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Abstract

Ecole doctorale 564: Physique en 1'Ile-de-France
Doctor of Philosophy

Scattering Amplitudes in Effective Gravitational Theories

by Stavros MOUGIAKAKOS

In this thesis we study gravitational dynamics described via an Effective
Field Theory exploiting Scattering Amplitudes methods. In the first chapter,
we provide a discussion regarding the different approaches on the binary problem
in gravity and give some of the latest results in the field. In the second chapter,
we discuss in detail the Non-Relativistic General Relativity (NRGR) formalism
and derive the complete conservative gravitational cubic-in spin effective action
at the next-to-leading order in the post-Newtonian (PN) expansion for the inter-
action of generic compact binaries entering at the fourth and a half PN (4.5PN)
order. In the third chapter, we derive the static Schwarzschild-Tangherlini met-
ric by extracting the classical contributions from the multi-loop vertex functions
of a graviton emitted from a massive scalar field. By computing the scattering
amplitudes up to three-loop order in general dimension, we explicitly derive
the expansion of the metric up to the fourth post-Minkowskian order O(G%)
in four, five and six dimensions. Gauge issues and induced non-physical non-
minimal couplings as well as their subsequent treatment are discussed in detail.
In the fourth chapter, we study the gravitational radiation emitted during the
scattering of two spinless bodies in the post-Minkowskian Effective Field The-
ory approach. We derive the conserved stress-energy tensor linearly coupled to
gravity and the classical probability amplitude of graviton emission at leading
and next-to-leading order in Gy. We use it to recover the leading-order in Gy
angular momentum and total four-momentum radiated into gravitational waves
finding agreement with what was recently computed using scattering amplitude
methods. Our results also allow us to investigate the zero frequency limit of the
emitted energy spectrum.

This thesis is based on the works [1-3].
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Chapter 1
Introduction

Modern physics as we know it is based on two basic pillars: Quantum Mechan-
ics and General Relativity (GR). Quantum Field Theory (QFT) is the basic
framework we have to reconcile Quantum Mechanics and Special Relativity.
QFT has enjoyed a series of successful predictions, being at the heart of the
Standard Model of Particle Physics, and at the same time is a mathematically
elegant framework to describe physical phenomena. Therefore, QFT acquires
a strong claim in being the correct guideline to describe nature. On the other
hand, GR provides an extremely accurate framework to describe gravitational
phenomena, being the protagonist of cosmology, in the classical regime and ver-
ified experimentally in several different cases as well. A natural reasoning would
lead to the statement that gravity should be quantized. Even though this is not
proven, the fact that all interactions at low-distance exhibit a quantum behav-
ior, which for gravity is concluded to be Epjana =~ 10¥GeV, provides a strong
argument in favor of the above claim. In addition, recent developments con-
necting quantum entanglement and black holes [4] and the so called AdS/CFT
correspondence [5], which have seen a huge progress in the recent years, suggest
that gravity and quantum mechanics are closer than we thought. A natural
approach to quantize gravity would be to directly proceed to canonical quan-
tization, as we have done with the rest of the interactions, by considering the
deviations from the flat metric as the quantum field and quantize the Einstein-
Hilbert action

R

Unfortunately, the above procedure is not straightforward, as it is for QED,

QCD etc., since GR is a non-renormalizable theory due to its dimensionful cou-
pling. In other words, in order to make sense of GR as a QFT we need to
augment the theory with an infinite number of counterterms which render the

theory not predictive in general. From the above, it seems that there is an
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incompatibility between gravity and quantum mechanics which poses a para-
dox considering the previous claims. Many potential candidate theories resolve
this paradox, such as String Theory, Loop Quantum Gravity etc., but all of
these theories are beyond our current experimental limits. Therefore, we do not
have, a foreseeable, direct experimental proof of their validity. Nevertheless,
the approach of directly unifying gravity with quantum mechanics has offered
tremendous insights and mathematical structures which are exploited in other

approaches, as we shall see below.

In this thesis, we adopt a more "humble" approach to the problem of de-
scribing gravity as a QFT. One can consider the Einstein-Hilbert term as the
first term of a low-energy effective action , describing the gravitational force as
the exchange of a quantized massless spin-2 graviton field [6-10], augmented
by an infinite number of higher derivative operators [11]. Thus, the problem of
non-renormalizability arises naturally since the theory we are considering is a
low-energy Effective Field Theory (EFT) valid up to a specific energy scale, as it
happens with all EFTs. Equipped with the EFT approach, one can compute and
make predictions relevant for gravitational dynamics exploiting mathematical
tools inherited from particle physics and QFT. In the framework of General Rel-
ativity as a QFT (GRQFT), Scattering Amplitudes are fundamental quantities
for understanding the physics of elementary interactions. A precise understand-
ing of their properties is necessary to make contact with the experiments and
predict new physical phenomena. The analysis of their mathematical properties
makes it possible to update new physical principles underlying the organization
of quantum physics governing the fundamental interactions. It has long been
known that using the path integral formulation of GRQFT, it is very involved
to compute Scattering Amplitudes even for simple processes due to the compli-
cated form of the Feynman rules. Nevertheless, recent developments in the field
of Scattering Amplitudes have enabled us to effectively tackle multiloop compu-

tations in gravity, rendering the theory a practical tool for actual computations.

The basic idea of the on-shell methods for Scattering Amplitudes program
(see [12—14] for review) is to construct the Amplitude directly using symmetry
arguments (locality, unitarity, Lorentz invariance) without deriving it from the
action as we traditionally do via the path integral formalism. Namely, one can
bootstrap the form of the Amplitude by imposing symmetry conditions to the
result which is applicable to physical on-shell external states. Thus, we do not

need to introduce the redundant degrees of freedom which are introduced in
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the action to keep the symmetries manifest through the calculation, simplifying
immensely the computation. Spinor helicity formalism, BCFW relations, gen-
eralized unitarity [15-17] and other techniques have proven extremely valuable
in the program and are used throughout the literature enabling us to calcu-
late a large number of physical processes at high orders in loops and with high
multiplicity of interacting particles. This progress opens new theoretical investi-
gations, and the discovery of new properties. The application of these methods
to the theories of GRQFT is of paramount importance in understanding the na-
ture of the gravitational force at the classical and quantum level. A milestone in
the application of the on-shell methods in gravity are the BCJ relations (double
copy) [18-20], motivated from string theory through the KLT relations [21],
which relate straightforwardly a gauge theory amplitude with a gravitational
amplitude making such computations significantly simpler and at the same time
revealing a previously unknown relation between gauge and gravitational theo-
ries. Now that we can analytically calculate gravitational scattering processes,
it is possible to quantify more precisely the experimental predictions of grav-
ity theories generalizing, and going beyond, the ones introduced by Einstein
106 years ago [22]. In particular it is now possible to extract contributions of
quantum gravity impossible to calculate a few years ago. In addition, it is now
clear how one can extract higher Gy order contributions in classical gravity from
quantum multi-loop Scattering Amplitudes in GRQFT [23-29], thus enabling us

to make precise predictions in Classical Gravity exploiting the above techniques.

A strong motivation for studying gravitational dynamics is related to the
recent discoveries by the LIGO collaboration [30,31]. Since the first detection of
gravitational waves (GW) from a binary black hole coalescence was announced
in 2016, it has been an exciting period for research in gravity. It is the first time
we have observational data, with much more to come, for gravity in the strong
regime. The binary coalescence contains three phases: inspiral, merger, ring-
down (see Fig.1.1). It is important to stress, that while numerical simulations
currently exclusively treat the strong field regime in full detai, they are inher-
ently not suitable for tackling the inspiral phase. The long inspiral phase makes
up the major portion of the GW signal if observed in its entirety, and depending
on the masses in the binary, it can be the only observed signal falling within the
frequency band of the detectors, yet it can not be treated numerically due to
the intrinsic long timescale. The quest for analytic solution of the inspiral phase
of the binary, the weak coupling regime of the process, being of paramount im-

portance both for phenomenology and theory, has brought together researchers
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FIGURE 1.1: An illustration of the various phases of a black

hole merger and the corresponding gravitational wave signal.

The inspiral and the ringdown phase can be treated analytically,
while the merger phase is treated solely numerically.

from General Relativity and Particle physics. GR community has produced a
plethora of results within the so-called Post-Newtonian (PN) approximation,
an expansion both in Gy and velocity, suitable for slow rotating objects during
the inspiral phase (see [32,33] and references therein). Most recently, there have
been many results in the Post-Minkowskian (PM) approximation within GR as

well.

In particle physics, there has already been a huge amount of work accompa-
nied with the development of efficient tools for particle scatterings. Therefore, it
has been a natural step to apply these methods to the binary problem. With the
seminal work of [34], the introduction of Post-Newtonian Effective Field The-
ory (PNEFT), or Non-Relativistic General Relativity (NRGR) (see Fig.1.2),
formalism enabled us to apply particle physics tools to the binary problem, giv-
ing rise to many new results compensating the huge progress that has already
been made from the GR community. For a detailed introduction to the PNEFT

formalism and the state of the art results, go to Chapter 2.

Most recently, the so-called Post-Minkowskian (PM) framework [36-45],
which consists in expanding the gravitational dynamics in the Newton’s con-

stant Gy while keeping the velocities fully relativistic, has received a renewed
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,\Zﬁm

F1GURE 1.2: A graphic representation of the conceptual pipeline

of the PNEFT formalism. Similarly, one works in the PMEFT

framework. rg is the radius of the compact object, r is the dis-

tance between the components of the binary and Agw is the

characteristic wavelength of the emitted gravitational wave. Im-
age reproduced from [35].

interest. This is complementary to the post-Newtonian approach, where one ex-
pands in both velocity and G, since in a bound state these two are related by
the virial theorem (see Fig.1.3). Many progresses have been made within the PM
approximation thanks to the application of several complementary approaches:
in particular the effective one-body method [43,44,46,47], the use of scattering
amplitude techniques, such as the double copy, generalized unitarity and effec-
tive field theory (EFT) [27,28,48-55] (see [2,7-10,23,56-58] for the quantum
field theoretic description of gravity), the eikonal approximation [59-68] and
worldline EFT approaches [3,69-73]. These developments concern the scattering
of unbound states, but results can be extended to bound states by applying an
analytic continuation between hyperbolic and elliptic motion [74,75]. Progresses
have addressed the conservative binary dynamics up to 4PM order [76-81], as
well as tidal [82-88], spin [89-97] and radiation effects [3,98-105], and have

spurred other new interesting results (see e.g. [106-110] for an incomplete list).

Evidently, the quest for analytic solutions of the dissipative two body prob-
lem in gravity is far from over. The field is highly motivated by the plethora of
the forthcoming observational data and the need for higher precision in order to

both investigate the validity of our current understanding and the discovery of
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F1GURE 1.3: A depiction of the relative comparison between
Post-Newtonian (PN) and Post-Minkowskian (PM) approxima-
tion.

new physics. The amount of the cited research work in the recent years suggests
that much more progress is on the way. In the heart of the recent advances lies
the complementarity of the many different approaches to the problem as it has
already been exhibited. In addition, highly sophisticated integration techniques
have been employed lately to push the precision frontier of the state of the art
results. Furthermore, investigations of GR extensions and quantum signatures
in the observational data is a pathway that could be of interest in the coming
years. At the same time, the search for the fundamental nature of quantum
gravity and the relation between the other forces is pursued in the same di-
rection. All in all, the dialectic dynamic between observational data and new

ideas, on the theoretical side, promises exciting advances in the future.

Adopting the significance of approaching a problem from different angles,
this thesis is devoted in this direction. The rest of the dissertation is organized
as follows: In Chapter 2 we introduce the NRGR formalism, which serves as a
conceptual guideline of the different effects appearing in the dissipative binary
problem, and explicitly compute the gravitational cubic in spin conservative
interaction at NLO entering at 4.5PN order being of importance for rapidly ro-
tating compact objects and their internal structure. In Chapter 3, we derive the
Schwarzschild-Tangherlini metric in general dimensions via a GRQFT approach

using quantum off-shell Scattering Amplitudes, for the first time up to 3-loop
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order, providing a systematic way to extract consistently classical physics from
quantum amplitudes, albeit the formalism is suitable for considering quantum
effects as well. In chapter 4, we devote ourselves in the study of radiation emis-
sion in the PMEFT framework which serves both as a tool to compute actual
waveforms relevant for the gravitational wave detectors and also unveil radia-

tion reaction effects affecting the conservative dynamics of the system.
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1.1 Présentation en francais

La physique moderne telle que nous la connaissons repose sur deux piliers fon-
damentaux : la Mécanique Quantique et la Relativité Générale (RG). La théorie
Quantique des Champs (QFT) est le cadre de base dont nous disposons pour
réconcilier la Mécanique Quantique et la Relativité Restreinte. QFT a béné-
ficié d’une série de prédictions réussies, étant au cceur du modele standard de
physique des particules, et en méme temps est un cadre mathématiquement élé-
gant pour décrire les phénomenes physiques. Par conséquent, QF T acquiert une
forte prétention a étre la ligne directrice correcte pour décrire la nature. D’autre
part, GR fournit un cadre extrémement précis pour décrire les phénomenes
gravitationnels, étant le protagoniste de la cosmologie, dans le régime clas-
sique et vérifié expérimentalement dans plusieurs cas différents également. Un
raisonnement naturel conduirait a affirmer que la gravité doit étre quantifiée.
Méme si cela n’est pas prouvé, le fait que toutes les interactions a faible dis-
tance présentent un comportement quantique, qui pour la gravité est conclu
A Eplancc ~ 10¥GeV, fournit une forte argument en faveur de l'allégation ci-
dessus. De plus, les développements récents reliant 'intrication quantique et les
trous noirs [4] et la correspondance AdS/CFT [5], qui ont connu d’énormes pro-
gres ces dernieres années, suggerent que la gravité et le quantum la mécanique
est plus proche qu’on ne le pensait. Une approche naturelle pour quantifier
la gravité serait de procéder directement a la quantification canonique, comme
nous l'avons fait avec le reste des interactions, en considérant les écarts par
rapport a la métrique plate comme le champ quantique et de quantifier I'action
d’Einstein-Hilbert

R

Malheureusement, la procédure ci-dessus n’est pas simple, comme c’est le cas

pour QED, QCD, etc., car GR est une théorie non renormalisable en raison
de son couplage dimensionnel. En d’autres termes, pour donner un sens a
GR en tant que QFT, nous devons augmenter la théorie avec un nombre in-
fini de contre-termes qui rendent la théorie non prédictive en général. D’apres
ce qui précede, il semble qu’il existe une incompatibilité entre la gravité et
la mécanique quantique qui pose un paradoxe compte tenu des revendications
précédentes. De nombreuses théories candidates potentielles résolvent ce para-
doxe, telles que la théorie des cordes, la gravité quantique a boucle, etc., mais
toutes ces théories dépassent nos limites expérimentales actuelles. Par con-

séquent, nous n’avons pas de preuve expérimentale directe et prévisible de leur
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validité. Néanmoins, I'approche consistant a unifier directement la gravité avec
la mécanique quantique a offert d’énormes connaissances et structures mathé-
matiques qui sont exploitées dans d’autres approches, comme nous le verrons

ci-dessous.

Dans cette these, nous adoptons une approche plus « humble » du probleme
de la description de la gravité comme un QFT. On peut considérer le terme
d’Einstein-Hilbert comme le premier terme d’une action efficace a basse énergie,
décrivant la force gravitationnelle comme 1’échange d’un champ de graviton
quantifié de spin-2 sans masse [6—10], augmenté d’un nombre infini d’opérateurs
dérivés supérieurs [11]. Ainsi, le probléme de la non-renormalisabilité se pose na-
turellement puisque la théorie que nous considérons est une théorie des champs
effectifs a basse énergie (EFT) valable jusqu’a une échelle d’énergie spécifique,
comme c’est le cas avec tous les EFT. Equipé de I'approche EFT, on peut cal-
culer et faire des prédictions pertinentes pour la dynamique gravitationnelle
en exploitant des outils mathématiques hérités de la physique des particules et
du QFT. Dans le cadre de la relativité générale en tant que QFT (GRQFT),
les amplitudes de diffusion sont des grandeurs fondamentales pour comprendre
la physique des interactions élémentaires. Une compréhension précise de leurs
propriétés est nécessaire pour prendre contact avec les expériences et prédire
de nouveaux phénomenes physiques. L’analyse de leurs propriétés mathéma-
tiques permet de mettre a jour de nouveaux principes physiques sous-tendant
I'organisation de la physique quantique régissant les interactions fondamentales.
On sait depuis longtemps qu’en utilisant la formulation intégrale de chemin de
GRQFT, il est tres compliqué de calculer les amplitudes de diffusion méme
pour des processus simples en raison de la forme compliquée des regles de Feyn-
man. Néanmoins, les développements récents dans le domaine des amplitudes
de diffusion nous ont permis d’aborder efficacement les calculs multi-boucles en

gravité, faisant de la théorie un outil pratique pour les calculs réels.

L’idée de base des méthodes sur shell pour le programme Scattering Ampli-
tudes (voir [12-14] pour examen) est de construire 'amplitude directement en
utilisant des arguments de symétrie (localité, unitarité, invariance de Lorentz)
sans la dériver de l'action comme on le fait traditionnellement par le chemin
du formalisme intégral. A savoir, on peut amorcer la forme de 'amplitude en
imposant des conditions de symétrie au résultat qui est applicable aux états
externes physiques sur la coque. Ainsi, nous n’avons pas besoin d’introduire

les degrés de liberté redondants qui sont introduits dans ’action pour garder
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les symétries manifestes a travers le calcul, simplifiant énormément le calcul.
Le formalisme de I'hélicité de spinor, les relations BCFW, 'unitarité général-
isée [15-17] et d’autres techniques se sont avérées extrémement précieuses dans
le programme et sont utilisées dans toute la littérature nous permettant de
calculer un grand nombre de processus physiques a des ordres élevés dans les
boucles et avec une multiplicité élevée de particules en interaction. Ces progres
ouvrent de nouvelles investigations théoriques, et la découverte de nouvelles
propriétés. L’application de ces méthodes aux théories de GRQFT est d'une
importance primordiale pour comprendre la nature de la force gravitationnelle
au niveau classique et quantique. Les relations BCJ (double copie) [18-20],
motivées de la théorie des cordes a travers les relations KLT [21], qui relient
directement une amplitude de théorie de jauge a une amplitude gravitation-
nelle, ce qui simplifie considérablement ces calculs et révele en méme temps une
relation jusqu’alors inconnue entre les théories de jauge et la théorie gravita-
tionnelle. Maintenant que nous pouvons calculer analytiquement les processus
de diffusion gravitationnelle, il est possible de quantifier plus précisément les
prédictions expérimentales des théories de la gravité généralisant, et allant au-
dela, celles introduites par Einstein il y a 106 ans [22]. En particulier, il est
désormais possible d’extraire des contributions de la gravité quantique impossi-
bles a calculer il y a quelques années. De plus, il est maintenant clair comment
on peut extraire des contributions d’ordre G plus élevées en gravité classique a
partir d’amplitudes de diffusion multi-boucles quantiques dans GRQFT [23-29],
nous permettant ainsi de faire des prédictions précises en gravité classique en

exploitant les techniques ci-dessus.

Une forte motivation pour étudier la dynamique gravitationnelle est liée
aux récentes découvertes de la collaboration LIGO [30,31]. Depuis que la pre-
miere détection d’ondes gravitationnelles (GW) a partir d'une coalescence bi-
naire de trous noirs a été annoncée en 2016, cela a été une période passionnante
pour la recherche en gravité. C’est la premiere fois que nous avons des don-
nées d’observation, avec beaucoup plus a venir, pour la gravité en régime fort.
La coalescence binaire contient trois phases : inspirale, fusion, ringdown (voir
Fig.1.4). Il est important de souligner que si les simulations numériques trait-
ent actuellement exclusivement le régime de champ fort en détail, elles ne sont
intrinsequement pas adaptées pour aborder la phase inspiratoire. La longue
phase inspiratoire constitue la majeure partie du signal GW si elle est observée
dans son intégralité, et en fonction des masses dans le binaire, elle peut étre le

seul signal observé entrant dans la bande de fréquence des détecteurs, mais elle
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FIGURE 1.4: Une illustration des différentes phases d’une fusion

de trous noirs et le signal d’onde gravitationnelle correspondant.

La phase inspirale et la phase de ringdown peuvent étre traitées

analytiquement, tandis que la phase de fusion est traitée unique-
ment numériquement.

ne peut pas étre traitée. numériquement en raison de la longue échelle de temps
intrinseéque. La recherche d’une solution analytique de la phase inspiratoire du
binaire, le régime de couplage faible du processus, étant d’une importance capi-
tale tant pour la phénoménologie que pour la théorie, a réuni des chercheurs de
la Relativité Générale et de la Physique des Particules. La communauté GR a
produit une pléthore de résultats dans ’approximation dite post-newtonienne
(PN), une expansion a la fois en Gy et en vitesse, adaptée aux objets a rotation
lente pendant la phase d’inspiration (voir [32,33] et références). Plus récem-
ment, il y a eu de nombreux résultats dans I’approximation post-minkowskienne
(PM) au sein de la RG également.

En physique des particules, il y a déja eu un énorme travail accompagné
du développement d’outils efficaces pour la diffusion des particules. Par con-
séquent, il a été naturel d’appliquer ces méthodes au probléme binaire. Avec
les travaux fondateurs de [34], I'introduction de la théorie des champs effectifs
post-newtoniens (PNEFT), ou de la relativité générale non relativiste (NRGR)
(voir Fig.1.5), le formalisme nous a permis de appliquer des outils de physique
des particules au probleme binaire, donnant lieu a de nombreux nouveaux ré-
sultats compensant les énormes progres déja réalisés par la communauté des

RG. Pour une introduction détaillée au formalisme PNEFT et a I'état de l'art
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:G;u

FiGureE 1.5: Une représentation graphique du pipeline con-

ceptuel du formalisme PNEFT. De méme, on travaille dans le

cadre PMEFT. rg est le rayon de ’objet compact, r est la dis-

tance entre les composantes du binaire et Agw est la longueur

d’onde caractéristique de l'onde gravitationnelle émise. Image
reproduite de [35].

des résultats, reportez-vous au chapitre 2.

Plus récemment, le cadre dit post-minkowskien (PM) [36-45], qui consiste en
I’expansion de la dynamique gravitationnelle dans la constante de Newton Gy
tout en gardant les vitesses totalement relativistes, a suscité un regain d’intérét.
Ceci est complémentaire a I’approche post-newtonienne, ou 'on développe a
la fois la vitesse et G, puisque dans un état lié ces deux sont liés par le
théoréme du viriel (voir Fig.1.6). De nombreux progres ont été réalisés au sein
de I'approximation PM grace a l'application de plusieurs approches complé-
mentaires : en particulier la méthode efficace & un seul corps [43, 44,46, 47],
I'utilisation de techniques d’amplitude de diffusion, telles que la double copie,
I'unitarité généralisée et la théorie des champs effectifs (EFT) [27, 28, 48-55]
(voir [2,7-10,23,56-58] pour la description de la théorie quantique des champs
de la gravité), 'approximation eikonale [59-68] et les approches EFT world-
line [3,69-73]. Ces développements concernent la diffusion des états non liés,
mais les résultats peuvent étre étendus aux états liés en appliquant une contin-
uation analytique entre le mouvement hyperbolique et elliptique [74,75]. Les

progres ont abordé la dynamique binaire conservatrice jusqu’a l'ordre de 16
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FIGURE 1.6: Une représentation de la comparaison rela-
tive entre l'approximation post-newtonienne (PN) et post-
minkowskienne (PM).

heures [76-81], ainsi que la marée [82-88], spin [89-97] et les effets des radi-
ations [3,98-105], et ont suscité d’autres nouveaux résultats intéressants (voir

par exemple [106-110] pour une liste incompléte ).

