First, I am sincerely grateful to my supervisor Prof. Michel LENZNER and my cosupervisor, Dr F éd éric ZAMKOTSIAN, for all the precious support and invaluable research advice during my PhD study, especially for their time to read a manuscript carefully and their helpful suggestion of its improvement in time of writing this thesis. I would also like to thank Dr Nicolas RATIER as the third co-supervisor for his valuable discussion, worthy help. All of them are not only my teachers but also my friends, and the time under their supervision marked the maturity of my scientific research.

Second, I would like to express my great appreciation to all the members of the jury, Prof.

Horatiu CIRSTEA, Prof. Antonio GAUDIELLO and Dr Renata BUNOIU-SCHILTZ, for not only their precious time in reading the manuscript, their valuable scientific comments for thesis improvement, but also their exciting questions and worthwhile discussions during my thesis defence.

Third, I would like to offer my special thanks to all my colleagues in the FEMTO-ST institute, especially in the Time-Frequency Department, Dr Duy-Duc Nguyen, a Ph.D Student Santerelli Falzon TETSING TALLA for the scientific discussion and the enthusiastic help in the difficulties of the life in France.

Besides, I would like to extend my sincere thanks to all my Vietnamese friends and the Vietnamese community in Besanc ¸on, where I did the PhD thesis far away from my home country for the appropriate time together. All of them are my second family in France.

Moreover, I would like to express special thanks to all my close friends for their support and encouragement. Although they may be a long way from me, I know that they are always with me in tough times, and I feel that I am probably lucky to have such friends like them.

Furthermore, I would like to express sincere thanks to the Buddhist monks as my spiritual teachers and my inner Buddhist group for their encouragement and assistance. They are one of the tremendous spiritual backbones that helped me through the difficult moments in completing the thesis. With a genuine heart, I would like to thank Bodhisattva Avalokiteshvara, who gave me this chance, a wonderful experience.

iii INTRODUCTION 1.1/ MICRO-MIRROR ARRAY

Let us start with a quick overview of the techniques used in micro-mirror arrays before presenting the one that is the subject of this thesis.

1.1.1/ A SHORT OVERVIEW OF MICRO-MIRROR ARRAY TECHNOLOGIES

Micro-Mirror Arrays, abbreviated as MMAs, are devices related to Micro-Optical-Electromechanical Systems (MOEMS) family with mirrors in their components. The size of the mirror is very small, millimetre-sized, micro-sized, or smaller, with the principal goal being steering or monitoring the light amplitude, the light phase, or both. According to the statistics in 2018 of authors in [START_REF] Song | A review of micromirror arrays[END_REF], there are about 277 MMA designs from 49 companies and 23 academic research groups. They are widely used in various fields such as optics, telecommunications, astronomy, biology, etc.

Figure 1.1: The digital micro-mirror device (DMD) was invented by solid state physicist and Texas Instruments Fellow Emeritus Dr. Larry Hornbeck in 1987. This device is the heart of projection technology which uses millions of mirrors to generate a visual screen. The figure is taken from [START_REF]Ibsen photonics a/s[END_REF].

CHAPTER 1. INTRODUCTION

We now take a brief glimpse at the classification of MMAs, the comprehensive reviews can be found in [START_REF] Hopkins | Categorization and review of existing micro-mirror array technologies[END_REF][START_REF] Pengwang | Scanning micromirror platform based on mems technology for medical application[END_REF][START_REF] Song | A review of micromirror arrays[END_REF]. MMAs can be categorized according to the type of their actuators, including into four groups: electrostatic, electrothermal, piezoeletric, and magnetic.

The fundamental principle of the electrostatic actuator's operation is that the mechanical displacement is caused by the electrostatic forces generated by two conductors when voltages are applied. Based on the configuration and the management of the movement of actuators on activation, they are classified in three groups, see Figure 1.2. The first group is with surface actuators, whose conductors are two parallel planes: one flexible plate and one fixed plate Figure 1.2a. The other groups are with comb drivers, as the conductor configuration is similar to the comb shape. The direction of motion of these actuators can be either same as or perpendicular to the length of comb figures. We denote the former as the in-plane comb drivers, as in Figure 1.2b, and the latter as the out-plane comb drivers, as in Figure 1.2c.

(a) Surface Actuator [START_REF] Waldis | Arrays of high tilt-angle micromirrors for multiobject spectroscopy[END_REF].

(b) In-Plane Comb Actuator [START_REF] Pengwang | Scanning micromirror platform based on mems technology for medical application[END_REF].

(c) Out-Plane Comb Actuator [START_REF] Conant | A flat high-frequency scanning micromirror[END_REF]. Electrothermal actuation is through assembly of components with large differences of thermal expansion coefficients. As a result, when a current is applied to them, they emit heat, leading to the generation of mechanical movements, see Figure 1.3a. Piezoelectric actuation is with piezoelectric materials which can be deformed upon applying a voltage.

It is typical to combine several layers of materials to achieve the desired sizable mechanical displacement, see an example in Figure 1.3b. Magnetic actuation uses the Lorentz force generated by coils when an electric current is applied, see an example in Figure 1.3c.

(a) An electrothermal actuator [START_REF] Jain | A thermal bimorph micromirror with large bi-directional and vertical actuation[END_REF].

(b) A piezoelectric actuator [START_REF] Zhu | A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift[END_REF].

(c) A magnetic actuator [START_REF] Cho | A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices[END_REF]. Another aspect of the classification is based on the kind of mirror surface. Two groups are distinguished, the discrete and the continuous one. In the former, the mirrors are disconnected from that of the adjacent cells, so their movements are independent. In the latter, the mirrors in each cell are continuously linked to each other. In other words, there is only one mirror in the structure of the devices in this group, see Figure 1.4.

The number of mirrored elements in the array depends on the function of the device, can vary from one cell to thousands and can be placed in a one or two dimensional array.

These arrays can be operated following the command algorithms: the direct addressing, line addressing, and the line-column addressing scheme, see more in [START_REF] Braun | Row/column addressing scheme for large electrostatic actuator mems switch arrays and optimization of the operational reliability by statistical analysis[END_REF][START_REF] Canonica | Large micromirror array for multi-object spectroscopy in space[END_REF][START_REF] Canonica | Large Micromirror Array Based on a Scalable Technology for Astronomical Instrumentation[END_REF].

(a) A discrete surface mirror [START_REF] Waldis | Arrays of high tilt-angle micromirrors for multiobject spectroscopy[END_REF].

(b) A continuous surface mirror [START_REF] Cornelissen | 4096-element continuous face-sheet mems deformable mirror for high-contrast imaging[END_REF]. We next introduce MIRA as the MMA that the thesis considers.

1.1.2/ MIRA

For many years the Laboratoire d'Astrophysique de Marseille (LAM) has developed first in a collaboration with EPFL (Switzerland) and recently together with CSEM (Switzerland) an array of electrostatically actuated tilting mono-crystalline silicon micro-mirrors called MIRA, see its top view in Figure 1.5. It has been designed with stringent requirements such as a mirror size of 200 × 100 µm 2 , a title angle of more than 20 o , a filling factor of more than 80%, a contrast ratio of more than 1000, a wavelength bandwidth from visible to IR, an actuation voltage lower than 100V and an operating temperature ranging from room temperature to less than 100K. For more detail see [START_REF] Zamkotsian | Micro-mirror array for multi-object spectroscopy[END_REF].

This project aims to produce a new generation of MMAs devices applied in Multi-Object Spectroscopy (MOS), whose goal is to study the spectral characterization of faint astronomical objects like stars or galaxies. The MIRA is placed on the telescope's focal plane playing a role as a reflective field selector, which allows choosing the astronomical objects, see Figure 1.6.

The MIRA array is a member of the electrostatic actuation group, more precisely belongs in the surface actuation group. When an electrical potential is applied to conductors, an electrostatic force is generated and makes the mirror move towards the electrode placed under the mirror. The tilt angle is achieved by the support of the stopper beam located under the frame. When the voltage is switched off, the restoring force caused by two flexible beams installed under the mirror pulls it back to its resting position.

1.2/ HOMOGENIZATION METHODS

The asymptotic methods are the second main theme of the thesis. More precisely, the models studied belong to the class of periodic homogenization. Thus, we start with the most emblematic example of periodic homogenization, which allows us to situate the contributions of this work. Finally, we take advantage of the presentation of micromirror array technologies to suggest a number of possible applications of asymptotic methods to this field.

1.2.1/ EXAMPLE OF THE PERIODIC HOMOGENIZATION

Let us begin by considering the well-known example introduced in [5,[START_REF] Cioranescu | An introduction to homogenization[END_REF][START_REF] Cioranescu | Homogenization of reticulated structures[END_REF][START_REF] Berlyand | Getting Acquainted with Homogenization and Multiscale[END_REF] as the static heat conduction in a composite material located in a domain Ω illustrated in Figure 1.7 with the homogeneous Dirichlet boundary condition,

       -div(γ∇u) = f in Ω u = 0 on ∂Ω. (1.2.1)
Here u represents the temperature in Ω, f is a given heat source, and γ a thermal conductivity. For simplicity, we consider the material to be isotropic then γ is scalar and assume that it takes distinct constant values γ = γ 1 in Ω 1 and γ = γ 2 in Ω 2 . The structure in Ω has two components: a matrix in Ω 1 with conductivity γ 1 and inclusions in Ω 2 with conductivity γ 2 . We assume that the inclusions have a size in the same order than l and is periodically distributed with period l in each direction.

𝐿

It can be observed that when the number of inclusions increases, their size becomes significantly small compared to the whole domain size. The classical parameter ε of the asymptotic methods is originated from here with ε = l/L. Periodic homogenization con-1.2. HOMOGENIZATION METHODS sists in searching for the homogeneous material whose behavior would approach that of the composite material. In the case of thermics, it is necessary to identify a conductivity matrix of a homogeneous material that leads to a good approximation of the global temperature field while, in a first approach, ignoring the effects of local oscillations due to heterogeneities.

More generally, let us consider a heterogeneous anisotropic composite material in Ω with periodic inclusions with period ε as depicted in Figure 1.8a. The parameter ε is supposed to be very small compared to the whole domain size. The conductivity is thus a conductivity tensor γ ε which has the form γ ε (x) = γ(x/ε) where γ(y) = {γ i j (y)} i, j∈{1,2} is defined in the unit cell Y shown in Figure 1.8b. It is assumed that each entry γ i j ∈ L ∞ (R 2), that the tensor is symetrical i.e. γ i j = γ ji for all i, j ∈ {1, 2} , and that γ is Y-periodic. In addition, γ satisfies the ellipticity condition,

α|ξ| 2 ≤ i, j∈{1,2} γ i j ξ i ξ j ≤ β|ξ| 2 , for all ξ = (ξ 1 , ξ 2) ∈ R 2 ,
for some 0 < α ≤ β.

Taking into account of the dependence of the temperature on ε, equation 1.2.1 is rewritten with the rapidly oscillating coefficient γ ε as

       -div(γ ε ∇u ε) = f in Ω u ε = 0 on ∂Ω. (1.2.2)
For all f ∈ L 2 (Ω), equation 1.2.2 has a unique solution u ε in the Sobolev space H 1 0 (Ω) (1.2.

3)

The homogenization method consists in observing that the solution u ε depends on two scales: a macroscopic scale and a microscopic one. The former is defined by a slow variable x representing the position of a point in Ω. For the latter we use the variable y := x/ε called the fast variable identifying the position of a point in Y. Evidently, the variable y locates whether the position is in Y 1 or in Y 2 , then it identifies the value of the thermal conductivity. Roughly speaking, the variable x is attached to the global behavior of the temperature, while the variable y concerns local effects i.e. microscopic oscillations.

From the point of view of mathematical theory, the passage to the limit when ε goes to 0 leads to many questions as to whether the solution u ε converges to some limit, what kind of convergence it is, whether this limit is a good approximation to u ε , etc. The goal of homogenization theory is to answer such questions.

Under the estimate 1.2.3, an homogenization theorem proves that u ε converges to a limit u 0 in H 1 (Ω) when ε tends to 0, u 0 being a function of x independent of y, i.e. u 0 (x, y) = u 0 (x),

and satisfies the so-called homogenized problem,

       -div x (γ 0 ∇ x u 0) = f in Ω u 0 = 0 on ∂Ω, (1.2.4)
with the homogenized conductivity tensor γ 0 defined by

γ 0 i j = Y γ i j dy - 2 k=1 Y
γ ik ∂χ j ∂y k dy, for all i, j ∈ {1, 2}.

The functions χ j are solutions to the cell problems

             -div y (γ(y)∇ y χ j) = -div y (γ(y)e j) in Y χ j is Y -periodic Y χ j dy = 0 , (1.2.5)
{e j } j=1,2 being the canonical basis in R 2 .

In addition, a classical result yields the following estimate,

u ε -u 0 H 1 (Ω) ≤ Cε 1 2
, so u 0 is a reasonable approximation to u ε when ε is small enough.

Consequently, instead of calculating u ε by solving equation 1.2.2, we can approximate it by u 0 through solving equation 1.2.4 and equation 1.2.5. From a numerical point of view, this is very interesting since solving the two last equations is not too much complex and far less costly than solving equation 1.2.2. Indeed, the homogenized equation is free from ε and then coarser meshes can be used regardless the size of ε.

Besides, the coefficients γ ε of equation 1.2.2 play a role as a main characteristic of the composite material. In practice, it is so useful that the global behavior of this composite material can be described approximately by the behavior of the homogeneous one represented by the coefficients γ 0 of equation 1.2.4.

It is worth noting that there are many homogenization methods to derive the homogenized equation 1.2.4, as the oscillating test function method [START_REF] Tartar | Quelques remarques sur l'homog én éisation. proc. of japan-france seminar 1976 "functional analysis and numerical analysis[END_REF] and [START_REF] Papanicolau | Asymptotic analysis for periodic structures[END_REF], the two-scale convergence initially introduced by Nguetseng [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] and then developed by Allaire [4], the adaption of two-scale convergence method by Casado-Díaz et al. [START_REF] Casado-Díaz | Two-scale convergence for nonlinear dirichlet problems in perforated domains[END_REF][START_REF] Casado-Díaz | An adaptation of the multiscale methods for the analysis of very thin reticulated structures[END_REF], the two-scale convergence method or unfolding method of Lenczner [START_REF] Lenczner | Homog én éisation d'un circuit électrique[END_REF][START_REF] Lenczner | Multiscale model for atomic force microscope array mechanical behavior[END_REF], Cioranescu, Damlamian, and Griso [START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF][START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF] to cite only three. Among the reference books on these subjects, we mention only a few, [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Cioranescu | Homogenization of reticulated structures[END_REF][START_REF] Cioranescu | The periodic unfolding method[END_REF]5,[START_REF] Berlyand | Getting Acquainted with Homogenization and Multiscale[END_REF][START_REF] Oleïnik | Mathematical problems in elasticity and homogenization[END_REF][START_REF] Braides | Homogenization of multiple integrals[END_REF][START_REF] Cioranescu | An introduction to homogenization[END_REF][START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF][START_REF] Marchenko | Homogenization of partial differential equations[END_REF][START_REF] Tartar | The general theory of homogenization: a personalized introduction[END_REF].

In this thesis, we utilize Lenczner's two-scale convergence method to derive the asymptotic models for the electromechanical problem in the two-dimensional MIRA array. We remark that the oscillations of this model are not much due to the coefficients of the partial differential equations but in the geometry of the array. Other applications of asymptotic methods to MMAs are introduced in the following.

1.2.2/ POSSIBLE APPLICATION OF ASYMPTOTIC METHODS TO MMAS

The classification of micromirror arrays in Section 1.1.1 reveals a set of asymptotic modeling possibilities for mechanical problems coupled with electrical or thermal or electromagnetic effects.

Piezoelectric actuators are multi-layered thin plates and as such can be modeled following the asymptotic techniques for thin plates as in [START_REF] Canon | Models of elastic plates with piezoelectric inclusions part i: Models without homogenization[END_REF][START_REF] Geymonat | Plates made of piezoelectric materials: When are they really piezoelectric?[END_REF][START_REF] Via | A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis[END_REF][START_REF] Madureira | Hierarchical modeling of piezoelectric plates[END_REF]. Electrothermal actuation uses thin multilayer plates or beams as piezoelectric actuators. Some actuators in this category can be structured as periodic fingers so that they can be modeled using periodic homogenization in addition. Combdrive actuators can be modeled by periodic homogenization methods for boundaries with large oscillations. This problem has been addressed in [START_REF] Gaudiello | A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode[END_REF] taking into account the electrical potential only. Useful techniques are those of homogenization of oscillating boundary structures which have been extensively studied. A good entry point into the literature is the book of Meln'yk [START_REF] Mel'nyk | Multiple-scale analysis of boundary-value problems in thick multi-level junctions of type[END_REF] and the articles of Gaudiello [START_REF] Gaudiello | Homogenization of the brush problem with a source term in l 1[END_REF] which cite many references. When the combdrive performs a circular motion, the periodicity to be taken into account is in the radial direction.

Modeling of actuation by magnetic coils can be done by periodic homogenization taking into account the quasi-periodicity in the radial direction if the number of coils is large enough.

Some actuators are complex and contain other thin structures, like the beams that support the MIRA mirrors. It is then possible to model them with asymptotic methods dedicated to thin structures and the boundary layer correctors used at their junction to their support.

The type of distribution of the micromirrors, discrete or continuous, introduces another distinction in the homogenization methods that are used in addition to those used at the cell scale. For MMAs with a continuous distribution of micromirrors, if there is no anchoring of each cell to the substrate, the usual theory of periodic homogenization applies with macroscopic components representing the mean fields and microscopic components for local corrections, see the bibliography of the previous section. Conversely, if each cell is anchored, either for a continuous distribution or for a discrete distribution of mirrors, the macroscopic component is null and only the microscopic periodic component remains, which then represents the first order effects. This is the case for MIRA. Then boundary layer correctors play a role at first order and must be taken into account, see the bibliography on homogenization with boundary layer effects in Chapter 2.

1.2.3/ MULTISCALE MODELING OF MIRA

The first contribution to the asymptotic models for the MIRA array is achieved in Duy-Duc

Nguyen's thesis [START_REF] Nguyen | Modeling a micro-mirror array and contribution to development of a simulation of micro-system arrays[END_REF]. In his work, the asymptotic models are derived using the two-scale transform method for the electrostatic problem in the vacuum of one-dimensional array MIRA. The equation is governed as the Poisson system with Dirichlet conditions on the internal boundaries and Neumann conditions on the lateral boundaries.

As we mentioned above, the oscillation of this model does not much come from coefficients of PDE in the geometry. In this case, the coefficients take a constant value 1 since the domain is the vacuum. In addition, the array is a discrete array whose mirrors are independent of each other, and it is assumed that there are two different zones with two distinct constant applied voltages. Thus, as discussed in the previous section, the macroscopic solution will disappear, and the only contribution from the microscopic periodic one is left in the first-order effects to the approximation of potential.

Moreover, as there are two different imposed voltage zones, it produces two periodic models with solutions being periodic with different periods. This leads to the discontinuity of the approximated potential at the interface of two zones. Further, the periodic solutions do not satisfy the boundary conditions at the lateral boundary. Therefore, the correctors at the interface and the lateral boundary are proposed to deal with these problems, then the interface model and the boundary models are investigated. We note that their proofs for these models are compatible with the reference proof in MEMSALab as the goal of software development.

In our thesis, we will further contribute by considering the coupled electromechanical problem in the two-dimensional array MIRA including all the boundary effects that will be discussed more in the following.

1.3/ MEMSALAB SOFTWARE

In order to properly locate the contribution of this thesis to the MEMSALab software, we will introduce an overview of MEMSALab with results already obtained in the development of its package before the start of this thesis in the following.

1.3.1/ MEMSALAB'S OBJECTIVE

In a general sense, a multiscale phenomenon is characterized by the presence of one or more small or large parameters, which constitutes the starting point of the construction of reduced models by asymptotic or singular perturbation methods . These methods are applied to algebraic equations, ordinary differential equations or partial differential equations. Small or large parameters can come from temporal phenomena (e.g large ratios between frequencies) or spatial phenomena (periodic structures with a large number of cells, large variations of coefficients, large ratio between lengths, etc). As we have discussed above, the result of an asymptotic analysis is a system of equations requiring much less computation time than the nominal model. Their mathematical foundations are solid and the resulting models offer a good compromise between precision and computation time. Their major disadvantage is that the construction of models is done on a case by case basis and requires a mathematical expertise, limiting their integration in general simulation software.

This integration is the objective of the MEMSALab project which promises the construction of software ensuring the generation of asymptotic models based on an original principle of reuse, inspired by the way humans operate. It combines two-scale approximation methods established in [START_REF] Lenczner | A two-scale model for an array of afm's cantilever in the static case[END_REF] from mathematics and rewriting methods from theoretical computer science.

1.3.2/ MEMSALAB'S FLOWCHART

A global view of the expected MEMSALab operation is depicted in the flowchart represented in Figure 1.9. A multi-scale model derivation starts with an input Partial Differential Equation (PDE) extracted from a PDE solver (FEM in the figure) and being expressed in the User Language. Together with the features to be taken into account for the asymptotic analysis, they are transmitted to the core that generates the asymptotic model. Then, the latter is sent to the PDE solver for simulation.

Figure 1.9: Expected flowchart of MEMSALab starting from an input PDE and producing an output sent in a simulation tool for PDEs as a finite element method software package (FEM). The input can also be generated by a user thanks to the User Language (UL). The Selector is an interface that selects the multiscale characteristics to be taken into account for building the multi-scale model in the Core.

1.3.3/ PREVIOUS RESULT

We recall the results achieved in the development of MEMSALab before the beginning of this thesis. A language of rewriting strategies for performing steps in mathematical proofs was introduced in [START_REF] Belkhir | A symbolic transformation language and its application to a multiscale method[END_REF]. A grammar of hierarchical description of the objects involved in partial differential equations has been defined in [START_REF] Yang | Computer-aided derivation of multiscale models: A rewriting framework[END_REF]. It includes domains together

with their boundary, variables on domains or boundaries, functions of these variables, operators of these functions and finally partial differential equations with their boundary conditions. Beside, it is possible to write mathematical, arithmetic and logical expressions in this grammar as well as to make symbolic computations on them. Note that the hierarchical description of these objects is consistent with the needs of the formulation and derivation of multiscale models. Rewriting strategies applied to well-structured objects ensure that the performed proof operations are mathematically correct. The concept of extension-combination, recalled below, was announced in [START_REF] Yang | Computer-aided derivation of multiscale models: A rewriting framework[END_REF]. A specific grammar was introduced in [START_REF] Belkhir | Towards an automatic tool for multi-scale model derivation illustrated with a micro-mirror array[END_REF] and [START_REF] Nguyen | A multi-scale model of a micro-mirror array and an automatic model derivation tool[END_REF], but its definitive form, the complete formulas for calculating the combinations and the proof of their correction are completely detailed in a submitted paper [START_REF] Belkhir | Unification and combination of a class of traversal strategies made with pattern matching and fixedpoints[END_REF] whose preliminary version is available in [START_REF] Belkhir | Unification and combination of iterative insertion strategies with one-step traversals[END_REF].

A Domain Specific Language (DSL), written over the OCaml Language [START_REF] Ocaml | Ocaml[END_REF], including all the above grammars and thus allowing the writing of partial differential equations, of strategies of model derivation, of extensions and combinations was introduced in [START_REF] Belkhir | Towards an automatic tool for multi-scale model derivation illustrated with a micro-mirror array[END_REF] and [START_REF] Nguyen | A multi-scale model of a micro-mirror array and an automatic model derivation tool[END_REF] and since, was significantly developed. It allowed the writing of first proofs of asymptotic models as partially reported in [START_REF] Belkhir | A tool for aided multi-scale model derivation and its application to the simulation of a micro mirror array[END_REF] using strategies, extensions and combinations.

This approach is named the extension-combination method which is shortly summarized in the next section.

1.3.4/ THE EXTENSION-COMBINATION METHOD

We first briefly recall from the earlier works [START_REF] Yang | Computer-aided derivation of multiscale models: A rewriting framework[END_REF][START_REF] Belkhir | Towards an automatic tool for multi-scale model derivation illustrated with a micro-mirror array[END_REF] the general theoretical framework in which the software operates. A multiscale model derivation is characterized by the features taken into account in the asymptotic analysis. The mathematical objects are grounded into the three following levels.

1. An input PDE or system of PDEs is defined on a given geometry involving multiple The declaration of such a problem in the user language is given in Figure 1.10.

A proof consists of strategies and implements an asymptotic model derivation.

There is a unique and particular initial proof called the reference proof Proof Ref illustrated in Figure 1.11 which deals with PDE Ref . Indeed, a proof is applied to an input PDE to produce a multiscale model.

3. An extension is made with of other kinds of strategies. Precisely, an extension is an object that takes into account special features of a model. Each extension can be applied to the reference PDE and to the reference proof yielding the extended or the enriched proof. Furthermore, two extensions can be automatically combined or merged to produce another extension that includes the features of the input extensions.

In general, proofs for complex models are incrementally constructed by applying extensions to already existing proofs starting from the reference model, and such extensions can be automatically combined to produce more complex extensions. By construction, the combination of several extensions, e.g. Ext 1 + Ext 2 , is another extension covering all the characteristics of the involved extensions but which is not necessarily correct in the above sense. To reach correctness, it is generally, but not always, necessary to combine Ext 1 + Ext 2 with a complementary extension, e.g. Ext 12 in Figure 1.13. Models based on strategies and extensions have been built but the process of combination has not been fully implemented and therefore used. Indeed, we noticed that the size of the extensions resulting from combinations grows very quickly which prevents a systematic use. However, the good news is that they contain many redundant and inaccessible parts. This raises the question of minimizing or reducing the extensions, which requires additional theoretical work that could not yet be done.

1.4/ THESIS OBJECTIVES

The objectives of the thesis were to contribute to fundamental aspects of the development of the MEMSALab software. For this, it was chosen to start with an initiation to the development of models obtained by asymptotic methods. This was done in the continuity of Duc Duy Nguyen's thesis [START_REF] Nguyen | Modeling a micro-mirror array and contribution to development of a simulation of micro-system arrays[END_REF], i.e. on the modeling of MMAs. The models obtained were to serve as a basis for contributions to MEMSALab. Initially, it was planned to contribute to its library of models based on the extension-combination method. However, as explained in the following, it appeared during the developments that the design of the software suffered from characteristics that could hamper the scaling up to complex problems in the short term. It was then decided to direct the contributions rather towards new principles in the hope that they will open to better long-term perspectives.

Another aspect of MEMSALab that has not yet been systematically addressed is that of its interfacing with software for simulation of boundary value problems. At this level, there are essentially two directions of study. On the one hand, there is the one concerning the representation of multi-scale geometric structures which should be compatible with those used in simulation software such as the Constructive Solid Geometry (CSG), to mention only the simplest one. On the other hand, there is the determination of algorithms for the implementation of multiscale models which often combine in a complex way several sub-models. These algorithms are to be distinguished from those for the resolution of partial differential equations, they are higher level algorithms that build the interactions between the sub-models. It is on this point that the thesis contributes through model implementation in a commercial simulation software, because the implementation in a simulation software of the obtained asymptotic models provides at the same time the algorithm of their implementation. In addition to the interests specific to the development of MEMSALab, the simulations were also done with the concern to provide answers to questions that arose during the design of MIRA. This led to the simulation of the pull-in phenomenon and to the search for parameters that would guarantee a minimum voltage.

Further work has been carried out but has not been completed, so it is not reported in this thesis.

1.4.1/ THESIS'S CONTRIBUTION

We start by constructing asymptotic models of the electromechanical coupling problem in MIRA. The technique of derivation uses the two-scale transform (or unfolding) method.

The aim is to obtain models and their proofs compatible with the extension-combination method based on a reference proof, also called reference algorithm. Much effort has been put into designing proofs in the form of computational steps that can be realized by symbolic computation and expressed by extension of the reference proof. Some mathe-matical justifications have then been sacrificed. For example, the existence of an asymptotic development of the two-scale transformation of the solutions is admitted because this yields significant reduction in proof length without loosing in generality.

As mentioned above, one of the contributions of this thesis concerns the asymptotic models for MIRA. The array is two-dimensional with two zones where the imposed voltages are different. The equations are those of electromechanics coupling the electrostatic one to the linear elasticity system. The two-scale transformation method is used to treat this problem in the same way as in the thesis work of Duy-Duc Nguyen [START_REF] Nguyen | Modeling a micro-mirror array and contribution to development of a simulation of micro-system arrays[END_REF]. Nevertheless, the latter had only treated the asymptotic analysis of the electrostatics problem in a onedimensional array. As in his work, the existence of two regions with different imposed voltages leads to two periodic models: the internal periodic model and the external model whose solutions are both periodic but with distinct periodic cell. As a result, the approximation constructed using these two periodic solutions is discontinuous at the interface of the two regions and does not satisfy the boundary conditions of the physical problem on the lateral border.

To correct these defects, boundary layer models at the interface and at the lateral boundary are constructed. They are constructed separately for each piece of boundary or interface, which leads to further defects. Precisely, since the solution in the vicinity of the outer boundary edges is an assembly of the outer periodic solution and the two boundary layer contributions from the adjacent lateral boundaries, it results a loss of continuity at the edges. The problem is similar to the edges of the interface between the two zones.

To correct these defects, two other correctors are introduced. They are solutions of the so-called outer edge and inner edge models. These models constitute contributions in the field of asymptotic models beyond the particular case of arrays of microsystems such as MIRA. In summary, five types of asymptotic models have been developed: the periodic model, the interface model and the lateral boundary model, and the two edge models. A particular aspect of this work is that all the proofs of the models follow the frame of a reference proof in order to be implementable using the extension-combination method.

In the course of this work, we realized that there is no particular difficulty in applying the two-scale transformation method to the coupled electromechanical system. On the other hand, the difficulties lie in the construction of the boundary layer corrector models. To begin with, it is necessary to choose a suitable two-scale transformation and to understand how the solutions of other models must be taken into account. The reader cannot help but notice that the cumbersome notations make this work unnecessarily difficult to understand. We believe that even if better choices could have been made, the complexity is inherent to the problem of building complex asymptotic models for coupled boundary value problems. This particularity must be properly taken into account in the symbolic computation system.

The asymptotic electrostatics models have been implemented in COMSOL. The approximation of the electric potential is done at each point by summing a periodic solution and, for points close to an boundary or an interface, boundary layer correctors. An example of a complete approximation is provided in the vicinity of an outer edge. It results from the assembly of the periodic exterior solution and the contribution of three correctors: two lateral boundary layer correctors and the one of the edge. Moreover, the pull-in analysis is performed, including the pull-in voltage calculation and its optimization. The pull-in voltage calculation is conducted in one cell by solving an invert problems for the coupled electromechanical problem in COMSOL. Solving this problem is time-consuming as it is a nonlinear one and the mesh generation is also complicated. The reasonably complex algorithm has been developed to treat this problem. A surface response model of the pullin voltage with respect to the two most significant parameters serves as a reduced order.

It has been deployed to avoid long computation time. It is the base of an optimization process done with SIMBAD, a homemade software.

After having been introduced to model building techniques using the asymptotic two-scale transformation method, the aim was to bring contributions to MEMSALab. At this stage we started from the gained experience. The developments of MEMSALab that preceded the thesis led a number of conclusions regarding the design choices that have been done. It turns out that a tree-like data structure is suitable for representing boundary value problems and for applying rewriting strategies, navigation rewriting strategies are efficient even for very large trees, term matching is the tool of choice for hypothesis testing, and rewriting strategies are adequate to perform term transformations necessary for the application of elementary or more complex mathematical properties. As already said, these concepts have been tested by the implementation of a proof algorithm used as a reference in the extension-combination method as well as of some of its extensions. The above conclusions relate to the positive aspects of the design choices that were made.

They have therefore been retained. In the following, we focus on the limitations and the means we had to remedy them.

The previous data structure was implemented in such a way that its modification required a change in the language grammar as well as changes in several places in the core.

Specifically, the kinds of data (index, region, variable, function, operator, pde etc) were defined in the core. The models were described by objects of type pde including other types of objects. As the work evolved it became clear that this data structure was not rich enough to represent a wide variety of multi-scale models. The main limitations were that most of the multiscale features of the physical domains were almost not represented, the referencing of the geometric domains was not complete enough to represent a tree structure of domains at different scales or different submodels, and most importantly, the asymptotic models related to a physical model were built separately from each other, in the sense that a global structure was missing.

For these reasons, we developed a new form of construction for the data structure and the strategy based on forms of abstract syntax trees (AST) called Nodes. As a result, the new data structure is now formulated in a uniform and flexible way with more concepts taken into account, e.g. each data structure field is characterized by its identifier, the domain characteristics are outlined entirely. In addition, the global recursive structure is created with a "subScale" node defining the multiscale characteristics of the models in a vertical architecture and with a "subModel" node detailing the asymptotic model types, e.g., periodic model, boundary layer model, in a horizontal architecture. Generally speaking, the new data structure now possesses more capability to describe a family of asymptotic models as models of a thin structure, models of PDEs with strongly heterogeneous coefficients, models with oscillating boundaries, models with multiple scales, various boundary layer problems, a combination of these asymptotic characteristics. Further, another notable achievement is that the strategy is now independent of the data structure. This improvement step has a significant contribution to the algorithmic construction. The strategy now can be manufactured generally with an extensive range of functions.

The next step was the validation of the data structure using the asymptotic models of MIRA. Given their complexity, it appeared that an intermediate step before the implementation of proofs by the extension-combination method would be essential. It was decided to replace the proofs by a so-called direct method which consists in obtaining the asymptotic models by direct transformation of physical models, and by taking into account the asymptotic characteristics stored in the data structure. In other words, for each model the direct method is equivalent to applying a strategy corresponding to the statement of the corresponding theorem. Precisely, the strategy verifies the hypotheses and transforms the physical problem into the asymptotic model that is written at the dedicated place of the data structure. Thus, for an instance of each of the five asymptotic models of the electrostatics problem, the data structure content has been precisely detailed and the strategy for applying the corresponding theorem has been expressed as a meta-algorithm based on elementary strategies.

As mentioned above, rewriting strategies are very efficient on complex data structures stored in tree form. They are well adapted to hypothesis testing and to the application of mathematical rules even if they are complex. More specifically, this approach is well suited to represent partial differential equations and to apply mathematical properties to them. On the other hand, we find that they are not appropriate to manage a system of hypotheses and conclusions for a "large" corpus of theorems. For example, if we consider a number of theorems whose hypotheses and conclusions do not differ much from each other, we would need a classification system that would allow us to select the right conclusions corresponding to a set of hypotheses. After a lot of research and various attempts, especially with different logic systems, we came to the conclusion that the Description Logic (DL) used for ontology representation could fulfill this function. Indeed, description logic uses sets of individuals and allows to define operations on sets and relations between sets or individuals. In itself, this is sufficient to define classifications. Of course DL also allows other operations such as the use of elementary data like strings or numbers.

Once this solution was identified, it remained to know how to interface the two worlds, that of rewriting on trees and that of ontologies. Moreover, it soon became clear that it makes no sense to represent equational expressions in an ontology, which is obviously not appropriate for this purpose, and that conversely, it would be interesting to store relational information between objects in the ontology that cannot be expressed by a tree structure. In short, it seemed more natural to have two separate representations, one of the data tree for boundary problems, their assumptions and asymptotic models and the other of the ontology. Since we want to represent theorem applications, we need to be able to represent the rewriting strategies in addition to the data. Thus, the work that was done was to build a correspondence between a rewriting system made of terms and rewriting strategies and an ontology in order to be able to build the necessary interactions between the two systems. For example, it is necessary that a strategy can enrich the ontology or query it, while the ontology must be able to store information about the success of a strategy applied to a term.

1.4.2/ THESIS'S ORGANIZATION

In addition to Chapter 1 for the introduction, the thesis is comprised of the following chapters. A noteworthy point with respect to MEMSALab is that the proof of each model has been designed to be implementable following the extension-combination method.

More precisely, the proofs made for the electrostatic model are all variations of the same reference proof so that they are prepared to be expressed as extensions of the latter. Those made for the elasticity model follow the same pattern so that they are also prepared to be obtained as extensions or even by combining the extensions of the electrostatic models with the extension from the electrostatic problem to the elasticity system. and the existence of various scales in its complicated structure. One approach to overcome this difficulty is to use an approximate model with accepted error obtained by deploying asymptotic methods for periodic problems, [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Tartar | The general theory of homogenization: a personalized introduction[END_REF][START_REF] Cioranescu | Introduction to homogenization[END_REF].

In this chapter, we derive two-scale models of the device MIRA designed by [START_REF] Canonica | Large Micromirror Array Based on a Scalable Technology for Astronomical Instrumentation[END_REF]. First models were investigated in Duc Duy Nguyen's thesis [START_REF] Nguyen | Modeling a micro-mirror array and contribution to development of a simulation of micro-system arrays[END_REF]. In his work, multi-scale models of a one-dimensional array have been constructed for the electrostatic problem by utilizing the unfolding method [START_REF] Lenczner | Homog én éisation d'un circuit électrique[END_REF][START_REF] Cioranescu | The periodic unfolding method[END_REF][START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF][START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF][START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF][START_REF] Casado-Díaz | Two-scale convergence for nonlinear dirichlet problems in perforated domains[END_REF]] also called two-scale convergence since it generalizes the two scale convergence introduced in [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] and developed in [4].

The modeling was including boundary layer models at the lateral boundaries and at interfaces between zones of different actuations. In our work, we continue to contribute to the modeling by considering two-dimensional arrays of the same micromirrors governed by the equations of electrostatics coupled with those of linear elasticity.

We assume that the array is divided into two zones where the actuation is uniform. The electrostatic potential and the mechanical displacement of the asymptotic model are periodic in each of these zones. As a result, the electrostatic field and its normal derivative as well as the field of the mechanical displacements and the normal stress vectors are discontinuous at those interfaces. In addition, they do not satisfy the boundary conditions at the lateral boundaries of the array. To get rid of defects, boundary layer correctors are introduced at the interfaces and at the lateral boundaries. Besides, these corrections are formulated separately on each face of the interfaces and of the lateral boundaries, leading to the discontinuity of the sum of their contribution at the face junctions, namely at the edges. Then, boundary layer correctors are also introduced at the edges.

Boundary layer problems in the homogenization problems have been much investigated, e.g. see in [START_REF] Bensoussan | Boundary layers and homogenization of transport processes[END_REF]6,[START_REF] Prange | Asymptotic analysis of boundary layer correctors in periodic homogenization[END_REF][START_REF] Masmoudi | Recent progress in the theory of homogenization with oscillating dirichlet data[END_REF][START_REF] Griso | Error estimates in periodic homogenization with a non-homogeneous dirichlet condition[END_REF][START_REF] Shen | Boundary estimates in elliptic homogenization[END_REF][START_REF] Masmoudi | Homogenization and boundary layers[END_REF][START_REF] Masmoudi | Homogenization in polygonal domains[END_REF][START_REF] Amirat | Asymptotics of simple eigenvalues and eigenfunctions for the laplace operator in a domain with an oscillating boundary[END_REF][START_REF] Neuss | Effective laws for the poisson equation on domains with curved oscillating boundaries[END_REF]. In this work, our contribution is to derive interface, edge and internal edge corrector models which have not been studied yet. In total, we derive five kinds of models with the following features: periodic solution, lateral boundary layer, interface boundary layer, internal edge boundary layer, and exterior edge boundary layer, see in Figure 2.1. For each kind, we provide only one model instance, the other ones being obtained without difficulty.

As stated in the thesis introduction, this work is carried out with the perspective of developing symbolic computation algorithms for model building. Thus, particular attention is paid to the algorithmic structure of the model proofs and here we have endeavored to write them all following the framework of a single algorithm. Variations from this reference algorithm can be expressed by the extension-combination method. Here, we do not expose this aspect but it has been the subject of our work [START_REF] Belkhir | A tool for aided multi-scale model derivation and its application to the simulation of a micro mirror array[END_REF] achieved for simpler models but for the same algorithm. Notice that a complete theory of extension-combination is available in [START_REF] Belkhir | Unification and combination of iterative insertion strategies with one-step traversals[END_REF] while an extended version has been submitted for a journal publication.

It can be observed that in the above mentioned algorithm, most of the operations are done on a very weak formulation instead on a weak formulation as it is usual. This leads to shortened proof lengths due to the absence of need of weak convergences of derivatives. Another characteristic of our choice in designing symbolic computation algorithm is to adopt a compromise between assumptions and algebraic computations. Thus our attention is more on calculations that can be algebraized than on fine mathematical analysis. In our algorithm, we assume priori estimates on the physical solutions. Thus in the following model derivations, we adopt the same assumptions which apply to the solution as well as to the boundary layer correctors. In addition, the boundary layer correctors and their gradients are assumed to converge exponentially to zero at infinity. This might be proven as e.g. [6,[START_REF] Tartar | The general theory of homogenization: a personalized introduction[END_REF]. Another characteristic of this work, which shows the interest of having models automatically derived, is the choice to deal with a real problem whose complexity exceeds by far the one usually treated in academic works. While the complexity of the MIRA cells is not so high, nevertheless its handling in the framework of asymptotic methods quickly leads to having to manage extremely heavy notations, which is quickly prohibitive for a manual treatment. In this sense, this work provides a very interesting (indeed precious) family of models to guide the development of a rather general symbolic computation tool. Still in the perspective of developing systematic proofs, despite the fact that the imposed electric voltage is assumed to be piecewise constant in the MIRA, it is treated as if it could be continuously varying inside some zones and discontinuous at their interface. This leads to additional boundary layer effects that could find applications for other devices.

As the model proofs all follow the same pattern, it would be unnecessarily long to write them all in detail. It has been chosen to detail them for the first models, then to reduce them for the next ones. On the other hand, in the mechanical models, the electrostatic force is assumed to converge to some limits which form has not yet been investigated, however it is in the scope of our algorithm to establish it. In this regard, we mention that the approach of [START_REF] Gaudiello | A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode[END_REF] to pass to the limit in the electrostatic force in a model of comb actuator seems to be a possible solution.

Finally, we mention that the asymptotic models derived in this chapter are used to illustrate the data structure reported in the second part of the thesis as well as our new approach of model representation combining rewriting techniques with description logic based ontologies. For the sake of simplicity but without losing generality, we consider that Ω is split into two zones Ω 1 and Ω 2 in which the imposed voltages noted as V 1 and V 2 are different.

Hereafter, we add the subscripts 1, 2 in geometrical notations to represent to which zones they belong, for example, Ω vac 1 and Ω vac 2 is a vacuum part of Ω 1 and Ω 2 , Γ vac 1,int and Γ vac 2,int is the internal boundary of Ω vac 1 and Ω vac 2 , and note that all previous geometrical notations without the subscripts 1, 2 now are understood as a union of two elements related to zones Ω 1 and Ω 2 , e.g.

Γ vac int = Γ vac 1,int ∪ Γ vac 2,int
. The field of electric potential φ in the vacuum is governed by the equation of electrostatics, see [START_REF] Griffiths | Introduction to electrodynamics, prentice hall upper saddle river[END_REF],

             -∆φ = 0 in Ω vac φ = V on Γ vac int ∇φ • n = 0 on Γ vac ext , (2.2.1)
where V is the imposed voltage taking two distinct constant values V 1 in Ω 1 and V 2 and Ω 2 , and n is the outward unit normal vector. The continuity of the potential and the electrostatic field at the interface Γ vac inter f of Ω vac 1 and Ω vac 2 are given as

φ |Ω vac 1 = φ |Ω vac 2 and ∇φ |Ω vac 1 • n 1 = -∇φ |Ω vac 2 • n 2 ,
where n 1 and n 2 are the outward unit normal vectors of Ω vac 1 and

Ω vac 2 on Γ vac inter f , n 1 = -n 2 . CHAPTER 2. ASYMPTOTIC MODELS FOR 2D ARRAY MIRA Let us introduce a Hilbert space H 1 Γ vac int ,0 (Ω vac) {v ∈ H 1 (Ω vac), v = 0 in Γ vac int } endowed with the norm v H 1 Γ vac int ,0 (Ω vac) = ∇v L 2 (Ω vac) , for all v ∈ H 1 Γ vac int ,0 (Ω vac). Then a variational problem of (2.2.1) is to find φ ∈ H 1 Γ vac int ,V (Ω vac) {φ ∈ H 1 (Ω vac), φ = V in Γ vac int } such that Ω vac ∇φ∇v dx = 0, for all v ∈ H 1 Γ vac int ,0 (Ω vac)
. The mechanical behavior is described by a displacement u = (u 1 , u 2 , u 3). The mechanical deformations are caused by the electrostatic force generated by the difference of imposed voltages between the mirror and the electrode. They are solutions to the following linearized elasticity system for homogeneous isotropic material, see [START_REF] Mase | Continuum mechanics for engineers[END_REF]. In this part, the Einstein summation convention is employed to reduce formulas.

             -∂ j (λe pp (u)δ i j + 2µe i j (u)) = f i in Ω mec u = 0 on Γ mec 0 (λe pp (u)δ i j + 2µe(u))n j = g i in Γ mec 1 , (2.2.2)
where λ and µ are the Lam é constants, e(u) = (e i j (u)) i j is a linearized strain tensor defined by

e i j (u) = 1 2 ∂ i u j + ∂ j u i , f = (f 1 , f 2 , f 3)
is the external body force density and g = (g 1 , g 2 , g 3) is the electrical force per unit area applied on the surface of conductors oriented along the outward normal vector n of Γ vac int . It is given by, see [START_REF] Kovetz | Electromagnetic theory[END_REF],

g = 1 2 0 |E| 2 n, (2.2.3)
where E = -∇φ is the electrical field and 0 is the vacuum permittivity. The continuity of the displacement u and the normal stress tensor at the interface Γ mec inter f between Ω mec 1 and Ω mec 2 are given as

u |Ω mec 1 = u |Ω mec 2 and (λe pp (u)δ i j + 2µe(u)) |Ω mec 1 n 1 j = -(λe pp (u)δ i j + 2µe(u)) |Ω mec 2 n 2 j ,
where n 1 and n 2 are the outward normal vectors of Ω mec

1
and Ω mec 2 at Γ mec inter f , n 1 = -n 2 . We now introduce a linearized stress tensor σ(u), thank to the Hooke's law in the linearized elasticity,

σ(u) = λ (∇ • u)I + 2µe(u) or σ i j (u) = λe pp (u)δ i j + 2µe i j (u),
where I is the 3 × 3 identity matrix. Hence (2.2.2) takes the shorter form

             -divσ(u) = f in Ω mec u = 0 on Γ mec 0 σ(u)n = g in Γ mec 1 .
(2.2.4)

We introduce the Hilbert space H 1

Γ mec 0 ,0 (Ω mec) {v = (v 1 , v 2 , v 3), v i ∈ H 1 (Ω mec), v i = 0 on Γ mec 0 } with the norm v H 1 Γ mec 0 ,0 (Ω mec) =         3 i=1 ∇v i 2 L 2 (Ω mec)         1/2
, 3 . Multiplying both sides of (2.2.2) by a vector test function v of H 1 Γ mec 0 ,0 (Ω mec) and integrating over Ω mec , by the partial integration formula, we obtain

and assume that f ∈ L 2 (Ω mec) [L 2 (Ω mec)] 3 and g ∈ L 2 (Γ mec 1) [L 2 (Γ mec 1)]
Ω mec (λe pp (u)δ i j + 2µe i j (u))∂ j v i dx = Ω mec f i v i dx + Γ mec 1 g i v i ds(x).
It is easily seen that δ i j ∂ j v i = ∂ j v j = e qq (v) and ∂ j v i = e i j (v) + e i j (v), where e i j is defined by

e i j (v) = ∂ i v j -∂ j v i /2
. Since e i j (u) is symmetric and e i j (v) is anti-symmetric then we get

e i j (u)∂ j v i = e i j (u)e i j (v). The weak form of (2.2.2) is to find u ∈ H 1 Γ mec 0 ,0 (Ω mec) such that Ω mec (λe pp (u)e qq (v) + 2µe i j (u)e i j (v))dx = Ω mec f i v i dx + Γ mec 1 g i v i ds(x), (2.2.5)
for all v ∈ H 1 Γ mec 0 ,0 (Ω mec).

2.3/ ASYMPTOTIC ANALYSIS NOTATIONS AND SOME LEMMAS

In this part, we introduce Landau Symbols, the big O and the small o, for more details see in [START_REF] Eckhaus | Matched asymptotic expansions and singular perturbations[END_REF] and [START_REF] Cousteix | Analyse asymptotique et couche limite[END_REF].

Definition 1:

Let ϕ(x, ε) and ψ(x, ε) be real functions of the variable x varying in a domain D ⊂ R 3 and of the parameter 0 < ε ≤ ε 0 , ε 0 a given positive number and assume that ψ(x, •) 0 for all x ∈ D. We say that:

1. The big O: ϕ(x, ε) = O(ψ(x, ε)) in D if only if there exists a constant C such that for all x ∈ D, |ϕ(x, ε)| ≤ C|ψ(x, ε)| for ε small enough . 2. The big O of 1: ϕ(x, ε) = O(1) in D if only if there exists a constant C such that for all x ∈ D, |ϕ(x, ε)| ≤ C
for ε small enough. This is a special case of the first item.

3.

The small o:

ϕ(x, ε) = o(ψ(x, ε)) in D if only if |ϕ(x, ε)|/|ψ(x, ε)| → 0 as ε → 0 for all x ∈ D such that ψ(x, ε) 0. 4. The small o of 1: ϕ(x, ε) = o(1) in D if only if |ϕ(x, ε)| → 0 as ε → 0 for all
x ∈ D such that ψ(x, ε) 0. This is a special case of the third item.

Example: sin(x) = O(1), ε 3 = o(ε 2).

