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�La pensée n'est qu'un éclair au milieu d'une longue nuit. Mais c'est cet éclair qui est

tout.�

Henri Poincaré

�Mathematics is a game played according to certain rules with meaningless marks on

paper.�

David Hilbert
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Limit theorems for MLMC method for several models : exponential Lévy

process, SDE driven by a pure jumps Lévy process and di�usion process

with an antithetic approximation

by Thi Bao Trâm Ngô

Motivés par la méthode multilevel Monte Carlo (MLMC), introduite par Giles,
2008b permettant d'améliorer la vitesse de la méthode Monte Carlo classique, nous
nous intéressons à développer des théorèmes limites autour de cette méthode dans des
cadres di�érents. La thèse se compose de trois parties :

Dans la première partie, nous démontrons un théorème de la limite centrale sur la
méthode MLMC pour le calcul des prix d'options de type vanille en �nance lorsque
l'actif sous-jacent est donné par un modèle exponentiel de Lévy. Pour prouver ce
résultat, nous donnons un théorème limite fonctionnel sur le comportement asympto-
tique de la distribution de l'erreur du processus d'approximation entre deux niveaux
consécutifs de la méthode MLMC. De plus, nous fournissons une analyse de la com-
plexité de l'algorithme montrant que la méthode MLMC réduit e�cacement le coût
de calcul par rapport à une méthode classique de Monte Carlo et dans certains cas
particuliers pour une précision ε donnée elle atteint la complexité optimale O(ε−2) qui
correspond à la méthode de Monte Carlo non biaisée. Nous illustrons la suprématie
de la méthode MLMC sur les méthodes de Monte Carlo à travers des tests numériques
pour un modèle exponentiel de CGMY.

Dans la deuxième partie, nous étudions le comportement asymptotique du pro-
cessus d'erreur normalisé un,m(Xn − Xnm) où Xn et Xnm sont respectivement des
approximations d'Euler avec des pas de temps 1/n et 1/nm d'une équation di�éren-
tielle stochastique dirigée par un processus de Lévy à sauts purs. Dans cet article, nous
prouvons que cette erreur de type multilevel converge vers un processus limite non
trivial avec une vitesse de convergence un,m. Les résultats obtenus sont en continuité
avec ceux de Jacod, 2004 établis pour l'erreur normalisée un(Xn − X). Cependant,
contrairement à Jacod, 2004, dans nos preuves, nous traitons le comportement de la
loi jointe de m tableaux triangulaires dépendants. Formellement, lorsque m tend vers
l'in�ni, nous récupérons les processus limites de Jacod, 2004.

HTTPS://WWW.MATH.UNIV-PARIS13.FR
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https://www.math.univ-paris13.fr/laga/index.php/fr/ps 
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vi

Dans la dernière partie, nous introduisons l'estimateur MLMC antithétique pour
une di�usion multi-dimensionnelle qui est une extension de la méthode MLMC antithé-
tique originale introduite par Giles and Szpruch, 2014. Notre objectif est d'étudier le
comportement asymptotique des erreurs faibles impliquées dans ce nouvel algorithme.
Parmi les résultats obtenus, nous montrons que l'erreur entre d'une part la moyenne
du schéma de Milstein sans l'aire de Lévy et sa version antithétique construits sur la
grille �ne et d'autre part l'approximation grossière converge en loi stablement avec
une vitesse d'ordre 1. Nous montrons également que l'erreur entre le schéma de Mil-
stein sans l'aire de Lévy et sa version antithétique converge en loi stablement avec une
vitesse d'ordre 1/2. Plus précisément, nous avons un théorème de limite fonctionnelle
sur le comportement asymptotique de la loi jointe de ces deux erreurs basé sur une
approche par tableau triangulaire. Grâce à ce résultat, nous établissons un théorème
central limite de type Lindeberg-Feller pour l'estimateur MLMC antithétique. Une
analyse de la complexité de l'algorithme est e�ectuée.

Mots-clés: Schéma d'Euler, Schéma de Milstein, Méthodes Multilevel Monte
Carlo (MLMC), processus de Lévy, équations di�érentielles stochastiques, modèle
CGMY, processus exponentiel Lévy, théorèmes limites fonctionnels, théorèmes limites
centraux.
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ABSTRACT

Motivated by the multilevel Monte Carlo method introduced by Giles, 2008b to im-
prove the rate of convergence by the Monte Carlo method, we are interested in devel-
oping limit theorems for di�erent settings. The thesis consists of three parts:

For the �rst part, we prove a central limit theorem on the Multilevel Monte Carlo
method for pricing vanilla type options when the underlying asset is given by an
exponential Lévy model. To prove this result we give a functional limit theorem on
the asymptotic behavior of the error distribution of the approximating process between
two consecutive levels of the Multilevel Monte Carlo method. Moreover we provide
an analysis of the time complexity and it turns out that the MLMC method reduces
e�ciently the time cost compared to a classical Monte Carlo method and in some
particular cases for a given precision ε it reaches the optimal complexity O(ε−2) so
that it behaves like an unbiased Monte Carlo method. We illustrate the supremacy of
the MLMC method over the Monte Carlo methods through numerical tests for pricing
European call options under an exponential Lévy model where the Lévy process is
given by the CGMY model that covers a general class of Lévy processes.

For the second part, we study the asymptotic behavior of the normalized error
process un,m(Xn −Xnm) where Xn and Xnm are respectively Euler approximations
with time steps 1/n and 1/nm of a given stochastic di�erential equation driven by
a pure jump Lévy process. In this paper, we prove that this multilevel error process
converges to some non-trivial limiting process with a sharp rate un,m. The obtained
results extend those of Jacod, 2004 for the normalized error un(Xn − X). For the
multilevel error, the proofs of the current paper are challenging since unlike Jacod,
2004 we need to deal with m dependent triangular arrays instead of one. Formally,
when letting m tends to in�nity, we recover limit processes of Jacod, 2004.

For the last part, we introduce our antithetic MLMC estimator for a multi-
dimensional di�usion which is an extended version of the original antithetic MLMC
one introduced by Giles and Szpruch, 2014. Our aim is to study the asymptotic be-
havior of the weak errors involved in this new algorithm. Among the obtained results,
we prove that the error between on the one hand the average of the Milstein scheme
without Lévy area and its antithetic version build on the �ner grid and on the other
hand the coarse approximation stably converges in distribution with a rate of order
1. We also prove that the error between the Milstein scheme without Lévy area and
its antithetic version stably converges in distribution with a rate of order 1/2. More
precisely, we have a functional limit theorem on the asymptotic behavior of the joined
distribution of these errors based on a triangular array approach. Thanks to this
result, we establish a central limit theorem of Lindeberg-Feller type for the antithetic
MLMC estimator. The time complexity of the algorithm is carried out.

Keywords: Euler scheme, Milstein scheme, Multilevel Monte Carlo methods,
Lévy processes, stochastic di�erential equations, CGMY model, exponential Lévy,
functional limit theorems, central limit theorems.
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Chapter 1

Introduction and main results

1.1 Introduction and motivation

In many applications, particularly for pricing of �nancial securities, the e�ective com-
putation of the quantity E(ϕ(XT )), T > 0, where (Xt)0≤t≤T is some underlying asset
price and ϕ is a given payo� function is of great interest within the last decades
(see e.g. Kloeden and Platen, 1992 and Glasserman, 2003). For the one-dimensional
setting, the computation of E(ϕ(XT )) can be done e�ciently using Fourier trans-
form methods or numerical methods for partial di�erential equations. However, for
the high dimensional setting, the Monte Carlo methods remain the most competitive
in practice for this aim. This method consists of two steps. First, we approximate
the process (Xt)0≤t≤T by the discretization scheme (Xn

t )0≤t≤T with time step T/n.

Then approximate E(ϕ(Xn
T )) by 1

N

n∑
k=1

ϕ(Xn
T,k), where (Xn

T,k)1≤k≤N is a sample of

N independent copies of Xn
T . The Statistical Romberg (SR) method introduced by

Kebaier, 2005 for the setting of discretization schemes for Brownian stochastic di�er-
ential equations is a two-level Monte Carlo estimator. This method reduces e�ciently
the time complexity compared to the classical Monte Carlo method. It uses two Eu-
ler schemes (Xn

t )0≤t≤T and (X̂nβ
t )0≤t≤T with time steps T/n and T/nβ , β ∈ (0, 1)

and approximates E(ϕ(XT )) by 1
N1

N1∑
k=1

ϕ(X̂nβ

T,k) + 1
N2

N2∑
k=1

(ϕ(Xn
T,k) − ϕ(Xnβ

T,k)) where

the Brownian paths used for Xn
T and Xnβ

T has to be independent of the Brownian

paths used to simulate X̂nβ

T . Recently, an extension of the SR method introduced
by Giles, 2008b (see also Heinrich, 2001 for an earlier variant of the computational
concept) called multilevel Monte Carlo (MLMC) method reduces e�ciently the time
complexity in the context of discretization schemes for Brownian stochastic di�eren-
tial equations. Interesting numerical tests, comparing three methods (crude Monte
Carlo, statistical Romberg and the multilevel Monte Carlo), were processed in Korn,
Korn, and Kroisandt, 2010. Giles's approach used a root mean squared error (RMSE)
for the optimization of the size of the sample paths in order to run the MLMC
method. The study of the multilevel method and all related topics interest a wide
international community, we refer to the webpage of Giles https://people.maths.
ox.ac.uk/gilesm/mlmc_community.html, see also Giles, 2008a, Giles, Higham, and
Mao, 2008, Creutzig, Dereich, and Müller-Gronbach, 2009, Dereich, 2011, Giles and
Szpruch, 2013b, Hutzenthaler, Jentzen, and Kloeden, 2013, Lemaire and Pagès, 2017
and Giorgi, Lemaire, and Pagès, 2017 for related results. Many new schemes have been
developped to improve the order of convergence using the MLMC combined with other
method of variance reduction, such as improved MLMC with Milstein scheme of Giles,
2008a, the antithetic MLMC scheme of Giles and Szpruch, 2013a, the nested MLMC

https://people.maths.ox.ac.uk/gilesm/mlmc_community.html
https://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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Giorgi, Lemaire, and Pagès, 2020 or the coupling importance sampling and MLMC
of Kebaier and Lelong, 2018 (see also the earlier results of Ben Alaya, Hajji, and
Kebaier, 2016). In a general framework, whenever a discretization scheme is used, we
can implement the multilevel algorithm. The MLMC method uses information from
a sequence of computations with decreasing step sizes and approximates the quantity
E(ϕ(XT )) by

Qn =
1

N0

N0∑
k=1

ϕ(X1
T,k) +

L∑
`=1

1

N`

N∑̀
k=1

(ϕ(X`,m`

T,k )− ϕ(X`,m`−1

T,k )), m ∈ N\{0, 1},

where ` ∈ {0, ..., L}, with L = logn
logm and (Xm`

t )0≤t≤T denotes some discretization

scheme with time step m−`T . Concerning the �rst empirical mean, the processes
(X1

t,k)0≤t≤T , 1 ≤ k ≤ N0 are independent copies of (X1
t )0≤t≤T . Concerning the

second one, for ` ∈ {0, ..., L}, the processes (X`,m`

t,k , X`,m`−1

t,k )0≤t≤T , 1 ≤ k ≤ N` are

independent copies of (Xm`
t , Xm`−1

t )0≤t≤T . However, for �xed `, the simulation of

(X`,m`

t )0≤t≤T and (X`,m`−1

t )0≤t≤T have to be based on the same path. Therefore, it
is important to study of the asymptotic behaviors of the MLMC type error X`,m` −
X`,m`−1

as `→∞ which is also the main topic of this thesis.

The above objective can be reduced to the study of the error in general form
Xnm −Xn as n→∞ where Xnm and Xn stand for the discretization schemes with
time steps T/nm and T/n built on the same path. Next, we recall some results on
the convergence orders of strong and weak error of Euler and Milstein discretizations.
Some results on the MLMC with theses discretization are also recalled.

1.1.1 Euler MLMC scheme

The Euler MLMC method approximates the quantity E(ϕ(XT )) by Qn corresponding
to the Euler discretization. Let us consider the probability space (Ω,F , (Ft)0≤t≤T ,P)
and a process (Xt)0≤t≤T which is solution to the following classical type stochastic
di�erential equation (SDE)

Xt = x0 +

∫ t

0
f(Xs−)dYs, t ∈ [0, T ], T > 0,

where x0 ∈ Rd, Y is a semimartingale and f is a function regular enough. First,
we recall the Euler scheme (see, e.g., Kloeden and Platen, 1992 for more details on
discretization schemes) and its analytical results on the order of strong and weak
convergence. We divide the interval [0, T ] into n partitions with the same length and
for k ∈ {0, . . . , n}, we denote tk = kT

n . Now, for s ∈ [0, T ], we denote ηn(s) = bnsT c
T
n

and the continuous Euler scheme starting at x0 is de�ned by

∀0 ≤ k ≤ n− 1, ∀t ∈ [tk, tk+1], dX̂n
t = f(X̂n

ηn(t))dYt.

Another version called the discrete Euler scheme is de�ned by the induction on the
grids (tk)k: X̄n

tk+1
= X̄n

tk
+ f(X̄n

tk
)(Ytk+1

− Ytk), X̄0 = x0. The Euler scheme is
a well-known method of approximation of solutions of stochastic di�erential equa-
tions (SDEs) which is sometimes called the Euler-Maruyama approximation (see
Maruyama, 1955). Until now, there are many results concerning the precision of
this approximation in case of equations driven by a drift and a Brownian motion.
More recently, people are interested in the approximation of solutions of SDEs driven
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by a general Lévy process. To review the analytical results available in the literature
until now of this scheme and the Euler MLMC scheme, we discuss on two types of
model: SDE driven by multi-dimensional Brownian motion with drift and SDE driven
by a Lévy process.

Stochastic di�erential equation driven by a multi-dimensional Brownian

motion with drift: Here, Y in the equation above is continuous, more precisely,
let Y be a multi-dimensional Brownian motion containing a drift. It is well-known
that under the global Lipschitz condition

∃CT > 0, s.t., |f(x)− f(y)| ≤ CT |x− y|, x, y ∈ Rd

the Euler scheme satis�es the following property (see, e.g., Bouleau and Lepingle,
1995), for any p ≥ 1,

sup
0≤t≤T

|Xt| ∈ Lp, sup
0≤t≤T

|X̂n
t | ∈ Lp,

E( sup
0≤t≤T

|X̂n
t −Xt|p) ≤

Kp(T )

np/2
, Kp(T ) > 0.

Under the weaker condition where f is locally Lipschitz with linear growth, Jacod and
Protter, 1998, Theorem 3.1 states that we have the uniform convergence in probability,
namely the property

sup
0≤t≤T

|X̂n
t −Xt|

P−→ 0.

When computing an approximation of the expected value E(ϕ(XT )) for ϕ smooth
enough, one problem is to evaluate the discretization error εn = E(ϕ(X̂n

T )− ϕ(XT )).
For the case where Y is continuous with a coe�cient function f smooth enough, Talay
and Tubaro, 1990 and Bally and Talay, 1996 (see also Bally and Talay, 1995) proved
that εn is of order 1/n and an expansion of εn as increasing powers of 1/n is even
given. More precisely, they obtained the following results that can be found in Pagès,
2018, Theorem 7.8.

� Talay and Tubaro, 1990 proved that if f ∈ C∞ bounded with bounded partial
derivatives and the function ϕ ∈ C∞ with partial derivatives having polynominal
growth, then, there exists a sequence (Ci)i≥1 of real numbers depending on T, f
and ϕ such that for any order R ∈ N∗, we have

εn =
C1

n
+
C2

n2
+ . . .+

CR
nR

+O(
1

nR+1
), as n→∞.

� Bally and Talay, 1996 extended the same result for bounded Borel function ϕ,
where the function f ∈ C∞ with bounded partial derivatives and the di�usion
coe�cient is uniformly elliptic.

In the context of possibly degenerate di�usions, when ϕ satis�es |ϕ(x) − ϕ(y)| ≤
C(1 + |x|p + |y|p)|x − y| for C > 0, p ≥ 0, using the result of strong error, the
weak error εn is bounded by c/

√
n with c a positive constant. In a more general

context, for possibly degenerate di�usion X with f globally Lipschitz and ϕ satisfying
P(XT /∈ Dϕ) = 0 where Dϕ = {x ∈ Rd : ϕ is di�erentiable at x}, Kebaier, 2005
proved that the rate of convergence of the discretization error εn can be 1/nα for
any α ∈ [1/2, 1]. All the above developments on the Euler scheme are very useful for
studying the MLMC error. In fact, more recently, based on these analytical results,
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Ben Alaya and Kebaier, 2015 proved the following functional limit theorem for all
m ∈ 2, 3, ..., as n→∞,

(Y,

√
mn

(m− 1)T
(Xmn −Xn))

stably⇒ (Y,U),

where

Ut =
1√
2
Zt

∫ t

0
(Zs)

−1f(Xs)f
′(Xs)dWs,

withW is a standard Brownian Motion independent of Y and Zt = 1+
∫ t

0 f
′(Xs)ZsdYs.

Afterward, they established a central limit theorem of Lindeberg-Feller type for the
MLMC estimator.

Stochastic di�erential equation driven by a Lévy process To give a �avor in a
very simple setting, we consider a one-dimensional Lévy process Y with characteristics
(b, c, F ) such that

E(eiuYt) = exp

{
t

(
iub− cu2

2
+

∫
R
F (dx)(eiux − 1− iux1|x|≤1)

)}
.

From the point of view of �nancial modelling, Lévy processes provide a class of mod-
els with jumps that is both su�ciently rich to reproduce empirical data and sim-
ple enough to do many computations analytically (see e.g. Cont and Tankov, 2004).
For a concise treatment of Lévy processes, we refer to the textbooks Applebaum,
2009 and Sato, 1999. Again, one problem of computing an approximation of the
expected value E(ϕ(XT )) for smooth enough functions ϕ, we need to evaluate the
error εn = E(ϕ(X̂n

T )) − E(ϕ(XT )). For Y a given Lévy process, Protter and Talay,
1997 and Jacod et al., 2005 proved that εn is of order 1/n and with some appro-
priate assumptions on the coe�cient function f , they showed that the error εn can
be expanded in successive powers of 1/n. Concerning the asymptotic behavior of
the MLMC type error for SDE driven by a Lévy process, there are some available
results in litterature. When Y is Lévy process with non null continuous part that
is Y has a charcteristic triplet (b, c, F ) where c 6= 0, then for a cut-o� sequence hn
such that F (hn,∞) +F (−∞,−hn) ∼ θ

tn
≥ 0 and lim

n→∞
hn/
√
tn = 0, tn = M−nT with

M ∈ {2, 3, ...} is �xed, Dereich and Li, 2016 proved that

(Y, t−1/2
n (Xn+1 −Xn))

L−→ (Y,U),

with

Ut =

∫ t

0
f ′(Xs−)Us−dYs + cΓ

∫ t

0
f(Xs−)f ′(Xs−)dWs

+
∑

s∈(0,t]:∆Ys 6=0

√
csξsf(Xs−)f ′(Xs−)∆Ys,

where for any s, ξs ∼ N (0, 1) independent of Y , Γ2 =

{
e−θ−1+θ

θ2

(
1− 1

M

)
, θ > 0

1
2

(
1− 1

M

)
, θ = 0

,

W is a standard Brownian motion independent of Y and (ξs), and (cs) are independent
positive marks well-de�ned as a function of a family of independent uniform random
variable on [0, 1] and exponential random variables with parameters θ and (M −
1)θ. Thanks to this limit theorem, Dereich and Li, 2016 obtained for this case a
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central limit theorem for MLMC estimator. When Y is a Lévy process without a
continuous Gaussian part that is Y has a characteristic triplet (b, 0, F ), being inspired
by Jacod, 2004, we are interested in proving limit theorems for MLMC type error.
More precisely, Jacod, 2004 found normalizing sharp rates un such that the sequence
(un(Xn

ηn(.) −Xηn(.)))n≥0 is tight where the rates of convergence un mainly depend on
the behavior of the Lévy measure of Y around 0 as follows. For this aim, he introduced
hypotheses with Blumenthal-Getoor index α ∈ (0, 2):

F (β,+∞) + F (−∞,−β) ≤ C

βα
for all β ∈ (0, 1], (H1α)

and
βαF (β,+∞)→ θ+ and βαF (−∞,−β)→ θ− as β → 0 (H2α)

for some constants θ+, θ− ≥ 0 satisfying θ−+ θ+ > 0. Then, he considered �ve cases

� If (H2α) holds for α > 1, F is either symmetric or non-symmetric, then un =(
n

logn

)1/α
.

� If (H2α) holds for α = 1 and F is non-symmetric, then un = n
(logn)2 .

� If (H2α) holds for α = 1 and F is symmetric, then un = n
logn .

� If (H1α) holds for α < 1, F is symmetric and b 6= 0 or F is non-symmetric and
d := b−

∫
|x|≤1 xF (dx) 6= 0, then un = n.

� If (H2α) holds for α < 1 and F is symmetric and b = 0, then un =
(

n
logn

)1/α
.

For each case, the limit process is non-trivial and well-de�ned. Inspired by Jacod,
2004, we succeeded to analyse the MLMC type error which is the main contribution
of chapter 3 below.

1.1.2 Milstein MLMC scheme

Let X := (Xt)0≤t≤T be the process with values in Rd, solution to

dXt = f(Xt)dt+ g(Xt)dWt, X0 = x ∈ Rd, (1.1.1)

where W = (W 1, ...,W q) is a q-dimensional Brownian motion on some given �ltered
probability space (Ω,F , (Ft)t≥0,P) with (Ft)t≥0 is the standard �ltration, f and g
are, respectively, Rd and Rd×q valued functions regular enough. As seen for the
Euler scheme, the convergence order of weak error can be adjusted, it seems to be
interesting for many authors to improve the order of the strong error. Comparing to
the Euler scheme, the Milstein scheme is built by using higher order expansion when we
approximate our integrals. The speed of convergence of strong error is then improved
to 1/n instead of 1/

√
n as for the Euler scheme (see, e.g. Kloeden and Platen, 1992).

However, a weakness of the Milstein discretisation is that in multidimensional setting
it generally requires the simulation of iterated Itô integrals known as Lévy areas, for
which there is no known e�cient method except in dimension 2 (see, e.g. Gaines and
Lyons, 1994, Rydén and Wiktorsson, 2001, Wiktorsson, 2001). In what follows, we
�rst recall the original scheme for this model and a modi�ed version studied by Giles
and Szpruch, 2013a to get rid of the part Lévy area.
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The original Milstein scheme Milstein, 1974 has introduced a scheme that uses
additionally the multiple Itô-integrals

∫ tk+1

tk
(Wm

s −Wm
tk

)dW j
s for j,m ∈ {1, . . . , q}. We

split the interval [0, T ] into n partitions with the same length and for k ∈ {0, . . . , n},
we denote the uniform time step ∆t = T

n and tk = k∆t. For s ∈ [tk, tk+1] and
i ∈ {1, . . . , d}, j ∈ {1, . . . , q}, we have

gij(Xs) ' gij(Xtk) +

d∑
`=1

∂gij
∂x`

(Xtk)(X`
s −X`

tk
)

' gij(Xtk) +
d∑
`=1

∂gij
∂x`

(Xtk)

q∑
m=1

g`m(Xtk)(Wm
s −Wm

tk
).

Then, we get

g(Xs)dWs ' g(Xtk)dWs +

q∑
j,m=1

∇g•j(Xtk)g•m(Xtk)(Wm
s −Wm

tk
)dW j

s

where for j ∈ {1, . . . , q}, g•j = (g1j , . . . , gdj)
> ∈ Rd and ∇g•j = (∇g1j , . . . ,∇gdj)> ∈

Rd×d. The original Milstein scheme starting at x0 can be rewritten in a compact form
given by the following induction on k ∈ {0, . . . , n− 1}

XMil,n
tk+1

= XMil,n
tk

+ f(XMil,n
tk

)∆t+ g(XMil,n
tk

)(Wtk+1
−Wtk)

+

q∑
j,m=1

∇g•j(XMil,n
tk

)g•m(XMil,n
tk

)

∫ tk+1

tk

(Wm
s −Wm

tk
)dW j

s .

Milstein scheme without Lévy area (strong and weak error) By an integration
by parts formula, the original scheme above can be rewitten as

XMil,n
tk+1

= XMil,n
tk

+ f(XMil,n
tk

)∆t+ g(XMil,n
tk

)(Wtk+1
−Wtk)

+
1

2

q∑
j,m=1

∇g•j(XMil,n
tk

)g•m(XMil,n
tk

)((W j
tk+1
−W j

tk
)(Wm

tk+1
−Wm

tk
)−Ωjm∆t−Akjm),

where Ω is the correlation matrix for the driving Brownian paths and Ak ∈ Rq×q is
the Lévy area de�ned by

Akjm =

∫ tk+1

tk

(W j
s −W

j
tk

)dWm
s −

∫ tk+1

tk

(Wm
s −Wm

tk
)dW j

s , j,m ∈ {1, . . . , q}.

In some applications, the di�usion coe�cient g(x) has a commutativity property which
gives ∇gij(x)gim(x) = ∇gim(x)gij(x) for all i ∈ {1, . . . , d}, j,m ∈ {1, . . . , q}. In that
case, because the Lévy areas are anti-symmetric (i.e., Akjm = −Akmj), it follows

that ∇gij(XMil,n
tk

)gim(XMil,n
tk

)Akjm +∇gim(XMil,n
tk

)gij(X
Mil,n
tk

)Akmj = 0 and therefore
the terms involving the Lévy areas cancel and so it is not necessary to simulate
them. However, this only happens in special cases. Let us introduce the so called
Milstein scheme without Lévy area starting at x0 de�ned by induction on the integer
k ∈ {1, . . . , n− 1}

Xn
tk+1

= Xn
tk

+ f(Xn
tk

)∆t+ g(Xn
tk

)(Wtk+1
−Wtk)
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+
1

2

q∑
j,m=1

∇g•j(Xn
tk

)g•m(Xn
tk

)((W j
tk+1
−W j

tk
)(Wm

tk+1
−Wm

tk
)− Ωjm∆t).

Clark and Cameron, 1980 proved for a particular SDE that it is impossible to achieve
a better order of strong convergence than the Euler-Maruyama discretisation when
using just the discrete increments of the underlying Brownian motion. In the two
dimensional setting, Clark and Cameron also showed that the order of strong conver-
gence of the Milstein scheme is 1 while the Milstein scheme without Lévy area is 1/2.
The analysis was extended by Müller-Gronbach, 2002 to general SDEs. Suppose that
f ∈ C2(Rd,Rd) and g ∈ C2(Rd,Rd×q) and there exists a constant L such that for any
x ∈ Rd and for all 1 ≤ i ≤ d and 1 ≤ j, k, ` ≤ q,

| ∂fi
∂x`

(x)| ≤ L, |∂gij
∂x`

(x)| ≤ L, |
∂hijk
∂x`

(x)| ≤ L,

| ∂
2fi

∂x`∂xk
(x)| ≤ L, | ∂

2gij
∂x`∂xk

(x)| ≤ L.

Then, for p ≥ 2, there exists a constant Kp, independent of the time step, such that

E( sup
0≤t≤T

|XMil,n
t |p) ≤ Kp

and XMil,n
t strongly converges to the solution of the SDE (1.1.1). Theses results

remain correct for the Milstein scheme without Lévy area. The proof given in Müller-
Gronbach, 2002, Lemma 2 page 137 follows the standard method of analysis in refer-
ences such as Kloeden and Platen, 1992 and Milstein and Tretyakov, 2004, see also
Giles and Szpruch, 2013a. It is proved that the strong error of the original Milstein
scheme has order 1 that is E( sup

0≤t≤T
|XMil,n

t −Xt|p) ≤ Kp∆t
p which is an improvement

comparing to the Euler scheme. However, with the Milstein scheme without Lévy
area, this order is the same as the Euler scheme E( sup

0≤t≤T
|Xn

t −Xt|p) ≤ Kp∆t
p/2. For

similar settings as above presented in the part of Euler scheme, Talay and Tubaro,
1990 proved that the weak convergence order of the original Milstein scheme is 1. The
e�ciency of the MLMC method mainly depends on the strong convergence order of
the discretisation. As a consequence if we use the standard MLMC method with the
Milstein scheme without simulating the Lévy areas the complexity will remain the
same as for Euler-Maruyama scheme. Nevertheless, Giles and Szpruch, 2013a showed
that by constructing a suitable antithetic MLMC estimator one can neglect the Lévy
areas and still obtain a multilevel correction estimator with a variance which decays
at the same rate as the original Milstein estimator. For this Milstein MLMC method,
there is not yet the analysis of the MLMC error and CLT for the MLMC estimator
which is the main contribution of chapter 4.

For future research, to extend our results in chapter 4 for the setting of a SDE
driven by a Lévy process, we would like to go through some interesting results on
Milstein scheme for this model. For the case of jump-di�usion SDE, Xia, 2013 and
Platen and Bruti-Liberati, 2010 gave some interesting analysis on the jump-adapted
Milstein discrtisation. If the coe�cient functions satisfy some Lipschitz conditions
and linear growth bound condition, they proved that the order of strong convergence
is 1 (see e.g. Xia, 2013, Theorem 3.3.1). There are also the works of Wang and Gan,
2013, Kumar and Sabanis, 2017 and Kumar, 2021. In addition, for the SDE driven
by continuous semimartingales, Yan, 2005 studied the assymptotic error considering
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the Milstein scheme.

1.2 Outline of the thesis

The main objective of this thesis is to study the asymptotic behavior of the MLMC
type error and then establish a central limit theorem (CLT). In general, CLTs illustrate
how the choice of parameters a�ects the e�ciency of the scheme and they are a central
tool for tuning the parameters. Indeed, the appeal of a central limit theorem is
that it provides the fair rate of convergence and gives the exact asymptotic variance.
Moreover, it allows us to build an automatic algorithm where the sample size of each
level is explicitly given without any precomputation procedure and yields a more
accurate con�dence interval. The thesis consists of four chapters. The �rst chapter is
the introduction where we summarize at �rst some basic knowledges of the Euler and
Milstein schemes for SDE driven by Lévy process, then some results on the MLMC
method equiped with the two schemes and some useful tools to work with. The second
chapter shows a central limit theorem for the MLMC method with a jump Lévy model
or even with an exponential Lévy model and provides a detailed complexity analysis of
the MLMC method for the case of the celebrated CGMY process. Next, in the third
chapter, we consider a stochastic di�erential equation driven by a pure jump Lévy
process and we follow the idea presented in Jacod, 2004 to get the rate of convergence
of the MLMC type error. Finally, in chapter 4, we present an improvement in the
speed of convergence of MLMC type error used with an antithetic Milstein scheme
comparing to the one used with Euler scheme (see e.g. Jacod and Protter, 1998,
Ben Alaya and Kebaier, 2015). The principal part of this thesis is deduced from the
submitted papers Ben Alaya, Kebaier, and Ngô, 2021b, Ben Alaya, Kebaier, and Ngô,
2021a and Ben Alaya, Kebaier, and Ngô, 2020.

1.3 Main results

1.3.1 The multilevel Monte Carlo method for jump Lévy models:
Central limit theorem

An important family of stochastic processes arising in many areas of applied prob-
ability is the class of Lévy processes. Generally such processes are not simulatable
especially for those with in�nite activity. In practice, it is common to approximate
them by truncating the jumps at some cut-o� size ε (ε↘ 0) meaning an approxima-
tion obtained by neglecting jumps with absolute size smaller than ε. This procedure
leads us to consider a simulatable compound Poisson process. We are interested on the
e�ective computation of option price given by EF (LT ), T > 0, where the underlying
asset price (Lt)0≤t≤T is a Rd-valued pure jump Lévy process, d ≥ 1 and F : Rd 7→ R
is a given function. The aim of the current work is to develop a central limit theo-
rem for the MLMC method for option pricing under exponential Lévy models. To do
so, we �rst obtain a functional limit theorem for the error process Lm

−j+1 − Lm−j ,
0 ≤ j ≤ J , between two consecutive levels of the MLMC method, where m−j (resp.
m−j+1) stands for the �ne (resp. coarse) truncation size of the small jumps of L. By
virtue of this latter result we prove a central limit theorem for the MLMC estimator

Qm−J =
1

N0

N0∑
k=1

F (L1
T,k) +

J∑
j=1

1

Nj

Nj∑
k=1

(
F (Lj,m

−j

T,k )− F (Lj,m
−j+1

T,k )
)
,
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for a given C1 payo� function F and also for F with the following form

F (x) = f(ex1 , . . . , exd), for all x = (x1, . . . , xd) ∈ Rd,

with f : Rd+ → R a given C1 Lipschitz continuous function, to cover the exponential
Lévy model setting. The obtained central limit theorem provides a better con�dence
interval than the one provided by the RMSE approach. Unlike the RMSE approach our
central limit theorem provides an explicit description of the choice of the sample sizes
(Nj)0≤j≤J that does not need any pre-computation step. Moreover, we provide an
optimization analysis of the time complexity of the MLMC method. It turns out that
for Lévy processes with a Lévy measure ν having a density of the form L(x)/|x|Y+1,
where L is a positive slowly varying function, the optimal time complexity is given

by CMLMC = O(ε
− 2

(1− η2 )(2−Y )
(2(Y−1)+(1− η

2
)(2−Y ))

) for small η > 0 and Y ∈ (1, 2) and
CMLMC = O(ε−2) for Y ∈ (0, 1). This latter time complexity corresponds to the
optimal one that the MLMC method can reach so that it behaves like an unbiased
Monte Carlo estimator. We also illustrate the supremacy of the MLMC estimator over
the classical Monte Carlo method for pricing European Call options for an exponential
Lévy model driven by the CGMY process introduced by Carr, Geman, Madan and Yor
Carr et al., 2002. This work in Ben Alaya, Kebaier, and Ngô, 2021b is accepted for
publication as a book chapter in Application of Lévy processes (2021), Nova Science
publishers.

1.3.2 The multilevel Monte Carlo Euler method for Lévy driven
stochastic di�erential equations: Limit theorems

In this work, we study the quantity E(ϕ(XT )), T > 0, where the process (Xt)0≤t≤T
is the solution of the Lévy driven stochastic di�erential equation

Xt = x0 +

∫ t

0
f(Xs−)dYs, t ∈ [0, T ], T > 0

with f ∈ C3 is regular enough and the Lévy process Y with characteristics (b, 0, F )
with F is an in�nite measure. We recall the setting on the model and some notations
of Jacod, 2004 to analyze the asymptotic behavior of the normalized error process
un,m(Xn − Xnm), where Xn and Xnm are two consecutive Euler approximations
and with un,m must be a sharp rate going to in�nity when n → ∞. This means
that this error process converges to some non-trivial limit process. Being motivated
by Jacod's paper for the Euler scheme, we consider �ve cases corresponding to �ve
di�erent choices of our un,m for MLMC scheme. Without loss of generality we can
reduce ourselves to study the case where we have bounded jumps and coe�cient f
with compact support. Indeed, adapting the same arguments as in Proposition 2.4 in
Jacod, 2004 to the multilevel error setting, we can easily recover our main results for
non-bounded jumps and coe�cient f without a compact support. By triangular array
approach using the Kallenberg, 2002, Corollary 15.16, we found exactly the same limit
process as Jacod's case except in our Case 1, we obtain di�erent limit. However, in this
special case, when letting m tend to in�nity, we also recover Jacod's limit. Although
the ideas seem natural, the proofs in our case were more challenging comparing to his
case since we have to deal with triangular arrays without the i.i.d. property. This
work represents the �rst foundation stone for proving generalized limit theorems for
the MLMC method for stochastic di�erential equation driven by a pure jump Lévy
process. The special technical tool used in this paper is a well-known trick, called the
"subsequences principle" for weak convergence (see Jacod and Protter, 2012).
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This work in Ben Alaya, Kebaier, and Ngô, 2021a was submitted.

1.3.3 The antithetic multilevel Monte Carlo Milstein method for
SDE driven by a standard Brownian motion with drift: Cen-
tral limit theorem

In this paper, we consider (Xt)0≤t≤T as a di�usion of the d-dimensional SDE driven
by a q-dimensional Brownian motion W = (W 1, . . . ,W q)>, q ≥ 1

Xt =x0 +

∫ t

0
f(Xs)ds+

∫ t

0
g(Xs)dWs, for t ∈ [0, T ], T > 0,

where x0 ∈ Rd, f ∈ C2(Rd,Rd) and g ∈ C2(Rd,Rd×q) are regular enough. We give a
natural extension of the antithetic multilevel Monte Carlo (MLMC) estimator for a
multi-dimensional di�usion introduced by Giles and Szpruch, 2014 by considering the
permutation between m Brownian increments, m ≥ 2, instead of using two increments
as in the original paper. Considering SDE driven by multidimensional Brownian
motion with drift, Giles, 2008b showed that for the simple Euler discretisation with a
Lipschitz payo�, m = 7 gives twice the computational e�ciency of m = 2. Therefore,
it is worth to extend the scheme for general m. Our aim is to establish a central
limit theorem on this extended antithetic MLMC algorithm that is parametrized by
a permutation σ(k) = m− k + 1 ∈ Sm corresponding to a reversal of time for each

�ner Brownian increment. To do so, based on a triangular array approach (see e.g.
Jacod, 1997) and using "subsequences principle" for the stable convergence, we proved
a functional limit theorem for the normalized error on two consecutive levels for the
joined distribution of the couple(√

n(Xnm −Xσ,nm), n((Xnm +Xσ,nm)/2−Xn)
)
,

where Xnm denotes the Milstein scheme with time step T/mn without Lévy area
and Xσ,nm is its antithetic version. This result extends the stable convergence limit
theorem obtained by Ben Alaya and Kebaier, 2015 for the normalized error on two
consecutive levels

√
n(X̃mn− X̃n) where X̃n denotes the Euler scheme with time step

T/n. Thanks to this result, we establish a central limit theorem of Lindeberg-Feller
type for the antithetic MLMC estimator. The time complexity of the algorithm is
analyzed. By Cauchy-Schwarz, the minimum of the complexity CAMLMC is reached
for the choice of the weight a∗` = m−`/2, ` ∈ {1, . . . , L}. This optimal choice a∗` leads

to the complexity O(n2) and the sample size N` = n2α

m3`/2−2

(
1− 1√

n

)
. However, it does

not satisfy our needed Lyapunov condition. Then, it seems natural to try to check
experimentally if the central limit theorem is satis�ed or not and we proceed to some
numerical tests. In the setting of the Clark-Cameron model d = 2, q = 2, f(x) = 0R2

and g(x) =

(
1 0
0 x1

)
for any x = (x1, x2) ∈ R2 and with x0 = (100, 100) ∈ R2, we

consider the European call option with payo� ϕ(x) = (x1 + x2 − 200)+. In Figure 1
we plot at the left the data histogram of 500 samples of Q̂2

n correctly renormalized
and at the right we proceed to the quantile-quantile test where the horizontal axis
means quantiles of a standard normal distribution and the vertical axis indicates the
empirical quantiles of the same data. According to these numerical tests, the central
limit theorem seems to be true despite the lack of theoretical proof.

This work in Ben Alaya, Kebaier, and Ngô, 2020 is under minor revisions for the
journal Annals of Applied Probability.
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(a) Histogram (b) Q-Q plot

Figure 1.1: Numerical tests for the optimal choice a∗` = 4−`/2

1.4 Perspectives

In this thesis, we obtained several types of results motivated by the MLMC method
as shown in the three last chapters 2, 3 and 4. This PhD period gave me a lot of
experiences and knowledges so that I can study further. I am willing to �nd a new
oppotunity for my further researches on multilevel Monte Carlo method, variance
reduction methods, stochastic models, stochastic analysis, Malliavin Calculus and
related problems. After this thesis, I will continue with my supervisors to improve
the results obtained particularly on four types of problem:

� Evaluating the weak error εn = E(ϕ(Xn
T ))− E(ϕ(XT )) where Xn denotes some

discretization scheme with time step T/n

� Improving the rate of weak convergence of the error process and studying the
methods of variance reduction.

� Proving a CLT on the MLMC method when in the context of SDEs driven by
pure jump Lévy process

� To have a hint on the rate of convergence of the MLMC method in this context,
we will explore numerically the MLMC error which will be helpful to tackle the
theoretical study of it.

More precisely, corresponding to the last chapter, the studies on the weak error for
the case of our new method, antithetic MLMC, need to be taken into account. For
instance, to compute an approximation of the expected value E(ϕ(XT )), we gave some
hypostheses on this weak error. Corresponding to the third chapter, we save for the
future research the study of the sharp rate for the rest case (C6) where (Hα

1 ) satis�es
with α < 1, d = 0 and (H3) does not hold.
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Chapter 2

The Multilevel Monte Carlo

Method for jump Lévy Models:

Central Limit Theorem

In this chapter, we prove a central limit theorem on the Multilevel Monte Carlo
method for pricing vanilla type options when the underlying asset is given by an
exponential Lévy model. To prove this result we give a functional limit theorem on
the asymptotic behavior of the error distribution of the approximating process between
two consecutive levels of the Multilevel Monte Carlo method. Moreover we provide
an analysis of the time complexity and it turns out that the MLMC method reduces
e�ciently the time cost compared to a classical Monte Carlo method and in some
particular cases for a given precision ε it reaches the optimal complexity O(ε−2) so
that it behaves like an unbiased Monte Carlo method. We illustrate the supremacy of
the MLMC method over the Monte Carlo methods through numerical tests for pricing
European call options under an exponential Lévy model where the Lévy process is
given by the CGMY model that covers a general class of Lévy processes.

The original paper Ben Alaya, Kebaier, and Ngô, 2021b of this work is accepted for
publication as a book chapter in Application of Lévy processes (2021), Nova Science
publishers.

2.1 Introduction

In recent decades, there has been a growing use of jump processes in �nancial ap-
plications since they are an e�ective excellent tool for pricing �nancial securities and
modeling stock asset price. Indeed, it has been noted by experts in the �eld that
asset prices do jump and that simple pure di�usion models were not able to emulate
stylized facts of real �nancial markets such as the phenomenon of very steep implied
volatility smile for short-dated option prices. In this work, we are interested on the
e�ective computation of option price given by

EF (LT ), T > 0, (2.1.1)

where the underlying asset price (Lt)0≤t≤T is a Rd-valued pure jump Lévy process,
d ≥ 1 and F : Rd 7→ R is a given function. One of the main features of such models is
that they preserve the independence and stationarity properties of the log-returns of
the jumping asset price. (see e. g. Cont and Tankov, 2006 and Schoutens, 2003). In
the one-dimensional setting the computation of EF (LT ) can be done e�ciently using
Fourier transform methods (see e. g. Carr and Madan, 1999 and Fang and Oosterlee,
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2008 or numerical methods for partial integral di�erential equations (see e.g. Cont and
Voltchkova, 2005 and references therein). However, for the high dimensional setting,
the Monte Carlo methods remain the most competitive in practice for this aim. In a
recent work, Ben Alaya, Hajji, and Kebaier, 2016 used the Statistical Romberg (SR)
method for pricing (2.1.1). The SR method introduced by Kebaier, 2005 for the setting
of discretization schemes for Brownian stochastic di�erential equations is a two-level
Monte Carlo estimator that reduces e�ciently the time complexity compared to the
classical Monte Carlo method. At a �rst glance, it seems quite unlikely that such
a procedure with pure-jump Lévy processes would work, since the design of MLMC
methods requires the use of a discretization scheme or at least an inner iterative
routine that can be recycled from the �nest level to crudest one. However, it is known
in the literature (see e.g. Asmussen and Rosi«ski, 2001) that when the increments of
the jump process cannot be simulated, L can be represented as a sum of a compound
Poisson process and an almost sure limit of compensated compound Poisson process
Lt = limε→0 L

ε
t a.s. where for 0 < ε < 1

Lεt = γt+
∑

0<s≤t
∆Ls1|∆Ls|>1 + (

∑
0<s≤t

∆Ls1ε≤|∆Ls|≤1 − t
∫
ε≤|x|≤1

xν(dx)), t ≥ 0.

The error process Rε := L − Lε is also a Lévy process independent of Lε with char-
acteristic function

Eeiu.R
ε
t = exp

{
t

∫
|x|≤ε

(eiu.x − 1− iu.x)ν(dx)

}
.

This independence feature of the error process noticed by Ben Alaya, Hajji, and
Kebaier, 2016 is the keystone on which we build the implementation of SR type
methods, for this setting of pure jump processes (see Kebaier, 2017 for more details).
The use of Multilevel Monte Carlo (MLMC) method, which is an extension of the
SR method introduced by Giles, 2008b in the context of discretization schemes of
Brownian stochastic di�erential equation that reduces e�ciently the time complexity,
in the setting of exponential Lévy models was also studied by Giles and Xia, 2017
using a root mean squared error (RMSE) approach for the optimization of the size of
the sample paths in order to run the MLMC method. The aim of the current work
is to develop a central limit theorem for the MLMC method for option pricing under
exponential Lévy models. To do so, we �rst obtain a functional limit theorem for the
error process Lm

−j+1−Lm−j , 0 ≤ j ≤ J , between two consecutive levels of the MLMC
method, where m−j (resp. m−j+1) stands for the �ne (resp. coarse) truncation size
of the small jumps of L (see Theorem 2.3.1). By virtue of this latter result we prove
a central limit theorem for the MLMC estimator

Qm−J =
1

N0

N0∑
k=1

F (L1
T,k) +

J∑
j=1

1

Nj

Nj∑
k=1

(
F (Lj,m

−j

T,k )− F (Lj,m
−j+1

T,k )
)
,

for a given C1 payo� function F (see Theorem 2.3.7) and also for F with the following
form

F (x) = f(ex1 , . . . , exd), for all x = (x1, . . . , xd) ∈ Rd,

with f : Rd+ → R a given C1 Lipschitz continuous function, to cover the exponential
Lévy model setting (see Corollary 2.3.8). The obtained central limit theorem provides
a better con�dence interval than the one provided by the RMSE approach. Moreover,
unlike the RMSE approach our central limit theorem provides an explicit descriptions
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of the choice of the sample sizes (Nj)0≤j≤J that does not need any pre-computation
step.

The rest of the paper is organized as follows. In Section 2.2, we introduce our
general framework and some preliminary results. In Section 2.3, we give and prove
our main results namely the functional limit theorem on the asymptotic behavior of the
error distribution Lm

−j+1−Lm−j , 0 ≤ j ≤ J and miscellaneous versions of the central
limit theorem on the MLMC estimator Qm−J . Moreover, we provide an optimization
analysis of the time complexity of the MLMC method. It turns out that for Lévy
processes with a Lévy measure ν having a density of the form L(x)/|x|Y+1, where L is
a positive slowly varying function, the optimal time complexity is given by CMLMC =

O(ε
− 2

(1− η2 )(2−Y )
(2(Y−1)+(1− η

2
)(2−Y ))

) for small η > 0 and Y ∈ (1, 2) and CMLMC =
O(ε−2) for Y ∈ (0, 1). This latter time complexity corresponds to the optimal one
that the MLMC method can reach so that it behaves like an unbiased Monte Carlo
estimator. Let us recall that, to achieve the same precision ε, the optimal complexity

for a classical Monte Carlo method is CMC = O(ε
− 4

(2−η)(2−Y )
(Y+(1− η

2
)(2−Y ))

) which
clearly has a larger order than the MLMC time complexities obtained in both cases
Y ∈ (0, 1) and Y ∈ (1, 2). Section 2.4 is devoted to the numerical tests. More precisely,
we illustrate the supremacy of the MLMC estimator over the classical Monte Carlo
method for pricing European Call options for an exponential Lévy model driven by
the CGMY process introduced by Carr et al., 2002. The Appendix section is devoted
to recall several useful technical results.

2.2 General Framework and preliminary results

We consider a stochastic process (Lt)t≥0 on a given probability space (Ω,F,P) taking
values in Rd such that L0 = 0 and L has càdlàg sample paths. The process (Lt)t≥0

is a Lévy process if it has independent and stationary increments. In what follows,
we will consider the canonical �ltration (Ft)0≤t≤T where Ft = σ(Ls, s ≤ t). The
characteristic function of a Lévy process L with generating triplet (γ,A, ν) is given
by the well known Lévy Kintchine representation

Eeiu.Lt = exp

{
t

(
iγ.u− 1

2
u.Au+

∫
Rd

(eiu.x − 1− iu.x1|x|≤1)ν(dx)

)}
, u ∈ Rd,

where γ ∈ Rd, A is a symmetric nonnegative-de�nite d × d matrix and ν is a Lévy
measure on Rd \ {0} verifying

∫
Rd\{0}(|x|

2 ∧ 1)ν(dx) < ∞. (Given vectors x and

y ∈ Rd, x.y denotes the inner product of x and y). From now on, as we are inter-
ested in studying pure jump Lévy processes we only consider Lévy processes (Lt)t≥0

with generating triplet (γ, 0, ν). Let us recall that the simulation of a Lévy process
with in�nite Lévy measure can not generally be straightforward. From the Lévy-Itô
decomposition (see for example Theorem 19.2 Sato, 1999), we know that L can be
represented as a sum of a compound Poisson process and and an almost sure limit of
compensated compound Poisson processes Lt = limε→0 L

ε
t a.s. where for 0 < ε < 1

Lεt = γt+
∑

0<s≤t
∆Ls1|∆Ls|>1 + (

∑
0<s≤t

∆Ls1ε≤|∆Ls|≤1 − t
∫
ε≤|x|≤1

xν(dx)), t ≥ 0.

(2.2.1)
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Note that without the compensation t
∫
ε≤|x|≤1 xν(dx), the sum of jumps∑

0<s≤t ∆Ls1ε≤|∆Ls|≤1 may not converge as ε goes to zero. We denote the approxi-
mation error by

Rε = L− Lε. (2.2.2)

It is worth noticing that Rε is also a Lévy process independent of Lε with characteristic
function

Eeiu.R
ε
t = exp

{
t

∫
|x|≤ε

(eiu.x − 1− iu.x)ν(dx)

}
.

Therefore, E[Rεt ] = 0 and the variance-covariance matrix E[Rεt (R
ε
t )
′] = tΣε, where

Σε =

∫
|x|≤ε

xx′ν(dx).

(Here, we denote by A′ the transpose of a matrix A).

Let us recall that the asymptotic behavior of the distribution of Rε is �rstly studied
by Asmussen and Rosi«ski, 2001 in the one dimensional case and later extended to the
multidimensional case by Cohen and Rosi«ski, 2007 (See Theorem 2.2.1 below). In
what follows, W = (Wt)t≥0 denotes a standard Brownian motion in Rd independent
of (Lt)t≥0.

Theorem 2.2.1. Under the above notation, suppose that Σε is invertible for every

ε ∈ (0, 1]. Then as ε→ 0,
Σ−1/2
ε Rε⇒W,

if and only if for each k > 0

lim
ε→0

∫
〈Σ−1
ε x,x〉>k

〈Σ−1
ε x, x〉1|x|≤εν(dx) = 0. (2.2.3)

Here “⇒“ stands for the convergence in distribution.

Moreover, if ν is given in polar coordinates by

ν(dr, du) = µ(dr|u)λ(du), r > 0, u ∈ Sd−1, (2.2.4)

where {µ(·|u) : u ∈ Sd−1} is a measurable family of Lévy measures on (0,∞) and λ
is a �nite measure on the unit sphere Sd−1 then

Σε =

∫
Sd−1

∫ ε

0
r2uu′µ(dr|u)λ(du).

If we de�ne σ2(ε, u) :=
∫ ε

0 r
2µ(dr|u) and σ2(ε) :=

∫
Sd−1 σ

2(ε, u)λ(du) then

E|Lt − Lεt |2 = tTr(Σε) = tσ2(ε). (2.2.5)

Now, let us recall some relevant remarks and properties form Ben Alaya, Hajji, and
Kebaier, 2016.

Remark 2.2.2. In the one dimensional case Assmussen and Rosi«ski proved the

convergence of σ−1(ε)Rε to a standard Brownian motion if and only if for each k > 0,

σ(kσ(ε) ∧ ε) ∼ σ(ε) which is satis�ed as soon as lim
ε→0

σ(ε)
ε = ∞ (see Theorem 2.1

and Proposition 2.1 in Asmussen and Rosi«ski, 2001). An extension to this su�cient

condition in the multidimensional case is given by Theorem 2.5 in Cohen and Rosi«ski,
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2007. More precisely, if the support of the measure λ is not contained in any proper

linear subspace of Rd, they proved if

lim
ε→0

σ(ε, u)

ε
=∞, λ− a.e. (2.2.6)

then Σε is invertible and condition (2.2.3) of Theorem 2.2.1 holds.

In addition, there is a �nite Lq-upper bound of the error approximation in the
one dimensional case for any real q > 0 (see Proposition 2.1 of Dia, 2013). This
latter property remains valid for the multidimensional case. Indeed, if we consider the
d-dimensional error Lévy process Rε de�ned by (2.2.2), then we can deduce that

E|RεT |q ≤ Kq,T σ̄(ε)q, (SE)

where σ̄(ε) = σ(ε)∨ε and Kq,T is a positive constant. For the weak error, if F denotes
a real valued Lipschitz function with Lipschitz constant C > 0, then it is easy to see
that

|EF (LT )− EF (LεT )| ≤ C
√
Tσ(ε) (2.2.7)

Moreover, under some regularity conditions on the function F we can obtain an ex-
pansion of the weak error as in Proposition 2.2 and Remark 2.3 in Dia, 2013. So, it is
worth introducing the following assumption: there are CF ∈ R and υε ↘ 0 as ε ↘ 0
such that

υ−1
ε (EF (LT )− EF (LεT ))→ CF . (WE)

2.3 Main results

The idea of the Multilevel Monte Carlo method in the Lévy process setting is to apply
the Monte Carlo method for a decreasing sequence of cut-o� sizes (m−j)1≤j≤J , m and
J ∈ N \ {0, 1}, and to compute di�erent numbers of paths on each cut-o� size, from a
few paths when the cut-o� size is small to many paths when the cut-o� size is large.
More precisely, we will approximate the quantity EF (LT ) by

Qm−J =
1

N0

N0∑
k=1

F (L1
T,k) +

J∑
j=1

1

Nj

Nj∑
k=1

(
F (Lj,m

−j

T,k )− F (Lj,m
−j+1

T,k )
)
.

Here, for j ∈ {1, · · · , J}, the processes (Lj,m
−j

T,k , Lj,m
−j+1

T,k )k∈{1,··· ,Nj} are independent

copies of (Lj,m
−j

T , Lj,m
−j+1

T ) whose components denote respectively the approximations

with cut-o� sizes m−j and m−j+1. However, for �xed j, the simulation of (Lj,m
−j

T )

and (Lj,m
−j+1

T ) has to be based on the same path. Concerning the �rst empirical
mean, the processes (L1

T,k)k∈{1,··· ,N0} are independent copies of L
1
T which denotes the

approximation with cut-o� size equal to one. Here, it is important to point out that
all these J + 1 Monte Carlo estimators have to be based on di�erent independent
samples.

In order to study the asymptotic behavior of this estimator, we prove a convergence
theorem for the cut-o� approximation on two consecutive levels m−j and m−j+1 of
the type obtained by Asmussen and Rosi«ski, 2001 in the one dimensional case or
more generally Cohen and Rosi«ski, 2007 in the multidimensional case. For more
clarity and to make the paper self-contained, we adapt and rewrite the limit theorem
of Cohen and Rosi«ski, 2007 to the MLMC setting.
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2.3.1 A functional limit theorem

We have the following functional result.

Theorem 2.3.1. Under the above notations, let Σj,m := Var(Lm
−j+1

1 − Lm
−j

1 ) for

all j ∈ N \ {0} and assume that Σj,m is non singular for j su�ciently large. Then,

the sequence Σ
−1/2
j,m (Lm

−j −Lm−j+1
) converges in distribution to a standard Brownian

motion W if and only if for every κ > 0

lim
j→+∞

∫
〈Σ−1
j,mx,x〉>κ

〈Σ−1
j,mx, x〉1{m−j<|x|≤m−j+1}ν(dx) = 0. (2.3.1)

Proof. According to the Lévy-Itô decomposition, the approximation error on two con-
secutive levels m−j and m−j+1 is a Lévy process with generating triplet given by
(0, 0, ν{m−j<|x|≤m−j+1}). Hence, by putting Yj,m = Σ

−1/2
j (Lm

−j − Lm−j+1
) and using

the push forward of ν{m−j<|x|≤m−j+1} (the restriction of ν on the set {m−j < |x| ≤
m−j+1}) by the map x→ Σ

−1/2
j,m x, which is nothing but the measure νj,m de�ned by

νj,m(B) := ν(Σ
1/2
j,mB ∩ {m

−j < |x| ≤ m−j+1}), B ∈ B(Rd),

it is easy to check that Yj,m is also a Lévy process with generating triplet (γj,m, 0, νj,m)
where

γj,m = −
∫
|x|>1

xνj,m(dx) = −Σ
−1/2
j,m

∫
|Σ1/2
j,mx|>1

x1{m−j<|x|≤m−j+1}ν(dx).