De toute évidence, la quéte de solutions analytiques du probleme dissipatif a
deux corps en gravité est loin d’étre terminée. Le domaine est fortement motivé
par la pléthore de données d’observation a venir et le besoin d’une plus grande
précision afin d’étudier a la fois la validité de notre compréhension actuelle et la
découverte de nouvelles physiques. La quantité de travaux de recherche cités au
cours des derniéres années suggere que beaucoup plus de progres sont en cours.
Au coeur des avancées récentes se trouve la complémentarité des nombreuses
approches différentes du probleme tel qu’il a déja été exposé. De plus, des
techniques d’intégration tres sophistiquées ont été utilisées ces derniers temps
pour repousser la frontiere de la précision des résultats de pointe. De plus, les
investigations sur les extensions GR et les signatures quantiques dans les don-
nées d’observation sont une voie qui pourrait étre intéressante dans les années
a venir. En méme temps, la recherche de la nature fondamentale de la gravité
quantique et de la relation entre les autres forces est poursuivie dans la méme
direction. Au total, la dynamique dialectique entre données d’observation et
idées nouvelles, du coté théorique, promet des avancées passionnantes dans le

futur.
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Adoptant I'importance d’aborder un probleme sous différents angles, cette
these est consacrée dans cette direction. Le reste de la these est organisé comme
suit : Dans le chapitre 2 nous introduisons le formalisme NRGR, qui sert de
guide conceptuel des différents effets apparaissant dans le probleme binaire dis-
sipatif, et calculons explicitement la cubique gravitationnelle en interaction con-
servatrice de spin a NLO, I'entrée a 'ordre de 4,5PN est importante pour les
objets compacts a rotation rapide et leur structure interne. Dans le chapitre 3,
nous dérivons la métrique de Schwarzschild-Tangherlini en dimensions générales
via une approche GRQFT utilisant des amplitudes de diffusion quantiques hors
coque, pour la premiere fois jusqu’a l'ordre de 3 boucles, fournissant un moyen
systématique d’extraire systématiquement la physique classique a partir des am-
plitudes quantiques, bien que le formalisme soit adapté pour considérer égale-
ment les effets quantiques. Dans le chapitre 4, nous nous consacrons a 1’étude
de I'émission de rayonnement dans le cadre PMEFT qui sert a la fois d’outil
pour calculer les formes d’onde réelles pertinentes pour les détecteurs d’ondes
gravitationnelles et dévoile également les effets de réaction de rayonnement af-

fectant la dynamique conservatrice du systeme .
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Chapter 2

Effective Field Theory of

Post-Newtonian Gravity

In this chapter we will introduce the basics of the Effective Field Theory of Post-
Newtonian Gravity (EFT of PNG), also known as Non-Relativistic General
Relativity (NRGR). The formalism was firstly developed in [34] and further
expanded by several authors. Our aim is to familiarize the reader with the
systematics of the NRGR formalism (see refs. [111,112] for extensive reviews),
which will prove useful as a conceptual guideline for the rest of this thesis, and
finally focus on the contribution of the author [1] on the conservative sector of
the cubic-in-spin effective action at the next-to-leading order.

In this work [1] we derive for the first time the complete gravitational cubic-
in-spin effective action at the next-to-leading order in the post-Newtonian (PN)
expansion for the interaction of generic compact binaries via the effective field
theory for gravitating spinning objects, which we extend in this work. This sec-
tor, which enters at the fourth and a half PN (4.5PN) order for rapidly-rotating
compact objects, completes finite-size effects up to this PN order, and is the
first sector completed beyond the current state of the art for generic compact
binary dynamics at the 4PN order. At this order in spins with gravitational
nonlinearities we have to take into account additional terms, which arise from
a new type of worldline couplings, due to the fact that at this order the Tul-
czyjew gauge for the rotational degrees of freedom, which involves the linear
momentum, can no longer be approximated only in terms of the four-velocity.
One of the main motivations for us to tackle this sector is also to see what hap-
pens when we go to a sector, which corresponds to the gravitational Compton
scattering with quantum spins larger than one, and maybe possibly also get an
insight on the inability to uniquely fix its amplitude from factorization when
spins larger than two are involved. A general observation that we can clearly
make already is that even-parity sectors in the order of the spin are easier to

handle than odd ones. In the quantum context this corresponds to the greater



16 Chapter 2. Effective Field Theory of Post-Newtonian Gravity

ease of dealing with bosons compared to fermions.

2.1 Basics of Non-Relativstic General-Relativity

In this section we will provide the basic background of the Non-Relativistic
General Relativity (NRGR) formalism [111,112] for studying the inspiral phase
of the binary problem in gravity. The general considerations below serve as a
conceptual guideline beyond the specific formulation of the NRGR formalism.
Namely, the tower of EFTs and the method of regions are schemes that are used

also in a PM approximation of the problem.

2.1.1 Basics of EFTs

Let us first consider a general interacting scalar theory in 4 dimensions S(¢)
as a toy model and suppose that we are interested in investigating an energy
regime F < A where A is an ultraviolet (UV) energy cutoff. For this purpose,
it is convenient to split the field as ¢ = ® + ¢, such that:

e ¢ are light Degrees of Freedom (DOF) with an energy scale £
e & are heavy DOFs with an energy scale A.

Thus, ® don’t propagate as a physical DOF, in the energies that we are inter-
ested, but only off-shell. This fact is in the heart of the EFT approach. One
can integrate out ® and acquire an effective description of the theory in terms

of the light field v, as long as we are interested in energies of order £ < A.
G /DCD eSW®) (2.1)

The procedure of integrating out ® can be done via standard QFT methods
perturbatively, considering the heavy field & propagating only off-shell. By

doing so, one ends up with
e 2
Suw) = [ (50,07 + 3°C,0.0)) 2.2

where O,,(1) are local operators with mass dimension n. This is the Top-Down
approach, first developed by Wilson [113,114]. The coefficients C,, are called
Wilson coefficients and they encode all the information of the UV theory, the
effects of the heavy field ®, on the low-energy effective theory.
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Another way to build an EFT is the Bottom-Up approach. One employs
this approach when there is no knowledge of the UV theory from the beginning.
In this case, symmetries and other properties of the low-energy theory can be
applied in order to construct an effective theory of the form 2.2. Since we don’t
have knowledge of the UV complete theory, the Wilson coefficients, C,,, in this
case are unfixed and one requires a matching procedure either by comparing
with experimental data or performing Top-Down computation and adjusting

the coefficients by matching.

In both approaches, power counting is an extremely powerful tool since it
enables us to organize and identify the contributions of the operators O, (1)
at any given order. From power counting arguments, we can deduce that the

scaling of the Wilson coefficients is

1
Cp~ Ani- (2.3)
Thus, the contributions from the operators are suppressed as (%)n < 1, en-

abling us to identify the relevance of each operator at any given order.

One last important remark concerns the identification of the classical and
the quantum contributions. As in all perturbative QFT treatments, loop dia-
grams contribute to quantum contributions while tree diagrams give classical
contributions. In theories with both massive and massless degrees of freedom,
the situation is more subtle [25,26] and will be discussed further in Chapter
3. Nevertheless, for the scalar case the above holds true. In addition, in the
rest of this chapter as we will see we will use a worldline description of the
sources, thus the only propagating degrees of freedom will be the gravitons.
Therefore, again for worldline theories the identification of trees=classical and

closed loops=quantum holds true.

To sum up, EFT is an extremely powerful framework, both conceptually
and practically, allowing us to decouple the UV physics from the low-energy
scales that we are interested in. The large separation of scales plus the identi-
fication of the low-energy DOFs and the symmetries of a theory enables us to
approach almost any problem from a low-energy point of view. These general
considerations will be our guidelines for the rest of this chapter and, adjusted

properly, for the rest of this thesis as well.
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FIGURE 2.1: The hierarchy of scales in the binary inspiral prob-

lem: r;, the scale of the single compact object; 7, the scale of the

orbital separation between the components of the binary; A.qq,

the wavelength of radiation, emitted from the inspiraling binary;
it holds that ry < 7 < A\qq. Reproduced from [112]

2.1.2 Tower of EFTs

Having established the general considerations of the EFT approach, we are
ready to confront the binary problem in gravity. As we have already said, the
crucial starting point of constructing the EFT is the identification of the scales of
the problem. Fortunately, the binary problem can be viewed as an (interacting)
tower of EFTs separated by three largely separated scales, ry < r < Aqq as

shown in 2.1. Thus, we can split the problem in zones:

e internal zone: In this zone we work at the scale r,, which for compact
neutron stars or black holes is the Schwarzschild radius r, ~ 2Gym.
The effective description at this scale will be of the point-particle EFT,
as we will see below, where the finite size effects (dissipation and tidal
deformations) can be generally parametrized upon integrating out the

short scale degrees of freedom.

e potential zone: At this intermediate zone, we are working at the orbit scale
r which is the typical separation between the point-particles consisting
the binary. In the inspiral phase, where v < 1, it is guaranteed via the
virial theorem that GNTm ~ v? and therefore the expansion parameter
s~ v? < 1. In this zone, we analyze the conservative dynamics of the

binary system by describing point particles interacting via the exchange

of off-shell potential graviton modes. These potential modes, typically
scaling as |l§ | ~ 1/r, probe the internal structure of the objects which affect
the conservative dynamics. Furthermore, the conservative dynamics are

also influenced by the radiation zone via radiation back-reaction effects.

e radiation zone: In this outer zone, the orbital scale r becomes part of
the internal zone and the binary system is treated as a point-like source

equipped with a series of multipole moments I”, J*, emitting on-shell
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graviton modes of momentum p. At this stage, both Top-Down and
Bottom-Up approaches are used to compute the multipole moments of
the binary system. The scale we are working is \,.q ~ r/v and the expan-
sion parameter is |p|r ~ 57— ~ v < 1. In addition, we observe hereditary
effects coming from the interaction of the emitted radiation with the static
potential and also radiation-reaction effects whose origin comes from the

back-reaction of the gravitational wave to the dynamics of the binary.

To summarize, we split the metric as

gMV = gfu/ + n},LV + HMV + huy ) (24)

where g;,, is the strong modes at scale ~ rs, H,, is the potential off-shell
graviton modes at scale r and h,, are the radiation on-shell graviton modes at
scale \.qq. In order to compute the effective action, we integrate out scale by
scale the "shorter" degrees of freedom within the saddle-point approximation

(classical physics) via standard QFT methods perturbatively as

eiSet = / Dh DH Dg* €. (2.5)

Then, by extremizing the real part,
0 Re S 0 (2.6)
e Set = :
S5zq(t) i

one obtains the equations of motion for the binary constituents, while from the

optical theorem,

1 1 [ &T
-7 _ - B0 9.
7 Sen Z/dEde d (2.7)

we get the radiated power, with dP = FEdl'.

2.1.3 Internal zone

As we have already proclaimed, the NRGR formalism starts from integrating out
the strong gravitational field at the level of the single body in order to acquire
an effective description of an extended object as a point particle. Namely, we

are considering the gravitational action

_ 1 4
S = T /d T\/gR[guw] + ... (2.8)
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where ... stands for higher derivative corrections to Einstein gravity and matter
couplings (e.g. in the case of neutron stars). It is beyond the purpose of
this thesis to consider GR extensions, thus we will contain ourselves in the
Einstein-Hilbert action. Furthermore, the matter couplings at the scale ry will
be encoded, as we will see, in the Wilson coefficients of the one-particle EF'T
that we will arrive. Therefore, the Wilson coefficients will distinguish between
different extended objects at the level of the EFT and can be computed via a

matching procedure. Next, we split the metric as

Guw = Gy + G (2.9)

where g7, denotes the strong field (short distance) modes that are to be inte-
grated out from the theory and g,, describes the metric outside the radius 7.
At this point, we employ a Bottom-Up approach to describe the single body.
We identify the relevant DOFs at this scale as the worldline of the particle and
we introduce an infinite series of worldline operators which respect the known
symmetries of the system, namely diffeomorphism and reparameterization in-
variance. Our goal is to keep the discussion as general as possible, therefore we
will include also the spinning case on which we will focus mainly later on. So,
when including spinning bodies in the description we have more independent
DOFs beyond the worldline coordinates. The spinning case is not that trivial
due to the fundamental conflict between an actual rotating gravitating object,
which must have an extended finite size for its rotational velocity to not surpass
the speed of light, and its view in the EFT as a point particle. Below, we list the
relevant DOFs and the associated symmetries for the general case of a spinning

object including finite size and spin effects.

Degrees of Freedom

e The gravitational field. The metric g,, and the gravitational tetrad field

satisfying g = éteyn.

o The particle worldline coordinate. x,(c) is a function of an arbitrary affine
parameter o. The time coordinate is used to fix the gauge of the affine

parameter, and we have the 3 DOFs, giving the position of the particle

e The particle worldline rotating DOFs. We consider the worldline tetrad,
an orthonormal frame §* = e/ (o)ey(o)nB, localized on the particle

worldline connecting the body fixed and general coordinate frames. The
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gravitational field DOFs satisfy é*(x(0)) = Ad(0)e!;, where AZ(o) is the

worldline Lorentz matrix.
Symmetries

o General coordinate invariance.

Worldline reparametrization invariance.

Internal Lorentz invariance of the local frame field.

e SO(3) invariance of the body fized spatial triad.

Spin gauge invariance, that is an invariance under the choice of a com-
pletion of the body-fixed spatial triad through a timelike vector. This is

a gauge of the rotational variables.

Finally, upon integrating out the short distance modes gy, following a Bottom-
Up approach, identifying the relevant degrees of freedom and invoking the sym-

metries of the problem, the one-particle EFT takes the form

Set[z(0), 7] = — : GQGN / d*w/GR[Gu] + Spp. » (2.10)

where S, ;. is

1
Spp. =— /da [mv u? + 55’“,,(2“”}
utu?

+CR/d(7 Rm+CV/dU Ruy%—i—...
Uu

+ /dr Q2 (T)Eyj(2) + ... + (E — B)

- (—1)"Cggen Sk Shen
—l—Z/dUWDuzanmEmuzT

= (-1)”035271 Sk, Skt
+Z/damD“2"+l'“D”3B“1HQT , (211)

where 7 is the proper time, o is the coordinate time, z(o) is the worldline coor-

dinate, /(o) is the worldline tetrad defined as g* = nBeiey, ut(o) = %:')

is the coordinate velocity, Q" = e/ D[‘;iy is the worldline angular velocity, S*”

is the antisymmetric worldline spin tensor (conjugate to the angular velocity)

and the dual is defined as xS,5 = %ea[ngW, SH = *S‘“’% is the spin vec-
p

tor, E,,(z) = Chuapuu’ and B,,(z) = %eangaiyu‘*u‘s are the electric and
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magnetic components of the Weyl tensor, Qg p are the trace-free electric (and
magnetic) quadrupole moments DOFs, E(B);; are the spatial components of the
projected to the locally flat comoving frame e’j(x) (with efj(x) = u*) electric
and magnetic components of the Weyl tensor and ... stands for higher derivative

contributions.

The first line describes the minimal coupling of the worldline DOFs for a

general spinning object.

The second line describes the first non-minimal coupling terms of the world-
line DOFs for the non-spinning case incorporating finite size effects. Neverthe-
less, a consequence of the Birkhoft’s theorem is that these operators are, what is
called in EFT terminology, redundant. Essentially, for on-shell quantities these
operators can be set to zero since they can be canceled when one replaces the
leading order equations of motion back to the action. Equivalently, one can
perform a field redefinition and drop them. Even though, these operators can
be effectively ignored for our purposes, and subsequently in the definition of
E

ma
when considering off-shell quantites such as the metric as we will see in detail in

B,,, we can replace the Weyl with the Riemann tensor, this is not the case
Chapter 3, although in a different setup but along the same physical arguments.

The third line gives us the physical finite size effects for non-spinning objects
in the EFT description of the extended compact object. Several comments are
in order here. Firstly, we introduced a new set of DOFs to describe finite
size effects, which we will see below that are relevant for describing dissipative
effects, where we have used the SO(3) symmetry of a static spacetime in order to
write down the operators. Secondly, even though the gravitational interaction
is local the quadrupole moments may depend on time. Thus, we can split them
in different components QfBln = <Q£Bm) s+ (szBZn) R, Where ()¢ is computed
in the background of short modes and ()g is in general the induced multipole
moment in the presence of long wavelength perturbations. Furthermore, we
know that for spherically symmetric non-spinning isolated objects, (Q[)s = 0,

so for simplicity we will focus only on this term for what follows. Using linear

response theory, we can write

@)n(r) = 5 [ (G 7)) Bula) + . 1)
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where Giof (1, 7') = ([QE(7), QE(7'))]0(7 — ') and similarly for the magnetic-

type components. The crucial identification is that the real part of 2Gf?ef Z(T, ')
is associated with the tidal effects while the imaginary part is associated with
dissipation effects, e.g. absorption from the BH’s horizons or the dissipative
tidal deformations of NSs. One can write, in the frequency domain, iG* (w) =
F(w)(0irdj + dudjn + 6;50k). For the imaginary, dissipative, contribution one
can compute via the optical theorem the absorption cross section in the EFT in
terms of I'm f(w), match with the GR result [115] and deduce that this contri-
bution enters at 6.5PN order. On the other side, for the real, tidal, contribution
we can expand Re f(w) in powers of wry < 1, since we are considering the long
wavelength perturbations, and using the time reversal symmetry of the real part
of the response we can write Re f(w) = cg + cz(wrs)* + ... . Replacing back
into the action and writing in terms of the coordinate time, o, we get that the

second line can be written, up to 6.5PN order neglecting dissipation, as

E? B?
CE/dO' l“é + CB/dO' l“; + ... (213)
Vu Vu

Note that as long as we are neglecting dissipative finite size effects, we don’t
need to introduce a new DOF to describe the compact object. Furthermore, the
first operators stand for the mass-induced quadrupolar tidal deformation of the
extended object by the gravitational field. Each added derivative in an operator
scales as 1/r, and is preceded by a Wilson coefficient with the proper power of
75, 50 that overall each term scales as powers of r,/r ~ v?. Thus, from dimen-
sional analysis one easily finds that the leading Wilson coefficients cg g, which
are equivalent to the ‘Love numbers’ originally defined in Newtonian gravity,
scale as r2 at LO, and that these finite size operators enter at the 5PN order.
It has also been proven that for non-spinning BHs in d = 4, the 'Love numbers’
vanish. Note that these coefficients are gauge invariant, because they appear
multiplying gauge invariant terms in the effective action, and even though their
matching is always done in some specific gauge, when they vanish they do at

all scales, and there is no RG running of this coupling.

The final lines give the generalised non-minimal coupling of the worldline
for a spinning compact object, describing finite size effects due to spin, that we

will discuss in more detail in the rest of this chapter.
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2.1.4 Potential zone

In the potential zone, we want to obtain the EFT of the composite particle via
the Top-Down procedure using standard perturbative QFT methods, involving
a diagrammatic expansion and Feynman calculus. This EFT removes the scale
of orbital separation between the components of the binary. It is then matched
onto the effective action constructed bottom-up, as we will see in the next
section, with the point-particle action now being that of the composite particle,
in terms of multipole moments. Equipped with the point-particle EFT from
(2.10),(2.11), one can proceed to consider the binary system in the potential

zone using the action

Scons. - SEH + SGF + Sp.p.l + Sp.p.2 s (214)
where Sgr is the gauge-fixing term we have to add to the action in order to

integrate out the gravitational field.

Furthermore, at this stage we will decompose the metric as
g,uu = 77}“/ + Hy,z/ + hy,z/ 9 (215)

where H,,, is the off-shell potential modes and £, is the emitted on-shell radi-

ation modes. We will work in the fully harmonic gauge, thus

1 ~~ v
SerlH) = g5 [ /5T, (HI 1] (2.16)

where I'G [H] =T\ [H]g"" = V{, HY — %V’(‘h)H}j. Working within the back-

ground field method, covariant derivatives are taken with respect to the back-

ground field. However, in the conservative sector that we are now considering,
no background radiation modes are present, and so the covariant derivative is
just the standard one. In addition, when including spin one needs to fix the
gauge of the rotational DOFs in order to integrate out completely the orbital
modes. This discussion will be held in the spinning EFT of the next sections

in detail.

Finally, we know that for the orbital modes we have ko ~ v/r while |k| ~ 1/r,
so that we can expand the propagator in momentum space as
1 1 k2 1

- o - 2
P (1 4 ) =~ (14007) (2.17)
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so that the propagator is instantaneous, and the relativistic time corrections
to the propagator are considered as PN perturbations. Therefore it makes
sense, and indeed it has proven very useful in practice, to reduce over the time
coordinate in the metric in a Kaluza-Klein (KK) fashion, so that the metric is

rewritten as follows:
ds® = g datdr” = e*?(dt — Ayda')? — e_%%jdxidxj , (2.18)

which defines the KK fields: ¢, A;, and 7;; = 0;; + 0, , identified as the New-
tonian scalar, the gravito-magnetic vector, and the tensor fields, respectively,
where v, = §; and A' =Y A;. What is left is to derive the Feynman rules
and using standard QFT diagrammatic techniques, integrate out the orbital
modes (see Fig. 2.2) and obtain the effective action for the composite particle.
In doing so, one derives a Hamiltonian containing only physical DOFs an higher
order time derivatives which can be eliminated either by replacing the EOMs,
obtained via a variation of the action, back to the action or via appropriate field
redefinitions. Thus, the Top-Down approach to construct the EFT of the com-
posite particle in the potential zone for the conservative sector is concluded at
a given order. One will encounter UV divergencies, coming from the point par-
ticle approximation, which are regularized in dimensional regularization. After
renormalization of the theory through counter-terms, the couplings will depend
on a scale y and obey renormalization group equations whose boundary con-
ditions are obtained via a matching procedure. Furthermore, as we will se
below in the radiation zone, one encounters an IR/UV mixing originating from
a double counting of the potential (IR) and the radiation (UV) zone and thus
is taken care of in the EFT by means of the zero-bin subtraction [116]. The
current state of the art in the conservative sector is at the 4PN order [117] while
partial results have been obtained at 5PN as well [106, 118]. Spin effects have
also been computed at high PN order and the current state of the art has been
computed in [1,119-121].

2.1.5 Radiation zone

In the previous section, we described how one can derive the conservative dy-
namics by neglecting the radiation modes from the effective action. However,
in order to compute physical quantities for the gravitational wave emission we
need to consider also the physical on-shell radiation modes. Thus, in this sec-

tion we will restore the radiation modes which will induce interactions both
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FiGUrE 2.2: Sample diagrams needed for the conservative sec-
tor.

with the worldlines and the potential graviton modes. We will see several fea-
tures coming from the subtle interplay between the conservative and the radia-
tion regions such as hereditary effects(tails, memory) and dissipative (radiation
back-reaction) which influence the conservative dynamics. Furthermore, the
following discussion will be connected with the content of Chapter 4, albeit in

a Post-Minkowskian approximation.