Definition 2:

Let Y a subset of R 3 defined as Y =]-h i /2, h i /2[3 with outward normal vector n, where h i is a positive number, i ∈ I = {1, 2, 3} and γ be a subboundary of ∂Y such that γ is a union of pairs of parallel planes that are also subboundaries of ∂Y. Let ϕ be a function defined a.e on R 3 and {e 1 , e 2 , e 3 } be a canonical basis vector of R 3 .We say that:

1. ϕ is Y-periodic in a direction e i , for i ∈ I if only if ϕ(x + ke i h i) = ϕ(x) a.e on R 3 for all k ∈ Z.
2. ϕ is γperiodic if only if for all x ∈ γ there exists x ∈ γ such that ψ(x) = ψ(x)

, x = x + h i e i for some i ∈ I.

3.

ϕ is γantiperiodic if only if for all x ∈ γ there exists x ∈ γ such that ψ(x) = -ψ(x) , x = x + h i e i for some i ∈ I.

With this definition, we have some following lemmas.

Lemma 1:

If ϕ is in L 2 (Y) such that Y ϕv dx = 0, for any v ∈ C ∞ 0 (Y) then ϕ = 0 a.e in Y.
Lemma 2:

If for any v ∈ C ∞ 0 (Y) such that γ ϕ∇v • n ds (x) = 0 then ϕ = 0 a.e on γ.
Lemma 3:

If for any v ∈ C ∞ (Y), Y -periodic in the periodic direction such that γ ϕ∇v • n ds(x) = 0, resp γ v∇ϕ • n ds(x) = 0.
then ϕ is γperiodic, resp. ∇ϕ • n is γantiperiodic.

2.4/ GLOBAL SCALINGS

Let us introduce the dimensionless small parameter ε = min{l i /L j } over i, j ∈ {1, 2, 3} which is the characteristic parameter of our asymptotic methods. We study the behavior of solutions to the above models when ε tends to 0 for fixed L i . First of all, we deploy a superscript ε for all geometrical notations, normal vectors, variables, functions, and etc, for example Ω ε , Γ ε,vac int , n ε , x ε , φ ε instead of Ω, Γ vac int , n, x, φ, resp. Due to the array size is very small, we introduce a space scale L, a magnitude of the array size, to make a scaling of the array and its cells by putting x ε = x ε /L that yields a scaling of Ω ε into Ω ε and Ω ε c into Ω ε c with sizes L i = L i /L and l i = l i /L for i = 1, 2, 3, resp. We now add a hat • into all geometrical notations to represent new scaled domains and their boundaries, i.e Ω ε,vac , Γ ε,vac int are scaled regions of Ω ε,vac , Γ ε,vac int and add the variables as subscripts to operators such as Laplace ∆, Divergence div to indicate these operators with respect to the variables. For instance, ∆ x ε , div x ε and ∆ x 1 , div x 1 are Laplace, Divergence operators of the variables x ε , resp x 1 .

In particular, we note that the parameter ε = min{l i /L j } = min{ l i / L j } is remained unchanged. As a simplifying approach, we assume that l i = ε for all i = 1, 2, 3 then the volume of a scaled cell and the scaled array are

Ω ε c = i l i = ε 3 and |Ω ε | = i L i = ε.
From now on, we say ε tends to 0 in the sense that the number of cells in the array

N c = n 1 × n 2 → +∞ with ε = 1/N c .
We now deal with the scaling for the electrostatic potential and the mechanical displacement. In the electrostatic part, the space scale L is reused, we set V ε = V ε /L and φ ε = φ ε /L and the electrostatic force (2.2.3) is left unchanged g ε = g ε , with

g ε = -1 2 0 | E ε | 2 n ε
, where E ε is the electrical field of the scaled potential φ ε . Plugging these new scaled fields into the equation (2.2.1), we obtain the following equations for the

scaled potential φ ε ,                -∆ x ε φ ε = 0 in Ω ε,vac φ ε = V ε on Γ ε,vac int ∇ x ε φ ε • n ε = 0 on Γ ε,vac ext .
(2.4.1)

In the linear elasticity part, we propose the scaled displacement u ε = u ε /εL and the scaled external force f ε = εf ε /L, then them into (2.2.4), we get the scaled linear elasticity sytems,

               -div x ε σ x ε (u ε) = ε -2 f ε in Ω ε,mec u ε = 0 on Γ ε,mec 0 σ x ε (u ε) n ε = ε -1 g ε in Γ ε,mec 1 .
(2.4.2)

Remark 1:

For simplicity of notation, we hereafter remove the hat • from all the notations, for instance, Ω ε,mec , φ ε replaces Ω ε,mec , resp. φ ε , and we employ the notation Γ referring to a subboundary of a domain with name sharing with the domain name, for example, Γ ε,vac is a subboundary of Ω ε,vac .

2.5/ TWO-SCALE TRANSFORM OPERATORS AND THE PROOF AL-GORITHM

In this section, we recall the two-scale transform operator or unfolding operator in a domain introduced in [START_REF] Lenczner | Homog én éisation d'un circuit électrique[END_REF][START_REF] Cioranescu | The periodic unfolding method[END_REF][START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF][START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF][START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF][START_REF] Casado-Díaz | Two-scale convergence for nonlinear dirichlet problems in perforated domains[END_REF], and define the boundary two-scale transform operator equivalent to the boundary unfolding operator found in [START_REF] Cioranescu | Periodic unfolding and robin problems in perforated domains[END_REF][START_REF] Lenczner | A two-scale model for an array of afm's cantilever in the static case[END_REF]. These operators are used to build the periodic solution model. For each of the other four models, specific two-scale transformations will be introduced in the related sections. The last part of this section is devoted to the formulation of the algorithm that underlies all the model constructions in this chapter.

2.5.1/ INTERNAL TWO-SCALE TRANSFORM OPERATOR

Let us begin by introducing

Ω ⊂ R 2 such that Ω ε = Ω ×]0, ε[with a partition Ω c c
where For all ϕ in L 2 (Ω ε), the two-scale transform operator T ε is defined as

Ω c = [(c 1 -1)ε, c 1 ε[×[(c 2 -1)ε, c 2 ε[, c = (c 1 , c 2) ∈ I mul ,
T ε (ϕ)(x , x 1) = c χ Ω c (x)ϕ(x ε,c + εx 1),
for all x ∈ Ω and x 1 ∈ Ω 1 , where χ is the characteristic function.

Proposition 1:

The two-scale transform operator has the following properties:

1. T ε is a linear and continuous operator from L 2 (Ω ε) to L 2 (Ω × Ω 1).

2.

For every ϕ, ψ ∈ L 2 (Ω ε), T ε (ϕψ) = T ε (ϕ)T ε (ψ).

3.

For every ϕ ∈ L 1 (Ω ε), we have

Ω ε ϕ dx ε = ε Ω ×Ω 1 T ε (ϕ) dx dx 1 . 4. For every ϕ ∈ L 2 (Ω ε), we obtain ϕ L 2 (Ω ε) = √ ε T ε (ϕ) L 2 (Ω ×Ω 1)
.

For all

ϕ ∈ H 1 (Ω ε), ∇ x 1 T ε (ϕ) = εT ε (∇ x ε ϕ)
Proof. By Definition 3, we obtain (1) and (2) and by changing a variable

x ε = x ε,c + εx 1 yields Ω ×Ω 1 T ε (ϕ) dx dx 1 = c Ω c ×Ω 1 ϕ(x ε,c + εx 1)dx dx 1 = 1 ε 3 c Ω c Ω ε c ϕ(x ε)dx ε = 1 ε Ω ε ϕ dx ε .
From that, (3) and (4) are straightforward.

We now prove (5), for a fixed ε, let ϕ be in W 1,2 (Ω ε). By density, there exists {ϕ n } in

C 1 (Ω × Ω 1) ∩ W 1,2 (Ω ε) such that ϕ n converges to ϕ in W 1,2 (Ω ε) then we obtain ∇ x 1 T ε (ϕ n) = εT ε (∇ x ε ϕ n). By (1), it follows that T ε (ϕ n) -→ T ε (ϕ) strongly in L 2 (Ω × Ω 1) and T ε (∇ x ε ϕ n) -→ T ε (∇ x ε ϕ) strongly in L 2 (Ω × Ω 1). It leads to ∇ x 1 T ε (ϕ) = εT ε (∇ x ε ϕ).

Remark 2:

The new norm ||| • |||= ε -1/2 • is designed to avoid the factor ε 1/2 from the height of a thin domain.

We next recall the adjoint operator of T ε and its properties.

Definition 4:

For every ϕ ∈ L 2 (Ω ε), define the adjoint operator T ε * of T ε by

1 ε Ω ε ϕT ε * (ψ) dx ε = Ω ×Ω 1 T ε (ϕ)ψ dx dx 1 , for all ψ ∈ L 2 (Ω × Ω 1).
From this definition, we obtain the explicit formula of T ε * ,

T ε * (ψ) x ε = 1 ε 2 c Ω c ψ x , x ε -x ε,c ε dx χ Ω ε c x ε . (2.5.1)
It is evident that T ε * (ψ) is not regular. Then we will define the smoothing operator to approximate it.

Let us assume that ψ ∈ C 1 (Ω × Ω 1) and the second derivative of ψ with respect to x i exists for all i = 1, 2, then we apply the Taylor formula for ψ at a point ((

x ε 1 , x ε 2), (x ε -x ε,c)/ε) with respect to x : ψ(x , (x ε -x ε,c)/ε) = ψ((x ε 1 , x ε 2), (x ε -x ε,c)/ε) + (x 1 -x ε 1)∂ x 1 ψ((x ε 1 , x ε 2), (x ε -x ε,c)/ε) + (x 2 -x ε 2)∂ x 2 ψ((x ε 1 , x ε 2), (x ε -x ε,c)/ε) + εO(ε).
The approximation of the integral is

Ω c ψ x , x ε -x ε,c ε dx χ Ω ε c x ε = Ω c ψ (x ε 1 , x ε 2), x ε -x ε,c ε dx χ Ω ε c x ε + Ω c (x 1 -x ε 1)∂ x 1 ψ (x ε 1 , x ε 2), x ε -x ε,c ε dx χ Ω ε c x ε + Ω c (x 2 -x ε 2)∂ x 2 ψ (x ε 1 , x ε 2), x ε -x ε,c ε dx χ Ω ε c x ε + Ω c εO(ε)dx χ Ω ε c x ε = ψ (x ε 1 , x ε 2), x ε -x ε,c ε |Ω c |χ Ω ε c x ε + O(ε)|Ω c |χ Ω ε c x ε .
Plugging it into (2.5.1), we obtain

T ε * (ψ) x ε = 1 ε 2 c ψ (x ε 1 , x ε 2), x ε -x ε,c ε |Ω c |χ Ω ε c x ε + 1 ε 2 c O(ε)|Ω c |χ Ω ε c x ε = c ψ (x ε 1 , x ε 2), x ε -x ε,c ε χ Ω ε c x ε + O(ε).
It leads to define a smoothing operator B ε in order to approximate T ε * .

Definition 5:

For all ψ ∈ C 1 (Ω × Ω 1), the operator B ε is defined as follows

B ε (ψ)(x ε) = ψ P(x ε), x ε ε - 1 2 ,
where

P(x ε) = (x ε 1 , x ε 2)
.

Proposition 2:

For all ψ in C 1 (Ω × Ω 1) and Ω 1 -periodic in the directions x 1 1 and x 1 2 , we have

T ε * (ψ) x ε = B ε (ψ)(x ε) + O(ε).

Proposition 3:

Let ϕ ε be a sequence in L 2 (Ω ε) that satisfies

||| ϕ ε ||| L 2 (Ω ε) ≤ C and ε ||| ∇ x ε ϕ ε ||| L 2 (Ω ε) ≤ C.
Then, there exist a subsequence (still denoted ε) T ε (ϕ ε) and a function ϕ 0 in

L 2 (Ω ; H 1 Ω 1), Ω 1 -periodic in directions x 1 1 , x 1 2 , such that
1. i.: T ε (ϕ ε) ϕ 0 weakly in L 2 (Ω × Ω 1), 2. ii.: εT ε (∇ x ε ϕ ε) ∇ x 1 ϕ 0 weakly in L 2 (Ω × Ω 1)
.

Remark 3:

In this chapter, the value of a constant C will be changed place by place.

Let us briefly recall the definition of two-scale convergence for a thin domain, see in [START_REF] Maru Ši Ć | Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics[END_REF], arising from the classical two-scale convergence which was originally introduced in [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]4], see also [START_REF] Zhikov | On an extension and an application of the two-scale convergence method[END_REF].

Definition 6:

A bounded sequence ϕ ε in L 2 (Ω ε , ||| • |||) is said to be two-scale convergent to a limit ϕ 0 belonging to L 2 (Ω × Ω 1) if, for any smooth function ψ defined in Ω × Ω 1

and Ω 1 -periodic in the directions x 1 i , i = 1, 2, we have

1 ε Ω ε ϕ ε (x ε)ψ (x ε 1 , x ε 2), x ε ε - 1 2 dx ε → Ω ×Ω 1 ϕ 0 (x , x 1)ψ(x , x 1) dx dx 1 .
The following result proves that the weak convergence of the two-scale transform operator is equivalent to the original two-scale convergence.

Proposition 4:

Let ϕ ε be a bounded sequence in L 2 (Ω ε , ||| • |||), then the following properties are equivalent

1. T ε (ϕ ε) converges weakly to ϕ 0 in L 2 (Ω × Ω 1),
2. ϕ ε two-scale converges to ϕ 0 .

Proof. By the definition of B ε , we can write

1 ε Ω ε ϕ ε (x ε)ψ (x ε 1 , x ε 2), x ε ε - 1 2 dx ε = 1 ε Ω ε ϕ ε (x ε)B ε (ψ)(x ε) dx ε .
By Proposition 2 and definition of the adjoint operator, it follows that

1 ε Ω ε ϕ ε (x ε)B ε (ψ)(x ε)dx ε = 1 ε Ω ε ϕ ε (x ε)T ε * (ψ)(x ε) dx ε + 1 ε Ω ε ϕ ε (x ε)O(ε) dx ε = Ω Ω 1 T ε (ϕ ε)(x , x 1)ψ(x , x 1) dx dx 1 + O(ε).
And we obtain the result.

2.5.2/ BOUNDARY TWO-SCALE TRANSFORM OPERATOR

We introduce the two-scale transform operator T ε b defined on the boundary of Ω ε equivalent to the boundary unfolding operator found in [START_REF] Cioranescu | Periodic unfolding and robin problems in perforated domains[END_REF].

Definition 7:

Let Γ ε be a periodic internal subboundary of ∂Ω ε , Γ 1 be a subboundary of ∂Ω 1 , for all ϕ in L 2 (Γ ε), we define the boundary two-scale transform operator T ε b by

T ε b (ϕ)(x , x 1) = c χ Ω c (x)ϕ(x ε,c + εx 1),
for a.e. x ∈ Ω , x 1 ∈ Γ 1 .

Proposition 5:

The boundary two-scale transform operator has the following properties:

1. For every ϕ ∈ L 1 (Γ ε), we have

Γ ε ϕ ds(x ε) = Ω ×Γ 1
T ε b (ϕ) dx ds(x 1).

For every

ϕ ∈ L 1 (Γ ε), we obtain ϕ L 1 (Γ ε) = T ε b (ϕ) L 1 (Ω ×Γ 1) . 3. For all ϕ ∈ H 1 (Γ ε), ∇ x 1 T ε b (ϕ) = εT ε b (∇ x ε ϕ).

Definition 8:

For every ϕ ∈ L 2 (Γ ε), we define the adjoint operator

T ε * b of T ε b by Γ ε ϕT ε * b (ψ) ds(x ε) = Ω ×Γ 1 T ε b (ϕ)ψ dx ds(x 1), for all ψ ∈ L 2 (Ω × Γ 1).
Hence the explicit formula of T ε * b is written

T ε * b (ψ) x ε = 1 ε c Ω c ψ x , x ε -x ε,c ε dx χ Ω ε c x ε .

Definition 9:

For all v in C 1 (Ω × Γ 1), the operator B ε b is defined by

B ε b (ψ)(x ε) = ψ P(x ε), x ε ε - 1 2 ,
where P(x ε) = (x ε 1 , x ε 2).

Proposition 6:

For every ψ in C 1 (Ω × Γ 1) and Γ 1 -periodic in the directions x 1 1 and x 1 2 , then

T ε * b (ψ) x ε = B ε b (ψ)(x ε) + O(ε), Proposition 7:
Let ϕ ε be a sequence in L 2 (Γ ε) and assume that

ϕ ε L 2 (Γ ε) ≤ C and ε ∇ x ε ϕ ε L 2 (Γ ε) ≤ C.
Then, there exist a subsequence (still denoted ε) T ε (ϕ ε) and a function ϕ 0 in L 2 (Ω ; H 1 Γ 1), Γ 1 -periodic in the directions x 1 1 and x 1 2 such that

1. T ε (ϕ ε) ϕ 0 weakly in L 2 (Ω × Γ 1), 2. εT ε (∇ x ε ϕ ε) ∇ x 1 ϕ 0 weakly in L 2 (Ω × Γ 1).
Let us briefly recall the two-scale convergence on the surface introduced in [START_REF] Allaire | Two-scale convergence on periodic surfaces and applications[END_REF], [START_REF] Ptashnyk | Two-scale convergence for locally periodic microstructures and homogenization of plywood structures[END_REF].

Definition 10:

A bounded sequence ϕ ε in L 2 (Γ ε) is said to two-scale convergence to a limit ϕ 0 belonging to L 2 (Ω × Γ 1) if for any smooth function ψ defined in Ω × Γ 1 and Γ 1

-periodic, we have

Γ ε ϕ ε (x ε)ψ (x ε 1 , x ε 2), x ε ε - 1 2 ds(x ε) → Ω Γ 1
ϕ 0 (x , x 1)ψ(x , x 1) dx ds(x 1).

We also have the equivalence between the original two-scale convergence on the surface and weak convergence of the two-scale transform operator by the following proposition.

Proposition 8:

Let ϕ ε be a bounded sequence in L 2 (Γ ε , •), then the following properties are equivalent

1. {T ε b (ϕ ε)} converges weakly to ϕ 0 in L 2 (Ω × Γ 1),
2. ϕ ε two-scale converges to ϕ 0 .

2.5.3/ THE REFERENCE ALGORITHM FOR MODEL PROOFS

This section is devoted to the symbolic computation algorithm that served as a reference for the construction of the models reported in [START_REF] Belkhir | A tool for aided multi-scale model derivation and its application to the simulation of a micro mirror array[END_REF] and based on the extensioncombination method. It is this same algorithm that drives the construction of the five models of this chapter. The operations described therein are high level, the implementation details not being explained because they strongly depend on the way partial differential equations are represented in a symbolic computing environment, see our approach in [START_REF] Yang | Computer-aided derivation of multiscale models: A rewriting framework[END_REF] and in the following chapters of the thesis.

The starting point of the algorithm is a boundary value problem either in strong form or in weak form. It uses the definition of a two-scale transformation T ε and its associated operators T ε * and B ε . These operators and their properties may depend on the model. In this chapter, to each model corresponds a different transformation T ε . In step (iii) we use the derivation rule of B ε (w) which has not been recalled in the previous subsections but will be detailed during each model derivation. In the same way, the approximation of T ε * by B ε is established for each model derivation. In the implementation reported in [START_REF] Belkhir | A tool for aided multi-scale model derivation and its application to the simulation of a micro mirror array[END_REF] the properties of the operators T ε , T ε * , and B ε are used without being reconstructed in order to avoid time-consuming calculations.

i) Define a two-scale transform (i.e. unfolding) operator T ε , its adjoint T ε * ,and a smooth approximation B ε of T ε * .

ii) Derive the very weak form of the boundary value problem with a test function v.

iii) Replace v by ε k B ε (w) for some k ∈ Z \ {0}, and apply the rule of the derivative of B ε (w).

iv) Replace B ε by its approximation in terms of T ε * .

v) Apply the adjoint rule to replace the instances of T ε * by instances of T ε that are now applied to an expression Ψ ε .

vi) Assuming that T ε (Ψ ε) is bounded when ε vanishes, an extracted subsequence weakly converges to a limit Ψ 0 .

vii) Convert the very weak form satisfied by Ψ 0 into its strong form.

2.6/ ELECTROSTATIC MODELS

We now recall the electrostatic equation 2.4.1 in the vacuum domain of MIRA,

             -∆ x ε φ ε = 0 in Ω ε,vac φ ε = V ε on Γ ε,vac int ∇ x ε φ ε • n ε = 0 on Γ ε,vac ext .
(2.6.1)

By the same method in [START_REF] Cioranescu | Introduction to homogenization[END_REF], it follows that there exists

φ ε in H 1 Γ ε,vac int ,V ε (Ω ε,vac) = {v ε ∈ H 1 (Ω ε,vac), v ε = V ε on Γ ε,vac int } such that Ω ε,vac ∇ x ε φ ε ∇ x ε v ε dx ε = 0, (2.6.2) for all v ε in H 1 Γ ε,vac
int ,0 (Ω ε,vac). Applying Green's formula, we have a very weak formulation of Problem 2.6.1,

Ω ε,vac φ ε ∆ x ε v ε dx ε = Γ ε,vac int V ε ∇ x ε v ε • n ε ds x ε + Γ ε,vac ext ϕ ε ∇ x ε v ε • n ε ds x ε , (2.6.3) for all v ε in H 2 Γ ε,vac int ,0 (Ω ε,vac) = {v ε ∈ H 2 (Ω ε,vac), v ε = 0 on Γ ε,vac int }.

Assumption 1:

Assume that |||φ ε ||| L 2 (Ω ε,vac) and ε|||∇ x ε ϕ ε ||| L 2 (Ω ε,vac) are bounded uniformly with respect to ε.

2.6.1/ PERIODIC MODEL Proposition 9:

Let φ ε be a solution of (2.6.2) and assume that φ ε satisfies Assumption 1. Then, there exists ,vac). Moreover for a.e x ∈ Ω , φ 0 is a solution to

φ 0 ∈ L 2 (Ω , H 1 (Ω 1,vac)) Ω 1,vac -periodic in the directions x 1 1 , x 1 2 such that T ε φ ε φ 0 weakly in L 2 (Ω × Ω 1
                                 -∆ x 1 φ 0 = 0 in Ω 1,vac φ 0 = V 0 on Γ 1,vac int ∇ x 1 φ 0 • n 1 = 0 on Γ 1,vac top ∇ x 1 φ 0 • n 1 is Γ 1,vac per -antiperiodic φ 0 is Γ 1,vac per -periodic, where V 0 is a weak limit of T ε (V ε) in L 2 (Ω × Γ 1,vac int).

Remark 4:

For the sake of simplicity of notation, we use the same notation for the two-scale transform operator T ε , the adjoint operator T ε * and an approximate operator B ε of T ε * defined in a domain and those defined on a boundary.

Proof. Thanks to Proposition 3 and Assumption 1, we obtain the existence and the periodicity of φ 0 . The proof is completed by showing that φ 0 satisfies the above equations.

Let us take w in C ∞ (Ω × Ω 1,vac) such that w = 0 on Γ 1,vac

int and ∇ x 1 w • n 1 = 0 on Γ 1,vac top ∪ Γ 1,vac per .
Obviously, B ε w = 0 on Γ ε,vac int then we replace v ε in (2.6.3) by εB ε w,

Ω ε,vac φ ε ∆ x ε B ε w dx ε = Γ ε,vac int V ε ∇ x ε B ε w • n ε ds x ε + Γ ε,vac ext ϕ ε ∇ x ε B ε w • n ε ds x ε . (2.6.4)
It is clear that

∂B ε w ∂x ε i = B ε         χ I (i) ∂w ∂x i + 1 ε ∂w ∂x 1 i         , ∂ ∂x ε i ∂B ε w ∂x ε i = B ε         χ I (i) ∂ ∂x i ∂w ∂x i + χ I (i) 2 ε ∂ ∂x i ∂w ∂x 1 i + 1 ε 2 ∂ ∂x 1 i ∂w ∂x 1 i         , for all i ∈ I = {1, 2, 3}, I = {1, 2}.
By a straightforward calculation, the left-hand side (l.h.s) of (2.6.4) becomes

l.h.s = ε Ω ε,vac φ ε B ε         2 i=1 ∂ ∂x i ∂w ∂x i + 2 ε 2 i=1 ∂ ∂x i ∂w ∂x 1 i + 1 ε 2 ∆ x 1 w         dx ε = 1 ε Ω ε,vac φ ε B ε ∆ x 1 w dx ε + O(ε), (2.6.5)
where

O(ε) = ε Ω ε,vac φ ε B ε         2 i=1 ∂ ∂x i ∂w ∂x i         dx ε + 2 Ω ε,vac φ ε B ε         2 i=1 ∂ ∂x i ∂w ∂x 1 i         dx ε .
Similarly, the right-hand side (r.h.s) of (2.6.4) becomes

r.h.s = ε Γ ε,vac int V ε         2 i=1 B ε         ∂w ∂x i         n ε i + 1 ε B ε ∇ x 1 w • n ε         ds x ε + ε Γ ε,vac ext ϕ ε         2 i=1 B ε         ∂w ∂x i         n ε i + 1 ε B ε ∇ x 1 w • n ε         ds x ε . It is clear from ∇ x 1 w • n 1 = 0 on Γ 1,vac top ∪ Γ 1,vac per that B ε ∇ x 1 w • n ε = 0 on Γ ε,vac ext = Γ ε,vac top ∪ Γ ε,vac lat , then r.h.s = Γ ε,vac int V ε B ε ∇ x 1 w • n 1 ds x ε + O(ε), (2.6.6)
where

O(ε) = ε 2 i=1 ∂Ω ε,vac ϕ ε B ε         ∂w ∂x i         n ε i ds(x ε).
Combining with (2.6.5) and (2.6.6), we can assert that

1 ε Ω ε,vac φ ε B ε ∆ x 1 w dx ε = Γ ε,vac int V ε B ε ∇ x 1 w • n 1 ds x ε + O(ε).
Approximating B ε by T ε * from Proposition 2 and Proposition 6 gives

1 ε Ω ε,vac φ ε T ε * ∆ x 1 w dx ε = Γ ε,vac int V ε T ε * ∇ x 1 w • n 1 ds x ε + O(ε).
The definition of T ε * yields

Ω ×Ω 1,vac T ε (φ ε)∆ x 1 w dx dx 1 = Ω ×Γ 1,vac int T ε (V ε)∇ x 1 w • n 1 dx ds x 1 + O(ε).
Passing ε to 0 with Proposition 3 and Proposition 7, we get

Ω ×Ω 1,vac φ 0 ∆ x 1 w dx dx 1 = Ω ×Γ 1,vac int V 0 ∇ x 1 w • n 1 dx ds x 1 .
Applying Green's formula twice, combining with conditions satisfied by w and decompos-

ing ∂Ω 1,vac = Γ 1,vac int ∪ Γ 1,vac per ∪ Γ 1,vac top , we obtain Ω ×Ω 1,vac ∆ x 1 φ 0 w dx dx 1 - Ω ×(Γ 1,vac per ∪Γ 1,vac top) ∇ x 1 φ 0 • n 1 w dx ds(x 1) + Ω ×Γ 1,vac int φ 0 ∇ x 1 w • n 1 dx ds(x 1) = Ω ×Γ 1,vac int V 0 ∇ x 1 w • n 1 dx ds x 1 .
Now, we choose w such that w = 0 on Γ 1,vac per ∪ Γ 1,vac top and ∇ x 1 w • n 1 = 0 on Γ 1,vac int . By Lemma 1 we deduce that

∆ x 1 φ 0 = 0 in Ω 1,vac .
Next, we choose w such that w = 0 on Γ 1,vac per ∪ Γ 1,vac top , Lemma 2 gives

φ 0 = V 0 on Γ 1,vac int .
And then, we choose w = 0 on Γ 1,vac per , it follows from Lemma 2 that

∇ x 1 φ 0 • n 1 = 0 on Γ 1,vac top .
Finally, we conclude from Lemma 3 that

∇ x 1 φ 0 • n 1 is Γ
= φ ε -B ε (φ 0) and v ε bl = V ε -B ε (V 0)
, where B ε is an approximate operator of the adjoint operator T ε * of the two-scale transform operator T ε defined in the previous part, V 0 is a weak limit of T ε (V ε) in L 2 (Ω × Γ 1,vac 1,int) given in Proposition 9. We now investigate the convergence of φ ε bl at the first lateral boundary. The convergence on the other boundaries can be derived in the same way.

2.6.2.1/ GEOMETRY NOTATIONS

Let Ω αε bl,1 be a subdomain of Ω ε defined as constructed by Γ αε,mec bl,1,0 ∪ Γ αε,mec bl,1,1 ∪ Γ αε,mec bl,1,α , where Γ αε,mec bl,1,0 and Γ αε,mec bl,1,1 are respectively subboundaries of Γ ε,mec 1,0 and Γ ε,mec 1,1 , Γ αε,mec bl,1,α is a subboundary of the internal mechanical subboundary between cells of Ω ε 1 . We next denote

Ω αε bl,1 = ∪ c∈I bl,1 Ω ε c where I bl,1 := {c = (c 1 , c 2) : c 1 ∈ 1, n 1 and c 2 ∈ 1, α }, with α ∈ N * such that αε < L 2 1 ,
Ω bl,1 = [0, L 1 [, with a partition Ω bl,1c 1 c 1 , Ω bl,1c 1 = [(c 1 -1)ε, c 1 ε[, c 1 = 1, ..., n 1 and denote x ,c 1 = c 1 ε -ε/2 as the center of Ω bl,1c 1 .
The finite microscopic domain Ω1 bl,1 is built by Ω 1 bl,1 = ∪ α-1 ξ=0 (Ω 1 + (0, 1/2 + ξ, 1/2)), see Figure 2.6. The boundary of the finite vacuum part is denoted as ∂Ω 1,vac bl,1 = Γ

= Γ ∞,mec bl,1,0 ∪ Γ ∞,mec bl,1,1 ∪ Γ ∞,mec bl,1,per ∪Γ ∞,mec bl,1,Or ∪ Γ ∞,mec
bl,1,+∞ . These subboundaries are defined as the extension of the subboundaries of the finite domain Ω 1 bl,1 .

Remark 5:

We use the subscript i = 1, 2, 3, 4 for all geometrical notations and operators, the superscript i for all functions to indicate which lateral boundary models they belong to, corresponding to the index in Figure 2.1. For instance, Ω αε bl,1 and Ω αε bl,2

are the first and the second physical domains, T ε bl,1 and T ε bl,2 are the first and the second boundary layer two-scale transform operators, φ 1 bl and φ 2 bl are the solutions of the first and the second lateral boundary models.

When we say for each α, it means that for all α satisfied the condition 2.6.2.1,

α ∈ Z + such that αε < L 2 1 , L 2
1 is a positive given number.

Next, we introduce the two-scale transform for the first lateral model.

2.6.2.2/ BOUNDARY LAYER TWO-SCALE TRANSFORM OPERATOR

Definition 11:

For every ϕ in L 2 (Ω αε bl,1) (resp. ϕ in L 2 (Γ αε bl,1)), we define a boundary layer two-scale transform operator T ε bl,1 by

T ε bl,1 (ϕ)(x , x 1) = c 1 χ Ω bl,1c 1 (x)ϕ(x ,c 1 + εx 1 1 , εx 1 2 , εx 1
3), for a.e. x ∈ Ω bl,1 , x 1 ∈ Ω 1 bl,1 (resp. x 1 ∈ Γ 1 bl,1).

Definition 12:

We define the adjoint operator T ε * bl,1 of T ε bl,1 by

1 ε 2 Ω αε bl,1 ϕT ε * bl,1 (ψ)dx ε = Ω bl,1 ×Ω 1,α bl,1 T ε bl,1 (ϕ)ψdx dx 1 , for all ψ ∈ L 2 (Ω bl,1 × Ω 1 bl,1), ϕ ∈ L 2 (Ω αε bl,1
), respectively by

1 ε Γ αε bl,1 ϕT ε * bl,1 (ψ) ds(x ε) = Ω bl,1 ×Γ 1,α bl,1 T ε bl,1 (ϕ)ψdx ds(x 1), for all ψ ∈ L 2 (Ω bl,1 × Γ 1 bl,1), ϕ ∈ L 2 (Γ αε bl,1).
From the definition, the explicit formula follows

T ε * bl,1 (ψ) x ε = 1 ε c 1 Ω bl,1c 1 ψ x , x ε 1 ε -(c 1 - 1 2), x ε 2 ε , x ε 3 ε dx χ Ω bl,1c 1 x ε 1 ,
for all ψ ∈ L 2 (Ω bl,1 × Ω 1 bl,1), resp. for all ψ ∈ L 2 (Ω bl,1 × Γ 1 bl,1).

Definition 13:

The operator B ε bl,1 is defined as:

B ε bl,1 (ψ)(x ε) = ψ P(x ε), x ε 1 ε - 1 2 , x ε 2 ε , x ε 3 ε for all ψ ∈ C 1 (Ω bl,1 × Ω 1 bl,1
), where P(x ε) = x ε 1 .

Proposition 10:

For all ψ in C 1 (Ω bl,1 × Ω 1 bl,1)), Ω 1 bl,1 -periodic in the direction x 1 1 , then

T ε * bl,1 (ψ) x ε = B ε bl,1 (ψ)(x ε) + O(ε).

Proposition 11:

For each α, for all ψ ∈ C 1 (Ω , L 2 (Ω 1))∩C 0 (Ω , H 1 (Ω 1)), Ω 1 -periodic in the direction

x 1 1 , then T ε bl,1 (B ε (ψ)) → ψ in L 2 (Ω bl,1 × Ω 1 bl,1
) and in L 2 (Ω bl,1 × Γ 1 bl,1) when ε → 0, where ψ(x ,

x 1) = ψ (x , 0), (x 1 1 , x 1 2 -1 2 , x 1 3 -1 2) .
Proof. By the definition of T ε bl,1 and B ε , it follows that

T ε bl,1 (B ε (ψ))(x , x 1) = c 1 χ Ω bl,1c 1 (x)B ε (ψ)(x ,c 1 + εx 1 1 , εx 1 2 , εx 1 3) = c 1 χ Ω bl,1c 1 (x)ψ (x ,c 1 + εx 1 1 , εx 1 2), (x 1 1 , x 1 2 - 1 2 , x 1 3 - 1 2
) .

Applying the first order Taylor expansion,

ψ (x ,c + εx 1 1 , εx 1 2), (x 1 1 , x 1 2 - 1 2 , x 1 3 - 1 2) = ψ (x , εx 1 2), (x 1 1 , x 1 2 - 1 2 , x 1 3 - 1 2) + O(ε).
Next, passing ε to 0, we have

T ε bl,1 (B ε (ψ)) → ψ (x , 0), ((x 1 1 , x 1 2 - 1 2 , x 1 3 - 1 2)) , in L 2 (Ω bl,1 × Ω 1 bl,1
) as well as in L 2 (Ω bl,1 × Γ 1 bl,1)).

2.6.2.3/ DERIVATION OF A LATERAL BOUNDARY MODEL

We now recall the boundary layer terms φ ε bl = φ ε -B ε φ 0 , v ε bl = V ε -B ε V 0 and make the following assumptions where it is understood that by construction Ω 1,vac bl,1 depends on α.

Assumption 2:

We assume that:

1. For each α, there exist

φ 1,α bl in L 2 Ω bl,1 , H 1 (Ω 1,vac bl,1) , Ω 1,vac bl,1 -periodic in the direction x 1 1 , and v 1 bl in L 2 Ω bl,1 × Γ 1,vac bl,1,int such that T ε bl,1 (φ ε bl) φ 1,α bl weakly in L 2 Ω bl,1 × Ω 1,vac bl,1 and T ε bl,1 (v ε bl) v 1,α bl weakly in L 2 Ω bl,1 × Γ 1,vac bl,1,int when ε → 0. 2. There exist φ 1 bl in L 2 Ω bl,1 , H 1 (Ω ∞,vac bl,1) , Ω ∞,vac bl,1 -periodic in the direction x 1 1 , φ 1 bl
and its gradient exponentially decreasing to 0 when x 1 2 → +∞, and

v 1 bl in L 2 Ω bl,1 × Γ ∞,vac bl,1,int such that φ 1,α bl χ Ω 1,vac bl,1 φ 1 bl weakly in L 2 Ω bl,1 × Ω ∞,vac bl,1 and v 1,α bl χ Ω 1,vac bl,1 v 1 bl weakly in L 2 Ω bl,1 × Γ ∞,vac bl,1,int when α → +∞.
For all ψ defined in Ω bl,1 × Ω 1,vac bl,1 , we define the tilde function ψ(x , x 1) as ψ(x ,

x 1) = ψ (x , 0), (x 1 1 , x 1 2 -1 2 , x 1 3 -1 2) for all (x , x 1) ∈ Ω bl,1 × Ω 1,vac bl,1 .

Proposition 12:

For each α, if φ 0 ∈ C 1 (Ω , L 2 (Ω 1)) ∩ C 0 (Ω , H 1 (Ω 1)) and Assumption 2 holds then

T ε bl,1 φ ε φ 1,α bl + φ 0 weakly in L 2 Ω bl,1 × Ω 1,vac bl,1
and

T ε bl,1 v ε v 1,α bl + V 0 weakly in L 2 Ω bl,1 × Γ 1,vac bl,1,int .
Proof. The proof is by passing

ε to 0 in T ε bl,1 φ ε = T ε bl,1 (B ε φ 0)+T ε bl,1 (φ ε bl), T ε bl,1 v ε = T ε bl,1 (B ε V 0)+ T ε bl,1 (v ε bl)
and combining with Proposition 11 and Assumption 2.

Proposition 13:

The limit φ 1 bl is a solution to

     -∆ x 1 φ 1 bl = 0 in Ω ∞,vac bl,1 φ 1 bl = v 1 bl on Γ ∞,vac bl,1,int ∇ x 1 φ 1 bl • n 1 = 0 on Γ ∞,vac bl,1,top ∇ x 1 φ 1 bl • n 1 is Γ ∞,vac bl,1,per -antiperiodic ∇ x 1 φ 1 bl • n 1 = -∇ φ 0 • n 1 on Γ ∞,vac bl,1,0 φ 1 bl is Γ ∞,vac bl,1,per -periodic.
Proof. The proof starts by finding the very weak form satisfied by the limit φ 1,α bl and then to pass to the limit on α → ∞ to find the very weak form satisfied by φ 1 bl . The derivation of the corresponding strong form follows. Let us begin with α fixed and replace v ε in (2. and v ε bl = 0 on Γ αε,vac bl,1,int . This yields

Ω αε,vac bl,1 φ ε ∆ x ε v ε bl dx ε = Γ αε,vac bl,1,int V ε ∇ x ε v ε bl • n ε ds x ε + Γ αε,vac bl,1,ext φ ε ∇ x ε v ε bl • n ε ds x ε . Taking a function w in C ∞ (Ω bl,1 × Ω 1,vac bl,1), Ω 1,vac bl,1 -periodic in the direction x 1 1 satisfying w = 0 on Γ 1,vac bl,1,int ∪ Γ 1,vac bl,1,α and ∇ x 1 w • n 1 = 0 on Γ 1,vac bl,1,per ∪ Γ 1,vac bl,1,top ∪ Γ 1,vac bl,1,0 ∪ Γ 1,vac bl,1,α . It is obvious that B ε
bl,1 (w) = 0 on Γ αε,vac bl,1,int , then replacing v ε bl by B ε bl,1 (w), we get

Ω αε,vac bl,1 φ ε ∆ x ε B ε bl,1 (w) dx ε = Γ αε,vac bl,1,int V ε ∇ x ε B ε bl,1 (w) • n ε ds x ε + Γ αε,vac bl,1,ext ϕ ε ∇ x ε B ε bl,1 (w) • n ε ds x ε .
(2.6.7)

A direct computation shows that

∂B ε bl,1 w ∂x ε i = B ε bl,1       χ I (i) ∂w ∂x + 1 ε ∂w ∂x 1 i       , ∂ ∂x ε i ∂B ε bl,1 w ∂x ε i = B ε bl,1       χ I (i) ∂ ∂x ∂w ∂x + χ I (i) 2 ε ∂ ∂x ∂w ∂x 1 1 + 1 ε 2 ∂ ∂x 1 i ∂w ∂x 1 i       ,
for all i ∈ I = {1, 2, 3} and with I = {1}.

After a straightforward calculation, the l.h.s of (2.6.7) becomes

l.h.s = Ω αε,vac bl,1 φ ε B ε       ∂ ∂x ∂w ∂x + 2 ε ∂ ∂x ∂w ∂x 1 1 + 1 ε 2 ∆ x 1 w       dx ε = 1 ε 2 Ω αε,vac bl,1 φ ε B ε ∆ x 1 w dx ε + O(ε), (2.6.8)
where

O(ε) = Ω αε,vac bl,1 φ ε B ε (∂ ∂x ∂w ∂x) dx ε + 2 ε Ω αε,vac bl,1 φ ε B ε       ∂ ∂x ∂w ∂x 1 1       dx ε .
The r.h.s of (2.6.7) becomes

r.h.s = Γ αε,vac bl,1,int V ε B ε ∂w ∂x n ε 1 + 1 ε B ε ∇ x 1 w • n ε ds x ε + Γ αε,vac bl,1,ext ϕ ε B ε ∂w ∂x n ε 1 + 1 ε B ε ∇ x 1 w • n ε ds x ε .
Decomposing Γ αε,vac bl,1,ext into Γ αε,vac bl,1,ext = Γ αε,vac bl,1,α ∪Γ αε,vac bl,1,top ∪Γ αε,vac bl,1,lat and combining with

∇ x 1 w•n 1 = 0 on Γ 1,vac bl,1,per ∪ Γ 1,vac bl,1,top ∪ Γ 1,vac bl,1,0 ∪ Γ 1,vac bl,1,α make it obvious that B ε ∇ x 1 w • n ε = 0 on Γ αε,vac bl,1,ext , then r.h.s = 1 ε Γ αε,vac bl,1,int V ε B ε ∇ x 1 w • n 1 ds x ε + O(ε), (2.6.9)
where

O(ε) = ∂Ω αε,vac ϕ ε B ε ∂w ∂x n ε 1 ds(x ε)
From (2.6.8) and (2.6.9), we have

1 ε 2 Ω αε,vac bl,1 φ ε B ε bl,1 ∆ x 1 w dx ε = 1 ε Γ αε,vac bl,1,int V ε B ε bl,1 ∇ x 1 w • n 1 ds x ε + O(ε), (2.6.10)
Replacing B ε bl,1 by T ε * bl,1 using Proposition 10, Equality (2.6.10) becomes

1 ε 2 Ω αε,vac bl,1 φ ε T ε * bl,1 ∆ x 1 w dx ε = 1 ε Γ αε,vac bl,1,int V ε T ε * bl,1 ∇ x 1 w • n 1 ds x ε + O(ε),
By the definition of T ε * bl,1 , we have

Ω bl,1 ×Ω 1,α,vac bl,1 T ε bl,1 (φ ε)∆ x 1 wdx dx 1 = Ω bl,1 ×Γ 1,α,vac bl,1,int T ε bl,1 (V ε)∇ x 1 w • n 1 dx ds x 1 + O(ε).
Passing ε to 0 and combining with Proposition 12 gives

Ω bl,1 ×Ω 1,vac bl,1 φ 1,α bl + φ 0 ∆ x 1 wdx dx 1 = Ω bl,1 ×Γ 1,vac bl,1,int v 1,α bl + V 0 ∇ x 1 w • n 1 dx ds(x 1), (2.6.11)
for each α.

It follows that (2.6.11) still holds if w is taken on the form of τ α v, where

(τ α) α∈[α 0 ,+∞[is a family of smooth truncation functions with compact support in Ω bl,1 × Ω ∞,vac bl,1 such that τ α v → v for all v ∈ H 2 (Ω bl,1 × Ω ∞,vac bl,1) and v ∈ C ∞ (Ω bl,1 × Ω ∞,vac bl,1) ∩ H 2 (Ω bl,1 × Ω ∞,vac bl,1) satisfies v is Ω ∞,vac bl,1 -periodic in the direction x 1 1 , v = 0 on Γ ∞,vac bl,1,int , ∇ x 1 v•n 1 = 0 on Γ ∞,vac bl,1,per ∪Γ ∞,vac bl,1,top ∪Γ ∞,vac bl,1,0
as well as |v|, ∇ x 1 v , and ∆ x 1 v exponentially decrease to 0 when x 1 2 → +∞. Thus,

Ω bl,1 ×Ω ∞,vac bl,1 φ 1,α bl + φ 0 χ Ω 1,vac bl,1 ∆ x 1 (τ α v)dx dx 1 = Ω bl,1 ×Γ ∞,vac bl,1,int v 1,α bl + V 0 χ Ω 1,vac bl,1 ∇ x 1 (τ α v)•n 1 dx ds(x 1).
Then, passing α to +∞, by Assumption 2 , we get

Ω bl,1 ×Ω ∞,vac bl,1 φ 1 bl + φ 0 ∆ x 1 v dx dx 1 = Ω bl,1 ×Γ ∞,vac bl,1,int v 1 bl + V 0 ∇ x 1 v • n 1 dx ds(x 1).
To carry out the interpretation of the very weak formulation, we then assume that v is vanishing out of a bounded domain. For simplicity of notation, we choose this domain

equal to Ω bl,1 × Ω 1,vac bl,1 .
Then

Ω bl,1 ×Ω 1,vac bl,1 φ 1 bl + φ 0 ∆ x 1 v dx dx 1 = Ω bl,1 ×Γ 1,vac bl,1,int v 1 bl + V 0 ∇ x 1 v • n 1 dx ds(x 1),
for each α.

Applying Green's formula twice with decomposing

∂Ω 1,vac bl,1 = Γ 1,vac bl,1,int ∪ Γ 1,vac bl,1,per ∪ Γ 1,vac bl,1,top ∪ Γ 1,vac bl,1,0 ∪ Γ 1,vac
bl,1,α and combining with conditions satisfied by v, the results from Proposition 9

∆ x 1 φ 0 = 0 in Ω 1,vac bl,1 , φ 1 bl = V 0 on Γ 1,vac bl,1,int , ∇ x 1 φ 0 • n 1 = 0 on Γ 1,vac bl,1,top , ∇ x 1 φ 0 • n 1 is Γ 1,vac
bl,1,perantiperiodic, the above equality becomes

Ω bl,1 ×Ω 1,vac bl,1 ∆ x 1 φ 1 bl v dx dx 1 + Ω bl,1 ×Γ 1,vac bl,1,int φ 1 bl ∇ x 1 v • n 1 dx ds(x 1)
-

Ω bl,1 × Γ 1,vac bl,1,top ∪Γ 1,vac bl,1,per ∇ x 1 φ 1 bl • n 1 v dx ds(x 1) + Ω bl,1 ×Γ 1,vac bl,1,0 ∇ x 1 φ 1 bl + φ 0 • n 1 v dx ds(x 1) = Ω bl,1 ×Γ 1,vac bl,1,int v 1 bl ∇ x 1 v • n 1 dx ds x 1 . If v = 0 on Γ 1,vac bl,1,0 ∪ Γ 1,vac bl,1,top ∪ Γ 1,vac bl,1,per and ∇ x 1 v • n 1 = 0 on Γ 1,vac bl,1,int , then Ω bl,1 ×Ω 1,vac bl,1 ∆ x 1 (φ 1 bl)v dx dx 1 = 0.
We conclude that,

∆ x 1 φ 1 bl = 0 in Ω 1,vac bl,1 . Next, if v = 0 on Γ 1,vac bl,1,0 ∪ Γ 1,vac bl,1,top ∪ Γ 1,vac bl,1,per , then Ω bl,1 ×Γ 1,vac bl,1,int (φ 1 bl -v 1 bl)∇ x 1 v • n 1 dx ds(x 1) = 0,
and we deduce

φ 1 bl = v 1 bl on Γ 1,vac bl,1,int . Now, if v = 0 on Γ 1,vac bl,1,0 ∪ Γ 1,vac bl,1,per , thus Ω bl,1 ×Γ 1,vac bl,1,top ∇ x 1 φ 1 bl • n 1 v dx ds(x 1) = 0,
and we obtain

∇ x 1 φ 1 bl • n 1 = 0 on Γ 1,vac bl,1,top . If v = 0 on Γ 1,vac bl,1,per , hence Ω bl,1 ×Γ 1,vac bl,1,0 ∇ x 1 φ 1 bl + φ 0 • n 1 v dx ds(x 1) = 0,
we assert that

∇ x 1 φ 1 bl • n 1 = -∇ x 1 φ 0 • n 1 on Γ 1,vac bl,1,0 .
Last, we get

∇ x 1 φ 1 bl • n 1 is Γ 1,vac bl,1,per -antiperiodic.
Since this equations are true for each α then the above equations hold in the infinite domain and the proof is complete.

