
cumulative distribution of the random variable MAD(

〈
Z1, v

〉
) := Med(|

〈
Z1, v

〉
−Med(

〈
Z1, v

〉
)|).

A typical situation mentioned in Maronna and Yohai (1995) where (6.7) holds is when the cdf
F : Rd → [0, 1] of Z is such that F = (1− η)F0 + ηF ∗ where η < 1 and F ∗ is any cdf and F0 is
such that there exists c0 > 0 and c1 > 0 such that for all v ∈ Rd,

〈
Z1, v

〉
has a density denoted

by fv satisfying fv(t) ≥ c1 for all t ∈ [Med(Fv)± c0]∪ [Med(Fv)− σv ± c0]∪ [Med(Fv) + σv ± c0].
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According to Maronna and Yohai (1995), the later holds when F is spherical with positive density
in a neighborhood of 0 and σe1e1 where e1 = (1, 0, · · · , 0) ∈ Rd. We will come back later on
these conditions since we will encounter similar assumptions for our analysis. Finally, asymptotic
normality of SDE location estimators have been obtained in Zuo et al. (2004a) under great
generality for the location and scatter estimators as well as for the weight function including
the median and MAD estimators as in (6.3) and the projection depth obtained for the weight
function w : r ∈ R+ → 1/(1 + r). From a stochastic point of view, asymptotic results for µ̂SDEK

hold when the cdf F is elliptically symmetric around µ which means that there exists a symmetric
definite positive matrix Σ such that for all v ∈ Sd−1

2 := {v ∈ Rd : ‖v‖2 = 1},
〈
Σ−1/2(Z1 − µ), v

〉
has the same distribution as

〈
Σ−1/2(Z1 − µ), e1

〉
which is a univariate symmetric variable with

density function f . In that case, asymptotic normality was obtained when f(0)f(σ) > 0 where
σ = MAD(

〈
Σ−1/2(Z1 − µ), e1

〉
). Again we will meet this type of condition in our analysis.

On the practical side, SDEs have been used a lot in practice and implementation on various
languages such as R exists; and that is one reason why the study of the SDO may be useful,
maybe more than some other notions of depth. In the original paper of Stahel (1981), the author
proposes a random algorithm where the supremum over all directions v ∈ Rd is approximated
by subsampling orthogonal directions to d − 1 hyperplanes generated by d randomly chosen
points in the dataset. Other strategies mixing random and deterministic directions have been
proposed for instance in Peña and Prieto (2007). Several adaptations and extensions of this
algorithm may be found in Debruyne (2009) for an extension to an arbitrary kernel space or in
Van Aelst et al. (2011); Van Aelst (2016) for a ”cell-wise weights” extension of the SDO where
each coordinate of each data receives its own weight. However, only very little is known on the
theoretical computational side. In Section 5 of Donoho and Gasko (1992), an algorithm running
in time O(Kd+1 logK) is mentioned but its time complexity is making this approach impractical
for dimensions larger than 5. There are to our knowledge no theoretical results of any kind on
the convergence of some approximate algorithm for the computation of the SDO of a point in
Rd that could be used in practice. As mentioned already in Donoho and Gasko (1992), ”some
sort of computational breakthrough is necessary to make the estimators, as defined here, really
practical”. This looks to be still the case. We will however not discuss about this issue in the
present work and leave this question still opened.

The aim of this work is to construct mean vector estimators robust to adversarial outliers and
heavy-tailed data achieving the deviation-minimax subgaussian rate from (6.2) with respect to
the metric

∥∥∥Σ−1/2·
∥∥∥

2
. On our way to our goal, we complement the results on the

√
n-consistency

and the asymptotic normality of SDE, by deriving the first non-asymptotic convergence rate
for the original SDO median (as well as its median of means version). We also show that the
robustness properties of the original SD median and its MOM version goes beyond the Huber’s
contamination model and that they still persist in the following adversarial corruption model.

Assumption 6.1. [Adversarial contamination and L2 inliers] There exist N random vectors
(X̃i)Ni=1 in Rd which are independent with mean µ and covariance matrix Σ. The N random
vectors (X̃i)Ni=1 are first given to an ”adversary” who is allowed to modify up to |O| of these
vectors. This modification does not have to follow any rule. Then, the ”adversary” gives back the
modified dataset (Xi)Ni=1 to the statistician. Hence, the statistician receives an ”adversarially”
contaminated dataset of N vectors in Rd which can be partitioned into two groups: the modified
data (Xi)i∈O, which can be seen as outliers and the ”good data” or inliers (Xi)i∈I such that
∀i ∈ I, Xi = X̃i. Of course, the statistician does not know which data has been modified or not
so that the partition O ∪ I = {1, . . . , N} is unknown to the statistician.

In the setup defined by Assumption 6.1, we will use the SDO as one of our building block to
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achieve our goal as well as the Median-of-means principle Nemirovsky and Yudin (1983); Alon
et al. (1999); Jerrum et al. (1986). This principle has been extensively used during the last
decades in particular for the problem of robust mean estimation Lerasle and Oliveira (2011);
Devroye et al. (2016); Minsker (2015); Lugosi and Mendelson (2019b,a); M. Lerasle and Lecué
(2017); Depersin and Lecué (2020); Hopkins (2018); Cherapanamjeri et al. (2019). The starting
point of MOM estimator is to choose an integer K ∈ [N ], split the dataset into K equal size blocks
B1t · · · tBK = [N ] (w.l.o.g. we assume that N can be divided by K) and construct K empirical
means X̄k = |Bk|−1∑

i∈Bk Xi, one over each block. The Stahel-Donoho Median-of-Means that
will be used to achieve the subgaussian rate (6.2) with respect to

∥∥∥Σ−1/2·
∥∥∥

2
in the adversarial

and heavy-tailed setup from Assumption 6.1 is

µ̂SDOMOM,K ∈ argmin
µ∈Rd

sup
‖v‖2=1

|
〈
µ, v

〉
−Med(

〈
X̄k, v

〉
)|

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|)
.

It is a min-max MOM estimator but it differs for the min-max MOM estimators introduced in
Lecué and Lerasle (2020) because of the renomalization MAD term.

Indeed, unlike recently introduced robust mean estimators, µ̂SDOMOM,K is using a robust scatter
estimator for normalization. Here it is a MOM version of MAD which is used to construct
µ̂SDOMOM,K , i.e. v → Med(|

〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|). We will show that this normalization plays a

central role in the analysis when one wants results w.r.t. the
∥∥∥Σ−1/2·

∥∥∥
2
-norm. But beyond this

observation, we will show that MAD and its MOM version satisfy isomorphic and almost-isometric
properties that can be used for other tasks such as to construct estimators of the covariance
matrix under the existence of only a second moment or for the estimation of a scale matrix when
no moment exist but a regularity assumption holds (see Section 6.4 below).

The chapter is organized as follows. In the next section, we consider the case where the good
data have a Gaussian distribution and the dataset has been adversarially corrupted. In that
case, no need to construct bucketed means and the original Stahel-Donoho median is proved to
achieve the subgaussian rate (6.2). The Section 6.3 considers the general adversarial corrupted
and heavy-tailed framework from Assumption 6.1 where the MOM version of the SDO is proved
to achieve the subgaussian rate. We also exhibit in this section a family of cdfs denoted here by
(HN,K,v : v ∈ Sd−1

2 ) which plays a key role in our analysis. In particular, when the behavior of
these functions around 0 is similar to the one described above in (6.7) then the same result as
in the Gaussian case can be obtained and that may hold without the existence of any moment
(see Section 6.3.3). In Section 6.4, we show how to use the MOM version of MAD to construct
an estimator of the scale matrix under a regularity assumption. In Section 6.5, we explore the
properties of the family of functions (HN,K,v : v ∈ Sd−1

2 ). A conclusion and open questions are
provided in Section 6.6 that are followed by the proofs of all the results in Section 6.7.

Notations. We denote by x ∈ Rd → ‖x‖2 =
(∑

j x
2
j

)1/2
the Euclidean norm with associated

unit sphere Sd−1
2 and unit ball Bd

2 . We also denote by g ∼ N (0, 1) a standard one-dimensional
Gaussian variable and its associated standard Gaussian cdf by Φ : t ∈ R→ P[g ≤ t] =

∫ t
−∞ φ(u)du

where φ : u ∈ R→ (2π)−1/2 exp(−u2/2) is the one dimensional Gaussian density function. We
also set HG : t → 1− Φ(t) and WG : p ∈ (0, 1) → H

(−1)
G (p) the inverse function of HG so that

W (p) = Φ−1(1− p).
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6.2 The Gaussian case

In this section, we prove that the original SDO median achieves the (non-asymptotic) subgaussian
rate (6.2) when the dataset may have been corrupted by an adversary and when the good data
have a Gaussian distribution; our main model assumption is the following.

Assumption 6.2. [Adversarial contamination and Gaussian inliers] There exists N i.i.d. Gaus-
sian vectors (Gi)Ni=1 in Rd with mean µ and (unknown) covariance matrix Σ. We assume that Σ
is invertible. The N random vectors (Gi)Ni=1 are first given to an ”adversary” who is allowed to
modify up to |O| of these vectors. This modification does not have to follow any rule. Then, the
”adversary” gives the modified dataset (Xi)Ni=1 to the statistician.

We will use the Gaussian case studied in the section as a benchmark case for the later more
involved heavy-tailed situations considered after – in these cases, we will bucket the data and
make some assumptions on the distribution of the good data. When the ”good” data are Gaussian
there is no need to bucket the data and the elliptically symmetric property of the Gaussian
variables is simplifying the analysis. The mean estimator we use in this section is therefore the
median µ̂SDO ∈ argminµ∈Rd SDO(µ) of the original Stahel-Donoho outlyingness function

SDO : µ ∈ Rd → sup
v∈Rd

|
〈
µ, v

〉
−Med(

〈
Xi, v

〉
)|

Med(|
〈
Xi, v

〉
−Med(

〈
Xi, v

〉
)|)
. (6.8)

Our main result in the adversarial corruption setup with Gaussian inliers is the following:

Theorem 6.1. We assume that the adversarial contamination with Gaussian inliers model
Assumption 6.2 holds with a number of adversarial outliers denoted by |O|. Let κ0 be the
absolute constant defined in Section 6.5. We assume that |O| ≤ κ0N and N ≥ 4C2

0κ
−2
0 (d + 1)

(where C0 is the absolute constants defined in (6.29)). For all 0 < u < κ2
0N/8 such that

C0
√

(d+ 1)/N +
√

2u/N + |O|/N ≤ 1/φ(1), with probability at least 1− 2 exp(−u),

∥∥∥Σ−1/2(µ̂SDO − µ)
∥∥∥

2
≤ 6
φ(1)

C0

√
d+ 1
N

+
√

2u
N

+ |O|
N

 .
Let us first remark that if N < d then the N data X1, . . . , XN cannot span the entire Rd

space and so there exists a non zero vector v ∈ Rd which is orthogonal to all the data points.
Hence, MAD(v) := Med(|

〈
Xi, v

〉
−Med(

〈
Xi, v

〉
)|) = 0 a.s. and so SDO(µ) = +∞ for all µ ∈ Rd.

Therefore, assuming that N ≥ d is a minimal assumption when we work with the SDO function.

Theorem 6.1 shows that the SD median µ̂SDO is robust to adversarial contamination up
to a universal constant proportion κ0 of N and that the rate achieved remains the same as if
there was no contamination when |O| .

√
N max(

√
u,
√
d). If we put this result with regard

to the finite-sample replacement breakdown point (RBP) achieved by the SDE (with a slight
modification of MAD at the denominator as recalled in the Introduction), we see that the order of
magnitude are the same: SDE and µ̂SDO can both handle a constant proportion of N adversarial
outliers.

It is important to note that the RBP (which is close to (1/2)N when N >> d) has the same
order of magnitude but a better constant than the one obtained in Theorem 6.1 (1/2 versus κ0
defined in Section 6.5). We want to point out two observations: the result in Theorem 6.1 shows
that the estimator still achieves the deviation minimax subgaussian rate (6.2) even up to κ0N
outliers whereas RBP only insures that the estimator does not go to infinity: the two results
(RBP and Theorem 6.1) do not quantify the same property. In other words, RBP does not insure
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any statistical convergence rate after data corruption whereas Theorem 6.1 does: Theorem 6.1
does not only guarantee that the estimator does not go to infinity, it insures that it stays in a
statistically optimal confidence sets (an Σ1/2Bd

2 ellipsoid with a minimax optimal radius) around
the mean. As a consequence, Theorem 6.1 is a stronger statement than a RBP and it shows that
the price to pay for this stronger guarantee is just at the level of absolute constants. Secondly, as
pointed out in Chen et al. (2018), Remark 2.1, one can in fact ensure some statistical convergence
up to a bigger constant fraction of corruption (in their case, 1/3). We point out that, following a
large line of works in robust estimation, especially when it comes to achieving (non-asymptotic)
sub-gaussian rates, we did not try to optimize the constants in this work, which explain the
looseness of this constant. While getting tight constants is interesting and non-trivial, we leave
this question opened for future work.

The rate of convergence obtained in Theorem 6.1 has been obtained by several other procedures.
For instance, it has been proved that the Tukey median achieves this rate in Chen et al. (2018)
when the covariance is proportional to the identity and for the Huber-contamination setup. The
same bound was also obtained by a polynomial time algorithm in Dalalyan and Thompson (2019)
when the covariance matrix Σ is known.

The proof of Theorem 6.1 (which may be found in Section 6.7) is based on two isomorphic
principles of the MAD and SDO functions. We will extend these two properties to the MOM
versions of MAD and SDO in the next section. For the moment, let us recall their definitions
and write these two properties that are interesting beyond the proof of Theorem 6.1.

The normalization factor in the SDO function (6.8) is called the MAD (median absolute
deviation), see Hampel (1973)

MAD : v ∈ Rd → Med(|
〈
Xi, v

〉
−Med(

〈
Xi, v

〉
)|).

It plays a key role to get an estimation result w.r.t. the
∥∥∥Σ−1/2·

∥∥∥
2

norm when Σ is unknown.
However, this normalization factor requires some more work than for the analysis of classical
robust estimators that are only focused on the estimation of the mean. Indeed, MAD(v) is
actually a robust estimator of the scatter of

〈
g, v

〉
which is Φ−1(3/4)

∥∥∥Σ1/2v
∥∥∥

2
(note that if

g ∼ N (0, 1) then MAD(g) = Med(|g −Med(g)|) = Φ−1(3/4)). It is therefore a ’second order’
robust estimator but since it appears in the denominator of the SDO function, we cannot only
prove an upper estimate for this quantity and we need an isomorphic result – that is upper and
lower matching (up to constants) bounds – on the MAD. This result is of independent interest
and we are therefore stating it here. The proof is given in Section 6.7.1. We also state a similar
isomophic result for SDO which can be use to prove Theorem 6.1. We will see later in Section 6.5
that these metric properties of SDO and MAD can be extended to cases where the mean does not
even exist (in that case µ is a location parameter) showing that these properties have actually
more to do with elliptical symmetry of the underlying data distribution than they have to do
with concentration or moment assumption.

Proposition 6.1. Let 0 < ε < κ0 (where κ0 is an absolute constant defined in Section 6.5). We
assume that the adversarial contamination model with Gaussian inliers Assumption 6.2 holds
with a number of adversarial outliers |O| ≤ εN . We assume that N ≥ 4C0ε

−2(d+ 1) (where C0
is the absolute constant defined in (6.29)). With probability at least 1 − exp(−ε2N/8), for all
v ∈ Rd,

(Φ−1(3/4)− 2c′0ε)
∥∥∥Σ1/2v

∥∥∥
2
≤MAD(v) ≤ (Φ−1(3/4) + 2c′0ε)

∥∥∥Σ1/2v
∥∥∥

2

where c′0 is the absolute constant defined in Section 6.5.
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Moreover, for all 0 < u < ε2N/8, with probability at least 1− 2 exp(−u), for all a ∈ Rd, if∥∥∥Σ−1/2(a− µ)
∥∥∥

2
≥ 2r∗ then∥∥∥Σ−1/2(a− µ)

∥∥∥
2

2(Φ−1(3/4) + 2c′0ε)
≤ SDO(a) ≤

3
∥∥∥Σ−1/2(a− µ)

∥∥∥
2

2(Φ−1(3/4)− 2c′0ε)

and if
∥∥∥Σ−1/2(a− µ)

∥∥∥
2
≤ 2r∗ then SDO(a) ≤ 3r∗(Φ−1(3/4)−2c′0ε)−1 where r∗ is the subgaussian

rate from (6.2) with the additive adversarial contamination term |O|/N given by

r∗ = 1
φ(1)

C0

√
d+ 1
N

+
√

2u
N

+ |O|
N

 (6.9)

as long as the right-hand side term in (6.9) is smaller than 1.

The isomorphic properties of the MAD and SDO functions uniformly over Rd imply the
robustness and subgaussian properties of the SDO median in Theorem 6.1. Similar results for
other depths may be found in the literature on robust mean estimation such as the isomorphic
property of the Tukey depth proved in Chen et al. (2018).

6.3 The L2 case and beyond

In this section, we do not anymore assume that the good data follow a Gaussian distribution
but we only assume that they have a second moment or that a location and scale parameter
exists and some regularity assumption holds (and that the dataset may still be contaminated by
an adversary). Nevertheless, even though we are in the heavy tailed setup with adversarially
corrupted data we still want to achieve the subgaussian rate for the

∥∥∥Σ−1/2·
∥∥∥

2
-norm. To achieve

such a result the median-of-means principle has been proved to perform well. We will therefore
use this principle together with the Stahel-Donoho concept of outlyingness. We introduce now
an estimator constructed according to these two principles.

Let K ∈ [N ] be the number of blocks and let X̄k = (1/|Bk|)
∑
i∈Bk Xi, k ∈ [K] be the bucketed

means. Outlyingness / depth of a point µ ∈ Rd is measured with respect to the bucketed means:

SDOK(µ) = sup
v∈Rd

|
〈
µ, v

〉
−Med(

〈
X̄k, v

〉
)|

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|)

and the Stahel-Donoho Median of means is defined as

µ̂SDOMOM,K ∈ argmin
µ∈Rd

SDOK(µ).

As for the Gaussian case, the isomorphic and nearly-isometric properties of SDOK and its
denominator, called MOMADK , play a key role in our analysis. The MOMADK is a Median of
means version of the Median Absolute Deviation function. We denote it as MOMAD for Median
Of Means Absolute Deviation:

MOMADK : v ∈ Rd → Med
(
|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|
)
. (6.10)

In the next section, we study metric properties of MOMADK and SDOK that will be useful for
our analysis of µ̂SDOMOM,K . Then, we will turn to the statistical bounds obtained for the median
µ̂SDOMOM,K in the general heavy-tailed L2 setup in Section 6.3.2 and finally we will study some
extra regularity assumption of the cdfs (HN,K,v : v ∈ Sd−1

2 ) at 0 that allows to get better rates
in Section 6.3.3.
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6.3.1 Some isomorphic and almost isometric properties of MOMADK and
SDOK

In this section, we show that the MOM versions of the SDO and MAD operators (called
SDOK and MOMADK) satisfy isomorphic and almost-isometry properties under a L2 moment
assumption.

We introduce two families of functions which play a central role in our analysis. They involve
the non-corrupted random variables X̃i, i ∈ [N ] (and not the corrupted data Xi, i ∈ [N ]).
Definition 6.1. For all v ∈ Sd−1

2 ,

Hv := HN,K,v : r ∈ R→ P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 (6.11)

and
Wv := WN,K,v : p ∈ (0, 1)→ H(−1)

v (p),

where H(−1)
v (p) = max(r ∈ R : Hv(r) ≥ p) is the generalized inverse of Hv.

