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Abstract

In this dissertation, we tackle the problem of execution complex multi-thread
real-time applications on modern Network-on-Chip architectures.

Network-on-Chip (NoC) is a promising technology that fits the increasing per-
formance demands of Cyber-Physical Systems (CPS). The introduction of NoCs
is justified by the fact that classical multi-core single-bus architectures fail to
address the performance requirements and the predictability needs of modern
CPS applications, especially as the number of cores increases. Even if the use of
cache memories mitigates the bottleneck effect of single bus architectures, caches
introduce unpredictable delays in accessing data, which in turn make it difficult
to estimate the execution time of tasks.

Most CPS applications are time-sensitive: tasks are assigned deadlines that must
never exceed, otherwise a critical failure may occur. Such systems are denoted
by hard real-time. Consequently, the communications that occur in the network,
denoted by on-chip communications, must be predictable and as fast as possible
to prevent deadline-missing. Since the task position on the NoC determines its
communication cost, the allocation of the application tasks on the chip cores is a
crucial problem.

In this thesis, we address specifically the problem of allocating a set of real-time
applications, each composed of several parallel tasks, whose structure is described
by a Directed Acyclic Graph (DAG), onto a Network-on-Chip processor.

First, we study the problem of bounding the communication cost depending on
the different message scheduling policies at the router level. Then we address
the problem of task scheduling and of verifying the schedulability of a certain
allocation.

Then, we propose an approach to reduce the complexity of the task allocation
problem and its analysis cost. Moreover, we propose a task mapping strategy
through a meta-heuristic which performs an effective design-space exploration
for DAG (Directed Acyclic Graph) tasks. Lastly, in addition to on-chip commu-
nications, we studied the mapping problem when off-chip communications are
integrated into the model.
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Introduction

Objectives & Motivation

The increasing complexity of modern Cyber-Physical systems (CPS) requires
the usage of powerful embedded computing systems to satisfy their timing
constraints. Typically, the system monitors a physical environment using sensors,
then process and react to the environment’s state. This sense-compute-react
pattern must be completed within a predefined time window imposed by the
speed of the environment’s evolution. Such constraints are known as real-time
constraints. The correctness of the system design relies on its ability to provide
guarantees on timing constraints. A violation of a timing constraint might be a
serious source of damages.

Classical multi-core platforms design have limited settings in terms of the number
of computing resources, which make them inadequate for current and near-future
CPS applications. One serious problem of all interconnection architectures based
on a single shared bus is that access to memory and devices is exclusive, therefore,
the bus represents a bottleneck. Even if the use of local cache memories mitigates
the performance problems by keeping data in the local cache, it also introduces
unpredictable timing to access shared data. This makes it difficult to efficiently
bound the execution time of real-time tasks.

Networks-on-Chip (also called on-Chip Networks) architectures have been pro-
posed to solve the bus bottleneck problem by providing a more scalable archi-
tecture. NoCs can host hundreds of cores on a single chip, connected through
a network. Data is moved from one core to another, or to the main memory,
by means of network interfaces represented by simple routers. However, these
enhanced features increase the complexity, since we have to deal with routing,
switching protocols, congestion handling, and classical network problems even
when accessing data in the main memory.

Supporting real-time constraints on NoC-based architectures requires particular
attention. The system must be predictable; i.e. we must be able to estimate
tight and safe bounds for inter-task communications as well as to compute task
response time.

The goal of this thesis is to provide support for hard real-time applications on
Networks-on-chip. We consider real-time constraints and define NoC parameters
and configurations. We propose task and communication mapping such that all
deadlines are respected.
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List of Symbols

In this thesis, we deal with hard-real systems: deadline misses are not tolerable,
and the results produced after the deadline are no longer useful. We propose
novel techniques and schedulability analyses for a set of real-time tasks modeled
by DAGs (Directed Acyclic Graphs) on NoC resources. Further, we tackle memory-
to-chip transfers by extending DAG model to the AER (Acquisition, Execute,
Write-back) task model.

Contribution of this dissertation

Simulation and analysis of real-time communication The performance and the
real-time behavior of a Network-on-Chip platform are extremely dependent on
the micro-architecture of the routers. In fact, the latter are in charge of regulating
the network traffic. Additionally, they also must be designed to deal with real-
time constraints: in particular, when multiple incoming flows are directed toward
the same output port, the router has to choose which one is sent first by using an
arbitration mechanism.

We propose a comparative empirical study on the two main arbitration schemes
used in NoC routers, the priority-preemptive vs. round-robin, onto a mesh-2D
network structure. We implemented a simulator that models a wormhole commu-
nication mechanism and supports the two policies. Furthermore, we compared
analytically the two policies in the worst-case scenario (highest contention rate)
by using state-of-the-art formulas.

The goal of this study is to prove that, under certain assumptions, the RR protocol
can be used as a Guarantee Service (GS) protocol. We compare RR with a
priority-preemptive arbitration scheme, and we show that RR can better handle
communications in the presence of high workloads and at the same time it is
possible to compute an upper bound to the communication delay. We compare
the two approaches in order to highlight the gap that separates the two arbitration
approaches in the average case. We used both analysis methods and simulations to
calculate the task response time in the worst-case and the average case respectively.
We conclude that RR can be used in a hard real-time context where deadline-
missing is forbidden.

Task allocation with earliest deadline scheduling on Network-on-chip Schedul-
ing real-time tasks on single processor is a research problem that has been widely
treated in the literature. However, scheduling real-time tasks on manycore plat-
forms with migration is still an open research problem, and the existing solutions
are difficult to deploy on a NoC.

A practical strategy is to transform the manycore scheduling problem into a much
simpler and well-known problem, the single core scheduling problem. There-
fore, in this study, we propose a technique to transform multicores scheduling

2



on several single core scheduling problems by means of partitioned schedul-
ing. Contrary to global scheduling, partitioned scheduling doesn’t allow task
migration.

We used Earliest deadline first (EDF) scheduling policy, which is considered as an
optimal scheduler on a single core. Therefore, it allows a greater schedulability
rate compared to other schedulers. In this study, applications are modeled by a
DAG (Directed-Acyclic-Graph) which is an expressive model used to highlight
the communications between tasks. The nodes represent the sub-tasks while the
edges express the communication between them. We use bin-packing heuristics
to prove the efficiency of our contribution.

Memory-aware real-time tasks mapping on Network-on-Chip The problem of
mapping a set of independent tasks on a multicore is well-known to be a NP-Hard
problem. The complexity increases when considering tasks that communicate
and the allocation of tasks’ communication. In fact, we distinguish two types
of communications: (i) task-to-task communications and (ii) and task-to-main-
memory communications (also denoted by off-chip communications). The former
regards the communications between sub-tasks whereas the latter concerns the
communications between the task and the main-memory (typically, an external
DRAM). Thus, finding the optimal system mapping requires sophisticated opti-
mization techniques. In this work, we propose a task allocation algorithm onto
NoC platform based on Simulated Annealing (SA) method.

We choose to use meta-heuristics for their trade-off in providing a reasonable
coverage of the design space solution in a reasonable amount of time. To this end,
we use an expressive DAG task model that includes the off-chip communications,
called AER (Acquisition-Execution-Restitution) tasks.

Organization

D

Task Model Scheduling Algorithm Arbitration Policy Heuristic

Chapter 6 - Processor-Memory co-scheduling on NoC

Chapter 5 - DAG tasks allocation on NoC

Chapter 4 - Comparative study: Priority Preemptive and Round-Robin Arbitration

AER
(Aquisition-Execution

-Restitution)
Rate Monotonic TDMA

Multi-Objective
Simulated Annealing

DAG
(Directed Acyclic Graph)

EDF
(Earliest Deadline First) TDMA

Bin-packing
heuristics

Communication-only Non-specified
Round-Robin/TDMA

+
Priority-based

Random

Figure 0.1.: Contributions of this dissertation by elements
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List of Symbols

In this thesis, we focus on the task mapping problem of hard real-time tasks onto
a Network-on-Chip architecture. The problem has been studied in the literature
from different points of view, always aiming at providing the best task mapping
schema that fits the requirements. Thus, the main contributions of this thesis
are:

• Determine the best arbitration mode for Network-on-Chip routers,
• Allocation of DAG tasks onto NoC with earliest deadline scheduling,
• Reducing the worst-case analysis complexity of real-time systems,
• Proposing a predictable Network-on-Chip architecture dealing with off-chip

communications,
• Efficient memory-aware task allocation.

Figure 0.1 presents a summary of the thesis contributions by distinguishing the
different parts of a study.

This thesis is structured as follows. The first chapter introduces real-time systems
and scheduling theory. The chapter also introduces the schedulability analysis
of hard real-time systems in multicores platforms. In chapter two, we give an
overview of the Network-on-Chip architecture and its elements. We also present
the router’s architecture and its features. In chapter three, we introduce the task
mapping problem and we present prior work available in the literature. Chapter
four addresses an empirical comparative study of the routers’ architectures of the
Network-on-Chip. In chapter five, we trait about DAG task mapping technique
with partitioned scheduling. We propose a series of transformations to reduce
the schedulability analysis complexity. Finally, chapter six addresses the task
mapping problem through meta-heuristics onto an execution platform with
off-chip memory.
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1. Introduction to Real-Time Systems

1.1. Introduction

We define a Cyber-physical System (CPS) as a system that interacts with the
external environment by means of physical reactions, but not only, as a reaction
could be a spoken-order such as a warning or an advice, or simply a meaningful
illustration. For instance, the physical reactions are applied by actuators and
produced after a series of calculations based on a source of data coming from
an external acquisition by means of intermediate sensors, cameras, etc. All of
flight control systems, automotive applications, and telecommunication systems
could be considered in part, or even entirely as CPS. We illustrate in Figure 1.1 a
simple CPS schema, where the environment interacts with the system. However,
these reactions are sensitive regarding the speed of their executions. In fact, some
reactions must be executed before a given time called deadline, when exceeding
the latter, the result has less importance or any at all. Such systems are denoted
as real-time systems.

Figure 1.1.: A Cyber-physical System schema

In this section, we introduce real-time systems, a type of time-related systems that
are subject to timing constraints. These systems may or may not tolerate deadline-
misses depending on their class. We classify real-time systems as follows:

Hard real-time : A system is classified as hard, if producing the results after the
deadline might involve catastrophic scenarios on the system itself.

Firm real-time : A system is classified as firm, if producing the results after the
deadline is useless and doesn’t deteriorate the system.

Soft real-time : A system is classified as soft, if producing the results after the
deadline doesn’t create consequences, except a performance degradation.

Definition 1.1.1. A real-time system is a system which its execution doesn’t
depends only in the results correctness but also on the time in which the results
are produced Stankovic, 1988.
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1.2. Task Model

1.2. Task Model

Most real-time systems are modeled as sets of concurrent applications (or tasks). In
this section we describe the a real-time application as a finite set Γ of independent
real-time tasks τ: Γ = {τ0, · · · , τn}.

Typically, a independent task can be represented by either the periodic task model
or the sporadic task model. Both models represent an infinite sequence of task
instances (refereed by jobs). In the periodic task model, jobs are released strictly
periodically, separated by a fixed time value (the period). In the sporadic task
model, jobs may arrive at any time, separated by a minimum inter-arrival time.

Each task is characterized by the tuple (Ci, Di, Ti) that represents: its worst-case
execution time Ci, its relative deadline Di, and its period or minimum inter-arrival

time Ti. The utilization Ui of a task is calculated by the fraction Ci
Ti

. Ri denotes

the worst-case response time of a task, which is the largest interval of time from
the release of a job until its completion.

Periodic task set may be classified as synchronous if all tasks that compose it are
released simultaneously, or asynchronous if the tasks are not released at the same
time. In the latter case, each task has an offset Oi that delays its first release.

The hyperperiod H(Γ) of a task set defines the time at which the complete execution
schedule will repeat itself, and it is given by the least common multiple of the
task periods (Equation (1.1)).

H(Γ) = lcm(T0, · · · , Tn) (1.1)

o
t

ai,0 Ci

di,0

Ti

ai,1

di,1

ai,2

Figure 1.2.: The sporadic task model

We depict in Figure 1.2 a task model with its characteristics. The literature reports
three levels of constraints on task deadline:

1. Implicit deadline: When the task deadline equals its period (Di = Ti).
2. Constrained deadline: When the task deadline is less than or equal its period

(Di ≤ Ti).
3. Arbitrary deadline: The task deadline may be less, equal or greater than its

period.

Furthermore, a task presents the additional characteristics:
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1. Introduction to Real-Time Systems

• Arrival time aij: it is the time at which the j-th job of task τi is activated and
becomes ready for the execution; it is also denoted by the release time.

• Start time sij: it is the time at which the j-th job of task τi starts its execution.
• Absolute deadline dij: it is the deadline of the j-th job. The job must execute

Ci units of execution time in interval [aij, dij].

• Density δi: it’s calculated as the ratio δi =
Ci
Di

. Nonetheless, if the deadline

is implicit the density equals the task utilization Ui.
• Jitter release Ji: represent the maximum deviation time that a task can

suffer before its start time.

1.2.1. Task Dependency

Many real-time systems can be modeled as a set of independent tasks when
each of them generates an infinite number of job sequences. However, to meet
functional requirements, the system must sometimes be modeled as a set of
dependent tasks, which are therefore correlated and must follow an execution
order with precedence constraints. Figure 1.3a shows the transaction model,
where tasks are to be executed in a pipeline, with each task waiting for the
completion of the previous one. Figure 1.3b represents the Directed-Acyclic-
Graph (DAG) model, which allows more expressive dependencies.

τ1 τ2 τ3

(a) transaction-model

τ1 τ3

τ2

τ4

τ5

(b) DAG fork-join model

Figure 1.3.: Task dependency levels

A DAG is composed of a set of vertices and edges. The vertices represent comput-
ing functions called sub-tasks which are typically chunks of the application’s code.
The edges model communications and precedence constraints between sub-tasks.
An edge e(vi, vj) represents a communication between two sub-tasks vi and vj;
for every k ≥ 0, the k-th instance of sub-task vj cannot start execution before the
k− th instance of sub-task vi has completed and the corresponding message from
vi has been received. We call this a precedence constraint between vi and vj.

Consequently, a vertex can be a source vertex if it has at least an outgoing edge;
and it can be a destination vertex is it has one or more incoming edges. A root vertex
has only outgoing edged and a sink vertex has only incoming edges, respectively.
Finally, a DAG is acyclic: there is no closed cycle in the graph. A DAG is assigned
a period Ti and it can be periodic or sporadic; it is also characterized by a relative
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1.3. Real-time systems scheduling analysis

deadline Di, that is the time by which all instances of the sub-tasks of the DAG
must have completed from the corresponding DAG’s activation.

1.3. Real-time systems scheduling analysis

Task scheduling defines how the sequence of jobs has to be orchestrated in order
to access a resource which could be a calculation unit or a storage medium.

1.3.1. Scheduling algorithms classification

We can classify real-time scheduling algorithms according to the following char-
acteristics:

Preemptive vs. Non-Preemptive

• Preemptive algorithms can suspend a running task on a processor, by saving
its context, and replace it with another higher priority task.

• In non-preemptive algorithms, once a task has started its execution, it
executes until completion with no suspensions, even when higher priority
tasks arrive.

Static vs. Dynamic

• In static schedulers, all decisions are based on fixed parameters and as-
signed to tasks before their activation. They are also denoted by compile-time
scheduling decisions.

• In dynamic schedulers, decisions are based on dynamic parameters that
may change during the system execution. They are also denoted by run-time
decisions.

Off-line vs. Online

• A scheduling algorithm is used off-line if it is executed on the task set before
tasks activation. The schedule generated from this operation is stored and
later executed by a dispatcher.

• A scheduling algorithm is used on-line if the scheduling decisions are taken
at run-time and the schedule may change anytime a new task enters the
system.
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1. Introduction to Real-Time Systems

Optimal vs. Heuristic

• An algorithm is said to be optimal if it minimizes the cost related to a
function defined over the task set.

• An algorithm is said to be heuristic if it is guided by a heuristic function
that defines its scheduling decisions.

1.3.2. Scheduling characteristics

A real-time schedule is correct if all jobs of all tasks start execution no later than
their arrival time, and complete their execution no earlier than their absolute
deadline. A task set that is correctly scheduled by algorithm A is said to be
schedulable by algorithm A.

Additionally to the scheduling classes, a scheduling algorithm has the following
characteristics:

Optimality : a scheduler is denoted as optimal with respect to a system and a
task model if it can schedule all of the task sets that comply with the task
model and are feasible on the system. Davis and Alan Burns, 2011

Feasibility : A task set is said to be feasible if it exists a scheduling algorithm that
generates a correct schedule.

Predictability : An algorithm is said to be predicable if during the system execution
the jobs response time cannot be increased while the task parameters remain
constant.

Comparability : comparing two task set by a given scheduling algorithm, there
are three possible outcomes

• Dominance: Algorithm A is said to dominate algorithm B, if all the task
sets that are schedulable by B are also schedulable by A and there are
task sets schedulable by A, but not according to B.

• Equivalence: Algorithm A and B are equivalent if all the task set that are
schedulable by B are also schedulable by A, and vice-versa.

• Incomparable: Algorithm A and B are incomparable if there are task sets
that are schedulable by B and not by A, and similarly, there are task
sets schedulable by A and not by B.

Sustainability : An algorithm is said to be sustainable associated to a task model,
if and only if any task set remains schedulable when: (i) decreasing execu-
tions times, (ii) increasing periods or minimum inter-arrival times, and (iii)
increasing relative or absolute deadlines.

1.3.3. Scheduling analysis

Assuming a scheduling algorithm and a task set, a scheduling analysis algorithm
tests the schedulability of the task set with the scheduling algorithm. Typically,
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1.4. Uniprocessor Scheduling

the schedulability test analyses the worst-case scenario of the system. A given
schedulability test can be classified as:

Sufficient test : A schedulability test is termed sufficient, with respect to a
scheduling algorithm and a system if all of the task sets that are deemed
schedulable according to the test are in fact schedulable.