2.6.3/ EXTERIOR EDGE MODEL

We assume that all lateral boundary models are already derived and identified by the index i = 1, 2, 3, 4 of the lateral boundaries, see Figure 2.1. Let us see the contributions of two lateral boundary models corresponding to the indices i = 1 and i = 2 at the first exterior edge. Obviously, the sum of contributions is not continuous at this edge, and then it leads to propose an edge corrector to overcome this problem. We introduce terms

φ ε exe = φ ε -B ε φ 0 + B ε bl,1 φ 1 bl + B ε bl,2 φ 2 bl and v ε exe = V ε -B ε V 0 + B ε bl,1 v 1 bl + B ε bl,2 v 2 bl
, where φ 0 is the solution of periodic model of the external zone, φ 1 bl and φ 2 bl are the solutions of the first and second lateral boundary near the first exterior edge, B ε bl,1 and B ε bl,2 are smooth approximate operators of the first and second adjoint boundary layer two-scale transform operator T ε * bl,1 and T ε * bl,2 , v 1 bl and v 2 bl are weak limits of v 1,α bl and v 2,α bl which are the weak limits of

T ε bl,1 (v ε bl) in L 2 Ω bl,1 × Γ 1,vac bl,1,int , resp. of T ε bl,2 (v ε bl) in L 2 Ω bl,2 × Γ 1,α,vac bl,2,int . 2.6.3.1/ GEOMETRY NOTATIONS Let Ω αε exe,1 be a subdomain of Ω ε assembled by Ω αε exe,1 = ∪ c∈I exe,1 Ω ε c where I exe,1 := {c = (c 1 , c 2) : c 1 , c 2 ∈ 1, α } with αε < min{L 1 1 , L 2 1 }, see Figure 2.7. The boundary of the vacuum part ∂Ω αε,vac exe,1 is a subboundary of ∂Ω ε,vac 1 denoted as ∂Ω αε,vac exe,1 = Γ αε,vac exe,1,int ∪Γ αε,vac exe,1,ext , with Γ αε,vac exe,1,ext = Γ αε,vac exe,1,α ∪ Γ αε,vac exe,1,top ∪ Γ αε,vac exe,1,lat , where Γ αε,vac exe,1,int , Γ αε,vac exe,1,top , Γ αε,vac exe,1,lat are respectively subboundaries of Γ ε,vac 1,int , Γ ε,vac 1,top , Γ ε,vac 1
,lat , and Γ αε,vac exe,1,α is a subboundary of the internal vacuum subboundary between cells of Ω ε 1 . The boundary of the mechanical body ∂Ω αε,mec exe,1 is subboundary of ∂Ω ε,mec

1 defined as ∂Ω αε,mec exe,1 = Γ αε,mec exe,1,0 ∪ Γ αε,mec exe,1,1 ∪ Γ αε,mec exe,1,α
, where Γ αε,mec exe,1,0 , Γ αε,mec exe,1,1 are subboundaries of Γ ε,mec 1,0 , resp. Γ ε,mec 1,1 , Γ αε,mec exe,1,α is a subboundary of the internal mechanical subboundary between cells of Ω ε 1 . We introduce the finite microscopic domain Ω 1 exe,1 defined by

Ω 1 exe,1 = ∪ α-1 ξ,η=0 (Ω 1 + (ξ + 1/2, η + 1/2, 1/2)), see Figure 2.8, with the vacuum boundary ∂Ω 1,vac exe,1 = Γ 1,vac exe,1,int ∪ Γ 1,vac exe,1,top ∪ 𝑥 1 𝜀 0 𝑥 3 𝜀 𝑥 2 𝜀
The infinite microscopic domain Ω ∞ exe,1 and its related sets are defined as the limits of Ω 1 exe,1 and related when α tends to infinity.

2.6.3.2/ EXTERIOR EDGE BOUNDARY LAYER TWO-SCALE OPERATOR

We now introduce a dilation operator T ε exe,1 for the first exterior edge model.

Definition 14:

For all ϕ in L 2 (Ω αε exe,1) (resp., ϕ in L 2 (Γ αε exe,1)), the operator T ε exe,1 is defined as

T ε exe,1 (ϕ)(x 1) = ϕ(εx 1), for a.e. x 1 in Ω 1 exe,1 (resp., x 1 in Γ 1 exe,1
).

Definition 15:

We define the adjoint operator T ε * exe,1 of T ε exe,1 by

1 ε 3 Ω αε exe,1 ϕT ε * exe,1 (ψ) dx ε = Ω 1 exe,1 T ε exe,1 (ϕ)ψ dx 1 , for all ϕ ∈ L 2 (Ω αε exe,1), ψ ∈ L 2 (Ω 1 exe,1), respectively 1 ε 2 Γ αε exe,1 ϕT ε * exe,1 (ψ) ds(x ε) = Γ 1 exe,1 T ε exe,1 (ϕ)ψ ds(x 1), for all ϕ ∈ L 2 (Γ αε exe,1), ψ ∈ L 2 (Γ 1 exe,1).
From the definitions, we obtain an explicit formula of T ε * exe,1 as

T ε * exe,1 (ψ) x ε = ψ(x ε ε), for all ψ ∈ L 2 (Ω 1 exe,1), resp. ψ ∈ L 2 (Γ 1 exe,1
). In this edge case, the operator T ε * exe,1 and its approximation B ε exe,1 are identical however both will be used to follow the algorithm of Section 2.5.3.

Proposition 14:

Let B ε , B ε bl,1 , B ε bl,2 be smooth approximate operators of the adjoints of T ε , T ε bl,1 , T ε
bl,2 respectively, we have

1. For all ψ ∈ C 1 (Ω ; L 2 (Ω 1
))∩C 0 (Ω ; H 1 (Ω 1)) and Ω 1 -periodic in the directions

x 1 1 , x 1 2 , T ε exe,1 (B ε ψ) → ψ in L 2 (Ω 1 exe,1) and in L 2 (Γ 1 exe,1)),
where ψ(x 1) = ψ(0, x 1 -1/2).

For all

ψ ∈ C 1 (Ω bl,1 ; L 2 (Ω ∞ bl,1)) ∩ C 0 (Ω bl,1 ; H 1 (Ω ∞ bl,1)) and Ω ∞ bl,1 -periodic in the direction x 1 1 , T ε exe,1 (B ε bl,1 ψ) → ψ in L 2 (Ω 1 exe,1) and in L 2 (Γ 1,∞ exe,1)), where ψ(x 1) = ψ(0, (x 1 1 -1/2, x 1 2 , x 1
3)).

For all

ψ ∈ C 1 (Ω bl,2 ; L 2 (Ω ∞ bl,2)) ∩ C 0 (Ω bl,2 ; H 1 (Ω ∞ bl,2)) and Ω ∞ bl,2 -periodic in the direction x 1 2 , T ε exe,1 (B ε bl,2 ψ) → ψ in L 2 (Ω 1 exe,1) and in L 2 (Γ 1 exe,1)),
where ψ(x 1) = ψ(0, (x 1 1 , x 1 2 -1/2, x 1 3)).

2.6.3.3/ DERIVATION OF AN EXTERIOR EDGE MODEL

Let us recall that

φ ε exe = φ ε -B ε φ 0 + B ε bl,1 φ 1 bl + B ε bl,2 φ 2 bl and v ε exe = V ε - B ε V 0 + B ε bl,1 v 1 bl + B ε bl,2 v 2
bl and make the following assumptions.

Assumption 3:

we assume that

1. For each α, there exist φ 1,α exe in H 1 (Ω 1,vac exe,1) and v 1,α exe in L 2 (Γ 1,vac exe,1,int) such that T ε exe,1 (φ ε exe) φ 1,α exe weakly in L 2 (Ω 1,vac exe,1) and T ε exe,1 (v ε exe) v 1,α exe weakly in L 2 (Γ 1,vac exe,1,int) when ε → 0.

2.

Assume that there exist φ 1 exe in H 1 (Ω ∞,vac exe,1), φ 1 exe and it gradient converge exponentially fast to zero when

x 1 1 + x 1 2 → ∞, and v 1 exe in L 2 (Γ ∞,vac exe,1,int) such that φ 1,α exe χ Ω 1,vac exe,1 φ 1 exe weakly in L 2 (Ω ∞,vac exe,1) and v 1,α exe χ Ω 1,vac exe,1 v 1 exe weakly in L 2 (Γ ∞,vac exe,1,int) when α → +∞.
The following proposition results from using Proposition 14.

Proposition 15:

For each α, if

φ 0 ∈ C 1 (Ω ; L 2 (Ω 1)) ∩ C 0 (Ω ; H 1 (Ω 1)), φ 1 bl ∈ C 1 (Ω bl,1 ; L 2 (Ω ∞ bl,1)) ∩ C 0 (Ω bl,1 ; H 1 (Ω ∞ bl,1)), φ 2 bl ∈ C 1 (Ω bl,2 ; L 2 (Ω ∞ bl,2)) ∩ C 0 (Ω bl,2 ; H 1 (Ω ∞ bl,2)) and Assumption 3 holds then T ε exe,1 (φ ε) φ 1,α exe + φ 0 + φ 1 bl + φ 2 bl weakly in L 2 (Ω 1,vac exe,1) and T ε exe,1 (V ε) v 1,α exe + V 0 + v 1 bl + v 2 bl weakly in L 2 (Γ 1,vac exe,1,int) when ε → 0, where ϕ 0 (x 1) = ϕ 0 (0, x 1 -1/2), ϕ 1 bl (x 1) = ϕ 1 bl (0, (x 1 1 -1/2, x 1 2 , x 1 3)), ϕ 2 bl (x 1) = ϕ 2 bl (0, (x 1 1 , x 1 2 -1/2, x 1
3)).

Proposition 16:

The limit φ 1 exe satisfies

                           ∆ x 1 φ 1 exe = 0 in Ω ∞,vac exe,1 φ 1 exe = v 1 exe on Γ ∞,vac exe,1,int ∇ x 1 φ 1 exe • n 1 = 0 on Γ ∞,vac exe,1,top ∇ x 1 φ 1 exe • n 1 = -∇ x 1 φ 2 bl • n 1 on Γ ∞,vac exe,1,bl1 ∇ x 1 φ 1 exe • n 1 = -∇ x 1 φ 1 bl • n 1 on Γ ∞,vac exe,1,bl2 .
Proof. The outline of the proof runs as the previous ones. Firstly, we take a fixed α and replace v ε by a smooth function v ε exe in (2.6.3), where v ε exe is defined in Ω αε,vac exe,1 , v ε exe = 0 on Γ αε,vac exe,1,int and vanishes out of Ω αε exe,1 , then

Ω αε,vac exe,1 φ ε ∆ x ε v ε exe dx ε = Γ αε,vac exe,1,int V ε ∇ x ε v ε exe • n ε ds x ε + Γ αε,vac exe,1,ext ϕ ε ∇ x ε v ε exe • n ε ds x ε .
After that, we substitute v ε exe by ε

-1 B ε exe,1 (w) where w is in C ∞ (Ω 1,vac exe,1), w = 0 on Γ 1,vac exe,1,int ∪ Γ 1,vac exe,1,α and ∇ x 1 w • n 1 = 0 on Γ 1,vac exe,1,top ∪ Γ 1,vac exe,1,α ∪ Γ 1,vac exe,1,bl1 ∪ Γ 1,vac exe,1,bl2 . Hence, 1 ε Ω αε,vac exe,1 φ ε ∆ x ε B ε exe,1 (w) dx ε = 1 ε Γ αε,vac exe,1,int V ε ∇ x ε B ε exe,1 (w)•n ε ds x ε + 1 ε Γ αε,vac exe,1,ext ϕ ε ∇ x ε B ε exe,1 (w)•n ε ds x ε .
We check at once that,

∂B ε exe,1 w ∂x ε i = 1 ε B ε exe,1       ∂w ∂x 1 i       and ∂ ∂x ε i ∂B ε exe,1 w ∂x ε i = 1 ε 2 B ε exe,1       ∂ ∂x 1 i ∂w ∂x 1 i       ,
for all i = 1, 2, 3, and it obvious that

B ε exe,1 ∇ x 1 w • n ε = 0 on Γ αε,vac exe,1,ext , then 1 ε 3 Ω αε,vac exe,1 φ ε B ε exe,1 ∆ x 1 w dx ε = 1 ε 2 Γ αε,vac exe,1,int V ε B ε exe,1 ∇ x 1 w • n 1 ds x ε .
Replacing B ε exe,1 by T ε * exe,1 and combining with the definition of T ε * exe,1 , we have

Ω 1,vac exe,1 T ε exe,1 (φ ε)∆ x 1 w dx 1 = Γ 1,vac exe,1,int T ε exe,1 (V ε)∇ x 1 w • n 1 ds x 1 .
Passing ε to 0, by Proposition 15 gives

Ω 1,vac exe,1 φ 1,α exe + φ 0 + φ 1 bl + φ 2 bl ∆ x 1 w dx 1 = Γ 1,vac exe,1,int v 1,α exe + V 0 + v 1 bl + v 2 bl ∇ x 1 w • n 1 ds x 1 .
We now replace w by τ α v, where τ α is a smooth truncation function with compact support

in Ω 1,vac exe,1 and v ∈ C ∞ (Ω ∞,vac exe,1) ∩ H 2 (Ω ∞,vac exe,1) satisfying v = 0 on Γ ∞,vac exe,1,int , ∇ x 1 v • n 1 = 0 on Γ 1,vac exe,1,top ∪ Γ 1,vac exe,1,bl1 ∪ Γ 1,vac exe,1,bl2 , |v|, ∇ x 1 v and ∆ x 1 v converge exponentially fast to zero when x 1 1 + x 1 2 → ∞, τ α v → v in H 2 (Ω ∞,vac exe,1) when α → ∞. We obtain Ω ∞,vac exe,1 φ 1,α exe + φ 0 + φ 1 bl + φ 2 bl χ Ω 1,vac exe,1 ∆ x 1 (τ α v) dx 1 = Γ ∞,vac exe,1,int v 1,α exe + V 0 + v 1 bl + v 2 bl χ Ω 1,vac exe,1 ∇ x 1 τ α v•n 1 ds x 1 .
Passing α to +∞, by Assumption 3, we get

Ω ∞,vac exe,1 φ 1 exe + φ 0 + φ 1 bl + φ 2 bl ∆ x 1 v dx 1 = Γ ∞,vac exe,1,int v 1 exe + V 0 + v 1 bl + v 2 bl ∇ x 1 v • n 1 ds x 1 .
Now, we choose v vanishing out of Ω 1,vac exe,1 for a given α,

Ω 1,vac exe,1 φ 1 exe + φ 0 + φ 1 bl + φ 2 bl ∆ x 1 v dx 1 = Γ 1,vac exe,1,int v 1 exe + V 0 + v 1 bl + v 2 bl ∇ x 1 v • n 1 ds x 1 ,
Applying Green's formula twice and decomposing

∂Ω 1,vac exe,1 = Γ 1,vac exe,1,int ∪ Γ 1,vac exe,1,top ∪ Γ 1,vac exe,1,bl1 ∪ Γ 1,vac exe,1,bl2 ∪ Γ 1,vac
exe,1,α , combining with conditions satisfied by v, the results from Proposition 9 and Proposition 13

∆ x 1 φ 0 = ∆ x 1 φ 1 bl = ∆ x 1 φ 2 bl = 0 in Ω 1,vac exe,1 , φ 0 = V 0 , φ 1 bl = v 1 bl , φ 2 bl = v 2 bl on Γ 1,vac exe,1,int , ∇ x 1 φ 0 • n 1 = ∇ x 1 φ 1 bl • n 1 = ∇ x 1 φ 2 bl • n 1 = 0 on Γ 1,vac exe,1,top , ∇ x 1 φ 0 + φ 1 bl • n 1 = 0 on Γ 1,vac exe,1,bl1 , ∇ x 1 φ 0 + φ 2 bl • n 1 = 0 on Γ 1,vac exe,1,bl2 , we deduce that Ω 1,vac exe,1 ∆ x 1 (φ 1 exe)v dx 1 - Γ 1,vac exe,1,top ∇ x 1 φ 1 exe • n 1 v ds(x 1) - Γ 1,vac exe,1,bl1 ∇ x 1 φ 1 exe + φ 2 bl • n 1 v ds(x 1) - Γ 1,vac exe,1,bl2 ∇ x 1 φ 1 exe + φ 1 bl • n 1 v ds(x 1) + Γ 1,vac exe,1,int φ 1 exe ∇ x 1 v • n 1 ds(x 1) = Γ 1,vac exe,1,int v 1 exe ∇ x 1 v • n 1 ds(x 1).
The rest of the proof runs as the previous proofs.

2.6.4/ INTERFACE MODEL

Let us consider the solution φ 0 in Proposition 9 again. It is easily seen that φ 0 is periodic with two distinct periodicity cells as different voltages are imposed in the two zones, then the electric potential approximated by φ 0 is discontinuous at the interface between two zones. It leads to propose an interface corrector to deal with this problem. We introduce the terms 2.9, and Ω αε in,1 is assembled by two nonoverlapping subdomains Ω αε+ in,1 and Ω αε- in,1 , we write them Ω αε± in,1 for short, which are respectively a subdomain of Ω ε 2 and Ω ε 1 . The interface between Ω αε+ in,1 and

φ ε bl = φ ε -B ε (φ 0) and v ε bl = V ε -B ε (V 0). 2.6.4.1/ GEOMETRY NOTATIONS Let Ω αε in,1 be a subdomain of Ω ε defined as Ω αε in,1 = ∪ c∈I in,1 Ω ε c , where I in,1 := {c = (c 1 , c 2) : c 1 = i 1 , j 1 and c 2 ∈ i 2 -α, i 2 + α, 2 ≤ i, j ≤ n 1 } and α ∈ Z + , see Figure
Ω αε- in,1 is denoted as Γ αε in,1,interf which is a subboundary of the Γ ε interf . The boundary of the vacuum part Ω αε,vac in,1 is built by a union ∂Ω αε,vac+ in,1 ∪ ∂Ω αε,vac- in,1 ∪Γ αε,vac in,1,interf , where ∂Ω αε,vac± in,1 is a boundary of Ω αε,vac± in,1 and Γ αε,vac in,1,interf is the interface between them which is a subboundary of Γ ε,vac interf . More precisely, ∂Ω αε,vac+ in,1
and ∂Ω and Γ αε,vac+ in,1,top is a subboundary of Γ ε,vac 2,int and Γ ε,vac 2,top , Γ αε,vac+ in,1,lat and Γ αε,vac+ in,1,α are subboundaries of Γ ε,vac interf and the internal vacuum subboundary between cells of the internal zone Ω 2 , Γ αε,vac- in,1,int and Γ αε,vac- in,1,top are subboundaries of Γ ε,vac 1,int and Γ ε,vac 1,top , Γ αε,vac- in,1,lat and Γ αε,vac- in,1,α are subboundaries of the internal vacuum subboundary between cells of the external zone Ω ε 1 . The boundary of the mechanical part Ω αε,mec in,1 is determined by the union ∂Ω αε,mec+ in,1

∪ ∂Ω αε,mec- in,1 ∪Γ αε,mec in,1,interf , where ∂Ω αε,mec± in,1
are the boundaries of Ω αε,mec± in,1

and Γ αε,mec in,1, interf is the interface between them which is a subboundary of Γ ε,mec interf . Precisely, ∂Ω αε,mec+ in,1

and

∂Ω αε,mec- in,1
are subboundaries of the internal mechanical part ∂Ω ε,mec 2 and the external me-

chanical part ∂Ω ε,mec 1 defined as the union Γ αε,mec± in,1,1 ∪ Γ αε,mec± in,1,0 ∪ Γ αε,mec in,1,interf , where Γ αε,mec+ in,1,1 and
Γ αε,mec+ in,1,0 are subboundaries of Γ ε,mec 2,1
and Γ ε,mec 2,0 , Γ αε,mec+ in,1,lat is a subboundary of Γ ε,mec interf and the internal mechanical subboundary between cells of the internal zone

Ω ε 2 , Γ αε,mec- in,1,1
and

Γ αε,mec- in,1,0 is a subboundary of Γ ε,mec 1,1 and Γ ε,mec 1,0 , Γ αε,mec- in,1
,lat is a subboundary of the internal mechanical subboundary between cells of the external zone

Ω ε 1 . We next denote Ω in,1 = [L 1 1 , L 1 2) with the partition Ω in,1c 1 c 1 =i 1 , j 1 -1 , Ω in,1c 1 = [c 1 ε, (c 1 + 1)ε), with i, j such that L 1 1 = i 1 ε, L 1 2 = j 1 ε, and denote x ,c 1 as a center of Ω in,1c 1 , x ,c 1 = c 1 ε + ε/2.
We now represent the finite microscopic domain Ω 1 in,1 , see Figure 2.10, constructed by the union of two nonoverlapping subdomains Ω 1+ in,1 and Ω 1- in,1 , we write them Ω 1± in,1 for brevity, with the interface , with α = 1.

Γ 1 in,1, interf , where Ω 1± in,1 is determined by Ω 1± in,1 = ∪ η=1,α (Ω 1 +(0, ±(η- 𝑥 1 𝜀 0 𝑥 3 𝜀 𝑥 2 𝜀 Ω 𝑖𝑛,1 𝛼𝜀 𝐿 1 1 Ω 𝑖𝑛,1 𝛼𝜀,- Ω 𝑖𝑛,1 𝛼𝜀,+ Γ 𝑖𝑛,1,𝑖𝑛𝑡𝑒𝑟𝑓 𝛼𝜀 Ω 2 𝜀 Ω 1 𝜀 1 𝐿 2 1 𝐿 1 2 𝐿 2 2
1/2), 1/2)). The notation system built for the physical domain is transposed to the microscopic domain that we do not detail. For all regular function v defined in Ω 1 in,1 , we denote v + and v -as respectively the restriction of v in Ω 1+ in,1 and Ω 1- in,1 and

[[v]] = v + -v -as the jump of v at the interface Γ 1 in,1, interf . The infinite microscopic domain Ω ∞
in,1 and its boundaries are defined as the limit of Ω 1 in,1

and of its boundaries.

2.6.4.2/ INTERFACE BOUNDARY LAYER TWO-SCALE TRANSFORM OPERATOR

Let us introduce the interface boundary layer two-scale transform T ε in,1 . and the mechanical part

Definition 16:

For all ϕ in L 2 (Ω αε in,1) (resp. ϕ in L 2 (Γ αε in,1)), T ε in,1 is defined by T ε in,1 (ϕ)(x , x 1) = c 1 χ Ω in,1c 1 (x)ϕ(x ,c 1 + εx 1 1 , L 2 1 + εx 1 2 , εx 1 3), for a.e. x ∈ Ω in,1 , x 1 ∈ Ω 1 in,1 (resp. x 1 ∈ Γ 1 in,1), L 2 1 = i 2 ε, i 2 ∈ Z + .
Ω 1,mec± in,1
, in the case of α = 1.

Definition 17:

We define the adjoint operator T ε * in,1 of T ε in,1 by

1 ε 2 Ω αε in,1 ϕT ε * in,1 (ψ)dx ε = Ω in,1 ×Ω 1 in,1 T ε in,1 (ϕ)ψdx dx 1 , for all ψ ∈ L 2 (Ω in,1 × Ω 1 in,1), ϕ ∈ L 2 (Ω αε in,1
), and

1 ε Γ αε in,1 ϕT ε * in,1 (ψ)ds(x ε) = Ω in,1 ×Γ 1 in,1 T ε in,1 (ϕ)ψ dx ds(x 1), for all ψ ∈ L 2 (Ω in,1 × Γ 1 in,1), ϕ ∈ L 2 (Γ αε in,1).
From the definitions, we obtain an explicit formula of T ε * in,1 as

T ε * in,1 (ψ) x ε = 1 ε c 1 Ω in,1c 1 ψ        x , x ε 1 -x ,c 1 ε , x ε 2 -L 2 1 ε , x ε 3 ε        dx χ Ω in,1c 1 x ε 1 , valid for all ψ ∈ L 2 (Ω in,1 × Ω 1 in,1) and ψ ∈ L 2 (Ω in,1 × Γ 1 in,1
).

Definition 18:

For every ψ ∈ C 1 (Ω in,1 × Ω 1 in,1), the operator B ε in,1 is defined by

B ε in,1 (ψ)(x ε) = ψ P(x ε), x ε 1 ε - 1 2 , x ε 2 ε , x ε 3 ε , where P(x ε) = x ε 1 .

Proposition 17:

For every

ψ in C 1 (Ω in,1 × Ω 1 in,1
) and Ω 1 in,1 -periodic in the directions x 1 1 and x 1 2 , then

T ε * in,1 (ψ) x ε = B ε in,1 (ψ)(x ε) + O(ε).

Proposition 18:

For every ψ ∈ C 1 (Ω ; L 2 (Ω 1)) ∩ C 0 (Ω ; H 1 (Ω 1)) and Ω 1 -periodic in the directions

x 1 1 , x 1 2 , T ε in,1 (B ε (ψ)) → ψ in L 2 (Ω in,1 × Ω 1 in,1) and in L 2 (Ω in,1 × Γ 1 in,1)
,

where ψ(x , x 1) = ψ (x , L 2 1), (x 1 1 , x 1 2 -1 2 , x 1 3 -1 2) .
Proof. By the definitions of T ε in,1 and B ε , we obtain

T ε in,1 (B ε (ψ))(x , x 1) = c 1 χ Ω in,1c 1 (x)B ε (ψ)(x ,c 1 + εx 1 1 , L 2 1 + εx 1 2 , εx 1 3) = c 1 χ Ω in,1c 1 (x)ψ (x ,c 1 + εx 1 1 , L 2 1 + εx 1 2), (x 1 1 , x 1 2 - 1 2 , x 1 3 - 1 2)
.

By the first order Taylor expansion,

ψ (x ,c 1 + εx 1 1 , L 2 1 + εx 1 2), (x 1 1 + c 1 , x 1 2 - 1 2 , x 1 3 - 1 2) = ψ (x , L 2 1 + εx 1 2), (x 1 1 , x 1 2 - 1 2 , x 1 3 - 1 2) +O(ε), in L 2 (Ω in,1 × Ω 1,vac in,1), x in Ω in,1,c 1 . Passing ε to 0, then T ε in,1 (B ε (ψ)) ψ (x , L 2 1), ((x 1 1 , x 1 2 - 1 2 , x 1 3 - 1 2)) in L 2 (Ω in,1 × Ω 1 in,1) and in L 2 (Ω in,1 × Γ 1 in,1
).

2.6.4.3/ DERIVATION OF AN INTERFACE MODEL

Let us now recall the boundary layer terms

φ ε bl = φ ε -B ε (φ 0), v ε bl = V ε -B ε (V 0
) and make the following assumptions.

Assumption 4:

We assume that

1. For each α, there exist φ 1,α in ∈ L 2 (Ω in,1 , H 1 (Ω 1,vac in,1)), Ω 1,vac in,1 -periodic in the direction x 1 1 and v 1 in ∈ L 2 (Ω in,1 × Γ 1,vac in,1,int) such that T ε in,1 (φ ε bl) φ 1,α in,1 weakly in L 2 (Ω in,1 × Ω 1,vac in,1) and T ε in,1 (v ε bl) v 1,α in weakly in L 2 (Ω in,1 × Γ 1,vac in,1,int). 2. There exist φ 1 in ∈ L 2 (Ω in,1 , H 1 (Ω ∞,vac in,1)), Ω ∞,vac in,1 -periodic in the direction x 1 1 , φ 1
in and it gradient exponentially decrease to 0 when x 1 2 → +∞, and

v 1 in ∈ L 2 (Ω in,1 × Γ ∞,vac in,1,int) such that φ 1,α in χ Ω 1,vac in,1 φ 1 in,1 weakly in L 2 (Ω in,1 × Ω ∞,vac in,1) and v 1,α in χ Ω 1,vac in,1 v 1 in weakly in L 2 (Ω in,1 × Γ ∞,vac in,1,int)
The next proposition is a corollary of Proposition 18.

Proposition 19:

If φ 0 ∈ C 1 (Ω ; L 2 (Ω 1))∩C 0 (Ω ; H 1 (Ω 1)) and Assumption 4 is fulfiled then T ε in,1 (φ ε) φ 1,α in + φ 0 weakly in L 2 (Ω in,1 × Ω 1,vac in,1) and T ε in,1 (V ε) v 1,α in + V 0 weakly in L 2 (Ω in,1 × Γ 1,vac in,1,int), where ψ(x , x 1) = ψ (x , L 2 1), (x 1 1 , x 1 2 -1 2 , x 1 3 -1 2
) .

Proposition 20:

The limit φ ,1 in is a solution to

     -∆ x 1 φ 1 in = 0 in Ω ∞,vac in,1 φ 1 in = v 1 in on Γ ∞,vac in,1,int ∇ x 1 φ 1 in • n 1 = 0 on Γ ∞,vac in,1,top ∇ x 1 φ 1 in • n 1 is Γ ∞,vac in,1,per -antiperiodic ∇ x 1 φ 1 in • n 1 = -∇ x 1 φ 0 • n 1 on Γ ∞,vac in,1,interf φ 1 in = -φ 0 on Γ ∞,vac in,1,interf φ 1 in is Γ ∞,vac in,1,per -periodic.
Proof. Let us repeat some steps of the previous proof. We replace v ε by a smooth

function v ε in in (2.6.3), where v ε in is defined in Ω αε,vac in,1 , v ε in = 0 on Γ αε,vac in,1,int and vanishes out of Ω αε,vac in,1
.

Ω αε,vac in,1 φ ε ∆ x ε v ε exe dx ε = Γ αε,vac in,1,int V ε ∇ x ε v ε exe • n ε ds x ε + Γ αε,vac in,1,ext ϕ ε ∇ x ε v ε exe • n ε ds x ε .
Then, we substitute

v ε in by B ε in,1 (w), where w is in C ∞ (Ω in,1 × Ω 1,vac in,1), Ω 1,vac in,1 -periodic in the directions x 1 1 , x 1 2 , w = 0 on Γ 1,vac± in,1,int ∪ Γ 1,vac± in,1,α and ∇ x 1 w • n 1 = 0 on Γ 1,vac,± in,1,top ∪ Γ 1,vac± in,1,per ∪ Γ 1,vac± in,1,α , we get Ω αε,vac in,1 φ ε ∆ x ε B ε in,1 (w) dx ε = Γ αε,vac in,1,int V ε ∇ x ε B ε in,1 (w) • n ε ds x ε + Γ αε,vac in,1,ext ϕ ε ∇ x ε B ε in,1 (w) • n ε ds x ε .
Clearly,

∂B ε in,1 w ∂x ε i = B ε in,1       χ I (i) ∂w ∂x + 1 ε ∂w ∂x 1 i       , ∂ ∂x ε i ∂B ε in,1 w ∂x ε i = B ε in,1       χ I (i) ∂ ∂x ∂w ∂x + χ I (i) 2 ε ∂ ∂x ∂w ∂x 1 1 + 1 ε 2 ∂ ∂x 1 i ∂w ∂x 1 i       ,
for all i ∈ I = {1, 2, 3} where I = {1}.

We check that

B ε in,1 ∇ x 1 w • n ε = 0 on Γ αε,vac in,1
,ext and a straightforward calculation reveals that

1 ε 2 Ω αε,vac in,1 φ ε B ε in,1 ∆ x 1 w dx ε = 1 ε Γ αε,vac in,1,int V ε B ε in,1 ∇ x 1 w • n 1 ds x ε + O(ε),
where

O(ε) = Ω αε,vac in,1 φ ε B ε in,1 ∂ ∂x ∂w ∂x dx ε + 2 ε Ω αε,vac in,1 φ ε B ε in,1       ∂ ∂x ∂w ∂x 1 1       dx ε - ∂Ω αε,vac in ϕ ε B ε in,1 ∂w ∂x n ε 1 ds(x ε).
Thanks to Proposition 17, we have

1 ε 2 Ω αε,vac in,1 φ ε T ε * in,1 ∆ x 1 w dx ε = 1 ε Γ αε,vac in,1,int V ε T ε * in,1 ∇ x 1 w • n 1 ds x ε + O(ε).
(2.6.12)

By the definition of T ε * in,1 , it follows that

Ω in,1 ×Ω 1,vac in,1 T ε in,1 (φ ε)∆ x 1 w dx dx 1 = Ω in,1 ×Γ αε,vac in,1,int T ε in,1 (V ε)∇ x 1 w • n 1 dx ds x 1 + O(ε).
Passing ε to 0, combined with Proposition 19, we obtain

Ω in,1 ×Ω 1,vac in,1 φ 1,α in + φ 0 ∆ x 1 w dx dx 1 = Ω in ×Γ 1,vac in,1,int v 1,α in + V 0 ∇ x 1 w • n 1 dx ds x 1 .
for each α.

It follows that the above equality still holds if w is taken on the form of τ α v, where τ α is a smooth truncation function with compact support

Ω in,1 × Ω 1,vac in,1 and v ∈ C ∞ (Ω in,1 × Ω ∞,vac in,1) ∩ H 2 (Ω in,1 × Ω ∞,vac in,1), Ω ∞,vac in,1 -periodic in the directions x 1 1 , x 1 2 , v = 0 on Γ ∞,vac± in,1,int , ∇ x 1 v • n 1 = 0 on Γ ∞,vac,± in,1,top ∪ Γ ∞,vac± in,1,per , |v|, ∇ x 1 v
, and ∆ x 1 v exponentially decrease to 0 when x 1 2 → +∞, and

τ α v → v in H 2 (Ω in,1 × Ω ∞,vac
in,1) when α tends to infinity. Then

Ω in,1 ×Ω ∞,vac in,1 φ 1,α in + φ 0 χ Ω 1,vac in,1 ∆ x 1 w dx dx 1 = Ω in,1 ×Γ ∞,vac in,1,int v 1,α in + V 0 χ Ω 1,vac in,1 ∇ x 1 w • n 1 dx ds(x 1).
Passing α to +∞, by Assumption 2 , we get

Ω in,1 ×Ω ∞,vac in,1 φ 1 in + φ 0 ∆ x 1 v dx dx 1 = Ω in,1 ×Γ ∞,vac in,1,int v 1 in + V 0 χ Ω 1,vac in,1 ∇ x 1 v • n 1 dx ds(x 1)
.

Now, we choose v vanishing out of Ω in,1 × Ω 1,vac in,1 for a given α, Ω in,1 ×Ω 1,vac in,1 φ 1 in + φ 0 ∆ x 1 v dx dx 1 = Ω in,1 ×Γ 1,vac in,1,int v 1 in + V 0 ∇ x 1 v • n 1 dx ds(x 1).
Applying Green's formula twice, then

± Ω in,1 ×Ω 1,vac± in,1 ∆ x 1 φ 1± in + φ 0 ± v dx dx 1 - ± Ω in,1 ×∂Ω 1,vac± in,1 ∇ x 1 φ 1± in + φ 0 ± • n 1± v dx ds(x 1) + ± Ω in,1 ×∂Ω 1,vac± in,1 φ 1± in + φ 0 ± ∇ x 1 v • n 1± dx ds(x 1) = ± Ω in,1 ×Γ 1,vac± in,1,int v 1± in + V 0 ± ∇ x 1 v • n 1± dx ds x 1 .
Decomposing Ω 1,vac in,1 into two parts Ω 1,vac± in,1

with their boundaries ∂Ω 1,vac,± in,1

= Γ 1,vac,± in,1,int ∪Γ 1,vac,± in,1,top ∪ Γ 1,vac,± bl,1,per ∪Γ 1,vac± in,1,α ∪Γ 1,vac in,1,interf , combining with the results of Proposition 9, ∆ x 1 φ 0 ± = 0 in Ω 1,vac± in,1 , φ 0 ± = V 0 ± on Γ 1,vac± in,1,int , ∇ x 1 φ 0 ± • n 1± = 0 on Γ 1,vac± in,1,top , ∇ x 1 φ 0 ± • n 1± is Γ 1,vac,±
bl,1,per -antiperiodic, and from the conditions satisfied by v it remains

± Ω in,1 ×Ω 1,vac± in,1 ∆ x 1 (φ 1± in)v dx dx 1 - ± Ω in,1 ×(Γ 1,vac± in,1,top ∪Γ 1,vac± in,1,per) ∇ x 1 φ 1± in • n 1± v dx ds(x 1)
-

Ω in,1 ×Γ 1,vac in,1,interf ∇ x 1 φ 1+ in + φ 0 + -∇ x 1 φ 1- in + φ 0 - • n 1+ v dx ds(x 1) + ± Ω in,1 ×Γ 1,vac± in,1,int φ 1± in ∇ x 1 v • n 1± dx ds(x 1) + Ω in,1 ×Γ 1,vac in,1,interf φ 1+ in + φ 0 + -φ 1- in + φ 0 - ∇ x 1 v • n 1+ dx ds(x 1) = ± Ω in,1 ×Γ 1,vac± in,1,int v 1± in ∇ x 1 v • n 1± dx ds x 1 .
The rest of proof runs as the previous proof.

2.6.5/ INTERNAL EDGE MODEL

Let us assume that all interface models are yet built with the index i = 1, 2, 3, 4 as in Figure 2.1. We consider the contributions of two interface models i = 1 and i = 2 at the first internal edge zone. Obviously, the sum of contributions is not continuous at internal edges which are interfaces between subdomains of the first physical internal edged domain, see Figure 2.11, then it leads to propose an internal edge corrector to overcome this problem. We now introduce terms

φ ε ine = φ ε -B ε φ 0 -B ε in,2 φ 2- in χ Ω αε,vac,2 ine,1 -(B ε in,1 φ 1+ in + B ε in,2 φ 2+ in)χ Ω αε,vac,3 ine,1 -B ε in,1 φ 1- in χ Ω αε,vac,4 ine,1 , v ε ine = V ε -B ε V 0 -B ε in,2 v 2- in χ Ω αε,vac,2 ine,1 -(B ε in,1 v 1+ in + B ε in,2 v 2+ in)χ Ω αε,vac,3 ine,1 -B ε in,1 v 1- in χ Ω αε,vac,4 ine,1
, where φ 0 is the solution of the periodic model, φ 1± in and φ 2± in are the solutions of the first and second interface models in the interface zones near the first internal edge zone, B ε in,1 and B ε in,2 are the smooth approximation operators of the first and second adjoint interface twoscale operators

T ε * in,1 and T ε * in,2 , v 1± in and v 2± in are the weak limits of v 1,α± in χ Ω 1,vac± in,1 in L 2 (Ω in,1 × Γ ∞,vac± in,1,int) and of v 2,α± in χ Ω 1,vac± in,2 in L 2 (Ω in,2 × Γ ∞,vac± in,2,int) when α tends to +∞, v 1,α± in and v 2,α± in being the weak limits of T ε in,1 (v ε in) in L 2 Ω in,1 × Γ 1,vac± in,1,int and of T ε in,2 (v ε in) in L 2 Ω in,2 × Γ 1,vac± in,2,int when ε tends to 0, χ Ω αε,vac,i ine,1
are the characteristic functions of the domains Ω αε,vac,i ine,1 introduced in the following.

𝐵 𝑖𝑛,1 𝜀 𝜙 𝑖𝑛 1- 𝐵 𝑖𝑛,1 𝜀 𝜙 𝑖𝑛 1+ 𝐵 𝑖𝑛,2 𝜀 𝜙 𝑖𝑛 2- 𝐵 𝜀 𝜙 0+ 𝐵 𝜀 𝜙 0- 𝑥 1 𝜀 𝑥 2 𝜀 Ω 2 𝜀 Ω 1 𝜀 𝐵 𝑖𝑛,2 𝜀 𝜙 𝑖𝑛 2+ Γ interf 𝜀 Ω 𝑖𝑛𝑒,1 𝛼𝜀 Ω 𝑖𝑛𝑒,1 𝛼𝜀,1 Ω 𝑖𝑛𝑒,1 𝛼𝜀,2 Ω 𝑖𝑛𝑒,1 𝛼𝜀,3 Ω 𝑖𝑛𝑒,1 𝛼𝜀,4 Γ 𝑖𝑛𝑒,1,interf,1 𝛼𝜀 Γ 𝑖𝑛𝑒,1,interf,2 𝛼𝜀 Γ 𝑖𝑛𝑒,1,interf,3 𝛼𝜀 Γ 𝑖𝑛𝑒,1,interf,4 𝛼𝜀

2.6.5.1/ GEOMETRY NOTATIONS

We begin to define the whole internal edge boundary layer domain Ω αε ine,1 , which subscript ine, 1 refers to the first internal edge, as a subdomain of Ω ε 1 ∪ Ω ε 2 and constructed by

Ω αε ine,1 = ∪ c∈I ine,1 Ω ε c . Here I ine,1 is a set of multi-indices c = (c 1 , c 2) : c 1 ∈ i 1 -α, i 1 + α -1, and c 2 ∈ i 2 -α, i 2 + α -1, i 1 , i 2 being such that Ω ε (i 1 ,i 2)
is the first internal edge cell, see Figure 2.12.

The domain Ω αε

ine,1 is decomposed into four nonoverlapping subdomains Ω αε,i ine,1 defined as

Ω αε,i ine,1 = ∪ c∈I i ine,1 Ω ε c with the multi-index sets I i ine,1 I 1 ine,1 = (c 1 , c 2) : c 1 ∈ i 1 -α, i 1 -1, c 2 ∈ i 2 -α, i 2 -1 , I 2 ine,1 = (c 1 , c 2) : c 1 ∈ i 1 -α, i 1 -1, c 2 ∈ i 2 , i 2 + α -1 , I 3 ine,1 = (c 1 , c 2) : c 1 ∈ i 1 , i 1 + α -1, c 2 ∈ i 2 , i 2 + α -1 , I 4 ine,1 = (c 1 , c 2) : c 1 ∈ i 1 , i 1 + α -1, c 2 ∈ i 2 -α, i 2 -1 .
We observe that Ω αε,i ine,1 is a subdomain of Ω ε 1 for i = 1, 2, 4 and of Ω ε 2 for i = 3. For the sake of concision, interface numbering is with indices modulo 4, e.g. 5 plays the role of 1. Precisely, the interface between Ω αε,i ine,1 and Ω αε,i+1 ine,1 is noted Γ αε ine,1, interf,i+1 for i = 1, 2, 3, 4 and Γ αε ine,1,interf,5 or Γ αε ine,1,interf,1 for i = 4. The vacuum parts of all components of Ω αε ine,1 are decorated with the superscript vac. The boundary ∂Ω αε,vac,i ine,1

of each Ω αε,vac,i ine,1 is decomposed as Γ αε,vac,i ine,1,int ∪ Γ αε,vac,i ine,1,ext ∪ Γ αε,vac ine,1, interf,i ∪ Γ αε,vac
ine,1, interf,i+1 with Γ αε,vac,i ine,1,ext = Γ αε,vac,i ine,1,top ∪ Γ αε,vac,i ine,1,α . The whole interface between these domains is Γ αε,vac ine,1,interf = ∪ 4 i=1 Γ αε,vac ine,1,interf,i . Thus, the whole boundary ∂Ω αε,vac ine,1

is (∪ 4 i=1 ∂Ω αε,vac,i ine,1) Γ αε,vac ine,1,interf . The mechanical parts of all components of Ω αε ine,1 are decorated with the superscript mec. The principle of notations is similar to this of the vacuum, but with taking into account the special features of the mechanical boundaries. It is skipped. The finite microscopic domain Ω 1 ine,1 , parametrized by α, is similarly defined as ∪ 4 i=1 Ω 1,i ine,1 , see Figure 2.13, with

Ω 1,1 ine,1 = ∪ ξ,η=0,α-1 (Ω 1 + (-ξ -1/2, -η -1/2, 1/2)), Ω 1,2 ine,1 = ∪ ξ,η=0,α-1 (Ω 1 + (-ξ -1/2, η + 1/2, 1/2)), Ω 1,3 ine,1 = ∪ ξ,η=0,α-1 (Ω 1 + (ξ + 1/2, η + 1/2, 1/2)), Ω 1,4 ine,1 = ∪ ξ,η=0,α-1 (Ω 1 + (ξ + 1/2, -η -1/2, 1/2)).
The notation system built for the physical domain is transposed to the microscopic domain without the need to detail it. The infinite microscopic domain Ω ∞ ine,1 is defined as the limit of Ω1 ine,1 when α tends to infinity. Finally, for all regular function v defined in Ω 1 in,1 , we denote v i the restriction of v to Ω 1,i in,1

and

[[v]
] stands for a jump of v at the interface defined by the following formula

[[v]] =                          v 1 -v 4 at Γ 1, ine,1,interf,1 v 1 -v 2 at Γ 1,vac ine,1,interf,2 v 3 -v 2 at Γ 1,vac ine,1,interf,3 v 3 -v 4 at Γ 1,vac ine,1,interf,4 .
Figure 2.13: The first internal edge Ω 1 ine,1 in the microscopic domain with α = 1.

2.6.5.2/ INTERNAL EDGE BOUNDARY LAYER TWO-SCALE OPERATOR

Now we introduce the dilation operator T ε ine,1 at the first internal edge.

Definition 19:

For all functions ϕ ∈ L2 (Ω αε ine,1) (resp., ϕ ∈ L 2 (Γ αε ine,1)), we define T ε ine,1 as

T ε ine,1 (ϕ)(x 1) = ϕ(εx 1 1 + L 1 1 , εx 1 2 + L 2 1 , εx 1 3)
for a.e. x 1 in Ω 1 ine,1 (resp., x 1 in Γ 1 ine,1), where

L 1 1 = i 1 ε and L 2 1 = i 2 ε, i 1 , i 2 ∈ Z + .

Definition 20:

We define the adjoint operator T ε * ine,1 of T ε ine,1 by

1 ε 3 Ω αε ine,1 ϕT ε * ine,1 (ψ) dx ε = Ω 1 ine,1 T ε ine,1 (ϕ)ψ dx 1 , for all ψ ∈ L 2 (Ω 1 ine,1), ϕ ∈ L 2 (Ω αε ine,1
) and

1 ε 2 Γ αε ine,1 ϕT ε * ine,1 (ψ) ds(x ε) = Γ 1 ine,1 T ε ine,1 (ϕ)ψ ds(x 1), for all ψ ∈ L 2 (Γ 1 ine,1), ϕ ∈ L 2 (Γ αε ine,1).
From the definitions, we obtain an explicit formula of T ε * ine,1 as

T ε * ine,1 (ψ) x ε = ψ        x ε 1 -L 1 1 ε , x ε 2 -L 2 1 ε , x ε 3 ε        , valid for ψ in L 2 (Ω 1 ine,1
) and in L 2 (Γ 1 ine,1). In this internal edge case, the operator T ε * ine,1 and its approximation B ε ine,1 are identical however both will be used to follow the algorithm of Section 2.5.3.

Proposition 21:

Let B ε , B ε in,1 , and B ε in,2 be smooth approximate operators of T ε * , T ε * in,1 , resp. T ε * in,2 , then 1. For all ψ ∈ C 1 (Ω ; L 2 (Ω 1))∩C 0 (Ω ; H 1 (Ω 1)) and Ω 1 -periodic in the directions

x 1 1 , x 1 2 . T ε ine,1 (B ε ψ) → ψ in L 2 (Ω 1 ine,1
) and in L 2 (Γ 1 ine,1),

where ψ(x 1) = ψ((L 1 1 , L 2 1), x 1 -1/2)).

For all

ψ ± ∈ C 1 (Ω in,1 ; L 2 (Ω ∞± in,1))∩C 0 (Ω in,1 ; H 1 (Ω ∞± in,1)) and Ω ∞± in,1 -periodic in the directions x 1± 1 , T ε ine,1 (B ε in,1 ψ ±) → ψ ± in L 2 (Ω 1,3 ine,1 ∪ Ω 1,4 ine,1) and in L 2 (Γ 1,3 ine,1 ∪ Γ 1,4 ine,1)
,

where ψ ± (x 1) = ψ ± (L 1 1 , (x 1 1 -1/2, x 1 2 , x 1
3)).

For all

ψ ± ∈ C 1 (Ω in,2 ; L 2 (Ω ∞± in,2))∩C 0 (Ω in,2 ; H 1 (Ω ∞± in,2)) and Ω ∞± in,2 -periodic in the directions x 1± 2 , T ε ine,1 (B ε in,2 ψ ±) → ψ ± in L 2 (Ω 1,2 ine,1 ∪ Ω 1,3 ine,1) and in L 2 (Γ 1,2 ine,1 ∪ Γ 1,3 ine,1)
,

where ψ ± (x 1) = ψ ± (L 2 1 , (x 1 1 , x 1 2 -1/2, x 1
3)).

2.6.5.3/ DERIVATION OF AN INTERNAL EDGE MODEL

Assumption 5:

We assume that

1. For each α, there exist φ 1,α ine in H 1 (Ω 1,vac ine,1) and v 1,α ine in L 2 (Γ 1,vac ine,1,int) such that T ε ine,1 (φ ε ine) φ 1,α ine weakly in L 2 (Ω 1,vac ine,1) and T ε ine,1 (v ε ine) v 1,α ine weakly in L 2 (Γ 1,vac ine,1,int).
2. There exist φ 1 ine in H 1 (Ω ∞,vac ine,1), φ 1 ine and its gradient converge exponentially fast to zero when

x 1 1 + x 1 2 → +∞, and v 1 ine in L 2 (Γ ∞,vac ine,1,int) such that φ 1,α ine χ Ω 1,vac ine,1 φ 1 ine weakly in L 2 (Ω ∞,vac ine,1) and v 1,α ine χ Ω 1,vac ine,1 v 1 ine weakly in L 2 (Γ ∞,vac ine,1,int).
The next proposition results from using Proposition 21.

Proposition 22:

Assuming

φ 0 ∈ C 1 (Ω ; L 2 (Ω 1)) ∩ C 0 (Ω ; H 1 (Ω 1)) ,φ 1- in ∈ C 1 (Ω in,1 ; L 2 (Ω ∞± in,1)) ∩ C 0 (Ω in,1 ; H 1 (Ω ∞± in,1)), φ 2- in ∈ C 1 (Ω in,2 ; L 2 (Ω ∞± in,2))∩C 0 (Ω in,2 ; H 1 (Ω ∞± in,2
)) Asumption 5 then

T ε ine,1 (φ ε) φ 1,α ine + φ 0 + φ 2- in χ Ω 1,vac,2 ine,1 + (φ 1+ in + φ 2+ in)χ Ω 1,vac,3 ine,1 + φ 1- in χ Ω 1,vac,4 ine,1
weakly in L 2 (Ω 1,vac ine,1) and

T ε ine,1 (v ε) v 1,α ine + V 0 + v 2- in χ Ω 1,vac,2 ine,1 + (v 1+ in + v 2+ in)χ Ω 1,vac,3 ine,1 + v 1- in χ Ω 1,vac,4 ine,1 weakly in L 2 (Γ 1,vac ine,1,int), where φ 0± (x 1) = φ 0± ((L 1 1 , L 2 1), x 1 -1/2), φ 1± in (x 1) = φ 1± in (L 2 1 , (x 1 1 - 1/2, x 1 2 , x 1 3)), and φ 2± in (x 1) = φ 2± in (L 1 1 , (x 1 1 , x 1 2 -1/2, x 1
3)).