As already observed in the proof of the
√
n-consistency of SDE from Maronna and Yohai (1995)

as well as its asymptotic normality in Zuo et al. (2004a), the behavior of the one-dimensional
projection cdfs at the median and the two 1/4 and 3/4 quartiles play a central role in the analysis
of SDO based estimators. This will also be the case for the MOM version of the SD median. It
will appear in Section 6.5 that taking bucketed mean may force toward the Gaussian case for
which all these conditions are naturally satisfied because of the elliptical symmetry of Gaussian
variables. Let us now state our main assumption on the behavior of the one-dimensional quantile
functions Wv : v ∈ Sd−1

2 .
Assumption 6.3. There exists some 0 < ε < 1/8 and some absolute constants 0 < ϕl(ε) < ϕu(ε)
such that for all v ∈ Sd−1

2 ,

max
(
Wv

(1
4 − 2ε

)
−Wv

(1
2 + 2ε

)
,Wv

(1
2 − 2ε

)
−Wv

(3
4 + 2ε

))
≤ ϕu(ε)

and
min

(
Wv

(1
4 + 2ε

)
−Wv

(1
2 − 2ε

)
,Wv

(1
2 + 2ε

)
−Wv

(3
4 − 2ε

))
≥ ϕl(ε).

Assumption 6.3 is a pretty weak assumption since, intuitively, it requires that the distribution
of the centered and variance one real-valued random variables

〈
Σ−1/2(X̃i − µ), v

〉
have their

1/4-quartiles and medians constant far away as well as for their 3/4-quartiles and medians,
and this has to hold uniformly in all directions v ∈ Sd−1

2 . For instance, in the Gaussian case,
Assumption 6.3 holds for ϕu(ε) = Φ−1(3/4) + c0ε and ϕl(ε) = Φ−1(3/4)− c0ε for some absolute
constant c0 and for all 0 < ε < 1/12 (where we recall that Φ : t→ P[g ≤ t] where g ∼ N (0, 1)).
Assumption 6.3 appears in our analysis because of the renormalization MOMADK term which
should not vanish. To understand why the interquartiles range (IQR) appear in this assumption,
one may observe that if U is a real-valued random variable and MAD(U) = Med(|U −Med(U)|)
then

min (WU (1/4)−WU (1/2),WU (1/2)−WU (1/4)) ≤MAD(U)
≤ max (WU (1/4)−WU (1/2),WU (1/2)−WU (1/4))

where WU is the generalized inverse function of r → P[U ≥ r]. As a consequence, the (IQR) of
the projections of the scaled and centered bucketed means should be controlled in all directions
v and since we are concerned with non-asymptotic results we allows for small perturbations ε
around the quartiles: this gives Assumption 6.3.
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Proposition 6.2. We assume that Assumption 6.3 holds for some 0 < ε < 1/8 and constants
ϕl(ε) and ϕu(ε). We assume that the adversarial contamination with L2 inliers model from
Assumption 6.1 holds with a number of adversarial outliers |O| ≤ εK. We assume that K ≥
4C2

0ε
−2(d + 1) where C0 is the absolute constant from (6.29). With probability at least 1 −

exp(−ε2K/8), for all v ∈ Rd,

ϕl(ε)
√
K

N

∥∥∥Σ1/2v
∥∥∥

2
≤MOMADK(v) ≤ ϕu(ε)

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
.

Proposition 6.2 shows that MOMADK is equivalent to v →
√
K/N

∥∥∥Σ1/2v
∥∥∥

2
up to the two

constants ϕu(ε) and ϕl(ε). We will be interested in two situations regarding these constants.
The first one is when their ratio is upper bounded by some absolute constant: there exists an
absolute constant c1 > 0 such that for some 0 < ε < 1/8

ϕu(ε)
ϕl(ε)

≤ c1. (6.12)

This condition will be enough to obtain robust optimal subgaussian bounds for µ̂SDOMOM,K in
the two following theorems. If condition (6.12) holds we say that MOMADK is isomorphic
to v →

√
K/N

∥∥∥Σ1/2v
∥∥∥

2
. The second condition, that will be of interest to us is when we will

estimate Σ using MOMADK in Section 6.4, is when the two constants ϕu(ε) and ϕl(ε) can be
made arbitrarily close to the same constant by taking ε small enough, that is when there exists
some absolute constants φ0 and c0, c1 > 0 such that for all 0 < ε < c0,

ϕl(ε) = φ0 − c1ε and ϕu(ε) = φ0 + c1ε. (6.13)

In that case, we speak about an almost-isometric property of MOMADK . The latter condition
is stronger than an isomorphic property but it allows to solve a higher order moment estimation
problem, the one of estimating Σ. In Section 6.5, we provide several examples where these
conditions hold (as well as other properties of the family of cdfs (Hv : v ∈ Sd−1

2 )) even when
there is not even a first moment.

We finish this section with an isomorphic result for SDOK . The rate of convergence
appears in this result: it is the level r∗ above which SDOK is isomorphic to ν ∈ Rd →∥∥∥Σ−1/2(ν − µ)

∥∥∥
2
/
√
K/N . One can define it as a solution to

C0

√
d+ 1
K

+
√

2u
K

+ sup
‖v‖2=1

HN,K,v(r∗) + |O|
K

<
1
2 (6.14)

where u is a confidence parameter and C0 is the absolute constant appearing in (6.29).

Proposition 6.3. We assume that Assumption 6.3 holds for some 0 < ε < 1/8 and constants
ϕl(ε) and ϕu(ε). We assume that the adversarial contamination with L2 inliers model from
Assumption 6.1 holds with a number of adversarial outliers denoted by |O|. We assume that
|O| ≤ εK and K ≥ 4C2

0ε
−2(d + 1). Let u > 0 and r∗ be such that (6.14) holds. Then, with

probability at least 1− exp(−u)− exp(−ε2K/8), for all ν ∈ Rd, if
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2
≥ 2

√
K/Nr∗

then ∥∥∥Σ−1/2(ν − µ)
∥∥∥

2
2ϕu(ε)

√
K/N

≤ SDOK(ν) ≤
3
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2

2ϕl(ε)
√
K/N

and if
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2
≤ 2

√
K/Nr∗ then SDOK(ν) ≤ (3/ϕl(ε))r∗.
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Proposition 6.3 may be seen as a MOM version holding in the heavy-tailed case of the
Proposition 6.1 obtained in the Gaussian case. Such an extension from the Gaussian case to
the L2 heavy-tail case is made possible thanks to the median-of-means principle and the use of
the bucketed means instead of the data themselves. However, we will identify situations where
condition (6.12) and (6.14) with an optimal choice of rate r∗ (that is for the subgaussian rate
(6.2)) hold for K = N even when a first moment does not exist. In that case, one can get a
contamination price down to |O|/N instead of the information theoretic lower bound in the
general L2 case given by

√
|O|/N (see Section 6.3.3). We start with the general L2 case and

then we will consider an extra assumption that allows for such better bounds.

6.3.2 The L2 case

Unlike in Section 6.2 or Section 6.3.3 below where we demand that for all v ∈ Sd−1
2 and all

0 < r < c0 the deviation function HN,K,v(r) is less than 1/2− c1r here (in this section) we simply
use Markov inequality to control the functions HN,K,v around 0. The price we pay by using
this approach is that we will not prove anymore estimation results for the SDO MOM over K
blocks which hold for all deviation parameters u up to K but only for u ∼ K. The other price we
pay here is for the adversarial contamination cost that will be of the order of

√
|O|/N whereas

(as proved in Theorem 6.4 below) it can be better up to |O|/N (as in the Gaussian case from
Theorem 6.1). We will be able to achieve this result thanks to a regularity assumption of the cdfs
Hv of all one-dimensional projections around 0 (see Assumption 6.4 below). But, for the moment,
we do not grant this type of assumption in this section and obtain a general result under the
existence of a second moment as well as Assumption 6.3. Subgaussian rates can be derived out of
this result when condition (6.12) holds (we refer to Section 6.5 where this condition is studied).

In this section, the bound we use is simply the one deduced from Markov’s inequality that is
for all r > 0 and K ∈ [N ]:

HN,K,v(r) = P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 ≤ 1
1 + r2 . (6.15)

(Note that we used a slightly modification of Markov’s inequality: if Z is a centered variance
one real-valued random variable then P[Z ≥ r] = mina∈R P[Z + a ≥ r + a] ≤ (1 + r2)−1). Our
main result in the general L2 setup will follow from this bound and a general result stated in
Section 6.7. It is now stated in the following theorem.

Theorem 6.2. We assume that Assumption 6.3 holds for some 0 < ε < 1/8. We assume that
the adversarial contamination with L2 inliers model from Assumption 6.1 holds with a number
of adversarial outliers |O| ≤ εK. We assume that K ≥ 100ε−2d. With probability at least
1− 2 exp(−ε2K/15), ∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)

∥∥∥
2
≤ 6ϕu(ε)

ϕl(ε)

√
K

N
.

The rate of convergence in Theorem 6.2 can be written like the one in Theorem 6.1 and
Theorem 6.4 below where the three terms: complexity, deviation and price for adversarial
corruption appear. Indeed, one should notice here that the deviation probability in Theorem 6.2
is fixed equal to 1− 2 exp(−c0ε

2K) because we had to take the deviation parameter u equal to K
because of the approach based on Markov’s inequality (6.15). It is however, equivalent to replace√
K/N by

√
d/(ε2N) +

√
u/ε2N +

√
|O|/(εN) for u = K since the two quantities are equivalent

under the assumptions of Theorem 6.2. In that case, one may recognize the complexity term√
d/N , the deviation term

√
u/N as well as the price for adversarial corruption

√
|O|/N . In
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particular, we see that the price we pay for the corruption is of the order of
√
|O|/N which is

larger than the |O|/N term in the Gaussian case from Theorem 6.1 and it is the worst case of
Theorem 6.4 below. Indeed, in Theorem 6.2 we did not exploit any other property than the
existence of a second moment whereas the other two Theorems 6.1 and Theorem 6.4 exploit
some regularity assumption around 0 of the family of functions HN,K,v, v ∈ Sd−1

2 .

Adaptation to K via Lepski’s method. It follows from Theorem 6.2 that µ̂SDOMOM,K is an
estimator which depends on the deviation parameter K : we need to specify a value of K, which
is used to build the estimator, so we need, for instance, some prior knowledge on the number of
outliers. However, even if we do not have such prior knowledge, it is possible to overcome this
difficulty by constructing an adaptive to K version of this estimator to disentangle the estimator
from the parameter K. The classical way to do it is via Lepski’s method Lepskĭı (1990, 1991).
Usually, the price we pay to make this approach work is some extra knowledge on Σ such as its
trace and operator norm (see for instance Depersin and Lecué (2019), Section 6). An interesting
feature of SDO type estimators is that we do not need no such information on Σ to build this
adaptation scheme: we only need knowledge on ϕu(ε) and ϕl(ε). Let us now construct this
adaptive scheme: the number of blocks is chosen adaptively via

K̂ = min

K ∈ [N ] : SDOk(µ̂SDOMOM,K − µ̂SDOMOM,k) ≤ max

 9
ϕl(ε)

,
6ϕu(ε)
ϕ2
l (ε)

1 +
√
K

k

 ,∀k = N, . . . ,K

 .
(6.16)

Theorem 6.3. There are absolute constants c0 and c1 such that the following holds. We assume
that Assumption 6.3 holds for some 0 < ε < 1/8 and all K ∈ [N ]. We assume that the
adversarial contamination with L2 inliers model from Assumption 6.1 holds with a number of
adversarial outliers denoted by |O|. Then, for all K ≥ max(c0ε

−2d, c0|O|) with probability at
least 1− 2 exp(−c1ε

2K),

∥∥∥Σ−1/2(µ̂SDO
MOM,K̂

− µ)
∥∥∥

2
≤ 28ϕ2

u(ε)
ϕ2
l (ε)

√
K

N
.

where K̂ is the adaptive choice of number of blocks from (6.16).

6.3.3 Beyond the L2 case and a regularity condition around 0 of the Hv’s

In this section, we obtain an estimation bound for the MOM version of the SDO median in the
adversarial corruption model under an extra assumption on the regularity at 0 of the family of
functions Hv, v ∈ Sd−1

2 that is stated now.

Assumption 6.4. There exists a location parameter µ ∈ Rd, a scale matrix Σ � 0 and
some absolute constants c0, c1 > 0 and c2 > 0 and such that for all v ∈ Sd−1

2 and all
(2C0/c1)

√
(d+ 1)/K ≤ r ≤ c0 (where C0 is the absolute constant from (6.29))

HN,K,v(r) = Hv(r) := P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 ≤ 1
2 − c2r.

This assumption is about the behavior around the origin of the cdf of all one-dimensional
projections of the random vectors (N/K)−1/2∑N/K

i=1 Σ−1/2(X̃i − µ) where the X̃i are the non-
corrupted data. The term 1

2 − c2r in the bound above is the behavior of regular in 0 cdfs such as
in the Gaussian case (see Section 6.5 for more details and more examples).
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Our main result in the adversarial corruption model under Assumption 6.4 is the following
theorem. The proof may be found in Section 6.7.

Theorem 6.4. We assume that Assumption 6.3 holds for some 0 < ε < 1/8 and that Assump-
tion 6.4 holds as well with constants c0, c1 and c2. We assume that the adversarial contamination
model holds with a number of adversarial outliers |O| ≤ εK. We assume that K ≥ 4C2

0ε
−2(d+ 1).

For all 0 < u ≤ ε2K/8 such that C0
√

(d+ 1)/K +
√

2u/K + |O|/K ≤ c0c2/2, with probability at
least 1− 2 exp(−u),

∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)
∥∥∥

2
≤ 4ϕu(ε)
c2ϕl(ε)

C0

√
d+ 1
N

+
√

2u
N

+ |O|√
NK

 . (6.17)

We recover the optimal subgaussian rate (6.2) in Theorem 6.4 when for some 0 < ε < 1/8,
condition (6.12) holds and |O| .

√
Kd. The term |O|/

√
KN appearing in the convergence rate

of Theorem 6.4 is the price we pay for the adversarial contamination. It is between
√
|O|/N when

K ∼ |O| and |O|/N when K ∼ N . We note that the rate gets better when K comes closer to N :
however we note that we cannot always choose K as we please. Indeed both Assumptions 6.3
and 6.4 are assumptions on the functions HN,K,v, and they might be true for some K and not
for others. Usually when the inliers are in L2, and without further assumptions, the information
theoretic lower bound is known to be of the order of

√
|O|/N and not of order |O|/N . We get a

better rate in Theorem 6.4 thanks to Assumption 6.4 which is using in some more efficient way
the regularity of the Hv functions at 0.

Remark 6.1. Assumption 6.3 and Assumption 6.4 do not need the data to have a first moment:
both assumptions may hold without the existence of any moment. In these assumptions, µ or
Σ are not used in the role of mean and variance matrix but can be thought of as location and
scatter parameters. Such parameters may exist even in situations where there is not even a first
moment. We note that in Theorem 6.2, on the contrary, we use Markov’s inequality instead of
Assumption 6.4 and so we need µ to be the mean and Σ to be the covariance matrix and not just
a scatter matrix – hence, we need the existence of two moments in Theorem 6.2 but not of any
moment in Theorem 6.4.

Unlike typical results in the MOM literature except for the one obtained in Minsker and
Strawn (2017), the deviation rate in Theorem 6.4 is 1− 2 exp(−u) for all u . K, in particular
it does not have to depend on parameter K. As a consequence, the estimator µ̂SDOMOM,K does
not depend on the deviation parameter. Usually, results for MOM estimators constructed on K
blocks are given with probability at least 1 − exp(−c0K) and then a Lepski’s method is used
to construct an adaptive to K procedure (as we did in the previous section). This is not the
case here nor it is for the Gaussian case in Section 6.2. This is again because Assumption 6.4 is
efficiently using the behavior of HN,K,v around 0.

6.4 Estimation of Σ using MOMAD

In this section, we show that it is possible to estimate a scale or covariance matrix Σ using the
MOMAD estimator. In particular, given that the isomorphic property of MOMAD hold under
Assumption 6.3 (which does not grants the existence of a second moment), we show that it is
possible to estimate a scale matrix under only this assumptions. This differs from approaches
based on the empirical covariance matrix where at best a L2+δ-moment assumption for some
positive δ is granted for the estimation of the covariance matrix, see Lounici (2014); Cai et al.
(2016); Lu et al. (2020). In this section, we construct two estimators of Σ.
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We show that for the estimation of Σ via the MOMAD, the properties of ϕl(ε) and ϕu(ε)
introduced in Assumption 6.3 play a key role. Let us first have a look at these quantities in the
Gaussian case. In that case, there are some absolute constants φ0 and c0, c1 > 0 such that for all
0 < ε < c0,

ϕl(ε) = φ0 − c1ε and ϕu(ε) = φ0 + c1ε (6.18)
where φ0 = Φ−1(3/4) (see Section 6.5 or the proof of Proposition 6.1 for more details). This
latter result holds in the Gaussian case first because the two interquartile intervals have the same
length: Φ−1(0)− Φ−1(1/4) = Φ−1(3/4)− Φ(0) = φ0 and, second, because the Gaussian density
function is uniformly lower bounded by an absolute positive constant locally around the two 1/4
and 3/4 quartiles Φ−1(1/4) and Φ−1(3/4) as well as around the median Φ−1(1/2) = 0. If this last
condition were not true at some q ∈ {W (1/4),W (1/2),W (3/4)} where W = WN,K,v for some
direction v ∈ Sd−1

2 then there will be some plateau of the cdf r ∈ R→ 1−HN,K,v(r) starting at
q and thus there would be a constant factor gap between W (`/4− 2ε) and W (`/4 + 2ε) for some
` ∈ {1, 2, 3}. In that case, there would be some absolute constants c0 > 0 and c1 > 0 such that
|ϕl(ε)− ϕl(ε)| ≥ c0 for all 0 < ε ≤ c1. In particular, we would only have an isomorphic property
for the MOMAD and thus it is not clear how to estimate Σ using MOMAD at a better rate than a
constant rate. Typical values of φ0 in (6.18) will be φ0 = W (1/4)−W (1/2) = W (1/2)−W (3/4).
In particular, the interquartile interval lengths have to be equal in all directions v ∈ Sd−1

2 ;
this will hold, in particular, under a spherical symmetry assumption of the Σ−1/2(X̃i − µ) (see
Section 6.5 for a more formal statement). That is a reason why we will use an isometric property
of MOMAD (and not just an isomorphic property) and that to insure this property we consider
the following assumption.

Assumption 6.5. For the same choice of K as in Assumption 6.3 where ε > 0→ ϕl(ε), ϕu(ε) are
defined, there are absolute constants φ0, c0, c1 > 0 such that for all v ∈ Sd−1

2 and all 0 < ε < c0,
ϕl(ε) = φ0 − c1ε and ϕu(ε) = φ0 + c1ε.

Let us now turn to the construction of two estimators of the covariance matrix Σ using
MOMAD under Assumption 6.5 (as well as Assumption 6.3). Because of the constant factor φ0
in Assumption 6.5 we will provide an estimator of the scatter matrix φ2

0Σ (according to Maronna
et al. (2006b), a scatter matrix is any matrix proportional to the covariance matrix – this type
of matrix gives in particular information on the relative uncertainty in all directions).

It follows from Proposition 6.2 thatMOMADK is isomorphic to v ∈ Rd → φ0
√
K/N

∥∥∥Σ1/2v
∥∥∥

2
and that under Assumption 6.5 it becomes an almost isometry, that is, with probability at least
1− exp(−ε2K/8), for all v ∈ Rd,∣∣∣∣∣∣MOMADK(v)− φ0

√
K

N

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣∣∣∣ ≤ c1ε

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
(6.19)

as long as |O| ≤ εK, K ≥ 4C2
0ε
−2(d + 1) and 0 < ε < c0. In the Gaussian case and other

spherical cases studied in Section 6.5, this almost isometric property holds for K = N (and
MOMADN = MAD) and any 0 < ε < 1/12: it follows from Proposition 6.1 that with probability
at least 1− exp(−ε2N/8), for all v ∈ Rd,∣∣∣MAD(v)− Φ−1(3/4)

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣ ≤ c1ε
∥∥∥Σ1/2v

∥∥∥
2
. (6.20)

We then may use two distinct ideas to build an estimator from (6.19) and (6.20). The first
one is to consider the matrix Σ̌ defined by

Σ̌ ∈ N
K

argmin
A�0

max
‖A1/2v‖2=1

|MOMADK(v)− 1|
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where the minimum is taken over the cone of semi-definite positive matrices. The following
estimation error bound follows from (6.19) and basic algebra (see the proof in Section 6.7).

