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“La pensée n’est qu’un éclair au milieu d’une longue nuit. Mais c’est cet éclair qui est
tout.”

Henri Poincaré

“Mathematics is a game played according to certain rules with meaningless marks on

paper.”

David Hilbert
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Résumé

Equipe Probabilité et Statistique

Laboratoire Analyse, Géométrie et Applications
Docteur en Mathématiques

Limit theorems for MLMC method for several models : exponential Lévy
process, SDE driven by a pure jumps Lévy process and diffusion process
with an antithetic approximation

by Thi Bao Tram NGO

Motivés par la méthode multilevel Monte Carlo (MLMC), introduite par Giles,
2008b permettant d’améliorer la vitesse de la méthode Monte Carlo classique, nous
nous intéressons a développer des théorémes limites autour de cette méthode dans des
cadres différents. La thése se compose de trois parties :

Dans la premiére partie, nous démontrons un théoréme de la limite centrale sur la
méthode MLMC pour le calcul des prix d’options de type vanille en finance lorsque
Pactif sous-jacent est donné par un modeéle exponentiel de Lévy. Pour prouver ce
résultat, nous donnons un théoréme limite fonctionnel sur le comportement asympto-
tique de la distribution de ’erreur du processus d’approximation entre deux niveaux
consécutifs de la méthode MLMC. De plus, nous fournissons une analyse de la com-
plexité de 'algorithme montrant que la méthode MLMC réduit efficacement le cott
de calcul par rapport & une méthode classique de Monte Carlo et dans certains cas
particuliers pour une précision ¢ donnée elle atteint la complexité optimale O(¢~2) qui
correspond a la méthode de Monte Carlo non biaisée. Nous illustrons la suprématie
de la méthode MLMC sur les méthodes de Monte Carlo & travers des tests numériques
pour un modeéle exponentiel de CGMY.

Dans la deuxiéme partie, nous étudions le comportement asymptotique du pro-
cessus d’erreur normalisé uy, ,,(X™ — X™™) o X" et X™ sont respectivement des
approximations d’Euler avec des pas de temps 1/n et 1/nm d’une équation différen-
tielle stochastique dirigée par un processus de Lévy a sauts purs. Dans cet article, nous
prouvons que cette erreur de type multilevel converge vers un processus limite non
trivial avec une vitesse de convergence uy, . Les résultats obtenus sont en continuité
avec ceux de Jacod, 2004 établis pour l'erreur normalisée u, (X" — X). Cependant,
contrairement a Jacod, 2004, dans nos preuves, nous traitons le comportement de la
loi jointe de m tableaux triangulaires dépendants. Formellement, lorsque m tend vers
Iinfini, nous récupérons les processus limites de Jacod, 2004.
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Dans la derniére partie, nous introduisons ’estimateur MLMC antithétique pour
une diffusion multi-dimensionnelle qui est une extension de la méthode MLMC antithé-
tique originale introduite par Giles and Szpruch, 2014. Notre objectif est d’étudier le
comportement asymptotique des erreurs faibles impliquées dans ce nouvel algorithme.
Parmi les résultats obtenus, nous montrons que 'erreur entre d’une part la moyenne
du schéma de Milstein sans l'aire de Lévy et sa version antithétique construits sur la
grille fine et d’autre part 'approximation grossiére converge en loi stablement avec
une vitesse d’ordre 1. Nous montrons également que l'erreur entre le schéma de Mil-
stein sans laire de Lévy et sa version antithétique converge en loi stablement avec une
vitesse d’ordre 1/2. Plus précisément, nous avons un théoréme de limite fonctionnelle
sur le comportement asymptotique de la loi jointe de ces deux erreurs basé sur une
approche par tableau triangulaire. Grace & ce résultat, nous établissons un théoréme
central limite de type Lindeberg-Feller pour I'estimateur MLMC antithétique. Une
analyse de la complexité de l'algorithme est effectuée.

Mots-clés: Schéma d’Fuler, Schéma de Milstein, Méthodes Multilevel Monte
Carlo (MLMC), processus de Lévy, équations différentielles stochastiques, modéle
CGMY, processus exponentiel Lévy, théorémes limites fonctionnels, théorémes limites
centraux.
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ABSTRACT

Motivated by the multilevel Monte Carlo method introduced by Giles, 2008b to im-
prove the rate of convergence by the Monte Carlo method, we are interested in devel-
oping limit theorems for different settings. The thesis consists of three parts:

For the first part, we prove a central limit theorem on the Multilevel Monte Carlo
method for pricing vanilla type options when the underlying asset is given by an
exponential Lévy model. To prove this result we give a functional limit theorem on
the asymptotic behavior of the error distribution of the approximating process between
two consecutive levels of the Multilevel Monte Carlo method. Moreover we provide
an analysis of the time complexity and it turns out that the MLMC method reduces
efficiently the time cost compared to a classical Monte Carlo method and in some
particular cases for a given precision ¢ it reaches the optimal complexity O(e~?) so
that it behaves like an unbiased Monte Carlo method. We illustrate the supremacy of
the MLMC method over the Monte Carlo methods through numerical tests for pricing
European call options under an exponential Lévy model where the Lévy process is
given by the CGMY model that covers a general class of Lévy processes.

For the second part, we study the asymptotic behavior of the normalized error
process Up m(X™ — X™") where X™ and X™" are respectively Euler approximations
with time steps 1/n and 1/nm of a given stochastic differential equation driven by
a pure jump Lévy process. In this paper, we prove that this multilevel error process
converges to some non-trivial limiting process with a sharp rate ;. The obtained
results extend those of Jacod, 2004 for the normalized error u,(X"™ — X). For the
multilevel error, the proofs of the current paper are challenging since unlike Jacod,
2004 we need to deal with m dependent triangular arrays instead of one. Formally,
when letting m tends to infinity, we recover limit processes of Jacod, 2004.

For the last part, we introduce our antithetic MLMC estimator for a multi-
dimensional diffusion which is an extended version of the original antithetic MLMC
one introduced by Giles and Szpruch, 2014. Our aim is to study the asymptotic be-
havior of the weak errors involved in this new algorithm. Among the obtained results,
we prove that the error between on the one hand the average of the Milstein scheme
without Lévy area and its antithetic version build on the finer grid and on the other
hand the coarse approximation stably converges in distribution with a rate of order
1. We also prove that the error between the Milstein scheme without Lévy area and
its antithetic version stably converges in distribution with a rate of order 1/2. More
precisely, we have a functional limit theorem on the asymptotic behavior of the joined
distribution of these errors based on a triangular array approach. Thanks to this
result, we establish a central limit theorem of Lindeberg-Feller type for the antithetic
MLMC estimator. The time complexity of the algorithm is carried out.

Keywords: FEuler scheme, Milstein scheme, Multilevel Monte Carlo methods,
Lévy processes, stochastic differential equations, CGMY model, exponential Lévy,
functional limit theorems, central limit theorems.
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Chapter 1

Introduction and main results

1.1 Introduction and motivation

In many applications, particularly for pricing of financial securities, the effective com-
putation of the quantity E(¢(X7)), T > 0, where (X;)o<¢<7 is some underlying asset
price and ¢ is a given payoff function is of great interest within the last decades
(see e.g. Kloeden and Platen, 1992 and Glasserman, 2003). For the one-dimensional
setting, the computation of E(¢(X7)) can be done efficiently using Fourier trans-
form methods or numerical methods for partial differential equations. However, for
the high dimensional setting, the Monte Carlo methods remain the most competitive
in practice for this aim. This method consists of two steps. First, we approximate
the process (X;)o<t<r by the discretization scheme (X}")o<i<r with time step T'/n.

n
Then approximate E(p(X7)) by + > o(X%,), where (X}, )i1<k<n is a sample of
k—l ’ bl - -

N independent copies of X7.. The Statistical Romberg (SR) method introduced by
Kebaier, 2005 for the setting of discretization schemes for Brownian stochastic differ-
ential equations is a two-level Monte Carlo estimator. This method reduces efficiently
the time complexity compared to the classical Monte Carlo method. It uses two Eu-
ler schemes (X}*)o<t<7 and (Xt"ﬁ)ogth with time steps T/n and T/n®, B € (0,1)

Ny No
. O-nB B
and approximates FE(¢(Xr)) by N% kE P(XT ) + NLQ > (p(X7x) — (X7 ) where
=1

the Brownian paths used for X7 and X%B has to be independent of the Brownian

paths used to simulate X%B. Recently, an extension of the SR method introduced
by Giles, 2008b (see also Heinrich, 2001 for an earlier variant of the computational
concept) called multilevel Monte Carlo (MLMC) method reduces efficiently the time
complexity in the context of discretization schemes for Brownian stochastic differen-
tial equations. Interesting numerical tests, comparing three methods (crude Monte
Carlo, statistical Romberg and the multilevel Monte Carlo), were processed in Korn,
Korn, and Kroisandt, 2010. Giles’s approach used a root mean squared error (RMSE)
for the optimization of the size of the sample paths in order to run the MLMC
method. The study of the multilevel method and all related topics interest a wide
international community, we refer to the webpage of Giles https://people.maths.
ox.ac.uk/gilesm/mlmc_community.html, see also Giles, 2008a, Giles, Higham, and
Mao, 2008, Creutzig, Dereich, and Miiller-Gronbach, 2009, Dereich, 2011, Giles and
Szpruch, 2013b, Hutzenthaler, Jentzen, and Kloeden, 2013, Lemaire and Pagés, 2017
and Giorgi, Lemaire, and Pagés, 2017 for related results. Many new schemes have been
developped to improve the order of convergence using the MLMC combined with other
method of variance reduction, such as improved MLMC with Milstein scheme of Giles,
2008a, the antithetic MLMC scheme of Giles and Szpruch, 2013a, the nested MLMC


https://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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Giorgi, Lemaire, and Pages, 2020 or the coupling importance sampling and MLMC
of Kebaier and Lelong, 2018 (see also the earlier results of Ben Alaya, Hajji, and
Kebaier, 2016). In a general framework, whenever a discretization scheme is used, we
can implement the multilevel algorithm. The MLMC method uses information from
a sequence of computations with decreasing step sizes and approximates the quantity

E(o(XT)) by

No L Ny
1 1 ¢ Y Y —1
9, = N E @(X%:k) + g N, E (@(XT’;? ) — QD(XT’,T/? ), m e N\{0,1},
=1 =1""" k=1

where ¢ € {0,...,L}, with L = llgggz and (X{"e)ogtggp denotes some discretization

scheme with time step m‘T. Concerning the first empirical mean, the processes
(thk)OStSTa 1 < k < Ny are independent copies of (X})o<i<7. Concerning the

4 £—1
second one, for ¢ € {0, ..., L}, the processes (Xi’;fn ,Xﬁ’;n Jo<t<T, 1 < k < Ny are
independent copies of (X?Z,Xﬂpl)ogtST. However, for fixed ¢, the simulation of
4 —1
(X" Yocicr and (XP™  )o<i<r have to be based on the same path. Therefore, it

is important to study of the asymptotic behaviors of the MLMC type error xtmt _
X6m ™" as £ — 0o which is also the main topic of this thesis.

The above objective can be reduced to the study of the error in general form
as n — oo where X" and X" stand for the discretization schemes with
time steps T'/nm and T'/n built on the same path. Next, we recall some results on
the convergence orders of strong and weak error of Euler and Milstein discretizations.
Some results on the MLMC with theses discretization are also recalled.

1.1.1 Euler MLMC scheme

The Euler MLMC method approximates the quantity E(¢(X7)) by Q,, corresponding
to the Euler discretization. Let us consider the probability space (2, F, (Ft)o<t<T, P)
and a process (X¢)o<t<7 which is solution to the following classical type stochastic
differential equation (SDE)

t
Xt—x0+/f(Xs_)dYs, tel0,T], T>0,
0

where 29 € R? Y is a semimartingale and f is a function regular enough. First,
we recall the Euler scheme (see, e.g., Kloeden and Platen, 1992 for more details on
discretization schemes) and its analytical results on the order of strong and weak
convergence. We divide the interval [0, 7] into n partitions with the same length and
for k € {0,...,n}, we denote ¢, = £L. Now, for s € [0,T], we denote n,,(s) = | %L
and the continuous Euler scheme starting at xg is defined by

VO<k<n-—1, Vte [ty ti], dXI'= f(Xgn(t))d)ft.

Another version called the discrete Euler scheme is defined by the induction on the
grids (tx)x: X{ZH = X + f(X)(Yy., — Yi,), Xo = xo. The Euler scheme is
a well-known method of approximation of solutions of stochastic differential equa-
tions (SDEs) which is sometimes called the Euler-Maruyama approximation (see
Maruyama, 1955). Until now, there are many results concerning the precision of
this approximation in case of equations driven by a drift and a Brownian motion.

More recently, people are interested in the approximation of solutions of SDEs driven
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by a general Lévy process. To review the analytical results available in the literature
until now of this scheme and the Euler MLMC scheme, we discuss on two types of
model: SDE driven by multi-dimensional Brownian motion with drift and SDE driven
by a Lévy process.

Stochastic differential equation driven by a multi-dimensional Brownian
motion with drift: Here, Y in the equation above is continuous, more precisely,
let Y be a multi-dimensional Brownian motion containing a drift. It is well-known
that under the global Lipschitz condition

30r >0, st |f@)— f(y)| < Crle—yl, wyeR

the Euler scheme satisfies the following property (see, e.g., Bouleau and Lepingle,
1995), for any p > 1,

sup | X, € LP, sup |X]'| e LP,
0<t<T 0<t<T

. K (T
E( sup X7 — X,) < ZoD),
0<t<T np/

K,(T) > 0.

Under the weaker condition where f is locally Lipschitz with linear growth, Jacod and
Protter, 1998, Theorem 3.1 states that we have the uniform convergence in probability,
namely the property
sup | X' — X,| — 0.
0<t<T

When computing an approximation of the expected value E(p(X7)) for ¢ smooth
enough, one problem is to evaluate the discretization error &, = E(o(X2) — o(X7)).
For the case where Y is continuous with a coefficient function f smooth enough, Talay
and Tubaro, 1990 and Bally and Talay, 1996 (see also Bally and Talay, 1995) proved
that &, is of order 1/n and an expansion of &, as increasing powers of 1/n is even
given. More precisely, they obtained the following results that can be found in Pages,
2018, Theorem 7.8.

e Talay and Tubaro, 1990 proved that if f € C* bounded with bounded partial
derivatives and the function ¢ € C* with partial derivatives having polynominal
growth, then, there exists a sequence (C;);>1 of real numbers depending on 7', f
and ¢ such that for any order R € N* we have

Cq Co Cr 1

En:?+ﬁ+...+n7R+O(nR+l),

as n — oo.

e Bally and Talay, 1996 extended the same result for bounded Borel function ¢,
where the function f € C* with bounded partial derivatives and the diffusion
coefficient is uniformly elliptic.

In the context of possibly degenerate diffusions, when ¢ satisfies |p(x) — ¢(y)| <
C1+ |zP + |yP)|z — y| for C > 0, p > 0, using the result of strong error, the
weak error &, is bounded by ¢/y/n with ¢ a positive constant. In a more general
context, for possibly degenerate diffusion X with f globally Lipschitz and ¢ satisfying
P(Xr ¢ D,) = 0 where D, = {x € R? : ¢ is differentiable at 2}, Kebaier, 2005
proved that the rate of convergence of the discretization error e, can be 1/n® for
any « € [1/2,1]. All the above developments on the Euler scheme are very useful for

studying the MLMC error. In fact, more recently, based on these analytical results,
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Ben Alaya and Kebaier, 2015 proved the following functional limit theorem for all
meE 2,3,...,as n — 00,

mn

W(an - X")) = (Y,U),

(Y,

where

_L ! -1 /
U= 2 /0 (27 F(X) £ (X)W,

with W is a standard Brownian Motion independent of Y and Z; = l—i—fg 1(Xs)ZsdY5.
Afterward, they established a central limit theorem of Lindeberg-Feller type for the
MLMC estimator.

Stochastic differential equation driven by a Lévy process To give a flavor in a
very simple setting, we consider a one-dimensional Lévy process Y with characteristics
(b, ¢, F') such that

2

From the point of view of financial modelling, Lévy processes provide a class of mod-
els with jumps that is both sufficiently rich to reproduce empirical data and sim-
ple enough to do many computations analytically (see e.g. Cont and Tankov, 2004).
For a concise treatment of Lévy processes, we refer to the textbooks Applebaum,
2009 and Sato, 1999. Again, one problem of computing an approximation of the
expected value E(p(X7)) for smooth enough functions ¢, we need to evaluate the
error £, = E(gp(f(%)) — E(p(X7)). For Y a given Lévy process, Protter and Talay,
1997 and Jacod et al., 2005 proved that &, is of order 1/n and with some appro-
priate assumptions on the coefficient function f, they showed that the error €, can
be expanded in successive powers of 1/n. Concerning the asymptotic behavior of
the MLMC type error for SDE driven by a Lévy process, there are some available
results in litterature. When Y is Lévy process with non null continuous part that
is Y has a charcteristic triplet (b, ¢, F') where ¢ # 0, then for a cut-off sequence h,
such that F(hy,00) + F(—00,~h,) ~ £ >0 and lim B/ /tn = 0, t,, = M~"T with

M € {2,3,...} is fixed, Dereich and Li, 2016 proved that
(¥ 1,2 - X)) 5 (V).

with

t t
U, = /0 f/(Xo)UsedYs + T /0 (X ) (X )dW,

+ Y Vel (X ) f(X,)AY,

s€(0,t]:AY,#0

e %—140 (1 1
where for any s, & ~ N(0,1) independent of Y, I'? = { M 1(1 M) , 6>0

3 (=37 6=0"
2 (1= 7).
W is a standard Brownian motion independent of Y and ({;), and (cs) are independent

positive marks well-defined as a function of a family of independent uniform random
variable on [0,1] and exponential random variables with parameters 6 and (M —
1)6. Thanks to this limit theorem, Dereich and Li, 2016 obtained for this case a
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central limit theorem for MLMC estimator. When Y is a Lévy process without a
continuous Gaussian part that is Y has a characteristic triplet (b, 0, F'), being inspired
by Jacod, 2004, we are interested in proving limit theorems for MLMC type error.
More precisely, Jacod, 2004 found normalizing sharp rates u, such that the sequence
(un(X:;n(.) — Xnn(.))>n20 is tight where the rates of convergence u,, mainly depend on
the behavior of the Lévy measure of Y around 0 as follows. For this aim, he introduced
hypotheses with Blumenthal-Getoor index « € (0,2):

F(B,+00) + F(—oc0,—f) < BC; for all 8 € (0, 1], (Hla)

and
BYF (B, 4+00) = 04 and f*F(—o0,—f) = 0_ as f — 0 (H2a)

for some constants 0, _ > 0 satisfying _ + 6, > 0. Then, he considered five cases

e If (H2«a) holds for a > 1, F' is either symmetric or non-symmetric, then u, =

n 1/
(i)
e If (H2«) holds for @ = 1 and F' is non-symmetric, then u, = 0 -

logn)?"

e If (H2a) holds for « =1 and F' is symmetric, then u,, = Togn-
e If (Hla) holds for a < 1, F' is symmetric and b # 0 or F' is non-symmetric and

d:=b— [, <, @F(dx) # 0, then up = n.

1/
e If (H2a) holds for o < 1 and F' is symmetric and b = 0, then u,, = ( 1t ) °

logn

For each case, the limit process is non-trivial and well-defined. Inspired by Jacod,
2004, we succeeded to analyse the MLMC type error which is the main contribution
of chapter 3 below.

1.1.2 Milstein MLMC scheme

Let X := (Xt)o<t<r be the process with values in R?, solution to
dX; = f(Xy)dt + g(X)dW;, Xo=z € R (1.1.1)

where W = (W1,..., W) is a ¢-dimensional Brownian motion on some given filtered
probability space (2, F, (Ft)t>0,P) with (Ft)i>0 is the standard filtration, f and g
are, respectively, R and R%*? valued functions regular enough. As seen for the
Euler scheme, the convergence order of weak error can be adjusted, it seems to be
interesting for many authors to improve the order of the strong error. Comparing to
the Euler scheme, the Milstein scheme is built by using higher order expansion when we
approximate our integrals. The speed of convergence of strong error is then improved
to 1/n instead of 1/4/n as for the Euler scheme (see, e.g. Kloeden and Platen, 1992).
However, a weakness of the Milstein discretisation is that in multidimensional setting
it generally requires the simulation of iterated It6 integrals known as Lévy areas, for
which there is no known efficient method except in dimension 2 (see, e.g. Gaines and
Lyons, 1994, Rydén and Wiktorsson, 2001, Wiktorsson, 2001). In what follows, we
first recall the original scheme for this model and a modified version studied by Giles
and Szpruch, 2013a to get rid of the part Lévy area.
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The original Milstein scheme Milstein, 1974 has introduced a scheme that uses
additionally the multiple It6-integrals [, t"“ (Wm Wt’g)dWs] for jym e {1,...,q}. We
split the interval [0, 7] into n partltlons ‘with the same length and for k € {0,...,n},
we denote the uniform time step At = L and ¢, = kAt. For s € [ty,t)41] and
ie{l,...,d},j€{1,...,q}, we have

d
gij(X ) = Gij th Z

(XL - X{)

d

q
~ g:;(Xy,) Z ) > Gom (X ) (W — WD),
(=1 m=1

Then, we get

q
9(X)AW, ~ g(Xp ) AW + > Vgai( Xy, ) gom (X, ) (W™ — WiP)dW]
jym=1

where for j € {1,...,q}, goj = (g1j,---,94)) € R? and Vge; = (Vg1j,...,Vaa) "
R¥*? The original Milstein scheme starting at zo can be rewritten in a compact form
given by the following induction on k£ € {0,...,n — 1}

Xt = X T AL+ g(XT) (W, — Way)

tet+1

. tht+1 .
£ Vg (XM, (XN / (W — WA

123
7,m=1 tk

Milstein scheme without Lévy area (strong and weak error) By an integration
by parts formula, the original scheme above can be rewitten as

XMil,n _ Mlln + f( Mlln)At + ( Mlln)(WtH_l Wtk)

tk+1
Mll n Mil,n j m m
+ Z Vgei (X ") gom (X V(W = W)W = W) = QAL — Apjm),
]m 1

where ) is the correlation matrix for the driving Brownian paths and A, € R9%? is
the Lévy area defined by

tht1 ) . tet1 .
Ay = / (Wi — Wi )aw? / (W~ Wmawd,  jme{1,....q}.

tg ti

In some applications, the diffusion coefficient g(x) has a commutativity property which
gives Vgi;(x)gim () = Vgim(x)gsj(x) for all i € {1,...,d},j,m € {1,...,q}. In that

case, because the Lévy areas are anti-symmetric (i.e., Agjm = —Apgm;), it follows
that Vg;;(X Mﬂn)gzm( Mﬂ")Akjm + Vgim( i\fﬂ’")g”(XMﬂ”)Akmj = 0 and therefore

the terms involving the Lévy areas cancel and so it is not necessary to simulate
them. However, this only happens in special cases. Let us introduce the so called
Milstein scheme without Lévy area starting at zg defined by induction on the integer
ke{l,...,n—1}

X’VL

1 T

= Xti + f(XtZ)At + g(ch)(Wtk+1 - Wtk)
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1 : n n j j m m

Jm=1

Clark and Cameron, 1980 proved for a particular SDE that it is impossible to achieve
a better order of strong convergence than the Euler-Maruyama discretisation when
using just the discrete increments of the underlying Brownian motion. In the two
dimensional setting, Clark and Cameron also showed that the order of strong conver-
gence of the Milstein scheme is 1 while the Milstein scheme without Lévy area is 1/2.
The analysis was extended by Miiller-Gronbach, 2002 to general SDEs. Suppose that
f € C*(R4R?) and g € C?(R?,R¥*%) and there exists a constant L such that for any
:L'ERdandforall1§i§dand1§j,k,£§q,

ofi 09ij Ohiji
< — < <
Hiwisr, 1@<t 1G2E@)Ist,
D f; %9y
< < L.
ot @, 120 @<

Then, for p > 2, there exists a constant K, independent of the time step, such that

E( sup |X,"""]P) < K,

0<t<T

and Xivm’” strongly converges to the solution of the SDE (1.1.1). Theses results
remain correct for the Milstein scheme without Lévy area. The proof given in Miiller-
Gronbach, 2002, Lemma 2 page 137 follows the standard method of analysis in refer-
ences such as Kloeden and Platen, 1992 and Milstein and Tretyakov, 2004, see also
Giles and Szpruch, 2013a. It is proved that the strong error of the original Milstein

scheme has order 1 that is E( sup XtMﬂ’n — X4|P) < KpAtP which is an improvement
0<t<T
comparing to the Kuler scheme. However, with the Milstein scheme without Lévy

area, this order is the same as the Euler scheme E( sup | X' — X;|P) < K,At"/%. For
0<t<T

similar settings as above presented in the part of Euler scheme, Talay and Tubaro,
1990 proved that the weak convergence order of the original Milstein scheme is 1. The
efficiency of the MLMC method mainly depends on the strong convergence order of
the discretisation. As a consequence if we use the standard MLMC method with the
Milstein scheme without simulating the Lévy areas the complexity will remain the
same as for Euler-Maruyama scheme. Nevertheless, Giles and Szpruch, 2013a showed
that by constructing a suitable antithetic MLMC estimator one can neglect the Lévy
areas and still obtain a multilevel correction estimator with a variance which decays
at the same rate as the original Milstein estimator. For this Milstein MLMC method,
there is not yet the analysis of the MLMC error and CLT for the MLMC estimator
which is the main contribution of chapter 4.

For future research, to extend our results in chapter 4 for the setting of a SDE
driven by a Lévy process, we would like to go through some interesting results on
Milstein scheme for this model. For the case of jump-diffusion SDE, Xia, 2013 and
Platen and Bruti-Liberati, 2010 gave some interesting analysis on the jump-adapted
Milstein discrtisation. If the coefficient functions satisfy some Lipschitz conditions
and linear growth bound condition, they proved that the order of strong convergence
is 1 (see e.g. Xia, 2013, Theorem 3.3.1). There are also the works of Wang and Gan,
2013, Kumar and Sabanis, 2017 and Kumar, 2021. In addition, for the SDE driven
by continuous semimartingales, Yan, 2005 studied the assymptotic error considering
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the Milstein scheme.

1.2 Outline of the thesis

The main objective of this thesis is to study the asymptotic behavior of the MLMC
type error and then establish a central limit theorem (CLT). In general, CLTs illustrate
how the choice of parameters affects the efficiency of the scheme and they are a central
tool for tuning the parameters. Indeed, the appeal of a central limit theorem is
that it provides the fair rate of convergence and gives the exact asymptotic variance.
Moreover, it allows us to build an automatic algorithm where the sample size of each
level is explicitly given without any precomputation procedure and yields a more
accurate confidence interval. The thesis consists of four chapters. The first chapter is
the introduction where we summarize at first some basic knowledges of the Euler and
Milstein schemes for SDE driven by Lévy process, then some results on the MLMC
method equiped with the two schemes and some useful tools to work with. The second
chapter shows a central limit theorem for the MLMC method with a jump Lévy model
or even with an exponential Lévy model and provides a detailed complexity analysis of
the MLMC method for the case of the celebrated CGMY process. Next, in the third
chapter, we consider a stochastic differential equation driven by a pure jump Lévy
process and we follow the idea presented in Jacod, 2004 to get the rate of convergence
of the MLMC type error. Finally, in chapter 4, we present an improvement in the
speed of convergence of MLMC type error used with an antithetic Milstein scheme
comparing to the one used with Euler scheme (see e.g. Jacod and Protter, 1998,
Ben Alaya and Kebaier, 2015). The principal part of this thesis is deduced from the
submitted papers Ben Alaya, Kebaier, and Ngé, 2021b, Ben Alaya, Kebaier, and Ngo,
2021a and Ben Alaya, Kebaier, and Ngo, 2020.

1.3 Main results

1.3.1 The multilevel Monte Carlo method for jump Lévy models:
Central limit theorem

An important family of stochastic processes arising in many areas of applied prob-
ability is the class of Lévy processes. Generally such processes are not simulatable
especially for those with infinite activity. In practice, it is common to approximate
them by truncating the jumps at some cut-off size € (¢ \, 0) meaning an approxima-
tion obtained by neglecting jumps with absolute size smaller than €. This procedure
leads us to consider a simulatable compound Poisson process. We are interested on the
effective computation of option price given by EF(Ly), T > 0, where the underlying
asset price (L¢)o<i<r is a R%valued pure jump Lévy process, d > 1 and F : R? > R
is a given function. The aim of the current work is to develop a central limit theo-
rem for the MLMC method for option pricing under exponential Lévy models. To do
so, we first obtain a functional limit theorem for the error process L™ ** — Lm™7
0 < j < J, between two consecutive levels of the MLMC method, where m~=7 (resp.
m~I+1) stands for the fine (resp. coarse) truncation size of the small jumps of L. By
virtue of this latter result we prove a central limit theorem for the MLMC estimator

1 T
Qm*":ﬁoz (Lrx) +Z

N;j

(Pi™) = ™),
k=1

T
—
<.
Il
-
w



1.3. Main results 9

for a given C! payoff function F' and also for F with the following form
F(z) = f(e*,...,e%), forallz = (x1,...,2q4) € RY,

with f : ]R_dir — R a given C' Lipschitz continuous function, to cover the exponential
Lévy model setting. The obtained central limit theorem provides a better confidence
interval than the one provided by the RMSE approach. Unlike the RMSE approach our
central limit theorem provides an explicit description of the choice of the sample sizes
(Nj)o<j<s that does not need any pre-computation step. Moreover, we provide an
optimization analysis of the time complexity of the MLMC method. It turns out that
for Lévy processes with a Lévy measure v having a density of the form L(z)/|z|¥ !,
where L is a positive slowly varying function, the optimal time complexity is given

2 7

by CymLmc = O(e_“‘g)(z‘y) (Q(Y_l)ﬂl_%)@_y))) for small n > 0 and Y € (1,2) and
Cyrme = O(e72) for Y € (0,1). This latter time complexity corresponds to the
optimal one that the MLMC method can reach so that it behaves like an unbiased
Monte Carlo estimator. We also illustrate the supremacy of the MLMC estimator over
the classical Monte Carlo method for pricing European Call options for an exponential
Lévy model driven by the CGMY process introduced by Carr, Geman, Madan and Yor
Carr et al., 2002. This work in Ben Alaya, Kebaier, and Ngé, 2021b is accepted for
publication as a book chapter in Application of Lévy processes (2021), Nova Science
publishers.

1.3.2 The multilevel Monte Carlo Euler method for Lévy driven
stochastic differential equations: Limit theorems

In this work, we study the quantity E(¢(X7)), T > 0, where the process (Xt)o<t<r
is the solution of the Lévy driven stochastic differential equation

t
Xt=x0+/ F(X_)dYs, te0,7], T >0
0

with f € C3 is regular enough and the Lévy process Y with characteristics (b, 0, F)
with F'is an infinite measure. We recall the setting on the model and some notations
of Jacod, 2004 to analyze the asymptotic behavior of the normalized error process
Up,m (X" — X™), where X™ and X™ are two consecutive Euler approximations
and with u,,, must be a sharp rate going to infinity when n — oco. This means
that this error process converges to some non-trivial limit process. Being motivated
by Jacod’s paper for the Euler scheme, we consider five cases corresponding to five
different choices of our u, , for MLMC scheme. Without loss of generality we can
reduce ourselves to study the case where we have bounded jumps and coefficient f
with compact support. Indeed, adapting the same arguments as in Proposition 2.4 in
Jacod, 2004 to the multilevel error setting, we can easily recover our main results for
non-bounded jumps and coefficient f without a compact support. By triangular array
approach using the Kallenberg, 2002, Corollary 15.16, we found exactly the same limit
process as Jacod’s case except in our Case 1, we obtain different limit. However, in this
special case, when letting m tend to infinity, we also recover Jacod’s limit. Although
the ideas seem natural, the proofs in our case were more challenging comparing to his
case since we have to deal with triangular arrays without the i.i.d. property. This
work represents the first foundation stone for proving generalized limit theorems for
the MLMC method for stochastic differential equation driven by a pure jump Lévy
process. The special technical tool used in this paper is a well-known trick, called the
"subsequences principle" for weak convergence (see Jacod and Protter, 2012).
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This work in Ben Alaya, Kebaier, and Ngo, 2021a was submitted.

1.3.3 The antithetic multilevel Monte Carlo Milstein method for
SDE driven by a standard Brownian motion with drift: Cen-
tral limit theorem

In this paper, we consider (X¢)o<¢<7 as a diffusion of the d-dimensional SDE driven
by a g-dimensional Brownian motion W = (W1, ... W9 T ¢>1

t t
X =xg +/ f(Xs)ds +/ 9(Xs)dWs, for t € [0,T], T > 0,
0 0

where 29 € R?, f € C2(R?,R%) and g € C*(R? R?¥*9) are regular enough. We give a
natural extension of the antithetic multilevel Monte Carlo (MLMC) estimator for a
multi-dimensional diffusion introduced by Giles and Szpruch, 2014 by considering the
permutation between m Brownian increments, m > 2, instead of using two increments
as in the original paper. Cousidering SDE driven by multidimensional Brownian
motion with drift, Giles, 2008b showed that for the simple Euler discretisation with a
Lipschitz payoff, m = 7 gives twice the computational efficiency of m = 2. Therefore,
it is worth to extend the scheme for general m. Our aim is to establish a central
limit theorem on this extended antithetic MLMC algorithm that is parametrized by

a permutation ’U(k}) =m—k+1 €S, | corresponding to a reversal of time for each

finer Brownian increment. To do so, based on a triangular array approach (see e.g.
Jacod, 1997) and using "subsequences principle" for the stable convergence, we proved
a functional limit theorem for the normalized error on two consecutive levels for the
joined distribution of the couple

(\/E(Xnm o XU,nm)’n((Xnm _|_Xo,nm)/2 o XTL)>7

where X" denotes the Milstein scheme with time step T7'/mn without Lévy area
and X7™ is its antithetic version. This result extends the stable convergence limit
theorem obtained by Ben Alaya and Kebaier, 2015 for the normalized error on two
consecutive levels \/n(X™" — X™) where X" denotes the Euler scheme with time step
T /n. Thanks to this result, we establish a central limit theorem of Lindeberg-Feller
type for the antithetic MLMC estimator. The time complexity of the algorithm is
analyzed. By Cauchy-Schwarz, the minimum of the complexity Camrmc is reached
for the choice of the weight a} =m~%/2, ¢ € {1,...,L}. This optimal choice a} leads

n2o 1

to the complexity O(n?) and the sample size N, = o 7 (1 — ﬁ) However, it does

not satisfy our needed Lyapunov condition. Then, it seems natural to try to check
experimentally if the central limit theorem is satisfied or not and we proceed to some
numerical tests. In the setting of the Clark-Cameron model d =2, ¢ = 2, f(x) = Ope
and g(z) = ( (1) 51(3)1 ) for any = = (z1,72) € R? and with xo = (100,100) € R?, we
consider the European call option with payoff ¢(x) = (21 + x2 — 200)4. In Figure 1
we plot at the left the data histogram of 500 samples of Q% correctly renormalized
and at the right we proceed to the quantile-quantile test where the horizontal axis
means quantiles of a standard normal distribution and the vertical axis indicates the
empirical quantiles of the same data. According to these numerical tests, the central
limit theorem seems to be true despite the lack of theoretical proof.

This work in Ben Alaya, Kebaier, and Ngo, 2020 is under minor revisions for the
journal Annals of Applied Probability.
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FIGURE 1.1: Numerical tests for the optimal choice a} = 47/2

1.4 Perspectives

In this thesis, we obtained several types of results motivated by the MLMC method
as shown in the three last chapters 2,3 and 4. This PhD period gave me a lot of
experiences and knowledges so that I can study further. I am willing to find a new
oppotunity for my further researches on multilevel Monte Carlo method, variance
reduction methods, stochastic models, stochastic analysis, Malliavin Calculus and
related problems. After this thesis, I will continue with my supervisors to improve
the results obtained particularly on four types of problem:

e Evaluating the weak error €, = E(p(X7)) — E(¢(X71)) where X™ denotes some
discretization scheme with time step T'/n

e Improving the rate of weak convergence of the error process and studying the
methods of variance reduction.

e Proving a CLT on the MLMC method when in the context of SDEs driven by
pure jump Lévy process

e To have a hint on the rate of convergence of the MLMC method in this context,
we will explore numerically the MLMC error which will be helpful to tackle the
theoretical study of it.

More precisely, corresponding to the last chapter, the studies on the weak error for
the case of our new method, antithetic MLMC, need to be taken into account. For
instance, to compute an approximation of the expected value E(p(X7)), we gave some
hypostheses on this weak error. Corresponding to the third chapter, we save for the
future research the study of the sharp rate for the rest case (C6) where (HY') satisfies
with @ < 1, d = 0 and (H3) does not hold.
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Chapter 2

The Multilevel Monte Carlo
Method for jump Lévy Models:
Central Limit Theorem

In this chapter, we prove a central limit theorem on the Multilevel Monte Carlo
method for pricing vanilla type options when the underlying asset is given by an
exponential Lévy model. To prove this result we give a functional limit theorem on
the asymptotic behavior of the error distribution of the approximating process between
two consecutive levels of the Multilevel Monte Carlo method. Moreover we provide
an analysis of the time complexity and it turns out that the MLMC method reduces
efficiently the time cost compared to a classical Monte Carlo method and in some
particular cases for a given precision ¢ it reaches the optimal complexity O(¢~?) so
that it behaves like an unbiased Monte Carlo method. We illustrate the supremacy of
the MLMC method over the Monte Carlo methods through numerical tests for pricing
European call options under an exponential Lévy model where the Lévy process is
given by the CGMY model that covers a general class of Lévy processes.

The original paper Ben Alaya, Kebaier, and Ngo, 2021b of this work is accepted for
publication as a book chapter in Application of Lévy processes (2021), Nova Science
publishers.

2.1 Introduction

In recent decades, there has been a growing use of jump processes in financial ap-
plications since they are an effective excellent tool for pricing financial securities and
modeling stock asset price. Indeed, it has been noted by experts in the field that
asset prices do jump and that simple pure diffusion models were not able to emulate
stylized facts of real financial markets such as the phenomenon of very steep implied
volatility smile for short-dated option prices. In this work, we are interested on the
effective computation of option price given by

EF(Lt), T > 0, (2.1.1)

where the underlying asset price (L;)o<;<7 is a R-valued pure jump Lévy process,
d>1and F:R?— Ris a given function. One of the main features of such models is
that they preserve the independence and stationarity properties of the log-returns of
the jumping asset price. (see e. g. Cont and Tankov, 2006 and Schoutens, 2003). In
the one-dimensional setting the computation of EF'(L7) can be done efficiently using
Fourier transform methods (see e. g. Carr and Madan, 1999 and Fang and Oosterlee,
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2008 or numerical methods for partial integral differential equations (see e.g. Cont and
Voltchkova, 2005 and references therein). However, for the high dimensional setting,
the Monte Carlo methods remain the most competitive in practice for this aim. In a
recent work, Ben Alaya, Hajji, and Kebaier, 2016 used the Statistical Romberg (SR)
method for pricing (2.1.1). The SR method introduced by Kebaier, 2005 for the setting
of discretization schemes for Brownian stochastic differential equations is a two-level
Monte Carlo estimator that reduces efficiently the time complexity compared to the
classical Monte Carlo method. At a first glance, it seems quite unlikely that such
a procedure with pure-jump Lévy processes would work, since the design of MLMC
methods requires the use of a discretization scheme or at least an inner iterative
routine that can be recycled from the finest level to crudest one. However, it is known
in the literature (see e.g. Asmussen and Rosinski, 2001) that when the increments of
the jump process cannot be simulated, L can be represented as a sum of a compound
Poisson process and an almost sure limit of compensated compound Poisson process
Ly =lime 0 L§ a.s. where for 0 <e <1

Lf = ’)/t+ Z ALS:I]-|ALS‘>1 + ( Z ALS]]-€§|ALS|§1 - t/€<w|<1 .fl?l/(dx))a t 2 0

0<s<t 0<s<t

The error process R := L — Lf is also a Lévy process independent of L® with char-
acteristic function

Eelfi = exp t/ (e — 1 —ju.x)v(dx) p .
|z|<e

This independence feature of the error process noticed by Ben Alaya, Hajji, and
Kebaier, 2016 is the keystone on which we build the implementation of SR type
methods, for this setting of pure jump processes (see Kebaier, 2017 for more details).
The use of Multilevel Monte Carlo (MLMC) method, which is an extension of the
SR method introduced by Giles, 2008b in the context of discretization schemes of
Brownian stochastic differential equation that reduces efficiently the time complexity,
in the setting of exponential Lévy models was also studied by Giles and Xia, 2017
using a root mean squared error (RMSE) approach for the optimization of the size of
the sample paths in order to run the MLMC method. The aim of the current work
is to develop a central limit theorem for the MLMC method for option pricing under
exponential Lévy models. To do so, we first obtain a functional limit theorem for the
error process L™’ T pm™? , 0 <5 < J, between two consecutive levels of the MLMC
method, where m™ (resp. m~7*!) stands for the fine (resp. coarse) truncation size
of the small jumps of L (see Theorem 2.3.1). By virtue of this latter result we prove
a central limit theorem for the MLMC estimator

No J J
1 1 +1
Qm—J—ﬁOZFLTk +Z Z( L]mj) Py ))7
k=1 j=1 Jk:l

for a given C' payoff function F' (see Theorem 2.3.7) and also for F with the following
form
F(z) = f(e*,...,e%), forall z = (z1,...,xq) € RY,

with f : Ri — R a given C' Lipschitz continuous function, to cover the exponential
Lévy model setting (see Corollary 2.3.8). The obtained central limit theorem provides
a better confidence interval than the one provided by the RMSE approach. Moreover,
unlike the RMSE approach our central limit theorem provides an explicit descriptions
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of the choice of the sample sizes (IVj)o<;<s that does not need any pre-computation
step.

The rest of the paper is organized as follows. In Section 2.2, we introduce our
general framework and some preliminary results. In Section 2.3, we give and prove
our main results namely the functional limit theorem on the asymptotic behavior of the
error distribution L™ *" — Lmij, 0 < j < J and miscellaneous versions of the central
limit theorem on the MLMC estimator @,,,-s. Moreover, we provide an optimization
analysis of the time complexity of the MLMC method. It turns out that for Lévy
processes with a Lévy measure v having a density of the form L(z)/|x|¥+1, where L is
a positive slowly varying function, the optimal time complexity is given by Cyrvc =

2
O(c T-HE T IHImDEN) 0 mall > 0 and ¥ € (1,2) and Chine =
O(e72) for Y € (0,1). This latter time complexity corresponds to the optimal one
that the MLMC method can reach so that it behaves like an unbiased Monte Carlo
estimator. Let us recall that, to achieve the same precision ¢, the optimal complexity

£ : : _ — = (Y +H(1-1)(2-Y)) :
or a classical Monte Carlo method is Cyic = O(e @=nE-Y) 2 ) which
clearly has a larger order than the MLMC time complexities obtained in both cases
Y €(0,1)and Y € (1,2). Section 2.4 is devoted to the numerical tests. More precisely,
we illustrate the supremacy of the MLMC estimator over the classical Monte Carlo
method for pricing European Call options for an exponential Lévy model driven by
the CGMY process introduced by Carr et al., 2002. The Appendix section is devoted
to recall several useful technical results.

2.2 General Framework and preliminary results

We consider a stochastic process (L¢)i>0 on a given probability space (2, F,P) taking
values in R? such that Ly = 0 and L has cadlag sample paths. The process (Lt)e>0
is a Lévy process if it has independent and stationary increments. In what follows,
we will consider the canonical filtration (F3)o<¢<r where F; = o(Ls,s < t). The
characteristic function of a Lévy process L with generating triplet (v, A,v) is given
by the well known Lévy Kintchine representation

. 1 ,
Eelt = exp {t <i7.u - §u.Au + / (et —1— iu.:p]lx|<1)1/(dx)> } , ueRY
R4 N

where v € R?, A is a symmetric nonnegative-definite d x d matrix and v is a Lévy
measure on R?\ {0} verifying fRd\{O}(|x|2 A 1v(dzx) < oo. (Given vectors = and

y € R%, 2.y denotes the inner product of z and ). From now on, as we are inter-
ested in studying pure jump Lévy processes we only consider Lévy processes (L¢)i>0
with generating triplet (v,0,v). Let us recall that the simulation of a Lévy process
with infinite Lévy measure can not generally be straightforward. From the Lévy-1to
decomposition (see for example Theorem 19.2 Sato, 1999), we know that L can be
represented as a sum of a compound Poisson process and and an almost sure limit of
compensated compound Poisson processes Ly = lim._,o L a.s. where for 0 <e <1

L =~t+ Z AL51|AL3|>1 + ( Z AL815§|ALS\§1 — t/ zv(dx)), t>0.

