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A B S T R A C T

The last decade has witnessed the impressive expansion of Machine Learning
(ML) and in particular Deep Learning (DL) methods, both in academic research and
the private sector. This success can be explained by the ability DL to model ever
more complex entities. In particular, Representation Learning (RL) methods focus
on building latent representations from heterogeneous data that are versatile and
re-usable, namely in Natural Language Processing (NLP). In parallel, the ever-
growing number of systems relying on user data (social media, recommendation
systems . . . ) brings its own lot of challenges. This work proposes methods to
leverage the representation power of NLP in order to learn rich and versatile user
representations.

Firstly, we detail the works and domains associated with this thesis. We study
Recommendation; a field where User Representations (URs) has long been at the
heart of researches. We then go over recent NLP advances and how they can be
applied to leverage user-generated texts, before detailing Generative models, that
we feel are one of the purest expressions of RL.

Secondly, we present a Recommender System (RS) that is based on the com-
bination of a traditional Matrix Factorization (MF) representation method and a
sentiment analysis model. The association of those modules forms a dual model
that is trained on user reviews for rating prediction. Experiments show that, on
top of improving accuracy performances, the model allows us to better under-
stand what the user is really interested in in a given item, as well as to provide
explanations to the suggestions made.

Finally, we introduce a new task centered on UR: Professional Profile Learning.
User profiles are often composed of several fields or attributes of different nature,
and it is our thesis that user-generated textual data are not only rich enough to
uniquely represent a user, but also to predict the other attributes of the profile. We
thus propose an NLP-based framework, Resumé, to learn and evaluate professional
profiles on different tasks, including next job generation.
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R É S U M É

La dernière décennie a vu s’imposer le développement exponentiel des mé-
thodes de Machine Learning (ML) et en particulier de Deep Learning (DL), aussi
bien dans le monde académique qu’industriel.

Ce succès peut s’expliquer par la capacité du DL à modéliser des entités toujours
plus complexes. En particulier, les méthodes de Representation Learning (RL) se
concentrent sur l’apprentissage de représentations latentes issues de données
hétérogènes, à la fois versatiles et réutilisables, notamment en Natural Language
Processing (NLP).

En parallèle, le nombre grandissant de systèmes reposant sur des données
utilisateurs (réseaux sociaux, systèmes de recommendation . . .) entraînent leur lot
de défis.

Cette thèse propose des méthodes tirant partie du pouvoir de représentation
du NLP pour apprendre des représentations d’utilisateur riches et versatiles.

Dans un premier temps, nous détaillons les travaux et domaines de recherche
en lien avec cette thèse. Nous étudions la Recommandation, qui place de la repré-
sentation utilisateur au coeur de ses recherches depuis longtemps. Nous parlons
ensuite des récentes avancées du NLP ainsi que des moyens de les appliquer de
façon à tirer partie des textes écrits par les utilisateurs, pour enfin détailler les
modèles génératifs, qui sont, à notre sens, une des formes les plus pure de RL.

Dans un second temps, nous présentons un Système de Recommandation fondé
sur la combinaison, d’une part, d’une méthode de représentation par factorisation
matricielle traditionnelle, et d’autre part, d’un modèle d’analyse de sentiments.
L’association de ces deux modules forme un modèle double entraîné à prédire
des notes à partir des avis textuels laissés par les utilisateurs. Nos expériences
montrent que, en plus d’améliorer les performances en accuracy, ce modèle nous
permet également de comprendre ce qui intéresse l’utilisateur chez un produit, en
plus de fournir des explications concernant les suggestions émises par le modèle.

Enfin, nous présentons une nouvelle tâche centrée sur la représentation d’uti-
lisateur : l’apprentissage de profil professionnel. Les profils d’utilisateurs sont
souvent composés de plusieurs champs et attributs de natures différentes, et
notre thèse est que les textes écrits par les utilisateurs sont non seulement assez
riches pour identifier un utilisateur de façon unique au sein d’un système donné,
mais également pour prédire les autres attributs du profil. Nous proposons donc
Resumé, un cadre de travail pour l’apprentissage et l’évaluation des profils profes-
sionnels sur différentes tâches, notamment la génération du prochain job.
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I N T R O D U C T I O N

Contents
1 .1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 .2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 .2 .1 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 .2 .2 Applicative motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 .3 Ethics and AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1 .4 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Context

Historians describe the period ranging from the middle of the 20th century to
today as the Information Age, and with good reason. The development of com-
puters in the mid-to-late 20th century, fueled by the need to solve problems via
computations (namely, encryption algorithms during World War 2, but also more
prosaic issues like accountability or regression for time series prediction), led to
the advent of the Internet as we know it in the end of the last century. In the last
decades, the number of web pages have skyrocketed, ranging from online stores
to personal blogs to encyclopedic pages. This massive growth of all things on the
internet gave birth to a new domain of interest: the data, and in particular, how
to select, represent, and access it efficiently. This is the context in which Artificial
Intelligence, in particular in the form of Machine Learning bloomed.

Along the way, the progress made in hardware opened the way to representing
functions of evermore complex nature, at the expense of the models’ number of
parameters. This paradigm of heavy, multi-layered models is called Deep Learn-
ing. The progresses of Deep Learning are as astounding as they are varied. In the
field of Reinforcement Learning, Convolutional Neural Network based models
outperformed human performances at the game of Go (Silver et al. 2016) and
even Starcraft (Vinyals et al. 2019). In the Natural Language Processing field,
in 2019, the Generative Pre-Training model proposed long computer-generated
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2 introduction

text of uncanny fluency - so uncanny in fact that their author refused to open
source the weights of the model, for fear of malicious usage. Unfortunately, it
is hard to prove them wrong. The advances of Deep Learning in Computer Vi-
sion and Signal Processing allowed the development of "DeepFakes": audio or
video files that replace either the voice or the face of the original speaker by the
of... virtually anyone. In short, Deep Learning’s recent advances are both rapid
and impressive, sometimes tip-toeing the line of surpassing human performances.

Beside the progresses made in hardware and in Deep Learning, the Information
Age has seen an explosion in the mass of data being produced and made available,
namely in the form of e-business platforms. This amount of items to chose from
on the internet created a need for customers (or users) to be helped in their choice,
namely by selecting a subgroup of items for them to chose from rather than the
whole catalog. This need is addressed by Information Retrieval methods and
Recommender System models, that are at the heart of this work. Recommender
Systems (RSs) are models that aim at presenting the users of a platform with items
that they may like.

1.2 Motivations

Before diving into the specifics of this work, we would like to define three
different levels at which research can be done: the application domain (Recom-
mendation, Natural Language Processing), the task formalization (classification,
ranking), and the tools (the algorithm used, like Matrix Factorization). This tax-
onomy aims at easing the reader’s understanding of the level of abstraction at
stake in the different chapters of this work. For example, a classic movie recom-
mendation task would belong to the Recommendation domain, formalized as a
Regression task and solved via a neighborhood and similarity approach, the tool.
The work around User Representation can be addressed at any of those levels, as
it is a problem that can be found in many use-cases.

In this section, we present the motivations of this work. We divide them into
two categories: the technical motivations, that can broadly be seen as emanations
of Representation Learning, and applicative motivations.

1.2.1 Representation Learning

All the works presented in this thesis are in line with the philosophy of Repre-
sentation Learning.



1.2 motivations 3

The strength of Representation Learning lies in its capacity to project data
living in a discrete space into a continuous one. This implies a capacity to take
into account heterogenous and / or structured data and to aggregate them into a
single multifaceted representation. This representation can then be fine-tuned for
other, more specific down-stream tasks. This versatility of representation directly
allows for transfer learning, but also multi-task learning.

Transfer and Multi-task Learning. Transfer Learning is the fact of learning
a representation on a source task (for instance, car image recognition) to "jump
start" the training of a related task (truck image recognition). Doing so implies
that the initially learned representations have enough low-level and structural
information to be applied to similar objects. This approach in central in Natural
Language Processing where most popular architectures are based on models pre-
trained on various unsupervised text generation tasks, before being fine-tune on
down stream tasks, often in a Multi-Task learning fashion. Multi-Task learning
is a learning paradigm that uses multiple tasks as a training objective in order
to achieve better performances in a target task. The idea behind this method is
that task-specific representations can be detrimental to the final performances,
because then we lose the chance to model and use signals that can help solve
related tasks. In other words, we train a model to solve several related tasks in
order to get richer representations from the input. It is an approach we describe
in Chapter 4. Transfer Learning is another learning paradigm that also leverages
the idea of "related tasks".

Both Multi-Task learning and Transfer Learning have been gaining tractions
over the past years, deepening the community’s interest in Representation Learn-
ing as proven by the overwhelming success of the Transformers and their pre-train-
then-fine-tune approach in Natural Language Processing, as well as Generative
Adversarial Networks (GANs) in the domain of Computer Vision.

Our approach to Representation Learning. It is our opinion that a Represen-
tation Learning approach to user modeling could vastly improve performances
and broaden applications, from classical Recommender System to personalized
generative predictions. In this work, we define User Representation as the task of
predicting a person’s or a group’s behavior and tastes by learning their latent rep-
resentations. Indeed, User Representation can mean more accurate identification
of a person’s needs or wants, and capacities, and thus a higher quality of service
provided to them, from movie recommendation to job matching.

We address this idea by using one of the richest traces left by users, natural
language traces, to learn a user representation, and leverage the remainder of the
user’s information to either refine or evaluate their representation. In Chapter 3,
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we combine a user’s ratings to their written reviews to accurately recommend
them items, as well as providing explanations regarding their tastes. In Chap-
ter 4, we use the user’s professional experiences (written in natural language)
to build their representation, and use the other available information to evaluate
their representation, namely through a text-generation task. Finally, we propose
exploratory architectures to learn a user’s career dynamic based on their profes-
sional experiences in Chapter 5.

1.2.2 Applicative motivations

Improving existent methods of user Representation Learning can be beneficial
to any domain that can profit from a personalization mechanism, such as Rec-
ommendation, but also Information Retrieval or Professional coaching. If we can
build rich, versatile user representations that capture their particularities, tastes,
and needs, we can improve the recommendations (or predictions) made to them.
We call rich and versatile the user representations that contain discrete informa-
tion on which we had no robust metric before Representation Learning. This work
aims to build such representations by using user-generated textual data.

Textual traces that are generated by a user are a very rich source of information:
natural language is such that there are no two people that write the same thing
the same way, and the way a user writes can tell a lot about them. Users will
mostly write about what is important to them, so identifying the content as well
as the polarity of their textual data can tell us about their interest.

Aside from being very dense with information, users textual traces also present
the advantage of being quite omnipresent. The most obvious use-case is reviews
left by users about a product or a location on a Recommender System, which
has been (and still is) extensively studied. But we can also think of another,
less studied application: professional resumes, or Curriculum Vitae. Curriculum
Vitaes (CVs) are an interesting application because despite their apparent structure
and code, they do not follow a standard that would be common to different
countries or even different industrial fields. Thus, the tasks around Professional
Profile learning require to understand a lot about a user to be carried out, whether
one wants to predict a person’s next job or extract high-level information from
their career. Incidentally, our relationship to work and job-hopping has drastically
changed in the past decades: it is more and more rare to spend one’s entire career
in the same company, whereas it used to be the norm not so long ago. For this
reason we think that the work around Professional Profile Learning is increasingly
relevant as it addresses contemporary challenges.
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Finally, explainability is a central part of our work. We use Natural Language
Processing methods such as text-generation and attention mechanism to provide
insights regarding our models’ behaviours, in line with the movement of Explain-
able Artificial Intelligence. We detail the stakes of explainability in Section 1.3.

1.3 Ethics and AI

The impressive advances of Artificial Intelligence and the fact that some models
can now solve problems that that used to be limited to human beings raised a lot
of new ethical questions about Artificial Intelligence. The more we use Artificial
Intelligence in our daily life and in a growing number of domains, the more we
need to make sure, as a society, that those models do not harm humans. Far
from the cliché of a SkyNET’s Terminator, the impact of Artificial Intelligence on
human society is still very real and serious.

Large scale replication. Contrary to what science fiction has long been pre-
dicting, the ethical risks of Artificial Intelligence are not so much that models
might make irrational or unpredictable decisions, but rather that they can replicate
human-made errors to a much, much larger scale. Since an Artificial Intelligence
model is typically trained on a lot of human-annotated data corpora, the biases
present in this data will be learned (and thus replicated at inference time) by
the model. A rather extreme example of human-made prejudices made a model
perpetrate discrimination is the 2016’s Microsoft’s Artificial Intelligence chatbot.
Meant to be trained as a conversational agent from twitter data, was completely
hijacked by 4chan 1 users and only replied in racist/anti-semitic/sexist manners
after only 24 hours.

While this example is extreme in the way that it was intentionally hijacked by
ill-meaning people, it does highlight the fact that an Artificial Intelligence is only
ever as neutral as the data it has been trained on. In other word, it is not only
never neutral, it is also a vector of society’s prejudices; a vector that is much more
constant, efficient and quick to spread prejudice than any human.