Since Yj,m is a Lévy process we have only to prove the convergence in distribution of
Yj,m(1) to a standard normal distribution. Thanks to Theorem 15.14 in Kallenberg,
2002 (see Theorem 2.5.1 in Appendix) we have this convergence if and only if for
0 < h < 1 �xed,∫

|x|≤h
xx>νj,m(dx)→ Id, γj,m −

∫
h<|x|≤1

xνj,m(dx)→ 0

and νj,m(|x| > κ)→ 0, ∀κ > 0 (2.3.2)

as j → +∞. We �rst notice that∫
Rd
xx>νj,m(dx) =

∫
Rd

(Σ
−1/2
j,m x)(Σ

−1/2
j,m x)>1{m−j<|x|≤m−j+1}ν(dx)

= Σ
−1/2
j,m

∫
Rd
xx>1{m−j<|x|≤m−j+1}ν(dx)Σ

−1/2
j,m = Id. (2.3.3)

Now, concerning the �rst term in (2.3.2), using (2.3.3) and Cauchy-Schwarz inequality
we have

|Id −
∫
|x|≤h

xx>νj,m(dx)| =|
∫
|Σ−1/2
j,m x|>h

(Σ
−1/2
j,m x)(Σ

−1/2
j,m x)>1{m−j<|x|≤m−j+1}ν(dx)|

≤
∫
|Σ−1/2
j,m x|>h

|Σ−1/2
j,m x|21{m−j<|x|≤m−j+1}ν(dx)

≤
∫
〈Σ−1
j,mx,x〉>h2

〈Σ−1
j,mx, x〉1{m−j<|x|≤m−j+1}ν(dx),
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which converges to zero thanks to the condition (2.3.1) is satis�ed. Now, it remains
to prove the last two convergences in relation (2.3.2) provided that relation (2.3.1) is
satis�ed. At �rst, let κ > 0, it is easy to check that

νj,m(|x| > κ) ≤ 1

κ2

∫
|x|>κ

|x|2νj,m(dx)

≤ 1

κ2

∫
|Σ−1/2
j,m x|>κ

|Σ−1/2
j,m x|21{m−j<|x|≤m−j+1}ν(dx)

≤ 1

κ2

∫
〈Σ−1
j,mx,x〉>κ2

〈Σ−1
j,mx, x〉1{m−j<|x|≤m−j+1}ν(dx)→ 0,

as j → +∞, since relation (2.3.1) is satis�ed. For the last term, we have

|γj,m −
∫
h<|x|≤1

xνj,m(dx)| = |
∫
|x|>h

xνj,m(dx)|

≤
∫
|Σ−1/2
j,m x|>h

|Σ−1/2
j,m x|1{m−j<|x|≤m−j+1}ν(dx)

≤
∫
|Σ−1/2
j,m x|>h

|Σ−1/2
j,m x|21{m−j<|x|≤m−j+1}ν(dx)

≤
∫
〈Σ−1
j,mx,x〉>h2

〈Σ−1
j,mx, x〉1{m−j<|x|≤m−j+1}ν(dx)→ 0,

as j → +∞. Therefore, we proved (2.3.1) implies the convergence in law. To prove the

converse, thanks to Theorem 2.5.1, we have for any κ > 0,
∫
|x|≤κ

xx>νj,m(dx) → Id.

Then by (2.3.3), we deduce the matrix
∫
|x|>κ xx

>νj,m(dx) vanishes as j → ∞. To
obtain condition (2.3.1), we write∫

〈Σ−1
j,mx,x〉>κ

〈Σ−1
j,mx, x〉1{m−j<|x|≤m−j+1}ν(dx)

=

∫
|Σ−1/2
j x|>κ1/2

|Σ−1/2
j,m x|21{m−j<|x|≤m−j+1}ν(dx)

=

∫
|x|>κ1/2

|x|2νj,m(dx)

=Tr(
∫
|x|>κ1/2

xx>νj,m(dx))→ 0,

as j → +∞. This completes the proof.

The above result rewrites in the one-dimensional case as follows.

Corollary 2.3.2. Let us consider the one-dimensional case corresponding to d = 1
and let σ2

j,m := Tr(Σj,m) for all j ∈ N\{0} and assume that σj,m > 0 for j su�ciently

large. Then, the sequence σ−1
j,m(Lm

−j−Lm−j+1
) converges in distribution to a standard

Brownian motion W if and only if for each κ > 0

lim
j→+∞

σ−2
j,m

∫
|x|>κ1/2σj,m

x2
1{m−j<|x|≤m−j+1}ν(dx) = 0. (2.3.4)
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Remark 2.3.3. In the one dimensional case, by similar arguments of Asmussen and

Rosi«ski, 2001, it is clear that the condition (2.3.4) is equivalent to for any κ > 0,∫ κ1/2σj,m∧m−j+1

κ1/2σj,m∧m−j
x2ν(dx) ∼ σ2

j,m (2.3.5)

which is obviously satis�ed as soon as

lim
j→+∞

σj,m
m−j

= +∞. (2.3.6)

The following theorem provides an extension to dimension d ≥ 2 of the last suf-
�cient condition in the above remark which ensures that the sequence Σ

−1/2
j,m (Lm

−j −
Lm

−j+1
) converges in distribution to a standard Brownian motion W . The proof

follows the same steps as in the proof of Theorem 2.5 in Cohen and Rosi«ski, 2007.

Theorem 2.3.4. Let ν be a Lévy measure on Rd given by (2.2.4) such that the support
of λ is not contained in any proper linear subspace of Rd. If

lim
j→∞

m−2j

∫
m−j<r≤m−j+1

r2µ(dr|u) =∞, λ− a.e., (2.3.7)

then Σj,m is non-singular and condition (2.3.1) of Theorem 2.3.1 holds.

If we use twice the result of Dia, we get E|Lm−jt − Lm−j+1

t |q ≤ Kq,tσ0(m−j+1).
Therefore, the Proposition below gives the multilevel-type bound for the moments of
Lm

−j − Lm−j+1
. Its proof can be easily adapted from Proposition 2.1 of Dia, 2013.

Proposition 2.3.5. Let σj,m = max (σj,m,m
−j+1) for any j ∈ {1, . . . , J}. Then for

any real q > 0 and t ≥ 0

E|Lm−jt − Lm−j+1

t |q ≤ Kq,tσ
q
j,m

where Kq,t is a positive constant depending only on q and t.

Proof. Without loss of generality, we suppose d = 1. Let n = dq/2e, then we have
0 < q/2n ≤ 1. From Jensen's inequality for concave function, E|Lm−jt − Lm−j+1

t |q ≤
(E|Lm−jt − Lm−j+1

t |2n)q/2n and now we prove instead that for any n ∈ N∗,

|E(Lm
−j

t − Lm−j+1

t )n| ≤ Kn,tσ
n
j,m. (2.3.8)

Let us proceed by induction, the relation is trivial when n = 1 or n = 2. We suppose
that (2.3.8) holds for all n < k. Let cjt,k denote the kth cumulant of Lm

−j
t − Lm−j+1

t .

We have cjt,1 = 0 and cjt,k = t
∫
m−j≤|x|≤m−j+1 x

kν(dx) for k ≥ 2 (see e.g. Proposition
1.2 of Tankov, 2004). Then, by the well known relation between the moments (see
e.g. Theorem 2 of Morris, 1983) we have for all m ≥ 2,

|E(Lm
−j

t − Lm−j+1

t )k| ≤
k−2∑
n=0

(
k − 1
n

)
|E(Lm

−j
t − Lm−j+1

t )n||cjt,k−n|.

Now, for k − n ≤ 2, we have

|cjt,k−n| ≤ t
∫
m−j≤|x|≤m−j+1

|x|k−nν(dx)
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≤ t(m−j+1)k−n−2

∫
m−j≤|x|≤m−j+1

|x|2ν(dx) ≤ tσk−nj,m .

Therefore, (2.3.8) holds for n = k and this completes the proof.

2.3.2 Central limit theorem

Thanks to the Theorem 2.3.1, we are now able to prove our central limit theorem for
the MLMC method. To do so, we introduce a crucial tool called Toeplitz lemma.

Lemma 2.3.6. Let (aj)j∈N be a real sequence of positive terms such that

lim
J→∞

J∑
j=1

aj =∞ and lim
J→∞

1

(
∑J

j=1 aj)
p/2

J∑
j=1

a
p/2
j = 0, p > 2. (Wp)

The �rst assumption of property (Wp) implies that if (xj)j∈N is a sequence converging

to x ∈ R as j tends to in�nity then

lim
J→∞

∑J
j=1 ajxj∑J
j=1 aj

= x.

Theorem 2.3.7. Let (aj)j∈N be a real sequence of positive terms satisfying the con-

dition (Wp) for some p > 2. Let F : Rd → R be a C1 function satisfying assumption

(WE) and such that EF 2(L1
T ) and sup

j≥1
E|σ−1

j,m(F (Lm
−j

T ) − F (Lm
−j+1

T ))|p are �nite.

Moreover, assume that

(H) the condition (2.3.1) in Theorem 2.3.1 holds, and there exists a positive de�nite

matrix Σ such that

lim
j→∞

σ−2
j,mΣj,m = Σ.

For

Nj =
υ−2
m−J

(σ2
j,m1{j 6=0} + σ2(1)1{j=0})

aj

J∑
j=1

aj , j ∈ {0, 1, . . . , J},

we have

υ−1
m−J

(Qm−J − EF (LT ))⇒ N (CF , TE(∇F (LT )Σ∇>F (LT ))), as J ↗∞.

Proof. At �rst, we rewrite the error term as follows

Qm−J − EF (LT ) = Q1
m−J +Q2

m−J + EF (Lm
−J

T )− EF (LT ), where

Q1
m−J =

1

N0

N0∑
k=1

(F (L1
T,k)− EF (L1

T )),

Q2
m−J =

J∑
j=1

1

Nj

Nj∑
k=1

F (Lj,m
−j

T,k )− F (Lj,m
−j+1

T,k )− E
[
F (Lj,m

−j

T )− F (Lj,m
−j+1

T )
]
.
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From the assumption (WE), we have the convergence of υ−1
m−J

(
EF (LT )− EF (Lm

−J
T )

)
toward CF as J goes to in�nity. Now, with N0 =

υ−2

m−J
σ2(1)

a0

∑J
j=1 aj we can apply the

classic central limit theorem to get√
N0Q

1
m−J ⇒ N (0,Var(F (L1

T ))) as J ↗∞.

As lim
J→∞

∑J
j=1 aj =∞, we deduce that υ−1

m−J
Q1
m−J

P→ 0 when J goes to in�nity.

Finally, we only need to study the convergence of υ−1
m−J

Q2
m−J

. To do so, we verify
conditions (1) and (3) of Theorem 2.5.2 and set

Xm−J ,j :=
υ−1
m−J

Nj

Nj∑
k=1

Zm
−j ,m−j+1

T,k , where (Zm
−j ,m−j+1

T,k )1≤k≤Nj are independent copies of

Zm
−j ,m−j+1

T := F (Lj,m
−j

T )− F (Lj,m
−j+1

T )− E
[
F (Lj,m

−j

T )− F (Lj,m
−j+1

T )
]
.

Step 1. We check the limit variance of υ−1
m−J

Q2
m−J

. We have

J∑
j=1

E(Xm−J ,j)
2 =

J∑
j=1

υ−2
m−J

Nj
Var(Zm

−j ,m−j+1

T ) =
J∑
j=1

1∑J
j=1 aj

ajσ
−2
j,mVar(Zm

−j ,m−j+1

T ).

(2.3.9)

Besides, since F ∈ C1, applying Taylor-Young's expansion we get

F (Lj,m
−j

T )− F (Lj,m
−j+1

T )

= ∇F (Lj,m
−j+1

T )(Lj,m
−j

T −Lj,m
−j+1

T )+(Lj,m
−j

T −Lj,m
−j+1

T )ε(Lj,m
−j

T −Lj,m
−j+1

T ),

where ε(Lj,m
−j

T − Lj,m
−j+1

T )
a.s.→ 0 as j ↗ ∞. Now, thanks to assumption (H),

by applying the Theorem 2.3.1 we obtain σ−1
j,m(Lj,m

−j

T −Lj,m
−j+1

T )⇒ Σ1/2WT as

j ↗ ∞. For, the second term, we use the tightness of σ−1
j,m(Lj,m

−j

T − Lj,m
−j+1

T )

to deduce that σ−1
j,m(Lj,m

−j

T − Lj,m
−j+1

T )ε(Lj,m
−j

T − Lj,m
−j+1

T )
a.s.→ 0 as j ↗ ∞.

Finally, since Lj,m
−j+1

T is independent of Lj,m
−j

T −Lj,m
−j+1

T and ∇F (Lj,m
−j+1

T )
a.s.→

∇F (LT ) as j ↗∞, we deduce that as j →∞

σ−1
j,m(F (Lj,m

−j

T )− F (Lj,m
−j+1

T ))⇒∇F (LT ).Σ1/2WT .

From the assumption sup
j≥1

E|σ−1
j,m(F (Lj,m

−j

T )− F (Lj,m
−j+1

T ))|p <∞, we have the

uniform integrability and we get for k ∈ {1, 2}

E
[
σ−1
j,m(F (Lj,m

−j

T )− F (Lj,m
−j+1

T ))
]k
−→
j→∞

E
(
∇F (LT ).Σ1/2WT

)k
.

Consequently, σ−2
j,mVar(Zm

−j ,m−j+1

T,1 ) −→
j→∞

Var
(
∇F (LT ).Σ1/2WT

)
< ∞. Thus,

from (2.3.9) and Lemma 2.3.6, limJ↑∞
∑J

j=1 E(Xm−J ,j)
2 = TE(∇F (LT )Σ∇>F (LT )).

Step 2. We only need to check the Lyapunov condition. In what follows, let Cp be a
generic positive constant depending on p that may change from line to line. By
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Burkholder and Jensen inequalities, we get

E|Xm−J ,j |p =
υ−p
m−J

Np
j

E|
Nj∑
k=1

Zm
−j ,m−j+1

T,k |p≤Cp
υ−p
m−J

N
p/2
j

E|Zm
−j ,m−j+1

T |p.

Besides, by Jensen inequality, we have

σ−pj,mE|Z
m−j ,m−j+1

T |p ≤ CpE|σ−1
j,m(F (Lj,m

−j

T )− F (Lj,m
−j+1

T ))|p <∞,

thanks to our uniform integrability assumption. Therefore,

J∑
j=1

E|Xm−J ,j |p ≤ Cp
J∑
j=1

υ−p
m−J

N
p/2
j

σpj,m ≤ Cp
1(∑J

j=1 aj

)p/2 J∑
j=1

a
p/2
j

J→∞→ 0.

We complete the proof using (Wp).

In what follows, we derive a central limit theorem for the exponential Lévy model
where we assume that the payo� function F has the following form

F (x) = f(ex1 , . . . , exd), for all x = (x1, . . . , xd) ∈ Rd,

with f : Rd+ → R a given C1 Lipschitz continuous function.

Corollary 2.3.8. Let (aj)j∈N be a real sequence of positive terms satisfying the condi-

tion (Wp) for some p > 2. Assume that
∫
|z|>1 e

p|z|ν(dz) is �nite. Then, in the setting

of an exponential Lévy model there is C > 0 such that for all 0 ≤ j ≤ J ,

|EF (Lm
−j

T )− EF (LT )| ≤ Cσ(m−j) and |EF (Lm
−j

T )− EF (Lm
−j+1

T )| ≤ Cσj,m.

Moreover, assume that σj,m > m−j+1 for all j > 0 and the condition (H) of Theorem

2.3.7 is satis�ed. Then, for any 0 < η < 2, if we choose

Nj =
σ−2+η(m−J)(σ2

j,m1{j 6=0} + σ2(1)1{j=0})

aj

J∑
j=1

aj , j ∈ {0, 1, . . . , J},

we have

σ−1+η/2(m−J)(Qm−J − EF (LT ))⇒ N (0, TE(∇F (LT )Σ∇>F (LT ))), as J ↗∞.

Proof. At �rst, according to Corollary 3.1 in Ben Alaya, Hajji, and Kebaier, 2016 we
have the existence of a positive constant C such that for all 0 ≤ j ≤ J , |EF (Lm

−j
T )−

EF (LT )| ≤ Cσ(m−j). Now, by Theorem 2.3.7, it remains to prove that sup
j≥1

E|σ−1
j,m(F (Lm

−j
T )−

F (Lm
−j+1

T ))|p < ∞ for p ≥ 2 and EF 2(L1
T ) < ∞ are satis�ed. In order to prove the

�rst assertion, it is enough to �nd an upper bound of E|eLm
−j

T − eLm
−j+1

T |p, p ≥ 2,
since f is Lipschitz. By some basic exponential inequalities and using the indepen-
dence of Lm

−j+1

T and Lm
−j

T −Lm−j+1

T and Cauchy-Schwarz's inequality, there is a positif
constant C such that

E|eLm
−j

T − eLm
−j+1

T |p ≤ CE|eLm
−j+1

T |pE(|Lm−jT − Lm−j+1

T |pep|Lm
−j

T −Lm−j+1

T |)
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≤ CE|eLm
−j+1

T |p‖|Lm−jT − Lm−j+1

T |p‖2‖ep|L
m−j
T −Lm−j+1

T |‖2.

By the assumption
∫
|z|>1 e

p|z|ν(dz) < ∞ and using Theorem 2.5.5, the �niteness

of E|eLm
−j+1

T |p is ensured. Now, using the inequality e|x| ≤
∏d
j=1(exj + e−xj ) this

last upper bound can be written as a sum of �nite number of exponential func-
tions evaluated at points which are a linear combination of the components of the
vector x. Therefore there exists a family of Rd-valued vectors (bk)1≤k≤2d such that

e2p|Lm−jT −Lm−j+1

T | ≤
∑2d

k=1 e
bk.(L

m−j
T −Lm−j+1

T ). Now by virtue of Lemmas 25.6 and 25.7

in Sato, 1999 we deduce the boundedness of ‖ep|Lm
−j

T −Lm−j+1

T |‖22. Indeed, we have

‖ep|Lm
−j

T −Lm−j+1

T |‖22 ≤
2d∑
k=1

exp

{
T

∫
m−j≤|x|≤m−j+1

(ebk.x − 1− bk.x)ν(dx)

}

≤
2d∑
k=1

exp

{
T

∫
0≤|x|≤1

|ebk.x − 1− bk.x|ν(dx)

}

≤
2d∑
k=1

exp

{
Tck

∫
0≤|x|≤1

|x|2ν(dx)

}
, ck > 0.

Combining all these results together and applying Proposition 2.3.5, there exists a
contant C such that

E|σ−1
j,m(F (Lm

−j
T )− F (Lm

−j+1

T ))|p ≤ Cσ−pj,mσ̄
p(m−j+1) = C.

Now, by the linear growth of f and the condition
∫
|z|>1 e

p|z|ν(dz) < ∞, the second

condition EF 2(L1
T ) < ∞ holds using Theorem 2.5.5. Hence, if we choose υm−J =

σ1−η/2(m−J) then Theorem 2.3.7 completes the proof.

2.3.3 The time complexity

We consider the one-dimensional case for which υm−J = σ1− η
2 (m−J), with η ∈ (0, 2).

Assume that the measure ν has a density of the form L(x)/|x|Y+1 for a small x, where
L(x) is a positive function that is slowly varying as x → 0 and Y ∈ (0, 2). Then the
positive (resp. negative) part of the approximation (Lm

−j
t )0≤t≤T , 0 ≤ j ≤ J , is

a compound Poisson process with intensity ν([m−j ,+∞)) (resp. ν((−∞,−m−j ])).
Then the cost necessary of a single simulation is random, with expectation of order
K(m−j) = ν(|x| ≥ m−j). Thus, by Theorem 2.3.7, the mean of time complexity of
the MLMC method needed to achieve an accuracy of order σ1− η

2 (m−J) is

CMLMC = C ×
J∑
j=0

K(m−j)Nj ,

= C × σ−(2−η)(m−J)
J∑
j=0

K(m−j)
σ2
j,m1{j 6=0} + σ2(1)1{j=0}

aj

J∑
j=1

aj ,

where C is a positive constant that may change from line to line. By Karamata's
theorem (see e.g. Bingham, Goldie, and Teugels, 1987 or Feller, 1971) we have

σ2(m−j) ∼
j→∞

L(m−j) + L(−m−j)
2− Y

m−j(2−Y ) and K(m−j) ∼
j→∞

L(m−j) + L(−m−j)
Y

mjY .
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Using the slowly property and the positivity of L we get

σ2(m−j+1) ∼
j→∞

L(m−j) + L(−m−j)
2− Y

m(−j+1)(2−Y )

and by the decomposition σ2
j,m = σ2(m−j+1)− σ2(m−j) we deduce that

σ2
j,m ∼

j→∞

L(m−j) + L(−m−j)
2− Y

m−j(2−Y )(m2−Y − 1).

In what follows, we assume in addition that the function L is bounded, which is the
case for the CGMY process (See Section 2.4).

The case Y ∈ (1, 2). For the choice aj = m−j(1−Y ), as j →∞ we haveK(m−j)
σ2
j,m

aj
=

O(m−j(1−Y )) and then as J → ∞, the time complexity needed to achieve a preci-

sion of order σ1− η
2 (m−J) = O(m−

J(2−Y )(2−η)
4 ) is CMLMC = O(mJ(2(Y−1)+(1− η

2
)(2−Y ))).

Clearly, the closer to zero η is, the smaller the MLMC time complexity is. Thus,
to achieve a precision of order ε the time complexity for the MLMC method is

CMLMC = O(ε
− 4

(2−η)(2−Y )
(2(Y−1)+(1− η

2
)(2−Y ))

). Note that for the particular case where
Y ' 1, the MLMC method may reach its optimal time complexity given by

C∗MLMC = O(ε−2)

so that the MLMC estimator would behave like an unbiased Monte Carlo estimator.
It is worth noticing that the weight aj = m−j(1−Y ) does not satisfy the second part
of the technical condition (Wp) needed to prove the central limit theorem. However,
we may choose aj = 1 to ensure the validity of the Central Limit Theorem 2.3.7 and
in this case to achieve a precision of order ε the MLMC method reaches an optimal

time complexity given by CMLMC = O(ε
− 4

(2−η)(2−Y )
(2(Y−1)+(1− η

2
)(2−Y ))

log(1
ε )).

The case Y ∈ (0, 1). For the choice aj = m−j(1−Y ), as J → ∞, the time com-

plexity needed to achieve a precision of order σ1− η
2 (m−J) = O(m−

J(2−Y )(2−η)
4 ) is

CMLMC = O(mJ(2−Y )(1− η
2 )). Thus, for a given precision ε, the time complexity of

the MLMC method is the optimal one C∗MLMC = O(ε−2). Of course, as mentioned
in the previous case, to ensure the validity of the Central Limit Theorem 2.3.7 we
have to adapt the choice of the weights aj . Following Ben Alaya and Kebaier, 2014,
for the particular choice aj = 1

j (resp aj = 1
j log(j) ) it is easy to check that the time

complexity needed to achieve the accuracy ε is CMLMC = O(ε−2 log log(1
ε )) (resp.

CMLMC = O(ε−2 log log log(1
ε ))). Let us recall that according to Corollary 3.1 in Ben

Alaya, Hajji, and Kebaier, 2016, for a precision ε the optimal time complexity of a

Monte Carlo method is given by CMC = O(ε
− 4

(2−η)(2−Y )
(Y+(1− η

2
)(2−Y ))

) which clearly
has a larger order than the above MLMC time complexities obtained in both cases
Y ∈ (0, 1) and Y ∈ (1, 2). It is worth noticing, that the gain between both methods
dramatically decreases when Y is chosen close to zero.

2.4 Numerical results

For this section we illustrate the e�ciency of the MLMC method compared to the
classical Monte Carlo method for pricing european calls under exponential Lévy mod-
els. More precisely, we consider an underlying asset following an exponential pure
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jump CGMY model. Let us recall that the CGMY process presented in Carr et al.,
2002 provides a rich jump model for the equity log-returns. The CGMY process cov-
ers a general class of Lévy processes since its particular parametrization allows pure
di�usion or pure jumps, in�nite or �nite variation, and in�nite or �nite arrival rates.
The practical option pricing under the CGMY model using the classical Monte Carlo
methods has been introduced in several works by Madan and Yor, 2008, Poirot and
Tankov, 2006 and Rosi«ski, 2007. The use of a two-level Monte Carlo method for
pricing vanilla options under the CGMY model has been tackled by Ben Alaya, Hajji,
and Kebaier, 2016. For more clarity, we �rst give a brief summary on the main prop-
erties of such a process. The CGMY process is a pure jump process with generating
triplet (0, 0, ν) where for C > 0, G > 0,M > 0 and Y ∈ (0, 2)

ν(dx) =
Ce−Mx

x1+Y
1x>0dx+

Ce−G|x|

|x|1+Y
1x<0dx. (2.4.1)

It has a Lévy-Khintchine representation formula with a truncation function h and a
characteristic exponent given by

ψ(u) = iγhu+

∫
R

(eiux−1−iuh(x))ν(dx) with γh =

∫
R

(h(x)−x1{|x|≤1})ν(dx), u ∈ R.

• For 1 < Y < 2 and h(x) = x, we have γh =
∫
|x|≥1 xν(dx) and

ψ(u) = iuγh+CΓ(−Y )

[
MY

(
(1− iu

M
)Y − 1 +

iuY

M

)
+GY

(
(1 +

iu

G
)Y − 1− iuY

G

)]
.

• For 0 < Y < 1 and h(x) = 0, we have γh =
∫
|x|≤1 xν(dx) and

ψ(u) = iuγh + CΓ(−Y )

[
MY

(
(1− iu

M
)Y − 1

)
+GY

(
(1 +

iu

G
)Y − 1

)]
.

In what follows, we focus on the CGMY process (Lt)0≤t≤T with generating triplet
(γ, 0, ν), γ ∈ R and consider the stock price under risk neutral probability given by

St = S0 exp(rt+ Lt), where r > 0 is the interest rate and S0 > 0.

Moreover, we assume that∫
|x|≥1

exν(dx) <∞ and γ +

∫
R

(ey − 1− y 1{|y|≤1})ν(dy) = 0. (2.4.2)

This above assumption is essential to guarantee the validity of the martingale prop-
erty of the discounted asset price (e−rtSt)0≤t≤T . It is worth noticing that the �rst
condition of assumption (2.4.2) is satis�ed as soon as M > 1.

Now, for a �xed level j ∈ N \ {0} the �ne (respectively coarse) approximation of the
CGMY process (Lt)0≤t≤T is given by (Lm

−j
t )0≤t≤T (respectively (Lm

−j+1

t )0≤t≤T ). The
�ne approximation is a Lévy process with characteristic triplet given by (γ, 0, νf

m−j
)

where νf
m−j

(dx) := 1{|x|≥m−j}ν(dx) that is simulated as a compound Poisson process

with drift γf
m−j

:= γ −
∫
m−j≤|x|≤1 xν(dx), see (2.2.1). More precisely, this com-

pound process is generated as the di�erence between two independent compound
processes, namely a positive (resp. negative ) compound process with jump size
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νf,+
m−j = 1{x≥m−j}

ν(dx)
ν([m−j ,+∞[)

(resp. νf,−
m−j

= 1{x≤−m−j}
ν(dx)

ν(]−∞,−m−j ]) ) and intensity

ν([m−j ,+∞[) (resp. ν(] − ∞,−m−j ])). Here we follow the sampling method pro-
posed by Rosi«ski, 2001 (see Algorithm 1 below) that simulates the paths of νf,+

m−j

from those of νf,+
0,m−j

by only accepting all jumps x in the paths of νf,+
0,m−j

for which

dνf,+
m−j

/dνf,+
0,m−j

(x) > u where u is an independent random variable draw from uniform
distribution.

Algorithm 1 Simulating the positive jump size Z of the CGMY process using Rosin-
ski's rejection

Require: U1 and U2 are uniform random variables and Z = m−jU
− 1
Y

1

if U2 > exp−M.Z then

Z = 0
end if

return Z

The negative jump part is sampled by replacing in the above algorithm the pa-
rameter M by G. The coarse approximation (Lm

−j+1

t )0≤t≤T is generated from the
paths of the �ne one using that for t ∈ [0, T ]

Lm
−j+1

t = Lm
−j

t + L̃m,jt ,

where (L̃m,jt )0≤t T is an independent Lévy process with generating triplet given by
(0, 0, ν{m−j<|x|≤m−j+1}) with ν{m−j<|x|≤m−j+1} := 1{m−j<|x|≤m−j+1}ν(dx).

The aim now is to test the performance of the MLMC method that approximates
the price EF (ST ) with a payo� function F (x) = e−rT (x−K)+ by

Qm−J =
1

N0

N0∑
k=1

F (L1
T,k) +

J∑
j=1

1

Nj

Nj∑
k=1

(
F (Lj,m

−j

T,k )− F (Lj,m
−j+1

T,k )
)
. (2.4.3)

The CGMY parameters are chosen as follows: S0 = 100,K = 100, C = 0.0244, G =
0.0765,M = 7.5515, Y = 1.2945, the free interest rate r = log(1.1), maturity time T =
1 and m = 4. For this set of parameters, the benchmark price is equal to 13.496508
and is computed using the Fourier-cosine method introduced by Fang and Oosterlee
Fang and Oosterlee, 2008 that reaches an accuracy of order 10−10. This method is
available in the free online version of Premia platform https://www.rocq.inria.fr/

mathfi/Premia/index.html. In this case, we have σ2(m−j) '
ε→0

2Cm−j(2−Y )/(2−Y )

and according to Subsection 2.3.3 we set υε = σ1−η/2(ε) with η = 0.04. For di�erent
values of ε, we give in Figure 2.1 below the log-log plot of the obtained RMSE versus
the CPU time for the classical Monte Carlo and the MLMC method.

https://www.rocq.inria.fr/mathfi/Premia/index.html
https://www.rocq.inria.fr/mathfi/Premia/index.html
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Figure 2.1: CPU time versus RMSE.

To do so, we compute for each method the CPU time (per second) (the computa-
tions are done on a PC with a 1.6 GHz Intel Core i5 dual core) and the RSME given
by

RMSE =

√√√√ 1

50

50∑
i=1

(Benchmark price−Approximated value)2. (2.4.4)

As expected, we see in Figure 2.1 that the MLMC method is asymptotically more
e�cient than the classical Monte Carlo one. Indeed, according to our numerical
results for a �xed RMSE of order 10−1, the MLMC method reduces the CPU time by
a factor of 21.31 compared to the Monte Carlo method.

2.5 Appendix

2.5.1 Convergence of in�nitely divisible distributions

The following theorem is about the convergence of in�nitely divisible distributions.
We recall Theorem 15.14(i) in Kallenberg, 2002. Justi�ed by the one-to-one corre-
spondence between in�nitely divisible distributions µ and their characteristics (a, b, ν),
we may write µ = id(a, b, ν). De�ne for any h > 0,

ah = a+

∫
|x|≤h

xx>ν(dx), bh = b−
∫
h<|x|≤1

xν(dx),

where
∫
h<|x|≤1 = −

∫
1<|x|≤h when h > 1.

Let Rd denote the one-point compacti�cation of Rd.

Theorem 2.5.1. Let µ = id(a, b, ν) and µn = id(an, bn, νn) on Rd, and �x any h > 0

with ν(|x| = h) = 0. Then µn
w→ µ i� ahn → ah, bhn → bh and νn

v→ ν on Rd\{0}.
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2.5.2 Lindeberg-Feller central limit theorem

We recall also the following central limit theorem for triangular array (see, e.g., The-
orem 7.2 and 7.3 in Billingsley, 1999).

Theorem 2.5.2. Let (kn)n∈N be a sequence such that kn →∞ as n→∞. For each

n, let Xn,1,. . .,Xn,kn be kn independent random variables with �nite variance such that

E(Xn,k) = 0 for all k ∈ {1, . . . , kn}. Suppose that the following conditions hold:

1. limn→∞
∑kn

k=1 E|Xn,k|2 = ϑ, ϑ > 0.

2. Lindeberg's condition: For all ε > 0, limn→∞
∑kn

k=1 E(|Xn,k|21|Xn,k|>ε) = 0.
Then

kn∑
k=1

Xn,k ⇒ N (0, ϑ), as n→∞.

Moreover, if the Xn,k have moments of order p > 2, then the Lindeberg's condi-

tion can be obtained by the following one:

3. Lyapunov's condition: limn→∞
∑kn

k=1 E|Xn,k|p = 0.

2.5.3 A useful lemma from the paper of Cohen and Rosi«ski

We recall Lemma 2.1 in Cohen and Rosi«ski, 2007.

Lemma 2.5.3. Let ν is a measure such that
∫
Rd |x|

2ν(dx) <∞ and Σ =
∫
Rd xx

>ν(dx).
The following conditions are equivalent

1. Σ is non-singular,

2. the smallest linear space supporting ν equals Rd. (ν is not concentrated on any

proper linear subspace of Rd)

2.5.4 Tools used for the exponential Lévy model seeting

In what follows, we recall the de�nition of a submultiplicative function (see e.g. Def-
inition 2.1 in Ben Alaya, Hajji, and Kebaier, 2016) and then an important property
of Lévy processes (see e.g. Theorem 25.3 in Sato, 1999).

De�nition 2.5.4. A function f : Rd 7→ [0,∞) is said to be submultiplicative if there

exists a positive constant c such that f(x+ y) ≤ cf(x)f(y) for x, y ∈ Rd. The product
of two submultiplicative functions is also a submultiplicative function.

Theorem 2.5.5. Let f be a submultiplicative, locally bounded, measurable function

on Rd, and let (Lt)t≥0 be a Lévy process in Rd with Lévy measure ν. Then, Ef(Lt) is
�nite for every t > 0 i�

∫
|z|≥1

f(z)ν(dz) < +∞.
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Chapter 3

Asymptotic behavior of the error

between two di�erent Euler

schemes for the Lévy driven SDEs

In this chapter, motivated by the multilevel Monte Carlo method introduced by
Giles, 2008b, we study the the asymptotic behavior of the normalized error process
un,m(Xn−Xnm) where Xn and Xnm are respectively Euler approximations with time
steps 1/n and 1/nm of a given stochastic di�erential equation driven by a pure jump
Lévy process Y . In this paper, we prove that this multilevel error process converges to
some non-trivial limiting process with a sharp rate un,m. The obtained results extend
those of Jacod, 2004 for the normalized error un(Xn −X). For the multilevel error,
the proofs of the current paper are challenging since unlike Jacod, 2004 we need to
deal with m dependent triangular arrays instead of one. Formally, when letting m
tends to in�nity, we recover limit processes of Jacod, 2004.

The original paper Ben Alaya, Kebaier, and Ngô, 2021a of this work is submitted.

3.1 Introduction

Suppose that we are in the probability space (Ω,F , (Ft)0≤t≤T ,P) endowed with the
�ltration Fs = σ(Yu, u ≤ s), where Y is a Lévy process with characteristics (b, c, F )
with respect to the truncation function h(x) = x1{|x|≤1}, meaning

E(eiuYt) = exp
{
t
(
iub− cu2

2
+

∫
F (dx)(eiux − 1− iux1{|x|≤1}

)}
.

We consider the Lévy driven stochastic di�erential equation (SDE)

Xt = x0 +

∫ t

0
f(Xs−)dYs, t ∈ [0, T ], T > 0 (3.1.1)

where x0 ∈ R, f ∈ C3 (a three-times-di�erentiable function). Without loss of gen-
erality, we assume that T = 1. In what follows, we consider the continuous Euler
approximation

dXn
t = f(Xn

ηn(t−))dYt, t ∈ [0, 1] (3.1.2)

with time step 1/n, where ηn(t) = [nt]
n .
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For the error process Xn−X, Jacod and Protter, 1998 proved that the sharp rate
is
√
n when the characteristic triplet corresponds to (b, c, F ) with c > 0. Let us precise

that a rate is called sharp if the normalized error converges to a non-trivial limiting
process. Then, Jacod, 2004 established new sharp rates of convergence di�erent from
the classical

√
n rate for several cases with a Lévy characteristic triplet (b, 0, F ) and

F (R) = ∞. Those cases correspond to di�erent behaviors of the Lévy measure F
around zero. More recently, Wang, 2015 extended the results of Jacod, 2004 for the
case of general Itô semimartingales.

In the current paper, motivated by the multilevel Monte Carlo method introduced
by Giles, 2008b, we study instead the error between two Euler schemes with di�erent
time steps. In particular, we are interested in determining sharp rates un,m for the
weak convergence of the error between two consecutive Euler approximations Xn −
Xnm and identifying the corresponding limiting processes. Here, Xn and Xnm stand
for the Euler schemes with respectively time steps 1/n and 1/nm that are build on
the same Lévy paths. In the literature, several papers studied this multilevel type
error. Indeed, when the characteristic triplet of Y is (b, 1, 0), Ben Alaya and Kebaier,
2015 proved that

(Y,

√
mn

(m− 1)
(Xnm −Xn))

stably⇒ (Y, U), as n→∞

with m ∈ N\{0, 1},

Ut =

∫ t

0
f ′(Xs)UsdYs +

1√
2

∫ t

0
f(Xs)f

′(Xs)dWs

andW is a new standard Brownian motion independent of Y . When the characteristic
triplet of Y is (b, c, F ) with c 6= 0, Dereich and Li, 2016 proved a similar result with
a sharp rate

√
n under some regularity condition on F around zero with an explicit

limiting process.

Therefore, to �ll the gap in the literature for the analysis of this type of error,
we consider Y as a Lévy process with characteristics (b, 0, F ) where F is an in�nite
measure. More precisely, for the same cases studied by Jacod, 2004 we consider in the
current work the multilevel type error between two consecutive Euler approximations
de�ned by

Un,mt = Xn
ηnm(t) −X

nm
ηnm(t), t ∈ [0, 1]. (3.1.3)

For this multilevel type error, we use triangular arrays technics to �nd the sharp rate
of convergence that turns out to be faster than

√
n which is the usual rate when Y

incorporates a continuous Gaussian part. It is worth noticing that the work of Jacod,
2004 when studying the error Xn

ηn − Xηn needs only to treat one main contributing
triangular array. However, in the current work, the technical challenge we faced
when proving the convergence of the correctly normalized multilevel error (3.1.3)
consists in studying the asymptotic behavior of the joint probability distribution of m
triangular arrays. These dependent triangular arrays appear naturally when studying
the multilevel error obtained between the �ner discretization with time step 1/nm
and the coarse one with time step 1/n. To overcome this problem, we develop new
treatments and proofs to handle these m dependent terms that contribute in the limit
in di�erent ways depending on the assumptions taken on the original Lévy measure
F around zero. In more details, besides using the �subsequences principle" trick (see
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e.g. Jacod and Protter, 2012), we use arguments of Sato, 1999, Ex.12.8-12.10 that let
us avoid complicated calculations of multi-dimensional integrals and rather focus on
the pairwise asymptotic behavior of the m marginals and we conclude using technical
criteria of Kallenberg, 2002, Theorem 15.14 and Corollary 15.16 to prove the weak
convergence to the limiting process.

The rest of the paper is organized as follows. In Section 3.2, using similar notations,
we recall from Jacod, 2004 some assumptions and estimates on the Lévy measure and
also the semimartingale decomposition. Here, in the spirit of Jacod, 2004, we precise
our consideration for �ve speci�c cases. In Section 3.3, we introduce and prove our
main results namely Theorem 3.3.1 for the tightness, Theorem 3.3.2 and Theorem
3.3.4 the functional limit theorems for the couple of normalized errors. Section 3.4
gives the details of the error analysis to prove our main results with specifying the
main and rest terms for each cases and the study of the asymptotic behaviors of
the joint distribution of the main terms. The rest terms are treated in appendix
3.5. Appendices 3.6 and 3.7 are dedicated to recall some technical tools that we use
throughout the paper.

3.2 General settings and notations

Let f denotes a real-valued function f satisfying

f ∈ C3 and globally Lipschitz. (Hf )

It is well known that assumption (Hf ) guarantees that (3.1.1) has an unique non-
exploding solution. The crucial factor to �nd the sharp rates of the multilevel type
error (3.1.3) is the behavior of the Lévy measure F near 0, which will be expressed
through the following functions on R+:

θ+(β) = F (β,+∞), θ−(β) = F (−∞,−β),

θ(β) = θ+(β) + θ−(β).

Note that from now on, we denote C as a generic constant which may change from line
to line and α denotes our basic index. We keep the same framework as in Jacod, 2004
and we introduce the four main classes of Lévy measures F that we are interested in:

We have θ(β) ≤ C

βα
for all β ∈ (0, 1]. (Hα

1 )

We have βαθ+(β)→ θ+ and βαθ−(β)→ θ− as β → 0 for some constants θ+, θ− ≥ 0.
(Hα

2 )
We set θ = θ+ + θ− > 0 and θ′ = θ+ − θ−, as β → 0, θ(β) ∼ θ

βα .

The measure F is symmetrical about 0. (H3)

We have b = 0. (H4)
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We note that (Hα
1 ) is weaker than (Hα

2 ). Here, the Hypothesis (H2
1) always holds

because the Lévy measure F integrates x 7→ |x|2 ∧ 1. That is

|β|2θ(β) =

∫
|x|>β

(|β|2 ∧ 1)F (dx) ≤
∫
|x|>β

(|x|2 ∧ 1)F (dx) < +∞.

Now, let us give an example of a process in �nance which satis�es the �rst two hy-
potheses.

Example 1. We consider the CGMY process with Lévy density

F (dx) =

{
Ce−Mx/x1+Y x > 0
CeGx/|x|1+Y x < 0

where C,G,M > 0 and 0 < Y < 2. This process always satis�es Hypothesis (Hα
2 ) and

therefore it satis�es Hypothesis (Hα
1 ). More precisely, we have

βYn θ(βn) =
2C

Y
+ CβYn

∫
x>βn

e−Mx + e−Gx − 2

x1+Y
dx.

So, noticing that

CβYn

∫
x>βn

e−Mx + e−Gx − 2

x1+Y
dx ≤ C

Y
(e−Mβn + e−Gβn − 2) →

n→∞
0.

we deduce that βYn θ(βn)→ θ as n→∞, where θ = 2C
Y .

In the same spirit as in Jacod, 2004, we prove sharp rate un,m for our multilevel
error Un,m (3.1.3) with pointing out the technical choice for the sequence βn tending to
0 that truncates the small jumps. To do so, we consider �ve di�erent cases depending
on some reasonably general circumstances.

(C1) If (Hα
1 ) is valid for some α < 1 and d := b−

∫
|x|≤1 xF (dx) 6= 0, then we choose

un,m = nm
m−1 and βn = (logn)2

n . (See the Remark 3.2.3 for the �niteness of d)

(C2) If (Hα
2 ) is valid for some α < 1 and hypotheses (H3) and (H4) are also valid

then we choose un,m =
[

mn
(m−1) logn

]1/α
and βn =

(
logn
n

)1/α
.

(C3) If (Hα
2 ) is valid for α = 1 and F is non-symmetric then we choose un,m =
mn

(m−1)(logn)2 and βn = logn
n .

(C4) If (Hα
2 ) is valid for α = 1 and hypothesis (H3) is also valid then we choose

un,m = mn
(m−1) logn and βn = logn

n .

(C5) If (Hα
2 ) is valid for some α > 1 then we choose un,m =

[
mn

(m−1) logn

]1/α
and

βn = logn
n1/(2α) .

3.2.1 Some estimates on Lévy measure

In what follows we consider the same notations as in Jacod, 2004 and for β > 0, we
denote

c(β) =

∫
|x|≤β

|x|2F (dx),
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d+(β) =

∫
x>β
|x|F (dx), d−(β) =

∫
x<−β

|x|F (dx),

ρ+(β) =

∫
x>β
|x|αF (dx), ρ−(β) =

∫
x<−β

|x|αF (dx), (3.2.1)

δ(β) = d+(β) + d−(β), ρ(β) = ρ+(β) + ρ−(β),

d′(β) = d+(β)− d−(β), b′ = b+

∫
|x|>1

xF (dx),

d(β) = b′ − d′(β).

Note that d(β) = b−
∫
β<|x|≤1 xF (dx) if β < 1 and d(β) = b if β = 1.

• Without loss of generality we can reduce ourselves to study the case where we
have bounded jumps and coe�cient f with compact support. Thus, from now on we
assume that

(A) f ∈ C3 with compact support and |∆Y | ≤ p for some integer p ≥ 1, which
amounts to say that θ(p) = 0.

Indeed, adapting the same arguments as in Proposition 2.4 in Jacod, 2004 to the
multilevel error setting, we can easily recover our main results namely Theorem 3.3.1,
Theorem 3.3.2 and Theorem 3.3.4 for non-bounded jumps and coe�cient f without a
compact support.

Remark 3.2.1. Note that under (A) the quantity
∫
R |x|

aF (dx), a ≥ 2 is �nite.

In this part, we recall from Jacod, 2004 under assumption (A) some useful esti-
mations on the above quantities introduced in (3.2.1). We provide some details for
the proofs of the following lemmas in appendix 3.6.

Lemma 3.2.2. Since θ(p) = 0, under (Hα
1 ), we have for any β ∈ (0, 1]

c(β) ≤ Cβ2−α, ρ(β) ≤ C log
(

1
β

)∫
|x|>β |x|

α/2F (dx) ≤ C
βα/2

δ(β) + |d(β)|+ d+(β) + d−(β) + |d′(β)| ≤ Cs(β)

where s(β) =


1, α < 1
log( 1

β ), α = 1

β1−α, α > 1

(3.2.2)

Remark 3.2.3. Note that under (Hα
1 ) with α < 1, we have |δ(β)| < C for all β ∈

(0, 1], then by the monotone convergence theorem
∫
|x|F (dx) <∞.

Lemma 3.2.4. If further (Hα
2 ) holds, then we obtain the following equivalences or

convergences as β goes to 0,

c(β) ∼ αθ
2−αβ

2−α,
ρ+(β)
log 1/β → αθ+

ρ−(β)
log 1/β → αθ−,

βα−1d+(β)→ αθ+
α−1 βα−1d−(β)→ αθ−

α−1 if α > 1
d+(β)

log (1/β) → θ+
d−(β)

log (1/β) → θ− if α = 1

d+(β)→ d+ d−(β)→ d− if α < 1

(3.2.3)

with some positive constants d+ and d−.
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Lemma 3.2.5. When α = 1, under assumption (Hα
2 ), we have for every b > 0 and

as β → 0

1

(log (1/β))2

∫
β<|x|≤b

(x log |x|)F (dx)→ −θ
′

2
. (3.2.4)

Besides, for a given truncating sequence (βn)n≥0 that tends to zero as n tends to
in�nity, we introduce

cn := c(βn), dn := d(βn), d′n := d′(βn), ρn := ρ(βn) and δn := δ(βn),

to make the notations less cluttered. We deduce easily from (3.2.2) that under (Hα
1 ),

we have 
cn ≤ Cβ2−α

n ,
d′n + |dn|+ δn ≤ Cs(βn),

ρn ≤ C log
(

1
βn

)
.

(3.2.5)

3.2.2 Semimartingale decomposition

Now, we give a decomposition of the process Y .

• For a predictable real function δ on Ω × R+ × R and a real measure m, we de-
note δ ∗ m the stochastic integral process given by δ ∗ mt =

∫ t
0

∫
Rd δ(s, x)m(ds, dx)

for t ≥ 0. Let µ denotes the jump measure of our driving Lévy process Y and
ν(ds, dx) = ds⊗ F (dx) is its predictable compensator. For β > 0, we can write

Y = Y β +Nβ, where Y β = Aβ +Mβ with (3.2.6)

Aβt = d(β)t, Mβ
t = x1{|x|≤β} ∗ (µ− ν)t and Nβ

t = x1{|x|>β} ∗ µt.

Then Mβ is a square-integrable martingale with predictable bracket < Mβ,Mβ >t=
c(β)t. Moreover under assumption (A), for β ≥ p we have Nβ = 0 and then
Y = Aβ +Mβ with Aβt = b′t, whereas for β = 1 we have A1

t = bt.

• In the context of the multilevel type error (3.1.3), we consider two time discretiza-
tion grids. The coarse grid with time step 1/n and with associated times ti := i−1

n for
all i ∈ {1, . . . , n+ 1}. The �ner grid with time step 1/nm and with associated times

tki :=
m(i− 1) + k − 1

nm
,

with i ∈ {1, . . . , n}, k ∈ {1, . . . ,m + 1} and m ∈ N \ {0, 1}. Note that t11 = t0 and
t1i = ti corresponding to the coarser grid. We note also that the point of the coarse
grid can be written either as a �nal point tm+1

i−1 or as the next point t1i on the same
grid. Now, for a given truncating sequence (βn)n≥0 that tends to zero as n→∞, we
denote

Mβn
tki ,t

= Mβn
t −M

βn
tki

for t ∈ I(nm, i, k) := (tki , t
k+1
i ],

with (i, k) ∈ {1, . . . , n}× {1, . . . ,m}. Further, let
(
T βnp (tki )

)
p≥1

denotes the sequence

of the successive jump times of Y after time tki and of size bigger than or equal to βn.
Let also K(tki ) denotes the random number of jumps occurring in the time interval
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I(nm, i, k) that satis�es T βn
K(tki )

(tki ) ≤ tk+1
i < T βn

K(tki )+1
(tki ). Note that the random

number K(tki ) is well-de�ned as we use the cut-o� of size βn. Then, the following two
main properties hold:

(P1) Conditionally on Ftki , the random variables (∆Y
Tβnp (tki )

)p≥1,K(tki ) and {M
βn
tki ,t
, t ∈

I(nm, i, k)} are independent. Each ∆Y
Tβnp (tki )

has the density 1
θ(βn)1|x|>βnF (dx)

and K(tki ) has Poisson law with parameter

λn,m =
θ(βn)

nm
.

(P2) The process {Mβn
tki ,t
, t ∈ I(nm, i, k)} is a Lévy process, independent of Ftki and

satisfying for t ∈ I(nm, i, k), for v ∈ R

E(e
ivMβn

tk
i
,t) = exp

{(
t− tki

)∫
|y|≤βn

(eivy − 1− ivy)F (dy)

}
.

We also note that under Hypothesis (Hα
1 ), with some choice βn going to 0, we have

λn,m → 0 as n→∞.

3.3 Main results

Our main results are to prove the convergence in law of un,mU
n,m
ηn(.) to the limit process

with the above choices of the rate un,m corresponding to those cases. First of all,
we assume that function f always satis�es assumption (Hf ). The theorem below
is about the tightness which can be easily deduced by Lemma 3.4.5, Lemma 3.4.4,
Lemma 3.4.8, Lemma 3.4.7, Lemma 3.4.11, Lemma 3.4.10, Lemma 3.4.14, Lemma
3.4.13, Corollary 3.4.3 and Lemma 3.7.2 in appendix 3.7.

Theorem 3.3.1. Assume that hypothesis (Hα
1 ) holds for some α ∈ (0, 2). Then, with

the above choice of un,m in the previous section, the sequence (un,mU
n,m
ηn(.)) is tight.

Let Y
n
be the discretized process associated with Y , that is Y

n
t = Yηn(t). We

observe that the sequence Y
n
converges pointwise to the process Y for the Skorohod

topology. The following limit theorem considering the error between two consecutive
levels Euler approximations is covered by (C1).

Theorem 3.3.2. For case (C1), the sequence

(Y
n
, un,mU

n,m
ηn(.))

L−→ (Y,U), when n→∞

where U is the unique solution of the linear equation

Ut =

∫ t

0
f ′(Xs−)Us−dYs − Zt, t ∈ [0, 1] (3.3.1)

and when letting n→∞,

Zt = d
∑

k:Rk≤t

(
ff ′(XRk−)∆YRk

bmΥkc
m− 1

+ (f(XRk)− f(XRk−))(1− bmΥkc
m− 1

)

)
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+
d2

2

∫ t

0
f(Xs−)f ′(Xs−)ds (3.3.2)

where d = b −
∫
|x|≤1 xF (dx), (Rk)k≥1 denotes an enumeration of the jump times of

Y (or of X) and (Υk)k≥1 is a sequence of i.i.d. variables, uniform on [0, 1] and

independent of Y .

Proof. This proof uses some results in Section 3.4. In particular, we begin with the
decomposition of un,mU

n,m
ηn(.) from (3.4.2). From Theorem 3.4.6 and Lemma 3.4.4,

we have (Y
n
, un,mZ

n,m)
L−→ (Y, Z). Then the result is straightforward according to

Theorem 3.4.2.

Remark 3.3.3. From Theorem 3.3.2, if we let m → ∞, we will recover the same

limit as the case of Euler (Case 3a in Jacod, 2004), that is

Zt = d
∑

k:Rk≤t
([f(XRk)− f(XRk−)]Υk + f ′(XRk−)∆XRk(1−Υk))

+
d2

2

∫ t

0
f(Xs−)f ′(Xs−)ds,

where d = b−
∫
|x|≤1 xF (dx) and (Υk)k≥1 is a sequence of i.i.d. variables, uniform on

[0, 1] and independent of Y , and (Rk)k≥1 is an enumeration of the jump times of Y
(or of X).

The following limit theorem is of the rest cases and with stronger assumption (Hα
2 )

for some α ∈ (0, 2).

Theorem 3.3.4. We have that the sequence

(Y
n
, un,mU

n,m
ηn(.))

L−→ (Y, U), when n→∞

where U is the unique solution of the linear equation (3.3.1) and the process Z is

described as follows:

(a) In (C2) and (C4),

Zt =

∫ t

0
f(Xs−)f ′(Xs−)dVs (3.3.3)

where V is another Lévy process, independent of Y and characterized by

E(eiuVt) = exp

(
tθ2α

4

∫
1

|x|1+α
(eiux − 1− iux1{|x|≤1})dx

)
. (3.3.4)

Hence, V is a symmetric stable process with index α.

(b) In (C3),

Zt = −θ
′2

4

∫ t

0
f(Xs−)f ′(Xs−)ds, (3.3.5)

and we even have that un,mU
n,m
ηn(.) converges to U in probability (locally uniformly

in time).
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(c) In (C5), we have (3.3.3), where V is a Lévy process, independent of Y and char-

acterized by

E(eiuVt) = exp

(
tα

2

∫ {[
(θ2

+ + θ2
−)1{x>0} + 2θ+θ−1{x<0}

] 1

|x|1+α
(eiux − 1− iux)

}
dx

)
.

(3.3.6)
Hence, V is stable with index α.

Proof. This proof also uses some of the results in Section 3.4. In particular, we begin
with the decomposition of un,mU

n,m
ηn(.) from (3.4.2). From Theorem 3.4.9, Theorem

3.4.12, Theorem 3.4.15, Lemma 3.4.7, Lemma 3.4.10 and Lemma 3.4.13, we have

(Y
n
, un,mZ

n,m)
L−→ (Y, Z). Then the result is straightforward according to Theorem

3.4.2.

3.4 Error analysis

As mentioned in subsection 3.2.1, with no loss of generality, we develop our error
analysis under assumption (A). For t ∈ [0, 1], we �rst recall that ηn(t) = [nt]

n . The
error between two consecutive levels Euler approximations Un,mt := Xn

ηnm(t)−X
nm
ηnm(t)

is given by

Un,mηn(t) =

∫ ηn(t)

0

(
f(Xn

ηnm(s−))− f(Xnm
ηnm(s−))

)
dYs −

∫ ηn(t)

0

(
f(Xn

ηnm(s−))− f(Xn
ηn(s−))

)
dYs

=

∫ ηn(t)

0

(
f(Xnm

ηnm(s−) + Un,ms− )− f(Xnm
ηnm(s−))

)
dYs

−
∫ ηn(t)

0

(
f(Xn

ηnm(s−))− f(Xn
ηn(s−))

)
dYs.

