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1

INTRODUCTION

1.1/ MICRO-MIRROR ARRAY

Let us start with a quick overview of the techniques used in micro-mirror arrays before

presenting the one that is the subject of this thesis.

1.1.1/ A SHORT OVERVIEW OF MICRO-MIRROR ARRAY TECHNOLOGIES

Micro-Mirror Arrays, abbreviated as MMAs, are devices related to Micro-Optical-

Electromechanical Systems (MOEMS) family with mirrors in their components. The size

of the mirror is very small, millimetre-sized, micro-sized, or smaller, with the principal goal

being steering or monitoring the light amplitude, the light phase, or both. According to the

statistics in 2018 of authors in [87], there are about 277 MMA designs from 49 companies

and 23 academic research groups. They are widely used in various fields such as optics,

telecommunications, astronomy, biology, etc.

Figure 1.1: The digital micro-mirror device (DMD) was invented by solid state physicist
and Texas Instruments Fellow Emeritus Dr. Larry Hornbeck in 1987. This device is the
heart of projection technology which uses millions of mirrors to generate a visual screen.
The figure is taken from [11].

1



2 CHAPTER 1. INTRODUCTION

We now take a brief glimpse at the classification of MMAs, the comprehensive reviews can

be found in [59, 81, 87]. MMAs can be categorized according to the type of their actuators,

including into four groups: electrostatic, electrothermal, piezoeletric, and magnetic.

The fundamental principle of the electrostatic actuator’s operation is that the mechanical

displacement is caused by the electrostatic forces generated by two conductors when

voltages are applied. Based on the configuration and the management of the movement

of actuators on activation, they are classified in three groups, see Figure 1.2. The first

group is with surface actuators, whose conductors are two parallel planes: one flexible

plate and one fixed plate Figure 1.2a. The other groups are with comb drivers, as the

conductor configuration is similar to the comb shape. The direction of motion of these

actuators can be either same as or perpendicular to the length of comb figures. We

denote the former as the in-plane comb drivers, as in Figure 1.2b, and the latter as the

out-plane comb drivers, as in Figure 1.2c.

(a) Surface Actuator [92].
(b) In-Plane Comb Actuator [81].

(c) Out-Plane Comb Actuator [45].

Figure 1.2: The electrostatic actuator group with three subgroups: (a) the surface actua-
tors, (b) and (c) the in-plane and out-plane comb actuators.
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Electrothermal actuation is through assembly of components with large differences of

thermal expansion coefficients. As a result, when a current is applied to them, they emit

heat, leading to the generation of mechanical movements, see Figure 1.3a. Piezoelectric

actuation is with piezoelectric materials which can be deformed upon applying a voltage.

It is typical to combine several layers of materials to achieve the desired sizable mechan-

ical displacement, see an example in Figure 1.3b. Magnetic actuation uses the Lorentz

force generated by coils when an electric current is applied, see an example in Figure

1.3c.

(a) An electrothermal actuator [60].

(b) A piezoelectric actuator [97].

(c) A magnetic actuator [34].

Figure 1.3: Examples of the three other groups of actuators.

Another aspect of the classification is based on the kind of mirror surface. Two groups

are distinguished, the discrete and the continuous one. In the former, the mirrors are

disconnected from that of the adjacent cells, so their movements are independent. In the
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latter, the mirrors in each cell are continuously linked to each other. In other words, there

is only one mirror in the structure of the devices in this group, see Figure 1.4.

The number of mirrored elements in the array depends on the function of the device, can

vary from one cell to thousands and can be placed in a one or two dimensional array.

These arrays can be operated following the command algorithms: the direct addressing,

line addressing, and the line-column addressing scheme, see more in [28, 30, 31].

(a) A discrete surface mirror [92].

(b) A continuous surface mirror [46].

Figure 1.4: Examples of discrete and continuous mirrors.

We next introduce MIRA as the MMA that the thesis considers.

1.1.2/ MIRA

For many years the Laboratoire d’Astrophysique de Marseille (LAM) has developed first in

a collaboration with EPFL (Switzerland) and recently together with CSEM (Switzerland)

an array of electrostatically actuated tilting mono-crystalline silicon micro-mirrors called

MIRA, see its top view in Figure 1.5. It has been designed with stringent requirements

such as a mirror size of 200×100 µm2, a title angle of more than 20o, a filling factor of more

than 80%, a contrast ratio of more than 1000, a wavelength bandwidth from visible to IR,

an actuation voltage lower than 100V and an operating temperature ranging from room

temperature to less than 100K. For more detail see [95].

This project aims to produce a new generation of MMAs devices applied in Multi-Object

Spectroscopy (MOS), whose goal is to study the spectral characterization of faint as-

tronomical objects like stars or galaxies. The MIRA is placed on the telescope’s focal

plane playing a role as a reflective field selector, which allows choosing the astronomical

objects, see Figure 1.6.

The MIRA array is a member of the electrostatic actuation group, more precisely belongs

in the surface actuation group. When an electrical potential is applied to conductors, an

electrostatic force is generated and makes the mirror move towards the electrode placed

under the mirror. The tilt angle is achieved by the support of the stopper beam located
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Figure 1.5: Top view of the MIRA array with 100×200 cells. The zoom represents a single
cell.

Spectrometer

CCD
Camera

Measured 
Spectra

Field of 
view
(3’x3’)

Micro-Mirror 
Array in the 
telescope 

focal plane

Ground 
or

Space 
telescope

Figure 1.6: Application of the MIRA array in the the Multi-Object Spectroscopy. The figure
taken from [93].

under the frame. When the voltage is switched off, the restoring force caused by two

flexible beams installed under the mirror pulls it back to its resting position.
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1.2/ HOMOGENIZATION METHODS

The asymptotic methods are the second main theme of the thesis. More precisely, the

models studied belong to the class of periodic homogenization. Thus, we start with the

most emblematic example of periodic homogenization, which allows us to situate the

contributions of this work. Finally, we take advantage of the presentation of micromirror

array technologies to suggest a number of possible applications of asymptotic methods

to this field.

1.2.1/ EXAMPLE OF THE PERIODIC HOMOGENIZATION

Let us begin by considering the well-known example introduced in [5, 39, 42, 26] as the

static heat conduction in a composite material located in a domain Ω illustrated in Figure

1.7 with the homogeneous Dirichlet boundary condition, −div(γ∇u) = f in Ω

u = 0 on ∂Ω.
(1.2.1)

Here u represents the temperature in Ω, f is a given heat source, and γ a thermal conduc-

tivity. For simplicity, we consider the material to be isotropic then γ is scalar and assume

that it takes distinct constant values γ = γ1 in Ω1 and γ = γ2 in Ω2.

𝐿

𝑙

Ω

Ω2Ω1

γ1
𝛾2

Figure 1.7: Illustration of a composite material. It occupies the domain Ω =]0, L[2. The
structure in Ω has two components: a matrix in Ω1 with conductivity γ1 and inclusions in
Ω2 with conductivity γ2. We assume that the inclusions have a size in the same order
than l and is periodically distributed with period l in each direction.

It can be observed that when the number of inclusions increases, their size becomes

significantly small compared to the whole domain size. The classical parameter ε of the

asymptotic methods is originated from here with ε = l/L. Periodic homogenization con-
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sists in searching for the homogeneous material whose behavior would approach that of

the composite material. In the case of thermics, it is necessary to identify a conductiv-

ity matrix of a homogeneous material that leads to a good approximation of the global

temperature field while, in a first approach, ignoring the effects of local oscillations due to

heterogeneities.

More generally, let us consider a heterogeneous anisotropic composite material in Ω

with periodic inclusions with period ε as depicted in Figure 1.8a. The parameter ε is

supposed to be very small compared to the whole domain size. The conductivity is thus

a conductivity tensor γε which has the form γε(x) = γ(x/ε) where γ(y) = {γi j(y)}i, j∈{1,2} is

defined in the unit cell Y shown in Figure 1.8b. It is assumed that each entry γi j ∈ L∞(R2),

that the tensor is symetrical i.e. γi j = γ ji for all i, j ∈ {1, 2} , and that γ is Y-periodic. In

addition, γ satisfies the ellipticity condition,

α|ξ|2 ≤
∑

i, j∈{1,2}

γi jξiξ j ≤ β|ξ|
2, for all ξ = (ξ1, ξ2) ∈ R2,

for some 0 < α ≤ β.

Taking into account of the dependence of the temperature on ε, equation 1.2.1 is rewritten

with the rapidly oscillating coefficient γε as −div(γε∇uε) = f in Ω

uε = 0 on ∂Ω.
(1.2.2)

For all f ∈ L2(Ω), equation 1.2.2 has a unique solution uε in the Sobolev space H1
0(Ω)

𝛾2
𝜀

𝜀

Ω

𝛾𝜀

𝜀

(a)

𝑌

𝛾

1

1

𝑌2

𝑌1

(b)

Figure 1.8: Description of (a) the composite material domain Ω and of (b) the unit cell Y.
Y is the union of a matrix Y1 and an inclusion Y2 with conductivity tensor γ(y). Obviously,
Ω can be covered by cells of the form εY = εY1 ∪ εY2.
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satisfying the a priori estimate

∣∣∣∣∣∣uε∣∣∣∣∣∣H1
0 (Ω) ≤ C || f ||L2(Ω) . (1.2.3)

The homogenization method consists in observing that the solution uε depends on two

scales: a macroscopic scale and a microscopic one. The former is defined by a slow

variable x representing the position of a point in Ω. For the latter we use the variable

y := x/ε called the fast variable identifying the position of a point in Y. Evidently, the

variable y locates whether the position is in Y1 or in Y2, then it identifies the value of the

thermal conductivity. Roughly speaking, the variable x is attached to the global behavior

of the temperature, while the variable y concerns local effects i.e. microscopic oscillations.

From the point of view of mathematical theory, the passage to the limit when ε goes to

0 leads to many questions as to whether the solution uε converges to some limit, what

kind of convergence it is, whether this limit is a good approximation to uε, etc. The goal of

homogenization theory is to answer such questions.

Under the estimate 1.2.3, an homogenization theorem proves that uε converges to a limit

u0 in H1(Ω) when ε tends to 0, u0 being a function of x independent of y, i.e. u0(x, y) = u0(x),

and satisfies the so-called homogenized problem, −divx(γ0∇xu0) = f in Ω

u0 = 0 on ∂Ω,
(1.2.4)

with the homogenized conductivity tensor γ0 defined by

γ0
i j =

∫
Y
γi j dy −

2∑
k=1

∫
Y
γik
∂χ j

∂yk
dy, for all i, j ∈ {1, 2}.

The functions χ j are solutions to the cell problems


−divy(γ(y)∇yχ j) = −divy(γ(y)e j) in Y

χ j is Y − periodic∫
Y χ j dy = 0

, (1.2.5)

{e j} j=1,2 being the canonical basis in R2.

In addition, a classical result yields the following estimate,

∣∣∣∣∣∣uε − u0
∣∣∣∣∣∣

H1(Ω) ≤ Cε
1
2 ,

so u0 is a reasonable approximation to uε when ε is small enough.

Consequently, instead of calculating uε by solving equation 1.2.2, we can approximate it
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by u0 through solving equation 1.2.4 and equation 1.2.5. From a numerical point of view,

this is very interesting since solving the two last equations is not too much complex and

far less costly than solving equation 1.2.2. Indeed, the homogenized equation is free from

ε and then coarser meshes can be used regardless the size of ε.

Besides, the coefficients γε of equation 1.2.2 play a role as a main characteristic of the

composite material. In practice, it is so useful that the global behavior of this compos-

ite material can be described approximately by the behavior of the homogeneous one

represented by the coefficients γ0 of equation 1.2.4.

It is worth noting that there are many homogenization methods to derive the homoge-

nized equation 1.2.4, as the oscillating test function method [88] and [80], the two-scale

convergence initially introduced by Nguetseng [75] and then developed by Allaire [4], the

adaption of two-scale convergence method by Casado-Dı́az et al. [32, 33], the two-scale

convergence method or unfolding method of Lenczner [63, 64], Cioranescu, Damlamian,

and Griso [36, 37] to cite only three. Among the reference books on these subjects, we

mention only a few, [25, 42, 38, 5, 26, 79, 27, 39, 17, 67, 89].

In this thesis, we utilize Lenczner’s two-scale convergence method to derive the asymp-

totic models for the electromechanical problem in the two-dimensional MIRA array. We

remark that the oscillations of this model are not much due to the coefficients of the partial

differential equations but in the geometry of the array. Other applications of asymptotic

methods to MMAs are introduced in the following.

1.2.2/ POSSIBLE APPLICATION OF ASYMPTOTIC METHODS TO MMAS

The classification of micromirror arrays in Section 1.1.1 reveals a set of asymptotic mod-

eling possibilities for mechanical problems coupled with electrical or thermal or electro-

magnetic effects.

Piezoelectric actuators are multi-layered thin plates and as such can be modeled follow-

ing the asymptotic techniques for thin plates as in [29, 54, 91, 66]. Electrothermal ac-

tuation uses thin multilayer plates or beams as piezoelectric actuators. Some actuators

in this category can be structured as periodic fingers so that they can be modeled using

periodic homogenization in addition. Combdrive actuators can be modeled by periodic

homogenization methods for boundaries with large oscillations. This problem has been

addressed in [50] taking into account the electrical potential only. Useful techniques are

those of homogenization of oscillating boundary structures which have been extensively

studied. A good entry point into the literature is the book of Meln’yk [71] and the articles

of Gaudiello [49] which cite many references. When the combdrive performs a circular

motion, the periodicity to be taken into account is in the radial direction.

Modeling of actuation by magnetic coils can be done by periodic homogenization taking
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into account the quasi-periodicity in the radial direction if the number of coils is large

enough.

Some actuators are complex and contain other thin structures, like the beams that support

the MIRA mirrors. It is then possible to model them with asymptotic methods dedicated

to thin structures and the boundary layer correctors used at their junction to their support.

The type of distribution of the micromirrors, discrete or continuous, introduces another

distinction in the homogenization methods that are used in addition to those used at the

cell scale. For MMAs with a continuous distribution of micromirrors, if there is no anchor-

ing of each cell to the substrate, the usual theory of periodic homogenization applies with

macroscopic components representing the mean fields and microscopic components for

local corrections, see the bibliography of the previous section. Conversely, if each cell is

anchored, either for a continuous distribution or for a discrete distribution of mirrors, the

macroscopic component is null and only the microscopic periodic component remains,

which then represents the first order effects. This is the case for MIRA. Then bound-

ary layer correctors play a role at first order and must be taken into account, see the

bibliography on homogenization with boundary layer effects in Chapter 2.

1.2.3/ MULTISCALE MODELING OF MIRA

The first contribution to the asymptotic models for the MIRA array is achieved in Duy-Duc

Nguyen’s thesis [77]. In his work, the asymptotic models are derived using the two-scale

transform method for the electrostatic problem in the vacuum of one-dimensional array

MIRA. The equation is governed as the Poisson system with Dirichlet conditions on the

internal boundaries and Neumann conditions on the lateral boundaries.

As we mentioned above, the oscillation of this model does not much come from coeffi-

cients of PDE in the geometry. In this case, the coefficients take a constant value 1 since

the domain is the vacuum. In addition, the array is a discrete array whose mirrors are

independent of each other, and it is assumed that there are two different zones with two

distinct constant applied voltages. Thus, as discussed in the previous section, the macro-

scopic solution will disappear, and the only contribution from the microscopic periodic one

is left in the first-order effects to the approximation of potential.

Moreover, as there are two different imposed voltage zones, it produces two periodic

models with solutions being periodic with different periods. This leads to the discontinuity

of the approximated potential at the interface of two zones. Further, the periodic solutions

do not satisfy the boundary conditions at the lateral boundary. Therefore, the correctors

at the interface and the lateral boundary are proposed to deal with these problems, then

the interface model and the boundary models are investigated. We note that their proofs

for these models are compatible with the reference proof in MEMSALab as the goal of
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software development.

In our thesis, we will further contribute by considering the coupled electromechanical

problem in the two-dimensional array MIRA including all the boundary effects that will be

discussed more in the following.

1.3/ MEMSALAB SOFTWARE

In order to properly locate the contribution of this thesis to the MEMSALab software, we

will introduce an overview of MEMSALab with results already obtained in the development

of its package before the start of this thesis in the following.

1.3.1/ MEMSALAB’S OBJECTIVE

In a general sense, a multiscale phenomenon is characterized by the presence of one or

more small or large parameters, which constitutes the starting point of the construction

of reduced models by asymptotic or singular perturbation methods . These methods are

applied to algebraic equations, ordinary differential equations or partial differential equa-

tions. Small or large parameters can come from temporal phenomena (e.g large ratios

between frequencies) or spatial phenomena (periodic structures with a large number of

cells, large variations of coefficients, large ratio between lengths, etc). As we have dis-

cussed above, the result of an asymptotic analysis is a system of equations requiring

much less computation time than the nominal model. Their mathematical foundations are

solid and the resulting models offer a good compromise between precision and computa-

tion time. Their major disadvantage is that the construction of models is done on a case

by case basis and requires a mathematical expertise, limiting their integration in general

simulation software.

This integration is the objective of the MEMSALab project which promises the construc-

tion of software ensuring the generation of asymptotic models based on an original prin-

ciple of reuse, inspired by the way humans operate. It combines two-scale approximation

methods established in [65] from mathematics and rewriting methods from theoretical

computer science.

1.3.2/ MEMSALAB’S FLOWCHART

A global view of the expected MEMSALab operation is depicted in the flowchart repre-

sented in Figure 1.9. A multi-scale model derivation starts with an input Partial Differential

Equation (PDE) extracted from a PDE solver (FEM in the figure) and being expressed in the

User Language. Together with the features to be taken into account for the asymptotic
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analysis, they are transmitted to the core that generates the asymptotic model. Then, the

latter is sent to the PDE solver for simulation.

Figure 1.9: Expected flowchart of MEMSALab starting from an input PDE and producing
an output sent in a simulation tool for PDEs as a finite element method software package
(FEM). The input can also be generated by a user thanks to the User Language (UL). The
Selector is an interface that selects the multiscale characteristics to be taken into account
for building the multi-scale model in the Core.

1.3.3/ PREVIOUS RESULT

We recall the results achieved in the development of MEMSALab before the beginning of

this thesis. A language of rewriting strategies for performing steps in mathematical proofs

was introduced in [18]. A grammar of hierarchical description of the objects involved

in partial differential equations has been defined in [94]. It includes domains together

with their boundary, variables on domains or boundaries, functions of these variables,

operators of these functions and finally partial differential equations with their boundary

conditions. Beside, it is possible to write mathematical, arithmetic and logical expressions

in this grammar as well as to make symbolic computations on them. Note that the hier-

archical description of these objects is consistent with the needs of the formulation and

derivation of multiscale models. Rewriting strategies applied to well-structured objects

ensure that the performed proof operations are mathematically correct. The concept of

extension-combination, recalled below, was announced in [94]. A specific grammar was

introduced in [22] and [76], but its definitive form, the complete formulas for calculating

the combinations and the proof of their correction are completely detailed in a submitted

paper [19] whose preliminary version is available in [20].

A Domain Specific Language (DSL), written over the OCaml Language [78], including

all the above grammars and thus allowing the writing of partial differential equations, of

strategies of model derivation, of extensions and combinations was introduced in [22] and

[76] and since, was significantly developed. It allowed the writing of first proofs of asymp-

totic models as partially reported in [21] using strategies, extensions and combinations.

This approach is named the extension-combination method which is shortly summarized

in the next section.
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1.3.4/ THE EXTENSION-COMBINATION METHOD

We first briefly recall from the earlier works [94, 22] the general theoretical framework

in which the software operates. A multiscale model derivation is characterized by the

features taken into account in the asymptotic analysis. The mathematical objects are

grounded into the three following levels.

1. An input PDE or system of PDEs is defined on a given geometry involving multiple

scales. A reference PDE, PDERef, as for instance a second order boundary value

problem −(aeu′)′ = f posed in an open bounded interval Ω of R, with mixed bound-

ary conditions, the Dirichlet condition u = h on ΓD and the Neumann one aeu′ = g

on ΓN , where ΓD and ΓN are two complementary parts of the boundary of Ω. The

declaration of such a problem in the user language is given in Figure 1.10.

2. A proof consists of strategies and implements an asymptotic model derivation.

There is a unique and particular initial proof called the reference proof ProofRef
illustrated in Figure 1.11 which deals with PDERef. Indeed, a proof is applied to an

input PDE to produce a multiscale model.

3. An extension is made with of other kinds of strategies. Precisely, an extension is

an object that takes into account special features of a model. Each extension can

be applied to the reference PDE and to the reference proof yielding the extended or

the enriched proof. Furthermore, two extensions can be automatically combined or

merged to produce another extension that includes the features of the input exten-

sions.

In general, proofs for complex models are incrementally constructed by applying exten-

sions to already existing proofs starting from the reference model, and such extensions

can be automatically combined to produce more complex extensions.
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Figure 1.10: Script defining the differential equation of PDERef in the earlier version of the
User Language. Functions used in boundary conditions are also defined. The boundary
conditions are omitted since their writing is similar to that of a PDE. The functions a, f and
u are depending on the variable x which is defined on the domain omega. The latter has
for boundary gamma and for outward unit normal n. The functions h and g are functions of
xg D or xg N two variables defined on two parts gamma D and gamma N of the boundary.

Figure 1.11: The script in the User Language of the reference proof ProofRef that is
applied to PDERef. It is based on the proof algorithm that underlies the construction of
the models developed in the thesis. The proof is made as a composition of strategies
expressed by semi-columns.

For the construction of an asymptotic model taking into account several characteristics

of the PDE and/or of the proof, the extension-combination method begins with the con-

struction of extension operators associated with several characteristics, cf Ext1 and Ext2

in Figure 1.12. When applied to the reference pair (PDERef, ProofRef) they lead to new

pairs (PDE1,Proof1) and (PDE2,Proof2). It is assumed that the extensions are correct in

the sense that for each pair (Proofn, PDEn) the application of Proofn to PDEn provides an

asymptotic model Modeln taking correctly into account the nth characteristics.
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Figure 1.12: Schematic view of the scheme of asymptotic model generation for the pair
(PDERef, ProofRef) and their extensions (PDE1,Proof1) and (PDE2,Proof2) by Ext1 and Ext2.

Figure 1.13: Schematic view of the combination of Ext1, Ext2 and the complementary
extension Ext′12 built to generate a correct extension Ext12.

Figure 1.14: Schematic view of the pair (Proof12, PDE12) built by the combination Ext12
and the asymptotic model Model12 obtained by application of Proof12 to PDE12.

By construction, the combination of several extensions, e.g. Ext1 +Ext2, is another exten-

sion covering all the characteristics of the involved extensions but which is not necessarily

correct in the above sense. To reach correctness, it is generally, but not always, neces-

sary to combine Ext1 + Ext2 with a complementary extension, e.g. Ext′12 in Figure 1.13.

Figure 1.14 shows the final step of the method, i.e. the pair (Proof12, PDE12), built by

application of the extension Ext12, generating the expected model Model12.

Models based on strategies and extensions have been built but the process of combi-

nation has not been fully implemented and therefore used. Indeed, we noticed that the

size of the extensions resulting from combinations grows very quickly which prevents a

systematic use. However, the good news is that they contain many redundant and inac-

cessible parts. This raises the question of minimizing or reducing the extensions, which

requires additional theoretical work that could not yet be done.
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1.4/ THESIS OBJECTIVES

The objectives of the thesis were to contribute to fundamental aspects of the development

of the MEMSALab software. For this, it was chosen to start with an initiation to the

development of models obtained by asymptotic methods. This was done in the continuity

of Duc Duy Nguyen’s thesis [77], i.e. on the modeling of MMAs. The models obtained

were to serve as a basis for contributions to MEMSALab. Initially, it was planned to

contribute to its library of models based on the extension-combination method. However,

as explained in the following, it appeared during the developments that the design of

the software suffered from characteristics that could hamper the scaling up to complex

problems in the short term. It was then decided to direct the contributions rather towards

new principles in the hope that they will open to better long-term perspectives.

Another aspect of MEMSALab that has not yet been systematically addressed is that of

its interfacing with software for simulation of boundary value problems. At this level, there

are essentially two directions of study. On the one hand, there is the one concerning the

representation of multi-scale geometric structures which should be compatible with those

used in simulation software such as the Constructive Solid Geometry (CSG), to mention

only the simplest one. On the other hand, there is the determination of algorithms for

the implementation of multiscale models which often combine in a complex way several

sub-models. These algorithms are to be distinguished from those for the resolution of

partial differential equations, they are higher level algorithms that build the interactions

between the sub-models. It is on this point that the thesis contributes through model

implementation in a commercial simulation software, because the implementation in a

simulation software of the obtained asymptotic models provides at the same time the

algorithm of their implementation. In addition to the interests specific to the development

of MEMSALab, the simulations were also done with the concern to provide answers to

questions that arose during the design of MIRA. This led to the simulation of the pull-in

phenomenon and to the search for parameters that would guarantee a minimum voltage.

Further work has been carried out but has not been completed, so it is not reported in

this thesis.

1.4.1/ THESIS’S CONTRIBUTION

We start by constructing asymptotic models of the electromechanical coupling problem

in MIRA. The technique of derivation uses the two-scale transform (or unfolding) method.

The aim is to obtain models and their proofs compatible with the extension-combination

method based on a reference proof, also called reference algorithm. Much effort has

been put into designing proofs in the form of computational steps that can be realized by

symbolic computation and expressed by extension of the reference proof. Some mathe-
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matical justifications have then been sacrificed. For example, the existence of an asymp-

totic development of the two-scale transformation of the solutions is admitted because

this yields significant reduction in proof length without loosing in generality.

As mentioned above, one of the contributions of this thesis concerns the asymptotic mod-

els for MIRA. The array is two-dimensional with two zones where the imposed voltages

are different. The equations are those of electromechanics coupling the electrostatic one

to the linear elasticity system. The two-scale transformation method is used to treat this

problem in the same way as in the thesis work of Duy-Duc Nguyen [77]. Nevertheless,

the latter had only treated the asymptotic analysis of the electrostatics problem in a one-

dimensional array. As in his work, the existence of two regions with different imposed

voltages leads to two periodic models: the internal periodic model and the external model

whose solutions are both periodic but with distinct periodic cell. As a result, the approxi-

mation constructed using these two periodic solutions is discontinuous at the interface of

the two regions and does not satisfy the boundary conditions of the physical problem on

the lateral border.

To correct these defects, boundary layer models at the interface and at the lateral bound-

ary are constructed. They are constructed separately for each piece of boundary or

interface, which leads to further defects. Precisely, since the solution in the vicinity of the

outer boundary edges is an assembly of the outer periodic solution and the two boundary

layer contributions from the adjacent lateral boundaries, it results a loss of continuity at

the edges. The problem is similar to the edges of the interface between the two zones.

To correct these defects, two other correctors are introduced. They are solutions of the

so-called outer edge and inner edge models. These models constitute contributions in

the field of asymptotic models beyond the particular case of arrays of microsystems such

as MIRA. In summary, five types of asymptotic models have been developed: the periodic

model, the interface model and the lateral boundary model, and the two edge models. A

particular aspect of this work is that all the proofs of the models follow the frame of a

reference proof in order to be implementable using the extension-combination method.

In the course of this work, we realized that there is no particular difficulty in applying the

two-scale transformation method to the coupled electromechanical system. On the other

hand, the difficulties lie in the construction of the boundary layer corrector models. To

begin with, it is necessary to choose a suitable two-scale transformation and to under-

stand how the solutions of other models must be taken into account. The reader cannot

help but notice that the cumbersome notations make this work unnecessarily difficult to

understand. We believe that even if better choices could have been made, the complexity

is inherent to the problem of building complex asymptotic models for coupled boundary

value problems. This particularity must be properly taken into account in the symbolic

computation system.
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The asymptotic electrostatics models have been implemented in COMSOL. The approxi-

mation of the electric potential is done at each point by summing a periodic solution and,

for points close to an boundary or an interface, boundary layer correctors. An example

of a complete approximation is provided in the vicinity of an outer edge. It results from

the assembly of the periodic exterior solution and the contribution of three correctors: two

lateral boundary layer correctors and the one of the edge. Moreover, the pull-in analy-

sis is performed, including the pull-in voltage calculation and its optimization. The pull-in

voltage calculation is conducted in one cell by solving an invert problems for the coupled

electromechanical problem in COMSOL. Solving this problem is time-consuming as it is

a nonlinear one and the mesh generation is also complicated. The reasonably complex

algorithm has been developed to treat this problem. A surface response model of the pull-

in voltage with respect to the two most significant parameters serves as a reduced order.

It has been deployed to avoid long computation time. It is the base of an optimization

process done with SIMBAD, a homemade software.

After having been introduced to model building techniques using the asymptotic two-scale

transformation method, the aim was to bring contributions to MEMSALab. At this stage

we started from the gained experience. The developments of MEMSALab that preceded

the thesis led a number of conclusions regarding the design choices that have been

done. It turns out that a tree-like data structure is suitable for representing boundary

value problems and for applying rewriting strategies, navigation rewriting strategies are

efficient even for very large trees, term matching is the tool of choice for hypothesis test-

ing, and rewriting strategies are adequate to perform term transformations necessary for

the application of elementary or more complex mathematical properties. As already said,

these concepts have been tested by the implementation of a proof algorithm used as a

reference in the extension-combination method as well as of some of its extensions. The

above conclusions relate to the positive aspects of the design choices that were made.

They have therefore been retained. In the following, we focus on the limitations and the

means we had to remedy them.

The previous data structure was implemented in such a way that its modification required

a change in the language grammar as well as changes in several places in the core.

Specifically, the kinds of data (index, region, variable, function, operator, pde etc)

were defined in the core. The models were described by objects of type pde including

other types of objects. As the work evolved it became clear that this data structure was not

rich enough to represent a wide variety of multi-scale models. The main limitations were

that most of the multiscale features of the physical domains were almost not represented,

the referencing of the geometric domains was not complete enough to represent a tree

structure of domains at different scales or different submodels, and most importantly, the

asymptotic models related to a physical model were built separately from each other, in

the sense that a global structure was missing.
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For these reasons, we developed a new form of construction for the data structure and the

strategy based on forms of abstract syntax trees (AST) called Nodes. As a result, the new

data structure is now formulated in a uniform and flexible way with more concepts taken

into account, e.g. each data structure field is characterized by its identifier, the domain

characteristics are outlined entirely. In addition, the global recursive structure is created

with a "subScale" node defining the multiscale characteristics of the models in a verti-

cal architecture and with a "subModel" node detailing the asymptotic model types, e.g.,

periodic model, boundary layer model, in a horizontal architecture. Generally speaking,

the new data structure now possesses more capability to describe a family of asymptotic

models as models of a thin structure, models of PDEs with strongly heterogeneous coeffi-

cients, models with oscillating boundaries, models with multiple scales, various boundary

layer problems, a combination of these asymptotic characteristics. Further, another no-

table achievement is that the strategy is now independent of the data structure. This

improvement step has a significant contribution to the algorithmic construction. The strat-

egy now can be manufactured generally with an extensive range of functions.

The next step was the validation of the data structure using the asymptotic models of

MIRA. Given their complexity, it appeared that an intermediate step before the implemen-

tation of proofs by the extension-combination method would be essential. It was decided

to replace the proofs by a so-called direct method which consists in obtaining the asymp-

totic models by direct transformation of physical models, and by taking into account the

asymptotic characteristics stored in the data structure. In other words, for each model the

direct method is equivalent to applying a strategy corresponding to the statement of the

corresponding theorem. Precisely, the strategy verifies the hypotheses and transforms

the physical problem into the asymptotic model that is written at the dedicated place of

the data structure. Thus, for an instance of each of the five asymptotic models of the elec-

trostatics problem, the data structure content has been precisely detailed and the strategy

for applying the corresponding theorem has been expressed as a meta-algorithm based

on elementary strategies.

As mentioned above, rewriting strategies are very efficient on complex data structures

stored in tree form. They are well adapted to hypothesis testing and to the application

of mathematical rules even if they are complex. More specifically, this approach is well

suited to represent partial differential equations and to apply mathematical properties to

them. On the other hand, we find that they are not appropriate to manage a system of

hypotheses and conclusions for a ”large” corpus of theorems. For example, if we con-

sider a number of theorems whose hypotheses and conclusions do not differ much from

each other, we would need a classification system that would allow us to select the right

conclusions corresponding to a set of hypotheses. After a lot of research and various

attempts, especially with different logic systems, we came to the conclusion that the De-

scription Logic (DL) used for ontology representation could fulfill this function. Indeed,
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description logic uses sets of individuals and allows to define operations on sets and re-

lations between sets or individuals. In itself, this is sufficient to define classifications. Of

course DL also allows other operations such as the use of elementary data like strings or

numbers.

Once this solution was identified, it remained to know how to interface the two worlds,

that of rewriting on trees and that of ontologies. Moreover, it soon became clear that it

makes no sense to represent equational expressions in an ontology, which is obviously

not appropriate for this purpose, and that conversely, it would be interesting to store

relational information between objects in the ontology that cannot be expressed by a

tree structure. In short, it seemed more natural to have two separate representations,

one of the data tree for boundary problems, their assumptions and asymptotic models

and the other of the ontology. Since we want to represent theorem applications, we

need to be able to represent the rewriting strategies in addition to the data. Thus, the

work that was done was to build a correspondence between a rewriting system made of

terms and rewriting strategies and an ontology in order to be able to build the necessary

interactions between the two systems. For example, it is necessary that a strategy can

enrich the ontology or query it, while the ontology must be able to store information about

the success of a strategy applied to a term.

1.4.2/ THESIS’S ORGANIZATION

In addition to Chapter 1 for the introduction, the thesis is comprised of the following

chapters.

Chapter 2: Asymptotic Models for Electromechanical Problems in the Two-
Dimensional Array MIRA. We utilize the two-scale transform method to derive

asymptotic models of the two-dimensional periodic arrays MIRA. The equations

are governed by the electromechanical system of equations. Five kinds of mod-

els are built for both the electrical and mechanical effects. The main models have

periodic solutions. Then, corrector models are derived for boundary layers at the

boundaries and at the interfaces between zones of different actuation. They are

essential to take into account the boundary conditions and the transmission con-

ditions. Finally, correctors are established at the edges of the boundaries and of

the interfaces. They are necessary to fix incompatibilities between boundary layer

correctors of adjacent faces, and between boundary layer correctors of interfaces.

A noteworthy point with respect to MEMSALab is that the proof of each model has

been designed to be implementable following the extension-combination method.

More precisely, the proofs made for the electrostatic model are all variations of the

same reference proof so that they are prepared to be expressed as extensions of
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the latter. Those made for the elasticity model follow the same pattern so that they

are also prepared to be obtained as extensions or even by combining the extensions

of the electrostatic models with the extension from the electrostatic problem to the

elasticity system.

Chapter 3: Asymptotic Model Based Simulation of MIRA. We recall the design

of a cell of MIRA i.e. all the parameters and materials of its components. Numerical

simulation results of the five electrostatic models derived in Chapter 2 are reported.

Then, the full approximation of the solution at an outer edge involving the solution

of four models is presented. It involves a periodic solution, the solutions of the

two boundary layer problems at the adjacent boundaries and the solution of the

boundary layer model at the edge. The implementations was done in COMSOL

Multiphysics. Moreover, a pull-in analysis was carried out in a single cell. It involves

simulations of the coupling of the electrical and mechanical problems. Given the

complexity and mesh sensitivity of the computations, a relatively complex algorithm

has been deployed. Moreover, an optimization process of the pull-in voltage in a

single cell has been carried out and is presented. Since the simulation time of the

electromechanical problem is very long, the optimization was done using a reduced

model.

Chapter 4: Data Structure and Rewriting Strategies for Multiscale Model Con-
struction. First, the AST based data structure is defined and illustrated with simple

examples. Then it is validated with the data of the electrostatic problem posed in the

MIRA geometry and with the characteristics of the five asymptotic models of Chap-
ter 2. In each case, a meta-algorithm of strategies building the model is provided.

Chapter 5: A Rewriting and Description Logic Concurrent System. First, we

recall the elementary principles that found the description logic and the grammar

of the MEMSALab rewriting system. Then, a representation of a fragment of the

rewriting system is expressed in description logic. This leads to the formulation of

the concurrent RDL system based on the two methods. Finally, the meta-algorithms

of Chapter 4 are expressed as a single algorithm of the RDL system.

Chapter 6: Conclusions and Perspectives.





2

ASYMPTOTIC MODELS FOR

ELECTRO-MECHANICAL PROBLEMS IN

THE TWO-DIMENSIONAL ARRAY MIRA

2.1/ INTRODUCTION

The direct simulation of physical phenomena in a micromirror array is very costly in

computing time due to a large number of degrees of freedom as its enormous size

and the existence of various scales in its complicated structure. One approach to over-

come this difficulty is to use an approximate model with accepted error obtained by de-

ploying asymptotic methods for periodic problems, [23, 89, 40].

In this chapter, we derive two-scale models of the device MIRA designed by [31]. First

models were investigated in Duc Duy Nguyen’s thesis [77]. In his work, multi-scale mod-

els of a one-dimensional array have been constructed for the electrostatic problem by

utilizing the unfolding method [63, 38, 36, 37, 10, 32] also called two-scale convergence

since it generalizes the two scale convergence introduced in [75] and developed in [4].

The modeling was including boundary layer models at the lateral boundaries and at in-

terfaces between zones of different actuations. In our work, we continue to contribute to

the modeling by considering two-dimensional arrays of the same micromirrors governed

by the equations of electrostatics coupled with those of linear elasticity.

We assume that the array is divided into two zones where the actuation is uniform. The

electrostatic potential and the mechanical displacement of the asymptotic model are pe-

riodic in each of these zones. As a result, the electrostatic field and its normal derivative

as well as the field of the mechanical displacements and the normal stress vectors are

discontinuous at those interfaces. In addition, they do not satisfy the boundary conditions

at the lateral boundaries of the array. To get rid of defects, boundary layer correctors are

introduced at the interfaces and at the lateral boundaries. Besides, these corrections are

23
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formulated separately on each face of the interfaces and of the lateral boundaries, lead-

ing to the discontinuity of the sum of their contribution at the face junctions, namely at the

edges. Then, boundary layer correctors are also introduced at the edges.

Boundary layer problems in the homogenization problems have been much investigated,

e.g. see in [24, 6, 82, 53, 56, 85, 52, 51, 8, 74]. In this work, our contribution is to derive

interface, edge and internal edge corrector models which have not been studied yet. In

total, we derive five kinds of models with the following features: periodic solution, lateral

boundary layer, interface boundary layer, internal edge boundary layer, and exterior edge

boundary layer, see in Figure 2.1. For each kind, we provide only one model instance,

the other ones being obtained without difficulty.

As stated in the thesis introduction, this work is carried out with the perspective of de-

veloping symbolic computation algorithms for model building. Thus, particular attention

is paid to the algorithmic structure of the model proofs and here we have endeavored to

write them all following the framework of a single algorithm. Variations from this reference

algorithm can be expressed by the extension-combination method. Here, we do not ex-

pose this aspect but it has been the subject of our work [21] achieved for simpler models

but for the same algorithm. Notice that a complete theory of extension-combination is

available in [20] while an extended version has been submitted for a journal publication.

It can be observed that in the above mentioned algorithm, most of the operations are

done on a very weak formulation instead on a weak formulation as it is usual. This leads

to shortened proof lengths due to the absence of need of weak convergences of deriva-

tives. Another characteristic of our choice in designing symbolic computation algorithm

is to adopt a compromise between assumptions and algebraic computations. Thus our

attention is more on calculations that can be algebraized than on fine mathematical anal-

ysis. In our algorithm, we assume priori estimates on the physical solutions. Thus in the

following model derivations, we adopt the same assumptions which apply to the solution

as well as to the boundary layer correctors. In addition, the boundary layer correctors

and their gradients are assumed to converge exponentially to zero at infinity. This might

be proven as e.g. [6, 89]. Another characteristic of this work, which shows the interest of

having models automatically derived, is the choice to deal with a real problem whose com-

plexity exceeds by far the one usually treated in academic works. While the complexity

of the MIRA cells is not so high, nevertheless its handling in the framework of asymptotic

methods quickly leads to having to manage extremely heavy notations, which is quickly

prohibitive for a manual treatment. In this sense, this work provides a very interesting

(indeed precious) family of models to guide the development of a rather general symbolic

computation tool. Still in the perspective of developing systematic proofs, despite the fact

that the imposed electric voltage is assumed to be piecewise constant in the MIRA, it is

treated as if it could be continuously varying inside some zones and discontinuous at their

interface. This leads to additional boundary layer effects that could find applications for
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other devices.

As the model proofs all follow the same pattern, it would be unnecessarily long to write

them all in detail. It has been chosen to detail them for the first models, then to reduce

them for the next ones. On the other hand, in the mechanical models, the electrostatic

force is assumed to converge to some limits which form has not yet been investigated,

however it is in the scope of our algorithm to establish it. In this regard, we mention

that the approach of [50] to pass to the limit in the electrostatic force in a model of comb

actuator seems to be a possible solution.

Finally, we mention that the asymptotic models derived in this chapter are used to il-

lustrate the data structure reported in the second part of the thesis as well as our new

approach of model representation combining rewriting techniques with description logic

based ontologies.
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Figure 2.1: Zones where the asymptotic models are taken into account. The correspond-
ing color numbers indicate the models’index. Assume that the array is actuated by two
different imposed voltages in the internal and external zones, then it leads to two periodic
models named the internal and the external periodic models.

2.2/ MATHEMATICAL EQUATIONS

We begin by describing the geometry of the MIRA array. It occupies the region Ω decom-

posed into Ωmec and Ωvac where the mechanical part and the vacuum surrounding it are

located. Its width, length and thickness are respectively L1, L2 and L3, see Figure 2.2. It

includes n1 × n2 cells Ωc of sizes l1, l2, and l3.

Thus Ω = ∪cΩc , where c is a multi-index belonging to Imul = {c = (c1, c2), c1 ∈ 1, ..., n1
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and c2 ∈ 1, ..., n2}. Each cell Ωc, includes the mechanical part Ωmec
c and the vacuum Ωvac

c ,

see Figure 2.3. The mechanical structure consists of two parts, the mirror Ωmec
mir,c and

the electrode Ωmec
ele,c so that Ωmec

c = Ωmec
mir,c ∪ Ωmec

ele,c. We also use the decomposition of the

domains Ωmec and Ωvac of the array as the unions Ωmec = ∪cΩ
mec
c and Ωvac = ∪cΩ

vac
c , and

the same for the domains consisting of all mirrors and electrodes Ωmec
mir = ∪cΩ

mec
mir,c and

Ωmec
ele = ∪cΩ

mec
ele,c.

The boundary of Ωmec is defined as a union Γmec
0 ∪Γmec

1 , where Γmec
0 is the boundary of

Ωmec
ele and Γmec

1 is the boundary of Ωmec
mir . Moreover, Γmec

0 = ∪cΓ
mec
0,c and Γmec

1 = ∪cΓ
mec
1,c where

Γmec
0,c and Γmec

1,c denote respectively the boundary of the electrode Ωmec
ele,c and of the mirror

Ωmec
mir,c of the mechanical body in a cell Ωmec

c . The boundary of Ωvac is denoted by ∂Ωvac and

is constructed as the union of the internal boundary Γvac
int and the external boundary Γvac

ext ,

where Γvac
int is defined by Γmec

0 ∪ Γmec
1 and Γvac

ext is the union of the lateral boundary Γvac
lat and

of the top boundary Γvac
top of the vacuum part, Γvac

ext = Γvac
lat ∪ Γvac

top.

𝑥1

𝑥2

𝑥3

0

Ω2

Ω1

Ω(1,1)
𝑚𝑒𝑐

Ω(1,1)
𝑚𝑒𝑐

Ω(1,1)
𝑣𝑎𝑐

Ω(1,1)
𝑣𝑎𝑐

𝐿1

𝐿2

𝐿3

𝑙2

𝑙1

𝑙3

Γ𝑡𝑜𝑝
𝑣𝑎𝑐

Γ𝑙𝑎𝑡
𝑣𝑎𝑐

Γ𝑖𝑛𝑡,𝑐
𝑣𝑎𝑐

Γ1,𝑐
𝑚𝑒𝑐

Γ0,𝑐
𝑚𝑒𝑐

Figure 2.2: Representation of two zones the external zone Ω1 and the internal zone Ω2
with different actuation voltage in the MIRA array. The zoom illustrates one cell Ω(1,1) of
the array with the mechanical structure in Ωmec

(1,1) surrounded by the vacuum in Ωvac
(1,1).
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Ω𝑚𝑖𝑟,𝑐
𝑚𝑒𝑐

Ω𝑐
𝑣𝑎𝑐

𝑐)

Ω𝑒𝑙𝑒,𝑐
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Ω𝑚𝑖𝑟,𝑐
𝑚𝑒𝑐

Figure 2.3: Illustration of the components of the cell Ωc of the MIRA array. The mechanical
part Ωmec

c is made with two components, (a) the mirror part Ωmec
ele,c and (b) the electrode part

Ωmec
mir,c. Figure (c) represents the vacuum part Ωvac

c .

For the sake of simplicity but without losing generality, we consider that Ω is split into

two zones Ω1 and Ω2 in which the imposed voltages noted as V1 and V2 are different.

Hereafter, we add the subscripts 1, 2 in geometrical notations to represent to which zones

they belong, for example, Ωvac
1 and Ωvac

2 is a vacuum part of Ω1 and Ω2, Γvac
1,int and Γvac

2,int is

the internal boundary of Ωvac
1 and Ωvac

2 , and note that all previous geometrical notations

without the subscripts 1, 2 now are understood as a union of two elements related to

zones Ω1 and Ω2, e.g. Γvac
int = Γvac

1,int∪ Γvac
2,int.

The field of electric potential φ in the vacuum is governed by the equation of electrostatics,

see [55], 
−∆φ = 0 in Ωvac

φ = V on Γvac
int

∇φ · n = 0 on Γvac
ext

, (2.2.1)

where V is the imposed voltage taking two distinct constant values V1 in Ω1 and V2 and

Ω2, and n is the outward unit normal vector. The continuity of the potential and the

electrostatic field at the interface Γvac
inter f of Ωvac

1 and Ωvac
2 are given as

φ|Ωvac
1

= φ|Ωvac
2

and ∇φ|Ωvac
1
· n1 = −∇φ|Ωvac

2
· n2,

where n1 and n2 are the outward unit normal vectors of Ωvac
1 and Ωvac

2 on Γvac
inter f , n1 = −n2 .
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Let us introduce a Hilbert space H1
Γvac

int ,0
(Ωvac) � {v ∈ H1(Ωvac), v = 0 in Γvac

int } endowed with

the norm

‖v‖H1
Γvac

int ,0
(Ωvac) = ‖∇v‖L2(Ωvac),

for all v ∈ H1
Γvac

int ,0
(Ωvac).

Then a variational problem of (2.2.1) is to find φ ∈ H1
Γvac

int ,V
(Ωvac) � {φ ∈ H1(Ωvac), φ =

V in Γvac
int } such that ∫

Ωvac
∇φ∇v dx = 0,

for all v ∈ H1
Γvac

int ,0
(Ωvac).

The mechanical behavior is described by a displacement u = (u1, u2, u3). The mechanical

deformations are caused by the electrostatic force generated by the difference of im-

posed voltages between the mirror and the electrode. They are solutions to the following

linearized elasticity system for homogeneous isotropic material, see [70]. In this part, the

Einstein summation convention is employed to reduce formulas.
−∂ j(λepp(u)δi j + 2µei j(u)) = fi in Ωmec

u = 0 on Γmec
0

(λepp(u)δi j + 2µe(u))n j = gi in Γmec
1

, (2.2.2)

where λ and µ are the Lamé constants, e(u) = (ei j(u))i j is a linearized strain tensor defined

by

ei j(u) =
1
2

(
∂iu j + ∂ jui

)
,

f = ( f1, f2, f3) is the external body force density and g = (g1, g2, g3) is the electrical force

per unit area applied on the surface of conductors oriented along the outward normal

vector n of Γvac
int . It is given by, see [62],

g =
1
2
ε0|E|2n, (2.2.3)

where E = −∇φ is the electrical field and ε0 is the vacuum permittivity. The continuity of

the displacement u and the normal stress tensor at the interface Γmec
inter f between Ωmec

1 and

Ωmec
2 are given as

u|Ωmec
1

= u|Ωmec
2

and (λepp(u)δi j + 2µe(u))|Ωmec
1

n1
j = −(λepp(u)δi j + 2µe(u))|Ωmec

2
n2

j ,

where n1 and n2 are the outward normal vectors of Ωmec
1 and Ωmec

2 at Γmec
inter f , n1 = −n2.

We now introduce a linearized stress tensor σ(u), thank to the Hooke’s law in the lin-

earized elasticity,

σ(u) = λ (∇ · u)I + 2µe(u) or σi j(u) = λepp(u)δi j + 2µei j(u),
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where I is the 3 × 3 identity matrix. Hence (2.2.2) takes the shorter form
−divσ(u) = f in Ωmec

u = 0 on Γmec
0

σ(u)n = g in Γmec
1 .

(2.2.4)

We introduce the Hilbert spaceH1
Γmec

0 ,0(Ωmec) � {v = (v1, v2, v3), vi ∈ H1(Ωmec), vi = 0 on Γmec
0 }

with the norm

‖v‖H1
Γmec

0 ,0
(Ωmec) =

 3∑
i=1

‖∇vi‖
2
L2(Ωmec)


1/2

,

and assume that f ∈ L2(Ωmec) � [L2(Ωmec)]3 and g ∈ L2(Γmec
1 ) � [L2(Γmec

1 )]3.

Multiplying both sides of (2.2.2) by a vector test function v of H1
Γmec

0 ,0(Ωmec) and integrating

over Ωmec, by the partial integration formula, we obtain∫
Ωmec

(λepp(u)δi j + 2µei j(u))∂ jvi dx =

∫
Ωmec

fivi dx +

∫
Γmec

1

givi ds(x).

It is easily seen that δi j∂ jvi = ∂ jv j = eqq(v) and ∂ jvi = ei j(v) + ẽi j(v), where ẽi j is defined by

ẽi j(v) =
(
∂iv j − ∂ jvi

)
/2. Since ei j(u) is symmetric and ẽi j(v) is anti-symmetric then we get

ei j(u)∂ jvi = ei j(u)ei j(v). The weak form of (2.2.2) is to find u ∈ H1
Γmec

0 ,0(Ωmec) such that

∫
Ωmec

(λepp(u)eqq(v) + 2µei j( u)ei j(v))dx =

∫
Ωmec

fividx +

∫
Γmec

1

givids(x), (2.2.5)

for all v ∈ H1
Γmec

0 ,0(Ωmec).

2.3/ ASYMPTOTIC ANALYSIS NOTATIONS AND SOME LEMMAS

In this part, we introduce Landau Symbols, the big O and the small o, for more details see

in [48] and [47].
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Definition 1:

Let ϕ(x, ε) and ψ(x, ε) be real functions of the variable x varying in a domain

D ⊂ R3 and of the parameter 0 < ε ≤ ε0, ε0 a given positive number and assume

that ψ(x, ·) , 0 for all x ∈ D. We say that:

1. The big O: ϕ(x, ε) = O(ψ(x, ε)) in D if only if there exists a constant C such

that for all x ∈ D, |ϕ(x, ε)| ≤ C|ψ(x, ε)| for ε small enough .

2. The big O of 1: ϕ(x, ε) = O(1) in D if only if there exists a constant C such

that for all x ∈ D, |ϕ(x, ε)| ≤ C for ε small enough. This is a special case of

the first item.

3. The small o: ϕ(x, ε) = o(ψ(x, ε)) in D if only if |ϕ(x, ε)|/|ψ(x, ε)| → 0 as ε → 0

for all x ∈ D such that ψ(x, ε) , 0.

4. The small o of 1: ϕ(x, ε) = o(1) in D if only if |ϕ(x, ε)| → 0 as ε → 0 for all

x ∈ D such that ψ(x, ε) , 0. This is a special case of the third item.

Example: sin(x) = O(1), ε3 = o(ε2).

Definition 2:

Let Y a subset of R3defined as Y = ]−hi/2, hi/2[3 with outward normal vector n,

where hi is a positive number, i ∈ I = {1, 2, 3} and γ be a subboundary of ∂Y such

that γ is a union of pairs of parallel planes that are also subboundaries of ∂Y. Let

ϕ be a function defined a.e on R3 and {e1, e2, e3} be a canonical basis vector of

R3.We say that:

1. ϕ is Y− periodic in a direction ei, for i ∈ I if only if ϕ(x + keihi) = ϕ(x) a.e on

R3 for all k ∈ Z.

2. ϕ is γ− periodic if only if for all x ∈ γ there exists x′ ∈ γ such that ψ(x) = ψ(x′)

, x′ = x + hiei for some i ∈ I.

3. ϕ is γ− antiperiodic if only if for all x ∈ γ there exists x′ ∈ γ such that

ψ(x) = −ψ(x′) , x′ = x + hiei for some i ∈ I.

With this definition, we have some following lemmas.
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Lemma 1:

If ϕ is in L2(Y) such that ∫
Y
ϕv dx = 0,

for any v ∈ C∞0 (Y) then ϕ = 0 a.e in Y.

Lemma 2:

If for any v ∈ C∞0 (Y) such that ∫
γ
ϕ∇v · n ds (x) = 0

then ϕ = 0 a.e on γ.

Lemma 3:

If for any v ∈ C∞(Y), Y - periodic in the periodic direction such that∫
γ
ϕ∇v · n ds(x) = 0, resp

∫
γ

v∇ϕ · n ds(x) = 0.

then ϕ is γ− periodic, resp. ∇ϕ · n is γ− antiperiodic.

2.4/ GLOBAL SCALINGS

Let us introduce the dimensionless small parameter ε = min{li/L j} over i, j ∈ {1, 2, 3}

which is the characteristic parameter of our asymptotic methods. We study the behavior

of solutions to the above models when ε tends to 0 for fixed Li. First of all, we deploy a

superscript ε for all geometrical notations, normal vectors, variables, functions, and etc,

for example Ωε, Γ
ε,vac
int , nε, xε, φε instead of Ω, Γvac

int , n, x, φ, resp.

Due to the array size is very small, we introduce a space scale L, a magnitude of the

array size, to make a scaling of the array and its cells by putting x̂ε = xε/L that yields a

scaling of Ωε into Ω̂ε and Ωε
c into Ω̂ε

c with sizes L̂i = Li/L and l̂i = li/L for i = 1, 2, 3, resp.

We now add a hat ·̂ into all geometrical notations to represent new scaled domains and

their boundaries, i.e Ω̂ε,vac, Γ̂ε,vac
int are scaled regions of Ωε,vac,Γε,vac

int and add the variables as

subscripts to operators such as Laplace ∆, Divergence div to indicate these operators with

respect to the variables. For instance, ∆x̂ε , divx̂ε and ∆x1 , divx1 are Laplace, Divergence

operators of the variables x̂ε, resp x1.

In particular, we note that the parameter ε = min{li/L j} = min{̂li/L̂ j} is remained un-

changed. As a simplifying approach, we assume that l̂i = ε for all i = 1, 2, 3 then the
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volume of a scaled cell and the scaled array are
∣∣∣Ωε

c

∣∣∣ =
∏

i
l̂i = ε3 and |Ωε| =

∏
i

L̂i = ε. From

now on, we say ε tends to 0 in the sense that the number of cells in the array Nc = n1×

n2 → +∞ with ε = 1/Nc.

