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Abstract
Major advances in the fields of Internet and Communication Technology (ICT),

data modeling/processing, and sensing technology have rendered traditional envi-
ronments (e.g., cities, buildings, hospitals) more connected. In such environments,
the ever-increasing number and diversity of data sources (devices and sensors,
both static and mobile) is continuously increasing the size of the data that need to
be stored locally on edge devices and/or transmitted to central storage databas-
es/repositories in the network. Moreover, sensors monitoring the environment in
real-time often produce redundant data that might not be necessarily useful (e.g.,
recording the same unchanged phenomena during a period of time). As a result,
the huge amount of data causes several issues (e.g., network bandwidth saturation,
over-consumption of network/device energy, cloud storage and I/O throughput
issues). Data pre-processing techniques such as redundancy detection and cleaning
(i.e., deduplication) can help reduce the amount of data being processed, transmit-
ted, and stored in connected environments.

In this thesis, we focus on three main challenges: (i) accurately detecting data re-
dundancies in connected environments; (ii) considering the physical environmental
features (e.g., zone/location separations), the sensor features (e.g., coverage areas),
and the dynamicity of the connected environment (e.g., device mobility) when
detecting redundancies; and (iii) providing flexible and configurable redundancy
cleaning mechanisms to cope with data consumer needs (e.g., users, services,
devices, storage needs).

In order to address the aforementioned challenges, we first target data redundan-
cies at the edge of the network (i.e., device level) and propose a Data Redundancy
Management Framework (DRMF) to detect crisp data redundancies (e.g. temporal
in case of static devices and spatio-temporal in case of mobile devices). Then,
we address the limitations of DRMF by proposing FREDD (Fuzzy Redundancy
Elimination for Data Deduplication) to detect fuzzy data redundancies at the device
level. Furthermore, we consider the physical features of the environment, as well as
sensor mobility and coverage areas, in an extension of FREDD that aims at detecting
redundancies at the sink level. Finally, we propose several redundancy cleaning
mechanisms to cope with the needs of data consumers (e.g., users, devices, services,
and databases).

We form a global framework called DRMCE that groups the aforementioned
modules for data redundancy detection in connected environments. Our proposal
can be used with different connected environments such as buildings, cities, and
hospitals.



Résumé
L’évolution significative des technologies de traitement, transmission, et modélisa-
tion des données ainsi que l’avancement technique réalisé au niveau des réseaux
de capteurs ont contribué à la prolifération des environnements connectés (ex : bâ-
timents, villes intelligents). Ces environnements contiennent divers capteurs qui
surveillent notre vie quotidienne et génèrent une quantité massive de données / ob-
servations. Par conséquent, le nombre de données à transmettre et stocker sur le
réseau (localement sur les capteurs ou dans des bases de données) devient problé-
matique. De plus, les capteurs surveillant l’environnement en temps réel produisent
souvent des données redondantes qui ne sont pas nécessairement utiles (par exem-
ple, enregistrer les mêmes phénomènes inchangés pendant une période de temps).
Ceci provoque plusieurs problèmes (par exemple, la saturation de la bande passante
du réseau, la surconsommation d’énergie du réseau / capteurs, des problèmes de
stockage). Les techniques de prétraitement des données telles que la détection et le
nettoyage de la redondance (c’est-à-dire la déduplication) pourraient aider à réduire
la quantité de données traitées, transmises et stockées dans des environnements con-
nectés.

Dans cette thèse, nous nous concentrons sur trois défis principaux: (i) détecter
avec précision les redondances de données dans des environnements connectés ; (ii)
prendre en compte les caractéristiques environnementales physiques (par exemple,
les séparations des zones/localisations), les caractéristiques des capteurs (par exem-
ple, les zones de couverture), et la dynamique de l’environnement connecté (par ex-
emple, la mobilité des capteurs) lors de la détection des redondances ; et (iii) fournir
des mécanismes flexibles et configurables de nettoyage des redondances pour faire
face aux besoins des consommateurs de données (par exemple, les utilisateurs, les
services, les équipements, les besoins de stockage).

Pour ce faire, nous proposons :

• une approche, dénotée DRMF, pour la détection des données redondantes au
niveau des capteurs,

• une amélioration de DRMF, dénotée FREDD, basée sur le raisonnement flou
pour améliorer la détection au niveau des capteurs,

• une extension de FREDD permettant de détecter les redondances au niveau
intermédiaire (niveau "Sink"), et

• une approche pour le nettoyage des redondances détectées qui assure une flex-
ibilité pour adapter la déduplication aux besoins et recommandations des con-
sommateurs de données.

Nous regroupons tous ces modules dans un framework global nommé DRMCE
pour la gestion de la redondance des données dans des environnements connectés.
Notre proposition est 1) adaptative car permet de personnaliser la déduplication des
données redondantes soit localement sur les capteurs ou au niveau des nœuds Sinks,
et 2) générique car pourrait être utilisée dans différents environnements connectés
tels que les bâtiments, les villes, et parkings intelligents.
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Le manuscrit est organisé comme suit:

Chapitre 1

Introduction

Dans ce chapitre, nous introduisons les environnements connectés basés sur
l’Internet des Objets et les réseaux de capteurs. Nous évoquons les éléments qui
constituent ces environnements afin de clarifier la terminologie utilisée dans le
manuscrit. Par la suite, nous présentons quelques problèmes liés à la qualité de
données pour se focaliser sur la redondance de données. Ce chapitre introduit la
motivation de ce travail de recherche. Pour ce faire, nous adoptons un exemple
d’environnement connecté (un hôpital intelligent dans lequel une diversité de cap-
teurs, mobiles et immobiles, surveillent l’environnement et génèrent des données
/ observations) qui sera un fil conducteur tout le long du manuscrit pour illus-
trer la motivation derrière chaque chapitre. Nous y montrons un ensemble de be-
soins liés à la détection de la redondance au niveau de capteurs à l’extrémité du
réseau et au niveau des équipements centraux au cœur du réseau. Ce scénario mon-
tre aussi les défis techniques et scientifiques que nous considérons afin d’adresser
les besoins susmentionnés. Ensuite, nous discutons les spécificités physiques de
l’environnement et des capteurs, et leurs impacts sur la détection précise des redon-
dances. Après, nous adressons les besoins liés à la déduplication et le nettoyage flex-
ible des redondances tout en considérant les besoins des consommateurs des don-
nées afin de leur livrer des ensembles de données non redondantes et compatibles
avec leurs spécifications. Finalement, ce chapitre présente le framework DRMCE,
récapitule les contributions, et détaille l’organisation du rapport.

Chapitre 2

État de l’art

Dans ce chapitre, nous évaluons les approches existantes dans la littérature qui se fo-
calisent sur la gestion de la redondance des données dans des environnements con-
nectés et dans d’autres environnements similaires. Nous catégorisons les approches
pour comparer les méthodes existantes pour la détection des redondances au niveau
de la source (à l’extrémité du réseau) et au niveau intermédiaire/central. De plus,
nous consacrons une sous-section pour le nettoyage des redondances détectées (la
déduplication). Afin de pouvoir comparer ces approches, nous définissons en en-
semble de critères qui répondent aux besoins et défis mentionnés dans le scénario
de motivation présenté dans le chapitre précédent.

Chapitre 3

DRMF

Dans ce chapitre, nous présentons DRMF: "Data Redundancy Management Frame-
work". Cette approche détecte les redondances des données localées sur le capteur
pour éviter les transmissions non nécessaires vers le réseau. De cette façon, la détec-
tion a lieu à la source (sur les capteurs immobiles et mobiles). Dans cette première
contribution, nous évaluons la distance entre les valeurs des observations générées
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par un capteur afin de créer des clusters de données redondantes. Les périmètres des
clusters sont définis par des seuils ("thresholds") rigides pour permettre une détec-
tion simple des redondances. En revanche, la précision aux extrémités des clusters
peut être améliorée pour éviter d’affecter une donnée non redondante à un cluster
de redondances.

Chapitre 4

FREDD

Dans ce chapitre, nous introduisons FREDD: "Fuzzy Redundancy Elimination for
Data Deduplication" afin d’adresser la limitation de DRMF. Nous utilisons la logique
floue pour détecter les données redondantes de façon plus précise au niveau des
capteurs. Comme dans DRMF, nous considérons dans FREDD la mobilité des cap-
teurs et la diversité des données captées. Ensuite, nous comparons la précision de la
détection des redondances avec DRMF et d’autres approches existantes.

Chapitre 5

FREDD – Cœur du réseau

Dans ce chapitre, nous considérons la structure physique de l’environnement con-
necté, les aspects géographiques (tel que la carte de géolocalisation), les séparateurs
physiques et virtuels entre les différentes localisations de l’environnement, ainsi que
les aspects techniques des capteurs (tel que les zones de couvertures). Ceci per-
met d’étendre FREDD afin de considérer la détection précise des redondances au
niveau intermédiaire du réseau et ne se limite pas au niveau des capteurs (localisés
à l’extrémité du réseau).

Chapitre 6

Nettoyage des redondances

Dans ce chapitre, nous discutons le nettoyage des redondances détectées préalable-
ment en proposant un mode de déduplication automatique et un autre mode basé
sur les besoins des consommateurs de données. Qu’ils s’agissent des utilisateurs qui
requêtent l’environnement, des services qui traitent les données, des équipements
qui échangent les données, ou bien des supports de stockage, chaque consommateur
de données pourrait avoir des besoins spécifiques qui affectent la déduplication (par
exemple, un service qui génère des statistiques doit prendre en compte les valeurs
redondantes pour ne pas biaiser les moyennes. En revanche, une base de données
pourra nécessiter une déduplication complète des données pour ne pas épuiser ses
ressources).

Chapitre 7

Conclusion & travaux futurs

Ce chapitre résume les différentes contributions de la thèse et discute à la fois les
extensions futures ainsi que les nouvelles orientations possibles pour la suite de ce
travail de recherche.
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Chapter 1

Introduction

1.1 Connected Environments, IoT, & Sensor Networks

In recent years, connecting physical devices to the Internet has been growing at an
unprecedented rate. This phenomena has been fueled by significant technological
advances in the field of IoT (Internet of Things) [1]. An example of connected
objects includes thermostats and HVAC monitoring and control systems that
manage Heating, Ventilation, and Air Conditioning in smart homes. IoT has played
a remarkable role in other domains and environments to improve the quality of
our lives. These applications range from transportation, to healthcare, industrial
automation, and emergency response to natural and man-made disasters, where
human decision making is difficult and requires assistance and input provided by
data. Moreover, connected devices, and developments in ICT (Information and
Communication Technology) have transformed traditional physical infrastructures
(e.g., buildings, cities, hospitals, parking lots) into smart Connected Environments
(CEs).

CEs host physical objects equipped with sensors capable of surveying the real-
world and recording observations. Connected objects are considered data sources as
well as data consumers since they are capable of exchanging data with other objects.
CEs can host other data consumers as well such as data processing services, storage
repositories/databases, and human users that query the environment. Therefore,
CEs constitute a dynamic hub for data generation and consumption. This enables
various application domains (e.g., energy management, healthcare, environment
conservation) to benefit from the exploitation of the generated data and to provide
several applications for the end users (e.g., energy management systems for smart
buildings, patient monitoring in smart hospitals and elderly homes, pollution
monitoring in smart cities). Figure 1.1 illustrates some domain specific applications
that benefit from a CE.
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FIGURE 1.1: CE impact on various application domains

The CEs offer equipment manufacturers, Internet service providers, and appli-
cation developers a remarkable market opportunity. By the end of 2020, IoT smart
objects reached 212 billion deployed entities in the whole world [2]. The rate of
M2M (Machine2Machine) traffic flows is expected to take up to 45% of the whole
Internet traffic, by the end of 2022 [2, 3, 4].

The impact of IoT-based services is also beneficial for the economic growth of
businesses. The biggest economic impact is projected to come from Healthcare
and manufacturing applications. IoT-based healthcare applications (e.g., mobile
health, m-Health, and telecare) provide the means for medical wellness, disease
prevention, diagnosis, treatment, and monitoring. The aforementioned applications
are expected to generate approximately $1.1–$2.5 trillion worth of growth annually,
in the global economy, by the end of 2025. The IoT is expected to cause an annual
worldwide economic impact in the range $2.7 trillion to $6.2 trillion by 2025 [5]. The
projected market share of dominant IoT applications is represented in Figure 1.2 [5].
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FIGURE 1.2: IoT projected market share by 2025

1.1.1 Key Elements in IoT

Key elements in IoT include: (i) Things; (ii) Gateways; (iii) Network Infrastructures
(NI); and (iv) Cloud Infrastructures (CI) [6].

Things

Things represent the devices/sensors that sense stimuli from the environment and
provide measurement data of the observations. The advances in micro-electro-
mechanical systems (MEMS) technology, wireless communications, and digital elec-
tronics have paved the way for developing low-cost, low-power, multi-functional
small-size sensor nodes [7]. These sensors could be deployed in different environ-
ments (e.g., buildings, cities) and/or embedded on various machines, equipment,
and electronic platforms (e.g., mobile phones). Their advanced capabilities (e.g.,
sensing various properties, data transmission, and storing observations), increased
autonomy (e.g., longer life cycles, more battery power, more fault/breakdown resis-
tance), and miniaturization have allowed sensor networks to be widely adopted for
environment monitoring. This has greatly benefited the proliferation of CEs.

Gateways

Gateways serve as an intermediate block between the things and network or cloud
infrastructure. They ensure connectivity between things and between things and
clouds. Things monitor the environment and report their observation to gateways
(e.g., sink node, base stations etc.). These various gateways process data/informa-
tion and forward these data to cloud infrastructure for storage purposes [8].
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Network Infrastructures

The network infrastructure (NI) defines the topology, how sensors are deployed,
where sensors are located, and to which sink each sensor reports its observation-
s/sensed data. These infrastructures are used to manage and track the information
flow within the environment. They also provide means for data processing, traffic
management, and data security mechanisms [8].

Cloud Infrastructures

Cloud Infrastructures (CI) are equipped with data storage and are proficient in com-
puting the data/information. These include a set of virtual servers, and storage
repositories that are clustered together along with gateways and things. CI provide
computing and analytical capabilities (various intelligent services, used to analyze
information from various perspectives) [8].

1.1.2 Sensor Networks

The major components of CEs are Sensor Networks (SN). Wireless Sensor Networks
(WSN) have emerged in the last few decades due to the significant technological
advances in wireless communication, embedded computing techniques, and micro-
electronic devices [9]. WSN group sensor nodes that are spatially dispersed and
interconnected by using wireless communication [7]. These sensor nodes monitor
the environment in which they are deployed (e.g., temperature and humidity) and
produce measurement data values. We denote them as "Edge Devices" since they are
deployed on the leaf, extremity, or edge of the CE. Edge device data is then sent to
base stations for further processing/storage. We denote these base stations as "Sink
Nodes/Devices" and locate them at the center or core of the network in an inter-
mediary layer between the leaf layer (where we find the data sources, i.e., sensing
edge devices) and the supervision/control layer (where we find the various data
consumers). Figure 1.3 depicts a simplified representation of a CE network.

FIGURE 1.3: Connected Environment Network Representation
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The sensors/devices in CEs continuously monitor physical environments (e.g.,
buildings, homes and cities) and report their observations to base stations. These
devices/sensors rapidly produce huge amounts of data, as the sampling frequency
can range from micro-seconds to hours. However, they are limited in terms of en-
ergy, processing and memory, and suffer from various inconsistencies (e.g., missing
values, anomalies and redundancies).

1.2 Overview of Data Inconsistencies

This section provides an overview of the most common data inconsistencies in CEs.
CE devices/sensors produce huge amounts of data, and send the data to base sta-
tions or other nodes continuously. However, the raw data from these devices suffer
from various inconsistencies. We provide a brief overview of some of these incon-
sistencies.

1.2.1 Missing Values

In CEs, sensors may produce missing values due to various reasons. For instance,
network issues such as unstable connectivity, communication bugs, packet loss, and
congested network media could cause values to go missing during transmission.
Moreover, hardware and autonomy issues (e.g., low battery power, equipment fail-
ures) could render some sensors unreliable and cause missing values. Therefore,
missing data has been the focus of various research works regarding data refine-
ment in CEs [10, 11, 12, 13, 14, 15].

1.2.2 Anomalies

Besides missing values, sensor data can suffer from anomalies. An anomaly is de-
fined as an abnormal behaviour from the sequence of data generated by sensors/de-
vices. The anomalies can be: (i) Point Anomaly; (ii) Contextual Anomaly; and (iii)
Collective Anomaly [16].

• Point Anomaly: is an observation value that lies far from the rest of the data,
also known as "outlier" [17].

• Contextual Anomaly: is an observation value that is normal in one scenario
and abnormal in another. This type of anomaly requires the knowledge of
context. It is also called conditional anomaly [18].

• Collective Anomaly: is an abnormal sequence of observations that are ana-
lyzed to find out the collective behavior of the data stream. For example, when
determining the heart behavior in a healthcare application, a single observa-
tion at a time interval is not sufficient. Such cases require collective signals to
determine whether heart behavior is normal or not [19].

1.2.3 Data Redundancies

Devices/sensors in CEs are often densely deployed to monitor the environment and
report observations. These devices generate huge amounts of redundant data by
sensing the environment. A redundancy produced by a device/sensor can be: (i)
temporal; (ii) spatial; or (iii) spatial-temporal [20].
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• Temporal Redundancy: this type of redundancy is caused by a single sensor
producing similar observations at different time stamps.

• Spatial Redundancy: this type of redundancy is caused by similar sensors de-
ployed in close vicinity to each other, thus producing redundant observations.

• Spatial-Temporal Redundancy: this type of redundancy is produced by mobile
sensors/devices. Mobile sensors have the capability to move around the net-
work. This might lead to generating redundant observations at different time
stamps and locations simultaneously.

1.3 Thesis Context

In this thesis, we consider CEs from the perspective of data management. Specifi-
cally, we aim to provide CE users (e.g., smart building occupants, smart city man-
agers) help in managing redundant data (e.g., detection and elimination) produced
by various sensors/devices.

1.3.1 Objectives

To do so, we target the following specific objectives:

• Detecting redundancies at the source (i.e., on the edge devices/sensors), thus
allowing the management of atomic or individual data redundancies (i.e., re-
dundancies coming from one data source). This entails providing a data re-
dundancy detection mechanism that runs on the edge of the network in order
to flag redundant data prior to M2M communications and data storage at the
center of the network (i.e., via the sink devices).

• Detecting redundancies at the core of the network (i.e., on the sink devices),
thus allowing the detection of redundancies that appear from the combination
of data coming from different sources (i.e., edge devices). This entails taking
into consideration the physical and environmental constraints of the CE (e.g.,
physical separations between zones/areas like walls and windows and their
impact on sensor coverage areas, device mobility and its impact on spatial-
temporal provenance of data).

• Cleaning or removing the detected redundancies at the edge and at the core
of the network (i.e., on the devices directly, and on sink nodes). We aim to
introduce here a data consumer centric deduplication process that takes into
account the consumers’ needs and requirements for the redundancy cleaning
phase (since the aforementioned needs might not be the same for all data con-
sumers).

1.3.2 Motivation Scenario

We provide a CE example to illustrate the motivations of this thesis. Figure 1.4 shows
a smart hospital, having two wards. The left ward describes a location map having
a nursery, a drug storage room, and two ICU (Intensive Care Unit) rooms. Since
these are critical areas of the hospital and require specific environmental constraints,
they are separated by walls (physical hard separations). The right ward is dedicated
for medical staff offices. Since no patients are hosted in this ward the constraints
are more flexible, the offices are not hard-separated but consist of cubicles partially
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open to one another (i.e., soft separations). In both wards, a set of static and mobile
sensing devices (e.g., medical staff tablets) are deployed to monitor the environment.
More specifically, the aforementioned sensors capture humidity and temperature
measurements (among others) from their surroundings. Moreover, every ward has
its own sink node that receives all data from the sensors located within its premises.
Expert users (e.g., health and safety experts) require the data to regulated air quality
and indoor temperature in the hospital to prevent issues such as overheating in the
drug storage room, or bad air quality for patients in the ICU or babies in the nursery.
The described setup is prone to generating a huge amount of data redundancies.
Therefore, the following needs should be considered:

FIGURE 1.4: Smart Hospital Example

Need 1. Retrieving non-redundant and concise temperature/humidity data from
individual locations in each ward in the hospital (i.e., querying data from static
and mobile devices directly).

Need 2. Retrieving global non-redundant and concise temperature/humidity
data from entire zones/wards in the hospital (i.e., querying data from the sink
nodes directly).

Need 3. Defining health-related requirements for each area of the hospital (e.g.,
significant value deviations for temperature in the drug storage room, alarming
humidity variations in the ICU) in order to enable data retrieval and storage based
on the user’s specifications.

In this setup, if humidity is stable in a specific room, multiple unnecessary du-
plicate values are sent to the sink and retrieved by the expert user. However, mea-
surements made by the same mobile sensor moving between different locations, or
measurements made by different sensors at different locations in the hospital might
not be considered as redundant (e.g., what is not redundant at room level might be
redundant at ward level). Therefore, data deduplication could be used to address
the aforementioned needs if the following challenges are considered:

Challenge 1. How to accurately detect data redundancies at the static and mobile
device level? How to consider spatial-temporal information to cope with device
mobility? (cf. Need 1).

Challenge 2. How to accurately detect data redundancies at the sink level? How
to consider the physical constraints of the environment (e.g., spatial constraints,
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soft and hard zone separations, and sensor coverage areas) when detecting redun-
dancies at the sink level? (cf. Need 2).

Challenge 3. How to allow expert users to configure the deduplication process in
order to inject domain insights and knowledge for a more adapted and accurate
redundancy detection and cleaning? (cf. Need 3).

There are several other challenges that emerge while considering data redundan-
cies in connected environments (e.g., energy management, bandwidth management,
redundant event detection). However, we only focus on the aforementioned needs
and challenges (that will be detailed in following chapters). Next, we provide the de-
tails of the proposed framework and discuss how each module addresses a specific
challenge.

1.4 Proposal

We present a brief overview of our proposal for Data Redundancy Mangement in
Connected Environments, denoted as DRMCE. Our proposal addresses the objec-
tives, needs, and challenges described in Section 1.3. Figure 1.5, depicts an overview
of DRMCE’s main modules. In the described process, the user decides if he/she
wishes to handle redundancies directly at the edge device level (network source), at
the sink device level (network core), or on both edge and sink levels. Regardless of
where the deduplication is required, the process always consists of two main steps:
(i) redundancy detection; and (ii) redundancy cleaning.

FIGURE 1.5: DRMCE Framework

1.4.1 Redundancy Detection at the Edge

In this thesis, we provide two approaches for redundancy detection at the edge
device level. The first, denoted DRMF (Data Redundancy Management for leaF-
edges), is based on clustering redundant data locally on devices using crisp thresh-
olds. The second approach, denoted FREDD (Fuzzy Redundancy Elimination for
Data Deduplication), improves on the first proposal by introducing fuzzy reason-
ing to the redundancy detection process in order to address the shortcomings of the
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crisp thresholds that sometimes generate imprecision. These two approaches enable
redundancy detection on static and mobile edge devices (cf. Challenge 1).