The general logic is that we will construct an EFT for a radiating source
via a Bottom-Up approach and we will match to the EFT of the composite
particle that we obtained via explicitly integrating out the potential modes in
the previous section, considering also radiation modes. Namely, we consider a
general effective action of a single composite object coupled to the gravitational
field g = N + hyw

1

RRTE / d'w\/GR + Sar[h] + Spp.(comp.) (2.19)

where Sgrlh]| is the gauge fixing term for the radiation modes on flat background

and S, p.(comp.) 18 the effective worldline action at the radiation scale describing
a composite object which, by employing reparametrization and diffeomorphism

invariance, takes the following form

_ 1
Sp.p.(comp.) = - / dt\/§<M<t> + §EZJkLk(t)(QIjF + w,ujuu)
— 1 2
— =y L\ Y o — L 0 v - TR B
lz:; (l' ( )VL 28411y (l—|— 1)| ( )VL 2P0 l))

(2.20)

where M is the total mass of the composite object, QfF is the locally flat angular

velocity and the spin connection, wfj, couple to the total angular momentum,
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L7 = ¢, L*, of the composite object. The SO(3) tensors I”, J& with the su-
perscript L as an abbreviated notation for 4y...4;(I > 2), which are symmetric
and trace free (STF) with respect to the spatial Euclidean metric, are commonly
referred to as the mass and current multipoles, and are of even and odd parity,
respectively. Along the worldline, latin indices are defined with respect to a (co-
moving) locally-flat vierbein, e’y (z) with ef = u*, such that g" = efef —d"efe”,
and V = €'V, where V,, is the covariant derivative with respect to g,

From the above action we can compute the radiated power, by integrating
out hy, using Feynman’s boundary conditions and taking the imaginary part of
the final effective action, as a function of the mass and current multipoles. Fur-
thermore, we can directly compute the graviton emission amplitude Aj(w, k),
in terms of the multipoles, which is again very useful for the computations of
the gravitational waveforms and the radiation back-reaction contribution. To
do so, ones needs a matching procedure in order to extract the mass and cur-
rent multipoles in terms of the short distance physics, that we can in principle
derive in a Top-Down approach from the potential zone. Essentially, we need to
compute the stress-energy pseudotensor, which includes all the potential zone
"microphysics" but not non-linear effects in the wave’s propagation, these ef-
fects will be included when considering the tails and extend the definition of

the stress-tensor, which couples to the radiation field to leading order, as

/ Az T (@) (2). (2.21)

In order to restore the PN power counting and perform the matching, we first

expand the radiation mode, assuming that the center of mass of the binary is
defined as !, = [ d®z T*(t,z)2" and i, =0, as

<01 . )
Z—‘ . dy,.0;, W (L,0) (2.22)
=0

where each x'0; ~ v, thus restoring the PN power counting In the end, one can
s h) LT (w, k) from

the Top-Down approach in the transverse-traceless gauge, su1ted for physical

compute the graviton emission amplitude Aj(w,k) =

modes, and match with the amplitude computed in the Bottom-Up A (w,k) =
%[wzlm(w) + 2wk'e*! Jik(w) 4 ...]. Note that since we do not neglect the
radiation modes in the potential zone when integrating out the potential modes
H, the radiation modes will induce also worldline couplings that contain both

H, h and we will also have purely graviton couplings of the form HHh etc. The
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FIGURE 2.3: Sample diagrams needed for the graviton emission.

associated Feynman rules and the relevant diagrams must be included in the

computation of the graviton emission amplitude (see Fig. 2.3).

Some last remarks concern several non-trivial effects that one observes when
working in the radiation zone. Firstly, there are Tail effects appearing. These
effects originate from the fact that the gravitational wave interacts with the
background geometry which is sourced from the binary system in the radiation
zone far away from the binary system. These effects are corrections to the mul-
tipole moments and induce both UV and IR singularities. The IR singularities
exponentiate to an overall phase and can be absorbed into a time redefinition.
The UV singularities are handled by renormalization of the theory, thus the
multipole moments exhibit a classical Renormalization Group (RG) flow. Tail
effects contribute logarithmic contributions to the multipole moments which are
independent of the short distance physics of the composite particle. In addi-
tion, one obtains Memory effects, which originate from the self interactions of
the radiation modes and are treated in a similar manner as the tails (See Fig.
2.4).

Finally, a very intriguing effect is the Radiation Backreaction effect. As it
has already been noted, the radiating binary system is dissipative since there is
no incoming radiation at the asymptotic past. Thus, one should impose bound-
ary conditions which are not symmetric in time in order to obtain physical
observables such as the gravitational waveform or the radiation reaction effect.
Up to now, we have been working with standard Feynman propagators in an "in-
out" formalism, for which we assume time symmetry. It has been shown that
in order to consistently impose retarded boundary conditions, breaking time
symmetry, when integrating out the radiation modes one may use the "in-in'
(or Schwinger Keldysh) formalism. Using the "in-in" formalism and comput-

ing the real part of the effective action by integrating out the radiation modes,
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I

(a) (b) ()

FIGURE 2.4: Sample Feynman diagrams needed for the heredi-

tary effects. (a) depicts the quadrupole radiation in the effective

theory of the composite particle derived via matching with the

diagrams of Fig.2.3, (b) is the leading tail effect (relative 1.5PN

correction) and (c) represents the leading memory effect (rela-

tive 2.5PN correction) related to the radiation backreaction in
Fig. 2.5 (a).

(@ (b)

FIGURE 2.5: Sample Feynman diagrams needed for the radia-

tion backreaction effects. (a) is the LO effect at 2.5PN related

to Fig. 2.4(c) and (b) is the leading non-linear effect entering at
4PN and contributes to the conservative potential.

one gets a contribution to the conservative potential due to radiation reaction.
Furthermore, by including hereditary effects, we get UV/IR divergences as we
discussed in the previous paragraph. The origin of these divergences comes from
a double counting between the potential and the radiation zone. Specifically,
it has been shown that the IR divergencies in the potential zone are associ-
ated with UV singularities in the radiation zone coming from the point particle
approximation of the binary (See Fig. 2.5). Nevertheless, within an EFT for-
malism the overlapping is avoided by implementing the ‘zero-bin subtraction’
(see [122]) and we can consistently treat these divergencies and renormalize the
theory. Radiative corrections have been tackled in [123]. The current state of
the art results including radiation reaction effects were derived in [124-126] for

the non-spinning case while for spinning objects in [127,128].
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] | (N9)LO | NOLO | N2LO | N3LO | N4LO
50 1 0 3 0 25
st 2 7] 32| 114
52 2 2 18 52
S3 4 24
5 3 5

TABLE 2.1: The complete state of the art of PN gravity theory

for the orbital dynamics of generic compact binaries. Each PN

correction enters at the order m + [ + Parity(l)/2, where the

parity is 0 or 1 for even or odd [, respectively. We elaborate on

the meaning of the numerical entries and the gray area in the
text.

2.2 Gravitational S® interaction at the NLO
PN order

2.2.1 Introduction

In recent years we have made a remarkable progress in pushing the precision
frontier for the orbital dynamics of compact binaries, i.e. whose components are
generic compact objects, such as black holes or neutron stars. The complete
state of the art to date for the orbital dynamics of a generic compact binary is
shown in table 2.1.

As a measure for the loop computational scale we show in table 2.1 the
number of n-loop graphs that enter at the N"LO in [ powers of the spin, i.e. up
to the [th spin-induced multipole moment, in the sectors approached to date.
The count is based on computations carried out with the effective field theory
(EFT) of PN Gravity [34], which use the Kaluza-Klein decomposition of the field
from [129], that has considerably facilitated high-precision computations within
the EFT approach [106,117-121,129-139]. As can be seen the current complete
state of the art is at the 4PN order, whereas the next-to-leading order (NLO)
cubic-in-spin sector that enters at the 4.5PN order for maximally-rotating ob-
jects is evaluated in this work. We note that recently the static piece of the
non-rotating sector at the 5PN order was also obtained in [106, 118].

Let us stress that in order to attain a certain level of PN accuracy, the various
sectors should be tackled across the diagonals of table 2.1, rather than along the
axes, namely progress must be made by going in parallel to higher loops and to

higher orders of the spin. In general, the former involves more computational
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challenges of loop technology and tackling associated divergences, whereas the
latter necessitates an improvement of the fundamental understanding of spin in
gravity, and tackling finite-size effects with spin [112]. The latter enter first at
the 2PN order [140] from the LO spin-induced quadrupole. Within the EFT
approach, whose extension to the spinning case was first approached in [141],
finite-size effects include as additional parameters the Wilson coefficients, that
correspond, e.g., to the multipole deformations of the object due to its spin, as
in [142] for the spin-induced quadrupole.

With a considerable time gap from the LO result, the NLO spin-squared
interaction was treated in a series of works [136, 143-146], where in [136] it
was derived within the formulation of the EF'T for gravitating spinning objects,
that provided the leading non-minimal couplings to all orders in spin. The
LO cubic- and quartic-in-spin interactions were first tackled in [145, 147] for
black holes. In [135], based on the formulation presented in [136], these were
derived for generic compact objects, where also the quartic-in-spin interaction
was completed. Only specific pieces of the latter were recovered in [148] via
S-matrix combined with EFT techniques, whereas [149], which treated only
cubic-in-spin effects, also provided the LO effects in the energy flux. Following
the work in [135, 136], the case of black holes was then also completed for
the LO sectors to all orders in spin [150]. Finally, the NNLO spin-squared
interaction was derived in [138]. Notably the latter results together with the
complete quartic-in-spin results for generic compact objects in [135], both at
the 4PN order, were derived exclusively within the EFT formulation of spinning
gravitating objects [136]. Building on the latter, recent works further pushed
at the 4.5PN [119] and 5PN [120, 121] orders for maximally-spinning objects.

Recently, there has also been a surge of interest in harnessing modern ad-
vances in scattering amplitudes to the problem of a coalescence of a compact
binary. Notably, a new implementation for the non-rotating case to the deriva-
tion of classical potentials was carried out in [76,77]. Further, based on a new
spinor-helicity formalism introduced in [89] for massive particles of any spin,
new approaches to the computation of spin effects of black holes in the classical
potential were put forward in [151,152] and then in [90,93]. In these approaches
classical effects with spin to the [th order correspond to scattering amplitudes
involving a quantum spin of s = [/2. In particular as of the one-loop level
the gravitational Compton amplitude in figure 2.6 is required, where factoriza-
tion constraints can not uniquely determine the amplitude for s > 2 [89]. The
gray area in table 2.1 then corresponds in the quantum context to where the

gravitational Compton scattering with a spin s > 1 is required.
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FIGURE 2.6: The gravitational Compton scattering relevant as

of the one-loop level. The gravitational Compton amplitude in-

volves two massive spinning particles and two gravitons, where

factorization constraints do not uniquely determine the ampli-
tude for s > 2 [89].

Notably, the gray area in table 2.1 also corresponds to, as was already
pointed out in [136], where we can no longer take the linear momentum p,,
with which the generic formulation in [136] was made, to be its leading approx-

imation given by m\q/ll%, as in all previously tackled spin sectors, but we have

to take into account corrections to the linear momentum from the non-minimal
coupling part of the spinning particle action. Can we then get a well-defined
result? Can we get an insight from examining this new feature at the classical
level on the non-uniqueness of the graviton Compton amplitude with s > 27

This work builds on the formalism of the EFT for gravitating spinning ob-
jects introduced in [136] and the implementation on [135], to compute the cubic-
in-spin interaction at the NLO, that enters at the 4.5PN order for maximally-
rotating compact objects, pushing the current state of the art of PN theory
in general and with spins in particular [153], and that is the leading sector in
the intriguing gray area of table 2.1. We compute the complete sector, taking
into account all interactions that include all possible spin multipoles terms up
to and including the octupole. Thus beyond pushing the state of the art in
PN theory, there are two conceptual objectives that we get to address in this
work: 1. To learn how the spin dependence of the linear momentum affects the
results in the interaction; 2. To see whether this new feature is related with the
non-uniqueness of the gravitational Compton amplitude of higher-spin states,
or get any possible insight on this non-uniqueness.

The section is organized as follows. In section 2.2.2 we go over the formu-
lation from [136], and the necessary ingredients to evaluate the more familiar
part of the sector. In section 2.2.3 we present the essential computation, where
the linear momentum assumes its leading approximation in terms of the four-
velocity, as in all past evaluations of spin sectors. In section 2.2.4 we find

the new contributions arising from the spin-dependent correction to the linear
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momentum, which matters as of this sector, and gives rise to a new type of
worldline-graviton coupling. In section 2.2.5 we assemble the final action of
this sector, and finally we conclude in section 2.2.6 with some observations and

questions.

2.2.2 The EFT of gravitating spinning objects

Let us consider the ingredients of the theory that are required in order to carry
out the evaluation of this sector, that contains spins up to cubic order along
with first gravitational nonlinearities. This evaluation will build on the EFT of
gravitating spinning objects formulated in [136], and its implementation from
LO up to the state of the art at the 4PN order in [135-138,153]. We will also use
here the Kaluza-Klein decomposition of the field [129,154], which was adopted in
all high-order PN computations both with and without spins for its facilitating
virtues [112], and follow conventions consistent with the abovementioned works.
Further, we keep similar gauge choices, notational and pictorial conventions as
presented in [136].

The effective action we start from is that of a two-particle system [112], with
each of the particles described by the effective point-particle action of a spinning
particle, that was provided in [136]. This effective action contains a purely
gravitational piece, from which the propagators and self-interacting vertices
are derived. The Feynman rules for the propagator and the time insertions
on the propagators are given, e.g. in egs. (5)-(10) of [134], and for the cubic
gravitational vertices in egs. (2.10)-(2.13), and (2.15) of [137]. Further, for each
of the two particles, the worldline action of a spinning particle is considered
from [136], where its non-minimal coupling spin-induced part was constructed to
all orders in spin, and then gauge freedom of the rotational DOFs is incorporated
into the action.

We recall that this action has the form

P Swp, D
Sop(0) = / do [—m\/ﬁ — 58S — S et ST (2.23)

p?> Do ’

given in terms of the four-velocity v*, the linear momentum p,, and the rota-
tional DOFs in a generic gauge, denoted with a hat, e.g. gm,, and the label “SI”
stands for the spin-induced non-minimal coupling part of the action. For the

sector evaluated here the latter part will consist of its two leading terms given
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by
Crs2 E. Cpss  Bu
Ly = — —H SRSV — Dy —£~ gr G §A 2.24
St 2m /a2 6m? /2 ’ (224)

in which we use the definite-parity curvature components defined as

E. = Ruapsu®d’, (2.25)
1 o
w = Seapnl? Ol (2.26)

for the electric and magnetic components of even and odd parity, respectively.
Notice also that here we need to use the Levi-Civita tensor density in curved
spacetime, €a8,3 = v/—¢ €apya, in which ¢ is the determinant of g,,,, and e,gya
is the totally antisymmetric Levi-Civita symbol with eg123 = +1. We note also
that we use here a classical version of the Pauli-Lubanski pseudovector, S*, as
first defined in [135]

S, = %eaﬂwsaﬁ% (2.27)
which is with a reverse sign with respect to the definition in [136], that was
applied up to the quadratic-in-spin order, where this sign choice does not matter.
The spin tensor that is used in eq. (2.27) is related to the spin in the generic
gauge S'W via the projection of the latter onto the spatial hypersurface of the
rest frame according to eq. (3.29) in [136].

We recall that in eq. (2.23) there is an extra term, which appears in the
action from the restoration of gauge freedom of the rotational DOFs. This
term, which is essentially the Thomas precession, as discussed in detail in [136]
(and recovered recently as “Hilbert space matching” in [92,93]), contributes to
all orders in the spin as of the LO spin-orbit sector, and in particular also to
finite-size spin effects, though it does not encode any UV physics, but rather in
the context of an effective action, just accounts for the fact that a relativistic
gravitating object has an extended measure.

Since we compute here the complete NLO cubic-in-spin sector our graphs will
contain all multipoles in the presence of spin up to the spin-induced octupole,
i.e. also including the mass, spin and spin-induced quadrupole. For this reason
we need to use Feynman rules of worldline-graviton coupling to NLO for all of
these multipoles, where in this work we need to derive further new rules for

the octupole couplings. The Feynman rules required for the mass couplings
are given in eqs. (64), (67), (68), (79), (81), (93), (95) of [132]. Next, we
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approach the Feynman rules linear in spin, noting that first we have kinematic
contributions as noted in eq. (5.28) of [136], that are linear in the spin but
have no field coupling, which we will take into account in section 2.2.5. The
Feynman rules required for the linear-in-spin couplings are given in egs. (5.29)-
(5.31) of [136], and eqs. (2.31)-(2.34) of [137]. For the spin quadrupole couplings
the rules are given in eqs. (2.18)-(2.24) of [138], and for the LO spin octupole
couplings they are found in eqs. (2.19),(2.20) of [135].

As we noted in addition to the abovementioned Feynman rules, further rules
are required here for the spin-induced octupole worldline-graviton coupling. The
two Feynman rules of the scalar and vector components of the KK decompo-
sition, which appeared already at LO in [135] should be extended to a higher
PN order, and further we will have new rules that enter for the one-graviton
coupling of the tensor component of the KK fields, and a couple of two-graviton
couplings, involving again the scalar and the vector components of the KK
fields.

The extended rules for the one-graviton couplings are then given as follows:

= [

f’;BS i€ | At (Sm (1 -+ %qﬂ) - %vanU”>

+ Sm (Ulvn (Ai,njk - An,ijk) + Ul(atAk:,ij + 8tAi,jk) + 'UiatAk,jl>:|

(2.28)

~ [ a

in which the rectangular boxes represent the spin-induced octupole.

3m

CBSSS Sj€kim Smv (925 ijk <1 + ;) + Uiatﬁb,jk)] ; (2.29)

The new Feynman rules required here are given as follows:

%]: / dt CB TS SiSektmSmO0h ( (930kn — nrj )" - atajk)] . (2.30)
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for the one-graviton coupling, whereas for the two-graviton couplings we get:

Chas
12]?22 SiSj€kimSm (6¢Ak,z’jz +9¢ i A ji + 3¢ 10, (Ai,l — Az,i)

)

+4¢ Ak + 40 i (Ai,l - Al,i) + 5ij¢,nAl,kn>

(2.31)

Chras
3;282 SiSj€kimSm [“l <2¢7ijk¢ + 300k + 50,0 jx — 5ij¢,n¢,kn>

o

We note that in these rules the spin is already fixed to the canonical gauge in

+ Ui¢,lj¢,k}]

(2.32)

the local frame, and all indices are Euclidean. Notice the complexity of these
couplings with respect to other worldline couplings at the NLO level, and notice
also the dominant role that the gravitomagnetic vector plays in the coupling
to the odd-parity octupole, similar to the situation in the coupling to the spin
dipole. This is the first sector which necessitates to actually take the curved
Levi-Civita tensor and the covariant derivative into account.

For this sector there is no need to extend the non-minimal coupling part
of the spinning particle action and add higher dimensional operators beyond
what was provided in [136], but we need to pay special attention to the new
feature that differentiates this specific sector from all the spin sectors which
were tackled in the past. In this sector it is no longer sufficient to use the
leading approximation for the linear momentum p,, in terms of the four-velocity
u, all throughout, rather one has to take into account the subleading term in
the linear momentum, which is linear in Riemann and quadratic in the spin,
and becomes relevant first once we get to the level that is cubic in the spins
and non-linear in gravity, i.e. at this sector, as was already explicitly noted
in [136]. We will address in detail the particular contributions coming from this
new feature in section 2.2.4 below, after we have done in the following section
the essential computation, which requires only the leading approximation to the
linear momentum that is independent of spin, similar to what was considered

in all past PN computations in spin sectors.
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2.2.3 The essential computation

In this section we carry out the perturbative expansion of the effective action in
terms of Feynman graphs, and provide the value of each diagram, while using
the leading approximation of the linear momentum. At the NLO level, i.e. up
to the G? order, all of the three relevant topologies are realized with spins,
even when the beneficial KK decomposition of the field is used, as discussed
in [112,130,132,136]. As shown in figures 2.7-2.9 below (drawn using Jaxodraw
[155,156] based on [157]) there is a total of 49 = 10 + 15 + 24 graphs making
up this part of the sector, distributed among the relevant topologies of one-
and two-graviton exchanges and cubic self-interaction, respectively. As shown
in table 2.1 about half of the total graphs require a one-loop evaluation (the
highest loop in this sector). We note that as we go into the nonlinear part of the
sector, the options for the make-up of the interaction become more intricate.

At the one-graviton exchange level we only have two kinds of interaction con-
tributing, similar to the LO in [135], namely either an octupole-monopole or a
quadrupole-dipole interaction. As noted in [135] there are nice analogies among
these interactions according to the parity of the multipole moments involved.
Following these analogies the relevant graphs of one-graviton exchange are eas-
ily constructed. Yet, once we proceed to the level nonlinear in the gravitons
further types of interactions emerge. In particular, there are also interactions
involving various multipoles on two different points of the worldline, which add
up to interactions that are cubic in the spin, such as a spin and a spin-induced
quadrupole or two spin dipoles, on the same worldline, which can already be
seen as of the NLO spin-squared sector [136, 138].

We note that all the graphs in this sector should be included together with
their mirror images, i.e. with the worldline labels 1 <+ 2 exchanged. For more
specific details on the generation of the Feynman graphs, and their evaluation,
including the conventions and notations used here, we refer the reader to [112]
and references therein. We note that the generation and the evaluation of the

graphs was crosschecked using the publicly-available EFTofPNG code [158].

2.2.3.1 One-graviton exchange

As can be seen in figure 2.7 we have 10 graphs of one-graviton exchange in this
sector, the majority of which already involve time derivatives to be applied.
Consistent with former works by one of the authors we keep all of the higher
order time derivative terms that emerge in the evaluations of the graphs, and

they will be treated properly via redefinitions of the position and the rotational
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FiGURE 2.7: The Feynman graphs of one-graviton exchange,
which contribute to the NLO cubic-in-spin interaction at the
4.5PN order for maximally rotating compact objects. The
graphs should be included together with their mirror images,
i.e. with the worldline labels 1 <> 2 exchanged. At the linear
level of one-graviton exchange we only have two kinds of inter-
actions contributing, similar to the LO in [135], namely either
a quadrupole-dipole or an octupole-monopole interaction. As
noted in [135] there are nice analogies among these interactions
according to the parity of the multipole moments involved. Fol-
lowing these analogies the relevant graphs here are easily con-
structed. Notice that we have here the four graphs that appeared
at the LO with the quadratic time insertions on the propagators
at graphs (a7)-(al0), and a new octupole coupling involving the
KK tensor field at graph (a3).

variables as shown in [159]. Notice that we have here the 4 graphs that appeared
at the LO with the quadratic time insertions on the propagators at graphs 1(a7)-
(al0), and a new octupole coupling involving the KK tensor field at graph 1(a3).
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The graphs in figure 2.7 are evaluated as follows:
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Note that almost all these graphs contain higher order time derivatives
terms, notably second order time derivatives, where graph 1(al0) even con-
tains third order ones. Notice also that the value of graph 1(a5) will have to

be supplemented with a piece that contains time derivatives of the spin, that
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FiGURE 2.8: The Feynman graphs of two-graviton exchange,
which contribute to the NLO cubic-in-spin interaction at the
4.5PN order for maximally-rotating compact objects. The
graphs should be included together with their mirror im-
ages, i.e. with the worldline labels 1 <+ 2 exchanged. These
graphs include all relevant interactions among the spin-induced
quadrupole, octupole, and the mass and spin, in particular here
at the nonlinear level there are also interactions involving the
various multipoles on two different points of the worldline, which
add up to interactions that are cubic in the spin, such as a spin
dipole and a spin-induced quadrupole or two spin dipoles, on the
same worldline, which can already be seen as of the NLO spin-
squared sector [136, 138]. Consequently notice that there are
nonlinearities originating from gravitons sourced strictly from
minimal coupling to the worldline as shown in graphs (b13)-
(b15). We also have here two new two-graviton octupole cou-
plings in graphs (bl), (b2).

appeared already in graph 2(a) of the LO in [135], but eventually did not con-
tribute at the LO. At this order, as we will see here in section 2.2.5 these terms

actually contribute.

2.2.3.2 Two-graviton exchange

As can be seen in figure 2.8 we have 15 graphs of two-graviton exchange in this
sector. Here the majority of the graphs do not involve time derivatives. We have
here two new two-graviton octupole couplings in graphs 1(b1), 1(b2), and on
the other hand we have here nonlinearities originating from gravitons sourced

strictly from minimal coupling to the worldline as in graphs 1(b13)-1(b15).
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The graphs in figure 2.8 are evaluated as follows:
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FiGURE 2.9: The Feynman graphs at one-loop level, i.e. with
cubic self-gravitational interaction, which contribute to the NLO
cubic-in-spin interaction at the 4.5PN order for maximally-
rotating compact objects. The graphs should be included to-
gether with their mirror images, i.e. with the worldline labels
1 < 2 exchanged. Similar to the nonlinear graphs of two-
graviton exchange, these graphs include all relevant interactions
among the spin-induced quadrupole, octupole, and the mass and
spin, and we have here nonlinearities originating from gravi-
tons sourced strictly from minimal coupling to the worldline,
as shown in graphs (c4)-(c8). We also have here cubic vertices
containing time derivatives, similar to what we have in the NLO
odd-parity spin-orbit sector [132,136, 137].