Proposition 6.4. Assume that Assumption 6.1 holds. Let K ∈ [N ], ϕl and ϕu be such that
Assumption 6.3 and Assumption 6.5 hold with constants φ0, c0 and c1, and that 4c1ε < φ0.
Then, for all 0 < ε < c0 such that |O| ≤ εK and K ≥ 4C2

0ε
−2(d + 1), with probability at least

1− exp(−ε2K/8), ∥∥∥Σ−1/2Σ̌Σ−1/2 − φ2
0 Id

∥∥∥
op
≤ 12φ0c1ε

Comparing the rate obtained in Proposition 6.4 with the ones from the literature, we notice
that this estimator achieves a rate of the order of the contamination rate ε = |O|/N when one
can choose K ∼ N in the assumptions of Proposition 6.4. This is the typical rate when the data
are Gaussian, while the typical and information-theoretically optimal rate for L2 inliers is like√
ε (see for instance Kothari and Steurer (2017), discussion after Theorem 1.2). Once again, we

get a better rate in Proposition 6.4 thanks to Assumption 6.5 which is using in some efficient
way the behavior of the two ϕu, ϕl functions around 0 and so the isometric property of MOMAD,
which explains this gap.

We then present a second way to use (6.19) to estimate directly the entries of Σ following
an idea from Gnanadesikan and Kettenring (1972). This way will lead to a somehow worse
rate, but it provides an estimator that is very easy to compute, and that is tractable in time
O(N log(N)d), that is in linear time.

Let (ej)dj=1 denote the canonical basis of Rd. We have, for all i, j ∈ [d],

4Σij = 4
〈
ei,Σej

〉
=
∥∥∥Σ1/2(ei + ej)

∥∥∥2

2
−
∥∥∥Σ1/2(ei − ej)

∥∥∥2

2
.

As a consequence, a natural estimator of φ2
0Σ based on MOMADK is the matrix Σ̂ whose entries

are defined for all i, j ∈ [d] by

Σ̂ij = N

4K
(
MOMAD2

K(ei + ej)−MOMAD2
K(ei − ej)

)
.

Note that Σ̂ is symmetric but it may not be positive semi-definite (PSD). To overcome this issue,
a projection method has been introduced in Lu et al. (2020) which may also be used as well for
Σ̂. Our main statistical bound for Σ̂ is the following.

Proposition 6.5. Assume that Assumption 6.1 holds. Let K ∈ [N ], ϕl and ϕu be such that
Assumption 6.3 and Assumption 6.5 hold with constants φ0, c0 and c1. Then, for all 0 < ε < c0
such that |O| ≤ εK and K ≥ 4C2

0ε
−2(d+ 1), with probability at least 1− exp(−ε2K/8),

max
i,j∈[d]

∣∣∣∣∣φ2
0Σij − Σ̂ij

Σii + Σjj

∣∣∣∣∣ ≤ sup
‖u‖1=‖v‖1=1

∣∣∣∣∣
〈
u, (φ2

0Σ− Σ̂)v
〉∑

i(|ui|+ |vi|)Σii

∣∣∣∣∣ ≤ c1ε(c1ε+ φ0)/2.

In particular, if one can choose K = N so that Assumption 6.3 and Assumption 6.5 hold –
for instance, in the Gaussian case or for other spherical variables as in Section 6.5 – then the
MOMADN estimator becomes the classical MAD one and for ε2 = c2d/N we have that with
probability at least 1− exp(−c4d),

max
i,j∈[d]

∣∣∣∣∣φ2
0Σij − Σ̂ij

Σii + Σjj

∣∣∣∣∣ ≤ sup
‖u‖1=‖v‖1=1

∣∣∣∣∣
〈
u, (φ2

0Σ− Σ̂)v
〉∑

i(|ui|+ |vi|)Σii

∣∣∣∣∣ ≤ c5

√
d

N
.

as long as |O| ≤ c6d.
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6.5 Study of the HN,K,v, v ∈ Sd−1
2 functions

The functions HN,K,v, v ∈ Sd−1
2 play a key role in our analysis. Their behavior in a neighborhood

of their 1/4 and 3/4 quartiles and medians should be controlled so that Assumption 6.3 may hold:
they are driving the isomoprhic properties and almost isometric properties of the MOMADK

and SDOK functions and so of the statistical performance of the Stahel Donoho Median and
its MOM version. Their behavior around 0 also drives the improved rates obtained under
Assumption 6.4. From our perspective, it is of the utmost importance to understand the behavior
of these functions at these particular points.

Let us first settle down the properties of the HN,K,v functions desirable for our analysis. We
set Zi = Σ−1/2(X̃i − µ) for all i ∈ [N ] so that the Zi’s are independent centered isotropic vectors
in Rd and n = N/K. We want to identify conditions on the distributions of the Zi’s such that

• for Assumption 6.4: there exists some absolute constants c0, c1 > 0 such that for all
v ∈ Sd−1

2 and all 0 < r < c0,

Hn,v(r) := P
[

1√
n

n∑
i=1

〈
Zi, v

〉
≥ r

]
≤ 1

2 − c1r. (6.21)

• for Assumption 6.3 and the two following conditions (6.12) and (6.18): there exists an
absolute constant c1 > 0 and 0 < ε < 1/8 such that ϕl(ε) and ϕu(ε) exist and are such that

ϕu(ε)
ϕl(ε)

≤ c0 (6.22)

or there are absolute constants φ0 and c0, c1 > 0 such that for all 0 < ε < c0,

ϕl(ε) = φ0 − c1ε and ϕu(ε) = φ0 + c1ε (6.23)

which are respectively Condition (6.12) (insuring an isomorphic property of MOMADK

and SDOK as well as optimal subgaussian rates for SD median and median of means) and
Condition (6.18) (insuring almost isometric property of MOMADK as well as estimation
properties for Σ̂ in Section 6.4).

Let us first study the Gaussian case which is our benchmark situation. We will then study other
cases where the family of functions HN,K,v, v ∈ Sd−1

2 satisfies these conditions.

The Gaussian case. We recall that Φ : t ∈ R → P[g ≤ t] =
∫ t
−∞ φ(u)du where φ : u ∈ R →

(2π)−1/2 exp(−u2/2) is the Gaussian density function. We also denote HG : t → 1 − Φ(t) and
WG : p ∈ (0, 1)→ H

(−1)
G (p) the inverse function of HG so that WG(p) = Φ−1(1− p). It follows

from the mean value theorem that for all t, ε ∈ R+, |HG(t + ε) − HG(t)| ≥ φ(t + ε)ε so that
around 0 we have for all c0 > 0 and 0 < r < c0, HG(r) ≤ 1/2− φ(c0)r. As a consequence, (6.21)
holds in the Gaussian case, for instance, with c0 = 1 and c1 = φ(1). Let us now look at the
two other conditions in the Gaussian case. Using Taylor formulae and that for all p ∈ (0, 1),
W ′G(p) = [φ(WG(p))]−1 and W ′′G(p) = −WG(p)/[φ(WG(p))]2, we show that one can take ϕu and
ϕl defined for all 0 ≤ ε ≤ 1/12 by

ϕu(ε) = Φ−1(3/4) + c′0ε+ c′1ε
2 and ϕl(ε) = Φ−1(3/4)− c′0ε− c′1ε2

where c′0 := 2
(
φ(Φ−1(3/4))−1 + φ(0)−1) and c′1 := 4Φ−1(11/12)/[φ(Φ−1(11/12))]2. In particular,

using that (1 − t)−1 ≤ 1 + 2t for all 0 ≤ t ≤ 1/2, we get that one can choose ϕu(ε) =
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Φ−1(3/4) + 2c′0ε and ϕl(ε) = Φ−1(3/4) − 2c′0ε and ϕu(ε)/ϕl(ε) ≤ 3 for all 0 ≤ ε ≤ κ0 where
κ0 := min(1/[8c′0], 1/

√
2c′1, c′0/c′1).

So that both conditions (6.21) and (6.23) hold with φ0 = Φ−1(3/4). In particular, we also
recover that the values of the density function φ at the 1/4 and 3/4 quartiles (here we used that
φ(Φ−1(3/4)) = φ(Φ−1(1/4))) and at the median φ(0) (here we used that Φ−1(1/2) = 0) play a
key role for the study SDO estimators as it was previously observed in several works on SDE.

In the following, we identify situations where the HN,K,v, v ∈ Sd−1
2 functions and their pseudo

inverses mimic the HG and WG functions from the Gaussian case. There are at least two reasons
for that to happen: the first one is that we are projecting random vectors leaving in Rd onto one
dimensional subspaces; the second reason is that we are averaging random variables having a
second moment. We will explore these two observations in the two following paragraphs.

One dimensional projections and elliptically contoured distributions. The fact that
the Hv functions deal only with one-dimensional marginals is making these functions likely
to behave as in the Gaussian case since one-dimensional projections of sufficiently spherically
symmetric random vectors in Rd are expected to behave like one-dimensional Gaussian variables
and this phenomenon is even more accentuated when d is large (this is one particular situation
where large dimension d may help in Statistics). Indeed, one may have in mind an observation –
sometimes attributed to H. Poincaré – that the density function of the one-dimensional projection〈√
dU, e1

〉
– where

√
dU is uniformly distributed over

√
dSd−1

2 and (ej)dj=1 is the canonical basis
of Rd – converges to the density of a N (0, 1) when d→∞ (see page 16 in Ledoux and Talagrand
(2011) or Chapter 4 in Bryc (1995)). One may also have in mind that there are directions such
as v = (1/

√
d, . . . , 1/

√
d) which are mixing the coordinates of Σ−1/2(X̃1 − µ) when projected

onto v and therefore may have the tendency to mimic a standard Gaussian variable because of
the CLT. Note that all these observations hold for N = K that is even for n = 1: because of the
one-dimensional projections we may not even have to average the Zi’s to mimic the Gaussian
case. Therefore, Theorem 6.5 can be extended beyond the Gaussian case when this phenomenon
occurs.

Let us now consider an example of elliptically contoured distributions where this happens to
be true. Our aim is to show that Condition (6.12) and Assumption 6.4 (and so Theorem 6.4)
may hold for K = N (i.e. n = 1) even when the X̃i’s do not have a first moment.

We assume that the X̃i’s are i.i.d. and that Σ−1/2(X̃1 − µ) has a spherically symmetric
distribution; in that case, X̃1 − µ is sometimes said to have an elliptically contoured distribution.
Then, there exists a non-negative random variable R such that Σ−1/2(X̃1 − µ) is distributed
according to RU where U is uniformly distributed on Sd−1

2 and is independent of R (see Chapter 4
in Bryc (1995)). In that case, all the

〈
Σ−1/2(X̃1 − µ), v

〉
for v ∈ Sd−1

2 have the same distribution
as
〈
Σ−1/2(X̃1−µ), e1

〉
(where (ej)dj=1 is the canonical basis of Rd) which is distributed according

to R
〈
U, e1

〉
. Now, using that

〈
U, e1

〉
is absolutely continuous w.r.t. the Lebesgue measure with

density function given by, when d ≥ 2,

t ∈ R→ Cd(1− t2)
d−3

2 I(|t| ≤ 1) where Cd =
(∫ 1

−1
(1− t2)

d−3
2 dt

)−1
= 2Γ(d/2)

Γ((d− 1)/2)
√
π

and Γ is the Gamma function, we can deduce that (even for K = N), Hv is independent of
v ∈ Sd−1

2 and is such that for all r ≥ 0, Hv(−r) = 1−Hv(r) and

Hv(r) = H(r) := Cd

∫ 1

0
P[R ≥ r/x]

(
1− x2

) d−3
2 dx.
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In particular, we recover that H(0) = 1/2 since R ≥ 0 a.s.. Let us now consider a simple example
for the distribution of R. In that example, R takes values r1 < r2 < · · · such that αj = P[R = rj ]
for all j ∈ N∗ so that for all q > 0, ERq = ∑

j r
q
jαj which may be infinite even for q = 1 (that is

when there is not even a first moment). For this example, we have for all r ≥ 0,

H(r) = Cd

∞∑
j=1

αj

∫ 1

r/rj

(1− x2)
d−3

2 dxI(r ≤ rj).

In particular, H is differentiable and R
〈
U, e1

〉
is absolutely continuous w.r.t. the Lebesgue

measure with a density function given by

f : r ∈ R→ −H ′(r) = Cd

∞∑
j=1

αj
rj

1−
(
r

rj

)2

d−3

2

I(r ≤ rj).

In particular, for r∞ = limj→∞ rj , H is strictly decreasing on [0, r∞) from H(0) = 1/2 to
H(r∞) = 0 and beyond r∞ it is constant equal to 0. Therefore, for all v ∈ Sd−1

2 , the generalized
inverse Wv of Hv is independent of v and it is the inverse of H: for all p ∈ (0, 1/2] there is a
unique element W (p)(= Wv(p)) in [0, r∞) such that H(W (p)) = p and W (1− p) = −W (p).

Now, let us choose rj = 2jCd and αj = 2−j for all j ∈ N. We also assume d ≥ 4 to make the
presentation simpler (the cases d = 1, 2, 3 can be treated separately). In that case, ER = +∞ and
so the mean and covariance matrix do not exist. Nevertheless, one may still assume that there
exists µ ∈ Rd and Σ ∈ Rd×d definite positive such that Σ−1/2(X̃1 − µ) is spherically symmetric
(without having µ to be a mean vector and Σ to be a covariance matrix). Then, Theorem 6.4
still applies.

Let us first check Condition (6.21). We have H(0) = 1/2 and for all 0 ≤ r ≤ Cd/
√
d− 3,

f(r) ≥
∞∑
j=1

1
22j

[
1− d− 3

2C2
d

(
r

2j
)2
]
≥ 1

3 . (6.24)

Moreover, we see that
√
d ≤ Cd ≤ 6

√
d, hence, (6.24) holds for all 0 ≤ r ≤ 1. Which is according

to the mean value theorem enough to show that Condition (6.21) holds (see (6.26) below for
more details).

Let us now check conditions (6.22) and (6.23). It follows from Proposition 6.6 below
that, it is enough to lower bound the density function f in a neighborhood of p for p ∈
{W (1/4),W (1/2),W (3/4)} and that W (1/4)−W (3/4) is an absolute constant. But, given that
W (1/2) = 0 and (6.24) holds, that f is symmetric about 0 and that W (1/4) = −W (3/4), we only
have to check that f(q) ≥ c0 for all q ∈ [W (1/4)− 2ε,W (1/4) + 2ε] for some 0 < ε < 1/8 and
an absolute constant c0 and that W (1/4) is an absolute constant. We first have to find W (1/4)
which is the unique solution r such that H(r) = 1/4. We see that f is symmetric unimodal with
maximal value at 0 given by f(0) = 4/3 and we showed that f(r) ≥ 1/3 for all 0 ≤ r ≤ 1 in
(6.24). Therefore, H(1/8) ≥ 1/3 and H(1− 1/10) ≤ 3/15 < 1/4, hence, W (1/4) ∈ [1/8, 1− 1/10].
It follows from (6.24) that f(q) ≥ 1/3 for all q ∈ [W (1/4)− 1/10,W (1/4) + 1/10]. We conclude
that both conditions (6.22) and (6.23) hold thanks to Proposition 6.6 below.

For this example, one can take ϕu(ε) = W (1/4)− (4/3)ε and ϕl(ε) = W (1/4) + (4/3)ε for
all 0 < ε < 1/16. In that case, MOMADK is an almost isometry and we can state a result like
Theorem 6.1 where Φ−1(3/4) is replaced by W (1/4) and µ and Σ are not anymore the mean
and covariance matrix since they do not exist but ’location’ and ’scale’ parameters defined such
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that Σ−1/2(X̃i − µ) are spherically symmetric. As a consequence, the phenomenon underlying
the Gaussian case from Section 6.2 has nothing to do with concentration but it is more about
elliptical symmetry.

Gaussian approximation. In cases where there is some lack of spherical symmetry of
Σ−1/2(X̃1 − µ) one may study the Hv functions for a smaller number K of blocks so that
n = N/K may be large enough to see some averaging effect. In that case and because Gaussian
variables satisfy all the properties we need, it is tempting to use a Gaussian approximation result
such as a Berry-Esseen bound (see Petrov (1995); Chen and Shao (2012, 2001)) to approximate
the Hv functions by 1−Φ for n = N/K large enough. This strategy has been used several times
in Minsker and co-authors works on Median-of-means and Catoni’s type of estimators (see for
instance Minsker and Strawn (2017); Minsker (2018b)).

For instance, when for all v ∈ Sd−1
2 ,

〈
Σ−1/2(X̃i − µ), v

〉
, i ∈ [n] are (independent, centered

and variance one) real-valued random variables in L2+δ such that
∥∥∥〈Σ−1/2(X̃i − µ), v

〉∥∥∥
2+δ
≤ κ

(uniformly in v ∈ Sd−1
2 ) for some δ > 0 then, it follows from Theorem 5.7 in Petrov (1995) that

there is an absolute constant c0 > 0 such that for all v ∈ Sd−1
2 and all r ∈ R,

|HN,K,v(r)− P[g ≥ r]| ≤ c1κ
2+δ

nδ/2
:= cn (6.25)

It follows that for all p ∈ (0, 1) and ε ∈ R satisfying p+ ε ∈ (0, 1) that

Φ−1 (1− p− ε− cn) ≤W (p+ ε) ≤ Φ−1 (1− p− ε+ cn) .

In particular, for all 0 < ε < 1/16, if n is large enough so that cn ≤ ε then one can take
ϕu(ε) = Φ−1(3/4)− c0ε and ϕl(ε) = Φ−1(3/4)− c0ε. So that the ratio ϕu(ε)/ϕl(ε) is constant; in
that case, the MOMADK and SDOk are isomorphism (see Proposition 6.2) and we recover a
subgaussian rate in Theorem 6.4.

However, a Gaussian approximation result such as the one in (6.25) is not enough for
Assumption 6.4. Indeed, it follows from (6.25) that for all 0 ≤ r ≤ c0, Hv(r) ≤ HG(r) + cn ≤
1/2− c1r + cn for some absolute constants c0 > 0 and c1 > 0. It appears that our analysis used
to prove Theorem 6.4 does not stand this extra error term cn compare with Assumption 6.4.
Gaussian approximation does not help in this case: indeed Assumption 6.4 is more about the
existence of a uniform lower bound around 0 of the density functions of the one-dimensional
projections

〈
n−1/2∑

i Zi, v
〉

as we are considering now.

Beyond the Gaussian behavior. In the latter two paragraphs, we identified situations where
the n−1/2∑n

i=1
〈
Zi, v

〉
for v ∈ Sd−1

2 behave like Gaussian variables. We saw that this may be the
case because we are considering one-dimensional projections of d-dimensional vectors and/or we
are taking empirical means over n variables. But properties we are looking for the Hn,v, v ∈ Sd−1

2
functions (see (6.21), (6.22) and (6.23)) are all dealing only with their behavior around 3 (or 4
when the median is not 0) points. So that only the behavior of these functions at these points
play a role and there is no need to mimic the Gaussian case for all values of r in R. We now state
a general result going in this direction. In particular, we recover the conditions from Maronna
and Yohai (1995) and Zuo et al. (2004a) recalled in the Introduction section.

Let us assume that the n−1/2∑n
i=1
〈
Zi, v

〉
for v ∈ Sd−1

2 are absolutely continuous w.r.t. the
Lebesgue measure with a density function denoted by fv. By the mean value theorem, we have
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for all r ≥ 0, all p ∈ (0, 1) and ε ≥ 0 such that p+ ε ∈ (0, 1),

Hv(r) ≤ Hv(0)− min
0≤t≤r

fv(t)r and ε

maxq∈[p,p+ε] fv(Wv(q))
≤Wv(p)−Wv(p+ε) ≤

ε

minq∈[p,p+ε] fv(Wv(q))
.

(6.26)
In particular, the values of the density functions fv, v ∈ Sd−1

2 at 0,W (1/4),W (1/2) and W (3/4)
drives the quality of inequalities from (6.26) and, as noted in previous works on the Stahel-Donoho
outlyingness function, are enough to insure all the conditions we need on Hv and Wv recalled in
(6.21), (6.22) and (6.23).

