
HAL Id: tel-03545599
https://theses.hal.science/tel-03545599

Submitted on 27 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware implementation of cell-inspired computational
models

Zeyi Shang

To cite this version:
Zeyi Shang. Hardware implementation of cell-inspired computational models. Bioinformatics [q-
bio.QM]. Université Paris-Est; Southwest Jiaotong University, 2020. English. �NNT : 2020PESC0088�.
�tel-03545599�

https://theses.hal.science/tel-03545599
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

DOCTORAL THESIS

Hardware implementation of cell-inspired
computational models

Author: Zeyi Shang
Jury President: Lynda Mokdad

Supervisor: Gexiang Zhang
Sergey Verlan

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in

COMPUTER SCIENCE

iii

Declaration of Authorship

I, Zeyi SHANG, declare that this thesis titled, “Hardware implementation of cell-
inspired computational models” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Signed:

Date:

v

“L’archer à cheval de la steppe a régné sur l’Eurasie pendant treize siècles parce qu’il était
la création spontanée du sol même, le fils de la faim et de la misère, le seul moyen pour les
nomades de ne pas entièrement périr les années de disette.”

René Grousset

L’empire des steppes

vii

Abstract

Zeyi SHANG

Hardware implementation of cell-inspired computational models

Parallelism, non-determinism and large scale are the three characters of biological
and ecological systems which are transmitted to bio-inspired computing models en-
lightened by these bio- or/and eco- systems. Imitating bio-inspired computing mod-
els on general purpose computers by designing high level programming language
codes is the common approach to simulate these unconventional computing models
for its accessibility. However, this approach is inappropriate to cope with the three
characters mentioned above, especially for the parallelism on a large scale. From the
perspective of hardware, CPU of computers executes software codes which simu-
late bio-inspired computing models. More precisely, integrated circuits inside CPUs
or other processing devices perform operations defined by software codes which
mimic these models. Software codes emulating bio-inspired computing models can
get expected results, but it is not guaranteed that the CPU executes operations in
line with what models do. If the parallel performance provided by target CPU is not
enough to support parallel processing, some parallel procedures will be serialized.
And because that the process of CPU is not transparent, we cannot know whether
the CPU carry out operations in accordance with that of models or not. To state the
main works more clearly, the notion of implementation and simulation should be
distinguished. If a hardware emulates bio-inspired computing models in strict ac-
cordance with procedures defined by the models, such type of emulation is termed
as “implementation”. While if processing procedures of target hardware are not con-
sistent with models, although expected outcomes obtained, such kind of emulation
is entitled as “simulation”.

A more preferable approach to imitate bio-inspired computing models is to de-
sign model-specific hardware platform to implement other than simulate them for
the simulation will do harm for some advantages of these models, for instance, the
large scale parallelism. The hardware implementation method of bio-inspired com-
puting models imitates models with (digital) circuits directly instead of software
codes since circuits are the principal part comprising a variety of processors such as
CPUs and GPUs. On the contrary, if a processor is powerful enough to execute mod-
els as exactly the theoretical procedures, this emulation is called software implemen-
tation. High-end GPUs with computing unified device architecture (CUDA) belong
to such type of hardware so many parallel algorithms are implemented on them.
This thesis concentrate on hardware implementation of two bio-inspired computing
models: reaction systems and numerical P systems. Variants of these two models
were implemented on the reconfigurable hardware—field programmable gate ar-
ray (FPGA). The prominent strength of hardware implementation comparing with
software implementation is its high performance rooted in the tailored parallel hard-
ware architectures.

viii

Reaction systems is a theoretical framework for investigating biochemical reac-
tions and their interactions in biological cells. It is a qualitative parallel computing
model for reactions and their interactions taking place concurrently. There are in-
vestigations on CPU software simulation and GPU software implementation of re-
action systems. For the simulation of large-scale reaction systems, the processing
speed of these two methods is not adequate. Hence, it is worthwhile to investigate
their implementation using hardware circuits. To conceive the FPGA implementa-
tion method of reaction systems, the relationship between reaction systems and syn-
chronous circuits is studied at first. It is found that the dynamics of a reaction system
corresponds to the dynamics of a Mealy or Moore automaton of some synchronous
circuit, and the qualitative characteristics of reaction system can be expressed by the
value of binary variables. Based on these observations, an FPGA implementation
method for reaction systems is devised. According to this method, the reaction sys-
tem of intermediate filaments self-assembly and heat shock response reaction sys-
tem are implemented on FPGA, which verify the correctness of this method. The
calculation speed is up to 2 × 108 step per second (the frequency is 200 MHz). A
binary counter constructed with a reaction system is implemented on FPGA as well,
exhibiting the expressibility of reaction systems that can be used to build a quantita-
tive model.

Membrane computing is a parallel quantitative computing paradigm inspired by
the membrane structure of biological cells and biochemical reactions inside. Mem-
brane computing models are called P systems. Due to the limited parallel processing
capability of CPU, software simulation of P systems cannot leverage their maximal
parallelism. Like reaction systems, implementing P systems on parallel hardware
circuits is more reasonable. When hardware resources are sufficient, theoretical par-
allelisms can be fully exploited. In this thesis, FPGA implementations of the cell-
like symbol object P systems are summarized, and existing FPGA implementation
methods are expounded at length. The qualitative and quantitative comparisons of
various methods are formulated. Object distribution problem (ODP, choosing which
rules to apply) is the core problem of hardware implementation of symbol object P
systems. Because of the maximal parallelism and non-determinism of this class of P
system, ODP is NP hard. In order to calculate the solutions (available rule sets) of
ODP, a method based on multi-criteria optimization and integer linear programming
is proposed.

This thesis also considers on a special type of cell-like P system, called numeri-
cal P system (NPS), focusing on its FPGA implementation and applications in robot
control and path planning. The relationship between NPS and system of difference
equations is studied, and it is found that NPS is another form of the latter. Consider-
ing that a difference equation and a differential equation can be transformed to each
other, NPS can model systems modeled by differential equations. Enzymatic nu-
merical P system (ENPS) is a variant of NPS having better modeling capacity for the
function of enzyme-like variables. However, the rule usability predicate form is not
uniform, and there is only one discriminant, which limits its application scope. In
order to expand the application field of (E)NPS and facilitate FPGA implementation,
they are extended to generalized numerical P system (GNPS). The rule applicability
discriminants of GNPS are generalized to Presburger arithmetic.

The FPGA implementation method of GNPS’s rules, called FPGA step-wise paral-
lel implementation of program (FSPIP) implementation method, is proposed. Accord-
ing to this method, the robot membrane controller based on NPS, ENPS and GNPS
are implemented. Since GNPS is a superset of (E)NPS, the FSPIP approach also
compatible to (E)NPS. Compared with software simulation, the acceleration ratio

ix

obtained by the three NPSs implemented on FPGA is the order of 104. Considering
the data input and output in practical applications, an UART serial communication
module was designed for the NPS membrane controller to receive data from the
robot sensors and to transmit the computation results to actuators. A object mul-
tiset rewriting rule of symbol object P system can be disassembled as a set of NPS
programs. Programs updating multiplicity of the same object can be combined to-
gether. The function of combined programs are equivalent to rewriting rules in the
same membrane.

The maximal parallelism of GNPS is suitable to accelerate computationally in-
tensive algorithms. The rapidly-exploring random tree (RRT) algorithm is modeled
in the framework of GNPS, obtaining a RRT-GNPS model in which all parallel oper-
ations are calculated simultaneously, while sequential procedures are processed se-
rially. The RRT-GNPS model is implemented on FPGA in line with the GNPS FPGA
implementation method. In consideration of future applications in large-scale maps,
variables in RRT-GNPS are expressed in IEEE 754 single-precision floating point for-
mat, which is different from fixed-point number representation used in the imple-
mentation of membrane controllers. Floating-point adder, multiplier and reverse
square root units are designed. A sequential triggering method based on edge de-
tection is designed to trigger operations according to the applicability of rules and
the order of arithmetic operation priority. Compared with software simulation, the
FPGA hardened RRT-GNPS achieves a speedup of 3.20195× 104.

xi

Résumé

Le non-déterminisme et le parallélisme à grande échelle sont deux propriétés im-
portantes des systèmes biologiques et écologiques. Il est donc naturel qu’elles soient
héritées par les modèles de calculs bio-inspirés, c.-à-d. dont le fonctionnement est in-
spiré par des processus biologiques. Pour utiliser ces modèles en pratique, ou juste
pour mieux comprendre leur comportement, il est important de pouvoir simuler
leur fonctionnement. L’approche standard pour le faire consiste dans la réalisation
des simulateurs logiciels, exécutées sur des ordinateurs conventionnels. Cependant,
l’architecture de ces derniers n’est pas de tout compatible avec les propriétés es-
sentielles des systèmes visés, plus particulièrement avec le parallélisme à grande
échelle. Même si le résultat final est correct, l’exécution des modèles ne corresponde
pas à leur inspiration biologique et leur définition mathématique, la plupart des
opérations parallèles étant effectuées en séquence. On parle alors de simulation, qui
traite le modèle considéré comme une boite noire en fournissant une entrée et en pro-
duisant la bonne sortie après un certain temps. Cette simulation peut être séquen-
tielle (sur un processeur), ou parallèle (sur un processeur multicœur ou une carte
graphique ayant plusieurs processeurs spécialisés). En revanche, l’implémentation
(ou la simulation forte), demande additionnellement que le comportement du mod-
èle original soit respecté lors de l’exécution.

Pour obtenir une implémentation d’un modèle de calcul bio-inspiré il est pos-
sible d’utiliser des composants biologiques, directement liés au phénomène dont le
modèles est inspiré. Cette approche, réalisable dans certains cas, est bornée par les
limites actuelles de la biotechnologie. Une autre possibilité repose sur le parallélisme
inhérent des circuits logiques. Il est possible de construire une plateforme matérielle
in silico dont les circuits vont correspondre aux composants du modèle tout en
gardant le fonctionnement parallèle à grande échelle. Pour faciliter le développe-
ment on utilise généralement des circuits logiques matériels reconfigurables, appelés
FPGA, qui permettent un prototypage rapide des circuits matériels.

Cette thèse s’articule autour de l’implémentation matérielle de deux modèles de
calcul bio-inspirés : systèmes à réaction (RS) et des systèmes à membranes numériques
(NPS). Nous avons implémenté différentes versions de ces modèles sur FPGA et
nous avons comparé les résultats obtenus avec les simulations logicielles et matérielles
(en utilisant les GPUs) existantes. Afin d’avoir des exemples non-triviaux, nous
avons également proposé la traduction des différents problémes liées au contrôle
du mouvement robotique dans le formalisme NPS.

Les systèmes à réaction sont une formalisation théorique des réactions biochim-
iques. C’est un modèle de calcul qualitatif et parallèle qui se concentre sur les re-
lations causales entre les entités en ignorant les quantités (ou les concentrations).
La dynamique du modèle repose sur la promotion et l’inhibition d’un réactant par
des autres. Le principe de non-permanence assure la présence des réactants dans le
système uniquement s’ils viennent d’être produits ou introduits. Il existe plusieurs
logiciels de simulation des systèmes à réaction, ainsi que des simulations matérielles
à l’aide des GPU. Cependant, aucune implémentation matérielle n’a pas été reporté
dans la littérature. Pour des circuits de petite taille cela ne pose aucun problème

xii

particulier, car les temps de simulation logicielle sont suffisamment petits. Par con-
tre, le passage à l’échelle et l’utilisation des modèles de grande taille nécessite une
approche différente.

Dans cette thèse on s’est intéressé à l’implémentation matérielle des systèmes à
réaction à l’aide des FPGA. Premièrement, on a étudié le lien entre les systèmes à
réaction et les circuits de commutation synchrones (qui sont un sous-ensemble des
circuits Booléens), ainsi que les modèles connexes des automates de Mealy et Moore
(qui sont des automates finis avec des entrées/sorties). Nous avons trouvé que les
deux modèles sont très proches et nous avons donné des algorithmes de traduction
entre les systèmes à réaction et les circuits de commutation synchrones qui préser-
vent la même dynamique pas à pas. Cela a permis par le passage de trouver une
forme normale pour les systèmes à réaction ayant des propriétés intéressantes et de
proposer de nouvelles possibilités de conception de ces derniers à l’aide des outils
bien connus comme des automates de Mealy.

Les circuits de commutation peuvent être traduits naturellement vers FPGA.
Cela permet donc de traduire un système à réaction vers un circuit FPGA tout en
gardant son comportement dynamique pas à pas, en obtenant donc une implémen-
tation. Pour tester notre approche nous avons implémenté des systèmes à réaction
proposés pour la modélisation de la croissance des filaments intermédiaires et de la
réponse au choc thermique dans les bactéries. Ensuite, nous avons développé un
compilateur qui permet d’automatiser la traduction en appliquant les algorithmes
proposés. Cela nous a permis d’effectuer des mesures de performance de notre ap-
proche sur des systèmes de grande taille: nous avons effectué l’implémentation du
modèle du transduction du signal du récepteur ErbB dans les cellules épithéliales
humaines qui comprend 620 réactions et 246 entités. Cette implémentation a permis
d’atteindre la vitesse de calcul de 108 étapes/seconde et d’avoir une accélération de
l’ordre 2.5× 105 par rapport aux meilleurs simulateurs GPU existants.

Les autres modèles de calcul considérés dans ce mémoire relèvent du domaine
du calcul à membranes qui est un paradigme de calcul parallèle et quantitatif in-
spiré par la structure et le fonctionnement des cellules vivantes. Le fonctionnement
du modèle sous-entend un parallélisme massif, sa simulation sur des ordinateurs
conventionnels ou même GPU ne permet pas de tirer profit de cette propriété. En
revanche, une implémentation à l’aide des FPGA permet d’obtenir un fonction-
nement plus proche de la sémantique du modèle et d’avoir par conséquent un gain
de vitesse.

Dans ce mémoire de thèse nous donnons un aperçu des méthodes d’implémentation
existantes des différentes variantes des systèmes à membranes à l’aide des FPGA.
Afin de pouvoir comparer les approches, nous avons représenté le problème calcu-
latoire principal de ces implémentations (le calcul des règles applicables pour une
configuration donnée) sous forme d’un problème d’optimisation multicritères. Nous
avons montré que les différentes solutions existantes correspondent à des scalarisa-
tions particulières du problème d’optimisation.

La suite du mémoire se concentre sur une variante particulière des systèmes à
membranes, appelée systèmes à membranes numériques (NPS). C’est un modèle qui
comprend plusieurs compartiments chacun possédant des variables numériques.
Les règles du modèle sont des fonctions qui calculent une valeur numérique à par-
tir des variables présentes dans un compartiment, ainsi que dans les compartiments
voisins et puis la distribuent vers d’autres variables en utilisant des pondérations.
Le modèle NPS et son extension ENPS, ou l’applicabilité des règles est contrôlée par
une valeur seuil, ont des applications importantes dans le contrôle robotique et la
planification du chemin.

xiii

Nous avons montré des liens inattendus entre les NPS et les systèmes d’équations
en différences finies en montrant comment transformer les modèles l’un dans l’autre
sans perdre la dynamique. Plus précisément, la relation entre les NPS et les systèmes
d’équations des différences finies est de même nature que celle entre les systèmes à
réaction et les circuits de commutation. De plus, les systèmes à réaction peuvent
être vues comme des versions simplifiées de NPS ou les variables ont des valeurs
booléennes (à la place des valeurs numériques). Cela nous a conduit naturellement
vers une nouvelle notion d’automates de Mealy opérant sur des vecteurs de nom-
bres en entrée/sortie.

Nous avons également proposé une nouvelle extension du modèle (E)NPS, ap-
pelée GNPS, qui a pour but l’optimisation du codage des problèmes de contrôle
robotique et qui en même temps admet une implémentation efficace à l’aide des
FPGA. En effet, dans GNPS l’application des règles est contrôlée par des prédicats
arithmétiques écrits en arithmétique de Presburger (avec une signature optionnelle).
Cela permet à la fois de faciliter l’écriture des contrôleurs et d’avoir une implémen-
tation directe sur FPGA. En se fondant sur les résultats théoriques ci-dessus, nous
avons conçu une méthode d’implémentation des GNPS à l’aide des FPGA. Cette im-
plémentation peut être faite avec deux représentations différentes des nombres: en
point fixe et en format IEEE 754. Dans le premier cas des accélérations importantes
ont été obtenues, car les opérations d’addition, soustraction, multiplication par con-
stante et test sont facilement représentables en FPGA. Nous avons développé un
contrôleur robotique à l’aide de GNPS et nous l’avons implémenté sur FPGA en
utilisant la méthode proposée. En comparant avec une simulation sur GPU, notre
implémentation a une accélération de l’ordre 104. Nous avons également rajouté
un module de communication UART pour récupérer les données des capteurs et de
contrôler le mouvement des roues en temps réel.

Comme le modèle GNPS est par définition parallèle et comme son implémen-
tation en FPGA préserve cette propriété, il devient intéressant de l’utiliser pour la
résolution des algorithmes demandant beaucoup de calculs. Nous avons modélisé
l’algorithme RRT pour la planification du mouvement. Cela a demandé également
de concevoir des modules de calcul des diverses fonctions arithmétiques utilisant
des nombres encodés au format IEEE 754. D’après les tests, l’accélération obtenue
est de l’ordre 104.

Organisation du mémoire :
Chapitre 1 contient l’introduction, ainsi que la description des notions princi-

pales utilisés dans la thèse.
Chapitre 2 donne les définitions des modèles considérés (systèmes à réaction,

systèmes à membranes et systèmes à membranes numériques). Ce chapitre présente
également comment on peut représenter une étape de calcul à l’aide d’un problème
d’optimisation multicritères.

Chapitre 3 contient une introduction aux GPU et CUDA et présente un aperçu
des implémentations matérielles existantes dans le domaine.

Chapitre 4 étudie les liens entre les systèmes à réaction et les circuits de commu-
tation et présente l’implémentation des systèmes à réaction sur FPGA.

Chapitre 5 analyse les liens entre NPS et les systèmes d’équations des différences
finies. Le modèle GNPS y est également introduit.

Chapitre 6 présente l’implémentation de 3 contrôleurs de mouvement robotique
en utilisant GNPS et les méthodes développées.

Chapitre 7 présente une implémentation de l’algorithme RRT de planification du
mouvement d’un robot. L’encodage des valeurs numériques utilise le standard IEEE

xiv

754. Plusieurs modules FPGA ont été crées pour gérer les opérations non-linéaires,
comme par exemple la racine carrée.

Chapitre 8 présente les conclusions.

xv

Acknowledgements

First and foremost, I would like to express my special thanks to my two supervisors:
professor Zhang Gexiang and Sergey Verlan. The research subject of my doctoral
phase is a new field for me. Professor Zhang chose the research direction for me
based on my academic experiences. Due to the insufficient accumulation of rele-
vant knowledge, I encountered many problems and difficulties in the early stage of
my research. Professor Zhang answered questions and solved problems I raised. To
provide more chances for me to learn cutting-edge knowledge, Professor Zhang con-
tacted several high-level international scholars to give guidance to me. He helped
me to get the chance to be a joint supervising PhD student. Professor Zhang pro-
vided very good hardware equipment which I need in my research, which ensured
that the project progress went with a swing. In the monthly academic summary
meeting, Professor Zhang suggested many forward-looking opinions and construc-
tive guidance for my research and guided me to overcome difficulties. Professor
Zhang’s rigorous scientific research attitude deeply influenced me, which made me
adapt to the high-intensity scientific research work gradually. Professor Zhang also
gave me considerate care in my ordinary life. Because of my dietary custom, Profes-
sor Zhang always prepare extra dishes for me at every dinner party, so that I could
eat well. With his words and deeds, Professor Zhang taught me how to conduct
scientific research and how to face the difficulties in life and work positively. Under
the guidance of Professor Zhang, I am able to set sail in my academic career.

Sincere gratitude from the bottom of my heart is also given to my supervisor
Sergey Verlan for all things you have done to me. I would never forget that it is
you who helped me involving in the joint supervision project, enrolling in Univer-
sité Paris-Est and gaining scholarship so that I can study in Créteil nearly one year.
Bio-inspired computing and FPGA development were totally new to me and I was
completely at a loss what to do at beginning. From studying reaction system and its
Verilog design, you guide me in the scene. Almost every week in Créteil you resolve
problems raised by me, giving the detailed derivations so that I can understand en-
tirely. You help me renting a studio, opening a bank account and starting living in
France. To pick me up in the Charles de Gaulle airport at 6:30 am, you get up very
early. You have no idea how moved I was to see you in the airport lobby. Under
your guidance, I learn how to do research and how to write academic papers. I am
deeply grateful to you for these things. I am quite lucky to meet you and it is my
honor to be your student.

It behaves me to express my special thanks to Professor Gheorghe Păun. In
the autumn of Wuhan, 2016, it was my first time to meet a member of European
Academy of Science coming from Romania. I was excited and nervous to shake
hands with you. After 5 days of listening your lectures about formal languages and
P systems, I got some fundamental concepts in the membrane computing field. I
bought a Chinese version of your monograph Membrane Computing: An Introduction.
I would like your autograph but I dare not to walk to you. At last I got the strength
to walk to the podium, saying what I want. You agreed nicely and wrote on the fly-
leaf ”Happy computing–Gheorghe Păun“. Your words encourage me to get through

xvi

adversities in front of me. The book with your hand-writing is a treasure for me.
To Ignacio, you are such a kindhearted man. I would never forget the hotpot

you treat me in Seville. It is you who take me to visit the magnificent Royal Alcázar,
and to look around the lovely city. You picked me up in the airport when I came to
Seville to attend the brainstorming week of Membrane Computing and drove me to
the airport again in the early morning. You explained me how the RRT algorithm
works so that I can implemented it on FPGA. Thank you so much for your kindness
and consideration for me.

To Junior, you are a gentleman with heartiness. You introduce me to Xiangxiang,
who is a caring girl helping me a lot to make a living in Créteil. You help to get
the gym card of our university so I have a place to do physical exercise so to keep
healthy. To Xiangxiang, although we never ever meet, you were the only Chinese
people I can talk to at the first time I came to France. You warned me to stay alert
in subway and told where to find a room close to our university with good price.
Thank your goodness and wish happiness for you and your family. To Steve, you do
a great favor for me to get my long term pass card in the prefecture hall. I remember
that it was a cold winter morning you came to help me for my french is too poor to
handle this. In fact during that time you did not know me well, but you still got up
and braved the cold to support me. Your kindness touches my heart all the time.
I thank Paul for his heart-warming smile every time entering our working room. I
enjoy the conversations about my home town and academic discussions with you.
Thank your help to deal with my inscription. To Tau, a enthusiastic and generous
man. Your jasmine tee and other scented tee are always on time in the morning
which fresh my mind, reminding me the ancient tradition of east Asia. To Alex, a
cordial man. I enjoy the academic discussions with you. Thank you, Paul and Tau to
hold the farewell party by the lake of Créteil for me. You guys bought cakes, snacks
and beers. We talked a lot over beer. It is a good memory for me.

To Wenya, your culinary skill is very good. I miss chives pancakes and steam
breads you made. They are so delicious. I am appreciative to be a house mate of
you. Wish you all the best. To Mengmeng, thank your benevolence and patience
to listen to my grievances about life. The Pixian broad bean paste you bought from
Chinese supermarket for me saved my life. I am grateful to know you. Wish you a
bright future.

I am grateful to Université Paris-Est for providing a good laptop computer to me.
It is quite helpful to do FPGA developments because post implementation timing
simulation requires very good CPU performance and large RAM.

I express my appreciation to my wife, Yongli, for her support, dedication and
love. During my worst time you give me warm family, a cute baby. You bring up
our child while I work in Chengdu far away from you. I owe you a lot. Many thanks
to my sister in law, Yongmei, for your support and consideration.

Last but not certainly not least, thank my grand parents and my parents who
raised and cultivated me. My grandmother was the one who love me most in the
world. I grew up with her endless love which helps me struggling through the
hardest time. My mother scratch a living to devote the energies of her lifetime to my
education. My younger brother experienced all the difficulties and happiness with
me. Because the love and support from all of you, I gain enough courage to fight
against fate.

xvii

Contents

Declaration of Authorship iii

Abstract vii

Résumé xi

Acknowledgements xv

Contents xvii

List of Figures xxi

List of Tables xxvii

1 Introduction 1
1.1 Biological cell: foundation of life . 1
1.2 Biological system modelling . 2
1.3 Reaction systems . 3
1.4 Membrane computing . 4
1.5 FPGA based reconfigurable computing 5
1.6 Thesis statement . 6

1.6.1 Main research contents . 6
1.6.2 Contributions . 8

1.7 Thesis organization . 10

2 Definitions 13
2.1 Reaction systems . 13
2.2 P systems . 14

2.2.1 Symbol object cell-like P system 14
2.2.2 Network of cells . 17

2.3 Reduction the computation of P systems to multi-criteria optimization 20
2.3.1 Preliminaries . 20
2.3.2 Rule choice as integer multi-criteria linear optimization problem 21
2.3.3 Tentative solutions . 22

2.4 Wrap-up . 26

3 Overview of hardware implementation of reaction systems and P systems 27
3.1 GPU presentation . 28
3.2 FPGA presentation . 30

3.2.1 FPGA architecture . 30
3.2.2 FPGA development flow . 34

3.3 Software simulation and implementation of reaction systems: an overview 36
3.3.1 CPU simulation of reaction systems 36
3.3.2 GPU implementation of reaction systems 37

xviii

3.4 Background of hardware implementations of P systems 38
3.5 General ideas about hardware implementations of P systems 39

3.5.1 Data organization . 40
3.5.2 Object Distribution Problem and Non-Determinism 40

3.6 Literature review of existing P system FPGA implementations 42
3.6.1 Region-based implementation 42

Petreska and Teuscher implementation 42
Nguyen simulation . 44

3.6.2 Rule-based implementations . 45
Nguyen implementation . 46
Verlan and Quiros implementation 48

3.7 Micro-controller based implementation of P systems 50
3.8 Wrap-up . 53

4 FPGA implementation of reaction systems 55
4.1 Relations between reaction systems and synchronous circuits 55

4.1.1 From reaction systems to switching circuits 57
4.1.2 From switching circuits to reaction systems 59
4.1.3 General ideas for FPGA implementation of reaction systems . . 61

4.2 FPGA implementation of self-assembly intermediate filaments reac-
tion systems . 62

4.3 FPGA implementation of heat shock response reaction systems 67
4.4 FPGA implementation of reaction system binary counter 69

4.4.1 Reaction system binary counter design 69
4.4.2 UART-RS counter design and implementation 72

4.5 Wrap-up . 75

5 Theoretical investigations of numerical P systems 79
5.1 Numerical P system and enzymatic numerical P system 80
5.2 The relationship between (E)NPS and system of difference equations . 82

5.2.1 From (E)NPS to system of difference equations 82
5.2.2 From system of difference equations to (E)NPS 83

5.3 Binary and unary normal form of (E)NPS 84
5.4 The relations between symbol-object P system and NPS 86
5.5 Generalized Numerical P Systems . 88
5.6 FPGA implementation of GNPS . 91
5.7 Case studies . 94

5.7.1 Case study 1 . 94
5.7.2 Case study 2 . 96

5.8 Wrap-up . 100

6 FPGA implementation of robot membrane controller 101
6.1 FPGA implementation of membrane controller based on NPS 102
6.2 FPGA implementation of membrane controller based on ENPS 110
6.3 FPGA implementation of membrane controller based on GNPS 112
6.4 UART communication of NPS . 116
6.5 Wrap-up . 119

xix

7 FPGA Architecture for Generalized Numerical P System modeled Rapidly-
exploring Random Tree Algorithm 121
7.1 Rapidly-exploring random tree algorithm 121
7.2 Floating point arithmetic units design 125

7.2.1 Basics of IEEE 754 single precision floating point standard . . . 125
7.2.2 Sequential triggered IEEE 754 compliant adder 128
7.2.3 Sequential triggered IEEE 754 compliant multiplier and FP com-

parator . 129
7.2.4 Inverse square root unit . 131
7.2.5 Floating point random number 132

7.3 GNPS arranged RRT register transfer level model design 132
7.4 FPGA implementation of RRT-GNPS . 135
7.5 Wrap-up . 137

8 Conclusions 141

A Associated figures of reaction systems 145

B Associated figures of GNPS 149

Bibliography 155

Publications by the author 179

xxi

List of Figures

1.1 Biological system or process modelling and biological computing. The
comprehensive investigation of biological systems or processes is en-
lightening for theoretical computer scientists as well, resulting in bio-
logical computing a cross-discipline filed. 3

1.2 Realms involved in the investigations of this thesis. Reaction systems
and P systems are tightly relevant while several models of them will
be implemented on FPGAs as reconfigurable computing instances. . . 7

1.3 Relations of main research topics. 9

2.1 An example of a P system with two membranes. Membrane 1 con-
tains a object multiset a5b8c6 and four rules. Membrane 2 encom-
passes a object multiset b8c11e9 and three rules. 15

2.2 A P system at its initial configuration. The subscript in3 of obmr in rule
r11 means obmr will be sent to membrane 3, so do rule r14, r33. While
subscript out of obmr in rule r21 signifies its obmr will be sent out to
environment. This is a static P system that there is no evolution rule
which can dissolving or creating membranes. 17

2.3 All the feasible rule multisets of each membrane. The selected appli-
cable rule multisets are highlighted in red. 18

2.4 Rules in red are those constituting the applied rule multiset. The expo-
nents above rules denote thier instances in the rules multiset. Resid-
uary object multisets after the application of rule multisets are shown
in blue. 18

2.5 Feasible and Pareto-optimal solutions from Example 2.13. 21

3.1 (left) CUDA execution model, (right) CUDA memory model [110]. . . 29
3.2 A SM is composed of an array of SPs, shared memory and a couple of

caches. A Multiple-Thread tissue module contains a SM instruction
scheduler which conducts instruction flows [112]. 29

3.3 A 6T CMOS SRAM cell [115]. 30
3.4 A slice containing 2 logic cells. These 2 logical cells perform y1 =

a ∧ (b̄ ∨ c) and y2 = a ∨ b̄ ∨ c̄ respectively. 32
3.5 The interconnection of 5 slices. Connection blocks (CBs) and switch-

ing blocks (SBs) impart highly flexibility for FPGAs to reconfigure
their architectures to perform various functions. The CB and SB can
contain much more intersection points than that depicted in this figure. 33

3.6 Vivado FPGA development flow. 36

4.1 The Mealy automaton for the circuit described by Equation (4.2). The la-
bel of the state corresponds to the value of the vector (q1, q2). The label
of the transition corresponds to the value of the input variable x and
output y. 57

xxii

4.2 The Moore automaton for the circuit described by Equation (4.2). The la-
bel of the state corresponds to the value of the vector (q1, q2)/y. The la-
bel of the transition corresponds to the value of the input variable x. . 58

4.3 Moore machine for Example 4.6. The state label corresponds to the
values of the vector (F, H, O) and the transitions are labeled by the
value of T. The output is the label of the state. 59

4.4 Mealy machine for the 1101 sequence detector. It outputs 1 when the
corresponding sequence is encountered as input. The state label cor-
responds to the vector (q2, q1). 60

4.5 Waveform comparison of interactive process ofRi f l1 = (B1, A1). 64
4.6 Waveform comparison of interactive process ofRi f l2 = (B2, A2). 65
4.7 Physical constraints settings of two intermediate filaments reaction

systems. Gray circles with wide orange bars are pins allocated to RTL
model ports. 66

4.8 Post implementation timing simulation ofRi f l1. 67
4.9 Hardware debug of two intermediate filaments RSs. 68
4.10 Hardware resources dissipation and power consumption ofRi f l1. . . . 68
4.11 Waveform comparison of interactive process 1 ofRhsr = (B3, A3). . . . 70
4.12 Hardware debug of two heat shock response RSs. 71
4.13 UART data frame with 8 bits data, 1 bit EOF. Parity bit is optional. . . . 73
4.14 Rising edge detection. The edge detection method can generate a high

level signal lasting for 1 clock cycle after the red rising edge. It is used
in combination with the clock rising edge highlighted in blue as the
trigger signal for other operations. 74

4.15 State transition diagram of UART receiver R1. 74
4.16 State transition diagram of UART transmitter T1. 75
4.17 RTL model block diagram of UART-RS counter. Cs1 to Cs4 are clock

synthesis module producing desired clock frequencies. 76
4.18 Behavioral simulation of UART-RS counter RTL model. 77
4.19 Communication experiment between host computer and FPGA hard-

ened UART-RS counter. The last E1 is an end mark signifying the
completeness of counting. 77

5.1 Target numerical P system. The nested (membrane) structure is rep-
resented by a Venn diagram; the variables and the rules are placed in
corresponding locations; the initial value of variables follow them in
square brackets. 82

5.2 Target enzymatic numerical P system. 83
5.3 The numerical P system generating Fibonacci sequence. 84
5.4 The projectile motion. The red solid line is the piecewise-linear ap-

proximation of the non-linear trajectory. 85
5.5 The NPS corresponding to the system of difference equations given in

Equation 5.6. 85
5.6 The symbol object P system described in NPS form. A rewriting rule is

translated in a set of programs in which programs involving subtrac-
tion denote obml and programs involving addition signify obmr. Pro-
grams in parentheses are executed in membranes indicated by their
subscripts, not in membranes containing them. 87

5.7 The effect of rules is equivalent to the set of programs in each mem-
brane, where ki−j denotes instance of rule ri−j. Once ki−j have com-
puted, these programs are used to update multiplicity of objects. . . . 88

xxiii

5.8 Linear approximation of f (x) = x2 by g(x) = |x|. 90
5.9 The predator-prey GNPS. A predicates and its associated rule are placed

in two rows in a brace to show them more explicitly. 90
5.10 Main procedures of FSPIP method. 92
5.11 GNPS system from Example 5.7. The predicate for each program is

taken to a separate line before it. Variables in red and blue indicate
input and output variables respectively. Others are intermediate vari-
ables. 93

5.12 GNPS model for case study 1. It implements the core computations of
Sobel image edge detection algorithm. The predicate Pi and program
Pri are written in two lines to render them better. GNPS1 has a skin
membrane containing 4 programs and 19 real-value variables. Input
variables are highlighted in red. Output variables are highlighted in
blue. 94

5.13 Post implementation timing simulation of GNPS1. Port b1, b3 and
b4 obtain their steady output value after the eleventh rising edge of
clock, indicating it costs 110 ns to get results. For b2, its steady output
value emerges after sixteenth rising edge, costing 160 ns to compute
outcome. 96

5.14 Software simulation of GNPS1. It is assumed that GNPS1 evolves one
step to stop. There is no one-to-one correspondence between a clock
cycle and a GNPS step. For complex arithmetic computations, one
step of GNPS requires more than one clock cycle. 96

5.15 Hardware debug of GNPS1. Input variables cannot be debugged so
there is no clock signal. Values are represented in hexadecimal, 01f66
is 8038 in decimal. 8038÷ 211 = 3.9248046875, which is the value of
b4. 005eb is 1515 in decimal, 1515÷ 211 = 0.73974609375, which is the
value of b3. 97

5.16 GNPS model for case study 2 is numbered as GNPS2. The equations
inside are the core computations of Sobel image edge detection al-
gorithm. GNPS2 has 5 membranes and evolves 4 steps to reach halt
condition. Programs in each membrane compute concurrently while
each membrane execute serially. 98

5.17 Post implementation timing simulation of GNPS2. The real timing of
b2 and b3 is a little different than expected. 98

5.18 Software simulation of GNPS2. It is assumed that GNPS2 evolves four
steps to stop. CPU of the host computer costs 0.009306 s to get results. 99

5.19 Hardware debug of GNPS2. Values are represented in hexadecimal,
070cd is 28877 in decimal. 28877 ÷ 211 = 14.10009765625, which is
the value of b1. 17c5 is 6085 in decimal, 6085÷ 211 = 2.97119140625,
which is the value of b2. 99

6.1 This is a plan view of Pioneer 3 DX robot which is covered by a hinged
deck on the top. The 16 rectangles in light blue are the sonar sensors
surrounding the robot, just beneath the hinged deck. Sensors are ar-
ranged in two arrays in the front and in the rear. The layout of sensors
in two arrays is identical. 103

6.2 The NPS controller performing control law of Formula 6.1, which will
be implemented in FPGA. This numerical P system is called NPS1
below. 104

xxiv

6.3 Expected timing waveform of NPS1 RTL model. Red lines indicate
value transfers from weightRighti to weightLe f ti and from rw to lw.
Blue lines signifies parallel computing of programs in associated mem-
branes. 106

6.4 RTL model of NPS1 consists of 7 modules, although NPS1 has 69
membranes. There is a one-to-one correspondence between mem-
branes and programs inside. This correspondence transforms the im-
plementation of a membrane to implementation a set of programs
inside. Programs can be synchronized in one module with parallel
constructs of Verilog. This is the reason why the number of modules
can be reduced substantially. A state port is added to NPS1 so that it
possesses idle and busy state. 108

6.5 Waveform of behavioral simulation of NPS1. The values of weightLe f ti
alternate as expected when counter loops its value. Sensors’ readings
si take the value in the last row of Table 6.1 which are abridged from
waveform for the sake of taking a screenshot including computing
results rw-out and lw-out. 109

6.6 Results of PeP simulation of NPS1. It costs 0.011703 seconds to obtain
results. 109

6.7 Post implementation timing simulation of NPS1. 110
6.8 Hardware debug of NPS1. Numbers are represented in hexadecimal. . 110
6.9 Enzymatic numerical P system ENPS1. The value of enzyme e is larger

than that of f in membrane 1, so these two programs can take place.
Enzymes ei have greater values than weight values so the 16 programs
in membrane 2 can execute in parallel. 111

6.10 Waveform of behavioral simulation of ENPS1. Left and right wheel
speed variables gain their expected values after the first rising edge. . 111

6.11 PeP simulation results of ENPS1. It costs 0.002993 seconds to obtain
results. 111

6.12 Post implementation timing simulation waveform of ENPS1. 112 ns
is regarded as the elapsed time to get results. 112

6.13 Hardware debug of ENPS1. 112
6.14 Obstacle avoidance kinetics analysis of Pioneer 3 DX robot. 113
6.15 GNPS3 which carrys out control law 2. 114
6.16 Post implementation timing simulation of GNPS3. The implemented

clock period is 45 ns whose half period cannot defined so 44 ns and
46 ns are set as periods. So the elapsed time is the mean time which is
260.657 ns. 115

6.17 PeP simulation of GNPS3. It costs 0.020997 s to output results. 115
6.18 Hardware debug of GNPS3. Numbers are represented in hexadecimal. 115
6.19 RTL model of UART-NPS1. 117
6.20 Numbers are in hexadecimal for real numbers are represented in fixed

point binary numbers. These data repeats 00 00 00, 26 D6 40 and 24 29
C0. Two digits of hexadecimal correspond to 8 bits in binary so three
dual hexadecimal pairs comprise a 24-bit binary number. These three
repeated data strings are 0, 310.6953125 and 289.3046875 in decimal,
which are the desired three outcomes of rw of NPS1. 118

xxv

6.21 When input counter counts from 0 to 47, sensor readings are received
into NPS1. Computing signal cmp-state converts from 0 to 1 to trigger
computing. When left wheel speed are outputted, transmitting signal
tr-state shifts from 0 to 1 to trigger transmitting. At the time when
transmitting counter signal tr-clken-cnt has value of 5, tr-state switches
its value to terminate transmitting. 118

7.1 Graphical representation of the target RRT. Black points indicates ob-
stacle points and the red point denotes robot initial point. Blue points
are random points and green points are generated RRT points. 125

7.2 The RRT-GNPS designed to execute RRT algorithm which generates
two RRT points in eight obstacle points. It consists of 34 membranes
including the skin membrane. 126

7.3 PeP simulation of RRT-GNPS which perform 34 steps and costs 0.097948
s to get results. The results of PeP save 2 significant digits. 127

7.4 The dynamic range is represented using radix 2 as well as radix 10.
Zero is denoted by 1.0× 20, −∞ by −1.0× 2128 and +∞ by 1.0× 2128. . 127

7.5 Procedure diagram of the adder. This is a composite unit which can
perform addition and subtraction. 130

7.6 Procedure diagram of the multiplier. 130
7.7 RTL model of the RRT-GNPS generating the first RRT point. 134
7.8 The whole process of RRT-GNPS RTL model characterized by UML

activity diagram. 136
7.9 The behavioral simulation waveform of RRT-GNPS RTL model. The

red waveforms are caused by the lack of initial values of variables.
This phenomenon can be eliminated by assigning initial values to reg
variables. 137

7.10 The physical constraints of RRT-GNPS shown in the package view of
FPGA. Pins with orange bars inside signify the occupied pins. The
light blue hexagon pins are clock pins while the gray round pins are
ordinary input/output pins. 138

7.11 The stable value of first RRT point (x2, y2) appears at 1428979 ps (1428.979
ns) while the second RRT point (x3, y3)arises at 1630027 ps (1630.027
ns). So it costs 1428.979 + 1630.027 = 3059.01 ns to get results. 138

7.12 Hardware debug of RRT-GNPS. Numbers are represented in hexadec-
imal. As can be validated, 411dc62f is the IEEE 754 format of decimal
number 9.86088466644287. This result coincides with post implemen-
tation timing simulation result given in Figure 7.11. 139

A.1 Post implementation timing simulation ofRi f l2. 145
A.2 Hardware resources dissipation and power consumption ofRi f l2. . . . 146
A.3 Physical constraints settings of two heat shock response reaction sys-

tems. Gray circles with wide orange bars are pins allocated to RTL
model ports. 146

A.4 Post implementation timing simulation ofRhsr1. 147
A.5 Hardware resources dissipation and power consumption ofRhsr1. . . . 147
A.6 Waveform comparison of interactive process 2 ofRhsr = (B3, A3). . . . 148

xxvi

B.1 Block diagram of GNPS1 RTL model. After the design of a model, the
corresponding schematic can be drawn automatically by Vivado. The
schematic characterizes the same functions/behaviors as RTL model
representing by HDL. 149

B.2 Total power consumption is the sum of device static power and dy-
namic power. Power consumption of the two cases are nearly the
same, although GNPS1 works in all parallel and GNPS2 works in se-
quential. 150

B.3 Block diagram of GNPS2 RTL model. Each membrane is modeled in
Verilog basic functional unit, module. The bug icons indicate variables
to be debugged in Hardware Debug procedure. 150

B.4 I/O planning of NPS1 RTL model. NPS1 has one 1-bit input port
clock and two 24-bit output ports rw and rw, so totally 49 pins are
distributed to these three ports. 151

B.5 Hardware resource dissipation and power consumption of hardened
NPS1. 151

B.6 I/O planning of ENPS1. 49 pins are used to represent I/O ports. . . . 151
B.7 Hardware resource dissipation and power consumption of hardened

ENPS1. 152
B.8 I/O planning of GNPS3. 152
B.9 Hardware resource dissipation and power consumption of hardened

GNPS3. 152
B.10 The resource utilization and power consumption of RRT-GNPS. 153
B.11 The Place & Route of RRT-GNPS. 153

xxvii

List of Tables

3.1 Truth table of y = (ā ∧ b) ∨ c̄. 31
3.2 The comparison of the time-oriented and space-oriented conflict res-

olution . 45
3.3 The differences of the conflict resolutions adopted in two design modes 47
3.4 The comparison of the rule-based and region-based design of Nguyen’s

implementation . 47
3.5 The quantitative attributes of FPGA implementation 51
3.6 The qualitative attributes of FPGA implementations 52

4.1 The truth table of Formula 4.2. 57
4.2 The truth table for Example 4.7. 61
4.3 Molecular reactions and their RS equivalents of self-assembly inter-

mediate filaments. 63
4.4 Interactive process of Ri f l1 = (B1, A1) (6 steps) with T as the sole

entity of each context for intermediate filaments RS. 63
4.5 RS reactions ofRi f l2 = (B2, A2). 63
4.6 Interactive process (11 steps) ofRi f l2 = (B2, A2). 66
4.7 Reactions of heat shock response RSRhsr = (B3, A3). 69
4.8 Interactive process 1 (5 steps) ofRhsr at 37◦C. 69
4.9 Interactive process 2 (5 steps) ofRhsr at 42◦C. 69
4.10 RS reactions ofRbc. 72

6.1 The calibrated values of weightLe f ti and weightRighti, along with a
set of sampled sensors reading data which will be utilized to verify
the correctness of RTL model of NPS1. 105

7.1 Exceptions and normalization of IEEE 754 single precision floating
point number. 127

7.2 Determine the sign of the add/subtract result. 129
7.3 Comparison of two FP numbers with same signs. 131

1

Chapter 1

Introduction

Natural computing investigates natural processes in terms of computation and arti-
ficial computations inspired by natural processes [1, 2]. The topic of this thesis con-
cerns hardware implementation of a qualitative model, reaction systems which con-
centrate on interactions of biochemical reaction processes taking place inside/out-
side biological cells and a quantitative computational model, numerical P systems
inspired by the structure and function of biological cells, together with their real-life
applications in different fields.

1.1 Biological cell: foundation of life

It is a fact that life is investigated without a definition which is acknowledged as
a consensus. One clear point is that something constituted of biological cells (or
one cell) is definitely a life. Creatures composed of cells are entitled as cellular lives
[3, 4], such as a unicellular bacterium, a multicellular homo sapiens writing this
thesis. Hundreds millions of years of submarine volcanism of primitive Earth pro-
vided continuous heat and special inorganic molecules in the primal ocean. These
inorganic molecules reacted with others near the hydrothermal vent of volcanoes,
producing some organic macromolecules, including proteins and nucleic acids. This
assumption is partially validated by Miller-Urey experiment [5, 6]. At some moment
some proteins and nucleic acids began to replicate themselves independently or col-
laboratively. These organic macromolecules are termed as molecular lives [7, 8] taking
into account that they will evolve to cellular lives [9], or they parasitize in cellular
lives. This is a hypothesis rather than a fact trying to understand the origin of life
which convinces me.

Molecules replicate themselves under the control of physic laws other than sub-
jective consciousness, although subjectivism is also the reflection of some physical/-
mathematical theories [10]. Subject to limited resources, not all molecular lives can
replicate and so exist for a long time, except they evolve some capabilities, struc-
tures or tools to win the replication war. It is assumed that all the creatures on
earth originate from a molecular life named last universal common ancestor (LUCA)
[11, 12, 13]. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) composed
of deoxynucleotides are extraordinary organic macromolecules which can capture
dissociative deoxynucleotides because of hydrogen bonds in their basic groups [14,
15]. This assembly process produces another single-strand D/RNA chain. But this
process can go wrong over time, causing mutations. Some mutant D/RNA macro-
molecules possess the ability to combine with amino acids to generate proteins.
Some proteins comprise the protective shell or the instrument which plunders re-
sources from other macromolecules. After a long time of evolution, an ultimate
instrument comes into being: a cell. Since then, molecular life evolves to cellular
life.

2 Chapter 1. Introduction

The membrane structure of a cell prevents other macromolecules entering to
pillage deoxynucleotides and proteins. Requisite proteins can be produced on ri-
bosomes in the cytoplasm. Endocytosis of membrane can also assimilate external
proteins. For eukaryotic cells, DNA are protected by nuclear envelope aside from
membrane. A cell is a powerful factory, a splendid device within which genes can
be replicated safely and steadily. With the putative arising of protocells 3.84 billion
years ago in hydrothermal vent precipitates, at which a time-line not long after the
estimated forming of the Earth and oceans 4.54 and 4.41 billion years ago [16], cel-
lular lives have had been existed and evolved until now. Nevertheless, it dose not
mean that molecular lives are too fragile and eliminated by cellular lives. In effect,
molecular lives are formidable and accompany with cellular lives for a quite long
time. A good example of molecular life is a nightmare for human beings–virus.

A virus which is inanimate outside a cell is a RNA or DNA covered by protein
capsid. Once it manages to enter a cell membrane, it suppresses gene expression
of its parasitifer, taking advantage of organelles to produce its own genetic material
and protein capsid, and assembling these stuff to produce new viruses [17]. These
molecular lives are tenacious, but the basis of their existence and reproduction is
cells, the same as cellular lives. By observing these special molecular lives, we may
draw a conclusion that the evolutionary direction of molecular life is not necessarily
the cellular life if there are other ways to replicate genetic materials. This conclu-
sion helps us to think about what a life means. Considering the only commonality
between a molecular life and a cellular life is reproduction, a matter which can re-
produce itself may be regarded as a life. Cellular lives constitute a rooted tree (the
root is LUCA), while viruses and other parasitical molecular lives comprise different
‘rootless’ parasitic vines twining on this tree.

1.2 Biological system modelling

Appreciating the function of an individual biochemical molecule is far from enough
to elucidate the mechanism of the biological system in which the molecule works
inside thoroughly. The primary reason is that molecules and their reactions are ar-
ranged in networks with various complexities [18]. As a result, the interactions of
chemical entities and reactions play a more important role in the establishment of
different functionalities and behaviors of a biological system. To gain a comprehen-
sive understanding of inherently complex biological or ecological systems, conceiv-
ing and formulating mathematical models on the basis of large amount of experi-
mental data is a practical approach.

Once a primitively mathematical model obtained, it can be simulated by pro-
grams in a computer (in silico simulation), which is typically a much more economi-
cal method to estimate biological systems than conducting biological experiments (in
vitro simulation). By analyzing the discrepancies in the results between in silico and
in vitro simulation, the mathematical model evolves gradually to a more refined one
reflecting the biological system more accurate. In principle, there are two classes of
biological systems/processes investigated: dynamic ones and quasi-stationary ones.
The former one which is the majority is modelled by ordinary differential equations [19,
20] generally. Biological mathematical models modelled by this way are referred to
as quantitative models because they concern about the concentrations of chemical
entities over time precisely. On the contrary, there exist mathematical models which
are not sensitive to the concrete concentrations of entities. In some special models,

1.3. Reaction systems 3

hypothesis

Experimental data

Biological
system/process

Mathematical model

In silico simulation In vitro simulation

New data New data

Abstract

Computing model

FIGURE 1.1: Biological system or process modelling and biological
computing. The comprehensive investigation of biological systems or
processes is enlightening for theoretical computer scientists as well,
resulting in biological computing a cross-discipline filed.

what concerns is the causality effects between entities instead of their concentrations.
These models are referred to as qualitative models.

From the perspective of computer science, some marvelous biological systems
or processes are so powerful that computing models can be abstracted from them
[21]. These abstractions are based on some hypotheses raised from mathematical
model, accounting for the specific behaviors or processes of target systems. On one
side, the simulation results are helpful to upgrade the mathematical models, so as
to the hypotheses. On the other side, the improved hypotheses contribute to more
sound computing model. The relationship between biological system modelling and
biological computing is illustrated in Figure 1.1.

1.3 Reaction systems

Essentially, all the biological entities, e.g., the phospholipid molecules constituting
plasma membranes [22], nucleotide molecules comprising DNAs [23], are products
of a variety of biochemical reactions. The functioning of a biological cell is the
manifestation of effects of considerable biochemical reactions taking place inside,
together with effects of interactions among biochemical reactions. As a matter of
fact, interaction of biochemical reactions is the dominant factor with respect to that
reactants/products of some biochemical reactions facilitate/inhibit other reactions.
Consequently, the interaction of reactions commences through facilitating/inhibit-
ing mechanisms which regulate all biochemical reactions [24]. To investigate inter-
actions of biochemical reactions, a formal framework entitled as reaction systems (RS)
is proposed [25].

Contrary to most of the existing quantitative computational models such as Petri
nets [26], reaction systems are a qualitative model working with sets instead of mul-
tisets of objects [27, 28]. There are two fundamental assumptions [29, 30] impart
qualitative features to reaction systems: threshold supply assumption which means if

4 Chapter 1. Introduction

an element is present, then the amount of this element is adequate so that any num-
ber of reactions using this element as a reactant can carry out concurrently without
conflict. Another important property is the no permanency assumption which means
elements no longer produced by any reactions vanish except if they are imported
from outside or their durations are larger than one [31, 32, 33, 34]. Furthermore,
threshold supply assumption ensures no quantitative restrictions for consumption of
reactants, hence reaction systems are deterministic and the elements competed by
multiple reactions are distributed to all the reactions concurrently so that applicable
reactions and their products are definite.

Due to the the fact that reaction systems are motivated by biochemical reactions
and their interactions happening in cells, they are employed to model biological pro-
cesses such as heat shock response [35], self-assembly of intermediate filaments [36],
period-doubling bifurcation [37], etc. On the other hand, reaction systems can also
be used to design quantitative models such as binary counters [29, 38] despite that
they belong to qualitative framework. The trick of transforming qualitative model
to quantitative lies in the perspective towards quantity of elements. Specifically, ac-
cording to threshold supply assumption mentioned above, an element produced by
some reactions has enough amount to suffuse a cell. Then this glutting state, rather
than a single element, is regarded as binary 1. Otherwise it is deemed as binary 0.
By this way, a reaction system can represent binary quantities [39, 40, 41].

1.4 Membrane computing

Eukaryotic cells have plasma membranes separating them from environment and
diversified internal membranes delimiting organelles such as ribosome, mitochon-
drion and cytoblast [42]. The karyotheca of an eukaryotic cell prevents cell DNA
from the infection by DNA viruses [14], while prokaryotic cells do not have nuclei
so that bacteriophages can pierce membranes of bacteria to inject their DNA/RNA
to infect them easily. From this fact we can see the importance of internal mem-
branes. Receptor-mediated endocytosis [43], symport and antiport mechanisms im-
part communication capacity to membranes. A whole lot of biochemical reactions
carry out in the cytoplasm as well as in all kinds of organelles simultaneously and
interactively, producing indispensable entities required for cell proliferation and as-
sembling new cells. From monoplast to multicellularity, the cellular lives remain
unchanged since more than 3.8 billion years ago [16]. That is, the biological cell
structures defined by membranes have evolved so being optimized for billions of
years. As a consequence, a bio-cell is powerful parallel processing unit which can
perform sophisticated biologic behaviors.

Enlightened by the insights of biological membranes and the biochemical reac-
tions inside, and based on the foundation of molecular computing (especially DNA
computing [44]), membrane computing was initiated by Gheorghe Păun in 1998 [45].
As mentioned in [46], membrane computing deepens molecular computing by intro-
ducing membrane structures, giving rise to the concept of “computing cell”. Conse-
quently, it is coherent to regard membrane computing models which are termed as P
systems [47] as artificial cells being capable of computation. One basic aspect about
membranes should be clarified, which is, unlike artificial neurons which are mod-
eled as computing nodes in neural network, membrane computing does not model
biological membranes as sorts of calculation devices. In effect, obtaining distributed
space defined by membranes in which evolution rules in the form of artificial chem-
istry [48] can execute in parallel to consume and produce objects is the main goal

1.5. FPGA based reconfigurable computing 5

of the existence of membranes. These artificial membranes have neither material
concentration nor internal structures analogous to biological ones, just a abstract
concept.

Membrane computing models, i.e. P systems are a class of quantitative models
working on multiset of objects from an alphabet. This quantitativeness originates
from the competitive distribution of objects (analogous to molecules in bio-cells)
among multiple applicable rules (if there are) in a region delimited by related mem-
branes. In a nutshell, resources (objects) are limited, they should be allocated to all
applicable rules to consume resources as much as possible. The contest of objects
brings non-determinism into P systems because generally there are several candi-
date applicable rules to be used in a membrane. It is suitable to assign equiprob-
ability to these rules to be chosen. Large scale parallelism and non-determinism
are two properties which fling down challenges for simulation/implementation of
P systems. The theme of this thesis is trying to cope with this challenge to some
extend.

Inspired by the structure of cells, tissues composed of cells and neurons, there
are three classes of P systems corresponding to these cellular structures: cell-like
P systems [49], tissue/population-like P systems [50, 51, 52] and spiking neural P
systems [53, 54, 55]. Due to its background inspired from, membrane computing
has worked as a modeling framework for biological and ecological subjects such as
modeling artificial life [56], photosynthesis [57, 58], protein signaling pathway [59],
cell-mediated immunity [60], Catalan Pyrenees bearded vulture ecosystem [61] etc.
Please refer to [62] for more membrane computing applications in computer science
and linguistics. On the other hand, the inherent large scale parallelism of membrane
computing has the profound potential for the progress of extreme data processing.
This thesis focuses more on engineering applications of membrane computing, espe-
cially robot control and path planning based on a special type of cell-like P systems
called as numerical P system (NPS) and its variants.

1.5 FPGA based reconfigurable computing

Reconfigurable computing [63] concerns about the reconfigurability of hardware
circuit datapaths besides control flows [64, 65]. The high flexibility compared to
application specific integrated circuits (ASICs) and high performance (along with
low-power consumption) with respect to software programmed general-purpose
processors (i.e., CPUs) provided by reconfigurable architectures are the principal
superiority of reconfigurable computing. Roughly speaking, there are three levels
of hardware arrangements in reconfigurable computing realm, which from lowest
to highest are: reconfigurable computing device level, architecture level and sys-
tem level [66]. The celebrity of reconfigurable computing devices is the field pro-
grammable gate arrays (FPGAs). Their popularity stems from the fact that they are
predominantly off-the-shelf reconfigurable computing devices, if they are not the
only alternative.

Reconfigurable architectures can be constructed with custom-designed chips dif-
ferent from FPGAs. The Garp reconfigurable processor [67, 68] is a fine-grained ar-
chitecture allowing bit manipulation resembling FPGAs. PipeRench [69, 70] is an
arithmetic logic unit (ALU) based coarse-grained architecture working as a copro-
cessor. Reconfigurable processing fabrics (RPFs) are the crucial constructs in these

6 Chapter 1. Introduction

reconfigurable architectures. RPFs can be integrated into traditional microprocessor-
based systems as separate coprocessors or functional units coupled with CPU. Inde-
pendent RPFs are devised and implemented as coprocessors in [71, 72, 73]. RPFs can
be loosely coupled as such the architecture in [74] or tightly coupled like that in [75,
76, 77].

Reconfigurable computing systems are built from reconfigurable devices and ar-
chitectures. The Fixed-Plus-Variable (F+V) structure computer [78, 79, 80] is known
as the first reconfigurable computing system (machine). Several FPGA based recon-
figurable systems were developed after FPGAs are easily available in 1980s, such as
Programmable Active Memories (PAM) project [81], Virtual Computer [82], Splash
system [83], PRISM [84], Configurable Array Logic (CAL) [85], etc.

Nowadays, FPGAs are highly isomerized with RAMs, fast carry chain, multipli-
ers, DSPs and even CPU blocks, resulting a system-on-a-chip, rather than simple de-
vices as in their early stage. So a current high-end FPGA is a reconfigurable system.
As can be seen in the later chapters, the cell-related computing models are parallel
heterogeneous for different syntactic components computing simultaneously. How-
ever, the inherent parallelism of such models is ill suited to be implemented on the
general purpose CPUs since we are unable to confirm that whether the computing
processes performed by the CPU complies with theoretical models or not. Nor do
we know that the parallelism of a CPU brought about by the multi-core architec-
ture is adequate to execute these models. Implementing these newly cell-inspired
heterogeneous application-oriented models on FPGAs or other reconfigurable ar-
chitectures/systems which are also parallel isomerized is more preferable for their
high degree of parallelism and reconfigurability.