2.2.3.3 Cubic self-interaction

As can be seen in figure 2.9 we have 24 graphs of cubic self-interaction in this
sector, 6 of which contain time-dependent self-interaction, similar to what we
have in the odd-parity spin-orbit sector [132,136,137]. Similar to the nonlinear
graphs of two-graviton exchange, these graphs include all relevant interactions
among the spin-induced quadrupole, octupole, and the mass and spin, and we
have here nonlinearities originating from gravitons sourced strictly from minimal
coupling to the worldline, as shown in graphs (c4)-(c8). This sector required

using tensor one-loop integrals of up to order 5.
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The graphs in figure 2.9 are evaluated as follows:
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2.2.4 New features from spin dependence of linear mo-

mentum

The formulation of the EFT of a spinning gravitating particle in [136] consisted
of an action initially taken in the covariant gauge as introduced by Tulczyjew
in [160] (later extended to higher-multipoles by Dixon [161]). Tulczyjew put
forward the spin supplementary condition (SSC) given by S,.,p” = 0, which
as noted in [136], corresponds to the choice eff = p*/+/p? for the timelike

component of the worldline tetrad in terms of the linear momentum p*. This
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gauge is distinguished among possible covariant gauges, in particular with the
four-velocity " (as in S, u” = 0) as the only gauge of rotational DOFs for
which the existence and uniqueness of a corresponding “center” for the spinning
particle were proven rigorously in General Relativity [162,163].

For this reason the formulation in [136] was made in terms of the linear
momentum p*, rather than the four-velocity u*, e.g., as in general the former
is given by

oL u

ISV 2
Pu= g = m\/ﬂ2 + O(RS?), (2.83)

where we recall that the Lagrangian is first constructed with the ‘spin gauge-
invariant’ variable, as explained in [136]. Therefore the spin-dependent differ-
ence between p, and w, would show up, as was pointed out in [136], as of the
NLO of the sector cubic in the spins, namely the sector that we are studying in
this work.

Let us then find how this new feature transpires in this sector. Since we are
working to cubic order in the spin in this sector, we should take into account
in the linear momentum beyond the leading term only the first correction, that

is we now consider also

Api[S] = pr — Pr ~ 02]”;22 SHSsY (%meu“ — %wau“uﬂun) , (2.84)
where we denoted the leading approximation to the linear momentum as p, =
. Let us also note that due to eq. (4.8) of [136] at this order the expression
with spin vectors can be used interchangeably as that with the spin tensors.
The appearance of u* in p* itself thus requires further inquiry only as of the
NLO quartic-in-spin sector [121], where it was in fact found that this subtlety
is still irrelevant until even higher PN orders.

Hence, the part that is linear in the spin in the action of the spinning particle
actually gives rise to a new type of worldline-graviton couplings that are cubic
in the spin, due to its dependence in the linear momentum. We recall that the
relevant part of the Lagrangian is given as follows [136]:

Sup® Dp*

1. - 1.
Lg = —=89,Q00 — 28 0yr — 290 28
s b>Fflat T o Pab 12 Do

(2.85)

where the hatted DOFs represent the generic rotational DOFs. Therefore the

new contributions arise from substituting in the linear-in-spin couplings the
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gauge, which we choose here as the canonical gauge, formulated in [136] as
Ry =08, 8 (py+poo) = 0, (2.86)

as well as from the extra term that enters from minimal coupling, appearing
last in eq. (2.85), which was found in [136] to be related with the gauge of
the rotational DOFs, and stands for the Thomas precession as noted in section
2.2.2. Let us stress again that the subtlety here is not about switching from
the covariant gauge, but rather about advancing from using u, in the basic
covariant gauge, to using in it the spin-dependent p,, which is necessary as of
this cubic order in spins and nonlinear order in gravity.

Working out explicitly this part of the action in terms of the local spin
variable in the canonical gauge similarly to the derivations in [136], and keeping
only terms that lead to new cubic-in-spin terms, we obtain here the following

contribution:

i Sikp"p; Vi Sip’ 4 Siyp'p’
2 0 1% 0)’
p(p+p°) p  plp+p°)

Lg s =w (2.87)
where in principle all the temporal and spatial indices that are specified here are
in the locally flat frame. In order to obtain the new cubic-in-spin couplings we
only need to substitute in the correction to the linear momentum from eq. (2.84)
to linear order, keeping in mind that all of the contributions at the zeroth order
are taken into account in the Feynman rules from past sectors, e.g. [136, 137],
and from section 2.2.2 above. At this point it becomes clear that the first
two terms in eq. (2.87) give rise to new two-graviton couplings, and that the
last term gives rise to new one-graviton couplings containing higher-order time
derivatives.

The resulting new Feynman rules for the one-graviton couplings are then:

N :/dt %Sﬁjeklm[@ﬁnak + vak) (Al,z‘j - Aj,il>i| ; (2.88)

[ Cpee |
% = / At | = 5E5SiS et | 25ma* (2(640" = 9av”) + 63 (D6 + Pan”) )

— St (26,007 = 84 (9160 + Gaav") + 0 (i + 6, 4av") )}] ,

(2.89)

where a black square mounted on a gray oval blob represents this new type of
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(al) (a2) (b1) (b2)

FiGure 2.10: The extra Feynman graphs of one- and two-
graviton exchange, which appear at the NLO cubic-in-spin inter-
action at the 4.5PN order for maximally-rotating compact ob-
jects. The graphs should be included together with their mirror
images, i.e. with the worldline labels 1 <+ 2 exchanged. These
graphs contain a new type of worldline-graviton couplings, which
we refer to as “composite” octupole ones, and obviously yield
similar graphs to the corresponding ones with the “elementary”
spin-induced octupole couplings in figure 2.7(al),(a2) and in fig-
ure 2.8(b1),(b2).

“composite” cubic-in-spin worldline couplings. Notice that all these rules con-
tain accelerations and even time derivatives of spins, similar to the acceleration
terms that appear first in the rules for the spin-orbit sector [136]. Note also that
at this level the new couplings depend linearly on a single Wilson coefficient.

For the new two-graviton couplings we get the following rules:

Cloq2
. :/dt [%Sisjeklm8m¢,k (Arij — Aj,il)]) (2.90)
Crq2 ;
+< :/dt {_ nig 5iSj€kimSm® k (2(9@@‘]‘”[ = Gav’) + 8 (O + dmt") ﬂ '
(2.91)

Note that the mass ratio together with the Wilson coefficient in these new rules
for cubic-in-spin couplings indicate that these are truly new couplings that
cannot be absorbed in the existing “elementary” octupole operator.

These new couplings give rise to 4 additional graphs as shown in figure 2.10,
similar to those in figure 2.7 (al), (a2), and in figure 2.8 (b1), (b2). The graphs
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in figure 2.10 are evaluated as follows:

Gmg

— 2 - - -
Flg 5(&1) = —Cl(ESQ)T—E 251 Ug X CL1 (512 -3 (Sl . ﬁ) ) — 651 . C_I:1 X 7_1:51 . 17251 -1
1

Lo s 5 s 2
5 -G X #E T — 55 x (53—3(51-77))
—3§1'61 Xﬁgl'ﬁggl'ﬁ], (292)

- - 2 =
2168, -7 x @ (Sf—2<51-ﬁ> )—281-172><61512

+6§1'61Xﬁ<512(1)1 7’L—’l)2 )—251 7)151 )

—§1'§1X171<3§1'U1 Sl v2—3Sl _»(1_)‘ ﬁ—?jéﬁ))
+51 T X Uy S? +351 len<5 (Uy -1 — Uy - )—251 .5, - )]

(2.93)
Fig. 5(b1) = —2C(ps> G—Q—S Uy X 71 [52 3(S -ﬁ)Z] (2.94)
. 1(ES?) 5 m1 1V 1 ) .
G*m .
Fig. 5(b2) = Ciqpsn) 52 [351 by x (2 — 2(8y - 7)?) — Sy - By x 7 52

(2.95)

2.2.5 The gravitational cubic-in-spin action at the next-

to-leading order

Let us then put together all the results from sections 2.2.3 and 2.2.4 to get
the final effective action for this sector. This summation includes the values
presented above plus similar results under the exchange of particle labels 1 <
2, where 1 — —7i. Next, we apply the 4-vectors identity for 3 dimensions
presented in eq. (3.14) of [135], to further simplify and compress the results. As
was already noted these results contain higher-order time derivatives of both
the velocity and the spin, which will be treated rigorously at the level of the
action, following the procedure shown in [159], by making variable redefinitions
that will remove the higher-order terms (in complete analogy to the removal of
redundant /on-shell operators by field redefinitions in effective field theories, as
was pointed out by one of the authors in [159]).

The final result of these steps is then given as follows:

Lg® = L) + L§° + (1 4 2), (2.96)
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where we have:

LNLO

G? G 1 G? G*m
+ —L )y + Cies?) ——L )y + Cies?) —5L(3) + Cy(ps?) T5m2L(4)
1
G2 G 1 G? G*m
+ —L )+ Ch E52)——L + Ci(es? —4L(7) + Cips2) r4m2L(8)
1
G 1 G 1
+ Ci(es?) ——L(g) + Ci(es?) ——L(lo) (2.97)

with the following pieces:

Lay =
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L(4) =31 §1'§2<§1'61 Xﬁ—gl'l_fg Xﬁ)
~ 28 T x 7T — Sy T x ) (1987 - 21(8, - 7))

+8 Sy xi(—41 S, -0 +41 S, -G +63 S, -7 T -7 — 66 S, -7 - 7i),
(2.101)

L(5):3§1'§2Xﬁgl'ﬁ—gl'ggXﬁgl'ﬁ—le'ggXﬁgl'ﬁ+2§1'§1ng,
(2.102)
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As can be seen in the result above we have grouped together terms according
to their mass ratios and Wilson coefficients, and the total number/order of their
higher-order time derivatives. At this stage this result is rather bulky, but it is
easy to see that after the reduction of the higher-order action to an ordinary
action by the removal of higher-order time derivative terms, we will only be left
with such pieces as the first 4 ones in LE%LSOQ and the first 5 ones in Lglr}o, which
becomes significantly more compact. The EOMs can also be derived directly
from this higher-order action, and then reduced at the level of the EOMs, as
was pointed out in [136].

However, before we will proceed in future work to handle via redefinitions
the higher-order time derivatives appearing in the cubic-in-spin sector at this
order, we will need to also take into account all the contributions to the action
in this sector at this order, which originate from lower-order redefinitions of
the variables made at lower-order sectors in order to remove higher-order time
derivatives there, as was shown in detail in section 6 of [136]. First, for example,
we recall that we have kinematic contributions as noted in eq. (5.28) of [136],

that are linear in the spin, but have no field coupling. Those are required here
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to NLO as follows:

I | 3 o
Lygn = —=5-Q — 3 (1 + ZL_U2> €ijeSrv’a’, (2.118)
where Si; = €15k, and €;; = €;;,Q2. At LO, e.g., we define the following shift

of the positions, Ay;, according to

G — G+ 2—7;151 X @, (2.119)
and similarly for particle 2 with 1 <> 2, to remove the leading accelerations.
Note that as of the NLO linear-in-spin level higher-order time derivatives of
spin also appear, where it was shown how to generically treat these in sec-
tion 5 of [159]. Yet, since the leading spin redefinition is of higher PN order,
terms quadratic in the leading redefinition contribute only at the next-to-NNLO
(NNNLO) level. Therefore, here it is sufficient to consider the redefinition of
the spins to linear order.

To recap, let us list the additional contributions coming from lower-order
variable redefinitions that we will have from other sectors. From position shifts

in lower-order sectors we will have:

1. The LO (1.5PN) position shift in eq. (2.119) implemented to linear order
on the NLO quadratic-in-spin (spinl-spin2 + spin-squared) sectors.

2. The above LO position shift implemented to quadratic order on the New-

tonian and LO spin-orbit sectors.

3. The above LO position shift to cubic order implemented on the Newtonian

sector.

4. The NLO position shift at 2.5PN order in eq. (6.20) of [136] implemented

to linear order on the LO quadratic-in-spin sectors.

5. The NLO position shifts at 3PN order in egs. (6.30), (6.43) of [136] im-

plemented to linear order on the shifted LLO spin-orbit sector.

The leading redefinition of spin (of 2PN order) in eq. (6.21) of [136] will not
contribute to our sector. From spin redefinitions, i.e. rotations of the spin, we

will have then:

1. The spin redefinitions at 2.5PN order in egs. (6.31), (6.44) of [136] imple-

mented to linear order on the LO quadratic-in-spin sectors.
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2. The spin redefinitions at 3PN order, which were required at the LO cubic-
in-spin sector [135], implemented to linear order on the LO spin-orbit

sector.

In a future publication we will present the full details of these redefinitions
and the contributions from lower-order sectors, which add up to the reduced

effective action in this sector.

2.2.6 Discussion

In this work we derived for the first time the complete NLO cubic-in-spin PN
effective action for the interaction of generic compact binaries via the self-
contained EFT formulation for gravitating spinning objects in [136], and its
extension in this work to the leading sector, where gravitational non-linearities
are considered at an order in the spins that is beyond quadratic. This sector,
which enters at the 4.5PN order for rapidly-rotating compact objects, completes
finite-size effects up to this PN order, and is the first sector completed beyond
the current state of the art for generic compact binary dynamics at the 4PN
order. Once again the EFT of gravitating spinning objects has enabled a push
in the state of the art in PN Gravity. Yet the analysis in this work indicates
that going beyond this sector into the intriguing gray area of table 2.1 may
become extremely intricate.

We have seen that at this order in spins with nonlinearities in gravity we have
to take into account additional terms, which arise from a new type of worldline
couplings, due to the fact that at this order the Tulczyjew gauge, which involves
the linear momentum, can no longer be approximated only in terms of the four-
velocity, as the latter approximation differs from the linear momentum by a
spin-dependent part of an order O(RS?). The spin-dependent correction gives
rise to new “composite” couplings from the gauge of rotational DOFs. It is
interesting to consider whether these new couplings have an insightful physical
interpretation.

As we noted in section 2.2.1 one of the main motivations for us to tackle
this sector was also to see what happens when we go to a sector at order
higher than quadratic in the spins and nonlinear in gravity, which corresponds
to a gravitational Compton scattering with quantum spins of s > 3/2, and
to possibly also get an insight on the non-uniqueness of fixing its amplitude
from factorization when spins of s > 5/2 are involved [89]. From [136] and
the analysis in section 2.2.4, we can see that going to an order quintic in the

spins, or in the quantum case to s = 5/2, exactly corresponds to where the
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spin-dependent correction to p, in eq. (2.84) has to be taken into account at
quadratic order. We will discuss this interesting connection between the classical
and the quantum levels at a future publication. A general observation that we
can clearly make already is that even-parity sectors in [, see table 2.1, are easier
to handle than odd ones. In the quantum context this corresponds to the greater
ease of dealing with bosons compared to fermions.

Unless all the additional terms from section 2.2.4 conspire to cancel out
eventually, we would obtain an effective action that differs from that with the
gauge used in lower-spin sectors, involving only the four-velocity. Even still,
it could be that when computing the consequent observable quantities, such as
the binding energy, or the EOMs, one finds that this difference does not matter,
and the two gauges are physically equivalent. In a forthcoming publication we
will present the resulting Hamiltonian, EOMs, and gauge-invariant quantities,
such as the binding energy, and get an answer to these questions, including
self-consistency checks of the method.

At the moment it is not clear whether computations carried out within a
scattering amplitudes framework can capture all the classical effects derived in
this paper. The generic results in this work can serve to streamline such a
framework, as that which was initiated in [90, 93], or provide crosschecks for
the conjectured result for the scattering angle at one-loop level in the restricted

case of black holes with aligned spins in [92].
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Chapter 3

Quantum Amplitudes for

Classical Gravity

In this chapter, we derive the static Schwarzschild-Tangherlini metric by ex-
tracting the classical contributions from the multi-loop vertex functions of a
graviton emitted from a massive scalar field [2]. At each loop orders the classi-
cal contribution is proportional to a unique master integral given by the massless
sunset integral. By computing the scattering amplitudes up to three-loop order
in general dimension, we explicitly derive the expansion of the metric up to the
fourth post-Minkowskian order O(GY%) in four, five and six dimensions. There
are ultraviolet divergences that are cancelled with the introduction of higher-
derivative non-minimal couplings. The standard Schwarzschild-Tangherlini is
recovered by absorbing their effects by an appropriate coordinate transforma-

tion induced from the de Donder gauge condition.

3.1 Introduction

General relativity is a theory for the action of gravity in space and time. The
dynamics of the gravitational field is constrained by the KEinstein’s classical
field equations. They are tensorial non-linear equations, because of the self-
interaction of the gravitational field, notoriously difficult to solve. It is therefore
important to develop efficient methods for studying gravity in various regimes.

General relativity can be embedded in quantum theory where the gravita-
tional force results from the exchange of a quantized massless spin-2 graviton
field [6-10]. One can then consider the Einstein-Hilbert term as the first term of
a low-energy effective action containing an infinite number of higher derivative

operators [11].
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The classical limit # — 0 has been studied by Duff in [164] where he showed
how to reproduce the classical Schwarzschild metric in four dimensions from
quantum tree graphs up to the second order O(G%) in Newton’s constant.

The relation between the quantum theory of gravity and the classical Ein-
stein’s theory of general relativity has received a new interpretation with the
understanding [23-28] that an appropriate (and subtle) & — 0 limit of quantum
multi-loop scattering gravitational amplitudes lead to higher G y-order classi-
cal gravity contributions. Considering the importance of such approach for the
evaluation of the post-Minkowskian expansion for the gravitational two-body
scattering [51,73,74,76-78,93], we use the procedure given in [27] for extract-
ing the classical contributions from the multi-loop vertex function of a graviton
emission from a massive scalar field to recover the Schwarzschild-Tangherlini
metric in various dimensions. The scattering amplitude approach works in
general dimensions [53, 165-167] and gives the opportunity to explore general
relativity in higher-dimensions [168, 169]. At tree-level and one-loop our re-
sults agree with the general dimension results in [165, 167]. We show how to
reconstruct the metric up to the fourth order O(G%) in Newton’s constant by
evaluating the scattering amplitudes up to three-loop orders.

Using the procedure designed in [27] we argue, in section 3.2.1, that the
classical contribution at [-loop order is given by the two-point [-loop massless
sunset graphs. We verify this explicitly evaluating the classical limit of the
quantum scattering amplitudes up to three-loop order.

The scattering amplitudes develop ultraviolet divergences. In section 3.4,
we show how to recover the finite static Schwarzschild-Tangherlini metric by
the addition of non-minimal couplings given schematically by (see (3.88) for a

precise expression)
5 S o (Gym) iz / A/ =g VIR, 010" 6 . (3.1)

In four dimensions the non-minimal couplings 6 S have been introduced
in [34] for the analysis up to the third post-Minkowskian order in the context
of the world-line formalism. The relation between the world-line formalism and
the amplitude approach is detailed in [73]. Higher-derivative couplings with
n > 2 would be needed in four dimensions from the fifth post-Minkowskian
order, but they appear at lowest order in higher dimensions. Indeed, we show
that in five dimensions one needs to consider higher dimensional of non-minimal
couplings §(2 S at the third post-Minkowskian order and 6©) S at the fourth
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post-Minkowskian. Interestingly, the metric components are finite in space-
time dimensions greater or equal to six, although the stress-tensor develops
ultraviolet divergences from one-loop order in odd dimensions and from two-
loop order in even dimensions. These divergences are cancelled by the non-
minimal couplings §( S . Actually, we expect that an all order computation
in perturbation will require an infinite set of such non-minimal couplings.

We show that the effects of the non-minimal couplings can be reabsorbed
by a coordinate transformation, and they do not affect the Schwarzschild-
Tangherlini space-time geometry. Since we work in the fixed gauge de Don-
der gauge, we give the coordinate transformation for extracting the classical
space-time metric from the scattering amplitudes in that gauge. Although gen-
eral relativity is coordinate system invariant, our analysis shows that there is a
preferred coordinate system when extracting the classical geometry from scat-
tering amplitudes in the de Donder gauge. The lowest-order n = 1 non-minimal
couplings have been shown to arise from the gauge fixing in [73,167,170]. We
will not address the question of the gauge dependence, but we remark that the
choice of coordinate system (or gauge) can be critical for finding solution to
Einstein’s equations [171].

Since “black hole formation is a robust prediction of the general theory of
relativity” [172], it is satisfying to be able to embed such classical solutions
in the new understanding of the relation between general relativity and the
quantum theory of gravity.

The rest of the chapter is organised as follows. In section 3.2 we setup the
connection between the perturbation expansion vertex function for the emission
a graviton from a massive scalar field and the post-Minkowskian expansion of
the static metric in d+ 1 dimensions. In section 3.2.1 we show that the classical
contribution from the multi-loop amplitudes is given by the massless sunset
multi-loop integrals in d dimensions. In section 3.2.2 we evaluate the master
integrals. In section 3.3 we derive the metric component up to the order O(GY%)
by computing the relevant amplitudes up to three-loop order in d+1 dimensions.
In section 3.4 we compute the non-minimal couplings required for cancelling the
ultraviolet divergences in the amplitude computation. In section 3.5 we solve
the Einstein’s equations in four (d = 3), five (d = 4) and six (d = 5) dimensions
in the de Donder gauge, and we show in section 3.6 how these results match
the results derived from the amplitude computations. In section 3.7 we give an
interpretation of the results in this paper. The appendix A.1 contains formulee
for the Fourier transforms used in the text, and appendix A.2 the vertices for

the scattering amplitude computations.
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3.2 The Schwarzschild-Tangherlini metric from

scalar field amplitudes

The Schwarzschild metric is obtained by the gravitational scattering of a scalar
field of mass m
R 1

167TGN + 2

S = / dlx/—g ( 9" 0,00, — %m2¢2> . (3.2)

For further reference Newton’s constant has length dimensions [Gy] = (length)®™!,

the scalar field has dimension [¢] = (length)!~® and the mass [m] = (length)~*.
We work with the mostly negative signature (4, —,--- , —) metric.
The graviton emission from a scalar particle of mass p? = p3 = m? is given
by the three-point vertex function
b2
q
Ms(p1,q) = . (3.3)

4

At each loop order we extract the [-loop contribution to the transition density
of the stress-energy tensor (T}, (¢*)) = 2120<T$’)(q2)>

V321G N

ST () (3.4

. l
iMP(p1,q) = —

where e"” is the polarisation of the graviton with momentum ¢ = p; — p, is the
momentum transfer.
The scattering amplitude computation is not done in the harmonic gauge
. )\ o . . )
coordinates g"*I'},(g) = 0 but in the de Donder gauge coordinate system [7,34,
78,165, 167]

(9g (99 v ag v
IWI"/\ — WV AP PH v [ _ )
I (9) =n"g ( 5 T B axp) 0, (3.5)

the metric perturbations g, = N + 3,5 h,(fl) satisfy”

0 om0 5w
oxr Y 2 Oxv

*The harmonic gauge linearized at the first order in perturbation gives (3.6) with n = 1.
The higher-order expansions of the harmonic gauge differ from these conditions.

=0. (3.6)
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The de Donder gauge relation between the metric perturbation and the stress-

energy tensor reads

A7 1 1

I+1) 7= iq-T l)\class./ 2 [)\class./ 2

BV (@) = —167Gy / it @ (<T,53> (@) = =l T (g >) .
(3.7)

In this relation enters the classical contribution at [ loop order (T,S%Class'(qQ)

defined by the classical limit of the quantum scattering amplitude [25,27, 28].
From now, we are dropping the super-script class and just use the notation

(T,Ef,))(qQ) for the classical contribution.

3.2.1 The classical contribution of the amplitude

In this section we derive the generic form of the classical contribution of the
gravity amplitudes (3.3) in the static limit where ¢ = (0, ¢) and ¢ < m?. The
classical limit is obtained by taking A — 0 with the momentum transfer ¢/h
held fixed [28].