1.4.2 Redundancy Detection at the Sink

Moreover, we provide an extension of FREDD to cover redundancy detection at the
sink level (i.e., at the core of the network). To do so, we take into consideration
features such as the spatial constraints of the environment (e.g., locations, location
maps), physical elements (e.g., hard and soft zone separations), sensor properties
(e.g., coverage areas) in addition to the features already considered in the FREDD
proposal at the edge device level (e.g., mobility). This allows accurate detection of
redundancies at the sink level (cf. Challenge 2).

1.4.3 Redundancy Cleaning

Finally, once redundancies are detected, the process moves into the redundancy
cleaning phase. In this work, we present an auto-clean mode that provides tradi-
tional cleaning mechanisms (e.g., summarizing a redundant set of data to one rep-
resentative centroid value such as the mean, median, min, or max). In addition, we
provide a consumer-centric cleaning mode that can be tailored, configured, and cus-
tomized to fit the needs of data consumers including databases, human users, other
devices, and data processing services (cf. Challenge 3).

1.5 Report Organization

The rest of the thesis is organized as follows:

Chapter 2 reviews the state of the art on data redundancy management. We
go through some of the existing approaches applied in data storage and data
warehousing solutions. Then, we focus on data redundancy detection works
dedicated to connected environments. This includes works that target the edge
level of the network, and approaches that target the sink level. Finally, we review
data redundancy elimination/cleaning approaches. This chapter also includes a
comparative study of these works based on a proposed set of criteria.

Chapter 3 describes the Data Redundancy Management for leaF-edges (DRMF)
for detecting data redundancies at the device level. In order to cope with mobility,
we define two types of data redundancies: (i) temporal redundancies (to be detected
on static devices); and (ii) spatial-temporal redundancies (to be detected on mobile
devices). We propose a redundancy detection algorithm for each of the aforemen-
tioned redundancies. The algorithms consist of evaluating the deviations between
successive data values generated by a device using a specific variation threshold in
order to cluster redundant subsets of data. Finally, we evaluate the performance of
DRMF as well as its accuracy when detecting redundancies.

Chapter 4 describes the Fuzzy Redundancy Elimination for Data Deduplication
framework (FREDD) for detecting data redundancies at the device level. FREDD
improves our initial proposal (DRMF) by overcoming the limitation of having
crisp thresholds that can lead to potential drops in precision when detecting
redundancies. This chapter provides a background on fuzzy reasoning, presents
the new framework, details its modules, and explains how one can use it to detect
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data redundancies locally on static and mobile edge devices. Finally, we include a
extensive experimentation of FREDD’s performance and accuracy.

Chapter 5 describes an extension of FREDD to address data redundancy detec-
tion challenges at the network sink level. We consider a variety of environmental,
spatial, physical, and device-related features that affect redundancy detection at the
core of the network. We consider locations, inter-location hard/soft separations,
and sensor coverage areas. Finally, we provide details of the experiments and
results.

Chapter 6 discusses the elimination/cleaning of previously detected data
redundancies. DRMCE provides two main modes for cleaning redundant data: (i)
the auto-clean mode where we automatically summarize a set of redundant data
to one representative data item; and (ii) the data consumer-centric mode where
we consider the requirements of data consumers to tailor the cleaning process
accordingly. We also discuss how the data consumer requirements can be taken into
account in the cleaning process. Finally, we present the experimental evaluation
and results.

Chapter 7 concludes the report by providing a recap of all aforementioned chap-
ters, and discusses the next steps and potential future directions.
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Chapter 2

Related Works

We review here existing approaches for data redundancy detection and cleaning. We
discuss first the topic of deduplication in data storage and warehousing solutions.
Then, we shift our focus towards CEs starting with data redundancy detection and
then data redundancy cleaning approaches.

2.1 Deduplication in Data Storage and Data Warehousing

The automatic removal of duplicate data tokens has been primarily used in archival
and backup systems (e.g., Microsoft Farsite, HYDRAstore, DEBAR), primary
storage (e.g., Microsoft Windows Server, Oracle ZFS), RAM (e.g., VMWare ESX,
Linux KSM), and SSDs (e.g., Cache Acceleration Software CAS by CAFTL) [21].
They mostly rely on chunk-level deduplication which splits the incoming data into
multiple chunks, and generates a unique hash value for every individual chunk,
referred to as the chunk’s fingerprint [22]. Deduplication is then performed by
eliminating the chunks having identical fingerprints. Among the many chunking
algorithms are Rabin fingerprinting algorithm, TD (Two Divisors) algorithm, TTTD
(Two Thresholds, Two Divisors) algorithm, and MAXP algorithm [22, 23]. Data
deduplication is also a necessary step in data cleaning, also referred to as data
scrubbing in data warehousing [24]. It consists in matching data records that relate
to the same entities from several databases. Many techniques have been used in this
context, including correlated sub-queries, temporary tables, derived tables, Com-
mon Table Expressions (CTEs), and dynamic SQL [25]. Most of these techniques are
deterministic and require a unique entity identifier (or key) available across all the
records/databases to be linked, or for all the databases to have the same structure.
Some of them also consist of holding all distinct records in temporary or new tables
which require big storage space. One major issue with the latter techniques is the
time overhead needed to perform the extensive comparison operations between
data records. More recent approaches aim at reducing data record comparison
time by performing a pre-processing indexing step where each record is assigned
a Blocking Key Value (BKV), and then records having the same or similar BKVs
are clustered and compared together [24]. Some of the used clustering techniques
include Sorted Neighborhood, Q-gram based clustering, and Canopy clustering
[24]. Finally, data deduplication is applied to storage backup systems with the aim
of reducing storage costs and improve storage space utilization [26]. This approach
divides a source data S into a set of chunks, C = {c1, c2, ..., cn}, by using a chunking
algorithm. If data changes in S, then it should be denoted as S’. This changed data is
divided into chunks, C’ = {c′1, c′2, ..., c′n}. These two chunks are then compared and
only unique chunks are stored again in repository. Data deduplication is applied
in two ways. In first way, data is first stored and then redundant data is removed.
While in second method [27], data deduplication is applied on online data in real
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time.

Discussion: Most deduplication techniques for data storage and data warehous-
ing assume textual data duplicates only and disregard numerical values, e.g., [22,
23, 24]. The few methods which address numerical data like the proposal in [25]
assume exact duplicates (e.g., exact temperature measurements) and disregard ap-
proximations (e.g., 15 ◦C and 15.1 ◦C are considered as different tokens). However,
numerical tokens are of central importance in connected environments, where most
data collected from sensors are scalar.

2.2 Redundancy Detection in Connected Environments

2.2.1 Redundancy Detection at the Network Edge

The devices/sensors in connected environments sense the real world state and send
data to sink or base station nodes. The devices found in such environments can be
static or mobile. Static devices do not change their position, while mobile devices
move around in the environment. However, the environment often remains stable
for extended periods of time and these devices/sensors produce similar observa-
tions. For example a temperature sensor deployed in a building or outside in open
areas. They send these observations to upper layers of the network which leads to
energy depletion and storage overhead at central storage places or databases. In
the literature, several authors proposed strategies in order to target redundant data
at device/sensor level. Below are some of the techniques which handle redundant
data at device/sensor level.

The authors in [28] proposed an approach for cleansing indoor RFID data. They
focused on two tasks; temporal redundancy elimination and spatial ambiguity re-
duction. For detecting temporally redundant data, they group redundant data that
belong to a temporal interval. To tackle spatial ambiguity, they propose a dis-
tance graph approach to capture spatial-temporal deployment constraints of RFID
readers. They exploit these constraints to detect redundant data within a spatial-
temporal coverage. Although this work handles data redundancies at device level,
it does not consider the dynamicity of the devices and environment for spatial-
temporal redundancy detection.

The approach described in [29] focuses on managing redundant content in mul-
timedia data (e.g images/videos uploaded in constrained based wireless networks).
The strategy is based on similarity of metadata (i.e. image features) between an in-
coming image and an already stored one. It focuses on reducing latency in network.
However, the approach only considers images uploaded from mobile devices and
does not consider redundancies in images from static devices.

Harb H. et.al, in their approach [30], focused on filtering data at sensor layer in
PSNs (Periodic Sensor Networks). They filter data using Pearson coefficient metric
on sensor nodes before forwarding to an aggregation node. However, they do not
consider mobility of devices while considering redundancy at device level.

In [31], the authors present a data reduction scheme for IoT (Internet of Things)
using in-networking data filtering. This approach filters out redundant data at sen-
sor nodes before forwarding it to sink nodes. Data filtration is based on data change
detection and deviation of observed values from estimated values. Though this ap-
proach detects data redundancies from edge sources, it does not consider mobile
devices while detecting redundancies.
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In [9], a strategy for two-tier data reduction is proposed for connected environ-
ments. This approach works on the sensor layer and gateway layer of the network.
At the sensor layer, authors used simple compression techniques to reduce huge
numbers of data produced by sensors/devices. They exploit temporal correlation
among the data for reducing data before transmitting to sink or gateway nodes.
Although this approach reduces the number of transmissions from sensors to gate-
ways, it ignores the mobility of devices at source layer. Another approach discussed
in [32] detects redundant data at the source nodes as well as at the sink nodes. At
the source nodes they used the Least Mean Square (LMS) metric to estimate the next
value produced. If the actual value is within deviation threshold, then it is identified
as a redundant value. The same method is applied at the sink node.

The approach presented in [33] focuses on compressing time series data for Inter-
net of Things (IoT). This approach is applied on the devices in a connected environ-
ment. In order to detect redundant data, the authors identify correlation between
device data by finding variance in the values. The variance is based on a devia-
tion threshold. If the variance is within a deviation threshold, then those values are
considered redundant.

In [34], the authors put forward a novel technique denoted DiDAMoK (Dis-
tributed Data Aggregation based Modified K-Means) for redundancy detection in
sensed data found IoT environments hosting PWSNs (Periodic Wireless Sensor net-
works where data is produced in periods). This proposal runs in three stages: (i) lo-
cally storing sensor observations every period; (ii) clustering the observations using
a modified version of K-means; and (iii) forwarding one representative observation
per redundant data cluster to a sink node. This approach aggregates data on static
devices to remove duplicates and does not consider device mobility.

Finally, the authors in [35] propose a data redundancy management technique
using an unsupervised learning approach based on data clustering. The authors
suggest clustering edge nodes based on their produced sensory data in order to ag-
gregate identical data to eliminate redundancies, before storing the data in the cloud.
However, they do not consider device mobility and spatial-temporal redundancies.

2.2.2 Redundancy Detection at the Network Sink

To avoid exhausting the often limited resources of edge devices, several works
delegate the redundancy management to the network core where more powerful
equipment are often found (e.g., aggregation, sink, or base station nodes). Network
core nodes normally have sufficient processing and memory resources. Mostly,
data aggregation techniques are considered, for processing redundancy of data
at this level. Data aggregation considers various diverse data sources. It gathers
these sources and builds an accurate phenomena under observation. In IoT and
WSN, various data aggregation techniques are found. These include operations
like sum, maximum, minimum, count etc. Aggregation methods can be divided
into centralized and distributed schemes. Centralized methods rely on continuous
communication among network nodes leading to additional costs. This type of
method is not suitable for sensor networks. This is the reason, distributed methods
such as clustering, multi-path and aggregated trees are becoming adopted as well
[36].

In [37], a data aggregation based scheme was proposed for reducing the size of
data. The scheme is called Prefix-Frequency Filtering (PFF). This approach has two
aggregation layers, first layer is on the sensor node while the second is on cluster
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head level. The authors use the Jaccard similarity measure for filtering redundant
data on both layers. This approach does not consider redundancies produced by
mobile devices.

Another approach based on data aggregation is presented in [38]. The authors
introduced an approach called Dynamical Message List based Data Aggregation
(DMLDA). The technique is based on dynamic list data structure. They store his-
torically received measurements and then apply redundant data filtration. How-
ever, this technique only focuses on data redundancies from the perspective of static
devices.

Similarly in [39], the authors divide sensors into non-overlapping regions. They
sample and apply aggregations to data from these regions. Most data aggregation
schemes use trees or other fixed data structures. The authors however, do not con-
sider sensor mobility in order to detect spatial-temporal redundancies.

In [40], the authors present an approach based on spanning tree. In this scheme,
every leaf node senses data from a specified location. Then, data aggregation is
applied starting from the leaves and propagating towards the root. This scheme
only focuses on handling redundancies coming from static devices.

In [41], the authors proposed a distance based data aggregation scheme for elim-
inating data redundancy in PSNs (Periodic Sensor Networks). They consider PSN
as a form of connected environment which produces observations in periods. Data
aggregation is performed on data at sensor node and cluster head level before trans-
mitting it to sink node or base station. They evaluated their approach on four dis-
tance measures: (i) Euclidean Distance; (ii) Bray Curtis Distance; (iii) Cosine Dis-
tance; and (iv) Canberra Distance. However, the authors did not take into account,
the environmental features of the CE nor the mobility of devices.

There are some approaches that use data compression techniques to handle data
redundancies in connected environments. The aim of compression techniques is to
reduce the amount of data routed through the network [42, 43]. Data compression
techniques focus on compressing data before transmitting it to upper level nodes in
the hierarchy. The approach proposed in [43] focuses on compressing data in sensor
networks that are organized into sensor clusters. The approach, denoted Cluster
Based Compressive Sensing Data Collection (CCS), performs data compression at
cluster head level by generating Compressive Sensing (CS) measurements based on
block diagonal matrices created from raw data received from neighbouring sensors.
Furthermore, the authors reconstruct CS measurements at the base station (Sink).
However, this work does not consider dynamic redundancies produced by mobile
devices.

The authors in [44] propose a compression-based technique called Compres-
sive Data Collection (CDC). This scheme focuses the spatial-temporal correlation to
achieve data compression. It consists of two layers. These layers are, opportunistic
routing with compression and nonuniform random projection based estimation for
reconstruction. They only focused on redundancies generated by static devices.

The authors in [45], propose an approach for handling data redundancy on sink
nodes. They considered static devices that produced and sent data to sink nodes
for further processing. The sink nodes apply a data aggregation mechanism on the
received data and remove redundant data produced by sensors in clusters. Tha
approach detects both intra and inter cluster data redundancies. Intra cluster redun-
dancies are addressed on cluster heads while inter cluster redundancies are man-
aged on sink node. The overall objective of the authors is to efficiently utilize the
bandwidth of the network.
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In [46], the authors propose an approach for data reduction in connected environ-
ments. They detect redundant data at the IoT-gateway layer. In their approach they
use primary and secondary gateways for processing redundant data concurrently.
To achieve this, the approach divides the sensed data into odd and even records.
Odd records are processed by a primary gateway and even records are processed
by a secondary gateway. The primary purpose of this division was to avoid single
point of failure at the network core. Furthermore, they only considered redundan-
cies based on static devices and did not consider the environmental and physical
features of the CE.

The approach discussed in [47] focuses on detecting data redundancies at two
levels (i.e., at edge device and sink levels). The authors focus on identifying tem-
poral and spatial redundancy in case of static devices. In order to detect a temporal
redundancy, they calculate deviations between values at current and previous times-
tamps using Kalman filter. If the values are within a specified threshold, then they
are considered duplicates. For detecting spatial redundancies, the authors group
sensor nodes based on locations and sensing ranges. If the location and sensing
ranges overlap, then those nodes are declared as redundant nodes. However, the
authors do not take into account sensor mobility.

In [48], the authors propose an approach for detecting spatial data redundan-
cies. They rely on a correlation tree of data location stamps and sensing ranges of
sensor nodes. The correlation tree reveals spatial correlation between sensors using
Euclidean distance. Then, the authors declare data as redundant if the Euclidean
distance of two or more nodes is within a specified deviation threshold. However,
physical environmental features of CE and sensor mobility are not considered.

In [49], the authors propose a clustering-based appraoch for data redundancy
detection. More specifically, this approach uses Histogram based Data Clustering
(HDC) to detect clusters of redundant data. The authors applied data clustering at
the cluster head level.

The authors in [50] focus on the spatial distribution of sensors in CE to prevent
deployment overlaps that could lead to redundant data. To do so, a graph of nodes
and detected events is constructed from raw sensory data to identify nodes produc-
ing redundant data. The proposal does not consider sensor mobility.

The approach presented in [51] aims to maximize the lifetime of the network in
connected environments. To do so, the authors use a clustering technique based on
heuristics to detect clusters of redundant data. They form clusters of sensors using
proximity based values.

The authors in [52] propose an Error-aware Data Clustering Technique (EDC)
that consists of three main modules: (i) Histogram Based data clustering; (ii) Re-
cursive Outlier Detection and Smoothing (RODS); and (iii) verification of RODS (V-
RODS). The user has a choice of picking one module at a time based on his require-
ments. The purpose of all three modules is to detect clusters of redundant data by
analyzing temporal correlations. RODS with HDC is used for error-aware data clus-
tering. This module identifies random outliers using the temporal correlation of data
to maintain data reduction errors within an acceotable threshold. VRODS with HDC
identifies not only random outliers but also frequent outliers based on both temporal
and spatial correlations of data. The approach only works for static devices.

In [53], the authors address data redundancies at the core of the network using
a supervised machine learning solution based on Support Vector Machines (SVM).
They build an aggregation tree for the given size of the network and then apply SVM
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to recognize data redundancies. The authors target temporal and spatial redundan-
cies once the data is consolidated in a central node, which provides a redundancy-
free data repository that can be mined using dedicated data processing techniques.
However, redundancies are not handled at the edge level, and data exchange be-
tween devices at the edge remains costly due to unnecessary communications.

In [54], the authors provide a data deduplication technique in healthcare-based
IoT by introducing a Controlled Window-size based Chunking Algorithm (CWCA)
to identify cut-points in sensor data distributions. Yet similarly to [53], the solution
in [54] only performs data deduplication at sink nodes and does consider redun-
dancies at edge devices. Moreover, the solutions in [53, 54] do not consider spatial-
temporal redundancies generated by mobile devices. Similarly, another approach
[55] applies an Adaptive Chunking Algorithm (ACA) to identify cut-point between
two windows. They apply their technique on the collector node (e.g., cluster head).

The authors in [56] propose a factorization-based technique. They represent sen-
sory data using the SSN ontology. Then, the data is factorized using observation
multiplicity and measurement multiplicity concepts. Observation multiplicity be-
ing the “count of the observations regarding an observed phenomena produced by
a sensor having same values”. While measurement multiplicity is defined as the
“count of measurements having same values and unit of measurements”. The aim
of factorization is to reduce the multiplicity of observations and measurements from
n to 1.

2.2.3 Redundancy Detection Comparison

To compare existing approaches, we propose the following criteria based on the
needs and challenges discussed in Section 1.3.2:

• Criterion 1. Edge Redundancy Detection: stating if the approach detects data
redundancies at the device level (i.e., at the source). This enables efficient
querying of the edge devices as well as preventing unnecessary data from
spreading throughout the network (cf. Need 1 - Challenge 1).

• Criterion 2. Core Redundancy Detection: denoting if the approach detects ad-
ditional (composite) redundancies that appear on sink nodes (i.e., in the core of
the network) due to data collection from various devices. This enables the de-
tection of redundancies that don’t appear on the source (cf. Need 2 - Challenge
2).

• Criterion 3. Dynamicity & Environment Consideration: specifying if the ap-
proach detects dynamic redundancies due to device mobility and the physical,
spatial, and technical constraints of the environment (e.g., inter-zone separa-
tions) and the devices (e.g., coverage areas). This allows the redundancy de-
tection to be more accurate by considering contextual features in addition to
data value similarities (cf. Need 1,2 - Challenge 1,2).

Table 2.1 shows a comparative recap of the aforementioned approaches found in
the literature. It also highlights the fact that none of these works fully covers all of
our proposed criteria.
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TABLE 2.1: Data Redundancy Detection Comparison

Approach
Criterion 1

Edge Redundancy
Criterion 2

Core Redundancy
Criterion 3

Dynamicity & Environment

Baba A. et al. [28] ✓ ✗ ✗

Dao T. et al. [29] ✓ ✗ ✓

Harb H. et al. [30] ✓ ✗ ✗

Idrees A. et al. [34] ✓ ✗ ✗

Ismael W. et al. [31] ✓ ✗ ✗

Qurabat A. et al. [9] ✓ ✗ ✗

Chowdhury S. et al. [50] ✗ ✓ ✗

Patil P. et al. [53] ✗ ✓ ✗

Ullah A. et al. [55] ✗ ✓ ✗

Ullah A. et al. [54] ✗ ✓ ✗

Li S. et al. [35] ✓ ✗ ✗

Alam M. K. et al. [49] ✗ ✓ ✗

Karim F. et al. [56] ✗ ✓ ✗

Makhoul A. et al. [37] ✓ ✓ ✗

Du et al. [38] ✗ ✓ ✗

Huang et al. [40] ✗ ✓ ✗

Nguyen et al. [43] ✗ ✓ ✗

Liu X. et al. [44] ✗ ✓ ✗

Mantri D. et al. [45] ✗ ✓ ✗

Dasgupta K. et al. [51] ✗ ✓ ✗

Ling S.W et al. [46] ✗ ✓ ✗

Alam M. K. et al. [52] ✗ ✓ ✗

Fathy Y. et al. [32] ✓ ✗ ✗

Yemeni Z. et al. [47] ✗ ✓ ✗

Ismael W. et al. [48] ✗ ✓ ✗

Blalock D. et al. [33] ✓ ✗ ✗

Song Lin et al. [39] ✗ ✓ ✗

Hassan Harb et al. [41] ✗ ✓ ✗

2.3 Data Redundancy Cleaning

2.3.1 Data Redundancy Cleaning at the Network Edge

The authors in [28] propose an approach for cleansing indoor RFID data. They fo-
cused on two tasks: (i) temporal redundancy elimination; and (ii) spatial ambiguity
reduction. To eliminate temporal redundancies, they aggregate raw RFID readings
within a temporal period without loss of information. For handling spatial ambigu-
ity, they propose a distance graph approach to capture spatial-temporal constraints
of RFID readers’ deployment. They exploit these constraints to remove redundant
data within spatial-temporal coverage among RFID data. Although this work re-
moves redundant data from RFID devices it does not provide a configurable clean-
ing mechanism capable of considering specific redundancy cleaning requirements.