Let G(x, y) := f(x+ yf(x))− f(x), using the interpolation Euler scheme Xn
ηnm(s−) =

Xn
ηn(s−) + f(Xn

ηn(s−))(Yηnm(s−) − Yηn(s−)), we deduce that

Un,mηn(t) =

∫ ηn(t)

0

(
f(Xnm

ηnm(s−) + Un,ms− )− f(Xnm
ηnm(s−))

)
dYs

−
∫ ηn(t)

0
G(Xn

ηn(s−), Yηnm(s−) − Yηn(s−))dYs.

(3.4.1)

Remark 3.4.1. Under assumption (A), using Taylor's expansion we write

G(x, y) = yff ′(x) + y2k(x, y),

where k is a C1 function that vanishes outside K×R for some compact subset K ⊂ R.
Also, we note that ff ′ has compact support.

Consequently, given a deterministic rate of convergence un,m, we write

un,mU
n,m
ηn(t) =un,m

∫ ηn(t)

0

(
f(Xnm

ηnm(s−) + Un,ms− )− f(Xnm
ηnm(s−))

)
dYs − un,mZn,mt ,

(3.4.2)
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where

Zn,mt :=

∫ ηn(t)

0
ff ′(Xn

ηn(s−))(Yηnm(s−) − Yηn(s−))dYs

+

∫ ηn(t)

0
k(Xn

ηn(s−), Yηnm(s−) − Yηn(s−))(Yηnm(s−) − Yηn(s−))
2dYs. (3.4.3)

Now, recalling the notation Y
n
t = Yηn(t), for t ∈ [0, 1], we follow the same arguments

as in Graham et al., 1995, Theorem 9.3 page 40 to prove the following result.

Proposition 3.4.2. For n→∞, if (Y
n
, un,mZ

n,m)
L→ (Y, Z) then (Y

n
, un,mU

n,m
ηn(.))

L→
(Y,U), where the limiting process U is solution to (3.3.1).

Proof. By (3.4.2), we have

un,mU
n,m
ηn(t) =

∫ ηn(t)

0

f(Xnm
ηnm(s−) + Un,ms− )− f(Xnm

ηnm(s−))

Un,ms−
(un,mU

n,m
s− )1{Un,ms− 6=0}dYs

− un,mZn,mt .

Let Tn,a = inf {t > 0 : |un,mUn,mt | > a}. Then the sequence (un,mU
n,m
t∧Tn,a) is rel-

atively compact, and any limit point will satisfy (3.3.1) on [0, T a], where T a =

inf {t > 0 : |Ut| > a}. But lima↑∞ T
a =∞ a.s., so un,mU

n,m
ηn(.)

L→ U .

Corollary 3.4.3. The tightness of the sequence (Y
n
, un,mU

n,m
ηn(.)) is a straightforward

consequence of the tightness of the sequence (Y
n
, un,mZ

n,m).

Thus, the aim now is to study the asymptotic behavior of the couple (Y
n
, un,mZ

n,m).
To do so, on the one hand, we set

un,mZ
n,m
t =:Mn,m

t +Rn,mt , (3.4.4)

where Mn,m stands for the main term contributing in the limit behavior and Rn,mt
stands for the rest term that will tend to zero. In the sequel, the expression of the
above decomposition has to be speci�ed for each case (C1)-(C5). It is worth noticing
that the second term in (3.4.3) will not contribute in the limit and will be considered
as a part of Rn,m except for (C1) where it will be considered as a part ofMn,m. On
the other hand, we also need to rewrite the process Y

n
in a triangular array form.

To do so, recalling our notations given in subsection 3.2.2, with the formula (3.2.6)
and taking into account the number of jumps K(tki ) occuring in the time interval
I(nm, i, k), with a truncating sequence (βn)n≥0, we write

Y
n

:= Y
n
(1) + Y

n
(2), where

Y
n
t (1) =

∑[nt]
i=1 y

n,m
i (1), yn,mi (1) :=

∑m
k=1(Mβn

tki ,t
k+1
i

+
∑

j≥2 ∆Y
Tβnj (tki )

1{K(tki )≥j}),

Y
n
t (2) =

∑[nt]
i=1 y

n,m
i (2), yn,mi (2) :=

∑m
k=1

(
dn
nm + ∆Y

Tβn1 (tki )
1{K(tki )≥1}

)
.

(3.4.5)

In particular, (Y
n
(1))n≥0 converges uniformly in probability to zero for all cases except

case (C3) and (Y
n
(2))n≥0 is tight for all cases. Each subsection below is dedicated

to study separately each case. Note that from now on, we denote C as some positive
generic constant that can be changed from line to line. Moreover, by the notation
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Γn
P−→ 0, we mean that sups≤t |Γns | goes to 0 in probability for all t as n tends to

in�nity.

3.4.1 Asymptotic behavior of the couple (Y
n
, un,mZ

n,m) for case (C1).

For this subsection, we �rst need to introduce some complementary notations. Fol-
lowing subsection 3.2.1, let (T βnp (t1i , t

k
i ))p≥1 denotes the sequence of jump times and

K(t1i , t
k
i ) the random number of jumps that occur on the interval (t1i , t

k
i ], where we

recall that t1i = i−1
n and tki = m(i−1)+k−1

nm . Then, each ∆Y
Tβnp (t1i ,t

k
i )

has the den-

sity 1
θ(βn)1{|x|>βn}F (dx) and K(t1i , t

k
i ) has a Poisson distribution with parameter

(k − 1)λn,m. By the representation formula (3.2.6), we obtain a decomposition for
the normalized error term un,mZ

n,m
t . More precisely, from (3.4.3), we write

un,mZ
n,m
t =

5∑
i=1

∫ ηn(t)

0
ff ′(Xn

ηn(s−))dΓns (i)

+ Γ
n
t (1) +

∫ ηn(t)

0
k(Xn

ηn(s−), Yηnm(s−) − Yηn(s−))dΓ
n
s (3) + Γ

n
t (4) + Γ

n
t (5),

where

Γnt (1) = un,m
∫ t

0 (Aβnηnm(s−) −A
βn
ηn(s−))dA

βn
s ,

Γnt (2) = un,m
∫ t

0 (Aβnηnm(s−) −A
βn
ηn(s−))dN

βn
s + un,m

∫ t
0 (Nβn

ηnm(s−) −N
βn
ηn(s−))dA

βn
s ,

Γnt (3) = un,m
∫ t

0 (Mβn
ηnm(s−) −M

βn
ηn(s−))dYs,

Γnt (4) = un,m
∫ t

0 (Nβn
ηnm(s−) −N

βn
ηn(s−))dN

βn
s ,

Γnt (5) = un,m
∫ t

0 [(Aβnηnm(s−) −A
βn
ηn(s−)) + (Nβn

ηnm(s−) −N
βn
ηn(s−))]dM

βn
s ,

Γ
n
t (1) =

un,mdn
nm

∑[nt]
i=1

∑m
k=2 k(Xn

t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)(Nβn
tki
−Nβn

t1i
)2,

Γ
n
t (2) = un,m

∫ t
0 (Nβn

ηnm(s−) −N
βn
ηn(s−))

2dAβns ,

Γ
n
t (3) = un,m

∫ t
0 (Yηnm(s−) − Yηn(s−))

2dYs − Γ
n
t (2),

Γ
n
t (4) =

∫ ηn(t)
0 (k(Xn

ηn(s−), Yηnm(s−) − Yηn(s−))− k(Xn
ηn(s−), N

βn
ηnm(s−) −N

βn
ηn(s−)))dΓ

n
s (2),

Γ
n
t (5) =

un,mdn
nm

∑[nt]
i=1

∑m
k=2(k(Xn

t1i
, Nβn

tki
−Nβn

t1i
)− k(Xn

t1i
,∆Y

Tβn1 (t1i ,t
k
i )

))(Nβn
tki
−Nβn

t1i
)2.

Now, we rewrite Γ
n
t (1) = Γ

n
t (1, 1) + Γ

n
t (1, 2), where

Γ
n
t (1, 1) =

un,mdn
nm

[nt]∑
i=1

m∑
k=2

k(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)(∆Y
Tβn1 (t1i ,t

k
i )

)2
1{K(t1i ,t

k
i )≥1},

Γ
n
t (1, 2) =

un,mdn
nm

[nt]∑
i=1

m∑
k=2

k(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)(

K(t1i ,t
k
i )∑

h=2

(∆Y
Tβnh (t1i ,t

k
i )

)2

+

K(t1i ,t
k
i )∑

h,h′=2
h6=h′

∆Y
Tβnh (t1i ,t

k
i )

∆Y
Tβn
h′ (t1i ,t

k
i )

),
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with the convention
j∑
i
for j < i equals to zero. For the term driven by Γn(2), we

rewrite ∫ ηn(t)

0
ff ′(Xn

ηn(s−))dΓns (2) = Γnt (2, 1) + Γnt (2, 2) + Γnt (2, 3),

where

Γnt (2, 1) =
un,mdn
nm

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)
[
(k − 1)∆Y

Tβn1 (tki )
1{K(tki )≥1}1{K(t1i ,t

k
i )=0}

+ ∆Y
Tβn1 (t1i ,t

k
i )
1{K(t1i ,t

k
i )≥1}

]
,

Γnt (2, 2) =
un,mdn
nm

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)
[
(k − 1)

K(tki )∑
h=2

∆Y
Tβnh (tki )

+

K(t1i ,t
k
i )∑

h=2

∆Y
Tβnh (t1i ,t

k
i )

]
,

Γnt (2, 3) =
un,mdn
nm

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)(k − 1)∆Y
Tβn1 (tki )

1{K(tki )≥1}1{K(t1i ,t
k
i )≥1}.

Then we rewrite Γnt (2, 1) + Γ
n
t (1, 1) :=

∑[nt]
i=1(z̃ni (1) + z̃ni (2)) where

z̃ni (1) =
un,mdn
nm

m∑
k=2

ff ′(Xn
t1i

)(k − 1)∆Y
Tβn1 (tki )

1{K(tki )≥1}1{K(t1i ,t
k
i )=0},

z̃ni (2) =
un,mdn
nm

m∑
k=2

G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1}.

Now, concerning z̃ni (2), we rewrite the sum
∑m

k=2G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1} as

follows

m∑
k=2

G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1}1{K(t1i )≥1} +

m∑
k=2

G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1}1K(t1i )=0

=(m− 1)G(Xn
t1i
,∆Y

Tβn1 (t1i )
)1{K(t1i )≥1} +

m∑
k=2

G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1}1{K(t1i )=0}1{K(t2i )≥1}

+
m∑
k=2

G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1}1{K(t1i )=0}1{K(t2i )=0}

AsK(tki ) = K(tki , t
k+1
i ) for k ∈ {1, . . . ,m}, the �rst term in the �rst for k = 2 vanishes

and the 2 �rst terms in the second sum vanishes also. Then, we have

m∑
k=2

G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1}

=(m− 1)G(Xn
t1i
,∆Y

Tβn1 (t1i )
)1{K(t1i )≥1} + (m− 2)G(Xn

t1i
,∆Y

Tβn1 (t2i )
)1{K(t1i ,t

2
i )=0}1{K(t2i )≥1}

+

m∑
k=4

G(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)1{K(t1i ,t
k
i )≥1}1{K(t1i ,t

2
i )=0}.
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Then, by induction, we deduce

z̃ni (2) =
un,mdn
nm

m−1∑
k=1

(m− k)G(Xn
t1i
,∆Y

Tβn1 (tki )
)1{K(t1i ,t

k
i )=0}1{K(tki )≥1}.

Therefore, we can rewrite Γnt (2, 1) + Γ
n
t (1, 1) =

un,mdn
nm

∑m
k=1

∑[nt]
i=1 z̃

n
i,k, where

z̃ni,k = [ff ′(Xn
t1i

)(k−1)∆Y
Tβn1 (tki )

+(m−k)G(Xn
t1i
,∆Y

Tβn1 (tki )
)]1{K(t1i ,t

k
i )=0}1{K(tki )≥1}.

(3.4.6)

In this case, we have un,mZ
n,m
t =Mn,m

t +Rn,mt , with

Mn,m
t =

∫ ηn(t)

0
ff ′(Xn

ηn(s−))dΓns (1) + Γnt (2, 1) + Γ
n
t (1, 1) and

Rn,mt = Γnt (2, 2) + Γnt (2, 3) +
5∑
i=3

∫ ηn(t)

0
ff ′(Xn

ηn(s−))dΓns (i) (3.4.7)

+ Γ
n
t (1, 2) +

∫ ηn(t)

0
k(Xn

ηn(s−), Yηnm(s−) − Yηn(s−))dΓ
n
s (3) + Γ

n
t (4) + Γ

n
t (5).

The proof of the following lemma is postponed in Appendix 3.5 below.

Lemma 3.4.4. For case (C1), we have as n→∞ the sequences of processes (Y
n
(1))n≥0

and (Rn,m)n≥0 converge uniformly in probability to 0.

Lemma 3.4.5. For case (C1), we have the sequences (Y
n
(2))n≥0 and (Mn,m)n≥0 are

tight.

Proof. First, we consider Y
n
t (2) given by (3.4.5). By the Property (P1), the relation

(3.2.1) in particular dn = b′ − d′n, the fact that 1− λn,m − e−λn,m ≤
λ2
n,m

2 , we have

|E(yni (2)|Ft1i )| =
∣∣∣∣dnn + (1− e−λn,m)

d′n
nλn,m

∣∣∣∣ ≤ C 1 + λn,m|d′n|
n

. (3.4.8)

Further, by the Jensen's inequality,
∫
R |x|

2F (dx) < +∞ (see Remark 3.2.1) and the
inequality 1− e−λn,m ≤ λn,m, we have

E(|yni (2)|2|Ft1i ) ≤ C(
d2
n

n2
+ (1− e−λn,m)

1

nλn,m
) ≤ C 1

n
(
d2
n

n
+ 1). (3.4.9)

Then, in case (C1), using the boundedness of |d′n| and |dn| (see (3.2.2)), λn,m → 0 as
n→∞, yni (2) satis�es (3.7.3) and (3.7.6) ensuring the tightness from the second part
of Lemma 3.7.2.
Now, we consider the tightness of the sequence (Mn,m)n≥0. In this case, we recall that

Mn,m
t =

∫ ηn(t)
0 ff ′(Xn

ηn(s−))dΓns (1)+Γnt (2, 1)+Γ
n
t (1, 1).We rewrite

∫ ηn(t)
0 ff ′(Xn

ηn(s−))dΓns (1) =∑[nt]
i=1 ζ

n
i (1), ζni (1) = ff ′(Xn

tki
)
m(m−1)un,md2

n

2n2m2 ,

Γ
n
t (1, 1) =

∑[nt]
i=1 z

n
i (1), zni (1) =

un,mdn
nm

∑m
k=2 k(Xn

t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)(∆Y
Tβn1 (t1i ,t

k
i )

)2
1{K(t1i ,t

k
i )≥1},

Γnt (2, 1) =
∑[nt]

i=1 z
n
i (2), zni (2) =

un,mdn
nm

∑m
k=2 ff

′(Xn
t1i

)
[
(k − 1)∆Y

Tβn1 (tki )
1{K(tki )≥1}1{K(t1i ,t

k
i )=0}

+∆Y
Tβn1 (t1i ,t

k
i )
1{K(t1i ,t

k
i )≥1}

]
.
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By similar arguments and the fact that the functions ff ′ and k are bounded, we

have E(|ζni (1)||Ft1i ) ≤ C
un,md2

n

n2 , E(|zni (1)||Ft1i ) ≤ C
un,m|dn|

n2 and E(|zni (2)||Ft1i ) ≤
C
un,m|dn|δn

n2 . Then, we are in case (C1), using the boundedness |dn| and δn (see (3.2.2))
and un,m = nm

m−1 , we obtain that ζni (1), zni (1) and zni (2) satisfy (3.7.2) ensuring the
tightness from Lemma 3.7.2.

Theorem 3.4.6. For case (C1), we have

(Y
n
(2),Mn,m)

L−→ (Y,Z),

where Z is the limit process given in (3.3.2).

Proof. Since ff ′ is Lipschitz-continuous, by virtue of Lemma 3.7.10, in order to
prove the convergence in law of (Y

n
,Mn,m) it su�ces to prove the convergence of

(Y
n
1 (2),Γn1 (1),Γn1 (2, 1) + Γ

n
1 (1, 1)).

First as un,m = nm
m−1 , we use (3.2.2) to get dn → d = b −

∫
|x|<1 xF (dx) and then we

have

Γn1 (1) = un,m

n∑
i=1

m∑
k=2

(Aβn
tki
−Aβn

t1i
)(Aβn

tk+1
i

−Aβn
tki

) =
(m− 1)un,md

2
n

2mn
−→
n→∞

d2

2
.

Thus, it is enough to prove the convergence in law of the pair (Y
n
1 (2),Γn1 (2, 1) +

Γ
n
1 (1, 1)). To do so, we recall that Γn1 (2, 1) + Γ

n
1 (1, 1) =

un,mdn
nm

∑m
k=1

∑n
i=1 z̃

n
i,k, where

z̃ni,k is given by (3.4.6). Now, following Jacod, 2004, we �rst study the above triangular
array with freezing the component Xn

t1i
. Thus, we treat the triangular array with

z̃ni,k(z) = [ff ′(z)(k − 1)∆Y
Tβn1 (tki )

+ (m− k)G(z,∆Y
Tβn1 (tki )

)]1{K(t1i ,t
k
i )=0}1{K(tki )≥1},

i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} with an arbitrary value z ∈ R. Next, based on the

denotations in (3.4.5), we introduce Y ′
n
t (2) =

∑[nt]
i=1

∑m
k=1 y

′n
i,k(2), where y′ni,k(2) =

∆Y
Tβn1 (tki )

1{K(tki )≥1}. In this case, we observe that Y
n
1 (2)−Y ′n1 (2) =

∑n
i=1

∑m
k=1

dn
nm −→n→∞

d and un,mdn
nm −→

n→∞
d

(m−1) . Then instead of working with (Y
n
1 (2),Γn1 (2, 1) + Γ

n
1 (1, 1)),

it is enough to prove the convergence in law of ((
∑n

i=1 y
′n
i,k(2),

∑n
i=1 z̃

n
i,k(z)), k ∈

{1, . . . ,m}) ∈ (R2)m to m independent R2-Lévy processes. First, since this (R2)m-
vector is tight, it is enough to prove that every weakly convergent subsequence has
the same limit. In what follows, we omit the notation for the subsequence for more
readability. For the independence of the components of the limit vector, by us-
ing Ex.12.8-12.10 in Sato, 1999, we only need to prove the independence between
the limit marginals of (

∑n
i=1 y

′n
i,k(2),

∑n
i=1 y

′n
i,k′(2)), (

∑n
i=1 y

′n
i,k(2),

∑n
i=1 z̃

n
i,k′(z)) and

(
∑n

i=1 z̃
n
i,k(z),

∑n
i=1 z̃

n
i,k′(z)), for any k, k

′ ∈ {1, . . . ,m}, k 6= k′.

• First, by the independent structure of the subsequence marginals∑n
i=1(y′ni,k(2), y′ni,k′(2)) for any k, k′ ∈ {1, . . . ,m}, k 6= k′, it is obvious that the limit

marginals are independent.

• Second, for �xed k, k′ ∈ {1, . . . ,m}, k 6= k′, we consider the sequence∑n
i=1(y′ni,k(2), z̃ni,k′(z)) whose variables (y′ni,k(2), z̃ni,k′(z)), 1 ≤ i ≤ n are i.i.d. For k >

k′, y′ni,k(2) and z̃ni,k′(z) are obviously independent and the independence of the limit
marginals is straightforward. For k < k′, we use Lemma 3.7.7 to identify the limit
characteristics. Let us denote the law of (y′ni,k(2), z̃ni,k′(z)) by K

k,k′
n,m. We will study the
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convergence of nKk,k′
n,m(h) to Kk,k′(h) with some function h to be precised later where

Kk,k′(h) :=
1

m

∫
h(x, 0)F (dx) +

1

m

∫
h(0, ff ′(z)(k′ − 1)y + (m− k′)G(z, y))F (dy).

Therefore, we have nKk,k′
n,m(h) = nE(h(y′ni,k(2), z̃ni,k′(z))|Ft1i )

=nE(h(y′
n
i,k(2), z̃ni,k′(z));K(tki ) = 0,K(tk

′
i ) = 0|Ft1i )

+ nE(h(y′
n
i,k(2), z̃ni,k′(z));K(tk

′
i ) ≥ 1,K(t1i , t

k′
i ) = 0|Ft1i )

+ nE(h(y′
n
i,k(2), z̃ni,k′(z));K(tki ) = 0,K(tk

′
i ) ≥ 1,K(t1i , t

k′
i ) ≥ 1|Ft1i )

+ nE(h(y′
n
i,k(2), z̃ni,k′(z));K(tki ) ≥ 1,K(tk

′
i ) = 0|Ft1i )

+ nE(h(y′
n
i,k(2), z̃ni,k′(z));K(tki ) ≥ 1,K(tk

′
i ) ≥ 1|Ft1i )

=ne−2λn,mh(0, 0) + e−λn,m(k′−1) 1− e−λn,m
mλn,m

∫
|y|>βn

h(0, ff ′(z)(k′ − 1)y + (m− k′)G(z, y))F (dy)

+ nP(K(tki ) = 0,K(t1i , t
k′
i ) ≥ 1|Ft1i )(1− e

−λn,m)h(0, 0)

+ e−λn,m
(1− e−λn,m)

mλn,m

∫
|x|>βn

h(x, 0)F (dx) +
(1− e−λn,m)2

mλn,m

∫
|x|>βn

h(x, 0)F (dx).

Three following headings demonstrate three elements in Lemma 3.7.7, each corre-
sponding to some speci�c choices of function h.

Concerning assertion (i): Since we work with bounded jumps, we observe that
|ff ′(z)(k − 1)x+ (m− k)G(z, x)| ≤ C|x| and |ff ′(z)(k − 1)x| ≤ C|x| on x ∈ [−p, p].
We shall choose h = hu,v where hu,v(x, y) = 1{|x|≥u,|y|≥v} bounded and vanishing on a
neighborhood of 0, with (u, v) 6= (0, 0). For any function P satisfying |P (y)| ≤ C|y|, if
we have C|y| ≤ v then |P (y)| ≤ v, which yields hu,v(x, P (y)) = hu,v(x, P (y))1{C|y|>v}

for any x, y ∈ [−p, p]. Then, we have nKk,k′
n,m(hu,v) −→

n→∞
Kk,k′(hu,v).

Concerning assertion (ii): For this case, we choose h = h′, h′′ where h′(x, y) =
x1{x2+y2≤1} and h

′′(x, y) = y1{x2+y2≤1}. As |ff ′(z)(k− 1)x+ (m−k)G(z, x)| ≤ C|x|
and |ff ′(z)(k−1)x| ≤ C|x| on x ∈ [−p, p], using the dominated convergence theorem,∫
|x|F (dx) < C and θ(βn)

n = mλn,m converges to 0 as n tends to in�nity, we obtain

that nKk,k′
n,m(h′) and nKk,k′

n,m(h′′) converge respectively to Kk,k′(h′) and Kk,k′(h′′) when
n goes to in�nity.

Concerning assertion (iii): Here we take h = h1, h2, h3 where h1(x, y) = x2
1{x2+y2≤1},

h2(x, y) = xy1{x2+y2≤1} and h3(x, y) = y2
1{x2+y2≤1} and apply similar arguments

as in (ii), we get nKk,k′
n,m(h1), nKk,k′

n,m(h2) and nKk,k′
n,m(h3) converge respectively to

Kk,k′(h1), Kk,k′(h2) and Kk,k′(h3) when n goes to in�nity. In conclusion, for any
�xed k < k′ the obtained limit pair has independent marginals, since it has no Gaus-
sian part and its Lévy measure Kk,k′ is supported on the union of the coordinate axes
(see e.g. Ex.12.8 in Sato, 1999).

• Third, we consider the pair
∑n

i=1(z̃ni,k(z), z̃
n
i,k′(z)) for �xed k, k′ ∈ {1, . . . ,m},

k 6= k′ and by symmetry it is enough to study only the case k < k′. Let us denote the
law of (z̃ni,k(z), z̃

n
i,k′(z)) by Lk,k

′
n,m. We will prove that nLk,k

′
n,m(h) converges to Lk,k

′
(h)
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with some function h to be precised later and where

Lk,k
′
(h) :=

1

m

∫
h(ff ′(z)(k − 1)x+ (m− k)G(z, x), 0)F (dx)

+
1

m

∫
h(0, ff ′(z)(k′ − 1)y + (m− k′)G(z, y))F (dy).

Therefore, we have nLk,k
′

n,m(h) = nE(h(ζni,k(z), ζ
n
i,k′(z))|Ft1i )

=nE(h(z̃ni,k(z), z̃
n
i,k′(z));K(tki ) = 0,K(tk

′
i ) = 0|Ft1i )

+ nE(h(z̃ni,k(z), z̃
n
i,k′(z));K(tk

′
i ) ≥ 1,K(t1i , t

k′
i ) = 0|Ft1i )

+ nE(h(z̃ni,k(z), z̃
n
i,k′(z));K(tki ) = 0,K(tk

′
i ) ≥ 1,K(t1i , t

k′
i ) ≥ 1|Ft1i )

+ nE(h(z̃ni,k(z), z̃
n
i,k′(z));K(tki ) ≥ 1,K(tk

′
i ) = 0,K(t1i , t

k
i ) = 0|Ft1i )

+ nE(h(z̃ni,k(z), z̃
n
i,k′(z));K(tki ) ≥ 1,K(tk

′
i ) = 0,K(t1i , t

k
i ) ≥ 1|Ft1i )

+ nE(h(z̃ni,k(z), z̃
n
i,k′(z));K(tki ) ≥ 1,K(tk

′
i ) ≥ 1,K(t1i , t

k
i ) = 0|Ft1i )

+ nE(h(z̃ni,k(z), z̃
n
i,k′(z));K(tki ) ≥ 1,K(tk

′
i ) ≥ 1,K(t1i , t

k
i ) ≥ 1|Ft1i )

=ne−2λn,mh(0, 0)

+ e−λn,m(k′−1) 1− e−λn,m
mλn,m

∫
|y|>βn

h(0, ff ′(z)(k′ − 1)y + (m− k′)G(z, y))F (dy)

+ nP(K(tki ) = 0,K(t1i , t
k′
i ) ≥ 1|Ft1i )(1− e

−λn,m)h(0, 0)

+ e−λn,m−λn,m(k−1) 1− e−λn,m
mλn,m

∫
|x|>βn

h(ff ′(z)(k − 1)x+ (m− k)G(z, x), 0)F (dx)

+ ne−λn,m(1− e−λn,m)(1− e−λn,m(k−1))h(0, 0)

+
(1− e−λn,m)2e−λn,m(k−1)

mλn,m

∫
|x|>βn

h(ff ′(z)(k − 1)x+ (m− k)G(z, x), 0)F (dx)

+ n(1− e−λn,m)2(1− e−λn,m(k−1))h(0, 0).

Now, to check the three conditions of Lemma 3.7.7, we use similar arguments as in
the second point above .

Concerning assertion (i): Since |ff ′(z)(k − 1)x + (m − k)G(z, x)| ≤ C|x| and
|ff ′(z)(k − 1)x| ≤ C|x| on x ∈ [−p, p], we choose h = hu,v where hu,v(x, y) =
1{|x|≥u,|y|≥v} bounded and vanishing on a neighborhood of 0, with (u, v) 6= (0, 0).
For any functions P1 and P2 satisfying |P1(x)| ≤ C|x| and |P2(y)| ≤ C|y|, we have
hu,v(P1(x), P2(y)) = hu,v(P1(x), P2(y))1{C|x|≥u,C|y|≥v} for any x, y ∈ [−p, p]. By sim-

ilar arguments, we have nLk,k
′

n,m(hu,v) −→
n→∞

Lk,k
′
(hu,v).

Concerning assertion (ii): For this case, we choose h = h′, h′′ where h′(x, y) =
x1{x2+y2≤1} and h

′′(x, y) = y1{x2+y2≤1}. As |ff ′(z)(k− 1)x+ (m−k)G(z, x)| ≤ C|x|
and |ff ′(z)(k−1)x| ≤ C|x| on x ∈ [−p, p], and applying similar arguments used in (ii)

of the second point, we obtain that nLk,k
′

n,m(h′) and nLk,k
′

n,m(h′′) converge respectively
to Lk,k

′
(h′) and Lk,k

′
(h′′) when n goes to in�nity.
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Concerning assertion (iii): Here we take h1(x, y) = x2
1{x2+y2≤1}, h2(x, y) =

xy1{x2+y2≤1} and h3(x, y) = y2
1{x2+y2≤1} and apply similar arguments as in (iii) of

the second point, we get nLk,k
′

n,m(h1), nLk,k
′

n,m(h2) and nLk,k
′

n,m(h3) converge respectively
to Lk,k

′
(h1), Lk,k

′
(h2) and Lk,k

′
(h3) when n goes to in�nity. In conclusion, for any

�xed k < k′, the obtained limit pair has independent marginals, no Gaussian part
and its Lévy measure Lk,k

′
is supported on the union of the coordinate axes (see e.g.

Ex.12.8 in Sato, 1999).
Hence, combining the three above points, the independence of the m R2-Lévy limits
of {(

∑n
i=1 y

′n
i,k(2),

∑n
i=1 z̃

n
i,k(z)), k ∈ {1, . . . ,m}} ∈ (R2)m is shown (see e.g. Ex.12.9-

Ex.12.10 in Sato, 1999). Now, we turn to identify the limit marginals of our vector.
Let us denote the law of (y′ni,k(2), z̃ni,k(z)) by Kk

n,m. We will prove that nKk
n,m(h)

converges to Kk(h) where

Kk(h) =
1

m

∫
h(x, ff ′(z)(k − 1)x+ (m− k)G(z, x))F (dx).

Therefore, we have nKk
n,m(h) = nE(h(y′ni,k(2), z̃ni,k(z))|Ft1i )

=nE(h(y′
n
i,k(2), z̃ni,k(z));K(tki ) = 0|Ft1i ) + nE(h(y′

n
i,k(2), z̃ni,k(z));K(tki ) ≥ 1,K(t1i , t

k
i ) ≥ 1|Ft1i )

+ nE(h(y′
n
i,k(2), z̃ni,k(z));K(tki ) ≥ 1,K(t1i , t

k
i ) = 0|Ft1i )

=ne−λn,mh(0, 0) +
(1− e−λn,m)(1− e−λn,m(k−1))

mλn,m

∫
|x|>βn

h(x, 0)F (dx)+

e−λn,m(k−1) 1− e−λn,m
mλn,m

∫
|x|>βn

h(x, ff ′(z)(k − 1)x+ (m− k)G(z, x))F (dx).

By the same arguments and speci�c choices of function h as above, we easily ver-
ify the three elements in Lemma 3.7.7. In this case, for any �xed k ∈ {1, . . . ,m},
the obtained limit pair does not have independent marginals since its Lévy mea-
sure Kk is not supported on the union of the coordinate axes. Finally, the vector
((
∑n

i=1 y
′n
i,k(2),

∑n
i=1 z̃

n
i,k(z)), k ∈ {1, . . . ,m}) is convergent in law to ((Y ′k1, V

k
1 (z)), k ∈

{1, . . . ,m}) and the sequence (Y ′
n
1 (2),

∑n
i=1

∑m
k=1 z̃

n
i,k(z)) weakly converges to (Y1 −

d, V1(z)) where d = b−
∫
|x|≤1 xF (dx) and by independence V1(z) =

∑m
k=1 V

k
1 (z) with

Lévy measure K(h) =
∑m

k=1
1
m

∫
h(ff ′(z)(k − 1)x+ (m− k)G(z, x))F (dx), the drift

part equal to K(x1|x|≤1) and no Gaussian part (see (ii) and (iii) right above). Since

its Lévy measure can also be rewritten as K(h) =
∫
R
∫ 1

0 h(ff ′(z)bmucx + (m − 1 −
bmuc)G(z, x))F (dx)du, similarly to Jacod, 2004, (5.23), a possible representation of
the limit process is given by

V1(z) =
∑

k:Rk≤1

(
ff ′(z)bmΥkc∆YRk + (m− 1− bmΥkc)(f(z + ∆YRkf(z))− f(z))

)
where (Rk)k≥1 denotes an enumeration of the jump times of Y (or of X) and (Υk)k≥1

is a sequence of i.i.d. variables, uniform on [0, 1] and independent of Y . It is
worth to note that this sum is of �nite variation. Now, as said at the beginning,
we go back to consider the convergence related to our original term z̃ni,k de�ned in
(3.4.6) where z = Xn

t1i
is no longer �xed. As z 7→ z̃ni,k′(z) is continous, by follow-

ing step by step the proof's arguments of Jacod, 2004, Theorem 1.2(d), we obtain

(Y ′
n
(2),

∑[n.]
i=1

∑m
k=1 z̃

n
i,k′) converges in law to (Y1 − d, V1) where
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V1 =
∑

k:Rk≤1

[ff ′(XRk−)bmΥkc∆YRk+(m−1−bmΥkc)(f(XRk−+∆YRkf(XRk−))−f(XRk−))].

This completes the proof.

3.4.2 Asymptotic behavior of the couple (Y
n
, un,mZ

n,m) for case (C2)
and (C4).

For the �rst component Y
n
, we use the same decomposition given by the relation

(3.4.5). For the second one, we consider the formula of un,mZn,m given in (3.4.3).
In these cases, the second term from this formula does not contribute to the limit.
Therefore, we need only to give the analysis for its �rst term and by using the classical
decomposition (3.2.6) of Y , we have

un,m

∫ ηn(t)

0
ff ′(Xn

ηn(s−))(Yηnm(s−) − Yηn(s−))dYs =
4∑
i=1

Γnt (i), (3.4.10)

where 

Γnt (1) = un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(N

βn
ηnm(s−) −N

βn
ηn(s−))dN

βn
s ,

Γnt (2) = un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(A

βn
ηnm(s−) −A

βn
ηn(s−))dA

βn
s

+un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(N

βn
ηnm(s−) −N

βn
ηn(s−))dA

βn
s

+un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(A

βn
ηnm(s−) −A

βn
ηn(s−))dN

βn
s ,

Γnt (3) = un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(M

βn
ηnm(s−) −M

βn
ηn(s−))dYs,

Γnt (4) = un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(A

βn
ηnm(s−) −A

βn
ηn(s−))dM

βn
s

+un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(N

βn
ηnm(s−) −N

βn
ηn(s−))dM

βn
s .

The three last terms in the above decomposition do not contribute on the limit. Then
we only have to study Γnt (1) and we seperate it into 2 terms: the �rst term that will
be the essential term of the limit contains only the �rst jumps and the drifts and the
second term that will be sort in the rest terms contains all the other jumps. More
precisely, we rewrite

Γnt (1) = un,m

[nt]∑
i=1

m∑
k=2

∫
I(nm,i,k)

ff ′(Xn
t1i

)(Nβn
tki
−Nβn

t1i
)dNβn

s

= un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)

k−1∑
j=1

(Nβn

tj+1
i

−Nβn

tji
)(Nβn

tk+1
i

−Nβn
tki

) = Γnt (1, 1) + Γnt (1, 2),

where

Γnt (1, 1) =un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)∆Y
Tβn1 (tki )

1{K(tki )≥1}

k−1∑
j=1

∆Y
Tβn1 (tji )

1{K(tji )≥1},

Γnt (1, 2) =un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)∆Y
Tβn1 (tki )

1{K(tki )≥1}

k−1∑
j=1

K(tji )∑
h=2

∆Y
Tβnh (tji )

(3.4.11)

+ un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)

K(tki )∑
h=2

∆Y
Tβnh (tki )

k−1∑
j=1

∆Y
Tβn1 (tji )

1{K(tji )≥1}
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+ un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)

K(tki )∑
h=2

∆Y
Tβnh (tki )

k−1∑
j=1

K(tji )∑
h=2

∆Y
Tβnh (tji )

.

In this case, un,mZ
n,m
t =Mn,m

t +Rn,mt , with

Mn,m
t = Γnt (1, 1) and Rn,mt =Γnt (1, 2) +

5∑
i=2

Γnt (i), (3.4.12)

where Γnt (5) = un,m
∫ ηn(t)

0 k(Xn
ηn(s−), Yηnm(s−)−Yηn(s−))(Yηnm(s−)−Yηn(s−))

2dYs. The
proof of the following lemma is postponed to Appendix 3.5.

Lemma 3.4.7. For the cases (C2) and (C4), we have as n → ∞ the sequences

(Y
n
(1))n≥0 and (Rn,m)n≥0 converge uniformly in probability to 0.

Lemma 3.4.8. For the cases (C2) and (C4), the sequences (Y
n
(2))n≥0 and (Mn,m)n≥0

are tight.

Proof. First, we consider Y
n
t (2) given by (3.4.5). In these cases (C2) and (C4), thanks

to assumption (H3), we have d′n = 0 and |dn| ≤ C. Then from (3.4.8) and (3.4.9),
yni (2) satis�es (3.7.3) ensuring the tightness of (Y

n
(2))n≥0 from the second part of

Lemma 3.7.2. Now, we rewrite that Γnt (1, 1) =
∑m

k=1

∑k−1
j=1

∑[nt]
i=1 ζ

n
i,k,j with

ζni,k,j = un,mff
′(Xn

t1i
)∆Y

Tβn1 (tki )
1{K(tki )≥1}∆YTβn1 (tji )

1{K(tji )≥1}.

For k ∈ {1, . . . ,m} and j ∈ {1, . . . , k − 1} �xed, by using (H3), Property (P1), ff ′ is
bounded, the inequality 1−e−λn,m ≤ λn,m, c(β) =

∫
|x|≤β x

2F (dx) where c(β) ≤ Cβ2−α

(see (3.2.2)) and θ(β) ≤ Cβ−α (see (Hα
1 )), we get

E(ζni,k,j1|ζni,k,j |≤1|Ft1i ) = ff ′(Xn
t1i

)un,m
(1−e−λn,m )2

n2m2λ2
n,m

∫
|x|>βn

∫
1

|ff ′(Xn
t1
i

)|un,m|x|
≥|y|>βn xyF (dx)F (dy) = 0,

E(|ζni,k,j |21|ζni,k,j |≤1|Ft1i ) ≤ Cu
2
n,m

(1−e−λn,m )2

n2λ2
n,m

∫
|x|>βn x

2c( 1
|ff ′(Xn

t1
i

)|un,m|x|)F (dx) ≤ C uαn,mρn
n2 ,

P(|ζni,k,j | > y|Ft1i ) ≤ C
(1−e−λn,m )2

n2λ2
n,m

∫
|x|>βn θ(

y
|ff ′(Xn

t1
i

)|un,m|x|)F (dx) ≤ C uαn,mρn
n2yα

, ∀y > 1

.

Then, we conclude the tightness of (Mn,m)n≥0 by ρn ≤ C log 1/βn (see (3.2.5)), the

choice un,m =
[

nm
(m−1) logn

]1/α
with α ≤ 1, criteria (3.7.4) and Lemma 3.7.2.

Theorem 3.4.9. For cases (C2) and (C4), we have

(Y
n
(2),Mn,m)

L−→ (Y,Z),

where Z is the limit process given in (3.3.4).

Proof. Let us �rst introduce Γ′nt (1, 1) =
∑m

k=1

∑k−1
j=1

∑[nt]
i=1 ζ

n
i,j,k(1), where for any

1 ≤ k ≤ m and 1 ≤ j ≤ k − 1,

ζni,j,k(1) = un,m∆Y
Tβn1 (tki )

1{K(tki )≥1}∆YTβn1 (tji )
1{K(tji )≥1}.

Since ff ′ is Lipschitz-continuous, by virtue of Lemma 3.7.10, in order to prove the
convergence in law of (Y

n
,Mn,m) it su�ces to prove that (Y

n
1 (2),Γ′n1 (1, 1)) converges
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in law to (Y1, V1) where V is a Lévy process independent of Y and characterized by
(3.3.4). Now, let us denote

Y ′
n
t (2) =

[nt]∑
i=1

m∑
k=1

y′
n
i,k(2), where y′

n
i,k(2) = ∆Y

Tβn1 (tki )
1{K(tki )≥1}.

From the hypothesis (H3), dn = b in this case, then Y
n
1 (2)−Y ′n1 (2) =

∑n
i=1

∑m
k=1

dn
nm =

b which allows us to prove instead the couple (Y ′
n
1 (2),Γ′n1 (1, 1)) converges to the limit

process (Y1 − b, V1) with no drift and no continuous martingale part. To do so, we

choose the strategy of proving the convergence of the R
m(m−1)

2
+m-vector( n∑

i=1

y′
n
i,k(2)

)
k∈{1,...,m}

,

(
n∑
i=1

ζni,j′,k′(1)

)
k′,j′∈{1,...,m}

j′<k′


to the limit vector whose components are pairwise independent Lévy processes. First,

since this R
m(m−1)

2
+m-vector is tight thanks to Lemma 3.4.8, it is enough to prove

that every weakly convergent subsequence has the same limit. In what follows,
we omit the notation for the subsequence for more readability. For the indepen-
dence of the components of the limit vector, by using Ex.12.8-12.10 in Sato, 1999,
we only need to prove the independence between the limit marginals of the pairs
((
∑n

i=1 y
′n
i,k(2),

∑n
i=1 y

′n
i,k′(2)); k 6= k′), (

∑n
i=1 y

′n
i,k(2),

∑n
i=1 ζ

n
i,j′,k′(1)) and

((
∑n

i=1 ζ
n
i,j,k(1),

∑n
i=1 ζ

n
i,j′,k′(1)); (k, j) 6= (k′, j′)), for any k, k′, j, j′ ∈ {1, . . . ,m}, and

j < k, j′ < k′, then we obtain the Fourrier transform of the limit vector.

• First, for any k, k′ ∈ {1, . . . ,m}, k 6= k′, by the independent structure of the
subsequence marginals

∑n
i=1(y′ni,k(2), y′ni,k′(2)), it is obvious that the limit marginals

are i.i.d.

• Second, for �xed k, k′, j′ ∈ {1, . . . ,m} and such that 1 ≤ j′ ≤ k′− 1 we consider
the convergence of the triangular array

∑n
i=1(y′ni,k(2), ζni,j′,k′(1)) whose generic terms

((y′ni,k(2), ζni,j′,k′(1)))1≤i≤n are i.i.d. When k, k′ and j′ are di�erent, the independence
between the marginals is obvious. By symmetry of the roles played by j′ and k′ in
ζni,j′,k′(1), it is su�cient to consider the case when k = k′ and j′ 6= k′. Note that the
law of (y′ni,k(2), ζni,j′,k(1)) does not depend on parameters k and j′, then we denote it
by K1

n,m. We will prove that nK1
n,m(h) converges to K1(h) as n tends to in�nity for

some suitable function h where

K1(dx, dy) =
1

m
δ0(dy)F (dx) +

θ2α

2m(m− 1)
δ0(dx)

1

|y|1+α
dy

and δ0 is Dirac measure sitting at point 0. Therefore, we have

nK1
n,m(h) = nE(h(∆Y

Tβn1 (tki )
1{K(tki )≥1}, un,m∆Y

Tβn1 (tki )
1{K(tki )≥1}∆YTβn1 (tj

′
i )
1{K(tj

′
i )≥1})|Ft1i )

= nE(h(0, 0);K(tki ) = 0|Ft1i ) + nE(h(∆Y
Tβn1 (tki )

, 0);K(tki ) ≥ 1,K(tj
′

i ) = 0|Ft1i )

+ nE(h(∆Y
Tβn1 (tki )

, un,m∆Y
Tβn1 (tki )

∆Y
Tβn1 (tj

′
i )

);K(tki ) ≥ 1,K(tj
′

i ) ≥ 1|Ft1i )

= ne−λn,mh(0, 0) +
e−λn,m(1− e−λn,m)

mλn,m

∫
|x|>βn
h(x, 0)F (dx)
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+
(1− e−λn,m)2

n(mλn,m)2

∫
|x|>βn
F (dx)

∫
|y|>βn
h(x, un,mxy)F (dy).

Three following headings demonstrate three elements in Lemma 3.7.7, each corre-
sponding to some speci�c choices of function h.

Concerning assertion (i): We choose h = hu,v where hu,v(x, y) = 1{|x|≥u,|y|≥v}
for all u, v ∈ R+ such that (u, v) 6= (0, 0).

a) For u > 0 and v = 0,

nK1
n,m(hu,0) =

e−λn,m(1− e−λn,m)

mλn,m

∫
|x|>βn

1{|x|≥u}F (dx) +
(1− e−λn,m)2

mλn,m

∫
|x|>βn

1{|x|≥u}F (dx).

As soon as u > βn, we have
∫
|x|>βn 1{|x|≥u}F (dx) = θ(u−), where θ(u−) denotes

the left limit at point u of the decreasing and right-continuous function θ(.). Then
we get nK1

n,m(hu,0) −→
n→∞

K1(hu,0) = θ(u−)
m .

b) For u = 0 and v > 0, we have

nK1
n,m(h0,v) =

(1− e−λn,m)2

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

1{|un,mxy|≥v}F (dy)F (dx).

Now, we denote the constant vm = v(m−1
m )1/α, using un,m =

[
mn

(m−1) logn

]1/α
,

βn =
(

logn
n

)1/α
and un,mβn = (m−1

m )1/α, then as soon as βn < vm, we have

1

nm2

∫
|x|>βn

∫
|y|>βn

1{|un,mxy|≥v}F (dx)F (dy)

=
1

nm2

∫
|x|>βn

θ(βn∨
vmβn
|x|

)F (dx) =
1

nm2
(θ(βn)θ(vm−)+

∫
βn<|x|≤vm

θ(
vmβn
|x|

)F (dx)).

By (Hα
2 ), the �rst term is equivalent to θ

nm2βαn
θ(vm−) which converges to 0. Consid-

ering the second term, let us denote yn = 1
nm2

∫
βn<|x|≤vm θ(

vmβn
|x| )F (dx). Let ε > 0,

by (Hα
2 ), there exists ε

′ ∈ (0, vm) such that for β ∈ (0, ε′) we have |β
αθ(β)
θ − 1| ≤ ε.

Then, we denote yn = y1,ε′
n + y2,ε′

n , where y1,ε′
n = 1

nm2

∫
vmβn
ε′ <|x|≤vm θ(

vmβn
|x| )F (dx)

and y2,ε′
n = 1

nm2

∫
βn<|x|≤ vmβnε′

θ(vmβn|x| )F (dx). On the one hand, by the fact that

θ(.) is decreasing and (Hα
1 ), we have y2,ε′

n = 1
nm2

∫
βn<|x|≤ vmβnε′

θ(vmβn|x| )F (dx) ≤
θ(βn)θ(ε′)
nm2 −→

n→∞
0.On the other hand, if we denote y′1,ε

′

n = θ
nm2vαmβ

α
n

∫
vmβn
ε′ <|x|≤vm |x|

αF (dx),

thanks to ρn ∼ αθ log 1/βn (see (3.2.3)) we have y′1,ε
′

n = θ
nm2vαmβ

α
n

(ρ(vmβnε′ ) −
ρ(vm−)) ∼ αθ2

nm2vαmβ
α
n

log 1/βn. From (Hα
2 ), we have y

′1,ε′
n (1−ε) ≤ y1,ε′

n ≤ y′1,ε
′

n (1+ε)

and since ε is arbitrarily small, y1,ε′
n ∼ αθ2

nm2vαmβ
α
n

log 1/βn. Then we get nK1
n,m(h0,v) −→

n→∞
K1(h0,v) = θ2

m(m−1)vα . In what follows, we will reused the obtained result

(1− e−λn,m)2

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

1{|un,mxy|≥v}F (dy)F (dx) −→
n→∞

θ2

m(m− 1)vα
.

(3.4.13)
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c) For u > 0 and v > 0, as soon as u > βn, by the inequality 1− e−λn,m ≤ λn,m, we
have

nK1
n,m(hu,v) =

(1− e−λn,m)2

nm2λ2
n,m

∫
|x|≥u

∫
|y|>βn

1{|un,mxy|≥v}F (dy)F (dx)

≤ θ(u−)θ(βn)

nm2
−→
n→∞

0.

Then we get nK1
n,m(hu,v) −→

n→∞
K1(hu,v) = 0.

Concerning assertion (ii): We choose h = h′, h′′ where h′(x, y) = x1{x2+y2≤1}
and h′′(x, y) = y1{x2+y2≤1}. Since (H3) holds, the laws K1

n,m and K1 are invariant
under the map (x, y) 7→ (−x, y) and (x, y) 7→ (x,−y). Then in this case, we get
immediately nK1

n,m(h) = K1(h) = 0.

Concerning assertion (iii): Here we take h = h1, h2, h3 where h1(x, y) = x2
1{x2+y2≤1},

h2(x, y) = xy1{x2+y2≤1} and h3(x, y) = y2
1{x2+y2≤1}. First of all, as above in (ii), by

hypothesis (H3), we have nK1
n,m(h2) = K1(h2) = 0. Now, we consider

nK1
n,m(h1) =

e−λn,m(1− e−λn,m)

mλn,m

∫
βn<|x|≤1

x2F (dx)

+
(1− e−λn,m)2

nm2λ2
n,m

∫
1≥|x|>βn

x2F (dx)

∫
|y|>βn

1
{|y|≤

√
x−2−1
un,m

}
F (dy)

and

nK1
n,m(h3) =

(1− e−λn,m)2

nm2λ2
n,m

∫
1≥|x|>βn

∫
|y|>βn

u2
n,mx

2y2
1
{|y|≤

√
x−2−1
un,m

}
F (dx)F (dy).

Concerning the term nK1
n,m(h1), it is clear that as n→∞, the �rst term converges to

1
m

∫
|x|≤1 x

2F (dx) and as
∫
R x

2F (dx) <∞, its second term is bounded by Cθ(βn)
n which

goes to 0 as n → ∞. Therefore, we get nK1
n,m(h1) −→

n→∞
nK1(h1). Concerning the

term nK1
n,m(h3), let am = (m−1

m )1/α and a′m = am√
a2
m+1

, we have for n large enough

βn ≤ a′m and

nK1
n,m(h3) =

(1− e−λn,m)2

nm2λ2
n,m

∫
1≥|x|>a′m

∫
|y|>βn

u2
n,mx

2y2
1
{|y|≤

√
1−x2amβn
|x| }

F (dx)F (dy)

+
(1− e−λn,m)2

nm2λ2
n,m

∫
a′m≥|x|>βn

u2
n,mx

2(c(

√
1− x2amβn
|x|

)− cn)F (dx).

Using limn→∞
1−eλn,m
λn,m

= 1 and cn ≤ Cβ2−α
n , it is easy to check that the �rst

term in the right-hand side is bounded by C
u2
n,mcn
n which converges to 0 and the

term
u2
n,m

nm2

∫
a′m≥|x|>βn x

2cnF (dx) converges also to 0. Hence, we have nK1
n,m(h3) ∼

u2
n,m

nm2

∫
a′m≥|x|>βn x

2c(
√

1−x2amβn
|x| )F (dx). Now, using c(β) ∼ αθ

2−αβ
2−α for β → 0, then

for ε > 0, there exists ε′ ∈ (0, 1) such that for β ∈ (0, amε
′) we have | (2−α)βα−2c(β)

αθ −
1| ≤ ε and for n large enough such that we have βn < a′mε

′, we can rewrite as follows
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u2
n,m

nm2

∫
a′m≥|x|>βn x

2c(
√

1−x2amβn
|x| )F (dx) = xn + yn where

xn =
u2
n,m

nm2

∫
βn<|x|≤βn/ε′

x2c(

√
1− x2amβn
|x|

)F (dx)

yn =
u2
n,m

nm2

∫
a′m≥|x|>βn/ε′

x2c(

√
1− x2amβn
|x|

)F (dx).

On the one hand, for xn, as c(.) is increasing, we use that c(
√

1−x2amβn
|x| ) is bounded

to deduce an upper bound equal to
Cu2

n,mc(βn/ε
′)

n which converges to 0. On the other

hand, for yn, if we denote y′n =
u2
n,ma

2−α
m β2−α

n

nm2

∫
a′m≥|x|>βn/ε′ |x|

α(1− x2)
2−α

2 F (dx), we

have (1− ε)y′n ≤ yn ≤ (1 + ε)y′n which gives yn ∼ y′n since ε is arbitrarily small. In
what follows, we rewrite y′n = y′1n + y′2n where

y′
1
n =

αθu2
n,ma

2−α
m β2−α

n

(2− α)nm2

∫
a′m≥|x|>βn/ε′

|x|αF (dx),

y′
2
n =

αθu2
n,ma

2−α
m β2−α

n

(2− α)nm2

∫
a′m≥|x|>βn/ε′

|x|α[(1− x2)
2−α

2 − 1]F (dx).

Then by ρn∼αθ log 1/βn (see (3.2.3)), un,m =
[

mn
(m−1) logn

]1/α
and βn =

(
logn
n

)1/α
,

we get that

y′
1
n ∼

αθu2
n,ma

2−α
m β2−α

n

(2− α)nm2
(ρ(βn/ε

′)− ρ(a′m)) ∼
α2θ2u2

n,ma
2−α
m β2−α

n

(2− α)nm2
log (ε′/βn)

−→
n→∞

αθ2

m(m− 1)(2− α)

and that y′2n ≤ [(1 − βn
2)

2−α
2 − 1]y′1n which converges to 0. Therefore, clearly,

nK1
n,m(h3) −→

n→∞
K1(h3) = αθ2

m(m−1)(2−α) . Thanks to this proof, in particular we have

proved that

(1− e−λn,m)2

nm2λ2
n,m

∫
1≥|x|>βn

∫
|y|>βn

u2
n,mx

2y2
1
{|y|≤

√
x−2−1
un,m

}
F (dx)F (dy) −→

n→∞

αθ2

m(m− 1)(2− α)
.

(3.4.14)

In conclusion, the obtained limit pair has independent marginals since it has no Gaus-
sian part and its Lévy measure K1 is supported on the union of the coordinate axes
(see e.g. Sato, 1999, Ex.12.8 ).

• Third, for �xed k, k′, j, j′ ∈ {1, . . . ,m}, (j, k) 6= (j′, k′) and 1 ≤ j ≤ k − 1,
1 ≤ j′ ≤ k′−1 we consider the convergence of

∑n
i=1(ζni,j,k(1), ζni,j′,k′(1)) whose variables

(ζni,j,k(1), ζni,j′,k′(1)), 1 ≤ i ≤ n are i.i.d. When k, k′, j and j′ are di�erent, we have
straightforward the independence between the marginals of the limit pair. Otherwise,
by symmetry of the roles played by j and k and the roles played by j′ and k′, it is
enough to consider the particular case where k = k′ and j 6= j′. Note that the law
of (ζni,j,k(1), ζni,j′,k(1)) does not depend on parameters k and j′, we denote its law by
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K2
n,m. We will prove that nK2

n,m −→n→∞ K2, where

K2(dx, dy) =
θ2α

2m(m− 1)
δ0(dy)

1

|x|1+α
dx+

θ2α

2m(m− 1)
δ0(dx)

1

|y|1+α
dy

and δ0 is Dirac measure sitting at point 0. Therefore, we have

nK2
n,m(h) = nE((ζni,j,k(1), ζni,j′,k(1))|Ft1i )

= nE(h(0, 0);K(tki ) = 0|Ft1i ) + nE(h(0, 0);K(tki ) ≥ 1,K(tji ) = 0,K(tj
′

i ) = 0|Ft1i )

+ nE(h(0, un,m∆Y
Tβn1 (tki )

∆Y
Tβn1 (tj

′
i )

);K(tki ) ≥ 1,K(tji ) = 0,K(tj
′

i ) ≥ 1|Ft1i )

+ nE(h(un,m∆Y
Tβn1 (tki )

∆Y
Tβn1 (tji )

, 0);K(tki ) ≥ 1,K(tji ) ≥ 1,K(tj
′

i ) = 0|Ft1i )

+ nE(h(un,m∆Y
Tβn1 (tki )

∆Y
Tβn1 (tji )

, un,m∆Y
Tβn1 (tki )

∆Y
Tβn1 (tj

′
i )

);K(tki ) ≥ 1,K(tji ) ≥ 1,K(tj
′

i ) ≥ 1|Ft1i )

= ne−λn,m(1 + e−λn,m(1− e−λn,m))h(0, 0)

+
e−λn,m(1− e−λn,m)2

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

h(0, un,mxy)F (dx)F (dy)

+
e−λn,m(1− e−λn,m)2

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

h(un,mxy, 0)F (dx)F (dy)

+
(1− e−λn,m)3

n2m3λ3
n,m

∫
|x|>βn

∫
|y|>βn

∫
|z|>βn

h(un,mxy, un,mxz)F (dx)F (dy)F (dz).