Proposition 6.6. Let K ∈ [N ] be such that N/K ∈ N. We assume that the original non-
corrupted data X̃i, i ∈ [N ] are independent and that there exists µ ∈ Rd and Σ ∈ Rd×d definite
positive so that for all v ∈ Sd−1

2 ,
√
K/N

∑N/K
i=1

〈
Σ−1/2(X̃i − µ), v

〉
are absolutely continuous real

valued random variables with a density denoted by fv.
If there exists 0 < ε < 1/8 and c0 > 0 such that for all v ∈ Sd−1

2 , all p ∈ {Wv(1/4),Wv(1/2),Wv(3/4)}
and all q ∈ [p−2ε, p+2ε], fv(q) ≥ c0 then for Imaxv = max (Wv(1/4)−Wv(1/2),Wv(1/2)−Wv(3/4))
and Iminv = min (Wv(1/4)−Wv(1/2),Wv(1/2)−Wv(3/4)) we can take

ϕu(ε) = max
v∈Sd−1

2

Imaxv + 4ε/c0 and ϕl(ε) = min
v∈Sd−1

2

Iminv − 4ε/c0.

We also have
ϕu(ε)
ϕl(ε)

≤
maxv∈Sd−1

2
Imaxv

minv∈Sd−1
2
Iminv

1 + 16ε
c0 minv∈Sd−1

2
Iminv


when 4ε ≤ c0 minv Iminv . Moreover, if (c0/4) maxv Imaxv < 1/8 and minv Iminv ≥ c1, for some
absolute constant c1 > 0, then condition (6.22) holds (and so we recover the optimal subgaussian
rates in Theorem 6.2 and Theorem 6.3) and if for all v ∈ Sd−1

2 , Imaxv = Iminv := φ0 then
condition (6.23) holds and so does Proposition 6.5.

If for all v ∈ Sd−1
2 , Hv(0) ≤ 1/2 and there are absolute constants c0 > 0 and c1 > 0 so that

for all 0 < r < c0, fv(v) ≥ c1 then Assumption 6.4 holds (that is (6.23) holds) and so does
Theorem 6.4.

Note that in Proposition 6.6, µ and Σ do not have to be the mean and covariance matrix of
the X̃i’s. In that case, µ and Σ are sometimes called location and scale and so Theorem 6.4 still
applies for the robust to adversarial contamination and heavy-tail estimation of location, even in
situations where there is not even a first moment.

Proposition 6.6 gives an alternative to Gaussian approximation which does not, in general,
allow to check Assumption 6.4 because of the residual terms in Esseen or Berry-Esseen type
inequalities. The assumptions in Proposition 6.6 are all granting that the density functions fv
are locally lower bounded around the ’critical’ 1/4 and 3/4 quartiles and medians. They are
natural assumptions that already appeared in several studies of estimators based on the SDO.
In Proposition 6.6 we show that by using the median-of-means principle these assumptions are
dealing with the density functions on the bucketed means and not the data themselves. However,
Proposition 6.6 may also be applied in the K = N case as for elliptically contoured distributions.

6.6 Conclusion

We showed that it is possible to estimate a mean vector in Rd w.r.t. the metric
∥∥∥Σ−1/2·

∥∥∥
2

even
though Σ is unknown, the data set is corrupted by an adversary and the data are heavy-tailed.
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The rate obtained are the (deviation) minmax one in the ideal i.i.d. Gaussian case. The estimator
used to achieve this rate is a deepest point with respect to a median-of-means version of the
Stahel-Donoho outlyingness functional. When the data are spherical enough there is no need to
bucket the data and then the estimator is using the classical Stahel-Donoho outlyingness. Our
analysis shows that the two cases can be handled using the same methodology and that the
family of cdfs (HN,K,v : v ∈ Sd−1

2 ) plays a key role in this analysis, in particular, their behavior
around 0, the median and the 1/4 and 3/4 quartiles.

In this work, we have not dealt with several research opportunities opened by the SDO. We
now list some of them that may be considered in future works. a) It may look possible to use
the isomorphic properties of the MOMADK and SDOK to study the Stahel-Donoho estimator
(SDE) or a median-of-means version of the SDE defined as

µ̃SDEMOM,K =
∑K
k=1 ŵkX̄k∑K
k=1 ŵk

(6.27)

where (ŵk)Kk=1 are non-negative weights such that ŵk depends on the outlyingness of the k-th
bucketed mean X̄k. For instance,

ŵk =
{

1 if SDOK(X̄k) ≤ α̂K
0 otherwise. where α̂k = Med(SDOK(X̄k)). (6.28)

b) Similarly, the isomorphic or almost-isometry properties of MOMADK and SDOK may also
be used to study the properties of a MOM version of the SDE of the covariance matrix:

Σ̂ = 2
K

K∑
k=1

ŵk(X̄k − µ̃SDEMOM,K)(X̄k − µ̃SDEMOM,K)>.

c) From a computational point of view, it is still an open question to construct an approximate
solution to the SDO. The original or MOM version of the Stahel-Donoho median could be approxi-
mated via a robust gradient descent algorithm such as the one introduced in Cherapanamjeri et al.
(2019); Depersin and Lecué (2019); Lei et al. (2020) with some extra normalization step required
by the MAD denominator. We expect this algorithm to be more efficient than the classical
weighted SDE because we expect to do only log d iterations to achieve a subgaussian estimator
using a robust gradient descent algorithm whereas the SDE would require to approximate the K
depths SDOK(X̄k), k ∈ [K] and should therefore require more computational time (note that, in
practice the SDE has been reported to be more efficient than the deepest data that is the data
X̄k with the smallest SDOK(X̄k) but the SDE was not compared with an approximate solution
of µ̂SDOMOM,K).

6.7 Proofs

In this section, we provide some proofs of all the results from the preceding sections. The
only complexity measure we are using in this work is the Vapnik and Chervonenkis (VC)
dimension Vapnik and Chervonenkis (2015); Vapnik (2000) of a class F of Boolean functions,
i.e. of functions from Rd to {0, 1} in our case, following Chen et al. (2018); Depersin (2020a).
We recall that V C(F) is the maximal integer n such that there exists x1, . . . , xn ∈ Rd for
which the set {(f(x1), · · · , f(xn)) : f ∈ F)} is of maximal cardinality that is 2n. The only
VC-dimension we will use is the one of the set of all indicators of half affine spaces in Rd:
V C({x ∈ Rd → I(

〈
·, v
〉
≥ r) : v ∈ Rd, r ∈ R}) = d+ 1 (see Example 2.6.1 in van der Vaart and

Wellner (1996)). The main technical tool (see Chapter 3 in Koltchinskii (2011) or Chapters
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6.1 and 13.3 in Boucheron et al. (2013)) we will be using is the following one: let Y1, . . . , Yn be
independent random vectors in Rd, there exists an absolute constant C0 such that for all u > 0,
with probability at least 1− exp(−u),

sup
f∈F

(
1
n

n∑
i=1

f(Yi)− Ef(Yi)
)
≤ C0

√
V C(F)
n

+
√

2u
n
. (6.29)

One can for instance take C0 =
√

1440π/(1− e−1) as in the proof of Lemma 7.3 in Chen et al.
(2018).

We recall that for all v ∈ Sd−1
2 , K ∈ [N ] and r > 0,

HN,K,v(r) = P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 .
The rate of convergence we will obtain is the smallest r∗ satisfying

C0

√
d+ 1
K

+
√

2u
K

+ sup
‖v‖2=1

HN,K,v(r∗) + |O|
K

<
1
2 (6.30)

where C0 is the constant from (6.29) and for some choice of K and u specified in each result
depending on the set of assumptions.

6.7.1 Proof of Proposition 6.2 and 6.1 (first part): isomorphic property of
MOMAD

We first prove Proposition 6.2 – the proof of Proposition 6.1 is a straighforward application of
Proposition 6.2.

Proof of Proposition 6.2. We first observe that by renormalization, it is enough to show
that for all v ∈ Sd−1

2 ,

ϕl(ε) ≤ Med(|
〈
Σ−1/2(X̄k − µ), v

〉
−Med(

〈
Σ−1/2(X̄k − µ), v

〉
)|) ≤ ϕu(ε). (6.31)

Moreover, for all i ∈ [N ],Σ−1/2(X̃i − µ) has mean zero and covariance Id. Hence, without loss of
generality we assume that µ = 0 and Σ = Id.

The strategy we are using to prove (6.31) is the following one. Let K real numbers a1, . . . , aK
be given and denote by a(1) ≤ · · · ≤ a(K) the non-decreasing rearrangement of the (ak)k (this is
the rearrangement of the ak’s and not of their absolute values). To prove a result like ϕl(ε) ≤
Med(|ak −Med(ak)|) ≤ ϕu(ε), it is enough to show that ϕl(ε) ≤ a(3(K+1)/4) − a((K+1)/2) ≤ ϕu(ε)
and ϕl(ε) ≤ a((K+1)/2) − a((K+1)/4) ≤ ϕu(ε). As a consequence, to prove a result like (6.31),
we should study the rearrangement (the two quartiles and the median) of the

〈
X̄k, v

〉
, k ∈ [K]

uniformly over all v ∈ Sd−1
2 . But, |O| elements among the Xi’s come from the adversary and

we do not have any control on their behavior. We therefore have to consider the worst possible
case which is when |O| bucketed means X̄k are corrupted by one outlier from {Xi : i ∈ O}.
However, one may check that if we change |O| points in a set {ak : k ∈ [K]} to get a new
set {Ak : k ∈ [K]} then ϕl(ε) ≤ a(3(K+1)/4) − a((K+1)/2) ≤ ϕu(ε) will be true if we show
that ϕl(ε) ≤ A(3(K+1)/4−|O|) − A((K+1)/2+|O|) and A(3(K+1)/4+|O|) − A((K+1)/2−|O|) ≤ ϕu(ε) –
and a similar observation holds for the other (1/4)-quartile. We will therefore first study the
rearrangement of the original (i.e. non corrupted) bucketed means (later denoted by X̃k, k ∈ [K])
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projected on all one dimensional directions uniformly over these directions to deduce the result
from (6.31) on the corrupted bucketed means X̄k.

We denote by X̃k, k ∈ [K] the bucketed means of the original (non corrupted) dataset, i.e.
X̃k = (1/|Bk|)

∑
i∈Bk X̃i for k ∈ [K]. To prove (6.31) we first study the rearrangements of vectors

(
〈
X̃k, v

〉
)k∈[K] uniformly over all v ∈ Sd−1

2 . We will then deal with the adversarial corruption to
get (6.31).

We introduce the following supremum of empirical process:

Z = sup
`∈[K−1]

sup
‖v‖2=1

∣∣∣∣∣ 1
K

K∑
k=1

I

(〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

)
− P

[〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

]∣∣∣∣∣
where Wv has been defined in Definition 6.1. It follows from (6.29) that for all u > 0, with
probability at least 1 − exp(−u), Z ≤ C0

√
(d+ 1)/K +

√
2u/K (note that even though the

function Wv depends on v, the boolean function x→ I(
〈
x, v

〉
≥Wv(`/N)) is still the indicator

of an affine half-space of Rd for all v ∈ Rd and all ` ∈ [K − 1] and thus the VC dimension of
the set of Boolean functions {x → I(

〈
x, v

〉
≥ Wv(`/K)) : v ∈ Rd, ` ∈ [K − 1]} is less or equal

to d+ 1). As a consequence, for some choice of 0 < ε < 1/8 such that Assumption 6.3 holds, if
K ≥ 4C2

0 (d+ 1)ε−2 then with probability at least 1− exp(−ε2K/8), Z ≤ ε. Let us denote by Ωε

the event onto which Z ≤ ε; we proved that P[Ωε] ≥ 1− exp(−ε2K/8).

Let us place ourselves on the event Ωε up to the end of the proof. Since for all v ∈ Sd−1
2 ,

P
[〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

]
= Hv(Wv(`/K)) = `/K,

(by left continuity of Hv we have Hv(Wv(p)) = p for all p ∈ (0, 1)), we have for all ` ∈ [K] and
v ∈ Sd−1

2 , that ∣∣∣∣∣
{
k ∈ [K] :

〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

}∣∣∣∣∣ ∈ [`− εK, `+ εK] . (6.32)

This last result on the uniform in v ∈ Sd−1
2 rearrangement of (

〈
X̃k, v

〉
)k will be used to get the

desired result on the rearrangement for (
〈
Xk, v

〉
)k (uniformly in v). To go from the X̃k’s to the

Xk’s we now have to deal with the adversarial corruption.

Since, there are |O| original data that may have been modified by the adversary, in the worse
case |O| bucketed means X̃k may be considered as corrupted and so, from the above cardinality
estimation result (6.32), we may only certify (on Ωε) that∣∣∣∣∣

{
k ∈ [K] :

〈
X̄k, v

〉
≥ Wv(`/K)√

N/K

}∣∣∣∣∣ ∈ [`− εK − |O|, `+ εK + |O|] ⊂ [`− 2εK, `+ 2εK]

on the K bucketed means X̄k constructed from the adversarialy corrupted dataset {Xi : i ∈ [N ]}.
We used here the assumption that |O| ≤ εK. If follows from the latter result that if we denote
by q

1/4
K,v the 1/4 quartile of vector (

〈
X̄k, v

〉
: k ∈ [K]), by q

1/2
K,v its median and by q

3/4
K,v its 3/4

quartile then,√
K

N
Wv

(3
4 + 2ε

)
≤ q1/4

K,v ≤

√
K

N
Wv

(3
4 − 2ε

)
;
√
K

N
Wv

(1
2 + 2ε

)
≤ q1/2

K,v ≤

√
K

N
Wv

(1
2 − 2ε

)
and √

K

N
Wv

(1
4 + 2ε

)
≤ q3/4

K,v ≤

√
K

N
Wv

(1
4 − 2ε

)
.
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It follows from these inequalities that on the event Ωε, we have for all v ∈ Sd1
2 ,

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|) ≤

√
K

N
max

(
Wv

(1
4 − 2ε

)
−Wv

(1
2 + 2ε

)
,Wv

(1
2 − 2ε

)
−Wv

(3
4 + 2ε

))
and

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|) ≥

√
K

N
min

(
Wv

(1
4 + 2ε

)
−Wv

(1
2 − 2ε

)
,Wv

(1
2 + 2ε

)
−Wv

(3
4 − 2ε

))
.

The result follows from the definition of ϕl(ε) and ϕu(ε) in Assumption 6.3.

6.7.2 Proof of Proposition 6.3 and 6.1 (second part): isomorphic property of
SDOK.

The proof of Proposition 6.3 and 6.1 (second part) relies on the next result.

Proposition 6.7. We assume that the adversarial contamination with L2 inliers model from
Assumption 6.1 holds with a number of adversarial outliers denoted by |O|. Let K ∈ [N ], u > 0
and r∗ be such that (6.30) holds. Then, with probability at least 1− exp(−u),

sup
v∈Sd−1

2

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| ≤

√
K

N
r∗.

Proof of Proposition 6.7. Denote by K = {k : Bk ∩ O = ∅} the set of indices of non-
corrupted blocks of data. It follows from (6.29) and the definition of r∗ that with probability at
least 1− exp(−u), for all v ∈ Sd−1

2 ,

1
K

K∑
k=1

I

(〈
Σ−1/2(X̄k − µ), v)

〉
≥ r∗√

N/K

)

= 1
K

∑
k∈K

I

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

)
+ 1
K

∑
k∈Kc

I

(〈
Σ−1/2(X̄k − µ), v)

〉
≥ r∗√

N/K

)

≤ 1
K

K∑
k=1

I

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

)
+ |O|

K

≤ sup
‖v‖2=1

[
1
K

K∑
k=1

I

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

)
− P

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

)]

+ P

(〈
Σ−1/2(X̃1 − µ), v)

〉
≥ r∗√

N/K

)
+ |O|

K

≤ C0

√
d+ 1
K

+
√

2u
K

+HN,K,v(r∗) + |O|
K

<
1
2 .

As a consequence, with probability at least 1− exp(−u), for all v ∈ Sd−1
2 ,

K∑
k=1

I

(〈
Σ−1/2(X̄k − µ), v)

〉
≥ r∗√

N/K

)
<
K

2

and so

sup
v∈Sd−1

2

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| ≤

√
K

N
r∗. (6.33)
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Remark 6.2. It is also possible to consider a ”directional version” of Proposition 6.7 if one
defines a ”directional version” of r∗, that is for all directions v ∈ Sd−1

2 , define r∗v > 0 satisfying

C0

√
d+ 1
K

+
√

2u
K

+HN,K,v(r∗v) + |O|
K

<
1
2 .

Then, under the same conditions as in Proposition 6.7, we have with probability at least 1 −
exp(−u),

sup
v∈Sd−1

2

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)|

r∗v
≤

√
K

N
.

Hence, Proposition 6.7 holds as well for r∗ = sup‖v‖2=1 r
∗
v. Note that for most of the v ∈ Sd−1

2
the value of r∗v is expected to be much smaller than r∗. For instance, for vectors v well-spread,
we expect them to have a strong ”mixing” power (see for instance ”super-Gaussian directions” in
Klartag (2017) or Klartag and Sodin (2011); Klartag (2009)).

Proof of Proposition 6.3 and 6.1. It follows from Proposition 6.7 and Proposition 6.2 that,
with probability at least 1− exp(−u)− exp(−ε2K/8), for all v ∈ Sd−1

2 ,

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| ≤

√
K

N
r∗,

where r∗ is such that (6.30) holds, and

ϕl(ε)
√
K

N

∥∥∥Σ1/2v
∥∥∥

2
≤MOMADK(v) ≤ ϕu(ε)

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
.

We denote by Ω0 the event onto which the last two properties hold. On the even Ω0, for all
ν ∈ Rd, we have

SDOK(ν) = sup
v∈Rd

|Med(
〈
X̄k − ν, v)

〉
)|

MOMADK(v) ≤ sup
v∈Rd

|Med(
〈
X̄k − ν, v)

〉
)|

ϕl(ε)
√
K/N

∥∥Σ1/2v
∥∥

2
= sup

v∈Sd−1
2

|Med(
〈
Σ−1/2(X̄k − ν), v)

〉
)|

ϕl(ε)
√
K/N

≤ sup
v∈Rd

|Med(
〈
Σ−1/2(X̄k − µ), v

〉
)|+ |

〈
Σ−1/2(ν − µ), v

〉
|

ϕl(ε)
√
K/N

≤ sup
v∈Rd

√
K/Nr∗ + |

〈
Σ−1/2(ν − µ), v

〉
|

ϕl(ε)
√
K/N

≤


3‖Σ−1/2(ν−µ)‖2

2ϕl(ε)
√
K/N

if
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2
≥ 2

√
K/Nr∗

3r∗/ϕl(ε) otherwise

and when
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2
≥ 2

√
K/Nr∗, we have

SDOK(ν) ≥ sup
v∈Sd−1

2

|
〈
Σ−1/2(ν − µ), v

〉
| − |Med(

〈
Σ−1/2(X̄k − µ), v

〉
)|

ϕu(ε)
√
K/N

≥

∥∥∥Σ−1/2(ν − µ)
∥∥∥

2
2ϕu(ε)

√
K/N

.
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6.7.3 Proof of the statistical bounds

Proof of Proposition 6.1. Proposition 6.1 is a corollary of Proposition 6.2 for K = N . For this
choice of K, there are N blocks, each containing only one data and so MOMADN (v) = MAD(v)
for all v ∈ Rd. The only thing that remains to be checked is the validity of Assumption 6.3 in
the Gaussian case and the dependency of the ϕl(ε) and ϕu(ε) in terms of ε.

When the original data X̃i, i ∈ [N ] are N i.i.d. Gaussian vectors G1, . . . , GN with mean µ

and covariance matrix Σ then for all K ∈ [N ], (1/
√
N/K)∑N/K

i=1 Σ−1/2(X̃i − µ) is a standard
Gaussian vector in Rd. Therefore the H := HN,K,v function from Assumption 6.3 is equal to
the function x ∈ R→ 1− Φ(x) where Φ : x ∈ R→ P[g ≤ x] is the cdf of a standard Gaussian
variable g ∼ N (0, 1) in R. This holds for all N,K and v ∈ Sd−1

2 , that is HN,K,v is independent
of N,K and v ∈ Sd−1

2 . Since W := WN,K,v is the generalized inverse of H, in the Gaussian case,
we obtain that W (p) = Φ−1(1− p) for all p ∈ (0, 1). It follows from Lemma 5.2 in Petrov (1995)
that there exists some absolute constant C1 > 0 such that

min
(
W

(1
4 + 2ε

)
−W

(1
2 − 2ε

)
,W

(1
2 + 2ε

)
−W

(3
4 − 2ε

))
≥ Φ−1(3/4)− C1ε := ϕl(ε)

and

max
(
W

(1
4 − 2ε

)
−W

(1
2 + 2ε

)
,W

(1
2 − 2ε

)
−W

(3
4 + 2ε

))
≤ Φ−1(1/4) ≤ Φ−1(3/4)+C1ε := ϕu(ε).