The authors in [52] propose an Error-aware Data clustering Technique (EDC).
This technique consists of three modules: (i) Histogram Based data clustering; (ii)
Recursive Outlier Detection and smoothing (RODS); and (iii) verification of RODS
(V-RODS). The purpose of all three modules is to cluster data based on temporal
interval and aggregate data into one value and send this value to other layers of
the network. The user has the choice of picking one of the three modules for re-
dundancy cleaning based on the requirements. Although this approach discusses
a requirement-based data redundancy cleaning, it does not consider data consumer
needs from a data consumption stand point.
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In another similar approach [49], the authors propose an aggregation-based ap-
proach to eliminate redundancies from sensor data. They cluster redundant data
within temporal periods and reduce each redundancy clusters to one representative
value. At the end this non-redundant data is shared with sink node. This technique
does not provide a configurable cleaning mechanism that could be personalized to
adapt to data consumer needs. Similarly in [34], the authors propose an aggregation
based approach to eliminate redundant data produced by sensors. They aggregate
values, within a cluster, for a specified time period, using average function. These
reduced values are forwarded to sink node.

The approach presented in [51] focuses on maximizing the lifetime of the net-
work in connected environments. To do so, the authors use clustering based heuris-
tics to gather data from sensors in the network and detect clusters of redundant
data. After that, data is aggregated and sent to sink nodes for further processing.
They form clusters of sensors using proximity based values. After that, maximum
lifetime schedule is computed and a tree is constructed based on this schedule for
each cluster. The authors, however, only focus on cleaning redundant data via an
automated non configurable mode.

In [53], the authors use Locality Sensitive Hashing (LSH) to eliminate redundant
data. The data produced by each sensor, in each session (i.e., time period), is en-
coded using LSH encoding. Each sensor sends LSH codes to aggregation nodes.
The latter compare these codes to find similarities, then select only one sensor node,
for forwarding data to sink or base station. However, this approach does not give
importance to data and its usage by sink node or base station.

In [33], the authors propose SPRINTZ, a time series compression approach that
compresses data generated by sensors in IoT environments. This approach forwards
summaries of data in a compressed form to other layers of the network and central
storage repositories. This approach compresses data in the following steps: (i) It em-
ploys a forecaster that predicts each sample based on previous samples. Then it pre-
dicts the difference between next sample and predicted sample; (ii) it bit packs the
errors as "paylod" and adds a header having information to invert the bit-packing;
(iii) it finds the run-length encoding of all non-zeros payload and writes out the
number of payload; and (iv) it applies Huffmad coding to the headers and payload
and forwards this data to other layers of the network. The other layers of the net-
work decode the data using the information attached in the payload. This approach
only compresses temporal data and ignores the spatial-temporal characteristics of
data (for mobile devices). Furthermore, it does not consider requirements based
compression while compressing the data.

In [48], the authors propose an approach for detecting and cleaning spatial data
redundancy. They build Correlation Tree based on location and sensing range of
sensor nodes. Correlation tree construction finds spatial correlation between sen-
sors using Euclidean distance. After constructing tree, they apply a data fusion tech-
nique in order to clean redundant data produced by sensors in each other’s coverage
and sensing area. The authors clean redundant data using data fusion every time
intermediate nodes receive data from sensor nodes, hence not taking into account
requirements based data cleaning.

In [31], the authors handle redundancy cleaning by employing value based devi-
ations at the source (i.e., sensor layer) and aggregation at the data fusion layer. The
approach, caches first reading at a particular time, and then calculates the difference
of cached reading, with upcoming value of the sensor. This layer only forwards data
to data fusion layer, if there is significant deviation between the two values, oth-
erwise data is discarded. The data fusion layer aggregates data within same time
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domain, received from data filtering layer. At the end, the non-redundant data is
forwarded to the cloud for storage purposes. This method doesn’t consider what
and how much data is required by the sink node or the cloud.

The approach presented in [30] focuses on filtering data at sensor layer in PSNs
(Periodic Sensor Networks). It filters data using Pearson coefficient metric on sensor
nodes before forwarding data to aggregation node. However, the authors do not
consider cleaning based on some requirements of devices, central storage, or other
services.

2.3.2 Data Redundancy Cleaning at the Network Sink

The approach discussed in [47] focuses on cleaning data redundancy at two levels
i.e., at edge device and sink level. The authors, focus on eliminating temporal and
spatial redundancy in case of static devices. In order to eliminate temporal redun-
dancy, they calculate deviations between values at current and previous timestamps
using Kalman filter. They only forward data that has significant deviation from the
previous value. For cleaning spatial redundancy, authors group sensor nodes based
on location and sensing ranges. After grouping similar nodes, they aggregate the
values by finding mean of values and send one value per group to gateway layer.
The authors clean redundant data based on value deviations (at edge devices) and
periodically aggregate data (at sink layer) and forwards non-redundant data to the
gateway layer. However, they do not consider eliminating/cleaning redundant data
based on some requirements/needs between the core of the network and edge de-
vices.

The approach presented in [35] clusters edge nodes based on spatial distribu-
tions. Within each cluster, the authors segment the sensed data into chunks. They
eliminate redundancies among these chunks by finding unique chunks of values.
After that, these unique chunks are forwarded to central cloud for storage purposes.
This method finds unique chunks of data every time nodes produce data, while ig-
noring the importance of the data storage requirements of the central cloud.

In [54, 55], a deduplication based approach is proposed to eliminate data redun-
dancies on data aggregation nodes. The devices attached to a patient body may
produce similar readings within a short period of time. Instead of sending these
similar values, this approach encodes each similar value to ’T’ and sends ’T’ to the
aggregation node. Otherwise, it sends the actual reading. On the aggregation node,
duplicates are removed before sending the redundancy-free data set to the cloud.
This approach continuously performs redundancy cleaning in the same way regard-
less of the data consumer and its needs.

The deduplication technique proposed in [43] focuses on compressing data in
sensor networks. The approach is called, Cluster Based Compressive Sensing Data
Collection (CCS). It consists of compressing data at cluster head level by generating
Compressive Sensing (CS) measurements based on block diagonal matrices created
from raw data. Furthermore, the authors reconstruct CS measurements at the base
station (Sink). This approach ignores data redundancy cleaning based on user or
device based requirements.

The authors in [44] proposed compression based technique called Compres-
sive Data Collection (CDC). This scheme focuses the spatial-temporal correlation to
achieve data compression. It consists of two layers. These layers are, opportunistic
routing with compression and nonuniform random projection based estimation for
reconstruction. However, the authors do not clean redundant data based on data
consumer requirements.
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In [46], an approach for data reduction in connected environments is proposed.
The authors propose to detect redundant data at the IoT-gateway layer. However,
this technique does not consider personalized cleaning based on user, database, de-
vice, nor service requirements.

Another approach discussed in [32], detects redundant data at the source nodes
as well as at the sink node. At the source node they used Least Mean Square (LMS)
technique to estimate the next value produced. If the actual value is within deviation
threshold, then it is identified as a redundant value. They forward values which do
not fall in deviation threshold to other layers of the network.The same method is
applied at the sink node.

The technique described in [56] eliminates data redundancies based on data fac-
torization. To do so, it factorizes, observations and measurements multiplicity to
one occurrence for similar observations, for each attribute (i.e., temperature, humid-
ity etc.). This single occurrence is then forwarded to cloud where it is stored. Data
redundancy cleaning is only based on exact similarity between observations, hence,
does not consider small deviations in data and also surpasses eliminating redundant
data based on context/requirements.

2.3.3 Data Redundancy Cleaning Comparison

To compare existing approaches, we propose here the following criteria based on the
limitations discussed in previous subsection:

• Criterion 4. Edge Redundancy Cleaning: stating if the approach deduplicates
data redundancies at the device level (i.e., at the source). This enables effi-
cient querying of the edge devices as well as preventing unnecessary data from
spreading throughout the network (cf. Need 1 - Challenge 1).

• Criterion 5. Core Redundancy Consideration: denoting if the approach cleans
additional redundancies that appear on sink nodes (i.e., in the core of the net-
work) due to data collection from various devices. This enables the dedupli-
cation of redundancies that don’t appear on the source (cf. Need 2 - Challenge
2).

• Criterion 6. Consumer-based Cleaning: specifying if the approach considers
data consumer needs and requirements when cleaning data redundancies (cf.
Need 3 - Challenge 3).

Table 2.2, presents the comparison of related approaches based on the criteria
defined above. The table shows that none of the approaches proposed in literature
fully covers all the criteria.

2.4 Recap

In this chapter, we reviewed several approaches from a data redundancy detection
and cleaning point of view. Most of the discussed approaches detect redundancies
either at the core of the network (i.e., sink or base station level) or at the data stor-
age level once data is stored in repositories. Fewer approaches focus on detecting
redundant data at the device level. Moreover, most of the aforementioned works
focus on data value similarity and none of them fully considers the contextual el-
ements of a connected environment when detecting redundancies (e.g., physical,
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TABLE 2.2: Data Redundancy Cleaning Comparison

Approach
Criterion 1

Edge Redundancy
Cleaning

Criterion 2
Core Redundancy

Cleaning

Criterion 3
Personalized

Cleaning

Yemeni Z. et al. [47] ✓ ✓ ✗

Ismael W. et al. [48] ✓ ✗ ✗

Alam M. K. et al. [52] ✓ ✗ ✗

Alam M. K. et al. [49] ✓ ✗ ✗

Idrees A. et al. [34] ✓ ✗ ✗

Ismael W. et al. [31] ✓ ✗ ✗

Patil P. et al. [53] ✓ ✗ ✗

Li S. et al. [35] ✗ ✓ ✗

Ullah A. et al. [55] ✗ ✓ ✗

Ullah A. et al. [54] ✗ ✓ ✗

Karim F. et al. [56] ✗ ✓ ✗

Dasgupta K. et al. [51] ✓ ✗ ✗

Ling S.W. et al. [46] ✗ ✓ ✗

Liu X. et al. [44] ✗ ✓ ✗

Nguyen et al. [43] ✗ ✓ ✗

Blalock D. et al. [33] ✓ ✗ ✗

Harb H. et al. [30] ✓ ✗ ✗

Fathy Y. et al. [32] ✓ ✓ ✗

Asif Iqbal Baba et al. [28] ✓ ✗ ✗

spatial, and technical constraints). Furthermore, the proposed cleaning mechanisms
have evolved around either deleting or summarizing redundancies in a generic and
automated way without considering the different needs of data consumers in this
process. Finally, besides discussing related approaches, we provided a comparative
study based on predefined criteria which was based on the literature and the need-
s/challenges of this work.
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Chapter 3

DRMF: Data Redundancy
Management Framework

In this first contribution, we focus on detecting data redundancies in connected
environments at the device level. This entails providing a flexible framework for
data redundancy detection capable of handling the constraints of the environment
and the mobility of devices. To do so, we propose DRMF (Data Redundancy Man-
agement for leaF-edge), a device-based approach capable of clustering redundant
data locally on static/mobile devices (cf. Challenge 1).

In this chapter, we describe DRMF, formally define the redundancies that DRMF
is capable of detecting, and detail its clustering-based algorithms. The latter help
detect temporal and spatial-temporal redundancies in order to consider both static
and mobile devices/sensors.

Thereafter, we evaluate DRMF by presenting our experimental protocol, the con-
ducted experiments, and the obtained results. Finally, we discuss the results and
highlight the limitations of DRMF and its possible extensions.

Elio Mansour, Faisal Shahzad, Joe Tekli, and Richard Chbeir. 2020. Data Redundancy Management in
Connected Environments. In Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and

Mobile Networks (Q2SWinet ’20). Association for Computing Machinery, New York, NY, USA, 75–80.
DOI:https://doi.org/10.1145/3416013.3426451

Elio Mansour, Faisal Shahzad, Joe Tekli, and Richard Chbeir. Data Redundancy Management Framework for
Connected Environments. Submitted to the Computing Journal.
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3.1 Introduction

In CEs, significant volumes of data are continuously produced, exchanged, and
stored with the passage of time. This massive amount of data is the result of ever-
increasing number of devices connected to the environment (cf. Figure 3.1). The col-
lected data often suffers from various inconsistencies (i.e., anomalies, missing values
and redundancies). Redundancy means similar data produced by devices/sensors
in a connected environment [57, 58]. Redundancy in data can be temporal and spa-
tial [57]. Temporal redundancy is observed in a single device over a period of time
or multiple devices at same time stamp. Spatial redundancy is produced by devices
deployed in close vicinity of each other.

FIGURE 3.1: Data Processing in Connected Environments

We propose here DRMF (Data Redundancy Management for leaF-edge) to iden-
tify and remove data redundancies in connected environments at the device level.
DRMF considers both static and mobile sensing devices when identifying/detecting
redundancies within the generated sensor observations. It provides two algorithms
for redundancy detection: the first relies on the temporal feature (specifically de-
signed for static/immobile devices), and the second relies on both temporal and spa-
tial features (specifically designed for mobile devices). The algorithms’ parameters
are automatically tuned based on historical device data, in order to identify relevant
redundancy partitions (e.g., groups of similar-enough data that are considered du-
plicates). Once redundancies are identified, DRMF proposes a data deduplication
module that takes into account the requirements of data consumers, edge data re-
dundancies at the edge and core of the network, the network dynamicity and device
mobility, device/network resources (e.g., processing, battery, memory, bandwidth),
and personalized ready-to-use data sets for data consumers. Experimental results
highlight the performance and accuracy of our solution in detecting and eliminating
edge data redundancies.

The remainder of this chapter is organized as follows. Section 3.2 formally de-
fines the terminology used throughout our contribution in order to clarify the terms
and focus on the different types of redundancies that we target in this chapter.
Then, Section 3.3 presents the DRMF framework, explains its different modules, and
zooms in on the proposed algorithms for redundancy detection at the device level.
Section 3.4 evaluates the proposal by detailing the experimental protocol, describing
the conducted experiments, and analyzing the obtained results. Finally, Section 3.5
recaps this chapter and highlights the potential improvements of DRMF.
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3.2 Preliminaries

In this section, we formally define the key concepts of this study. Since DRMF’s aim
is to detect redundancies at the source (i.e., on devices), it targets the sensed data or
observations that the embedded sensors record over time and in different locations.
Therefore, it is important to define the structure of the aforementioned data. To do
so, we first define temporal stamps in Definition 1 and location stamps in Definition
2 to detail the spatial-temporal attributes of the sensed data. Then, we formally
define data items (cf. Definition 3) which represent individual sensor observations
or sensed data.

Definition 1 (Temporal Stamp). A temporal stamp t designates a single discrete temporal
value formally defined as a 2-tuple:

t = ⟨ f ormat, value⟩ where: (3.1)

• f ormat is a string indicating the format of the date-time value of t (e.g., "dd-MM-yyyy
hh:mm:ss")

• value is the timestamp value (e.g., 10-11-2020 15:34:23 following the sample time
format mentioned above) ■

Definition 2 (Location Stamp). A location stamp l is s a discrete and instantaneous loca-
tion value defined as a 2-tuple:

l = ⟨ f ormat, value⟩ where: (3.2)

• f ormat is the location referential format following which the location stamp value will
be represented (e.g., default GPS, or Cartesian, Spherical, Cylindrical)

• value = ⟨x, y, z⟩ is a discrete and instantaneous value, where x, y, and z designate
individual coordinate values (the coordinates can be translated into the referential of
choice following the designated format) ■

Definition 3 (Data Item). We formally define a data item d as a 5-tuple:

d : ⟨a, v, t, l, s⟩ where: (3.3)

• a is the data attribute

• v is the data value

• t is the creation temporal stamp of d (cf. Definition 1)

• l is the creation location stamp of d (cf. Definition 2)

• s is the data source that produced/created d ■

Table 3.1 shows an excerpt of the locally stored data on a particular device. The
latter embeds two sensors S1, and S2 that sense humidity and temperature observa-
tions respectively. Each row in the table represents an individual data item having
an attribute, data value, temporal stamp, location stamp, and source.
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TABLE 3.1: Data Items Example

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Humidity 98
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:00:00 cartesian (8, 12, 8) S1

Humidity 109
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:02:00 cartesian (6, 8, 6) S1

Humidity 110
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:04:00 cartesian (2, 4, 8) S1

Humidity 111
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:06:00 cartesian (4, 6, 4) S1

Temperature 22
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:08:00 cartesian (6, 4, 8) S2

Data redundancies in connected environments can be caused by various reasons
(e.g., overlapping sensor coverage, sensing when no changes occur in the environ-
ment). Regardless of the reasons, redundancies are not normally a punctual phe-
nomena. They often spread over continuous periods of time and/or spatially de-
fined zones/areas. Since DRMF aims to detect data redundancies on static and mo-
bile devices, it is important to track the temporal coverage of redundancies when it
comes to static devices, and the spatial-temporal coverage of redundancies for mo-
bile sensors. To do so, we formally define in the following temporal and spatial
coverage (cf. Definitions 4, 5 respectively).

Definition 4 (Temporal Coverage). A temporal coverage coveraget is a time interval
consisting of an ordered collection of temporal stamps enclosed within a start and an end
stamp, describing the temporal coverage of a sensor observation (e.g., video feed) or a group
of observations (e.g., scalar measurements, images). Formally, it is defined as a 2-tuple:

coveraget = ⟨δt, gt⟩ where: (3.4)

• δt = [ts, te] is a temporal interval where:

– ts < te is the start temporal stamp
– te is the end temporal stamp

• gt is a temporal granularity or unit of the temporal coverage (e.g., millisecond, second,
minute, etc.) ■

Definition 5 (Location Coverage). A location coverage coveragel is the set of spatial
stamps designating the surface coverage in which a sensor observation is created (e.g., area
in which a video stream or a bunch of mobile measurements are recorded). Formally, it is
defined as a 2-tuple:

coveragel = (δl , gl) where: (3.5)

• δl = ⟨shape, L⟩ defines the area of the location coverage where:

– L =
⋃n

i=0 li∀i ∈N is a set of location stamps
– shape is a mathematical abstraction used to describe the location coverage, as

a continuous coverage area (e.g., rectangle, circle), or non-continuous coverage
area (e.g., disk, path, polygon, random)

• gl is the location granularity or unit of the location coverage (e.g., millimeter, centime-
ter, meter).
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Remark. The shape of a location coverage depends on the sensors and the environment
where they are deployed. For instance, the shape could be lines (for mobile sensor tracking),
continuous rectangles (e.g., in an office), or non-continuous disks or random shapes (e.g., in
a forest excluding lakes). ■

Based on the aforementioned definitions, we finally define temporal and spatial-
temporal redundancies (cf. Definitions 6, 7 respectively). DRMF targets these two
types of redundancies for static and mobile devices. Since static devices are immo-
bile, we only monitor the spread of the redundancy over time. This is not the case for
mobile devices since they can move around in the environment and change locations
over time. Therefore, we monitor the spatial-temporal coverage for redundancies on
mobile devices.

Definition 6 (Temporal Redundancy). A temporal redundancy tr is defined as a 2-tuple:

tr : (coveraget, D) where: (3.6)

• coveraget is the temporal coverage during which the data is temporally redundant (cf.
Definition 4)

• D =
⋃z

j=0 dj is a cluster of redundant data items where:

– ∀ dj ∈ D, dj.t ∈ coveraget.δt

– ∀ dj1, dj2 ∈ D, dj1.a = dj2.a

– ∀ k ∈N+, dk.v = dcentroid.v± δv where:

* dcentroid.v is the centroid value of all data items in D

* δv is an acceptable deviation threshold

Remark. The threshold δv is calculated based on the data distribution within the redundant
data set D. ■

Definition 7 (Spatial-Temporal Redundancy). A spatial-temporal redundancy str is de-
fined as a 3-tuple:

str : (coveraget, coveragel , D) where: (3.7)

• coveraget is the temporal coverage (cf. Definition 4)

• coveragel is the location coverage (cf. Definition 5)

• D =
⋃z

j=0 dj is a cluster of redundant data where:

– ∀ dj ∈ D, dj.t ∈ coveraget.δt

– ∀ dj ∈ D, dj.l ∈ coveragel .δl

– ∀ dj1, dj2 ∈ D, dj1.a = dj2.a

– ∀ k ∈N+, dk.v = dcentroid.v± δv where:

* dcentroid.v is the centroid value of all data items in D

* δv is an acceptable deviation threshold ■
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3.3 DRMF: Data Redundancy Management for leaF-edge

We introduce here our proposal DRMF. In this study, we show how DRMF han-
dles sensor data redundancies at the edge device level, considering both static and
mobile devices, in order to eliminate redundancies from the source before reach-
ing the core of the network. The DRMF overall architecture is depicted in Figure
3.2. In a typical CE, the sensor observations are temporarily stored in the device’s
memory, before the data is eventually transmitted to a permanent storage reposi-
tory or another device. In DRMF, we propose to detect and handle redundancies
prior to data storage or transmission. Therefore, we represent the locally stored data
(i.e., the set of data items as defined in Definition 3) on devices via the Edge Device
Data layer. Then, the Device Level Redundancy Management layer takes as input the
stored data/observations and detects either temporal or spatial-temporal redundan-
cies within it. The aforementioned process consists of three steps represented by the
following modules: (i) datatype filtering; and (ii) redundancy detection; and (iii) re-
dundancy detection tuning. In the following, we describe each module separately
and explain how they interact together.

FIGURE 3.2: Processing of DRMF

3.3.1 Data Type Filtering

This module receives sensed data from devices/sensors. A device can have one or
more sensors each sensing a specific attribute (e.g., temperature, humidity, CO2).
First, it filters data items based on their attributes since it does not make sense to
check fore redundancies on a heterogeneous set of attributes (e.g., humidity and
temperature). As a result, separate data collections are generated for similar data
items (i.e., data items having the same attribute). In the next step, we will look for
redundancies within each data collection. We should also note that we consider that
a sensor can only sense one attribute. Therefore, the filtering can also be done on the
source instead of the attribute itself.

To illustrate this process, consider the example provided in Table 3.1. It shows
two different attributes (humidity and temperature) locally stored together in the
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device’s memory. Therefore in order to detect redundancies, one must start by filter-
ing the data into collections having the same attributes (or datatypes). To illustrate
the datatype filtering process, the data shown in Table 3.1 produces two distinct data
collections: the first for humidity data containing the first four tuples (cf. Table 3.2);
and the second for temperature data containing the last tuple (cf. Table 3.3).

TABLE 3.2: Humidity Data Collection

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Humidity 98
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:00:00 cartesian (8, 12, 8) S1

Humidity 109
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:02:00 cartesian (6, 8, 6) S1

Humidity 110
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:04:00 cartesian (2, 4, 8) S1

Humidity 111
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:06:00 cartesian (4, 6, 4) S1

TABLE 3.3: Temperature Data Collection

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Temperature 22
dd/mm/yyyy

hh:mm:ss
10/02/2019

10:08:00 cartesian (6, 4, 8) S2

3.3.2 Redundancy Detection

Once the data filtering is done, the generated data collections are sent to the re-
dundancy detection module. Based on the type of the device (i.e., static or mobile)
one of the following redundancy detection algorithms is triggered: (i) temporal re-
dundancy detection; or (ii) spatial-temporal redundancy detection. Both algorithms
cluster the data based on the deviation of the data item values, while also consider-
ing the temporal, or spatial-temporal coverage (or spread) of the clusters (i.e., sets of
redundant data). We propose to detect redundancies using an unsupervised cluster-
based approach for two main reasons: (i) to avoid applying supervised learning
which requires training time and computation power on the edge where resources
are often limited; and (ii) since training data for supervised learning algorithms
might not be available at the device level. In the following, we detail each algorithm
separately.