Now, we verify the three elements in Lemma 3.7.7 with suitable choices of function h.

Concerning assertion (i): We choose h = hu,v where hu,v(x, y) = 1{|x|≥u,|y|≥v}
for all u, v ∈ R+ such that (u, v) 6= (0, 0).

a) For u > 0 and v = 0,

nK2
n,m(hu,0) =

e−λn,m(1− e−λn,m)2

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

1{|un,mxy|≥u}F (dx)F (dy)

+
(1− e−λn,m)3

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

1{|un,mxy|≥u}F (dx)F (dy).

By (3.4.13), the �rst term contributes at the limit and the second term vanishes
when n→∞. Then we get nK2

n,m(hu,0) −→
n→∞

K2(hu,0) = θ2

m(m−1)uα .

b) For u = 0 and v > 0, we have nK2
n,m(h0,v) = nK2

n,m(hv,0). Then, by a) we get

that nK2
n,m(h0,v) −→

n→∞
K2(h0,v) = θ2

m(m−1)vα .

c) For u > 0 and v > 0,

nK2
n,m(hu,v) =

(1− e−λn,m)3

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

∫
|z|>βn

1{|un,mxy|≥u,|un,mxz|≥v}F (dx)F (dy)F (dz)

≤ (1− e−λn,m)3

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn

1{|un,mxy|≥u}F (dx)F (dy).

Again, by (3.4.13), we have nK2
n,m(hu,v) −→

n→∞
K2(hu,v) = 0.
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Concerning assertion (ii): We choose h = h′, h′′ where h′(x, y) = x1{x2+y2≤1}
and h′′(x, y) = y1{x2+y2≤1}. Similarly as above, by (H3), nK2

n,m(h) = K2(h) = 0.

Concerning assertion (iii): We choose h = h1, h2, h3 where h1(x, y) = x2
1{x2+y2≤1},

h2(x, y) = xy1{x2+y2≤1} and h3(x, y) = y2
1{x2+y2≤1}. First of all, as above in (ii), by

hypothesis (H3), we have nK2
n,m(h2) = K2(h2) = 0. Now, by symmetry, we have

nK1
n,m(h1) = nK1

n,m(h3) =
e−λn,m(1− e−λn,m)2

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn
u2
n,mx

2y2
1{|un,mxy|≤1}F (dx)F (dy)

+
(1− e−λn,m)3

n2m3λ3
n,m

∫
|x|>βn

∫
|y|>βn

∫
|z|>βn

u2
n,mx

2y2
1{|xy|2≤1/u2

n,m−|xz|2}F (dx)F (dy)F (dz).

By similar estimations as in (3.4.14), we can easily deduce

1

nm2

∫
|x|>βn

∫
|y|>βn

u2
n,mx

2y2
1{un,m|xy|≤1}F (dx)F (dy) −→

n→∞

αθ2

m(m− 1)(2− α)

which gives the limit of the �rst term and that the second term vanishes as it is

bounded by (1−e−λn,m )3

nm2λ2
n,m

∫
|x|>βn

∫
|y|>βn u

2
n,mx

2y2
1{un,m|xy|≤1}F (dx)F (dy) converging to

0 as n → ∞. Therefore, nK2
n,m(h1) −→

n→∞
K2(h1) and nK2

n,m(h3) −→
n→∞

K2(h3). In

conclusion, the obtained limit pair has i.i.d. marginals since it has no Gaussian part
and its Lévy measure K2 is supported on the union of the coordinate axes (see e.g.
Ex.12.8 in Sato, 1999).

Overall, by the pairwise independence proven above, we can realize the limit of the

vector (Y ′
n
1 (2),Γ′n1 (1, 1)) as some vector (

∑m
k=1 Y

′k
1,
∑m

k=2

∑k−1
j=1 V

j,k
1 ) Lévy process

with no drift, no Gaussian part and where

E(ei(u
∑m
k=1 Y

′k
1+v

∑m
k=2

∑k−1
j=1 V

j,k
1 )) = [E(eiuY

′1
1)]m × [E(eivV

1,2
1 )]

m(m−1)
2

which is equal to

exp

(∫
F (dx)(eiux − 1− iux1{|x|≤1}) +

αθ2

2m(m− 1)

∫
1

|x|1+α
(eivx − 1− ivx1{|x|≤1})dx

)
.

This completes the proof.

3.4.3 Asymptotic behavior of the couple (Y
n
, un,mZ

n,m) for case (C3).

For the �rst component Y
n
, we use the same decomposition given by the relation

(3.4.5). For the second one, we consider the formula of un,mZn,m given in (3.4.3).
In this case, the second term from this formula does not contribute to the limit.
Therefore, we need only to give the analysis for its �rst term. To do so, we consider
the same decomposition given in (3.4.10). The two last terms in this decomposition
do not contribute on the limit. Then we only have to study Γnt (1) and Γnt (2). For
the �rst one, we use the same decomposition as cases (C2) and (C4), namely we have
Γnt (1) = Γnt (1, 1) + Γnt (1, 2) as given in (3.4.11). Now, similarly, we separate Γn(2)
into two terms: the �rst term that will be the essential term of the limit contains only
the �rst jumps and the drifts and the second term that will be sort in the rest terms
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contains all the other jumps. Then, we have

Γnt (2) = un,m

[nt]∑
i=1

m∑
k=2

[∫
I(nm,i,k)

ff ′(Xn
t1i

)(Aβn
tki
−Aβn

t1i
)dAβns +

∫
I(nm,i,k)

ff ′(Xn
t1i

)(Nβn
tki
−Nβn

t1i
)dAβns

+

∫
I(nm,i,k)

ff ′(Xn
t1i

)(Aβn
tki
−Aβn

t1i
)dNβn

s

]

=un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)

d2
n(k − 1)

n2m2
+

dn
nm

k−1∑
j=1

(Nβn

tj+1
i

−Nβn

tji
) +

dn(k − 1)

nm
(Nβn

tk+1
i

−Nβn
tki

)


=Γnt (2, 1) + Γnt (2, 2),

where

Γnt (2, 1) =un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)

d2
n(k − 1)

n2m2
+

dn
nm

k−1∑
j=1

∆Y
Tβn1 (tji )

1{K(tji )≥1}

+
dn(k − 1)

nm
∆Y

Tβn1 (tki )
1{K(tki )≥1}

]
,

Γnt (2, 2) =un,m

[nt]∑
i=1

m∑
k=2

ff ′(Xn
t1i

)

 dn
nm

k−1∑
j=1

K(tij)∑
h=2

∆Y
Tβnh (tji )

+
dn(k − 1)

nm

K(tji )∑
h=2

∆Y
Tβnh (tji )

 .
In this case, un,mZ

n,m
t =Mn,m

t +Rn,mt , where

Mn,m
t = Γnt (1, 1) + Γnt (2, 1) and Rn,mt = Γnt (1, 2) + Γnt (2, 2) +

5∑
i=3

Γnt (i) (3.4.15)

where Γnt (5) = un,m
∫ ηn(t)

0 k(Xn
ηn(s−), Yηnm(s−)−Yηn(s−))(Yηnm(s−)−Yηn(s−))

2dYs. The
proof of the following lemma is postponed to Appendix 3.5.

Lemma 3.4.10. For the case (C3), we have as n → ∞, the sequence (Rn,m)n≥0

converges uniformly to 0 in probability.

Lemma 3.4.11. For the case (C3), the sequences (Y
n
(1))n≥0, (Y

n
(2))n≥0 and (Mn,m)n≥0

are tight.

Proof. First, instead of working with Y
n
t (1) =

∑[nt]
i=1

∑m
k=1(Mβn

tki ,t
k+1
i

+
∑

j≥2 ∆Y
Tβnj (tki )

1{K(tki )≥j}),

it is enough to prove that for each k ∈ {1, . . . ,m} the triangular arrays with generic
terms yn,mi,k (1, 1) = Mβn

tki ,t
k+1
i

and yn,mi,k (1, 2) =
∑

j≥2 ∆Y
Tβnj (tki )

1{K(tki )≥j} are tight. By

property (P1), (3.2.5) and Lemma 3.7.5, for the �rst one, we have

E(yn,mi,k (1, 1)|Ft1i ) = 0, E((yn,mi,k (1, 1))2|Ft1i ) =
cn
nm

.

and we conclude by using (3.2.5), cn ≤ Cβ2−α
n , the criteria (3.7.3) and Lemma 3.7.2.

For the second one, we have

E(|yn,mi,k (1, 2)||Ft1i ) ≤
1

θ(βn)

∫
|x|>βn

|x|F (dx)
∑
j≥2

P(K(tki ) ≥ j|Ft1i )
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=
δn

θ(βn)
(E(K(tki )|Ft1i )−P(K(tki ) ≥ 1|Ft1i )) =

δn
θ(βn)

(λn,m+e−λn,m−1) ≤
δnλ

2
n,m

θ(βn)
=
δnλn,m
nm
(3.4.16)

and we conclude by using (3.2.5), δn ≤ C log 1/βn, λn,m ≤ C
nβn

(see (Hα
1 )), βn = logn

n ,
the criteria (3.7.2) and from the second part of Lemma 3.7.2. Therefore, it is clear
that for case (C3), (Y

n
(1))n≥0 is tight. Next, considering Y

n
(2), from (3.4.8) and

(3.4.9), as dn and d′n are bounded by C log 1/βn from (3.2.5), λn,m ≤ C
nβn

from (Hα
1 ),

βn = logn
n , yni (2) satis�es (3.7.3) ensuring the tightness of (Y

n
(2))n≥0 from Lemma

3.7.2. Finally, we consider (Mn,m)n≥0, equivalently, we prove that (Γn(1, 1))n≥0 and
(Γn(2, 1))n≥0 are tight. Because ff ′ is bounded, for k ∈ {2, . . . ,m} and j < k �xed, it
is enough to prove that the triangular arrays corresponding to generic terms ζni,k,j(1)
and ζni,k(2) are tight where

ζni,j,k(1) = un,m∆Y
Tβn1 (tki )

1K(tki )≥1∆Y
Tβn1 (tji )

1{K(tji )≥1}, (3.4.17)

ζni,k(2) = un,m

d2
n(k − 1)

n2m2
+

dn
nm

k−1∑
j=1

∆Y
Tβn1 (tji )

1{K(tji )≥1} +
dn(k − 1)

nm
∆Y

Tβn1 (tki )
1{K(tki )≥1}

 .
For the �rst term, by similar arguments, we have

E(|ζni,k,j(1)||Ft1i ) =un,m
(1− e−λn,m)2

(θ(βn))2
δ2
n ≤ C

un,mδ
2
n

n2
.

Then, the tightness is obtained by (3.2.5) that δn are bounded by C log 1/βn, βn =
logn
n , un,m = mn

(m−1)(logn)2 , (3.7.2) and Lemma 3.7.2. For the second term, by using

property (P1) and 1− eλn,m ≤ λn,m, we have

E(|ζni,k(2)||Ft1i ) ≤
Cun,mdn

n2
(dn + 2δn),

and we conclude by dn and δn are bounded by C log 1/βn (see (3.2.5)), βn = logn
n ,

un,m = mn
(m−1)(logn)2 , criteria (3.7.2) and Lemma 3.7.2. Therefore, we get (Mn,m)n≥0

is tight.

Theorem 3.4.12. For the case (C3), we have

(Y
n
,Mn,m)

P−→ (Y,Z),

where Z is de�ned as (3.3.5).

Proof. Since Y
n
converges pointwise to Y when n→∞ for the Skorokhod topology,

then we only need to proveMn,m P−→ Z. Since ff ′ is Lipschitz-continuous, by virtue

of Lemma 3.7.10 or Lemma 3.7.9, it is enough to prove Γ′n1 (1, 1) + Γ′n1 (2, 1)
P−→ − θ′2

4

where Γ′n1 (1, 1) =
∑n

i=1

∑m
k=1

∑k−1
j=1 ζ

n
i,j,k(1) and Γ′n1 (2, 1) =

∑m
k=2

∑n
i=1 ζ

n
i,k(2) with

ζni,j,k(1) and ζni,k(2) given by (3.4.17). First, concerning Γ′n1 (2, 1), for k ∈ {2, . . . ,m}
�xed, on the one hand, by using property (P1), we have

E(ζni,k(2)|Ft1i ) =un,m

[
d2
n(k − 1)

n2m2
+

2(k − 1)dn
nm

1− e−λn,m
θ(βn)

∫
|x|>βn

xF (dx)

]
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∼(k − 1)un,m
n2m2

(d2
n + 2dnd

′
n).

From (3.2.1) and (3.2.3), we have d′n ∼ θ′ log 1
βn

and dn = b′ − d′n. Therefore,

using un,m = nm
(m−1)(logn)2 , βn = logn

n and E(ζni,k(2)|Ft1i ) is non random and inde-

pendent of i, we get nE(ζn1,k(2)) −→
n→∞

− (k−1)θ′2

m(m−1) . On the other hand, using prop-

erty (P1), the inequality (a + b)2 ≤ 2(a2 + b2) and
∫
R x

2F (dx) < ∞ (see Re-

mark 3.2.1), we have E(|ζni,k(2)|2|Ft1i ) ≤
Cu2

n,m

n3 (d
4
n
n + d2

n). Since dn ≤ C log 1/βn (see

(3.2.5)), we proceed similarly as above to get nE(|ζn1,k(2)|2) −→
n→∞

0. Then, since

V
(∑n

i=1 ζ
n
i,k(2)

)
≤ nE((ζn1,k(2))2), we get

∑n
i=1 ζ

n
i,k(2)

P→ − (k−1)θ′2

m(m−1) and we deduce

that Γ′n1 (2, 1)
P→ − θ′2

2 . Secondly, concerning Γ′n1 (1, 1), we prove its uniform conver-
gence in probability by considering for k ∈ {2, . . . ,m} and j < k �xed, the generic term
ζni,j,k(1). To do so, we apply Lemma 3.7.7 to this sequence in which (ζni,j,k(1))1≤i≤n
are i.i.d. Note that the law of ζni,j,k(1) does not depend on parameters j and k, then
we denote it by Kn,m. We will prove that nKn,m(h) converges as n → ∞ for some
suitable function h corresponding to each assertions of Lemma 3.7.7. Therefore, we
have

nKn,m(h) =
(1− e−λn,m)2

nm2λ2
n,m

∫
|x|>βn

∫
{|y|>βn}

h(un,mxy)F (dy)F (dx).

Concerning assertion (i): Here, we choose h = hω where hω(x) = 1{|x|>ω} with
some ω > 0. Using 1 − e−λn,m ≤ λn,m, it is easy to check that nKn,m(hω) ≤

1
nm2

∫
|x|>βn θ

(
ω

un,m|x|

)
F (dx). By hypothesis (Hα

1 ) for α = 1, θ(β) ≤ C
β and δn ≡ ρn,

we have nKn,m(hω) ≤ Cun,mρn
nω . Then, by our choices of un,m, βn and ρ(β) ≤ C log 1/β

(see (3.2.2)), we get nKn,m(hω) −→
n→∞

0.

Concerning assertion (ii): We choose h = h′ where h′(x) = x1{|x|≤1}. Using
1 − e−λn,m ∼ λn,m, un,mβn −→

n→∞
0 and assumption (A), namely F vanishes outside

[−p, p], we have for n large enough βn ≤ 1
un,mp

≤ 1
un,m|x| and

nKn,m(h′) ∼un,m
nm2

∫
|x|>βn

x

∫
βn<|y|≤ 1

un,m|x|

yF (dy)F (dx)

=
un,m
nm2

(
d′

2
n −

∫
|x|>βn

x

∫
|y|> 1

un,m|x|

yF (dy)F (dx)

)
.

Since un,m = nm
(m−1)(logn)2 and using d′n ∼ θ′ log 1/βn (see (3.2.3)), the �rst term in

the r.h.s. is equivalent to θ′2

m(m−1) . Now, taking ε > 0, there exists ε′ ∈ (0, 1) such

that for β ∈ (0, ε′) we have | d′(β)
log (1/β)θ′ − 1| ≤ ε. Considering the second term in the

r.h.s., as for n large enough 1
un,mε′

≥ βn, we rewrite it as the sum of xn and yn with xn =
un,m
nm2

∫
1/(un,mε′)≥|x|>βn x

∫
|y|> 1

un,m|x|
yF (dy)F (dx)

yn =
un,m
nm2

∫
|x|>1/(un,mε′)

x
∫
|y|> 1

un,m|x|
yF (dy)F (dx).
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First, using 1
un,m|x| ≥ ε′, δ(.) is decreasing and δn ≤ C log n from (3.2.5) we derive

that

|xn| ≤
un,m
nm2

∫
1/(un,mε′)≥|x|>βn

|x|F (dx)δ(ε′) ≤ Cun,mδn
n

≤ C

log n
,

which converges to 0. Second, on the one hand, if we denote

y′n =
un,mθ

′

nm2

∫
|x|>1/(un,mε′)

x log (un,m | x |)F (dx),

then we have (1 − ε)y′n ≤ yn ≤ (1 + ε)y′n which gives yn ∼ y′n since ε is arbi-
trarily small. On the other hand, using d′(β) ∼ θ′ log 1/β (see (3.2.3)) we have that
un,mθ′

nm2 log (un,m)d′( 1
un,mε′

) converges to θ′2

m(m−1) and thanks to (3.2.4) we have that
un,mθ′

nm2

∫
|x|>1/(un,mε′)

x log (| x |)F (dx) converges to − θ′2

2m(m−1) . Then, it is clear that

nKn,m(h′) −→
n→∞

θ′2

2m(m−1) .

Concerning assertion (iii): Choosing h = h1 where h1(x) = x2
1{|x|≤1}, using the

inequality 1− e−λn,m ≤ λn,m and c(β) ≤ Cβ (see (3.2.2)), we have

nKn,m(h1) ≤
u2
n,m

nm2

∫
|x|>βn

∫
|y|>βn

x2y2
1{un,m|xy|≤1}F (dx)F (dy)

≤
u2
n,m

nm2

∫
|x|>βn

x2c

(
1

un,m|x|

)
F (dx) ≤ Cun,mρn

n
.

Therefore, thanks to our choices of un,m, βn and using ρ(β) ≤ C log 1/β (see (3.2.2)),
we get that nKn,m(h1) converges to 0 as n → ∞. In conclusion, the limit processes

have no Gaussian part, a Lévy measure equal to 0 and a drift part equal to θ′2

2m(m−1) .

Finally, we get
∑n

i=1 ζ
n
i,j,k(1)

P→ θ′2

2m(m−1) and Γ′n1 (1, 1)
P→
∑m

k=2

∑k−1
j=1

θ′2

2m(m−1) = θ′2

4 .
This completes the proof.

3.4.4 Asymptotic behavior of the couple (Y
n
, un,mZ

n,m) for case (C5).

For the �rst component Y
n
, we use the same decomposition given by the relation

(3.4.5). For the second one, we consider the formula of un,mZn,m given in (3.4.3).
In this case, the second term from this formula does not contribute to the limit.
Therefore, we need only to give the analysis for its �rst term. We have

un,m

∫ ηn(t)

0
ff ′(Xn

ηn(s−))(Yηnm(s−) − Yηn(s−))dYs =
4∑
i=1

Γnt (i),
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where

Γnt (1) = un,m(
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(M

βn
ηnm(s−) −M

βn
ηn(s−))dN

βn
s

+
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(N

βn
ηnm(s−) −N

βn
ηn(s−))dM

βn
s ),

Γnt (2) = un,m(
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(Y

βn
ηnm(s−) − Y

βn
ηn(s−))dM

βn
s

+
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(Y

βn
ηnm(s−) − Y

βn
ηn(s−))dA

βn
s ),

Γnt (3) = un,m(
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(A

βn
ηnm(s−) −A

βn
ηn(s−))dN

βn
s

+
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(N

βn
ηnm(s−) −N

βn
ηn(s−))dA

βn
s ),

Γnt (4) = un,m
∫ ηn(t)

0 ff ′(Xn
ηn(s−))(N

βn
ηnm(s−) −N

βn
ηn(s−))dN

βn
s .

In this case, the three last terms do not contribute to the limit and we only have to
study the �rst term Γn(1). Let us �rst rewrite Γnt (1) =

∑[nt]
i=1 ζ

n
i (1), with row-wise

i.i.d. random variables ζni , i = 1, 2, . . . de�ned by

ζni (1) = un,mff
′(Xn

t1i
)
m∑
k=2

[
(Mβn

tki
−Mβn

t1i
)(Nβn

tk+1
i

−Nβn
tki

) + (Nβn
tki
−Nβn

t1i
)(Mβn

tk+1
i

−Mβn
tki

)

]
.

Now, using Fubini for the second term, we have that

m∑
k=2

[
k−1∑
j=1

(Nβn

tj+1
i

−Nβn

tji
)](Mβn

tk+1
i

−Mβn
tki

) =
m−1∑
k=1

(Nβn

tk+1
i

−Nβn
tki

)(Mβn
tm+1
i

−Mβn

tk+1
i

).

Then we can rewrite our triangular array as follows

ζni (1) =un,mff
′(Xn

t1i
)

[
m∑
k=2

(Mβn
tki
−Mβn

t1i
)(Nβn

tk+1
i

−Nβn
tki

) +
m−1∑
k=1

(Nβn

tk+1
i

−Nβn
tki

)(Mβn
tm+1
i

−Mβn

tk+1
i

)

]

=un,mff
′(Xn

t1i
)
m∑
k=1

(Nβn

tk+1
i

−Nβn
tki

)[(Mβn
tm+1
i

−Mβn
t1i

)− (Mβn

tk+1
i

−Mβn
tki

)]

=un,mff
′(Xn

t1i
)

m∑
k=1

∆Y
Tβn1 (tki )

1{K(tki )≥1} +

K(tki )∑
j=2

∆Y
Tβnj (tki )

 M̃n,m
i,k ,

where M̃n,m
i,k = (Mβn

tm+1
i

−Mβn
t1i

) − (Mβn

tk+1
i

−Mβn
tki

) =
m∑

j=1,j 6=k
(Mβn

tj+1
i

−Mβn

tji
). Now, we

separate Γn(1) into two terms: the �rst term which is the essential term of the limit
corresponds to the part with the �rst jumps and the second term which will be sort in
the rest terms corresponds to the part of all the other jumps. In particular, we have
Γn(1) = Γn(1, 1) + Γn(1, 2) where Γnt (1, 1) = un,m

∑[nt]
i=1

∑m
k=1 ff

′(Xn
t1i

)∆Y
Tβn1 (tki )

1{K(tki )≥1}M̃
n,m
i,k ,

Γnt (1, 2) = un,m
∑[nt]

i=1

∑m
k=1 ff

′(Xn
t1i

)
∑K(tki )

j=2 ∆Y
Tβnj (tki )

M̃n,m
i,k .

(3.4.18)

In this case, we have

Mn,m
t = Γnt (1, 1) and Rn,mt = Γnt (1, 2) +

5∑
i=2

Γnt (i), (3.4.19)
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with Γnt (5) = un,m
∫ ηn(t)

0 k(Xn
ηn(s−), Yηnm(s−) − Yηn(s−))(Yηnm(s−) − Yηn(s−))

2dYs. The
proof of the following lemma is postponed to Appendix 3.5.

Lemma 3.4.13. For case (C5), we have as n → ∞, the sequences (Y
n
(1))n≥0 and

(Rn,m)n≥0 converge uniformly to 0 in probability.

Lemma 3.4.14. For case (C5), the sequences (Y
n
(2))n≥0 and (Mn,m)n≥0 are tight.

Proof. First, we consider the sequence (Y
n
(2))n≥0 given by (3.4.5). From (3.4.8)

and (3.4.9), using hypothesis (Hα
1 ), λn,m ≤ C

nβn
, dn and d′n are bounded by Cβ1−α

n

from (3.2.2) with the choice βn = logn
n1/(2α) , then yni (2) satis�es (3.7.3) ensuring the

tightness from the second part of Lemma 3.7.2. Now, we recall thatMn,m
t = Γnt (1, 1)

given by (3.4.18) and as ff ′ is bounded, for k, j ∈ {1, . . . ,m} �xed and j 6= k,
it is enough to prove that the triangular array with the generic term ζni,k,j(1, 1) =

un,m∆Y
Tβn1 (tki )

1{K(tki )≥1}(M
βn

tj+1
i

− Mβn

tji
) is tight. By using Property (P2) and the

independence of the increments, for |u| ≤ 1 we have

E(eiuζ
n
i,k,j(1,1)|Ft1i ) = e−λn,m +

1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)E

(
e
iuun,mx(Mβn

t
j+1
i

−Mβn

t
j
i

)
)

= e−λn,m +
1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)ezn,m(x,u)

= 1 +
1− e−λn,m
nmλn,m

∫
|x|>βn

F (dx)(ezn,m(x,u) − 1),

where zn,m(x, u) = 1
nm

∫
|y|≤βn(eiuun,mxy − 1 − iuun,mxy)F (dy). By applying Sato,

1999, Lemma 8.6 for �rst and second orders, we get |eiuun,mxy − 1 − iuun,mxy| ≤
C|uun,mxy| ∧ |uun,mxy|2. As un,mβn −→

n→∞
∞, for n large enough, combining these

results with δ(β) ≤ Cβ1−α and c(β) ≤ Cβ2−α (see (3.2.2)), we have

|zn,m(x, u)| ≤ C

n

∫
|y|≤βn

(|uun,mxy| ∧ |uun,mxy|2)F (dy)

=
C

n
|uun,mx|

∫
βn≥|y|>1/uun,m|x|)

|y|F (dy) +
C

n
|uun,mx|2

∫
|y|≤1/(uun,m|x|)

y2F (dy) ≤ C

n
|uun,mx|α.

(3.4.20)

Then, for un,m =
[

mn
(m−1) logn

]1/α
, the suprema of |zn,m(x, u)| over all |x| ≤ p and

|u| ≤ 1 goes to 0 as n tends to in�nity. Therefore, using |ezn,m(x,u)−1| ≤ C|zn,m(x, u)|
for n large enough by (3.7.3), ρn ≤ C log 1

βn
(see (3.2.2)) and 1 − e−λn,m ≤ λn,m,

we deduce that |E(eiuζ
n
i,k,j(1,1)|Ft1i ) − 1| ≤

C|u|αuαn,m log 1
βn

n2 . Then, ζni,k,j(1, 1) satis�es

(3.7.7) with ξ′′′n,u =
C|u|αuαn,m

n log 1
βn

which is bounded by C for all |u| ≤ 1. Thus,
combining Lemma 3.7.3 and the second part of Lemma 3.7.2, we get the tightness of
(Mn,m)n≥0.

Theorem 3.4.15. For case (C5), we have

(Y
n
(2),Mn,m)

L−→ (Y,Z), (3.4.21)

where Z is de�ned as (3.3.6).
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Proof. First, we denote Γ′nt (1, 1) = un,m
∑[nt]

i=1

∑m
k=1 ∆Y

Tβn1 (tki )
1{K(tki )≥1}M̃

n,m
i,k . Then,

as ff ′ is Lipschitz-continuous, by virtue of Lemma 3.7.10, in order to prove the con-
vergence in law of the pair (Y

n
(2),Mn,m), it is enough to consider the convergence of

the pair (Y
n
1 (2),Γ′n1 (1, 1)) with Y

n
1 (2) given in (3.4.5). By the independence structure,

for u and v in R, we have

E(ei(uY
n
1 (2)+vΓ′n1 (1,1))) = eiudnE(e

i
∑n
i=1

∑m
k=1 ∆Y

T
βn
1 (tk

i
)
1{K(tk

i
)≥1}(u+vun,mM̃

n,m
i,k )

)

=eiudn
n∏
i=1

E(e
i
∑m
k=1 ∆Y

T
βn
1 (tk

i
)
1{K(tk

i
)≥1}(u+vun,mM̃

n,m
i,k )

).

For i ∈ {1, . . . , n} �xed, again by tower property, E(e
i
∑m
k=1 ∆Y

T
βn
1 (tk

i
)
1{K(tk

i
)≥1}(u+vun,mM̃

n,m
i,k )

)
equals to

E(E(e
i
∑m
k=1 ∆Y

T
βn
1 (tk

i
)
1{K(tk

i
)≥1}(u+vun,mM̃

n,m
i,k )
|σ(Mβn

tj+1
i

−Mβn

tji
, j ∈ {1, . . . ,m})))

=E(
m∏
k=1

E(e
i∆Y

T
βn
1 (tk

i
)
1{K(tk

i
)≥1}(u+vun,mM̃

n,m
i,k )
|σ(Mβn

tj+1
i

−Mβn

tji
, j ∈ {1, . . . ,m}))).

For k ∈ {1, . . . ,m} �xed, note that M̃n,m
i,k is the martingale part of the small jumps

which is σ(Mβn

tj+1
i

− Mβn

tji
, j ∈ {1, . . . ,m})-measurable, independent of K(tki ) and

∆Y
Tβn1 (tki )

then by (P1) we get that equals to

E(e
i∆Y

T
βn
1 (tk

i
)
1{K(tk

i
)≥1}(u+vun,mM̃

n,m
i,k )
|σ(Mβn

tj+1
i

−Mβn

tji
, j ∈ {1, . . . ,m}) ∨ Ftki )

= e−λn,m +
1− e−λn,m
θ(βn)

∫
|x|>βn

eix(u+vun,mM̃
n,m
i,k )F (dx).

Therefore, using the independence structure of (M̃n,m
i,k )i∈{1,...,n} we can easily see by

(P2) that for all i ∈ {1, . . . , n} M̃n,m
i,k has the same distribution as M̃n,m

1,k . Thus, we
get

E(ei(uY
n
1 (2)+vΓ′n1 (1,1))) = eiudn

[
E(

m∏
k=1

(1 +
1− e−λn,m
θ(βn)

∫
|x|>βn

(eix(u+vun,mM̃
n,m
1,k ) − 1))F (dx))

]n

=eiudn

[
E

(
m∏
k=1

exp

(
log (1 +

1− e−λn,m
θ(βn)

∫
|x|>βn

(eix(u+vun,mM̃
n,m
1,k ) − 1)F (dx))

))]n

=eiudn

[
E

(
exp

(
m∑
k=1

log (1 +
1− e−λn,m
θ(βn)

∫
|x|>βn

(eix(u+vun,mM̃
n,m
1,k ) − 1)F (dx))

))]

=eiudn

[
E

(
exp

(
m∑
k=1

1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)(eix(u+vun,mM̃
n,m
1,k ) − 1) +

m∑
k=1

Rn,m1,k

))]n

=eiudn

[
E

(
1 +

m∑
k=1

1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)(eix(u+vun,mM̃
n,m
1,k ) − 1) +

m∑
k=1

Rn,m1,k +Rn1

)]n
,
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where

Rn,m1,k = log

(
1 +

1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)(eix(u+vun,mM̃
n,m
1,k ) − 1)

)

− 1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)(eix(u+vun,mM̃
n,m
1,k ) − 1),

Rn1 = exp

(
m∑
k=1

1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)(eix(u+vun,mM̃
n,m
1,k ) − 1) +

m∑
k=1

Rn,m1,k

)
− 1

−
m∑
k=1

1− e−λn,m
θ(βn)

∫
|x|>βn

F (dx)(eix(u+vun,mM̃
n,m
1,k ) − 1)−

m∑
k=1

Rn,m1,k .

Now, thanks to property (P2) we have that E(ei(uY
n
1 (2)+vΓ′n1 (1,1))) equals to

eiudn

(
1 +

m∑
k=1

1− e−λn,m
θ(βn)

∫
|x|>βn

(E(eix(u+vun,mM̃
n,m
1,k ))− 1)F (dx) +

m∑
k=1

E(Rn,m1,k ) + E(Rn1 )

)n

=eiudn

1 +

m∑
k=1

1− e−λn,m
θ(βn)

∫
|x|>βn

(eiux
m∏

j=1,j 6=k
E(e

ivun,mx(Mβn

t1
j+1

−Mβn

t1
j

)

)− 1)F (dx)

+
m∑
k=1

E(Rn,m1,k ) + E(Rn1 )

)n

=eiudn

(
1 +

1− e−λn,m
nλn,m

∫
|x|>βn

(eiux+(m−1)zn,m(x,v) − 1)F (dx) +
m∑
k=1

E(Rn,m1,k ) + E(Rn1 )

)n
,

(3.4.22)

where zn,m(x, v) = 1
nm

∫
|y|≤βn(eivun,mxy−1−ivun,mxy)F (dy).Now, using |eix(u+vun,mM̃

n,m
1,k )−

1| ≤ 2 and 1 − e−λn,m ≤ λn,m, then, it is easy to check that for n large enough, we
have ∣∣∣∣∣1− e−λn,mθ(βn)

∫
|x|>βn

(eix(u+vun,mM̃
n,m
1,k ) − 1)F (dx)

∣∣∣∣∣ ≤ Cλn,m ≤ 1

2
.

From this, for any k ∈ {1, . . . ,m}, using the �rst evaluation in 3.7.3 and (Hα
1 ), we

have

n|E(Rn,m1,k )| ≤ nE

[
1− e−λn,m
nmλn,m

∫
|x|>βn

|eix(u+vun,mM̃
n,m
1,k ) − 1|F (dx)

]2

≤ C (θ(βn))2

n
≤ C

nβ2α
n

which converges to 0 as n → ∞ by the choice βn = logn
n1/(2α) . Similarly, by the second

evaluation in 3.7.3, we have

n|E(Rn1 )| ≤ nE

(
m∑
k=1

1− e−λn,m
θ(βn)

∫
|x|>βn

|eix(u+vun,mM̃
n,m
1,k ) − 1|F (dx) +

m∑
k=1

|Rn,m1,k |

)2

≤ C

(
nE(

1− e−λn,m
nmλn,m

∫
|x|>βn
|eix(u+vun,mM̃

n,m
1,k ) − 1|F (dx))2 + nE(|Rn,m1,k |)

2

)
≤ C

nβ2α
n

+
C

n3β4α
n
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which converges to 0 as n→∞ by the choice βn = logn
n1/(2α) . Now, concerning the main

term inside the bracket of (3.4.22), we have
∫
|x|>βn(eiux+(m−1)zn,m(x,v) − 1)F (dx) =

An,m(u) +Bn,m(v) + Cn,m(u, v) where{
An,m(u) =

∫
|x|>βn(eiux − 1)F (dx), Bn,m(v) =

∫
|x|>βn(e(m−1)zn,m(v,x) − 1)F (dx),

Cn,m(u, v) =
∫
|x|>βn(eiux − 1)(e(m−1)zn,m(x,v) − 1)F (dx).

Since 1 − e−λn,m ∼ λn,m, it is enough to prove that the three terms An,m(u) + iudn,
Cn,m(u, v) and Bn,m(v) converge.

Concerning An,m(u) + iudn. As dn = b−
∫
βn<|x|≤1 xF (dx), this term is equal to

iub+

∫
|x|>βn

(eiux − 1− iux1|x|≤1)F (dx) −→
n→∞

iub+

∫
(eiux − 1− iux1|x|≤1)F (dx).

Concerning Cn,m(u, v). By (3.4.20), |zn,m(x, v)| ≤ C
n |vun,mx|

α and the suprema
of |zn,m(x, v)| over all |x| ≤ p and |v| ≤ 1 go to 0 as n tends to 0. Now, using
3.7.3, we have |e(m−1)zn,m(x,v) − 1| ≤ C|zn,m(x, v)| and |eiux − 1| ≤ C|ux|. Then,
since x 7→ |x|α+1 is F -integrable as α > 1 (see Remark 3.2.1), we get |Cn,m(u, v)| ≤
C
nm |u||v|

αuαn,m −→n→∞ 0.

Concerning Bn,m(v) We rewrite Bn,m(v) = B′n,m(v) +B′′n,m(v), with{
B′n,m(v) =

∫
|x|>βn(m− 1)zn,m(x, v)F (dx),

B′′n,m(v) =
∫
|x|>βn(e(m−1)zn,m(x,v) − 1− (m− 1)zn,m(x, v))F (dx).

First, by same arguments as above, we get |B′′n,m(v)| ≤ C
n2 |v|2αu2α

n,m, hence, B
′′
n,m(v) −→

n→∞
0. Second, note that B′n,m(v) =

∫
(eivx − 1− ivx)Kn,m(dx), where

Kn,m(h) =
m− 1

nm

∫
|x|>βn

∫
|y|≤βn

h(un,mxy)F (dy)F (dx)

with some function h. We will prove that
∫

(eivx − 1− ivx)Kn,m(dx) −→
n→∞

∫
(eivx −

1− ivx)K(dx), with

K(dx) =
α

2
((θ2

+ + θ2
−)1{x>0} + 2θ+θ−1{x<0})

1

|x|1+α
dx.

To do so, we use Theorem 3.7.6, then it is reduced to prove that Kn,m(h) −→
n→∞

K(h)

for h equal either to hω = 1(ω,∞) for ω > 0, or h′ω = 1(−∞,−ω) for ω > 0, or
h′(x) = x2

1{|x|≤1}, or h
′′(x) = x1{|x|>1}.

• First case h = hω Since un,mβ2
n −→n→∞ ∞, then for n large enough such that

ω
βnun,m

< βn. Then, we rewrite Kn,m(hω) = y1
n,m + y2

n,m, where{
y1
n,m = m−1

nm

∫
x>βn

(θ+( ω
un,mx

)− θ+(βn))F (dx)

y2
n,m = m−1

nm

∫
x<−βn(θ−( −ωun,mx

)− θ−(βn))F (dx).
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Note that by (Hα
1 ) we have (θ±(βn))2

n ≤ C
nβ2α

n
−→
n→∞

0. Further, as ω
βnun,mx

−→
n→∞

0

uniformly on {x > βn}, using (Hα
2 ),

ρ+(βn)
log (1/βn) −→n→∞ αθ+ (see (3.2.3)), we get y1

n,m ∼
m−1
nm

∫
x>βn

θ+uαn,mx
α

ωα F (dx) ∼ αθ2
+

ωα
(m−1)uαn,m

nm log 1
βn
−→
n→∞

θ2
+

2ωα by the choices un,m =[
mn

(m−1) logn

]1/α
and βn = logn

n1/(2α) . Similarly, we have y2
n,m −→n→∞

θ2
−

2ωα , so Kn,m(hω) −→
n→∞

K(hω).

• Second case h = h′ω At �rst, similarly, we rewrite Kn,m(hω) = y′1n,m + y′2n,m,
where {

y′1n,m = m−1
nm

∫
x>βn

(θ−( ω
un,mx

)− θ−(βn))F (dx)

y′2n,m = m−1
nm

∫
x<−βn(θ+( −ωun,mx

)− θ+(βn))F (dx).

Using the same arguments as above, we easily get y′1n,m ∼ m−1
nm

∫
x>βn

θ−uαn,mx
α

(−ω)α F (dx) ∼
αθ−θ+uαn,m(m−1)

(−ω)αnm log 1/βn −→
n→∞

θ+θ−
2(−ω)α and also similarly y′2n,m −→n→∞

θ+θ−
2(−ω)α . Therefore,

we have that Kn,m(h′ω) −→
n→∞

K(h′ω).

• Third case h = h′ For n large enough such that 1
βnun,m

< βn, as 1
un,m|x| −→n→∞ 0

uniformly on {|x| > βn}, by c(β) ∼ αθ
2−αβ

2−α and ρ(β) ∼ αθ log (1/β) for β → 0 (see
(3.2.3)), we have

Kn,m(h′) =
m− 1

nm

∫
|x|>βn

∫
|y|≤ 1

un,m|x|

u2
n,mx

2y2F (dy)F (dx)

∼ m− 1

nm

∫
|x|>βn

αθ

2− α
uαn,m|x|αF (dx) ∼ α2θ2

2− α
(m− 1)uαn,m

nm
log

1

βn
−→
n→∞

αθ2

2(2− α)
= K(h′).

• Last case h = h′′ For n large enough such that 1
βnun,m

< βn, we have

Kn,m(h′′) =
m− 1

nm

∫
|x|>βn

∫
1

un,m|x|
<|y|≤βn

un,mxyF (dy)F (dx)

=
(m− 1)un,m

nm

∫
|x|>βn

x

(∫
|y|> 1

un,mx

yF (dy)− d′n

)
F (dx).

At �rst, note that by d′n ≤ Cβ1−α
n (see (3.2.2)), we have (m−1)un,md′

2
n

mn −→
n→∞

0

and Kn,m(h′′) ∼ (m−1)un,m
nm

∫
|x|>βn

∫
|y|> 1

un,mx
xyF (dy)F (dx) for n → ∞. Then, as

1
un,m|x| −→n→∞ 0 uniformly on {|x| > βn}, using d′(β) ∼ α

α−1θ
′β1−α, ρ+(β) ∼ αθ+ log (1/β)

and ρ−(β) ∼ αθ− log (1/β) for β → 0 (see (3.2.3)), we get for n→∞

Kn,m(h′′) ∼
(m− 1)αθ′uαn,m
nm(α− 1)

( ∫
x>βn

|x|αF (dx)−
∫
x<−βn

|x|αF (dx)
)

∼ m− 1

nm

α2θ′2

α− 1
uαn,m log

1

βn
−→
n→∞

αθ′2

2(α− 1)
= K(h′′).
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Therefore, we get

B′n,m(v) −→
n→∞

∫
α

2
[(θ2

+ + θ2
−)1{x>0} + 2θ+θ−1{x<0}]

1

|x|1+α
(eivx − 1− ivx)dx.

Finally, we have

E(exp (i(uY
n
1 (2) + vΓ′

n
1 (1, 1)))) −→

n→∞
exp

{
iub+

∫
F (dx)(eiux − 1− iux1{|x|≤1})+

α

2
[(θ2

+ + θ2
−)1{x>0} + 2θ+θ−1{x<0}]

1

|x|1+α
(eivx − 1− ivx)dx

}
,

which completes the proof.

3.4.5 Conclusion

The challenge ahead is to apply these approximations to obtain a central limit theorem
type for the multilevel Monte Carlo method with the stochastic di�erential equation
(3.1.1) driven by a pure jump Lévy process, in the spirit of the ones established by
Ben Alaya and Kebaier, 2015 and Ben Alaya, Kebaier, and Ngô, 2020 for the case of
a di�usion process, Dereich and Li, 2016 for the case of jump-di�usion process and
Giorgi, Lemaire, and Pagès, 2017 for the case of nested Multilevel Monte Carlo. We
keep this work for a future research.

3.5 Appendix A: Proof of lemmas 3.4.4, 3.4.7, 3.4.10, 3.4.13

concerning the rest terms

Note that throughout this section, C is a generic constant (may depending on m)
which can be changed from line to line.

3.5.1 Proof of Lemma 3.4.4

Here, we prove that the sequences of processes (Y
n
(1))n≥0 and (Rn,m)n≥0 converge

uniformly in probability to 0 as n → ∞. First, instead of considering the form
Y
n
t (1) =

∑[nt]
i=1

∑m
k=1(Mβn

tki ,t
k+1
i

+
∑

j≥2 ∆Y
Tβnj (tki )

1{K(tki )≥j}), it is enough to prove that

for each k ∈ {1, . . . ,m} the triangular arrays with generic terms yn,mi,k (1, 1) = Mβn

tki ,t
k+1
i

and yn,mi,k (1, 2) =
∑

j≥2 ∆Y
Tβnj (tki )

1{K(tki )≥j} converge in probability to 0 as n → ∞.

By Property (P1), (3.2.5) and Lemma 3.7.5, for the �rst one, we have

E(yn,mi,k (1, 1)|Ft1i ) = 0, E((yn,mi,k (1, 1))2|Ft1i ) =
cn
nm

(3.5.1)

and therefore we conclude using (3.2.5), cn ≤ Cβ2−α
n , the criteria (3.7.3) and Lemma

3.7.2. For the second one, we have

E(|yn,mi,k (1, 2)||Ft1i ) ≤
1

θ(βn)

∫
|x|>βn

|x|F (dx)
∑
j≥2

P(K(tki ) ≥ j|Ft1i )

=
δn

θ(βn)
(E(K(tki )|Ft1i )−P(K(tki ) ≥ 1|Ft1i )) =

δn
θ(βn)

(λn,m+e−λn,m−1) ≤
δnλ

2
n,m

θ(βn)
=
δnλn,m
nm
(3.5.2)
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and therefore we conclude by using (3.2.5), the boundedness of δn in case (C1), the

criteria (3.7.2) and Lemma 3.7.2. Thus, it is clear that for case (C1), Y
n
(1)

P→ 0.
Now, by using the formula of the rest term given by (3.4.7), we have

Rn,mt = Γnt (2, 2) + Γnt (2, 3) +
5∑
i=3

∫ ηn(t)

0
ff ′(Xn

ηn(s−))dΓns (i)

+ Γ
n
t (1, 2) +

∫ ηn(t)

0
k(Xn

ηn(s−), Yηnm(s−) − Yηn(s−))dΓ
n
s (3) + Γ

n
t (4) + Γ

n
t (5).

According to Theorem 3.7.1 (iii), in order to prove the convergence of the third and the
�fth terms in the r.h.s. of the above relation, we only need to prove the convergence
of each Γn(i), i ∈ {3, 4, 5} and Γ

n
(3) to 0 as n → ∞. Now, we prove that each term

converges uniformly in probability to 0 when n→∞.
The term Γnt (2, 2): Let us rewrite Γnt (2, 2) =

∑m
k=2

∑[nt]
i=1 ζ

n
i,k(2, 2) with

ζni,k(2, 2) =
un,mdn
nm

ff ′(Xn
t1i

)((k − 1)

K(tki )∑
h=2

∆Y
Tβnh (tki )

+

K(t1i ,t
k
i )∑

h=2

∆Y
Tβnh (t1i ,t

k
i )

).

For each k ∈ {2, . . . ,m}, by property (P1), (3.2.5) and the boundedness of ff ′,
similarly to the calculations in (3.5.2), we have

E(|ζni,k(2, 2)||Ft1i ) ≤C
un,m|dn|δn
nθ(βn)

[(k − 1)(λn,m + e−λn,m − 1) + (k − 1)λn,m + e−(k−1)λn,m − 1]

≤Cun,m|dn|δnλn,m
n2

.

Then we conclude by using (3.2.5), the boundedness of |dn| and δn in case (C1),
un,m = nm

m−1 , the criteria (3.7.2) and Lemma 3.7.2.

The term Γnt (2, 3): Let us rewrite Γnt (2, 3) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(2, 3) with

ζni,k(2, 3) =
un,mdn
nm

ff ′(Xn
t1i

)(k − 1)∆Y
Tβn1 (tki )

1{K(tki )≥1}1{K(t1i ,t
k
i )≥1}.

For each k ∈ {2, . . . ,m}, by boundedness of ff ′, similar as above, we have

E(|ζni,k(2, 3)||Ft1i ) ≤ C
un,m|dn|δn
nθ(βn)

(1− e−λn,m)(1− e−(k−1)λn,m) ≤ Cun,m|dn|δnλn,m
n2

.

Then, we conclude similarly that Γn(2, 3)
P→ 0 by the criteria (3.7.2) and Lemma

3.7.2.
The term Γ

n
t (1, 2): Let us rewrite Γ

n
t (1, 2) =

∑m
k=2

∑[nt]
i=1 ζ

n
i,k(1, 2) with

ζ
n
i,k(1, 2) =

un,mdn
nm

k(Xn
t1i
,∆Y

Tβn1 (t1i ,t
k
i )

)(

K(t1i ,t
k
i )∑

h=2

(∆Y
Tβnh (t1i ,t

k
i )

)2 +

K(t1i ,t
k
i )∑

h,h′=2
h6=h′

∆Y
Tβnh (t1i ,t

k
i )

∆Y
Tβn
h′ (t1i ,t

k
i )

).

For any �xed k ∈ {2, . . . ,m}, by similar calculations as above, using the boundedness
of the function k and

∫
R x

2F (dx) <∞ (see Remark 3.2.1), we have

E(|ζni,k(1, 2)||Ft1i )
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≤Cun,m|dn|
nθ(βn)

E((K(t1i , t
k
i )− 1)1{K(t1i ,t

k
i )≥2} +

δ2
n

θ(βn)
K(t1i , t

k
i )(K(t1i , t

k
i )− 1)|Ft1i )

≤Cun,m|dn|
n2

(λn,m +
δ2
n

n
).

Then, we conclude similarly that Γ
n
(1, 2)

P→ 0 by the criteria (3.7.2) and Lemma
3.7.2.
The term

∫ ηn(t)
0 ff ′(Xn

ηn(s−))dΓns (3): This is equal to
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(3) with

ζni,k(3) = un,mff
′(Xn

t1i
)(Mβn

tki
−Mβn

t1i
)(Ytk+1

i
− Ytki ).

For a �xed k ∈ {2, . . . ,m}, by the boundedness of ff ′, Property (P1), (3.2.5), the
inequality (a2 + b2) ≤ 2(a2 + b2),

∫
R x

2F (dx) < ∞, lemmas 3.7.5 and 3.7.4, we have
E(ζni,k(3)|Ft1i ) = 0,

E(|ζni,k(3)|2|Ft1i ) ≤Cu
2
n,mE((Mβn

tki
−Mβn

t1i
)2|Ft1i )E((Y βn

tk+1
i

− Y βn
tki

)2 + (Nβn

tk+1
i

−Nβn
tki

)2|Ft1i )

≤C
u2
n,mcn

n
(
cn
nm

+
d2
n

n2m2
+

1

nm
) ≤ C

u2
n,mcn

n2
(cn +

d2
n

n
+ 1).

Then as α < 1, we conclude using the boundedness of |dn|, cn ≤ Cβ2−α
n , βn =

(logn)2

n , un,m = nm
m−1 , the criteria (3.7.3) and Lemma 3.7.2. Therefore, we have∫ ηn(.)

0 ff ′(Xn
ηn(s−))dΓns (3)

P→ 0.

The term
∫ ηn(t)

0 ff ′(Xn
ηn(s−))dΓns (4): This is bounded by C

∑m
k=2

∑[nt]
i=1 ζ

n
i,k(4) with

ζni,k(4) = un,m|Nβn
tki
−Nβn

t1i
||Nβn

tk+1
i

−Nβn
tki
|.

Let k ∈ {1, . . . ,m} be �xed. Using the independence of the increments Nβn
tki
− Nβn

t1i

and Nβn

tk+1
i

−Nβn
tki

and Lemma 3.7.4, we have

E(|ζni,k(4)|1{|ζni,k(4)|≤1}|Ft1i ) =
un,m
nm

∫
|x|>βn

|x|E(|Nβn
tki
−Nβn

t1i
|1{
|Nβn

tk
i

−Nβn

t1
i

|≤ 1
un,m|x|

})F (dx)

≤Cun,mδn
n2

∫
1

un,mβn
>|y|>βn

|y|F (dy).

Then using the boundedness of δn, βn = (logn)2

n , un,m = nm
m−1 and Lebesgue's theorem,

we easily check that the two �rst points of the criteria (3.7.4) are satis�ed. In order
to prove the third point of this criteria, noticing that un,mβ2

n→0 when n→∞, then
for y > 1 we have un,mβ2

n < y ⇔ βn <
y

un,mβn
. Similarly, we have

P(ζni,k(4) > y|Ft1i ) ≤
C

n2

∫
|x|>βn

F (dx)

∫
|z|>βn∨ y

un,m|x|

F (dz) =
C

n2

∫
|x|>βn

F (dx)θ

(
y

un,m|x|
∨ βn

)

≤ C
n2

(∫
|x|> y

un,mβn

F (dx)θ (βn) +

∫
y

un,mβn
>|x|>βn

F (dx)θ

(
y

un,m|x|

))
.
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Now, using (Hα
1 ) and as y

un,mβn
< 1 for n large enough, we get

P(ζni,k(4) > y|Ft1i ) ≤
C

n2

(
θ

(
y

un,mβn

)
θ (βn) +

uαn,m
yα

∫
y

un,mβn
>|x|>βn
|x|αF (dx)

)
≤
Cuαn,m
n2yα

(1 + ρn) .

Then as α < 1, using (3.2.5), ρn ≤ C log 1
βn
, βn = (logn)2

n , un,m = nm
m−1 , the third point

of criteria (3.7.4) is satis�ed. Therefore by Lemma 3.7.2, we have
∫ ηn(.)

0 ff ′(Xn
ηn(s−))dΓns (4)

P→
0 .
The term

∫ ηn(t)
0 ff ′(Xn

ηn(s−))dΓns (5): This is equal to
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(5) where

ζni,k(5) = un,mff
′(Xn

t1i
)
[
(Aβn

tki
−Aβn

t1i
) + (Nβn

tki
−Nβn

t1i
)
]

(Mβn

tk+1
i

−Mβn
tki

).

For any �xed k ∈ {1, . . . ,m}, by the boundedness of ff ′, the independence structure,
property (P1), (3.2.5), the inequality (a + b)2 ≤ 2(a2 + b2),

∫
R x

2F (dx) < ∞ (see
Remark 3.2.1), lemmas 3.7.5 and 3.7.4, we have E(ζni,k(5)|Ft1i ) = 0,

E(|ζni,k(5)|2|Ft1i ) ≤Cu
2
n,mE((Mβn

tk+1
i

−Mβn
tki

)2)

[
d2
n(k − 1)2

n2m2
+ E((Nβn

tki
−Nβn

t1i
)2)

]
≤
Cu2

n,mcn

n
(
d2
n

n2
+

1

n
).

Then as α < 1, we conclude using the boundedness of |dn|, cn ≤ Cβ2−α
n , un,m = nm

m−1 ,

the criteria (3.7.3) and Lemma 3.7.2. Therefore, we have
∫ ηn(.)

0 ff ′(Xn
ηn(s−))dΓns (5)

P→
0.
The term Γ

n
t (4): We recall that

Γ
n
t (4) = un,m

∫ ηn(t)

0
(k(Xn

ηn(s−), Yηnm(s−)−Yηn(s−))−k(Xn
ηn(s−), N

βn
ηnm(s−)−N

βn
ηn(s−)))

(Nβn
ηnm(s−) −N

βn
ηn(s−))

2dAβns .

Since ∂k
∂y (x, y) is bounded on R2, it is enough to prove that for each k ∈ {1, . . . ,m},

the triangular array with generic term ζ
n
i,k(4) converges to 0 when n→∞ where

ζ
n
i,k(4) =

un,m|dn|
nm

|Y βn

tk+1
i

− Y βn
t1i
|(Nβn

tk+1
i

−Nβn
t1i

)2.

By property (P1), the independence between Y βn

tk+1
i

− Y βn
t1i

and Nβn

tk+1
i

−Nβn
t1i
, Cauchy-

Schwarz's inequality,
∫
R x

2F (dx) <∞, Lemma 3.7.4 and Lemma 3.7.5, we have

E(|ζni,k(4)||Ft1i ) ≤C
un,m|dn|
nm

(
|dn|
nm

+

√
cn√
nm

)
1

nm

∫
|x|>βn

x2F (dx) ≤ Cun,m|dn|
n2

(
|dn|
n

+

√
cn√
n

).

Then we conclude using the boundedness of |dn|, cn, un,m = nm
m−1 , the criteria (3.7.2)

and Lemma 3.7.2. Therefore, we have Γ
n
(4)

P→ 0.
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The term Γ
n
t (5): We recall that

Γ
n
t (5) =

un,mdn
nm

[nt]∑
i=1

m∑
k=2

(k(Xn
t1i
, Nβn

tki
−Nβn

t1i
)− k(Xn

t1i
,∆Y

Tβn1 (t1i ,t
k
i )

))(Nβn
tki
−Nβn

t1i
)2.

Similarly as for the term Γ
n
(4), it is enough to prove that for each k ∈ {1, . . . ,m},

the triangular array with generic term ζ
n
i,k(5) converges to 0 when n→∞ with

ζ
n
i,k(5) =

un,m|dn|
nm

∣∣∣∣∣∣
K(t1i ,t

k
i )∑

j=2

∆Y
Tβnj (t1i ,t

k
i )

∣∣∣∣∣∣ (Nβn
tki
−Nβn

t1i
)2.