Necessary test : conversely, a schedulability test is termed necessary if all of the
task sets that are deemed unschedulable according to the test are in fact
unschedulable.

Exact test : if the schedulability test is both sufficient and necessary.

1.4. Uniprocessor Scheduling

In this section, we introduce uniprocessor scheduling and the different scheduling
algorithms associated with it. We will facilitate the functioning of the algorithms
by bringing some simple examples.

1.4.1. Rate Monotonic Scheduling

The rate monotonic scheduling belongs to the fixed-priority scheduling class of
algorithms. It simply assigns priorities to tasks according to their rates (inverse
of the periods). Specifically, tasks with shorter periods will have higher priorities.
We denote task priority by Pi.

Γ Ci Ti Pi

τ1 2 6 1

τ2 3 8 2

Table 1.1.: A task set with RM priority assignment

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

Figure 1.4.: The RM tasks scheduling

Example 1.4.1. Let define Γ a task set with two periodic tasks with implicit
deadline (task characteristics are in Table 1.2)
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1. Introduction to Real-Time Systems

U =
n

∑
i=1

Ci

Ti
=

2

6
+

3

8
≈ 0.70 (1.2)

When task set utilization Ui remains under n(21/n − 1) (n represents the task set
cardinality) Liu and Layland, 1973 all the task are schedulable. Thus, the latter
value constitutes the feasibility upper bound of RM.

1.4.2. Deadline Monotonic Scheduling

The DM scheduling algorithm is similar to RM since they pertain to the same
class of fixed-priority schedulers. RM assigns priority according to the relative
deadline: tasks with shorter deadlines have higher priorities. The algorithm has
been proposed by Leung and Whitehead J. Y.-T. Leung and Whitehead, 1982 to
tasks with constrained deadline.

The feasibility of a task set with constrained deadlines can be guaranteed using
the utilization based sufficient scheduling test:

n

∑
i=1

Ci

Di
≤ n(21/n − 1) (1.3)

To find a necessary and sufficient schedulability test for DM, N. Audsley et al.,
1993 proposed an efficient test for periodic tasks, called response time analysis. The
proposed method computes the longest response time Ri of a periodic task τi at
the critical instant, which is the sum of its computation time and the interference
Ii of higher priority tasks:

Ri = Ci + Ii

where

Ii = ∑
j∈hp(i)

⌈

Ri

Tj

⌉

· Cj

Hence,

R
(n+1)
i = Ci + ∑

j∈hp(i)

⌈

R
(n)
i

Tj

⌉

· Cj (1.4)

The calculation of Ri in Equation 1.4 is performed iteratively by defining: R
(0)
i =

Ci. The stop condition of the iteration is either when: Rn+1
i = Rn

i or Ri > Di. The
system is declared as not schedulable when the latter condition occurs.
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1.4. Uniprocessor Scheduling

Γ Ci Ti Di Pi Ri

τ1 5 10 9 2 9

τ2 4 15 7 1 4

τ3 6 30 14 3 15

Table 1.2.: A task set with DM priority assignment

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1

τ2

τ3

Figure 1.5.: The DM task scheduling (unschedulable case)

1.4.3. Earliest Deadline First

Earliest Deadline First (EDF) is an algorithm that selects jobs according to their
absolute deadline. Specifically, jobs with earlier deadlines have a higher priority.
Thus, the closer a task execution is to its deadline, the higher is its priority. The
absolute deadline of a periodic task is calculated as follows:

di,j = Oi + (j− 1)Ti + Di (1.5)

EDF is a dynamic priority assignment. Typically, tasks are executed in preemptive
mode since the current active task can be replaced by a task with an earlier
deadline.

Concerning the implicit deadline task sets (Ti = Di), the schedulability analysis
under EDF can be verified through the processor utilization factor. Thus, EDF
is known to be optimal since the tasks remain schedulable when the processor
utilization up to 100%, by the following sufficient condition:

n

∑
i=1

Ci

Ti
≤ 1 (1.6)

Demand Bound Function

Under EDF, the analysis of periodic tasks with constrained deadline (Di < Ti) can
be performed using the processor demand metric. We refer this method to the work
of Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell, 1990a.
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1. Introduction to Real-Time Systems

The processor demand of a task τi in an interval [t1, t2] is expressed by the amount
of processing time gi(t1, t2) requested by the sequence of jobs activated in [t1, t2]
and must be completed in the same interval, such that:

gi(t1, t2) = ∑
ri,k≥t1,di,k≤t2

Ci (1.7)

However, when the task set is synchronous, which means all tasks are released
simultaneously and activated at t = 0 (i.e: Φi = 0 for all the tasks), we must
verify the demand of all jobs in [0, t]. Consequently, we use the Demand Bound
Function Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell, 1990a:

dbf(t) =
n

∑
i=1

⌊

t + Ti −Di

Ti

⌋

· Ci (1.8)

Thus, a synchronous set of periodic tasks with constrained deadline is schedulable
by EDF if and only if Equation (1.9) is verified.

∀ t > 0 dbf(t) ≤ t (1.9)

1.5. Multiprocessor scheduling

This section introduces the multiprocessors systems and some terminology and
notation used in multiprocessors scheduling research. Moreover, we relate a
taxonomy of multiprocessors scheduling and develop each part in a dedicated
section. Unlike uniprocessor scheduling, multiprocessor scheduling must face the
two following problems:

• The allocation problem: on which processor a task should execute.
• The priority problem: when, and in what order should a job execute regarding

the sequence of jobs of other tasks.

We can distinguish through Figure 1.6 the difference between the partitioned
and the global scheduling when the former has a queue for each processor,
whereas the latter gathers all the tasks into one queue and dispatches the tasks to
processors.

On the other hand scheduling algorithms can be classified according to the task
migration tolerance and priority changing in run-time (See Carpenter et al., n.d.
for more details) as follows:
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CPU4

CPU3

CPU2

CPU1

τ1

τ2

τ3

τ4τ5

Partitioned scheduling Global scheduling

CPU4

CPU3

CPU2

CPU1

τ1τ4τ3τ2τ5 dispatcher

Figure 1.6.: Partitioned vs. global scheduling

Allocation-based classification

• No migration: each task is definitively allocated to a processor and no
migration is permitted.

• Task-level migration: the jobs that pertain to a task may execute on different
processors. However, each job can only execute on a single processor.

• Job-level migration: It’s permitted to a job to migrate to a different processor
during its execution.

Priority-based classification

• Fixed task priority: each task receives a fixed priority that will be applied to
all of its jobs.

• Fixed job priority: the jobs of the same tasks may have different priorities,
but each job has a signle static priority. EDF is considered from this class.

• dynamic priority: a single job may have different priorities during its execu-
tion, as Least Laxity First (LLF) scheduling.

1.5.1. Partitioned Scheduling

The partitioned scheduling doesn’t allow task migration. At this fact, it has the
advantages of:

• There is no migration cost to consider or any interference related to the
migration process, which renders the schedulability analysis easy.

• If a task exceeds its worst-case execution time budget, it impacts only the
tasks on the same processor.
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• The partitioned approaches use a separate run-queue per processor, rather
than a single global queue. Therefore, the overheads of queue manipulating
are less important onto large systems.

Task partitioning strategies

Determining an optimal task partitioning is known to be an NP-Complete prob-
lem in the strong sense, where it is usually described as a bin-packing problem.
Since each partitioning heuristic has its own strategy, several of them consist of
two phases according to S. Baruah and Fisher, 2005:

• The pre-processing phase where the tasks are pre-sorted according to a
task parameter, e.g., according to the shortest deadline in DM or the task
utilization.

• The assignment phase, which consists of placing tasks into processors.

There are usual assignment strategies commonly used for task partitioning:

• First-Fit (FF): the task is always allocated to the first processor that fits its
demand, while processors are increasingly sorted based on their ID.

• Best-Fit (BF): the task is allocated to the first processor while the set of
processors is sorted in decreasing order with respect to their utilization.

• Worst-Fit (WF): similar to BF, but the processors are sorted in increasing
order with respect to their utilization.

• Arbitrary-Fit (AF): each task is assigned to a processor in a random order.

1.5.2. Global Scheduling

Unlike the partitioned scheduling, this class of algorithms allows task migra-
tion from one processor to another. Global scheduling presents the following
advantages compared to partitioned scheduling:

• It experiences only fewer context switches/preemptions when it is de-
ployed, as the scheduler preempts tasks when there are no idle processors
Andersson and Jonsson, 2000.

• The processor availability (space capacity) when a task executes less than
its worst-case execution time, which can be used by all other tasks, not just
those on the same processor.

• It is typically more appropriate to open systems, as there is no need to run
load balancing or task re-scheduling when the set of tasks changes.

Global-EDF and Global-DM are examples of the adaptation of uniprocessor
schedulers to global scheduling. The priority assignment logic doesn’t change
but it allows the m highest tasks/jobs to run in parallel and at the same time.
Usually, when a task arrives and there is no idle processor, it preempts a lower
priority task and executes on the freed processor.
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1.6. Introduction to parallel programming

1.5.3. Semi-partitioned Scheduling

This class aims at addressing the fragmentation of spare capacity in partitioned
systems is to split a small number of tasks between processors Davis and Alan
Burns, 2011. Andersson and Tovar, 2006 have proposed an approach to scheduling
periodic task sets with implicit deadlines, based on partitioned scheduling, but
splitting some tasks into two components that execute at different times on
different processors.

Besides that, Andersson, Bletsas, and Sanjoy Baruah, 2008 developed the idea of
job splitting to cater for sporadic task sets with implicit deadlines. In this case,
each processor p executes at most two split tasks, one executed by processor p− 1
and one executed by processor p + 1.

1.6. Introduction to parallel programming

In this section, we introduce parallel processing and we will see how real-time
programs are usually expressed in a low level language. Later, we explore popular
libraries to write parallel programs.

1.6.1. Programming real-time systems

As we know, a real-time system is itself a set of periodic/sporadic tasks based on
the Liu and Layland model Liu and Layland, 1973. We can write the C-equivalent
of a real-time task by a function that has an infinite loop that generates the job
sequence. At the end of the processing, the task sleeps until its next activation
after the periodic time.

void taskA ()

{

while (1)

{

// activation

processing () // task code

sleep_until_next_period ()

}

}

1.6.2. POSIX Thread

The pthread library is known to be the most used low level API to create POSIX
threads. It allows the creation of many threads that could run simultaneously on
a multiprocessor. It also has primitive routines related to parallel programming
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such as: Mutexes, Semaphores, Monitors. As the partitioned scheduling offers
many advantages (See Section 1.5.1), the pthread library has an interface to allocate
a thread to a given CPUi called pthread affinity. We give the following example of
thread allocation in C:

// thread creation

pthread_t thread ;

pthread_create (& thread ,NULL ,th_func ,NULL);

pthread_join (thread ,NULL);

// set the pthread_affinity variables

cpu_set_t cpuset ;

CPU_ZERO (& cpuset ); // clears the cpuset

CPU_SET (2, & cpuset ); // set CPU 2 on cpuset

// allocate the thread on CPU 2

sched_setaffinity (thread , sizeof ( cpuset ), & cpuset );

1.6.3. Fork-join model

In some problems, we model the program as a series of functions that collaborate
to solve the problem effectively. A DAG task can represent such modeling (See
Figure 1.3b). OpenMP Chandra et al., 2001 provides an interface to implement
parallel programs based on the fork-join model, which is a special-case of DAG
structure composed of a single root node and a single sink node. The following
algorithm divides the addition of two arrays of N elements onto 10 threads:

// define the number if threads

omp_set_num_threads (10);

# pragma omp parallel

# pragma omp for

for(i = 0; i < N; i++)

{

c[i] = a[i] + b[i];

}

1.6.4. Message-passing interface

The message-passing interface (MPI) is a protocol for parallel programming, that
allows point-to-point communication, without necessarily using shared memory.
It’s considered as another parallel programming style by comparing with the
Fork-joint model (Section 1.6.3). The C-library that implements MPI protocol
«mpi.h» offers many routines to allow such inter-processor communications.
Hereafter, a brief example of an MPI implementation:
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// define MPI environment

MPI_Init (NULL , NULL);

// data to send

int buf [256];

// send to a given processor ( sender side)

MPI_Send (buf , sizeof (buf), MPI_INT , proc_id , 0, MPI_COMM_WORLD );

// receive from a processor ( receiver side)

MPI_Recv (buf , sizeof (buf), MPI_INT , proc_id , 0, MPI_COMM_WORLD ,

MPI_STATUS_IGNORE );

// terminate the session

MPI_Finalize ();

1.7. Conclusion

In this chapter, we introduced the real-time systems and scheduling theory. We
defined the task models and presented feasibility tests for scheduling policies
and we have briefly introduced the multiprocessors scheduling. Furthermore, we
gave an overview of real-time programming interfaces and how such models are
implemented in a real-time operating system.

In the next chapter, we will explore the multiprocessor execution platforms
in-depth and we will present realistic models of such platforms.
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2.1. Introduction

MPSoCs (MultiProcessors System-on-Chip) are popular as they bring many
advantages in their ability of integrating heterogeneous components onto a
single chip and their efficiency in performance/energy ratio. However, they show
rapidly their limits when the chip embeds hundreds of processing engines (PEs)
involving a high communication latency and bus saturation.

Network-on-Chip (NoCs) Benini and De Micheli, 2002 have been presented as
a solution to the increasing demand for communication requirements thanks to
their alternative bus topology. In NoCs, the PEs are connected each other and
with the external memory via a network while the classical MPSoCs use a single
communication bus. Figure 2.1 shows the difference between two homogeneous
manycore: in the NoC, a PE communicates through the network by: (i) its adjacent
router and (ii) its network interface (NI), while in usual bus-based multiprocessor,
the PEs send their messages through the bus.

In this chapter, we introduce the NoC architecture and its elements. We will also
present the NoC classes and those that are suited to real-time systems. We finally
present some NoC that are available in the market and used by the industry.
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Figure 2.1.: 2D-Mesh Network-on-Chip vs. Bus-based Multiprocessor

2.2. Network-on-Chip classes

2.2.1. Preliminaries

The basic structure of a NoC platform, as shown in Figure 2.1, consists of a set of n
processing engines {PE0, · · · , PEn} connected using a set of routers {R0, · · · , Rn}
by their associated network interface NI. Basically, the NoCs are appreciated for
their communication performance. When a communication is established between
two processing engines, a messageMi is sent through the network; the message
is divided into data sub-units (Packets, Flits, · · · ) based on the communication
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granularity. We present in the following the basic terms in relation with NoC
performance:

• NoC performance guarantees: refers to the minimum of performance provided
by the NoC, such as: maximum latency or the minimum throughput.

• Throughput: denotes the rate at which the NoC produces Flits (See Sec-
tion 2.3.3) during a communication.

• End-to-end latency: refers to the total duration of a communication between
two cores. Obviously, that includes blocking times and the interference that
may come from concurrent flux.

• Packet latency: refers to the delay experienced by a packet, from its release
from the source until its arrival time at the destination core.

Regarding the set of processing engines, the NoCs can be classified into three
categories:

• Heterogeneous: The processors are different in terms of architecture and
performance; hence the rate of execution of a task depends on both the
processor and the task. However, not all tasks may be able to execute on all
processors as it depends on task specifications.

• Homogeneous: The rate of execution of a task depends only on the speed
of the processor. Thus, a processor with speed 2 executes a task at exactly
twice the rate of a processor of speed 1.

• Identical: The processors are identical: hence the rate of execution of all
tasks is the same on all processors.

2.2.2. Circuit-Switched NoCs

The circuit-switching (CS) approach uses the resource reservation approach, also
referred by the name connection-oriented approach. Basically, a message is not be
injected into the network until the entire path between the source and destination
is reserved. Thus, a communication is achieved by the following three steps: (i)
checking or reserving a free path; (ii) initiate the communication, (iii) cancelation
or deallocation phase to release the path Pham et al., 2010. This approach presents
the advantage of being bufferless. As the links are pre-reserved, buffers are not
needed at each hop to hold packets that are waiting for allocation, thus saving
energy. However, CS-NoCs experience poor bandwidth utilization which are not
suitable for real-time critical systems.

2.2.3. Packet-Switching NoCs

Packet-switched (PS) NoCs, also denoted by connection-less NoCs, are promoted
for the efficient bandwidth and network resource usage compared to CS-NoCs
Hesham et al., 2017. In this class, during the communication, data are divided
into packets which find their way according to the NoC configuration: the flow
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control, the routing algorithm, an arbitration rule and the current traffic road. All
these parameters will be detailed in Section 2.3.

2.3. Network-on-Chip elements

The Network-on-Chip architecture is very flexible and can be shaped accord-
ing to the criticality level of the applications. Hereafter, we detail several NoC
configurations.

2.3.1. Topology

The Network-on-Chip topology determines the physical layout and connec-
tions between nodes (also called tiles). It affects profoundly the network cost-
performance, hence its importance. Moreover, the topology determines the num-
ber of hops (or routers) a message must traverse from the source to the destination
core, thus it influences network latency significantly. Consequently, the number
of hops affects directly the NoC energy consumption. Additionally, the topology
dictates the total number of alternative paths between cores, which affects traffic
workload and bandwidth utilization.

Since the first decision of NoC designers is the topology choice, it is useful to
know the performance of the different topologies available. Here, we describe
the several metrics that come in handy when comparing different topologies at
design step.

Degree refers to the number of links at each tile. Obviously, it follows the
number of neighbors that a tile is physically connected to. The degree is a useful
metric of the network’s cost when determining the implementation complexity.
Thus, a higher degree requires more ports at routers, which involves a higher
cost.

Hop count defines the number of routers that traverse a message from the
source to its destination core. It is considered as a useful parameter to calculate
the message latency since every on-chip communication has at least one router
traversal.

Maximum channel load This metric is used to estimate the maximum band-
width the network can support, or the maximum number of bits per second (bps)
that can be injected by every tile into the network before its saturation.
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Path diversity determines the number of possible paths that a topology could
provide between source to destination core. Obviously, path diversity within the
topology gives flexibility and more load-balanced traffic capability to routing
algorithms.