At the [-loop order we have to consider the graphs

M (pr,q) = , (3.8)

The classical contribution emerges as a particular A~ — 0 limit of the amplitude
in [23,25-28]. The classical limit results in cutting the massive lines, projecting
on the contribution from localised sources at different positions in space [27,
173,174], pictorially represented by shaded blobs

) class.
MY = (py,q) =

leading g2

In this process one keeps only the leading ¢? contribution from the multi-
graviton tree-level amplitudes. The quantum tree-level graphs that were con-

sidered in [164] arise from the classical limit of the scattering amplitude up to
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two-loop order. In the rest of this section, we derive the generic features of
the classical limit to all orders in perturbation. We then explicitly evaluate the

classical limit up to three-loop order in perturbation.

The quantum amplitude in (3.8) is an [ + 2 gravitons amplitude with [ + 1

gravitons attached to the massive scalar line

E}L1V1,...,/,q+114+1 <p17p27 £17 st 7€l+1) = (31())

(_i \% SWGN)ZJATMW (phpl - 61)7—#21/2 (plglapl - El - EQ) T v (pl - El -

= b1, p2)

Hi:1 ((pl - 22‘21 ;)? —m?> + ie)
(3.11)

with the momentum conservation condition ¢; + --- 4+ {;,1 = ¢ = p1 — p2 and

the vertex for emitting a graviton from a scalar field'
nz v v 1 nv 2
™ (p1,p2) = pips + pipsy + 577 (p1—p2)”. (3.12)

This line is attached to an [ 4+ 2 tree-level graviton amplitude

M,LLIVI,muu'lJerlJrl (617 . 7€l+17 q) — . (313)

We have to sum over all the permutation of the graviton lines attached to the

scalar lines. Because the gravity amplitude is invariant under the action of the

"The vertices are given in appendix A.2. We have stripped of a factor i\/87Gy from their
normalisation.

Y
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permutation of the graviton lines we have

dd"'lf
. l
ZMé)(ph ) \/m/]i[ D Z £M1V1 77777 Nl+1Vl+1(p1 pz,g ( ),...,éo-(H,l))

€61

I+l '])/Lz v on'l

H 62 T e p101 ..... Pl+10141 (Ela cee agl-‘rl) q) (314)

where G, is the group of permutation of [ + 1 elements. In the static limit

the vertex (3.12) becomes

T (p1,p1 — €) =~ —2m?25%6° (3.15)

ulv
therefore the scalar line approximates to

[1:5) V327G ym?5), 6",
le‘=1 ((p1 - 23:1 lj)? —m? + ie)

L(p1,p2, ba, - i) =~ (3.16)

In the static limit (p; — L)? —m?®+ie = L2 —2p; - L+ie ~ L2 — L> — 2m Lo+ ie.
In the limit where the mass m is large compared to the graviton loop momenta
|L| < m we have

L2—L[?—2mLo+iec = (LO —m—\/L2+m2— ie) (L0 —m4 L2+ m2— z'e)

r? L?
~ L0—2m—2——|—i6 Lo—i-%—ie ~ —2m (Lo —i€) . (3.17)

Therefore we have

li[ —i2y/27Gymd), 8%,

L(p1,p2; by lig) 327G ym25° 0 :
i=1 Z] 169 — 1€

Hi4+1 " Vi1

(3.18)

Using momentum conservation ¢; + - - -+ {41 = p; — p2 and that in the static

limit p? — pY ~ 0 we have

_ —i2y/21G M, 0.
£(p17p27£1,...,€l+1)ZQmZEH pi Vi

: (3.19)
Pl Z; 1€] — €
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Using the identity?

I+1 +1 1
> H —. (3.22)
oGy i= 1 2 j=1 To(j ) i=1

In the limit ¢ — 0 the expression vanishes unless some of the é? vanish at the
same time. This means that one needs to pick the residues at ﬂ? = 1€ for j =
1,...,1 to have a non vanishing answer. This implies that the amplitude (3.14)

reduces to
I1+1
M (pl, ) =~ il (2 27TGNm>

ddg H'l fPOO,pioi
/ H l‘+1 2 I Z.€>Mp101,~-,pz+101+1 (517 s 7€l+17 Q) ©=0 (323)

with /1 + -+ -+ {;,1 = q. We recall that

po
PIOOT = §h8f — = (3.24)

The amplitude (3.23) corresponds to the graph where the scalar line has been

collapsed to a point

(3.25)

!This was proven in the appendix of [175]. We give here an alternative proof using recur-

sion. For [ = 1 we have ¥(2) = 1 + L = . Assuming that (3.22) is true at
z1(x1+x2) zo(x1+w2) T1T2 "
the order [, then at the order [ + 1 we have
141 I+1 l
= > 1l 22, H (3:20)
€141 il Z; VT T & co il o (j)

where o(n + 1) = ¢ and the {Z1,...,3;} = {z1,..., 241} \{x;}. By recursion hypothesis we
can use the expression for (1)

11 I+1
Birn)= T+ +$l+lz::1;[5?: +$l+1z::

¥

L1
—. .21
[ e

1
1T

H:jI

3
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In the static with ¢ = (0,¢), |¢| < m, the [ + 2-tree level gravitons amplitude

has the leading behaviour

I+1

H POO?piUiMﬂmiw' PI+101+1 (flv cee 7£l+1a Q) X GNZ/2q2 ) (326)

n=1

and higher powers of ¢® contribute to higher powers of A and are sub-leading
quantum corrections (see section 3.3.1 for more about this).

Therefore, the classical contribution to the stress-tensor in (3.4) is given by$

(T} = 7 (Gm)'m (P (@250 + (@) (15— nw) ) T ), (3:27)

N q2
where c(ll)(d) and cg)(d) are rational functions of the dimension d and Jg,)(¢?)

is the massless n-loop sunset graph

@)= 1t T I1 2
J (T%) = B SERRRLE = / - - =
" R H?:1Zz‘é(ll+"'+ln+‘j)2 i (2m)

(3.28)

3.2.2 The master integrals for the classical limit

The master integrals (3.28) can be evaluated straightforwardly with the para-

metric representation of the n-loop sunset in D dimensions (see [178])

n(d—2) (n+D)2=d)

(@)= ( nd)/ (1 1 > ? dz;

Jo) (@) = ——5T (n+1—— — 4+ —+1
(@) =T )| Gt 117
(3.29)
since the first Symanzik polynomial is U, = (Z?jll zi) (H?Ill ;) and the
second Symanzik polynomial is F,, 1, = —¢*x; -+ Tpi1 = 21+ Tpyr. Chang-

ing variables to y; = 1/x; we have

n(d—2)

I d eane-a Lo dy;
J(n)(cjg):m—jdl“<n+1—n_)/ (4 +yn+1) . H 4y_d.
(47T)7 2 ¥i20 i1 yiT
(3.30)
Using the expression for Euler’s beta-function
e Akl 3.31

SWe have checked this explicitly to three-loop order using the LiteRed code [176,177].
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the master integral is readily evaluated to be

Iy (@) = (3.32)

The master integrals develop ultraviolet poles at loop orders, inducing diver-
gences in the stress-energy tensor. We will show in section 3.4 how to renor-

malise these divergences with the introduction of higher-derivative couplings.

3.3 The metric perturbation from graviton emis-
sion

Using the relation (3.7) between the metric perturbation and using the expres-
sion (3.27) for the stress-energy tensor in d-dimension in the static limit we

have

qq1/
B (g) = — (c§”<d><2526° ) + () (2 et —mu))

G l+1J —2
T m) @) (333

The static space-time components are obtained by computing the Fourier trans-

form in d dimensions

(3.34)

hﬁjl)(m) — / hﬁ—H (@6 gz
R )

(2m)?

Using the Fourier transformations given in appendix A.1, and setting r = |Z,

the Fourier transform of the master integrals are given by

. _ +1
ri G (2m)d 4 pd-2 ’

which is finite to all loop orders. The infrared divergences in the momentum

space representation in (3.32) have been cancelled by the Fourier transform.¥

The tensorial Fourier transform

I+1
44 J(@°) gz d'T r(4%2) 1 1 TiT;
= —0;i +(l+1)(d—2 )
/Rd 7?2 Z . & pd2 2—l(d—2)( s+ U+ Dd=2) r)

P q rd
(3.36)

9This fact had been noticed by L. Planté in his PhD thesis [173].
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diverges for [ =1 and d = 4 and for [ = 2 and d = 3, and are otherwise finite.
By spherical symmetry we parameterise the metric in d + 1 dimensions

(% - d7)?
l_"Q Y

ds® = ho(r, d)dt* — hy(r, d)dz® — hy(r,d) (3.37)

so that
hi(@) =0+ 0 (@) (3.38)
1>1
with h§°) =1,1,0 for « = 0, 1, 2, the post-Minkowskian expansion of the metric

components

h(()l+1)(T, d) _ _% ((d . 2)C§l)(d> + Cgl)(d)> <M)l+l | (339)

hg—H)(T, d) — 16 (d - 2)(l + 1) (l)(d) <10<7a7 d))Hl '

2 1(d—2) 4

We have introduced the radial parameter

plrd) = —35" 0% (3.40)

which is our post-Minkowskian expansion parameter. Recall that in d41 dimen-

)d72

sions the length dimension of [Gym] = (length and p(r,d) is dimensionless.

The metric component present poles in four dimensions (d = 3) from two-
loop order and in five dimensions (d = 4) from one-loop order. Such divergences
will be removed by the contribution from the non-minimal coupling contribu-

tions in section 3.4.

3.3.1 Tree-level amplitude

At tree-level, the only contributing diagram is

b2

M (p1,q) = , (3.41)
P
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is the emission of a graviton from the scattering of two massive scalars of mo-
menta p; and py and p? = p3 = m? with momentum transfert ¢ = p; — ps.
The scattering amplitude is given by the 2-scalar-1-graviton vertex 7 (py, ps)
n (A.6)

i\/327TGN v i\/327TGN M

ZM (p1, q) = —mé Tuy = —Tﬁ V(p1up2y+p2up1u—77uu(p1'pz—
(3.42)
Using that P = (p; + p2)/2 and ¢ = p; — p» we have that
. \/ 327TGN 1
MO (p1,q) = ——= =N v (2P, P, — Y — ) - 3.43
iMs” (p1,q) 2 JIEE, ( 5 (@t = Mwa”)) (3.43)

In the static limit ¢ = p; — pa ~ (0,q), E1 ~ Fy ~m and |¢] < m we have
(0)( 2\\ o ,, 5050 495 i 1 )
(1) = malt+ (S + g ) (.40
The ¢? term in this expression is the contact term which has a higher power of

h and does not contribute to the classical limit [27,52]. The coefficients of the

classical contribution to the stress-tensor at tree-level are given by

1
S(d) =0. (3.45)

ho (r.d) = —4-—p(r.d),

(1) _ 4

hy(r,d) = ——p(r,d),

WY (r.d)y=0, (3.46)

where p(r,d) is defined in (3.40). This reproduces the expression given in [165,
167].

m?)).
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3.3.2 One-loop amplitude

At one-loop the only contributing diagram to the classical limit is
P2

1
ZM( )(pla Q) = _—E;WT(I) MV(QQ) 3 (347)

y4!

from which we extract the one-loop contribution to the stress-energy tensor in

d + 1 dimensions

Z87TGN dd+1l (ad (plal+p1) ( )o‘p Hé(l Q) (p27l+p1)

VAEE, | 2m)P (12 +ie)((L+ ¢)? +ie)((I + p1)? — m? + ie)’
(3.48)

where T(/g; por (D1, D2) 18 the three graviton vertex and 7#(p1, ps) the vertex for

T () =

the emission of a graviton from two scalars with momenta p; and p,. We refer
to appendix A.2 for definitions and normalisation of our vertices.
In the static limit, ¢ < m?, the classical contribution coming from the two

scalars to one-graviton vertex is
Tag & 2m*6003, (3.49)

using that p? = p3 = m?2. This gives for the stress-energy tensor

dd“l (300,000 7)

D+ i) (1 +q) +ie) (L +po)? —m? +ie)
(3.50)

At this point, we want to focus on the computation of the classical contribution

T 1 (%) = i167G ym? /

at the static limit. Thus, we will employ a trick, which will prove useful for

higher loops. We symmetrize the diagram

dd“l T(3y00,00(1> @)
) w2y _ / T(3)00,
(") = i8rGm D (12 +ie)((l + q)2 + ie)

1 1
X
[(l+p1)2—m2+ie+ (I —po)? —m? +ie

(3.51)
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In the approximation [*> < m? we have (I + p;)> —m? = >+ 2] -p, =
124 2lF — [- q =~ 12 + 2mly and the amplitude reduces at leading order

dd'Hl 3)00 oo(la Q)
7 87G
"(g") = 8w Nm/ D2+ ie)((I + q)2 + ie)
1 1
. (352
[z3+2mzo+ze+13—2mzo+z’e (3:52)

It is obvious that at O(e®) order we get a zero contribution at leading order
in 1/m, since Iy < m. Thus, we can compute the leading contribution of the
integral over [y via Cauchy’s theorem, by taking the residue 2ml, = ie and

closing the contour of integration in the upper half-planel

v
TW (g )—47rGNm/ il T(3y00,00(0> 1)

V(B —ie) (T + @) — i)

: (3.53)
lo=0

with

v 1 14 14 v 3 14
Té)oo,oo(lv q) = -1 ((d - 2)(l#l +({+ )"l +q)" +q"¢" + 577“ @2)

~2(d = D)+ 6+ D)0 - L) - 20 - ey )
(3.54)

The component of the stress-tensor are proportional to the one-loop master

integral J(1)(¢%) as expected from the general discussion of section 3.2.2

quqy
<ﬁm=wamﬂ@PW££+éW®(;2—mg)ﬁmfx (3.55)
with the master integral

NCOINC DR

, 3.56
24750 (d — 2) (3.56)

Jay(q®) =

IOne could have taken the residue at 2mly = —ie and closing the contour in the lower
half-plane with the same result.
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and the coefficients

cgl)(d) _ _2(4d2(;_15f§2+ 10)7
() = -2 z (ﬁﬁ;j; 2 (3.57)
3.3.2.1 The one-loop contribution to the metric components
Using (3.39) we get for the metric components in d 4+ 1 dimensions
) = S,
W) = B
h?@uﬂz4g:i§$fb?pMdf, (3.58)

where p(r,d) is defined in (3.40).
This reproduces the expression given in [165] and the expression in [167,
eq. (22)] for a = 0.

3.3.3 Two-loop amplitude

The diagrams contributing to the classical corrections at third post-Minkowskian

order of the metric at the two-loop graphs
iM) (pr,q) = —/320GN TP e, (3.59)

there are four contributions

Juv _ uv _ .\,\,\/\/\’\N\/\

T(a) = %, T(b) = W\Z
Qur __ Qur _ m

o M% To [T/
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3.3.3.1 The diagrams (a), (b), (c)

The sum of the contributions from the diagrams (a), (b), (¢) after appropriate

labelling of the momenta, can be expressed as

¢ 16G2 712 [ v diH1]
2Qpv _ N n
;:a T = - =2 /nnl Gt Tl st o)

7 (p1, 1+ p)T (L + pr, —lo + p1) 7T (lo — po, —p2)7'£,>)29m(—l27 lhi+q)- P¢x :
X

aﬁ 'yﬁ(ll + 4,4

R +a)°

1 1 1 1
X +
((11 +p1)? —m? (la —p2)? —m? (I3 +p1)? —m? (ly — p2)? —m?
+ L ! (3.60)
(I +p)2—=m?(lp —p2)* —m? |°

Using the approximate form of the two scalars one graviton vertex in (3.49) and
(I1 +p1)? — m? ~ 2ml} and taking the residue 2mi? = ie, since for the rest of

the residues we get a zero contribution at order O(e"), we get

+lTa i+ q,q) PP 70X —ly, i +q
ZTl _327T2G?\7m /H - ﬁOO( 1 ) ¢§ : (_;‘3)007002( 2501 ) |
27) (1) (12)* (Is)* (I1 + @) 9—19—0
(3.61)
with
y ) 3 )
T 001 +00) = (1= (14)"(1+9)" = "¢") = 50" ¢ (0" = (d=1)5357)
77.1“/ 2 — _5_d5M5V I Z_’ 2 9
(1 (i +?) (I + (I +@)?), (3.62)
and
5050 ,ul/ l W v wov Wi ll ey L
o006 @) = === ( ([d=3)((+9)" (I+0)"+4¢"¢") +(d=1) (11} == (305 55 —™"))

L= %%

200 (P —5) + (3d - T)(0; + @2)), (3.63)

and

v 1 v v v 3 v

—2d—2)(Iy + (I + @)2) (3ot — ”TW) —2(d - 3)@25553) . (3.64)
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Using the LiteRed code [176,177] in d dimensions, we find that all the contri-
butions are proportional to the master integral as expected from the general

discussion of section 3.2.2

—

2 —
ddli q
‘]”@:/H@w)d T
=1

z 1 z(ll_‘_l_;_{_(DQ

:_Eﬂﬁgig“‘V3+7E—bﬁ®0+bgfnqg+om—3mﬁa

where vg = 0.57721 - - - is the Euler-Mascheroni constant [179].
We find for the 00-component

32m2G3,m3 6d3 — 45d? + 134d — 160
ZT 00 _ N 2 _
and for the trace part
- y 32w G3m3 10d* — 63d? + 123d — 86
ZT((izw = — 3N CESE Jio)(7°) - (3.67)

3.3.3.2 The diagrams (d)

The diagram (d) after symmetrisation over the massive scalar legs reads

@ _ 3263 S A, (1 + b + I3 + q) 1 1
@ - 3m S (2m)2d 131313 (I1 4+ p1)? — m? +ie (ls — p2)2 — m? + ie

1 1 1 1
+ , —+ . ‘
(I3+p1)2—m?+ie(ly —p2)> —m2+ie (l3+p1)?—m?+ie(ly — p2)? —m?+ ze)

X 7'76(]91, L+p)m (L +p1, =l +p1)TL9(l2 — P2, —D2)T T(4 )750“9(6],51752,13)

(3.68)
and leads to the contribution
T(g),w _ 647r2G?Vm dd+ I, 7- 00 00, 00(% liylg, =l —lg — Q)
@ N e A T

(3.69)
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with the vertex

v 1 5“5” ) L
(1 00.00.00(@ 115 12, 13) = e G O (7d?—45d+70)—q 5 (d—2)(6d—23)

+(d—2) ((9 = 2d)q"q” + (7 —2d) (11} + 1515 + l;ﬂg))

d—2,-2 -2
+— (112 +1 +1s )(55‘55(7d —23) — " (2d — 9))) . (3.70)

Evaluating these integral we find, for the 00-component

T(Q) 00 _327T2G?Vm3 (4 — d) (6 — d)

@ = 3 a—1) Jo (@), (3.71)

and for the trace part

2 v 64m2G2%m? 3d® — 20d? + 41d — 30

3.3.3.3 The two-loop contribution to the metric components

Summing up all the contributions the two-loop stress-tensor is given by

pv

4uqv
(T2 = w G (2 (@300 + (@) (LG — ) (), (3T3)

with the coefficients given by

2 32
(@) = 3(d—4)(d—1)°
64 —-2)
&)= S =1y

(9d* — 70d° + 203d* — 254d + 104) ,

(2d* — 13d* + 25d — 10) , (3.74)

and the expression for the master integral

Joy(@) = 2 F( ; ) (3.75)

(4m)er
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From which we extract the metric components using the relations (3.39) (using
the definition of p(r,d) in (3.40))

8(3d — 7)(d — 2)°

3) — 3
hO (Tad>__ (d—4)(d—1)3 p(?”,d) )
8(7d* — 63d> + 214d* — 334d + 212)
WP (r,d) = d)?
1 (T’ ) 3(d—3)(d—4)(d—1)3 p(ra ) )
d —2)*(2d® — 13d*> + 25d — 1
S (r,d) = 8- S+ 25 O)p(r, d)3. (3.76)

(d—3)(d—4)(d—1)3

3.3.4 Three-loop amplitude

The diagrams contributing to the classical corrections at third post-Minkowskian

order of the metric at the two-loop graphs
ZMi(S?)) (pla Q) - - 327TGNT(3) HVE,uu; (377)

where the three-loop stress-tensor is given by five distinct diagrams

By M By —\/\’\/\,\/\/\/\M
T(a) = %’ T(b) — W)

B _ % B _ m\’.‘ﬁ’\
T W’ T(d) — W’

As before, we permute the internal momenta such that by taking the residue
at 2ml{ = ie from the massive propagators, we extract the non-analytic terms
which contribute to the classical metric in the static limit. After taking the

residues and including the symmetry factors
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li,li + lg) ( I3, 13+ 14)
D20+ ) (I + 1)

?

uv o
T, (ll—l—lg, ) 3
l“ 2

19=19=19=0

3 —
T(3) uy 647T3G:]3Vm4 / H ddln (3)mp,oT (3)
: 4t (2m) (1) (1)* (I)*

(=
L

TEW _ 9567363 m4/ﬁ Al Ter00(l1 + 45 Q)7 (s Is + 1) TG00 (L2l + )

b - 3

v PG GG T+ + I oo
T(3) p_ 5127T3G m /H ag,o()(ll + q, Q)T&)()O,()O’[)O(ll + q, 127 137 l4)

© (1) (1) () (1) (1 + @) PP,

1 2 3

TG —256713G m /H ddl (15,13 +l4) 750000((1711712753 +14)

@ (1) () (1) (12)* (U + 12)? PP

1 2 3

T(3)W 256773G?vm /H oooooooo(q7llal2al3vl4)

© WG oo

1 2 3

(3.78)

with the five-graviton vertex contribution

v L~ € KA
T(%) 00700700700(]517 k27 k37 k47 k5) - T(lg) aﬂ,vts,en,fi/\(kb k27 k37 k47 k5)7)0 7) 7DO[T)]P()()

5
_ 1 0 50 3 2 . 2 . 2 2
=~ =17 (4(5”@ (4(2d 18d% 4 57d — 61)k* + (d — 2)(8d* — 47d + 79) Z %

5
—(d = 2)n, ((29d2 — 191d + 362)k7 + (7d* — 61d + 142) ) kf)
=2

\
+2(d - 2) ((11d2 — 73d + 150) k1, k1, + (Td* — 53d + 102) (kayukay + ksuksy + kapkay + k;g,ukg,y))
/
(3.79)

where the vertex 7'( ) (k1, ko, k3, k4, k5) has been derived using the results

of [180].
The integral reduction is done using the LiteRed code [176,177] in d dimen-

af,yd,en, kA

sions. In agreement with the general analysis of section 3.2.2, we find that the

classical contribution is proportional to the single master integral

'y dlyd 7
Ji)(¢°) = / (Qrpd A (3.80)
Lilels (b + 1+ 13+ q)
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3.3.4.1 The y =v =0 component

7(3)00 _ _327T3G‘})’Vm4 3d® — 169d* + 1378d> — 4592d* + 7256d — 4752

“o 3 (d—4)2(d—1)3 T (@),
po0 _1287°GRm? 68d° — 1003d° + 6211d" — 20820d° + 40020d” — 41584d + 17824 ,

v 3 (d—4)(d—3)(3d — 4)(d — 1)3 @ (7),
F@00 _ 64m°GRom’ 3Td° — 502" 1 2731d° — T4864° 1 10164d — 5256 ,

© 3 (d—3)(3d —4)(d —1)3 (7).
p@o0 _ 32r°GRm! 53d! — 615d° + 2690d° — 5572d + 4840

@ = 3 (d—4)(d —1)3 J3)(7),

4 (6 —d)(d” = Td + 14)

THY = 6473G3m

(e) J)(T).