Privacy. Besides, Artificial Intelligence models can be used to influence people’s
decisions and behaviors unbeknownst to them. The most famous example of such
manipulations is probably the Cambridge Analytica scandal of 2016.

The Cambridge Analytica company took advantage of unlawfully collected
data, and used them to build archetypal voters profiles. They have been reported

1. An anonymous online forum, known for its absence of moderation system.
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to use those profiles to influence people over political issues such as the Brexit and
Donald Trump’s presidential campaign. The explosion of user data platforms and
data science technologies made possible for this company to 1) illegally collect
users’ personal Facebook information (and the of their Facebook friends), 2) use
those data to influence the course of political events, all without the users’ consent
or knowledge.

It is interesting to note that the algorithms used to influence people’s votes
are the same used to influence them to buy such or such television. The ethical
problem here lies within the application rather than in the algorithms themselves.

Disinformation. Another change brought on by data-driven platforms is mas-
sive disinformation. For instance, the 2020’s disinformation campaigns regarding
Covid 19 have had undeniably terrible consequences on public health.

The success of those fake news can, in our opinion, be attributed to two things:
1) the exposure received by malicious sponsored contents on social media, and
2) the Echo Chamber phenomenon (i.e., the action for a user to remove divergent
opinions from their feed). While the Echo Chamber is a known and studied limita-
tion of RSs, it has found a particular resonance amidst the pandemic’s conspiracy
theories.

It is certain that conspiracy theories would have never strived if there was not
fertile ground among the population to begin with (after all, it is a conscious
action for the user to remove disagreeing opinions from their feed), but today’s
social media platforms and recommendation algorithms allowed ill-intentioned
or misinformed people to spread their views to a previously unattainable scale.

AI in Human Resources. Artificial Intelligence also raises ethical concerns that
are closer to this work, that is largely based on user data. An obvious one is
privacy, and more precisely user consent. More and more online systems leverage
the users’ interactions with the system (click, scroll, view) but also their profile
metadata to profile them. This profiling can be used to provide users with sug-
gestions, or place them in marketing segment. The issue is that the user may not
know which of their information is used, or to what end, and they can seldom
manage it.

This consent and privacy issue is aggravated by the opaque nature of Machine
Learning models, often referred to as the "black-box" problem. There is little
to no way of knowing whether the model learned a biased decision function
that discriminates people based on their name or gender rather than on relevant
information.
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Explainability. In thie context of this work, Explainability is thus a crucial chal-
lenge. However, when it is not ethically and legally mandatory (such as in exam-
ples cited above), Explainable Artificial Intelligence is still relevant in cases where
the stakes are to build a sense of trust for the user as they interact with a system.

Although the question of understandability has been around for a while in the
form of Expert Systems, statistics (feature selection) Bayesian Networks or deci-
sions trees. The past few years has seen the emergence of post-hoc flexible, readily
available frameworks such as LIME (Ribeiro et al. 2016) or SHAP (Lundberg and
S.-I. Lee 2017) to further encourage and develop explainability of models. Those
frameworks are referred as post-hoc because they are used at inference time, after
the model converged, namely for failure analysis. Our work is part of a commu-
nity effort in the form of multi-modal and generative explainability as we leverage
attention mechanisms (Chapter 3) and text generation (Chapter 4) to that end.

This aspect is especially critical in this work, since we work on professional
profiles from LinkedIn. LinkedIn 2 is a professional social network where peo-
ple’s profiles are composed of their education, professional experiences and skills
(along with traditional information such as their name, city etc.). Our work with
with data is thus a part of the Human Resources application domain. While not
exactly new, this domain still has issues growing and remains somewhat over-
looked.

Challenges. A possible explanation for that is the strong resistance opposed
by the people working in Human Resources, but also by the people subject to
recruitment processes. Another possible explanation lies in the ethical questions
raised by such work. In the context where recruiting processes would be aided by
Deep Learning programs, the question of responsibility would become a delicate
one. Imagine for instance that the used model would only pre-select candidates
with a certain ethnicity, or systematically reject people coming from a certain
high-school or city. Such applicants would be victim of discrimination. But who
would be to blame? The program, the person that trained it or the company that
uses it? This hypothetical situation also questions the nature of data anonymity
and the heated debate of whether or not one should make statistics based on
ethnicity, sexual orientation or any other possibly discriminating criteria. It is a
strategy used by some Fairness models (i.e., models that explicitly attempt bias
correction), as well as some countries like the USA. Although the data we use in
this work contain no such sensitive information, it could still be used to highlight
discrimination based for instance on the candidate’s high-school. The question
then asked is: should we explicitly correct this bias by boosting the profiles that

2. https://www.linkedin.com

https://www.linkedin.com
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contain this high-school? Would that ensure equal opportunities, or would it
simply lead said high-school to be blacklisted by companies?

We feel those questions need to be at the heart of current and future research,
and possibly even state politics if works such as ours are ever to be used in real
world Human Resources department. In fact, both the research community and
political organizations have already started addressing this issue in the form of
Explainable Artificial Intelligence (i.e., the field of Artificial Intelligence which
goal is the make "black-box" program’s decisions understandable) for the former
and the "right to explanation" 3 for the latter.

1.4 Contributions and outline

In this manuscript, we will first go over the numerous works related to ours,
detailing the advances of Recommendation, Natural Language Processing and
Generative models. In particular, we will show that recent trends Recommenda-
tion aim at reconsidering traditional regressive approaches in favor of Represen-
tation Learning oriented methods. We will show that Recommendation’s focus
on rating prediction is shifting towards new qualities, such as understandability,
and thus towards new evaluation processes.

In parallel, the recent advances of Natural Language Processing also leaned to-
wards a Representation Learning paradigm. The recent advances of word embed-
dings and sequence modeling tend to favor a "general pre-training then specific-
fine-tuning" approach. Those Natural Language Processing advances allowed us
to build user representations by leveraging their textual traces, which are plentiful
and user-defining.

The advances of Natural Language Processing also allowed for the expansion
of one of the purest form of User Representation Learning: text generation. Text
generation is of particular importance to this work because generating relevant
text from a latent representation implies that you have achieved a good, abstract
representation of the input.

We will then present a model that leverages an attention mechanism on textual
review to improve recommendation performances and explain the personalized
suggestions made by the system. This dual model is composed of a sentiment
analysis part, and a traditional Matrix Factorization part. It aims at combining
a representation of the user’s tastes, learned via the reviews they wrote, with
a Matrix Factorization module in order to better understand the tastes of the

3. As written in the European Union’s General Data Protection Regulation bill.
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user, but also to understand what characteristics of the product matters most to
them. The model’s sentiment analysis module then acts as a personalized reading
model, providing insights regarding the output recommendations. In this work,
our contribution lies in the Problematic category: we reformulate a classic Recom-
mendation situation into a sentiment analysis task coupled with a regression.

After that, we present a framework for the learning and evaluation of pro-
fessional profiles, Résumé, thus presenting a new application domain: Human
Resources.

The framework relies on a Representation Learning approach in the sense
where we aim at comparing the richness of the user representations on three
different downstream tasks. We do so by leveraging user-generated texts (their
professional experiences) as well as high-level side information of a Curriculum
Vitae.

Chapter 5 proposes interesting leads for future work on User Dynamic Model-
ing. Modeling the dynamic (or evolution) of a user is an original way to improve
predictions of their tastes or needs.In this instance, we are interested in modeling
the career evolution of users, by using the information of their past professional
experiences. We propose two exploratory architectures as well as the challenges
posed by User Professional Dynamic Modeling.
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Representing and predicting user behavior has long been a topic of interest
in Machine Learning. It is a critical issue for many applications, such as Churn
Detection (Berger and Kompan 2019; Pudipeddi et al. 2014; Kwon et al. 2019),
Advertising (Tu and Lu 2010; Yan et al. 2009), Social Media (Hallac et al. 2019;
Wang et al. 2019) and more.

In this work, we tackle User Representation (UR) for Recommendation and
Professional Profile Learning from an Natural Language Processing (NLP) point
of view. We are also interested in explaining and understanding the obtained
user representations, and we propose to do so through text generation, which we
consider to be one of the most expressive form of Representation Learning (RL).
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One of the domains where UR is most critical is without a doubt Recommen-
dation. We describe the different approaches to UR in Recommender Systems in
Section 2.1.

A growing trend in later Recommender Systems (RSs) is to use not only the
user’s rating of an item, but also their reviews. We propose a user representation
based on those texts, as opposed to the Collaborative Filtering (CF) usual focus
on user-item interactions. This has been made possible by the rapid evolution of
NLP methods, explained in Section 2.2.

An approach that particularly interests us in this work is to use a user rep-
resentation to generate text. This process relies on the assumption that if we
represented a user well enough, we can then generate word sequences that corre-
spond, for instance, to their next job. In this sense, generating text from a learned
user representation is a very powerful tool for RL. On top of that, we feel that
generating text from a user representation is an original and robust way towards
explainability. It is however worth mentioning that evaluation metrics of gener-
ated texts are limited, and making those models both tricky to train and to test.
We go through generative models in Section 2.3

This chapter presents an overview of the domains related to our work, starting
by Recommendation. We will then cover the recent evolutions of NLP before
discussing generative models.

2.1 User Representation in Recommendation

Figure 2.1 – Examples of Item Recommendation. on Netflix (top) and Amazon
(bottom)
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A good RS should present users with relevant new items (items that users may
like or find useful), but they should also provide recommendations that are both
personalized and understandable. At every step of the process, a good user rep-
resentation is crucial.

Relevance. Determining what items are relevant to recommend to a given
user is a vast and open question. The most classical approach is to consider
that relevant items are items that the user would rate with a good mark. This
approach is in fact a very common learning objective for RS: the model is trained
to predict the rating of a user-item pair, and outputs the items with the highest
ratings in inference. Those models are said to be optimized on accuracy. There is
however a growing trend to move away from this accuracy-based approach and
to consider other qualities that should be modeled, either as training objectives or
as evaluation metrics (namely, ranking as an objective and Mean Reciprocal Rank
as a metric). Aside from the fact that user experience can highly benefit from
being recommended unexpected or surprising items, the notion of Diversity 1 has
been at the heart of many works in the past years and still remains quite hard to
evaluate.

Personalization. Recommending only popular items is far from being an ideal
behavior for a RS, as different people have different needs and tastes. Indeed, and
while non-personalized RSs could already yield satisfactory results in terms of
suggestions and revenue (namely by using only the item bias), we think User
experience can greatly benefit from personalization. This is why personalization
is a major feature for a RS: taking a user’s past preferences into account is a sound
way to refine recommendations made to them. We observe two mains strate-
gies to personalize recommendations. On one hand, some Content-based (CB)
approaches compute a similarity between a given user and potential items; the
recommendation is the item that has the best match with the user. On the other
hand, Collaborative Filtering (CF) addresses personalization by finding similar
profiles that are similar to the current user, and then recommends items likes by
those similar profiles.
Another aspect of personalization worth exploring is the evolution of the user. J. J.
McAuley and Leskovec (2013) in particular proposed a framework that refined
user recommendations by modeling their level of expertise. We explore this aspect
of personalization in Chapter 5.

1. In this work, we will use the terms Diversity, Unexpectedness and Serendipity interchange-
ably as we do not address those issues separately from one another. We are simply interested in
the notion of surprising the user.
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Finally, a lot of work has been devoted to leveraging user-generated textual re-
views to improve the quality and the personalization of the recommendations.

Understandability. A RS recommendations can be as precise and relevant as
possible, users will tend to be wary of them if they do not know how they were
generated. The opacity of recent RSs is a well-known weakness of theirs. In-
deed, the shift from Neighborhood-based to Matrix Factorization (MF) approaches
led to an increase in performances, but to a decrease in understandability. The
Explainable Artificial Intelligence (xAI) movement emerged as a reaction to the
general opacity of Machine Learning (ML) models (i.e., the fact that their deci-
sions are hard to interpret). xAI aims at providing methods and models that can
be humanly understandable. In line with these works, we present a way to allevi-
ate the black-box problem by using attention mechanisms on textual reviews in
Chapter 3.

Ethics. Several works have been studying the tendency of RS to create Echo
Chambers (also called Feedback loops), i.e., a situation in which a user is only
exposed to the same kind of content, based on their feedback to the system. These
Echo Chambers create a self-reinforcing pattern for users (Jiang et al. 2019) that
they can hardly break free from alone (Noordeh et al. 2020). Since those arti-
cles, the world has been hit by the Coronavirus pandemic, and many pointed
out the role of RS and Social Media in the increase of conspiracy theory bubble
filters, further increasing the need for more diverse training objectives and eval-
uation metrics. Besides, while the ethics of restaurant recommendation might
not be immediately critical, there are other applications domains where ethics
must absolutely be considered, such as Human Resources (HR), which we cover
in Chapter 4. In such applications domains, the issue is less to "surprise" the user
rather than not discard potential choices based on a discriminative criterion.