By using Cauchy-Schwarz's inequality, property (P1), Lemmas 3.7.4 and 3.7.5, the
fact that

∫
R x

4F (dx) <∞ (see Remark 3.2.1) and the calculations developped for the
term Γ

n
(1, 2), we have

E(|ζni,k(5)||Ft1i )

≤ Cun,m|dn|
n

E((

K(t1i ,t
k
i )∑

j=2

∆Y
Tβnj (t1i ,t

k
i )

)2|Ft1i )× E((Nβn
tki
−Nβn

t1i
)4)

1/2

≤ Cun,m|dn|
n3/2

E(

K(t1i ,t
k
i )∑

j=2

(∆Y
Tβnj (t1i ,t

k
i )

)2 +

K(t1i ,t
k
i )∑

j,j′=2
j 6=j′

∆Y
Tβnj (t1i ,t

k
i )

∆Y
Tβn
j′ (t1i ,t

k
i )
|Ft1i )


1/2

≤ Cun,m|dn|
n3/2

[
1

n
(λn,m +

δ2
n

n
)

]1/2

.

Then we conclude using the boundedness of |dn|, δn, un,m = nm
m−1 , λn,m → 0 when

n→∞, the criteria (3.7.2) and Lemma 3.7.2. Therefore we get Γ
n
(5)

P→ 0.

The term
∫ ηn(t)

0 k(Xn
ηn(s−), Yηnm(s−) − Yηn(s−))dΓ

n
s (3): Since k(x, y) is bounded on

R2, using the inequality (a+ b+ c)2 ≤ 4(a2 + b2 + c2), it is enough to prove that for
k ∈ {1, . . . ,m}, the following eight triangular arrays with generic terms {ζni,k(3, j), j ∈
{1, . . . , 8} converge to 0 as n→∞ with

ζ
n
i,k(3, 1) = un,m(Aβn

tki
−Aβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|, ζ

n
i,k(3, 2) = un,m(Aβn

tki
−Aβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|

ζ
n
i,k(3, 3) = un,m(Aβn

tki
−Aβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|, ζ

n
i,k(3, 4) = un,m(Mβn

tki
−Mβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|

ζ
n
i,k(3, 5) = un,m(Nβn

tki
−Nβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζ

n
i,k(3, 6) = un,m(Mβn

tki
−Mβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|

ζ
n
i,k(3, 7) = un,m(Mβn

tki
−Mβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζ

n
i,k(3, 8) = un,m(Nβn

tki
−Nβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|.

(3.5.3)

For the �rst four triangular arrays, as Aβnt = dnt is deterministic, applying Cauchy-
Schwarz's inequality and Lemma 3.7.5 for the increment |Mβn

tk+1
i

−Mβn
tki
| and Lemma
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3.7.4 for the increment Nβn

tk+1
i

−Nβn
tki
, it is easy to check E(|ζni,k(3, 1)||Ft1i ) ≤ C

un,m|dn|3
n3 , E(|ζni,k(3, 2)||Ft1i )≤C

un,m|dn|2
√
cn

n2
√
n

E(|ζni,k(3, 3)||Ft1i )≤C
un,m|dn|2δn

n3 , E(|ζni,k(3, 4)||Ft1i ) ≤ C
un,m|dn|cn

n2 .
(3.5.4)

Then, for our choices of un,m and βn, by the boundedness of dn and δn, cn ≤ Cβ2−α
n

with βn = (logn)2

n , the application of the criteria (3.7.2) and Lemma 3.7.2 is straight-
forward for these �rst four triangular arrays. Now, by using the independence be-
tween the increments of Mβn and Nβn , applying Cauchy-Schwarz's inequality and
Lemma 3.7.5 for the estimation of the increment |Mβn

tk+1
i

−Mβn
tki
|, Lemma 3.7.4 and∫

R x
2F (dx) <∞, we have

E(|ζni,k(3, 5)||Ft1i ) ≤ C
un,m

√
cn

n
√
n

, E(|ζni,k(3, 6)||Ft1i ) ≤ C
un,mcnδn

n2 . (3.5.5)

By the same arguments as above, we get ncn converges to 0 as n → ∞ and then
we apply the criteria (3.7.2) and Lemma 3.7.2 to get the convergence of these two
triangular arrays to 0. For the seventh triangular array, we use the independence
between the two increments Mβn

tk+1
i

− Mβn
tki

and Mβn
tki
− Mβn

t1i
and Cauchy-Schwarz's

inequality to obtain

E(|ζni,k(3, 7)||Ft1i ) ≤ C
un,mc

3/2
n

n
√
n

. (3.5.6)

Then we conclude similarly the convergence of this triangular arrays to 0. Finally,
concerning the last triangular array, we use similar calculations and arguments as for
the term

∫ ηn(t)
0 ff ′(Xn

ηn(s−))dΓns (4) and we get

E(|ζni,k(3, 8)|1{|ζni,k(3,8)|≤1}|Ft1i ) =
un,m
nm

∫
|x|>βn
|x|E(|Nβn

tki
−Nβn

t1i
|21{

|Nβn

tk
i

−Nβn

t1
i

|≤ 1√
un,m|x|

})F (dx)

≤Cun,mδn
n2

∫
1√

un,mβn
>|y|>βn

|y|2F (dy),

and using (Hα
1 ) and (3.2.2), for y > 1 and n large enough, we have

P(ζ
n
i,k(3, 8) > y|Ft1i )

≤ C
n2

∫
|x|>βn

F (dx)θ

(√
y

un,m|x|
∨ βn

)

≤ C
n2

∫
|x|>

√
y

un,mβn

F (dx)θ (βn) +

∫
√

y
un,mβn

>|x|>βn
F (dx)θ

(√
y

un,m|x|

)
≤ C
n2

θ(√ y

un,mβn

)
θ (βn) +

u
α/2
n,m

yα/2

∫
√

y
un,mβn

>|x|>βn
|x|α/2F (dx)


≤Cu

α/2
n,m

n2yα/2

(
1 +

∫
|x|>βn

|x|α/2F (dx)

)
≤ Cu

α/2
n,m

n2yα/2

(
1 + β−α/2n

)
.
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Note that, as α < 1, βn = (logn)2

n and un,m = nm
m−1 , we have that

u
α/2
n,mβ

−α/2
n

n converges
to 0 as n → ∞. Therefore, we conclude the convergence of our last triangular array
by criteria (3.7.4) and Lemma 3.7.2. This completes the proof of Lemma 3.4.4.

3.5.2 Proof of Lemma 3.4.7

Here, we prove that the sequences of processes (Y
n
(1))n≥0 and (Rn,m)n≥0 converge

uniformly in probability to 0 as n→∞. First, instead of considering the form Y
n
t (1)

given in (3.4.5), it is enough to prove that for each k ∈ {1, . . . ,m} the triangular arrays
with generic terms yn,mi,k (1, 1) = Mβn

tki ,t
k+1
i

and yn,mi,k (1, 2) =
∑

j≥2 ∆Y
Tβnj (tki )

1{K(tki )≥j}

converge uniformly in probability to 0 as n → ∞. On the one hand, from the above
estimates (3.5.1), we have E(yn,mi,k (1, 1)|Ft1i ) = 0, E(|yn,mi,k (1, 1)|2|Ft1i ) = cn

nm . Then,

yn,mi,k (1, 1) satis�es (3.7.3) and we conclude using cn ≤ Cβ2−α
n from (3.2.5) and Lemma

3.7.2. On the other hand, using similar calculations as in (3.5.2), property (P1) and∫
R x

2F (dx) <∞, we have

E(yn,mi,k (1, 2)|Ft1i ) = d′n
nmλn,m

(λn,m + e−λn,m − 1),

E(|yn,mi,k (1, 2)|2|Ft1i ) = E(
∑K(tki )

j=2 (∆Y
Tβnj (tki )

)2 +
∑K(tki )

j,j′=2
j 6=j′

∆Y
Tβnj (tki )

∆Y
Tβn
j′ (tki )

|Ft1i )

≤ CE( 1
θ(βn)K(tki )1{K(tki )≥2} + δ2

n
(θ(βn))2K(tki )(K(tki )− 1)1{K(tki )≥2}|Ft1i ) ≤

C
n (λn,m + δ2

n
n ).

(3.5.7)

Then we conclude using d′n = 0 by the hypothesis (H3), δn ≤ C log 1/βn (see (3.2.5)),
βn = logn

n , λn,m → 0 as n→∞, criteria (3.7.3) and Lemma 3.7.2. Therefore, we have

Y
n
(1)

P→ 0. Now, from the formula of the rest term given by (3.4.12), we have

Rn,mt = Γnt (1, 2) +
5∑
i=2

Γnt (i).

In what follows, we prove that each term converges uniformly in probability to 0.
The term Γnt (1, 2): We recall that

Γnt (1, 2) =

[nt]∑
i=1

m∑
k=2

k−1∑
j=1

(ζni,k,j(1, 2) + ζ ′
n
i,k,j(1, 2) + ζ ′′

n
i,k,j(1, 2)),

with 
ζni,k,j(1, 2) = un,mff

′(Xn
t1i

)∆Y
Tβn1 (tki )

1{K(tki )≥1}
∑K(tji )

h=2 ∆Y
Tβnh (tji )

,

ζ ′ni,k,j(1, 2) = un,mff
′(Xn

t1i
)
∑K(tki )

h=2 ∆Y
Tβnh (tki )

∆Y
Tβn1 (tji )

1{K(tji )≥1},

ζ ′′ni,k,j(1, 2) = un,mff
′(Xn

t1i
)
∑K(tki )

h=2 ∆Y
Tβnh (tki )

∑K(tji )
h=2 ∆Y

Tβnh (tji )
.

Instead of working with Γnt (1, 2), it is enough to prove that for each k ∈ {2, . . . ,m}
and j ∈ {1, . . . , k − 1}, the three triangular arrays with generic terms ζni,k,j(1, 2),
ζ ′ni,k,j(1, 2) and ζ ′′ni,k,j(1, 2) converge uniformly in probability to 0 as n → ∞. Con-
cerning ζni,k,j(1, 2), on the one hand, by property (P1) and hypothesis (H3), we have
E(ζni,k,j(1, 2)1{|ζni,k,j(1,2)|≤1}|Ft1i ) = 0. On the other hand, as ff ′ is bounded, using

property (P1), the inequalities 1 − eλn,m ≤ λn,m and (
∑n

i=1 |xi|)α ≤
∑n

i=1 |xi|α for
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xi ∈ R and α ≤ 1 and c(β) ≤ Cβ2−α, we have

E(|ζni,k,j(1, 2)|21{|ζni,k,j(1,2)|≤1}|Ft1i )

=
u2
n,m(1− e−λn,m)

θ(βn)
E((

K(tji )∑
h=2

∆Y
Tβnh (tji )

)2

∫
|x|>βn
x2
1

{|un,mff ′(Xt1
i
)x
∑K(t

j
i
)

h=2 ∆Y
T
βn
h

(t
j
i
)
|≤1}

F (dx)|Ft1i )

≤
Cu2

n,m

n
E((

K(tji )∑
h=2

∆Y
Tβnh (tji )

)2c(
1

un,m|ff ′(Xt1i
)||
∑K(tji )

h=2 ∆Y
Tβnh (tji )

|
)|Ft1i )

≤
Cuαn,m
n

E((

K(tji )∑
h=2

|∆Y
Tβnh (tji )

|)α|Ft1i ) ≤
Cuαn,m
n

E(

K(tji )∑
h=2

|∆Y
Tβnh (tji )

|α|Ft1i )

≤
Cuαn,m
n

E(K(tji )1{K(tji )≥2}|Ft1i )ρn
θ(βn)

≤
Cuαn,mρnλn,m

n2
.

Now, using similar arguments as above, the inequality 1{|∑`
j=1 aj |>1} ≤

∑`
j=1 1{|aj |>1/`},

θ(.) is decreasing and hypothesis (Hα
1 ), we obtain for all y > 1

P(|ζni,k,j(1, 2)| > y|Ft1i ) ≤
C

n

∫
|x|>βn

P(|ff ′(Xt1i
)un,mx

K(tji )∑
h=2

∆Y
Tβnh (tji )

| > y|Ft1i )F (dx)

≤ C

n

∫
|x|>βn

E(K(tji )1{K(tji )≥2}1{|ff ′(X
t1
i
)un,mx∆Y

T
βn
2 (t

j
i
)
|>y/(K(tji )−1)}|Ft1i )F (dx)

≤ C

n

∫
|x|>βn

1

θ(βn)
E(K(tji )1{K(tji )≥2}

∫
|z|>βn

1{|z|> y

|ff ′(X
t1
i

)|(K(t
j
i
)−1)un,m|x|

}F (dz)|Ft1i )F (dx)

≤ C

n

∫
|x|>βn

1

θ(βn)
E(K(tji )1{K(tji )≥2}θ(

y

|ff ′(Xt1i
)|(K(tji )− 1)un,m|x|

)|Ft1i )F (dx)

≤ C

n

∫
|x|>βn

1

θ(βn)yα
E(K(tji )

2
1{K(tji )≥2}|Ft1i )u

α
n,m|x|αF (dx) ≤

Cuαn,mλn,mρn

n2yα
.

Then, we conclude the convergence of the triangular array with generic term ζni,k,j(1, 2)

using un,m = ( nm
(m−1) logn)1/α, βn = ( m

m−1)1/αu−1
n,m, ρn ≤ C log 1/βn (see (3.2.5)),

λn,m → 0 as n→∞, criteria (3.7.4) and Lemma 3.7.2. Now, concerning the triangular
array with the generic term ζ ′ni,k,j(1, 2), noticing that j and k play a symmetric role
in ζni,k,j(1, 2) and ζ ′ni,k,j(1, 2), the same calculations yield the same bounds for the
three conditions of criteria (3.7.4) and therefore we obtain the convergence of the
triangular array with the generic term ζ ′ni,k,j(1, 2) in the same way. Finally, concerning
ζ ′′ni,k,j(1, 2), by similar arguments, we have E(ζ ′′ni,k,j(1, 2)1{|ζ′′ni,k,j(1,2)|≤1}|Ft1i ) = 0 and

E(ζ ′′
n
i,k,j(1, 2)2

1{|ζ′′ni,k,j(1,2)|≤1}|Ft1i ) ≤ Cu
2
n,mE((

K(tki )∑
h=2

∆Y
Tβnh (tki )

)2(

K(tji )∑
h=2

|∆Y
Tβnh (tji )

|)α+(2−α)

× 1
{|
∑K(t

j
i
)

h=2 ∆Y
T
βn
h

(t
j
i
)
|≤ 1

un,m|ff ′(Xt1
i

)
∑K(tk

i
)

h=2
∆Y

T
βn
h

(tk
i

)
|
}
|Ft1i ),

≤ Cuαn,mE((

K(tki )∑
h=2

|∆Y
Tβnh (tki )

|)α(

K(tji )∑
h=2

|∆Y
Tβnh (tji )

|)α|Ft1i )
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≤
Cuαn,mE(K(tki )1{K(tki )≥2}|Ft1i )E(K(tji )1{K(tji )≥2}|Ft1i )ρ

2
n

(θ(βn))2
≤
Cuαn,mλ

2
n,mρ

2
n

n2
.

By the same calculations as for ζni,k,j(1, 2), where we use the inequality 1{|∑`′
j′=1

∑`
j=1 ajj′ |>1} ≤∑`′

j′=1

∑`
j=1 1{|ajj′ |>1/(`+`′)}, we have for y > 1

P(|ζ ′′ni,k,j(1, 2)| > y|Ft1i ) = E(1
{|ff ′(X

t1
i
)un,m

∑K(tk
i

)

h=2 ∆Y
T
βn
h

(tk
i

)

∑K(t
j
i
)

h=2 ∆Y
T
βn
h

(t
j
i
)
|>y}
|Ft1i )

≤ E(K(tki )K(tji )1{K(tki )≥2,K(tji )≥2}1{|ff ′(Xt1
i
)un,m∆Y

T
βn
2 (tk

i
)
∆Y

T
βn
2 (t

j
i
)
|> y

(K(tk
i

)−1)(K(t
j
i
)−1)
}|Ft1i )

≤ E(
K(tki )K(tji )1{K(tki )≥2,K(tji )≥2}

(θ(βn))2

∫
|x|>βn
θ(

y

ff ′(Xt1i
)un,m|x|(K(tki )− 1)(K(tji )− 1)

)F (dx)|Ft1i )

≤
E(K(tki )

2K(tji )
2
1{K(tki )≥2,K(tji )≥2}|Ft1i )

(θ(βn))2

uαn,mρn

yα
≤
Cuαn,mρnλ

2
n,m

n2yα
.

Then, we conclude using un,m = ( nm
(m−1) logn)1/α, βn = ( m

m−1)1/αu−1
n,m, ρn ≤ C log 1/βn

(see (3.2.5)), λn,m → 0 as n → ∞, criteria (3.7.4) and Lemma 3.7.2. Therefore, we

get Γn(1, 2)
P→ 0.

The term Γnt (2): Let us recall that Γnt (2) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(2) where

ζni,k(2) = un,mff
′(Xn

t1i
)
dn
nm

[
k − 1

nm
dn + (Nβn

tki
−Nβn

t1i
) + (k − 1)(Nβn

tk+1
i

−Nβn
tki

)].

In case (C2), from hypotheses (H3) and (H4) dn = b +
∫
|x|>1 xF (dx) − d′n = 0 then

this Γnt (2) vanishes. In case (C4), hypothesis (H3) yields d′n = 0 and then dn = b.
Now, for k �xed, as ff ′ is bounded, using Lemma 3.7.4 and

∫
R x

2F (dx) <∞, we get

|E(ζni,k(2)|Ft1i )| ≤
Cun,m
n2 and

E(|ζni,k(2)|2|Ft1i ) ≤
Cu2

n,m

n2
(

1

n2
+ E((Nβn

tki
−Nβn

t1i
)2|Ft1i ) + E((Nβn

tk+1
i

−Nβn
tki

)2|Ft1i ))

≤
Cu2

n,m

n2
(

1

n2
+

1

n
) ≤

Cu2
n,m

n3
.

Then, for case (C4), we conclude using un,m = nm
(m−1) logn , criteria (3.7.3) and Lemma

3.7.2. Therefore, we get Γn(2)
P→ 0.

The term Γnt (3): Let us recall that Γnt (3) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(3) where

ζni,k(3) = un,mff
′(Xn

t1i
)(Mβn

tki
−Mβn

t1i
)(Ytk+1

i
− Ytki ).

For k �xed, as ff ′ is bounded, by using property (P1), lemmas 3.7.4 and 3.7.5 and∫
R x

2F (dx) <∞ (see Remark 3.2.1), we have E(ζni,k(3)|Ft1i ) = 0 and

E(|ζni,k(3)|2|Ft1i )

≤ Cu2
n,mE((Mβn

tki
−Mβn

t1i
)2|Ft1i )

[
E((Y βn

tk+1
i

− Y βn
tki

)2|Ft1i ) + E((Nβn

tk+1
i

−Nβn
tki

)2|Ft1i )
]

≤
Cu2

n,mcn

n

(
cn
n

+
d2
n

n2
+

1

n

)
.
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Then, we conclude using (H3) that dn = b, un,m = ( nm
(m−1) logn)1/α, βn = ( m

m−1)1/αu−1
n,m,

cn ≤ Cβ2−α
n (see (3.2.5)), criteria (3.7.3) and Lemma 3.7.2. Therefore, we get

Γn(3)
P→ 0.

The term Γnt (4): Let us recall that Γnt (4) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(4) where

ζni,k(4) = un,mff
′(Xn

t1i
)[(Aβn

tki
−Aβn

t1i
) + (Nβn

tki
−Nβn

t1i
)](Mβn

tk+1
i

−Mβn
tki

).

For k �xed, by similar arguments as for the term Γnt (3), we have E(ζni,k(4)|Ft1i ) = 0 and

E(|ζni,k(4)|2|Ft1i ) ≤
Cu2

n,mcn
n

(
d2
n
n2 + 1

n

)
. Then, we conclude similarly that Γn(4)

P→ 0.

The term Γnt (5): Since k(x, y) is bounded on R2, it is enough to prove that for
k ∈ {1, . . . ,m}, the following nine triangular arrays with generic terms {ζni,k(5, j), j ∈
{1, . . . , 9} converge to 0 as n→∞ with

ζni,k(5, 1) = un,m(Aβn
tki
−Aβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|, ζni,k(5, 2) = un,m(Aβn

tki
−Aβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|

ζni,k(5, 3) = un,m(Aβn
tki
−Aβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|, ζni,k(5, 4) = un,m(Mβn

tki
−Mβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|

ζni,k(5, 5) = un,m(Nβn
tki
−Nβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζni,k(5, 6) = un,m(Mβn

tki
−Mβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|

ζni,k(5, 7) = un,m(Mβn
tki
−Mβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζni,k(5, 8) = un,m(Nβn

tki
−Nβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|

ζni,k(5, 9) = un,m(Nβn
tki
−Nβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|.

From (3.5.3), (3.5.4) and (3.5.5) and by same calculations, the triangular arrays with
generic terms ζni,k(5, i), i ∈ {1, . . . , 7} and ζni,k(5, 9) are bounded as follows

E(|ζni,k(5, 1)||Ft1i ) ≤ C
un,m|dn|3

n3 , E(|ζni,k(5, 2)||Ft1i )≤C
un,m|dn|2

√
cn

n2
√
n

E(|ζni,k(5, 3)||Ft1i )≤C
un,m|dn|2δn

n3 , E(|ζni,k(5, 4)||Ft1i ) ≤ C
un,m|dn|cn

n2

E(|ζni,k(5, 5)||Ft1i ) ≤ C
un,m

√
cn

n
√
n

, E(|ζni,k(5, 6)||Ft1i ) ≤ C
un,mcnδn

n2

E(|ζni,k(5, 7)||Ft1i ) ≤ C
un,mc

3/2
n

n
√
n

, E(|ζni,k(5, 9)||Ft1i ) ≤ C
un,m|dn|

n2 .

(3.5.8)

Then, we conclude using un,m = ( nm
(m−1) logn)1/α, βn = ( m

m−1)1/αu−1
n,m, cn ≤ Cβ2−α

n and
δn ≤ C log 1/βn (see (3.2.5)), dn = 0 for case (C2), dn = b for case (C4), criteria (3.7.2)
and Lemma 3.7.2. Therefore, we have the convergence to 0 of the eight triangular
arrays corresponding to these eight generic terms. Now, concerning ζni,k(5, 8), we

rewrite as un,m(
∑k−1

h=1(Nβn

th+1
i

− Nβn
thi

))2|Nβn

tk+1
i

− Nβn
tki
|, then by Jensen's inequality we

have

ζni,k(5, 8) ≤ Cun,m
k−1∑
h=1

(

K(thi )∑
j=1

∆Y
Tβnj (thi )

)2

K(tki )∑
j′=1

|∆Y
Tβn
j′ (tki )

|.

Thus, for h < k �xed, thanks to the inequality (a + b)2 ≤ 2(a2 + b2), to prove the
convergence of the last triangular array, it is enough to consider the two following
generic terms

ζni,k,h(5, 8) = un,m(
∑K(thi )

j=2 ∆Y
Tβnj (thi )

)2
∑K(tki )

j′=1 |∆YTβn
j′ (tki )

|,

ζ ′ni,k,h(5, 8) = un,m(∆Y
Tβn1 (thi )

1{K(thi )≥1})
2
∑K(tki )

j=1 |∆YTβnj (tki )
|.
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First, we consider ζni,k,h(5, 8). By property (P1), the inequality for α ≤ 1, (
∑n

i=1 |xi|)α ≤∑n
i=1 |xi|α and

∫
|x|>βn |x|

α/2F (dx) ≤ C

β
α/2
n

(see (3.2.2)), we have E(|ζni,k,h(5, 8)|1{|ζni,k,h(5,8)|≤1}|Ft1i )

=un,mE(|
K(thi )∑
j=2

∆Y
Tβnj (thi )

|α+(2−α)|
K(tki )∑
j′=1

∆Y
Tβn
j′ (tki )

|1
{|
∑K(th

i
)

j=2 ∆Y
T
βn
j

(th
i

)
|≤ 1√√√√√un,m

∑K(tk
i

)

j′=1
|∆Y

T
βn
j′

(tk
i

)
|

}
|Ft1i )

≤uα/2n,mE((

K(thi )∑
j=2

|∆Y
Tβnj (thi )

|)α(

K(tki )∑
j′=1

|∆Y
Tβn
j′ (tki )

|)α/2|Ft1i )

≤uα/2n,mE(

K(thi )∑
j=2

|∆Y
Tβnj (thi )

|α
K(tki )∑
j′=1

|∆Y
Tβn
j′ (tki )

|α/2|Ft1i )

≤Cu
α/2
n,mρn

(θ(βn))2

∫
|x|>βn

|x|α/2F (dx)E(K(thi )K(tki )1{K(thi )≥2,K(tki )≥1}|Ft1i ) ≤
Cu

α/2
n,mλn,mρn

n2β
α/2
n

.

Now, using similar arguments as above, Jensen's inequality, the inequality
1{|

∑`′
j′=1

∑`
j=1 ajj′ |>1} ≤

∑`′

j′=1

∑`
j=1 1{|ajj′ |>1/(`+`′)}, θ(.) is decreasing and (Hα

1 ), for

y > 1, we have

P(|ζni,k,h(5, 8)| > y|Ft1i ) ≤ E(1
{un,mK(thi )

∑K(th
i

)

j=2 ∆Y 2

T
βn
j

(th
i

)

∑K(tk
i

)

j′=1
|∆Y

T
βn
j′

(tk
i

)
|>y}
|Ft1i )

≤E(K(thi )K(tki )1{K(thi )≥2,K(tki )≥1}1{K(thi )∆Y 2

T
βn
2 (th

i
)
|∆Y

T
βn
1 (tk

i
)
|> y

un,mK(th
i

)K(tk
i

)
}|Ft1i )

≤ 1

(θ(βn))2
E(K(thi )K(tki )1{K(thi )≥2,K(tki )≥1}

∫
|z|>βn

θ(

√
y

un,mK(thi )2K(tki )|z|
)F (dz)|Ft1i )

≤ 1

(θ(βn))2

∫
|z|>βn

u
α/2
n,m|z|α/2

yα/2
F (dz)E(K(thi )2K(tki )

2
1{K(thi )≥2,K(tki )≥1}|Ft1i ) ≤

Cu
α/2
n,mλn,m

n2yα/2β
α/2
n

.

We conclude using un,m = ( nm
(m−1) logn)1/α, βn = ( m

m−1)1/αu−1
n,m, ρn ≤ C log 1/βn

(see (3.2.5)), λn,m → 0 as n → ∞, criteria (3.7.4) and Lemma 3.7.2. Similarly for
ζ ′ni,k,h(5, 8), using 1−e−λn,m ≤ λn,m and that c(β) ≤ Cβ2−α, E(|ζ ′ni,k,h(5, 8)|1{|ζ′ni,k,h(5,8)|≤1}|Ft1i )
is equal to

un,m(1− e−λn,m)E(∆Y 2
Tβn1 (thi )

|
K(tki )∑
j=1

∆Y
Tβnj (tki )

|1{|∆Y
T
βn
1 (th

i
)
|≤ 1√√√√√un,m|

∑K(tk
i

)

j=1
∆Y

T
βn
j

(tk
i

)
|

}|Ft1i )

≤ un,m
n

E(c(
1√

un,m|
∑K(tki )

j=1 ∆Y
Tβnj (tki )

|
)|
K(tki )∑
j=1

∆Y
Tβnj (tki )

||Ft1i )

≤ Cu
α/2
n,m

n
E(

K(tki )∑
j=1

|∆Y
Tβnj (tki )

|α/2|Ft1i )

≤ Cu
α/2
n,m

nθ(βn)

∫
|x|>βn
|x|α/2F (dx)E(K(tki )1{K(tki )≥1}|Ft1i ) ≤

Cu
α/2
n,m

n2β
α/2
n

,
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and using the inequality 1{|∑`
j=1 aj |>1} ≤

∑`
j=1 1{|aj |>1/`}, θ(.) is decreasing and (H

α
1 ),

we get for y > 1,

P(|ζ ′ni,k,h(5, 8)| > y|Ft1i ) ≤λn,mE(K(tki )1{K(tki )≥1}1{∆Y 2

T
βn
1 (th

i
)
|∆Y

T
βn
1 (tk

i
)
|> y

un,mK(tk
i

)
}|Ft1i )

≤ Cλn,m
(θ(βn))2

E(K(tki )1{K(tki )≥1}

∫
|z|>βn

θ(

√
y

un,mK(tki )|z|
)F (dz)|Ft1i )

≤ Cu
α/2
n,m

nθ(βn)yα/2

∫
|z|>βn
|z|α/2F (dz)E(K(tki )

2
1{K(tki )≥1}|Ft1i ) ≤

Cu
α/2
n,m

n2yα/2β
α/2
n

.

We conclude using un,m = ( nm
(m−1) logn)1/α, βn = ( m

m−1)1/αu−1
n,m, criteria (3.7.4) and

Lemma 3.7.2. Therefore, we get Γn(5)
P→ 0.

3.5.3 Proof of Lemma 3.4.10

From the formula of the rest term given by (3.4.15), we have

Rn,mt = Γnt (1, 2) + Γnt (2, 2) +

5∑
i=3

Γnt (i).

The aim is to prove that each term converges uniformly in probability to 0 when
n→∞.
The term Γnt (1, 2): Let us recall that Γnt (1, 2) =

∑m
k=2

∑[nt]
i=1 ζ

n
i,k(1, 2) where

ζni,k(1, 2) =
un,mdn
nm

ff ′(Xn
t1i

)

k−1∑
j=1

K(tij)∑
h=2

∆Y
Tβnh (tij)

+ (k − 1)

K(tik)∑
h=2

∆Y
Tβnh (tik)

 .
For k ∈ {2, . . . ,m}, since ff ′ is bounded, by property (P1), Jensen's inequality and
similar calculations as in (3.4.16), we have

E(|ζni,k(1, 2)||Ft1i ) ≤
Cun,mdn

n

k−1∑
j=1

E(

K(tji )∑
h=2

|∆Y
Tβnh (tji )

||Ft1i ) + (k − 1)E(

K(tki )∑
h=2

|∆Y
Tβnh (tki )

||Ft1i )


≤ Cun,mdnδnλn,m

n2
.

As we choose un,m = nm
(m−1)(logn)2 , using dn ≤ C log n, δn ≤ C log n (see (3.2.5))

and λn,m → 0 as n → ∞, we conclude by criteria (3.7.2) and Lemma 3.7.2 that

Γn(1, 2)
P→ 0.

The term Γnt (2, 2): Let us recall that Γnt (2, 2) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(2, 2) where

ζni,k(2, 2) =un,mff
′(Xn

t1i
)

∆Y
Tβn1 (tki )

1{K(tki )≥1}

k−1∑
j=1

K(tji )∑
h=2

∆Y
Tβnh (tji )

+

K(tki )∑
h=2

∆Y
Tβnh (tki )

k−1∑
j=1

∆Y
Tβn1 (tji )

1{K(tji )≥1} +

K(tki )∑
h=2

∆Y
Tβnh (tki )

k−1∑
j=1

K(tji )∑
h=2

∆Y
Tβnh (tji )

 .



78 Chapter 3. Asymptotic behavior of the error for Lévy driven SDEs

For any �xed k ∈ {2, . . . ,m}, as ff ′ is bounded, by (P1), 1−e−λn,m ≤ λn,m and using
the same calculations in (3.4.16), we have

E(|ζni,k(2, 2)||Ft1i ) ≤ Cun,m

(
2× δn

n

δnλn,m
n

+
δ2
nλ

2
n,m

n2

)
≤ Cun,mδ

2
nλn,m
n2

.

Then we conclude using the same arguments as above to get Γn(2, 2)
P→ 0.

The term Γnt (3): Let us recall that Γnt (3) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(3) with

ζni,k(3) = un,mff
′(Xn

t1i
)(Mβn

tki
−Mβn

t1i
)(Ytk+1

i
− Ytki ).

For k ∈ {2, . . . ,m}, since ff ′ is bounded, by property (P1), the independence between
Mβn
tki
−Mβn

t1i
and Ytk+1

i
− Ytki , decomposition (3.2.6), Lemma 3.7.4 and Lemma 3.7.5,∫

R x
2F (dx) <∞ (see Remark 3.2.1),we get E(ζni,k(3)|Ft1i ) = 0 and

E(|ζni,k(3)|2|Ft1i ) ≤ Cu
2
n,mE(|Mβn

tki
−Mβn

t1i
|2|Ft1i )E(|Ytk+1

i
−Ytki |

2|Ft1i ) ≤
Cu2

n,mcn

n
(
d2
n

n2
+
cn
n

+
1

n
).

Then we conclude using un,m = nm
(m−1)(logn)2 and βn = logn

n , dn ≤ C log 1/βn and

cn ≤ Cβn from (3.2.5), criteria (3.7.3) and Lemma 3.7.2. Therefore, we get Γn(3)
P→ 0.

The term Γnt (4): Let us recall that Γnt (4) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(4) with

ζni,k(4) = un,mff
′(Xn

t1i
)(Aβn

tki
−Aβn

t1i
+Nβn

tki
−Nβn

t1i
)(Mβn

tk+1
i

−Mβn
tki

).

For k �xed, using the same arguments as for Γn(3), we get E(ζni,k(4)|Ft1i ) = 0,

E((ζni,k(4))2|Ft1i ) ≤
Cu2

n,mcn
n (d

2
n
n2 + 1

n) and therefore, we get Γn(4)
P→ 0.

The term Γnt (5): Since k(x, y) is bounded on R2, it is enough to prove that for
k ∈ {1, . . . ,m}, the following nine triangular arrays with generic terms {ζni,k(5, j), j ∈
{1, . . . , 9} converge to 0 as n→∞ with

ζni,k(5, 1) = un,m(Aβn
tki
−Aβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|, ζni,k(5, 2) = un,m(Aβn

tki
−Aβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|

ζni,k(5, 3) = un,m(Aβn
tki
−Aβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|, ζni,k(5, 4) = un,m(Mβn

tki
−Mβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|

ζni,k(5, 5) = un,m(Nβn
tki
−Nβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζni,k(5, 6) = un,m(Mβn

tki
−Mβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|

ζni,k(5, 7) = un,m(Mβn
tki
−Mβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζni,k(5, 8) = un,m(Nβn

tki
−Nβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|

ζni,k(5, 9) = un,m(Nβn
tki
−Nβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|.

From (3.5.3), (3.5.4), (3.5.5) and (3.5.8), the triangular arrays with generic terms
ζni,k(5, i), i ∈ {1, . . . , 9} are bounded as follows

E(|ζni,k(5, 1)||Ft1i ) ≤ C
un,m|dn|3

n3 , E(|ζni,k(5, 2)||Ft1i )≤C
un,m|dn|2

√
cn

n2
√
n

E(|ζni,k(5, 3)||Ft1i )≤C
un,m|dn|2δn

n3 , E(|ζni,k(5, 4)||Ft1i ) ≤ C
un,m|dn|cn

n2

E(|ζni,k(5, 5)||Ft1i ) ≤ C
un,m

√
cn

n
√
n

, E(|ζni,k(5, 6)||Ft1i ) ≤ C
un,mcnδn

n2

E(|ζni,k(5, 7)||Ft1i ) ≤ C
un,mc

3/2
n

n
√
n

, E(|ζni,k(5, 8)||Ft1i ) ≤ C
un,mδn
n2 ,

E(|ζni,k(5, 9)||Ft1i ) ≤ C
un,m|dn|

n2 .

(3.5.9)
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Then, by un,m = nm
(m−1)(logn)2 , dn ≤ C log 1/βn, δn ≤ C log 1/βn and cn ≤ Cβn (see

(3.2.5)) with βn = logn
n , criteria (3.7.2) and Lemma 3.7.2, we conclude the convergence

of these triangular arrays. Therefore, we get Γn(5)
P→ 0.

3.5.4 Proof of Lemma 3.4.13

Here, we prove that the sequences of processes (Y
n
(1))n≥0 and (Rn,m)n≥0 converge

uniformly in probability to 0 as n→∞. First, instead of considering the form Y
n
t (1)

given in (3.4.5), it is enough to prove that for each k ∈ {1, . . . ,m} the triangular arrays
with generic terms yn,mi,k (1, 1) = Mβn

tki ,t
k+1
i

and yn,mi,k (1, 2) =
∑

j≥2 ∆Y
Tβnj (tki )

1{K(tki )≥j}

converge uniformly in probability to 0 as n → ∞. On the one hand, from the above
(3.5.1), we have E(yn,mi,k (1, 1)|Ft1i ) = 0, E((yn,mi,k (1, 1))2|Ft1i ) = cn

nm . Then, y
n,m
i,k (1, 1)

satis�es (3.7.3) and we conclude using cn ≤ Cβ2−α
n (see (3.2.5)) and Lemma 3.7.2. On

the other hand, by similar calculations as in (3.5.2), property (P1) and
∫
R x

2F (dx) <

∞, we have E(|yn,mi,k (1, 2)||Ft1i ) ≤
δnλn,m
nm . Then we conclude using δn ≤ C log 1/βn

(see (3.2.5)), λn,m ≤ C
nβαn

(see (Hα
1 )), with the choice βn = logn

n1/(2α) , criteria (3.7.2) and

Lemma 3.7.2. Therefore, we have Y
n
(1)

P→ 0. Now, from the formula of the rest term
given by (3.4.19), we have

Rn,mt = Γnt (1, 2) +
5∑
i=2

Γnt (i).

Now, we will prove that each term converges uniformly in probability to 0 when
n→∞.
The term Γnt (1, 2): Let us recall that Γnt (1, 2) =

∑m
k=1

∑[nt]
i=1 ζ

n
i,k(1, 2), where

ζni,k(1, 2) = ff ′(Xt1i
)

K(tik)∑
j=2

∆YTj(tik)M̃
n,m
i,k with M̃n,m

i,k = (Mβn
tm+1
i

−Mβn
t1i

)−(Mβn

tk+1
i

−Mβn
tki

).

For k ∈ {1, . . . ,m} �xed, �rst, by Lemma 3.7.5 we have E((M̃n,m
i,k )2|Ft1i ) ≤

Ccn
n . As

ff ′ is bounded, using Jensen's inequality, the independence of {∆YTj(tki ), j ≥ 1,K(tki )}
and M̃n,m

i,k , property (P1) and
∫
R x

2F (dx) <∞, we get that E(ζni,k(1, 2)|Ft1i ) = 0 and

E((ζni,k(1, 2))2|Ft1i )≤Cu
2
n,mE(K(tki )

K(tki )∑
j=2

(∆Y
Tβnj (tki )

)2|Ft1i )E((M̃n,m
i,k )2|Ft1i )

≤
Cu2

n,mcn

nθ(βn)
E(K(tki )(K(tki )− 1)1{K(tki )≥2}|Ft1i )

∫
|x|>βn

x2F (dx)≤
Cu2

n,mcnλn,m

n2
.

Then, we conclude by cn ≤ Cβ2−α
n (see (3.2.5)), λn,m ≤ C

nβαn
(see (Hα

1 )), the choices

un,m =
[

mn
(m−1) logn

]1/α
and βn = logn

n1/(2α) with α > 1, criteria (3.7.3) and Lemma 3.7.2.

Therefore, we get Γn(1, 2)
P→ 0.

The term Γnt (2): Let us recall that Γnt (2) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(2), with

ζni,k(2) = un,m[
(k − 1)dn

nm
+Mβn

tki
−Mβn

t1i
](
dn
nm

+Mβn

tk+1
i

−Mβn
tki

).
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For k ∈ {2, . . . ,m} �xed, by the independence of the increments and Lemma 3.7.5,

we get E(ζni,k(2)|Ft1i ) =
(k−1)un,md2

n

n2m2 and

E(|ζni,k(2)|2|Ft1i ) ≤ Cu
2
n,m(E(Mβn

tki
−Mβn

t1i
)2 +

d2
n

n2
)(E(Mβn

tk+1
i

−Mβn
tki

)2 +
d2
n

n2
)

≤ Cu2
n,m

(
c2
n

n2
+
d4
n

n4

)
.

Then, we conclude by cn ≤ Cβ2−α
n , dn ≤ Cβ1−α

n (see (3.2.5)), the choices un,m =[
mn

(m−1) logn

]1/α
and βn = logn

n1/(2α) with α > 1, criteria (3.7.3) and Lemma 3.7.2. There-

fore, we get Γn(2)
P→ 0.

The term Γnt (3): Let us recall that Γnt (3) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(3) with

ζni,k(3) =
un,mdn(k − 1)

nm
(Nβn

tk+1
i

−Nβn
tki

) +
un,mdn
nm

(Nβn
tki
−Nβn

t1i
).

For k ∈ {2, . . . ,m} �xed, by the independence of the increments and Lemma 3.7.4,
we get

E(|ζni,k(3)||Ft1i ) ≤
Cun,m|dn|

n
(E|Nβn

tk+1
i

−Nβn
tki
|+ E|Nβn

tki
−Nβn

t1i
|) ≤ Cun,m|dn|δn

n2
.

Then, we conclude using δn and dn are bounded by Cβ1−α
n (see (3.2.5)), the choices

un,m =
[

mn
(m−1) logn

]1/α
and βn = logn

n1/(2α) , criteria (3.7.2) and Lemma 3.7.2. Therefore,

Γn(3)
P→ 0.

The term Γnt (4): Let us recall that Γnt (4) =
∑m

k=2

∑[nt]
i=1 ζ

n
i,k(4) where

ζni,k(4) = un,m(Nβn
tki
−Nβn

t1i
)(Nβn

tk+1
i

−Nβn
tki

).

For k ∈ {2, . . . ,m} �xed, by the independence of the increments and Lemma 3.7.4,
we have

E(|ζni,k(4)||Ft1i ) ≤ Cun,mE(|Nβn
tki
−Nβn

t1i
|)E(|Nβn

tk+1
i

−Nβn
tki
|) ≤ Cun,mδ

2
n

n2
.

Then, we conclude using δn ≤ Cβ1−α
n (see (3.2.5)), with our choice of un,m and βn,

criteria (3.7.2) and Lemma 3.7.2. Therefore, we get Γn(4)
P→ 0.

The term Γnt (5): Since k(x, y) is bounded on R2, it is enough to prove that for
k ∈ {1, . . . ,m}, the following nine triangular arrays with generic terms {ζni,k(5, j), j ∈
{1, . . . , 9} converge to 0 as n→∞ with

ζni,k(5, 1) = un,m(Aβn
tki
−Aβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|, ζni,k(5, 2) = un,m(Aβn

tki
−Aβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|

ζni,k(5, 3) = un,m(Aβn
tki
−Aβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|, ζni,k(5, 4) = un,m(Mβn

tki
−Mβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|

ζni,k(5, 5) = un,m(Nβn
tki
−Nβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζni,k(5, 6) = un,m(Mβn

tki
−Mβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|

ζni,k(5, 7) = un,m(Mβn
tki
−Mβn

t1i
)2|Mβn

tk+1
i

−Mβn
tki
|, ζni,k(5, 8) = un,m(Nβn

tki
−Nβn

t1i
)2|Nβn

tk+1
i

−Nβn
tki
|

ζni,k(5, 9) = un,m(Nβn
tki
−Nβn

t1i
)2|Aβn

tk+1
i

−Aβn
tki
|.
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From (3.5.9), the triangular arrays with generic terms ζni,k(5, i), i ∈ {1, . . . , 9}\{5} are
bounded as follows

E(|ζni,k(5, 1)||Ft1i ) ≤ C
un,m|dn|3

n3 , E(|ζni,k(5, 2)||Ft1i )≤C
un,m|dn|2

√
cn

n2
√
n

E(|ζni,k(5, 3)||Ft1i )≤C
un,m|dn|2δn

n3 , E(|ζni,k(5, 4)||Ft1i ) ≤ C
un,m|dn|cn

n2

E(|ζni,k(5, 6)||Ft1i ) ≤ C
un,mcnδn

n2 , E(|ζni,k(5, 7)||Ft1i ) ≤ C
un,mc

3/2
n

n
√
n

E(|ζni,k(5, 8)||Ft1i ) ≤ C
un,mδn
n2 , E(|ζni,k(5, 9)||Ft1i ) ≤ C

un,m|dn|
n2 .

Then, by un,m =
[

nm
(m−1) logn

]1/α
, dn ≤ Cβ1−α

n , δn ≤ Cβ1−α
n and cn ≤ Cβ2−α

n

(see (3.2.5)) with βn = logn
n1/(2α) , criteria (3.7.2) and Lemma 3.7.2, we conclude that

these triangular arrays with generic terms ζni,k(5, i), i ∈ {1, . . . , 9}\{5} converge to
0. Next, concerning ζni,k(5, 5), we reuse the notations in section 3.4.1 and rewrite
ζni,k(5, 5) = ζ ′ni,k(5, 5) + ζ ′′ni,k(5, 5) + ζ ′′′ni,k(5, 5) where

ζ ′ni,k(5, 5) = un,m∆Y 2
Tβn1 (t1i ,t

k
i )
1{K(t1i ,t

k
i )≥1}|M

βn

tk+1
i

−Mβn
tki
|,

ζ ′′ni,k(5, 5) = un,m
∑K(t1i ,t

k
i )

j=2 ∆Y 2
Tβnj (t1i ,t

k
i )
|Mβn

tk+1
i

−Mβn
tki
|,

ζ ′′′ni,k(5, 5) = un,m
∑K(t1i ,t

k
i )

j,j′=1
j 6=j′

|∆Y
Tβnj (t1i ,t

k
i )
||∆Y

Tβn
j′ (t1i ,t

k
i )
||Mβn

tk+1
i

−Mβn
tki
|.

Concerning ζ ′′ni,k(5, 5) and ζ ′′′ni,k(5, 5), by the independence between the martingale
increment and the jumps with size bigger than βn, Cauchy-Schwarz's inequality and
Lemma 3.7.5 for term |Mβn

tk+1
i

−Mβn
tki
| and the same estimates as done for the treatment

of Γ
n
(1, 2) in the proof of Lemma 3.4.4, we have

E(|ζ ′′ni,k(5, 5)||Ft1i ) ≤ Cun,m
√

cn
n E
(∑K(t1i ,t

k
i )

h=2 ∆Y 2
Tβnh (t1i ,t

k
i )
|Ft1i

)
≤ Cun,m

√
cnλn,m

n
√
n

E(|ζ ′′′ni,k(5, 5)||Ft1i ) ≤
Cun,m

√
cn√

n
E

(∑K(t1i ,t
k
i )

j,j′=1
j 6=j′

|∆Y
Tβnj (t1i ,t

k
i )

∆Y
Tβn
j′ (t1i ,t

k
i )
||Ft1i

)
≤ Cun,m

√
cnδ2

n

n2
√
n

Then, for our choice of un,m and βn, we use δn ≤ Cβ1−α
n and cn ≤ Cβ2−α

n (see (3.2.5)),
λn,m ≤ C

nβαn
(see (Hα

1 )), criteria (3.7.2) and Lemma 3.7.2 to get the convergence to

0 of the triangular arrays with generic terms ζ ′′ni,k(5, 5), ζ ′′′ni,k(5, 5). Concerning the
term ζ ′ni,k(5, 5), using the independence structure, properties (P1) and (P2), we see
that

E(eivζ
′n
i,k(5,5)|Ft1i ) = e−(k−1)λn,m +

1− e−(k−1)λn,m

θ(βn)

∫
|x|>βn

E(e
ivun,mx2|Mβn

tk+1
i

−Mβn

tk
i

|
)F (dx)

Let us denote z′n,m(x, v) = 1
nm

∫
|y|≤βn(eivun,mx

2|y| − 1− ivun,mx
2|y|)F (dy). Then we

have

E(eivζ
′n
i,k(5,5)|Ft1i ) = e−(k−1)λn,m +

1− e−(k−1)λn,m

θ(βn)

∫
|x|>βn

ez
′
n,m(x,v)F (dx)

= 1 +
1− e−(k−1)λn,m

θ(βn)

∫
|x|>βn

(ez
′
n,m(x,v) − 1)F (dx).

By similar calculations as in (3.4.20), we easily get |z′n,m(x, v)| ≤ C
n |vun,mx

2|α and
the suprema of |z′n,m(x, v)| over all |x| ≤ p and |v| ≤ 1 goes to 0 as n tends to 0.
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Now, since |ez′n,m(x,v)−1| ≤ C|z′n,m(x, v)| and x 7→ |x|2α is F -integrable (see Remark
3.2.1), we have

|E(eivζ
′n
i,k(5,5)|Ft1i )− 1| ≤

C|v|αuαn,m
n2

.

Then, for our choice of un,m, ζ ′
n
i,k(5, 5) satis�es (3.7.7) with ξ′′′n,v =

C|v|αuαn,m
n which

converges to 0 as n→∞ for all v ≤ 1. Then, by Lemma 3.7.3 and Lemma 3.7.2, we

get the convergence for the last triangular array. Therefore, we get Γn(5)
P→ 0.

3.6 Appendix B: Proof of some equalities and inequalities

First, we observe from the Lévy measure two relations followed:

• On the positive side For all 0 ≤ a < b ≤ 1 and γ > 0, we have∫
a<x≤b

|x|γF (dx) = γ

∫ b

0
yγ−1(θ+(y ∨ a)− θ+(b))dy (3.6.1)

and
∫
a<x≤b

x log xF (dx) =

∫ b

0
(1 + log y)(θ+(y ∨ a)− θ+(b))dy. (3.6.2)

Proof. The proofs are simply by Fubini. Concerning (3.6.1), it r.h.s. is equal to

γ

∫ b

0
yγ−1

(∫
x>y∨a

F (dx)−
∫
x>b

F (dx)

)
dy = γ

∫ b

0
yγ−1

∫
y∨a<x≤b

F (dx)dy

= γ

(∫ a

0
yγ−1

∫
a<x≤b

F (dx)dy +

∫ b

a
yγ−1

∫
y<x≤b

F (dx)dy

)
= γ

(∫
a<x≤b

F (dx)

∫ a

0
yγ−1dy +

∫
a<x≤b

F (dx)

∫ x

a
yγ−1dy

)
=

∫
a<x≤b

aγF (dx) +

∫ b

a
(xγ − aγ)F (dx) =

∫
a<x≤b

xγF (dx).

Concerning (3.6.2), its r.h.s is equal to∫ a

0
(1 + log y)(θ+(a)− θ+(b))dy +

∫ b

a
(1 + log y)(θ+(y)− θ+(b))dy

= (θ+(a)− θ+(b))a log a+

∫ b

a

∫
x>y

(1 + log y)F (dx)dy − θ+(b)(b log b− a log a)

= θ+(a)a log a− θ+(b)b log b+

∫
x>a

∫
a<y≤x∧b

(1 + log y)dyF (dx)

= −θ+(b)b log b+

∫
x>a

(x ∧ b) log (x ∧ b)F (dx) =

∫
a<x≤b

x log xF (dx).
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• On the negative side For all −1 ≤ a < b ≤ 0 and γ > 0, we have∫
a≤x<b

|x|γF (dx) = γ

∫ 0

a
(−y)γ−1(θ−((−y) ∨ (−b))− θ−(−a))dy. (3.6.3)

and
∫
a≤x<b

|x| log |x|F (dx) =

∫ 0

a
(1+log |y|)(θ−((−y)∨(−b))−θ−(−a))dy. (3.6.4)

Proof. Here, also, the proofs are simply by Fubini. Concerning (3.6.3), it r.h.s. is
equal to

γ

∫ 0

a
(−y)γ−1

(∫
x<y∧b

F (dx)−
∫
x<a

F (dx)

)
dy = γ

∫ 0

a
(−y)γ−1

∫
a≤|x|<y∧b

F (dx)dy

= γ

(∫ b

a
(−y)γ−1

∫
a≤|x|<y

F (dx)dy +

∫ 0

b
(−y)γ−1

∫
a≤|x|<b

F (dx)dy

)

= γ

(∫
a≤x<b

F (dx)

∫ b

x
(−y)γ−1dy +

∫
a≤x<b

F (dx)

∫ 0

b
(−y)γ−1dy

)
=

∫
a≤x<b

((−x)γ − (−b)γ)F (dx) +

∫
a≤x<b

F (dx)(−b)γ =

∫
a≤x<b

(−x)γF (dx).

Concerning (3.6.4), its r.h.s is equal to∫ b

a
(1 + log y)(θ−(−y)− θ−(−a))dy +

∫ 0

b
(1 + log y)(θ−(−b)− θ−(−a))dy

=

∫ b

a

∫
x<y

(1 + log y)F (dx)dy − θ−(−a)(b log (−b)− a log (−a))− (θ−(−b)− θ−(−a))b log (−b)

=

∫
x<b

∫
x∨a<y≤b

(1 + log y)dyF (dx) + θ−(−a)a log (−a)− θ−(−b)b log (−b)

=

∫
x<b

(x ∨ a) log (−(x ∨ a))F (dx) + θ−(−a)a log (−a) =

∫
a≤x<b

|x| log |x|F (dx).

Proof of Lemma 3.2.2. Taking advantage of (3.6.1) and (3.6.3), we have

c(β) =

∫
0<x≤β

x2F (dx) +

∫
−β<x≤0

x2F (dx)

= 2

∫ β

0
y(θ+(y)− θ+(β))dy + 2

∫ 0

−β
(−y)(θ−(−y)− θ−(β))dy

= 2

∫ β

0
y(θ+(y)− θ+(β))dy + 2

∫ β

0
y(θ−(y)− θ−(β))dy = 2

∫ β

0
y(θ(y)− θ(β))dy.

(*)

In other hand, by (Hα
1 ) |θ(y) − θ(β)| ≤ |θ(y)| + |θ(β)| ≤ Cy−α + Cβ−α. By (∗),

c(β) ≤
(

2C
2−α + C

)
β2−α. Similar proofs are easily deduced from (3.6.1) and (3.6.3)

for the other formulas.
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Proof of Lemma 3.2.4. By (∗) c(β) ∼ 2
∫ β

0 y
(
θ
yα −

θ
βα

)
dy = αθ

2−αβ
2−α. Here, we can

also obtain similar proofs for the other formulas.

Proof of Lemma 3.2.5. Applying (3.6.2) we have

1

(log (1/β))2

∫
β<x≤b

(x log x)F (dx) =
1

(log (1/β))2

∫ b

0
(1 + log y)(θ+(y ∨ β)− θ+(b))dy

∼ 1

(log (1/β))2
θ+(β)

∫ β

0
(1 + log |y|)dy +

1

(log (1/β))2

∫ b

β
(1 + log y)θ+(y)dy.

Considering the �rst term, for β → 0 we deduce from (Hα
2 ) with α = 1 that

1
(log (1/β))2 θ+(β)

∫ β
0 (1 + log |y|)dy ∼ log β

(log (1/β))2 θ+ −→
n→∞

0. Now, let ε > 0, there ex-

ists a ε′ ∈ (0, 1) such that β ∈ (0, ε′) and we have |βθ+(β)
θ+

− 1| ≤ ε. Considering the

second term, we rewrite 1
(log (1/β))2

∫ b
β (1 + log y)θ+(y)dy = xn + yn where

xn =
1

(log (1/β))2

∫ b

ε′
(1 + log y)θ+(y)dy, yn =

1

(log (1/β))2

∫ ε′

β
(1 + log y)θ+(y)dy.

On the one hand, xn is bounded by θ+(ε′)
(log (1/β))2

∫ b
ε′(1 + log y)dy which converges to 0

as n → ∞. On the other hand, if we denote y′n = θ+
(log (1/β))2

∫ ε′
β (1 + log y)y−1dy,

we have y′n(1 − ε) ≤ yn ≤ y′n(1 + ε) for any ε arbitrarily small, then yn ∼ y′n ∼
−(log β)2

2(log (1/β))2 θ+ −→
n→∞

− θ+
2 . Therefore, it is clear that 1

(log (1/β))2

∫
β<x≤ε′(x log x)F (dx) −→

n→∞
− θ+

2 . Similarly, applying (3.6.4), we get 1
(log (1/β))2

∫
−b≤x<β((−x) log (−x))F (dx) −→

n→∞
− θ−

2 which completes the proof.

3.7 Appendix C: Some general tools

3.7.1 Uniformly tight processes

We recall the de�nition of uniformly tight property (UT ) de�ned in Jakubowski,
Mémin, and Pagès, 1989. Let Zn be a sequence of semimartingale, with the canonical
decompositions

Znt = An,at +Mn,a
t +

∑
s≤t

∆Zns 1{|∆Zns |>a}, (3.7.1)

where a > 0 and An,a is a predictable process with locally bounded variation and
Mn,a is a (locally bounded) local martingale. Then we say that the sequence (Zn)
satis�es (UT ) if for any t <∞, the sequence of real-valued random variables

V ar(An,a)t + 〈Mn,a,Mn,a〉t +
∑
s≤t
|∆Znt |1{|∆Zns |>a}

is tight. This property does not depend on the choice of a ∈ (0,∞).
If a sequence is (UT ) then it has some other important properties as in the theorem
below, which can also be found in Jacod and Shiryaev, 2003 or in Theorem 2.3 of
Jacod and Protter, 1998.