(d—1)°
(3.81)

3.3.4.2 Contraction with 7,

B 32m3G3m 85d° — 1126d° + 6307d* — 19114d> + 32944d? — 30472d + 11952

(3) pv -9
T(a)u umy 3 (d—4)2(d—1)3 J(3)(q )a
pw, 28T Ghm* 168 — 2231d° + 12319d" — 35796d° + 5T396” — 48304 + 16736 | o,

b =T (d—)(3d—4)(d—1)° @)
p@uy, __G4rGhm! 147d° — 1801 1 §T27d" — 215550 + 28012d° — 20148+ 5638 | o

@ T = 3 (3d — 4)(d — 1)1 &\
p@w, 3G 1790 — 21464 + 103050° — 246140 + 289724 — 13704 |

(d) Nuw = 3 (d—4)(d—1)3 3\q ),

@ GATPGRm* 29d* — 274d + 973d% — 1484d + 852
T(e) N = 3 (d — 1)3 J(3)(q )

(3.82)

3.3.4.3 The classical three-loop contribution to the stress-tensor

Summing up all the contributions we get for the three-loop stress-tensor

Qv
(TD) = 7 G (P (D300 + () (152~ nw) ) Jo(a®) . (383)

g 2
q

with the master integral

4
Jo(d’) = i 2>) g1, (3.84)
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and the three-loop coefficients are given by

(3) d) = — 64 ( d7 o d6 d5
e (d) 3(d_3)(d_4)2<d_1)4x 56 889d° + 5868
—20907d* + 43434d> — 52498d° + 33888d — 8760),
(3) d) = — 64
@) = s —2a=17

— 14016d* + 27430d> — 30916d? + 18104d — 3952). (3.85)

(45d7 — 670d° + 4167d°

Using the relations (3.39) we obtained the three-loop contribution to the metric

from the classical stress-tensor in (3.126) (using the notation for p in (3.40))

16(d — 2)3(14d3 — 85d2 + 165d — 106) (r. )
T
3(d—3)(d— 4)(d — 1) PR
8(39d7 — 691d° + 5155d° — 21077d* + 51216d? — 74346d? + 60168d — 21208)

i (r,d) = - 3(d — 3)(d — 4)2(d — 1)4(3d — 8) plrd

he!(r,d) =

W9 () = 16(d — 2)%(45d® — 580d° + 3007d* — 8002d* + 11426d> — 8064d + 1976)p (. d)".
2 3(d — 3)(d — 4)2(d — 1)4(3d — 8) ’

(3.86)

3.4 Non-minimal couplings and renormalised

metric

The stress-tensor and the metric components have ultraviolet divergences. These
divergences can be removed by the addition of the non-minimal couplings made
from the powers of the covariant derivative V, acting on a single power of the
Riemann tensor and its contractions. The Bianchi identity on the Riemann
tensor VR, poxn + VL Rpuon + V, Ry = 0, implies that

1
VuRupaA - VO'Rp)\ - V)\Rpg, VMRNV = §VVR (387)

The counter-terms are powers of covariant derivative acting on a single power
of the Ricci tensor and Ricci scalar. Therefore the counter-terms are given by

the following non-minimal couplings

§M 5t = (Gym)T 3 / dd’“x\/—g(a(”)(d)(vz)"_lR(‘)MqS@“gb

+ (Bé")(d)VNV(VQ)"‘2R + 61”)(d)(v2)”‘1RW) 8“¢6”¢> . (3.88)
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where o™ (d), Bén)(d) and 6§n)(d) are dimensionless coefficients depending on
the space-time dimension. The power of Gym is determined by dimensional
analysis, and give the correct order of G in all dimensions. The first non-

minimal coupling with n = 1 is given by

sW S = (G ym)7= / d"a/=g (W (d)RO,$0"¢ + BV (d)RM0,00,¢) .

(3.89)
This non-minimal coupling has been introduced in [34] in four dimensions
and [167] in five dimensions. We will see that up to three-loop order the
renormalisation of the static metric component only require the counter-term
aM(d) RO, ¢0" ¢, whereas both couplings are needed for the cancellation of the
stress-tensor divergences. This coupling is induced by harmonic gauge condi-
tion [73,167] and the value of its coefficient depends on the choice of gauge. In
our gauge, the de Donder gauge, this corresponds to o = 0 in the work of [167]
and £ = 1 in the work of [73]. Since we are working in fixed gauge we will not
discuss further the gauge dependence of the higher-order non-minimal coupling
coefficients, but we expect that the gauge dependence of these coefficients will
be an extension of the discussion in [167, app. B].

The power of the Newton constant in (3.89) is an integer only in four di-
mensions with d = 3 and five dimensions d = 4. Therefore this counter-term
will not appear in dimensions D > 6.

In four dimensions, from five-loop order, or the sixth post-Minkowskian
order O(GY%;), one expects that higher derivative non-minimal couplings will be
needed to get finite stress-tensor components. In dimensions five and six, the
higher-derivative non-minimal couplings arise at lower loop order.

In five dimensions one needs to consider higher-derivative non-minimal cou-
plings 6™ S with n > 2 for removing the divergences in the stress-tensor. The

non-minimal coupling at this order is then given by
5@ 8¢t — (Gym)o= / dd“w\/_—g<a(2)(d)DR6u¢8“d)
+ (BO@V,V R+ 87 (DR, ) 060°0) . (3.90)
We will need the non-minimal coupling

5@ St = (Gym)a= / d e/ =g <a(3)(d)(v2)2R8M¢8“¢

+ (B @V, Y V2R + 8O (@) (V2 Ry ) 0"60°0) . (3.91)
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for removing the two-loop divergence in the stress-tensor in six (d = 5) di-
mensions and the three-loop divergence in five (d = 4) dimensions. In five
dimensions (d = 4) the metric, up to G%, is renormalised using only the n = 1
and the metric is finite to all order in six dimensions (d = 5).

The higher-order non-minimal couplings 6.5 with n > 2 will not con-
tribute to the classical limit when inserted into graphs with loops, because they
contribute to higher powers in the momentum transfer ¢, and are sub-leading
with respect to the classical contributions. Their tree-level insertions will con-
tribute to the renormalisation of the stress-tensor but thanks to the properties

of the Fourier transform they will not contribute to the metric components.

3.4.1 Tree-level insertions

We give the contribution of the insertions of the non-minimal counter-terms
with n = 1 in (3.89), with n = 2 in (3.90) and with n = 3 in (3.91) in the
tree-level graph.

3.4.1.1 Insertion of ¢St

The insertion of the non-minimal couplings 6V St in (3.89) into the tree-level

diagram
P2

SOMO (p,, q) = (3.92)

b1

leads to the stress-tensor contribution in d + 1 dimensions

STy = —(Gym)T7m (—5<1>(d)5353 +2a0(q) (ng” _ mw)) ,

(3.93)
and using (3.7) this contributes to the metric components
SO (r,d) = 0, (3.94)
L\ d
1) d P
SR (. d) = 16a @QF(z) ((GNT)d 2) |
T2

d—2

1 d
320 ()T (%£2 T3

N



3.4. Non-minimal couplings and renormalised metric 87

Thanks to the properties of the Fourier transformation (see appendix A.1) only

the coefficient «(d) contributes to static metric perturbation.

3.4.1.2 Insertion of §® gt

The insertion of the non-minimal couplings 6 S in (3.90) into the tree-level

diagram

SOMO (py,q) = , (3.96)

leads to the stress-tensor condition in d + 1 dimensions

TLY) = Gy (5@ +2 (a® (@) + 367 @ ) (L2 - ) )
(3.97)

Because of the vanishing of the Fourier transforms

iqE J 445\ 42 gz (7
e =0, / et S g (398
/ FE (2n)

this extra contribution to the stress-tensor does not affect the metric compo-

nents
§On (. d) =0, (3.99)
ARV (r, d) =0,
§OnV(r.d) =0. (3.100)

3.4.1.3 Insertion of §) et

The insertion of the non-minimal couplings S in (3.91) into the tree-level
diagram
D2

SAOMO (py,q) = , (3.101)

y4
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leads to the stress-tensor condition in six dimensions (d = 5)

L) = I Gm)am (=57 @)328 + 2 (a9 + 167 (22 - ))

q
(3.102)
Because of the vanishing of the Fourier transforms
— d =
4 i(jf q _ 4i95 | 44 _igz d'q
q =0, / q|"e =0, 3.103
L e 2 T 2y (310

this extra contribution to the stress-tensor does not affect the metric compo-

nents
§OnS (. d) =0, (3.104)
sV (r,d) = 0,
§OrMN (r,d) =0. (3.105)

3.4.2 Omne-loop insertions
We give the contribution of the insertions of the counter-terms (3.88) with n =1

in (3.89) in the one-loop graph.

3.4.2.1 Insertion of ¢ gt

The insertion of the non-minimal coupling in (3.89) in the one-loop graph
P2 P2

SOMD (py, q) = + , (3.106)

D1 y41

leads to the stress-tensor contribution

sNTD) = 32ia W (d)r(Gym) T2 m?

o / AT g ) By q) Py 1'1° [ 1 n 1 ]
(2m)d (1 + q)? (l +p1)2—m2+ie  (I—p2)?—m?+ie

d— 050 , 9udv )
=T (530 + 3 ) Ty (@3-107)

= 8raM(d)(Gym) ﬁmq_2
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where we used that

—2
v l . -9
M T1o oo,w(l? Q)l’ylé = 17 (C_?Q + (1 + @2 — U ), (3.108)
and
v 1 — — —4
80007t 0o s(L Q)1 = TCESY ((d—2)c?4+(d—2)(l1+@>2((l1+q>2—2§2) —1

(-3, (I +* + f)) . (3.109)
Using the Fourier transforms

gl r(4)°
Juy (7 )e d = T o d.2(d-1)’
Rd (27 2rdy2(d—1)

d = d—2 d
L@ @n)i = dpipay % T 2dm =) - (3110)

and the relation between the stress-tensor and the metric components in (3.7)

we obtain the following contribution to the metric components

1 2(d—1)
d — 2)T'(£)2 L
5(1)h((]2)<7”, d) — 64a(1)(d)< ) (2) ((GNm)d ) |

(d—1)md=2 T

LN 2(d—1)
I(2)2 =
SORE (1, d) = —64a (d) 1 2) = <(GNm) ) :

(d—1)m r
LN 2(d—1)
[(2)? (Gym)a—=2
1)7,(2) _ (1) 2 N
0 hy (r,d) = 128a'7(d) = 1)ni? . : (3.111)

3.4.2.2 Two insertions of ¢1)Sct:

Two insertions of the non-minimal coupling 6).S°* in (3.89) in the one-loop
graph
P2

(6WP2MY(p1,q) = : (3.112)

b1
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TABLE 3.1: Insertion of the non-minimal coupling in the two-

loop graph

leads to the stress-tensor contribution

2(a® (a2 (G rn:%)wncj4 quqy
(512 gy = 2D G Qb= (=L ) ) (@),
(3.113)
and the metric contributions
621 (r,d) = 0,
9 1\ 2d
@, o 64aM(@)? (d\* [ (Gym)T=
(0)*hy (ﬂd)—TP 3 — ]
1 2d
64d(d — 2)(aM(d)2_ (d\? [ (Gym)T=
(6)2hS) = ( Wd)_(Q () F(g) (—( Nr) ) . (3.114)

3.4.3 Two-loop insertions

For the insertion of the non-minimal coupling 55 in (3.89) in the two-loop
graph one needs to sum over all the contributions in table 3.1. The classical

limit of the sum of all these graphs lead to the following contribution to the
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stress-tensor

o 1287%(d — 2)aV(d) 2(4-1)
SN = ~5a—pa— -1 Cv™

mq: ((3d3—19d2+28d—10)5253

+ (3% — 1542 + 18d — 4)(‘]’;’” - W)) T (), (3.115)

which leads to the following contributions to the metric components

) [(d)3 o 3d—4
5<1>hg3>(r,d):_5120‘ (d) T() <(GNm) > : (3.116)

d—1 p3(d-2) r

r

~ 25600(d) (3d° — 23 + 46d — 28) T(2)* [ (Gym)7z\""
T d-4)(d-2)[d-12Bd—4) i@ ,

25600(d) (3d° — 15¢* + 184 — 4) T(2)* [ (Gym)™= """
(d—4)(d—2)(d—1) 3(d-2) :

r

3.4.4 The renormalised metric in four dimensions

The metric components have ultraviolet poles in four dimensions from two-loop
order. We show how the addition of the non-minimal couplings leads to finite

renormalised metric components.

3.4.4.1 The two-loop renormalisation

The two-loop metric components in (3.76) have a divergence in four dimensions
(d=3)

(3) . 2 GNm s
h (r,d)——3<d_3)( , ) +O(1),

2 (GNm

W (r, d) = T3\

)3 +0(1). (3.117)

This divergence is cancelled by adding the metric contribution from the non-

minimal coupling in (3.94)

hllrenor. (3)( d) _ h(3)<7" d) + 5 h (1) (7, d) 7 = O’ 1’2 (3118)

7
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and setting the oY) (d) coefficient to be

aW(d) = ﬁ +aW(3)

_ log(2)
6

+0(d—3). (3.119)

The resulting renormalised two-loop metric reads

GNm

3
hBenor. (3) (7", d) —9 ( . ) + O(d — 3),

4 1 ’
prenor @) gy : (_5 +6aM(3) + log (éCE )) <GNm) +0(d - 3),

Nm r
3
renor. (3) _ 1 . (1) _ 7ﬂC’E GNm _
hy (r,d) =4 (3 6a'"(3) — log <GNm)) ( " + O(d — 33.120)

where we have introduced the following combination of the Euler-Mascheroni
constant [179] and 7
Cp =Tt . (3.121)

The divergence in the two-loop stress-tensor in (3.73)

G%.¢*m3 quq
@)\ _ UN 050 pdv
(T, 6(d —3) (25u5,,+ ( pe mw> +0(1), (3.122)

is cancelled by adding the contribution in (3.93) from the non-minimal coupling
with the following choice of 3()(d) coefficient

BN (d) = — +0(1). (3.123)

Notice that this computation does not determine the finite part of the a(!(d)
and 31 (d). They are free scales in the logarithms. We will show in section 3.6
that this freedom is totally reabsorbed in the change of coordinate and the

Schwarzschild-Tangherlini metric does not have any ambiguity.
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3.4.4.2 The three-loop renormalisation

The three-loop metric components in (3.86) have a divergence in four dimensions
(d = 3) given by

W) = 5 () +oq)
W) = g (7)o,
WY (r, d) = —3<d4_ 5 (G]:m) +0(1), . (3.124)

Adding to this contribution the (3.111) from the insertion of the non-minimal
couplings at one-loop, and using the value of a!)(d) determined in (3.119), we

obtain the renormalised three-loop metric

4
hgenorm.(4)(r) _ <_¥ + 8G(1)<3) +§10g ( TCE )) (GNTTL) 4 O(d . 3)’

3 Gym T
4

renorm.(4) _ Q1) _ é rCE Gnm _

h} (r) <10 8a'"(3) 3 log (Gmn)) < . +O0(d - 3),
4

renorm.(4) _ _% (1) § TCE GNm —

hy (r) ( 3 +16a'"(3) + 3 log G . +0(d—3).
(3.125)

The classical three-loop contribution to the stress-tensor has an ultraviolet di-

vergernce

TGm?|q]2 Gy
mﬁ@%rn@%g%(wm+(§;—mg o). (3.126)

this divergence is cancelled by the addition of the contribution in (3.107) from

the non-minimal coupling and the choice of o™ (d) in (3.119).

3.4.5 The renormalised metric in five dimensions

The metric components have ultraviolet divergences in five dimensions from
one-loop order. We show how the addition of the non-minimal couplings leads

to finite renormalised metric components.



94 Chapter 3. Quantum Amplitudes for Classical Gravity

3.4.5.1 The one-loop renormalisation

The metric components in (3.58) have a divergence in five dimension (d = 4)

given by

K (r,d) = O(1),

W) =~ (250) o),
WP (r, d) = 9(;6_04) (ng?) +0(1). (3.127)

The divergences in the metric components (3.127) are cancelled for the choice

5

" = =)

+aM(5)+0(d—4), (3.128)
so that the renormalised metric components

hljenor. (2) (7”, d) — h§2) (7”, d) T 6(1)h2(1) (T, d)’ 7= O, 17 2 , (3129)

1

have a finite expansion near d = 4

2

renor. (2) o 32 GNm

hy (rd) = ( — ) +0(d—4), (3.130)
20 (14 36aM(5)m r2C2 Gym\”

hrenor. (2) d) = = [ = 1 E N d—4

o Tnd =g (15+ 5 %8 (GNm me ) TOU=,

80 /7 36aM(5)m r2C2 Gym\>
R gy = — 2 (4 22 4 2 O(d—14).
> (nd) == <30+ 58 (GNm oz ) tod=4)

where Cf is defined in (3.121).

Thanks to the properties of the Fourier transform, only the coefficient a(!)(d)
enters the counter-term contribution to the metric component. To determine
as well the coefficient 3 (d) in (3.89) one needs to look at the divergences of

the stress-tensor

Gnm?q” e
R e ] e ) K B CHE

The cancellation of the pole fixes the pole part of 3 (d) near five dimensions

7

BY(d) = T18n(d—4)

+0(1). (3.132)
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3.4.5.2 The two-loop renormalisation

The two-loop metric components in (3.76) have a divergence in five dimensions
(d=1)

3
@, .~ 320 [Gym
hO (r7 d) - _27<d _ ) ( 7_‘_7,2 + O(1>7
3
(3) - 160 GNm
hl (T, d) - 27(d . 4) ( 72 + 0(1)7
3
(3) _ 320 GNm
WY d) == ( =5 ) rom. (3.133)

The divergences in the metric components (3.76) are cancelled for the choice

made at one-loop in (3.128), so that the renormalised metric components

R D d) = P (r,d) + 6ORP (r,d),  i=0,1,2, (3.134)

)

have a finite expansion near d = 4

160 [ 2 M °Ct ’
peenor @ . g) — 100 (_ L G L (’" CE)) (GNm) +0(d - 1),

27 \ 15 5 G T
renor. (3) 80 (7 36CL(1)<5) 202 Gym
= — —4
i (r,d) 27 (15 T 5 +log Gym mr? +Old-4),
160 /1 36aM(5)m r2C% Gym
prevor(®) oy 16001 36a7(0) N P
- (nd) =% ( 575 % <GNm)> ( 2 ot-a

The two-loop stress-tensor in (3.73) is not finite in d = 4 as it diverges like

5GRm?|ql! Qud
TNVl (5050 Gede o,
16272(d — 4)2 ( Wt T >

5G2m?| g1 7 183
(g dyp — —2) 040
+1627r2(d—4)<( Og(4 )+ i 20) ulv

+ (10g (g) + 95 — %) (q‘;j” - n,w) ) +0(1). (3.136)

2
(Ti) =
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The addition of the counter-term in (3.107) from the non-minimal couplings

in (3.89) is not enough for making the stress-tensor finite in d = 4

5G%m3|q* quq
TN 4 My — 2N Z HL 45060 4
< v > + < v > 1627T2(d . 4)2 nov + q2 77”

2, 3|74 144 (1) 1
+ SGmq ] ( (410g (Gym) — ma ) _ 09) 50,

16272(d — 4 5 60

N <(log(GNm) n g N %mm@) (qpqu B W)) ) +O(1). (3.137)

q2

We need to consider the addition of the counter-term from the insertion of

5 5ct evaluated in section 3.4.1.2 with the values of the coefficient near d = 4

B (d) = % (81<d12 o 109 1+9 415(28ia$)(5) +a?(5) +0(d - 4)) :
oD (d) + %552) (4) = _2%2 (162(d5— 52 43?32;1()552 ;)17 +59(5) + 0(d - 4)) !
(3.138)
plugged in (3.97) cancel the divergences in (3.137)
(T2 + 6Ty + 6Ty = 0(1). (3.139)

3.4.5.3 The three-loop renormalisation

The three-loop metric components in (3.86) have a divergence in five dimensions
(d=4)

4
e —— <GNm) o),

~27(d—4) \
@ B 400 20(101+120log (r*C3))\ [ Gym\®
P (r,d) = (81(d —ap 243(d — 4) oz ) O,
4
@, . [ 3200 160 (187 —120log (r*C2))\ (Gnm
ha (1 d) = (81(d— TP 243 ) A0

The divergences in the metric components (3.86) are cancelled for the choice

made at one-loop in (3.128), so that the renormalised metric components

W e, d) = b (r, d) + 6OR (r,d) + (8920 (r,d),  i=0,1,2,
(3.141)
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have a finite expansion near d = 4

128 r2C2 Gym\*
he Wi d) = — 22 (23 + 32400 451 £ al d—4
0 (r.d) 243(3+3 a(B)m +4dlog | o —5 | TOd-4),

100 { [ 36a™M) (5)x r2C? 161 36 r2C?
jyremor. (4) d) =—— 1 E i oY (1) 5 1 E
' (r, d) 81(( 5 +Og(GNm 0 "5 Gl Go )t

4
. 7085) . (GNm) L Od— 1),

1800 2

renor(4) _ @ 3661(1)(5)71' 1 % g_% (1) — 1 T2C%
hy i d) == <( 5 tloelaem) )\ -5 O lee{gnn) ) T

2381 Gam\*
—I——900> X < p— ) +O0(d—4).

(3.142)

The three-loop stress-tensor in (3.83) is not finite in d = 4 as it diverges like

25G3,mq)° 1 4.4
T(S) — N ——5060 piv .
(T} 5R32m3(d — 47 \ 20 T T T

255G mi ¢ ;1 7 41
(g (L — =) 800
388873 (d — 4)2( 2 (Og (zm) + e ) ulv
_Q
q 17N\ [ quav )
1 2 _ -t _
+ (og (47T) +9E 10) ( " mu)

225G mAq% 1 (70939 R 41\
- — 18 (log | — - = 5949
T 3308087%(d — 4) Gl (Og (47r> Ty ) W0

4769 & 17\*\ [ qua
209 218 (10g (L _ ! ) )+ O(1).
- ( mo (Og <47r) e 1o> 2 ) +o0)

(3.143)

The addition of the counter-terms in (§)2(T}\)) in (3.113), and (T2} in (3.115)
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from the non-minimal couplings in (3.89) is not enough for making the stress-

tensor finite in d = 4

25Gm*|q° 0ud
Ty 4 (! _ N L0500, Wl
(T2 + T + 00T D) = T (o4 By, )

25G3m*|ql° L (25 36 4
— — | — _ 1 6060
3888m3(d — 4)2\ 2 (12 + —a(5)m — log (szm)> 10,

1 36 quqv
+ <@ + Ea(l)(5)ﬂ' — log (GNm)) (;_2 - 77,uz/> >

B 25G3m*|q)8
518473 (d — 4)

X ( (@ +a(5)r (1 + @am@) ) _ log (Gym) (Z + log (Gym) + %Qa(l)(S)ﬂ)) 5060

48600 25 3 2 pov
6749  6aM(5)m 19 72 4.q
— 1+ 144aM(5)7) — log (G log (G — —aW () Hw

+0(1). (3.144)

We need to consider the addition of the counter-term from the insertion of

63) St avaluated in section 3.4.1.3 with the values of the coefficient near d = 4

B 25 5(432maM (5) + 125)

1166473 (d — 4)3 T 9331273(d — 4)?