Because of the availability of commercial FPGAs, two FPGA developing boards,
Digilent BASYS 3 and Xilinx VC707, featured with a small capacity FPGA and a
modest capacity FPGA respectively are selected as target hardware to implement
several reaction systems and NPS models. The control flow and data flow modeled
on target FPGAs are almost identical to theoretical models so that the parallelism
is exploited as much as possible. Overall, resorting to reconfigurable computing to
implement cell-related and application-oriented computing models is the substance
of this thesis.

1.6 Thesis statement

1.6.1 Main research contents

This thesis mainly studies the hardware implementation of two parallel computing
models inspired by the structures, behaviors and internal biochemical reactions of
biological cells, as well as the practical application of the implementation methods in
different fields. Specifically, the FPGA implementation methods of reaction systems
and numerical P systems (NPS) are proposed and applied in biological process mod-
eling, robot control and path planning domains. When a parallel biological comput-
ing model is simulated on a general-purpose computer, it is not guaranteed that
CPU performs the operations just in accordance with the theoretical model since the
processing of CPU is not transparent. In fact, it is likely that the limited parallelism
of CPU does harm for the intrinsic parallelism of biological computing model to a
large extent. To fully realize the parallel computing process of theoretical models,
the best choice is to run this kind of models on parallel hardware platform.

With the reconfigurability and parallelism of FPGA, reaction systems and nu-
merical P systems concerned are transformed into the digital circuits in FPGA. When

1.6. Thesis statement 7

Reconfigurable Computing

Parallel Computing

FPGA Prototyping

Reaction Systems

Membrane Computing

Numerical P Systems

Enzymatic Numerical P
Systems

Generalized Numerical P
Systems

Qualitative Models

Artificial Chemistry

Hardware Implementation
of Cell-inspired Computing

Models

FIGURE 1.2: Realms involved in the investigations of this thesis. Re-
action systems and P systems are tightly relevant while several mod-
els of them will be implemented on FPGAs as reconfigurable comput-
ing instances.

target FPGA has sufficient hardware resources, the calculation can be carried out in
strict accordance with the procedures of theoretical models and accelerate calcula-
tions substantially. According to the proposed FPGA implementation methods of
these two types of models, several models with great application value have been
realized. This investigation can serve as a good reference for the exploration of
newly parallel hardware architectures. Topics covered in this thesis include reac-
tion systems, membrane computing (NPS realms), reconfigurable computing, and
the cross-disciplinary area of the mentioned topics, as shown in Figure 1.2. The re-
search contents include:

• In order to grasp the research status of the hardware implementation of re-
action systems and P systems comprehensively and deeply, a detailed scien-
tific research investigation was carried out. Consequently, the literature review
of CPU simulation and CUDA-GPU implementation of reaction systems, and
hardware implementation of symbolic object (cell type) P systems were ob-
tained. Hardware implementation of reaction systems has not been reported
in the literature as yet. Researches on the hardware implementation of P sys-
tems are analyzed particularly, which points out the direction for FPGA imple-
mentation method of numerical P systems.

• On the theoretical facet, for the sake of better comparing different methods
and viewing these methods from a unified perspective, the object distribu-
tion problem of symbolic object P systems is described as a multi-criterion op-
timization problem. The relationship between symbol object P systems and
NPSs is pointed out, by translating string rewriting rules as programs renew-
ing cardinality of objects in parallel. The relationship between reaction sys-
tems and synchronous circuits is analyzed. Under certain conditions, reaction
systems and synchronous circuits can be converted to each other. The relation-
ship between the numerical P systems and systems of difference equations is
investigated. It is found that numerical P systems are another manifestation of
systems of difference equations, and the two can also be transformed into each
other under certain conditions. Considering the relationship between systems

8 Chapter 1. Introduction

of difference equations and systems of differential equations, NPSs can model
many engineering application problems.

• At the method aspect, based on the relationship between reaction systems and
synchronous circuits, the FPGA implementation method of the reaction sys-
tems is proposed. In practical applications, FPGA hardened NPSs are used as
control/process units involving input and output of sensors’ data and com-
puting results and program usability criteria in enzymatic numerical P sys-
tems (ENPS) are quite limited. To pursue an efficient implementation method
of (E)NPS, extend NPS to generalized numerical P system (GNPS) whose vari-
ables are classified as input variables, output variables and internal variables.
Presburger arithmetic is introduced in GNPS as well to extend program us-
ability criteria. Further more, FPGA implementation method of GNPS is put
forward. GNPS is a superset of NPS and ENPS, so NPS and ENPS can also be
implemented in FPGA with the method devised for GNPS.

• According to the reaction system FPGA implementation method, reaction sys-
tem models for the self-assembly of eukaryon’s intermediate filaments, heat
shock response reaction systems and reaction system modelled binary counter
were implemented in FPGA. The computing speed of the FPGA hardened re-
action systems is up to 2× 108 steps per second.

• To verify the feasibility and correctness of the GNPS FPGA implementation
method, a GNPS was designed to execute the core formulas of Sobel image
edge detection algorithm and this GNPS was implement in FPGA. Contrast-
ing with the results calculated by NPS simulation software, the GNPS FPGA
implementation method is validated. Then the wheeled robot membrane con-
trollers based on NPS, ENPS and GNPS were implemented in FPGA in line
with this method. Compared with the CPU simulation execution speed, the
speedup obtained with FPGA implementation has the order of 104 magnitude.

• Rapid-exploring random tree (RRT) is a computation-intensively parallel path
planning algorithm. In order to accelerate the calculation of this algorithm,
it is modeled in a GNPS which organizes all the parallel steps in accordance
with the algorithm. Then this RRT-GNPS was implemented in FPGA. Taking
into account the potential application of RRT algorithm in large-scale maps,
the IEEE 754 standard of floating point (FP) numbers is adopted in the FPGA
implementation. Arithmetic calculations units such as adder, subtractor, mul-
tiplier and reciprocal square root calculator are designed to obey this standard.
For divisions which cannot be avoided, the FP division IP cores are instanti-
ated to do divisions. Compared with CPU simulation, the speedup obtained
by FPGA implementation also reaches the order of 104.

Main research topics and their relations are illustrated in Figure 1.3. In this figure,
blocks at the same level connected with solid lines are equivalent models, while
those connected with dashed lines can be approximated with some mathematical
methods. Blocks in the upper level are generalized models of blocks in the lower
level.

1.6.2 Contributions

The major contributions of this work consists in the following aspects:

1.6. Thesis statement 9

GNPS with signature

GNPS without signature

Linear ENPS

Linear NPS

FPGA hardware

Mealy/Moore automata

Vector Mealy/Moore
automata

Membrane controllers

Linear system of
difference equations
(Recurrence system)

Linear system of
differential equations

Nonlinear system of
difference equations

Nonlinear system of
differential equations

Synchronous switching
circuits

Reaction systems

FIGURE 1.3: Relations of main research topics.

• An exhaustive analysis of all existing approaches of hardware implementation
in the area of P systems is performed. The quantitative and qualitative at-
tributes of FPGA based implementations and CUDA-enabled GPU based sim-
ulations are compared to evaluate the two methodologies. To better compare
the different used techniques, the core of the simulation process is described as
a multi-criteria optimization problem, that allowed us to have a uniform view
on different approaches.

• A tight relation between reaction systems and synchronous digital circuits
is shown. The attributes of reaction systems as a sort of qualitative model
are studied. Based on the relation and attributes, the FPGA implementation
method of reaction systems is proposed. By this method, simulations of large
scale reaction systems can be accelerated to a large extent comparing with soft-
ware simulation.

• The relation of NPS and difference/recurrence systems is analyzed, extending
the original definition of NPS to generalized NPS (GNPS) to facilitate hardware
implementation. The differences between a symbol object P system and a NPS
is analyzed and shown explicitly. FPGA implementation method of GNPS is
conceived, which can speedup computations in robot control and path plan-
ning to an order of 104 to 105 magnitude.

• The FPGA implementation method of GNPS for IEEE 754 floating point (FP)
numbers is proposed. FP calculation cannot be carried out using HDL arith-
metic operators, but needs instantiating FP arithmetic modules to execute.
However, these instantiated modules cannot be placed in HDL conditional
statements, so the availability of GNPS rules cannot be determined by cal-
culating such logical expressions. The module sequential triggering method
based on edge detection is designed to handle this hurdle, which completes
computing procedures in line with the sequence determined by conditional
statements of GNPS. By adding appropriate delays, multiple FP modules per-
form their calculations correctly in the order of arithmetic priority. Parallel
processing is realized by triggering calculations of all available rules through
the rising edge of clock.

10 Chapter 1. Introduction

1.7 Thesis organization

This thesis is arranged as follows:
Chapter 1 introduces biological notions, biological system modelling, reaction

systems, membrane computing and P systems, and reconfigurable computing based
on FPGA, which are the research background of this thesis.

Chapter 2 presents basic definitions of reactions systems, P systems and also of
numerical P systems and enzymatic numerical P systems. Then present how to con-
vert the rule choice problem in P systems to an multi criterion optimization problem.
The relations between symbol-object P system and NPS are studied as well.

In Chapter 3, CUDA-GPU and FPGA are introduced at first for they are the
two devices involved in software simulation and hardware implementation of re-
action systems and P systems. FPGA development flow of Xilinx integrated devel-
opment environment, Vivado, is also given. The CPU simulation and CUDA-GPU
implementation of reaction systems, and FPGA implementation of P systems are re-
viewed. Taking stock of the complexity of FPGA implementation of P systems, the
research background of membrane computing hardware implementation is intro-
duced firstly. Then the general ideas of its hardware implementation are explained,
shedding light on the representation of P system in FPGA, the indirect method and
the direct method for object distribution problem, and algorithms for addressing
non-determinism briefly. From two aspects of region based and rule based imple-
mentation strategies, the existing FPGA implementation researches of symbol ob-
ject (cell-like) P systems are analyzed in detail, and different FPGA implementation
strategies of P systems are estimated from the quantitative and qualitative perspec-
tive. Finally, the microprocessor or controller based implementations of P systems
are surveyed.

In Chapter 4, the relationship between reaction systems and synchronous circuits
is investigated. FPGA representation and implementation of reaction systems are
put forward. Three reaction systems having distinct functions are implemented in
FPGA, achieving a considerably fast speed.

Chapter 5 analyzes the relationship between NPS and systems of difference equa-
tions, defining the definition of binary and unary normal form for (E)NPS. Next the
notion of GNPS is introduced. FPGA implementation method of GNPS is devised
and two case studies are implemented to confirm this method.

In Chapter 6, according to the FPGA implementation method of GNPS, three
wheeled robot membrane controllers based on NPS, ENPS and GNPS are imple-
mented. NPS membrane controller contains variable value transmissions. Counters
were used to count the calculation step, so specific values were transferred at correct
step. In the implementation of ENPS membrane controller, the logical expressions
were used to express the conditional statements involving enzymatic variables. The
control law of GNPS controller is relatively complex, but the computation process
completes speedy for the parallelism of GNPS. NPS and its variants covered in this
chapter deal with fixed-point numbers, so HDL (Verilog) arithmetic operators are
utilized.

Chapter 7 studies FPGA implementation of GNPS based RRT algorithm. A GNPS
performing all the parallel computations is designed and implemented according to
the method proposed in Chapter 5. Considering the potential large-scale applica-
tion, GNPS deals with floating point numbers conforming to the IEEE 754 standard.
In order to avoid the division operation with the flaw of high resource consump-
tion and slow computing speed, the reciprocal square root unit is designed to cal-
culate the quadratic formulas under the fractional line. For inescapable divisions,

1.7. Thesis organization 11

the floating-point division IP core optimized for performance was instantiated. The
execution of rules is accomplished by instantiating multiple arithmetic units. As
instantiated modules, they cannot respond to the results of logical expressions rep-
resenting the criteria for rule availability. According to the calculation sequence of
arithmetic operations, the edge detection trigger method is designed to realize the
function of conditional statements so that calculations are performed rightly.

Conclusions are summarized in Chapter 8.

13

Chapter 2

Definitions

Both reaction systems and P systems are living cell inspired models. Reaction sys-
tems are qualitative models focusing on biochemical reactions, especially their in-
teractions. While P systems are quantitative models concentrating on distributed
compartments delimited by membranes in which artificial chemical reactions can be
carried out concurrently and non-deterministically. This chapter elucidates general
definitions of these two models and concerned variants of P systems.

2.1 Reaction systems

Biochemical reactions take place in cells of cellular lives all the time, comprising the
complicate functionality of cells. Parallel executing biochemical reactions interact
with biochemical entities (reactants) in the environment in the form that some of
these entities prevent some reactions from happening or vice versa, catalyzing some
of the reactions. The inhibition and facilitation mechanisms are the main regulation
principles for reactions in living things. Reaction systems, initiated in 2004 [24], are a
formal framework investigating interactive processes which come into being on the
foundation of inhibition and facilitation mechanism of biochemical reactions.

There are two assumptions underlying the qualitative trait of reaction systems:

• Threshold supply assumption: if a kind of element is present, its quantity is
sufficient so that multiple reactions utilizing it as one of the reactants can take
place simultaneously, without contending of this kind of element. As a result,
there are no conflicts among reactions if their reactants are present.

• No permanency assumption: if a kind of element is not taken in (from environ-
ment or other reaction systems), it persists if there is some reactions producing
it. The default duration of a element [29] is “one period”–the time interval from
one state to the next. This sort of element vanishes beyond this time if it is not
a product of any reactions. After the execution of applicable reactions, all the
reactants are transformed to corresponding products, resulting reactants sets
vanishing to empty sets.

A reaction system is deterministic for all reactions involving the same reactants
can proceed reacting due to threshold supply assumption. Then all the reactions that
should happen will happen, there is no need to make choices among applicable re-
actions. Consequently, the behavior and the products of a reaction are definite for
reaction sets in each state are determined according to reactions and initial condi-
tions of elements. Now the formal definition of these notions is given below.

Definition 2.1. [25] A reaction is a triplet r = (Rr, Ir, Pr), where Rr is the reactant set, Ir
is the inhibitor set, Pr is the product set. If there is a set B such that Rr, Ir, Pr ⊆ B, then r is
a reaction in B. rac(B) signifies all reactions in B.

14 Chapter 2. Definitions

Ir can be empty while Rr and Pr should not be empty in general. It is pointed out
that a special reaction Φ = (∅, ∅, ∅) is termed as empty reaction may be used.

Definition 2.2. [35] Let T be a finite set and A be a set of reactions,

1. the result of applying r on T, denoted by resr(T), is defined as

resr(T) =

{
Pr if Rr ⊆ Tand Ir ∩ T = ∅,
∅ otherwise.

2. the result of applying A on T, denoted by resA(T), is defined as

resA(T) =
⋃

r∈A

resr(T)

Definition 2.3. A reaction r is applicable on a set T if resr(T) 6= ∅, i.e., Rr ⊆ T and
Ir ∩ T = ∅, or else r is inapplicable on T. A reaction set A is applicable on T if each reaction
in A is applicable on T.

Now the static structure of a reaction system can be defined below. The definition
of the reaction is given preceding the definition of the reaction system on account of
that a reaction system is essentially a set of reactions.

Definition 2.4. [25] A reaction system is an ordered pair R = (B, A), where A ⊆ rac(B)
and B is a finite set termed as the background set ofR.

Definition 2.5. [25] For a reaction systemR = (B, A) and a set T ⊆ B, define resR(T) =
resA(T) and enR(T) = {r ∈ A | r is applicable onT}.

The dynamic process of a reaction system is characterized by interactive process
which is defined as follow.

Definition 2.6. [25] If R is a reaction system, an interactive process in R is a pair π =
(γ, δ), where γ = C0, C1, . . . , Cn, δ = D0, D1, . . . , Dn, n ≥ 1, D0 = ∅, Di = resR(Ci−1 ∪
Di−1), 1 ≤ i ≤ n.

Sequence γ is called context sequence, denoted by con(π). Sequence δ is named
result sequence, denoted by res(π). Let Wi = (Ci ∪ Di), 0 ≤ i ≤ n, n ≥ 1. W0 = C0 for
D0 = ∅. Sequence τ = W0, W1, . . . , Wn is entitled as state sequence. Let Ei = enR(Wi),
sequence σ = E0, E1, . . . , En is called activity sequence of π.

Context sequence γ can be deemed as elements coming from environment or
from other reaction systems, signifying the interactiveness between a reaction sys-
tem and its surroundings. The transition process of states, Wi, can be counted as
computation process of a reaction system, denoting by state sequence τ. The power
source of transitions is activity sequence σ while results of transitions are exhibited
by result sequence δ. The existence of these results obeys no permanency assumption.
As a type of qualitative models, reaction systems work on sets instead of multisets
of elements.

2.2 P systems

2.2.1 Symbol object cell-like P system

As mentioned in Chapter 1 Section 4, there are cell-like P systems, tissue/population-
like P systems and spiking neural P systems. Cell-like P systems are the subject of

2.2. P systems 15

a5b8c6

b8c11e9

r11: a
2bc5→be2

r21: b
2c4→abc

r31: a
3c→b2c

r41: a
4b4→e2g2

r12: b
4c3e5→be2

r22: bc5→e2

r32: c
2e→e2g

1
2

FIGURE 2.1: An example of a P system with two membranes. Mem-
brane 1 contains a object multiset a5b8c6 and four rules. Membrane 2
encompasses a object multiset b8c11e9 and three rules.

this thesis. A symbol-object cell-like P system is an individual artificial cell with
multisets of objects coming from an alphabet, such as Roman or Greek alphabet,
and rewriting rules transforming multisets to other ones. Symbol-object cell-like P
system is the classic model first introduced [45]. So when only “P system” is men-
tioned, it is implied that a symbol-object cell-like P system is under consideration.
The static structure of a (symbol-object cell-like) P system is defined as:

Definition 2.7. [46] A P system is a construct

Π = (A, µ, ω1, . . . , ωn, R1, . . . , Rn)

where

1. A is an alphabet whose symbols are used to indicate objects.

2. µ is the membrane structure consisting of n membranes;

3. ωi, 1 ≤ i ≤ n, n ≥ 1, is the multiset of object located in membrane i;

4. Ri, 1 ≤ i ≤ n, is the rewriting rule set associated with membrane i which transforms
its object multiset.

A membrane structure µ is a rooted tree (an undirected graph which is acyclic
and connected), with the root node called skin membrane. Nodes in this structure
distinct from the root node are (inner) membranes. Two nodes connected by one
edge have a containment relation that the membrane denoted by the upper node
include the membrane denoted by the lower node. The Venn diagram is used to
represent the membrane structure so the containment is explicitly given by inclusion
of membranes. The nodes that do not connect to any other nodes are the leaves,
which are called elementary membranes containing the computing result typically.
A label is attached to every membrane, so the labels can be regarded as nodes. Figure
2.1 depicts an example of a P system.

The inclusion of each membrane consists of multisets of symbol objects and re-
action rules, which are named as (evolution) rules conventionally, which are called
rules for short in the sequel. Each multiset of objects indicates the symbols and their
numbers (multiplicities) in the multiset, such as a3b7c4, where a, b, c are objects and
their exponents designate their multiplicities, i.e., there are 3 as, 7 bs and 4 cs in this
object multiset. Note that what provided here is just an example, there is no limit
for the types and quantities of objects in a object multiset. The family of multisets
over alphabet A is denoted as M(A). On the basis of the membrane structure notion

16 Chapter 2. Definitions

stated above, a cell over an alphabet is a pair (µ, Map), where µ is a membrane struc-
ture, Map is an mapping from the set of nodes (represent membranes) K(µ) to M(A).
The mapping is the distribution of symbol object multisets to membrane structures.

The value of ωi at a time instant comprises the configuration of a P system at that
instant. For the P system in Figure 2.1, the current configuration is {a5b8c6, b8c11e9}.
Rules are of the form obml → obmr (e.g., a2b3c → e2 f 2) where obml denotes reac-
tant object multiset and obmr indicates product object multiset. Bear in mind the
form of reactions in reaction systems, we can see that rules of P systems are artificial
reactions without inhibitor sets. P systems with promoters/inhibitors are investi-
gated in [86, 87, 88]. Writing rules in the form of reactions in RS, a rule l is a 2-tuple
l = (Rl , Pl) where Rl denotes obml and Pl signifies obmr. There is a one-to-one cor-
respondence between a membrane and its internal space called region. So these two
terms are treated equally without discrimination. It is emphasized here that reaction
systems use sets of object for rewriting (the mapping is from a set), while P systems
utilize multisets of object. A set can only describe qualitative information, while a
multiset is suitable for quantitative relationship. The definition of applicability of
rules is given below.

Definition 2.8. A rule in a membrane is applicable if obml ⊂ OM, where OM is the object
multiset in the same membrane. Otherwise this rule is inapplicable.

Yet as a type of quantitative models, the applicability of a rule is determined in
accordance with the quantitative relation between object multiset ωi and each obml
of every rule in Ri: if the quantity of each type of object in obml of a rule is no larger
than that of the ωi, then this rule is applicable; otherwise this rule is inapplicable.
The quantitativeness of P systems asks for one thing more than the determination
of applicability of rules, that is, the number of times termed as instance [89] an ap-
plicable rule can be used. A membrane may contain multiple applicable rules at
the same time, leading to a set of applicable rule multisets denoted by All(Π, C, δ)
which will be elucidated next. A terminology derivation mode refers to how all the
applicable rules should be used. For example, if consuming ωi as many as possible
in a maximally parallel way so that the remainder object multiset is not adequate for
any rules is the goal, then this derivation mode is named max. The max mode can be
defined as follows [90]. A more formal definition of max mode will be given based
on Pareto dominance later.

Applicable(Π, C, max) = {R ⊆ Applicable(Π, C, max) |
6 ∃R′ ∈ Applicable(Π, C, max) : R′) R}.

For a multiset of applicable rules derived by max, diminish each instance of rules
to one obtaining a new multiset of applicable rules. If such multisets of applicable
rules are applied, we say this P system evolves in set-max mode.

The max mode brings about a interesting but nerve-wracking situation—non-
determinism. To be specific, applicable rules confirmed according to max in a mem-
brane are dependent, augmenting the instance of one rule causes the instance de-
scending of another. The combinations of applicable rules bring about multiple
solutions, viz., multiple applicable rule multisets (All(Π, C, δ)), to evolve configu-
ration of P system. It is equiprobable to choose one rule multiset to apply but which
one will be chosen is stochastic. The computation process of P systems is signified
by the transition of configurations. A P system reaches halting configuration if no
rules can be applied in that configuration.

To expound a part of the computation process of a P system, take a concrete ex-
ample depicted in Figure 2.2. Assume that this P system works max mode so one

2.2. P systems 17

a13b15c10

e8f 11g9

b9c12e14

c13e10g11

r11: a
2bc5→(be2)in3

r21: b
2c4→abc

r31: a
3c→b2c

r41: a
4b4→(e2g2)in2

r12: e
2f 5→(d2)out

r22: fg
3→be2

r32: efg→f 2g2

r13: b
4c3e5→be2

r23: bc5→e2

r33: c
2e→(e2g)in4

r14: e
2g→c2

r24: cg5→eg2

r34: c
4eg→af

1

2

3

4

FIGURE 2.2: A P system at its initial configuration. The subscript in3
of obmr in rule r11 means obmr will be sent to membrane 3, so do rule
r14, r33. While subscript out of obmr in rule r21 signifies its obmr will
be sent out to environment. This is a static P system that there is no
evolution rule which can dissolving or creating membranes.

applicable rule can be used any possibly times, resulting a set of rule multisets. Ap-
plicable rule multiset in each region had been computed as illustrated in Figure 2.3.
The configuration after the application of selected rule multiset is given in Figure
2.4. There are several solutions in each region for calculating the rule multiset is a
multiple-solution problem. The non-determinism of P systems reflects this fact, be-
sides the parallelism, since all the solutions are feasible solutions in accordance with
the derivation mode. Only one rule multiset in each region is chosen equiprobably to
comprise the solution denoted by Applicable(Π, C, max) to evolve the configuration.

Suppose that the rule multisets in red font in Figure 2.3 are selected while rule
multisets in black are unselected feasible solutions. After applying Applicable(Π, C, max),
the configuration evolves taking the form of consumption/production of object mul-
tisets. On the circumstance of the dissolving of membranes happening, the rules in-
side will disappear, otherwise rules keep unchanged during the transitions. The
remained objects are in blue font and rules constituting rule multisets and their
instances used (denoted by exponents above rules) are in red as shown in Figure
2.4. Notably, a rule multiset dose not necessarily contains every rule in a mem-
brane. It can be verified that there are no applicable rules in the current configu-
ration anymore, so the P system reaches its halt configuration which is denoted by
Halt(Π, C, max). In practical applications, one can stop the evolve process when the
results needed are generated even though the halt configuration is no reached.

2.2.2 Network of cells

The definition of a P system can be abstracted a step further to the notion of network of
cells [91, 92, 93, 94]. Most types of (static structure) P systems can be seen as variants
of parallel multiset rewriting (by using the algorithm called flattening). Using this
underlying idea, any concrete variant of a P system could be described by specifying
the following notions (functions):

18 Chapter 2. Definitions

a13b15c10

e8f 11g9

b9c12e14

c13e10g11

1

2

3

4

(r11)
2
(r41)

2 r11r21r31(r41)
2

r21(r31)
3
r41 r21(r31)

4

r21(r41)
3

r11(r31)
2
r41

r11(r31)
3

(r21)
2
r31(r41)

2

(r12)
2
r22 (r12)

2
r32 (r32)

8

r12(r22)
3

r12(r32)
6 r22(r32)

6

r12r22(r32)
5 r12(r22)

2
(r32)

3

(r33)
6

(r13)
2
r23

(r23)
2
r33

r23(r33)
3

r13(r33)
4

(r13)
2
(r33)

3

r13r23(r33)
2

(r14)
5
r24 (r24)

2
r34

(r14)
3
r24(r34)

3 r14(r24)
2

(r14)
4
r24(r34)

2

FIGURE 2.3: All the feasible rule multisets of each membrane. The
selected applicable rule multisets are highlighted in red.

ab10c3

e2f 3g3

bce6

e

r11: a
2bc5→(be2)in3

r21: b
2c4→abc

(r31: a
3c→b2c)2

r41: a
4b4→(e2g2)in2

r12: e
2f 5→(d2)out

r22: fg
3→be2

(r32: efg→f 2g2)8

(r13: b
4c3e5→be2)2

r23: bc5→e2

r33: c
2e→(e2g)in4

(r14: e
2g→c2)3

r24: cg5→eg2

(r34: c
4eg→af)3

1

2

3

4

FIGURE 2.4: Rules in red are those constituting the applied rule mul-
tiset. The exponents above rules denote thier instances in the rules
multiset. Residuary object multisets after the application of rule mul-
tisets are shown in blue.

2.2. P systems 19

• Applicable(Π, C, δ) – the function taking a system Π, a configuration C and a
derivation mode δ to yield the set of multisets of rules of Π that can be applied
to C.

• Apply(Π, C, R) – the function allowing to compute the configuration obtained
by the parallel application of the multiset of rules R to the configuration C.

• Halt(Π, C, δ) – a predicate that yields true if C is a halting configuration of the
system Π (in some derivation mode δ).

• Result(Π, C) – a function giving the result of the computation of the P system
Π when the halting configuration C has been reached.

Since multiset rewriting level is not practical for system description and under-
standing, a higher-level concept called network of cells was introduced in [91]. This
model augments multiset rewriting with the notion of spatial locations (cells) as well
as the corresponding operations and it can be seen as a particular interpretation of
the symbols. The works [91, 92, 93] define some basic building blocks in terms of net-
work of cells and give several examples of the construction of widespread notions
and types of rules in membrane computing using these blocks. Hence, a general
framework, called the formal framework of P systems, is obtained allowing to express
notions related to P systems in a common formal frame. Moreover, in most of the
cases the obtained model (in the formal framework) allows a strong bi-simulation
with the original one, thus they become indistinguishable. This permits several ap-
plications. A further evolution of the framework [95] permitted to take into account
notions related to P systems with dynamically evolving structure.

The definition of network of cells provided below is taken from [91]. It is remarked
that the definition from [95] is slightly different, however both models coincide when
the structure of the system does not evolve.

Definition 2.9. [91] A network of cells of degree n ≥ 1 is a construct

Π = (n, V, w, In f , R)

where

1. n is the number of cells;

2. V is an alphabet;

3. w = (w1, . . . , wn) where wi ∈ V◦, for all 1 ≤ i ≤ n, is the finite multiset initially
associated to cell i;

4. In f = (In f1, . . . , In fn) where In fi ⊆ V, for all 1 ≤ i ≤ n, is the set of symbols
occurring infinitely often in cell i (in most of the cases, only one cell, called the
environment, will contain symbols occurring with infinite multiplicity);

5. R is a finite set of rules of the form

(X → Y; P, Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ V◦, 1 ≤ i ≤ n, are vectors of
multisets over V and P = (p1, . . . , pn), Q = (q1, . . . , qn), pi, qi, 1 ≤ i ≤ n are finite
sets of multisets over V. The following form is also used (omitting pi, qi, xi or yi if
they are empty)

(1, x1) . . . (n, xn)→ (1, y1) . . . (n, yn) ; [(1, p1) . . . (1, pn)]; [(1, q1) . . . (n, qn)].

20 Chapter 2. Definitions

The above rule is applied as follows: objects xi from cells i are rewritten into
objects yj produced in cells j, 1 ≤ i, j ≤ n, if every cell k, 1 ≤ k ≤ n, contains all
multisets from pk and does not contain any multiset from qk.

The configuration C of Π is defined as an n-tuple of multisets over V (u1, . . . , un)
satisfying ui ∩ In fi = ∅, 1 ≤ i ≤ n. The computation in networks of cells is a finite
sequence of transitions, corresponding to the (parallel) application of one or several
rules, starting in an initial configuration and ending in a final configuration (for
which the Halt predicate returns true).

At each step, the set of multisets of applicable rules, denoted as Applicable(Π, C, δ),
is restricted by the derivation mode denoted by δ, which specifies which sub-multisets
are chosen to transit configuration.

A clear-cut definition of maximal parallel derivation mode (max) in a P system
can be presented based on the notion of Pareto dominance relation [96]. The concept
dominate among object multisets should be given firstly.

Definition 2.10. An object multiset O1 dominates object multiset O2 if

1. the multiplicity of each object (symbol) in O1 is no less than that of object in O2;

2. at least the multiplicity of one type of object in O1 is larger than that of object in O2.

Then the max derivation mode can be defined as follws:

Definition 2.11. The derivation mode of a P system is maximally parallel (denoted by max)
if the residual object multisets in each membrane induced by applying (neglecting objects to
be produced) a set of applicable rule multisets determined in line with max are dominated by
object multiset on the left-hand-side (obml) of every rule in the P system.

2.3 Reduction the computation of P systems to multi-criteria
optimization

The computation of the set Applicable(Π, C, δ) can be expressed in terms of a multi-
criteria optimization problem. The advantage of such reduction is an extensive stan-
dard vocabulary and a plethora of solving methods existing in the optimization area.
This will allow to express different used algorithms and methods in a common lan-
guage for a better comparison.

2.3.1 Preliminaries

A multi-criteria optimization problem (MCOP) is an optimization problem that in-
volves multiple objective functions. In mathematical terms it can be stated as

max(f1(x), f2(x), . . . , fn(x))
subject to x ∈ X

where n ≥ 2 and X is the set of feasible vectors (or solutions). This set is usually
defined by some constraint functions. One can also consider the objective function
as a vector: f : X → Rn, f = (f1, . . . , fn). For a feasible solution x, the vector
z = f (x) is called an objective vector or an outcome.

When corresponding functions as well as fi, 1 ≤ i ≤ n are linear, it is speak-
ing about a multi-criteria linear optimization problem. It is also pointed that as for
classical optimization problems the objective functions are minimized. The other

2.3. Reduction the computation of P systems to multi-criteria optimization 21

0

5

31 2

1

2

3

4

r1

r2

Pareto-optimal

solutions

Non-solutions Area

Feasible solutions

FIGURE 2.5: Feasible and Pareto-optimal solutions from Exam-
ple 2.13.

cases like maximization or hybrid min/max can be easily reduced to the minimiza-
tion one. When further X ⊆ Nk, k > 0 and f : X → Nn, it becomes an integer
multi-criteria linear optimization problem (IMCLOP).

In multi-criteria optimization, typically there is no feasible solution that mini-
mizes all objective functions simultaneously. Hence, the main attention is focused
on solutions that cannot be improved in any of the objectives without degrading
some other objective(s). Such solutions are called Pareto-optimal. Formally, they are
defined as pre-images of maximal elements of the outcomes, which are also called
Pareto front.

Definition 2.12. A vector x ∈ X is Pareto-optimal for a MCOP (defined as above) iff there
is no other vector y ∈ X for which f (x) < f (y), where u < v iff ui ≤ vi, 1 ≤ i ≤ k, and
∃j, 1 ≤ j ≤ m such that uj < vj.

Example 2.13. Consider the following problem:

max(r1, r2) subject to
r1 ≤ 5
r1 + 2r2 ≤ 6
r2 ≤ 3
r1 ∈ N, r2 ∈ N

The corresponding feasible solutions and Pareto-optimal solutions are shown in Fig. 2.5. As
can be seen, the Pareto-optimal solutions are (5,0), (4,1), (2,2) and (0,3).

2.3.2 Rule choice as integer multi-criteria linear optimization problem

It is not difficult to see that the problem of the computation of elements from Applicab
le(Π, C, max) can be reduced to IMCLOP. For the first time it was noticed in [97], but
without any further development. For simplicity, consider that Π has only one mem-
brane (and no environment). If this is not the case, apply the flattening procedure
reducing it to one membrane [91, 94]. So Π = (O, w1, R).

Let R = {r1, . . . , rn} and O = {ob1, . . . , obm}. Consider that ri : ui → vi, 1 ≤ i ≤
n. Let C be the current configuration and let Cob = |C|ob, ob ∈ O.

Consider a set of variables xi, 1 ≤ i ≤ n that indicate the cardinality of cor-
responding rules in some rule multiset M ∈ Applicable(Π, C, max), |M|ri = xi,

22 Chapter 2. Definitions

1 ≤ i ≤ m. Then the feasible set X of (asynchronous) solutions is defined by the
following inequalities:

m

∑
i=1
|ui|obxi ≤ Cob, ∀ob ∈ O, (2.1a)

xi ∈N, 1 ≤ i ≤ n, (2.1b)

Inequalities (2.1a) state that the sum of all consumed objects is included in C.
Technically, for each object a ∈ O it is verified that the weighted sum of rule instances
and number of a in the left-hand-side of the rule is smaller than or equal the number
of objects a in C. It is remarked that the system (2.1) can be also seen as a system of
Diophantine equations and corresponding solutions are exactly describing the set of
feasible solutions X.

The IMCLOP corresponding to the computation of Applicable(Π, C, max) can be
defined by:

max(x1, . . . , xn) (2.2)
subject to (x1, . . . , xn) ∈ X

It should be clear that Pareto-optimal solutions represent exactly the multiplici-
ties of rules for some maximally parallel solution.

Example 2.14. Consider the system Π = (O, w1, R), with O = {a, b, c} and R = {r1 :
ab → abc; r2 : bbc → abb}. Consider the configuration C = a5b6c3. Then, the constructed
IMCLOP corresponds to the one given in Example 2.13.

Therefore this system has 4 Pareto-optimal solutions: (5, 0), (4, 1), (3, 3) and (0, 3), cor-
responding to multisets of rules r5

1, r4
1r2, r2

1r2
2 and r3

2, which are exactly the maximal multisets
of rules applicable to C. One of the solution can be obtained after solving the corresponding
IMCLOP.

2.3.3 Tentative solutions

One of the traditional approaches to solve multi-criteria optimization problems is
called scalarization. It consists in reducing the corresponding MCOP to a single objec-
tive optimization problem by using a real-valued scalarizing function involving the
objective functions and additional scalar or vector parameters and variables. This
can also imply additional restrictions to the feasible set based on the newly intro-
duced variables.

One of the “simplest” methods to solve multi-criteria problems is the weighted
sum method, where we solve the following single objective optimization problem

max
x∈X

n

∑
k=1

λk fk(x) (2.3)

The weighted sum problem (2.3) is constructed using the scalar product of the
vector of objective functions f and the vector of non-negative weights λ ∈ Rn as
a parameter. It is known that it allows to compute all Pareto-optimal solutions for
convex problems by varying λ [98].

In the literature on P systems some simple variants of the weighted sum method
can be found. In [99, 100] the vector λ = (1, . . . , 1) is considered (so the objective
function is the sum of all variables). However, in this case only maximally parallel

2.3. Reduction the computation of P systems to multi-criteria optimization 23

rule sets having a maximal number of rules are obtained. In terms of the formal
framework [91] this corresponds to maxrulesmax derivation mode.

Another attempt was done in [101, 102] where the parameters λk correspond to
the size of the left-hand-side of rules (λk = |uk|, rk : uk → vk). Such optimization
problem finds only maximally parallel solutions involving the maximal number of
objects, corresponding to maxobjectsmax mode in terms of the formal framework.

In [103] the set of maximally parallel multisets of rules is expressed as solutions
of a system of Diophantine equations (roughly equations (2.1a)) with an additional
constraint to be satisfied on a solution, expressed as another system of Diophantine
equations.

Finally, in [104] the set of maximally parallel multisets of rules can be expressed
as solutions to a system of equations defining some Diophantine sets. While the
construction is similar to the one to be given below, it is not trivial to manipulate
Diophantine sets and it is not clear how to express the constraints as a single system
of equations.

Below, a method named Coefficient Non-deterministic Selection (CNS) is proposed
based on the weighted sum method and integer linear programming (ILP).

As above, consider that Π has only one membrane (and no environment). So
Π = (O, w1, R). Let R = {r1, . . . , rn} and O = {a1, . . . , am}. Consider that ri : ui →
vi, 1 ≤ i ≤ n. Let C be the current configuration and let Cob = |C|ob, ob ∈ O.

In the CNS method, λob = |uk|ob, ob is one object in the left hand side of a rule.
In addition to the λob, introduce an integer parameter M ∈ N having a value that is
sufficiently big (in fact it should be greater than the maximal possible value of any
variable xi, 1 ≤ i ≤ n of any feasible solution). Now modify the system (2.1) to
construct a system of inequalities whose integer solutions will be maximally parallel
multisets of rules for the configuration C.

m

∑
i=1
|ui|obxi ≤ Cob, ∀ob ∈ O, xi ∈N, 1 ≤ i ≤ n, (2.4a)

m

∑
i=1
|ui|obxi + |uk|ob + Mzk

ob ≥ Cob + 1, 1 ≤ k ≤ m, ob ∈ O, |uk|ob ≥ 0, (2.4b)

Inequalities (2.4a) are the same as (2.1a) and they state that the sum of all con-
sumed objects is included in C. Inequalities (2.4b) state the maximality property of
the rule set defined by x1, . . . , xn. It verifies that for each rule there exist at least
one object whose remaining quantity is not sufficient to apply this rule. They are
based on multiple "either-or" constraints representation in ILP. The big value of M
ensures that only one constraint from (2.4b) will be considered (the other ones will
be satisfied because of the big value of M).

Hence, any solution x1, . . . , xn satisfying the system of inequalities (2.4) corre-
sponds to a Pareto-optimal solution of (2.3), hence to a maximally parallel rule set
M = rx1

1 . . . rxn
n applicable to configuration C. It is remarked that from the construc-

tion given above, it immediately follows that system (2.4) is Diophantine. The steps
of CNS method are listed below.

1. Construct the coefficient matrix Ce according to the left hand side of all rules
in the membrane, as shown in Equation (2.5);

2. Construct the system of inequalities corresponding to Equation (2.4a), as given
in Equation (2.6);

24 Chapter 2. Definitions

3. Compute the all non-repetitive Cartesian products {c11, . . . , c1n}× · · ·×{cm1, . . . ,
cmn}. One Cartesian product is the vector of possible multiplicity of each object
type in the left hand side of all rules;

4. Randomly select a Cartesian product as the value of {|u1|ob1 , . . . , |um|obm};

5. For each element of Ce, compute zij = sgn(cij), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then con-
struct the matrix Z shown in Equation (2.7). sgn() is the sign function which is
given in Equation (2.9);

6. Construct the polynomial matrix in line with the left hand side of Equation
(2.4b), as shown in Equation (2.8);

7. For each row of Equation (2.8), choose polynomials without M to construct
Equation (2.10) according to Equation (2.4b). If a row has more than one poly-
nomial having no M, select the first one;

8. Combine Equation (2.6) and Equation (2.10) to calculate instances x1 ∼ xn of
rules r1 ∼ rn.

Ce =


r1 r2 · · · rn

ob1 c11 c12 · · · c1n
ob2 c21 c22 · · · c2n

...
...

...
. . .

...
obm cm1 cm2 · · · cmn

 (2.5)


c11 ∗ x1 + · · ·+ c1n ∗ xn
c21 ∗ x1 + · · ·+ c2n ∗ xn

...
cm1 ∗ x1 + · · ·+ cmn ∗ xn

 ≤


Cob1

Cob2
...

Cobm

 (2.6)

Z =


sgn(c11) sgn(c12) · · · sgn(c1n)
sgn(c21) sgn(c22) · · · sgn(c2n)

...
...

. . .
...

sgn(cm1) sgn(cm2) · · · sgn(cmn)

 (2.7)

S =


c11 ∗ x1 + · · ·+ c1n ∗ xn + |u1|ob1 + M ∗ z11 · · · c11 ∗ x1 + · · ·+ c1n ∗ xn + |u1|ob1 + M ∗ z1n
c21 ∗ x1 + · · ·+ c2n ∗ xn + |u1|ob2 + M ∗ z21 · · · c21 ∗ x1 + · · ·+ c2n ∗ xn + |u1|ob2 + M ∗ z2n

...
...

...
cm1 ∗ x1 + · · ·+ cmn ∗ xn + |u1|obm + M ∗ zm1 · · · cm1 ∗ x1 + · · ·+ cmn ∗ xn + |u1|obm + M ∗ zmn

 (2.8)

sgn(x) =

{
1, x > 0
0, x = 0

(2.9)


c11 ∗ x1 + · · ·+ c1n ∗ xn + |u1|ob1

c21 ∗ x1 + · · ·+ c2n ∗ xn + |u1|ob2
...

cm1 ∗ x1 + · · ·+ cmn ∗ xn + |u1|obm

 ≥


Cob1 + 1
Cob2 + 1

...
Cobm + 1

 (2.10)

For some value of {|u1|ob1 , . . . , |um|obm}, there may be no solution after combining
Equation (2.6) and (2.10). At this time, randomly selecting another Cartesian product

2.3. Reduction the computation of P systems to multi-criteria optimization 25

may result to a solution. When substituting all the Cartesian products one by one,
the whole of solutions can be obtained. The CNS method asks for that coefficient
matrix Ce must have zero elements, or M cannot be canceled and no solutions can
be computed.

Example 2.15. Consider the system Π = (O, w1, R), with O = {a, b, c} and R = {r1 :
abc → ab; r2 : a → bb; r3 : b → cb}. Consider the configuration C = a2b3c2. One
applicable rule multiset can be calculated in line with the proposed CNS method as follows.

At first we can construct the coefficient matrix Ce,

Ce =

1 1 0
1 0 1
1 0 0


According to Equation (2.4a), we havex1 + x2

x1 + x3
x1

 ≤
2

3
2

 (2.11)

From C, |uk|a ∈ {1, 1, 0}, |uk|b ∈ {1, 0, 1}, |uk|c ∈ {1, 0, 0}. So {|uk|a, |uk|b, |uk|c} =
{1, 0, 1}×{1, 0, 1}×{1, 0, 0} = ({1, 1, 1}, {1, 1, 0}, {1, 0, 1}, {1, 0, 0}, {0, 1, 1}, {0, 1, 0},
{0, 0, 1}, {0, 0, 0}). Assume that the randomly selected Cartesian product is {|uk|a, |uk|b, |uk|c}
= {1, 1, 1}. Because all the non-zero elements in C are ones, matrix Z is the same as C. From
the left hand side of Equation (2.4b), we have

S =

x1 + x2 + 1 + M x1 + x2 + 1 + M x1 + x2 + 1
x1 + x3 + 1 + M x1 + x3 + 1 x1 + x2 + 1 + M

x1 + 1 + M x1 + 1 x1 + 1


Pick out elements without M, a system of inequalities can be built according to Equation

(2.4b), x1 + x2 + 1
x1 + x3 + 1

x1 + 1

 ≥
2 + 1

3 + 1
2 + 1

 (2.12)

Combine Equation (2.11) and (2.12), we can obtain Equation (2.13),
x1 + x2 = 2
x1 + x3 = 3
x1 = 2

(2.13)

Solving Equation (2.13), the solution is (x1, x2, x3) = (2, 0, 1). Its corresponding appli-
cable rule multiset is r2

1r3 which can be verified that it is a true solution conforming to the
max derivation mode. Selecting different values of {|uk|a, |uk|b, |uk|c} will lead to different
solutions. The random selection of the value of {|uk|a, |uk|b, |uk|c} can emulate the non-
determinism of P systems. Note that for some value, there may be no solution. For example,
for {|uk|a, |uk|b, |uk|c} = {1, 1, 0}, no solution can be obtained.

Note that all solutions of (2.4) might be tedious to obtain. For the simulation
purposes, only one such solution is necessary.

As previously mentioned, using the weighted sum scalarization technique it is
theoretically possible to reach any single point from the Pareto front by choosing

26 Chapter 2. Definitions

appropriate values of the parameter vector λ. However, by using equations (2.4b) it
becomes much easier to chose corresponding parameters as the feasible set which is
restricted only to Pareto-optimal values.

In the literature on P systems, there are other examples of the construction of a
single Pareto-optimal solution having certain properties. The direct non-deterministic
distribution (DND) algorithm introduced in [103] for the FPGA implementations is
such an example which can be explained in view of equations (2.1). First a random
rule permutation is computed (corresponding to a random permutation of variable
indices). Next, during the forward stage a random value (bounded by the number
of possible applications) for the number of each rule applications is taken. This cor-
responds to finding the values of xi, satisfying the constraints (2.1a). Finally, during
the backward stage, the frequency of each rule is increased until it cannot be applied
anymore. This step corresponds to the elimination of the dominated, i.e. smaller,
solutions for the system (2.1) yielding only Pareto-optimal ones.

The described procedure can also be seen as a combination of scalarizing and of
the lexicographic method, which is a method from the family of a priori methods for
multi-criteria optimization. More precisely, it corresponds to a solution of a series
of optimization problems, each of them bounded by the parameter corresponding
to the choice of the maximal rule multiplicity for the forward stage. The backward
stage also corresponds to a series of optimization problems that just reach the maxi-
mum for each component (like in the lexicographical method).

A simpler variant of the DND algorithm that does not perform the initial rule
permutation can be found in [105, 106, 107]. It is remarked that the algorithm
from [90] uses a different approach. It supposes that for a P system Π working in
the derivation mode δ there exists a function NBVariants(Π, C, δ) that for any con-
figuration C gives the number of solutions of (2.4). Next, it also supposes that there
exists a function Variant(Π, C, δ, n) that for each integer n (up to the corresponding
value) yields the corresponding solution (the used method is similar to the decoding
of a number in the combinatorial number system).

2.4 Wrap-up

Core definitions and concepts of this thesis are presented in this chapter, including
reaction systems and (symbol object cell-like) P systems. As a type of qualitative
model, reactions in RS have inhibitors and duration limits. These two restrictive
conditions plus the context sequence Ci control the transition of interactive process.
Rules in P systems do not possess inhibitors, as a type of quantitative model, they are
“constrained” by quantities of objects automatically. The interactive process transi-
tion of reaction systems and configuration transition of P systems are similar to some
extend since they are driven by set of applicable reactions/rules. The computation
of applicable rule sets of P systems is reduced to integer multi-criteria linear opti-
mization problem (IMCLOP) to elucidate it. A tentative approach is proposed to
address the IMCLOP.

27

Chapter 3

Overview of hardware
implementation of reaction
systems and P systems

For the sake of better explaining and understanding the work of this topic, the con-
cept of simulation and implementation should be clearly distinguished. As a general
purpose processing platform, the operation of CPU is not transparent to users. When
a CPU is used to process parallel computing models, it cannot be guaranteed that the
CPU strictly follows the theoretical calculation procedures of the model. Especially
when processing large scale models, the parallelism provided by the current CPU
multi-core architecture may not be enough to meet the practical needs. At this time,
CPU can only turn the parallel operation into serial operation, although correct re-
sults can also be obtained. However, its calculation process is different from that of
the model, and the parallelism is lost to some extent. This type of process is called
software simulation. On the other hand, if the CPU or GPU has powerful parallel pro-
cessing capability and can process models in exactly the parallel computing mode,
the parallelism of the model will not be damaged. This kind of process is called
software implementation. Computer software must rely on hardware to complete its
work. From the perspective of hardware, software simulation or implementation is
actually performed by CPU or GPU according to procedures defined by programs.

In effect, integrated circuits in processors execute operations in the bottom, rather
than programs. So it is desirable to design tailored parallel circuits to carry out op-
erations of a parallel computing model. This treatment is termed as hardware im-
plementation. If such circuits are manufactured, an application-specific integrated
circuits (ASIC) chip is obtained. Hardware implementation in this thesis empha-
sizes the design of circuits to process biologically inspired models. CPU/GPU sim-
ulation/implementation does not involving hardware circuit designs, for software
development languages such as C++, Java and other high-level languages are used
to develop corresponding programs to process reaction systems or P systems. Paral-
lel architectures inside CPU/GPU have been manufactured and cannot be reconfig-
ured. However, the hardware implementation uses hardware description languages
(HDL) to design circuits, requiring the knowledge of digital circuit design and hard-
ware architecture.

Because of the parallel processing capability of GPU and FPGA, they are used to
simulate the parallel computing models generally. At present, there have been re-
searches on GPU-based reaction system software implementations and FPGA-based
P system hardware implementations. To better understand these implementation
methods, it is necessary to take a closer look at both devices.

28
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

3.1 GPU presentation

Nowadays, multi-core architecture CPU is the mainstream. Whereas the component
integration scale of some High-end GPUs with many-core architecture has outpaced
the CPUs for the booming demand of graphics processing (advanced rendering and
3D vision) [108]. Different from FPGAs, there are manufactured parallel architec-
tures in GPUs. The advantage is that developers should just concern about the ef-
ficient utilization of these architectures and the drawback is that these frameworks
are un-reconfigurable.

Nevertheless, the GPU is not a general processing unit which can handle other
computing assignments except for graphics processing. The predicament has changed
for the arise of compute unified device architecture, known as CUDA, from the lead-
ing chip vendor-NVIDIA corporation. CUDA is a technology that enables general-
purpose computing on graphics processing units (GPGPU). A CUDA-enabled GPU is an
universal parallel computing device which is suitable for the implementing of par-
allel algorithm models. The parallel computing behavior of CUDA is based on the
execution of multiple compute kernels on the GPU. These compute kernels are with-
out physical construction, but based on an abstract parallel programming model. In
other words, CUDA does not alter the physical structure of GPU. CUDA program-
ming model is based on heterogeneous computing, where the CPU (host) is the master
node that controls the execution flow and launches kernels on the GPU (device) when
massive parallelism is required [109]. A kernel is executed by a grid of (thousands
of) threads. The grid is a two-level hierarchy, where threads are arranged into thread
blocks of equal size. Each block and each thread is unequivocally identified by an
identifier. In this way, threads and blocks can be distributed easily to different por-
tions of data, or to compute different instructions. Threads from the same block can
be synchronized using barriers, while those belonging to different blocks can only be
synchronized by the end of the execution of the kernel.

A GPU contains a global memory, which has the biggest size, but has the longest
access time and a shared memory, which is smaller but faster [108]. Although current
GPUs contain cache memories, in order to accelerate memory accesses, best perfor-
mance is achieved when doing it manually. Global memory is accessed by all threads
launched in all grids, and also by the host, but shared memory is only accessible by
threads in a block. Threads also have fast access to their own registers for single
variables, and local memory (which is normally outsourced to global memory). Ac-
cesses to memory have to be carefully programmed, so that contiguous portion of
data is read by consecutive threads (providing so called coalesced access), since this
increases the memory bandwidth utilization.

Now the architecture of GPUs is upgraded to Streaming Multiprocessors (SMs)
which are composed of an array of Streaming Processors (SPs), working as comput-
ing cores. A thread set consisting of 32 threads named warp is the basic unit which
a SM performs its executions. A SM can manage multiple warps which are based
on Single-Instruction Multiple-Thread (SIMT) model in effect. Each thread in a warp
should commence its processing at the identical program address concurrently, al-
though after beginning, threads can execute independently abiding by a sequential
manner. The parallelism of CUDA is terminated when a warp branches or the mem-
ory stalls [111]. The SM framework and its warp flow is shown in Figure 3.2.

3.1. GPU presentation 29

Host

Kernel 1
Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 0)

Block
(0, 0)

Block
(0, 1)

Grid 2

Kernel 2

Block (1, 1)

Thread
(0, 0)

Thread
(0, 1)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Grid

Block(0, 0)

Shared Memory

Register

Thread (0, 0)

Local
Memory

Thread (1, 0)

Register

Local
Memory

Global
Memory

Constant
Memory

Texture
Memory

Block(1, 0)

Shared Memory

Register

Thread (0, 0)

Local
Memory

Thread (1, 0)

Register

Local
Memory

FIGURE 3.1: (left) CUDA execution model, (right) CUDA memory
model [110].

Streaming
Multiprocessor (SM)

I cache

MT issue

C cache

SP SP

SP SP

SFU SFU

Shared
Memory

SM instruction
scheduler

Wrap 6, instruction 14

Wrap 3, instruction 60

Wrap 11, instruction 4

Wrap 6, instruction 15

Wrap 11, instruction 5

Wrap 3, instruction 61

Time

FIGURE 3.2: A SM is composed of an array of SPs, shared memory
and a couple of caches. A Multiple-Thread tissue module contains a
SM instruction scheduler which conducts instruction flows [112].

30
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

Q5 Q6

Q1 Q2

Q3 Q4

BLB BL
WL

FIGURE 3.3: A 6T CMOS SRAM cell [115].

3.2 FPGA presentation

Filed programmable gate array (FPGA) is a type of reconfigurable integrated cir-
cuits stemming from programmable logic devices (PLDs). Programmable read-only
memory (PROM) that came into being at 1970 [113] is regarded as the first PLD.
From this simple device, it takes 14 years to evolve to the FPGA, when Xilinx Inc.
invented such devices in 1984.

Classifying according to reconfigurable techniques underlying programmability
of FPGAs, there are anti-fuse based FPGA, static random access memory (SRAM)
based FPGA, electrical erasable programmable read-only memory (EEPROM) based
and FLASH (which is a derivative of erasable programmable read-only memory
(EPROM) with fast erasing process) based FPGA. Details of these technologies can
be found in [114]. SRAM based FPGAs are the mainstream, thus this technology is
revealed in detail.

3.2.1 FPGA architecture

The SRAM is a memory which can be constructed by 4 transistors (called 4T SRAM)
or 6 transistors (termed 6T SRAM). A 6T complementary metal oxide semiconduc-
tor based SRAM is diagrammatically presented in Figure 3.3. The main upsides of
SRAMs are their fast programmability, no limitation of reconfiguration times, apart
from they are manufactured by the same CMOS technology employed to fabricate
integrated circuits (ICs). The fact that a SRAM is composed of 4 or 6 transistors in-
dicates that it occupies large chip area. This adversity is exacerbated for SRAM’s
volatility, which means data stored inside is lost when the power is cut off. To re-
program it after the host system is booted, an on-board microprocessor or external
memory device which will consume more chip areas is required. These negative
facets comprise the downside of SRAMs.

Different FPGA purveyors devised different architectures and components of
FPGA. What makes things more confusing is that these components have unique
names, although their physical structures and functions are similar. As can imagine,
terminologies for FPGA of one vendor cannot be understood well for people who
use products from another company. So it is difficult to portray FPGA from a gen-
eral point of view. Xilinx FPGA architecture is exemplified to expound its internal
structures for I employ FPGAs purchased from this company. The basic component
of Xilinx FPGAs is entailed as logic cell, which is arranged in a way named look-up
table (LUT). Take a Boolean expression y = (ā ∧ b) ∨ c̄ as an example to explain how

3.2. FPGA presentation 31

TABLE 3.1: Truth table of y = (ā ∧ b) ∨ c̄.

a b c y

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

a LUT in logic cells works. The truth table of this expression is shown in Table 3.1.
The 8 binary values in column y are programmed in 8 SRAMs when y = (ā ∧ b) ∨ c̄
is detected to be executed. A storage element is needed to hold state [66] in the cir-
cumstance of designing sequential circuits where clock signal is indispensable. As
a consequence, a D flip-flop is added besides the column of 8 SRAMs. Which value
will be output is determined by the input combinations of abc. A 8-input-1-out mul-
tiplexer is used to output the result according to inputs. If the function of a Boolean
expression changes, just reprogram values in the 8 SRAMs to redefine it. Typically,
2 logic cells are assembled in a higher hierarchy called slice, which is illustrated in
Figure 3.4.

This construction of a cell is termed as 3-input LUT (3-LUT for short hereinafter)
in which results are calculated by consulting a truth table associated with the desired
function with 3 input variables. The number of input ports of a LUT varies from 3 to
6. As a memory device, a SRAM based 3-LUT is versatile to be used as 8× 1 bit RAM
or 8-bit shift register (SR). The reconfigurability of a FPGA primarily originates from
the programmability of interconnects wiring different slices. Programmable connec-
tions and switches are organized in particular blocks linking to output of multiplex-
ers of logic cells. These combinations of connections can build highly interconnected
wires, as captured in Fifure 3.5, to carry out sophisticated functionality/algorithms.

In digital electronics, a clock is a signal oscillating between high and low elec-
trical level. In low-cost electronic product like an ordinary micro-controller, clock
signal, commonly called as clock, is generated by a resistance capacitance (RC) os-
cillator [116, 117]. While for high-end IC products like an FPGA, a clock generally
starts off with a quartz crystal resonator [118], which is a small slice of quartz crystal
combined with integral amplifier circuits [119]. The oscillating frequency of a quartz
crystal is determined by the shape and size of the crystal slice. The main advantage
of this quartz crystal is its tolerability to temperature variation, outputting more sta-
ble frequency when temperature highs and lows comparing to RC oscillator.

The importance of clocks is that their signal is employed as a kind of metronome
to trigger so to synchronize operations in circuits. There are two types of trigger
modes in digital circuits: edge trigger and level trigger. Edge means the transition
from high level to low level and vice versa, corresponding to falling edge and ris-
ing edge respectively. Level trigger is more intelligible that operations are executed
when the voltage is high level or low level. The time interval between two rising (or
falling) edge is called clock cycle, which is a time constant numbered by the previous
rising edge’s sequence number. Then the clock cycle adjacent before and after nth
rising edge are the (n-1)th and nth time cycle. It is highlighted here that clock rising
edge is used as trigger signal in researches of this thesis.