We now deal with the scaling for the electrostatic potential and the mechanical dis-

placement. In the electrostatic part, the space scale L is reused, we set V̂ε = Vε/L

and φ̂ε = φε/L and the electrostatic force (2.2.3) is left unchanged ĝε = gε, with

ĝε = − 1
2ε0|Êε|2n̂ε, where Êε is the electrical field of the scaled potential φ̂ε. Plugging

these new scaled fields into the equation (2.2.1), we obtain the following equations for the

scaled potential φ̂ε, 
−∆x̂ε φ̂

ε = 0 in Ω̂ε,vac

φ̂ε = V̂ε on Γ̂
ε,vac
int

∇
x̂ε
φ̂ε · n̂ε = 0 on Γ̂

ε,vac
ext .

(2.4.1)

In the linear elasticity part, we propose the scaled displacement ûε = uε/εL and the

scaled external force f̂ε = εfε/L, then them into (2.2.4), we get the scaled linear elasticity

sytems, 
−divx̂εσx̂ε(ûε) = ε−2 f̂ε in Ω̂ε,mec

ûε = 0 on Γ̂
ε,mec
0

σx̂ε(ûε)n̂ε = ε−1ĝε in Γ̂
ε,mec
1 .

(2.4.2)

Remark 1:

For simplicity of notation, we hereafter remove the hat ·̂ from all the notations,

for instance, Ωε,mec, φε replaces Ω̂ε,mec, resp. φ̂ε, and we employ the notation

Γ referring to a subboundary of a domain with name sharing with the domain

name, for example, Γε,vac is a subboundary of Ωε,vac.

2.5/ TWO-SCALE TRANSFORM OPERATORS AND THE PROOF AL-

GORITHM

In this section, we recall the two-scale transform operator or unfolding operator in a do-

main introduced in [63, 38, 36, 37, 10, 32], and define the boundary two-scale transform

operator equivalent to the boundary unfolding operator found in [41, 65]. These oper-

ators are used to build the periodic solution model. For each of the other four models,

specific two-scale transformations will be introduced in the related sections. The last part

of this section is devoted to the formulation of the algorithm that underlies all the model

constructions in this chapter.
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2.5.1/ INTERNAL TWO-SCALE TRANSFORM OPERATOR

Let us begin by introducing Ω] ⊂ R2 such that Ωε = Ω] × ]0, ε[ with a partition
{
Ω
]
c

}
c

where

Ω
]
c = [(c1 − 1)ε, c1ε[ ×[(c2 − 1)ε, c2ε[, c = (c1, c2) ∈ Imul, and x],c is the center of the cell Ω

]
c

defined as x],c = (c1ε−ε/2, c2ε−ε/2). It follows that Ωε
c = Ω

]
c×]0, ε[ and that xε,c = (x],c, ε/2)

where xε,c is the center of the cell Ωε
c.

We now represent the reference cell also called the unit periodicity cell Ω1 residing at the

position ]−1/2, 1/2[3, see Figure 2.4. Its boundaries of the vacuum and mechanical parts

are denoted by ∂Ω1,vac = Γ
1,vac
int ∪Γ

1,vac
per ∪Γ

1,vac
top and ∂Ω1,mec = Γ

1,vac
0 ∪Γ

1,vac
1 ∪Γ

1,vac
per . Obviously,

if xε ∈ Ωε
c, c ∈ Imul then (xε − xε,c)/ε ∈ Ω1, and Ωε = ∪cε(zc + (1/2, 1/2, 1/2) + Ω1) where

zc = (zc1 , zc2 , 0), zc1 , zc2 ∈ Z.

Γ𝑝𝑒𝑟
1,𝑣𝑎𝑐

Γ𝑝𝑒𝑟
1,𝑚𝑒𝑐

Γ𝑝𝑒𝑟
1,𝑣𝑎𝑐

Γ𝑝𝑒𝑟
1,𝑚𝑒𝑐

Γ𝑝𝑒𝑟
1,𝑚𝑒𝑐

Γ𝑝𝑒𝑟
1,𝑚𝑒𝑐

Γ𝑡𝑜𝑝
1,𝑣𝑎𝑐

𝑥1
1𝑥2

1

𝑥3
1

0

Figure 2.4: The reference cell Ω1 constructed by the mechanical body Ω1,mec surrounded
by the vacuum part Ω1,vac occupies the block ] − 1/2, 1/2[3

Definition 3:

For all ϕ in L2(Ωε), the two-scale transform operator T ε is defined as

T ε(ϕ)(x], x1) =
∑

c

χ
Ω
]
c
(x])ϕ(xε,c + εx1),

for all x] ∈ Ω] and x1 ∈ Ω1, where χ is the characteristic function.
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Proposition 1:

The two-scale transform operator has the following properties:

1. T ε is a linear and continuous operator from L2(Ωε) to L2(Ω] ×Ω1).

2. For every ϕ, ψ ∈ L2(Ωε), T ε(ϕψ) = T ε(ϕ)T ε(ψ).

3. For every ϕ ∈ L1(Ωε), we have∫
Ωε

ϕ dxε = ε

∫
Ω]×Ω1

T ε(ϕ) dx]dx1.

4. For every ϕ ∈ L2(Ωε), we obtain ‖ϕ‖L2(Ωε) =
√
ε‖T ε(ϕ)‖L2(Ω]×Ω1).

5. For all ϕ ∈ H1(Ωε), ∇x1T ε(ϕ) = εT ε(∇xεϕ)

Proof. By Definition 3, we obtain (1) and (2) and by changing a variable xε = xε,c + εx1

yields ∫
Ω]×Ω1

T ε(ϕ) dx]dx1 =
∑

c

∫
Ω
]
c×Ω1

ϕ(xε,c + εx1)dx]dx1

=
1
ε3

∑
c

∣∣∣∣Ω]
c

∣∣∣∣ ∫
Ωε

c

ϕ(xε)dxε

=
1
ε

∫
Ωε

ϕ dxε.

From that, (3) and (4) are straightforward.

We now prove (5), for a fixed ε, let ϕ be in W1,2(Ωε). By density, there exists {ϕn} in

C1(Ω] ×Ω1)∩W1,2(Ωε) such that ϕn converges to ϕ in W1,2(Ωε) then we obtain ∇x1T ε(ϕn) =

εT ε(∇xεϕn). By (1), it follows that T ε(ϕn) −→ T ε(ϕ) strongly in L2(Ω]×Ω1) and T ε(∇xεϕn) −→

T ε(∇xεϕ) strongly in L2(Ω] ×Ω1). It leads to ∇x1T ε(ϕ) = εT ε(∇xεϕ). �

Remark 2:

The new norm ||| · |||= ε−1/2‖ · ‖ is designed to avoid the factor ε1/2 from the height

of a thin domain.

We next recall the adjoint operator of T ε and its properties.
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Definition 4:

For every ϕ ∈ L2(Ωε), define the adjoint operator T ε∗ of T ε by

1
ε

∫
Ωε

ϕT ε∗(ψ) dxε =

∫
Ω]×Ω1

T ε(ϕ)ψ dx]dx1,

for all ψ ∈ L2(Ω] ×Ω1).

From this definition, we obtain the explicit formula of T ε∗,

T ε∗(ψ)
(
xε

)
=

1
ε2

∑
c

∫
Ω
]
c

ψ

(
x],

xε − xε,c

ε

)
dx]χΩε

c

(
xε

)
. (2.5.1)

It is evident that T ε∗(ψ) is not regular. Then we will define the smoothing operator to

approximate it.

Let us assume that ψ ∈ C1(Ω] × Ω1) and the second derivative of ψ with respect to x]i
exists for all i = 1, 2, then we apply the Taylor formula for ψ at a point ((xε1, x

ε
2), (xε − xε,c)/ε)

with respect to x] :

ψ(x], (xε − xε,c)/ε) = ψ((xε1, x
ε
2), (xε − xε,c)/ε) + (x]1 − xε1)∂x]1

ψ((xε1, x
ε
2), (xε − xε,c)/ε)

+ (x]2 − xε2)∂x]2
ψ((xε1, x

ε
2), (xε − xε,c)/ε) + εO(ε).

The approximation of the integral is∫
Ω
]
c

ψ

(
x],

xε − xε,c

ε

)
dx]χΩε

c

(
xε

)
=

∫
Ω
]
c

ψ

(
(xε1, x

ε
2),

xε − xε,c

ε

)
dx]χΩε

c

(
xε

)
+

∫
Ω
]
c

(x]1 − xε1)∂x]1
ψ

(
(xε1, x

ε
2),

xε − xε,c

ε

)
dx]χΩε

c

(
xε

)
+

∫
Ω
]
c

(x]2 − xε2)∂x]2
ψ

(
(xε1, x

ε
2),

xε − xε,c

ε

)
dx]χΩε

c

(
xε

)
+

∫
Ω
]
c

εO(ε)dx]χΩε
c

(
xε

)
= ψ

(
(xε1, x

ε
2),

xε − xε,c

ε

)
|Ω

]
c|χΩε

c

(
xε

)
+ O(ε)|Ω]

c|χΩε
c

(
xε

)
.

Plugging it into (2.5.1), we obtain

T ε∗(ψ)
(
xε

)
=

1
ε2

∑
c

ψ

(
(xε1, x

ε
2),

xε − xε,c

ε

)
|Ω

]
c|χΩε

c

(
xε

)
+

1
ε2

∑
c

O(ε)|Ω]
c|χΩε

c

(
xε

)
=

∑
c

ψ

(
(xε1, x

ε
2),

xε − xε,c

ε

)
χΩε

c

(
xε

)
+ O(ε).

It leads to define a smoothing operator Bε in order to approximate T ε∗.
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Definition 5:

For all ψ ∈ C1(Ω] ×Ω1), the operator Bε is defined as follows

Bε(ψ)(xε) = ψ

(
P(xε),

xε

ε
−

1
2

)
,

where P(xε) = (xε1, x
ε
2).

Proposition 2:

For all ψ in C1(Ω] ×Ω1) and Ω1-periodic in the directions x1
1 and x1

2, we have

T ε∗(ψ)
(
xε

)
= Bε(ψ)(xε) + O(ε).

Proposition 3:

Let ϕε be a sequence in L2(Ωε) that satisfies

||| ϕε |||L2(Ωε)≤ C and ε ||| ∇xεϕ
ε |||L2(Ωε)≤ C.

Then, there exist a subsequence (still denoted ε) T ε(ϕε) and a function ϕ0 in

L2(Ω]; H1
(
Ω1

)
),Ω1- periodic in directions x1

1, x1
2 , such that

1. i.: T ε(ϕε) ⇀ ϕ0 weakly in L2(Ω] ×Ω1),

2. ii.: εT ε(∇xεϕ
ε) ⇀ ∇x1ϕ0 weakly in L2(Ω] ×Ω1).

Remark 3:

In this chapter, the value of a constant C will be changed place by place.

Let us briefly recall the definition of two-scale convergence for a thin domain, see in

[69], arising from the classical two-scale convergence which was originally introduced in

[75, 4], see also [96].

Definition 6:

A bounded sequence ϕε in L2(Ωε, ||| · |||) is said to be two-scale convergent to a

limit ϕ0 belonging to L2(Ω] × Ω1) if, for any smooth function ψ defined in Ω] × Ω1

and Ω1-periodic in the directions x1
i , i = 1, 2, we have

1
ε

∫
Ωε

ϕε(xε)ψ
(
(xε1, x

ε
2),

xε

ε
−

1
2

)
dxε →

∫
Ω]×Ω1

ϕ0(x], x1)ψ(x], x1) dx]dx1.

The following result proves that the weak convergence of the two-scale transform operator

is equivalent to the original two-scale convergence.
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Proposition 4:

Let ϕε be a bounded sequence in L2(Ωε, ||| · |||), then the following properties are

equivalent

1. T ε(ϕε) converges weakly to ϕ0 in L2(Ω] ×Ω1),

2. ϕε two-scale converges to ϕ0.

Proof. By the definition of Bε, we can write

1
ε

∫
Ωε

ϕε(xε)ψ
(
(xε1, x

ε
2),

xε

ε
−

1
2

)
dxε =

1
ε

∫
Ωε

ϕε(xε)Bε(ψ)(xε) dxε.

By Proposition 2 and definition of the adjoint operator, it follows that

1
ε

∫
Ωε

ϕε(xε)Bε(ψ)(xε)dxε =
1
ε

∫
Ωε

ϕε(xε)T ε∗(ψ)(xε) dxε +
1
ε

∫
Ωε

ϕε(xε)O(ε) dxε

=

∫
Ω]

∫
Ω1

T ε(ϕε)(x], x1)ψ(x], x1) dx] dx1 + O(ε).

And we obtain the result. �

2.5.2/ BOUNDARY TWO-SCALE TRANSFORM OPERATOR

We introduce the two-scale transform operator T ε
b defined on the boundary of Ωε equiva-

lent to the boundary unfolding operator found in [41].

Definition 7:

Let Γε be a periodic internal subboundary of ∂Ωε, Γ1 be a subboundary of ∂Ω1,

for all ϕ in L2(Γε), we define the boundary two-scale transform operator T ε
b by

T ε
b (ϕ)(x], x1) =

∑
c

χ
Ω
]
c
(x])ϕ(xε,c + εx1),

for a.e. x] ∈ Ω], x1 ∈ Γ1.
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Proposition 5:

The boundary two-scale transform operator has the following properties:

1. For every ϕ ∈ L1(Γε), we have∫
Γε
ϕ ds(xε) =

∫
Ω]×Γ1

T ε
b (ϕ) dx] ds(x1).

2. For every ϕ ∈ L1(Γε), we obtain ‖ϕ‖L1(Γε) = ‖T ε
b (ϕ)‖L1(Ω]×Γ1).

3. For all ϕ ∈ H1(Γε), ∇x1T ε
b (ϕ) = εT ε

b (∇xεϕ).

Definition 8:

For every ϕ ∈ L2(Γε), we define the adjoint operator T ε∗
b of T ε

b by∫
Γε
ϕT ε∗

b (ψ) ds(xε) =

∫
Ω]×Γ1

T ε
b (ϕ)ψ dx]ds(x1),

for all ψ ∈ L2(Ω] × Γ1).

Hence the explicit formula of T ε∗
b is written

T ε∗
b (ψ)

(
xε

)
=

1
ε

∑
c

∫
Ω
]
c

ψ

(
x],

xε − xε,c

ε

)
dx]χΩε

c

(
xε

)
.

Definition 9:

For all v in C1(Ω] × Γ1), the operator Bεb is defined by

Bεb(ψ)(xε) = ψ

(
P(xε),

xε

ε
−

1
2

)
,

where P(xε) = (xε1, x
ε
2).

Proposition 6:

For every ψ in C1(Ω] × Γ1) and Γ1 -periodic in the directions x1
1 and x1

2, then

T ε∗
b (ψ)

(
xε

)
= Bεb(ψ)(xε) + O(ε),
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Proposition 7:

Let ϕε be a sequence in L2(Γε) and assume that

‖ϕε‖L2(Γε) ≤ C and ε‖∇xεϕ
ε‖L2(Γε) ≤ C.

Then, there exist a subsequence (still denoted ε) T ε(ϕε) and a function ϕ0 in

L2(Ω]; H1
(
Γ1

)
),Γ1-periodic in the directions x1

1 and x1
2 such that

1. T ε(ϕε) ⇀ ϕ0 weakly in L2(Ω] × Γ1),

2. εT ε(∇xεϕ
ε) ⇀ ∇x1ϕ0 weakly in L2(Ω] × Γ1).

Let us briefly recall the two-scale convergence on the surface introduced in [7], [83].

Definition 10:

A bounded sequence ϕε in L2(Γε) is said to two-scale convergence to a limit ϕ0

belonging to L2(Ω] × Γ1) if for any smooth function ψ defined in Ω] × Γ1 and Γ1

-periodic, we have∫
Γε
ϕε(xε)ψ

(
(xε1, x

ε
2),

xε

ε
−

1
2

)
ds(xε)→

∫
Ω]

∫
Γ1
ϕ0(x], x1)ψ(x], x1) dx]ds(x1).

We also have the equivalence between the original two-scale convergence on the surface

and weak convergence of the two-scale transform operator by the following proposition.

Proposition 8:

Let ϕε be a bounded sequence in L2(Γε, ‖ · ‖), then the following properties are

equivalent

1. {T ε
b (ϕε)} converges weakly to ϕ0 in L2(Ω] × Γ1),

2. ϕε two-scale converges to ϕ0.

2.5.3/ THE REFERENCE ALGORITHM FOR MODEL PROOFS

This section is devoted to the symbolic computation algorithm that served as a refer-

ence for the construction of the models reported in [21] and based on the extension-

combination method. It is this same algorithm that drives the construction of the five

models of this chapter. The operations described therein are high level, the implementa-

tion details not being explained because they strongly depend on the way partial differen-

tial equations are represented in a symbolic computing environment, see our approach in

[94] and in the following chapters of the thesis.
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The starting point of the algorithm is a boundary value problem either in strong form or

in weak form. It uses the definition of a two-scale transformation T ε and its associated

operators T ε∗ and Bε. These operators and their properties may depend on the model. In

this chapter, to each model corresponds a different transformation T ε. In step (iii) we use

the derivation rule of Bε(w) which has not been recalled in the previous subsections but

will be detailed during each model derivation. In the same way, the approximation of T ε∗

by Bε is established for each model derivation. In the implementation reported in [21] the

properties of the operators T ε, T ε∗, and Bε are used without being reconstructed in order

to avoid time-consuming calculations.

i) Define a two-scale transform (i.e. unfolding) operator T ε, its adjoint

T ε∗,and a smooth approximation Bε of T ε∗.

ii) Derive the very weak form of the boundary value problem with a test

function v.

iii) Replace v by εkBε(w) for some k ∈ Z \ {0}, and apply the rule of the

derivative of Bε(w).

iv) Replace Bε by its approximation in terms of T ε∗.

v) Apply the adjoint rule to replace the instances of T ε∗ by instances of

T ε that are now applied to an expression Ψε.

vi) Assuming that T ε(Ψε) is bounded when ε vanishes, an extracted

subsequence weakly converges to a limit Ψ0.

vii) Convert the very weak form satisfied by Ψ0 into its strong form.

2.6/ ELECTROSTATIC MODELS

We now recall the electrostatic equation 2.4.1 in the vacuum domain of MIRA,
−∆xεφ

ε = 0 in Ωε,vac

φε = Vε on Γ
ε,vac
int

∇xεφ
ε · nε = 0 on Γ

ε,vac
ext .

(2.6.1)

By the same method in [40], it follows that there exists φε in H1
Γ
ε,vac
int ,Vε(Ωε,vac) = {vε ∈

H1(Ωε,vac), vε = Vε on Γ
ε,vac
int } such that∫

Ωε,vac
∇xεφ

ε∇xεvε dxε = 0, (2.6.2)
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for all vε in H1
Γ
ε,vac
int ,0(Ωε,vac).

Applying Green’s formula, we have a very weak formulation of Problem 2.6.1,∫
Ωε,vac

φε∆xεvε dxε =

∫
Γ
ε,vac
int

Vε∇xεvε · nε ds
(
xε

)
+

∫
Γ
ε,vac
ext

ϕε∇xεvε · nε ds
(
xε

)
, (2.6.3)

for all vε in H2
Γ
ε,vac
int ,0(Ωε,vac) = {vε ∈ H2(Ωε,vac), vε = 0 on Γ

ε,vac
int }.

Assumption 1:

Assume that |||φε|||L2(Ωε,vac) and ε|||∇xεϕ
ε|||L2(Ωε,vac) are bounded uniformly with re-

spect to ε.

2.6.1/ PERIODIC MODEL

Proposition 9:

Let φε be a solution of (2.6.2) and assume that φε satisfies Assumption 1. Then,

there exists φ0 ∈ L2(Ω],H1(Ω1,vac)) Ω1,vac-periodic in the directions x1
1, x1

2 such that

T εφε ⇀ φ0 weakly in L2(Ω] ×Ω1,vac). Moreover for a.e x] ∈ Ω], φ0 is a solution to

−∆x1φ0 = 0 in Ω1,vac

φ0 = V0 on Γ
1,vac
int

∇x1φ0 · n1 = 0 on Γ
1,vac
top

∇x1φ0 · n1 is Γ
1,vac
per -antiperiodic

φ0 is Γ
1,vac
per -periodic,

where V0 is a weak limit of T ε(Vε) in L2(Ω] × Γ
1,vac
int ).

Remark 4:

For the sake of simplicity of notation, we use the same notation for the two-scale

transform operator T ε, the adjoint operator T ε∗ and an approximate operator Bε

of T ε∗ defined in a domain and those defined on a boundary.

Proof. Thanks to Proposition 3 and Assumption 1, we obtain the existence and the peri-

odicity of φ0. The proof is completed by showing that φ0 satisfies the above equations.

Let us take w in C∞(Ω] ×Ω1,vac) such that w = 0 on Γ
1,vac
int and ∇x1w · n1 = 0 on Γ

1,vac
top ∪ Γ

1,vac
per .
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Obviously, Bεw = 0 on Γ
ε,vac
int then we replace vε in (2.6.3) by εBεw,∫

Ωε,vac
φε∆xεBεw dxε =

∫
Γ
ε,vac
int

Vε∇xεBεw · nε ds
(
xε

)
+

∫
Γ
ε,vac
ext

ϕε∇xεBεw · nε ds
(
xε

)
. (2.6.4)

It is clear that

∂Bεw
∂xεi

= Bε
χI](i)

∂w

∂x]i
+

1
ε

∂w
∂x1

i

 ,
∂

∂xεi

∂Bεw
∂xεi

= Bε
χI](i)

∂

∂x]i

∂w

∂x]i
+ χI](i)

2
ε

∂

∂x]i

∂w
∂x1

i

+
1
ε2

∂

∂x1
i

∂w
∂x1

i

 ,
for all i ∈ I = {1, 2, 3}, I] = {1, 2}.

By a straightforward calculation, the left-hand side (l.h.s) of (2.6.4) becomes

l.h.s = ε

∫
Ωε,vac

φεBε
 2∑

i=1

∂

∂x]i

∂w

∂x]i
+

2
ε

2∑
i=1

∂

∂x]i

∂w
∂x1

i

+
1
ε2 ∆x1w

 dxε

=
1
ε

∫
Ωε,vac

φεBε
(
∆x1w

)
dxε + O(ε), (2.6.5)

where

O(ε) = ε

∫
Ωε,vac

φεBε
 2∑

i=1

∂

∂x]i

∂w

∂x]i

 dxε + 2
∫

Ωε,vac
φεBε

 2∑
i=1

∂

∂x]i

∂w
∂x1

i

 dxε.

Similarly, the right-hand side (r.h.s) of (2.6.4) becomes

r.h.s = ε

∫
Γ
ε,vac
int

Vε

 2∑
i=1

Bε
 ∂w

∂x]i

 nεi +
1
ε

Bε
(
∇x1w

)
· nε

 ds
(
xε

)
+ ε

∫
Γ
ε,vac
ext

ϕε

 2∑
i=1

Bε
 ∂w

∂x]i

 nεi +
1
ε

Bε
(
∇x1w

)
· nε

 ds
(
xε

)
.

It is clear from ∇x1w · n1 = 0 on Γ
1,vac
top ∪ Γ

1,vac
per that Bε

(
∇x1w

)
· nε = 0 on Γ

ε,vac
ext = Γ

ε,vac
top ∪ Γ

ε,vac
lat ,

then

r.h.s =

∫
Γ
ε,vac
int

VεBε
(
∇x1w · n1

)
ds

(
xε

)
+ O(ε), (2.6.6)

where

O(ε) = ε

2∑
i=1

∫
∂Ωε,vac

ϕεBε
 ∂w

∂x]i

 nεi ds(xε).

Combining with (2.6.5) and (2.6.6), we can assert that

1
ε

∫
Ωε,vac

φεBε
(
∆x1w

)
dxε =

∫
Γ
ε,vac
int

VεBε
(
∇x1w · n1

)
ds

(
xε

)
+ O(ε).
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Approximating Bε by T ε∗ from Proposition 2 and Proposition 6 gives

1
ε

∫
Ωε,vac

φεT ε∗ (∆x1w
)

dxε =

∫
Γ
ε,vac
int

VεT ε∗
(
∇x1w · n1

)
ds

(
xε

)
+ O(ε).

The definition of T ε∗ yields∫
Ω]×Ω1,vac

T ε(φε)∆x1w dx]dx1 =

∫
Ω]×Γ

1,vac
int

T ε(Vε)∇x1w · n1 dx]ds
(
x1

)
+ O(ε).

Passing ε to 0 with Proposition 3 and Proposition 7, we get∫
Ω]×Ω1,vac

φ0∆x1w dx]dx1 =

∫
Ω]×Γ

1,vac
int

V0∇x1w · n1 dx]ds
(
x1

)
.

Applying Green’s formula twice, combining with conditions satisfied by w and decompos-

ing ∂Ω1,vac = Γ
1,vac
int ∪ Γ

1,vac
per ∪ Γ

1,vac
top , we obtain∫

Ω]×Ω1,vac
∆x1φ0w dx]dx1 −

∫
Ω]×(Γ1,vac

per ∪Γ
1,vac
top )
∇x1φ0 · n1w dx]ds(x1)

+

∫
Ω]×Γ

1,vac
int

φ0∇x1w · n1 dx]ds(x1) =

∫
Ω]×Γ

1,vac
int

V0∇x1w · n1 dx]ds
(
x1

)
.

Now, we choose w such that w = 0 on Γ
1,vac
per ∪ Γ

1,vac
top and ∇x1w · n1 = 0 on Γ

1,vac
int . By Lemma

1 we deduce that

∆x1φ0 = 0 in Ω1,vac.

Next, we choose w such that w = 0 on Γ
1,vac
per ∪ Γ

1,vac
top , Lemma 2 gives

φ0 = V0 on Γ
1,vac
int .

And then, we choose w = 0 on Γ
1,vac
per , it follows from Lemma 2 that

∇x1φ0 · n1 = 0 on Γ
1,vac
top .

Finally, we conclude from Lemma 3 that

∇x1φ0 · n1 is Γ1,vac
per - antiperiodic.

�

2.6.2/ LATERAL BOUNDARY LAYER MODEL

One observe that the solution φ0 of the periodic model of the external zone, see Proposi-

tion 9, does not satisfy the boundary conditions due to its periodicity on the boundary. It
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leads to propose a corrector term on the lateral boundary to eliminate this problem. We

now introduce boundary layer terms φεbl = φε − Bε(φ0) and vεbl = Vε − Bε(V0) , where Bε

is an approximate operator of the adjoint operator T ε∗ of the two-scale transform oper-

ator T ε defined in the previous part, V0 is a weak limit of T ε(Vε) in L2(Ω] × Γ
1,vac
1,int ) given

in Proposition 9. We now investigate the convergence of φεbl at the first lateral boundary.

The convergence on the other boundaries can be derived in the same way.

2.6.2.1/ GEOMETRY NOTATIONS

Let Ωαε
bl,1 be a subdomain of Ωε defined as Ωαε

bl,1 = ∪c∈Ibl,1Ω
ε
c where Ibl,1 := {c = (c1, c2) : c1 ∈

1, n1 and c2 ∈ 1, α }, with α ∈ N∗ such that αε < L2
1, where L2

1 is a positive number, see

Figure 2.5. The boundary of the vacuum zone Ω
αε,vac
bl,1 is denoted as ∂Ω

αε,vac
bl,1 assembled

by the union of Γ
αε,vac
bl,1,int and Γ

αε,vac
bl,1,ext = Γ

αε,vac
bl,1,α ∪ Γ

αε,vac
bl,1,top ∪ Γ

αε,vac
bl,1,lat, where Γ

αε,vac
bl,1,int, Γ

αε,vac
bl,1,top , Γ

αε,vac
bl,1,lat

are respectively subboundaries of Γ
ε,vac
1,int , Γ

ε,vac
1,top, Γ

ε,vac
1,lat , while Γ

αε,vac
bl,1,α is a subboundary of the

internal vacuum boundary between cells of the external zone Ωε
1. The boundary of the

mechanical body Ω
αε,mec
bl,1 is defined as ∂Ω

αε,mec
bl,1 constructed by Γ

αε,mec
bl,1,0 ∪ Γ

αε,mec
bl,1,1 ∪ Γ

αε,mec
bl,1,α ,

where Γ
αε,mec
bl,1,0 and Γ

αε,mec
bl,1,1 are respectively subboundaries of Γ

ε,mec
1,0 and Γ

ε,mec
1,1 , Γ

αε,mec
bl,1,α is a

subboundary of the internal mechanical subboundary between cells of Ωε
1.

𝑥1
𝜀

0

Ω2
𝜀

Ω1
𝜀

𝑥3
𝜀

𝑥2
𝜀

Ω𝑏𝑙,1
𝛼𝜀

1

Γ𝑏𝑙,1,𝛼
𝛼𝜀,𝑣𝑎𝑐

Γ𝑏𝑙,1,𝛼
𝛼𝜀,𝑚𝑒𝑐

Γ𝑏𝑙,1,𝑡𝑜𝑝
𝛼𝜀,𝑣𝑎𝑐

Γ𝑏𝑙,1,𝑙𝑎𝑡
𝛼𝜀,𝑣𝑎𝑐

Γ𝑏𝑙,1,𝑙𝑎𝑡
𝛼𝜀,𝑣𝑎𝑐

𝐿1
2

𝐿1
1

Figure 2.5: The physical domain Ωαε
bl,1 for the first lateral boundary model with two sub-

domains the mechanical body Ω
αε,mec
bl,1 and the vacuum part Ω

αε,vac
bl,1 with α = 1. The zoom

represents the internal subboundaries of the vacuum and the mechanical part between
cells of the external zone.
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We next denote Ω
]
bl,1 = [0, L1[, with a partition

{
Ω
]
bl,1c1

}
c1

, Ω
]
bl,1c1

= [(c1 − 1)ε, c1ε[, c1 =

1, ..., n1 and denote x],c1 = c1ε − ε/2 as the center of Ω
]
bl,1c1

.

The finite microscopic domain Ω1
bl,1 is built by Ω1

bl,1 = ∪α−1
ξ=0 (Ω1 + (0, 1/2 + ξ, 1/2)), see

Figure 2.6. The boundary of the finite vacuum part is denoted as ∂Ω
1,vac
bl,1 = Γ

1,vac
bl,1,int ∪

Γ
1,vac
bl,1,per∪Γ

1,vac
bl,1,top∪Γ

1,vac
bl,1,0∪Γ

1,vac
bl,1,α and the boundary of the finite mechanical part is expressed

∂Ω
1,mec
bl,1 = Γ

1,mec
bl,1,0 ∪ Γ

1,mec
bl,1,1 ∪ Γ

1,mec
bl,1,per ∪Γ

1,mec
bl,1,Or ∪ Γ

1,mec
bl,1,α.

𝑥1
1

𝑥2
1

𝑥3
1

−1/2

1/2

0

1

Ω𝑏𝑙,1
1

Γ𝑏𝑙,1,𝑂𝑟
1,𝑚𝑒𝑐

Γ𝑏𝑙,1,0
1,𝑣𝑎𝑐

Γ𝑏𝑙,1,𝑝𝑒𝑟
1,𝑣𝑎𝑐

Γ𝑏𝑙,1,𝑝𝑒𝑟
1,𝑣𝑎𝑐

Γ𝑏𝑙,1,𝛼
1,𝑚𝑒𝑐

Γ𝑏𝑙,1,𝑝𝑒𝑟
1,𝑚𝑒𝑐

Γ𝑏𝑙,1,𝑝𝑒𝑟
1,𝑚𝑒𝑐

Γ𝑏𝑙,1,𝑡𝑜𝑝
1,𝑣𝑎𝑐

Γ𝑏𝑙,1,𝛼
1,𝑣𝑎𝑐

Figure 2.6: The microscopic domain Ω1
bl,1 with two subdomains Ω

1,mec
bl,1 and Ω

1,vac
bl,1 with

α = 1.

The infinite microscopic domain Ω∞bl,1 is defined as Ω∞bl,1 = ∪+∞
ξ=0(Ω1+(0, 1/2+ξ, 1/2)) with the

boundary of the infinite vacuum part ∂Ω
∞,vac
bl,1 = Γ

∞,vac
bl,1,int∪Γ

∞,vac
bl,1,per∪Γ

∞,vac
bl,1,top∪Γ

∞,vac
bl,1,0 ∪Γ

∞,vac
bl,1,+∞ and

the boundary of the infinite mechanical part ∂Ω
∞,mec
bl,1 = Γ

∞,mec
bl,1,0 ∪ Γ

∞,mec
bl,1,1 ∪ Γ

∞,mec
bl,1,per ∪Γ

∞,mec
bl,1,Or ∪

Γ
∞,mec
bl,1,+∞. These subboundaries are defined as the extension of the subboundaries of the

finite domain Ω1
bl,1.
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Remark 5:

We use the subscript i = 1, 2, 3, 4 for all geometrical notations and operators,

the superscript i for all functions to indicate which lateral boundary models they

belong to, corresponding to the index in Figure 2.1. For instance, Ωαε
bl,1 and Ωαε

bl,2

are the first and the second physical domains, T ε
bl,1 and T ε

bl,2 are the first and

the second boundary layer two-scale transform operators, φ1
bl and φ2

bl are the

solutions of the first and the second lateral boundary models.

When we say for each α, it means that for all α satisfied the condition 2.6.2.1,

α ∈ Z+ such that αε < L2
1, L2

1 is a positive given number.

Next, we introduce the two-scale transform for the first lateral model.

2.6.2.2/ BOUNDARY LAYER TWO-SCALE TRANSFORM OPERATOR

Definition 11:

For every ϕ in L2(Ωαε
bl,1) (resp. ϕ in L2(Γαεbl,1)), we define a boundary layer two-scale

transform operator T ε
bl,1 by

T ε
bl,1(ϕ)(x], x1) =

∑
c1

χ
Ω
]
bl,1c1

(x])ϕ(x],c1 + εx1
1, εx1

2, εx1
3),

for a.e. x] ∈ Ω
]
bl,1, x1 ∈ Ω1

bl,1 (resp. x1 ∈ Γ1
bl,1).

Definition 12:

We define the adjoint operator T ε∗
bl,1 of T ε

bl,1 by

1
ε2

∫
Ωαε

bl,1

ϕT ε∗
bl,1(ψ)dxε =

∫
Ω
]
bl,1×Ω

1,α
bl,1

T ε
bl,1(ϕ)ψdx]dx1,

for all ψ ∈ L2(Ω]
bl,1 ×Ω1

bl,1), ϕ ∈ L2(Ωαε
bl,1), respectively by

1
ε

∫
Γαεbl,1

ϕT ε∗
bl,1(ψ) ds(xε) =

∫
Ω
]
bl,1×Γ

1,α
bl,1

T ε
bl,1(ϕ)ψdx]ds(x1),

for all ψ ∈ L2(Ω]
bl,1 × Γ1

bl,1), ϕ ∈ L2(Γαεbl,1).

From the definition, the explicit formula follows

T ε∗
bl,1(ψ)

(
xε

)
=

1
ε

∑
c1

∫
Ω
]
bl,1c1

ψ

(
x],

xε1
ε
− (c1 −

1
2

),
xε2
ε
,

xε3
ε

)
dx]χ

Ω
]
bl,1c1

(
xε1

)
,
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for all ψ ∈ L2(Ω]
bl,1 ×Ω1

bl,1), resp. for all ψ ∈ L2(Ω]
bl,1 × Γ1

bl,1).

Definition 13:

The operator Bεbl,1 is defined as:

Bεbl,1(ψ)(xε) = ψ

(
P(xε),

xε1
ε
−

1
2
,

xε2
ε
,

xε3
ε

)

for all ψ ∈ C1(Ω]
bl,1 ×Ω1

bl,1), where P(xε) = xε1.

Proposition 10:

For all ψ in C1(Ω]
bl,1 ×Ω1

bl,1)), Ω1
bl,1 - periodic in the direction x1

1, then

T ε∗
bl,1(ψ)

(
xε

)
= Bεbl,1(ψ)(xε) + O(ε).

Proposition 11:

For each α, for all ψ ∈ C1(Ω], L2(Ω1))∩C0(Ω],H1(Ω1)), Ω1 - periodic in the direction

x1
1, then

T ε
bl,1(Bε(ψ))→ ψ̃ in L2(Ω]

bl,1 ×Ω1
bl,1) and in L2(Ω]

bl,1 × Γ1
bl,1) when ε→ 0,

where ψ̃(x], x1) = ψ
(
(x], 0), (x1

1, x
1
2 −

1
2 , x

1
3 −

1
2 )

)
.

Proof. By the definition of T ε
bl,1 and Bε, it follows that

T ε
bl,1(Bε(ψ))(x], x1) =

∑
c1

χ
Ω
]
bl,1c1

(x])Bε(ψ)(x],c1 + εx1
1, εx1

2, εx1
3)

=
∑
c1

χ
Ω
]
bl,1c1

(x])ψ
(
(x],c1 + εx1

1, εx1
2), (x1

1, x
1
2 −

1
2
, x1

3 −
1
2

)
)
.

Applying the first order Taylor expansion,

ψ

(
(x],c + εx1

1, εx1
2), (x1

1, x
1
2 −

1
2
, x1

3 −
1
2

)
)

= ψ

(
(x], εx1

2), (x1
1, x

1
2 −

1
2
, x1

3 −
1
2

)
)

+ O(ε).

Next, passing ε to 0, we have

T ε
bl,1(Bε(ψ))→ ψ

(
(x], 0), ((x1

1, x
1
2 −

1
2
, x1

3 −
1
2

))
)
,

in L2(Ω]
bl,1 ×Ω1

bl,1) as well as in L2(Ω]
bl,1 × Γ1

bl,1)). �
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2.6.2.3/ DERIVATION OF A LATERAL BOUNDARY MODEL

We now recall the boundary layer terms φεbl = φε − Bεφ0, vεbl = Vε − BεV0 and make the

following assumptions where it is understood that by construction Ω
1,vac
bl,1 depends on α.

Assumption 2:

We assume that:

1. For each α, there exist φ1,α
bl in L2

(
Ω
]
bl,1,H

1(Ω1,vac
bl,1 )

)
, Ω

1,vac
bl,1 -periodic in the

direction x1
1, and v1

bl in L2
(
Ω
]
bl,1 × Γ

1,vac
bl,1,int

)
such that T ε

bl,1(φεbl) ⇀ φ1,α
bl weakly

in L2
(
Ω
]
bl,1 ×Ω

1,vac
bl,1

)
and T ε

bl,1(vεbl) ⇀ v1,α
bl weakly in L2

(
Ω
]
bl,1 × Γ

1,vac
bl,1,int

)
when

ε→ 0.

2. There exist φ1
bl in L2

(
Ω
]
bl,1,H

1(Ω∞,vac
bl,1 )

)
, Ω
∞,vac
bl,1 -periodic in the direction x1

1, φ1
bl

and its gradient exponentially decreasing to 0 when x1
2 → +∞, and v1

bl in

L2
(
Ω
]
bl,1 × Γ

∞,vac
bl,1,int

)
such that φ1,α

bl χΩ
1,vac
bl,1

⇀ φ1
bl weakly in L2

(
Ω
]
bl,1 ×Ω

∞,vac
bl,1

)
and v1,α

bl χΩ
1,vac
bl,1

⇀ v1
bl weakly in L2

(
Ω
]
bl,1 × Γ

∞,vac
bl,1,int

)
when α→ +∞.

For all ψ defined in Ω
]
bl,1 × Ω

1,vac
bl,1 , we define the tilde function ψ̃(x], x1) as ψ̃(x], x1) =

ψ
(
(x], 0), (x1

1, x
1
2 −

1
2 , x

1
3 −

1
2 )

)
for all (x], x1) ∈ Ω

]
bl,1 ×Ω

1,vac
bl,1 .

Proposition 12:

For each α, if φ0 ∈ C1(Ω], L2(Ω1)) ∩ C0(Ω],H1(Ω1)) and Assumption 2 holds then

T ε
bl,1φ

ε ⇀ φ1,α
bl + φ̃0 weakly in L2

(
Ω
]
bl,1 ×Ω

1,vac
bl,1

)
and T ε

bl,1vε ⇀ v1,α
bl + Ṽ0 weakly in

L2
(
Ω
]
bl,1 × Γ

1,vac
bl,1,int

)
.

Proof. The proof is by passing ε to 0 in T ε
bl,1φ

ε = T ε
bl,1(Bεφ0)+T ε

bl,1(φεbl), T ε
bl,1vε = T ε

bl,1(BεV0)+

T ε
bl,1(vεbl) and combining with Proposition 11 and Assumption 2. �

Proposition 13:

The limit φ1
bl is a solution to

−∆x1φ1
bl = 0 in Ω

∞,vac
bl,1

φ1
bl = v1

bl on Γ
∞,vac
bl,1,int

∇x1φ1
bl · n

1 = 0 on Γ
∞,vac
bl,1,top

∇x1φ1
bl · n

1 is Γ
∞,vac
bl,1,per - antiperiodic

∇x1φ1
bl · n

1 = −∇φ̃0 · n1 on Γ
∞,vac
bl,1,0

φ1
bl is Γ

∞,vac
bl,1,per - periodic.
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Proof. The proof starts by finding the very weak form satisfied by the limit φ1,α
bl and then

to pass to the limit on α→ ∞ to find the very weak form satisfied by φ1
bl. The derivation of

the corresponding strong form follows. Let us begin with α fixed and replace vε in (2.6.3)

by a smooth function vεbl in Ω
αε,vac
bl,1 vanishing out of Ω

αε,vac
bl,1 and vεbl = 0 on Γ

αε,vac
bl,1,int. This yields∫

Ω
αε,vac
bl,1

φε∆xεvεbl dxε =

∫
Γ
αε,vac
bl,1,int

Vε∇xεvεbl · n
ε ds

(
xε

)
+

∫
Γ
αε,vac
bl,1,ext

φε∇xεvεbl · n
ε ds

(
xε

)
.

Taking a function w in C∞(Ω]
bl,1 ×Ω

1,vac
bl,1 ), Ω

1,vac
bl,1 - periodic in the direction x1

1 satisfying w = 0

on Γ
1,vac
bl,1,int ∪ Γ

1,vac
bl,1,α and ∇x1w · n1 = 0 on Γ

1,vac
bl,1,per ∪ Γ

1,vac
bl,1,top ∪ Γ

1,vac
bl,1,0 ∪ Γ

1,vac
bl,1,α. It is obvious that

Bεbl,1(w) = 0 on Γ
αε,vac
bl,1,int, then replacing vεbl by Bεbl,1(w), we get∫

Ω
αε,vac
bl,1

φε∆xεBεbl,1(w) dxε =

∫
Γ
αε,vac
bl,1,int

Vε∇xεBεbl,1(w) · nε ds
(
xε

)
+

∫
Γ
αε,vac
bl,1,ext

ϕε∇xεBεbl,1(w) · nε ds
(
xε

)
.

(2.6.7)

A direct computation shows that

∂Bεbl,1w

∂xεi
= Bεbl,1

χI](i)
∂w
∂x]

+
1
ε

∂w
∂x1

i

 ,
∂

∂xεi

∂Bεbl,1w

∂xεi
= Bεbl,1

χI](i)
∂

∂x]
∂w
∂x]

+ χI](i)
2
ε

∂

∂x]
∂w
∂x1

1

+
1
ε2

∂

∂x1
i

∂w
∂x1

i

 ,
for all i ∈ I = {1, 2, 3} and with I] = {1}.

After a straightforward calculation, the l.h.s of (2.6.7) becomes

l.h.s =

∫
Ω
αε,vac
bl,1

φεBε
 ∂

∂x]
∂w
∂x]

+
2
ε

∂

∂x]
∂w
∂x1

1

+
1
ε2 ∆x1w

 dxε

=
1
ε2

∫
Ω
αε,vac
bl,1

φεBε
(
∆x1w

)
dxε + O(ε), (2.6.8)

where

O(ε) =

∫
Ω
αε,vac
bl,1

φεBε(
∂

∂x]
∂w
∂x]

) dxε +
2
ε

∫
Ω
αε,vac
bl,1

φεBε
 ∂

∂x]
∂w
∂x1

1

 dxε.

The r.h.s of (2.6.7) becomes

r.h.s =

∫
Γ
αε,vac
bl,1,int

Vε

[
Bε

(
∂w
∂x]

)
nε1 +

1
ε

Bε
(
∇x1w

)
· nε

]
ds

(
xε

)
+

∫
Γ
αε,vac
bl,1,ext

ϕε
[
Bε

(
∂w
∂x]

)
nε1 +

1
ε

Bε
(
∇x1w

)
· nε

]
ds

(
xε

)
.

Decomposing Γ
αε,vac
bl,1,ext into Γ

αε,vac
bl,1,ext = Γ

αε,vac
bl,1,α ∪Γ

αε,vac
bl,1,top∪Γ

αε,vac
bl,1,lat and combining with ∇x1w·n1 = 0
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on Γ
1,vac
bl,1,per ∪ Γ

1,vac
bl,1,top ∪ Γ

1,vac
bl,1,0 ∪ Γ

1,vac
bl,1,α make it obvious that Bε

(
∇x1w

)
· nε = 0 on Γ

αε,vac
bl,1,ext, then

r.h.s =
1
ε

∫
Γ
αε,vac
bl,1,int

VεBε
(
∇x1w · n1

)
ds

(
xε

)
+ O(ε), (2.6.9)

where

O(ε) =

∫
∂Ωαε,vac

ϕεBε
(
∂w
∂x]

)
nε1 ds(xε)

From (2.6.8) and (2.6.9), we have

1
ε2

∫
Ω
αε,vac
bl,1

φεBεbl,1
(
∆x1w

)
dxε =

1
ε

∫
Γ
αε,vac
bl,1,int

VεBεbl,1

(
∇x1w · n1

)
ds

(
xε

)
+ O(ε), (2.6.10)

Replacing Bεbl,1 by T ε∗
bl,1 using Proposition 10, Equality (2.6.10) becomes

1
ε2

∫
Ω
αε,vac
bl,1

φεT ε∗
bl,1

(
∆x1w

)
dxε =

1
ε

∫
Γ
αε,vac
bl,1,int

VεT ε∗
bl,1

(
∇x1w · n1

)
ds

(
xε

)
+ O(ε),

By the definition of T ε∗
bl,1, we have∫

Ω
]
bl,1×Ω

1,α,vac
bl,1

T ε
bl,1(φε)∆x1wdx]dx1 =

∫
Ω
]
bl,1×Γ

1,α,vac
bl,1,int

T ε
bl,1(Vε)∇x1w · n1 dx]ds

(
x1

)
+ O(ε).

Passing ε to 0 and combining with Proposition 12 gives∫
Ω
]
bl,1×Ω

1,vac
bl,1

(
φ1,α

bl + φ̃0
)
∆x1wdx]dx1 =

∫
Ω
]
bl,1×Γ

1,vac
bl,1,int

(
v1,α

bl + Ṽ0
)
∇x1w · n1 dx]ds(x1), (2.6.11)

for each α.

It follows that (2.6.11) still holds if w is taken on the form of ταv, where (τα)α∈[α0,+∞[ is

a family of smooth truncation functions with compact support in Ω
]
bl,1 × Ω

∞,vac
bl,1 such that

ταv→ v for all v ∈ H2(Ω]
bl,1×Ω

∞,vac
bl,1 ) and v ∈ C∞(Ω]

bl,1×Ω
∞,vac
bl,1 )∩H2(Ω]

bl,1×Ω
∞,vac
bl,1 ) satisfies v

is Ω
∞,vac
bl,1 - periodic in the direction x1

1, v = 0 on Γ
∞,vac
bl,1,int, ∇x1v·n1 = 0 on Γ

∞,vac
bl,1,per∪Γ

∞,vac
bl,1,top∪Γ

∞,vac
bl,1,0

as well as |v|,
∣∣∣∇x1v

∣∣∣ , and
∣∣∣∆x1v

∣∣∣ exponentially decrease to 0 when x1
2 → +∞. Thus,∫

Ω
]
bl,1×Ω

∞,vac
bl,1

(
φ1,α

bl + φ̃0
)
χ

Ω
1,vac
bl,1

∆x1(ταv )dx]dx1 =

∫
Ω
]
bl,1×Γ

∞,vac
bl,1,int

(
v1,α

bl + Ṽ0
)
χ

Ω
1,vac
bl,1
∇x1(ταv)·n1 dx]ds(x1).

Then, passing α to +∞, by Assumption 2 , we get∫
Ω
]
bl,1×Ω

∞,vac
bl,1

(
φ1

bl + φ̃0
)
∆x1v dx]dx1 =

∫
Ω
]
bl,1×Γ

∞,vac
bl,1,int

(
v1

bl + Ṽ0
)
∇x1v · n1 dx]ds(x1).

To carry out the interpretation of the very weak formulation, we then assume that v is

vanishing out of a bounded domain. For simplicity of notation, we choose this domain
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equal to Ω
]
bl,1 ×Ω

1,vac
bl,1 . Then∫

Ω
]
bl,1×Ω

1,vac
bl,1

(
φ1

bl + φ̃0
)
∆x1v dx]dx1 =

∫
Ω
]
bl,1×Γ

1,vac
bl,1,int

(
v1

bl + Ṽ0
)
∇x1v · n1 dx]ds(x1),

for each α.

Applying Green’s formula twice with decomposing ∂Ω
1,vac
bl,1 = Γ

1,vac
bl,1,int ∪ Γ

1,vac
bl,1,per ∪ Γ

1,vac
bl,1,top ∪

Γ
1,vac
bl,1,0 ∪ Γ

1,vac
bl,1,α and combining with conditions satisfied by v, the results from Proposition

9 ∆x1 φ̃0 = 0 in Ω
1,vac
bl,1 , φ1

bl = Ṽ0 on Γ
1,vac
bl,1,int, ∇x1 φ̃0 · n1 = 0 on Γ

1,vac
bl,1,top, ∇x1 φ̃0 · n1 is Γ

1,vac
bl,1,per-

antiperiodic, the above equality becomes∫
Ω
]
bl,1×Ω

1,vac
bl,1

∆x1φ1
blv dx]dx1 +

∫
Ω
]
bl,1×Γ

1,vac
bl,1,int

φ1
bl∇x1v · n1 dx]ds(x1)

−

∫
Ω
]
bl,1×

(
Γ

1,vac
bl,1,top∪Γ

1,vac
bl,1,per

) ∇x1φ1
bl · n

1v dx]ds(x1) +

∫
Ω
]
bl,1×Γ

1,vac
bl,1,0

∇x1

(
φ1

bl + φ̃0
)
· n1v dx]ds(x1)

=

∫
Ω
]
bl,1×Γ

1,vac
bl,1,int

v1
bl∇x1v · n1 dx]ds

(
x1

)
.

If v = 0 on Γ
1,vac
bl,1,0 ∪ Γ

1,vac
bl,1,top ∪ Γ

1,vac
bl,1,per and ∇x1v · n1 = 0 on Γ

1,vac
bl,1,int, then

∫
Ω
]
bl,1×Ω

1,vac
bl,1

∆x1(φ1
bl)v dx]dx1 = 0.

We conclude that,

∆x1φ1
bl = 0 in Ω

1,vac
bl,1 .

Next, if v = 0 on Γ
1,vac
bl,1,0 ∪ Γ

1,vac
bl,1,top ∪ Γ

1,vac
bl,1,per, then

∫
Ω
]
bl,1×Γ

1,vac
bl,1,int

(φ1
bl − v1

bl)∇x1v · n1 dx]ds(x1) = 0,

and we deduce

φ1
bl = v1

bl on Γ
1,vac
bl,1,int.

Now, if v = 0 on Γ
1,vac
bl,1,0 ∪ Γ

1,vac
bl,1,per, thus

∫
Ω
]
bl,1×Γ

1,vac
bl,1,top

∇x1φ1
bl · n

1v dx]ds(x1) = 0,

and we obtain

∇x1φ1
bl · n

1 = 0 on Γ
1,vac
bl,1,top.
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If v = 0 on Γ
1,vac
bl,1,per, hence

∫
Ω
]
bl,1×Γ

1,vac
bl,1,0

∇x1

(
φ1

bl + φ̃0
)
· n1v dx]ds(x1) = 0,

we assert that

∇x1φ1
bl · n

1 = −∇x1 φ̃0 · n1on Γ
1,vac
bl,1,0.

Last, we get

∇x1φ1
bl · n

1 is Γ
1,vac
bl,1,per - antiperiodic.

Since this equations are true for each α then the above equations hold in the infinite

domain and the proof is complete. �

2.6.3/ EXTERIOR EDGE MODEL

We assume that all lateral boundary models are already derived and identified by the

index i = 1, 2, 3, 4 of the lateral boundaries, see Figure 2.1. Let us see the contributions

of two lateral boundary models corresponding to the indices i = 1 and i = 2 at the first

exterior edge. Obviously, the sum of contributions is not continuous at this edge, and

then it leads to propose an edge corrector to overcome this problem. We introduce terms

φεexe = φε −
(
Bεφ0 + Bεbl,1φ

1
bl + Bεbl,2φ

2
bl

)
and vεexe = Vε −

(
BεV0 + Bεbl,1v1

bl + Bεbl,2v2
bl

)
, where φ0

is the solution of periodic model of the external zone, φ1
bl and φ2

bl are the solutions of the

first and second lateral boundary near the first exterior edge, Bεbl,1 and Bεbl,2 are smooth

approximate operators of the first and second adjoint boundary layer two-scale transform

operator T ε∗
bl,1 and T ε∗

bl,2 , v1
bl and v2

bl are weak limits of v1,α
bl and v2,α

bl which are the weak limits

of T ε
bl,1(vεbl) in L2

(
Ω
]
bl,1 × Γ

1,vac
bl,1,int

)
, resp. of T ε

bl,2(vεbl) in L2
(
Ω
]
bl,2 × Γ

1,α,vac
bl,2,int

)
.

2.6.3.1/ GEOMETRY NOTATIONS

Let Ωαε
exe,1 be a subdomain of Ωε assembled by Ωαε

exe,1 = ∪c∈Iexe,1Ω
ε
c where Iexe,1 := {c =

(c1, c2) : c1, c2 ∈ 1, α } with αε < min{L1
1, L

2
1}, see Figure 2.7. The boundary of the vacuum

part ∂Ω
αε,vac
exe,1 is a subboundary of ∂Ω

ε,vac
1 denoted as ∂Ω

αε,vac
exe,1 = Γ

αε,vac
exe,1,int ∪Γ

αε,vac
exe,1,ext, with

Γ
αε,vac
exe,1,ext = Γ

αε,vac
exe,1,α ∪ Γ

αε,vac
exe,1,top ∪ Γ

αε,vac
exe,1,lat, where Γ

αε,vac
exe,1,int, Γ

αε,vac
exe,1,top, Γ

αε,vac
exe,1,lat are respectively

subboundaries of Γ
ε,vac
1,int , Γ

ε,vac
1,top, Γ

ε,vac
1,lat , and Γ

αε,vac
exe,1,α is a subboundary of the internal vacuum

subboundary between cells of Ωε
1. The boundary of the mechanical body ∂Ω

αε,mec
exe,1 is

subboundary of ∂Ω
ε,mec
1 defined as ∂Ω

αε,mec
exe,1 = Γ

αε,mec
exe,1,0 ∪ Γ

αε,mec
exe,1,1 ∪ Γ

αε,mec
exe,1,α, where Γ

αε,mec
exe,1,0,

Γ
αε,mec
exe,1,1 are subboundaries of Γ

ε,mec
1,0 , resp. Γ

ε,mec
1,1 , Γ

αε,mec
exe,1,α is a subboundary of the internal

mechanical subboundary between cells of Ωε
1.