There are two main approaches to RS : Collaborative Filtering (CF) and Content-
based (CB). CF is a framework that aims at computing latent representations of
users and items, and then makes recommendations based on what users similar
to our current users liked. Content-based (CB) on the other hand, suggests a given
user items that are similar to those they liked before. Our work takes from both
frameworks for user representation. Like CF, we learn latent spaces in which to
project users profiles, in a Representation Learning fashion. The obtained rep-
resentation is abstract, but also versatile. At the same time, we use a lot of the
CB techniques in order to represent users from textual traces. Since this thesis
is centered around NLP, we will first discuss Section 2.1.1, before going into Sec-
tion 2.1.2, which is historically more text-oriented. We will also detail the role
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played by NLP in recommendation, and how it has a crucial role for this thesis.
Whatever the approach chosen, RSs are hard to evaluate, because the very notion
of "relevant items" is not trivial to define and formalize. We will explore the tra-
ditional training and evaluation metrics, their limitations and their alternative in
Section 2.1.5.

2.1.1 Collaborative Filtering

Figure 2.2 – Schematic illustration of a user-item matrix.

Collaborative Filtering models rely on the assumption that users that have had
similar tastes in the past are likely to have similar tastes in the future. The tastes
of the users are expressed by how they rate items that they experienced. These
ratings are often called interactions. Let us use the illustration in Figure 2.2. Since
the green user and the blue one rated the purple and the cyan movies similarly,
CF expects the blue user to love the orange movie.

Traditionally, a RS of parameters θ is trained to optimize the cost function
between a predicted rating of an item by a user r̂u,i and the actual rating ru,i, that
is:

min
θ

1

R

∑
u∈U

∑
i∈Iu

(ru,i − f(u, i|θ))2 (2.1)

r̂u,i = f(u, i|θ) (2.2)

with R the total numbers of ratings, U the set of users, and Iu the set of items
rated by user u. Note that while Mean-Squared Error (MSE) is a common learning
objective, it is neither the only possible objective nor is it always the chosen
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evaluation metric. We further discuss evaluation of recommendation, as well as
alternative training objectives in Section 2.1.5.

The prediction of a rating can account for several biases: the global bias of the
dataset µ, the current user’s personal bias bu and the current item’s bias bi.

r̂u,i = f(u, i|θ)
= µ+ bi + bu + g(u, i|θ)

(2.3)

The formulation of Equation 2.3 is a commonly used solution to the Cold Start
problem.

The Cold Start Problem is the state in which a RS cannot make relevant predic-
tions for lack of data. In such a case, a new user would typically be recommended
the most popular items of the system.

The nature of the g(u, i|θ) function depends on the type of RS that is used.

We differentiate between two approaches to CF: the Neighborhood-based ap-
proach and the Matrix Factorization approach.

2.1.1.1 Neighborhood-based Approach

An intuitive approach to CF is to compare how similar a current user is to other
users of the dataset, and to recommend the current user items that similar people
have liked. There are several ways to compute a similarity sim(ua, ub) between two
users. Some are count-based, such as the Jaccard Similarity, and thus particularly
well-suited to situations where the user feedback is binary and/or implicit (click,
page visit etc.). Those methods however fail to account for the value of the user
interaction with the item (namely, the rating).
The cosine similarity, or any derivative from the inner product, does take the value
of the rating into account. Such methods are invariant to the length of vectors ua
and ub, meaning that they yield a metric that is not biased by the popularity of
items or the prolixity of certain users.
When data is highly sparse, Minkowski distances have been shown to produce
relevant similarity (G. Jain et al. 2020).

However intuitive, this kind of method has been gradually abandoned in favor
of the model-based approaches, yielding faster results at inference time (since the
k-nearest-neighbor search can be very time consuming for large user databases).

2.1.1.2 Matrix Factorization

The most common implementation of CF is Matrix Factorization (MF), and espe-
cially Non-Negative Matrix Factorization since its success in the Netflix challenge
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(Bennett, Lanning, et al. 2007). The idea of MF is to extract continuous latent pro-
files of dimension Z for both the users and the items from the rating matrix R as
shown in Equation 2.4 and Equation 2.5.

P = {pu} s.t. u = 1, . . . , Nu ∈ RNu×Z (2.4)

Q = {qi} s.t. i = 1, . . . , Ni ∈ RNi×Z with P ×Q> ≈ R. (2.5)

With this formalism, the prediction of the rating of item i by user u is simply the
scalar product between pu and qi. Plugging this new formulation in Equation 2.3
yields:

r̂u,i = µ+ bi + bu + pu
>qi. (2.6)

The dimension Z of the matrices P and Q is often much smaller than the
dimension of the rating matrix R, thus representing the latent profiles in a more
compressed latent space.

However, the extracted latent profiles are often qualified as "black boxes" and
are hard to interpret. One major challenge for recommendation is to provide
explainable recommendations. Besides, MF methods suffer from the Cold Start
problem, i.e., they cannot produce relevant personalized results until they have a
sufficient amount of interactions. A classic technique to still produce suggestions
is to use only the overall mean µ and the biases bi and bu of Equation 2.6. On top
of that, MF methods have a tendency to overfit, and thus require regularization.
A traditional way to regularize MF methods is to add a a regularizing term to
the objective function, constraining the norm of the model parameters. Another
option is to use latent profiles trained on another task to predict the rating. We
present such methods in Section 2.1.4.

2.1.2 Content Based Recommender Systems

Content-based RSs rely on the assumption that a user may be interested in items
similar to the ones they liked before. In the case of movie recommendation, one
can imagine that if a user rated the Star Wars movies highly, a content-based RS

would propose this user with movies that have a similar cast or the same director
for instance.

Content Based Recommender Systems work by computing representations of
the system’s items, computing a similarity measure between items and recom-
mending to a user items that are similar to the ones they liked before.
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We distinguish between two types of items: the structured (or tabular) ones
and the textual ones. The latter are a crucial inspiration to this work and are thus
detailed in Section 2.1.4.

In the case of structured items, such as movies, their representation of an item
is based on its attributes. A Content Based Recommender System’s item matrix
would be of size I ∗A, with I the number of items in the database and A the num-
ber of possible attributes. Of course, adding new features via features engineering
to the matrix is always possible.

When the items of the system are textual, they can be represented in the system
by a variety of methods from Information Retrieval, namely TF-IDF 2 vectorization
(Sparck Jones 1988) and Topic Modeling by Latent Dirichlet Allocation (LDA) (Blei
et al. 2003).

However, Content-based RSs require a heavy amount of data pre-processing
and/or feature engineering in order to work, namely to fill the attributes of each
items (Lops et al. 2011).

2.1.3 Hybrid Models

Both the CF and the CB approaches have their pitfalls and their strength. The
gain in performances allowed by CF is counterbalanced by their vulnerability
to the Cold Start Problem (defined at the beginning of Section 2.1.1) and their
opacity. The understandability and intuitiveness of CB models are offset by the
cost of the neighborhood similarity computations. For those reasons, recent works
have considered hybrid approaches in the hope of combining the qualities of both
approaches while nullifying their weaknesses (Thorat et al. 2015).
Most hybrid models are developed with a specific application in mind. This is
in part due to the fact that content-based RSs are domain-dependent: one could
not build a set of explicit features that fit both movies and restaurants. Netflix
is a famous example of hybrid RS (Gomez-Uribe and Hunt 2016). M. Li et al.
(2020) combine CF and CB with a complementarity-based method on "Question &
Answer" (Q&A) documents to help the users in the process of troubleshooting.

2.1.4 Leveraging Textual information for Recommendation

Leveraging textual information to improve the performances of a recommender
system has been a growing topic over the past decade. While the trend aims at
using user-generated text, and in particular, the reviews, textual item descriptions

2. Term Frequency / Inverse Document Frequency , detailed in Section 2.1.4
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can also be used to compute a representation, namely in a content-based RS

context. Using textual information has proven to help to regularize the latent
representations and / or the model, as well as providing explainability insights
regarding the predictions.

2.1.4.1 Textual Content-Based Recommendation

Content-based RSs have long been interested in deriving a representation from
the textual description of an item. It is of particular importance when the items
you want to recommend are textual documents, such as web pages for instance.
As such, the evolution of textual Content-based RSs has closely followed the of
the Information Retrieval and NLP domains. Although textual Content-based RSs
are mainly item-centered, the techniques they use to learn item representations
can be symmetrically applied to users of a RS, provided the users leave textual
traces. For this reason, we detail the most popular document representations of
textual Content-based RSs in the following paragraphs.

Bag of Words. The Bag of Words (BoW) representation is one of the earliest
and most intuitive ways to vectorize a document. The idea of BoW is that any
document d in a set of documents D with a common vocabulary of size V can be
represented by the count of the words it contains.

TF-IDF. TF-IDF stands for Term-Frequency - Inverse Document Frequency.
Like in the BoW formulation, a document d ∈ D is represented by a vector of size
V . However, the TF-IDF vectorization aims at representing documents through the
words that differentiates d from the rest of the corpus. To do so, TF-IDF represents
a word by the its frequency in in document d, weighted by its frequency across
the whole corpus.

This ponderation allows for the emphasis of rare (and thus more discriminative)
words in a document, with respect to the whole corpus. Conversely, it is an elegant
way to overlook too frequent words.

Pre-processing. It is worth noting that all of the methods presented above are
highly sensitive to noise. Thus, the input data should undergo a pre-processing
routine involving stop-words removal, case normalization etc.

Note: Lots of works also make use word embeddings models, which are de-
tailed in Section 2.2.
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2.1.4.2 Using user reviews in Collaborative Filtering

The use of user textual reviews is also very developed in CF, for several reasons.

Firstly, text is a great way to regularize prone-to-overfitting MF-based models, as
well a way to overcome the cold start problem. There is a tendency for CF models
to turn to text-based hybrid solutions in order to alleviate the two aforementioned
issues.

Secondly, MF-based models often suffer from their opacity, i.e., the fact that their
predictions are neither understandable nor explainable. Thirdly, more often than
not, the ratings alone are insufficient to accurately represent a user’s experience.
Considering the interactions makes it hard to capture the complexity of the users’
wants and likes.

The Cold Start problem. Hu and Dai (2017) and Dias et al. (2017b) both pro-
pose ways to use user reviews to alleviate the Cold Start problem in CF approaches.
Hu and Dai (2017) are using text reviews to address the cold start problem by
embedding item reviews and building matrix factorization-based Bayesian per-
sonalized ranking models on top of them. Dias et al. (2017b) show that using only
two reviews on an item yields better performances than predicting a user mean
for the item cold start problem.

Opacity and Complexity. We mentioned earlier that CF models that only use
interactions can fail to understand the users tastes in depth. Let us illustrate the
problem with an example. If we take the case a restaurant, user A may have
given a restaurant 4 stars because user A was very appreciative of the food, and
totally indifferent to the price or the service. If a user B on the other hand, is
on a budget and expects great service, then the rating of user A is of no interest
to them. This why users often go further than the average rating of a place and
look for the previous reviews. Ganu et al. (2009) and Ganu et al. (2013) address
this issue by proposing to predict the sentiment associated with the topic of a
sentence (food, service, . . . ) within a review. Such models are often referred to as
multi-aspect recommender systems. The review sentiment prediction allowed for a
gain in performance on the rating prediction task.

J. McAuley and Leskovec (2013) go even one step further by using a topic
modeling approach to textual reviews in order to better understand and explain
the users’ tastes as well as the model’s suggestions. Topic Modeling is a technique
that allows for the discovery of subjects (or topics) in a document. J. McAuley and
Leskovec (2013) use this technique user reviews to better understand the users’
rating dimensions (that is to say, what aspects of an item was liked by the user), as
well as a way to regularize their model and tackle the Cold Start Problem. They
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define a document du as the set of reviews written by a user u and use LDA (Blei
et al. 2003) to compute the topic distribution of each document which encodes the
fraction of words in du that discuss each of the K topics. Their objective function
is thus composed of the prediction rating error (similar to Equation 2.6) and the
likelihood of the corpus, with respect to the set of topics and the rating and topic
parameters. Almahairi et al. (2015) compare LDA-based models such as the one of
J. McAuley and Leskovec (2013) to a model combining distributed bag-of-words
together with matrix factorization for predicting ratings, improving the MSE on
the Amazon Reviews dataset (J. McAuley et al. 2015b).

J. McAuley and Leskovec (2013) and Almahairi et al. (2015)’s works can be seen
as pioneering for this thesis, as they address the problem of user understanding
by leveraging their textual traces, as well as propose justifications for their model’s
suggestions.

Catherine and Cohen (2017) also propose to enrich user-item interactions with
user reviews. They do so by predicting the rating of item B iB by user A uA,
rAB, by transforming textual representations of user uA and item iB into a latent
representation of revAB, the textual review of iB by uA. It is a very interesting
approach of MF in the way that Catherine and Cohen (2017) computes latent
representations of both iB and uA and then mix those to represent the interaction
between iB and uA. The latent representation of user uA (respectively, item iB)
is built by processing all reviews written by uA (respectively about iB) without
revAB through a Convolutional Neural Network (CNN) text processor. The CNN

text processor is aligned at training time with a more classical rating-prediction
model. Their approach is an original way to combine Deep Learning architectures
to MF as well as an elegant way to face the Cold Start Problem, since they can
infer the representation of revAB even if it does not exist.