Proposition 23:

The limit φ 1 ine is a solution to

     -∆ x 1 φ 1 ine = 0 in Ω ∞,vac ine,1 φ 1 ine = v 1 ine on Γ ∞,vac ine,1,int ∇ x 1 φ 1 ine • n 1 = 0 on Γ ∞,vac ine,1,top φ 1 ine = φ 1- in on Γ ∞,vac ine,1,interf,1 ∇ x 1 φ 1 ine • n 1 = ∇ x 1 φ 1- in • n 1 on Γ ∞,vac ine,1,interf,1 φ 1 ine = φ 2- in on Γ ∞,vac ine,1,interf,2 ∇ x 1 φ 1 ine • n 1 = ∇ x 1 φ 2- in • n 1 on Γ ∞,vac ine,1,interf,2 . φ 1 ine = -φ 1+ in on Γ ∞,vac ine,1,interf,3 ∇ x 1 φ 1 ine • n 1 = -∇ x 1 φ 1+ in • n 1 on Γ ∞,vac ine,1,interf,3 φ 1 ine = -φ 2+ in on Γ ∞,vac ine,1,interf,4 ∇ x 1 φ 1 ine • n 1 = -∇ x 1 φ 2+ in • n 1 on Γ ∞,vac ine,1,interf,4 .
Proof. The main idea of the proof is the same as the previous proofs. Firstly, we replace v ε in (2.6.3) by a smooth function v ε ine defined in Ω αε,vac ine,1 and vanishing out of Ω αε,vac ine,1 , then

Ω αε,vac ine,1 φ ε ∆ x ε v ε ine dx ε = Γ αε,vac ine,1,int V ε ∇ x ε v ε ine • n ε ds x ε + Γ αε,vac ine,1,ext ϕ ε ∇ x ε v ε ine • n ε ds x ε .
After that, we substitute v ε ine by ε

-1 B ε ine,1 (w) where w is in C ∞ (Ω 1,vac exe,1) such that w = 0 on Γ 1,vac ine,1,int ∪ Γ 1,vac ine,1,α and ∇ x 1 w • n 1 = 0 on Γ 1,vac ine,1,top ∪ Γ 1,vac ine,1,α , hence 1 ε Ω αε,vac ine,1 φ ε ∆ x ε B ε ine,1 (w) dx ε = 1 ε Γ αε,vac ine,1,int V ε ∇ x ε B ε ine,1 (w)•n ε ds x ε + 1 ε Γ αε,vac ine,1,ext ϕ ε ∇ x ε B ε ine,1 (w)•n ε ds x ε .
Obviously,

∂B ε ine,1 w ∂x ε i = 1 ε B ε ine,1       ∂w ∂x 1 i       and ∂ ∂x ε i ∂B ε ine,1 w ∂x ε i = 1 ε 2 B ε ine,1       ∂ ∂x 1 i ∂w ∂x 1 i       ,
for all i = 1, 2, 3, and

B ε ine,1 (∇ x 1 w) • n ε = 0 on Γ αε,vac ine,1,ext . Thus, 1 ε 3 Ω αε,vac ine,1 φ ε B ε ine,1 ∆ x 1 w dx ε = 1 ε 2 Γ αε,vac ine,1,int V ε B ε ine,1 ∇ x 1 w • n 1 ds x ε . Replacing B ε ine,1 by T ε * ine,1 , then transposing T ε * ine,1 to T ε ine,1 , we have Ω 1,vac ine,1 T ε ine,1 (φ ε)∆ x 1 w dx 1 = Γ 1,vac ine,1,int T ε ine,1 (V ε)∇ x 1 w • n 1 ds x 1 .
Decomposing

Ω 1,vac ine,1 = ∪ 4 i=1 Ω 1,vac,i ine,1
and Γ 1,vac ine,1 = ∪ 4 i=1 Γ 1,vac,i ine,1,int the above equality becomes

4 i=1 Ω 1,vac,i ine,1 T ε ine,1 (φ ε)∆ x 1 w dx 1 = 4 i=1 Γ 1,vac,i ine,1,int T ε ine,1 (V ε)∇ x 1 w • n 1,i ds x 1 .
Passing ε to 0, and combining with Proposition 22, gives

l.h.s = Ω 1,vac,1 ine,1 φ 1,α,1 ine + φ 0-∆ x 1 w dx 1 + Ω 1,vac,2 ine,1 φ 1,α,2 ine + φ 0-+ φ 2- in ∆ x 1 w dx 1 + Ω 1,vac,3 ine,1 φ 1,α,3 ine + φ 0+ + φ 1+ in + φ 2+ in ∆ x 1 w dx 1 + Ω 1,vac,4 ine,1 φ 1,α,4 ine + φ 0-+ φ 1- in ∆ x 1 w dx 1 and r.h.s = Γ 1,vac,1 ine,1 v 1,α,1 ine + V 0-∇ x 1 w • n 1 ds x 1 + Γ 1,vac,2 ine,1 v 1,α,2 ine + V 0-+ v 2- in ∇ x 1 w • n 1 ds x 1 + Γ 1,vac,3 ine,1 v 1,α,3 ine + V 0+ + v 1+ in + v 2+ in ∇ x 1 w • n 1 ds x 1 + Γ 1,vac,4 ine,1 v 1,α,4 ine + V 0-+ v 1- in ∇ x 1 w • n 1 ds x 1 .
It follows that these above equalities still hold if w is taken on the form of τ α v, where and∆ x 1 v exponentially decrease to 0 when x 1 1 + x 1 2 → +∞, and τ α is a smooth truncation function with compact support Ω 1,vac ine,1 . Then

v ∈ C ∞ (Ω ∞,vac ine,1) ∩ H 2 (Ω ∞,vac ine,1), v = 0 on Γ ∞,vac ine,1,int , v = 0 on Γ ∞,vac ine,1,int and ∇ x 1 v • n 1 = 0 on Γ ∞,vac ine,1,top , |v|, ∇ x 1 v ,
l.h.s = Ω ∞,vac,1 ine,1 φ 1,α,1 ine + φ 0-χ Ω 1,vac ine,1 ∆ x 1 τ α v dx 1 + Ω ∞,vac,2 ine,1 φ 1,α,2 ine + φ 0-+ φ 2- in χ Ω 1,vac ine,1 ∆ x 1 τ α v dx 1 + Ω ∞,vac,3 ine,1 φ 1,α,3 ine + φ 0+ + φ 1+ in + φ 2+ in χ Ω 1,vac ine,1 ∆ x 1 τ α v dx 1 + Ω ∞,vac,4 ine,1 φ 1,α,4 ine + φ 0-+ φ 1- in χ Ω 1,vac ine,1 ∆ x 1 τ α v dx 1 , and
r.h.s = Γ ∞,vac,1 ine,1 v 1,α,1 ine + V 0-χ Ω 1,vac ine,1 ∇ x 1 τ α v • n 1 ds x 1 + Γ ∞,vac,2 ine,1 v 1,α,2 ine + V 0-+ v 2- in χ Ω 1,vac ine,1 ∇ x 1 τ α v • n 1 ds x 1 + Γ ∞,vac,3 ine,1 v 1,α,3 ine + V 0+ + v 1+ in + v 2+ in χ Ω 1,vac ine,1 ∇ x 1 τ α v • n 1 ds x 1 + Γ ∞,vac,4 ine,1 v 1,α,4 ine + V 0-+ v 1- in χ Ω 1,vac ine,1 ∇ x 1 τ α v • n 1 ds x 1 .
Passing α to +∞, by Assumption 5,

l.h.s = Ω ∞,vac,1 ine,1 φ 1,1 ine + φ 0-∆ x 1 v dx 1 + Ω ∞,vac,2 ine,1 φ 1,2 ine + φ 0-+ φ 2- in ∆ x 1 vdx 1 + Ω ∞,vac,3 ine,1 φ 1,3 ine + φ 0+ + φ 1+ in + φ 2+ in ∆ x 1 vdx 1 + Ω ∞,vac,4 ine,1 φ 1,4 ine + φ 0-+ φ 1- in ∆ x 1 vdx 1 , and
r.h.s = Γ ∞,vac,1 ine,1 v 1,1 ine + V 0-∇ x 1 v • n 1 ds x 1 + Γ ∞,vac,2 ine,1 v 1,2 ine + V 0-+ v 2- in ∇ x 1 v • n 1 ds x 1 + Γ ∞,vac,3 ine,1 v 1,3 ine + V 0+ + v 1+ in + v 2+ in ∇ x 1 v • n 1 ds x 1 + Γ ∞,vac,4 ine,1 v 1,4 ine + V 0-+ v 1- in ∇ x 1 v • n 1 ds x 1 .
Now, we choose v vanishing out of Ω 1,vac ine,1 for a given α,

l.h.s = Ω 1,vac,1 ine,1 φ 1,1 ine + φ 0-∆ x 1 v dx 1 + Ω 1,vac,2 ine,1 φ 1,2 ine + φ 0-+ φ 2- in ∆ x 1 vdx 1 + Ω 1,vac,3 ine,1 φ 1,3 ine + φ 0+ + φ 1+ in + φ 2+ in ∆ x 1 vdx 1 + Ω 1,vac,4 ine,1 φ 1,4 ine + φ 0-+ φ 1- in ∆ x 1 vdx 1 that we note = T 1 + T 2 + T 3 + T 4 , and
r.h.s = Γ 1,vac,1 ine,1 v 1,1 ine + V 0-∇ x 1 v • n 1 ds x 1 + Γ 1,vac,2 ine,1 v 1,2 ine + V 0-+ v 2- in ∇ x 1 v • n 1 ds x 1 + Γ 1,vac,3 ine,1 v 1,3 ine + V 0+ + v 1+ in + v 2+ in ∇ x 1 v • n 1 ds x 1 + Γ 1,vac,4 ine,1 v 1,4 ine + V 0-+ v 1- in ∇ x 1 v • n 1 ds x 1 .
Applying Green's formula twice to each term T i yields,

T 1 = Ω 1,vac,1 ine,1 φ 1,1 ine + φ 0-∆ x 1 v dx 1 = Ω 1,vac,1 ine,1 ∆ x 1 φ 1,1 ine + φ 0-v dx 1 + ∂Ω 1,vac,1 ine,1 φ 1,1 ine + φ 0-∇ x 1 v • n 1,1 ds(x 1)
-

∂Ω 1,vac,1 ine,1 v∇ x 1 φ 1,1 ine + φ 0-• n 1,1 ds(x 1), T 2 = Ω 1,vac,2 ine,1 φ 1,2 ine + φ 0-+ φ 2- in ∆ x 1 v dx 1 = Ω 1,vac,2 ine,1 ∆ x 1 φ 1,2 ine + φ 0-+ φ 2- in v dx 1 + ∂Ω 1,vac,2 ine,1 φ 1,2 ine + φ 0-+ φ 2- in ∇ x 1 v • n 1,2 ds(x 1) - ∂Ω 1,vac,2 ine,1 v∇ x 1 φ 1,2 ine + φ 0-+ φ 2- in • n 1,2 ds(x 1)
,

T 3 = Ω 1,vac,3 ine,1 φ 1,3 ine + φ 0+ + φ 1+ in + φ 2+ in ∆ x 1 v dx 1 = Ω 1,vac,3 ine,1 ∆ x 1 φ 1,3 ine + φ 0+ + φ 1+ in + φ 2+ in v dx 1 + ∂Ω 1,vac,3 ine,1 φ 1,3 ine + φ 0+ + φ 1+ in + φ 2+ in ∇ x 1 v • n 1,3 ds(x 1) - ∂Ω 1,vac,3 ine,1 v∇ x 1 φ 1,3 ine + φ 0+ + φ 1+ in + φ 2+ in • n 1,3 ds(x 1),
and

T 4 = Ω 1,vac,4 ine,1 φ 1,4 ine + φ 0-+ φ 1- in ∆ x 1 v dx 1 = Ω 1,vac,4 ine,1 ∆ x 1 φ 1,4 ine + φ 0-+ φ 1- in v dx 1 + ∂Ω 1,vac,4 ine,1 φ 1,4 ine + φ 0-+ φ 1- in ∇ x 1 v • n 1,4 ds(x 1) - ∂Ω 1,vac,4 ine,1 v∇ x 1 φ 1,4 ine + φ 0-+ φ 1- in • n 1,4 ds(x 1)
.

Decomposing each ∂Ω 1,vac,i ine,1 = Γ 1,vac,i ine,1,int ∪ Γ 1,vac,i ine,1,top ∪ Γ 1,vac,i ine,1,α ∪ Γ 1,vac ine,1,interf,i ∪ Γ 1,vac
ine,1,interf,i+1 for i = 1, 2, 3, 4 and combining with the conditions satisfied by v, with the results from Proposition 9 and with Proposition 20 if follows that

∆ x 1 φ 0± = 0 in Ω 1,vac ine,1 , ∆ x 1 φ 1+ in = 0 in Ω 1,vac,3 ine,1 , ∆ x 1 φ 1- in = 0 in Ω 1,vac,4 ine,1 , ∆ x 1 φ 2+ in = 0 in Ω 1,vac,3 ine,1 , ∆ x 1 φ 2- in = 0 in Ω 1,vac,2 ine,1 , ∇ x 1 φ 0 • n 1 = 0 on Γ 1,vac ine,1,top , ∇ x 1 φ 1+ in • n 1 = 0 on Γ 1,vac,3 ine,1,top , ∇ x 1 φ 1- in • n 1 = 0 on Γ 1,vac,4 ine,1,top , ∇ x 1 φ 2+ in • n 1 = 0 on Γ 1,vac,3 ine,1,top , ∇ x 1 φ 2- in • n 1 = 0 on Γ 1,vac,2 ine,1,top , φ 0 + φ 1 in = ∇ x 1 φ 0 + ∇ x 1 φ 1 in • n 1,3 = 0 on Γ 1,vac ine,1, interf,4 , φ 0 + φ 2 in = ∇ x 1 φ 0 + ∇ x 1 φ 2 in • n 1,3 = 0 on Γ 1,vac ine,1,interf,3 , thus we get 4 i=1 Ω 1,vac,i ine,1 ∆ x 1 φ 1,i ine v dx 1 - 4 i=1 Γ 1,vac,i ine,1,top v∇ x 1 φ 1,i ine • n 1,i ds(x 1) + Γ 1,vac ine,1,interf,1 φ 1,1 ine -φ 1,4 ine -φ 1- in ∇ x 1 v • n 1,1 ds(x 1) - Γ 1,vac ine,1, interf,1 v ∇ x 1 (φ 1,1 ine -φ 1,4 ine) -∇ x 1 φ 1- in • n 1,1 ds(x 1) + Γ 1,vac ine,1,interf,2 φ 1,1 ine -φ 1,2 ine -φ 2- in ∇ x 1 v • n 1,1 ds(x 1) - Γ 1,vac ine,1, interf,2 v ∇ x 1 (φ 1,1 ine -φ 1,2 ine) -∇ x 1 φ 2- in • n 1,1 ds(x 1) + Γ 1,vac ine,1,interf,3 φ 1,3 ine -φ 1,2 ine + φ 1+ in ∇ x 1 v • n 1,3 ds(x 1) - Γ 1,vac ine,1, interf,3 v ∇ x 1 (φ 1,3 ine -φ 1,2 ine) + ∇ x 1 φ 1+ in • n 1,3 ds(x 1) + Γ 1,vac ine,1,interf,4 φ 1,3 ine -φ 1,4 ine + φ 2+ in ∇ x 1 v • n 1,3 ds(x 1) - Γ 1,vac ine,1, interf,4 v ∇ x 1 (φ 1,3 ine -φ 1,4 ine) + ∇ x 1 φ 2+ in • n 1,3 ds(x 1) + 4 i=1 Γ 1,vac,i ine,1,int φ 1,i ine ∇ x 1 v • n 1,i ds(x 1) = 4 i=1 Γ 1,vac,i ine,1,int v 1,i ine ∇ x 1 v • n 1,i ds(x 1)
The rest of the proof runs similarly as the proofs of the previous models.

2.7/ LINEAR ELASTICITY MODELS

Let us move to the linear elasticity part. In this part, we use the superscripts ε, , and 1 on derivation operators related to the variables x ε , x and x1 , e.g. div ε and σ ε represent div and σ with respect to the variable x ε .

We now recall the system 2.4.2 of linear elasticity,

             -div ε σ ε (u ε) = ε -2 f ε in Ω ε,mec u ε = 0 on Γ ε,mec 0 σ ε (u ε)n ε = ε -1 g ε on Γ ε,mec 1 .
(2.7.1)

We recall that there exists a unique

u ε ∈ H 1 Γ ε,mec 0 ,0 (Ω mec) {v ε = (v ε i) : v ε i ∈ H 1 (Ω ε,mec), v ε i = 0 on Γ ε,mec 0 , i = 1, 2, 3} such that Ω ε,mec σ ε i j (u ε)∂ ε j v ε i dx ε = for all v ε ∈ H 1 Γ ε,mec 0
,0 (Ω ε,mec), see [START_REF] Ciarlet | Mathematical elasticity[END_REF]. We now develop the stress expression in (2.7.2),

Ω ε,mec λe ε pp (u ε)e ε qq (v ε) + 2µe ε i j (u ε)e ε i j (v ε) dx ε = 1 ε 2 Ω ε,mec f ε i v ε i dx ε + 1 ε Γ ε,mec 1 g ε i v ε i ds(x ε). But e ε pp (u ε) = δ i j ∂ ε j u ε i and e ε i j (u ε)e ε i j (v ε) = ∂ ε j (u ε i)e ε i j (v ε) implies Ω ε,mec ∂ ε j (u ε i)(λδ i j e ε qq (v ε) + 2µe ε i j (v ε))dx ε = 1 ε 2 Ω ε,mec f ε i v ε i dx ε + 1 ε Γ ε,mec 1 g ε i v ε i ds(x ε).
It could be read under the following equivalent form

Ω ε,mec ∂ ε j (u ε i)σ ε i j (v ε)dx ε = 1 ε 2 Ω ε,mec f ε i v ε i dx ε + 1 ε Γ ε,mec 1 g ε i v ε i ds(x ε).
Applying the Green's formula, we obtain a very weak form of Problem 2.7.1,

- Ω ε,mec u ε i ∂ ε j σ ε i j (v ε)dx ε + Γ ε,mec 1 u ε i σ ε i j (v ε)n ε j ds(x ε) = 1 ε 2 Ω ε,mec f ε i v ε i dx ε + 1 ε Γ ε,mec 1 g ε i v ε i ds(x ε), (2.7.3)
for all v ε ∈ H 2 Γ ε,mec 0 ,0 (Ω ε,mec) {v ε = (v ε i) : v ε i ∈ H 2 (Ω ε,mec), v ε i = 0 on Γ ε,mec 0 , i = 1, 2, 3}.

Remark 6:

In this part, we do not redefine two-scale transform operators of vector valued functions, instead we use a bold notation such as

T ε with T ε v = (T ε v 1 , T ε v 2 , T ε v 3)
built from the two-scale transform operators T ε defined for scalar functions in the previous sections. Similarly, bold notations are use for function spaces to indicate vector valued function spaces, e.g.

L 2 (Ω ε,mec) = [L 2 (Ω ε,mec)] 3 and L 2 (Γ ε,mec 1) = [L 2 (Γ ε,mec 1
)] 3 .

Assumption 6:

Let u ε be a solution of (2.7.2), and assume that the norms

|||u ε ||| L 2 (Ω ε,mec) , ε|||∇ ε u ε ||| L 2 (Ω ε,mec) , |||f ε ||| L 2 (Ω ε,mec) and |||g ε ||| L 2 (Γ ε,mec 1
) are bounded uniformly with respect to ε.

2.7.1/ PERIODIC MODEL

Proposition 24:

Let u ε be a solution of (2.7.2) and satisfies Assumption 6, then there exist

u 0 = (u 0 1 , u 0 2 , u 0 3) in L 2 (Ω , H 1 (Ω 1,mec)), Ω 1,mec -periodic in the directions x 1 1 and x 1 2 , f 0 = (f 0 1 , f 0 2 , f 0 3) in L 2 (Ω × Ω 1,mec), and g 0 = (g 0 1 , g 0 2 , g 0 3) in L 2 (Ω × Γ 1,mec 1
), such that

T ε u ε u 0 , T ε (f ε) f 0 weakly in L 2 (Ω × Ω 1,mec
), and T ε g ε g 0 weakly in

L 2 (Ω × Γ 1,mec 1
). Moreover, for a.e x ∈ Ω , u 0 is a solution to

                           -div 1 σ 1 (u 0) = f 0 in Ω 1,mec u 0 = 0 on Γ 1,mec 0 σ 1 (u 0)n 1 = g 0 on Γ 1,mec 1 σ 1 (u 0)n 1 is Γ 1,mec per -antiperiodic u 0 is Γ 1,mec per -periodic.
Proof. By Proposition 3, we obtain the existence and the periodicity of u 0 . The proof is completed by showing that u 0 satisfies the above equation. We now replace v ε by εB ε (w) = (εB ε w 1 , εB ε w 2 , εB ε w 3) in (2.7.3), where w ∈ C ∞ (Ω × Ω 1,mec), Ω 1,mec -periodic in the directions x 1 1 and x 1 2 , w = 0 on Γ 1,mec 0 and σ 1 (w)n 1 = 0 on Γ 1,mec 1 ∪ Γ 1,mec per . Then, we can assert that

-ε Ω ε,mec u ε i ∂ ε j σ ε i j (B ε w)dx ε + ε Γ ε,mec 1 u ε i σ ε i j (B ε w)n ε j ds(x ε) = 1 ε Ω ε,mec f ε i B ε w i dx ε + Γ ε,mec 1 g ε i B ε w i ds(x ε). (2.7.4)
We check that

∂ ε j (B ε w) = B ε (∂ j w)χ I (j) + 1 ε B ε (∂ 1 j w) and e ε (B ε w) = B ε (e (w)) + 1 ε B ε (e 1 (w)),
where

e i j (w) = 1 2 ∂ i w j χ I (i) + ∂ j w i χ I (j) and e 1 i j (w) = 1 2 ∂ 1 i w j + ∂ 1 j w i with I = {1, 2},
and we denote

σ i j (w) = λe pp (w)δ i j + 2µe i j (w) and σ 1 i j (w) = λe 1 pp (w)δ i j + 2µe 1 i j (w).
And it is clear that B ε (σ 1 (w))n ε = 0 on Γ ε,mec

1

. Then, a direct computation shows that l.h.s of (2.7.4) becomes,

l.h.s = -ε Ω ε,mec u ε i ∂ ε j B ε (σ i j (w)) + 1 ε B ε (σ 1 i j (w)) dx ε + ε Γ ε,mec 1 u ε i B ε (σ i j (w)) + 1 ε B ε (σ 1 i j (w)) n ε j ds(x ε) = - 1 ε Ω ε,mec u ε i B ε ∂ 1 j σ 1 i j (w) dx ε + O(ε),
where

O(ε) = -ε Ω ε,mec u ε i B ε ∂ j σ i j (w)χ I (j) dx ε - Ω ε,mec u ε i B ε ∂ 1 j σ i j (w) dx ε - Ω ε,mec u ε i B ε ∂ j σ 1 i j (w)χ I (j) dx ε + ε Γ ε,mec 1 u ε i B ε (σ i j (w))n ε j χ I (j)ds(x ε).
Thus (2.7.4) changes into

- 1 ε Ω ε,mec u ε i B ε (∂ 1 j σ 1 i j (w)) dx ε + O(ε) = 1 ε Ω ε,mec f ε i B ε (w i) dx ε + Γ ε,mec 1 g ε i B ε (w i)ds(x ε).
Approximating B ε by T ε * , we obtain

- 1 ε Ω ε,mec u ε i T ε * ∂ 1 j σ 1 i j (w) dx ε + O(ε) = 1 ε Ω ε,mec f ε i T ε * (w i) dx ε + Γ ε,mec 1 g ε i T ε * (w i) ds(x ε).
Using the adjoint operator definition gives

- Ω ×Ω 1,mec T ε (u ε i)∂ 1 j σ 1 i j (w) dx dx 1 = Ω ×Ω 1,mec T ε (f ε i)w i dx dx 1 + Ω ×Γ 1,mec 1 T ε (g ε i)w i dx ds(x 1) + O(ε).
Passing ε to 0 and by Assumption 6 , then we get

- Ω ×Ω 1,mec u 0 i ∂ 1 j σ 1 i j (w) dx dx 1 = Ω ×Ω 1,mec f 0 i w i dx dx 1 + Ω ×Γ 1,mec 1 g 0 i w i dx ds(x 1).
Applying the Green's formula twice for l.h.s,

- Ω ×Ω 1,mec ∂ 1 j (σ 1 i j (u 0))w i dx dx 1 + Ω ×∂Ω 1,mec σ 1 i j (u 0)n 1 j w i dx ds(x 1) - Ω ×∂Ω 1,mec σ 1 i j (w)n 1 j u 0 i dx ds(x 1) = Ω ×Ω 1,mec f 0 i w i dx dx 1 + Ω ×Γ 1,mec 1 g 0 i w i dx ds(x 1)
.

Decomposing ∂Ω 1,mec into Γ 1,mec 0 ∪ Γ 1,mec 1 ∪ Γ 1,mec
per and combining with conditions satisfied w yields -

Ω ×Ω 1,mec ∂ 1 j σ 1 i j (u 0) w i dx dx 1 + Ω ×(Γ 1,mec per ∪Γ 1,mec 1)
σ 1 i j (u 0)n 1 j w i dx ds(x 1) (2.7.5)

-

Ω ×Γ 1 0 σ 1 i j (w)n 1 j u 0 i dx ds(x 1) = Ω ×Ω 1,mec f 0 i w i dx dx 1 + Ω ×Γ 1,mec 1 g 0 i w i dx ds(x 1). i) If we choose w = 0 on Γ 1,mec per ∪ Γ 1,mec 1 and σ 1 (w)n 1 = 0 on Γ 1,mec 0 , then - Ω ×Ω 1 ∂ 1 j (σ 1 i j (u 0))w i dx dx 1 = Ω ×Ω 1 f 0 i w i dx dx 1 .
We can deduce that

-∂ 1 j σ 1 i j (u 0) = f 0 i in Ω 1,mec .
Then (2.7.5) changes into

Ω ×(Γ 1,mec per ∪Γ 1,mec 1) σ 1 i j (u 0)n 1 j w i dx ds(x 1)+ Ω ×Γ 1,mec 0 σ 1 i j (w)n 1 j u 0 i dx ds(x 1) = Ω ×Γ 1,mec 1 g 0 i w i dx ds(x 1). ii) If w = 0 on Γ 1,mec per and σ 1 (w)n 1 = 0 on Γ 1,mec 0 Ω ×Γ 1,mec 1 σ 1 i j (u 0)n 1 j w i dx ds(x 1) = Ω ×Γ 1,mec 1 g 0 i w i dx ds(x 1).
We can assert that

σ 1 i j (u 0)n 1 j = g 0 i on Γ 1,mec 1 .
Hence,

Ω ×Γ 1,mec per σ 1 i j (u 0)n 1 j w i dx ds(x 1) - Ω ×Γ 1,mec 0 σ 1 i j (w)n 1 j u 0 i dx ds(x 1) = 0.
iii) If w = 0 and σ 1 (w)n 1 = 0 on Γ 1,mec per , then

- Ω ×Γ 1,mec 0 σ 1 i j (w)n 1 j u 0 i dx ds(x 1) = 0.
we obtain

u = 0 on Γ 1,mec 0 .
Lastly, we have

Ω ×Γ 1 per σ 1 i j (u 0)n 1 j w i dx ds(x 1) = 0.
It leads

σ 1 i j (u 0)n 1 j is Γ 1,mec per -antiperiodic.

2.7.2/ LATERAL BOUNDARY MODEL

We now investigate the first lateral boundary model by introducing some terms

u ε bl = u ε -B ε u 0 , f ε bl = f ε -B ε f 0 , g ε bl = g ε -B ε g 0 ,
and make the following assumptions.

Assumption 7:

We assume that:

1. For each α, there exist u 1,α bl = (u 1,α bl,1 , u 1,α bl,2 , u 1,α bl,3) ∈ L 2 (Ω bl,1 , H 1 (Ω 1,mec bl,1)), Ω 1,mec bl,1 -periodic in the direction x 1 1 , f 1,α bl = (f 1,α bl,1 , f 1,α bl,2 , f 1,α bl,3) ∈ L 2 (Ω bl,1 × Ω 1,mec bl,1), and g 1,α bl = (g 1,α bl,1 , g 1,α bl,2 , g 1,α bl,3) ∈ L 2 (Ω × Γ 1,mec bl,1,1) such that T ε bl,1 u ε bl u 1,α bl , T ε bl,1 f ε bl f 1,α bl weakly in L 2 (Ω bl,1 × Ω 1,mec bl,1
), and

T ε bl,1 (g ε bl) g 1,α bl weakly in L 2 (Ω bl,1 × Γ 1,mec
bl,1,1) when ε → 0.

2.

There exist

u 1 bl = (u 1 bl,1 , u 1 bl,2 , u 1 bl,3) ∈ L 2 (Ω bl,1 , H 1 (Ω ∞,mec bl,1)), Ω ∞,mec bl,1 -periodic in the direction x 1 1 , u 1 bl,i and σ 1 i j (u 1 bl) converges exponentially fast to 0 when x 1 2 → +∞ for all i, j ∈ {1, 2, 3}, f 1 bl = (f 1 bl,1 , f 1 bl,2 , f 1 bl,3) ∈ L 2 (Ω bl,1 × Ω ∞,mec bl,1), and g 1 bl = (g 1 bl,1 , g 1 bl,2 , g 1 bl,3) ∈ L 2 (Ω × Γ ∞,mec bl,1,1) such that u 1,α bl χ Ω 1,mec bl,1 u 1 bl , f 1,α bl χ Ω 1,mec bl,1 f 1 bl weakly in L 2 (Ω bl,1 × Ω ∞,mec bl,1), and g 1,α bl χ Ω 1,mec bl,1 g 1 bl weakly in L 2 (Ω bl,1 × Γ 1,mec bl,1,1) when α + ∞.

Proposition 25:

By Assumption 7 and using Proposition 11, then

T ε bl,1 u ε u 1,α bl + u 0 , T ε bl,1 (f ε) f 1,α bl + f 0 weakly in L 2 Ω bl,1 × Ω 1,mec bl,1 and T ε bl,1 g ε g 1,α bl + g 0 weakly in L 2 Ω bl,1 × Γ 1,mec bl,1,1 where ϕ(x , x 1) = ϕ (x , 0), (x 1 1 , x 1 2 -1 2 , x 1 3 -1 2) , for (x , x 1) ∈ Ω × Ω 1,mec
bl,1 .

Proposition 26:

The limit u 1 bl is a solution to

                                   -div 1 σ 1 (u 1 bl) = f 1 bl in Ω ∞,mec bl,1 u 1 bl = 0 on Γ ∞,mec bl,1,0 u 1 bl is Γ ∞,mec bl,1,per -periodic σ 1 (u 1 bl)n 1 = g 1 bl on Γ ∞,mec bl,1,1 σ 1 (u 1 bl)n 1 is Γ ∞,mec bl,1,per -antiperiodic σ 1 (u 1 bl)n 1 = -σ 1 (u 0)n 1 on Γ ∞,mec bl,1,Or .
(2.7.6)

Proof. We replace v ε in (2.7.3) by a smooth vector valued function v ε bl defined in Ω αε,mec bl,1

and vanishing out of Ω αε,mec bl,1 . Then, we substitute v ε bl by

B ε bl,1 (w) where w ∈ C ∞ (Ω bl,1 × Ω 1,mec bl,1), is Ω 1,mec bl,1 -periodic in the direction x 1 1 , w = 0 on Γ 1,mec bl,1,0 ∪ Γ 1,mec bl,1,α and σ 1 (w)n 1 = 0 on Γ 1,mec bl,1,per ∪ Γ 1,mec bl,1,1 ∪ Γ 1,mec bl,1,Or ∪ Γ 1,mec bl,1,α , we get - Ω αε,mec bl,1 u ε i ∂ ε j σ 1 i j B ε bl,1 (w) dx ε + Γ αε,mec bl,1,1 u ε i σ ε i j B ε bl,1 (w) n ε j ds(x ε) = 1 ε 2 Ω αε,mec bl,1 f ε i B ε bl,1 (w i) dx ε + 1 ε Γ αε,mec bl,1,1 g ε i B ε bl,1 (w i) ds(x ε).
(2.7.7)

Then

∂ ε j B ε bl,1 (w) = B ε bl,1 (∂ j w)χ I (j) + 1 ε B ε bl,1 (∂ 1 j w) and e ε (B ε bl,1 (w)) = B ε bl,1 (e (w)) + 1 ε B ε bl,1 (e 1 (w)),
where

e i j (w) = 1 2 ∂ i w j χ I (i) + ∂ j w i χ I (j) and e 1 i j (w) = 1 2 ∂ 1 i w j + ∂ 1 j w i , with I = {1},
and we denote

σ i j (w) = λe pp (w)δ i j + 2µe i j (w) and σ 1 i j (w) = λe 1 pp (w)δ i j + 2µe 1 i j (w).
One checks that B ε bl,1 σ 1 i j (w) n ε = 0 on Γ αε,mec bl,1,1 . Plugging into (2.7.7), we can assert that

- 1 ε 2 Ω αε,mec bl,1 u ε i B ε bl,1 ∂ 1 j σ 1 i j (w) dx ε +O(ε) = 1 ε 2 Ω αε,mec bl,1 f ε i B ε bl,1 (w i) dx ε + 1 ε Γ αε,mec bl,1,1 g ε i B ε bl,1 (w i) ds(x ε).
where

O(ε) = - Ω αε,mec bl,1 u ε i B ε bl,1 ∂ j σ i j (w)χ I (j) dx ε - 1 ε Ω αε,mec bl,1 u ε i B ε bl,1 ∂ 1 j σ i j (w) dx ε - 1 ε Ω αε,mec bl,1 u ε i B ε bl,1 ∂ j σ 1 i j (w)χ I (j) dx ε + Γ αε,mec bl,1,1 u ε i B ε bl,1 σ i j (w) n ε j χ I (j)ds(x ε). Replacing B ε bl,1 by T ε * bl,1 , then - 1 ε 2 Ω αε,mec bl,1 u ε i T ε * bl,1 (∂ 1 j σ 1 i j (w)) dx ε = 1 ε 2 Ω αε,mec bl,1 f ε i T ε * bl,1 (w i) dx ε + 1 ε Γ αε,mec bl,1,1 g ε i T ε * bl,1 (w i) ds(x ε)+O(ε).
By the definition of the adjoint operator T ε * bl,1 , we have

- Ω bl,1 ×Ω 1,mec bl,1 T ε bl,1 (u ε i) ∂ 1 j σ 1 i j (w)dx dx 1 = Ω ×Ω 1,mec bl,1 T ε bl,1 (f ε i)w i dx dx 1 + Ω bl,1 ×Γ 1,mec bl,1,1 T ε bl,1 (g ε i)w i dx ds(x 1) + O(ε).
Passing ε to 0 and combining with Proposition 25 yields

- Ω bl,1 ×Ω 1,mec bl,1 u 1,α bl,i + u 0 i ∂ 1 j σ 1 i j (w)dx dx 1 = Ω bl,1 ×Ω 1,mec bl,1 f 1,α bl,i + f 0 i w i dx dx 1 + Ω bl,1 ×Γ 1,mec bl,1,1 g 1,α bl,i + g 0 i w i dx ds(x 1).
It follows by the same method in the proof of the lateral boundary layer in the electrostatic model part that

- Ω bl,1 ×Ω 1,mec bl,1 u 1 bl,i + u 0 i ∂ 1 j σ 1 i j (w)dx dx 1 = Ω bl,1 ×Ω 1,mec bl,1 f 1 bl,i + f 0 i w i dx dx 1 + Ω bl,1 ×Γ 1,mec bl,1,1 g 1 bl,i + g 0 i w i dx ds(x 1).
for each α.

Applying the Green's formula twice in the l.h.s, we obtain

- Ω bl,1 ×Ω 1,mec bl,1 ∂ 1 j σ 1 i j u 1 bl + u 0 w i dx dx 1 + Ω bl,1 ×∂Ω 1,mec bl,1 σ 1 i j u 1 bl + u 0 n 1 j w i dx ds(x 1)
-

Ω bl,1 ×∂Ω 1,mec bl,1 σ 1 i j (w)n 1 j u 1 bl,i + u 0 i dx ds(x 1) = Ω bl,1 ×Ω 1,mec bl,1 f 1 bl,i + f 0 i w i dx dx 1 + Ω bl,1 ×Γ 1,mec bl,1,1
g 1 bl,i + g 0 i w i dx ds(x 1).

Decomposing ∂Ω 1,mec bl,1 into Γ 1,mec bl,1,0 ∪ Γ 1,mec bl,1,1 ∪ Γ 1,mec bl,1,per ∪ Γ 1,mec bl,1,Or ∪ Γ 1,mec bl,1,α and combining with Proposition 24 and the conditions satisfied w gives

- Ω bl,1 ×Ω 1,mec bl,1 ∂ 1 j (σ 1 i j (u 1 bl))w i dx dx 1 + Ω bl,1 ×Γ 1,mec bl,1,Or σ 1 i j u 1 bl + u 0 n 1 j w i dx ds(x 1) + Ω bl,1 ×Γ 1,mec bl,1,1 σ 1 i j (u 1 bl)n 1 j w i dx ds(x 1) + Ω bl,1 ×Γ 1,mec bl,1,per σ 1 i j u 1 bl n 1 j w i dx ds(x 1) - Ω bl,1 ×Γ 1,mec bl,1,0 σ 1 i j (w)n 1 j u 1 bl,i dx ds(x 1) = Ω bl,1 ×Ω 1,mec bl,1 f 1 bl,i w i dx dx 1 + Ω bl,1 ×Γ 1,mec bl,1,1 g 1 bl,i w i dx ds(x 1
).

If we choose w = 0 on Γ 1,mec bl,1,1 ∪ Γ 1,mec bl,1,per ∪ Γ 1,mec bl,1,Or and σ 1 (w)n = 0 on Γ 1,mec bl,1,0 ,

-

Ω bl,1 ×Ω 1,mec bl,1 ∂ 1 j (σ 1 i j (u 1 bl))w i dx dx 1 = Ω bl,1 ×Ω 1,mec bl,1 f 1 bl,i w i dx dx 1 . Hence, -∂ 1 j σ 1 i j (u 1 bl) = f 1 bl,i in Ω bl,1 × Ω 1,mec bl,1 . If w = 0 on Γ 1,mec bl,1,1 ∪ Γ 1,mec bl,1,per ∪ Γ 1,mec bl,1,Or , we get u 1 bl,i = 0 on Γ 1,mec bl,1,0 . If w = 0 on Γ 1,mec bl,1,per ∪ Γ 1,mec bl,1,Or , so σ 1 i j (u 1 bl)n 1 j = g 1 bl,i on Γ 1,mec bl,1,1 . If w = 0 on Γ 1,mec
bl,1,per . Thus, σ 1 i j (u 1 bl)n 1 j = -σ 1 i j u 0 n 1 j on Γ 1,mec bl,1,Or . Lastly, we obtain σ 1 i j (u 1 bl)n 1 j is Γ 1,mec bl,1,per -antiperiodic.

Since this is true for each α then the above equations hold in the infinite domain and the proof is completed.

2.7.3/ EXTERIOR EDGE MODEL

We now introduce

u ε exe = u ε -B ε u 0 + B ε bl,1 u 1 bl + B ε bl,2 u 2 bl , f ε exe = f ε -B ε f 0 + B ε bl,1 f 1 bl + B ε bl,2 f 2 bl and g ε exe = g ε -B ε g 0 + B ε bl,1 g 1 bl + B ε bl,2 g 2 bl ,
and make the following assumptions.

Assumption 8:

We assume that 1. For each α, there exist u 1,α exe = (u 1,α exe,1 , u 1,α exe,2 , u 1,α exe,3) in H 1 (Ω 1,mec exe,1),

f 1 exe = (f 1,α exe,1 , f 1,α exe,2 , f 1,α exe,3) in L 2 (Ω 1,mec exe,1
), and g 1 exe = (g 1,α exe,1 , g 1,α exe,2 , g 1,α exe,3) in L 2 (Γ 1,mec exe,1,1)

such that T ε exe,1 (u ε exe) u 1,α exe , T ε exe,1 f ε exe f 1,α
exe weakly in L 2 (Ω 1,mec exe,1), and T ε exe,1 g ε exe g 1,α exe weakly in L 2 (Γ 1,mec exe,1,1) when ε → 0.

2.

There exist u 1 exe = (u 1 exe,1 , u 1 exe,2 , u 1 exe,3) in H 1 (Ω ∞,mec exe,1) , u 1 exe,i and σ 1 i j (u 1 exe) converges exponentially fast to 0 when

x 1 1 + x 1 2 → +∞ for i, j ∈ {1, 2, 3}, f 1 exe = (f 1 exe,1 , f 1 exe,2 , f 1 exe,3) in L 2 (Ω ∞,mec exe,1
), and

g 1 exe = (g 1 exe,1 , g 1 exe,2 , g 1 exe,3) in L 2 (Γ ∞,mec exe,1,1) such that u 1,α exe χ Ω 1,mec exe,1 u 1 exe , f 1,α exe χ Ω 1,mec exe,1 f 1 exe weakly in L 2 (Ω 1,mec exe,1
), and g 1,α exe χ Ω 1,mec exe,1 g 1 exe weakly in L 2 (Γ 1,mec exe,1,1) when α → +∞.

Proposition 27:

Under Assumption 8 and using Proposition 14, then we obtain

T ε exe,1 u ε u 1,α exe + u 0 + u 1 bl + u 2 bl , T ε exe,1 (f ε) f 1,α exe + f 0 + f 1 bl + f 2 bl weakly in L 2 (Ω 1,mec exe,1
) and T ε exe,1 g ε g 1,α exe + g 0 + g 1 bl + g 2 bl weakly in L 2 (Γ 1,mec exe,1,1), where ϕ 0 (x 1) = ϕ 0 (0,

x 1 -1/2), ϕ 1 bl (x 1) = ϕ 1 bl (0, (x 1 1 -1/2, x 1 2 , x 1
3)), and

ϕ 2 bl (x 1) = ϕ 2 bl (0, (x 1 1 , x 1 2 -1/2, x 1 3)) for x 1 ∈ Ω 1,mec exe,1 , resp. x 1 ∈ Γ 1,mec
exe,1,1 .

Proposition 28:

The limit u 1 exe is a solution to

                           -div 1 σ 1 (u 1 exe) = f 1 exe in Ω ∞,mec exe,1 u 1 exe = 0 on Γ ∞,mec exe,1,0 σ 1 (u 1 exe)n 1 = g 1 exe on Γ ∞,mec exe,1,1 σ 1 (u 1 exe)n 1 = -σ 1 (u 2 bl)n 1 on Γ ∞,mec exe,1,bl1 σ 1 (u 1 exe)n 1 = -σ 1 (u 1 bl)n 1 on Γ ∞,mec exe,1,bl2 .
Proof. We replace v ε in (2.7.3) by a smooth function v ε exe defined in Ω αε,mec exe,1 and vanishing out of Ω αε,mec exe,1 . Then we substitute v ε exe by ε

-1 B ε exe,1 w, where w ∈ C ∞ (Ω exe,1 × Ω 1,mec exe,1), w = 0 on Γ 1,mec exe,1,0 ∪ Γ 1,mec exe,1,α and σ 1 (w)n 1 = 0 on Γ 1,mec exe,1,1 ∪ Γ 1,mec exe,1,α ∪ Γ 1,mec exe,1,bl1 ∪ Γ 1,mec exe,1,bl2 , then - 1 ε Ω αε,mec exe,1 u ε i ∂ ε j σ 1 i j B ε exe,1 (w) dx ε + 1 ε Γ αε,mec exe,1,1 u ε i σ ε i j B ε exe,1 (w) n ε j ds(x ε) = 1 ε 3 Ω αε,mec exe,1 f ε i B ε exe,1 (w i) dx ε + 1 ε 2 Γ αε,mec exe,1,1 g ε i B ε exe,1 (w i) ds(x ε).
A straightforward calculation reveals that

- 1 ε 3 Ω αε,mec exe,1 u ε i B ε exe,1 (∂ 1 j σ 1 i j (w)) dx ε = 1 ε 3 Ω αε,mec exe,1 f ε i B ε exe,1 (w i) dx ε + 1 ε 2 Γ αε,mec exe,1,1 g ε i B ε exe,1 (w i) ds(x ε).
Replacing B ε exe,1 by T ε * exe,1 and combining with the definition of T ε * exe,1 , we can write that

- Ω 1,mec exe,1 T ε exe,1 (u ε i)∂ 1 j σ 1 i j (w) dx 1 = Ω 1,mec exe,1 T ε exe,1 (f ε i)w i dx 1 + Γ 1,mec exe,1,1 T ε exe,1 (g ε i)w i ds(x 1).
Passing ε to 0 and by Proposition 27, yields

- Ω 1,mec exe,1 u 1,α exe,i + u 0 i + u 1 bl,i + u 2 bl,i ∂ 1 j σ 1 i j (w) dx 1 = Ω 1,mec exe,1 f 1,α exe,i + f 0 i + f 1 bl,i + f 2 bl,i w i dx 1 + Γ 1,mec exe,1,1 g 1,α exe,i + g 0 i + g 1 bl,i + g 2 bl,i w i ds(x 1).
In the same manner as the proof of the electrostatic edge model, we can assert that

- Ω 1,mec exe,1 u 1 exe,i + u 0 i + u 1 bl,i + u 2 bl,i ∂ 1 j σ 1 i j (w) dx 1 = Ω 1,mec exe,1 f 1 exe,i + f 0 i + f 1 bl,i + f 2 bl,i w i dx 1 + Γ 1,mec exe,1,1 g 1 exe,i + g 0 i + g 1 bl,i + g 2 bl,i w i ds(x 1),
for each α.

Applying Green's formula twice and decomposing ∂Ω 1,mec exe,1 into Γ 1,mec exe,1,0 ∪ Γ 1,mec exe,1,1 ∪ Γ 1,mec exe,1,bl1 ∪ Γ 1,mec exe,1,bl2 ∪Γ 1,mec exe,1,α , combining with conditions satisfied by w, Proposition 24, and Proposition 26, we get

- Ω 1,mec exe,1 ∂ 1 j (σ 1 i j (u 1 exe))w i dx 1 + Γ 1,mec exe,1,1 σ 1 i j (u 1 exe)n 1 j w i ds(x 1) + Γ 1,mec exe,1,bl1 σ 1 i j u 1 exe + u 2 bl n 1 j w i ds(x 1) + Γ 1,mec exe,1,bl2 σ 1 i j u 1 exe + u 1 bl n 1 j w i ds(x 1) - Γ 1,mec exe,1,0 σ 1 i j (w)n 1 j u 1 exe,i ds(x 1) = Ω 1,mec exe,1 f 1 exe,i w i dx 1 + Γ 1,mec exe,1,1 g 1 exe,i w i ds(x 1)
.

If w = 0 and σ 1 (w)n 1 = 0 on ∂Ω 1,mec exe,1 , we obtain -∂ 1 j σ 1 i j (u 1 exe) = f 1 exe in Ω 1,mec exe,1 . If w = 0 on ∂Ω 1,mec exe,1 , thus u 1 exe = 0 on Γ 1,mec exe,1,0 . If w = 0 on Γ 1,mec exe,1,bl1 ∪ Γ 1,mec exe,1,bl2 , we assert that σ 1 i j (u 1 exe)n 1 j = g 1 exe,i on Γ 1,mec exe,1,1 . If w = 0 on Γ 1,mec exe,1,bl2 , we deduce σ 1 i j (u 1 exe)n 1 j = -σ 1 i j u 1 bl n 1 j on Γ 1,mec exe,1,bl2 . Lastly, we get σ 1 i j (u 1 exe)n 1 j = -σ 1 i j u 2 bl n 1 j on Γ 1,mec exe,1,bl1
. Since this is true for each α then the above equations hold in the infinite domain and the proof is completed.

2.7.4/ INTERFACE MODEL

Let us recall that

u ε bl = u ε -B ε (u 0), f ε bl = f ε -B ε (f 0), g ε bl = g ε -B ε (g 0)
, and make the following assumptions

Assumption 9:

We assume that

1. For each α, there exist u 1,α in = (u 1,α in,1 , u 1,α in,2 , u 1,α in,3) ∈ L 2 (Ω in,1 , H 1 (Ω 1,mec in,1)), is Ω 1,mec in,1 -periodic in the direction x 1 2 , f 1 in = (f 1,α in,1 , f 1,α in,2 , f 1,α in,3) ∈ L 2 (Ω in,1 × Ω 1,mec in,1), and g 1 in = (g 1,α in,1 , g 1,α in,2 , g 1,α in,3) ∈ L 2 (Ω in,1 × Γ 1,mec in,1,1) such that T ε in,1 u ε bl u 1 in , T ε in,1 f ε bl f 1 in weakly in L 2 (Ω in,1 × Ω 1,mec in,1
), and

T ε in,1 g ε bl g 1 in weakly in L 2 (Ω in,1 × Γ 1,mec
in,1,1) when ε → 0.

2.

There exist

u 1 in = (u 1 in,1 , u 1 in,2 , u 1 in,3) ∈ L 2 (Ω in,1 , H 1 (Ω ∞,mec in,1)), Ω ∞,mec in,1 -periodic in the direction x 1 2 , u 1 in,i and σ 1 i j (u 1 in) converge exponentially to zero when x 1 2 → +∞ for all i, j ∈ {1, 2, 3}, f 1 in = (f 1 in,1 , f 1 in,2 , f 1 in,3) ∈ L 2 (Ω in,1 × Ω ∞,mec in,1), and g 1 in = (g 1 in,1 , g 1 in,2 , g 1 in,3) ∈ L 2 (Ω in,1 × Γ ∞,mec in,1,1) such that u 1,α in χ Ω 1,mec in,1 u 1 in , f 1,α in χ Ω 1,mec in,1 f 1 in weakly in L 2 (Ω in,1 × Ω ∞,mec in,1
), and

g 1,α in χ Ω 1,mec in,1 g 1 in weakly in L 2 (Ω in,1 × Γ ∞,mec
in,1,1) when α → +∞.