Theorem 3.7.1. Let Xn and Y n be two sequences of semi-martingales,

(i) If both sequences Xn and Y n are (UT ), then so has the sequence Xn + Y n.
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(ii) Let Hn be a sequence of predictable processes such that the sequence sups≤t |Hn
s |

is tight. If the sequence Xn is (UT ), so is the sequence
∫ .

0 H
n
s dX

n
s .

(iii) Suppose that Xn weakly converges. Then (UT ) is necessary and su�cient for

the following property:

For any sequence of adapted càdlàg Hn processes such that the sequence (Hn, Xn)
weakly converges to (H,X), then X is a semi-martingale with respect to the

�ltration generated by the process (H,X), and we have (Hn, Xn,
∫ .

0 H
n
s−dX

n
s )

L−→
(H,X,

∫ .
0 Hs−dXs).

3.7.2 Triangular arrays

Now concerning sums of triangular arrays of the form

Γnt =

[nt]∑
i=1

ζni ,

where for each n we have Rd-valued random variables (ζni )i≥1 such that each ζni is
Fi/n-measurable. Below we give various conditions recalled in Jacod, 2004 insuring
tightness or convergence of the sequence (Γn).

E(|ζni ||F(i−1)/n) ≤ ξn
n
, (3.7.2){

|E(ζni |F(i−1)/n)| ≤ ξn
n ,

E(|ζni |2|F(i−1)/n) ≤ ξ′n
n ,

(3.7.3)
|E(ζni 1{|ζni |≤1}|F(i−1)/n)| ≤ ξn

n ,

E(|ζni |21{|ζni |≤1}|F(i−1)/n) ≤ ξ′n
n ,

P(|ζni | > y|F(i−1)/n) ≤ ξ′′n,y
y , ∀y > 1.

(3.7.4)

Note that (3.7.3) with ξ̂n and ξ̂′n implies (3.7.4) with ξn = ξ̂n + ξ̂′n and ξ′n =
ξ̂′n and ξ”n,y = ξ̂′n/y

2 (the last is from extended version of Markov inequality for

monotonically increasing functions). Also, (3.7.2) with ξ̂n implies (3.7.4) with ξn =
ξ′n = ξ̂n and ξ”n,y = ξ̂n/y.

By Γn
P−→ 0, we mean that sups≤t |Γns | goes to 0 in probability for all t.

Lemma 3.7.2. (Lemma 2.5 in Jacod, 2004)

(a) For Γn
P→ 0, it is enough that either (3.7.2) or (3.7.3) or (3.7.4) hold with

lim
n
ξn = 0, lim

n
ξ′n = 0, lim

n
ξ′′n,y = 0 ∀y > 1. (3.7.5)

(b) For the sequence (Γn) to be tight for the Skorokhod topology, it is enough that the

sequence of each of the d components of ζni satis�es either (3.7.2) or (3.7.3) or
(3.7.4) with

lim sup
n

ξn <∞, lim sup
n

ξ′n <∞, lim sup
n

ξ′′n,y <∞, lim
y↑∞

lim sup
n

ξ′′n,y = 0.

(3.7.6)
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Lemma 3.7.3. (Lemma 2.6 in Jacod, 2004)

Suppose that one can �nd constants ξ
′′′
n,v such that

sup
u:|u|≤v

|1− E(eiu.ζ
n
i |F(i−1)/n)| ≤

ξ
′′′
n,v

n
, |v| ≤ 1 (3.7.7)

then (3.7.4) holds with ξn = ξ
′
n = Cξ

′′′
n,1 and ξ

′′
n,y = Cξ

′′′

n,1/y.

We recall some important lemmas. The following theorems are from Theorem
2.3.7. and Theorem 4.2.3. in Applebaum, 2009.

Lemma 3.7.4. Let N be a Poisson process with intensity function µ and A be bounded

below. Then if f ∈ L1(A,µ(A)), we have E(
∫
A f(x)N(t, dx)) = t

∫
A f(x)µ(dx).

Let us denote

H2(T,E) =

{
F : [0, T ]× E × Ω→ R | F is predictable and

∫ T

0

∫
E
E(|F (t, x)|2)ρ(dt, dx)

}
and IT (F ) =

∫ T
0

∫
E F (t, x)M(dt, dx) withM is a martingale satisfyingM({0}, A) = 0

a.s. and there exists a σ-�nite measure ρ on R+ ×E for which E(M(t, A)2) = ρ(t, A)
for any A ∈ B(E).

Lemma 3.7.5. If F ∈ H2(T,E) then E(IT (F )2) =
∫ T

0

∫
E E(|F (t, x)|2)ρ(dt, dx).

The following theorem is about the convergence of in�nitely divisible distributions.
Justi�ed by the one-to-one correspondence between in�nitely divisible distributions
µ and their characteristics (a, b, ν), we may write µ = id(a, b, ν). This can be found
from Theorem 15.14 (i) of Kallenberg, 2002 or equivalently Theorem VII.3.4 of Jacod
and Shiryaev, 2003.

Theorem 3.7.6. Let µ = id(a, b, ν) and µn = id(an, bn, νn) on Rd, and �x any h > 0
with ν{|x| = h} = 0. De�ne

ah = a+

∫
|x|≤h

xx>ν(dx), bh = b−
∫
h<|x|≤1

xν(dx),

where
∫
h<|x|≤1 xν(dx) = −

∫
1<|x|≤h xν(dx) when h > 1.

Then µn
w→ µ i� ahn → ah, bhn → bh, and νn

v→ ν on R̄d\{0}.

The following Lemma shows a way to prove the convergence in distribution of
a triangular array. This can be found as Corollary 15.16 of Kallenberg, 2002 or
equivalently Theorem VIII.2.29 of Jacod and Shiryaev, 2003 which

Lemma 3.7.7. Consider in Rd an i.i.d. array (ζni ) and let Γ be id(a, b, ν). For any

h > 0 with ν{|x| = h} = 0,
∑[n.]

i=1 ζ
n
i
L→ Γ i�

(i) nL(ζn1 )
v→ ν on R̄d\{0}

(ii) nE(ζn1 ; |ζn1 | ≤ h)→ bh

(iii) nE(ζn1 ζ
n
1
>; |ζn1 | ≤ h)→ ah.

Remark 3.7.8. To check (i), we prove that nE(1|ζn1 |>ω)→ ν{|x| > ω}, for any ω > 0.

Lemma 3.7.9. (Lemma 2.1 in Jacod, 2004) If for each n ζni , i = 1, 2, . . . are i.i.d.

random variables and Γn1 converges in law to a limit U , then there is a Lévy process Γ



3.7. Appendix C: Some general tools 87

such that Γ1 = U . This process Γ is unique in law and Γn converges in law to Γ (for

the Skorokhod topology). Further, the sequence (Γn) has (UT ).

Let Znt =
∑[nt]

i=1 η
n
i , Γnt =

∑[nt]
i=1 ζ

n
i and Γ′nt =

∑[nt]
i=1 ζ

′n
i with ζni = g(Xn

i−1
n

)ζ ′ni . For

each n, if the sequence (ηni , ζ
′n
i ), i = 1, 2, . . . , is i.i.d., combining Lemma 3.7.9 with

Theorem 3.7.1 (iii), we get the following lemma which is very similar to Lemma 2.8
in Jacod, 2004.

Lemma 3.7.10. We suppose that the sequence (Zn,Γn) is tight. If the pair (Zn1 ,Γ
′n
1 )

of random variables converges in law to (Z1, γ
′) with γ′ a random variable independent

of Z1 and that g is a Lipschitz-continuous function, then there is a Lévy process Γ′,
independent of Y and unique in law, such that the processes (Zn,Γ′n,Γn) converge in
law to (Z,Γ′,Γ), where Γt =

∫ t
0 g(Xs−)dΓ′s. If further γ′ is a constant, then we get

Γt =
∫ t

0 g(Xs−)γ′ds, and the convergence of (Zn,Γ′n,Γn) takes place in probability.

Proof. We rewrite Γn = Γn,1 + Γn,2 where Γn,1t =
∑[nt]

i=1(g(Xn
i−1
n

) − g(X i−1
n

))ζ ′ni and

Γn,2t =
∑[nt]

i=1 g(X i−1
n

))ζ ′ni . First, since (Zn1 ,Γ
′n
1 ) converges in law to (Z1, γ

′), then by

Lemma 2.8 in Jacod, 2004, we have (Zn,Γ′n,Γn,2)
L→ (Z,Γ′,Γ). Second, by Jacod,

2004, Theorem 1.2 and using that g is Lipschitz, we easily deduce that g(Xn
ηn(.)) −

g(Xηn(.))
P→ 0. Then, since Γn,2

L→ Γ, we apply Lemma 3.7.9 to get the (UT ) property

of Γn,2 and Theorem 3.7.1 (iii) to obtain Γn,1
P→ 0. Therefore, we get (Zn,Γ′n,Γn) =

(Zn,Γ′n,Γn,1 + Γn,2)
L→ (Z,Γ′,Γ).

3.7.3 Evaluation of logarithm and exponential functions

Here, we use the power series expansions for both functions log (1 + z) and ez for z ∈ C
(see e.g. Gronwall, 1916). We know that if z ∈ C and |z| < 1

2 , we have log (1 + z)−z =
−
∑

n≥2(−1)n z
n

n . Then | log (1 + z) − z| ≤ 1
2

∑
n≥2 |z|n. By applying the formula for

convergent geometric sum, we have | log (1 + z)− z| ≤ 1
2 |z|

2 1
1−|z| . Now, since |z| <

1
2 ,

then 1
1−|z| < 2 then ∀z ∈ C such that |z| < 1

2 we have | log (1 + z)− z| ≤ |z|2 . We

can proceed in the same way to prove that ∀z ∈ C such that |z| < 1
2 we also have

|ez − 1− z| ≤ |z|2 and by consequence, we get |ez − 1| ≤ 3

2
|z| .
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Chapter 4

Central Limit Theorem for the

antithetic multilevel Monte Carlo

method

In this chapter, we introduce our antithetic MLMC estimator for a multi-dimensional
di�usion which is an extended version of the original antithetic MLMC one introduced
by Giles and Szpruch, 2014. Our aim is to study the asymptotic behavior of the weak
errors involved in this new algorithm. Among the obtained results, we prove that
the error between on the one hand the average of the Milstein scheme without Lévy
area and its antithetic version build on the �ner grid and on the other hand the
coarse approximation stably converges in distribution with a rate of order 1. We also
prove that the error between the Milstein scheme without Lévy area and its antithetic
version stably converges in distribution with a rate of order 1/2. More precisely, we
have a functional limit theorem on the asymptotic behavior of the joined distribution
of these errors based on a triangular array approach (see e.g. Jacod, 1997). Thanks
to this result, we establish a central limit theorem of Lindeberg-Feller type for the
antithetic MLMC estimator. The time complexity of the algorithm is carried out.

The original paper Ben Alaya, Kebaier, and Ngô, 2020 of this work is under minor
revisions for the journal Annals of Applied Probability.

4.1 Introduction

In recent years, the multilevel Monte Carlo (MLMC) algorithm, used to approximate
E[ϕ(Xt, 0 ≤ t ≤ T )] for a given functional ϕ and a stochastic process (Xt)0≤t≤T , has
become a hot topic. This method introduced by Giles, 2008b, that may be seen as an
extension of the works of Heinrich, 2001 and Kebaier, 2005, is well known for reducing
signi�cantly the approximation time complexity compared to a classical Monte Carlo
method. Many authors have since been interested in the study of a central limit
theorem associated to the MLMC estimator that can be found in the recent works
by Ben Alaya and Kebaier, 2014; Ben Alaya and Kebaier, 2015, Dereich and Li,
2016, Giorgi, Lemaire, and Pagès, 2017, Hoel and Krumscheid, 2019 and Kebaier
and Lelong, 2018. Like for the classical Monte Carlo method, obtaining a central
limit theorem is important for the practical implementation of the MLMC method
(see e.g. Hoel et al., 2014). More recently, Giles and Szpruch, 2014 introduced an
antithetic version of the Milstein MLMC estimator without Lévy area that achieves the
optimal complexity O(∆−2

n ) for a given precision ∆n as for an unbiased Monte Carlo
estimator. The e�ciency of the antithetic MLMC estimator was validated through a
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broad array of applications that can be found in Giles and Szpruch, 2013b; Giles and
Szpruch, 2013a. Since then, many new studies were interested on several types of use
of the antithetic MLMC estimator ( see e.g. Debrabant and Röÿler, 2015, Debrabant,
Ghasemifard, and Mattsson, 2019, Al Gerbi, Jourdain, and Clément, 2016; Al Gerbi,
Jourdain, and Clément, 2018). However, the problem of studying the validity of the
central limit theorem for the antithetic MLMC algorithm has not been addressed in
previous research. In the present paper, we �rst introduce an extended version of this
antithetic MLMC method which allows permutations between the �ner m Brownian
increments associated to each corse increment with m ≥ 2. Let us emphasize that the
original antithetic MLMC method introduced in Giles and Szpruch, 2014 corresponds
to m = 2. Then, we establish a central limit theorem on this extended antithetic
MLMC algorithm that is parametrized by a permutation σ ∈ Sm. This new result
�lls the gap in the literature for MLMC methods and yields new insights on the
practical implementation of the antithetic MLMC algorithm. Indeed, the appeal of
a central limit theorem is that it provides the fair rate of convergence and gives the
exact asymptotic variance. Moreover, it allows us to build an automatic algorithm
where the sample size of each level is explicitly given without any precomputation
procedure and yields a more accurate con�dence interval. Further, the knowledge of
the asymptotic variance allows for the design of e�cient variance reduction techniques
for the MLMC (see e.g., Ben Alaya, Hajji, and Kebaier, 2015 and Ben Alaya, Hajji,
and Kebaier, 2016). In order to establish this result, we prove a functional limit
theorem for the normalized error on two consecutive levels for the joined distribution
of the couple (√

n(Xnm −Xσ,nm), n((Xnm +Xσ,nm)/2−Xn)
)
, (4.1.1)

where Xnm denotes the Milstein scheme with time step T/mn without Lévy area
and Xσ,nm is its antithetic version. This result extends the stable convergence limit
theorem obtained by Ben Alaya and Kebaier, 2015 for the normalized error on two
consecutive levels

√
n(X̃mn − X̃n) where X̃n denotes the Euler scheme with time

step T/n. The proof of this result, written in a multidimensional setting, relies on
combining the limit theorems on martingale triangular arrays in Jacod, 1997 with
technics used in Jacod, 2004 and Jacod and Protter, 1998.

The rest of this paper is organized as follows. In Section 2, we recall from Giles and
Szpruch, 2014 the Milstein scheme without Lévy area using our own notations and we
introduce our assumptions. In Section 3, we introduce the extended antithetic scheme
(4.3.2) as well as the antithetic MLMC estimator (4.3.4) and prove our main results
namely Theorem 4.3.2, a functional limit theorem for the couple of normalized errors
(4.1.1) and Theorem 4.3.3, the central limit theorem for the associated antithetic
MLMC estimator. Section 4 gives the details of the error expansion needed to prove
Theorem 4.3.2 with specifying the main and rest terms. Based on this expansion,
we study in Section 5 the asymptotic behaviors of the joined distribution of the main
terms. The rest terms are treated in appendices 4.6 and 4.7. Appendix 4.8 is dedicated
to recall some theoretical tools that we use throughout the paper.
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4.2 General framework

4.2.1 Milstein scheme without Lévy area

We consider the d-dimensional SDE driven by a q-dimensional Brownian motionW =
(W 1, . . . ,W q)>, q ≥ 1, solution to

Xt =x0 +

∫ t

0
f(Xs)ds+

∫ t

0
g(Xs)dWs, for t ∈ [0, T ], T > 0, (4.2.1)

where x0 ∈ Rd, f ∈ C2(Rd,Rd) and g ∈ C2(Rd,Rd×q). In what follows, we assume that
g does not have a commutativity property (see assumption (Hf,g) below). Without
loss of generality we will take the solution of (4.2.1) on the interval [0, 1] rather than
[0, T ], T > 0. We will consider a time grid on [0, 1] with a uniform time step ∆n = 1

n ,
n ∈ N.

Notations Throughout this paper, we will use the following notations:

� For g ∈ C2(Rd,Rd×q), we introduce the tensor function {h`jj′ , 1 ≤ ` ≤ d, 1 ≤
j, j′ ≤ q} de�ned by

h`jj′(x) =
1

2
∇g>`j(x)g•j′(x) =

1

2

d∑
`′=1

∂g`j
∂x`′

(x)g`′j′(x), x ∈ Rd

with ∇g`j = (
∂g`j
∂x1

, · · · , ∂g`j∂xd
)> ∈ Rd and g•j′ = (g1j′ , . . . , gdj′)

> ∈ Rd is the

j′th-column of g and analogously we also introduce the `th-row of g given by
g`• = (g`1, . . . , g`q). The notation A> stands for the transpose of the given
matrix A.

� For ` ∈ {1, . . . , d}, we denote the q × q-matrix h`•• =

 h`11 . . . h`1q
...

. . .
...

h`q1 . . . h`qq

 ∈
Rq×q.

� For more convenience, we set H = (h1••, . . . , hd••)
>.

� For any function ψ : Rd → R, we denote ∇2ψ =


∂2ψ

∂x1∂x1
. . . ∂2ψ

∂x1∂xd
...

. . .
...

∂2ψ
∂xd∂x1

. . . ∂2ψ
∂xd∂xd

 the

Hessian d× d matrix of ψ.

� For any d-dimensional function f , we denote its Jacobian matrix as ∇f =
(∇f1, . . . ,∇fd)>.

� Let F denote the Frobenius inner product that is for any A and B ∈Mp×q(R)
withMp×q(R) is the set of R-valued p× q-matrices,

AFB =

p∑
j=1

q∑
j′=1

Ajj′Bjj′ ∈ R.
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Moreover, we introduce the operator v de�ned by: for any A``′ ∈ Mp×q(R),
` ∈ {1, . . . , r} and `′ ∈ {1, . . . , s} with r, s ∈ N \ {0} A11 . . . A1s

...
. . .

...
Ar1 . . . Ars

vB =

 A11FB . . . A1sFB
...

. . .
...

Ar1FB . . . ArsFB

 ∈ Rr×s.

� We have the following property for any matrices U andA respectively inMp×1(R)
and Mp×p(R)

U>AU = AF(UU>). (4.2.2)

� We denote ηn(t) = [nt]
n for t ∈ [0, 1], where [x] denotes the greatest integer less

than or equal to x ∈ R. For i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, n,m ∈ N\{0, 1}, we
denote ∆Wi = W i

n
−W i−1

n
and δWik = Wm(i−1)+k

nm

−Wm(i−1)+k−1
nm

.

� Sm stands for the set of all permutations of order m.

� For i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, m ∈ N\{0, 1}, and σ̃ ∈ Sm we denote the
σ-algebra Fk,σ̃i−1

n

= F i−1
n

∨
σ(δWiσ̃(k′) : 1 ≤ k′ ≤ k), where (Ft)t∈[0,1] denotes

the natural �ltration of the Brownian motion W and
∨

denotes the σ-algebra
generated by the union.

� For p > 0, let (Γn)n∈N be a sequence of processes in Lp. By Γn
Lp→ 0 (resp. Γn

P→
0) as n tends to in�nity, we mean that sups≤1 |Γns |

Lp→ 0 (resp. sups≤1 |Γns |
P→ 0)

as n tends to in�nity.

� For any block matrix A = (Aij), the notation |A| stands for the L1-matrix norm,
that satis�es |A| =

∑
ij |Aij |.

� The set of p× q-block matrices of m× n-matrices is denoted by (Rm×n)p×q.

Thanks to the above notations, the original Milstein scheme introduced in Protter
and Talay, 1997 starting at x0 can be rewritten in a compact form given by the
following induction on the integer i ∈ {1, . . . , n}

XMil,n
i
n

= XMil,n
i−1
n

+f(XMil,n
i−1
n

)∆n+g(XMil,n
i−1
n

)∆Wi+H(XMil,n
i−1
n

)v(∆Wi∆W
>
i −Iq∆n−Ai),

where ∆Wi = W i
n
−W i−1

n
is the increment on the partition, Iq = (δjj′)1≤j,j′≤q is the

correlation matrix for the driving Brownian paths and Ai ∈ Rq×q is the Lévy area
de�ned by

Aijj′ =

∫ i
n

i−1
n

(W j
s −W

j
i−1
n

)dW j′
s −

∫ i
n

i−1
n

(W j′
s −W

j′
i−1
n

)dW j
s , j, j′ ∈ {1, . . . , q}.

In many applications, the simulation of Lévy areas is very complicated. Recently, Giles
and Szpruch, 2014 proposed to build a suitable antithetic MLMC estimator based
on the Milstein scheme without the Lévy area that achieves the optimal complexity
O(∆−2

n ) for a given precision ∆n as for an unbiased Monte Carlo estimator. Therefore,
let us introduce the so called truncated Milstein scheme starting at x0 de�ned by
induction on the integer i ∈ {1, . . . , n}

Xn
i
n

=Xn
i−1
n

+ f(Xn
i−1
n

)∆n + g(Xn
i−1
n

)∆Wi + H(Xn
i−1
n

)v(∆Wi∆W
>
i − Iq∆n). (4.2.3)
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In addition, in a more general setting where SDEs are driven by continuous semi-
martingales, Yan, 2005 studied the asymptotic behavior of the normalized error pro-
cesses for the original Milstein scheme.

4.2.2 Settings and some standard results

In what follows we introduce our assumption (Hf,g) on coe�cients f and g in the
spirit of Giles and Szpruch, 2014. Our condition is stricter than the one in Giles
and Szpruch, 2014 as we aim to prove functional limit theorems for this method. We
also recall some standard results on the moment properties of (4.2.3) (see Lemma 4.2,
Corollary 4.3 and Lemma 4.4 of Giles and Szpruch, 2014).

Assumption (Hf,g). Let f ∈ C3(Rd,Rd) and g ∈ C3(Rd,Rd×q). We assume that

� there exists a positive constant L such that∣∣∣∣∣∂|α|f∂xα

∣∣∣∣∣ ≤ L,
∣∣∣∣∣∂|α|g∂xα

∣∣∣∣∣ ≤ L,
∣∣∣∣∣∂|β|h∂xβ

∣∣∣∣∣ ≤ L
where α, β ∈ Nd, α = (α1, . . . , αd)

>, β = (β1, . . . , βd)
> are two multi-indices

such that |α| =
∑d

i=1 αi ≤ 3, |β| =
∑d

i=1 βi ≤ 2.

� the di�usion coe�cient g does not have a commutativity property which gives

h`jj′ = h`j′j for all ` ∈ {1, . . . , d} and j, j′ ∈ {1, . . . , q}.

Lemma 4.2.1. Under (Hf,g), for p ≥ 2 there exists a constant Cp, independent of n,
such that

E
(

max
0≤i≤n

|Xn
i
n

|p
)
≤ Cp, and E

(
max

0≤i≤n
|Xn

i
n

−X i
n
|p
)
≤ Cp∆p/2

n .

Corollary 4.2.2. Under (Hf,g), for p ≥ 2 there exists a constant Cp, independent of
n, such that

E
(

max
0≤i≤n

|f`(Xn
i
n

)|p
)
≤ Cp, E

(
max

0≤i≤n
|g`j(Xn

i
n

)|p
)
≤ Cp,

and

E
(

max
0≤i≤n

|h`jj′(Xn
i
n

)|p
)
≤ Cp

for all 1 ≤ ` ≤ d and 1 ≤ j, j′ ≤ q.

Lemma 4.2.3. Under (Hf,g), for p ≥ 2, there exists a constant Cp, independent of
n, such that

max
1≤i≤n

E
(
|Xn

i
n

−Xn
i−1
n

|p
)
≤ Cp∆p/2

n .

4.3 Main results

The extended antithetic scheme In view of running a MLMC method, we con-
sider two types of schemes, a coarser one and a �ner one. The antithetic MLMC
estimator was introduced in Giles and Szpruch, 2014 for m = 2. For each level,
the main idea consists in switching the two �ner Brownian increments to obtain an
antithetic version of the approximation scheme. In order to extend this idea for a
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general m ∈ N∗ \ {1}, we consider σ ∈ Sm \ {Id} and for each level ` ∈ {1, . . . , L},
we introduce the antithetic scheme Xm`,σ obtained by permuting the m �ner Brow-
nian increments lying in each of the coarse intervals with length 1/m`−1. Based on
this, we will also introduce the associated antithetic MLMC estimator. To do so, we
set the scheme given by the equation (4.2.3) as the coarser approximation with time
step 1/m`−1. The �ner scheme with time step 1/m` can be rewritten as follows : for
i ∈ {1, . . . ,m`−1} and k ∈ {1, . . . ,m},

Xm`
m(i−1)+k

m`

= Xm`
m(i−1)+k−1

m`

+ f(Xm`
m(i−1)+k−1

m`

)
∆m`−1

m
+ g(Xm`

m(i−1)+k−1

m`

)δWik

+ H(Xm`
m(i−1)+k−1

m`

)v(δWikδW
>
ik − Iq

∆m`−1

m
), (4.3.1)

where δWik = Wm(i−1)+k

m`
−Wm(i−1)+k−1

m`
∈ Rq. Now, for a given σ ∈ Sm \ {Id} our

σ-antithetic scheme is de�ned by

Xm`,σ
m(i−1)+k

m`

= Xm`,σ
m(i−1)+k−1

m`

+ f(Xm`,σ
m(i−1)+k−1

m`

)
∆m`−1

m
+ g(Xm`,σ

m(i−1)+k−1

m`

)δWiσ(k)

+ H(Xm`,σ
m(i−1)+k−1

m`

)v(δWiσ(k)δW
>
iσ(k) − Iq

∆m`−1

m
). (4.3.2)

When σ = Id, we clearly have Xm`,Id = Xm` . Throughout the paper we take
σ(k) = m− k + 1 which corresponds to a reversal of time for each coarse increment.
The reason for �xing σ in this way is explained in Remark 4.4.10. Since the incre-
ments (δWik)1≤i≤m`−1,1≤k≤m are independent and identically distributed, it is obvious

that Xm`,σ Law
= Xm` and for any i ∈ {1, . . . ,m`−1} and k ∈ {1, . . . ,m}, Xm`,σ

m(i−1)+k

m`

is

Fk,σi−1

m`−1

-measurable.

The associated antithetic MLMC method Recall that the idea of the original
multilevel Monte Carlo method (MLMC) is based on writing E(ϕ(XmL

1 )) using the
following telescoping summation

E(ϕ(XmL

1 )) = E(ϕ(X1
1 )) +

L∑
`=1

E(ϕ(Xm`

1 )− ϕ(Xm`−1

1 )). (4.3.3)

As Xm`,σ law
= Xm` , we rewrite the above telescoping sum as follows

E(ϕ(XmL

1 )) = E(ϕ(X1
1 )) +

L∑
`=1

E

(
ϕ(Xm`

1 ) + ϕ(Xm`,σ
1 )

2
− ϕ(Xm`−1

1 )

)
.

Then we estimate independently each expectation using an empirical mean. Thus,
the σ-antithetic MLMC estimator Q̂ approximates E(ϕ(XmL

1 )) by Q̂ = Q̂0 +
∑L

`=1 Q̂`, with

Q̂0 = 1
N0

∑N0
k=1 ϕ(X1

1,k) and Q̂` = 1
N`

∑N`
k=1

(
ϕ(Xm`

1,k )+ϕ(Xm`,σ

1,k )

2 − ϕ(Xm`−1

1,k )

)
(4.3.4)
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where for each level ` ∈ {1, . . . , L}, (Xm`

1,k , X
m`,σ

1,k , Xm`−1

1,k )1≤k≤N` are independent

copies of (Xm`
1 , Xm`,σ

1 , Xm`−1

1 ) whose components are simulated using the same Brow-
nian path and (X1

1,k)1≤k≤N0 are independent copies of X
1
1 . In order to study the error

of the σ-antithetic MLMC method, we assume that ϕ ∈ C2(Rd,R) and introduce

X̄m`,σ
1 = 1

2(Xm`,σ
1 +Xm`

1 ), for ` ∈ {1, . . . , L} and use a Taylor expansion to write

1

2
(ϕ(Xm`

1 ) + ϕ(Xm`,σ
1 ))− ϕ(Xm`−1

1 ) =∇ϕ>(ξ1)(X̄m`,σ
1 −Xm`−1

1 )

+
1

8
(Xm`

1 −Xm`,σ
1 )>∇2ϕ(ξ2)(Xm`

1 −Xm`,σ
1 ),

(4.3.5)

where ξ1 is a point lying between X̄
m`,σ
1 and Xm`−1

1 , ξ2 is a point lying between X
m`,σ
1

and Xm`
1 and ∇2ϕ denotes the Hessian matrix of ϕ. More generally, if we consider the

σ-antithetic MLMC method on the coarse time grid we have to introduce the error
process

Em
`−1,m`

t =
1

2
(ϕ(Xm`

η
m`−1 (t)) + ϕ(Xm`,σ

η
m`−1 (t)))− ϕ(Xm`−1

η
m`−1 (t)), t ∈ [0, 1].

The work of Giles and Szpruch, 2014 corresponds to m = 2 and in this case they
proved the Lp boundedness of the process m`Em`−1,m` . In this paper, we establish
this result for a general setting with m ∈ N\{0, 1} and we further study its asymptotic
distribution behavior. To do so and in view of the decomposition (4.3.5), we study the

couple of two errors X̄m`,σ
η
m`−1 (t)−X

m`−1

η
m`−1 (t) and X

m`

η
m`−1 (t)−X

m`,σ
η
m`−1 (t), where X̄

m`,σ
η
m`−1 (t) =

1
2(Xm`,σ

η
m`−1 (t) +Xm`

η
m`−1 (t)), t ∈ [0, 1].

At �rst we reduce the problem to the study of the error given by the process
(X̄nm,σ

ηn(t) −X
n
ηn(t), X

nm
ηn(t)−X

mn,σ
ηn(t) )0≤t≤1, where X̄

nm,σ
ηn(t) = 1

2(Xnm,σ
ηn(t) +Xnm

ηn(t)) and X
nm ,

Xnm,σ and Xn respectively stand for the �ner approximation scheme with time step
1/nm, its antithetic version and the coarser approximation scheme with time step 1/n,
with n ∈ N\{0} and m ∈ N\{0, 1}. All these approximation schemes are constructed
using the same Brownian path. Second, we extend Theorem 4.10. and Lemma 4.6.
in Giles and Szpruch, 2014 to get the following result.

Lemma 4.3.1. Under (Hf,g), for p ≥ 2, σ̃ ∈ Sm, there exists a constant Cp > 0,
independent of the time step, such that

E( max
0≤i≤n

|Xnm,σ̃
i
n

|p) ≤ Cp, E( max
0≤i≤n

|Xnm
i
n

−Xnm,σ̃
i
n

|p) ≤ Cp∆p/2
n and

max
1≤i≤n

max
1≤k≤m

E(|Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

|p) ≤ Cp∆n
p/2.

Proof. The �rst and the third inequalities are straightforward consequences of Lemma
4.2.1 and Lemma 4.2.3. Next, we prove the second inequality following similar
arguments as in Lemma 4.6 and Theorem 4.10 in Giles and Szpruch, 2014. As

Xnm
i
n

−Xn
i
n

law
= Xnm,σ̃

i
n

−Xn
i
n

, by Jensen inequality and Lemma 2.1, we have

E( max
0≤i≤n

|Xnm
i
n

−Xnm,σ̃
i
n

|p) ≤Cp(E( max
0≤i≤n

|Xnm
i
n

−Xn
i
n

|p) + E( max
0≤i≤n

|Xnm,σ̃
i
n

−Xn
i
n

|p))

≤CpE( max
0≤i≤n

|Xnm
i
n

−Xn
i
n

|p)
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≤Cp(E( max
0≤i≤n

|Xnm
i
n

−X i
n
|p) + E( max

0≤i≤n
|Xn

i
n

−X i
n
|p)) ≤ Cp∆p/2

n ,

where Cp is a generic positive constant.

4.3.1 Functional limit theorem for the errors

As we have the uniform Lp-boundedness of (
√
n(Xnm

ηn(t) −X
nm,σ
ηn(t) ))t∈[0,1] (see Lemma

4.3.1) and (n(X̄nm,σ
ηn(t) − Xn

ηn(t)))t∈[0,1] (see Corollary 4.4.9), we get the tightness of
these quantities (see e.g. Leskelä and Vihola, 2013). Then, it is natural to study the
weak convergence of the couple (

√
n(Xnm

ηn(t))−X
nm,σ
ηn(t) )), n(X̄nm,σ

ηn(t) −X
n
ηn(t)))t∈[0,1]. The

following theorem is our main result.

Theorem 4.3.2. Under the assumption (Hf,g), let us denote U
n
t = Xnm

ηn(t) −X
nm,σ
ηn(t)

and V n
t = X̄nm,σ

ηn(t) −X
n
ηn(t), t ∈ [0, 1]. Then we have

(
√
nUn, nV n)

stably⇒ (U, V ), as n→∞, (4.3.6)

with U and V are solutions to

Ut =

q∑
j=0

∫ t

0
Ḟ jsUsdY

j
s +M1,t, (4.3.7)

Vt =

q∑
j=0

∫ t

0
Ḟ js VsdY

j
s +M2,t, (4.3.8)

where for ` ∈ {1, . . . , d}, the `-th component ofM1,t andM2,t are given by

M`
1,t = −2

∫ t

0
h`••(Xs)vdZ2,s

M`
2,t =
q∑
j=0

∫ t

0

[
m− 1

2m

(
∇f`(Xs)

>g•j(Xs)1j 6=0 +∇g`j(Xs)
>f(Xs) +

1

2
g(Xs)

>∇2g`j(Xs)g(Xs)vI
j
q

)

+
1

8
U>s ∇2g`j(Xs)Us

]
dY j

s +
1

2

q∑
j=1

∫ t

0

[
∇g`j(Xs)

>H(Xs) +
1

2
g(Xs)

>∇2g`j(Xs)g(Xs)

+ ḣs`••vg•j(Xs)

]
vdZ••j1,s −

1

2

∫ t

0
(ḣs`••vUs)vdZ2,s +

1

2

q∑
j,j′=1

∫ t

0
∇g`j(Xs)

>[ġsvg•j′′(Xs)]dZ
j•j′
3,s

+
1

2

q∑
j=1

∫ t

0
[g(Xs)

>∇2g`j(Xs)g(Xs)]vdZ
j••
3,s ,

with Yt := (t,W 1
t , . . . ,W

q
t )>, I0

q = 1q×q is the Rq×q matrix with all its elements

equal to 1, Ḟ 0 = ∇f and for j 6= 0, Ijq = Iq and Ḟ j = ∇g•j, ġs ∈ (Rd×1)d×q is a

block matrix such that for ` ∈ {1, . . . , d}, j ∈ {1, . . . , q}, the `j-th block is given by

(ġs)`j = ∇g`j(Xs), s ∈ [0, t] and the ḣs`•• ∈ (Rd×1)q×q is a block matrix such that

for j and j′ ∈ {1, . . . , q}, the jj′-th block is given by (ḣs`••)jj′ = ∇h`jj′(Xs) ∈ Rd×1,

s ∈ [0, t]. Here, Z1, Z3 are Rq3
-dimensional processes and Z2 is a Rq×q-dimensional
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process given by: for j, j′, j′′ ∈ {1, . . . , q},

Zjj
′j′′

1,t =


√
m−1
m Bjj′j′′

1,t , j > j′√
2(m−1)

m Bjjj′′

1,t , j = j′√
m−1
m Bj′jj′′

1,t , j < j′

, Zjj
′

2,t =


√

m−1
m Bjj′

2,t , j > j′

0 , j = j′

−
√

m−1
m Bj′j

2,t , j < j′

and Zjj
′j′′

3,t =


√

(m−1)(m−2)
3m2 Bjj′j′′

3,t , j > j′′√
2(m−1)(m−2)

3m2 Bjj′j′′

3,t , j = j′′√
(m−1)(m−2)

3m2 Bj′′j′j
3,t , j < j′′

with (Bjj′j′′

1 )1≤j,j′,j′′≤q
j≥j′

and (Bjj′j′′

3 )1≤j,j′,j′′≤q
j≥j′′

are two standard q2(q+1)/2-dimensional

Brownian motions and (Bjj′

2 )1≤j′<j≤q is a standard q(q − 1)/2-dimensional Brow-
nian motion. Moreover, we have B1, B2 and B3 are independent of the original

q-dimensional Brownian motion W and also independent of each other. These pro-

cesses are de�ned on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the space (Ω,F , (Ft)t≥0,P).

Here Zj••3 = Z••j3 and we use that for r ∈ {1, 3} we have

Z••jr,s =

 Z11j
r,s . . . Z1qj

r,s
...

. . .
...

Zq1jr,s . . . Zqqjr,s

 ∈ Rq×q and Zj•j
′′

r,t = (Zj1j
′′

r,t , . . . , Zjqj
′′

r,t )> ∈ Rq×1.

Proof. From section 4, equations (4.4.37) and (4.4.38), we can rewrite Un and V n as
follows

Unt =

q∑
j=0

∫ t

0
(Ḟn,jηn(s)vU

n
ηn(s))1s≤ηn(t)dY

j
s + Jn,1t ,

V n
t =

q∑
j=0

∫ t

0
( ¯̇Fn,jηn(s)vV

n
ηn(s))1s≤ηn(t)dY

j
s + Jn,2t ,

where Yt := (t,W 1
t , . . . ,W

q
t )>, Jn,1t = Mn,1

t + Rn,1t , Jn,2t = Mn,2
t + Rn,2t and for

i ∈ {1, . . . , n} we denote

Ḟn,ji−1
n

=

{
ḟni , j = 0
(ġni )•j , j ∈ {1, . . . , q} , where (ġni )•j = ((ġni )1j , . . . , (ġ

n
i )dj)

>, (4.3.9)

and

¯̇Fn,ji−1
n

=

{
¯̇
fni , j = 0
(¯̇gni )•j , j ∈ {1, . . . , q}

, where (¯̇gni )•j = ((¯̇gni )1j , . . . , (¯̇gni )dj)
>, (4.3.10)

with ḟni ∈ (Rd×1)d×1 and ġni ∈ (Rd×1)d×q are block matrices such that for ` ∈
{1, . . . , d} the `-th block of ḟni is given by (ḟni )` = ∇f`(ξ1,n

i−1
n

) and for ` ∈ {1, . . . , d}

and j ∈ {1, . . . , q} the `j-th block of ġni is given by (ġni )`j = ∇g`j(ξ2,n
i−1
n

) with ξ1,n
i−1
n

and ξ2,n
i−1
n

are some vector points lying between Xnm
i−1
n

and Xnm,σ
i−1
n

. In the same way,

¯̇
fni ∈ (Rd×1)d×1 and ¯̇gni ∈ (Rd×1)d×q are block matrices such that for ` ∈ {1, . . . , d}
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the `-th block of ¯̇
fni is given by (

¯̇
fni )` = ∇f`(ξ̄1,n

i−1
n

) and `, j ∈ {1, . . . , d} the `j-th

block of ¯̇gni is given by (¯̇gni )`j = ∇g`j(ξ̄2,n
i−1
n

) with ξ̄1,n
i−1
n

and ξ̄2,n
i−1
n

are some vector points

lying between Xn
i−1
n

and X̄nm,σ
i−1
n

. The aim now is to use Theorem 4.8.6 to get the

joined convergence of our couple of errors. To do so, let us introduce the processes
Znt =

∑q
j=0

∫ t
0 Ḟ

n,j
ηn(s)v1d1s≤ηn(t)(s)dY

j
s , Z̄nt =

∑q
j=0

∫ t
0

¯̇Fn,jηn(s)v1d1s≤ηn(t)(s)dY
j
s

and Zt =
∑q

j=0

∫ t
0 Ḟ

j
sv1ddY

j
s , where 1d = (1, . . . , 1)> ∈ Rd×1. Thanks to Lemma

4.2.1 and assumption (Hf,g), using the Burkholder-Davis-Gundy (BDG) inequality
with p ≥ 2, there is a generic constant Cp > 0 such that

E( sup
0≤t≤1

|Znt − Zt|p) ≤ CpE(|
q∑
j=1

∫ 1

0
(Ḟn,jηn(s) − Ḟ

j
s )2
v1dds|p/2)

≤ Cp
d∑
`=1

q∑
j=1

E(|
∫ 1

0
(∇g`j(ξ2,n

i−1
n

)−∇g`j(X i−1
n

))2
v1dds|p/2)

≤ Cp∆p/2
n .

Similarly, E(sup0≤t≤1 |Z̄nt − Zt|p) is also bounded by Cp∆
p/2
n . Therefore, we have

Zn − Z
Lp→ 0 and Z̄n − Z

Lp→ 0 as n → ∞. By Lemma 4.4.11 and Lemma 4.4.12

and Proposition 4.5.5, we deduce that (
√
nJn,1, nJn,2)

stably⇒ (M1,M2) as n → ∞,
where the limit processes are de�ned on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the original
space (Ω,F , (Ft)t≥0,P). By Lemma 4.8.4, we get that (Y,

√
nJn,1, nJn,2, Zn) stably

converges to the limit (Y,M1,M2, Z) as n→∞ Finally, by Theorem 4.8.6 , we have
(Y,
√
nJn,1, nJn,2, Zn,

√
nUn, nV n) stably converges to the limit (Y,M1,M2, Z, U, V )

as n→∞, where U and V respectively satisfy (4.3.7) and (4.3.8).

4.3.2 Central limit theorem

The antithetic Multilevel Monte Carlo method uses information from a sequence of
computations with increasing step sizes and approximates the quantity of interest
E(ϕ(X1)) by

Q̂n =
1

N0

N0∑
k=1

ϕ(X1
1,k) +

L∑
`=1

1

N`

N∑̀
k=1

[
1

2
(ϕ(X`,m`

1,k ) + ϕ(X`,m`,σ
1,k ))− ϕ(X`,m`−1

1,k )],

(4.3.11)

m ∈ N\{0, 1}, and L = logn
logm . We denote the weak error εn = E(ϕ(Xn

1 ))−ϕ(X1)). In
the spirit of Kebaier, 2005, we assume that εn is of order 1/nα, for some α ∈ [1/2, 1].
Taking advantage from Theorem 4.8.7, we are now able to establish a central limit
theorem of Lindeberg Feller type on the error Q̂n−E(ϕ(X1)). To do so, we introduce
a real sequence (a`)`∈N of positive weights such that

lim
L↑∞

L∑
`=1

a` =∞, for p > 2, and lim
L↑∞

1(∑L
`=1 a`

)p/2 L∑
`=1

a
p/2
` = 0 (W)
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and we choose the same form of N` as in Ben Alaya and Kebaier, 2015, namely

N` =
n2α

m2(`−1)a`

L∑
`=1

a`, ` ∈ {0, . . . , L} and L =
log n

logm
. (4.3.12)

This generic form for the sample size allows us a straightforward use of Theorem 4.3.2
to prove a central limit theorem for the antithetic MLMC estimator. In the sequel,
we denote by Ẽ and Ṽar the expectation and the variance respectively de�ned on the
probability space (Ω̃, F̃ , (F̃t)t≥0, P̃) introduced in Theorem 4.3.2.

Theorem 4.3.3. Assume that f and g satisfy assumption (Hf,g). Let ϕ be a real-

valued function satisfying:

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|p + |y|p)|x− y|, for some constant C and p > 0
and ϕ ∈ C2(Rd,R) with bounded second derivatives.

(Hϕ)

Assume that for some α ∈ [1/2, 1] we have

lim
n↑∞

nαεn = Cϕ(α). (Hεn)

Then, for the choice of N`, ` ∈ {0, . . . , L} given by the equation (4.3.12), we have

nα(Q̂n − E(ϕ(X1)))⇒N (Cϕ(α),V), as n→∞

with V = Ṽar(∇ϕ>(X1)V1 + 1
8U
>
1 ∇2ϕ(X1)U1), where the limit processes U and V are

explicitly given in Theorem 4.3.2.

Remark 4.3.4. Note that our above assumption (Hϕ) on the payo� function ϕ is

weaker than the one in Giles and Szpruch, 2013a where they supposed that ϕ ∈
C2
b (Rd,R).

Proof. To simplify our notation, we give the proof for α = 1, the case α ∈ [1/2, 1) is
straightforward by similar arguments. At �rst, we rewrite the error term as follows

Q̂n − E(ϕ(X1)) = Q̂1
n + Q̂2

n + εn, where

Q̂1
n =

1

N0

N0∑
k=1

(ϕ(X1
1,k)− E(ϕ(X1

1 ))),

Q̂2
n =

L∑
`=1

1

N`

N∑̀
k=1

[
1

2
(ϕ(X`,m`

1,k ) + ϕ(X`,m`,σ
1,k ))− ϕ(X`,m`−1

1,k )− E(ϕ(X`,m`

1 )− ϕ(X`,m`−1

1 ))].

For N0 = n2m2

a0

∑L
`=1 a` we simply apply the classical central limit theorem to get

nQ̂1
n =

√
a0

m2
∑L

`=1 a`

√
N0Q̂1

n
P→ 0 as n→∞.
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Finally, we only need to study the convergence of nQ̂2
n and the proof is completed by

assumption (Hεn). To do so, we use Theorem 4.8.7 and set

Xn,` :=
n

N`

N∑̀
k=1

Zm
`,m`−1

1,k , where (Zm
`,m`−1

1,k )1≤k≤N` are independent copies of

Zm
`,m`−1

1 :=
1

2
(ϕ(X`,m`

1 ) + ϕ(X`,m`,σ
1 ))− ϕ(X`,m`−1

1 )− E(ϕ(X`,m`

1 )− ϕ(X`,m`−1

1 )).

First, we check the limit variance of nQ̂2
n. We have

L∑
`=1

E(Xn,`)
2 =

L∑
`=1

n2

N`
Var(Zm

`,m`−1

1 ) =
L∑
`=1

1∑L
`=1 a`

a`m
2(`−1)Var(Zm

`,m`−1

1 ).

(4.3.13)

Besides, since ϕ ∈ C2(Rd,R), applying Taylor expansion twice we get

1

2
(ϕ(X`,m`

1 ) + ϕ(X`,m`,σ
1 ))− ϕ(X`,m`−1

1 )

= ∇ϕ>(ξ1)(X̄`,m`,σ
1 −X`,m`−1

1 ) +
1

8
(X`,m`

1 −X`,m`,σ
1 )>∇2ϕ(ξ2)(X`,m`

1 −X`,m`,σ
1 ),

for some ξ1 a vector point lying between X
`,m`

1 and X`,m`,σ
1 and ξ2 a vector point lying

between X̄`,m`,σ
1 andX`,m`−1

1 . Thus, under assumption (Hϕ), thanks to Theorem 4.3.2
we get as `→∞

m`−1

[
1

2
(ϕ(X`,m`

1 ) + ϕ(X`,m`,σ
1 ))− ϕ(X`,m`−1

1 )

]
stably⇒ ∇ϕ>(X1)V1 +

1

8
U>1 ∇2ϕ(X1)U1.

From the uniform integrability obtained by combining (Hϕ) and Lemma 4.3.1, we get
for k ∈ {1, 2}

E
(
m`−1

[
1

2
(ϕ(X`,m`

1 ) + ϕ(X`,m`,σ
1 ))− ϕ(X`,m`−1

1 )

])k
−→
`→∞

Ẽ
(
∇ϕ>(X1)V1 +

1

8
U>1 ∇2ϕ(X1)U1

)k
.

Consequently, m2(`−1)Var(Zm
`,m`−1

1,1 )−→V, as `→∞. Thus, by (4.3.13) and Toeplitz

lemma we get limL↑∞
∑L

`=1 E(Xn,`)
2 = V. Finally, we only need to check the Lyapunov

condition. By Burkholder's inequality and Jensen's inequality, we get for p > 2,

E|Xn,`|p =
np

Np
`

E|
N∑̀
k=1

Zm
`,m`−1

1 |p≤Cp
np

N
p/2
`

E|Zm
`,m`−1

1 |p,

where Cp is a generic positive constant depending on p. Besides, Lemma 4.3.1 ensures

that there is a constant Kp > 0 such that E|Zm
`,m`−1

1 |p ≤ Kp
mp(`−1) . Therefore,

L∑
`=1

E|Xn,`|p ≤ Cp
L∑
`=1

np

N
p/2
`

1

mp(`−1)
≤ Cp

1(∑L
`=1 a`

)p/2 L∑
`=1

a
p/2
`

n→∞→ 0
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which completes the proof.

4.3.3 Time complexity analysis and design of the algorithm

The time complexity in the antithetic MLMC method is given by

CAMLMC = C ×
L∑
`=1

N`(2m
` +m`−1) with C > 0

= C ×
L∑
`=1

n2

m2(`−1)a`
(2m` +m`−1)

L∑
`=1

a`

= C × n2(2m2 +m)
L∑
`=1

1

m`a`

L∑
`=1

a`.

This analysis is online with the one obtained by Ben Alaya and Kebaier, 2014 in the
context of pricing Asian options using numerical schemes with a strong convergence
order equal to 1. The optimal choice corresponding to a∗` = m−`/2, ` ∈ {1, . . . , L} leads
to the optimal time complexity C∗AMLMC = O(n2) the same one as for an unbiased
Monte Carlo method having the same precision. However, this optimal weight a∗`
does not satisfy (W) which ensures Theorem 4.3.3. In what follows, we recall from
Ben Alaya and Kebaier, 2014, three examples of weights (a`)1≤`≤L satisfying (W) and
for which the time complexity gets closer and closer to C∗AMLMC:

i) The choice a` = 1, corresponding to N` = n2

m2(`−1)L, ` ∈ {1, . . . , L} leads to the
complexity CAMLMC = O(n2 log n).

ii) The choice a` = 1
` , corresponding to N` = n2`

m2(`−1)

∑L
`=1

1
` , ` ∈ {1, . . . , L} leads to

the complexity CAMLMC = O(n2 log log n).

iii) The choice a` = 1
` log ` , corresponding to N` = n2` log `

m2(`−1)

∑L
`=1

1
` log ` , ` ∈ {1, . . . , L}

leads to the complexity CAMLMC = O(n2 log log log n).

From a practical point of view, the sample sizes N`, ` ∈ {1, . . . , L} are inputs for
the algorithm and are completely explicit by the simple choice of the optimal weights
(a`)1≤`≤L. So, we do not need to add any precomputation step as like for the RMSE
approach. Then, we can compute independently each empirical mean in the antithetic
MLMC estimator Q̂n given by (4.3.11). For each level, we have a simple Monte
Carlo with i.i.d. terms, their computations need only the simulation of the �ner
increments associated to the modi�ed Milstein scheme X`,m` (given by (4.3.1)) using
the permutation σ we obtain X`,m`,σ (given by (4.3.2)). The coarser increments are
deduced from the �ner ones to keep the same Brownian path to obtain X`,m`−1

.

4.4 Expanding analysis of the antithetic scheme

In this section, we have two main purposes. Firstly, for σ̃ ∈ {Id, σ}, we give the
expansion of two error terms Xnm,σ̃

i
n

−Xnm,σ̃
i−1
n

and X̄nm,σ
i
n

− X̄nm,σ
i−1
n

together with some

related Lp estimates. Secondly, we give the expansions of the errors Un and V n with
specifying the main and the rest terms. From now on we assume that assumption
(Hf,g) is satis�ed.
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4.4.1 Expansion of the error Xnm,σ̃
i
n

−Xnm,σ̃
i−1
n

, with σ̃ ∈ {Id, σ}

By (4.3.1) and (4.3.2), we have for all k ∈ {1, . . . ,m}

Xnm,σ̃
m(i−1)+k

nm

−Xnm,σ̃
i−1
n

=
k∑

k′=1

f(Xnm,σ̃
m(i−1)+k′−1

nm

)
∆n

m
+

k∑
k′=1

g(Xnm,σ̃
m(i−1)+k′−1

nm

)δWiσ̃(k′)

+
k∑

k′=1

H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
). (4.4.1)

In particular, we have

Xnm,σ̃
i
n

−Xnm,σ̃
i−1
n

=

m∑
k=1

f(Xnm,σ̃
m(i−1)+k−1

nm

)
∆n

m
+

m∑
k=1

g(Xnm,σ̃
m(i−1)+k−1

nm

)δWiσ̃(k)

+

m∑
k=1

H(Xnm,σ̃
m(i−1)+k−1

nm

)v(δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n

m
). (4.4.2)

This last equation can be rewritten as follows

Xnm,σ̃
i
n

−Xnm,σ̃
i−1
n

= f(Xnm,σ̃
i−1
n

)∆n + g(Xnm,σ̃
i−1
n

)∆Wi + H(Xnm,σ̃
i−1
n

)v(∆Wi∆W
>
i − Iq∆n)

+

m∑
k=1

[
f(Xnm,σ̃

m(i−1)+k−1
nm

)− f(Xnm,σ̃
i−1
n

)

]
∆n

m
+

m∑
k=1

[
g(Xnm,σ̃

m(i−1)+k−1
nm

)− g(Xnm,σ̃
i−1
n

)

]
δWiσ̃(k)

+

m∑
k=1

H(Xnm,σ̃
m(i−1)+k−1

nm

)v(δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n

m
)−H(Xnm,σ̃

i−1
n

)v(∆Wi∆W
>
i − Iq∆n).

(4.4.3)

Let us start dealing with the last four terms in the right-hand side (r.h.s.) of the above
equality. By a Taylor expansion, we have for any �xed index component ` ∈ {1, . . . , d},

f`(X
nm,σ̃
m(i−1)+k−1

nm

)− f`(Xnm,σ̃
i−1
n

) = ∇f`>(Xnm,σ̃
i−1
n

)(Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

)

+
1

2
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)>∇2f`(ξ
1,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

), (4.4.4)

for some vector point ξ1,n
ik lying between Xnm,σ̃

m(i−1)+k−1
nm

and Xnm,σ̃
i−1
n

. Then, using (4.4.1)

m∑
k=1

[
f(Xnm,σ̃

m(i−1)+k−1
nm

)− f(Xnm,σ̃
i−1
n

)

]
∆n

m
=: Mnm,σ̃,1

i−1
n

+Nnm,σ̃
i−1
n

, (4.4.5)

where for ` ∈ {1, . . . , d} the `th-component of Nnm,σ̃
i−1
n

and Mnm,σ̃,1
i−1
n

are given by

Nnm,σ̃

`, i−1
n

=

m∑
k=2

∇f>` (Xnm,σ̃
i−1
n

) (4.4.6)

×
k−1∑
k′=1

[
f(Xnm,σ̃

m(i−1)+k′−1
nm

)
∆n

m
+ H(Xnm,σ̃

m(i−1)+k′−1
nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

]
∆n

m
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+
1

2

m∑
k=2

(Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

)>∇2f`(ξ
1,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
∆n

m

Mnm,σ̃,1

`, i−1
n

=

m∑
k=2

∇f`>(Xnm,σ̃
i−1
n

)

k−1∑
k′=1

g(Xnm,σ̃
m(i−1)+k′−1

nm

)δWiσ̃(k′)
∆n

m
. (4.4.7)

For the last two terms in the r.h.s. of (4.4.3) by ∆Wi∆W
>
i =

∑m
k,k′=1 δWi,σ̃(k)δW

>
iσ̃(k′),

we get

m∑
k=1

H(Xnm,σ̃
m(i−1)+k−1

nm

)v(δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n

m
)−H(Xnm,σ̃

i−1
n

)v(∆Wi∆W
>
i − Iq∆n)

=

m∑
k=2

[
H(Xnm,σ̃

m(i−1)+k−1
nm

)−H(Xnm,σ̃
i−1
n

)

]
v(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
) (4.4.8)

−2
∑

1≤k′<k≤m

H(Xnm,σ̃
i−1
n

)vδWiσ̃(k)δW
>
iσ̃(k′) −

∑
1≤k<k′≤m

H(Xnm,σ̃
i−1
n

)v(δWiσ̃(k)δW
>
iσ̃(k′) − δWiσ̃(k′)δW

>
iσ̃(k)).