32
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

0
SRAM

0
SRAM

000

001

0
SRAM 010

0
SRAM 011

1
SRAM 100

1
SRAM 101

0
SRAM 110

1
SRAM 111

8
:1 M

u
ltip

lexerD Q

clk

D flip-flop

1
SR

A
M

1
SR

A
M

00
0

00
1

1
SR

A
M

0
10

0
SR

A
M

0
1

1

1
SR

A
M

10
0

1
SR

A
M

1
01

1
SR

A
M

11
0

1
SR

A
M

11
1

8:1 Multiplexer

D
Q

cl
k D flip-flop

Connection block

Programmable
connection

Switching block

Programmable
switch

a
b
c

a
b
c

Slice1
()y a b c  

2
y a b c  

FIGURE 3.4: A slice containing 2 logic cells. These 2 logical cells per-
form y1 = a ∧ (b̄ ∨ c) and y2 = a ∨ b̄ ∨ c̄ respectively.

3.2. FPGA presentation 33

0
SRAM

0
SRAM

000

001

0
SRAM 010

1
SRAM 011

0
SRAM 100

0
SRAM 101

0
SRAM 110

0
SRAM 111

8
:1 M

u
ltip

lexerD Q

clk

D flip-flop

1
SR

A
M

0
SR

A
M

00
0

00
1

1
SR

A
M

0
10

0
SR

A
M

0
1

1

0
SR

A
M

10
0

0
SR

A
M

1
01

1
SR

A
M

11
0

0
SR

A
M

11
1

8:1 Multiplexer

D
Q

cl
k D flip-flop

1
SRAM

0
SRAM

000

001

1
SRAM 010

0
SRAM 011

0
SRAM 100

0
SRAM 101

1
SRAM 110

0
SRAM 111

8
:1 M

u
ltip

lexerD Q

clk

D flip-flop

0
SR

A
M

0
SR

A
M

0
0

0

0
0

1

0
SR

A
M

 0
1

0

1
SR

A
M

0
1

1

0
SR

A
M

10
0

0
SR

A
M

1
0

1

0
SR

A
M

1
1

0

0
SR

A
M

1
1

1

8:1 Multiplexer

D
Q

cl
k D flip-flop

1
SRAM

1
SRAM

000

001

1
SRAM 010

0
SRAM 011

1
SRAM 100

1
SRAM 101

1
SRAM 110

1
SRAM 111

8
:1 M

u
ltip

lexerD Q

clk

D flip-flop

0
SR

A
M

0
SR

A
M

00
0

00
1

0
SR

A
M

0
10

1
SR

A
M

0
1

1

0
SR

A
M

10
0

0
SR

A
M

1
01

0
SR

A
M

11
0

0
SR

A
M

11
1

8:1 Multiplexer

D
Q

cl
k D flip-flop

0
SRAM

0
SRAM

000

001

0
SRAM 010

0
SRAM 011

1
SRAM 100

1
SRAM 101

0
SRAM 110

1
SRAM 111

8
:1 M

u
ltip

lexerD Q

clk

D flip-flop

1
SR

A
M

1
SR

A
M

00
0

00
1

1
SR

A
M

0
10

0
SR

A
M

0
11

1
SR

A
M

10
0

1
SR

A
M

1
01

1
SR

A
M

11
0

1
SR

A
M

11
1

8:1 Multiplexer

D
Q

cl
k D flip-flop

0
SRAM

0
SRAM

000

001

0
SRAM 010

0
SRAM 011

1
SRAM 100

1
SRAM 101

0
SRAM 110

1
SRAM 111

8
:1 M

u
ltip

lexerD Q

clk

D flip-flop

1
SR

A
M

0
SR

A
M

00
0

00
1

1
SR

A
M

0
10

0
SR

A
M

0
1

1

0
SR

A
M

10
0

0
SR

A
M

1
01

1
SR

A
M

11
0

0
SR

A
M

11
1

8:1 Multiplexer

D
Q

cl
k D flip-flop

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

1
()y a b c  

2
y a b c  

1
()y a b c   3

y a b c  

4
()y a b c  

4
()y a b c  

3
y a b c  

2
y a b c  

4
()y a b c  

3
y a b c  

FIGURE 3.5: The interconnection of 5 slices. Connection blocks (CBs)
and switching blocks (SBs) impart highly flexibility for FPGAs to re-
configure their architectures to perform various functions. The CB
and SB can contain much more intersection points than that depicted
in this figure.

34
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

Synchronous elements having clock ports such as flip-flop can be connected to
the same clock. If this clock is shared by a plenty of synchronous elements, it is
branched many times, resulting a clock tree [113]. All these elements connected to
the clock tree are triggered simultaneously if they are activated by the same clock
edge. This is the source of the massively parallel processing ability of FPGAs.

3.2.2 FPGA development flow

With the digital circuit scale increases rapidly after the invention of transistors in
Bell laboratory in 1947 [120], and as the scale of digital circuits increase dramatically,
obeying the Moore’s laws loosely in the past decades, drawing the schematic to de-
sign large scale circuits is infeasible. Characterizing the functionality of circuitry
with hardware description language (HDL) then compiling this characterization to
schematic is the core task of electronic design automation (EDA). With EDA tech-
nology, designing large scale digital circuits in a relatively short period had became
reality.

Digital systems consist of combinatorial and sequential logic components which
contain registers, clocks and their control mechanisms. For example, a flip-flop com-
prises a register which can perform elementary operations including load, count and
shift operations. Register transfer operations refer to operations aiming at data stored
in registers [121]. If a digital system is designed by registers, involving register trans-
fer operations and control procedures to these operations, then the digital system is
illustrated at register transfer level and a register transfer level model is obtained con-
sequently [122, 123, 124]. Register transfer level has a higher abstraction than gate
level, which specifies models in the form of schematics.

FPGA development flow commences from RTL model design, ending up with
results checking performed by integrated logic analyzer or oscilloscope. This pro-
cess varies with different developing software provided by different FPGA purvey-
ors. As Xilinx FPGAs are selected to implement computing models, the developing
software is Vivado [125] FPGA integrated development environment (IDE) which is
a new generation of IDE released by Xilinx since 2012. Vivado based development
flow [126] is expatiated as follows. Other IDE based development processes pro-
vided by different vendors are similar in essentials while differing in minor points.

RTL model design [127]. RTL models are specified by HDL such as VHDL and Ver-
ilog specification languages. Verilog is used to design RTLs in this thesis. Verilog,
initiated by Phil Moorby in 1985, is a IEEE standard HDL since 1995. The basic func-
tional unit in Verilog is module. The functionality of a system is distributed among
nested modules since a module can instantiate others modules to incorporate them
[128]. A module is a functional block with input and output ports through which it
receives data and sends outcomes from/to other modules.

RTL models should be verified to meet design requirements. The validation pro-
cedure is called functional simulation. In Verilog, a special module named testbench
is designed to validate RTL models. In such a module, a target RTL model is in-
stantiated and imposed specific input signals. The outcome of testbench in form
of waveform or plain text tells the accuracy of this model. It is remarked that test-
bench just performs software simulation of RTL models, which means the execution
of RTL model is conducted by CPU of host computer rather than on the adopted
FPGA. Functional simulation is also called behavioral simulation [129, 130]. This sim-
ulation neglects the latency when signals pass through logic gates so that results
are obtained at the trigger time, i.e., at the rising edge of clock. It is not the case

3.2. FPGA presentation 35

when variables are processed by real digital circuits in FPGA where operations are
triggered by clock edges and complete after some time interval.

Synthesis [131]. The impractical of designing large scale circuits with schematics
does not mean that schematics are not important. In fact, schematics of circuits are
the ultimate goal of design specification phase for ICs and ASICs. For FPGA imple-
mentation, the corresponding schematics are needed as well for programmable logic
blocks that are configured to perform the functions of these schematics, although
the actual the layout in a FPGA is not the circuits. After verification of circuits,
the schematics will be used to manufacture hardware integrated circuits in silicon
wafers. A compilation process from register transfer level to schematic level termed
synthesis is responsible for the automatically drawing of schematics. RTL models are
reliably synthesizable inputs for synthesis tools supplied by a variety of vendors.

Setting up physical constraints and timing constraints [132, 133] are the two sub-
sequent procedures after synthesizing RTL models. Physical constraints assign ports
in RTL model to FPGA pins so that signal input & output course can be carried out
on real circuits. Timing constraints set the period of the clock source (a RC oscillator
or a quartz crystal resonator), and signal input & output delay so that a real clock
with specified cycle will be produced. The package view of target FPGA which list
all the available pins can be opened under I/O Planning view of Vivado. For vec-
tor ports (more than one bit), each bit should be assigned a pin. Clock signal is a
1-bit scalar which demands one pin, while a differential clock requires two pins to
accommodate 2 differential ports.

Results computed by FPGA are not shown straightforwardly like software sim-
ulations, but involve a technical procedure named hardware debug to examine. Hard-
ware debug procedure can penetrate the results stored in registers of FPGA. Vari-
ables to be debugged should be marked in the RTL code or in the netlist generated
after synthesis. Then it is needed to set up debug cores in the synthesized model.
Vivado will probe these marked signals and show their values via integrated logi-
cal analyzer (ILA), a virtual software logical analyzer. Alternatively, it is possible to
output the results from a pin and then analyze using an oscilloscope. Or send re-
sults with some communication method, like serial port communication, to the host
computer to display. But much more efforts are involved by this way.

Implementation [134]. Several optimizations and important tasks such as physi-
cal synthesis, static timing analysis and layout (place & route) are performed during
implementation step, as shown in Figure 3.6. The good news is that these operations
are executed by Vivado automatically. A important simulation after implementing is
post implementation timing simulation which reflects the real elapsed time of phys-
ical circuit running since the time delay of logic elements and data paths are taken
into account. Consequently, performance of a design can only be revealed by post
implementation timing simulation. It might also be noted that only Verilog HDL is
supported by Vivado to do post implementation timing simulation [135].

Generate bitstream, device program and hardware debug [136, 137] If post imple-
mentation timing simulation meets design requirements, FPGA configuration file,
bitstream file, can be generated. Bitstream file contains all the design contents and
will be downloaded to FPGA to program it, i.e., downloading bitstream file to con-
figure device. After programing of target FPGA, the dashboard of integrated logical
analyzer opens automatically. The marked variables should be added in to show

36
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

RTL model design

Behavioral simulation

Set physical constraints

Model synthesis

Set timing constraints

Setup debug cores

Post synthesis
functional/timing

simulation

Implementation

Netlist optimization

Power optimization

Physical synthesis

Static timing analysis

Post implementation
functional/timing

simulation

Generate bitstream

Device programming

Hardware debug

Place & route

Power consumption

FIGURE 3.6: Vivado FPGA development flow.

their values obtained in hexadecimal form by FPGA. The whole development flow
is given in Figure 3.6.

3.3 Software simulation and implementation of reaction sys-
tems: an overview

For the present, hardware implementation of reaction systems has not been reported.
So only software simulation is reviewed. From the point of hardware, a software
simulation is performed by the CPU of host computer. Compute unified device ar-
chitecture (CUDA) enabled GPU [138, 109] implementations also belong to software
simulation taking into account that GPUs are programmed by software languages
like C++ rather than HDLs. Furthermore, hardware architectures inside a GPU are
prefabricated which are not reconfigurable. Nowadays, CUDA-enabled GPUs are
powerful processing platforms which execute myriad threads in parallel.

3.3.1 CPU simulation of reaction systems

A reaction system simulation engine brsim implemented in Haskell is developed
in [139]. For its native compilation trait, the efficiency of Haskell is higher than lan-
guages needing interpretation, like Python. Based on this engine, a browser-based
version WEBRSIM coded in PHP and JavaScript is proposed [140, 141]. In addition

3.3. Software simulation and implementation of reaction systems: an overview 37

to simulating RSs by inputting the set of reactions defining a concrete reaction sys-
tem and corresponding context sequence Ci, brsim has the ability to output con-
served sets [142], behavior graph and conservation dependency graph of the target
RS. brsim supports bath mode in which the state sequence Wi going through is
listed and step-by-step mode in which a single Ci can be input to drive RS and out-
put consequential Wi. The source code of brsim is provided in [143].

Another untitled software tool implemented in C++ which verifies initialized
context restricted reaction system (icrrs) and computation tree logic for reaction sys-
tems (rsCTL) properties is devised in [144]. This tool is designed based on mono-
lithic/partitioned encoding mode and binary decision diagrams (BDDs), dealing
with the transition relations of interactive process. The elapsed time/consumed
memories–model size curves of four case studies are plotted to explicitly exhibit
the tool performance. Experimental results show that monolithic encoding has bet-
ter performance than partitioned encoding, although the latter one may has better
memory efficiency.

3.3.2 GPU implementation of reaction systems

One GPU-based implementation of reaction systems written in CUDA, Highly Effi-
cient REaction SYstem simulator (HERESY), is present in [145]. HERESY [146] has
a CPU-based engine coded in Python to cope with simulations of small-scale RSs
whose entities (reactants, inhibitors and products in reactions involved) are less than
100. The decision of choosing which engine to use is made by HERESY itself without
manual intervention. The simulating process of HERESY is a iteration consisting of
four steps. Reaction set, context sequence Ci and initial reactants are loaded in GPU
in the first step which is performed by host CPU. Then add the context elements of
the n-th step to the RS. Assume S is the background set, a number of |S| threads are
allocated to execute memory updating of |S| reactants. In the third step, evaluate
T′ = resR(T), where T is the initial state of target RS. At last, |S| threads are em-
ployed to store the transition of interactive process. Bump step counter up by one
until the predefined step number is reached.

It is a fine-grained parallel implementation of RS since every applicable reaction
in each step is executed by distinct parallel threads of GPU. Reactions are saved in
the constant memory instead of global memory so that the access latency declines
to a large extend. To be specific, reactions are encoded as 3 sets of positive integers
indicating Rr, Ir and Pr respectively. These sets are arranged into an one-dimension
array to facilitate to be processed on GPU. Entities produced in state sequence Wi
are output to represent the interactive process. The handy GUI of HERESY makes it
easier to use for reactions and context sequence specification can be typed in differ-
ent boxes in the upper part and interactive process is shown in the lower part of the
GUI.

The correctness of HERESY is validated by simulating lac operon reaction sys-
tem [147]. A serial of reaction systems whose sizes range from |S| × |A| ∈ (10×
10, 100× 100, 1000× 1000, 2000× 2000) are generated randomly to evaluate the per-
formance of GPU-based HERESY and its speed-up comparing to brsim and CPU-
based HERESY. The maximal speed-up of HERESY GPU/CPU and HERESY GPU/brsim
achieved are 29.06× and 5.19× simulating the |S| × |A| = 2000× 2000 RS.

HERESY is put into a practical application to simulate the ErbB receptor signal
transduction in human mammary epithelial cells [148] which is modeled as a RS
with 6720 reactions and 246 entities. Providing that the context sequence Ci drives

38
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

1000 step of interactive process, the speed-up of HERESY GPU/CPU is 26.28×while
the speed-up of HERESY GPU/brsim is 10.97×.

3.4 Background of hardware implementations of P systems

Due to its historical background, P systems were used as a modeling framework for
biological and ecological subjects. On the other hand, the inherent large scale par-
allelism of P systems has the profound potential for the progress of extreme data
processing. Thus, an interesting topic is the implementation of P systems on con-
temporary silicon integrated circuits. This allows to exploit the desirable parallel
computational capability of P systems to explore a new orientation for high perfor-
mance computing (HPC) [149, 150].

The augmentation of electronic ingredients’ density had been subject to the well-
known Moore’s law for decades. After extraordinary exponential growth of many
years, the number of transistor in chips cannot follow this law, at least it cannot be
doubled within two years [151, 152]. With transistors shrunk to nanoscale, quantum
effects stand out [153], the behavior of circuits is not up to expectations. Another
knotty problem is the heat dissipation, which would melt the silicon substrate with
density level increasing. Traditional semiconductor scaling is predicted to reach an
end by about 2024 on the foundation of prior arts [154]. Parallel computing has the
potential to further uplift computing power provided that the density of transistor
is constant [155] with multicore and multithread architecture, although heat dissipa-
tion and interconnect issues would be challenges [156].

Before claiming that the era of parallel computing has dawned, one essential
question should be clarified: what does parallel computing mean? Though not rigor-
ous, parallel computing implies computing based on decomposition of concurrently
executable operations into some type of construct and assignment of operations
to parallel processing nodes. The evolution of computer processor scheme, from
single-core single CPU to multiple-core single CPU and multiple-core multiple-CPU
frame, is a instance of parallel computing. In this sense, the inherent parallelism
infers that P systems belong to parallel computing domain. What constituents work
as processing nodes will give rise to different implementing strategies. The way
how living cells allocate, organize and coordinate processing nodes has evolved for
billions of years. Investigating this magnificent course will illuminate us to handle
the multiple cores computing, which has cut a striking figure in the contemporary
parallel computing realm.

The large scale distributed parallel process occurring in vesicle compartments
and the vesicle division functionality enlightened from mitosis of living cells which
increase the artificial cells exponentially are two of the most outstanding advantages
of membrane computing that would underlie the foundation for the construction of
highly parallel computation platform whose performance, flexibility and scalabil-
ity outperforms traditional sequential counterparts substantially [157]. As a parallel
computing paradigm inspired by the structural and functional features of biological
cells/membranes, only the parallel computing platforms are suitable for the imple-
mentation of P systems with respect to the fact that the limited parallelism of general
computers realized by the communication mechanism among the multiple cores of
CPU cannot make full use of the large scale parallelism, non-determinism and other
particular attributes that impart an enormous computing potential like creation and
dissolution of inner membranes, self-replication or autopoiesis [158] of the whole cell-
like entirety that works as a computing unit, the symport and antiport of objects, etc.

3.5. General ideas about hardware implementations of P systems 39

Implementing this new computing paradigm which exhibits a promising prospect
on parallel platforms so that can utilize the excellent theoretical performance for
practical applications is the purpose. It is remarked that programming the mem-
brane computing algorithms with high level general purpose language and execut-
ing them on the computer is just simulating, not real implementing [46] of P systems.

Software-based and hardware-based parallel computing platforms had been de-
veloped for implementing P systems. A software-based parallel computing plat-
form is constructed on a cluster of computers [159]. This platform achieves good
performance and flexibility for which CPUs execute the operations and the chang-
ing of subjects carries out easily by programs. Nonetheless, with the size of target
P system increasing, the time and CPU resources expenditure caused by the com-
munications of different computers are rising dramatically. Moreover, the under-
lying hardware (a cluster of computers) of this platform cannot be miniaturized so
that membrane computing algorithms cannot be utilized in embedded chips and
compact controllers which can be employed in robots, automobiles, machine tools,
etc. This disadvantage limits the range of applications of membrane computing.
However, hardware-based platforms are fabricated on integrated circuits (mainly
on FPGAs). In this case, P systems are mapped to digital circuits and the perfor-
mance is much higher compared with the software-based platforms, although this
high performance may come at the cost of flexibility and extensibility. But the repro-
grammable hardware turns the corner, lifting barriers to devise portable and embed-
ded membrane processors which can be used as CPUs, controllers or something like
that. This is the necessity and importance of hardware implementation of P systems.

Hence, it is important to propose hardware implementations of P systems as spe-
cific architectures that do not have the drawbacks related to the traditional ways of
implementation. The principal direction for such researches FPGA implementation
in which new parallel circuits are specially designed to implement some variants of
P systems.

The core problem for the implementations is the object distribution problem (ODP)
that computes the multiset of applicable rules based on current configuration to
transform it to the next. This problem is a particular variant of a more general prob-
lem that computes the applicable set of multisets of rules for a configuration and it is
known to be NP-complete [101]. We recall that in the general case the model is non-
deterministic, so an equitable choice among different possibilities should be pro-
vided. Known algorithms and heuristics do not parallelize well, so special heuristics
were developed in order to quickly compute the desired multiset of rules.

3.5 General ideas about hardware implementations of P sys-
tems

The discussion about hardware implementation of P systems concerns mainly the
simulation of concrete variants (sometimes even examples) of P systems using a
dedicated hardware (FPGA). In most of the cases a (single) particular class of P sys-
tems is simulated. The simulator is composed from two parts: (1) the hardware
simulator for a concrete system and (2) the software generator of hardware simula-
tors, which based on input parameters (rules, membranes, initial configuration etc.)
generates the code for the dedicated hardware simulator. This section mainly dis-
cusses the structure of the corresponding hardware simulators, as the generator part
is more-or-less following standard compiler construction techniques. I will concen-
trate on three points, which are the most important for a hardware implementation:

40
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

(a) the representation of the configuration (multisets of objects and the membranes),
(b) the representation of rules and their parallel application and (c) handling of the
non-determinism.

3.5.1 Data organization

Membranes. There are no compartments in silicon circuits, hence the notion of
membranes is relatively difficult to represent directly. Nevertheless, according to [46],
a membrane is just an idealized concept without internal structures. The main func-
tionality of membranes is to perform a topological division of the space allowing P
systems to compute in a distributed manner (based on an correspondence between
the membrane and its contents). Hence, the spatial placement and size of mem-
brane are not important, only the inter-relationship among them matters. Moreover,
it is known that any membrane structure can be reduced (flattened) to just a single
membrane, see [91, 94] for more details. The existing hardware simulators adapt
in most cases this last point of view, where the membrane structure is not physi-
cally implemented on the device. As examples from this rule we cite [160] and [161]
(region-based), which implicitly implement the membrane topology by using dedi-
cated buses and message passing in the corresponding circuits.

Configuration. The representation of the configuration in all cases is done as a
vector of non-negative integers (stored in the memory/registers of the device). We
remark that this vector corresponds to a flattened system, so it is relatively big and
sparse, as it encodes each object/membrane pair. For performance reasons, it is
physically split in several places to be closer to the processing units (as routing is
relatively expensive). In the case of [160, 161] it can be argued that corresponding
parts are internalized into the corresponding region circuit, as the access to corre-
sponding values is not direct and it is done by message passing.

Evolution Rules. As it can be seen from definition 2.9 in the simple case (with-
out permitting and forbidding) rules can be defined by 2 integer vectors indicating
the multiplicities of corresponding objects in the left-hand-side and right-hand-side
of each rule. This gives a natural rule representation as two vectors stored in the
memory/registers. Then a specific circuit/module verifies the applicability of rules
and performs their application. Most variants of hardware implementations use this
idea, however in [160, 162, 163] each rule is encoded in hardware as a specific circuit
that verifies the needed resources and performs the rule application.

3.5.2 Object Distribution Problem and Non-Determinism

The hardware implementation of P systems faces the problem of the computation of
the applicable rule set according to some derivation mode (usually maximally par-
allel). More precisely, an efficient way to compute and represent an element from
Applicable(Π, C, δ) is required [90, 164]. The difficulty of the problem is that rules
can compete for same objects, so increasing the number of occurrences for one rule,
may decrease the application possibilities for another one. Another important prob-
lem is to ensure that a non-deterministic choice among all possibilities is performed.
In [165, 166, 167, 105], hardware architectures aiming at parallel processing and com-
munication, and the application of rules are developed. In [168], a formal exposition
of non-deterministic evolution in transition P systems was suggested.

3.5. General ideas about hardware implementations of P systems 41

The first problem is called as object distribution problem (ODP). It consists in the
computation of the set Applicable(Π, C, δ) (or of an element from this set). As dis-
cussed in Section 2.3 in terms of multi-criteria optimization this corresponds to the
computation of the corresponding Pareto front (or an element of it).

In [103] different algorithms solving ODP are classified in direct and indirect ones.
In the direct approach, the corresponding multiset is directly constructed by the al-
gorithm. In terms of MCOP this corresponds to a particular fixed scalarization. The
indirect approaches are based on the observation that the solution number is finite,
because the solution space is bounded by the size of the configuration. Hence, a
heuristic or brute-force approach can be used to explore this bounded space. How-
ever, since it is an overestimation, there might be visited elements that are not valid
solutions. Hence, the algorithms are iterative and explore the whole space until
a valid solution is encountered. In terms of MCOP this corresponds to different
searches through the space limited only by the maximal values for each axis.

Sometimes it is not easy to classify an algorithm in one of these categories. Here
classify an algorithm as a direct approach if its main goal is to construct a valid
multiset of rules. Otherwise, if an algorithm is exploring different solutions until it
reaches a valid one, it will be classified as indirect. We will use this classification to
overview different strategies for ODP solution known in the literature.

Indirect approaches. Generally, the enumeration of all possible solutions and their
verification one by one until a correct solution is obtained is the simplest method
for the indirect approach [169]. Before the first correct solution is obtained, some
invalid solutions should be rejected. This approach is called indirect straightforward
approach [103]. Taking into account that it is not viable to enumerate all possible
solutions for many problems, the feasibility of the approach is low. However, the
performance of the algorithm suggests its use as to compute the floor values for the
object distribution problem. Another indirect approach discussed in [103, 161] called
indirect incremental approach investigates a strategy generating possible solutions in
rounds. Other attempts based on a similar idea but with different rule elimination
strategies were done in [170, 171, 107, 172, 173, 174].

Direct approaches. In contrast to indirect approaches, the direct approach fabri-
cates a solution straightforwardly rather than identifying a number of possible solu-
tions before a solution is confirmed.

The simplest approach is the direct straightforward approach. As defined in the pa-
per [103], in this approach “all the solutions to the object distribution problem are
given as input, and one of these solutions is simply selected at random”. While in
the same paper it is argued that such approach is infeasible for an arbitrary config-
uration and rule types, it can still be applied in a big number of cases. As shown
in [90, 164], if at each step the number of solutions can be expressed as a the number
of words of some length in a regular language, then it becomes possible to compute
the solution only based on its number. In [90] it is shown that the corresponding
class of P systems is quite large and also that this method is particularly interest-
ing for bounded derivation modes like the set-maximal derivation mode (called also
flat mode) where the rules are chosen in a set-maximal way (instead of the multiset
maximal way).

Another variant of the direct approach is the Direct Non-deterministic Distribution
algorithm (DND) proposed in [103]. A similar algorithm can also be found in [175,
176]. This algorithm works in 2 phases. At the first phase all rules (initially randomly

42
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

shuffled) except one are selected to be applied a random number of times below
its maximal applicability value. In the second phase, all the rules are taken in the
converse order (with the first one being the rule excluded at the previous step) and
their applicability is increased up to the maximal still possible value. A variant of
DND, named DND-P, became popular in the simulation of Population Dynamics P
(PDP) systems [177]. Together with another algorithm DCBA [178] it was employed
for the engine of the PDP system simulator on CUDA [179].

Non-determinism. One of the difficulties of the above approaches is the handling
of the non-determinism. From the formal point of view, the non-determinism corre-
sponds to a random equiprobable choice of an element from the set of all applicable
multisets of rules (Applicable(Π, C, δ)). In the case of indirect approaches, due to
the iterative nature of the algorithms, it is not easy to argue that each possibility has
the same probability to occur. We would state that solutions containing a smaller
number of different rules have a higher chance to be selected. In the case of DND
algorithm and related variants, it looks like the obtained solution tends to be an
equiprobable choice. However, the corresponding articles do not give such a proof
and there are some unclear points, which do not allow us to affirm this fact. Up to
now, the only algorithm that is performing a truly non-deterministic choice is the
one described in [164, 90]. However the corresponding implementation is limited to
some particular derivation modes and particular classes of P systems.

3.6 Literature review of existing P system FPGA implemen-
tations

With the advent of reconfigurable hardware which realizes the idea of modifying the
hardware circuits by programming, conceiving a novel circuit simulating an innova-
tive processing paradigm is no longer an exceedingly hard task. The first attempt to
use FPGA reconfigurable hardware to simulate P systems dates back to 2003 [160].
Since then two simulation approaches emerged, considering regions or rules as basic
processing units.

3.6.1 Region-based implementation

In the region-based simulation approach rules and objects from different membranes
are physically located in different places of the circuit, while those from the same
membrane are physically close and well connected. The biggest problem is to ensure
the correct communication of objects between membranes as this requires a global
level synchronization. As advantage, the obtained system is highly scalable and
robust. Below, we give two examples of region-based simulations.

In contrast, the rule-based implementation approach discussed later explicitly
represents the evolution rules as processing units and multisets of objects as register
arrays, while membranes and regions are represented implicitly as logical construc-
tions existing between those processing units and data structures.

Petreska and Teuscher implementation

As the spearhead of simulating membrane computing on FPGA, some groundbreak-
ing matters had been devised by Petreska and Teuscher. For instance, trading com-
munication for membrane containment relations, taking the priorities of rules into

3.6. Literature review of existing P system FPGA implementations 43

account, proposing the first attempt to simulate membrane creation and dissolv-
ing mechanism in integrated circuits [160], etc. Their outstanding achievements in-
spired the successors to engage in this challenging and breathtaking field to advance
the development of hardware simulation of P systems. For the sake of precision of
the general model, a P system is modified in two aspects: the application of evolu-
tion rules in each membrane is not done in a maximally parallel but in a sequential
manner (but still keeping a parallelism at the system level); the non-deterministic
evolution of configuration is substituted by a definite transition following a prede-
termined order. This corresponds to an integer linear programming (ILP) with the
subject function as a weighted sum of variables with predefined fixed weights.

In theory, membranes are borders without internal structures and material con-
sistence. In this implementation, membrane structures are replaced by the enclosed
substances, i.e., the multisets of objects, evolution rules and children membrane
architectures. The objects exchange among membranes is a kind of bi-directional
traversing behavior. In case of the possible objects exchange invoked in subsequent
steps, the communications realized by data buses connecting to different parts of
hardware are prearranged in all containment cases. The interconnections are in di-
rect proportion to inner membranes. To avoid the multiple buses used to connect the
upper-immediate membrane to its plural lower-immediate membranes, a bus links
all the children membranes before it connects to the upper-immediate membrane.
The communication only presents between upper-immediate membrane and lower-
immediate membranes. There are no objects exchange among children membranes
or non-immediate contained membranes. In general, a membrane of P system cor-
responding to an area of integrated circuits storing objects specifying multisets of
objects and sets of rules. The containment relation of immediate-include membranes
is substituted by a bus connecting them.

The representation of the multisets of objects is implemented by using registers.
Different registers just preserve different multiplicities of objects. A register does not
store the objects but only the vector of numbers indicating the multiplicity of each
object. The order of these registers is in accordance with the lexicographic order of
the alphabet of objects. The recognizing of an object is indirectly realized by exam-
ining the position of the register storing the multiplicity of this object. An evolution
rule defined here is in the form of u→ v(v1, ini)(v2, out), where v1 is the string to be
sent into lower-immediate membrane labeled i, v2 will be sent to upper-immediate
membrane. The treatment employed to deal with the formulation of evolution rules
is storing the rule’s left-hand side and right-hand side into different registers sepa-
rately. A particular module is designed to determine whether a rule is applicable.
This module compares the left-hand side of a rule u with the multiset of objects w
present in the current membrane. If and only if u ≤ w, this rule is applicable and
this module will generate a signal Applicable = 1. Input all the Applicable signals to
an OR gate, the result of this logical gate can used as a monitor to identify whether
the evolution reaches halt configuration.

The transition of configurations of P system is realized deterministically and con-
currently, which is different to the general model. The consecutive transformation
of configurations is regarded as the evolution process. This evolution process is de-
composed into micro-steps and macro-steps. The application of rules enclosed by
membranes is performed in terms of a predefined sequential order. This determinis-
tic execution of rules is conducted in micro-steps sequentially. If a selected rule is ap-
plicable, the left-hand side of the rule u will be removed. Then the right-hand sides
v, v1 and v2 is stored in corresponding registers. The objects from the upper imme-
diate membrane will be preserved in another register. Although the micro-steps are

44
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

carried out deterministically, they are performed simultaneously in all membranes,
until there are no applicable rules. The micro-steps terminates when there are no
applicable rules, i.e. the halt condition is reached. All the registers are updated in
line with associated rules in macro-steps.

This implementation considered and respected the priorities of applicable rules
at the beginning of each micro-step. By labeling the applicable rules with higher
priorities and storing the corresponding labels, applicable rules are executed in ac-
cordance with their respective priorities. Besides, two additional features of P sys-
tem, the dissolution and creation of membranes, are simulated. When a rule with
membrane dissolving function is applied, its contents are owned by its upper imme-
diate membrane, setting the membrane Enable signal of the relevant membrane to
“0”. However, the connections and registers defining the dissolved membrane still
exist, for the hardware reconfiguration will cause the reconstruction of buses that
connect different regions of the circuits. This scheme gives rise to a disadvantage
that the hardware resources cannot be released. The creation of new membranes is
executed in the initialization process of the P system since all the information about
new membrane is known from the specification of the system. The created mem-
branes are inactive until membrane creating rules invoke them.

Nguyen simulation

In this implementation, a parallel computing platform simulating membrane com-
puting based on FPGA named Reconfig-P is developed [180, 89]. Reconfig-P is fabri-
cated on the basis of the region-oriented idea that regions work as the computational
entities communicating objects through message passing. The functionality of these
regions is extended by the included set of evolution rules. P Builder, the software
component of Reconfig-P, specifies the P system concerned in software, converts
the specification of P system written in Java to Handel-C (a hardware description
language) source codes. Software simulation of the circuits to be constructed is sup-
ported by P Builder to test the functionality of circuits before mapping the codes to
hardware circuits.

The execution of a evolution step is divided into two phases: object assignment
phase and object production phase [89]. The maximal instance of each rule in a re-
gion is determined in the object assignment phase. The update of multiplicity of
objects is accomplished in the object production phase. The maximal instance of the
rules with higher priorities is computed before the rules with lower priorities. Note
that the consumption of objects for rules with higher priorities is performed dur-
ing the object assignment phase to save clock cycles. It is assumed that all rules are
assigned relative priorities. The priority between rules is implemented as the tem-
poral order which should be respected by region processing units in the assignment
phase. Rules with same priority are executed concurrently. The temporal order is
determined at compile-time. The rules are applied according to their priorities in
rounds until no rules are applicable. Under this circumstance, the applicability of
each rule is non-stationary because of the existence of priorities. To avoid process-
ing inapplicable rules, the applicability status of each rule is checked at the outset
of the assignment phase and immediate after an applicable is applied to consume
some objects.

The objects traversing behavior is the origin of communication between regions.
The update of multiplicity of objects caused by rules with and without traversing be-
havior is completed in the object production phase. When different region process-
ing units update the multiplicity value of the same object at the same time, a conflict

3.6. Literature review of existing P system FPGA implementations 45

TABLE 3.2: The comparison of the time-oriented and space-oriented
conflict resolution

Strategy Resource conflict resolution

Time-oriented strategy (a) construct a conflict matrix in which each row is a quadruple (p, q, r, s). p
is the object competed by multiple rules. q is the region where p is produced
or consumed. r is the set of the conflicting rules, s is the size of set r. (b) in-
sert delay statement among conflict rules such that the updating operations
of multiplicity of p can be executed in distinct clock cycles. The number of
delays is equal to s.

Space-oriented strategy (a) construct the conflict matrix as in the Time- oriented strategy. (b) the
register storing the object accessed by multiple rules concurrently is repli-
cated to the number of s. These copy register are assigned to each conflict-
ing rules to write. After the updating process for all the copy registers, the
corresponding values are joined to the original register.

occurs. To handle this conflict, in [89] two solution strategies, the space-oriented strat-
egy and the time-oriented strategy are proposed. Table 3.2 and Table 3.3 summarize the
different strategies of two resource conflict resolutions and their modifications in the
rule-based and region-based design [162, 163]. In order to simplify the exposition of
processes of rule-based and region-based implementations of P systems, tables are
designed to delineate the relevant details, which will be given below. The detailed
information about these two strategies is listed in Table 3.2.

For the space-oriented strategy, the register storing the object causing the conflict
is replicated to the same number of parallel process rules so that the respective pro-
cessing unit updates the value in the assigned copy register. For the time-oriented
strategy, time delays are interleaved among the conflicting parallel processes so that
the updating is performed in different time. In fact in the rule-oriented design which
will be detailed hereinafter, the solution for the conflict is basically the same. The
object production phase is completed in two clock cycles when the space-oriented
strategy is adopted. In the time-oriented strategy, considering the traversing behav-
ior of objects, the objects causing conflict are partitioned as internal objects and exter-
nal objects. The internal objects refer to the objects generated by the rules without
traversing behaviors, while the external objects refer to the opposite. The amount
of interleaving inserted to the updating process caused by the internal objects is
computed at compile-time. The interleaving caused by the receiving of external ob-
jects is determined at run-time for the region processing units work independently.
They cannot aware of the future transferring of objects. An method involves the
semaphores is adopted to determine the appropriate number of interleaving during
the run-time.

The extensibility of the region-based design is the consequence of the representa-
tion of membranes as processing units interacting with two region processing units
corresponding to inner and outer regions. This allows to achieve a strong separa-
tion of the processing logic inside different membranes and the independence of the
communication. Thus, adding additional elements to the system does not lead to
the redesign of the remaining part of the system.

3.6.2 Rule-based implementations

Rule-based approaches consider evolution rules as processing units performing the
update of multiplicities and of the membrane structure.

46
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

Nguyen implementation

Every rule in all regions of the P system is represented as a processing unit synchro-
nized by a global clock that implements the parallel processing. At the design stage,
a processing unit corresponds to a potential infinite while loop which includes codes
related to the applying of the rules in Handel-C [181, 182] code. The tags of informa-
tion associated to execution and synchronization are contained in processing units
as well. Each rule processing unit in a region is linked to the array of registers con-
taining multisets of objects. The containment relationships can be described with
the connections between processing units and arrays. Generally speaking, a rule
processing unit in a region is linked to the objects array located in the same region
with the rule processing unit. If there are objects traversing rules which imply the
containment, connecting the rule processing unit to the object array to which the rule
will send objects contained in different region. By this measure, the containment is
reflected.

The operation of executing a rule is split into preparation phase and updating phase.
In the preparation phase, each processing unit calculates the maximal number of
instance for a rule with a division operation that divides the multiplicity of each
objects by the number of corresponding object defined in left-hand side of a rule.
A serial of quotients will obtain. Apparently, the minimum of the quotients is the
maximum number of instance of a rule in terms of the Buckets Effect. In fact, the
computations of maximal number of instances for rules are performed in an order
with respect to the relative priorities among rules. In detail, counting the quantity
of clock cycles consumed for computing the maximal instance number of rules with
higher priorities at first. After that, an number of delay statements that equivalent
to the number of clock cycles consumed previously are interposed above the state-
ments for computing the maximum instance number of rules with lower priorities
in the Handel-C codes. For rules with the same priority, this calculation is executed
in parallel.

In the updating phase, if the maximum number of instance of a certain rule is
larger than zero, then the rule is applicable. As stated before, when different pro-
cessing units updates the same multiplicity value of objects registers at the same
time, the conflicts arise. In order to resolve the conflict, P Builder construct a conflict
matrix to detect the possibility of conflicts firstly. A row of the matrix is a four-tuple
(p, q, r, s) whose p stands for an object, q is a region of the P system, r represents the
set of rules gives rise to the generation or consumption of p in q, i.e. the set of rules
which conflicts. s is the conflict degree of (p, q), referring to the number of conflict
rules included in set r. P Builder prevents every processing unit from writing to the
same register simultaneously on the basis of the analyzing the conflict matrix. Like-
wise, the space-oriented strategy and the time-oriented strategy are adopted to handle
the conflict.

The synchronization is executed by three flags contained in the rule processing
units. The region-level parallelism means that applicable rules in a region can be
executed in parallel and system-level parallelism implies that performs the region-
level parallelism concurrently.

To illustrate the disparity of the conflict resolution strategies used in rule-based
and region-based design and these two design methodologies of Nguyen’s imple-
mentation unequivocally, the contrast of two conflict resolution strategies and de-
sign methodologies are sumarized in Table 3.3 and Table 3.4.

3.6. Literature review of existing P system FPGA implementations 47

TABLE 3.3: The differences of the conflict resolutions adopted in two
design modes

Item Time-oriented strategy Space-oriented strategy

Rule- oriented design The interleaving operation can be de-
termined at compile-time and it can
be hard-coded into the HDL source.

Need a multiset replication coordi-
nator to coordinate the multiplicities
stored in the copy registers.

Region-oriented design The objects received from other re-
gions are regarded as external objects,
otherwise the objects are internal ob-
jects. The interleaving merely caused
by the production of internal objects
can be identified at compile-time. To
retain the independence of region
processing units, the interleaving in-
duced completely or partially by the
receipt of external objects can only be
calculated at run-time.

The role of the multiset replication
coordinator in rule-oriented design
is played by the region processing
units. The existing register stor-
ing the multiplicity received from
the associated communication chan-
nels in the considered region can be
assigned to those processing units
which sending objects to the consid-
ered region to write the new values
of the objects competed by multiple
rules.

TABLE 3.4: The comparison of the rule-based and region-based de-
sign of Nguyen’s implementation

Object Rule-based Design Region-based Design

Region and their
containment rela-
tionships

Regions are realized in hardware im-
plicitly by the content they included.
For the containment relationships in-
cluding the traversing of objects be-
tween regions, they are implemented by
imparting the corresponding rules with
’in’ or ’out’ target directives the abili-
ties to access the multiset of objects in
the destination region of the objects tra-
versed.

Regions are represented as parallel pro-
cessing units. The traversing of ob-
jects among regions is realized as mes-
sage passing through channels connect-
ing different region processing units.

Multiset of objects An array of registers contains each type
of object in the alphabet for a region

The same strategy adopted as the rule-
oriented design.

Evolution rule Potentially infinite while loop in which
contain procedures representing the op-
erations of the relevant evolution rules
in HDL language.

Implicitly expounded through integrat-
ing them into the region processing
units.

Operation process Preparation phase and updating phase. Object assignment phase and produc-
tion phase.

Synchronization An array of registers composed of three
1-bit registers is associated to each rule
processing unit. The values in the ar-
ray indicate whether the rule processing
unit has complete the preparation and
updating phase, or is applicable. Com-
pute the logic AND or OR values of all
the values stored in the 1-bit register
that indicates the same status of the pro-
cessing unit and store the three results
into three sentinel registers. The coordi-
nating processing unit read the sentinel
values to synchronize the whole proce-
dures.

For the synchronization of object as-
signment phase, it is realized when all
the region processing units communi-
cate with each other on channels at the
beginning of object production phase.
For the object production phase, a re-
gion execution coordinator connecting
to each region processing unit via ded-
icated channels is designed to perform
the synchronization of operations. Af-
ter the region execution coordinator re-
ceived the signals denoting the comple-
tion of all the operations of every region
processing unit, the current transition is
done and the next one is carried out.

48
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

Verlan and Quiros implementation

The target model is a static P system. The system is considered flattened, so only
one skin membrane is present. An special strategy was elaborated in order to not
compute the complete solution, i.e. Applicable(Π, C, δ) but the cardinality of its el-
ements. Then a random value between 1 and this cardinality is taken. Finally, this
number is decoded to the corresponding solution [90, 164].

Devising an algorithm which carries out the computation of the cardinality and
of all the specific element of the solution set in constant time on FPGA is the key
issue of the approach. A remarkable characteristic of FPGA is that the time con-
sumed for executions of functions that do not exceed the cycle of the global clock is
done in one cycle of FPGA, hence in constant time. The computation of the cardinal-
ity and of feasible solutions are accomplished by two functions hardwired into the
circuit: NBVariants(Π, C, δ), which gives the cardinality of Applicable(Π, C, δ), and
Variant(n, Π, C, δ), which returns the n-th element of Applicable(Π, C, δ).

A concept named rules’ dependency graph is introduced to compute the two
functions above. The picture below depicts the rules’ dependency graph for rules
r1 : ab→ u and r2 : bc→ v.

r1 r2

a b c�
��

�
��

@
@@

@
@@

Assume that the derivation mode is maximal parallelism (max). Suppose that Na,
Nb and Nc represent the number of objects a, b and c in C. Let N1 = min(Na, Nb),
N2 = min(Nb, Nc), N = min(N1, N2), ki = Ni 	 N,1 ≤ i ≤ 2, where 	 denotes the
positive subtraction. Let also p, q = 0, 1, 2, . . . , N. From the dependency graph we
can deduce the following:

Applicable(Π, C, max) =
⋃

p+q=N

{
rp+k1

1 rq+k2
2

}
NBVariants(Π, C, max) = N + 1

Variant(n, Π, C, max) = rN−n+1+k1
1 rn−1+k2

2 .

Example 3.1. Consider a configuration where Na = 5, Nb = 5 and Nc = 3. It can be
easily verified that N1 = min(5, 5) = 5, N2 = min(5, 3) = 3, N = min(5, 3) = 3,
k1 = N1 	 N = 5− 3 = 2, k2 = N2 	 N = 3− 3 = 0. Hence, we can enumerate the
elements of Applicable(Π, C, max) as bellow:

Applicable(Π, C, max)1 = {r3+2
1 r0+0

2 , r2+2
1 r1+0

2 , r1+2
1 r2+0

2 , r0+2
1 r3+0

2 } = {r5
1, r4

1r2, r3
1r2

2, r2
1r3

2}.

The same result can be easily obtained by using formal power series associated
to context-free languages. In this case, any maximal rule combination is a part of the
language LN = {rp

1 rq
2 | p + q = N}. It is quite easy to observe that the number of

words of length N in LN is exactly the same as the number of words of same length
in the language L = {r∗1r∗2}. This last language is regular and its generating function
is q0(x) = 1/(1− x)2. The n − th coefficient of the expansion of q0(x) is equal to
n + 1 ([xn]q0 = n + 1), which immediately gives NBVariants(Π, C, max) = N + 1.
The Variant(n, Π, c, max) is computed using an algorithm that performs a weighted
breadth-first search of the decomposition of n with respect to the number of variants
found on each branch of the execution of automaton for L.

3.6. Literature review of existing P system FPGA implementations 49

Such a process can be easily repeated for any regular language, yielding a con-
stant time simulation of a computational step. The reason for such performance is
that any generating function is equivalent to a recurrence relation and such relations
can be computed in one synchronous time unit using asynchronous operations. The
described algorithm functions for any P system where the rule choice can be ex-
pressed as words of certain length in a regular language. The corresponding class
is quite large (containing even computationally complete models), thus allowing an
extremely fast execution. Examples from [90] exhibited a speed-up of order 105.

Another important point is that this approach allows to handle the non-determinism
in a natural way, by performing a uniform random choice between all possible rule
applications at each step.

Communications among different processing units do harmful to improve the
computing speed. For pursuing a better speed performance, modularity is adopted
to minimize the interconnections of configurable logic blocks. A layer structure
which just communicates with previous one is constructed to execute the algorithm.
Have in mind that P system is abstracted as a multisets rewriting system with a
skin membrane, the compartment is simplified. In consequence, the rules and mul-
tisets of objects are the key materials for the implementation. As usual processing
scheme for multisets of objects, registers are employed to store them in terms of
configurations. While for the treatment of rules in this implementation, there is no
explicit mapping from rules to hardware components, on account of the fact that not
a single rule, but the dependency graph of rules is fabricated for the construction of
Applicable(Π, C, max) which can be represented as a regular language.

Technically, the implementation represents only objects by registers and rules by
layered logic. Each rule implementation is modularized and contains an own copy
of processing instructions needed to compute the two above functions, based on
asynchronous operations. Consequently, five clock cycles are required to compute
the NBVariants(Π, C, max), Variant(n, Π, C, max) and to apply the corresponding
rules. The entire process of the implementation is split into several consecutive
stages, which take charge of different operations associated to phases of evolutions
of configurations.

Persistence stage stores the states that the hardware system goes through. A inde-
pendent stage computes the maximal instance of each rule by means of the dividing
operation and MIN logic operation. Assignment stage in charge of selecting a rule
to be applied non-deterministically, and determines its instances. Updating stage is
responsible for updating the current configuration with the values from the previ-
ous stage. During Halting stage, the system inspects whether the halting condition
is reached, and once reached, stops the system.

The hardware system is separated into six blocks detailed as follows. controlBlock
takes charge of supplying communications and control actions, including logic re-
lated to halting conditions. Given a configuration, if Applicable(Π, C, max) is empty,
or the configuration stops to evolve, then the system halts. inoutBlock links to the
software which provides the communication with host computer. persistenceBlock is
used for saving and updating the current configuration and partially examining the
halting condition. independentBlock, which is independent of the derivation mode,
receives the multisets of objects of the current configuration from persistenceBlock
and carries out division and multiplication operations. The functionality of assign-
Block corresponds to assignment stage. A maximum instances of an applicable rule
is sent to this unit to computes NBVariants(Π, C, max) and Variant(n, Π, C, max).
Each rule corresponds to a sub-block executing the logic of the automaton which

50
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

recognizes the regular language in terms of the dependency graph of rules. app-
Block executes Variant(n, Π, C, max) to modify the multiplicity of objects to evolve
the configuration to next one.

The implementation of the concerned P system is achieved by the last four blocks.
The four blocks consume one clock cycle to execute their work except AssignBlock,
which demand two clock cycles. Consequently, five clock cycles are required to com-
pute the NBVariants(Π, C, max), Variant(n, Π, C, max) and to apply the generated
solution.

In order to more clearly show the FPGA implementation methods of P system
proposed by the above three research groups, their methods are summarized and
compared from the quantitative and qualitative perspectives in Table 3.5 and Table
3.6.

3.7 Micro-controller based implementation of P systems

Beside FPGA based hardware platforms developed for implementation of P systems,
the micro-controller is another hardware device which is taken into account by the
researchers. A range of P systems and their hardware circuits designs in terms of the
exhaustive investigation line focusing on implementing the transition of configurations
of P systems are developed. The nascent researches do not confine to concrete hard-
ware devices, just designing the circuits aiming at simulating certain operations of
particular P systems with registers, logical gates, magnitude comparators, and data
buses.

In [183], a digital circuit is presented to select active rules in the current config-
uration. Each evolution rule is represented by 2 hardware registers. The first regis-
ter characterizes the left-hand side (antecedent) of a rule, and the other specify the
right-hand side of the rule, which determines whether the rewritten objects go out
from the current membrane or stay where they are, or go in to inner membranes.
By comparing the left-hand side of each rule with the multiset of objects in a region,
the applicability of every rule can be determined. Next, an algorithm computes the
number of application of active rules given the multiset of objects and evolution
rules [184]. The corresponding circuit is composed of logical gates, registers, multi-
plexer and sequential elements. The computation process is bounded. In [185], a P
system circuit is constructed by means of a micro-processor PIC16F88 plus the stor-
age component 24LC1025, connected by an I2C bus. The shortcoming of insufficient
storage capacity of micro-processor is overcame by the introduced external memory.
The flexibility of the circuit is acceptable as the modification of the structure is not
necessary.

As a further research of [184], in [186], the improved algorithm and its circuit cal-
culating the application times of active rules are investigated. The computing pro-
cess can be complete in minor steps and the theoretical performance is optimized. In
[187, 188], a schematic implementing the inherent parallelism of P system is drafted.
Towards the parallelism, the treatment to rules is similar with the thought regional
solution defined in section 4, namely, what applied is a multiset of rules instead of
a single rule. An operating environment is elaborated in [189] which performs the
automatic transforming of tasks involved in the hardware simulation of P systems,
including loading, execution and interpretation, into a distributed framework con-
structed on micro-controllers.

The execution results of the circuit, which are in the form of binary data, can
be interpreted to a transparent form. What should be emphasized here is that all

3.7. Micro-controller based implementation of P systems 51

TABLE 3.5: The quantitative attributes of FPGA implementation

Item Biljana Petreska Van Nguyen Juan Quiros

Period 2003 2007-2010 2012-2015
Institute Swiss Federal Institute

of Technology Lausanne
(EPFL)

University of South Aus-
tralia

University of Seville

Target FPGA Xilinx Virtex-II Pro
2VP50ff1517-7

Xilinx Virtex-II XC2V6000-
ff1152-4 (rule-oriented)
and Virtex-II RC2000
(region-oriented)

Xilinx Virtex-V
XC5VFX70T and Virtex-VII
XC7VX485T

Host process-
ing platform

Not given. 1.73GHz Intel Pentium
M processor with 2GB of
memory

Intel Core i5 – 5220 at 3
GHz, with 8 GB of RAM.

HDL VHDL Handle C VHDL
Experiment
Subjects

Cell-like P systems with
following characteristics:
membrane dissolution and
creation, objects exchange
between upper- and lower-
immediate membranes,
cooperative P systems
with priorities. The range
(non-continuous) for object
number is 6 to 12 and for
membrane is 10 to 20.

For rule-oriented design,
the subjects are cell-like P
systems cascaded in verti-
cal, horizontal, vertical and
horizontal structures. For
region-oriented design,
the objects are cell-like
P systems containing
hierarchical regions and
tissue-like connected re-
gions. The rule range is
[10,50], [1,25] for regions,
[3,200] for objects. The
extent of the inter-region
communication is [80,319].

The subject P system is
simplified according to the
multiset rewriting point of
view, which it has a skin
membrane, no inner re-
gions. The 4 subjects dif-
fer in the rule dependen-
cies which form chains: cir-
cular, 2-circular, linear, op-
posite. The object number
range is [10,200].

Experiment
results

The hardware consump-
tion ranges from 4.2% to
33% (CLB). The extent of
clock rate is 27 to 198 MHz.

For rule-oriented design,
the number of rules ap-
plied per second ranges
from 2.7 × 105 to 1000 ×
105. The hardware con-
sumption extent is 1.55% to
21.43% (LTU). For region-
oriented design, the hard-
ware usage ranges 1.82%
from 16.79%. The clock
rate fluctuates from 52.63
MHz to 81.77 MHz. The
biggest size which can be
executed is a P system with
550 rules, 1280 communi-
cation channels, 1100 ob-
jects conflicts.

The hardware consump-
tion ranges from nearly 1%
to 48% (LUT) or nearly
1.1% to 11% (slice). The
period needed to perform
a computation step fluctu-
ates from 5.46 ns to 9.14
ns. The highest frequency
exceeds 100 MHz, permit-
ting 2× 107 computational
steps per second. The run-
time for each experiment
subject ranges from 3.017×
10−5s to 4.174× 10−5s.

Parallelism Region-level parallelism Region-level and system-
level parallelism

System-level (there is only
a skin membrane, so it
is also region-level paral-
lelism).

Non-
determinism

No non-determinism DND algorithm True non-determinism.

52
Chapter 3. Overview of hardware implementation of reaction systems and P

systems

TABLE 3.6: The qualitative attributes of FPGA implementations

Item Biljana Petreska Van Nguyen Juan Quiros

Membranes
(regions)
and their
containment

Implicitly represented
by the contents enclosed
by the membranes. The
objects exchange is in-
terpreted as transferring
objects with communi-
cation buses by which
connect the origin region
to the destination region.

For the rule-oriented
design, the treatment is
similar with Petreska’s.
For the region-oriented
design, regions are rep-
resented as parallel pro-
cessing units. The objects
exchange among regions
is realized as message
passing through channels
connecting different region
processing units.

According to the multi-
set rewriting system frame-
work, the topology struc-
tures of membranes are
not important. What con-
cerned is the rule depen-
dency graph.

Multiset of
objects

Store the multiplicity value
of each type of object in dif-
ferent registers whose posi-
tions indicate the type.

The same method. The same method.

Evolution rule Store the left-hand-side
and right-hand-side of a
rule in different registers.

In rule-oriented design,
they are characterized as
potentially infinite while
loop in which contain
procedures representing
the operations of the rel-
evant evolution rules in
HDL. In region-oriented
design, they are implic-
itly expounded through
integrating them into the
region processing units.

The logic of rules is dis-
tributed along the the
hardware components.
There is no explicitly
correspondence between
rules and hardware com-
ponents.

Operation
Process

Micro-step: only one ap-
plicable rule is applied
with respect to the instance
number in a region. Macro-
step: execute a micro-step
concurrently in every re-
gion.

In rule-oriented design,
perform preparation
phase and updating
phase. In region-oriented
design,perform object
assignment phase and
production phase.

1. Persistence stage 2. In-
dependent stage 3. Assign-
ment stage 4. Application
stage 5. Updating stage 6.
Halting stage.

Extensibility Membrane mediated fea-
tures cannot be added
in since membranes are
implicitly represented by
their contents.

Because of the region-
oriented design, Mem-
brane mediated features
such as symport and an-
tiport functions can be
extended.

This implementation is de-
signed only for P systems
whose applicable multisets
of rules can be represented
as regular context-free lan-
guage. So its extensibility
is limited.

Scalability With the increase of the
rules, the hardware usage
rise approximately propor-
tional. The clock rates de-
cline a small amount. The
membrane creation ability
cripples clock rate signifi-
cantly.

The hardware consump-
tion scales linearly with re-
spect to the size of the P
system executed in both
rule-oriented and region-
oriented design. The per-
formances grow linearly
when the number of rules
increase.

The hardware usages are
scalable, but the rate of in-
crease in the performance
is not always linear for dif-
ferent subjects with distinct
structures.

Contributions Membrane creation and
dissolution functionality

Two kinds of methodology
for P system characteriza-
tion and resource conflict
resolution, DND algorithm

Put up with a new method-
ology with absolute
equiprobability to imple-
ment non-determinism.

Drawback Partially parallelism, no
non-determinism

The equiprobability of
DND algorithm has not
been proven theoretically.

The types of P systems
which can be imple-
mented are confined to
those whose rules can be
represented as regular
context-free language.

3.8. Wrap-up 53

the hardware circuits introduced are just on the blueprints which do not put into
practice. They are theoretical analysis, the actual functionality and performances
are unknown, unlike the FPGA based and CUDA based hardware implementation-
s/simulations which are carried out practically. In [190], micro controllers are also
chosen as target hardware to implement communication architectures of P systems.
A digital circuit carrying out massive parallelism in transition P Systems is estab-
lished in [191].

As a new attempt for implementing neural P systems on different hardware,
DRAM-based CMOS circuits are adopted to construct elementary Spiking neural P
systems, which had not been implemented on FPGA but on CUDA hardware. We
do not carry out an in-depth discussion about this topic given the length of the ar-
ticle, interested people can refer to [192] for more details. In [193], A preliminary
microfluidic system, called µfluidic P system, is developed for a spiking neural P
system aiming at solving the Boolean satisfiability SAT problem. An adder elabo-
rated from a spiking neural P system is proposed in [194]. This adder which has
good error tolerance for the using of dual-rail logic can perform addition of binary
numbers with arbitrary length. These are the newly achieved progresses of hard-
ware implementation of P systems.

3.8 Wrap-up

The internal fabric of SRAM-LUT based FPGA is presented squarely to decipher the
origins of reconfigurability and parallelizability. FPGA developing flow is rendered
to acquaint reviews of FPGA implementation and works done in ensuing chapters.
No hardware implementations of RS are found in literature for the nonce so soft-
ware simulations are introduced instead. The CUDA GPU architecture is introduced
to reveal its working pattern. FPGA implementations of P systems are combed and
dissected so that the research lines, difficulties, existing and potential methods are
expounded completely. Implementing the non-determinism of P systems on hard-
ware is a intractable problem to be quested with more intelligences. Micro-controller
based implementation of P systems is inquired and reviewed, although their perfor-
mances are far behind FPGAs’.