As a consequence, Assumption 6.3 holds in the Gaussian case for all 0 < ε < Φ−1(3/4)/C1 with
ϕl(ε) = Φ−1(3/4)− C1ε and ϕu(ε) = Φ−1(3/4) + C1ε.

Proofs of theorems 6.1, 6.2 and 6.4 Theorems 6.1, 6.2 and 6.4 are corollaries of a general
result that we are stating now.

Theorem 6.5. There are absolute constants c0, c1 and c2 such that the following holds. We
assume that Assumption 6.3 holds for some 0 < ε < 1/8 and constants ϕl(ε) and ϕu(ε). We
assume that the adversarial contamination with L2 inliers model from Assumption 6.1 holds
with a number of adversarial outliers denoted by |O|. Let K ≥ max(ε−1|O|, 4C0ε

−2(d + 1)),
0 < u < ε2K/8 and r∗ be such that (6.30) holds (where C0 is the absolute constant defined in
(6.29)). Then, with probability at least 1− 2 exp(−u),

∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)
∥∥∥

2
≤ 2ϕu(ε)

ϕl(ε)

√
K

N
r∗.

Proof of Theorem 6.1. We have for all 0 ≤ r ≤ 1,P[g ≥ r] ≤ 1/2− φ(1)r where g ∼ N (0, 1).
Moreover, for all K ∈ [N ], v ∈ Sd−1

2 and r > 0, we have HN,K,v(r) = P[g ≥ r]. As a consequence,
(6.30) holds if one choose r∗, u and K such that

φ(1)r∗ = C0

√
d+ 1
K

+
√

2u
K

+ |O|
K

as long as for such choice r∗ ≤ 1 (which indeed holds under the assumptions of Theorem 6.1).
Finally, we apply Theorem 6.5 for ε = κ0, K = N and the bound on the ratio ϕu(ε)/ϕl(ε) in the
Gaussian case from Section 6.5. The result follows since µ̂SDOMOM,N = µ̂SDO.



132 CHAPTER 6. ON THE ROBUSTNESS OF THE MOM STAHEL-DONOHO

Proof of Theorem 6.2. It follows from Markov’s inequality (6.15) that (6.30) holds when we
take u, r∗ and K such that

C0

√
d+ 1
K

+
√

2u
K

+ 1
1 + (r∗)2 + |O|

K
<

1
2 .

The latter holds, for instance, when r∗ = 3, K ≥ 4|O|, K > 100C2
0(d + 1) and u ≤ K/800.

Note however, that because r∗ is constant, the convergence rate is proportional to
√
K/N , in

particular it does not depend on u. Hence there is no interest to consider values of u smaller
than K (up to constant). We therefore apply Theorem 6.5 for this choice of K, u = ε2K/15 and
r∗ = 3.

Proof of Theorem 6.4. Thanks to Assumption 6.4, there exist absolute constants c0, c1 > 0
and c2 > 0 such that for all v ∈ Sd−1

2 and (2C0/c1)
√

(d+ 1)/K ≤ r ≤ c0, HN,K,v ≤ 1/2 − c2r.
As a consequence, (6.30) holds if one can choose r∗, u and K such that

r∗ = 2
c2

C0

√
d+ 1
K

+
√

2u
K

+ |O|
K


as long as this latter quantity is less or equal to c0. Finally, we apply Theorem 6.5 for this choice
of K, u and r∗.

Proof of Theorem 6.5. We first note that a proof of Theorem 6.5 may follow from the
isomorphic property of SDOK from Proposition 6.3. However, it is possible to improve constants
by using the following strategy.

Let us place ourselves on the intersection of the two events where the results of both
Proposition 6.2 and Proposition 6.7 hold. We set f : v ∈ Rd → Med(

〈
X̄k, v

〉
). Since f is

symmetric we have∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)
∥∥∥

2
= sup
‖v‖2=1

〈
Σ−1/2(µ̂SDOMOM,K − µ), v

〉
= sup

v∈Rd

〈
µ̂SDOMOM,K − µ,

v∥∥Σ1/2v
∥∥

2

〉
= sup

v∈Rd

〈
µ̂SDOMOM,K , v

〉
− f(v) + f(v)−

〈
µ, v

〉
MOMADK(v)

MOMADK(v)∥∥Σ1/2v
∥∥

2

≤
(

sup
v∈Rd

〈
µ̂SDOMOM,K , v

〉
− f(v)

MOMADK(v) + sup
v∈Rd

f(v)−
〈
µ, v

〉
MOMADK(v)

)
sup
v∈Rd

MOMADK(v)∥∥Σ1/2v
∥∥

2

≤
(
SDOK(µ̂SDOMOM,K) + SDOK(µ)

)
sup
v∈Rd

MOMADK(v)∥∥Σ1/2v
∥∥

2
≤ 2SDOK(µ) sup

v∈Rd

MOMADK(v)∥∥Σ1/2v
∥∥

2
.

where we used that SDOK(µ̂SDOMOM,K) ≤ SDOK(µ) by definition of µ̂SDOMOM,K .

We know how to control supv∈RdMOMADK(v)/
∥∥∥Σ1/2v

∥∥∥
2

by
√
K/Nϕu(ε) using Proposi-

tion 6.2. It remains to control the term SDOK(µ). We have

SDOK(µ) = sup
v∈Rd

|
〈
µ, v

〉
−Med(

〈
X̄k, v

〉
)|

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|)

= sup
v∈Rd

|Med(
〈
µ− X̄k, v

〉
)|∥∥Σ1/2v

∥∥
2

∥∥∥Σ1/2v
∥∥∥

2
MOMADK(v)

≤ sup
‖v‖2=1

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| sup
v∈Rd

∥∥∥Σ1/2v
∥∥∥

2
MOMADK(v) .
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The term supv∈Rd
∥∥∥Σ1/2v

∥∥∥
2
/MOMADK(v) is smaller than

√
N/K/ϕl(ε) thanks to Proposi-

tion 6.2. Finally, to finish the proof, we upper bound the term sup‖v‖2=1 |Med(
〈
Σ−1/2(X̄k −

µ), v)
〉
)| by

√
K/Nr∗ thanks to Proposition 6.7.

Proof of Theorem 6.3 For all k ∈ [N ], we set µ̂k = µ̂SDOMOM,k we denote by Ωk the event onto
which ∥∥∥Σ−1/2(µ̂k − µ)

∥∥∥
2
≤ 4ϕu(ε)

ϕl(ε)

√
k

N

and, for all ν ∈ Rd, if
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2
≥ 6

√
k/N then

∥∥∥Σ−1/2(ν − µ)
∥∥∥

2
2ϕu(ε)

√
k/N

≤ SDOk(ν) ≤
3
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2

2ϕl(ε)
√
k/N

and if
∥∥∥Σ−1/2(ν − µ)

∥∥∥
2
≤ 6

√
k/N then

SDOk(ν) ≤ 9
ϕl(ε)

.

It follows from Proposition 6.3 for r∗ = 3 and u = K/(16C2
0) and Theorem 6.2 that P[Ωk] ≥

1− 3 exp(−c1ε
2k) when k ≥ max(|O|/ε, c0d/ε

2).

Let K ≥ max(|O|/ε, c0d/ε
2). On the event ∩Nk=KΩk, we have for all K ≤ k ≤ N ,

SDOk(µ̂K − µ̂k) ≤ max

 9
ϕl(ε)

,
3
∥∥∥Σ−1/2(µ̂K − µ̂k)

∥∥∥
2

2ϕl(ε)
√
k/N

 ≤ max

 9
ϕl(ε)

,
6ϕu(ε)
ϕ2
l (ε)

1 +
√
K

k


and so, by definition of K̂, we have K̂ ≤ K. We also have by definition of K̂ and because K̂ ≤ K
that

SDOK(µ̂K̂ − µ̂K) ≤ max

 9
ϕl(ε)

,
6ϕu(ε)
ϕ2
l (ε)

1 +

√
K̂

K

 ≤ 12ϕu(ε)
ϕ2
l (ε)

.

We conclude that either
∥∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥∥
2
≤ 6

√
K/N and so

∥∥∥Σ−1/2(µ̂K̂ − µ)
∥∥∥

2
≤
∥∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥∥
2

+
∥∥∥Σ−1/2(µ− µ̂K)

∥∥∥
2
≤
(

6 + 4ϕu(ε)
ϕl(ε)

)√
K

N

or
∥∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥∥
2
≥ 6

√
K/N and so

∥∥∥Σ−1/2(µ̂K̂ − µ)
∥∥∥

2
≤
∥∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥∥
2

+
∥∥∥Σ−1/2(µ̂K − µ)

∥∥∥
2

≤ SDOK(µ̂K̂ − µ̂K)2ϕu(ε)
√
K

N
+ 4ϕu(ε)

ϕl(ε)

√
K

N
≤ 28ϕ2

u(ε)
ϕ2
l (ε)

√
K

N
.
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Proof of Proposition 6.4. Let us place ourselves on the event where (6.19) holds. We
therefore have for all v ∈ Rd,∣∣∣∣∣∣MOMADK(v)− φ0

√
K

N

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣∣∣∣ ≤ c1ε

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
,

and so, by definition of Σ̌, we have for all v ∈ Rd,∣∣∣∣∣∣MOMADK(v)−
√
K

N

∥∥∥Σ̌1/2v
∥∥∥

2

∣∣∣∣∣∣ ≤ c1ε

φ0

√
K

N

∥∥∥Σ̌1/2v
∥∥∥

2
.

In particular, it follows from the two isomorphic results above that for all v ∈ Rd,

(
1− c1ε

φ0

)√
K

N

∥∥∥Σ̌1/2v
∥∥∥

2
≤MOMADK(v) ≤ (φ0 + c1ε)

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
(6.34)

It follows from the two isomorphic results above and (6.34) that for all v ∈ Rd,

∣∣∣∥∥∥Σ̌1/2v
∥∥∥

2
− φ0

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣ =

∣∣∣∣∣∣
∥∥∥Σ̌1/2v

∥∥∥
2
−

√
N

K
MOMADK(v) +

√
N

K
MOMADK(v)− φ0

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣∣∣∣
≤ c1ε

φ0

∥∥∥Σ̌1/2v
∥∥∥

2
+ c1ε

∥∥∥Σ1/2v
∥∥∥

2
≤ κ1

∥∥∥Σ1/2v
∥∥∥

2

as long as c1ε < φ0 and for κ1 := (2c1εφ0)/(φ0 − c1ε).
We deduce that for all v ∈ Rd,

∥∥∥Σ̌1/2Σ−1/2v
∥∥∥

2
lies in [φ0 − κ1, φ0 + κ1] ‖v‖2, so that all the

eigenvalues of Σ−1/2Σ̌Σ−1/2 are in [(φ0 − κ1)2, (φ0 + κ1)2] as long as κ1 < φ0. Finally, as long as
4c1ε < φ0, we get ∥∥∥Σ−1/2Σ̌Σ−1/2 − φ2

0 Id
∥∥∥
op
< 3φ0κ1 < 12φ0c1ε.

Proof of Proposition 6.5. We have for all i, j ∈ [d],
∣∣∣φ2

0Σij − Σ̂ij

∣∣∣ ≤ c1ε(c1ε+ φ0) (Σii + Σij)
because, it follows from (6.19) that for all v ∈ Rd,

∣∣∣∣MOMAD2
K(v)− φ2

0
K

N

∥∥∥Σ1/2v
∥∥∥2

2

∣∣∣∣ =

∣∣∣∣∣∣MOMADK(v)− φ0

√
K

N

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣∣∣∣
MOMADK(v) + φ0

√
K

N

∥∥∥Σ1/2v
∥∥∥

2


≤ c1ε

K

N

∥∥∥Σ1/2v
∥∥∥2

2
(c1ε+ φ0).

Next, we have for all u, v ∈ Rd such that ‖u‖1 = ‖v‖1 = 1

|
〈
u, (φ2

0Σ− Σ̂)v
〉
|

= N

4K

∣∣∣∣∣∣
∑
i,j

uivj

(
φ2

0
K

N

∥∥∥Σ1/2(ei + ej)
∥∥∥2

2
−MOMAD2

K(ei + ej) + φ2
0
K

N

∥∥∥Σ1/2(ei − ej)
∥∥∥2

2
−MOMAD2

K(ei − ej)
)∣∣∣∣∣∣

≤ c1ε(c1ε+ φ0)
4

∑
i,j

|ui||vj |
(∥∥∥Σ1/2(ei + ej)

∥∥∥2

2
+
∥∥∥Σ1/2(ei − ej)

∥∥∥2

2

)
= c1ε(c1ε+ φ0)

2
∑
i,j

|ui||vj | (Σii + Σjj) .
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Optimal robust mean and location estimation via convex programs with
respect to any pseudo-norms

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Deviation minimax rates in the Gaussian case: benchmark subgaus-

sian rates for the mean estimation w.r.t. ‖·‖S . . . . . . . . . . . . . 138
7.3 Convex programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3.1 Construction of the Fenchel-Legendre minimum estimators. . . . . . . . 140
7.3.2 The adversarial corruption model and two models for inlier. . . . . . . . 143
7.3.3 Statistical bounds for µ̂f

S and µ̂g
S . . . . . . . . . . . . . . . . . . . . . . 145

7.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Introduction

We consider the problem of robust (to adversarial corruption and heavy-tailed data) multivariate
mean and location estimation with respect to any pseudo-norm ν ∈ Rd → ‖ν‖S = supµ∈S

〈
µ, ν

〉
where S is any symmetric subset of Rd (i.e. if x ∈ S then −x ∈ S). Only little is known for
general symmetric sets S and we will mainly refer to Lugosi and Mendelson (2019b) where this
problem has been handled for S which is the unit dual ball B◦ of a norm ‖·‖ (so that ‖·‖S = ‖·‖).

In Lugosi and Mendelson (2019b), the authors introduced the problem of robust to heavy-
tailed data estimation of a mean vector w.r.t. any norm. The problem can be stated as follow:
given N i.i.d. random vectors X1, . . . , XN in Rd with mean µ∗ and covariance matrix Σ, a norm
‖·‖ on Rd and a confidence parameter δ ∈ (0, 1) find an estimator µ̃N (δ) and the best possible
accuracy r∗(N, δ) such that with probability at least 1− δ, ‖µ̃N (δ)− µ∗‖ ≤ r∗(N, δ). In Lugosi
and Mendelson (2019b), the authors use the median-of-means principle Nemirovsky and Yudin
(1983); Jerrum et al. (1986); Alon et al. (1999) to construct an estimator satisfying the following
result.

Theorem 7.1. [Theorem 2 in Lugosi and Mendelson (2019b)] There exist an absolute constant
c such that the following holds. Given a norm ‖·‖ on Rd and a confidence δ ∈ (0, 1), one can

135
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construct µ̃N (δ) such that with probability at least 1− δ

‖µ̃N (δ)− µ∗‖ ≤ c√
N

(
E
∥∥∥∥∥ 1√

N

N∑
i=1

εi(Xi − µ∗)
∥∥∥∥∥+ E

∥∥∥Σ1/2G
∥∥∥+ sup

v∈B◦

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

)

where B◦ is the unit dual ball associated with ‖·‖, (εi) are i.i.d. Rademacher variables independent
of the Xi’s and G ∼ N (0, Id).

The construction of µ̃N (δ) is pretty involved and it seems hard to design an algorithm out of
this procedure. In particular, µ̃N (δ) has not been proved to be solution to a convex optimization
problem. Theorem 7.1’s main interest is thus from a theoretical point of view, while robust
multivariate mean estimation can also be interesting from a practical point of view Diakonikolas
et al. (2017).

The rate obtained in Theorem 7.1 can be decomposed into two terms: a deviation term

sup
v∈B◦

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

where supv∈B◦
∥∥∥Σ1/2v

∥∥∥
2

is a weak variance term and a complexity term which is the sum of

a Rademacher complexity E
∥∥∥N−1/2∑N

i=1 εi(Xi − µ∗)
∥∥∥ and a Gaussian mean width E

∥∥∥Σ1/2G
∥∥∥.

The intuition behind this rate is explained in Lugosi and Mendelson (2019b), in particular, in
Question 1. We will however show that this rate is not the right one and that the Gaussian
mean width term is actually not necessary. Moreover, we will show that the improved rate can
be achieved by an estimator solution to a convex optimization problem in Section 7.3 and that
this holds even in the adversarial corruption model (see Assumption 7.1 in Section 7.3 below for
a formal definition) and even in some situations where there is not even a first moment; in that
case, µ∗ is a location parameter and Σ a scatter parameter.

The optimality of the rate in Theorem 7.1 has been raised in Lugosi and Mendelson (2019b).
The classical approach to answer this type of question is to consider the Gaussian case that
is when the data Xi, i ∈ [N ] are i.i.d. N (µ∗,Σ). This is also the strategy used in Lugosi and
Mendelson (2019b) to obtain the following deviation-minimax lower bound result1.

Theorem 7.2. [Theorem 3 and first paragraph in p.962 in Lugosi and Mendelson (2019b)] There
exists an absolute constant c > 0 such that the following holds. If µ̂ : RNd → Rd is an estimator
such that for all µ∗ ∈ Rd and all δ ∈ (0, 1/4),

PNµ∗ [‖µ̂− µ∗‖ ≤ r∗] ≥ 1− δ

where PNµ∗ is the probability distribution of (Xi)i∈[N ] when the Xi are i.i.d. N (µ∗,Σ) then

r∗ ≥ c√
N

(
sup
η>0

η
√

logN(Σ1/2B◦, ηBd
2) + sup

v∈B◦

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

)

where N(Σ1/2B◦, ηBd
2) is the minimal number of translated of ηBd

2 needed to cover Σ1/2B◦.

The term supv∈S
∥∥∥Σ1/2v

∥∥∥
2

√
log(1/δ) in the lower bound from Theorem 7.2 is obtained in

Lugosi and Mendelson (2019b) from Proposition 6.1 in Catoni (2012) which is a deviation-
1the result from Lugosi and Mendelson (2019b) is proved for Σ = Id, it is however straightforward to extend it

to the general case.
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minimax lower bound result holding in the one dimensional case which relies on the fact that the
empirical mean is a sufficient statistics in the Gaussian shift theorem2.

The complexity term supη>0 η
√

logN(Σ1/2B◦, ηBd
2) obtained in Theorem 7.2 follows from

the duality theorem of metric entropy from Artstein et al. (2004) and a volumetric argument in
the Gauss space similar to the one used to prove dual Sudakov’s inequality in p.82-83 in Ledoux
and Talagrand (2011) which has also been used to obtain minimax lower bounds based on the
entropy in Lecué and Mendelson (2013) and Mendelson (2017b).

In general, there is a gap between the upper bound from Theorem 7.1 and the lower bound
from Theorem 7.2 even in the Gaussian case. This gap is characterized by Sudakov’s inequality
(see Theorem 3.18 in Ledoux and Talagrand (2011) or Theorem 5.6 in Pisier (1989)):

sup
η>0

η
√

logN(Σ1/2B◦, ηBd
2) ≤ cE

∥∥∥Σ1/2G
∥∥∥ (7.1)

where G ∼ N (0, Id). Indeed, in the Gaussian case the complexity term of the rate obtained in
Theorem 7.1 is the Gaussian mean width, that is the right-hand term from (7.1) whereas the
complexity term from Theorem 7.2 is the entropy, that is the left-hand term in (7.1).