Redundancy Detection Algorithms

Algorithm 1 (temporal redundancy detection) groups the data into clusters of tem-
porally redundant data. It takes a data collection C as input, and produces a set TR of
temporal redundancies (clusters) as output. First, the algorithm sorts all data items
in the input collection by ascending time. Then, for each data item, the algorithm
checks if a cluster already exists. If not, a new cluster is created with the current data
item added as its centroid (lines 3-6). However, if a cluster already exists, the al-
gorithm checks if the current data item belongs to the aforementioned cluster. This
is done by measuring the distance between the data item and the cluster centroid
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values and comparing it to a deviation threshold δv (line 8). If the current data item
belongs to the cluster, a new centroid is computed and the algorithm checks the next
value in the collection (lines 9-10). This step is repeated until the algorithm finds a
value that does not belong to the cluster. In this case, the temporal coverage of the
cluster is calculated (lines 12-13), the cluster (i.e., temporal redundancy) is added to
the output list (line 14), and the variable cluster content (D) is reset (line 15) in order
to generate a new cluster and look for other redundancies.

Algorithm 1: Temporal Redundancy Detection
Input : C // C is a data item collection (i.e., a set of data items)

Output : TR // TR is a set of temporal redundancies found within C
Parameters : δv, gt // δv is a value threshold; gt is a temporal unit

Local Variables: SC, covt, centroid, D, mint, maxt, δt
/* SC is the temporally sorted collection; covt is a temporal coverage;

centroid is the centroid of a set of values; D is a cluster of data items;

mint is the oldest timestamp in a set; maxt is the most recent timestamp in a

set; δt is a temporal interval */

// Begin algorithm

1 Initialize TR← ∅
2 SC ← sortt(C) // Sort data items by ascending timestamps

3 foreach data item di ∈ SC do
4 if ( ̸ ∃ cluster of redundant data D) then
5 Create new cluster D
6 Initialize centroid← di.v
7 else
8 if (Absolute difference |di.v− centroid| ≤ δv) then
9 Add data item to cluster D← di

10 Update centroid← Avg(all di.v ∈ D)

11 else
12 Identi f y temporal interval δt ← [mint, maxt] o f D
13 Compute temporal coverage w.r.t. time unit covt ← (gt, δt)
14 Add new temporal redundancy TR← (covt, D)
15 Flush out cluster D
16 end
17 end
18 end
19 Return TR

Similarly, Algorithm 2 (i.e., spatial-temporal redundancy detection) takes a data
collection as input in order to generate a set of clusters as output, where each cluster
represents a spatial-temporal redundancy. The clustering principles are the same
in both algorithms. However, the spatial-temporal redundancy checker calculates
the spatial coverage for each redundancy (i.e., cluster) in addition to the temporal
coverage. This entails keeping track of data location stamps in each cluster (line 11)
and calculating the characteristics of the coverage area (lines 13, 15, and 17). Note
that both clustering algorithms calculate the temporal and spatial-temporal coverage
of each cluster respectively, in order to keep track of the temporal and spatial spread
of each redundancy.

To illustrate the temporal redundancy detection process, consider the humidity
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Algorithm 2: Spatial-Temporal Redundancy Detection
Input : C // C is a data item collection (i.e., a set of data items)

Output : STR // STR is a set of spatio-temporal redundancies found

within C
Parameters : δv, gt, gl // δv is a value threshold; gt is a temporal unit, gl

is a location unit

Local Variables: SC, covt, covl , centroid, D, mint, maxt, L, δt, δl , shape
/* SC is the temporally sorted collection; covt is a temporal coverage; covl

is a location coverage; centroid is the centroid of a set of values; D is a

cluster of data items; mint is the oldest timestamp in a set; maxt is the

most recent timestamp in a set; L is a set of locations; δt is a temporal

interval; : deltal is a location area; shape is a geometrical shape */

// Begin algorithm

1 Initialize STR← ∅
2 SC ← sortt(C) // Sort data items by ascending timestamps

3 foreach data item di ∈ SC do
4 if ( ̸ ∃ cluster of redundant data D) then
5 Create new cluster D
6 Initialize centroid← di.v
7 else
8 if (Absolute difference |di.v− centroid| ≤ δv) then
9 Add data item to cluster D← di

10 Update centroid← Avg(all di.v ∈ D)
11 Add data item location to L← di.l
12 else
13 Identi f y shape← getShape(L)
14 Identi f y temporal interval δt ← [mint, maxt] o f D
15 Identi f y location area δl ← (shape, L) o f D
16 Compute temporal coverage w.r.t. time unit covt ← (gt, δt)
17 Compute location coverage w.r.t. location unit covl ← (gl , δl)
18 Add new spatio− temporal redundancy STR← (covt, covl , D)
19 Flush out cluster D
20 end
21 end
22 end
23 Return STR
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data collection presented in Table 3.2. If we apply the temporal redundancy detec-
tion algorithm with a deviation threshold δv = 3, we detect one temporal redundancy
(containing values 109, 110, and 111) and spanning over a temporal coverage of 4
minutes (from 10/02/2019 10:02:00 till 10/02/2019 10:06:00).

3.3.3 Redundancy Detection Tuning

The aforementioned algorithms cluster redundant data within collections based on
the value deviation threshold δv which can be adjusted per device as a system pa-
rameter. However, one does not always know how to choose the optimal value
for δv. This is important since the set value will affect the accuracy of the process.
Therefore, we propose here the redundancy detection tuning module (cf. Figure 3.2)
to automatically set, and re-adjust if necessary, the deviation threshold (algorithms’
parameter) based on historical data. To do so, the filtered data collections are sent
to the data distribution discovery module that identifies the distribution of the sen-
sor observation values using tests such as Chi-Squared and Kolmogrov-Smirnov 1.
Once a distribution is identified (e.g., Normal, Gamma, Beta, Exponential, Weibull,
Bernoulli)2, we estimate the deviation threshold δv using one of the following tech-
niques: (i) MAD: Mean Absolute Deviation; (ii) Z-score; and (iii) IQR: Interquartile
Range. The estimated threshold is used for a specific type of collection (e.g., tem-
perature) when identifying temporal or spatial-temporal redundancies. In order to
avoid repeating this process at each run, we keep using the same threshold until the
accuracy of the deduplication drops below a specific acceptable level. Only then,
the redundancy detection tuning process is triggered again and the threshold is re-
estimated and adjusted accordingly.

3.4 DRMF Evaluation

In this section, we evaluate the performance and accuracy of the DRMF redundancy
detection algorithms. We start first with a theoretical complexity analysis. Then, we
detail our experimental protocol, tests, and results.

3.4.1 Complexity Evaluation

This section discusses complexity analysis of the redundancy detection process.
More precisely, we analyze algorithms 1 and 2 by taking into consideration the tem-
poral and spatial complexities. This analysis of resource consumption (both time and
space) takes into account the impact of the input data size and the chosen deviation
threshold. This provides a theoretical analysis about run-time and memory usage
behaviour based on the input size and the chosen deviation threshold (algorithm
parameters). Specifically, we evaluate the Big O (O) and Big Omega (Ω) notations to
estimate the worst and best cases respectively:

• Big(O): If we describe an algorithm by a function f (n), then Big(O) of f (n) is
a function g(n) that bounds it (i.e., after a specific value, g(n) would always
be greater than f (n)). We find the following common notations of the Big(O):
(i) O(1) is used to describe that an algorithm will always execute in the con-
stant time (or space) irrespective of the size of the input; (ii) O(n) specifies
growth rate of an algorithm is linear with respect to resources and is directly

1https://towardsdatascience.com/identify-your-datas-distribution-d76062fc0802
2https://www.kdnuggets.com/2020/06/overview-data-distributions.html
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proportional to size of the input; (iii) O(n2) describes growth rate of an algo-
rithm is directly proportional to the square of the size of the input. This growth
rate is found in algorithms that involve nested iterations (e.g., deeper nested
iterations result in O(n3), O(n4)); and (iv) O(2n) represents growth rate of
recursive algorithms for instance.

• Big(Ω): We use this notation in complexity analysis for denoting best case sce-
nario of an algorithm (i.e., the minimum amount of required resources). If we
describe an algorithm by a function f (n), then Big(Ω) of f (n) is a function
g(n) that bounds the lower end of f (n) (i.e., after a specific value f (n) would
always be more than g(n)).

Algorithm 1 Evaluation

Time Complexity The temporal redundancy detection algorithm receives as input
a filtered collection of data. This algorithm finds clusters of redundant data items
within specific temporal coverages/spreads. The input size of data collection is
N = ∥C.len∥. The algorithm first initializes a set TR which would hold clusters
of temporally redundant data. Then the function sortt(C) sorts the data collection
in ascending order with respect to time. The algorithm then executes the foreach
loop that goes through the sorted collection of data items and generates clusters of
temporally redundant data based on difference between deviation threshold and
data items’ values. Besides initializing variables and values, it updates these values
when it finds new members of redundant cluster. The algorithm also uses two
nested if/else statements: (i) to check whether a cluster of redundant data items
exists or not (line 4); and (ii) to find out whether the current data item belongs
to existing cluster or not (line 9). All statements inside the loop are executed N times.

In the worst case, Big (O) of Algorithm 1 is O(N). However, in the best case
when input size of data collection (i.e., N = 1 when a data collection C has only
1 data item), the Big (Ω) is Ω(1). This shows that in theory, the complexity of Al-
gorithm 1 with respect to time is linear and is directly proportional to input size of
data.

Space Complexity The space complexity of Algorithm 1 is proportional to the
input size. It has variables for storing sum and centroid values. The values of
these variables change with each iteration. Algorithm 1 (line 5) creates a cluster
of redundant data if it does not already exist. This cluster is stored in the variable
D which takes some memory resources. Besides this, the algorithm also stores
clusters of redundant data in TR (line 18), which is a combination of all temporally
redundant clusters. TR also occupies space in memory.

In worst case, space complexity of Algorithm 1 is O(N). However, in the best
case scenario when input size of data collection (i.e., N = 1) the space complex-
ity would be Ω(1). This shows that in theory, the complexity of Algorithm 1 with
respect to space is linear and is directly proportional to input size of data.

Algorithm 2 Evaluation

Time Complexity. The spatial-temporal redundancy detection algorithm receives
as input a filtered collection of data. This algorithm finds clusters of redundant data
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items within spatial-temporal coverages/spreads. The input size of data collection
is N = ∥C.len∥. The algorithm first initializes a set STR which would hold clusters
of spatial-temporally redundant data. First, the function sortt(C) sorts the data col-
lection in ascending order with respect to time. Then, the algorithm runs the foreach
loop that goes through the sorted collection of data items and generates clusters of
spatial-temporally redundant data based on difference between deviation threshold
and data items’ values. Besides initializing variables and values, it updates these
values as it finds new members of redundancy clusters. Algorithm 2 also uses two
nested if/else statements: (i) to check whether a cluster of redundant data items
exists or not (line 4); and (ii) to find out whether the current data item belongs
to existing cluster or not (line 9). All statements inside the loop are executed N times.

In worst case, the Big (O) of Algorithm 2 is O(N). However, in best case when
the input size of a data collection C is equal to one (N = 1), the best case Big (Ω)
is Ω(1). This indicates that in theory, the complexity of Algorithm 2 with respect to
time is linear and is directly proportional to input size of data.

Space Complexity. The space complexity of Algorithm 2 is proportional to the
input size. Algorithm 2 has variables for storing sum and centroid values. The
values of these variables change with each iteration. Algorithm 2 generates a
cluster of redundant data if it does not already exist (line 5). This cluster is stored
in D which takes some memory resources. Besides this, it also stores clusters of
redundant data in STR (line 20), which is a combination of all spatial-temporally
redundant clusters. STR also occupies space in memory.

In worst case, space complexity of Algorithm 2 is O(N). However, in best case
when the input size of a data collection C is one (N = 1), the space complexity would
be Ω(1). This shows that in theory, the complexity of Algorithm 2 with respect to
space is linear and is directly proportional to input size of data.

Theoretical Complexity Comparison

Table 3.4 represents a complexity comparison between several existing approaches.
If we analyse 3.4, we find that the time complexity of the proposed approach is
better than most of the existing techniques. There are a few approaches [31, 54, 55]
who have almost the same time complexity but they process data at the cluster head
or aggregator level rather than the device level. Another approach [50] represents
almost the same time complexity but it clusters the sensor nodes rather than data.

3.4.2 Experiments and Results

We present here the implementation and evaluation of our proposed approach. We
provide details of experiments and results of performance evaluation for temporal
and spatial-temporal data redundancy detection at device level. We conducted per-
formance tests with an Intel CORE i5 1.8 GHz 8th generation processor and 16 GB
of RAM. We developed a prototype in Python 3.8 using the PyCharm IDE. The aim
of the experiments was to test the performance of proposed DRMF. We present first
the experimental protocol in order to evaluate both algorithms. We detail the objec-
tives of the experimentation, the evaluation metrics, and the experiments. Then, we
present performance results for Algorithms 1 and 2.
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TABLE 3.4: Temporal Complexity Comparison

Approach Time Complexity
Alam M. K. et al. [52] O(N × K)
Baba A. et al. [28] O(N2)
Chowdhury S. et al. [50] O(U + E)
Idrees A. et al. [34] O(t× p× k)
Ismael W et al. [31] O(N + M)
Li S. et al. [35] O(N3)
Qurabat A. et al. [9] O(N3)
Karim F. et al.[56] O(N2)
Yemeni Z. et al. [47] O(N2)
Ismael W. et al. [48] O(N2)
DRMF [20] O(N)

Experimental Protocol

Experimentation Objectives The objectives of the experimentation are two-fold:
(i) highlighting the proposal’s ability to detect redundancies accurately - this re-
quires evaluating the accuracy of the clustering algorithms when detecting redun-
dancies and comparing them with existing works; and (ii) highlighting the feasibil-
ity of implementing the proposed approach at device level - this requires evaluating
the performance of our proposal in order to show that the costs are acceptable at the
network edge (where resources are often limited).

Dataset We used the Intel Berkeley Lab dataset3 for performance evaluation. The
dataset was obtained by 54 Mica2Dot sensors. The dataset provides data for weather
such as temperature, humidity, light and voltage. It also provides timestamps at
which the data was acquired. In our experiments, we used the data of one humidity
sensor from 28th February 2004 to 31st March 2004. The dataset includes a total
of 489212 records. We used 38656 records for one humidity sensor after removing
negative values.

Evaluation Metrics To evaluate the performance of DRMF, we measured the run-
time, CPU consumption, and required RAM size during a set of experiments. More-
over, to evaluate the accuracy of the redundancy detection process we measured the
deduplication accuracy and ratio. Finally, to evaluate the redundancy detection tun-
ing module of DRMF (cf. Figure 3.2), we evaluated the threshold estimation process.

Performance Evaluation

Proposed Experiments We ran the following experiments on a Dell machine with
Windows 10, having a Core i5 8th Generation 1.8 GHZ processor, and 16 GB of RAM.
We evaluate the performance of both redundancy detection algorithms and the auto-
clean mode for redundancy removal (we left the evaluation of the consumer-centric
deduplication for a separate work) by measuring the run-time, CPU consumption,
and RAM size.

• Experiment 1: Input Data Size Impact. In this test, we gradually increase the
input data size in order to assess its impact on performance.

3http://db.csail.mit.edu/labdata/labdata.html

http://db.csail.mit.edu/labdata/labdata.html
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• Experiment 2: Deviation Threshold Impact. In this test, we gradually increase
the deviation threshold to generate clusters with various sizes and spreads to
assess its impact on performance.

(A) (B)

(C) (D)

(E) (F)

FIGURE 3.3: Performance Results: Experiments 1 and 2

Discussion. Figures 3.3a, 3.3b, and 3.3c show the results of experiment 1. Increas-
ing the number of input data items from 0 to 38656 had a visible impact on perfor-
mance. The required time, CPU, and RAM for identifying and removing redundan-
cies increase in a quasi-linear way. However, in the worst case scenario (i.e., 38656
values) the required time does not exceed 8 seconds and the required RAM/CPU
does not surpass 34 MB and 9% respectively. Figures 3.3d, 3.3e, and 3.3f show the re-
sults of experiment 2. Increasing the deviation threshold generates fewer but bigger
clusters of redundant data. This is reflected in the results: the bigger the threshold,
the less time and CPU are required since less clusters are generated. RAM consump-
tion slightly fluctuates between 31.9 and 32.9 MB, yet the difference is not significant
since every data item eventually belongs to one cluster regardless of the number
of generated clusters. Finally, for both tests, Algorithm 2 requires more resources
since it considers both temporal and spatial dimensions in contrast with Algorithm
1 which only consider the temporal dimension.
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Accuracy Evaluation

Proposed Experiments We also evaluate the accuracy of our proposal by measur-
ing data reduction accuracy (using the Jaccard Similarity Index), and the data reduc-
tion ratio. Each experiment is done twice (with temperature and humidity values).
For the two cases, we identify redundancies using both algorithms and clean dupli-
cates by summarizing every redundancy cluster to one representative data item (e.g.,
the mean) for the experimentation purposes. We present here the temporal redun-
dancy identification and cleaning results (a more detailed discussion about cleaning
is provided in Chapter 6).

• Experiment 3: Input Data Size Impact. In this test, we gradually increase the
input data size to assess its impact on accuracy.

• Experiment 4: Deviation Threshold Impact. In this test, we gradually increase the
deviation threshold to assess its impact on accuracy.

• Experiment 5: Threshold Estimation Impact. In this test, we change the threshold
estimation technique (i.e., Z-score, MAD, IQR) and measure the data reduction
accuracy and ratio using the estimated thresholds.

FIGURE 3.4: Experiment 3 Results

FIGURE 3.5: Experiment 4 Results
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FIGURE 3.6: Experiment 5 Results

Discussion. Figure 3.4 shows the results of experiment 3. The data reduction accu-
racy (with a fixed deviation threshold of 2.5) varies between 97.63% and 98.78% for
humidity data. Moreover, accuracy varies between 95.03% and 96.54% for tempera-
ture. Figure 3.5 shows the results of experiment 4. Increasing the deviation threshold
affects the clustering of redundancies. The optimal deviation threshold in the 0.5 to
5 range is 1 for humidity (accuracy of 99.10%) and 3 for temperature (accuracy of
95.43%). In addition, both experiments achieve high deduplication ratios (94.48%
to 99.90%). Finally, Figure 3.6 shows that results of experiment 5 which highlights
the importance of choosing the adequate technique based on the data distribution
and historical patterns (i.e., the technique should not be randomly assigned/config-
ured). The discovered distribution for both temperature and humidity collections is
Weibull. This explains why Z-Score provided the worst result since it is based on the
mean and standard deviation (i.e., more suited for normal distributions).

3.5 Recap

In this chapter, we address the need for detecting redundancies at the source (i.e.,
at the device level) while considering both static and mobile devices in connected
environments (cf. Need 1 - Challenge 1 in Chapter 1). After reviewing the literature
in Chapter 2, we discuss here the data redundancy detection mechanism of our pro-
posal DRMF. We define the key terminology that we used in this approach before
presenting its data redundancy detection algorithms. Furthermore, we presented a
detailed experimentation of our proposal and discussed the obtained results. The
key advantage of our proposal is its capability of delivering accurate results with-
out requiring excessive computational complexity. However, DRMF is a clustering-
based redundancy detection proposal. It groups redundant data based on a specified
crisp threshold that bounds the clusters and affects the decision making about the
inclusion or not of a data item in a particular cluster. This constitutes a limitation in
particular use cases. If the threshold is not very precise, this could lead to either not
detecting some redundant data or falsely flagging a data item as redundant. In the
next chapter, we discuss an improvement of DRMF that utilizes fuzzy reasoning to
address the aforementioned issue.
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Chapter 4

FREDD: Fuzzy Redundancy
Elimination for Data Deduplication

In the previous chapter, we addressed data redundancy at the CE edge level by
providing clustering algorithms capable of detecting data redundancies locally on
edge devices. The proposal clusters redundant data values into redundancy clusters
by comparing their deviation to a crisp threshold (cluster boundary). Although this
constitutes an efficient way of detecting redundancies at the edge, it is not optimal
since data values that slightly deviate from the crisp cluster boundaries might be
wrongly assigned to a cluster.

In this chapter, we address this limitation by using fuzzy logic to overcome the
shortcomings of relying on crisp cluster boundaries. To do so, we propose FREDD
(Fuzzy Redundancy Elimination for Data Deduplication). We provide first a back-
ground on fuzzy logic. Then, we describe the FREDD processing steps in order to
show how we use fuzzy logic to improve data redundancy detection on static and
mobile edge devices in a CE.

Thereafter, we present an extensive evaluation of FREDD by describing the ex-
perimental protocol, the conducted experiments, and the obtained results. Finally,
we discuss how we can extend FREDD to consider redundancies at the core of the
network (i.e., at the sink level).

Sylvana Yakhni, Joe Tekli, Elio Mansour, Faisal Shahzad, and Richard Chbeir. Fuzzy Redundancy Elimination
for Data Deduplication in Connected Environments. Submitted to the Journal of Parallel and Distributed

Computing.
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4.1 Introduction

As described in Chapter 2, most existing approaches for data handling and pre-
processing in CEs share various limitations. Existing solutions mostly disregard the
dynamicity and constraints of the network, considering static devices only (e.g.,
stationary surveillance cameras, pollution sensors), e.g., [31, 35, 53], overlooking
mobile devices (e.g., phones, tablets). Also, they provide the user with minimum-
to-no control over the deduplication process (which data need to be duplicated and
which data should be kept intact) hence overlooking the user’s requirement and
application needs in defining redundancy, e.g., [20, 53].

In this chapter, we propose: FREDD, a new approach for Fuzzy Redundancy
Elimination for Data Deduplication in a connected environment. FREDD uses
simple natural language rules to represent expert knowledge and user preferences
regarding data duplication boundaries. It then applies pattern codes and fuzzy
reasoning to detect duplicates at the edge level of the network. This reduces the
time required to hard-code the deduplication process, while adapting to the user’s
needs for different data sources and applications. Moreover, FREDD is adapted
for both static and mobile devices. Experiments on a real-world dataset highlight
FREDD’s potential and improvement compared with existing solutions.

In the following, Section 4.2 provides a preliminary on fuzzy logic in order to
cover the basics of using fuzzy reasoning. Then, Section 4.3 describes the FREDD
framework and details each of its modules. We also illustrate the processing steps
with a running example that shows how fuzzy reasoning contributes the redun-
dancy detection at the device level. Section 4.4 provides a complexity evaluation
of FREDD as well as an extensive experimentation that assesses the accuracy and
performance of this proposal. Finally, Section 4.5 summarizes the chapter and dis-
cusses the extension of FREDD to provide redundancy detection at the sink level in
a connected environment.