55

Chapter 4

FPGA implementation of reaction
systems

Reaction systems (RSs) are parallel models in which applicable reactions execute
concurrently. For large scale RSs containing thousands of reactions, the efficiency of
CPU based simulation is low. GPU accelerated simulation shows speed-up of 26.28×
on Python based and 10.97× on Haskell based simulation [145]. FPGA based imple-
mentation would achieve a better performance for parallel hardware architectures
tailored to coincide with RS models to carry out reactions with a dizzying speed.
This chapter proposes FPGA implementation approach for two RS models: self as-
sembly of intermediate filaments RS and heat shock response (HSR) RS. A special
binary counter RS which is a quantitative model constructed by qualitative one is
implemented as well to mirror the expressivity of RS and the vague demarcation
between qualitativeness and quantitativeness.

4.1 Relations between reaction systems and synchronous cir-
cuits

Digital systems consist of synchronous circuits which can be defined as Definition
4.1 belonging to a type of ideal model. Physical circuits cannot hold these two prop-
erties since they are too rigid. In engineering field, synchronous circuits refer to
circuits which are approximate to the perfect one defined by the definition.

Definition 4.1. [195] A circuit is said to be synchronous if it possesses the following two
characters:

1. Any lead or device within the circuit may assume, at any instant of time, only one of
two conditions, such as high or low voltage, pulse or no pulse.

2. The behavior of the circuit may be completely described by the consideration of condi-
tions in the circuit at equally-spaced instants in time.

To judge whether a circuit is synchronous or not, the following criterion con-
taining three items which should be satisfied simultaneously is commonly accepted
[195].

1. A clock working as trigger is present.

2. Current or voltage signals used as input/output variables arise concurrently
with clock trigger edge.

3. If inputs are synchronous with clock trigger edge, clock period can vary some
extend and output right results.

56 Chapter 4. FPGA implementation of reaction systems

The switching circuit [196, 197] defined in Definition 4.2 is the theoretical model
of physical synchronous circuits fabricated in electronic devices such as a FPGA.
The state allows us to memorize past values and to perform decisions based on the
partial history of the computation. Hence, in this case the value of the function may
be different for same inputs at different time steps (usually corresponding to the
master clock pulses that drive the circuit).

The functioning of a sequential switching circuit with n inputs and m outputs
and s binary-state variables can be described by the following equations [198]:

Q(t + 1) = F(Q(t), X(t))
Y(t) = G(Q(t), X(t)),

(4.1)

where X(t) = (x1(t), . . . , xn(t)) is the vector of input variables at time t ≥ 0, Y(t) =
(y1(t), . . . , ym(t)) is the vector of output variables at time t, Q(t) = (q1(t), . . . , qs(t))
is the vector of internal states at time t, F : {0, 1}s × {0, 1}n → {0, 1}s and G :
{0, 1}s × {0, 1}n → {0, 1}m.

Definition 4.2. [195] The switching circuit is a synchronous circuit with finite numbers
of inputs, outputs, and (internal) states. Its present output combination and next state
are determined uniquely by the present input combination and the present state. A circuit
having only one internal state is termed as combinatorial circuit otherwise it is referred to as
sequential circuit.

Behaviors of sequential circuits are described by their corresponding truth tables,
which can be transformed to state diagrams that demonstrate the dynamics explic-
itly. Mealy and Moore automata [199] are proposed based on these state diagrams.
Their definitions are given as follows.

Definition 4.3. [195] Mealy automaton is an finite state machine whose output depends on
the current state together with current input. It is a 6-tuple (Q, Σ, O, X, Y, q0) where

1. Q is a finite set of states;

2. Σ denotes the input alphabet;

3. O is output alphabet;

4. X is the input transition function mapping Q× Σ→ Q;

5. Y is the output transition function mapping Q× Σ→ O;

6. q0 is the initial state (q0 ∈ Q).

Definition 4.4. [200] Moore automaton is an finite state machine whose output depends on
the current state solely. It is a 6-tuple (Q, Σ, O, X, Y, q0) where

1. Q is a finite set of states;

2. Σ denotes the input alphabet;

3. O is output alphabet;

4. X is the input transition function mapping Q× Σ→ Q;

5. Y is the output transition function mapping Q→ O;

6. q0 is the initial state (q0 ∈ Q).

4.1. Relations between reaction systems and synchronous circuits 57

TABLE 4.1: The truth table of Formula 4.2.

q1(t) q2(t) x1(t) q1(t + 1) q2(t + 1) y1(t)

0 0 0 1 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 0

00 10{0,1} / 1 011 / 0

11

0 / 0

{0,1} / 0

0 / 0

1 / 0

FIGURE 4.1: The Mealy automaton for the circuit described by Equa-
tion (4.2). The label of the state corresponds to the value of the vector
(q1, q2). The label of the transition corresponds to the value of the
input variable x and output y.

A sequential circuit presented in [195] is described by Equation (4.2). Its truth
table is given as Table 4.1. The dynamics of state transition of the circuit can be
characterized by the Mealy automaton illustrated in Figure 4.1.

q1(t + 1) = q̄1(t) ∧ q̄2(t) ∨ x̄1(t) ∧ q̄2(t)
q2(t + 1) = q1(t) ∧ q̄2(t) ∨ x1(t) ∧ q1(t)

y1(t) = q̄1(t) ∧ q̄2(t).
(4.2)

The corresponding Moore automaton of Equation (4.2) is depicted in Figure 4.2.
A sequential circuit can be transformed to a Mealy or Moore automaton for their

are equivalent although Moore machine has a one step delay. Reaction systems are
implemented as switching circuits for their relationship detailed below.

4.1.1 From reaction systems to switching circuits

The definition of reaction systems is presented in Chapter 2 Section 1. Now the
normal form of reaction system is given bellow.

Definition 4.5. A reaction system R = (S, A) is said to be in a normal form with respect
to the interactive process π = (γ, δ) if

• for any a = (R, I, P) ∈ A it holds |P| = 1 (i.e., only one product is allowed per
reaction),

•
⋃

(R,I,P)∈A
P ∩ ⋃

i≥0
Ci = ∅ (i.e. the set of products is disjoint with the set of contexts).

58 Chapter 4. FPGA implementation of reaction systems

00/0 10/1{0,1} 01/01

11/0

0

{0,1}

0

1

FIGURE 4.2: The Moore automaton for the circuit described by Equa-
tion (4.2). The label of the state corresponds to the value of the vector
(q1, q2)/y. The label of the transition corresponds to the value of the
input variable x.

Define the input for a reaction system inp(R) as the set of all possible context
symbols: inp(R) = {Z ∈ δ | for any interactive process π = {γ, δ}}. Then define
the output of a RS as a projection of background set S: out(R) ⊆ S. Now construct
the Equation (4.1) using the method from [25], that transforms a reaction system to
a Boolean formula [201] in disjunctive normal form (DNF).

Suppose that a reaction system R = (S, A) in a normal form with input I . Then
each group of reactions having the same product Ap = {(Ra, Ia, p) | a ∈ A} can be
seen as the following equation:

p(t + 1) =
∨

(Ra,Ia,p)∈Ap

(∧
X∈Ra

X(t) ∧
∧

Y∈Ia

Ȳ(t)

)
. (4.3)

In order to compute the output of the switching circuit, add the following equa-
tion (since it is a projection, we may omit it if it is clear from the context):

y(t) = y(t), for all y ∈ out(R). (4.4)

Equations (4.3) and (4.4) are of the form of Equation (4.1), so they define a switch-
ing circuit. Moreover, since sets of reactants and inhibitors are disjoint, formula (4.3)
is in DNF.

Example 4.6. In [36], a model for the self-assembly of intermediate filaments from vimentin
tetramers is presented. The first model from that paper is considered here (the other more
complex variants of the model is implemented in FPGA in subsequent section). It is defined
as follows.

The background set is S = {O, H, F, d} and the input set is {T}. The reactions are the
following (d is the dummy inhibitor):

({T}, {d}, {O}),
({O}, {d}, {H}),
({H}, {d}, {F}),
({F}, {d}, {F}).

4.1. Relations between reaction systems and synchronous circuits 59

000

0

001
1

010

0

0111

100

0

101
1

110

0

111
1

0 1 0

1

0

1

0

1

FIGURE 4.3: Moore machine for Example 4.6. The state label corre-
sponds to the values of the vector (F, H, O) and the transitions are
labeled by the value of T. The output is the label of the state.

Using Equations (4.3) and (4.4) we obtain the following sequential circuit:

d(t + 1) = 0
O(t + 1) = T(t) ∧ d̄(t)
H(t + 1) = O(t) ∧ d̄(t)
F(t + 1) = (H(t) ∧ d̄(t)) ∨ (F(t) ∧ d̄(t)).

The Moore machine for this circuit is depicted on Figure 4.3. It can be immediately
deduced that there is a steady loop between states 101, 110 and 111 corresponding to the last
rule that keeps F indefinitely once produced.

4.1.2 From switching circuits to reaction systems

Let C be a switching circuit with n inputs, m outputs and s internal states described
by Equation (4.1). So C can be portrayed by Equation (4.5) in which qi and yi are one
element of Q and Y in Equation (4.1). Without loss of generality, suppose that F and
G are in disjunctive normal form.{

qi(t + 1) = Fi(Q(t), X(t))
yj(t) = Gj(Q(t), X(t))

(4.5)

The function of switching circuits can be described by Boolean expressions, which
can be written in disjunctive normal forms. So

qi(t + 1) = Fi(Q(t), X(t)) =
∨

1≤s≤e

cs

where cs is the conjunctions of Q(t) and X(t). Similarly, yj(t) = Gj(Q(t), X(t)) can
be transformed to a certain disjunctive normal form over conjunctions of Q(t) and
X(t).

Then construct a reaction systemRwith input inp(R) = (S, I), where S = Q∪Y
and I = X. The reaction set A is defined as follows:

Let a be a conjunction a = a1 ∧ · · · ∧ ak1 · · · ∧ ak2 , 0 < k1 < k2, where a1 ∼ ak1 are
reactants, ak1+1 ∼ ak2 are inhibitors, and define

pos(a) = {as | as is a positive literal, 1 ≤ s ≤ k1}
neg(a) = {as | as is a negative literal, k1 < s ≤ k2}.

60 Chapter 4. FPGA implementation of reaction systems

00

01

1/0
0/0

0/0

1/0

1/0

0/00/0

1/1

11

10

FIGURE 4.4: Mealy machine for the 1101 sequence detector. It outputs
1 when the corresponding sequence is encountered as input. The state
label corresponds to the vector (q2, q1).

Positive literals denote reactants which are not negated while negative literals
denote inhibitors which are negated (signifying the fact that inhibitors should be
absent). As a consequence, qi(t + 1) = Fi(Q(t), X(t)) =

∨
1≤s≤e cs can be converted

to the serials of reactions in Equation (4.6):
({pos(c1)}, {neg(c1)}, {qi})
({pos(c2)}, {neg(c2)}, {qi})
...
({pos(ce)}, {neg(ce)}, {qi})

(4.6)

In Equation (4.6), {qi} is the product of multiple reactions which are connected
with ∨ to form a disjunctive normal form. In the same way, yj(t) = Gj(Q(t), X(t))
can be transformed to some reactions ofR. Now, the initial values of state variables
of the circuit give the value C0 of the initial context for any interactive process π for
this RS. So it is concluded that a switching circuit can be transformed to a reaction
system.

Example 4.7. Consider the circuit that implements a sequence detector and outputs 1 if
the sequence 1101 is detected as input. The corresponding Mealy machine is depicted in
Figure 4.4 and the corresponding truth table is given in Table 4.2.

From this table it can be deduced the state equations of the circuit (x being the input bit
and y the output result):

q2(t + 1) = q̄2(t) ∧ q1(t) ∧ x ∨ q2(t) ∧ q̄1(t)
q1(t + 1) = q̄2(t) ∧ q̄1(t) ∧ x ∨ q2(t) ∧ q̄1(t) ∧ x̄ ∨ q2(t) ∧ q1(t) ∧ x(t)

y(t) = q2(t) ∧ q1(t) ∧ x(t)

4.1. Relations between reaction systems and synchronous circuits 61

TABLE 4.2: The truth table for Example 4.7.

q2(t) q1(t) x(t) q2(t + 1) q1(t + 1) y(t)

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

Using the above algorithm these equations are transformed to the following reaction sys-
tem (where d is the dummy inhibitor and initially the system is empty):

{x}, {q1, q2}, {q1},
{q2}, {q1, x}, {q1},
{q1, q2, x}, {d}, {q1},
{q1, x}, {q2}, {q2},
{q2}, {q1}, {q2},
{q1, q2, x}, {d}, {y}.

4.1.3 General ideas for FPGA implementation of reaction systems

From the discussion above, a RS can be transformed to sequential circuits. As the
consequence, FPGA implementation of RS is the process to find out the equations of
the circuits at first, then to design circuits to perform these equations according to
the dynamics of RS. To this end, several questions should be considered.

The first consideration is how to characterize a RS in FPGA, namely, how to
represent entities, reactions, and interactive process. As a qualitative framework, the
RS works on sets instead of multisets. The amount of a entity (multiplicity) makes no
sense taking into account the threshold supply assumption: if an entity presents, it is
sufficient so that reactions containing it as a reactant can take place simultaneously;
or it is absent. The “+” symbol in the both sides of a reaction means that more than
one type of reactants should present together to produce multiple products. The
interactive process is powered by the introducing of context sequence Ci for entities
fade away because of no permanency assumption. These three issues are attacked as
follows.

Entities representation. Entities are represented by 1-bit registers such that logic
1 denotes present while logic 0 indicates absent. By this way, the non-quantitative
attribute of threshold supply assumption is reflected. Reactions involve multiple re-
actants are applicable only if values in relevant registers are 1, otherwise they are
inapplicable.

Reactions expression. For reactions having multiple reactants, logic AND is em-
ployed to denote “+” symbol to represent all reactants should be present at the same

62 Chapter 4. FPGA implementation of reaction systems

time. Registers storing inhibitors are inverted by logic NOT to signify that they are
not here. Note that reactants and inverted inhibitors are connected with AND to
represent the fact that reactions can proceed with the presence of all reactants and
without all inhibitors. In one word, reactions are translated into logic expressions.

Dynamics of interactive process. No permanency assumption stipulates the dura-
tion of a entity is one step of the interactive process. The time interval between Ci
and Ci+1 is one step duration which is the default time bound [32, 34]. Duration is
interpreted as FPGA clock period. One entity persists more than one duration if it is
produced by some reactions or introduced in as an element of some Ci. Or else the
maximal duration is one clock cycle.

Entities in reactions are invariant while Ci may bring in new entities during the
process. These new entities are taken into consideration by assigning 1-bit registers
to them when check all Ci at the system specification from the very beginning. A
register variable named counter is used to count the clock cycles corresponding to
interactive steps. Consequently, the time an entity led in is denoted by the integer
value saved in the counter register. The dynamic process of a RS is portrayed by a
waveform consisting of entities logic value varying with clock cycles.

Hardware facilities used in RS implementations of this chapter include: a Dell
Latitude equipped with a Intel Core i7-7820HQ and 16 GB RAM is the host com-
puter. The FPGA developing board is Digilent BASYS 3 featured with a Xilinx Artix-
7 xc7a35tcpg236c-1 FPGA. FPGA integrated developing environment (IDE) is Xilinx
Vivado 2019.1 which is a new generation software dedicated to developing 7 series
and UltraScale FPGAs.

4.2 FPGA implementation of self-assembly intermediate fil-
aments reaction systems

The cytoskeleton [202] of eukaryotic cells constitutes three protein filaments: micro-
tubules, actin filaments and intermediate filaments (IFs) [203, 204]. In the (in-vitro)
self-assembly process of intermediate filaments, monomers polymerize to tetramers
(signified by T) through dimers. While this stage is usually skipped so tetramers is
the initial objects. In the next stage, double tetramers concatenate laterally to one
octamer (O) then two octamers combine together to a hexadecamer (H). At last a
couple of hexadecamers connect to one unit length filament (Fu). An elongation re-
action associates two Fus to generate a short filaments Fs longer than Fu. With merger
reactions, Fss and/or Fus are attached to form long filaments Fls (containing at least
3 Fus). Filaments composed of Fl are compressed radially in the last stage which is
omitted too since the components do not change [205]. The corresponding molecular
reactions and RS counterparts of IFs presented in [36] is depicted in Table 4.3.

Accordingly, the RS of IF is Ri f l1 = (B1, A1) where B={T,O,H,Fu,Fs,Fl ,di}, A com-
prises the reactions listed in Table 4.3. The interactive process having 6 steps (initial
step 0 is excluded) is created by feeding T as the only entity of the context sequence,
given in Table 4.4 [36].

As stated in the general ideas of FPGA implementation of RS, entities in appli-
cable reactions in each interactive process are represented as logic 0 or 1 depending
on their absences and presences. This technique leads to that the interactive process
is manifested with waveforms of entities involved. The waveform of IF interactive
process corresponding to Table 4.4 is portrayed in Figure 4.5 (a). Design the RTL
model of Ri f l1 in the light of general ideas about FPGA implementation of RS and

4.2. FPGA implementation of self-assembly intermediate filaments reaction
systems

63

TABLE 4.3: Molecular reactions and their RS equivalents of self-
assembly intermediate filaments.

No. Molecular reactions RS reactions

(1) 2T → O ({T},{di},{O})
(2) 2O→ H ({O},{di},{H})
(3) 2H → Fu ({H},{di},{Fu})
(4) 2Fu → Fs ({Fu},{di},{Fs})
(5) Fu + Fs → Fl ({Fu,Fs},{di},{Fl})
(6) Fu + Fl → Fl ({Fu,Fl},{di},{Fl})
(7) 2Fs → Fl ({Fs},{di},{Fl})
(8) Fs + Fl → Fl ({Fs,Fl},{di},{Fl})
(9) 2Fl → Fl ({Fl},{di},{Fl})

TABLE 4.4: Interactive process of Ri f l1 = (B1, A1) (6 steps) with T as
the sole entity of each context for intermediate filaments RS.

Step Ci Di Wi Applicable reactions

0 {T} ∅ {T} (1)
1 {T} {O} {T,O} (1),(2)
2 {T} {O,H} {T,O,H} (1)∼(3)
3 {T} {O,H,Fu} {T,O,H,Fu} (1)∼(4)
4 {T} {O,H,Fu,Fs} {T,O,H,Fu,Fs} (1)∼(6)
5 {T} {O,H,Fu,Fs,Fl} {T,O,H,Fu,Fs,Fl} (1)∼(9)
6 {T} {O,H,Fu,Fs,Fl} {T,O,H,Fu,Fs,Fl} (1)∼(9)

perform the behavioral simulation to estimate the functionality of the RTL model.
The behavioral simulation waveform of Ri f l1 RTL model generated by Vivado is
given in Figure 4.5 (b). From the contrast of these two waveforms, the designed RTL
model ofRi f l1 fits in with expectation of its function, so the RTL model is correct.

The length of produced filaments can be controlled by adding inhibitors to some
reactions, adding new entities in the context or getting rid of some reactions in Table
4.4. A more complex variant,Ri f l2=(B2, A2) where B2 = {T, O, H, Fu, Fs, Fl , long, short,
Flong, di} is devised in [36] to generate filaments whose lengths varies with context
entities. New inhibitors are appended to several reactions to substitute dummy in-
hibitor di and a new reaction is introduced. Reaction set A2 is listed in Table 4.5. The
interactive process is given in Table 4.6. The expected waveform of Table 4.6 shown
in Figure 4.6 (a) is verified by the behavioral simulation waveform of its RTL model
given in Figure 4.6 (b).

TABLE 4.5: RS reactions ofRi f l2 = (B2, A2).

No. RS reactions

(1) ({T},{di},{O})
(2) ({O},{di},{H})
(3) ({H},{di},{Fu})
(10) ({Fu},{Flong},{Fs})
(11) ({Fu,Fs},{short},{Fl})

No. RS reactions

(12) ({Fs},{short},{Fl})
(13) ({Fu,Fl},{short},{Fl})
(14) ({Fs,Fl},{short},{Fl})
(15) ({Fl},{short},{Fl})
(16) ({Fl ,long},{di},{Flong})

64 Chapter 4. FPGA implementation of reaction systems

step 0 1 2 3 4 5 6

time

clock
0

1

0

1

0

1

0

1

0

1

0
1

T

O

H

Fu

Fs

1

0
Fl

(a) The expected waveform of interactive process listed in Table
4.4. The blue solid line indicates context T.

(b) Vivado behavioral simulation waveform of interactive process of Ri f l1. The clock
perid is set as 10 ns.

FIGURE 4.5: Waveform comparison of interactive process of Ri f l1 =
(B1, A1).

Since the RTL models behave exactly as expected behaviors, it is ready to pro-
ceed the FPGA development flow. After synthesizing these RS models, set physical
constraints to establish the mapping between RTL model ports to FPGA package
pins, called I/O planning as shown in Figure 4.7. Set the clock period of the two
models as 5 ns as the timing constraint. The output ports of the two RTL models are
marked as debug signals so that their waveforms can be observed in the hardware
debug window after programming FPGA with design bitstream file. Then conduct
implementation which is performed by Vivado automatically. The timing report
generated after implementation tells whether timing requirements are met or not. In
fact, 4 ns clock period failed to meet timing requirements so it is increased to 5 ns
which meets all timing requirements.

Post implementation timing simulation is a significant procedure to evaluate the
performance of a designed model because gate delays and datapath delays are con-
sidered. During simulations, the clock period is defined by setting the half period
and real numbers are rounded to nearest integers. This means if the clock period is
an odd number, the actual clock is 1 ns longer for the 0.5 is rounded to 1. This is the

4.2. FPGA implementation of self-assembly intermediate filaments reaction
systems

65

step 0 1 2 3 4 5 6 7

time

clock
0

1

0

1

0

1

0

1

0

1

0

1

T

O

H

Fu

Fs

1

0
Fl

1
long

0

Flong

1

0

short
1

0

111098

(a) The expected waveform of interactive process listed in Table 4.6. The blue solid lines indicate
context entities.

(b) Vivado behavioral simulation waveform of interactive process ofRi f l2. The clock perid is set
as 10 ns.

FIGURE 4.6: Waveform comparison of interactive process of Ri f l2 =
(B2, A2).

66 Chapter 4. FPGA implementation of reaction systems

TABLE 4.6: Interactive process (11 steps) ofRi f l2 = (B2, A2).

Step Ci Di Wi Applicable reactions

0 {T,short} ∅ {T,short} (1)
1 {T,short} {O} {T,O,short} (1),(2)
2 {T,short} {O,H} {T,O,H,short} (1)∼(3)
3 {T,short} {O,H,Fu} {T,O,H,Fu,short} (1)∼(3),(10)
4 {T,short} {O,H,Fu,Fs} {T,O,H,Fu,Fs,short} (1)∼(3),(10)
5 {T,long} {O,H,Fu,Fs} {T,O,H,Fu,Fs,long} (1)∼(3),(10)∼(12)
6 {T,long} {O,H,Fu,Fs,Fl} {T,O,H,Fu,Fs,Fl ,long} (1)∼(3),(10)∼(16)
7 {T,long} {O,H,Fu,Fs,Fl ,Flong} {T,O,H,Fu,Fs,Fl ,Flong,long} (1)∼(3),(11)∼(16)
8 {T,short} {O,H,Fu,Fl ,Flong} {T,O,H,Fu,Fl ,Flong,short} (1)∼(3)
9 {T,short} {O,H,Fu} {T,O,H,Fu,short} (1)∼(3),(10)
10 {T,short} {O,H,Fu,Fs} {T,O,H,Fu,Fs,short} (1)∼(3),(10)
11 {T,short} {O,H,Fu,Fs} {T,O,H,Fu,Fs,short} (1)∼(3),(10)

(a) I/O planning ofRi f l1. (b) I/O planning ofRi f l2.

FIGURE 4.7: Physical constraints settings of two intermediate fila-
ments reaction systems. Gray circles with wide orange bars are pins
allocated to RTL model ports.

case for the implementation of two intermediate filaments RSs because the clock pe-
riod is 5 ns. To assess the performance of two models, two post implementation tim-
ing simulations with 4 ns and 6 ns as clock period are carried out, shown in Figure
4.8 and Figure A.1 in the Appendix. The mean integer value, 141 ns and 166 ns are
selected as the elapsed time for 6 steps ofRi f l1 and 11 steps ofRi f l2 model. 5 ns clock
period implies that the computation speed is 2× 108 step per second and its corre-
sponding frequency is 200 MHz. Computing logic expressions composed of 1-bit
variables is very efficient comparing to arithmetic expressions involving multiple-
bit variables. This is the root cause of the high performance of FPGA implemented
RSs.

After post implementation simulation completed, perform generating bitstream
file and programming device with this file. As output port variables are marked as
debug signals in the Verilog codes, the integrated logic analyzer (ILA) dashboard
appears after device programming. Add all the marked signals to Trigger/Capture
setup windows and run, results calculated by FPGA are shown in the dashboard in

4.3. FPGA implementation of heat shock response reaction systems 67

(a) Post implementation timing simulation with 4 ns clock period.

(b) Post implementation timing simulation with 6 ns clock period.

FIGURE 4.8: Post implementation timing simulation ofRi f l1.

the form of waveforms, as can be seen in Figure 4.9. Hardware resources dissipation
and power consumption is given in Figure 4.10 and A.2 in the Appendix.

4.3 FPGA implementation of heat shock response reaction
systems

Heat shock response is a eukaryotic cellular stress response replying excessive tem-
perature rise, heavy metal toxicity, associated diseases and related noxious stimulus
[206, 207]. Proteins (prot) of a cell are misfolded under these stresses and trans-
formed to misfolded proteins (m f p). The primary function of heat shock response
of eukaryotes is to produce heat shock proteins (hsp) working as chaperones for
m f p to refold them. hsp encoded genes, hse, take in charge of this response process
while transcription of these genes are inter-mediated by trimers of heat shock fac-
tors (hs f3). hs f3 binds to promoter-site of hse, generating hs f3 : hse. Consequently,
hsp synthesis is triggered to produce more hsp until a high level to refold prot. Then
heat shock response ceases [208, 209]. On the other side, hsp binds with hs f to form
hsp : hs f . When the temperature ascends again, hsp : hs f will be broken to release
hs f s which polymerize hs f3, so the heat shock response restarts [35]. A Petri-net
based formalization and simulation of Heat shock responses are proposed in [210].

A heat shock response reaction systemRhsr = (B3, A3) is proposed in [35] where
B3 constitutes of entities in Table 4.7 and A3 consists of reactions in the same table.
The interactive processes without temperature stress (at 37◦C) and with temperature
stress (at 42◦C) are listed in Table 4.8 and 4.9 respectively. Rhsr with the two inter-
active processes are modeled as two distinct RTL models, Rhsr1 and Rhsr2, for their
input/output ports are a little different.

The expected waveform and RTL model behavioral simulation waveform of Ta-
ble 4.8 and 4.9 are portrayed in Figure 4.11 and A.6. I/O planning of two RTL models
of Rhsr1 and Rhsr2 are shown in Figure A.3. As the clock period is also set as 5 ns

68 Chapter 4. FPGA implementation of reaction systems

(a) Hardware debug ofRi f l1 model.

(b) Hardware debug ofRi f l2 model.

FIGURE 4.9: Hardware debug of two intermediate filaments RSs.

(a) Hardware resources dissipation. (b) power consumption.

FIGURE 4.10: Hardware resources dissipation and power consump-
tion ofRi f l1.

4.4. FPGA implementation of reaction system binary counter 69

TABLE 4.7: Reactions of heat shock response RSRhsr = (B3, A3).

No. RS reactions

(17) ({hsf},{hsp},{hs f3})
(18) ({hsf,hsp,mfp},{di},{hs f3})
(19) ({hs f3},{hse,hsp},{hsf})
(20) ({hs f3,hsp,mfp},{hse},{hsf})
(21) ({hs f3,hse},{hsp},{hs f3:hse})
(22) ({hs f3,hse,hsp,mfp},{di},{hs f3:hse})
(23) ({hse},{hs f3},{hse})
(24) ({hse,hs f3,hsp},{mfp},{hse})
(25) ({hs f3:hse},{hsp},{hs f3:hse,hsp})
(26) ({hs f3:hse,hsp,mfp},{di},{hs f3:hse,hsp})

No. RS reactions

(27) ({hsp,hsf},{mfp},{hsp:hsf})
(28) ({hsp:hsf,stress},{nostress},{hsp,hsf})
(29) ({hsp:hsf,nostress},{stress},{hsp:hsf})
(30) ({hsp,hs f3},{mfp},{hsp:hsf})
(31) ({hsp,hs f3:hse},{mfp},{hsp:hsf,hse})
(32) ({prot,stress},{nostress},{prot,mfp})
(33) ({prot,nostress},{stress},{prot})
(34) ({hsp,mfp},{di},{hsp:mfp})
(35) ({mfp},{hsp},{mfp})
(36) ({hsp:mfp},{di},{hsp,prot})

TABLE 4.8: Interactive process 1 (5 steps) ofRhsr at 37◦C.

Step Ci Di Wi Applicable reactions

0 {hsf,prot,hse,nostress} ∅ {hsf,prot,hse,nostress} (17),(23),(33)
1 {nostress} {hs f3,prot,hse} {hs f3,prot,hse,nostress} (21),(33)
2 {nostress} {hs f3:hse,prot} {hs f3:hse,prot,nostress} (25),(33)
3 {nostress} {hsp,hs f3:hse,prot} {hsp,hs f3:hse,prot,nostress} (31),(33)
4 {nostress} {hsp:hsf,hse,prot} {hsp:hsf,hse,prot,nostress} (23),(29),(33)
5 {nostress} {hsp:hsf,hse,prot} {hsp:hsf,hse,prot,nostress} (23),(29),(33)

in the timing constraint, clock period of two post implementation timing simula-
tions is 4 ns and 6 ns, shown in Figure A.4, so that the mean time can be used as
elapsed time of 5 ns clock implementation. Because the reactions and number of
interactive process step of two heat shock response RTL models are the same, only
post implementation timing simulation ofRhsr1 (Table 4.8) is given in Figure A.4, so
as hardware resource dissipation and power consumption (Figure A.5). Hardware
debug of two heat shock response RS is given in Figure4.12. The computation speed
is also 2× 108 step per second (200 MHz).

The RS of ErbB receptor signal transduction in human mammary epithelial cells
[148] is a large scale RS having 246 entities 6720 reactions. It was implemented with
the same way presented here in the same FPGA at the speed of 108 steps per second.
Comparing with the speed achieved on the GPU-based simulator [145], the speedup
is 2.5× 105. Please refer to [198] for more details.

4.4 FPGA implementation of reaction system binary counter

4.4.1 Reaction system binary counter design

From precedent studies, the “presence 1 absence 0” representation of a entity is a
key notion in the design of reaction systems and their FPGA implementations. The

TABLE 4.9: Interactive process 2 (5 steps) ofRhsr at 42◦C.

Step Ci Di Wi Applicable reactions

0 {hse,prot,hsp : hs f ,stress}∅ {hse,prot,hsp : hs f ,stress} (23),(28),(32)
1 {stress} {hse,hsp,hsf,prot,mfp} {hse,hsp,hsf,prot,mfp,stress} (18),(23),(33),(35)
2 {stress} {prot,mfp,hsp : m f p,hs f3,hse} {prot,mfp,hsp : m f p,hs f3,hse,stress} (21),(32),(35),(36)
3 {stress} {hsp,prot,mfp,hs f3 : hse} {hsp,prot,mfp,hs f3 : hse,stress} (26),(32),(34)
4 {stress} {hsp,prot,mfp,hs f3 : hse,hsp : m f p}{hsp,prot,mfp,hs f3 : hse,hsp : m f p,stress}(26),(32),(34),(36)
5 {stress} {hsp,prot,mfp,hs f3 : hse,hsp : m f p}{hsp,prot,mfp,hs f3 : hse,hsp : m f p,stress}(26),(32),(34),(36)

70 Chapter 4. FPGA implementation of reaction systems

step 0 1 2 3 4 5

time

clock
0

1

0

1

0

1

0

1

0

1

0
1

nostress

prot

hsf

hse

hsf3

1

0

hsf3:hse

1
hsp

0

1
hsp:hsf

0

0

1
stress

(a) The expected waveform of interactive process listed in
Table 4.8. The blue solid lines indicate context entities.

(b) Vivado behavioral simulation waveform of Rhsr1 RTL model with inter-
active process listed in Table 4.8. The clock perid is set as 10 ns.

FIGURE 4.11: Waveform comparison of interactive process 1 of
Rhsr = (B3, A3).

4.4. FPGA implementation of reaction system binary counter 71

(a) Hardware debug ofRhsr1 model.

(b) Hardware debug ofRhsr2 model.

FIGURE 4.12: Hardware debug of two heat shock response RSs.

binary form (1 and 0) of this representation induces the construction of quantitative
models, such as a binary counter [25, 30]. Nonetheless, “1 presence 0 absence”,
not the vice versa, is the underlying idea to contrive a counter. According to this
idea, a 4-bit binary number 1010 is denoted from most significant bit (msb) to least
significant bit (lsb) by {b4,b2} for bit four and bit two are 1s so they should present
and bit three and bit one are 0s so absent. It is easy to apply this notation to n-
bit numbers which 01010 . . . 011 is expressed as {bn−1, bn−3, b2, b1}. b0 is used as a
successor function of adding 1 to the binary number with b0 attached to, for instance,
{b4,b2,b0} means adding 1 to 1010.

For a n-bit binary number, assume the i-th bit bi = 1 and the j-th bit bj = 0,
0 ≤ j < i ≤ n, then bi = 1 holds if b0 is attached. This fact can be reflected by
the set of reactions ri j = ({bi}, {bj}, {bi}) where 0 ≤ j < i ≤ n. If bi = 0, all the
bits lower than i are 1s with b0 attached, then bi = 1 and all the bits lower than
i become 0s after the augment of 1. This situation is represented by reaction set
ai = ({b0, b1, . . . , bi−1}, {bi}, {bi}) where 1 ≤ i ≤ n. With these two reaction sets, a
reaction system performing binary counter function can be built as Rbc = (Bn, An)
where Bn = {b0, b1, . . . , bn}, An = {rij|0 ≤ j < i ≤ n} ∪ {ai|1 ≤ i ≤ n}.

Taking n=4 as an example, the reactions of binary counter is listed in Table 4.10.
To implement this counter into FPGA, reactions are transformed to Boolean expres-
sions, as shown in Equation 4.7 which can be simplified to Equation 4.9. ⊕ stands for
XOR operation. Suppose a n-bit number E composed of {bn,bn−1,. . . ,b1}, Algorithm
1 is designed to generalize Formula 4.9.


b1 = (b1 ∧ b0) ∨ (b1 ∧ b0)

b2 = (b2 ∧ b0) ∨ (b2 ∧ b1) ∨ (b2 ∧ b1 ∧ b0)

b3 = (b3 ∧ b0) ∨ (b3 ∧ b1) ∨ (b3 ∧ b2) ∨ (b3 ∧ b2 ∧ b1 ∧ b0)

b4 = (b4 ∧ b0) ∨ (b4 ∧ b1) ∨ (b4 ∧ b2) ∨ (b4 ∧ b3) ∨ (b4 ∧ b3 ∧ b2 ∧ b1 ∧ b0)

(4.7)

72 Chapter 4. FPGA implementation of reaction systems

TABLE 4.10: RS reactions ofRbc.

No. RS reactions

(r10) ({b1},{b0},{b1})
(r20) ({b2},{b0},{b2})
(r30) ({b3},{b0},{b3})
(r40) ({b4},{b0},{b4})
(r21) ({b2},{b1},{b2})
(r31) ({b3},{b1},{b3})
(r41) ({b4},{b1},{b4})

No. RS reactions

(r32) ({b3},{b2},{b3})
(r42) ({b4},{b2},{b4})
(r43) ({b4},{b3},{b4})
(a1) ({b0},{b1},{b1})
(a2) ({b0,b1},{b2},{b2})
(a3) ({b0,b1,b2},{b3},{b3})
(a4) ({b0,b1,b2,b3},{b4},{b4})


b1 = (b1 ∧ b0) ∨ (b1 ∧ b0)

b2 = (b2 ∧ b1 ∧ b0) ∨ (b2 ∧ b1 ∧ b0)

b3 = (b3 ∧ b2 ∧ b1 ∧ b0) ∨ (b3 ∧ b2 ∧ b1 ∧ b0)

b4 = (b4 ∧ b3 ∧ b2 ∧ b1 ∧ b0) ∨ (b4 ∧ b3 ∧ b2 ∧ b1 ∧ b0)

(4.8)


b1 = b1 ⊕ b0

b2 = b2 ⊕ (b1 ∧ b0)

b3 = b3 ⊕ (b2 ∧ b1 ∧ b0)

b4 = b4 ⊕ (b3 ∧ b2 ∧ b1 ∧ b0)

(4.9)

Algorithm 1: reaction system binary counter.
Input: 1-bit variable b0
Output: the times that b0 = 1

1 for i = 0; i < n; i ++ do
2 t = e0; for j = 0; j < i; j ++ do
3 t = E[j] ∧ t;
4 end
5 E[i] = E[i]⊕ t;
6 end

4.4.2 UART-RS counter design and implementation

FPGA implementation of RS binary counter is conducted based on Algorithm 1 for
its parametrization of bit number. To validate the correctness of RS counter, and
to push forward one step closer to potential applications, universal asynchronous
receiver/transmitter (UART) module is devised and added to RS counter module
so that b0 signal sending from host computer can be received and counted by the
RS counter hardened in FPGA. The counting result can be transmitted back to host
computer by UART module hardened in FPGA to display directly, making hardware
debug procedures unnecessary.

UART is a serial communication protocol without common clock between trans-
mitter and receiver that are wired together. Their clocks are independent but must
have the same frequency so that what is sending can be received properly. As a
widely used serial ports, UART is a default device of computers. So only FPGA

4.4. FPGA implementation of reaction system binary counter 73

start stopparityb0 b1 b2 b3 b4 b5 b6 b7

bit duration
1

0 time

FIGURE 4.13: UART data frame with 8 bits data, 1 bit EOF. Parity bit
is optional.

UART should be designed and implemented to communicate with host computer.
As a serial protocol, what transmitted is a train of single bit data. These binary bits
are packaged into a frame with one bit of 0 as the start of frame (SOF) and one or two
bits of 1 as the end of frame (EOF). The number of bit ranges from 5 to 8, followed by
one optional parity bit [211]. The UART data frame is captured in Figure 4.13. In this
research, the 10-bit data frame consisting of 1 bit SOF, 8 bits data, 1 bit EOF and no
parity bit, is used. b0 = 1 denotes the successor function of adding 1 is performed so
the value in the counter will augment by 1. b0 = 0 means that the successor function
will not happen.

The RTL model of RS counter has three 1-bit input ports: clk which is the clock
port, ib0 and state which controls the shifting of work mode between idle and busy.
The output port is a 8-bit variable E whose initial value is 0. E[7]∼E[0] correspond
to b8 ∼ b1 so at the beginning E[7]=E[6]=. . . =E[0]=0. The experiment is arranged as
follows: 32 frames of 8-bit data in which one bit is 1 and the others are 0s are sent
from host computer UART transmitter to RS counter. There are thirty two 1s in total
passing through ib0 port so the successor function of adding 1 should be executed
32 times, resulting in that the value of E is 32 which is transmitted from FPGA to
host computer to display. The transmitter sends data bits sequentially so it seems
that these data frame can be input to RS counter directly to count. Unfortunately it
is wrong to do so. Bear in mind that the EOF of each data frame is also 1 and RS
counter has no mechanism to distinguish the EOF 1 from data bit 1. The result will
be 64 instead of 32 for all the EOF 1s are counted as well.

To avoid this mistake, data frames are received by the UART receiver R1 and
stored in 32 8-bit registers successively. A special transmitter T1 whose EOF is also
0 sends these data serially to RS counter to count the data bit 1 which denotes the
attachment of successor function trigger b0. After counting completed, result is sent
back to host computer by normal transmitter T2 at the same baud rate of reception
from host computer. Transmission/reception rate of host computer is set as 9600
baud (this is done by setting properties of COM port). To transmit/receive data
at this speed, the first thing to do is synthesizing a clock whose frequency is 9600
Hz from master clock whose frequency is set to 100 MHz. Direct digital synthesis
(DDS) [212, 213] is a frequency synthesis technique playing a important role in the
digital systems [214]. DDS tuning equation is given in Formula 4.10 [215], where fo
is the output synthesized frequency, fs is the master clock frequency, K is the binary
tuning word, N is the bit length of phase accumulator. K is a integer with the range
of [20, 2N−1].

fo =
fs × K

2N (4.10)

If a specific frequency is desired, its corresponding tuning word can be com-
puted by Formula 4.11. K is accumulated in the phase accumulator register PA. The
median value of 2N − 1 signified by M is used as threshold so that if PA<M then as-
sign 0 otherwise assign 1 to the synthesized clock to output. However, synthesized
clocks are not allowed to drive circuits since it is difficult to synthesize these circuits

74 Chapter 4. FPGA implementation of reaction systems

No 0 1 2 3

time

clock
0

1

0

1

0

1

1

a

b

c

0

FIGURE 4.14: Rising edge detection. The edge detection method can
generate a high level signal lasting for 1 clock cycle after the red rising
edge. It is used in combination with the clock rising edge highlighted
in blue as the trigger signal for other operations.

beginidle
0

jitter

stop sample

1
C1<15

C1=15

C2=9 C2<9

C1=15

C1<15

FIGURE 4.15: State transition diagram of UART receiver R1.

and their stability cannot be guaranteed [216]. To handle this adversity, the trick of
edge detection is utilized to generate a high level which has the same frequency of
the synthesized clock, as shown in Figure 4.14 where a high level lasting one clock
period is produced after the rising edge highlighted in red color. This high level to-
gether with the clock rising edge in blue can drive circuits at the synthesized clock
frequency. In shortly, transforming edge trigger of synthesized clock to level trigger
is a secure solution for driving circuits by synthesized clocks.

K =
fo × 2N

fs
(4.11)

To sample data at the most stable phase of the data duration, the frequency of
UART receiver R1 is expedited to 9600×16. So in a period of host computer trans-
mitter clock, there are 16 periods of R1 clock. Perform positive edge detecting of
R1 clock to get 16 high level lasting one period of master clock which is 108 Hz. A
counter C1 counts the number of high levels from 0 to 15. When the value of C1 is 7,
the time moment is the middle of the data duration. Sampling at this moment can
get the most stable value for it is far away from two endpoints where data hopping
happens. When C1 = 15, a bit counter C2 with 0 as initial value adds 1 to itself. Dur-
ing C2 = 0 and C2 = 9, no samplings are executed to skip SOF and EOF of each data
frame. R1 is implemented as a state machine with 4 states as illustrated in Figure
4.15.

Data frames received by R1 are stored in thirty two 8-bit registers from a0 to a31
serially. Once a register has fully loaded, a high level signal t1d generated by edge
detection arises and a counter C3 counts the number of this signal from 0 to 31. The
high level signal drives T1 to begin transmitting data to RS counter. T1 sends 10 bits

4.5. Wrap-up 75

transmitidle
Tx=0 C4<10Tx=1

C4=10

FIGURE 4.16: State transition diagram of UART transmitter T1.

during its duty cycle for a data frame comprises 10 bits of binary data, with 0 as the
EOF rather than 1 for the reason stated above. Counter C4 counts the number of bits
sent by T1 which is implemented as a 2-state machine depicted in Figure 4.16 where
Tx indicates transmitting signal. Because host computer sends data at 9600 baud, RS
counter should compute at 960 baud for the 10-bit frame (including 1 bit of SOF, 1
bit of EOF and 8 bits data) is sent back at 9600 baud too. As a consequence, T1 works
at 960 baud (this means the data duration of a bit is the period of 960 baud) to feed
RS counter, i.e., once one bit of data comes in through ib0 port, perform reactions
involved. The drive signal of T1, t1d, has a frequency of 96 baud since there are 10
bits between two high levels of t1d. The result is transmitted back to host computer
by a normal UART transmitter T2 with 1 as EOF, at the rate of 9600 baud.

It is emphasized that the metric baud can be substituted by Hz. This assertion
is verified by experiments conducted. Baud rate can be improved easily for clock
synthesis is based on parametric design method. Note that the precision of UART
communication is not very high without parity bit so if the baud rate is too high, the
error would be large. RTL block diagram of UART-RS counter is presented in Figure
4.17. Behavioral simulation of RTL model is shown in Figure 4.18 in which the result
stored in E is 32. This value is exactly correct for there are thirty two 1s in all the
data frames. Communication experiment result between host computer and FPGA
is shown in Figure 4.19 where numbers are represented in hexadecimal so that 20
denotes decimal 32. This result validates the correctness of RS counter and its UART
communication component.

4.5 Wrap-up

The relationship between reaction systems and synchronous digital circuits is inves-
tigated to lay the foundation of FPGA implementation of reaction systems. Reac-
tions are represented as Boolean expressions for the underlying qualitative property
of threshold supply assumption. Duration of entities is interpreted as clock period
to present no permanency assumption. Two small scale biological models modeled
by RS, i.e., intermediate filaments self-assembly and heat shock response RSs are
implemented in FPGA, achieving a computing speed of 2× 108 step per second for
the high efficiency of executing logic formulas. The binary counter which is a quan-
titative model constructed by a reaction system is implemented in FPGA as well. To
verify the correctness of RS counter, the UART communication component which
coordinates with the computing speed of RS counter is devised. These two parts are
connected as a entirety and implemented in FPGA. The communication experiment
shows that UART-RS counter works as expected.

Essentially, a reaction system is a set of reactions. With the input of context set Ci,
some reactions are facilitated so applicable and some are inhibited. All the applicable
reactions are executed concurrently, without conflict for competing common entities.
The absence of a entity is represented as logic 0 and presence logic 1 to conform with
the representation of reactions. These logic expressions are put in the always block
of Verilog HDL and non-blocking assignment operator Le f tarrow is used to perform
parallel assignment in the sequential construct. The duration of a interactive process

76 Chapter 4. FPGA implementation of reaction systems

clk frequency splitting

edge detection

clk rx_data

rx_flagrx

clock_re

clk

txtx_en
clock_tr

tx_data [7:0]
tr_state

clk

E[7:0]

state

e0in

Master clock

100 MHz

9600*16 Hz

PC data

a0 a1 a2 a31
...

clk frequency splitting

edge detection

960*16 Hz

state

clk frequency splitting

edge detection

9600 Hz

clk

txtx_en

clock_tr

tx_data [7:0]
tr_state

clk frequency splitting

edge detection

9600

PC

clk frequency splitting

edge detection

960 HZ

Cs1

R1

T1

RS counter

T2

Register

Cs2

Cs3

Cs4

Cs5

FIGURE 4.17: RTL model block diagram of UART-RS counter. Cs1 to
Cs4 are clock synthesis module producing desired clock frequencies.

4.5. Wrap-up 77

FIGURE 4.18: Behavioral simulation of UART-RS counter RTL model.

FIGURE 4.19: Communication experiment between host computer
and FPGA hardened UART-RS counter. The last E1 is an end mark
signifying the completeness of counting.

step is indicated by the clock period of FPGA. Form researches in this chapter, it is
shown that quantitative computing models can also implemented on FPGA with
considerable speed.

Quantitativeness and qualitativeness are different facets which are related tightly
in digital circuits. A computer can output quantitative outcomes while digital cir-
cuits inside CPU perform Boolean algebra which is ”qualitative“. Arithmetic logic
units compute results based on qualitative other than quantitative laws. For in-
stance, the function of digital adder is realized by XOR gates. There is no quantita-
tive computing at all. In the later chapters, fixed point and floating point arithmetic
operations are widely used in NPS. These quantitative operations are qualitative in
essentially. This fact tells us that qualitative models have special potentialities which
should be investigated deeply.

79

Chapter 5

Theoretical investigations of
numerical P systems

Numerical P systems introduced in [217] is a variant of P systems very different
from the standard model. Instead of objects and rewriting rules it features real-
valued variables which are updated in discrete time steps using a set of equations.
This particularity is very interesting for applications in the area of control theory, as
usually a control described using a set of differential equations, which in many cases
can be translated to the NPS equation set. In order to be applicable to practical case
studies, NPS model was extended to Enzymatic Numerical P systems (ENPS) [218]
that allowed much more complex behaviors in the corresponding equations.

There are many theoretical researches about (E)NPS. The computational power
and special attributes of NPS and ENPS are investigated before their applications.
NPSs with migrating variables were studied in [219] while NPSs with production
thresholds were analyzed in [220]. Universal ENPSs with small number of enzy-
matic variables are discussed in [221]. String languages generated by sequential
NPSs were deliberated in [222]. In [223], NPSs with production thresholds was con-
sidered. In [224], four recent research topics on numerical P systems were summa-
rized. In [225], universality of ENPSs was examined. Enzymatic numerical P sys-
tems using elementary arithmetic operations were investigated in [226]. The com-
putational power of ENPSs working in the sequential mode was studied in [227].
A parallel bio-inspired framework for numerical calculations using ENPS with an
enzymatic environment was constructed in [228]. ENPSs for basic operations and
sorting were designed in [229]. The ways of how to improving the universality re-
sults of ENPS were researched in [230]. The pole balancing problem with ENPS was
discussed in [231].

In this chapter, the (E)NPS is extended to a new model called generalized numer-
ical P systems (GNPS). The main idea behind this extension is to provide a theoret-
ical background allowing us to build custom parallel hardware architectures using
Field-Programmable Gate Array (FPGA). It is studied what operations can be effi-
ciently performed in hardware and restricted the GNPS architecture to be a series of
rules implying that the dynamics of the system is described using equations written
in Presburger arithmetic. This allows in turn a very efficient translation to Verilog
HDL used for FPGA circuits design. To assist this translation we developed a com-
piler that translates GNPS to Verilog HDL. This allows to simplify the design process
and to rapidly develop real hardware prototypes. Moreover, it turns out that there
is a tight link between GNPS, sequential circuits [232], Mealy/Moore automata [195,
200] and synchronous programming languages like Esterel [233, 234, 235] and Lustre
[236, 237].

80 Chapter 5. Theoretical investigations of numerical P systems

5.1 Numerical P system and enzymatic numerical P system

The formal definition of a numerical P system (NPS) was presented in 2006 [217]
and paraphrased here for a better understanding. While the motivation of initiating
NPS is to deal with potential applications in economic domain in which involves
large scale real number variables, NPS was put to use in robot motion control at first
[238].

Definition 5.1. A numerical P system is the construct

Π = (m, H, µ, (Var1, Pr1, Var1(0)), . . . , (Varm, Prm, Varm(0)))

where

1. m > 0 is the number of membranes (the system degree);

2. H is the membrane label set storing the labels of each membrane;

3. µ is the membrane structure;

4. Vari, Pri, Vari(0) are variables, programs and initial values of variables in membrane
i, 1 ≤ i ≤ m.

Comparing to multiset rewriting rules in classical symbol object P systems, the
rules in a NPS named as programs are quite unusual with production function in the
left hand side and repartition protocol in the right hand side, taking on the form

Pli : Fli(x1i, . . . , xkii)→ cl1|v1 + · · ·+ clni |vni

where x1i, . . . , xkii are variables in membrane i, Fli is the production function, 1 ≤ l ≤
n is the number of programs in membrane i. v1, . . . , vni are variables in membrane i
or in the upper immediate or lower immediate membrane of membrane i. cl1, . . . , clni

are the distribution coefficients. The result of production function is distributed as
Formula 5.1. 

v1 =
cl1×Fli(x1i ,...,xki i)

∑
ni
t=1 clt

...

vni =
clni
×Fli(x1i ,...,xki i)

∑
ni
t=1 clt

(5.1)

If a variable only appears in a production function, after the execution of current
computation step, the former value is consumed so its new value is 0. For variables
arising in both sides of the same program, their former values are overwritten by
newly distributed values according to repartition protocols. If a variable appears
merely in several repartition protocols of different programs, its new value is the
sum of all distributed values plus its former value. On condition that variables arise
in both sides of several programs, their new value after the computation step is the
sum of all distributed values that overwrite their former values.

Since every program is applicable and executes in parallel, in case of multiple
programs populating in one membrane, one program is selected randomly to exe-
cute. This derivation mode is called min1 [91]. The random selecting of programs
imparts the non-determinism to NPS, bringing on a negative impact on robot motion
control for the control law is deterministic. Hence the results of each computation
step of NPS should also be definite. For the sake of avoiding this non-determinism

5.1. Numerical P system and enzymatic numerical P system 81

of NPS, only one program is assigned to every membrane to eliminate the random
selection process, obtaining a deterministic NPS as a result.

Although the determinism is guaranteed by the one to one correspondence of
membranes and programs, the membrane structure tends to be complex and its ef-
ficiency declines. This drawback becomes more obvious for modeling sophisticated
algorithms which need plenty of membranes to distribute operations. Enzymatic nu-
merical P systems (ENPS) introduced in 2010 [218] can contain multiple programs in
one membrane, adopting enzyme-like variables to decide the usability of programs.
The application of a program is conditioned to the verification of the minimality
condition between the values of enzyme (or enzymatic variable) and its reactants. For
example, the program 2x+ y− 1(e→)z of a ENPS is applicable only if e > min(x, y).
Unfortunately, there is no unique definition for this condition – several papers use
different ones. Here is the list of most used conditions:

e > min(c(x1i), . . . , c(xkii)), in [218]
e > min(x1i, . . . , xkii), in [218]
e > min(|x1i|, . . . , |xkii|), in [239].

The biological base for this criterion is that the concentration of a enzyme should
large than that of a reactant. Different with the catalyst used in classical symbol
object P systems, enzymes can be consumed or produced, and their amounts matter.
For programs without enzymes, these programs are applicable automatically. The
definition of ENPS is quoted bellow.

Definition 5.2. An enzymatic numerical P system is the construct

Π = (m, H, µ, (Var1, E1, Pr1, Var1(0)), . . . , (Varm, Em, Prm, Varm(0)))

where

1. m > 0 is the number of membranes (the system degree);

2. H is the membrane label set storing the labels of each membrane;

3. µ is the membrane structure;

4. Vari, Pri, Vari(0) are variables, programs and initial values of variables in membrane
i, 1 ≤ i ≤ m.

5. Ei, 1 ≤ i ≤ m, are the enzyme variables in membrane i;

The form of a program with enzyme in a ENPS is little different from NPS pro-
grams as shown bellow,

Pli : Fli(x1i, . . . , xkii)(ej,i →)cl1|v1 + · · ·+ clni |vni

where ej,i ∈ Ei (j is the mark number), is the enzyme catalyzing this program. The
computation procedures of ENPS is identical to that of the NPS. The all-parallel mode
[240] by which a set of applicable programs determined by enzymatic variables,
instead of a single program (min1 mode), are executed simultaneously, is the con-
sidered mode on ENPS. The function of enzymes greatly simplifies the membrane
structures, making ENPS more practicable to model engineering applications.

Comparing to the symbol object P system in max mode and NPS in min1 mode,
the ENPS in all-parallel mode is a mixed model with quantitative and qualitative

82 Chapter 5. Theoretical investigations of numerical P systems

properties: if multiple programs involving a common variable are applicable de-
termined by enzymes, the value of the common variable is copied and assigned to
every one in different programs. There is no limits on the copied value of common
variable such that different programs having the same variable can use the copied
value without conflict. This qualitative attribute of ENPS is turned out to be quite
efficient to arrange complicate algorithms of real life applications.

5.2 The relationship between (E)NPS and system of differ-
ence equations

5.2.1 From (E)NPS to system of difference equations

Consider the following NPS, also depicted in Figure 5.1, with two membranes nested
as follows: [1[2]2]1. Let Var1 = {a, b, f }, Var2 = {x, y}, Var1(0) = (0, 1, 3), Var2(0) =
(0, 1). The rules of the system are defined as follows:

Pr1−1 : 4(a + b)→ 1|a + 1| f + 2|x.
Pr1−2 : 3(x + y)→ 1|b + 1|x + 1|y.

a[0] b[1] f [1]
1

Pr1-1: 4*(x+y)→1|b+2|x+1|y

Pr1-2: 3*(a+b)→1|a+1|x+1| f

x[0] y[2] 2

FIGURE 5.1: Target numerical P system. The nested (membrane)
structure is represented by a Venn diagram; the variables and the
rules are placed in corresponding locations; the initial value of vari-
ables follow them in square brackets.

It is not difficult to observe that the corresponding system can be rewritten as
following difference equations with initial conditions a(0) = 0, b(0) = 1, f (0) = 3,
x(0) = 0, y(0) = 1. 

a(t + 1) = a(t) + b(t)
b(t + 1) = x(t) + y(t)
f (t + 1) = f (t) + a(t) + b(t)
x(t + 1) = x(t) + y(t) + 2 (a(t) + b(t))
y(t + 1) = x(t) + y(t)

(5.2)

This can be also written in a matrix form as follows
a(t + 1)
b(t + 1)
f (t + 1)
x(t + 1)
y(t + 1)

 =


1 1 0 0 0
0 0 0 1 1
1 1 1 0 0
2 2 0 1 1
0 0 0 1 1




a
b
f
x
y

 (5.3)

5.2. The relationship between (E)NPS and system of difference equations 83

In many cases difference equations can be solved analytically using standard
methods like matrix diagonalization or generating function. The analytical solution
for system defined by Equation (5.2) is given below:

a(t) = 2× 3t−2, b(t) = 4× 3t−2, f (t) = 3t−1 + 3,

x(t) = 8× 3t−2, y(t) = 2× 3t−2 + 1, t > 1

Now let us switch to the ENPS depicted in Figure 5.2, with three membranes
nested as follows: [1[2]2[3]3]1. Let Var1 = {a, b}, Var2 = {E}, Var3 = {c}, Var1(0) =
(0, 3), Var2(0) = (2n), n > 0, Var3(0) = 0. The set of rules is defined as follows:

Pr1 : 2b + 1(E→)1|a,
Pr2 : E− 1→ 1|E,
Pr3 : 2(c + 1)(E→)1|c + 1|b.

a[0] b[3] 1

Pr1-1: 2*b+1(E→)1|a

Pr1-2: E-1→1|E

E[2n]
2

Pr1-3: 2*(c+1)→1|c+1|b

c[0] 3

FIGURE 5.2: Target enzymatic numerical P system.

It is not difficult to observe that the corresponding system can be rewritten as
following difference equations.

a(t + 1) = if E(t) > b(t) then 2b(t) + 1 else a(t)
b(t + 1) = c(t) + 1
c(t + 1) = c(t) + 1
E(t + 1) = E(t)− 1

a(0) = 0, b(0) = 0, c(0) = 0, E(0) = 2n

This difference equations are equivalent to the equation: a(t) = ∑t
i=0 2i + 1 = t2

(for t ≤ n).

5.2.2 From system of difference equations to (E)NPS

The system of difference equations producing Fibonacci sequence is represented by
Formula 5.4 where f (0) = 0, f (1) = 1. Equation 5.4 can be transformed to a system
of difference equations given in Formula 5.5 which contains only (n-1). The NPS
carrying out Equation 5.5 is portrayed in Figure 5.3. It has two nested membranes
encompassing two equations from Formula 5.5.