As mentioned in Remark 3 from Lugosi and Mendelson (2019b), when Sudakov’s inequality
(7.1) is sharp then upper and lower bounds from Theorem 7.1 and 7.2 match in the Gaussian case
(in that case the Rademacher complexity is equal to the Gaussian mean width in Theorem 7.1).
Sharpness in Sudakov’s inequality is however not a typical situation. In particular, for ellipsoids,
Sudakov’s bound (7.1) is not sharp in general and therefore the lower bound from Theorem 7.2
fails to recover the classical subgaussian rate for the standard Euclidean norm case (that is for
S = Bd

2) which is given in Lugosi and Mendelson (2019c) by√
Tr (Σ)
N

+

√
‖Σ‖op log(1/δ)

N
. (7.2)

Indeed, when ‖·‖ is the `d2 Euclidean norm then E
∥∥∥Σ1/2G

∥∥∥ = E
∥∥∥Σ1/2G

∥∥∥
2
∼
√

Tr(Σ) (see, for
instance, Proposition 2.5.1 in Talagrand (2014)). Whereas, for the entropy of Σ1/2B◦ = Σ1/2Bd

2
w.r.t. ηBd

2 , it follows from equation (5.45) in Pisier (1989) that

sup
η>0

η
√

log2N(Σ1/2Bd
2 , ηB

d
2) = sup

n≥1
en+1(Σ1/2)

√
n+ 1 ∼

√√√√√ sup
k∈[d]

k

∣∣∣∣∣∣
k∏
j=1

λj

∣∣∣∣∣∣
1/k

(7.3)

where (en+1(Σ1/2))n are the entropy numbers of Σ1/2 : `d2 → `d2 (see page 62 in Pisier (1989) for
a definition) and λ1 ≥ . . . ≥ λd are the singular values of Σ. In particular, when λj = 1/j, the
entropy bound (7.3) is of the order of a constant whereas the Gaussian mean width is of the
order of

√
log d. We will fill this gap in Section 7.2 by showing a lower bound where the entropy

is replaced by the (larger) Gaussian mean width. We will therefore obtain matching upper and
2The argument used in Lugosi and Mendelson (2019b) goes from the one dimensional case studied in Catoni

(2012) to the d-dimensional case. It is given in a none formal way and may require some extra argument to
hold. Indeed the estimator x∗(Ψ̂N ) in Lugosi and Mendelson (2019b) is constructed using the d-dimensional
data X1, . . . , XN and not one-dimensional data such as x∗(X1), . . . , x∗(XN ). However, the result from Catoni
(2012) holds for estimators of a one dimensional mean using one-dimensional data and not d-dimensional ones.
Nevertheless, Olivier Catoni showed us how to adapt the proof of Proposition 6.1 in Catoni (2012) by using the
sufficiency of the empirical mean in the Gaussian shift model in Rd to get this deviation dependent lower bound
term.



138 CHAPTER 7. ESTIMATION WITH RESPECT TO ANY PSEUDO-NORMS

lower bounds revealing that Gaussian mean width is the right way to measure the statistical
complexity for the mean estimation problem w.r.t. any ‖·‖S .

The chapter is organized as follows. In the next section, we obtain the deviation-minimax
optimal rate in the i.i.d. Gaussian case. In Section 7.3 we show that the rate from Theorem 7.1
can be improved and that it can be achieved by a solution to a convex program in the adversarial
contamination model and in under weak or no moment assumptions. All the proofs have been
gathered in Section 7.4.

7.2 Deviation minimax rates in the Gaussian case: benchmark
subgaussian rates for the mean estimation w.r.t. ‖·‖S

In this section, we obtain the optimal deviation-minimax rates of estimation of a mean vector µ∗
when we are given N i.i.d. X1, . . . , XN distributed like N (µ∗,Σ) when Σ � 0 is some unknown
covariance matrix. In the following, PNµ∗ denotes the probability distribution of (X1, . . . , XN ); it
is a Gaussian measure on RNd with mean ((µ∗)>, . . . , (µ∗)>) and a block (Nd)× (Nd) covariance
matrix with d× d diagonal blocks given by Σ repeated N times and 0 outside of these blocks.

Unlike classical minimax results holding in expectation or with constant probability (see
Chapter 2 in Tsybakov (2009)) we want, in this section, the deviation parameter δ to appear
explicitly in the minimax lower bound. Moreover, this dependency of the convergence rate with
respect to δ should be of the right order given by the subgaussian

√
log(1/δ) rate and not other

polynomial dependency such as
√

1/δ as one gets for the empirical mean for L2 variables (see
Proposition 6.2 in Catoni (2012)). This subtle behavior of the rate in terms of δ cannot be seen in
expectation or constant deviation minimax lower bounds. In particular, this makes such results
(like Theorem 7.3 or 7.4 below) unachievable via classical information theoretic arguments as in
Chapter 2 in Tsybakov (2009).

Fortunately, in Lecué and Mendelson (2013), a minimax lower bound has been proved thanks
to the Gaussian shift theorem which makes the deviation parameter δ appearing explicitly in the
minimax lower bound. We use the same strategy here to prove our main result Theorem 7.3
below and its corollary Theorem 7.4 in the classical Euclidean S = Bd

2 case.

We consider the general problem of estimating µ∗ w.r.t. ‖·‖S . Let S ⊂ Rd be a symmetric
set. We first obtain an upper bound result revealing the subgaussian rate. We use the empirical
mean X̄N = N−1∑

iXi as an estimator of µ∗. Using Borell TIS’s inequality (Theorem 7.1 in
Ledoux (2001) or pages 56-57 in Talagrand (2014)) we get: for all 0 < δ < 1, with probability at
least 1− δ, ∥∥∥X̄N − µ

∥∥∥
S

= sup
v∈S

〈
v, X̄N − µ

〉
≤ E sup

v∈S

〈
v, X̄N − µ

〉
+ σS

√
2 log(1/δ)

where σS = supv∈S
√
E
〈
v, X̄N − µ

〉2 is called the weak variance. It follows that with probability
at least 1− δ, ∥∥∥X̄N − µ

∥∥∥
S
≤ `∗(Σ1/2S)√

N
+

supv∈S
∥∥∥Σ1/2v

∥∥∥
2

√
log(1/δ)

√
N

(7.4)

where `∗(Σ1/2S) = sup
(〈
G, x

〉
: x ∈ Σ1/2S

)
= E

∥∥∥Σ1/2G
∥∥∥
S
, for G ∼ N (0, Id), is the Gaussian

mean width of the set Σ1/2S. In particular, in the case where S = Bd
2 , we recover the subgaussian

rate (7.2) in (7.4). Our aim is now to show that the rate in (7.4) is deviation-minimax optimal.
This is what is obtained in the next result.
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Theorem 7.3. Let S be a symmetric subset of Rd such that span(S) = Rd. If µ̂ : RNd → Rd is
an estimator such that for all µ∗ ∈ Rd and all δ ∈ (0, 1/4],

PNµ∗ [‖µ̂− µ∗‖S ≤ r∗] ≥ 1− δ

then

r∗ ≥ max

 1
24

√
log 2

log(5/4)
`∗(Σ1/2S)√

N
,
supv∈S

∥∥∥Σ1/2v
∥∥∥

2
12

√
log(1/δ)√

N

 .
It follows from the upper bound (7.4) and the deviation-minimax lower bound from Theo-

rem 7.3 that it is now possible to know exactly (up to absolute constants) the subgaussian rate
for the problem of mean estimation in Rd w.r.t. ‖·‖S , it is given by

max

`∗(Σ1/2S)√
N

,
supv∈S

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

√
N

 . (7.5)

We may identify the two complexity and deviation terms in this rate. In particular, the complexity
term is measured here via the Gaussian mean width of the set Σ1/2S and not its entropy as
it was previously known following Theorem 7.2. Theorem 7.3 together with (7.4) show that
the right way to measure the statistical complexity in the problem of mean estimation in Rd
w.r.t. to any ‖·‖S is via the Gaussian mean width. This differs from other statistical problems
such as the regression model with random design where the entropy has been proved to be the
right statistical complexity in several examples Mendelson (2017b); Lecué and Mendelson (2013).
Following the later results in the regression model, Theorem 7.3 is a bit unexpected because
one may though that by taking an ERM over an epsilon net of Rd for the right choice of ε one
could obtain a better rate than the one driven by the Gaussian mean width in (7.5); indeed, for
this type of procedure, one may expect a rate depending on the (smaller) entropy instead of the
(larger) Gaussian mean width. Theorem 7.3 shows that this is not the case: even discretized
ERM cannot achieve a better rate than the one driven by the Gaussian mean width in the mean
estimation problem.

An important consequence of Theorem 7.3 is obtained when S = Bd
2 that is for the problem of

multivariate mean estimation w.r.t. the `d2-norm which is the problem that has been extensively
considered during the last decade. In the following result, we recover the well-known subgaussian
rate (7.2) showing that all the upper bound results where this rate has been proved to be achieved
are actually deviation-minimax optimal and therefore could not have been improved uniformly
over all µ∗ ∈ Rd.

Theorem 7.4. If µ̂ : RNd → Rd is an estimator such that PNµ∗ [‖µ̂− µ∗‖2 ≤ r∗] ≥ 1− δ for all
µ∗ ∈ Rd and all δ ∈ (0, 1/4], then

r∗ ≥ max

 1
24

√
log 2

2 log(5/4)

√
Tr(Σ)
N

,
1
12

√
‖Σ‖op log(1/δ)

N

 .
Given that the empirical mean X̄N is such that for all µ ∈ Rd with PNµ -probability at least

1− δ, ∥∥∥X̄N − µ
∥∥∥

2
≤

√
Tr (Σ)
N

+

√
2 ‖Σ‖op log(1/δ)

N

we conclude from Theorem 7.4 that the sub-gaussian rate (7.2) is the deviation-minimax rate of
convergence for the multivariate mean estimation problem w.r.t. `d2 and that it is achieved by
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the empirical mean. In particular, there are no statistical procedure that can do better than
the empirical mean uniformly over all mean vectors µ∗ ∈ Rd up to constant, this includes in
particular all discretized versions of X̄N .

7.3 Convex programs

In this section, we introduce statistical procedures which are solutions to convex programs and
which can achieve the rate from Theorem 7.1 without the unnecessary Gaussian mean width
term E

∥∥∥Σ1/2G
∥∥∥. We also show that these procedures handle adversarial corruption and may

still perform optimally in some situations where there is not even a first moment.

7.3.1 Construction of the Fenchel-Legendre minimum estimators.

Definition 7.1. Let S be a subset of Rd and f : Rd → R. The Fenchel-Legendre transform of f
on S is the function f∗S defined for all µ ∈ Rd by f∗S(µ) = supv∈S

(〈
µ, v

〉
− f(v)

)
.

For our purpose, the main property of a Fenchel-Legendre transform we will use is that it is
a convex function as it is the maximal function of the family (µ ∈ Rd →

〈
µ, v

〉
− f(v) : v ∈ S) of

linear functions.

We are now defining two examples of functions such that by taking the minimum of their
Fenchel-Legendre transform over S will lead to optimal estimators of µ∗ w.r.t. ‖·‖S . The
construction of these two functions are based on the median-of-means principle: the dataset
{X1, . . . , XN} is split into K equal size blocks of data indexed by (Bk)k forming an equipartition
of [N ]. On each block, an empirical mean is constructed X̄k = |Bk|−1∑

i∈Bk Xi. The two
functions we are considering are using the K bucketed means (X̄k)k and are defined, for all
v ∈ Rd, by

f(v) = 1
|IK |

∑
k∈IK

〈
X̄k, v

〉∗
(k) and g(v) = Med(

〈
X̄k, v

〉
) =

〈
X̄k, v

〉∗
(K+1

2 ) (7.6)

where if ak =
〈
X̄k, v

〉
, k ∈ [K] then

〈
X̄k, v

〉∗
(k), k ∈ [K] are the rearrangement of (ak)k such

that a∗(1) ≤ . . . ≤ a
∗
(K) (this is the rearrangement of the values ak’s themselves and not of their

absolute values) and

IK =
[
K + 1

4 ,
3(K + 1)

4

]
=
{
K + 1

2 ± k : k = 0, 1, · · · , K + 1
4

}
is the inter-quartiles interval – w.l.o.g. we assume that K+ 1 can be divided by 4. In other words,
f(v) is the average sum over all inter-quartile values of the vector (

〈
X̄k, v

〉
)k∈[K] and g(v) is the

median of this vector. Note that both functions f and g are homogeneous i.e. f(θv) = θf(v) and
g(θv) = θg(v) for every v ∈ Rd and θ ∈ R and in particular they are odd functions; two facts we
will use later.

We are now considering the Fenchel-Legendre transform of the functions f and g over a
symmetric set S:

f∗S : µ ∈ Rd → sup
v∈S

(〈
µ, v

〉
− f(v)

)
and g∗S : µ ∈ Rd → sup

v∈S

(〈
µ, v

〉
− g(v)

)
. (7.7)

As mentioned previously the two functions f∗S and g∗S are convex functions. We are now using
them to define convex programs whose solutions will be proved to be robust and subgaussian
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estimators of the mean / location vector µ∗ w.r.t. ‖·‖S :

µ̂fS ∈ argmin
µ∈Rd

f∗S(µ) and µ̂gS ∈ argmin
µ∈Rd

g∗S(µ). (7.8)

For some special choices of S, the Fenchel-Legendre minimization estimator µ̂gS coincides
with some classical procedures. This is for instance the case when S = Bd

1 (the unit ball of the
`d1-norm) or S = Bd

2 . Indeed, when S = Bd
1 , µ̂gS is the coordinate-wise Median of Means:

µ̂gS = argmin
µ=(µj)∈Rd

max
j∈[d]

∣∣∣µj −Med
(〈
X̄k, ej

〉)∣∣∣ =
(
Med

(〈
X̄k, ej

〉)
: j ∈ [d]

)
(7.9)

where (ej)dj=1 is the canonical basis of Rd, because ‖·‖S = ‖·‖conv(S) where conv(S) is the convex
hull of S and so one may just take S = {±ej : j ∈ [d]}. It is therefore possible to derive
deviation-minimax optimal bounds for the coordinate-wise Median of Means w.r.t. the `d∞-norm
from general upper bounds on µ̂gS since in that case ‖·‖S = ‖·‖∞.

In the case S = Bd
2 (that is for the mean/location estimation problem w.r.t. `d2), the Fenchel-

Legendre minimum estimator µ̂gS is a minmax MOM estimator Lecué and Lerasle (2020). This
connection allows to write µ̂gS (as well as µ̂fS) as a non-constraint estimator, it also shows that
this minmax MOM estimator is actually solution to a convex optimization problem and how
minmax MOM estimator can be generalized to other estimation risks.

Minmax MOM estimators have been introduced as a systematic way to construct robust and
subgaussian estimators in Lecué and Lerasle (2020). They have been proved to be deviation-
minimax optimal for the mean estimation problem in Lerasle et al. (2019) w.r.t. ‖·‖2. Their
definition only requires to consider a loss function; here we take for all µ ∈ Rd, `µ : x ∈ Rd →
‖x− µ‖22 and the minmax MOM estimator is then defined as

µ̃ ∈ argmin
µ∈Rd

sup
ν∈Rd

Med (PBk(`µ − `ν) : k ∈ [K]) (7.10)

where PBk is the empirical measure on the data in block Bk. The minmax MOM estimator µ̃
was proved to achieve the subgaussian rate in (7.2) with confidence 1− δ when the number of
blocks is K ∼ log(1/δ) and K & |O| in Lerasle et al. (2019).

Even though the minmax formulation of µ̃ suggests a robust version of a descent/ascent
gradient method over the median block (see Lecué and Lerasle (2020); Lerasle et al. (2019)
for more details), no proof of convergence of this algorithm is known so far. Moreover, the
main drawback of the minmax MOM estimator seems to be that it is solution of a non-convex
optimization problem and may therefore be likely to be rather difficult to compute in practice.
In the next result, we show that this is not the case since the minmax MOM estimator (7.10) is
in fact equal to µ̂gS for S = Bd

2 and it is therefore solution to a convex optimization problem.

Proposition 7.1. The minmax MOM estimator µ̃ defined in (7.10) satisfies µ̃ ∈ argminµ∈Rd g∗Bd2 (µ).
The minmax MOM estimator is therefore solution to a convex optimization problem.

Proof. We show that µ̃ ∈ argminµ∈Rd sup‖v‖2=1 Med(
〈
X̄k − µ, v

〉
). We consider the

quadratic/multiplier decomposition of the difference of loss functions: for all µ, ν ∈ Rd and
x ∈ Rd, we have (`µ − `ν)(x) = ‖x− µ‖22 − ‖x− ν‖

2
2 = −2

〈
x− µ, µ− ν

〉
− ‖µ− ν‖22. Hence, for

all µ ∈ Rd, we have

sup
ν∈Rd

Med (PBk(`µ − `ν)) = sup
ν∈Rd

(
−2 Med(

〈
X̄k − µ, µ− ν

〉
)− ‖µ− ν‖22

)

= sup
‖v‖2=1

sup
θ≥0

(
2θMed(

〈
X̄k − µ, v

〉
)− θ2

)
= sup
‖v‖2=1

(
Med(

〈
X̄k − µ, v

〉
)
)2

=
(

sup
‖v‖2=1

Med(
〈
X̄k − µ, v

〉
)
)2

.
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We conclude since

argmin
µ∈Rd

(
sup
‖v‖2=1

Med(
〈
X̄k − µ, v

〉
)
)2

= argmin
µ∈Rd

sup
‖v‖2=1

Med
(〈
X̄k − µ, v

〉)
.

It follows from Proposition 7.1 that the minmax MOM estimator µ̃ is solution to a convex
optimization problem. This fact is far from being obvious given the definition of µ̃ in (7.10).

Proposition 7.1 suggests a new formulation for µ̂gS and µ̂fS . It is indeed possible to write
these estimators as regularized estimators instead of their original constraint formulation (note
that the Fenchel-Legendre transforms in (7.7) are suprema over S and are therefore constraint
optimization problems). We now show that we may write them as suprema over all Rd if we add
an ad hoc regularization function.

Let us introduce the two following functions which may be seen as regularized versions of the
two f and g functions from (7.6): for all ν ∈ Rd,

FS(ν) = f(ν) + ‖ν‖
2
S

4 and GS(v) = g(ν) + ‖ν‖
2
S

4 . (7.11)

We also consider their Fenchel-Legendre transforms over the entire set Rd: for all µ ∈ Rd,

F ∗S(µ) = sup
ν∈Rd

(〈
µ, ν

〉
− FS(ν)

)
and G∗S(µ) = sup

ν∈Rd

(〈
µ, ν

〉
−GS(ν)

)
.

The next result shows that the later two Fenchel-Legendre transforms can be used to define
the two estimators µ̂fS and µ̂gS . The proof of Proposition 7.2 is similar to the one of Proposition 7.1
where the `2-norm is replaced by ‖·‖S and is therefore omitted.

Proposition 7.2. Let S be a symmetric subset of Rd such that span(S) = Rd. We have
µ̂fS ∈ argminµ∈Rd F ∗S(µ) and µ̂gS ∈ argminµ∈Rd G∗S(µ).

As a consequence of Proposition 7.2, one can write the two estimators µ̂fS and µ̂gS as solutions
to unconstrained minmax optimization problems like the minmax MOM estimator (7.10) and in
particular, one may design an alternating ascent/descent sub-gradient algorithm similar to the
one from Lecué and Lerasle (2020) – we expect the one associated with µ̂fS which uses half of
the dataset at each iteration to be more efficient than the one associated with µ̂gS which uses
only the N/K data in the median block at each iteration. That is the reason why we provide in
Figure 13 this algorithm only for

µ̂fS ∈ argmin
µ∈Rd

sup
ν∈Rd

〈µ, ν〉− 1
|IK |

∑
k∈IK

〈
X̄k, ν

〉∗
(k) −

‖ν‖2S
4

 .
We also recall that by the Danskin-Bertekas theorem the subgradient of ‖·‖S at ν ∈ Rd when S
is a compact and non empty set is given by the convex hull of all x ∈ S such that ‖ν‖S =

〈
x, ν

〉
.
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input : the data X1, . . . , XN , a number K of blocks, two decreasing steps size sequences
(ηt)t, (θt)t ⊂ R∗+ and ε > 0 a stopping parameter

output : A robust estimator of the mean µ
1 Construct an equipartition B1 t · · · tBK = {1, · · · , N} at random
2 Construct the K empirical means X̄k = (N/K)∑i∈Bk Xi, k ∈ [K]
3 Compute µ̃(0) the coordinate-wise median-of-means and put µ(0) = µ̃(0) and ν(0) = µ̃(0)

4 while
∥∥∥µ(t) − µ(t+1)

∥∥∥
S
≥ ε do

5 Construct an equipartition B1 t · · · tBK = {1, · · · , N} at random
6 Construct the K empirical means X̄k = (N/K)∑i∈Bk Xi, k ∈ [K]
7 Find the inter-quartile block numbers k1, . . . , k(K+1)/2 ∈ [K] such that

f(ν(t)) = 1
|IK |

(K+1)/2∑
j=1

〈
X̄kj , ν

(t)〉.
Construct g(t) a subgradient of ‖·‖S at ν(t) and the ascent direction

∇(t+1)
ν = µ(t) − 1

|IK |

(K+1)/2∑
j=1

X̄kj −

∥∥∥ν(t)
∥∥∥
S
g(t)

2 .