4.2 Fuzzy Logic Preliminaries

Fuzzy logic is a multi-valued logic that allows the definition and usage of intermedi-
ate values between conventional evaluations like true/false, yes/no, duplicate/not
duplicate, etc. It is a paradigm for processing data by using partial set membership,
where an element can be part of one set and its compliment albeit with varying
membership degrees (e.g., 70% true and 30% false). It incorporates a condition-
action rule-based IF X AND Y THEN Z approach rather than attempting to model
a system mathematically [30]. The model and its fuzzy membership functions are
defined empirically, and rely on the designer’s experience and understanding of
the system and its environment [59]. For example, rather than dealing with data
values in terms of humidity = 95 µg/m3 and temperature = 18.2 0C, expressions
like IF Low(humidity_value1) AND VeryHigh(humidity_value2) THEN NotDu-
plicate(status) are used. While they seem imprecise, yet such expressions can be
very descriptive and provide a necessary level of abstraction on top of the crisp
data values, allowing to guide the decision making process. A typical fuzzy logic
agent consists of 5 main components [30, 60]: i) fuzzification, ii) condition-action
rules, iii) inference, iv) aggregation, and v) defuzzification. Fuzzification consists
in transforming input crisp values (received from sensors) into fuzzy membership
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scores associated with a set of linguistic variables (e.g., low humidity, high temper-
ature) defined by the system designer (e.g., humidity = 95 µg/m3 is transformed
into 25% low and 75% medium humidity). Condition-action rules are defined as
Boolean logic (IF-THEN) expressions that reflect the common sense logic applied
by a human expert to guide the decision making process. Inference consists in
applying a set of designate condition-action rules on the fuzzified data in order to
produce fuzzy outputs. Multiple rules can produce different outputs, and need
to be aggregated in order to produce one single fuzzy output function. The fuzzy
output function is consequently defuzzified in order to produce crisp values as the
final output of the agent.

We adopt the fuzzy logic paradigm in order to automate the redundancy detec-
tion process in a connected environment, while handling the different needs and
challenges mentioned in our motivation scenario (cf. Chapter 1). We detail next the
FREDD framework.

4.3 FREDD Framework

To address the above mentioned challenges, we introduce FREDD: a new framework
for Fuzzy Redundancy Elimination for Data Deduplication in a connected environ-
ment. FREDD detects data duplicates at the edge level, considers data redundancies
from static and mobile devices (cf. Challenge 1), and combines simple natural lan-
guage rules with a fuzzy inference mechanism designed to adapt the deduplication
process following the user’s needs (cf. Challenge 3). FREDD’s core architecture for
edge-level deduplication is depicted in Figure 4.1. It consists of six main modules:
(i) sensor data representation which defines the spatial and temporal representa-
tions of data measurements/items; (ii) attribute separation which separates the in-
put data into attribute-based data collections; (iii) pattern code generation which
associates data items with pattern codes based on user-defined lookup tables; (iv)
duplicate candidate filtering which determines whether data items are candidates
for fuzzy duplication; and (v) fuzzy redundancy detection which identifies dupli-
cate data items using fuzzy reasoning based on user-defined condition-action rules.
We describe each of the latter modules for edge-level deduplication in the following
sub-sections. We detail the redundancy removal process extensively in Chapter 6.

FIGURE 4.1: FREDD’s Architecture
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4.3.1 Sensor Data Representation

Connected environments contain diverse devices each embedding one or more sen-
sors that provide data from the real world. Static devices are immobile; therefore,
the data generated by such devices can be redundant temporally. However, mo-
bile devices produce data while moving around the environment, which potentially
generates spatial-temporal redundancies. We maintain the same definitions of data
items, temporal/location stamps/coverage, and temporal/spatial-temporal redun-
dancies introduced in Chapter 3 - Section 3.2. To illustrate the FREDD redundancy
detection process consider the following set of data items listed in Table 4.1. This
example shows sample sensory data produced by an edge device embedding two
sensors S1, and S2 producing humidity and temperature observations respectively.

TABLE 4.1: Device Data Items

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian (1,2,3) S1
Temperature 16◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian (2,5,3) S2

Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian (4,2,7) S1
Temperature 19.5◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian (5,6,3) S2
Temperature 21◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian (8,6,3) S2

Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian (5,2,7) S1
Temperature 21◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian (8,6,3) S2

Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian (7,2,7) S1

4.3.2 Attribute Separation

Since the device can embed various sensors, its internal memory might store differ-
ent measurements (i.e., attributes such as humidity and temperature in Table 4.1).
Therefore, in order to detect redundancies in the data stored locally on the edge
device, we start by filtering the data into collections having the same attribute. To il-
lustrate the measurement filtering process, the data shown in Table 4.1 produces two
distinct data collections: the first for humidity data (cf. Table 4.2), and the second
for temperature data (cf. Table 4.3). Consequently, the data collections are processed
separately for data deduplication. Note that the domain expert decides about the
selection of attributes to be processed for deduplication.

TABLE 4.2: Humidity Data Collection

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian (1,2,3) S1
Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian (4,2,7) S1
Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian (5,2,7) S1
Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian (7,2,7) S1

TABLE 4.3: Temperature Data Collection

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Temperature 16◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian (2,5,3) S2
Temperature 19.5◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian (5,6,3) S2
Temperature 21◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian (8,6,3) S2
Temperature 21◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian (8,6,3) S2
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4.3.3 Pattern Code Generation

Value Pattern Codes

The pattern code generation module transforms ranges of data item values for a
given measurement (e.g., humidity, temperature) into interval values that are de-
fined based on reference lookup tables. Edge and sink devices handling the same
measurements refer to the corresponding measurement lookup tables (e.g., humid-
ity lookup table, or temperature lookup table), where lookup tables are created based
on expert preferences or application requirements. Here, we distinguish between
two kinds of lookup tables allowing: (i) disjoint data ranges; and (ii) intersecting
data ranges.

TABLE 4.4: Sample Disjoint Value Lookup Tables

(A) Disjoint Humidity Data Ranges

Interval
Values

[90 - 96]
µg/m3

]96 - 104]
µg/m3

]104 - 110]
µg/m3

Pattern
Code H1 H2 H3

(B) Disjoint Temperature Data Ranges

Interval
Values

[15 - 19]
◦C

]19 - 24]
◦C

]24 - 28]
◦C

Pattern
Code T1 T2 T3

TABLE 4.5: Sample Intersecting Value Lookup Tables

(A) Intersecting Humidity Data Ranges

Interval
Values

[90 - 98]
µg/m3

[94 - 106]
µg/m3

[102 - 110]
µg/m3

Pattern
Code H1 H2 H3

(B) Intersecting Temperature Data Ranges

Interval
Values

[15 - 20]
◦C

[18 - 25]
◦C

[23 - 28]
◦C

Pattern
Code T1 T2 T3

Disjoint data ranges (cf. Table 4.4) allow simple pattern code generation, yet they
produce disconnected pattern codes where values on the range boundaries might be
misrepresented (e.g., it is not clear which pattern code can be assigned with values
96.2 µg/m3 or 104.7 µg/m3 following Table 4.4). Intersecting data ranges (cf. Table
4.5) allow the generation of combined pattern codes when the target value belongs to
more than one range (e.g., humidity values 103, 104, and 105 µg/m3 belong to both
H2 and H3 patter codes following Table 4.5). In this study, we consider intersecting
ranges to allow more efficient processing (duplicate candidate filtering module) and
more accurate data deduplication (fuzzy redundancy detection module).

Zone Pattern Codes

In case data measurements are produced by mobile sensors (e.g., mobile phones, car
sensors), deciding if a pair of data is duplicate or not will involve an extra step: mak-
ing sure that the two data items are sensed in the same location zone (i.e., in close
proximity). Here, we consider that mobile measurements taken at separate location
zones represent separate data items, and will not be considered for deduplication.
To this end, we introduce zone lookup tables which organize location zones within
a connected environment. Our pattern code generation module transforms ranges
of location stamps for a given measurement into interval location stamps that are
defined based on the zone lookup tables. Edge devices handling the same measure-
ments refer to the corresponding zone lookup tables, where zones can be defined at
the level of the network as a whole, or at the level of individual sink or edge nodes,
based on the expert and application needs. Table 4.6 shows a sample zone lookup
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table describing a sample zoning in our smart hospital example shown in Figure 4.2,
where each zone is associated a non-intersecting set of location stamps. Note that a
zone can take any shape and size based on the expert and application needs.

FIGURE 4.2: Smart Hospital Zone Divisions

TABLE 4.6: Zone Lookup Tables

(A) Left Ward Zone Lookup Tables

Label Location Stamp
Interval

Zone
Code

Drug Storage Room {p1, ..., pk} Z1
Nursery {pk+1, ..., pm} Z2

ICU Room 1 {pm+1, ..., pn} Z3
ICU Room 2 {pn+1, ..., po} Z4

Hallway {po+1, ..., pp} Z5

(B) Right Ward Zone Lookup Tables

Label Location Stamp
Interval

Zone
Code

Cubicle Zone 4 {pp+1, ..., pq} Z6
Cubicle Zone 3 {pq+1, ..., pr} Z7
Cubicle Zone 1 {pr+1, ..., ps} Z8
Cubicle Zone 2 {ps+1, ..., pt} Z9

Hallway {pt+1, ..., pu} Z10

Combined Pattern Codes

For every data item to be deduplicated, our pattern code generation module pro-
duces one (or more) value pattern code(s) and a zone pattern code based on the
reference value and zone lookup tables, and then combines them into value-zone
pattern code(s) as shown in Tables 4.7 and 4.8 (cf. Algorithm 3). The value-zone
codes are used for fast duplicate candidate filtering as described in the following
section.

TABLE 4.7: Pattern Codes - Humidity Data Collection

Attribute Value Value
Pattern Code

Temporal Stamp Location Stamp Zone
Pattern Code

Combined
Pattern Code SourceFormat, Value Format, Value

Humidity 92 µg/m3 {H1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:00:00

Cartesian
(1,2,3) {Z1} {H1− Z1} S1

Humidity 94 µg/m3 {H1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:02:00

Cartesian
(4,2,7) {Z5} {H1− Z5} S1

Humidity 103 µg/m3 {H2, H3} dd/MM/yyyy hh:mm:ss
10/02/2019 10:05:00

Cartesian
(5,2,7) {Z5} {H2− Z5, H3− Z5} S1

Humidity 104 µg/m3 {H2, H3} dd/MM/yyyy hh:mm:ss
10/02/2019 10:06:00

Cartesian
(7,2,7) {Z5} {H2− Z5, H3− Z5} S1
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TABLE 4.8: Pattern Codes - Temperature Data Collection

Attribute Value Value
Pattern Code

Temporal Stamp Location Stamp Zone
Pattern Code

Combined
Pattern Code SourceFormat, Value Format, Value

Temperature 16◦ C {T1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:01:00

Cartesian
(2,5,3) {Z2} {T1− Z2} S2

Temperature 19.5◦ C {T1, T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:02:00

Cartesian
(5,6,3) {Z4} {T1− Z4, T2− Z4} S2

Temperature 21◦ C {T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:03:00

Cartesian
(8,6,3) {Z4} {T2− Z4} S2

Temperature 21◦ C {T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:05:00

Cartesian
(8,6,3) {Z4} {T2− Z4} S2

4.3.4 Duplicate Candidate Filtering

Since sensor data items are produced and ordered per sensing time stamp, each
data item to be deduplicated is evaluated with its previous one to check if the data
is duplicate or not. Our duplicate candidate filtering algorithm is depicted in Al-
gorithm 3. It accepts as input two consecutive data items and produces as output
a decision of whether the data items are duplicates, non-duplicates, or candidates
for deduplication, based on the following rules: (i) if two data items share one or
more value-zone pattern codes, then they are considered duplicates (cf. Algorithm
3, lines 4-5); (ii) if the data items share one or more value-zone pattern codes, they
are considered as candidates for deduplication (cf. Algorithm 3 , lines 6-7); and (iii)
if the data items do not share any value-zone pattern code, they are considered as
non-duplicates (cf. Algorithm 3, lines 8-9).

Algorithm 3: Duplicate Candidate Filtering
Input : DataItem1, DataItem2
Output : DeduplicationStatus
// Begin algorithm

1 pattern1 ← pattern code for DataItem1
2 pattern2 ← pattern code for DataItem2
3 interLen← length of intersection between DataItem1 and DataItem2
4 if (pattern1 = pattern2 AND interLen = 1) then
5 DeduplicationStatus← Duplicates
6 else
7 if (interLen > 1) then
8 DeduplicationStatus← Candidates
9 else

10 DeduplicationStatus← NotDuplicates
11 end
12 end

Tables 4.9 and 4.10 show the output of the filtering algorithm applied on the in-
put data from Tables 4.7 and 4.8 respectively, where 6 data items are identified as
either duplicates/non-duplicates (duplicates are highlited in green and non dupli-
cates are highlighted in red), such that 2 of the original 8 items need to be further
considered for fuzzy deduplication (candidates are highlighted in yellow). Depend-
ing on the data patterns generated in the target connected environment, duplicate
filtering can significantly reduce the number of data items to be processed for fuzzy
redundancy detection, thus significantly improving overall processing performance
especially at the device level (cf. experimental results in Section 4.4).
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TABLE 4.9: Filtering Output - Humidity Data Collection

Attribute Value Value
Pattern Code

Temporal Stamp Location Stamp Zone
Pattern Code

Combined
Pattern Code SourceFormat, Value Format, Value

Humidity 92 µg/m3 {H1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:00:00

Cartesian
(1,2,3) {Z1} {H1− Z1} S1

Humidity 94 µg/m3 {H1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:02:00

Cartesian
(4,2,7) {Z5} {H1− Z5} S1

Humidity 103 µg/m3 {H2, H3} dd/MM/yyyy hh:mm:ss
10/02/2019 10:05:00

Cartesian
(5,2,7) {Z5} {H2− Z5, H3− Z5} S1

Humidity 104 µg/m3 {H2, H3} dd/MM/yyyy hh:mm:ss
10/02/2019 10:06:00

Cartesian
(7,2,7) {Z5} {H2− Z5, H3− Z5} S1

TABLE 4.10: Filtering Output - Temperature Data Collection

Attribute Value Value
Pattern Code

Temporal Stamp Location Stamp Zone
Pattern Code

Combined
Pattern Code SourceFormat, Value Format, Value

Temperature 16◦ C {T1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:01:00

Cartesian
(2,5,3) {Z2} {T1− Z2} S2

Temperature 19.5◦ C {T1, T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:02:00

Cartesian
(5,6,3) {Z4} {T1− Z4, T2− Z4} S2

Temperature 21◦ C {T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:03:00

Cartesian
(8,6,3) {Z4} {T2− Z4} S2

Temperature 21◦ C {T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:05:00

Cartesian
(8,6,3) {Z4} {T2− Z4} S2

4.3.5 Fuzzy Redundancy Detection

Fuzzy Inference Agent

The fuzzy redundancy detection module’s overall process is shown in Figure 4.3. It
is designed as a fuzzy agent which accepts as input data items that are candidates
for redundancy detection, and then produces as output their deduplication status
(i.e., duplicates or non-duplicates).

FIGURE 4.3: Fuzzy Redundancy Detection Overview

Fuzzification: First, the scalar data item values are fuzzified, producing linguistic
values associated with fuzzy membership degrees (e.g., humidity value 103 µg/m3

becomes 75% H2 and 25% H3 following Figure 4.4). The fuzzy partitions for every
measurement are defined based on the corresponding lookup table ranges, where
the fuzzy membership functions can be defined following the expert and application
needs. Figure 4.4a and 4.4b show the fuzzy partitions for humidity and temperature
measurements which we adopt in our motivating scenario . The same partitions
are utilized to fuzzify both input data values associated with the same measure-
ment. The output deduplication status variable represents a percentage value, and
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is depicted in Figure 4.4c using one membership function varying from 0-to-100%
duplication.

(A) Input Humidity Fuzzy Parti-
tions cf. Table 4.4a

(B) Input Temperature Fuzzy
Partitions cf. Table 4.4b

(C) Output Deduplication Status
Fuzzy Partitions

FIGURE 4.4: Fuzzy Partitions Using The Trapezoidal Function

Condition-action rules: As for the fuzzy agent’s condition-action rules, they re-
flect the common sense logic applied by an domain expert to determine whether two
data items are duplicates or not, based on their measurement’s look-up tables. We
provide below the set of condition-actions rules that we define for the humidity and
temperature measurements following our application scenario:

Rule 1

IF (Humidity_DataItem1 is H1) AND (Humidity_DataItem2 is
↪→ H1) THEN DedupStatus is Duplicate

Rule 2

IF (Humidity_DataItem1 is H2) AND (Humidity_DataItem2 is
↪→ H2) THEN DedupStatus is Duplicate

Rule 3

IF (Humidity_DataItem1 is H3) AND (Humidity_DataItem2 is
↪→ H3) THEN DedupStatus is Duplicate

Rule 4

IF (Temp_DataItem1 is T1) AND (Temp_DataItem2 is T1) THEN
↪→ DedupStatus is Duplicate
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Rule 5

IF (Temp_DataItem1 is T2) AND (Temp_DataItem2 is T2) THEN
↪→ DedupStatus is Duplicate

Rule 6

IF (Temp_DataItem1 is T3) AND (Temp_DataItem2 is T3) THEN
↪→ DedupStatus is Duplicate

Inference: Fuzzy inference consists in applying the concerned condition-action
rules on the fuzzified data in order to produce fuzzy outputs. The logical connectors
in the condition-action rules are translated into mathematical formulas that operate
on the fuzzy data. For instance, the AND fuzzy logic operator can be any t-norm
function, including min (minimum) which is commonly adopted in the literature.
Also, THEN can be a number of inference functions including Zadeh’s implication
(traditional Boolean implication formula), Mamdan’s implication (a simplified ver-
sion of Boolean implication, cf. Formula 4), or Larsen’s implication (which comes
down to a form of arithmetic multiplication) [61]. In our agent, we adopt Mamdani’s
implication operator as the default inference function given its common usage in the
literature [62, 63]. Yet the aforementioned inference formulas are available through
the implemented system, and can be activated following the expert’s preferences.

Aggregation: It allows grouping the outputs of multiple inference operations exe-
cuted on multiple condition-action rules, in order to produce on single fuzzy output
result. Multiple mathematical operations can be utilized to simulate fuzzy aggre-
gation, including maximization (aggregating by electing the fuzzy result with the
highest membership degree), bounded sum (aggregating by summing the fuzzy
membership degrees of the different results, as long as the sum does not surpass
100% membership), and weighted sum (assigning different weights to different in-
ference results, highlighting the importance of different condition-action rules on
the decision making process). In our agent, we adopt the maximization aggrega-
tion function (Formula 5) given its common usage in the literature [61, 63]. Yet any
aforementioned formula can be utilized following the expert’s preferences.

Deduplication : It allows transforming the fuzzy output produced by the ag-
gregation function into a crisp output that represents the final result of the agent.
Multiple mathematical operations can be used to perform defuzzification, including
center of gravity (using the barycenter formula to pinpoint the crisp center of the
fuzzy aggregated result), maximum to the left (choosing the smallest crisp value
from the aggregated result that has the highest membership degree), and maximum
to the right (choosing the highest crisp value that has the highest membership
degree). In our agent, we adopt center of gravity (Formula 6) given its common
usage in the literature [61, 63]. Yet any aforementioned formula can be utilized
following the expert’s preferences.
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Note that our framework is flexible in allowing experts to apply other fuzzy
inference, aggregation, or defuzzification functions of their choosing.

Mamdani’s implication: Given fuzzy sets f1, f2 :

f1 ⇒Mamdani f2 ≡ f1 ∧ f2 ≡ min( f1, f2) (4.1)

where ∧ is the AND fuzzy logic operator1

Maximization aggregation: Given fuzzy sets f1, f2, . . . , fn:

FAgg = FMax = max( f1, f2, . . . , fn) (4.2)

Center of gravity defuzzification: Given aggregate fuzzy set FAgg:

x =

∫
x× FAgg(x)× dx∫

FAgg(x)× dx
(4.3)

Computation Example

We consider in Tables 4.9 and 4.10 two cases for humidity and temperature measure-
ments studied in our motivation scenario. The detailed computation process for hu-
midity is described in the following use case. A similar computation process for tem-
perature is provided in Appendix A. For the humidity case, the agent recommends
that input 103 µg/m3 and 104 µg/m3 data values are duplicates with a 76% fuzzy
membership degree, which seems reasonable given the humidity lookup tables and
value ranges defined previously in Table 4.5a (H2 and H3 fuzzy partitions intersect
between [102, 106] µg/m3, where 103 is much closer to the 102 µg/m3 boundary
of H2 than to the 106 µg/m3 boundary of H3, but also 103 µg/m3 and 104 µg/m3

are close to each other). The fuzzy inference agent produces recommendations that
simulate the domain expert’s deduplication capability, and behaves following the
expert’s design choices and needs (cf. experiments in Section 4.4).

Fuzzification: Given case 1’s input data: Humidity DataItem1 = 103µg/m3 and
Humidity DataItem2 = 104µg/m3, we compute the corresponding fuzzy member-
ship values (cf. Figure 4.5) following the humidity fuzzy functions in Figure 4.4a
(reported below):

(A) For Humidity DataItem1: f H1(103) =
0, f H2(103) = 0.75, and f H3(103) = 0.25

(B) For Humidity DataItem2: f H1(104) =
0, f H2(104) = 0.5, and f H3(104) = 0.5

FIGURE 4.5: Fuzzification of Humidity DataItem1 and DataItem2

1The AND fuzzy logic operator can be any t-norm function, including min which is commonly
adopted in the literature.
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Condition-Action Rules: Based on the input membership values, the following
condition-action rules are invoked:

Rule 2

IF (Humidity_DataItem1 is H2) AND (Humidity_DataItem2 is
↪→ H2) THEN DedupStatus is Duplicate

Rule 3

IF (Humidity_DataItem1 is H3) AND (Humidity_DataItem2 is
↪→ H3) THEN DedupStatus is Duplicate

Inference: Applying Mamdani’s inference mechanism:

• Rule 2: Executing the AND fuzzy operator:

– min( f (103)Humidity_DataItem1
H2 , f (104)Humidity_DataItem2

H2 ) = min(0.75, 0.5) =
0.5

• Executing the implication fuzzy operator:

– fRule2 = min(0.5, Duplicate(DedupStatus))

FIGURE 4.6: Inference - Rule2

• Rule 3: Executing the AND fuzzy operator:

– min( f (103)Humidity_DataItem1
H3 , f (104)Humidity_DataItem2

H3 ) = min(0.25, 0.5) =
0.25

• Executing the implication fuzzy operator:

– fRule3 = min(0.25, Duplicate(DedupStatus))
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FIGURE 4.7: Inference - Rule3

Aggregation: By applying the maximization aggregation function, Fagg = Fmax =
max( fRule2, fRule3), the agent produces the fuzzy coverage areas subsumed by the
inference membership functions (represented in transparent grey color in the below
graph).