84 Chapter 5. Theoretical investigations of numerical P systems

f [1] 1

Pr11: 2*f →1| f +1| p

Pr12: p→1| f

p[0]
2

FIGURE 5.3: The numerical P system generating Fibonacci sequence.

f (n) = f (n− 1) + f (n− 2) (5.4)

{
f (n) = f (n− 1) + p(n− 1)
p(n) = f (n− 1)

(5.5)

Consider the projectile motion depicted in Figure 5.4 as another example. This
is a continuous model which should be transformed to its difference counterpart
at first, as given in Formula 5.6. The corresponding NPS is illustrated in Figure
5.5. Note that Sy is a non-linear continuous function which is approximated by a
piecewise-linear function. The benefit of such approximation is order reduction,
which can improve computing speed in software simulation and hardware imple-
mentation, at the price of a lower precision of results.

vx(t + 1) = v0

Sx(t + 1) = Sx(t) + v0

vy(t + 1) = vy(t) + g
Sy(t + 1) = Sy(t) + vy(t) +

g
2

(5.6)

As can be seen, there is a correspondence from a (E)NPS to a discrete time series
then to a difference system. So a NPS is another form of its corresponding difference
system. Difference and differential equations are tightly related. There are stan-
dard methods transforming one to another [241, 242]. As a consequence, (E)NPSs
can be used to model difference systems originated from differential systems. This
is a pretty useful conclusion for practical applications of NPS since most engineer-
ing models are characterized by differential systems. With this conclusion, differ-
ence system described models can be transformed to (E)NPSs whose advantage are
showing quantitative correlations more clear with chemical reaction like rules/pro-
grams. On the other side, it shows that NPSs have good adaptability to model many
practical situations which may benefit from the inherent parallelism of (E)NPS.

5.3 Binary and unary normal form of (E)NPS

Form the standard form of a (E)NPS program it is indirect to see the distributed por-
tion of a variable in the repartition protocol for there are multiple variables generally.
The distributed portion can be shown straightforwardly by introducing binary form
of programs. Please refer to Chapter 2 for definitions of NPS and ENPS if necessary.

5.3. Binary and unary normal form of (E)NPS 85

O X

Y

t0 t1 t2 t3 t4 t5 t6 t7 t8

x x
S v t 

0

21

2
y y

S v t gt  

0x
v v

0y y
v v gt 

0
0

y
v 

FIGURE 5.4: The projectile motion. The red solid line is the piecewise-
linear approximation of the non-linear trajectory.

1

Pr2-1: vy+g→1|vy

g[9.8]

2

Sy[0]

Pr3-1: Sy+vy+0.5g→1|Sy

vy[0]

vx[v0] Sx[0]

Pr1-2: vx→1|vx

Pr2-2: Sx+vx→1|Sx

Pr1-1: g→1|g

FIGURE 5.5: The NPS corresponding to the system of difference equa-
tions given in Equation 5.6.

Definition 5.3. A (E)NPS is said to be in the binary normal form if all programs are of form

Pli : Fli(x1i, . . . , xkii)→ cs|vs + (K− cs)|λ, or
Pli : Fli(x1i, . . . , xkii)(eli →)cs|vs + (K− cs)|λ,

for some i > 0, ki > 1, cs ∈ (cl1, cl2, . . . , clni), ni > 1, K = ∑l
p=1 cp, L = K − cs is

balancing coefficient, λ is a special dummy variable.

It is obvious that vs =
cs
K Fli(x1i, . . . , xkii) is the allocated value form this program.

Term binary stems from the 2 tuple (cs, K). A special case is that there is only one
variable in repartition protocol, i.e., l = 1, resulting in cs = K. Then L = K− cs = 0,
so there is no dummy variable λ introduced in the program. This special normal
form is called unary normal form.

86 Chapter 5. Theoretical investigations of numerical P systems

Definition 5.4. A (E)NPS is said to be in unary normal form if all programs are of form

Pli : Fli(x1i, . . . , xkii)→ cs|vs, or
Pli : Fli(x1i, . . . , xkii)(eli →)cs|vs,

where i > 0, ki > 1.

If we relax the condition that variables of the production function should be from
the same membrane, then it is possible to obtain a stronger result. This allows to
combine all rules related to a single variable into one rule by choosing appropriate
coefficients. In this case several programs of type

Fn(x1j, . . . , xkj)→ cn|x + zn|λ

can be combined as

n

∑
p=1

cp

cp + zp
Fp(x1j, . . . , xkj)→ 1|x.

Comparing to binary normal form, unary normal form has a term cs
K off and all

the value of production function is assigned to one variable. Unary normal form
is quite suitable for CPU simulation or FPGA implementation because divider is a
resource-power hungry arithmetic unit with long latency. This form makes division
unnecessary to improve performance and diminish resource-power consumption.
As a consequence, programs are designed to unary normal form as many as possible
in applications.

5.4 The relations between symbol-object P system and NPS

Despite the discrepancies in variable type, rule format, and work pattern between
symbol object P systems and (E)NPSs, they can be viewed from the quantity prospec-
tive to reveal their intrinsic relations to present a in-depth comprehending of both
models. A rewriting rule r1 : a3b2c → d2e can be decomposed to a set programs
given in Formula 5.7, where k1 is a non-negative integer bounded by derivation
mode, denoting the instance (number of used times) of r1. Once r1 applied, all the
programs comprising it are put to use concurrently, although there are no enzymatic
variables to catalyze these programs like that in ENPS. This parallel utilizing also
violates program usage mode in NPS where only one program is selected randomly
to use. Therefore, it is supposed that rewriting rules of a P system are applied in
the light of a special mode in which programs are utilized in parallel, without any
extrinsic conditions or constraints.

r1 =



Pr11 : a− k1 × 3→ 1 | a
Pr21 : b− k1 × 2→ 1 | b
Pr31 : c− k1 × 1→ 1 | c
Pr41 : d + k1 × 2→ 1 | d
Pr51 : e + k1 × 1→ 1 | e

(5.7)

Along this line, the P system portrayed in Figure 2.2 is adapted as shown in
Figure 5.6. The consumption and production of the same object in the program
set of a rewriting rule is not offset because the constant coefficients in programs
are used to compute the maximal instance of a rule. They can be countervailed

5.4. The relations between symbol-object P system and NPS 87

during software simulation or hardware implementation to simplify computations.
Procedures calculating maximal instance of a rule are summarized below.

1. perform a serial of divisions (Nobi

Nobi
obml

)t, t = 1, 2, . . . , where Nobi is the number of

object i in the object multiset of a membrane, Nobi
obml is the number of object i in

the obml of a concerned rule, t is number of object types in obml ;

2. compute min((Nobi

Nobi
obml

)t), where function min() give the minimum number which

is the maximal instance the rule can be applied.

a
13

b
15

c
10

e
8
f

11
g

9

b
9
c

12
e

14

c
13

e
10

g
11

1

2

3

4

2 1

1 2 1

2 1

2 2 1

2 1

2 1 3 2 1

2 1

4 2 1

2 1

5 2 1

Pr : 2 1|

Pr : 4 1|

Pr : 1 1|

Pr : 1 1|

Pr : 1 1|

b k b

c k c

r a k a

b k b

c k c











 









   


  


  


  
   

3 1

1 3 1

3 1

2 3 1

3 1 3 1

3 3 1

3 1

4 3 1

Pr : 3 1|

Pr : 1 1|

Pr : 2 1|

Pr : 1 1|

a k a

c k c
r

b k b

c k c









 







   


  


  
   

1 2

1 1 2

1 2

1 2 2 1 2

1 2

3 1 2

Pr : 2 1|

Pr : 5 1|

Pr : (2 1|)
out

e k e

r f k f

d k d







 





   


  


  

2 2

1 2 2

2 2

2 2 2

2 2 2 2

3 2 2

2 2

4 2 2

Pr : 1 1|

Pr : 3 1|

Pr : 1 1|

Pr : 2 1|

f k f

g k g
r

b k b

e k e









 







   


  


  
   

3 2

1 3 2

3 2

2 3 2

3 2

3 2 3 3 2

3 2

4 3 2

3 2

5 3 2

Pr : 1 1|

Pr : 1 1|

Pr : 1 1|

Pr : 2 1|

Pr : 2 1|

e k e

f k f

r g k g

f k f

g k g











 









   


  


  


  
   

1 3

1 1 3

1 3

2 1 3

1 3

1 3 3 1 3

1 3

4 1 3

1 3

5 1 3

Pr : 4 1|

Pr : 3 1|

Pr : 5 1|

Pr : 1 1|

Pr : 2 1|

b k b

c k c

r e k e

b k b

e k e











 









   


  


  


  
   

2 3

1 2 3

2 3

2 3 2 2 3

2 3

3 2 3

Pr : 1 1|

Pr : 5 1|

Pr : 2 1|

b k b

r c k c

e k e







 





   


  


  

3 3

1 3 3

3 3

2 3 3

3 3 3 3

3 3 3 4

3 3

4 3 3 4

Pr : 2 1|

Pr : 1 1|

Pr : (2 1|)

Pr : (2 1|)

in

in

c k c

e k e
r

e k e

g k g









 







   


  


  
   

1 1

1 1 1

1 1

2 1 1

1 1

1 1 3 1 1

1 1

4 1 1 3

1 1

5 1 1 3

Pr : 2 1|

Pr : 1 1|

Pr : 5 1|

Pr : (1 1|)

Pr : (2 1|)

in

in

a k a

b k b

r c k c

b k b

e k e











 









   


  


  


  
   

4 1

1 4 1

4 1

2 4 1

4 1 4 1

3 4 1 2

4 1

4 4 1 2

Pr : 4 1|

Pr : 4 1|

Pr : (2 1|)

Pr : (2 1|)

in

in

a k a

b k b
r

e k e

g k g









 







   


  


  
   

1 4

1 1 4

1 4

1 4 2 1 4

1 4

3 1 4

Pr : 2 1|

Pr : 1 1|

Pr : 2 1|

e k e

r g k g

c k c







 





   


  


  

2 4

1 2 4

2 4

2 2 4

2 4 2 4

3 2 4

2 4

4 2 4

Pr : 1 1|

Pr : 5 1|

Pr : 1 1|

Pr : 2 1|

c k c

g k g
r

e k e

g k g









 







   


  


  
   

3 4

1 3 4

3 4

2 3 4

3 4

3 4 3 3 4

3 4

4 3 4

3 4

5 3 4

Pr : 4 1|

Pr : 1 1|

Pr : 1 1|

Pr : 1 1|

Pr : 1 1|

c k c

e k e

r g k g

a k a

f k f











 









   


  


  


  
   

FIGURE 5.6: The symbol object P system described in NPS form. A
rewriting rule is translated in a set of programs in which programs
involving subtraction denote obml and programs involving addition
signify obmr. Programs in parentheses are executed in membranes
indicated by their subscripts, not in membranes containing them.

Programs of a object rewriting rule involve merely one type of object while their
counterparts in a NPS embody several types of objects. The entire value of a variable
is allocated to one program in a NPS, while multiplicities of objects can be shared
by different rules in a symbol object P system. This fact means that object multisets
are detachable while variables are not. The separability of object multisets gives
rise to the multiple feasible solutions of max mode, resulting in the difficulty to get
all the solutions. The indivisibility of variables refrains NPS from the adversity to
compute such feasible solutions. Instead, just select a program randomly, assigning
all the values of involved variables to this program to evolve configurations. What
is more significant is that these relations are the foundation of software simulation
and hardware implementation of symbol object P systems for the execution of rules
is realized by performing corresponding programs as shown in Figure 5.7. As can be
seen, rule instances are calculated by virtue of the form of rules rather than program
form, for the latter one lost some information about usability.

88 Chapter 5. Theoretical investigations of numerical P systems

a13b15c10

e8f 11g9

b9c12e14

c13e10g11

r1-1: a
2bc5→(be2)in3

r2-1: b
2c4→abc

r3-1: a
3c→b2c

r4-1: a
4b4→(e2g2)in2

r1-2: e
2f 5→(d2)out r2-2: fg

3→be2 r3-2: efg→f 2g2

r1-3: b
4c3e5→be2 r2-3: bc5→e2 r3-3: c

2e→(e2g)in4

r1-4: e
2g→c2 r2-4: cg5→eg2 r3-4: c

4eg→af

1

2

3

4

1 1 1 1 2 1 3 1 4 1

2 1 1 1 2 1 3 1 4 1

3 1 1 1 2 1

Pr : 2 1 3 4 1|

Pr : 1 1 2 4 1|

Pr : 5 3 1|

a k k k k a

b k k k k b

c k k c

    

    

  

         
 

         
      

1 2 4 1 1 2 2 2 3 2

2 2 1 2 2 2 3 2

3 2 4 1 2 2 3 2

Pr : 2 2 2 1 1|

Pr : 5 1 1 1|

Pr : 2 3 1 1|

e k k k k e

f k k k f

g k k k g

    

   

   

         
 

       
        

1 3 1 1 1 3 2 3

2 3 1 3 2 3 3 3

3 3 1 1 1 3 2 3 3 3

Pr : 1 3 1 1|

Pr : 3 5 2 1|

Pr : 2 3 2 1 1|

b k k k b

c k k k c

e k k k k e

   

   

    

       
 

       
          

1 4 1 4 2 4 3 4

2 4 3 3 1 4 2 4 3 4

3 4 3 3 1 4 2 4 3 4

Pr : 2 1 4 1|

Pr : 2 2 1 1|

Pr : 1 1 3 1 1|

c k k k c

e k k k k e

g k k k k g

   

    

    

       
 

        
          

FIGURE 5.7: The effect of rules is equivalent to the set of programs in
each membrane, where ki−j denotes instance of rule ri−j. Once ki−j
have computed, these programs are used to update multiplicity of
objects.

5.5 Generalized Numerical P Systems

In this section, the generalization of (E)NPS called Generalized Numerical P System
(GNPS), which has some interesting properties helpful for the hardware implemen-
tation of the model, is introduced. As a starting point, the notion of the membrane
controller [238] is recalled. Hence from the beginning, the dynamics of the model
other than the final result of the computation is paid more attention to. This natu-
rally leads to the inclusion of the concept of dedicated input and output variables.
The functioning of the system supposes that input variables are read-only and can
be updated by an external entity at each step. The output variables are write-only
and an external entity may use their values at each step. Such a definition allows to
efficiently build controllers based on GNPS, without using any additional tools or
mechanisms to pass the values and start/stop the computation.

From the structural point of view, a structural abstraction intermediate between
a tree-based structure and a flattened system (more precisely a hypergraph struc-
ture) is employed, being the equivalent of the network of cells [91] in NPS. This
allows to have the notion of the locality (useful for hardware implementation as it
can trigger the use of neighbor cells), but does not impose the strong restriction of a
tree structure — some examples of NPS based membrane controllers spend an enor-
mous amount of time for the data propagation because of the imposed tree struc-
ture. Concretely, this allows production functions to contain variables defined in
a different membrane and also the repartition protocol may involve variables from
any combination of membranes.

The main difference of GNPS with respect to previous models is a new type of
rules that generalize all previous ones. This comes from the observation that rules
of ENPS are rather limited (and also have a poorly defined semantics). The ENPS
simulator PeP [243] already proposed to use some simple arithmetic predicates to
control the applicability of the rules. With GNPS we propose to go further and to
use conditional rules of form (a semicolon is used to separate variables located in
two sides of a comparison operator):

P(x1, . . . , xk; E1, . . . , Em); F(x1, . . . , xk)→ c1|v1, . . . , cn|vn, (5.8)

5.5. Generalized Numerical P Systems 89

where P is predicate in Presburger arithmetic (recall that this is the first-order theory
of the natural numbers with addition, i.e. one can use comparisons, Boolean oper-
ations, additions, subtractions and constant multiplications in expressions). More-
over, in the basic variant of the definition, production functions F are restricted to
be Presburger as well. However, in order to accommodate real-case scenarios, it is
allowed the usage of a finite algebraic signature (a set of arithmetic operations and
basic functions that can be used in addition to the operations in Presburger arith-
metic) for both production functions and predicates.

Example 5.5. A program catalyzed by a enzymatic variable e in a ENPS has the form

F(x1, . . . , xn)(e→)Z

In GNPS, this type of prgram is interpreted as

P(x1, . . . , xn; e); F(x1, . . . , xn)→ Z

where P(x1, . . . , xn; e) = e > max(x1, . . . , xn).

Example 5.6. The following is a valid predicate

P(x, y, z; E, F) = E > x ∧ (F > y ∗ 2 + 3 ∗ z).

If an algebraic signature contains the ordinary multiplication operation (σ = {×}), then it
would be possible to write the following predicate

P(x, y, z; E, F) = E > x ∧ ((F > y ∗ 2 + 3 ∗ z) ∨ (E + F > x× y + z)).

Finally, in order to obtain a deterministic evolution of the system, assume that
GNPS works in all-parallel mode, i.e. all applicable rules are applied in parallel at
each step. This allows to greatly simplify the design of the hardware implementa-
tions.

Formally, a GNPS can be defined as the following tuple

Π = (m, I, O, (Var1, Var1(0)), . . . , (Varm, Varm(0)), Pr, σ),

where m, Vari and Vari(0) have the same meaning as in NPS (the number of cell-
s/membranes, the vectors of internal variables and their initial values). The rules
are no more specific to some membrane, so they are all collected in the set Pr. Each
rule is of form (5.8). In the case of an always true predicate, it can be omitted. Used
variables in each rule induce a dependency hypergraph. When this hypergraph is
a tree, one can use a Venn diagram notation and place rules in corresponding cell-
s/membranes. The input (resp. output) variables are given by the set I (resp. O).
The algebraic signature σ contains the list of additional functions used (with respect
to the addition/subtraction and constant multiplication). If σ = ∅ then it may be
omitted from the definition.

To show the modeling ability of GNPS, take into account the predator-prey re-
currence relation [244, 245] given in Formula 5.9 which can be derived to formula
5.10 and 5.11. Obviously, these two equations are non-linear for the involved func-
tion f (x) = x2. This function is approximated by function g(x) = |x|, as displayed
in Figure 5.8. The reason why approximating nonlinear functions with linear ones
is that the computation of linear functions is faster and consuming less hardware
resources and powers than that of nonlinear ones, at the expense of lower accuracy.
There are four sign combinations of H[t] + L[t] and H[t] − L[t] which correspond

90 Chapter 5. Theoretical investigations of numerical P systems

O X

Y

2()f x x

() | |g x x

FIGURE 5.8: Linear approximation of f (x) = x2 by g(x) = |x|.

1
2

1 1Pr : (1) 1|b H  

2 1

2 1

P : (0) (0)

Pr : () () 1|
4 4

H L H L

a a
H L H L H





    



    


3 1

3 1

P : (0) (0)

Pr : () () 1|
4 4

H L H L

a a
H L L H H





    



    


4 1

4 1

P : (0) (0)

Pr : () () 1 |
4 4

H L H L

a a
H L H L H





    



   


5 1

5 1

P : (0) (0)

Pr : () () 1 |
4 4

H L H L

a a
H L H L H





    



   


a[a0] b[b0] H [h0] L[l0]

1 2Pr : (1) 1|d L  

2 2

2 2

P : (0) (0)

Pr : () () 1|
4 4

H L H L

c c
H L H L L





    



   


3 2

3 2

P : (0) (0)

Pr : () () 1|
4 4

H L H L

c c
H L H L L





    



   


4 2

4 2

P : (0) (0)

Pr : () () 1|
4 4

H L H L

c c
H L H L L





    



    


5 2

5 2

P : (0) (0)

Pr : () () 1|
4 4

H L H L

c c
H L H L L





    



    


c[c0] d[d0]

FIGURE 5.9: The predator-prey GNPS. A predicates and its associated
rule are placed in two rows in a brace to show them more explicitly.

to four different conditions. So the GNPS performing Formula 5.9 is designed as
shown in Figure 5.9. {

H[t + 1] = H[t] + bH[t]− aH[t]L[t]
L[t + 1] = L[t]− dL[t] + cH[t]L[t]

(5.9)

H[t + 1] = H[t] + bH[t]− aH[t]L[t]

= (1 + b)H[t]− a
4
(H[t] + L[t])2 +

a
4
(H[t]− L[t])2 (5.10)

L[t + 1] = L[t]− dL[t] + cH[t]L[t]

= (1− d)L[t] +
c
4
(H[t] + L[t])2 − c

4
(H[t]− L[t])2 (5.11)

5.6. FPGA implementation of GNPS 91

5.6 FPGA implementation of GNPS

According to the discussion in Section 5.2 and the fact that Presburger arithmetic
is recursive, any GNPS system can be rewritten as the following time series (where
X(t), Y(t) and Q(t) are the vectors of input, output and internal variables, respec-
tively, at time t): {

Q(t + 1) = F(Q(t), X(t))
Y(t + 1) = G(Q(t), X(t))

(5.12)

These equations are the generalization (using real numbers instead of Boolean
values) of equations used in switching algebra [232] for the definition of the concept
of Mealy automaton [195], which together with Moore automaton [200] form the
basis of modern synchronous circuit design. Since from the implementation point
of view real numbers should be encoded using a fixed bit size, it appears that GNPS
are very similar to vector Moore/Mealy machines. This in turn allows a straight
implementation using hardware FPGA technology.

For FPGA implementation of GNPS, representations of membrane structures,
variables, programs and their executions should be considered firstly. According
to discussions in Chapter one, membrane structures are represented implicitly by
representations of their inclusions, namely variables and programs for the case of
GNPS. Registers are used to represent variables as well. Since FPGA implemen-
tations of NPS have not been found in literature, there are no reference methods
for representation and parallel execution programs on FPGA. An program imple-
mentation method named FPGA step-wise parallel implementation of program (FSPIP)
is devised. In this method, program applicability predicates are expressed as logi-
cal expressions in the HDL if condition statement. Production functions of program
are generally algebraic expressions which can be characterized by HDL arithmetic
operators conveniently.

Re-partition protocols allocate values of value production functions to relevant
variables proportionally by virtue of division operations triggered after the com-
pletion of computing of all applicable production functions. Multiple re-partition
protocols can assign values to the same variable. However, updating variables with
multiple values at the same time will cause conflicts. To address this problem, all
partitioned values of a variable are summed first, and then assigned to the variable
to avoid conflicts. All production functions of applicable programs are triggered si-
multaneously on the rising edge of clock so that the parallelism is realized. Then
delay an appropriate amount of time (usually one clock cycle), firing divisions of
multiple repartition protocols. The partitioned values of variable are then added
together and assigned to the corresponding variables to complete executions of ap-
plicable programs. The main procedures of the FSPIP method are shown in Figure
5.10. It should be noted that the FSPIP method is only practicable for GNPS with
fixed-point variables. For GNPS using floating point variables, a new method is
contrived to implement programs, as detailed in Chapter 7.

For implementation efficiency, consider the following restrictions for GNPS at
first:

• Real values are replaced by their approximation using a fixed-point binary
representation.

• The production functions are linear.

• The predicates are Presburger-definable.

92 Chapter 5. Theoretical investigations of numerical P systems

Assign the sum to
corresponding variables

Computing repartition protocols

Computing production functions of all
applicable programs according to predicates

Sum all repartitioned values
of the same variable

FIGURE 5.10: Main procedures of FSPIP method.

The above restrictions allow to relatively easy obtain the Mealy/Moore machine
in form of Equation (5.12). The corresponding functions F and G are linear enriched
with conditional statements as it is shown in Example 5.7.

Remark 5.1. In the basic case just consider an empty signature σ as this allows a
straight translation to Verilog. For more complex computations, corresponding func-
tions should be implemented additionally as Verilog modules. This can induce de-
lays, as in many cases it is not possible to compute corresponding functions in one
clock step.

Remark 5.2. In the case of fixed-point encoding, it is possible to easily implement the
multiplication operation working in one time step. This can be done either directly
(by using multiplication code dependent on the width of the encoding), or using a
special component of FPGA called DSP slice that allows to perform multiplication
operations in one step (up to 48-bit width).

Remark 5.3. Contrary to multiplication, it is not easy to implement the division op-
eration in one time step. However, the division by a constant c can be seen as the
multiplication by c−1.

Example 5.7. Consider the system depicted on Fig. 5.11. It has two input, two output
and two internal variables. The system computes the average value of its inputs and also
indicates if this value changed by more than 0.1% on the previous step. Recall that all rules
are executed in parallel.

The set of equations corresponding to this system is the following (a(0) = b(0) =
out1(0) = out2(0) = 0).

a(t + 1) =
in1(t) + in2(t)

2
b(t + 1) = a(t)

out1(t + 1) = a(t)
out2(t + 1) = if |a(t)− b(t)| < 0.001 then 0 else 1

It can be directly transformed to Verilog as follows (assume a fixed point encoding of
real numbers over 32 bits and using 12 bits for the fractional part). In the below listing the
fixed-point (constant) multiplication is performed by the function _mult (recall that 2048
is 0.5 in the chosen fixed-point encoding).

5.6. FPGA implementation of GNPS 93

1a[0] b[0]

3 1

3 1 2

P :| | 0.001

Pr : 0 1|

a b

out





 




1 1 1 2Pr : 0.5 () 1|in in a   

4 1

4 1 2

P :| | 0.001

Pr :1 1|

a b

out





 




in1[0] in2[0]

out1[0] out2[0]

2 1 1Pr : 2 1| 1|a b out   

FIGURE 5.11: GNPS system from Example 5.7. The predicate for each
program is taken to a separate line before it. Variables in red and blue
indicate input and output variables respectively. Others are interme-
diate variables.

1 module A #(p a r a m e t e r WIDTH = 32 , p a r a m e t e r BPPOS = 12)
2 (ou tp ut [WIDTH: 0] out1 , o u tp ut [WIDTH: 0] out2 ,
3 i n p u t [WIDTH: 0] in1 , i n p u t [WIDTH: 0] in2 ,
4 i n p u t c l k
5) ;
6 r e g [WIDTH: 0] a = 0 ;
7 r e g [WIDTH: 0] b = 0 ;
8 r e g [WIDTH: 0] c = 0 ;
9 r e g [WIDTH: 0] d = 0 ;

10
11 a lways @(p o s e d g e c l k) b e g i n
12 a <= _mult (in1+in2 , 2 0 4 8) ; / / 0 . 5
13 b <= a ;
14 out1 <= a ;
15 out2 <= a−b < 4 && a−b > −4 ? 0 : 4096 ; / / 0 . 0 0 1 , 1
16 end
17 endmodule

It can be seen that the translation is rather straightforward. A compiler FPNtoVerilog
was developed in order to assist in this translation. As input it takes the GNPS model
in form of Equations (5.12) and produces as output behavioral Verilog code imple-
menting the corresponding Mealy/Moore automaton.

The compiler performs the following steps:

1. Parse the input file.

2. Identify input and output symbols.

3. Flatten the obtained system.

4. Perform constant propagation.

5. Convert all constants to fixed-point real number representation.

6. Write Verilog output.

These steps are performed using standard compiling techniques. The last step is
straightforward as a sequential switching function/circuit can be directly translated
to Verilog. As a result a file containing the synthesizable (in FPGA) Verilog module
whose code simulates each step of the GNPS at each clock cycle is generated. Two
case studies are designed as target models and their FPGA implementation process

94 Chapter 5. Theoretical investigations of numerical P systems

a1[6.7] a21[5.03] a31[4.31]

a41[2.28] a51[1.92] a61[0.85]

1 1 1 21 31 41 51 61

1 1 1 21 31 41 51 61 1

P min(, , , , ,)

Pr : 2 2 1|

e a a a a a a

a a a a a a b





 


     

e[7]

a2[2.43] a22[1.71] a3[0.94]

a4[-3.07] a24[5.46]

θ[0.2]

b1[0] b2[0]

b3[0] b31[0] b4[0] b41[0]

2 1 2 22

2 2
2 1 2 22 2

P min(,)

Pr : 1|

e a a

a a b





 


 

3 1 3

3 1 3 31

P

Pr : 2 (3) 1| 1|

e a

a b b





 


   

4 1 4 24

4 1 4 24 41 4

P min(,)

Pr : 2 1| 1|

e a a

a a b b





 


  

1

FIGURE 5.12: GNPS model for case study 1. It implements the core
computations of Sobel image edge detection algorithm. The predicate
Pi and program Pri are written in two lines to render them better.
GNPS1 has a skin membrane containing 4 programs and 19 real-value
variables. Input variables are highlighted in red. Output variables are
highlighted in blue.

is detailed to elucidate how a GNPS can be implemented in a FPGA. Since the algo-
rithm implemented is making use of the square root function, it is considered that
the signature of the system is σ = {

√
·}.

The target development board is Digilent BASYS 3 equipped with a Xilinx Artix-
7 xc7a35t-1cpg236c FPGA as core component. The FPGA developing environment
is Xilinx Vivado 2019.1 and Verilog is used as HDL. A Dell Latitude outfitted with a
Intel Core i7-7820HQ and 16 GB RAM is the host computer.

5.7 Case studies

5.7.1 Case study 1

The GNPS model (called GNPS1 for simplicity) of case study 1 is illustrated in Figure
5.12. It stems from Sobel image edge detection algorithm. GNPS1 only has a skin
membrane, without any inner membranes. A program is applicable if its conditional
rule can be met. Variable e is assigned a big enough value so that the 4 programs can
be executed at the same time. Fixed-point number format is employed to represent
real values. Specifically, every variable is assigned a 20-bit register in which the first
bit designates the sign bit, the following 8-bit denoting integer part and the rest of
11-bit presenting fraction part of a real number. The signature σ = {x2,

√
·} is also

used.
After inputting GNPS1 to the FPNtoVerilog compiler, the output is a behav-

ioral model that specifies the behavior of GNPS1. Implementations of the signature
σ (square root and the square function) is also provided. Next, this model is trans-
lated to register transfer level (RTL) using Vivado tools. The upper-most level of

5.7. Case studies 95

GNPS1 schematic generated by Vivado is depicted in Figure B.1. Then verify this
model in a test bench. In this research, two case study models are constructed as
sequential circuits [246], namely clock is involved as a metronome to synchronize
operations. Rising edge of clock is the trigger signal, i.e., operations can only be
carried out after a rising edge and variables hold their values until next rising edge.
The period of clock is set to 10 ns in the test bench.

The behavioral simulation conducted by the test bench omits any gate delays
and data path delays, which means that results are output instantaneously, at the
same time of trigger edge for sequential circuits and the changing instant of sig-
nals for combinatorial circuits. Corresponding Vivado IP core [247] is resorted to
compute the square root. Post implementation timing simulation which can only
be conducted after implementation operation can provide more reliable timing wave-
form.

Models can be synthesized after behavioral simulation if it behaves as expected
behaviors. There are two important tasks should be done after synthesizing tar-
get model: setting constraints and debug cores. Constraints include timing con-
straints and physical constraints. In timing constraints, the period of the clock and
input/output delays are set, while physical constraints specify I/O configurations,
mapping ports of model to pins of FPGA. The clock period is set 10 ns in the two
case studies. To save pins, only b3 and b4 are set as output ports for GNPS1. All
the constraints are written in constraint file (.xdc) in the format of industry standard
Synopsys Design Constraints (SDC) [132]. The variables to be debugged in hardware
debug procedure are marked and set after synthesis.

The subsequent procedure of Synthesis is Implementation, which performs place &
route of the synthesized circuits and other vital operations such as route optimiza-
tion, power and resource consumption analysis and timing analysis. Gate delays
and data path delays of a model are taken into account after implementation so the
timing of a design can be revealed by post implementation timing simulation. Vari-
able b2 obtains its stable value during 155∼160 ns, while other variables get their
stable values more early, as shown in Figure 5.13. According to design timing sum-
mary provide by Vivado, the worst negative slack (WNS) is 3.97 ns, worst hold slack
(WHS) 0.058 ns and worst pulse width slack (WPWS) 3.75 ns. These values are pos-
itive so timing requirements are met.

For the sake of comparing the computing speed of FPGA hardened GNPS and
software simulation of GNPS, speedup is defined as the ratio of elapsed time of two
methods. A software called PeP which dose not have a GUI dedicates to emulate
(E)NPS [243]. To simulate other types P systems, one can resort to P-Lingua [248].
GNPS1 is transformed to its ENPS counterpart and emulated by PeP, which outputs
results and elapsed time to compute the results, as shown in Figure 5.14. PeP costs
0.005651 s to finish the simulation. Then the speedup of FPGA hardened GNPS1 is
calculated in Equation 5.13. The maximum error of output variables is computed in
Equation 5.14. In fact, results of PeP round to nearest and only save two significant
digits behind decimal point. If we do the same for the FPGA result, there would be
no discrepancy.

5.651× 106

160
= 3.5319× 104 (5.13)

∣∣∣∣3.92− 3.92480469
3.92

∣∣∣∣× 100% ≈ 1.225765× 10−3 (5.14)

96 Chapter 5. Theoretical investigations of numerical P systems

FIGURE 5.13: Post implementation timing simulation of GNPS1. Port
b1, b3 and b4 obtain their steady output value after the eleventh rising
edge of clock, indicating it costs 110 ns to get results. For b2, its steady
output value emerges after sixteenth rising edge, costing 160 ns to
compute outcome.

FIGURE 5.14: Software simulation of GNPS1. It is assumed that
GNPS1 evolves one step to stop. There is no one-to-one correspon-
dence between a clock cycle and a GNPS step. For complex arithmetic
computations, one step of GNPS requires more than one clock cycle.

The estimated resource dissipation and power consumption of GNPS1 is re-
ported after implementation, shown in Figure B.2. Because the function of GNPS1
is not complicate, the dynamic power merely shares 13% to 14% of total power and
clock power makes up more than 70% of dynamic power.

The real computing results of FPGA cannot be observed straightforwardly, but
requires a particular procedure called hardware debug. Variables to be debugged
should be marked in Verilog codes or marked in the net list. b3 and b4 are marked
in Verilog codes as debug signals. After programing device, the integrated logic an-
alyzer (ILA) window opens automatically. Debug signals should be added into the
window manually, then run debug to exhibit values computed by FPGA, shown in
Figure 5.15.

From Figure 5.13 we can see that b1,b3,b4 get their results almost at the same
time, while b2 obtains its result 50 ns later. The reason behind this latency is that
the program calculating b2 involves square and square root which are more time-
consuming than normal arithmetic operations computing b1,b3 and b4. So FPGA
hardened GNPS1 behaves as expected to carry out parallel computing and to get
right answers comparing to results software simulation.

5.7.2 Case study 2

In practical applications such as image processing and robot path planning, compu-
tation process comprises several sequential procedures. In each procedure, multiple
functions may be performed in all parallel mode, like the way GPNS1 works. In this
subsection, GNPS1 is modify from all parallel to sequential mode, resulting GNPS2,
depicted in Figure 5.16. Conditional rule of membrane 2 is met at beginning, so pro-
gram Pr1−1 and Pr2−1 take place simultaneously. Other conditional rules are not met
for the initial value of conditional variables (ei) are zeros. After Pr2−1 modifying the
value of e2 from 0 to 3, programs in membrane 3 are triggered to execute. So does
membrane 4 and 5. It is worth to note that Pr2−2 and Pr2−3 consume e1 and e2 so

5.7. Case studies 97

FIGURE 5.15: Hardware debug of GNPS1. Input variables cannot
be debugged so there is no clock signal. Values are represented in
hexadecimal, 01f66 is 8038 in decimal. 8038 ÷ 211 = 3.9248046875,
which is the value of b4. 005eb is 1515 in decimal, 1515 ÷ 211 =
0.73974609375, which is the value of b3.

each program can only execute once. In short, a sequential ignition method is used
to control the execution sequence of programs.

Input GNPS2 to FPNtoVerilog obtaining the RTL model. The block diagram of
GNPS2 RTL model is illustrated in Figure B.3. Edge detection is used as the trigger
signal to impel the next membrane to execute. By this way, the train-like ignition is
realized. Synthesize GNPS2 and open the synthesized model, complete constraints
design and debug core set as that of GNPS1, then implement GNPS2. Run post
implementation timing simulation to check the timing situation, as shown in Figure
5.17. PeP simulation of GNPS2 shown in Figure 5.18, PeP takes 0.009306 s so the
speedup of FPGA implementation is computed in Equation 5.15.At last, perform
hardware debug to verify that FPGA hardened GNPS2 obtained correct outcomes,
shown in Figure 5.19.

9.306× 106

480
≈ 1.9388× 104 (5.15)

Figure 5.17 indicates that the four output variables are computed in sequential
as designed. Again, the calculation of b2 costs the longest time for its complexity.
Finally, the last tests were performed using an autonomous execution of the sys-
tem without output and using distributed read-only memory data storage for the
input. Under this setup the speed of 100Mhz was achieved. This means that a GNPS
model can be simulated at a speed of 108 steps per second. It is remarked that in
real-use cases the reaction speed will be dependent on the input/output delay. The
input/output circuits are not system-specific and can be reused in different situ-
ations. However, at the present state they need to be integrated manually in the
final hardware design. So the development of FPNtoVerilog continues in order
to integrate the automatic generation of input/output modules. This will allow a
generation of a hardware circuit directly from the GNPS specification, without any
user intervention.

98 Chapter 5. Theoretical investigations of numerical P systems

a1[6.7] a21[5.03] a31[4.31]

a41[2.28] a51[1.92] a61[0.85]

1 2 1 1 21 31 41 51 61

1 2 1 21 31 41 51 61 1

2 2 1 2

P min(, , , , , ,)

Pr : 2 2 1|

Pr : 0 3 1|

e a a a a a a k

a a a a a a b

e k e







 


     
    

e1[7]

a2[2.43] a22[1.71]

a3[0.94]

a4[-3.07] a24[5.46]

θ[0.2]

b1[0]

b2[0]

b3[0] b31[0]

b4[0] b41[0]

1 3 2 2 22

2 2
1 3 2 22 2

2 3 2 3

P min(, ,)

Pr : 1 |

Pr : 0 1

e a a k

a a b

e k e







 


 


   

1 4 3 3

1 4 3 31

2 4 4

P min(,)

Pr : 2 (3) 1| 1|

Pr : 0 3 6

e a k

a b b

e k e









 


   
    

1 5 4 4 24

1 5 4 4 24 41 4

P min(, ,)

Pr : 0 2 1| 1|

e a a k

e k a a b b





 


     

1

k[0]

e2[0]

e3[0]

e4[0]

2

3

4

5

FIGURE 5.16: GNPS model for case study 2 is numbered as GNPS2.
The equations inside are the core computations of Sobel image edge
detection algorithm. GNPS2 has 5 membranes and evolves 4 steps to
reach halt condition. Programs in each membrane compute concur-
rently while each membrane execute serially.

(a) Variable b1 gets its value in the 11th cycle, while b2 obtains its value in the 25th cycle.

(b) Variable b3 gets its value in the 38th cycle, while b4 obtains its value in the 49th cycle.

FIGURE 5.17: Post implementation timing simulation of GNPS2. The
real timing of b2 and b3 is a little different than expected.

5.7. Case studies 99

FIGURE 5.18: Software simulation of GNPS2. It is assumed that
GNPS2 evolves four steps to stop. CPU of the host computer costs
0.009306 s to get results.

(a) Hardware debug of b1 (connect to b11) and b2 (connect to b12).

(b) Hardware debug of b3 and b4.

FIGURE 5.19: Hardware debug of GNPS2. Values are repre-
sented in hexadecimal, 070cd is 28877 in decimal. 28877 ÷ 211 =
14.10009765625, which is the value of b1. 17c5 is 6085 in decimal,
6085÷ 211 = 2.97119140625, which is the value of b2.

100 Chapter 5. Theoretical investigations of numerical P systems

5.8 Wrap-up

Definitions of NPS and ENPS are given at first. The relation of (E)NPS and system of
difference equations are analyzed: (E)NPSs are another forms of difference systems.
Considering the relationship between difference systems and differential systems,
(E)NPS can model application models characterized by differential systems. This
result shows that (E)NPS has good prospect in engineering applications for their
large scale parallelism which can speedup computations. Binary and unary form
of (E)NPS is came up with to facilitate FPGA implementation. The source of differ-
ent forms between symbol-object cell-like P system and NPS have dug some how.
And to go a step further towards this goal, the notion of GNPS is proposed. A com-
piler from difference system to GNPS is devised to generate Verilog codes of RTL
model. Two case studies show that FPGA implementation of GNPS can be done in
a straightforward manner with a speedup of 104 for the algorithm handled.

101

Chapter 6

FPGA implementation of robot
membrane controller

As a new branch of nature computing, the research of membrane computing prac-
tical application can not keep pace with its fruitful achievements in theoretical as-
pect [249]. This situation was taken seriously by membrane community and some
scholars have engaged in applications of P systems ever since a long time ago. Keep-
ing in mind the biological background of membrane computing, using P systems as
modeling framework for biological processes and ecosystems were the early explo-
rations to apply membrane computing, referring [56, 57, 59, 61]. By resorting to
P systems as modeling framework, Giant panda population dynamics modeling is
another target under research.

The non-determinism of P systems is a valuable nature for biological and ecolog-
ical system modeling. Nevertheless, for engineering applications, non-determinism
is the property trying to avert. Beginning from 2015, several variants of fuzzy spik-
ing neural P systems (FSNP) have been used in power system fault diagnosis [250]
[251] [157] [252] [253] [254], setting a new direction for P system applications. By
setting one rule per membrane, the non-determinism of FSNP is removed. Complex
market interactions are modeled by population dynamic P systems in [255]. Other
applications can be found in [256] [257] [258]. The large scale parallelism of P sys-
tems turned out to be quite favorable for real life applications.

Since 2011, adopting NPS and ENPS to model autonomous mobile robots con-
troller has been another research highlight of P system applications. Membrane
controllers designed in [238] were NPS systems designed to act as controllers and
running in some environment. As the first case putting NPS to real life applica-
tion, in [238], three NPSs are developed as the controllers for Khepera III and e-
puck robots to perform obstacle avoidance, wall following and following leader
behaviors. These three NPSs are simulated by a software called SNUPS, which is
designed as Java servlet. When running the robot, it invokes the SNUPS engine.
After computing, the results will be returned to robot to control motors’ speeds, per-
forming specific behaviors. Both experiments on simulated robots and real robots
were conducted to verify the control effect of NPS. In [259] a kinematic controller
and a proportional-integral-derivative controller based on ENPS are designed for
wheeled mobile robots. Another interesting application is found in [260] where an
environment classifier and a novel multi-behaviors control approach are proposed
to enhance the reactive navigation performance of autonomous mobile robots.

Membrane controllers require several ingredients. The motion of a robot in a
real or simulated environment requires a program that reads/transmits the values
of robot’ sensors (usually distance and speed), runs the simulation of the controller
for one or several steps and then updates/transmits the values of actuators (usually

102 Chapter 6. FPGA implementation of robot membrane controller

robot wheel motors). Before running the simulation this program should assign ini-
tial values for the membrane controller and after the simulation it should retrieve
corresponding output values from it. The controller itself is simulated using a cus-
tom simulator [238, 261] or by Matlab code [259, 260]. In some cases [261, 260] the
experiments were carried out in real robot environments. To speed-up the simula-
tion in the case of complex controllers [262] the use of graphical processing units
(GPU) hardware architectures was proposed [263].

The first ENPS robot controller performing obstacle avoidance behavior was pro-
posed in [264]. It is a general controller not targeting particular robots. While no
experiments were conducted by the ENPS software simulator eSNUPS [218], which
is an extended version of SNUPS. The portability of NPS and ENPS robot controllers
was validated in [265] by adapting the control law and the number and placement of
sensors, and the dimension parameters of robots. ENPSs with different functionality
were developed later on, expanding the utilizing range of ENPS besides robot mo-
tion control. For instance, an ENPS do the robot localization was presented in [239].
Robot trajectory tracking ENPS was designed in [259]. Particle swarm optimization
based robot path planning ENPS was introduced in [266]. ENPSs performing im-
age edge detecting were proposed and validated in GPU [267]. This chapter focuses
on FPGA implementation of robot membranes built on NPS, ENPS and GNPS. The
FPGA implementation of GNPS is compatible for NPS and ENPS because GNPS is
a superset of them.

6.1 FPGA implementation of membrane controller based on
NPS

The first obstacle avoidance NPS controller was proposed in [238], targeting e-puck
robot, which equips 8 infrared sensors around the body. Equation 6.1 is the obsta-
cle avoidance control law built in the framework of a NPS in which lw and rw are
the speed value accepted by left and right motor as the required speed to follow.
This control law is named as control law 1 hereinafter. CruiseSpeedLeft and Cruis-
eSpeedRight are the cruise speed of both wheels when no obstacles are detected. xi is
the original readings of sensors telling the distances (positively correlated, expound
in the next paragraph) between robot and obstacles while si is the transformed sen-
sor reading negatively correlated to obstacle distances. M is a large positive number
having value of 1000. weithtLe f ti and weithtRighti are the weight values of sensors
placed in the left and right hand side of robot. Variables in the second equation are
the counterparts of those in first one. This control law is to be applied on a bigger
robot–Pioneer 3 DX which is a product of Omron Adept Mobile Robots LLC. Pioneer
3 DX is outfitted with 16 sonar sensors arranged in 2 arrays, whose placements are
shown in Figure 6.1. i takes values from 0 to 15, corresponding to the numbers of
sensors. 

lw = CruiseSpeedLe f t + ∑16
i=1 si ∗ weithtLe f ti

rw = CruiseSpeedRight + ∑16
i=1 si ∗ weithtRighti

si = −xi + M
(6.1)

Both the infrared sensors in e-puck and sonar sensors in Pioneer 3 DX return
the distances between the robot and obstacles. But the property of Pioneer 3 DX
sonar sensors make the adaption of control law not so straightforwardly. Specifi-
cally, the difference of two distances sampled by these 2 robots lays in that e-puck’s

6.1. FPGA implementation of membrane controller based on NPS 103

0

1

2
3 4

5

6

7

8

9
10

1112
13

14

15

front

rear

Sonar Sensors

Hinged Deck

90°

51
0

m
m

380 mm

FIGURE 6.1: This is a plan view of Pioneer 3 DX robot which is cov-
ered by a hinged deck on the top. The 16 rectangles in light blue
are the sonar sensors surrounding the robot, just beneath the hinged
deck. Sensors are arranged in two arrays in the front and in the rear.
The layout of sensors in two arrays is identical.

infrared sensors return value 0 when there are no obstacles and the reading of sen-
sors increase as the distances decrease. It is called that the reading and distance are
negatively correlated. While Pioneer 3 DX’s sonar sensors return the distances of
the robot to obstacles, the reading of sensors decrease as the distances decrease so it
is said positively correlated. The transformation given by the last equation of For-
mula 6.1 was done to the readings of Pioneer 3 DX sensors so that the control law
can be adopted. The NPS used as robot controller is illustrated in Figure 6.2 which
computes three steps to output results (speeds of left and right wheel).

In accordance with general ideas of FPGA implementation of P systems, mem-
branes are represented implicitly by synchronizing the execution of rules/programs
in different membranes. Different rules/programs will be mapped to different hard-
ware resources in FPGA so that the distributive nature of P systems is achieved with-
out membrane structures.

In Figure 6.2, variables weightLe f ti and weightRighti (i = 1, . . . , 16) are sensors’
weights whose values reflect the influences of sensors on different positions to the
speed of left and right wheel. Supposing a obstacle is detected on the left side, the
speed of left wheel should be larger than the speed of right wheel so that robot can
turn right to avoid this obstacle. Based on this assumption, the weight values of
sensor 0, 1, 2, 3, 15 should impose negative effects to right wheel speed in order that
right wheel speed is diminished. On the contrary, sensor 0, 1, 2, 3, 15 should impose
positive effects to left wheel speed in order to raise its speed. Similarly, sensor 4, 5,
6, 7, 8 impose negative effect to left wheel but positive effect to right wheel. Sensors
located in the rear part of the robot are unhelpful for detecting obstacles in front, so
their weight values are set to zero.

Consequently, the weight values of variables weightLe f ti and weightRighti have
inverse values to manifest the positive and negative effects. Pioneer 3 DX should

104 Chapter 6. FPGA implementation of robot membrane controller

6weightRight1[input]

1 6 1 1Pr : weightRight weightLeft 

5weightLeft1[input]

1 5 1 1Pr : 1|weightLeft w 

4s1[input]

1 4 1 1 1Pr : 2 1| 1|s s sval  

3sval1[0] w1[0]

1 3 1 1Pr : * 1|sval w rw 

69cruiseSpeedRight[input]

1 69Pr : 1|cruiseSpeedRight cruiseSpeedLeft 

68cruiseSpeedLeft[input]

1 68Pr : 1|cruiseSpeedLeft cruiseSpeed 

67cruiseSpeed[0]

1 67Pr : 1|cruiseSpeed rw 

2rw[0]

1 2Pr : 1|rw lw 

1lw[0]

66weightRight16[input]

1 66 16 16Pr : weightRight weightLeft 

65weightLeft16[input]

1 65 16 16Pr : 1|weightLeft w 

64s16[input]

1 64 16 16 16Pr : 2 1| 1|s s sval  

63sval16[0] w16[0]

1 63 16 16Pr : * 1|sval w rw 

FIGURE 6.2: The NPS controller performing control law of Formula
6.1, which will be implemented in FPGA. This numerical P system is
called NPS1 below.

6.1. FPGA implementation of membrane controller based on NPS 105

TABLE 6.1: The calibrated values of weightLe f ti and weightRighti,
along with a set of sampled sensors reading data which will be uti-
lized to verify the correctness of RTL model of NPS1.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

wli 0.1 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.1 -0.1 0 0 0 0 0 0 0.1

wri -0.1 -0.4 -0.6 -0.8 0.8 0.6 0.4 0.1 0.1 0 0 0 0 0 0 -0.1

si 277 0 0 0 0 0 17 208 190 576 704 745 733 659 451 296

be calibrated to determine the values of weightLe f ti and weightRighti firstly. The
general calibration process can be stated as follows: use control law given in Formula
6.1 to control robot, assigning some initial value to weightLe f ti and weightRighti
then running Pioneer 3 DX. If it bumps into obstacles, altering initial values of these
two arrays to some extent in line with the collision severity until it no longer rams
any obstacles. The corresponding calibrated values of these two variable arrays are
shown in Table 6.1.

Membranes of NPS1 can be classified into two types according to their functions:
delivery membranes and computing membranes. Membrane 4∼64, 5∼65, 6∼66,
membrane 2, 68 and 69 are delivery membranes whose duties are transmitting value
of variable to another. For instance, values of variables weightRighti are sent to vari-
ables weightLe f ti, which are transferred to variables wi furthermore. Membranes
3∼63 and 67 are computing membranes to calculate new value of variable rw. Com-
putations performed by computing membranes should be synchronized to reflect
the parallelism of NPS. Keep in mind that NPS1 should compute three steps to get
results in such a cycle: after the first step finished, rw = 0, lw = 0; for the second
step, rw obtained the left wheel speed value which will be assigned to lw in step 3
and lw = 0; in the next step rw acquires the expected right wheel speed value and
lw attains the second step value of rw. This process repeats if computing proceeds.

To coordinate the value transfer process in delivery membranes, counters are
adopted aiming at this action. Taking the value transfer in membrane 5∼65 and
6∼66 as an example, the initial values of variables weightRighti, weightLe f ti and
counter are zeros. counter counts in a loop from 0 to 2, to correspond computing
step 1 to step 3. At the first rising edge of clock, assign the values in Table 6.1
to weightRighti and weightLe f ti. At the second rising edge of clock, the values
of weightRighti are back to zeros and keep these values until the end of the third
clock cycle since their values are consumed by production functions and they do
not appear in any repartition protocols. The values of weightRighti loop in accor-
dance with counter value loop. However weightRighti should transfer their values
to weightLe f ti in the second cycle. During a loop of counter, weightRighti equal
zero from the second cycle, so weightLe f ti also have values zeros in the third cycle.
Whether this arrangement is correct or not can be deduced from timing waveform
of variables, which will be detailed as follows.

Membranes 4∼64 are omitted in RTL model by substituting programs svali ∗
wi → 1|rw with si ∗ weightLe f ti → 1|rw. Because the effect of program 2si →
1|si + svali is to assign sensors’ readings to svali and program weightLe f ti → 1|wi in
membrane 5∼65 is to transfer the valus of weightLe f ti to wi, executing programs in
membranes 4∼64 will cost 1 more clock cycle which can be reduced by performing
si ∗weightLe f ti → 1|rw. Assuming that variables si have the sonar sensors’ readings
as initial values, computing membranes (membranes 3∼63 and 67) are triggered to
compute rw at rising edge of clock. In the first clock cycle, rw = 0 for the initial
values of weightLe f ti are zeros. In the second cycle, rw obtains the speed of left

106 Chapter 6. FPGA implementation of robot membrane controller

1 2 3 4 5 6 7 8 9 10 11

clock

counter 0 1 2 0 1 2 0 1 2 0 1

weightRight1 0 -0.1 0 -0.1 0 -0.1 0 -0.1

weightRight2 0 -0.4 0 -0.4 0 -0.4 0 -0.4

...

weightRight16 0 -0.1 0 -0.1 0 -0.1 0 -0.1

weightLeft1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

weightLeft2 0 0.4 -0.4 0 0.4 -0.4 0 0.4 -0.4 0 0.4

...

weightLeft16 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

s1 sensor reading 1

s2 sensor reading 2

...

s16 sensor reading 16

rw 0 0 slw srw 0 slw srw 0 slw srw 0

lw 0 slw srw 0 slw srw 0 slw srw

a

b

c

t d m

e n

f p

w g h

k s

FIGURE 6.3: Expected timing waveform of NPS1 RTL model. Red
lines indicate value transfers from weightRighti to weightLe f ti and
from rw to lw. Blue lines signifies parallel computing of programs in
associated membranes.

wheel because weightLe f ti got their exact values (so do weightRighti) during second
cycle. In the third cycle, rw acquires the speed of right wheel because weightLe f ti
got the values of weightRighti which are transferred at the beginning of the third
cycle. Hence this arrangement of transferring and computing can achieve the com-
putation procedures of NPS1 accurately which computes 3 steps to get results. The
whole processes of transfer and computing should perform as the timing diagram
depicted in Figure 6.3.

Two types of Verilog HDL modules are designed to carry out value transfer and
computing operations described above. Module WeightRight assigns right weight
values (in Table 6.1) of sensors to variables weightRighti, while WeightLeft assigns
left weight values of sensors and transfers the values of weightRighti to weightLe f ti.
Analogously, module CruiseSpeedRight and CruiseSpeedRight do the same thing
to variables cruiseSpeedRight and cruiseSpeedLeft. CruiseSpeed transfers the value of
cruiseSpeedLeft to cruiseSpeed. Module Compute is designed to conduct parallel com-
putations originated from membrane 3∼63. SpeedLeft passes the value of rw to lw.
No module corresponds to membrane 1 for there are no programs within it. Mod-
ules are connected to be an entirety according to signals’ input-output relationships.
For example, the output of WeightRight is the input of WeightLeft, so connect the
output ports of the former one to the input ports of the latter one.

From Figure 6.2, it is obvious that membranes are organized in nested structure.
Nevertheless, modules in RTL model are not nested but are independent with each
other. Another notable feature of the RTL model is that the function of modules does
not conform to the function of membranes. There are no rigorous correspondence
between membranes and modules. In spite of these differences, the behaviors of RTL

6.1. FPGA implementation of membrane controller based on NPS 107

model and NPS1 are identical: at each computation step, the value of each variable
and computing outcome are the same. The identity of computation steps between
NPS1 and its RTL model reflects the validity and rationality of the RLT model. The
RLT model composed of modules is shown in Figure 6.4 in which the input-output
ports and interconnections of modules are clarified.

As can be seen in Table 6.1, the value of variables are real numbers. Unfortu-
nately, real numbers cannot be represented in digital circuits directly. In fact, real
numbers are represented in some forms of integers–fixed point number or float
point number. In this research, real numbers are transformed to fixed point num-
bers which are easy to deal with. To be specific, each variable is assigned a 24-bit
register. Allocate the first 11 bits to integer part and the following 13 bits to frac-
tion part of a variable value. This bits’ manipulation creates a range of [−(211 −
1), (210 − 1)] ([−2047, 1023] in decimal) which includes the value range of sensors’
reading [0, 1000]. Each real number should be transformed to fixed point number
before running the RTL model so that results obtained are also in fixed point rep-
resentation. Consequently, an inverse transformation is necessary to get decimal
results.

NPS and ENPS can be simulated by a software named PeP [243]. Software sim-
ulation results of NPS1 are the benchmarks of its hardware implementation which
provides a fair reference. PeP can also offer elapsed time (in seconds) to compute
some predefined steps. From a hardware point of view, the software simulation is a
CPU implementation of an algorithm. So this returned time reflects the performance
of the CPU in host computer. Further more, this CPU implementation time is indis-
pensable to compute the speedup of FPGA implementation of NPS. As can be seen
in Figure 6.5 which shows the Vivado behavioral simulation waveform, in the first
three cycles, rw-out which corresponds rw holds value 0, 310.6953125, 289.3046875,
behaving exactly as expected. Clock cycle is set to 10 nanoseconds in this behavioral
simulation.

The host computer is a Dell Latitude equipped with a Intel Core i7-7820HQ and
16 GB RAM. Target FPGA of this research is Xilinx Artix-7 xc7a35t-1cpg236c which
is the core part of BASYS 3 FPGA developing board, a product of Digilent company.
FPGA developing software employed is Xilinx Vivado 2019.1.

Computing results of RTL model are real numbers with long fractional tails. This
appearance of results stems from the treatment of real number representation in
FPGA, the fixed point representation. Note that results of PeP take two significant
digits after decimal point. To validate the rightness of RTL model, input NPS1 to PeP
and compute three steps, Figure 6.6 shows the outcomes. It costs 0.011703 seconds
to compute 3 steps of NPS1, outputing rw = 289.3 and lw = 310.7. So the results
of NPS1 RTL model are correct when only two significant digits are preserved. Data
accuracy can be improved by assigning more bits to fractional part of a real number
variable.

Mark variables to be debugged in Verilog codes and synthesize RTL model of
NPS1, then set physical and timing constraints. The I/O planning is illustrated in
Figure B.4 in which gray circles (normal input-output pins) and light blue hexagons
(clock capable pins) with orange bars inside are pins distributed to RTL model ports.
For vector ports (more than one bit), each bit should be assigned a pin. Clock vari-
able is a 1-bit scalar which demands one pin.