Proposition 29:

Under Assumption 9 and using Proposition 18, then

T ε in,1 u ε u 1,α in + u 0 , T ε in,1 (f ε) f 1,α in + f 0 weakly in L 2 (Ω in,1 ×Ω 1,mec in,1) and T ε in,1 g ε g 1,α in + g 0 weakly in L 2 (Ω in,1 ×Γ 1,mec in,1,1), where ϕ(x , x 1) = ϕ (x , L 2 1), (x 1 1 , x 1 2 -1 2 , x 1 3 -1 2) for (x , x 1) ∈ Ω in,1 × Ω 1,mec in,1 , (resp. (x , x 1) ∈ Ω in,1 × Γ 1,mec
in,1,1).

Proposition 30:

The limit u 1 in is a solution to

                                         -div 1 σ 1 (u 1 in) = f 1 in in Ω ∞,mec in,1 u 1 in = 0 on Γ ∞,mec in,1,0 u 1 in is Γ ∞,mec in,1,per -periodic σ 1 (u 1 in)n 1 = g 1 in on Γ ∞,mec in,1,1 σ 1 (u 1 in)n 1 is Γ ∞,mec in,1,per -antiperiodic σ 1 (u 1 in) n 1 = -σ 1 (u 0) n 1 on Γ ∞,mec in,1,interf u 1 in = -u 0 on Γ ∞,mec in,1,interf .
(2.7.8)

Proof. We replace v ε in (2.7.3) by a smooth function v ε in defined in Ω αε,mec in,1

and vanishing out of Ω αε,mec in,1 . Then, we substitute v ε in by B ε in,1 (w), where w is in

C ∞ (Ω in,1 × Ω 1,mec in,1), is Ω 1,mec in,1 -periodic in the directions x 1 1 , x 1 2 , w = 0 on Γ 1,mec in,1,0 ∪ Γ 1,mec in,1,α and σ 1 (w)n 1 = 0 on Γ 1,mec in,1,1 ∪ Γ 1,mec in,1,per ∪ Γ 1,mec in,1,α . It follows that - Ω αε,mec in,1 u ε i ∂ ε j σ 1 i j B ε in,1 (w)n ε j dx ε + Γ αε,mec in,1,1 u ε i σ ε i j B ε in,1 (w) n ε j ds(x ε) = 1 ε 2 Ω αε,mec in,1 f ε i B ε in,1 (w i) dx ε + 1 ε Γ αε,mec in,1,1 g ε i B ε in,1 (w i) ds(x ε).
After some calculations, we obtain

- 1 ε 2 Ω αε,mec in,1 u ε i B ε in,1 ∂ 1 j σ 1 i j (w) dx ε +O(ε) = 1 ε 2 Ω αε,mec in,1 f ε i B ε in,1 (w i) dx ε + 1 ε Γ αε,mec in,1,1 g ε i B ε in,1 (w i) ds(x ε),
where

O(ε) = - Ω αε,mec in,1 u ε i B ε in,1 ∂ j σ i j (w)χ I (j) dx ε - 1 ε Ω αε,mec in,1 u ε i B ε in,1 ∂ 1 j σ i j (w) dx ε - 1 ε Ω αε,mec in,1 u ε i B ε in,1 ∂ j σ 1 i j (w)χ I (j) dx ε + Γ αε,mec in,1,1 u ε i B ε in,1 σ i j (w) n ε j ds(x ε) with I = {1}.
Replacing B ε in,1 by T ε, * in,1 , the above equality becomes

- 1 ε 2 Ω αε,mec in,1 u ε i T ε * in,1 ∂ 1 j σ 1 i j (w) dx ε = 1 ε 2 Ω αε,mec in,1 f ε i T ε * in,1 (w i) dx ε + 1 ε Γ αε,mec in,1,1 g ε i T ε * in,1 (w i) ds(x ε)+O(ε).
By the definition of the adjoint operator T ε * in,1 , it follows that

- Ω in,1 ×Ω 1,mec in,1 T ε in,1 (u ε i)∂ 1 j (σ 1 i j (w)) dx dx 1 = Ω in,1 ×Ω 1,mec in,1 T ε in,1 (f ε i)w i dx dx 1 + Ω in,1 ×Γ 1,mec in,1,1 T ε in,1 (g ε i)w i dx ds(x 1) + O(ε).
Passing ε to 0 and combining with Proposition 29 gives

- Ω in,1 ×Ω 1,mec in,1 u 1,α in,i + u 0 i ∂ 1 j σ 1 i j (w)dx dx 1 = Ω in,1 ×Ω 1,mec in,1 f 1,α in,i + f 0 i w i dx dx 1 + Ω in,1 ×Γ 1,mec in,1,1 g 1,α
in,i + g 0 i w i dx ds(x 1).

In the same manner with the previous proofs, we can assert that for each α

- Ω in,1 ×Ω 1,mec in,1 u 1 in,i + u 0 i ∂ 1 j σ 1 i j (w)dx dx 1 = Ω in,1 ×Ω 1,mec in,1 f 1 in,i + f 0 i w i dx dx 1 + Ω in,1 ×Γ 1,mec in,1,1
g 1 in,i + g 0 i w i dx ds(x 1).

Applying Green's formula twice in the l.h.s,

l.h.s = - ± Ω in,1 ×Ω 1,mec± in,1 ∂ 1 j σ 1 i j u 1± in + u 0 ± w i dx dx 1 + ± Ω in,1 ×∂Ω 1,mec± in,1 σ 1 i j u 1± in + u 0 ± n 1± j w i dx ds(x 1) - ± Ω in,1 ×∂Ω 1,mec± in,1 σ 1 i j (w)n ± j u 1± in,i + u 0 i ± dx ds(x 1).
Decomposing Ω 1,mec in,1 into two nonoverlapping subdomains Ω 1,mec+ in,1

and

Ω 1,mec- in,1 with their boundaries Γ 1,mec,± in,1,0 ∪ Γ 1,mec,± in,1,1 ∪ Γ 1,mec± in,1,per ∪ Γ 1,mec± in,1,α ∪ Γ 1,mec in,1
,interf , combing with the conditions satisfied w, and Proposition 24, we obtain

- ± Ω in,1 ×Ω 1,mec± in,1 ∂ 1 j (σ 1 i j (u 1± in))w i dx dx 1 + ± Ω in,1 ×Γ 1,mec± in,1,1 σ 1 i j (u 1±
in)n 1± j w i dx ds(x 1) (2.7.9)

+ ± Ω in,1 ×Γ 1,mec± in,1,per σ 1 i j u 1± in n 1± j w i dx ds(x 1) + Ω in,1 ×Γ 1,mec in,1,interf σ 1 i j u 1+ in + u 0 + -σ 1 i j u 1- in + u 0 - n 1+ j w i dx ds(x 1)
-

Ω in,1 ×Γ 1,mec in,1,interf σ 1 i j (w)n 1+ j u 1+ in,i + u 0 i + -u 1- in,i + u 0 i - dx ds(x 1) - ± Ω in,1 ×Γ 1,mec± in,1,0 σ 1 i j (w)n 1± j u 1± in,i dx ds(x 1) = ± Ω in,1 ×Ω 1,mec± in,1 f 1± in,i w i dx dx 1 + ± Ω in,1 ×Γ 1,mec± in,1,1 g 1± in,i w i dx ds(x 1)
.

If w = 0 on Γ 1,mec in,1,1 ∪ Γ 1,mec in,1,per ∪ Γ 1,mec in,1,interf and σ 1 (w)n 1 = 0 on Γ 1,mec in,1,0 ∪ Γ 1,mec in,1,interf , then ∂ 1 j σ 1 i j (u 1 in) = f 1 in,i in Ω 1,mec in,1 . If w = 0 on Γ 1,mec in,1,per ∪ Γ 1,mec in,1,interf and σ 1 (w)n 1 = 0 on Γ 1,mec in,1,interf ∪ Γ 1,mec in,1,0 , we get σ 1 i j (u 1 in)n 1 j = g 1 in,i on Γ 1,mec in,1,1 . If w = 0 on Γ 1,mec in,1,per ∪ Γ 1,mec in,1,interf and σ 1 (w)n 1 = 0 on Γ 1,mec in,1,interf , thus u 1 in = 0 on Γ 1,mec in,1,0 . If w = 0 on Γ 1,mec in,1,interf and σ 1 (w)n 1 = 0 on Γ 1,mec in,1, interf , we have σ 1 i j (u 1 in)n 1 j is Γ 1,mec in,1,per -antiperi- odic. If σ 1 (w)n 1 = 0 on Γ 1,mec in,1,interf , it follows that σ 1 i j u 1+ in + u 0 + -σ 1 i j u 1- in + u 0 - n 1+ j = 0 or σ 1 i j (u 1 in) n 1 j = -σ 1 i j (u 0) n 1 j on Γ 1,mec in,1,interf .
Finally, we also obtain u 1 in =u 0 on Γ 1,mec in,1,interf . Since this is true for each α then the above equations hold in the infinite domain and the proof is completed.

2.7.5/ INTERNAL EDGE MODEL

To investigate the internal edge model, we first introduce some terms

u ε ine = u ε -B ε u 0 -B ε in,2 u 2- in χ Ω αε,mec,2 ine,1 -(B ε in,1 u 1+ in + B ε in,2 u 2+ in)χ Ω αε,mec,3 ine,1 -B ε in,2 u 1- in χ Ω αε,mec,4 ine,1
,

f ε ine = f ε -B ε f 0 -B ε in,2 f 2- in χ Ω αε,mec,2 ine,1 -(B ε in,1 f 1+ in + B ε in,2 f 2+ in)χ Ω αε,mec,3 ine,1 -B ε in,2 f 1- in χ Ω αε,mec,4 ine,1
,

g ε ine = g ε -B ε g 0 -B ε in,2 g 2- in χ Ω αε,mec,2 ine,1 -(B ε in,1 g 1+ in + B ε in,2 g 2+ in)χ Ω αε,mec,3 ine,1 -B ε in,2 g 1- in χ Ω αε,mec,4 ine,1
, and make some the following assumptions.

Assumption 10:

We assume that 1. For each α, there exist

u 1,α ine = (u 1,α ine,1 , u 1,α ine,2 , u 1,α ine,3) in H 1 (Ω 1,mec ine,1), f 1,α ine = (f 1,α ine,1 , f 1,α ine,2 , f 1,α ine,3) in L 2 (Ω 1,mec ine,1
), and

g 1,α ine = (g 1,α ine,1 , g 1,α ine,2 , g 1,α ine,3) in L 2 (Γ 1,mec ine,1,1) such that T ε ine,1 u ε ine u 1,α ine and T ε ine,1 f ε ine f 1,α ine weakly in L 2 (Ω 1,mec ine,1
), and

T ε ine,1 g ε ine g 1,α
ine weakly in L 2 (Γ 1,mec ine,1,1) when ε → 0.

2.

There exist

u 1 ine = (u 1 ine,1 , u 1 ine,2 , u 1 ine,3) in H 1 (Ω ∞,mec ine,i), u 1
ine,i and σ 1 i j (u 1 ine) converge exponentially to zero when

x 1 1 + x 1 2 → +∞ for all i, j ∈ {1, 2, 3}, f 1 ine = (f 1 ine,1 , f 1 ine,2 , f 1 ine,3) in L 2 (Ω ∞,mec ine,1
), and

g 1 ine = (g 1 ine,1 , g 1 ine,2 , g 1 ine,3) in L 2 (Γ ∞,mec ine,1,1) such that u 1,α ine χ Ω 1,mec ine,1 u 1 ine and f 1,α ine χ Ω 1,mec ine,1 f 1 ine weakly in L 2 (Ω ∞,mec ine,1
), and

g 1,α ine χ Ω 1,mec ine,1 g 1 ine weakly in L 2 (Γ ∞,mec ine,1,1
).

Proposition 31:

Under Assumption 10 and using Proposition 22, then we obtain

T ε ine,1 (u ε) u 1,α ine + u 0 + u 2- in χ Ω 1,mec,2 ine,1 + (u 1+ in + u 2+ in)χ Ω 1,mec,3 ine,1 + u 1- in χ Ω 1,mec,4 ine,1
,

T ε ine,1 (f ε) f 1,α ine + f 0 + f 2- in χ Ω 1,mec,2 ine,1 + (f 1+ in + f 2+ in)χ Ω 1,mec,3 ine,1 + f 1- in χ Ω 1,mec,4 ine,1
, weakly in L 2 (Ω 1,mec ine,1) and

T ε ine,1 (g ε) g 1,α ine + g 0 + g 2- in χ Ω 1,mec,2 ine,1 + (g 1+ in + g 2+ in)χ Ω 1,mec,3 ine,1 + g 1- in χ Ω 1,mec,4 ine,1
,

weakly in L 2 (Γ 1,mec ine,1,1), where ϕ 0 (x 1) = ϕ 0 ((L 1 1 , L 2 1), x 1 -1/2) for x 1 ∈ Ω 1,mec ine,1 , ϕ 1± in (x 1) = ϕ 1± in (L 2 1 , (x 1 1 -1/2, x 1 2 , x 1 3)) for x 1 ∈ Ω 1,mec,3 ine,1
∪ Ω 1,mec,4 ine,1 , and

ϕ 2± in (x 1) = ϕ 2± in (L 1 1 , (x 1 1 , x 1 2 - 1/2, x 1 3)) for x 1 ∈ Ω 1,mec,2 ine,1
∪ Ω 1,mec,3 ine,1 .

Proposition 32:

The limit u 1 ine is a solution to

     -div 1 σ 1 (u 1 ine) = f 1 ine in Ω ∞,mec ine,1 u 1 ine = 0 on Γ ∞,mec ine,1,0 σ 1 (u 1 ine)n 1 = g 1 ine on Γ ∞,mec ine,1,1 u 1 ine = u 1- in on Γ ∞,mec ine,1,interf,1 σ 1 u 1 ine n 1 = σ 1 u 1- in n 1 on Γ ∞,mec ine,1,interf,1. u 1 ine = u 2- in on Γ ∞,mec ine,1,interf,2 σ 1 u 1 ine n 1 = σ 1 u 2- in n 1 on Γ ∞,mec ine,1,interf,2 u 1 ine = -u 1+ in on Γ ∞,mec ine,1,interf,3 σ 1 u 1 ine n 1 = -σ 1 u 1+ in n 1 on Γ ∞,mec ine,1,interf,3 u 1 ine = -u 2+ in on Γ ∞,mec ine,1,interf,4 σ 1 u 1 ine n 1 = -σ 1 u 2+ in n 1 on Γ ∞,mec ine,1,interf,4
(2.7.10)

Proof. We replace v ε in (2.7.3) by a smooth function v ε ine defined in Ω αε,mec ine,1 and vanishing out of Ω αε,mec ine,1 . Then we substitute v ε ine by ε -1 B ε ine,1 (w), where w is in C ∞ (Ω ine,1 × Ω 1,mec ine,1) satisfied w = 0 on Γ 1,mec ine,1,0 ∪ Γ 1,mec ine,1,α and σ 1 (w)n 1 = 0 on Γ 1,mec,i ine,1,1 ∪ Γ 1,mec,i ine,1,α . It follows that

- 1 ε Ω αε,mec ine,1 u ε i ∂ ε j σ 1 i j B ε ine,1 (w) dx ε + 1 ε Γ αε,mec ine,1,1 u ε i σ ε i j B ε ine,1 (w) n ε j ds(x ε) = 1 ε 3 Ω αε,mec ine,1 f ε i B ε ine,1 (w i) dx ε + 1 ε 2 Γ αε,mec ine,1,1 g ε i B ε ine,1 (w i) ds(x ε).
A straightforward calculation reveals

- 1 ε 3 Ω αε,mec ine,1 u ε i B ε ine,1 ∂ 1 j σ 1 i j (w) dx ε = 1 ε 3 Ω αε,mec ine,1 f ε i B ε ine,1 (w ε i) dx ε + 1 ε 2 Γ αε,mec ine,1,1 g ε i B ε ine,1 (w i) ds(x ε). Replacing B ε ine,1 by T ε * ine,1 , thus - 1 ε 3 Ω αε,mec ine,1 u ε i T ε * ine,1 (∂ 1 j σ 1 i j (w))dx ε = 1 ε 3 Ω αε,mec ine,1 f ε i T ε * ine,1 (w i) dx ε + 1 ε 2 Γ αε,mec ine,1,1 g ε i T ε * ine,1 (w i) ds(x ε).
By definition of the adjoint operator T ε * ine,1 , we obtain

- Ω 1,mec ine,1 T ε ine,1 (u ε i) ∂ 1 j σ 1 i j (w)dx 1 = Ω 1,mec ine,1 T ε ine,1 (f ε i)w i dx 1 + Γ 1,mec ine,1,1 T ε ine,1 (g ε i)w i ds(x 1).
Decomposing the integral formula into subregions

Ω 1,mec ine,1 = ∪ 4 k=4 Ω 1,mec,k ine,1 and Γ 1,mec ine,1,1 = ∪ 4 k=4 Γ 1,mec,k ine,1,1 gives - 4 k=1 Ω 1,mec,k ine,1 T ε ine,1 (u ε i) ∂ 1 j σ 1 i j (w)dx 1 = 4 k=1 Ω 1,mec,k ine,1 T ε ine,1 (f ε i)w i dx 1 + 4 k=1 Γ 1,mec,k ine,1,1 T ε ine,1 (g ε i)w i ds(x 1).
Passing ε to 0 and combining with Proposition 31 gives

l.h.s = - Ω 1,mec,1 ine,1 u 1,α,1 ine + u 0- i ∂ 1 j σ 1 i j (w) dx 1 - Ω 1,mec,2 ine,1 u 1,α,2 ine + u 0- i + u 2- i ∂ 1 j σ 1 i j (w)dx 1 - Ω 1,mec,3 ine,1 u 1,α,3 ine + u 0+ i + u 1+ i + u 2+ i ∂ 1 j σ 1 i j (w) dx 1 - Ω 1,mec,4 ine,1 u 1,α,4 ine + u 0- i + u 1- i ∂ 1 j (σ 1 i j (w)) dx 1 , and
r.h.s = Ω 1,mec,1 ine,1 f 1,α,1 ine + f 0- i w i dx 1 + Ω 1,mec,2 ine,1 f 1,α,2 ine + f 0- i + f 2- i w i dx 1 + Ω 1,mec,3 ine,1 f 1,α,3 ine + f 0+ i + f 1+ i + f 2+ i w i dx 1 + Ω 1,mec,4 ine,1 f 1,α,4 ine + f 0- i + f 1- i w i dx 1 + Γ 1,mec,1 ine,1,1 g 1,α,1 ine + g 0- i w i ds(x 1) + Γ 1,mec,2 ine,1,1 g 1,α,2 ine + g 0- i + g 2- i w i ds(x 1) + Γ 1,mec,3 ine,1,1 g 1,α,3 ine + g 0+ i + g 1+ i + g 2+ i w i ds(x 1) + Γ 1,mec,4 ine,1,1 g 1,α,4 ine + g 0- i + g 1- i w i ds(x 1).
As in the previous proofs, we can assert that for each α,

l.h.s = - Ω 1,mec,1 ine,1 u 1,1 ine + u 0- i ∂ 1 j σ 1 i j (w) dx 1 - Ω 1,mec,2 ine,1 u 1,2 ine + u 0- i + u 2- i ∂ 1 j σ 1 i j (w)dx 1 - Ω 1,mec,3 ine,1 u 1,3 ine + u 0+ i + u 1+ i + u 2+ i ∂ 1 j σ 1 i j (w) dx 1 - Ω 1,mec,4 ine,1 u 1,4 ine + u 0- i + u 1- i ∂ 1 j σ 1 i j (w) dx 1 = T 1 + T 2 + T 3 + T 4 , r.h.s = Ω 1,mec,1 ine,1 f 1,1 ine + f 0- i w i dx 1 + Ω 1,mec,2 ine,1 f 1,2 ine + f 0- i + f 2- i w i dx 1 + Ω 1,mec,3 ine,1 f 1,3 ine + f 0+ i + f 1+ i + f 2+ i w i dx 1 + Ω 1,mec,4 ine,1 f 1,4 ine + f 0- i + f 1- i w i dx 1 + Γ 1,mec,1 ine,1,1 g 1,1 ine + g 0- i w i ds(x 1) + Γ 1,mec,2 ine,1,1 g 1,2 ine + g 0- i + g 2- i w i ds(x 1) + Γ 1,mec,3 ine,1,1 g 1,3 ine + g 0+ i + g 1+ i + g 2+ i w i ds(x 1) + Γ 1,mec,4 ine,1,1 g 1,4 ine + g 0- i + g 1- i w i ds(x 1)
Applying the Green's formula twice for each teams T i yields

T 1 = - Ω 1,vac,1 ine,1 ∂ 1 j σ 1 i j u 1,1 ine + u 0- i w i dx 1 + ∂Ω 1,mec,1 ine,1 σ 1 i j u 1,1 ine + u 0-n 1,1 j w i ds(x 1) - ∂Ω 1,1 ine,1 σ 1 i j (w)n 1,1 j u 1,1 ine + u 0- i ds(x 1)
,

T 2 = - Ω 1,vac,2
ine,1

∂ 1 j σ 1 i j u 1,2 ine + u 0- i + u 2- i w i dx 1 + ∂Ω 1,mec,2 ine,1 σ 1 i j u 1,2 ine + u 0-+ u 2-n 1,2 j w i ds(x 1) - ∂Ω 1,2 ine,1 σ 1 i j (w)n 1,2 j u 1,2 ine + u 0- i + u 2- i ds(x 1)
,

T 3 = - Ω 1,vac,3 ine,1 ∂ 1 j σ 1 i j u 1,3 ine + u 0+ i + u 1+ i + u 2+ i w i dx 1 + ∂Ω 1,mec,3 ine,1 σ 1 i j u 1,3 ine + u 0+ + u 1+ + u 2+ n 1,3 j w i ds(x 1) - ∂Ω 1,3 ine,1 σ 1 i j (w)n 1,3 j u 1,3 ine + u 0+ i + u 1+ i + u 2+ i ds(x 1)
,

T 4 = - Ω 1,vac,3 ine,1 ∂ 1 j σ 1 i j u 1,4 ine + u 0- i + u 1- i w i dx 1 + ∂Ω 1,mec,3 ine,1 σ 1 i j u 1,4 ine + u 0-+ u 1-n 1,4 j w i ds(x 1) - ∂Ω 1,3 ine,1 σ 1 i j (w)n 1,4 j u 1,4 ine + u 0- i + u 1- i ds(x 1).
Decomposing ∂Ω 1,mec,i ine,1 = Γ 1,mec,i ine,1,0 ∪ Γ 1,mec,i ine,1,1 ∪ Γ 1,mec,i ine,1,α ∪ Γ 1,mec ine,1,interf,i ∪ Γ 1,mec ine,1,interf,i+1 and combining with conditions satisfied by w, Proposition 24 and Proposition 30, we assert that In the pull-in analysis, we first calculate the pull-in voltages by solving the inverse problem in COMSOL that finds an imposed voltage for the mirror to reach a given position. The pull-in voltage is the one that causes the mirror to move to the position corresponding to the one-third gap between the mirror and the electrode when no voltage is applied. This problem is non-linear because the electrostatic force depends non-linearly on the voltage difference between the two conductors. Newton's solver is used to treat this problem. It requires a careful choice of the initial position of the mirror as well as the displacement increments in order to guarantee the convergence of the scheme. The parameterization of the simulation is very time consuming, not only because of the large number of degrees of freedom, since on average more than 30,000 triangular elements are required, but also because of the need to choose an appropriate mesh. As many different scales exist in MIRA, e.g. the beam thickness is about 20 times thinner than the distance between the mirrors, so a suitable mesh strongly determines the convergence of the solution. To succeed in this problem, the sweeping meshing method is employed to create proper meshes. We stress that the processes of seeking the good meshes by this method are done entirely by manual effort and are highly time-consuming.

- 4 k=1 Ω 1,mec,k ine,1 ∂ 1 j (σ 1 i j (u 1,k ine))w i dx 1 + 4 i=1 Γ 1,mec,k ine,1,1 σ 1 i j (u 1,k ine)n 1,k j w i ds(x 1)) + Γ 1,mec ine,1,interf,1 σ 1 i j u 1,1 ine -u 1,4 ine -u 1- in n 1,1 j w i ds(x 1) - Γ 1,mec ine,1, interf,1 σ 1 i j (w)n 1,1 j u 1,1 ine,i -u 1,4 ine,i -u 1- i ds(x 1) + Γ 1,mec ine,1,interf,2 σ 1 i j u 1,1 ine -u 1,2 ine -u 2- in n 1,1 j w i ds(x 1) - Γ 1,mec ine,1, interf,2 σ 1 i j (w)n 1,1 j u 1,1 ine,i -u 1,2 ine,i -u 2- i ds(x 1) + Γ 1,mec ine,1,interf,3 σ 1 i j u 1,3 ine -u 1,2 ine + u 1+ in n 1,3 j w i ds(x 1) - Γ 1,mec ine,1, interf,3 σ 1 i j (w)n 1,3 j u 1,3 ine,i -u 1,1 ine,i + u 1+ i ds(x 1) + Γ 1,mec ine,1,interf,4 σ 1 i j u 1,3 ine -u 1,4 ine + u 2+ in n 1,3 j w i ds(x 1) - Γ 1,mec ine,1, interf,4 σ 1 i j (w)n 1,3 j u 1,3 ine,i -u 1,4 ine,i + u 2+ i ds(x 1) - 4 k=1 Γ 1,mec,k ine,1,0 σ 1 i j (w)n 1,k j u 1,k ine,
The minimization for the pull-in voltage was also investigated by solving the optimiza- exe and (b) φ 1 ine of the outer and inner edge models. In both cases the fields are very localized and their value very small compared to the imposed voltage. It is likely that they are negligible in some cases.

tion
Obviously, the contributions of the lateral boundary and the interface correctors are significant, while that of the remainder correctors are very slight, less than 2% in comparison with the magnitude of the applied voltage. Table 3 3.5: Comparison of contribution of all interface correctors with the imposed voltages, the internal one 60 V and the external one 80 V.

Thanks to these results, the electrical potential in a cell near a lateral boundary, an interface, an internal and extenal edge can be approximated by the periodic solutions and coresponding boundary correctors. For example, Figures 3.14, 3.16, 3.15 reports solutions computed in the vicinity of lateral boundaries, of interfaces and of the first outer edge, respectively. In the case of the internal edge, the solution was also built by the same method, but the contribution of the edge corrector being very small, it is not reported. The instruction of the COMSOL implementation of the first electrostatic interface model and the assembly of the solution near the first interface is described in Appendix I. We assume that the electrostatic force is g 0 = -1 2 0 |φ 0 | 2 n 1 . A result of the mechanical displacement is shown in Figure 3.17.

3.4/ PULL-IN ANALYSIS

3.4.1/ DESCRIPTION OF THE PULL-IN PHENOMENON

The pull-in phenomenon is one of the prevalent phenomena to be considered in MMA with electrostatic actuation, see [START_REF] Senturia | Microsystem design[END_REF][START_REF] Uttamchandani | Handbook of MEMS for wireless and mobile applications[END_REF] for details. We briefly introduce this phenomenon by considering electrostatic actuation between two parallel plates, see Figure 3.18. A voltage source imposed between the plates induces an electrostatic force of attraction that causes the moving plate to move toward the fixed plate. The system is stable if the gap between the plates is greater than g 0 /3, that is, if there is an equilibrium position such that the moduli of the electrostatic force and the spring force are equal. When the applied voltage is large enough that the gap between the two plates is less than g 0 /3 then the system becomes unstable, i.e. there is no equilibrium point between the electrostatic force and the spring force, the suspended plate then moves towards the fixed plate. This phenomenon is generally named the pull-in phenomenon and the voltage to reach the position g 0 /3 is named the pull-in voltage. In the next section, we present the method of calculating the pull-in voltage using the MEMS module of COMSOL.

Movable Plate

3.4.2/ PULL-IN VOLTAGE COMPUTATION

The computation of the pull-in voltage is accomplished by solving an inverse problem in COMSOL. The task of COMSOL is to find a value VESP of the imposed voltage so that the gap reaches a prescribed value in a stable or unstable equilibrium state, see Figure 3.19b. In this problem, the position of the beam head is denoted as point. The smaller displacement corresponds with the higher position point and requires the higher voltage.

Conversely, the larger displacement or the lower position point requires the smaller voltage. This pull-in voltage computation setting follows the approach of the simple example "Pull-In Voltage for a 3D Biased Resonator", see [START_REF]MEMS Application Library Manual[END_REF].

Let us take a case with the thickness of beam poly = 400 nm, the length of the suspended beam msux = 40 µm, and the normal gap g 0 = 33 µm. We briefly outline the inverse problem setting. The problem statement combines the Electromechanics Interface of the Structure Mechanic Module with the Gobal Equations in COMSOL. In the Electromechanics Interface's setting, we set V M the applied voltage on the mirror to 1 V as in Figure 3.19b and V E that on the electrode to VESP as shown in Figure 3.19a. We note that usually VESP would be given, but here it is an unknown of the equation described in the Global Equation node. This is also the reason to refer to this problem as an inverse one.

In the Global Equation setting, we input expressions as in Table 3.6. Solving this equation is amount to the same thing as solving the inverse problem mentioned above, seeking a value of the applied voltage VESP so that the gap intop1(point) reaches a given value pointZ, intop1(point)-pointZ=0. Obviously, this problem is non-linear, so the choice of the first value and the displacement increment of pointZ must be done very carefully to guarantee the convergence of the Newtown's method. So, we set the initial value of pointZ to 51.5µn with the displacement increment of -1 µm and a final value of 33 µm in Auxiliary sweep note of Solve's setting, see Table 3.7.

Parameter Name Parameter value list

Parameter unit pointZ range(51.5e-6, -1e-6, 33e-6)

Table 3.7: The Auxiliary sweep's setting for the parameter pointZ.

In addition, due to the significant difference of the magnitude between the voltage and the displacement, we scale the voltage by 100 and the displacement by 10 -5 in the solver's setting.

Moreover, as there are many different scales in the MIRA components, we use the sweeping method to generate a suitable mesh to ensure the convergence of the Newton's method. We stress that this process is entirely done by manual work and is timeconsuming not only since the mesh parameters must be adjusted to accommodate each geometry but also because the verification of whether the mesh provides the convergence of the solution is not done upfront in the problem-solving process. It is only examined for the suitability in the last values of pointZ.

As a result of solving the problem, we will obtain a graph with the horizontal being Pull-in voltages corresponding to a selection of lengths and thicknesses of the suspended beams are reported in Table 3.8.

Poly/msux 40 µm 60 µm 80 µm

400 nm 87 V 81 V 82 V 500 nm 120 V 115 V 115 V 600 nm 157 V 150 V 154 V
Table 3.8: Pull-in voltage values with respect to some lengths and thicknesses of the suspended beams.

3.4.3/ OPTIMIZATION OF THE PULL-IN VOLTAGE

Design optimization is a critical step prior to the manufacturing phase. In our scope, we consider only one issue to be optimized, which is the pull-in voltage V PI with the goal of reducing the electrical operating cost. It can be recognized that the value of imposed voltage to actuate the array is dependent on two significant parameters, the thickness of beams poly and the length of suspended beams msux because both of them significantly affect the beam's restoring force. Besides, reducing the actuation cost requires the pull-in voltage of each cell to be smaller than 140V. Based on the above considerations, we address the constraint optimization problem with the single objective V PI , two variables poly and msux, and the constraint V PI ≤ 140.

Solving an optimization problem is typically an iterative process. Each step of the process requires a modification of the variables and therefore demands a new value for the objective function. In fact, in our problem, the process of updating the objective function value, the pull-in voltage, corresponding to the various variables, the thickness and the length of beams, is hugely time-consuming and almost impossible. The reason is that the pull-in calculation mentioned above is a non-linear invert problem, and the mesh generation is done manually. The average time to calculate one pull-in voltage value can vary from 8 hours to 24 hours. To avoid this difficulty, it is necessary to construct an approximatate response with an acceptable error where the input is the two variables and the output is the pull-in voltage. After that, we will perform the optimization for the approximation response. With this approach, we utilize the surface response model [START_REF] Audet | A surrogate-modelbased method for constrained optimization[END_REF] as the members of the metamodels or surrogate models, see [START_REF] Myers | Response surface methodology: process and product optimization using designed experiments[END_REF][START_REF] Simpson | Kriging models for global approximation in simulation-based multidisciplinary design optimization[END_REF][START_REF] Heller | Statistics for experimenters, an introduction to design, data analysis, and model building: Gep box, wg hunter and js hunter, john wiley and sons[END_REF] The full processing is accomplished with the home-made software SIMBAD. The main slope is in the direction of poly while the surface is flat in the direction of msux, so the thickness of the beam is the variable that dominates this effect.

3.5/ EFFECT OF A NEIGHBOUR IMPOSED VOLTAGE

As mentioned in the introduction of the MIRA project, the array is applied for Multi-Object Spectroscopy (MOS), more precisely, it plays a role as the refective field selector in the telescope. For this goal, the line-column addressing algorithm will be determined to operate the actuation of the MIRA. Each micromirror line and each electrode line is connected to separate voltages. One of the natural questions is whether there is an effect of the electrostatic field of an active cell on an inactive neighbour? In this section, we study the cross-talk effect i.e how an imposed voltage of one cell affects the displacement of a mirror of adjacent cells.

To investigate this effect, the interface electromechanical coupling model should be implemented. This leads to a difficulty in model implementation in the software COMSOL, which is not able to couple models in the electromechanical interface package. One alternative approach to overcome this difficulty is to integrate manually two modules, the electrostatics module and the solid mechanics one. In detail, the former is deployed to estimate the electrostatic force on a particular area of the mirror of the inactive cell caused by the electrostatic field of the active cell. Then the latter is employed to derive the mechanical displacement of the inactive cell yielded by this force as the boundary load on the specific surface of its mirror.

We now only consider the case where the effect of the electrostatic field of an active cell on an inactive one is the most significant, the other cases could be also investigated by the same method. Obviously, the numerical simulation results of the boundary models in Section 3.3 shows that the strongest effect is in the case where two cells are located on the same electrode line. Specifically, the right cell is assumed to be activated with an applied voltage 80 V while the left one is not. The average value along the edge of the underside of the mirror of the electrostatic force is estimated. This is applied in the solid mechanics model as a boundary load on the same surface of the mirror's underside, see Figure 3.23. We emphasize that the force is computed on the mirror area where the electrostatic field has a significant value. On the rest, its value is ignored since the effect on these surfaces is insignificant. As a result, the mirror is tilted about 2 • corresponding to the mechanical displacement depicted in Figure 3.24. T he two previous chapters were devoted to the construction of multiscale models and their implementation in general-purpose simulation software. We have deliberately chosen to consider relatively complex models on complex geometries. The rest of this thesis is devoted to the redesign of some components of the MEMSALab software for which weaknesses have been identified and to the design of new ones that should meet newly identified needs. It remains in the same spirit as the beginning with the objective that MEMSALab can perform model building in complex configurations. At this stage we distinguish two types of difficulties to be treated for the construction of models, one inherent to the complexity of the problems and the other concerning the steps of reasoning.

An experience has already been acquired on the latter during the development of the preliminary version of MEMSALab. Thus, it was decided to devote the rest of the work to the question of representation of general and complex models and by limiting ourselves to their construction by the direct method described in the introduction of the thesis.

4.1/ INTRODUCTION D

uring the first year of the thesis, the model building algorithm used in the proofs was implemented for relatively simple configurations, using strategies and extensions, cf [START_REF] Belkhir | A tool for aided multi-scale model derivation and its application to the simulation of a micro mirror array[END_REF]. As the software evolved, we realized that their modification entails a modification of the parser, of several functions of the kernel including the display functions, as well as of some unitary tests. Moreover, we realized that the strategies operating on the constructors are necessarily specific to them.

This way of proceeding proved to be too constraining for a complex software development phase for which there are still many uncertainties. Moreover, it appeared that it requires a significant number of strategy definitions which does not seem justified.

On the other hand, the PDEs were built following the top-down hierarchy: pde, equation, equality, operator, function, variable, domain, and boundary. This approach proved to be well suited for the application of the mathematical properties used in the model proving algorithm. Nevertheless, with such a hierarchy, the definition of a PDE is too heavy a task to be entrusted to a novice.

These observations led to the following requirements for MEMSALab.

(i) Regarding the data structure, it should be suitable for uniform processing on expressions and strategies and should be easily adaptable when performing minor changes.

(ii) Strategies should be small in number and general enough while still being able to perform complex operations.

(iii) The definition of a PDE and its components by a programmer should not require expertise i.e. it must be a simple operation.

(iv) Multiscale models should be represented by a recursive structure with an arbitrary number of nested or non-nested scales. The top-down hierarchical structure of PDEs should be retained. The data structure should be able to host both the models themselves and the features used for their construction. Finally, it should be possible to express complex models on complex domains.

The needs (i-ii) for data structure and strategies led to the creation of data structures in the form of abstract syntax trees (ASTs) usable by the MEMSALab programmer, whereas ASTs already existed but were reserved to the rewriting kernel in OCAML. For reasons that it would take too long to explain here, the ASTs of the kernel are not usable in the specific MEMSALab language. The new ASTs constitute a simple and general data structure that fits with the requirements. In addition, for the simplicity of programming, each type of node in the AST is associated with a function that acts as a shortcut. The latter is optimally parameterized according to the needs. Such functions constitute what we will call concrete syntax trees. The two syntaxes are detailed in Section 4.2.

The fact that the strategies operate on ASTs allows to reduce their number and to define only a small number of strategies that are both general and powerful. These strategies are detailed in Section 4.3.

For an elegant way (iii) to define PDEs, we combine functional programming principles available in OCAML with rewriting strategies. This aspect is not discussed further in the thesis.

Regarding (iv), multiscale models and their characteristics are represented using two main nodes "subModel" and "subScale" from which recursion is built allowing an arbitrary number of nested scales as well as a variety of models related to the same scale such as the four types of boundary layer models in Chapter 2.

The representation of multiscale models and the features that allow their construction are illustrated also in Section 4.4 for the five models in Chapter 2. The construction of models using their features is described as meta-algorithms.

Finally, it is important to mention that the choice of expressing data in the form of ASTs greatly facilitates the construction of the concurrent rewriting and description logic system (RDL) introduced in Chapter 5.

4.2/ NODES OF ABSTRACT SYNTAX TREE FOR MULTISCALE MODEL REPRESENTATION

This part is devoted to the presentation of the abstract tree nodes node(.) of the data structures (also called expressions) used to represent PDEs and their multiscale models and nodeS(.) of the strategies that operate on them. The grammar of expressions e and strategies s useful in this part is detailed below. The complete grammar is detailed in -globalVar(e) the content of a memory (also called global variable) whose name is e.

As described in the above grammar, an expression e is either a terminal expression or a labeled node node(name, list) composed of a name and a list of nodes. We assume that the root of an expression starts with a node and not with a terminal expression and that the lists are homogeneous in the sense that they do not mix terminal and non-terminal nodes.

The main nodes that describe PDEs are index, boundary, region, variable, function, operator, equality, equation, bc (boundary condition), ic (initial condition), pde (partial ply in the form function([name, index, variable, type]). Its parameters are the nodes name("u"), variable(name("x"), index, region) where the index and region nodes are not explained here, and type("unknown"). As can be seen in these examples, when the list of a node contains only one element, the square brackets are often omitted.

It is common to use lists from the same node. To do this, each node f is associated with a node for the list of these nodes called fList. Thus, the node for index lists is indexList, the node for pde lists is pdeList and so on. An exception is made for the variable lists which is named varList for shortness.

It is sometimes convenient to parametrize identifiers rather than create new names. This is done by using OCaml's association lists, and keys that are lists are appended to the identifier name within brackets. For example an identifier f(x) of a function depending on a function and parametrized by the parameters p, q will be noted f{[p,q]}(x).

It is noteworthy to mention that elementary mathematical operations such as addition, multiplication, inverse and special functions such as cosine, sine, etc. are also nodes, but are not discussed here. Even if these mathematical expressions are not completely described by the presented node system, nevertheless they are referred to as "mathematical expressions" in the description of the operator and equality nodes. As their writing as nodes is usually rather complicated, we have introduced the possibility to write them in a form close to mathematics and their node form is automatically generated.

For example, i

∂ 2 u ∂x 2 i (x)
is the Laplace operator applied to a function u and can be written

i ∂(u(x([]))/∂x(i))/∂x(i) in a program.
The hierarchical structure in nodes is uniform and general. It is therefore very convenient for the use of general strategies, however, it remains too cumbersome to handle the description of models. An intermediate layer is defined in order to couple the nodes with a judicious choice of useful parameters of their subnodes for the direct construction of models. For example the function u(x) will be defined by function00("u",[], x, "unknown") where x is a node corresponding to the variable x, which could be defined by variable00("x", ind, nameD) with ind an index parameter, see Section 4.2.1, and nameD the region name where x is defined. We call "Concrete Syntax Trees" this representation. In what follows, we describe the nodes of the abstract syntax trees summarized in Table 4.1 as well as the function of the concrete syntax trees.

4.2.1/ INDEX

The index node node("index",[name,range,quantifier])

is used to describe vectors of variables, functions and operators, but also space dimensions, and so on.

1. name(name0) a node for the index name name0 which is a string.

2. range(range0) a node for the index range range0 that is either a single integer or a list of integers.

3. quantifier(quantifier0) a node for the index quantifier quantifier0 that is one of the strings "Given", "For all", "There exist".

Example: An index i varying in {1, 2} is defined by i : node("index",[name("i"),range([1,2]),quantifier("Given")])

For simplicity, we define the function index1(ind) that reproduces the multiple manner to use an index. It returns different forms of the index node depending on the value of ind,

• "noIndex" returns an empty node,

• an integer returns name0 = "" and range0 = ind,

• a string returns name0 = ind and range = GlobalVar(axisNumbers)

• an index node returns the same node.

This construction requires that the global variable axisNumbers has been previously defined, see Section 4.2.3.

The function of the concrete syntax corresponding to the node index is defined as follows.

Expression index00(name0,rangeList,quantifier0) : node("index",

[name(name0),range(rangeList),quantifier(quantifier0)]).

Example: We redefine the index i defined above.

i : index00("i", [1,2],"Given")

4.2.2/ IDENT

The ident node node("ident",[name,type,scale,level])

is for identification of the regions, the submodels and their subscale part.

1. name(name0) a node for the ident name name0 which is a string.

type(type0

) a node for the type type0 of the region that takes the value "omega"

for a domain and "gamma" for a boundary. The subnode type is left as an empty node in the nodes subModel and subScale.

3. scale(scale0) a node for the scale scale0 in a multiscale model which is a non negative integer. The physical domain is at scale0=0. In a multiscale model, the first scale is scale0=1 and then scale0 increases with the depth, see Figure 4.1.

level(level0)

a node for the level level0 which is one of the three strings "micro"

or "macro". For each scale0 ≥ 1 the distinction between a micro or macro region is with the parameter level0, see identD{["main"]} : node("ident",[name("main"),type("omega"),scale("0"),level("micro")] identB{["main"]} : node("ident",[name("main"),type("gamma"),scale("0"),level("micro")]) identB{["int"]} : node("ident",[name("int"),type("gamma"),scale("0"),level("micro")]) identB{["ext"]} : node("ident",[name("ext"),type("gamma"),scale("0"),level("micro")])

The function of the concrete syntax corresponding to the node ident is defined as follows.

ident00(name0,type0,scale0,level0) : node("ident",

[name(name0),type(type0),scale(scale0),level(level0)]).

We observe that the values of scale0 and level0 are not in the parameters of ident00.

They are assumed to be declared and used as environment variables in a way not detailed here.

We now define the identifier idSC, as a special case of ident, used in the nodes subModel and subScale of Sections 4.2.13 and 4.2.14: idSC(name0,scale0,level0) : ident00(name0,Ø,scale0,level0).

4.2.3/ PARAMREG

The paramReg node node("paramReg",[axisList,sizeList,periodicity,interfaceList])

gathers geometry characteristics of a region such as its size, dimension, periodicity and also its interfaces with other regions.

periodicity([periodicityDirection,periodicityScale]

) a node to describe the region periodicity properties in the following nodes. This node is for domains only.

1. periodicityDirection(periodicityDirection0) a node for the list periodicityDirection0 of the size of axisList0, each element takes one of the value "P" for periodicity, "T" for thin and "N" for none.

periodicityScale(periodicityScale0)

a node for the list periodicityScale0 of the period or thickness scales in each direction of axisList0. Each scale is an expression of asymptotic parameters as ε.

interfaceList(interfaceList0) a node for the list interfaceList0

= [interface,...] of interfaces with other regions where the node interface([boundaryNameList, neighborDomainName]) is defined with the following nodes. This node is for domains only.

boundaryNameList(nameBList) a node for the list nameBList =

[name(nameB),...] of interface names between the current domain and its neighbor.

2. neighborDomainName(nameD) a node for the name nameD of the neighbor domain.

Example:

The following code represents the interfaces Γ 0,micro inter f ace,1,2 and Γ 0,micro inter f ace,1,3 between the domain Ω 0,micro 1 and its neighbors Ω 0,micro The function corresponding to the node paramReg in the concrete syntax is defined as follows.

paramReg00(axisList0, sizeList0, periodicityDirection0, periodicityScale0, interfaceList0) : node("paramReg",[axisList(axisList0), sizeList(sizeList0), periodicity([periodicityDirection(periodicityDirection0), periodicityScale(periodicityScale0)]),

interfaceList(interfaceList0)])

The function corresponding to interface is the following. interface00(nameBList,nameD): node("interface",[boundaryNameList(nameBList),

neighborDomainName(nameD)])

The definitions of paramD00 and paramB00 are subcases of this of paramReg00. They are introduced because, as seen in the above examples, the parametrization of boundaries requires less parameters than this of domains. paramD00(axisList0, sizeList0, periodicityDirection0, periodicityScale0, interfaceList0) : node("paramReg",[axisList(axisList0), sizeList(sizeList0), periodicity([periodicityDirection(periodicityDirection0), periodicityScale(periodicityScale0)]), interfaceList(interfaceList0)]) paramB00(axisList0, sizeList0) : node("paramReg", [axisList(axisList0), sizeList(sizeList0), "",""])

4.2.4/ REGION

The region node node("region",[ident,paramReg,subRegionList,boundary]) represents a region, that can be a domain or a boundary, with the following parameters, see also Figure 4.4.

1. ident a node for the region identifier.

2. paramReg a node for the region parameters. We observe that the values of scale0 and level0 are not in the parameters of domain00 and boundary00. They are assumed to be declared and used as environment variables in a way not detailed here.

The parameter interfaceList0 is built thanks to the following node interface00. domain{["int"]} : domain00("int",axisList0,sizeList0, ["P","T"],

[eps,eps], [interface00("int","ext")], [], boundary{["int"]}) domain{["ext"]} : domain00("ext",axisList0,sizeList0, ["P","T"],

[eps,eps], [interface00("int","int")], [], boundary{["ext"]}) domain{["main"]} : domain00("main",axisList0,sizeList0 In the x 2 -direction, the domain is assumed to be thin.

4.2.5/ VARIABLE

The variable node node("variable",[name,index,region]) represents a mathematical variable defined over a region.

1. name a node that represents the name of the variable. Common names are "x" for domains and "xg" for boundaries.

2. index a node for the index of the variable. represents mathematical functions.

1. ident a node of the identifier of subScale where the function is defined.

2. name a node that represents the name of the function. 5. type(type0) a node for the type type0 of the function that can take one of the three following values.

indexList(indexList0

1. "Given" a source or a coefficient.

"

Unknown" for unknowns of a PDE.

"Test" for test functions in PDE under weak (or variational) form.

Example: A function f of x with index i is defined as f(i,x) : node("function",[ident(""), name("f"), indexList(i), varList(x), type("Given")])

Example The unit outward normal vector n to the boundary of a domain is not directly defined on the boundary. We consider one of its extensions to the domain, n(x) : function(name("n"),indexList(i),varList(x),type("Given"))

for a variable node x defined over the domain and i an index whose range is related to the domain. Its use as is then through the trace operator opTrace, see Section 4.2.7.

The function of the concrete syntax corresponding to the node function is defined as follows.

function00(nameF,indList,varList0,type0) : node("function", name(nameF),indexList(map(index1,indList)),variableList(varList0),type(type0))

where indList = [ind1,...] is a list of parameters of the function index1 and map(index1,indList) returns the list [index1(ind1),...].

Example: Let us construct a vector valued function f of a variable x and indexed by an index i.

f(i,x) : function00("f",i,x,"Given")

)
where mathExpr0 is a mathematical expression. The function of the concrete syntax corresponding to the node operator is defined as follows.

operator00(nameOp,indList,mathExprList0,inputVarList0, outputVarList0,operParam0) : node("operator",[name(nameOp),indexList(map(index1,indList)), mathExprList(mathExprList0), inputVariableList(inputVarList0), outputVariableList(outputVarList0),

parameterList(paramList0)])

We define a mapping mapping{rName1, rName2} : x(rName2)("") → x(rName1)("") of a change of variable as an operator. The two variables are defined on two domains named rName1 and rName2. Precisely, defining

x(rName)(i) = variable("x",i,domain1(rName))

the mapping operates on any expression expr and is defined as mapping{rName1,rName2}(expr)(i) :

operator("mapping",[i],s[expr],xg(rName2)(""),xg(rName1)(""),[])

with the strategy s defined as

s:goto([boundary1(rName2)],[],rule(x_,boundary1(rName1)))
and where s[expr] stands for the application of the strategy s to the expression expr.

4.2.8/ EQUALITY

The equality node node("equality",[name,leftMathExpr,rightMathExpr])

is to express to a mathematics equality, for instance f = g or f = 5 where f, g are functions and 5 a constant.

1. name a node that represents the name of the equality.

2. leftMathExpr(leftMathExpr0) and rightMathExpr(rightMathExpr0) the nodes for leftMathExpr0 and rightMathExpr0 the mathematical expressions of the left-hand-side and the right-hand-side of the equality.