FIGURE 4.8: Aggregation

Defuzzification: The center of gravity defuzzification function is applied on the
fuzzy coverage area to compute the corresponding center of gravity point (repre-
sented as a red dot in the aggregation graph), and then identify the corresponding
deduplication status (on the x axis) the agent’s output = 76%.

FIGURE 4.9: Defuzzification

Result: Depending on the domain expert or system deduplication threshold,
a decision is made whether the two data items are duplicates or not. Given
dedupthreshold = 75% in our running example, and since the output of the de-
fuzzification step is 76% ≥ dedupthreshold, the agent’s final output becomes:
dedupStatus = duplicates.

Given our running example data from Table 4.9, the identified humidity redun-
dancies following the fuzzy redundancy detection process are shown in Table 4.11
where duplicates share the same row color.
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TABLE 4.11: Result - Humidity Data Collection

Attribute Value Value
Pattern Code

Temporal Stamp Location Stamp Zone
Pattern Code

Combined
Pattern Code SourceFormat, Value Format, Value

Humidity 92 µg/m3 {H1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:00:00

Cartesian
(1,2,3) {Z1} {H1− Z1} S1

Humidity 94 µg/m3 {H1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:02:00

Cartesian
(4,2,7) {Z5} {H1− Z5} S1

Humidity 103 µg/m3 {H2, H3} dd/MM/yyyy hh:mm:ss
10/02/2019 10:05:00

Cartesian
(5,2,7) {Z5} {H2− Z5, H3− Z5} S1

Humidity 104 µg/m3 {H2, H3} dd/MM/yyyy hh:mm:ss
10/02/2019 10:06:00

Cartesian
(7,2,7) {Z5} {H2− Z5, H3− Z5} S1

4.4 FREDD Evaluation

4.4.1 Complexity Evaluation

The overall time complexity of our FREDD approach simplifies to: O(N) where
N designates the number of data items considered in an edge device. Complexity
is evaluated as the sum of the complexities of the main modules of FREDD: the
complexities of FREDD’s modules are linear w.r.t. the number of data items being
processed at the edge, and simplify in the worst case scenario toO(N)+ · · ·+O(N),
which comes down to an overall O(N).

4.4.2 Experimental Evaluation

We have implemented our FREDD framework as a web-based application, using
methods from the jFuzzyLogic open source library [64, 65] in implementing our
fuzzy logic agent, to allow easy manipulation for domain experts in operating and
evaluating the system2. We have empirically tested the different components of our
system using multiple sets of experiments which we categorize in two main groups:
(i) quality evaluation: comparing deduplication accuracy, data reduction ratio, size
of transmitted data, and size of stored data in order to evaluate deduplication qual-
ity; and (ii) performance evaluation: comparing the time performance of the differ-
ent components of the system, in order to evaluate its time complexity. We first start
by describing our test data and experimental metrics, before we present our empir-
ical results. The system implementation, experimental datasets, and test results are
available online3.

Experimental Test Data

We build two datasets for edge device, mobile device, and sink device measure-
ments collected from the Intel Lab Berkeley dataset [66] obtained from 54 Micra2Dot
sensors depicted in the Figure 4.10. Sensors provide weather data including temper-
ature, humidity, light, (and voltage at the time of the sensor reading), as well as the
list of Cartesian coordinates for each of the 54 sensors, and the time when each data
measurement is collected. We consider humidity and temperature measurements in
our experimental evaluation and describe our datasets below:

2On the server-side, we adopt a three-layer architecture consisting of: i) a Web API layer that allows
client-side applications to communicate with the server to request data, services and to define all the
domain expert parameters such as the deduplication threshold, the value and zone lookup tables, the
different fuzzy parameters, etc.; ii) a Business Logic layer where FREDD’s main decision making pro-
cesses are implemented based on the different parameters the expert provided; and iii) a Data Access
layer where data storage and retrieval take place. Every layer is internally designed in a modular way
to allow for separate testing and evaluation of every module.

3http://sigappfr.acm.org/Projects/FREDD/

http://sigappfr.acm.org/Projects/FREDD/
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• Dataset 1: Static edged device dataset – It consists of 20k humidity and tem-
perature data measurements collected from sensor S1 on 28/2/2004.

• Dataset 2: Mobile edge device dataset - We assume a mobile device M1 and
construct its dataset from the static Micra2Dot sensors as follows: (i) humid-
ity and temperature data for M1 is collected from nine sensors: S1-to-S4 and
S6-to-S10 between 28/2/2004 and 29/2/2004; (ii) data collected from all these
sensors is first ordered chronologically by date and time, and then filtered to
simulate the following path of the mobile sensor (S1→ S2→ . . . → S9→ S10
→ S9→ S8 . . . → S1); and (iii) mobile sensor M1 collects from each location a
random number of data measurements4, resulting in a dataset of 3,416 entries.
The resulting dataset simulates the behavior of a mobile sensor where the lo-
cation of each data measurement is that of the source static sensor collecting it
in the Micra2Dot schematic.

FIGURE 4.10: Schematic of the Intel Lab Berkeley Micra2Dot sensors

Evaluation Metrics

We utilize four evaluation metrics to evaluate FREDD’s deduplication effectiveness.
At the edge device, we utilize (i) deduplication accuracy; and (ii) data reduction
percentage. We describe the two metrics below.

Deduplication accuracy is defined as a time series similarity between the original
data and the deduplicated data, after modifications have been applied on the dedu-
plicated data set in order to reconstruct a set that has the same dimension (length)
of the original one [31]. More formally, given TSo = [(t1, vo1), (t2, vo2), . . . , (tn, von)]
as the time series representation of the original data where n is the length of the
data, and TSd = [(t1, vd1), (t2, vd2), . . . , (tm, vdm)] as the time series representation
of the deduplicated data where m is the length of the deduplicated data such that
m < n and TSd ∈ TSo, we generate TSr = [(t1, vr1),(t2

, vr2), . . . , (tn, vrn)] as the
reconstructed time series from the deduplicated data where the missing (dedu-
plicated) values are padded to reach the same dimensionality of the initial data.

4We use a random integer between 1 and 5, where a small integer will increase the chance of chang-
ing zone pattern codes between two consecutive data measurements, emphasizing the idea of mobility.
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For instance, given TSo = [(t0, 16◦C), (t1, 19.5◦C), (t2, 21◦C), (t3, 21◦C)] and TSd =
[(t0, 16◦C), (t3, 21◦C)], then TSr = [(t0, 16◦C), (t1, 21◦C), (t2, 21◦C), (t3, 21◦C)] where
the missing values at t1 and t2 have been padded by the deduplicated value at t0.
Consequently, deduplication accuracy is measured as the Jaccard similarity coeffi-
cient between the original time series and the reconstructed (same dimensionality)
time series as follows:

acc = ∑n
i=1 min(voi , vri)

∑n
i=1 max(voi , vri)

∈ [0, 1] (4.4)

A good deduplication solution would produce a higher similarity between the orig-
inal data and the reconstructed data, resulting in higher deduplication accuracy.

Data reduction ratio represents the amount of data that has been eliminated as a
result of applying the deduplication process. More formally, it is defined as the ratio
of the difference between the original data and the duplicated data:

redu =

(
1− |TSo| − |TSd|

|TSo|

)
∈ [0, 1] (4.5)

where |TSo| represents the size of the original data, |TSd| the size of the deduplicated
data, and |TSo |−|TSd|

|TSo | the data saving ratio. A good deduplication solution would pro-
duce a lower data saving ratio (i.e., smaller difference between original and dedu-
plicated data size), resulting in a higher data reduction ratio.

Quality Evaluation

We conduct multiple sets of experiments to evaluate FREDD’s deduplication effec-
tiveness considering various parameters and use case scenarios, evaluating: (i) data
range overlap size; and (ii) fuzzy deduplication threshold.

Data Range Overlap Size Evaluation: In this experiment, we evaluate the behav-
ior of FREDD’s fuzzy redundancy detection process when varying the size of the
data overlap between boundary value ranges. This allows the domain expert to eas-
ily update the fuzzy membership functions according to the size of the boundary
overlapping, and thus allows more flexibility in fine-tuning the solutions’ behavior
following the expert’s needs (cf. Challenge 3 - Chapter 1). We consider four different
pattern code fuzzy membership functions as shown in Figure 4.11: (i) rectangular
functions with no overlapping boundaries amounting to 0% fuzzy computation; (ii)
trapezoidal functions with small overlapping boundaries amounting to 30% fuzzy
computation; (iii) trapezoidal functions with large overlapping boundaries amount-
ing to 50% fuzzy computation; and (iv) triangular functions with completely over-
lapping boundaries amounting to 100% fuzzy computation. Deduplication accu-
racy and data reduction ratio results, applied on static edge data from dataset 1, are
shown in Figure 4.12. Results show that: (i) deduplication accuracy (acc) increases;
and (ii) reduction ratio (redu) decreases when the overlap size between boundary
ranges increases. On the one hand, an increase in boundary overlapping leads to
more fuzzy duplicate candidates being evaluated and detected by the system. This
leads to higher acc since the deduplicated values resulting from the fuzzy process
will be closer to the original data values within the overlapping boundaries (com-
pared with performing a crisp decision making where the deduplicated values are
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restricted to the crisp boundaries, which are naturally farther away from the origi-
nal data values within those boundaries). On the other hand, an increase in fuzzy
processing leads to a lower redu since larger fuzzy ranges allow more candidate data
to be considered for redundancy check. This leads to an increase in the amount
of data considered for processing and persisting after the deduplication process (in
contrast, a larger amount of data that is directly deduplicated following the crisp ap-
proach produces a leaner deduplication result, albeit with less accuracy compared
with the original data).

(A) Rectangular with 0% overlap (B) Trapezoidal with 30% overlap

(C) Trapezoidal with 50% overlap (D) Triangular with 100% overlap

FIGURE 4.11: Different humidity pattern code fuzzy membership
functions with different boundary range overlapping sizes

(A) Deduplication accuracy (acc) (B) Data reduction ratio (redu)

FIGURE 4.12: acc & redu results when varying the overlapping size of
boundary data ranges

Fuzzy Deduplication Threshold Evaluation In this experiment, we vary the
fuzzy deduplication threshold, allowing the fuzzy redundancy detection process to
decide on the deduplication status of candidate data items, and evaluate FREDD’s
behavior accordingly. We perform this experiment at the edge node level (cf. Chal-
lenge 1 - Chapter 1), and consider the impact of device mobility on the deduplication
process. This allows the domain expert to choose a suitable deduplication threshold
in order to achieve the desired accuracy and deduplication ratio following the ex-
pert’s needs (cf. Challenge 3 - Chapter 1). Figure 4.13 shows the results of dedupli-
cation quality metrics when applied on static edge data from dataset 1 (Figure 4.13a),
and on mobile edge data from dataset 2 (Figure 4.13b), by varying the deduplication
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threshold. For both cases, when the threshold increases: (i) acc increases while (ii)
redu decreases. This is due to the fact that a higher deduplication threshold means
less candidate pairs are considered for duplication.

(A) Results with static device data from
dataset 1

(B) Results with mobile device data from
dataset 2

FIGURE 4.13: acc & redu results with varying fuzzy deduplication
thresholds

Performance Evaluation

In addition to testing the quality of our approach in identifying redundant data items
and performing deduplication, we also evaluate its efficiency in terms of execution
time. Results in Figure 4.14 highlight the linear complexity of FREDD’s edge-based
deduplication process when varying the number of data items per edge node, re-
flecting O(N) time complexity.

FIGURE 4.14: Edge-level processing time when varying the number
of data items

4.5 Recap

In this study, we introduce FREDD: a new approach for Fuzzy Redundancy Elim-
ination for Data Deduplication in a connected environment. FREDD uses simple
natural language rules to represent domain knowledge and expert preferences re-
garding data duplication boundaries. It then applies pattern codes and fuzzy rea-
soning to detect duplicates on the edge level. Moreover, it is adapted for multiple
scenarios, considering both static and mobile devices (cf. Challenge 1 - Chapter 1).
Furthermore, it allows users to configure pattern code overlaps and customize the
redundancy detection process (cf. Challenge 3 - Chapter 1). We also present experi-
ments on a real-world dataset that highlight FREDD’s potential. In the following, we
present how FREDD can be used for data redundancy detection at the sink level of
a connected environment network since we already covered redundancy detection
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at the source in Chapters 3 and 4. In order to do so, we discuss next the constraints
that we need to consider in regards to the physical infrastructure, the device capa-
bilities, and the spatial configuration of the environment (cf. Challenge 2 - Chapter
1) to achieve data redundancy at the sink.
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Chapter 5

Detecting Data Redundancies at
the Sink Level

In this chapter, we focus on detecting data redundancies at the sink level (i.e., core)
of a CE. Tackling the problem at the sink level allows the detection of composite
or collective redundancies from various edge devices (since edge devices submit
their data to the sink). In addition, handling the problem at the sink provides an
alternative that alleviates resource consumption on edge devices (where resources
are often limited). Moreover, it improves querying the core of the network directly
by allowing the retrieval and the processing of redundancy-free sensor observations.

We previously proposed FREDD, a Fuzzy Redundancy Elimination for Data
Deduplication framework, that utilizes fuzzy reasoning to accurately and efficiently
detect redundancies at the source (i.e., locally on devices). We also demonstrated
how FREDD can be used on the edge.

We discuss here the application of FREDD on the sink level of the network, and
the requirements that need to be considered to do so (cf. Challenge 2). This entails
considering the different separations between individual locations in the environ-
ment (e.g., walls, windows, open spaces, curtains) that affect the sensing capabilities
of devices (e.g., impact on sensor coverage areas) as well as the distribution/density
of sensors and sink nodes (e.g., number of sensors connected to a specific sink).

We discuss four use cases for using FREDD for data redundancy detection at the
sink level. We detail the different environmental constraints that play into effect in
each use case. Then, we detail the FREDD process at the sink level.

Thereafter, we present an extensive evaluation redundancy detection by present-
ing the experimental protocol, the conducted experiments, and the obtained results.
Finally, we conclude this chapter with a recap and future directions.

Sylvana Yakhni, Joe Tekli, Elio Mansour, Faisal Shahzad, and Richard Chbeir. Fuzzy Redundancy Elimination
for Data Deduplication in Connected Environments. Submitted to the Journal of Parallel and Distributed

Computing.
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5.1 Introduction

In most CE configurations, sensing devices are deployed in the real-world (i.e., the
physical environment/infrastructure) and handle data acquisition. Regardless of
their capability to exchange data between them, they often end up submitting their
data to a central node or base station called the sink. Each connected environment
has a specific distribution/density of edge sensing devices that submit their data
to particular sink nodes. Also, the number of sink nodes in a network varies
depending on the scale of the environment. Furthermore, each environment has a
set of known locations and specific spatial constraints that define its constitution
(e.g., hard wall separations between locations, soft separations, open spaces) and the
spatial relations between locations. All the aforementioned environment features
affect the sensing (e.g., sensor coverage areas are affected by walls, producing data
from different locations/zones). However, in all cases, data redundancies can occur
on the edge of the network (i.e., locally on devices) and on the sink of the network
where data is accumulated and new redundancies appear when combining data
from multiple sources.

In Chapters 3 and 4, we proposed DRMF and FREDD capable of detecting
redundancies at the edge (i.e., locally on devices). However, these approaches
might miss some redundancies that do not exist locally but appear globally when
combining data from various sources and comparing them together. For instance,
two sensing devices located in close proximity might generate a temperature
observation each. These observations can be non-redundant locally (i.e., compared
to previous values stored locally on the device). However, due to the sensors’ prox-
imity, the two temperature observations become redundant on a more global level
(e.g., in the zone/area of deployment). This means that redundancy monitoring
needs to to take place on all network levels (this includes the edge and core levels).
In fact, handling redundancies at different levels provides different advantages and
inconveniences. On the one hand, managing redundancies at the edge level (i.e.,
source) helps alleviate excessive bandwidth usage and unnecessary data storage
in central repositories but adds more processing loads on edge devices and does
not consider combined redundancies. On the other hand, handling redundancies
at the sink level (i.e., core) alleviates resource consumption at the edge and detects
combined redundancies, but it taxes the network by allowing the spreading of
duplicate unnecessary data throughout the environment.

Therefore, although we proposed two approaches for edge-level data redun-
dancy detection, there is still a need to propose a similar approach for sink-level
data redundancy management. Doing so entails considering global features and
constraints related to the environment (e.g., different types of physical objects and
inter-location separations), spatial configurations (e.g., location maps, inter-location
spatial ties), and device capabilities (e.g., sensor coverage areas) as illustrated in
Challenge 2 (cf. Chapter 1).

To address the need for sink-level data deduplication, we describe here how
our FREDD proposal can be used at the sink level (i.e., at the core of the network).
We consider FREDD since it improves on DRMF by considering fuzzy reasoning to
improve its accuracy in an efficient manner. We illustrate four use cases that show
how we can consider the aforementioned environmental features (regarding the
physical objects, spatial constraints, and sensor coverage areas) to detect combined
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redundancies at the sink. Then, we detail the sink-level deduplication process and
evaluate it.

The remainder of this Chapter is organized as follows. Section 5.2 provides four
use cases for redundancy detection at the sink level to showcase the different fea-
tures that need to be considered. Then, Section 5.3 describes the FREDD process
at the sink level and details each of its modules. Section 5.4 provides a complexity
evaluation of FREDD when applying it at the sink as well as an extensive experi-
mentation that assesses the accuracy and performance of this particular proposal.
Finally, Section 5.5 summarizes the chapter.

5.2 Sink Level Use Cases

Generally, an edge device (made of one or multiple sensors) can cover an observa-
tion if it occurs within its coverage area (i.e., sensing range), where every event that
takes place in this area can be detected by the device. The coverage area of an edge
device is usually defined by the device manufacturer following its sensor(s) spec-
ifications. As for sink devices, their coverage areas are usually defined by experts
based on the sinks’ connectivity in the environment. A sink device’s coverage area
can be defined as one or multiple non-overlapping zones, following the network de-
signer’s needs (cf. Figure 5.1). In addition, sink-level zones can be hard-separated or
soft-separated. With hard-separated zones, a sensor’s coverage area lies in one sin-
gle zone from which it can collect data (e.g., camera sensors separated by walls, cf.
Figure 5.1a). With soft-separated zones, a sensor’s coverage area spans more than
one zone allowing the sensor to collect data from multiple zones simultaneously
(e.g., camera sensors separated by glass doors, cf. Figure 5.1b).

(A) Hard Zone Separations (B) Soft Zone Separations

FIGURE 5.1: Examples of sink node coverage areas, with multiple
zones including hard and soft separations

As a result, we consider and discuss four different sink-level deduplication use
cases summarized in Table 5.1: (i) zone-based with hard separations; (ii) zone-and-
coverage based with hard separations; (iii) zone-based with soft separations; and
(iv) zone-and-coverage based with soft separations.

TABLE 5.1: Sink-level deduplication uses cases

Use
Cases

Considers
Sink Zones

Considers Sensor
Coverage Areas

Hard Separations
Between Zones

Soft Separations
Between Zones

Case 1 ✓ ✗ ✓ ✗

Case 2 ✓ ✓ ✓ ✗

Case 3 ✓ ✗ ✗ ✓

Case 4 ✓ ✓ ✗ ✓
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5.2.1 Case 1: Zone-based with Hard Zone Separations

In this case, we assume: (i) the sink node coverage zones are hard-separated; and
(ii) data from multiple sensors are considered for deduplication if the two sensors
are located in the same zone (cf. Figure 5.1a where data from sensors S1-and-S2 are
considered for deduplication, likewise for data from sensors S3-and-S4). While it
seems simple and straightforward, yet this use case neglects the issue of edge device
(sensor) coverage area. In other words, this use case might not be entirely practical,
since sensors might be located in the same zone but their coverage areas do not
overlap (e.g., the case of sensors S3-and-S4). For example, two cameras might be
located next to each other in the same room, but each camera covers its own corner
in the room. In such situations, sensor will be producing separate data feeds which
are not combined and deduplicated at the sink node, since they describe different
things. This can be handled in the following use case #2.

5.2.2 Case 2: Zone-and-Coverage based with Hard Zone Separations

In this case, we assume: (i) the sink node coverage zones are hard-separated; and (ii)
data from multiple sensors are considered for deduplication if (1) the sensors collect
data from the same zone (i.e., their coverage areas are included in the same zone);
and (2) the sensors’ coverage areas are largely overlapping (e.g., sensors S1-and-S2 in
Figure 5.1a. For instance, the data feeds of two cameras located in the same room and
covering largely overlapping areas of the room will be considered for deduplication
at the sink node. Yet, if the cameras’ coverage areas do not largely overlap, their
data feeds will be processed separately and will not be considered for deduplication
at the sink (cf. sensors S3-and-S4 in Figure 5.1a). Deciding whether two coverage
areas largely overlap or not is done by evaluating the spatial topological relations
between the areas (e.g., equal, overlap, and, disjoint, cf. Section 5.3).

5.2.3 Case 3: Zone-based with Soft Zone Separations

In this case, we assume: (i) the sink node coverage zones are soft-separated; and
(ii) data from multiple sensors are considered for deduplication if the sensors col-
lect data from the same zone, i.e., if their coverage areas are included in or largely
overlap with the same zone (e.g., sensors S5-and-S6 and sensors S7-and-S8 in Figure
5.1b). Deciding on coverage area-zone inclusion and overlapping is done by evalu-
ating the spatial topological relations between the areas and the zones (similarly to
area-area topological relations, cf. Section 5.3).

5.2.4 Case 4: Zone-and-Coverage based with Soft Zone Separations

In this case, we assume: (i) the sink node coverage zones are soft-separated; and
(ii) data from multiple sensors are considered for deduplication if (1) the sensors
collect data from the same zone (their coverage areas are entirely included in or
largely overlap with the same zone); and (2) the sensors’ coverage areas are largely
overlapping, e.g., sensors S5-and-S6 in Figure 5.1b). For instance, the data feeds
from two temperature sensors collecting data from the same room such that their
coverage areas do not overlap (e.g., sensors S7-and-S8 in Figure 5.1b) will not be
considered for deduplication at the sink node.
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5.3 FREDD Sink Level Process

FIGURE 5.2: FREDD’s sink-level deduplication process

The overall process of sink-level deduplication using FREDD is depicted in Fig-
ure 5.2. We start by performing zone-based edge device clustering to group to-
gether edge devices (sensors) bellowing to the same zone. These are the sensors
located within the same hard-separated zones (following cases 1-and-2), or the sen-
sors which coverage areas are included in or largely overlap with the soft-separated
zones (following cases 3-and-4). Deciding whether an edge device coverage area
and a sink device (soft-separated) zone overlap or not is achieved by evaluating the
spatial topological relations between them (e.g., equal, overlap, and, disjoint), which
comes down to evaluating their geometric similarity in a referential (e.g., Euclidian)
geometric space, formally [14, 67]:

Sim(area, zone) =
|Intersection(area, zone)|

min(|area|, |zone|) (5.1)

The amount of overlapping between an area and a zone is controlled by the ex-
pert through a dedicated similarity threshold (cf. Figure 5.3a, e.g., Sim(area, zone) ≥
ThreshOverlap means the sensor coverage area largely overlaps with the sink zone).