Note: Lots of works also make use word embeddings models, which are detailed in
Section 2.2.

2.1.5 Training Objectives and Evaluation Criteria in Recom-
mendation

If the methods to increase performances and leverage textual reviews are evolv-
ing, the same can be said about evaluation methods in recommendation (Bellogín
and Said 2018). There is an ongoing discussion about separating the training objec-
tive(s) of an RS (and thus, its modeling of user and/or items) from the evaluation
metrics. These research directions are motivated by two factors:
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• Training a model to predict ratings alone is not enough to properly represent
the users of a system,

• There are many other qualities one can expect from an RS besides correctly
predicting a rating.

The following section covers the traditional metrics used for the evaluation of
RSs, as well as emerging metrics.

2.1.5.1 Traditional Metrics and their Limitations

Mean Square Error and derivatives. The Mean-Squared Error (MSE) metric
has long been the preferred method for evaluating RSs. It consists in computing
the average squared error between a predicted rating r̂i and a target rating ri.
Both the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are also
widely used for evaluation purposes.

MSE =
1

N

N∑
i=1

(ri − r̂i)2

MAE =
1

N

N∑
i=1

|ri − r̂i|

RMSE =

√∑N
i=1 (ri − r̂i)2

N

The MSE and associated metrics are often the training objective of a model, as
well as its evaluation metric.

They are however insufficient both as a training objective and as an evaluation
metric in the way that they are unstable (the sum over the embeddings’ dimen-
sions fails to account for fine-grain feature alignment) and are simply not a good
estimation of the RS performances, especially in the case of implicit feedback RSs.

We will refer to this situation as the Regressive Formulation.

Recall, Precision, F1-score. Accuracy metrics are not sufficient to evaluate the
quality of a RS.

A classic alternative to the Regressive Formulation is Classification. In this
setting, we aim at finding what rating corresponds to the current (user, item)
couple by classifying this pair into the class that corresponds to the actual rating.
We thus use classification-related metrics: Recall, Precision, F1-score.
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The Recall metric informs us regarding how many of the items highly rated (or
consumed) by a user Cu were actually recommended to that user (that is to say,
how many of those items where in the recommendation list Ru). Conversely, the
Precision metric measures how many items in Ru were indeed consumed by a
user. Finally, the F1-score is a metric that links both the Recall and the Precision
metrics.

Recall =
|Cu ∩Ru|

Cu

Precision =
|Cu ∩Ru|

Ru

F1-score = 2× Recall×Precision

Recall + Precision

Limitations. The aforementioned metrics present two main limitations:

1. They are relevant assuming that the data are missing completely at random
(MCAR assumption),

2. They merely account for one quality of a RS, which one could call Accuracy.

Regarding point 1, several works showed that the MCAR assumption rarely
stands (Steck 2010). Indeed, one can imagine that if a user disliked the first Harry
Potter movie, then it is quite unlikely they will bother with the seven others.
Symmetrically, the observed ratings are biased both by the user’s initial tastes (a
user that liked the series of The Lord of the Rings is likely to try out the The Hobbit
series) and the previous RS’s suggestions. It becomes then apparent that there
is implicit feedback from the user in the ratings, and the regressive formulation
shuns it entirely.

Furthermore, aside from bypassing important information, the regressive for-
mulation tends to over-specialize the recommendations, and thus create the Echo
Chambers mentioned in Section 2.1’s introduction.

2.1.5.2 Alternative Training & Evaluation Methods

Overcoming the traditional MSE objective for training is a necessary step in
order to capture complex interactions of the user with the system. The more com-
plex those representations get, the bigger the need for more complete evaluation
techniques grows.

Ranking. Ranking is not exactly a new approach to RSs evaluation per se, but it
is worth mentioning in this section because it does provide a different approach
to RS evaluation. It is an interesting way to quantify how far the preferred item
is in the list of recommendations. Ranking metrics, such as the Mean Reciprocal



24 related work

Rank (or MRR) focus on the precision of a RS rather than its accuracy (Valcarce
et al. 2020). MRR can be understood as the average number of iteration in the rec-
ommendation list it takes to obtain a relevant item. The Mean Average Precision
(or mAP) proposes a metric that weighs the head of the suggestion list more than
its tail, thus putting an emphasis on the need to get relevant items at the top of the
list. In the case where we have a relevance score for each item on the suggested
list, the Discount Cumulative Gain (DCG) gives us a score that is weighed by
the relevance score and the position of the item in the list (the relevance score is
reduced logarithmically with respect to the position of the item on the list). Its
normalized version (nDCG) divides the previous score by the "ideal discounted
cumulative gain", which is the discounted cumulative gain across all the relevant
documents of the corpus.

Such evaluation is crucial in cases of suggested translations or browser queries
for instance.

Ranking can also be used as a way to train RS. The Information Retrieval
literature beams with examples of such tasks and training objective (T.-Y. Liu
2009).

Training a Recommender System to Generate Text. Section 2.1.4 highlighted
the increased usage of textual reviews as the inputs of RSs, but there is also a trend
to train RS to generate text (and in particular, reviews).

Dong et al. (2017) propose a Long Short-Term Memory (LSTM)-based model
that learns to generate reviews of an item based on its attributes. Ni et al. (2017)
generate user reviews with a character-level Recurrent Neural Network (RNN)
model. Radford et al. (2017) set the state-of-the-art on the sentiment classification
with a byte-level RNN model.

Serendipity. Our growing understanding of RS leads us to look for even better
qualities in an RS than simple accuracy. Silveira et al. (2019) describe up to 6

categories of qualities to evaluate in an RS, including Serendipity, Novelty and
Diversity. A serendipitous recommendation in a RS can be described as "a happy
surprise". This term both englobes the concept of Utility ("happy") and Unexpect-
edness ("surprise"). Serendipity has been and remains at the heart of RS evaluation
discussions (Ziarani and Ravanmehr 2021; Ge et al. 2010)

Many other aspects of Recommendation Evaluation are being studied to im-
prove the quality of RS, such as fairness (Anelli et al. 2021), anti-relevance (Sánchez
and Bellogín 2018a), Novelty and Diversity (Vargas and Castells 2011; Castells
et al. 2015) and so on.
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2.1.6 Conclusion

UR is at the heart of research in Recommendation. The intuitive neighborhood-
based approaches of CB tend to give way to the more compact yet abstract rep-
resentations of CF. Both approaches can be combined into Hybrid models, that
are mostly application-driven and applied in an industrial context, as a way to
address the cold start problem while still achieving good performances.

However, the very notion of good performances have been the topic of many
discussion and research in Recommendation. It is understood that accuracy on
score prediction alone cannot be seen as a sufficient evaluation metric, even less
when the number of RS in our daily lives is growing.

Using textual reviews in RS represents a major gain for performances, model reg-
ularization and even understandability of predictions. The interest of the Recom-
mendation research community regarding textual data keeps on growing along
with the advances of NLP.

The contribution we propose in Chapter 3, Hierarchical Recurrent Attentive
Neural Network for Recommendation (HRAN), relies on both CF methods and
the leveraging of textual reviews. In this model, we jointly train a Multi-Layer
Perceptron (MLP) and a Bidirectional Recurrent Neural Network (BiRNN) 3 on both
the ratings and the reviews to learn what item a user will like, and why - thus
proposing an explanation for each personalized suggestion. We propose a way to
overcome the limitations of the regression training by associating the MSE metric
(for the MLP) to a Negative Log-Likelihood (NLL) loss (for the BiRNN), and jointly
optimizing them. Once trained, the BiRNN is used a personalized language model
for each user. The architectures and models that made it possible are detailed
in the following section. In Chapter 4 we present the work at the crossroads of
CB and CF. In CB, the models work with textual descriptions of items and are
devoid of personalization. Conversely, CF models rely on interactions between
users and items to propose personalized recommendations. Chapter 4 proposes
a way to leverage interactions between the users and the items that are textual
(professional experiences), and not numerical (ratings).

3. Both those architectures are duly detailed in Section 3.1
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2.2 NLP and Leveraging User-Generated text for
User Representation

NLP methods did not only revolve around leveraging text reviews for Recom-
mendation. Instead, they gained more and more importance as the number of
tasks related to natural language grew.

The evolutions of NLP, detailed in Section 2.2, are of particular interest to this
work because we aim at representing users through the textual traces they leave.
It is our thesis that those traces are semantically and syntactically unique to and
descriptive of a user. In the case of RS, the textual traces are often reviews on
a item. The topics mentioned in such reviews are characteristic of the user’s
interests and preferences.

We also think that, beyond the semantics, the syntax and structure of the text
is also unique to a user. Symmetrically to the way some users tend to rate items
with high marks, some users tend to speak abundantly and in high praise, while
others are more neutral. We present a personalized reading model based on those
assumptions in Chapter 3.

NLP is a vast domain that aims at leveraging human-generated text (or Natural
Language) to solve a given task. Applications and examples of NLP tasks are nu-
merous: chatbots, question-answering, named-entity-recognition, sentiment anal-
ysis, text generation etc. Note that the latter, being a crucial focus for this thesis,
will be covered in detail in Section 2.3.1.

Semantic over syntax. The past decades have witnessed an evolution from
rule-based models to Machine Learning models, then Deep models, forsaking
syntax one step at a time along the way. This change of paradigm naturally
triggered a discussion about evaluating those new methods, leaning towards the
evaluation of the representation’s richness and versatility.

Multi-scale: from words to sequences. Natural Language Processing is an
inherently multi-scale domain, and this aspect poses a real aggregation problem.
The gaps aren’t completely filled yet, even though recent architectures tend to
bridge character/subword-level to sentence-level end-to-end. In our work, we
have an additional level of granularity, since we aim at aggregating sentences into
a user.

Representation Learning in NLP. The rise of CF has led to a new paradigm of
user representation: RL. The success of MF, powered by Neural Network (NN), over
Neighborhood-based approaches led to more compressed but less understandable
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representations of items and users. The growing popularity of NNs allowed RS to
shift from human-friendly representations to continuous, abstract and more mean-
ingful ones. In parallel, the same drift operated in NLP, with word and sequence
representations becoming continuous and existing in abstract latent spaces. Nowa-
days, RL is at the heart of NLP, from Language Modeling to Question Answering.
It took a particular resonance with the advent of generation-pre-trained models
such as Bidirectional Encoder Representations from Transformers (BERT). Indeed,
the success of the Transformer brought generative models at the forefront of the
NLP architectures, allowing a powerful pre-training of models in an unsupervised
way.

The following section will cover technical aspects of NLP methods evolution. We
will start by reviewing the evolution of word embeddings. Then, we will go over
the different models and methods for sequence modeling. Finally, we will detail
the evolution of Attentions mechanisms, and their contributions to the field.

2.2.1 Language Models and Word Embedding Models

Text representation has long been performed at the document level in a bag-
of-words setting. However, Mikolov et al. (2013b) introduce distributed word
representations with the Word2Vec model, enabling us to predict words in a local
context and thus opening the way for meaningful continuous word embeddings
and text generation applications. It is a Language Model that relies on two key
principles: the Skip-Gram model and the Negative Sampling procedure.

2.2.1.1 Language Model

The task of Language Modeling can be defined as the task of predicting the
next word given a context (Mikolov et al. 2010). In other words, it is the task of
learning the joint probability of a word sequence to appear in a text (Y. Li and
T. Yang 2017). Formally, the probability P of a given word sequence (w1, ..., wN)

of length N if defined as the product of conditional probability on each word wi:

P (w1, ..., wn) =
N∏
t=1

P (wt | w1, ..., wt−1) (2.7)

Note that we used the term "word" for simplicity, but the term "token" as it is a
more accurate denomination, given the variety of granularity in language models
(sub-words, n-grams etc).
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2.2.1.2 The Skip-Gram Model

Figure 2.3 – Illustration of the Skip-gram model. As presented by Mikolov et al.
(2013b)

The skip-gram model learns word representations that can be used to infer
their context, as illustrated on Figure 2.3. The model is trained to maximize the
average log of Equation 2.8.

1

N

N∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j | wt) (2.8)

2.2.1.3 Negative Sampling

The Negative Sampling objective is introduced as an alternative to the hierar-
chical softmax and a simplification of the Noise Contrastive Estimation (NCE).

In practice, it is an objective that enforces the fact that words belonging to the
same context window should have representations that are close (first term of
Equation 2.9), while words that do not appear together frequently should have rep-
resentations that are far from each other (second term of Equation 2.9)(Goldberg
and Levy 2014) .