0<s<t 0<s<t e<|z|<1

(2.2.1)
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Note that without the compensation ¢ fg<‘x|<1 zv(dx), the sum of jumps

ZO<5§t ALsl.<|aL,|<1 may not converge as € goes to zero. We denote the approxi-
mation error by
RE=L-1L"° (2.2.2)

It is worth noticing that RF is also a Lévy process independent of L® with characteristic

function
Ee'“F = exp {t/ (e® —1 — zux)y(dx)} .
|z|<e

Therefore, E[R5] = 0 and the variance-covariance matrix E[R(R5)'] = tX., where

Y. = / xz'v(dz).
|z|<e

(Here, we denote by A’ the transpose of a matrix A).

Let us recall that the asymptotic behavior of the distribution of R? is firstly studied
by Asmussen and Rosiniski, 2001 in the one dimensional case and later extended to the
multidimensional case by Cohen and Rosiniski, 2007 (See Theorem 2.2.1 below). In
what follows, W = (W});>0 denotes a standard Brownian motion in R? independent
of (Lt)t20~

Theorem 2.2.1. Under the above notation, suppose that . is invertible for every
e € (0,1]. Then ase — 0,
> V2RI W,

if and only of for each k > 0
lim (57w, @)1 <ev(da) = 0. (2.2.3)
=0 (E;lx,r>>k -

Here “=* stands for the convergence in distribution.

Moreover, if v is given in polar coordinates by
v(dr, du) = p(drlu)X(du), 7> 0,u€ S (2.2.4)

where {u(-|u) : u € S} is a measurable family of Lévy measures on (0,00) and A
is a finite measure on the unit sphere S¢! then

1>
Esz/ /rguu’,u(dﬂu))\(du).
Sd=1.J0

If we define o2(e,u) := [ r*u(dr|u) and 62(e) := [qa_1 0 (g, u)A(du) then
E|L; — L5 |* = tTe(2.) = to?(e). (2.2.5)

Now, let us recall some relevant remarks and properties form Ben Alaya, Hajji, and
Kebaier, 2016.

Remark 2.2.2. In the one dimensional case Assmussen and Rosinski proved the
convergence of o~ () R? to a standard Brownian motion if and only if for each k > 0,

o(ko(e) Ne) ~ o(e) which is satisfied as soon as il—{%@ = oo (see Theorem 2.1

and Proposition 2.1 in Asmussen and Rosiriski, 2001). An extension to this sufficient
condition in the multidimensional case is given by Theorem 2.5 in Cohen and Rosiriski,
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2007. More precisely, if the support of the measure \ is not contained in any proper
linear subspace of R, they proved if

lim ole,w) =00, — a.e. (2.2.6)

e—0 £

then X, is invertible and condition (2.2.3) of Theorem 2.2.1 holds.

In addition, there is a finite L9-upper bound of the error approximation in the
one dimensional case for any real ¢ > 0 (see Proposition 2.1 of Dia, 2013). This
latter property remains valid for the multidimensional case. Indeed, if we consider the
d-dimensional error Lévy process R defined by (2.2.2), then we can deduce that

E[R7|" < Kqra(e)?, (SE)

where d(¢) = o(e) Ve and K, 1 is a positive constant. For the weak error, if F' denotes
a real valued Lipschitz function with Lipschitz constant C > 0, then it is easy to see
that

IEF(Ly) — EF(L%)| < CVTo(e) (2.2.7)

Moreover, under some regularity conditions on the function F' we can obtain an ex-
pansion of the weak error as in Proposition 2.2 and Remark 2.3 in Dia, 2013. So, it is
worth introducing the following assumption: there are C'r € R and v: \(0 as € 0
such that

vV (EF(Ly) — EF(LE)) — CF. (WE)

2.3 Main results

The idea of the Multilevel Monte Carlo method in the Lévy process setting is to apply
the Monte Carlo method for a decreasing sequence of cut-off sizes (m™)1<j<s, m and
J € N\ {0, 1}, and to compute different numbers of paths on each cut-off size, from a
few paths when the cut-off size is small to many paths when the cut-off size is large.
More precisely, we will approximate the quantity EF(Lz) by

L 1 & "
_ 7 m J jm™I
Qs = 5o 2 F (L) +Zﬁ] ( (L3 - F(L: )).
k=1 ]:1 k=1
Here, for j € {1,---,J}, the processes (L%fz_j,L%lrz_ﬁl)ke{l?...’]vj} are independent

P —j+1
copies of (L™ ! " """) whose components denote respectively the approximations
with cut-off sizes m™7 and m 7T, However, for fixed j, the simulation of (L%lmﬂ)

and (Lf‘f’mﬂH) has to be based on the same path. Concerning the first empirical
mean, the processes (L%pk) ke{1,--,No} are independent copies of L% which denotes the
approximation with cut-off size equal to one. Here, it is important to point out that
all these J + 1 Monte Carlo estimators have to be based on different independent
samples.

In order to study the asymptotic behavior of this estimator, we prove a convergence
theorem for the cut-off approximation on two consecutive levels m™7 and m=7*! of
the type obtained by Asmussen and Rosiriski, 2001 in the one dimensional case or
more generally Cohen and Rosiriski, 2007 in the multidimensional case. For more
clarity and to make the paper self-contained, we adapt and rewrite the limit theorem
of Cohen and Rosiniski, 2007 to the MLMC setting.
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2.3.1 A functional limit theorem

We have the following functional result.

Theorem 2.3.1. Under the above notations, let X;,, = Var(L™ 7 — L7 for
all j € N\ {0} and assume that ¥;,, is non singular for j sufficiently large. Then,

the sequence ¥, / (™ I LmﬂH) converges in distribution to a standard Brownian
motion W if and only if for every k > 0

lim (S @ ) Ly g <m—s+1y ¥ (dw) = 0. (2.3.1)

y —1 Jm
J—rtoo (B 23)>K

Proof. According to the Lévy-It6 decomposition, the approximation error on two con-
secutive levels m™ and m ™! is a Lévy process with generating triplet given by

(0,0, V(s <|e|<m-s+1}). Hence, by putting Yj, = X, 1/2(Lm T pm ) and using
the push forward of v, —j<|g<m-i+1} (the restrlctlon of v on the set {m™7 < |z| <

m~I*+1}) by the map = — E / x, which is nothing but the measure v;,, defined by

Vim(B) == v(S2B N {m ™ < |z <m~ItY}), B e B(RY),

)

it is easy to check that Yj ,, is also a Lévy process with generating triplet (7;m, 0, Vj.m)
where

R . _ _yl/2 , ,
= /ac|>1 wim(dr) = =%, /21/2 |>1 T i <[] <m—s+1}V ().

J,m

Since Yj , is a Lévy process we have only to prove the convergence in distribution of
Y;m(1) to a standard normal distribution. Thanks to Theorem 15.14 in Kallenberg,
2002 (see Theorem 2.5.1 in Appendix) we have this convergence if and only if for
0 < h <1 fixed,

/ x vim(de) = Iy, Yjm — / xvjm(dr) — 0
|z|<h h<|z|<1
and  vjp,(lz] > k) =0, V>0 (2.3.2)
as j — +o0o. We first notice that
~1/2 —1/2
/R az vm(de) = /R (Sl ) (50 L <papcmeiey(de)
= Ej_’;/Q /Rd l‘l‘T]l{mfj<|x‘§m7j+1}l/(dl‘)zj_7;/2 =1, (2.3.3)

Now, concerning the first term in (2.3.2), using (2.3.3) and Cauchy-Schwarz inequality
we have

—-1/2 —1/2
I — /| KhmTVj,m(dx)\ =| / e L e e ]
z|< >

IN

/21/2 | hlzjm x‘ Lim—i <|a|<m-—s+13¥(d)
|>

J,m

S/ (S5 ) i < <m—i+1y ¥ (d),

<E;}nx,x>>h2 ’
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which converges to zero thanks to the condition (2.3.1) is satisfied. Now, it remains
to prove the last two convergences in relation (2.3.2) provided that relation (2.3.1) is
satisfied. At first, let k > 0, it is easy to check that

1
(ol > #) <5 [ Jolvim(d)

|z|>kK
1 sTV2121 (dz)
TR i e it @l L <fafm-i+1yv(da
1 _
<= <2j7;x,.’E>ﬂ{m—j<‘x|§m—j+1}V(dx) — 0,

2
K -1
(B} 5 33)>K2

as j — 400, since relation (2.3.1) is satisfied. For the last term, we have
= [ v =] [ v
h<|z|<1 |z|>h

-1/2 _ ‘
< /IE_1/2x>h|Ej,m $|1{m*1<|m‘§m,]+l}y(dx)

j,m
< [ o, T s g0

Jjm

—1
S/< -1 >>h2<2]m >]l{m i<|z|<m— g+1}V(daj) 07

as j — +oo. Therefore, we proved (2.3.1) implies the convergence in law. To prove the

converse, thanks to Theorem 2.5.1, we have for any x > 0, / meuj,m(dx) — 1.
|z|<r
Then by (2.3.3), we deduce the matrix f|$|>ﬁ x2 " v, (dz) vanishes as j — oo. To

obtain condition (2.3.1), we write

/( o T s e ()
ZT,T)>K

j,m

:/Ef1/2x|>ﬁl/2‘zjm w‘ ]l{m i<|z|<m~ j+1}]/(dx)
i

:/I 1/2 \:rlQuj,m(d:z:)
T|I>K

:Tr(/ za v m(dr)) — 0,
|z|>Kr1/2
as j — +oo. This completes the proof. O

The above result rewrites in the one-dimensional case as follows.
Corollary 2.3.2. Let us consider the one-dimensional case corresponding to d = 1
and let 02 = Tr(X,m) for allj € N\ {0} and assume that o, > 0 for j sufficiently

large. Then the sequence o (Lm Topmt 1) converges in distribution to a standard
Brownian motion W if and only if for each k >0

Jj——+oo

lim O'j_’72n/|| » (L‘Q]l{m—j<‘x|§m—j+1}V(d$) =0. (2.34)
T|I>K 205 m
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Remark 2.3.3. In the one dimensional case, by similar arguments of Asmussen and
Rosiriski, 2001, it is clear that the condition (2.3.4) is equivalent to for any k > 0,

nl/Qaj,mAm’J*l

/ z22v(dx) ~ szm (2.3.5)
KY/20; mAm—I ’

which is obviously satisfied as soon as

lim 2™ = 4o, (2.3.6)

j—+oo m™J

The following theorem provides an extension to dimension d > 2 of the last suf-
ficient condition in the above remark which ensures that the sequence E;}n/ 2 (L™ —

Lmﬁ'“) converges in distribution to a standard Brownian motion W. The proof
follows the same steps as in the proof of Theorem 2.5 in Cohen and Rosinski, 2007.

Theorem 2.3.4. Let v be a Lévy measure on R? given by (2.2.4) such that the support
of X is not contained in any proper linear subspace of R, If

lim m_2j/ r2u(drlu) = 0o, X\ —a.e., (2.3.7)
j<r<m J+1

J]—00

then X, is non-singular and condition (2.3.1) of Theorem 2.5.1 holds.

If we use twice the result of Dia, we get E|L™’ — Lm "7 < Kyio0(m=IT1).
Therefore, the Proposmon below gives the multilevel-type bound for the moments of
L™ T g proof can be easily adapted from Proposition 2.1 of Dia, 2013.

Proposition 2.3.5. Let G, = max (0, m 7Y for any j € {1,...,J}. Then for
any real g >0 and t > 0

- —j+1 _
EIL{" = L |7 < Kguo1
where Ky s a positive constant depending only on q and t.

Proof. Without loss of generality, we suppose d = 1. Let n = [¢/2], then we have
0 < g/2n < 1. From Jensen’s inequality for concave function, E|L}" ’ Lm7]+l\q <
(E|L7m ™ — Lm 7" 2n)9/2n and now we prove instead that for any n € N¥,

B — L) < Ky, (2.3.8)

Let us proceed by induction, the relation is trivial when n =1 or n = 2. We suppose
that (2.3.8) holds for all n < k. Let cJ denote the k™ cumulant of L"* — Lm 7"

We have 0771 =0and ¢, = tfm_]<‘x|<m_3+1 z*v(dz) for k > 2 (see e.g. Proposition

1.2 of Tankov, 2004). Then, by the well known relation between the moments (see
e.g. Theorem 2 of Morris, 1983) we have for all m > 2,

k—2
— —j+1 k—1 +1
B - s Y (K ) R - i)
n=0

Now, for £k —n < 2, we have

k—
i<t el o)
m=i <Ja] <m-i+1
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< t(m_j+1)k_"_2/ |lz|?v(dz) < tﬁé?:nn.

m=i <[x|<m—i+1

Therefore, (2.3.8) holds for n = k and this completes the proof. O

2.3.2 Central limit theorem

Thanks to the Theorem 2.3.1, we are now able to prove our central limit theorem for
the MLMC method. To do so, we introduce a crucial tool called Toeplitz lemma.

Lemma 2.3.6. Let (a;)jen be a real sequence of positive terms such that

J J

. . 1 p/2
lim Z aj = 0 and Jli)rgo W P Qj = 0 p > 2. (Wp)

The first assumption of property (Wy) implies that if (z;)jen is a sequence converging
to x € R as j tends to infinity then

J
i D1 4T

J—o0 Z

Theorem 2.3.7. Let (aj)jen be a real sequence of positive terms satisfying the con-
dition (W) for some p > 2. Let F : R? - R be aCl functzon satzsfyzng assumption

WE) and such that EF?(LY) and supE|o F(L7 - F(L7 TP are finite.
T ]m
=17
Moreover, assume that

(H) the condition (2.3.1) in Theorem 2.3.1 holds, and there exists a posilive definite
matriz ¥ such that

lim o; 72n2 m = 2.
]A)OO ‘7

For

v 2 (02 Trizo + 02(D)1iimg) <
N; = - 1 (TimLiizoy +o”(1) {]—0})2%, jefo,1,...,J},

a;

Jj=1

we have
v (Qu-s —EF(Lr)) = N(Cp, TE(VF(L7)SV ' F(Lr))), as J /oo
Proof. At first, we rewrite the error term as follows

Q-1 —EF(L7) = QL _, + Q% , +EF(L} ') —EF(Lr), where

No
1 1

N;

J —Jj+1 im=J im—Jt+1

mJ—Z Z F(Lyy ) = F(Lyy ) —E|FLE" ) = F(Ly™ ).
j=1""7 k=1
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From the assumption (WE), we have the convergence of v;l, J (IEF (Ly) —EF( L%r(] )>

. . . U72_J‘72(1)
toward Cr as J goes to infinity. Now, with No = —==—— 3"
classic central limit theorem to get

VNoQL ;= N(0, Var(F(L}Y))) as J 2 oc.

J

j=1@j We can apply the

As Jlim Z}-le a; = 0o, we deduce that U;I,JQ}n,J 50 when J goes to infinity.
— 00

Finally, we only need to study the convergence of U;f_ Jan, ;- To do so, we verify
conditions (1) and (3) of Theorem 2.5.2 and set

m~I m=Iit1 . .
, where (ZT,k )i<k<n; are independent copies of

Jj+1

) -

)—E|F(LE") - F(L}

Step 1. We check the limit variance of v ! ,Q2 _,. We have
m m

J -2 J

v~ —~§ i+l 1 _ —§ i+l
> E(X-0)7 =) i Var(Z7' ™ )ZE:Jivajajyivar(sz ).
j=1 j=1 J j=1 Zj:l aj

(2.3.9)

Besides, since F' € C!, applying Taylor-Young’s expansion we get

L) - P

im—ItL  im— o mit] im=3 L jm—itl im=3 . jm—itl
= VR - g - e -,

where e(L%‘lmij - LjT’m7j+1) %0 as j  oo. Now, thanks to assumption (H),
by applying the Theorem 2.3.1 we obtain aj_’sl(LZ}m_j — L?F’m_ﬁl) = SV2Wr as
j / oo. For, the second term, we use the tightness of aj_ﬂln(L%lmij - L%m7j+1)
to deduce that U;%(L%lm_j - L{;m_j+l)e(L{;m_j - LjT’m_jH) B 0asj N oo

i+l R . R
Finally, since I&™ ' is independent of Li™ * —L3™ """ and VF(LE™ ) &%

VF(Ly) as j /oo, we deduce that as j — oo
LRI — F(LE™ )= VE(Ly) 22w
oim(F (L") — F(Ly ))=>VF(Lr). T

j7m
From the assumption sup E|oj*r1n(F(L%Zm_j) - F(L%im_j+1))|p < 0o, we have the

i>1
uniform integrability and we get for k € {1,2}

- P | k k
E o L (@) - prim " ))} —>E<VF(LT).21/2WT> .

Jm J—00
Consequently, UJ%Var(Z;f;j’min) — Var (VF(L7).E£Y2Wr) < co. Thus,
’ ’ j—00
E(X,,-s;)? = TE(VF(L7)SV ' F(Ly)).

m

from (2.3.9) and Lemma 2.3.6, lim jo Z}'le

Step 2. We only need to check the Lyapunov condition. In what follows, let C, be a
generic positive constant depending on p that may change from line to line. By
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Burkholder and Jensen inequalities, we get

P -p
’U 7 —j+1 —J 7 —J+1
E| X4 = —\p Tk |<C o E|Zy
J k=1 ]

Besides, by Jensen inequality, we have
_ —i it _ imi i m—i+1
o, mBIZy " P < GElog (F(LE™ ) — F(LE™ )P < oo,

thanks to our uniform integrability assumption. Therefore,

m J p/2 J—>oo
ZE‘X e <CZ p/2 ?m—cp J p/ZZ
(Za 1)
We complete the proof using (Wp,).
O

In what follows, we derive a central limit theorem for the exponential Lévy model
where we assume that the payoff function F' has the following form

F(z) = f(e*t,...,e%), forall x = (x1,...,2q) € R,

with f: Ri — R a given C! Lipschitz continuous function.

Corollary 2.3.8. Let (a;) en be a real sequence of positive terms satisfying the condi-
tion (W) for some p > 2. Assume that f‘z|>1 P2y (dz) is finite. Then, in the setting
of an exponential Lévy model there is C' > 0 such that for all 0 < 5 < J,

EF(LY ) —EF(Ly)| < Co(m™)  and |EF(LYE ) —EFLE )| < Cojm.

Moreover, assume that ojm, > m~ItL for all j > 0 and the condition (H) of Theorem
2.3.7 is satisfied. Then, for any 0 < n < 2, if we choose

N, = T g £ W) S~ o,

J A
a;

J=1

we have
o2 (10T ) ( Qs — BF(Ly)) = N0, TE(VF(Ly)SV F(Lr))), as J /o,

Proof. At first, according to Corollary 3.1 in Ben Alaya, Hajji, and Kebaier, 2016 we
have the existence of a positive constant C such that for all 0 < j < J, |[EF(L?) —

EF(Lt)| < Co(m™7). Now, by Theorem 2.3.7, it remains to prove that sup E\o-_;(F(Lg?_j)—
3=

F(Lp )P < oo for p > 2 and EF%(LL) < oo are satlsﬁed In order to prove the

—-Jj m—J+
first assertion, it is enough to find an upper bound of E|e” elr \p p > 2,

since f is Lipschitz. By some basic exponential inequalities and using the indepen-
dence of L7 ! and Ly - - L7y ! and Cauchy-Schwarz’s inequality, there is a positif
constant C such that

E‘eL%*j B 6L7j7}7j+1 ‘p S CE‘eL?*JH»l ‘pE(’L?,] B L?7j+1 ‘pep‘L?*j *L?7j+1 ‘)
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—j+1 i i1 =7 _ym—Iitl
< CEleX ~ PIL T — L gl L ),

By the assumption f| 161"2‘ (dz) < oo and using Theorem 2.5.5, the finiteness

I
of Elefr ’ P is ensured. Now, using the inequality el*l < H 1(e% 4 e7%7) this

last upper bound can be written as a sum of finite number of exponential func-
tions evaluated at points which are a linear combination of the components of the
vector z. Therefore there exists a family of Re-valued vectors (bk)1<k<2d such that

m—J m—J+1 d mij mij+1 :
eIl TLE Tl < 5 b (LF T=LE ) Now by virtue of Lemmas 25.6 and 25.7

m I m I+l
in Sato, 1999 we deduce the boundedness of ||ePIL7 Ly 2. Indeed, we have

2d

m ] m +
| ePIlr e iz < Zexp T/ (€% — 1 — by.z)v(dx)
m~I <[az|<m it

k=1

< exp T/ T 1 — by.z|v(dz

z,: { 0<|z|<1 | i)

< exp Tck/ zPv(dz) Y, ¢ > 0.
) { [ v

Combining all these results together and applying Proposition 2.3.5, there exists a
contant C' such that

Elo; 0 (F(LF) = F(LF )P < Co; b a? (m™7+) = C.

Tjm

Now, by the linear growth of f and the condition f| eP*ly(dz) < oo, the second

z|>1
condition EF?(LL) < oo holds using Theorem 2.5.5. Hence, if we choose v,, s =

o'=1/2(m~7) then Theorem 2.3.7 completes the proof. O

2.3.3 The time complexity

We consider the one-dimensional case for which v,,—s = ¢'~2 (m~), with n € (0,2).
Assume that the measure v has a density of the form L(x)/|z|¥ ! for a small 2, where
L(z) is a positive function that is slowly varying as  — 0 and Y € (0,2). Then the
positive (resp. mnegative) part of the approximation (LI ")o<i<r, 0 < j < J, is
a compound Poisson process with intensity v([m™7,+00)) (resp. v((—oc,—m™])).
Then the cost necessary of a single simulation is random, with expectation of order
K(m=7) = v(Jz| > m~7). Thus, by Theorem 2.3.7, the mean of time complexity of
the MLMC method needed to achieve an accuracy of order o'~ 2 (m~7) is

J

CMLMC—CXZ’C Ny,
7=0

J
Loz + 1
= O x o )Y K 0% L0y + 02 (D)1= O}Zw

s
J=0 J

j=1

where C' is a positive constant that may change from line to line. By Karamata’s
theorem (see e.g. Bingham, Goldie, and Teugels, 1987 or Feller, 1971) we have

02(m*j) ~ L(m_j)—i_L(_m_J)mfj(QfY) and ,C(mfj) L(m_j)—l—L(—m_J)ij.

~

j—00 2-Y Jj—00 Y
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Using the slowly property and the positivity of L we get

S Lm™) 4+ L(=m77) (ji1ye-
2 J+y (=j+1)(2-Y)
o (m™T) 2-Y mn

and by the decomposition 032-7m = o?(m™7*) — 0?(m~7) we deduce that

2 L(m™) + L(—m_J)mfj(sz) (m>Y 1),

0'4
]’mj%oo 2-Y

In what follows, we assume in addition that the function L is bounded, which is the
case for the CGMY process (See Section 2.4).

. 52
The case Y € (1,2). For the choice a; = m™7(1=Y) as j — oo we have lC(m_J)U;—‘]T” =
O(m=71=Y)) and then as J — oo, the time complexity needed to achieve a preci-

(2-Y)(2=n)

sion of order al_g(m_‘]) = O(m_J e ) is CvLmc = O(mJ(Q(Y—l)Hl—g)(?—Y))),
Clearly, the closer to zero 7 is, the smaller the MLMC time complexity is. Thus,
to achieve a precision of order & the time complexity for the MLMC method is
_ — ey QY -1)+(1-1)(2-Y)) .
Cyvryve = O(e @-mG-Y) 2 ). Note that for the particular case where

Y ~ 1, the MLMC method may reach its optimal time complexity given by

Ciiome = O(e7?)

so that the MLMC estimator would behave like an unbiased Monte Carlo estimator.
It is worth noticing that the weight a; = m 1Y) does not satisfy the second part
of the technical condition (W) needed to prove the central limit theorem. However,
we may choose a; = 1 to ensure the validity of the Central Limit Theorem 2.3.7 and
in this case to achieve a precision of order € the MLMC method reaches an optimal

4
time complexity given by Cypvc = O(e_<2—")<2—Y>(2(Y_1)+(1_g (2=Y)) log(%)).

The case Y € (0,1). For the choice a; = m™71=Y) as J — oo, the time com-
. . .. J2-Y)(2=n) .
plexity needed to achieve a precision of order al_g(m*‘]) = O(m~ i ) is

Cyrve = O(m‘](%y)(k%)). Thus, for a given precision ¢, the time complexity of
the MLMC method is the optimal one Cfjye = O(e72). Of course, as mentioned
in the previous case, to ensure the validity of the Central Limit Theorem 2.3.7 we
have to adapt the choice of the weights a;. Following Ben Alaya and Kebaier, 2014,
for the particular choice a; = % (resp aj = m ) it is easy to check that the time
complexity needed to achieve the accuracy ¢ is Cyovc = O(e 2 log log(%)) (resp.
Cyrmc = O(e 2 loglog log(%))). Let us recall that according to Corollary 3.1 in Ben
Alaya, Hajji, and Kebaier, 2016, for a precision € the optimal time complexity of a
Monte Carlo method is given by Cyc = O(&t_m(yﬂl_g (2_Y))) which clearly
has a larger order than the above MLMC time complexities obtained in both cases
Y € (0,1) and Y € (1,2). It is worth noticing, that the gain between both methods
dramatically decreases when Y is chosen close to zero.

2.4 Numerical results

For this section we illustrate the efficiency of the MLMC method compared to the
classical Monte Carlo method for pricing european calls under exponential Lévy mod-
els. More precisely, we consider an underlying asset following an exponential pure
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jump CGMY model. Let us recall that the CGMY process presented in Carr et al.,
2002 provides a rich jump model for the equity log-returns. The CGMY process cov-
ers a general class of Lévy processes since its particular parametrization allows pure
diffusion or pure jumps, infinite or finite variation, and infinite or finite arrival rates.
The practical option pricing under the CGMY model using the classical Monte Carlo
methods has been introduced in several works by Madan and Yor, 2008, Poirot and
Tankov, 2006 and Rosinski, 2007. The use of a two-level Monte Carlo method for
pricing vanilla options under the CGMY model has been tackled by Ben Alaya, Hajji,
and Kebaier, 2016. For more clarity, we first give a brief summary on the main prop-
erties of such a process. The CGMY process is a pure jump process with generating
triplet (0,0, v) where for C > 0,G > 0,M >0 and Y € (0,2)

Ce— Mz Ce—G|ac|
It has a Lévy-Khintchine representation formula with a truncation function h and a

characteristic exponent given by

Y(u) = i7hu+/

(eiux_l_z‘uh(x))y(dx) with v, = /(h(x)—m]l“xq})u(dx), u € R.
R R

e For 1 <Y <2 and h(z) =z, we have 7, = flx\>1 zv(dzr) and

. . : Y
W(u) = iy +CT(-Y) [MY <(1 - -1+ %) +GY ((1 + ) -1
e For 0 <Y < 1 and h(z) =0, we have v, = f\x\<1 zv(dr) and

Y(u) = iuy, + CT(=Y) [MY ((1 — %)Y - 1) +GY <(1 + %‘)Y —~ 1>] .

In what follows, we focus on the CGMY process (Lt)o<t<r with generating triplet
(7,0,v), v € R and consider the stock price under risk neutral probability given by

Sy = Spexp(rt + L¢), where r > 0 is the interest rate and Sy > 0.

Moreover, we assume that

/ e“v(dx) <oo and 7y —|—/(ey —1—y 1gy<iy)v(dy) = 0. (2.4.2)
j[>1 R

This above assumption is essential to guarantee the validity of the martingale prop-

erty of the discounted asset price (e "*S;)o<t<r. It is worth noticing that the first
condition of assumption (2.4.2) is satisfied as soon as M > 1.

Now, for a fixed level j € N\ {0} the fine (respectively coarse) approximation of the
CGMY process (Lt)o<i<r is given by (LI" ' )o<i<r (respectively (L " )o<y<r). The
fine approximation is a Lévy process with characteristic triplet given by (7,0, 1/7]; _i)
where Vf;_j (dx) := 1{|g|>m-iy¥(dx) that is simulated as a compound Poisson process
with drift yil_j =y — fmﬂ'gmgl zv(dz), see (2.2.1). More precisely, this com-
pound process is generated as the difference between two independent compound
processes, namely a positive (resp. negative ) compound process with jump size
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fa v(dx)

- Il{x>m a}% (resp. l/rfr;jj = ﬂ{xg—m—j}m ) and intensity

([m I +o0[) (resp. v(] — 0o,—m~7])). Here we follow the sampling method pro-
posed by Rosiﬁski 2001 (see Algorithm 1 below) that simulates the paths of l/f’+
from those of V _,; by only accepting all jumps x in the paths of 1/ ; for which

t/ dyo i ) > u where u is an independent random variable draw from uniform
dlstrlbutlon

Algorithm 1 Simulating the positive jump size Z of the CGMY process using Rosin-
ski’s rejection

1
Require: U; and U; are uniform random variables and Z = m™7U; ¥

if Uy > exp—M.Z then
Z =0

end if

return 7

The negative jump part is sampled by replacmg in the above algorithm the pa-
rameter M by G. The coarse approximation (L} g Jo<t<T is generated from the
paths of the fine one using that for ¢ € [0, T]

L;n*jﬂ _ Lg,fj +I~J;n,j
)
where (E? g Jo<t T is an independent Lévy process with generating triplet given by
(Ovovl/{m*j<|:p\§m*j+1}) with V{m*j<|z\§m*j+1} = ﬂ{mfj<|x‘§mfj+1}l/(d$).
The aim now is to test the performance of the MLMC method that approximates
the price EF(St) with a payoff function F(z) = e (z — K), by

Nj

No J

1 1 m m—d+1

meJ:FOE F(Lp)+> ( Ry ) — P(L )). (2.4.3)
k=1 j=1 k=1

<.

The CGMY parameters are chosen as follows: Sy = 100, K = 100,C = 0.0244,G =
0.0765, M = 7.5515,Y = 1.2945, the free interest rate r = log(1.1), maturity time T =
1 and m = 4. For this set of parameters, the benchmark price is equal to 13.496508
and is computed using the Fourier-cosine method introduced by Fang and Oosterlee
Fang and Oosterlee, 2008 that reaches an accuracy of order 10719, This method is
available in the free online version of Premia platform https://www.rocq.inria.fr/
mathfi/Premia/index.html. In this case, we have o%(m /) = 20m=I1C=Y) /(2-Y)

and according to Subsection 2.3.3 we set v. = o' ~"/?(g) with = 0.04. For different
values of €, we give in Figure 2.1 below the log-log plot of the obtained RMSE versus
the CPU time for the classical Monte Carlo and the MLMC method.


https://www.rocq.inria.fr/mathfi/Premia/index.html
https://www.rocq.inria.fr/mathfi/Premia/index.html
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FiGure 2.1: CPU time versus RMSE.

To do so, we compute for each method the CPU time (per second) (the computa-
tions are done on a PC with a 1.6 GHz Intel Core i5 dual core) and the RSME given
by

50

1
RMSE = 50 Z(Benchmark price — Approximated value)?. (2.4.4)
i=1

As expected, we see in Figure 2.1 that the MLMC method is asymptotically more
efficient than the classical Monte Carlo one. Indeed, according to our numerical
results for a fixed RMSE of order 10~!, the MLMC method reduces the CPU time by
a factor of 21.31 compared to the Monte Carlo method.

2.5 Appendix

2.5.1 Convergence of infinitely divisible distributions

The following theorem is about the convergence of infinitely divisible distributions.
We recall Theorem 15.14(i) in Kallenberg, 2002. Justified by the one-to-one corre-
spondence between infinitely divisible distributions u and their characteristics (a, b, v/),
we may write u = id(a,b,v). Define for any h > 0,

a"=a +/ zx'v(dz), b =0b-— / zv(dz),
|| <h h<l|z|<1

Wherifh<\x|§1 = —f1<|$|§h when h > 1.
Let R? denote the one-point compactification of R%.

Theorem 2.5.1. Let = id(a,b,v) and p, = id(an,bn,vy) on RY, and fiz any h >0
with v(|z| = h) = 0. Then pun, = p iff al — a®, B = " and v, > v on RA\{0}.
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2.5.2 Lindeberg-Feller central limit theorem

We recall also the following central limit theorem for triangular array (see, e.g., The-
orem 7.2 and 7.3 in Billingsley, 1999).

Theorem 2.5.2. Let (kyp)nen be a sequence such that k, — 0o as n — oo. For each
n, let X 1,..., Xy 1, be ky, independent random variables with finite variance such that
E(Xnk) =0 forall k€ {1,...,k,}. Suppose that the following conditions hold:

1 1limy, oo Y0 B[ X k2 =9, 9 > 0.

2. Lindeberg’s condition: For all € > 0, lim,_ o Zi’;l E(|Xn,k|21lxnk\>e) = 0.
Then

kn
ZX””“ = N(0,9), as n — oo.
k=1

Moreover, if the X, i, have moments of order p > 2, then the Lindeberg’s condi-
tion can be obtained by the following one:

8. Lyapunov’s condition: lim, oo Zl,z’;l E|X,, kP = 0.

2.5.3 A useful lemma from the paper of Cohen and Rosinski
We recall Lemma 2.1 in Cohen and Rosinski, 2007.

Lemma 2.5.3. Let v is a measure such that [, |z|*v(dz) < 0o and & = [p, 2" v(dz).
The following conditions are equivalent

1. ¥ is non-singular,

2. the smallest linear space supporting v equals R, (v is not concentrated on any
proper linear subspace of R?)

2.5.4 Tools used for the exponential Lévy model seeting

In what follows, we recall the definition of a submultiplicative function (see e.g. Def-
inition 2.1 in Ben Alaya, Hajji, and Kebaier, 2016) and then an important property
of Lévy processes (see e.g. Theorem 25.3 in Sato, 1999).

Definition 2.5.4. A function f : R [0,00) is said to be submultiplicative if there
exists a positive constant ¢ such that f(x+1y) < cf(x)f(y) for x,y € R, The product
of two submultiplicative functions is also a submultiplicative function.

Theorem 2.5.5. Let f be a submultiplicative, locally bounded, measurable function
on R, and let (Ly);>0 be a Lévy process in R? with Lévy measure v. Then, Ef(Ly) is

finite for every t >0 of [ f(z)v(dz) < +oo.
|2[>1
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Chapter 3

Asymptotic behavior of the error
between two different Euler
schemes for the Lévy driven SDEs

In this chapter, motivated by the multilevel Monte Carlo method introduced by
Giles, 2008b, we study the the asymptotic behavior of the normalized error process
Up,m (X —X™") where X™ and X™" are respectively Euler approximations with time
steps 1/n and 1/nm of a given stochastic differential equation driven by a pure jump
Lévy process Y. In this paper, we prove that this multilevel error process converges to
some non-trivial limiting process with a sharp rate w, ,,. The obtained results extend
those of Jacod, 2004 for the normalized error u,(X™ — X). For the multilevel error,
the proofs of the current paper are challenging since unlike Jacod, 2004 we need to
deal with m dependent triangular arrays instead of one. Formally, when letting m
tends to infinity, we recover limit processes of Jacod, 2004.

The original paper Ben Alaya, Kebaier, and Ngo, 2021a of this work is submitted.

3.1 Introduction

Suppose that we are in the probability space (2, F, (Ft)o<t<7,P) endowed with the
filtration Fs = o(Yy,,u < s), where Y is a Lévy process with characteristics (b, ¢, F')
with respect to the truncation function h(z) = x1j;|<1}, meaning

2
E(ef¥t) = exp {t(iub - % + /F(dac)(eiw” — 1 — iuzlyy<iy) }
We consider the Lévy driven stochastic differential equation (SDE)
t
Xt—:co—i—/ F(Xo)dYs,  te[0,T], T >0 (3.1.1)
0

where 2o € R, f € C? (a three-times-differentiable function). Without loss of gen-
erality, we assume that 7" = 1. In what follows, we consider the continuous Euler
approximation

AX} = f(Xp AV te[0.1] (312)

with time step 1/n, where n,(t) = [t

t
n
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For the error process X" — X, Jacod and Protter, 1998 proved that the sharp rate
is /n when the characteristic triplet corresponds to (b, ¢, F') with ¢ > 0. Let us precise
that a rate is called sharp if the normalized error converges to a non-trivial limiting
process. Then, Jacod, 2004 established new sharp rates of convergence different from
the classical /n rate for several cases with a Lévy characteristic triplet (b,0, F') and
F(R) = oco. Those cases correspond to different behaviors of the Lévy measure F
around zero. More recently, Wang, 2015 extended the results of Jacod, 2004 for the
case of general It6 semimartingales.

In the current paper, motivated by the multilevel Monte Carlo method introduced
by Giles, 2008b, we study instead the error between two Euler schemes with different
time steps. In particular, we are interested in determining sharp rates wy ,, for the
weak convergence of the error between two consecutive Euler approximations X" —
X" and identifying the corresponding limiting processes. Here, X™ and X" stand
for the Euler schemes with respectively time steps 1/n and 1/nm that are build on
the same Lévy paths. In the literature, several papers studied this multilevel type
error. Indeed, when the characteristic triplet of Y is (b, 1,0), Ben Alaya and Kebaier,
2015 proved that

mn

W(Xnm — Xn)) Stil;ly (Y, l'j)7 as n — o0

(Y,
with m € N\{0, 1},

t , 1 t ,
U, = /0 FXUAY,+ /0 FX) S (X)W,

and W is a new standard Brownian motion independent of Y. When the characteristic
triplet of Y is (b, ¢, F') with ¢ # 0, Dereich and Li, 2016 proved a similar result with
a sharp rate \/n under some regularity condition on F' around zero with an explicit
limiting process.

Therefore, to fill the gap in the literature for the analysis of this type of error,
we consider Y as a Lévy process with characteristics (b,0, F') where F' is an infinite
measure. More precisely, for the same cases studied by Jacod, 2004 we consider in the
current work the multilevel type error between two consecutive Euler approximations

defined by

U = Xgnm(t) — X;‘Z;(t), t € [0,1]. (3.1.3)
For this multilevel type error, we use triangular arrays technics to find the sharp rate
of convergence that turns out to be faster than y/n which is the usual rate when Y
incorporates a continuous Gaussian part. It is worth noticing that the work of Jacod,
2004 when studying the error X;' — X, needs only to treat one main contributing
triangular array. However, in the current work, the technical challenge we faced
when proving the convergence of the correctly normalized multilevel error (3.1.3)
consists in studying the asymptotic behavior of the joint probability distribution of m
triangular arrays. These dependent triangular arrays appear naturally when studying
the multilevel error obtained between the finer discretization with time step 1/nm
and the coarse one with time step 1/n. To overcome this problem, we develop new
treatments and proofs to handle these m dependent terms that contribute in the limit
in different ways depending on the assumptions taken on the original Lévy measure
F around zero. In more details, besides using the “subsequences principle" trick (see
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e.g. Jacod and Protter, 2012), we use arguments of Sato, 1999, Ex.12.8-12.10 that let
us avoid complicated calculations of multi-dimensional integrals and rather focus on
the pairwise asymptotic behavior of the m marginals and we conclude using technical
criteria of Kallenberg, 2002, Theorem 15.14 and Corollary 15.16 to prove the weak
convergence to the limiting process.

The rest of the paper is organized as follows. In Section 3.2, using similar notations,
we recall from Jacod, 2004 some assumptions and estimates on the Lévy measure and
also the semimartingale decomposition. Here, in the spirit of Jacod, 2004, we precise
our consideration for five specific cases. In Section 3.3, we introduce and prove our
main results namely Theorem 3.3.1 for the tightness, Theorem 3.3.2 and Theorem
3.3.4 the functional limit theorems for the couple of normalized errors. Section 3.4
gives the details of the error analysis to prove our main results with specifying the
main and rest terms for each cases and the study of the asymptotic behaviors of
the joint distribution of the main terms. The rest terms are treated in appendix
3.5. Appendices 3.6 and 3.7 are dedicated to recall some technical tools that we use
throughout the paper.

3.2 General settings and notations
Let f denotes a real-valued function f satisfying
f € C? and globally Lipschitz. (Hy)

It is well known that assumption (Hjy) guarantees that (3.1.1) has an unique non-
exploding solution. The crucial factor to find the sharp rates of the multilevel type
error (3.1.3) is the behavior of the Lévy measure F near 0, which will be expressed
through the following functions on R :

0.(8) = F(B,+00), () = F(—00,-f),
0(B) =0+(8) +0-(8).

Note that from now on, we denote C' as a generic constant which may change from line
to line and « denotes our basic index. We keep the same framework as in Jacod, 2004
and we introduce the four main classes of Lévy measures F' that we are interested in:

We have 6(5) < 5Ca for all g € (0,1]. (HY)
We have 5904 (8) — 04 and BY0_(5) — 6_ as  — 0 for some constants 61, 6_ > 0.
(H3)

Weset 0 =0, 4+60_>0and @ =6, —6_, as § — 0, 9(5)~ﬁ%.
The measure F' is symmetrical about 0. (H3)

We have b = 0. (Hy)
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We note that (H$) is weaker than (H$). Here, the Hypothesis (H2) always holds
because the Lévy measure F integrates z +— |z|?> A 1. That is

1BP26(8) = /| (B AT F) < /| (e A D) < 4o

Now, let us give an example of a process in finance which satisfies the first two hy-
potheses.

Example 1. We consider the CGMY process with Lévy density

Ce Mz /g +Y 2 >0
F(dw) = { Ce /|lz|"TY  z<0

where C;G,M >0 and 0 <Y < 2. This process always satisfies Hypothesis (HY) and
therefore it satisfies Hypothesis (HY). More precisely, we have

2C e Mz L o=Gr _9
B0 = OB [ e

So, noticing that

—Mzx —Gzx

e +e -2 C
gy dr < —(eMPr 4 e7CPn —2) — 0.
B /x>ﬁn pEn r < Y(e +e )

n—oo

2
we deduce that BY 0(B8,) — 0 as n — oo, where 6 = 7

In the same spirit as in Jacod, 2004, we prove sharp rate u, ,, for our multilevel
error U™™ (3.1.3) with pointing out the technical choice for the sequence 3, tending to
0 that truncates the small jumps. To do so, we consider five different cases depending
on some reasonably general circumstances.

(C1) If (HY) is valid for some o < 1 and d := b — flxlgl xF(dx) # 0, then we choose

Upm = 2% and B, = (logn)? (See the Remark 3.2.3 for the finiteness of d)

(C2) If (HY) is valid for some a < 1 and hypotheses (H3) and (Hy4) are also valid
1/a 1 1/a
1" aud g, = (k2 "

(C3) If (HY) is valid for @« = 1 and F' is non-symmetric then we choose uy , =

(m—lgng;gnﬁ and Bn = 107gzn'

(C4) If (HY) is valid for @« = 1 and hypothesis (Hs) is also valid then we choose

—__mn_ _ logn
Un,m = (m—1)logn and f, = n

then we choose uy, m = {%

1/
(C5) If (HY) is valid for some o > 1 then we choose up,m = [%] * and
_ logn
Bn = i/

3.2.1 Some estimates on Lévy measure

In what follows we consider the same notations as in Jacod, 2004 and for § > 0, we
denote

= .’11'2 X
«(8) = /M\ 2F(da),
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d)= [P, d@)= [ elF)

= *F(d _(B) = *F(d 2.1
po9)= [ ePran. o= [ prRan, e20
6(B) = d4(B) + d—(B), p(B) = p+(B) + p—(B),
() = delB) —d_(8), Y =b+ [ P,
|z|>1
d(B) = — d'(8).
Note that d(8) =b — fﬁ<‘x|§1 xF(dz)if B<landd(B)=0bif 5 =1.
e Without loss of generality we can reduce ourselves to study the case where we

have bounded jumps and coefficient f with compact support. Thus, from now on we
assume that

(A) f € C?® with compact support and |AY| < p for some integer p > 1, which
amounts to say that 6(p) = 0.

Indeed, adapting the same arguments as in Proposition 2.4 in Jacod, 2004 to the
multilevel error setting, we can easily recover our main results namely Theorem 3.3.1,
Theorem 3.3.2 and Theorem 3.3.4 for non-bounded jumps and coefficient f without a
compact support.