(A) Using a symmetric similarity measure (B) Using an asymmetric similarity measure

FIGURE 5.3: Basic spatial topological relationships following [14, 67]

Similarly, the inclusion relation between and area and a zone is evaluated using
an asymmetric version of the geometric similarity measure, more formally [14, 68]
where the inclusion relation occurs if SimAsym(area, zone) ≥ ThreshInclude (cf. Figure
5.3b):

Sim(area, zone) =
|Intersection(area, zone)|

|area| (5.2)

Consequently, in cases 2-and-4 where edge device coverage areas are taken into
account, we perform area-based edge device sub-clustering, by evaluating edge de-
vice (sensor) coverage area similarity (cf. Formula 5.3) and grouping together edge
devices having largely overlapping coverage areas. The amount of overlapping
between two areas to be considered eligible for sink-level deduplication – is con-
trolled by the expert through a dedicated similarity threshold (cf. Figure 5.3a, e.g.,
Sim(area1, area2) ≥ ThreshOverlap then coverage areas largely overlap and their edge
devices are eligible for sink-level deduplication).



Chapter 5. Detecting Data Redundancies at the Sink Level 62

Sim(area1, area2) =
|Intersection(area1, area2)|

min(|area1|, |area2|)
(5.3)

After all edge devices (sensors) have been clustered and sub-clustered following
their target use cases, data from the final clusters are run separately through the
FREDD framework to perform the deduplication process.

5.4 FREDD Sink Level Evaluation

5.4.1 Complexity Evaluation

The overall time complexity of our FREDD approach simplifies to: O(N× E2) where
N designates the number of data items considered per edge device, and E the num-
ber of edge devices considered per sink node. Complexity is evaluated as the sum
of the complexities of the main modules of FREDD, considered both edge-level and
sink-level processing:

• For sink-level deduplication: the complexities of FREDD’s modules are linear
w.r.t. the number of data items being processed at the sink, and simplify in the
worst case scenario to O(N) + · · ·+O(N), which comes down to an overall
O(N).

• For edge-and-sink level deduplication: we consider: (i) the number of edge
devices E per sink node, where the system requires worst case O(((E× (E−
1))/2), and simplifies to O(E2) considering all edge nodes are present in the
same sink zone and need to be compared together pair-wise to identify their
coverage area intersections; (ii) the number of sink nodes S (i.e., number of
zones) in the environment, where the system requires worst case O(E × S)
to compare every edge node with every sink zone to identify their area-zone
intersections. As a result, FREDD’s overall complexity when performing edge-
and-sink level deduplication comes down to O(N × (E2 + E× S)) which sim-
plifies to O(N × E2) since E is generally much larger than S.

5.4.2 Experimental Evaluation

We evaluate the accuracy and efficiency of FREDD on the sink in a similar manner to
its evaluation on the edge (cf. Chapter 4 - Section 4.4). We describe first the dataset
used in the experiments. Then, define the metrics that we used for the evaluation.
Finally, we detail the experiments and results.

Experimental Test Data

We build three datasets for edge device, mobile device, and sink device measure-
ments collected from the Intel Lab Berkeley dataset that we previously used for the
evaluation of FREDD on the edge level. To do so we generated two datasets (dataset
1 and 2) to evaluate static and mobile edge-level deduplication. Here, we introduce
a third dataset (dataset 3) to evaluate FREDD on the sink level:

• Dataset 3: Sink device dataset – We assume a sink device Sink1 and construct
its dataset from the static Micra2Dot sensors as follows: (i) humidity and tem-
perature data for Sink1 is collected from the following nine sensors (used pre-
viously to create Dataset 2): S1-to-S4 and S6-to-S10 between 28/2/2004 and
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29/2/2004; (ii) data is ordered chronologically by date and time producing a
dataset of 31,135 data entries. The resulting dataset simulates the behavior of
a sink device collecting data from 9 different edge devices, where the location
of each data measurement is that of the source static sensor collecting it in the
Micra2Dot schematic.

Evaluation Metrics

In order to evaluate our proposal at the sink we use the same metrics (i.e., dedupli-
cation accuracy, and data reduction ratio) defined in the experimentation of FREDD
on the edge (cf. Chapter 4). Moreover, we consider two additional metrics that are
relevant for evaluating FREDD on the sink level, or edge-and-sink level:

Size of transmitted data (|dataTrans|) represents the size of the data transmitted
from the edge devices to the sink device. A good deduplication solution would
reduce both the size of data transmitted over the network in order to gain in network
bandwidth.

Size of stored data (|dataStored|) represents the size of the data stored at the sink
device1. A good deduplication solution would reduce the size of the data stored at
the sink in order to gain in processing efficiency, speed, and throughput at the sink
level.

Quality Evaluation

We conduct multiple sets of experiments to evaluate FREDD’s deduplication effec-
tiveness considering various parameters and use case scenarios, evaluating: (i) fuzzy
deduplication threshold; (ii) sink zone granularity; (iii) number of edge devices con-
nected to the sink; and (iv) sensor coverage area size. We also conduct a (v) base-
line comparison evaluating FREDD’s deduplication quality compared with its most
recent alternatives. We describe the experiments and their results in the below sub-
sections.

Fuzzy Deduplication Threshold Evaluation In this experiment, we vary the fuzzy
deduplication threshold, allowing the fuzzy redundancy detection process to decide
on the deduplication status of candidate data items, and evaluate FREDD’s behavior
accordingly. We perform this experiment at both edge node and sink node levels (cf.
Challenges 1 and 2 - Chapter 1). This allows the domain expert to choose a suitable
deduplication threshold in order to achieve the desired accuracy and deduplication
ratio following the expert’s needs (cf. Challenge 3 - Chapter 1). Figure 5.4 shows the
results of deduplication quality metrics when applied on data sink device data from
dataset 3 by varying the deduplication threshold. When the threshold increases: (i)
acc increases while (ii) redu decreases. This is due to the fact that a higher dedu-
plication threshold means less candidate pairs are considered for duplication. We
highlight the following observations:

• While acc increases and redu decreases when increasing the threshold for the
different deduplication methods, we note that the redu is relatively higher

1We follow the typical sensor network setup where edge devices do not perform any long-term
data storage.
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when deduplicating at both the edge-and-sink level, compared with edge-only
and sink-only deduplications.

• The size of data transmitted to the sink (|dataTrans|) and the size of data stored
at the sink (|dataStored|) are both increased with the increase in deduplication
threshold. This is mainly due to the decrease in redu, resulting in more data
being sent and processed at the sink node.

• |dataTrans| levels are equal when deduplicating at edge-only and at edge-and-
sink, and is less than the |datatrans| level when deduplicating at sink-only, since
data in the latter case are sent directly from the edge to the sink without edge-
level deduplication.

• |dataStored| is smallest in case of deduplication at edge-and-sink, compared
with edge-only and sink-only, since deduplication is performed at two levels.

(A) Deduplication accuracy acc (B) Data reduction ratio (redu)

(C) Transmitted data size to sink (|dataTrans|) (D) Stored data size at sink (|dataStored|)

FIGURE 5.4: Deduplication quality metrics obtained with varying
fuzzy deduplication thresholds

Sink Zone Granularity Evaluation In this experiment, we evaluate the impact of
sink zone granularity on the deduplication process. Consider the sample zone gran-
ularity configurations shown in Figure 5.5. We first consider the area shown in Fig-
ure 5.5a as one single zone including 9 sensor devices, and then gradually divide it
into smaller non-overlapping zones: 2, 3, 5, and 9 zones respectively (Figures 5.5b to
5.5e). We perform this experiment considering deduplication at the edge and sink
levels (cf. Challenges 1 and 2 - Chapter 1). It also highlights the domain expert’s
ability to divide the connected environment into different sink zone granularities in
order to achieve the desired behavior based on the expert and application needs (cf.
Challenge 3 - Chapter 1).
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(A) One single sink zone (B) Two sink zones

(C) Three sink zones (D) Five sink zones

(E) Nine (individual device) sink zones

FIGURE 5.5: Sample sink zone granularities using an extract of our
reference Micra2Dot dataset (cf. Figure 4.10)

Figures 5.6 and 5.7 show the results of deduplication quality metrics when ap-
plied on static edge data from dataset 1 (Figure 5.6), and on mobile edge data from
dataset 2 (Figure 5.7), by varying the number of zones in a sink coverage area. We
highlight the following observations:

• In the case of static devices (where nodes are not changing zones over time),
results show that an increase in zone granularity does not have any impact on
the deduplication results (deduplication metrics remain unaffected).

• In the case of mobile device (where nodes are changing zones over time), re-
sults show that an increase in zone granularity allows to i) increase acc and
ii) decrease redu. Increasing the number of zones within a certain area means
there is a higher chance that mobile devices will exit one zone and enter an-
other, hence data from the device becomes less likely to be considered for
deduplication.

We notice a similar behavior in Figure 5.7 which shows the results of deduplica-
tion quality metrics considering sink device data from dataset 3. Here, we highlight
the following observations:

• Considering deduplication at edge-only: results show that an increase in zone
granularity does not have any impact on the deduplication metrics, since all
edge devices in dataset 3 are static devices, and no additional deduplication is
performed at the sink level.



Chapter 5. Detecting Data Redundancies at the Sink Level 66

• Considering deduplication at sink-only and at edge-and-sink: an increase in
zone granularity produces: (i) an increase in acc and (ii) a decrease in redu.
This is because a higher number of zones means less sensors will be collecting
data from the same zone in a certain time span. Similarly, |dataTrans| from the
edges to the sink and |dataStored| at the sink will increase since less data are
being deduplicated at the edge level.

• In case only one sensor is collecting data in each zone (considering 9 different
zones in our empirical use case), all three deduplications (edge-only, sink-only,
and edge-and-sink) will produce the same results since edge devices are not
clustered together at the sink-level.

(A) Results with static device data from
dataset 1

(B) Results with mobile device data from
dataset 2

FIGURE 5.6: acc and redu results with varying zone granularities con-
sidering static edge nodes

(A) Deduplication accuracy acc (B) Data reduction ratio redu

(C) Transmitted data size to sink (|dataTrans|) (D) Stored data size at sink (|dataStored|)

FIGURE 5.7: Deduplication quality metrics obtained with varying
zone granularities considering mobile edge nodes

Number of Edge Devices Connected to Sink Nodes In this experiment, we eval-
uate the impact of changing the number of edge devices connected to the sink node.
We consider a 1-zone (1-sink) granularity scenario, and we vary the number of edge



Chapter 5. Detecting Data Redundancies at the Sink Level 67

devices in the zone from 1-to-9. We perform this experiment considering dedupli-
cation at the edge-and-sink level considering a varying number of edge devices per
sink node based on the domain expert and application needs (cf. Challenge 3 - Chap-
ter 1). Figure 5.8 shows deduplication quality metrics applied on sink node data
from dataset 3 while varying the number of devices dataset 3 is collected from. Re-
sults in Figure 5.8a show a decrease in acc and a slight increase redu at the sink node,
when the number of edge devices is increased per sink node. This is because more
data from more sensors is processed at the sink node, where sensors are more dis-
persed in the zone and might produce different measurements which are not always
suitable for deduplication. In addition, results in Figure 5.8b show drastic increases
in both |dataTrans| and |dataStored| when the number of edge devices increases per
sink node, highlighting the fact that more data is being transmitted to and stored at
the sink.

(A) Deduplication accuracy (acc) and data re-
duction ratio (redu)

(B) Size of Transmitted & Stored data
(|dataTrans|) & (|dataStored|) at the sink

FIGURE 5.8: Deduplication quality metrics applied on sink node data
(dataset 3), when varying the number of devices per sink zone

Sensor Coverage Area Size Evaluation In this experiment, we evaluate the impact
of varying the radius of sensor coverage areas on the deduplication process. We con-
sider in Figure 5.9 multiple configurations of sink coverage areas divided into three
zones including both hard and soft separations following our use case scenarios (cf.
Section 5.1). For every use case, we vary the sensor coverage area radius from 1
(i.e., data is only collected at the exact location of the sensor) to whole sink zone
(i.e., data is collected from the whole sink zone where the sensor device is located).
Deduplication is performed at the edge-and-sink level.
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(A) Hard separations|coverage area radius = 1 (B) Hard separations|coverage area radius = 4

(C) Hard separations|coverage area radius = 6 (D) Soft separations|coverage area radius = 1

(E) Soft separations|coverage area radius = 4 (F) Soft separations|coverage area radius = 6

FIGURE 5.9: Sample sink zone use cases with sensor coverage area
radius variations using an extract of the Micra2Dot dataset

Figure 5.10 shows deduplication quality metrics when applied on sink node data
from dataset 3. Here, we highlight the following observations:

• In case 1 – zone-based with hard separations (Figure 5.10a): acc, redu, and
|dataStored| are not affected by the size of the sensor’s coverage area, since the
deduplication process is only affected by the location of the sensor, and not
its coverage area. Note that |dataTrans| in unaffected in all cases (cf. Figure
5.10c) since the present use case variations do not target the data transmitted
from edge to sink: deduplication at the edge level is not affected by a sensor’s
coverage area.

• In case 2 – zone-and-coverage based with hard separations (Figure 5.10a) and
in case 4 – zone-and-coverage based with soft separations (cf. Figure 5.10b),
results show that an increase in the coverage area size leads to (i) a decrease in
acc; (ii) an increase redu; and (iii) a decrease in |dataStored|, since more sensors
are being considered for deduplication (clustered together) due to their cover-
age area overlaps (cf. Figure 5.10d). However, we notice that acc and redu for
case 2 stop decreasing/increasing and stabilize after reaching the limit of the
zone area, since the zone separations in this case are hard (i.e., the number of
sensors that could be clustered together will reach its limit).

• In case 3 – zone-based with soft separations (Figure 5.10b), redu increases with
the increase in coverage area size since separations between zones are soft,
since more sensors in this case will belong to more than one zone at the same
time.
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• For use cases 2 and 4 (zone-and-coverage), redu levels are smaller than those
for cases 1 and 3 (zone-based only). This is because cases 2 and 4 consider the
similarities between sensor coverage areas belonging to the same zones, allow-
ing to detect redundant measurements between similar sensors, thus affecting
the deduplication process accordingly.

• For a coverage area radius =1, acc and redu accuracy for both cases 1 and 2
are the same. This is because the coverage area size is too small, and hence,
each sensor will belong to one zone whether the separations are hard or soft.
|dataStored| increases with redu since deduplication is performed on the edge-
and-sink level.

(A) Deduplication accuracy acc (B) Data reduction ratio redu

(C) Transmitted data size to sink (|dataTrans|) (D) Stored data size at sink (|dataStored|)

FIGURE 5.10: Deduplication quality metrics applied on sink node
data (dataset 3), when varying sensor coverage area radius with mul-

tiple hard/soft separation use cases

Performance Evaluation

We evaluate here the efficiency in terms of execution time. Results in Figure 5.11a
highlight the polynomial complexity of FREDD’s edge-and-sink deduplication pro-
cess when varying the number of edge devices per sink node, reflectingO(E2) time.
Figure 5.11b highlights FREDD’s linear complexity when varying the number of sink
nodes, reflecting O(E× S) time.
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(A) Edge-and-sink level processing time when
varying the number of edge devices per sink

note

(B) Edge-and-sink level processing time when
varying the number of sink nodes, consider-

ing a fixed # of 10 edge devices per sink

FIGURE 5.11: FREDD’s time performance consider edge-and-sink
level deduplication processes with varying parameters

Baseline Comparison with Existing Approaches

In order to further evaluate our solution, we conducted a comparative study to as-
sess its effectiveness with respect to recent alternatives in the literature. On the one
hand, our solution (i) handles redundancies at both edge device and sink device lev-
els of the network (cf. Challenges 1 and 2 of our motivation scenario illustrated in
Chapter 1); (ii) handles static and mobile devices, taking into account zone separa-
tions (hard/soft) and coverage area variations (Challenge 2); and (iii) allows adapt-
ing the deduplication process behavior following the expert’s needs (Challenge 3).
Most of the latter challenges are overlooked by existing solutions, except for device
mobility which is handled in [24] (cf. comparative Table 5.2). On the other hand, our
solution performs fuzzy processing, allowing for improved deduplication quality
compared with the crisp deduplication processes employed in existing solutions.

TABLE 5.2: Comparing FREDD with alternative solutions

Challenge 1 Challenge 2 Challenge 3
Edge Level

Deduplication (Static)
Edge Level

Deduplication (Mobile)
Sink Level

Deduplication
Zone Separations

(Hard/Soft)
Sensor Coverage

Area Size
Domain Expert

Control
SVM [50] ✗ ✗ ✓ ✗ ✗ ✗

CWCA [24] ✗ ✗ ✓ ✗ ✗ ✓

REDA [53] ✓ ✗ ✗ ✗ ✗ ✗

DRMF [20] ✓ ✓ ✗ ✗ ✗ ✗

FREDD ✓ ✓ ✓ ✓ ✓ ✓

We experimentally compare our method’s effectiveness with two of its most
recent alternatives: i.e., REDA [53] and DRMF [20]. To test REDA, we consider
the crisp humidity ranges shown in Figure 4.11a. To test FREDD, we consider the
fuzzy humidity ranges in Figure 4.11b where 11 pattern codes are defined, and we
set the deduplication threshold to 0.8. We also consider two variations of DRMF:
(i) the first one with a deviation threshold equal to one quarter of the width of the
crisp range δ = 3/4 (which we refer to as DRMF_1); and (ii) the second one with
a deviation threshold equal to one eighth of the width of the crisp range δ = 3/8
(which we refer to as DRMF_2).

Figure 5.12 shows the acc and redu results obtained from each of the four algo-
rithms when varying the number of data measurements of dataset1. Results show
that FREDD consistently achieves the best acc results across all data variations com-
pared with both REDA, DRMF_1, and DRMF_2. This is specifically due to FREDD’s
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fuzzy processing capability, allowing to detect approximate redundancies and pro-
cess them for deduplication, compared with the crisp decision-making processes
performed by both REDA and DRMF.

(A) Deduplication accuracy (acc) (B) Data reduction ratio (redu)

FIGURE 5.12: Comparison of the deduplication quality metrics be-
tween RED, DRMF_1, DRMF_2, and FREDD, when varying the num-

ber of data measurements of dataset1

To further explain the results in Figure 5.12, we conduct a second experiment
where we compare the decision-making behavior of each algorithm applied on dif-
ferent pairs of humidity data measurement; the first data item is fixed at a certain
value, while the second item is varied within a controlled range. Figure 5.13 shows
the percentage of deduplication produced by each algorithm for a first humidity
value of 39.5µg/m3, and the second value with a variation range of ±2.5µg/m3.

FIGURE 5.13: Percentage of deduplicates when fixing the first humid-
ity data to 39.5µg/m3 and varying the second between [37, 42]µg/m3

Considering REDA’s results, all values that lie between [38, 41]µg/m3 are
considered automatic duplicates (i.e., 100% duplicates) and are assigned the same
pattern code. With DRMF_1, considering a delta δ = 2/3 and given a cluster
centroid of 39.5µg/m3, all values that lie between [38, 41]µg/m3 are considered
duplicates, and a new cluster centroid is computed outside those boundaries.
Such a behavior decreases acc since a good number of pairs are considered auto-
matic duplicates, producing 100% duplicates in Figure 5.13. A similar behavior
is also noticed for DRMF_2. In contrast, each pattern code range in FREDD is
divided into: (i) a crisp range where pairs are automatically considered duplicates
(i.e., from [39, 40]µg/m3); and (ii) a fuzzy range (i.e., between [37, 39]µg/m3 and
[40, 42]µg/m3) where boundaries from different other ranges overlap. In the fuzzy
range, the deduplication decision is made based on a fuzzy inference system and a
set of fuzzy rules, allowing the percentage of duplicates to vary accordingly (e.g.,
for a second value of 38µg/m3, the percentage of duplicates is 70%). By deciding on
an appropriate deduplication threshold (e.g., 0.8), only pairs that result in a dedu-
plication percentage bigger than 80% will be considered duplicates. Implementing
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such behavior makes the deduplication decision more accurate and intelligent.
Less duplicate pairs are considered automatic duplicates and the accuracy of the
deduplication process increases accordingly (as shown in Figure 5.13).

We have also compared FREDD’s time complexity with its recent alternatives,
REDA, DRMF_1, and DRMF_2, using different configurations when varying the
number of data items per edge node. Figure 5.14 shows representative running time
results considering a fix data size per edge device = 1000 items and a fixed number
of edges per sink node = 10. Results show that REDA is the most efficient approach
due to its fast and crisp pattern code assignment approach. FREDD requires more
processing time than REDA due to its fuzzy computation process. DRMF is seem-
ingly the most time consuming approach due to its data clustering process which
is utilized to perform data aggregation. This means that our approach is able to
produce improved deduplication quality while increasing execution time compared
with the crisp REDA approach, and outperforming the execution time of DRMF.

FIGURE 5.14: FREDD’s time performance compared with its recent
alternatives, considering a fixed data size of 1000 items per edge, and

a fixed number of 10 edge devices per sink node

5.5 Recap

In this chapter, we address the need to detect data redundancies at the core of a
CE (i.e., at the sink node level). We build upon FREDD: the Fuzzy Redundancy
Elimination for Data Deduplication approach introduced in Chapter 4 and consider
various environmental/physical, sensor-related, spatial features to detect redundan-
cies on the sink level. This allows us to cover data redundancy detection in a more
global manner in connected environments. This entails covering multiple scenar-
ios: (i) considering both static and mobile edge devices (cf. Challenge 1 in our mo-
tivating scenario); (ii) considering sink level deduplication by taking into account
hard-separated and soft-separated zones, and different sensor coverage areas (cf.
Challenge 2); and (iii) allowing the user or a domain expert to adapt and configure
the redundancy detection process (cf. Challenge 3). Various experiments on a real-
world dataset highlight FREDD’s potential and improvement compared with exist-
ing solutions. Having extensively covered data redundancy detection in Chapters
3-5, we shift our attention in the following chapter to redundancy removal/cleaning
(i.e., the deduplication part of the overall DRMCE process illustrated in Figure 1.5 -
Chapter 1).
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Chapter 6

Data Redundancy Cleaning

The previous chapters thoroughly discussed the process of detecting redundan-
cies in a CE (on the edge and sink levels). Our proposals considered the following
redundancy detection aspects: (i) considering both static and mobile edge devices
(cf. Challenge 1 of our motivating scenario - Chapter 1); (ii) considering physical,
spatial, and device-related features to enable a more contextually-aware data
redundancy detection at the sink level (cf. Challenge 2 of our motivating scenario
- Chapter 1); and (iii) considering the user needs/specifications when configuring
the redundancy detection process in order to allow domain experts to better detect
redundancies in their connected environments (cf. Challenge 3 of our motivating
scenario - Chapter 1).