We introduce the finite microscopic domain Ω1
exe,1 defined by Ω1

exe,1 = ∪α−1
ξ,η=0(Ω1 + (ξ +

1/2, η+ 1/2, 1/2)), see Figure 2.8, with the vacuum boundary ∂Ω
1,vac
exe,1 = Γ

1,vac
exe,1,int ∪ Γ

1,vac
exe,1,top ∪
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𝛼𝜀,𝑚𝑒𝑐
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𝛼𝜀,𝑣𝑎𝑐
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Γ𝑒𝑥𝑒,1,𝛼
𝛼𝜀,𝑚𝑒𝑐

Figure 2.7: The first exterior edge physical domain Ωαε
exe,1 including two subdomains Ω

αε,vac
exe,1

and Ω
αε,mec
exe,1 with α = 1. The zoom illustrates their boundaries.

Γ
1,vac
exe,1,bl1∪Γ

1,vac
exe,1,bl2∪Γ

1,vac
exe,1,α and the mechanical boundary ∂Ω

1,mec
exe,1 = Γ

1,mec
exe,1,0∪Γ

1,mec
exe,1,1∪Γ

1,mec
exe,1,bl1∪

Γ
1,mec
exe,1,bl2 ∪ Γ

1,mec
exe,1,α.
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1
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1
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1,𝑚𝑒𝑐
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1,𝑣𝑎𝑐
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1,𝑚𝑒𝑐

Γ𝑒𝑥𝑒,1,𝑡𝑜𝑝
1,𝑣𝑎𝑐

Figure 2.8: The first exterior edge physical domain Ωαε
exe,1 with two subdomains Ω

αε,vac
exe,1 and

Ω
αε,mec
exe,1 .
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The infinite microscopic domain Ω∞exe,1 and its related sets are defined as the limits of

Ω1
exe,1 and related when α tends to infinity.

2.6.3.2/ EXTERIOR EDGE BOUNDARY LAYER TWO-SCALE OPERATOR

We now introduce a dilation operator T ε
exe,1 for the first exterior edge model.

Definition 14:

For all ϕ in L2(Ωαε
exe,1) (resp., ϕ in L2(Γαεexe,1)), the operator T ε

exe,1 is defined as

T ε
exe,1(ϕ)(x1) = ϕ(εx1),

for a.e. x1 in Ω1
exe,1 (resp., x1 in Γ1

exe,1).

Definition 15:

We define the adjoint operator T ε∗
exe,1 of T ε

exe,1 by

1
ε3

∫
Ωαε

exe,1

ϕT ε∗
exe,1(ψ) dxε =

∫
Ω1

exe,1

T ε
exe,1(ϕ)ψ dx1,

for all ϕ ∈ L2(Ωαε
exe,1), ψ ∈ L2(Ω1

exe,1), respectively

1
ε2

∫
Γαεexe,1

ϕT ε∗
exe,1(ψ) ds(xε) =

∫
Γ1

exe,1

T ε
exe,1(ϕ)ψ ds(x1),

for all ϕ ∈ L2(Γαεexe,1), ψ ∈ L2(Γ1
exe,1).

From the definitions, we obtain an explicit formula of T ε∗
exe,1 as

T ε∗
exe,1(ψ)

(
xε

)
= ψ(

xε

ε
),

for all ψ ∈ L2(Ω1
exe,1), resp. ψ ∈ L2(Γ1

exe,1).

In this edge case, the operator T ε∗
exe,1 and its approximation Bεexe,1 are identical however

both will be used to follow the algorithm of Section 2.5.3.
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Proposition 14:

Let Bε, Bεbl,1, Bεbl,2 be smooth approximate operators of the adjoints of T ε, T ε
bl,1,

T ε
bl,2 respectively, we have

1. For all ψ ∈ C1(Ω]; L2(Ω1))∩C0(Ω]; H1(Ω1)) and Ω1 - periodic in the directions

x1
1, x

1
2,

T ε
exe,1(Bεψ)→ ψ̃ in L2(Ω1

exe,1) and in L2(Γ1
exe,1)),

where ψ̃(x1) = ψ(0, x1 − 1/2).

2. For all ψ ∈ C1(Ω]
bl,1; L2(Ω∞bl,1)) ∩C0(Ω]

bl,1; H1(Ω∞bl,1)) and Ω∞bl,1 - periodic in the

direction x1
1,

T ε
exe,1(Bεbl,1ψ)→ ψ̃ in L2(Ω1

exe,1) and in L2(Γ1,∞
exe,1)),

where ψ̃(x1) = ψ(0, (x1
1 − 1/2, x1

2, x
1
3)).

3. For all ψ ∈ C1(Ω]
bl,2; L2(Ω∞bl,2)) ∩C0(Ω]

bl,2; H1(Ω∞bl,2)) and Ω∞bl,2 - periodic in the

direction x1
2,

T ε
exe,1(Bεbl,2ψ)→ ψ̃ in L2(Ω1

exe,1) and in L2(Γ1
exe,1)),

where ψ̃(x1) = ψ(0, (x1
1, x

1
2 − 1/2, x1

3)).

2.6.3.3/ DERIVATION OF AN EXTERIOR EDGE MODEL

Let us recall that φεexe = φε −
(
Bεφ0 + Bεbl,1φ

1
bl + Bεbl,2φ

2
bl

)
and vεexe = Vε −(

BεV0 + Bεbl,1v1
bl + Bεbl,2v2

bl

)
and make the following assumptions.

Assumption 3:

we assume that

1. For each α, there exist φ1,α
exe in H1(Ω1,vac

exe,1) and v1,α
exe in L2(Γ1,vac

exe,1,int) such that

T ε
exe,1(φεexe) ⇀ φ1,α

exe weakly in L2(Ω1,vac
exe,1) and T ε

exe,1(vεexe) ⇀ v1,α
exe weakly in

L2(Γ1,vac
exe,1,int) when ε→ 0.

2. Assume that there exist φ1
exe in H1(Ω∞,vac

exe,1 ), φ1
exe and it gradient converge

exponentially fast to zero when x1
1 + x1

2 → ∞, and v1
exe in L2(Γ∞,vac

exe,1,int) such

that φ1,α
exeχΩ

1,vac
exe,1

⇀ φ1
exe weakly in L2(Ω∞,vac

exe,1 ) and v1,α
exeχΩ

1,vac
exe,1

⇀ v1
exe weakly in

L2(Γ∞,vac
exe,1,int) when α→ +∞.

The following proposition results from using Proposition 14.
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Proposition 15:

For each α, if φ0 ∈ C1(Ω]; L2(Ω1)) ∩ C0(Ω]; H1(Ω1)), φ1
bl ∈ C1(Ω]

bl,1; L2(Ω∞bl,1)) ∩

C0(Ω]
bl,1; H1(Ω∞bl,1)), φ2

bl ∈ C1(Ω]
bl,2; L2(Ω∞bl,2)) ∩ C0(Ω]

bl,2; H1(Ω∞bl,2)) and Assumption

3 holds then T ε
exe,1(φε) ⇀ φ1,α

exe + φ̃0 + φ̃1
bl + φ̃2

bl weakly in L2(Ω1,vac
exe,1) and T ε

exe,1(Vε) ⇀

v1,α
exe + Ṽ0 + ṽ1

bl + ṽ2
bl weakly in L2(Γ1,vac

exe,1,int) when ε→ 0, where ϕ̃0(x1) = ϕ0(0, x1−1/2),

ϕ̃1
bl(x1) = ϕ1

bl(0, (x1
1 − 1/2, x1

2, x
1
3)), ϕ̃2

bl(x1) = ϕ2
bl(0, (x1

1, x
1
2 − 1/2, x1

3)).

Proposition 16:

The limit φ1
exe satisfies



∆x1φ1
exe = 0 in Ω

∞,vac
exe,1

φ1
exe = v1

exe on Γ
∞,vac
exe,1,int

∇x1φ1
exe · n1 = 0 on Γ

∞,vac
exe,1,top

∇x1φ1
exe · n1 = −∇x1 φ̃2

bl · n
1 on Γ

∞,vac
exe,1,bl1

∇x1φ1
exe · n1 = −∇x1 φ̃1

bl · n
1 on Γ

∞,vac
exe,1,bl2.

Proof. The outline of the proof runs as the previous ones. Firstly, we take a fixed α and

replace vε by a smooth function vεexe in (2.6.3), where vεexe is defined in Ω
αε,vac
exe,1 , vεexe = 0 on

Γ
αε,vac
exe,1,int and vanishes out of Ωαε

exe,1, then∫
Ω
αε,vac
exe,1

φε∆xεvεexe dxε =

∫
Γ
αε,vac
exe,1,int

Vε∇xεvεexe · n
ε ds

(
xε

)
+

∫
Γ
αε,vac
exe,1,ext

ϕε∇xεvεexe · n
ε ds

(
xε

)
.

After that, we substitute vεexe by ε−1Bεexe,1(w) where w is in C∞(Ω1,vac
exe,1), w = 0 on Γ

1,vac
exe,1,int ∪

Γ
1,vac
exe,1,α and ∇x1w · n1 = 0 on Γ

1,vac
exe,1,top ∪ Γ

1,vac
exe,1,α ∪ Γ

1,vac
exe,1,bl1 ∪ Γ

1,vac
exe,1,bl2. Hence,

1
ε

∫
Ω
αε,vac
exe,1

φε∆xεBεexe,1(w) dxε =
1
ε

∫
Γ
αε,vac
exe,1,int

Vε∇xεBεexe,1(w)·nε ds
(
xε

)
+

1
ε

∫
Γ
αε,vac
exe,1,ext

ϕε∇xεBεexe,1(w)·nε ds
(
xε

)
.

We check at once that,

∂Bεexe,1w

∂xεi
=

1
ε

Bεexe,1

 ∂w
∂x1

i

 and
∂

∂xεi

∂Bεexe,1w

∂xεi
=

1
ε2 Bεexe,1

 ∂

∂x1
i

∂w
∂x1

i

 ,
for all i = 1, 2, 3, and it obvious that Bεexe,1

(
∇x1w

)
· nε = 0 on Γ

αε,vac
exe,1,ext, then

1
ε3

∫
Ω
αε,vac
exe,1

φεBεexe,1
(
∆x1w

)
dxε =

1
ε2

∫
Γ
αε,vac
exe,1,int

VεBεexe,1

(
∇x1w · n1

)
ds

(
xε

)
.
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Replacing Bεexe,1 by T ε∗
exe,1 and combining with the definition of T ε∗

exe,1, we have∫
Ω

1,vac
exe,1

T ε
exe,1(φε)∆x1w dx1 =

∫
Γ

1,vac
exe,1,int

T ε
exe,1(Vε)∇x1w · n1 ds

(
x1

)
.

Passing ε to 0, by Proposition 15 gives∫
Ω

1,vac
exe,1

(
φ1,α

exe + φ̃0 + φ̃1
bl + φ̃2

bl

)
∆x1w dx1 =

∫
Γ

1,vac
exe,1,int

(
v1,α

exe + Ṽ0 + ṽ1
bl + ṽ2

bl

)
∇x1w · n1 ds

(
x1

)
.

We now replace w by ταv, where τα is a smooth truncation function with compact support

in Ω
1,vac
exe,1 and v ∈ C∞(Ω∞,vac

exe,1 ) ∩ H2(Ω∞,vac
exe,1 ) satisfying v = 0 on Γ

∞,vac
exe,1,int, ∇x1v · n1 = 0 on

Γ
1,vac
exe,1,top ∪ Γ

1,vac
exe,1,bl1 ∪ Γ

1,vac
exe,1,bl2, |v|,

∣∣∣∇x1v
∣∣∣ and

∣∣∣∆x1v
∣∣∣ converge exponentially fast to zero when

x1
1 + x1

2 → ∞, ταv→ v in H2(Ω∞,vac
exe,1 ) when α→ ∞. We obtain∫

Ω
∞,vac
exe,1

(
φ1,α

exe + φ̃0 + φ̃1
bl + φ̃2

bl

)
χ

Ω
1,vac
exe,1

∆x1(ταv) dx1 =

∫
Γ
∞,vac
exe,1,int

(
v1,α

exe + Ṽ0 + ṽ1
bl + ṽ2

bl

)
χ

Ω
1,vac
exe,1
∇x1ταv·n1 ds

(
x1

)
.

Passing α to +∞, by Assumption 3, we get∫
Ω
∞,vac
exe,1

(
φ1

exe + φ̃0 + φ̃1
bl + φ̃2

bl

)
∆x1v dx1 =

∫
Γ
∞,vac
exe,1,int

(
v1

exe + Ṽ0 + ṽ1
bl + ṽ2

bl

)
∇x1v · n1 ds

(
x1

)
.

Now, we choose v vanishing out of Ω
1,vac
exe,1 for a given α,∫

Ω
1,vac
exe,1

(
φ1

exe + φ̃0 + φ̃1
bl + φ̃2

bl

)
∆x1v dx1 =

∫
Γ

1,vac
exe,1,int

(
v1

exe + Ṽ0 + ṽ1
bl + ṽ2

bl

)
∇x1v · n1 ds

(
x1

)
,

Applying Green’s formula twice and decomposing ∂Ω
1,vac
exe,1 = Γ

1,vac
exe,1,int ∪ Γ

1,vac
exe,1,top ∪ Γ

1,vac
exe,1,bl1 ∪

Γ
1,vac
exe,1,bl2 ∪ Γ

1,vac
exe,1,α, combining with conditions satisfied by v, the results from Proposition 9

and Proposition 13 ∆x1 φ̃0 = ∆x1 φ̃1
bl = ∆x1 φ̃2

bl = 0 in Ω
1,vac
exe,1, φ̃

0 = Ṽ0, φ̃1
bl = ṽ1

bl, φ̃
2
bl = ṽ2

bl on

Γ
1,vac
exe,1,int, ∇x1 φ̃0 ·n1 = ∇x1 φ̃1

bl ·n
1 = ∇x1 φ̃2

bl ·n
1 = 0 on Γ

1,vac
exe,1,top, ∇x1

(
φ̃0 + φ̃1

bl

)
·n1 = 0 on Γ

1,vac
exe,1,bl1,

∇x1

(
φ̃0 + φ̃2

bl

)
· n1 = 0 on Γ

1,vac
exe,1,bl2, we deduce that

∫
Ω

1,vac
exe,1

∆x1(φ1
exe)v dx1 −

∫
Γ

1,vac
exe,1,top

∇x1φ1
exe · n

1v ds(x1)

−

∫
Γ

1,vac
exe,1,bl1

∇x1

(
φ1

exe + φ̃2
bl

)
· n1v ds(x1) −

∫
Γ

1,vac
exe,1,bl2

∇x1

(
φ1

exe + φ̃1
bl

)
· n1v ds(x1)

+

∫
Γ

1,vac
exe,1,int

φ1
exe∇x1v · n1 ds(x1) =

∫
Γ

1,vac
exe,1,int

v1
exe∇x1v · n1 ds(x1).

The rest of the proof runs as the previous proofs. �
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2.6.4/ INTERFACE MODEL

Let us consider the solution φ0 in Proposition 9 again. It is easily seen that φ0 is periodic

with two distinct periodicity cells as different voltages are imposed in the two zones, then

the electric potential approximated by φ0 is discontinuous at the interface between two

zones. It leads to propose an interface corrector to deal with this problem. We introduce

the terms φεbl = φε − Bε(φ0) and vεbl = Vε − Bε(V0).

2.6.4.1/ GEOMETRY NOTATIONS

Let Ωαε
in,1 be a subdomain of Ωε defined as Ωαε

in,1 = ∪c∈Iin,1Ω
ε
c, where Iin,1 := {c = (c1, c2) :

c1 = i1, j1 and c2 ∈ i2 − α, i2 + α, 2 ≤ i, j ≤ n1} and α ∈ Z+, see Figure 2.9, and Ωαε
in,1 is

assembled by two nonoverlapping subdomains Ωαε+
in,1 and Ωαε−

in,1 , we write them Ωαε±
in,1 for

short, which are respectively a subdomain of Ωε
2 and Ωε

1. The interface between Ωαε+
in,1 and

Ωαε−
in,1 is denoted as Γαεin,1,interf which is a subboundary of the Γεinterf .

The boundary of the vacuum part Ω
αε,vac
in,1 is built by a union ∂Ω

αε,vac+
in,1 ∪ ∂Ω

αε,vac−
in,1 ∪Γ

αε,vac
in,1,interf,

where ∂Ω
αε,vac±
in,1 is a boundary of Ω

αε,vac±
in,1 and Γ

αε,vac
in,1,interf is the interface between them which

is a subboundary of Γ
ε,vac
interf. More precisely, ∂Ω

αε,vac+
in,1 and ∂Ω

αε,vac−
in,1 are subboundaries of

the internal vacuum part ∂Ω
ε,vac
2 and the external vacuum part ∂Ω

ε,vac
1 assembled by the

unions Γ
αε,vac±
in,1,int ∪ Γ

αε,vac±
in,1,ext ∪Γ

αε,vac
in,1, interf, with Γ

αε,vac±
in,1,ext = Γ

αε,vac±
in,1,top ∪Γ

αε,vac±
in,1,lat ∪Γ

αε,vac±
in,1,α , where Γ

αε,vac+
in,1,int

and Γ
αε,vac+
in,1,top is a subboundary of Γ

ε,vac
2,int and Γ

ε,vac
2,top, Γ

αε,vac+
in,1,lat and Γ

αε,vac+
in,1,α are subboundaries of

Γ
ε,vac
interf and the internal vacuum subboundary between cells of the internal zone Ω2 , Γ

αε,vac−
in,1,int

and Γ
αε,vac−
in,1,top are subboundaries of Γ

ε,vac
1,int and Γ

ε,vac
1,top , Γ

αε,vac−
in,1,lat and Γ

αε,vac−
in,1,α are subboundaries

of the internal vacuum subboundary between cells of the external zone Ωε
1.

The boundary of the mechanical part Ω
αε,mec
in,1 is determined by the union ∂Ω

αε,mec+
in,1 ∪

∂Ω
αε,mec−
in,1 ∪Γ

αε,mec
in,1,interf, where ∂Ω

αε,mec±
in,1 are the boundaries of Ω

αε,mec±
in,1 and Γ

αε,mec
in,1, interf is the

interface between them which is a subboundary of Γ
ε,mec
interf . Precisely, ∂Ω

αε,mec+
in,1 and

∂Ω
αε,mec−
in,1 are subboundaries of the internal mechanical part ∂Ω

ε,mec
2 and the external me-

chanical part ∂Ω
ε,mec
1 defined as the union Γ

αε,mec±
in,1,1 ∪ Γ

αε,mec±
in,1,0 ∪ Γ

αε,mec
in,1,interf, where Γ

αε,mec+
in,1,1 and

Γ
αε,mec+
in,1,0 are subboundaries of Γ

ε,mec
2,1 and Γ

ε,mec
2,0 , Γ

αε,mec+
in,1,lat is a subboundary of Γ

ε,mec
interf and

the internal mechanical subboundary between cells of the internal zone Ωε
2 , Γ

αε,mec−
in,1,1 and

Γ
αε,mec−
in,1,0 is a subboundary of Γ

ε,mec
1,1 and Γ

ε,mec
1,0 , Γ

αε,mec−
in,1,lat is a subboundary of the internal

mechanical subboundary between cells of the external zone Ωε
1.

We next denote Ω
]
in,1 = [L1

1, L
1
2) with the partition

{
Ω
]
in,1c1

}
c1=i1, j1−1

, Ω
]
in,1c1

= [c1ε, (c1 + 1)ε),

with i, j such that L1
1 = i1ε, L1

2 = j1ε, and denote x],c1 as a center of Ω
]
in,1c1

, x],c1 = c1ε+ ε/2.

We now represent the finite microscopic domain Ω1
in,1, see Figure 2.10, constructed by

the union of two nonoverlapping subdomains Ω1+
in,1 and Ω1−

in,1 , we write them Ω1±
in,1 for

brevity, with the interface Γ1
in,1, interf, where Ω1±

in,1 is determined by Ω1±
in,1 = ∪η=1,α(Ω1+(0,±(η−
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Figure 2.9: The first interface physical domain Ωαε
in,1 with two nonoverlapping subdomains

Ωαε+
in,1 and Ωαε−

in,1 , each domain Ωαε±
in,1 is assembled by two parts the vacuum part Ω

αε,vac±
in,1 and

the mechanical part Ω
αε,mec±
in,1 , with α = 1.

1/2), 1/2)). The notation system built for the physical domain is transposed to the micro-

scopic domain that we do not detail.

For all regular function v defined in Ω1
in,1, we denote v+ and v− as respectively the restric-

tion of v in Ω1+
in,1 and Ω1−

in,1 and [[v]] = v+ − v− as the jump of v at the interface Γ1
in,1, interf.

The infinite microscopic domain Ω∞in,1 and its boundaries are defined as the limit of Ω1
in,1

and of its boundaries.

2.6.4.2/ INTERFACE BOUNDARY LAYER TWO-SCALE TRANSFORM OPERATOR

Let us introduce the interface boundary layer two-scale transform T ε
in,1.

Definition 16:

For all ϕ in L2(Ωαε
in,1) (resp. ϕ in L2(Γαεin,1)), T ε

in,1 is defined by

T ε
in,1(ϕ)(x], x1) =

∑
c1

χ
Ω
]
in,1c1

(x])ϕ(x],c1 + εx1
1, L

2
1 + εx1

2, εx1
3),

for a.e. x] ∈ Ω
]
in,1, x1 ∈ Ω1

in,1 (resp. x1 ∈ Γ1
in,1), L2

1 = i2ε, i2 ∈ Z+.
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Figure 2.10: The first interface microscopic domain Ω1
in,1 with two nonoverlapping sub-

domains Ω
1,±
in,1, each of them also involves two parts, the vacuum part Ω

1,vac±
in,1 and the

mechanical part Ω
1,mec±
in,1 , in the case of α = 1.

Definition 17:

We define the adjoint operator T ε∗
in,1 of T ε

in,1 by

1
ε2

∫
Ωαε

in,1

ϕT ε∗
in,1(ψ)dxε =

∫
Ω
]
in,1×Ω1

in,1

T ε
in,1(ϕ)ψdx]dx1,

for all ψ ∈ L2(Ω]
in,1 ×Ω1

in,1), ϕ ∈ L2(Ωαε
in,1), and

1
ε

∫
Γαεin,1

ϕT ε∗
in,1(ψ)ds(xε) =

∫
Ω
]
in,1×Γ1

in,1

T ε
in,1(ϕ)ψ dx]ds(x1),

for all ψ ∈ L2(Ω]
in,1 × Γ1

in,1), ϕ ∈ L2(Γαεin,1).

From the definitions, we obtain an explicit formula of T ε∗
in,1 as

T ε∗
in,1(ψ)

(
xε

)
=

1
ε

∑
c1

∫
Ω
]
in,1c1

ψ

x],
xε1 − x],c1

ε
,

xε2 − L2
1

ε
,

xε3
ε

 dx]χ
Ω
]
in,1c1

(
xε1

)
,

valid for all ψ ∈ L2(Ω]
in,1 ×Ω1

in,1) and ψ ∈ L2(Ω]
in,1 × Γ1

in,1).
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Definition 18:

For every ψ ∈ C1(Ω]
in,1 ×Ω1

in,1), the operator Bεin,1 is defined by

Bεin,1(ψ)(xε) = ψ

(
P(xε),

xε1
ε
−

1
2
,

xε2
ε
,

xε3
ε

)
,

where P(xε) = xε1.

Proposition 17:

For every ψ in C1(Ω]
in,1×Ω1

in,1) and Ω1
in,1 - periodic in the directions x1

1 and x1
2, then

T ε∗
in,1(ψ)

(
xε

)
= Bεin,1(ψ)(xε) + O(ε).

Proposition 18:

For every ψ ∈ C1(Ω]; L2(Ω1)) ∩ C0(Ω]; H1(Ω1)) and Ω1 - periodic in the directions

x1
1, x1

2,

T ε
in,1(Bε(ψ))→ ψ̃ in L2(Ω]

in,1 ×Ω1
in,1) and in L2(Ω]

in,1 × Γ1
in,1),

where ψ̃(x], x1) = ψ
(
(x], L2

1), (x1
1, x

1
2 −

1
2 , x

1
3 −

1
2 )

)
.

Proof. By the definitions of T ε
in,1 and Bε, we obtain

T ε
in,1(Bε(ψ))(x], x1) =

∑
c1

χ
Ω
]
in,1c1

(x])Bε(ψ)(x],c1 + εx1
1, L

2
1 + εx1

2, εx1
3)

=
∑
c1

χ
Ω
]
in,1c1

(x])ψ
(
(x],c1 + εx1

1, L
2
1 + εx1

2), (x1
1, x

1
2 −

1
2
, x1

3 −
1
2

)
)
.

By the first order Taylor expansion,

ψ

(
(x],c1 + εx1

1, L
2
1 + εx1

2), (x1
1 + c1, x1

2 −
1
2
, x1

3 −
1
2

)
)

= ψ

(
(x], L2

1 + εx1
2), (x1

1, x
1
2 −

1
2
, x1

3 −
1
2

)
)
+O(ε),

in L2(Ω]
in,1 ×Ω

1,vac
in,1 ), x] in Ω

]
in,1,c1

. Passing ε to 0, then

T ε
in,1(Bε(ψ)) ⇀ ψ

(
(x], L2

1), ((x1
1, x

1
2 −

1
2
, x1

3 −
1
2

))
)

in L2(Ω]
in,1 ×Ω1

in,1) and in L2(Ω]
in,1 × Γ1

in,1).

�

2.6.4.3/ DERIVATION OF AN INTERFACE MODEL

Let us now recall the boundary layer terms φεbl = φε − Bε(φ0), vεbl = Vε − Bε(V0) and make

the following assumptions.
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Assumption 4:

We assume that

1. For each α, there exist φ1,α
in ∈ L2(Ω]

in,1,H
1(Ω1,vac

in,1 )), Ω
1,vac
in,1 - periodic in the

direction x1
1 and v1

in ∈ L2(Ω]
in,1 × Γ

1,vac
in,1,int) such that T ε

in,1(φεbl) ⇀ φ1,α
in,1 weakly in

L2(Ω]
in,1 ×Ω

1,vac
in,1 ) and T ε

in,1(vεbl) ⇀ v1,α
in weakly in L2(Ω]

in,1 × Γ
1,vac
in,1,int).

2. There exist φ1
in ∈ L2(Ω]

in,1,H
1(Ω∞,vac

in,1 )), Ω
∞,vac
in,1 - periodic in the direction x1

1,

φ1
in and it gradient exponentially decrease to 0 when

∣∣∣x1
2

∣∣∣ → +∞, and v1
in ∈

L2(Ω]
in,1 ×Γ

∞,vac
in,1,int) such that φ1,α

in χ
Ω

1,vac
in,1

⇀ φ1
in,1 weakly in L2(Ω]

in,1 ×Ω
∞,vac
in,1 ) and

v1,α
in χ

Ω
1,vac
in,1

⇀ v1
in weakly in L2(Ω]

in,1 × Γ
∞,vac
in,1,int)

The next proposition is a corollary of Proposition 18.

Proposition 19:

If φ0 ∈ C1(Ω]; L2(Ω1))∩C0(Ω]; H1(Ω1)) and Assumption 4 is fulfiled then T ε
in,1(φε) ⇀

φ1,α
in + φ̃0 weakly in L2(Ω]

in,1 × Ω
1,vac
in,1 ) and T ε

in,1(Vε) ⇀ v1,α
in + Ṽ0 weakly in L2(Ω]

in,1 ×

Γ
1,vac
in,1,int), where ψ̃(x], x1) = ψ

(
(x], L2

1), (x1
1, x

1
2 −

1
2 , x

1
3 −

1
2 )

)
.

Proposition 20:

The limit φ,1in is a solution to

−∆x1φ1
in = 0 in Ω

∞,vac
in,1

φ1
in = v1

in on Γ
∞,vac
in,1,int

∇x1φ1
in · n

1 = 0 on Γ
∞,vac
in,1,top

∇x1φ1
in · n

1 is Γ
∞,vac
in,1,per - antiperiodic[[

∇x1φ1
in

]]
· n1 = −

[[
∇x1 φ̃0

]]
· n1 on Γ

∞,vac
in,1,interf[[

φ1
in

]]
= −

[[
φ̃0

]]
on Γ

∞,vac
in,1,interf

φ1
in is Γ

∞,vac
in,1,per - periodic.

Proof. Let us repeat some steps of the previous proof. We replace vε by a smooth

function vεin in (2.6.3), where vεin is defined in Ω
αε,vac
in,1 , vεin = 0 on Γ

αε,vac
in,1,int and vanishes out of

Ω
αε,vac
in,1 .∫

Ω
αε,vac
in,1

φε∆xεvεexe dxε =

∫
Γ
αε,vac
in,1,int

Vε∇xεvεexe · n
ε ds

(
xε

)
+

∫
Γ
αε,vac
in,1,ext

ϕε∇xεvεexe · n
ε ds

(
xε

)
.

Then, we substitute vεin by Bεin,1(w), where w is in C∞(Ω]
in,1 × Ω

1,vac
in,1 ), Ω

1,vac
in,1 - periodic in the
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directions x1
1, x

1
2, w = 0 on Γ

1,vac±
in,1,int ∪ Γ

1,vac±
in,1,α and ∇x1w · n1 = 0 on Γ

1,vac,±
in,1,top ∪ Γ

1,vac±
in,1,per ∪ Γ

1,vac±
in,1,α ,

we get∫
Ω
αε,vac
in,1

φε∆xεBεin,1(w) dxε =

∫
Γ
αε,vac
in,1,int

Vε∇xεBεin,1(w) · nε ds
(
xε

)
+

∫
Γ
αε,vac
in,1,ext

ϕε∇xεBεin,1(w) · nε ds
(
xε

)
.

Clearly,

∂Bεin,1w

∂xεi
= Bεin,1

χI](i)
∂w
∂x]

+
1
ε

∂w
∂x1

i

 ,
∂

∂xεi

∂Bεin,1w

∂xεi
= Bεin,1

χI](i)
∂

∂x]
∂w
∂x]

+ χI](i)
2
ε

∂

∂x]
∂w
∂x1

1

+
1
ε2

∂

∂x1
i

∂w
∂x1

i

 ,
for all i ∈ I = {1, 2, 3} where I] = {1}.

We check that Bεin,1
(
∇x1w

)
· nε = 0 on Γ

αε,vac
in,1,ext and a straightforward calculation reveals that

1
ε2

∫
Ω
αε,vac
in,1

φεBεin,1
(
∆x1w

)
dxε =

1
ε

∫
Γ
αε,vac
in,1,int

VεBεin,1
(
∇x1w · n1

)
ds

(
xε

)
+ O(ε),

where

O(ε) =

∫
Ω
αε,vac
in,1

φεBεin,1

(
∂

∂x]
∂w
∂x]

)
dxε +

2
ε

∫
Ω
αε,vac
in,1

φεBεin,1

 ∂

∂x]
∂w
∂x1

1

 dxε

−

∫
∂Ω

αε,vac
in

ϕεBεin,1

(
∂w
∂x]

)
nε1 ds(xε).

Thanks to Proposition 17, we have

1
ε2

∫
Ω
αε,vac
in,1

φεT ε∗
in,1

(
∆x1w

)
dxε =

1
ε

∫
Γ
αε,vac
in,1,int

VεT ε∗
in,1

(
∇x1w · n1

)
ds

(
xε

)
+ O(ε). (2.6.12)

By the definition of T ε∗
in,1, it follows that∫

Ω
]
in,1×Ω

1,vac
in,1

T ε
in,1(φε)∆x1w dx]dx1 =

∫
Ω
]
in,1×Γ

αε,vac
in,1,int

T ε
in,1(Vε)∇x1w · n1dx] ds

(
x1

)
+ O(ε).

Passing ε to 0, combined with Proposition 19, we obtain∫
Ω
]
in,1×Ω

1,vac
in,1

(
φ1,α

in + φ̃0
)
∆x1w dx]dx1 =

∫
Ω
]
in×Γ

1,vac
in,1,int

(
v1,α

in + Ṽ0
)
∇x1w · n1 dx]ds

(
x1

)
.

for each α.

It follows that the above equality still holds if w is taken on the form of ταv, where τα is a

smooth truncation function with compact support Ω
]
in,1 ×Ω

1,vac
in,1 and v ∈ C∞(Ω]

in,1 ×Ω
∞,vac
in,1 )∩

H2(Ω]
in,1 ×Ω

∞,vac
in,1 ), Ω

∞,vac
in,1 - periodic in the directions x1

1, x
1
2, v = 0 on Γ

∞,vac±
in,1,int , ∇x1v · n1 = 0 on
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Γ
∞,vac,±
in,1,top ∪ Γ

∞,vac±
in,1,per , |v|,

∣∣∣∇x1v
∣∣∣ , and

∣∣∣∆x1v
∣∣∣ exponentially decrease to 0 when

∣∣∣x1
2

∣∣∣ → +∞, and

ταv→ v in H2(Ω]
in,1 ×Ω

∞,vac
in,1 ) when α tends to infinity. Then∫

Ω
]
in,1×Ω

∞,vac
in,1

(
φ1,α

in + φ̃0
)
χ

Ω
1,vac
in,1

∆x1w dx]dx1 =

∫
Ω
]
in,1×Γ

∞,vac
in,1,int

(
v1,α

in + Ṽ0
)
χ

Ω
1,vac
in,1
∇x1w · n1 dx]ds(x1).

Passing α to +∞, by Assumption 2 , we get∫
Ω
]
in,1×Ω

∞,vac
in,1

(
φ1

in + φ̃0
)
∆x1v dx]dx1 =

∫
Ω
]
in,1×Γ

∞,vac
in,1,int

(
v1

in + Ṽ0
)
χ

Ω
1,vac
in,1
∇x1v · n1 dx]ds(x1).

Now, we choose v vanishing out of Ω
]
in,1 ×Ω

1,vac
in,1 for a given α,∫

Ω
]
in,1×Ω

1,vac
in,1

(
φ1

in + φ̃0
)
∆x1v dx]dx1 =

∫
Ω
]
in,1×Γ

1,vac
in,1,int

(
v1

in + Ṽ0
)
∇x1v · n1 dx]ds(x1).

Applying Green’s formula twice, then

∑
±

∫
Ω
]
in,1×Ω

1,vac±
in,1

∆x1

(
φ1±

in + φ̃0
±
)

v dx]dx1

−
∑
±

∫
Ω
]
in,1×∂Ω

1,vac±
in,1

∇x1

(
φ1±

in + φ̃0
±
)
· n1±v dx]ds(x1)

+
∑
±

∫
Ω
]
in,1×∂Ω

1,vac±
in,1

(
φ1±

in + φ̃0
±
)
∇x1v · n1± dx]ds(x1)

=
∑
±

∫
Ω
]
in,1×Γ

1,vac±
in,1,int

(
v1±

in + Ṽ0
±
)
∇x1v · n1± dx]ds

(
x1

)
.

Decomposing Ω
1,vac
in,1 into two parts Ω

1,vac±
in,1 with their boundaries ∂Ω

1,vac,±
in,1 = Γ

1,vac,±
in,1,int∪Γ

1,vac,±
in,1,top∪

Γ
1,vac,±
bl,1,per∪Γ

1,vac±
in,1,α ∪Γ

1,vac
in,1,interf, combining with the results of Proposition 9, ∆x1 φ̃0

±

= 0 in Ω
1,vac±
in,1 ,

φ̃0
±

= Ṽ0
±

on Γ
1,vac±
in,1,int, ∇x1 φ̃0

±

· n1± = 0 on Γ
1,vac±
in,1,top, ∇x1 φ̃0

±

· n1± is Γ
1,vac,±
bl,1,per - antiperiodic, and
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from the conditions satisfied by v it remains

∑
±

∫
Ω
]
in,1×Ω

1,vac±
in,1

∆x1(φ1±
in )v dx]dx1

−
∑
±

∫
Ω
]
in,1×(Γ1,vac±

in,1,top∪Γ
1,vac±
in,1,per)

∇x1φ1±
in · n

1±v dx]ds(x1)

−

∫
Ω
]
in,1×Γ

1,vac
in,1,interf

[
∇x1

(
φ1+

in + φ̃0
+
)
− ∇x1

(
φ1−

in + φ̃0
−
)]
· n1+v dx]ds(x1)

+
∑
±

∫
Ω
]
in,1×Γ

1,vac±
in,1,int

φ1±
in ∇x1v · n1± dx]ds(x1)

+

∫
Ω
]
in,1×Γ

1,vac
in,1,interf

[(
φ1+

in + φ̃0
+
)
−

(
φ1−

in + φ̃0
−
)]
∇x1v · n1+ dx]ds(x1)

=
∑
±

∫
Ω
]
in,1×Γ

1,vac±
in,1,int

v1±
in ∇x1v · n1± dx]ds

(
x1

)
.

The rest of proof runs as the previous proof. �

2.6.5/ INTERNAL EDGE MODEL

Let us assume that all interface models are yet built with the index i = 1, 2, 3, 4 as in

Figure 2.1. We consider the contributions of two interface models i = 1 and i = 2 at

the first internal edge zone. Obviously, the sum of contributions is not continuous at

internal edges which are interfaces between subdomains of the first physical internal

edged domain, see Figure 2.11, then it leads to propose an internal edge corrector to

overcome this problem. We now introduce terms

φεine = φε − Bεφ0 − Bεin,2φ
2−
in χΩ

αε,vac,2
ine,1

− (Bεin,1φ
1+
in + Bεin,2φ

2+
in )χ

Ω
αε,vac,3
ine,1

− Bεin,1φ
1−
in χΩ

αε,vac,4
ine,1

,

vεine = Vε − BεV0 − Bεin,2v2−
in χΩ

αε,vac,2
ine,1

− (Bεin,1v1+
in + Bεin,2v2+

in )χ
Ω
αε,vac,3
ine,1

− Bεin,1v1−
in χΩ

αε,vac,4
ine,1

,

where φ0 is the solution of the periodic model, φ1±
in and φ2±

in are the solutions of the first and

second interface models in the interface zones near the first internal edge zone, Bεin,1 and

Bεin,2 are the smooth approximation operators of the first and second adjoint interface two-

scale operators T ε∗
in,1 and T ε∗

in,2, v1±
in and v2±

in are the weak limits of v1,α±
in χ

Ω
1,vac±
in,1

in L2(Ω]
in,1 ×

Γ
∞,vac±
in,1,int ) and of v2,α±

in χ
Ω

1,vac±
in,2

in L2(Ω]
in,2 × Γ

∞,vac±
in,2,int ) when α tends to +∞, v1,α±

in and v2,α±
in being

the weak limits of T ε
in,1(vεin) in L2

(
Ω
]
in,1 × Γ

1,vac±
in,1,int

)
and of T ε

in,2(vεin) in L2
(
Ω
]
in,2 × Γ

1,vac±
in,2,int

)
when

ε tends to 0, χ
Ω
αε,vac,i
ine,1

are the characteristic functions of the domains Ω
αε,vac,i
ine,1 introduced in

the following.
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𝐵𝑖𝑛,1
𝜀 𝜙𝑖𝑛

1−

𝐵𝑖𝑛,1
𝜀 𝜙𝑖𝑛

1+

𝐵𝑖𝑛,2
𝜀 𝜙𝑖𝑛

2− 𝐵𝜀𝜙0+

𝐵𝜀𝜙0−

𝑥1
𝜀

𝑥2
𝜀

Ω2
𝜀

Ω1
𝜀

𝐵𝑖𝑛,2
𝜀 𝜙𝑖𝑛

2+

Γinterf
𝜀

Ω𝑖𝑛𝑒,1
𝛼𝜀

Ω𝑖𝑛𝑒,1
𝛼𝜀,1

Ω𝑖𝑛𝑒,1
𝛼𝜀,2 Ω𝑖𝑛𝑒,1

𝛼𝜀,3

Ω𝑖𝑛𝑒,1
𝛼𝜀,4

Γ𝑖𝑛𝑒,1,interf,1
𝛼𝜀

Γ𝑖𝑛𝑒,1,interf,2
𝛼𝜀

Γ𝑖𝑛𝑒,1,interf,3
𝛼𝜀

Γ𝑖𝑛𝑒,1,interf,4
𝛼𝜀

Figure 2.11: Description of the geometry of the internal edge problem. The green and
maroon colors represent the zones of the first and the second interface models. The
red region is the zone of the first internal edge model made with four subregions. The
electrostatic potential has a different approximation in each of these subregions.

2.6.5.1/ GEOMETRY NOTATIONS

We begin to define the whole internal edge boundary layer domain Ωαε
ine,1, which subscript

ine, 1 refers to the first internal edge, as a subdomain of Ωε
1 ∪ Ωε

2 and constructed by

Ωαε
ine,1 = ∪c∈Iine,1Ω

ε
c. Here Iine,1 is a set of multi-indices c = (c1, c2) : c1 ∈ i1 − α, i1 + α − 1, and

c2 ∈ i2 − α, i2 + α − 1, i1, i2 being such that Ωε
(i1,i2) is the first internal edge cell, see Figure

2.12.

The domain Ωαε
ine,1 is decomposed into four nonoverlapping subdomains Ω

αε,i
ine,1 defined as

Ω
αε,i
ine,1 = ∪c∈Ii

ine,1
Ωε

c with the multi-index sets Ii
ine,1

I1
ine,1 =

{
(c1, c2) : c1 ∈ i1 − α, i1 − 1, c2 ∈ i2 − α, i2 − 1

}
,

I2
ine,1 =

{
(c1, c2) : c1 ∈ i1 − α, i1 − 1, c2 ∈ i2, i2 + α − 1

}
,

I3
ine,1 =

{
(c1, c2) : c1 ∈ i1, i1 + α − 1, c2 ∈ i2, i2 + α − 1

}
,

I4
ine,1 =

{
(c1, c2) : c1 ∈ i1, i1 + α − 1, c2 ∈ i2 − α, i2 − 1

}
.
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We observe that Ω
αε,i
ine,1 is a subdomain of Ωε

1 for i = 1, 2, 4 and of Ωε
2 for i = 3. For the

sake of concision, interface numbering is with indices modulo 4, e.g. 5 plays the role of

1. Precisely, the interface between Ω
αε,i
ine,1 and Ω

αε,i+1
ine,1 is noted Γαεine,1, interf,i+1 for i = 1, 2, 3, 4

and Γαεine,1,interf,5 or Γαεine,1,interf,1 for i = 4.

The vacuum parts of all components of Ωαε
ine,1 are decorated with the superscript vac. The

boundary ∂Ω
αε,vac,i
ine,1 of each Ω

αε,vac,i
ine,1 is decomposed as Γ

αε,vac,i
ine,1,int ∪ Γ

αε,vac,i
ine,1,ext ∪ Γ

αε,vac
ine,1, interf,i ∪

Γ
αε,vac
ine,1, interf,i+1 with Γ

αε,vac,i
ine,1,ext = Γ

αε,vac,i
ine,1,top ∪ Γ

αε,vac,i
ine,1,α . The whole interface between these

domains is Γ
αε,vac
ine,1,interf = ∪4

i=1Γ
αε,vac
ine,1,interf,i. Thus, the whole boundary ∂Ω

αε,vac
ine,1 is (∪4

i=1

∂Ω
αε,vac,i
ine,1 ) r Γ

αε,vac
ine,1,interf.

The mechanical parts of all components of Ωαε
ine,1 are decorated with the superscript mec.

The principle of notations is similar to this of the vacuum, but with taking into account the

special features of the mechanical boundaries. It is skipped.

𝑥1
𝜀

0

𝑥3
𝜀

𝑥2
𝜀

Ω𝑖𝑛𝑒,1
𝛼𝜀

𝑎2
𝜀 = 𝑖2𝜀

𝑎1
𝜀 = 𝑖1𝜀

1

Ω2
𝜀Ω1

𝜀

Ω𝑖𝑛𝑒,1
𝛼𝜀,3

Ω𝑖𝑛𝑒,1
𝛼𝜀,1

Γ𝑖𝑛𝑒,1,interf
𝛼𝜀

Ω𝑖𝑛𝑒,1
𝛼𝜀,4

Ω𝑖𝑛𝑒,1
𝛼𝜀,2

Figure 2.12: The first internal edge Ωαε
ine,1 in the physical domain with α = 1.

The finite microscopic domain Ω1
ine,1, parametrized by α, is similarly defined as ∪4

i=1Ω
1,i
ine,1,

see Figure 2.13, with

Ω
1,1
ine,1 = ∪ξ,η=0,α−1(Ω1 + (−ξ − 1/2,−η − 1/2, 1/2)),

Ω
1,2
ine,1 = ∪ξ,η=0,α−1(Ω1 + (−ξ − 1/2, η + 1/2, 1/2)),

Ω
1,3
ine,1 = ∪ξ,η=0,α−1(Ω1 + (ξ + 1/2, η + 1/2, 1/2)),

Ω
1,4
ine,1 = ∪ξ,η=0,α−1(Ω1 + (ξ + 1/2,−η − 1/2, 1/2)).

The notation system built for the physical domain is transposed to the microscopic domain

without the need to detail it. The infinite microscopic domain Ω∞ine,1 is defined as the limit
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of Ω1
ine,1 when α tends to infinity.

Finally, for all regular function v defined in Ω1
in,1, we denote vi the restriction of v to Ω

1,i
in,1

and [[v]] stands for a jump of v at the interface defined by the following formula

[[v]] =



v1 − v4 at Γ
1,
ine,1,interf,1

v1 − v2 at Γ
1,vac
ine,1,interf,2

v3 − v2 at Γ
1,vac
ine,1,interf,3

v3 − v4 at Γ
1,vac
ine,1,interf,4.

𝑥1
1

𝑥2
1

𝑥3
1

Γ𝑖𝑛𝑒,1,interf,4
1,𝑣𝑎𝑐

Γ𝑖𝑛𝑒,1,interf,3
1,𝑣𝑎𝑐

Γ𝑖𝑛𝑒,1,interf,4
1,𝑚𝑒𝑐Γ𝑖𝑛𝑒1,interf,3

1,𝑚𝑒𝑐

𝛀𝐢𝐧𝐞,𝟏
𝟏

𝛀𝐢𝐧𝐞,𝟏
𝟏,𝟏

Γ𝑖𝑛𝑒,1,𝑡𝑜𝑝
1,𝑣𝑎𝑐,3

Γ𝑖𝑛𝑒,1,𝑡𝑜𝑝
1,𝑣𝑎𝑐,1

Γ𝑖𝑛𝑒,1,α
1,𝑣𝑎𝑐,1

Γ𝑖𝑛𝑒,1,α
1,𝑣𝑎𝑐,4

Γ𝑖𝑛𝑒,1,α
1,𝑚𝑒𝑐,1

Γ𝑖𝑛𝑒,1,α
1,𝑚𝑒𝑐,2

Γ𝑖𝑛𝑒,1,α
1,𝑚𝑒𝑐,4

Γ𝑖𝑛𝑒,1,α
1,𝑚𝑒𝑐,3Γ𝑖𝑛𝑒,1,α

1,𝑚𝑒𝑐,3

Γ𝑖𝑛𝑒,1,α
1,𝑚𝑒𝑐,4𝛀𝐢𝐧𝐞,𝟏

𝟏,𝟐

𝛀𝐢𝐧𝐞,𝟏
𝟏,𝟑

𝛀𝐢𝐧𝐞,𝟏
𝟏,𝟒

Γ𝑖𝑛𝑒,1,interf,1
1,𝑣𝑎𝑐

Γ𝑖𝑛𝑒,1,𝑡𝑜𝑝
1,𝑣𝑎𝑐,4

Γ𝑖𝑛𝑒,1,𝑡𝑜𝑝
1,𝑣𝑎𝑐,2

Γ𝑖𝑛𝑒,1,α
1,𝑣𝑎𝑐,4

Γ𝑖𝑛𝑒,1,interf,2
1,𝑣𝑎𝑐

Γ𝑖𝑛𝑒,1,interf,1
1,𝑚𝑒𝑐

Γ𝑖𝑛𝑒1,interf,2
1,𝑚𝑒𝑐

Γ𝑖𝑛𝑒,1,α
1,𝑣𝑎𝑐,2

Γ𝑖𝑛𝑒,1,α
1,𝑚𝑒𝑐,2

Figure 2.13: The first internal edge Ω1
ine,1 in the microscopic domain with α = 1.

2.6.5.2/ INTERNAL EDGE BOUNDARY LAYER TWO-SCALE OPERATOR

Now we introduce the dilation operator T ε
ine,1 at the first internal edge.

Definition 19:

For all functions ϕ ∈ L2(Ωαε
ine,1) (resp., ϕ ∈ L2(Γαεine,1)), we define T ε

ine,1 as

T ε
ine,1(ϕ)(x1) = ϕ(εx1

1 + L1
1, εx1

2 + L2
1, εx1

3)

for a.e. x1 in Ω1
ine,1(resp., x1 in Γ1

ine,1), where L1
1 = i1ε and L2

1 = i2ε, i1, i2 ∈ Z+.
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Definition 20:

We define the adjoint operator T ε∗
ine,1 of T ε

ine,1 by

1
ε3

∫
Ωαε

ine,1

ϕT ε∗
ine,1(ψ) dxε =

∫
Ω1

ine,1

T ε
ine,1(ϕ)ψ dx1,

for all ψ ∈ L2(Ω1
ine,1), ϕ ∈ L2(Ωαε

ine,1) and

1
ε2

∫
Γαεine,1

ϕT ε∗
ine,1(ψ) ds(xε) =

∫
Γ1

ine,1

T ε
ine,1(ϕ)ψ ds(x1),

for all ψ ∈ L2(Γ1
ine,1), ϕ ∈ L2(Γαεine,1).

From the definitions, we obtain an explicit formula of T ε∗
ine,1 as

T ε∗
ine,1(ψ)

(
xε

)
= ψ

 xε1 − L1
1

ε
,

xε2 − L2
1

ε
,

xε3
ε

 ,
valid for ψ in L2(Ω1

ine,1) and in L2(Γ1
ine,1).

In this internal edge case, the operator T ε∗
ine,1 and its approximation Bεine,1 are identical

however both will be used to follow the algorithm of Section 2.5.3.
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Proposition 21:

Let Bε, Bεin,1, and Bεin,2 be smooth approximate operators of T ε∗, T ε∗
in,1, resp. T ε∗

in,2,

then

1. For all ψ ∈ C1(Ω]; L2(Ω1))∩C0(Ω]; H1(Ω1)) and Ω1 - periodic in the directions

x1
1, x

1
2.

T ε
ine,1(Bεψ)→ ψ̃ in L2(Ω1

ine,1) and in L2(Γ1
ine,1),

where ψ̃(x1) = ψ((L1
1, L

2
1), x1 − 1/2)).

2. For all ψ± ∈ C1(Ω]
in,1; L2(Ω∞±in,1))∩C0(Ω]

in,1; H1(Ω∞±in,1)) and Ω∞±in,1 - periodic in the

directions x1±
1 ,

T ε
ine,1(Bεin,1ψ

±)→ ψ̃± in L2(Ω1,3
ine,1 ∪Ω

1,4
ine,1) and in L2(Γ1,3

ine,1 ∪ Γ
1,4
ine,1),

where ψ̃±(x1) = ψ±(L1
1, (x1

1 − 1/2, x1
2, x

1
3)).

3. For all ψ± ∈ C1(Ω]
in,2; L2(Ω∞±in,2))∩C0(Ω]

in,2; H1(Ω∞±in,2)) and Ω∞±in,2 - periodic in the

directions x1±
2 ,

T ε
ine,1(Bεin,2ψ

±)→ ψ̃± in L2(Ω1,2
ine,1 ∪Ω

1,3
ine,1) and in L2(Γ1,2

ine,1 ∪ Γ
1,3
ine,1),

where ψ̃±(x1) = ψ±(L2
1, (x1

1, x
1
2 − 1/2, x1

3)).

2.6.5.3/ DERIVATION OF AN INTERNAL EDGE MODEL

Assumption 5:

We assume that

1. For each α, there exist φ1,α
ine in H1(Ω1,vac

ine,1 ) and v1,α
ine in L2(Γ1,vac

ine,1,int) such that

T ε
ine,1(φεine) ⇀ φ1,α

ine weakly in L2(Ω1,vac
ine,1 ) and T ε

ine,1(vεine) ⇀ v1,α
ine weakly in

L2(Γ1,vac
ine,1,int).

2. There exist φ1
ine in H1(Ω∞,vac

ine,1 ), φ1
ine and its gradient converge exponen-

tially fast to zero when
∣∣∣x1

1

∣∣∣ +
∣∣∣x1

2

∣∣∣ → +∞, and v1
ine in L2(Γ∞,vac

ine,1,int) such that

φ1,α
ineχΩ

1,vac
ine,1

⇀ φ1
ine weakly in L2(Ω∞,vac

ine,1 ) and v1,α
ineχΩ

1,vac
ine,1

⇀ v1
ine weakly in

L2(Γ∞,vac
ine,1,int).

The next proposition results from using Proposition 21.
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Proposition 22:

Assuming φ0 ∈ C1(Ω]; L2(Ω1)) ∩ C0(Ω]; H1(Ω1)) ,φ1−
in ∈ C1(Ω]

in,1; L2(Ω∞±in,1)) ∩

C0(Ω]
in,1; H1(Ω∞±in,1)), φ2−

in ∈ C1(Ω]
in,2; L2(Ω∞±in,2))∩C0(Ω]

in,2; H1(Ω∞±in,2)) Asumption 5 then

T ε
ine,1(φε) ⇀ φ1,α

ine + φ̃0 + φ̃2−
in χΩ

1,vac,2
ine,1

+ (φ̃1+
in + φ̃2+

in )χ
Ω

1,vac,3
ine,1

+ φ̃1−
in χΩ

1,vac,4
ine,1

weakly in L2(Ω1,vac
ine,1 ) and

T ε
ine,1(vε) ⇀ v1,α

ine + Ṽ0 + ṽ2−
in χΩ

1,vac,2
ine,1

+ (ṽ1+
in + ṽ2+

in )χ
Ω

1,vac,3
ine,1

+ ṽ1−
in χΩ

1,vac,4
ine,1

weakly in L2(Γ1,vac
ine,1,int), where φ̃0±(x1) = φ0±((L1

1, L
2
1), x1−1/2), φ̃1±

in (x1) = φ1±
in (L2

1, (x1
1−

1/2, x1
2, x

1
3)), and φ̃2±

in (x1) = φ2±
in (L1

1, (x1
1, x

1
2 − 1/2, x1

3)).

Proposition 23:

The limit φ1
ine is a solution to

−∆x1φ1
ine = 0 in Ω

∞,vac
ine,1

φ1
ine = v1

ine on Γ
∞,vac
ine,1,int

∇x1φ1
ine · n

1 = 0 on Γ
∞,vac
ine,1,top[[

φ1
ine

]]
= φ̃1−

in on Γ
∞,vac
ine,1,interf,1[[

∇x1φ1
ine

]]
· n1 = ∇x1 φ̃1−

in · n
1 on Γ

∞,vac
ine,1,interf,1[[

φ1
ine

]]
= φ̃2−

in on Γ
∞,vac
ine,1,interf,2[[

∇x1φ1
ine

]]
· n1 = ∇x1 φ̃2−

in · n
1 on Γ

∞,vac
ine,1,interf,2.[[

φ1
ine

]]
= − φ̃1+

in on Γ
∞,vac
ine,1,interf,3[[

∇x1φ1
ine

]]
· n1 = −∇x1 φ̃1+

in · n
1 on Γ

∞,vac
ine,1,interf,3[[

φ1
ine

]]
= −φ̃2+

in on Γ
∞,vac
ine,1,interf,4[[

∇x1φ1
ine

]]
· n1 = −∇x1 φ̃2+

in · n
1 on Γ

∞,vac
ine,1,interf,4.