The Negative Sampling Objective is formally defined by Equation 2.9. For
simplification purposes, let us rewrite the words within the vicinity of wt as wI .
This yields:
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p(wt | wI) = log σ(v′wt>vwI ) +
k∑
i=1

Ewi∼Pn(w)

[
log σ(−v′wi>vwI )

]
(2.9)

σ(x) =
1

1 + e−x
(2.10)

The form of p(wt | wI) of Equation 2.9 is then plugged into Equation 2.8.

Note that the "negative examples" i.e., the k words that do not appear in the
vicinity of wt are randomly drawn according to a unigram distribution raised to
the power 3

4
(Mikolov et al. 2013b).

The original paper also introduced several parameters to learn their word repre-
sentations, such as subsampling of frequent words and dynamic context-window
sizing.

The word representations learned by maximizing the objective defined by equa-
tions Equation 2.8 and Equation 2.9 present interesting properties. In particular,
the latent space in which they evolve presents some regularities illustrated in
Figure 2.4.

Figure 2.4 – PCA projection of words representing countries and their capital.
Illustration of the original paper Mikolov et al. (2013b)

2.2.1.4 Sub-word embedding

However, the word2vec algorithm suffers a major limitation, which is that it
cannot handle out-of-vocabulary words, and is thus helpless to represent new
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words. This particular limitation has namely been addressed by Bojanowski et al.
(2016) in the form of sub-word embedding.

FastText. Bojanowski et al. (2016) define subword embeddings by representing
a word as the sum of the n-grams that composes it. They give the example of
the word "where" that can be decomposed into the set of n-grams : "<wh, whe,
her, ere, re >, where" for n = 3. Note that the special symbols <and >respectively
denote the beginning and and the end of the word, and that the word itself it
contained into its set of n-grams. The scoring function of a word w and it context
c then becomes:

s(w, c) =
∑
g∈Gw

z>g vc (2.11)

with Gw the set of n-grams that represents w.

This formulation in subwords allows for the handling of out-of-vocabulary
words as well as a reliable representation of rare words and has become widely
used.

Figure 2.5 – Illustration of the similarity between character n-grams in out-of-
vocabulary words. As presented by Bojanowski et al. (2016). The
word on the x-axis is out-of-vocabulary, while the word on the y-axis
is not.

Byte-Pair Encoding. Despite Bojanowski et al. (2016)’s intuitive algorithm,
nowadays’s preferred approach is the 1994 Gage (1994) Byte-Pair Encoding (BPE)
algorithm.
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The BPE data compression algorithm works by iteratively replacing common
pairs of consecutive bytes (or characters) by a byte that does not appear in that
data. This process is repeated until the desired vocabulary size (that is, the number
of bytes) is reached.

The BPE algorithm is namely used in the BERT architecture.

Word embeddings permitted the semantic representations of textual data with
a richness that we would not achieve before. Those semantic representations
have allowed, for instance, Dias et al. (2017a) to learn a meaningful latent space
that they leverage to recommend jobs to a user, given their previous jobs. More
generally, semantic word representations allow for the extraction of information
that would otherwise have been lost in the noisiness of textual data.
Word embeddings are essential building blocks for representing sentences or
documents, but they do not directly allow for sequence representation.

2.2.2 Sequence Modeling

The next granularity level in NLP representations is the sentence-level. The
main challenge of sequence modeling is to deal with the possibly variable lengths
of the sentences. This issue has been mostly investigated through the prism of
Neural Machine Translation (NMT).

2.2.2.1 Recurrent Cells

There are several techniques to represent sequences but the most widespread
are RNN and in particular the LSTM (Hochreiter and Schmidhuber 1997) imple-
mentation and its simplified version, Gated Recurrent Unit (GRU) (Cho et al. 2014).
Unlike traditional Feed-Forward Neural Networks, in RNN the output of the net-
work at time t, yt, is a function of both the input at time t, xt, and the previous
input’s representation, ht−1. That makes them naturally well-suited for repre-
sented temporal sequences such as sentences. However, RNNs suffer from the
vanishing or exploding gradient problem and thus struggled to represent long
sequences. To address this issue, Le et al. (2015) proposed a simple initialization
coupled with Rectified Linear Unit (ReLU) activations that they found presented
similar performances as LSTMs.

The latest formulation of an LSTM (Gers et al. 2000) is presented in Equation 2.12.
LSTM are typically composed of a cell c (also referred to as "memory cell"), an
input gate i, an output gate o and a forget gate f .

4. https://github.com/dvgodoy/dl-visuals, image licensed under CC 4.0: https://
creativecommons.org/licenses/by/4.0/

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 2.6 – Illustration of a LSTM Cell. Image by dvgodoy 4

ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

c̃t = σc (Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh (ct)

(2.12)

The GRUs was introduced in 2014 by Cho et al. (2014). The minimal gated unit
equation is presented in Equation 2.13. Unlike the LSTM cells, minimal GRU cells
only present a forget gate f .

ft = σg (Wfxt + Ufht−1 + bf )

ĥt = φh (Whxt + Uh (ft � ht−1) + bh)

ht = (1− ft)� ht−1 + ft � ĥt

(2.13)

Both LSTM and GRU have been proven to have similar performances (Chung et al.
2014; Greff et al. 2017).

From now onwards, when the term RNN is used, it will by default refer to a
RNN consisting of LSTM cells.

2.2.2.2 Bidirectional RNN

A widespread variation of RNNs are Bidirectional Recurrent Neural Network
(BiRNN)s. Originally presented by Schuster and Paliwal (1997), BiRNNs consist
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of two independent 5 RNNs, going in opposite directions. The forward RNN ,
−→
f ,

encodes a sequence s = (x1, ...,xT ) from left to right, thus outputting a sequence
of forward hidden states (

−→
h1, ...,

−→
hT ). Conversely, the backward RNN

←−
f encodes s

from right to left, outputting backward hidden states (
←−
h1, ...,

←−
hT ). The annotation

ht of each token xt is the (possibly transformed) concatenation of both annotations
−→
ht and

←−
ht .

hi =
[−→
ht;
←−
ht

]
This representation ensures that the annotation hi contains information about

the tokens both following and preceding xt (Bahdanau et al. 2015).

BiRNNs have been widely used in applications such as speech recognition
(Graves et al. 2013) and, more recently, Language Modeling (Peters et al. 2018).

2.2.2.3 Contextual Word Embeddings: ELMo

More recently, Peters et al. (2018) proposed a more versatile type of word
embeddings: the deep contextualized word embeddings. Contrary to Mikolov et
al. (2013b) and Bojanowski et al. (2016), Peters et al. (2018)’s model Embeddings
from Language Models (ELMo) word representations are a function of the entire
input sentence.

More precisely, ELMo’s embeddings are a learned linear combination of the
internal layers of a Bidirectional Language Model (biLM) (BiRNN are detailed in
Section 2.2.2.2). Note that in this equation, the forward and the backward LSTMs
share some weights and are both tied to the token representation parameters Θx

and the Softmax Layer parameters Θs. This process is illustrated on Figure 2.7.

LbiLM =
∑N

t=1

(
log p

(
wt | w1, . . . , wt−1; Θx, ~ΘLSTM ,Θs

)
+ log p

(
wt | wt+1, . . . , wN ; Θx,

←−
ΘLSTM ,Θs

)) (2.14)

The representations are learned by a 2-step process. First, the biLM is pre-trained
on a large corpus of text by optimizing the objective of Equation 2.14.

Then, ELMo computes Rt, the set of 2L+ 1 representations of token wt, with L

being the number of layers of the biLM. An example is shown on Figure 2.8.

5. In the sense that they do not share weights.
6. https://github.com/dvgodoy/dl-visuals, image licensed under CC 4.0: https://

creativecommons.org/licenses/by/4.0/

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 2.7 – Illustration of an ELMo’s biLM. Image by dvgodoy 6.
In this Figure, the forward LSTM is presented in blue, and the back-
ward one in orange. The hi,0 and hf,0 represent the initial and final
hidden states of the LSTM.

Rt =
{
xLMt ,

−→
h LM
t,j ,
←−
h LM
t,j | j = 1, . . . , L

}
=
{
hLMt,j | j = 0, . . . , L

} (2.15)

Figure 2.8 – Illustration of an ELMo’s set of representation. Image by dvgodoy 7.
This Figure represents the set of representation R0 of the first token
x0 for a number of layer L = 2.

So, after Equation 2.15, each token is associated to a set of L+1 representations,
since the jth forward LSTM representation

−→
h LM
t,j is concatenated to the jth back-

ward LSTM representation
←−
h LM
t,j : hLMt,j =

[−→
h LM
t,j ,
←−
h LM
t,j

]
, for j ∈ [0, L]. Note that if

j = 0, then hLMt,j = xLMt , the initial token representation.

7. https://github.com/dvgodoy/dl-visuals, image licensed under CC 4.0: https://
creativecommons.org/licenses/by/4.0/

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Then, this set of token representation Rt is collapsed into a single vector accord-
ing to a downstream task.

ELMotask
t = E

(
Rt; Θtask ) = γtask

L∑
j=0

stask
j hLMt,j (2.16)

The fine-tuning of the token representation, illustrated in Equation 2.16, consists
in aggregating the different layer representations in Rt in a weighted sum, which
weights stask

j depend on the selected task. The term γtask allows the model to scale
the entire ELMotask

t vector, which can be useful if the downstream task expects
values within a certain range for instance.

This approach allows for the modeling of complex characteristics of word use
and for the disambiguation of variable linguistic contexts (typically, polysemy). It
is interesting to note that the ELMo model treats all tokens as possibly polysemic.

While ELMo proposes word embeddings, it is important to highlight that the
representation they propose depend on the previously words, and is thus close to
sequence modeling. Additionally, Peters et al. (2018) propose methods to include
an ELMo module as an integrated part of existing sequence-modeling architectures
for tasks like SQuAD.

Like word embeddings, the advances of Sequence Modeling changed the way
we could represent users in Recommendation by removing the technical barrier
of word aggregation. Rather than a trivial mean of aggregation (like the average),
Sequence Modeling allowed for the representation of sequential information, and
thus, a better user representation (Smirnova and Vasile 2017; Hidasi et al. 2016).

2.2.3 Attention Mechanism

Attention is a mechanism that has really been a game-changer in NLP. On top
of allowing improvements of the state-of-the-art on numerous tasks, namely by
acting as a regularization, Attention also introduced a new form of input/feature
selection and thus, of explainability. We leverage this property in Chapter 3.

Early Formulation. Recurrent sequence modeling methods allow for the en-
coding of sentences into a fixed-length vector. One can either pool the encoder’s
hidden states over time (generally, max-pooling is used) or define the sequence’s
representation as the last hidden state outputted by the encoder. These methods
however present the shortcoming of decreasing performances when the input sen-
tence is very long, especially if it is longer than the sequences seen at training time.
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Bahdanau et al. (2015) addressed this issue by proposing an extension of the
encoder-decoder (this architecture will be detailed in Section 2.3.1) model that
learns to "align and translate". The main idea of the extension is to find the most
relevant position in the input sentence with regard to the token that has just been
outputted. This makes the model predict the next token by taking into account all
the previously outputted tokens and the context vector associated to the positions
where the information is concentrated.

Formally, the context vector ct (Equation 2.17) associated to the t-th token of
the input sequence is a weighted sum of the encoder’s previous hidden-states
(also called annotations) hej . The weight αtj (Equation 2.18) of hidden-state het is
the softmax over the alignment scores etj . This alignment score etj (Equation 2.19)
is a function of both the encoder’s hidden-state at step j and of the decoder’s
hidden-state at step t− 1.

ct =
N∑
j=1

αtjh
e
j (2.17)

αtj =
exp (etj)∑N
k=1 exp (etk)

(2.18)

etj = a(hdt−1,h
e
j) (2.19)

In Bahdanau et al. (2015), the scoring function a is a learned feed-forward
neural network, trained jointly with the other components of the model. Later
implementations will give a the form of a dot product.

The context vector ct is then fed to the decoder’s RNN and is used to compute
the next hidden state. This mechanism can be understood as what the model
should be "focusing on" in the input sentence to predict the next token. It helps the
model cope with longer sentences. Note that this early formulation of attention is
called "alignment" in the original paper, and is sometimes referred to as "additive
attention".

2.2.4 Self-Attention

While Attention’s early formulation by Bahdanau et al. (2015) in 2016 was
already a promise of better performance, the 2017 Vaswani et al. (2017) "Attention
is All you Need" proposed to let go of RNNs altogether and introduced the now-
widespread concept of self-attention. The success of the multi-head self-attention
and the Transformer architecture gave rise to a family of state-of-the-art models:
BERT.
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The creation of the self-attention mechanism in 2017 by Vaswani et al. (2017)
was motivated by two things. Firstly, it aimed at leveraging the performances of
classical attention. Secondly, most sequence modeling architectures were based
on RNNs, making the parallelization of computation impossible. Self-attention
addresses this problem by removing recurrence from its architecture, allowing for
a great gain of computation time.