Direct topologies

Figure 2.2.: Direct topologies: Ring, 2D-Mesh and torus

Ring, mesh and torus are classified as direct topologies (Figure 2.2). The latter
two can be described as k-ary n-cube, where k is the number of tiles in each
dimension, and n is the number of dimensions. For instance, a 4× 4 torus is a
4-ary 2-cube with 16 tiles, while 4× 4× 4 is a 4-ary 3-cube with 16 tiles. Finally,
ring topologies fall into the torus family of k-ary 1-cube.

Indirect topologies

The butterfly topology is an example that pertains to indirect class. Butterfly
network is described as k-ary n-flies. However, we distinguish two types of nodes:
terminal and intermediate switches. Thus, such network would consists of kn of
terminal nodes (in our case, tiles) and n stages of kn−1 × k× k of intermediate
switch nodes.

The tree topology is logically a binary tree network in which resources increase
for stages closer to the root node. In a tree, messages traverse the tiles until an
ancestor is reached and then routed down to the destination; this permits the tree
to take advantage of locality between communicating tiles. Figure 2.3 illustrates
the two indirect topologies.

2.3.2. Routing Algorithms

The routing algorithm dictates the path that a message must follow during its
traversal in the topology. Typically, routing algorithms are divided into three
classes: deterministic, oblivious and adaptive. We draw a comparison of them in
Figure 2.4.
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Figure 2.3.: Indirect topologies: Tree and butterfly

Oblivious DOR Adaptive

(0,0)

(2,2)

Figure 2.4.: We illustrate a communication between two tiles: from (0,0) to (2,2) in 2D-Mesh. DOR
routes always the packets following the X and Y axis, while oblivious alternates the
paths between X-Y and Y-X axis. Finally, adaptive follows a path guided by a heuristic.

Deterministic routing

A routing algorithm is said to be deterministic if the message sent from tile A to
tile B takes the same path, independently of the current network state. The most
common used deterministic algorithm in Network-on-Chip is dimension-ordered
routing (DOR) due to its simplicity. In DOR, all messages from tile A to B traverse
the same path dimension-by-dimension (X-Y routing) as follows: the message is
first routed along the X-axis while each router has its 2-dimension coordinates.
Thus, it is guided by routers until it arrives at the destination tile column, then it
follows the Y-dimension.

This class of routing algorithm is appreciated since it offers a clairvoyance for the
message path traversal and its latency.
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Oblivious routing

Conversely to deterministic routing, this class behaves arbitrarily, where messages
traverse different paths from tile A to B, but the path is designated regardless of
the network traffic. For instance, a router could randomly choose an alternative
path among the possibilities.

Adaptive routing

This class of routing algorithms is considered as more sophisticated, in which the
path a message takes from tile A to B depends on the network traffic situation,
and therefore, is adaptive. Additionally, an adaptive routing may choose a path
according to a given heuristic, e.g.: the minimal routing algorithm selects only
paths that experience a small number of hops between source and destination
tiles.

2.3.3. Flow Control techniques

Flow control dictates the allocation of network buffers and links. Precisely, it
determines when buffers and links are assigned to messages, the granularity at
which they are allocated, and by which policy the network resources are shared
among messages. A good flow control protocol permits a low message latency at
low traffic workload by not imposing high overhead in resource allocation while
experiencing low power consumption.

Communication granularity

In general, when a message delivered from a communication is injected into
the network, it may be segmented into sub-units according to the flow con-
trol segmentation policy. We denotes three level of granularity as depicted in
Figure 2.5.

Message-based flow control The Circuit Switching protocol pre-allocates links
along the routing path to the entire message. A probe (a small setup message)
is sent into the network to reserve the links while an acknowledgment message
is returned to the source tile to confirm the success of the operation. After that,
the sending operation can start. Further details are reported in Jerger and Peh,
2009.
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Figure 2.5.: Composition of different communication granularity: Message, Packet, Flit

Packet-based flow control The Store and Forward technique divides a message
into multiple packets, where each packet is handled independently by the net-
work. In this protocol, the routers must wait for the reception of the entire packet
before forwarding it to the next router. As a result, it experiences long delays
which makes this protocol unsuitable for NoC that are usually delay-critical.
Conversely, the Cut-Through flow control allows transmission of a packet to the
next tile while the packet is not completely received at the current router. Thus,
latency experienced by a packet is drastically reduced.

Flit-based flow control The Wormhole Switching Ferrandiz, Frances, and Fraboul,
2009 is the most used protocol in Flit-based communications. For wormhole flow
control, each packet is divided into FLits, which they move on to the next router
before the entire packet is received at the current router, if there is sufficient
buffering to receive them. This allows relatively small flit-buffers to be used in
each router, even for large packet sizes. For instance, the wormhole switching is
always associated with Virtual Channels which serves as buffers in input routers
(See Section 2.4.1).

Flow control protocol Links Buffers
Circuit-switching Messages buffer-less

Store and Forward Packet Packet
Cut-Through Packet Packet

Wormhole Switching + Virtual Channels Flit Flit

Table 2.1.: Summary of flow control techniques
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2.4. Network-on-Chip routers

Routers are referred as master components of NoC topology, since they are re-
sponsible for linking processing elements between them. Routers are defined by
a micro-architecture and designed to meet latency and throughput requirements,
under chip dimension area and power constraints. While routers design com-
plexity increases with bandwidth demands, a trade-off between performance and
design simplicity must be found in order to provide predictable time latency.

Thus, the router micro-architecture determines the overall network latency and
per-hop delay. It also impacts the network energy and the circuit components
activity. The design and implementation of such architecture is based on the choice
of its components and their features. Moreover, the area footprint of the routers
is also determined by its microarchitecture and the underlying components.
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Figure 2.6.: Router architecture

Figure 2.6 depicts a state-of-the-art router microarchitecture assuming 2D-Mesh
topology. The router is composed of: five input ports and output ports corre-
sponding to the four neighboring directions and one toward the local processing
element. The major components which constitute the router, additionally to the
previous elements, are route computation logic, virtual channels allocator, switch
allocator and arbiter.

2.4.1. Virtual Channels

Basically, a Virtual channel (VC) Dally et al., 1992 is a separated queue in the
router input which hold data segment according to the flow control deployed
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in the NoC; Obviously, it serves to buffer either packets of flits. VCs are first
proposed as a solution for deadlock avoidance and Head-of-line blocking issue
(more information are provided in Dally et al., 1992). Multiple VCs share the
physical link between routers, while a VC is reserved for a single communication
stream which holds it until the entire packet has moved on. Thus, when a packet
holding a virtual channel becomes blocked, other packets can still traverse the
physical link through other VCs. Thus, VCs increase the utilization of physical
links and extend overall network throughput.

2.4.2. Allocators and arbiters

Allocator is a component responsible to match N requests to M resources, when
generally the resources are limited (N > M). In routers, the resources are the
VCs. In the case of wormhole switching protocol with multiple VCs per input
port, the allocator has a mission to hold a VC for the message during its traversal
and releases it when all message’s flits moved to the next router. Conversely, the
arbiter matches N requests to 1 resource, which is an output port for common
routers. Thus, arbiters resolve conflicts when two or more communications flows
would like to take the same output port.

Both allocators and arbiters are important since they can provide high network
throughput and low latency when delivering high matching probability combined
with an efficient arbitration strategy. Also, they must be fast and pipelinable so
they can work under high clock frequency.

Priority-based arbitration

This strategy uses the traffic flows priority. Each message receives a priority value
based on the scheduling policy. Hence, the allocator reserves a VC that equals the
message priority, while the highest priority VC has straightforward access to the
output port allowed by the arbiter. The priority-based policies are categorized
by packet-level (non-preemptive) or flit-level (preemptive) while the wormhole
switching belongs to the latter class.

Time-Division-Multiplexing

In TDM, resources are shared in time according to the global TDM table, which
defines the periodic sequence of output port access by assigning to each VC a
fixed time slot. Once data are injected into the network in their assigned time slot,
TDM arbitration guarantees their traversal in a contention-free scheme without
any intermediate stalls. Thus, through TDM, the communication latency is known
a priori when the TDM table is statically defined.
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2.5. Industrial Network-on-Chip

As on-chip networks being a well-diffused research area, we present in the
following some COTS (commercial off-the-shelf) chips that have been designed
to embed an on-chip network.

Intel TeraFLOPS

The TeraFLOPS processor Vangal et al., 2007 is a research prototype chip that is
targeted at exploring future processor designs with significant amount of cores.
It is a 65 nm, 275 mm2 chip with 80 tiles that can run at frequencies up to 5GHz.
Each tile is composed of 1 processing engine (PE) connected to its adjacent NoC
router. The PE embeds 2 single-precision floating-point multiply-accumulator
(FPMAC) units. The PE is interfaced with its router through router interface
block (RIB). Two FPMACs in each PE providing 20 GigaFLOPS of aggregate
performance, coupled with a maximum bisection bandwidth of 320 GBytes/s
in the NoC enable the chip to realize a stable performance of 1012 floating-point
operations per second (1.0 TeraFLOPS) while dissipating less than 100W.

Tilera TILE64 and TILE64Pro

The TILE64 architectures Bell et al., 2008 are products from Tilera that are suitable
for high-performance embedded applications such as networking and real-time
video processing. These chips support a shared memory space across the 64 tiles
that compose the chip. Each tile consisting of two levels of cache and a 3-issue
VLIW (Very Long Instruction Word) processor core connected to the four mesh
networks. The TILE64 chip is designed at 90nm, 750MHz, has 5MB of on-chip
cache and on-chip networks that provide a maximum bisection bandwidth of
2Tb/s with each tile dissipating less than 300mW.

Kalray MPPA2-256

Kalray MPPA2-256 (Bostan version) Dinechin et al., 2013 has been designed to
fit timing constraints for critical applications with efficient energy footprint. It
is composed of clusters of tiles, where tiles from the same cluster share a local
memory. Thus, it integrates 256 PEs and 32 management cores grouped onto
16 compute clusters and 2 I/O clusters. Indeed, all the processing engines are
based on 32-bits/64-bits VLIW core architecture. The NoC exploits the 2D torus
topology to create a wide range of alternative paths between tiles.

33



2. On-chip Networks & Manycore architectures

2.6. Simulation tools

The expensiveness of Network-on-Chip pushed the community to instigate of
simulators that behave like industrial NoCs, which permit the researchers to
explore the architecture efficiently. Some of them are popular such as:

Noxim

Noxim Catania et al., 2015 is presented as an open, configurable, extensible,
cycle-accurate NoC simulator developed in SystemC, which allows to analyze the
performance and power figures of both conventional wired NoC and emerging
WiNoC architectures.

HNOCS

HNOCS Ben-Itzhak et al., 2012a is an omnet++ based tool providing additionally
to wormhole switching simulation, statistical measurements features such as:
measurements at flit and packet levels, end-to-end latencies, network through-
put, VC acquisition latencies, transfer latencies, etc. It also supports modeling
of heterogeneous NoCs with variable link capacities and number of VCs per
unidirectional port.

DARSIM

DARSIM Lis et al., 2010a is presented as a parallel, highly configurable, cycle-level
network-on-chip simulator that implements the wormhole switching flow control.
The parallel simulation engine offers cycle-accurate as well as periodic synchro-
nization, permitting trade-offs between perfect accuracy and high speed with
very good accuracy. It is also highly configurable including different topologies,
bandwidth settings, crossbar dimensions, and pipeline depths.

2.7. Conclusion

We presented in this section the Network-on-Chip and its elements. The NoCs
are very flexible and provide better performance. We related the NoC features
and the industrial ones. We also present some simulators that are used in the
literature.

In the following chapter, we will discuss about the task allocation onto NoC.
Indeed, real-time systems are very rigorous and they require a special attention
when they are executed on such architectures.
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3.1. Introduction

This chapter introduces and defines the task allocation problem. It is known that
application mapping is one of the most important open problems in Network-on-
Chip (NoC) research. We present the state-of-the-art of task mapping onto NoC
by taking at each step different levels of task criticality: we first provide a state-of-
the-art for prior contributions for the NoC mapping of non-critical applications
and we end by presenting studies aiming the safety-critical applications.

3.2. Problem definition

The execution platform has a finite number of resources like processing engines as
well as memories (registers, DRAM size, · · · ). However, in order to fit applications
criteria such as compute performance and energy consumption, resources must
be exploited following strategies that dictate how those resources should be
allocated efficiently.

Typically, in modern software design, applications need to be partitioned (paral-
lelized) into multiple sub-tasks in order to be executed concurrently on cores. This
procedure is mainly performed by the application designers or through a specific
tool as in Ceng et al., 2008. The parallelization of the applications requires adding
task synchronizations, inter-task communications, and memory management. All
those elements need an expressive abstract model, such DAG (Directed Acyclic
Graph) in order to facilitate the system analysis and resource allocation.

We model the applications by a set of n DAG tasks (τ1, · · · , τn), each one consists
of a number of sub-tasks (vertices) communicating to each other. As result, an
application includes a set of m communications described by a source sub-task
that follows a path until a destination sub-task. For executing the system on a
given hardware platform, the mapping phase determines on which core a sub-
task has to be executed. Similarly, the mapping process can also determine
how communication resources are allocated such that each task communicates
properly.

The mapping schema can be defined as a set M of couples (sub-task, core) that
associates a sub-task with a core:

M =

{

({τ0,0, · · · , τi,0}, PE0), · · · , ({τ0,n, · · · , τj,n}, PEn)

}

(3.1)

Likewise, any other hardware resources M (Communication medium, memory,
· · · ) can be exclusively or partially allocated to a given task during its execution:

I =

{

({M0,0, · · · , Mi,0}, τ0), · · · , ({M0,n, · · · , Mj,n}, τn)

}

(3.2)
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In general, the mapping problem is categorized as an NP-hard problem due
to the exponential number of possible combinations. The main difficulty is to
efficiently explore the set of possible combinations (called the design space) in a
reasonable amount of time. Thus, a well-tuned search algorithm helps to explore
the thousands of possible mapping schemas and find the “best one” (according
to some definition of “better”) that fits the system performance requirement.

3.3. NoC Resource allocation for GP-tasks

In this section, we report the prior studies available in the literature of the task
mapping problem on the Network-on-Chip architecture aiming at non-critical
applications, such as multimedia applications. Figure 3.1 presents a taxonomy of
mapping techniques.

Figure 3.1.: Mapping algorithms taxonomy. ILP: Integer Linear Programming, MILP: Mixed Inte-
ger Linear Programming, GA: Genetic Algorithm, PSO: Particle Swarm Optimization,
SA: Simulated Annealing.

3.3.1. Dynamic Mapping

The dynamic task mapping is an on-online strategy in which the ready tasks are
allocated to the processors following the current state of the system at run-time.
Obviously, based on the observed state of processors, the placement of tasks on
NoC can change during the system execution.

The authors of Chen, Li, and Kandemir, 2007 have proposed a compiler based
technique, which can perform all of tasks allocation, scheduling, data mapping
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and packet routing, however with an important compilation time which may
involve the system performance degradation.

In Carvalho, Calazans, and Moraes, 2007, the authors have proposed a heuristic
consisting of an initial task mapping phase prior to the dynamic mapping phase.
In the latter phase, they proposed the use of bin-packing techniques such as
First-Fit (FF). In Chou and Marculescu, 2007, the authors presented a dynamic
mapping technique based on multiple voltage level. In fact, the NoC is divided
into multiple regions where each region operates by a fixed voltage differently
from the others.

All the previous works target heterogeneous NoCs. In Chou and Marculescu, 2008,
a dynamic allocation strategy has been proposed for homogeneous NoC. They
used in their contribution the user behavior information in order to propose
an adaptive allocation which is driven by the user needs. In Chou, Ogras, and
Marculescu, 2008, they proposed a communication-aware mapping in which the
heterogeneous NoC has multiple voltage level as in Chou and Marculescu, 2007.
A mapping technique called DSM (Dynamic Spiral Mapping) has been proposed
in Mehran, Khademzadeh, and Saeidi, 2008 which the task allocation follows
the spiral path in the architecture. Thus, tasks are placed by beginning from the
center to the edges of the NoC. It tries to allocate tasks close to each other in
order to reduce the communication latency. The authors of Al Faruque, Krist,
and Henkel, 2008 proposed an agent-based dynamic mapping in which the task
allocation algorithm follows a distributed approach. Agents are defined as a small
tasks that collect information about a NoC region while they collaborate between
them to find a suitable mapping schema. On the other hand, in A. K. Singh,
Jigang, et al., 2009 and A. K. Singh, Srikanthan, et al., 2010 the authors proposed
a two-phases mapping heuristic: the first phase performs an initial task mapping
on the first available position found that fits the task demand, whereas the second
phase attempts to find for requesting tasks a better performance gain mapping in
run-time.

Besides that, energy-aware heuristics are proposed in Mandelli, Ost, et al.,
2011, Mandelli, Amory, et al., 2011 named lower energy consumption based on
dependencies-neighborhood (LEC-DN), in which both communication distance
between tasks and the communication volume (number of Llits) are considered.

3.3.2. Static Mapping

We define as static mapping also said off-line mapping, all the techniques in
which the allocation of NoC resources for the tasks are decided before the system
execution and is not changed thereafter. As illustrated in Figure 3.1, the static
mapping groups various techniques that can be split into two major classes:
Exact mapping and Search-based mapping. Hereafter, we list some contributions
related to the two classes.
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Exact Mapping

Most of exact techniques are based on mathematical frameworks when such
techniques produce an optimal solution. At this aim, Rhee, Jeong, and Ha, 2004

proposed a MILP (Mixed Integer Linear Programming) formulation of task
mapping while considering the task to core allocation and network interface
modes. In Murali, Benini, and De Micheli, 2005, they proposed a task mapping
into heterogeneous NoC with a memory footprint interest. Their technique uses
a greedy mapping as first step followed my a MILP formulation to improve the
tasks energy consumption. Likewise, Srinivasan, Chatha, and Konjevod, 2006

proposed a MILP-based method that attempt to optimize the routers links onto
the NoC topology by generating a mapping schema with custom topology.