Proof. The main idea of the proof is the same as the previous proofs. Firstly, we replace

vε in (2.6.3) by a smooth function vεine defined in Ω
αε,vac
ine,1 and vanishing out of Ω

αε,vac
ine,1 , then∫

Ω
αε,vac
ine,1

φε∆xεvεine dxε =

∫
Γ
αε,vac
ine,1,int

Vε∇xεvεine · n
ε ds

(
xε

)
+

∫
Γ
αε,vac
ine,1,ext

ϕε∇xεvεine · n
ε ds

(
xε

)
.

After that, we substitute vεine by ε−1Bεine,1(w) where w is in C∞(Ω1,vac
exe,1) such that w = 0 on
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Γ
1,vac
ine,1,int ∪ Γ

1,vac
ine,1,α and ∇x1w · n1 = 0 on Γ

1,vac
ine,1,top ∪ Γ

1,vac
ine,1,α, hence

1
ε

∫
Ω
αε,vac
ine,1

φε∆xεBεine,1(w) dxε =
1
ε

∫
Γ
αε,vac
ine,1,int

Vε∇xεBεine,1(w)·nε ds
(
xε

)
+

1
ε

∫
Γ
αε,vac
ine,1,ext

ϕε∇xεBεine,1(w)·nε ds
(
xε

)
.

Obviously,

∂Bεine,1w

∂xεi
=

1
ε

Bεine,1

 ∂w
∂x1

i

 and
∂

∂xεi

∂Bεine,1w

∂xεi
=

1
ε2 Bεine,1

 ∂

∂x1
i

∂w
∂x1

i

 ,
for all i = 1, 2, 3, and Bεine,1(∇x1w) · nε = 0 on Γ

αε,vac
ine,1,ext. Thus,

1
ε3

∫
Ω
αε,vac
ine,1

φεBεine,1
(
∆x1w

)
dxε =

1
ε2

∫
Γ
αε,vac
ine,1,int

VεBεine,1

(
∇x1w · n1

)
ds

(
xε

)
.

Replacing Bεine,1 by T ε∗
ine,1, then transposing T ε∗

ine,1 to T ε
ine,1, we have∫

Ω
1,vac
ine,1

T ε
ine,1(φε)∆x1w dx1 =

∫
Γ

1,vac
ine,1,int

T ε
ine,1(Vε)∇x1w · n1 ds

(
x1

)
.

Decomposing Ω
1,vac
ine,1 = ∪4

i=1Ω
1,vac,i
ine,1 and Γ

1,vac
ine,1 = ∪4

i=1Γ
1,vac,i
ine,1,int the above equality becomes

∑4

i=1

∫
Ω

1,vac,i
ine,1

T ε
ine,1(φε)∆x1w dx1 =

∑4

i=1

∫
Γ

1,vac,i
ine,1,int

T ε
ine,1(Vε)∇x1w · n1,i ds

(
x1

)
.

Passing ε to 0, and combining with Proposition 22, gives

l.h.s =

∫
Ω

1,vac,1
ine,1

(
φ1,α,1

ine + φ̃0−
)
∆x1w dx1 +

∫
Ω

1,vac,2
ine,1

(
φ1,α,2

ine + φ̃0− + φ̃2−
in

)
∆x1w dx1

+

∫
Ω

1,vac,3
ine,1

(
φ1,α,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
∆x1w dx1 +

∫
Ω

1,vac,4
ine,1

(
φ1,α,4

ine + φ̃0− + φ̃1−
in

)
∆x1w dx1

and

r.h.s =

∫
Γ

1,vac,1
ine,1

(
v1,α,1

ine + Ṽ0−
)
∇x1w · n1 ds

(
x1

)
+

∫
Γ

1,vac,2
ine,1

(
v1,α,2

ine + Ṽ0− + ṽ2−
in

)
∇x1w · n1 ds

(
x1

)
+

∫
Γ

1,vac,3
ine,1

(
v1,α,3

ine + Ṽ0+ + ṽ1+
in + ṽ2+

in

)
∇x1w · n1 ds

(
x1

)
+

∫
Γ

1,vac,4
ine,1

(
v1,α,4

ine + Ṽ0− + ṽ1−
in

)
∇x1w · n1 ds

(
x1

)
.

It follows that these above equalities still hold if w is taken on the form of ταv, where

v ∈ C∞(Ω∞,vac
ine,1 )∩H2(Ω∞,vac

ine,1 ), v = 0 on Γ
∞,vac
ine,1,int, v = 0 on Γ

∞,vac
ine,1,int and ∇x1v · n1 = 0 on Γ

∞,vac
ine,1,top,

|v|,
∣∣∣∇x1v

∣∣∣ , and
∣∣∣∆x1v

∣∣∣ exponentially decrease to 0 when
∣∣∣x1

1

∣∣∣ + ∣∣∣x1
2

∣∣∣→ +∞, and τα is a smooth
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truncation function with compact support Ω
1,vac
ine,1 . Then

l.h.s =

∫
Ω
∞,vac,1
ine,1

(
φ1,α,1

ine + φ̃0−
)
χ

Ω
1,vac
ine,1

∆x1ταv dx1 +

∫
Ω
∞,vac,2
ine,1

(
φ1,α,2

ine + φ̃0− + φ̃2−
in

)
χ

Ω
1,vac
ine,1

∆x1ταv dx1

+

∫
Ω
∞,vac,3
ine,1

(
φ1,α,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
χ

Ω
1,vac
ine,1

∆x1ταv dx1

+

∫
Ω
∞,vac,4
ine,1

(
φ1,α,4

ine + φ̃0− + φ̃1−
in

)
χ

Ω
1,vac
ine,1

∆x1ταv dx1,

and

r.h.s =

∫
Γ
∞,vac,1
ine,1

(
v1,α,1

ine + Ṽ0−
)
χ

Ω
1,vac
ine,1
∇x1ταv · n1 ds

(
x1

)
+

∫
Γ
∞,vac,2
ine,1

(
v1,α,2

ine + Ṽ0− + ṽ2−
in

)
χ

Ω
1,vac
ine,1
∇x1ταv · n1 ds

(
x1

)
+

∫
Γ
∞,vac,3
ine,1

(
v1,α,3

ine + Ṽ0+ + ṽ1+
in + ṽ2+

in

)
χ

Ω
1,vac
ine,1
∇x1ταv · n1 ds

(
x1

)
+

∫
Γ
∞,vac,4
ine,1

(
v1,α,4

ine + Ṽ0− + ṽ1−
in

)
χ

Ω
1,vac
ine,1
∇x1ταv · n1 ds

(
x1

)
.

Passing α to +∞, by Assumption 5,

l.h.s =

∫
Ω
∞,vac,1
ine,1

(
φ1,1

ine + φ̃0−
)
∆x1v dx1 +

∫
Ω
∞,vac,2
ine,1

(
φ1,2

ine + φ̃0− + φ̃2−
in

)
∆x1vdx1

+

∫
Ω
∞,vac,3
ine,1

(
φ1,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
∆x1vdx1 +

∫
Ω
∞,vac,4
ine,1

(
φ1,4

ine + φ̃0− + φ̃1−
in

)
∆x1vdx1,

and

r.h.s =

∫
Γ
∞,vac,1
ine,1

(
v1,1

ine + Ṽ0−
)
∇x1v · n1 ds

(
x1

)
+

∫
Γ
∞,vac,2
ine,1

(
v1,2

ine + Ṽ0− + ṽ2−
in

)
∇x1v · n1 ds

(
x1

)
+

∫
Γ
∞,vac,3
ine,1

(
v1,3

ine + Ṽ0+ + ṽ1+
in + ṽ2+

in

)
∇x1v · n1 ds

(
x1

)
+

∫
Γ
∞,vac,4
ine,1

(
v1,4

ine + Ṽ0− + ṽ1−
in

)
∇x1v · n1 ds

(
x1

)
.

Now, we choose v vanishing out of Ω
1,vac
ine,1 for a given α,

l.h.s =

∫
Ω

1,vac,1
ine,1

(
φ1,1

ine + φ̃0−
)
∆x1v dx1 +

∫
Ω

1,vac,2
ine,1

(
φ1,2

ine + φ̃0− + φ̃2−
in

)
∆x1vdx1

+

∫
Ω

1,vac,3
ine,1

(
φ1,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
∆x1vdx1 +

∫
Ω

1,vac,4
ine,1

(
φ1,4

ine + φ̃0− + φ̃1−
in

)
∆x1vdx1

that we note

= T1 + T2 + T3 + T4,
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and

r.h.s =

∫
Γ

1,vac,1
ine,1

(
v1,1

ine + Ṽ0−
)
∇x1v · n1 ds

(
x1

)
+

∫
Γ

1,vac,2
ine,1

(
v1,2

ine + Ṽ0− + ṽ2−
in

)
∇x1v · n1 ds

(
x1

)
+

∫
Γ

1,vac,3
ine,1

(
v1,3

ine + Ṽ0+ + ṽ1+
in + ṽ2+

in

)
∇x1v · n1 ds

(
x1

)
+

∫
Γ

1,vac,4
ine,1

(
v1,4

ine + Ṽ0− + ṽ1−
in

)
∇x1v · n1 ds

(
x1

)
.

Applying Green’s formula twice to each term Ti yields,

T1 =

∫
Ω

1,vac,1
ine,1

(
φ1,1

ine + φ̃0−
)
∆x1v dx1

=

∫
Ω

1,vac,1
ine,1

∆x1

(
φ1,1

ine + φ̃0−
)

v dx1 +

∫
∂Ω

1,vac,1
ine,1

(
φ1,1

ine + φ̃0−
)
∇x1v · n1,1ds(x1)

−

∫
∂Ω

1,vac,1
ine,1

v∇x1

(
φ1,1

ine + φ̃0−
)
· n1,1ds(x1),

T2 =

∫
Ω

1,vac,2
ine,1

(
φ1,2

ine + φ̃0− + φ̃2−
in

)
∆x1v dx1

=

∫
Ω

1,vac,2
ine,1

∆x1

(
φ1,2

ine + φ̃0− + φ̃2−
in

)
v dx1 +

∫
∂Ω

1,vac,2
ine,1

(
φ1,2

ine + φ̃0− + φ̃2−
in

)
∇x1v · n1,2ds(x1)

−

∫
∂Ω

1,vac,2
ine,1

v∇x1

(
φ1,2

ine + φ̃0− + φ̃2−
in

)
· n1,2ds(x1),

T3 =

∫
Ω

1,vac,3
ine,1

(
φ1,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
∆x1v dx1

=

∫
Ω

1,vac,3
ine,1

∆x1

(
φ1,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
v dx1 +

∫
∂Ω

1,vac,3
ine,1

(
φ1,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
∇x1v · n1,3ds(x1)

−

∫
∂Ω

1,vac,3
ine,1

v∇x1

(
φ1,3

ine + φ̃0+ + φ̃1+
in + φ̃2+

in

)
· n1,3ds(x1),

and

T4 =

∫
Ω

1,vac,4
ine,1

(
φ1,4

ine + φ̃0− + φ̃1−
in

)
∆x1v dx1

=

∫
Ω

1,vac,4
ine,1

∆x1

(
φ1,4

ine + φ̃0− + φ̃1−
in

)
v dx1 +

∫
∂Ω

1,vac,4
ine,1

(
φ1,4

ine + φ̃0− + φ̃1−
in

)
∇x1v · n1,4ds(x1)

−

∫
∂Ω

1,vac,4
ine,1

v∇x1

(
φ1,4

ine + φ̃0− + φ̃1−
in

)
· n1,4ds(x1).

Decomposing each ∂Ω
1,vac,i
ine,1 = Γ

1,vac,i
ine,1,int ∪ Γ

1,vac,i
ine,1,top ∪ Γ

1,vac,i
ine,1,α ∪ Γ

1,vac
ine,1,interf,i ∪ Γ

1,vac
ine,1,interf,i+1 for i =

1, 2, 3, 4 and combining with the conditions satisfied by v, with the results from Proposition

9 and with Proposition 20 if follows that ∆x1 φ̃0± = 0 in Ω
1,vac
ine,1 , ∆x1 φ̃1+

in = 0 in Ω
1,vac,3
ine,1 , ∆x1 φ̃1−

in =
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0 in Ω
1,vac,4
ine,1 , ∆x1 φ̃2+

in = 0 in Ω
1,vac,3
ine,1 , ∆x1 φ̃2−

in = 0 in Ω
1,vac,2
ine,1 , ∇x1 φ̃0 · n1 = 0 on Γ

1,vac
ine,1,top,

∇x1 φ̃1+
in · n

1 = 0 on Γ
1,vac,3
ine,1,top, ∇x1 φ̃1−

in · n
1 = 0 on Γ

1,vac,4
ine,1,top,∇x1 φ̃2+

in · n
1 = 0 on Γ

1,vac,3
ine,1,top,∇x1 φ̃2−

in ·

n1 = 0 on Γ
1,vac,2
ine,1,top,

[[
φ̃0 + φ̃1

in

]]
=

[[
∇x1 φ̃0 + ∇x1 φ̃1

in

]]
· n1,3 = 0 on Γ

1,vac
ine,1, interf,4,

[[
φ̃0 + φ̃2

in

]]
=[[

∇x1 φ̃0 + ∇x1 φ̃2
in

]]
· n1,3 = 0 on Γ

1,vac
ine,1,interf,3, thus we get

4∑
i=1

∫
Ω

1,vac,i
ine,1

∆x1

(
φ1,i

ine

)
v dx1 −

4∑
i=1

∫
Γ

1,vac,i
ine,1,top

v∇x1φ1,i
ine · n

1,ids(x1)

+

∫
Γ

1,vac
ine,1,interf,1

(
φ1,1

ine − φ
1,4
ine − φ̃

1−
in

)
∇x1v · n1,1ds(x1) −

∫
Γ

1,vac
ine,1, interf,1

v
[
∇x1(φ1,1

ine − φ
1,4
ine) − ∇x1 φ̃1−

in

]
· n1,1ds(x1)

+

∫
Γ

1,vac
ine,1,interf,2

(
φ1,1

ine − φ
1,2
ine − φ̃

2−
in

)
∇x1v · n1,1ds(x1) −

∫
Γ

1,vac
ine,1, interf,2

v
[
∇x1(φ1,1

ine − φ
1,2
ine) − ∇x1 φ̃2−

in

]
· n1,1ds(x1)

+

∫
Γ

1,vac
ine,1,interf,3

(
φ1,3

ine − φ
1,2
ine + φ̃1+

in

)
∇x1v · n1,3ds(x1) −

∫
Γ

1,vac
ine,1, interf,3

v
[
∇x1(φ1,3

ine − φ
1,2
ine) + ∇x1 φ̃1+

in

]
· n1,3ds(x1)

+

∫
Γ

1,vac
ine,1,interf,4

(
φ1,3

ine − φ
1,4
ine + φ̃2+

in

)
∇x1v · n1,3ds(x1) −

∫
Γ

1,vac
ine,1, interf,4

v
[
∇x1(φ1,3

ine − φ
1,4
ine) + ∇x1 φ̃2+

in

]
· n1,3ds(x1)

+

4∑
i=1

∫
Γ

1,vac,i
ine,1,int

φ1,i
ine∇x1v · n1,ids(x1) =

4∑
i=1

∫
Γ

1,vac,i
ine,1,int

v1,i
ine∇x1v · n1,ids(x1)

The rest of the proof runs similarly as the proofs of the previous models. �

2.7/ LINEAR ELASTICITY MODELS

Let us move to the linear elasticity part. In this part, we use the superscripts ε, ], and 1

on derivation operators related to the variables xε, x] and x1, e.g. divε and σε represent

div and σ with respect to the variable xε.

We now recall the system 2.4.2 of linear elasticity,
−divεσε(uε) = ε−2fε in Ωε,mec

uε = 0 on Γ
ε,mec
0

σε(uε)nε = ε−1gε on Γ
ε,mec
1 .

(2.7.1)

We recall that there exists a unique uε ∈ H1
Γ
ε,mec
0 ,0(Ωmec) � {vε = (vεi ) : vεi ∈ H1(Ωε,mec), vεi = 0

on Γ
ε,mec
0 , i = 1, 2, 3} such that∫

Ωε,mec
σεi j(u

ε)∂εjv
ε
i dxε =

1
ε2

∫
Ωε,mec

f εi vεi dxε +
1
ε

∫
Γ
ε,mec
1

gεi vεi ds(xε), (2.7.2)
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for all vε ∈ H1
Γ
ε,mec
0 ,0(Ωε,mec), see [35].

We now develop the stress expression in (2.7.2),∫
Ωε,mec

(
λeεpp(uε)eεqq(vε) + 2µeεi j(u

ε)eεi j(v
ε)
)

dxε =
1
ε2

∫
Ωε,mec

f εi vεi dxε +
1
ε

∫
Γ
ε,mec
1

gεi vεi ds(xε).

But eεpp(uε) = δi j∂
ε
ju
ε
i and eεi j(u

ε)eεi j(v
ε) = ∂εj(u

ε
i )eεi j(v

ε) implies∫
Ωε,mec

∂εj(u
ε
i )(λδi jeεqq(vε) + 2µeεi j(v

ε))dxε =
1
ε2

∫
Ωε,mec

f εi vεi dxε +
1
ε

∫
Γ
ε,mec
1

gεi vεi ds(xε).

It could be read under the following equivalent form∫
Ωε,mec

∂εj(u
ε
i )σεi j(v

ε)dxε =
1
ε2

∫
Ωε,mec

f εi vεi dxε +
1
ε

∫
Γ
ε,mec
1

gεi vεi ds(xε).

Applying the Green’s formula, we obtain a very weak form of Problem 2.7.1,

−

∫
Ωε,mec

uεi ∂
ε
jσ

ε
i j(v

ε)dxε +

∫
Γ
ε,mec
1

uεiσ
ε
i j(v

ε)nεj ds(xε)

=
1
ε2

∫
Ωε,mec

f εi vεi dxε +
1
ε

∫
Γ
ε,mec
1

gεi vεi ds(xε), (2.7.3)

for all vε ∈ H2
Γ
ε,mec
0 ,0(Ωε,mec) � {vε = (vεi ) : vεi ∈ H2(Ωε,mec), vεi = 0 on Γ

ε,mec
0 , i = 1, 2, 3}.

Remark 6:

In this part, we do not redefine two-scale transform operators of vector valued

functions, instead we use a bold notation such as Tε with Tεv = (T εv1,T εv2,T εv3)

built from the two-scale transform operators T ε defined for scalar functions in the

previous sections. Similarly, bold notations are use for function spaces to indicate

vector valued function spaces, e.g. L2(Ωε,mec) = [L2(Ωε,mec)]3 and L2(Γε,mec
1 ) =

[L2(Γε,mec
1 )]3.

Assumption 6:

Let uε be a solution of (2.7.2), and assume that the norms |||uε|||L2(Ωε,mec),

ε|||∇εuε|||L2(Ωε,mec), |||fε|||L2(Ωε,mec) and |||gε|||L2(Γε,mec
1 ) are bounded uniformly with re-

spect to ε.
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2.7.1/ PERIODIC MODEL

Proposition 24:

Let uε be a solution of (2.7.2) and satisfies Assumption 6, then there exist u0 =

(u0
1, u

0
2, u

0
3) in L2(Ω],H1(Ω1,mec)),Ω1,mec - periodic in the directions x1

1 and x1
2, f0 =

( f 0
1 , f 0

2 , f 0
3 ) in L2(Ω] × Ω1,mec), and g0 = (g0

1, g
0
2, g

0
3) in L2(Ω] × Γ

1,mec
1 ), such that

Tεuε ⇀ u0, Tε(fε) ⇀ f0 weakly in L2(Ω] × Ω1,mec), and Tεgε ⇀ g0 weakly in

L2(Ω] × Γ
1,mec
1 ). Moreover, for a.e x] ∈ Ω], u0 is a solution to



−div1σ1(u0) = f0 in Ω1,mec

u0 = 0 on Γ
1,mec
0

σ1(u0)n1 = g0 on Γ
1,mec
1

σ1(u0)n1 is Γ
1,mec
per - antiperiodic

u0 is Γ
1,mec
per - periodic.

Proof. By Proposition 3, we obtain the existence and the periodicity of u0. The proof

is completed by showing that u0 satisfies the above equation. We now replace vε by

εBε(w) = (εBεw1, εBεw2, εBεw3) in (2.7.3), where w ∈ C∞(Ω] × Ω1,mec), Ω1,mec - periodic in

the directions x1
1 and x1

2, w = 0 on Γ
1,mec
0 and σ1(w)n1 = 0 on Γ

1,mec
1 ∪ Γ

1,mec
per . Then, we can

assert that

−ε

∫
Ωε,mec

uεi ∂
ε
jσ

ε
i j(B

εw)dxε + ε

∫
Γ
ε,mec
1

uεiσ
ε
i j(B

εw)nεj ds(xε)

=
1
ε

∫
Ωε,mec

f εi Bεwidxε +

∫
Γ
ε,mec
1

gεi Bεwids(xε). (2.7.4)

We check that

∂εj(B
εw) = Bε(∂]jw)χI]( j) +

1
ε

Bε(∂1
jw) and eε(Bεw) = Bε(e](w)) +

1
ε

Bε(e1(w)),

where

e]i j(w) =
1
2

(
∂
]
i w jχI](i) + ∂

]
jwiχI]( j)

)
and e1

i j(w) =
1
2

(
∂1

i w j + ∂1
jwi

)
with I] = {1, 2},

and we denote

σ
]
i j(w) = λe]pp(w)δi j + 2µe]i j(w) and σ1

i j(w) = λe1
pp(w)δi j + 2µe1

i j(w).

And it is clear that Bε(σ1(w))nε = 0 on Γ
ε,mec
1 . Then, a direct computation shows that l.h.s
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of (2.7.4) becomes,

l.h.s = −ε

∫
Ωε,mec

uεi ∂
ε
j

(
Bε(σ]i j(w)) +

1
ε

Bε(σ1
i j(w))

)
dxε

+ ε

∫
Γ
ε,mec
1

uεi

(
Bε(σ]i j(w)) +

1
ε

Bε(σ1
i j(w))

)
nεj ds(xε)

= −
1
ε

∫
Ωε,mec

uεi Bε
(
∂1

jσ
1
i j(w)

)
dxε + O(ε),

where

O(ε) = −ε

∫
Ωε,mec

uεi Bε
(
∂
]
jσ

]
i j(w)χI]( j)

)
dxε −

∫
Ωε,mec

uεi Bε
(
∂1

jσ
]
i j(w)

)
dxε

−

∫
Ωε,mec

uεi Bε
(
∂
]
jσ

1
i j(w)χI]( j)

)
dxε + ε

∫
Γ
ε,mec
1

uεi Bε(σ]i j(w))nεj χI]( j)ds(xε).

Thus (2.7.4) changes into

−
1
ε

∫
Ωε,mec

uεi Bε(∂1
jσ

1
i j(w)) dxε + O(ε) =

1
ε

∫
Ωε,mec

f εi Bε(wi) dxε +

∫
Γ
ε,mec
1

gεi Bε(wi)ds(xε).

Approximating Bε by T ε∗, we obtain

−
1
ε

∫
Ωε,mec

uεi T ε∗
(
∂1

jσ
1
i j(w)

)
dxε + O(ε) =

1
ε

∫
Ωε,mec

f εi T ε∗(wi) dxε +

∫
Γ
ε,mec
1

gεi T ε∗(wi) ds(xε).

Using the adjoint operator definition gives

−

∫
Ω]×Ω1,mec

T ε(uεi )∂1
jσ

1
i j(w) dx] dx1 =

∫
Ω]×Ω1,mec

T ε( f εi )wi dx] dx1

+

∫
Ω]×Γ

1,mec
1

T ε(gεi )wi dx]ds(x1) + O(ε).

Passing ε to 0 and by Assumption 6 , then we get

−

∫
Ω]×Ω1,mec

u0
i ∂

1
jσ

1
i j(w) dx] dx1 =

∫
Ω]×Ω1,mec

f 0
i wi dx]dx1 +

∫
Ω]×Γ

1,mec
1

g0
i wi dx]ds(x1).

Applying the Green’s formula twice for l.h.s,

−

∫
Ω]×Ω1,mec

∂1
j(σ

1
i j(u

0))wi dx]dx1 +

∫
Ω]×∂Ω1,mec

σ1
i j(u

0)n1
jwi dx]ds(x1) −

∫
Ω]×∂Ω1,mec

σ1
i j(w)n1

ju
0
i dx]ds(x1)

=

∫
Ω]×Ω1,mec

f 0
i wi dx]dx1 +

∫
Ω]×Γ

1,mec
1

g0
i wi dx]ds(x1).

Decomposing ∂Ω1,mec into Γ
1,mec
0 ∪ Γ

1,mec
1 ∪ Γ

1,mec
per and combining with conditions satisfied w
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yields

−

∫
Ω]×Ω1,mec

∂1
j

(
σ1

i j(u
0)
)

wi dx]dx1 +

∫
Ω]×(Γ1,mec

per ∪Γ
1,mec
1 )

σ1
i j(u

0)n1
jwi dx]ds(x1) (2.7.5)

−

∫
Ω]×Γ1

0

σ1
i j(w)n1

ju
0
i dx]ds(x1) =

∫
Ω]×Ω1,mec

f 0
i wi dx]dx1 +

∫
Ω]×Γ

1,mec
1

g0
i wi dx]ds(x1).

i) If we choose w = 0 on Γ
1,mec
per ∪ Γ

1,mec
1 and σ1(w)n1 = 0 on Γ

1,mec
0 , then

−

∫
Ω]×Ω1

∂1
j(σ

1
i j(u

0))wi dx]dx1 =

∫
Ω]×Ω1

f 0
i wi dx] dx1.

We can deduce that

−∂1
jσ

1
i j(u

0) = f 0
i in Ω1,mec.

Then (2.7.5) changes into∫
Ω]×(Γ1,mec

per ∪Γ
1,mec
1 )

σ1
i j(u

0)n1
jwi dx]ds(x1)+

∫
Ω]×Γ

1,mec
0

σ1
i j(w)n1

ju
0
i dx]ds(x1) =

∫
Ω]×Γ

1,mec
1

g0
i wi dx]ds(x1).

ii) If w = 0 on Γ
1,mec
per and σ1(w)n1 = 0 on Γ

1,mec
0∫

Ω]×Γ
1,mec
1

σ1
i j(u

0)n1
jwi dx]ds(x1) =

∫
Ω]×Γ

1,mec
1

g0
i wi dx]ds(x1).

We can assert that

σ1
i j(u

0)n1
j = g0

i on Γ
1,mec
1 .

Hence, ∫
Ω]×Γ

1,mec
per

σ1
i j(u

0)n1
jwi dx]ds(x1) −

∫
Ω]×Γ

1,mec
0

σ1
i j(w)n1

ju
0
i dx]ds(x1) = 0.

iii) If w = 0 and σ1(w)n1 = 0 on Γ
1,mec
per , then

−

∫
Ω]×Γ

1,mec
0

σ1
i j(w)n1

ju
0
i dx]ds(x1) = 0.

we obtain

u = 0 on Γ
1,mec
0 .

Lastly, we have ∫
Ω]×Γ1

per

σ1
i j(u

0)n1
jwi dx]ds(x1) = 0.

It leads

σ1
i j(u

0)n1
j is Γ1,mec

per - antiperiodic.

�
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2.7.2/ LATERAL BOUNDARY MODEL

We now investigate the first lateral boundary model by introducing some terms uεbl =

uε − Bεu0, fεbl = fε − Bεf0, gεbl = gε − Bεg0, and make the following assumptions.

Assumption 7:

We assume that:

1. For each α, there exist u1,α
bl = (u1,α

bl,1, u
1,α
bl,2, u

1,α
bl,3) ∈ L2(Ω]

bl,1,H
1(Ω1,mec

bl,1 )),

Ω
1,mec
bl,1 −periodic in the direction x1

1, f1,α
bl = ( f 1,α

bl,1, f 1,α
bl,2, f 1,α

bl,3) ∈ L2(Ω]
bl,1 ×Ω

1,mec
bl,1 ),

and g1,α
bl = (g1,α

bl,1, g
1,α
bl,2, g

1,α
bl,3) ∈ L2(Ω] × Γ

1,mec
bl,1,1 ) such that Tε

bl,1uεbl ⇀ u1,α
bl ,

Tε
bl,1fεbl ⇀ f1,α

bl weakly in L2(Ω]
bl,1 × Ω

1,mec
bl,1 ), and Tε

bl,1(gεbl) ⇀ g1,α
bl weakly in

L2(Ω]
bl,1 × Γ

1,mec
bl,1,1 ) when ε→ 0.

2. There exist u1
bl = (u1

bl,1, u
1
bl,2, u

1
bl,3) ∈ L2(Ω]

bl,1,H
1(Ω∞,mec

bl,1 )), Ω
∞,mec
bl,1 −periodic in

the direction x1
1, u1

bl,i and σ1
i j(u

1
bl) converges exponentially fast to 0 when

x1
2 → +∞ for all i, j ∈ {1, 2, 3}, f1

bl = ( f 1
bl,1, f 1

bl,2, f 1
bl,3) ∈ L2(Ω]

bl,1 × Ω
∞,mec
bl,1 ),

and g1
bl = (g1

bl,1, g
1
bl,2, g

1
bl,3) ∈ L2(Ω] × Γ

∞,mec
bl,1,1 ) such that u1,α

bl χΩ
1,mec
bl,1

⇀ u1
bl,

f1,α
bl χΩ

1,mec
bl,1

⇀ f1
bl weakly in L2(Ω]

bl,1 × Ω
∞,mec
bl,1 ), and g1,α

bl χΩ
1,mec
bl,1

⇀ g1
bl weakly

in L2(Ω]
bl,1 × Γ

1,mec
bl,1,1 ) when α +∞.

Proposition 25:

By Assumption 7 and using Proposition 11, then Tε
bl,1uε ⇀ u1,α

bl + ũ0 ,

Tε
bl,1(fε) ⇀ f1,α

bl + f̃0 weakly in L2
(
Ω
]
bl,1 ×Ω

1,mec
bl,1

)
and Tε

bl,1gε ⇀ g1,α
bl + g̃0 weakly

in L2
(
Ω
]
bl,1 × Γ

1,mec
bl,1,1

)
where ϕ̃(x], x1) = ϕ

(
(x], 0), (x1

1, x
1
2 −

1
2 , x

1
3 −

1
2 )

)
, for (x], x1) ∈

Ω] ×Ω
1,mec
bl,1 .

Proposition 26:

The limit u1
bl is a solution to

−div1σ1(u1
bl) = f1

bl in Ω
∞,mec
bl,1

u1
bl = 0 on Γ

∞,mec
bl,1,0

u1
bl is Γ

∞,mec
bl,1,per - periodic

σ1(u1
bl)n

1 = g1
bl on Γ

∞,mec
bl,1,1

σ1(u1
bl)n

1 is Γ
∞,mec
bl,1,per - antiperiodic

σ1(u1
bl)n

1 = −σ1(ũ0)n1 on Γ
∞,mec
bl,1,Or.

(2.7.6)

Proof. We replace vε in (2.7.3) by a smooth vector valued function vεbl defined in Ω
αε,mec
bl,1

and vanishing out of Ω
αε,mec
bl,1 . Then, we substitute vεbl by Bε

bl,1(w) where w ∈ C∞(Ω]
bl,1 ×
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Ω
1,mec
bl,1 ), is Ω

1,mec
bl,1 - periodic in the direction x1

1, w = 0 on Γ
1,mec
bl,1,0 ∪ Γ

1,mec
bl,1,α and σ1(w)n1 = 0 on

Γ
1,mec
bl,1,per ∪ Γ

1,mec
bl,1,1 ∪ Γ

1,mec
bl,1,Or ∪ Γ

1,mec
bl,1,α, we get

−

∫
Ω
αε,mec
bl,1

uεi ∂
ε
jσ

1
i j

(
Bε

bl,1(w)
)

dxε +

∫
Γ
αε,mec
bl,1,1

uεiσ
ε
i j

(
Bε

bl,1(w)
)

nεj ds(xε)

=
1
ε2

∫
Ω
αε,mec
bl,1

f εi Bεbl,1(wi) dxε +
1
ε

∫
Γ
αε,mec
bl,1,1

gεi Bεbl,1(wi) ds(xε).

(2.7.7)

Then

∂εjB
ε
bl,1(w) = Bε

bl,1(∂]jw)χI]( j) +
1
ε

Bε
bl,1(∂1

jw) and eε(Bε
bl,1(w)) = Bε

bl,1(e](w)) +
1
ε

Bε
bl,1(e1(w)),

where

e]i j(w) =
1
2

(
∂
]
i w jχI](i) + ∂

]
jwiχI]( j)

)
and e1

i j(w) =
1
2

(
∂1

i w j + ∂1
jwi

)
, with I] = {1},

and we denote

σ
]
i j(w) = λe]pp(w)δi j + 2µe]i j(w) and σ1

i j(w) = λe1
pp(w)δi j + 2µe1

i j(w).

One checks that Bεbl,1

(
σ1

i j(w)
)

nε = 0 on Γ
αε,mec
bl,1,1 . Plugging into (2.7.7), we can assert that

−
1
ε2

∫
Ω
αε,mec
bl,1

uεi Bεbl,1

(
∂1

jσ
1
i j(w)

)
dxε+O(ε) =

1
ε2

∫
Ω
αε,mec
bl,1

f εi Bεbl,1(wi) dxε+
1
ε

∫
Γ
αε,mec
bl,1,1

gεi Bεbl,1(wi) ds(xε).

where

O(ε) = −

∫
Ω
αε,mec
bl,1

uεi Bεbl,1

(
∂
]
jσ

]
i j(w)χI]( j)

)
dxε −

1
ε

∫
Ω
αε,mec
bl,1

uεi Bεbl,1

(
∂1

jσ
]
i j(w)

)
dxε

−
1
ε

∫
Ω
αε,mec
bl,1

uεi Bεbl,1

(
∂
]
jσ

1
i j(w)χI]( j)

)
dxε +

∫
Γ
αε,mec
bl,1,1

uεi Bεbl,1

(
σ
]
i j(w)

)
nεj χI]( j)ds(xε).

Replacing Bεbl,1 by T ε∗
bl,1, then

−
1
ε2

∫
Ω
αε,mec
bl,1

uεi T ε∗
bl,1(∂1

jσ
1
i j( w)) dxε =

1
ε2

∫
Ω
αε,mec
bl,1

f εi T ε∗
bl,1(wi) dxε+

1
ε

∫
Γ
αε,mec
bl,1,1

gεi T ε∗
bl,1(wi) ds(xε)+O(ε).

By the definition of the adjoint operator T ε∗
bl,1, we have

−

∫
Ω
]
bl,1×Ω

1,mec
bl,1

T ε
bl,1(uεi ) ∂1

jσ
1
i j(w)dx] dx1 =

∫
Ω]×Ω

1,mec
bl,1

T ε
bl,1( f εi )wi dx]dx1

+

∫
Ω
]
bl,1×Γ

1,mec
bl,1,1

T ε
bl,1(gεi )wi dx]ds(x1) + O(ε).
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Passing ε to 0 and combining with Proposition 25 yields

−

∫
Ω
]
bl,1×Ω

1,mec
bl,1

(
u1,α

bl,i + ũ0
i

)
∂1

jσ
1
i j(w)dx]dx1 =

∫
Ω
]
bl,1×Ω

1,mec
bl,1

(
f 1,α
bl,i + f̃ 0

i

)
wi dx]dx1

+

∫
Ω
]
bl,1×Γ

1,mec
bl,1,1

(
g1,α

bl,i + g̃0
i

)
wi dx]ds(x1).

It follows by the same method in the proof of the lateral boundary layer in the electrostatic

model part that

−

∫
Ω
]
bl,1×Ω

1,mec
bl,1

(
u1

bl,i + ũ0
i

)
∂1

jσ
1
i j(w)dx]dx1 =

∫
Ω
]
bl,1×Ω

1,mec
bl,1

(
f 1
bl,i + f̃ 0

i

)
wi dx]dx1

+

∫
Ω
]
bl,1×Γ

1,mec
bl,1,1

(
g1

bl,i + g̃0
i

)
wi dx]ds(x1).

for each α.

Applying the Green’s formula twice in the l.h.s, we obtain

−

∫
Ω
]
bl,1×Ω

1,mec
bl,1

∂1
j

(
σ1

i j

(
u1

bl + ũ0
))

wi dx]dx1+

∫
Ω
]
bl,1×∂Ω

1,mec
bl,1

σ1
i j

(
u1

bl + ũ0
)

n1
jwidx]ds(x1)

−

∫
Ω
]
bl,1×∂Ω

1,mec
bl,1

σ1
i j(w)n1

j

(
u1

bl,i + ũ0
i

)
dx]ds(x1) =

∫
Ω
]
bl,1×Ω

1,mec
bl,1

(
f 1
bl,i + f̃ 0

i

)
wi dx]dx1

+

∫
Ω
]
bl,1×Γ

1,mec
bl,1,1

(
g1

bl,i + g̃0
i

)
wi dx]ds(x1).

Decomposing ∂Ω
1,mec
bl,1 into Γ

1,mec
bl,1,0 ∪ Γ

1,mec
bl,1,1 ∪ Γ

1,mec
bl,1,per ∪ Γ

1,mec
bl,1,Or ∪ Γ

1,mec
bl,1,α and combining with

Proposition 24 and the conditions satisfied w gives

−

∫
Ω
]
bl,1×Ω

1,mec
bl,1

∂1
j(σ

1
i j(u

1
bl))wi dx]dx1

+

∫
Ω
]
bl,1×Γ

1,mec
bl,1,Or

σ1
i j

(
u1

bl + ũ0
)

n1
jwi dx]ds(x1) +

∫
Ω
]
bl,1×Γ

1,mec
bl,1,1

σ1
i j(u

1
bl)n

1
jwi dx]ds(x1)

+

∫
Ω
]
bl,1×Γ

1,mec
bl,1,per

σ1
i j

(
u1

bl

)
n1

jwi dx]ds(x1) −
∫

Ω
]
bl,1×Γ

1,mec
bl,1,0

σ1
i j(w)n1

ju
1
bl,i dx]ds(x1)

=

∫
Ω
]
bl,1×Ω

1,mec
bl,1

f 1
bl,iwi dx]dx1 +

∫
Ω
]
bl,1×Γ

1,mec
bl,1,1

g1
bl,iwi dx]ds(x1).

If we choose w = 0 on Γ
1,mec
bl,1,1 ∪ Γ

1,mec
bl,1,per ∪ Γ

1,mec
bl,1,Or and σ1(w)n = 0 on Γ

1,mec
bl,1,0 ,

−

∫
Ω
]
bl,1×Ω

1,mec
bl,1

∂1
j(σ

1
i j(u

1
bl))wi dx]dx1 =

∫
Ω
]
bl,1×Ω

1,mec
bl,1

f 1
bl,iwi dx]dx1.

Hence, −∂1
jσ

1
i j(u

1
bl) = f 1

bl,i in Ω
]
bl,1 ×Ω

1,mec
bl,1 .

If w = 0 on Γ
1,mec
bl,1,1 ∪ Γ

1,mec
bl,1,per ∪ Γ

1,mec
bl,1,Or , we get u1

bl,i = 0 on Γ
1,mec
bl,1,0 .
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If w = 0 on Γ
1,mec
bl,1,per ∪ Γ

1,mec
bl,1,Or, so σ1

i j(u
1
bl)n

1
j = g1

bl,i on Γ
1,mec
bl,1,1 .

If w = 0 on Γ
1,mec
bl,1,per. Thus, σ1

i j(u
1
bl)n

1
j = −σ1

i j

(
ũ0

)
n1

j on Γ
1,mec
bl,1,Or.

Lastly, we obtain σ1
i j(u

1
bl)n

1
j is Γ

1,mec
bl,1,per - antiperiodic.

Since this is true for each α then the above equations hold in the infinite domain and the

proof is completed. �

2.7.3/ EXTERIOR EDGE MODEL

We now introduce uεexe = uε −
(
Bεu0 + Bε

bl,1u1
bl + Bε

bl,2u2
bl

)
, fεexe = fε −

(
Bεf0 + Bε

bl,1f1
bl + Bε

bl,2f2
bl

)
and gεexe = gε −

(
Bεg0 + Bε

bl,1g1
bl + Bε

bl,2g2
bl

)
, and make the following assumptions.

Assumption 8:

We assume that

1. For each α, there exist u1,α
exe = (u1,α

exe,1, u
1,α
exe,2, u

1,α
exe,3) in H1(Ω1,mec

exe,1 ), f1
exe =

( f 1,α
exe,1, f 1,α

exe,2, f 1,α
exe,3) in L2(Ω1,mec

exe,1 ), and g1
exe = (g1,α

exe,1, g
1,α
exe,2, g

1,α
exe,3) in L2(Γ1,mec

exe,1,1)

such that Tε
exe,1(uεexe) ⇀ u1,α

exe, Tε
exe,1fεexe⇀ f1,α

exe weakly in L2(Ω1,mec
exe,1 ), and

Tε
exe,1gεexe ⇀ g1,α

exe weakly in L2(Γ1,mec
exe,1,1) when ε→ 0.

2. There exist u1
exe = (u1

exe,1, u
1
exe,2, u

1
exe,3) in H1(Ω∞,mec

exe,1 ) , u1
exe,i and σ1

i j(u
1
exe) con-

verges exponentially fast to 0 when x1
1 + x1

2 → +∞ for i, j ∈ {1, 2, 3},

f1
exe = ( f 1

exe,1, f 1
exe,2, f 1

exe,3) in L2(Ω∞,mec
exe,1 ), and g1

exe = (g1
exe,1, g

1
exe,2, g

1
exe,3) in

L2(Γ∞,mec
exe,1,1) such that u1,α

exeχΩ
1,mec
exe,1

⇀ u1
exe, f1,α

exeχΩ
1,mec
exe,1

⇀ f1
exe weakly in L2(Ω1,mec

exe,1 ),

and g1,α
exeχΩ

1,mec
exe,1

⇀ g1
exe weakly in L2(Γ1,mec

exe,1,1) when α→ +∞.

Proposition 27:

Under Assumption 8 and using Proposition 14, then we obtain Tε
exe,1uε ⇀ u1,α

exe +

ũ0 + ũ1
bl + ũ2

bl, Tε
exe,1(fε) ⇀ f1,α

exe + f̃0 + f̃1
bl + f̃2

bl weakly in L2(Ω1,mec
exe,1 ) and Tε

exe,1gε ⇀

g1,α
exe + g̃0 + g̃1

bl + g̃2
bl weakly in L2(Γ1,mec

exe,1,1), where ϕ̃0(x1) = ϕ0(0, x1 − 1/2), ϕ̃1
bl(x1) =

ϕ1
bl(0, (x1

1 − 1/2, x1
2, x

1
3)), and ϕ̃2

bl(x1) = ϕ2
bl(0, (x1

1, x
1
2 − 1/2, x1

3)) for x1 ∈ Ω
1,mec
exe,1 , resp.

x1 ∈ Γ
1,mec
exe,1,1.
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Proposition 28:

The limit u1
exe is a solution to

−div1σ1(u1
exe) = f1

exe in Ω
∞,mec
exe,1

u1
exe = 0 on Γ

∞,mec
exe,1,0

σ1(u1
exe)n1 = g1

exe on Γ
∞,mec
exe,1,1

σ1(u1
exe)n1 = −σ1(ũ2

bl)n
1 on Γ

∞,mec
exe,1,bl1

σ1(u1
exe)n1 = −σ1(ũ1

bl)n
1 on Γ

∞,mec
exe,1,bl2.

Proof. We replace vε in (2.7.3) by a smooth function vεexe defined in Ω
αε,mec
exe,1 and vanishing

out of Ω
αε,mec
exe,1 . Then we substitute vεexe by ε−1Bε

exe,1w, where w ∈ C∞(Ω]
exe,1 ×Ω

1,mec
exe,1 ), w = 0

on Γ
1,mec
exe,1,0 ∪ Γ

1,mec
exe,1,α and σ1(w)n1 = 0 on Γ

1,mec
exe,1,1 ∪ Γ

1,mec
exe,1,α ∪ Γ

1,mec
exe,1,bl1 ∪ Γ

1,mec
exe,1,bl2, then

−
1
ε

∫
Ω
αε,mec
exe,1

uεi ∂
ε
jσ

1
i j

(
Bε

exe,1(w)
)

dxε +
1
ε

∫
Γ
αε,mec
exe,1,1

uεiσ
ε
i j

(
Bε

exe,1(w)
)

nεj ds(xε)

=
1
ε3

∫
Ω
αε,mec
exe,1

f εi Bεexe,1(wi) dxε +
1
ε2

∫
Γ
αε,mec
exe,1,1

gεi Bεexe,1(wi ) ds(xε).

A straightforward calculation reveals that

−
1
ε3

∫
Ω
αε,mec
exe,1

uεi Bεexe,1(∂1
jσ

1
i j(w)) dxε =

1
ε3

∫
Ω
αε,mec
exe,1

f εi Bεexe,1(wi) dxε +
1
ε2

∫
Γ
αε,mec
exe,1,1

gεi Bεexe,1(wi) ds(xε).

Replacing Bεexe,1 by T ε∗
exe,1 and combining with the definition of T ε∗

exe,1 , we can write that

−

∫
Ω

1,mec
exe,1

T ε
exe,1(uεi )∂1

jσ
1
i j(w) dx1 =

∫
Ω

1,mec
exe,1

T ε
exe,1( f εi )wi dx1 +

∫
Γ

1,mec
exe,1,1

T ε
exe,1(gεi )wi ds(x1).

Passing ε to 0 and by Proposition 27, yields

−

∫
Ω

1,mec
exe,1

(
u1,α

exe,i + ũ0
i + ũ1

bl,i + ũ2
bl,i

)
∂1

jσ
1
i j(w) dx1

=

∫
Ω

1,mec
exe,1

(
f 1,α
exe,i + f̃ 0

i + f̃ 1
bl,i + f̃ 2

bl,i

)
wi dx1 +

∫
Γ

1,mec
exe,1,1

(
g1,α

exe,i + g̃0
i + g̃1

bl,i + g̃2
bl,i

)
wi ds(x1).

In the same manner as the proof of the electrostatic edge model, we can assert that

−

∫
Ω

1,mec
exe,1

(
u1

exe,i + ũ0
i + ũ1

bl,i + ũ2
bl,i

)
∂1

jσ
1
i j(w) dx1

=

∫
Ω

1,mec
exe,1

(
f 1
exe,i + f̃ 0

i + f̃ 1
bl,i + f̃ 2

bl,i

)
wi dx1 +

∫
Γ

1,mec
exe,1,1

(
g1

exe,i + g̃0
i + g̃1

bl,i + g̃2
bl,i

)
wi ds(x1),

for each α.

Applying Green’s formula twice and decomposing ∂Ω
1,mec
exe,1 into Γ

1,mec
exe,1,0 ∪ Γ

1,mec
exe,1,1 ∪ Γ

1,mec
exe,1,bl1 ∪
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Γ
1,mec
exe,1,bl2∪Γ

1,mec
exe,1,α, combining with conditions satisfied by w, Proposition 24, and Proposition

26, we get

−

∫
Ω

1,mec
exe,1

∂1
j(σ

1
i j(u

1
exe))wi dx1 +

∫
Γ

1,mec
exe,1,1

σ1
i j(u

1
exe)n1

jwi ds(x1)

+

∫
Γ

1,mec
exe,1,bl1

σ1
i j

(
u1

exe + ũ2
bl

)
n1

jwi ds(x1) +

∫
Γ

1,mec
exe,1,bl2

σ1
i j

(
u1

exe + ũ1
bl

)
n1

jwi ds(x1)

−

∫
Γ

1,mec
exe,1,0

σ1
i j(w)n1

ju
1
exe,i ds(x1) =

∫
Ω

1,mec
exe,1

f 1
exe,iwi dx1 +

∫
Γ

1,mec
exe,1,1

g1
exe,iwi ds(x1).

If w = 0 and σ1(w)n1 = 0 on ∂Ω
1,mec
exe,1 , we obtain −∂1

jσ
1
i j(u

1
exe) = f1

exe in Ω
1,mec
exe,1 .

If w = 0 on ∂Ω
1,mec
exe,1 , thus u1

exe = 0 on Γ
1,mec
exe,1,0.

If w = 0 on Γ
1,mec
exe,1,bl1 ∪ Γ

1,mec
exe,1,bl2, we assert that σ1

i j(u
1
exe)n1

j = g1
exe,i on Γ

1,mec
exe,1,1.

If w = 0 on Γ
1,mec
exe,1,bl2, we deduce σ1

i j(u
1
exe)n1

j = −σ1
i j

(
ũ1

bl

)
n1

j on Γ
1,mec
exe,1,bl2.

Lastly, we get σ1
i j(u

1
exe)n1

j = −σ1
i j

(
ũ2

bl

)
n1

j on Γ
1,mec
exe,1,bl1.

Since this is true for each α then the above equations hold in the infinite domain and the

proof is completed. �

2.7.4/ INTERFACE MODEL

Let us recall that uεbl = uε−Bε(u0), fεbl = fε−Bε(f0), gεbl = gε−Bε(g0), and make the following

assumptions

Assumption 9:

We assume that

1. For each α, there exist u1,α
in = (u1,α

in,1, u
1,α
in,2, u

1,α
in,3) ∈ L2(Ω]

in,1,H
1(Ω1,mec

in,1 )), is

Ω
1,mec
in,1 −periodic in the direction x1

2, f1
in = ( f 1,α

in,1, f 1,α
in,2, f 1,α

in,3) ∈ L2(Ω]
in,1 × Ω

1,mec
in,1 ),

and g1
in = (g1,α

in,1, g
1,α
in,2, g

1,α
in,3) ∈ L2(Ω]

in,1 × Γ
1,mec
in,1,1 ) such that Tε

in,1uεbl ⇀ u1
in,

Tε
in,1fεbl ⇀ f1

in weakly in L2(Ω]
in,1 × Ω

1,mec
in,1 ), and Tε

in,1gεbl ⇀ g1
in weakly in

L2(Ω]
in,1 × Γ

1,mec
in,1,1 ) when ε→ 0.

2. There exist u1
in = (u1

in,1, u
1
in,2, u

1
in,3) ∈ L2(Ω]

in,1,H
1(Ω∞,mec

in,1 )), Ω
∞,mec
in,1 − periodic

in the direction x1
2, u1

in,i and σ1
i j(u

1
in) converge exponentially to zero when∣∣∣x1

2

∣∣∣ → +∞ for all i, j ∈ {1, 2, 3}, f1
in = ( f 1

in,1, f 1
in,2, f 1

in,3) ∈ L2(Ω]
in,1 × Ω

∞,mec
in,1 ),

and g1
in = (g1

in,1, g
1
in,2, g

1
in,3) ∈ L2(Ω]

in,1 × Γ
∞,mec
in,1,1 ) such that u1,α

in χ
Ω

1,mec
in,1

⇀ u1
in,

f1,α
in χ

Ω
1,mec
in,1

⇀ f1
in weakly in L2(Ω]

in,1 × Ω
∞,mec
in,1 ), and g1,α

in χ
Ω

1,mec
in,1

⇀ g1
in weakly in

L2(Ω]
in,1 × Γ

∞,mec
in,1,1 ) when α→ +∞.
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Proposition 29:

Under Assumption 9 and using Proposition 18, then Tε
in,1uε ⇀ u1,α

in +ũ0, Tε
in,1(fε) ⇀

f1,α
in +f̃0 weakly in L2(Ω]

in,1×Ω
1,mec
in,1 ) and Tε

in,1gε ⇀ g1,α
in +g̃0 weakly in L2(Ω]

in,1×Γ
1,mec
in,1,1 ),

where ϕ̃(x], x1) = ϕ
(
(x], L2

1), (x1
1, x

1
2 −

1
2 , x

1
3 −

1
2 )

)
for (x], x1) ∈ Ω

]
in,1 × Ω

1,mec
in,1 , (resp.

(x], x1) ∈ Ω
]
in,1 × Γ

1,mec
in,1,1 ).

Proposition 30:

The limit u1
in is a solution to



−div1σ1(u1
in) = f1

in in Ω
∞,mec
in,1

u1
in = 0 on Γ

∞,mec
in,1,0

u1
in is Γ

∞,mec
in,1,per - periodic

σ1(u1
in)n1 = g1

in on Γ
∞,mec
in,1,1

σ1(u1
in)n1 is Γ

∞,mec
in,1,per - antiperiodic[[

σ1(u1
in)

]]
n1 = −

[[
σ1(ũ0)

]]
n1 on Γ

∞,mec
in,1,interf[[

u1
in

]]
= −

[[
ũ0

]]
on Γ

∞,mec
in,1,interf.

(2.7.8)

Proof. We replace vε in (2.7.3) by a smooth function vεin defined in Ω
αε,mec
in,1 and vanishing

out of Ω
αε,mec
in,1 . Then, we substitute vεin by Bε

in,1(w), where w is in C∞(Ω]
in,1 × Ω

1,mec
in,1 ), is

Ω
1,mec
in,1 - periodic in the directions x1

1, x1
2, w = 0 on Γ

1,mec
in,1,0 ∪ Γ

1,mec
in,1,α and σ1(w)n1 = 0 on

Γ
1,mec
in,1,1 ∪ Γ

1,mec
in,1,per ∪ Γ

1,mec
in,1,α. It follows that

−

∫
Ω
αε,mec
in,1

uεi ∂
ε
jσ

1
i jB

ε
in,1(w)nεj dxε +

∫
Γ
αε,mec
in,1,1

uεiσ
ε
i j

(
Bε

in,1(w)
)

nεj ds(xε)

=
1
ε2

∫
Ω
αε,mec
in,1

f εi Bεin,1(wi) dxε +
1
ε

∫
Γ
αε,mec
in,1,1

gεi Bεin,1(wi) ds(xε).

After some calculations, we obtain

−
1
ε2

∫
Ω
αε,mec
in,1

uεi Bεin,1
(
∂1

jσ
1
i j(w)

)
dxε+O(ε) =

1
ε2

∫
Ω
αε,mec
in,1

f εi Bεin,1(wi) dxε+
1
ε

∫
Γ
αε,mec
in,1,1

gεi Bεin,1(wi) ds(xε),

where

O(ε) = −

∫
Ω
αε,mec
in,1

uεi Bεin,1
(
∂
]
jσ

]
i j(w)χI]( j)

)
dxε −

1
ε

∫
Ω
αε,mec
in,1

uεi Bεin,1
(
∂1

jσ
]
i j(w)

)
dxε

−
1
ε

∫
Ω
αε,mec
in,1

uεi Bεin,1
(
∂
]
jσ

1
i j(w)χI]( j)

)
dxε +

∫
Γ
αε,mec
in,1,1

uεi Bεin,1
(
σ
]
i j(w)

)
nεj ds(xε) with I] = {1}.
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Replacing Bεin,1 by T ε,∗
in,1, the above equality becomes

−
1
ε2

∫
Ω
αε,mec
in,1

uεi T ε∗
in,1

(
∂1

jσ
1
i j(w)

)
dxε =

1
ε2

∫
Ω
αε,mec
in,1

f εi T ε∗
in,1(wi) dxε+

1
ε

∫
Γ
αε,mec
in,1,1

gεi T ε∗
in,1(wi) ds(xε)+O(ε).