Remark 3.2.1. Note that under (A) the quantity [, |z|*F(dx), a > 2 is finite.

In this part, we recall from Jacod, 2004 under assumption (A) some useful esti-
mations on the above quantities introduced in (3.2.1). We provide some details for
the proofs of the following lemmas in appendix 3.6.

Lemma 3.2.2. Since 0(p) =0, under (HY'), we have for any g € (0,1]

() <0 p(B) < Clog (§) L a<l
f|x\>5 |z|*/2F(dx) < Bf/ where s(8) = lolg(%)7 a=1
5(8) + 1d()| + d+(8) + d_(8) + | (B)] < Cs(3) B0 a1

(3.2.2)

Remark 3.2.3. Note that under (HY) with a < 1, we have [6(8)| < C for all § €
(0,1], then by the monotone convergence theorem [ |z|F(dz) < occ.

Lemma 3.2.4. If further (HS) holds, then we obtain the following equivalences or
convergences as 3 goes to 0,

,

co(B) ~ B2,

bei7s = afs eizp = 0l

Bl (8) — 2% gold (B) — = ifa>1 (3.2.3)
d B 0 d_0) 0. ifa=1

og(1/5) U+ og (1/5)

dy(B) = dy d_(B) — d_ ifa<1

with some positive constants d and d_.
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Lemma 3.2.5. When o = 1, under assumption (HS), we have for every b > 0 and
as §—0

/

1 0
/B<ml<b(xlog |z|) F(dz) — —3 (3.2.4)

(log (1/8))?

Besides, for a given truncating sequence (8y,)n>0 that tends to zero as n tends to
infinity, we introduce

Cni=c(Bn), dn:=d(B), d,:=d(Bn), pn:=p(Bs) and &, :=d(3),

to make the notations less cluttered. We deduce easily from (3.2.2) that under (HY),
we have

Cn < Cﬁg_aa
d'y + [dn| + 0n < Cs(By), (3.2.5)
pn < Clog (5%) :

3.2.2 Semimartingale decomposition

Now, we give a decomposition of the process Y.

e For a predictable real function § on 2 x Ry x R and a real measure m, we de-
note 0 * m the stochastic integral process given by ¢ x m; = fot Jga 0(s, z)m(ds, dzx)
for ¢ > 0. Let p denotes the jump measure of our driving Lévy process Y and
v(ds,dx) = ds ® F(dz) is its predictable compensator. For 5 > 0, we can write

Y =YP + NP where YP = A% + M? with (3.2.6)
Atﬁ = d(ﬁ)t, Mtﬁ = xﬂ{|x\§ﬁ} * (,u — I/)t and Ntﬁ = x]l{|x‘>5} * g

Then MP is a square-integrable martingale with predictable bracket < M? MP >,=
c(B)t. Moreover under assumption (A), for 3 > p we have N® = 0 and then
Y = AP + MP with A,@B = V't, whereas for 3 = 1 we have A} = bt.

e In the context of the multilevel type error (3.1.3), we consider two time discretiza-
tion grids. The coarse grid with time step 1/n and with associated times t; := % for
all i € {1,...,n+ 1}. The finer grid with time step 1/nm and with associated times

- ,
! nm

with i € {1,...,n}, k € {1,...,m + 1} and m € N\ {0,1}. Note that t1 = ¢y and
t! = t; corresponding to the coarser grid. We note also that the point of the coarse
grid can be written either as a final point t?f{l or as the next point t} on the same
grid. Now, for a given truncating sequence (/3,)n>0 that tends to zero as n — oo, we
denote

177

M = M — M| for t € I(nm, i, k) := (tF,¢517),

with (i,k) € {1,...,n} x{1,...,m}. Further, let (Tpﬁn (tf)) . denotes the sequence
p>

of the successive jump times of Y after time tf and of size bigger than or equal to 3.
Let also K (tF) denotes the random number of jumps occurring in the time interval
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I(nm,i, k) that satisfies Tﬁ?tf)(tf) < thtl < T[i?tf)+1(tf)' Note that the random

number K (t¥) is well-defined as we use the cut-off of size 8,,. Then, the following two
main properties hold:

(P1) Conditionally on Fx, the random variables (AY,, on (tk))P>17 K(t’?) and {Mﬁkn L€
I(nm,i, k)} are independent. Each AY, T () has the density 573 )1|x‘>5n (dx)

and K (tF) has Poisson law with parameter

(P2) The process {Mtﬂk”t,t € I(nm,i,k)} is a Lévy process, independent of F;x and

satisfying for ¢t € ](nm, i,k), forveR

B = exp { (t- ) /|y<ﬁn( Y1 — iuy)F <dy>} :

We also note that under Hypothesis (H{'), with some choice 3, going to 0, we have
Anm — 0 as n — oo.

3.3 Main results

Our main results are to prove the convergence in law of u,, ,»U™"" to the limit process
with the above choices of the rate w,,,, corresponding to those cases. First of all,
we assume that function f always satisfies assumption (Hy). The theorem below
is about the tightness which can be easily deduced by Lemma 3.4.5, Lemma 3.4.4,
Lemma 3.4.8, Lemma 3.4.7, Lemma 3.4.11, Lemma 3.4.10, Lemma 3.4.14, Lemma
3.4.13, Corollary 3.4.3 and Lemma 3.7.2 in appendix 3.7.

Theorem 3.3.1. Assume that hypothesis (H) holds for some a € (0,2). Then, with
the above choice of uy . in the previous section, the sequence (unmU:nT)) 1s tight.

Let Y be the discretized process associated with Y, that is ?? =Y. We

observe that the sequence Y converges pointwise to the process Y for the Skorohod
topology. The following limit theorem considering the error between two consecutive
levels Euler approximations is covered by (C1).

Theorem 3.3.2. For case (C1), the sequence

", unmU:nT)) £, (Y,U), when n — oo

where U 1s the unique solution of the linear equation

/ (X )Us_dYs — Zy, t€]0,1] (3.3.1)
and when letting n — oo,

|m Y]
—1

—a Y (ff (Xr - ) AV, =50+ (f(Xp,) = F(Xr))(1 = b

k:Rp <t

me)>
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2 t
+iAfwuﬂLym@&m

where d = b — f\$|<1 xF(dz), (Rk)k>1 denotes an enumeration of the jump times of
Y (or of X) and (Yi)r>1 is a sequence of i.i.d. wariables, uniform on [0,1] and
independent of Y.

Proof. This proof uses some results in Section 3.4. In particular, we begin with the
decomposition of unij:]ZT) from (3.4.2). From Theorem 3.4.6 and Lemma 3.4.4,
we have (Y, upmZ™™) N (Y, Z). Then the result is straightforward according to
Theorem 3.4.2. O

Remark 3.3.3. From Theorem 3.3.2, if we let m — oo, we will recover the same
limit as the case of Euler (Case 3a in Jacod, 2004), that is

Zy=d Y ([f(Xr) = f(Xpe-)]Th + ' (Xp— ) AX R, (1 = Ty))

k:Rp<t
d2 t ,
=5 [ e,

where d = b — f\wl<1 xF(dz) and (Yi)k>1 s a sequence of i.i.d. variables, uniform on
[0,1] and independent of Y, and (Ry)k>1 is an enumeration of the jump times of Y

(or of X ).

The following limit theorem is of the rest cases and with stronger assumption (HS)
for some a € (0,2).

Theorem 3.3.4. We have that the sequence

(?nﬂn,mU:;’T)) £ (Y,U), when n — oo

where U is the unique solution of the linear equation (3.3.1) and the process Z is
described as follows:

(a) In (C2) and (C4), )
a:Aﬂ&)ﬂ&ﬁm (3.3.3)

where V' is another Lévy process, independent of Y and characterized by

iu t92a 1 i .
E(e Vi) = exp (4/ |$|1+a (6 —1- zuxﬂ{$|§1})dx> . (334)
Hence, V' is a symmetric stable process with index .
(b) In (C3),
07
= / f(X s—)ds, (3.3.5)

and we even have that unmU:nT) converges to U in probability (locally uniformly
in time).
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(c) In (C5), we have (3.3.3), where V is a Lévy process, independent of Y and char-
acterized by

. t 1 4
E(e®"*) = exp (; / { (03 + 9%)11{:»0} +20.0_1(,<0y) |x‘ﬁ(ewm —-1- zux)} dx) .
(3.3.6)
Hence, V' 1is stable with index «.

Proof. This proof also uses some of the results in Section 3.4. In particular, we begin
with the decomposition of “mmU;:T) from (3.4.2). From Theorem 3.4.9, Theorem
3.4.12, Theorem 3.4.15, Lemma 3.4.7, Lemma 3.4.10 and Lemma 3.4.13, we have

Y i Z7™) £, (Y, Z). Then the result is straightforward according to Theorem
3.4.2. O

3.4 Error analysis

As mentioned in subsection 3.2.1, with no loss of generality, we develop our error
analysis under assumption (A). For ¢ € [0,1], we first recall that nn( ) = [Z—t] The

error between two consecutive levels Euler approximations U;""" := X" —Xxnm
t Nnm (1) Nrm (t)

is given by

. Wn(t) " nm nn(t) n n
Um:(t) :/0 (f(Xnnm(S_)) - f()<77nm(s_)))d}/:9 B A (f(Xnnm(s_)) - f(Xnn(S_))>d}/s
Nn (t) n.am
= [ (e U = S OG )Y,

- /onn(t) (f(Xgnm(s—)) - f(X;Ln(s_)))d}@.

Let G(x,y) := f(x+yf(x)) — f(x), using the interpolation Euler scheme X" T (5—) =

X (s2) +f(X§n(s_))(Ynnm(s )y = Yy.(s—))> we deduce that

n,m i (t) nm n,m nm
Uﬂn(t) /0 (f(X"?nm(S—) + US_, ) o f(Xﬂnm(S—)))dY;

nn(t) n
N /O GXD (o s V(o) = Yon(s)) AV
(3.4.1)

Remark 3.4.1. Under assumption (A), using Taylor’s expansion we write

G(z,y) =yff (z) + y*k(z,y),

where k is a C' function that vanishes outside K xR for some compact subset K C R.
Also, we note that ff’ has compact support.

Consequently, given a deterministic rate of convergence w, ,,, we write

mn,m nn(t) nm n,m nm mn,m
unvann(t) :un,m/o (f(Xnnm(sf) + Usf ) - f(Xnnm(sf))>des - un,mZt )
(3.4.2)
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where

Tin(t)
zpm = / FEXE ) Vo — Yo o)V
77n(t) " 9
+ /0 KX (5=) Yonm(s=) = Yo (s2)) Y (s-) = Y (s))"dYs. (3.4.3)

Now, recalling the notation 7? =Y. 1), fort € [0, 1], we follow the same arguments
as in Graham et al., 1995, Theorem 9.3 page 40 to prove the following result.

Proposition 3.4.2. Forn — oo, if (Y, unmZ™™) 5 (Y, Z) then (Y, unmU;”(n)) 5

(Y,U), where the limiting process U is solution to (3.3.1).

Proof. By (3.4.2), we have

) _ TInm s
Un,mU;nr(TtL) = ; R (un,ng—m>ﬂ{U§_’m¢0}dYs

S—

/nn(w FEPM oy FUET) = FX7 )

n,m
—Unmdy -

Let 7% = inf {t > 0: |upmU;"™| > a}. Then the sequence (up U/ rna) is rel-
atively compact, and any limit point will satisfy (3.3.1) on [0,7%], where T =

inf {t > 0:|Uy| > a}. But limgjoe T® = 00 a.s., 50 unmU:n}") A, O

Corollary 3.4.3. The tightness of the sequence (?n, un,mU:;:T)) 15 a straightforward

consequence of the tightness of the sequence (?n,ummZ”’m).

Thus, the aim now is to study the asymptotic behavior of the couple (?n, UpmZ™™).
To do so, on the one hand, we set

UpmZy " = MPT + RE™ (3.4.4)

where M™™ stands for the main term contributing in the limit behavior and R;"™
stands for the rest term that will tend to zero. In the sequel, the expression of the
above decomposition has to be specified for each case (C1)-(C5). It is worth noticing
that the second term in (3.4.3) will not contribute in the limit and will be considered
as a part of R™™ except for (C1) where it will be considered as a part of M™™. On
the other hand, we also need to rewrite the process Y in a triangular array form.
To do so, recalling our notations given in subsection 3.2.2, with the formula (3.2.6)
and taking into account the number of jumps K (t¥) occuring in the time interval
I(nm, i, k), with a truncating sequence (8y,)n>0, we write

xX-N

Y':=Y"(1)+Y"(2), where
nt] n,m n,m L m n
= ZE:% y (1), g (1) = Zk:l(MgtfH + ijz AYTjﬁn (tf)l{K(tf)zj})v

nt| n,m n,m R m n
= ZE:% v (2), y T (2) =00 (ﬁ% + AYTl'B”(t?)]l{K(tf)Zl}> .
(3.4.5)

In particular, (Yn(l))nzo converges uniformly in probability to zero for all cases except
case (C3) and (Y"(2))n>0 is tight for all cases. Each subsection below is dedicated
to study separately each case. Note that from now on, we denote C' as some positive
generic constant that can be changed from line to line. Moreover, by the notation
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L, 0, we mean that sup,, [['y| goes to 0 in probability for all ¢ as n tends to
infinity.

3.4.1 Asymptotic behavior of the couple (Y, u,,,Z""™) for case (C1).

For this subsection, we first need to introduce some complementary notations. Fol-

lowing subsection 3.2.1, let (Tpﬁn (t},t5)),>1 denotes the sequence of jump times and

K(t},t¥) the random number of jumps that occur on the interval (¢},t¥], where we
recall that t} = % and tf = % Then, each AYTf"(t;},tf) has the den-

sity ﬁﬂ{lben}F(dl‘) and K(t},t¥) has a Poisson distribution with parameter
(k — 1)An,m. By the representation formula (3.2.6), we obtain a decomposition for
the normalized error term wy, ,,Z;""". More precisely, from (3.4.3), we write

U 20 — }ju/ FF(X (o )dT2(0)

=n M (t) —n =n
ST+ [ Ry Vaeo) = VoA E) + T T 6),

where

PR = nm Jo (AL (o) = Ay (o))AAS,

LE@) =t Jy (A (o) = Ay ANttt Jy (N2 (o) = Ny )AL

PHG) = wnm fy(M," ()= My )dYs,

I7(4) = Unm g(Nf:m(sf)—Nﬁn( AN

LP6) =t fol(A nnm(s )= A+ (N ) = Ny M

Iy (1) = unmdn sz1 D ko (Xﬁ,AY B (41, tk))(Ntﬁ?“ Nf}") ;

T}(2) = wnm Jy(ND" )—Nﬁn(s ))QdAf",

Ti(3) = ttnm fo (Vi) ~ mﬂydn—ﬁ@»

Iy (4)= fon(t)(k(X;Ln(s—)vYnnm(s—) = Yo s) = ’f(Xﬁn@_)va"m(sf) - Nﬂ"( )))de(Q),
| TV6) = St S S (k <Xﬁ,Nﬂ" N = KX AY o o DN = NI

Now, we rewrite Ty (1) = T, (1,1) + T} (1,2), where

nt] m
I, ) =t o 2 D R A 1 ) (A7 1 )V Lt 21
z[ntl km2 .
T (1,2) = M ST AV ) D (A )
K(thth) o -
+ Z AY, TP (1t AYTf,"(t;‘,tf))’
h,h'=

h;éh’
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J
with the convention ) for j < i equals to zero. For the term driven by I'"(2), we
i

rewrite
T]n(t) ! n n n n n
/0 FPXE ()T (2) = T(2,1) + T2, 2) + T7(2,3),
where
ry(2,1) = nmdn sz P [k = DAY o 1 L (aty >0 s =0
i=1 k=2
+AY, ﬁn(tl ) ]l{K(tl tk)>1}]
m K(th) K(th,tk)
unm/n
I7(2,2) = Zfo Dk =1) " AV e + Z AV o]
i=1 k=2 h=2
n unnl
7(2,3) sz f( k= DAY pon oy Lire =1y Lirc et )21y
=1 k=2

Then we rewrite T7(2,1) + T (1,1) := Y0 (3n(1) + 27(2)) where
unvn
Zf FXE) (k= DAY g o Lty >13 L (el o) =0y

un7n
Z G( tl’ ﬁ"(tzl,tf))l{K(t},tf)Zl}‘

Now, concerning z/*(2), we rewrite the sum » ;" , G(X tl’ AY, T8 (1, tk))ﬂ{K(tl hy>1) 38
follows

DG AY 1) it atyony Lz + D GO Ao 1) Lt sty >1y L) =0
k=2 k=2

=(m —1)G( thAY ﬁn(tl))ﬂ{K(tl >1} + ZG t1, AY, TP (¢! tk))ﬂ{K(tl tk)>1}ﬂ{K(t1) o}l{K(t2)>1}
m

+ D GO AY 10 Lt ey Lsca)=0y L )=o)
k=2

As K(tF) = K(t#,tF) for k € {1,...,m}, the first term in the first for k = 2 vanishes
and the 2 first terms in the second sum vanishes also. Then, we have

ZG tl’ Bn(t%,tiﬁ)):ﬂ‘{K(t},tf)Zl}
k=2

=(m = DG, AY 1))V reey1y + (1= 2)G (X1, AYpen 20 ) L et 2)=01 Lk (12)>1)

+)G(x; 115 AY o 1 ) L iy>13 Lk 42) =0y
k=1
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Then, by induction, we deduce

m—1

~n un,mdn

z'(2) = Ep—— Z(m — R)G(X {1, AYpon ) e y=0y L ()21}
k=1

Therefore, we can rewrite I'7(2,1) + T} (1,1) = = md” >y Z[m] Zl', where

2 = (XD (=) AY o oy +(m—=R) G (X1 AV pon )L en )0y L i) 213

(3.4.6)
In this case, we have u, ,, 2" = M + R™, with
nn(t) —n
M = [ G, (T + T + T (L, 1) and
0
5 nn(t
REM=TH22) 4 TR+ Y [ £ )i (3.4.7)

—n nn(t) J—, —n —_n
LTI+ /0 BOX o Yooy — Yoo AT (3) + T (4) + T (5).

The proof of the following lemma is postponed in Appendix 3.5 below.

Lemma 3.4.4. For case (C1), we have as n — oo the sequences of processes (?n(l))nzo
and (R™"™)n>0 converge uniformly in probability to 0.

Lemma 3.4.5. For case (C1), we have the sequences (Y (2))n>0 and (M™™),>o are
tight.

Proof. First, we consider Y7 (2) given by (3.4.5). By the Property (Pl) the relation

(3.2.1) in particular d,, = b’ — d/,, the fact that 1 — A, ,, — e Anm < 2o , we have
dn — d/n 1 + )\n m|d,n‘
E(y!"(2 =| 24+ (1—emm < : : 4.
B @IF)| = |+ (1= e ) Lo < o2 (348

Further, by the Jensen’s inequality, [ [z|*F(dz) < +o0o (see Remark 3.2.1) and the
inequality 1 — e Anm < An,m, we have

1 1 .d2
< 1 4.
) SO, (3.4.9)

n a2 -
E(ly}(2)*[F) < Clat+-e Anm)

Then, in case (Cl), using the boundedness of |d},| and |d,| (see (3.2.2)), Apm — 0 as
n — 00, yr'(2) satisfies (3.7.3) and (3.7.6) ensuring the tightness from the second part
of Lemma 3.7.2.

Now, we consider the tightness of the sequence (M™™),>¢. In this case we recall that

MP" = ff’(X" AT ()T (2, 1)+T (1, 1). We rewrite ® ¢ (X (oy)dle(1) =
S ), e - ff'(X@i’"(mQ;Q);W,

=n T n n Un,mdn m
I'y(1,1) = Z£ t}1 z'(1), #'(1) = nm Lo k( tuAY ﬂn(t%tf))(AY I tk)) ]l{K(tl th)>1}>
p(2,1) = T 2(2), #0(2) = “2mde o gff'< ) [k = DAY 0 ) Lscsyony Lo a0

FAYon 1 gy Lisc et b)>13 | -
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By similar arguments and the fact that the functions ff’ and k are bounded, we
2

have E(IC}(1)||Fp) < Ctzade B(|2p(1)]|F) < Ctzedl and B(22(2)]|Fy) <

CUnmldnldn “Then we are in case (C1), using the boundedness |d,,| and §,, (see (3.2.2))

n
and Uy, = 4, we obtain that (j*(1), z;'(1) and 2j*(2) satisfy (3.7.2) ensuring the
tightness from Lemma 3.7.2. O

Theorem 3.4.6. For case (C1), we have

(¥"(2), M™™) 5 (V. 2),
where Z is the limit process given in (3.3.2).

Proof. Since ff’ is Lipschitz-continuous, by virtue of Lemma 3.7.10, in order to
prove the convergence in law of (Y, M™™) it suffices to prove the convergence of
(V7(2), (1), T3(2,1) + T} (1, 1)).

Eirst as Unm = 5, we use (3.2.2) to get d, = d = b — f‘$|<1 xF(dz) and then we
ave

L m—lunmd?1 d?
—unmzz (A — A Aﬁ,;;l—Af;):—( Jnmdn _, &

1 b2 2mn n—oo 2

Thus, it is enough to prove the convergence in law of the pair (Y] (2), F”(Q 1) +
T}(1,1)). To do so, we recall that T?(2,1) + T (1,1) = 2= md” Dbt Die 2 Where
Z'), 1s given by (3.4.6). Now, following Jacod, 2004, we ﬁrst study the above trlangular
array with freezing the component X[1. Thus, we treat the triangular array with

Z(2) = [/ () (k = DAY pon ) + (m = R)G (2, AY gm0 )1 s 1 4y =0y L) 213

i€ {l,...,n}, k€ {l,...,m} with an arbitrary value z € R Next, based on the
denotations in (3.4.5), we introduce Y7, (2) = Zzntl Py 1y 1(2), where y'71.(2) =
AY, ﬁn(tk)ﬂ{K(tk)>1} In this case, we observe that Y7 (2)—Y 7| (2 )— SP L SP d

k=1 nm

n—0o0
d and Ymmdn Then instead of working with (Y7 (2),T%(2,1) + 7 (1,1)),
nmo o o (m 1)°

it is enough to prove the convergence in law of (3271, y7%(2), 200, Z.(2)), k €
{1,...,m}) € (R?)™ to m independent R2-Lévy processes. First, since this (R?)™-
vector is tight, it is enough to prove that every weakly convergent subsequence has
the same limit. In what follows, we omit the notation for the subsequence for more
readability. For the independence of the components of the limit vector, by us-
ing Ex.12.8-12.10 in Sato, 1999, we only need to prove the independence between
the limit marginals of (323 /'7'4(2), i1 45w (2)), (303 ¥k (2), 2201 21y (2)) and
(Oims 7 (2), 200 20 (2)), for any kK € {1,....m}, k # K.
e First, by the independent structure of the subsequence marginals

S (Y TR(2), Y1 (2) for any kK € {1,...,m},k # K/, it is obvious that the limit
marginals are independent.

e Second, for fixed k, k" € {1,...,m}, k # k', we consider the sequence
> i1 (Y5k(2), 2, (2)) whose variables (y'34(2), 27y (2)), 1 < i < n are i.id. For k >
K, y'i%(2) and 27, (2) are obviously independent and the independence of the limit
margmals is straightforward. For k < k/, we use Lemma 3.7.7 to identify the limit
characteristics. Let us denote the law of (/7’1 (2), Z(2)) by Kﬁﬁ; We will study the
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convergence of nK,’f”ﬁ;(h) to K** (h) with some function h to be precised later where

K" (h) = ;/h(x, 0)F(dx) + ;/h((), f () =Dy + (m—k)G(z,y))F(dy).

Therefore, we have nKﬁ%(h) = nB(h(y'}%(2), 2 (2))| Fp)

=nE(h(y'1x(2), 2 (2)); K(t) = 0, K (1) = 0| Fy1)
+nE(h(y'1(2), 5w (2)) K () > 1, K (8}, 1) = 0| F,)
+nE(A(y 1 (2), 2w (2)s K (1) = 0, K (1) > LK (¢}, 1) > 1| Fp)
+nE(h(y 1(2), 7 () K(5) > LK) = 0|Fp)
+nE(h(y 1(2), () K(85) > LK) > 1|Fp)
1 — e Anm

M /|y>b’n hO, Ff'(2)(K = 1)y + (m — k)G(2,9))F(dy)

+nP(K(t5) =0, K(t},t¥) > 1[F)(1 = e *m)h(0,0)

1771
(1 — e Pnm) (1 — e Pnm)2

h(w, 0)F(dz) + L= ¢ ") / h(w, 0)F(da).
mAnm /|x>5n MAn,m |2]>Bn

Three following headings demonstrate three elements in Lemma 3.7.7, each corre-
sponding to some specific choices of function h.

+ e*An,m

Concerning assertion (i): Since we work with bounded jumps, we observe that
[ ' (2)(k = D)z + (m — k)G(z,%)| < Cla| and |ff'(2)(k — 1)z| < Cla| on z € [-p,p].
We shall choose h = hy,, where hy o (2,y) = 1{|z/>u,|y|>v} Pounded and vanishing on a
neighborhood of 0, with (u,v) # (0,0). For any function P satisfying |P(y)| < Cly|, if
we have Cly| < v then |P(y)| < v, which yields hy (2, P(y)) = huu(2, P(y) Licly>v}

for any z,y € [—p, p]. Then, we have nKﬁj%(huw) — K5 ().
n—oo

Concerning assertion (ii): For this case, we choose h = h/,h” where I/(x,y) =
Tl z21y2<1y and W (z,y) = yle o<y, As [ff/(2)(k—1D)x+ (m —k)G(2,2)| < Ol
and |ff'(2)(k—1)z| < C|z| on & € [—p, p], using the dominated convergence theorem,
[ |z|F(dz) < C and @ = mAp,m converges to 0 as n tends to infinity, we obtain
that nK,’ijf,;(h’) and nKﬁjfr:(h”) converge respectively to K** (n') and K** (h") when
n goes to infinity.

Concerning assertion (iii): Here we take h = hy, ha, hs where hy(z,y) = x2]l{xz+y2§},
ho(z,y) = 2ylizeq,2<y and hg(z,y) = y21{mz+y2§} and apply similar arguments

as in (i), we get nK,]lfj,]g;(hl), nK,]lfj,]g;(hg) and nK,]jjlﬁ,;(hg) converge respectively to
K*¥ (hy), K*¥(hy) and K%* (h3) when n goes to infinity. In conclusion, for any
fixed k < k' the obtained limit pair has independent marginals, since it has no Gaus-
sian part and its Lévy measure K**' is supported on the union of the coordinate axes
(see e.g. Fx.12.8 in Sato, 1999).

e Third, we consider the pair Y 7 (27 (2), 2} (2)) for fixed k, k" € {1,...,m},
k # k' and by symmetry it is enough to study only the case k < k’. Let us denote the
law of (Z7'.(2), 24 (2)) by Lﬁ:’fn. We will prove that nL’fL’,]ﬁn(h) converges to LK (h)
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with some function h to be precised later and where
LK (h) = % /h(ff’(z)(k — Dz + (m — k)G(z,2),0)F(dz)
4o [HOFFEW = Dy + (m = K)G . 0) F(dy).

Therefore, we have nLIfL’,Iﬁ,;(h) = nB(h(((2), Gl (2)) 1 F32)

=nE(h(Z4(2), 2 (2)); K (t) = 0, K (tf) = 0| Fy)
+nE(h(Z(2), 2 (2)) K(tF) > 1, K (], ) = 0[F1)
+nE(h(Z(2), 2 (2)); K (8F) = 0, K(tF) > 1, K (¢}, tF) > 1]F,1)
+nE(h(Z(2), 2 (2)); K (8F) > 1, K(tF) = 0, K (], ) = 0| Fp1)
+nE(h(Z(2), 2 (2)) K (8F) > 1L, K(tF) = 0, K (], %) > 1|F,1)
+nBE(h(Z(2), 2 (2)) K (8F) > 1, K (1Y) > 1, K(t],tF) = 0| F,1)
+nE(h(Z(2), 2 (2)) K (1) > 1, K (1) > 1, K(t],tF) > 1| F,)
=ne 2’\"mh(O, 0)
— _)\n,m
+ e Anmk nl-e / hO, ff'(2) (K — 1)y + (m — k')G(z,y))F(dy)
mAnm  Jly>6,

+nP(K(tF) =0, K(t},tF) > 1[F,1) (1 — e *m)h(0,0)

1771

1 _ An,m
e Ak 2 =€ T / h(ff (2)(k — 1)z + (m — k)G(z,x),0)F(dx)
MAnm Jja|>B,

+ ’)’Le_)\n’m'(l . 6_)‘"””)(1 _ 6—>\n,*m(k—1))h(0’ 0)
(1 o 6—>\n,m)2€—)\n,m(k_1)

+ / h(ff'(z)(k — 1)z + (m — k)G(z,x),0)F(dz)
|2|>Bn

MAnm

+n(1 — e Anm)2(1 — e~ E=1) (0, 0).

Now, to check the three conditions of Lemma 3.7.7, we use similar arguments as in
the second point above .

Concerning assertion (i): Since |ff'(2)(k — 1)z + (m — k)G(z,z)| < C|z| and
Iff'(z)(k — 1)z|] < Clz| on € [—p,p], we choose h = hy, where hy,(z,y) =
I{|z|>u,|y|>v} Dounded and vanishing on a neighborhood of 0, with (u,v) # (0,0).
For any functions P; and P, satisfying |P;(z)| < Cl|z| and |P2(y)| < Cly|, we have
hu,U(Pl(x)7 PQ(Z/)) = hu,v(Pl(x)’ PQ(y))]]-{C|x\2u,C\y|2v} for any z,y € [_pap]' By sim-

. k. k' ’
ilar arguments, we have nLym(hyy) — LFF (hy).
n—oo

Concerning assertion (ii): For this case, we choose h = b/, h” where h/(x,y) =
Tl q,2<qy and B (z,y) = yle ey As [ff/(2)(E—Da+(m—k)G(z,2)| < Cl|
and |ff'(2)(k—1)z| < C|z| on z € [—p, p], and applying similar arguments used in (ii)
of the second point, we obtain that nLﬁ:lf,;(h’ ) and anL’,]Z;(h” ) converge respectively
to L¥¥ (W) and L*¥ (h"") when n goes to infinity.
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Concerning assertion (iii): Here we take hj(z,y) = = 1{x2+y2<1}, ho(z,y) =
rYlz242<1) and ha(z,y) =y ]l{mz+y2<1} and apply similar arguments as in (iii) of
the second point, we get anm(hl), nLn,m(hg) and ’I”Lme(hg) converge respectively
to LF* (hy), L¥¥ (hy) and L¥F (hs) when n goes to infinity. In conclusion, for any
fixed k < K/, the obtained limit pair has independent marginals, no Gaussian part
and its Lévy measure LT supported on the union of the coordinate axes (see e.g.
Ex.12.8 in Sato, 1999).

Hence, combining the three above points, the independence of the m R2-Lévy limits

of {(30im1 ¥/ ik(2), 2oy 71 (2), k € {1,...,m}} € (R?)™ is shown (see e.g. Ex.12.9-
Ex.12.10 in Sato, 1999). Now we turn to identify the limit marginals of our vector.

Let us denote the law of (y,Zk(2)75?k(2)) by KF . We will prove that nK},, (h)
converges to K¥(h) where

K*(h) = ;/h(az, fr)k—=1Dz+ (m—k)G(z,2))F(dx).
Therefore, we have nKE | (h) = nE(h(y'(1,(2), Z 2k (2))| F)

=nE(h(y'1k(2), 2% (2)); K(1F) = 01F1) + nE(A(y [ (2), 25(2))s K (17) = LK (83, 87) > 1| Fpr)
+nB(h(y7(2), 255 () K (1) 2 1, K(t],17) = 0| F1)

—_ _)\n,m 1 _ p n,m(k_l)
erm)(i=e ) / h(z,0)F(dz)+
MAn,m la|>Bn

/| M TG 1) m— K)GL, 2 F(da),

1
—=ne Amm h(0,0) + (

7)\71, m

e Anm-nl = e
m)\n,m

By the same arguments and specific choices of function h as above, we easily ver-
ify the three elements in Lemma 3.7.7. In this case, for any fixed k € {1,...,m},
the obtained limit pair does not have independent marginals since its Lévy mea-
sure K* is not supported on the union of the coordinate axes. Finally, the vector
(o vin(2), 300, Z%(2)), k € {1,...,m}) is convergent in law to (v’ VE(2), k €
{1,...,m}) and the sequence (Y7} (2), 30, S0, zh.(2)) weakly converges to (Y1 —
d,Vi(z)) where d = b — flxlél 2 F(dr) and by independence Vi (z) = > 1, V{(2) with
Lévy measure K (h) =>"1" 1 L [h(ff'(z)(k — 1)z + (m — k)G(z, z))F(dz), the drift
part equal to K(z1;<;) and no Gaussian part (see (ii) and (iii) right above). Since
its Lévy measure can also be rewritten as K(h) = [p fo (ff'z)|mulz+ (m—1—
|mu])G(z,z))F(dx)du, similarly to Jacod, 2004 (5.23), a possible representation of
the limit process is given by

Vi) = Y (fF()mTe]AYR, + (m =1 = |mYy])(f(z + AV, f(2)) = f(2)))

k:Rp<1

where (Ry)x>1 denotes an enumeration of the jump times of Y (or of X') and (Yg)r>1
is a sequence of i.i.d. wvariables, uniform on [0,1] and independent of Y. It is
worth to note that this sum is of finite variation. Now, as said at the beginning,
we go back to consider the convergence related to our original term 2, defined in
(3.4.6) where z = X} is no longer fixed. As z — Z,(2) is continous, by follow-

ing step by step the proof’s arguments of Jacod, 2004, Theorem 1.2(d), we obtain
Y (2), Z 21 2 _hey 2y converges in law to (Y1 — d, Vi) where
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Vi =Y [ (X ) lm Y ] AY gt (m—1= |m Yy ) (f (X gy +AY R, f (X -)) = f (X))
k:Rp<1

This completes the proof. O

3.4.2 Asymptotic behavior of the couple (Y, u,,,Z"") for case (C2)
and (C4).

For the first component Y, we use the same decomposition given by the relation
(3.4.5). For the second one, we consider the formula of wuy, ,, Z™™ given in (3.4.3).
In these cases, the second term from this formula does not contribute to the limit.
Therefore, we need only to give the analysis for its first term and by using the classical
decomposition (3.2.6) of Y, we have

ﬁn(t) / n . n(:
tnm /0 FEG () V(o) = V(o) )AYs = DTRG0, (3.4.10)
=1
where

f n

Iy(1) = unmfon ff’(X,;; DN ooy = N7y AN,

T7(2) = [ ff( " (s )(Aﬁgm — AP )dAS

Ftm fo" ff’(X” (o )(N,f”m(s) N )AL

[P3) = unm fo ff’(X" ' (o f Mf:(#))dys’
TP(4) = g ff’(X;;( ) Al - Af,:(s_))de"
e J3 LK )(anm(s ) = Ny Al

The three last terms in the above decomposition do not contribute on the limit. Then
we only have to study I'?(1) and we seperate it into 2 terms: the first term that will
be the essential term of the limit contains only the first jumps and the drifts and the
second term that will be sort in the rest terms contains all the other jumps. More
precisely, we rewrite

[’I’Lt] m

D) =t 33 / NG — NN

i=1 k=2 nm,z,k

[nt] m k—1
=twnm D > FFOGE) D (NG = NN, = Nyt =TP(1L1) +T7(1,2),
i=1 k=2 j=1
where
[nt] m k—1
Fn 1 1 —Uanfo ﬁn tk)ﬂ{K tk)>1}ZA ﬂn(tj) {K(tz)zl}’
=1 k=2
[nt] m k—1K(t])
TP(1,2) =unm Y Y FF (X3 AY o 1y H{K(tkm}z D AYpsy  (3411)
i=1 k=2 j=1 h=2

[’Vlt] m

k-1
+un,mZfo/( Z AY, TP (tk) ZA Tﬁn(tf) {K(#])=1}
J

i=1 k=2 =1
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[nt] m k—1 K(t])
/ .
tnm > fFX Z AYrsn ) AYpsn 1)
i=1 k=2 Jj=1 h=2
In this case, up,Z,"" = MP"™ + R"™, with

5

MP™ =TH1,1) and RP™ =T7(1,2)+ > T7(), (3.4.12)
=2

where T7(5) =ty [ RO (o Y (5= Yo () Y5 = Yaa(s))*dYs. The

proof of the following lemma is postponed to Appendix 3.5.

Lemma 3.4.7. For the cases (C2) and (C4), we have as n — oo the sequences
(Y™ (1))n>0 and (R™™)n>0 converge uniformly in probability to 0.

Lemma 3.4.8. For the cases (C2) and (C4), the sequences (Y (2))n>0 and (M™™),>0
are tight.

Proof. First, we consider Y, (2) given by (3.4.5). In these cases (C2) and (C4), thanks
to assumption (Hs), we have d), = 0 and |d,| < C. Then from (3.4.8) and (3.4.9),
y(2) satisfies (3.7.3) ensuring the tightness of (?R(Q))n>0 from the second part of

Lemma 3.7.2. Now, we rewrite that Tp(1,1) = Y7, Y621 S0 ¢ry - with
G = U T (X AY o () Lisc (e 21y AYpn ) L o1y

For k€ {1,...,m} and j € {1,...,k — 1} fixed, by using (H3), Property (P1), ff’ is
bounded, the inequality 1—e=»m < X, 1, ¢(8) = f|w‘<5 22 F(dx) where ¢(B) < C3%~
(see (3.2.2)) and () < CB~ (see (H})), we get

n 1—e An,m)2
E(Ci,k,leka,j\Sl’ft}) ff/( )unm(n72m2)\2 ) f|x|>/3nf

zyF(dx)F(dy) = 0,
TP e 291> Y (dz) F(dy)

(1—e~nm)2

2 2 2 1 u%,'mp"
(11" iep 11 Vet) < Cttn™zsz = Jyal> i e F () < O35

An,m 2 ‘

(1 ) U%ann
PGl > 917 < C 5= g, O F(d2) < OS5, Wy > 1

Then, we conclude the tightness of (M™™),>¢ by p, < Clogl/S, (see (3.2.5)), the

1/
choice wym = | 8] with o <1, eriteria (3.7.4) and Lemma 3.7.2. 0

Theorem 3.4.9. For cases (C2) and (C}), we have
(V"(2), M) 55 (Y, 2),

where Z is the limit process given in (3.3.4).

Proof. Let us first introduce IV} (1,1) = Z’,;”:lz Z
1<k<mand1<j<k-1,

i 1(1), where for any

n

i,j,k:(l) = Un,mAY, ﬂn(tk)]l{K(tk)>1}AYTﬁn(tJ) {K(t))>1}

Since ff’ is Lipschitz-continuous, by virtue of Lemma 3.7.10, in order to prove the
convergence in law of (Y, M™™) it suffices to prove that (Y] ( ),T"7(1,1)) converges
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in law to (Y1, V1) where V is a Lévy process independent of Y and characterized by
(3.3.4). Now, let us denote

[nt] m
W(Q) = Z Zy/Zk(z)v where y/Zk(Q) = AYT{’"L(tf)ﬂ{K(tf)zl}'
i=1 k=1

dy _
m

From the hypothesis (Hs), dy, = b in this case, then Y)Y (@2 =" >, <
b which allows us to prove instead the couple (Y7} (2),I"7(1,1)) converges to the limit
process (Y7 — b, V1) with no drift and no continuous martingale part. To do so, we

. m(m—1)
choose the strategy of proving the convergence of the R~ 2 T

<Z ylzk(2)> ’ (Z Cﬁj’,k/(1)> .
=1 ke{l,..m} \i=l K .j jg/{<1’,€.;.,m}

-----

M_yector

to the limit vector whose components are pairwise independent Lévy processes. First,

m(m—1)

since this R~ 2 "-vector is tight thanks to Lemma 3.4.8, it is enough to prove
that every weakly convergent subsequence has the same limit. In what follows,
we omit the notation for the subsequence for more readability. For the indepen-
dence of the components of the limit vector, by using Ex.12.8-12.10 in Sato, 1999,
we only need to prove the independence between the limit marginals of the pairs
(i ¥ik(2), 0 Vi (2))s k£ K), (307 ik (2), 200, ¢y (1)) and

((Zi:l 3j7k(1)7 Zi:l CZ?]’,/g/(l))v (kvj) 7& (k/ajl))7 fOI' any ka k/7]7]/ € {17 e 7m}7 and
j <k, j <k, then we obtain the Fourrier transform of the limit vector.

e First, for any k, k' € {1,...,m},k # K/, by the independent structure of the
subsequence marginals Y1 (y/1'4(2),4/;1/(2)), it is obvious that the limit marginals
are i.i.d.

e Second, for fixed k, k', j" € {1,...,m} and such that 1 < j" <k’ — 1 we consider
the convergence of the triangular array " (471 (2), (i'js (1)) whose generic terms
((¥"76(2), (7 o (1)) 1<i<n are iid. When &, %" and j" are different, the independence
between the marginals is obvious. By symmetry of the roles played by j’ and k" in
(i s (1), it is sufficient to consider the case when k = k" and j' # K’. Note that the
law of (/71 (2), (it (1)) does not depend on parameters k and j', then we denote it
by K,llm We will prove that nK%m(h) converges to K'(h) as n tends to infinity for
some suitable function h where

0%c 1
do(d
2mm — 1)

K(dz,dy) = %50(dy)F(dx) + dy

and dg is Dirac measure sitting at point 0. Therefore, we have

= nE(h(0,0); K (t5) = 0|F1) + nE(A(AY s 0, 0); K(tF) > 1, K(1]) = 0|F1)
2 1 2

(t7)’
+ NE(R(AY i ) inmAY g 1y AV 7)) K(t]) > LK(H]) > 1|F»)

*)\'n“,m 1 _ *)\n,m
_ =P (0,0) + = emmm) / h(z,0)F(dz)
|

mAnvm z|>Pn
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i /| F(dx) /|y h(@, tnmay) F(dy).

n(minm)?  Jjz|>s, I>Bn

Three following headings demonstrate three elements in Lemma 3.7.7, each corre-
sponding to some specific choices of function h.

Concerning assertion (i): We choose h = hy, where hyy(2,Y) = L{jz/>u,|y|>0}
for all u,v € Ry such that (u,v) # (0,0).

a) For u >0 and v =0,

e*An,m 1 _ e*)\n,m) (1 _ efAn,m 2
I (hao) = ;Anm /gc| %{|x|>u}F (dz) + mAnm) /x| %{|x|>u}F (dz).

As soon as u > f3,, we have f|x‘>5n Ljo|>uy F'(dr) = 0(u—), where 6(u—) denotes
the left limit at point u of the decreasing and right-continuous function #(.). Then
we get nK}L,m(hu,o) v K(hyp) = O(u—)

m

b) For uw =0 and v > 0, we have

nKl (h ) — (1 < o >2 / / 1 F(dy)F(dm)
n,m 0,v Un,mTY| >V .
nm2/\%7m |z|>B8n y‘>3n {‘ vl }

mn
(m—1)logn

]l/a

Now, we denote the constant v, = v(mﬁ_l)l/“, using Upm = {

?