Post implementation timing simulation waveform of NPS1 is shown in Figure
6.7. The steady value of the right wheel which is the result of the third step of NPS1
appears at 134.271 ns. Clock period instead of running time is used to calculate
speedup because circuits hold values to wait for another clock trigger edge. The

108 Chapter 6. FPGA implementation of robot membrane controller

clk weightRight1

state

WeightRight

weightRight2

weightRight16

clk

weightRight1

state

WeightLeft

weightRight1

weightRight16

weightLeft1

weightLeft2

weightLeft16

clk
cruiseSpeedRightstate

CruiseSpeedRight

clk

cruiseSpeedRight
state

CruiseSpeedLeft
cruiseSpeedLeft

clk

cruiseSpeedLeft
state

CruiseSpeed
cruiseSpeed

clk

s1

state

Compute

s2

s16
weightLeft1
weightLeft2

weightLeft16

rw

cruiseSpeed

clk

rw
state

SpeedLeft

lw

clock

state

Sensors
Reading

rw_out

lw_out

output

output

FIGURE 6.4: RTL model of NPS1 consists of 7 modules, although
NPS1 has 69 membranes. There is a one-to-one correspondence be-
tween membranes and programs inside. This correspondence trans-
forms the implementation of a membrane to implementation a set of
programs inside. Programs can be synchronized in one module with
parallel constructs of Verilog. This is the reason why the number of
modules can be reduced substantially. A state port is added to NPS1
so that it possesses idle and busy state.

6.1. FPGA implementation of membrane controller based on NPS 109

FIGURE 6.5: Waveform of behavioral simulation of NPS1. The val-
ues of weightLe f ti alternate as expected when counter loops its value.
Sensors’ readings si take the value in the last row of Table 6.1 which
are abridged from waveform for the sake of taking a screenshot in-
cluding computing results rw-out and lw-out.

FIGURE 6.6: Results of PeP simulation of NPS1. It costs 0.011703 sec-
onds to obtain results.

110 Chapter 6. FPGA implementation of robot membrane controller

FIGURE 6.7: Post implementation timing simulation of NPS1.

FIGURE 6.8: Hardware debug of NPS1. Numbers are represented in
hexadecimal.

speedup of FPGA hardened NPS1 comparing to software simulation is calculated
in Formula 6.2. It’s pointed out that the computing speed of FPGA hardened NPS1
is 108 step per second because clock period is 10 ns with a frequency of 100 MHz.
Hardware debug results of NPS1 is given in Figure 6.8. Hardware resource and
power consumption of hardened NPS1 is shown in Figure B.5.

9.995× 106

1.34271× 102 ≈ 7.4439× 104 (6.2)

6.2 FPGA implementation of membrane controller based on
ENPS

ENPS allows multiple programs contained in one membrane to execute concur-
rently, imparting a feature that can simplify membrane structures. ENPS1 illustrated
in Figure 6.9 has the same function as NPS1, but composed of 17 membranes (69
membrans in NPS1). More importantly, ENPS1 computes only one step to get result,
improving performance by three times comparing to NPS1 which calculates three
steps. Performance improvement is achieved by getting rid of delivery membranes
and the speed of left wheel and right wheel are calculated at the same time, not in
sequential as what NPS1 does.

Each programs involves a conditional statement and its consequential judgment
determines the enforceability of every program in ENPS1. Whereas the values of
associated enzymes are tuned so that all the programs can carry out simultaneously.
These conditional statement can be transformed to logic expressions. The behavioral
simulation ENPS1 RTL model is depicted in 6.10. PeP simulation results of ENPS1 is
given in Figure 6.11.

Mark variables to be debugged in Verilog codes and synthesize RTL model of
ENPS1, then set physical and timing constraints. The I/O planning is illustrated in
Figure B.6. Post implementation timing simulation is given in Figure 6.12. Because
clock cycle is defined by input half period in the testbench, if the period of clock
is an odd number, the half period has a fractional part which will be rounded by
Vivado automatically. The clock period of FPGA hardened ENPS1 is 5 ns so its half

6.2. FPGA implementation of membrane controller based on ENPS 111

1leftSpeed[0] rigthSpeed[0] cruiseSpeed[input] e[2]

f [1]

si[input] 2weightLefti[input] weightRighti[input] ei[2]

1 1Pr : ()1|f cruiseSpeed e leftSpeed  

2 1Pr : ()1|f cruiseSpeed e rightSpeed  

16

1 2

1

Pr : () |i i i

i

weightLeft s e leftSpeed



 

16

2 2

1

Pr : () |i i i

i

weightRight s e rightSpeed



 

`

FIGURE 6.9: Enzymatic numerical P system ENPS1. The value of en-
zyme e is larger than that of f in membrane 1, so these two programs
can take place. Enzymes ei have greater values than weight values so
the 16 programs in membrane 2 can execute in parallel.

FIGURE 6.10: Waveform of behavioral simulation of ENPS1. Left and
right wheel speed variables gain their expected values after the first
rising edge.

FIGURE 6.11: PeP simulation results of ENPS1. It costs 0.002993 sec-
onds to obtain results.

112 Chapter 6. FPGA implementation of robot membrane controller

(a) Post implementation timing simulation of ENPS1 with 4 ns period.

(b) Post implementation timing simulation of ENPS1 with 6 ns period.

FIGURE 6.12: Post implementation timing simulation waveform of
ENPS1. 112 ns is regarded as the elapsed time to get results.

FIGURE 6.13: Hardware debug of ENPS1.

(2.5 ns) cannot be defined. As what have done in the post implementation timing
simulation of reaction systems, clocks with period of 4 ns and 6 ns are used in the
post implementation timing simulation to reflect the performance of ENPS1 (112 ns).

The speedup of FPGA hardened ENPS1 comparing with PeP software simulation
is calculated in Formula 6.3. Hardware debug results of ENPS1 is given in Figure
6.13. The hardware resource and power consumption of hardened ENPS1 is shown
in Figure B.7. The computation speed of FPGA is 2× 108 step per second for the
clock period is 5 ns. The speedup decreases for the computation task is easy so CPU
can also completes in a shorter time, although the clock frequency is 1 time higher
than that of FPGA hardened NPS1.

2.993× 106

1.12× 102 ≈ 2.67232× 104 (6.3)

6.3 FPGA implementation of membrane controller based on
GNPS

The control law 1 presented in Formula 6.1 is targeted at e-puck robot with small a
dimension (diameter: 70 mm) and low velocity (max speed: 0.129 m/s) [238]. When
transplants this control law to Pioneer 3 DX with dimension of 510× 380 mm and
cruise speed of 0.4 m/s [268], it is not fit quite well in the new platform. This is
because that control law 1 neglects the dimension of robot and angular velocity is a
constant which gives rise to a high chance to bump on obstacles when the robot is
close to obstacles.

6.3. FPGA implementation of membrane controller based on GNPS 113

lwr

d

r1

rw

2
3 4

5

2 2

2 2 2 1
1

()

2
()

v
r d r

v
r

d r r r





  

 
   

FIGURE 6.14: Obstacle avoidance kinetics analysis of Pioneer 3 DX
robot.

Based on kinetics analysis portrayed in Figure 6.14, control law 1 was extended
to control law 2 presented in Formula 6.4 [269], where xi are readings of sonar sensor
i = 2, 3, 4, 5, r1 is the robot gyration radius, di are the concerned distances detected
by sensors, min selects the nearest distance, H ∈ (0, 1) is a safety factor, ω is the
angular velocity of robot, θi are the angles between symmetric line of robot and
the connecting line of robot–obstacles. Other variables have the same meaning as
that of control law 1. It is pointed out that control law 1 and 2 can only used in
the environment with obstacles higher than the ground. If there is a gap in the
ground, these two laws cannot guide the robot the shun it. GNPS3 is contrived
to accommodate control law 2, as illustrated in Figure 6.15.

di = (xi + r1) cos θi(i = 2, 3, 4, 5)
d = min(d2, d3, d4, d5)

CruiseSpeed = H ∗ |ω|(d
2−r2

1)
2r1

lw = CruiseSpeed + ∑16
i=1 si ∗ weithtLe f ti

rw = CruiseSpeed + ∑16
i=1 si ∗ weithtRighti

si = −xi + M

(6.4)

Employ the same hardware facilities as before to implement GNPS3 in FPGA us-
ing the method proposed in Chapter 5. The I/O planning is shown in Figure B.8.

114 Chapter 6. FPGA implementation of robot membrane controller

M[1] e1[1]r1[0.26] d2[0] d3[0] d4[0] d5[0] k[0] e2[-1]

sd2[0] sd3[0] sd4[0] sd5[0] e3[0]

2

3 4

e4[0]

5

e5[0] ssd2[0]

6

e6[0]

7

e7[0] sd1[0] sr1[0] 8e8[0]

si[input] weightLefti[input] weightRighti[input]

9

H[0] Vm[0] e9[0]

10

leftSpeed[0]

rw[0] lw[0]

rightSpeed[0]

1

2
1 2 1 2 1 1 2 1 1 2: min(, , ,);Pr : 0 () cos30 1|

1000

s
P e k M s r e k M r d        

3
2 2 1 3 1 1 2 1 1 3: min(, , ,);Pr : 0 () cos10 1|

1000

s
P e k M s r e k M r d        

4
3 2 1 4 1 1 2 1 1 4: min(, , ,);Pr : 0 () cos(10) 1|

1000

s
P e k M s r e k M r d         

5
4 2 1 5 1 1 2 1 1 5: min(, , ,);Pr : 0 () cos(30) 1|

1000

s
P e k M s r e k M r d         

5 2 1 1 5 2 1 1 1: min(,);Pr : 0 1|P e k r e k r r     

6 2 1 6 2 1 2: ;Pr : 0 1 1|P e k e k e     
16

7 2 2 1 2 2

1

: min(, ,);Pr : 0 1|i i i i

i

P e k s weightLeft e k weightLeft s leftSpeed 



     
16

8 2 2 8 2

1

: min(, ,);Pr : 1|i i i i

i

P e k s weightRight k weightRight s rightSpeed 



   

9 2 2 9 2 2 2: ;Pr : 0 1 1|P e k e k e     

1 3 2 2 1 3 2 2 2: min(,);Pr : 0 1|P e k d e k d sd     

2 3 2 3 2 3 2 3 3: min(,);Pr : 0 1|P e k d e k d sd     

3 3 2 3 3 2 3: ;Pr : 0 1 1|P e k e k e     

1 4 2 4 1 4 2 4 2: ;Pr : 0 1|P sd d sd d sd    

2 4 3 5 2 4 3 5 3: ;Pr : 0 1|P sd d sd d sd    

3 4 3 3 4 3 4: ;Pr : 0 1 1|P e k e k e     

1 5 4 2 1 5 4 2 2: min(,);Pr : 0 1|P e k sd e k sd ssd     

2 5 4 2 5 4 5: ;Pr : 0 1 1|P e k e k e     

1 6 2 3 1 6 2 3 2: ;Pr : 0 1|P ssd sd ssd sd ssd    

2 6 5 2 6 5 6: ;Pr : 0 1 1|P e k e k e     

1 7 6 2 1 7 6 2 1: min(,);Pr : 0 1|P e k ssd e k ssd sd     

2 7 6 1 2 7 6 1 1 1: min(,);Pr : 0 2 1|P e k r e k r sr r       

3 7 6 3 7 6 7: ;Pr : 0 1 1|P e k e k e     

1 8 1 1 1 8 1 1 1: ;Pr : 0 1|P sd sr sd sr sd    

2 8 7 2 8 7 7 8: ;Pr : 0 1()1|P e k e k e e     

2 2

1 1
1 9 8 1 1 1 9 8

1

()
: min(, , ,);Pr : 0 1|

2

H sd r
P e k sd r e k cruiseSpeed

r


 

  
    

2 9 2 9: ;Pr : 0 1|m mP cruiseSpeed V cruiseSpeed V cruiseSpeed    

3 9 8 3 9 8 8 9: ;Pr : 0 1()1|P e k e k e e     

1 10 9 1 10 9: min(, ,);Pr : 0 1000 1|P e k leftSpeed cruiseSpeed e k leftSpeed cruiseSpeed lw       

2 10 9 2 10 9: min(, ,);Pr :0 1000 1|P e k rightSpeed cruiseSpeed e k rightSpeed cruiseSpeed rw       

FIGURE 6.15: GNPS3 which carrys out control law 2.

6.3. FPGA implementation of membrane controller based on GNPS 115

(a) Post implementation timing simulation of GNPS3 with period of 44 ns.

(b) Post implementation timing simulation of GNPS3 with period of 46 ns.

FIGURE 6.16: Post implementation timing simulation of GNPS3. The
implemented clock period is 45 ns whose half period cannot defined
so 44 ns and 46 ns are set as periods. So the elapsed time is the mean
time which is 260.657 ns.

FIGURE 6.17: PeP simulation of GNPS3. It costs 0.020997 s to output
results.

Post implementation timing simulation and PeP software simulation are given in
Figure 6.16 and 6.17 respectively. The speedup is calculated in Formula 6.5. Hard-
ware debug of GNPS3 is shown in Figure 6.18. Hardware resource and power con-
sumption of FPGA hardened GNPS3 is shown in Figure B.9.

2.0997× 107

2.60657× 102 ≈ 8.05541× 104 (6.5)

FIGURE 6.18: Hardware debug of GNPS3. Numbers are represented
in hexadecimal.

116 Chapter 6. FPGA implementation of robot membrane controller

6.4 UART communication of NPS

Substituting the on-board computer of Pioneer 3 DX with FPGA hardened mem-
brane controller to control this robot is the ultimate objective. Pioneer 3 DX is con-
trolled directly by dedicated robot motion controller which is a micro-controller
[268] while computing operations are executed by on-board computer. The micro-
controller samples reading of sensors and sends them to on-board computer in line
with RS232 communication electrical standard protocol. After computation finished,
results are transmitted back to micro-controller to control wheel motors. Thereupon,
the membrane controller should have a receiver and a transmitter device to receive
sensors reading and to send computation results. Universal asynchronous receiver/-
transmitter (UART) is such a device meeting RS232 protocol which is employed to
design communication devices of membrane controller.

NPS1 is employed as the test bed for the UART communication. The data frame
to be communicated has the same format used in Chapter 4: 1 start bit, 8 data bits
and 1 stop bits. Data transferring speed of Pioneer 3 DX is set as 115200 baud (nearly
115200 Hz), which should be the working rate of UART receiver and transmitter.
While the clock frequency of BASYS 3 FPGA developing board is set as 100 MHz, a
module named frequency splitting is designed to generate required clock frequency
according to the method used in Chapter 4, so as the design of UART receiver and
transmitter.

UART receiver can only receive 8-bit data while a sensor reading is assigned a
24-bit data. Therefore it is a triple receiving operation to receive a sensor reading.
A register is assigned to store received 8-bit data so that 48 registers are needed to
store sixteen 24-bit data of sensors’ reading. Values in three adjacent register are
concatenated to form a 24-bit binary value which is a input data to NPS1. NPS1 has
two operating state: idle and busy state. Before NPS1 receiving sensor readings, it
is in idle otherwise it is in busy after fed to full. The storing rate is 1

10 of receiving
frequency for 10 bits are sent sequentially while computing frequency should be 1

30
of receiving frequency since it performs 3 times of receiving operation to get a entire
sensor reading. The working frequency of UART transmitter equals to the storing
rate for it sends 10 serial bits to micro-controller which works in 115200 Hz. The RTL
model of UART-NPS1 is illustrated in Figure 6.19.

According to the computational process of NPS1, the first output of rw is zero
and the latter two outputs are expected values. UART transmitter should skip zero
and begin to transmit when the first result arise. So transmitter stays in idle be-
fore rw is nonzero. Wheel speed values to be transmitted are 24-bit data, but each
time the transmitter can send only 8 bits. Hence the transmitter sends three times
successively to transmit 24 bits in total.

UART communication experiment between host computer and BASYS 3 is con-
ducted to verify proposed design method. In this experiment, host computer sends
sixteen 24-bit sensor readings to FPGA via integrated UART transmitting port within
it and BASYS 3 receives these data into forty eight 8-bit registers. Every three 8-bit
registers are concatenated to construct a 24-bit register so that data inside can be 24-
bit. After computation of FPGA NPS1, FPGA transmits results to host computer and
these values can be observed on the screen. Realterm is the serial debugging soft-
ware adopted to configure ports setting and display data from FPGA. It is obvious
that FPGA NPS1 computes and transmits correctly according to Figure 6.20 which
shows the experiment result.

A notable phenomenon can be found in Figure 6.20 is that UART transmitter
does not stop transmitting so data strings repeat. The transmitting counter will enter

6.4. UART communication of NPS 117

clk
frequency splitting

edge detection

clk
rx_data

rx_flag
rx

clock_re

clk

rw_out

state

clock

100MHz

115200*16Hz

a0 a1 a2 a47
...

clk frequency splitting

edge detection

3840Hz

clk

txtx_en

clock_tr

tx_data [7:0]

state

PC

frequency splitting 1

receiver

register1 register2 register3 register47

NPS1

transmitter On-board PC

s1

s2

s16

lw_out

concatenation

compute
state

clk frequency splitting

edge detection

11520Hz

frequency splitting 2

frequency splitting 3

On-board PC

transmit
state

FIGURE 6.19: RTL model of UART-NPS1.

118 Chapter 6. FPGA implementation of robot membrane controller

FIGURE 6.20: Numbers are in hexadecimal for real numbers are rep-
resented in fixed point binary numbers. These data repeats 00 00 00,
26 D6 40 and 24 29 C0. Two digits of hexadecimal correspond to 8
bits in binary so three dual hexadecimal pairs comprise a 24-bit bi-
nary number. These three repeated data strings are 0, 310.6953125
and 289.3046875 in decimal, which are the desired three outcomes of
rw of NPS1.

infinite loop if clock does not stop. In effect, any counter will loop forever unless it
is related to some limited signals. Input signals are limited because they will stop
at a time. Transmitting counter should come into play to count from 0 only after all
sensor readings are received and stop counting when it counts to 5 (corresponding to
the latter two value of rw which are six 8-bit binary data). By this way, transmitting
counter will not loop and transmitter sends six 8-bit binary data. The effectiveness of
this strategy is demonstrated by the waveform of UART-NPS1 RTL model in Figure
6.21.

FIGURE 6.21: When input counter counts from 0 to 47, sensor read-
ings are received into NPS1. Computing signal cmp-state converts
from 0 to 1 to trigger computing. When left wheel speed are out-
putted, transmitting signal tr-state shifts from 0 to 1 to trigger trans-
mitting. At the time when transmitting counter signal tr-clken-cnt has
value of 5, tr-state switches its value to terminate transmitting.

6.5. Wrap-up 119

6.5 Wrap-up

Membrane controllers carrying out control law 1 and 2 are implemented in FPGA
based on NPS, ENPS and GNPS, achieving a speedup of a order of 104 comparing
with software simulation. The theoretical parallelism of P systems are obtained and
deployed in FPGA which can substitutes the on-board computer of robot with the
supplement of UART communication component tailored to target membrane con-
troller. ENPS can simplify membrane structures to a large extend for the special
function of enzymatic variables. GNPS can perform complicated operations for its
structural/functional advantages.

121

Chapter 7

FPGA Architecture for Generalized
Numerical P System modeled
Rapidly-exploring Random Tree
Algorithm

This chapter investigates GNPS based FPGA implementation of an intensive com-
putation algorithm in robot path planning–rapidly-exploring random tree (RRT) al-
gorithm. This algorithm commence at a predefined initial point O. A random point
R1 is generated whose two coordinates are products of initial point coordinates and
two random numbers in the range of [0, 1]. Then compute a point S1 in the line seg-
ment OR1 so that |OS1| = δ. Next calculate all the distances between obstacle points
and line segment OS1. If all the distances are larger than the rotation radius of robot,
save point S1 as the first RRT point, otherwise discard it and re-calculate R1. After a
satisfied S1 obtained, compute the second random point R2. Find the nearest point
N1 from O and S1 (N1 ∈ {O, S1}). Determine point S2 in the line segment N1R2 so
that |N1S2| = δ. Calculate all the distances between obstacle points and line segment
N1S2 to identify whether S2 is the second RRT point. By this way, one can compute
more RRT points. The path generated by connecting all RRT points is object free.

The first attempt to arrange RRT in ENPS is presented in [270], where a variant
of ENPS named random enzymatic numerical P systems with proteins and shared
memory is designed to organize RRT. This model is simulated with a extended P-
Lingua software [271]. A hierarchical FPGA architecture for RRT algorithm is given
in [272] while a hybrid architecture composed of combinatorial and hierarchical ar-
chitectures is proposed in [273, 274]. In [275], a FPGA parallel architecture is devised
for a variant of RRT, the RRT*, achieving speedups from 30∼90 times comparing em-
bedded/desktop software simulation.

7.1 Rapidly-exploring random tree algorithm

As a randomized planning technique, rapidly-exploring random tree (RRT) has sev-
eral good qualities such as it is biased to unexplored state space, the vertices (referred
to as RRT points in this paper) are nearly uniformly distributed, and only nearest-
neighbor queries are needed [276, 277], ect. RRT has had been increasingly applied
in path planning since its establishment in 1998. There are many researches on this
topic, refers to [278, 279, 280, 281, 282]. The robot initial point (x1, y1) is the root RRT
point. Generating the first RRT point (x2, y2) is a little bit different from others for it

122
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

is the only one RRT point for the time being and is the nearest one to the first ran-
dom point (xrand1, yrand1). The procedures for producing the first RRT point is given
in Algorithm 2.

To produce the second RRT point (x3, y3), after the calculation of the secong ran-
dom point (xrand2, yrand2), compute the distances of the two RRT point (x1, y1) and
(x2, y2) to the random point. Then select the nearest point from them to the random
point according to their distances. Proceed the remaining procedures of computing
a potential RRT point and its verification, as illustrated in Algorithm 3.

As can be seen, to compute the nth (n ≥ 2) RRT point, there are n distances be-
tween RRT points (including the initial point) and the random point to be computed.
The size of the subsequent computation and compare logic determining the nearest
distance would also be large if n is a large number. And its size keeps increasing
if more RRT points are required. This is a incremental process so RRT belongs to
the category of incremental sampling-based motion planning algorithms. If m de-
notes the number of obstacle points, in the verification process of each iteration, m
distances of obstacle points to the line segment (xn, yn)− (xnew, ynew) ((xn, yn) is the
nth RRT point, (xnew, ynew) is the n + 1th potential RRT point) should be computed
and the nearest distance should be chosen, comparing with robot rotation radius ξ
to determine discarding or storing the potential point (xnew, ynew).

The procedures of finding out the nearest RRT point to random point and identi-
fication process of potential RRT points can be performed in parallel. The processing
speed will be improved to a large extend if RRT algorithm is executed in a parallel
hardware architecture. IEEE 754 floating point (FP) number is selected as the real
number format for its large dynamic range and high precision. This format allows
the future application of RRT into a large scale map with an amount of obstacle
points. Taking into account of the complexity of RRT algorithm and IEEE 754 format,
and the capacity of the target FPGA chip, a RRT generating 2 RRT points in an envi-
ronment with 8 obstacle points, diagrammatically shown in Figure 7.1, is modeled
in a generalize numerical P system (GNPS) and implemented in a Xilinx FPGA. The
value of this research lies in that a FPGA implementation method of GNPS work-
ing with floating point number is proposed and a new approach to implement RRT
algorithm on FPGA.

Despite the simplicity of the RRT considered, the method proposed is easy to
scale to incorporate more obstacle points and generate more RRT points, provided
that target FPGA has enough hardware resources. The GNPS dealing with floating
point (FP) numbers which generates two RRT points in an environment with eight
obstacle points is devised, as illustrated in Figure 7.2. Results of program usabil-
ity predicates play the role of metronomes to make GNPS working in sequential or
in parallel in line with RRT algorithm. GNPS with a signature containing the in-
verse square root function is used. The floating point (FP) inverse square root unit
is designed to calculate programs associated with potential RRT point generation
(e.g., program Pr6−1, Pr7−1). So division operations involved in these programs are
averted. For those divisions cannot be shunned (e.g., program Pr6−2, Pr5−9, etc.),
Xilinx FP divider IP cores are instantiated to perform.

For the sake of confirming the correctness of RRT-GNPS, the model’s ENPS coun-
terpart is emulated in PeP [243]. Part of the simulation results is given in Figure 7.3 in
which the expected results are obtained. PeP requires that every membrane contains
at least one enzyme. So contents of membrane 3 to 9 which do not have enzymatic
variables ei, i = 3, . . . , 9, are put into membrane 2 during the simulation. PeP cannot
execute programs like Pr13−2, Pr12−9 and Pr7−18 as well, so which variables should

7.1. Rapidly-exploring random tree algorithm 123

Algorithm 2: RRT algorithm generating the first RRT point.
Input: p, q, δ, ξ, (x1, y1), randi, i = 1, 2
Output: (x2, y2)

1 (xrand1, yrand1)← ((p ∗ rand1), (q ∗ rand2));
d1 ← (x1 − xrand1)

2 + (y1 − yrand1)
2;

(xnew1, ynew1)← (x1 +
δ∗(xrand1−x1)√

d1
, y1 +

δ∗(yrand1−y1)√
d1

);

dsr1 ← (xnew1 − x1)
2 + (ynew1 − y1)

2;
2 for j = 1; j < No + 1; j = ++ do
3 u1j ← (xobj − x1)(xnew1 − x1) + (yobj − y1)(ynew1 − y1);

dnoj ← (x1− xobj)
2 + (y1− yobj)

2; dnbj ← (xnew1− xobj)
2 + (ynew1− yobj)

2;
4 end
5 for j = 1; j < No + 1; j = ++ do
6 u2j ←

u1j
dsr1

;
7 end
8 for j = 1; j < No + 1; j = ++ do
9 pxj ← u2j ∗ (xnew1 − x1); pyj ← u2j ∗ (ynew1 − y1);

10 end
11 for j = 1; j < No + 1; j = ++ do
12 dpoj ← (pxj − xobj)

2 + (pyj − yobj)
2;

13 end
14 for j = 1; j < No + 1; j = ++ do
15 if u2j < 0 then
16 psdj ← dnoj;
17 end
18 else if u2j > 1 then
19 psdj ← dnbj;
20 end
21 else
22 psdj ← dpoj;
23 end
24 end
25 dls ← min(psd1, . . . , psd8);
26 collision← (ξ − dls);
27 if collision < 0 then
28 (x2, y2)← (xnew1, ynew1);
29 end
30 else
31 back to line 1;
32 end

124
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

Algorithm 3: RRT algorithm generating the second RRT point.
Input: p, q, δ, ξ, (x1, y1), (x2, y2), randi, i = 1, 2
Output: (x3, y3)

1 (xrand2, yrand2)← ((p ∗ rand1), (q ∗ rand2));
drt1 ← (x1 − xrand2)

2 + (y1 − yrand2)
2; drt2 ← (x2 − xrand2)

2 + (y2 − yrand2)
2;

2 if drt1 < drt2 then
3 (xnearest2, ynearest2)← (x1, y1);
4 end
5 else
6 (xnearest2, ynearest2)← (x2, y2);
7 end
8 d1 ← (xnearest2 − xrand2)

2 + (ynearest2 − yrand2)
2;

(xnew2, ynew2)← (xnearest2 +
δ∗(xrand2−xnearest2)√

d1
, ynearest2 +

δ∗(yrand2−ynearest2)√
d1

;

dsr2 ← (xnew2 − xnearest2)2 + (ynew2 − ynearest2)2;
9 for j = 1; j < No + 1; j = ++ do

10 u1j ←
(xobj − xnearest2)(xnew1 − xnearest2) + (yobj − ynearest2)(ynew1 − ynearest2);
dnoj ← (xnearest2 − xobj)

2 + (ynearest2 − yobj)
2;

dnbj ← (xnew2 − xobj)
2 + (ynew2 − yobj)

2;
11 end
12 for j = 1; j < No + 1; j = ++ do
13 u2j ←

u1j
dsr2

;
14 end
15 for j = 1; j < No + 1; j = ++ do
16 pxj ← u2j ∗ (xnew2 − xnearest2);
17 pyj ← u2j ∗ (ynew2 − ynearest2);
18 end
19 for j = 1; j < No + 1; j = ++ do
20 dpoj ← (pxj − xobj)

2 + (pyj − yobj)
2;

21 end
22 for j = 1; j < No + 1; j = ++ do
23 if u2j < 0 then
24 psdj ← dnoj;
25 end
26 else if u2j > 1 then
27 psdj ← dnbj;
28 end
29 else
30 psdj ← dpoj;
31 end
32 end
33 dls ← min(psd1, . . . , psd8);
34 collision← (ξ − dls);
35 if collision < 0 then
36 (x3, y3)← (xnew2, ynew2);
37 end
38 else
39 back to line 1;
40 end

7.2. Floating point arithmetic units design 125

(4,10)
(12,10)

(8,6)

(8,14)

(5.5,7.5)

(11.5,12.5)(5.5,12.5)

(11.5,7.5)

(x2,y2)=(8.055643,9.860885)

(x3,y3)=(8.179562,9.77665)

(xrand1,yrand1)=(10,5)
(xrand2,yrand2)=(13,6.5)

(x1,y1)=(8,10)

p=17.85

q=16.25

x

y

o

FIGURE 7.1: Graphical representation of the target RRT. Black points
indicates obstacle points and the red point denotes robot initial point.
Blue points are random points and green points are generated RRT
points.

be chosen is determined manually in these programs. RRT-GNPS excludes the ran-
dom number generator for it is impractical to design such a membrane producing
random numbers. Random numbers used in RRT-GNPS are given as constant in the
software simulation. For FPGA implementation, an IEEE 754 compliant FP random
number generator is designed to feed random numbers.

7.2 Floating point arithmetic units design

7.2.1 Basics of IEEE 754 single precision floating point standard

This research devises IEEE 754 single precision floating point compliant arithmetic
units to perform RRT algorithm modeled in GNPS. As can be seen from Figure 7.4(a)
which illustrates the format of IEEE 754 single precision floating point standard, 32
bits ([31 : 0]) are assigned to a FP number. Bit 0 to 22 store mantissa and bit 23 to 30
represent exponent. The last bit denotes the sign, 0 for positive and 1 for negative.
The exponent is an 8-bit unsigned number, so it cannot represents negative expo-
nent. To resolve this problem, exponent is biased by the constant 127. But it does not
mean the exponent range is [−127, 128] since several special cases called exceptions
utilize the range endpoint. Table 7.1lists these exceptions and normalization.

Mantissa is normalized that there is an 1 at the left hand side of the binary point
(for instance 1.0001101101). However, in order to store one more bit to increase preci-
sion, this leading 1 is not stored but implied. As a result, all the 23 bits are fractional
parts, form 2−1 to 2−23. The value of a mantissa is 1 + mantissa

223 where mantissa is
the integer number denoted by the 23-bit of mantissa. This formula is deduced as
follows.

126
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

p[17.85]

q[16.25]

randomp1[input]

randomq1[input]

xnearest1[x1]

ynearest1[y1]

e1[1]

e2[0]

e3[0] δ [0.15]

xrand1[0]

yrand1[0]

x1[8]

y1[10]

xnew1[0]

ynew1[0]

e4[0] 1

1[0]d k[0]

1

obx1[input] oby1[input] e5[0] e6[0] e7[0] e8[0] e9[0]

1

1_1[0]u

1

1[0]psd

1 [0]srd 1

1[0]nod 1

1[0]nbd 1

2_1[0]u 1

1[0]xp
1

1[0]yp
1

1[0]pod

obx8[input] oby8[input]
1

1_8[0]u 1

8[0]nod 1

8[0]nbd

1

8[0]psd

1

2_8[0]u
1

8[0]xp

1

8[0]yp 1

8[0]pod

e10[0]

10

1

4
[0]sd1

1
[0]sd 1

2
[0]sd 1

3
[0]sd

e11[0]

11

e12[0]

12

1

12
[0]sd 1

22
[0]sd

e13[0]

13

14

1

3
[0]sd e14[0]

15

e15[0]

e16[0]collison1[0]

16

[0.04]

1
[0]

rrt
x

1
[0]

rrt
y

e17[0]

17

randomp2[input]

randomq2[input]

xrand2[0]

yrand2[0]

drt1[0]

drt2[0]

xnearest2[0]

ynearest2[0]

e18[0]

e19[0]

e20[0]

e21[0]

e22[0]xnew2[0]

ynew2[0]
2

1
[0]d

9

2

e23[0] e24[0] e25[0] e26[0]

e27[0]

2

1_1
[0]u 2 [0]

sr
d 2

1
[0]

no
d 2

1
[0]

nb
d

2

2 _1
[0]u 2

1
[0]

x
p

2

1
[0]

y
p 2

1
[0]

po
d 2

1
[0]psd

18

19

2

1_1
[0]u 2

8
[0]

no
d 2

8
[0]

nb
d

2

2 _ 8
[0]u 2

8
[0]

x
p

2

8
[0]

y
p 2

8
[0]

po
d 2

8
[0]psd

26

e28[0]

27

e29[0]

28

e30[0]

29

e31[0]

30

31

e32[0]

32

e33[0]

e34[0]collison2[0]

33

e35[0]

2

1
[0]sd 2

2
[0]sd 2

3
[0]sd 2

4
[0]sd 2

12
[0]sd 2

22
[0]sd

2

3
[0]sd

stop[0]

1 1 1 1

1 1 1 1

: min(,)

Pr : 1 |

p

p rand

P e p random

p random x








 

2 1 1 1

2 1 1 1 1

: min(,)

Pr : 0 1|

q

q rand

P e q random

e q random y








   

3 1 1

3 1 2

:

Pr : 1 1|

P e k

k e








 

4 1 2 1 1 1 1

2 2 1
4 1 2 1 1 1 1 1

: min(, , , ,)

Pr : 0 () () 1|

rand rand

rand rand

P e x y x y k

e k x x x x d








      

5 1 2

5 1 3

:

Pr : 1 1|

P e k

k e








 

1
6 1 3 1 1 1

1 1
6 1 3 1 1

1
1

: min(, , , ,)

()
Pr : 0 1|

nearest rand

rand nearest
nearest new

P e k x x d

x x
e k x x

d









 


      



1
7 1 3 1 1 1

1 1
7 1 1 1

1
1

: min(, , , ,)

()
Pr : 1|

nearest rand

rand nearest
nearest new

P e k y y d

y y
k y y

d









 


    



1 2 4 1 1 1 1 1 1

1
1 2 1 1 1 1 1 1 1 1 1_1

: min(, , , , , ,)

Pr : ()() ()() 1|

x y nearest nearest new new

x nearest new nearest y nearest new nearest

P e k ob ob x y x y

k ob x x x ob y y y u








      

2 2 4 1 1 1 1

2 2 1
2 2 4 1 1 1 1

: min(, , , ,)

Pr : 0 () () 1|

nearest nearest new new

new nearest new nearest sr

P e k x y x y

e k x x y y d








      

8 1 3

8 1 4

:

Pr : 1 1|

P e k

k e








 

3 2 4 1 1 1 1

2 2 1
3 2 1 1 1 1 1

: min(, , , ,)

Pr : () () 1|

x y nearest nearest

nearest x nearest y no

P e k ob ob x y

k x ob y ob d








    

4 2 4 1 1 1 1

2 2 1
4 2 1 1 1 1 1

: min(, , , ,)

Pr : () () 1|

x y new new

new x new y nb

P e k ob ob x y

k x ob y ob d








    

5 2 4

5 2 5

:

Pr : 1 1|

P e k

k e








 

1 1
6 2 5 1_1

1
1_1 1

6 2 5 2_11

: min(, ,)

Pr : 0 1|

sr

sr

P e k u d

u
e k u

d





 



   


7 2 5

7 2 6

:

Pr : 1 1|

P e k

k e








 

1
8 2 6 1 1 2_1

1 1
8 2 1 2_1 1 1 1

: min(, , ,)

Pr : () 1 |

nearest new

nearest new nearest x

P e k x x u

k x u x x p





 


    

1
9 2 6 1 1 2_1

1 1
9 2 6 1 2_1 1 1 1

: min(, , ,)

Pr : 0 () 1|

nearest new

nearest new nearest y

P e k y y u

e k y u y y p





 


      

10 2 6

10 2 7

:

Pr : 1 1|

P e k

k e








 

1 1
11 2 7 1 1 1 1

1 2 1 2 1
11 2 7 1 1 1 1 1

: min(, , , ,)

Pr : 0 () () 1 |

x y x y

x x y y po

P e k ob ob p p

e k p ob p ob d





 


      

12 2 7

12 2 8

:

Pr : 1 1|

P e k

k e








 

1 1 1
13 2 8 1 1 1

1 1
1 2_1

1 1 1
13 2 8 1 2_1 1

1
1

: min(, , ,)

, 0

Pr : 0 , 1 1|

,

no nb po

no

nb

po

P e k d d d

d u

e k d u psd

d else





 

    

     
 
 

14 2 8

14 2 9

:

Pr : 1 1|

P e k

k e








 

1 9 4 8 8 8 8 8 8

1
1 9 8 1 1 1 8 1 1 1 1_8

: min(, , , , , ,)

Pr : ()() ()() 1|

x y nearest nearest new new

x nearest new nearest y nearest new nearest

P e k ob ob x y x y

k ob x x x ob y y y u








      

2 9 4 8 8 1 1

2 2 1
2 9 1 8 1 8 8

: min(, , , ,)

Pr : () () 1|

x y nearest nearest

nearest x nearest y no

P e k ob ob x y

k x ob y ob d








    

3 9 4 8 8 1 1

2 2 1
3 9 1 8 1 8 8

: min(, , , ,)

Pr : () () 1 |

x y new new

new x new y nb

P e k ob ob x y

k x ob y ob d








    

1 1
4 9 5 1 8

1
11 8

4 9 5 2_81

: min(, ,)

Pr : 0 1|

sr

sr

P e k d u

u
e k u

d

 




 



   


1
5 9 6 1 1 2_8

1 1
5 9 1 2_8 1 1 8

: min(, , ,)

Pr : () 1|

nearest new

nearest new nearest x

P e k x x u

k x u x x p





 


    
1

6 9 6 1 1 2_8

1 1
6 9 6 1 2_8 1 1 8

: min(, , ,)

Pr : 0 () 1|

nearest new

nearest new nearest y

P e k y y u

e k y u y y p





 


      
1 1

7 9 7 8 8 8 8

1 2 1 2 1
7 9 7 8 8 8 8 8

: min(, , , ,)

Pr : 0 () () 1 |

x y x y

x x y y po

P e k ob ob p p

e k p ob p ob d





 


      

1 1 1
8 9 8 8 8 8

1 1
8 2_8

1 1 1
8 9 8 8 2_8 8

1
8

: min(, , ,)

, 0

Pr : 0 , 1 1|

,

no nb po

no

nb

po

P e k d d d

d u

e k d u psd

d else





 

    

     
 
 

1
1 10 9 1

1 1
1 10 9 1 1

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   
1

2 10 9 2

1 1
2 10 9 2 2

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   
1

3 10 9 3

1 1
3 10 9 3 3

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   

1
4 10 9 4

1 1
4 10 9 4 4

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   

5 10 9

5 10 10

:

Pr : 1 1|

P e k

k e








 

1 1
1 11 1 5

1 1 1
1 11 1 5 1

:

Pr : 0 1|

P sd psd

sd psd sd





 


  
1 1

2 11 2 6

1 1 1
2 11 2 6 2

:

Pr : 0 1|

P sd psd

sd psd sd





 


  
1 1

3 11 3 7

1 1 1
3 11 3 7 3

:

Pr : 0 1|

P sd psd

sd psd sd





 


  

1 1
4 11 4 8

1 1 1
4 11 4 8 4

:

Pr : 0 1|

P sd psd

sd psd sd





 


  

5 11 10

5 11 11

:

Pr : 1 1|

P e k

k e








 

1
1 12 11 1

1 1
1 12 11 1 12

: min(,)

Pr : 0 1|

P e k sd

e k sd sd





 


   
1

2 12 11 2

1 1
2 12 11 2 22

: min(,)

Pr : 0 1|

P e k sd

e k sd sd





 


   

3 12 11

3 12 12

:

Pr : 1 1|

P e k

k e








 

1 1
1 13 12 3

1 1 1
1 13 12 3 12

:

Pr : 0 1|

P sd sd

sd sd sd





 


  
1 1

2 13 22 4

1 1 1
2 13 22 4 22

:

Pr : 0 1|

P sd sd

sd sd sd





 


  

3 13 12

3 13 13

:

Pr : 1 1|

P e k

k e








 

1
1 14 13 12

1 1
1 14 13 12 13

: min(,)

Pr : 0 1|

P e k sd

e k sd sd





 


   

2 14 13

2 14 14

:

Pr : 1 1|

P e k

k e








 

1 1
1 15 13 22

1 1 1
1 15 13 22 13

:

Pr : 0 1|

P sd sd

sd sd sd





 


  

2 15 14

2 15 15

:

Pr : 1 1|

P e k

k e








 
1

1 16 15 13

1
1 16 15 13 1

: min(, ,)

Pr : 0 1|

P e k sd

e k sd collision









 


    

2 16 15

2 16 16

:

Pr : 1 1|

P e k

k e








 

3 16 16

1 1
3 16 16

17 1

:

1 | , 0
Pr : 0 1

1| , 0

P e k

e collision
e k

e collision









     

1 17 17 1

1 17 1 1

: min(,)

Pr : 1 |

new

new rrt

P e k x

k x x








 

2 17 17 1

2 17 17 1 1

: min(,)

Pr : 0 1|

new

new rrt

P e k y

e k y y








   

3 17 17

3 17 18

:

Pr : 1 1|

P e k

k e








 

1 18 17 2

1 18 17 2 2

: min(,)

Pr : 0 1|

p

p rand

P e p random

e p random x








   

2 18 17 2

2 18 2 2

: min(,)

Pr : 1|

q

q rand

P e q random

q random y








 

3 18 17

3 18 18

:

Pr : 1 1|

P e k

k e








 

4 18 18 1 1 2 2

2 2
4 18 18 1 2 1 2 1

: min(, , , ,)

Pr : 0 () () 1|

rand rand

rand rand rt

P e k x y x y

e k x x y y d








      

5 18 18 1 1 2 2

2 2
5 18 18 1 2 1 2 2

: min(, , , ,)

Pr : 0 () () 1|

rrt rrt rand rand

rrt rand rrt rand rt

P e k x y x y

e k x x y y d








      

6 18 18

6 18 19

:

Pr : 1 1|

P e k

k e








 

7 18 19 1 1

1 1 2
7 18 19 2

1 1 2

: min(,)

,
Pr : 0 1|

,

rrt

rt rt
nearest

rrt rt rt

P e x x

x d d
e k x

x d d









    

8 18 19 1 1

1 1 2
8 18 19 2

1 1 2

: min(,)

,
Pr : 0 1|

,

rrt

rt rt
nearest

rrt rt rt

P e y y

y d d
e k y

y d d









    

9 18 19

9 18 20

:

Pr : 1 1|

P e k

k e








 

10 18 20 2 2 2 2

2 2 2
10 18 20 2 2 2 2 1

: min(, , , ,)

Pr : 0 () () 1|

nearest nearest rand rand

nearest rand nearest rand

P e k x y x y

e k x x y y d








      
2

11 18 21 2 2 1

2 2
11 18 21 2 2

2
1

: min(, , ,)

Pr : 0 1|

nearest rand

rand nearest
nearest new

P e k x x d

x x
e k x x

d





 


     



2
12 18 21 2 2 1

2 2
12 18 21 2 2

2
1

: min(, , ,)

Pr : 0 1|

nearest rand

rand nearest
nearest new

P e k y y d

y y
e k y y

d





 


     



13 18 21

13 18 22

:

Pr : 1 1|

P e k

k e








 

1 19 22 1 1 2 2 2 2

2
1 19 1 2 2 2 1 2 2 2 1_1

: min(, , , , , ,)

Pr : ()() ()() 1|

x y new new nearest nearest

x nearest new nearest y nearest new nearest

P e k ob ob x y x y

k ob x x x ob y y y u








      

2 19 22 2 2 2 2

2 2 2
2 19 22 2 2 2 2

: min(, , , ,)

Pr : 0 () () 1|

new new nearest nearest

new nearest new nearest sr

P e k x y x y

e k x x y y d








      

3 19 22 1 2 2 2

2 2 2
3 19 2 1 2 1 1

: min(, , , ,)

Pr : () () 1|

x x nearest nearest

nearest x nearest y no

P e k ob ob x y

k x ob y ob d








    

4 19 22 1 2 2 2

2 2 2
4 19 2 1 2 1 1

: min(, , , ,)

Pr : () () 1|

x x new new

new x new y nb

P e k ob ob x y

k x ob y ob d








    

5 19 22

5 19 23

:

Pr : 1 1|

P e k

k e








 
2 2

6 19 23 1_1

2
1_1 2

6 19 23 2_12

: min(, ,)

Pr : 0 1|

sr

sr

P e k u d

u
e k u

d





 



   


7 19 23

7 19 24

:

Pr : 1 1|

P e k

k e








 

2
8 19 24 2 2 2_1

2 2
8 19 2 2_1 2 2 1

: min(, , ,)

Pr : () 1|

new nearest

nearest new nearest x

P e k x x u

k x u x x p





 


    
2

9 19 24 2 2 2_1

2 2
9 19 24 2 2_1 2 2 1

: min(, , ,)

Pr : 0 () 1|

new nearest

nearest new nearest y

P e k y y u

e k y u y y p





 


      

10 19 24

10 19 25

:

Pr : 1 1|

P e k

k e








 
2 2

11 19 25 1 1 1 1

2 2 2 2 2
11 19 25 1 1 1 1 1

: min(, , , ,)

Pr : 0 () () 1|

x y x y

x x y y po

P e k p p ob ob

e k p ob p ob d





 


      

12 19 25

12 19 26

:

Pr : 1 1|

P e k

k e








 

2 2 2
13 19 26 1 1 1

2 2
1 2_1

2 2 2
13 19 26 1 2_1 1

2
1

: min(, , ,)

, 0

Pr : 0 , 1 1|

,

no nb po

no

nb

po

P e k d d d

d u

e k d u psd

d else





 

    

     
 
 

14 19 26

14 19 27

:

Pr : 1 1|

P e k

k e








 

1 26 22 8 8 2 2 2 2

2
1 26 8 2 2 2 8 2 2 2 1_8

: min(, , , , , ,)

Pr : ()() ()() 1|

x y nearest nearest new new

x nearest new nearest y nearest new nearest

P e k ob ob x y x y

k ob x x x ob y y y u








      

2 26 22 8 8 2 2

2 2 2
2 26 2 8 2 8 8

: min(, , , ,)

Pr : () () 1|

x x nearest nearest

nearest x nearest y no

P e k ob ob x y

k x ob y ob d








    

3 26 22 8 8 2 2

2 2 2
3 26 2 8 2 8 8

: min(, , , ,)

Pr : () () 1|

x x new new

new x new y nb

P e k ob ob x y

k x ob y ob d








    
2 2

4 26 23 1_8

2
1_8 2

4 26 23 2_82

: min(, ,)

Pr : 0 1|

sr

sr

P e k u d

u
e k u

d





 



   


2
5 26 24 2 2 2_8

2 2
5 26 2 2_8 2 2 8

: min(, , ,)

Pr : () 1|

new nearest

nearest new nearest x

P e k x x u

k x u x x p





 


    

2
6 26 24 2 2 2_8

2 2
6 26 24 2 2_8 2 2 8

: min(, , ,)

Pr : 0 () 1|

new nearest

nearest new nearest y

P e k y y u

e k y u y y p





 


      
2 2

7 26 25 8 8 8 8

2 2 2 2 2
7 26 25 8 8 8 8 8

: min(, , , ,)

Pr : 0 () () 1|

x y x y

x x y y po

P e k p p ob ob

e k p ob p ob d





 


      
2 2 2

8 26 26 8 8 8

2 2
8 2_8

2 2 2
8 26 26 8 2_8 8

2
8

: min(, , ,)

, 0

Pr : 0 , 1 1|

,

no nb po

no

nb

po

P e k d d d

d u

e k d u psd

d else





 

    

     
 
 

2
1 27 27 1

2 2
1 27 27 1 1

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   
2

2 27 27 2

2 2
2 27 27 2 2

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   
2

3 27 27 3

2 2
3 27 27 3 3

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   

2
4 27 27 4

2 2
4 27 27 4 4

: min(,)

Pr : 0 1|

P e k psd

e k psd sd





 


   

5 27 27

5 27 28

:

Pr : 1 1|

P e k

k e








 

2 2
1 28 1 5

2 2 1
1 28 1 5 1

:

Pr : 0 1|

P sd psd

sd psd sd





 


  
2 2

2 28 2 6

2 2 2
2 28 2 6 2

:

Pr : 0 1|

P sd psd

sd psd sd





 


  
2 2

3 28 3 7

2 2 2
3 28 3 7 3

:

Pr : 0 1|

P sd psd

sd psd sd





 


  

2 2
4 28 4 8

2 2 2
4 28 4 8 4

:

Pr : 0 1|

P sd psd

sd psd sd





 


  

5 28 28

5 28 29

:

Pr : 1 1|

P e k

k e








 

2
1 29 29 1

2 2
1 29 29 1 12

: min(,)

Pr : 0 1|

P e k sd

e k sd sd





 


   
2

2 29 29 2

2 2
2 29 29 2 22

: min(,)

Pr : 0 1|

P e k sd

e k sd sd





 


   

3 29 29

3 29 30

:

Pr : 1 1|

P e k

k e








 

2 2
1 30 12 3

2 2 2
1 30 12 3 12

:

Pr : 0 1|

P sd sd

sd sd sd





 


  
2 2

2 30 22 4

2 2 2
2 30 22 4 22

:

Pr : 0 1|

P sd sd

sd sd sd





 


  

3 30 30

3 30 31

:

Pr : 1 1|

P e k

k e








 

2
1 31 31 12

2 2
1 31 31 12 13

: min(,)

Pr : 0 1|

P e k sd

e k sd sd





 


   

2 31 31

2 31 32

:

Pr : 1 1|

P e k

k e








 

2 2
1 32 13 22

2 2 2
1 32 13 22 13

:

Pr : 0 1|

P sd sd

sd sd sd





 


  

2 32 32

2 32 33

:

Pr : 1 1|

P e k

k e








 

2
1 33 33 13

2
1 33 33 13 2

: min(, ,)

Pr : 0 1|

P e k sd

e k sd collision









 


    

2 33 33

2 33 34

:

Pr : 1 1|

P e k

k e








 

3 33 34

17 2
3 33 34

35 2

:

1 | , 0
Pr : 0 1

1| , 0

P e k

e collision
e k

e collision









     

4 33 35

4 33 35

:

Pr : 0 1 1|

P e k

e k stop








   

34

FIGURE 7.2: The RRT-GNPS designed to execute RRT algorithm
which generates two RRT points in eight obstacle points. It consists
of 34 membranes including the skin membrane.

7.2. Floating point arithmetic units design 127

(a) RRT-GNPS membrane 1 simulation results which contains the first RRT point (8.06, 9.86).

(b) RRT-GNPS membrane 18 simulation results which contains the second RRT point (8.18, 9.78).

FIGURE 7.3: PeP simulation of RRT-GNPS which perform 34 steps
and costs 0.097948 s to get results. The results of PeP save 2 significant
digits.

Exponent: 8 bits Mantissa: 23 bitsSign: 1 bit

127

23
(1) 2 (1)

2

Sign Exponent Mantissa 
0223031 23

Real number =

(a) IEEE 754 single precision floating point representation.

0

Positive

underflow

Negative

overflow

1.17549435×10-38 3.40282347×1038

Positive

overflow

-1.17549435×10-38-3.40282347×1038

Positive dynamic range
Negative

underflow
Negative dynamic range

 

1.99999988×21271.0×2-126-1.0×2-126-1.99999988×2127 1.0×20-1.0×2128 1.0×2128

(b) Dynamic range of IEEE 754 single precision floating point format.

FIGURE 7.4: The dynamic range is represented using radix 2 as well
as radix 10. Zero is denoted by 1.0× 20, −∞ by −1.0× 2128 and +∞
by 1.0× 2128.

TABLE 7.1: Exceptions and normalization of IEEE 754 single precision
floating point number.

Exponent Mantissa Number

255 0 ±∞
0 0 0

1∼254 arbitrary ±normalnumber
0 non 0 ±denormalnumber

255 non 0 not a number (NaN)

128
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

n1 × 2−1 + · · ·+ n23 × 2−23 =
223 × (n1 × 2−1 + n2 × 2−2 + · · ·+ n23 × 2−23)

223

=
n1 × 222 + n2 × 221 + · · ·+ n23 × 20

223

=
mantissa

223

where ni =0 or 1, i = 1, 2, . . . , 23.
Figure 7.4(b) shows the dynamic range based on radix 2 and radix 10. Take the

conversion from 1.99999988× 2127 to 3.40282347× 1038 as the example, the dynamic
range with different radix can be deduced as below.

10x = 2127

log2 10x = log2 2127

x log2 2× 5 = 127
x(1 + log2 5) = 127

x =
127

1 + log2 5
≈ 38.2308094492

1.99999988× 2127 ≈ 1.99999988× 1038.2308094492

1.99999988× 100.2308094492 ≈ 3.40282347

1.99999988× 2127 ≈ 3.40282347× 1038

7.2.2 Sequential triggered IEEE 754 compliant adder

FP arithmetical expressions cannot be written in Verilog always blocks if they are de-
scribed by a series of instantiated adders, multipliers and other arithmetical units,
other than those fixed point format formulas represented explicitly by Verilog oper-
ators. If all the arithmetical units are triggered only by clock rising edge, they will
always be active and the timing is tremendously chaotic. So these floating point
arithmetical units are designed in such way that they are sequentially triggered in-
stead of synchronous triggered. Arithmetic operations are essentially serial opera-
tions, dealing first with operations with higher priority (multiplication and division)
and then with operations with lower priority (addition and subtraction). For oper-
ations with the same priority, they are executed sequentially. Multiple such serial
operations can be performed simultaneously in FPGA. A counter is added to count
the clock cycle and a flag signal generated by rising edge detection bears a rising
edge at the clock rising edge. This flag signal holds value 1 only for one clock period
so at the next rising edge of clock, the flag has a falling edge and keeps low. This flag
can be used to fire the unit whose trigger signal port connects to this flag just once.

Addition and subtraction are closely related so that a + b does not always mean
an addition, it can be a subtraction as well. The ultimate action is determined not
only by the operator but also by the signs and magnitudes of both operands. As
a consequence, an adder can be a subtractor at the same time. The FP adder is
designed in line with this thought. So the adder must have a port to input desired
operator, + (binary 1) or - (binary 0). The final operation is the XOR of the sign of
two operands and the input operator. The sign of result is deduced in Table 7.2.

7.2. Floating point arithmetic units design 129

TABLE 7.2: Determine the sign of the add/subtract result.

sign of a operator sign of b result sign

+ + + +
+ + - sign of the operand with larger abs
+ - + sign of the operand with larger abs
+ - - +
- + + sign of the operand with larger abs
- + - -
- - + -
- - - sign of the operand with larger abs

FP addition/subtraction requires that exponents of the two operands should be
equal. If it is not the case, we should fix one as baseline, the bigger one generally,
scale the exponent of smaller one and shift its mantissa accordingly. The main pro-
cedures of the adder is diagrammatically shown in Figure 7.5. To reduce hardware
resources and power consumption, exceptions are not taken into account except un-
derflow. Truncation is selected as the rounding mode [283, 284] for the same rea-
son. According to the difference of trigger time, two types of adder are designed:
Fp_add_Egs which computes at the clock rising edge when its trigger flag signal is in
high level; Fp_add_Egsc works at the same condition as Fp_add_Egs but lags behind
this adder two clock period.

7.2.3 Sequential triggered IEEE 754 compliant multiplier and FP com-
parator

The design of floating point multiplier is relatively easy comparing to the design of a
floating point adder. Add the exponents of two operands and multiply their mantis-
sas, then extract specific 23-bit according to IEEE 754 format. The main procedures
of the multiplier is illustrated in Figure 7.6. There are four types of multipliers are
devised according to trigger time. Fp_mul_Eg has no additional trigger port and
works at rising edge of clock. The trigger time of Fp_mul_Ess is the same as that
of Fp_add_Egs. Fp_mul_Es computes one clock cycle later than Fp_mul_Ess. While
Fp_mul_Esc3 delays three cycles comparing to Fp_mul_Ess. A reset port is designed
in adders and multipliers to restore them to initial state to begin another calculation.

It is trivial to compare magnitude of two fixed point numbers for we can use
Verilog ≥ and ≤ operator. However to compare two floating point numbers is not
such intuitive because we have to design comparator, no operators to use. There
are three parts in a floating point number: sign, exponent and mantissa. At first the
sign bit is compared then comparing exponent and mantissa successively. Two FP
numbers are equal only when these three parts are equal correspondingly. Absolute
value comparison which combines exponent and mantissa compare can simplify
this process to some extend. This is the trick adopted to design the comparator that
compares two input FP numbers and output the smaller one, see Table 7.3.

130
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

Decompose of operands

Determine final operation

Determine the sign of the

result

Compute the difference of

two exponents

Shift the mantissa of

smaller operand

Operand a Operand bOperator

Mantissa addtion/

subtraction

Leading one detection

Shift mantissa according to

leading one position

Normalization &

underflow checking

Result

FIGURE 7.5: Procedure diagram of the adder. This is a composite unit
which can perform addition and subtraction.

Decompose of operands

Mantissa

multiplication
Exponent addition

Operand a Operand b

 Underflow checking

Result

Mantissa

truncation
Exponent shift

Normalization

FIGURE 7.6: Procedure diagram of the multiplier.

7.2. Floating point arithmetic units design 131

TABLE 7.3: Comparison of two FP numbers with same signs.

sign of a sign of b abs output

+ + |a|>|b| b
+ + |a|<|b| a
- - |a|>|b| b
- - |a|>|b| a

7.2.4 Inverse square root unit

RRT algorithm involves inverse square root calculation in new RRT points gener-
ation. The hardware resources/power consumption and time latency are too ex-
pensive to afford if it is tackled in frontal attack. An method based on Newton ap-
proximation arose in the source code of Quake3 3D game launched in 1990s presents
an incredible solution to this intractable problem. Typically, Newton method of ap-
proximation iterates several times to get a high precision result. Miraculously, the
Quake3’s method converges to a low error solution only after the first iteration. A
magic hexadecimal constant ‘5f37_59df’ plays a important role in this method. In-
cidentally, the author of this method is still in mystery [285]. A deduction of this
approach is detailed in [286]. C codes of this method are given as follows.

1 f l o a t InvSqrt (f l o a t x)
2 {
3 f l o a t x h a l f = 0 . 5 f * x ;
4 i n t i = * (i n t *)&x ; // get b i t s f o r f l o a t i n g value
5 i = 0 x5f3759df − (i > >1); // gives i n i t i a l guess y0
6 x = * (f l o a t *)& i ; // convert b i t s back to f l o a t
7 x = x * (1 . 5 f−x h a l f * x * x) ; // Newton step
8 return x ;
9 }

Converting these codes into Verilog can be done in a ingenious way: use Verilog
arithmetic operator to calculate line 5 and instantiate FP adder and multiplier to
compute line 7 of the C codes. The underlying thought is that an FP number (no
matter its format) is represented by a binary string. This string can be translated to
an FP number but also to an integer, depends on the context. When two such strings
are manipulated by Verilog arithmetic operators (or other HDL operators), they are
regarded as binary strings so as the result. If the result is used as an operand in an
FP unit, it is interpreted as a FP number. Consequently, the conversion from FP to
integer or vice versa is not necessary in HDL.