By the definition of the adjoint operator T ε∗
in,1, it follows that

−

∫
Ω
]
in,1×Ω

1,mec
in,1

T ε
in,1(uεi )∂1

j(σ
1
i j(w)) dx]dx1 =

∫
Ω
]
in,1×Ω

1,mec
in,1

T ε
in,1( f εi )wi dx]dx1

+

∫
Ω
]
in,1×Γ

1,mec
in,1,1

T ε
in,1(gεi )wi dx] ds(x1) + O(ε).

Passing ε to 0 and combining with Proposition 29 gives

−

∫
Ω
]
in,1×Ω

1,mec
in,1

(
u1,α

in,i + ũ0
i

)
∂1

jσ
1
i j(w)dx]dx1 =

∫
Ω
]
in,1×Ω

1,mec
in,1

(
f 1,α
in,i + f̃ 0

i

)
wi dx]dx1

+

∫
Ω
]
in,1×Γ

1,mec
in,1,1

(
g1,α

in,i + g̃0
i

)
wi dx]ds(x1).

In the same manner with the previous proofs, we can assert that for each α

−

∫
Ω
]
in,1×Ω

1,mec
in,1

(
u1

in,i + ũ0
i

)
∂1

jσ
1
i j(w)dx]dx1 =

∫
Ω
]
in,1×Ω

1,mec
in,1

(
f 1
in,i + f̃ 0

i

)
wi dx]dx1

+

∫
Ω
]
in,1×Γ

1,mec
in,1,1

(
g1

in,i + g̃0
i

)
wi dx]ds(x1).

Applying Green’s formula twice in the l.h.s,

l.h.s = −
∑
±

∫
Ω
]
in,1×Ω

1,mec±
in,1

∂1
j

(
σ1

i j

(
u1±

in + ũ0
±
))

wi dx]dx1

+
∑
±

∫
Ω
]
in,1×∂Ω

1,mec±
in,1

σ1
i j

(
u1±

in + ũ0
±
)

n1±
j wi dx]ds(x1)

−
∑
±

∫
Ω
]
in,1×∂Ω

1,mec±
in,1

σ1
i j(w)n±j

(
u1±

in,i + ũ0
i

±
)

dx]ds(x1).

Decomposing Ω
1,mec
in,1 into two nonoverlapping subdomains Ω

1,mec+
in,1 and Ω

1,mec−
in,1 with their

boundaries Γ
1,mec,±
in,1,0 ∪ Γ

1,mec,±
in,1,1 ∪ Γ

1,mec±
in,1,per ∪ Γ

1,mec±
in,1,α ∪ Γ

1,mec
in,1,interf, combing with the conditions
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satisfied w, and Proposition 24, we obtain

−
∑
±

∫
Ω
]
in,1×Ω

1,mec±
in,1

∂1
j(σ

1
i j(u

1±
in ))wi dx]dx1 +

∑
±

∫
Ω
]
in,1×Γ

1,mec±
in,1,1

σ1
i j(u

1±
in )n1±

j wi dx]ds(x1) (2.7.9)

+
∑
±

∫
Ω
]
in,1×Γ

1,mec±
in,1,per

σ1
i j

(
u1±

in

)
n1±

j wi dx] ds(x1)

+

∫
Ω
]
in,1×Γ

1,mec
in,1,interf

[
σ1

i j

(
u1+

in + ũ0
+
)
− σ1

i j

(
u1−

in + ũ0
−
)]

n1+
j wi dx]ds(x1)

−

∫
Ω
]
in,1×Γ

1,mec
in,1,interf

σ1
i j(w)n1+

j

[(
u1+

in,i + ũ0
i

+)
−

(
u1−

in,i + ũ0
i

−
)]

dx]ds(x1)

−
∑
±

∫
Ω
]
in,1×Γ

1,mec±
in,1,0

σ1
i j(w)n1±

j u1±
in,i dx]ds(x1)

=
∑
±

∫
Ω
]
in,1×Ω

1,mec±
in,1

f 1±
in,iwi dx]dx1 +

∑
±

∫
Ω
]
in,1×Γ

1,mec±
in,1,1

g1±
in,iwi dx]ds(x1).

If w = 0 on Γ
1,mec
in,1,1 ∪ Γ

1,mec
in,1,per ∪ Γ

1,mec
in,1,interf and σ1(w)n1 = 0 on Γ

1,mec
in,1,0 ∪ Γ

1,mec
in,1,interf, then

∂1
jσ

1
i j(u

1
in) = f 1

in,i in Ω
1,mec
in,1 .

If w = 0 on Γ
1,mec
in,1,per ∪ Γ

1,mec
in,1,interf and σ1(w)n1 = 0 on Γ

1,mec
in,1,interf ∪ Γ

1,mec
in,1,0 , we get σ1

i j(u
1
in)n1

j = g1
in,i

on Γ
1,mec
in,1,1 .

If w = 0 on Γ
1,mec
in,1,per ∪ Γ

1,mec
in,1,interf and σ1(w)n1 = 0 on Γ

1,mec
in,1,interf, thus u1

in = 0 on Γ
1,mec
in,1,0 .

If w = 0 on Γ
1,mec
in,1,interf and σ1(w)n1 = 0 on Γ

1,mec
in,1, interf , we have σ1

i j(u
1
in)n1

j is Γ
1,mec
in,1,per - antiperi-

odic.

If σ1(w)n1 = 0 on Γ
1,mec
in,1,interf, it follows that

[
σ1

i j

(
u1+

in + ũ0
+
)
− σ1

i j

(
u1−

in + ũ0
−
)]

n1+
j = 0 or[[

σ1
i j(u

1
in)

]]
n1

j = −

[[
σ1

i j( ũ0)
]]

n1
j on Γ

1,mec
in,1,interf.

Finally, we also obtain
[[

u1
in

]]
= −

[[
ũ0

]]
on Γ

1,mec
in,1,interf.

Since this is true for each α then the above equations hold in the infinite domain and the

proof is completed. �

2.7.5/ INTERNAL EDGE MODEL

To investigate the internal edge model, we first introduce some terms

uεine = uε − Bεu0 − Bε
in,2u2−

in χΩ
αε,mec,2
ine,1

− (Bε
in,1u1+

in + Bε
in,2u2+

in )χ
Ω
αε,mec,3
ine,1

− Bε
in,2u1−

in χΩ
αε,mec,4
ine,1

,

fεine = fε − Bεf0 − Bε
in,2f2−

in χΩ
αε,mec,2
ine,1

− (Bε
in,1f1+

in + Bε
in,2f2+

in )χ
Ω
αε,mec,3
ine,1

− Bε
in,2f1−

in χΩ
αε,mec,4
ine,1

,

gεine = gε − Bεg0 − Bε
in,2g2−

in χΩ
αε,mec,2
ine,1

− (Bε
in,1g1+

in + Bε
in,2g2+

in )χ
Ω
αε,mec,3
ine,1

− Bε
in,2g1−

in χΩ
αε,mec,4
ine,1

,

and make some the following assumptions.
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Assumption 10:

We assume that

1. For each α, there exist u1,α
ine = (u1,α

ine,1, u
1,α
ine,2, u

1,α
ine,3) in H1(Ω1,mec

ine,1 ), f1,α
ine =

( f 1,α
ine,1, f 1,α

ine,2, f 1,α
ine,3) in L2(Ω1,mec

ine,1 ), and g1,α
ine = (g1,α

ine,1, g
1,α
ine,2, g

1,α
ine,3) in L2(Γ1,mec

ine,1,1)

such that Tε
ine,1uεine ⇀ u1,α

ine and Tε
ine,1fεine ⇀ f1,α

ine weakly in L2(Ω1,mec
ine,1 ), and

Tε
ine,1gεine ⇀ g1,α

ine weakly in L2(Γ1,mec
ine,1,1) when ε→ 0.

2. There exist u1
ine = (u1

ine,1, u
1
ine,2, u

1
ine,3) in H1(Ω∞,mec

ine,i ), u1
ine,i and σ1

i j(u
1
ine) con-

verge exponentially to zero when
∣∣∣x1

1

∣∣∣ +
∣∣∣x1

2

∣∣∣→ +∞ for all i, j ∈ {1, 2, 3}, f1
ine =

( f 1
ine,1, f 1

ine,2, f 1
ine,3) in L2(Ω∞,mec

ine,1 ), and g1
ine = (g1

ine,1, g
1
ine,2, g

1
ine,3) in L2(Γ∞,mec

ine,1,1)

such that u1,α
ineχΩ

1,mec
ine,1

⇀ u1
ine and f1,α

ineχΩ
1,mec
ine,1

⇀ f1
ine weakly in L2(Ω∞,mec

ine,1 ), and

g1,α
ineχΩ

1,mec
ine,1

⇀ g1
ine weakly in L2(Γ∞,mec

ine,1,1).

Proposition 31:

Under Assumption 10 and using Proposition 22, then we obtain

T ε
ine,1(uε) ⇀ u1,α

ine + ũ0 + ũ2−
in χΩ

1,mec,2
ine,1

+ (ũ1+
in + ũ2+

in )χ
Ω

1,mec,3
ine,1

+ ũ1−
in χΩ

1,mec,4
ine,1

,

T ε
ine,1(fε) ⇀ f1,α

ine + f̃0 + f̃2−
in χΩ

1,mec,2
ine,1

+ (f̃1+
in + f̃2+

in )χ
Ω

1,mec,3
ine,1

+ f̃1−
in χΩ

1,mec,4
ine,1

,

weakly in L2(Ω1,mec
ine,1 ) and

T ε
ine,1(gε) ⇀ g1,α

ine + g̃0 + g̃2−
in χΩ

1,mec,2
ine,1

+ (g̃1+
in + g̃2+

in )χ
Ω

1,mec,3
ine,1

+ g̃1−
in χΩ

1,mec,4
ine,1

,

weakly in L2(Γ1,mec
ine,1,1), where ϕ̃0(x1) = ϕ0((L1

1, L
2
1), x1−1/2) for x1 ∈ Ω

1,mec
ine,1 , ϕ̃1±

in (x1) =

ϕ1±
in (L2

1, (x1
1 − 1/2, x1

2, x
1
3)) for x1 ∈ Ω

1,mec,3
ine,1 ∪ Ω

1,mec,4
ine,1 , and ϕ̃2±

in (x1) = ϕ2±
in (L1

1, (x1
1, x

1
2 −

1/2, x1
3)) for x1 ∈ Ω

1,mec,2
ine,1 ∪Ω

1,mec,3
ine,1 .
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Proposition 32:

The limit u1
ine is a solution to

−div1σ1(u1
ine) = f1

ine in Ω
∞,mec
ine,1

u1
ine = 0 on Γ

∞,mec
ine,1,0

σ1(u1
ine)n1 = g1

ine on Γ
∞,mec
ine,1,1[[

u1
ine

]]
= ũ1−

in on Γ
∞,mec
ine,1,interf,1[[

σ1
(
u1

ine

)]]
n1 = σ1

(
ũ1−

in

)
n1 on Γ

∞,mec
ine,1,interf,1.[[

u1
ine

]]
= ũ2−

in on Γ
∞,mec
ine,1,interf,2[[

σ1
(
u1

ine

)]]
n1 = σ1

(
ũ2−

in

)
n1 on Γ

∞,mec
ine,1,interf,2[[

u1
ine

]]
= −ũ1+

in on Γ
∞,mec
ine,1,interf,3[[

σ1
(
u1

ine

)]]
n1 = −σ1

(
ũ1+

in

)
n1 on Γ

∞,mec
ine,1,interf,3[[

u1
ine

]]
= −ũ2+

in on Γ
∞,mec
ine,1,interf,4[[

σ1
(
u1

ine

)]]
n1 = −σ1

(
ũ2+

in

)
n1 on Γ

∞,mec
ine,1,interf,4

(2.7.10)

Proof. We replace vε in (2.7.3) by a smooth function vεine defined in Ω
αε,mec
ine,1 and vanishing

out of Ω
αε,mec
ine,1 . Then we substitute vεine by ε−1Bε

ine,1(w), where w is in C∞(Ω]
ine,1 × Ω

1,mec
ine,1 )

satisfied w = 0 on Γ
1,mec
ine,1,0 ∪ Γ

1,mec
ine,1,α and σ1(w)n1 = 0 on Γ

1,mec,i
ine,1,1 ∪ Γ

1,mec,i
ine,1,α . It follows that

−
1
ε

∫
Ω
αε,mec
ine,1

uεi ∂
ε
j

(
σ1

i j

(
Bε

ine,1(w)
))

dxε +
1
ε

∫
Γ
αε,mec
ine,1,1

uεiσ
ε
i j

(
Bε

ine,1(w)
)

nεj ds(xε)

=
1
ε3

∫
Ω
αε,mec
ine,1

f εi Bεine,1(wi) dxε +
1
ε2

∫
Γ
αε,mec
ine,1,1

gεi Bεine,1(wi) ds(xε).

A straightforward calculation reveals

−
1
ε3

∫
Ω
αε,mec
ine,1

uεi Bεine,1

(
∂1

jσ
1
i j(w)

)
dxε =

1
ε3

∫
Ω
αε,mec
ine,1

f εi Bεine,1(wε
i ) dxε +

1
ε2

∫
Γ
αε,mec
ine,1,1

gεi Bεine,1(wi) ds(xε).

Replacing Bεine,1 by T ε∗
ine,1, thus

−
1
ε3

∫
Ω
αε,mec
ine,1

uεi T ε∗
ine,1(∂1

jσ
1
i j(w))dxε =

1
ε3

∫
Ω
αε,mec
ine,1

f εi T ε∗
ine,1(wi) dxε +

1
ε2

∫
Γ
αε,mec
ine,1,1

gεi T ε∗
ine,1(wi) ds(xε).

By definition of the adjoint operator T ε∗
ine,1, we obtain

−

∫
Ω

1,mec
ine,1

T ε
ine,1(uεi ) ∂1

jσ
1
i j(w)dx1 =

∫
Ω

1,mec
ine,1

T ε
ine,1( f εi )wi dx1 +

∫
Γ

1,mec
ine,1,1

T ε
ine,1(gεi )wi ds(x1).

Decomposing the integral formula into subregions Ω
1,mec
ine,1 = ∪4

k=4Ω
1,mec,k
ine,1 and Γ

1,mec
ine,1,1 =
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∪4
k=4Γ

1,mec,k
ine,1,1 gives

−

4∑
k=1

∫
Ω

1,mec,k
ine,1

T ε
ine,1(uεi ) ∂1

jσ
1
i j(w)dx1 =

4∑
k=1

∫
Ω

1,mec,k
ine,1

T ε
ine,1( f εi )wi dx1 +

4∑
k=1

∫
Γ

1,mec,k
ine,1,1

T ε
ine,1(gεi )wi ds(x1).

Passing ε to 0 and combining with Proposition 31 gives

l.h.s = −

∫
Ω

1,mec,1
ine,1

(
u1,α,1

ine + ũ0−
i

)
∂1

jσ
1
i j(w) dx1 −

∫
Ω

1,mec,2
ine,1

(
u1,α,2

ine + ũ0−
i + ũ2−

i

)
∂1

jσ
1
i j(w)dx1

−

∫
Ω

1,mec,3
ine,1

(
u1,α,3

ine + ũ0+
i + ũ1+

i + ũ2+
i

)
∂1

jσ
1
i j(w) dx1 −

∫
Ω

1,mec,4
ine,1

(
u1,α,4

ine + ũ0−
i + ũ1−

i

)
∂1

j(σ
1
i j(w)) dx1,

and

r.h.s =

∫
Ω

1,mec,1
ine,1

(
f 1,α,1
ine + f̃ 0−

i

)
widx1 +

∫
Ω

1,mec,2
ine,1

(
f 1,α,2
ine + f̃ 0−

i + f̃ 2−
i

)
widx1

+

∫
Ω

1,mec,3
ine,1

(
f 1,α,3
ine + f̃ 0+

i + f̃ 1+
i + f̃ 2+

i

)
widx1 +

∫
Ω

1,mec,4
ine,1

(
f 1,α,4
ine + f̃ 0−

i + f̃ 1−
i

)
widx1

+

∫
Γ

1,mec,1
ine,1,1

(
g1,α,1

ine + g̃0−
i

)
wi ds(x1) +

∫
Γ

1,mec,2
ine,1,1

(
g1,α,2

ine + g̃0−
i + g̃2−

i

)
wi ds(x1)

+

∫
Γ

1,mec,3
ine,1,1

(
g1,α,3

ine + g̃0+
i + g̃1+

i + g̃2+
i

)
wi ds(x1) +

∫
Γ

1,mec,4
ine,1,1

(
g1,α,4

ine + g̃0−
i + g̃1−

i

)
wi ds(x1).

As in the previous proofs, we can assert that for each α,

l.h.s = −

∫
Ω

1,mec,1
ine,1

(
u1,1

ine + ũ0−
i

)
∂1

jσ
1
i j(w) dx1 −

∫
Ω

1,mec,2
ine,1

(
u1,2

ine + ũ0−
i + ũ2−

i

)
∂1

jσ
1
i j(w)dx1

−

∫
Ω

1,mec,3
ine,1

(
u1,3

ine + ũ0+
i + ũ1+

i + ũ2+
i

)
∂1

jσ
1
i j(w) dx1 −

∫
Ω

1,mec,4
ine,1

(
u1,4

ine + ũ0−
i + ũ1−

i

)
∂1

jσ
1
i j(w) dx1

= T1 + T2 + T3 + T4,

r.h.s =

∫
Ω

1,mec,1
ine,1

(
f 1,1
ine + f̃ 0−

i

)
widx1 +

∫
Ω

1,mec,2
ine,1

(
f 1,2
ine + f̃ 0−

i + f̃ 2−
i

)
widx1

+

∫
Ω

1,mec,3
ine,1

(
f 1,3
ine + f̃ 0+

i + f̃ 1+
i + f̃ 2+

i

)
widx1 +

∫
Ω

1,mec,4
ine,1

(
f 1,4
ine + f̃ 0−

i + f̃ 1−
i

)
widx1

+

∫
Γ

1,mec,1
ine,1,1

(
g1,1

ine + g̃0−
i

)
wi ds(x1) +

∫
Γ

1,mec,2
ine,1,1

(
g1,2

ine + g̃0−
i + g̃2−

i

)
wi ds(x1)

+

∫
Γ

1,mec,3
ine,1,1

(
g1,3

ine + g̃0+
i + g̃1+

i + g̃2+
i

)
wi ds(x1) +

∫
Γ

1,mec,4
ine,1,1

(
g1,4

ine + g̃0−
i + g̃1−

i

)
wi ds(x1)
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Applying the Green’s formula twice for each teams Ti yields

T1 = −

∫
Ω

1,vac,1
ine,1

∂1
j

(
σ1

i j

(
u1,1

ine + ũ0−
i

))
wi dx1 +

∫
∂Ω

1,mec,1
ine,1

σ1
i j

(
u1,1

ine + ũ0−
)

n1,1
j wi ds(x1)

−

∫
∂Ω

1,1
ine,1

σ1
i j(w)n1,1

j

(
u1,1

ine + ũ0−
i

)
ds(x1),

T2 = −

∫
Ω

1,vac,2
ine,1

∂1
j

(
σ1

i j

(
u1,2

ine + ũ0−
i + ũ2−

i

))
wi dx1 +

∫
∂Ω

1,mec,2
ine,1

σ1
i j

(
u1,2

ine + ũ0− + ũ2−
)

n1,2
j wi ds(x1)

−

∫
∂Ω

1,2
ine,1

σ1
i j(w)n1,2

j

(
u1,2

ine + ũ0−
i + ũ2−

i

)
ds(x1),

T3 = −

∫
Ω

1,vac,3
ine,1

∂1
j

(
σ1

i j

(
u1,3

ine + ũ0+
i + ũ1+

i + ũ2+
i

))
wi dx1 +

∫
∂Ω

1,mec,3
ine,1

σ1
i j

(
u1,3

ine + ũ0+ + ũ1+ + ũ2+

)
n1,3

j wi ds(x1)

−

∫
∂Ω

1,3
ine,1

σ1
i j(w)n1,3

j

(
u1,3

ine + ũ0+
i + ũ1+

i + ũ2+
i

)
ds(x1),

T4 = −

∫
Ω

1,vac,3
ine,1

∂1
j

(
σ1

i j

(
u1,4

ine + ũ0−
i + ũ1−

i

))
wi dx1 +

∫
∂Ω

1,mec,3
ine,1

σ1
i j

(
u1,4

ine + ũ0− + ũ1−
)

n1,4
j wi ds(x1)

−

∫
∂Ω

1,3
ine,1

σ1
i j(w)n1,4

j

(
u1,4

ine + ũ0−
i + ũ1−

i

)
ds(x1).

Decomposing ∂Ω
1,mec,i
ine,1 = Γ

1,mec,i
ine,1,0 ∪Γ

1,mec,i
ine,1,1 ∪Γ

1,mec,i
ine,1,α ∪Γ

1,mec
ine,1,interf,i ∪Γ

1,mec
ine,1,interf,i+1 and combining

with conditions satisfied by w, Proposition 24 and Proposition 30, we assert that

−

4∑
k=1

∫
Ω

1,mec,k
ine,1

∂1
j(σ

1
i j(u

1,k
ine))wi dx1 +

4∑
i=1

∫
Γ

1,mec,k
ine,1,1

σ1
i j(u

1,k
ine)n1,k

j wi ds(x1))

+

∫
Γ

1,mec
ine,1,interf,1

σ1
i j

(
u1,1

ine − u1,4
ine − ũ1−

in

)
n1,1

j wi ds(x1) −
∫

Γ
1,mec
ine,1, interf,1

σ1
i j(w)n1,1

j

(
u1,1

ine,i − u1,4
ine,i − ũ1−

i

)
ds(x1)

+

∫
Γ

1,mec
ine,1,interf,2

σ1
i j

(
u1,1

ine − u1,2
ine − ũ2−

in

)
n1,1

j wi ds(x1) −
∫

Γ
1,mec
ine,1, interf,2

σ1
i j(w)n1,1

j

(
u1,1

ine,i − u1,2
ine,i − ũ2−

i

)
ds(x1)

+

∫
Γ

1,mec
ine,1,interf,3

σ1
i j

(
u1,3

ine − u1,2
ine + ũ1+

in

)
n1,3

j wi ds(x1) −
∫

Γ
1,mec
ine,1, interf,3

σ1
i j(w)n1,3

j

(
u1,3

ine,i − u1,1
ine,i + ũ1+

i

)
ds(x1)

+

∫
Γ

1,mec
ine,1,interf,4

σ1
i j

(
u1,3

ine − u1,4
ine + ũ2+

in

)
n1,3

j wi ds(x1) −
∫

Γ
1,mec
ine,1, interf,4

σ1
i j(w)n1,3

j

(
u1,3

ine,i − u1,4
ine,i + ũ2+

i

)
ds(x1)

−

4∑
k=1

∫
Γ

1,mec,k
ine,1,0

σ1
i j(w)n1,k

j u1,k
ine,i ds(x1) =

4∑
k=1

∫
Ω

1,mec,k
ine,1

f 1,k
ine,iwidx1 +

4∑
k=1

∫
Γ

1,mec,k
ine,1,1

g1,k
ine,iwi ds(x1).

The rest of the proof runs similarly as the proofs of previous parts. �
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ASYMPTOTIC MODEL BASED

SIMULATION OF MIRA

3.1/ INTRODUCTION

In this chapter, we present numerical simulation results of the asymptotic models of the

MIRA micro-mirror array derived in the previous chapter. We also present an analysis

of the pull-in phenomenon.

The presentation of model results for the electrical behavior is done for the solution of one

case of the periodic model, the inner and outer edge models, and two cases for the lateral

boundary layer and interface models. Moreover, results of a periodic model are combined

with results of boundary layer correctors to approximate the solution at the vicinity of an

outer edge. In addition, one simulation result for the periodic model is presented for the

electromechanical coupling problem. We postulate that the formula for the electrostatic

force is the same as in the physical model, which is supported by the analysis conducted

in [50]. As mentioned in the previous chapter, the solutions of the boundary layer models

decrease exponentially away from the origin boundary. Our results even indicate that

they are almost zero beyond the first cell. The boundary layer models related to the

electrostatic coupling have not been implemented due to the fact that the expressions

of the electrostatic forces have not yet been obtained but also due to limitations of the

COMSOL software. When the analysis of their convergence will have been carried out, it

will be necessary to consider that the implementation of the models should be done using

an alternative software such as FEniCS, an open-source platform of simulation of PDE

by the finite element method.

In the pull-in analysis, we first calculate the pull-in voltages by solving the inverse problem

in COMSOL that finds an imposed voltage for the mirror to reach a given position. The

pull-in voltage is the one that causes the mirror to move to the position corresponding to

the one-third gap between the mirror and the electrode when no voltage is applied. This

93
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problem is non-linear because the electrostatic force depends non-linearly on the voltage

difference between the two conductors. Newton’s solver is used to treat this problem. It

requires a careful choice of the initial position of the mirror as well as the displacement

increments in order to guarantee the convergence of the scheme. The parameterization

of the simulation is very time consuming, not only because of the large number of degrees

of freedom, since on average more than 30,000 triangular elements are required, but also

because of the need to choose an appropriate mesh. As many different scales exist in

MIRA, e.g. the beam thickness is about 20 times thinner than the distance between

the mirrors, so a suitable mesh strongly determines the convergence of the solution. To

succeed in this problem, the sweeping meshing method is employed to create proper

meshes. We stress that the processes of seeking the good meshes by this method are

done entirely by manual effort and are highly time-consuming.

The minimization for the pull-in voltage was also investigated by solving the optimiza-

tion problem of the pull-in voltage with respect to the two most influential variables: the

thickness of the beam and the length of the suspended beam. The optimization problem

is solved using the homemade software SIMBAD with the metamodel based on twenty-

five values of the pull-in voltage corresponding to a selection of beam thicknesses and

lengths.

3.2/ DESCRIPTION OF MIRA DESIGN

Let us now briefly review the structure of one cell of MIRA that illustrated in Figure 3.1. It is

composed of two components: the mirror part shown in Figures 3.2-3.3 and the electrode

part described in Figures 3.8-3.9. In the mirror part, there is one micromirror supported

with two flexible beams, which are demonstrated in Figures 3.6-3.7. These beams are

attached to a frame enabling a displacement of the mirror when the voltage is applied.

One stopper beam visualized in Figures 3.4-3.5 is situated under the frame to guarantee

that a tilt angle satisfies a given constraint value after actuation. Two landing beams are

established under the tilting edge of the micromirror to avoid the generation of a short-

circuit between the mirror and the electrode throughout the actuation. The electrode part

includes the electrode base where the electrostatic force is applied to attract the mirror;

landing pads are where the landing beams contact; two pillars separate the mirror and

electrode parts defining an electrostatic gap. All parameters of these components and

their material can be found in Table 3.1,Table 3.2 and Table 3.3.



3.2. DESCRIPTION OF MIRA DESIGN 95
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Figure 3.1: Overview of the components of a MIRA cell.
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Figure 3.2: Two-dimensional representation of the mirror component.
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Figure 3.3: Three-dimensional representation of the mirror component.
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Figure 3.4: Two-dimensional representation of the stopper beam.
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Figure 3.5: Three-dimensional representation of the stopper beam.
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Figure 3.6: Two-dimensional representation of the right suspended beam.
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Figure 3.7: Three-dimensional representation of the right suspended beam.
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Figure 3.8: Two-dimensional representation of the electrode base.
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Figure 3.9: Three-dimensional representation of the electrode base.
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Parameter Value
Value
Range

Description

g1 2 µm

g2 6 µm

g3 2 µm
Distance between an attach and its

corresponding anchor

mpover 0.2 µm

The photolithography mask of the

polysilicon layer to compensate the

over-etching occurring during the pat-

terning of the beam

gap 35 µm
Distance between the micromirror

and the electrode

The Handle Layer of the Electrode Wafer: Silicon

XPitch mx + mg + m f + egav Width of the micromirror cell

YPitch my + egav Length of the micromirror cell

ehand 2 µm
Thickness of the handle layer of the

electrode wafer

The BOX Layer of the Electrode Wafer: Silicon Dioxide

ebox 2 µm
Thickness of the BOX Layer of the

Electrode Wafer

Electrode : Silicon

ex 80 µm [40, 90]µm Length of the electrode

ez 15 µm Thickness of the electrode

egap 5 µm
Width of the gap between two parts at

different voltages

elax 15 µm Width of the landing pads

elay 36 µm Length of the landing pads

Pillar : Silicon

epix 14 µm Width of the pillar of the electrode part

epiz gap − gold Height of the pillar

x3
[YPitch − (2g3 + x2)]/2 −

(metay + x5 + g3 + 2g2)
Length of the pillar

Table 3.1: List of component parameters of MIRA’s cell and their material.
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Parameter Value
Value
Range

Description

Assembly: Gold

gold 600 nm
Thickness of the gold layer required

for the eutectic bonding

goldx epix − 2g1 Length of the gold layer

goldy x3 − 2g3 Width of the gold layer

Frame: Silicon

mz 10 µm Thickness of the frame

m f 20 µm Width of the frame

Micromirror: Silicon

mx 100 µm Width of the micromirror

my 200 µm Length of the micromirror

mz 10 µm Thickness of the micromirror

m f 20 µm Width of the micromirror frame

mg 5 µm
Width of the gap around the micro-

mirror

mcoat 60 nm The metal coating of the mirror

Anchor of the Suspended Beam Fixed under the Frame: Polycrystalline Silicon

x1 m f − 2(g1 + g3)
Width of the anchor of the suspended

beam fixed under the frame

x5
msuy + mmtsy + mstsy +

4msuy + mpover

Length of the anchor of the sus-

pended beam fixed under the frame

x4 msux − g3 Gap between two sub-anchors

Anchor of the beam fixed under the Micromirror: Polycrystalline Silicon

mancx
mbeamx − (x1 + 2g3 +

msux + g3 + mlax)

Length of the anchor of the beam

fixed under the micromirror

mancy (mlay − 2g3 − x4)/2
Width of the anchor of the beam fixed

under the micromirror

Table 3.2: Continuation of the the list of component parameters of MIRA’s cell and their
material.
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Parameter Value
Value
Range

Description

Suspended Beams: Polycrystalline Silicon

msux 40 µm [30, 50] µm Length of the suspended beam

msuy 5 µm [3, 6] µm Width of the suspended beam

metay 5 µm
Distance from the edge of the frame

to the anchor of the suspended beam

matby (mlay − msuy)/2

Distance from the attach of anchor in

the frame to edge of the suspended

beam

poly 500 nm [0.3, 0.7] µm Thickness of the beams

ox 2 µm [0.5, 2.5] µm
Thickness of the sacrificial layer un-

der the beams

Stopper Beam: Polycrystalline Silicon

mstx 25 µm [10, 40] µm Length of the stopper beam

msty
4msuy + 3(0.5msuy +

2mpover)
Width of the stopper beam

mstsy 5 µm
Distance between the suspended and

stopper beams for L1/LC1 model

Landing Beams: Polycrystalline Silicon

metax 10 µm
Distance from the anchor tip of the

landing beam to the tip of micromirror

mlax 12 µm Length of the landing beam

Table 3.3: Continuation of the the list of component parameters of MIRA’s cell and their
material.

3.3/ ASYMPTOTIC MODEL IMPLEMENTATIONS

We now present the simulation results of the asymptotic MIRA models derived in the

previous chapter. As we assumed, there are two zones in the array, the inner and outer

zones driven by two different voltages V1 = 60V and V2 = 80V. The periodic model, and

the boundary layer models at the external boundary, the interface, the outer edge and

the inner edge are implemented by the electrostatics package of the AC/DC module of

COMSOL software. The results are presented in Figures 3.10, 3.11, 3.12, 3.13.
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(a)
(b)

Figure 3.10: Electrical potential φ0 and the electrostatic field ∇φ0 in the internal zone (a)
and in the external zone (b).

(a)
(b)

(c)

(d)

Figure 3.11: The electric potentials (a) φ1
bl of the first lateral boundary model, (b) φ4

bl of
the second one, (c) φ3

bl of the third one, and (d) φ4
bl of the fourth one. The boundary layer

effect is concentrated in one cell.
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(a) Electric potential φ1
in of the first interface

boundary layer model.
(b) Electric potential φ2

in of the second inter-
face boundary layer model.

(c) Electric potential φ3
in of the third interface

boundary layer model.
(d) Electric potential φ4

in of the fourth inter-
face boundary layer model.

Figure 3.12: Electric potentials φi
in with i = 1, 2, 3, 4 of four interface models. Each of φi

in
includes two parts φi,+

in and φi,−
in . The mirrors are hidden to facilitate visualization of the

potential values at the interfaces. The contributions are significant at the interfaces and
rapidly evanescent.

V

(a)

(b)

Figure 3.13: Electric potentials (a) φ1
exe and (b) φ1

ine of the outer and inner edge models.
In both cases the fields are very localized and their value very small compared to the
imposed voltage. It is likely that they are negligible in some cases.
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Obviously, the contributions of the lateral boundary and the interface correctors are sig-

nificant, while that of the remainder correctors are very slight, less than 2% in comparison

with the magnitude of the applied voltage. Table 3.4 and Table 3.5 shows the comparison

results of the value range of all lateral boundary and interface correctors respectively with

the applied voltages.

Lateral Boundary Value Magnitude Contribution
Layer Range (V) (%)

First
19.6

24.2 30.25
−4.6

Second
42.5

42.78 53.48
−0.28

Third
28.1

33.06 41.33
−4.96

Fourth
9.88

50.58 63.23
−40.7

Table 3.4: Comparison of contribution of all lateral boundary correctors with the imposed
voltage 80V where the magnitude is computed by the absolute value of the difference
between the maximum and the minimum of the electric potential, the contribution is given
as a percentage of the magnitude to the imposed voltage.

Name Part Value Magnitude Applied Contribution
Range (V) Voltage(V) (%)

First Interface
φ1,−

in
4.27

12.48 80 15.6
−8.21

φ1,+
in

6.75
13.51 60 22.52

−6.76

Second Interface
φ2,−

in
10

16.22 80 20.28
−6.22

φ2,+
in

9.74
17.01 60 28.35

−7.27

Third Interface
φ3,−

in
3.94

8.57 80 10.71
−4.63

φ3,+
in

11.9
18.55 60 30.92

−6.65

Fourth Interface
φ4,−

in
10.5

20.5 80 25.63
−10

φ4,+
in

6.56
13.77 60 22.95

−7.21

Table 3.5: Comparison of contribution of all interface correctors with the imposed volt-
ages, the internal one 60 V and the external one 80 V.

Thanks to these results, the electrical potential in a cell near a lateral boundary, an in-

terface, an internal and extenal edge can be approximated by the periodic solutions and

coresponding boundary correctors. For example, Figures 3.14, 3.16, 3.15 reports so-

lutions computed in the vicinity of lateral boundaries, of interfaces and of the first outer
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edge, respectively. In the case of the internal edge, the solution was also built by the

same method, but the contribution of the edge corrector being very small, it is not re-

ported. The instruction of the COMSOL implementation of the first electrostatic interface

model and the assembly of the solution near the first interface is described in Appendix I.

𝐵𝜀𝜙0 + 𝐵𝑏𝑙,1
𝜀 𝜙 𝑏𝑙

1

𝐵𝜀𝜙0 + 𝐵𝑏𝑙,1
𝜀 𝜙 𝑏𝑙

1

𝐵𝜀𝜙0 + 𝐵𝑏𝑙,2
𝜀 𝜙 𝑏𝑙

2

𝐵𝜀𝜙0 + 𝐵𝑏𝑙,2
𝜀 𝜙 𝑏𝑙

2

𝐵𝜀𝜙0 + 𝐵𝑏𝑙,3
𝜀 𝜙 𝑏𝑙

3

𝐵𝜀𝜙0 + 𝐵𝑏𝑙,3
𝜀 𝜙 𝑏𝑙

3 𝐵𝜀𝜙0 + 𝐵𝑏𝑙,4
𝜀 𝜙 𝑏𝑙

4

𝐵𝜀𝜙0 + 𝐵𝑏𝑙,4
𝜀 𝜙 𝑏𝑙

4

Figure 3.14: The approximate solution near lateral boundaries given by the assembly
of the external periodic solution φ0 and the contribution of lateral boundary correctors
φi

bl, i = 1, 2, 3, 4.
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𝐵𝜀𝜙0+ + 𝐵𝑖𝑛,1
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𝐵𝜀𝜙0+ + 𝐵𝑖𝑛,4
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Figure 3.15: The approximate solution near the interfaces given by the assembly of the
periodic solution φ0 and the contribution of interface correctors φi

in, where φ0+ and φ0−

represents the internal and external periodic solution, φi+
in and φi+

in depicts two parts of the
interface corrector φi

in with i = 1, 2, 3, 4.
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Figure 3.16: The model solution in the vicinity of the first outer edge. It is built with the
external periodic solution φ0, the first and second boundary layer correctors φ1

bl and φ2
bl,

and the first outer edge corrector φ1
exe.

Regarding the electromechanical problems, they can be solved by the Structural Me-

chanical Module in COMSOL. For instance, the periodic model of the electromechanical
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coupling problem is solved by the electromechanical interface package of this module.

We assume that the electrostatic force is g0 = − 1
2ε0|φ

0|2n1. A result of the mechanical

displacement is shown in Figure 3.17.

Figure 3.17: Mechanical displacement u0 of the periodic model in the internal zone with
the imposed voltage 60V. The red narrows represent the electrostatic field.

3.4/ PULL-IN ANALYSIS

3.4.1/ DESCRIPTION OF THE PULL-IN PHENOMENON

The pull-in phenomenon is one of the prevalent phenomena to be considered in MMA with

electrostatic actuation, see [84, 90] for details. We briefly introduce this phenomenon

by considering electrostatic actuation between two parallel plates, see Figure 3.18. A

voltage source imposed between the plates induces an electrostatic force of attraction

that causes the moving plate to move toward the fixed plate. The system is stable if the

gap between the plates is greater than g0/3, that is, if there is an equilibrium position

such that the moduli of the electrostatic force and the spring force are equal. When the

applied voltage is large enough that the gap between the two plates is less than g0/3 then

the system becomes unstable, i.e. there is no equilibrium point between the electrostatic

force and the spring force, the suspended plate then moves towards the fixed plate. This

phenomenon is generally named the pull-in phenomenon and the voltage to reach the

position g0/3 is named the pull-in voltage. In the next section, we present the method of

calculating the pull-in voltage using the MEMS module of COMSOL.
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Movable Plate

Fixed Plate

𝑔0V

𝑘

𝐹𝑒𝑙𝑒

area 𝐴 𝐹𝑠𝑝𝑟𝑖𝑛𝑔

Figure 3.18: An electrode actuation with two parallel plates: the movable plate supported
by the spring with the spring constant k and the fixed plate. The distance between them
is g0 and the areas of each plate is A.

3.4.2/ PULL-IN VOLTAGE COMPUTATION

The computation of the pull-in voltage is accomplished by solving an inverse problem in

COMSOL. The task of COMSOL is to find a value VESP of the imposed voltage so that

the gap reaches a prescribed value in a stable or unstable equilibrium state, see Figure

3.19b. In this problem, the position of the beam head is denoted as point. The smaller

displacement corresponds with the higher position point and requires the higher voltage.

Conversely, the larger displacement or the lower position point requires the smaller volt-

age. This pull-in voltage computation setting follows the approach of the simple example

”Pull-In Voltage for a 3D Biased Resonator”, see [44].

Let us take a case with the thickness of beam poly = 400 nm, the length of the suspended

beam msux = 40 µm, and the normal gap g0 = 33 µm. We briefly outline the inverse

problem setting. The problem statement combines the Electromechanics Interface of

the Structure Mechanic Module with the Gobal Equations in COMSOL. In the Electrome-

chanics Interface’s setting, we set V M the applied voltage on the mirror to 1 V as in Figure

3.19b and VE that on the electrode to VESP as shown in Figure 3.19a. We note that usu-

ally VESP would be given, but here it is an unknown of the equation described in the Global

Equation node. This is also the reason to refer to this problem as an inverse one.

In the Global Equation setting, we input expressions as in Table 3.6. Solving this equation

is amount to the same thing as solving the inverse problem mentioned above, seeking a

value of the applied voltage VESP so that the gap intop1(point) reaches a given value

pointZ, intop1(point)-pointZ=0.
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(a)

𝑝𝑜𝑖𝑛𝑡

𝑔0

(b)

Figure 3.19: Imposed voltage locations: (a) the voltage VE is applied on the bottom
electrode part and (b) the voltage V M is applied to the mirror part, which includes the
mirror itself, the frames, the two golden pads, and the two pillars. The gap between the
mirror and the electrode is denoted by g0 and the position point is at the end of the
landing beam shown in the zoomed figure.

Name f(u,ut,utt,t) Initial value (u0) Initial value Description

VESP intop1(point) - pointZ

Table 3.6: The Global Equation setting. VESP is an unknown of the equation
intop1(point)-pointZ=0, intop1(point) being the z−coordinate position of point and
pointZ the given position.

Obviously, this problem is non-linear, so the choice of the first value and the displacement

increment of pointZ must be done very carefully to guarantee the convergence of the

Newtown’s method. So, we set the initial value of pointZ to 51.5µn with the displacement

increment of −1 µm and a final value of 33 µm in Auxiliary sweep note of Solve’s setting,

see Table 3.7.

Parameter Name Parameter value list Parameter unit

pointZ range(51.5e-6, -1e-6, 33e-6)

Table 3.7: The Auxiliary sweep’s setting for the parameter pointZ.

In addition, due to the significant difference of the magnitude between the voltage and the

displacement, we scale the voltage by 100 and the displacement by 10−5 in the solver’s

setting.

Moreover, as there are many different scales in the MIRA components, we use the

sweeping method to generate a suitable mesh to ensure the convergence of the New-

ton’s method. We stress that this process is entirely done by manual work and is time-

consuming not only since the mesh parameters must be adjusted to accommodate each
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geometry but also because the verification of whether the mesh provides the convergence

of the solution is not done upfront in the problem-solving process. It is only examined for

the suitability in the last values of pointZ.

As a result of solving the problem, we will obtain a graph with the horizontal being

the value of the position point in the range [51.5 : −1 : 33] µm and the vertical be-

ing the voltage VESP to reach this position shown in Figure 3.20. The pull-in voltage is

max(|VES P − 1|) = 87 V.

Figure 3.20: Graph of the imposed voltage with respect to the beam displacement at
equilibrium for supporting beams with thickness 400nm and length 40µm.

Pull-in voltages corresponding to a selection of lengths and thicknesses of the suspended

beams are reported in Table 3.8.

Poly/msux 40 µm 60 µm 80 µm

400 nm 87 V 81 V 82 V

500 nm 120 V 115 V 115 V

600 nm 157 V 150 V 154 V

Table 3.8: Pull-in voltage values with respect to some lengths and thicknesses of the
suspended beams.

3.4.3/ OPTIMIZATION OF THE PULL-IN VOLTAGE

Design optimization is a critical step prior to the manufacturing phase. In our scope, we

consider only one issue to be optimized, which is the pull-in voltage VPI with the goal of

reducing the electrical operating cost. It can be recognized that the value of imposed

voltage to actuate the array is dependent on two significant parameters, the thickness of



110 CHAPTER 3. ASYMPTOTIC MODEL BASED SIMULATION OF MIRA

beams poly and the length of suspended beams msux because both of them significantly

affect the beam’s restoring force. Besides, reducing the actuation cost requires the pull-in

voltage of each cell to be smaller than 140V. Based on the above considerations, we

address the constraint optimization problem with the single objective VPI, two variables

poly and msux, and the constraint VPI ≤ 140.

Solving an optimization problem is typically an iterative process. Each step of the process

requires a modification of the variables and therefore demands a new value for the objec-

tive function. In fact, in our problem, the process of updating the objective function value,

the pull-in voltage, corresponding to the various variables, the thickness and the length of

beams, is hugely time-consuming and almost impossible. The reason is that the pull-in

calculation mentioned above is a non-linear invert problem, and the mesh generation is

done manually. The average time to calculate one pull-in voltage value can vary from 8

hours to 24 hours. To avoid this difficulty, it is necessary to construct an approximatate

response with an acceptable error where the input is the two variables and the output is

the pull-in voltage. After that, we will perform the optimization for the approximation re-

sponse. With this approach, we utilize the surface response model [12] as the members

of the metamodels or surrogate models, see [73, 86, 57] more details.

The surface response model for the pull-in voltage is built based on twenty-five samples

corresponding to the five value variations of poly ∈ {400, 450, 500, 550, 600} and of msux ∈

{40, 50, 60, 70, 80}. The result of response surface is shown in Figure 3.21 with the mean

square error 1.8%. Then, the constrained optimization process is performed for this model

with the single objective VPI, the two variables poly, msux, the constraint VPI ≤ 140V, and

the initial values poly = 500nm, msux = 60 µm, VPI = 115.2 V. We find that the minimal

value of 74.4 V of the pull-in voltage VPI is reached for poly = 400 nm and msux = 70.16 µm.

The full processing is accomplished with the home-made software SIMBAD.
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Figure 3.21: The surface response model for the pull-in voltage VPI as a function of the
suspended beam thickness and length variables poly and msux. The main slope is in the
direction of poly while the surface is flat in the direction of msux, so the thickness of the
beam is the variable that dominates this effect.

3.5/ EFFECT OF A NEIGHBOUR IMPOSED VOLTAGE

As mentioned in the introduction of the MIRA project, the array is applied for Multi-Object

Spectroscopy (MOS), more precisely, it plays a role as the refective field selector in the

telescope. For this goal, the line-column addressing algorithm will be determined to oper-

ate the actuation of the MIRA. Each micromirror line and each electrode line is connected

to separate voltages. One of the natural questions is whether there is an effect of the

electrostatic field of an active cell on an inactive neighbour? In this section, we study

the cross-talk effect i.e how an imposed voltage of one cell affects the displacement of a

mirror of adjacent cells.

To investigate this effect, the interface electromechanical coupling model should be im-

plemented. This leads to a difficulty in model implementation in the software COMSOL,

which is not able to couple models in the electromechanical interface package. One al-

ternative approach to overcome this difficulty is to integrate manually two modules, the

electrostatics module and the solid mechanics one. In detail, the former is deployed to

estimate the electrostatic force on a particular area of the mirror of the inactive cell caused

by the electrostatic field of the active cell. Then the latter is employed to derive the me-

chanical displacement of the inactive cell yielded by this force as the boundary load on

the specific surface of its mirror.
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We now only consider the case where the effect of the electrostatic field of an active cell

on an inactive one is the most significant, the other cases could be also investigated by

the same method. Obviously, the numerical simulation results of the boundary models

in Section 3.3 shows that the strongest effect is in the case where two cells are located

on the same electrode line. Specifically, the right cell is assumed to be activated with an

applied voltage 80 V while the left one is not.

Figure 3.22 presents the impact of the electrostatic field of the right cell on the left one. It

is clear that the influence region of the electrostatic field is local and mainly concentrates

in the vicinity of the interface. In addition, Figure 3.23 demonstrates that the affected area

on the mirror of the inactive cell is not larger than 3 × my (µm2) where my = 200µm.

Figure 3.22: Effect of the eletrostatic field of the right cell on the neighbour cell. The
zoom represents the electrostatic field around the frame of the active cell with the applied
voltage 80 V and the head of the mirror of the inactive one.

The average value along the edge of the underside of the mirror of the electrostatic force

is estimated. This is applied in the solid mechanics model as a boundary load on the

same surface of the mirror’s underside, see Figure 3.23. We emphasize that the force is

computed on the mirror area where the electrostatic field has a significant value. On the

rest, its value is ignored since the effect on these surfaces is insignificant. As a result, the

mirror is tilted about 2◦ corresponding to the mechanical displacement depicted in Figure

3.24.
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𝑉/𝑚

𝑚𝑦

𝑚𝑙𝑎𝑥

Figure 3.23: Affected location from the neighbour electrostatic field on the underside
surface of the mirror of the inactive cell with an estimate area of 0.25×mlax×my = 600 (µm2)
where my represents the length of the mirror and mlax expresses that of the landing beam.

Figure 3.24: Mechanical displacement in the inactive cell with an order in the range of
10% of the gap between the electrode and the mirror.





4

DATA STRUCTURE AND REWRITING

STRATEGIES FOR MULTISCALE

MODELS CONSTRUCTION

The two previous chapters were devoted to the construction of multiscale models and

their implementation in general-purpose simulation software. We have deliberately

chosen to consider relatively complex models on complex geometries. The rest of this

thesis is devoted to the redesign of some components of the MEMSALab software for

which weaknesses have been identified and to the design of new ones that should meet

newly identified needs. It remains in the same spirit as the beginning with the objective

that MEMSALab can perform model building in complex configurations. At this stage we

distinguish two types of difficulties to be treated for the construction of models, one inher-

ent to the complexity of the problems and the other concerning the steps of reasoning.

An experience has already been acquired on the latter during the development of the

preliminary version of MEMSALab. Thus, it was decided to devote the rest of the work to

the question of representation of general and complex models and by limiting ourselves

to their construction by the direct method described in the introduction of the thesis.

4.1/ INTRODUCTION

During the first year of the thesis, the model building algorithm used in the proofs was

implemented for relatively simple configurations, using strategies and extensions, cf

[21]. As the software evolved, we realized that their modification entails a modification

of the parser, of several functions of the kernel including the display functions, as well

as of some unitary tests. Moreover, we realized that the strategies operating on the

constructors are necessarily specific to them.

This way of proceeding proved to be too constraining for a complex software development

115
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phase for which there are still many uncertainties. Moreover, it appeared that it requires

a significant number of strategy definitions which does not seem justified.

On the other hand, the PDEs were built following the top-down hierarchy: pde, equation,

equality, operator, function, variable, domain, and boundary. This approach proved

to be well suited for the application of the mathematical properties used in the model

proving algorithm. Nevertheless, with such a hierarchy, the definition of a PDE is too

heavy a task to be entrusted to a novice.

These observations led to the following requirements for MEMSALab.

(i) Regarding the data structure, it should be suitable for uniform processing on ex-

pressions and strategies and should be easily adaptable when performing minor

changes.

(ii) Strategies should be small in number and general enough while still being able to

perform complex operations.

(iii) The definition of a PDE and its components by a programmer should not require

expertise i.e. it must be a simple operation.

(iv) Multiscale models should be represented by a recursive structure with an arbitrary

number of nested or non-nested scales. The top-down hierarchical structure of

PDEs should be retained. The data structure should be able to host both the mod-

els themselves and the features used for their construction. Finally, it should be

possible to express complex models on complex domains.

The needs (i-ii) for data structure and strategies led to the creation of data structures in

the form of abstract syntax trees (ASTs) usable by the MEMSALab programmer, whereas

ASTs already existed but were reserved to the rewriting kernel in OCAML. For reasons

that it would take too long to explain here, the ASTs of the kernel are not usable in

the specific MEMSALab language. The new ASTs constitute a simple and general data

structure that fits with the requirements. In addition, for the simplicity of programming,

each type of node in the AST is associated with a function that acts as a shortcut. The

latter is optimally parameterized according to the needs. Such functions constitute what

we will call concrete syntax trees. The two syntaxes are detailed in Section 4.2.

The fact that the strategies operate on ASTs allows to reduce their number and to define

only a small number of strategies that are both general and powerful. These strategies

are detailed in Section 4.3.

For an elegant way (iii) to define PDEs, we combine functional programming principles

available in OCAML with rewriting strategies. This aspect is not discussed further in the

thesis.
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Regarding (iv), multiscale models and their characteristics are represented using two

main nodes ”subModel” and ”subScale” from which recursion is built allowing an arbitrary

number of nested scales as well as a variety of models related to the same scale such as

the four types of boundary layer models in Chapter 2.

The representation of multiscale models and the features that allow their construction are

illustrated also in Section 4.4 for the five models in Chapter 2. The construction of models

using their features is described as meta-algorithms.

Finally, it is important to mention that the choice of expressing data in the form of ASTs

greatly facilitates the construction of the concurrent rewriting and description logic system

(RDL) introduced in Chapter 5.

4.2/ NODES OF ABSTRACT SYNTAX TREE FOR MULTISCALE

MODEL REPRESENTATION

This part is devoted to the presentation of the abstract tree nodes node(.) of the data

structures (also called expressions) used to represent PDEs and their multiscale models

and nodeS(.) of the strategies that operate on them. The grammar of expressions e and

strategies s useful in this part is detailed below. The complete grammar is detailed in

Section 5.3 of Chapter 5.

e := n | c | x | node(e,[e,...])

e’:= e | globalVar(e)

s := nodeS(e,[e’,...,s,...])

with

- n a number,

- c a string,

- x a rewriting variable,

- globalVar(e) the content of a memory (also called global variable) whose name is e.

As described in the above grammar, an expression e is either a terminal expression or a

labeled node node(name, list) composed of a name and a list of nodes. We assume that

the root of an expression starts with a node and not with a terminal expression and that

the lists are homogeneous in the sense that they do not mix terminal and non-terminal

nodes.

The main nodes that describe PDEs are index, boundary, region, variable, function,

operator, equality, equation, bc (boundary condition), ic (initial condition), pde (partial
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differential equation) and model. Table 4.1 summarizes them together with their subn-

odes. Note that the empty node, a node with name"emptyNode" and with an empty list, is

noted as Ø and replaces any subnode that is not necessary.

nodes Subnodes

emptyNode []

index [name,range,quantifier]

ident [name,type,scale,level]

paramReg [axisList,sizeList,periodicity,interfaceList]

region [ident,paramReg,subRegionList,boundary]

variable [name,index,region]

function [name,indexList,varList,type]

operator [name,indexList,mathExprList,inputVarList,outputVarList,paramOper]

equality [name,leftMathExpr,rightMathExpr]

equation [name,equality,varList]

bc [name,equality,bVarList,dVarList]

ic [name,equality,bVarList,dVarList]

pde [name,equationList,bcList,icList]

model [name,pdeList]

Table 4.1: The main nodes of the grammar that represents PDEs. The names of nodes
ending in List are nodes containing lists of the same record (possibly with a truncated
name) with an unspecified number of elements. For example, varList is a node contain-
ing a list of nodes of type variable.



4.2. NODES OF ABSTRACT SYNTAX TREE 119

Name Type Default Value

name constant

range constant

quantifier constant

type constant GlobalVar("type")

scale constant GlobalVar("scale")

level constant GlobalVar("level")

axis constant GlobalVar("axis")

sizeList constant GlobalVar("sizeList")

indent index

boundary region

subBoundaryList region

domain region

subDomainList region

normal function

indexList index

reg region

varList variable

type constant

mathExpr expression

inputVarList variable

outputVarList variable

paramOper constant

leftMathExpr expression

rightMathExpr expression

equalityList equality

equationList equation

bcList bc

icList ic

pdeList pde

Table 4.2: The subnodes of the main nodes of Table 4.1, their types and their default
value if they have one. The type constant means a terminal node.