Vaswani et al. (2017) describe self-attention using the same notations as those of
the memory networks (Sukhbaatar et al. 2015). This formulation presents attention
as a function of a query and a set of key-value pairs. Equation 2.20 illustrates the
attention function as the product of :

• a softmaxed scaled dot-product between a matrix of query Q, a matrix of
keys K and

• V , the matrix of values of dimension dk.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.20)

with softmax(xi) =
exp(xi)∑
j exp(xj)

(2.21)

In self-attention, the nature of the query, keys and values depends on where
we are at in the architecture.

Let us illustrate the mechanism of self-attention at encoding time. Q,K, V are
the representations of the input (in this case, the tokens’ embeddings Zw) projected
by the query, keys and value matrixes, respectively UQ, UK and UV (along with
their possible biases). Note that UQ, UK must be the same dimensions because of
the scaled dot product, but not UV .

Q = UQ × Zw + bQ with UQ ∈ Rdw×dmodel (2.22)

K = UK × Zw + bK with UK ∈ Rdw×dmodel (2.23)

V = UV × Zw + bV with UV ∈ Rdmodel×dv (2.24)

In Equation 2.22, dw is the dimension of the token’s embeddings, dmodel the
dimension of the model’s representation and dv the dimension of the value.
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2.2.4.1 Multi-Head Attention

Vaswani et al. (2017) extend their concept of self-attention by learning not one
linear projection but h: one for each head. The outputs of the h heads are then
concatenated and linearly projected with a ReLU activation.

MultiHeadAttention (Q,K, V ) =


head1(Q,K, V )

head2(Q,K, V )
...

headh(Q,K, V )

WO (2.25)

with headi(Q,K, V ) = Attention
(
QW

(q)
i , KW

(k)
i , V W

(v)
i

)
(2.26)

Each head headi is composed of learned projections matrices:

• W
(q)
i ∈ Rdmodel×dk , that projects query Q into a representation subspace of

dimension dk,

• W
(k)
i ∈ Rdmodel×dk , that projects the keys K into the same subspace,

• W
(v)
i ∈ Rdmodel×dv , that projects the values V into a representation subspace

of dimension dv, and finally

• WO that projects the concatenated head-attention back into the model’s
representation space of dimension dmodel.

The number of heads h is traditionally 8, and and each head’s dimension is
a subspace of the model’s representation space, with dk = dv = dmodel/h. The
parallelization of attention computation in different representation subspaces
allows for a gain in performances while keeping the computation time similar to
the of a single-head attention of full dimensionality.

Note: the matrix W (q)
i of Equation 2.25 is not to be confused with the matrix UQ

of Equation 2.22. The UQ matrix projects the input embeddings into the model’s
latent space (of dimension dmodel), resulting in Q, while W

(q)
i reprojects Q in a

subspace (of dimension dk) of the model’s latent space.

With the self attention mechanism, the sequential aspect handled by the RNNs
is almost gone; it is only enforced by masking at decoding time. This makes the
encoding of long sequences easier, as all the information is encoded "at once" and
does not get lost along the tokens.
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Figure 2.9 – Illustration of the Transformer Architecture. From Vaswani et al.
(2017).

2.2.4.2 The Transformers

Vaswani et al. (2017) applied their concept of multi-head self-attention to a
new family of models called the Transformers. Those models’s architecture, pre-
sented on Figure 2.9, rely solely on self-attention to model text, abandoning non-
parallelizable RNNs.

Figure 2.9 reveals three places where multi-head attention is used: in the en-
coder (left), in the decoder (bottom right), and in the "encoder-decoder" attention
part (middle right).

In both the encoder and the decoder, the multi-head attention modules compute
a self-attention. That is to say that the query, the keys and the values all come from
the previous layer of the encoder (respectively, of the decoder). In the decoder,
the leftward information is masked to prevent illegal connections. In other words,
this masking of tokens that are left of the current token ensures that the decoder
only accesses the previously decoded tokens.
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Finally, the "encoder-decoder attention" is close to the mechanism described in
Section 2.2.3. In this, case, the query is the previous decoder’s state, and the keys
and values come from the encoder.

The Transformer architecture has been shown to advance the state-of-the-art in
English to German and English to French machine translation tasks and has also
seamlessly tackled the problem of token embeddings aggregation that has long
been an issue for sequence modeling.

2.2.4.3 BERT

The Transformer architecture gave rise to several new methods to improve the
performances of various NLP tasks.

Among them, Devlin et al. (2019) introduced BERT, a language representation
model that addresses the unidirectional limitation of previous Language Model
(LM).BERT is based on the optimization of both a Masked Language Model (MLM)
and a Next Sentence Prediction (NSP) tasks.

This Multi-Task Learning (MTL) approach is at the core of the pre-trained model
(which is later fine-tuned on several other tasks, such as Named-Entity Recogni-
tion or SQuAD) and can be seen as a way to train BERT as an LM that operates at
both the word-level (MLM task) and at the sentence-level (NSP task).

The MLM task is conceptually close to Mikolov et al. (2013a)’s Continuous Bag
of Word model: the model is trained to predict the masked word given its context
(both left and right).

The NSP task is addressed by training a classifier C to determine whether sen-
tence S2 does follow S1 in the corpus. In practice, classifier C takes representations
of both sentences zS1 and zS2 as inputs and outputs the probability that they are
successive sentences.

Those sentence representations zSi are comprised in the [CLS] (standing for
classification) token, which is affixed at the beginning of the sentence. This [CLS]
token is now widely used as a representation of the whole sentence in different
models and applications.

It is its performances and its [CLS] mechanism that led BERT to be an unmiss-
able model in modern NLP applications and architectures.

Note: While not directly used in this thesis, the BERT model is a central part of our
perspectives, hence the detailed description.

Like continuous word embeddings and sequence modeling before that, the at-
tention mechanism permitted a great refinement in user representation. Besides
the better handling of long-range dependancies, the attention mechanism also
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allowed for a better understanding of what is important in a sentence for a given
query. The next chapter presents a contribution that leverages an attention mech-
anism to create a personalized reading model, understanding what aspect of a
product matters to the user from their reviews. Lei Li et al. (2021) follow this path
towards explainability by using personalized Transformers. Sun et al. (2019) also
used Transformers to encode a user’s behavior from both directions on a task of
sequential recommendation.

2.2.5 Conclusion

NLP is a vast, fast-growing research domain that encompasses numerous tasks
and applications. The effort to learn rich representations of textual data initially
separated the task of learning word representation from sequence modeling. Re-
cent works demonstrate the efficiency of end-to-end approaches, learning word
embeddings and language models jointly, often offering a simple way to specialize
a model with one or several down-stream tasks (ELMo, BERT). Another growing
trend is the use of attention mechanisms in NLP architecture, especially since
the Transformers, attention-based models, became state-of-the-art on notoriously
hard tasks such as NMT.

2.3 Generative Models

In this work, we call generative models architectures that output sequences of
text.

Generative models have mostly been developed on tasks such as Machine
Translation and Text Summarization. They can be seen as the purest form of RL:
for a model to be able to generate data, it must have understood it completely.

Those models arose from the need to either explicitly generate (potentially
missing) data or to estimate the distribution of the input data. Along with data re-
duction algorithms, they also address the Minimum Description Length problem
(i.e., the hypothesis that the best description for a given sample is the shortest.),
thus compressing the input data in a smaller, possibly denoised representation.

Generative models play a crucial role in the framework of RL: generating a
(possibly unseen) sample from the input data amounts to understanding the
way it is organized. This is especially well illustrated in Computer Vision, where
models such as Generative Adversarial Networks (GANs) can produce ever-more
realistic pictures.
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In NLP, generative models were historically developed in NMT and Automatic
Text Summarization. They solve an arguably harder task that Computer Vision
generative models, as the noise can have a much bigger impact on the understand-
ability of the output (a noisy, blurry image can be potentially understandable
while it gets quickly very hard to make sense of a sentence where the wrong
words are predicted).

Textual generative models also holds a great explainability advantage. The
outputted text depends only on the input data and the inner (or latent) repre-
sentation of this data in the model, thus giving humans a good idea of why the
model outputted such or such sentence. One can view the outputted text as a
direct explanation of how the model understands the data.

Furthermore, textual generative models have taken a very important place in
NLP in the past few years, especially with regard to Representation Learning.
Indeed, most of today’s architectures are pre-trained on text generation tasks
(such as fill-in-the-blank, text-infilling etc.) before being eventually fine-tuned on
downstream tasks.

Text generation is of particular importance to this work because of its descrip-
tive power which we leverage with a job generation task. We use text generation
both as a mean to ensure the richness of our representation and as a way to better
understand and explain the representation we built.

In this section, we will present several key generative architectures, first gen-
eral and then specifically text-oriented, as well as the imperfect metrics used for
evaluating computer-generated sequences.

2.3.1 General Generative Architectures

Generative models are present in every field of Deep Learning, as they can
be applied to almost any type of data. In this section, we detail the Variational
Auto-Encoder (VAE), one of the most studied generative architecture. We will start
by explaining the concept of Encoder-Decoder Architecture before diving into
the specifics of Auto-Encoders, Denoising Auto-Encoder (DAE) and, finally, VAE.
Note: although Generative Adversarial Networks have produced very interesting results
in Computer Vision, they are not much used in NLP and will therefore not be detailed in
this work.

2.3.1.1 Encoder-Decoder Architecture

The Encoder-Decoder architecture, illustrated in Figure 2.10 is a widely used
one in Deep Learning. The idea is quite simple: an encoder E transforms an input
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Figure 2.10 – Illustration of the Encoder-Decoder Architecture. Note: in the case
of auto-encoders, y = x̂.

x into an intermediary representation z, which is decoded into y by the decoder
D. The latent representation z often lives in a space (called the latent space) of
much lower dimensionality than the input space. This architecture is useful to
achieve data compression, but also for representation learning as it can extract
features from x that are relevant to the down-stream task at hand.

2.3.1.2 Auto-Encoders

An Auto-Encoder (AE) is a fairly popular architecture used in numerous re-
search domains. It is a special case of the Encoder-Decoder architecture, where
the Decoder outputs a reconstructed version x̂ of the input x.

AEs are trained to learn a compressed latent representation of an input x via
an Encoder (E) and then reconstruct it with a Decoder (D), with a reconstruction
loss function (usually, the MSE).

L(x) = ‖x−D(E(x))‖2
2 (2.27)

AEs can be used for learning compressed representations of an input directly
(since the output space of Encoder E is often of lower dimensionality than the
input space) or to extract robust features that best represent the data.

2.3.1.3 DAE

A Denoising Auto-Encoder (DAE) offers a more robust implementation than
AEs, as it is trained to reconstruct a target x from a corrupted input, where x is
added a random noise ε.

L(x) = ‖x−D(E(x + ε))‖2
2 (2.28)
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Both AEs and DAEs are largely used in NLP tasks, but while they do output
words sequences, they do not generate sequences in the sense that they can only
output sequences that exist in the training set.

2.3.1.4 VAE

A VAE on the contrary is specifically designed for generation. Proposed by
Kingma and Welling (2014), they are conceptually close to DAEs and rely on the
same building blocks as AEs, but they learn the noise of the input, to determine
the probabilistic distribution of the data. VAEs are a special case of regularized
AEs with a structured latent space. In a VAE, both the encoder E and the decoder
D are described as distribution. The encoder E is noted qφ(z | x), the distribution
of the latent representation z knowing input x. The decoder D is noted pθ(x | z)

because it aims at reconstructing the initial input x from z. E and D are trained
jointly to optimize the Evidence Lower BOund (ELBO) objective:

log pθ(x) ≥ Ez∼qφ(z|x) [log pθ(x | z)]− KL (qφ(z | x)‖p(z)) (2.29)

with KL the Kullback–Leibler divergence. The VAE aims at reproducing the real
distribution p(x) of the data in pθ(x), the encoder’s distribution. That is ensured
by the first term of Equation 2.29 (also referred to as the reconstruction term). But
it also aims at constraining its latent space to be structured. The second term of
of Equation 2.29 (the regularizing term) ensures that the representation z of x is
encoded according to the distribution p(z).

Note that, since the decoder is fed a latent representation z sampled from p(z),
back-propagation of the gradient is compromised (the sampling procedure "cuts
off" the gradient graph). This issue has been addressed with what is commonly
called the "Re-parametrization Trick", and consists in using a third independent
variable ε ∼ p(ε). Since z is sampled from a Gaussian distribution of parameters
(µφ, σφ), we can re-parametrize z as:

z = µφ + σφ · ε, with p(ε) = N (0, I). (2.30)

Thanks to Equation 2.30, z still contains randomness, and the gradient graph is
not discontinued.

2.3.2 Text Generation

Text Generation is a special case of generation because it requires encoding
and decoding sequences. Thus, the Encoder and Decoder of the architectures have
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Figure 2.11 – Illustration of the Sequence-to-Sequence Architecture. Image by
dvgodoy 8.

long been Recurrent models, until the recent advent of the Transformers. Most
evolutions of Text Generation have been studied and developed in the context of
Neural Machine Translation (or NMT).

NMT is the task to automatically translate a text from a source natural language
to a target natural language. One of its core problematics is thus text generation,
as the output of a model is supposed to be the translation of the input in another
language.