N 559872(ma™M (5))? + 486000maV) (5) + 27487
67184643 (d — 4)

25 N 2160maM(5) + 5
1166473(d — 4)3 ~ 9331273(d — 4)2
559872(7ra )(5))% + 38887aM) (5) — 6749

671846473 (d — 4)

+O(1),

Q) + 3087 d) =

+0(1)(3.145)

plugged in (3.97) cancel the divergences in (3.137)

(T2 + 6I(TR) + (6T + 6O(TY)) = O(1) . (3.146)

3.4.6 The renormalised stress-tensor in six dimensions

In six dimensions, the metric component are finite to all order in perturbation
but the two-loop stress-tensor in (3.73) presents an ultraviolet divergence in six

dimensions (d = 5)

Gim®|ql° Quq
TRy = N 495069 4+ 15 5% — 1 14
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and six dimensions

which is cancelled by the addition of the insertion of the non-minimal coupling
§B)S<t at tree-level in (3.102) with the choice of the coefficients

15

3) looy_
o) + 310070 = — e = T OW
B¥(d) = e +0(1). (3.148)

4032072 (d — 5)

3.5 The Schwarzschild-Tangherlini metric in de
Donder gauge in four, five and six dimen-

sions

The Schwarzschild-Tangherlini [181] space-time metric in d 4+ 1 dimensions is
given by the Tangherlini solution, using p(r, d) defined in (3.40),™
49=2p(r,d) (z - dT)>

d—2
dsi, = (1—4—=p(r,d) | dt* — dz* — . (3.150
SSchw ( d— 1p(r )) v 1-— 4ﬁp(r, d) r? ( )

As explained in section 3.2 the amplitude computation selects the de Donder
gauge in (3.5). We make the coordinate transformation (t,z) — (t, f(r)Z) so

that the Schwarzschild metric reads

7. dT 2
ds® = ho(r)dt® — hy(r)dz® — hg(r)(‘gr—f), (3.151)
with r = |Z| and
d—2 p(r,d)
ho(T) : 1-— 4ﬁ f(r)d_Q, (3152)
ha(r) = f(r)?,
) +rLeye
ha(r) = —f(r)® = f(r)*? =
fr)d=2 — 432 p(r,d)
The de Donder gauge condition (3.5) then reads
d
2(d — 1)ho(r) = T (ho(r) + (d — 2)hy(r) — ha(r)) . (3.153)
**In spherical coordinate the metric reads
2
ds? = (1 - rd“j) at? - - _dr 1240 (3.149)

167rGNm
d-1)Qq_1

VIR o,

with p =

and Qq_1 = 13?—) is the area of the unit (d — 1)-sphere.
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We will be solving the de Donder gauge condition (3.5) in four dimensions
(d = 3), five dimensions (d = 4) and six dimensions (d = 5), using the post-

Minkowskian expansion

Fr) =14 fulr)p(r,d)" (3.154)

n>1

with the condition at each order that

lim f,(r)/r" =0. (3.155)

3.5.1 The metric in the de Donder gauge in four dimen-

sions

The de Donder gauge condition (3.5) in d = 3 reads
d
4hy(r) = e (ho(r) + hi(r) — ha(r)) , (3.156)
supplemented with the asymptotic boundary condition

lim f(r)=1. (3.157)

r—00

This differential equation implies either that f(r) = C/r, which does not
satisfy the boundary condition (3.157), or f(r) satisfies the differential equation,

with z = Gym/r

efwp(en = fa) T+ s ) ()
s2 @ (1) -30 T g (1 ()48 (@) w4 (@747 @) 40 =0
(3.158)

We solve the equation (3.158) using a series expansion in Gxym using (3.154)

and the boundary condition (3.155). The result to the order (Gym) is given
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and six dimensions

2 3

fr)y =1+ G];m +2 (G]Zm) + 2108 ( rcs ) (GNm>
4 5
+ (55 (6n) (GNm) (5 5 () (55)
(112 ( rCly )) ( m)

+ e

50023 1139 rCl 2 rCs Gym .
+<343oo+%1 (GN ) 77 ( ))( r )+OG)

(3.159)

This solution is finite and has log(r) terms from the order G%;. The solution has

a single constant of integration C3 associated with the scale of the logarithm.

3.5.1.1 The metric perturbation

In d = 3 we derive components of the metric in perturbation by plugging the
expression for f(r) in (3.159) in (3.152).

We obtain for the time component

2 3 4
B0 () — 1_2GNm+2 Gym 9 Gym n illog rCs \ 6 Gym
r r r 3 Gym r
16 rC 10\ [(Gym\® [124 rCl 424\ (Gym\°
— o - 1 i
+< 3 g(GNm)+3)( r >+(15 g(GNm T r
8 rCs \*> 16 rCs 674\ (Gym\' .
— -1 —1 oG
+< Og(GN )+150g(GNm> 75)( y )+ (G

(3.160)

and for the spatial components

Gym Gym\” 4 rC Gom\?
dD N N = 3 N
=142 T +5< r ) +<3log(GNm)+4>< r )
4 rCy 16\ /Gym\* /64 rCy 26\ /Gam\’
—Zlo i i | _ ==
+( (GN )+ 3) ( r ) +(15 o8 (GNm 75 r

4 rCs \° 24 e 208\ /Gym\° -
Z1 - 2o =2 oG 3.161
+(90g(GNm) 5 g(GNm>+75>( r >+ (Gx), (3.161)
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and
Gym\? rC! 38 Gym\® 8 rC! 58 Gym
dD _ L . 3 N © 3 e N
0 =-7(%7) (410g<aNm)+ DISPRGHCORIIC S
- El rCs GNm
3 8\ Gam 3

4 rCs \? 508 7378\ [ Gym\° -
-1 = .
* (3 o8 (GNm> T35 8 (GNm) 225) ( r ) +O(GN)

(3.162)

Notice the appearance of the log(r)? at the sixth post-Minkowskian order, G%,
in the spatial components of the metric. This is one order less than the appear-
ance in the time component. The same phenomenon happens for the log(r)
contribution which appears one order earlier in the spatial component than in

the time component.

3.5.2 The metric in the de Donder gauge in five dimen-

sions

The de Donder gauge condition (3.5) in d = 4 reads
d
6ho(r) = e (ho(r) 4+ 2h1(r) — ha(r)) , (3.163)
supplemented with the asymptotic boundary condition

lim f(r)=1. (3.164)

r—00

This differential equation implies either that f(r) = C/r, which does not
satisfy the boundary condition (3.164), or f(r) satisfies the differential equation,
setting x = Gym/(7r?)

ef @) (s - 3707) L sy ta? (L) sty (31007 - 160) L1

12822
9

—4f(2)° + (162 + 2) f(2)* — %cf(x)? + =0. (3.165)

We solve the equation (3.165) using a series expansion in Gym using (3.154)

and the boundary condition (3.155). The result to the order (Gym) is given



3.5. The Schwarzschild-Tangherlini metric in de Donder gauge in four, ﬁve1

and six dimensions

by

2Gym 10 r2Cy )\ (Gym\> 4 r2CY
_ N —8+ 451og
) = +3 T2 9 9 08 (GNm T2 81 + Gym T
67 + 3780 log ( 02) Gom\d 32963 + 156420 log ( 02> — 43200 log ( ) Gum
972 < ) 21870 ( mr? >

+

mr?

_|_

131220 2

409303 + 1620270 log ( C2> — 1087200 1og ( C2> (GNm)6

2362944150

_ 4939200000 r2C, \* [ Gam
2362944150 &

T2

11148022313 + 37508666370 log ( 02) — 64367301600 log ( Cz) ( GNm)7

)7 + O(G%;). (3.166)

Gym 72

Again there is a single constant of integration Cy arising as the scale of the
log(r) arising from the G% order.
3.5.2.1 The metric perturbation

In d = 4 we derive components of the metric in perturbation by plugging the
expression for f(r) in (3.166) in (3.152).

We obtain for the time component

r2C.
. 8Gym 32 (Gym\® 32 (—3+510g (GNan
h0(>_1_§w2+§ + 27

B 640 (—2 +29;§g (81,_01721» (Cj;v;n)él +0(G%), (3.167)

) ey

and for the spatial components

r2C r2C
0y — 1 4G w4 (145108 (5%)) /aym . (64 - 240108 (5%
! 3 mr? 9 81

(323 + 2340 log (

) En)

+

482+6001°g (5)) (iﬁTYjLO(G?V)’ (3.168)
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and

2 9 2 27 2

- 28D (cumyr 2 (E8)) (Gany;

+

2
8 (—31 — 1260 log (CfN—C;) +3001og (ij—(’;l) ) (G .
N

4
5
03 ) +O(GY,).

(3.169)

Tr?

3.5.3 The metric in the de Donder gauge in six dimen-

sions

The de Donder gauge condition (3.5) in d = 5 reads
d
8ha(r) = e (ho(r) + 3hi(r) — ha(r)) , (3.170)
supplemented with the asymptotic boundary condition

lim f(r)=1. (3.171)
r—00
This differential equation implies either that f(r) = C/r, which does not
satisfy the boundary condition (3.171), or f(r) satisfies the differential equation
with z = Gym/(7r3)

zf(z)" (6z —4f(z)?) dj;(f) +9f ()22 (%) +f(z)" (gf(m)?’ - 1095) %

9z:2

2 F@ + F@)® + e f ()~ B f ) +

=0. (3.172
- (3172

We solve the equation (3.172) using a series expansion in G using (3.154) and
the boundary condition (3.155). Asking for an expression with only integer

powers of G, the result to the order G%, is given by

f(r) = 1. G 5 (Gym 2+g Gym\® 775 (Gym 4+545977 Gym\®
a drr3 8\ mrd 3\ mrs 1344 \ 73 537600 \ mr3

15194099 (Gym 0 L 4421000509 /Gym
10483200 1878589440

)7 +O(GY) . (3.173)

T3 T3

The expression is uniquely determined and finite.
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3.5.3.1 The metric perturbation

In d = 5 we derive components of the metric in perturbation by plugging the
expression for f(r) in (3.173) in (3.152).

We obtain for the metric components

3Gym 9 (Gym\? 27 (Gam\® 387 (Gym\*

pdD () — 1 _ SUN J N el N 201 N 5

o (7) 273 * 8 ( r3 8 3 + 64 mr3 +O(GN),
Gym 19 (Gym\® 49 (Gym\® 577 (Gym\*

dD -1 N Y N =J N N N 5

) =1+ s 5\ ) Tl oe 314 \ a3 ) TOEN,

117 (Gym\? 45 (Gym\® 1599 /Gym\*
RAD () — —2 L 0 5y
2 (1) = 35 ( 8 ) 16 ( o ) T (e ) OGN

(3.174)

3.6 Recovering the Schwarzschild-Tangherlini

metric from the amplitude computations

In this section we show how the amplitude computations match the Schwarzschild-
Tangherlini metric in four, five and six dimensions in the de Donder gauge of

the previous section.

3.6.1 The Schwarzschild metric in four dimensions
3.6.1.1 The first post-Minkowskian contribution O(Gy)

Setting d = 3 in the expressions for the metric perturbation from the tree-level
amplitude in (3.46) matches the de Donder gauge first post-Minkowskian order
in four dimension (d = 3) in (3.160)—(3.162).

3.6.1.2 The second post-Minkowskian contribution O(G%)

At the order G%, setting d = 3 in the metric perturbation from the one-loop am-
plitude in (3.58) matches the metric in the de Donder gauge in four dimensions
(d = 3) in (3.160)(3.162).

3.6.1.3 The third post-Minkowskian contributions O(G%,)

At this order the components of the metric in the de Donder gauge in four
dimensions (d = 3) from (3.160)—(3.162) match the metric components from

the renormalised two-loop amplitude computation in (3.120) for the value of
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the constant of integration
log C5 =log Cp — 5t 6a'"(3), (3.175)

where Cp is given in (3.121).

With this identification we recover the results of [34] for the renormalisation
of the metric divergences and the coordinate change from the de Donder gauge
to the harmonic gauge from the world-line approach.

Substituting this value of C5 in the solution (3.159) completely determines
the solution to the de Donder gauge in four dimensions and the coordinate
change in (3.159) to the Schwarzschild metric in (3.151) in four dimensions.
The parameter a"(3) is a free parameter, which corresponds to the running

coupling in [34].

3.6.1.4 The fourth post-Minkowskian contribution O(G%)

At the fourth post-Minkowskian order, we get again a diverging metric from the
amplitude computation. This finite component metric in the de Donder gauge
in four dimensions (d = 3) in (3.160)—(3.162) using the value of the constant
of integration C3 determined in (3.175) give

4
th(4) — (_g +8aM(3) + Z_llog ( rCp >) (GNm> : (3.176)

3 3 Gym r

4
a0 _ (10— 840(3) — Z_ll rCg Gym
hi ( 0 —8a'"(3) 3 og (G’Nm . ,

86 8 rC Gym\*
RIP@ _ [ 22 L 164 (3) + 21 E N .
2 3 +16a77(3) + 3 o8 Gym r

This matches exactly the renormalised metric components from the three-loop

amplitude computation obtained in (3.125) with d = 3.

3.6.2 The Schwarzschild-Tangherlini metric in five di-
mensions
3.6.2.1 The first post-Minkowskian contribution O(Gy)

Setting d = 4 in the expressions for the metric perturbation from the tree-level
amplitude in (3.46) matches the de Donder gauge first post-Minkowskian order
in five dimensions (d = 4) in (3.167)—(3.169).
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computations

3.6.2.2 The second post-Minkowskian contribution O(G%)

The renormalised one-loop computation in (3.130) matches the expression at
order O(G%;) from the de Donder gauge in (3.167)—(3.169) for the choice of

the constant of integration

11 36
log Cy = - +2log C; + Tﬁa(l)(f)) . (3.177)

Again there is a free parameter a™"(5) which can be associated with a running

coupling constant.

3.6.2.3 The third post-Minkowskian contributions O(G%)

At this order in perturbation, the two-loop amplitude computation had di-
vergences that had to be renormalized to give (3.135). This matches exactly
the finite component metric in the de Donder gauge in five dimensions (d = 4)
in (3.167)—(3.169), using the value of the constant of integration Cy determined
in (3.177), given by

1 9 (1) 2,12 3
pP® — 2 ( TG (r CE)) (GNm) +0(d—4),

27 \ 15 5 Gym w2
(3.178)
80 (7 36aM(5)m 22 Gym\®
th(3) _ Y QDL T 1 E N d _ 4
L i\ 5 %\ \Gwm oz ) told=4),
160 / 1 36aM(5)m 202 Gym\®
G e N e S AL | E O(d — 4) .
2 w \ T 5 T am oz ) told—49)

3.6.2.4 The fourth post-Minkowskian contribution O(GY%)

The three-loop amplitude computation diverges and the finite metric compo-
nent at the fourth post-Minkowskian order was obtained after normalisation
in (3.142). This matches exactly, the finite component metric in the de Donder
gauge in five dimensions (d = 4) in (3.167)—(3.169), using the value of the
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constant of integration Cy determined in (3.177), given by

128 r202 Gym\*
pdP@ — _—22 (9 246V 451 E N d—4
0 Ve 3+ 324a"Y (5)m + 451og Gom 3 + O( ),

7085 4+ 695527aM (5) + 93312(wraM(5))2 10 202
th(4>—< + ma(5) + (ra” G)S | (161+4327m(1)(5))10g<r E)

o 1458 243 Gnym
4 18%0 log (gfﬂ%)z) (iﬁny 40— 4),

pIPO) _ (—19048 — 1416967ra:2) S;5)373248(m<1>(5))2 N % (41 + 2167aV(5)) log (ifé )
(R ) () v

(3.179)

3.6.3 The Schwarzschild-Tangherlini metric in six dimen-

sions

The metric components in six dimensions (d = 5) are finite. They are given
up to the order O(G%,) in (3.174) and are reproduced by the sum of the con-
tributions of the tree-level amplitude in (3.46), one-loop amplitude in (3.58),
two-loop amplitude in (3.76) and three-loop amplitude in (3.86) and setting

d =5 in these expressions.

3.7 Discussion

General relativity can be considered in space-times of various dimensions. It
is therefore important to validate our current understanding of the connection
between scattering amplitudes and classical general relativity in general dimen-
sions [53, 166]

We have shown how to reconstruct the classical Schwarzschild-Tangherlini
metric from scattering amplitudes in four, five and six dimensions. We have
extracted the classical contribution as defined in [27] from the vertex function
for the emission of a graviton from a massive scalar field. For such a static
metric, the classical contribution is obtained by taking appropriate residues on
the time components of the loop momenta. These residues project the quan-
tum scattering amplitude on contribution similar to the quantum tree graphs

considered in [164], by cutting the massive propagators.



3.7. Discussion 109

The amplitudes develop ultraviolet divergences which are renormalised by in-
troducing higher-derivative non-minimal couplings in (3.88). The non-minimal
coupling removes the ultraviolet divergences in the stress-tensor and the met-
ric components. For the static solution the higher n > 2 non-minimal cou-
pling only contribute from insertions in tree-level graphs. Interestingly, in six
dimensions the metric components are finite but the stress-tensor has ultra-
violet divergences. These divergences are removed by adding counter-terms
from non-minimal couplings. These counter-terms do not induce any contri-
bution to the metric components. From the presence of ultraviolet poles in
the master integrals Ji;)(¢*) in (3.32), we conclude that in all dimensions one
needs to introduce an infinite set of higher-derivative non-minimal operators
for removing the ultraviolet divergences from the scattering amplitude. These
counter-terms do not affect the space-time geometry because their effect is re-
absorbed by the change of coordinate from the de Donder coordinate system to
the Schwarzschild-Tangherlini coordinate system.

The scattering amplitude approach presented in this work can be applied to
any effective field theory of gravity coupled to matter fields. The amplitudes
computations, being performed in general dimensions, lead to results that have
an analytic dependence on the space-time dimensions. As black-hole solutions
develop non trivial properties in general dimensions [168,169], it is interesting to
apply the method of this paper to other black-hole metrics. The Kerr-Newman
and Reissner-Nordstrom metric in four dimensions have been obtained in [24,
90, 92, 182—-186] by considering tree-level and one-loop vertex function of the
emission of the graviton from a massive particle of spin s. The higher order post-
Minkowskian contributions should be obtained from higher-loop amplitudes in

a direct application of the methods used in this work.
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Chapter 4

Post-Minkowskian Effective
Field Theory

In this chapter, we will discuss the Post-Minkowskian Effective Field Theory
(PMEFT) [71] formalism to solve for the dynamics of binary systems in gravity.
Firstly, we will introduce the formalism and report the state of the art results
for the conservative sector [79,81,82,97], which for the spinless case has reached
the 4PM order. Then, we will focus on some recent results based on [3] for
the radiation sector. Specifically, we derive the conserved stress-energy tensor
linearly coupled to gravity and the classical probability amplitude of graviton
emission at leading and next-to-leading order in the Newton’s constant GG. The
amplitude can be expressed in compact form as one-dimensional integrals over a
Feynman parameter involving Bessel functions. We use it to recover the leading-
order radiated angular momentum expression. Upon expanding it in the relative
velocity between the two bodies v, we compute the total four-momentum radi-
ated into gravitational waves at leading-order in G and up to order v, finding
agreement with what recently computed using scattering amplitude methods.
Our results also allow to investigate the zero frequency limit of the emitted

energy spectrum.

4.1 Introduction

The application of the on-shell methods for Scattering Amplitudes and the
strong motivation due to the observational data we are getting, has fuelled
immensely the attempts for analytic solutions to the gravitational 2-body prob-
lem. The culminating product of the scattering amplitude program is the re-
cent derivation of the 4PM two-body Hamiltonian [80,81]. At this order, a tail

effect is present [187-189] and manifests an infrared divergence proportional
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to the leading-order (G®) energy of the radiated Bremsstrahlung, the gravi-
tational waves emitted during the scattering of two masses approaching each
other from infinity. Studies on the leading-order gravitational Bremsstrahlung
include [42,190-195]. The full leading-order energy spectrum found in [80] was
independently obtained in [102] using the formalism of [28], which derives clas-
sical observables from scattering amplitudes and their unitarity cuts. Recently,
it was rederived independently in [104] using the eikonal approximation and in
the Worldline QFT formalism in [105]. Tt is well known from PN approximation
that radiation effects backreact on the conservative dynamics, therefore is be-
comes very important to study these effects in detail and develop appropriate
techniques. In addition, the gravitational waveform being a crucial ingredi-
ent for the gravitational wave templates can only be derived in such formula-
tions making their importance even more apparent. In this chapter we study
the gravitational Bremsstrahlung using a worldline approach inspired by Non-
Relativistic-General-Relativity (NRGR) [34] (see [111,112,196-198] for reviews)
and recently applied to the PM expansion [69-71,79,199].

The rest of the chapter is organized as follows. In Section 4.2, we will briefly
review the basics of the PMEFT formalism needed for the rest of the sections. In
Section 4.3, we include radiation in the PMEFT setup and define the Feynman
rules that allow us to derive, in Section 4.4 the leading and next-to-leading order
stress-energy tensor linearly coupled to gravity. In Section 4.5, we compute the
classical probability amplitude of graviton emission, which is directly related to
the waveform in Fourier space. The amplitude is the basic ingredient for the
computation of observables such as the radiated four-momentum, computed in
Section 4.6, and angular momentum in Section 4.7, which we discuss in various
limit and compare to the literature. In Section 4.8, we provide a discussion of our
results and future investigations. In appendix B.1 we give the explicit expression
for the polarization tensors in the tranverse-traceless gauge and the expression
for the angular momentum operator in polar coordinates. In appendix B.2, we
provide the details of the master integrals involved in our computation and in
appendix B.3, the values of several coefficients we are using in our expressions.
In appendix B.4 we give the explicit expression for the waveform in direct space
and in appendix B.5 the spectral and angular dependence of the radiated four-

momentum in momentum space.
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4.2 PMEFT setup

Following the EFT 'spirit' in [34] and the extension to the PM framework

in [71], we construct a worldline action to describe the bodies as point particles

Zma/daa\/gw, o)UY (o)UY (04) + ..., (4.1)

where U} = % and the ellipses account for finite size effects and possible
counterterms (as we saw in the previous chapter). For example, using the

proper time 7, the ellipses takes the form

/dTa(cR)R(xa)—l—c(a)RW(xa)U“U”—l—c “E, (xa)E“”(xa)—i-ch)Bw,(aca)B‘“’(J:a)—i-...) :

(4.2)
and additional operators to include spin effects and higher order finite size ef-
fects. Importantly, as observed in the previous chapter, the cg, ¢y coefficients
fo not contribute to physical quantities since they can be removed by field re-
definitions. However, they may be needed to properly renormalize the theory
removing intermediate UV poles. The cg2,cp2 operators represent tidal Love
numbers. In the following, we will not consider these higher order operators

since they do not contribute to the order we are interested.

In the PM formalism, it is convenient to work with a Polyakov-like parametriza-

tion of the action

- Z m7 / doaeq [égw(wi(a))uﬁ(aa)ug (0a) + 1} . (4.3)

such that variations with respect to e, give e, = /¢, ULUY, recovering 4.1.
Therefore, we can choose the gauge where e, = 1, giving o, = 7,. In the weak
field approximation, expanding the metric as
By
— 4 4.4
G = M+ (4.4)
we notice that the action 4.3 generates only a one-point function. Therefore, all

the non-linearity is encoded in the bulk action. This fact will prove very useful

for practical purposes.

From now on, we will work in Einstein’s gravity, described by the Einstein-
Hilbert action



114 Chapter 4. Post-Minkowskian Effective Field Theory

Sgn = —Qm%I/d‘lx\/—gR . (4.5)

In order to work perturbatively, we need to use a gauge fixing term. In [71], it
was considered a generalized gauge fixing condition as well as total derivatives
which simplifiy the graviton vertices. In addition, one can consider also field
redefinitions which would further simplify the graviton vertices, but in turn
they would modify the worldline vertices, spoiling the apparent simplicity when
working with the Polyakov-like point particle action. Even though, considering a
generalized gauge fixing term is advantegeous for higher order computations, in
the order that we are considering for the radiation contribution, it is equivalent

to work in the usual de Donder gauge.

1 1

where h = h{ is the trace of the metric perturbation. Using the above PMEFT
formalism, results for the conservative scattering angle have been derived up to
4PM order for the spinless case [81] finding complete agreement with previously
derived results in [80], as well as results including conservative tidal effects [82]
and spin effects [97]. Our purpose in the following is to complement the above
results with the radiated momentum and angular momentum derived within
the PMEFT formalism at leading order.

4.3 Radiation in PMEFT

We consider the scattering of two gravitationally interacting spinless bodies
with mass m; and my approaching each other from infinity. The gravitational
dynamics is described by the usual Einstein-Hilbert action. Neglecting finite
size effects, which would contribute at higher order in G (see e.g. [71, 82]),
the bodies are treated as external sources described by point-particle actions.
We use the Polyakov-like parametrization of the action and fix the vielbein
to unity. This has the advantage of simplifying the gravitational coupling to
the matter sources [71,200,201]. Therefore, using the mostly minus metric
signature, setting i = ¢ = 1 and defining the Planck mass as mp = 1/ V327G,

we have
S =- Qm%I/d4$\/—gR
mg
Sy / A7 [gyu @ U (U (72) +1]

a=1,2

(4.7)
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where, for each body a, 7, is its proper time and U* = da#/dr, is its four-
velocity.