1/a
8= (222)""" and iy, = (#1)1/2, then as soon as B, < vy, we have

: / /
Ly, . ay>or F (dz) F(dy)
nm2 2580 Jlyl> 5 {lun,mzy|>v}

1 Umﬁn 7L — Umﬁn -
o LA LR CESTTRS R B = !

nm? |z| nm

By (Hg), the first term is equivalent to 25”‘ (v, —) which converges to 0. Consid-
ering the second term, let us denote y,, = an f6n<|x\<vm O(Lmbn) F(dx). Let e >0,

||
by (HY), there exists ¢’ € (0, vy,) such that for 5 € (0,&’) we have ]ﬁ 6(8 -1l <e.
9(%5") F(dz)

||

m 0(“7%) (da:) On the one hand, by the fact that
omgn 022 F(dz) <

Th d t _ 1,5’ 2,8/ h 178/ _ 1
en, we denote y, = yn~ +yn~ , where yp,” = f“”;?”<\m|§vm

2" 1
and Y = 2 J5 i

0(.) is decreasing and (HY), we have y2° = ﬁfﬁ < e

0(Bn)0(e’
(Bnr)n2(€) — 0. On the other hand, if we denote ¢/ ° = mﬁ)ﬁ/ﬁ"dﬂﬁvm |z|*F(dz),
thanks to p, ~ aflogl/B, (see (3.2.3)) we have y’la = nmgza 7o (p(v”;/B") -

PUm=)) ~ 788z l0g 1/ . From (H3), we have ' (1—e) < yw® <y'1€ (1+¢)

and since ¢ is arbitrarily small, yre m log 1/8,. Then we get nK,, ,,,(how) —
5 n—oo
Kl(hoy) = W. In what follows, we will reused the obtained result

(—eZnmy? / / 1 Fldy)P(ds) — ——
nmz)\%’m |z|>Bn  |y]>Bn {[un,mzy|2v} Y n—00 m(m — 1)'00‘
(3.4.13)
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c¢) For u > 0 and v > 0, as soon as u > f3,, by the inequality 1 — e~ *mm < Anm, We
have

TZKl (h ) = 4(1 AnmL)Q / / 1 F(d )F(d )
n.m\/bu,v Un. mTY|>v Yy £r
’ nm2)\%’m || >u |>Bn {lun,mey|Zv}

< 6(u—)92(ﬁn) o
nm n—00

Then we get K}, (hyw) — K'(hyw) = 0.

n—o0

Concerning assertion (ii): We choose h = h',h" where h'(z,y) = 212 201y
and h'(z,y) = yl{z24,2<1y- Since (Hs) holds, the laws K}, and K'! are invariant

under the map (z,y) — (—z,y) and (z,y) — (z,—y). Then in this case, we get
immediately nk, ,,(h) = K'(h) =0.

Concerning assertion (iii): Here we take h = hy, ho, hg where hy(x,y) = = ﬂ{w2+y2<1},
ho(x,y) = 2yl (z24,2<1y and hg(x y) = y*1{p24,2<1y. First of all, as above in (ii), by
hypothesis (Hs), we have nK} , (h2) = K'(h) = 0. Now, we consider

*)\n,m 1_ *)\n,m
Wk () = U [ )
’ MAnm Bn<|a|<1
(1*6 7L7rL)2/ 9 /
+ z°F(dx 1 —— F(d
AL Jis(e)> 6, () wi>B, (WISYE—=) Flaw)
and

1 _ 6_)\71 m
nK} . (h / / u?, x F(dx)F(dy).
, (h3) = nm2)\2 1z g Jyssm {‘y|<\/ -2 1y F(dz)F(dy)

- Un,m

Concerning the term nK,, ,,(h1), it is clear that as n — oo, the first term converges to

L fx\<1 2?F(dx) and as fR 22 F(dr) < oo, its second term is bounded by Ce(ﬁ") which

goes to 0 as n — oo. Therefore, we get nK}  (h1) — nK(h1). Concermng the
’ n—00

term nkK; ,(hs), let ap, = (%4)1/04 and d',, = —22— we have for n large enough

Va2, 41
Bn < d'yy and

(L 2mm)? 2 29
W /1>|x|>a/m /y|>5n Unm®Y ﬂ{@g%}}?(d@fﬂ(dy)
4 (1—6)‘”’")2/ 2 .2 V1 = 22a,,8,

o/ m>|x|>Bn

——— ) —c,)F )
nm2/\7217m Up,mT (c( ’x‘ ) — cn) F(dz)

nK7}07m(h3) -

Using lim,, o 1‘;::" = 1 and ¢, < OB279 it is easy to check that the first
term in the right-hand side is bounded by CUQ”’LCn which converges to 0 and the
term f’ﬁ fa’mzlx\>ﬁn z?c, F(dx) converges also to 0. Hence, we have nK} . (hs) ~
Ui xQC(@)F(d:U). Now, using ¢(3) ~ 2@—()52*0‘ for B — 0, then

nm?2 Ja'm>|z|>6n |]
a—2
for € > 0, there exists €’ € (0,1) such that for 8 € (0, ane’) we have ]W —

1] < € and for n large enough such that we have (3, < da’,,&’, we can rewrite as follows
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,U‘gz,m V1— 2 mPn
wZ Jat > (2|60 5620(77‘;'“ B )F(dx) = xy, + yn where
2
U V1 — x?
T J g, <|2|<fn /e’ |z
2
u V1 —22%a
Yp = "”Z mQC(—mﬂn)F(dﬂv)
nm a' m>|z|>0n /e ’.’E‘
On the one hand, for x,, as ¢(.) is increasing, we use that c(il_ﬁfmﬂ”) is bounded
to deduce an upper bound equal to M which converges to 0. On the other
2 2—« —a
hand, for y,, if we denote ¢/,, = % Im [zl >Bn /! lz|*(1 — :c2)2TF(da?)

have (1 —e)y/,, <yn < (1 + e)y’ n Wthh gives y, ~ y’,, since € is arbitrarily small. In
what follows, we rewrite ¢/, = v/, Ly - 2 where

2t _aeui,ma%;a 721 “ a
Yn= (27 2 |QZ| F(dx)7
a)nm ' > > Bn /&

059 nm m /62 « o 2—«a
e L (O
a'm=>|xT|> nfl

12
Yn=

1/a 1/
Then by p,~aflogl/B, (see (3.2.3)), upm = [L} and 8, = (bﬂ) )

(m—1)logn n
we get that
W 2
y/n ~ (2 a)nmg ( (/Bn/g/) - p(a/m)) ~ (2 - a)nmg 1Og (El/ﬁn)
af?

a0 m(m —1)(2 — «)

and that y'2 < [(1 — B,f)QiTa — 1]y'} which converges to 0. Therefore, clearly,
nkp} . (hs) — Kl(h3) = #)2(2_(1). Thanks to this proof, in particular we have

proved that

(= o) / / s P(d)Fdy) — —— O
Xz .
mz)\ 1>]a|>Bn J |y|>Bn U {Iylé =} e m(m —1)(2 — a)
(3.4.14)

In conclusion, the obtained limit pair has independent marginals since it has no Gaus-
sian part and its Lévy measure K is supported on the union of the coordinate axes
(see e.g. Sato, 1999, Ex.12.8 ).

e Third, for fixed k, k', 7,5 € {1,...,m}, (4,k) # (j,k) and 1 < j < k — 1,
1 < j" < k'—1 we consider the convergence of 1", (C7'; (1), (7's /(1)) whose variables
(G k(1), ¢ (1)), 1 <4 < n are iid. When &, k', 7 and j’ are different, we have
straightforward the independence between the marginals of the limit pair. Otherwise,
by symmetry of the roles played by 7 and k and the roles played by j' and &', it is
enough to consider the particular case where & = k¥’ and j # j'. Note that the law

of (¢ x(1), ¢ (1)) does not depend on parameters k and j', we denote its law by
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K2 ... We will prove that nK,% m 2 K?, where
’ —00

0% 1 0« 1
_"e 5 d 5o(d d
smim — 1) W et + g — ol

K*(dx, dy) =

and dg is Dirac measure sitting at point 0. Therefore, we have

nKy (h) = nE((¢] (1), ¢ (1)1 F)
E(h(0,0); K (tF) = 0| F,1) + nE(h(0,0); K (tF) > 1, K(t]) = 0, K(t] ) = 0| F»)

(h
(RO, Y iy AV g ) K (1) 2 LK () = 0, K(8]) 2 1] Fy)
(h
G

(tF)

=n
+ nE(h(
+ E(h(tn i AY gm0y AY 0 K(H) > 1, K(t) > 1, Kt = 0| F1)

@)
(U A ) A

()

+ nlE Unm AY g 1y AV 5. \ K > 1L, K() > 1, K@) > 1|F,)

(i)
=ne (14 e (1 — e mm))h(0,0)

e_>\n,m(1 _ 6_>\n m / /
+ h(0, wp mry)F (dz)F(dy)
nm2A2 ., (2[>Bn I |y]>Bn

€_>\nm _>\nm
" = |, i, ) () Py
m2)\2 |$‘>5n y|>ﬁn
(1 — e Anm)3

S L hnnt ) () () (),
WEmEXem el Jy>Bn J 121> 5

Now, we verify the three elements in Lemma 3.7.7 with suitable choices of function h.

GOl

Concerning assertion (i): We choose h = h,,, where hy(z,y) = L >u, |y >}
for all u,v € Ry such that (u,v) # (0,0).

a) For w >0 and v =0,

—A - 2
e n,m(l_e n,m) / /
Lyiu, ayl>uy F(dx) F(dy)
an)‘%,m [z[>Bn Jy|>Bn Hum gz}

LAy / / 1 F(dz)F(dy)
o\ Un,mTy|>u} Y).
nm2As o Dagss, s, 0

By (3.4.13), the first term contributes at the limit and the second term vanishes

when n — co. Then we get nK,th(hu,g) — K2(hyo) = m(mele)ua

nKZ,m(th) =

b) For u = 0 and v > 0, we have nK?  (hoy) = nK2 ,(hyo). Then, by a) we get
2
that nK%m(ho,v) n:;o KQ(hO,U) = W

c¢) For u > 0 and v > 0,

1 —e )\n m
nK’Z m(huﬂj) = / / / ]]' n,mIL >U, | Un,mTZ| >V F(dm) (dy)F(dZ)
, m2>\2 |z|>,6’n [ 2|>ﬁ£| y|>u,| [>v}

7)\7’1, m

S - 9\o9 1 Un,mT u F(dl’) (dy)
”m”m /|ac|>,8n/>ﬁn Hummavlzu}

Again, by (3.4.13), we have nK  (huy) — K?(hyw) = 0.

n—oo
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Concerning assertion (ii): We choose h = h',h" where h'(z,y) = 121 2<1y
and h"(z,y) = ylz24,2<1y. Similarly as above, by (Hj), nK2, (h) = K*h)=0.

Concerning assertion (iii): We choose h = hy, ha, hg where hy (2, y) = 2*1 24,21y,
ho(z,y) = 2yl{z24,2<1y and hs(z,y) =y ﬂ{$2+y2<1} First of all, as above in (ii), by
hypothesis (Hs), we have nK2, (ho) = K?(hg) = 0. Now, by symmetry, we have

e_>\n,m (1 _ e_>\n,m)2

KL () = nKL, (hs) = / / W2 P L, vyl F(d2) F(dy)
’ ’ an/\%,m |z|>Bn  |y|>Bn {lun,mayi<1}

n, a? Yy ’1 zy|2<1/u ,,—|xz|? F(dx)F(dy)F(dz)
n2m3)\3 2> Syl Sz 5 {ley?<1/u, n—lwz]?}

By similar estimations as in (3.4.14), we can easily deduce

2 2.2 af?
— Uy @Y Ly g i<r F (dx) F(dy) —
an /x>ﬁn /y|>6n o {u ’ |$y‘_ } n—00 m(m - 1)(2 - Oé)

which gives the limit of the first term and that the second term vanishes as it is

n,m\3

1 .
bounded by (‘giv flx\>5n fly\>ﬁn Uz Y Uiy, o ay|<13F (dz) F(dy) converging to
0 as n — oo. Therefore, nK?, (h1) — K?(hy) and nK2,, (hs) — K2%(h3). In

? n—oo ’ n—o0
conclusion, the obtained limit pair has i.i.d. marginals since it has no Gaussian part

and its Lévy measure K2 is supported on the union of the coordinate axes (see e.g.
Ex.12.8 in Sato, 1999).

Overall, by the pairwise independence proven above we can realize the limit of the

vector (Y77 (2),T"7(1,1)) as some vector (37, Y7 1,Zk 2Zk LVI%) Lévy process
with no drift, no Gaussian part and where
m(m—1)

E(ez(uzk 1 1+Uzk sz IV]k ) _ [E(eiuW})]m « [E(eiv\/ll’Q)] 5

which is equal to

UL . a02 1 T .
exp (/ F(dx)(e™ — 1 —iuzlyy<iy) + Sm(m —1) / 2T (e —1-— waﬁﬂ{x|<1})dx>.

This completes the proof. O

3.4.3 Asymptotic behavior of the couple (Y, u,,,Z"™) for case (C3).

For the first component Y, we use the same decomposition given by the relation
(3.4.5). For the second one, we consider the formula of wu, ,Z™™ given in (3.4.3).
In this case, the second term from this formula does not contribute to the limit.
Therefore, we need only to give the analysis for its first term. To do so, we consider
the same decomposition given in (3.4.10). The two last terms in this decomposition
do not contribute on the limit. Then we only have to study I'}(1) and I'}?(2). For
the first one, we use the same decomposition as cases (C2) and (C4), namely we have
I'p(1) =T7(1,1) +T'P(1,2) as given in (3.4.11). Now, similarly, we separate I'"(2)
into two terms: the first term that will be the essential term of the limit contains only
the first jumps and the drifts and the second term that will be sort in the rest terms
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contains all the other jumps. Then, we have

[’I’Lt} m
M2) = tngn D> / IR AR — AT )dAL + / FPXR) (NG — N dAD
i1 ko |/ 1(nm,ik) ¢ I(nm,ik) ¢ @ ¢

4 / FF (AL — AT )N
I(nm,i,k) i

[nt] m 2 k—1
:un,mZfo/( i) oz T %Z(Nﬁ;ﬂ - Ng )+ T(Nﬁ;ﬂ - Nﬁ; )
i=1 k=2 j=1 ’ k ’
—I7(2,1) + I7(2,2),
where
. oy | BE=D  d
Ft (27 1) =Un,m Zl g ff ( tll) n2m2 + % Zl YTlﬁn(tz)]l{K(ti)Zl}
1= = J]=
dn(k B 1)
e A ey Lk )21y
k—1 K(t}) K(#)
d dn(k—1) —
n _ / n n . n .
Ft (2a 2) —un,m Z Z ff ( tzl) T ' AYTf”(tﬁ) + nm Z AYTf”(tﬁ)
i=1 k=2 j=1 h=2 h=2
In this case, up mZ;"" = MP™ + R"™, where
5
MPT=TP(1,1) +T7(2,1) and RP™ =T7(1,2) +T7(2,2) + ZFf(z) (3.4.15)
i=3

where TP(5) = tinm [ R(X2 (V0 () =Y (s2) Vi () — Yo (s—)) 2dYs. The

) ) nn'm
proof of the following lemma is postponed to Appendix 3.5.

Lemma 3.4.10. For the case (C3), we have as n — oo, the sequence (R™™),>0
converges uniformly to 0 in probability.

Lemma 3.4.11. For the case (C3), the sequences (Y (1))n>0, (Y (2))n>0 and (M™™),>0
are tight.

Proof. First, instead of working with Y (1) = Zzntl Py 1(Mﬁ" k+1+23>2 Ton (tk)ﬂ{K(t’?‘)zj}):
it is enough to prove that for each k € {1,...,m} the trlangular arrays with generic

terms y;' & "(1,1) = Mﬁ; e and y;;(1,2) = Z]>2 AY, Bn(tk):ﬂ.{K(tk)>]} are tight. By

property (P1), (3.2.5) ‘and Lemma 3.7. 5, for the first one, we have

Cn

E(yi" (L) Fa) =0, E((yii"(1,1)*1Fy) = e

and we conclude by using (3.2.5), ¢, < CB27%, the criteria (3.7.3) and Lemma 3.7.2.
For the second one, we have

n 1
B (2N < g | lelF () SR 2 31Fy)
n T n 7j>2
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— On k k _ On An,m 5n)‘?L,m 75n)\n,m
= G (T B () 2 1F)) = o (ke 1) < 20 = e
3.4.16

and we conclude by using (3.2.5), 6, < Clog1/By, Apm < % (see (HY)), B, = ‘&n

n
the criteria (3.7.2) and from the second part of Lemma 3.7.2. Therefore, it is clear
that for case (C3), (Y"(1))n>0 is tight. Next, considering Y (2), from (3.4.8) and

(3.4.9), as d,, and d',, are bounded by C'log 1/, from (3.2.5), Ay, m < % from (HY),

Bn = 10%", y?(2) satisfies (3.7.3) ensuring the tightness of (Y (2))n>0 from Lemma
3.7.2. Finally, we consider (M™™),>¢, equivalently, we prove that (I'"*(1,1)),>0 and
(I'™(2,1))p>0 are tight. Because ff is bounded, for k € {2,...,m} and j < k fixed, it
is enough to prove that the triangular arrays corresponding to generic terms l"k j(l)
and (] (2) are tight where

(1) = upmAY, gn(tk)lK(tkmAY o iy L) 21y (3.4.17)

d2(kz dn(k—1)

Cﬁk@) = Un,m nm ZA TP (1) {K(t1)>1} + m AYTf’"(tf)l{K(tf)Zl}

For the first term, by similar arguments, we have

(= e m Py tinmd?

G

Then, the tightness is obtained by (3.2.5) that ¢,, are bounded by C'log1/8,, B =
logn . 7 (3.7.2) and Lemma 3.7.2. For the second term, by using

n o Un,m = (m—1)(logn

property (P1) and 1 — e*mm < A, ., we have

E(1¢H,; (WIIF1) =tn,m

n Cun,mdn
B 1Fy) < S22 4, 4 28,),

and we conclude by d,, and 8, are bounded by Clog1/8, (see (3.2.5)), B, = '&n

n

Unm = G T)(logmye Criteria (3.7.2) and Lemma 3.7.2. Therefore, we get (M™™), >

is tight. DO
Theorem 3.4.12. For the case (C3), we have
", M L (v, 2),
where Z is defined as (3.3.5).
Proof. Since Y converges pointwise to Y when n — oo for the Skorokhod topology,

then we only need to prove M™™ £, 7. Since ff' is Lipschitz-continuous, by virtue
of Lemma 3.7.10 or Lemma 3.7.9, it is enough to prove I'7(1,1) + '] (2, 1) LN —%

k— .
where I'Y'(1,1) = 3700, 2530, Zj:ll zn]k(l) and I"Y(2,1) = 3700, 370, znk(Q) with
(1) and (7 (2) given by (3.4.17). First, concerning '7(2,1), for k € {2,...,m}
fixed, on the one hand, by using property (P1), we have

Bk—1) 20k—1)dy1—e P nm
E(C*.(2 = n F
(G @NF0) =wnm 2m T am 0(8n) /|:r:>,8n =Fide)
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1 n,m
NW(CF +2dpd' ).

From (3.2.1) and (3.2.3), we have d’,, ~ ¢’ logé and d, = b — d',,. Therefore,

using Up,m = (W’ Bn = 105" and E( Z"k( )\]—'t1) is non random and inde-
pendent of i, we get nE((]'(2)) — Efb( Lo ) On the other hand, using prop-
’ n o

erty (P1), the inequality (a + b)* < 2(a® + b%) and [p2?F(dz) < oo (see Re-

2
mark 3.2.1), we have E(| i’fk(2)|2\]:t1) < qu;;;m(% + d?). Since d, < Clog1/B, (see

(3.2.5)), we proceed similarly as above to get nE(|C{Lk(2)|2) — 0. Then, since
n n n n n P - 2
V(S0 C(2)) < nE((G(2))7), we get S0, ((2) D~ B and we deduce

that T"7(2,1) 5 —g. Secondly, concerning I'7(1,1), we prove its uniform conver-
gence in probability by considering for k € {2,...,m} and j < k fixed, the generic term
1 1(1). To do so, we apply Lemma 3.7.7 to thls sequence in which (¢ i, p(1)1<i<n
are i.i.d. Note that the law of Cm’ (1) does not depend on parameters j and k, then
we denote it by K, . We will prove that nK, ,,(h) converges as n — oo for some
suitable function h corresponding to each assertions of Lemma 3.7.7. Therefore, we
have

(1 — e Anm)?
K,m(h) = nmay)F (dy)F(d
Hnm () ”m2)‘2 /|m|>6n /{y|>6n (tnmary) E(dy) ().

Concerning assertion (i): Here, we choose h = hy, where hy(x) = 1{|y/5e) with
some w > 0. Using 1 — e Mnm < An,m, it is easy to check that nK, .,(hy) <

ﬁ f\:vl>ﬁn 0 (m) F(dx). By hypothesis (HY) for a =1, §(8) < % and 0, = pp,

we have nKy, ,(hy) < W. Then, by our choices of uy, , B, and p(8) < Clog1/3
(see (3.2.2)), we get nKp m(hy) — 0.

n—oo

Concerning assertion (ii): We choose h = h' where h'(z) = 214 <1;. Using
L — e 2nm ~ Ay UnmBn — 0 and assumption (A), namely F' vanishes outside
n—
1 1
<

[—p, p], we have for n large enough Bn < o S Tl and

DKo () ~ / / yF (dy) F (d)
|m|>ﬁn n<‘y|<

uUn m\x\

U
nm? ( /z|>6n /y|>un el

Since up,m = W and using d’, ~ 0'log1/6, (see (3.2.3)), the first term in
0/2

the r.h.s. is equivalent to =)

Now, taking ¢ > 0, there exists ¢ € (0,1) such
that for 8 € (0,&') we have |bgd(ll(% — 1| < e. Considering the second term in the

r.h.s., as for n large enough - L 7 > Bn, we rewrite it as the sum of z, and y,, with

Tn = 2 [ 1 umme!)> | B f\ypm yF (dy)F(dz)
Un,m !

Yn = 2 |2|>1/ (tn,me") f‘y|>ﬁ yF(dy)F(de')
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First, using umlnlx\ > &', 0(.) is decreasing and 6,, < Clogn from (3.2.5) we derive
that ’

Un,m

2| F(dn)a(e) < Snmdn o C

ol < / =1
M= J1/ (un,me’)>|x]>Bn n ogn

which converges to 0. Second, on the one hand, if we denote

/
;o Unmb
Yn=

2108 (ttnm | ) F(d2),
2 Jjo>1/ (unme’)

which gives vy, ~ ¢/, since ¢ is arbi-

then we have (1 —¢e)y/,, < yn < (1 +2)y/,,
(B) ~ 0'log1/B (see (3.2.3)) we have that

trarily small. On the other hand, using d'(8

“:”’;:2 log (n,m)d' (- E,) converges to % and thanks to (3.2.4) we have that
n,m0’ /2 A
unvjixbl/(un ) mlog(| x |)F(dx) converges to —%. Then, it is clear that
6/2
nky m(h/) n_mo 2m(m—1)"

Concerning assertion (iii): Choosing h = hy where hi(z) = 2?1{j;)<1}, using the
inequality 1 — e *nm < X, and ¢(8) < OB (see (3.2.2)), we have

2
nKn,m(hl) S el

|z|>Bn

22y L, leyl<1} F(dz) F(dy)
ly|>Bn
2

1 n,mMFn
Un, >F(dx)SCU,,0.

n,m 2
<—= z°c
nm? Jiz1>g, Up,m| 2| n

Therefore, thanks to our choices of wuy m, By and using p(5) < C'log1/S (see (3.2.2)),
we get that nk, ,,(h1) converges to 0 as n — oo. In conclusion, the limit processes

have no Gaussian part, a Lévy measure equal to 0 and a drift part equal to 5 (9 - —1y-

P /2 /2 /2
Finally, we get > 21 (%, (1) — W and "] (1,1) 5 Py 223 h 2m9m = e
This completes the proof. O

3.4.4 Asymptotic behavior of the couple (Y, Upm2Z™™) for case (C5).

For the first component Y, we use the same decomposition given by the relation
(3.4.5). For the second one, we consider the formula of wu, ,Z™™ given in (3.4.3).
In this case, the second term from this formula does not contribute to the limit.
Therefore, we need only to give the analysis for its first term. We have

4

ﬁn(t) ! n n( -
- /0 PP ) o) — Yooy )JAYs = SO T2(0),

i=1



60 Chapter 3. Asymptotic behavior of the error for Lévy driven SDEs

where

Iy (1) :Un,m( e ff( )(anm(s ) Mﬂn(s ))dNﬁn

+j‘0 n(t) ff/(Xn )( nnm Nnﬁn(s ))dMﬁn)
F?@) :Un,m(fo ff (Xn )(Yﬁn (5 ) Yﬁn(s ))dM "

n( Bn Bn Bn

+f0 I( )(Yﬁnm(g*) - Ynn(s,))dAs )7
' (3) :Un,m(fo ff( )(Aﬁn m(s—) Aﬁ"( ))st"

+f g TG (o ) ffm(s )~ Vo)A,
F;‘(4) = Un,m fo ff( )(N " (5—) —Nn"(s ))st".

In this case, the three last terms do not contribute to the limit and we only have to
study the first term I'(1). Let us first rewrite I'}(1) = Z[m] ¢"(1), with row-wise
ii.d. random variables (',7 = 1,2, ... defined by

m
G0 = i FOED Y [ OL = MYV, = N2 + (N = N, = 0.
k=2

Now, using Fubini for the second term, we have that

m k 1 el
=2 j= —

Then we can rewrite our triangular array as follows

NE

CP(1) =unf f(X}) i = M)

m—1
(M = M) (N = Nt) + 3 D (N, = Ny ) (M
k=1 ’

M

2

i f I (X)) SN — NSOy — M) — (M, — M)

AN

K(t5)
=t f1'( Zl) AYTf"(tf)]l{K(tf)Zl}+ Z AYTfﬂ(tf) Miq,ll’cm’
k=1 j=2

~rn,m B ¥o] B B i B B
where M, ;" = (Mﬂjj+1 - M) - (Mtk”+1 - M) = IZ:;ék(Mtjﬁl Mt]-”). Now, we
i 2 i C =L :
separate I'(1) into two terms: the first term which is the essential term of the limit
corresponds to the part with the first jumps and the second term which will be sort in
the rest terms corresponds to the part of all the other jumps. In particular, we have

(1) = T"(1,1) + I™(1,2) where

T} (1,1) = tnn o000 S0y S (XA Vg iy et 2 MR

(] . ( k) m (3.4.18)
I7(1,2) = unm Z Zk I (thl) Z AY, ﬁn(tk)Mz‘,k :
In this case, we have
5
MP™=TP(L1) and RP™ =TP(1,2) + Y T7). (3.4.19)

1=2
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with TF(5) =t m o B(X2 Y 6 = You(se) V() — Yau(s—))?dYa. The

Tin TInm n
proof of the following lemma is postponed to Appendix 3.5.

Lemma 3.4.13. For case (C5), we have as n — oo, the sequences (Y (1))n>0 and
(R™™) >0 converge uniformly to 0 in probability.

Lemma 3.4.14. For case (C5), the sequences (Y (2))n>0 and (M™™),>q are tight.

Proof. First, we consider the sequence (Y (2))n>0 given by (3.4.5). From (3.4.8)
and (3.4.9), using hypothesis (H), Ay m < Q dy, and d’,, are bounded by C3l=

from (3.2.2) with the choice 8, = 110/(27;), then y'(2) satisfies (3.7.3) ensuring the
tightness from the second part of Lemma 3.7.2. Now, we recall that M;"™ = T7(1,1)
given by (3.4.18) and as ff’ is bounded, for k,j € {1,...,m} fixed and j # k,
it is enough to prove that the triangular array with the generic term (7 .(1,1) =

Un,mAY, ﬁn(tk)]].{K(tk)>l}(Mt]+1 Mﬁ") is tight. By using Property (P2) and the

independence of the increments, for |u| <1 we have

Cm 1 — e~ Anm LU, ma(MPR —MPT)
E(eluﬁi,k,j(l,l)’ftl) — e—)\n,m 4 ¢ / F(dm)E < 7+1 t7
' |z|>Bn

0(Bn)
1 _ e_)\TL,’"L /
_ = An,m Zn,m(f,u)
e F(dx)e
0(Brn)  Jia|>Bn
1 — e Anm
_qpgploe ™ / F(da)(e¥nm @) — 1),
nMAn,m \2|> B

where zp, (2, u) = % f‘y|<5n(ei“u"’m“y — 1 — iuuy mry)F(dy). By applying Sato,

1999, Lemma 8.6 for first and second orders, we get |e*“4nm™ — 1 — iy, may| <

Clutty mxy| A |utinmzyl?. AS UupmBn — o0, for n large enough, combining these
n—oo

results with §(8) < CB'~% and ¢(B) < CB?>~“ (see (3.2.2)), we have

C
emm (2 0)] < /| (] A ey ) P ()
y|<Bn

n
C C C
e WIF(y)+ e [ PE() < ]
n Bn>y|>1/utin,m|z]) n ly|<1/(utin,mz|) n
(3.4.20)
mn /a
Then, for up,, = [m} , the suprema of |z, (z,u)| over all |z| < p and

lu| < 1 goes to 0 as n tends to infinity. Therefore, using |e*m(®%) —1| < €|z, (v, u)|
for n large enough by (3.7.3), p, < Clogﬁin (see (3.2.2)) and 1 — e Mnm < N\, 4,

fucm Clul®ug ,, log 5~
we deduce that |E(e 1“Cikj(1’1)|]-" )— 1] < w. Then, ¢ 4(1 1) satisfies

(3.7.7) with £, = T 105 L which is bounded by C for all [u| < 1. Thus,

combining Lemma 3.7.3 and the second part of Lemma 3.7.2, we get the tightness of
(M™™) 0. O

Theorem 3.4.15. For case (C5), we have
" (2), M™™) £5 (Y, 2), (3.4.21)

where Z is defined as (3.3.6).
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Proof. First, we denote I}’ (1,1) = upm, Zz[ﬂ il AYTf" (tf)ﬂ{K(tf)zl}M:km' Then,
as ff’ is Lipschitz-continuous, by virtue of Lemma 3.7.10, in order to prove the con-
vergence in law of the pair (Y (2), M™™), it is enough to consider the convergence of
the pair (Y7 (2),T'7(1,1)) with Y (2) given in (3.4.5). By the independence structure,
for v and v in R, we have

B (077 @I (1)) eiudnE(ei 22im1 2= A ey Lok 21y (v mam ML)

)

n . m Trn,m
. LAY 1 M.
:eludn HE(el 2ok Tlﬁn (tff> {K(t§)21}(“+wn,m ik )

).

i=1

iy, AYTlgn (thy ﬂ{K(tiﬁ“)Zl} (U“l"UUn,mM;”];m)

)

Fori € {1,...,n} fixed, again by tower property, E(e
equals to

i ZZ;I AYTlﬁn (f,lf)H{K(tf>21}(u+vun7MMZ];;m)

E(E(e ’U(Mtﬁ]il *ijnvj € {]-aam})))

KL iAY Bn ik 1 k (u"l‘vun,linm) .
=E(J[B(e  mreh =y F oM = MG e {1, m})).
Pt % 4

For k € {1,...,m} fixed, note that M;;™ is the martingale part of the small jumps
which is J(Mgil - Mﬁ_-",j € {1,...,m})-measurable, independent of K(t¥) and

AY 5, () thenzby (P1) we get that equals to
1 1
iAY Bn .k 1 k (u"’_vun,ml\;‘[;’:’nl) . -
E(e 7" {K@)z1} k |U(M5+1 — Mg ,j€eA{L,...,m}) v]-"ti_@)
]_ — e_>"ﬂ,m / . Crn,m
—_ o~ Anm iz(utvun m M)
=e M4 — e m ik ) F(dx).
0Bn)  Jix|>8,

Therefore, using the independence structure of (M’ 7" )ieq1,...ny We can easily see by

(P2) that for all i € {1,...,n} M/;™ has the same distribution as M]'}". Thus, we
get

i(uY? oI'T iu . 1— e nm iz (utvun, m M "
B(AOTTEHITOLD) _ gt [E(H(l gy [ e D ) )
k=1 z n
iudy, I . 1 - 6_>\n’m iz(utvun m]&[”’m) "
= E{]]exp(log(1+ TG s (e Lk ] — 1) F(dw))
L \k=1 " z|>Pn
i m — _>\n,m . ~n,m
—oiudn | (exp (Z log (1 + 19&3) / . (elx(u—i-vun,li’k ) 1)F(d$))>>]
L k=1 n z|>pn
. m 1— e*/\n,m i -~ nm m n
__iudp iz(utvun,mM,") n,m
_ E e F N
€ (exp (Z 0(8n) /|a:|>ﬁ, (dx)(e )+ Z Rik ))]
k=1 n k=1
:eiudn E (

m _A - m n
1 — n,m . n,m
1+y 2 / F(da) (e rvmmMis) 1) L N Rpmy Ry ) |
0(8n) |z|> B, =1
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where

1 — e Anm

Ry =log [ 14+ ——~— / F(da) (e rvumm MG _

1 — e~ Anm / iz (utvun, m M)
F(dx)(e e ) — 1),
C0Bn) Jsse

n 1-— e_An " iz(utvun,m M a n,m
R (1500 [ Fmt i S e
k=1 |2]>6n k=1
m 1 —_ p\nm . rm,m m
ST [ Ry ) ) SRy
=1 0(6n) |z[>6Bn =1

Now, thanks to property (P2) we have that E(ei(“ﬂL(QHUF/?(Ll))) equals to

1u 1—e An,m 1x U VU g M i n,m n "
dn (1 + Z /|>6 (wheunmMi30) 1) F(da) + > E(RY} )+IE(R1))
Tl>Pn k=1

1—e Anm iVUn ma (MO — P
=eiudn | 1 4 Z ¢ / etue E(e e 45 ) —1)F(dz)
+Y BRI + E(R’f)>
k=1
. 1— e Anm . m "
=ctudn (1 - / (et m=zn () 1) F(dr) + ) E(RY;) + E(R?)) ,
n,m |z[>Bn k=1 7

(3.4.22)

iz(utovup li i )7

where 2, (2, v) = 7 flylﬁﬁn (etvunm®y 1 —ivuy, may)F(dy). Now, using |e
1| <2and 1 —eMnm < An,m, then, it is easy to check that for n large enough, we
have

S Chpm <

N

1— e Hnm / iz(utvtn m MI™)
' (X m ) 1y Py
0(Brn)  Jiz|>p,

From this, for any k € {1,...,m}, using the first evaluation in 3.7.3 and (HY), we
have

— e—)\n,m

(O(5))? _ _C

<C
- n " np

n[E(RL)| < nE [ et B ()
’ |z|>Bn

nMAnm

which converges to 0 as n — oo by the choice 3, = %. Similarly, by the second

evaluation in 3.7.3, we have

_>\7L m

m m 2
n l—e ’ iz (Ut vUn,m M n,m
n|E(R})| < nE (Za(m/l ; e lteunm MU | F(dr) + R} )
n x|>pPn

k=1 k=1
c ., Cc
npZe g

1 _ *)\n,m
S C <’)’LE(€/ |61.Z’ ’LH"Uun mM 1|F(dl'))2 + n]E(|R?’]Zn )2) S
‘ b

nMAn,m 2> B
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which converges to 0 as n — oo by the choice 3, = %. Now, concerning the main

term inside the bracket of (3.4.22), we have flmbﬂn(ei“”(m_l)znvm(x’”) — 1) F(dz) =
Ay (1) + By (v) + Cp o (u, v) where

An,m(u) = flxl>ﬁn (eiuz - 1)F(dw), Bn7m('l)) = f|x‘>ﬂn (e(m_l)zn,m(vvr) — 1)F(dx),
Cmm(u"u) = f‘fﬂ|>ﬁn (eiux _ 1)(e(m71)2n,m(‘fc,’l}) _ 1)F(dl’)

Since 1 — e Anm ~ An,m, it is enough to prove that the three terms A, ,(u) + tudy,
Ch,m(u,v) and By, (v) converge.

Concerning A, ,,(u) + iud,. Asd, =b— an<|x\<1 xF(dz), this term is equal to

iub + / (e — 1 — iuxl)y <) F(dx) — iub + /(ei“z — 1 —iuzljy<i) F(dr).
|z[>Bn - oo -

Concerning C,, ,,(u,v). By (3.4.20), |zpm(z,v)] < %|vun7mx|°‘ and the suprema
of |znm(x,v)| over all || < p and |v] < 1 go to 0 as n tends to 0. Now, using
3.7.3, we have |e(m~Dznm@v) _ 1| < Oz, ,n(2,v)| and [e® — 1| < Cluz|. Then,
since z — |z|*T1 is F-integrable as a > 1 (see Remark 3.2.1), we get |C, 1, (u,v)| <
ol Uy — 0.

Concerning B, ,,(v) We rewrite By, (v) = By m(v) + B”p m(v), with

B ym(v) = f\:v|>6n (m = 1)z m(z,v)F(dz),
By m(v) = ﬁm|>ﬁn(e(m_1)3"’m(“f’“) —1—(m—1)zym(z,v))F(dx).

2a,,2a
(] I Uit

- hence, B}, 1 (v) —>
0. Second, note that B',, m(v) = [(e™% — 1 — jvx) Ky m(dz), where

First, by same arguments as above, we get |B”,, . (v)| < 5|
n—oo

—1
Ko(h) = ™ / / By F(dy) F(de)
nm |$|>Bn |y‘S5n

with some function h. We will prove that [(e*"* — 1 — ivx) K, (dz) — J(evr —
n oo
1 — ivz) K (dz), with

« 1
K(dx) = 5((93 +0%) Lm0y + 29+9_1{x<0})de.

To do so, we use Theorem 3.7.6, then it is reduced to prove that K, ,,(h) — K(h)

n—o0

for h equal either to h, = IL(, o) for w > 0, or W'y, = Lo o for w > 0, or
B (z) = x2]l{|x|§1}, or h'(x) = T |51}

e First case h = h, Since u, > —> o0, then for n large enough such that
n—oo

w
Bnun,m

< Bn. Then, we rewrite Ky m(hw) = yp p + Ya 1, where

Unim = B S, O+ (525) — 04 (Bn) F (de)
yfl,m = 727;11 w<—ﬁn(9_(ﬁ) —0_(By)) F(dz).
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Note that by (H{) we have wi(ﬁ"))Q < Y- — 0. Further, as ~—% — 0

- nﬁ%a n—oo ﬁ Un,mT n_>oo
uniformly on {z > 5n} using (HY), lo’g(g%i) — afly (see (3.2.3)), we get yp, ,, ~
_ 0 62 Hug,, 62
ﬁml 2> Bn +uwa F(dz) ~ C:a %log B 0 2w - by the choices u,,m =

/o 1 02
mn _ ogn : . 2 —
[7(7%_1)10{_{”} and S, = —7%55y- Similarly, we have y;, ., = gms SO Kpm(he) —

K(hy).

e Second case h = h',, At first, similarly, we rewrite K, y,(hy) = y’,lhm + y’fhm,
where

Vi = 2L [ 5, (0 (757) — 0-(Bn)) F(dx)
Yim = Bt foe g (04 (G25) = 02 (Bn)) F(da).
Using the same arguments as above, we easily get 3/ %Lm ~ el w6 9,(119;,),@& F(dz) ~

0_0,uf ,,(m—1) 0,6_ .. 2 040
% log1/5, = Q(iT)a and also similarly ', ,, — ﬁ

n—oo
we have that K, ,(h'y) — K(W,,).

Therefore,

e Third case h = h/ TFor n large enough such that Bnuln,m < By as —— — 0

Un,mlel poo
uniformly on {|z| > 5,}, by ¢(B) ~ %62*0 and p(B) ~ aflog (1/5) for  — 0 (see
(3.2.3)), we have

‘:L‘|>/Bn y|<
m—1 ab a260? (m — 1)u® 1 af?
~ _ y“ aF d ~ l —_— = K h/ .
nm - Jigsp, 2 — au"”n|x‘ (dz) 2 -« nm €3, Bn n—oo 2(2 — «) (=)

e Last case h =h" TFor n large enough such that 6771 < By, we have

Kn7m (h//) —

<|y|<Bn

z|>Bn

| un m|z

_ (m — 1)unm/ . /
nm |z|>Bn lyl>—1—

At first, note that by d’,, < CBL=® (see (3.2.2)), we have - Dunmdy

mn n—00

and Ky, (h") ~ % 2]> B f|y|> 1 xyF(dy) (dz) for n — oo. Then, as
m — 0 uniformly on {|z| > 8,}, usmg d’(B) -0’3 p i (B) ~ abylog (1/8)
and p,(ﬁ) ~ af_log (1/8) for B — 0 (see (3.2.3)), we get for n — oo

yF(dy) — d'n) F(dx).

U'rL mT

(m —1)ab u

Ky (R") ~ L “F(dz) — “F(d
)~ T () = [ )
20/2 1 0/2
~ 1 —— = K(h").
nm a—1 U Ogﬁ njOQ(a—l) (")
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Therefore, we get

Blym(v) — %[(03 +6%) o0y + 204011, 0)] (e —1 — ivz)dz.

n—o00 ’(L“H‘a

Finally, we have

E(exp (i (qu (2) + oI (1,1)))) — exp {iub + /F(da:)(ei“x =1 —iuzlyy<y)+

n—o0

(6%
5[(93 +602) 1 a0y + 2040110y

W(eivx —-1- lvﬂj)dx} y

which completes the proof. O

3.4.5 Conclusion

The challenge ahead is to apply these approximations to obtain a central limit theorem
type for the multilevel Monte Carlo method with the stochastic differential equation
(3.1.1) driven by a pure jump Lévy process, in the spirit of the ones established by
Ben Alaya and Kebaier, 2015 and Ben Alaya, Kebaier, and Ngo, 2020 for the case of
a diffusion process, Dereich and Li, 2016 for the case of jump-diffusion process and
Giorgi, Lemaire, and Pagés, 2017 for the case of nested Multilevel Monte Carlo. We
keep this work for a future research.

3.5 Appendix A: Proof of lemmas 3.4.4, 3.4.7, 3.4.10, 3.4.13
concerning the rest terms

Note that throughout this section, C' is a generic constant (may depending on m)
which can be changed from line to line.

3.5.1 Proof of Lemma 3.4.4

Here, we prove that the sequences of processes (?n(l))nzo and (R™™),>0 converge
uniformly in probability to 0 as n — oo. First, instead of considering the form

Y. (1) = Zz[nt]1 m 1(j\/[ﬂn e +> 50 A ﬂn(t?):ﬂ.{[{(t?)zj}), it is enough to prove that

for each k € {1,...,m} the triangular arrays with generic terms y;';"(1,1) = Mﬁ" b1

and y; '} (1,2) = 3050 AY, Ton (tk)]l{K(tk >j} converge in probability to 0 as n — .
By Property (P1), (3.2.5) and Lemma 3.7. 5, for the first one, we have

E(yzk: (1, 1)|‘Ft1) =0, E((?JZ}fm(la 1))2|]:t11) S (3.5.1)

nm

and therefore we conclude using (3.2.5), ¢, < CB27%, the criteria (3.7.3) and Lemma
3.7.2. For the second one, we have

1
By (1,2)[|Fa) < / 2l F(de) ST B(K (#) > §1F)
t; H(ﬁn) \$|>5n Z t

j>2
. (Sn k k _ 6n _)\mm 671A%,m _ 5n)\n,m
= g0y (UK R)\F)—BUK (1) 2 11F) = gois (ke 1) < Gt = 22

(3.5.2)
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and therefore we conclude by using (3.2.5), the boundedness of §,, in case (C1), the

criteria (3.7.2) and Lemma 3.7.2. Thus, it is clear that for case (C1), Y (1) 5o.
Now, by using the formula of the rest term given by (3.4.7), we have

Mn. (t)

RI™ = T7(2,2) + T7(2,3) +Z/ FPX) o ))dT2 ()

7n (1)
+T3(1,2) + /0 B(XD (o) Youm(s=) = You(s—))dTs (3) + Ty (4) + T (5).
According to Theorem 3.7.1 (iii), in order to prove the convergence of the third and the
fifth terms in the r.h.s. of the above relation, we only need to prove the convergence
of each I'"™(i), i € {3,4,5} and T"'(3) to 0 as n — oo. Now, we prove that each term
converges uniformly in probability to 0 when n — oc.