2.3.2.1 Seq2seq Architecture

Sutskever et al. (2014) first introduced the Encoder-Decoder Architecture illus-
trated in Figure 2.10 in the context of NMT.

This architecture was motivated by the need to handle variable-length inputs,
crucial in NMT, Speech Recognition and Question Answering to name a few
domains. Since all those applications depend on sequences, they named their
approach a "Sequence-to-Sequence" (Seq2Seq) model. The idea of the Seq2Seq
architecture is to encode a variable-length input sequence into a fixed-length rep-
resentation vector (hf in Figure 2.10) that is then fed to a decoder, itself trained
output tokens of the target sequence.

Note that Figure 2.10 presents 2 possible conditioning for the decoder. At train-
ing time, it is not unusual to feed the decoder with the expected previous token
rather than with the one that has actually been outputted. This method is called
"Teacher Forcing" and is useful to prevent the decoder from drifting too far away
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from the target, as well as accelerating convergence. At inference time however,
the decoder is fed its own previous output at each time step.

When in the special case of Autoencoders, the Encoder and the Decoder are
trained jointly to optimize the reconstruction loss of the input. Autoencoders are
a common method to learn compact and rich representations of an input. The
decoder is trained to ensure that the representation contains enough information
for the original input to be reconstructed, thus influencing the encoder’s gradient.

In Sutskever et al. (2014) both the Encoder and the Decoder are composed of
LSTM cells. This implementation (with variations such a pooling layers, number of
directions etc) has long been the most wide-spread until the Transformers came
along.

2.3.2.2 Back Translation

On top of the variable-length input problem, NMT faces the problem of parallel
data. Since NMT aims at translating a text, written in a source language, to a tar-
get language, supervised training requires large amounts of parallel data. That is,
corpora of text available in the source language and the same text in the target lan-
guage. Such corpora are not only expensive (translations are human-generated),
they are also hard to evaluate with the traditional metrics such as the BiLingual
Evaluation Understudy (BLEU) score (we detail the evaluation of generated text
in Section 2.3.3). These limitations motivated Lample et al. (2017) to explore a
mechanism that could allow for the unsupervised training of translation models:
the Back Translation.

Note that Lample et al. (2017) did not invent the mechanism of Back-Translation,
but rather improved it by pairing it with a DAE (see Section 2.3.1.3), resulting in
better performances in classical NMT tasks. Back Translation was initially intro-
duced by Sennrich et al. (2015) as a mean to improve the decoder of a target
language model.

Back Translation is a mechanism that enables the training of NMT models in
an unsupervised fashion. Initially, Back Translation (BT) consisted in iteratively
training the same denoising auto-encoder on two languages in parallel, with a
common latent space.

Figure 2.12 illustrates the training procedure for BT. The encoder and the de-
coder operate on both the source and the target languages, and switch lookup
tables according to a language identifier that is given as input. Firstly, the model

8. https://github.com/dvgodoy/dl-visuals, image licensed under CC 4.0: https://
creativecommons.org/licenses/by/4.0/

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 2.12 – Illustration of the Back Translation Process. Image taken from the
original article Lample et al. (2017).

learns to denoise inputs (sentences) in each domain (the source and the target
language s) via an auto-encoding loss (Lauto). Note that both domains latent rep-
resentations zsrc and ztgt are bound to the same latent space by an adversarial loss
Ladv. It is the auto-encoding part.

Secondly, we proceed as before except that we encode a sentence from the other
language and use the translation outputted by the previous-iteration model Mt−1

as input. Then, we compute the cross-domain loss Lcd which measures how well
the model can reconstruct xsrc (respectively, xtgt) given x̂tgt (respectively x̂src) as
input.

2.3.2.3 Transformer-based Text Generation

GPT. One of the undoubtedly most groundbreaking generative models of the
decade is the group de Generative Pre-Training (GPT) models. In 2018, Radford
and Narasimhan (2018) introduce a model that overcomes two majors limits of
most NLP models: the amount of annotated data they require to be trained, and
their inability to generalize to tasks different from the one they were trained for.
They propose a Transformer-based model that will be first pre-trained with a
generative objective and then fine-tuned on specific tasks.

Formally, the first part of the training consists in optimizing a traditional lan-
guage modeling objective:

L1(V ) =
∑
t

log p (wt | wt−i, . . . , wt−1; Θ) ,
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with V the unsupervised corpus of tokens, i the size of the context window,
and p, the conditional probability for token wt to be observed given its context
wt−i, . . . , wt−1. Function p is a Transformer decoder with 12 layers and 12 attention
heads.

For the fine-tuning part, the input sequence x of length N is ran through the
pre-trained network to be represented as activated output of the Transformer.
Then it is projected into a space of dimension C, C being the number of possible
labels for the fine-tuning task. This yields:

L2(C) =
∑
(x,y)

logP
(
y | x1, . . . ,xN

)
.

Additionally, Radford and Narasimhan (2018) found that combining both ob-
jectives L1 and L2 when fine-tuning the model helped to accelerate convergence
and improve the generalization abilities of the supervised model.

GPT was pre-trained on the BooksCorpus dataset of over 7000 unpublished
books and fine-tuned on 4 different tasks, over a total of 12 datasets.

BART. Bidirectional and Auto-Regressive Transformers (BART) is a model that
aims at bridging the gap between the versatile representations learned by models
like BERT, described in Section 2.2.4.2 and performant generative models like GPT.
Lewis et al. (2020) address this objective by combining (and generalizing) the
masking mechanism and bidirectional encoder of BERT with the auto-regressive
decoder of GPT.

The bidirectional encoder, trained on a masked language model task, allows
the model to learn about short-ranged bidirectional token dependancies. BART

extends this process by masking not only tokens but entire bits of the sentence,
forcing the model to reason on the sentence length to perform completion. They
refer to this noise function as "Text Infilling". On top of this extended range of
corruption, BART is also pre-trained to reconstruct inputs that have undergone
transformations such as document rotation, sentence permutation, token deletion
or even a combination of all of the above.

After the pre-training of the denoising autoencoder, BART’s decoder is fine-
tuned on a specific downstream task. The left-to-right autoregressive decoder of
BART forces the model to output the next token using only the past (or leftwards)
information, like most generative textual model. Lewis et al. (2020) reported
improvements of performances in tasks such as token classification, sentence
generation, machine translation and sequence classification.
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The success of the BART architecture led Y. Liu et al. (2020) to propose a multi-
lingual, extended version of BART called mBART where the model is pre-trained
on multi-lingual denoising. This initialization showed to have improved the per-
formances of several NMT tasks.

T5. The Text-to-Text Transfer Transformer (T5, for short) is another successful
Transformer-derived architecture introduced by Raffel et al. (2020). Building on
the power of Transfer Learning and Multi-Task Learning, the T5 framework is
pre-trained on a very large amount of data (the Colossal Clean Crawled Corpus)
and allows for the combination of several tasks (NMT, sentence similarity. . . ) at
training time (either pre-training or fine-tuning). The originality of the approach
that the the model only ever outputs text. It achieves this with prefixing the input
with the task indicator and is trained on all the tasks with the same model, loss
function, and hyper-parameters.

Note: the models detailed in the above section are too recent to have been used in this
thesis. However they have had a sufficient impact to be explained here.

2.3.3 Evaluation

Evaluation of textual generation comes with a lot of challenges for different
reasons. Firstly, labels are more often than not human-generated. For Machine
Translation, supervised learning requires large corpora of parallel data (i.e., with
sentences in the source language and in the target language); in Text Summa-
rization, labeling requires a tremendous amount of time and human-power. That
makes labeled data very expensive and rather scarce. Aside from this, when labels
are available in either NMT or Text Summarization, they are just one possible label
rather than an absolute truth, as it is possible to translate / summarize the same
document in different correct manners. It is partly what motivated Lample et al.
(2017) to develop a framework that relied on monolingual corpus. On the other
hand, the lack of semantic methods makes the evaluation of generative models
rely mainly on statistical methods, such as BLEU or ROUGE.

BLEU score. The BLEU acronym stands for Bilingual Evaluation Understudy.
Introduced by Papineni et al. (2002b), it aims at evaluating the resemblance be-
tween a candidate word sequence (typically, a proposed translation) and a human-
generated reference: the label. The BLEU score is said to be a precision-oriented
metric, as it evaluates how much the n-grams in the candidate sentence appeared
in the human reference, with respect to the candidate’s length. The BLEU score
can be divided into BLEU-1 through BLEU-4, each metric respectively accounting
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Figure 2.13 – Illustration of the BLEU score.

for the number of unigrams through four-grams that the candidate has in com-
mon with the reference.
An example is presented in Figure 2.13. When comparing the first candidate sen-
tence to the reference, we get a perfect BLEU score because both sentences are
identical. However, when we compare the scores of candidates 2 and 3, a major
flaw of the BLEU metrics stands out: although candidate 2 is semantically closer
to the reference than candidate 3, it obtains a lower BLEU score due to having
one more word than the reference.

On Figure 2.13 we can see that the second candidate yields a lower BLEU score
than the third one, despite being semantically closed, due to candidate 2 being
longer than the reference. Callison-Burch et al. (2006) also illustrate the limitations
of the BLEU score by arguing that there are millions of variations of a predicted
translation that would get the same BLEU score despite not being syntactically,
grammatically or even semantically equivalent.

Papineni et al. (2002b) define their modified precision score, pn, for each n-gram
length by

pn =

∑
S∈R

∑
ngram∈S Countmatched(ngram)∑

S∈R
∑

ngram∈S Count(ngram)
. (2.31)

In Equation 2.31, S represents a sentence,R the corpus of references, and ngram
a word in sentence S. The term Countmatched(ngram) corresponds to the count of
tokens in common between the reference and the candidate.

The formulation of the BLEU score includes a term of "Brevity Penalty" to
penalize overly short candidate sentences. In Equation 2.32, c refers to the length
or the candidate sentence, while r refers to the length of the reference sentence?

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(2.32)
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The complete equation of the BLEU score (Equation 2.33) is obtained by com-
bining Equation 2.31 with Equation 2.32 and assigning a weight wn to each value
of pn (in practice, all wn are equal).

BLEU = BP · exp

(
N∑
n=1

wn log pn

)
(2.33)

ROUGE Score. ROUGE (Lin 2004) stands for Recall-Oriented Understudy for
Gisting Evaluation. Contrary to the BLEU score, the ROUGE metric is rather
recall-oriented as it evaluates how many n-grams of the reference are represented
in the candidate sentence, with respect to the reference’s length. It is usually
declined in 3 metrics: ROUGE-1, ROUGE-2 and ROUGE-L. The first two metrics
are equivalent to the BLEU-1 and BLEU-2 recall-oriented, while ROUGE-L is a
Longest Common Subsequence based statistic. The ROUGE metric can also be
declined in ROUGE-precision and ROUGE-F1 because it was conceived as an
extension and improvement of the BLEU score. However in this work we will
only report the recall value of the ROUGE for illustration purposes.

Figure 2.14 – Illustration of the ROUGE score.. test

Figure 2.14 re-uses the example of Figure 2.13. Since the Recall-Oriented Un-
derstudy for Gisting Evaluation (ROUGE) score is recall-oriented, both candidates
2 and 3 have the same score because they have the same number of n-gram in
common with the reference. However, candidate 4 has one less common n-gram
with the reference, dropping both ROUGE-N scores, and it is in the middle of the
sentence, which affects the ROUGE-L score.

ROUGE-Nrecall =

∑
S∈C

∑
ngram∈S Countmatched(ngram)∑

S∈C
∑

ngram∈S Count(ngram)
. (2.34)
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In Equation 2.34, S represents a sentence, C the corpus of candidate sentences,
and ngram a word in sentence S. The term Countmatched(ngram) corresponds to
the count of tokens in common between the reference and the candidate.

Perplexity. The Perplexity metric is often used to assess the fluency of a gen-
erated sequence. It evaluates the likelihood of an outputted sequence given a
reference LM’s probability distribution.

2.3.4 Conclusion.

Generative models are an ever-growing part of Deep Learning (DL) and specifi-
cally NLP research. The Encoder-Decoder architectures allow for both a compres-
sion of the input data and the learning of a meaningful, versatile latent represen-
tation. Recent advances such as the Transformers allowed for impressive results,
both qualitatively and quantitatively in NMT and Automatic Summary. However
the current methods to evaluate those models are insufficient, and the scientific
community is actively working on proposing new ones.

2.4 Recommendation, NLP and Generative Models
for User Representation

The work presented in this thesis is at the crossroads of three major domains:
Recommendation, Natural Language Processing (NLP) and Generative Models.
We tackle User Representation (UR) through the prism of Representation Learning
(RL) and in this chapter, we detailed the work related our approaches.

The work presented in this thesis stems from Recommendation, as it revolves
around UR (a crucial part of the domain). Our work draws from both Collaborative
Filtering (CF) and Content-based (CB).