From (4.4.3) and (4.4.8), if we denote

Mnm,σ̃,2
i−1
n

=

m∑
k=2

[
g(Xnm,σ̃

m(i−1)+k−1
nm

)− g(Xnm,σ̃
i−1
n

)

]
δWiσ̃(k) − 2

∑
1≤k<k′≤m

H(Xnm,σ̃
i−1
n

)vδWiσ̃(k′)δW
>
iσ̃(k),

Mnm,σ̃,3
i−1
n

=
m∑
k=2

[
H(Xnm,σ̃

m(i−1)+k−1
nm

)−H(Xnm,σ̃
i−1
n

)

]
v(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
).

Let us set
Mnm,σ̃ = Mnm,σ̃,1 +Mnm,σ̃,2 +Mnm,σ̃,3. (4.4.9)

Then combining (4.4.3), (4.4.5) and (4.4.9) we obtain the �rst assertion of the following
lemma. The proof of the remaining results are postponed to appendix 4.7

Lemma 4.4.1. The di�erence equation for Xnm,σ̃
i
n

− Xnm,σ̃
i−1
n

, i ∈ {1, . . . , n} is given
by

Xnm,σ̃
i
n

−Xnm,σ̃
i−1
n

= f(Xnm,σ̃
i−1
n

)∆n + g(Xnm,σ̃
i−1
n

)∆Wi +H(Xnm,σ̃
i−1
n

)v(∆Wi∆W
>
i − Iq∆n)

−H(Xnm,σ̃
i−1
n

)v
∑

1≤k<k′≤m

(δWiσ̃(k)δW
>
iσ̃(k′) − δWiσ̃(k′)δW

>
iσ̃(k)) +Mnm,σ̃

i−1
n

+Nnm,σ̃
i−1
n

, (4.4.10)

where E(Mnm,σ̃
i−1
n

|F i−1
n

) = 0, and for any integer p ≥ 2 there exists a constant Kp such

that

max
0≤i≤n

E(|Mnm,σ̃
i−1
n

|p) ≤ Kp∆
3p/2
n , (4.4.11)

max
0≤i≤n

E(|Nnm,σ̃
i−1
n

|p) ≤ Kp∆
2p
n . (4.4.12)

In what follows, we give further expansion studies for the terms Nnm,σ̃
i−1
n

and

Mnm,σ̃,1
i−1
n

, Mnm,σ̃,2 and Mnm,σ̃,3 de�ned above.
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• The term Nnm,σ̃
i−1
n

: Starting from relation (4.4.6) we replace the incrementXnm,σ̃
m(i−1)+k−1

nm

−

Xnm,σ̃
i−1
n

using (4.4.1) and we only freeze the coe�cients of the contributing terms in

the asymptotic behavior of the error at the limit point X i−1
n
. Then thanks to (4.2.2)

and using that

m∑
k=2

k−1∑
k′=1

δWiσ̃(k′)δW
>
iσ̃(k′) =

m−1∑
k=1

(m− k)δWiσ̃(k)δW
>
iσ̃(k),

we get the following result.

Lemma 4.4.2. For ` ∈ {1, . . . , d} the `th-component of Nnm,σ̃
i−1
n

has the following

expansion

Nnm,σ̃

`, i−1
n

=
(m− 1)

2m
∇f>` (X i−1

n
)f(X i−1

n
)∆2

n+

1

2

[
g>(X i−1

n
)∇2f`(X i−1

n
)g(X i−1

n
)
]
v

m−1∑
k=1

(m−k)δWiσ̃(k)δW
>
iσ̃(k)

∆n

m
+Rnm,σ̃

`, i−1
n

(0)+R̃nm,σ̃
`, i−1

n

(0),

(4.4.13)

where

Rnm,σ̃
`, i−1

n

(0) =
∆n

m

∑
1≤k′<k≤m

∇f>` (Xnm,σ̃
i−1
n

)H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

+
[
g>(X i−1

n
)∇2f`(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k′′<k′<k≤m

δWiσ̃(k′)δW
>
iσ̃(k′′)

∆n

m

satis�es E(Rnm,σ̃
`, i−1

n

(0)|F i−1
n

) = 0. Moreover, for any integer p ≥ 2 there exists

max
0≤i≤n

E(|Rnm,σ̃
`, i−1

n

(0)|p) = o
(

∆3p/2
n

)
, (4.4.14)

max
0≤i≤n

E(|R̃nm,σ̃
`, i−1

n

(0)|p) = o
(

∆2p
n

)
. (4.4.15)

The proof of the above lemma is postponed to appendix 4.7.

• The termMnm,σ̃,1
i−1
n

: For this term we only need to freeze the coe�cients in relation

(4.4.7) at the limit point X i−1
n
. Then using

m∑
k=2

k−1∑
k′=1

δW j
iσ̃(k′) =

m−1∑
k=1

(m− k)δW j
iσ̃(k),

we get the following result.

Lemma 4.4.3. For ` ∈ {1, . . . , d} the `th-component of the term Mnm,σ̃,1
i−1
n

has the

following expansion

Mnm,σ̃,1

`, i−1
n

=
[
∇f`>(X i−1

n
)g(X i−1

n
)
]m−1∑
k=1

(m− k)δWiσ̃(k)
∆n

m
+Rnm,σ̃

`, i−1
n

(1), (4.4.16)
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with E(Rnm,σ̃
`, i−1

n

(1)|F i−1
n

) = 0. Moreover, for any integer p ≥ 2 there exists

max
0≤i≤n

E(|Rnm,σ̃
`, i−1

n

(1)|p) = o
(

∆3p/2
n

)
. (4.4.17)

The proof of the above lemma is postponed to the appendix 4.7.

• The term Mnm,σ̃,2
i−1
n

: For this term we �rst proceed similarly as in (4.4.5) and we

use a Taylor expansion to write for `, j ∈ {1, . . . , q}

g`j(X
nm,σ̃
m(i−1)+k−1

nm

)− g`j(Xnm,σ̃
i−1
n

) = ∇g>`j(X
nm,σ̃
i−1
n

)(Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

)

+
1

2
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)>∇2g`j(ξ
2,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

), (4.4.18)

for some vector point ξ2,n
ik lying between Xnm,σ̃

m(i−1)+k−1
nm

and Xnm,σ̃
i−1
n

. Once again by

(4.4.1) we get

g`j(X
nm,σ̃
m(i−1)+k−1

nm

)− g`j(Xnm,σ̃
i−1
n

) = ∇g>`j(X
nm,σ̃
i−1
n

)

[
k−1∑
k′=1

(
f(Xnm,σ̃

m(i−1)+k′−1
nm

)
∆n

m

+ g(Xnm,σ̃
m(i−1)+k′−1

nm

)δWiσ̃(k′) + H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

)]
+

1

2
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)>∇2g`j(ξ
2,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

).

Then we have

Mnm,σ̃,2

`, i−1
n

=
m∑
k=2

q∑
j=1

[
∇g>`j(X

nm,σ̃
i−1
n

)
k−1∑
k′=1

(
f(Xnm,σ̃

m(i−1)+k′−1
nm

)
∆n

m
+ g(Xnm,σ̃

m(i−1)+k′−1
nm

)δWiσ̃(k′)

+ H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

)
− 2

k−1∑
k′=1

q∑
j′=1

h`jj′(X
nm,σ̃
i−1
n

)δW j′

iσ̃(k′)

+
1

2
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)>∇2g`j(ξ
2,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)

]
δW j

iσ̃(k).

Recalling that h`jj′ = 1
2∇g

>
`jg•j′ we obtain

Mnm,σ̃,2

`, i−1
n

=

m∑
k=2

q∑
j=1

[
∇g>`j(X

nm,σ̃
i−1
n

)

k−1∑
k′=1

(
f(Xnm,σ̃

m(i−1)+k′−1
nm

)
∆n

m
+

[
g(Xnm,σ̃

m(i−1)+k′−1
nm

)− g(Xnm,σ̃
i−1
n

)
]
δWiσ̃(k′) + H(Xnm,σ̃

m(i−1)+k′−1
nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

)
+

1

2
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)>∇2g`j(ξ
2,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)

]
δW j

iσ̃(k).

Again by applying Taylor expansion for each component of the matrix function g,
we get g(Xnm,σ̃

m(i−1)+k′−1
nm

) − g(Xnm,σ̃
i−1
n

) = ġnik′v(Xnm,σ̃
m(i−1)+k′−1

nm

− Xnm,σ̃
i−1
n

) ∈ Rd×q, where

ġnik′ ∈ (Rd×1)d×q is a block matrix such that for `′ ∈ {1, . . . , d}, j′ ∈ {1, . . . , q}, the
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`′j′-th block is given by (ġnik′)`′j′ = ∇g`′j′(ξ′2,nik′ ) ∈ Rd×1 where ξ′2,nik′ is a vector point

lying between Xnm,σ̃
m(i−1)+k′−1

nm

and Xnm,σ̃
i−1
n

. Then, we have

Mnm,σ̃,2

`, i−1
n

=
m∑
k=2

q∑
j=1

[
∇g>`j(X

nm,σ̃
i−1
n

)
k−1∑
k′=1

(
f(Xnm,σ̃

m(i−1)+k′−1
nm

)
∆n

m
+

H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

)]
δW j

iσ̃(k)

+
m∑
k=3

q∑
j=1

∇g>`j(X
nm,σ̃
i−1
n

)
k−1∑
k′=2

[
ġnik′v(Xnm,σ̃

m(i−1)+k′−1
nm

−Xnm,σ̃
i−1
n

)
]
δWiσ̃(k′)δW

j
iσ̃(k)

+
m∑
k=2

q∑
j=1

1

2
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)>∇2g`j(ξ
2,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)δW j
iσ̃(k).

(4.4.19)

Now, we replace the increment Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

using (4.4.1) and we only freeze

the coe�cients of the contributing terms in the asymptotic behavior of the error at
the limit point X i−1

n
.

Lemma 4.4.4. For ` ∈ {1, . . . , d} the `th-component of the term Mnm,σ̃,2
i−1
n

has the

following expansion

Mnm,σ̃,2

`, i−1
n

=

q∑
j=1

∇g>`j(X i−1
n

)
∑

1≤k′<k≤m

(
f(X i−1

n
)
∆n

m
+ H(X i−1

n
)v(δWiσ̃(k′)δW

>
iσ̃(k′) − Iq

∆n

m
)

)
δW j

iσ̃(k)

+

q∑
j=1

∇g>`j(X i−1
n

)
∑

1≤k′′<k′<k≤m

[
ġniv

(
g(X i−1

n
)δWiσ̃(k′′)

)]
δWiσ̃(k′)δW

j
iσ̃(k)

+

q∑
j=1

1

2

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k′′<k′<k≤m

δWiσ̃(k′′)δW
>
iσ̃(k′)δW

j
iσ̃(k) +Rnm,σ̃

`, i−1
n

(2)

(4.4.20)

with E(Rnm,σ̃
`, i−1

n

(2)|F i−1
n

) = 0 and ġni ∈ (Rd×1)d×q is a block matrix such that for ` ∈
{1, . . . , d}, j ∈ {1, . . . , q}, the `j-th block is given by (ġni )`j = ∇g`j(X i−1

n
). Moreover,

for any integer p ≥ 2

max
0≤i≤n

E(|Rnm,σ̃
`, i−1

n

(2)|p) = o
(

∆3p/2
n

)
. (4.4.21)

The proof of the above lemma is postponed to the appendix 4.7.

Remark 4.4.5. The `-th component of Mnm,σ̃,2 can be rewritten as follows:

Mnm,σ̃,2

`, i−1
n

=

q∑
j=1

∇g>`j(X i−1
n

)
∑

1≤k′<k≤m

[
f(X i−1

n
)
∆n

m
+ H(X i−1

n
)v(δWiσ̃(k′)δW

>
iσ̃(k′) − Iq

∆n

m
)

]
δW j

iσ̃(k)
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+

q∑
j=1

∇g>`j(X i−1
n

)
∑

1≤k′′<k′<k≤m

[
ġniv

(
g(X i−1

n
)δWiσ̃(k′′)

)]
δWiσ̃(k′)δW

j
iσ̃(k)

+

q∑
j=1

1

2

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k′<k≤m

(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)δW j

iσ̃(k)

+

q∑
j=1

1

2

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

m∑
k=2

(k − 1)Iq
∆n

m
δW j

iσ̃(k)

+

q∑
j=1

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k′′<k′<k≤m

δWiσ̃(k′)δW
>
iσ̃(k′′)δW

j
iσ̃(k) +Rnm,σ̃

`, i−1
n

(2).

(4.4.22)

• The term Mnm,σ̃,3
i−1
n

: Considering each component of Mnm,σ̃,3, for ` ∈ {1, . . . , d}
we can also consider a Taylor expansion for the components of the matrix h`•• ∈ Rq×q
to get

Mnm,σ̃,3

`, i−1
n

=

m∑
k=2

[
ḣn,ik`•• v(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
]
v(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
), (4.4.23)

where the ḣn,ik`•• ∈ (Rd×1)q×q is a random block matrix such that for j and j′ ∈
{1, . . . , q}, the jj′-th block is given by (ḣn,ik`•• )jj′ = ∇h`jj′(ξ3,n

ik ) ∈ Rd×1 and ξ3,n
ik is a

vector point lying between Xnm,σ̃
m(i−1)+k−1

nm

and Xnm,σ̃
i−1
n

.

Remark 4.4.6. Concerning Mnm,σ̃,3, the last formula can be written di�erently. In

fact, as H ∈ (Rq×q)d×1 = Rdq×q, we proceed similarly as above using a Taylor expan-

sion to get the existence of a random block matrix Ḣn
ik such that

Mnm,σ̃,3
i−1
n

=

m∑
k=2

[
Ḣn
ikv(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
]
v(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
).

More precisely, we have Ḣn
ik ∈ (Rd×1)dq×q where for `′ ∈ {1, . . . , dq} and j′ ∈

{1, . . . , q}, the `′j′-th block is given by (Ḣn
ik)`′j′ = ∇h`jj′(ξ3,n

ik ) ∈ Rd×1 where `′ =

q(`− 1) + j and ξ3,n
ik is a vector point lying between Xnm,σ̃

m(i−1)+k−1
nm

and Xnm,σ̃
i−1
n

.

Now, we replace the increment Xnm,σ̃
m(i−1)+k−1

nm

− Xnm,σ̃
i−1
n

using (4.4.1) and we only

freeze the coe�cients of the contributing terms in the asymptotic behavior of the
error at the limit point X i−1

n
.

Lemma 4.4.7. For ` ∈ {1, . . . , d} the `th component of the term Mnm,σ̃,3
i−1
n

has the

following expansion

Mnm,σ̃,3

`, i−1
n

=

m∑
k=2

k−1∑
k′=1

[
ḣn,i`••v(g(X i−1

n
)δWiσ̃(k′))

]
v(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
) +Rnm,σ̃

`, i−1
n

(3)

(4.4.24)

with E(Rnm,σ̃
`, i−1

n

(3)|F i−1
n

) = 0 and ḣn,i`•• ∈ (Rd×1)q×q is a block matrix such that for j

and j′ ∈ {1, . . . , q}, the jj′-th block is given by (ḣn,i`••)jj′ = ∇h`jj′(X i−1
n

). Moreover,
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for any integer p ≥ 2 there exists

max
0≤i≤n

E(|Rnm,σ̃
`, i−1

n

(3)|p) = o
(

∆3p/2
n

)
. (4.4.25)

The proof of the above lemma is postponed to the appendix 4.7 .

4.4.2 Expansion of the error X̄nm,σ
i
n

− X̄nm,σ
i−1
n

We remind that X̄nm,σ = 1
2(Xnm +Xnm,σ). By (4.4.2), we have

X̄nm,σ
i
n

− X̄nm,σ
i−1
n

=
1

2

m∑
k=1

[
f(Xnm

m(i−1)+k−1
nm

) + f(Xnm,σ
m(i−1)+k−1

nm

)

]
∆n

m

+
1

2

m∑
k=1

[
H(Xnm

m(i−1)+k−1
nm

)v(δWikδW
>
ik − Iq

∆n

m
) + H(Xnm,σ

m(i−1)+k−1
nm

)v(δWiσ(k)δW
>
iσ(k) − Iq

∆n

m
)

]

+
1

2

m∑
k=1

[
g(Xnm

m(i−1)+k−1
nm

)δWik + g(Xnm,σ
m(i−1)+k−1

nm

)δWiσ(k)

]
.

Then we rewrite it as follows

X̄nm,σ
i
n

− X̄nm,σ
i−1
n

=f(X̄nm,σ
i−1
n

)∆n + g(X̄nm,σ
i−1
n

)∆Wi + H(X̄nm,σ
i−1
n

)v(∆Wi∆W
>
i − Iq∆n)

+A i−1
n

+B i−1
n

+ C i−1
n
,

where

A i−1
n

=
1

2

m∑
k=1

[
f(Xnm

m(i−1)+k−1
nm

) + f(Xnm,σ
m(i−1)+k−1

nm

)

]
∆n

m
− f(X̄nm,σ

i−1
n

)∆n,

B i−1
n

=
1

2

m∑
k=1

[
g(Xnm

m(i−1)+k−1
nm

)δWi,k + g(Xnm,σ
m(i−1)+k−1

nm

)δWiσ(k)

]
− g(X̄nm,σ

i−1
n

)∆Wi,

C i−1
n

=
1

2

m∑
k=1

[
H(Xnm

m(i−1)+k−1
nm

)v(δWikδW
>
ik − Iq

∆n

m
) + H(Xnm,σ

m(i−1)+k−1
nm

)v(δWiσ(k)δW
>
iσ(k) − Iq

∆n

m
)

]
−H(X̄nm,σ

i−1
n

)v(∆Wi∆W
>
i − Iq∆n).

Now considering A i−1
n
, we use (4.4.5) to get

A i−1
n

=
1

2

m∑
k=1

[
f(Xnm

m(i−1)+k−1
nm

)− f(Xnm
i−1
n

)

]
∆n

m
+

1

2

m∑
k=1

[
f(Xnm,σ

m(i−1)+k−1
nm

)− f(Xnm,σ
i−1
n

)

]
∆n

m

+
1

2

(
f(Xnm

i−1
n

) + f(Xnm,σ
i−1
n

)

)
∆n − f(X̄nm,σ

i−1
n

)∆n

=
1

2
(Mnm,Id,1

i−1
n

+Mnm,σ,1
i−1
n

+Nnm,Id
i−1
n

+Nnm,σ
i−1
n

) + Ñnm
i−1
n

,

where Ñnm
i−1
n

=
1

2

(
f(Xnm

i−1
n

) + f(Xnm,σ
i−1
n

)
)
∆n − f(X̄nm,σ

i−1
n

)∆n. Similarly, we have

B i−1
n

+ C i−1
n

=

[
1

2

(
g(Xnm

i−1
n

) + g(Xnm,σ
i−1
n

)

)
− g(X̄nm,σ

i−1
n

)

]
∆Wi
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+
1

2

m∑
k=1

[
g(Xnm

m(i−1)+k−1
nm

)− g(Xnm
i−1
n

)

]
δWik +

1

2

m∑
k=1

[
g(Xnm,σ

m(i−1)+k−1
nm

)− g(Xnm,σ
i−1
n

)

]
δWiσ(k)

+
1

2

m∑
k=1

[
H(Xnm

m(i−1)+k−1
nm

)v(δWikδW
>
ik − Iq

∆n

m
)−H(Xnm

i−1
n

)v(∆Wi∆W
>
i − Iq∆n)

]

+
1

2

m∑
k=1

[
H(Xnm,σ

m(i−1)+k−1
nm

)v(δWiσ(k)δW
>
iσ(k) − Iq

∆n

m
)−H(Xnm,σ

i−1
n

)v(∆Wi∆W
>
i − Iq∆n)

]
+

[
1

2

(
H(Xnm

i−1
n

) + H(Xnm,σ
i−1
n

)

)
−H(X̄nm,σ

i−1
n

)

]
v(∆Wi∆W

>
i − Iq∆n).

Now, by (4.4.8) and the expressions of Mnm,σ̃,2 and Mnm,σ̃,3 given above relation
(4.4.9) we rearrange our terms to get

B i−1
n

+C i−1
n

=
1

2
(Mnm,Id,2

i−1
n

+Mnm,σ,2
i−1
n

+Mnm,Id,3
i−1
n

+Mnm,σ,3
i−1
n

)+M̃nm,1
i−1
n

+M̃nm,2
i−1
n

−1

2
M̃nm,3

i−1
n

,

where

M̃nm,1
i−1
n

=

[
1

2

(
g(Xnm

i−1
n

) + g(Xnm,σ
i−1
n

)

)
− g(X̄nm,σ

i−1
n

)

]
∆Wi,

M̃nm,2
i−1
n

=

[
1

2

(
H(Xnm

i−1
n

) + H(Xnm,σ
i−1
n

)

)
−H(X̄nm,σ

i−1
n

)

]
v(∆Wi∆W

>
i − Iq∆n),

M̃nm,3
i−1
n

=
∑

σ̃∈{Id,σ}

∑
1≤k<k′≤m

H(Xnm,σ̃
i−1
n

)v(δWiσ̃(k)δW
>
iσ̃(k′) − δWiσ̃(k′)δW

>
iσ̃(k))

Now recalling that σ(k) = m− k + 1, for all k ∈ {1, . . . ,m}, we get

M̃nm,3
i−1
n

=
∑

1≤k<k′≤m

[
H(Xnm

i−1
n

)−H(Xnm,σ
i−1
n

)

]
v(δWikδW

>
ik′ − δWik′δW

>
ik ).

In what follows, by (4.4.9) we introduce for i ∈ {1, . . . , n}

N̄nm
i−1
n

=
1

2
(Nnm,Id

i−1
n

+Nnm,σ
i−1
n

) + Ñnm
i−1
n

, (4.4.26)

M̄nm
i−1
n

=
1

2
(Mnm,Id

i−1
n

+Mnm,σ
i−1
n

) + M̃nm,1
i−1
n

+ M̃nm,2
i−1
n

− 1

2
M̃nm,3

i−1
n

. (4.4.27)

The proof of the following lemma is postponed to the appendix 4.7.

Lemma 4.4.8. The error X̄nm,σ
i
n

− X̄nm,σ
i−1
n

, i ∈ {1, . . . , n} can be expressed as follows

X̄nm,σ
i
n

− X̄nm,σ
i−1
n

= f(X̄nm,σ
i−1
n

)∆n + g(X̄nm,σ
i−1
n

)∆Wi

+ H(X̄nm,σ
i−1
n

)v(∆Wi∆W
>
i − Iq∆n) + M̄mn

i−1
n

+ N̄nm
i−1
n

, (4.4.28)

where E(M̄nm
i−1
n

|F i−1
n

) = 0 and for any integer p ≥ 2 there exists a constant Kp such

that

max
0≤i≤n

E(|M̄nm
i−1
n

|p) ≤ Kp∆
3p/2
n , (4.4.29)

max
0≤i≤n

E(|N̄nm
i−1
n

|p) ≤ Kp∆
2p
n . (4.4.30)
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Corollary 4.4.9. We have

E( max
0≤i≤n

|X̄nm,σ
i
n

−Xn
i
n

|p) ≤ Cp∆p
n.

Proof. Let us de�ne Sk = E( max
0≤k′≤k

|X̄nm,σ
k′
n

−Xn
k′
n

|p), for any 0 ≤ k ≤ n. For a �xed

k, by summing (4.4.28) over the �rst k′ timesteps, we obtain

X̄nm,σ
k′
n

−Xn
k′
n

=
k′∑
i=1

(f(X̄nm,σ
i−1
n

)− f(Xn
i−1
n

))∆n +
k′∑
i=1

(g(X̄nm,σ
i−1
n

)− g(Xn
i−1
n

))∆Wi

+
k′∑
i=1

(H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i − Iq∆n) +

k′∑
i=1

M̄nm
i−1
n

+
k′∑
i=1

N̄nm
i−1
n

,

Then there is a generic constant Cp > 0 such that

E( max
0≤k′≤k

|X̄nm,σ
k
n

−Xn
k
n

|p) ≤ CpE( max
0≤k′≤k

|
k′∑
i=1

(f(X̄nm,σ
i−1
n

)− f(Xn
i−1
n

))∆n|p)

+CpE( max
0≤k≤n

|
k′∑
i=1

(g(X̄nm,σ
i−1
n

)− g(Xn
i−1
n

))∆Wi|p)

+CpE( max
0≤k′≤k

|
k′∑
i=1

(H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i − Iq∆n)|p)

+CpE( max
0≤k′≤k

|
k′∑
i=1

M̄nm
i−1
n

|p) + CpE( max
0≤k′≤k

|
k′∑
i=1

N̄nm
i−1
n

|p),

By Jensen's inequality and (Hf,g), we have

E( max
0≤k′≤k

|
k′∑
i=1

(f(X̄nm,σ
i−1
n

)− f(Xn
i−1
n

))∆n|p) ≤ CpE( max
0≤k≤n

kp−1
k∑
i=1

|(f(X̄nm,σ
i−1
n

)− f(Xn
i−1
n

))∆n|p)

≤ Cpnp−1
k∑
i=1

E((f(X̄nm,σ
i−1
n

)− f(Xn
i−1
n

)|p)∆p
n ≤ Cp

k∑
i=1

E( max
0≤k≤i−1

|X̄nm,σ
k
n

−Xn
k
n

|p)∆n.

Similarly, by Jensen's inequality, the independence between ∆Wi and F i−1
n

and the

assumption (Hf,g), E( max
0≤k′≤k

|
∑k′

i=1(H(X̄nm,σ
i−1
n

) − H(Xn
i−1
n

))v(∆Wi∆W
>
i − Iq∆n)|p)

has an upper bound Cp
∑k−1

i=0 E(max0≤j≤i−1 |X̄nm,σ
j
n

− Xn
j
n

|p)∆n. Now, by Jensen's

inequality and Lemma 4.4.8, E( max
0≤k′≤k

|
∑k′

i=1 N̄
nm
i−1
n

|p) has an upper bound Cp∆
p
n. Fi-

nally, by the discrete BDG inequality in Jacod et al., 2005 combined with Jensen's
inequality, we have

E( max
0≤k′≤k

|
k′∑
i=1

(g(X̄nm,σ
i−1
n

)− g(Xn
i−1
n

))∆Wi|p) ≤ CpE(

k∑
i=1

|g(X̄nm,σ
i−1
n

)− g(Xn
i−1
n

))∆Wi|2)p/2

≤ Cpnp/2−1
k∑
i=1

E(|g(X̄nm,σ
i−1
n

)− g(Xn
i−1
n

))|p)E(|∆Wi|p) ≤ Cp
k∑
i=1

E( max
0≤k≤i−1

|X̄nm,σ
k
n

−Xn
k
n

|p)∆n.
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Similarly, thanks to Lemma 4.4.8, E( max
0≤k′≤k

|
∑k′

i=1 M̄
nm
i−1
n

|p) has an upper bound Cp∆p
n.

Thus, it follows that

Sk ≤ Cp(∆p
n +

k−1∑
i=0

Si∆n), for any 0 ≤ k ≤ n.

By the discrete Grönwal inequality, we have

Sn ≤ Cp∆p
n + C∆p+1

n

n−1∑
i=0

exp{(n− 1− i)∆n} ≤ Cp∆p
n + Cp∆

p+1
n

n−1∑
i=0

e ≤ Cp∆p
n.

In what follows we give further expansions for the terms Ñnm
i−1
n

, M̃nm,1
i−1
n

, M̃nm,2
i−1
n

and

M̃nm,3
i−1
n

de�ned above. These expansions will be useful later on. To do so, we apply

twice the Taylor expansion until the second order, for each ` ∈ {1, . . . , d}, we get

Ñnm
`, i−1

n

=
1

16
(Xnm

i−1
n

−Xnm,σ
i−1
n

)>
(
∇2f`(ζ

n,1
i−1
n

) +∇2f`(ζ
n,2
i−1
n

)

)
(Xnm

i−1
n

−Xnm,σ
i−1
n

)∆n,

(4.4.31)

M̃nm,1

`, i−1
n

=
1

16

q∑
j′=1

(Xnm
i−1
n

−Xnm,σ
i−1
n

)>
(
∇2g`j′(ζ

n,3
i−1
n

) +∇2g`j′(ζ
n,4
i−1
n

)

)
(Xnm

i−1
n

−Xnm,σ
i−1
n

)∆W j′

i .

(4.4.32)

Then using twice the Taylor expansion until the �rst order we get

M̃nm,2

`, i−1
n

=
1

4

[
ḣn,i,1`•• v(Xnm

i−1
n

−Xnm,σ
i−1
n

)
]
v(∆Wi∆Wi − Iq∆n) (4.4.33)

and similarly

M̃nm,3

`, i−1
n

=
∑

1≤k<k′≤m

[
ḣn,i,2`•• v(Xnm

i−1
n

−Xnm,σ
i−1
n

)
]
v(δWikδW

>
ik′ − δWik′δW

>
ik ), (4.4.34)

where for j and j′ ∈ {1, . . . , q}, the jj′-th elements of the block matrices ḣn,i,1`•• and
ḣn,i,2`•• are respectively given by (ḣn,i,1`•• )jj′ = ∇h`jj′(ζn,5i−1

n

) − ∇h`jj′(ζn,6i−1
n

) ∈ Rd×1 and

(ḣn,i,2`•• )jj′ = ∇h`jj′(ζn,7i−1
n

) ∈ Rd×1; for some vector point ξ7,n
i lying between Xnm,σ

i−1
n

and

Xnm
i−1
n

, some vector points ζn,1i−1
n

, ζn,3i−1
n

, ζn,5i−1
n

lying between X̄nm,σ
i−1
n

and Xnm
i−1
n

and some

vector points ζn,2i−1
n

, ζn,4i−1
n

, ζn,6i−1
n

lying between X̄nm,σ
i−1
n

and Xnm,σ
i−1
n

.

Remark 4.4.10. In order to get the good rate of convergence, we need to assume

that our σ is strictly decreasing which leads us to take the unique choice de�ned by

σ(k) = m−k+1. Otherwise, it is easy to check that the term n
∑[nt]

i=1 M̃
nm,3
i−1
n

appearing

in the decomposition of the normalized error n(X̄nm,σ
ηn(t) −X

n
ηn(t)) is not tight.



112 Chapter 4. The antithetic Multilevel Monte Carlo method

4.4.3 Error analysis of Un and V n

For t ∈ [0, 1] we have

Xnm,σ
ηn(t) =x0 +

[nt]∑
i=1

m∑
k=1

f(Xnm,σ
m(i−1)+k−1

nm

)
∆n

m
+

[nt]∑
i=1

m∑
k=1

g(Xnm,σ
m(i−1)+k−1

nm

)δWiσ(k)

+

[nt]∑
i=1

m∑
k=1

H(Xnm,σ
m(i−1)+k−1

nm

)v(δWiσ(k)δW
>
iσ(k) − Iq

∆n

m
). (4.4.35)

Error analysis of Un At �rst, we consider the error Unt = (Un,1t , . . . , Un,dt )> ∈ Rd
between the �ner and the antithetic Milstein approximations given by Unt = Xnm

ηn(t) −
Xnm,σ
ηn(t) . Then by (4.4.10), the expansion of Un takes the following form

Unt =

[nt]∑
i=1

(f(Xnm
i−1
n

)− f(Xnm,σ
i−1
n

))∆n +

[nt]∑
i=1

(g(Xnm
i−1
n

)− g(Xnm,σ
i−1
n

))∆Wi

+

[nt]∑
i=1

(H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

))v(∆Wi∆W
>
i − Iq∆n)

−
[nt]∑
i=1

m∑
k,k′=1
k<k′

(H(Xnm
i−1
n

) + H(Xnm,σ
i−1
n

))v
(
δWikδW

>
ik′ − δWik′δW

>
ik

)

+

[nt]∑
i=1

(Mnm,Id
i−1
n

−Mnm,σ
i−1
n

) +

[nt]∑
i=1

(Nnm,Id
i−1
n

−Nnm,σ
i−1
n

).

By Taylor's expansion, we rewrite Un as follows

Unt =

[nt]∑
i=1

ḟni vU
n
i−1
n

∆n +

[nt]∑
i=1

(
ġnivU

n
i−1
n

)
∆Wi

+

[nt]∑
i=1

(H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

))v(∆Wi∆W
>
i − Iq∆n)

−
[nt]∑
i=1

∑
1≤k<k′≤m

(H(Xnm
i−1
n

) + H(Xnm,σ
i−1
n

))v
(
δWikδW

>
ik′ − δWik′δW

>
ik

)

+

[nt]∑
i=1

(Mnm,Id
i−1
n

−Mnm,σ
i−1
n

) +

[nt]∑
i=1

(Nnm,Id
i−1
n

−Nnm,σ
i−1
n

), (4.4.36)

where ḟni ∈ (Rd×1)d×1 and ġni ∈ (Rd×1)d×q are block matrices such that for ` ∈
{1, . . . , d} the `-th block of ḟni is given by (ḟni )` = ∇f`(ξ1,n

i−1
n

), for ` ∈ {1, . . . , d} and

j ∈ {1, . . . , q} the `j-th block of ġni is given by (ġni )`j = ∇g`j(ξ2,n
i−1
n

) with ξ1,n
i−1
n

and ξ2,n
i−1
n

are some vector points lying between Xnm
i−1
n

and Xnm,σ
i−1
n

. Now, the equation (4.4.36)

can be rewritten as

Unt =

[nt]∑
i=1

ḟni vU
n
i−1
n

∆n +

[nt]∑
i=1

(
ġnivU

n
i−1
n

)
∆Wi +Mn,1

t +Rn,1t
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=

[nt]∑
i=1

ḟni vU
n
i−1
n

∆n +

q∑
j=1

[nt]∑
i=1

(
(ġni )•jvU

n
i−1
n

)
∆W j

i +Mn,1
t +Rn,1t , (4.4.37)

with (ġni )•j = ((ġni )1j , . . . , (ġ
n
i )dj)

>,Mn,1 is the main term and Rn,1 is the rest term
given by

Mn,1
t =−

[nt]∑
i=1

m∑
k,k′=1
k<k′

(H(Xnm
i−1
n

) + H(Xnm,σ
i−1
n

))v
(
δWikδW

>
ik′ − δWik′δW

>
ik

)
,

Rn,1t =

[nt]∑
i=1

(H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

))v(∆Wi∆W
>
i − Iq∆n) +

[nt]∑
i=1

(Mnm,Id
i−1
n

−Mnm,σ
i−1
n

)

+

[nt]∑
i=1

(Nnm,Id
i−1
n

−Nnm,σ
i−1
n

).

The proof of the following lemma is postponed to appendix 4.6.

Lemma 4.4.11. Under the assumption (Hf,g), we have
√
nRn,1 Lp→ 0 as n→∞.

Error analysis of V n Now, we consider the error V n
t = (V n,1

t , . . . , V n,d
t )> ∈ Rd

between the average of the �ner and the coarser antithetic Milstein approximations
given by V n

t = X̄nm,σ
ηn(t) −X

n
ηn(t). Similarly to the analysis of Un, by (4.4.28) and (4.2.3),

we rewrite V n as follows

V n
t =

[nt]∑
i=1

(f(X̄nm,σ
i−1
n

)− f(Xn
i−1
n

))∆n +

[nt]∑
i=1

(g(X̄nm,σ
i−1
n

)− g(Xn
i−1
n

))∆Wi

+

[nt]∑
i=1

(H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i − Iq∆n) +

[nt]∑
i=1

M̄nm
i−1
n

+

[nt]∑
i=1

N̄nm
i−1
n

,

where N̄nm
i−1
n

and M̄nm
i−1
n

are respectively given by (4.4.26) and (4.4.27). By the Taylor

expansion, we have

V n
t =

[nt]∑
i=1

¯̇
fni vV

n
i−1
n

∆n +

[nt]∑
i=1

(
¯̇gnivV

n
i−1
n

)
∆Wi

+

[nt]∑
i=1

(H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i − Iq∆n) +

[nt]∑
i=1

M̄ i−1
n

+

[nt]∑
i=1

N̄ i−1
n
,

where ¯̇
fni ∈ (Rd×1)d×1 and ¯̇gni ∈ (Rd×1)d×q are block matrices such that for ` ∈

{1, . . . , d} the `-th block of ¯̇
fni is given by (

¯̇
fni )` = ∇f`(ξ̄1,n

i−1
n

), for ` ∈ {1, . . . , d} and

j ∈ {1, . . . , q} the `j-th block of ¯̇gni is given by (¯̇gni )`j = ∇g`j(ξ̄2,n
i−1
n

) with ξ̄1,n
i−1
n

and

ξ̄2,n
i−1
n

are some vector points lying between Xn
i−1
n

and X̄nm,σ
i−1
n

. Thanks to Lemma 4.4.2,

Lemma 4.4.3, Lemma 4.4.4 and Lemma 4.4.7, the above equation rewrites as follows

V n
t =

[nt]∑
i=1

f̄ni vV
n
i−1
n

∆n +

[nt]∑
i=1

(
ḡnivV

n
i−1
n

)
∆Wi +Mn,2

t +Rn,2t , (4.4.38)
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whereMn,2 stands for the main contributing term of the above error expansion and
Rn,2 is the rest term, for t ∈ [0, 1] they are given by

Mn,2
t =

1

2

∑
σ̃∈{Id,σ}

4∑
r=1

Γn,σ̃t (r) + Ñnm
t + M̃nm,1

t − 1

2
M̃nm,3
t , (4.4.39)

Rn,2t =
1

2

∑
σ̃∈{Id,σ}

[nt]∑
i=1

(
R̃nm,σ̃i−1

n

(0) +

3∑
r=0

Rnm,σ̃i−1
n

(r)

)
+ M̃nm,2

t (4.4.40)

+

[nt]∑
i=1

(H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i − Iq∆n),

where for r ∈ {1, 2, 3}, M̃nm,r
t =

∑[nt]
i=1 M̃

nm,r
i−1
n

, Ñnm
t =

∑[nt]
i=1 Ñ

nm
i−1
n

with (M̃nm,r
i−1
n

)1≤r≤3,

Ñnm
i−1
n

are respectively given by (4.4.31),(4.4.32), (4.4.33) and (4.4.34) and the rest

terms Rnm,σ̃i−1
n

(0) and R̃nm,σ̃i−1
n

(0) are implicitly de�ned in (4.4.13) and (Rnm,σ̃i−1
n

(r))1≤r≤3

are respectively implicitly de�ned in (4.4.16), (4.4.20) and (4.4.24). Now, we introduce
the d-dimensional processes (Γn,σ̃t (i), 1 ≤ i ≤ 4, t ∈ [0, 1]) whose `th components are
given by

Γn,σ̃`,t (1) =

[nt]∑
i=1

[
(m− 1)

2m
∇f>` (X i−1

n
)f(X i−1

n
)∆2

n

+
1

2

[
g>(X i−1

n
)∇2f`(X i−1

n
)g(X i−1

n
)
]
v

m−1∑
k=1

(m− k)δWiσ̃(k)δW
>
iσ̃(k)

∆n

m

]
,

(4.4.41)

Γn,σ̃`,t (2) =

[nt]∑
i=1

∆n

m

[[
∇f`>(X i−1

n
)g(X i−1

n
)
]m−1∑
k=1

(m− k)δWiσ̃(k)

+

q∑
j=1

∇g>`j(X i−1
n

)f(X i−1
n

)

m−1∑
k=1

(m− k)δW j
iσ̃(k)

+

q∑
j=1

1

2
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)vIq

m∑
k=2

(k − 1)δW j
iσ̃(k)

]
, (4.4.42)

Γn,σ̃`,t (3) =

[nt]∑
i=1

q∑
j=1

[
∇g>`j(X i−1

n
)H(X i−1

n
)v
∑

1≤k′<k≤m

(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)δW j

iσ̃(k)

+
1

2

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k′<k≤m

(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)δW j

iσ̃(k)

+
[
ḣn,i`••vg•j(X i−1

n
)
]
v

∑
1≤k′<k≤m

(δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n

m
)δW j

iσ̃(k′)

]
,

(4.4.43)

Γn,σ̃`,t (4) =

[nt]∑
i=1

[
q∑

j,j′=1

∇g>`j(X i−1
n

)
[
ġnivg•j′(X i−1

n
)
] ∑

1≤k′′<k′<k≤m

δWiσ̃(k′)δW
j′

iσ̃(k′′)δW
j
iσ̃(k)



4.5. Asymptotic Behavior of the main terms 115

+

q∑
j=1

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k′′<k′<k≤m

δWiσ̃(k′)δW
>
iσ̃(k′′)δW

j
iσ̃(k)

]
.

(4.4.44)

The proof of the following lemma is also postponed to appendix 4.6.

Lemma 4.4.12. We have nRn,2 Lp→ 0 as n→∞.

Remark 4.4.13. These processes (Γn,σ̃t (r), 1 ≤ r ≤ 4, t ∈ [0, 1]) are obtained by gath-

ering together the main terms in (4.4.13), (4.4.16), (4.4.20) and (4.4.24), taking into

account their noise types and neglecting the rest terms
(
Rnm,σ̃
`, i−1

n

(r)
)

0≤r≤3
and R̃nm,σ̃

`, i−1
n

(0),

for ` ∈ {1, . . . , d}.

4.5 Asymptotic Behavior of the main terms

According to expansion (4.4.37) and (4.4.38) appearing in the decompositions of Un

and V n we need to focus on the main terms (Mn,1,Mn,2), where we recall that

Mn,1
t =−

[nt]∑
i=1

m∑
1≤k,k′≤m
k<k′

(H(Xnm
i−1
n

) + H(Xnm,σ
i−1
n

))v
(
δWikδW

>
ik′ − δWik′δW

>
ik

)
,

(4.5.1)

Mn,2
t =

1

2

∑
σ̃∈{Id,σ}

4∑
r=1

Γn,σ̃t (r) + Ñnm
t + M̃nm,1

t − 1

2
M̃nm,3
t

with Ñnm
t respectively M̃nm,1

t and M̃nm,3
t are given by relation (4.4.31) respectively

(4.4.32) and (4.4.34), (Γn,σ̃t (r), 1 ≤ r ≤ 4, t ∈ [0, 1]) are de�ned as above in (4.4.41),
(4.4.42), (4.4.43) and (4.4.44).
Unlike the �rst main termMn,1, that has explicit form of the noise, the second main
term Mn,2 needs further development in order to identify its noise parts. To do so,
we need the following lemma that will be proven in appendix 4.6.

Lemma 4.5.1. Let Γ̄nt (r) =
Γn,Idt (r)+Γn,σt (r)

2 ∈ Rd, for r ∈ {1, 2, 3, 4}. Then we rewrite

Γ̄n(r) as follows, for ` ∈ {1, . . . , d},

Γ̄n`,t(1) =

[nt]∑
i=1

(m− 1)∆n

2m

[
∇f>` (X i−1

n
)f(X i−1

n
)∆n

+
1

2

[
g>(X i−1

n
)∇2f`(X i−1

n
)g(X i−1

n
)
]
v

m∑
k=1

δWikδW
>
ik

]
,

Γ̄n`,t(2) =

[nt]∑
i=1

q∑
j=1

(m− 1)∆n

2m

[
∇f`>(X i−1

n
)g•j(X i−1

n
)∆W j

i +∇g>`j(X i−1
n

)f(X i−1
n

)∆W j
i

+
1

2
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)vIq∆W

j
i

]
,
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Γ̄n`,t(3) =
1

2

[nt]∑
i=1

q∑
j=1

[
∇g>`j(X i−1

n
)H(X i−1

n
)v
∑

1≤k,k′≤m
k′ 6=k

(
δWik′δW

>
ik′ − Iq

∆n

m

)
δW j

ik

+
1

2

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k,k′≤m
k′ 6=k

(
δWik′δW

>
ik′ − Iq

∆n

m

)
δW j

ik

+
[
ḣn,i`••vg•j(X i−1

n
)
]
v

∑
1≤k,k′≤m
k′ 6=k

(δWik′δW
>
ik′ − Iq

∆n

m
)δW j

ik

]
,

Γ̄n`,t(4) =
1

2

[nt]∑
i=1

[
q∑

j,j′=1

∇g>`j(X i−1
n

)
[
ġnivg•j′(X i−1

n
)
] ∑

1≤k′′<k′<k≤m

δWik′(δW
j′

ik′′δW
j
ik + δW j

ik′′δW
j′

ik )

+

q∑
j=1

[
g>(X i−1

n
)∇2g`j(X i−1

n
)g(X i−1

n
)
]
v

∑
1≤k′′<k′<k≤m

δWik′(δW
>
ik′′δW

j
ik + δW j

ik′′δW
>
ik )

]
.

Proof. Concerning Γ̄n(1), according to the de�nition of σ, we only use

m∑
k=1

(m− k)δWiσ(k)δW
>
iσ(k) =

m∑
k=1

(k − 1)δWikδW
>
ik .

Similarly, we obtain Γ̄n(2) using

m∑
k=1

(m− k)δWiσ(k) =
m∑
k=1

(k − 1)δWik and
m∑
k=1

(k − 1)δWiσ(k) =
m−1∑
k=1

(m− k)δWik.

To get Γ̄n(3), we use

m∑
k,k′=1
k′<k

(
δWiσ(k′)δW

>
iσ(k′) − Ω

∆n

m

)
δW j

iσ(k) =
m∑

k,k′=1
k<k′

(
δWik′δW

>
ik′ − Ω

∆n

m

)
δW j

ik.

Finally, we obtain Γ̄n(4) using

m∑
k=3

k−1∑
k′=2

k′−1∑
k′′=1

δW j
iσ(k′′)δW

j′

iσ(k′)δW
j′′

iσ(k) =
m−2∑
k=1

m−1∑
k′=k+1

m∑
k′′=k′+1

δW j
ik′′δW

j′

ik′δW
j′′

ik .

Now, thanks to the above lemma, (4.4.38) can be rewritten in a better way as
follows

V n
t =

[nt]∑
i=1

f̄ni vV
n
i−1
n

∆n +

[nt]∑
i=1

(
ḡnivV

n
i−1
n

)
∆Wi +Mn,2

t +Rn,2t ,
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where for t ∈ [0, 1],

Mn,2
t =

4∑
r=1

Γ̄nt (r) + Ñnm
t + M̃nm,1

t − 1

2
M̃nm,3
t , (4.5.2)

here we recall that for r ∈ {1, 3}, M̃nm,r
t =

∑[nt]
i=1 M̃

nm,r
i−1
n

, Ñnm
t =

∑[nt]
i=1 Ñ

nm
i−1
n

with

Ñnm
i−1
n

and (M̃nm,r
i−1
n

)r∈{1,3} are respectively given by (4.4.31),(4.4.32) and (4.4.34).

Now, in order to prove the convergence in law of the couple (Mn,1,Mn,2), we �rst need
to study the asymptotic behavior of the distribution of the noises vector (Zn0 , Z

n
1 , Z

n
2 , Z

n
3 ),

where Zn0 = (Zn,jj
′

0 )j,j′∈{1,...,q}, Z
n
2 = (Zn,jj

′

2 )j,j′∈{1,...,q} are q
2-matrices

Zn,jj
′

0,t =

[nt]∑
i=1

m∑
k=1

δW j
ikδW

j′

ik ,

Zn,jj
′

2,t =
√
n

[nt]∑
i=1

∑
1≤k<k′≤m

(
δW j

ikδW
j′

ik′ − δW
j
ik′δW

j′

ik

)
,

and Zn1 = (Zn,jj
′j′′

1 )j,j′,j′′∈{1,...,q} and Z
n
3 = (Zn,jj

′j′′

3 )j,j′,j′′∈{1,...,q} are q
3-matrices

Zn,jj
′j′′

1,t =n

[nt]∑
i=1

∑
k′ 6=k

1≤k,k′≤m

(δW j
ik′δW

j′

ik′ − δjj′
∆n

m
)δW j′′

ik ,

Zn,jj
′j′′

3,t =n

[nt]∑
i=1

∑
1≤k′′<k′<k≤m

δW j′

ik′(δW
j
ikδW

j′′

ik′′ + δW j
ik′′δW

j′′

ik ).

Lemma 4.5.2. Let us consider the triangular arrays given by

Zn0,t =

[nt]∑
i=1

m∑
k=1

δWikδW
>
ik , with t ∈ [0, 1].

As n→∞,we have Zn0 − Z0
Lp→ 0, where Z0,t = tIq, t ∈ [0, 1].

Proof. For any �xed t ∈ [0, 1], we rewrite Zn0 as follows

Zn0,t =

[nt]∑
i=1

m∑
k=1

(δWikδW
>
ik −

∆n

m
Iq) + [nt]∆nIq.

As E(
∑m

k=1(δWikδW
>
ik −

∆n
m Iq)|F i−1

n
) = 0, then by the discrete BDG inequality and

Jensen's inequality, there is a generic positive constant C such that

E

 sup
0≤t≤1

|
[nt]∑
i=1

m∑
k=1

(δWikδW
>
ik −

∆n

m
Iq)|p

 = E

(
max

0≤`≤n
|
∑̀
i=1

m∑
k=1

(δWikδW
>
ik −

∆n

m
Iq)|p

)

≤ CE

(
n∑
i=1

m∑
k=1

|δWikδW
>
ik −

∆n

m
Iq|2
)p/2
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≤ Cnp/2−1
n∑
i=1

m∑
k=1

E|δWikδW
>
ik −

∆n

m
Iq|p ≤ C∆p/2

n .

Then it follows that max0≤`≤[nt]

∑`
i=1

∑m
k=1(δWikδW

>
ik −

∆n
m Iq)

Lp→ 0. Thus, we get
the convergence of Zn using that [nt]∆nIq → tIq as n→∞.

Theorem 4.5.3. Let us consider the scalar components of the triangular array triplet

(Zn1 , Z
n
2 , Z

n
3 ) given by

∀j, j′, j′′ ∈ {1, . . . , q},

Zn,jj
′j′′

1,t =

[nt]∑
i=1

ζn,jj
′j′′

i,1 where ζn,jj
′j′′

i,1 = n
∑
k 6=k′

1≤k,k′≤m

(
δW j

ik′δW
j′

ik′ − δjj′
∆n

m

)
δW j′′

ik ,

∀j, j′ ∈{1, . . . , q},

Zn,jj
′

2,t =

[nt]∑
i=1

ζn,jj
′

i,2 where ζn,jj
′

i,2 =
√
n
∑

1≤k<k′≤m

(
δW j

ikδW
j′

ik′ − δW
j
ik′δW

j′

ik

)
,

∀j, j′, j′′ ∈ {1, . . . , q},

Zn,jj
′j′′

3,t =

[nt]∑
i=1

ζn,jj
′j′′

i,3 where ζn,jj
′j′′

i,3 = n
∑

1≤k′′<k′<k≤m

δW j′

ik′(δW
j
ikδW

j′′

ik′′ + δW j
ik′′δW

j′′

ik ),

with t ∈ [0, 1] and Zn1,t ∈ Rq3
, Zn2,t ∈ Rq2

and Zn3,t ∈ Rq3
. Then as n→∞, we have

(W,Zn1 , Z
n
2 , Z

n
3 )

stably⇒ (W,Z1, Z2, Z3),

where Zjj
′j′′

1,t =


√
m−1
m Bjj′j′′

1,t , j > j′√
2(m−1)

m Bjjj′′

1,t , j = j′√
m−1
m Bj′jj′′

1,t , j < j′

, Zjj
′

2,t =


√

m−1
m Bjj′

2,t , j > j′

0 , j = j′

−
√

m−1
m Bj′j

2,t , j < j′

and Zjj
′j′′

3,t =


√

(m−1)(m−2)
3m2 Bjj′j′′

3,t , j > j′′√
2(m−1)(m−2)

3m2 Bjj′j′′

3,t , j = j′′√
(m−1)(m−2)

3m2 Bj′′j′j
3,t , j < j′′

with (Bjj′j′′

1 )1≤j,j′,j′′≤q
j≥j′

and (Bjj′j′′

3 )1≤j,j′,j′′≤q
j≥j′′

are two standard q2(q+1)/2-dimensional

Brownian motions and (Bjj′

2 )1≤j′<j≤q is a standard q(q− 1)/2-dimensional Brownian
motion. Moreover, we have B1, B2 and B3 are independent ofW and also independent

of each other. Furthermore, we have the (UT) of Zn0 , Z
n
1 , Z

n
2 and Zn3 .

Remark 4.5.4. It is worth noticing that when m = 2 the noise term Zn3 vanishes at

the limit.

Proof of Theorem 4.5.3. We aim to use Theorem 3.2 of Jacod, 1997 (see in appendix
Theorem 4.8.2) combined with some useful technical tools in the proof of Theorem
5.1 of Jacod and Protter, 1998. We split our proof into four main steps to check the
four conditions of theorem 4.8.2.
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Step 1 For all j, j′, j′′ ∈ {1, . . . , q}, we have E(ζn,jj
′j′′

i,1 |F i−1
n

) = E(ζn,jj
′

i,2 |F i−1
n

) =

E(ζn,jj
′j′′

i,3 |F i−1
n

) = 0. Then the �rst condition (a) of theorem 4.8.2 is satis�ed.

Step 2 For this step, we need to check the validity of condition (b) of theorem 4.8.2
for our three triangular arrays.

First triangular array. Using the symmetric structure of ζn,jj
′j′′

i,1 it is su�cient
to consider only the case j ≥ j′. Now thanks to the independence between the
increments, we have for all i ∈ {1, . . . , n},

E((ζn,jj
′j′′

i,1 )2|F i−1
n

) =
∑
k 6=k′

1≤k,k′≤m

n2E

((
δW j

ik′δW
j′

ik′ − δjj′
∆n

m

)2

(δW j′′

ik )2

)
+

∑
k1 6=k′1,k2 6=k′2

1≤k′1,k′2,k1,k2≤m
(k′1,k1)6=(k′2,k2)

n2E
((

δW j
ik′1

δW j′

i,k′1
− δjj′

∆n

m

)
δW j′′

ik1

(
δW j

ik′2
δW j′

ik′2
− δjj′

∆n

m

)
δW j′′

ik2

)
.

Actually, the generic term of the above second sum is equal to zero. To check that we
consider the three following subcases.

� If k1 6= k2 and k′1 = k′2, then we can deduce that k1 /∈ {k′1, k′2, k2} and
therefore the generic term is equal to

E(δW j′′

ik1
)E
((

δW j
ik′1

δW j′

i,k′1
− δjj′

∆n

m

)(
δW j

ik′2
δW j′

ik′2
− δjj′

∆n

m

)
δW j′′

ik2

)
= 0.

� If k1 = k2 and k′1 6= k′2, then we can deduce that k′1 /∈ {k1, k
′
2, k2}. Therefore,

the generic term is equal to

E
(
δW j

ik′1
δW j′

i,k′1
− δjj′

∆n

m

)
E
(
δW j′′

ik1

(
δW j

ik′2
δW j′

ik′2
− δjj′

∆n

m

)
δW j′′

ik2

)
= 0.

� If k1 6= k2 and k′1 6= k′2, then we have two subsubcases:

� If k1 = k′2, we have k1 /∈ {k′1, k2}. Then, the generic term is equal to

E
((

δW j
ik′1

δW j′

i,k′1
− δjj′

∆n

m

)
δW j′′

ik2

)
E
(
δW j′′

ik1

(
δW j

ik1
δW j′

ik1
− δjj′

∆n

m

))
= 0.

� If k1 6= k′2, we have k1 /∈ {k′1, k′2, k2}. Then, the generic term is equal to

E(δW j′′

ik1
)E
((

δW j
ik′1

δW j′

i,k′1
− δjj′

∆n

m

)(
δW j

ik′2
δW j′

ik′2
− δjj′

∆n

m

)
δW j′′

ik2

)
= 0.

It is worth noticing that the above arguments rely only on the independence between
the increments without using the independence between the components of the Brow-
nian vector. Concerning the generic term of the �rst sum, if j = j′ then it is equal
to

E
(

(δW j
ik′)

2 − ∆n

m

)2

E(δW j′′

ik )2 =
2

n3m3



120 Chapter 4. The antithetic Multilevel Monte Carlo method

and for j > j′ it is equal to E(δW j
ik′)

2E(δW j′

ik′)
2E(δW j′′

ik )2 = 1
n3m3 . Thus, we get as

n→∞
[nt]∑
i=1

E((ζn,jj
′j′′

i,1 )2|F i−1
n

)−→


m− 1

m2
t, j > j′

2(m− 1)

m2
t j = j′.