Rather than the detailed writing of a node node(name,list) we often prefer a

shorter writing in the form name(list) of a function whose name is the name of

the node. For instance, an unknown function u(x) of an equation is represented by

node("function",[name, index, variable, type]), which one will write more sim-
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ply in the form function([name, index, variable, type]). Its parameters are the

nodes name("u"), variable(name("x"), index, region) where the index and region

nodes are not explained here, and type("unknown"). As can be seen in these exam-

ples, when the list of a node contains only one element, the square brackets are often

omitted.

It is common to use lists from the same node. To do this, each node f is associated with a

node for the list of these nodes called fList. Thus, the node for index lists is indexList,

the node for pde lists is pdeList and so on. An exception is made for the variable lists

which is named varList for shortness.

It is sometimes convenient to parametrize identifiers rather than create new names. This

is done by using OCaml’s association lists, and keys that are lists are appended to the

identifier name within brackets. For example an identifier f(x) of a function depending on

a function and parametrized by the parameters p, q will be noted f{[p,q]}(x).

It is noteworthy to mention that elementary mathematical operations such as addition,

multiplication, inverse and special functions such as cosine, sine, etc. are also nodes,

but are not discussed here. Even if these mathematical expressions are not completely

described by the presented node system, nevertheless they are referred to as ”mathe-

matical expressions” in the description of the operator and equality nodes. As their

writing as nodes is usually rather complicated, we have introduced the possibility to write

them in a form close to mathematics and their node form is automatically generated.

For example,
∑

i
∂2u
∂x2

i
(x) is the Laplace operator applied to a function u and can be written∑

i ∂(u(x([ ]))/∂x(i))/∂x(i) in a program.

The hierarchical structure in nodes is uniform and general. It is therefore very conve-

nient for the use of general strategies, however, it remains too cumbersome to handle

the description of models. An intermediate layer is defined in order to couple the nodes

with a judicious choice of useful parameters of their subnodes for the direct construc-

tion of models. For example the function u(x) will be defined by function00("u",[], x,

"unknown") where x is a node corresponding to the variable x, which could be defined

by variable00("x", ind, nameD) with ind an index parameter, see Section 4.2.1, and

nameD the region name where x is defined. We call ”Concrete Syntax Trees” this repre-

sentation. Table 4.3 summarizes the parameters of the functions of this grammar which

are those directly used in the construction of the models.
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nodes Parameters
index00 name0,rangeList,quantifier0

ident00 name0,type0,scale0,level0

paramReg00 axisList0,sizeList0,periodicityDirection0,

periodicityScale0,interfaceList0

paramB00 axisList0,sizeList0

paramD00 axisList0,sizeList0,periodicityDirection0,

periodicityScale0,interfaceList0

boundary00 nameB,axisList0,sizeList0,subBoundaryList0

domain00 nameD,axisList0,sizeList0,periodicityDirection0,

periodicityScale0,interfaceList0,subDomainList0,

boundary0

variable00 nameV,ind,nameD

function00 nameF,indList,varList0,type0

operator00 nameOp,indList,mathExprList0,inputVarList0,

outputVarList0,operParam0

equality00 nameE,leftMathExpr0,rightMathExpr0

equation00 nameEq,equality0,varList0

bc00 nameBc,equality0,bVarList0,dVarList0

ic00 nameIc,equality0,bVarList0,dVarList0

pde00 pdeName,equationList0,bcList0,icList0

model00 nameModel,pdeList0

Table 4.3: List of parameters used for the concrete syntax trees.

In what follows, we describe the nodes of the abstract syntax trees summarized in Table

4.1 as well as the function of the concrete syntax trees.

4.2.1/ INDEX

The index node

node("index",[name,range,quantifier])

is used to describe vectors of variables, functions and operators, but also space dimen-

sions, and so on.

1. name(name0) a node for the index name name0 which is a string.

2. range(range0) a node for the index range range0 that is either a single integer or

a list of integers.

3. quantifier(quantifier0) a node for the index quantifier quantifier0 that is one

of the strings "Given", "For all", "There exist".
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Example: An index i varying in {1, 2} is defined by

i : node("index",[name("i"),range([1,2]),quantifier("Given")])

For simplicity, we define the function index1(ind) that reproduces the multiple manner

to use an index. It returns different forms of the index node depending on the value of

ind,

• ”noIndex” returns an empty node,

• an integer returns name0 = "" and range0 = ind,

• a string returns name0 = ind and range = GlobalVar(axisNumbers)

• an index node returns the same node.

This construction requires that the global variable axisNumbers has been previously de-

fined, see Section 4.2.3.

The function of the concrete syntax corresponding to the node index is defined as follows.

Expression index00(name0,rangeList,quantifier0) : node("index",

[name(name0),range(rangeList),quantifier(quantifier0)]).

Example: We redefine the index i defined above.

i : index00("i",[1,2],"Given")

4.2.2/ IDENT

The ident node

node("ident",[name,type,scale,level])

is for identification of the regions, the submodels and their subscale part.

1. name(name0) a node for the ident name name0 which is a string.

2. type(type0) a node for the type type0 of the region that takes the value "omega"

for a domain and "gamma" for a boundary. The subnode type is left as an empty

node in the nodes subModel and subScale.
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3. scale(scale0) a node for the scale scale0 in a multiscale model which is a non

negative integer. The physical domain is at scale0=0. In a multiscale model, the

first scale is scale0=1 and then scale0 increases with the depth, see Figure 4.1.

4. level(level0) a node for the level level0 which is one of the three strings "micro"

or "macro". For each scale0 ≥ 1 the distinction between a micro or macro region

is with the parameter level0, see Figure 4.1.

Figure 4.1: The system of representation of multiscale geometries using the parameters
scale and level. multiscale models. The scales are written in blue while the levels are
in black.

Example: The domain Ω
0,micro
main and its boundary in Figure 4.5 have the following identi-

fiers identD{["main"]} and identB{["main"]}.

identD{["main"]} : node("ident",[

name("main"),type("omega"),scale("0"),level("micro")]

identB{["main"]} : node("ident",[

name("main"),type("gamma"),scale("0"),level("micro")])

identB{["int"]} : node("ident",[

name("int"),type("gamma"),scale("0"),level("micro")])

identB{["ext"]} : node("ident",[

name("ext"),type("gamma"),scale("0"),level("micro")])

The function of the concrete syntax corresponding to the node ident is defined as follows.

ident00(name0,type0,scale0,level0) : node("ident",

[name(name0),type(type0),scale(scale0),level(level0)]).

We observe that the values of scale0 and level0 are not in the parameters of ident00.

They are assumed to be declared and used as environment variables in a way not detailed

here.
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We now define the identifier idSC, as a special case of ident, used in the nodes

subModel and subScale of Sections 4.2.13 and 4.2.14: idSC(name0,scale0,level0)

: ident00(name0,Ø,scale0,level0).

4.2.3/ PARAMREG

The paramReg node

node("paramReg",[axisList,sizeList,periodicity,interfaceList])

gathers geometry characteristics of a region such as its size, dimension, periodicity and

also its interfaces with other regions.

1. axisList(axisList0) a node for the list axisList0 = [axis(axis0),...] of

vector coordinates generating the subspace where the region is defined. For

instance, [axis([1,0,0])] is for a one dimensional region in the Ox direc-

tion, [axis([1,0,0]), axis([0,1,0])] for a two-dimensional region in the

(Ox,Oy)-plane and [axis([1,0,0]), axis([0,1,0]), axis([0,0,1])] for a

three-dimensional region.

2. sizeList(sizeList0) a node for the list sizeList0 = [size0,...] of orders of

magnitude of the size of the region in the directions of the axes in axisList. These

orders of magnitude are expressed in terms of powers of asymptotic symbolic pa-

rameters as ε.

3. periodicity([periodicityDirection,periodicityScale]) a node to describe

the region periodicity properties in the following nodes. This node is for domains

only.

1. periodicityDirection(periodicityDirection0) a node for the list

periodicityDirection0 of the size of axisList0, each element takes

one of the value "P" for periodicity, "T" for thin and "N" for none.

2. periodicityScale(periodicityScale0) a node for the list

periodicityScale0 of the period or thickness scales in each direction

of axisList0. Each scale is an expression of asymptotic parameters as ε.

4. interfaceList(interfaceList0) a node for the list interfaceList0

= [interface,...] of interfaces with other regions where the node

interface([boundaryNameList, neighborDomainName]) is defined with the

following nodes. This node is for domains only.
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1. boundaryNameList(nameBList) a node for the list nameBList =

[name(nameB),...] of interface names between the current domain

and its neighbor.

2. neighborDomainName(nameD) a node for the name nameD of the neighbor do-

main.

Example: The following code represents the interfaces Γ
0,micro
inter f ace,1,2 and Γ

0,micro
inter f ace,1,3 be-

tween the domain Ω
0,micro
1 and its neighbors Ω

0,micro
2 and Ω

0,micro
3 of Figure 4.2.

interfaceList1 : interfaceList([

interface([boundaryNameList("interface,1,2"), neighborDomainName("2")]),

interface([boundaryNameList("interface,1,3"), neighborDomainName("3")])])

Ω1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,1,2
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,1,3
0,𝑚𝑖𝑐𝑟𝑜

Ω2
0,𝑚𝑖𝑐𝑟𝑜

Ω3
0,𝑚𝑖𝑐𝑟𝑜

Figure 4.2: Interface between three domains.

In order to construct the index1 function used in Section 4.2.1, the environment vari-

able axisNumbers is constructed as a list [1,2,...] of the axis numbers declared in

axisList.

Example: The definition of the nodes paramReg for the domain Ω
0,micro
main and its boundary

Γ
0,micro
main of Figure 4.5 are as follows.

paramD{["main"]} : node("paramReg",[

axisList([axis([1,0,0]),axis([0,1,0])]),

sizeList([eps,eps,0]),

periodicity(""),

interfaceList("")])

paramB{["main"]} : node("paramReg",[

axisList([axis([1,0,0]),axis([0,1,0])]),

sizeList([eps,eps,0]),"",""])

paramB{["int"]} : node("paramReg",[
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axisList([axis([1,0,0]),axis([0,1,0])]),

sizeList([eps,eps,0]),"",""])

paramB{["ext"]} : node("paramReg",[

axisList([axis([1,0,0]),axis([0,1,0])]),

sizeList([eps,eps,0]),"",""])

The function corresponding to the node paramReg in the concrete syntax is defined as

follows.

paramReg00(axisList0, sizeList0, periodicityDirection0, periodicityScale0,

interfaceList0) : node("paramReg",[axisList(axisList0), sizeList(sizeList0),

periodicity([

periodicityDirection(periodicityDirection0),

periodicityScale(periodicityScale0)]),

interfaceList(interfaceList0)])

The function corresponding to interface is the following.

interface00(nameBList,nameD): node("interface",[boundaryNameList(nameBList),

neighborDomainName(nameD)])

The definitions of paramD00 and paramB00 are subcases of this of paramReg00. They are

introduced because, as seen in the above examples, the parametrization of boundaries

requires less parameters than this of domains.

paramD00(axisList0, sizeList0, periodicityDirection0,

periodicityScale0, interfaceList0) : node("paramReg",[

axisList(axisList0), sizeList(sizeList0), periodicity([

periodicityDirection(periodicityDirection0),

periodicityScale(periodicityScale0)]),

interfaceList(interfaceList0)])

paramB00(axisList0, sizeList0) : node("paramReg",

[ axisList(axisList0), sizeList(sizeList0), "",""])

4.2.4/ REGION

The region node

node("region",[ident,paramReg,subRegionList,boundary])

represents a region, that can be a domain or a boundary, with the following parameters,

see also Figure 4.4.
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1. ident a node for the region identifier.

2. paramReg a node for the region parameters.

3. subRegionList(subRegionList0) a node for the list subRegionList0 =

[region,...] of subregions. Only the main domain (i.e. the full domain) is al-

lowed to have subdomains.

4. boundary(region0) a node that stores a boundary of a region where region0 is

the node for the boundary.

The region node is used to represent both domains and boundaries. The following two

examples illustrate this.

𝑛𝑎𝑚𝑒 𝑡𝑦𝑝𝑒 𝑠𝑐𝑎𝑙𝑒 𝑙𝑒𝑣𝑒𝑙

𝑖𝑑𝑒𝑛𝑡𝐵 𝑝𝑎𝑟𝑎𝑚𝐵 𝑠𝑢𝑏𝑅𝑒𝑔𝑖𝑜𝑛𝐿𝑖𝑠𝑡

𝑔𝑎𝑚𝑚𝑎

𝑎𝑥𝑖𝑠𝐿𝑖𝑠𝑡 𝑠𝑖𝑧𝑒𝐿𝑖𝑠𝑡

Figure 4.3: Tree representation of a region node for a boundary with name gamma.

Example: The following code defines the main boundary Γ
0,micro
main = Γ

0,micro
ext ∪ Γ

0,micro
int of

Ω
0,micro
main of Figure 4.5. The identifiers identB{[...]} and paramB{[...]} are defined in

Sections 4.2.2 and 4.2.3.

boundary{["ext"]} : node("region",[

identB{["ext"]},

paramB{["ext"]},

subRegionList([]),"",""])

boundary{["int"]} : node("region",[

identB{["int"]},

paramB{["int"]},

subRegionList([]),"",""])

boundary{["main"]} : node("region",[

identB{["main"]},

paramB{["main"]},

subRegionList([boundary{["int"]},boundary{["ext"]}]),"",""])
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𝑛𝑎𝑚𝑒 𝑡𝑦𝑝𝑒 𝑠𝑐𝑎𝑙𝑒 𝑙𝑒𝑣𝑒𝑙

𝑖𝑑𝑒𝑛𝑡𝐷

𝑎𝑥𝑖𝑠𝐿𝑖𝑠𝑡 𝑠𝑖𝑧𝑒List 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑠𝑡

𝑝𝑎𝑟𝑎𝑚𝐷 𝑠𝑢𝑏𝑅𝑒𝑔𝑖𝑜𝑛𝐿𝑖𝑠𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑜𝑚𝑒𝑔𝑎

𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐

𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦𝑆𝑐𝑎𝑙𝑒

Figure 4.4: Tree representation of a region node for a domain with name omega.

Example The declaration of the physical domain Ω
0,micro
main of Figure 4.4 which boundary

Γ
0,micro
main has two sub-boundaries Γ

0,micro
int and Γ

0,micro
ext already defined above is as follows.

domain{["main"]} : node("region",[

identD{["main"]},

paramReg{["main"]},

subRegionList([]),

boundary{["main"]}])

𝜀

𝜀

Ω𝑚𝑎𝑖𝑛
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑖𝑛𝑡
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑒𝑥𝑡
0,𝑚𝑖𝑐𝑟𝑜

𝑥

𝑦

Figure 4.5: A physical domain whose boundary has two parts, one internal and one
external.

Most of the time the function region00 is not used in the concrete syntax because the

distinction between domains and boundaries is generally more relevant since their num-
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ber of variables differs. The functions domain00 and boundary00 are therefore defined in

the following.

domain00(nameD,axisList0,sizeList0, periodicityDirection0, periodicityScale0,

interfaceList0, subDomainList0, boundary0) : node("region",[

ident00(nameD,"omega",scale0,level0),

index1([]),

paramD00(axisList0,sizeList0,

periodicity(periodicityDirection(periodicityDirection0),

periodicityScale(periodicityScale0)),

interfaceList0),

subRegionList(subDomainList0)

boundary(boundary0)])

boundary00(nameB,axisList0,sizeList0,subBoundaryList0) : node("boundary",[

ident00(nameB,"gamma",scale0,level0),

index1([]),

paramB00(axisList0,sizeList0),

subRegionList(subBoundaryList0)])

We observe that the values of scale0 and level0 are not in the parameters of domain00

and boundary00. They are assumed to be declared and used as environment variables

in a way not detailed here.

The parameter interfaceList0 is built thanks to the following node interface00.

interface00(nameBList0,nameD) : node("interface",[

boundaryNameList(nameBList0),

neighborDomainName(nameD)])

Example: Let us consider the physical domain in Figure 4.6 which includes two subdo-

mains Ω
0,micro
int and Ω

0,micro
ext with boundaries Γ

0,micro
int and Γ

0,micro
ext . The main boundary Γ

0,micro
ext

is split into Γ
0,micro
ext,lat the external boundary and Γ

0,micro
int the interface with Ω

0,micro
int . The fol-

lowing code defines first the geometry parameters, then the boundaries and finally the

domain.

scale0 : 0

level0 : "micro"

axisList0 : [axis([1,0,0]),axis([0,1,0])]

sizeList0 : [eps,eps,0]

The definitions of the two boundaries Γ
0,micro
int , Γ

0,micro
ext,lat , of the boundary Γ

0,micro
ext of Ω

0,micro
ext

and of the boundary Γ
0,micro
main of Ω

0,micro
main = Ω

0,micro
int ∪Ω

0,micro
ext the main domain are the follow-

ing.



130 CHAPTER 4. DATA STRUCTURE AND REWRITING STRATEGIES

boundary{["int"]} : boundary00("int",axisList0,sizeList0,[])

boundary{["ext,lat"]} : boundary00("ext,lat",axisList0,sizeList0,[])

boundary{["ext"]} : boundary00("ext",axisList0,sizeList0,

[boundary{["int"]},boundary{["ext,lat"]}])

boundary{["main"]} : boundary00("main",axisList0,sizeList0,

boundary{["ext,lat"]})

Then, the three domains Ω
0,micro
int , Ω

0,micro
ext and Ω

0,micro
main are constructed as follows.

domain{["int"]} : domain00("int",axisList0,sizeList0, ["P","T"],

[eps,eps], [interface00("int","ext")], [], boundary{["int"]})

domain{["ext"]} : domain00("ext",axisList0,sizeList0, ["P","T"],

[eps,eps], [interface00("int","int")], [], boundary{["ext"]})

domain{["main"]} : domain00("main",axisList0,sizeList0, [],

[], [], [], boundary{["main"]})

𝐿1

𝐿2

𝜀

𝜀

𝑥

𝑦

Γ𝑒𝑥𝑡,𝑙𝑎𝑡
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑖𝑛𝑡
0,𝑚𝑖𝑐𝑟𝑜

Ω𝑒𝑥𝑡
0,𝑚𝑖𝑐𝑟𝑜

Ω𝑖𝑛𝑡
0,𝑚𝑖𝑐𝑟𝑜

Figure 4.6: A physical domain with two subdomains. The periodicity is in the x1-direction.
In the x2-direction, the domain is assumed to be thin.

4.2.5/ VARIABLE

The variable node

node("variable",[name,index,region])

represents a mathematical variable defined over a region.
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1. name a node that represents the name of the variable. Common names are "x" for

domains and "xg" for boundaries.

2. index a node for the index of the variable.

3. region is a node of a region that holds either for a boundary node or a domain

node. It is noteworthy that a variable is defined on a single region and not on the

Cartesian product of several regions.

Example: Let x = (x1, x2) be a variable defined in Ω
0,micro
main ⊂ R2 and xg be a variable

defined in Γ
0,micro
ext , they are declared as follows.

x{["main"]} : node("variable",[name("x"),i,domain{["main"]}])

xg{["ext"]} : node("variable",[name("xg"),i,boundary{["ext"]})])

where i is the index defined in Section 4.2.1.

Variables are defined separately on boundaries and domains. To reduce the complexity

of manipulations, it is assumed that the domains and boundaries are already defined and

stored in the association lists domain{[nameD]} and boundary{[nameB]}. The index of

the variable is defined using the function index1 introduced in Section 4.2.1.

The function associated to the variable node in the concrete syntax is then defined as

follows.

variable00{["domain"]}(nameV,ind,nameD) : node("variable",

[name(nameV),index1(ind),domain{[nameD]}])

variable00{["boundary"]}(nameV,ind,nameB) : node("variable",

[name(nameV),index1(ind),boundary{[nameB]}])

Example: Let us define a variable in the domain Ω
0,micro
int represented as domain{["int"]}

and using the index i.

x{["int"]} : variable00{["domain"]}("x",i,"int")

4.2.6/ FUNCTION

The function node

node("function",[ident,name,indexList,varList,type])

represents mathematical functions.

1. ident a node of the identifier of subScale where the function is defined.
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2. name a node that represents the name of the function.

3. indexList(indexList0) a node for a list indexList0 = [index,...] of index

nodes of the function.

4. varList(varList0) a node for a list varList0 = [variable,...] of variable

nodes of the function.

5. type(type0) a node for the type type0 of the function that can take one of the three

following values.

1. "Given" a source or a coefficient.

2. "Unknown" for unknowns of a PDE.

3. "Test" for test functions in PDE under weak (or variational) form.

Example: A function f of x with index i is defined as

f(i,x) : node("function",[ident(""), name("f"), indexList(i),

varList(x), type("Given")])

Example The unit outward normal vector n to the boundary of a domain is not directly

defined on the boundary. We consider one of its extensions to the domain,

n(x) : function(name("n"),indexList(i),varList(x),type("Given"))

for a variable node x defined over the domain and i an index whose range is related to

the domain. Its use as is then through the trace operator opTrace, see Section 4.2.7.

The function of the concrete syntax corresponding to the node function is defined as

follows.

function00(nameF,indList,varList0,type0) : node("function",

name(nameF),indexList(map(index1,indList)),variableList(varList0),type(type0))

where indList = [ind1,...] is a list of parameters of the function index1 and

map(index1,indList) returns the list [index1(ind1),...].

Example: Let us construct a vector valued function f of a variable x and indexed by an

index i.

f(i,x) : function00("f",i,x,"Given")
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4.2.7/ OPERATOR

The node operator

node("operator",[name,indexList,mathExprList,inputVarList,

outputVarList,paramOper])

represents a mathematical operator.

1. name a node that represents the name of the operator.

2. indexList(indexList0) a node for a list indexList0 = [index,...] of index

nodes of the operator.

3. mathExprList(mathExprList0) a node for a list mathExprList0 =

[mathExpr,...] of mathematical expression nodes mathExpr(mathExpr0)

where mathExpr0 is a mathematical expression.

4. inputVarList(inputVarList0) and outputVarList(outputVarList0) nodes for

the input variable list inputVarList0 = [variable,...] and the output

variable list outputVarList0 = [variable,...] of the operator.

5. paramOper(operParam0) a nodes for a list operParam0 = [expression,...] of

parameters that can be any expressions.

Example: The following code is the definition of the trace operator of an expression expr

that is assumed to be already defined. Its application could use the variables x and xg

defined in Section 4.2.5.

opTrace(expr,x,xg) : node("operator",[

name("opTrace"),

indexList([]),

mathExpr(expr),

inputVarList(x),

outputVarList(xg),

paramOper([])])

The function of the concrete syntax corresponding to the node operator is defined as

follows.

operator00(nameOp,indList,mathExprList0,inputVarList0,

outputVarList0,operParam0) : node("operator",[

name(nameOp),indexList(map(index1,indList)), mathExprList(mathExprList0),
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inputVariableList(inputVarList0), outputVariableList(outputVarList0),

parameterList(paramList0)])

We define a mapping mapping{rName1, rName2} : x(rName2)(””) → x(rName1)(””) of a

change of variable as an operator. The two variables are defined on two domains named

rName1 and rName2. Precisely, defining

x(rName)(i) = variable("x",i,domain1(rName))

the mapping operates on any expression expr and is defined as

mapping{rName1,rName2}(expr)(i) :

operator("mapping",[i],s[expr],xg(rName2)(""),xg(rName1)(""),[])

with the strategy s defined as

s:goto([boundary1(rName2)],[],rule(x_,boundary1(rName1)))

and where s[expr] stands for the application of the strategy s to the expression expr.

4.2.8/ EQUALITY

The equality node

node("equality",[name,leftMathExpr,rightMathExpr])

is to express to a mathematics equality, for instance f = g or f = 5 where f , g are functions

and 5 a constant.

1. name a node that represents the name of the equality.

2. leftMathExpr(leftMathExpr0) and rightMathExpr(rightMathExpr0) the

nodes for leftMathExpr0 and rightMathExpr0 the mathematical expressions of

the left-hand-side and the right-hand-side of the equality.

Example: Let us consider the equality ∆u = ∂2
x1 x1

u + ∂2
x2 x2

u = 0 named as "laplace",

where u is a scalar function depending on the variable x = (x1, x2) defined on R2. Now,

the lapLace equality can be described by the following code.

Expression

laplaceOp :
∑

i ∂(u(x([ ]))/∂x(i))/∂x(i))
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equality{["lapLace"]} : node("equality",["lapLace",

leftMathExpr(laplaceOp),rightMathExpr(0)])

The function of the concrete syntax corresponding to the node equality is defined as

follows.

equality00(nameE,leftMathExpr0,rightMathExpr0) : node("equality",[

name(nameE),leftMathExpr(leftMathExpr0),rightMathExpr(rightMathExpr0)])

Example: The above laplace equality and the equalities of Section 4.2.10 homDirichlet

and nonHomDirichlet are redefined as follows.

equality{["lapLace"]} : equality00("lapLace",laplaceOp,0)

equality{["homDirichlet"]} : equality00("homDirichlet",opTrace(u(x),x,xg),0)

equality{["nonHomDirichlet"]} : equality00("nonHomDirichlet",

opTrace(u(x),x,xg),opTrace(f(x),x,xg))

4.2.9/ EQUATION

The node equation

node("equation",[name,equality,varList])

describes a mathematical equation consisting of an equality and a list of variables on

which it is defined.

1. name a node that represents the name of the equation. For PDE it may be usual

equation names as lapLace, poisson, wave etc.

2. equality a node that represents the equality of the equation.

3. varList(varList0) a node for a list varList0 = [variable,...] of variable

nodes of the equation. We point out that the indication of a specific domain for

the equation is due to variable data structure containing the entire structure of the

domain where the variable is located.

Example: Let’s consider the Laplace equation defined in the domain Ω
0,micro
main where the

equality of the Laplace equation is assumed to be already defined as well as the variable

x{["main"]}, see Section 4.2.5.
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equation{["lapLace"]} : node("equation",[

name("lapLace"),

equality{["lapLace"]},

varList(x{["main"]})])

The function of the concrete syntax corresponding to the node equation is defined as

follows.

equation00(nameEq,equality0,varList0) : node("equation",[

name(nameEq),equalityList(equality0),varList(varList0)])

Example: The laplace equation in Ω
0,micro
main can be reconstructed as follows.

equation{["laplace"]} : equation00("laplace",

equality{["laplace"]},x{["main"]})

4.2.10/ BC AND IC

The bc node

node("bc",[name,equality,bVarList,dVarList])

is to describe boundary conditions for PDEs.

1. name a node that represents the name of the boundary condition. Common names

are dirichlet, neumann, mixed, etc.

2. equality a node that represents the equality of the boundary condition.

3. bVarList(bVarList0) and dVarList(dVarList0)nodes for a list bVarList0 =

[variable,...] and a list dVarList0 = [variable,...] of variable nodes for

the boundary where the boundary condition holds and for the related domains. The

reference to domains is necessary for interface conditions where the same bound-

ary occurs in two domains.

Example: The following code defines a homogeneous and a non-homogeneous Dirichlet

boundary conditions tr(u)(xg) = 0 and tr(u)(xg) = f (xg) at all xg, provided that the functions

from variable to function x → u(x) and xg → f (xg) have already been defined as well

as x and xg two variable nodes, xg being a variable defined on a part of the boundary

of the domain of x.
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bc{["homDirichlet"]} : node("bc",[

name("homDirichlet"),

node("equality",[

name("homDirichlet"),

leftMathExpr(opTrace(u(x),x,xg)),

rightMathExpr(0)]),

varList(xg{["ext"]})])

bc{["nonHomDirichlet"]} : node("bc",[

name("nonHomDirichlet"),

node("equality",[

name("nonHomDirichlet"),

leftMathExpr(opTrace(u(x),x,xg)),

rightMathExpr(opTrace(f(x),x,xg))]),

varList(xg{["int"]})])

The ic node

node("ic",[name,equality,bVarList,dVarList])

is to describe initial conditions for PDEs and ODEs. Its definition is similar to this of bc.

The function of the concrete syntax corresponding to the nodes bc and ic are defined as

follows.

bc00(nameBc,equality0,bVarList0,dVarList0) : node("bc",[

name(nameBc), equality(equality0),

bVarList(bVarList0), dVarList(dVarList0)])

ic00(nameIc,equality0,bVarList0,dVarList0) : node("ic",[

name(nameIc), equality(equality0),

bVarList(bVarList0), dVarList(dVarList0)])

Example: The above homogeneous and non homogeneous Dirichlet condition can be

rewritten as follows.

bc{["homDirichlet"]} : bc00("dirichlet",equality{["homDirichlet"]},

xg{["ext"]}, x{["main"]})

bc{["nonHomDirichlet"]} : bc00("nonHomDirichlet",equality{["nonHomDirichlet"]},

xg{["int"]}, x{["main"]})
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4.2.11/ PDE

The pde node

node("pde",[name,equationList,bcList,icList])

is to represent partial differential equations.

1. name a node that represents the name of the PDE.

2. equationList(equationList0) a node for a list equationList0 =

[equation,...] of equation nodes of the PDE.

3. bcList(bcList0) and icList(icList0) nodes for a list bcList0 = [bc,...] and

a list icList0 = [ic,...] of bc and ic nodes.

The function of the concrete syntax corresponding to the node pde is defined as follows.

pde00(pdeName,equationList0,bcList0,icList0) : node("pde",[

name(pdeName),equationList(equationList0),bcList(bcList0),

icList(icList0)])

Example: The following code defines a PDE made with the equation

equation{[”laplace”]} defined in Section 4.2.9 and the boundary conditions

bc{[”homDirichlet”]} and bc{[”nonHomDirichlet”]} defined in Section 4.2.10.

pde{["laplace"]}: pde00("laplace",

equation{["laplace"]},[bc{["homDirichlet"]},bc{["nonHomDirichlet"]}],[""])

4.2.12/ MODEL

The model node

node("model",[name,pdeList])

represents a mathematical model with possibly several PDEs.

1. name a node that represents the name of the model.

2. pdeList(pdeList0) a node for a list pdeList0 = [pde,...] of pde nodes of the

model.
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The function of the concrete syntax corresponding to the node model is defined as follows.

model00(nameModel,pdeList0) : node("model",[

name(nameModel), pdeList(pdeList0)])

4.2.13/ SUBMODEL

The subModel node

node("subModel", [ident,regionName,pdeName,macroRegion,macroModel,dilation,

subScale])

represents a submodel used in a subScale node. A subModel node contains on the one

hand the assumptions and parameters allowing the construction of its macroscale and

microscale models by inference and in the other hand the inferred models. The first one

is located in the macroModel node while the second one for its macro part and in the

subScale node for its micro part.

Together, the subModel and subScale nodes allow to generate recursive structures.

Figure 4.7: Tree representation of the subModel node.

1. ident a node for the identification of the subModel, see Section 4.2.2.

2. regionName a node represents the geometrical inclusion relationship between do-

mains and boundaries used in a subModel with domains and boundaries used in a

subScale at the upper scale.

1. domainNameList(domainNameList0) a node for a list domainNameList0 =

[(name1,name0),...] whose elements are pairs of the domain names name1

and name0 and defines an inclusion relation. The name name0 is that of a do-

main Ωname0 used in the PDE of the parent subScale node of the subModel.

The name name1 is that of the node Ωname1 of the region or one of its sub-

regions of the subScale node descending from the subModel. The inclusion

relation is between Ωname1 and the transformation (unfolding) of Ωname0. It is



140 CHAPTER 4. DATA STRUCTURE AND REWRITING STRATEGIES

used to determine the equations used in Ωname0 that need to be imported into

Ωname1 for processing.

2. boundaryNameList(boundaryNameList0) a node for a list

boundaryNameList0 = [(name0.1,name0),name0,...] whose elements can

be (i) pairs of a boundary name name0 and its subboundary name name0.1

where the boundary name0 and name0.1 are respectively the subboundary of

the domain used in the current subScale and the subModel at upper scale; (ii)

only boundary names name0 if name0 and name0.1 are identical, in the sense

that the boundaries used in the subScale are fully employed in the subModel.

3. modelName a node represents the selection of equations and boundary conditions of

pdes used in a subModel from the pde of subScale at the upper scale. The names

refer to pde, equation, boundary condition names in the previous scale and they

must be listed in the corresponding index with the domain names and the boundary

names that are given in the domainNameList node and boundaryNameList node of

the current subModel.

1. pdeNameList(pdeNameList0) a node for a list pdeNameList0 = [name0,...]

of pde names name0 which are strings.

2. equationNameList(equationNameList0) a node for a list equationNameList0

= [name0,...] of equation names name0 which are strings.

3. bcNameList(bcNameList0) a node for a list bcNameList0 = [name0,...]

whose elements can be (i) name0 boundary condition names applied on the

corresponding boundaries whose names are given in the boundaryNameList;

(ii) be empty " " in the case of no boundary conditions applied on these bound-

aries.

4. macroRegion a region node for the submodel macroscopic region given as data for

an algorithm.

5. macroModel a model node for the submodel macroscopic model built by an algo-

rithm.

6. dilation a node defined below for the data useful to algorithms that transform the

model at the previous scale into the microscopic model of the subScale node.

7. subScale a node defined in Section 4.2.14 for the microscopic model of the subn-

ode.

The dilation node

node("dilation",[axisList,typeList, sizeList,dictionary))
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Type Kind of dilation
P Periodicity

BL Boundary layer at a boundary

BLI Boundary layer at an interface

BL Edge Boundary layer at an edge

BLI Edge Boundary layer at an interfacial edge

T Thin structure

N No dilation

Table 4.4: Names of the types of dilation.

used in a subModel node for data required by algorithms to transform the model at the

previous scale into the microscopic model of the subscale.

1. typeList(typeList0) a node for a list of type nodes, typeList0 =

[type(type0),...] where each type node characterizes the kind of dilation in

a direction of the axisList node. The parameter type0 takes one of the values of

Table 4.4. Note that the type node is also used in Section 4.2.3 for regions.

2. axisList a node for scaling directions, see its syntax in Section 4.2.3.

3. sizeList a node for the dilation scalings, see its syntax in Section 4.2.3.

4. dictionary(dictionary0) a node for data specific to each algo-

rithm. Each entry of the list dictionary0=[entry,...] is a node

node(key,[description,listNode]) with key a string, description a name

node defined as node("description",[string0]) that describes the entry by

strings string0, and listNode=node("list",list) where list is a list of any

expressions that can also be other entries. The subnode description for data to

be interpreted by an external agent (user or program) provides the expected value

for algorithms. In this sense, it plays the role of an interface between an external

agent and algorithms. The function to construct the description node is defined

as follows.

descript00(string0) : node("description",[string0])

The functions of the concrete syntax for subModel and dilation are defined as follows.

subModel00(name0,ident,regionName0,pdeName0,macroRegion0,

macroModel0,typeList0,dirList0,scaleList0,dilation,subScale) : node("subModel",[

name(name0),ident,regionName,pdeName,macroRegion,macroModel,dilation,subScale])

dilation00(typeList0,dirList0,scaleList0,dictionary) : node("dilation",[

type(typeList0),direction(dirList0), scaling(scaleList0), dictionary])
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4.2.14/ SUBSCALE

The subScale node

node("subScale",ident,region,model,subModelList)

describes either the physical problem or a microscopic model (i.e. a new subscale) of

a subModel node. It is a part of the pair of nodes (subModel,subScale) that allows to

produce recursive multiscale models.

1. ident a node defined in Section 4.2.2 for the identification of the subscale.

2. region a node defined in Section 4.2.4 for either the physical domain or the micro-

scopic domain of a submodel. In the second case, it is used for the construction of

the submodel by an algorithm.

3. model a node defined in Section 4.2.12 either for the physical model or for the

microscopic model of a submodel. In the second case, it stores the result of an

algorithm construction.

4. subModelList(subModelList0) a node for a list subModelList0 =

[subModel,...] of subModel nodes defined in Section 4.2.13.

name = “name1”
scaleReg = “macro”
levelReg = n

name = “name2”
scaleReg = “micro”
levelReg = n+1

name = “name0”
scaleReg = “micro”
levelReg = n

Figure 4.8: Identifiers of the recursive multiscale models built on the pair ( subModel,
subScale).

The function of the concrete syntax for subScale is defined as follows.

subScale00(name0,region,model,modelList0) : node("subScale",[

name(name0),region,model,subModelList(modelList0)])
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4.3/ STRATEGIES NODES

As seen in the grammar, the strategies are also structured and organized as abstract

terms using the node nodeS(e,[e,...,s,...]). The nodeSs with their parameters are

listed in Table 4.5 using the notations e, e’ and s of the grammar. They are built on the

elementary strategies recalled in Section 5.3, but we do not detail their construction.

nodeSs Subnodes SubnodeSs
insert e’ -

remove - -

replace e’ -

rename e -

store e -

rule e1, e2’, e3 -

goto path, limit s

LeftChoice - s,...

compose - s,...

Table 4.5: List of abstract strategies with their names and their parameters e or e’ of
type expression and s of type strategy defined in the grammar. The parameters path and
limit are lists of nodes [e,...].

The following is devoted to the definitions of these strategies.

4.3.1/ GOTO

nodeS("goto",[path,limit,s]) or goto(path,limit,s) is a strategy node that navi-

gates in a tree of nodes starting from the root, searching successively in all subtrees the

patterns of the list path as long as one of the pattern of the list limit is not met. In each

subtree, if one of the patterns of limit is found the strategy returns without doing any op-

eration. If the last pattern of path is met then s is applied. The overall strategy succeeds

if at least one of the application of s succeeds.

Example: Let us consider the tree in Figure 4.9 whose nodes are uppercase letters.

The application of the strategy goto([B,H],C,s), leads to the node B then to the node

H which belongs to the root subtree B. During the navigation, if C is encountered, the

navigation does not continue in the subtree. Once the node H is found, the strategy s is

applied. See the detail of the navigation path in Figure 4.10.
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𝐵

𝐴

𝐶

𝐷 𝐸 𝐹

𝐺 𝐻

Figure 4.9: A simple tree.

One of the things to be noticed is that goto([B,H],C,s) and goto([B,E,H],C,s) in this

case are equivalent, but in some other cases may produce different results. It noteworthy

to mention that the more precise the address in the path and the more severe the limit in

the limit, the faster the search will be.

𝐵
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𝐶

𝐷 𝐸 𝐹

𝐺 𝐻
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STOP

Figure 4.10: The processing of the application goto([B,H],C,s) to the tree of 4.9 to
find successively B and H with a limit C.

4.3.2/ INSERT

nodeS("insert",[e’]) or insert(e’) is a strategy node that inserts the term e’ to the

right of the node list of the current node, i.e. it transforms a node list node(name,list)

into node(name,[list,e’]). The list [list,e’] is then transformed as a single list. The

strategy always succeeds except if the current term is not a node (it may be a leaf).

This strategy is typically used to insert another domain in a list of domains, or another

index in a list of indices etc.

Example: The operations made by the applications of the strategy

goto([B,E,H],C,insert(K)) on the tree of Figure 4.9 are illustrated on Figure
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4.11.
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𝐾add

STOP

𝑛𝑎𝑚𝑒 𝑙𝑖𝑠𝑡

Figure 4.11: Illustration of the operations made when applying the strategy
goto([B,E,H],C,insert(K)) to the tree of Figure 4.9.

4.3.3/ REMOVE

nodeS("remove",[]) or remove is a strategy node that applies to a node of a node list

and removes it from the list. This strategy fails if and only if the current term is not a node

or if the list of the node is empty. Otherwise it succeeds.

Example: After application of goto([B,E,H],C,insert(K)) to the tree of Figure 4.9 as

described in Figure 4.11. Now we consider the strategy goto([B,E,H,K],C,remove)

that removes the node K so that the tree will be turn to its original state.

4.3.4/ REPLACE

nodeS("replace",[e’]) or replace(e’) is a strategy node that replaces the current

node by the node e’. This strategy always succeeds.

Example: The strategy textttgoto([B,E],C,replace(F)) applied to the tree of Figure

4.9 replaces the node E by the node K.

4.3.5/ RULE

nodeS("rule",[left,right,condition]) or rule(left,right,condition) is a strat-

egy node that is a usual rewriting rule that checks if the condition condition is satisfied.
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If its evaluation returns True then the matching between left and the current term is

checked. If it is a success then the strategy replaces the current term by right where

its rewriting variables have been substituted by the solutions of the substitution computed

during the matching phase.

Example: The strategy

goto(index(x ),[], rule(index00(x ,y ,z ), rule(index00([x ,[y ,3],z -

)])),True)

search all nodes index and adds 3 to their range. The strategy rule can be replaced by

the strategy insert.

4.3.6/ RENAME

nodeS("rename",[e]) or rename(e) is a strategy node that renames the current node by

the a new name e. This strategy fails only if the current term is not a node (it may be a

leaf).

Example: The strategy goto(index00("i",x ,y ),[],rename("j")) applied to the in-

dex i defined as

Expression

i : index00("i",[1,2],"Given")

returns index00("j",[1,2],"Given"). The same result can be achieved by

goto([index(x ),name("i")],[],replace(name("i"),name("j")))

or

goto([index(x ),name("i")],[],rule(name("i"),name("j"),True)).

4.3.7/ STORE

nodeS("store",[e]) or store(e) is a strategy node that stores the current node in a

memory with name e. This strategy always succeeds.

Example: Let the index i defined in Section 4.2.1, it can be searched and stored by the

strategy goto([index(x ),name("i")],[],store()).

4.3.8/ LEFTCHOICE

nodeS("leftChoice",[s1,...]) or leftChoice([s1,...]) is a strategy node that ap-

plies to a list of strategies. It applies the first one of the list, if it fails then it applies the
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second one. This is repeated until the last strategy of the list. The leftChoice strategy

fails if all strategies of the list fail otherwise it succeeds.

Example: The strategy

leftChoice([goto([B,E,H],[],remove),goto([B,E],[],remove)])

applied to the tree of Figure 4.9 removes H. Actually, its first strategy

goto([B,E,H],[],remove) succeeds thus the second one is not applied.

4.3.9/ COMPOSE

nodeS("compose",[s1,...]) or compose([s1,...]) is a strategy node that applies to a

list of strategies. It applies the first one of the list, then the second one and so on until the

last strategy of the list. The compose strategy fails if at least one of the strategies of the

list fails otherwise it succeeds.

Example: The strategy

compose([goto([C,F],[],remove),goto([B,E,G],[],remove)])

applied to the tree of Figure 4.9 removes F and G.

4.4/ CONSTRUCTION OF A FAMILY OF MULTISCALE ELECTRO-

STATIC MODELS OF MIRA

Some of the asymptotic models developed in the first part of this thesis are used to illus-

trate the data structures of Section 4.2 and the construction of algorithms based on the

strategies of Section 4.3. The algorithms are given in the form of metaprograms, which

we do not consider useful to specify the details in this document. Five classes of models

are considered: periodic models, boundary layer models on boundaries, boundary layer

models at interfaces between two sub-domains, boundary layer models at outer edges,

and boundary layer models at interface edges. Only the equation of electrostatics is con-

sidered here because, our main objective being the illustration of the data structure and

the related algorithms, taking into account more complex equations would complicate the

presentation without highlighting many more concepts.

The data structure includes at its root the subScale node of the physical problem and

all asymptotic models are placed in its list of subModel nodes. Here we assume that

the model node of the physical system is already built on the principles of the examples

described in Section 4.2. It is also assumed that the specific data necessary for the

application of the algorithms are already present in the subModel nodes of each model.

These data will be precisely described. All these available data should eventually be
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constructed by automatic transfer from a PDE simulation software to the data tree.

These algorithms are presented here not as complete representations of theorems, but

as validations of the data structures introduced above. The aim is to ensure that the latter

are able to represent both a physical model and a relatively complex family of asymptotic

models. The effort is made to specify the content of the data structures and the trans-

formation operations to be performed. On the other hand, the mechanism for inferring

conclusions from hypotheses is not discussed here.

In Section 4.4.1, we will detail the content of the subScale node at the root that contains

the physical problem. Then for each model, a section will be dedicated to the description

of the required data and another one to the model construction algorithm. The first section

of the description of the required data will be detailed while for the other ones only the

data will be provided without much comment.

4.4.1/ DOMAIN DEFINITIONS AND PDE SETTINGS FOR THE PHYSICAL PROB-
LEM

As mentioned above, the root of the data structure is the subModel node that describes

the physical problem. In this section, we describe the datastructure content without pre-

cise details on the node structure since this was done in Section 4.2.

Figure 4.12 represents the subScale node of the physical problem. Its identifier

idSC.Mira is defined by idSC("mira", 0, "micro"). The region node consists of

Ω
0,micro
air.main

whose subregions, boundaries, and subboundaries are represented in Figure

4.13. The PDE of the physical model represented by pdeMira with a name "pde.Mira"

is not reproduced, it is considered to be on the model of the electrostatic equation of

Section 4.2.11.

Ωair.main
0,micro

pdeMira 𝑙𝑖𝑠𝑡

Figure 4.12: The tree representation for the top subScale node of the physical model
of electrostatic equations posed in the MIRA architecture. The domain Ω0,micro

air.main
and

the electrostatic equations are defined in details in the first part of the thesis. The
names of the submodels in the list subModelList are "periodic.int", "periodic.ext",
"boundaryLayer.i" , "boundaryLayer.edge.i", "boundaryLayer.interface.i", and
"boundaryLayer.interface.edge.i" for i = 1,2,3,4.
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𝑥

𝑦

Ω𝑎𝑖𝑟.𝑒𝑥𝑡
0,𝑚𝑖𝑐𝑟𝑜

Ω𝑎𝑖𝑟.𝑖𝑛𝑡
0,𝑚𝑖𝑐𝑟𝑜

𝜀

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.3
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4
0,𝑚𝑖𝑐𝑟𝑜Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4

0,𝑚𝑖𝑐𝑟𝑜
Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.3
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
0,𝑚𝑖𝑐𝑟𝑜

𝜀

𝑑𝑟1

𝑑𝑟2

Figure 4.13: The physical air domain of the MIRA model, the subdomains, their bound-
aries and subboundaries.

The geometry Ω
0,micro
air.main

of the MIRA system has been described in detail in the first part

of this thesis. For more clarity, Figure 4.13 gives a two-dimensional representation of the

geometry. It distinguishes the two sub-domains of "air.main" associated with zones of

different imposed voltages, namely ”air.ext” the external air zone and "air.int" the

internal air zone. Table 4.6 summarizes the names of Figure 4.13. As mentioned above,

we do not detail the PDE that governs the electrostatic phenomenon, but the names of the

voltage sources, the electrostatic field in the two regions, the equations and the boundary

conditions are listed in Tables 4.7, 4.8 and 4.9.
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Domain Name “air.int” “air.ext”

Boundary Name “air.int” “air.ext”

SubBoundary Name

[“air.int.mirror”,“air.int.electrode”, [“ air.ext.mirror”, “air.ext.electrode”,

“air.int.latBox.1”,“air.int.latBox.2” “air.ext.latBox.1”,“air.ext.latBox.2”,

“air.int.latBox.3”,“air.int.latBox.4”, “air.ext.latBox.3”, “air.ext.latBox.4”,

“air.int.top”] “ air.ext.top”

“air.int.latBox.1”,“air.int.latBox.2”,

“air.int.latBox.3”, “air.int.latBox.4”]

Table 4.6: Summary of the names of the two air domains, of their boundaries and of the
subboundaries.

Name Function

“volMInt” Imposed voltage on the mirrors of the internal zone

“volEInt” Imposed voltage on the electrodes of the internal zone

“volMExt” Imposed voltage on the mirrors of the external zone

“volEExt” Imposed voltage on the mirrors of the electrode zone

“phi.Int” Unknown potential in the internal zone

“phi.Ext” Unknown potential in the external zone

Table 4.7: Names of voltage sources and of the unknown electrical potential in the two
regions of the physical PDE.

Bc Name Equality Name Unknown Given Bd Name List

“dirichlet.int.mirror” “dirichlet” “phi.Int” “volMInt” “air.int.mirror”

“dirichlet.int.electrode” “dirichlet” “phi.Int” “volEInt” “air.int.electrode”

“neumann.int.top” “neumann” “phi.Int” “zeroF” “air.int.top”

“continuity.potential” “continuity” “phi.Int” “phi.Ext” “air.int.latBox”

“continuity.flux” “continuityFlux” “phi.Int” “phi.Ext” “air.int.latBox.i”

“dirichlet.ext.mirror” “dirichlet” “phi.Ext” “volMExt” “air.ext.mirror”

“dirichlet.ext.electrode” “dirichlet” “phi.Ext” “volEExt” “air.ext.electrode”

“neumann.ext.top” “neumann” “phi.Ext” “zeroF” “air.ext.top”

“neumann.ext.latBox” “neumann” “phi.Ext” “zeroF” “air.ext.latBox.i”

Table 4.8: Names of the boundary condition in the physical PDE pdeMira where i repre-
sents ”1,2,3,4”.

Then, we introduce equations applying two-zones
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Equation Name Equality Name Unknown Given Region Name

“laplace.int” “lapLace” “phi.Int” “zeroF” “air.int”

“laplace.ext” “lapLace” “phi.Ext” “zeroF” “air.ext”

Table 4.9: Names of the equations of the physical PDE.
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4.4.2/ PERIODIC MODELS

4.4.2.1/ DATA STRUCTURE FOR A PERIODIC MODEL

The data related to a periodic model posed in a subdomain of the main domain is il-

lustrated through the case of the sub-domain "air.ext". The case of the subdomain

"air.int" is similar.

We assume that the microscopic domain Ω
1,micro
air.ext.per is already built in the subScale node.

We recall that its inclusion relationship with Ω
0,micro
air.ext described in Section 4.2.13 is ex-

pressed in the node domainNameList.

The data is stored in the subModel node shown in Figure 4.14. Its identifier idSM.Per.Ext

defined as idSC("periodic.ext",0, "micro") is illustrated in Figure 4.15. The names

of the domain and its suboundaries in the regionName node are relative to the "air.ext"

part. It is the same for the equations and boundary conditions of the pdeName node. For

this model there is no macroregion so the macroRegion node is empty.

The scale transformation parameters of the dilation node are visible on Figure

4.16. In the list axisList the directions are dr1=axis([1,0,0]),dr2=axis([0,1,0])

anddr3=axis([0,0,1]). The list typeList = ["P", "P", "T"] of transformation types

indicates transformations related to periodic structures (periodic unfolding) in the first two

directions of axisList, while in the third direction it is a thin structure type transformation

(simple dilation). The scaleList node indicates the three dilations with the parameter ε.

The dictionary node holds names of boundaries stored in the keys physBdName and

microBdName, unknown and given functions retained in the keys unknownFunction and

givenFunction, which are data relating to a two-scale transformation characterized by

the dilation node. The entries physBdNameand microBdName are names of boundaries

related by the unfolding operation from the physical domain to the microscopic domain.

The physBdName key

node("physBdName",[descipt00("lateral physical boundary"),listNode0])

with listNode0 particular keys that retain all physical boundary names . In the pe-

riodic case, there is one key latBdP node("latBdP",[descipt00("lateral physical

boundary"),listNode0]) with listNode0 a name node storing all lateral physical

boundary names "air.ext.latBox.1", "air.ext.latBox.2", "air.ext.latBox.3",

"air.ext.latBox.4".

The microBdName key

node("microBdName",[descipt00("microscopic boundary"),listNode0])
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with the listNode0, particular keys corresponding to keys in the physBdName retain all

microscopic boundary names. In the periodic model, this listNode0 holds one key perBd

with a key "perBd", a string description "periodic boundary", and a listNode a name

node of the periodic boundary air.ext.periodic of the microscopic domain.

Next, we introduce two keys, unknownFunction and givenFunction, to store respectively

the data of the unknowns and given functions of the PDE of the physical model for the

external periodic problem.

The key unknownFunction

node("unknownFunction",[descipt00("unknown of pde"),

[physUnknown, microUnknown]])

includes (i) a key physUnknown with the name "physUnknown", the description "physical

unknown", the list node a node storing an unknown name "phi.Ext" used in a pde of

the external physical model and its identifier idSC.Mira; (ii) a key microUnknown with

the name "microUnknown", the description "micro unknown", and the list node a node

storing an unknown name "phi.Per" used in a pde of the external microscopic model

and its identifier idSC.Per.Ext.

The key givenFunction

node("ginvenFunction",[descipt00("given function"),nodeList0])

contains all the given source names and their identifiers of the new pde of the microscopic

model which are stored as nodes in nodeList0. In this periodic case, nodeList0 is an

empty list.

The subScale node shown in Figure 4.18 includes the identifier idSC.Per.Ext defined by

idSC( ”periodic.ext”, 1, ”micro”) which is shown in Figure 4.15 and the microscopic

domain Ω
1,micro
air.ext.per shown in Figure 4.17. The model node is left empty at this step, it will

be filled by Algorithm of Section 4.4.2.2.
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("𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑝𝑒𝑟","𝑎𝑖𝑟. 𝑒𝑥𝑡") [ "𝑎𝑖𝑟. 𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟“,

"𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒“,

"𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑡𝑜𝑝“,

"𝑙𝑎𝑝𝑙𝑎𝑐𝑒. 𝑒𝑥𝑡" [ "𝑑𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡. 𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟“,

"𝑑𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡. 𝑒𝑥𝑡. 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒”,

"𝑛𝑒𝑢𝑚𝑎𝑛𝑛. 𝑒𝑥𝑡. 𝑡𝑜𝑝“,

"𝑛𝑒𝑢𝑚𝑎𝑛𝑛. 𝑒𝑥𝑡. 𝑙𝑎𝑡𝐵𝑜𝑥. 𝑖“ ]

[ ] [ ]

Where i=1,2,3,4

"𝑝𝑑𝑒.𝑀𝑖𝑟𝑎"

"𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑙𝑎𝑡𝐵𝑜𝑥. 𝑖“ ]

Figure 4.14: The submodel node of the external periodic model.

"𝑚𝑎𝑐𝑟𝑜""𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐. 𝑒𝑥𝑡"

ident

0

Figure 4.15: The ident node of the external periodic model.

["P", "𝑃", "𝑁"] ["dr1","𝑑𝑟2","𝑑𝑟3"] [ε,ε,ε]

"𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐"

𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛

Where i=1,2,3,4 ["𝑝ℎ𝑖. 𝑃𝑒𝑟", idSC. Per. Ext]"𝑎𝑖𝑟. 𝑒𝑥𝑡. 𝑙𝑎𝑡𝐵𝑜𝑥. 𝑖“ ["𝑝ℎ𝑖. 𝐸𝑥𝑡", idSC.Mira]

Figure 4.16: The dilation node of the external periodic model.

Domain Name “air.int.per” “air.ext.per”

Boundary Name “air.int.per” “air.ext.per”

SubBoundary Name
[“air.int.mirror”, “air.int.electrode”, [“air.ext.mirror”, “air.ext.electrode”,

“air.int.top”, “air.int.per”] “air.ext.top”, “air.ext.per”]

Table 4.10: The names of the microscopic domains, boundaries and subboundaries for
the models periodic.int and periodic.ext.
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Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜

Ω𝑎𝑖𝑟.𝑖𝑛𝑡.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Ω𝑎𝑖𝑟.𝑒𝑥𝑡.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜

1

1

Figure 4.17: The microscopic domains in the subScale node of the periodic.ext and
periodic.int models.

Ω𝑎𝑖𝑟.𝑒𝑥𝑡.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜 apply a 

Strategy
[ ]idSC. Per. Ext

subScale

Figure 4.18: The subScale node of the external periodic model.