The term T}(2,2): Let us rewrite I7(2,2) = 37, " ¢7,(2,2) with

K(th) K(tHth)

PP X (k= 1) > AY s,y + Z IN )
h=2

Up,.md
(2,2) = e

For each k € {2,...,m}, by property (P1), (3.2.5) and the boundedness of ff,
similarly to the calculations in (3.5.2), we have

Un,m | dn |6n

E(’Cznk(z 2)|[Fp) <C 1n0(Bn) [(k— 1)()‘n,m e Anm — 1)+ (k- 1)>‘n,m + e k=D Anm 1]
<Cun,m|dn|5n/\n,m '
Then we conclude by using (3.2.5), the boundedness of |d,| and ¢, in case (C1),
Up,m = 5, the criteria (3.7.2) and Lemma 3.7.2.
The term I'7'(2,3): Let us rewrite I'?(2,3) = >/, Z[m] 'k (2,3) with
n un m
16(2,3) = ff( 1)k = DAY o0 gy L)1y L et b > 13-
For each k € {2,...,m}, by boundedness of ff’, similar as above, we have
n Unp m|d ’6 _ (k— Un,m|dn|6n)\n,m
]E(’ Z,k(273)||ft,}) S C (ﬂn) (1 e An,m)(l —e (k 1))\n,m) S CT
Then, we conclude similarly that T'"™(2,3) 50 by the criteria (3.7.2) and Lemma
3.7.2.
The term T (1,2): Let us rewrite Ty (1,2) = S1", Z[m] Cir(1,2) with
d K(t].tF) K(tl t)
-n Unp,man
Ci,k(la 2) = Wk( thAY ﬁ"(tl tk))( Z (AY ﬂ”(tl tk) Z AY, ﬂn tl tk AY]}?L@_}J?))'
h=2 h,h/=
h;éh’
For any fixed k € {2,...,m}, by similar calculations as above, using the boundedness

of the function k and [ #2F(dz) < oo (see Remark 3.2.1), we have

E([C/4(L,2)||1F)
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Un,m|dn 5%
<ol (e 4ty -1 )1{K(t37t§)22}+WK(tll’tf)(K(tzl’tf) D7)

Then, we conclude similarly that T (1,2) 50 by the criteria (3.7.2) and Lemma
3.7.2.

The term fO” Drp(xn dI'?(3): This is equal to ;" , Z[nt] '(3) with

n(s ))

Ce(3) = wnnf /(XYM = M) (Yesr = Yip)-

For a fixed k € {2,...,m}, by the boundedness of ff’, Property (P1), (3.2.5), the
inequality (a® 4 b?) < 2(a® + b?), [p 2?F(dz) < oo, lemmas 3.7.5 and 3.7.4, we have
E(CT(3) ) = 0,

E(IG%(3) P F) <Cup BIMy" = My PIF)E((Yh = Y + (N = NP F)
2 d2 1 2 2

Uu C Uu C
SC ,Mm TL( Cn s + ) S C nm; n (Cn + dj + 1)
n nm n<m nm n n

Then as a < 1, we conclude using the boundedness of |dy,|, ¢, < CB27% B, =

(logn)2, Ungm = %, the criteria (3.7.3) and Lemma 3.7.2. Therefore, we have

om0 g X o))drn(3 3) 5 o.
The term fO” t) frixn

" oy )dT7(4): This is bounded by C Y7y Y21 ¢ (4) with

CP(4) = unm| N = N B"HN%L - Nﬁ"\

Let k € {1,...,m} be fixed. Using the independence of the increments Nﬁ" - Nﬁ”
and N’i" 1= Nﬁk" and Lemma 3.7.4, we have
it th

u
E(|¢™ (4)| 1y en Fp) =—m E(|N% — N1 F(d
(IGR M e @<y Fa) == . || E(| N il {IN‘“ M }) (dz)
Cun.md.
<G [ [yl P (dy).
n unﬂln@n >[y[>Bn
Then using the boundedness of d,,, 5, = (logn ”)2, Unm = 75 and Lebesgue’s theorem,

we easily check that the two first points of the criteria (3 7.4) are satisfied. In order
to prove the third point of this criteria, noticing that unymﬁgéo when n — oo, then
for y > 1 we have u, 82 <y & B, < wLa-. Similarly, we have

. c c
PG >l < [ pan [ pa = ran (L)

un,m|z|
F(d:c)a( Y > .
>|z|>Bn Unm|33|

S% </x|> (d:c)&(ﬁn)Jr/ ,

Un, mBn un,mﬁn




3.5. Appendix A: Proof of lemmas 3.4.4, 3.4.7, 3.4.10, 3.4.13 concerning the rest

terms 69
Now, using (Hf') and as - ZJan < 1 for n large enough, we get
c y Unm Cup
P((%(4) > y|Fpn) <— 9( )06 + — z|“F(dz) | < — (14 pn) .-
(Cix(4) > ylF) n2 ( Un,mBn (Br) Yy un;ﬁn>,z|Lﬁn( ) n2y® (1)

Then as a < 1, using (3.2.5), p, < C'log ,Bin’ Bn = M, Un,m = 7, the third point

of criteria (3.7.4) is satisfied. Therefore by Lemma 3.7.2, we have fo ff’( T (5=) )dF?(4) 5
0.
The term fo”(t) ff/(X;ln(si))dF?( ): This is equal to > ", Z[nt 'x(5) where

GI(5) = wnmf F1(X3Y) [ (AR = AP) + (N = N | (M, = M.
For any fixed k € {1,...,m}, by the boundedness of ff’, the independence structure,
property (P1), (3.2.5), the inequality (a + b)? < 2(a® + b?), [p2?F(dz) < oo (see
Remark 3.2.1), lemmas 3.7.5 and 3.7.4, we have E((] (5 )]}'t1) =0,

n d?(k—1)?
(G617 <O B M) | Sl mav - )

Cu? ¢, d2 1
§M<%+,).

n n n

Then as a < 1, we conclude using the boundedness of |dy,|, ¢, < CBQ*O‘ Un,m = =

m—1>
the criteria (3.7.3) and Lemma 3.7.2. Therefore, we have [’ () ff’(X” )dl'? (5 ) 5
0.
The term T (4): We recall that

1(5—)

M (t)
Ft (4) = un,m/o (k(Xnn(s—)> Ynnm(s—)_Ynn(s—))_k(Xnn(s ) Nnnm(s ) Nﬂn(s—)))

Bn AP 2 7 4Bn
(N sy = Ny ) dAS™
Since g—z(az, y) is bounded on R? it is enough to prove that for each k € {1,...,m},

the triangular array with generic term Zzlk (4) converges to 0 when n — oo where

Up.m|d
Tlutay = tmemllnly iy, N2

By property (P1), the independence between Yfil - Yﬁ " and N 5,;11 - Cauchy-

tl )
Schwarz’s inequality, [ 2*F(dz) < oo, Lemma 3.7.4 and Lemma 3.7. 5, we have

| Un,m|dn]| , |dn] c
o g, 7 FO <UL
Then we conclude using the boundedness of |dy|, cn, Unm = 2%, the criteria (3.7.2)
and Lemma 3.7.2. Therefore, we have T (4) 5o.

Un,m ’dn ‘

i

E(|C . (4)||F1) <C
(’Cz,k( )|| tzl)— nm nm \/% nm (|6
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The term T (5): We recall that

U
T (5) = tnmd ZZ (X3 Nt = N) = KX AY s ) DN — N2,
i=1 k=2

Similarly as for the term I (4), it is enough to prove that for each k € {1,...,m},
the triangular array with generic term CZk(5) converges to 0 when n — oo with

K(thth)
Z AY, TP (¢ k) (Ntin Ntﬂln)2'

unm|d |

ZZk(E)) =

By using Cauchy-Schwarz’s inequality, property (P1), Lemmas 3.7.4 and 3.7.5, the
fact that [, 2*F(dz) < oo (see Remark 3.2.1) and the calculations developped for the
term T (1,2), we have

E(|Cix(5)I1F2)

Kb th) 12
< Ol (S AV, ) X BN — NG
- 1/2
K(tth) K(t1 th)
< CW E( (Ao )+ D0 AV o AY, v .V Fi1)
T g
2 71/2
SCW [n()\"m+i)i '
Then we conclude using the boundedness of |dy|, n, Unm = 225, )\nm — 0 when

n — oo, the criteria (3.7.2) and Lemma 3.7.2. Therefore we get T (5) 5o.

The term fn"(t) R(XD 5=y Youm(s—) — Y, (s-))dL; (3): Since k(z,y) is bounded on

R2, using the inequality (a + b+ ¢)? < 4(a? + b + ¢?), it is enough to prove that for
ke {1,...,m}, the following eight triangular arrays with generic terms {Czk(S,j),j €
{1,...,8} converge to 0 as n — oo with

Cib(3,1) = (AP = A PIAT, = ATL Ca(3,2) = tnam (AT — ATRIML, — M|
Gir(3,3) = un,m(Afz? Aff)QiNéil - Nﬁ”| Gu(3,4) = “”7m(M£“n a Mgn)Q‘AB'SH - Afm
(ik(3,5) = un,m(Nﬂ" N£”>2\Mﬁ"+1 MB"| Cin(3,6) = “nim(Mﬁn - Mﬁn) iNZ?‘“ Nﬁni
COal8T) = tnan M = M = ML, T6.8) = v (N = NEPINE = N

(3.5.3)

For the first four triangular arrays, as Aﬁ " =dpt is deterministic, applying Cauchy-
Schwarz’s inequality and Lemma 3.7.5 for the increment |M K - M fk"| and Lemma
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3.7.4 for the increment Nﬁil Nﬁ", it is easy to check

=n Un.m|dn 3 -n Un,m|dn 2 Cn
E(Cia(3, DIIFy) < Ol B(CLG. 2Py <cnpeve oo
=N Un,m n25n -n Un,m |0n |Cn o
E([74(3,3)||Fp) <O tmmlln (2T (3,4)(|F ) < O tnmldnlen,

Then, for our choices of u,,, and 3,, by the boundedness of d,, and d,, ¢, < Cpi«

with 3, = M, the application of the criteria (3.7.2) and Lemma 3.7.2 is straight-
forward for these first four triangular arrays. Now, by using the independence be-
tween the increments of MP» and NP, applying Cauchy-Schwarz’s inequality and
Lemma 3.7.5 for the estimation of the increment \MiH - Mti”], Lemma 3.7.4 and

Jg #*F(dz) < o0, we have

E(|Ci(3,5)]|Fp) < CHmmen R[G5 (3,6)||Fp) < Clmmgetn, (3.5.5)

ny/n

By the same arguments as above, we get nc, converges to 0 as n — oo and then
we apply the criteria (3.7.2) and Lemma 3.7.2 to get the convergence of these two
triangular arrays to 0. For the seventh triangular array, we use the independence
between the two increments M 5;11 - M 5;" and M tﬁk" - M ﬁ" and Cauchy-Schwarz’s
inequality to obtain ' ' ' Z

3/2
_ U, mC

E(C; (3, 7)||Fa) < o2 3.5.6

(3. T1Fy) < ol (35.6)

Then we conclude similarly the convergence of this triangular arrays to 0. Finally,

concerning the last triangular array, we use similar calculations and arguments as for

the term [;*®) f /(X7 )dl?(4) and we get

u
E([Cia(3,8) 1z, o911y ) = mmw@—m@%{

)F (dz)
M J|2|> B N NBHL unlm\z\}
C )
Su";""/ ly|*F (dy),
n m>|y|>ﬁn

and using (HY') and (3.2.2), for y > 1 and n large enough, we have

P(ink 378 > y|]:t1

o, o5
7 J|z|>Bn Un,m 2|
C

<3 / F( ﬂ:)H(BnH/ F(dx)&( Y )
N g > el >Bn Un,m | 7]
C Y ua/2 P

<=1 0 (Bn nm/ z|Y*F(dx
n? ( Un,mﬁn) ( ) /2 W>Iz>ﬁn| | ( )

a/2

C’ua/2 C'u
< n,m a/2 /2
n2yo/? (1 /ac|>6n ! F(d$)> /2 <1 & )
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a/2
Note that, as a < 1, 8, = and up,, = 74, we have that % converges

to 0 as n — oo. Therefore, we conclude the convergence of our last triangular array
by criteria (3.7.4) and Lemma 3.7.2. This completes the proof of Lemma 3.4.4.

(log n)?
n

3.5.2 Proof of Lemma 3.4.7

Here, we prove that the sequences of processes (Y (1))p>0 and (R™™),>¢ converge
uniformly in probability to 0 as n — oco. First, instead of considering the form ??(1)
given in (3.4.5), it is enough to prove that for each k € {1,...,m} the triangular arrays
with generic terms y;;"(1,1) = Mi”tkﬂ and y;';"(1,2) = 30,5, AY ﬁn(tk)]l{K(tk)>]}
converge uniformly in probability to 0 as n — co. On the one hand, from the above
estimates (3.5.1), we have E(ylk (L, 1)[Fa) =0, (]y "(1,1))? |.7-'t1) = 2 Then,
yl (1, 1) satisfies (3.7.3) and we conclude using ¢, < C’BQ ® from (3.2. 5) and Lemma
3.7.2. On the other hand, using similar calculations as in (3.5.2), property (P1) and
Jg #*F(dz) < oo, we have

(" (1,2)|Fn) = b (A + e — 1),

nmn, ,m )
K(t K(tF)
E(y; uzﬂmﬁ=<z<)mymﬁ>+zjﬂ Vg sy A )P
j#5
< CE(5y K () Lk ety>21 + @y ( )) S K () (K(6) = D x> F) < 5 Onm +2 )

(3.5.7)

Then we conclude using d’,, = 0 by the hypothesis (Hs), d,, < C'log 1/, (see (3.2.5)),

Bn = lofl", Anm — 0 as n — oo, criteria (3.7.3) and Lemma 3.7.2. Therefore, we have

on

Y (1) Eo. Now, from the formula of the rest term given by (3.4.12), we have

5
RP™ =TP(1,2) + > TP(i).
i=2
In what follows, we prove that each term converges uniformly in probability to 0.
The term I'7'(1,2): We recall that

nt] m k-1

TP(L2) =Y % > (¢y(1:2) + i (1.2) + i (1,2)),

i=1 k=2 j=1

with

zk](l 2) = Un,mff/(Xg)AY ﬁn(tk)]l{K tF)>1} Zh 2 AY TPr ()

g (1,2) = tnm f ' (X1) Sty AY o ey AY pn 3y Ly 51y

g (102) =t 1O S Ay S A

Instead of working with T'}'(1,2), it is enough to prove that for each k € {2,...,m}
and j € {1,...,k — 1}, the three triangular arrays with generic terms (" ;(1,2),

Z,w(l 2) and C”Z k.;(1,2) converge uniformly in probability to 0 as n — co. Con-
cerning (" kj(l 2), on the one hand, by property (P1) and hypothesis (H3), we have

E(¢7 (L, 2>H{|Czkz7 1,2))<1}1F31) = 0. On the other hand, as ff’ is bounded, using
property (P1), the inequalities 1 — e*»m < A, and (30 |z[)® < Y20, || for
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z; € Rand a <1 and ¢(B) < CB* %, we have

E(!Cffk,j(l, 2)*Lyen, 21 Fe)

m(l—e” Anm ) K@)

- B 2 [ et F(da)|Fy)

o158 {mam 5/ (X002 Sy A, 5, |<1)

K(t])
< o BCY A¥yo ) : ) \F)
un,m\ff’( Xl 2h=s" Ao )|
K(t) K(t)
Z |AY, ﬂn(tﬂ )| F) < Z |AY, 571,(@)\&!]-}11)
_ Cuim E(K (t @-) ez P Cugy ot m
oon 0(8n) o n?2 ’

Now, using similar arguments as above, the inequality ]l{| S a1} < Z§:1 Lyja 11/}
j=1 %3
6(.) is decreasing and hypothesis (H{'), we obtain for all y > 1

n C
PG, LA >uiF) < [ BIAr ) unmeA N ETE AN

|z|>Bn

¢ E(K (t)1

|z|>Bn

C/ 1 .
s = ——E(K ()1, 1. | Pl F) Fldi
1> B 0(Bn) | (l) {K(5)22) |2]>8n { ‘>\f.f/(Xt%)l(K(ZZg)—l)umm\xl} (dz)] t%) (dz)

{K(tj)>2} {Iff’(X 1unmzAY, S )\>y/(K(tJ 1)}|ft3)F(d95)

¢ L g Y
= /Mn 98 ez S ) Dl

: /31 ‘ Cu% m)‘n mPn
< E(K (tf)Q]l j | Fo)ul, |z|“F(dr) < —2m 00
|z|>Bn, 0( n)ya {K@)>2}1V ¢t ; ’ ‘ F

Then, we conclude the convergence of the triangular array with generic term (", j(l, 2)

uSing tnm = (V% By = (21)Vourl, pu < Clog1/8, (sce (3.25)),
An,m — 0 asn — oo, criteria (3.7.4) and Lemma 3.7.2. Now, concerning the triangular
array with the generic term ('} k,;(1,2), noticing that j and k play a symmetric role
in ¢f ;(1,2) and ¢"t1.;(1,2), the same calculations yield the same bounds for the
three conditions of criteria (3.7.4) and therefore we obtain the convergence of the
triangular array with the generic term (’Z,w‘(l, 2) in the same way. Finally, concerning

" ik, (1,2), by similar arguments, we have E(¢"7), ;(1,2)Lyj¢rm )<yl Fp) =0 and

)| F)F (de)

n2ya

K(t}) (t)
E(C”Zk,j(172)2ﬂ{\c”" ;(1,2) |<1}|‘7—:t1 < Cunm Z AY, Bn tk) Z |A ﬂn tJ cx+(2—a)

s sy, e : }‘f“l)’
h=2 Tﬂn(ta) = tF)

K(t
Un, m‘ff/(th)zh 2 AYTf”(tf)

K(tF) K(t])

Z |A Bn(tk)‘ Z ‘A ﬁn(tﬂ |’Ftl)



74 Chapter 3. Asymptotic behavior of the error for Lévy driven SDEs

Cult B ) L2y i SO ) Lo PR, Cii

n,mpn
= 6(5))? PR

By the same calculations as for Gk ]( 2), where we use the inequality 1

’ <
{1252 Ty agp|>1) =
Zj/:l ijl ﬂ{|ajj,|>1/(g+gl)}, we have for y > 1

P(I¢" k5 (1,2)] > ylF) = E(1 ) K@) | Fir)

K(t] i
{Iff/( tl)un mp_g AY, ,Bn ky Doh=o AY_g, >y}
() T, ™ (t])

< E(K(tf)K(tg)1{K(t§)22,K(tZ)22}H{Iff/(th)un,mAYT§7L (e AV (t3>l>m} 1)

_ E(K(ti-“)K (DY ey, m0 )22 ( y P F)
(0(Bn))? ol /(X Yt 2| (K () — DK (]) — 1) '

_ E(K(tf)QK(tgyH{K(tf)zz,K(t{)ZQ}’]:t}) Upy P < CUgy 1PN

- (0(Bn))? e

Then, we conclude using wup m = ((m_q%)l/a, Bn = (%)l/o‘ug}n, pn < Clogl/p,

(see (3.2.5)), Anm — 0 as n — oo, criteria (3.7.4) and Lemma 3.7.2. Therefore, we
get T™(1,2) 5o.
The term I'}'(2): Let us recall that I'}(2) = >/, Z[m] 'x(2) where

Gh(2) = £

nm nm

o+ (N = NJ)+ (k= DN, = N

In case (C2), from hypotheses (H3) and (H4) d, = b+ flr\>1 xF(dz) — d', = 0 then
this I'}(2) vanishes. In case (C4), hypothesis (Hs) yields d’;, = 0 and then d,, = b.
Now, for k fixed, as ff’ is bounded, using Lemma 3.7.4 and fR a;zF(dx) < 00, we get
[E(G(2)1 )] < S and

Cu? 1
5 (g HE(NE = NI + E((Nha = N )* )

2
Cu? Cu?
) S
n n n n

E(I¢7%(2)*|Fy) <

nm

=1y Togn Criteria (3.7.3) and Lemma

Then, for case (C4), we conclude using uy n, =

3.7.2. Therefore, we get I'"(2) 5o.
The term I'7'(3): Let us recall that I'}(3) = >}, Z[nt] '+ (3) where

P(3) = (XM = M) (Yyeor = Yip).

For k fixed, as ff’ is bounded, by using property (P1), lemmas 3.7.4 and 3.7.5 and
Ja #*F(dz) < oo (see Remark 3.2.1), we have E((f,(3)|F;) = 0 and

E(¢I4(3) 21 Fn)

< Cup  B(M" — My 2| Fy) [E((Yﬁfh = Y3 F) + E((N s = Ni)* Fp)

Cui2 2
< Up,mCn <Cn + % + 1)
n n n
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Then, we conclude using (Hg) that d,, = b, up m = (%)1 a B = (m"_ll)l/a T—L}m
cn < CB2 (see (3.2.5)), criteria (3.7.3) and Lemma 3.7.2. Therefore, we get
I (3) 5 0.

The term I'7(4): Let us recall that I'}(4) = >/, Egiﬂl e (4) where

Pe(4) = wnnf XA — A7) + (N = NOIM s — M),
For k fixed, by similar arguments as for the term I'?(3), we have E((",(4)|F;1) = 0 and

2
E(]Cﬁk(él)\zlft%) < Cu”ﬁmcn (ﬁ + %) Then, we conclude similarly that I'"(4) 5o.

n2

The term I'?(5): Since k(z,y) is bounded on R? it is enough to prove that for

k € {1,...,m}, the following nine triangular arrays with generic terms {(/(5, j),Jj €
{1,...,9} converge to 0 as n — oo with
1(5,1) = tnn (A — A7) ZrAfle AL (5.2 = (A — AT \MﬁL My
'Z?k(573) = Un,m(Afgl - Af;n) N tk‘” - Nén‘7 3k:(574> = unm(Mﬁln - Mﬁn) ‘Atk+1 - Atﬁfn‘
3}c(575) = unm(Néi” - Ngn) ‘Mﬁyjrl Mt/;n‘? 3/%:(576) = unm(Mﬁ" Mﬁn) ‘Nk+1 - N£n|
1005, 7) = (M = MM = ML G(5,8) = wnm (N — NJ)? \N%;l — Ny
14(5,9) = un (N — N \Aﬁ,;;l — A

From (3.5.3), (3 5.4) and (3.5.5) and by same calculations, the triangular arrays with
generic terms ([ (5,4), ¢ € {1,..., 7} and (] (5,9) are bounded as follows

E(|((5,1)[|Fp) < Clmmlnl - (1 (5,2)[| Fp ) <O bl /o
(G5, )17 <l B(\cn (5, 4)7y) < Ol 555,
B¢ (5,5)||F) < CHmmden B((7(5,6)[| Fyr) < Ctemgece >
3/2
E(I¢2(5, 7)1 Fyp) < CUmmze - B(|¢(5,9)||1F) < €t
Then, we conclude using uy, ,, = (%) B = (52 YW ey~ nm’ cn < CB2 and

on < Clogl/py, (see (3.2.5)), d,, = 0 for case (C2), d,, = bfor case (C4), criteria (3.7.2)
and Lemma 3.7.2. Therefore, we have the convergence to 0 of the eight triangular
arrays corresponding to these eight generic terms. Now, concerning (/'.(5,8), we

rewrite as U, m( (Nﬂh’jrl — th”)) \Nk+1 - Nti”\, then by Jensen’s inequality we

have
E—1 K(th) k)

7%(5,8) <Cunm2 Z AY, 5n(th Z |AY, T4 tk
h=1 j=

Thus, for h < k fixed, thanks to the inequality (a + b)2 < 2(a?® + b?), to prove the
convergence of the last triangular array, it is enough to consider the two following
generic terms

n K tf
e (5:8) = tnan(15 AY o ) T )\A Vit
e (5 8)—7«Ln,m(AYT16n(tlh)]L{K(t?)zl})2 ZJ g ’A ﬁn(t§)|-
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First, we consider (7' 1 (5,8). By property (P1), the inequality for oo < 1, (3°7" |4])®
Soiy il and [, |2|*?F(dx) < ﬁL/ (see (3.2.2)), we have E(|¢Y, 1, (5,8) [ Lyicn, , 5:8)1<1) | Fr)

K(t}) K(tF)
=tnmB(| D AV 7] Z AV 1| 1 |Fr)
]:2 {|Z] 2 Tﬁn(th)l_ (k) }
Junmz’ 1Y oy
J 2
K(t}) K(t)
Su%,/nZ’LE(( Z ’A ﬁ" th Z ’A Bn tk /2‘]:151)
K(th) K(tk
SUTZECY 1AV |° Z INPREREN
§=2
C’ua/zp Cull2\ p
n,mfn a/2 h k n,m”.\n,mpMn
=006 /|x|>5n |27 F (d)E(K (6) K (8) L ey, 1 (15)>13 1 F ) < e

Now, using similar arguments as above, Jensen’s inequality, the inequality
{IZ”/ S a5} < Z i Z] 1 {Iaj]-/|>1/(5+5/)}’ 6(.) is decreasing and (HY), for
y > 1 we have

P(|¢ 5 n(5,8)] > y’Ft}) <E(1 (th) ‘]:tg)

) ;
Zj/=1 ‘AYTﬁn(t’?)by}

K (¢
n,m K (0
{u () 30— Tﬁn“?)

h
<E(K () K ()L (hy>0,5(15)>1} 1 (KUDAYZ,, 1 YTBn(tk>\>W}|fl)

1 e - .
ST O ez [ o e O

a/2
Cun,mAn,m

1 Un m’Z|a/2 hy2 kN2
> /||>ﬁn o2 (d=)E(K (&) K(t7) Il{K(t;)>2,K(t§)>1}’ t}) = n2ye/? 7?Z/z

(6(8n))?

We conclude uSing Un,m = (%)l/a’ ﬁn = (mml)l/a T_Lim Pn < ClOgl//Bn
(see (3.2.5)), Apm — 0 as n — oo, criteria (3.7.4) and Lemma 3.7.2. Similarly for
"k (5,8), using l—e Anm <\, and that ¢(3) < CB2~ E(| ,Zk,h(5 8)|]l{|<‘lz a5, 8)51}\.7:,&11)

is equal to

K(th)
tnn(1 = € )E(AY f, | Z AYpon [ Liay, o, . 1< - p )
Junm@ v )AYTB%M'
1 K(t})
Un,m
< n E(c( )l Z AYTﬁn(tlﬂ)H]:tl)
K(tf) — 7 7 i
Jinan SR AV | 57
K(tF)
Cupm .
< ——FE
< B 1A o[V E)
7j=1
Cul!? / C’uO‘/2
< 2|2 F(da)E(K ()1 e gporsy | Fi ”m,
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and using the inequality ]l{| S Z§:1 Lyja,>1/e3, 0(.) is decreasing and (HY),

j=1a5/>1} <
we get for y > 1,

[ F)

P(IC 2k n(5,8)] > ylFu) SAumB(K () L esy=1y Liave,  |a Yo >

Ch\, /
<—— " _E(K Il dz ]:
GO EEE D =y | 0 o e PR

ﬁ”( h) Un,, mK(tk)

Cul? Cu!?
<—— M [ 2% F(d2)E(K (t9)%1 Fp) < ———=m
<G /| PR @R o t%>_n2ya/2ﬁg/2

We conclude using uy »,m = (%)1/0‘, Bn = (mﬁl)l/a nm, criteria (3.7.4) and

Lemma 3.7.2. Therefore, we get I'"(5) 5.

3.5.3 Proof of Lemma 3.4.10
From the formula of the rest term given by (3.4.15), we have

5
Ry™ =T7(1,2) + T7(2,2) + Y TP(i).
=3

The aim is to prove that each term converges uniformly in probability to 0 when
n — oo.
The term I'7'(1,2): Let us recall that I'}(1,2) = > ", Zgiﬂl ™ (1,2) where

k—1 K(t}) )

ff/( :zi) AYTBn tz)+ Z AY, /3n t’
j=1 h=2

un,mdn

nm

For k € {2,...,m}, since ff’ is bounded, by property (P1), Jensen’s inequality and
similar calculations as in (3.4.16), we have

-1 K(t) K(th)

n Cun,mdy,
BIG(1.211Fg) < S | SRS 8% 17) 5= DECY 8% 1F)
= -
C’un mdnd )\nm
n2
As we choose uy,y, = W, using d,, < Clogn, 0, < Clogn (see (3.2.5))
and A\, — 0 as n — oo, we conclude by criteria (3.7.2) and Lemma 3.7.2 that
I (1,2) 5 0.
The term I'7(2,2): Let us recall that I'}(2,2) = >/, 2 1£(2,2) where
k-1 K(t])
;?k(272) :Un,mff/( 1‘3) AY, ﬁn tk)]l{[( tk >1}Z Z AY, ﬂn t]
j=1 h=2

K(th) K(th) k—1K(t])

+ZA T (th) ZA T (t]) {Kt3>1}+ZA B"thZATB"tJ
h=2

7=1 h=2
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For any fixed k € {2,...,m}, as ff' is bounded, by (P1), 1 —e~Amm < X, ,, and using
the same calculations in (3.4.16), we have

0
X

n
n

E(¢i(2,2)[[F) < Cungm <2 S | S O

Then we conclude using the same arguments as above to get I'"(2,2) 5o.
The term I'}'(3): Let us recall that I'}(3) = >/ Zyﬁ ™ (3) with

G (3) = tnm [/ (X (M = M) (Yigss = V).

For k € {2,...,m}, since ff’is bounded, by property (P1), the independence between

Mfk” — Mﬁ"’ and Yk+1 — }/;k decomposition (3.2.6), Lemma 3.7.4 and Lemma 3.7.5,

Jg #*F(dz) < 0o (see Remark 3.2.1),we get E((}(3)|F1) = 0 and

n 2 2 Bn Bn |2 2 Cuglm Cn d2 cn 1
E(C()E1F) < Cu B MG MR E(Y g~V 21 Fy) < o e 1)

n n? n n

Then we conclude using uy m, = W and 3, = loin, d, < Clogl/p, and

cn < CBy, from (3.2.5), criteria (3.7.3) and Lemma 3.7.2. Therefore, we get I'(3) 5o.
The term I'7'(4): Let us recall that I'}(4) = >}, Z[m] 1 (4) with

1(4) = ff'( g)(Af; — AP + N - N’B")(Mﬁ,j;l M.

For k fixed, using the same arguments as for I'"(3), we get E((]'.(4)|Fn) = 0,
2

E((¢M(4))%Fp) < Cu"ﬁmc" (Z—ZL + 1) and therefore, we get I'"(4) 0.

The term I'?(5): Since k(z,y) is bounded on R? it is enough to prove that for

k€ {1,...,m}, the following nine triangular arrays with generic terms {(}";.(5,7),j €

{1,...,9} converge to 0 as n — oo with

Fe(5,1) = wnm (A — AT PIAL = AT C(5,2) = unn (A — ATIMG — M|
14(5,3) = tnm (Al — A2 INfiirNﬁ”i 15(5,4) = o (M — M) |A%«Afm
z??k(5’5) Un,m(Nﬁn Ngn) |M%11 Mf;”l Zk(5,6) Un,m(Mfk" MB") |N,€Jrl Nﬁ"‘
iw(7) = Un,m<Mﬁ” M) IM/iL Mﬁ”l Zk(S,s):un,mwf" Nﬁ”> !Nizl Nﬁ"l
15,9) = (N7 = NJ)? |Af;+1 A%,

From (3.5.3), (3.5.4), (3.5.5) and (3.5.8), the triangular arrays with generic terms
Cffk(57i)7 i€{l,...,9} are bounded as follows

E(I¢7(5, 1)[|1Fp) < Ozl g1y (5,2)]| Fp ) <O mbinL o
E(I¢74 (5, 3)|| Fp ) <Cmemlnlon (¢ (5,4)]| Fyy) < O mmldnlen
E(¢1(5,5)||1F) < Chmmden - B¢ (5, 6)|| F) < Clnmgnde (3.5.9)
B¢ (5. 7)1 F) < O - B(1g (5,8)[1Fy) < O,

| E(¢(5,9)|| F) < Clmfdel,
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Then, by upm = W , dp, < Clogl/By, 6, < Clogl/pB, and ¢, < Cf, (see

(3.2.5)) with 3, = log" , criteria (3.7.2) and Lemma 3. 7 2, we conclude the convergence

of these triangular arrays. Therefore, we get I'*(5) 5o.

3.5.4 Proof of Lemma 3.4.13

Here, we prove that the sequences of processes (Y (1))n>0 and (R™™),>¢ converge
uniformly in probability to 0 as n — oco. First, instead of considering the form Y7 (1)
given in (3.4.5), it is enough to prove that for each k € {1,...,m} the triangular arrays
with generic terms y,' it "(1,1) = Mti e and ylk "(1,2) = ZJ>2 AY, ﬁn(tk):ﬂ.{K(tk)>j}
converge uniformly in probability to 0 as n — co. On the one hand from the above
(3.5.1), we have E(y; " (1, 1)[Fu) =0, E((y;r (1, 1)) | Fi1) = - Then, Yir (1,1)
satisfies (3.7.3) and we conclude using ¢, < CB2~% (see (3.2.5)) and Lemma 3.7.2. On
the other hand, by similar calculations as in (3.5.2), property (P1) and [ 2*F(dz) <
o0, we have E(|y (1 2)|]]~"t1) < 6")‘;;”. Then we conclude using §,, < C'log1/3,

(see (3.2.5)), /\nvm < W (see (HY')), with the choice 5, = % criteria (3.7.2) and

Lemma 3.7.2. Therefore, we have ?n(l) — 0. Now, from the formula of the rest term
given by (3.4.19), we have

5
RE™ =TP(1,2)+ Y T7().
=2

Now, we will prove that each term converges uniformly in probability to 0 when
n — oo.

The term I'7'(1,2): Let us recall that I'}(1,2) = >/, Z 1x(1,2), where
K(t;) )
e (1,2) X,1) Z Ay ) M with M = (M, =My )= (M, =M.

For k € {1,...,m} fixed, first, by Lemma 3.7.5 we have E((M;")?|F,1) < . As
f /' is bounded, using Jensen’s inequality, the independence of {AYT], @y J =1, Kt}
and MZ},’ﬁm, property (P1) and [ 2*F(dx) < oo, we get that E(¢/ (1, 2)|Fy) = 0 and

K(th)
E((G7(1,2)) 21 P SOl B () D (A ) 1 E( L1 Fir)
7j=2
CU% v CU% mCnAnm
< (5, B - 1>1{K<t¢>za}lftz>/x|>g 2P (d) S~

Then, we conclude by ¢, < CB27% (see (3.2.5)), Aum < % (see (HY)), the choices
:|1/Oz

| mn
Un,m = |:(m—1)logn

Therefore, we get I'"(1,2) 5o.
The term T'}(2): Let us recall that T}(2) = 327, 21" ¢7,.(2), with

and 3, = 11‘}%271) with o > 1, criteria (3.7.3) and Lemma 3.7.2.

dy,
+ MG — Mg"](— + M,m M.

nm

(k - 1)dn

nm

CzT,lk (2) = Un,m[
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For k € {2,...,m} fixed, by the independence of the increments and Lemma 3.7.5,
2
we get B(CT,(2)|Fp) = $=Dnmdn opq

n2m?

E(IG% (2P Fa) < Cul, (B(M — Mg")z + ;”)(E(Mﬂkil — M)+ 1)

2 4

9 c d

< Cuyppm (n’; + nﬁ) )
Then, we conclude by ¢, < CB272, d, < CBL™* (see (3.2.5)), the choices uy ; =
1/

[%} * and Bn = 110/(271) with o > 1, criteria (3.7.3) and Lemma 3.7.2. There-

fore, we get I'(2) 5.
The term I'7'(3): Let us recall that I'}(3) = >/ Zyﬂ 'k (3) with

_ un mdn(k—1)
nm

un,mdn

nm

For k € {2,...,m} fixed, by the independence of the increments and Lemma 3.7.4,
we get

Cip,m|dn, ](5

Cti |y |
n n2

E(|¢%(3)[1F) < (BINGL, = Ny |+ EINy" = Ny|) <

Then, we conclude using &, and d,, are bounded by C3L=% (see (3.2.5)), the choices

1/a
Upm = [%} and 3, = 11(}(271), criteria (3.7.2) and Lemma 3.7.2. Therefore,

™ (3) 5 0.
The term I'7'(4): Let us recall that I'}(4) = > 7", Z[m] 'k (4) where

P(4) = (N — Nﬂ")(Niil - Nﬁ”)-

For k € {2,...,m} fixed, by the independence of the increments and Lemma 3.7.4,
we have

2
Un,mOr,

E(Ck@I1Fy) < CunmE(NG — NFDE(N, - N ) < 02
Then, we conclude using &, < CBL™% (see (3.2.5)), with our choice of Uy, and By,

criteria (3.7.2) and Lemma 3.7.2. Therefore, we get I'"(4) 5o.
The term I'?(5): Since k(z,y) is bounded on R? it is enough to prove that for

k€ {1,...,m}, the following nine triangular arrays with generic terms {(};.(5,7),j €
1,...,9} converge to 0 as n — oo with

{1,..., 8
Fe(5.1) =t (A — AVIARL — A (P(5.2) = wnm (A — A IM — M|
n (5,3) =u (Aﬁn A,Bn) |]\[Z3 N,Bn| n (5,4) = u (M/Bn Mﬁn) |Aﬁn A/Bn|
i,k\9 n,m t! k+1 i,k\9 n,m k+1
14(5,5) = (N = NI = ML G(5,6) = (M MY N = N
105, ) = (M = MM, — Mﬁw 14(5,8) = tnm (N = NI PING, — N
1k(5,9) = Un,m(Nﬁ" Nﬁ”) Al [ A'B"I
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From (3.5.9), the triangular arrays with generic terms (% (5,7), i € {1,...,9}\{5} are
bounded as follows

E(|¢7 (5, DI F) < Otk B(|¢7 (5, 2) || ) <O tnnlgnl /o
2
E(I¢74 (5, 3)| | Fop ) SOl | R(|¢2y (5, 4)]1Fyy) < Ctnlgelen
B(|C7 (5, 6)1F;) < C=me=e E(ICR, (5, 7| F) < O
nm(sn n.m|dn
E(¢1(5,8)||Fp) < Ozl B¢ (5,9)[| F) < Cezfdel,
1/
Then, by upm = [%} ,dy < OB 5, < CBL® and ¢, < Cp2 @
(see (3.2.5)) with S, = %, criteria (3.7.2) and Lemma 3.7.2, we conclude that
these triangular arrays with generic terms (% (5,7), i € {1,...,9}\{5} converge to
0. Next, concernmg (%(5,5), we reuse the notations in section 3.4.1 and rewrite
75(5,5) = (i (5,5) +<”znk<5 5) + ¢"x(5,5) where
/?k(57 5) = Un mAYTﬁn(tl tk):ﬂ‘{K(tl th >1}|Mk+1 Mgn’a
//n (5 5 U’TL”’LZ] 217 A ;ﬁn(tl tk)’Mgr-L&-l - Mfkn’?
7t n
mm (5 5) = Unmzjjli )|A B”(t},tf)HA ,gn (t1,49) H]W,€+1 Mti |
i#5’ '

Concerning ("1 (5,5) and ¢"'4(5,5), by the independence between the martingale
increment and the Jumps w1th size bigger than f3,, Cauchy-Schwarz’s inequality and
Lemma 3.7.5 for term |M K Mtﬁ,ﬂ and the same estimates as done for the treatment

of T(1,2) in the proof of Lemma 3.4.4, we have

E(C" (55>uftl<0unmfwa< KO Ay

Cup, m\/Cn)\n m
T < > s
1 (t 7t§) ‘ i )

ny/n

C mn,m mn K C n,m n(sr,%
E(I¢"74(5,5)||1F) < e (z” 1A g0 1 o A 1 ||ft1> v
Ji#5’

Then, for our choice of uy, ,,, and By, we use 6, < CBL~* and ¢, < CB2% (see (3.2.5)),
Anm < & (see (HY)), criteria (3.7.2) and Lemma 3.7.2 to get the convergence to
0 of the triangular arrays with generic terms ¢} (5,5), ¢"'}'4(5,5). Concerning the
term Q/Zk(5,5), using the independence structure, propertles (P1) and (P2), we see

that

- m 1 — e~ (bB=DAnm 10U, ma? | MO B"|
E(elvg i,k(5,5)|ft%) _ e*(kfl)/\n,m + 69 / E(e k+1 ic )F(d.%')
(Bn) ||>Bn

ivUn,mx? |y

Let us denote 2’y (z,v) = -1 f\y|§ﬂn(e — 1 — vy ma?|y|)F(dy). Then we

have

. o 1— —(k=1)An,m ,
E(ewc i’k(5’5)‘ftl) _ ef(k—l),\n,m + € / e? "’m(x’U)F(dx)
' 0(8n) || > B

1— e—(k—l))\n,m

— #'nm(2,0) _ dz).
L+ /|x>ﬁn(e 1)F(dz)

By similar calculations as in (3.4.20), we easily get |2/pm(z,v)] < %]vummxﬂa and

the suprema of |2/, (2, v)| over all |x| < p and |v| < 1 goes to 0 as n tends to 0.
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Now, since e nm(®) —1| < O|2',, n(z,v)| and z — |2[>* is F-integrable (see Remark
3.2.1), we have

Clo|*uy

,m
n2 '

E(C O Fy) 1) <

Then, for our choice of g, ('} (5,5) satisfies (3.7.7) with £, = % which

converges to 0 as n — oo for all v < 1. Then, by Lemma 3.7.3 and Lemma 3.7.2, we

get the convergence for the last triangular array. Therefore, we get I'"(5) 5o.

3.6 Appendix B: Proof of some equalities and inequalities

First, we observe from the Lévy measure two relations followed:

e On the positive side Forall0 <a <b<1and~vy >0, we have

b
[ alFs) = [ 0sty v a) - 0.0y (3.6.1)
a<x<b 0

b
and /<x<b xlogxF(dx) = /0 (1+logy)(0+(yVa)—04(b))dy. (3.6.2)

Proof. The proofs are simply by Fubini. Concerning (3.6.1), it r.h.s. is equal to

b
'y/ y7_1</ F(dx) — / dx)dy / 71/ F(dz)d
z>yVa yVa<z<b
= (/ 7_/ dacdy—i—/ 71/ dxdy)
a<x<b y<z<b
=9 (/ F(dm)/ y”ldy—i-/ F(dm)/ y”ldy>
a<z<b 0 a<z<b a

_ / )+ / (o — @) F(da) = / )

Concerning (3.6.2), its r.h.s is equal to
a b
[ tom )6 (@) = 0,00y + [ (1 +1085)(04 () — 018y
b
— (04 (a) — 0. (b))aloga + / / (1+ log y) F(dz)dy — 0. (b) (blog b — alog a)
a y
=60 (a)aloga — 0 (b)blogh+ / / (1 +logy)dyF(dx)
z>a Ja<y<zAb

= —0,(b)blogb + /

xrx>a

(x Ab)log (z Ab)F(dx) = /< <bxlog zF(dz).
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e On the negative side For all -1 <a <b <0 and~v >0, we have

/ _ Ja P = [tV ooy (363)

0
and /a<x<b\a?|log |z| F(dz) —/a (1+log [y (O—((=y)V (=b)) —0_(—a))dy. (3.6.4)

Proof. Here, also, the proofs are simply by Fubini. Concerning (3.6.3), it r.h.s. is
equal to

! /aO(y)7_1 </ac<y/\b Flde) - /z<zz F(dm)) W=7 /aO(y)7_1 /a§|m<yAb Flde)dy
= (/ab(—y)'”/aquF(dw)der /bo(—y)“/aquF(dx)dy)
— ( / _,Flan) / 'y lay + / _ Tl / °<—y>“dy)

-/ o = o) + / _ Pl = [ cormam,

a<z<b

Concerning (3.6.4), its r.h.s is equal to
0

b
[ 1080 (-3~ 6 (=g + [ (14 logy)(O-(~b) ~ 6_(~a))dy

b

ab
— / /< (1 +logy)F(dz)dy — 6_(—a)(blog (—=b) — alog (—a)) — (0—_(=b) — 6_(—a))blog (—b)
- /<b /v < <b(1 +logy)dyF(dx) + 6_(—a)alog (—a) — 6—(—b)blog (—b)

= /<b(x Va)log (—(xVa))F(dx) + 60_(—a)alog (—a) = / |z| log |x|F(dx).

a<lz<b

Proof of Lemma 3.2.2. Taking advantage of (3.6.1) and (3.6.3), we have

— 2 2
c(B) = /0<x<ﬁx F(dx) + /_ﬁ<x<0x F(dx)
0

B
=2 [ 00n) ~0n 3y +2 [ ()0~ -3y
B B B
=2 [ (04 ) =04y +2 [ 90-() = 0-B)y =2 [ 9(600) ~ 0(3)ay.
(*)
In other hand, by (Hf) [6(y) — 6(8)] < [6(5)| + 0(8) < Cy=® + CA~. By (+)
c(B) < (% + C) (%=, Similar proofs are easily deduced from (3.6.1) and (3.6.3
for the other formulas.