To compute the waveform we need the (pseudo) stress-energy tensor T+,
defined as the linear term sourcing the gravitational field in the effective action
[9,34,202], i.e.,

Dza, hy) = — /d4xT“”(x)hW(:p) : (4.8)

2mp
In this equation h,, = mpi(gu, — 1) denotes a radiated field propagating on-
shell, while T must include the contribution of both potential modes, i.e. off-
shell modes responsible for the conservative forces in the two-body system, and
radiation modes. (We will come back to this split below.)

From the Fourier transform of T, defined by T (k) = [ d*z T*(x)e’*,
one can compute the (classical) probability amplitude of one graviton emission
with momentum k and helicity A = £2 [34],

iAN () = — —— e ()T (k)| (4.9)

2mp1 i

A
1%

malization €7} (k)eh/ (k) = 63 (see definition in App. B.1). At distances r much

larger than the interaction region, the waveform is given in terms of the ampli-
tude as (see e.g. [203])

where € (k) is the transverse-traceless helicity-2 polarization tensor, with nor-

dk® _,
hu,,(x) = —— Z /g@ lkouﬁzl,(k)/l)\(l{)’ku:konu s (410)
A=%2

where u = t — r. The amplitude is evaluated on-shell, i.e. k* = k%n*, with
n* = (1,n) and n the unitary vector pointing along the graviton trajectory.
We can obtain the stress-energy tensor defined above by matching eq. (4.8)
to the effective action computed order by order in GG using Feynman diagrams.
Let us now introduce the Feynman rules. Adding the usual de Donder gauge-

fixing term to eq. (4.7),
4 1 v 1
Sef = [ d'x §8ph#,,8ph“ — Zaphaph : (4.11)

where h = n*”h,,,, from the quadratic part of the gravitational action one can

extract the graviton propagator,

02 po 1
essfiose = 15 Puwipn - (1.12)



116 Chapter 4. Post-Minkowskian Effective Field Theory

where P, = Q(nupnw + Nuolvp — Nuwpe). As usual, we must specify the
contour of integration in the complex k° plane by suitable boundary conditions.
This is customary done by splitting the gravitons into potential and radiation
modes (see e.g. [34,71]). Potential modes never hit the pole k* = 0, so the
choice of boundary conditions does not affect the calculations. For radiation
modes one must impose retarded boundary conditions, i.e. [(k°+i€)?—|k|?] 7!, to
account only for outgoing gravitons. Even though not relevant at the order in G
at which we work here, in general one must treat with care the pole of radiation
modes since they play a key role for hereditary effects at higher orders [123].

Finally, from the gravitational action one can derive the cubic interaction
vertex, which is the only one relevant for this paper. In de Donder gauge it can
be found, for instance, in [9,204].

Thanks to the Polyakov-like form, the point-particle action contains only
a linear interaction vertex. However, in order to isolate the powers of G, we

parametrize the worldline by expanding around straight trajectories [71,79], i.e.,

21 (1,) = b + ubr, + 0Wal (1) + ..., (4.13)
U (1) = ul + 6Vub (1) + ... . (4.14)

a

Here w, is the (constant) asymptotic incoming velocity and b, is the body
displacement orthogonal to it, b, -u, = 0, while §Vz# and 6V u” are respectively
the deviation from the straight trajectory and constant velocity of body a at
order G, induced by the gravitational interaction. Moreover, we define the

impact parameter as b* = b}’ — b}y and the relative Lorentz factor as

1
’Y=U1'U2=—TU27

where v is the relativistic relative velocity between the two bodies.

(4.15)

The expansion of the worldline action in the second line of eq. (4.7) generates
two Feynman interaction rules that differ by their order in GG. At zeroth order,
we have (with f f %)4

Ta _ Zma /LLMU /dT / —ig-(ba+uaTa) , (416)

2mp)
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T2

FIGURE 4.1: The three Feynman diagrams needed for the com-
putation of the stress-energy tensor up to NLO order in G. To
compute the symmetric one, it is enough to exchange 1 <> 2.

where a filled dot denotes the point particle evaluated using the straight world-

line. At first order in G we have

Ta img / dr. / ¢ (battuaTa)
~ 2mp (4.17)
(25(1) H(Ta)uy) —i(q - ! xa(Ta»ugug) )

where the correction O(G") to the trajectory is denoted by the order n inside
the circle. Following [71], the O(G) correction to the velocity and the trajectory
can be computed by solving the geodesic equation obtained from the effective

Lagrangian at order G. In de Donder gauge it reads, for particle 1,

—iq-b—iq-u1T
(1) _ e e
5 (1) = 4m%1/5(q us) e B, (4.18)
y —iq-b—iq-u1T
st (ry = 112 /5 T I —— T 4.19

where By = %z—_lﬁ —2yub+uf. (An analogous expression holds for particle
2.) The +ie in the above equations ensures to recover straight motion in the
asymptotic past, i.e. §Mu}(—o00) = 0 and 6Mz}(—o00) = 0. At our order in G,
the deflected trajectories are completely determined by potential gravitons but
in general one must take into account also radiation modes with appropriate
boundary conditions. Note also that at higher order it can be convenient to use

different gauge-fixing conditions to simplify the graviton vertices [71].

4.4 Stress-energy tensor

The radiated field can be computed in powers of GG in terms of the diagrams

shown in Fig. 4.1. The leading stress-energy tensor is obtained from Fig. 4.1a
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and corresponds to the one of free point-particles, i.e.,

Tlétllé s1a(k) = Z mauguzeik.baﬁ(wa) ) (4.20)

where we use the notation 3 (x) = (27)"6™(z) and for convenience we define
we =k - ug , a=1,2. (4.21)

This generates a static and non-radiating contribution to the amplitude, pro-
portional to §(w,). While this contribution can be neglected when computing
the radiated momentum, it must be crucially included for the computation of
the angular momentum, as shown below.

At the next order we find

~ U mi1meo 1 2’}/2 —1 v v
T#ig. 4.1b(k) = / MLZ(k)_g - qgu%) - 47“5““1)
Amp J g4 92

29" =1 k-q 2wy
- — — 1) ufuy 4.22
( 2 (Wi tie)?  w tic ) (422)
~ v mime 1 2”72 -1 v v
Tlfjig. s110(k) = A2 / p12(k) 5 {TQSQQ + (2“’% - Q%) uuy + 47002(15”
Mp1 Ja1,02 41493

292 —1
4

— <’yw1w2 + QS) + 2 (vg] — wiws) uﬁ”ug)l , (4.23)

where
p1 (k) = 0T EIEE (kg — 45)3(qy - ur)3(gs - ua) (4.24)

and we have used momentum conservation, on-shell and harmonic-gauge condi-
tions to simplify the final expression. Of course, we must also include the anal-
ogous diagrams with bodies 1 and 2 exchanged. The contribution in Fig. 4.1b
comes from evaluating the worldline along deflected trajectories while the one
in Fig. 4.1c comes from the gravitational cubic interaction (see Appendix A.2).
We have checked that the sum of these two contributions is transverse for on-
shell momenta, i.e. kJMT‘“’ = 0 for k* = 0, as expected for radiated gravitons.
We have also verified that the finite part of the stress-energy tensor agrees with

that computed in [69] once the contribution from the dilaton is removed.

14
Uy

)
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4.5 Amplitudes and waveforms

We expand the amplitude defined in eq. (4.9) in powers of G, A, = A&” +A(f) +
.... Given the definition (4.9) and the stress-energy tensor (4.20), the leading

order reads

Af\l)(k) _ ! Zma e (n)ulu? e Ped(w,) . (4.25)

The NLO can be obtained by summing egs. (4.22) and (4.23) and inserting

the result in eq. (4.9). Integrating over one of the internal momenta,

mim , 292 -1 k-1 2
AP (k) = — 5> 26*A(n){e’k‘b1 { (— il O _ 4 v I(o) + 2w§J(0)> uyuy

Co8md, 2 (wy+i€)?  wy e
29 -1 v v 21
+ (w1 i ](“1) + 4%02J(“1)> uy — 2 (7](0) + w1w2J(0)) ufuy + TJ(‘;) +(1+2),
(4.26)
where we have defined the following integrals,
e—iq~b
[El,nl).../in = /5(q “Up — wl) 5((] . u2) q2 qﬂl . ql/‘n , (427)
q
T / 5 ( )5(0- 1) g (4.28)
o= q-u; —w q - Uz q - ...q"" . .
" g ¢*(k —q)?

(The indices inside these integrals must be changed when evaluating the sym-
metric contribution (1 <> 2).) As detailed in App. B.2, the first set of integrals
in eq. (4.27) can be solved in terms of Bessel functions. The second set of inte-
grals in eq. (4.28) comes exclusively from the gravitational cubic interaction in
Fig. 4.1c. Unfortunately we were not able to come up with an explicitly solution
to these integrals. However, we can express them as one- dimensional integrals
over a Feynman parameter, involving Bessel functions.

To simplify the treatment, from now on we choose a frame in which one of
the two bodies, say 2, is at rest. Moreover, for convenience we can set by = 0
and b = v* and define the unit spatial vectors in the direction of v and of the
impact parameter b, respectively e, = v/v and e, = b/|b|, with e, - e, = 0.
We also define v* = (1, ve,) so that

uly = 0 uf =yt = (1, ve,) . (4.29)

The energies of the radiated gravitons measured by the two bodies become,

respectively, wy = kY = w and w; = ywn - v. The amplitude simplifies to the
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following compact forms

2
A (k) = _2:2; %E?Giei Bw)e™ (4.30)
AY0) = e A (ke (4.31)

where the functions A;; can be obtained after solving the integrals (4.27) and
(4.28). We find

Ay = 1Ko (2(n - v)) + ic [Kl (2(n-v)) —imd(z(n - v))}

1
s [ dyerme[awzK (W) +ake(2f0)| . (@32)
0
Ay = icy [Kl (z(n-v)) —imd(2(n - U))i|
1
wi [ dyermodyy) K (2) (4.33)
0
1
Ay — / dy Ve () 2 (2 (y)) | (4.34)
0
where Ky and K; are modified Bessel functions of the second kind and we have
introduced b)
w
=17 4.
2= (4.35)
and
fy) = V(1= y)?(n-0)2+2y(1 —y)(n-v) +y2/72. (4.36)

The coefficients ¢y, ¢; and ¢y depend on v and on the relative angles between
the graviton direction and the basis (e,, ;). Moreover, dy, d; and dy depend
also on the integration parameter y. Their explicit form is given in App. B.3.
In egs. (4.32) and (4.33) we have also included the non-radiating contribution
proportional to a delta function,* which may become relevant, for instance,
when computing the radiated angular momentum at NLO.

For small-velocities we find agreement between our amplitude and the wave-

form in Fourier space of [194]. In this limit f(y) — 1, e¥**™® — 1,y — 1, and

*To compute this contribution we have used this integral:

efiq»bqu B b
@ 2mybf

/ 5(q - un)3(q - uz) (4.37)
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thus'
Avv —O> ZKI(Z) + KO(Z) ) (438)
A — —i[K1(z) + 2Ko(2) —imd(2)] , (4.39)
Abb —0) —ZKl(Z) . (440)

We have also checked that we recover their amplitude in the forward and back-
ward limit (i.e. n along the direction of e, ), for which n-e, — 0 and the integral
in y can be solved exactly. The waveform can be computed by replacing the
amplitude in eq. (4.10) and integrating in k. We discuss this calculation in
App. B.4.

4.6 Radiated four-momentum

In terms of the asymptotic waveform, the radiated four-momentum at infinity
(r — o0) is given by [101,194]*

Prl;d = /dQ du 7"2 nt h”hu s (441)

where a dot denotes the derivative with respect to the retarded time u and d2
is the integration surface element.
Using eq. (4.10) for the waveform, this can be expressed in a manifestly

Lorentz-invariant way in terms of the amplitude (4.9) as [69]
Pl =3 [ 802100 | A R (1.42)
NEL

where 6 is the Heaviside step function and on the right-hand side we take only
the finite part of the amplitude, excluding the terms proportional to a delta
function that do not contribute to hy;. Thus, at leading order |Ax(k)gnite|” =
‘AE\Q)(k)ﬁnite|2 + ... and hence the radiated four-momentum starts at order G*

Since the modulo squared of the amplitude is symmetric under k — —k
the four-momentum cannot depend on the spatial direction b*. Moreover, the
energy measured in the frame of one body is the same as the one measured

in the frame of the other one, hence the final result must be proportional to

TThe signs in front of Ky and K of the last term of eqs. (2.9b) and (2.9¢) of [194] are
incorrect.

fWe are using a different normalization of h,. with respect to these references, which
explains the absence of the prefactor (327G) 1.
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uf + ufy. Using eq. (4.31), we can write it as

pro G'?’m%m2 uf + u2g

= T ) +0(GY) (143

which confirms that at this order the result has homogeneous mass dependence
and is thus fixed by the probe limit [102,188,194]. The function £(v) can be

found by integrating over the phase space the modulo squared of the amplitude,

© d
= /dQ/O dzdzjg(z,ﬁ;’y) (4.44)
with s 0.2
vz
Tt = p eIeJAU(z Q)| (4.45)

A more explicit but long expression of this function is reported in App. B.5, see
eq. (B.46).

Due to the involved structure of the y integrals in eq. (4.31), we were unable
to compute &£ explicitly. Nevertheless, we can first compute the integrals in y in
the v < 1 regime at any order. Then we can perform the phase-space integral
expressing the angular dependence in a particular coordinate system. We have

computed the energy up to order O(v®), obtaining

£ _37T 2393 , 61703 ; 3131839 .
C_ 219189 . 44
=15 " 50 T 1o0s0” T+ 3eass Y T O (4.46)

The radiated energy in center-of-mass frame, P,.q - ucom, Where

myuy 4+ moub

(4.47)

v
oo = V4 m3 o+ 2mymyy
agrees with the 2PN results [188,194,205] while eq. (4.46) matches the expansion
of the fully relativistic result recently found in [102]. This is a non-trivial check
of our NLO amplitude (4.31).

As an extra check, we can compute the leading-order energy spectrum in
the soft limit, which is obtained by considering only wavelengths of the emitted
gravitons much larger than the interaction region, i.e. |blw/v < 1. For E.q =

PY, this is given by

dErad
- % — Z / AQw Ay (K)woso|? - (4.48)

w~>0

In this limit the amplitude at order G? receives contributions exclusively from
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the diagram in Fig. 4.1b, so it is not affected by the gravitational self-interactions.
From eqgs. (4.31)—(4.34), it reads

Gmlmg 1 *)\
'L]

iAD (k)0 =

J 42 . 4.49
mpi|b| ywn - v (crei0, + 2c0e)e)) (4.49)

Integrating eq. (4.48) over the angles by ﬁxing some angular coordinate system

and introducing the function Z(v) = =4 + % + ( 280 —D arctanh(v) [101], we
obtain JE 1292 -1 )
rad i m1m2 4
= — z oG 4.50
dw lwso 7 202 b2 () + 07, (4.50)

which agrees with [68,206]. We will come back to this result below.

4.7 Radiated angular momentum

The angular momentum lost by the system is another interesting observable
as it can be related to the correction to the scattering angle due to radiation

reaction [101]. In terms of the asymptotic waveform this is given by [101,207]
Jzad = Ezjk / dQ du 7‘2 (thlhlk — a:j(‘?khlmhlm) . (4.51)

As pointed out in [101], the waveform at order G is static and can be pulled out
of the time integration leaving with the computation of the gravitational wave
memory Ah;; = fjozodu hU This can be related to the classical amplitude by
eq. (4.10),

dw
Ahy; = 4WZ / w)wAx(k)ws0 5 (4.52)

where from the right-hand side it is clear that only the soft limit contributes to
the gravitational wave memory. Moreover, since at this order the soft limit is
uniquely determined by the diagram in Fig. 4.1b, the radiated angular momen-
tum does not depend on the gravitational self-interaction, confirming [101].
To compute the radiated angular momentum, it is convenient to introduce
a system of polar coordinates where n = (sin 6 cos ¢, sin 6 sin ¢, cos #) and an or-
thonormal frame tangent to the sphere, with ey = (cos 0 cos ¢, cos 0 sin ¢, — sin 0)
and e, = (—sin ¢, cos ¢, 0). To express eq. (4.51) in terms of the amplitudes, we
can rewrite the angular dependence in the polarization tensors of the first term
inside the parenthesis using 25”%%67,3‘ = —iAn'6™". The second term can be

rewritten by noticing that €% 279, = iL’, where L’ is the usual orbital angular
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momentum operator, expressed in terms of the angles and their derivatives (see
App. B.1). Using e*)"f;efm = \cot fegd™, we obtain

lm

dQ . .
Jid = ) / any WA (k)0 JAY + O(G?) (4.53)
A

where J = A(n + cot fey) + L and we have introduced ./_l(;) as the leading-order
amplitude striped off of the delta function, i.e. defined by

AV (k) = AV5(w)e*? (4.54)

One can perform the angular integral in eq. (4.53) by aligning e, and e, along

any (mutually orthogonal) directions and eventually obtains

2(272 — 1) G*mymyJ
v [b|”

Jiad = Z(v)(ep X ) , (4.55)
where J = my7yv|b| is the angular momentum at infinity. This result agrees
with [101].

As noticed in [68], from eqs. (4.50) and (4.53) we observe an intriguing
proportionality between the energy spectrum in the soft limit and the total
emitted angular momentum. We leave a more thorough exploration of this

result for the future.

4.8 Discussion

We have studied the gravitational Bremsstrahlung using a worldline approach.
In particular, we have computed through the use of Feynman diagrams, ex-
panding perturbatively in G, the leading and next-to-leading order classical
probability amplitude of graviton emission and consequently the waveform in
Fourier space. The next-to-leading order amplitude receives two contributions:
one from the deviation from straight orbits, which can be expressed in terms of
modified Bessel functions of the second kind; another from the cubic gravita-
tional self-interaction, which we could rewrite as one-dimensional integrals over
a Feynman parameter of modified Bessel functions. When comparison was pos-
sible, we found agreement with earlier calculations of the waveforms [190, 193]
in different limits.

We have used the amplitude to compute the leading-order radiated angular
momentum, recovering the result of [101]. Moreover, we have computed the

total emitted four-momentum expanded in small velocities up to order v® and
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we found agreement with the recent results of [80,102]. Unfortunately we were
not able to reproduce their fully relativistic result, which we leave for the future.
The bottleneck of going to higher orders seems to be the integrals of the form
4.28 which were also encountered in [104]. Nevertheless, we have built the
foundations for an alternative derivation of the recent results obtained with
amplitude techniques.

Another interesting limit is for small gravitational wave frequencies, where
the amplitude does not receive contributions from the gravitational interaction.
We have computed the soft energy spectrum recovering an intriguing relation
with the emitted angular momentum [68]. Future directions include the study
of spin and finite-size effects and a more thorough investigation of the relations
between differential observables. In addition, going to higher order in the an-
gular momentum loss and the radiated momentum is crucial for the completion

of the conservative sector.
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Chapter 5

Conclusions

The gravitational waves era has just began. The theoretical understanding and
precise modelling of the gravitational dissipative binary problem is essential to
investigate the plethora of the forthcoming observational data. In this thesis,
we focused on the analytical treatment of the inspiral phase of the binary co-
alescence. This phase can be treated in different perturbative approximations
using several different frameworks. High precision is required in order to probe
new physics and therefore it is essential to obtain a good analytic control of the

inspiral phase.

Recent advances in the field of Scattering Amplitudes, Effective Field The-
ory treatment and traditional General Relativity has offered new insights and
results regarding the gravitational dynamics of the two-body problem. It is
clear that gravity admits a QFT description when viewed as an EFT. Thus,
exploiting the toolbox of QFT is a promising avenue both of theoretical and
phenomenological interest. In addition, PN and PM approximations, viewed
as complementary approximations schemes, along with the connection between
scattering and bound systems offers a remarkable opportunity to improve the

precision of the perturbative analysis.

In this context, the main body of the thesis comprises of different approaches
on the binary problem. Specifically, in Chapter 2 we focused on the NRGR
framework for the PN study of the binary problem. We provided a self-contained
introduction of the formalism which offers a clean conceptual outline of the sev-
eral different effects entering the dynamics of the two-body problem. NRGR
has resulted in high precision results offering insights of the conceptual and
practical bottlenecks that one faces when working in high-precision. Thus, it is
an important framework that can teach us a lot when considering alternative
approaches. Using NRGR, we computed explicitly the S3 conservative action at

NLO, entering at 4.5 PN order for rapidly rotating compact objects providing
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a novel result to the literature.

In Chapter 3, we considered an EFT description of gravity and derived ex-
plicitly the Schwarzschild-Tangherlini metric of a spherically symmetric static
object from Quantum Scattering Amplitudes. We addressed and resolved sev-
eral conceptual issues arising in the computation of off-shell gauge dependent
quantities from Scattering Amplitudes. Furthermore, we were able to prescribe
a general and simple procedure to extract the classical contributions from a
Quantum Scattering Amplitude which can be used for the two-body dynamics.
Classical limit of Quantum Scattering Amplitudes, in the light of the recent
advances in on-shell methods for Scattering Amplitudes, is an essential step
to exploit this toolbox to get information for the classical, and the quantum,

contributions to the binary problem.

Finally, in Chapter 4 we considered a more recent formalism for PM approx-
imation. Inspired from the NRGR formalism, PMEFT is a classical worldline
framework that deals effectively with the PM dynamics of the problem. We
extended the formalism to include radiation emission effects and computed ex-
plicitly several observables. In addition, we addressed the radiation reaction
contribution to the scattering angle of the two-body scattering, providing a
crosscheck of previous results. We exhibited the simplicity of this framework
and at the same time we faced a technical difficulty regarding the computation

of a master integral.

The future of gravitational physics is extremely promising. In order to ac-
quire higher precision, we need to understand and resolve both the conceptual
and technical difficulties that arise. An important lesson is that different ap-
proaches have different advantages and therefore they should all be pushed to
higher orders in order to probe new physics. An important, and common, issue
is the integration techniques used in higher-loop computations. In addition, spin
and finite size effects are an integral part of the analysis going to higher orders,
since they are essential features of astrophysical compact objects. Furthermore,
hereditary effects entering both the conservative and dissipative dynamics of
the system are of paramount importance. Finally, one should look for GR mod-
ifications and quantum signatures in the gravitational wave signal which will

be important to investigate the incompleteness of General Relativity.
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Appendix A

The Schwarzschild-Tangherlini
metric from scattering

amplitudes in various dimensions

A.1 Fourier transforms

Here we collect the Fourier integrals used to calculate the long range corrections
to the energy momentum tensor and the metric.

The Fourier transform form momentum space to direct space

Flod = [ Loeedd _ 1 T(5) <3)d_a. (A1)

|
Using that
0,8, (72)* = 20(72)°1 (@j +2(a— 1)%?) , (A.2)
X
we have that
d—»

g . G gz 44 _ 1. a—duug, A
Fij(a,d) - » ’(ﬂaﬂe o) F(a,d) (aél]—i— = ) (A.3)
We have in particular that

r (51) TiTj
FO) =0, Fy0.d) = s (6 — a5 (A4)

A.2 Vertices and Propagators

We will here list the Feynman rules which are employed in our calculation. For
the derivation of these forms, see [8—10,24,49,208,209]. Our convention differs
from these work by having all incoming momenta. We have stripped off factors
of i/87G y from the vertices and made them explicit in the amplitudes.
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Appendix A. The Schwarzschild-Tangherlini metric from scattering

amplitudes in various dimensions

The massive scalar propagator is ——————.
q° — m* +1e

The graviton propagator in de Donder gauge can be written in the form

P
T where P is defined by
q% + ic
1
PHY:pT 5 (nupnl/U + ’I]MUT]Vp _ 5= 277””77/)0) (A5)

The 2-scalar-1-graviton vertex 71" (p1, pa) is

v 1Z Z 1 v
(1, p2) = PLPE + PiPs + 50 (- p2)*. (A.6)

The three-graviton vertex has been derived in [208], where k+ ¢+ 7 = 0,
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