Update ν(t+1) ← ν(t) + ηt∇(t+1)
ν .

8 Make one descent step: µ(t+1) ← µ(t) − θtν(t+1).
9 end

10 Return µ(t+1)

Algorithm 13: An alternating ascent/descent algorithm for the robust mean estimation
problem w.r.t. ‖·‖S with randomly chosen blocks of data at each step.

7.3.2 The adversarial corruption model and two models for inlier.

In this section, we introduce the assumptions under which we will obtain some statistical upper
bounds for the Fenchel-Legendre minimum estimators introduced above. We are considering two
types of assumptions: one for the outliers which will be the adversarial corruption model and one
for the inlier which will be either the existence of a second moment or a regularity assumption
on a family of cdf around 0. We start with the adversarial corruption model.

Assumption 7.1. There exists N independent random vectors (X̃i)Ni=1 in Rd. The N random
vectors (X̃i)Ni=1 are first given to an ”adversary” who is allowed to modify up to |O| of these
vectors. This modification does not have to follow any rule. Then, the ”adversary” gives the
modified dataset (Xi)Ni=1 to the statistician. Hence, the statistician receives an ”adversarially”
contaminated dataset of N vectors in Rd which can be partitioned into two groups: the modified
data (Xi)i∈O, which can be seen as outliers and the ”good data” or inlier (Xi)i∈I such that
∀i ∈ I, Xi = X̃i. Of course, the statistician does not know which data has been modified or not
so that the partition O ∪ I = {1, . . . , N} is unknown to the statistician.

In the adversarial contamination model from Assumption 7.1, the set O ⊂ [N ] can depend
arbitrarily on the initial data (X̃i)Ni=1; the corrupted data (Xi)i∈O can have any arbitrary
dependence structure; and the informative data (Xi)i∈I may also be correlated (for instance, it
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is, in general, the case when the |O| data X̃i with largest `d2-norm are modified by the adversary).
The adversarial corruption model covers the Huber ε-contamination model Huber and Ronchetti
(2009) and also the O ∪ I framework from Lecué and Lerasle (2019); Lecué and Lerasle (2020);
M. Lerasle and Lecué (2017).

Assumption 7.1 does not grant any property of the inlier data (X̃i)i∈[N ] except that they are
independent. We will obtain a general result under only Assumption 7.1 in Section 7.4. However,
to recover convergence rates similar to the one in Theorem 7.1 or the subgaussian rate in (7.5),
we will grant some assumptions on the inlier as well. We are now considering two assumptions
on the inlier which are of different nature.

The two assumptions on the inlier we are now considering are related to a subtle property of
the Median-of-Means (MOM) principle which somehow benefits from its two components: the
empirical median and the empirical mean. Indeed, MOM is en empirical median of empirical
means and so if we refer to the classical asymptotic normality (a.n.) results of the empirical
mean and the empirical median, the first one holds under the existence of a second moment and
the second one holds under the assumption that the cdf is differentiable at the median with
positive derivative at the median (see Corollary 21.5 in van der Vaart (1998)). We therefore
recover these two types of assumptions when we work with estimators using the MOM principle.
A nice feature of MOM based estimators is that their estimation results hold under either one
of the two conditions and do not require the two assumptions to hold simultaneously. We can
therefore consider the two assumptions independently and get two estimation results for the
Fenchel-Legendre minimum estimators introduced above (which are based on the MOM principle).
We start with the moment assumption.
Assumption 7.2. The N independent random vectors (X̃i)Ni=1 have mean µ∗ and there exists a
SDP matrix Σ ∈ Rd×d such that E(X̃i − µ∗)(X̃i − µ∗)> � Σ.

Most of the statistical bounds obtained on MOM based estimators have focused on the
heavy-tailed setup and have therefore consider Assumption 7.2 as their main assumption. This is
the ’empirical mean component’ of the MOM principle which has been the most exploited so far.
It is however also possible to use the ’empirical median component’ of the MOM principle to get
statistical bounds in cases where a first moment does not even exist. In that case, µ∗ is called a
location parameter and Σ a scale parameter. Also, a natural assumption is similar to the one used
to get the a.n. of the empirical median, that is an assumption on the cdf at the median adapted
to the multidimensional and non-asymptotic setup. We are now introducing such an assumption.
Assumption 7.3. The inlier data (X̃i)Ni=1 are i.i.d.. There exists µ∗ ∈ Rd and two absolute
constants c0 > 0 and c1 > 0 such that the following holds: for all v ∈ S and all 0 < r ≤ c0,
HN,K,v(r) ≤ 1/2− c1r where

HN,K,v(r) = P

 1√
N/K

N/K∑
i=1

〈
X̃i − µ∗, v

〉
> r

 . (7.12)

A typical example where Assumption 7.3 holds is when S = Sd−1
2 (that is for the location

estimation problem w.r.t. the Euclidean `d2 norm) and the X̃i’s are rotational invariant that
is when for all v ∈ Sd−1

2 ,
〈
X̃1 − µ∗, v

〉
has the same distribution as

〈
X̃1 − µ∗, e1

〉
where e1 =

(1, 0, . . . , 0) ∈ Rd. In that case, X̃1 has the same distribution as µ∗+RU where R is a real-valued
random variable on R+ independent of U a random vector uniformly distributed over Sd−1

2 . In
that case and for K = N , for all v ∈ Sd−1

2 and all r ∈ R,

HN,K=N,v(r) = H(r) := P[R
〈
U, e1

〉
≥ r] =

∫ +∞

r
f(x)dx where f : x ∈ R→ Cd

∫ +∞

|x|

1
u

(
1− x2

u2

) d−3
2

dPR(u),
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PR is the probability distribution of R and Cd is a normalization constant which can be proved
to satisfy

√
d ≤ Cd ≤ 6

√
d (see for instance, Chapter 4 in Bryc (1995)). In particular, it follows

from the mean value theorem that for all r ≥ 0, H(r) ≤ H(0)−min0≤x≤r f(x)r = 1/2− f(r)r.
Therefore, Assumption 7.3 holds in that case when there exists constants c′0, c′1 > 0 such that
f(c′0) ≥ c′1, which in turn holds when there exists constants c0, c1 > 0 such that H(c0) ≤ 1/2− c1.

Furthermore, we have, for all t > 0

P[R
〈
U, e1

〉
≥ c0] ≤ P[

〈
U, e1

〉
≥ t/
√
d] + 1

2P[R ≥ c0
√
d/t]

≤ e−t2/2 + 1
2P[R ≥ c0

√
d/t],

where the classical second inequality can be found for instance in Vershynin (2018), Chapter
5. So if for some constants c̃0, c̃1 > 0, bP [R ≥ c̃0

√
d] ≤ 1− c̃1, then Assumption 7.3 holds. This is

for instance the case, when R is distributed like ‖G‖2 for G ∼ N (0, Id) (by Borell-TIS inequality)
but as well when R is the positive part of a Cauchy variable for instance. As a consequence,
Assumption 7.3 has nothing to do with the existence of any moment and it may hold even when
there is not a first moment and even for K = N .

Another example where Assumption 7.3 holds, that we will use in the following to obtain
statistical bounds for the coordinate-wise median of means for the location problem is when
S = {±ej : j ∈ [d]} and X̃1 = µ∗+Z where Z = (zj)dj=1 is random vector in Rd with coordinates
z1, . . . , zd having a symmetric around 0 Cauchy distribution. In that case, X̃1 does not have a
first moment and µ∗ is a location parameter as the center of symmetry of the distribution of X̃1.
We have for all j ∈ [d],

HN,K=N,±ej (r) = P
[〈
X̃1 − µ∗,±ej

〉
≥ r

]
= P[zj ≥ r] =

∫ +∞

r

dx

π(1 + x2) ≤
1
2−

r

π(1 + r2) ≤
1
2−

r

2π

for all 0 < r ≤ 1. Therefore, Assumption 7.3 holds in that case as well.

7.3.3 Statistical bounds for µ̂fS and µ̂gS

In this section, we obtain estimation bounds w.r.t. ‖·‖S for µ̂fS and µ̂gS in the adversarial contam-
ination model with either the L2 moment Assumption 7.1 or the regularity at 0 Assumption 7.3.

Estimation properties of µ̂fS and µ̂gS under Assumption 7.2. In this section, we obtain
high probability estimation upper bounds satisfied by µ̂fS and µ̂gS w.r.t. ‖·‖S in the adversarial
contamination and heavy-tailed inlier model. The rate of convergence is given by the quantity

r∗S = max

 64√
N

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

, sup
v∈S

∥∥∥Σ1/2v
∥∥∥

2

√
64K
N

 . (7.13)

The key metric property satisfied by the two Fenchel-Legendre transforms f∗S and g∗S in the
adversarial contamination and heavy-tailed inlier model is the following isomorphic result.

Lemma 7.1. Grant Assumption 7.1 and Assumption 7.2. Let S be a symmetric subset of
Rd. Assume that |O| < K/16. With probability at least 1 − exp(−K/512), for all µ ∈ Rd,
|g∗S(µ)− ‖µ− µ∗‖S | ≤ g∗S(µ∗) ≤ r∗S and |f∗S(µ)− ‖µ− µ∗‖S | ≤ f∗S(µ) ≤ r∗S.

Lemma 7.1 shows that if ‖µ− µ∗‖S ≥ 2r∗S then ‖µ− µ∗‖S ≤ g∗S(µ) ≤ 2 ‖µ− µ∗‖S and the
same holds for f∗S . It means that both g∗S and f∗S are two convex functions equivalent (up to
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absolute constants) to µ→ ‖µ− µ∗‖S on Rd\(2r∗S)BS , where BS is the unit ball associated with
‖·‖S and, on (2r∗S)BS , they are both smaller than 2r∗S . Hence, both g∗S(· − µ∗) and f∗S(· − µ∗)
provide a good approximation of the metric space (Rd, ‖·‖S). In particular, any minimum of g∗S
and f∗S will be close (up to r∗S) to a minimum of µ→ ‖µ− µ∗‖S which is µ∗. This explains the
statistical properties of µ̂fS and µ̂gS : from Lemma 7.1,∥∥∥µ̂fS − µ∗∥∥∥S ≤ f∗S(µ̂fS) + f∗S(µ∗) ≤ 2f∗S(µ∗) ≤ 2r∗S

and the same holds for µ̂gS . This leads to the following result.

Theorem 7.5. Grant Assumption 7.1 and Assumption 7.2. Let S be a symmetric subset of Rd
and r∗S be defined in (7.13). For all K > 16|O|, with probability at least 1− exp(−K/512),∥∥∥µ̂fS − µ∗∥∥∥S ≤ 2r∗S and ‖µ̂gS − µ

∗‖S ≤ 2r∗S .

The rate r∗S obtained in Theorem 7.5 can be split into two terms: the complexity term given
by the Rademacher complexity and a deviation term exhibiting the weak variance term as in
the Gaussian case. Compare with Theorem 7.1 from Lugosi and Mendelson (2019b), this result
shows that the Gaussian mean width term appearing in Theorem 7.1 is actually not necessary, it
also shows that this improved rate can be obtained by a procedure solution to a convex program
and that it can also handle adversarial corruption. When S = Bd

2 , we recover the classical
subgaussian rate because in that case the Rademacher complexity term in r∗S is less or equal to√

Tr(Σ), see Koltchinskii (2006). In particular, since µ̂gS is the minmax MOM estimator in that
case, we recover the main result from Lerasle et al. (2019).

Estimation properties of µ̂gS under Assumption 7.3. In this section, we consider some
cases where a first moment may not exist; in that case, µ∗ is a location parameter so that
Assumption 7.3 holds. The rate of convergence we obtain in that case is given by

r� = C0
c1

√d+ 1
N

+
√
u

N

+ |O|
c1
√
KN

(7.14)

where c1 is the absolute constant from Assumption 7.3, C0 the absolute constant from (7.28)
and u > 0 a confidence parameter.

The following result is an isomorphic result satisfied by the Fenchel-Legendre transforms g∗S
under Assumption 7.3. It is similar to the one of Lemma 7.1 but with the rate r�.

Lemma 7.2. Let S be a symmetric subset of Rd. Grant Assumption 7.1 and Assumption 7.3
for some K ∈ [N ]. Let u > 0. Assume that C0

(√
(d+ 1)/K +

√
u/K

)
+ |O|/K ≤ c0c1. With

probability at least 1− exp(−u), for all µ ∈ Rd, |g∗S(µ)− ‖µ− µ∗‖S | ≤ r�.

As explained below Lemma 7.1, a result such as Lemma 7.2 may be used to upper bound the
‖·‖S distance between µ̂gS , a minimum of g∗S , and µ∗, a minimum of µ→ ‖µ− µ∗‖S . This yields
to the following result.

Theorem 7.6. Let S be a symmetric subset of Rd. Grant Assumption 7.1 and Assumption 7.3
for some K ∈ [N ]. Let u > 0 and assume that C0

(√
(d+ 1)/K +

√
u/K

)
+ |O|/K ≤ c0c1. With

probability at least 1− exp(−u), ‖µ̂gS − µ∗‖S ≤ 2r� where r� is defined in (7.14).
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Unlike Theorem 7.5, Theorem 7.6 may hold even when there is not a first moment. The
result from Theorem 7.6 holds for all 0 < u . K whereas Theorem 7.5 holds only for u = K
(even though one may use a Lepski’s adaptive scheme to chose adaptively K in that case).
The price for adversarial corruption in (7.14) is between |O|/N (for K ∼ N) and

√
|O|/N (for

K ∼ |O|). It therefore depends on the choice of K for which Assumption 7.3 holds. As shown
after Assumption 7.3 for spherically symmetric random variables one can take K = N and so the
best possible price |O|/N for adversarial corruption may be achieved even when a first moment
does not exist. If one needs some averaging effect so that Theorem 7.6 holds, then one should
take K as small as possible that is K ∼ |O| and then

√
|O|/N will be the price for adversarial

corruption as in the L2 case described in Theorem 7.6.

Subgaussian rates under weak or no moment assumption. It is possible to recover (up
to absolute constants) the subgaussian rate (7.5) in Theorem 7.5 for K ∼ log(1/δ) when the
Rademacher complexity term from (7.13) and the Gaussian mean width from (7.5) satisfy

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

. `∗
(
Σ1/2S

)
. (7.15)

Such a result (i.e. Rademacher complexity is smaller than the Gaussian mean width up to
constant) depends on the set S and the number of moments granted on the X̃i’s as well as
the sample size. It obviously holds when the X̃i’s are i.i.d. N (µ∗,Σ), so that we recover the
deviation-minimax optimal subgaussian rate (7.5) in that case. It is also true when the X̃i’s are
subgaussian vectors. There are other situations under weaker moment assumption where (7.15)
holds.

For instance, when S = Bd
2 , (7.15) holds under only a L2-moment assumption (see Koltchinskii

(2006)). It also holds for S = Bd
1 when the X̃i’s are isotropic with coordinates having log d

subgaussian moments (i.e.
∥∥∥〈X̃i, ej

〉∥∥∥
Lp
≤ L√p for all 1 ≤ p ≤ log d and j ∈ [d]) and N & log d.

Together with (7.9) and Theorem 7.5, this implies that the coordinate-wise MOM is a subgaussian
estimator of the mean under a log d subgaussian moment assumption. Upper bounds such as
(7.15) have been extended in Mendelson (2017c) to general unconditional norms.

It is also possible to recover the subgaussian rate (7.5) in situations where there is not
even a first moment thanks to Theorem 7.6. Indeed, for the case S = Bd

1 and X̃1 = µ∗ + Z
where Z = (zj)dj=1 has symmetric around 0 Cauchy distributed coordinates, we showed that
Assumption 7.3 holds for K = N and that µ̂gS is the coordinate-wise median (here K = N) in
(7.9). It follows from Theorem 7.6 that, when d . N and |O| . N then for all d ≤ u . N , with
probability at least 1− exp(−u),

‖µ̂gS − µ
∗‖∞ ≤ 2C0

√d+ 1
N

+
√
u

N

+ 2π|O|
N

(7.16)

which is the deviation-minimiax optimal subgaussian rate (7.5) we would have gotten if the X̃i

were i.i.d. isotropic Gaussian vectors centered in µ∗ corrupted by |O| adversarial outliers (up
to absolute constants). But here, (7.16) is obtained without the existence of a first moment.
Moreover, in (7.16), the number of outliers is allowed to be proportional to N and the price for
adversarial corruption is of the order of |O|/N which is the same price we have to pay when
inlier have a Gaussian distribution – this differs from the

√
|O|/N information theoretical lower

bound that has been obtained for some non-symmetric inlier. Furthermore, the computational
cost of the coordinate-wise MOM is O(Nd) since the cost for computing the bucketed means
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is O(Nd), the one of finding the median of K numbers is O(K), see Blum et al. (1973), it is
therefore the same computational cost as the one of the empirical mean. It is therefore possible
to achieve the same computational and statistical properties as the empirical mean in a setup
where a first moment does not even exist.

7.4 Proofs

Proof of Theorem 7.3. The minimax lower bound rate r∗ exhibits two quantities: one which
is a complexity term depending on the Gaussian mean width of Σ1/2S and a deviation term
depending on δ. The two terms come from two arguments. We start with the deviation term.

Let v1 ∈ Rd be such that ‖v1‖S = 1. We consider two Gaussian measures on RdN : P0 =
N (0,Σ)⊗N and P1 = N (3r∗v1,Σ)⊗N . They are the distributions of a sample of N i.i.d. Gaussian
vectors in Rd with the same covariance matrix Σ and the first one with mean 0 and the second one
with mean 3r∗v1. We set A0 = (µ̂)−1(BS(0, r∗)) = {(x1, . . . , xN ) ∈ RNd : ‖µ̂(x1, . . . , xN )‖S ≤ r∗}
and A1 = (µ̂)−1(BS(3r∗v1, r

∗)). It follows from the statistical properties of µ̂ that P0[A0] ≥ 1− δ
and P1[A1] ≥ 1− δ.

The key ingredient for the deviation lower bound term is a slightly generalization of Lemma 3.3
in Lecué and Mendelson (2013) which is based on a version of the Gaussian shift Theorem from
Li and Kuelbs (1998).

Lemma 7.3. Let t 7→ Φ(t) = P(g ≤ t) be the cumulative distribution function of a standard
gaussian random variable on R. Let Σ0 � 0 be in R(Nd)×(Nd) and u, v ∈ RdN . Let two gaussian
measures νu ∼ N (u,Σ0) and νv ∼ N (v,Σ0) on RNd. If A ⊂ RdN is measurable, then

νv(A) ≥ 1− Φ
(
Φ−1(1− νu(A)) + ‖Σ−1/2

0 (u− v)‖2
)

(7.17)

where Σ−1/2
0 is the square root of the pseudo-inverse of Σ0.

Proof of Lemma 7.3. When Σ0 = INd, Lemma 7.3 is exactly Lemma 3.3 in Lecué and
Mendelson (2013) for σ = 1. To prove Lemma 7.3, we observe that νv(A) = P[G+ Σ−1/2

0 v ∈ B]
where B = Σ−1/2

0 A and G is a standard Gaussian variable in Im(Σ0). Hence, it follows from
Lemma 3.3 in Lecué and Mendelson (2013) that

P[G+ Σ−1/2
0 v ∈ B] ≥ 1− Φ

(
Φ−1(1− P[G+ Σ−1/2

0 u ∈ B]) + ‖Σ−1/2
0 (u− v)‖`N2

)
which is exactly (7.17).