4.4.2.2/ STRATEGY FOR A PERIODIC MODEL

The following algorithm consists in building the model node of the subScale node of a

periodic model. It uses data from the physical model and from the subModel node of

the periodic model described in the sections 4.4.1 and 4.4.2.1. It consists in copying the

useful part of the physical PDE into the PDE of the microscopic problem. Then it performs

changes of names of unknown, deletion of boundary conditions on the outer boundary,

replaces everywhere the physical domain by the microscopic domain, sets scale:=1 in

the region identifiers, adds periodicity boundary conditions and finally changes the name

of the PDE to ”pde.micro”.
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Algorithm 1 Derivation of a periodic model from the physical model.
1: In model of the top subScale node, store all equations in equationList and all

boundary conditions in bcList whose names are in pdeName/equationNameList and

bcNameList of the model ”periodic.X” .

== In the following the operations are in the subModel node with name ”periodic.X” ==

2: In the subScale/model node insert the copied data.

3: In subScale/model replace the name given in physUnknown of the unknown function

by this in microUnknown. This function is noted φ in the following.

4: remove the bc node in subScale/model/pde/bcList operating on the boundary with

name in the dilation dictionary at physBdName/latBdP.

5: replace in subScale/model the domain with name in regionName/domainName by the

microscopic domain in subScale/region.

6: rewrite the identifier of each boundary in subScale/model to update their scale to

1.

7: in subScale/model/bcList node insert bc nodes for periodic condition on φ and anti-

periodic condition on ∇φ · n on the boundary whose name is in microBdName/perBd.

8: rename the pde name by "pde.micro".

4.4.3/ BOUNDARY LAYER MODELS

4.4.3.1/ DATA STRUCTURE FOR A BOUNDARY LAYER MODEL

The boundary layer model is illustrated with a single case. The selection of its domain in

the physical domain and its microscopic domain are in Figure 4.19. Table 4.11 summa-

rizes the region names of the microscopic domain Ω
1,micro
air.ext.lat.1. The subModel data are in

Table 4.12 and Table 4.13 is for the dictionary data.
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𝑥

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1
0,𝑚𝑖𝑐𝑟𝑜

𝑦

𝑑𝑟1

𝑑𝑟2

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡.0
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡.𝑖𝑛𝑓
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Ωair.ext.lat.1
1,micro

Ωair.ext.lat.1
0,micro

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑎𝑙𝑝ℎ𝑎.𝑙𝑎𝑡.1
0,𝑚𝑖𝑐𝑟𝑜

Figure 4.19: Selection of the domain of a boundary layer model in the physical domain
and the related microscopic domain.

Domain Name “air.ext.lat.1”

Boundary Name “air.ext.lat.1”

Subboundary Name

[“air.ext.mirror”, “air.ext.electrode”,

“air.ext.top”, “air.ext.lat.periodic”

“air.ext.lat.0”, “air.ext.lat.inf”]

Table 4.11: The names of the regions of the microscopic domain Ω
1,micro
air.ext.lat

for the bound-
ary layer model.
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name “boundaryLayer.1”

regionName

domainNameList (“air.ext.lat.1”,“air.ext”)

boundaryNameList
[“air.ext.mirror”,“air.ext.electrode”,“air.ext.top” ,

“air.ext.latBox.1”, (“air.ext.latBox.2.1”,“air.ext.latBox.2”),

(“air.ext.latBox.4.1”,“air.ext.latBox.4”), “air.ext.alpha.lat.1]

modelName

pdeName “pde.Mira”,

equationNameList “laplace.ext”

bcNameList
[“dirichlet.ext.mirror”, “dirichlet.ext.electrode”,

“neumann.ext.top”,“neumann.ext.latBox”,

“neumann.ext.latBox”,“neumann.ext.latBox”, “”]

dilation

typeList [“P”,“BL”,“N”]

axisList [dr1,dr2,dr3]

scaleList [“eps”, “eps”, “”]

dictionary

physBdName [latBdP, latOriBdP, intBdP ]

microBdName [perBd, latOriBd, latInfBd]

unknownFunction [physUnknown, microUnknown]

givenFunction [givenFunction[1]]

subScale
name “lateral.1”

region Ω
1,micro
air.ext.lat.1

Table 4.12: The submodel nodes of the boundary layer model.

Key Description Data list

latBdP “lateral physical boundary” [“air.ext.latBox.1.1”,“air.ext.latBox.4.1”]

latOriBdP “original lateral physical boundary” “air.ext.latBox.2”

intBdP “interior physical boundary” “air.ext.alpha.lat.1”

perBd “periodic boundary” “air.ext.periodic”

latOriBd “original lateral boundary” “air.ext.lat.0”

latInfBd “infinity lateral boundary” “air.ext.lat.inf”

physUnknown “physical unknown” [“phi.Ext”, idSC.Mira]

microUnknown “microscopic unknown” [“phi.Lat”, idSC.BL.1]

givenFunction[1] “external periodic solution” [“phi.Ext”, idSC.Per.Ext]

Table 4.13: Dictionary of the dilation node for the boundary layer model. Each entry of
the dictionary includes a key, a description and a list of data. The data list of the unknowns
have two elements, the name of the unknown and the identifier of their submodel.
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4.4.3.2/ STRATEGY FOR A BOUNDARY LAYER MODEL

Algorithm 2 Derivation of a boundary layer model from the physical model.
1: In model of the top subScale node, store all equations in equationList and all

boundary conditions in bcList whose names are in pdeName/equationNameList and

bcNameList of the model ”lateral.X” .

== In the following the operations are in the subModel node with name ”lateral.X” ==

2: goto a pde node of the subscale at a lower level, insert all copied data.

3: In subScale/model replace the name given in physUnknown of the unknown function

by this in microUnknown. This function is noted φ in the following.

4. goto in pde/bc and then in dirichlet equalities, replace the right-hand side by 0.

5: goto in pde/bc and then in a neumann equality applied on the boundary given

in latOriBdP, replace the right-hand side by mapping{rName1,rName2}(-∇φ1)("")

·n, where φ1 is given in givenFunction[1], rName1 is a microscopic domain name

in subScale/region of this boundary layer model, rName2 is a microscopic domain

name of the periodic model given in the subScale/region represented by its identifier

idSC.Per.Ext. We note that the function mapping defined in Section 4.2.6 plays a role of

a change of variable.

6: replace everywhere the name of the boundary with name in latOriBdP by the name

in latOriBd.

7: replace in subScale/model the domain with name in regionName/domainName by the

microscopic domain in subScale/region.

8: goto bcList node, insert a "neumann" bc for φ with a right-hand side 0 on a boundary

with name in the node latInfBd.

9: goto bcList node, insert a periodic bc and an anti-periodic bc for φ and ∇φ · n,

respectively, on a boundary which name is given in the node perBd.

10: rename the pde name by "pde.micro".

4.4.4/ EDGE BOUNDARY LAYER MODELS

4.4.4.1/ DATA STRUCTURE FOR AN EDGE BOUNDARY LAYER MODEL

The edge boundary layer model is illustrated with a single case shown in Figure 4.20.

The region names of the microscopic domain Ω
1,micro
air.ext.edge.1

are summarized in Table 4.14.

The subModel data are in Table 4.15 and Table 4.16 is for the dictionary data.
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𝑥

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1.1
0,𝑚𝑖𝑐𝑟𝑜

𝑦

𝑑𝑟1

𝑑𝑟2

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒.𝑙𝑎𝑡.2
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒.𝑖𝑛𝑓
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Ωair.ext.edge.1
0,micro

Ωair.ext.edge.1
1,micro

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒.𝑙𝑎𝑡.1
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑎𝑙𝑝ℎ𝑎.𝑒.1
0,𝑚𝑖𝑐𝑟𝑜

Figure 4.20: Selection of the domain of an edge boundary layer model in the physical
domain and the related microscopic domain.

Domain Name “air.ext.edge.1”

Boundary Name “air.ext.edge.1”

Subboundary Name

[“air.ext.mirror”, “air.ext.electrode”,

“air.ext.top”, “air.ext.e.lat.1”,

“air.ext.e.lat.2”, “air.ext.e.inf”]

Table 4.14: The names of the regions of the microscopic domain Ω
1,micro
air.ext.edge.1

for the
edge boundary layer model.
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name “boundaryLayer.edge1”

regionName

domainNameList (“air.ext.edge.1”, “air.ext”)

boundaryNameList
[“air.ext.mirror”,“air.ext.electrode”,

“air.ext.top”, (“air.ext.latBox.1.1”,““air.ext.latBox.1”)

(“air.ext.latBox.2.1”, “air.ext.latBox.2”), “air.ext.e.alpha”]

modelName

pdeName “pde.Mira”

equationNameList “laplace.ext”

bcNameList
[“dirichlet.ext.mirror”, “dirichlet.ext.electrode”

“neumann.ext.top”, “neumann.ext.latBox”,

“neumann.ext.latBox”, “”]

dilation

typeList [“BL Edge”,“BL Edge”,“T”]

axisList [dr1,dr2,dr3]

scaleList [“eps”, “eps”, “eps”]

dictionary

physBdName [latOriBdP, intBdP]

microBdName [latOriBd, latInfBd]

unknownFunction [physUnknown, microUnknown]

givenFunction [givenFunction[1], givenFunction[2]]

subScale
name “externalEdge.1”

region Ω
1,micro
air.ext.edge.1

Table 4.15: The submodel of the external edge model.

Key Description Data list

latOriBdP[1] “first original lateral physical boundary” “air.ext.latBox.1.1”

latOriBdP[2] “second original lateral physical boundary” “air.ext.latBox.2.1”

intBdP “interior physical boundary” “air.ext.alpha.e.1”

latOriBd[1] “first original lateral boundary” “air.ext.e.lat.1”

latOriBd[2] “second original lateral boundary” “air.ext.e.lat.2”

latInfBd “infinity lateral boundary” “air.ext.e.inf”

physUnknown “physical unknown” [“phi.Ext”, IdSC.Mira]

microUnknown “microscopic unknown” [“phi.Ext.Edge”, IdSC.BL.E.1]

givenFunction[1] “first lateral boundary solution” [“phi.Lat”, IdSC.BL.1]

givenFunction[2] “second lateral boundary solution” [“phi.Lat”, IdSC.BL.2]

Table 4.16: Dictionary of the dilation node for the edge boundary layer model.
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4.4.4.2/ STRATEGY FOR AN EDGE BOUNDARY LAYER MODEL

Algorithm 3 Derivation of an edge boundary layer model from the physical model.
1: Same as Algorithm 2 but for a model ”externalEdge.X”.

= In the following the operations are in the subModel node with name ”externalEdge.X” =

2-4: Same as Algorithm 2.

5: goto in pde/bc and then in a neumann equality applied on the boundary given in

latOriBdP[2], replace the right-hand side by mapping{rName1,rName2}(-∇φ1)("")

·n, where φ1 is given in givenFunction[1], rName1 is a microscopic domain name in

subScale/region of this edge boundary model, rName2 is a microscopic domain name of

the first boundary layer model given in the subScale/region represented by its identifier

idSC.BL.1.

6: goto in pde/bc and then in a neumann equality applied on the boundary given in

latOriBdP[1], replace the right-hand side by mapping{rName1,rName3}(-∇φ2)("") ·n,

where φ2 is given in givenFunction[2], rName2 is a microscopic domain name of the

second boundary layer model that is given in the subScale/region represented by its

identifier idSC.BL.2.

7: replace everywhere the name of the boundary with name in latOriBdP[1] and

latOriBdP[2] by the name in latOriBd[1] and latOriBd[2] respectively.

8: replace in subScale/model the domain with name in regionName/domainName by the

microscopic domain in subScale/region.

9-10: Same as Step 8 and 10 of Algorithm 2.

4.4.5/ INTERFACE BOUNDARY LAYER MODELS

4.4.5.1/ DATA STRUCTURE FOR AN INTERFACE BOUNDARY LAYER MODEL

The interface boundary layer model is illustrated with a single case shown in Figure 4.21.

The region names of the microscopic domain Ω
1,micro
air.interface.1

are summarized in Table

4.17. The subModel data are in Table 4.18 and Table 4.19 is for the dictionary data.
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𝑥

𝑦

𝑑𝑟1

𝑑𝑟2

Γ𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.1.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.1.𝑝𝐼𝑛𝑓
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Ωair.interf.1.ext
0,micro

Ωair.interface.1.1
1,micro

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.2.𝑚𝐼𝑛𝑓
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.2.𝑝𝑒𝑟
1,𝑚𝑖𝑐𝑟𝑜

Ωair.interface.1.2
1,micro

Γ𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑓.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑖𝑛𝑡.𝑖𝑛𝑡𝑒𝑟𝑓.2
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.2.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑎𝑙𝑝ℎ𝑎.𝑝.𝑖𝑛𝑡𝑒𝑟𝑓
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑖𝑛𝑡.𝑖𝑛𝑡𝑒𝑟𝑓.4
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑎𝑙𝑝ℎ𝑎.𝑚.𝑖𝑛𝑡𝑒𝑟𝑓
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.4.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑙𝑎𝑡𝐵𝑜𝑥.1
0,𝑚𝑖𝑐𝑟𝑜

Ωair.interf.1.int
0,micro

Figure 4.21: The domain of an interface boundary layer model in the physical do-
main and the related microscopic domain. The physical domain Ω

0,micro
air.interface.1

includes
two non-overlapping subdomains Ω

1,micro
air.interface.1.ext

and Ω
1,micro
air.interface.1.int

with the in-
terface Γ

0,micro
air.int.latBox.1

, the corresponding microscopic domain Ω
1,micro
air.interface.1

has also
two non-overlapping subdomains Ω

1,micro
air.interface.1.1

and Ω
1,micro
air.interface.1.2

with the interface
Γ
1,micro
air.interf.interface

.
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Domain Name “air.interface.1.1” “air.interface.1.2”

Boundary Name “air.interface.1.1” “air.interface.1.2”

Subboundary [“air.int.mirror”, “air.int.electrode”, [“air.ext.mirror”, “air.ext.electrode”,

Name “air.int.top”, “air.interf.1.pInf”, “air.ext.top”, “air.interf.2.mInf”,

“air.interf.1.periodic”, “air.interf.interface”] “air.interf.2.periodic”, “air.interf.interface”]

Table 4.17: Summary of the two subregion names Ω
1,micro
air.interface.1.1

and Ω
1,micro
air.interface.1.2

of the microscopic domain Ω
1,micro
air.interface.1

for the interface boundary layer model.

Next, we describe a submodel for the first interface model.

name “boundaryLayer.interface.i”

regionName

domainNameList [(“air.interf.ext”,“air.ext”), (“air.interf.int”,“air.int”)]

boundaryNameList

[“air.ext.mirror”,“air.ext.electrode”,“air.ext.top”,

“air.ext.int.interf.2”,“air.ext.int.interf.4”,“air.ext.alpha.m.interf”,

“air.int.mirror”,“air.int.electrode”, “air.int.top”,

(“air.int.latBox.2.1”,“air.int.latBox.2”), “air.int.latBox.1”

(“air.int.latBox.4.1”,“air.int.latBox.4”), “air.int.alpha.p.interf”]

modelName

equationNameList [“laplace.ext”,“laplace.int”]

bcNameList

[“dirichlet.ext.mirror”, “dirichlet.ext.electrode”,

“neumann.ext.top”,“ ”, “”, “”, “dirichlet.int.mirror”,

“dirichlet.int.electrode”,“neumann.int.top”, “”,

(“continuity.potential”,““continuity.flux”), “”,“”]

dilation

typeList [“P”,“BLI”,“N”]

axisList [dr1,dr2,dr3]

scaleList [“esp”, “esp”, “esp”]

dictionary

physBdName [latIntBdP, intBdP, interfaceP]

microBdName [perBd, latInfBd, interface]

unknownFunction [physUnknown, microUnknown]

givenFunction [givenFunction[1], givenFunction[2]]

subScale
name “interface.1”

region Ω
1,micro
air.inter f ace.1

Table 4.18: The subModel node of the interface boundary layer model.
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Key Description Data list

latIntBdP[1] “first interior lateral boundary” [“air.ext.int.interf.2”,“air.ext.int.interf.4”]

latIntBdP[2] “second interior lateral boundary” [“air.int.latBox.2.1”,“air.int.latBox.4.1”]

intBdP[1] “first interior boundary” “air.int.alpha.p.interf”

intBdP[2] “second interior boundary” “air.ext.alpha.m.interf”

interfaceP “physical interface” “air.int.latBox.1”

perBd[1] “first periodic boundary” “air.interf.1.periodic”

perBd[2] “second periodic boundary” “air.interf.2.periodic”

latInfBd[1] “first infinity lateral boundary” “air.interf.1.pInf”

latInfBd[2] “second infinity lateral boundary” “air.interf.2.mInf”

interface “microscopic interface” “air.interf.interface”

physUnknown[1] “internal physical unknown” [ “phi.Int”, idSC.Mira ]

physUnknown[2] “external physical unknown” [“phi.Ext”, idSC.Mira]

microUnknown[1] “first microscopic unknown” [“phi.IntF.L”, idSC.BL.I.1 ]

microUnknown[2] “second microscopic unknown” [“phi.IntF.R”, idSC.BL.I.1 ]

givenFunction[1] “internal periodic solution” [“phi.Per”, idSC.Per.Int]

givenFunction[2] “external periodic solution” [“phi.Per”, idSC.Per.Ext]

Table 4.19: Dictionary of the dilation node for the interface boundary layer model.
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4.4.5.2/ STRATEGY FOR AN INTERFACE BOUNDARY LAYER MODEL

Algorithm 4 Derivation of an interface boundary layer model from the physical model.
1: Same as Algorithm 2 but for a model ”interface.X”.

== In the following the operations are in the subModel node with name ”interface.X” ==

2: Same as Algorithm 2.

3: In subScale/model replace the name given in physUnknown[1] and physUnknown[2]

of the unknown function by this in microUnknown[1] and microUnknown[2] respectively.

These functions are noted φL and φR in the following.

4: Same as Algorithm 2.

5: goto in pde/bc and then in the continuity equality, replace the right-hand side by -(

mapping{rName1,rName2}(φ1)("") - mapping{rName3,rName4}(φ2)("")), where φ1 and

φ2 are respectively given in givenFunction[1] and givenFunction[2], rName1 and

rName3 are subdomain names of the microscopic domain in subScale/region of this

interface model, rName2 and rName4 are microscopic domain names of the internal and

external periodic model given in the subScale/region represented by theirs identifiers

idSC.Per.Int and idSC.Per.Ext.

6: goto in pde/bc and then in the continuityFlux equality, replace the right-hand side

by - (mapping{rName1,rName2}(∇φ1)("") ·n - mapping{rName3,rName4}(∇φ2)("")·n).

7: replace the name of the boundary with name in interfaceP by the name in interface

node.

8: replace in subScale/model the domain with name in regionName/domainName by the

microscopic domain in subScale/region.

9: goto bcList node, insert homogeneous neumann bc for the unknowns φL and φR on

the boundary with names in latInfBd[1] and latInfBd[2] respectively.

10: goto bcList node, insert a periodic bc and an anti-periodic bc for φL and ∇φL ·n,

respectively, on a boundary which name is given in the node perBd[1].

11: goto bcList node, insert a periodic bc and an anti-periodic bc for φR and ∇φR ·n,

respectively, on a boundary which name is given in the node perBd[2].

12: rename the pde name by "pde.micro".
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4.4.6/ INTERFACE EDGE BOUNDARY LAYER MODELS

4.4.6.1/ DATA STRUCTURE FOR AN INTERFACE EDGE BOUNDARY LAYER MODEL

The interface edge boundary layer model is illustrated with a single case shown in Figure

4.22. The region names of the microscopic domain Ω
1,micro
air.int.edge.1

are summarized in Table

4.20. The subModel data are in Table 4.21 and Table 4.22 is for the dictionary data.

𝑥

𝑦

𝑑𝑟1

𝑑𝑟2

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑓.1
1,𝑚𝑖𝑐𝑟𝑜

Ωair.int.edge.1
0,micro

Ωair.int.edge.1
1,micro

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.1
0,𝑚𝑖𝑐𝑟𝑜 Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.4

0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.3
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑎𝑙𝑝ℎ𝑎.2
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.1
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.2
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.4
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.3
0,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑓.2
1,𝑚𝑖𝑐𝑟𝑜 Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑓.3

1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑓.4
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.2
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.1
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.4
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑖𝑛𝑡.𝑒𝑑𝑔𝑒.𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒.3
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
1,𝑚𝑖𝑐𝑟𝑜

Γ𝑎𝑖𝑟.𝑒𝑥𝑡.𝑚𝑖𝑟𝑟𝑜𝑟
1,𝑚𝑖𝑐𝑟𝑜

Ωair.int.edge.1.1
1,micro

Ωair.int.edge.1.2
1,micro Ωair.int.edge.1.3

1,micro

Ωair.int.edge.1.4
1,micro

Figure 4.22: Selection of the domain of an interface edge boundary layer model in the
physical domain and the related microscopic domain.
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Domain Name “air.int.edge.1.1” “air.int.edge.1.2”
Boundary Name “air.int.edge.1.1” “air.int.edge.1.2”

Subboundary Name

[“air.ext.mirror”, “air.ext.electrode”, [“air.ext.mirror”, “air.ext.electrode”,
“air.ext.top”, “air.ext.edge.inf.1”, “air.ext.top”, “air.ext.edge.inf.2”,

“air.int.edge.interface.1” “air.int.edge.interface.2”
“air.int.edge.interface.2” “air.int.edge.interface.3”

Domain Name “air.int.edge.1.3” “air.int.edge.1.4”
Boundary Name “air.int.edge.1.3” “air.int.edge.1.4”

Subboundary Name

[“air.int.mirror”, “air.int.electrode”, [“air.ext.mirror”, “air.ext.electrode”,
“air.int.top”, “air.ext.edge.inf.3”, “air.ext.top”, “air.ext.edge.inf.4”,

“air.int.edge.interface.3” “air.int.edge.interface.4”
“air.int.edge.interface.4” “air.int.edge.interface.1”

Table 4.20: Summary of the region names of the microscopic domain Ω
1,micro
air.int.edge.1

for the
interface edge boundary layer model.

name “boundary.interface.edge.1”

regionName

domainNameList
[(“air.int.edge.1”,“air.ext”), (“air.int.edge.2”,“air.ext”),

(“air.int.edge.3”,“air.int”), (“air.int.edge.4”,“air.ext”)]

boundaryNameList

[“air.ext.mirror”,“air.ext.electrode”, “air.ext.top”

“air.int.edge.alpha.1”,“air.int.edge.interface.1”

“air.int.edge.interface.2”, “air.int.edge.alpha.2”,

(“air.int.edge.interface.3”,“air.int.latBox.2”),

(“air.int.edge.interface.4”,“air.int.latBox.1”),

“air.int.mirror”,“air.int.electrode”, “air.int.top”

“air.int.edge.alpha.3”, “air.int.edge.alpha.4”]

modelName

equationNameList [“laplace.ext”,“laplace.ext”,“laplace.ext”,“laplace.int”]

bcNameList

[“dirichlet.ext.mirror”, “dirichlet.ext.electrode”,

“neumann.ext.top”, “”, “”, “”, “”,

(“continuity.potential”,“continuity.flux”)

(“continuity.potential”, “continuity.flux”),

“dirichlet.int.mirror”, “dirichlet.int.electrode”,

“neumann.int.top”, “”, “” ]

dilation

typeList [“BLI Edge”,“BLI Edge”,“N”]

axisList [dr1,dr2,dr3]

scaleList [“eps”, “eps”, “”]

dictionary

physBdName [intBdP, interfaceP]

microBdName [latInfBd, interface]

unknownFunction [physUnknown, microUnknown]

givenFunction [givenFunction]

subScale
name “internalEdge.1”

region Ω
1,micro
air.int.edge.1

Table 4.21: The subModel node of the interface edge boundary layer.
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Key Description Data list

intBdP[1] “first interior lateral boundary” “air.int.edge.alpha.1”

intBdP[2] “second interior lateral boundary”” “air.int.edge.alpha.2”

intBdP[3] “third interior boundary” “air.int.edge.alpha.3”

intBdP[4] “fourth interior boundary” “air.int.edge.alpha.4”

interfaceP[1] “first physical interface” “air.int.edge.interface.1”

interfaceP[2] “second physical interface” “air.int.edge.interface.2”

interfaceP[3] “third physical interface”
[“air.int.edge.interface.3”,

“air.int.latBox.2” ]

interfaceP[4] “fourth physical interface”
[“air.int.edge.interface.4”,

“air.int.latBox.1”]

interface[1] “first microscopic interface” “air.int.edge.interface.1”

interface[2] “second microscopic interface” “air.int.edge.interface.2”

interface[3] “third microscopic interface” “air.int.edge.interface.3”

interface[4] “fourth microscopic interface” “air.int.edge.interface.4”

latInfBd[1] “first infinity lateral boundary” “air.ext.edge.inf.1”

latInfBd[2] “second infinity lateral boundary” “air.ext.edge.inf.2”

latInfBd[3] “third infinity lateral boundary” “air.ext.edge.inf.3”

latInfBd[4] “fourth infinity lateral boundary” “air.ext.edge.inf.4”

physUnknown[1] “internal physical unknown” [“phi.Int”, IdSC.Mira]

physUnknown[2] “internal physical unknown” [“phi.Int”, IdSC.Mira]

physUnknown[3] “internal physical unknown” [“phi.Int”, IdSC.Mira]

physUnknown[4] “external physical unknown” [“phi.Ext”, IdSC.Mira]

microUnknown[1] “first microscopic unknown” [“phi.IntE.1”, IdSC.BL.E.1]

microUnknown[2] “second microscopic unknown” [“phi.IntE.2”, IdSC.BL.E.1]

microUnknown[3] “third microscopic unknown” [“phi.IntE.3”, IdSC.BL.E.1]

microUnknown[4] “ fourth microscopic unknown” [“phi.IntE.4”, IdSC.BL.E.1]

givenFunction[1] “internal periodic solution” [“phi.Per.Int”, IdSC.Per.Int]

givenFunction[2] “external periodic solution” [“phi.Per.Ext”, IdSC.Per.Ext]

givenFunction[3] “left first interface solution” [“phi.IntF.L”, IdSC.BL.I.1]

givenFunction[4] “right first interface solution” [“phi.IntF.R”, IdSC.BL.I.1]

givenFunction[5] “left second interface solution” [“phi.IntF.L”, IdSC.BL.I.2]

givenFunction[6] “right second interface solution” [“phi.IntF.R”, IdSC.BL.I.2]

Table 4.22: Dictionary of the dilation node for the interface edge boundary layer model.
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4.4.6.2/ STRATEGY FOR AN INTERFACE EDGE BOUNDARY LAYER MODEL

Algorithm 5 Derivation of an interface edge boundary layer model from the physical
model.
1: Same as Algorithm 2 but for a model ”intEdge.X”.

== In the following the operations are in the subModel node with name ”intEdge.X” ==

2: Same as Algorithm 2.

3: In subScale/model replace the name given in physUnknown of the unknown function

by this in microUnknown. This function is noted respectively φ1
ine, φ

2
ine, φ

3
ine and φ4

ine in the

following.

4: Same as Algorithm 2.

5: goto in pde/bc and then in the continuity equality applying the boundary given in

interfaceP[3], replace the right-hand side by - mapping{rName1,rName2}(φ1
in,R)(""),

where φ1
in,R is respectively in givenFunction[4], rName1 is the third microscopic sub-

domain name in subScale/region of this interface edge model, rName2 is the second

microscopic subdomain name of the first interface model given in subScale/region

represented by its identifier idSC.BL.I.1.

6: goto in pde/bc and then in the continuityFlux equality applying

the boundary given in interfaceP[3], replace the right-hand side by -

mapping{rName1,rName2}(∇φ1
in,R)("")·n.

7: goto in pde/bc and then in the continuity equality applying the boundary given in

interfaceP[4], replace the right-hand side by - mapping{rName1,rName3}(φ2
in,R)(""),

where φ2
in,R is respectively in givenFunction[6], rName3 is the second microscopic

subdomain name of the second interface model given in subScale/region represented

by its identifier idSC.BL.I.2.

8: goto in pde/bc and then in the continuityFlux equality applying

the boundary given in interfaceP[4], replace the right-hand side by -

mapping{rName1,rName3}(∇φ2
in,R)("")·n.

9: replace the name of the boundary with name in interfaceP by the name in

interface node.

10: replace in subScale/model the domain with name in regionName/domainName by

the microscopic domain in subScale/region.

11: goto bcList node, insert an continuity bc on the interface given in

interface[1] with the left-hand side of bc φ1
ine − φ4

ine and the right-hand side

mapping{rName4,rName5}(φ1
in,L)(""), where φ1

in,L is respectively in givenFunction[3],

rName4 is the fourth microscopic subdomain name in subScale/region of this interface

edge model, rName5 is the first microscopic subdomain name of the first interface model

given in subScale/region represented by its identifier idSC.BL.I.1.
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Algorithm 5 Continuous of the Algorithm 5.
12: goto bcList node, insert an continuityFlux bc on the interface given in

interface[1] with the left-hand side of bc ∇φ1
ine · n − ∇φ

4
ine · n and the right-hand side

mapping{rName4,rName5}(∇φ1
in,L · n)("").

13: goto bcList node, insert an continuity bc on the interface given in

interface[2] with the left-hand side of bc φ1
ine − φ2

ine and the right-hand side

mapping{rName6,rName7}(φ2
in,L)(""), where φ2

in,L is respectively in givenFunction[5],

rName6 is the second microscopic subdomain name in subScale/region of this interface

edge model, rName7 is the first microscopic subdomain name of the second interface

model given in subScale/region represented by its identifier idSC.BL.I.2.

14: goto bcList node, insert an continuityFlux bc on the interface given in

interface[5] with the left-hand side of bc ∇φ1
ine · n − ∇φ

2
ine · n and the right-hand side

mapping{rName6,rName7}(∇φ2
in,L · n)("").

15: goto bcList node, insert homogeneous neumann bcs for respectively φ1
ine, φ

2
ine, φ

3
ine,

φ4
ine on boundaries with names in the corresponding nodes latInfBd[1], latInfBd[2],

latInfBd[3], latInfBd[4].

16: goto a pde name node, rename a current name by "pde.micro".





5

A REWRITING AND DESCRIPTION

LOGIC CONCURRENT SYSTEM

5.1/ INTRODUCTION

Our previous works have led on the one hand to a data structure in the form of a

tree that represents multi-scale models made up of partial differential equations

and on the other hand to a rewriting system allowing to operate on it. The interest of

a rewriting system is that it allows fast and simple navigation in a tree of data that can

contain complex structures. It allows application of rules to verify hypotheses or perform

transformations. It also allows to perform chaining of rule applications for a reasoning.

However, a rewriting system is not enough to organize and manage a large number of

hypotheses and conclusions associated for instance for a large number of theorem state-

ments. A natural choice to overcome this limitation is to use elements of logic and related

inferences. Rather than developing an inference engine embedded in the rewriting engine

(which would be ideal), we propose to build a concurrent system made with our rewriting

engine and an existing inference engine based on a Description Logic (DL). This ap-

proach must take into account the complementarity and limitations of the two engines as

well as their interaction.

Description logic is used for ontology construction and inference operations. It allows

data structuring in the form of graphs, with labeled branches, which makes it possible to

describe any relation between any entities. Expressions can be built, using constructors

detailed hereafter, on these relations yielding possible inferences and therefore queries.

Description logic techniques have strongly developed during the last forty years, see e.g.

the reference books [15, 14, 13, 16], and today are at the heart of the knowledge graph

concept used by the major actors of the web, see the comprehensive review [58]. Among

others, some of their practical advantages are their relative simplicity of use compared

to other logical systems, their support by the W3C community with the language OWL, a
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number of open inference engines as HermiT or Pellet , and the Protégé editor. These

language and tools are widely used.

The motivations for a concurrent RDL system of Rewriting and Description Logic are on

the one hand the simplicity of hypothesis testing on very complex (mathematical) expres-

sions and their transformation inherited from the rewriting system and on the other hand

a relatively simple manner to represent a large variety of relations between the subtree of

a data tree used for rewriting and to build complex expressions on these relations. It also

allows to take into account other data, not present in the data tree, to infer on DL expres-

sions and finally to formulate queries. Ideally, all these operations must be integrated.

This work presents an attempt to integrate our rewriting system with a description logic.

It elaborates a representation of the elementary principles of rewriting (terms, patterns,

strategy and strategy application to a term) in description logic, and describes mecha-

nisms of operation of the concurrent system. It has been realized in a relatively short

time with the objective to study the feasibility of this approach and to sketch the way it

could be used for the multi-scale models developed in the thesis. We are aware that a

number of points remain to be clarified and deepened.

The approach presented in this work is to be distinguished from many works associating

rewriting and logic. Although not experts on the subject, it seems to us that rewriting

logic such as that deployed in Maude, ELAN or CafeOBJ software, see references [72,

68] for the foundations of Maude or the more recent review [61], consists in enriching

or reinforcing a rewriting system with logical operations. In comparison, the logic layer

deployed in the RDL system focuses on the possibility of representing a large amount of

knowledge. In this context, logic is used to categorize knowledge and inference is used

to draw conclusions from this knowledge.

From the ontology point of view, we believe that the RDL approach could bring a new

possibility to operate on complex mathematical expressions commonly encountered in

engineering and science. The limitation of ontologies for this use is moreover an ac-

cepted fact. We however notice that the development of graph navigation tools is a highly

developed topic at least for queries, see the review [9].

The rest of the chapter starts with a short introduction of the description logic for-

malism SHOI(D) common to the OWL2 language (SROIQ(D)) and the editor Protégé

(SHOIN (D)). Then, the rewriting concepts useful for this work and the structure of our

rewriting language are presented in a synthetic way. This is followed by a description

of the RDL system and finally an application to the representation of the algorithms as-

sociated with the multi-scale models of the previous chapter. For lack of time, only the

rewriting strategies including queries to the ontology are reported. The rest of the ontol-

ogy presenting the link between the different algorithms remains to be developed. More-

over, we believe that the representation adopted, in the algorithms, the strategies and
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the ontology is very preliminary and will evolve significantly towards a simpler and more

structured design in order to represent a larger number of models.

5.2/ DESCRIPTION LOGIC

We recall the principles of description logic, in a manner strongly inspired from the french

Wikipedia page.

5.2.1/ SEMANTICS

Let C = {c1, c2, . . . } be a finite set of atomic concepts, R = {r1, r2, . . . } a finite set of atomic

roles and I = {i1, i2, . . . } a finite set of individuals. If C, R, I are two by two disjoint,

S = 〈C,R, I〉 is a signature. Once a signature S is fixed, an interpretation I of S is a

couple I = 〈∆I, ·I〉, where :

- ∆I is a non-empty set, the domain of interpretation.

- ·I is a function affecting :

- an element iI ∈ ∆I to each individual i ∈ I;

- a subset cI⊆ ∆I to each atomic concept c ∈ C;

- and a relation rI ⊆ ∆I to each atomic role r ∈ R.

5.2.2/ KNOWLEDGE BASE

Given a descriptive language L and a signature S, a knowledge base Σ in L is a pair

Σ = 〈T ,A〉 such that :

- T is the T (erminology)-Box, a finite set, which can be empty, of expressions called GCI

(General Concept Inclusion) of the form c1 v c2 where c1 and c2 are unrestricted concepts.

c1=̇c2 is a notation for c1 v c2 and c2 v c1. The formulae of T are called ”terminological

axioms”.

- A is the A(ssertion)-Box, a finite set, which can be empty, of expressions of the form

i : c or (i, j) : r, where c is an unrestricted concept, r is a role which is not necessarily

atomic, and i, j belong to I. The formulae A are called ”assertions”.

In our work, we view an ontology knowledge base as a graphs, with edges labelled by

roles and nodes labelled by sets of concept names. More precisely, in such a graph

- the nodes are the elements of the interpretation and they are labelled with all the concept

names to which this element belongs in the interpretation;
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- an edge with label r between two nodes says that the corresponding two elements of

the interpretation are related by the role r.

5.2.3/ DIFFERENT DESCRIPTION LOGICS

The description logics have a common base enriched with different extensions (see Ta-

ble 5.1 below). It is therefore possible to have complex concepts composed of atomic

concepts, and the same applies to roles.

Letter Constructor Syntax Semantics
AL concept name c cI

AL role name r rI

AL top > ∆I

AL conjunction c1 u c2 cI1 ∩ cI2
AL universal quantifier ∀r.c {d1 ∈ ∆I | ∀d2 ∈ ∆I.(rI(d1, d2)→ d2 ∈ cI)}
AL limited existential quantifier ∃r.> {d1 ∈ ∆I | ∃d2 ∈ ∆I.(rI(d1, d2) ∧ d2 ∈ >

I)}
C negation of concepts that are

not necessarily primitive
¬c ∆I \ cI

U disjunction c1 t c2 cI1 ∪ cI2
E typed existential quantifier ∃r.c {d1 ∈ ∆I | ∃d2 ∈ ∆I.(rI(d1, d2) ∧ d2 ∈ cI)}
N cardinality restriction (≥ n r) or (≤ n r) {d1 ∈ ∆I | |{d2 | rI(d1, d2)}| ≥ n} or {d1 ∈ ∆I | |{d2

| rI(d1, d2)}| ≤ n}
Q qualified cardinality restriction (≥ n r.c) or (≤ n r.c) {d1 ∈ ∆I | |{d2 | rI(d1, d2), d2 ∈ cI}| ≥ n} or

{d1 ∈ ∆I | |{d2 | rI(d1, d2), d2 ∈ cI}| ≤ n}
O one of {a1, . . . , an} {d ∈ ∆I | d = iI for an i}
B role filler ∃r.{i} {d ∈ ∆I | rI(d, iI)}
R conjunction of roles r1 u r2 rI1 ∩ rI2
I inverse roles r−1 {(d1, d2) ∈ ∆I × ∆I | rI(d2, d1)}
H hierarchy of roles r1 v r2 rI1 ⊆ rI2

Table 5.1: Constructors of Description Logic.

The description logics that exist are combinations of the different elements in the table

above. For example, if we add the complete negation C to the logic AL, we obtain the

logic ALC. Moreover, S is an abbreviation for ALC with transitive roles and (D) means

use of datatype properties, data values or data types.

The Protégé ontology editor supports SHOIN (D). OWL 2 provides the expressiveness

of SROIQ(D), OWL-DL is based on SHOIN (D), and for OWL-Lite it is SHIF (D).

5.2.4/ INFERENCES

In DL, the concept of inference is described as follows. Let I an interpretation and ϕ a

terminological axiom or assertion. Thus I modelizes ϕ (notation I |= ϕ) if :

- ϕ = c1 v c2 and cI1 ⊆ cI2 , or

- ϕ = i : c and iI ∈ cI, or
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- ϕ = (i, j) : r and (iI, jI) ∈ rI.

Let Σ = 〈T ,A〉 a knowledge base and I an interpretation, then I is a model of Σ (notation,

I |= Σ) so for all ϕ ∈ T ∪A,I |= ϕ. We say in this case that I is a model of the knowledge

base Σ. Given a knowledge base Σ and a terminological axiom or assertion ϕ, Σ |= ϕ if for

any model I of Σ we have I |= ϕ.

5.2.5/ REASONING TASKS

In DL, the expression ”reasoning on the T -Box” refers to the ability to make inferences

from a knowledge base. Σ = 〈T ,A〉 oÃ1 T is non-empty, and in a similar way, ”A-Box

reasoning” is the implication for a non-empty A-Box.

Let Σ a knowledge base, c1, c2 ∈ C, r ∈ R and i, j ∈ I, we define the following basic

deduction tasks.

- Subsomption: Σ |= c1 v c2 Checks whether for all interpretations I such that I |= Σ, we

have cI1 ⊆ cI2 .

-Instance Verification: Σ |= i : c Checks whether for all interpretations I such that I |= Σ,

we have iI ∈ cI.

- Relationships check: Σ |= (i, j) : r Checks whether for all interpretations I such that

I |= Σ, we have (iI, jI) ∈ rI.

- Consistency of concept: Σ 6|= c=̇⊥ Checks whether for all interpretations I such that

I |= Σ, we have cI , {}.

- Consistency of the knowledge base: Σ 6|= ⊥ Checks whether there exists I such that,

I |= Σ.

Basic deduction tasks can be used to define more complex tasks.

- Search: Given a concept, find the individuals mentioned in the knowledge base who

are instances of that concept.

- Fulfilment: given an individual mentioned in the knowledge base, find the most specific

concept, in accordance with the relations of subsumption, of which the individual is an

instance.

5.3/ A SHORT OVERVIEW OF THE MEMSALAB REWRITING SYS-

TEM

There are many rewriting languages and libraries in the literature, such as Tom [3], ρ-log

[43], Elan [1] and Maude [2]. Tom is a rewriting language built on java, that is, a language
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that extends Java with high level rewriting constructors. ρ-log is a rule-based program-

ming system implemented in the symbolic mathematical computation system Mathemat-

ica. Elan is a closed and functional language used to express non-deterministic compu-

tations via rewriting rules and strategies. Maude is a closed system that implements the

rewriting logic.

The MEMSALab rewriting system that has been developed in our laboratory is an OCaml

library. Its design was inspired by the open aspects of Tom, since it extends OCaml with

high level rewriting constructors. It shares with Elan its functional aspect.

In the following, the notions of rewriting are reformulated in view of expressing their rela-

tionship with the logic of description. We start with the notions of node, pattern and tree

related to Abstract Syntax Trees (AST). We continue with the notion of strategies before

to present a simplified view of the grammar of strategies of MEMSALab.

5.3.1/ NODE, PATTERN AND TREE

The set of functions considered in our approach is restricted to the single form

node(id, list) for nodes made with the an identifier id and a list list. The constants

Q are considered separately. A constant has a simple type among boolean, string or

number. A tree is defined by induction from nodes and constants according to the gram-

mar

t := Q | node(id, [t, ...])

If the list size of a node is a constant, one often prefer to manipulate the corre-

sponding function whose name is the identifier id and whose variables are the list

elements. For instance the function equality(name, left, right) represents the node

node(”equality”, [name, left, right]).

The sets of node names and of constants are noted N and D. The signature of the

grammar is V = N ∪ D and the set of trees t (or terms) built on the signature V is noted

T (V).

Let X be a set of rewriting variables, we note T (V, X) the set of trees built on the signature

V ∪ X, we call them patterns. To simplify, we note P the set of patterns. For two patterns

p1, p2 of P we recall that p1 matches p2 that we write p1 � p2, if there is a substitution σ

such that σ(p1) = p2. The relation � defines a partial order on P.

5.3.2/ STRATEGY

For the purpose of strategy definition, the set T (V) is completed by Fail: T ∗(V) = T (V) ∪

Fail also noted T ∗. A strategy s is a relation of T ∗ × T ∗, s : t1 → t2, which we also
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note t2= s[t1] to distinguish between this relation of ’strategy applied to a term’ with the

parenthesis used for strategy parametrization. For any strategy s, s[Fail] = Fail.

As for trees, strategies are built from strategy nodes nodeS(id, list). The grammar of

strategies is

s := r | nodeS(id, [p, ..., s, ...])

where r represents terminal strategies and the variables of a strategy node can be

patterns p or other strategy nodes s. The terminal strategies, i.e. strategies with no

strategy as variable, are the rewriting rules nodeS(”rule”, [left, right, condition]) or

rule(left, right, condition). A strategy consists in navigation and transformation oper-

ations.

The elementary navigation is the OurterMost strategy om(p, s) that navigates as the outer-

most strategy with pattern p and then applies s. The two elementary operations on pairs

of strategies are

- compose(s1, s2) is the composition of two strategies, also noted s1; s2. When applied to

a term t it applies s1 to t and if the result t1 is Fail returns Fail otherwise applies s2 to

t1 and returns the result.

- leftChoice(s1, s2) is the left-choice of two strategies, also noted s1|s2. When applied to

a term t it applies s1 to t and if the result t1 is Fail applies s2 to t and returns the result

otherwise returns t1.

Any of the above strategies s can be repeated until a fixed point is reached with the

repeat(s) strategy.

Let us describe a few number of other strategy nodes defined from rewriting rules and

from the OuterMost strategy.

- remove := rule(x , []) removes the current term of a list of nodes.

- replace(t) := rule(x , t) replaces the current term by t.

- insert(t) := rule(node(x , y ), node(x , [y , t])) inserts the term t to the right of the

node list of the current node.

- goto(p, p1, s) check if the pattern p matches the current position and then applies

om(p1, s).

- goto(p, π, s) generalizes goto(p, p1, s), for π = [p1, p2...] a list of patterns, by induction

goto(p, p1, goto(p1, p2, ...)).
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Remark 7: Different forms of goto

In the following, different forms of the goto strategy, adapted to the need, are

used. In Section 5.6.2.2 the first pattern p is omitted meaning that p is a rewriting

variable matching any term. An aspect of the goto strategy that is hidden and

that appears only in Section 5.6.2.2 is that in the actual implementation of goto

there is a limit pattern a i.e. a pattern which is used to stop the strategy when it

is found. Precisely, the strategy goto(π, a, s) navigates along the path π before

to apply the strategy s except if a subterm that matches a is reached during

navigation that causes the stop and success of the strategy.

Remark 8:

Three other usual elementary navigation strategies are available, namely

bottomUp, topDown, and innerMost. They are not presented here since they

have not yet been taken into account in the RDL system construction.

5.3.3/ EXTENDED GRAMMARS OF EXPRESSIONS AND STRATEGIES

In principle the above principles are sufficient to define a rewriting system. In practice,

more functionalities are required for a more efficient programming.

We call Expressions the generalization of patterns that takes into account the following

constructors.

- globalVar(e) the content of the memory (also called global variable) with name e ∈ T (V),

such memory is set by the strategy store(e) defined below,

- dEval(e) delays the evaluation of e until the execution of its hosting function (e.g. a

rewriting rule),

- eval(e) evaluates an expression in case where e includes a delayed evaluation or a

globalVar(.) out of a strategy,

- evalCond(e) evaluates an expression that is a condition and returns True or False,

- s[e] the term in T (V) returned by the application of a strategy s to an expression e.

Accordingly, the grammar of strategies is completed with the constructor store(e) that

stores the current term in the memory with name e.

Expression can also include any functions f(e, ..., s, ...) parametrized by expressions e, ...

and strategies s, ... and returning an expression. Among many possibilities, such a func-

tion can simply assemble tree nodes and return a tree as t(x, y) : f(g(x), h(y)) where f, g

and h are three nodes, or be an external function. The same possibility holds for strate-

gies, but in this case the external functions return strategies.
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The extended grammar of expressions e and strategies s is detailed below. The sets of

expressions and strategies are noted E and S.

e := n | c | x | ` | node(e, [e′, ...])

e′ := e | globalVar(e) | dEval(e′) | eval(e′) | evalCond(e′) | s[e′] | f(e′, ..., s, ...)

s := rule(e, e′, e) | store(e) | om(e, s) | s; s | s|s | repeat(s) | g(e′, ..., s, ...)

with

- n a number,

- c a string,

- x a rewriting variable,

- ` the logical True or False,

- rule(l, r, c) a conditional rewriting rule with left hand side l, right hand side r and

condition c where the left-hand side l and the condition c cannot be external functions.

Finally, it is noteworthy that expressions and strategies can be stored in identifiers (char-

acterized by its name and its possible parameters) while only expressions can be stored

memory accessible via globalVar().

5.4/ REPRESENTATION OF REWRITING NOTIONS IN DESCRIPTION

LOGIC

Now that the systems of rewriting and of logic of description have been recalled, it is a

matter of establishing how they operate together in a RDL system. In this section, we

propose a representation of certain rewriting system notions in a DL system. Keeping

in mind that a rewriting system allows mainly to apply a strategy to a tree, the main

requirement for such a construction are summarized as follows. The DL system must

represent

- trees, which are simply made with tree nodes having subnodes or leafs,

- strategies, which are made with strategy nodes, some being navigation strategies from

patterns to patterns and the other being action strategies,

- operations between strategies (repeat, ; and |),

- and strategy applications to subtrees.

The mapping between rewriting notions and DL notions is formalized through the relation

Φt ⊂ I × T between the set of individuals and the set of trees, the relation Φp ⊂ C × P

between the set of concepts and the set of patterns, and the relation Φs ⊂ C × S between
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the set of concepts and the set S of strategies.

In the following, the expressions of the rewriting system are written in the typewriter font

while those of the description logic system use the standard Latex mathematical font. For

example, a pattern of the rewriting system will be noted p while its representation in on-

tology concepts will be noted p. The same is true for an expression t and the associated

individual i, an expression node n and the associated concept n or for a strategy node s

and the associated concept s.

5.4.1/ TREES REPRESENTED BY INDIVIDUALS

Each subtree t′ of a tree t can be represented by an individual of the ABox. The name

of the individual is made with four fields [type, name, position, instance] that we call an ad-

dress. The type is either ”identi f ier” or ”global variable” depending wether the tree t is

stored in an identifier or in a global variable. The name is the name of the identifier or

of the memory. The position is ε if the subtree t′ is the full tree t and is the position of

the root of t′ in t otherwise. The field instance is the instance number either of a global

variable changed by the strategy store or of an identifier changed by application of a

rewriting rule. Here are two examples.

- If the first instance of the identifier t is the tree f(g(h(a)), b) then t and its subtree g(h(a))

are represented by the individuals i := [identi f ier, t, ε, 1] and i1 := [identi f ier, t, 1, 1].

- An expression allocated to the global variable ”t” by the command store(”t”) called

for the second time in the main strategy is represented by the individuals i := [global

variable, t, ε, 2].

A leaf of a tree is represented as any other subtree by an address individual but also

by another individual whose name is the data of the leaf which is always represented

as a string. For example, for the identifier t : node(”name”, ”laplace”) the leaf’s data

”laplace” is described by two individuals [identi f ier, t, 1, 1] for its address and laplace for

its data.

A subtree can be simply represented by a single individual, but it is generally represented,

partially or completely, by the roles described in Section 5.4.2.

The correspondance of an individual i to a subtree t is written (i, t) ∈ Φt. Note that each

individual is associated with a subtree but the converse statement is generally not true

since not all subtrees need to be expressed in the ontology.
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5.4.2/ PATTERNS REPRESENTED BY CONCEPTS AND ROLES

A pattern p ∈ P can be represented in Σ by a concept p ∈ C or by a concept expression p.

As seen below in Remark 10, some concept expressions correspond to patterns. These

relations define the relation (p, p) ∈ Φp.

The assumption below defines the most used patterns in this work.

Assumption 11: Node Pattern

We adopt the convention that each node node(id, [n1, ...]), which is not of kind

list (as bcList, variableList etc...), is associated to a pattern where all its direct

subnodes are replaced by distinct rewriting variables. This pattern is then asso-

ciated to a concept of the TBox with name the node name. The super concept

covering all node concepts is node.

For instance, the pattern name(a ) is associated to the atomic node node(”name”, [name0])

or name(name0) and therefore to the TBox atomic concept name. This is expressed as

(name, name) ∈ Φp which is an abuse of notation since we identify the node name name

with the associated pattern. This notation abuse will be constantly done in the following.

The partial order relation � of matching between patterns is expressed by the relation v

between associated concepts. For (p1, p1) ∈ Φp and (p2, p2) ∈ Φp, p1 � p2 if and only if

p2 v p1. In case where p2 ∈ T (V), it may be considered as a tree t and as such it can be

represented as an individual of the ABox. The relation p1 � t is then interpreted as the

belonging t ∈ p1 of an individual to a concept.

Given two nodes p1, p2, the role hasDirectS ubTree(p1, p2) has the concepts p1 and p2

as domain and image. The role hasDirectS ubTree(p1, p2) is to express direct parent-

child relationship. For instance, for three nodes f, g, h and two constants a, b if

t1:= f(g(h(a)), b), t2:= g(h(a)), t3:= h(a), and (i1, t1), (i2, t2) and (i3, t3) ∈ Φt then one

can set (i1, i2) ∈ hasDirectS ubTree( f , g) and (i2, i3) ∈ hasDirectS ubTree(g, h). Moreover,

by inference i1 ∈ ∃hasDirectS ubTree( f , g).g and i2 ∈ ∃hasDirectS ubTree(g, h).h.

We observe that in the previous example, there is no ambiguity about the position of the

nodes g(x) and h(y) of f in the concept intersection representation, which is a commuta-

tive operation, since this information is in the individual’s position. We recall that the order

of the subnodes in the list of a node is fixed.

Remark 9: Role Generalization to Any Patterns

The role hasDirectS ubTree (p1, p2) can be extended to any patterns p1, p2 ∈ P.

However, this definition and its consequences are not explored in this work.

For the leaves, we use the concept lea f that contains all leaf’s address individuals and

the data property hasData between the concept lea f and the corresponding data. For
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instance, the term t : name(”laplace”) is associated with an address individual i ∈ name

and the subterm t1: ”laplace” is associated with an address individual i1 in the concept

lea f together with a data ”laplace” through hasData. The individuals i and i1 are related

with the role isDirectS ubTree(name, lea f ), i.e. (i, i1) ∈ isDirectS ubTree(name, lea f ) and the

individuals i1 and ”laplace” are related with the data property hasData, i.e. (i1, ”laplace”) ∈

hasData.

Each complex pattern i.e. a pattern made with more than one node is uniquely repre-

sented by a concept expression using existential quantifications, conjunctions and com-

positions of the role hasDirectS ubTree. For instance the pattern f(g(x), y) is uniquely

represented by the concept expression ∃hasDirectS ubTree( f , g).g. A pattern with sev-

eral subnodes as f(g(x), h(y)) is represented by a conjunction of existential quantifica-

tion as ∃hasDirectS ubTree( f , g).g u ∃hasDirectS ubTree( f , h).h. A pattern whose tree has

several levels is defined by role composition as the pattern f(g(h(x)), y) which is repre-

sented by the concept expression ∃hasDirectS ubTree( f , g) ◦ hasDirectS ubTree(g, h).h or

∃hasDirectS ubTree( f , g). ∃hasDirectS ubTree(g, h).h, where ◦ denotes the role composi-

tion. As an illustration ∃hasDirectS ubTree(equation, name) ◦ hasDirectS ubTree(name, lea f )

◦ hasData.”laplace” is the concept of addresses of equations with name ”laplace”.

The role hasDirectS ubTree(p1, p2) is generalized by hasDirectS ubTree(list) where list is

a list of node patterns. For a two-element list, hasDirectS ubTree([p1, p2]) is equal to

hasDirectS ubTree(p1, p2). For a one-element list, (i, j) ∈ hasDirectS ubTree([p1]) if and

only if there exists a node pattern concept p2 such that (i, j) ∈ hasDirectS ubTree([p1, p2]).

For an empty list, (i, j) ∈ hasDirectS ubTree([]) if and only if there exists a node pattern

p1 such that (i, j) ∈ hasDirectS ubTree([p1]). For a list with n > 2 elements, the defini-

tion is based on the recursion and the role composition hasDirectS ubTree([p1, ..., pn]) =

hasDirectS ubTree([p1, ..., pn−1]) ◦ hasDirectS ubTree(pn−1, pn).

The next property follows from what has been said and expresses that patterns can be

associated to concept formulas that are built from roles defined by nodes.

Remark 10: Patterns Defined by Concept Formulas

In what has been done above, nodes are used to parameterize

hasDirectS ubTree(list) and associated roles. Concept formulas defined by

existential quantifications on these roles and by intersections are associated

with equivalence classes of patterns defined modulo commutativity in node lists.

Remark 11: Same Rewriting Variable at Different Positions

In the above representation of patterns repetition of a same rewriting variable at

different positions has not been taken into consideration. This is left for further

investigation.
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We conclude this section with roles derived from hasDirectS ubTree. They can be con-

structed by role composition and in this case their pairs of individuals are obtained by

inference. Otherwise their pairs of individuals are constructed by applying assemblies of

strategies and ontology declarations not yet designed and therefore not detailed here.