In this work, we focus on cleaning data redundancies in CEs. Existing approaches
often disregard data consumer needs/requirements when cleaning the data redun-
dancies. Most of the existing approaches summarize a set of redundant data to
reduce it to one significant representative data item. This is traditionally done using
various functions (e.g., replacing the set by the mean, or median value). In this
proposal, we provide users/domain experts with more flexibility when removing
duplicates from their data. We provide for data consumers a mean for defining their
requirements and inject the latter in the deduplication process (at the redundancy
cleaning step). This enables the configuration and customization of this process
in order to adapt to consumers’ requirements (cf. Challenge 3 of our motivating
scenario - Chapter 1).

To do so, we cover in this chapter the data redundancy cleaning step of the
DRMCE process (proposed in Chapter 1) and present two data cleaning modes: (i)
the auto-clean mode for conventional and fast data cleaning (to be used if the users
don’t have specific needs for the deduplication step); and (ii) the consumer-centric
cleaning mode that consider various data consumer needs (e.g., domain expert, de-
vice, database, data processing service needs) and adapts the cleaning process ac-
cordingly. We describe how this is used with DRMF and FREDD in the DRMCE
global process. We also provide some experiments and results from this ongoing
work.

Elio Mansour, Faisal Shahzad, Joe Tekli, and Richard Chbeir. Data Redundancy Management Framework for
Connected Environments. Submitted to the Computing Journal.
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6.1 Introduction

As previously mentioned, the data collected from CEs often suffers from various
inconsistencies such as redundancies, anomalies, and missing values [26, 55].
Therefore, data refining and pre-processing are needed in order to prepare the
data for advanced processing. This enables the exploitation of useful, concise, and
complete data in decision making systems that aid users in handling their connected
environments. In the case of our study on data redundancy management, identify-
ing and cleaning unnecessary data (i.e., duplicates) is beneficial for (i) querying data
efficiently from edge devices and/or the network’s database; (ii) querying spatial-
temporal data efficiently from mobile edge devices; (iii) conserving the limited
resources of edge devices (e.g., battery, memory, bandwidth); (iv) conserving the
network’s shared resources (e.g., central database, bandwidth); and (v) providing
ready-to-use data collections for consumers based on their needs/requirements.

Since we already extensively detailed data redundancy identification/detection
in the previous chapters, we focus here on the second part of the deduplciation pro-
cess (i.e., the redundancy cleaning/removal/elimination). Existing works [34, 47,
48] (cf. Chapter 2) have targeted data redundancy elimination in CEs, however most
of them provide automated, quick-clean solutions that eliminate or summarize re-
dundancies. Their cleaning mechanisms are applied similarly for every set of redun-
dant data without considering the differing needs of the data consumers that require
the data. This is important because in a CE, different data consumers (e.g., a human
user retrieving data, a database storing data, devices exchanging data, and services
processing data), might have different deduplication needs or requirements. To il-
lustrate this, we provide some examples here:

1. A user might need the most concise answer for his/her data retrieval query.
This affects the deduplication process since it impacts the deduplication ratio
to be used when cleaning the identified redundant data.

2. A database administrator might specify a quota for data storage per device (to
improve its data storage strategy and conserve its resources). This affects the
deduplication process since it impacts the deduplication ratio when cleaning
the identified redundant data to provide an output data size does not surpass
the threshold/quota required by the database.

3. A device might need to exchange data with other devices on the edge of the
network (where resources are often limited). In this scenario, we consider de-
vices to be prosumers (i.e., producers when generating data and consumers
when asking for data). In this case, a device might require data exchange that
does not overload its processor, or consumer too much battery. This is dictated
by the amount of transmitted/recieved data which also depends on the dedu-
plication ratio applied when removing the identified data redundancies prior
to inter-device data exchange.

4. A data statistics service might require the data with the redundancies in order
to avoid biasing the calculated averages and statistics. However, a machine
learning service might require the data to be fully deduplicated to avoid ex-
cessive training of unnecessary data which could prove costly.

In order to address the aforementioned needs, we provide a consumer-centric
data redundancy removal process that takes into account the various needs of
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different data consumers and considers them in the deduplication process (cf.
Challenge 3 of our motivating scenario - Chapter 1). We discuss here how the
requirements are defined and used. Moreover, we illustrate how they can be used to
adapt the deduplication process to data consumer needs/requirements. In addition,
we also provide the automated cleaning mode (via summarizing redundant sets
of data based on the mean, or average value) in the DRMCE process if there
are no specific deduplication requirements to be considered. We also show how
this proposal can be coupled with DRMF and FREDD. Finally, we present some
preliminary experiments and results.

The remainder of this chapter is organized as follows. Section 6.2 provides some
preliminaries on how the data consumer requirements are defined and represent-
ed/used in DRMCE. Section 6.3 provides an overview of how the consumer-centric
deduplication process is coupled with DRMF and FREDD. Then, Section 6.4 dis-
cusses some preliminary experiments and results. Finally, Section 6.5 recaps this
study.

6.2 Preliminaries & Illustration Example

Once redundancies are identified, the redundancy removal process occurs. Here, we
propose two redundancy removal modes: (i) the auto-removal mode summarizes a
sequence of redundancies into one representative data item using the median or
mean representative values; and (ii) the consumer-centric mode considers a data
consumer request that describes the deduplication requirements/conditions when
removing redundancies. Following our running example data from Tables 4.11 and
A.1, the identified humidity and temperature redundancies can be removed using
the auto-removal median function as illustrated in Tables 6.1 and 6.2 respectively.

TABLE 6.1: Auto-Clean Mode (via Median) - Humidity Data Collec-
tion

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian (1, 2, 3) S1
Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian (5, 2, 7) S1

TABLE 6.2: Auto-Clean Mode (via Median) - Temperature Data Col-
lection

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Temperature 16◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian (2, 5, 3) S2
Temperature 21◦ C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian (8, 6, 3) S2

Note that data consumers might have different needs for redundancy removal.
For instance, a database could require a specific amount of data from each device
per day (thus affecting the deduplication ratio). An expert could have different re-
quirements based on available resources (e.g., high deduplication ratio if resources
are low). Similarly, devices and services consuming data might have specifications
for the redundancy removal process. In order to consider these needs (cf. Challenge
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3), data consumers can provide their requirements in the form of simple consumer
requests that the module translates into redundancy removal rules:

Definition 8 (Data Consumer Request). We define a consumer request req as a 3-tuple:

req = ⟨cid, sid, P⟩ where: (6.1)

• cid is the data consumer identifier

• sid is the data source (device) identifier

• P is a set of consumer preferences for the sensory data produced by the data source ■

Definition 9 (Data Consumer Preferences). Consumer preferences p ∈ P can be ex-
pressed as a 4-tuple:

p = ⟨targeta, f req, type, frep⟩ where: (6.2)

• targeta is the data measurement targeted by the request (e.g., humidity, temperature)

• f req is the data consumption frequency (expressed in units of time, e.g., per second,
every 30 seconds, every hour)

• type is the deduplication type (expressed in terms of required deduplication ratio or
percentage, or allowed memory size, CPU consumption, or energy consumption levels
during deduplication)

• frep is the data item representative selection function (including mean, median, min-
imum, maximum, as well as earliest value and latest value based on the data item’s
time stamp) ■

To illustrate the consumer-centric deduplication mode, consider the same hu-
midity data collection depicted in Table 4.11. In the following, we will define an
instance of a data consumer request (following Defintion 8) having one instance of
data consumer preference (following Definition 9) and transform this request into
a deduplication rule (cf. Figure 6.1) and apply it to generate the redundancy-free
result (cf. Table 6.3):

Step 1: Consumer Request & Preference: Consider the following request by user
1 that would like to query data from device 1 using the following data consumer
request:

req = ⟨user1, device1, p1⟩

The user expresses his preference of querying humidity data every day with a
deduplication ratio of 50% using the mean representative function via the following
preference p1:

p1 = ⟨humidity, everyDay, ratio = 50%, mean⟩

The user’s request/preference are tranlated into the following rule:
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FIGURE 6.1: Sample User Request Rule

Finally, the deduplication result is shown in the following table:

TABLE 6.3: Consumer-Centric Mode (via req1/p1) - Humidity Data
Collection

Attribute Value Temporal Stamp Location Stamp SourceFormat Value Format Value

Humidity 93 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian (2.5, 2, 5) S1
Humidity 103.5 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:30 Cartesian (6, 2, 7) S1

6.3 Linking Deduplication to DRMF & FREDD

The DRMCE process (cf. Figure 1.5) provides options for data redundancy detection
(i.e., DRMF for edge level data deduplication, and FREDD for edge-and-sink data
deduplication). Then, regardless of the chosen technique for redundancy identifi-
cation a set of redundant data is forwarded to the cleaning process. At this stage,
the user also gets to choose if he/she would like to apply the auto-clean mode or
the consumer-centric mode. Figure 6.2 shows a non detailed overview of how the
redundancy detection algorithms link to the redundancy cleaning modules.

FIGURE 6.2: Linking Redundancy Detection & Cleaning - Overview
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6.3.1 Redundancy Cleaning Components

Figure 6.3 shows a detailed overview of how the redundancy detection algorithms
(DRMF - previously detailed in Chapter 3, and FREDD - previously detailed in
Chapters 4-5) link with the different mechanisms for redundancy removal. We note
that when redundancies are identified (via DRMF or FREDD), one can either clean
via the automated mode or the consumer-centric mode. When using the auto-clean
mode, the Auto-clean Data Deduplication module is triggered. However, when consid-
ering data consumer needs, the Consumer-centric Data Deduplication module retrieves
the data consumer request from a central repository and cleans the duplicates ac-
cordingly. We also mention that the Deduplication Accuracy Evaluation module eval-
uates the accuracy of the deduplication process and compares it to an acceptable
system-defined threshold. If the accuracy is not good enough, one could adjust the
redundancy dtection configuration in order to detect redundancies more accurately
(e.g., trigger the detection tuning core of DRMF to automatically re-adjust the pa-
rameters of the redundancy detection algorithms, or one can change the configura-
tion of the fuzzy engine in FREDD to achieve better results). Finally, redundancy-
free data is sent to the data consumer.

FIGURE 6.3: Linking Redundancy Detection & Cleaning - Detailed



Chapter 6. Data Redundancy Cleaning 79

6.4 Implementation & Preliminary Evaluation

As previously mentioned, the consumer-centric cleaner is still an ongoing work. The
implementation of the request to rule parser is not yet finished. Therefore, we can-
not extensively evaluate the cleaner’s performance and accuracy here. However, in
order to show some preliminary results, we hard-coded two data cleaning rules in
a prototype developed in Python to show the feasibility of the proposal. We exper-
imented with the same Intel Lab datasets described in the previous chapters and
deduplicated sets of identified redundancies using the following two rules (cf. Fig-
ures 6.4a and 6.4b):

(A) Consumer request 1 (B) Consumer request 2

Consumer Requests 1 and 2 are ratio-based. This means that the user specifically
defines a deduplication ratio to be applied when cleaning duplicate values identi-
fied by the redundancy detection algorithm. Figures 6.5 and 6.6 show the results of
deduplicating using consumer requests 1 and 2 respectively (for these experiments
we identified redundancies on the entire humidity dataset using DRMF).

FIGURE 6.5: Deduplication Result - Consumer Request 1 .vs. Auto-
Clean
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FIGURE 6.6: Deduplication Result - Consumer Request 2 .vs. Auto-
Clean

6.5 Recap

Redundancy management consists of two main steps: (i) redundancy identification;
(ii) redundancy cleaning. We previously covered redundancy identification in Chap-
ters 3-5. In this chapter, we focus on redundancy cleaning by proposing two differ-
ent mechanisms in order to remove redundancies once identified. We complete our
DRMCE pipeline with an automated cleaning mode (auto-clean mode) that han-
dles redundancies like most of the existing approaches in the literature, and a novel
data consumer-centric redundancy cleaning mode that considers various data con-
sumers (e.g., users, databases, devices, and services) and their requirements when
cleaning duplicates. Although this is still an ongoing work, we show how these two
modes can be used with the previously introduced redundancy detection methods
(i.e., DRMF and FREDD). Moreover, we illustrate how the two cleaning modes work
and provide some preliminary experiments and results that highlight the potential
of the consumer-centric mode. A more complete implementation and evaluation of
this study will be provided in a dedicated work.
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Chapter 7

Conclusion & Future Works

7.1 Report Recap

7.1.1 In Chapter 1

We introduce the main motives behind the interest in connected environments and
how the latter are defined and organized. Then, we shift our attention towards in-
teresting data management topics such as anomaly detection/correction, missing
data management, and data deduplication. Thereafter, we present a smart hospital
connected environment to highlight are motivations in regards to data redundancy
management in connected environments. This scenario allows us to identify three
main challenges: (i) detecting redundancies at the edge of the network on static and
mobile devices; (ii) detecting redundancies at the core of the network by consider-
ing different environmental, physical, and sensor-related features; and (iii) allowing
users (e.g., domain experts) more flexibility when configuring the redundancy detec-
tion and cleaning processes. To do so, we introduce the DRMCE: Data Redundancy
Management in Connected Environment process/pipeline to identify and remove
data redundancies in various connected environments. Finally, this chapter lists the
thesis’s objectives and states the report’s structure.

7.1.2 In Chapter 2

We review the literature on redundancy identification and redundancy removal ap-
proaches. We provide summaries of each cited work and propose a set of criteria to
compare each category of approaches. Finally, we conduct a comparative study to
highlight the needs behind the proposals of this thesis.

7.1.3 In Chapter 3

We propose DRMF: the Data Redundancy Management for leaF-edge. This proposal
addresses Challenge 1 by identifying data redundancies at the source (i.e., on edge
sensing devices). Moreover, we define two types of redundancies here: (i) temporal
redundancies to be detected on static edge devices; and (ii) spatial-temporal redun-
dancies to be detected on mobile edge devices. We formally define the terminology
used in this work. Then, we provide a detailed description of the different modules
of DRMF. We evaluate our proposal’s performance and accuracy hen detecting re-
dundancies before recapping the chapter with a discussion of the main limitation of
this work: crisp threshold usage during the clustering might lead to missing some
data redundancies or flagging non-redundant data as redundancies.
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7.1.4 In Chapter 4

We address the limitations of DRMF by proposing an improved approach for data
redundancy detection at the edge of the network (also addressing Challenge 1). To
do so, we propose the FREDD method: Fuzzy Redundancy Elimination for Data
Deduplication, which uses fuzzy reasoning to overcome the crisp threshold limita-
tion. This proposal also considers static and mobile edge devices (cf. Challenge 1)
and provides domain experts with the flexibility needed to customize/configure the
redundancy identification process in order to adapt it to their needs/requirements.
We provide a preliminary on fuzzy reasoning, detail the FREDD architecture and
explain its modules while providing an illustration use case. Finally, we extensively
evaluate the performance and accuracy of FREDD before concluding the chapter.

7.1.5 In Chapter 5

We shift our attention towards detecting redundancies in the core of the network
(i.e., at the sink level). We identify key environmental, physical, and sensor-related
features to be considered (e.g., spatial setup of the environment, zoning, hard/soft
zone separations, sensor coverage areas) and extend FREDD to be used for data
deduplication at the sink. This study mainly addresses Challenge 2 in order to pro-
vide data deduplication at different layers of connected environments. We detail
the impact of the added constraints and how FREDD can consider them in order to
achieve deduplication at the core. Similarly to the previous chapter, we extensively
evaluate this proposal and provide a comparative analysis with existing works be-
fore concluding the chapter.

7.1.6 In Chapter 6

We focus on redundancy cleaning by proposing two modes for deduplication once
redundancies are identified. We implement first the auto-clean mode (heavily used
in the literature), that reduces a set of redundant data to one representative data item
(e.g. the mean, or median value). Then, we propose a data consumer-centric mode
that considers different data consumer needs/requirements (cf. Challenge 3) and
transforms them into deduplication rules that affect the cleaning phase in order to
produce results according to data consumer needs. Although this proposal is still
an ongoing work, we provide an overview of its framework and how it links to
our redundancy detection proposals in DRMCE (i.e., DRMF and FREDD). Then, we
show a couple of preliminary experiments and results before concluding the chapter.

7.2 Future Research Directions

7.2.1 DRMF

We plan to improve the deviation threshold estimation by considering pattern recog-
nition and providing multiple thresholds for a data collection. The current algorithm
tuning modules use conventional methods that generate one threshold for an entire
subset of data. Although this might be good for data with low fluctuations, if the
data is dynamic and varies a lot then multiple thresholds per data sections based on
detected patterns could prove more accurate.



Chapter 7. Conclusion & Future Works 83

7.2.2 FREDD

We are currently investigating the use of parametric learners [69] and meta-heuristic
algorithms [70] allowing to (semi) automatically configure the pattern codes’
interval ranges and the corresponding fuzzy rules based on expert defined, data
related, or application related features.

In the near future, we plan to extend this work to cover data redundancies at
the base station level of the network, where data is aggregated from multiple sink
nodes. In this context, different cases need to be considered including sink node
mobility, sink node coverage area overlapping, and inter-sink collaboration.

We also aim to detect composite redundancies [71] that are generated by
data fusion from multiple sensors, where deduplication would be handled at the
edge, sink, and base station levels of the network. These entail special challenges
depending on the structure, connectivity, dynamics, and overall properties of the
connected environment.

In the long run, we plan to investigate data recovery [72, 73] in CEs, including
damage assessment and recovery from deduplicated data.

7.2.3 Redundancy Cleaning

We plan to investigate rule markup languages and rule parsers in order to effi-
ciently transform user requests/queries that express deduplication preferences into
machine-readable and executable rules.

Also, we aim to continue the ongoing implementation and evaluation work for
the consumer-centric deduplication mode.

7.2.4 Other Research Directions

CEs often contain a variety of sensors producing different datatypes. In this thesis,
we covered scalar (numeric) data deduplication. However, the aforementioned
environments can contain sensors that produce multimedia data (e.g., images,
audio/video segments). In addition, one can find smart semantic sensors in these
environments that provide textual data instead of the numerical values. This
constitutes a need for multimedia and textual data deduplication in connected
environments.

Finally, we are currently investigation a CE decision maker that will help user-
s/environment managers decide where to perform data deduplication (e.g., at the
edge only, at the sink only, at the end and sink). We find this work interesting since
it allows users to better manage resources and data in their environments with the
help of a decision maker that will provide specific recommendations based on the
current status of the devices, the network, and the data flows.
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Appendix A

FREDD Computation Example

A.1 Computation Example - Temperature Collection

This appendix provides a detailed computation process of FREDD (cf. Chapter 4)
for the temperature data collection shown in Table 4.10. For the temperature case,
the agent recommends that the inputs 19.5◦C and 21◦C are 78.2% duplicates which
seems accurate following the temperature lookup tables and ranges defined in Table
4.5b (T1 and T2 fuzzy partitions intersect between [18, 20] ◦C, where 19.5 is closer
to the 20◦C boundary of T2 than to the 18◦C boundary of T1). The fuzzy inference
agent produces recommendations that simulate the domain expert’s deduplication
capability, and behaves following the expert’s design choices and needs.

A.1.1 Fuzzification:

Given case 1’s input data: Temp DataItem1 = 19.5◦C and Temp DataItem2 = 21◦C,
we compute the corresponding fuzzy membership values (cf. Figure A.1) following
the humidity fuzzy functions in Chapter 4 - Figure 4.4b (reported below):

(A) For Temperature DataItem1: f T1(19.5) =
0.25, f T2(19.5) = 0.75, and f T3(19.5) = 0

(B) For Temperature DataItem2: f T1(21) =
0, f T2(21) = 1, and f T3(21) = 0

FIGURE A.1: Fuzzification of Temperature DataItem1 and DataItem2

A.1.2 Condition-Action Rules:

Based on the input membership values, the following condition-action rules are in-
voked:

Rule 4

IF (Temp_DataItem1 is T1) AND (Temp_DataItem2 is T1) THEN
↪→ DedupStatus is Duplicate
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Rule 5

IF (Temp_DataItem1 is T2) AND (Temp_DataItem2 is T2) THEN
↪→ DedupStatus is Duplicate

A.1.3 Inference:

Applying Mamdani’s inference mechanism:

• Rule 4: Executing the AND fuzzy operator:

– min( f (19.5)Temperature_DataItem1
T1 , f (21)Temperature_DataItem2

T1 ) = min(0.25, 0) =
0

• Executing the implication fuzzy operator:

– fRule4 = min(0, Duplicate(DedupStatus))

FIGURE A.2: Inference - Rule4

• Rule 5: Executing the AND fuzzy operator:

– min( f (19.5)Temperature_DataItem1
T2 , f (21)Temperature_DataItem2

T2 ) = min(0.75, 1) =
0.75

• Executing the implication fuzzy operator:

– fRule5 = min(0.75, Duplicate(DedupStatus))

FIGURE A.3: Inference - Rule5
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A.1.4 Aggregation:

By applying the maximization aggregation function, Fagg = Fmax =
max( fRule4, fRule5), the agent produces the fuzzy coverage areas subsumed by the
inference membership functions (represented in transparent grey color in the below
graph).

FIGURE A.4: Aggregation

A.1.5 Defuzzification:

The center of gravity defuzzification function is applied on the fuzzy coverage area
to compute the corresponding center of gravity point (represented as a red dot in
the aggregation graph), and then identify the corresponding deduplication status
(on the x axis) the agent’s output = 78.2%.

FIGURE A.5: Defuzzification

A.1.6 Result:

Depending on the user or system deduplication threshold, a decision is made
whether the two data items are duplicates or not. Given dedupthreshold = 75% in
our running example, and since the output of the defuzzification step is 78.2% ≥
dedupthreshold, the agent’s final output becomes: dedupStatus = duplicates.

Given our running example data from Table 4.10, the identified temporal redun-
dancies following the fuzzy redundancy detection process are shown in Table A.1
where duplicates share the same row color and non duplicates are marked by uncol-
ored rows.
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TABLE A.1: Result - Temperature Data Collection

Attribute Value Value
Pattern Code

Temporal Stamp Location Stamp Zone
Pattern Code

Combined
Pattern Code SourceFormat, Value Format, Value

Temperature 16◦ C {T1} dd/MM/yyyy hh:mm:ss
10/02/2019 10:01:00

Cartesian
(2,5,3) {Z2} {T1− Z2} S2

Temperature 19.5◦ C {T1, T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:02:00

Cartesian
(5,6,3) {Z4} {T1− Z4, T2− Z4} S2

Temperature 21◦ C {T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:03:00

Cartesian
(8,6,3) {Z4} {T2− Z4} S2

Temperature 21◦ C {T2} dd/MM/yyyy hh:mm:ss
10/02/2019 10:05:00

Cartesian
(8,6,3) {Z4} {T2− Z4} S2
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