It follows from Lemma 7.3 that

P1[A0] ≥ 1− Φ
[
Φ−1(1− P0[A0]) +

∥∥∥Σ−1/2
0 (0− (3r∗v1, . . . , 3r∗v1))

∥∥∥
2

]
. (7.18)

Moreover, we have Φ−1(1− P0[A0]) ≤ Φ−1(δ) (because 1− P0[A0] ≤ δ) and∥∥∥Σ−1/2
0 (0− (3r∗v1, . . . , 3r∗v1))

∥∥∥
2

= 3r∗
√
N
∥∥∥Σ−1/2v1

∥∥∥
2
. (7.19)

As a consequence, if 3r∗
√
N
∥∥∥Σ−1/2v1

∥∥∥
2
≤ −Φ−1(δ) then, in (7.18), we get P1[A0] ≥ 1−Φ[0] ≥ 1/2

which is not possible because P1[A1] ≥ 1 − δ > 3/4 and A1 ∩ A0 = ∅. As a consequence, we
necessarily have 3r∗

√
N ≥ (−Φ−1(δ))

∥∥∥Σ−1/2v1
∥∥∥−1

2
. The later holds for any v1 ∈ Rd such that

‖v1‖S = 1 hence 3r∗
√
N ≥ (−Φ−1(δ))[1/ inf‖v‖S=1

∥∥∥Σ−1/2v
∥∥∥

2
]. It also follows from the bound on
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the Mill’s ratio from Komatu (1955) (here we use that for all x ≥ 0, Φ(−x) ≥ 2ϕ(x)/
√

4 + x2 + x
where ϕ is the standard Gaussian density function) that for all 0 < δ < 1/4, −Φ−1(δ) ≥
1/4

√
log(1/δ). This shows that

r∗ ≥ 1
12

√
log(1/δ)

N

1
inf‖v‖S=1

∥∥Σ−1/2v
∥∥

2
. (7.20)

To conclude on the deviation term, we use the following duality argument.

Lemma 7.4. Let A ∈ Rd×d be a symmetric and invertible matrix. Let ‖·‖ be a norm and its
dual norm ‖·‖∗ on Rd. Let S be a symmetric subset of Rd such that span(S) = Rd. We have

1
inf‖v‖S=1 ‖A−1v‖

≥ sup
w∈S
‖Aw‖∗ .

Proof of Lemma 7.4. Let v be such that ‖v‖S = 1 and w ∈ S. We have |
〈
v, w

〉
| ≤ 1

and so |
〈
A−1v/

∥∥A−1v
∥∥ , Aw〉| ≤ 1/

∥∥A−1v
∥∥. The later holds for all v such that ‖v‖S = 1 and

{A−1v/
∥∥A−1v

∥∥ : ‖v‖S = 1} is the unit sphere of ‖·‖. Hence, we conclude by taking the sup over
v such that ‖v‖S = 1 and w ∈ S.

It follows from (7.20) and Lemma 7.4 for ‖·‖ = ‖·‖2 and A = Σ1/2 that

r∗ ≥ 1
12

√
log(1/δ)

N
sup
w∈S

∥∥∥Σ1/2w
∥∥∥

2
. (7.21)

Let us now turn to the second part of the lower bound; the one coming from the complexity
of the problem (here, it is the Gaussian mean width of Σ1/2S). We know that µ̂ is an estimator
such that for all µ ∈ Rd, PNµ [‖µ̂− µ‖S ≤ r∗] ≥ 1− δ which is equivalent to say that

δ ≥ sup
µ∈Rd

ENµ φ
(‖µ̂− µ‖S

r∗

)
(7.22)

where we set φ : t ∈ R → I(t > 1) and ENµ is the expectation with respect to X1, . . . XN
i.i.d.∼

N (µ,Σ). Next, we consider a Gaussian distribution γ over the set of parameters µ ∈ Rd: for
s > 0, we assume that µ ∼ N (0, sΣ). It follows from (7.22) that

δ ≥
∫
µ∈Rd

ENµ φ
(‖µ̂− µ‖S

r∗

)
γ(µ)dµ = E

[
E
[
φ

(‖µ̂(X1, . . . , XN )− µ‖S
r∗

)
|X1, . . . , XN

]]
.

(7.23)
In other words, we lower bound the minmax risk by a Bayesian risk. We now use Anderson’s
lemma to lower bound the Bayesian risk appearing in (7.23). We first recall Anderson’s Lemma.

Theorem 7.7 (Anderson’s Lemma). Let Γ be a semi-definite d × d matrix and Z ∼ N (0,Γ).
Let w : Rd → R be such that all its level sets (i.e. {x ∈ Rd : w(x) ≤ c} for c ∈ R) are convex and
symmetric around the origin. Then for all x ∈ Rd, Ew(Z + x) ≥ Ew(Z).

We remark that µ− E[µ|X1, . . . , XN ] is distributed according to N (0, (s/(1 +Ns)Σ)) condi-
tionally to X1, . . . , XN . Therefore, applying Anderson’s Lemma conditionally to X1, . . . , XN , we
obtain in (7.23) that

δ ≥ E
[
φ

(‖E[µ|X1, . . . , XN ]− µ‖S
r∗

)]
= P

∥∥∥Σ1/2G
∥∥∥
S
≥

√
1 +Ns

s
r∗
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where G ∼ N (0, Id). This result is true for all s > 0 so taking s ↑ +∞, we obtain

δ ≥ P
[∥∥∥Σ1/2G

∥∥∥
S
≥
√
Nr∗

]
.

Using Borell-TIS’s inequality (Theorem 7.1 in Ledoux (2001) or pages 56-57 in Talagrand
(2014)), we know that with probability at least 4/5,

∥∥∥Σ1/2G
∥∥∥
S
≥ E

∥∥∥Σ1/2G
∥∥∥
S
− σS

√
2 log(5/4)

where we set σS = sup‖v‖S=1

∥∥∥Σ1/2v
∥∥∥

2
. As a consequence, for δ = 1/4, we necessarily have

√
Nr∗ ≥ E

∥∥∥Σ1/2G
∥∥∥
S
− σS

√
2 log(5/4) and so

√
Nr∗ ≥ (1/2)E

∥∥∥Σ1/2G
∥∥∥
S

when E
∥∥∥Σ1/2G

∥∥∥
S
≥

2σS
√

2 log(5/4). Finally, when E
∥∥∥Σ1/2G

∥∥∥
S
< 2σS

√
2 log(5/4), we know from (7.21) for δ = 1/4

that

r∗ ≥ 1
12

√
log 4
N

σS ≥
1
24

√
log 2

log(5/4)
E
∥∥∥Σ1/2G

∥∥∥
S√

N
.

Proof of Theorem 7.4. Theorem 7.4 follows from Theorem 7.3 and the following lower bound
on E

∥∥∥Σ1/2G
∥∥∥
Bd2

. We have from Borell-TIS’s inequality that

E
∥∥∥Σ1/2G

∥∥∥2

2
−
(
E
∥∥∥Σ1/2G

∥∥∥
2

)2
= E

(∥∥∥Σ1/2G
∥∥∥

2
− E

∥∥∥Σ1/2G
∥∥∥

2

)2

=
∫ ∞

0
P
[∣∣∣∥∥∥Σ1/2G

∥∥∥
2
− E

∥∥∥Σ1/2G
∥∥∥

2

∣∣∣ ≥ √t] dt ≤ 2σ2
Bd2

where σ2
Bd2

= sup‖v‖2=1

∥∥∥Σ1/2v
∥∥∥2

2
= ‖Σ‖op. Since E

∥∥∥Σ1/2G
∥∥∥2

2
= Tr(Σ), we have

(
E
∥∥∥Σ1/2G

∥∥∥
2

)2
≥

Tr(Σ)− 2 ‖Σ‖op. Therefore, E
∥∥∥Σ1/2G

∥∥∥
2
≥
√

Tr(Σ)/2 when Tr(Σ) ≥ 4 ‖Σ‖op and when Tr(Σ) <
4 ‖Σ‖op, we use the lower bound from (7.21) and an argument similar to the one appearing in
the end of the proof of Theorem 7.3 to get the result.

Proof of Lemma 7.1. We first prove the result for the g∗S function. The one for the f∗S is
similar up to constants and will be sketched after. The proof of Lemma 7.1 for the g∗S function is
a corollary of the general fact which holds under only Assumption 7.1. Let u > 0 be a confidence
parameter and define R∗S such that

4√
NR∗S

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ)

∥∥∥∥∥∥
S

+
√

2u
K

+ sup
v∈S

HN,K,v

R∗S
2

√
N

K

+ |O|
K

<
1
2 . (7.24)

Let us show that with large probability for all µ ∈ Rd, |g∗S(µ)− ‖µ− µ∗‖S | ≤ R∗S .

We have for all µ ∈ Rd,

|g∗S(µ)− ‖µ− µ∗‖S | =
∣∣∣∣∣sup
v∈S

(〈
µ, v

〉
− g(v)

)
− sup

v∈S

〈
v, µ− µ∗

〉∣∣∣∣∣ ≤ sup
v∈S

∣∣〈µ∗, v〉− g(v)
∣∣ = g∗S(µ∗)

(7.25)
where we used that S is symmetric and g is odd. It only remains to show that g∗S(µ∗) ≤ R∗S with
large probability. To that end, it is enough to prove that, with large probability, for all v ∈ S,∑

k∈[K]
I(
〈
X̄k − µ∗, v

〉
> R∗S) < K

2 . (7.26)
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We use the notation introduced in Assumption 7.1 and we consider X̃k = |Bk|−1∑
i∈Bk X̃i for

k ∈ [K] which are the K bucketed means constructed on the N independent vectors X̃i, i ∈ [N ]
before contamination (whereas X̄k are the ones constructed after contamination). We also set
K = {k ∈ [K] : Bk ∩ O = ∅} the indices of the non corrupted blocks. We have∑

k∈[K]
I(
〈
X̄k − µ∗, v

〉
> R∗S) =

∑
k∈K

I(
〈
X̄k − µ∗, v

〉
> R∗S) +

∑
k/∈K

I(
〈
X̄k − µ∗, v

〉
> R∗S)

≤
∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R∗S) + |O|. (7.27)

It only remains to show that with probability at least 1− exp(−u), for all v ∈ S,

∑
k∈[K]

I(
〈
X̃k−µ∗, v

〉
> R∗S) ≤ 4K√

NR∗S
E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

+
√

2uK+K sup
v∈S

HN,K,v

R∗S
2

√
N

K

 .
We define φ(t) = 0 if t ≤ 1/2, φ(t) = 2(t− 1/2) if 1/2 ≤ t ≤ 1 and φ(t) = 1 if t ≥ 1. We have

I(t ≥ 1) ≤ φ(t) ≤ I(t ≥ 1/2) for all t ∈ R and so∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R∗S)

≤
∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R∗S)− P[

〈
X̃k − µ∗, v

〉
> R∗S/2] + P[

〈
X̃k − µ∗, v

〉
> R∗S/2]

≤
∑
k∈[K]

φ

〈X̃k − µ∗, v
〉

R∗S

− Eφ

〈X̃k − µ∗, v
〉

R∗S

+ P[
〈
X̃k − µ∗, v

〉
> R∗S/2]

≤ sup
v∈S

 ∑
k∈[K]

φ

〈X̃k − µ∗, v
〉

R∗S

− Eφ

〈X̃k − µ∗, v
〉

R∗S

+K sup
v∈S

HN,K,v

R∗S
2

√
N

K

 .
Next, we use several tools from empirical process theory and in particular, for a symmetrization

argument, we consider a family of N independent Rademacher variables (εi)Ni=1 independent of the
(X̃i)Ni=1. In (bdi) below, we use the bounded difference inequality (Theorem 6.2 in Boucheron et al.
(2013)). In (sa-cp), we use the symmetrization argument and the contraction principle (Chapter 4
in Ledoux and Talagrand (2011)) – we refer to the supplementary material of M. Lerasle and
Lecué (2017) for more details. We have, with probability at least 1− exp(−u),

sup
v∈S

 ∑
k∈[K]

φ

〈X̃k − µ∗, v
〉

R∗S

− Eφ

〈X̃k − µ∗, v
〉

R∗S


(bdi)
≤ E sup

v∈S

 ∑
k∈[K]

φ

〈X̃k − µ∗, v
〉

R∗S

− Eφ

〈X̃k − µ∗, v
〉

R∗S

+
√

2uK

(sa−cp)
≤ 4K

NR∗S
E sup
v∈S

〈
v,
∑
i∈[N ]

εi(X̃i − µ∗)
〉

+
√

2uK

= 4K√
NR∗S

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

+
√

2uK.

We therefore showed that under Assumption 7.1, with probability at least 1− exp(−u), for
all µ ∈ Rd, |g∗S(µ)− ‖µ− µ∗‖S | ≤ R∗S .
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Now, if Assumption 7.2 holds then for all v ∈ S, we have from Markov’s inequality that

HN,K,v

R∗S
2

√
N

K

 ≤ E
〈
X̃k − µ, v

〉2
(r∗S/2)2 = 4Kv>Σv

N(r∗S)2 ≤
4K supv∈S

∥∥∥Σ1/2v
∥∥∥2

2
N(r∗S)2 ≤ 1

8

and therefore (7.24) holds for R∗S = r∗S when |O| < K/8 and u = K/128. This proves the result
of Lemma 7.1 for g∗S under Assumption 7.2.

Finally, for the function f∗S one needs to control the average of the K/2 inter-quartiles. One
way to do it is to control the value of all elements

〈
X̄k − µ∗, v

〉
in the inter-quartiles interval.

This can be done by defining an R∗S similar to the one in (7.24) but where the right-hand side
value 1/2 is replaced by 1/4 in (7.24). This only modifies the absolute constants which are the
one used in Lemma 7.1.

Proof of Lemma 7.2. Unlike in Lemma 7.1 where we used the Rademacher complexities as
a complexity measure, in this proof, the complexity measure we are using is the Vapnik and
Chervonenkis (VC) dimension Vapnik and Chervonenkis (2015); Vapnik (2000) of a class F of
Boolean functions, i.e. of functions from Rd to {0, 1} in our case. We recall that the Vapnik and
Chervonenkis dimension of F , denoted by V C(F), is the maximal integer n such that there exists
x1, . . . , xn ∈ Rd for which the set {(f(x1), . . . , f(xn)) : f ∈ F)} is of maximal cardinality, that is
of size 2n. The VC dimension of the set of all indicators of half affine spaces in Rd is d+ 1 (see
Example 2.6.1 in van der Vaart and Wellner (1996)). We also know (see, for instance, Chapter 3
in Koltchinskii (2011)) the following concentration bound: let Y1, . . . , Yn be independent random
vectors in Rd, there exists an absolute constant C0 such that for all u > 0, with probability at
least 1− exp(−u),

sup
f∈F

(
1
n

n∑
i=1

f(Yi)− Ef(Yi)
)
≤ C0

√V C(F)
n

+
√
u

n

 . (7.28)

Lemma 7.2 is a corollary of a general result which holds under the only Assumption 7.1.
This general result says that for all u > 0, with probability at least 1− exp(−u), for all µ ∈ Rd,
|g∗S(µ)− ‖µ− µ∗‖S | ≤ R� where R� is any point such that

C0

√d+ 1
K

+
√
u

K

+ sup
‖v‖2=1

HN,K,v

R�
√
N

K

+ |O|
K

<
1
2 (7.29)

where C0 is the constant from (7.28). In particular, when Assumption 7.3 holds then one can
check that (7.29) holds for R� = r� when r� ≤ c0 proving the result of Lemma 7.2. It only
remains to show the general result. To that end we follow the same strategy as in the proof of
Lemma 7.1 up to (7.27) (and with R∗S replaced by R�). From that point, we use (7.28) and the
VC dimension of the set of affine half spaces to get that with probability at least 1− exp(−u),
for all v ∈ S,

∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R�) ≤ HN,K,v

R�
√
N

K

+ C0

(√
d+ 1
N/K

+
√

u

N/K

)

and so by definition of R�, on the same event, for all v ∈ S, ∑k∈[K] I(
〈
X̄k − µ∗, v

〉
> R�) < 1/2.

This concludes the proof.
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Bárány, I. and Mustafa, N. H. (2020). An application of the universality theorem for tverberg
partitions to data depth and hitting convex sets. Computational Geometry, page 101649.

Bartlett, P. L. and Mendelson, S. (2003). Rademacher and gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res., 3(null):463–482.

Bernholt, T. (2006). Robust Estimators are Hard to Compute. Technical Reports 2005,52,
Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in
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Lecué, G. and Lerasle, M. (2020). Robust machine learning by median-of-means: theory and
practice. Ann. Statist., 48(2):906–931.
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Titre : Complexités statistiques et informatiques des problèmes d’estimation robustes en grandes
dimensions.

Mots clés : Robustesse ; Grandes dimensions ; Algorithmes

Résumé : La théorie de l’apprentissage statistique
vise à fournir une meilleure compréhension des pro-
priétés statistiques des algorithmes d’apprentissage.
Ces propriétés sont souvent dérivées en supposant
que les données sous-jacentes sont recueillies par
échantillonnage de variables aléatoires gaussiennes
(ou sous-gaussiennes) indépendantes et identique-
ment distribuées. Ces propriétés peuvent donc être
radicalement affectées par la présence d’erreurs
grossières (également appelées ”valeurs aberrantes”)
dans les données, et par des données à queue
lourde. Nous sommes intéressés par les procédures
qui ont de bonnes propriétés même lorsqu’une par-
tie des données est corrompue et à forte queue,
procédures que nous appelons robustes, que nous
obtenons souvent dans cette thèse en utilisant l’heu-
ristique Median-Of-Mean.
Nous sommes particulièrement intéressés par les
procédures qui sont robustes dans des configura-
tions à haute dimension, et nous étudions (i) com-
ment la dimensionnalité affecte les propriétés sta-
tistiques des procédures robustes, et (ii) comment

la dimensionnalité affecte la complexité computation-
nelle des algorithmes associés. Dans l’étude des pro-
priétés statistiques (i), nous trouvons que pour une
large gamme de problèmes, la complexité statistique
des problèmes et sa ”robustesse” peuvent être en
un sens ”découplées”, conduisant à des limites où le
terme dépendant de la dimension est ajouté au terme
dépendant de la corruption, plutôt que multiplié par
celui-ci. Nous proposons des moyens de mesurer les
complexités statistiques de certains problèmes dans
ce cadre corrompu, en utilisant par exemple la di-
mension VC. Nous fournissons également des limites
inférieures pour certains de ces problèmes.
Dans l’étude de la complexité computationnelle de
l’algorithme associé (ii), nous montrons que dans
deux cas particuliers, à savoir l’estimation robuste de
la moyenne par rapport à la norme euclidienne et
la régression robuste, on peut relaxer les problèmes
d’optimisation associés qui deviennent exponentielle-
ment difficiles avec la dimension pour obtenir un algo-
rithme tractable qui se comporte de manière polyno-
miale dans la dimension.

Title : Statistical and Computational Complexities of Robust and High-Dimensional Estimation Pro-
blems

Keywords : Robustness ; High Dimension ; Algorithms

Abstract : Statistical learning theory aims at provi-
ding a better understanding of the statistical proper-
ties of learning algorithms. These properties are often
derived assuming the underlying data are gathered
by sampling independent and identically distributed
gaussian (or subgaussian) random variables. These
properties can thus be drastically affected by the pre-
sence of gross errors (also called ”outliers”) in the
data, and by data being heavy-tailed. We are inter-
ested in procedures that have good properties even
when part of the data is corrupted and heavy-tailed,
procedures that we call robusts, that we often get in
this thesis by using the Median-Of-Mean heuristic.
We are especially interested in procedures that are
robust in high-dimensional set-ups, and we study (i)
how dimensionality affects the statistical properties of
robust procedures, and (ii) how dimensionality affects
the computational complexity of the associated algo-

rithms. In the study of the statistical properties (i), we
find that for a large range of problems, the statistical
complexity of the problems and its ”robustness” can
be in a sense ”decoupled”, leading to bounds where
the dimension-dependent term is added to the term
that depends on the corruption, rather than multiplied
by it. We propose ways of measuring the statistical
complexities of some problems in that corrupted fra-
mework, using for instance VC-dimension. We also
provide lower bounds for some of those problems.
In the study of computational complexity of the as-
sociated algorithm (ii), we show that in two special
cases, namely robust mean-estimation with respect to
the euclidean norm and robust regression, one can
relax the associated optimization problems that be-
comes exponentially hard with the dimension to get
tractable algorithm that behaves polynomially in the
dimension.

Institut Polytechnique de Paris
91120 Palaiseau, France
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