Example: Let us consider the equality ∆u = ∂ 2

x 1 x 1 u + ∂ 2 x 2 x 2 u = 0 named as "laplace", where u is a scalar function depending on the variable x = (x 1 , x 2) defined on R 2 . Now, the lapLace equality can be described by the following code.

Expression laplaceOp :

i

∂(u(x([]))/∂x(i))/∂x(i))
equality{["lapLace"]} : node("equality",["lapLace", leftMathExpr(laplaceOp),rightMathExpr(0)])

The function of the concrete syntax corresponding to the node equality is defined as follows.

equality00 represents a submodel used in a subScale node. A subModel node contains on the one hand the assumptions and parameters allowing the construction of its macroscale and microscale models by inference and in the other hand the inferred models. The first one is located in the macroModel node while the second one for its macro part and in the subScale node for its micro part.

Together, the subModel and subScale nodes allow to generate recursive structures. 1. ident a node for the identification of the subModel, see Section 4.2.2.

regionName a node represents the geometrical inclusion relationship between do-

mains and boundaries used in a subModel with domains and boundaries used in a subScale at the upper scale. (ii) be empty " " in the case of no boundary conditions applied on these boundaries.

4. macroRegion a region node for the submodel macroscopic region given as data for an algorithm.

5. macroModel a model node for the submodel macroscopic model built by an algorithm.

6. dilation a node defined below for the data useful to algorithms that transform the model at the previous scale into the microscopic model of the subScale node.

7. subScale a node defined in Section 4.2.14 for the microscopic model of the subnode.

The dilation node node("dilation",[axisList,typeList, sizeList,dictionary))) that describes the entry by strings string0, and listNode=node("list",list) where list is a list of any expressions that can also be other entries. The subnode description for data to be interpreted by an external agent (user or program) provides the expected value for algorithms. In this sense, it plays the role of an interface between an external agent and algorithms. The function to construct the description node is defined as follows.

descript00(string0) : node("description",[string0])

The functions of the concrete syntax for subModel and dilation are defined as follows.

subModel00(name0,ident,regionName0,pdeName0,macroRegion0, macroModel0,typeList0,dirList0,scaleList0,dilation,subScale) : node("subModel",[name(name0),ident,regionName,pdeName,macroRegion,macroModel,dilation,subScale]) dilation00(typeList0,dirList0,scaleList0,dictionary) : node("dilation",[type(typeList0),direction(dirList0), scaling(scaleList0), dictionary]) The function of the concrete syntax for subScale is defined as follows.

subScale00(name0,region,model,modelList0) : node("subScale",[name(name0),region,model,subModelList(modelList0)])

4.3/ STRATEGIES NODES

As seen in the grammar, the strategies are also structured and organized as abstract terms using the node nodeS(e,[e,...,s,...]). The nodeSs with their parameters are listed in Table 4.5 using the notations e, e' and s of the grammar. They are built on the elementary strategies recalled in Section 5.3, but we do not detail their construction.

List of abstract strategies with their names and their parameters e or e' of type expression and s of type strategy defined in the grammar. The parameters path and limit are lists of nodes [e,...].

The following is devoted to the definitions of these strategies.

4.3.1/ GOTO

nodeS("goto",[path,limit,s]) or goto(path,limit,s) is a strategy node that navigates in a tree of nodes starting from the root, searching successively in all subtrees the patterns of the list path as long as one of the pattern of the list limit is not met. In each subtree, if one of the patterns of limit is found the strategy returns without doing any operation. If the last pattern of path is met then s is applied. The overall strategy succeeds if at least one of the application of s succeeds.

Example: Let us consider the tree in Figure 4.9 whose nodes are uppercase letters.

The application of the strategy goto([B,H],C,s), leads to the node B then to the node H which belongs to the root subtree B. During the navigation, if C is encountered, the navigation does not continue in the subtree. Once the node H is found, the strategy s is applied. See the detail of the navigation path in One of the things to be noticed is that goto([B,H],C,s) and goto([B,E,H],C,s) in this case are equivalent, but in some other cases may produce different results. It noteworthy to mention that the more precise the address in the path and the more severe the limit in the limit, the faster the search will be. The processing of the application goto([B,H],C,s) to the tree of 4.9 to find successively B and H with a limit C.

𝐵

4.3.2/ INSERT

nodeS("insert",[e']) or insert(e') is a strategy node that inserts the term e' to the right of the node list of the current node, i.e. it transforms a node list node(name,list) into node(name,[list,e']). The list [list,e'] is then transformed as a single list. The strategy always succeeds except if the current term is not a node (it may be a leaf).

This strategy is typically used to insert another domain in a list of domains, or another index in a list of indices etc.

Example:

The operations made by the applications of the strategy goto([B,E,H],C,insert(K)) on the tree of Figure 4.9 are illustrated on Figure

4.3.3/ REMOVE

nodeS("remove",[]) or remove is a strategy node that applies to a node of a node list and removes it from the list. This strategy fails if and only if the current term is not a node or if the list of the node is empty. Otherwise it succeeds.

Example: After application of goto([B,E,H],C,insert(K)) to the tree of Figure 4.9 as described in Figure 4.11. Now we consider the strategy goto([B,E,H,K],C,remove) that removes the node K so that the tree will be turn to its original state.

4.3.4/ REPLACE

nodeS("replace",[e']) or replace(e') is a strategy node that replaces the current node by the node e'. This strategy always succeeds.

Example:

The strategy textttgoto([B,E],C,replace(F)) applied to the tree of Figure 4.9 replaces the node E by the node K.

4.3.5/ RULE

nodeS("rule",[left,right,condition]) or rule(left,right,condition) is a strategy node that is a usual rewriting rule that checks if the condition condition is satisfied.

If its evaluation returns True then the matching between left and the current term is checked. If it is a success then the strategy replaces the current term by right where its rewriting variables have been substituted by the solutions of the substitution computed during the matching phase.

Example: The strategy goto(index(x),[], rule(index00(x ,y ,z), rule(index00

([x ,[y ,3],z -)])),True)
search all nodes index and adds 3 to their range. The strategy rule can be replaced by the strategy insert.

4.3.6/ RENAME

nodeS("rename",[e]) or rename(e) is a strategy node that renames the current node by the a new name e. This strategy fails only if the current term is not a node (it may be a leaf).

Example:

The strategy goto(index00("i",x ,y),[],rename("j")) applied to the index i defined as Expression i : index00("i", [1,2],"Given") returns index00("j", [1,2],"Given"). The same result can be achieved by goto([index(x),name("i")],[],replace(name("i"),name("j")))

or goto([index(x),name("i")],[],rule(name("i"),name("j"),True)).

4.3.7/ STORE

nodeS("store",[e]) or store(e) is a strategy node that stores the current node in a memory with name e. This strategy always succeeds.

Example:

Let the index i defined in Section 4.2.1, it can be searched and stored by the strategy goto([index(x),name("i")],[],store()).

([goto([C,F],[],remove),goto([B,E,G],[],remove)])
applied to the tree of Figure 4.9 removes F and G.

4.4/ CONSTRUCTION OF A FAMILY OF MULTISCALE ELECTRO-

STATIC MODELS OF MIRA Some of the asymptotic models developed in the first part of this thesis are used to illustrate the data structures of Section 4.2 and the construction of algorithms based on the strategies of Section 4.3. The algorithms are given in the form of metaprograms, which we do not consider useful to specify the details in this document. Five classes of models are considered: periodic models, boundary layer models on boundaries, boundary layer models at interfaces between two sub-domains, boundary layer models at outer edges, and boundary layer models at interface edges. Only the equation of electrostatics is considered here because, our main objective being the illustration of the data structure and the related algorithms, taking into account more complex equations would complicate the presentation without highlighting many more concepts.

The data structure includes at its root the subScale node of the physical problem and all asymptotic models are placed in its list of subModel nodes. Here we assume that the model node of the physical system is already built on the principles of the examples described in Section 4.2. It is also assumed that the specific data necessary for the application of the algorithms are already present in the subModel nodes of each model. These data will be precisely described. All these available data should eventually be constructed by automatic transfer from a PDE simulation software to the data tree.

These algorithms are presented here not as complete representations of theorems, but as validations of the data structures introduced above. The aim is to ensure that the latter are able to represent both a physical model and a relatively complex family of asymptotic models. The effort is made to specify the content of the data structures and the transformation operations to be performed. On the other hand, the mechanism for inferring conclusions from hypotheses is not discussed here.

In Section 4.4.1, we will detail the content of the subScale node at the root that contains the physical problem. Then for each model, a section will be dedicated to the description of the required data and another one to the model construction algorithm. The first section of the description of the required data will be detailed while for the other ones only the data will be provided without much comment.

4.4.1/ DOMAIN DEFINITIONS AND PDE SETTINGS FOR THE PHYSICAL PROB-LEM

As mentioned above, the root of the data structure is the subModel node that describes the physical problem. In this section, we describe the datastructure content without precise details on the node structure since this was done in Section 4.2.

Figure 4.12 represents the subScale node of the physical problem. Its identifier idSC.Mira is defined by idSC("mira", 0, "micro"). The region node consists of Ω 0,micro air.main whose subregions, boundaries, and subboundaries are represented in Figure 4.13. The PDE of the physical model represented by pdeMira with a name "pde.Mira" is not reproduced, it is considered to be on the model of the electrostatic equation of Section 4.2.11. The tree representation for the top subScale node of the physical model of electrostatic equations posed in the MIRA architecture. The domain Ω 0,micro air.main and the electrostatic equations are defined in details in the first part of the thesis. The names of the submodels in the list subModelList are "periodic.int", "periodic.ext", "boundaryLayer.i" , "boundaryLayer.edge.i", "boundaryLayer.interface.i", and "boundaryLayer.interface.edge.i" for i = 1,2,3,4. The geometry Ω 0,micro air.main of the MIRA system has been described in detail in the first part of this thesis. For more clarity, Figure 4.13 gives a two-dimensional representation of the geometry. It distinguishes the two sub-domains of "air.main" associated with zones of different imposed voltages, namely "air.ext" the external air zone and "air.int" the internal air zone. Table 4.6 summarizes the names of Figure 4.13. As mentioned above, we do not detail the PDE that governs the electrostatic phenomenon, but the names of the voltage sources, the electrostatic field in the two regions, the equations and the boundary conditions are listed in Tables 4.7, 4.8 and 4.9. The data related to a periodic model posed in a subdomain of the main domain is illustrated through the case of the sub-domain "air.ext". The case of the subdomain "air.int" is similar.

We assume that the microscopic domain Ω 1,micro air.ext.per is already built in the subScale node. We recall that its inclusion relationship with Ω 0,micro air.ext described in Section 4.2.13 is expressed in the node domainNameList.

The data is stored in the subModel node shown in Figure 4.14. Its identifier idSM.Per.Ext defined as idSC("periodic.ext",0, "micro") is illustrated in Figure 4.15. The names of the domain and its suboundaries in the regionName node are relative to the "air.ext" part. It is the same for the equations and boundary conditions of the pdeName node. For this model there is no macroregion so the macroRegion node is empty.

The scale transformation parameters of the dilation node are visible on Figure 4.16. In the list axisList the directions are dr1=axis([1,0,0]),dr2=axis([0,1,0]) anddr3=axis([0,0,1]). The list typeList = ["P", "P", "T"] of transformation types indicates transformations related to periodic structures (periodic unfolding) in the first two directions of axisList, while in the third direction it is a thin structure type transformation (simple dilation). The scaleList node indicates the three dilations with the parameter ε.

The dictionary node holds names of boundaries stored in the keys physBdName and microBdName, unknown and given functions retained in the keys unknownFunction and givenFunction, which are data relating to a two-scale transformation characterized by the dilation node. The entries physBdNameand microBdName are names of boundaries related by the unfolding operation from the physical domain to the microscopic domain.

The physBdName key node("physBdName",[descipt00("lateral physical boundary"),listNode0]) with listNode0 particular keys that retain all physical boundary names . In the periodic case, there is one key latBdP node("latBdP",[descipt00("lateral physical boundary"),listNode0]) with listNode0 a name node storing all lateral physical boundary names "air.ext.latBox.1", "air.ext.latBox.2", "air.ext.latBox.3", "air.ext.latBox.4".

The microBdName key node("microBdName",[descipt00("microscopic boundary"),listNode0]) with the listNode0, particular keys corresponding to keys in the physBdName retain all microscopic boundary names. In the periodic model, this listNode0 holds one key perBd with a key "perBd", a string description "periodic boundary", and a listNode a name node of the periodic boundary air.ext.periodic of the microscopic domain.

Next, we introduce two keys, unknownFunction and givenFunction, to store respectively the data of the unknowns and given functions of the PDE of the physical model for the external periodic problem.

The key unknownFunction node("unknownFunction",[descipt00("unknown of pde"), [physUnknown, microUnknown]]) includes (i) a key physUnknown with the name "physUnknown", the description "physical unknown", the list node a node storing an unknown name "phi.Ext" used in a pde of the external physical model and its identifier idSC.Mira; (ii) a key microUnknown with the name "microUnknown", the description "micro unknown", and the list node a node storing an unknown name "phi.Per" used in a pde of the external microscopic model and its identifier idSC.Per.Ext.

The key givenFunction node("ginvenFunction",[descipt00("given function"),nodeList0]) contains all the given source names and their identifiers of the new pde of the microscopic model which are stored as nodes in nodeList0. In this periodic case, nodeList0 is an empty list.

The subScale node shown in Figure 4.18 includes the identifier idSC.Per.Ext defined by idSC("periodic.ext", 1, "micro") which is shown in Figure 4.15 and the microscopic domain Ω 1,micro air.ext.per shown in Figure 4.17. The model node is left empty at this step, it will be filled by Algorithm of Section 4.4.2.2.

("𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑝𝑒𝑟","𝑎𝑖𝑟. 𝑒𝑥𝑡") ["𝑎𝑖𝑟. 𝑒𝑥𝑡. ["P", "𝑃", "𝑁"] ["dr1","𝑑𝑟2","𝑑𝑟3"] [ε,ε,ε] "𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐" 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 Where i=1,2,3,4 givenFunction [1] "external periodic solution" ["phi.Ext", idSC.Per.Ext] Table 4.13: Dictionary of the dilation node for the boundary layer model. Each entry of the dictionary includes a key, a description and a list of data. The data list of the unknowns have two elements, the name of the unknown and the identifier of their submodel. 4. goto in pde/bc and then in dirichlet equalities, replace the right-hand side by 0.

5: goto in pde/bc and then in a neumann equality applied on the boundary given in latOriBdP, replace the right-hand side by mapping{rName1,rName2}(-∇φ 1)("")

•n, where φ 1 is given in givenFunction [1], rName1 is a microscopic domain name in subScale/region of this boundary layer model, rName2 is a microscopic domain name of the periodic model given in the subScale/region represented by its identifier idSC.Per.Ext. We note that the function mapping defined in Section 4.2.6 plays a role of a change of variable.

6: replace everywhere the name of the boundary with name in latOriBdP by the name in latOriBd.

7:

replace in subScale/model the domain with name in regionName/domainName by the microscopic domain in subScale/region.

8: goto bcList node, insert a "neumann" bc for φ with a right-hand side 0 on a boundary with name in the node latInfBd.

9: goto bcList node, insert a periodic bc and an anti-periodic bc for φ and ∇φ • n, respectively, on a boundary which name is given in the node perBd.

10: rename the pde name by "pde.micro". The region names of the microscopic domain Ω 5: goto in pde/bc and then in a neumann equality applied on the boundary given in latOriBdP [2], replace the right-hand side by mapping{rName1,rName2}(-∇φ 1)("")

•n, where φ 1 is given in givenFunction [1], rName1 is a microscopic domain name in subScale/region of this edge boundary model, rName2 is a microscopic domain name of the first boundary layer model given in the subScale/region represented by its identifier idSC.BL.1. 6: goto in pde/bc and then in a neumann equality applied on the boundary given in latOriBdP [1], replace the right-hand side by mapping{rName1,rName3}(-∇φ 2)("") •n, where φ 2 is given in givenFunction [2], rName2 is a microscopic domain name of the second boundary layer model that is given in the subScale/region represented by its identifier idSC.BL.2.

7: replace everywhere the name of the boundary with name in latOriBdP [1] and latOriBdP [2] by the name in latOriBd [1] and latOriBd [2] respectively. 8: replace in subScale/model the domain with name in regionName/domainName by the microscopic domain in subScale/region. The region names of the microscopic domain Ω 3: In subScale/model replace the name given in physUnknown [1] and physUnknown [2] of the unknown function by this in microUnknown [1] and microUnknown [2] respectively.

These functions are noted φ L and φ R in the following.

4: Same as Algorithm 2.

5: goto in pde/bc and then in the continuity equality, replace the right-hand side by -(mapping{rName1,rName2}(φ 1)("") -mapping{rName3,rName4}(φ 2)("")), where φ 1 and φ 2 are respectively given in givenFunction [1] and givenFunction [2], rName1 and 9: goto bcList node, insert homogeneous neumann bc for the unknowns φ L and φ R on the boundary with names in latInfBd [1] and latInfBd [2] respectively.

10: goto bcList node, insert a periodic bc and an anti-periodic bc for φ L and ∇φ L •n, respectively, on a boundary which name is given in the node perBd [1].

11: goto bcList node, insert a periodic bc and an anti-periodic bc for φ R and ∇φ R •n, respectively, on a boundary which name is given in the node perBd [2].

12: rename the pde name by "pde.micro". 5: goto in pde/bc and then in the continuity equality applying the boundary given in interfaceP [3], replace the right-hand side by -mapping{rName1,rName2}(φ 1 in,R)(""), where φ 1 in,R is respectively in givenFunction [4], rName1 is the third microscopic subdomain name in subScale/region of this interface edge model, rName2 is the second microscopic subdomain name of the first interface model given in subScale/region represented by its identifier idSC.BL.I.1.

Key

6:

goto in pde/bc and then in the continuityFlux equality applying the boundary given in interfaceP [3], replace the right-hand side by -mapping{rName1,rName2}(∇φ 1 in,R)("")•n. 7: goto in pde/bc and then in the continuity equality applying the boundary given in interfaceP [4], replace the right-hand side by -mapping{rName1,rName3}(φ 2 in,R)(""), where φ 2 in,R is respectively in givenFunction [6], rName3 is the second microscopic subdomain name of the second interface model given in subScale/region represented by its identifier idSC.BL.I.2.

8:

goto in pde/bc and then in the continuityFlux equality applying the boundary given in interfaceP [4], replace the right-hand side by -mapping{rName1,rName3}(∇φ 2 in,R)("")•n. 9: replace the name of the boundary with name in interfaceP by the name in interface node. 10: replace in subScale/model the domain with name in regionName/domainName by the microscopic domain in subScale/region. 11: goto bcList node, insert an continuity bc on the interface given in interface [1] with the left-hand side of bc φ 1 ine -φ 4 ine and the right-hand side mapping{rName4,rName5}(φ 1 in,L)(""), where φ 1 in,L is respectively in givenFunction [3], rName4 is the fourth microscopic subdomain name in subScale/region of this interface edge model, rName5 is the first microscopic subdomain name of the first interface model given in subScale/region represented by its identifier idSC.BL.I.1.

Algorithm 5 Continuous of the Algorithm 5. 12: goto bcList node, insert an continuityFlux bc on the interface given in interface [1] with the left-hand side of bc ∇φ 1 ine • n -∇φ 4 ine • n and the right-hand side mapping{rName4,rName5}(∇φ 1 in,L • n)(""). 13: goto bcList node, insert an continuity bc on the interface given in interface [2] with the left-hand side of bc φ 1 ine -φ 2 ine and the right-hand side mapping{rName6,rName7}(φ 2 in,L)(""), where φ 2 in,L is respectively in givenFunction [5], rName6 is the second microscopic subdomain name in subScale/region of this interface edge model, rName7 is the first microscopic subdomain name of the second interface model given in subScale/region represented by its identifier idSC.BL.I.2.

14: goto bcList node, insert an continuityFlux bc on the interface given in interface [5] with the left-hand side of bc ∇φ 1 ine • n -∇φ 2 ine • n and the right-hand side mapping{rName6,rName7}(∇φ 2 in,L • n)(""). 15: goto bcList node, insert homogeneous neumann bcs for respectively φ 1 ine , φ 2 ine , φ 3 ine , φ 4 ine on boundaries with names in the corresponding nodes latInfBd [1], latInfBd [2], latInfBd [3], latInfBd [4]. 16: goto a pde name node, rename a current name by "pde.micro".

A REWRITING AND DESCRIPTION LOGIC CONCURRENT SYSTEM 5.1/ INTRODUCTION O ur previous works have led on the one hand to a data structure in the form of a tree that represents multi-scale models made up of partial differential equations and on the other hand to a rewriting system allowing to operate on it. The interest of a rewriting system is that it allows fast and simple navigation in a tree of data that can contain complex structures. It allows application of rules to verify hypotheses or perform transformations. It also allows to perform chaining of rule applications for a reasoning. However, a rewriting system is not enough to organize and manage a large number of hypotheses and conclusions associated for instance for a large number of theorem statements. A natural choice to overcome this limitation is to use elements of logic and related inferences. Rather than developing an inference engine embedded in the rewriting engine (which would be ideal), we propose to build a concurrent system made with our rewriting engine and an existing inference engine based on a Description Logic (DL). This approach must take into account the complementarity and limitations of the two engines as well as their interaction.

Description logic is used for ontology construction and inference operations. It allows data structuring in the form of graphs, with labeled branches, which makes it possible to describe any relation between any entities. Expressions can be built, using constructors detailed hereafter, on these relations yielding possible inferences and therefore queries.

Description logic techniques have strongly developed during the last forty years, see e.g. the reference books [START_REF] Baader | Description logics[END_REF][START_REF] Baader | Introduction to description logic[END_REF][START_REF] Baader | The description logic handbook: Theory, implementation and applications[END_REF][START_REF] Baader | Basic description logics[END_REF], and today are at the heart of the knowledge graph concept used by the major actors of the web, see the comprehensive review [START_REF] Hogan | Knowledge graphs[END_REF]. Among others, some of their practical advantages are their relative simplicity of use compared to other logical systems, their support by the W3C community with the language OWL, a number of open inference engines as HermiT or Pellet , and the Prot ég é editor. These language and tools are widely used.

The motivations for a concurrent RDL system of Rewriting and Description Logic are on the one hand the simplicity of hypothesis testing on very complex (mathematical) expressions and their transformation inherited from the rewriting system and on the other hand a relatively simple manner to represent a large variety of relations between the subtree of a data tree used for rewriting and to build complex expressions on these relations. It also allows to take into account other data, not present in the data tree, to infer on DL expressions and finally to formulate queries. Ideally, all these operations must be integrated.

This work presents an attempt to integrate our rewriting system with a description logic.

It elaborates a representation of the elementary principles of rewriting (terms, patterns, strategy and strategy application to a term) in description logic, and describes mechanisms of operation of the concurrent system. It has been realized in a relatively short time with the objective to study the feasibility of this approach and to sketch the way it could be used for the multi-scale models developed in the thesis. We are aware that a number of points remain to be clarified and deepened.

The approach presented in this work is to be distinguished from many works associating rewriting and logic. Although not experts on the subject, it seems to us that rewriting logic such as that deployed in Maude, ELAN or CafeOBJ software, see references [START_REF] Meseguer | Conditional rewriting logic as a unified model of concurrency[END_REF][START_REF] Martí-Oliet | Rewriting logic as a logical and semantic framework[END_REF] for the foundations of Maude or the more recent review [START_REF] Kirchner | Equational logic and rewriting[END_REF], consists in enriching or reinforcing a rewriting system with logical operations. In comparison, the logic layer deployed in the RDL system focuses on the possibility of representing a large amount of knowledge. In this context, logic is used to categorize knowledge and inference is used to draw conclusions from this knowledge.

From the ontology point of view, we believe that the RDL approach could bring a new possibility to operate on complex mathematical expressions commonly encountered in engineering and science. The limitation of ontologies for this use is moreover an accepted fact. We however notice that the development of graph navigation tools is a highly developed topic at least for queries, see the review [9].

The rest of the chapter starts with a short introduction of the description logic formalism SHOI (D) common to the OWL2 language (SROIQ (D)) and the editor Prot ég é (SHOIN (D)). Then, the rewriting concepts useful for this work and the structure of our rewriting language are presented in a synthetic way. This is followed by a description of the RDL system and finally an application to the representation of the algorithms associated with the multi-scale models of the previous chapter. For lack of time, only the rewriting strategies including queries to the ontology are reported. The rest of the ontology presenting the link between the different algorithms remains to be developed. Moreover, we believe that the representation adopted, in the algorithms, the strategies and the ontology is very preliminary and will evolve significantly towards a simpler and more structured design in order to represent a larger number of models.

5.2/ DESCRIPTION LOGIC

We recall the principles of description logic, in a manner strongly inspired from the french Wikipedia page.

5.2.2/ KNOWLEDGE BASE

Given a descriptive language L and a signature S, a knowledge base Σ in L is a pair Σ = T , A such that :

-T is the T (erminology)-Box, a finite set, which can be empty, of expressions called GCI (General Concept Inclusion) of the form c 1 c 2 where c 1 and c 2 are unrestricted concepts. -A is the A(ssertion)-Box, a finite set, which can be empty, of expressions of the form i : c or (i, j) : r, where c is an unrestricted concept, r is a role which is not necessarily atomic, and i, j belong to I. The formulae A are called "assertions".

In our work, we view an ontology knowledge base as a graphs, with edges labelled by roles and nodes labelled by sets of concept names. More precisely, in such a graph -the nodes are the elements of the interpretation and they are labelled with all the concept names to which this element belongs in the interpretation;

-an edge with label r between two nodes says that the corresponding two elements of the interpretation are related by the role r.

5.2.3/ DIFFERENT DESCRIPTION LOGICS

The description logics have a common base enriched with different extensions (see Table 5.1 below). It is therefore possible to have complex concepts composed of atomic concepts, and the same applies to roles. The Prot ég é ontology editor supports SHOIN (D) . OWL 2 provides the expressiveness of SROIQ (D) , OWL-DL is based on SHOIN (D) , and for OWL-Lite it is SHIF (D) .

¬c ∆ I \ c I U disjunction c 1 c 2 c I 1 ∪ c I 2 E typed existential quantifier ∃r.c {d 1 ∈ ∆ I | ∃d 2 ∈ ∆ I .(r I (d 1 , d 2) ∧ d 2 ∈ c I)} N cardinality restriction (≥ n r) or (≤ n r) {d 1 ∈ ∆ I | |{d 2 | r I (d 1 , d 2)}| ≥ n} or {d 1 ∈ ∆ I | |{d 2 | r I (d 1 , d 2)}| ≤ n} Q qualified cardinality restriction (≥ n r.c) or (≤ n r.c) {d 1 ∈ ∆ I | |{d 2 | r I (d 1 , d 2), d 2 ∈ c I }| ≥ n} or {d 1 ∈ ∆ I | |{d 2 | r I (

5.2.4/ INFERENCES

In DL, the concept of inference is described as follows. Basic deduction tasks can be used to define more complex tasks.

-Search: Given a concept, find the individuals mentioned in the knowledge base who are instances of that concept.

-Fulfilment: given an individual mentioned in the knowledge base, find the most specific concept, in accordance with the relations of subsumption, of which the individual is an instance.

5.3/ A SHORT OVERVIEW OF THE MEMSALAB REWRITING SYS-TEM

There are many rewriting languages and libraries in the literature, such as Tom [3], ρ-log [START_REF] Cirstea | The rewriting calculus -Part I and II[END_REF], Elan [1] and Maude [2]. Tom is a rewriting language built on java, that is, a language that extends Java with high level rewriting constructors. ρ-log is a rule-based programming system implemented in the symbolic mathematical computation system Mathematica. Elan is a closed and functional language used to express non-deterministic computations via rewriting rules and strategies. Maude is a closed system that implements the rewriting logic. The MEMSALab rewriting system that has been developed in our laboratory is an OCaml library. Its design was inspired by the open aspects of Tom, since it extends OCaml with high level rewriting constructors. It shares with Elan its functional aspect.

In the following, the notions of rewriting are reformulated in view of expressing their relationship with the logic of description. We start with the notions of node, pattern and tree related to Abstract Syntax Trees (AST). We continue with the notion of strategies before to present a simplified view of the grammar of strategies of MEMSALab.

5.3.1/ NODE, PATTERN AND TREE

The set of functions considered in our approach is restricted to the single form node(id, list) for nodes made with the an identifier id and a list list. The constants Q are considered separately. A constant has a simple type among boolean, string or number. A tree is defined by induction from nodes and constants according to the grammar

t := Q | node(id, [t, ...])
If the list size of a node is a constant, one often prefer to manipulate the corresponding function whose name is the identifier id and whose variables are the list elements. For instance the function equality(name, left, right) represents the node node("equality", [name, left, right]).

The sets of node names and of constants are noted N and D. The signature of the grammar is V = N ∪ D and the set of trees t (or terms) built on the signature V is noted

T (V).
Let X be a set of rewriting variables, we note T (V, X) the set of trees built on the signature V ∪ X, we call them patterns. To simplify, we note P the set of patterns. For two patterns p 1 , p 2 of P we recall that p 1 matches p 2 that we write p 1 p 2 , if there is a substitution σ such that σ(p 1) = p 2 . The relation defines a partial order on P.

5.3.2/ STRATEGY

For the purpose of strategy definition, the set T (V) is completed by Fail: T * (V) = T (V) ∪ Fail also noted T * . A strategy s is a relation of T * × T * , s : t 1 → t 2 , which we also note t 2 = s[t 1] to distinguish between this relation of 'strategy applied to a term' with the parenthesis used for strategy parametrization. For any strategy s, s[Fail] = Fail.

As for trees, strategies are built from strategy nodes nodeS(id, list). The grammar of The elementary navigation is the OurterMost strategy om(p, s) that navigates as the outermost strategy with pattern p and then applies s. The two elementary operations on pairs of strategies are compose(s 1 , s 2) is the composition of two strategies, also noted s 1 ; s 2 . When applied to a term t it applies s 1 to t and if the result t 1 is Fail returns Fail otherwise applies s 2 to t 1 and returns the result.

-leftChoice(s 1 , s 2) is the left-choice of two strategies, also noted s 1 |s 2 . When applied to a term t it applies s 1 to t and if the result t 1 is Fail applies s 2 to t and returns the result otherwise returns t 1 . Any of the above strategies s can be repeated until a fixed point is reached with the repeat(s) strategy.

Let us describe a few number of other strategy nodes defined from rewriting rules and from the OuterMost strategy.

remove := rule(x , []) removes the current term of a list of nodes.

replace(t) := rule(x , t) replaces the current term by t.

insert(t) := rule(node(x , y), node(x , [y , t])) inserts the term t to the right of the node list of the current node.

goto(p, p 1 , s) check if the pattern p matches the current position and then applies om(p 1 , s).

goto(p, π, s) generalizes goto(p, p 1 , s), for π = [p 1 , p 2 ...] a list of patterns, by induction goto(p, p 1 , goto(p 1 , p 2 , ...)).

Remark 7: Different forms of goto

In the following, different forms of the goto strategy, adapted to the need, are used. In Section 5.6.2.2 the first pattern p is omitted meaning that p is a rewriting variable matching any term. An aspect of the goto strategy that is hidden and that appears only in Section 5.6.2.2 is that in the actual implementation of goto there is a limit pattern a i.e. a pattern which is used to stop the strategy when it is found. Precisely, the strategy goto(π, a, s) navigates along the path π before to apply the strategy s except if a subterm that matches a is reached during navigation that causes the stop and success of the strategy.

Remark 8:

Three other usual elementary navigation strategies are available, namely bottomUp, topDown, and innerMost. They are not presented here since they have not yet been taken into account in the RDL system construction.

5.3.3/ EXTENDED GRAMMARS OF EXPRESSIONS AND STRATEGIES

In principle the above principles are sufficient to define a rewriting system. In practice, more functionalities are required for a more efficient programming.

We call Expressions the generalization of patterns that takes into account the following constructors.

-globalVar(e) the content of the memory (also called global variable) with name e ∈ T (V), such memory is set by the strategy store(e) defined below, -dEval(e) delays the evaluation of e until the execution of its hosting function (e.g. a rewriting rule), eval(e) evaluates an expression in case where e includes a delayed evaluation or a globalVar(.) out of a strategy, -evalCond(e) evaluates an expression that is a condition and returns True or False, s[e] the term in T (V) returned by the application of a strategy s to an expression e.

Accordingly, the grammar of strategies is completed with the constructor store(e) that stores the current term in the memory with name e.

Expression can also include any functions f(e, ..., s, ...) parametrized by expressions e, ... and strategies s, ... and returning an expression. Among many possibilities, such a function can simply assemble tree nodes and return a tree as t(x, y) : f(g(x), h(y)) where f, g and h are three nodes, or be an external function. The same possibility holds for strategies, but in this case the external functions return strategies. Finally, it is noteworthy that expressions and strategies can be stored in identifiers (characterized by its name and its possible parameters) while only expressions can be stored memory accessible via globalVar().

5.4/ REPRESENTATION OF REWRITING NOTIONS IN DESCRIPTION LOGIC

Now that the systems of rewriting and of logic of description have been recalled, it is a matter of establishing how they operate together in a RDL system. In this section, we propose a representation of certain rewriting system notions in a DL system. Keeping in mind that a rewriting system allows mainly to apply a strategy to a tree, the main requirement for such a construction are summarized as follows. The DL system must represent -trees, which are simply made with tree nodes having subnodes or leafs, -strategies, which are made with strategy nodes, some being navigation strategies from patterns to patterns and the other being action strategies, -operations between strategies (repeat, ; and |), -and strategy applications to subtrees.

The mapping between rewriting notions and DL notions is formalized through the relation Φ t ⊂ I × T between the set of individuals and the set of trees, the relation Φ p ⊂ C × P between the set of concepts and the set of patterns, and the relation Φ s ⊂ C × S between the set of concepts and the set S of strategies.

In the following, the expressions of the rewriting system are written in the typewriter font while those of the description logic system use the standard Latex mathematical font. For example, a pattern of the rewriting system will be noted p while its representation in ontology concepts will be noted p. The same is true for an expression t and the associated individual i, an expression node n and the associated concept n or for a strategy node s and the associated concept s.

5.4.1/ TREES REPRESENTED BY INDIVIDUALS

Each subtree t of a tree t can be represented by an individual of the ABox. The name of the individual is made with four fields [type, name, position, instance] that we call an address. The type is either "identi f ier" or "global variable" depending wether the tree t is stored in an identifier or in a global variable. The name is the name of the identifier or of the memory. The position is ε if the subtree t is the full tree t and is the position of the root of t in t otherwise. The field instance is the instance number either of a global variable changed by the strategy store or of an identifier changed by application of a rewriting rule. Here are two examples.

-If the first instance of the identifier t is the tree f(g(h(a)), b) then t and its subtree g(h(a)) are represented by the individuals i := [identi f ier, t, ε, 1] and i 1 := [identi f ier, t, 1, 1].

-An expression allocated to the global variable "t" by the command store("t") called for the second time in the main strategy is represented by the individuals i

:= [global variable, t, ε, 2].
A leaf of a tree is represented as any other subtree by an address individual but also by another individual whose name is the data of the leaf which is always represented as a string. For example, for the identifier t : node("name", "laplace") the leaf's data "laplace" is described by two individuals [identi f ier, t, 1, 1] for its address and laplace for its data.

A subtree can be simply represented by a single individual, but it is generally represented, partially or completely, by the roles described in Section 5.4.2. The correspondance of an individual i to a subtree t is written (i, t) ∈ Φ t . Note that each individual is associated with a subtree but the converse statement is generally not true since not all subtrees need to be expressed in the ontology.

5.4.2/ PATTERNS REPRESENTED BY CONCEPTS AND ROLES

A pattern p ∈ P can be represented in Σ by a concept p ∈ C or by a concept expression p.

As seen below in Remark 10, some concept expressions correspond to patterns. These relations define the relation (p, p) ∈ Φ p .

The assumption below defines the most used patterns in this work.

Assumption 11: Node Pattern

We adopt the convention that each node node(id, [n1, ...]), which is not of kind list (as bcList, variableList etc...), is associated to a pattern where all its direct subnodes are replaced by distinct rewriting variables. This pattern is then associated to a concept of the T Box with name the node name. The super concept covering all node concepts is node.

For instance, the pattern name(a) is associated to the atomic node node("name", [name0]) or name(name0) and therefore to the T Box atomic concept name. This is expressed as (name, name) ∈ Φ p which is an abuse of notation since we identify the node name name with the associated pattern. This notation abuse will be constantly done in the following.

The partial order relation of matching between patterns is expressed by the relation between associated concepts. For (p 1 , p 1) ∈ Φ p and (p 2 , p 2) ∈ Φ p , p 1 p 2 if and only if p 2 p 1 . In case where p 2 ∈ T (V), it may be considered as a tree t and as such it can be represented as an individual of the ABox. The relation p 1 t is then interpreted as the belonging t ∈ p 1 of an individual to a concept. Given two nodes p 1 , p 2 , the role hasDirectS ubT ree(p 1 , p 2) has the concepts p 1 and p 2 as domain and image. The role hasDirectS ubT ree(p 1 , p 2) is to express direct parentchild relationship. For instance, for three nodes f, g, h and two constants a, b if t 1 := f(g(h(a)), b), t 2 := g(h(a)), t 3 := h(a), and (i 1 , t 1), (i 2 , t 2) and (i 3 , t 3) ∈ Φ t then one can set (i 1 , i 2) ∈ hasDirectS ubT ree(f, g) and (i 2 , i 3) ∈ hasDirectS ubT ree(g, h). Moreover, by inference i 1 ∈ ∃hasDirectS ubT ree(f, g).g and i 2 ∈ ∃hasDirectS ubT ree(g, h).h.

We observe that in the previous example, there is no ambiguity about the position of the nodes g(x) and h(y) of f in the concept intersection representation, which is a commutative operation, since this information is in the individual's position. We recall that the order of the subnodes in the list of a node is fixed.

Remark 9: Role Generalization to Any Patterns

The role hasDirectS ubT ree (p 1 , p 2) can be extended to any patterns p 1 , p 2 ∈ P.

However, this definition and its consequences are not explored in this work.

For the leaves, we use the concept lea f that contains all leaf's address individuals and the data property hasData between the concept lea f and the corresponding data. For instance, the term t : name("laplace") is associated with an address individual i ∈ name and the subterm t 1 : "laplace" is associated with an address individual i 1 in the concept lea f together with a data "laplace" through hasData. The individuals i and i 1 are related with the role isDirectS ubT ree(name, lea f), i.e. (i, i 1) ∈ isDirectS ubT ree(name, lea f) and the individuals i 1 and "laplace" are related with the data property hasData, i.e. (i 1 , "laplace") ∈ hasData.

Each complex pattern i.e. a pattern made with more than one node is uniquely represented by a concept expression using existential quantifications, conjunctions and compositions of the role hasDirectS ubT ree. For instance the pattern f(g(x), y) is uniquely represented by the concept expression ∃hasDirectS ubT ree(f, g).g. A pattern with several subnodes as f(g(x), h(y)) is represented by a conjunction of existential quantification as ∃hasDirectS ubT ree(f, g).g ∃hasDirectS ubT ree(f, h).h. A pattern whose tree has several levels is defined by role composition as the pattern f(g(h(x)), y) which is represented by the concept expression ∃hasDirectS ubT ree(f, g) • hasDirectS ubT ree(g, h).h or ∃hasDirectS ubT ree(f, g). ∃hasDirectS ubT ree(g, h).h, where • denotes the role composition. As an illustration ∃hasDirectS ubT ree(equation, name) • hasDirectS ubT ree(name, lea f) • hasData."laplace" is the concept of addresses of equations with name "laplace".

The role hasDirectS ubT ree(p 1 , p 2) is generalized by hasDirectS ubT ree(list) where list is a list of node patterns. For a two-element list, hasDirectS ubT ree([p 1 , p 2]) is equal to hasDirectS ubT ree(p 1 , p 2). For a one-element list, (i, j) ∈ hasDirectS ubT ree([p 1]) if and only if there exists a node pattern concept p 2 such that (i, j) ∈ hasDirectS ubT ree([p 1 , p 2]).

For an empty list, (i, j) ∈ hasDirectS ubT ree([]) if and only if there exists a node pattern p 1 such that (i, j) ∈ hasDirectS ubT ree([p 1]). For a list with n > 2 elements, the definition is based on the recursion and the role composition hasDirectS ubT ree([p 1 , ..., p n]) = hasDirectS ubT ree([p 1 , ..., p n-1]) • hasDirectS ubT ree(p n-1 , p n).

The next property follows from what has been said and expresses that patterns can be associated to concept formulas that are built from roles defined by nodes.

Remark 10: Patterns Defined by Concept Formulas

In what has been done above, nodes are used to parameterize hasDirectS ubT ree(list) and associated roles. Concept formulas defined by existential quantifications on these roles and by intersections are associated with equivalence classes of patterns defined modulo commutativity in node lists.

Remark 11: Same Rewriting Variable at Different Positions

In the above representation of patterns repetition of a same rewriting variable at different positions has not been taken into consideration. This is left for further investigation.

We conclude this section with roles derived from hasDirectS ubT ree. They can be constructed by role composition and in this case their pairs of individuals are obtained by inference. Otherwise their pairs of individuals are constructed by applying assemblies of strategies and ontology declarations not yet designed and therefore not detailed here.

Given two patterns p 1 and p 2 , the role hasS ubT ree(p 1 , p 2) is defined as (i 1 , i 2) ∈ hasS ubT ree(p 1 , p 2) if there exists a composition r = hasDirectS ubT ree(p 1 , q 1) • hasDirectS ubT ree(q 1 , q 2) •....• hasDirectS ubT ree(q 1 , p 2) such that (i 1 , i 2) ∈ r. Its extension hasS ubT ree(list) to lists of node patterns is done similarly to this of hasDirectS ubT ree.

The inverse roles of hasS ubT ree(list) and hasDirectS ubT ree(list) are isS ubT reeO f (list) and isDirectS ubT reeO f (list) where list is the list list in reverse order.

More roles combining these roles as well as more data properties combining these roles with the data property hasData are defined in Section 5.6.2.1.

5.4.3/ STRATEGIES REPRESENTED BY CONCEPTS AND ROLES

A strategy is a tree of nodes nodeS(name, [nodeS(),...]) as for instance s : nodeS("replace", node("name", "laplace")) or equivalently replace(name("laplace")). As a strategy includes expressions, e.g. name("laplace"), the tree of a strategy also holds expression nodes node(...). Like expression trees, each tree of a substrategy s has an address, generically noted iS , in a strategy s. The addressing system is the same as for expression tree nodes, without the type, since the memory (globalVar) is used for expressions only. Thus, the parameter name always refers to an identifier. The parameter position still refers to the position in the strategy tree. The parameter instance is initialized at 1 and is incremented in case the substrategy is repeated by the strategy repeat. The address of the node replace in s is [s, ε, 1]. In the other illustrative examples of this section, the instance number of the addresses is usually omitted for simplicity.

In an ontology Σ, a strategy tree is represented using -atomic concepts of atomic strategy nodes nodeS as insert, remove, replace, goto, compose, leftChoice etc, -the role hasDirectS ubT reeS (n, k) defined below, -individuals corresponding to the addresses iS of the nodes in the tree, -and also concepts, roles and individuals of expression trees.

The role name hasDirectS ubT reeS (n, k) is defined by a strategy node name n and a position k in the node list. For example, let iS the address of a node nodeS("compose", [s1, s2])

and iS 2 the address of s2, then (iS , iS 2) ∈ hasDirectS ubT reeS (compose, 2) since the strat-egy node s2 is at the second position in the subnode list. Another example is the strategy s : compose(remove, remove) that is represented by the memberships to concepts of strategy nodes iS

0 = [s, ε] ∈ compose, iS 1 = [s, 1] ∈ remove, iS 2 = [s, 2] ∈ remove
and by the role memberships (iS 0 , iS 1) ∈ hasDirectS ubT reeS (compose, 1) and (iS 0 , iS 2) ∈ hasDirectS ubT reeS (compose, 2).

The branch of a strategy tree between a strategy node and an expression node is defined by the role hasDirectS ubT ree(n, p) where n is the strategy node concept and p the expression node concept. For example, the strategy s : replace(name("laplace"))

is expressed using the role membership (iS The role shortcuts hasDS T (...) and hasDS T S (...) are used for hasDirectS ubT ree(...) and hasDirectS ubT reeS (...), id for "identi f ier" and gV for "globalVar".

in the form of strategy individuals, invoked in the strategy S. In this work we assume that the data tree t d does not contain any reference to the ontology Σ.

5.5.1/ THE COMPONENTS OF A RDL SYSTEM

Next, we detail the distinction between three parts of the RDL system: a part represented in both systems as described in Section 5.4, a part used only by the rewriting system and a part used only by the ontology.

• The common part is made with a forests of expressions and strategies in the rewriting system together with their representation in the ontology. They are useful to the knowledge description of the ontology in the third part. For an efficient use of the hasDirectS ubT ree roles and their variants or by-products, we will always consider that there is a partial order relation on the set of nodes taken into account in the common part. This aspect is not further discussed here.

• The part represented only in the rewriting system includes a forest of expression trees that contain details of equations of t d and of their transformation in S[t d] for whose an ontology representation can be avoided, a forest of strategy trees involving details of S not useful in the ontology, and the master strategy S that governs the overall operations not handled by an ontology.

• The part represented only in the ontology is on the one hand relationships between tree nodes of expressions or strategies, that are not represented in t d , S and the other identifiers of the rewriting system. On the other hand it includes higher level individuals, concepts and roles suitable for the overall knowledge, i.e. the theorems, to be represented. Now we focus on the composition of the ontology Σ in which we distinguish four parts Σ 0 , Σ t , Σ d and Σ s that are characterized as follows.

• Σ 0 is a fragment made with the concepts, roles and data properties used for the representation of atomic nodes used in the data tree t d , the strategy S and their dependencies stored in identifiers.

• Σ t is a fragment comprising individuals associated with nodes of the data tree t d and their membership relations to concept nodes, roles or data properties defined in Σ 0 .

• Σ d is a fragment that enriches the ontology with data (assignment of individuals to concepts or roles) not included in the data tree t d but useful to the knowledge representation. This includes strategy representation as individuals.

• Σ s is the fragment made with individuals and their membership associated with strategy application.

The operations done on the Σ 0 , Σ t , Σ d and Σ s parts of the ontology are performed by

Remark 12:

Applying a strategy s to a tree t of data returns a tree of data t which may require a modification of the ontology fragments Σ t , Σ d and Σ s to be made at the same time as the modification of t. The related algorithms have not yet been investigated and therefore are not discussed further in the thesis. As already said, only a part of the trees of expressions is represented in Σ. The selection is done by using a set N of the node names taken into account in Σ. When a node name not belonging to N is encountered it is skipped. Then, nodes that are not directly related are declared with the roles hasS ubT ree(., .) instead of hasDirectS ubT ree(., .). The other kinds of interrogations available in reasonners are not taken into account in this text, for instance regarding subconcepts, superconcepts etc. Moreover, it would also be possible to define an intermediate query command that could return a list of addresses.

5.5.3/ COMMANDS

Thus, it could be composed with the application of a strategy defined by an address as introduced in Section 5.5.4.

The QData command operates like the Q command except that it queries a concept and to each property correspond strategies. Thus, several models can share the same property and several properties can involve the same strategy. The selected strategies are to be executed by composition, in an order yet to be specified.

To do this, we use the isBe f ore role or its inverse isA f ter which establishes an order between strategies. For example, the strategy insertBcPeriodicity is necessarily executed after the replacement of the domain by the strategy replaceDomain, which is expressed by (replaceDomain, insertBcPeriodicity) ∈ isBe f ore. These relations are transitive but not reflexive, they define strict partial orders in the sets of strategies.

This part of the system concerning the properties is not further detailed in this work.

5.6.2/ STRATEGIES IN RDL

The strategies summarized in Table 5.4 of properties are written in Section 5.6.2.2 using a RDL meta-language mixing rewriting strategies and queries of the ontology. We start in Section 5.6.2.1 with the description of useful concepts, data and roles of the ontology.

Some of these definitions are parameterized by strings (data) that can be used both in the rewriting system and in the DL system. This allows to compose these functions if their result is also a string. All the roles defined below are given without detailing the way of building explicitely their definition and their individuals which can be as combinations of strategies with ontology declarations or inferences. The reader should be aware that a number of programming details are omitted for simplicity. isCorrectorS ourceNameO f Boundary : ∃isDirectS ubT reeO f (name, givenFunction)

•isCorrectorS ourceO f Boundary sources in corrector equations to the concept ident of the identifiers of boundaries where a correction is applied.

isCorrectorS ourceIdentO f Boundary : ∃isDirectS ubT reeO f (ident, givenFunction)

•isCorrectorS ourceO f Boundary .corrector(iBdName)

5.6.2.2/ STRATEGIES OF THE PROPERTY TABLE

The strategies in Table 5.4 are expressed in as meta programs of the RDL system which mixes rewriting strategies and queries of the ontology with one of the two commands Q and QData defined in Section 5.5.3. We recall that the Q command is a query by a concept formula that returns a list of expressions associated to the individuals belonging to the concept while the QData command still queries only concept expression corresponding to terminal nodes and returns a list of their data (strings). As in the correspondance between trees and individual, iBdName refers to the subtree related to the individual iBdName i.e.

(iBdName, iBdName) ∈ Ψ t . In addition, idName is a string in the rewriting system corresponding to the data idName in the ontology.

Before to describe the strategies, let us introduce few shortcuts for the navigation strategy goto that was defined in Section 5. To specify some of the children of a node nodeNameVar("nodeNamek 1 " : t 1 , ..., "nodeNamek " : t) is as nodeNameVar except that its subnodes nodeNamek 1 ,..., nodeNamek are replaced by the expressions t 1 ,...,t . For instance the pattern for functions with name f is functionVar("name" : "f").