Ostler and Chatha, 2007 proposed a two stage ILP (Integer Linear Programming)
for task and data mapping on SMP (Symmetric Multi-Processing) NoC with block
multi-threading feature. Likewise, Ozturk, Kandemir, and Son, 2007 Explore
the possibility of minimizing the NoC energy consumption by disabling certain
communication links in SMP NoC while satisfying the performance constraint.
In this continuity, Ghosh, Sen, and Hall, 2009, Huang et al., 2011b formulate a
MILP that take care of mapping problem as well as operating voltage to minimize
the NoC energy footprint. Lastly, Tosun, 2011 proposed an ILP formulation for
energy-aware mapping in a clustered NoC.

Search-based Mapping

Deterministic search This category gathers the techniques that enumerate the
solutions while exploring the search space. The Brunch-and-Bound (BB) searching
method pertains to this category. Typically, this method is appreciated to its ability
to explore the solutions in tree branches and bounding unallowable solutions.
Also, it can be applied to smaller problems in which the search time can grow
exponentially with the size of the problem.

Thus, the following contributions Hu and Marculescu, 2003a Hu and Marculescu,
2003b Hu and Marculescu, 2005 proposed an energy and performance-aware
mapping under bandwidth reservation constraint. They applied a Brunch-and-
Bound on top of NMAP (See 3.3.2) mapping technique to reach a better solution.

Heuristic search We can divide this class into two main categories: the transfor-
mative heuristics and the constructive heuristics. The former category starts from
an existing mapping solution to arrive at better ones, whereas the latter starts
from an empty solution and repeatedly extends the current solution until obtain-
ing a complete solution. It is observed that constructive heuristics are normally
much faster than the transformative heuristics Sahu and Chattopadhyay, 2013.

Concerning the transformative heuristics, the following contributions utilize the
Genetic Algorithm (GA). This meta-heuristic is inspired from the natural selection
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and uses biological inspired concepts such as mutation, crossover and selection
to solve optimization problems (For more details, See Whitley, 1994).

Thus, the authors in Zhou, Zhang, and Mao, 2006 proposed a GA-based mapping
solution that experience minimum average communication delay. Specifically, the
initial solution is chosen randomly with the average waiting-time as a fitness
function. Afterward, a new generation is issued from a multi-point crossover, in
which the chromosome with a low waiting-time is selected and included in the
crossover, then, the mutation operation is performed. Also, Ascia, Catania, and
Palesi, 2004 proposed a pareto-based multiobjective GA that attempts to provide
a task mapping with a trade-off between performance and energy-consumption.
Similarly Bhardwaj and Jena, 2009 have proposed a multiobjective GA aiming at
proving a task mapping with a minimal of energy consumption and the required
bandwidth of NoC.

Besides that, the Particle Swarm Optimization (PSO) technique has been used to
find a best task mapping. This collaborative technique is inspired by the social
behavior of bird flocking (Further details in Poli, Kennedy, and Blackwell, 2007).
Thus, The authors in Sahu, Venkatesh, et al., 2011 presented PSMAP, a PSO-based
task mapping strategy both static and dynamic cost experienced by a 2D-mesh
NoC, when they define the particle as a possible mapping cores to the routers. A
prior work of J. Wang et al., 2011 used the Ant Colony optimization (ACO) for
task mapping into NoC in order to reduce the bandwidth requirement.

In the constructive heuristics side, the NMAP technique has been proposed
in Murali and De Micheli, 2004, which is a mapping technique coupled with
minimum path routing that aims to minimize the average communication delay.
basically, this technique begins by iteratively associating the cores having the
most communication demand to the nodes having the maximum neighbors.
Then, a core is randomly selected and mapped to the node that minimizes
the communication cost with it (the core). This procedure is repeated until all
cores are mapped. In Srinivasan and Chatha, 2005, a two phases heuristic has
been proposed for a low energy 2D-mesh NoC. The first phase serves to map
cores to different routers by using a graph bi-partitioning, while the second
phase attempts to find a minimal path between source and destination to each
communication.

3.4. Safety-critical real-time tasks allocation

The task allocation problem for safety-critical real-time constraints has been
studied for different Network-on-Chip configurations as well as for different
levels of criticality. However, during the design space exploration, only schedulable
solutions are kept and considered, even though, other criteria such as energy
consumption can be added to the objective. We illustrate in Figure 3.2 the logical
chain of task mapping.

40



3.4. Safety-critical real-time tasks allocation

Hereafter, we address a related work that highlights the main contributions
provided by the literature regarding the mapping of hard real-time applications
on NoC.

τ1

τ2 τ3

τ4

Application

Mapping

Step

WCRT Di

WCRT Di

Scheduling analysis of application

If WCRT ≤ Deadline

schedulable;

else

unschedulable;

Figure 3.2.: Safety-critical systems application mapping workflow. In this schema, the second
analysis phase relates only WCRT-based analysis, where other analysis methods, such
as DBF can be applied.

Several works deal with priority-preemptive wormhole NoCs and are the main
subject of the following papers. Some authors have proposed techniques based
on Genetic Algorithms (GA) and they differ on optimization objectives. Indeed,
they target a memory-aware mapping as in Still and L. S. Indrusiak, 2018 or
using adaptive routing Norazizi Sham Mohd Sayuti, Hazwani Mohd Ridzuan,
and Hilmi Abdullah, 2019 or even combined with efficient priority assignment
technique for communication Sayuti and L. S. Indrusiak, 2015b, all based on GA
technique. On the other hand, Authors of Jesse Barreto de Barros, Ayala-Rincon,
and Quintero, 2019 used an adaptive GA that heuristic parameters may change
during the computation, while Indrusiak et al. Bonilha, Santos, and L. Indrusiak,
2014 used the utilization factor as an optimization metric on adaptive GA.

Also, GA can be employed with many objectives at the same time. Thus, Bruch
et al. Bruch et al., 2017 employed a multi-objective GA to reduce the deadline-
miss ratio of tasks while optimizing the number of VCs used in communication.
Likewise, Sayuti and L. S. Indrusiak, 2013 employed a multi-objective GA to
reduce energy consumption with a fitness function.

Besides that, many works have used Integer Linear programming (ILP) combined
with Simulated Annealing meta-heuristic to reduce energy consumption in het-
erogeneous NoC Huang et al., 2011a, or to find an energy-efficient mapping with
minimal execution time Chatterjee et al., 2017. Additionally, Shi et al. Zheng Shi
and Alan Burns, 2010 proposed a mapping with a greedy algorithm combined
with an efficient priority assignment to communication flows, whereas Jessé Bar-
reto de Barros, Sampaio, and Llanos, 2019 used Particle Swarm Optimization
for the same purpose based on the utilization factor. Similarly Sayuti and L. S.
Indrusiak, 2015a used a heuristic called Constructive Task Mapping which consists
of task clustering and their allocation according to the utilization factor.

Few studies address the problem of real-time task mapping on TDMA/RR NoC.
Cardona et al. Cardona et al., 2018 proposed a framework (NoCo) using ILP to
map tasks and a heuristic to find the best NoC configuration regarding the routing
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policy and an efficient slot assignment on VC. Perret et al. Perret et al., 2016a
applied constraint programming to map task on Kalray MPPA-256 NoC. However,
applying exact techniques takes a long time on large dimension problems since
task mapping is an NP-complete problem. Lo et al. Lo et al., n.d. experienced
a static mapping of a common avionic system (Health Monitoring System) on
Kalray MPPA-256. However, those previous works do not take into consideration
the allocation of multiple applications (Multiple DAGs).

Another important aspect of task allocation is to handle the communication
onto the NoC. In fact, when a sub-task finishes its execution, it often sends
data through the network to the following sub-task which can be allocated on
a different core. If several communications share the same path, this leads to
congestion and therefore increases the latency. In general, congestion has a non-
negligible impact on the response time. Harde et al. Harde et al., 2018 provided
an exact budgeting solution for VC to respect the communication deadline. Also,
Nikolic, Hofmann, and Ernst, 2019 proposed techniques for TDMA quantum
assignment to minimize communication latency, and to find a near-optimal VC
slot assignment using heuristics.

However, addressing a task mapping on the entire NoC as a unique region is
time consuming because the complexity increases very rapidly with the number
of tasks and processors.A better solution is to slice the NoC into sub-regions
which contain a subset of processors. At the end, this reduces the allocation of
a task for only a limited region and non for the entire NoC. Strategies to slice
and choose the region size are called core clustering. Thus, Giannopoulou et al.,
2016 proposed a simulated annealing-based algorithm for mixed-criticality task
mapping onto a hardware-level clustered NoC.

3.5. Conclusion

In this chapter we explored the literature of task mapping on Network-on-Chip.
Indeed, due to the important complexity involved by such problems, many meta-
heuristics have been deployed as well as exact techniques to find near-optimal or
optimal solutions. Also, as NoC are widely configurable, the contributions cited
previously may be different.

The next part of the dissertation presents our contributions addressing the real-
time task mapping on NoC architectures.
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Ref Proposed Technique Optimization Goal Arbitration Policy Wormhole Routing Core Clustering

Still and L. S. Indrusiak, 2018 Genetic Algorithm ET Priority preemptive x Deterministic (XY)
Norazizi Sham Mohd Sayuti, Hazwani Mohd Ridzuan, and Hilmi Abdullah, 2019 Genetic Algorithm ET Priority preemptive x Deterministic (XY)

Sayuti and L. S. Indrusiak, 2015b Genetic Algorithm ET Priority preemptive x Deterministic (XY)
Jesse Barreto de Barros, Ayala-Rincon, and Quintero, 2019 Genetic Algorithm ET Priority preemptive x Deterministic

Bonilha, Santos, and L. Indrusiak, 2014 Genetic Algorithm ET Priority preemptive x Deterministic (XY)
Bruch et al., 2017 Multi-objective Genetic Algorithm ET, EC Priority preemptive x Deterministic (XY)

Sayuti and L. S. Indrusiak, 2013 Multi-objective Genetic Algorithm ET, EC Priority preemptive Deterministic (XY)
Huang et al., 2011a ILP + Simulated Annealing ET, EC Priority preemptive x Deterministic (XY)

Chatterjee et al., 2017 ILP ET, EC Priority preemptive x Deterministic (XY)
Zheng Shi and Alan Burns, 2010 Greedy Algorithm ET Priority preemptive x Deterministic (XY)

Jessé Barreto de Barros, Sampaio, and Llanos, 2019 Particle Swarm Optimization (PSO) ET Priority preemptive x Deterministic (XY)
Sayuti and L. S. Indrusiak, 2015a Specific Heuristic ET Priority preemptive x Deterministic

Cardona et al., 2018 ILP + Stochastic heuristic ET TDMA x Adaptive + Deterministic
Perret et al., 2016a Constraint Programming ET TDMA Deterministic x

Giannopoulou et al., 2016 Simulated Annealing ET TDMA x Deterministic x

Table 3.1.: Summary of the main existing approaches considering real-time applications (ET: Execution Time, EC: Energy Consumption)
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4. Comparative study: Priority Preemptive and Round-Robin Arbitration

4.1. Introduction

The Network-on-Chip architecture brings many advantages over the classical
bus-based architecture especially by the path diversity offered by its topology.
However, this diversity increases the complexity of communication time estima-
tion while routers have own policy to handle the network traffic. When executing
real-time tasks on a NoC-based architecture, the shared data has to be routed
between PEs where communicating tasks are allocated. The needed time to route
data from its source to its destination is called communication latency. Latency
has to be bounded to ensure that each task instance has been executed without
violating the real-time constraints (within its time window).

NoC components such as routers and network interfaces are designed to maxi-
mize network utilization without taking into account predictability and temporal
behavior of communications, which make them not suitable to real-time systems.
An arbitration schema is required to control the access of communication links
between PEs, where this mechanism increases the complexity of the NoC. Sev-
eral works in real-time community have proposed architectural modifications to
reduce the worst case of latency bounds. However, these works are not properly
compared against each other, due to a lack of tools (especially simulation).

This chapter presents an event-based simulator and analysis tool for periodic and
sporadic real-time communications, allowing to compare the different approaches
proposed in the literature against each other by simulation and analysis. We
provide also a comparative study of fixed priority and time division arbitration
protocols and their impact on latency and schedulability.

The remainder of this chapter is organized as follows: in the next section, we
report NoC communication mechanisms. Section 4.3 is reserved to present ar-
chitecture and communications models. Our Simulator is briefly described in
Section 4.4. Section 6.5 presents the different approaches to analyze the behavior
of fixed priority and TDMA arbitration protocols provided by our tool. Results
are discussed in Section 4.6, we draw conclusion in Section 4.7.

4.2. NoC switching and routing mechanisms

Each communication consists of a message, communication source and des-
tination. First, each message Mi is decomposed into a set of packets (Mi =
{Pi1, Pi2, · · · }), further, packets are forwarded separately from a router to an-
other.

Wormhole switching is the mechanism that describes how a packet moves forward
from a router to another. In the wormhole switching, each packet P is broken
into small pieces called FLITs1, P = {FP

1 , FP
2 , · · · FP

n}.

1FLow control unITs
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4.3. System model

The first flit FP
1 , called the header flit, holds needed information to packet routing

(for example, the destination address) and sets up the behavior of all other flits
associated within the same packet. Final flit, FP

n is called the tail flit. Between the
header and the tail flit, flits are called body flits.

In wormhole switching, flits are stored in VCs2. Each VC is either idle or allocated
to only one packet. A header flit can be forwarded to the next router if at least
next router has one idle VC. The VC allocator decides where each packet is stored
(selects the idle VC for the header flit). When the VC is selected, the header flit
locks the VC. Body and tail flits can be forwarded to the same VC as the header,
using a credit-based flow control. When the tail flit is routed, it frees the latest
VC it has occupied.

In a NoC architecture where each router is composed by one VC per port, if
two header flits or more are blocked in a circular dependency, it may lead to
a deadlock. Thus, using multiple virtual channels allows to reduce wormhole
blocking.

Routing is an operation performed in router to determine which is the next hop
of packets. In this contribution, we focus only on XY routing. The packets are
first transferred in X-direction and then in Y-direction in order to transfer them
from the source router to the destination router.

4.3. System model

Network on Chip are tightly coupled with computing elements such processors,
accelerators, etc. When executing real-time applications on NoC-based archi-
tecture, tasks are allocated onto cores such that all real-time requirements are
respected. The respect of real-time constraints implies achieving real-time com-
munications in a bounded time. In this contribution, we are not interested in task
allocation, we focus only on real-time communications. In this section, we present
hardware architecture design and task models used in the rest of this chapter.

4.3.1. Architecture model

NoC topology and architecture

We model a NoC architecture as a set of m×m routers. Routers are connected to
each other in a 2D-mesh topology. Each Router is connected to its left, right, top,
bottom neighbor except those on the edges.

Rjm denotes the router at row j and column m. For example R22 denotes the
router in the second line and second column. It has for neighbor R21 on the left,
R23 on the right, R12 on the top, R32 on the bottom. Routers are linked between

2Virtual Channels
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Figure 4.1.: 2D-mesh NoC architecture

them by an unidirectional links λ(i,j)(m,n), where this latter is communicating link
from Rij to Rmn.

Router architecture

A router is the main unit in a network-on-chip. Mainly it has k ports, one for each
neighbor. In 2D-mesh, each router has 5 in-ports and 5 out-ports connected to its
neighbors. The fifth port is local port and connected to the local PE. Each router
is composed of:

• In/Out-ports: are the physical media that links a router with its neighbor
routers.

• Virtual Channels (VC): are message buffers. It can contain a fixed number of
flit arriving from a neighbor, stored for a while, before being sent to its next
destinations (routed). the number of VC per port denoted by |VC| allows a
router to support multiple communications using the same port at the same
time

• VC Allocator: is the entity responsible of selecting for a given packet, the
VC where it is going to be stored.

• Route Computation: is the unit responsible to select the output port for any
given packet. Here is implemented XY routing.

• Crossbar: is the unit able to route the non-conflicting communications. By
conflicting communication, we denote the packets available at the same
time in a given router and need to be routed using the same output port

• Arbiter: the unit that schedules outports for conflicting communications. It
can be configured to by selecting an arbitration policy to ensure tighter
bounds of latency for real-time communications.
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4.3.2. Communication model

Real-time tasks are recurrent. Liu and Layland Liu and Layland, 1973 are the
first to model recurrence in real-time systems by defining a real-time task by
its deadline, period and offset. The Liu and Layland model is the most used
in real-time community and industry. We use similar model for real-time com-
munications. Let Γ denote a set of n communications Γ = {C1, C2, · · · , Cn}. Each
communication is sporadic and can generate an infinite number of recurrent
messages. It is characterized by Ci = (Mi, Di, Ti,Rs,Rd) where:

• Rs,Rd represent the source and destination routers respectively.
• Mi is the message size sent from Rs to Rd.
• Ti is the communication period. It represents the minimum arrival time

between two communications. Thus, the communication j + 1 can not start
before at least Ti time from the arrival of communication j.

• Di is the communication relative deadline. The jth communication from Rs

to Rd has to be finished within the time interval [ai,j, ai,j + Di] where ai,j is
the time where communication Ci is requested from the router.

In our tool, task parameters are specified using YAML input file.

4.4. Real-time Communication simulator

Simulation tools allow faster exploration of design space and quick evaluation of
the design choices performance. Recently, a lot of simulators Lis et al., 2010b; Vyas,
Choudhary, and D. Singh, 2013; Binkert et al., 2011; Bolotin et al., 2004; Möller,
L. S. Indrusiak, and Glesner, 2009; Fazzino, Palesi, and Patti, 2008; Benhaoua,
AmitKumar Singh, Abou El Hassan Benyamina, et al., 2015; Ben-Itzhak et al.,
2012b; Moraes et al., 2004; Hossain et al., 2007 have been proposed to explore
design choices in NoC-based architectures at different abstraction and precision
levels. For example, GPNoCSIM Hossain et al., 2007 and DynaMapNocSim
Benhaoua, AmitKumar Singh, Abou El Hassan Benyamina, et al., 2015 are event-
based simulators written in JAVA, the first focuses on communications, whereas
the second focuses more on the task allocation, both at high level of abstraction.
Hermes Moraes et al., 2004, is low-level simulation tool written in VHDL. It
allows to emulate design choices on FPGA boards, however it is time consuming
to explore design choices and evaluate their performances.