Solving an arithmetical expression is essentially a serial process for the prece-
dences of operators are different. Even for operators with the same priority, they
should be executed in sequential. The intrinsic serialism of arithmetic is the origin
why adders and multipliers are triggered at distinct time. To materialize Quake3’s
method in FPGA, line 3 is carried out not by instantiating FP multiplier but with
a subtraction of one from the exponent field of the input FP number x. This much
more simple operation can achieve the same effect when dividing a FP number by
2 is needed. After line 4 completes, Fp_mul_Ess performs x ∗ x. Due to Fp_mul_Ess
cost one clock cycle to output its product, Fp_mul_Es begins to calculate xhal f ∗ x ∗ x
one cycle later. Fp_add_Egsc computes 1.5 f − xhal f ∗ x ∗ x one cycle after Fp_mul_Es.
Wait one more cycle, Fp_mul_Esc3 starts to compute x ∗ (1.5 f − xhal f ∗ x ∗ x).

132
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

In [286], another constant ‘5f37_5a86’ having better precision is deduced. ‘5f37_5a86’is
employed other than ‘5f37_59df’ to design inverse square root module, although the
increased precision achieved by the former constant is trivial.

For the difficulty of design high performance FP divider, the Xilinx FP IP core is
used to do divisions instead of developing it from scratch. The latency of FP divider
is customized to one clock cycle, in accordance with devised FP adder and multiplier.
But this divider is triggered at rising edge of clock, we cannot change this because
it is a packed IP core. To make divider triggers by flag generated by preceding unit,
assign zero to dividend and one to divisor so the result is zero before the flag is one.
When at the clock rising edge and flag has value one, assign actual dividend and
divisor value to divider. By this way, the execution of divider is ordered.

7.2.5 Floating point random number

There are two types of random number generator which can be implemented in
FPGA: true random number generator (TRNG) and pseudo random number gener-
ator (PRNG) [287, 288, 289]. In consideration of the difficulty to design a TRNG, this
research designs a PRNG producing IEEE 754 FP number in the range of (0, 1) bas-
ing on linear feedback shift register (LFSR). XOR is utilized as the operation among
certain bits of the register to jumble up the order of pseudo random numbers. The
penalty of LFSR based PRNG is that the sequence of generated pseudo number is in-
variant if the seed is constant. To address this problem, two LFSRs are concatenated
so that the output of the first LFSR is input to the other as seeds, making the seed al-
ways in dynamic to augment randomness. The LFSR based PRNG is triggered only
by clock rising edge so is always active.

RRT algorithm requires the random number range to be [0, 1] instead of (0, 1).
Yet, as can be seen from Table 7.1, 0 is an exception FP number with unique bit rep-
resentation. The exponent of any IEEE 754 real number in (0, 1) is ‘0111_1110’, while
1’s exponent is ‘0111_1111’ (its mantissa is all-zero). Thereby it is more pragmatic
to sacrifices 0 and 1 because of their uniqueness. In the first attempt, it is tried to
produce the 23-bit pseudo random number by giving a 23-bit number as the static
seed for the first LFSR, and input the pseudo random number to the second LFSR as
its dynamic seed. Then concatenate ‘0_0111_1110’ to the output of the second LFSR
to constitute a 32-bit FP number. However the pseudo random number produced
tend to be very small. This method is modified by generating 27-bit pseudo random
number, setting the exponent to ‘0111_1110’ if it is larger, and concatenating ‘0_0111’
to the 27-bit number. By this way, a more uniform distributed FP random number
sequence is obtained.

7.3 GNPS arranged RRT register transfer level model design

Verilog is employed as the HDL to design RTL model of RRT-GNPS. The “module”
hereafter refers to Verilog module. For the functions of program usability predi-
cates, the computational process of a GNPS is deterministic. Meanwhile, the intro-
duction of flag signals produced by edge detection sequences the processing order of
RRT-GNPS. Under this circumstance, the function of predicates is substituted by flag
signals. The root cause of this replacement is that we cannot instantiate a module
(for example an FP unit) in the if-else construct of HDL while fixed point arithmetic
expressions can be contained for the using of HDL arithmetic operators, where pred-
icates of programs are expressed in the condition of if.

7.3. GNPS arranged RRT register transfer level model design 133

For arithmetic computations are performed by instantiating FP units correspond-
ingly, the RTL model of RRT-GNPS illustrated in Figure ?? is designed in accordance
with arithmetic operations in it. Figure 7.7 presents the RTL model generating one
RRT point in an environment with two obstacle points. Due to the conspicuous
structural complicity, it is unfeasible to present a legible panorama RTL model block
diagram of RRT-GNPS so only this part is given (In effect, Vivado indeed draws an
exhaustive schematic. Nevertheless, because of the sophistication, the connections
are too small to read when expand modules to FP unit level). Robot initial point
(x1, y1) is the root of all RRT point. When compute the first potential RRT point, it
is the only RRT point and the nearest point to the first random point. So there is no
comparison module to determine the nearest RRT point.

Two LFSR based PRNG modules random keep working all the time to produce
random FP number sequence and their random number output ports are connected
to module co_rand1 which generates the first random point (xrand1, yrand1). The
RTL model of RRT-GNPS begins to work after the port begin of co_rand1 receiving
a rising edge. This is done by connecting port begin to the pin of a button in the
FPGA developing board. co_rand1 contains two Fp_mul_Eg multipliers to execute
rule Pr1−1 and Pr2−1 of RRT-GNPS concurrently. After random point (xrand1, yrand1)
obtained, the control port of co_rand1 emits a flag signal to the state port of module
d1_1 to stimulate it, which begins to calculate the square distance between (x1, y1)
and (xrand1, yrand1) (Pr4−1). d1_1 is composed of two Fp_add_Egs which compute the
coordinate differences between initial point and the random point, two Fp_mul_Es
that calculates the squares of two differences, and one Fp_add_Egsc gives the square
sum.

Module Fp_invsqrt1 calculates inverse square root of d1
1. Please look back at

Subsection 7.2.4 for the details of the structure and function of this unit. Alongside
the processing of Fp_invsqrt1, compute coordinate difference of (xrand1, yrand1)
and (x1, y1) with two Fp_add_Egs. Then flag signal from Fp_invsqrt1 activates
module coor_new1 comprising four Fp_mul_Ess and two Fp_add_Egsc to calculate
the first potential RRT point (xnew1, ynew1) (Pr6−1 and Pr7−1).

After the potential RRT point derived, if the line segment taking (x1, y1) and
(xnew1, ynew1) as the two endpoints is obstacle free, i.e., all the distances from obsta-
cle points to this segment are larger than robot rotation radius (ξ), then this potential
point is indeed a RRT point. This verification begins with the simultaneous com-
putation of Pr1−2, Pr2−2, Pr3−2 and Pr4−2 by module dif_mul_sum, d_1, d_2 and
d_3 respectively. Module coor_p1 deals with program Pr8−2 and Pr9−2. Pr11−2 is
coped with d_4. The distance selection program Pr13−2 is determined by Comp. All
these modules are packed in a higher level module pdist.

It is highlighted that distances between eight obstacle points and the line seg-
ment (x1, y1) − (xnew1, ynew1) are computed in parallel so the performance will be
improved to a large extend, especially for large amount of obstacle points. When
the eight distances obtained, seven Min_sqs in total are needed to figure out the
smallest distance. This is because Min_sq can only compares two FP numbers at a
time. To find out the minimal value from eight distances, at first four Min_sq taking
in the eight distances can pick out the larger four. Another two Min_sqs determine
the larger two among four distances. Execute ξ − distance to the two smaller dis-
tances and utilize another Min_sq to output the minimal distance. If it is negative,
the segment is obstacle free and the potential point is a valid RRT point. Then the
first RRT point is stored as (xrrt1, yrrt1), sending a flag signal from port control2 of
Min_sq to activate the computation of the second potential RRT point. Otherwise
discard this point, transmit a flag signal from port control1 of Min_sq to port state of

134
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

r_
p

r_
q

r_
x

r_
y

co
_
ra
n
d
1

d
1
_
1

cl
k

x 1

r_
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
_

x

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

y 1 r_
y 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
_

y

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d
1
_
1

co
n

tr
o

l

co
n

tr
o

l

cl
k

a b

c

Fp
_
m
u
l_
Es
s

st
a
teFp
_
in
vs
q
rt
1

st
a
te

y 1

x 1

cl
k p

b
eg

in q

f
(a

)
y 1

h
(a

)

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

y 2

cl
k

a b

c

Fp
_
m
u
l_
Es
c3

st
a
te

1
.5

b

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

co
o
r_
n
e
w
1

cl
k

is
t_

d
1

cl
k

a b

c

Fp
_
m
u
l_
Es
s

st
a
te

p
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
_

y

p
y 2

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

n
_

x 1

co
n

tr
o

l

st
a
te

d
t_

x

co
n

tr
o

l

p
y 1

d
t_

x

d
t_

y

p
x 2



d
t_

y

x 1

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

n
_

y 1

d
if
_
m
u
l_
su
m

y 1

o
x 1

ex
1

vx
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

n
ex

1
n

x 1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

o
y 1

ey
1

vy
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

n
ey

1
n

y 1

ex
1

ey
1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

co
n

tr
o

lu
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
1

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d
_
1

co
n

tr
o

l

n
x 1

x 1

n
y 1 y 1

cl
k

d
vd

d
vr

q
u
t

Fp
_
d
iv

st
a
te

co
n

tr
o

l

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
2

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d
_
1

co
n

tr
o

l

o
x 1

ex
1

o
y 1

ey
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
3

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d

co
n

tr
o

l

o
x 1

n
x 1

o
y 1

n
y 1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
x 1

x 1

n
x 1

co
o
r_
p
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
y 1

y 1

n
y 1

u
2

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

p
1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

p
2

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

p
x 1

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

co
n

tr
o

l

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
4

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d

co
n

tr
o

l

o
x 1

p
x 1

o
y 1

p
y 1

p
y 1

p
vd

ev
d
1

ev
d
2

p
sd

C
o
m
p

d
if
_
m
u
l_
su
m

o
x 2

ex
1

vx
2

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

n
ex

2
n

x 1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

o
y 2

ey
1

vy
2

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

n
ey

2
n

y 1ex
1

ey
1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

co
n

tr
o

lu
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
1

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d
_
1

co
n

tr
o

l

n
x 1 x 1 n
y 1 y 1

cl
k

d
vd

d
vr

q
u
t

Fp
_
d
iv

st
a
te

co
n

tr
o

l

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
2

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d
_
1

co
n

tr
o

l

o
x 2

ex
1

o
y 2

ey
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
3

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d

co
n

tr
o

l

o
x 2

n
x 1

o
y 2

n
y 1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
x 1

x 1

n
x 1

co
o
r_
p
1

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
y 1

y 1

n
y 1

u
2

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

p
1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

p
2

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

p
x 1

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

co
n

tr
o

l

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d
_
4

d
x 1

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

sq
_

x

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es

st
a
te

d
y 1

sq
_

y

cl
k

a b

c
Fp
_
ad
d
_
Eg
sc

st
a
te

o
p

d

co
n

tr
o

l

o
x 2

p
x 1

o
y 2

p
y 1

p
y 1

p
vd

ev
d
1

ev
d
2

p
sd

C
o
m
p

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d

co
n

tr
o

l

ξ

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

d

co
n

tr
o

l

ξ

cl
k

a b

c
M
in
_
sq

st
a
te

co
ll

is
io

n

co
n

tr
o

l1

Fp
_
m
u
l_
Es

cl
k

a b
c

cl
k

a b
c

Fp
_
m
u
l_
Es

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c

Fp
_
m
u
l_
Es
s

st
a
te

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

a b

c
Fp
_
ad
d
_
Eg
s

st
a
te

o
p

cl
k

se
e
d

r_
x

ra
n
d
o
m

fp
_

ra
n
d

ra
n
d
_
s

cl
k

s
r

ra
n
d

cl
k

s
r

cl
k

se
e
d

r_
x

fp
_

ra
n
d

ra
n
d
_
s

cl
k

s
r

ra
n
d

cl
k

s
r

st
a
te

co
n

tr
o

l2

FIGURE 7.7: RTL model of the RRT-GNPS generating the first RRT
point.

7.4. FPGA implementation of RRT-GNPS 135

co_rand1 to resume the calculation of (xnew1, ynew1) until it is a RRT point. Mem-
branes included in two dashed blocks in Figure ?? carries out the work of the seven
Min_sqs.

In order to compute the second potential RRT point, the nearest point to the
second random point (xrand2, yrand2) should be chosen from (x1, y1) and (xrrt1, yrrt1).
This process corresponds to rules Pr1−18 to Pr8−18 in RRT-GNPS and module nearest2
performs this work. After the second potential point (xnew2, ynew2) obtained, carry
out the verification stated above to confirm whether it is a RRT point. An unified
modeling language (UML) activity diagram depicted in Figure 7.8 details the whole
process of RTL model.

To scale the module to incorporate more obstacle points, one can instantiate more
pdist modules and enlarge the comparison logic for selecting the minimum dis-
tance.

7.4 FPGA implementation of RRT-GNPS

The hardware facilities involved in FPGA implementation are a host computer equipped
with a Intel Core i7-7820HQ and 16 GB RAM, a Xilinx VC707 evaluation board fea-
tured a Virtex-7 xc7vx485t-2ffg1761 FPGA [290]. The FPGA integrated developing
environment employed is Xilinx Vivado 2019.1.

For the sake of ensuring RTL model behaves as expected, a testbench should be
designed to validate it. A RRT-GNPS RTL model is instantiated in the testbench,
together with the clock cycle declaration and initial value setup of input variables.
Then perform RTL model behavioral simulation which presents the model behavior
by drawing waveforms of variables. The RTL model turned out to function well
if waveforms and values meet design objectives. Set clock period as 10 ns, the be-
havioral simulation waveform of RRT-GNPS is given in Figure 7.9. As can be seen,
the first two RRT points obtained are coincident with the two in Figure 7.3. Note,
the length of clock period is not important for behavioral simulation because it is
a software simulation conducted by host computer CPU and all the gate latencies
and datapath latencies are neglected. As a consequence, behavioral simulation can
verify the functionality of a RTL model but void of timing analysis.

If the behavior of RTL model meets requirements, the subsequent action is to
synthesize design. Once synthesis completing, perform constraints and hardware
debug cores setting. Obstacle points are assigned to corresponding to variables via
Verilog system task “$readmemh” from a .txt file stored in host computer, instead
of accessing these data through pins. So input ports of RRT-GNPS RTL model are
clock input and co_rand1’s begin port. The computational results of FPGA cannot
be observed directly but can be checked by performing hardware debug in the inte-
grated logic analyzer (ILA). To observe a variable, a debug core should be set in the
synthesized model to probe values obtained in FPGA. Perform debug core setting
after synthesizing model at least once.

Target FPGA has two differential clock pins. To generate a clock form these two
pins, a global clock input buffer IBUFGDS whose input ports are the two pins should
be instantiated to output a clock with period defined by timing constraints. The
second RRT point’s y-coordinate (y3) is selected to output so pins should be allocated
to y3 port. This is a vector port with 32-bit hence it needs 32pins. One matter should
be pointed out, however, that two pins AM31 and AG32 in bank 14 of target FPGA
cannot be used for they are involved in the JATG circuit. If they are assigned to
other ports, the JTAG will be disconnected and programming device by JTAG is not

136
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

Compute random
point (xr1, yr1)

Compute distance between(x1,
y1) and (xr1, yr1), d1

Compute 2

1

1

d

Compute (xr1-x1)

and (yr1-y1)

Compute
(xnew1,ynew1)

Compute distance of
obstacle point 1 to segment
[(x1, y1), (xnew1,ynew1)], doe1

Compute distance of
obstacle point 8 to segment
[(x1, y1), (xnew1,ynew1)], doe8

Compute
min(doe1, doe5)=doe1_1

Compute
min(doe4, doe8)=doe1_4

Compute
min(doe1_1, doe3_1)=doe2_1

Compute
min(doe1_2, doe1_4)=doe2_2

Compute
min(ξ-doe2_1, ξ-doe2_2)=collision1

Compute distance between
(x1, y1) and (xr2, yr2), dis1

Compute distance between
(xnew1, ynew1) and (xr2, yr2), dis2

Compute
min*(x1, xnew1, dis1, dis2)=xmin_1

Compute
min*(y1, ynew1, dis1, dis2)=ymin_1

Compute distance between
(xmin_1, ymin_1) and (xr2, yr2), d1

Compute 2

1

1

d

Compute (xr2-xmin_1)

and (yr2-ymin_1)

Compute
(xnew2,ynew2)

Compute distance of obstacle
point 1 to segment [(xnew1,ynew1),

(xmin_1, ymin_1)], doe1

Compute distance of obstacle
point 8 to segment [(xnew1,ynew1),

(xmin_1, ymin_1], doe8

Compute
min(doe1, doe5)=doe1_1

Compute
min(doe4, doe8)=doe1_4

Compute
min(doe1_1, doe3_1)=doe2_1

Compute
min(doe1_2, doe1_4)=doe2_2

Compute
min(ξ-doe2_1, ξ-doe2_2)=collision2collision1≤0

collision1>0

collision1≤0

collision1>0
Compute random

point (xr2, yr2)

FIGURE 7.8: The whole process of RRT-GNPS RTL model character-
ized by UML activity diagram.

7.5. Wrap-up 137

FIGURE 7.9: The behavioral simulation waveform of RRT-GNPS RTL
model. The red waveforms are caused by the lack of initial values
of variables. This phenomenon can be eliminated by assigning initial
values to reg variables.

able to work. This fact is not mentioned in VC707 evaluation board user guide so
it is emphasized here. The physical constraints of this design is shown in Figure
7.10. With respect to the complicity of RRT-GNPS, the clock period is set to 40 ns,
which means the FPGA hardened RRT-GNPS computes 2.5× 107 times per second
(the frequency is 25MHz). This set may be modified after implementation if it fails
to meet timing closure.

After RTL model is synthesized successfully, carry on implementation in which
conducts netlist/power optimization, reports timing together with hardware re-
source/power consumption, and completes Place & Route. Post implementation
timing simulation of RRT-GNPS is shown in Figure 7.11. According to static timing
analysis results, the worst negative slack (WNS) is 2.518 ns, while worst hold slack
(WHS) is 0.048 ns. Therefore the 40 ns clock period can meet timing constraints.
FPGA costs nearly 3059.01 ns to obtain two RRT points while host computer CPU
costs 0.097948 s to get them. So the speedup is computed in Formula 7.1. Hardware
debug of PGA hardened RRT-GNPS is shown in Figure 7.12.

9.7948× 107 ÷ 3.05901× 103 = 3.20195× 104 (7.1)

The resource utilization and power consumption of RRT-GNPS are shown in Fig-
ure B.10 in Appendix B. RRT-GNPS costs 43% of look-up table (LUT) because of the
long bit width of IEEE 754 representation. If narrow bit width FP format. e.g., 16-bit
FP, or fixed point representation is used, the LUT utilization can be reduced by al-
most half. 16% of DSP resource is utilized by part of arithmetic. Narrow bit width
FP or fixed point format will decrease this amount as well. The consumptions of
other resources make up small percentages. The Place & Route of RRT-GNPS is given
in Figure B.11.

7.5 Wrap-up

The RRT algorithm is modeled in the framework of GNPS in which parallel proce-
dures are executed simultaneously to speedup the operation process. IEEE 754 float
point format is employed to represent variables to provide large dynamic range and
high computational accuracy. Float point adder and multiplier are designed from

138
Chapter 7. FPGA Architecture for Generalized Numerical P System modeled

Rapidly-exploring Random Tree Algorithm

FIGURE 7.10: The physical constraints of RRT-GNPS shown in the
package view of FPGA. Pins with orange bars inside signify the occu-
pied pins. The light blue hexagon pins are clock pins while the gray
round pins are ordinary input/output pins.

(a) Post implementation timing simulation waveform of (x2, y2).

(b) Post implementation timing simulation waveform of (x3, y3).

FIGURE 7.11: The stable value of first RRT point (x2, y2) appears at
1428979 ps (1428.979 ns) while the second RRT point (x3, y3)arises at
1630027 ps (1630.027 ns). So it costs 1428.979 + 1630.027 = 3059.01 ns
to get results.

7.5. Wrap-up 139

(a) Hardware debug of y2 (y coordinate of the first RRT point).

(b) Hardware debug of x3 (x coordinate of the second RRT point).

FIGURE 7.12: Hardware debug of RRT-GNPS. Numbers are repre-
sented in hexadecimal. As can be validated, 411dc62f is the IEEE 754
format of decimal number 9.86088466644287. This result coincides
with post implementation timing simulation result given in Figure
7.11.

scratch thus control nodes can be planted inside to improve performance. The float
point inverse square root unit is constructed based on the adder and multiplier so
that this unit refrains from division operations, which are hardware expensive and
performance low. A special pseudo random number generator outputting IEEE 754
complaint float point random numbers in the range of (0, 1) is devised on the basis
of linear feedback shift registers. For those divisions cannot be avoided, Xilinx float
number operation IP cores are instantiated to perform divisions for their high speed.
Contrast to software simulation, the speedup of FPGA implementation achieved is
3.20195× 104.

141

Chapter 8

Conclusions

Hardware implementation of bio-inspired computing models is a research line that
focuses on realizing the massive parallelism using digital circuits that is impossible
to do with a software program. This thesis targets two bio-inspired models, reac-
tion systems and numerical P systems, and investigates how to implement them on
FPGA re-configurable hardware, and their applications in different realms.

The introduced normal form of reaction systems in which reactions have only
one entity as products and elements of product set are disjoint with entities in the
context sequence, it is not difficult to construct a sequential switching circuit, which
is a Mealy or Moore machine processing 1-bit variables. On the other side, from the
Mealy or Moore machine of a synchronous circuit, one can derive Boolean equations
demonstrating relationships among input, output and internal states. Binary states
of variables in the right hand side of these Boolean equations can be regarded as pos-
itive or negative literals which are transformed to reactants and inhibitors. Internal
states and output in the left hand side of Boolean equations are deemed as products.
So synchronous circuits can be converted to reaction systems.

Threshold supply assumption of RS is implemented as ”presence 1 absence 0“ to
reflect the qualitative feature. This treatment is expedient for designing a RS carrying
out some biological process and for its FPGA implementation, which is validated
by the implementation of self assembly intermediate filaments RS and heat shock
response RS. On the contrary, ”1 presence 0 absence“ method is suitable for devising
a RS counter and its FPGA implementation. These two treatments coincide with
the relationship of RS and synchronous circuits, namely, a RS is essentially a Mealy
or Moore machine which corresponds to a synchronous circuit. The duration of an
entity (one step in the interactive process) is realized as one clock cycle to meet the no
permanency assumption. Consequently, an integral FPGA implementation method
of RS is proposed and tested.

Computation of applicable rule set of symbol object P systems is tackled from
the integer multi-criteria linear optimization point of view. In the max derivation
mode, all elements of the set of applicable rule multiset are solutions of a system
of inequalities defining a Diophantine equations. By constructing ”either-or“ con-
straints in integer linear programming, it is possible to solve Diophantine sets more
readily. New constraints introduced make sure that any solution of the inequalities
is Pareto-optimal, which corresponds to a maximally parallel rule multiset.

The relationship of NPS and system of difference equations is revealed: NPS is
another form of systems of difference equations. These two forms can transformed
to each other. Their main difference consists in that programs of NPS give the recur-
rence relations among variables while equations in the difference system tell vari-
able values varying with the discrete time t. Generally, the physical meanings of
the model designed by NPS are more transparent. Constructing a NPS from a given
difference system is more straightforward. Difference systems can be transformed

142 Chapter 8. Conclusions

from differential systems via standard methods, so differential systems can be ap-
proximated by NPSs when simulate these differential systems on discrete systems
such as a computer. This means that NPSs can model differential systems which are
widely used in engineering filed. Moreover, it can be observed that the notion of
NPS corresponds to Mealy/Moore machine operating with numbers instead of bit
values.

The symbol object P system can be converted to a special NPS because a rule
can be transcribed as a set of programs in which each program updates multiplicity
of one type of object. In every membrane, consolidating all programs updating the
same object, the number of programs is reduced. These more complicated programs
have the same effect as object rewriting rules. This research tries to look at symbol
object P systems and NPSs in an uniform point of view, and more importantly, to
use an intelligible manifestation to transcribe rewriting rules. This transcription of
rules enlightens the FPGA implementation of GNPS programs.

Have in mind the discrepancies of enzyme catalyzed programs of ENPS and the
limitation of the only predicate form (e > max(v1, . . . , vn) or e ≥ max(v1, . . . , vn)),
the definition of NPS is extended to generalized numerical P system (GNPS) to facil-
itate FPGA implementation and to enlarge application scope of NPS by introducing
Presburger arithmetic predicates. Variables of GNPS are classified as input, output
and internal variables for that RTL models of GNPS have input and output ports to
be mapped to FPGA input and output pins receiving data and transmitting compu-
tation results.

The core issue of FPGA implementation of GNPS lies in how to implement pro-
grams. A method entitled as FPGA Step-wise Parallel Implementation of Program (FSPIP)
is devised for this issue. The FSPIP has three steps: the first step computes all pro-
duction functions of applicable programs, the second step calculates repartition pro-
tocols and the third step sums repartitioned values of one type variable and assigns
new values. The third step inspired from the relation of rules and programs avoids
the conflict arising from multiple programs updating the value of the same variable.
Since GNPS is the superset of NPS and ENPS, FPGA implementation method of
GNPS is applicable for the other two.

Several robot controllers based on NPS, ENPS and GNPS are implemented in
FPGA to validate FSPIP method. These models work with fixed point number rep-
resentation. So real numbers are amplified to 2n (n is the number of bits for fraction
part of a real number) times larger and rounded to the nearest integer. After com-
putation, results are large integer numbers which are shrunk to corresponding real
numbers by left shift n bits. A GNPS working on IEEE 754 floating point numbers
and executing RRT algorithm is also designed. Arithmetic operations of floating
point numbers are carried out by instantiating devised FP arithmetic units, such as
adder, multiplier and inverse square root unit. This downside of Verilog HDL dis-
ables the normal treatment of predicates which are interpreted as logical expression
in Verilog always blocks. A signal edge detection based method is adopted to fire FP
arithmetic units in accordance with priorities of arithmetic operations and to trigger
the predetermined sequence of other operations which are defined by predicates of
programs.

The major achievements of this thesis are the FPGA implementation methods of
RS and GNPS. FPGA implementation of RS opens a novel research line to speedup
large scale RS and other biological models, in the perspective of digital circuits and
parallel architectures. This study presents the tight relations between synchronous
circuits and qualitative models, and proposes a natural and effective way to address

Chapter 8. Conclusions 143

qualitative features. It proves that not only quantitative models, but also qualitative
models can be implemented in FPGA efficiently.

Many kinds of P systems, like tissue-like P systems, population dynamic P sys-
tems and spiking neural P systems have been simulated or implemented in CPU
and GPU, while only symbol object cell-like P systems were implemented in FPGA
before the work in this thesis. Numerical P systems belong to cell-like P system
category, but they are quite different from symbol object P systems. The FPGA im-
plementation method of GNPS working on fixed point number and floating point
number paves the way to leverage the maximal parallelism of P systems to accel-
erate computations in engineering field, especially in consideration of the fact that
most engineering models are modeled by differential systems. The devised method
can also provide a good reference to implement other types of P systems on FPGA.

The realized speedups of FPGA hardened GNPS show that FPGA based imple-
mentations of GNPS are quite suitable for computation-intensive algorithms. Many
artificial intelligence algorithms are hungry for computing powers. Arrange some
of these algorithms in the framework of GNPS and implement them on FPGA is
profitable in terms of the noticeable speedups. Image and video processing is a
apposite domain to exploit the advantage of GNPS and its FPGA implementation.
GNPS FPGA implementation can also be put to good use in applications requiring
high real time performances, for example natural language processing, face and gait
recognition and real time control.

The huge success of deep learning energizes the development of bio-inspired
computing. Spiking neural P systems (SNPs) model neurons and spikes among
them. Investigation of hardware implementation of SNP would be quite promis-
ing taking into account the potential to build a deep learning network on the basis
of SNP. The extensive of applications of deep learning would promote the progress
of SNP and related P systems.

Playing with FPGA is a tedious task requiring professional digital circuits design
knowledge. A compiler from models to be implemented in FPGA to their HDL codes
will simplify the design process substantially. In this thesis, conceiving a GNPS
and then compiling it to Verilog codes shows that such a design method is viable
and friendly for software developers. On the other side, imagine that all hardware
resources are employed but still not sufficient to process a large amount of data. If
the data is divided into several parts and input them sequentially, then it would be a
good solution. So for FPGA implementation and its application, what still lacks are
relevant software which can (partially) automate design process and organize data
in different portions, then import data in a way that makes full use of computing
nodes implemented in FPGA. On the whole, only FPGA hardware cannot exert its
benefit. Hardware plus software would be more reasonable.

145

Appendix A

Associated figures of reaction
systems

(a) Post implementation timing simulation with 4 ns clock period.

(b) Post implementation timing simulation with 6 ns clock period.

FIGURE A.1: Post implementation timing simulation ofRi f l2.

146 Appendix A. Associated figures of reaction systems

(a) Hardware resources dissipation. (b) power consumption.

FIGURE A.2: Hardware resources dissipation and power consump-
tion ofRi f l2.

(a) I/O planning ofRhsr1. (b) I/O planning ofRhsr2.

FIGURE A.3: Physical constraints settings of two heat shock response
reaction systems. Gray circles with wide orange bars are pins allo-
cated to RTL model ports.

Appendix A. Associated figures of reaction systems 147

(a) Post implementation timing simulation with 4 ns clock period.

(b) Post implementation timing simulation with 6 ns clock period.

FIGURE A.4: Post implementation timing simulation ofRhsr1.

(a) Hardware resources dissipation. (b) power consumption.

FIGURE A.5: Hardware resources dissipation and power consump-
tion ofRhsr1.

148 Appendix A. Associated figures of reaction systems

step 0 1 2 3 4 5

time

clock
0

1

0

1

0

1

0

1

0

1

0
1

stress

prot

hse

hsp:hsf

hsp

1

0

hsf

1
mfp

0

1
hsp:mfp

0

1
hsf3

0

1
hsf3:hse

0

1

0

nostress

(a) The expected waveform of interactive process listed in
Table 4.9. The blue solid lines indicate context entities.

(b) Vivado behavioral simulation waveform of RTL model. The clock perid is
set as 10 ns.

FIGURE A.6: Waveform comparison of interactive process 2 ofRhsr =
(B3, A3).

149

Appendix B

Associated figures of GNPS

FIGURE B.1: Block diagram of GNPS1 RTL model. After the design of
a model, the corresponding schematic can be drawn automatically by
Vivado. The schematic characterizes the same functions/behaviors
as RTL model representing by HDL.

150 Appendix B. Associated figures of GNPS

(a) Hardware resources utilization of
GNPS1.

(b) Power consumption of GNPS1
is 0.08 w.

FIGURE B.2: Total power consumption is the sum of device static
power and dynamic power. Power consumption of the two cases are
nearly the same, although GNPS1 works in all parallel and GNPS2
works in sequential.

FIGURE B.3: Block diagram of GNPS2 RTL model. Each membrane
is modeled in Verilog basic functional unit, module. The bug icons
indicate variables to be debugged in Hardware Debug procedure.

Appendix B. Associated figures of GNPS 151

FIGURE B.4: I/O planning of NPS1 RTL model. NPS1 has one 1-bit
input port clock and two 24-bit output ports rw and rw, so totally 49
pins are distributed to these three ports.

(a) Hardware resource dissipation of NPS1. (b) Power consumption of NPS1 is 0.23 W.

FIGURE B.5: Hardware resource dissipation and power consumption
of hardened NPS1.

FIGURE B.6: I/O planning of ENPS1. 49 pins are used to represent
I/O ports.

152 Appendix B. Associated figures of GNPS

(a) Hardware resource dissipation of ENPS1. (b) Power consumption of ENPS1.

FIGURE B.7: Hardware resource dissipation and power consumption
of hardened ENPS1.

FIGURE B.8: I/O planning of GNPS3.

(a) Hardware resource dissipation of GNPS3. (b) Power consumption of GNPS3 is 0.076
W.

FIGURE B.9: Hardware resource dissipation and power consumption
of hardened GNPS3.

Appendix B. Associated figures of GNPS 153

(a) Hardware resource utilization of RRT-
GNPS.

(b) Power consumption of RRT-GNPS is
0.716 w.

FIGURE B.10: The resource utilization and power consumption of
RRT-GNPS.

FIGURE B.11: The Place & Route of RRT-GNPS.

155

Bibliography

[1] L. Kari and G. Rozenberg. “The many facets of natural computing”. In: Com-
munications of the ACM 51.10 (2008), pp. 72–83 (cit. on p. 1).

[2] G. Rozenberg, T. Bäck, and J. N. Kok. Handbook of natural computing. Springer,
2012 (cit. on p. 1).

[3] H. J. Morowitz. Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis.
Yale University Press, 1993 (cit. on p. 1).

[4] J. P. Schrum, T. F. Zhu, and J. W. Szostak. “The origins of cellular life”. In:
Cold Spring Harbor perspectives in biology (May 19, 2010). DOI: 10 . 1101 /
cshperspect.a002212 (cit. on p. 1).

[5] S. L. Millerl. “A production of amino acids under possible primitive earth
conditions”. In: Science 117.3046 (May 15, 1953), pp. 528–529 (cit. on p. 1).

[6] S. L. Millerl. “Production of some organic compounds under possible primi-
tive earth conditions1”. In: Journal of the American Chemical Society 77.9 (May 12,
1955), pp. 2351–2361 (cit. on p. 1).

[7] K. Nakamura and N. Go. “Function and molecular evolution of multicopper
blue proteins”. In: Cellular and Molecular Life Sciences CMLS 62.18 (Aug. 9,
2005), pp. 2050–2066. DOI: https://doi.org/10.1007/s00018-004-
5076-x (cit. on p. 1).

[8] M. Á. Medina. “Systems biology for molecular life sciences and its impact
in biomedicine”. In: Cellular and Molecular Life Sciences 70.6 (Aug. 19, 2012),
pp. 1035–1053. DOI: 10.1007/s00018-012-1109-z (cit. on p. 1).

[9] P. G. Higgs. “Chemical evolution and the evolutionary definition of life”. In:
Journal of Molecular Evolution 84.5-6 (2017), pp. 225–235 (cit. on p. 1).

[10] E. Schr’́odinger. What is life?: With mind and matter and autobiographical sketches.
2012. URL: http://strangebeautiful.com/other-texts/schrodinger-
what-is-life-mind-matter-auto-sketches.pdf (cit. on p. 1).

[11] M. C. Weiss et al. “The physiology and habitat of the last universal common
ancestor”. In: Nature Microbiology 1.9 (July 25, 2016), pp. 1–8. DOI: https:
//doi.org/10.1038/nmicrobiol.2016.116 (cit. on p. 1).

[12] H. Tang, P. Thomas, and H. Xia. Reconstruction of the evolutionary history of
gene gains and losses since the last universal common ancestor. arXiv. Feb. 16,
2018. URL: https://arxiv.org/abs/1802.06035 (cit. on p. 1).

[13] M. D. Cantine and G. P. Fournier. “Environmental adaptation from the origin
of life to the last universal common ancestor”. In: Origins of Life and Evolution
of Biospheres 48.1 (July 6, 2017), pp. 35–54 (cit. on p. 1).

[14] L. P. Villarreal and V. R. DeFilippis. “A hypothesis for DNA viruses as the
origin of eukaryotic replication proteins”. In: Journal of Virology 74.15 (Aug.
2000), pp. 7079–7084 (cit. on pp. 1, 4).

156 Bibliography

[15] A. Dupressoir, C. Lavialle, and T. Heidmann. “From ancestral infectious retro-
viruses to bona fide cellular genes: role of the captured syncytins in placen-
tation”. In: Placenta 33.9 (Sept. 2012), pp. 663–671 (cit. on p. 1).

[16] M. S. Dodd et al. “Evidence for early life in Earth’s oldest hydrothermal vent
precipitates”. In: Nature 543.7643 (2017), pp. 60–64 (cit. on pp. 2, 4).

[17] D. R. Wessner. “The origins of viruses”. In: Nature Education 3.9 (2010), p. 37
(cit. on p. 2).

[18] H. P. Fischer. “Mathematical Modeling of Complex Biological Systems”. In:
Alcohol Abuse and Alcoholism 31.1 (2008), pp. 49–59 (cit. on p. 2).

[19] S. Motta and F. Pappalardo. “Mathematical modeling of biological systems”.
In: Briefings in Bioinformatics 14.4 (Oct. 2012), pp. 411–422. ISSN: 1467-5463.
DOI: 10.1093/bib/bbs061. eprint: https://academic.oup.com/
bib/article-pdf/14/4/411/479256/bbs061.pdf. URL: https:
//doi.org/10.1093/bib/bbs061 (cit. on p. 2).

[20] Z. Ji et al. “Mathematical and Computational Modeling in Complex Biologi-
cal Systems”. In: BioMed Research International 2017 (Jan. 2017), pp. 1–16. DOI:
10.1155/2017/5958321 (cit. on p. 2).

[21] J. Gunawardena. “Models in Biology: Accurate Descriptions of Our Pathetic
Thinking”. In: BMC biology 12 (Apr. 2014), p. 29. DOI: 10.1186/1741-
7007-12-29 (cit. on p. 3).

[22] S. J. Singer and G. L. Nicolson. “The fluid mosaic model of the structure of
cell membranes”. In: Science 175.4023 (1972), pp. 720–731 (cit. on p. 3).

[23] N. L. Brun, S. T. Favorecido, and E. I. Sánchez. Atlas of plant and animal histology–
The Cell. 2020. URL: https://mmegias.webs.uvigo.es/02-english/
5-celulas/1-introduccion.php (cit. on p. 3).

[24] A. Ehrenfeucht and G. Rozenberg. “Basic notions of reaction systems”. In:
International Conference on Developments in Language Theory. Springer. 2004,
pp. 27–29 (cit. on pp. 3, 13).

[25] A. Ehrenfeucht and G. Rozenberg. “Reaction systems”. In: Fundamenta infor-
maticae 75.1-4 (2007), pp. 263–280 (cit. on pp. 3, 13, 14, 58, 71).

[26] G. Rozenberg and J. Engelfriet. “Elementary net systems”. In: Advanced Course
on Petri Nets. Springer. 1996, pp. 12–121 (cit. on p. 3).

[27] A. Ehrenfeucht and G. Rozenberg. “Events and modules in reaction systems”.
In: Theoretical Computer Science 376.1-2 (2007), pp. 3–16 (cit. on p. 3).

[28] A. Ehrenfeucht et al. Qualitative and Quantitative Aspects of a Model for Processes
Inspired by the Functioning of a Living Cell. Wiley Online Library, 2011 (cit. on
p. 3).

[29] A. Ehrenfeucht and G. Rozenberg. “Introducing time in reaction systems”. In:
Theoretical Computer Science 410.4-5 (2009), pp. 310–322 (cit. on pp. 3, 4, 13).

[30] R. Brijder et al. “A tour of reaction systems”. In: International Journal of Foun-
dations of Computer Science 22.07 (2011), pp. 1499–1517 (cit. on pp. 3, 71).

[31] A. Ehrenfeucht, M. Main, and G. Rozenberg. “Combinatorics of life and death
for reaction systems”. In: International Journal of Foundations of Computer Sci-
ence 21.03 (2010), pp. 345–356 (cit. on p. 4).

Bibliography 157

[32] R. Brijder, A. Ehrenfeucht, and G. Rozenberg. “Reaction systems with dura-
tion”. In: Computation, cooperation, and life. Springer, 2011, pp. 191–202 (cit. on
pp. 4, 62).

[33] A. Ehrenfeucht, I. Petre, and G. Rozenberg. “Reaction systems: a model of
computation inspired by the functioning of the living cell”. In: THE ROLE
OF THEORY IN COMPUTER SCIENCE: Essays Dedicated to Janusz Brzozowski.
World Scientific, 2017, pp. 1–32 (cit. on p. 4).

[34] A. Salomaa. “Minimal reaction systems: Duration and blips”. In: Theoretical
Computer Science 682 (2017), pp. 208–216 (cit. on pp. 4, 62).

[35] S. Azimi, B. Iancu, and I. Petre. “Reaction system models for the heat shock
response”. In: Fundamenta Informaticae 131.3-4 (2014), pp. 299–312 (cit. on pp. 4,
14, 67).

[36] S. Azimi et al. “Reaction systems models for the self-assembly of intermediate
filaments”. In: Annals of University of Bucharest LXII (2015), pp. 9–24 (cit. on
pp. 4, 58, 62, 63).

[37] S. Azimi et al. “Multi-stability, limit cycles, and period-doubling bifurcation
with reaction systems”. In: International Journal of Foundations of Computer Sci-
ence 28.08 (2017), pp. 1007–1020 (cit. on p. 4).

[38] A. Salomaa. “Applications of the Chinese remainder theorem to reaction sys-
tems with duration”. In: Theoretical Computer Science 598 (2015), pp. 15–22 (cit.
on p. 4).

[39] A. Ehrenfeucht, M. Main, and G. Rozenberg. “Functions defined by reac-
tion systems”. In: International Journal of Foundations of Computer Science 22.01
(2011), pp. 167–178 (cit. on p. 4).

[40] A. Salomaa. “Functions and sequences generated by reaction systems”. In:
Theoretical Computer Science 466 (2012), pp. 87–96 (cit. on p. 4).

[41] E. Formenti, L. Manzoni, and A. E. Porreca. “Fixed points and attractors of
reaction systems”. In: Conference on Computability in Europe. Springer. 2014,
pp. 194–203 (cit. on p. 4).

[42] G. M. Cooper and R. E. Hausman. The cell: A Molecular approach. ASM Press
and Sinauer Sunderland Associates, Inc., 2007 (cit. on p. 4).

[43] J. L. Goldstein, R. G. W. Anderson, and M. S. Brown. “Coated pits, coated
vesicles, and receptor-mediated endocytosis”. In: Nature 279 (5715 1979), pp. 679–
685 (cit. on p. 4).

[44] G. Puaun, G. Rozenberg, and A. Salomaa. DNA Computing - New Computing
Paradigms. Texts in Theoretical Computer Science. An EATCS Series. Springer,
1998. ISBN: 978-3-540-64196-4. DOI: 10.1007/978-3-662-03563-4 (cit. on
p. 4).

[45] G. Puaun. “Computing with Membranes: An Introduction”. In: Bulletin of the
EATCS 67 (1999), pp. 139–152 (cit. on pp. 4, 15).

[46] G. Păun. Membrane Computing: An Introduction. Springer, 2002 (cit. on pp. 4,
15, 39, 40).

[47] G. Puaun. “Computing with Membranes (P Systems): A Variant”. In: Int. J.
Found. Comput. Sci. 11.1 (2000), pp. 167–181. DOI: 10.1142/S0129054100000090
(cit. on p. 4).

158 Bibliography

[48] P. Dittrich, J. Ziegler, and W. Banzhaf. “Artificial chemistries—a review”. In:
Artificial life 7 (3 2001), pp. 225–275 (cit. on p. 4).

[49] S. N. Krishna and R. Rama. “P Systems with Replicated Rewriting”. In: Jour-
nal of Automata, Languages and Combinatorics 6.3 (2001), pp. 345–350. DOI: 10.
25596/jalc-2001-345 (cit. on p. 5).

[50] C. Martín-Vide et al. “Tissue P systems”. In: Theoretical Computer Science 296.2
(2003), pp. 295–326. DOI: 10.1016/S0304-3975(02)00659-X (cit. on
p. 5).

[51] F. Bernardini and M. Gheorghe. “Population P Systems”. In: Journal of Uni-
versal Computer Science 10.5 (2004), pp. 509–539. DOI: 10.3217/jucs-010-
05-0509 (cit. on p. 5).

[52] R. Freund, G. Păun, and M. J. Pérez-Jiménez. “Tissue P systems with channel
states”. In: Theoretical Computer Science 330.1 (2005), pp. 101–116. DOI: 10.
1016/j.tcs.2004.09.013 (cit. on p. 5).

[53] M. Ionescu et al. “Computing with Spiking Neural P Systems: Traces and
Small Universal Systems”. In: DNA Computing, 12th International Meeting on
DNA Computing, DNA12, Seoul, Korea, June 5-9, 2006. Vol. 4287. Lecture Notes
in Computer Science. Springer, 2006, pp. 1–16. DOI: 10.1007/11925903\
_1. URL: https://doi.org/10.1007/11925903_1 (cit. on p. 5).

[54] M. García-Arnau et al. “Spiking Neural P Systems: Stronger Normal Forms”.
In: International Journal of Unconventional Computing 5.5 (2009), pp. 411–425.
URL: http://www.oldcitypublishing.com/journals/ijuc-home/
ijuc-issue-contents/ijuc-volume-5-number-5-2009/ijuc-5-
5-p-411-425/ (cit. on p. 5).

[55] Y. Jiang, Y. Su, and F. Luo. “An improved universal spiking neural P system
with generalized use of rules”. In: Journal of Membrane Computing 1.4 (2019),
pp. 270–278. ISSN: 2523-8914. DOI: 10.1007/s41965-019-00025-y. URL:
https://doi.org/10.1007/s41965-019-00025-y (cit. on p. 5).

[56] Y. Suzuki et al. “Artificial life applications of a class of P systems: Abstract
rewriting systems on multisets”. In: Workshop on Membrane Computing. Springer.
2000, pp. 299–346 (cit. on pp. 5, 101).

[57] T. Y. Nishida. “A membrane computing model of photosynthesis”. In: Springer,
2006, pp. 181–202 (cit. on pp. 5, 101).

[58] M. Cavaliere and I. I. Ardelean. “Modeling Respiration in Bacteria and Respi-
ration/PhotosynthesisInteraction in Cyanobacteria Using a P System Simu-
lator”. In: Applications of Membrane Computing. 2006, pp. 129–158 (cit. on p. 5).

[59] Y. Suzuki and H. Tanaka. “Modeling p53 Signaling Pathways by Using Mul-
tiset Processing”. In: Applications of Membrane Computing. Ed. by G. Ciobanu,
M. J. Pérez-Jiménez, and G. Paun. Natural Computing Series. Springer, 2006,
pp. 203–214. DOI: 10.1007/3-540-29937-8_7. URL: https://doi.
org/10.1007/3-540-29937-8_7 (cit. on pp. 5, 101).

[60] G. Ciobanu. “Modeling Cell-Mediated Immunity by Means of P Systems”.
In: Applications of Membrane Computing. 2006, pp. 159–180 (cit. on p. 5).

[61] M. A. Martínez-del-Amor et al. “Parallel simulation of Population Dynamics
P systems: updates and roadmap”. In: Natural Computing 15.4 (2016), pp. 565–
573. DOI: 10.1007/s11047-016-9566-1 (cit. on pp. 5, 101).

Bibliography 159

[62] G. Ciobanu, G. Păun, and M. J. Pérez-Jiménez. Applications of membrane com-
puting. Vol. 17. Springer, 2006 (cit. on p. 5).

[63] K. Compton and S. Hauck. “Reconfigurable Computing: A Survey of Systems
and Software”. In: ACM Computing Surveys 34.2 (2002), 171–210. ISSN: 0360-
0300. DOI: 10.1145/508352.508353. URL: https://doi.org/10.
1145/508352.508353 (cit. on p. 5).

[64] G. Estrin et al. “Parallel Processing in a Restructurable Computer System”.
In: IEEE Transactions on Electronic Computers EC-12.6 (1964), pp. 747–755 (cit.
on p. 5).

[65] Wikipedia. Reconfigurable Computing. 2015. URL: https://en.wikipedia.
org/wiki/Reconfigurable_computing (cit. on p. 5).

[66] S. Hauck and A. DeHon. Reconfigurable Computing-The theory and practice of
FPGA-based computation. Elsevier Morgan Kaufmann, 2008 (cit. on pp. 5, 31).

[67] J. R. Hauser and J. Wawrzynek. “Garp: a MIPS processor with a reconfig-
urable coprocessor”. In: 5th IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’97), 16-18 April 1997, Napa Valley, CA, USA. IEEE
Computer Society, 1997, pp. 12–21. DOI: 10.1109/FPGA.1997.624600 (cit.
on p. 5).

[68] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. “The Garp architecture and C
compiler”. In: Computer 33.4 (2000), pp. 62–69 (cit. on p. 5).

[69] S. C. Goldstein et al. “PipeRench: a coprocessor for streaming multimedia
acceleration”. In: Proceedings of the 26th International Symposium on Computer
Architecture (Cat. No.99CB36367). 1999, pp. 28–39 (cit. on p. 5).

[70] Y. C. Chou et al. “PipeRench implementation of the instruction path coproces-
sor”. In: Proceedings of the 33rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 33, Monterey, California, USA, December 10-13, 2000.
Ed. by A. Wolfe and M. S. Schlansker. ACM/IEEE Computer Society, 2000,
pp. 147–158. DOI: 10.1109/MICRO.2000.898066 (cit. on p. 5).

[71] C. Ebeling, D. C. Cronquist, and P. Franklin. “RaPiD - Reconfigurable Pipelined
Datapath”. In: Field-Programmable Logic, Smart Applications, New Paradigms
and Compilers, 6th International Workshop on Field-Programmable Logic, FPL ’96,
Darmstadt, Germany, September 23-25, 1996, Proceedings. Ed. by R. W. Harten-
stein and M. Glesner. Vol. 1142. Lecture Notes in Computer Science. Springer,
1996, pp. 126–135. DOI: 10.1007/3-540-61730-2_13. URL: https:
//doi.org/10.1007/3-540-61730-2_13 (cit. on p. 6).

[72] H. Schmit. “Incremental reconfiguration for pipelined applications”. In: 5th
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM
’97), 16-18 April 1997, Napa Valley, CA, USA. IEEE Computer Society, 1997,
pp. 47–55. DOI: 10.1109/FPGA.1997.624604 (cit. on p. 6).

[73] D. C. Cronquist et al. “Architecture Design of Reconfigurable Pipelined Dat-
apaths”. In: 18th Conference on Advanced Research in VLSI (ARVLSI ’99), 21-24
March 1999, Atlanta, GA, USA. IEEE Computer Society, 1999, pp. 23–41. DOI:
10.1109/ARVLSI.1999.756035 (cit. on p. 6).

[74] D. Wilson. “Chameleon takes on FPGAs, ASICs”. In: Electronic Business Asia,
EDNOnline Magazine (2000). URL: http://www.edn.com/article/
CA50551.html?partner=enews (cit. on p. 6).

160 Bibliography

[75] Z. A. Ye et al. “CHIMAERA: a high-performance architecture with a tightly-
coupled reconfigurable functional unit”. In: 27th International Symposium on
Computer Architecture (ISCA 2000), June 10-14, 2000, Vancouver, BC, Canada. Ed.
by A. D. Berenbaum and J. S. Emer. IEEE Computer Society, 2000, pp. 225–
235. DOI: 10.1109/ISCA.2000.854393 (cit. on p. 6).

[76] J. E. Carrillo and P. Chow. “The effect of reconfigurable units in superscalar
processors”. In: Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA 2001, Monterey, CA, USA, February 11-13,
2001. Ed. by S. Hauck, M. D. F. Schlag, and R. Tessier. ACM, 2001, pp. 141–
150. DOI: 10.1145/360276.360328 (cit. on p. 6).

[77] S. Hauck et al. “The Chimaera reconfigurable functional unit”. In: IEEE Trans.
Very Large Scale Integr. Syst. 12.2 (2004), pp. 206–217 (cit. on p. 6).

[78] G. Estrin. “Organization of Computer Systems: The Fixed plus Variable Struc-
ture Computer”. In: Papers Presented at the May 3-5, 1960, Western Joint IRE-
AIEE-ACM Computer Conference. 1960, 33–40. ISBN: 9781450378697. DOI: 10.
1145/1460361.1460365. URL: https://doi.org/10.1145/1460361.
1460365 (cit. on p. 6).

[79] G. Estrin et al. “Parallel Processing in a Restructurable Computer System”.
In: IEEE Trans. Electronic Computers 12.6 (1963), pp. 747–755. DOI: 10.1109/
PGEC.1963.263558 (cit. on p. 6).

[80] G. Estrin. “Reconfigurable Computer Origins: The UCLA Fixed-Plus-Variable
(F+V) Structure Computer”. In: IEEE Annals of the History of Computing 24.4
(2002), pp. 3–9. DOI: 10.1109/MAHC.2002.1114865 (cit. on p. 6).

[81] P. Bertin, D. Roncin, and J. Vuillemin. Introduction to programmable active mem-
ories. Tech. rep. DEC Paris Research Laboratory, 1989 (cit. on p. 6).

[82] S. Casselman. “Virtual computing and the virtual computer”. In: IEEE Work-
shop on FPGAs for Custom Computing Machines. May 1993, pp. 43–48. DOI:
10.1109/FPGA.1993.279480 (cit. on p. 6).

[83] M. B. Gokhale et al. “SPLASH: A Reconfigurable Linear Logic Array”. In:
Proceedings of the 1990 International Conference on Parallel Processing, Urbana-
Champaign, IL, USA, August 1990. Volume 1: Architecture. Ed. by B. W. Wah.
Pennsylvania State University Press, 1990, pp. 526–532 (cit. on p. 6).

[84] P. M. Athanas and H. F. Silverman. “Processor Reconfiguration Through Instruction-
Set Metamorphosis”. In: IEEE Computer 26.3 (1993), pp. 11–18. DOI: 10.1109/
2.204677 (cit. on p. 6).

[85] T. A. Kean. “Configurable Logic: A Dynamically Programmable Cellular Ar-
chitectureand Its VLSI Implementation”. PhD thesis. University of Edinburgh,
1989. URL: https://era.ed.ac.uk/handle/1842/271 (cit. on p. 6).

[86] P. Bottoni et al. “Membrane systems with promoters/inhibitors”. In: Acta Inf.
38.10 (2002), pp. 695–720. DOI: 10.1007/s00236-002-0090-7 (cit. on
p. 16).

[87] O. Agrigoroaiei and G. Ciobanu. “Rewriting Logic Specification of Mem-
brane Systems with Promoters and Inhibitors”. In: Proceedings of the Seventh
International Workshop on Rewriting Logic and its Applications, WRLA 2008, Bu-
dapest, Hungary, March 29-30, 2008. Ed. by G. Rosu. Vol. 238. Electronic Notes
in Theoretical Computer Science 3. Elsevier, 2008, pp. 5–22. DOI: 10.1016/
j.entcs.2009.05.010 (cit. on p. 16).

Bibliography 161

[88] J. Kleijn and M. Koutny. “Processes of membrane systems with promoters
and inhibitors”. In: Theor. Comput. Sci. 404.1-2 (2008), pp. 112–126. DOI: 10.
1016/j.tcs.2008.04.006 (cit. on p. 16).

[89] V. T. T. Nguyen. “An Implementation of the Parallelism,Distribution and
Nondeterminism of Membrane Computing Models on Reconfigurable Hard-
ware”. PhD thesis. University of South Australia, 2010 (cit. on pp. 16, 44, 45).

[90] S. Verlan and J. Quiros. “Fast Hardware Implementations of P Systems”. In:
Membrane Computing - 13th International Conference, CMC 2012, Budapest, Hun-
gary, August 28-31, 2012, Revised Selected Papers. Ed. by E. Csuhaj-Varjú et al.
Vol. 7762. Lecture Notes in Computer Science. Springer, 2012, pp. 404–423.
DOI: 10.1007/978-3-642-36751-9_27 (cit. on pp. 16, 26, 40–42, 48, 49).

[91] R. Freund and S. Verlan. “A Formal Framework for Static (Tissue) P Systems”.
In: Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki,
Greece, June 25-28, 2007 Revised Selected and Invited Papers. Ed. by G. Eleft-
herakis et al. Vol. 4860. Lecture Notes in Computer Science. Springer, 2007,
pp. 271–284. DOI: 10.1007/978-3-540-77312-2_17 (cit. on pp. 17, 19,
21, 23, 40, 80, 88).

[92] S. Verlan. Study of Language-Theoretic Computational Paradigms Inspired by Biol-
ogy. Tech. rep. Université Paris Est, 2010 (cit. on pp. 17, 19).

[93] S. Verlan. “Using the Formal Framework for P Systems”. In: Membrane Com-
puting - 14th International Conference, CMC 2013, Chişinău, Republic of Moldova,
August 20-23, 2013, Revised Selected Papers. Ed. by A. Alhazov et al. Vol. 8340.
Lecture Notes in Computer Science. Springer, 2013, pp. 56–79. DOI: 10.1007/
978-3-642-54239-8_6 (cit. on pp. 17, 19).

[94] R. Freund et al. “Flattening in (Tissue) P Systems”. In: Membrane Computing -
14th International Conference, CMC 2013, Chişinău, Republic of Moldova, August
20-23, 2013, Revised Selected Papers. Ed. by A. Alhazov et al. Vol. 8340. Lecture
Notes in Computer Science. Springer, 2013, pp. 173–188. DOI: 10.1007/
978-3-642-54239-8_13 (cit. on pp. 17, 21, 40).

[95] R. Freund et al. “A Formalization of Membrane Systems with Dynamically
Evolving Structures”. In: International Journal of Computer Mathematics 90.4
(2013), pp. 801–815. DOI: 10 . 1080 / 00207160 . 2012 . 748899. eprint:
http://www.tandfonline.com/doi/pdf/10.1080/00207160.
2012.748899. URL: http://www.tandfonline.com/doi/abs/10.
1080/00207160.2012.748899 (cit. on p. 19).

[96] I. Kaliszewski, J. Miroforidis, and D. Podkopaev. Multiple Criteria Decision
Making by Multiobjective Optimization. Springer, 2016 (cit. on p. 20).

[97] A. Alhazov. “Maximally Parallel Multiset-Rewriting Systems: Browsing the
Configurations”. In: Proceedings of the Third Brainstorming Week on Membrane
Computing. RGNC Report 01/2005. 2005, pp. 1–10 (cit. on p. 21).

[98] M. Ehrgott. Multicriteria Optimization. Springer, 2005. ISBN: 978-3-540-21398-
7. DOI: 10.1007/3-540-27659-9. URL: https://doi.org/10.1007/
3-540-27659-9 (cit. on p. 22).

162 Bibliography

[99] O. Agrigoroaiei, G. Ciobanu, and A. Resios. “Evolving by Maximizing the
Number of Rules: Complexity Study”. In: Membrane Computing: 10th Inter-
national Workshop, WMC 2009, Curtea de Arges, Romania, August 24-27, 2009.
Revised Selected and Invited Papers. Ed. by G. Păun et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 149–157. ISBN: 978-3-642-11467-0. DOI:
10.1007/978-3-642-11467-0_11. URL: https://doi.org/10.
1007/978-3-642-11467-0_11 (cit. on p. 22).

[100] R. Reina-Molina, D. Díaz-Pernil, and M. Gutiérrez-Naranjo. “Integer Linear
Programming for Tissue-like P Systems”. In: Proceedings of the Ninth Brain-
storming Week on Membrane Computing. 2011 (cit. on p. 22).