An example of path which is often used is this starting from a subModel node and ending to its model node:

pathSubModelToModel(idName) : [subModelVar("ident" : identVar("name" : idName)), subScaleVar, modelVar]

3 duplicatePDE(idName) duplicates the equations and bcs of the physical problem whose names are in the lists equationNameList and bcNameList of a subModel of name idName. , replace(QData(conceptInS ubModel(idName, latOriBdP))))

CONCLUSIONS AND PERSPECTIVES

The goal of the MEMSALab software is to automatically build asymptotic models of MEMS Arrays using a reuse concept. Its operation is based on the combination of two techniques: asymptotic analysis from mathematics and rewriting from theoretical computer science. In a way, MEMSALab can be seen as a bridge to transfer well-developed asymptotic theories to more practical problems from research or industry in a way that users do not need to be familiar with the asymptotic analysis.

It took a number of years of contributions including those of this thesis before a stable operating principle for MEMSALab was developed. This thesis has significantly contributed to its necessarily multidisciplinary development. The maturing of the ideas required to embrace three scientific fields: that of the asymptotic modelling of the electromechanical problem posed in the MIRA array, that of the numerical simulation of the asymptotic models and that of the software development in the context of rewriting techniques.

From a numerical analysis point of view, asymptotic modes have advantages in reducing the computational cost of direct simulations of physical phenomena in MMAs comprising up to thousands of cells thanks to using the approximation models derived by the homogenization methods. The asymptotic models for the coupled electromechanical problem in the MIRA array derived by the two-scale transformation method in this thesis are considered exciting examples.

The array is regarded as consisting of two actuation regions operating with two different imposed voltages. Such a situation makes the model close to the actual problem and the relevant asymptotic models will cover all the possible cases. There are five kinds of asymptotic models comprising the periodic models, the lateral boundary and interface models, the external and internal edge models. Unlike the classical results of homogenization methods, due to the discretization in the mirror alignment, the homogenized equations are disappeared, and the periodic cell problems now play a role as the firstorder approximation for the exact solutions. The external and internal edge models are new contributions in asymptotic models of MIRA as well as in homogenization methods.

The derivation for the periodic cases is as the usual process. However, seeking models for the boundary correctors is more interesting. As we have seen that the proofs of these models are performed following a reference algorithm in MEMSALab, then application of this reference algorithm for derivations of the asymptotic models for the family of MMAs will be possible. However, handwritten proofs are more sophisticated because they require determining the suitable transform operators and an enormous amount of notations that are impossible to do manually. Therefore, these are more appropriate for management by the symbolic computation.

Besides, thanks to the numerical implementation results of these asymptotic models for the electrostatic part of the MIRA in COMSOL, the electrostatic potential and its relevant physical issues at any point in the array can be computed approximately with the reduction of computation cost. Further, the optimization for the pull-in voltage economizes on actuation costs.

The new data structure is uniform and flexible for the creation of expressions. This data structure can define all the mathematical expressions that describe the models. In addition, the recursive structure permits the characteristics of multiscale problems to be thoroughly described. These broaden the ability to represent the kinds of asymptotic models for MMAs in MEMSALab. Further, the strategies are small in number but have a sizeable operational capability to deal with complex tasks. Especially, the strategies are entirely independent of the data structure, which leads to more convenience and more flexibility in their creations, management and developments.

Furthermore, the connection between the rewriting technique and the description logic is a significant achievement to enrich MEMSALab in the knowledge presentation aspect.

With the inherent advantages offered by the rewriting technique in the tree-like data structure, which can navigate fast and manageable in a tree and can apply rules to verify hypotheses or perform transformations, MEMSALab is now equipped with the potential of description logic for ontology representation. In fact, the ontology plays a role as a processing centre to give conclusions from the enormous hypotheses provided by the rewriting technique, which is then in charge of carrying out these conclusions. This is the starting step towards the construction of mathematical knowledge representations of the asymptotic method aspect in MEMSALab.

As mentioned above, MEMSALab is currently close to the stable phase of the fundamental operations, and there are obviously various problems to be developed and studied.

Then, we propose future work in the following.

From the mathematical theory point of view, the priori estimates of the physical solutions 1, 6 and of their correctors e.g 2, 7 should be proven as the classical problems in homogenization methods. In addition, the exponential decay to 0 at infinity of correctors and their gradients should be proven by the methods in [6,[START_REF] Tartar | The general theory of homogenization: a personalized introduction[END_REF]. Furthermore, the convergence of electrostatic forces should be studied based on the method presented in [START_REF] Gaudiello | A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode[END_REF]. Then, numerical implementations of the asymptotic models of the linear elasticity part coupling with the electrostatic part through the electrostatic force should be performed. This is significant for making the asymptotic models for MIRA close to practical applications and for preparation of the linking of MEMSALab with finite element software. The enrichment of new asymptotic models for a family of MMAs should be studied to expand the library of asymptotic models in MEMSALab.

From the software development point of view, the reference proof should be implemented with the new data structure. An investigation of the reduction of extension size in the combination process should be studied to improve the extension-combination method.

Applying the new reference proof to the coupled electromechanical problem in the MIRA

4.

Right-Click Phi01In1, click Zero charge. In its setting, at Boundary Selection field, choose 14, 18, 24, 28, 76, 82, 85, 91, 264, 266, 268, 270, 280-281, 284, 286, 352, 354, 356-357, 368, 375, 378, 411, 413, 415-416. This Ph.D. thesis is in the context of the development of mathematical tools for software whose aim is to automatically derive asymptotic models of MEMS Arrays using symbolic computation and a reuse concept. The contribution covers three aspects: asymptotic modeling, numerical simulations, and software design. The derivation of asymptotic models for the coupled electromechanical problem in the micro-mirror array MIRA is achieved by employing the two-scale transformation method. With the goal to capture a larger family of asymptotic models, we consider the case where the array is actuated by two different voltages in two zones. As a result, the model includes periodic sub-models and boundary corrector sub-models for the lateral boundary, interfaces, inner edges and outer edges. With these models, the simulation of the network is feasible despite its large size. Numerical simulations of the electrostatic part are implemented in finite element software. In addition, the system design is optimized to minimize pull-in voltage. In terms of software design, new forms of data structure and rewriting strategies are designed using abstract syntax trees. This leads, on the one hand, to the standardization of the data structure and to make it more flexible and, on the other hand, to make the strategies more general which allows to decrease their number and thus the complexity of the software. The data structure is constructed with a recursive form that broadens the capability of description of families of asymptotic models. Finally, a concurrent system made with the rewriting system and a description logic framework is investigated. This is the first step in building an efficient knowledge representation in software for asymptotic model building.

R ésum é :

Cette th èse de doctorat s'inscrit dans le cadre du d éveloppement d'outils math ématiques pour un logiciel dont le but est de d ériver automatiquement des mod èles asymptotiques de matrices de MEMS en utilisant un calcul symbolique et un concept de r éutilisation. La contribution couvre trois aspects : la mod élisation asymptotique, les simulations num ériques et la conception du logiciel. La d érivation de mod èles asymptotiques pour le probl ème électrom écanique coupl é dans le r éseau de micromiroirs MIRA est r éalis ée en employant la m éthode de transformation à deux échelles. Dans le but de capturer une plus grande famille de mod èles asymptotiques, nous consid érons le cas o ù le r éseau est actionn é par deux tensions diff érentes dans deux zones. Par cons équent, le mod èle comprend des sous-mod èles p ériodiques et des sous-mod èles de correcteurs de fronti ères pour la fronti ère lat érale, les interfaces, les ar ètes int érieures et les ar ètes ext érieures. Gr âce à ces mod èles, la simulation du r éseau est r éalisable malgr é sa grande taille.

Les simulations num ériques de la partie électrostatique sont mises en oeuvre dans un logiciel d' él éments finis. En outre, la conception du syst ème est optimis ée pour minimiser la tension de pull-in. En ce qui concerne la conception du logiciel, de nouvelles formes de structure de donn ées et des strat égies de r é écriture est conc ¸ue en utilisant des arbres syntaxiques abstraits. Cela conduit d'une part à l'uniformisation de la structure de donn ées et à la rendre plus flexible et d'autre part de rendre les strat égies plus g én érales ce qui permet de diminuer leur nombre et donc la complexit é du logiciel. La structure de donn ées est construite avec une forme r écursive qui élargit la capacit é de description des familles de mod èles asymptotiques. Enfin, un syst ème concurrent r éalis é avec le syst ème de r é écriture et un cadre de logique de description est étudi é. Il s'agit d'une premi ère étape dans la construction d'une repr ésentation efficace dans un logiciel des connaissances pour les construction de mod èles asymptotiques.

Figure 1 . 2 :

 12 Figure 1.2: The electrostatic actuator group with three subgroups: (a) the surface actuators, (b) and (c) the in-plane and out-plane comb actuators.

Figure 1 . 3 :

 13 Figure 1.3: Examples of the three other groups of actuators.

Figure 1 . 4 :

 14 Figure 1.4: Examples of discrete and continuous mirrors.

Figure 1 . 5 :

 15 Figure 1.5: Top view of the MIRA array with 100 × 200 cells. The zoom represents a single cell.

Figure 1 . 6 :

 16 Figure 1.6: Application of the MIRA array in the the Multi-Object Spectroscopy. The figure taken from [93].

Figure 1 . 7 :

 17 Figure 1.7: Illustration of a composite material. It occupies the domain Ω =]0, L[2 .The structure in Ω has two components: a matrix in Ω 1 with conductivity γ 1 and inclusions in Ω 2 with conductivity γ 2 . We assume that the inclusions have a size in the same order than l and is periodically distributed with period l in each direction.

Figure 1 . 8 :

 18 Figure 1.8: Description of (a) the composite material domain Ω and of (b) the unit cell Y. Y is the union of a matrix Y 1 and an inclusion Y 2 with conductivity tensor γ(y). Obviously, Ω can be covered by cells of the form εY = εY 1 ∪ εY 2 .

 scales. A reference PDE, PDE Ref , as for instance a second order boundary value problem -(a e u) = f posed in an open bounded interval Ω of R, with mixed boundary conditions, the Dirichlet condition u = h on Γ D and the Neumann one a e u = g on Γ N , where Γ D and Γ N are two complementary parts of the boundary of Ω.

Figure 1 . 10 :

 110 Figure 1.10: Script defining the differential equation of PDE Ref in the earlier version of the User Language. Functions used in boundary conditions are also defined. The boundary conditions are omitted since their writing is similar to that of a PDE. The functions a, f and u are depending on the variable x which is defined on the domain omega. The latter has for boundary gamma and for outward unit normal n. The functions h and g are functions of xg D or xg N two variables defined on two parts gamma D and gamma N of the boundary.

Figure 1 . 11 :

 111 Figure 1.11: The script in the User Language of the reference proof Proof Ref that is applied to PDE Ref . It is based on the proof algorithm that underlies the construction of the models developed in the thesis. The proof is made as a composition of strategies expressed by semi-columns.

Figure 1 . 12 :

 112 Figure 1.12: Schematic view of the scheme of asymptotic model generation for the pair (PDE Ref , Proof Ref) and their extensions (PDE 1 ,Proof 1) and (PDE 2 ,Proof 2) by Ext 1 and Ext 2 .

Figure 1 . 13 :

 113 Figure 1.13: Schematic view of the combination of Ext 1 , Ext 2 and the complementary extension Ext 12 built to generate a correct extension Ext 12 .

Figure 1 . 14 :

 114 Figure 1.14: Schematic view of the pair (Proof 12 , PDE 12) built by the combination Ext 12 and the asymptotic model Model 12 obtained by application of Proof 12 to PDE 12 .

Figure 1 .

 1 Figure 1.14 shows the final step of the method, i.e. the pair (Proof 12 , PDE 12), built by application of the extension Ext 12 , generating the expected model Model 12 .

Chapter 2 :

 2 Asymptotic Models for Electromechanical Problems in the Two-Dimensional Array MIRA. We utilize the two-scale transform method to derive asymptotic models of the two-dimensional periodic arrays MIRA. The equations are governed by the electromechanical system of equations. Five kinds of models are built for both the electrical and mechanical effects. The main models have periodic solutions. Then, corrector models are derived for boundary layers at the boundaries and at the interfaces between zones of different actuation. They are essential to take into account the boundary conditions and the transmission conditions. Finally, correctors are established at the edges of the boundaries and of the interfaces. They are necessary to fix incompatibilities between boundary layer correctors of adjacent faces, and between boundary layer correctors of interfaces.

Chapter 3 :Chapter 4 :ter 2 .Chapter 6 :

 3426 Asymptotic Model Based Simulation of MIRA. We recall the design of a cell of MIRA i.e. all the parameters and materials of its components. Numerical simulation results of the five electrostatic models derived in Chapter 2 are reported. Then, the full approximation of the solution at an outer edge involving the solution of four models is presented. It involves a periodic solution, the solutions of the two boundary layer problems at the adjacent boundaries and the solution of the boundary layer model at the edge. The implementations was done in COMSOL Multiphysics. Moreover, a pull-in analysis was carried out in a single cell. It involves simulations of the coupling of the electrical and mechanical problems. Given the complexity and mesh sensitivity of the computations, a relatively complex algorithm has been deployed. Moreover, an optimization process of the pull-in voltage in a single cell has been carried out and is presented. Since the simulation time of the electromechanical problem is very long, the optimization was done using a reduced model. Data Structure and Rewriting Strategies for Multiscale Model Construction. First, the AST based data structure is defined and illustrated with simple examples. Then it is validated with the data of the electrostatic problem posed in the MIRA geometry and with the characteristics of the five asymptotic models of Chap-In each case, a meta-algorithm of strategies building the model is provided. Chapter 5: A Rewriting and Description Logic Concurrent System. First, werecall the elementary principles that found the description logic and the grammar of the MEMSALab rewriting system. Then, a representation of a fragment of the rewriting system is expressed in description logic. This leads to the formulation of the concurrent RDL system based on the two methods. Finally, the meta-algorithms of Chapter 4 are expressed as a single algorithm of the RDL system. Conclusions and Perspectives. of physical phenomena in a micromirror array is very costly in computing time due to a large number of degrees of freedom as its enormous size

Figure 2 . 1 : 1 and c 2 ∈ 1 ,= ∪ c Γ mec 0,c and Γ mec 1 =Figure 2 . 2 :Figure 2 . 3 :

 2112112223 Figure 2.1: Zones where the asymptotic models are taken into account. The corresponding color numbers indicate the models'index. Assume that the array is actuated by two different imposed voltages in the internal and external zones, then it leads to two periodic models named the internal and the external periodic models.

Figure 2 . 4 : 3 Definition 3 :

 2433 Figure 2.4: The reference cell Ω 1 constructed by the mechanical body Ω 1,mec surrounded by the vacuum part Ω 1,vac occupies the block] -1/2, 1/2[3

Figure 2 . 5 :

 25 Figure 2.5: The physical domain Ω αε bl,1 for the first lateral boundary model with two subdomains the mechanical body Ω αε,mec bl,1

6 . 3)

 63 by a smooth function v ε bl in Ω αε,vac bl,1 vanishing out of Ω αε,vac bl,1

Figure 2 . 9 :

 29 Figure 2.9: The first interface physical domain Ω αε in,1 with two nonoverlapping subdomains Ω αε+ in,1 and Ω αε- in,1 , each domain Ω αε± in,1 is assembled by two parts the vacuum part Ω αε,vac± in,1 and the mechanical part Ω αε,mec± in,1

Figure 2 . 10 :

 210 Figure 2.10: The first interface microscopic domain Ω 1 in,1 with two nonoverlapping subdomains Ω 1,± in,1 , each of them also involves two parts, the vacuum part Ω 1,vac± in,1

Figure 2 . 11 :

 211 Figure 2.11: Description of the geometry of the internal edge problem. The green and maroon colors represent the zones of the first and the second interface models. The red region is the zone of the first internal edge model made with four subregions. The electrostatic potential has a different approximation in each of these subregions.

Figure 2 . 12 :

 212 Figure 2.12: The first internal edge Ω αε ine,1 in the physical domain with α = 1.

i ds(x 1

 1 , we present numerical simulation results of the asymptotic models of the MIRA micro-mirror array derived in the previous chapter. We also present an analysis of the pull-in phenomenon.The presentation of model results for the electrical behavior is done for the solution of one case of the periodic model, the inner and outer edge models, and two cases for the lateral boundary layer and interface models. Moreover, results of a periodic model are combined with results of boundary layer correctors to approximate the solution at the vicinity of an outer edge. In addition, one simulation result for the periodic model is presented for the electromechanical coupling problem. We postulate that the formula for the electrostatic force is the same as in the physical model, which is supported by the analysis conducted in[START_REF] Gaudiello | A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode[END_REF]. As mentioned in the previous chapter, the solutions of the boundary layer models decrease exponentially away from the origin boundary. Our results even indicate that they are almost zero beyond the first cell. The boundary layer models related to the electrostatic coupling have not been implemented due to the fact that the expressions of the electrostatic forces have not yet been obtained but also due to limitations of the COMSOL software. When the analysis of their convergence will have been carried out, it will be necessary to consider that the implementation of the models should be done using an alternative software such as FEniCS, an open-source platform of simulation of PDE by the finite element method.

 problem of the pull-in voltage with respect to the two most influential variables: the thickness of the beam and the length of the suspended beam. The optimization problem is solved using the homemade software SIMBAD with the metamodel based on twentyfive values of the pull-in voltage corresponding to a selection of beam thicknesses and lengths. 3.2/ DESCRIPTION OF MIRA DESIGN Let us now briefly review the structure of one cell of MIRA that illustrated in Figure 3.1. It is composed of two components: the mirror part shown in Figures 3.2-3.3 and the electrode part described in Figures 3.8-3.9. In the mirror part, there is one micromirror supported with two flexible beams, which are demonstrated in Figures 3.6-3.7. These beams are attached to a frame enabling a displacement of the mirror when the voltage is applied. One stopper beam visualized in Figures 3.4-3.5 is situated under the frame to guarantee that a tilt angle satisfies a given constraint value after actuation. Two landing beams are established under the tilting edge of the micromirror to avoid the generation of a shortcircuit between the mirror and the electrode throughout the actuation. The electrode part includes the electrode base where the electrostatic force is applied to attract the mirror; landing pads are where the landing beams contact; two pillars separate the mirror and electrode parts defining an electrostatic gap. All parameters of these components and their material can be found in

Figure 3 . 1 :Figure 3 . 2 :Figure 3 . 3 :

 313233 Figure 3.1: Overview of the components of a MIRA cell.

Figure 3 . 4 :Figure 3 . 5 :

 3435 Figure 3.4: Two-dimensional representation of the stopper beam.

Figure 3 . 6 :Figure 3 . 7 :Figure 3 . 8 :

 363738 Figure 3.6: Two-dimensional representation of the right suspended beam.

Figure 3 . 9 :Width of the suspended beam metay 5 µm

 395 Figure 3.9: Three-dimensional representation of the electrode base.

3. 3 /

 3 ASYMPTOTIC MODEL IMPLEMENTATIONSWe now present the simulation results of the asymptotic MIRA models derived in the previous chapter. As we assumed, there are two zones in the array, the inner and outer zones driven by two different voltages V 1 = 60V and V 2 = 80V. The periodic model, and the boundary layer models at the external boundary, the interface, the outer edge and the inner edge are implemented by the electrostatics package of the AC/DC module of COMSOL software. The results are presented inFigures 3.10

 , 3.11, 3.12, 3.13.

Figure 3 . 10 :

 310 Figure 3.10: Electrical potential φ 0 and the electrostatic field ∇φ 0 in the internal zone (a) and in the external zone (b).

Figure 3 . 11 :

 311 Figure 3.11: The electric potentials (a) φ 1 bl of the first lateral boundary model, (b) φ 4 bl of the second one, (c) φ 3 bl of the third one, and (d) φ 4 bl of the fourth one. The boundary layer effect is concentrated in one cell.

 (a) Electric potential φ 1 in of the first interface boundary layer model. (b) Electric potential φ 2 in of the second interface boundary layer model. (c) Electric potential φ 3 in of the third interface boundary layer model. (d) Electric potential φ 4 in of the fourth interface boundary layer model.

Figure 3 . 12 :

 312 Figure 3.12: Electric potentials φ i in with i = 1, 2, 3, 4 of four interface models. Each of φ i in includes two parts φ i,+ in and φ i,- in . The mirrors are hidden to facilitate visualization of the potential values at the interfaces. The contributions are significant at the interfaces and rapidly evanescent.

VFigure 3 . 13 :

 313 Figure 3.13: Electric potentials (a) φ 1exe and (b) φ 1 ine of the outer and inner edge models. In both cases the fields are very localized and their value very small compared to the imposed voltage. It is likely that they are negligible in some cases.

4 Figure 3 . 14 :Figure 3 . 15 : 2 Figure 3 . 16 :

 43143152316 Figure 3.14: The approximate solution near lateral boundaries given by the assembly of the external periodic solution φ 0 and the contribution of lateral boundary correctors φ i bl , i = 1, 2, 3, 4.

Figure 3 . 17 :

 317 Figure 3.17: Mechanical displacement u 0 of the periodic model in the internal zone with the imposed voltage 60V. The red narrows represent the electrostatic field.

Figure 3 . 18 :

 318 Figure 3.18: An electrode actuation with two parallel plates: the movable plate supported by the spring with the spring constant k and the fixed plate. The distance between them is g 0 and the areas of each plate is A.

Figure 3 . 19 :Table 3 . 6 :

 31936 Figure 3.19: Imposed voltage locations: (a) the voltage V E is applied on the bottom electrode part and (b) the voltage V M is applied to the mirror part, which includes the mirror itself, the frames, the two golden pads, and the two pillars. The gap between the mirror and the electrode is denoted by g0 and the position point is at the end of the landing beam shown in the zoomed figure.

 the value of the position point in the range [51.5 : -1 : 33] µm and the vertical being the voltage VESP to reach this position shown in Figure 3.20. The pull-in voltage is max(|V ES P -1|) = 87 V.

Figure 3 . 20 :

 320 Figure 3.20: Graph of the imposed voltage with respect to the beam displacement at equilibrium for supporting beams with thickness 400nm and length 40µm.

 more details.The surface response model for the pull-in voltage is built based on twenty-five samples corresponding to the five value variations of poly ∈ {400, 450, 500, 550, 600} and of msux ∈ {40, 50, 60, 70, 80}. The result of response surface is shown in Figure3.21 with the mean square error 1.8%. Then, the constrained optimization process is performed for this model with the single objective V PI , the two variables poly, msux, the constraint V PI ≤ 140V, and the initial values poly = 500nm, msux = 60 µm, V PI = 115.2 V. We find that the minimal value of 74.4 V of the pull-in voltage V PI is reached for poly = 400 nm and msux = 70.16 µm.

Figure 3 . 21 :

 321 Figure 3.21: The surface response model for the pull-in voltage V PI as a function of the suspended beam thickness and length variables poly and msux.The main slope is in the direction of poly while the surface is flat in the direction of msux, so the thickness of the beam is the variable that dominates this effect.

Figure 3 .

 3 Figure 3.22 presents the impact of the electrostatic field of the right cell on the left one. It is clear that the influence region of the electrostatic field is local and mainly concentrates in the vicinity of the interface. In addition, Figure 3.23 demonstrates that the affected area on the mirror of the inactive cell is not larger than 3 × my (µm 2) where my = 200µm.

Figure 3 . 22 :

 322 Figure 3.22: Effect of the eletrostatic field of the right cell on the neighbour cell. The zoom represents the electrostatic field around the frame of the active cell with the applied voltage 80 V and the head of the mirror of the inactive one.

Figure 3 . 23 :

 323 Figure 3.23: Affected location from the neighbour electrostatic field on the underside surface of the mirror of the inactive cell with an estimate area of 0.25×mlax×my = 600 (µm 2)where my represents the length of the mirror and mlax expresses that of the landing beam.

Figure 3 . 24 :

 324 Figure 3.24: Mechanical displacement in the inactive cell with an order in the range of 10% of the gap between the electrode and the mirror.

Section 5 . 3 of

 53 Chapter 5. e := n | c | x | node(e,[e,...]) e':= e | globalVar(e) s := nodeS(e,[e',...,s,...]) with n a number, c a string, x a rewriting variable,

Figure 4

 4

Figure 4 . 1 :

 41 Figure 4.1: The system of representation of multiscale geometries using the parameters scale and level. multiscale models. The scales are written in blue while the levels are in black.

1 . 2 .

 12 axisList(axisList0) a node for the list axisList0 = [axis(axis0),...] of vector coordinates generating the subspace where the region is defined. For instance, [axis([1,0,0])] is for a one dimensional region in the Ox direction, [axis([1,0,0]), axis([0,1,0])] for a two-dimensional region in the (Ox, Oy)-plane and [axis([1,0,0]), axis([0,1,0]), axis([0,0,1])] for a three-dimensional region. sizeList(sizeList0) a node for the list sizeList0 = [size0,...] of orders of magnitude of the size of the region in the directions of the axes in axisList. These orders of magnitude are expressed in terms of powers of asymptotic symbolic parameters as ε.

2 and Ω 0,micro 3 ofFigure 4 . 2 :

 2342 Figure 4.2: Interface between three domains.

3 . 4 .Figure 4 . 3 :Figure 4 . 4 :Figure 4 . 5 :

 34434445 Figure 4.3: Tree representation of a region node for a boundary with name gamma.

 interface00(nameBList0,nameD) : node("interface",[boundaryNameList(nameBList0), neighborDomainName(nameD)]) Example: Let us consider the physical domain in Figure 4.6 which includes two subdomains Ω 0,micro int and Ω 0,micro ext with boundaries Γ 0,micro int and Γ 0,micro ext . The main boundary Γ 0,micro ext is split into Γ 0,micro ext,lat the external boundary and Γ 0,micro int the interface with Ω 0,micro int . The following code defines first the geometry parameters, then the boundaries and finally the domain. The definitions of the two boundaries Γ 0,micro int , Γ 0,micro ext,lat , of the boundary Γ 0,micro ext of Ω 0,micro ext and of the boundary Γ 0,micro main of Ω 0,micro main = Ω 0,micro int ∪ Ω 0,micro ext the main domain are the following. boundary{["int"]} : boundary00("int",axisList0,sizeList0,[]) boundary{["ext,lat"]} : boundary00("ext,lat",axisList0,sizeList0,[]) boundary{["ext"]} : boundary00("ext",axisList0,sizeList0, [boundary{["int"]},boundary{["ext,lat"]}]) boundary{["main"]} : boundary00("main",axisList0,sizeList0, boundary{["ext,lat"]}) Then, the three domains Ω 0,micro int , Ω 0,micro ext and Ω 0,micro main are constructed as follows.

Figure 4 . 6 :

 46 Figure 4.6: A physical domain with two subdomains. The periodicity is in the x 1 -direction.In the x 2 -direction, the domain is assumed to be thin.

4 .

 4) a node for a list indexList0 = [index,...] of index nodes of the function. varList(varList0) a node for a list varList0 = [variable,...] of variable nodes of the function.

4 . 5 .

 45 inputVarList(inputVarList0) and outputVarList(outputVarList0) nodes for the input variable list inputVarList0 = [variable,...] and the output variable list outputVarList0 = [variable,...] of the operator. paramOper(operParam0) a nodes for a list operParam0 = [expression,...] of parameters that can be any expressions.Example:The following code is the definition of the trace operator of an expression expr that is assumed to be already defined. Its application could use the variables x and xg defined in Section 4.2.5.opTrace(expr,x,xg) : node("operator",[

Figure 4 . 7 :

 47 Figure 4.7: Tree representation of the subModel node.

1 . 2 . 3 . 1 . 2 . 3 .

 123123 domainNameList(domainNameList0) a node for a list domainNameList0 = [(name1,name0),...] whose elements are pairs of the domain names name1 and name0 and defines an inclusion relation. The name name0 is that of a domain Ω name0 used in the PDE of the parent subScale node of the subModel. The name name1 is that of the node Ω name1 of the region or one of its subregions of the subScale node descending from the subModel. The inclusion relation is between Ω name1 and the transformation (unfolding) of Ω name0 . It is used to determine the equations used in Ω name0 that need to be imported into Ω name1 for processing. boundaryNameList(boundaryNameList0) a node for a list boundaryNameList0 = [(name0.1,name0),name0,...] whose elements can be (i) pairs of a boundary name name0 and its subboundary name name0.1 where the boundary name0 and name0.1 are respectively the subboundary of the domain used in the current subScale and the subModel at upper scale; (ii) only boundary names name0 if name0 and name0.1 are identical, in the sense that the boundaries used in the subScale are fully employed in the subModel. modelName a node represents the selection of equations and boundary conditions of pdes used in a subModel from the pde of subScale at the upper scale. The names refer to pde, equation, boundary condition names in the previous scale and they must be listed in the corresponding index with the domain names and the boundary names that are given in the domainNameList node and boundaryNameList node of the current subModel. pdeNameList(pdeNameList0) a node for a list pdeNameList0 = [name0,...] of pde names name0 which are strings. equationNameList(equationNameList0) a node for a list equationNameList0 = [name0,...] of equation names name0 which are strings. bcNameList(bcNameList0) a node for a list bcNameList0 = [name0,...] whose elements can be (i) name0 boundary condition names applied on the corresponding boundaries whose names are given in the boundaryNameList;

Figure 4 . 8 :

 48 Figure 4.8: Identifiers of the recursive multiscale models built on the pair (subModel, subScale).

Figure 4 Figure 4 . 9 :

 449 Figure 4.9: A simple tree.

Figure 4 .

 4 Figure 4.10: The processing of the application goto([B,H],C,s) to the tree of 4.9 to find successively B and H with a limit C.

Figure 4 . 11 :

 411 Figure 4.11: Illustration of the operations made when applying the strategy goto([B,E,H],C,insert(K)) to the tree of Figure 4.9.

Figure 4 .

 4 Figure 4.12: The tree representation for the top subScale node of the physical model of electrostatic equations posed in the MIRA architecture. The domain Ω 0,microair.main and the electrostatic equations are defined in details in the first part of the thesis. The names of the submodels in the list subModelList are "periodic.int", "periodic.ext", "boundaryLayer.i" , "boundaryLayer.edge.i", "boundaryLayer.interface.i", and "boundaryLayer.interface.edge.i" for i = 1,2,3,4.

Figure 4 . 13 :

 413 Figure 4.13: The physical air domain of the MIRA model, the subdomains, their boundaries and subboundaries.

Figure 4 . 14 :Figure 4 . 15 :

 414415 Figure 4.14: The submodel node of the external periodic model.

Figure 4 . 18 :Algorithm 1 3 :

 41813 Figure 4.18: The subScale node of the external periodic model.

4. 4 . 3 /

 43 BOUNDARY LAYER MODELS 4.4.3.1/ DATA STRUCTURE FOR A BOUNDARY LAYER MODEL The boundary layer model is illustrated with a single case. The selection of its domain in the physical domain and its microscopic domain are in Figure 4.19.

4. 4 . 3 . 2 /Algorithm 2 3 :

 43223 STRATEGY FOR A BOUNDARY LAYER MODEL Derivation of a boundary layer model from the physical model. 1: In model of the top subScale node, store all equations in equationList and all boundary conditions in bcList whose names are in pdeName/equationNameList and bcNameList of the model "lateral.X" . == In the following the operations are in the subModel node with name "lateral.X" == 2: goto a pde node of the subscale at a lower level, insert all copied data. In subScale/model replace the name given in physUnknown of the unknown function by this in microUnknown. This function is noted φ in the following.

4. 4 . 4 /

 44 EDGE BOUNDARY LAYER MODELS 4.4.4.1/ DATA STRUCTURE FOR AN EDGE BOUNDARY LAYER MODEL The edge boundary layer model is illustrated with a single case shown in Figure 4.20.

Figure 4 . 20 :

 420 Figure 4.20: Selection of the domain of an edge boundary layer model in the physical domain and the related microscopic domain.

4. 4 . 4 . 2 /Algorithm 3 2 - 4 :

 442324 STRATEGY FOR AN EDGE BOUNDARY LAYER MODEL Derivation of an edge boundary layer model from the physical model. 1: Same as Algorithm 2 but for a model "externalEdge.X". = In the following the operations are in the subModel node with name "externalEdge.X" = Same as Algorithm 2.

9- 10 :

 10 Same as Step 8 and 10 of Algorithm 2.4.4.5/ INTERFACE BOUNDARY LAYER MODELS 4.4.5.1/ DATA STRUCTURE FOR AN INTERFACE BOUNDARY LAYER MODEL The interface boundary layer model is illustrated with a single case shown in Figure 4.21.

Figure 4 . 21 :

 421 Figure 4.21: The domain of an interface boundary layer model in the physical domain and the related microscopic domain. The physical domain Ω 0,micro air.interface.1 includes two non-overlapping subdomains Ω1,micro air.interface.1.ext and Ω 1,micro air.interface.1.int with the interface Γ 0,micro air.int.latBox.1 , the corresponding microscopic domain Ω 1,micro air.interface.1 has also two non-overlapping subdomains Ω 1,micro air.interface.1.1 and Ω 1,micro air.interface.1.2 with the interface Γ 1,micro air.interf.interface .

rName3 7 : 8 :

 78 are subdomain names of the microscopic domain in subScale/region of this interface model, rName2 and rName4 are microscopic domain names of the internal and external periodic model given in the subScale/region represented by theirs identifiers idSC.Per.Int and idSC.Per.Ext. 6: goto in pde/bc and then in the continuityFlux equality, replace the right-hand side by -(mapping{rName1,rName2}(∇φ 1)("") •n -mapping{rName3,rName4}(∇φ 2)("")•n). replace the name of the boundary with name in interfaceP by the name in interface node. replace in subScale/model the domain with name in regionName/domainName by the microscopic domain in subScale/region.

5. 2 .

 2 1/ SEMANTICS Let C = {c 1 , c 2 , . . . } be a finite set of atomic concepts, R = {r 1 , r 2 , . . . } a finite set of atomic roles and I = {i 1 , i 2 , . . . } a finite set of individuals. If C, R, I are two by two disjoint, S = C, R, I is a signature. Once a signature S is fixed, an interpretation I of S is a couple I = ∆ I , • I , where : -∆ I is a non-empty set, the domain of interpretation. -• I is a function affecting : -an element i I ∈ ∆ I to each individual i ∈ I; -a subset c I ⊆ ∆ I to each atomic concept c ∈ C; -and a relation r I ⊆ ∆ I to each atomic role r ∈ R.

c 1 =c 2 is a notation for c 1 c 2 and c 2 c 1 .

 1 The formulae of T are called "terminological axioms".

 Let I an interpretation and ϕ a terminological axiom or assertion. Thus I modelizes ϕ (notation I | = ϕ) if : -ϕ = c 1 c 2 and c I 1 ⊆ c I 2 , or ϕ = i : c and i I ∈ c I , or -ϕ = (i, j) : r and (i I , j I) ∈ r I . Let Σ = T , A a knowledge base and I an interpretation, then I is a model of Σ (notation, I | = Σ) so for all ϕ ∈ T ∪ A, I | = ϕ. We say in this case that I is a model of the knowledge base Σ. Given a knowledge base Σ and a terminological axiom or assertion ϕ, Σ | = ϕ if for any model I of Σ we have I | = ϕ. 5.2.5/ REASONING TASKS In DL, the expression "reasoning on the T -Box" refers to the ability to make inferences from a knowledge base. Σ = T , A o Ã1 T is non-empty, and in a similar way, "A-Box reasoning" is the implication for a non-empty A-Box. Let Σ a knowledge base, c 1 , c 2 ∈ C, r ∈ R and i, j ∈ I, we define the following basic deduction tasks. -Subsomption: Σ | = c 1 c 2 Checks whether for all interpretations I such that I | = Σ, we have c I 1 ⊆ c I 2 . -Instance Verification: Σ | = i : c Checks whether for all interpretations I such that I | = Σ, we have i I ∈ c I . -Relationships check: Σ | = (i, j) : r Checks whether for all interpretations I such that I | = Σ, we have (i I , j I) ∈ r I . -Consistency of concept: Σ | = c =⊥ Checks whether for all interpretations I such that I | = Σ, we have c I {}. -Consistency of the knowledge base: Σ | = ⊥ Checks whether there exists I such that, I | = Σ.

 strategies is s := r | nodeS(id, [p, ..., s, ...]) where r represents terminal strategies and the variables of a strategy node can be patterns p or other strategy nodes s. The terminal strategies, i.e. strategies with no strategy as variable, are the rewriting rules nodeS("rule", [left, right, condition]) or rule(left, right, condition). A strategy consists in navigation and transformation operations.

 The extended grammar of expressions e and strategies s is detailed below. The sets of expressions and strategies are noted E and S. e := n | c | x | | node(e, [e , ...]) e := e | globalVar(e) | dEval(e) | eval(e) | evalCond(e) | s[e] | f(e , ..., s, ...) s := rule(e, e , e) | store(e) | om(e, s) | s; s | s|s | repeat(s) | g(e , ..., s, ...) with n a number, c a string, x a rewriting variable, -the logical True or False, rule(l, r, c) a conditional rewriting rule with left hand side l, right hand side r and condition c where the left-hand side l and the condition c cannot be external functions.

 strategies or functions. They concern construction, querying and strategy execution. The description and the use of the strategy O of declaration of components of the ontology are in Section 5.5.2, those of the function Q of interrogation of a concept are in Section 5.5.3 and those of the strategy S of execution of a strategy associated with an individual of strategy concept are in Section 5.5.4.

Q

 AND QData OF ONTOLOGY INTERROGATION Ontology queries are done either with the query command Q operating on concept expressions or with the query command QData operating on data properties. The evaluation of a query Q returns an expression, thus it can be used in place of any expression in a strategy. Precisely, for a concept expression c written in a query language (e.g. DLQuery or SPARQL), Q(c) returns the list [Φ t (i 1), ...] of the subtrees associated with the individuals i 1 ,... of the concept c. For instance Q([domain]) returns the list of all nodes domain declared in the ontology. The class expression based query Q(∃hasDirectS ubT ree(equation, name) • hasDirectS ubT ree(name, lea f) • hasData."laplace") returns the list of all nodes equation with name "laplace" declared in the ontology.

4 :

 4 Correspondences between the operations done in the algorithms, the strategy names and the properties. The strategies involved in all submodels are marked by a "-".Model properties are defined as individuals of the concept modelProperties, for example periodicity ∈ modelProperties. Each particular subModel has a name which is an individual of the concept subModel. For example the model BL ∈ subModel. To each subModel name is associated properties by the role modelHasProperty whose inverse is isPropertyO f Model. For example (BL, periodicity) ∈ modelHasProperty. To each model property are associated, by the role propertyHasS trategy of inverse isS trategyO f Property, strategies to be applied. For example, to the property periodicity is associated the strategy insertBcPeriodicity which is an individual of the concept strategy (and also of the concept of its root node). Thus, (periodicity, insertBcPeriodicity) ∈ propertyHasS trategy. Thus, the properties of the BL model are the individuals of the concept ∃isPropertyO f Model.BL, the strategies to be applied for the periodicity property are the individuals of the concept ∃isS trategyO f Property.periodicity and the strategies to be applied for the BL model are in the concept defined by ∃isS trategyO f Property.∃isPropertyO f Model.BL or by the composition ∃isS trategyO f Property • isPropertyO f Model.BL.

 domainName(idName) : conceptInS ubModel(idName, domainNameList) 3 phiMicro(idName) is the concept of unknown functions of the concept of microscale model model of a concept subModel which name is idName phiMicro(idName) : ∃hasDirectS ubT reeData(f unction, name).conceptInS ubModel(idName, microUnknown) 3 periodicBoundaryName(idName) is the concept of periodic boundaries of the concept of microscale model model of a concept subModel with name idName. periodicBoundaryName(idName) : conceptInS ubModel(idName, perBd) 3 in f tyBdName(idName) is the concept of boundaries at infinity of boundary layer models of the microscale model of a subModel with name idName. in f tyBdName(idName) : conceptInS ubModel(idName, latIn f Bd) 3 givenFunctionName(idName) is the concept of names of the concept givenFunction in the subModel with name idName. givenFunctionName(idName) : ∃isDirectS ubT reeO f Data(name, givenFunction, subModel, ident, name).idName 3 givenFunctionIdent(idName) is the concept of identifiers of the concept givenFunction in the subModel with name idName. givenFunctionIdent(idName) : ∃isDirectS ubT reeO f Data(ident, givenFunction, subModel, ident, name).idName 3 isCorrectorS ourceO f Boundary is a role mapping the concept givenFunction of source in the equation of correctors to the concept (here latOriBdPY or inter f ace) of the boundaries where a correction is applied. These concepts are associated to nodes in the dictionary of the dilation node. The pairs of individuals of this role are built while scaning the data tree, each node givenFunction, that includes a name and an identifier of a corrector, being associated to the related node of boundary name. Its inverse role is isBoundaryO f CorrectorS ource. For instance -for model BL: (givenFunction1, latOriBdP) ∈ isCorrectorS ourceO f Boundary -for model BL Edge: (givenFunction2, latOriBdP1) and (givenFunction1, latOriBdP2) ∈ isCorrectorS ourceO f Boundary, -for model BLI: (givenFunction1, inter f ace) and (givenFunction2, inter f ace) ∈ isCorrectorS ourceO f Boundary. 3 isS ubModelDomainNameO f CorrectorS ource is a role mapping the concept made with the name of domains in a corrector model to the concept givenFunction of sources in the equation of correctors. The role is between the sources and the names of domains where they are mapped by the change of variable. The inverse role is isCorrectorS ourceO f S ubModelDomainName. -for model BL: let denote the domain name Ω of the region node of the subModel thus (Ω, givenFunction1) ∈ isS ubModelDomainNameO f CorrectorS ource -for model BL Edge: idem but (Ω, givenFunction1) and (Ω, givenFunction2) ∈ isS ubModelDomainNameO f CorrectorS ource, -for model BLI: here, the region names are those of the subregion Ω 1 , Ω 2 of Ω thus (Ω 1 , givenFunction1) and (Ω 2 , givenFunction2) ∈ isS ubModelDomainNameO f CorrectorS ource. 3 isS ubModelDomainO f Boundary is the composition of the two above roles. isS ubModelDomainO f Boundary : isS ubModelDomainNameO f CorrectorS ource •isCorrectorS ourceO f Boundary 3 isCorrectorS ourceNameO f Boundary is a role mapping the concept givenFunction of sources in corrector equations to the concept name of the names of boundaries where a correction is applied.

3

 correctorS ourceNameO f Boundary(iBdName) is a concept of source names (node name) associated with a correction boundary name given as a data (string) iBdName in a node latOriBdP or inter f ace. correctorS ourceNameO f Boundary(iBdName) : ∃isCorrectorS ourceNameO f Boundary .{iBdName} 3 correctorS ourceIdentO f Boundary(iBdName) is a concept of source identifiers (node ident) associated with a correction boundary name given as an individual iBdName in a node latOriBdP or inter f ace. correctorS ourceIdentO f Boundary(iBdName) : ∃isCorrectorS ourceIdentO f Boundary .{iBdName} 3 correctorS ourceO f Boundary(iBdName) is the concept of source (node function) in a corrector equation of a node subModel with name idName associated with an individual iBdName of a boundary name (node name). It is assumed that a single function is associated to a name and an identifier thus this class may have several individuals but all related to a same subtree. correctorS ourceO f Boundary(iBdName) : ∃hasDirectS ubT reeData(f unction, name).correctorS ourceNameO f Boundary(iBdName) ∩∃hasDirectS ubT reeData(f unction, ident).correctorS ourceIdentO f Boundary(iBdName) 3 microRegionName(idName) is the concept of name (node name) of the micro region associated to the concept subModel with name idName. This is used for the models BL and BL Edge. microRegionName(idName) : ∃isO f HasDirectS ubT ree([name, region, subS cale , subModel, ident, name]).{idName} 3 regionNameO f Corrector(iBdName) is the name (node name) of the micro region of a corrector corrector(iBdName). regionNameO f Corrector(idName, iBdName) : ∃isDirectS ubT reeO f ([name, region, variable])

,

 xg(QData(periodicBoundaryName(idName))), Q(phiMicro(idName))); insert(fluxPeriodicityBc(x(microDomain(idName)) , xg(QData(periodicBoundaryName)), Q(phiMicro(idName)), 1, n))) 3 renamePDE(idName) renames the PDE of the model node of the subModel with name idName. renamePDE(idName) : goto([pathSubModelToModel(idName), pdeVar] , replace(pdeVar("name" : "micro.pde"))) 3 removeDirichletBcSource(idName) replaces the source in the right-hand side of Dirichlet bc by 0 in the model node of the subModel which name is idName. removeDirichletBcSource(idName) : goto([pathSubModelToModel(idName) , bcListVar, bcVar, equalityVar("name" : "dirichlet"), rightMathExpressionVar], [] , replace(rightMathExpression(0))) 3 normalDerivativeTrace(f, bd) is the trace of normal derivative of a function f on a boundary bd.3 pathSubModelToBc(idName, iBdName) is the path from a subModel node to its boundary condition posed on a boundary iBdName. pathSubModelToBc(idName,iBdName) : [pathSubModelToModel(idName), bcListVar , bcVar("variableList" : [variableVar("region" : regionVar("name" : iBdName))])] 3 correctorSourceOfBoundary(iBdName) is the list of sources (node function) of the corrector equation associated to the boundary with name (node name) iBdName. We recall that the class correctorS ourceO f Boundary(iBdName) is made with one or two (in case of interfaces) subtrees. correctorS ourceO f Boundary(iBdName) : Q(correctorS ourceO f Boundary(iBdName)) 3 correctorSourceOfBoundaryMapped(iBdName, iFun) is the list of sources correctorS ourceO f Boundary(iBdName) of the corrector equation but which variables are mapped to the variable of the corrector equation with corrector source (node givenFunction) iFun. correctorSourceOfBoundaryMapped(iBdName, iFun) : mapping{Q(isS ubModelDomainNameO f CorrectorS ource.iFun), Q(isDirectS ubT ree(ident, givenFunction).iFun)} (correctorS ourceO f Boundary(iBdName) 3 correctionSource(iBdName, iFun) is the normal derivative of a source (node givenFunction) iFun to be added to a boundary condition at the boundary with name iBdName. correctionSource(iBdName, iFun) : rightMathExpr0(normalDerivativeTrace(correctorSourceOfBoundaryMapped(iBdName, iFun) , Q(∃hasDirectS ubT ree(boundary, name).{iBdName})) 3 replaceBcRhsOrigin(idName) replaces the right hand side of the boundary condition at the origin boundary by a corrector. This is done in the model node of the subModel which name is idName. replaceBcRhsOrigin(idName) : for iBdName ∈ Q((latOriBdP ∪ latOriBdP1 ∪ latOriBdP2 ∪ inter f ace) ∩∃isO f HasS ubT ree(subModel, name).idName) for iFun ∈ Q(correctorS ourceO f Boundary(iBdName)) goto(pathSubModelToBc(idName, iBdName) , goto([rightMathExprVar], rule(x , x + correctionSource(iBdName, iFun)))) endFor iFun endFor iBdName 3 insertBcInfinity(idName) inserts a Neumann bc at the boundary at infinity insertBcInfinity(idName) : goto([pathSubModelToModel(idName), bcListVar] , insert(neumannEq(xg(QData(in f tyBdName(idName))) , x(QData(domainName(idName))), Q(phi(idName)), n, 1, 0))) 3 renameBoundaryOrigin(idName) rename the boundary at the origin in the model node of the subModel which name is idName. renameBoundaryOrigin(idName) : goto([pathSubModelToModel(idName) , boundaryVar("name" : QData(conceptInS ubModel(idName, latOriBdP))]

1 withα = 1 . 1 , 1 ,

 1111 figure. 3.20 Graph of the imposed voltage with respect to the beam displacement at equilibrium for supporting beams with thickness 400nm and length 40µm. . .

Figure 6 . 2 :

 62 Figure 6.2: Vacuum Setting.

3 .

 3 Right-Click Phi01In1, click Electrode Potential and rename it by VE. In its setting, at Boundary Selection, choose boundaries correspoding to the electrode part 21, 23, 26, 282-283, 285, 287, 353, 355, 358-359, 376, 412, 414, 417-418. In the Electric Potential, input VE1.

5 . 6 . 1 . 2 .

 5612 Right-Click Phi01In1, click Periodic Condition. In its setting, at Boundary Selection field, choose 10, 435. Right-Click Phi01In1, click Periodic Condition. In its setting, at Boundary Selection field, choose 11, 44. 6.1.5.2/ INTERNAL PERIODIC MODEL Click Physics, add Electrostatic and rename it by Phi02In1. In its setting, at Domain Selection field, choose 12. Right-Click Phi02In1, click Electrode Potential and rename it by VM. In its setting, at Boundary Selection, choose boundaries correspoding to the mirror part 93, Title: Asymptotic modeling of a micro-mirror array and software design for automatically derived multiscale models Keywords: Micro-Mirror Array, Periodic Homogenization, Two-Scale Convergence, Boundary Layer Correctors, Numerical Simulation, Symbolic Computation, Rewriting Technique, Description Logic Abstract:

Titre:

 Mod élisation asymptotique d'un r éseau de micro-miroirs et design de logiciel pour les mod èles multiéchelles d ériv és automatiquement Mots-cl és : Matrice de Micro-Miroirs, Homog én éisation P ériodique, Convergence à Deux Échelles, Correcteur de Couche Limite, Simulation Num érique, Calcul Symbolique, Techniques de R é écriture, Logique de Description

 Γ ε,vac 1,top , Γ ε,vac1,lat , while Γ αε,vac bl,1,α is a subboundary of the internal vacuum boundary between cells of the external zone Ω ε 1 . The boundary of the mechanical body Ω αε,mec

	where L 2 1 is a positive number, see
	Figure 2.5. The boundary of the vacuum zone Ω αε,vac bl,1	is denoted as ∂Ω αε,vac bl,1	assembled
	by the union of Γ αε,vac bl,1,int and Γ αε,vac bl,1,ext = Γ αε,vac bl,1,α ∪ Γ αε,vac bl,1,top ∪ Γ αε,vac bl,1,lat , where Γ αε,vac bl,1,int , Γ αε,vac bl,1,top , Γ αε,vac bl,1,lat
	are respectively subboundaries of Γ ε,vac 1,int , bl,1 is defined as ∂Ω αε,mec bl,1		

Table 3 .