[j\_/\-
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Proof of Lemma 3.2.4. By (x ~ 2f0 (y—a — —) dy = ae 52 @, Here, we can

also obtain similar proofs for the other formulas. O

Proof of Lemma 3.2.5. Applying (3.6.2) we have

1 1 b
W /ﬁ<x§b(x log x)F(dx) = (log(l/ﬁ))Q/O (1+1logy) (04 (yV B) — 04 (b)dy

1 g 1 b
~—f ﬁ/ 1+ log |y dy+/ 1+ logy)0+(y)dy.

Qog (/g Jy (oA oy J, (1 los )
Considering the first term, for § — 0 we deduce from (HY) with @ = 1 that
W fo (1 4 logly|)dy ~ W9+ — 0. Now, let € > 0, there ex-

n—0o0

ists a ¢ € (07 1) such that 8 € (0,&’) and we have \69+(B 1] < e. Counsidering the
second term, we rewrite m fﬁ (1 +logy)0+(y)dy = x, + yn where

/

e AR

1 b
) / (1 +1log9)0+(y)dy, - v = o752 8

= (log (1/8))2 .

On the one hand, z, is bounded by (log(l/m)g fa, + logy dy which converges to 0

as m — oo. On the other hand, if we denote ¢/, = W fﬁ (1 + logy)y ‘dy,
we have ¢/, (1 —¢) < y, < ¢/, (1 +¢) for any e arbitrarily small, then y, ~ ¢/, ~

—(lo, 2 0 o
m&r — —=. Therefore, it is clear that W fﬁ<z§s' (xlogx)F(dx) —

—97*. Similarly, applying (3.6.4), we get m Jop<pes((—2)log (—2)) F(dz) 2

—% which completes the proof. O

3.7 Appendix C: Some general tools

3.7.1 Uniformly tight processes

We recall the definition of uniformly tight property (UT') defined in Jakubowski,
Mémin, and Pagés, 1989. Let Z™ be a sequence of semimartingale, with the canonical
decompositions

Zp = AP+ MM+ AZM Az 50} (3.7.1)

s<t

where a > 0 and A™“ is a predictable process with locally bounded variation and
M™® is a (locally bounded) local martingale. Then we say that the sequence (Z™)
satisfies (UT) if for any ¢ < oo, the sequence of real-valued random variables

Var(A™), + (M™*, M™) + > " |AZ}1{az0|50)

s<t

is tight. This property does not depend on the choice of a € (0, c0).

If a sequence is (UT') then it has some other important properties as in the theorem
below, which can also be found in Jacod and Shiryaev, 2003 or in Theorem 2.3 of
Jacod and Protter, 1998.

Theorem 3.7.1. Let X™ and Y™ be two sequences of semi-martingales,

(1) If both sequences X" and Y™ are (UT), then so has the sequence X™ + Y™,
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(i) Let H™ be a sequence of predictable processes such that the sequence supg<; [HY|
is tight. If the sequence X™ is (UT), so is the sequence fo H!dX?.

(113) Suppose that X™ weakly converges. Then (UT) is necessary and sufficient for
the following property:
For any sequence of adapted cadlag H™ processes such that the sequence (H™, X™)
weakly converges to (H,X), then X is a semi-martingale with respect to the

filtration generated by the process (H, X ), and we have (H", X", [; HI dX7') £
(H, X, [ Hy_dX,).

3.7.2 Triangular arrays

Now concerning sums of triangular arrays of the form

[nt]

ry =2
=1

where for each n we have R%-valued random variables ((!*);>1 such that each ¢ is

Fi/n-measurable. Below we give various conditions recalled in Jacod, 2004 insuring
tightness or convergence of the sequence (I').

n §n
E(|G N Fi-1)/m) < o (3.7.2)
E(C*F, < én
’ (C@n|~27(7,—1)/n)| = ng/v (373)
E(| [ Fi-1)/m) < 352,
B Lyen <y 1 F-1y/m)| < %”
E(\Ci"m{mg}|f(i_1)/nl), <& (3.7.4)
P(CP| > ylFanym) < 522, Wy > 1

Note that (3.7.3) with &, and &, implies (3.7.4) with & = &, + &, and &, =
¢, and &, = &, /y* (the last is from extended version of Markov inequality for

monotonically increasing functions). Also, (3.7.2) with &, implies (3.7.4) with &, =
éln = &, and é”n,y =&n/y.
By I'" 50, we mean that supg<; [I'y| goes to 0 in probability for all ¢.

Lemma 3.7.2. (Lemma 2.5 in Jacod, 200})
(a) For I'™ LN 0, it is enough that either (3.7.2) or (3.7.3) or (3.7.4) hold with

lim¢&, = 0, lim¢,, =0, lim¢”, =0 Yy > 1. (3.7.5)
(b) For the sequence (I'™) to be tight for the Skorokhod topology, it is enough that the

sequence of each of the d components of (I satisfies either (3.7.2) or (3.7.3) or
(3.7.4) with

limsup&, < oo, limsup¢’, < oo, limsup f"ny < oo, limlimsup fl'ny = 0.
n n n ’ yToo ’

" (316)
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Lemma 3.7.3. (Lemma 2.6 in Jacod, 200/)

Suppose that one can find constants fnv such that
u.Cl gg:v
sup 1= E(™ [Fym)l < == ol <1 (3.7.7)
then (3.7.4) holds with &, = &, = C¢, | and &, , = 5n V-

We recall some important lemmas. The following theorems are from Theorem
2.3.7. and Theorem 4.2.3. in Applebaum, 2009.

Lemma 3.7.4. Let N be a Poisson process with mtensity function p and A be bounded
below. Then if f € L*(A, u(A)), we have E([, f(z)N(t,dz)) =t [, f(

Let us denote

T
Ho(T, E) = {F :[0,T] x E x Q@ — R | F is predictable and / / E(|F (¢, x)\Q)p(dt,dac)}
o JE

and I (F fo [ F(t,x)M(dt, dz) with M is a martingale satisfying M({O} A)=0
a.s. and there exists a o- ﬁmte measure p on RY x E for which E(M (t, A)?) = p(t, A)
for any A € B(E).

Lemma 3.7.5. If F € Ho(T, E) then E(Ip(F fo [ E(F(t, z)[*)p(dt, dx).

The following theorem is about the convergence of infinitely divisible distributions.
Justified by the one-to-one correspondence between infinitely divisible distributions
w and their characteristics (a,b,v), we may write u = id(a,b,v). This can be found
from Theorem 15.14 (i) of Kallenberg, 2002 or equivalently Theorem VII.3.4 of Jacod
and Shiryaev, 2003.

Theorem 3.7.6. Let = id(a,b,v) and pi, = id(ay, by, vy) on R, and fiz any h > 0
with v{|z| = h} = 0. Define

a"=a —|—/ zx'v(dr), b'=1b —/ zv(dx),
|z|<h h<|z|<1

where fh<|m|<1 zv(dx) = f1<|:p\<h xv(dz) when h > 1.
Then i, — p iff al* — aP, bl — b, and v, > v on R4\{0}.

The following Lemma shows a way to prove the convergence in distribution of
a triangular array. This can be found as Corollary 15.16 of Kallenberg, 2002 or
equivalently Theorem VIII.2.29 of Jacod and Shiryaev, 2003 which

Lemma 3.7.7. Consider in R? an i.i.d. array (¢*) and let T be id(a,b,v). For any
h>0 with v{|z| =h} =0, S ST 4
(i) nL(CP) = v on RA\{0}
(i) (G 1P| < B) — b
(iii) nE(CPCRT51¢P] < h) —
Remark 3.7.8. To check (i), we prove that nE(1icn|s,,) = v{|z| > w}, for anyw > 0.

Lemma 3.7.9. (Lemma 2.1 in Jacod, 2004) If for each n ("', i = 1,2,... are i.i.d.
random variables and I'! converges in law to a limit U, then there is a Lévy process I
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such that I'y = U. This process T is unique in law and T'™ converges in law to T (for
the Skorokhod topology). Further, the sequence (I'™) has (UT).

Let Zp = Y o, T7 = S0 ¢ and T7 = Y2} ¢'F with ¢ = g(X1L,)¢'F. For
each n, if the sequence (n',¢’}), i = 1,2,..., is i.i.d., combining Lemma 3.7.9 with
Theorem 3.7.1 (iii), we get the following lemma which is very similar to Lemma 2.8
in Jacod, 2004.

Lemma 3.7.10. We suppose that the sequence (Z™,T™) is tight. If the pair (Z7,T'7)
of random variables converges in law to (Z1,7") with v a random variable independent
of Z1 and that g is a Lipschitz-continuous function, then there is a Lévy process I”,
ndependent of Y and unique in law such that the processes (Z™,T"" ,T™) converge in
law to (Z I’ F), where T'y = fo _)dl"s. If further ~' is a constant, then we get

fo )Y'ds, and the convergence of (Z™,T"",T™) takes place in probability.

Proof. We rewrite I'™ = I'"! 4 T2 where "' = Z[nt (g(X7,) — g(X 1)) and
r? = Zgl g(Xi1))('7. First, since (27", T"7) converges in law to (Z1,7'), then by

Lemma 2.8 in Jacod, 2004, we have (Z",T"" T™?) A (Z,T',T). Second, by Jacod,
2004, Theorem 1.2 and using that g is Lipschitz, we easily deduce that g(X;L(_)) —
9(X5.0)) 5o Then, since I'™? A I, we apply Lemma 3.7.9 to get the (UT) property
of I'"? and Theorem 3.7.1 (iii) to obtain I'"™! 5. Therefore, we get (Z™,T"",T") =
(Zzn, T, T 4 T2) 5 (7,1, 1). O

3.7.3 Evaluation of logarithm and exponential functions

Here, we use the power series expansions for both functions log (1 + z) and e for z € C
(see e.g. Gronwall, 1916). We know that if z € C and |z| < 3, we have log (1 + 2) —

- Zn22(—1)"%. Then |log (1+2) — 2| < % > n>2 12" By applying the formula for
|2 < 3,

convergent geometric sum, we have |log (1 +z) — 2| < 1 |z|2

then %M < 2 then Vz € C such that [2] < 1 we have |log(1 +z) - z| < |22 | We

can proceed in the same way to prove that Vz € C such that |z| < % we also have

le* — 1 — 2| <|z|?| and by consequence, we get

3
=1 < <2
e —1 < 2]
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Chapter 4

Central Limit Theorem for the
antithetic multilevel Monte Carlo
method

In this chapter, we introduce our antithetic MLMC estimator for a multi-dimensional
diffusion which is an extended version of the original antithetic MLMC one introduced
by Giles and Szpruch, 2014. Our aim is to study the asymptotic behavior of the weak
errors involved in this new algorithm. Among the obtained results, we prove that
the error between on the one hand the average of the Milstein scheme without Lévy
area and its antithetic version build on the finer grid and on the other hand the
coarse approximation stably converges in distribution with a rate of order 1. We also
prove that the error between the Milstein scheme without Lévy area and its antithetic
version stably converges in distribution with a rate of order 1/2. More precisely, we
have a functional limit theorem on the asymptotic behavior of the joined distribution
of these errors based on a triangular array approach (see e.g. Jacod, 1997). Thanks
to this result, we establish a central limit theorem of Lindeberg-Feller type for the
antithetic MLMC estimator. The time complexity of the algorithm is carried out.

The original paper Ben Alaya, Kebaier, and Ngo, 2020 of this work is under minor
revisions for the journal Annals of Applied Probability.

4.1 Introduction

In recent years, the multilevel Monte Carlo (MLMC) algorithm, used to approximate
E[p(X:,0 <t < T)] for a given functional ¢ and a stochastic process (X¢)o<¢<r, has
become a hot topic. This method introduced by Giles, 2008b, that may be seen as an
extension of the works of Heinrich, 2001 and Kebaier, 2005, is well known for reducing
significantly the approximation time complexity compared to a classical Monte Carlo
method. Many authors have since been interested in the study of a central limit
theorem associated to the MLMC estimator that can be found in the recent works
by Ben Alaya and Kebaier, 2014; Ben Alaya and Kebaier, 2015, Dereich and Li,
2016, Giorgi, Lemaire, and Pagés, 2017, Hoel and Krumscheid, 2019 and Kebaier
and Lelong, 2018. Like for the classical Monte Carlo method, obtaining a central
limit theorem is important for the practical implementation of the MLMC method
(see e.g. Hoel et al., 2014). More recently, Giles and Szpruch, 2014 introduced an
antithetic version of the Milstein MLMC estimator without Lévy area that achieves the
optimal complexity O(A,2) for a given precision A, as for an unbiased Monte Carlo
estimator. The efficiency of the antithetic MLMC estimator was validated through a
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broad array of applications that can be found in Giles and Szpruch, 2013b; Giles and
Szpruch, 2013a. Since then, many new studies were interested on several types of use
of the antithetic MLMC estimator ( see e.g. Debrabant and Roéfler, 2015, Debrabant,
Ghasemifard, and Mattsson, 2019, Al Gerbi, Jourdain, and Clément, 2016; Al Gerbi,
Jourdain, and Clément, 2018). However, the problem of studying the validity of the
central limit theorem for the antithetic MLMC algorithm has not been addressed in
previous research. In the present paper, we first introduce an extended version of this
antithetic MLMC method which allows permutations between the finer m Brownian
increments associated to each corse increment with m > 2. Let us emphasize that the
original antithetic MLMC method introduced in Giles and Szpruch, 2014 corresponds
to m = 2. Then, we establish a central limit theorem on this extended antithetic
MLMC algorithm that is parametrized by a permutation o € S,,. This new result
fills the gap in the literature for MLMC methods and yields new insights on the
practical implementation of the antithetic MLMC algorithm. Indeed, the appeal of
a central limit theorem is that it provides the fair rate of convergence and gives the
exact asymptotic variance. Moreover, it allows us to build an automatic algorithm
where the sample size of each level is explicitly given without any precomputation
procedure and yields a more accurate confidence interval. Further, the knowledge of
the asymptotic variance allows for the design of efficient variance reduction techniques
for the MLMC (see e.g., Ben Alaya, Hajji, and Kebaier, 2015 and Ben Alaya, Hajji,
and Kebaier, 2016). In order to establish this result, we prove a functional limit
theorem for the normalized error on two consecutive levels for the joined distribution
of the couple

(VR(X™™ — X7 n((X™™ 4+ X7 /2 — X)), (4.1.1)

where X" denotes the Milstein scheme with time step T'/mn without Lévy area
and X7™ is its antithetic version. This result extends the stable convergence limit
theorem obtained by Ben Alaya and Kebaier, 2015 for the normalized error on two
consecutive levels /n(X™" — X™) where X" denotes the Euler scheme with time
step T'/n. The proof of this result, written in a multidimensional setting, relies on
combining the limit theorems on martingale triangular arrays in Jacod, 1997 with
technics used in Jacod, 2004 and Jacod and Protter, 1998.

The rest of this paper is organized as follows. In Section 2, we recall from Giles and
Szpruch, 2014 the Milstein scheme without Lévy area using our own notations and we
introduce our assumptions. In Section 3, we introduce the extended antithetic scheme
(4.3.2) as well as the antithetic MLMC estimator (4.3.4) and prove our main results
namely Theorem 4.3.2, a functional limit theorem for the couple of normalized errors
(4.1.1) and Theorem 4.3.3, the central limit theorem for the associated antithetic
MLMC estimator. Section 4 gives the details of the error expansion needed to prove
Theorem 4.3.2 with specifying the main and rest terms. Based on this expansion,
we study in Section 5 the asymptotic behaviors of the joined distribution of the main
terms. The rest terms are treated in appendices 4.6 and 4.7. Appendix 4.8 is dedicated
to recall some theoretical tools that we use throughout the paper.
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4.2 General framework

4.2.1 Milstein scheme without Lévy area

We consider the d-dimensional SDE driven by a g-dimensional Brownian motion W =
(W ...,W9)T, ¢>1, solution to

t t
X, =10 +/ F(X,)ds +/ 9(X4)dW, for t € [0,T], T > 0, (4.2.1)
0 0

where 2o € R, f € C2(R% R?) and g € C%(R?,R9*9). In what follows, we assume that
g does not have a commutativity property (see assumption (Hy ;) below). Without
loss of generality we will take the solution of (4.2.1) on the interval [0, 1] rather than
[0,7], T > 0. We will consider a time grid on [0, 1] with a uniform time step A,, =
n € N.

57

Notations Throughout this paper, we will use the following notations:

e For g € C?(RY,R¥*9), we introduce the tensor function {hejjr, 1 <€ <d,1 <
4,5" < q} defined by

1 0ge;
hgjj’(l') = iv.géj( gog Z al‘g]/ gzl y )7 T € Rd
Z’ 1
. 99y dgy; .
with Vgy; = (8%],--- 7@%)T € R¢ and Jojt = (glj/,...,gdj/)T € R4 is the
7 *h_column of g and analogously we also introduce the P row of g given by
gee = (ge1,---,3eq). The notation AT stands for the transpose of the given
matrix A.
hgll hglq
e For ¢ € {1,...,d}, we denote the g X g-matrix hjee = | : O €
hegt .- hegq
RI*49,
e For more convenience, we set H = (h1eqe, . - - 7hd..)T.
9%y %y
Ox10x1 T 0x10xq
e For any function 9 : R? — R, we denote V2 = | : T the
%y %y

. . O0xg0T1 *tt OJrgldxg
Hessian d x d matrix of .

e For any d-dimensional function f, we denote its Jacobian matrix as Vf =

(Vfi,...,.Vf)T.

e Let © denote the Frobenius inner product that is for any A and B € M,,(R)
with Mpyq(R) is the set of R-valued p x g-matrices,

AOB = ZZAN o ER.

J=1j5=1
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Moreover, we introduce the operator ® defined by: for any A € Mp,yqe(R),
te{l,...;r}and ¢ € {1,...,s} with r,s € N\ {0}

Ay oo Ags A1¢B ... A,©°B
: _ : * D : : c R"*S,
A oo A Aq4©°B ... A.©B

e We have the following property for any matrices U and A respectively in M, 1(R)
and Mpx,(R)
UTAU = Ao (UUT). (4.2.2)

e We denote 7, (t) = % for ¢t € [0, 1], where [z] denotes the greatest integer less
than or equal to z € R. For i € {1,...,n}, k€ {1,...,m}, n,m € N\{0,1}, we
denote AW; = Wi — W1 and dWi, = Wai—1y4x — Wng—1)45-1.

nm nm

e S, stands for the set of all permutations of order m.
e Forie {1,....n}, ke {l,...,m}, m € N\{0,1}, and ¢ € S, we denote the
o-algebra ]-"i“i = Fiz1 1 Vo (dWisqy = 1 < k' < k), where (F;)ico,1) denotes

the natural filtration of the Brownian motion W and \/ denotes the o-algebra
generated by the union.

e Forp > 0, let (I'"),en be a sequence of processes in LP. By I'" 2o (resp. T'™ LN

0) as n tends to infinity, we mean that sup < [I'y| o (resp. supg<q [I'y] 5 0)
as n tends to infinity.

e For any block matrix A = (4;;), the notation | A| stands for the L!-matrix norm,
that satisfies |[A| =3, [A;]-

e The set of p x ¢g-block matrices of m x n-matrices is denoted by (R™*™)P*4,

Thanks to the above notations, the original Milstein scheme introduced in Protter
and Talay, 1997 starting at xp can be rewritten in a compact form given by the
following induction on the integer i € {1,...,n}

XMlln _ XMlln+f< Mlln) n+g( Mll n)AW —l—H( Mlln) (AWzAWZT_IqAn_Az)a

n n n

where AW; = Wi — Wi-1 is the increment on the partition, I, = (6;;7)1<jj/<q is the

correlation matrix for the driving Brownian paths and A; € R9%? is the Lévy area
defined by

%

Aijj,:ﬁ_"l (Wg—WZ_l)dWSjl—[i Wi —wi 1)de 3,5 €{1,...,q}.

n
n n

In many applications, the simulation of Lévy areas is very complicated. Recently, Giles
and Szpruch, 2014 proposed to build a suitable antithetic MLMC estimator based
on the Milstein scheme without the Lévy area that achieves the optimal complexity
O(A,,%) for a given precision A,, as for an unbiased Monte Carlo estimator. Therefore,
let us introduce the so called truncated Milstein scheme starting at xg defined by
induction on the integer i € {1,...,n}

XT =X, 4+ f(X 1)A + g(X% L1)AW; +H(XE nL) S (AW AW, — I,A,). (4.2.3)

n
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In addition, in a more general setting where SDEs are driven by continuous semi-
martingales, Yan, 2005 studied the asymptotic behavior of the normalized error pro-
cesses for the original Milstein scheme.

4.2.2 Settings and some standard results

In what follows we introduce our assumption (Hy,) on coefficients f and g in the
spirit of Giles and Szpruch, 2014. Our condition is stricter than the one in Giles
and Szpruch, 2014 as we aim to prove functional limit theorems for this method. We
also recall some standard results on the moment properties of (4.2.3) (see Lemma 4.2,
Corollary 4.3 and Lemma 4.4 of Giles and Szpruch, 2014).

Assumption (Hy,). Let f € C3(R%,RY) and g € C3(RY,RY¥9). We assume that

o there exists a positive constant L such that

la la lE]
o\ f <1 0'%g <1 dPlh <
Ox® Oz b
where o, € N, o = (a1,...,0q)", B = (B1,...,B4)" are two multi-indices

such that |a| = 2?21 a; <3, 18] = 2?21 Bi < 2.

o the diffusion coefficient g does not have a commutativity property which gives
hejjr = hejry for all £ € {1,...,d} and j,5" € {1,...,q}.

Lemma 4.2.1. Under (Hy,), for p > 2 there exists a constant Cy,, independent of n,
such that
E <max | X7 |p> <Cp, and E (max | X7 — X¢|p> < C,AP2,
0<i<n' = 0<i<n' w

Corollary 4.2.2. Under (Hy,), for p > 2 there ezists a constant Cp, independent of
n, such that

0<i<n 0<i<n

B (o OXDP) <G B (e lan(XDP) <G,

and

E <max ’hgjj/(X?”p) S Cp

0<i<n
foralll1</(<dand1<j,j <q.

Lemma 4.2.3. Under (Hy,), for p > 2, there exists a constant Cp, independent of
n, such that
max E (yxg - X&]T’> < C,AP2,

1<i<n

4.3 Main results

The extended antithetic scheme In view of running a MLMC method, we con-
sider two types of schemes, a coarser one and a finer one. The antithetic MLMC
estimator was introduced in Giles and Szpruch, 2014 for m = 2. For each level,
the main idea consists in switching the two finer Brownian increments to obtain an
antithetic version of the approximation scheme. In order to extend this idea for a
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general m € N*\ {1}, we counsider o € S, \ {Id} and for each level £ € {1,...,L},
we introduce the antithetic scheme X™° obtained by permuting the m finer Brow-
nian increments lying in each of the coarse intervals with length 1/m‘"!. Based on
this, we will also introduce the associated antithetic MLMC estimator. To do so, we
set the scheme given by the equation (4.2.3) as the coarser approximation with time
step 1/m*~1. The finer scheme with time step 1/m’ can be rewritten as follows : for

ic{l,....m~ Y and ke {1,...,m},

¢ Ao ¢
X itk = Xm(L l)+k Xy 1>mTl + g(X i 1yan—1) Wik
m m mt
¢ Ao
+H(X i) ® (GWid Wi — [;=2), (4.3.1)
"YLE

where Wi, = Wii—1+k — Wmi-n+e—1 € R9. Now, for a given o € S, \ {Id} our

m

’ﬂL[
o-antithetic scheme is defined by

14 4 A -1 £
X:Z(101)+k = Xm(z 1)+k 1 + f( :(i7fl)i+k—1 )mT + g(X:Z(ifl);-k—l )5‘/Vz’cr(k)
mbo . T A1
+ H(Xm(i—l)+k—1) (6Wz’o—(k)6Wia(k) — 1y m ). (4.3.2)

ml

When ¢ = Id, we clearly have X mild — xm’ Throughout the paper we take
’ olk)=m—-k+1 ‘ which corresponds to a reversal of time for each coarse increment.

The reason for fixing ¢ in this way is explained in Remark 4.4.10. Since the incre-
ments (6Wik)1<j<mt-1 1<g<m are independent and identically distributed, it is obvious

that X" "2 xm" and for any i € {1,...,m Y and k € {1,...,m}, Xm(l ik 18

m?

k
F%, -measurable.
l=1

The associated antithetic MLMC method Recall that the idea of the original
multilevel Monte Carlo method (MLMC) is based on writing E(ap(X{”L)) using the
following telescoping summation

L
E(p(XT")) = E(p(X1)) + S E(p(X") — (X7 ). (4.3.3)
/=1

Ag xmho e x me, we rewrite the above telescoping sum as follows

E(o(X{")) = E(p(x]) +ZE( SELC >—¢<XW”>).

Then we estimate independently each expectation using an empirical mean. Thus,
. . . A . L
the o-antithetic MLMC estimator () approximates E(p(X{"")) by

Q: AO+Z£—1Q€7 with , ,
N, [ e(XT) (X )
No Zk 1 ‘P(Xllk) and Q = 1 ko1 < BB — (X )>
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l,o — .
where for each level ¢ € {1,... L}, (X7} 1k:7 7 X 1)1§k§N£ are independent

copies of (X {”g, X{”[’U,X{”Z_l) whose components are simulated using the same Brow-
nian path and (X7, )1<k<n, are independent copies of X{. In order to study the error

of the o-antithetic MLMC method, we assume that ¢ € C*(R% R) and introduce
X{”Z’U = %(XI”Z’U + X7, for £ € {1,...,L} and use a Taylor expansion to write

SOXT) + (X7 ) — (X7 ) =V (@) (X7 — X7 )

mf.o mt mt,o
(X1 — X7 V(&) (X — XTM9),
(4.3.5)

1
8

. . . smto £—1 . . . mt.o
where &1 is a point lying between X, " and X" , & is a point lying between X"~
and X {”Z and V?¢ denotes the Hessian matrix of . More generally, if we consider the
o-antithetic MLMC method on the coarse time grid we have to introduce the error
process

gm‘tm! 1 m mt.o mt—1

D = S ) e ) — (X ), tE (0,1,

The work of Giles and Szpruch, 2014 corresponds to m = 2 and in this case they
proved the LP boundedness of the process mtem ™t m In this paper, we establish
this result for a general setting with m € N\{0, 1} and we further study its asymptotic
distribution behavior. To do so and in view of the decomposition (4.3.5), we study the

£—1 14 m°, \ > —
couple of two errors X77 i —ngneil(t) and Xg:nzq ®) _Xnme: (1) where X;jne: 0 =
1/ ymbo
5(‘Xﬂmzfl(f) + Xg:nefl(t))’ t€[0,1].

At first we reduce the problem to the study of the error given by the process
({72,:(:)0 X ) X, — X:IZT(LT;;T)OStgl’ where X;L:Zt? = %(X;W(Lts’ +X7, )) an.d x|
X and X respectively stand for the finer approximation scheme with time step
1/nm, its antithetic version and the coarser approximation scheme with time step 1/n,
with n € N\{0} and m € N\{0,1}. All these approximation schemes are constructed
using the same Brownian path. Second, we extend Theorem 4.10. and Lemma 4.6.

in Giles and Szpruch, 2014 to get the following result.
Lemma 4.3.1. Under (Hy,), for p > 2, 6 € Sy, there exists a constant C, > 0,
independent of the time step, such that

nm,o < nm ﬂmﬁp < AP/Q
Elogg, PG = G Bl G = XAR) < GAGT and

o 2
max max E(|X"° — ”m”p < CpA, p/
1<i<n 1<k<m (X 20 i1 )

nm

Proof. The first and the third inequalities are straightforward consequences of Lemma

4.2.1 and Lemma 4.2.3. Next, we prove the second inequality following similar

arguments as in Lemma 4.6 and Theorem 4.10 in Giles and Szpruch, 2014. As

xnm — Xn faw X i — X7, by Jensen inequality and Lemma 2.1, we have

E( max | X7 —X?m’&\p) <Cp(E(max [ X7 — X" |”) + E( max |X”m0 XP)
0<i<n n n 0<i<n n 0<i<n n n

<C,E( max |X"™ — X? ?)
0<i<n n n
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<Cy(E(max [XT™ — X:[P) + E(max [X7 — X, ) < CA%2,

0<7,<TL n

where (), is a generic positive constant. 0

4.3.1 Functional limit theorem for the errors

As we have the uniform LP-boundedness of (\/ﬁ(X;T(Lt) - X;;T(Lt;))te[O,l] (see Lemma

4.3.1) and (n (X””(lt;’ X7 )ep] (see Corollary 4.4.9), we get the tightness of
these quantities (see e.g. Leskeld and Vihola, 2013). Then, it is natural to study the
weak convergence of the couple (v/n(X]7,)) — X;:T(Lt;’)) n(Xm'Z ;' — X7 y))eepo,1]- The
following theorem is our main result.

Theorem 4.3.2. Under the assumption (Hy,), let us denote U* = Xy — X::(";
and V;* = X;Z?Zt)a — X, ), L€ 10,1]. Then we have
(VU™ nV™) *2BY U, v), as n — oo, (4.3.6)
with U and V' are solutions to
q t .. .
U; = Z/ FIU Y + My, (4.3.7)
—Jo
q t .. .
Vi = Z/ FIV,AY? + Moy, (4.3.8)
—Jo
where for £ € {1,...,d}, the (-th component of My and Moy are given by
t
Mlt = —2/ hiee(Xs) ® dZs
E
My, =
1 )
Z / [ <er< 00y (X)L + Vg (X)TF(X) + 20(X0)T Vg0, (X)g(X,) *Ig)
RN 1
+ U Vras(xv | av? 4 5 3 [ Va0 TEG) + 300X 90 (Xe(x.
j=1
; Y [t joj’
NG 81 Yy NUSLTZNNED Sl [ AHe SR RIe 1T
0

JJ’ 1

+z Z / ) V200(X5)g( X)) ® dZ37,

with Yy = (t,W},...,WH)T, 19 = 14xq is the R7Y matriz with all its elements
equal to 1, FO = YV f and for j # 0, L; = I, and Fi = Vgej, §° € (R1)X4 s g
block matriz such that for te{l,....d}, j € {1,...,q}, the Lj-th block is given by
(%)e; = Vgrj(Xs), s € [0,t] and the Wi € (RdX1)qX‘1 is a block matriz such that

for j and j' € {1,...,q}, the j] -th block is given by (he..)”/ = Vhyjji(Xs) € R
€ [0,t]. Here, Z1, Z3 are RY -dimensional processes and Zo is a R9*9-dimensional
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process given by: for j,5', 7" € {1,...,q},

/ =11 .
i B mABY, o, >
sy iy
Z{ftj = \/ m— 1 Bm’ S zZy =30 j=7

Vm—1 pi'jj" C m—1

| 5 Bl , < -\ Bl G<

1 2 L
%Bﬂ] >

Ji'i" _ 2(m—1)(m—2) j]’ i’ . .y
and  Z3y" = 3%(2 Bl . =

(m— ?1)7)7221 2)BJ J'j i< "

‘/ =11

15,44 <a and (B J )1<j.j' J'<q are two standard ¢*(q+1)/2-dimensional
jzj' i=3"

Brownian motions and (B} )1<j <j<q 15 a standard q(q — 1)/2-dimensional Brow-

nian motion. Moreover, we have B1, Bo and Bs are independent of the original

q-dimensional Brownian motion W and also independent of each other. These pro-

cesses are defined on an extension (Q,F,(Fi)i>0,P) of the space (Q, F, (Fi)i>0,P).

Here Zg" = Zg'] and we use that for r € {1,3} we have

with (B

115 1qj
7Yz
wi _ | .. . x joi" _ (7ili" J97"\T ¢ paxl
z2=| ¢ . | eR™ and ZIV = (zl7",... 2V e R

qlj qqj
Zrs ... Zpg

Proof. From section 4, equations (4.4.37) and (4.4.38), we can rewrite U™ and V" as
follows

", n j n,1

Ut - Z/ an‘%s ¢ Unn(5)>H5§nn(t)dY§7 + ']t ’
), n y ’I’L72

V; _Z/ nn](s ’V )) S<nn(t)dY3J + ‘]t R

where Y, := (&, Wr,..., WHT, gt = Mt 4+ R M = M+ RV and for
i€{l,...,n} we denote

. n =0 . , ,
prg = IR e 0 = (@ G) (439
n AR PR
and
FTﬂL,j _ ;TL’ j - 0 h -n S -n . AN T 4 3 10
i—1 T (én) ) ] c {1 q} , where (gZ ).] - ((g’L )L]’""(gi )d]) ’ ( - )
n 17 /0] gty

with f7 € (R&1)4x1 and g; € (Rd“)dxq.are block matrices such that for ¢ €
{1,...,d} the ¢-th block of f]" is given by (f"), = Vfg(fg) and for £ € {1,...,d}

and j € {1,...,q} the £j-th block of g} is given by (¢7')¢; = Vggj(f?-’;"l) with 51’;711

n

and 5?"1 are some vector points lying between X7 and X”}?. In the same way,

n n

ﬁ" (IRXm)dXl and g? € (R¥*1)4%4 are block matrices such that for £ € {1,...,d}
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the (-th block of 7 is given by (1), = V fg(&v"l) and ¢,j € {1,...,d} the (j-th

block of g2 is given by (¢")ej = Vgy; (5_3 ") with f_} " and {i are some vector points

lying between X7 , and X"°. The aim now is to use Theorem 4.8.6 to get the

joined convergencg of our coﬁple of errors. To do so, let us introduce the processes

P 7 P ;
Zi = YjeoJo £ * Lalscna (8)AYS, 28 = 305 o Jo £, ¢ LaLscn, o (5)dYS
and Z; = 30_, fg F] *14dY], where 14 = (1,...,1)T € R?!. Thanks to Lemma
4.2.1 and assumption (Hy,), using the Burkholder-Davis-Gundy (BDG) inequality
with p > 2, there is a generic constant C}, > 0 such that

E( sup |20 — Zi|P) < C,E( |Z/ — FJ)2 ¢ 1,4ds[P/?)

0<t<1

-1))? ¢ Lads["/?)

<CPZZE|/ (Vars(€22) - Vi (X.

/=1 j=1
< CpAP/2,

Similarly, E(supg<i<;|Z;" — Zi|P) is also bounded by CPAZ/Z. Therefore, we have
7" — 7% 0and 2" — Z 2 0 as n — oo, By Lemma 4.4.11 and Lemma 4.4.12

and Proposition 4.5.5, we deduce that (y/nJ™!,nJ™?) sably (M1, M3) as n — oo,
where the limit processes are defined on an extension (Q, F, (F;)i>0, P) of the original
space (Q, F, (Ft)i>0,P). By Lemma 4.8.4, we get that (Y, /nJ™ nJ™2 Z") stably
converges to the limit (Y, M, Mo, Z) as n — oo Finally, by Theorem 4.8.6 , we have
(Y, v/nJwt nJg™2 Zn /nU™ nV™) stably converges to the limit (Y, My, Mo, Z, U, V)
as n — oo, where U and V respectively satisfy (4.3.7) and (4.3.8). O

4.3.2 Central limit theorem

The antithetic Multilevel Monte Carlo method uses information from a sequence of
computations with increasing step sizes and approximates the quantity of interest

E(¢(X1)) by

No L Ny
) 1 1 1 om? £mk, &mtt
= DXk + Ny Z[§<80(X1,k )+ (X 7)) — (X )l
0 k=1 /=1 £ k=1
(4.3.11)

m € N\{0,1}, and L = ll(;)gg:l. We denote the weak error €, = E(p(X7)) — ¢(X1)). In
the spirit of Kebaier, 2005, we assume that €, is of order 1/n®, for some a € [1/2,1].
Taking advantage from Theorem 4.8.7, we are now able to establish a central limit
theorem of Lindeberg Feller type on the error Q,, — E(p(X1)). To do so, we introduce

a real sequence (ay)een of positive weights such that

hmZag oo, for p > 2, and hm p/zz bl = (W)
(Zz 1(12) =1
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and we choose the same form of Ny as in Ben Alaya and Kebaier, 2015, namely

n?e L logn
N@: m ayg, EG {0,,[/} and L = logm (4312)
=1

‘This generic form for the sample size allows us a straightforward use of Theorem 4.3.2
to prove a central limit theorem for the antithetic MLMC estimator. In the sequel,
we denote by E and Var the expectation and the variance respectively defined on the
probability space (Q, F, (F1)i>0, P) introduced in Theorem 4.3.2.

Theorem 4.3.3. Assume that f and g satisfy assumption (Hy,). Let ¢ be a real-
valued function satisfying:

lo(x) —e(y)| < CA+ |zP + |yP)|x —y|, for some constant C' and p > 0 (H.,)
and ¢ € C2(R% R) with bounded second derivatives. v

Assume that for some o € [1/2,1] we have

lim n%, = Cy(). (He,)

ntoo
Then, for the choice of Ny, ¢ € {0,..., L} given by the equation (4.3.12), we have
na(Qn = E(p(X1)))=N(Cyp(a), V), as n — o0
with V = Var(Ve | (X1)Vi + LU V2p(X1)Uy), where the limit processes U and V are
explicitly given in Theorem 4.53.2.

Remark 4.3.4. Note that our above assumption (H,) on the payoff function ¢ is

weaker than the one in Giles and Szpruch, 20130 where they supposed that ¢ €
CH(RY,R).

Proof. To simplify our notation, we give the proof for « = 1, the case « € [1/2,1) is
straightforward by similar arguments. At first, we rewrite the error term as follows

9, — E(p(X1)) = QA; + Qi + €,, where

No

> (X)) = E(e(X1))),

k=1

A 1
1 _
Q”_No

L Ny

~ 1 1 47 4 g’ Z’ 47 £—1 Z, y4 67 £4—1

Qi :Z ﬁe 2[5(80()(1? ) + ‘P(XLZZ 7)) - ‘P(XL? ) = E(p(X7™) —o(X7™ )]
=1 k=1

For Ny = % 25:1 ap we simply apply the classical central limit theorem to get

A a A P
nQ, = i (]); VINoQL =0 asn — oo.
m? oy ar
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Finally, we only need to study the convergence of nQA% and the proof is completed by
assumption (H, ). To do so, we use Theorem 4.8.7 and set

n 0, 01 ¢, 01 ] .
=N E zZ"o™ , where (Z,"™ )i<k<n, are independent copies of

-1 -1

Z7m T =S (X)) 4 (X EMT)) — o(XET) — B (p(XEM) — (X)),

First, we check the limit variance of nQ?. We have

L
> E(X

/=1 /=1

1

L
— 1 -
Y =3 e —am® T Var(Zp ),
/=1 Zé

—1 ¢

I
M=
%

(4.3.13)

Besides, since ¢ € C2(R%,R), applying Taylor expansion twice we get

1 2,mt tmlo 4mtt
5(@(X17 ) + (X ) — (X )

Y -1 1 ¢ ) P ot
= Ve ()X =X ) + (G = XT) TV(&) (G = X)),

4 4
for some & a vector point lying between Xf’m and Xf’m 7 and & a vector point lying

— e l—
between Xf’m 7 and Xf’m " Thus, under assumption (H,,), thanks to Theorem 4.3.2
we get as £ — o0

— 1 £,mt {mlo f.mi—1 stabl, 1
[ 4 ) = )| MY 9T O + U V()0

From the uniform integrability obtained by combining (H,) and Lemma 4.3.1, we get
for k € {1,2}

1

i (1 [Roxt™) ey — gt )] )

] k
(VSO (Xl)V1+8U1TV2<P(X1)U1> .

Z~>oo

Consequently, mQ(Zfl)Var(ZTf’mhl)HV, as £ — oo. Thus, by (4.3.13) and Toeplitz
lemma we get limpjo0 Z£:1 E(X,¢)? = V. Finally, we only need to check the Lyapunov
condition. By Burkholder’s inequality and Jensen’s inequality, we get for p > 2,

E’XTL7€’p Lp ‘sz m ‘p<C E’Zm m 1|p’
Ny Ng

where C), is a generic positive constant depending on p Besides Lemma 4.3.1 ensures
that there is a constant K, > 0 such that E|Zm it \p < — =5~ Therefore,

1
S EILP 6Y iy < O Y
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which completes the proof. O

4.3.3 Time complexity analysis and design of the algorithm

The time complexity in the antithetic MLMC method is given by

L
CampLme = C % ZNZ(QmZ +m 1Y) with C > 0
=1

L 2
_ Z n ¢ -1

M=

7
(=1

L L
=(C xn? 2m +m) g E ay.
mta,
=1 =1

This analysis is online with the one obtained by Ben Alaya and Kebaier, 2014 in the
context of pricing Asian options using numerical schemes with a strong convergence
order equal to 1. The optimal choice corresponding to a; = m~2, 0 e {1,..., L} leads
to the optimal time complexity Chypaye = O(n?) the same one as for an unbiased
Monte Carlo method having the same precision. However, this optimal weight aj
does not satisfy (W) which ensures Theorem 4.3.3. In what follows, we recall from
Ben Alaya and Kebaier, 2014, three examples of weights (ar)1<¢<, satisfying (W) and
for which the time complexity gets closer and closer to Cx e

i) The choice ap = 1, corresponding to Ny = m;(‘fil)L, ¢e{l,...,L} leads to the
complexity Camryc = O(n?logn).

ii) The choice a; = 3, corresponding to Ny = 2(2 5 Ze 1. L€ {1,..., L} leads to
the complexity Canrvc = O(n?loglogn).

iii) The choice ay = @, corresponding to Ny = ;Llf(ioglf S £1og£7 tef{l,...,L}
leads to the complexity Canrmc = O(n?logloglogn).

From a practical point of view, the sample sizes Ny, £ € {1,...,L} are inputs for
the algorithm and are completely explicit by the simple choice of the optimal weights
(a¢)1<e<r- So, we do not need to add any precomputation step as like for the RMSE
approach. Then, we can compute independently each empirical mean in the antithetic
MLMC estimator Q, given by (4.3.11). For each level, we have a simple Monte
Carlo with i.i.d. terms, their computations need only the simulation of the finer
increments associated to the modified Milstein scheme X 4™ (given by (4.3.1)) using
the permutation o we obtain X%™ % (given by (4.3.2)). The coarser increments are
deduced from the finer ones to keep the same Brownian path to obtain X bm*=

4.4 Expanding analysis of the antithetic scheme

In this section, we have two main purposes. Firstly, for 6 € {Id,o}, we give the
expansion of two error terms X7 — X717 and X[ — X717 together with some

related LP estimates. Secondly, “Wwe give the expansi(?ns of the errors U™ and V" with
specifying the main and the rest terms. From now on we assume that assumption
(Hy ) is satisfied.
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4.4.1 Expansion of the error sz’& — XE"}, with ¢ € {Id, o}

n

y (4.3.1) and (4.3.2), we have for all k € {1,...,m}

nm,o nm G X G X G
Xm(¢—1)+k - Z f(X m(i—1)+k/—1 1)+k’ 1 + Z m(i—1)+k/—1 1)5W/i&(k’)
nm k,'/ 1 k/ 1 nm

nm a An
+ E :H m(i—1)+k'—1 1) (5Wi&(k’)5Wi—ar(k/) - qu)- (4.4.1)
k/ 1 nm

In particular, we have

n

m m
. . . A .
szﬁ - X?ﬁ’a = § f('XZm’r(rjfl)Jrkfl) 77”7 + E Q(X:%’fl)ﬁfl )5” 15 (k)
n _ nm k=1 nm

nm U ATL
* ZH m=L+k-1 ) (5Wi&(k)5m—g(1€) - Iqﬁ)- (4.4.2)

This last equation can be rewritten as follows

X — Xl”'f’& = f(XIE)Ap + g(XTT)AW; + H(X 7)€ (AWAW, — I,A,)

n n n n

+ Z |: ZZ U1)+k 1) - f( :| + Z |:g ZZZ Jl)+k 1) - g(Xnm U) 5Ww(k)
k=1

nm n

+ZH X Ul)+k )® (5M5(k)5wi—g(k) — I,=") — H(X7) ¢ (AW AW, — ILA,).

m n

(4.4.3)

Let us start dealing with the last four terms in the right-hand side (r.h.s.) of the above
equality. By a Taylor expansion, we have for any fixed index component ¢ € {1,...,d},

fZ(XZLT(T—&I)-&-k—l) f(( X 0) VfZT(Xgﬁ)(XZTZi)-&-k—l - ng&)

nm n nm n

+ (X::anjukﬂ _Xnma) V2f (5 )(X:ln,r(’zfl)+k71 —Xﬁ’&)v (4'4'4)

nm n nm n

1
2

for some vector point £;" lying between X777 ., | and X?"1°. Then, using (4.4.1)

nm n

- nm,o nm,o A nm,o, nma
Z |:f(Xm(i7l)+k1) - f(Xiff ) MZ 1 ! + N (4.4.5)

m
k=1 o

nm n

where for £ € {1,...,d} the {*"-component of N7 and Mﬂ’&’l are given by

n n

NPT =TV () (4.4.6)

k—1
nm,o An nm,e A A
X [f(X ) )H+H(Xm(i7—1)+k’—1)’(6Wi5(k')5m—5’r(/€) I—)| —
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1 & ; . 5 s A
+ 5 XZ:Z Ul)+k 1 XEJ)TV%CE(@];TL)(X::T(riflwkfl - XE’U)HTL
k=2 nm n nm n
m k—1 A
1 T 0
M = YV AT(X) S oK )5 Wis) (4.4.7)
k=2 k'=1 nm

For the last two terms in the r.h.s. of (4.4.3) by AW;AW," = 3717, oW, a(k)cSWZ&(k,)
we get

% nm,o An nm,o
ZH Xm m(i—1)+k—1 ) (5Wi&(k)5wi—a—r(k) - Iqﬁ) - H(XI7) ¢ (AWZ’AWZT - IqAn)
kzl nm n
nm 0 nm,o . 5 5 T An
H m(i—1)+k—1 1) - H(X% ) ( Wi&(k) Wi&(k) - Iqﬁ) (448)

& wMS

H(ng’) * Wiy Wik — > H(X?"7) ¢ Wiz 0Wibsary = OWiz () OWik ay):
1<k/<k<m " 1<k<k/'<m "

From (4.4.3) and (4.4.8), if we denote

Mﬂ’&z :Z [ (X e, 01 ) — (X7 )] —2 Z Xnmo 6Wi&(k/)(5Wi—&r(k)a

n k=2 nm " 1<k<k'<m

nm,o - nm,o nm,o An
MRS ZZ |:H(Xm(i’—1)+k—1) — H(X ;Y )] M (5Wi6(k)5Wza(k) Iqﬁ)-

nm n

Let us set
Mnm,& — Mnm,&,l 4 Mnm,&,Q 4 Mnm,&,?)‘ (449)

Then combining (4.4.3), (4.4.5) and (4.4.9) we obtain the first assertion of the following
lemma. The proof of the remaining results are postponed to appendix 4.7

Lemma 4.4.1. The difference equation for X"mg - Xnm 7 ie{l,...,n} is given
by
X0 - X = F(XTT) An + g(X 7AW, +]1-]I(XZ”’1‘ )¢ (AW AW, — [,A,)

CH(XTO) e Z(&Ww(k)éww(k,) Wity 0 Wibay) + MY 7 LN (4.4.10)

" 1<k<k'<m

n

where E(ME&‘JT'.Q) =0, and for any integer p > 2 there exists a constant K, such
that !