However, none of the simulators, cited above, offers a support for real-time
communications, neither periodicity or recurrence in general. The latter are
designed for non-critical systems and need lot of modifications to make them
support real-time communication protocols. Thus, we propose a new simulation
tool for real-time communication protocols.
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Our simulator is modular, and extensible. A first version is available3 and is still
under continual upgrading and development to include extra-features. In this
section, we describe how the simulator has been designed.

4.4.1. Packages

Architecture Communication

Simulation

Core Engine

Tracer

Comm.
YAML

Archi.
YAML

Figure 4.2.: Package diagram

Our simulation tool is compound of 5 packages, detailed in the follow :

Architecture : It contains all the classes and structures to define a NoC. We focus
mainly on 2D Mesh topology. However, our design can be extended to
specify other topologies like torus and ring.

Communication: This package defines the router communication structures and
their parameters. Allowing to define periodic and aperiodic communica-
tions, message decomposition, structure and several extra-real-time param-
eters.

Core engine: Here are implemented all the algorithms that contributes in NoC
functioning. They are mostly implemented by different interfaces (CROSS
BAR, VC allocator, Arbiter, · · · ).

Simulation : The simulation package contains the simulation core. It is respon-
sible for events and time management. It contains discrete event-based
simulation engine. The simulation engine can be re-used for any other
simulation purposes.

3https://github.com/chawki27000/retina-sim
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Tracer : Responsible of registering at cycle level, all actions taken onto each
router and the state of each VC at each time instance are save in a log
file. It allows also to automatically generate formatted results and some
predefined plots using PGF-plots.

4.4.2. NoC & Simulation Engines

Our simulator handles three types of events :

• MESSAGE_ARRIVAL : This event occurs to signal a communication between
two routers. It starts from message splitting to reach flit granularity until
generate next events.

• SEND_HEAD_FLIT : This event handles flit header forwarding, by defining
the next hop router, reserving an idle VC, triggering arbitration (if conflict
occurs) and generate the next events if all is done without errors.

• SEND_BODY_TAIL_FLIT : Finally, this event handles body or tail flit. It
checks free space in the allocated VC, blocking flit sending if no space
available and releasing VC if the current flit is tail.

Algorithm 1 Simulation

1: noc_f: YAML FILE
2: task_f: YAML FILE
3: parse_noc(noc_f)
4: create_events(task_f)
5: sort_events_time(task_f)
6: while (event_list 6= ∅) do
7: e = select_next_event()
8: update_clock()
9: switch e do

10: case MESSAGE_ARRIVAL :
11: Process_message(e)

12: case SEND_HEAD_FLIT :
13: send_header_flit(e)

14: case SEND_BODY_TAIL_FLIT:
15: send_body_tail_flit(e)

16: if (sim_time_finished) then
17: empty_event_list()
18: end if
19: end while

Algorithm 1 shows different steps and main function calls of the simulator. It
starts by parsing a NoC settings and communication scenario by instantiating all
periodic or aperiodic communications. Further, it sorts all events and loops on
them one by one. The clock is updated when the event is handled. The simulation
ends when simulation time reaches the hyper-period or events list is empty.
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4.5. Analysis

In this section, we present priority-based and TDMA-based arbitration mecha-
nisms and their analysis.

4.5.1. Fixed priority

Shi et al. Z. Shi and A. Burns, 2008 propose to assign a priority to virtual
channels. Therefore a communication in VC of priority p, is selected by the arbiter
before any communication in all VCs of priority less than p. Moreover, if the
communication in VC of priority p has already started, it can be interrupted
by communications in VCs of higher priority, allowing preemptions. Once the
high priority communication finishes, the low priority communication resume
their forwarding in a classical preemption scheme. Authors in Z. Shi and A.
Burns, 2008 provided worst case communication latency bounds analysis. Tighter
bounds has been provided by Xiong et al. Xiong, Lu, et al., 2016 and Xiong, F. Wu,
et al., 2017 by distinguishing two types of interference : Upstream and Downstream.
In a 2D-NoC topology, Upstream interference is caused by conflicting messages
arriving from the south port, whereas the downstream interference is caused by
incoming communication from north port. Equation 4.1 have been proposed by
the authors of Xiong, F. Wu, et al., 2017 to compute a communication latency
bounds.

Ri = ∑
∀τj∈SD

i

⌈
Ri + Jj + IU

ji

Tj
⌉(Cj + ID

ji ) + Ci (4.1)

Equation 4.1 is iterative:

It starts by assuming R
(0)
i = ∑∀τj∈SD

i
(Cj + ID

ji ) + Ci, where

• SD
i is a set of messages that constitutes a direct interference;

• IU
ji and ID

ji are the set of conflicting messages belonging to Upstream and

Downstream indirect interference respectively.

This equation converges if fixed point is found (R
(n+1)
i = R

(n)
i ) or if latency is

already greater than the deadline, resulting to a deadline miss (R
(n)
i > Di).

Although this approach is easy to implement and analyze, it presents major
limitations. First, preempting a communication can be a costly operation. In fact,
the router is forced to create and schedule a tail FLIT for the preempted message
so it can continue onward its routing and a new head FLIT for the FLITs that
are still not yet forwarded. Moreover, a real implementation of such solutions
requires as many VCs per input port as number of priorities (tasks). However,
increasing the number of VC (which are mainly buffers) increases drastically
the chip size and lead to heat dissipation and voltage problems. One solution
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may be to limit the number of scheduled tasks or to manage the priorities in a
hierarchical schedule scheme.

4.5.2. Time division multiple access

Abbreviated by TDMA, the second main approach aims to share output port
between conflicting communications based on time sharing. Therefore, each VC
has its own service time slots, where FLITs within that VC are forwarded. Several
works have been interested in optimizing the time slot size and slot assignment.
An exhaustive survey can be found in Hesham et al., 2017.

Under TDMA, each communication is achieved in isolation to the others. Its
latency can be computed as shown in Equation 5.1.

Ri =
Li

nslot
·

∆

δi
+ Hi (4.2)

Where :

• Li : number of flits in the message.
• nslot : The amount of data sent in one slot (1 Flit by default).
• ∆ / δi : The total number of slots in a TDMA cycle / the assigned slot

number.
• Hi : Hop number between Rs and Rd.

This approach is more complex and requires implementing timers and their
synchronization mechanisms in the routers. However, it provides isolation of
FLIT forwarding, therefore prevents "miss-behaving" communications from mo-
nopolizing the network. Furthermore, it does not require other modifications
to VC structures, nor to arbitration protocols. However, communication-to-VC
assignment mechanisms must be achieved offline.

4.6. Experiments

In this section, we present a wide set of synthetic simulations to study perfor-
mances of fixed-priority-based approach against TDMA based approaches in
terms of worst case latency bounds and resource augmentation. ReTiNAS is
used to simulate the real-time task communication behavior. Communications
latency change drastically when all conflicting communications are active at the
same time. Therefore, we start by describing how conflicting communications are
generated.
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4.6.1. Conflicting communications generation

First, a communication com is selected between src and dst . Further, the route
between src and dst is computed using XY-routing algorithm. Later, stressing
communications which has a goal to create contention in either X-axis or Y-axis or
both, are iteratively generated until reaching an input contention rate threshold.

The contention rate is computed as follows:

∑
τi∈Con f lictSet

Ci

Ti
(4.3)

where ConflictSet represents the higher priority tasks that share at least a link
with the current task as depicted in Figure 4.3.
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Figure 4.3.: Interference on the message path

4.6.2. Simulation

We perform a wide set of experiments using ReTiNAS, using a personal computer
including Intel i5-7200U CPU and 8GB of RAM. All experiments where achieved
on the NoC configuration summarized on Table 4.1.
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Topology 4x4 2D-Mesh

VC per InputPort 6

Buffer size per VC 10 Flits
Periods (cycle) [1000, 1500, 2000, 3000, 4000, 6000]

TDM Slots [4, 2, 3, 5, 3, 3]

Message 8 Packets (10 Flits each)
Number of hops 5

Table 4.1.: NoC configuration and Communication details
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Figure 4.4.: Experimentation results in different arbitration mode

Figure 4.4a reports the worst case latency obtained by simulation against the one
obtained by analysis as a function of contention rate for fixed priority approach.
When the contention is low, the analysis tend to compute very large latency
bounds compared to the measured latency using the simulator. In fact, the
analysis assume always the worst case of task arrivals, therefore a congestion
level that may never be reached when tasks execute. The more contention, the
high latency is, in both simulation and analysis. In fact, in such scenario, the worst
scenarios can often happen when all tasks are activated, therefore the simulation
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worst bounds are close to the analytical ones. However, analysis is still slightly
over-estimating the worst case latency bounds.

TDMA is a contention-free arbitration approach as all communications are exe-
cuted in isolation. Therefore, it is not interesting to study the impact of congestion
on latency itself. Thus, in Figure 4.4b, we report the latency using TDMA ap-
proach as a function of the time slot size. As expected, the bigger time slot size,
the shorter latency is. However, communications may not be able to be served
using unlimited time-slot size. The problem is to define the exact time slot per
time period for a given task to respect its real-time constraints.
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Figure 4.5.: NoC Resource Augmentation

Figure 4.5 represents the average VC number required, for fixed priority and
TDMA, to respect deadlines for the same tasks as a function of contention rate.
This allows us to compare the efficiency of each approach regarding the respect
of real-time constraints. We highlight that we modify the time-slot size to have
schedulable tasks for TDMA. Therefore, even if results reported here show the
efficiency TDMA and fixed priority, it does not allow a fair comparison of TDMA
against fixed priority.

When contention is low, we can see that TDMA approach need the same number
of VCs as fixed priority. When the contention rate is increased, the congestion
increases, therefore more of higher priority messages are scheduled and more VCs
are needed to keep the latency less than the deadline. TDMA is not contention
sensitive, therefore always requires less VCs compared to fixed priority. The gap
between both keeps increasing as the contention is increased.

4.7. Conclusion

In this chapter, we presented the design and implementation of a real-time
network-on-chip communication simulator and analysis tool. We provided also
an overview of techniques to perform real-time communication in a NoC architec-
tures. We presented a comparative study of TDMA and fixed priority approaches
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as a function of worst case latency and resource augmentation bounds. In the
next chapter, we introduce the computing tasks alongside communication tasks.
Therefore, we present a preliminary allocation algorithm of the real-time DAG
(Directed-Acyclic-Graph) tasks.
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5.1. Introduction

When executing real-time systems onto a NoC-based architecture, the schedu-
lability depends on (i) the task allocation, and (ii) inter-task communication.
Each has received a particular attention in the real-time community. The task
allocation has been widely addressed for bus-based architecture, and effective
algorithms have been proposed to optimize several goals, such as energy H.-E.
Zahaf, Abou El Hassen Benyamina, et al., 2017, resource utilization, etc. Regard-
ing the communication, several research works have proposed NoC architectural
modifications to reduce worst case inter-task communication time. Mainly they
can be classified to: priority-based and TDMA-based. The previous chapter (4)
reports an experimental and analytical comparison between arbitration protocols
onto NoCs.

Few works only have focused on both allocation and communication issues at
the same time for real-time systems. This problem is NP-hard in the strong sense.
It is extremely time consuming to compute optimal solution as the design space
is very large. Therefore, it is more convenient to design efficient heuristics to
achieve fast and efficient design-space exploration. One way, to design allocation
heuristics, is to assign intermediate artificial deadlines for every task, therefore
allowing tasks to be analyzed independently from each other.

The artificial offset-and-deadline-assignment techniques have not been proposed
for NoC-based architectures. In this chapter, we propose a new approach to
allocate real-time tasks into NoC architecture by extending classical deadline
assignment heuristics, as well as classical bin-packing heuristics for real-time DAG
tasks. We first, propose an extension of bin-packing heuristics to the NoC-based
multiprocessors. Further, we propose a new deadline assignment techniques for
NoC based architecture, and provide analysis for allocating both communications
and tasks.

The rest of the chapter is organized as follows: in the next section, we report the
related work. System and architecture model are presented in Section 5.3. Further,
we present independently real-time approaches for (i) bounding communication
latency within NoCs, and (ii) deadline assignment for multiprocessor based
architectures. Section 5.4.3 reports how real-time tasks can be executed within
NoC-based multiprocessors using TDMA for communication and classical bin-
packing heuristics for task allocation. Results of the both simulation and analysis
and their discussions are presented in Section 5.5. We draw our conclusions in
Section 6.7.

5.2. Related Work

Network-on-chip interconnection paradigm has many advantages compared to
classical bus-based interconnections, such as its scaling capacity. However, as
hundreds of computing units are embedded on the same chip, the task allocation
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is a complex issues compared to classical bus-based architecture compound of
few processors. Finding an optimal task allocation is an NP-complete problem
and it has been the subject of several works. For non-real-time tasks, authors in
Benhaoua, AmitKumar Singh, A. Benyamina, et al., 2014, Hansson, Goossens,
and Rǎdulescu, 2005, Sahu, Shah, et al., 2013, Srinivasan and Chatha, 2005 have
proposed offline (static), as well as on run-time mapping strategies (on-the-fly)
for both task and communications. However, none of these proposals considers
critical real-time system requirements.

In bus-based real-time systems, communication latency is analyzed and included
in the task worst case execution time as it doesn’t not much depend on the task
allocation itself. However, such techniques can not be used in the context of NoC-
based architecture, communication depends drastically on the task allocation,
therefore it must be considered independently from the task worst-case execution
time. Several techniques have been proposed that can be classified into two
categories. The first uses TDMA (Time-division multiple access) to regulate
the medium communication access, while the second assign a priority to each
message, and a scheduling policy is applied. A comparative study of these
techniques are reported in Benchehida, Benhaoua, H. E. Zahaf, et al., 2019 using
simulation and analysis. Harde et al., 2018, Nikolic, Hofmann, and Ernst, 2019

proposed techniques for TDMA quantum assignment to minimize communication
latency, i.e find a near-optimal VC slot assignment using heuristics. An exhaustive
survey can be found in Hesham et al., 2017.

However, none of these works above combine task and communication assign-
ment at the same time. In this chapter, we propose an allocation approach for
both tasks and communication using TDMA for communication and classical
bin-packing heuristics for allocations.

5.3. System Model

In this section, we present our architecture and our task models. First, we
overview NoC architectures basic concepts. Further, we model real-time tasks
using DAGs.

5.3.1. Architecture Model

The NoC is an interconnection paradigm which has been introduced in Benini
and De Micheli, 2002 to overcome the bus-based interconnection limitations. It
links the processors through an embedded network. Each processor is connected
to a router via a network interface. Each couple of a router and processor is
called a tile. As in classical networks, tiles can be arranged according to different
topology. 2D-Mesh is the most used topology in NoCs. It aligns tiles in a square
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matrix of m×m. Let M denote a set of tiles, M = {A1, · · · ,Am×m}. Each tile δi

is connected to typically 4 neighbors, except those at the network edge.

When exchanged between tiles, a message Mi is first split into several Packets
(Mi = {Pi1, · · · , Pij}). In Wormhole switching, each packet is broken into small
data units, called FLIT (FLow control unIT). Within a tile, incoming FLITs are
stored in local buffers, called virtual channels (VCs). Further, They are moved
forward to their next destination according to a routing algorithm. We consider,
in this study a XY routing. Flits are first moved to the next router in the X-axis
(horizontal way) until reaching the destination router column, and then in the
Y-axis (vertically) until reaching the target router. XY routing is simple, deadlock-
free and deterministic. When two or more VCs are routed to the same output,
they must be arbitrated, as the physical links support only one communication at
same time. In this chapter, we use a TDMA-based arbitration mechanism. TDMA
assigns for each VC a given number of slots, where it is served in a round robin
fashion. That is, each VC has a guaranteed service time. TDMA ensures isolation
between communications as well as a predictable contention free service time.

5.3.2. The DAG task model

A DAG task is a Directed Acyclic Graph, characterized by a tuple τ = {T, D,V , E},
where: T is the task period, it represents the minimum inter-arrival time between
two consecutive activation of task τ ; D is the relative deadline, all sub-tasks of
τ must complete not later than D time units from its arrives; V is a set of nodes
that represent sub-tasks. The set E is the set of edges of the graph E : V × V .

A sub-task v ∈ V is the basic computation unit. It represents the elementary chunk
of the task code that be implemented by a thread and executed by any computing
elements within M in our architecture. Every sub-task v is characterized by
its worst-case execution time C(v). An edge e(ni, nj) ∈ E models a precedence
constraint (and related communication) between node ni and node nj and it is
characterized by the maximum amount of the data (in FLIT number) exchanged
by its source node ni and destination node nj, denoted byM(ni, nj).

The set of immediate predecessors of a node nj, denoted by pred(nj), is the set of all
nodes ni such that there exists an edge (ni, nj). The set of predecessors of a node
nj is the set of all nodes for which there exist a path toward nj. If a node has
no predecessor, it is a source node of the graph. In our model we allow a graph
to have several source nodes. In the same way we define the set of immediate
successors of node nj, denoted by succ(nj), as the set of all nodes nk such that
there exists an edge (nj, nk), and the set of successors of nj as the set of nodes for
which there is a path from nj. If a node has no successors, it is a sink node of the
graph, and we allow a graph to have several sink nodes.

Example 5.3.1. Let consider τ = {T = 100, D = 80,V , E} be a task. The dag, V , E ,
are reported in Figure 5.1.
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v1

v2

v3 v4

v5

15F

10F3F

2F20F

Figure 5.1.: An example of a dag task

The task has only one source node, therefore when the task arrives, sub-task v1 is
activated. Sub-task v2 can not start its executions before v1 finishes its execution
and that v2 has received completely 15 Flits sent by v1. v1 can not be activated
again before at least 100 time units have elapsed. When v2 finishes it sends 10
flits to v4 (respectively 3 Flits to v3). v5 must finish its execution not later than 80
time units from the task arrival.