[101] G. Ciobanu and A. Resios. “Complexity of evolution in maximum coopera-
tive P systems”. In: Natural Computing 8.4 (2009), p. 807. ISSN: 1572-9796. DOI:
10.1007/s11047-009-9107-2. URL: https://doi.org/10.1007/
s11047-009-9107-2 (cit. on pp. 23, 39).

[102] G. Ciobanu, S. Marcus, and G. Păun. “New Strategies of Using the Rules of a
P System in a Maximal Way: Power and Complexity”. In: Romanian Journal of
Information Science and Technology 12.2 (2009), pp. 157–173 (cit. on p. 23).

[103] V. Nguyen, D. Kearney, and G. Gioiosa. “An Algorithm for Non-deterministic
Object Distribution in P Systems and Its Implementation in Hardware”. In:
Membrane Computing - 9th International Workshop, WMC 2008, Edinburgh, UK,
July 28-31, 2008, Revised Selected and Invited Papers. Ed. by D. W. Corne et al.
Vol. 5391. Lecture Notes in Computer Science. Springer, 2008, pp. 325–354.
DOI: 10.1007/978-3-540-95885-7_24 (cit. on pp. 23, 26, 41).

[104] A. Arteta, L. Fernandez, and J. Gil. “Algorithm for Application of Evolution
Rules Based on Linear Diofantic Equations”. In: SYNASC 2008, 10th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, 26-29 September 2008. Ed. by V. Negru et al. IEEE Com-
puter Society, 2008, pp. 496–500. DOI: 10.1109/SYNASC.2008.31 (cit. on
p. 23).

[105] V. J. Martínez et al. “Hardware Implementation of a Bounded Algorithm for
Application of Rules in a Transition P-System”. In: 8th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2006), 26-29 September 2006, Timisoara, Romania. Ed. by V. Negru et al. IEEE
Computer Society, 2006, pp. 343–349. DOI: 10.1109/SYNASC.2006.42 (cit.
on pp. 26, 40).

[106] J. A. Tejedor et al. “Optimizing Evolution Rules Application and Commu-
nication Times in Membrane Systems Implementation”. In: Membrane Com-
puting, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June 25-28,
2007 Revised Selected and Invited Papers. Ed. by G. Eleftherakis et al. Vol. 4860.
Lecture Notes in Computer Science. Springer, 2007, pp. 298–319. DOI: 10.
1007/978-3-540-77312-2_19 (cit. on p. 26).

[107] L. Fernandez et al. “Decision Trees for Applicability of Evolution Rules in
Transition P Systems”. In: Information Theories and Applications 14.3 (2007),
pp. 223–230. URL: http://hdl.handle.net/10525/684 (cit. on pp. 26,
41).

[108] D. Kirk and W.-M. Hwu. Programming Massively Parallel Processors: A Hands
On Approach. USA: Morgan Kaufmann, 2010. ISBN: 978-0-12-381472-2 (cit. on
p. 28).

Bibliography 163

[109] N. Wilt. The CUDA Handbook:A Comprehensive Guide to GPU Programming. Ad-
dison Wesley, 2013 (cit. on pp. 28, 36).

[110] NVIDIA. CUDA C++ Programming Guide. 2020. URL: https://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf (cit. on p. 29).

[111] M. A. Martínez-del-Amor et al. “Simulating P Systems on GPU Devices: A
Survey”. In: Fundam. Inform. 136.3 (2015), pp. 269–284. DOI: 10.3233/FI-
2015-1157 (cit. on p. 28).

[112] NVIDIA. CUDA Toolkit Documentation. 2019. URL: https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html (cit. on p. 29).

[113] C. M. Maxfield. The Design Warrior’s Guide to FPGA. Elsevier, 2004 (cit. on
pp. 30, 34).

[114] C. M. Maxfield. FPGAs World Class Designs. Ed. by C. Maxfield. Elsevier, 2009
(cit. on p. 30).

[115] A. Pavlov and M. Sachdev. CMOS SRAM Circuit Designand Parametric Testin
Nano-Scaled Technologies. Springer, 2008 (cit. on p. 30).

[116] V. Singh. “Equivalent forms of single-operational transconductance amplifier
RC oscillators with application to grounded-capacitor oscillators”. In: IET
Circuits, Devices & Systems 4.2 (2010), pp. 123–130. DOI: 10.1049/iet-
cds.2009.0146 (cit. on p. 31).

[117] A. Paidimarri et al. “An RC Oscillator With Comparator Offset Cancellation”.
In: J. Solid-State Circuits 51.8 (2016), pp. 1866–1877. DOI: 10.1109/JSSC.
2016.2559508 (cit. on p. 31).

[118] L. A. C. Ahumada et al. “Evaluation of Hyaluronic Acid Dilutions at Differ-
ent Concentrations Using a Quartz Crystal Resonator (QCR) for the Poten-
tial Diagnosis of Arthritic Diseases”. In: Sensors 16.11 (2016), p. 1959. DOI:
10.3390/s16111959 (cit. on p. 31).

[119] Y. Murozaki, S. Sakuma, and F. Arai. “Improvement of the Measurement
Range and Temperature Characteristics of a Load Sensor Using a Quartz
Crystal Resonator with All Crystal Layer Components”. In: Sensors 17.5 (2017),
p. 1067. DOI: 10.3390/s17051067 (cit. on p. 31).

[120] W. Brinkman, D. Haggan, and W. Troutman. “A history of the invention of
the transistor and where it will lead us”. In: IEEE Journal of Solid-State Circuits
32 (12 1997), pp. 1858–1865. ISSN: 1558-173X. DOI: 10.1109/4.643644 (cit.
on p. 34).

[121] M. J. M. V. P. Heuring. Computer Architecture and Organization. John Wiley
and Sons Inc, 2007. URL: https://www.niecdelhi.ac.in/uploads/
Notes/btech/5sem/cse/CA_Notes.pdf (cit. on p. 34).

[122] K. Keutzer and S. Malik. “Register Transfer Level Synthesis: From Theory to
Practice”. In: 9th International Conference on VLSI Design (VLSI Design 1996),
3-6 January 1996, Bangalore, India. IEEE Computer Society, 1996, p. 2. DOI:
10.1109/VLSID.1996.10009 (cit. on p. 34).

[123] J. Bhasker. “Synthesis at the Register Transfer Level and the Behavioral Level”.
In: The VLSI Handbook. Ed. by W. Chen. CRC Press, 1999. DOI: 10.1201/
9781420049671.ch75 (cit. on p. 34).

164 Bibliography

[124] O. Port and Y. Etsion. “Hardware Description Beyond Register-Transfer Level
Languages”. In: FPGA ’20: The 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Seaside, CA, USA, February 23-25, 2020. Ed.
by S. Neuendorffer and L. Shannon. ACM, 2020, p. 312. DOI: 10.1145/
3373087.3375377 (cit. on p. 34).

[125] Xilinx, ed. Vivado Design Suite User Guide: Using the Vivado IDE. 2019. URL:
https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2019_2/ug893-vivado-ide.pdf (cit. on p. 34).

[126] Xilinx, ed. Vivado Design Suite User Guide: Design Flows Overview. 2019. URL:
https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2019_2/ug892-vivado-design-flows-overview.pdf (cit.
on p. 34).

[127] Xilinx, ed. Vivado Design Suite User Guide: System-Level Design Entry. 2019.
URL: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2019_2/ug895-vivado-system-level-design-
entry.pdf (cit. on p. 34).

[128] J. Bhasker. A Verilog HDL Primer. Ed. by S. G. Press. Second. 1058 Treeline
Drive, Allentawn, PA 18103: Star Galaxy Publishing, 1999. ISBN: 0-9650391-7-
X (cit. on p. 34).

[129] Xilinx, ed. Vivado Design Suite User Guide: Logic Simulation. 2019. URL: https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2019_
2/ug900-vivado-logic-simulation.pdf (cit. on p. 34).

[130] Xilinx, ed. Vivado Design Suite Tutorial: Logic Simulation. 2020. URL: https://
www.xilinx.com/support/documentation/sw_manuals/xilinx2020_
1/ug937-vivado-design-suite-simulation-tutorial.pdf (cit.
on p. 34).

[131] Xlinx, ed. Vivado Design Suite User Guide: Synthesis. 2019. URL: https://
www.xilinx.com/support/documentation/sw_manuals/xilinx2020_
1/ug901-vivado-synthesis.pdf (cit. on p. 35).

[132] Vivado Design Suite User Guide: Using Constraints. 2019. URL: https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2019_
2/ug903-vivado-using-constraints.pdf (cit. on pp. 35, 95).

[133] Xilinx, ed. Vivado Design Suite Tutorial: Using Constraints. 2019. URL: https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2019_
2/ug945-vivado-using-constraints-tutorial.pdf (cit. on p. 35).

[134] Xilinx, ed. Vivado Design Suite User Guide: Implementation. 2019. URL: https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2020_
1/ug904-vivado-implementation.pdf (cit. on p. 35).

[135] Xilinx. Vivado Design Suite. 2019. URL: https://www.xilinx.com/products/
design-tools/vivado.html#documentation (cit. on p. 35).

[136] Xilinx, ed. Vivado Design Suite User Guide: Programming and Debugging. 2019.
URL: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2019_2/ug908-vivado-programming-debugging.
pdf (cit. on p. 35).

Bibliography 165

[137] Xilinx, ed. Vivado Design Suite Tutorial: Programming and Debugging. 2019. URL:
https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2019_2/ug936-vivado-tutorial-programming-debugging.
pdf (cit. on p. 35).

[138] J. Sanders and E. Kandrot. CUDA by Example: An IntroductIon to General-
Purpose GPU ProgrammIng. Addison Wesley, 2010 (cit. on p. 36).

[139] S. Azimi et al. “Dependency graphs and mass conservation in reaction sys-
tems”. In: Theor. Comput. Sci. 598 (2015), pp. 23–39. DOI: 10.1016/j.tcs.
2015.02.014 (cit. on p. 36).

[140] V. Rogojin, S. Azimi, and I. Petre. Web interface for Basic Reaction System Sim-
ulator. 2015. URL: http://combio.abo.fi/research/reaction-
systems/reaction-system-simulator/ (cit. on p. 36).

[141] S. Ivanov et al. “WEBRSIM: A Web-Based Reaction Systems Simulator”. In:
Enjoying Natural Computing - Essays Dedicated to Mario de Jesús Pérez-Jiménez
on the Occasion of His 70th Birthday. Ed. by C. G. Díaz et al. Vol. 11270. Lecture
Notes in Computer Science. Springer, 2018, pp. 170–181. DOI: 10.1007/
978-3-030-00265-7_14. URL: https://doi.org/10.1007/978-3-
030-00265-7_14 (cit. on p. 36).

[142] S. Azimi et al. “Complexity of model checking for reaction systems”. In: Theor.
Comput. Sci. 623 (2016), pp. 103–113. DOI: 10.1016/j.tcs.2015.11.040
(cit. on p. 37).

[143] S. Ivanov et al. GitHub – scolobb/brsim: A Basic Reaction System Simulator. 2015.
URL: https://github.com/scolobb/brsim (cit. on p. 37).

[144] A. Meski, W. Penczek, and G. Rozenberg. “Model checking temporal proper-
ties of reaction systems”. In: Inf. Sci. 313 (2015), pp. 22–42. DOI: 10.1016/j.
ins.2015.03.048 (cit. on p. 37).

[145] M. S. Nobile et al. “Efficient Simulation of Reaction Systems on Graphics
Processing Units”. In: Fundam. Inform. 154.1-4 (2017), pp. 307–321. DOI: 10.
3233/FI-2017-1568 (cit. on pp. 37, 55, 69).

[146] M. S. Nobile, A. E. Porreca, and S. Spolaor. HERESY GitHub Repository. 2017.
URL: https://github.com/aresio/HERESY/ (cit. on p. 37).

[147] L. Corolli et al. “An excursion in reaction systems: From computer science to
biology”. In: Theor. Comput. Sci. 454 (2012), pp. 95–108. DOI: 10.1016/j.
tcs.2012.04.003 (cit. on p. 37).

[148] T. Helikar et al. “A comprehensive, multi-scale dynamical model of ErbB
receptor signal transduction in human mammary epithelial cells”. In: PLoS
ONE 8.4 (2013), e61757 (cit. on pp. 37, 69).

[149] J. K. Li, J. Chou, and K. Ma. “High performance heterogeneous computing for
collaborative visual analysis”. In: SIGGRAPH Asia 2015 Visualization in High
Performance Computing, Kobe, Japan, November 2-6, 2015. ACM, 2015, 12:1–12:4.
DOI: 10.1145/2818517.2818534 (cit. on p. 38).

[150] T. Katagiri. “High-Performance Computing Basics”. In: The Art of High Per-
formance Computing for Computational Science, Vol. 1, Techniques of Speedup and
Parallelization for General Purposes. Ed. by M. Geshi. Springer, 2019, pp. 1–25.
DOI: 10.1007/978-981-13-6194-4_1. URL: https://doi.org/10.
1007/978-981-13-6194-4_1 (cit. on p. 38).

166 Bibliography

[151] P. K. Bondyopadhyay. “Moore’s law governs the silicon revolution”. In: Pro-
ceedings of the IEEE 86 (1 1998), pp. 78–81. ISSN: 1558-2256. DOI: 10.1109/5.
658761 (cit. on p. 38).

[152] E. P. DeBenedictis. “It’s Time to Redefine Moore’s Law Again”. In: Computer
50 (2 2017), pp. 72–75. ISSN: 1558-0814. DOI: 10.1109/MC.2017.34 (cit. on
p. 38).

[153] N. Mathur. “Beyond the silicon roadmap”. In: Nature 419 (Oct. 2002), pp. 573–
575 (cit. on p. 38).

[154] P. Wesling. “The Heterogeneous Integration Roadmap: Enabling Technology
for Systems of the Future”. In: HI, USA. HI, USA: IEEE, 2020, pp. 1–4. ISBN:
978-1-7281-4584-6. DOI: 10.23919/PanPacific48324.2020.9059347
(cit. on p. 38).

[155] P. Z. Roman Trobec Marián Vajteršic. Parallel Computing. Ed. by P. Zinterhof.
Springer, 2009. DOI: 10.1007/978-1-84882-409-6_1 (cit. on p. 38).

[156] H. K. Anil Sethi. “Multicore Processor Technology-Advantages and Chanl-
lenges”. In: International Journal of Research in Engineering and Technology 4.9
(Sept. 2015), pp. 87–89. ISSN: 2319-1163 (cit. on p. 38).

[157] G. Zhang, M. J. Préz-Jimnéz, and M. Gheorghe. Real-life Applications with
Membrane Computing. Springer, 2017. ISBN: 3319559877, 9783319559872 (cit.
on pp. 38, 101).

[158] R. U. F. Varela H. Maturana. “Autopoiesis: The Organization of Living Sys-
tems, its Characterization and a Model”. In: BioSystems 5 (1974), pp. 187–196
(cit. on p. 38).

[159] G. Ciobanu and G. Wenyuan. “P systems running on a cluster of computers”.
In: International Workshop on Membrane Computing. Springer. 2003, pp. 123–
139 (cit. on p. 39).

[160] B. Petreska and C. Teuscher. “A Reconfigurable Hardware Membrane Sys-
tem”. In: Membrane Computing, International Workshop, WMC 2003, Tarragona,
Spain, July 17-22, 2003, Revised Papers. Ed. by C. Martín-Vide et al. Vol. 2933.
Lecture Notes in Computer Science. Springer, 2003, pp. 269–285. DOI: 10.
1007/978-3-540-24619-0_20 (cit. on pp. 40, 42, 43).

[161] V. Nguyen, D. Kearney, and G. Gioiosa. “A Region-Oriented Hardware Im-
plementation for Membrane Computing Applications”. In: Membrane Com-
puting, 10th International Workshop, WMC 2009, Curtea de Arges, Romania, Au-
gust 24-27, 2009. Revised Selected and Invited Papers. Ed. by G. Paun et al.
Vol. 5957. Lecture Notes in Computer Science. Springer, 2009, pp. 385–409.
DOI: 10.1007/978-3-642-11467-0_27 (cit. on pp. 40, 41).

[162] V. Nguyen, D. Kearney, and G. Gioiosa. “Balancing Performance, Flexibil-
ity, and Scalability in a Parallel Computing Platform for Membrane Comput-
ing Applications”. In: Membrane Computing, 8th International Workshop, WMC
2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited Papers.
Ed. by G. Eleftherakis et al. Vol. 4860. Lecture Notes in Computer Science.
Springer, 2007, pp. 385–413. DOI: 10.1007/978-3-540-77312-2_24
(cit. on pp. 40, 45).

Bibliography 167

[163] V. Nguyen, D. Kearney, and G. Gioiosa. “An Implementation of Membrane
Computing Using Reconfigurable Hardware”. In: Computing and Informatics
27.3+ (2008), pp. 551–569. URL: http://www.sav.sk/index.php?lang=
en&charset=ascii&doc=journal&part=list_
articles&journal_issue_no=11112123#abstract_4951 (cit.
on pp. 40, 45).

[164] J. Quiros et al. “Fast Hardware Implementations of Static P Systems”. In:
Computing and Informatics 35.3 (2016), pp. 687–718. URL: http://www.cai.
sk/ojs/index.php/cai/article/view/1665 (cit. on pp. 40–42, 48).

[165] G. Bravo et al. “A Hierarchical Architecture with Parallel Comunication for
Implementing P Systems”. In: Information Technologies and Knowledge 2.1 (2008),
pp. 43–48. URL: http://hdl.handle.net/10525/269 (cit. on p. 40).

[166] A. Gutierrez et al. “Hardware and Software Architecture for Implementing
Membrane Systems: A Case of Study to Transition P Systems”. In: DNA Com-
puting, 13th International Meeting on DNA Computing, DNA13, Memphis, TN,
USA, June 4-8, 2007, Revised Selected Papers. Ed. by M. H. Garzon and H. Yan.
Vol. 4848. Lecture Notes in Computer Science. Springer, 2007, pp. 211–220.
DOI: 10.1007/978-3-540-77962-9_22 (cit. on p. 40).

[167] V. Martínez, S. Alonso, and A. Gutiérrez. “Hardware Circuit for the Applica-
tion of Evolution Rules in a Transition P-system”. In: Artificial Life and Robotics
15.1 (2010), pp. 89–92. ISSN: 1614-7456. DOI: 10.1007/s10015-010-0774-
y. URL: https://doi.org/10.1007/s10015-010-0774-y (cit. on
p. 40).

[168] A. V. Baranda et al. “Towards an Electronic Implementation of Membrane
Computing: A Formal Description of Non-deterministic Evolution in Transi-
tion P Systems”. In: DNA Computing, 7th International Workshop on DNA-Based
Computers, DNA7, Tampa, Florida, USA, June 10-13, 2001, Revised Papers. Ed. by
N. Jonoska and N. C. Seeman. Vol. 2340. Lecture Notes in Computer Science.
Springer, 2001, pp. 350–359. DOI: 10.1007/3-540-48017-X_33 (cit. on
p. 40).

[169] L. Fernando et al. “Massively Parallel Algorithm for Evolution Rules Appli-
cation in Transition P Systems”. In: Proceedings of 7th Workshop on Membrane
Computing. Ed. by H. J. Hoogeboom, G. Păun, and G. Rozenberg. Lorentz
Center, Universiteit Leiden, 2006, pp. 337–343 (cit. on p. 41).

[170] J. A. Tejedor et al. “Algorithm of Active Rule Elimination for Application of
Evolution Rules”. In: Proceedings of the 8th Conference on 8th WSEAS Interna-
tional Conference on Evolutionary Computing. Vol. 8. 2007, pp. 259–267 (cit. on
p. 41).

[171] J. A. Tejedor et al. “Algorithm of rules applications based on competitiveness
of evolution rules”. In: Proceedings of the 8th Workshop on Membrane Computing.
2007, pp. 567–580 (cit. on p. 41).

[172] F. J. G. Rubio et al. “Delimited Massively Parallel Algorithm based on Rules
Elimination for Application of Active Rules in Transition P Systems”. In: Pro-
ceedings of the Fifth International Conference ?Information Research and Applica-
tions? i.TECH 2007. Ed. by K. Markov and K. Ivanova. Vol. Vol. 1. Bulgaria: In-
stitute of Information Theories and Applications FOI ITHEA, 2007, pp. 182–
188. URL: http://oa.upm.es/2869/ (cit. on p. 41).

168 Bibliography

[173] F. Javier Gil et al. “Delimited Massively Parallel Algorithm Based on Rules
Elimination for Application of Active Rules in Transition P Systems”. In: In-
formation Technologies and Knowledge 2.1 (2008), pp. 56–61. URL: http://hdl.
handle.net/10525/268 (cit. on p. 41).

[174] A. Gutierrez et al. “Optimizing Membrane System Implementation with Mul-
tisets and Evolution Rules Compression”. In: Proceedings of the 8th Workshop
on Membrane Computing. 2007, pp. 345–362 (cit. on p. 41).

[175] F. J. G. Rubio, J. A. T. Cerbel, and L. F. Muñoz. “Fast Linear Algorithm for
Active Rules Application in Transition P Systems”. In: Algorithmic and Math-
ematical Foundations of the Artificial Intelligence. Ed. by K. Markov, K. Ivanova,
and I. Mitov. Vol. Supple. International Book Series ?INFORMATION SCI-
ENCE & COMPUTING? 1. Sofia, Bulgaria: Institute of Information Theories
and Applications FOI ITHEA, Bulgaria, 2008, pp. 35–44. URL: http://oa.
upm.es/2870/ (cit. on p. 41).

[176] F. J. G. Rubio et al. “Parallel algorithm for P Systems implementation in mul-
tiprocessors”. In: Proceedings of the Thirteenth International Symposium on Arti-
ficial Life and Robotics 2008 (AROB 13th’08). M. Sugisaka and H. Tanaka, 2008,
pp. 0–0. URL: http://oa.upm.es/3161/ (cit. on p. 41).

[177] M. A. Martínez-del-Amor et al. “A new simulation algorithm for multien-
vironment probabilistic P systems”. In: Fifth International Conference on Bio-
Inspired Computing: Theories and Applications, BIC-TA 2010, University of Hu-
nan, Liverpool Hope University, Liverpool, United Kingdom / Changsha, China,
September 8-10 and September 23-26, 2010. Ed. by M. Gong et al. 2010, pp. 59–
68. DOI: 10.1109/BICTA.2010.5645352. URL: https://doi.org/10.
1109/BICTA.2010.5645352 (cit. on p. 42).

[178] M. A. Martínez-del-Amor et al. “DCBA: Simulating Population Dynamics
P Systems with Proportional Object Distribution”. In: Membrane Computing
- 13th International Conference, CMC 2012, Budapest, Hungary, August 28-31,
2012, Revised Selected Papers. 2012, pp. 257–276. DOI: 10.1007/978-3-642-
36751-9_18. URL: https://doi.org/10.1007/978-3-642-36751-
9_18 (cit. on p. 42).

[179] M. A. Martínez-del-Amor et al. “Parallel simulation of Population Dynamics
P systems: updates and roadmap”. In: Natural Computing 15.4 (2016), pp. 565–
573. DOI: 10.1007/s11047-016-9566-1. URL: https://doi.org/10.
1007/s11047-016-9566-1 (cit. on p. 42).

[180] V. Nguyen, D. Kearney, and G. Gioiosa. “An extensible, maintainable and el-
egant approach to hardware source code generation in Reconfig-P”. In: J. Log.
Algebr. Program. 79.6 (2010), pp. 383–396. DOI: 10.1016/j.jlap.2010.03.
013 (cit. on p. 44).

[181] Q. Fang et al. “Implementation and Research on EHW-based Digital Chip Us-
ing Handel-C Language”. In: Third International Conference on Natural Compu-
tation, ICNC 2007, Haikou, Hainan, China, 24-27 August 2007, Volume 5. Ed. by
J. Lei, J. Yao, and Q. Zhang. IEEE Computer Society, 2007, pp. 624–628. DOI:
10.1109/ICNC.2007.436 (cit. on p. 46).

[182] L. Middendorf and C. Bobda. “Declarative Programming with Handel-C”. In:
Proceedings of the 2010 International Conference on Engineering of Reconfigurable
Systems & Algorithms, ERSA 2010, July 12-15, 2010, Las Vegas Nevada, USA. Ed.
by T. P. Plaks et al. CSREA Press, 2010, pp. 151–164 (cit. on p. 46).

Bibliography 169

[183] L. Fernández et al. “A Hardware Circuit for Selecting Active Rules in Tran-
sition P Systems”. In: Seventh International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing (SYNASC 2005), 25-29 September 2005,
Timisoara, Romania. Ed. by D. Zaharie et al. IEEE Computer Society, 2005,
pp. 415–418. DOI: 10.1109/SYNASC.2005.7 (cit. on p. 50).

[184] V. Martinez et al. “Hardware Implementation of a Bounded Algorithm for
Application of Rules in a Transition P-system”. In: Symbolic and Numeric Al-
gorithms for Scientific Computing, 2006. SYNASC’06. Eighth International Sym-
posium on. IEEE. 2006, pp. 343–349 (cit. on p. 50).

[185] A. Gutierrez et al. “Design of a Hardware Architecture Based on Microcon-
trollers for the Implementation of Membrane Systems”. In: 8th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2006), 26-29 September 2006, Timisoara, Romania. Ed. by V. Negru et al. IEEE
Computer Society, 2006, pp. 350–353. DOI: 10.1109/SYNASC.2006.29 (cit.
on p. 50).

[186] V. Martinez et al. “HW Implementation of a Optimized Algorithm for the
Application of Active Rules in a Transition P-system”. In: Information Theories
and Applications 14.4 (2007), pp. 324–331. URL: http://hdl.handle.net/
10525/699 (cit. on p. 50).

[187] S. Alonso et al. “Main modules design for a HW implementation of massive
parallelism in transition P-systems”. In: Artificial Life and Robotics 13.1 (2008),
pp. 107–111. ISSN: 1614-7456. DOI: 10.1007/s10015-008-0526-4. URL:
https://doi.org/10.1007/s10015-008-0526-4 (cit. on p. 50).

[188] S. Alonso et al. “A circuit implementing massive parallelism in transition P
systems”. In: Information Technologies and Knowledge 2 (2008), pp. 35–42 (cit. on
p. 50).

[189] S. M. G. Canaval, A. G. Rodriguez, and S. A. Villaverde. “Hardware Imple-
mentation of P Systems Using Microcontrollers. An Operating Environment
for Implementing a Partially Parallel Distributed Architecture”. In: Symbolic
and Numeric Algorithms for Scientific Computing, 2008. SYNASC’08. 10th Inter-
national Symposium on. IEEE. 2008, pp. 489–495 (cit. on p. 50).

[190] A. Gutiérrez et al. “Suitability of using microcontrollers in implementing new
P-system communications architectures”. In: Artificial Life and Robotics 13.1
(2008), pp. 102–106. ISSN: 1614-7456. DOI: 10.1007/s10015-008-0535-3.
URL: https://doi.org/10.1007/s10015-008-0535-3 (cit. on p. 53).

[191] S. A. Villaverde et al. “A Circuit Implementing Massive Parallelism in Tran-
sition P Systems”. In: International Journal Information Technologies and Knowl-
edge. 2.1 (2008), pp. 35–42. URL: http://oa.upm.es/2194/ (cit. on p. 53).

[192] Z. Xu et al. “The stochastic loss of spikes in spiking neural P systems: Design
and implementation of reliable arithmetic circuits”. In: Fundamenta Informati-
cae 134.1-2 (2014), pp. 183–200 (cit. on p. 53).

[193] T. Ishdorj, O. Ochirbat, and C. Naimannaran. “A u-fluidic Biochip Design for
Spiking Neural P Systems”. In: Int. J. Unconv. Comput. 15.1-2 (2020), pp. 59–
82. URL: https://www.oldcitypublishing.com/journals/ijuc-
home/ijuc- issue- contents/ijuc- volume- 15- number- 1- 2-
2020/ijuc-15-1-2-p-59-82/ (cit. on p. 53).

170 Bibliography

[194] O. Ochirbat, T. Ishdorj, and G. Cichon. “An error-tolerant serial binary full-
adder via a spiking neural P system using HP/LP basic neurons”. In: J. Membr.
Comput. 2.1 (2020), pp. 42–48. DOI: 10.1007/s41965-020-00033-3 (cit.
on p. 53).

[195] G. H. Mealy. “A method for synthesizing sequential circuits”. In: The Bell
System Technical Journal 34.5 (1955), pp. 1045–1079 (cit. on pp. 55–57, 79, 91).

[196] C. E. Shannon. “A symbolic analysis of relay and switching circuits”. In:
Electrical Engineering 57.12 (1938), pp. 713–723. DOI: 10.1109/EE.1938.
6431064 (cit. on p. 56).

[197] E. C. Nelson. “An algebraic theory for use in digital computer design”. In:
Trans. I R E Prof. Group Electron. Comput. 3.3 (1954), pp. 12–21. DOI: 10.1109/
IREPGELC.1954.6499442 (cit. on p. 56).

[198] Z. Shang et al. “Reaction Systems and Synchronous Digital Circuits”. In: Molecules
24.10 (May 21, 2019). ISSN: 1420-3049. DOI: 10.3390/molecules24101961.
URL: https://www.mdpi.com/1420-3049/24/10/1961 (cit. on pp. 56,
69).

[199] Tutorialspoint. Moore and Mealy Machines. 2020. URL: https://www.tutorialspoint.
com/automata_theory/moore_and_mealy_machines.htm (cit. on
p. 56).

[200] E. M. Moore. “Gedanken-experiments on sequential machines”. In: Automata
Studies. Annals of Mathematics Studies. Princeton University Press, 1956,
pp. 129–153 (cit. on pp. 56, 79, 91).

[201] Y. Crama and P. L. Hammer. Boolean Functions - Theory, Algorithms, and Ap-
plications. Vol. 142. Encyclopedia of mathematics and its applications. Cam-
bridge University Press, 2011. ISBN: 978-0-521-84751-3. URL: http://www.
cambridge.org/gb/knowledge/isbn/item6222210/?site_locale=
en_GB (cit. on p. 58).

[202] M. Schliwa. The Cytoskeleton: An Introductory Survey. An Introductory Survey.
Springer, 1986. ISBN: 978-3-7091-7669-6. DOI: 10.1007/978- 3- 7091-
7667-2 (cit. on p. 62).

[203] E. Czeizler et al. “Quantitative Analysis of the Self-Assembly Strategies of
Intermediate Filaments from Tetrameric Vimentin”. In: IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 9.3 (2012), pp. 885–898. DOI:
10.1109/TCBB.2011.154 (cit. on p. 62).

[204] A. Mizera, E. Czeizler, and I. Petre. “Self-assembly Models of Variable Reso-
lution”. In: Trans. Comp. Sys. Biology 14 (2012), pp. 181–203. DOI: 10.1007/
978-3-642-35524-0_8. URL: https://doi.org/10.1007/978-3-
642-35524-0_8 (cit. on p. 62).

[205] H. Herrmann and U. Aebi. “Intermediate Filaments: Molecular Structure,
Assembly Mechanism, and Integration Into Functionally Distinct Intracel-
lular Scaffolds”. In: Annual Review of Biochemistry 73.1 (2004), pp. 749–789.
DOI: 10.1146/annurev.biochem.73.011303.073823. URL: https:
//doi.org/10.1146/annurev.biochem.73.011303.073823 (cit. on
p. 62).

[206] R. I. Morimoto. “The heat shock response: Systems biology of proteotoxic
stress in aging and disease”. In: Cold Spring Harbor Symposia on Quantitative
Biology 76 (2011), pp. 91–99. ISSN: 0091-7451. DOI: 10.1101/sqb.2012.76.
010637 (cit. on p. 67).

Bibliography 171

[207] A. A. Asea and S. K. Calderwood. Regulation of Heat Shock Protein Responses.
Springer, 2018. URL: https://link.springer.com/content/pdf/10.
1007/978-3-319-74715-6.pdf (cit. on p. 67).

[208] T. R. Rieger, R. I. Morimoto, and V. Hatzimanikatis. “Mathematical Mod-
eling of the Eukaryotic Heat-Shock Response: Dynamics of the hsp70 Pro-
moter”. In: Biophysical Journal 88.3 (2005), pp. 1646–1658. ISSN: 0006-3495. DOI:
https://doi.org/10.1529/biophysj.104.055301 (cit. on p. 67).

[209] I. Petre et al. “A simple mass-action model for the eukaryotic heat shock re-
sponse and its mathematical validation”. In: Nat. Comput. 10.1 (2011), pp. 595–
612. DOI: 10.1007/s11047-010-9216-y (cit. on p. 67).

[210] R.-J. Back, T.-O. Ishdorj, and I. Petre. “A Petri-net formalization of the heat
shock response model”. In: Proceedings of COMPMOD 2008 Workshop on Com-
putational Models for Cell Processes. 2008, pp. 53–61. URL: https://www.
researchgate.net/publication/31597900_A_Petri-net_formalization_
of_the_heat_shock_response_model (cit. on p. 67).

[211] B. T. Cem Ünsalan. Digital System Design with FPGA. Ed. by M. Hill. McGraw
Hill Education, 2017 (cit. on p. 73).

[212] D. E. Calbaza and Y. Savaria. “Jitter model of direct digital synthesis clock
generators”. In: Proceedings of the 1999 International Symposium on Circuits and
Systems, ISCAS 1999, Orlando, Florida, USA, May 30 - June 2, 1999. IEEE, 1999,
pp. 1–4. DOI: 10.1109/ISCAS.1999.777791 (cit. on p. 73).

[213] L. Xiu. “All digital FPGA-implementable time-average-frequency direct pe-
riod synthesis for IoT applications”. In: IEEE International Symposium on Cir-
cuits and Systems, ISCAS 2017, Baltimore, MD, USA, May 28-31, 2017. IEEE,
2017, pp. 1–4. DOI: 10.1109/ISCAS.2017.8050550 (cit. on p. 73).

[214] G. Darcheville, C. Voillequin, and J. Begueret. “Direct Digital Frequency Syn-
thesis design methodology for optimized spurs / jitter performances”. In:
25th IEEE International Conference on Electronics, Circuits and Systems, ICECS
2018, Bordeaux, France, December 9-12, 2018. IEEE, 2018, pp. 733–736. DOI: 10.
1109/ICECS.2018.8617927 (cit. on p. 73).

[215] E. Murphy and C. Slattery. Ask The Application Engineer 33: All About Direct
Digital Synthesis. 2004. URL: https://www.analog.com/en/analog-
dialogue/articles/all-about- direct-digital-synthesis.
html# (cit. on p. 73).

[216] B. Han et al. FPGA Design Tactics and Case Development. 2nd ed. Pulishing
House of Electrinics Industry, 2017 (cit. on p. 74).

[217] G. Păun and R. A. Păun. “Membrane Computing and Economics: Numerical
P Systems”. In: Fundam. Inform. 73.1-2 (2006), pp. 213–227. URL: http://
content.iospress.com/articles/fundamenta-informaticae/
fi73-1-2-20 (cit. on pp. 79, 80).

[218] A. Pavel, O. Arsene, and C. Buiu. “Enzymatic numerical P systems - a new
class of membrane computing systems”. In: Fifth International Conference on
Bio-Inspired Computing: Theories and Applications, BIC-TA 2010, University of
Hunan, Liverpool Hope University, Liverpool, United Kingdom / Changsha, China,
September 8-10 and September 23-26, 2010. IEEE, 2010, pp. 1331–1336. DOI: 10.
1109/BICTA.2010.5645071 (cit. on pp. 79, 81, 102).

172 Bibliography

[219] Z. Zhang et al. “Numerical P systems with migrating variables”. In: Theor.
Comput. Sci. 641 (2016), pp. 85–108. DOI: 10.1016/j.tcs.2016.06.004
(cit. on p. 79).

[220] L. Pan et al. “Numerical P systems with production thresholds”. In: Theor.
Comput. Sci. 673 (2017), pp. 30–41. DOI: 10.1016/j.tcs.2017.02.026
(cit. on p. 79).

[221] Z. Zhang et al. “Universal enzymatic numerical P systems with small number
of enzymatic variables”. In: SCIENCE CHINA Information Sciences 61.9 (2018),
092103:1–092103:12. DOI: 10.1007/s11432-017-9103-5 (cit. on p. 79).

[222] Z. Zhang, T. Wu, and L. Pan. “On String Languages Generated by Sequential
Numerical P Systems”. In: Fundam. Inform. 145.4 (2016), pp. 485–509. DOI:
10.3233/FI-2016-1372 (cit. on p. 79).

[223] L. Pan et al. “Numerical P systems with production thresholds”. In: Theor.
Comput. Sci. 673 (2017), pp. 30–41. DOI: 10.1016/j.tcs.2017.02.026
(cit. on p. 79).

[224] L. Pan et al. “Four Recent Research Topics on Numerical and Spiking Neural
P Systems”. In: Romanian Journal of Information Science and Technology 19.1-2
(2016), pp. 5–16 (cit. on p. 79).

[225] C. I. Vasile, A. B. Pavel, and I. Dumitrache. “Universality of Enzymatic Nu-
merical P systems”. In: Int. J. Comput. Math. 90.4 (2013), pp. 869–879. DOI:
10.1080/00207160.2012.748897 (cit. on p. 79).

[226] A. Leporati et al. “Enzymatic Numerical P Systems Using Elementary Arith-
metic Operations”. In: Membrane Computing - 14th International Conference,
CMC 2013, Chişinău, Republic of Moldova, August 20-23, 2013, Revised Selected
Papers. Ed. by A. Alhazov et al. Vol. 8340. Lecture Notes in Computer Science.
Springer, 2013, pp. 249–264. DOI: 10.1007/978-3-642-54239-8_18.
URL: https://doi.org/10.1007/978-3-642-54239-8_18 (cit. on
p. 79).

[227] Z. Zhang, Y. Su, and L. Pan. “The computational power of enzymatic numer-
ical P systems working in the sequential mode”. In: Theor. Comput. Sci. 724
(2018), pp. 3–12. DOI: 10.1016/j.tcs.2017.12.016 (cit. on p. 79).

[228] S. Pang et al. “A Parallel Bioinspired Framework for Numerical Calculations
Using Enzymatic P System With an Enzymatic Environment”. In: IEEE Access
6 (2018), pp. 65548–65556. DOI: 10.1109/ACCESS.2018.2876364 (cit. on
p. 79).

[229] S. Maeda and A. Fujiwara. “Enzymatic numerical P systems for basic opera-
tions and sorting”. In: 2014 Joint 7th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 15th International Symposium on Advanced
Intelligent Systems (ISIS), Kita-Kyushu, Japan, December 3-6, 2014. IEEE, 2014,
pp. 1333–1338. DOI: 10.1109/SCIS-ISIS.2014.7044708 (cit. on p. 79).

[230] C. I. Vasile, A. B. Pavel, and I. Dumitrache. “Improving the Universality Re-
sults of Enzymatic Numerical P Systems”. In: Proceedings of the Tenth Brain-
storming Week on Membrane Computing. Vol. 2. Feb. 2012, pp. 207–214. URL:
https://idus.us.es/xmlui/handle/11441/34150 (cit. on p. 79).

[231] D. Llorente-Rivera and M. A. Gutiérrez-Naranjo. “The Pole Balancing Prob-
lem with Enzymatic Numerical P Systems”. In: Proceedings of the Thirteenth
Brainstorming Week on Membrane Computing. Feb. 2015, pp. 195–206 (cit. on
p. 79).

Bibliography 173

[232] C. E. Shannon. “The synthesis of two-terminal switching circuits”. In: The
Bell System Technical Journal 28.1 (1949), pp. 59–98. ISSN: 0005-8580. DOI: 10.
1002/j.1538-7305.1949.tb03624.x (cit. on pp. 79, 91).

[233] G. Berry. “Esterel and Jazz: Two Synchronous Languages for Circuit Design
(Abstract)”. In: Correct Hardware Design and Verification Methods, 10th IFIP
WG 10.5 Advanced Research Working Conference, CHARME ’99, Bad Herrenalb,
Germany, September 27-29, 1999, Proceedings. Ed. by L. Pierre and T. Kropf.
Vol. 1703. Lecture Notes in Computer Science. Springer, 1999, p. 1. DOI: 10.
1007/3-540-48153-2_1. URL: https://doi.org/10.1007/3-540-
48153-2_1 (cit. on p. 79).

[234] G. Berry. “The foundations of Esterel”. In: Proof, Language, and Interaction,
Essays in Honour of Robin Milner. Ed. by G. D. Plotkin, C. Stirling, and M.
Tofte. The MIT Press, 2000, pp. 425–454 (cit. on p. 79).

[235] B. Rajan and R. K. Shyamasundar. “Modeling VHDL in Multiclock ESTEREL”.
In: 13th International Conference on VLSI Design (VLSI Design 2000), 4-7 January
2000, Calcutta, India. IEEE Computer Society, 2000, pp. 76–83. DOI: 10.1109/
ICVD.2000.812588 (cit. on p. 79).

[236] J. Bergerand. “LUSTRE : un langage déclaratif pour le temps réel. (LUSTRE:
a real time declarative language)”. PhD thesis. Grenoble Institute of Technol-
ogy, France, 1986. URL: https://tel.archives-ouvertes.fr/tel-
00320006 (cit. on p. 79).

[237] K. Qian et al. “LUSTRE: An Interactive System for Entity Structured Repre-
sentation and Variant Generation”. In: 34th IEEE International Conference on
Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer
Society, 2018, pp. 1613–1616. DOI: 10.1109/ICDE.2018.00189 (cit. on
p. 79).

[238] C. Buiu, C. I. Vasile, and O. Arsene. “Development of membrane controllers
for mobile robots”. In: Inf. Sci. 187 (2012), pp. 33–51. DOI: 10.1016/j.ins.
2011.10.007 (cit. on pp. 80, 88, 101, 102, 112).

[239] A. B. Pavel, C. I. Vasile, and I. Dumitrache. “Robot Localization Implemented
with Enzymatic Numerical P Systems”. In: Biomimetic and Biohybrid Systems
- First International Conference, Living Machines 2012, Barcelona, Spain, July 9-
12, 2012. Proceedings. Ed. by T. J. Prescott et al. Vol. 7375. Lecture Notes in
Computer Science. Springer, 2012, pp. 204–215. DOI: 10.1007/978- 3-
642-31525-1_18. URL: https://doi.org/10.1007/978-3-642-
31525-1_18 (cit. on pp. 81, 102).

[240] A. Leporati et al. “Improved Universality Results for Parallel Enzymatic Nu-
merical P Systems”. In: International Journal of Unconventional Computing 9.5-
6 (2013), pp. 385–404. URL: http://www.oldcitypublishing.com/
journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-
number-5-6-2013/ijuc-9-5-6-p-385-404/ (cit. on p. 81).

[241] F. R. Villatoro and J. I. Ramos. “On the method of modified equations. I:
Asymptotic analysis of the Euler forward difference method”. In: Appl. Math.
Comput. 103.2-3 (1999), pp. 111–139. DOI: 10 . 1016 / S0096 - 3003(98)
10031-0 (cit. on p. 84).

174 Bibliography

[242] X. Shen, X. Cheng, and K. Liang. “Deep Euler method: solving ODEs by ap-
proximating the local truncation error of the Euler method”. In: CoRR abs/2003.09573
(2020). arXiv: 2003.09573. URL: https://arxiv.org/abs/2003.
09573 (cit. on p. 84).

[243] A. G. Florea and C. Buiu. GitHub—PeP: (Enzymatic) Numerical P System sim-
ulator. URL: https://github.com/andrei91ro/pep (cit. on pp. 88, 95,
107, 122).

[244] Y. Liu and B. Xin. “Numerical Solutions of a Fractional Predator-Prey Sys-
tem”. In: Advances in Difference Equations 2011 (2011) (cit. on p. 89).

[245] D.-H. Go. “Three Essays in Economics of Prey-Predator Relation”. PhD the-
sis. Utah State University, 2018. URL: https://digitalcommons.usu.
edu/cgi/viewcontent.cgi?article=8138&context=etd (cit. on
p. 89).

[246] J. Cavanagh. Sequential Logic and Verilog HDL Fundamentals. CRC Press, 2016
(cit. on p. 95).

[247] Xilinx CORDIC v6.0 LogiCORE IP Product Guide. 2017. URL: https://www.
xilinx.com/support/documentation/ip_documentation/cordic/
v6_0/pg105-cordic.pdf (cit. on p. 95).

[248] I. Pérez-Hurtado et al. “P-Lingua in two steps: flexibility and efficiency”. In:
Journal of Membrane Computing 1.2 (2019), pp. 93–102. ISSN: 2523-8906. DOI:
10.1007/s41965-019-00010-5. URL: https://doi.org/10.1007/
s41965-019-00010-5 (cit. on p. 95).

[249] S. N. Krishna. “An Overview of Membrane Computing”. In: Distributed Com-
puting and Internet Technology - 7th International Conference, ICDCIT 2011, Bhubanesh-
war, India, February 9-12, 2011. Vol. 6536. Lecture Notes in Computer Science.
Springer, 2011, pp. 1–14. DOI: 10.1007/978-3-642-19056-8_1. URL:
https://doi.org/10.1007/978-3-642-19056-8_1 (cit. on p. 101).

[250] T. Wang et al. “Fault Diagnosis of Electric Power Systems Based on Fuzzy
Reasoning Spiking Neural P Systems”. In: IEEE Transactions on Power Systems
30.3 (May 2015), pp. 1182–1194. ISSN: 0885-8950. DOI: 10.1109/TPWRS.
2014.2347699 (cit. on p. 101).

[251] K. Huang et al. “Fault Classification of Power Transmission Lines Using Fuzzy
Reasoning Spiking Neural P Systems”. In: Bio-inspired Computing – Theories
and Applications (Jan. 1, 2016). DOI: 10.1007/978-981-10-3611-8_12.
URL: http://dx.doi.org/10.1007/978-981-10-3611-8_12 (cit. on
p. 101).

[252] H. Peng et al. “Fault Diagnosis of Power Systems Using Intuitionistic Fuzzy
Spiking Neural P Systems”. In: IEEE Transactions on Smart Grid 9.5 (Sept.
2018), pp. 4777–4784. ISSN: 1949-3053. DOI: 10.1109/TSG.2017.2670602
(cit. on p. 101).

[253] H. Rong et al. “A novel approach for detecting fault lines in a small current
grounding system using fuzzy reasoning spiking neural P systems”. In: Inter-
national Journal of Computers, Communications & Control 13.4 (2018), pp. 521–
536 (cit. on p. 101).

[254] H. Rong et al. “Automatic Implementation of Fuzzy Reasoning Spiking Neu-
ral P Systems for Diagnosing Faults in Complex Power Systems”. In: Com-
plexity 2019 (2019), Article ID 2635714, 16 pages. DOI: 10 . 1155 / 2019 /
2635714 (cit. on p. 101).

Bibliography 175

[255] E. Sánchez-Karhunen and L. Valencia-Cabrera. “Modelling complex market
interactions using PDP systems”. In: Journal of Membrane Computing 1.1 (2019),
pp. 40–51. ISSN: 2523-8906. DOI: 10.1007/s41965-019-00008-z. URL:
https://doi.org/10.1007/s41965-019-00008-z (cit. on p. 101).

[256] G. Zhang et al. “A hybrid approach based on differential evolution and tis-
sue membrane systems for solving constrained manufacturing parameter op-
timization problems”. In: Applied Soft Computing 13.3 (2013), pp. 1528–1542.
DOI: 10.1016/j.asoc.2012.05.032 (cit. on p. 101).

[257] G. Zhang et al. “An Optimization Spiking Neural P System for Approxi-
mately Solving Combinatorial Optimization Problems”. In: International Jour-
nal of Neural Systems 24.5 (2014), Article No. 1440006, 16 pages. DOI: 10.
1142/S0129065714400061 (cit. on p. 101).

[258] G. Zhang et al. “Evolutionary membrane computing: A comprehensive sur-
vey and new results”. In: Information Sciences 279 (2014), pp. 528–551. DOI:
10.1016/j.ins.2014.04.007 (cit. on p. 101).

[259] X. Wang et al. “Design and implementation of membrane controllers for tra-
jectory tracking of nonholonomic wheeled mobile robots”. In: Integrated Computer-
Aided Engineering 23.1 (2016), pp. 15–30. DOI: 10.3233/ICA-150503 (cit. on
pp. 101, 102).

[260] X. Wang et al. “Multi-behaviors coordination controller design with enzy-
matic numerical P systems for robots”. In: Integrated Computer-Aided Engi-
neering 27 (2020), in press (cit. on pp. 101, 102).

[261] A. G. Florea and C. Buiu. “Modelling multi-robot interactions using a generic
controller based on numerical P systems and ROS”. In: 2017 9th International
Conference on Electronics, Computers and Artificial Intelligence (ECAI). 2017, pp. 1–
6. DOI: 10.1109/ECAI.2017.8166411 (cit. on p. 102).

[262] X. Wang et al. “Multi-behaviors Coordination Controller Design with Enzy-
matic Numerical P systems for Autonomous Mobile Robots in Unknown En-
vironments”. In: Proceedings of the Asian Branch of International Conference on
Membrane Computing (ACMC2018). Ed. by M. J. Dinneen and R. Nicolescu.
Vol. 530. Centre for Discrete Mathematics and Theoretical Computer Science,
Auckland, New Zealand, 2018, pp. 257–287 (cit. on p. 102).

[263] M. García-Quismondo, L. F. Macías-Ramos, and M. J. Pérez-Jiménez. “Im-
plementing Enzymatic Numerical P Systems for AI Applications by Means
of Graphic Processing Units”. In: Beyond Artificial Intelligence: Contemplations,
Expectations, Applications. Berlin, Heidelberg: Springer, 2013, pp. 137–159. ISBN:
978-3-642-34422-0. DOI: 10.1007/978-3-642-34422-0_10. URL: https:
//doi.org/10.1007/978-3-642-34422-0_10 (cit. on p. 102).

[264] A. B. Pavel and C. Buiu. “Using enzymatic numerical P systems for modeling
mobile robot controllers”. In: Natural Computing 11.3 (2012), pp. 387–393. DOI:
10.1007/s11047-011-9286-5 (cit. on p. 102).

[265] C. I. Vasile et al. “Implementing Obstacle Avoidance and Follower Behaviors
on Koala Robots Using Numerical P Systems”. In: Tenth Brainstorming Week
on Membrane Computing. 2012, pp. 215–227 (cit. on p. 102).

[266] X. Wang et al. “A Modified Membrane Inspired Algorithm Based on Parti-
cle Swarm Optimization for Mobile Robot Path Planning”. In: International
Journal of Computers 6 (Oct. 2015), pp. 732–745 (cit. on p. 102).

176 Bibliography

[267] J. Yuan et al. “A Resolution-Free Parallel Algorithm for Image Edge Detec-
tion within the Framework of Enzymatic Numerical P Systems”. In: Molecules
(Mar. 2019). URL: https://www.mdpi.com/1420-3049/24/7/1235 (cit.
on p. 102).

[268] Omron. Pioneer 3 Operations Manual. 2017 (cit. on pp. 112, 116).

[269] Z. Huang et al. “Mobile Robot Membrane Controller Design with Enzymatic
Numerical P Systems for ObstacleAvoidance Behavior ”. In: Computer Sys-
tems and Applications 28.7 (2019), pp. 17–25. DOI: 10.15888/j.cnki.csa.
006976 (cit. on p. 113).

[270] I. Pérez-Hurtado et al. “Simulation of Rapidly-Exploring Random Trees in
Membrane Computing with P-Lingua and Automatic Programming”. In: Int.
J. Comput. Commun. Control 13.6 (2018), pp. 1007–1031. DOI: 10 . 15837 /
ijccc.2018.6.3370 (cit. on p. 121).

[271] M. García-Quismondo et al. “P-Lingua 2.0: A software framework for cell-
like P systems”. In: Int. J. Comput. Commun. Control 4.3 (2009), pp. 234–243.
DOI: 10.15837/ijccc.2009.3.2431 (cit. on p. 121).

[272] G. S. Malik et al. “FPGA based hierarchical architecture for parallelizing RRT”.
In: Proceedings of the 2015 Conference on Advances In Robotics, AIR 2015, Goa, In-
dia, July 2-4, 2015. ACM, 2015, 12:1–12:6. DOI: 10.1145/2783449.2783461
(cit. on p. 121).

[273] G. Malik et al. “FPGA based hybrid architecture for parallelizing RRT”. In:
Computer Research Repository abs/1607.05704 (2016). arXiv: 1607.05704. URL:
http://arxiv.org/abs/1607.05704 (cit. on p. 121).

[274] G. S. Malik. “FPGA based massively parallel architectures for super fast path
planning via Rapidly Exploring Random Trees (RRT)”. MA thesis. Interna-
tional Institute of Information Technology, Hyderabad, 2016 (cit. on p. 121).

[275] S. Xiao, N. Bergmann, and A. Postula. “Parallel RRT∗ architecture design for
motion planning”. In: Proc. 27th Int. Conf. Field Programmable Logic and Appli-
cations (FPL). 2017, pp. 1–4 (cit. on p. 121).

[276] S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Tech. rep. Department of Computer Science, Iowa State University, 1998 (cit.
on p. 121).

[277] S. M. Lavalle and J. J. Kuffner. “Rapidly-Exploring Random Trees: Progress
and Prospects”. In: Proceedings IEEE International Conference on Robotics and
Automation. 2000, pp. 995–1001 (cit. on p. 121).

[278] R. Pepy and A. Lambert. “Safe Path Planning in an Uncertain-Configuration
Space using RRT”. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems.
2006, pp. 5376–5381 (cit. on p. 121).

[279] I. Aguinaga, D. Borro, and L. Matey. “Parallel RRT-based path planning for
selective disassembly planning”. In: International Journal of Advanced Manufac-
turing Technology 36 (2008), pp. 1221–1233. ISSN: 0268-3768. DOI: 10.1007/
s00170-007-0930-2 (cit. on p. 121).

[280] L. Jaillet, J. Cortes, and T. Simeon. “Transition-based RRT for path planning
in continuous cost spaces”. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems. 2008, pp. 2145–2150 (cit. on p. 121).

Bibliography 177

[281] D. Devaurs, T. Siméon, and J. Cortés. “A multi-tree extension of the transition-
based RRT: Application to ordering-and-pathfinding problems in continuous
cost spaces”. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems. 2014,
pp. 2991–2996 (cit. on p. 121).

[282] H. Umari and S. Mukhopadhyay. “Autonomous robotic exploration based
on multiple rapidly-exploring randomized trees”. In: Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS). 2017, pp. 1396–1402 (cit. on p. 121).

[283] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar. “Reducing power by optimizing
the necessary precision/range of floating-point arithmetic”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 8.3 (2000), pp. 273–286.
DOI: 10.1109/92.845894 (cit. on p. 129).

[284] C. F. Fang, T. Chen, and R. A. Rutenbar. “Lightweight Floating-Point Arith-
metic: Case Study of Inverse Discrete Cosine Transform”. In: EURASIP Jour-
nal on Advances in Signal Processing 2002.9 (2002), pp. 879–892. DOI: 10.1155/
S1110865702205090 (cit. on p. 129).

[285] Ryszard. Origin of Quake3’s Fast InvSqrt(). 2007. URL: https://www.beyond3d.
com/content/articles/8/ (cit. on p. 131).

[286] C. Lomont. Fast Inverse Square Root. Research rep. Department of Mathemat-
ics, Purdue University, 2003 (cit. on pp. 131, 132).

[287] K. H. Tsoi, K. H. Leung, and P. H. W. Leong. “Compact FPGA-based True
and Pseudo Random Number Generators”. In: 11th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2003), 8-11 April 2003, Napa,
CA, USA, Proceedings. IEEE Computer Society, 2003, pp. 51–61. DOI: 10 .
1109/FPGA.2003.1227241 (cit. on p. 132).

[288] P. Kohlbrenner and K. Gaj. “An embedded true random number generator
for FPGAs”. In: Proceedings of the ACM/SIGDA 12th International Symposium on
Field Programmable Gate Arrays, FPGA 2004, Monterey, California, USA, Febru-
ary 22-24, 2004. Ed. by R. Tessier and H. Schmit. ACM, 2004, pp. 71–78. DOI:
10.1145/968280.968292 (cit. on p. 132).

[289] M. Majzoobi, F. Koushanfar, and S. Devadas. “FPGA-Based True Random
Number Generation Using Circuit Metastability with Adaptive Feedback Con-
trol”. In: Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th In-
ternational Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings.
Ed. by B. Preneel and T. Takagi. Vol. 6917. Lecture Notes in Computer Sci-
ence. Springer, 2011, pp. 17–32. DOI: 10.1007/978-3-642-23951-9_2.
URL: https://doi.org/10.1007/978-3-642-23951-9_2 (cit. on
p. 132).

[290] Xilinx. Virtex-7 FPGA VC707 Evaluation Kit. 2020. URL: https : / / www .
xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html#
overview (cit. on p. 135).

179

Publications by the author

1. Gexiang Zhang, Zeyi Shang, Sergey Verlan, Miguel A. Martínez-del-Amor,
Chengxun Yuan, Luis Valencia-Cabrera, Mario J. Pérez-Jiménez. An Overview
of Hardware Implementation of Membrane Computing Models. ACM Com-
puting Surveys, 2020, 53(4), DOI:10.1145/3402456.

2. Zeyi Shang, Sergey Verlan, Ion Petre, Gexiang Zhang. Reaction Systems and
Synchronous Digital Circuits. Molecules, 2019, 24(10), DOI:10.3390/molecules2
4101961.

3. Zeyi Shang, Sergey Verlan, Gexiang Zhang. FPGA Implementations of Nu-
merical P Systems. International of Journal of Unconventional Computing, 2020.
(to appear)

4. Zeyi Shang, Sergey Verlan, Gexiang Zhang, Miguel A. Martinez-del-Amor,
Luis Valencia-Cabrera, Mario J. Pérez-Jiménez. An Overview of Hardware Im-
plementations of P Systems[C]. In Pre-proceedings of the 6th Asian Branch of Inter-
national Conference on Membrane Computing, September 21-25, 2017, Chengdu,
China, pp. 487-526.

5. Zeyi Shang, Sergey Verlan, Gexiang Zhang. Hardware Implementation of Nu-
merical P Systems. In Pre-proceedings of the 20th International Conference on Mem-
brane Computing, CMC20, August 5-8, 2019, Curtea de Arges, Romania, pp.
463-474.

6. Zeyi Shang, Sergey Verlan, Gexiang Zhang, Ignacio Pérez-Hurtado. FPGA
Implementation of Robot Obstacle Avoidance Controller based on Enzymatic
Numerical P Systems. In Pre-proceedings of the 8th Asian Branch of International
Conference on Membrane Computing, November 14-17, 2019, Xiamen, China, pp.
184-214.

7. Zeyi Shang, Ignacio Pérez-Hurtado, Gexiang Zhang, Sergey Verlan. FPGA
Architecture for Generalized Numerical P System Arranged Rapid-exploring
Random Tree Algorithm. In Pre-proceedings of the 2020 International Conference
on Membrane Computing, September 14-18, 2020, Ulaanbaatar, Mongolia. (to
appear)