[nax E(|M”:”“’ Py < K,A%/?, (4.4.11)
Joax ]E(]N”m" P) < K,A%. (4.4.12)

an’

In what follows, we give further expansion studies for the terms N, 7 and

1
MO Va2 and M3 defined above.

n

7L
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e The term N"""7: Starting from relation (4.4.6) we replace the increment Xffgf}l)%,l -

n nm

Xﬁ’(} using (4.4.1) and we only freeze the coefficients of the contributing terms in

the"asymptotic behavior of the error at the limit point Xi-1. Then thanks to (4.2.2)
and using that

E

-1

NE

SWia ey Wi i Z m = k)oWis 09 0Wis .
k=1

!

e
I

2

N

1
we get the following result.

Lemma 4.4.2. For ¢ € {1,...,d} the (*"-component of N”mo has the following

eTPansion

nrme _ M= geriy ) f(X i) AT+

e’lnl B 2m n
1 sy A
59T (X)) P2 AKX )g(X )] & 37 (m=k) Wiy Wiy R (0)+ R0,

k=1
(4.4.13)

where

nma P e X o An

RYES0) = S 50 VT X B ) W Wiy = 1 32)
n 1<k’<k<m n nm

+ [QT(X%)Vsz(Xi 1 XL 1 } Z 5Ww k’ g(k”)An

1<k <k'<k<m

satisfies E(R” 0 i 1( )|]-"1 1) = 0. Moreover, for any integer p > 2 there exists

max E(|R) (0)F) = o(a¥?), (4.4.14)
max. E(| R, (0)) = O(Agp). (4.4.15)

The proof of the above lemma is postponed to appendix 4.7.

e The term M?,"f’&’l: For this term we only need to freeze the coefficients in relation

(4.4.7) at the limit point Xi_1. Then using

ol
L
i

L

SO Wy = 3 (- oW,
k=2 k'=1 k=1

we get the following result.

Lemma 4.4.3. For { € {1,...,d} the (""-component of the term M™% has the

following expansion

m—1

nm,o A nm,c
M = (VT (X o )g(X i } > (m = k)Wis gy = TR, (44.16)
" k=1
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with E(ang( )| Fiz1 1) = 0. Moreover, for any integer p > 2 there exists

max E(|R"™(1)]P) = o(Apr/Q). (4.4.17)

0<i<n L
The proof of the above lemma is postponed to the appendix 4.7.

e The term Mg"ﬂ: For this term we first proceed similarly as in (4.4.5) and we

use a Taylor expe:nsion to write for £,7 € {1,...,q}

905 (X000 1) — 96 (XII7) = Vgl (XY (X000 1y — XU

1 5 9 5 5
+ §(XZJZ7—U1)+1C—1 - szz U)Tv2 ‘(ﬁi;;n)(X%flw_l - nga)v (4-4'18)
for some vector point Elk lying between X" (i 1) o1 and X" Once again by

(4.4.1) we get

k—1
o 0 o A
gej (XZ:(rzL"—l)+k—1) gej (Xnm ) Vgﬁj( nm ) [ Z <f(X?n1Z’1)+k’1 )Wn

nm n T k=1 nm

nm,o nm,o An
+9(X ) Wigery + H(X 0% 1) ® (6Wi&(k’)5wig(k’) - Iqm)>]

nm nm

1 5 & 2, 5 &
=+ i(X::(r;’—lHkq _Xnm )TVQQZJ(g n)(X:LnTé?—lH—k—l - Xﬁ )

nm n nm n

Then we have

k—1
nm,o nm,o A nm,o
VQZ'(XQ’ )Z (JC(*Xm(Z 1)+k/— 1)? (Xm(z 1)+k/— 1)5Wi&(k/)

nm nm

nm,G T nm O’ i’
+HX 0w 1) ® (OWis ey Wiz oy — Ig— ) —2 Z Z hej (X207 )W o
nm k'=1j'=1

2 (k)"

nm n nm n

1 o 0 o 0
+ 7(X:17(r2,—1)+k—1 - Xnm )Tv2g ](gz n)(X?nTgll)-o—k—l - Xnm )] 5Wj

Recalling that hgj; = ngjg.j/ we obtain

k—1
5 A
MR o3 [v% X Y (A ) S
k=2 j=1 k'=1 nm
5 5 5 A
[Q(Xzzzfl)mul) - Q(XEJ)} 5M5(k’) + H(Xﬁjgfl)+klfl) (5W20(k’)5Ww(k’) - an:)>
1 nm,c nm o\ T2 2,n nm,c nm o J
+ §(Xm(i71)+k—1 - X )V g](é )(Xm(i—l)Jrkfl - X ) 5W 5 (k)"

Again by applying Taylor expansion for each component of the matrix function g,
we get g(Xol ) — g(XTT) = gn, ® (Xl L, X?"}") € R4, where

m(i—1)+k/—1 m(i—1)+k/—1
n

gr, € (R*1)4X4 jg a block matrix such that for ¢ € {1,... 7d},j € {1,...,q}, the
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¢'j'-th block is given by (gl./)ejr = Ve ({:i,") € R*! where fgz}n is a vector point

nm,c

lying between X777 ., and X"}, Then, we have
nm n

k—1
5 A
2 b
e D S L) S N
k=2 j=1 k=1 nm

nm

A .
nm,o T n
H(X w1 ) ® Wiz 0Wig 0y — Iqm))] Wi )

m q k 1

+ szg 4 [gzk’ M - X U)} 5Ww(lc’)5W~(k)
k=3 j=1 1—9 nm n

3
=]
>

N —

i5(k)"
(4.4.19)

Y > S X e — X TV g (6 (X s — XE07)OW
k:2 321 nm " nm n

Now, we replace the increment X7 01)+k L= Xg’& using (4.4.1) and we only freeze

the coefficients of the contributing terms in the asymptotic behavior of the error at
the limit point X.-1.

Lemma 4.4.4. For { € {1,...,d} the {*"-component of the term Mg"}’? has the

n

following expansion

A
1) * (OWia ey S Wik oy — )> 5Wz&(k)

n n ' m n
Jj=1 1<k/ <k<
q
T .n ;
+ng€j(Xﬂ) Z [92 M <9(Xinl)5Wz‘a(k"))]5Wi&(k')5m»]5(k)
Jj=1 1<k”<k/<k<m

X =1 )Vzggj (X

;1)9(Xi 1 } Z 5Ww(ku)5W (k/)(WV (k)JarmU( )
1 1<k” <k <k<m

Z’Ll

(4.4.20)

with E(R?TT( )|]:1 1) =0 and g € (R*N)4¥4 s q block matriz such that for { €

{1,...,d}, j €{1,. ..,q}, the Lj-th block is given by (G;')e; = Vgej(Xi=1). Moreover,
for any integer p > 2

nm 3p/2
max (RS (2)P) = (Anp ) (4.4.21)

The proof of the above lemma is postponed to the appendix 4.7.

Remark 4.4.5. The (-th component of M™™%2 can be rewritten as follows:

nmaZ
My

JANS Ay,
Z Vgg] (X1 = Z |:f(X1—n1) + H(X%) . (5Wi&(k’)5Wi—g(k’) qu) (5W‘7

m
l<k’<k<m

a (k)
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+quv%<Xz Y [g‘#’(g(X

i1 )5Wi6(k”)>} Wia )W ay
j=1 1<k”<k’<k<m

A
X1 ) V295 (Xe )g(Xima)| 3 (0Wisay Wiy = Ly =2)0Wi

n n n

j=1 1<k/'<k<m

m

A, ;
X1 ) V295 (X )g(Xima)| # D2 (k = DI, 20w,

n n n

j=1 k=2
q
+Z[ T(Xie1)V gg](xzzl)g(x%l)] * D Wi Wi o W, " )+R;:”‘:( ).
J=1 1<k" <k'<k<m
(4.4.22)
e The term M?f'f’&’gz Considering each component of M™93 for £ € {1,...,d}

we can also consider a Taylor expansion for the components of the matrix hyee € R7*Y
to get

m

; ; ; A
nm,o, n,ik nm,o nm,& n
M= [h O X = X @ (Wi SW Ly — L), (4.4.23)

i1 leoe® i=1
£, prs P o m

where the h?.z.k € (R4*1)9%4 is a random block matrix such that for j and j’ €
{1,..., ¢}, the jj'-th block is given by (hn’Zk)]J/ = Vhyjjr (53 ™) € R and ff,;” is a

(oo
vector point lying between X177, and X" 7,
Remark 4.4.6. Concerning M™™%3 the last formula can be written differently. In
fact, as H € (R1%9)4*1 = R99%4 e proceed similarly as above using a Taylor expan-
sion to get the existence of a random block matriz H) such that

m
) . ) _ A
M=y [ i ® (X000 s = XET7) | & (Wi OWis ey — Lg—)-

n k=2 nm n

More precisely, we have H?k € (RdX1)quq where for ¢! € {1,...,dq} and j' €
{1,...,q}, the E/j/ th block is given by (H} )y = thjj (gfk”) € R yhere ¢ =
gl —1)+j and 5 n 18 a vector point lying between Xm“ 1)1 and X:m;m,

Now, we replace the increment Xff(rf.fl)%fl — Xﬂ’a using (4.4.1) and we only

freeze the coefficients of the contributingn?erms in the asymptotic behavior of the
error at the limit point Xi-1.

Lemma 4.4.7. For £ € {1,...,d} the {*" component of the term M98 has the

n

following expansion

N

-1

nmo' = n,e A nmo'
M, 2y =X [hz..’ (X%)éwi&(k’))} * (Wia(e)SWig gy — L —) + Ry 1( )
k=2 k=1

!

N

(4.4.24)

with E(RZE@)U:@) = 0 and h?,’i. € (R¥X19%4 s q block matriz such that for j

and j' € {1,...,q}, the jj'-th block is given by (h?.’i.)jj/ = Vhyjj (Xi-1). Moreover,
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for any integer p > 2 there exists

max E(\Rzm

0<i<n

[(3)) = o(A%7?).

The proof of the above lemma is postponed to the appendix 4.7 .

4.4.2 Expansion of the error X" — X"

n

We remind that X" = £(X™™ + X"™7). By (4.4.2), we have

nm,o An
[f( 27871)%71) + f(Xm(iL1)+k—l )} o

nm m

N
Sl 3

3

Q
<
i

Q

I
| =
]z

k=1

nm nm

1 . nm An nm.,o
+ 5 Z [H( mii—14h—1) ® (5Wik5W£ - Iqﬁ) +H(X 0 ) ® (5Wia(k)5Wi—g(k) —

1 — m nm
+ 52 |:g(Xm(i1)+k1 )oWi +g(Xm(z k= 1)6Ww( ):| .

Then we rewrite it as follows

Xﬂm,o_ nmo_f( nmo)A +g( nmU)AW—I—H( nma) (AWzAWZT

7

3

n n n

+Aici +Bioa +Ciza,

Ien | nm nm,o A, SN, o
Aia :i Z f( M(i71)+k71) + f(Xm(i’—l)-&-k—l ):| H - ]P(‘XQ7 )An’

k=1 L nm nm n

nm nm
k=1 *

Ien|
Cﬂ 252 _H( anT(rz%fl)Jrk—l) (5Wzk5W

nm nm

1
—H(XT"7) ¢ (AW, AW, — ILA,).

n

Now considering Ai—1, we use (4.4.5) to get

nm nm

1 o )% g
+2<f( )+ FX )> An = FXET) Ay
:%(M”mldl+M?“§‘“+N”m“+N?T"> Vi

1
where Nz 1 = §(f(

n n

1 nm,o v nm,o
By + O =[5 (5002) +90257)) - g(x227)| AW,

1 nm nm An 1 - nm,o
Ai—l :5 Z |:f( 'm(ifl)+k71> - f( i:Ll ):| — + 5 Z |:f(X7n (i—1)+k—1

(4.4.25)

— I,Ay)

Ien m
Biz 252 9( X mi—n+r-1)0Wik +9(XZLTZ’U1>+;€1)5W1'U(1~:)] — (X7 AW,

n

A nm,o
R~ ) + H(Xm(i’—lﬂ—k—l) M (6Wi0'(k)6Wi—g(k)
- (X

7 An
i—1
n m

)+ FXTO) A, — F(XE7) Ay, Similarly, we have

oy
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1 “ nm nm,o nm,o
+§Z 9( m(i71)+k71) - ( ]5Wzk+ Z[ Xm(z D+k— 1)_9(XQ’ )] 5Wia(k)

]CZI L nm nm n
1T A,
+ 52 H(X 1) ® (OWid Wy —Iqﬁ) — H(X77) * (AW, AW, —IqAn)}
k’zl L nm n
1 = I nm,o An nm,o
+ 5 Z H(Xm(ill)kafl ) d (5Wio(k)5Wi—g(k) - Iqﬁ) - H(Xi;f ) d (AWiAWiT - IqAn)]
k=1 " e
1 nm,o vnm.,o
+ |5 (TOxm) + B ) - HOEZ)| @ AWAWT - 1,4,)

Now, by (4.4.8) and the expressions of M"™%2 and M"™%3 given above relation
(4.4.9) we rearrange our terms to get

BiitCos = ;(Mn:nId2+M?7r1L02+Mn:11d3+M11n1103)+Mn:11+M:177}2 ;M?:rf:a?
where

et =[5 (st + x| - g(ximn)| aw,

e = |5 () + ) ) - )| s @awaw! - 5a,)

M = Z Z H(X?ﬂ’&)’(5Wi&(k)5W;(k/) Wiz ey OWis (k)
Fe{ld,o} 1<k<k'<m "

Now recalling that o(k) =m —k+ 1, for all k € {1,...,m}, we get

* (SWidWihy — SWisSWi).

Mt =Y [HCem) - B

" 1<k<k'<m " "

In what follows, by (4.4.9) we introduce for i € {1,...,n}

_ 1 ~

nm :5(1\@}7“ + NITY 4 NP (4.4.26)
. 1 - 1

=3 M MY 4 M M”m - §M”m 3 (4.4.27)

The proof of the following lemma is postponed to the appendix 4.7.

Lemma 4.4.8. The error sz’a — Xg’a, i €{1,...,n} can be expressed as follows

n

sz,o _ X?_W}’O— — f( nm O')A + g( E’U)AWQ

+ H()_(Tf’”) * (AW AW, — I,A,) + M™% + N, (4.4.28)
where E(M™|Fio1) = 0 and for any integer p > 2 there exists a constant K, such
that "

max E(\M”mv’) < KA, (4.4.29)
0<i<n

nm |p 2p
e VIRP) < KpAL. (4.4.30)
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Corollary 4.4.9. We have

E(max [ X1 — X17) < CyAL

Proof. Let us define Sy = <OI<I}§’1)<( ’Xnmg Xy [P), for any 0 < k < n. For a fixed

k, by summing (4.4.28) over the first K tlmesteps we obtain

k/
X&m,ai Z:Z(f()zg,g)*f n+z nma . ( L))AWz

n n . n n

=1

K K
+Z (XI07) = H(XLL)) * (AWAW — [,A,) )+ M+ NI

" =1 i=1

Then there is a generic constant C}, > 0 such that

nm,o nPy < nma _ n p
E(og}g}ékmn - X&) < G 0I<r}§“}<(k|z FXi1)Bnl”)

nma o n .|P
+CE0r<nka§n\; g(X7 ) 9(X 1)) AWi[P)

nmcr . n * : T _ P
+C,E( Og;;ng H(XL,) ¢ (AWAW = L,AL)P)
P)
+CEozza>§k‘Z ) +CEOL%%§k|Z
By Jensen’s inequality and (Hy ), we have
nma 1 nmo
Og}ggklz FIXEL) AN < G Ogllggnkp ZI FXL))AP)

< 1ZE X~ FXI AL < S E( max RR RSP U

O<k<

Similarly, by Jensen’s inequality, the independence between AW; and Fi—1 and the
assumption (Hy,), B(max | S5, (H(X) — H(XL,) ® (AWAW — 1,5,
has an upper bound C, Zf OIE(IIlaX0<]<1 1 |X”mg X” |PYA,. Now, by Jensen’s

inequality and Lemma 4.4.8, E(On}ﬂa}i{k | Z N?”Hp) has an upper bound C,Al. Fi-

nally, by the discrete BDG inequality in Jacod et al., 2005 combined with Jensen’s
inequality, we have

k

max IZ XI7) = g(XT0))AWIP) < GE(Y g (XE”)—Q(X%))AWG\Q)”/Z

0<k’<k n ; n
=1

k
< Gy S B (XI7) = g(XL)ME(AWI) < G ) B( max |X0™7 = XE7)A
E i=1 "

0<k<i—1 n
=1
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Similarly, thanks to Lemma 4.4.8, E(Orr}ca}x | Zf;l M?|P) has an upper bound C,Ab.
Thus, it follows that '

E—1
S < Cp(AP + ZSiAn), for any 0 < k < n.
i=0

By the discrete Gronwal inequality, we have

n—1 n—1
S < CpAL + CAPT Y “exp{(n — 1 - i)An} < CpAL + CARTLY "o < CpAL,
=0 =0

O

In what follows we give further expansions for the terms N7, M g’l, M E’Q and

n

M Tf?’ defined above. These expansions will be useful later on. To do so, we apply

twice the Taylor expansion until the second order, for each ¢ € {1,...,d}, we get

n 16 n n

n

Nyt = (0 = X2 (VA + VRA(CE) ) (X — X3
(4.4.31)

- 1 q . o .
My =2 > (X = X700) T (v%/ (¢ 1) + V2050 (€14 )) (X — X707 AW]

J'=1
(4.4.32)
Then using twice the Taylor expansion until the first order we get
1
M = [hj;j.l . - Xg’”)] * (AW,AW; — I,A,) (4.4.33)

and similarly

nm,3 __ ] Mn,1,2 nm
Mé izl Z [hﬁn ¢ (Xi*1
" 1<k<k/<m

- Xﬂvf’)} * (SWid WL, — Wi dWL), (4.4.34)

n n

where for j and j' € {1,...,q}, the jj'-th elements of the block matrlces hm’l nd
hiib? are respectively given by (Alb') ;0 = Vhe(CF5) = Vhep(¢H5) € Rdxl and

Iz Iz

(h2b2) 10 = Vhe (C) € R¥XL; for some vector pomt €7 lying between X707 and

{oe

and X7 and some

n

XI”’{, some vector pomts Cl 17Cz 1,@ ) lying between X:m}’a

Vector points (™2, i 4 Cl ) lying between X7 and XM 0.

n n n n

Remark 4.4.10. In order to get the good rate of convergence, we need to assume
that our o 1is strictly decreasing which leads us to take the unique choice defined by

o(k) = m—k-+1. Otherwise, it is easy to check that the term n Zgnq Mnm’5 appearing

in the decomposition of the normalized error n(Xn"(l; X)) s not tzght.
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4.4.3 Error analysis of U" and V"
For ¢t € [0,1] we have

[nt] m [nt] m
;Zntg =xo + Z Z f Z:Z Ul)+k 1 + Z Z g ZZZ 01)+k 1 )5VVw( k)
i=1 k=1 i=1 k=1
[’I’Lt] m A
3OS THXEE ) * (Wip Wil — 1), (4.4.35)
i=1 k=1 nm
Error analysis of U" At first, we consider the error U;" = (Utn’l, cen Utn’d)—r € R4

m

between the finer and the antithetic Milstein approximations given by U}* = Xgn )~

X:;"Z‘)T Then by (4.4.10), the expansion of U™ takes the following form

[nt]
Ui =) (F(XE) - F(XI7)) n+2 g(XI7))AW;
i=1 " " "
[nt]

+ 3 (X ~ HXI7))  (AWAW — ,A,)

[nt] m
=30 D (H(XE) +H(X) ¢ (5Wik6WZL - 5Wik,5W;)
=1k k'=1
k<k'
[nt] [nt]

nmId nma nmId nma
+ g )+ g N9,
n

By Taylor’s expansion, we rewrite U" as follows

[nt] [nt]
Ut”:fo’U A, +Z( ULL) AW,
[nt
+ Z (X”m 7)) * (AW AW, — IL,A,)
[nt
-3 Y )+ H(X™7)) # (5Wik5Wm, - 5Wik,5W;)

n

i=1 1<k<k’<m
[nt]

+ Z nm d nmcr _|_ Z nm Id :L’H;L,O')’ (4436)

n

where f € (R¥1)4x1 and g € (Rd“)dx? are block matrices such that for ¢ €
{1,...,d} the (-th block of f is given by (f"), = Vfg(f}’;"l), for £ € {1,...,d} and
j€{1,...,q} the £j-th block of g is given by (§)s; = Vge; (€7%) with €14 and €27
are some vector points lying between X7} and Xg’a . Now,nthe equati%n (4.4.3%)

n n

can be rewritten as

[nt] [nt]
Up =3 UL A+ Y (g7 SULL) AW+ M+ RP
i=1 " i=1 !
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=Y _fIeULA, +ZZ ( ) ?;1) AW + MPY 4R (4.4.37)
i=1 j=1 i=1 "

with (¢")e; = ((6%)15,-- -+ (¢M)g) ", M™? is the main term and R™! is the rest term
given by

M =-3 Y @ H(XI7)) ¢ (SWakdWiks — SWirrd WL )
i=1 k&' =1 "
k<k:’
[nt] [nt]
R =Y (H(XM) — H(XI) * (AW AW, — LA,) + Y (M M”m”)
i=1 " " i=1 "
[n]

nm Id N
+ (VIR - N

n

The proof of the following lemma is postponed to appendix 4.6.

Lemma 4.4.11. Under the assumption (Hy,), we have \/nR™! 220 as n — .

Error analysis of V" Now, we consider the error V" = (V;n’l, . ,th’d)T € R4
between the average of the finer and the coarser antithetic Milstein approximations
given by V;* = mr&;’ =X (1y- Similarly to the analysis of U™, by (4.4.28) and (4.2.3),
we rewrite V" as follows

[nt] [nt]

V=) (F(XET) = f( A+ Z XY — g(XTa) AW,
i=1 " "
[nt] [nt] [nt]
+Z XIT7) — H(XLL)) ® (AWAW — LAy + Y M+ Y- NE,

n

=1 =1

where N "”} and M meare respectively given by (4.4.26) and (4.4.27). By the Taylor

expanswn, we have

] ]

V=Y eVELA, +Z( VL) AW,
=1
(] (] [ni]
+Z XM7Y —H(X™, ) ¢ (AWAW, — IAy) +> My + Y Nis,

n

i=1 i=1
where f;” € (]RUZXI)”le and _LE]Z” € (Rd“)dx‘i are block matrices such that for ¢ €
{1,...,d} the ¢-th block of f7 is given by (f7), = Vfo(€L), for £ € {1,...,d} and
j € {1,...,q} the £j-th block of g7 is given by (§)¢; = Vgej(€27) with €% and

5424 are some vector points lying between X7 , and X!"}?. Thanks to Lemma 4.4.2,

Lemma 4.4.3, Lemma 4.4.4 and Lemma 4.4.7? the above equation rewrites as follows

[nt] [nt]
V=) feVE Ant ) (Q? ¢ V%) AW; + M2 + R, (4.4.38)
=1 i=1
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where M™? stands for the main contributing term of the above error expansion and
R™?2 is the rest term, for ¢ € [0,1] they are given by

n,2 n, 0' nm nm,1 1 - nm,3
M = Z Z T} (r) + N + M, - M, (4.4.39)
UE{Id o}pr=1
[nt] 3 ) 3
R == Z > ( RI(0)+ ) R’}”i’“(r)) + M (4.4.40)
O'E{Id o} i=1 r=0 "
[nt]

+Z X77) —H(XLL)) * (AWAW,T — LA,),

where for r € {1,2,3}, M]"™" = Zyﬂ M NPT = Z[m] NZ”’f with (M7} 1 MN1<r<3,
]\7?_"1‘ are respectively given by (4.4.31),(4.4.32), (4.4.33) and (4.4.34) and the rest
terms R:miU(O) and Rg&(O) are implicitly defined in (4.4.13) and (ang( ))1<r<s

are respectlvely implicitfy defined in (4.4.16), (4.4.20) and (4.4.24). Now, we introduce
the d-dimensional processes (I'}7(i),1 < i < 4,t € [0,1]) whose £ components are
given by

4]
[ er (Xim1)f(Xi=1)AT
=1
1 m—1 A
+ 2[ (X )V (X it )g(Xia }o Z (m = k)W a0 Wi 1"
=1
(4.4.41)
B [nt] A m—1
7 (2) =3 22| [V (Xen)g(Xim) | S m = B)oWisgry
i=1 k=1
m—1
+) Vg, (Xezt)f(Xiz2) Y (m = K)SW,
7=1 k=1
q 1 m ]
+)° 5gT(X%)V29ej(Xi;1 )9(Xiz1) * 1 > (k- 1)5W35(,€)] ;o (44.42)
Jj=1 k=2
~ 4] A,
IVHEESSSY Vg;j(X%)H(X%) > (6Wia(erySWisary — I—)éW]()
i=1 j=1 1<k’ <k<m
1 An
+ 5[gf()(%)v{%(x Dg(X i }0 > (Wisr)90Wihiuy = L =)W
1<k <k<m
. An
+ [i%o g.j(X%)}o Z (6Wi&(k)5W£(k)—I )5Ww(k,)],
1<k’ <k<m
(4.4.43)
[nt
ref) =3 [ > VLX) |3 0oy (X)X SWia W g W
i=1 Lj,j'=1 1<k’ <k'<k<m
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+Z[ (X ) V205 (X i1 )g( X 1) } S Wiy WL WL
j=1 1<k’ <k'<k<m

(4.4.44)
The proof of the following lemma is also postponed to appendix 4.6.

Lemma 4.4.12. We have nR™? 2; 0 as n — oo.

Remark 4.4.13. These processes (17 (r),1 < r < 4,t € [0,1]) are obtained by gath-
ering together the main terms in (4.4.13), (4.4.16), (4 4.20) and (4.4.24), taking into
account their noise types and neglecting the rest terms (R)727 (1)) ., o5 and RM™ U(O)

0, = 0=
for e {1,...,d}.

4.5 Asymptotic Behavior of the main terms

According to expansion (4.4.37) and (4.4.38) appearing in the decompositions of U™
and V" we need to focus on the main terms (M™!, M™2), where we recall that

[n1]

- Y )+ H(XI)) ¢ (SWad Wil — 0WadW,L)
1=1 1<k k’<m
k<k’
(4.5.1)
n,2 n,o nm nm,1 1 - nm,3
M = Z ZF r) NPT M - M
UE{Id o}r=1

with N respectively Mgm’l and M]"™* are given by relation (4.4.31) respectively
(4.4.32) and (4.4.34), (T} (r),1 < r < 4,t € [0,1]) are defined as above in (4.4.41),
(4.4.42), (4.4.43) and (4.4.44).

Unlike the first main term M™!, that has explicit form of the noise, the second main
term M™? needs further development in order to identify its noise parts. To do so,
we need the following lemma that will be proven in appendix 4.6.

F'n.,Id

Lemma 4.5.1. Let ['}(r) = M € RY, forr € {1,2,3,4}. Then we rewrite
" (r) as follows, for £ € {1,...,d},

[nt]

= -1 An
Zt(l) = Z <Tn2rm) Vfg—r(Xz:Ll)f(Xz;l)An
=1
+ %[QT(X%)VQJ%(X%)Q(X%)} M Z5Wik5Wm],
k=1

[nt] ¢ ,
r =y 3 o Lo Ve (X i) 90 (X0 ) AW 4 Vg5 (X o) (X im0 ) AW/

=1 j=1

1

50 (X)) V20 (X im0 )g(Xima) * LAWY |
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[nt] ¢
N 1 A, :
£i(3) =5 >N V(X o) H(X ) *y <5Wik/5Wi£, - Iqm> W,
i=1 j=1 1<k,k'<m
k' #£k
1 T 2 . T An J
5o (X e) Vo (X e)g(X)| #30 (oWawoWil, - 1,20 ) oW
1<k,k'<m
k' +£k
n,? A
|:h€oo 9.] X’ 1 :|’Z 5W1k’5W - )5Wz]k )
1<k,k'<m
v
1 [nt] q N . 3
f@) =3 [ > Vo(Xit) |37 ® gy (Xiza)| 3 Wi OW3,6W, + 5W3,, 0W,)
=1 Lj,j'=1 1<k”<k’<k<m

q
+ Z [gT(Xﬂ)VQQZJ(X7_1 X@ 1 :| Z (5Wzk/ k‘”(SWi]k + (SWijk,/éWZ—kr)] .
Jj=1 " " 1<k <k <k<m

Proof. Concerning T'(1), according to the definition of o, we only use

D (m = k)5Wio ()6 Wby = Y (k = 1)dWiW,
k=1 k=1
Similarly, we obtain T™(2) using
m m m m—1
> (M= k)Wigay =Y (k= 1)6Wi, and Y (k= 1)6Wipy = > (m — k)W
k=1 k=1 k=1 k=1
To get [™(3), we use
S (W 02N ows = S (swewl — 020 s
Z io (k)0 Wig (k) = 2477 io(k) — Z k'O Wi = 3677 ik
k,k'=1 kk =
k' <k k<K'
Finally, we obtain I"™(4) using
m k-1 k-1 B m—2 m—1 m ' , ,,
Z Z oW, io (k" 6sza(k’)5sza(k) = Z Z 5M/;Jk”6Wka’5Wz]k :
k=3 k'=2 k""=1 k=1 k'=k+1k"=k/+1

O

Now, thanks to the above lemma, (4.4.38) can be rewritten in a better way as
follows

[nt]

Zf"’V[‘lA +Z( FOVIL) AW+ M 4R
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where for t € [0, 1],

M2 Zr” + NP 4 Mt — fM"’” A (4.5.2)

here we recall that for » € {1,3}, M]"™" = Z mer, Npm = Zz[zq NP with
N”"f and (M7} 1 ")req1,3) are respectively given by (4.4.31),(4.4.32) and (4.4.34).

Now in order to prove the convergence in law of the couple (M™!, M™2), we first need
to study the asymptotic behavior of the distribution of the noises vector (2, Z1, Z3, Z3),

where Z0 = (Z™97"). zp = (Z097y. are ¢>-matrices
0 = \20 " Jig'e{lah “2 T \H2 7 Jjle{l, .} q

[nt} m

257 =322 OWiWi
i=1 k=1

fz > (Whowd — swi.ewy)

i=1 1<k<k'<m

n _ (7md3'3" n,j5'5" 3 :
and Z7 = (Z; )ij' g e{l, gy and Z8 = (Zy )ji" " e{l,....q} A€ q°-matrices

[nt]
o ) . A,
Zﬁ;” 7 =n E E (OW3, W3, — &5 )(5ij ,
i=1 k'4k
1<k, k'<m

[nt]
Zy)7 :nz Z SWi, (SW3. W + SW5,, 6W7).

1=1 1<k’ <k'<k<m

Lemma 4.5.2. Let us consider the triangular arrays given by

[nt] m
Ziy =3 dWydWy,, with te0,1].
=1 k=1

Asn — oo, we have Zjy — Zy £ 0, where Zp;=1tl;, te][0,1].
Proof. For any fixed t € [0, 1], we rewrite Z{ as follows
2oy = ZZ((WVM(SWJ; - ﬁfq) + [nt]Anly.
i=1 k=1

As EQCT (Wi dWik — %Iq)]}"i%l) = 0, then by the discrete BDG inequality and
Jensen’s inequality, there is a generic positive constant C' such that

{ m
A An
E( sup r§ :§ (OWigdW, L) =E (;gggnr > > (OWibWij, — qu)!p>

0<t<1 i=1 k=1
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< CnPPTEY TN CEISWigd Wy, — ﬁfq\p < CAP/2,
m
=1 k=1

Then it follows that maxo<y<ing Zle S (OWid W, — Buf ) o, Thus, we get

m

the convergence of Z™ using that [nt]A, 1, — tI; as n — oo. O

Theorem 4.5.3. Let us consider the scalar components of the triangular array triplet
(27,23, Z%) given by

vj?j’?j” e {17"' 7q}7

[nt]
A -/ A,
’JJ 3" Z o 333" yhere Gi gl — Z <5Wfk,5Wfk, — 055 ) 5szk )
kk'
1§ki’§m
Vi €{1,...,a},
[nt] . . . ;
JJ Z (s 7" where Gi% nii' — \/n Z ((SWiJk(SW/iJk’ - 5Wi]k,5WiJk) ,
1<k<k’<m

\v/j7j/7j 6{17"‘7(]}7
[nt] ., . .1 . .17
’” " E G3 333" where Gi3 ngi'i" = p, E W3 (OW3 W3 + oW, 0W?, ),

1<k <k'<k<m

with t € [0,1] and 27, € R, 2t € R? and Z3, € RY’. Then as n — oo, we have

(W, z, z2, Z3) "2 (W, 24, Zy, Z3),

1 . . — - ) )
Vm BYLY i mEBY, L i>d
st 0] 2 . . iq! . .
where 27,7 = ¢ V27l " j=4 2y, =40 , j=17
Vm—1 . . —1 pj'y . .
e { . j<y —\/ Byl s i<y
T it o
%Bﬂ J >
and Zg)'];j” = WB”/JH ="
) m
1 2 .
(m— 37)727271 )Bé,t] J . i< ]”

51 'l 1!

with (B{J T i< <4 and (B} 7)) 1<; s jr<q are two standard ¢*(q+1) /2-dimensional
izj' B jz5"

Brownian motions and (B%]/)lgijgq is a standard q(q —1)/2-dimensional Brownian

motion. Moreover, we have By, Bs and Bs are independent of W and also independent

of each other. Furthermore, we have the (UT) of Z%, Z, Z§ and Z3.

Remark 4.5.4. It is worth noticing that when m = 2 the noise term Z3 vanishes at
the limit.

Proof of Theorem 4.5.3. We aim to use Theorem 3.2 of Jacod, 1997 (see in appendix
Theorem 4.8.2) combined with some useful technical tools in the proof of Theorem
5.1 of Jacod and Protter, 1998. We split our proof into four main steps to check the
four conditions of theorem 4.8.2.
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Step 1 For all j,j', 5" € {1,...,q}, we have E(¢/{77"|Fi1) = E(¢57 | Fis ) =
E(¢; 7 )\ Fia 1) = 0. Then the first condition (a) of theorem 4.8.2 is satlsﬁed.

Step 2 For this step, we need to check the validity of condition (b) of theorem 4.8.2
for our three triangular arrays.

First triangular array. Usmg the symmetric structure of ('} 373" it is sufficient
to consider only the case j > j. Now thanks to the 1ndependence between the
increments, we have for all 7 € {1,...,n},

2
(G PPy = Y n2E<(6W3k/6W5k/—6jjfﬁj) <6W£k>2>+
£k
1<k,k'<m
2 J 7’ An J J J An J
Z n°E 5Wz‘k/15Wi,k' — 0y — m 5Wzk1 Wi, 6Wzk’ — 0y — m 5Wzk2 .
k1#K'1,ka#k 2

1<k'1,k 2,k1,ka<m
(K'1,k1)# (K 2,k2)

Actually, the generic term of the above second sum is equal to zero. To check that we
consider the three following subcases.

e If ki # ko and k'y = k'5, then we can deduce that k; ¢ {k'1,k9,ko} and
therefore the generic term is equal to

m

=11 ; i/ A A
E(éwfkl)E <<6Wijk’16vvij,k/1 — djjr m ) <5Wz]k/ 5Wzk’ — 0jj > 5Wz]k2> =0.

e If ky = kg and K’y # k9, then we can deduce that k'y ¢ {kq,k’9, ko}. Therefore,
the generic term is equal to

, . A, 11 ; - A,
E <5wgk,15Wi{k,l — 85— ) E (5m?k1 <5W5k,25wgk,2 =i ) 5ij2) =0.

o If ki # ko and k'y # K9, then we have two subsubcases:

— If ky =K', we have ky ¢ {k’1, k2}. Then, the generic term is equal to
E( (oW, ow?, — o520\ swi' VE (oW (swi swi —s.,2n)) =
Wik’1 Wi,k’l — %, Wzk Wik1 Wikzl Wikl - jj’ﬁ = 0.

— If ky # K9, we have ky ¢ {k’1, k', ko}. Then, the generic term is equal to
EGWIE ( (W2, W7, — 6, B (swi, swd, — 5,50 ) swd" ) =o.
iks ik OWiky — 093" ik o OWikry — 945" iks

It is worth noticing that the above arguments rely only on the independence between
the increments without using the independence between the components of the Brow-
nian vector. Concerning the generic term of the first sum, if 7 = ;' then it is equal

to
E( (6W7,)* Ln 2E(5W.j”)2 =—
ik’ m ik n
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and for j > j' it is equal to E(éﬂfij}f,)QE(éWlk,)QE(cSWZ?;/)Z = . Thus, we get as
n — 00

m—1 C
Wt’ J>1
ZE Y )
" 2(m—1) .
oyt J=7

Now, it remains to check that for any ¢ > j > 5/ > 1, q = j > j' > 1and j”,j" €

51

(L. qb st (73" # G 7' 57) , we have S (77 ¢ | Fizr) = 0. To do

S0, we write

B G | i)
- o ((owd, swi, — 6,20 ) swi' (swi, swi, — s 2n ) swd’

= Z n ik'y Ok T 993" T ik1 ik's Wikl T 9055 iks |
1<k1,k'1,k2,k'2<m

k17K 1,ka#k 2

It is easy to check that the arguments given above to prove that this term vanishes
remain valid for the particular case (ki,k’1) # (ko2,k’2) and this, as noticed above is
independent of the choice of (4, j',5"”) and (4, 4’,7"). Thus, we only need to consider
the case (k1,k'1) = (k2,k’2). Therefore, by the independence between the increments
we rewrite the generic term as follows

, y A, AN
E((awgk,lawgk,l—(s” =) (Wi, Wi, — 535 )) (Wihowi ). (153)

Then, it is obvious that when j” # j” this generic term vanishes. Now when j” = j”.
thanks to its symmetric structure it is sufficient to consider only the case j # j. For
this we have three subcases.

e If j > j/ and j > j/ then §;; = = ;7 = 0 and we have two possibilities: either
j # j' then the generic term rewrites E (5ng,1) (6ng,15ng,15Wi]k,1> =0
or j = j' and then as j > j’ = j > j' the generic term rewrites
E ((0W§,)?) E (sWi,, oW, ) = 0.

o If j =4 and j > j' or j > j' and j = j/, by the symmetry we can consider only
the first case and as j ¢ {j, 5,7’} for which the generic term is equal to zero.

e If j = j/ and j = j/ then the generic term rewrites ]E((((W[/'ij}c,l)2 )((5Wzk’ )2
Sm) =0.

m

Second triangular array. Using the anti-symmetric structure of G 97" it s also
sufficient to consider only the case j > j' as G i — (). Then, for ¢ € {17 ...,n}, we
have
N
E((¢;, r7? |~F27 ) = Z nlE <<5W] 5Wzk/ - 5Wzk/5m?k> )
1<k<k'<m

Y B (oW, oW, — oW oW, ) (W, 0Wh, — Wi, oW, ).

1<ki<k'1<m

1<ko<k’o<m

(k1,k'1)#(k2,k'2)
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In the same way as the first triangular array, the generic term of the above second sum
is also equal to zero. This follows easily by expanding this generic term and using the
independence structure between the increments under conditions (ki, k'1) # (ke2, k'2),
k1 < K’y and ko < k’5. Now, concerning the generic term of the first sum, as j > 7’

. . N 2
it is easy to check that E <<5VVZ.J,€5WZ.] — 5W1k,5Wijk) > = 2. Thus, as n — oo,
Z[m] E((¢; ’” )2 \.7-"17 )— _lt. Now, it remains to check that for any ¢ > j > 5/ > 1,
q2j>j’21s.t. (o3 # G 3y SR T Fi 1) = 0. So, we have

E(Giy7 ¢y | Fiza)
= > nE((6WI, 6WF,, — W, SWIL )(6WH, W, — W, SWI ).

1<ki<Kk1<m
1<ko<k’2<m

When (k1,k'1) # (ko,k'2) by similar arguments as for the first triangular array the
generic term of the above sum is equal to zero thanks to the independence between
the increments. When (k1, k1) = (k2,k'2) (j,5") # (4,7'), we need to treat two cases.

o If j =jand j' # j as j > j’ we have j' ¢ {j, 7,7’} and consequently the generic
term is equal to zero. If j # j and j/ = j/ we use similar arguments to prove
that the generic term is zero.

o If j # j, 7/ # j' we have two possibilities: either j # j/ then j ¢ {j’, 7,7}
or j > j' = j > j/ and in both cases it is obvious that the generic term also
vanishes.