5.4. Real-time allocation and schedulability

Meeting timing constraints for a set of DAG real-time tasks requires allocating
properly their sub-tasks and communications to different tiles. As these sub-
tasks communicate, they are forced to respect an execution order dictated by
the precedence constraints imposed by the graph structure. Therefore, every
sub-task must wait for the completion of its immediate predecessors and their
communications before it can start. Analyzing this behavior is complex, because
of the large number of tiles to consider. The number of solutions is equal to
m · m · |VC| · ∑τ∈T |V(τ)| where |VC| is the number of VCs per port, thus the
design space is extremely large and cannot be completely explored to find optimal
solutions in a reasonable time. In the following, propose an efficient methodology
to allocate sub-tasks to PEs and communications to VCs to achieve fast design
space exploration while meeting real-time constraints.

Our algorithm starts by allocating sub-tasks using classical bin-packing heuristics
and by doing fast schedulability checking, as described in the next section. Later,
it assigns to every communication a virtual channel (VC) where it will be served.
Finally, to reduce the complexity of dealing with precedence constraints directly,
we impose intermediate offsets and deadlines on each sub-task, i.e. for each
sub-task, we compute an artificial activation time and an artificial deadline, and
we ensure by analysis that if every sub-tasks is executed within its artificial
activation time and artificial deadline, the task where it belongs will respect its
deadline. In this way, precedence constraints are automatically respected. Further,
the schedulability for every tile can be checked independently using classical
single-core analysis, which can be found in the literature of real-time systems, for
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both fixed priority and EDF. We detail every step in our allocation algorithm in
the following sections.

5.4.1. Task allocation

This work uses classical bin-packing heuristics Best-Fit (BF) and Worst-Fit (WF)
as disclosed in Algorithm 2.

It starts by sorting tasks according to order, that is either by deadline, or utilization
(Line 3). Later, it selects the task on the top of the ordered task list, let it be τ. For
every sub-task v in τ, the algorithm selects a sub-set of tiles where v is allowed
for allocation (Line 6), (according to Definition 5.4.2 and Theorem 1). Further, the
eligible tile list is sorted according to the bin-packing allocation heuristics (Line
7), BF for increasing utilization order and WF for a decreasing utilization order.
A fast schedulability test is achieved to find the first tile allowing a schedulable
allocation. If all eligible tiles have been investigated without finding an allocation
that satisfies the schedulabilty test, the system aborts on fail. Otherwise, our
algorithm moves to the next sub-task. When all sub-tasks have been allocated, our
algorithm moves to the next task. When all tasks have been allocated, Algorithm 2

achieves deadline assignment for every task (Lines 20-22), by subtracting properly
the communication latencies from the available slack time, as described in Section
5.4.3.

This procedure allows our algorithm to convert a complex allocation problem
to multiple single-processor schedulability problem, for which well-known tech-
niques can be found in the literature of real-time systems (Lines 23-27). If schedu-
lability fails in a tile, the algorithm aborts on fail, otherwise the sub-task and
communication assignment allows respecting timing constraints.

The function select_eligible_tiles (Line 6), returns a list of couples processor-VC
where the sub-task and communication can be feasibility allocated according to
the necessary schedulability test in Theorem 1.

5.4.2. Communication latency

We adopt for this contribution TDMA-based communication. Therefore, syn-
chronously on all routers, one VC is served for its quantum. It provides isolation
of FLIT forwarding, therefore prevents miss-behaving communications from mo-
nopolizing the network. However it requires synchronization mechanisms in the
routers. Under TDMA, each communication latency between vertex v and v′

e(v, v′) can be computed as shown in Equation (5.1).

lat(VC, e) =
TF(Mi)

nslot
·

∆

ηi
+ Hi (5.1)

Where :
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Algorithm 2 Bin-packing allocation

1: input: Γ: set of tasks, alloc : TEXTBF or WF, order : D or U

2: output: A list of tuples (sub-task, Processor, VC)
3: sort_tasks_by(order)
4: for (τ ∈ Γ) do
5: for (v ∈ τ) do
6: eligible_list = select_eligible_tiles(v)
7: sort_tiles(alloc, eligible_list)
8: allocated = false

9: for (p ∈ eligible_list) do
10: if ((u(v) + U(Γp) ≤ 1) then
11: add_sub− task_to_taskset(v, Γp)
12: allocated = true

13: end if
14: end for
15: if (allocated == false) then
16: return FAIL
17: end if
18: end for
19: end for
20: for (τ ∈ Γ) do
21: assign_deadlines_and_offsets(ø)
22: end for
23: for (p ∈ P) do
24: if (check_schedulability(p) == FAIL) then
25: return FAIL
26: end if
27: end for
28: return success

• TF(Mi) : Total number of Flits contained in the message.
• nslot : The amount of data sent in one slot (1 Flit by default) in Virtual

channel VC.
• ∆ / ηi : The total number of slots in a TDMA cycle / the assigned slot

number.
• Hi : Hop number between δsource and δdestination.

Once the allocation of every sub-task is achieved, our algorithm computes all
communications costs according to Equation (5.1) Lu and Jantsch, 2007. Further,
schedulability can be checked. We describe how to isolate the schedulability is
checked for each sub-task by the mean of deadline and offset assignment.
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5.4.3. Deadlines and offsets assignment

Many authors have proposed techniques to assign intermediate deadlines and
offsets to task graphs. In this chapter we report the two of the most used tech-
niques, proportional share and fair share, reported in H.-E. Zahaf, Capodieci, et al.,
2019.

Most of the deadline assignment techniques are based on the computation of the
execution time of the critical path. A path πx = {v1, v2, · · · , vl} is a sequence of
sub-tasks of task τ such that:

∀vl, vl+1 ∈ πx, ∃e(vl, vl+1) ∈ E .

Let Π(τ) denote the set of all possible paths of task τ. The critical path πcrit(τ) ∈
Π(τ) is defined as the path with the largest cumulative execution time of the
sub-tasks.

In contrast to classical deadline assignment techniques, We define the slack
Sl(π, D) along path π as a function of the execution time of its sub-tasks and also
of the communications latency that must be achieved between the sub-tasks of
path π.

Sl(π, D) = D− ∑
vl∈P

C(vl)− ∑
vl∈π

vl+1∈π

lat(VC, vl, vl+1)

where VC is the allocated virtual channel for communication between vl and
vl+1.

The assignment algorithm starts by assigning an intermediate relative deadline
to every sub-task along a path by distributing the path’s slack as follows:

D(v) = C(v) + calculate_share(v, π)

The calculate_share function computes the slack for sub-task v along the path.
This slack can be shared according to two alternative heuristics:

• Fair distribution: assigns slack as the ratio of the original slack by the
number of sub-tasks in the path:

calculate_share(v, π) =
Sl(π, D)

|π|
(5.2)

• Proportional distribution: assigns slack according to the contribution of
the sub-task WCET in the path:

calculate_share(v, π) =
C(v)

C(π)
· Sl(π, D) (5.3)
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Once the relative deadlines of the sub-tasks along the critical path have been
assigned, we select the next path in order of decreasing cumulative execution time,
and assign the deadlines to the remaining sub-task by appropriately subtracting
the already assigned deadlines. The complete procedure has been described in
Y. Wu, Gao, and Dai, 2014, and is not reported here for space constraints.

Let O(v) be the offset of a sub-task with respect of the arrival time of the task’s
instance. The sum of the offset and of the intermediate relative deadline of a
sub-task is called local deadline O(v) + D(v), and it is the deadline relative to the
arrival of the task’s instance.

The offset of a sub-task is set equal to 0 if the sub-task has no predecessors;
otherwise, it can be computed recursively as the maximum among the local
deadlines of the predecessor sub-tasks.

v5v1 v2
PEa

PEb

PEc

v3

v4
v4 Local deadline

v4 relative deadline

O(v3)

Absolute deadline

Activation time

task relative deadline

Figure 5.2.: Example of offset and local deadline

Figure 5.2 illustrates the relationship between the activation times, the inter-
mediate offsets, relative deadlines and local deadlines of the sub-tasks of the
task depicted in Figure 5.1. We assume that v1, v2, v5 have been allocated on the
same PE whereas v3 and v4 each on a different engine. The activation time is
the absolute time of the arrival of the sub-task instance. The activation time of a
source sub-task corresponds to the activation time of the task graph. The offset
is the interval between the activation of the task graph and the activation of the
sub-task. The local deadline is the interval between the task graph activation and
the sub-task absolute deadline.

Definition 5.4.1. Sub-task v ∈ Vτ is feasible if for each task instance arrived at
aj, sub-task v executes within the interval bounded by its arrival time a(v) =
aj + O(v) and its absolute deadline a(v) + D(v).

Lemma 1. A task is feasible if all its sub-tasks are feasible.

Proof. By the definition, the local deadline of the sink sub-tasks is equal to the
deadline of the task D. Moreover, the offset of a sub-task is never before the local
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deadline of a preceding sub-task. Therefore 1) the precedence constraints are
respected, 2) if sink sub-tasks are feasible, then the task is feasible.

Definition 5.4.2. Let p be a processor and v be a sub-task of task τ.

p is an illegible processor for v if :

∀π ∈ Π(τ) such that v ∈ π =⇒ ∃VC ∈ p that can be allocated to v and verifying
condition Sl(π, D) ≥ 0

Theorem 1. Let p be a processor and v be a sub-task.

if p is not an illegible processor to v, than v can not be feasibility allocated to p.

Proof. The proof is done by counter example. Let assume that p is not illegible to
v and that the system is schedulable.

By negating Definition 5.4.2, it exists at least one path where Sl(π, D) < 0.
Therefore, one or more sub-tasks will have an execution time greater to their
deadlines, thus missing their deadlines and Lemma 1 can not be satisfied.

The slack computation allows us to ensure that all communications will be
achieved will not push a sub-task miss its deadline as they have their own
reserved time that is not included in the distributed slack.

5.4.4. Single core schedulability analysis

Schedulability for FP can be checked using the test proposed in N. C. Audsley,
1991. The latter has a high complexity, therefore we allow also using the test
proposed in Bate and Alan Burns, 1997 which is less complex but pessimistic.
EDF schedulability can be checked using workload requirement using the schedu-
lability test proposed in Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell,
1990b. This test has been extended for tasks presenting offsets, as follows :

db f (τ, t) = max
v∈τ

∑
v′∈τ

⌊
t−Θ(v′)−D(v′) + T(τ)

T(τ)
⌋ (5.4)

where:

Θ(v′) = (O(v′)−O(v)) mod T(τ)

Thus, our approach has converted the task and communication allocation problem
to a single core analysis problem.
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5.5. Results and discussions

In this section, we evaluate the performances of our proposals on a large set
of synthetic experiments. The taskset generation starts by invoking UUnifast
algorithm to generate the utilization rate of n sub-tasks. Hence, DAG and inter-
sub-tasks communications are generated by TGFF R. P. Dick, D. L. Rhodes, and
W. Wolf, 1998. In the architecture side, we map these tasks on a 3× 3 2D-Mesh
NoC with routers, containing for each of them 6 VC with the following TDMA
slot configuration : [4, 2, 3, 5, 3, 3]. To avoid untractable hyper-periods, the period
of every task are randomly generated from a list of values between the interval of
1000 and 10000. Communications workload are flit-based quantified, i.e; for each
communication, we assign a random number of flit in the range of 3 and 40.
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Figure 5.3.: Heuristics schedulability rate by tasks utilization rate

The code has been executed on a regular laptop with Intel Core i5-7200U processor
(2×2.5 GHz) and 8 GB of ram. The results are shown in Figure 5.3 and are
presented as follows. Each experience takes a heuristic allocation and artificial-
deadline assignment method as detailed in 5.4.3. The results are reported by a
function measuring the evolution of the schedulability rate by varying the task
utilization rate. Thus, we notice BF heuristic combinations dominate the WF
heuristic. This can be explained by observing that BF tries to pack the maximum
number of sub-tasks into the minimum of engines, and this allows more flexibility
to schedule heavy tasks on other engines.

5.6. Conclusion

In this chapter, we provide real-time tasks support into NoC-based multiprocessor.
Our approach converts an extremely complex task and communication allocation
problems to a set of classical scheduling problem, for which efficient algorithms
exist, while preserving allocation problem timing properties. We used bin-packing
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heuristics to allocate tasks on cores and we provided also promising methods for
offset and deadline assignment.

In the next chapter, we extend the model to include the communication with
off-chip memories. Furthermore, we deploy sophisticated technique to find an
optimal task allocation.
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6.1. Introduction

The DAG model is suitable to describe communicating tasks. In this chapter,
we aim at presenting a more expressive model as we would like to include two
types of communication: task-to-task and task-to-main-memory communication.
Indeed, we introduce a DRAM (Dynamic Random Access Memory) as a part
of our architecture model while extending the task model by the AER model
Durrieu et al., 2014.

The latter models the execution of a sub-task into three distinct and separated
phases: in a first phase (Acquisition) the sub-task reads the needed data from main
memory into a local memory; in a second phase (Execution) the sub-task executes
using data only present in the local memory; in the third phase (Restitution) the
sub-task writes the produced data back to the main memory.

Thus, three questions need to be addressed to provide real-time support to
NoC-based platform :

• (i) Where a given sub-task might execute?
• (ii) How to ensure that inter-task communication are bounded?
• (iii) how to ensure that main-memory data read and write-back are correctly

achieved?

while meeting real-time constraints. More explicitly, it is necessary to define
the core where a given task might execute, which path shall a communication
take within a network and how memory controllers are designed, to follow the
system design constraints. The system design space is exponential to the number
of tasks, cores, communication paths, and the number of memory controllers.
Exploring all allocation possibilities to find the best solution is an extremely time
consuming operation. Indeed, smaller instances of such problems are proven to
be NP-complete in strong the sense.

In this chapter, we define a methodology to tackle this problem using a fast
implementation of a multi-objective implementation of simulated-annealing meta-
heuristic. We aim to “direct” the metaheuristic space exploration, to explore
potentially good solutions by the mean of NoC-resources clustering. We consider
task to core allocation, task-to-main-memory and inter task communications to
the different communication medias. We consider partitioned scheduling; i.e.
once a sub-task and communication is allocated on a resource, all activation of
the same task and communication will be allocated to the same resource during
the system lifetime.

Further, we prove the efficiency of the meta-heuristic by a large set of synthetic
simulations, showing a significant improvement to the state of art.

The rest of this chapter is organized as follows. We present in Section 6.2 prior
contributions related to the current work. Section 6.3 details the architecture and
the AER task model. We introduce the task mapping algorithm in Section 6.4.
Section 6.5 relates how the schedulability analysis of the system is performed.
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Experiments and results are presented in Section 6.6. Finally, we draw a conclusion
in Section 6.7.

6.2. Related work

6.2.1. Real-time tasks allocation

Network-on-chip interconnection paradigm has been introduced by the semi-
nal paper of Benini et al. Benini and De Micheli, 2002. As the task allocation
problem is a high combinatorial problem, many studies are reported on the
literature providing techniques to tackle it efficiently with a less computational
complexity. Thus, concerning the non-real time applications, the authors in Hans-
son, Goossens, and Rǎdulescu, 2005, Sahu, Shah, et al., 2013, Srinivasan and
Chatha, 2005 have proposed offline (static) as well as on-line (on-the-fly) mapping
strategies for both tasks and communications.

On studies related to bus-based multiprocessors addressed to the real-time sys-
tems, the on-chip communication latency is analyzed and included as a part of the
worst case execution time of a task and it doesn’t much depend on the allocation
schema. Obviously, such analysis is not tailored to NoC-based architecture since
the communication depends drastically on the task allocation, and therefore,
it must be considered independently from the task worst-case execution time.
Several techniques have been proposed to allocate real-time tasks onto multicore
architecture H. Zahaf et al., 2019, ZAHAF, Lipari, Niar, et al., 2020, Fonseca et al.,
2015, Bhuiyan et al., 2018, as well as communications on NoC. The NoCs can be
classified following two categories according to their strategy on network traffic
handling. Indeed, congestion may occur when two communication flows would
like to reserve a path through the network. The first category concerns the use
of TDMA (Time-division multiple access) to share the communication medium
among communication flows by time quantum reservation, whereas the second
category consists of assigning priority to flows, and therefore, the arbitration
follows the priority map Zheng Shi and Alan Burns, 2010. A comparative study
of both strategies is reported in Benchehida, Benhaoua, H.-E. Zahaf, et al., 2020

through the simulation and analysis of several scenarios. Moreover, Harde et al.,
2018, Nikolic, Hofmann, and Ernst, 2019 proposed heuristics to find the optimal
TDMA quantum assignment for a minimum communication latency. An exhaus-
tive survey addressed to real-time support on NoC is reported in Hesham et al.,
2017.

6.2.2. Off-chip memory sharing

Regarding the task-to-main-memory communications, many studies have in-
cluded an off-chip memory, such as DRAM with the NoC model. In such way,
Jang and Pan, 2011 proposed a design of a DRAM-sensitive NoC router consisting
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of a strategy to handle the communications to the main memory since the packets
issued at this purpose have a high priority and are routed first. On the other hand,
the authors in Daneshtalab et al., 2010 proposed a mechanism to handle multiple
DRAM coupled to a NoC. Thus, they proposed a solution to sort an out-of-order
arrival requests from the NoC to different main memories by an algorithm that
re-orders those requests and routes them to the specified DRAM. However, all
those previous work consider a NoC with 2D-Mesh topology. Likewise, Jin et
al. Jin et al., 2011 proposed a mapping technique in a hierarchical tree-based
NoC where bridges are deployed to connect directly the routers to the DRAM
controller. Thus, they proposed a task allocation algorithm to avoid the congestion
since only one task has the access to the off-chip memory through one bridge
and therefore, the tasks are sequentially re-ordered.

Nonetheless, the previous studies do not consider applications with real-time
constraints. In the real-time off-chip memory-aware field, Giannopoulou et al.
Giannopoulou et al., 2016 have proposed a Simulated Annealing-based mapping
technique for mixed-criticality tasks on Karlay MPPA NoC with a DRAM memory.
Moreover, Gomony et al. Gomony, Akesson, and Goossens, 2014 proposed a
middleware to adapt any TDMA-NoC with a main-memory to support real-time
systems. In fact, they proposed an adaptation of the main-memory controller by
computing a network interface (NI) bandwidth and cores operational frequency
to optimize the NoC energy consumption. Besides that, Perret et al. Perret et
al., 2016b proposed a mapping technique using constraint programming while
the budgeting of real-time applications is calculated a priori, i.e they evaluate
the computing power need as well as the number of memory access of an
application.