Given two patterns p1 and p2, the role hasS ubTree(p1, p2) is defined as (i1, i2) ∈

hasS ubTree(p1, p2) if there exists a composition r = hasDirectS ubTree(p1, q1) ◦

hasDirectS ubTree(q1, q2) ◦....◦ hasDirectS ubTree(q1, p2) such that (i1, i2) ∈ r. Its extension

hasS ubTree(list) to lists of node patterns is done similarly to this of hasDirectS ubTree.

The inverse roles of hasS ubTree(list) and hasDirectS ubTree(list) are isS ubTreeO f (list′)

and isDirectS ubTreeO f (list′) where list′ is the list list in reverse order.

More roles combining these roles as well as more data properties combining these roles

with the data property hasData are defined in Section 5.6.2.1.

5.4.3/ STRATEGIES REPRESENTED BY CONCEPTS AND ROLES

A strategy is a tree of nodes nodeS(name, [nodeS(),...]) as for

instance s : nodeS(”replace”, node(”name”, ”laplace”)) or equivalently

replace(name(”laplace”)). As a strategy includes expressions, e.g. name(”laplace”),

the tree of a strategy also holds expression nodes node(...). Like expression trees,

each tree of a substrategy s′ has an address, generically noted iS , in a strategy s. The

addressing system is the same as for expression tree nodes, without the type, since the

memory (globalVar) is used for expressions only. Thus, the parameter name always

refers to an identifier. The parameter position still refers to the position in the strategy

tree. The parameter instance is initialized at 1 and is incremented in case the substrategy

is repeated by the strategy repeat. The address of the node replace in s is [s, ε, 1]. In

the other illustrative examples of this section, the instance number of the addresses is

usually omitted for simplicity.

In an ontology Σ, a strategy tree is represented using

- atomic concepts of atomic strategy nodes nodeS as insert, remove, replace, goto,

compose, leftChoice etc,

- the role hasDirectS ubTreeS (n, k) defined below,

- individuals corresponding to the addresses iS of the nodes in the tree,

- and also concepts, roles and individuals of expression trees.

The role name hasDirectS ubTreeS (n, k) is defined by a strategy node name n and a posi-

tion k in the node list. For example, let iS the address of a node nodeS(”compose”, [s1, s2])

and iS 2 the address of s2, then (iS , iS 2) ∈ hasDirectS ubTreeS (compose, 2) since the strat-
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egy node s2 is at the second position in the subnode list. Another example is the strat-

egy s : compose(remove, remove) that is represented by the memberships to concepts

of strategy nodes iS 0 = [s, ε] ∈ compose, iS 1 = [s, 1] ∈ remove, iS 2 = [s, 2] ∈ remove

and by the role memberships (iS 0, iS 1) ∈ hasDirectS ubTreeS (compose, 1) and (iS 0, iS 2) ∈

hasDirectS ubTreeS (compose, 2).

The branch of a strategy tree between a strategy node and an expression node is de-

fined by the role hasDirectS ubTree(n, p) where n is the strategy node concept and p

the expression node concept. For example, the strategy s : replace(name(”laplace”))

is expressed using the role membership (iS 1, iS 2) ∈ hasDirectS ubTree(replace, name) with

iS 1 = [s, ε] ∈ replace and iS 2 = [s, 1] ∈ name. Therefore role hasDirectS ubTree(p1, p2) is

extended to the concepts p1 of strategy nodes that have parameters of type expression.

According to these principles, any substrategy s can be represented by a strategy node

concept s, and conversely, any concept s of strategy nodes can be represented by a sub-

strategy s. The related substrategies and concepts are represented by the membership

(s, s) ∈ Φs.

The representation of the success of a strategy node applied to an expression node is

represented by the role hasS uccess, thus (iS , i) ∈ hasS uccess represents the success of the

substrategy node at the address iS on the expression node with address i. If a same (i.e.

same address) substrategy is repeated on a same expression subtree (same position in

the same tree), at each repetition a new individual associated to the subtree is created

with the same address excepted its instance number which is incremented by one. It

results that a substrategy individual has at most one image through the role hasS uccess.

5.4.4/ SUMMARY OF THE CONVERSION BETWEEN REWRITING AND DESCRIP-
TION LOGIC

Table 5.2 summarizes the conversion operations that are made from the rewriting system

to the DL system.

5.5/ THE CONCURRENT REWRITING AND DESCRIPTION LOGIC

SYSTEM

While the modes of conversion between the notions of rewriting and description logic have

been established, in this section we describe the operations necessary for the functioning

of an RDL system (td, S,Σ). In the context of multiscale model construction, td is an

expression including all the data regarding the system to analyze i.e. its PDE and the

related assumptions, S is a strategy to be applied to td that must return the expected multi-

scale models in S[td], and Σ is the ontology gathering the knowledge, i.e. the theorems
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Rewriting Concept Individual Role
p : node(n, [x , ...]) n v node
t : node(n, [...]) i : [id, t, ε] ∈ n
store(”mem”)[node(n, [...])] i′ : [gV,mem, ε] ∈ n
p << t i ∈ n
p1 << p2 p2 v p1

t : node(n, [node(n1, ...),
node(n2, ...), ...])

n1, n2 i1 : [id, t, 1] ∈ n1, i2 :
[id, t, 2] ∈ n2

(i, i1) ∈ hasDS T (n, n1), (i, i2) ∈
hasDS T (n, n2)

t : node(n, d) lea f , data i : [id, t, ε] ∈ n, i1 :
[id, t, 1] ∈ lea f , i2 :
d ∈ data

(i, i1) ∈ hasDS T (n, lea f ), (i1, i2) ∈
hasData

s : nodeS(nS, [...]) nS v strategy iS : [s, ε] ∈ nS
s : nodeS(nS,
[nodeS(nS1, ...),
nodeS(nS2, ...)])

nS 1, nS 2 iS 1 : [s, 1] ∈ nS 1,
iS 2 : [s, 2] ∈ nS 2

(iS , iS 1) ∈ hasDS TS (nS , nS 1),
(iS , iS 2) ∈ hasDS TS (nS , nS 2)

s[t] successful (iS , i) ∈ hasS uccess

Table 5.2: Summary of Rewriting System conversion into Description Logic in terms of
individuals, concepts and roles. Rewriting expressions are in column 1 and the other
columns summarize the related objects. Objects already defined in a previous line are
not recalled. Identifiers of trees, patterns, strategies and individual start with t, p, s

and i respectively. A data used in a tree or pattern leaf is noted as d. A node name
starts with n. For shortness, in individual addresses the instance number is omitted.
The role shortcuts hasDS T (...) and hasDS TS (...) are used for hasDirectS ubTree(...) and
hasDirectS ubTreeS (...), id for ”identi f ier” and gV for ”globalVar”.

in the form of strategy individuals, invoked in the strategy S. In this work we assume that

the data tree td does not contain any reference to the ontology Σ.

5.5.1/ THE COMPONENTS OF A RDL SYSTEM

Next, we detail the distinction between three parts of the RDL system: a part represented

in both systems as described in Section 5.4, a part used only by the rewriting system and

a part used only by the ontology.

• The common part is made with a forests of expressions and strategies in the rewrit-

ing system together with their representation in the ontology. They are useful to the

knowledge description of the ontology in the third part. For an efficient use of the

hasDirectS ubTree roles and their variants or by-products, we will always consider

that there is a partial order relation on the set of nodes taken into account in the

common part. This aspect is not further discussed here.

• The part represented only in the rewriting system includes

– a forest of expression trees that contain details of equations of td and of their

transformation in S[td] for whose an ontology representation can be avoided,

– a forest of strategy trees involving details of S not useful in the ontology,
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– and the master strategy S that governs the overall operations not handled by

an ontology.

• The part represented only in the ontology is on the one hand relationships between

tree nodes of expressions or strategies, that are not represented in td, S and the

other identifiers of the rewriting system. On the other hand it includes higher level

individuals, concepts and roles suitable for the overall knowledge, i.e. the theorems,

to be represented.

Now we focus on the composition of the ontology Σ in which we distinguish four parts Σ0,

Σt, Σd and Σs that are characterized as follows.

• Σ0 is a fragment made with the concepts, roles and data properties used for the

representation of atomic nodes used in the data tree td, the strategy S and their

dependencies stored in identifiers.

• Σt is a fragment comprising individuals associated with nodes of the data tree td

and their membership relations to concept nodes, roles or data properties defined

in Σ0.

• Σd is a fragment that enriches the ontology with data (assignment of individuals

to concepts or roles) not included in the data tree td but useful to the knowledge

representation. This includes strategy representation as individuals.

• Σs is the fragment made with individuals and their membership associated with strat-

egy application.

The operations done on the Σ0, Σt, Σd and Σs parts of the ontology are performed by

strategies or functions. They concern construction, querying and strategy execution. The

description and the use of the strategy O of declaration of components of the ontology

are in Section 5.5.2, those of the function Q of interrogation of a concept are in Section

5.5.3 and those of the strategy S of execution of a strategy associated with an individual

of strategy concept are in Section 5.5.4.

Remark 12:

Applying a strategy s to a tree t of data returns a tree of data t′ which may

require a modification of the ontology fragments Σt, Σd and Σs to be made at the

same time as the modification of t. The related algorithms have not yet been

investigated and therefore are not discussed further in the thesis.
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5.5.2/ STRATEGY O OF ONTOLOGY CONSTRUCTION

Any part of an ontology is declared by the strategy O writing commands in a file (OWL2

commands for example) used to generate an ontology Σ on which a DL reasonner op-

erates. For instance the concepts name and equation are declared with the strategy

O([”Declaration(Class(: name))”, ”Declaration(Class(: equation))”]). The fragment Σ0 is built

with O only.

The construction of the ontology fragments Σt and Σd corresponding to trees of expres-

sions or of strategies is done by navigation and by generation of the individuals associ-

ated with the encountered nodes as well as their membership to node concepts and to

the roles hasDirectS ubTree, hasData and hasDirectS ubTreeS . For instance the declaration

of the substrategy replace(name(”laplace”)) in an ontology is made, assuming that the

concepts replace and name have been declared, by O([”ClassAssertion(: replace : iS )”,

”ClassAssertion(: name : i)”, ”ClassAssertion( : isDirectS ubTree (replace, name) : iS : i)”])

meaning that iS ∈ replace, i ∈ name and (iS , i) ∈ isDirectS ubTree (replace, name), where iS

and i are the addresses of the nodes replace and name.

As already said, only a part of the trees of expressions is represented in Σ. The selection

is done by using a set N of the node names taken into account in Σ. When a node name

not belonging to N is encountered it is skipped. Then, nodes that are not directly related

are declared with the roles hasS ubTree(., .) instead of hasDirectS ubTree(., .).

5.5.3/ COMMANDS Q AND QData OF ONTOLOGY INTERROGATION

Ontology queries are done either with the query command Q operating on concept ex-

pressions or with the query command QData operating on data properties.

The evaluation of a query Q returns an expression, thus it can be used in place of any

expression in a strategy. Precisely, for a concept expression c written in a query lan-

guage (e.g. DLQuery or SPARQL), Q(c) returns the list [Φt(i1), ...] of the subtrees asso-

ciated with the individuals i1,... of the concept c. For instance Q([domain]) returns the

list of all nodes domain declared in the ontology. The class expression based query

Q(∃hasDirectS ubTree(equation, name) ◦ hasDirectS ubTree(name, lea f ) ◦ hasData.”laplace”)

returns the list of all nodes equation with name ”laplace” declared in the ontology.

The other kinds of interrogations available in reasonners are not taken into account in this

text, for instance regarding subconcepts, superconcepts etc. Moreover, it would also be

possible to define an intermediate query command that could return a list of addresses.

Thus, it could be composed with the application of a strategy defined by an address as

introduced in Section 5.5.4.

The QData command operates like the Q command except that it queries a concept
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expression that corresponds to a node without subnodes but whose children are only

data. It returns the list of all the data (strings) of the children of the nodes corre-

sponding to individuals in the concept. For instance QData(name) returns the list of all

the names of all the nodes associated to individuals in the concept name. Similarly,

QData(∃hasDirectS ubTree(equation, name)) returns the list of all the names of equations.

5.5.4/ APPLICATION OF A STRATEGY DEFINED IN AN ONTOLOGY

The application of the strategy represented by an individual iS to the term represented by

an individual i is noted as iS [i]. It is semantically equivalent to the application Φs(iS )[Φt(i)]

of the strategy Φs(iS ) to the term Φt(i). Its success or failure are declared by the member-

ship declarations (iS , i) ∈ hasS uccess or (iS , i) ∈ hasFailure.

5.6/ RDL REPRESENTATION OF A FAMILY OF MODELS OF MMAS

The model building algorithms presented in Chapter 4 are expressed in the RDL formal-

ism, except for the internal edge model. Table 5.3 summarizes the operations performed

in the four models with the numbers of the steps where they are performed.

Operation Per BL BLI BL Edge
Duplicate PDE 1,2 1,2 1,2 1,2
Rename unknowns 3 3 3 3
Remove sources in Dirichlet bc - 4 4 4
Change bc at the origin - 5 5,6 5,6
Rename boundaries (origin) - 6 7 7
Remove some bc 4 - - -
Replace domains 5 7 8 8
Increment boundary scale 6 - - -
Insert bc at infinity - 8 9 9
Insert periodicity bc 7 9 10,11 -
Rename PDE 8 10 12 10

Table 5.3: Roles in the ontology of domains and boundaries.

It is noteworthy that the ontology and the strategies described in this section are an il-

lustration of the RDL system but do not presage any final form. A serious study of the

organization of families of models has yet to be carried out.

5.6.1/ ROLES BETWEEN SUBMODELS, MODEL PROPERTIES AND STRATEGIES

In the approach of Chapter 4, each submodel corresponds to an algorithm made of a

composition of strategies. In order to factorize the use of strategies, we introduce an

intermediate layer, that of properties. Thus, to each submodel correspond properties
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and to each property correspond strategies. Thus, several models can share the same

property and several properties can involve the same strategy.

Table 5.4 gives the correspondences between the operations done in the algorithms, the

strategy names and the properties.

Operation Strategy Property
Duplicate PDE duplicatePDE -
Rename unknowns renameUnknown -
Remove sources in Dirichlet bc removeDirichletBcSource correctionOtherSubModel
Replace bc rhs at the origin replaceBcRhsOrigin boundaryLayer
Rename boundaries (origin) renameBoundaryOrigin boundaryLayer
Remove some bc removeBc periodicity
Replace domains replaceDomain -
Increment boundary scale incrementBoundaryScale -
Insert bc at infinity insertBcInfinity boundaryLayer
Insert periodicity bc insertBcPeriodicity periodicity
Rename PDE renamePDE -

Table 5.4: Correspondences between the operations done in the algorithms, the strategy
names and the properties. The strategies involved in all submodels are marked by a ”-”.

Model properties are defined as individuals of the concept modelProperties, for exam-

ple periodicity ∈ modelProperties. Each particular subModel has a name which is an

individual of the concept subModel. For example the model BL ∈ subModel. To each

subModel name is associated properties by the role modelHasProperty whose inverse is

isPropertyO f Model. For example (BL, periodicity) ∈ modelHasProperty. To each model

property are associated, by the role propertyHasS trategy of inverse isS trategyO f Property,

strategies to be applied. For example, to the property periodicity is associated the strategy

insertBcPeriodicity which is an individual of the concept strategy (and also of the concept

of its root node). Thus, (periodicity, insertBcPeriodicity) ∈ propertyHasS trategy. Thus, the

properties of the BL model are the individuals of the concept ∃isPropertyO f Model.BL,

the strategies to be applied for the periodicity property are the individuals of the concept

∃isS trategyO f Property.periodicity and the strategies to be applied for the BL model are in

the concept defined by ∃isS trategyO f Property.∃isPropertyO f Model.BL or by the compo-

sition ∃isS trategyO f Property ◦ isPropertyO f Model.BL.

The selected strategies are to be executed by composition, in an order yet to be specified.

To do this, we use the isBe f ore role or its inverse isA f ter which establishes an order

between strategies. For example, the strategy insertBcPeriodicity is necessarily executed

after the replacement of the domain by the strategy replaceDomain, which is expressed

by (replaceDomain, insertBcPeriodicity) ∈ isBe f ore. These relations are transitive but not

reflexive, they define strict partial orders in the sets of strategies.

This part of the system concerning the properties is not further detailed in this work.
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5.6.2/ STRATEGIES IN RDL

The strategies summarized in Table 5.4 of properties are written in Section 5.6.2.2 using

a RDL meta-language mixing rewriting strategies and queries of the ontology. We start

in Section 5.6.2.1 with the description of useful concepts, data and roles of the ontology.

Some of these definitions are parameterized by strings (data) that can be used both in

the rewriting system and in the DL system. This allows to compose these functions if their

result is also a string. All the roles defined below are given without detailing the way of

building explicitely their definition and their individuals which can be as combinations of

strategies with ontology declarations or inferences. The reader should be aware that a

number of programming details are omitted for simplicity.

5.6.2.1/ CONCEPT, DATA AND ROLE FORMULAS

For the sake of brevity, it is convenient to start by introducing few other gen-

eral roles isO f Has, isO f HasData and isO f HasDirectData derived from hasS ubTree,

hasDirectS ubTree and their inverse.

isO f Has([p1, ..., pk, ..., pn]) is the role defined for concepts p1, ..., pn of the data tree as the

(assumed) unique composition isS ubTreeO f ([p1, ..., pk]) ◦ hasS ubTree([pk, ..., pn]) where

the concept pk is the only one that allows this composition without leaving a subModel. If

such concept pk does not exist or is not unique, then an error is triggered.

isO f HasData([p1, ..., pk, ..., pn]) is the role defined for concepts p1, ..., pn of the data tree as

the composition isO f Has([p1, ..., pk, ..., pn]) ◦ hasData.

isO f HasDirectData([p1, ..., pk, ..., pn]) is as isO f HasData but with direct relations between

the corresponding nodes of the tree.

The following concepts, data and roles are defined thanks to the above roles and are

specific to the data structure of Chapter 4. Most of them are parametrized, as such they

are defined in the RDL system but not directly in the ontology side since the latter does

not directly support parametrization of concepts or roles.

3 subModelWithName(idName) is the concept of subModel with name idName.

subModelWithName(idName) : ∃hasS ubTreeData([subModel, ident, name]).idName

3 conceptInS ubModel(idName, nodeName) is the concept associated with a node nodeName

in a subModel which name is idName.

conceptInS ubModel(idName, nodeName) : ∃isO f Has([nodeName, subModel, ident, name]).idName

3 equationName(idName) is the concept of equation names of a node equationNameList

in a subModel with name idName.
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equationName(idName) : conceptInS ubModel(idName, equationNameList)

3 bcName(idName) is the concept of bc names of a node bcNameList in a subModel with

name idName.

bcName(idName) : conceptInS ubModel(idName, bcNameList)

3 equationPhysic is the concept of the equations of the physical PDE.

equationPhysic : ∃isO f HasData([equation, subModel, ident, scale]).0

3 bcPhysic is the concept of the bcs of the physical PDE.

bcPhysic : ∃isO f HasData([bc, subModel, ident, scale).0

3 equationWithNameIn(eqName) is the concept of equations whose names are in a con-

cept eqName.

equationWithNameIn(eqName) : ∃hasDirectS ubTree([equation, name]).eqName

3 bcWithNameIn(bcName) is the concept of bcs whose names are in a concept bcName

bcWithNameIn(bcName) : ∃hasDirectS ubTree([name]).bcName

3 variableInEquation(idName) is the concept of variables in equations of the microscale

node model of a subModel which name is idName.

variableInEquation(idName) : ∃isDirectO f HasData([variable, equation, subModel, ident])

.idName

3 equationPhysicWithName(eqName) is the concept of equations of the physical PDE

whose names are in a concept eqName.

equationPhysicWithName(eqName) : equationPhysic ∩ equationWithNameIn(eqName)

3 bcPhysicWithName(bcName) is the concept of bcs of the physical PDE whose names

are in a concept bcName

bcPhysicWithName(bcName) : bcPhysic ∩ bcWithNameIn(bcName)

3 equationPhysicWithNameInS ubModelList(idName) is the concept of the equations of the

physical problem whose names are in the node list equationNameList of a subModel with

name idName.

equationPhysicWithNameInS ubModelList(idName) : equationPhysic∩

∃hasDirectS ubTree([equation, name]).conceptInS ubModel(idName, equationNameList)

3 bcPhysicWithNameInS ubModelList(idName) is the concept of the bcs of the physical

problem whose names are in the node list bcNameList of a subModel with name idName.

bcPhysicWithNameInS ubModelList(idName) : bcPhysic∩

∃hasDirectS ubTree([bc, name]).conceptInS ubModel(idName, bcNameList)
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3 bcO f Region(boundaryName) is the concept bc posed on a boundary with name

boundaryName.

bcO f Region(boundaryName) : ∃hasDirectS ubTreeData(bc, variable, region, name)

.boundaryName

3microDomain(idName) is the concept of region micro of a concept subModel with name

idName.

microDomain(idName) : ∃isO f HasDirectData([region, subS cale, subModel, ident, name])

.idName

3 domainName(idName) is the concept of domain names (micro and physical) in the node

domainNameList of a node subModel with name idName.

domainName(idName) : conceptInS ubModel(idName, domainNameList)

3 phiMicro(idName) is the concept of unknown functions of the concept of microscale

model model of a concept subModel which name is idName

phiMicro(idName) : ∃hasDirectS ubTreeData( f unction, name).conceptInS ubModel(idName,

microUnknown)

3 periodicBoundaryName(idName) is the concept of periodic boundaries of the concept of

microscale model model of a concept subModel with name idName.

periodicBoundaryName(idName) : conceptInS ubModel(idName, perBd)

3 in f tyBdName(idName) is the concept of boundaries at infinity of boundary layer models

of the microscale model of a subModel with name idName.

in f tyBdName(idName) : conceptInS ubModel(idName, latIn f Bd)

3 givenFunctionName(idName) is the concept of names of the concept givenFunction in the

subModel with name idName.

givenFunctionName(idName) : ∃isDirectS ubTreeO f Data(name, givenFunction, subModel,

ident, name).idName

3 givenFunctionIdent(idName) is the concept of identifiers of the concept givenFunction in

the subModel with name idName.

givenFunctionIdent(idName) : ∃isDirectS ubTreeO f Data(ident, givenFunction, subModel,

ident, name).idName

3 isCorrectorS ourceO f Boundary is a role mapping the concept givenFunction of source in

the equation of correctors to the concept (here latOriBdPY or inter f ace) of the boundaries

where a correction is applied. These concepts are associated to nodes in the dictio-

nary of the dilation node. The pairs of individuals of this role are built while scaning

the data tree, each node givenFunction, that includes a name and an identifier of a
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corrector, being associated to the related node of boundary name. Its inverse role is

isBoundaryO fCorrectorS ource. For instance

- for model BL:

(givenFunction1, latOriBdP) ∈ isCorrectorS ourceO f Boundary

- for model BL Edge:

(givenFunction2, latOriBdP1) and (givenFunction1, latOriBdP2) ∈

isCorrectorS ourceO f Boundary,

- for model BLI:

(givenFunction1, inter f ace) and (givenFunction2, inter f ace) ∈

isCorrectorS ourceO f Boundary.

3 isS ubModelDomainNameO fCorrectorS ource is a role mapping the concept made with

the name of domains in a corrector model to the concept givenFunction of sources

in the equation of correctors. The role is between the sources and the names of

domains where they are mapped by the change of variable. The inverse role is

isCorrectorS ourceO f S ubModelDomainName.

- for model BL: let denote the domain name Ω of the region node of the subModel thus

(Ω, givenFunction1) ∈ isS ubModelDomainNameO fCorrectorS ource

- for model BL Edge: idem but

(Ω, givenFunction1) and (Ω, givenFunction2) ∈

isS ubModelDomainNameO fCorrectorS ource,

- for model BLI: here, the region names are those of the subregion Ω1, Ω2 of Ω thus

(Ω1, givenFunction1) and (Ω2, givenFunction2) ∈

isS ubModelDomainNameO fCorrectorS ource.

3 isS ubModelDomainO f Boundary is the composition of the two above roles.

isS ubModelDomainO f Boundary : isS ubModelDomainNameO fCorrectorS ource

◦isCorrectorS ourceO f Boundary

3 isCorrectorS ourceNameO f Boundary is a role mapping the concept givenFunction of

sources in corrector equations to the concept name of the names of boundaries where

a correction is applied.

isCorrectorS ourceNameO f Boundary : ∃isDirectS ubTreeO f (name, givenFunction)

◦isCorrectorS ourceO f Boundary

3 isCorrectorS ourceIdentO f Boundary is a role mapping the concept givenFunction of
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sources in corrector equations to the concept ident of the identifiers of boundaries where

a correction is applied.

isCorrectorS ourceIdentO f Boundary : ∃isDirectS ubTreeO f (ident, givenFunction)

◦isCorrectorS ourceO f Boundary

3 correctorS ourceNameO f Boundary(iBdName) is a concept of source names (node name)

associated with a correction boundary name given as a data (string) iBdName in a node

latOriBdP or inter f ace.

correctorS ourceNameO f Boundary(iBdName) : ∃isCorrectorS ourceNameO f Boundary

.{iBdName}

3 correctorS ourceIdentO f Boundary(iBdName) is a concept of source identifiers (node

ident) associated with a correction boundary name given as an individual iBdName in

a node latOriBdP or inter f ace.

correctorS ourceIdentO f Boundary(iBdName) : ∃isCorrectorS ourceIdentO f Boundary

.{iBdName}

3 correctorS ourceO f Boundary(iBdName) is the concept of source (node function) in a

corrector equation of a node subModel with name idName associated with an individual

iBdName of a boundary name (node name). It is assumed that a single function is as-

sociated to a name and an identifier thus this class may have several individuals but all

related to a same subtree.

correctorS ourceO f Boundary(iBdName) :

∃hasDirectS ubTreeData( f unction, name).correctorS ourceNameO f Boundary(iBdName)

∩∃hasDirectS ubTreeData( f unction, ident).correctorS ourceIdentO f Boundary(iBdName)

3microRegionName(idName) is the concept of name (node name) of the micro region as-

sociated to the concept subModel with name idName. This is used for the models BL and

BL Edge.

microRegionName(idName) : ∃isO f HasDirectS ubTree([name, region, subS cale

, subModel, ident, name]).{idName}

3 regionNameO fCorrector(iBdName) is the name (node name) of the micro region of a

corrector corrector(iBdName).

regionNameO fCorrector(idName, iBdName) : ∃isDirectS ubTreeO f ([name, region, variable])

.corrector(iBdName)
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5.6.2.2/ STRATEGIES OF THE PROPERTY TABLE

The strategies in Table 5.4 are expressed in as meta programs of the RDL system which

mixes rewriting strategies and queries of the ontology with one of the two commands Q

and QData defined in Section 5.5.3. We recall that the Q command is a query by a concept

formula that returns a list of expressions associated to the individuals belonging to the

concept while the QData command still queries only concept expression corresponding to

terminal nodes and returns a list of their data (strings). As in the correspondance between

trees and individual, iBdName refers to the subtree related to the individual iBdName i.e.

(iBdName, iBdName) ∈ Ψt. In addition, idName is a string in the rewriting system corre-

sponding to the data idName in the ontology.

Before to describe the strategies, let us introduce few shortcuts for the navigation strategy

goto that was defined in Section 5.3.2. First, its syntax is simplified, we use

goto(π, s)

instead of goto(p, π′, s) where π is the list gathering p and π′. Moreover, here π is not only

a list of patterns but can involve a disjunction,

goto(π1 | π2, a, s) : goto (π1, a, s) | goto(π2, a, s)

for two lists π1, π2 of patterns. This construction is used recursively. We often use the

most general pattern of a node

nodeNameVar : node(”nodeName”, [n1 , ...])

where nodeName is the name of any atomic node and n1 , ... are for any different rewriting

variables. For instance the node

nameVar : node(”name”, name )

functionVar : node(”function”, [ident , name , indexList , varList, type ]).

To specify some of the children of a node

nodeNameVar(”nodeNamek1” : t1, ..., ”nodeNamek`” : t`)

is as nodeNameVar except that its subnodes nodeNamek1,..., nodeNamek` are replaced

by the expressions t1,...,t`. For instance the pattern for functions with name f is

functionVar(”name” : ”f”).

An example of path which is often used is this starting from a subModel node and ending

to its model node:

pathSubModelToModel(idName) : [subModelVar(”ident” : identVar(”name” : idName)),

subScaleVar, modelVar]

3 duplicatePDE(idName) duplicates the equations and bcs of the physical problem whose

names are in the lists equationNameList and bcNameList of a subModel of name idName.
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The copy is in the microscale model i.e. in the subScale/model node of the subModel with

name idName.

duplicatePDE(idName) : goto([pathSubModelToModel(idName), equationListVar]

, insert(Q(equationPhysicWithNameInS ubModelList(idName))))

; goto([pathSubModelToModel(idName), bcListVar]

, insert(Q(bcPhysicWithNameInS ubModelList(idName))))

3 renameUnknown(idName) renames the unknown function whose name is in the

physUnknown node by the name of the microUnknown node (a single name is assumed)

of the subModel which name is idName.

pathFunctionName(name0) : [functionVar, name(name0)]

renameUnknown(idName) : goto([pathSubModelToModel(idName), equationListVar

, pathFunctionName(Q(conceptInS ubModel(idName, physUnknown)))]

, replace(Q(conceptInS ubModel(idName,microUnknown))))

3 removeBc(idName) removes the bc operating on the boundary which name is in the

latBdP node of the subModel which name is idName.

removeBc(idName) : goto([pathSubModelToModel(idName)

, bcVar, variableVar, regionVar(”name”, Q(conceptInS ubModel(idName, latBdP)))]

, delete)

3 replaceDomain(idName) replaces all occurences of the domain in the node model of

the subModel with name idName by the domain in the node region of subScale.

replaceDomain(idName) : goto([pathSubModelToModel(idName)

, regionVar(”name” : Q(domainName(idName)))]

, replace(Q(microDomain(idName))))

3 incrementBoundaryScale(idName) Updates the boundary identifiers with scale = 1 in

model of the subModel which name is idName.

incrementBoundaryScale(idName) : goto([pathSubModelToModel(idName)

, scaleVar], replace(scale(1)))

3 insertPeriodicityBc(idName) inserts periodicity boundary conditions in the PDE of

the model node of the subModel which name is idName.

insertPeriodicityBc(idName) : goto([pathSubModelToModel(idName), bcListVar]

, insert(periodicityBc(x(microDomain(idName))
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, xg(QData(periodicBoundaryName( idName))), Q(phiMicro(idName)));

insert(fluxPeriodicityBc(x(microDomain(idName))

, xg(QData(periodicBoundaryName)), Q(phiMicro(idName)), 1, n)))

3 renamePDE(idName) renames the PDE of the model node of the subModel with name

idName.

renamePDE(idName) : goto([pathSubModelToModel(idName), pdeVar]

, replace(pdeVar(”name” : ”micro.pde”)))

3 removeDirichletBcSource(idName) replaces the source in the right-hand side of

Dirichlet bc by 0 in the model node of the subModel which name is idName.

removeDirichletBcSource(idName) : goto([pathSubModelToModel(idName)

, bcListVar, bcVar, equalityVar(”name” : ”dirichlet”), rightMathExpressionVar], []

, replace(rightMathExpression(0)))

3 normalDerivativeTrace(f, bd) is the trace of normal derivative of a function f on a

boundary bd.

3 pathSubModelToBc(idName, iBdName) is the path from a subModel node to its boundary

condition posed on a boundary iBdName.

pathSubModelToBc(idName,iBdName) : [pathSubModelToModel(idName), bcListVar

, bcVar(”variableList” : [variableVar(”region” : regionVar(”name” : iBdName))])]

3 correctorSourceOfBoundary(iBdName) is the list of sources (node function) of the

corrector equation associated to the boundary with name (node name) iBdName. We recall

that the class correctorS ourceO f Boundary(iBdName) is made with one or two (in case of

interfaces) subtrees.

correctorS ourceO f Boundary(iBdName) : Q(correctorS ourceO f Boundary(iBdName))

3 correctorSourceOfBoundaryMapped(iBdName, iFun) is the list of sources

correctorS ourceO f Boundary(iBdName) of the corrector equation but which variables

are mapped to the variable of the corrector equation with corrector source (node

givenFunction) iFun.

correctorSourceOfBoundaryMapped(iBdName, iFun) :

mapping{Q(isS ubModelDomainNameO fCorrectorS ource.iFun),

Q(isDirectS ubTree(ident, givenFunction).iFun)}

(correctorS ourceO f Boundary(iBdName)

3 correctionSource(iBdName, iFun) is the normal derivative of a source (node
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givenFunction) iFun to be added to a boundary condition at the boundary with name

iBdName.

correctionSource(iBdName, iFun) : rightMathExpr0(

normalDerivativeTrace(correctorSourceOfBoundaryMapped(iBdName, iFun)

, Q(∃hasDirectS ubTree(boundary, name).{iBdName}))

3 replaceBcRhsOrigin(idName) replaces the right hand side of the boundary condition

at the origin boundary by a corrector. This is done in the model node of the subModel

which name is idName.

replaceBcRhsOrigin(idName) :

for iBdName ∈ Q((latOriBdP ∪ latOriBdP1 ∪ latOriBdP2 ∪ inter f ace)

∩∃isO f HasS ubTree(subModel, name).idName)

for iFun ∈ Q(correctorS ourceO f Boundary(iBdName))

goto(pathSubModelToBc(idName, iBdName)

, goto([rightMathExprVar], rule(x

, x + correctionSource(iBdName, iFun))))

endFor iFun

endFor iBdName

3 insertBcInfinity(idName) inserts a Neumann bc at the boundary at infinity

insertBcInfinity(idName) : goto([pathSubModelToModel(idName), bcListVar]

, insert(neumannEq(xg(QData(in f tyBdName(idName)))

, x(QData(domainName(idName))), Q(phi(idName)), n, 1, 0)))

3 renameBoundaryOrigin(idName) rename the boundary at the origin in the model node

of the subModel which name is idName.

renameBoundaryOrigin(idName) : goto([pathSubModelToModel(idName)

, boundaryVar(”name” : QData(conceptInS ubModel(idName, latOriBdP))]

, replace(QData(conceptInS ubModel(idName, latOriBdP))))
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CONCLUSIONS AND PERSPECTIVES

The goal of the MEMSALab software is to automatically build asymptotic models of MEMS

Arrays using a reuse concept. Its operation is based on the combination of two tech-

niques: asymptotic analysis from mathematics and rewriting from theoretical computer

science. In a way, MEMSALab can be seen as a bridge to transfer well-developed asymp-

totic theories to more practical problems from research or industry in a way that users do

not need to be familiar with the asymptotic analysis.

It took a number of years of contributions including those of this thesis before a stable op-

erating principle for MEMSALab was developed. This thesis has significantly contributed

to its necessarily multidisciplinary development. The maturing of the ideas required to

embrace three scientific fields: that of the asymptotic modelling of the electromechani-

cal problem posed in the MIRA array, that of the numerical simulation of the asymptotic

models and that of the software development in the context of rewriting techniques.

From a numerical analysis point of view, asymptotic modes have advantages in reducing

the computational cost of direct simulations of physical phenomena in MMAs comprising

up to thousands of cells thanks to using the approximation models derived by the homog-

enization methods. The asymptotic models for the coupled electromechanical problem in

the MIRA array derived by the two-scale transformation method in this thesis are consid-

ered exciting examples.

The array is regarded as consisting of two actuation regions operating with two different

imposed voltages. Such a situation makes the model close to the actual problem and

the relevant asymptotic models will cover all the possible cases. There are five kinds of

asymptotic models comprising the periodic models, the lateral boundary and interface

models, the external and internal edge models. Unlike the classical results of homog-

enization methods, due to the discretization in the mirror alignment, the homogenized

equations are disappeared, and the periodic cell problems now play a role as the first-

order approximation for the exact solutions. The external and internal edge models are

new contributions in asymptotic models of MIRA as well as in homogenization methods.

201
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The derivation for the periodic cases is as the usual process. However, seeking mod-

els for the boundary correctors is more interesting. As we have seen that the proofs of

these models are performed following a reference algorithm in MEMSALab, then appli-

cation of this reference algorithm for derivations of the asymptotic models for the family

of MMAs will be possible. However, handwritten proofs are more sophisticated because

they require determining the suitable transform operators and an enormous amount of

notations that are impossible to do manually. Therefore, these are more appropriate for

management by the symbolic computation.

Besides, thanks to the numerical implementation results of these asymptotic models for

the electrostatic part of the MIRA in COMSOL, the electrostatic potential and its relevant

physical issues at any point in the array can be computed approximately with the reduc-

tion of computation cost. Further, the optimization for the pull-in voltage economizes on

actuation costs.

The new data structure is uniform and flexible for the creation of expressions. This data

structure can define all the mathematical expressions that describe the models. In ad-

dition, the recursive structure permits the characteristics of multiscale problems to be

thoroughly described. These broaden the ability to represent the kinds of asymptotic

models for MMAs in MEMSALab. Further, the strategies are small in number but have a

sizeable operational capability to deal with complex tasks. Especially, the strategies are

entirely independent of the data structure, which leads to more convenience and more

flexibility in their creations, management and developments.

Furthermore, the connection between the rewriting technique and the description logic

is a significant achievement to enrich MEMSALab in the knowledge presentation aspect.

With the inherent advantages offered by the rewriting technique in the tree-like data struc-

ture, which can navigate fast and manageable in a tree and can apply rules to verify

hypotheses or perform transformations, MEMSALab is now equipped with the potential

of description logic for ontology representation. In fact, the ontology plays a role as a

processing centre to give conclusions from the enormous hypotheses provided by the

rewriting technique, which is then in charge of carrying out these conclusions. This is the

starting step towards the construction of mathematical knowledge representations of the

asymptotic method aspect in MEMSALab.

As mentioned above, MEMSALab is currently close to the stable phase of the fundamen-

tal operations, and there are obviously various problems to be developed and studied.

Then, we propose future work in the following.

From the mathematical theory point of view, the priori estimates of the physical solutions

1, 6 and of their correctors e.g 2, 7 should be proven as the classical problems in ho-

mogenization methods. In addition, the exponential decay to 0 at infinity of correctors and

their gradients should be proven by the methods in [6, 89]. Furthermore, the convergence
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of electrostatic forces should be studied based on the method presented in [50]. Then,

numerical implementations of the asymptotic models of the linear elasticity part coupling

with the electrostatic part through the electrostatic force should be performed. This is

significant for making the asymptotic models for MIRA close to practical applications and

for preparation of the linking of MEMSALab with finite element software. The enrichment

of new asymptotic models for a family of MMAs should be studied to expand the library of

asymptotic models in MEMSALab.

From the software development point of view, the reference proof should be implemented

with the new data structure. An investigation of the reduction of extension size in the

combination process should be studied to improve the extension-combination method.

Applying the new reference proof to the coupled electromechanical problem in the MIRA

array to derive the asymptotic models will be the first impressive examples. In addition,

the implementation of the study of linking rewriting technique and description logic in

OWL2 Language should be done. Further exploration of two fields should be carried

out, e.g. the knowledge representation of the asymptotic methods for the MIRA array in

ontology, a connection between the description logic and the extension in MEMSLab. It

promises a meaningful improvement of the proof method. Plus, the geometrical relation

package should be investigated and built as a preparation step for the connection step of

MEMSALab with FEM software.
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D. Foundations of modern query languages for graph databases. ACM Computing

Surveys (CSUR) 50, 5 (2017), 1–40.

[10] ARBOGAST, T., DOUGLAS, JR, J., AND HORNUNG, U. Derivation of the double

porosity model of single phase flow via homogenization theory. SIAM Journal on

Mathematical Analysis 21, 4 (1990), 823–836.

[11] A/S, I. P. Ibsen photonics a/s. https://ibsen.com/technology/spectrometer-tutorial/

dmd-spectrometers, May 2021.

[12] AUDET, C., DENNI, J., MOORE, D., BOOKER, A., AND FRANK, P. A surrogate-model-

based method for constrained optimization. In 8th symposium on multidisciplinary

analysis and optimization (2000), p. 4891.

205

https://elan.loria.fr/
http://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://github.com/rewriting/tom
https://ibsen.com/technology/spectrometer-tutorial/dmd-spectrometers
https://ibsen.com/technology/spectrometer-tutorial/dmd-spectrometers


206 BIBLIOGRAPHY

[13] BAADER, F., CALVANESE, D., MCGUINNESS, D., PATEL-SCHNEIDER, P., NARDI, D.,

ET AL. The description logic handbook: Theory, implementation and applications.

Cambridge university press, 2003.

[14] BAADER, F., HORROCKS, I., LUTZ, C., AND SATTLER, U. Introduction to description

logic. Cambridge University Press, 2017.

[15] BAADER, F., HORROCKS, I., AND SATTLER, U. Description logics. In Handbook on

ontologies. Springer, 2004, pp. 3–28.

[16] BAADER, F., AND NUTT, W. Basic description logics. In The description logic hand-

book: theory, implementation, and applications. 2003, pp. 43–95.

[17] BAKHVALOV, N. S., AND PANASENKO, G. Homogenisation: averaging processes in

periodic media: mathematical problems in the mechanics of composite materials,

vol. 36. Springer Science & Business Media, 2012.

[18] BELKHIR, W., GIORGETTI, A., AND LENCZNER, M. A symbolic transformation lan-

guage and its application to a multiscale method. Journal of Symbolic Computation

65 (2014), 49–78.

[19] BELKHIR, W., RATIER, N., NGUYEN, D. D., AND LENCZNER, M. Unification and

combination of a class of traversal strategies made with pattern matching and fixed-

points. submitted .

[20] BELKHIR, W., RATIER, N., NGUYEN, D. D., AND LENCZNER, M. Unification and

combination of iterative insertion strategies with one-step traversals. arXiv preprint

arXiv:1904.07668 (2019).

[21] BELKHIR, W., RATIER, N., NGUYEN, D. D., NGUYEN, N. B. T., LENCZNER, M., AND

ZAMKOTSIAN, F. A tool for aided multi-scale model derivation and its application to

the simulation of a micro mirror array. In 2017 18th International Conference on Ther-

mal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics

and Microsystems (EuroSimE) (2017), IEEE, pp. 1–8.

[22] BELKHIR, W., RATIER, N., NGUYEN, D. D., YANG, B., LENCZNER, M., ZAMKOT-

SIAN, F., AND CIRSTEA, H. Towards an automatic tool for multi-scale model deriva-

tion illustrated with a micro-mirror array. In 2015 17th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) (2015), IEEE,

pp. 47–54.

[23] BENSOUSSAN, A., LIONS, J.-L., AND PAPANICOLAOU, G. Asymptotic analysis for

periodic structures, vol. 374. American Mathematical Soc., 2011.



BIBLIOGRAPHY 207

[24] BENSOUSSAN, A., LIONS, J. L., AND PAPANICOLAOU, G. C. Boundary layers and

homogenization of transport processes. Publications of the Research Institute for

Mathematical Sciences 15, 1 (1979), 53–157.

[25] BENSOUSSAN, ALAIN; LIONS, J.-L. P. G. Asymptotic analysis for periodic structures.

Elsevier, 1978.

[26] BERLYAND, L., AND RYBALKO, V. Getting Acquainted with Homogenization and Mul-

tiscale. Springer, 2018.

[27] BRAIDES, A., AND DEFRANCESCHI, A. Homogenization of multiple integrals. No. 12.

Oxford University Press, 1998.

[28] BRAUN, S., OBERHAMMER, J., AND STEMME, G. Row/column addressing scheme

for large electrostatic actuator mems switch arrays and optimization of the opera-

tional reliability by statistical analysis. Journal of microelectromechanical systems

17, 5 (2008), 1104–1113.

[29] CANON, E., AND LENCZNER, M. Models of elastic plates with piezoelectric inclusions

part i: Models without homogenization. Mathematical and Computer Modelling 26,

5 (1997), 79–106.

[30] CANONICA, M., ZAMKOTSIAN, F., LANZONI, P., AND NOELL, W. Large micromirror

array for multi-object spectroscopy in space. International Conference on Space

Optics 2012, Ajaccio, Corsica, France 10564 (2012).

[31] CANONICA, M. D. Large Micromirror Array Based on a Scalable Technology for

Astronomical Instrumentation. PhD thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE
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COMSOL IMPLEMENTATION

6.1/ THE FIRST ELETROSTATIC INTERFACE MODEL

6.1.1/ COMPONENT

• Open COMSOL Multiphysics, from the file choose New.

• In the new window, click Model Wizard shortcut and then choose 3D and click

Done. At the setting of Component 1, in the Label, replace it by PhiIn1.

6.1.2/ GLOBAL DEFINITION

Parameters:

1. In the Home toolbar, click Parameter.

2. Click icon - Load from file under the Setting Parameters, and locate where the file

parameters.txt is, then choose it.

3. In the table, enter as Table 6.1.

Name Expression Description
VM1 40V an applied voltage in the mirror part of external zone
VE1 -40V an applied voltage in the electrode part of external zone
VM2 30V an applied voltage in the mirror part of internal zone
VE -30V an applied voltage in the mirror part of internal zone

Table 6.1: Imposed Voltages.

6.1.3/ GEOMETRY

1. In the Model Builder window, under PhiIn1, right-click Geometry1 and choose

Import.

2. In the Import Setting, under the Filename, click Browse to locate the

RCell.mphbin and click Import.

3. Right-Click Geometry, click Array. In the Array Setting, input as Figure 6.1.
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Figure 6.1: Array Setting.

6.1.4/ MATERIAL

1. In the Model Builder, right-click Material > Add Material from Library.

2. In the Add Material, under MEMS > Semiconductors, double-click Si - Silicon
(single-crystal, isotropic).

3. In the settings window for the Material, select domains correspond to the Mirror

and the Electrode part 1, 3, 6, 8-9, 11, 14, 16-17, 19, 21-22, 24, 26, 31-34, 47-48,

58, 60, 62, 64.

4. Repeat the process and add Si - Polycrystalline Silicon - the beams 27-30, 35-42,

49-56, Au - Gold - golden part 43-46, SiO2 - Silicon oxide - layer 2, 5, 7, 10, 13,

15, 18, 20, 23, 25, 57, 59, 61, 63.

5. Right-Click Material, click Blank Material and rename Vacuum. In the Vacuum
Setting, input as Figure 6.2.

6.1.5/ PHYSICS (INTERNAL AND EXTERNAL PERIODIC MODELS)

6.1.5.1/ EXTERNAL PERIODIC MODEL

1. Click Physics, add Electrostatic and rename it by Phi01In1. In its setting, at Do-
main Selection field, choose 4.

2. Right-Click Phi01In1, click Electrode Potential and rename it by VM. In its setting,

at Boundary Selection, choose boundaries correspoding to the mirror part 71,

74, 78-79, 81, 83, 87-88, 90, 92, 117-119, 121-125, 136-137, 139-142, 144-145,

156-157, 160-162, 165-167, 170-172, 175, 196-197, 200-202, 205, 216-217, 220-

223, 228-229, 232-234, 236-241, 252, 254-255, 257-258, 267, 269, 297, 301, 303,
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Figure 6.2: Vacuum Setting.

312-313, 316-318, 321-323, 326-327, 331, 402-405, 410, 428-429. In the Electric
Potential, input VM1.

3. Right-Click Phi01In1, click Electrode Potential and rename it by VE. In its setting,

at Boundary Selection, choose boundaries correspoding to the electrode part 21,

23, 26, 282-283, 285, 287, 353, 355, 358-359, 376, 412, 414, 417-418. In the

Electric Potential, input VE1.

4. Right-Click Phi01In1, click Zero charge. In its setting, at Boundary Selection field,

choose 14, 18, 24, 28, 76, 82, 85, 91, 264, 266, 268, 270, 280-281, 284, 286, 352,

354, 356-357, 368, 375, 378, 411, 413, 415-416.

5. Right-Click Phi01In1, click Periodic Condition. In its setting, at Boundary Selec-
tion field, choose 10, 435.

6. Right-Click Phi01In1, click Periodic Condition. In its setting, at Boundary Selec-
tion field, choose 11, 44.

6.1.5.2/ INTERNAL PERIODIC MODEL

1. Click Physics, add Electrostatic and rename it by Phi02In1. In its setting, at Do-
main Selection field, choose 12.

2. Right-Click Phi02In1, click Electrode Potential and rename it by VM. In its setting,

at Boundary Selection, choose boundaries correspoding to the mirror part 93,
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95-96, 100-101, 103, 105, 109-110, 112, 114, 126-135, 146-147, 149-152, 154-

155, 176-177, 180-182, 185-187, 190-192, 195, 206-207, 210-212, 215, 218-219,

224-227, 230-231, 242-249, 253, 259-263, 275, 277, 304-310, 332-333, 336-338,

341-343, 347-348, 351, 406-409, 419, 430-431. In the Electric Potential, input

VM2.

3. Right-Click Phi02In1, click Electrode Potential and rename it by VE. In its setting,

at Boundary Selection, choose boundaries correspoding to the electrode part 54,

56, 59, 290-291, 293, 295, 361, 363, 366-367, 421, 423, 426-427. In the Electric
Potential, input VE1.

4. Right-Click Phi02In1, click Zero charge. In its setting, at Boundary Selection field,

choose 46-47, 51, 57, 61, 97-98, 104, 106, 113, 272, 274, 276, 278, 288-289, 292,

294, 360, 362, 364-365, 384, 391, 393, 420, 422, 424-425.

5. Right-Click Phi02In1, click Periodic Condition. In its setting, at Boundary Selec-
tion field, choose 43, 443.

6. Right-Click Phi02In1, click Periodic Condition. In its setting, Boundary Selection
field, choose 44, 70.

6.1.6/ STUDY (COMPUTE TWO PERIODIC SOLUTIONS)

1. Click Study, choose Stationary and in Physics interfaces in study, click two note

at Solve for Phi01In1 and Phi02In2.

2. In Study setting, click Compute. Then, we get two periodic solutions stored in the

data sol5.

6.1.7/ PHYSICS SET UP FOR THE FIRST INTERFACE MODEL

6.1.7.1/ FIRST PART OF THE INTERFACE CORRECTOR

1. Click Physics, add Electrostatic and rename it by Phi1In1. In its setting, at Do-
main Selection field, choose 4.

2. Right-Click Phi1In1, click Electrode Potential and rename it by VM. In its setting,

at Boundary Selection, choose boundaries correspoding to the mirror part 71,

74, 78-79, 81, 83, 87-88, 90, 92, 117-119, 121-125, 136-137, 139-142, 144-145,

156-157, 160-162, 165-167, 170-172, 175, 196-197, 200-202, 205, 216-217, 220-

223, 228-229, 232-234, 236-241, 252, 254-255, 257-258, 267, 269, 297, 301, 303,

312-313, 316-318, 321-323, 326-327, 331, 402-405, 410, 428-429. In the Electric
Potential, input 0.
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3. Right-Click Phi1In1, click Electrode Potential and rename it by VE. In its setting, at

Boundary Selection, choose boundaries correspoding to the electrode part 21, 23,

26, 282-283, 285, 287, 353, 355, 358-359, 376, 412, 414, 417-418. In the Electric
Potential, input 0.

4. Right-Click Phi1In1, click Zero charge. In its setting, at Boundary Selection field,

choose 14, 18, 24, 28, 76, 82, 85, 91, 264, 266, 268, 270, 280-281, 284, 286, 352,

354, 356-357, 368, 375, 378, 411, 413, 415-416.

5. Right-Click Phi1In1, click Periodic Condition. In its setting, at Boundary Selec-
tion field, choose 10, 435.

6. Right-Click Phi1In1, click Electrode Potential and rename it by Potential Jump.

In its setting, at Boundary Selection, choose boundaries correspoding to interface

44. In the Potential Jump, input Phi2In1 + withsol(’sol5’,Phi02In1 - Phi01In1).

6.1.7.2/ SECOND PART OF THE INTERFACE CORRECTOR

1. Click Physics, add Electrostatic and rename it by Phi2In1. In its setting, at Do-
main Selection field, choose 12.

2. Right-Click Phi2In1, click Electrode Potential and rename it by VM. In its setting, at

Boundary Selection, choose boundaries correspoding to the mirror part 93, 95-96,

100-101, 103, 105, 109-110, 112, 114, 126-135, 146-147, 149-152, 154-155, 176-

177, 180-182, 185-187, 190-192, 195, 206-207, 210-212, 215, 218-219, 224-227,

230-231, 242-249, 253, 259-263, 275, 277, 304-310, 332-333, 336-338, 341-343,

347-348, 351, 406-409, 419, 430-431. In the Electric Potential, input 0.

3. Right-Click Phi21In1, click Electrode Potential and rename it by VE. In its setting,

at Boundary Selection, choose boundaries correspoding to the electrode part 54,

56, 59, 290-291, 293, 295, 361, 363, 366-367, 421, 423, 426-427. In the Electric
Potential, input 0.

4. Right-Click Phi2In1, click Zero charge. In its setting, at Boundary Selection field,

choose 46-47, 51, 57, 61, 97-98, 104, 106, 113, 272, 274, 276, 278, 288-289, 292,

294, 360, 362, 364-365, 384, 391, 393, 420, 422, 424-425.

5. Right-Click Phi2In1, click Periodic Condition. In its setting, Boundary Selection
field, choose 43, 443.

6. Right-Click Phi2In1, click Electric Displacement Field and rename it by Electric
Displacement Field Jump. In its setting, at Boundary Selection, choose bound-

aries correspoding to interface 44. In the Electric Displacement Field Jump, input

as the following table.
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D0

es12.Dx − withsol(′sol5′, es11.Dx − es10.Dx) x
es12.Dy − withsol(′sol5′, es11.Dy − es10.Dy) y
es12.Dz − withsol(′sol5′, es11.Dz − es10.Dz) z

Table 6.2: Electric displacement field jump setting, where es12 represents the first part of
the interface corrector, es11 and es10 expresses the internal and external periodic com-
ponent.

6.1.8/ STUDY (COMPUTE INTERFACE SOLUTIONS)

1. Click Study, choose Stationary and in Physics interfaces in study, click two

notes at Solve for Phi1In1 and Phi2In1 .

2. In Study toolbar, click Show Default Solver.

3. At Solver Configurations, right-click Stationary Solvers, add Fully Coupled.

4. In Study Setting, click Compute. The solution is stored in the data named sol8.

6.1.9/ RESULTS (ASSEMBY OF SOLUTIONS)

1. In the Results toolbar, tick Volume and rename it by PhiIn1.

2. At the Results field, right-click PhiIn1, add Surface rename it by PhiNear1In1.

3. In PhiNear1In1 setting, at Expression field, input Phi1In1+withsol(′sol5′, Phi01In1).

4. At the Results field, right-click PhiIn2, add Surface rename it by PhiNear2In1.

5. In PhiNear2In1 setting, at Expression field, input Phi2In1+withsol(′sol5′, Phi02In1).

6. In PhiIn1, click plot.
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models, the simulation of the network is feasible despite its
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the system design is optimized to minimize pull-in voltage.
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and rewriting strategies are designed using abstract syntax
trees. This leads, on the one hand, to the standardization
of the data structure and to make it more flexible and, on
the other hand, to make the strategies more general which
allows to decrease their number and thus the complexity
of the software. The data structure is constructed with a
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