Third triangular array. Using the symmetric structure of (;'; 373" it is also suffi-
cient to consider only the case j > j”. Then, for i € {1,...,n}, we have

101 9 . g\ 2
BT PIFa) = Y n?E (oWh (WheWh, + oWi.ow))
1<k'"<k'<k<m

Y PR (W, (OW Wi, + Wi SWie oW, (W, 0W i, + 6Wh 6WH))

1<k’ 1<k’ <ki1<m
1<k o<k o <ko<m
(k1,k"1,k"1)# (k2 k" 2,k 2)

Similarly as for the first triangular array, we use the independence structure between
the increments under conditions (k1, k"1, k"1) # (ka, k'2,k"2), 1 < K"y <k'1 <ki1 <m
and 1 < k5 < K'9 < kg < m to check that the generic term of the second sum is also

equal to zero. Now, concerning the generic term of the first sum, if j = j” then it is

equal to
4

AE(OW P E(OW) EOW])* = —
and for j > j' it is equal to

2
n3m3’

E(SW,)2(E(SW2)2E(SW,)? + E(SW5,)?E(W, )?) =
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Thus, we get as n — oo

(m_l)(m_2)t . 11

3m2 J>7

[nt)
ZE TNV Fi)—

2(m—1)(2m—2)t i

3m

= 2 >]”>1and

Ny .. . - 7 3 t “’ 7
i e{l,...,q} st (4,7, 5") # (3,4, 5") , we have ZEZ}E( Z’” P Fia 1) = 0.
To do so, we write

M.I

Now, it remains to check that for any ¢ > j > j” > 1, ¢

=23 (W], (6ij15Wk,, o W W YW, (W, Wi, + 5Wie, 6WH) )

1<k 1 <k'1<k1<m
1<k o<k 9 <ko<m

When (k"1,k'1,k1) # (K"2,K'2, ko), by similar arguments as for the first triangular
array it is easy to check that the generic term of the above sum is equal to zero. When
("1, k"1, k1) = (K2, K9, ka), with the condition (j, §/, 5) # (4, 4',5"), the generic term
equals to

E(0W;y, 0Wiy YE((SW, 6Wi + W3, Wi, YOW, dWip, + 6W), Wi, ).

By the same arguments used to treat (4.5.3) we easily deduce that the above generic
term vanishes.

Covariance between of the different triangular arrays. For any 7,5, 7" and
J,J in {1,...,q¢} 7 > 7, j > j', we have

sl 0] Sal
B 1)

. -/ An 1/ 3 1 5 57
=n/n Y E((0W, W}, — 0yt )W, (OW3, 0Wiks, — SW ,OW ).
1<k1,k'1,k2,k'2<m

k1#£k'1
ko<k'o

For any j,j',j" and j, 7,5 in {1,....q} j > j', j > j”, we have

S F
B¢ ¢ | i)

1y

A y A,
=n®> " E((6W}, W5, — ;5 )5W5k, SWi, (SW3 Wi, + SWi 6W3, ).
1<k1,k'1<m
k17K
1<k o<k o<ko<m

For any 7,5/, " and 7,5’ € {1,...,q} j > 4", j > j/, we have
E(Czéjj'j ,JJ | Fica 1)
=Y E(OW (Wi, 6Wiy, + W5, SWi, YOWH, SWH, — oW, 6W3, ).

1§k’”1 <k’1<k1§m
1Sk2<k/2§m
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When developing the above three generic terms, we notice that we always have a
product of an odd number of increments of the Brownian motion. Then, combining
this together Wlth the independence structure between the increments, we easily get
SR [Fis) = 0,for all a, 8 € {1,2,3} with a # 8.

Step 3 Independence with respect to the original Brownian motion We
check the condition (c) of theorem 4.8.2.

The first triangular array For any j,5’,7” and j; in {1,...,q}, j > j, using the
independence between the increments, we have

. , A, " . .
B AW Fic) = ST (W, W, — 6 )6 (W, + 6W,)

1<ky,ka<m
k1#ko

. . An . 11
= Y mE(OWE,OWG, — 8y W JEGWy,)
1<k ,ka<m
k1#k2

. y A
1§k‘1,]€2§m
k1#k2

The second triangular array For any j,j' and j; in {1,...,q}, it is straight
forward that

B¢y AWM Fa) = D VRE((6W, W, —6W/, 6Wj, ) (6Wj, +5W3,)) = 0
1<ky,k2<m
k1<ko

since when developping the generic term of the above sum we always have the expec-
tation of a product of an odd number of the Brownian increments.

The third triangular array For any j,j’,j”, 7 > 77 and j; in {1,...,q}, using
the independence between the different increments we have

E(G7 T AW | Fi )

=1 E(OW, (SW Wi + SW)6Wi, ) (6Wi + 6WiE + SWii,)) = 0.
1<k’ <k <k<m

Step 4 (Lyapunov’s condition) Now we check condition (d) of theorem 4.8.2.

First triangular array. For any j,7/,7" € {1,...,¢}, 7 > j', we prove that
Zgnq E(|¢ 939" \ |Fiz1) tends to 0 when n — oo. In fact, using the convexity property

of the function x — 2% we note first that there is a constant Cq > 0 depending only
on ¢ such that

BIGTT 1FL) <G X0 B ((0Wh,0WE, — 6y m) (GW)")
1<k1,k2<q
k1#k2
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Then by the scaling property of the Brownian motion it is easy to check that there is a
constant Cy,, > 0 depending only on m such that for all j, j’, 7" € {1,...,q4},j > j' and

1< ki by < g with ky £ ka, we have B (W, 0Wi, — 8580 /m)* (Wi, )*) < g

Second triangular array. Similarly, for any j,j' € {1,...,q}, 7 > j, there is a
constant Cy > 0 depending only on ¢ such that

RGP < Co 30 B ((0W, 00, - oW, ow,)")
1<k,k2<q
k1<ko

and we deduce the result using the estimate E (((WV%C 5W.]; — (WVJ; SW?, )4) < Cm
1K1 1k2 1K1 k2

where C), is a positive constant depending only on m.

Third triangular array. In the same way we get that
-/ . -1/ . -/ 4
E (6Wh (WhoWH, + Wi,oWh)) < S for C > 0. O
Now we are ready to prove the convergence in law of the couple of main terms

(M™L M™2) given by (4.5.1) and (4.5.2). The following proposition is the core of
our main result Theorem 4.3.2.

Proposition 4.5.5. Asn — oo , we have

(VAM™L M) 2R (Agy M), (4.5.4)

where for € € {1,...,d}, the " components of My and Mo are given by

t
Mlt_—2/0 Biee(X. )’ngsandM2t—ZF“ )+ N+ M — ngt, te[o0,1],

r=1
with
I m—1 f* T(X 2
Lpe(1) = o ; (sz (Xs) Z g.] s)V fo(X5)geyr (Xs)>d3
Jig'=1
Fﬁt Z/ (vfﬁ 90]( s) + ngTJ(XS)f(XS) + %QT(XS)V2g€j(Xs)g(XS) ¢ IQ> dWsj
q 4
Tes(3 %Z / [Vg@ o H(X,) + ;gT(XsW?g@(Xs)g(Xs) + hiea ® 90 (Xo) | # 27
Pt =5 30 [ VahO0) gop (XY + Z / Vg (X,)g(X,)] ¢ dZ4

J:3'=1

Nz,t :/ gUsTVQfE(Xs)Ust
0
- 1. rtq .
My, :Z/ gUJVzggj(XS)USdWS]
j=170

~ t .
Még,t :/O (hZoo i Us) d dZ2,Sa
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where §° € (R>VY4X4 s q block matriz such that for ed{l,....d}, je{l,...,q},
the Lj-th block is given by (¢°)e; = Vgij(Xs), s € [0,t] and hs € (R¥*1)2%q 45 g

Zoo

random block matriz such that for j and j' € {1,...,q}, the jj'-th block s gwen by
(h3aa)jjt = Vheji(Xs) € R s € [0,t]. Here, Z1, Zo and Z3 are defined above in
Theorem 4.5.3 and for any j,7" € {1,...,q}, for r € {1,3}, we denote

115 lqj

Zyd . 2
oo ‘ . . jei" _ (7515" Jai"\T
Zr,s - . . : and Zr,t - (Zr,t ety Zr,t ) .

y |
Z09 . 7

Proof. At first, let us denote p" = (W, 2y, 27, Z3,23). From Lemma 4.5.2 and

Theorem 4.5.3 combined with Lemma 4.8.4, we deduce that p" Sti]gly p, as N — 00
with p = (W, Zy, Z1, Z2, Z3). Besides, as the coefficients f]* and ¢! are functions of
vector points lying between X7 and X"1"?, the equation (4.4.37) can be rewritten

n

into the following continuous form

N (t)

e = 32 [ v vt O O R

where

. .
g iy J = 0 . o . . T
. { G)as, G (g o e e = (005 (00)

Here we used that f”1 Azg, =2 — 7}, .y and Yy = (t, W[, ..., W/)T. Thanks to
lemmas 4.2.1 and 4.3.17 under assur;ption (ﬁf,g) the process (H(X™™)+H(X™™7))—

(2H(X)) 2. Then, since p" is (UT) (see Theorem 4.5.3) we deduce thanks to
Theorem 4.8.5 that as n — oo

(o) = o [ BOGT) + BT dz3,) " (. [ 2(X,) # Zs,).

Moreover, under assumption (Hj,) by lemmas 4.2.1 and 4.3.1, it is straightfor-
ward that for any j € {0,...,q}, [ Epd $1,dY{ — [ F] #1447 L0, with 14 =
(1,...,1)T. Thus, by Lemma 4.8.4 we deduce that as n — oo

(et [ Er @ 0av)) "B (o, [ 2B 2, [ S 110Y7),

with F0 Vf(Xs)and for any j € {1,...,q}, Fl = Vge;(Xs). Therefore, by Lemma
4.4.11 and Theorem 4.8.6 we get that

(p", V/aM™L \/nU™) stably (p, JJ3U), asn — 0. (4.5.5)

Now let us recall that (4.4.31), (4.4.32) and (4.4.34), can be rewritten into a continuous
form

Tn (t)
ng = [ VU T (T AlCty) + VG ) VU, s,
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)

“rnm,1 . (®) 1 u n n
nMEt :/0 16]/2\/5[]77” (v gej! (C ()) +v 9ej ( )) \/>U dW]

- N (t) nn
i [ e i

(oo

Under the assumption (Hj,) and thanks to lemmas 4.2.1 and 4.3.1 combined with
(4.5.5), we deduce by Theorem 4.8.5 that

stably

(p",\/ﬁM"’l,nN”m,nM"m’l,nl\Zf"m’B) =" (p, J, N, M! M3) as n — oo.

Similarly, by rewriting T"(r), r € {1,...,4} in continuous forms we deduce by Theo-
rem 4.8.5

(pn’ \/,EMn,l’nNnm7 Mnm,l nMnm,?) Fn(l) f\n(2)’rn(3)’rn(4))

Y (p,J, N, MY, N3 T(1),T(2), T(3), T(4)) as n — oo,
where for i = 1,...,4 and 1 < ¢ < d the {-th component of the process I'(i) is given
by the process T'y(i). This completes the proof. O]
4.6 Appendix A: Proofs concerning analysis of U" and V"

Proof of Lemma /.4.11. By (4.4.37), we recall that

[nt]
Ry = (H(XET) — H(XTE) ¢ (AW AW, — I,A,)
i=1 " "

nm Id nm o nm d nm,a
+ E )+ E N;—y )

At first, it is obvious that E(y/n 30" (H H(X17)- H(X:m}")) (AWAW, L Ay)|Fis) =

0. Then, by the discrete BDG inequality combined with Lemma 4.3.1 and assumptlon
(Hyg4), there is a generic positive constant C' such that

[nt]
n?/?’E | sup \Z —H(XTT) ® (AW AW, — T,A,) P
0<t<1 i—1 n

n p/2
< CnP/’E (Z\H( Y~ H(X ""”)| [|AW; AW, — IqAn|2>

i=1
<CnP™' Y CE[H(X) — H(X {7 PEAW,AW,T — LA, [P < CAR/2.
i=1 " 2
Then the process v/n Y13 (HI(X7Tm) — H(XT™)) ¢ (AW, AW, — I,A,) 5 0. In the

same way as above, we use the discrete BDG inequality and (4.4.11), there exists a
positive constant C' such that

[nt]

Sup |2Mnmld_Mnma| )<Cnp/2 IZE |Mnmld_Mnma| )SC'AQ
0<t<1 prt P n
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Therefore, we obtain also the convergence of the process /n Z[n'] (Ml g :mfa) =

n

0. Now, by (4.4.12), we have E(supg<,<1 | Z[m] (Ngf’Id NP s bounded by

n n

nP~ IZE‘NnmId nma|)<np 1Z2KA2 —2KAp
=1

Thus, we get /n S" (N"m M Ny B0 Finally, we get the (UT) of 27, 27,
Zy and Z% thanks to Lemma 4.8.1. ]

Proof of Lemma /.4.12. By (4.4.40), we recall that

[nt] 3
n 1 M, nm,c nm,
R =3 >y <Ri_n1 (0)+ZR% (r )) + M2
ce{ld,c} i=1 r=0
[nt] B
+ Z(H(XE’J) —H(X.))* (AWiAWiT — I4An).
=1 " "

At first, thanks to Jensen’s inequality and (4.4.15), there is a positive constant C' such
that

[nt]
nPE( su ang Py < o1 ER"mU P = o(1).
(s IR OF) S BRI OF <o)

Then we get nzz 1 an(O) L3 0 as n — oo. Now, we consider nz[nt] "ing(r)

for any r € {0,...,3}. By the discrete BDG inequality, (4.4.14), (4.4.17), (4.4.21),
(4.4.25) and Jensen’s inequality, there is a generic constant C' > 0 such that for all
r € {0,...,3} we have

[nt]
nPE( sup R”m” Py < CnPE( S IR (r)2)? < Cn®2 ST EIRI ()P = o(1).
0<t<1|; (r)I) ;| (r)?) ; (R () = o(1)
Then we get nzz 1 "m”( ) 20 as n— oo, for any r € {0,...,3}. Next, we recall

from (4.4.33) that for ‘¢ € {1,...,d}, the ¢ component of the generic term of the
martingale triangular array Mtnm’2 is given by

“rnm 1 M1, nm nm,o
Mw;:Z hrit e (xmm _ )} (AW AW, — I,A).

n n

Similarly, we use the discrete BDG and Jensen inequalities to get E(n? sup |) . ] M2 Py
0<t<1 o

is bounded by Cn3P/2=1 377 E[M”m 2\” Besides, according to (4.4.33), for j and j' €
{1,...,q}, the jj’-th block is given by (hob) 50 = Vi (CF5) = Vher (CHS) € RO

loe
where ¢ € (X7 X7 and (1S € (XnmU,X"mU) By using the 1ndependence
between nAVVZ and .Fi;ln ) Cauchy—SChwarz 1nequahty, Lemma 4.3.1, Corollary 4.4.9
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and (Hy ), we have

max E|M["?|P
1<i<n -

1
< C| max E|hj"
1<i<n 1<i<n

nm,o |2 1/2 T
— X \P} max E|AW,AW," — I,A,[P

1<i<n

< C(ARARYPAD = CAYP.

Therefore, we get
[nt]

E [ nP su M"m2 = O(AP/?).
O<tI<)1 | Zz: ( )
Finally, similarly as above, since IE((H(X:W} 7)— H(X? ) ¢ (AW, AW, —1,A )]]—'Z 1) =
0, by the discrete BDG and Jensen 1nequahtles and as E]AW AW, — I, A, P = (Aﬁ)
, we get nPE( sup | Z[nt]( H(XT™) —H(XT,)) ® (AW, AW," —1,A,)[P) is bounded

up to a p081t1ve multlphcatlve constant by nP/2713""  E[H(XT) — H(XT,)P.
Next, thanks to Corollary 4.4.9 and assumption (Hy,), we deduce that this up-
per bound is O(A%?). Then we get n Y™ (H(X7T™7) — H(X™,)) * (AW,AW, —

n

IqAn)gOasnﬁoo. O

4.7 Appendix B: Proof of essential lemmas

Proof of Lemma 4.4.1. By the tower property we have

nm,c, nma nm,& '—1,6
B(My Zw ZE( m(i_w,_l)E(éWw vy i )fz-nl)
k'=1 nm
m q k—1 A
nm,c,2 nmo nm,c n
E(Mg i—1 1 }—1 ZZE< vg@] ) Z <f(Xm(i1)+k/l)m+
k=2 j=1 " k'=1 nm
‘n ¢ nm,c nmcr nm,c * An
[gik’ (Xm(i71)+k’71 _X )} 5WZU(k’)+H(Xm(i—1)+k’fl) (5W (k’)dW (k") — qﬁ)
1 nm,G nm,o nm,o nm,o k—1,6
i(Xm(z 1)4k—1 Xﬂ7 )TVQQZj(f )(Xml 1)+k—1 Xi;l’ )]E((WV] k)‘}— ' )]:1—”1>

B(M, 7 Fica

n,ik nm,o nm,o
ZE([hZ" * (X eny = X2y )]

nm n

‘E(éWi;,(k)éWi;( W1 —\}'k 1”>\IH>.

Since 0W; 51 is independent 0f.7-"]C L ke {1,...,m}, E(6W; %)) = 0and E(dWia(k)(FWig(k)—
I,52) = 0, we get E(M "m"]]ﬂ 1) = 0. Now, it remains to have upper bounds for

(\M”mal ) and E(]N”m”]p : Thanks to our assumption (Hy ;) it is easy to see the
existence of C'> 0 s.t.

k—1
Mnm,&,l <C < nm,c
| &ﬂ | = Z L+ | X

m(i—1)+k’—1
k=2 k'=1 nm

[

BN
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nm,o An An
(1+ | X" ‘)(ﬁ + 16Wiz () OW i ) — Iqﬁ’)

m(i—1)+k/—1

q k—1
wM;t”f2w<ozz(z

k=2 j=1 \k/=1 nm
- 1 -
+ ’X?nr(r;fl)+k’—l - nmUH(SWw(k’ | + i‘X:LnT(rzfl)-&-k—l _Xnmg >|5WJ k:)‘
nm nm n

5 A
,0,3 ,0 0
|MZ& | < CZ|XZ7Z 1)+k 1 nm ||5VVW )5‘4/;'—5'—(@ _Iqﬁnh

Here, the constant C' is a generic positive constant whose values may vary from
line to line. We obtain (4.4.11) using the independence between the above incre-
ments combined with Lemma 4.3.1 and the fact that E[0W; s [P = O(Aﬁ/g) and
E|§Wi5(k)6W£(k) - Iq%]p = O(AY}). Similar arguments give us inequality (4.4.12).

O

Proof of Lemma 4.4.2. Thanks to equations (4.4.1) and (4.4.6) combined with (4.2.2),
we deduce relation (4.4.13) with :

nm 0' nm U nm,& An
Re}’b* — E V(X =1 JH(X ) ® (6Wi5(k’)5W;(k’) — 1= )
kk'=1 nm
K <k

0 XDV A S S Wi S

kk k=1
k”<k’<k
and
5 (7 0 o A
RZ”?— T Z vff :m;b (f( ?nr(rzy—l)mul) - f(Xl;l))Wn
k‘/ 1 n nm
k’<k
m—1 T nm,c T ) ) 2
+ 55— (VI (X07) = Vg (X)) [(X o)Ay
1 — 5 A
+ §Z(X7::801>+k 1 XEJ) (VQf (f ) V f@(XI 1))(XZ:(7201 +k—1 Xgp)ﬁ
k=2 nm n nm n
1 — 5 A ; A
+ 9 (f(XiLanfl)Jrk/fl )Wn + H(X?n?:fl)ntk/—l) M (5Wi5(k’)5Wz‘—g(k’) - IQFH))T
k,k/: nm nm
K<k
; N
X VQfE(X%)(XZZinA - Xgﬁ)ﬁ
1 & T . = A
+35 2 < Tf 01)+k’71) - g(Xl;Ll ))5m&(k’)> VQfK(XZ:Il)(X:ZZle-k—l - Xgﬂ)ﬁ
kK =1 nm nm "
k' <k
m k—1 T k—1 ~ A k—1
F5 30 S (X)W sze(Xz'—nl)( D )+ D HGE )
k 2k'=1 k=1 nm k'=1 nm

k-1

An nm,o An

* (Wia () OW iy — L)+ > (g(Xms) — Q(Xirj))‘swi&(k’)) P
k=1 nm
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By the tower property we have

( Z VI (X H(X % ) ® BOWis (i 0Wik oy — I*|-7'- _10)

n

kl 1 nm
k’<k
15 A,
+ |9(X ) VA X )g(X ) ¢ > EWau e f)
k,E k=1
K<k <k

Since W) is independent of ]-"f ke {1,...,m}, the fact that E(6W; 54)) =0

and E(éWw(k)éww(k) [,5n) = 0, we get E(RZC’S(O)\}"%) = 0. Thanks to our

assumption (Hy ) it is easy to see the existence of C'> 0 s.t.

nm,o - nm,o An
[RyETO)] < CAw Y (4 X000 DIOWis ey 0Wig oy — Lo

m(i—1)+
nm

m
kk'=1
K <k
m
+CAR(1+ \X%\Z) Z |6Wia k) [|0Wig (e |
kk' k"=1
k"<kl<k

and

|R”m"( 0) <CA? Z X0 ey — X 1|+CA2\X””“’ Xz [(1+ Xz |)
kk/ 1 nm
K <k

HOALDY IXWT e — "””r V2T (€T — V2 (X))

k;:2 nm n
“ A A 5 .
+ CA, Z L+|X0 01 R D(ﬁ + [0Wig (k) 5Ww(k/) - IqﬁD\XﬁfZﬂHk,l - X
kk'=1 nm nm n
k' <k
m ~ ~ ~
+ CAH Z ‘X?n?:fl)-&-k’—l - X%H(;Wi&(k’)”X?anl)Jfk—l - Xﬁ’of
k k/=1 nm nm n
K<k
m k—1
+CA, Z(Z L+ X i1 )| 6Wig ) ><Z X — X izt [|6Wig ()|
k/ 1 k/ 1 nm
A A
+ Z (1+ X0 01>+k’ e N+ 0Wig ) OW g ) — quj\))
k'=1

Here, the constant C' is a generic positive constant whose values may vary from line
to line. Next, using the independence between the increments, we get

nma = nmo An
EIRYTT(O)F < CAL D7 (14 EIX R oy PEIOWise)0Wh sy — L2

kk'=1 nm
K<k
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m
+ CAP(1 + E|X%]2p) > EISWis o) PEISWz o |P,
kK k=1
k' <k <k
and by Cauchy-Schwarz inequality combined with the independence between the in-
crements, we also get

m
EIR;LIOF < CAZ ST BIXIS 0, — X |
kk'=1 nm
k' <k
+OAP (EIXIT — X [7) P2 (14 B )2

nm

+OAL YT (BIXL s — XIT) PRIV (€)= V2 F] (X)) 2
k=2

+COAP Z ((1 +E[X i PP (A2 + E0Wis 0y SWiL ) — Iqm|2p)>

k k=1
k' <k
o o 1/2
x (E‘X::Z’—I)Jrk—l _Xnm |2p) /
mnm 1/2 ~ ~ 1/2
+CAL D (BIXUE e — Xt [PEIOWioo) ) (BIX 00 0y — XE07 )
k,k/:]- nm nm n
k' <k
m k—1 s k—1 )
+CALY DT [(L+ EIX i PPIEISW50) ] <Z L+ EIX 00 o [P AP+
k’ Qk/ 1 k/zl nm
k—1 A
,0 T
D (HEIXLES s PEOWis ) 0Wigy — g
k/ 1 nm
1/2
ZErXZ’Z"WI X PP )

k=1
Now, using Lemma 4.2.1 combined with Lemma 4.3.1 and the fact that E[dW; 5 [P =
O(A), BloWia)0W,L 1) — Ig22 [P = O(Ah), we obtain (4.4.14) and we have

m

E‘ancr( )| O(A5P/2 _|_O A2p Z E|V2f£ zk )_VQfET(X

1/2
v o))
k=2

We recall from relation (4.4.4) section 4 that £" € (X"m‘f X0 Ul)+k ). Then, by

usmg Lemma 4.2.1, Lemma 4.3.1 and the assumption (Hfg) we have E[V2f, ({lk )—
V2f) (X :i21)|?P = O(AL), which yields us (4.4.15). O

Proof of Lemma /.4.3. Thanks to equation (4.4.7), we deduce from relation (4.4.16)
the exact form of R U( ) that is given by

Z i—1
nm,o An nm,oy\ T - nm,o
R&%(l) = ﬁvfﬁ(x% ) Z (g(Xm(i—1)+k’—l) - g(X%»‘SWi&(k’)
k,k'=1 nm

K<k
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An nm,o %
+ (VX)) T = VE(Xim) )g(Xizt) D Wisw):

kk'=1
k' <k
By the tower property we have
(R} (1)| Fis)
o An nm,o\ T - nm,o ] '—1,0
=E( EVAXID)T Y (9000 ) = 9(X i) E(Wis) | Fii )
" k=1 nm
K <k
A nmo = - O'
VAT = VA N(X) Y BOWaeol P T ).
B kk'=1
k' <k

Since 0W; 51 is independent of FL ke {1,...,m}, E(0W; 54)) = 0 and then

'IL

E(RZT‘I’( )|]-‘Z 1) = 0. Now, thanks to our assumption (Hy,) it is easy to see the

ex1stence of C > 0 s.t.

m
RIET()] < CAn S X — Xica [§Wisguo|
" kK =1 nm
k'<k
m
£ ODXIT = X |1+ |Xems) D 10Wisgen)-
" "kl =1
k'<k

Here, the constant C' is a generic positive constant whose values may vary from line to
line. Next, applying Cauchy-Schwarz inequality and using the independence between
the increments, we get

m

E|RZIOP < OAL D EIXL ey — Xt PEIOWiaq
n k,k/::l nm
k' <k

+CAP(E\X7"}” Xi 1y2p)1/2(1+ (EIX i [?) 1/2y Z E[§Wia () [P-

kk'=1
k/<k

By the fact that E|6W; 5P = O(AY?) and E|[6W;s ) 0W,L ) — I, A2 P = O(AL), we

(k)

have
m
ER2I(WP < OAP? " XU 0, — X
" k k=1 nm

k' <k
+ ONPA (BN — X PP (1 4 (B[ X i [2P).

We obtain (4.4.17) using Lemma 4.2.1 and Lemma 4.3.1. O
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Proof of Lemma 4.4.4. Thanks to equation (4.4.19) and (4.2.2), we deduce from rela-
tion (4.4.20) the exact form of R""7(2). We have

g}g

an,& 92) — v T Xnm,& % Xnma X An

571';1( )—Z QZj( -1 ) Z (f( m(i—1)+k/— ) — I %))H""
j=1 kk'=1 nm
k' <k
nm,o A” J
(H(Xm(ifl)Jrk/ ) H(Xz;l )) (6Wi5(k/)5wg(k/) - I H) (SV‘/;&( )
q m A
+Z Vgg] nm U) vgg](Xz 1)) Z <f(in1)m+
j=1 k,k'=1

m q k—1
202 (Voh(XIE) = V(X)) 3 |ile ® (Kiyas = X0 | 0WigaoydWi
k=3 j:1 " k'=2 nm n
m q k—1 _
+D. D Vo(Xim) [(9% = 0) * (X0 ey — XY U)} SWig k) SW ], 4
k=3 j=1 k'=2 nm =
m q k—1 k' —1 A
# SV X [ (X AR )
k=3 ]:1 k!'=2 k=1 nm
k-1 i A
+ > H(X ) ® (OWig gy S Wik oy — Iqﬁ)
k//zl nm
k-1 ) 4
+ ) (9N ) — 9(X nl))5Wi&(k”)>}5Wi&(k’)5wfa(k)
k‘"=1 nm
m q 1 - B 5 5 .
+ Z §(X?nrgf1)+k—1 - X! (V 9ej (52 ") - vzgﬁj(X%)) (X iy inr — Xgﬁ)‘swfij&(k)
k=2 j:1 nm n nm n
1 1 - nm,o An nm,& 'S T An T
+ 9 Z Z (f(Xm(z 14k —1 )H + H(Xm<i71)+k'71) (5Wi5(k’)6W/i6(k’) - Iqﬁ))
]:1 k;7k;,:1 nm nm
k' <k
X Vg0 (X iz 1)(XZZU Daket — Xt 7)WL g

nm,c nm,G 7
1) (XD e = X)W

1 ¢ < nm,o i
£330 2 (X0 ) ~ (X)) Wi ) P (X

nm nm

k-1

! 1 < nm,o A,
+Z§Z( g(XT)ém&(k’))TVQQZj(X’;l)<Zf(Xm(z 1)+k/— 1)H+

k=1 o

nm,c An
Z H(Xm(ifl)qtk’fl ) M (5M&(k’)6m;(k’) - IQH)

k=1 nm

—1 nm
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By the tower property, the independence of W 5(;) of ]-"f’;l’&, ke {l,...,m}, and

E(0W; (k) = 0, we deduce IE(RZTT( )|Fiz1) = 0. Moreover, thanks to our assump-

’n

tion (Hy,) it is easy to see the existence of a generic positive constant C' which does
not depend on ¢ s.t.

nmo‘ ’an’ An
|R5»i ! |<CZ Z |Xm(z 1)+k’ 1 Xinl|<m+|5Wz'&(k/)5Wi—g(k) I, |>|5WJ k)‘

J=1kk'=1
k:’<k
an’ = ATL T A
+ CZ |X - X%\ Z (1+ |X%|) P + 16Wis ey oWig ey — ‘ [6W, w(k |
kk'=1
k’<k
m
+CY N IX Tl_m"—Xz 1|Z|XZ{;"1 ki1 "m"||5ww k,)||5wﬂ )
k=3 j=1
m k—1 _
+CZZ ’X?n?:fl).t,_k’—l - nmJngk’ gl H5W7,O' k') ”5 10’(k))|
k=3 j=1 k'=2 o "
m q k—1 k'—1 : A A
2SI DI X i D+ 10Was ey Wi oy — 1)
k=3 j=1k'=2 k''=1 nm
k'—1
nmo‘
+ Z |X'm(z 1)+k’/ 1 — Xi- 1||5VVw k' mévvw k' ‘|6Ww(k)|
k'"=1
+CZZ‘XZZZZUI)+IC 1 nma‘ |v2g j( 271) *V2gg]( )H(SW k)|
k=2 j=1

q
nm,c An A nm,c nmo
+ CZ Z (1 + |Xm(i71)+k’71 |)(W + |5Wz‘&(k’ 5Ww(k/) - |) |Xm(i—1)+k—l - H‘SWJ )|

=1 kk'=1 nm nm o
K<k
Lo Y sy~ X SWas ) IX0 s — X7 OW
] 1 k k’ 1 nm TL
K <k
qg m k—1 k—1 A A
+CY ( >+ IXT!)MW,-&W)!) ( SA+[XTT y)(ﬁ + [6Wia ey Wiy — 1 71)
j=1k=2 “k/'=1 ) k=1 nm
k—1 :
3 KT = X 5] ) W
k/zl nm

Here, the values of the constant C' may vary from line to line. Next, we apply Cauchy-
Schwarz inequality and use the independence between the increments, we get

nma nm,o A;?L T An ]
BRSO SCY 3 BN, 0 sy = Xl (S BIOW i) W~ L2 EISWS

J=1kk'=1

K <k
2 - nm,o 2p 2p\\1/2 Ag T Anl’ J p
+CY Y (EXT — Xia[PA+EX 1 [7) 7 —5 + El0Wia )0 Wig oy = Iy—= [P JE[OW
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m
1/2 5 519p\ 1/2 -
+ CZZ (E‘Xnma X%‘gp) / Z (E‘X:szlwkfﬂ - Xgﬂﬁp) / E‘éwi&(k/)‘pEwWij&(k) P
k=3 j=1 k=2 nm "
m k—1 ~ 1/2 '
OIS [BIX I s — Xt PRI — G712 | T EIOWip ) PEISW, P
k=3 j=1 k'=2 nm
m q k—1 k'—1 A
FO S [ BN, ) Bl 1,50)
k=3 j=1k'=2 k'=1 nn
K —1 i
+ > EBIX ey — X PEISWis k,,)\p}ﬂzwww o) PEISW o P
k=1 nm
1/2 '
" ckZZ (EIXIRA s — XTI (€ - P (X)) B0
27
) n
+ CZ Z ((1 +EIX D [N ria E16Wia k)6 Wig () — Iqﬁ’ p))
J=1kk'=1 nm
k' <k
X (E‘X:}zf}lwkﬂ - nma‘zp)lﬂE’(gW] |
q m o ~ 1/2 _ _ 1/ )
+CZI Z (E’Xﬁzﬂnﬂdl - Xi:Ll’QpE‘éWi&(k’)’Zp> (E’XZEin,l _Xg,UIQp) E’(Swgg(k)‘p
3=1 kK =1 nn nm
k' <k
q m k—1 1/2 k—1 - A2p
n
+02 <Z<1 +E|Xin1\2p)E5Wi&(k’)‘2p> (Zu B P
j=1k=2 “k'=1 k=1 o
k-1 1/2 .
-
+E‘6W’L&(k’)5Wz&(k/) I, 7‘2p + ZE‘X::Z 01 +kl 1 XT‘ZPE’(SWi&(k’)‘Qp) E‘(Ssza(kﬂp
k=1

By using Lemma 4.2.1 combined with Lemma 4.3.1 and the fact that E|6W; 5P =
2
oAy, E|0Wia()SW,5 1y — L5 P = O(AR), we get

N

-1 1/2

E‘an a( )| — O(Aip) + O(AiP/Q) [E|gﬁ€/ - gzn|2p

f i—1 Z
k=3 k/—2
m q ) 1/2
+OAP2) NN <E\V2gej(€ién) - V29€j(Xin1)|2p> :
k=2 j—1

Now, let us recall that from relation (4.4.19) we have ¢%, € (R¥1)4%? and ¢P €
(RO, for € € {1,...,d},j € {1,...,q}, (§h)e = Voy(§p") € R and
(GMej = vggj(Xi—l) where €27 € (X7, X0 ). We also recall that from

m(i—1)+k/—1

(4.4.19) 5" € (X”m” X% . ). Then, by Lemma 4.2.1, Lemma 4.3.1 and as-

sumption (Hy), we get E[V2ge(¢5") — Vg (Xim ) = E|gh, — g7 = O(A7).
Hence, we deduce (4.4.21). O
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Proof of Lemma /4.4.7. Thanks to equation (4.4.23), we deduce from relation (4.4.24)

the exact form of Rgg(iﬁ). We have

nm,o - ] 1,0 ] M, nm,o nm,o An
RI(3) =) {(hz.’.k = hiee) ® (Xt — X0 )] * (Wiaw)Wisry = o)

677,71 m
" k=2 nm "
m k—1 A k—1 A
3 7‘ ’~ n 7~ T n
+> [h?.z. * < > FXR )t > HX ) (OWis )0 Wik gy — Iy——")
k=2 k'=1 nm k=1 nm

nmo’ An
+3 (g(x )—g(Xi—;))5Wia(kf>>} * (OWiatyOWigay — Lo -

m(i—1)+k/—1
K=1 nm

By the tower property we have

(R} (3)|Fizt)

&ﬂ

= E(Z (Rl = ) ® (X s — X7 @ E(OWip oW,y — 1 rf’“ b7
k=2 nm n

m A k—1 A
+ Z |:hZoZo M < Z f XZZZ Jl)+k/ 1)# + Z H(XZZ U1)+k’ 1) (5Wi&(k’)5Wi—g(k’) - IQHTL)

k=2 k'=1 k'=1 nm

k—1

nm,& k—1,6

+ ) (9(X ) — g(inl))5Wi&<k’)>} * E(6Wis ()6 Wiga) — L 7|JT e )Iffn1>-

k/zl nm

Since 0W; 51 is independent of .7-"k Lo ke {1,...,m}, E(&Wi&(kﬁW;(k) -1 %:) =
0, we get E(chncf( )|fz 1) =0. Now thanks to our assumption (Hp ;) it is easy to
see the existence of constant C >0s.t.

~ m . - A
nm,o n,ik n,t nm,o nm G
RITTG) < O el = WEAlIX B s = X7 16Wing0W Ly — Ty~

é,% leo (o0
m k—1 A A
+CZ <Z +|XMD(WTL+‘6W15(k’)6Wl—g(k/) —IqﬁD
k'=1 nm
nm,o An
S sarms = X [0Wiogu | ) WistaOWizgry = 17 |
k=1

Here, the constant C' is a generic positive constant whose values may vary from line
to line. Next, we apply Cauchy-Schwarz inequality and use the independence between

the increments, to get

E!RZT T3P
< E hn Jik hn K nm,c nm & 1/2E S 5 T An p
>~ C Z ( ’ 127 121 m(i—1)+k—1 - X ) | W’LO‘ W ( ) QH’

“ = nm,o Ap T An
+C> ( > (U +EIXm )(* +EloWis6)0Wizwy = L)

k=2 “k'=1 nm
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Ay
+ Z E| X" — X1 [PE|5Wis k/)\p>E]5Ww WL — 1,22,

m(i—1)+k' —1 1)+k/ 1
k'=1

By Lemma 4.2.1, Lemma 4.3.1 and the fact that E[6W; 5()[” O(AP/Q) E|6Wis(x) 5WZ5(,€)
1,52 [P = O(A}), we have

0,1 loe loe

E|ana( )| O(A2p +O A3p/2 Z hnzk hnz|2p)1/2'
k=2

We recall from relation (4.4.23) in Section 4 that hn e (RI)axa and B e

(oo
(RAx1)ax4a_ for j andj e{1,...,q}, (h?f.k)”/ = Vhyjjr (f ") € R™V and (hL),0 =
Vhejjr (X i) where £ € (X"mU X, 01>+k ). Then, by using Lemma 4.3.1 and the

) =

assumption (Hy ,), we have E]hn i \27’ O(AD). Hence, we obtain (4.4.25). [

(o0 (oo

Proof of Lemma /.4.8. From (4.4.32), (4.4.33) and (4.4.34), we use similar arguments
as in the proof of Lemma 4.4.1 to get
1 1 ¢
ROV i) =50 DO (X = XIR)T (Wi (G1) + Pang () (X2 - X22°)
, 1 3 n n n

x E(AW?"\L-_l),

BT ) = [ & (X — XI5 $ BAWAW: - [,Au Fi),

E(M, 5| Fimr) = ) [h?.iQ * (XL~ Xg’a)] * E(0WirdWigs — 6Wigs Wi | Fiza ).
" k&' =1 "
k<K'

Now if we also consider (4.4.31), we get thanks to assumption (Hjy ), the existence of
a generic positive constant C' s.t.

EIN;T. [P <CEIXTR - X7 A,

E|My 2y P <cZE|X, Lo XILTPPEIAW P,
j'=1

E|N TP <CE|XIT — XI5 PEIAWAW; = I A,

BT <O 3 X - XIS PEOWaaW, - W bW
k.k'=1
k<k'

Thus, we easily deduce that E(M nm1|fz 1) = E( ;:n12|]_—2 1) = E( emznﬂ]:z 1) =0

and using Lemma 4.3.1 we get E| ;&V = O(AZ) and E\M;Z”Hp E,M;:n;f\p =
E|Mnm3|p — O(AY/%). Finally, combining the above estimates with the obtained
bounds on E(|MP"°)) and E(IN7|) for 6 € {Id, o} (see (4.4.11) and (4.4.12)), we

easily get the rquired bounds for the moments of M i—1 and Ni-1. O
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4.8 Appendix C: Theoretical tools

4.8.1 Uniform tightness

We first recall the uniform tightness property (UT) defined in Jakubowski, Mémin,
and Pages, 1989. Let X" = (X™)1<,<4 be a sequence of R%-valued continuous semi-
martingales with the decomposition

X=X+ AP+ M 0<t<T,

where, for each n € Nand 1 < i < d, A™' is a predictable process with finite variation,
null at 0 and M™" is a martingale null at 0. We say that X" has (UT) if for each i

T
<M“”'>T+/ |dA™| s tight. (UT)
0

4.8.2 Stable convergence

Let (X5) be a sequence of random variables with values in a Polish space E defined
on a probability space (2, F,P). Let (2, F,P) be an extension of (2, F,P), and let
X be an E-valued random variable on the extension. We say that (X,,) converges in

. bl .
law to X stably and write X, Stagly X,asn — oo if

E(UA(X,)) = E(UMX)), asn— oo

for all h: E'— R bounded continuous and all bounded random variable U on (€2, F).

This convergence is obviously stronger than convergence in law that we will denote

stabl
here by ““22%7,

Now, we recall the Lemma 2.1 in Jacod, 2004 about the uniform tightness property.
For this aim, we consider sums of triangular arrays of the form

[nt]

Iy => ",
=1

where for each n we have R%valued random variables (¢!*);>1 such that each ¢ is
Fi/n-measurable.

Lemma 4.8.1. If (' are i.i.d. random wvariables and I'Y converges in law to a limit
U, then there is a Lévy process I' such that T'y = U. This process I is unique in law
and I' converges in law to T (for the Skorokhod topology). Further, the sequence (I'™)
has (UT).

Next, we recall the convergence theorem 3.2. of Jacod, 1997 for an R%-semimartingale
process without jumps of form

[nt]
7 =30
i=1
where x}' is Fi-measurable.

Theorem 4.8.2. Assume that M is a square-integrable continuous martingale, and
that each x is square-integrable. Assume also that there are two continuous processes
F and G and a continuous process b of bounded variation on (0, F, (Ft)o<t<1,P) such
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that

[nt]
sup| 3B} 1Fizt) = b 0, (a)
=1
[nt] .
> (B T1Fa) - EOGIFo)EGT1Fo)) 5 B, vee[0,1], ()
=1
[nt] .
> EGFAML, |Fia) = G, vt € [0,1], (c)
i=1 A

ZE(‘XﬂQl\X;L\x’fﬂ) 50 Ve > 0 (Lindeberg’s condition). (d)
Z:1 n

Then assume further that d(M', M"); < dt and dF}’® < dt, there are predictable

processes u, v, w with values in RP*P RXD gnd R¥X4 respectively, such that
t t
(M, MT)t = / ususTds, Gy = / vsusuzds,
0 0

t
F, = / (fusuSuSTvST + wsw;)ds,
0

we have bl
A=l

with the limit Z can be realized on the canonical d-dimensional Wiener extension of
(Q, F, (Ft)o<t<1, P), with the canonical Wiener process B as

t t
Zt = bt + / USdMS + / wsst.
0 0

Remark 4.8.3. If in the theorem above, every x7, i € {1,...,n} have moments of
order p > 2, then the Lindeberg’s condition can be obtained by the Lyapunov condition:

n

n P
S E(PF) B0
i=1

Now, according to Section 2 of Jacod, 1997 and Lemma 2.1 of Jacod and Protter,
1998, we have the following result

Lemma 4.8.4. Let V,, and V be defined on (Q, F) with values in another metric space

E. IfV, B v, X, "8Y X then (V,,, X)) "2 (v, X).

Conversely, if (V,X,) = (V,X) and V generates the o-field F, we can realize this

limit as (V, X) with X defined on an extension of (Q, F,P) and X, Sti'ily X.

Now, we recall a result on the convergence of stochastic integrals formulated from
Theorem 2.3 in Jacod and Protter, 1998.

Theorem 4.8.5. Assume that the sequence (X™) has (UT). Let H™ and H be a se-
quence of adapted, right-continuous and left-hand side limited processes all defined on
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the same filtered probability space. If (H™, X™) stably (H,X) then X is a semimartin-
gale with respect to the filtration generated by the limit process (H,X), and we have

(H™, X", [ Hrdx™) "8 (#, X, [ HdX).
Now, we recall the Theorem 2.5¢ in Jacod and Protter, 1998.
Theorem 4.8.6. We consider a sequence of SDE’s like

t
XD = Jr + / X"_H"dY,,
0

all defined on the same filtered probability space and with the same dimensions. Also
let p™ be an auxiliary sequence of random variables with values in some Polish space
E, all defined on the same space again.

Let V* = fot H{dYs. Suppose the sequence sup,<y ||[H{'|| is light and the sequence
(J™, V™ p") stably converges to the limit (J,V,p) defined on some extension of the
space. Then V is a semimartingale on some extension and (J", V™ X™ p") stably
converges to the limit (J,V, X, p) where X is a solution of

t
Xy =J¢ +/ Xs_HydYs.
0

4.8.3 Lindeberg-Feller central limit theorem

We recall also the following central limit theorem for triangular array (see, e.g. The-
orem 7.2 and 7.3 in Billingsley, 1968).

Theorem 4.8.7. Let (ky)nen be a sequence such that k, — oo as n — oo. For each
n, let Xo1,.. ., Xk, be ky independent random variables with finite variance such that
E(X,x) =0 for all k € {1,...,k,}. Suppose that the following conditions hold:

(1) limy oo S0 Bl X k> =9, 9 > 0.
(2) Lindeberg’s condition: For all € > 0, lim, Zi”z'l E(‘Xn,k|2]l‘Xn,k|>e) = 0. Then

k7l
ZX"»’f = N(0,9), as n — 0o.
k=1

Moreover, if the X, i, have moments of order p > 2, then the Lindeberg’s condition
can be obtained by the following one:

(3) Lyapunov’s condition: limy,_, Ziil E|X, kP = 0.
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