6.3. System Model

6.3.1. Network-on-Chip design

We consider an architecture compound of N tiles. A tile A is composed of :
(i) a processing engine PE, (ii) a router R and network interface NI. Typically,
the calculation tasks that execute on the processing engines are allowed to
send/receive data via the NoC by means of their adjacent routers. The latter
are wired between them by a set of unidirectional links. In this work, tiles are
arranged in a square matrix of row and column count equal to m, i.e N = m2.
Therefore, every tile is denoted by its x and y position within the square matrix,
i.e. tile A(x, y) (respectively its router R(x, y) and processing engines PE(x, y)) is
located at row x and column y, in a 2D mesh topology, as demonstrated in Figure
6.1. Each tile is directly wired to its four neighbors located on its: North, South,
East, West side, except those located at the edge and the corner of the topology
which have three and two neighbors respectively. Moreover, a group of tiles can
be gathered to constitute a so-called virtual cluster.

76



6.3. System Model

Router

The router remains the main in-tile component responsible for handling the
network traffic coming from other routers and passing through it, as well as the
traffic-load coming from its processing engine. Additionally, edge routers may
have a direct connection with I/O components in order to communicate with
external platform elements. A router is composed of the following elements:

• Input ports: they are the router entries. Each port is assigned a set of Virtual
Channels. A virtual channel VC is a buffer that stores temporarily a message
during its traversal, when the requested output is not immediately available.
In a typical design, the number of virtual channels per port is the same
for all input ports for any router, and the number of input ports is equal
to the number of neighbors, to which we add the input port ensuring the
connectivity with the local PE of the same tile.

• Output ports: they are the exit point of the messages from the router. A
given communication flow takes one of router outputs’ to move forward,
according to a routing policy. When more than an entry desire the same out
port, an arbitration policy is required to elect the communication that will be
served. The number of output ports is equal to the number of input ports.

• Crossbar switch: it is responsible for physically connecting the input ports to
the output ports.
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Figure 6.1.: The execution platform architecture

The performances of a NoC design highly depend on routing and arbitration
policies, and the flow control protocol.
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Routing policy: We use DOR-XY1 routing policy. A message is forwarded from a
router to another continuously on the X-axis until it reaches the destination router
column. Afterward, the communication follows the Y-axis until its destination.
This routing protocol is deterministic, i.e. a given communication will always
follow the same path at runtime.

Flow control protocol: It defines how a communication moves from a router to
its neighbor. We consider the wormhole switching control flow protocol. A message
M is divided into multiple packets P. The different packets are scheduled on the
network resources independently. Each packet is sliced to a set of transferable
units, called Flits, i.e. P = {Fh, F1, F2, · · · , Fn, Ft}, where Fh and Ft denote special
flits called header and tail. During its traversal, a packet locks the virtual channel
it uses, i.e it has an exclusive access. The header first moves to the next router,
gets a free virtual channel and locks the VC to its packet. When a tail flit leaves
the VC, it releases the VC, therefore the latter becomes available to another
communication.

Arbitration policy The arbitration policy defines how a router should handle the
communication flows conflict. Indeed, during their traversal, the messages may
would like to reserve the same output port, when this resource is assumed for a
message at time. Thus, the arbiter decides which among message is allowed to
use it. We denote several policies such as priority-based or shared in time policy.
In this contribution, we use the latter policy, also named TDMA (Time Division
Multiple Access) when each VC has a fixed number of slots to exclusively take
the output port.

Processing engine

The processing element is the unit responsible for achievinqg computations. Each
processing engine PE has its own registers and a scratchpad memory (abbreviated
by SMP) which serves as its local memory for data storage coming from on-chip
or off-chip communications or local processing.

6.3.2. DRAM organization

The DRAM is platform main memory. It is considered as an off-chip memory
since it is located outside of NoC. Therefore, The NoC is connected to the DRAM
by means of a dedicated bus. The DRAM controller is a unit responsible to
organize and handle the requests coming from other architecture elements. At
this fact, DRAM and its controller forms the memory sub-system. We illustrate in
Figure 6.1 the platform. Typically, during the system execution, the processing

1Direct Ordering Routing
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engine may request data from the DRAM and load them into its local memory,
which emits a signal to the nearest I/O cluster to achieve it. We describe further
such operations.

The DRAM architecture is composed of several banks. The bank represents a
two-dimensional matrix of cells arranged in rows and columns. Each cell holds
a bit. Additionally, several banks can form a virtual entity called rank. As a
result, the DRAM has a tree-dimensional structure where each cell is identified
by a 3-tuple coordinate <bank, row, column>. Such organization is depicted in
Figure 6.2. We describe in the following the steps of read and write operations
that occur between the NoC and the DRAM.

Read operation: It is performed in demand of a processing engine PE(x, y) as
follows:

1. A(x, y) initiates the read operation parameters, and sends the request to its
network interface NI.

2. R(x, y) is asked from its network interface NI to forward the request to an
I/O cluster to achieve this memory operation, let it be Am(x′, y′).

3. The request is routed between R(x, y) and Am(x′, y′) using the mechanisms
described above.

4. The I/O cluster sends the request to main controller through the dedicated
bus.

5. DRAM controller computes the data location and sends back data to
Am(x′, y′).

6. Data are routed back from Am(x′, y′) to R(x, y) using the routing protocol.

Write operation: The write operation is very similar to the read operation.
Instead of sending request and wait for the reply, the request and the data are
sent sequentially between R(x, y) and Am(x′, y′).

As we would like to make the connection between NoC and DRAM as much
predictable as possible, we associate the access of a given bank Bi exclusively from
a prior known router R(x, y). The purpose behind such mechanism is to provide
a unique path from a PE requester to a bank Bi. Moreover, we aim at sharing
fairly the off-chip communications among routers throughout these associations
of < R(x, y), Bi >.

In a nutshell, we can describe the controller as a supervisor which satisfy external
requests by applying commands on the DRAM.

• Row Activate (ACT) It is the first operation applied on a row, which basi-
cally moves the row on a dedicated region called row buffer in order to fetch
it. After the operation, the row is denoted as opened.

• Read (RD): It reads a column from an opened row and retrieves the bit
stored in the cell.

• Write (WR): It writes on a column that belongs to an opened row.
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Figure 6.2.: DRAM architecture

• Precharge (PRE): It closes an open row. This operation moves the row from
the row buffer to the bank. It involves the end of the read/write operation
on the row.
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Figure 6.3.: Graph state of a bank

Thus, during the system execution, a bank goes through several states, as depicted
by the graph in Figure 6.3.

Memory Controller Model

We integrate the DRAM controller model RLDRAM (Reduced Latency DRAM
Controller) proposed by Hassan Hassan, 2018 as a suitable solution to real-time
systems. Compared to the classical DDR-DRAM it experiences less latency and
provides predictability, mainly due to:

• the activation and prechage phases are relegated to the RLDRAM. Conse-
quently, the controller orders only the Read/Write commands;

• the data bus of DRAM is bidirectional and the entire bandwidth is used
to either read or write operation, and therefore, switching delay between
read/write impacts the latency. However, the delay of RLDRAM is less
important than DDRx-DRAM;

• all data addresses are provided in one-step, with the non-multiplexed mode
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Further details are provided in Casini et al., 2020.

The previous features allows to determine with high simplicity the effective
cost related to DRAM access and data copy. Besides that, we assume a bank
partitioning onto the DRAM, which strictly assign a bank exclusively to a specific
PE, therefore, reducing interference among PEs.

Example 6.3.1. Let consider PE3 assigned to bank B5 triggers a read request.
After arriving to the controller, the RLDC decodes the request by the two block
in order to determine the request type (in our case, read request) and which cells
to get data through the array of (bank, row, column). Afterward, the request is
placed by its arrival order into its right per PE buffer in order to be elected by the
arbiter. We have to keep in mind that the timing checker behaves like a request
regulator which ensure a minimum between between two commands toward a
bank. When a request is elected, it is immediately applied into the RLDRAM.

Further details about the data latency calculation are provided in Section 6.5.

6.3.3. AER DAG task model

We describe the system by a task set Γ of sporadic DAG tasks, where a task τ is
composed by the tuple: τi = {Vi, Ei, Di, Ti}. We outline each element of a task as
follows:

• Vi: A set of sub-tasks vj which represent a computational part of a task,
such as an parallel chuck of code

• Ei: A set of edges e(vj, vk) which models a directed communication between
2 sub-tasks.

• Di: Is the relative end-to-end deadline of a task. The latter should finish its
execution no more than this timing constraint.

• Ti: It represents the minimum inter-arrival time of the task instance.
• Pi: The priority of the task. Obviously, the most a task is priority, the most it

is privileged compared to the lower priority tasks. Moreover, the sub-tasks
inherit the priority of the task that composes them.

A sub-task vj ∈ τi presents the following characteristics:

• Ci: represents the worst-case execution time of the sub-task on the platform.
• Oi: determines the task offset, i.e: a late starting time of a task due to a

non-ready data (e.g: off-chip data copy operation).
• Ji: refers to maximum delay that a sub-task can suffer after its activation

due for example the arrival for an external event.
• ri: its the worst-case response time of a sub-task.
• π(vj): represents the processing engine’s index on which the sub-task vj is

allocated.
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Figure 6.4.: The AER task model

We highlight in Figure 6.5 the different parameters of a sub-task (previously
described in Section 6.3.3).

The Directed Acyclic Graph (DAG) is an expressive model that represents a
task composed of sub-tasks (vertices) and their communications (edges). Thus, a
sub-task vj of a task τi represents a chuck of code that performs calculation. It can
starts its execution immediately after the task release, if there is no precedence
constraint on it, e.i: it has a predecessor sub-task that has not finished its execution.
Consequently, each sub-task has a set of direct successors succ(vj) of sub-tasks in
which there exists a relation, defined by :

{vk ∈ succ(vj)|e(vj, vk) ∈ Ei}

Similarly, a sub-task has a set of direct predecessors pred(vj), defined as follows:

{vk ∈ pred(vj)|e(vk, vj) ∈ Ei}

We call a sub-task that has no predecessors pred(vj) = ∅ a root sub-task, whereas
we call a sub-task with no successors succ(vj) = ∅ a leaf sub-task. Moreover, two
sub-tasks that belong to the same task can be executed in parallel (simultaneously)
if there is no precedence constraint between them by allocating them on different
tiles.

In this work, we aim at include explicitly the off-memory access in the task model.
Following that, we extend the DAG task model as proposed by Baruah et al.
Sanjoy Baruah et al., 2012 by the AER model which include special sub-tasks,
called virtual sub-tasks. Such sub-tasks constitute, more precisely, an off-chip
memory copy engine mechanism. In the AER model, each task has one virtual
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sub-tasks at the beginning of the task to copy data from the DRAM to the local
core memory (SPM) and one virtual sub-tasks at the end of the task to write-back
data to the main-memory.

0
t

ai,0

ri

Ci

di,0

Ti

ai,1

di,1

ai,2
Oi

Ji,0 Ji,1

Figure 6.5.: The sub-task parameters

Example 6.3.2. Let consider τ = {Vi, Ei, D = 120, T = 120} a DAG task, depicted
in Figure 6.4.

When the task is activated, it starts by the read memory sub-task vr to perform a
data copy from the main-memory. v1 begin its execution directly after the data
has been copied entirely (6 packets) to the local memory of its PE. After v1 ends
its execution, it sends data to v2 through the network since v2 must wait the end
of communication. v3 and v4 are allowed to run in parallel as soon as they receive
the packets (9 and 11 packets respectively). As v5 has two predecessors, it must
waits until both of its predecessors terminate their execution. Finally, the sub-task
vw achieves the write-back operation. The latter must finish no later than the task
deadline 120 time units from the task activation.

6.4. MO-SA DAG Task Allocation

Typically, meta-heuristics are suitable when the problem is highly combinatorial.
Compared to exact optimization methods, they don’t converge to the optimum,
but they provide solutions closer to the optimum with relatively less time.

In this section, we introduce the multi-objective simulating annealing (MO-SA)
Bandyopadhyay et al., 2008. This method is derived from the metal annealing
procedure in which the temperature heating and cooling of a material is controlled
to increase its strength. This derived model is appreciated for its ability to
escape from a local solution that could be considered as optimal on its scope. To
perform such, this heuristic makes possible the control of the following annealing
parameters:

• The initial temperature (tinit): determines the highest temperature at which
a metal is first heated.

• The minimal temperature (tmin): refers to the lowest temperature the metal
can reach. Arriving at this value, the annealing process is stopped.

• The current temperature (tcur): refers to the temperature of the current metal
state.
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• The lowering coefficient (tα): defines how the temperature is decreased
from a current temperature to a more lower one. The state is updated by:
tcur ← tcur × tα.

Before going further, we define the concept of a move: the action of shifting on
the solution space from a position to another. Concretely, a move is associated to
a solution, and can be defined as bad if the solution provided is less-optimal than
the previous move. Likewise, we define a good move if it provides an improvement
since the previous move solution.

The annealing temperature mission is twofold: determines the depth of the
solution space exploration and the threshold tolerance of the explored solutions.
More explicitly, the temperature is used to determine whether a solution is
acceptable or not. In fact, during the solution space exploration, a bad move
doesn’t intrinsically involve a wrong exploration path, but it can be accepted
according to the current temperature value. Thanks to this mechanism, the
algorithm explores the space extensively, seeking a global solution without falling
into a local minima.

The more the cooling temperature is high, the more the solution space is explored
exhaustively. This is explained by the fact that the acceptance ratio of a bad
move is high when the current temperature is high. Likewise, a bad move
has less chance to be accepted when the current temperature is low. Thus, we
define in Equation 6.1 how a bad solution is conditionally either accepted or
refused. The acceptance is determined by comparing a random generated value
(random_ f loat()) against a calculated number that takes as parameters: the gap
between the previous and current solution and the current temperature.

Definition 6.4.1. A bad neighboring solution S is accepted or not according the
following function:

ACC(S) =

{

true, e
∆ E
tcur > random_ f loat()

f alse, otherwise
(6.1)

Algorithm 3 describes our heuristic to find an optimal task mapping. We have
to keep in mind that we model a multi-objective problem as we consider each
DAG response time as a single objective. At the end, the algorithm returns a set
of solutions {S0, · · · , Sn} – We assume that the set contains only incomparable
solutions. For instance, Si and Sj are incomparable if they provide for τ1: ri,1 and
rj,1, and ri,2 and rj,2 for τ2 respectively, when: ri,1 > rj,1 and ri,2 < rj,2.

Consequently, the algorithm returns a front pareto that includes all accepted
solutions, and it remains to the responsibility of the designer to choose which
among the proposed solution is most suited to the specification needs.

Algorithm 3 describes the MO-SA. We can roughly divide the algorithm into
three steps: (i) find a feasible (schedulable) initial solution, (ii) explore neighbor
solutions by moving, (iii) decide if the solution is acceptable or not.
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Algorithm 3 Multi-objective Simulated Annealing

1: input: Γ: Tasket, tcur: initial temp, tmin: minimal temp, tlow: lowering coefficient
2: output: Ω: Pareto Frontier
3: Ω← ∅

4: SO ← generate_mapping(Γ)
5: while tcur ≥ tmin do
6: SN ← next_neighborhood(Γ)
7: ∆ E← di f f (SN, SO)
8: if ∆ E < 0 then ⊲ Good move
9: SO ← SN

10: update_pareto(Ω, SN)
11: else ⊲ Bad move
12: if e

∆ E
tcur > random_ f loat() then

13: SO ← SN

14: update_pareto(Ω, SN)
15: end if
16: end if
17: tcur ← tcur ∗ tlow

18: end while
return Ω

The algorithm starts by initializing the front pareto set and generate a random
initial solution mapping (Line 3-4). This operation is repeated until a given
mapping is determined as schedulable. Afterward, a block is repeated while
the current temperature tcur is higher than the minimum temperature tmin (Line
5). Then, it starts to explore the next near solution (Line 6) through a function
described by Algorithm 4. After the next neighbor move has been done, we
evaluate the effectiveness of the move by comparing it to previous solution by
calculating the tardiness (Equation (6.2)). We describe the tardiness of a task by
the amount of time it takes by a task to complete its execution after exceeding
its deadline. Nonetheless, the tardiness is equal to zero if the task respects its
deadline (ri ≤ Di). At this moment, the algorithm has to take a decision of either
accepting or refusing this after-move mapping schema. If the latter is considered
as a bad move (Line 11), it will be evaluated (Line 12) following the acceptance
function (Equation (6.1)). After, the current temperature is decreased by the
lowering coefficient (Line 17). At the end, the algorithm returns the front pareto
which contains incomparable solutions. We provides in Figure 6.6 an example of
a front pareto set.

tardiness(τi) = max{0, ri −Di} (6.2)
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S1: {

Task_1 : 79, Task_2 : 182, Task_3 : 67, Task_4 : 121, Task_5 : 70

}

S2: {

Task_1 : 127, Task_2 : 88, Task_3 : 82, Task_4 : 97, Task_5 : 55

}

S3: {

Task_1 : 127, Task_2 : 88, Task_3 : 82, Task_4 : 97, Task_5 : 55

}

S4: {

Task_1 : 127, Task_2 : 88, Task_3 : 82, Task_4 : 97, Task_5 : 55

}

Figure 6.6.: An example of front pareto of incomparable Solutions

6.4.1. Exploring the neighbor solutions

As the solution space is large, it requires a strategy to explore it efficiently. We
consider in Algorithm 4 that a move from current mapping to another is firstly
performed by reallocating a random sub-task (Line 4-6). Afterward, we test if
the sub-task’s communication is placed on a VC which has the highest slot (Line
7). If true, the sub-task is reallocated to another core and its communication
takes a random VC (Line 8-9). Otherwise, we proceed to reallocate only the
communication to another VC on the same core (Line 11). This action is repeated
until finding a schedulable mapping (Line 6-13). Finally, we update the mapping
schema according to the changes and return it (Line 13-14).