Now, it remains to check that for any q ≥ j ≥ j′ ≥ 1, q ≥ j̄ ≥ j̄′ ≥ 1 and j′′, j̄′′ ∈
{1, . . . , q} s.t. (j, j′, j′′) 6= (j̄, j̄′, j̄′′) , we have

∑[nt]
i=1 E(ζn,jj

′j′′

i,1 ζn,j̄j̄
′j̄′′

i,1 |F i−1
n

) = 0. To do
so, we write

E(ζn,jj
′j′′

i,1 ζn,j̄j̄
′j̄′′

i,1 |F i−1
n

)

=
∑

1≤k1,k′1,k2,k′2≤m
k1 6=k′1,k2 6=k′2

n2E
((

δW j
ik′1

δW j′

ik′1
− δjj′

∆n

m

)
δW j′′

ik1

(
δW j̄

ik′2
δW j̄′

ik′2
− δj̄j̄′

∆n

m

)
δW j̄′′

ik2

)
.

It is easy to check that the arguments given above to prove that this term vanishes
remain valid for the particular case (k1, k

′
1) 6= (k2, k

′
2) and this, as noticed above is

independent of the choice of (j, j′, j′′) and (j̄, j̄′, j̄′′). Thus, we only need to consider
the case (k1, k

′
1) = (k2, k

′
2). Therefore, by the independence between the increments

we rewrite the generic term as follows

E
(

(δW j
ik′1

δW j′

ik′1
− δjj′

∆n

m
)(δW j̄

ik′1
δW j̄′

ik′1
− δj̄j̄′

∆n

m
)

)
E
(
δW j′′

ik1
δW j̄′′

ik1

)
. (4.5.3)

Then, it is obvious that when j′′ 6= j̄′′ this generic term vanishes. Now when j′′ = j̄′′,
thanks to its symmetric structure it is su�cient to consider only the case j 6= j̄. For
this we have three subcases.

� If j > j′ and j̄ > j̄′ then δjj′ = δj̄j̄′ = 0 and we have two possibilities: either

j 6= j̄′ then the generic term rewrites E
(
δW j

ik′1

)
E
(
δW j′

ik′1
δW j̄

ik′1
δW j̄′

ik′1

)
= 0

or j = j̄′ and then as j̄ > j̄′ = j > j′ the generic term rewrites

E
(

(δW j
ik′1

)2
)
E
(
δW j′

ik′1
δW j̄

ik′1

)
= 0.

� If j = j′ and j̄ > j̄′ or j > j′ and j̄ = j̄′, by the symmetry we can consider only
the �rst case and as j̄ /∈ {j, j′, j̄′} for which the generic term is equal to zero.

� If j = j′ and j̄ = j̄′ then the generic term rewrites E(((δW j
ik′1

)2−∆n
m )((δW j̄

ik′1
)2−

∆n
m )) = 0.

Second triangular array. Using the anti-symmetric structure of ζn,jj
′

i,2 it is also

su�cient to consider only the case j > j′ as ζn,jji,2 = 0. Then, for i ∈ {1, . . . , n}, we
have

E((ζn,jj
′

i,2 )2|F i−1
n

) =
∑

1≤k<k′≤m
nE
((

δW j
ikδW

j′

ik′ − δW
j
ik′δW

j′

ik

)2
)

+
∑

1≤k1<k′1≤m
1≤k2<k′2≤m

(k1,k′1) 6=(k2,k′2)

nE
((
δW j

ik1
δW j′

ik′1
− δW j

ik′1
δW j′

ik1

)(
δW j

ik2
δW j′

ik′2
− δW j

ik′2
δW j′

ik2

))
.
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In the same way as the �rst triangular array, the generic term of the above second sum
is also equal to zero. This follows easily by expanding this generic term and using the
independence structure between the increments under conditions (k1, k

′
1) 6= (k2, k

′
2),

k1 < k′1 and k2 < k′2. Now, concerning the generic term of the �rst sum, as j > j′

it is easy to check that E
((

δW j
ikδW

j′

ik′ − δW
j
ik′δW

j′

ik

)2
)

= 2
n2m2 . Thus, as n→∞,∑[nt]

i=1 E((ζn,jj
′

i,2 )2|F i−1
n

)→m−1
m t. Now, it remains to check that for any q ≥ j > j′ ≥ 1,

q ≥ j̄ > j̄′ ≥ 1 s.t. (j, j′) 6= (j̄, j̄′),
∑[nt]

i=1 E(ζn,jj
′

i,2 ζn,j̄j̄
′

i,2 |F i−1
n

) = 0. So, we have

E(ζn,jj
′

i,2 ζn,j̄j̄
′

i,2 |F i−1
n

)

=
∑

1≤k1<k′1≤m
1≤k2<k′2≤m

nE((δW j
i,k1

δW j′

i,k′1
− δW j

i,k′1
δW j′

i,k1
)(δW j̄

ik2
δW j̄′

ik′2
− δW j̄

ik′2
δW j̄′

ik2
)).

When (k1, k
′
1) 6= (k2, k

′
2) by similar arguments as for the �rst triangular array the

generic term of the above sum is equal to zero thanks to the independence between
the increments. When (k1, k

′
1) = (k2, k

′
2) (j, j′) 6= (j̄, j̄′), we need to treat two cases.

� If j = j̄ and j′ 6= j̄′ as j > j′ we have j′ /∈ {j, j̄, j̄′} and consequently the generic
term is equal to zero. If j 6= j̄ and j′ = j̄′ we use similar arguments to prove
that the generic term is zero.

� If j 6= j̄, j′ 6= j̄′ we have two possibilities: either j 6= j̄′ then j /∈ {j′, j̄, j̄′}
or j̄ > j̄′ = j > j′ and in both cases it is obvious that the generic term also
vanishes.

Third triangular array. Using the symmetric structure of ζn,jj
′j′′

i,3 it is also su�-
cient to consider only the case j ≥ j′′. Then, for i ∈ {1, . . . , n}, we have

E((ζn,jj
′j′′

i,3 )2|F i−1
n

) =
∑

1≤k′′<k′<k≤m
n2E

(
δW j′

ik′(δW
j
ikδW

j′′

ik′′ + δW j
ik′′δW

j′′

ik )
)2

+
∑

1≤k′′1<k′1<k1≤m
1≤k′′2<k′2<k2≤m

(k1,k′1,k′′1)6=(k2,k′2,k′′2)

n2E
(
δW j′

ik′1
(δW j

ik1
δW j′′

ik′′1
+ δW j

ik′′1
δW j′′

ik1
)δW j′

ik′2
(δW j

ik2
δW j′′

ik′′2
+ δW j

ik′′2
δW j′′

ik2
)
)
.

Similarly as for the �rst triangular array, we use the independence structure between
the increments under conditions (k1, k

′
1, k
′′

1) 6= (k2, k
′
2, k
′′

2), 1 ≤ k′′1 < k′1 < k1 ≤ m
and 1 ≤ k′′2 < k′2 < k2 ≤ m to check that the generic term of the second sum is also
equal to zero. Now, concerning the generic term of the �rst sum, if j = j′′ then it is
equal to

4E(δW j′

ik′)
2E(δW j

ik)
2E(δW j

ik′′)
2 =

4

n3m3

and for j > j′ it is equal to

E(δW j′

ik′)
2(E(δW j

ik)
2E(δW j′′

ik′′)
2 + E(δW j

ik′′)
2E(δW j′′

ik )2) =
2

n3m3
.
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Thus, we get as n→∞

[nt]∑
i=1

E((ζn,jj
′j′′

i,3 )2|F i−1
n

)−→


(m− 1)(m− 2)

3m2
t j > j′′

2(m− 1)(m− 2)

3m2
t j = j′′.

Now, it remains to check that for any q ≥ j ≥ j′′ ≥ 1, q ≥ j̄ ≥ j̄′′ ≥ 1 and

j′, j̄′ ∈ {1, . . . , q} s.t. (j, j′, j′′) 6= (j̄, j̄′, j̄′′) , we have
∑[nt]

i=1 E(ζn,jj
′j′′

i,3 ζn,jj̄
′j̄′′

i,3 |F i−1
n

) = 0.

To do so, we write

E(ζn,jj
′j′′

i,3 ζn,jj̄
′j̄′′

i,3 |F i−1
n

)

=n2
∑

1≤k′′1<k′1<k1≤m
1≤k′′2<k′2<k2≤m

E
(
δW j′

ik′1
(δW j

ik1
δW j′′

ik′′1
+ δW j

ik′′1
δW j′′

ik1
)δW j′

ik′2
(δW j

ik2
δW j′′

ik′′2
+ δW j

ik′′2
δW j′′

ik2
)
)
.

When (k′′1, k
′
1, k1) 6= (k′′2, k

′
2, k2), by similar arguments as for the �rst triangular

array it is easy to check that the generic term of the above sum is equal to zero. When
(k′′1, k

′
1, k1) = (k′′2, k

′
2, k2), with the condition (j, j′, j′′) 6= (j̄, j̄′, j̄′′), the generic term

equals to

E(δW j′

ik′1
δW j̄′

ik′1
)E((δW j′′

ik1
δW j

ik′′1
+ δW j

ik1
δW j′′

ik′′1
)(δW j̄′′

i,k1
δW j̄

ik′′1
+ δW j̄

ik1
δW j̄′′

ik′′1
)).

By the same arguments used to treat (4.5.3) we easily deduce that the above generic
term vanishes.

Covariance between of the di�erent triangular arrays. For any j, j′, j′′ and
j̄, j̄′ in {1, . . . , q} j ≥ j′, j̄ > j̄′, we have

E(ζn,jj
′j′′

i,1 ζn,j̄j̄
′

i,2 |F i−1
n

)

=n
√
n
∑

1≤k1,k′1,k2,k′2≤m
k1 6=k′1
k2<k′2

E((δW j
ik1
δW j′

ik1
− δjj′

∆n

m
)δW j′′

ik′1
(δW j̄

ik2
δW j̄′

ik′2
− δW j̄

ik′2
δW j̄′

ik2
)).

For any j, j′, j′′ and j̄, j̄′, j̄′′ in {1, . . . , q} j ≥ j′, j̄ ≥ j̄′′, we have

E(ζn,jj
′j′′

i,1 ζn,j̄j̄
′j̄′′

i,3 |F i−1
n

)

=n2
∑

1≤k1,k′1≤m
k1 6=k′1

1≤k′′2<k′2<k2≤m

E((δW j
ik1
δW j′

ik1
− δjj′

∆n

m
)δW j′′

ik′1
δW j̄′

ik′2
(δW j̄

ik2
δW j̄′′

ik′′2
+ δW j̄′′

ik2
δW j̄

ik′′2
)).

For any j, j′, j′′ and j̄, j̄′ ∈ {1, . . . , q} j ≥ j′′, j̄ > j̄′, we have

E(ζn,jj
′j′′

i,3 ζn,j̄j̄
′

i,2 |F i−1
n

)

=n
√
n

∑
1≤k′′1<k′1<k1≤m

1≤k2<k′2≤m

E(δW j′

ik′1
(δW j

ik1
δW j′′

ik′′1
+ δW j′′

ik1
δW j

ik′′1
)(δW j̄

ik2
δW j̄′

ik′2
− δW j̄′

ik′2
δW j̄′

ik2
)).
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When developing the above three generic terms, we notice that we always have a
product of an odd number of increments of the Brownian motion. Then, combining
this together with the independence structure between the increments, we easily get∑[nt]

i=1 E(ζn,jj
′j′′

i,α ζn,j̄j̄
′

i,β |F i−1
n

) = 0, for all α, β ∈ {1, 2, 3} with α 6= β.

Step 3 Independence with respect to the original Brownian motion We
check the condition (c) of theorem 4.8.2.

The �rst triangular array For any j, j′, j′′ and j1 in {1, . . . , q}, j ≥ j′, using the
independence between the increments, we have

E(ζn,jj
′j′′

i,1 ∆W j1
i |F i−1

n
) =

∑
1≤k1,k2≤m
k1 6=k2

nE((δW j
ik1
δW j′

ik1
− δjj′

∆n

m
)δW j′′

ik2
(δW j1

ik1
+ δW j1

ik2
))

=
∑

1≤k1,k2≤m
k1 6=k2

nE((δW j
ik1
δW j′

ik1
− δjj′

∆n

m
)δW j1

ik1
)E(δW j′′

ik2
)

+
∑

1≤k1,k2≤m
k1 6=k2

nE((δW j
ik1
δW j′

ik1
− δjj′

∆n

m
))E(δW j′′

ik2
δW j1

ik2
) = 0.

The second triangular array For any j, j′ and j1 in {1, . . . , q}, it is straight
forward that

E(ζn,jj
′

i,2 ∆W j1
i |F i−1

n
) =

∑
1≤k1,k2≤m
k1<k2

√
nE((δW j

ik1
δW j′

ik2
−δW j

ik2
δW j′

ik1
)(δW j1

ik1
+δW j1

ik2
)) = 0

since when developping the generic term of the above sum we always have the expec-
tation of a product of an odd number of the Brownian increments.

The third triangular array For any j, j′, j′′, j ≥ j′′ and j1 in {1, . . . , q}, using
the independence between the di�erent increments we have

E(ζn,jj
′j′′

i,3 ∆W j1
i |F i−1

n
)

= n
∑

1≤k′′<k′<k≤m

E(δW j′

ik′(δW
j
ikδW

j′′

ik′′ + δW j
ik′′δW

j′′

ik )(δW j1
ik′ + δW j1

ik + δW j1
ik′′)) = 0.

Step 4 (Lyapunov's condition) Now we check condition (d) of theorem 4.8.2.

First triangular array. For any j, j′, j′′ ∈ {1, . . . , q}, j ≥ j′, we prove that∑[nt]
i=1 E(|ζn,jj

′j′′

i,1 |4|F i−1
n

) tends to 0 when n→∞. In fact, using the convexity property
of the function x 7→ x4 we note �rst that there is a constant Cq > 0 depending only
on q such that

E(|ζn,jj
′j′′

i,1 |4|F i−1
n

) ≤ Cq
∑

1≤k1,k2≤q
k1 6=k2

n4E
(

(δW j
ik1
δW j′

ik1
− δjj′∆n/m)4(δW j′′

ik2
)4
)
.
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Then by the scaling property of the Brownian motion it is easy to check that there is a
constant Cm > 0 depending only onm such that for all j, j′, j′′ ∈ {1, . . . , q}, j ≥ j′ and
1 ≤ k1, k2 ≤ q with k1 6= k2, we have E

(
(δW j

ik1
δW j′

ik1
− δjj′∆n/m)4(δW j′′

ik2
)4
)
≤ Cm

n6 .

Second triangular array. Similarly, for any j, j′ ∈ {1, . . . , q}, j > j′, there is a
constant Cq > 0 depending only on q such that

E(|ζn,jj
′

i,2 |
4|F i−1

n
) ≤ Cq

∑
1≤k1,k2≤q
k1<k2

n2E
(

(δW j
ik1
δW j′

ik2
− δW j′

ik1
δW j

ik2
)4
)

and we deduce the result using the estimate E
(

(δW j
ik1
δW j′

ik2
− δW j′

ik1
δW j

ik2
)4
)
≤ Cm

n4

where Cm is a positive constant depending only on m.

Third triangular array. In the same way we get that

E
(
δW j′

ik′(δW
j
ikδW

j′′

ik′′ + δW j
ik′′δW

j′′

ik )
)4
≤ Cm

n6 for Cm > 0.

Now we are ready to prove the convergence in law of the couple of main terms
(Mn,1,Mn,2) given by (4.5.1) and (4.5.2). The following proposition is the core of
our main result Theorem 4.3.2.

Proposition 4.5.5. As n→∞ , we have

(
√
nMn,1, nMn,2)

stably⇒ (M1,M2), (4.5.4)

where for ` ∈ {1, . . . , d}, the `th components ofM1 andM2 are given by

M`
1,t = −2

∫ t

0
h`••(Xs)vdZ2,s andM`

2,t =

4∑
r=1

Γ̄`,t(r)+Ñ`,t+M̃
1
`,t−

1

2
M̃3
`,t, t ∈ [0, 1],

with

Γ̄`,t(1) =
m− 1

2m

∫ t

0

(
∇f>` (Xs)f(Xs) +

1

2

q∑
j,j′=1

g>•j(Xs)∇2f`(Xs)g•j′(Xs)

)
ds

Γ̄`,t(2) =
m− 1

2m

q∑
j=1

∫ t

0

(
∇f>` (Xs)g•j(Xs) +∇g>`j(Xs)f(Xs) +

1

2
g>(Xs)∇2g`j(Xs)g(Xs)vIq

)
dW j

s

Γ̄`,t(3) =
1

2

q∑
j=1

∫ t

0

[
∇g>`j(Xs)H(Xs) +

1

2
g>(Xs)∇2g`j(Xs)g(Xs) + ḣs`••vg•j(Xs)

]
vdZ••j1,s

Γ̄`,t(4) =
1

2

q∑
j,j′=1

∫ t

0
∇g>`j(Xs)[ġ

s
vg•j′′(Xs)]dZ

j•j′
3,s +

1

2

q∑
j=1

∫ t

0
[g>(Xs)∇2g`j(Xs)g(Xs)]vdZ

j••
3,s

Ñ`,t =

∫ t

0

1

8
U>s ∇2f`(Xs)Usds

M̃1
`,t =

q∑
j=1

∫ t

0

1

8
U>s ∇2g`j(Xs)UsdW

j
s

M̃3
`,t =

∫ t

0
(ḣs`••vUs)vdZ2,s,
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where ġs ∈ (Rd×1)d×q is a block matrix such that for ` ∈ {1, . . . , d}, j ∈ {1, . . . , q},
the `j-th block is given by (ġs)`j = ∇g`j(Xs), s ∈ [0, t] and ḣs`•• ∈ (Rd×1)q×q is a

random block matrix such that for j and j′ ∈ {1, . . . , q}, the jj′-th block is given by

(ḣs`••)jj′ = ∇h`jj′(Xs) ∈ Rd×1, s ∈ [0, t]. Here, Z1, Z2 and Z3 are de�ned above in

Theorem 4.5.3 and for any j, j′′ ∈ {1, . . . , q}, for r ∈ {1, 3}, we denote

Z••jr,s =

 Z11j
r,s . . . Z1qj

r,s
...

. . .
...

Zq1jr,s . . . Zqqjr,s

 and Zj•j
′′

r,t = (Zj1j
′′

r,t , . . . , Zjqj
′′

r,t )>.

Proof. At �rst, let us denote ρn = (W,Zn0 , Z
n
1 , Z

n
2 , Z

n
3 ). From Lemma 4.5.2 and

Theorem 4.5.3 combined with Lemma 4.8.4, we deduce that ρn
stably⇒ ρ, as n → ∞

with ρ = (W,Z0, Z1, Z2, Z3). Besides, as the coe�cients ḟni and ġni are functions of
vector points lying between Xnm

i−1
n

and Xnm,σ
i−1
n

, the equation (4.4.37) can be rewritten

into the following continuous form

√
nUnt =

q∑
j=0

∫ ηn(t)

0
Ḟn,jηn(s)v

√
nUnηn(s)dY

j
s −
∫ ηn(t)

0
(H(Xnm

ηn(s))+H(Xnm,σ
ηn(s) ))vdZn2,s+

√
nRn,1t ,

where

Ḟn,ji−1
n

=

{
ḟni , j = 0
(ġni )•j , j ∈ {1, . . . , q} , where (ġni )•j = ((ġni )1j , . . . , (ġ

n
i )dj)

>.

Here we used that
∫ i
n
i−1
n

dZn2,s = Zn
2, i
n

− Zn
2, i−1

n

and Yt = (t,W 1
t , . . . ,W

q
t )>. Thanks to

lemmas 4.2.1 and 4.3.1, under assumption (Hf,g) the process (H(Xnm)+H(Xnm,σ))−
(2H(X))

Lp→ 0. Then, since ρn is (UT) (see Theorem 4.5.3) we deduce thanks to
Theorem 4.8.5 that as n→∞

(ρn,
√
nMn,1) = (ρn,

∫
(H(Xnm

ηn(s)) + H(Xnm,σ
ηn(s) ))vdZn2,s)

stably⇒ (ρ,

∫
2H(Xs)vdZ2,s).

Moreover, under assumption (Hf,g) by lemmas 4.2.1 and 4.3.1, it is straightfor-

ward that for any j ∈ {0, . . . , q},
∫
Ḟn,jηn(s)v1ddY

j
s −

∫
Ḟ jsv1ddY

j
s

Lp→ 0, with 1d =

(1, . . . , 1)>. Thus, by Lemma 4.8.4 we deduce that as n→∞

(ρn,
√
nMn,1,

∫
Ḟn,jηn(s)v1ddY

j
s )

stably⇒ (ρ,

∫
2H(Xs)vdZ2,s,

∫
Ḟ jsv1ddY

j
s ),

with Ḟ 0
s = ∇f(Xs) and for any j ∈ {1, . . . , q}, Ḟ js = ∇g•j(Xs). Therefore, by Lemma

4.4.11 and Theorem 4.8.6 we get that

(ρn,
√
nMn,1,

√
nUn)

stably⇒ (ρ, J, U), as n→∞. (4.5.5)

Now let us recall that (4.4.31), (4.4.32) and (4.4.34), can be rewritten into a continuous
form

nÑnm
`,t =

∫ ηn(t)

0

1

16

√
nUnηn(t)

>
(
∇2f`(ζ

n,1
ηn(t)) +∇2f`(ζ

n,2
ηn(t))

)√
nUnηn(t)ds,
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nM̃nm,1
`,t =

∫ ηn(t)

0

1

16

q∑
j′=1

√
nUnηn(t)

>
(
∇2g`j′(ζ

n,3
ηn(t)) +∇2g`j′(ζ

n,4
ηn(t))

)√
nUnηn(t)dW

j′
s ,

nM̃nm,3
`,t =

∫ ηn(t)

0

[
ḣ
n,nηn(t)+1,2
`•• v

√
nUnηn(t)

]
vdZn2,s.

Under the assumption (Hf,g) and thanks to lemmas 4.2.1 and 4.3.1 combined with
(4.5.5), we deduce by Theorem 4.8.5 that

(ρn,
√
nMn,1, nÑnm, nM̃nm,1, nM̃nm,3)

stably⇒ (ρ, J, Ñ , M̃1, M̃3) as n→∞.

Similarly, by rewriting Γ̄n(r), r ∈ {1, . . . , 4} in continuous forms we deduce by Theo-
rem 4.8.5

(ρn,
√
nMn,1, nÑnm, nM̃nm,1, nM̃nm,3, Γ̄n(1), Γ̄n(2), Γ̄n(3), Γ̄n(4))

stably⇒ (ρ, J, Ñ , M̃1, M̃3, Γ̄(1), Γ̄(2), Γ̄(3), Γ̄(4)) as n→∞,

where for i = 1, . . . , 4 and 1 ≤ ` ≤ d the `-th component of the process Γ̄(i) is given
by the process Γ̄`(i). This completes the proof.

4.6 Appendix A: Proofs concerning analysis of Un and V n

Proof of Lemma 4.4.11. By (4.4.37), we recall that

Rn,1t =

[nt]∑
i=1

(H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

))v(∆Wi∆W
>
i − Iq∆n)

+

[nt]∑
i=1

(Mnm,Id
i−1
n

−Mnm,σ
i−1
n

) +

[nt]∑
i=1

(Nnm,Id
i−1
n

−Nnm,σ
i−1
n

).

At �rst, it is obvious that E(
√
n
∑[nt]

i=1(H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

))v(∆Wi∆W
>
i −Iq∆n)|F i−1

n
) =

0. Then, by the discrete BDG inequality combined with Lemma 4.3.1 and assumption
(Hf,g), there is a generic positive constant C such that

np/2E

 sup
0≤t≤1

|
[nt]∑
i=1

(H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

))v(∆Wi∆W
>
i − Iq∆n)|p


≤ Cnp/2E

(
n∑
i=1

|H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

)|2||∆Wi∆W
>
i − Iq∆n|2

)p/2

≤Cnp−1
n∑
i=1

E|H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

)|pE|∆Wi∆W
>
i − Iq∆n|p ≤ C∆p/2

n .

Then the process
√
n
∑[n.]

i=1(H(Xnm
i−1
n

)−H(Xnm,σ
i−1
n

))v(∆Wi∆W
>
i − Iq∆n)

Lp→ 0. In the

same way as above, we use the discrete BDG inequality and (4.4.11), there exists a
positive constant C such that

E( sup
0≤t≤1

|
[nt]∑
i=1

Mnm,Id
i−1
n

−Mnm,σ
i−1
n

|p) ≤Cnp/2−1
n∑
i=1

E(|Mnm,Id
i−1
n

−Mnm,σ
i−1
n

|p) ≤ C∆p
n.
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Therefore, we obtain also the convergence of the process
√
n
∑[n.]

i=1(Mnm,Id
i−1
n

−Mnm,σ
i−1
n

)
Lp→

0. Now, by (4.4.12), we have E(sup0≤t≤1 |
∑[nt]

i=1(Nnm,Id
i−1
n

−Nnm,σ
i−1
n

)|p) is bounded by

np−1
n∑
i=1

E(|Nnm,Id
i−1
n

−Nnm,σ
i−1
n

|p) ≤ np−1
n∑
i=1

2Kp∆
2p
n = 2Kp∆

p
n.

Thus, we get
√
n
∑[n.]

i=1(Nnm,Id
i−1
n

− Nnm,σ
i−1
n

)
Lp→ 0. Finally, we get the (UT) of Zn0 , Z

n
1 ,

Zn2 and Zn3 thanks to Lemma 4.8.1.

Proof of Lemma 4.4.12. By (4.4.40), we recall that

Rn,2t =
1

2

∑
σ̃∈{Id,σ}

[nt]∑
i=1

(
R̃nm,σ̃i−1

n

(0) +
3∑
r=0

Rnm,σ̃i−1
n

(r)

)
+ M̃nm,2

t

+

[nt]∑
i=1

(H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i − Iq∆n).

At �rst, thanks to Jensen's inequality and (4.4.15), there is a positive constant C such
that

npE( sup
0≤t≤1

|
[nt]∑
i=1

R̃nm,σ̃i−1
n

(0)|p) ≤ Cn2p−1
n∑
i=1

E|R̃nm,σ̃i−1
n

(0)|p = o(1).

Then we get n
∑[n.]

i=1 R̃
nm,σ̃
i−1
n

(0)
Lp→ 0 as n → ∞. Now, we consider n

∑[nt]
i=1R

nm,σ̃
i−1
n

(r)

for any r ∈ {0, . . . , 3}. By the discrete BDG inequality, (4.4.14), (4.4.17), (4.4.21),
(4.4.25) and Jensen's inequality, there is a generic constant C > 0 such that for all
r ∈ {0, . . . , 3} we have

npE( sup
0≤t≤1

|
[nt]∑
i=1

Rnm,σ̃i−1
n

(r)|p) ≤ CnpE
( n∑
i=1

|Rnm,σ̃i−1
n

(r)|2
)p/2 ≤ Cn3p/2−1

n∑
i=1

E|Rnm,σ̃i−1
n

(r)|p = o(1).

Then we get n
∑[n.]

i=1R
nm,σ̃
i−1
n

(r)
Lp→ 0 as n→ ∞, for any r ∈ {0, . . . , 3}. Next, we recall

from (4.4.33) that for ` ∈ {1, . . . , d}, the `th component of the generic term of the
martingale triangular array M̃nm,2

t is given by

M̃nm,2

`, i−1
n

=
1

4

[
ḣn,i,1`•• v(Xnm

i−1
n

−Xnm,σ
i−1
n

)
]
v(∆Wi∆W

>
i − Iq∆n).

Similarly, we use the discrete BDG and Jensen inequalities to get E(np sup
0≤t≤1

|
∑[nt]

i=1 M̃
nm,2
i−1
n

|p)

is bounded by Cn3p/2−1
∑n

i=1 E|M̃
nm,2
i−1
n

|p. Besides, according to (4.4.33), for j and j′ ∈

{1, . . . , q}, the jj′-th block is given by (ḣn,i,1`•• )jj′ = ∇h`jj′(ζn,5i−1
n

)−∇h`jj′(ζn,6i−1
n

) ∈ Rd×1

where ζn,5i−1
n

∈ (Xnm
i−1
n

, X̄nm,σ
i−1
n

) and ζn,6i−1
n

∈ (Xnm,σ
i−1
n

, X̄nm,σ
i−1
n

). By using the independence

between ∆Wi and F i−1
n
, Cauchy-Schwarz inequality, Lemma 4.3.1, Corollary 4.4.9
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and (Hf,g), we have

max
1≤i≤n

E|M̃nm,2
i−1
n

|p

≤ C
[

max
1≤i≤n

E|ḣn,i,1`•• |
2p max

1≤i≤n
E|Xnm

i−1
n

−Xnm,σ
i−1
n

|2p
]1/2

max
1≤i≤n

E|∆Wi∆W
>
i − Iq∆n|p

≤ C(∆p
n∆p

n)1/2∆p
n = C∆2p

n .

Therefore, we get

E

np sup
0≤t≤1

|
[nt]∑
i=1

M̃nm,2
i−1
n

|p
 = O(∆p/2

n ).

Finally, similarly as above, since E((H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i −Iq∆n)|F i−1

n
) =

0, by the discrete BDG and Jensen inequalities and as E|∆Wi∆W
>
i −Iq∆n|p = O(∆p

n)

, we get npE
(

sup
0≤t≤1

|
∑[nt]

i=1(H(X̄nm,σ
i−1
n

)−H(Xn
i−1
n

))v(∆Wi∆W
>
i −Iq∆n)|p

)
is bounded

up to a positive multiplicative constant by np/2−1
∑n

i=1 E|H(X̄nm,σ
i−1
n

) − H(Xn
i−1
n

)|p.
Next, thanks to Corollary 4.4.9 and assumption (Hf,g), we deduce that this up-

per bound is O(∆
p/2
n ). Then we get n

∑[n.]
i=1(H(X̄nm,σ

i−1
n

) − H(Xn
i−1
n

))v(∆Wi∆W
>
i −

Iq∆n)
Lp→ 0 as n→∞.

4.7 Appendix B: Proof of essential lemmas

Proof of Lemma 4.4.1. By the tower property we have

E(Mnm,σ̃,1

`, i−1
n

|F i−1
n

) =

m∑
k=2

∇f`(Xnm,σ̃
i−1
n

)>
k−1∑
k′=1

E
(
g(Xnm,σ̃

m(i−1)+k′−1
nm

)E
(
δWiσ̃(k′)

∆n

m
|Fk

′−1,σ̃
i−1
n

)
|F i−1

n

)

E(Mnm,σ̃,2

`, i−1
n

|F i−1
n

) =
m∑
k=2

q∑
j=1

E

([
∇g>`j(X

nm,σ̃
i−1
n

)
k−1∑
k′=1

(
f(Xnm,σ̃

m(i−1)+k′−1
nm

)
∆n

m
+

[
ġnik′v(Xnm,σ̃

m(i−1)+k′−1
nm

−Xnm,σ̃
i−1
n

)
]
δWiσ̃(k′) + H(Xnm,σ̃

m(i−1)+k′−1
nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

)
+

1

2
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)>∇2g`j(ξ
2,n
ik )(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)

]
E(δW j

iσ̃(k)|F
k−1,σ̃
i−1
n

)|F i−1
n

)

E(Mnm,σ̃,3

`, i−1
n

|F i−1
n

) =

m∑
k=2

E
([
ḣn,ik`•• v(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
]

vE
(
δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
|Fk−1,σ̃

i−1
n

)
|F i−1

n

)
.

Since δWi,σ̃(k) is independent of F
k−1,σ̃
i−1
n

, k ∈ {1, . . . ,m}, E(δWi,σ̃(k)) = 0 and E(δWiσ̃(k)δW
>
iσ̃(k)−

Iq
∆n
m ) = 0, we get E(Mnm,σ

i−1
n

|F i−1
n

) = 0. Now, it remains to have upper bounds for

E(|Mnm,σ
i−1
n

|p) and E(|Nnm,σ
i−1
n

|p). Thanks to our assumption (Hf,g) it is easy to see the

existence of C > 0 s.t.

|Mnm,σ̃,1

`, i−1
n

| ≤ C
m∑
k=2

k−1∑
k′=1

(
1 +

∣∣∣Xnm,σ̃
m(i−1)+k′−1

nm

∣∣∣)∣∣∣δWiσ̃(k′)
∆n

m

∣∣∣
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|Mnm,σ̃,2

`, i−1
n

| ≤ C
m∑
k=2

q∑
j=1

(
k−1∑
k′=1

[
(1 + |Xnm,σ̃

m(i−1)+k′−1
nm

|)(∆n

m
+ |δWiσ̃(k′)δW

>
iσ̃(k′) − Iq

∆n

m
|)

+ |Xnm,σ̃
m(i−1)+k′−1

nm

−Xnm,σ̃
i−1
n

||δWiσ̃(k′)|

]
+

1

2
|Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

|2
)
|δW j

iσ̃(k)|

|Mnm,σ̃,3

`, i−1
n

| ≤ C
m∑
k=2

|Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

||δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n

m
|,

Here, the constant C is a generic positive constant whose values may vary from
line to line. We obtain (4.4.11) using the independence between the above incre-

ments combined with Lemma 4.3.1 and the fact that E|δWi,σ̃(k)|p = O(∆
p/2
n ) and

E|δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n
m |

p = O(∆p
n). Similar arguments give us inequality (4.4.12).

Proof of Lemma 4.4.2. Thanks to equations (4.4.1) and (4.4.6) combined with (4.2.2),
we deduce relation (4.4.13) with :

Rnm,σ̃
`, i−1

n

(0) =
∆n

m

m∑
k,k′=1
k′<k

∇f>` (Xnm,σ̃
i−1
n

)H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

+
[
g>(X i−1

n
)∇2f`(X i−1

n
)g(X i−1

n
)
]
v

m∑
k,k′,k′′=1
k′′<k′<k

δWiσ̃(k′)δW
>
iσ̃(k′′)

∆n

m

and

R̃nm,σ̃
`, i−1

n

(0) =
∆n

m

m∑
k,k′=1
k′<k

∇f>` (Xnm,σ̃
i−1
n

)
(
f(Xnm,σ̃

m(i−1)+k′−1
nm

)− f(X i−1
n

)
)∆n

m

+
m− 1

2m

(
∇f>` (Xnm,σ̃

i−1
n

)−∇f>` (X i−1
n

)
)
f(X i−1

n
)∆2

n

+
1

2

m∑
k=2

(Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

)>
(
∇2f`(ξ

1,n
ik )−∇2f`(X i−1

n
)
)
(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
∆n

m

+
1

2

m∑
k,k′=1
k′<k

(f(Xnm,σ̃
m(i−1)+k′−1

nm

)
∆n

m
+ H(Xnm,σ̃

m(i−1)+k′−1
nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
))>

×∇2f`(X i−1
n

)(Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

)
∆n

m

+
1

2

m∑
k,k′=1
k′<k

((
g(Xnm,σ̃

m(i−1)+k′−1
nm

)− g(X i−1
n

)
)
δWiσ̃(k′)

)>
∇2f`(X i−1

n
)(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
∆n

m

+
1

2

m∑
k=2

k−1∑
k′=1

(
g(X i−1

n
)δWiσ̃(k′)

)>∇2f`(X i−1
n

)

( k−1∑
k′=1

f(Xnm,σ̃
m(i−1)+k′−1

nm

)
∆n

m
+

k−1∑
k′=1

H(Xnm,σ̃
m(i−1)+k′−1

nm

)

v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
) +

k−1∑
k′=1

(
g(Xnm,σ̃

m(i−1)+k′−1
nm

)− g(X i−1
n

)
)
δWiσ̃(k′)

)
∆n

m
.
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By the tower property we have

E(Rnm,σ̃
`, i−1

n

(0)|F i−1
n

)

= E
(

∆n

m

m∑
k,k′=1
k′<k

∇f>` (Xnm,σ̃
i−1
n

)H(Xnm,σ̃
m(i−1)+k′−1

nm

)vE(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
|Fk

′−1,σ̃
i−1
n

)

+
[
g(X i−1

n
)>∇2f`(X i−1

n
)g(X i−1

n
)
]
v

m∑
k,k′,k′′=1
k′′<k′<k

E(δWiσ̃(k′)|F
k′−1,σ̃
i−1
n

)δW>iσ̃(k′′)

∆n

m

∣∣∣∣F i−1
n

)
.

Since δWiσ̃(k) is independent of F
k−1,σ̃
i−1
n

, k ∈ {1, . . . ,m}, the fact that E(δWi,σ̃(k)) = 0

and E(δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n
m ) = 0, we get E(Rnm,σ̃

`, i−1
n

(0)|F i−1
n

) = 0. Thanks to our

assumption (Hf,g) it is easy to see the existence of C > 0 s.t.
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Here, the constant C is a generic positive constant whose values may vary from line
to line. Next, using the independence between the increments, we get
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and by Cauchy-Schwarz inequality combined with the independence between the in-
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Now, using Lemma 4.2.1 combined with Lemma 4.3.1 and the fact that E|δWi,σ̃(k)|p =

O(∆
p/2
n ), E|δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n
m |

p = O(∆p
n), we obtain (4.4.14) and we have
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We recall from relation (4.4.4) section 4 that ξ1,n
ik ∈ (Xnm,σ̃

i−1
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, Xnm,σ̃
m(i−1)+k−1

nm

). Then, by

using Lemma 4.2.1, Lemma 4.3.1 and the assumption (Hf,g), we have E|∇2f>` (ξ1,n
ik )−

∇2f>` (X i−1
n

)|2p = O(∆p
n), which yields us (4.4.15).

Proof of Lemma 4.4.3. Thanks to equation (4.4.7), we deduce from relation (4.4.16)
the exact form of Rnm,σ̃
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n

(1) that is given by
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By the tower property we have
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Since δWi,σ̃(k) is independent of Fk−1,σ̃
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n

, k ∈ {1, . . . ,m}, E(δWi,σ̃(k)) = 0 and then

E(Rnm,σ̃
`, i−1

n

(1)|F i−1
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) = 0. Now, thanks to our assumption (Hf,g) it is easy to see the

existence of C > 0 s.t.
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Here, the constant C is a generic positive constant whose values may vary from line to
line. Next, applying Cauchy-Schwarz inequality and using the independence between
the increments, we get
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By the fact that E|δWi,σ̃(k)|p = O(∆
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We obtain (4.4.17) using Lemma 4.2.1 and Lemma 4.3.1.
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Proof of Lemma 4.4.4. Thanks to equation (4.4.19) and (4.2.2), we deduce from rela-
tion (4.4.20) the exact form of Rnm,σ̃
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By the tower property, the independence of δWi,σ̃(k) of F
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Here, the values of the constant C may vary from line to line. Next, we apply Cauchy-
Schwarz inequality and use the independence between the increments, we get
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]
E|δWiσ̃(k′)|pE|δW

j
iσ̃(k)|

p

+ C

m∑
k=2

q∑
j=1

(
E|Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

|4pE|∇2g`j(ξ
2,n
ik )−∇2g`j(X i−1

n
)|2p
)1/2

E|δW j
iσ̃(k)|

p

+ C

q∑
j=1

m∑
k,k′=1
k′<k

(
(1 + E|Xnm,σ̃

m(i−1)+k′−1
nm

|2p)(∆2p
n

m2p
+ E|δWiσ̃(k′)δW

>
iσ̃(k′) − Iq

∆n

m
|2p)
)1/2

×
(
E|Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

|2p
)1/2E|δW j

iσ̃(k)|
p

+ C

q∑
j=1

m∑
k,k′=1
k′<k

(
E|Xnm,σ̃

m(i−1)+k′−1
nm

−X i−1
n
|2pE|δWiσ̃(k′)|2p

)1/2(
E|Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

|2p
)1/2E|δW j

iσ̃(k)|
p

+ C

q∑
j=1

m∑
k=2

( k−1∑
k′=1

(1 + E|X i−1
n
|2p)E|δWiσ̃(k′)|2p

)1/2( k−1∑
k′=1

(1 + E|Xnm,σ̃
m(i−1)+k′−1

nm

|2p)(∆2p
n

m2p

+ E|δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
|2p) +

k−1∑
k′=1

E|Xnm,σ̃
m(i−1)+k′−1

nm

−X i−1
n
|2pE|δWiσ̃(k′)|2p

)1/2

E|δW j
iσ̃(k)|

p.

By using Lemma 4.2.1 combined with Lemma 4.3.1 and the fact that E|δWi,σ̃(k)|p =

O(∆
p/2
n ), E|δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n
m |

p = O(∆p
n), we get

E|Rnm,σ̃
`, i−1

n

(2)|p = O(∆2p
n ) +O(∆3p/2

n )
m∑
k=3

k−1∑
k′=2

[
E|ġnik′ − ġni |2p

]1/2

+O(∆3p/2
n )

m∑
k=2

q∑
j=1

(
E|∇2g`j(ξ

2,n
ik )−∇2g`j(X i−1

n
)|2p
)1/2

.

Now, let us recall that from relation (4.4.19) we have ġnik′ ∈ (Rd×1)d×q and ġni ∈
(Rd×1)d×q, for ` ∈ {1, . . . , d}, j ∈ {1, . . . , q}, (ġnik′)`j = ∇g`j(ξ′2,nik′ ) ∈ Rd×1 and

(ġni )`j = ∇g`j(X i−1
n

) where ξ′2,nik′ ∈ (Xnm,σ̃
i−1
n

, Xnm,σ̃
m(i−1)+k′−1

nm

). We also recall that from

(4.4.19) ξ2,n
ik ∈ (Xnm,σ̃

i−1
n

, Xnm,σ̃
m(i−1)+k−1

nm

). Then, by Lemma 4.2.1, Lemma 4.3.1 and as-

sumption (Hf,g), we get E|∇2g`j(ξ
2,n
ik ) − ∇2g`j(X i−1

n
)|2p = E|ġnik′ − ġni |2p = O(∆p

n).

Hence, we deduce (4.4.21).
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Proof of Lemma 4.4.7. Thanks to equation (4.4.23), we deduce from relation (4.4.24)
the exact form of Rnm,σ̃

`, i−1
n

(3). We have

Rnm,σ̃
`, i−1

n

(3) =
m∑
k=2

[(
ḣn,ik`•• − ḣ

n,i
`••
)
v(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
]
v(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
)

+
m∑
k=2

[
ḣn,i`••v

( k−1∑
k′=1

f(Xnm,σ̃
m(i−1)+k′−1

nm

)
∆n

m
+

k−1∑
k′=1

H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

+
k−1∑
k′=1

(
g(Xnm,σ̃

m(i−1)+k′−1
nm

)− g(X i−1
n

)
)
δWiσ̃(k′)

)]
v(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
).

By the tower property we have

E(Rnm,σ̃
`, i−1

n

(3)|F i−1
n

)

= E
( m∑
k=2

[(
ḣn,ik`•• − ḣ

n,i
`••
)
v(Xnm,σ̃

m(i−1)+k−1
nm

−Xnm,σ̃
i−1
n

)
]
vE(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
|Fk−1,σ̃

i−1
n

)

+
m∑
k=2

[
ḣn,i`••v

( k−1∑
k′=1

f(Xnm,σ̃
m(i−1)+k′−1

nm

)
∆n

m
+

k−1∑
k′=1

H(Xnm,σ̃
m(i−1)+k′−1

nm

)v(δWiσ̃(k′)δW
>
iσ̃(k′) − Iq

∆n

m
)

+
k−1∑
k′=1

(
g(Xnm,σ̃

m(i−1)+k′−1
nm

)− g(X i−1
n

)
)
δWiσ̃(k′)

)]
vE(δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
|Fk−1,σ̃

i−1
n

)|F i−1
n

)
.

Since δWi,σ̃(k) is independent of F
k−1,σ̃
i−1
n

, k ∈ {1, . . . ,m}, E(δWiσ̃(k)δW
>
iσ̃(k)− Iq

∆n
m ) =

0, we get E(Rnm,σ̃
`, i−1

n

(3)|F i−1
n

) = 0. Now, thanks to our assumption (Hf,g) it is easy to

see the existence of constant C > 0 s.t.

|Rnm,σ̃
`, i−1

n

(3)| ≤ C
m∑
k=2

|ḣn,ik`•• − ḣ
n,i
`••||X

nm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

||δWiσ̃(k)δW
>
iσ̃(k) − Iq

∆n

m
|

+ C
m∑
k=2

( k−1∑
k′=1

(1 + |Xnm,σ̃
m(i−1)+k′−1

nm

|)(∆n

m
+ |δWiσ̃(k′)δW

>
iσ̃(k′) − Iq

∆n

m
|)

+
k−1∑
k′=1

|Xnm,σ̃
m(i−1)+k′−1

nm

−X i−1
n
||δWiσ̃(k′)|

)
|δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
|.

Here, the constant C is a generic positive constant whose values may vary from line
to line. Next, we apply Cauchy-Schwarz inequality and use the independence between
the increments, to get

E|Rnm,σ̃
`, i−1

n

(3)|p

≤ C
m∑
k=2

(
E|ḣn,ik`•• − ḣ

n,i
`••|

2pE|Xnm,σ̃
m(i−1)+k−1

nm

−Xnm,σ̃
i−1
n

|2p
)1/2E|δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
|p

+ C

m∑
k=2

( k−1∑
k′=1

(1 + E|Xnm,σ̃
m(i−1)+k′−1

nm

|p)(∆p
n

mp
+ E|δWiσ̃(k′)δW

>
iσ̃(k′) − Iq

∆n

m
|p)
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+

k−1∑
k′=1

E|Xnm,σ̃
m(i−1)+k′−1

nm

−X i−1
n
|pE|δWiσ̃(k′)|p

)
E|δWiσ̃(k)δW

>
iσ̃(k) − Iq

∆n

m
|p.

By Lemma 4.2.1, Lemma 4.3.1 and the fact that E|δWi,σ̃(k)|p = O(∆
p/2
n ), E|δWiσ̃(k)δW

>
iσ̃(k)−

Iq
∆n
m |

p = O(∆p
n), we have

E|Rnm,σ̃
`, i−1

n

(3)|p = O(∆2p
n ) +O(∆3p/2

n )
m∑
k=2

(
E|ḣn,ik`•• − ḣ

n,i
`••|

2p
)1/2

.

We recall from relation (4.4.23) in Section 4 that ḣn,ik`•• ∈ (Rd×1)q×q and ḣn,i`•• ∈
(Rd×1)q×q, for j and j′ ∈ {1, . . . , q}, (ḣn,ik`•• )jj′ = ∇h`jj′(ξ3,n

ik ) ∈ Rd×1 and (ḣn,i`••)jj′ =

∇h`jj′(X i−1
n

) where ξ3,n
ik ∈ (Xnm,σ̃

i−1
n

, Xnm,σ̃
m(i−1)+k−1

nm

). Then, by using Lemma 4.3.1 and the

assumption (Hf,g), we have E|ḣn,ik`•• − ḣ
n,i
`••|

2p = O(∆p
n). Hence, we obtain (4.4.25).

Proof of Lemma 4.4.8. From (4.4.32), (4.4.33) and (4.4.34), we use similar arguments
as in the proof of Lemma 4.4.1 to get

E(M̃nm,1

`, i−1
n

|F i−1
n

) =
1

16

q∑
j′=1

(Xnm
i−1
n

−Xnm,σ
i−1
n

)>
(
∇2g`j′(ζ

n,3
i ) +∇2g`j′(ζ

n,4
i )
)

(Xnm
i−1
n

−Xnm,σ
i−1
n

)

× E(∆W j′

i |F i−1
n

),

E(M̃nm,2

`, i−1
n

|F i−1
n

) =
1

4

[
ḣn,i,1`•• v(Xnm

i−1
n

−Xnm,σ
i−1
n

)
]
vE(∆Wi∆Wi − Iq∆n|F i−1

n
),

E(M̃nm,3

`, i−1
n

|F i−1
n

) =
m∑

k,k′=1
k<k′

[
ḣn,i,2`•• v(Xnm

i−1
n

−Xnm,σ
i−1
n

)
]
vE(δWikδW

>
ik′ − δWik′δW

>
ik |F i−1

n
).

Now if we also consider (4.4.31), we get thanks to assumption (Hf,g), the existence of
a generic positive constant C s.t.

E|Ñnm
`, i−1

n

|p ≤CE|Xnm
i−1
n

−Xnm,σ
i−1
n

|2p∆n,

E|M̃nm,1

`, i−1
n

|p ≤C
q∑

j′=1

E|Xnm
i−1
n

−Xnm,σ
i−1
n

|2pE|∆W j′

i |
p,

E|M̃nm,2

`, i−1
n

|p ≤CE|Xnm
i−1
n

−Xnm,σ
i−1
n

|pE|∆Wi∆Wi − Iq∆n|p,

E|M̃nm,3

`, i−1
n

|p ≤C
m∑

k,k′=1
k<k′

E|Xnm
i−1
n

−Xnm,σ
i−1
n

|pE|δWikδW
>
ik′ − δWik′δW

>
ik |p.

Thus, we easily deduce that E(M̃nm,1

`, i−1
n

|F i−1
n

) = E(M̃nm,2

`, i−1
n

|F i−1
n

) = E(M̃nm,3

`, i−1
n

|F i−1
n

) = 0

and using Lemma 4.3.1 we get E|Ñnm
`, i−1

n

|p = O(∆2p
n ) and E|M̃nm,1

`, i−1
n

|p = E|M̃nm,2

`, i−1
n

|p =

E|M̃nm,3

`, i−1
n

|p = O(∆
3p/2
n ). Finally, combining the above estimates with the obtained

bounds on E(|Mnm,σ̃
i−1
n

|) and E(|Nnm,σ̃
i−1
n

|) for σ̃ ∈ {Id, σ} (see (4.4.11) and (4.4.12)), we

easily get the required bounds for the moments of M i−1
n

and N i−1
n
.
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4.8 Appendix C: Theoretical tools

4.8.1 Uniform tightness

We �rst recall the uniform tightness property (UT) de�ned in Jakubowski, Mémin,
and Pagès, 1989. Let Xn = (Xn,i)1≤i≤d be a sequence of Rd-valued continuous semi-
martingales with the decomposition

Xn,i
t = Xn,i

0 +An,it +Mn,i
t , 0 ≤ t ≤ T,

where, for each n ∈ N and 1 ≤ i ≤ d, An,i is a predictable process with �nite variation,
null at 0 and Mn,i is a martingale null at 0. We say that Xn has (UT) if for each i

〈Mn,i〉T +

∫ T

0
|dAn,is | is tight. (UT)

4.8.2 Stable convergence

Let (Xn) be a sequence of random variables with values in a Polish space E de�ned
on a probability space (Ω,F ,P). Let (Ω̃, F̃ , P̃) be an extension of (Ω,F ,P), and let
X be an E-valued random variable on the extension. We say that (Xn) converges in

law to X stably and write Xn
stably⇒ X, as n→∞ if

E(Uh(Xn))→ Ẽ(Uh(X)), as n→∞

for all h : E → R bounded continuous and all bounded random variable U on (Ω,F).
This convergence is obviously stronger than convergence in law that we will denote

here by �
stably⇒ �.

Now, we recall the Lemma 2.1 in Jacod, 2004 about the uniform tightness property.
For this aim, we consider sums of triangular arrays of the form

Γnt =

[nt]∑
i=1

ζni ,

where for each n we have Rd-valued random variables (ζni )i≥1 such that each ζni is
Fi/n-measurable.

Lemma 4.8.1. If ζni are i.i.d. random variables and Γn1 converges in law to a limit

U , then there is a Lévy process Γ such that Γ1 = U . This process Γ is unique in law

and Γn converges in law to Γ (for the Skorokhod topology). Further, the sequence (Γn)
has (UT).

Next, we recall the convergence theorem 3.2. of Jacod, 1997 for an Rd-semimartingale
process without jumps of form

Znt =

[nt]∑
i=1

χni ,

where χni is F i
n
-measurable.

Theorem 4.8.2. Assume that M is a square-integrable continuous martingale, and

that each χ is square-integrable. Assume also that there are two continuous processes

F and G and a continuous process b of bounded variation on (Ω,F , (Ft)0≤t≤1,P) such
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that

sup
t
|

[nt]∑
i=1

E(χni |F i−1
n

)− bt|
P→ 0, (a)

[nt]∑
i=1

(
E(χni χ

n
i
>|F i−1

n
)− E(χni |F i−1

n
)E(χni

>|F i−1
n

)
)

P→ Ft, ∀t ∈ [0, 1], (b)

[nt]∑
i=1

E(χni ∆M>i−1
n

|F i−1
n

)
P→ Gt ∀t ∈ [0, 1], (c)

n∑
i=1

E(|χni |21|χni |>ε|F i−1
n

)
P→ 0 ∀ε > 0 (Lindeberg's condition). (d)

Then assume further that d〈M i,M i〉t � dt and dF iit � dt, there are predictable

processes u, v, w with values in RD×D, Rd×D and Rd×d respectively, such that

〈M,M>〉t =

∫ t

0
usu
>
s ds, Gt =

∫ t

0
vsusu

>
s ds,

Ft =

∫ t

0
(vsusu

>
s v
>
s + wsw

>
s )ds,

we have

Zn
stably⇒ Z,

with the limit Z can be realized on the canonical d-dimensional Wiener extension of

(Ω,F , (Ft)0≤t≤1,P), with the canonical Wiener process B as

Zt = bt +

∫ t

0
usdMs +

∫ t

0
wsdBs.

Remark 4.8.3. If in the theorem above, every χni , i ∈ {1, . . . , n} have moments of

order p > 2, then the Lindeberg's condition can be obtained by the Lyapunov condition:

n∑
i=1

E(|χni |p|F i−1
n

)
P→ 0.

Now, according to Section 2 of Jacod, 1997 and Lemma 2.1 of Jacod and Protter,
1998, we have the following result

Lemma 4.8.4. Let Vn and V be de�ned on (Ω,F) with values in another metric space

E. If Vn
P→ V , Xn

stably⇒ X then (Vn, Xn)
stably⇒ (V,X).

Conversely, if (V,Xn) ⇒ (V,X) and V generates the σ-�eld F , we can realize this

limit as (V,X) with X de�ned on an extension of (Ω,F ,P) and Xn
stably⇒ X.

Now, we recall a result on the convergence of stochastic integrals formulated from
Theorem 2.3 in Jacod and Protter, 1998.

Theorem 4.8.5. Assume that the sequence (Xn) has (UT). Let Hn and H be a se-

quence of adapted, right-continuous and left-hand side limited processes all de�ned on
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the same �ltered probability space. If (Hn, Xn)
stably⇒ (H,X) then X is a semimartin-

gale with respect to the �ltration generated by the limit process (H,X), and we have

(Hn, Xn,
∫
HndXn)

stably⇒ (H,X,
∫
HdX).

Now, we recall the Theorem 2.5c in Jacod and Protter, 1998.

Theorem 4.8.6. We consider a sequence of SDE's like

Xn
t = Jnt +

∫ t

0
Xn
s−H

n
s dYs,

all de�ned on the same �ltered probability space and with the same dimensions. Also

let ρn be an auxiliary sequence of random variables with values in some Polish space

E, all de�ned on the same space again.

Let V n
t =

∫ t
0 H

n
s dYs. Suppose the sequence supt≤1 ‖Hn

t ‖ is tight and the sequence

(Jn, V n, ρn) stably converges to the limit (J, V, ρ) de�ned on some extension of the

space. Then V is a semimartingale on some extension and (Jn, V n, Xn, ρn) stably

converges to the limit (J, V,X, ρ) where X is a solution of

Xt = Jt +

∫ t

0
Xs−HsdYs.

4.8.3 Lindeberg-Feller central limit theorem

We recall also the following central limit theorem for triangular array (see, e.g. The-
orem 7.2 and 7.3 in Billingsley, 1968).

Theorem 4.8.7. Let (kn)n∈N be a sequence such that kn →∞ as n→∞. For each

n, let Xn,1,. . .,Xn,kn be kn independent random variables with �nite variance such that

E(Xn,k) = 0 for all k ∈ {1, . . . , kn}. Suppose that the following conditions hold:

(1) limn→∞
∑kn

k=1 E|Xn,k|2 = ϑ, ϑ > 0.

(2) Lindeberg's condition: For all ε > 0, limn→∞
∑kn

k=1 E(|Xn,k|21|Xn,k|>ε) = 0. Then

kn∑
k=1

Xn,k ⇒ N (0, ϑ), as n→∞.

Moreover, if the Xn,k have moments of order p > 2, then the Lindeberg's condition

can be obtained by the following one:

(3) Lyapunov's condition: limn→∞
∑kn

k=1 E|Xn,k|p = 0.
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