 3 1,Table 3.2 and Table 3.3.

	𝐹𝑟𝑎𝑚𝑒	
	𝑆𝑡𝑜𝑝𝑝𝑒𝑟 𝐵𝑒𝑎𝑚	𝑀𝑖𝑐𝑟𝑜𝑚𝑖𝑟𝑟𝑜𝑟
	𝐵𝑖𝑙𝑙𝑎𝑟	
	𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐵𝑒𝑎𝑚	
	𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝐵𝑒𝑎𝑚	
	𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑑	
		𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

Table 3 .

 3 .4 and Table3.5 shows the comparison results of the value range of all lateral boundary and interface correctors respectively with the applied voltages. 4: Comparison of contribution of all lateral boundary correctors with the imposed voltage 80V where the magnitude is computed by the absolute value of the difference between the maximum and the minimum of the electric potential, the contribution is given as a percentage of the magnitude to the imposed voltage.

	Lateral Boundary Layer	Value Range (V)	Magnitude	Contribution (%)
	First		19.6 -4.6		24.2	30.25
	Second		42.5 -0.28		42.78	53.48
	Third		28.1 -4.96		33.06	41.33
	Fourth		9.88 -40.7		50.58	63.23
	Name	Part	Value Range (V)	Magnitude	Applied Voltage(V)	Contribution (%)
	First Interface	φ 1,-in φ 1,+ in		4.27 -8.21 6.75 -6.76		12.48 13.51	80 60	15.6 22.52
	Second Interface	φ 2,-in φ 2,+ in		10 -6.22 9.74 -7.27		16.22 17.01	80 60	20.28 28.35
	Third Interface	φ 3,-in φ 3,+ in		3.94 -4.63 11.9 -6.65		8.57 18.55	80 60	10.71 30.92
	Fourth Interface	φ 4,-in φ 4,+ in		10.5 -10 6.56 -7.21		20.5 13.77	80 60	25.63 22.95
	Table					

Table 4 .

 4 3 summarizes the parameters of the functions of this grammar which are those directly used in the construction of the models.

	nodes	Parameters
	index00	name0,rangeList,quantifier0
	ident00	name0,type0,scale0,level0
	paramReg00	axisList0,sizeList0,periodicityDirection0,
		periodicityScale0,interfaceList0
	paramB00	axisList0,sizeList0
	paramD00	axisList0,sizeList0,periodicityDirection0,
		periodicityScale0,interfaceList0
	boundary00	nameB,axisList0,sizeList0,subBoundaryList0
	domain00	nameD,axisList0,sizeList0,periodicityDirection0,
		periodicityScale0,interfaceList0,subDomainList0,
		boundary0
	variable00	nameV,ind,nameD
	function00	nameF,indList,varList0,type0
	operator00	nameOp,indList,mathExprList0,inputVarList0,
		outputVarList0,operParam0
	equality00	nameE,leftMathExpr0,rightMathExpr0
	equation00	nameEq,equality0,varList0
	bc00	nameBc,equality0,bVarList0,dVarList0
	ic00	nameIc,equality0,bVarList0,dVarList0
	pde00	pdeName,equationList0,bcList0,icList0
	model00	nameModel,pdeList0

Table 4 . 3

 43

: List of parameters used for the concrete syntax trees.

3 .

 3 region is a node of a region that holds either for a boundary node or a domain node. It is noteworthy that a variable is defined on a single region and not on the Cartesian product of several regions.

	Example: Let x = (x 1 , x 2) be a variable defined in Ω 0,micro main	⊂ R 2 and xg be a variable
	defined in Γ 0,micro ext	, they are declared as follows.
	and using the index i.
	x{["int"]} : variable00{["domain"]}("x",i,"int")
	4.2.6/ FUNCTION
	The function node
	node("function",[ident,name,indexList,varList,type])

x{["main"]} : node("variable",[name("x"),i,domain{["main"]}]) xg{["ext"]} : node("variable",[name("xg"),i,boundary{["ext"]})])

where i is the index defined in Section 4.2.1.

Variables are defined separately on boundaries and domains. To reduce the complexity of manipulations, it is assumed that the domains and boundaries are already defined and stored in the association lists domain{[nameD]} and boundary{[nameB]}. The index of the variable is defined using the function index1 introduced in Section 4.2.1.

The function associated to the variable node in the concrete syntax is then defined as follows. variable00{["domain"]}(nameV,ind,nameD) : node("variable", [name(nameV),index1(ind),domain{[nameD]}]) variable00{["boundary"]}(nameV,ind,nameB) : node("variable", [name(nameV),index1(ind),boundary{[nameB]}]) Example: Let us define a variable in the domain Ω 0,micro int represented as domain{["int"]}

 The above laplace equality and the equalities of Section 4.2.10 homDirichlet and nonHomDirichlet are redefined as follows.The function of the concrete syntax corresponding to the node model is defined as follows.

	equation{["lapLace"]} : node("equation",[bc{["homDirichlet"]} : node("bc",[4.2.11/ PDE
	name("lapLace"), name("homDirichlet"),
	equality{["lapLace"]}, node("equality",[The pde node model00(nameModel,pdeList0) : node("model",[
	varList(x{["main"]})]) name("homDirichlet"), name(nameModel), pdeList(pdeList0)])
	leftMathExpr(opTrace(u(x),x,xg)), node("pde",[name,equationList,bcList,icList])
	The function of the concrete syntax corresponding to the node equation is defined as follows. rightMathExpr(0)]), varList(xg{["ext"]})]) is to represent partial differential equations. 4.2.13/ SUBMODEL
	(nameE,leftMathExpr0,rightMathExpr0) : node("equality",[The subModel node
	name(nameE),leftMathExpr(leftMathExpr0),rightMathExpr(rightMathExpr0)]) equation00(nameEq,equality0,varList0) : node("equation",[bc{["nonHomDirichlet"]} : node("bc",[1. name a node that represents the name of the PDE.
	name(nameEq),equalityList(equality0),varList(varList0)]) name("nonHomDirichlet"), 2. equationList(equationList0) a node for a list equationList0 = node("subModel", [ident,regionName,pdeName,macroRegion,macroModel,dilation,
	3. bVarList(bVarList0) and dVarList(dVarList0)nodes for a list bVarList0 = [variable,...] and a list dVarList0 = [variable,...] of variable nodes for the boundary where the boundary condition holds and for the related domains. The reference to domains is necessary for interface conditions where the same bound-name("nonHomDirichlet"), leftMathExpr(opTrace(u(x),x,xg)), rightMathExpr(opTrace(f(x),x,xg))]), bc00(nameBc,equality0,bVarList0,dVarList0) : node("bc",[name(nameBc), equality(equality0), bVarList(bVarList0), dVarList(dVarList0)]) ic00(nameIc,equality0,bVarList0,dVarList0) : node("ic",[name(nameIc), equality(equality0), bVarList(bVarList0), dVarList(dVarList0)]) Example: The above homogeneous and non homogeneous Dirichlet condition can be pde{["laplace"]}: pde00("laplace", equation{["laplace"]},[bc{["homDirichlet"]},bc{["nonHomDirichlet"]}],[""]) 4.2.12/ MODEL The model node Example: 3. varList(varList0) a node for a list varList0 = [variable,...] of variable node("equality",[[equation,...] of equation nodes of the PDE. subScale])
	nodes of the equation. We point out that the indication of a specific domain for ary occurs in two domains. rewritten as follows. node("model",[name,pdeList])
	the equation is due to variable data structure containing the entire structure of the bc{["homDirichlet"]} : bc00("dirichlet",equality{["homDirichlet"]}, domain where the variable is located. represents a mathematical model with possibly several PDEs.

equality{["lapLace"]} : equality00("lapLace",laplaceOp,0) equality{["homDirichlet"]} : equality00("homDirichlet",opTrace(u(x),x,xg),0) equality{["nonHomDirichlet"]} : equality00("nonHomDirichlet", opTrace(u(x),x,xg),opTrace(f(x),x,xg))

4.2.9/ EQUATION

The node equation node("equation",[name,equality,varList]) describes a mathematical equation consisting of an equality and a list of variables on which it is defined.

1. name a node that represents the name of the equation. For PDE it may be usual equation names as lapLace, poisson, wave etc. 2. equality a node that represents the equality of the equation. Example: Let's consider the Laplace equation defined in the domain Ω 0,micro main where the equality of the Laplace equation is assumed to be already defined as well as the variable x{["main"]}, see Section 4.2.5. Example: The laplace equation in Ω 0,micro main can be reconstructed as follows. equation{["laplace"]} : equation00("laplace", equality{["laplace"]},x{["main"]}) 4.2.10/ BC AND IC The bc node node("bc",[name,equality,bVarList,dVarList]) is to describe boundary conditions for PDEs. 1. name a node that represents the name of the boundary condition. Common names are dirichlet, neumann, mixed, etc. 2. equality a node that represents the equality of the boundary condition. Example: The following code defines a homogeneous and a non-homogeneous Dirichlet boundary conditions tr(u)(xg) = 0 and tr(u)(xg) = f (xg) at all xg, provided that the functions from variable to function x → u(x) and xg → f (xg) have already been defined as well as x and xg two variable nodes, xg being a variable defined on a part of the boundary of the domain of x. varList(xg{["int"]})]) The ic node node("ic",[name,equality,bVarList,dVarList]) is to describe initial conditions for PDEs and ODEs. Its definition is similar to this of bc. The function of the concrete syntax corresponding to the nodes bc and ic are defined as follows. xg{["ext"]}, x{["main"]}) bc{["nonHomDirichlet"]} : bc00("nonHomDirichlet",equality{["nonHomDirichlet"]}, xg{["int"]}, x{["main"]}) 3. bcList(bcList0) and icList(icList0) nodes for a list bcList0 = [bc,...] and a list icList0 = [ic,...] of bc and ic nodes.

The function of the concrete syntax corresponding to the node pde is defined as follows. pde00(pdeName,equationList0,bcList0,icList0) : node("pde",[name(pdeName),equationList(equationList0),bcList(bcList0), icList(icList0)])

Example:

The following code defines a PDE made with the equation equation{["laplace"]} defined in Section 4.2.9 and the boundary conditions bc{["homDirichlet"]} and bc{["nonHomDirichlet"]} defined in Section 4.2.10.

1. name a node that represents the name of the model.

2. pdeList(pdeList0

) a node for a list pdeList0 = [pde,...] of pde nodes of the model.

Table 4 .

 4 4: Names of the types of dilation. used in a subModel node for data required by algorithms to transform the model at the previous scale into the microscopic model of the subscale.

	Type	Kind of dilation
	P	Periodicity
	BL	Boundary layer at a boundary
	BLI	Boundary layer at an interface
	BL Edge	Boundary layer at an edge
	BLI Edge Boundary layer at an interfacial edge
	T	Thin structure
	N	No dilation

1. typeList(typeList0) a node for a list of type nodes, typeList0 = [type(type0),...] where each type node characterizes the kind of dilation in a direction of the axisList node. The parameter type0 takes one of the values of Table 4.4. Note that the type node is also used in Section 4.2.3 for regions. 2. axisList a node for scaling directions, see its syntax in Section 4.2.3. 3. sizeList a node for the dilation scalings, see its syntax in Section 4.2.3. 4. dictionary(dictionary0) a node for data specific to each algorithm. Each entry of the list dictionary0=[entry,...] is a node node(key,[description,listNode]) with key a string, description a name node defined as node("description",[string0]

 ident a node defined in Section 4.2.2 for the identification of the subscale.2. region a node defined in Section 4.2.4 for either the physical domain or the microscopic domain of a submodel. In the second case, it is used for the construction of the submodel by an algorithm.

	4.2.14/ SUBSCALE
	The subScale node
	node("subScale",ident,region,model,subModelList)
	describes either the physical problem or a microscopic model (i.e. a new subscale) of
	a subModel node. It is a part of the pair of nodes (subModel,subScale) that allows to
	produce recursive multiscale models.
	name = "name0" scaleReg = "micro" 1. name = "name1" levelReg = n
	scaleReg = "macro"
	levelReg = n
	name = "name2"
	scaleReg = "micro"
	levelReg = n+1

3. model a node defined in Section 4.2.12 either for the physical model or for the microscopic model of a submodel. In the second case, it stores the result of an algorithm construction. 4. subModelList(subModelList0) a node for a list subModelList0 = [subModel,...] of subModel nodes defined in Section 4.2.13.

 It applies the first one of the list, if it fails then it applies the second one. This is repeated until the last strategy of the list. The leftChoice strategy fails if all strategies of the list fail otherwise it succeeds. ,...]) or compose([s1,...]) is a strategy node that applies to a list of strategies. It applies the first one of the list, then the second one and so on until the last strategy of the list. The compose strategy fails if at least one of the strategies of the list fails otherwise it succeeds.

	Example: The strategy
	leftChoice([goto([B,E,H],[],remove),goto([B,E],[],remove)])
	applied to the tree of Figure 4.9 removes H. Actually, its first strategy
	goto([B,E,H],[],remove) succeeds thus the second one is not applied.
	4.3.9/ COMPOSE
	nodeS("compose",[s1

4.3.8/ LEFTCHOICE nodeS("leftChoice",[s1,...]) or leftChoice([s1,...]) is a strategy node that applies to a list of strategies. Example: The strategy compose

Table 4 .

 4 6: Summary of the names of the two air domains, of their boundaries and of the subboundaries.

	Domain Name	"air.int"	"air.ext"
	Boundary Name	"air.int"	"air.ext"
		["air.int.mirror","air.int.electrode", [" air.ext.mirror", "air.ext.electrode",
		"air.int.latBox.1","air.int.latBox.2" "air.ext.latBox.1","air.ext.latBox.2",
	SubBoundary Name	"air.int.latBox.3","air.int.latBox.4", "air.ext.latBox.3", "air.ext.latBox.4", "air.int.top"] " air.ext.top"
		"air.int.latBox.1","air.int.latBox.2",
		"air.int.latBox.3", "air.int.latBox.4"]
	Name	Function	
	"volMInt"	Imposed voltage on the mirrors of the internal zone
	"volEInt" Imposed voltage on the electrodes of the internal zone
	"volMExt"	Imposed voltage on the mirrors of the external zone
	"volEExt"	Imposed voltage on the mirrors of the electrode zone
	"phi.Int"	Unknown potential in the internal zone	
	"phi.Ext"	Unknown potential in the external zone	

Table 4 .

 4 7: Names of voltage sources and of the unknown electrical potential in the two regions of the physical PDE.

	Bc Name	Equality Name Unknown	Given	Bd Name List
	"dirichlet.int.mirror"	"dirichlet"	"phi.Int"	"volMInt"	"air.int.mirror"
	"dirichlet.int.electrode"	"dirichlet"	"phi.Int"	"volEInt"	"air.int.electrode"
	"neumann.int.top"	"neumann"	"phi.Int"	"zeroF"	"air.int.top"
	"continuity.potential"	"continuity"	"phi.Int"	"phi.Ext"	"air.int.latBox"
	"continuity.flux"	"continuityFlux"	"phi.Int"	"phi.Ext"	"air.int.latBox.i"
	"dirichlet.ext.mirror"	"dirichlet"	"phi.Ext" "volMExt"	"air.ext.mirror"
	"dirichlet.ext.electrode"	"dirichlet"	"phi.Ext" "volEExt" "air.ext.electrode"
	"neumann.ext.top"	"neumann"	"phi.Ext"	"zeroF"	"air.ext.top"
	"neumann.ext.latBox"	"neumann"	"phi.Ext"	"zeroF"	"air.ext.latBox.i"

Table 4 .

 4 8: Names of the boundary condition in the physical PDE pdeMira where i represents "1,2,3,4".

	Then, we introduce equations applying two-zones

Table 4 .

 4 Figure 4.16: The dilation node of the external periodic model. 10: The names of the microscopic domains, boundaries and subboundaries for the models periodic.int and periodic.ext.Figure 4.17: The microscopic domains in the subScale node of the periodic.ext and periodic.int models.

	["𝑝ℎ𝑖. 𝑃𝑒𝑟", idSC. Per. Ext]

"air.int.top", "air.int.per"] "air.ext.top", "air.ext.per"]

Table 4 .

 4 [START_REF]Ibsen photonics a/s[END_REF] summarizes the region names of the microscopic domain Ω 1,micro air.ext.lat.1 . The subModel data are in Table4.12 and Table4.13 is for the dictionary data. Figure 4.19: Selection of the domain of a boundary layer model in the physical domain and the related microscopic domain.

	Domain Name	"air.ext.lat.1"
	Boundary Name	"air.ext.lat.1"
		["air.ext.mirror", "air.ext.electrode",
	Subboundary Name	"air.ext.top", "air.ext.lat.periodic"

"air.ext.lat.0", "air.ext.lat.inf"]

Table 4 .

 4 11: The names of the regions of the microscopic domain Ω 1,micro air.ext.lat for the boundary layer model.

	name		"boundaryLayer.1"
		domainNameList	("air.ext.lat.1","air.ext")
	regionName	boundaryNameList	["air.ext.mirror","air.ext.electrode","air.ext.top" , "air.ext.latBox.1", ("air.ext.latBox.2.1","air.ext.latBox.2"),
			("air.ext.latBox.4.1","air.ext.latBox.4"), "air.ext.alpha.lat.1]
		pdeName		"pde.Mira",
		equationNameList		"laplace.ext"
	modelName		["dirichlet.ext.mirror", "dirichlet.ext.electrode",
		bcNameList	"neumann.ext.top","neumann.ext.latBox",
			"neumann.ext.latBox","neumann.ext.latBox", ""]
		typeList		["P","BL","N"]
		axisList		[dr1,dr2,dr3]
		scaleList		["eps", "eps", ""]
	dilation		physBdName	[latBdP, latOriBdP, intBdP]
		dictionary	microBdName unknownFunction	[perBd, latOriBd, latInfBd] [physUnknown, microUnknown]
			givenFunction	[givenFunction[1]]
	subScale	name region		"lateral.1" Ω 1,micro air.ext.lat.1

Table 4 .

 4 12: The submodel nodes of the boundary layer model.

	Key	Description	Data list
	latBdP	"lateral physical boundary"	["air.ext.latBox.1.1","air.ext.latBox.4.1"]
	latOriBdP	"original lateral physical boundary"	"air.ext.latBox.2"
	intBdP	"interior physical boundary"	"air.ext.alpha.lat.1"
	perBd	"periodic boundary"	"air.ext.periodic"
	latOriBd	"original lateral boundary"	"air.ext.lat.0"
	latInfBd	"infinity lateral boundary"	"air.ext.lat.inf"
	physUnknown	"physical unknown"	["phi.Ext", idSC.Mira]
	microUnknown	"microscopic unknown"	["phi.Lat", idSC.BL.1]

 1,micro air.ext.edge.1 are summarized in Table 4.14. The subModel data are in Table 4.15 and Table 4.16 is for the dictionary data.

Table 4 .

 4 14: The names of the regions of the microscopic domain Ω 1,micro air.ext.edge.1 for the edge boundary layer model.

	Domain Name	"air.ext.edge.1"
	Boundary Name	"air.ext.edge.1"
		["air.ext.mirror", "air.ext.electrode",
	Subboundary Name	"air.ext.top", "air.ext.e.lat.1",

"air.ext.e.lat.2", "air.ext.e.inf"]

Table 4 .

 4 15: The submodel of the external edge model.

	Key	Description	Data list
	latOriBdP[1]	"first original lateral physical boundary"	"air.ext.latBox.1.1"
	latOriBdP[2]	"second original lateral physical boundary"	"air.ext.latBox.2.1"
	intBdP	"interior physical boundary"	"air.ext.alpha.e.1"
	latOriBd[1]	"first original lateral boundary"	"air.ext.e.lat.1"
	latOriBd[2]	"second original lateral boundary"	"air.ext.e.lat.2"
	latInfBd	"infinity lateral boundary"	"air.ext.e.inf"
	physUnknown	"physical unknown"	["phi.Ext", IdSC.Mira]
	microUnknown	"microscopic unknown"	["phi.Ext.Edge", IdSC.BL.E.1]
	givenFunction[1]	"first lateral boundary solution"	["phi.Lat", IdSC.BL.1]
	givenFunction[2]	"second lateral boundary solution"	["phi.Lat", IdSC.BL.2]

Table 4 .

 4

[START_REF] Baader | Basic description logics[END_REF]

: Dictionary of the dilation node for the edge boundary layer model.

 1,micro air.interface.1 are summarized in Table 4.17. The subModel data are in Table 4.18 and Table 4.19 is for the dictionary data.

Table 4 .

 4 18: The subModel node of the interface boundary layer model.

	Key	Description	Data list
	latIntBdP[1]	"first interior lateral boundary"	["air.ext.int.interf.2","air.ext.int.interf.4"]
	latIntBdP[2]	"second interior lateral boundary" ["air.int.latBox.2.1","air.int.latBox.4.1"]
	intBdP[1]	"first interior boundary"	"air.int.alpha.p.interf"
	intBdP[2]	"second interior boundary"	"air.ext.alpha.m.interf"
	interfaceP	"physical interface"	"air.int.latBox.1"
	perBd[1]	"first periodic boundary"	"air.interf.1.periodic"
	perBd[2]	"second periodic boundary"	"air.interf.2.periodic"
	latInfBd[1]	"first infinity lateral boundary"	"air.interf.1.pInf"
	latInfBd[2]	"second infinity lateral boundary"	"air.interf.2.mInf"
	interface	"microscopic interface"	"air.interf.interface"
	physUnknown[1]	"internal physical unknown"	["phi.Int", idSC.Mira]
	physUnknown[2]	"external physical unknown"	["phi.Ext", idSC.Mira]
	microUnknown[1]	"first microscopic unknown"	["phi.IntF.L", idSC.BL.I.1]
	microUnknown[2]	"second microscopic unknown"	["phi.IntF.R", idSC.BL.I.1]
	givenFunction[1]	"internal periodic solution"	["phi.Per", idSC.Per.Int]
	givenFunction[2]	"external periodic solution"	["phi.Per", idSC.Per.Ext]

Table 4 .

 4 19: Dictionary of the dilation node for the interface boundary layer model. 4.4.5.2/ STRATEGY FOR AN INTERFACE BOUNDARY LAYER MODEL Algorithm 4 Derivation of an interface boundary layer model from the physical model. 1: Same as Algorithm 2 but for a model "interface.X". == In the following the operations are in the subModel node with name "interface.X" == 2: Same as Algorithm 2.

Table 4 .

 4 [START_REF] Belkhir | Towards an automatic tool for multi-scale model derivation illustrated with a micro-mirror array[END_REF]: Dictionary of the dilation node for the interface edge boundary layer model.4.4.6.2/ STRATEGY FOR AN INTERFACE EDGE BOUNDARY LAYER MODEL

		Description	Data list
	intBdP[1]	"first interior lateral boundary"	"air.int.edge.alpha.1"
	intBdP[2]	"second interior lateral boundary""	"air.int.edge.alpha.2"
	intBdP[3]	"third interior boundary"	"air.int.edge.alpha.3"
	intBdP[4]	"fourth interior boundary"	"air.int.edge.alpha.4"
	interfaceP[1]	"first physical interface"	"air.int.edge.interface.1"
	interfaceP[2]	"second physical interface"	"air.int.edge.interface.2"
	interfaceP[3]	"third physical interface"	["air.int.edge.interface.3", "air.int.latBox.2"]
	interfaceP[4]	"fourth physical interface"	["air.int.edge.interface.4", "air.int.latBox.1"]
	interface[1]	"first microscopic interface"	"air.int.edge.interface.1"
	interface[2]	"second microscopic interface"	"air.int.edge.interface.2"
	interface[3]	"third microscopic interface"	"air.int.edge.interface.3"
	interface[4]	"fourth microscopic interface"	"air.int.edge.interface.4"
	latInfBd[1]	"first infinity lateral boundary"	"air.ext.edge.inf.1"
	latInfBd[2]	"second infinity lateral boundary"	"air.ext.edge.inf.2"
	latInfBd[3]	"third infinity lateral boundary"	"air.ext.edge.inf.3"
	latInfBd[4]	"fourth infinity lateral boundary"	"air.ext.edge.inf.4"
	physUnknown[1]	"internal physical unknown"	["phi.Int", IdSC.Mira]
	physUnknown[2]	"internal physical unknown"	["phi.Int", IdSC.Mira]
	physUnknown[3]	"internal physical unknown"	["phi.Int", IdSC.Mira]
	physUnknown[4]	"external physical unknown"	["phi.Ext", IdSC.Mira]
	microUnknown[1]	"first microscopic unknown"	["phi.IntE.1", IdSC.BL.E.1]
	microUnknown[2]	"second microscopic unknown"	["phi.IntE.2", IdSC.BL.E.1]
	microUnknown[3]	"third microscopic unknown"	["phi.IntE.3", IdSC.BL.E.1]
	microUnknown[4]	" fourth microscopic unknown"	["phi.IntE.4", IdSC.BL.E.1]
	givenFunction[1]	"internal periodic solution"	["phi.Per.Int", IdSC.Per.Int]
	givenFunction[2]	"external periodic solution"	["phi.Per.Ext", IdSC.Per.Ext]
	givenFunction[3]	"left first interface solution"	["phi.IntF.L", IdSC.BL.I.1]
	givenFunction[4]	"right first interface solution"	["phi.IntF.R", IdSC.BL.I.1]
	givenFunction[5]	"left second interface solution"	["phi.IntF.L", IdSC.BL.I.2]
	givenFunction[6]	"right second interface solution"	["phi.IntF.R", IdSC.BL.I.2]

 ∈ ∆ I | ∀d 2 ∈ ∆ I .(r I (d 1 , d 2) → d 2 ∈ c I)} AL limited existential quantifier ∃r. {d 1 ∈ ∆ I | ∃d 2 ∈ ∆ I .(r I (d 1 , d 2) ∧ d 2 ∈ I)}

	Letter Constructor	Syntax	Semantics
	AL	concept name	c	c I
	AL	role name	r	r I
	AL	top		∆ I
	AL	conjunction	c 1 c 2	c I 1 ∩ c I 2
	AL {d 1 C universal quantifier ∀r.c negation of concepts that are
		not necessarily primitive		

Table 5 .

 5 d 1 , d 2), d 2 ∈ c I }| ≤ n} 1: Constructors of Description Logic.The description logics that exist are combinations of the different elements in the table above. For example, if we add the complete negation C to the logic AL, we obtain the logic ALC. Moreover, S is an abbreviation for ALC with transitive roles and (D) means use of datatype properties, data values or data types.

	O	one of	{a 1 , . . . , a n }	{d ∈ ∆ I | d = i I for an i}
	B	role filler	∃r.{i}	{d ∈ ∆ I | r I (d, i I)}
	R I	conjunction of roles inverse roles	r 1 r 2 r -1	r I 1 ∩ r I 2 {(d 1 , d 2) ∈ ∆ I × ∆ I | r I (d 2 , d 1)}
	H	hierarchy of roles	r 1 r 2	r I 1 ⊆ r I 2

Table 5 .

 5 1 , iS 2) ∈ hasDirectS ubT ree(replace, name) withiS 1 = [s, ε] ∈ replace and iS 2 = [s, 1] ∈ name.Therefore role hasDirectS ubT ree(p 1 , p 2) is extended to the concepts p 1 of strategy nodes that have parameters of type expression.

	2 summarizes the conversion operations that are made from the rewriting system
	to the DL system.
	5.5/ THE CONCURRENT REWRITING AND DESCRIPTION LOGIC
	SYSTEM
	While the modes of conversion between the notions of rewriting and description logic have
	been established, in this section we describe the operations necessary for the functioning
	of an RDL system (t

According to these principles, any substrategy s can be represented by a strategy node concept s, and conversely, any concept s of strategy nodes can be represented by a substrategy s. The related substrategies and concepts are represented by the membership

(s, s) ∈ Φ s .

The representation of the success of a strategy node applied to an expression node is represented by the role hasS uccess, thus (iS , i) ∈ hasS uccess represents the success of the substrategy node at the address iS on the expression node with address i. If a same (i.e. same address) substrategy is repeated on a same expression subtree (same position in the same tree), at each repetition a new individual associated to the subtree is created with the same address excepted its instance number which is incremented by one. It results that a substrategy individual has at most one image through the role hasS uccess.

5.4.4/ SUMMARY OF THE CONVERSION BETWEEN REWRITING AND DESCRIP-

TION LOGIC d , S, Σ). In the context of multiscale model construction, t d is an expression including all the data regarding the system to analyze i.e. its PDE and the related assumptions, S is a strategy to be applied to t d that must return the expected multiscale models in S[t d], and Σ is the ontology gathering the knowledge, i.e. the theorems

Table 5 .

 5 2: Summary of Rewriting System conversion into Description Logic in terms of individuals, concepts and roles. Rewriting expressions are in column 1 and the other columns summarize the related objects. Objects already defined in a previous line are not recalled. Identifiers of trees, patterns, strategies and individual start with t, p, s and i respectively. A data used in a tree or pattern leaf is noted as d. A node name starts with n. For shortness, in individual addresses the instance number is omitted.

 5.5.2/ STRATEGY O OF ONTOLOGY CONSTRUCTIONAny part of an ontology is declared by the strategy O writing commands in a file (OWL2 commands for example) used to generate an ontology Σ on which a DL reasonner operates. For instance the concepts name and equation are declared with the strategy The construction of the ontology fragments Σ t and Σ d corresponding to trees of expressions or of strategies is done by navigation and by generation of the individuals associated with the encountered nodes as well as their membership to node concepts and to the roles hasDirectS ubT ree, hasData and hasDirectS ubT reeS . For instance the declaration

	O(["Declaration(Class(: name))", "Declaration(Class(: equation))"]). The fragment Σ 0 is built
	with O only.

of the substrategy replace(name("laplace")) in an ontology is made, assuming that the concepts replace and name have been declared, by O(["ClassAssertion(: replace : iS)", "ClassAssertion(: name : i)", "ClassAssertion(: isDirectS ubT ree (replace, name) : iS : i)"]) meaning that iS ∈ replace, i ∈ name and (iS , i) ∈ isDirectS ubT ree (replace, name), where iS and i are the addresses of the nodes replace and name.

Table 5 .

 5 4 gives the correspondences between the operations done in the algorithms, the strategy names and the properties.

	Operation	Strategy	Property
	Duplicate PDE	duplicatePDE	-
	Rename unknowns	renameUnknown	-
	Remove sources in Dirichlet bc removeDirichletBcSource correctionOtherSubModel
	Replace bc rhs at the origin	replaceBcRhsOrigin	boundaryLayer
	Rename boundaries (origin)	renameBoundaryOrigin	boundaryLayer
	Remove some bc	removeBc	periodicity
	Replace domains	replaceDomain	-
	Increment boundary scale	incrementBoundaryScale	-
	Insert bc at infinity	insertBcInfinity	boundaryLayer
	Insert periodicity bc	insertBcPeriodicity	periodicity
	Rename PDE	renamePDE	-

Table 5 .

 5

 The following concepts, data and roles are defined thanks to the above roles and are specific to the data structure of Chapter 4. Most of them are parametrized, as such they are defined in the RDL system but not directly in the ontology side since the latter does not directly support parametrization of concepts or roles. (idName) : conceptInS ubModel(idName, equationNameList) 3 bcName(idName) is the concept of bc names of a node bcNameList in a subModel with Region(boundaryName) is the concept bc posed on a boundary with name : ∃isO f HasDirectData([region, subS cale, subModel, ident, name]) .idName 3 domainName(idName) is the concept of domain names (micro and physical) in the node domainNameList of a node subModel with name idName.

	boundaryName.		
	name idName. bcO f Region(boundaryName)	:	∃hasDirectS ubT reeData(bc, variable, region, name)
	bcName(idName) : conceptInS ubModel(idName, bcNameList) .boundaryName
	3 equationPhysic is the concept of the equations of the physical PDE. 3 microDomain(idName) is the concept of region micro of a concept subModel with name
	idName.		
	equationPhysic : ∃isO f HasData([equation, subModel, ident, scale]).0
	microDomain(idName)		
	3 bcPhysic is the concept of the bcs of the physical PDE.
	bcPhysic : ∃isO f HasData([bc, subModel, ident, scale).0
	3 equationWithNameIn(eqName) is the concept of equations whose names are in a con-
	cept eqName.		
	3 subModelWithName(idName) is the concept of subModel with name idName.
	subModelWithName(idName) : ∃hasS ubT reeData([subModel, ident, name]).idName equationPhysicWithNameInS ubModelList(idName) : equationPhysic∩
	3 conceptInS ubModel(idName, nodeName) is the concept associated with a node nodeName ∃hasDirectS ubT ree([equation, name]).conceptInS ubModel(idName, equationNameList)
	in a subModel which name is idName. 3 bcPhysicWithNameInS ubModelList(idName) is the concept of the bcs of the physical

5.6.2.1/ CONCEPT, DATA AND ROLE FORMULAS

For the sake of brevity, it is convenient to start by introducing few other general roles isO f Has, isO f HasData and isO f HasDirectData derived from hasS ubT ree, hasDirectS ubT ree and their inverse. isO f Has([p 1 , ..., p k , ..., p n]) is the role defined for concepts p 1 , ..., p n of the data tree as the (assumed) unique composition isS ubT reeO f ([p 1 , ..., p k]) • hasS ubT ree([p k , ..., p n]) where the concept p k is the only one that allows this composition without leaving a subModel. If such concept p k does not exist or is not unique, then an error is triggered. isO f HasData([p 1 , ..., p k , ..., p n]) is the role defined for concepts p 1 , ..., p n of the data tree as the composition isO f Has([p 1 , ..., p k , ..., p n]) • hasData. isO f HasDirectData([p 1 , ..., p k , ..., p n]) is as isO f HasData but with direct relations between the corresponding nodes of the tree. conceptInS ubModel(idName, nodeName) : ∃isO f Has([nodeName, subModel, ident, name]).idName 3 equationName(idName) is the concept of equation names of a node equationNameList in a subModel with name idName. equationNameequationWithNameIn(eqName) : ∃hasDirectS ubT ree([equation, name]).eqName 3 bcWithNameIn(bcName) is the concept of bcs whose names are in a concept bcName bcWithNameIn(bcName) : ∃hasDirectS ubT ree([name]).bcName 3 variableInEquation(idName) is the concept of variables in equations of the microscale node model of a subModel which name is idName. variableInEquation(idName) : ∃isDirectO f HasData([variable, equation, subModel, ident]) .idName 3 equationPhysicWithName(eqName) is the concept of equations of the physical PDE whose names are in a concept eqName. equationPhysicWithName(eqName) : equationPhysic ∩ equationWithNameIn(eqName) 3 bcPhysicWithName(bcName) is the concept of bcs of the physical PDE whose names are in a concept bcName bcPhysicWithName(bcName) : bcPhysic ∩ bcWithNameIn(bcName) 3 equationPhysicWithNameInS ubModelList(idName) is the concept of the equations of the physical problem whose names are in the node list equationNameList of a subModel with name idName. problem whose names are in the node list bcNameList of a subModel with name idName. bcPhysicWithNameInS ubModelList(idName) : bcPhysic∩ ∃hasDirectS ubT ree([bc, name]).conceptInS ubModel(idName, bcNameList) 3 bcO f

 3.2. First, its syntax is simplified, we use

goto(π, s) instead of goto(p, π , s) where π is the list gathering p and π . Moreover, here π is not only a list of patterns but can involve a disjunction,

goto(π 1 | π 2 , a, s) : goto (π 1 , a, s) | goto(π 2 , a, s)

for two lists π 1 , π 2 of patterns. This construction is used recursively. We often use the most general pattern of a node nodeNameVar : node("nodeName", [n1 , ...])

where nodeName is the name of any atomic node and n1 , ... are for any different rewriting variables. For instance the node nameVar : node("name", name) functionVar : node("function", [ident , name , indexList , varList, type]).

∪ Γ

1,vac 1 ∪ Γ 1,vac per . Obviously, if x ε ∈ Ω ε c , c ∈ I mul then (x εx ε,c)/ε ∈ Ω 1 ,andΩ ε = ∪ c ε(z c + (1/2, 1/2, 1/2) + Ω 1)wherez c = (z c 1 , z c 2 , 0), z c 1 , z c 2 ∈ Z. Γ 𝑝𝑒𝑟 1,𝑣𝑎𝑐 Γ 𝑝𝑒𝑟 1,𝑚𝑒𝑐 Γ 𝑝𝑒𝑟 1,𝑣𝑎𝑐 Γ 𝑝𝑒𝑟 1,𝑚𝑒𝑐 Γ 𝑝𝑒𝑟 1,𝑚𝑒𝑐

𝜀 𝑥 2 𝜀 Ω 𝑏𝑙,1 𝛼𝜀 1 Γ 𝑏𝑙,1,𝛼 𝛼𝜀,𝑣𝑎𝑐 Γ 𝑏𝑙,1,𝛼 𝛼𝜀,𝑚𝑒𝑐 Γ 𝑏𝑙,1,𝑡𝑜𝑝 𝛼𝜀,𝑣𝑎𝑐 Γ 𝑏𝑙,1,𝑙𝑎𝑡 𝛼𝜀,𝑣𝑎𝑐 Γ 𝑏𝑙,1,𝑙𝑎𝑡 𝛼𝜀,𝑣𝑎𝑐 𝐿 1 2 𝐿 1 1

𝑥 3 1 -1/2 1/2 0 1 Ω 𝑏𝑙,1 1 Γ 𝑏𝑙,1,𝑂𝑟 1,𝑚𝑒𝑐 Γ 𝑏𝑙,1,0 1,𝑣𝑎𝑐 Γ 𝑏𝑙,1,𝑝𝑒𝑟 1,𝑣𝑎𝑐 Γ 𝑏𝑙,1,𝑝𝑒𝑟 1,𝑣𝑎𝑐 Γ 𝑏𝑙,1,𝛼 1,𝑚𝑒𝑐 Γ 𝑏𝑙,1,𝑝𝑒𝑟 1,𝑚𝑒𝑐 Γ 𝑏𝑙,1,𝑝𝑒𝑟 1,𝑚𝑒𝑐 Γ 𝑏𝑙,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐 Γ 𝑏𝑙,1,𝛼 1,𝑣𝑎𝑐

Ω 𝑒𝑥𝑒,1 𝛼𝜀 Ω 2 𝜀 Ω 1 𝜀 1 Γ 𝑒𝑥𝑒,1,𝛼 𝛼𝜀,𝑣𝑎𝑐 Γ 𝑒𝑥𝑒,1,𝛼 𝛼𝜀,𝑚𝑒𝑐 Γ 𝑒𝑥𝑒,1,𝑡𝑜𝑝 𝛼𝜀,𝑣𝑎𝑐 Γ 𝑒𝑥𝑒,1,𝑙𝑎𝑡 𝛼𝜀,𝑣𝑎𝑐 Γ 𝑒𝑥𝑒,1,𝑙𝑎𝑡 𝛼𝜀,𝑣𝑎𝑐 Γ 𝑒𝑥𝑒,1,𝛼 𝛼𝜀,𝑚𝑒𝑐Figure 2.7: The first exterior edge physical domain Ω αε exe,1 including two subdomains Ω αε,vac exe,1and Ω αε,mec exe,1 with α = 1. The zoom illustrates their boundaries.Γ 1,vac exe,1,bl1 ∪Γ 1,vac exe,1,bl2 ∪Γ 1,vac exe,1,α and the mechanical boundary∂Ω 1,mec exe,1 = Γ 1,mec exe,1,0 ∪Γ 1,mec exe,1,1 ∪Γ 1,mec exe,1,bl1 ∪ Γ 1,mec exe,1,bl2 ∪ Γ 1,mec exe,1,α .𝑥 1 1 𝑥 2 1 𝑥 3 1 1 0 1 Ω 𝑒𝑥𝑒,1 1 Γ 𝑒𝑥𝑒,1,𝑏𝑙1 1,𝑚𝑒𝑐 Γ 𝑒𝑥𝑒,1,𝑏𝑙1 1,𝑣𝑎𝑐 Γ 𝑒𝑥𝑒,1,𝛼 1,𝑣𝑎𝑐 Γ 𝑒𝑥𝑒,1,𝛼 1,𝑚𝑒𝑐 Γ 𝑒𝑥𝑒,1,𝑏𝑙2 1,𝑚𝑒𝑐 Γ 𝑒𝑥𝑒,1,𝑏𝑙2 1,𝑣𝑎𝑐 Γ 𝑒𝑥𝑒,1,𝛼 1,𝑚𝑒𝑐 Γ 𝑒𝑥𝑒,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐 Figure 2.8: The first exterior edge physical domain Ω αε exe,1 with two subdomains Ω αε,vac exe,1 and Ω αε,mec exe,1 .

𝑥 1 1 𝑥 3 1 Γ 𝑖𝑛,1,𝑖𝑛𝑡𝑒𝑟𝑓 1,𝑣𝑎𝑐 Γ 𝑖𝑛,1,𝑖𝑛𝑡𝑒𝑟𝑓 1,𝑚𝑒𝑐 Γ 𝑖𝑛,1,𝑝𝑒𝑟 1,𝑣𝑎𝑐-Γ 𝑖𝑛,1,𝑝𝑒𝑟 1,𝑣𝑎𝑐-Γ 𝑖𝑛,1,𝛼 1,𝑣𝑎𝑐+ Γ 𝑖𝑛,1,𝛼 1,𝑣𝑎𝑐-Γ 𝑖𝑛,1,𝛼 1,𝑚𝑒𝑐-Γ 𝑖𝑛,1,𝛼 1,𝑚𝑒𝑐+ Γ 𝑖𝑛,1,𝑝𝑒𝑟 1,𝑚𝑒𝑐+ Γ 𝑖𝑛,1,𝑝𝑒𝑟 1,𝑣𝑎𝑐+ Γ 𝑖𝑛,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐-Γ 𝑖𝑛,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐+ -1 𝛀 𝐢𝐧,𝟏 𝟏+ 𝛀 𝐢𝐧,𝟏 𝟏-

𝑥

1 𝑥

1 Γ 𝑖𝑛𝑒,1,interf,4 1,𝑣𝑎𝑐 Γ 𝑖𝑛𝑒,1,interf,3 1,𝑣𝑎𝑐 Γ 𝑖𝑛𝑒,1,interf,4 1,𝑚𝑒𝑐 Γ 𝑖𝑛𝑒1,interf,3 1,𝑚𝑒𝑐 𝛀 𝐢𝐧𝐞,𝟏 𝟏 𝛀 𝐢𝐧𝐞,𝟏 𝟏,𝟏 Γ 𝑖𝑛𝑒,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐,3 Γ 𝑖𝑛𝑒,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐,1 Γ 𝑖𝑛𝑒,1,α 1,𝑣𝑎𝑐,1 Γ 𝑖𝑛𝑒,1,α 1,𝑣𝑎𝑐,4 Γ 𝑖𝑛𝑒,1,α 1,𝑚𝑒𝑐,1 Γ 𝑖𝑛𝑒,1,α 1,𝑚𝑒𝑐,2 Γ 𝑖𝑛𝑒,1,α 1,𝑚𝑒𝑐,4 Γ 𝑖𝑛𝑒,1,α 1,𝑚𝑒𝑐,3 Γ 𝑖𝑛𝑒,1,α 1,𝑚𝑒𝑐,3 Γ 𝑖𝑛𝑒,1,α 1,𝑚𝑒𝑐,4 𝛀 𝐢𝐧𝐞,𝟏 𝟏,𝟐 𝛀 𝐢𝐧𝐞,𝟏 𝟏,𝟑 𝛀 𝐢𝐧𝐞,𝟏 𝟏,𝟒 Γ 𝑖𝑛𝑒,1,interf,1 1,𝑣𝑎𝑐 Γ 𝑖𝑛𝑒,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐,4 Γ 𝑖𝑛𝑒,1,𝑡𝑜𝑝 1,𝑣𝑎𝑐,2 Γ 𝑖𝑛𝑒,1,α 1,𝑣𝑎𝑐,4 Γ 𝑖𝑛𝑒,1,interf,2 1,𝑣𝑎𝑐 Γ 𝑖𝑛𝑒,1,interf,1 1,𝑚𝑒𝑐 Γ 𝑖𝑛𝑒1,interf,2 1,𝑚𝑒𝑐 Γ 𝑖𝑛𝑒,1,α 1,𝑣𝑎𝑐,2 Γ 𝑖𝑛𝑒,1,α 1,𝑚𝑒𝑐,2

ε

Ω ε,mec f ε i v ε i dx ε + 1 ε Γ ε,mec 1 g ε i v ε i ds(x ε),(2.7.2)

k=1 Ω 1,mec,k ine,1 f 1,k ine,i w i dx 1 + 4 k=1 Γ 1,mec,k ine,1,1 g 1,kine,i w i ds(x 1).The rest of the proof runs similarly as the proofs of previous parts.

0,𝑚𝑖𝑐𝑟𝑜 Ω 𝑎𝑖𝑟.𝑖𝑛𝑡 0,𝑚𝑖𝑐𝑟𝑜 𝜀 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.3 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.3 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 0,𝑚𝑖𝑐𝑟𝑜

𝑥 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1 0,𝑚𝑖𝑐𝑟𝑜 𝑦 𝑑𝑟1 𝑑𝑟2 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡.0 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡.𝑝𝑒𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡.𝑖𝑛𝑓 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Ω air.ext.lat.1 1,micro Ω air.ext.lat.1 0,micro Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑎𝑙𝑝ℎ𝑎.𝑙𝑎𝑡.1 0,𝑚𝑖𝑐𝑟𝑜

Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1.1 0,𝑚𝑖𝑐𝑟𝑜 𝑦 𝑑𝑟1 𝑑𝑟2 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒.𝑙𝑎𝑡.2 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒.𝑖𝑛𝑓 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Ω air.ext.edge.1 0,micro Ω air.ext.edge.1 1,micro Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒.𝑙𝑎𝑡.1 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑎𝑙𝑝ℎ𝑎.𝑒.1 0,𝑚𝑖𝑐𝑟𝑜

1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.1.𝑝𝐼𝑛𝑓 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Ω air.interf.1.ext 0,micro Ω air.interface.1.1 1,micro Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.2.𝑚𝐼𝑛𝑓 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.2.𝑝𝑒𝑟 1,𝑚𝑖𝑐𝑟𝑜 Ω air.interface.1.2 1,micro Γ 𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑖𝑛𝑡.𝑖𝑛𝑡𝑒𝑟𝑓.2 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑎𝑙𝑝ℎ𝑎.𝑝.𝑖𝑛𝑡𝑒𝑟𝑓 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑖𝑛𝑡.𝑖𝑛𝑡𝑒𝑟𝑓.4 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑎𝑙𝑝ℎ𝑎.𝑚.𝑖𝑛𝑡𝑒𝑟𝑓 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1 0,𝑚𝑖𝑐𝑟𝑜 Ω air.interf.1.int 0,micro

1,𝑚𝑖𝑐𝑟𝑜 Ω air.int.edge.1 0,micro Ω air.int.edge.1 1,micro Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.4 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.3 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.2 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.1 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.2 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.4 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.3 0,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑓.2 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑓.3 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑓.4 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.2 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.1 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.4 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.3 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 1,𝑚𝑖𝑐𝑟𝑜 Γ 𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟 1,𝑚𝑖𝑐𝑟𝑜 Ω air.int.edge.1.1 1,micro Ω air.int.edge.1.2 1,micro Ω air.int.edge.1.3 1,micro Ω air.int.edge.1.4 1,microFigure 4.22: Selection of the domain of an interface edge boundary layer model in the physical domain and the related microscopic domain.

ACKNOWLEDGEMENTS

Accomplishing this PhD dissertation has been an inspiring experience for me which I will never forget. I would like to acknowledge all the people who supported and encouraged me during the thesis preparation time.

CHAPTER 4. DATA STRUCTURE AND REWRITING STRATEGIES differential equation) and model. Table 4.1 summarizes them together with their subnodes. Note that the empty node, a node with name"emptyNode" and with an empty list, is noted as Ø and replaces any subnode that is not necessary. expression that corresponds to a node without subnodes but whose children are only data. It returns the list of all the data (strings) of the children of the nodes corresponding to individuals in the concept. For instance QData(name) returns the list of all the names of all the nodes associated to individuals in the concept name. Similarly, QData(∃hasDirectS ubT ree(equation, name)) returns the list of all the names of equations.

5.5.4/ APPLICATION OF A STRATEGY DEFINED IN AN ONTOLOGY

The application of the strategy represented by an individual iS to the term represented by

of the strategy Φ s (iS) to the term Φ t (i). Its success or failure are declared by the membership declarations (iS , i) ∈ hasS uccess or (iS , i) ∈ hasFailure.

5.6/ RDL REPRESENTATION OF A FAMILY OF MODELS OF MMAS

The model building algorithms presented in Chapter 4 are expressed in the RDL formalism, except for the internal edge model. It is noteworthy that the ontology and the strategies described in this section are an illustration of the RDL system but do not presage any final form. A serious study of the organization of families of models has yet to be carried out.

5.6.1/ ROLES BETWEEN SUBMODELS, MODEL PROPERTIES AND STRATEGIES

In the approach of Chapter 4, each submodel corresponds to an algorithm made of a composition of strategies. In order to factorize the use of strategies, we introduce an intermediate layer, that of properties. Thus, to each submodel correspond properties , insert(Q(equationPhysicWithNameInS ubModelList(idName))))

; goto([pathSubModelToModel(idName), bcListVar]

, insert(Q(bcPhysicWithNameInS ubModelList(idName))))

3 renameUnknown(idName) renames the unknown function whose name is in the physUnknown node by the name of the microUnknown node (a single name is assumed) of the subModel which name is idName.

3.

In the table, enter as Table 6.1.

Name Expression Description VM1

40V an applied voltage in the mirror part of external zone VE1 -40V an applied voltage in the electrode part of external zone VM2 30V an applied voltage in the mirror part of internal zone VE -30V an applied voltage in the mirror part of internal zone Table 6.1: Imposed Voltages.