Algorithm 4 Next Neighborhood exploration

1: input: Γ: Taskset
2: output: Nmap: New allocation schema
3: Nmap ← allocation(Γ)
4: τi ← get_random_task(Γ)
5: repeat
6: (vj, ej)← get_random_subtask(τi)
7: if highest_slot(VC(ej) then
8: subt_to_core_alloc(vj)
9: random_reservation(ej)

10: else
11: reallocation(ej, VC(ej))
12: end if
13: until is_schedulable(τ)
14: Nmap ← update_allocation(τ)

return Nmap
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6.5. AER tasks scheduling analysis and memory

latency

This section explains how the scheduling analysis of the task set is performed. In
fact, the system schedulability analysis can be distinguished by three parts: (i)
the on-chip communication analysis, (ii) the off-chip memory copy analysis, and
(iii) the analysis of the task response time on the processing engines. Firstly, we
detail these three parts independently from each other for the sake of clarity, and
we give at the end a holistic analysis of the entire system.

6.5.1. Virtual sub-tasks and memory latency cost

We determine the worst-case memory access delay (abbreviated by WCMD) of a
bank’s DRAM by Equation (6.3). This cost of packet copy concerns exclusively
the delay between the I/O cluster to the RLDRAM regardless the cost due to the
on-chip routing.

For the sake of simplicity, we assume the late arrival of each request into the
buffer which takes the (N)th position, and therefore, it will be elected after by
the Round-Robin scheduler has satisfied the (N-1) requests that precede it. We
also assume any delay on the bus that relies the NoC with the DRAM controller.
Table 6.1 resumes the RLDRAM parameters delay.

WCMDi(P) = (N − 1)× tRC + tCL (6.3)

Parameter Description Cycle cost
tRC The minimum delay between two commands 6

tWL The minimum delay to start copy after W 14

tRL The minimum delay to start copy after R 13

Table 6.1.: RLDRAM memory access costs

6.5.2. On-chip communication latency analysis

We describe the interference between two or more communication flows when
they would like to reserve the same output port. We aim at deploying a conflict-
free scheme for routers since no arbitration unit is required on the architecture.
Instead, the router follows the TDMA table to share the output medium. Therefore,
we calculate the latency due to an on-chip communication ei(vsrc, vdst) between
two sub-tasks in a given VCj as following:

lat(VCj, ei) =
TF(Mi)

nslot
·

∆

ηj
+ Hi (6.4)
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Where:

• TF(Mi): total number of Flits contained in the message;
• nslot: the amount of data send by 1 slot of communication. We suppose by

default 1 Flit;
• ∆/ηj: refers to the bandwidth assigned to a VC, which represents the ratio

of: the total number of slots in a TDMA cycle / number of slots assigned to
a VC;

• Hi: distance between source and distance tile in which the two sub-tasks
are allocated. It is expressed by number of hop that separate the two tiles.

By this, we assume that the VC will be served at the end of the TDMA cycle.

6.5.3. Preemption-cost and AER tasks response time

The scheduling analysis of the task set is based on the task response time, while
we consider a given task schedulable when the following inequation remains true:
ri ≤ Di. The calculation of task response time takes into account two aspects:

• the interference (also called contribution) from higher priority tasks occurred
only in the sub-task jobs Jp ∈ {p0 · · · pn} instantiated on its busy period w.

• Considering the tasks with dynamic offsets. As the sub-tasks may delay their
activation until the arrival of the message, which depends on its time release
and the response time of the previous sub-task (precedence constraint).

We assume in the task model an implicit deadline distribution (Ti = Di) with Rate
Monotonic (RM) priority assignment. We base ourselves on the schedulability
test proposed by Palencia et al. Palencia and Gonzalez Harbour, 1998. However,
we adapt it for DAG tasks, while the initial contribution is addressed only for
tasks modeled as transactions.

Worst-case response time of the DAG task

Initially, we have to keep in mind that a given sub-task vab ∈ τi, during its
execution can be preempted by a task τk with a high priority, which generates a
delay imposed to the preempted sub-task vab. However, it’s difficult to predict
which among sub-tasks of τk will preempt vab, and therefore, will contribute to
its worst-case response time (WCRT). More specifically, we must find the sub-task
of τk that creates the worst-case busy period of vab; The busy period w of a task
denotes the time interval starting from the critical instant until the response
time Y. Wang and Saksena, 1999, where the critical instant itself is defined as the
arrival time that produces the largest response time. Simply, it coincides with the
activation of sub-task a vik ∈ τk:
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Wik(vab, t) = ∑
j∈hp(vab)

(⌊

Jij + ϕijk

Ti

⌋

+

⌈

t− ϕijk

Ti

⌉)

Cij (6.5)

Where, ϕijk determines the sub-task phase of vab aligned with the arrival time of
vik, such that its critical instant is initiated with the activation of vik :

ϕijk = (Ti − (Oik + Jik −Oij)) mod Ti (6.6)

Thus, the calculation of the WCRT of vab goes through checking all possible
variations and by taking the maximum of all possible interferences from the
sub-tasks of τk (Equation (6.7)).

Obviously, we assume in our analysis that the task offset might exceed its period.
We also consider the release time of a sub-task vi might be occurred in the interval
of [t0 + Oij, t0 + Oij + Jij].

W∗i (vab, w) = max
k∈hp(vab)

Wik(vab, w) (6.7)

With:

hp(vab) = {vj ∈ τi | Pj ≥ Pab ∧ π(vj) = π(vab)} (6.8)

For space constraints, we don’t explicitly outlined the calculation of the busy
period’s wab length of sub-tasks Lab. More details are available in a dedicated
section in Palencia and Gonzalez Harbour, 1998.

Rij = Cij + max
k∈hp(vij)

[

max
p=p0...pL

(Rij(p))

]

(6.9)

Where:

Rij(p) = wijk(p)− ϕijk − (p− 1)Ti + Oij (6.10)
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6.5.4. Offsets and jitters assignment

We use for analysis purpose the Worst-case Dynamic Offset (WCDO) algorithm
Palencia and Gonzalez Harbour, 1998. Since the tasks are modeled following
the DAG, offsets are assigned to impose the precedence constraint between sub-
tasks. Thus, we ensure the strict respect of time causality, since a sub-task cannot
be activated prior to the complete reception of a message (or signal) from its
predecessor.

As we consider a distributed system in which processors are linked by the
NoC, the offset Oi of a given sub-task constitutes the best-case scenario of both
time execution and the minimum communication latency of the sub-task that
precede it, whereas, the jitter Ji signifies the maximum of both execution and
communication time from the previous sub-task.

Consequently, we assume the best case execution time of a sub-task to zero
(Ci = 0).

We calculate the offset and jitters for tasks following the Worst-case Dynamic
Offset (WCDO) algorithm. At first, the variables are initiated by: Jij = 0 and
Oij = {k ∈ pred(vij) | Rik}.

O′ij = min
k∈pred(vij)

Rl
k + ek,j (6.11)

J′ik = max
k∈pred(vij)

Rk + ek,j (6.12)

Hence, we calculate the task offset by the lower bound of the best case response
time of its predecessor, whereas, the jitter is computed by the upper bound of
the worst case response time of the predecessor. By using these parameters we
re-calculate the response time of a sub-task for each update iteratively until we
obtain the same result in two successive iterations:

rn+1
ik = rn

ij ∀i, ∀j (6.13)

Where:

rij = Rij + Jij (6.14)
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6.6. Experimental Results

This section discloses the results of an experimental evaluation that compares
the proposed mapping technique, the MO-SA algorithm (Section 6.4) against the
bin-packing mapping heuristics. We detail in this section the implementation of
the algorithm as well as the execution environment.

6.6.1. Task set generation

We use UUniFast Discard algorithm Emberson, Stafford, and Davis, 2010 to
generate a range of processor utilization Ui (Equation (6.15)) since it determines
the CPU workload. We use the algorithm to generate utilization sets several times
meaning testing many utilization values while the maximum tolerable utilization
rate in order to produce a schedulable task set is Ui = 1 on one processor. Each
set contains the utilization of all processors on the execution platform.

As the AER task model is derived from the DAG model, we must define the
composition of the tasks: (i) the number of sub-tasks, and (ii) the edges that link
them.

Ui =
Ci

Ti
(6.15)

The DAG structure is generated randomly by TGFF tool Robert P Dick, David L
Rhodes, and Wayne Wolf, 1998 following our own generation parameters. We
determine a priori the number of DAG tasks which is by default assigned to
5. After, we determine randomly the number of sub-task that compose a task
into the range of [5,10] whereas the graph degree is randomly assigned by a
value into [1, 3] and [1, 2] for the incoming and outgoing edges respectively.
After creating the DAG tasks structure, we assign to each of them a period Ti

picked randomly from a range [1000, 100000] by step of 1000 in order to avoid
intractable hyper-periods. Each task receives an utilization factor Ui taken from
the utilization set, and then, we generate a local utilization set specific for sub-task
by means of UUniFast. Consequently, we calculate the worst-case execution time
of the sub-tasks: Ci = Ui × Ti.

Regarding the on-chip traffic workload, we consider 100% the maximum network
charge when all router VCs are full when a lower value considers a less important
charge of the VCs. Thus, according to desired network charge we distribute
equally the communication workload to the task’s edges, then, we calculate the
message sizes as following: number of Flits by task = (desired communication
workload× network full capacity) / number of tasks. Afterward, we distribute the
flits randomly among the task’s edges. We also include the first edge originating
from a DRAM copy of the distribution.
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6.6.2. Bin-packing heuristics

The bin-packing heuristics are useful when comparing them with other mapping
methods. Thus, we compare our proposed method against: First-Fit (FF) and
Worst-Fit (WF). However, as the allocation on NoC depends drastically on the
distance between tasks, we adapt the heuristics to take into account the distance
parameter that separates the sub-tasks.

Typically, Worst-Fit aims at maintaining all the processors at the same level of
utilization, since it allocates each sub-task so that creating an equal workload
for processors. Thus, the processors are sorted by their utilization by increasing
order and are placed on the eligibility list. At each allocation, we try to allocate
the sub-task to the closest processor to its predecessor (if obviously, is not the
root sub-task) while still considering the eligible list.

Likewise, the First-Fit algorithm tries to push the maximum of sub-tasks while
respecting the utilization threshold of (Ui ≤ 1). After jumping to the next
processor, we ensure to choose the ones from the eligible list that experience
minimum distance from the predecessor of the current sub-task considering
creating the minimum latency.

6.6.3. Platform specifications & experiments protocol

The performance of the proposed method has been evaluated by an experimental
study implying a set of synthetic experiments. We ran the simulation scenarios
on a workstation that on-boards an Intel Xeon E5-2670 v3 of 12 cores clocked
at 2.3 GHz each with 128 Go of RAM. All the simulations have been carried
out as follows: We produced two experiences based on different simulated
annealing (SA) parameters. The first experience differs from the second by the in-
depth level of solution space exploration. In fact, we provided a lower minimum
temperature and a higher lowering coefficient than the second experience to
better contrast the importance of annealing parameters. For each SA setting, we
vary the communication workload while varying the processors’ utilization. We
evaluate each experience by the schedulability rate calculated by the mean of 100

simulation scenarios each. The mapping algorithms have been tested on a NoC
platform in non-clustered mode (also denoted by regular mode) as well as in its
clustered mode (C-XX denotes experiences performed on clustered NoC). In fact,
in the former configuration, the sub-tasks could be allocated in any processing
engine onto the NoC, whereas the latter mode presents more constraints since
tasks are assigned to a specific cluster and their sub-tasks cannot be allocated
outside of their region.

The Network-on-Chip settings are detailed in Table 6.2. As we use bank parti-
tioning, we determine randomly during the simulations the banks Bi assigned to
each processing engine PEj. Moreover, we assign tasks to clusters in the following
way: we sort the tasks by decreasing order according to their utilization, then, we
assign in turn a task to a cluster, until the last.
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Topology 4× 4 2D-Mesh
Clusters 4× (2× 2)

VC per InputPort 8

Buffer size per VC 10 Flits
TDM Slots distribution [4, 6, 3, 5, 3, 3, 2, 4]

Message 8 Packets (10 Flits each)

Table 6.2.: Network-on-Chip configuration

6.6.4. Simulation results and discussions

The simulation results are presented separately regarding the simulated annealing
parameters. The following Figures ( 6.7a, 6.7b, 6.7c, 6.7d) and (6.8a, 6.8b, 6.8c,
6.8d) show the dominance of the SA algorithm against the bin-packing algorithms.
Indeed, the success schedulability ratio is more important than WF and BF in
both clustered and non-clustered modes. On the other hand, we notice that in
high network charge, the clustered mode provides more effectiveness than the
regular mode as in Figure 6.7d. This is mainly due to the fact that the clustered
mode offers short distance communication when the distances could be long in
regular NoCs, and therefore, generate high latencies. This observation is more
supported by the figures (6.7e, 6.7f, 6.7g, 6.7h) when we compare the number
of feasible solutions provided by SA in the two modes. With all network charge
ratios, the C-SA outperforms the SA which highlights the fact that core clustering
remains more flexible by offering a large variety of mapping schemes.

The second observation lies the SA parameters. The more simulated annealing
explores deeply the solution space, the more SA and C-SA become closer as
drawn is figures (6.8a, 6.8b, 6.8c, 6.8d). This is proven by the fact that clustered
mode is a generalization of the non-clustered mode. Thus, when the solution
space is explored by SA it may include all the portion of solutions that belong
to C-SA, when eventually, both techniques will be equal. However, the strict
difference remains in the number of solutions provided by them. Moreover, we
can observe that SA and C-SA begin at proving less solution proportionally with
the enhancement of utilization ratio.

As the initial feasible solution is determined randomly, we plot in Figure 6.9 the
time spent to explore the space until the stop condition of the algorithm, which is
calculated by the average time of 100 simulations per utilization ratio. We observe
fast delays of C-SA against SA. However, we notice a decrease in SA delays in
high utilization since we stop the initial solution search at 2000 iterations, and the
algorithm is aborted after trying to find an initial mapping. Therefore, it proves
that C-SA is efficient at first steps.
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6.7. Conclusion

In this chapter, we presented an allocation algorithm of AER tasks, which are
able to model both on-chip and off-chip communications. The complexity of the
Network-on-Chip execution platform coupled with a DRAM pushed to privilege
meta-heuristics technique for fast solution space exploration. We demonstrate
through this chapter the effectiveness of our approaches against bin-packing
heuristics. Moreover, we offer a perspective of the usefulness of core clustering
in NoC platform, while typically the architecture itself is capable of including
thousands of computing elements. We also privileged predictable architecture
by deploying TDMA algorithm in in-router arbiters. The performance of the
multi-objective simulated annealing algorithm has been proven throughout a
variety of simulations.
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Figure 6.7.: Schedulability ratio of 100 task set by utilization. SA-parameters (tinit = 1.0, tmin =
10−3, tα = 0.90)
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Figure 6.8.: Schedulability ratio of 100 task set by utilization. SA-parameters (tinit = 1.0, tmin =
10−6, tα = 0.95)
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Figure 6.9.: Time related to find the initial solution of both SA and C-SA
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Conclusion

In this thesis, we tackled the mapping problem technique on different sides.
This problem remains NP-hard as it is considered highly combinatorial. Indeed,
combining the task allocation with the communication resource reservation makes
the solution space significantly wide when finding an optimal solution with a
relatively reasonable amount of time requires advanced techniques.

The on-chip communications themselves have been studied separately. In fact,
The Network-on-Chip routers offer several modes of arbitrations. The priority-
preemptive is refereed as efficient with the real-time applications. However, such
arbitration mode is not predictable as the community simply provides an upper-
bound of latency estimation. On the other hand, TDMA protocol is known to be
predictable and safe as we can compute the communication latency a priori, and
therefore, avoid unpredictable behavior of critical systems at run-time. In the first
contribution (4th chapter), we contrasted both techniques with both worst-case
analysis and simulations.

In the 5th chapter, we demonstrated a promising technique to reduce the analysis
complexity of DAG tasks through the use of partitioned scheduling and the
intermediate deadline assignment. Thanks to the DAG model and its ability to
express the calculation tasks as well as their communications. We used EDF as it
is considered as an optimal scheduler on single core, while TDMA has been used
on purpose to provide conflict-less schema on routers’ arbitration.

In the 6th chapter, we moved toward a more complete architecture that includes
a main memory. The latter is denoted as an off-chip memory as it is located
outside in the point-of-view of the NoC. At this fact, the NoC is featured by
dedicated units to exchange with the main-memory, denoted by I/O clusters.
Moreover, we introduced the particularity of gathering a subset of cores to
constitute calculation clusters in order to provide isolation, and we showed the
benefits of core clustering to a set of synthetic experiments. We extended the DAG
model to the AER model to express both on-chip and off-chip communications,
and we proposed a meta-heuristic-based mapping technique for fast solution
space exploration.
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Outlook

Adaptive Clustering & heterogeneous platforms

In this thesis, we defined the core clustering arbitrarily regardless the task set
and performance requirements, when we assumed an identical cores platform.
However, as modern real-time systems require heterogeneous cores, it is better to
define the clusters size and shape following the tasks requirements. Thus, we plan
to propose advanced clustering techniques on heterogeneous NoC platforms.

Mixed-criticality Systems

Throughout the thesis, we studied the CPS applications considering them as hard
real-time tasks. In such systems, violating the time deadline is forbidden, when it
is more tolerable concerning soft real-time systems. Beyond that, modern CPS
applications tend to cohabit both systems onto the same execution platforms
aiming at optimizing the resources when executing them separately remains
extremely costly. In this perspective, it is interesting to study the mapping of
mixed-criticality tasks onto Network-on-Chip.

Global scheduling

The global scheduling by opposite of partitioned scheduling allows the task
migration between processors, and therefore, considered as work-conserving. We
plan to deploy G-EDF as task scheduler onto NoC’s computing engines.
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