We are interested in the interactions between the users and the items (in our
case, the jobs 9) and adopt a RL approach, philosophically close to Matrix Factor-
ization (MF)-based models that learn latent, abstract representations of both the
users and the items of their systems. However, we put the focus of our work on
textual descriptions, which is traditionally a CB approach.

The originality of our work partly lies in the fact that the user interactions with
the system are textual, thus requiring an NLP-based hybrid approach.

9. This is detailed in Chapter 4
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The textual nature of our data naturally led us to consider NLP models and
methods. Indeed, Chapter 3, Chapter 4 and Chapter 5 all rely on the textual
interactions with the system, which are text reviews for Chapter 3 and professional
experiences for the other chapters.

But the choice to focus our approaches on NLP are also motivated by the hypoth-
esis that user-generated texts are a great way to faithfully and uniquely represent
a user. Since there is an infinity of possible ways to describe the same opinion or
the same professional experience, we consider the words and syntax chosen by a
user to be unique, and to some extent, defining of the user.

Additionally, we believe that work on NLP around user profiles could be bene-
ficial beyond our application, as this kind of data is widely available.

Finally, we are very interested in proposing explainable predictions, in line
with the work of Explainable Artificial Intelligence (xAI). To this end, we use NLP

methods to provide a level of explainability in our work, namely by leveraging
textual generative models.

We leverage Generative Models for several reasons and purposes. We initially
considered a generative model in order to address our next job prediction task,
as we quickly set aside the classification approach. The lack of standard and the
noise of the data made it unreasonable to adopt a classification framework, so
instead we chose to generate a person’s next job (title and description).

Besides, as we mentioned above, models that generate text are a great approach
to explainability, as they literally speak to you. The text they output is a direct
explanation for their prediction.

From a broader point of view, Generative Models have played a crucial role
in the last years’ rise of RL, and with good reason: the only way for a model to
generate new data from a given input if to have understood said input completely.
This is especially true in NLP, where they are at the heart of most recent architec-
tures, which are typically pre-trained on a self-supervised generation task. The
representations given by those pre-trained models are versatile and reusable, and
can be fine-tuned on other down-stream tasks.
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Chapter abstract

In this chapter, we aim at learning relevant profiles from both ratings and
textual reviews in the context of Recommendation. We attempt to make better
use of review texts and seek to build a Recommender System (RS) that does
not fully rely on Matrix Factorization (MF).
In order to achieve this goal, we combine a classic recommendation model to a
hierarchical neural network, which was first dedicated to sentiment analysis.
The addition of a sentiment analysis model allows us to better understand a
user’s tastes, and to refine the recommended items given those tastes.
We propose to add some personalized attention parameters to the hierarchical
neural network, and demonstrate that this modified attention is useful to
build effective recommendation profiles: not only does it improve the global
recommender system performance, but it also enables us to provide suggestion
explanations by exploiting the underlying learned textual latent space.
This latter point is a noteworthy way to overcome the classical black-box
phenomenon in Collaborative Filtering (CF) approaches. The work in this

chapter has led to the publication of a conference paper:

• Charles-Emmanuel Dias, Clara Gainon de Forsan de Gabriac, Vincent
Guigue, and Patrick Gallinari (2018). “RNN & modèle d’attention pour
l’apprentissage de profils textuels personnalisés”. In: CORIA 2018 -
15ème COnférence en Recherche d’Informations et Applications. Rennes, France.
url: https://hal.archives-ouvertes.fr/hal-02503473.
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In order to help users access an ever-increasing number of online resources, RSs
have been developed to select and sort out content likely to appeal to them. They
can, for example, suggest where to dine, compose newsletters, provide individu-
alized advice on which products to buy or, more simply, which movies to watch.
These systems, which seek to model user preferences and product attributes, aim
to provide truly personalized access to information.

To achieve this goal, the learned profiles must be able to provide accurate rec-
ommendations. However accurate, it is equally important to explain why these
recommendations are appropriate (Tintarev and Masthoff 2007), as detailed in
Section 2.1. Recommendation algorithms have reached a first step of efficiency
(and popularity) with the Netflix challenge (Bennett, Lanning, et al. 2007), which
established CF by MF as a powerful framework (Koren et al. 2009), as described
in Section 2.1.1. In the last few years, these algorithms have become more and
more efficient thanks to the consideration of a growing number of factors such as
time (Koren 2010; J. J. McAuley and Leskovec 2013; Sánchez and Bellogín 2018b),
social links (Guy 2015) or even text (J. McAuley and Leskovec 2013).

Still, these quantitative improvements have done little to improve the explana-
tory side of the recommendation and recent CF methods are still often described
as black boxes. This lack of interpretability in favor of performance is a direct
result of the choices made in modeling profiles. Indeed, since the Netflix compe-
tition in 2006, user (and product) profiles are derived from a MF process of a set
of scores that structures an abstract latent space where the dimensions are diffi-
cult to interpret. However, in practice, ratings are often accompanied by written
opinions. Section 2.1.4.2 details how these texts have already been successfully
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exploited to improve the quality of prediction (J. J. McAuley and Leskovec 2013;
Ling et al. 2014). Almahairi et al. (2015) have also proposed to re-project the
recommendation into the review space to provide explanations and thus an in-
terpretable recommendation. Textual data also represents an elegant way to deal
with cold start, so problematic in CF approaches (Dias et al. 2017b).

In this paper, our objective is to present an architecture based on Deep Neural
Networks (DNNs) capable of defining highly relevant user profiles and items from
the ratings and review texts. It is worth nothing that this work was conducted
before the advent of readily-available Transformers, and can thus be considered
as an extension of the work laid by Word2Vec. We build on work in sentiment
analysis which, based on a hierarchical attention model that extends the work of
Z. Yang et al. (2016), can automatically detect words and phrases of interest. The
original assumption of our approach is that we consider the sentiment classifier
as a personalized reading model and believe that a user’s attention to words
and phrases can define their profile in an original and relevant way. Besides, this
sentiment classifier makes use of the attention mechanism to propose a way to
explain the suggestions outputted by the system, in line with the Explainable
Artificial Intelligence (xAI) movement.

Our system is perfectly integrated, so it is possible to see it as a sentiment classi-
fication system with personalized weighting parameters on words and sentences
or, conversely, as a recommendation system using text and attention as a way to
regulate learning, while allowing to interpret the suggestions made. Moreover,
we believe that collaborative profiles mainly encode user and item biases while
text allows us to better understand the important aspects of a product for the
user, focusing on examples where the aforementioned biases are insufficient to
reconstruct the observed rating.
We will first detail the model associated with our work (Section 3.1), before demon-
strating the quantitative and qualitative interest of our approach (Section 3.2).

3.1 The model

Our model, called Hierarchical Recurrent Attentive Neural Network for Recom-
mendation (HRAN), aims at using text as a medium to model users and products
in an interpretable vector space. It is composed of two parallel modules.

The first one is a classical Multi-Layer Perceptron (MLP) with two layers. It
takes as input the user and product profiles to estimate a score. As such, it plays
the same role as the MF in CF. The first hidden layer of this module extracts low
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Figure 3.1 – Detail of a bidirectional-attentive recurrent module (RBA). The si
designate either words or sentences depending on the hierarchical
level considered.

(word) level features about the user’s preferences, while the second extracts high
(sentence) level features.

The second one is a hierarchical Recurrent Neural Network (RNN) composed of
two Recurrent Bidirectional Attentive modules (RBA) (as introduced by Z. Yang
et al. (2016)) which allow to encode opinions by successively analyzing the words
of a sentence, then the sentences of the review. Its role is to analyze the review of
a user on a product and to predict its polarity. This last network is dependent on
the first one because its two RBA are linked to the hidden layers of the first one:
the RBA’s total attention vector is a combination of a global attention vector and a
learned personalized attention vector that is outputted by the corresponding MLP

layer (the first for the word level, the second for the sentence level). This is illus-
trated on Figure 3.2. This attention combination leverages the fact that the words
and sentences that a user choses allow to define his profile for recommendation
applications.

First, we detail the MLP-for-recommendation part of our model. Then, we ex-
plain the construction of a RBA. Finally, we formally describe the two-headed
architecture of the global network.

3.1.1 Multi-Layer Perceptron for Recommendation

The first part of the network is a classical MLP composed of two hidden lay-
ers and a regression layer. It takes as input a pair of representations (user, item)

which it concatenates and transforms sequentially into two sub-representations
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Figure 3.2 – General view of the model.

`w and `s.

The MF implementation of CF allows to extract continuous latent profiles of
users P = {pu}u=1,...,Nu ∈ RNu×Z and products Q = {qi}i=1,...,Ni ∈ RNi×Zdirectly
from the score matrix, so that the predicted score r̂ui results from the dot product
between the product i and the user u profiles:

r̂ui ≈ qTi pu, qi,pu ∈ RZ×Z (3.1)

In the manner of topic modeling methods, each latent dimension of the profiles
is assumed to correspond to a concrete aspect. The presence of the same aspect
in two profiles causes a local correspondence that raises the score.

In recommendation, the scores are highly biased. Some people tend to always
give good/bad ratings and some products tend to be over/under rated. Classi-
cally, these biases are modeled by adding a global mean µ, a product bias bi and
a user bias bu to Equation 3.1. The prediction then takes the following form:

r̂ui = µ+ bi + bu + qTi pu (3.2)

and the profiles are learned in a regularized way to avoid overfitting:

q?, p?, b? = arg min
q,p,b

∑
(u,i)

(rui − µ+ bi + bu + qTi pu)
2

+λ(||P ||2F + ||Q||2F + b2
u + b2

i )

(3.3)

In this formulation, the latent profiles capture only the deviation from the mean,
allowing an estimate to be offered even when a profile is missing.
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Formally, let ` = [u; i] be the concatenation of a pair of user and product repre-
sentations. The predicted score r̂ui is simply obtained by regression, successively
transforming ` into `w, `w into `s and finally `s into r̂ui.

`w = tanh(W `w`+ b`), `s = tanh(Wws`w + bw), r̂′ui = tanh(W sr`s + bs) (3.4)

Plugging Equation 3.4 into Equation 3.2 yields:

r̂ui = µ+ bi + bu + tanh(W sr`s + bs) (3.5)

The objective of this network is to minimize the Mean-Squared Error (MSE) on
the score prediction.

The choice of a two-hidden-layer perceptron allows us to extract low level `w
and high level `s features. We will use `w to encode attention on the words of
the pair (user u, product i) while `s will encode attention on the sentences. The
transition from one network to the other is done using the projection described
in Equation 3.8.

3.1.2 Recurrent Bidirectional Attentive module

This module is the main block of the sentiment prediction model. It takes as
input a sequence and an attention vector, indirectly weighting the elements of the
sequence, to return a representation of the sequence (Figure 3.1). The attention
mechanism serves many purposes: it acts as an aggregator of the RNN’s hidden
representations hi, as a regularizer and as an explanation module at inference
time. The originality of our approach, at this level, lies in the personalization of
the attention calculation.

In order to model textual reviews, we rely on Recurrent Neural Network (RNN)s,
that have the advantage of naturally handling sequences of variable length. As
detailed in Section 2.2.2, the hidden state of a RNN cell at time t is a function
of the current input xt and of the previous hidden state ht−1. This formulation
allows for the modeling of sequential information such as text, and in this case,
sentences of the review.

Formally, let us consider a sequence S = {s1, . . . , si, . . . , sn} composed of n
elements. To obtain its representation es, the sequence is first passed through a
bi-directional RNN RF = {

−→
RF,
←−
RF} which, by traversing the sequence in both

directions, encodes the intra-sequence content.
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The outputs of the RNN are concatenated at each time step to obtain the set
of hidden representations hi (Equation 3.6). Here, we use a Long Short-Term
Memory (LSTM) as the recurrent cell.

hi = [
−→
hi ;
←−
hi ],

−→
hi =

−→
RF (si),

←−
hi =

←−
RF (si), (3.6)

We also make use of the concept of attention to improve the representation of
the review. Indeed, the attention mechanism enables the model to learn which
word of the review is most relevant to the task at hand (here, rating prediction).
The attention parameters weight the information to be considered in the sequence
and thus focus on the discriminating elements.

Thus, each hi element is non-linearly projected into the attention space to com-
pute the αi affinity with an attention vector a according to the following formula:

es =
n∑
i=1

αihi, ti = tanh(W uhi + bu), αi =
exp(aᵀti)∑
i exp(aᵀti)

(3.7)

These affinities α are normalized using a function softmax so that they sum to 1.
The attention vector a, which can be seen as an average representation of what is
important, automatically learns the discriminating items with respect to the task.

In order to personalize the attention, we define the vector a as a combination
of a global attention vector ag and a personalized attention vector au,i from the
neural network dedicated to note prediction. Formally, the final a vector is defined
as:

a = tanh(au,i + ag), au,i = W `` (3.8)

where au,i comes from the recommendation network and corresponds to the
merged profile of the item and the targeted user ` (see next section). The matrix
W ` allows to switch from one network to the other in an efficient way.

The global vector ag aims at encoding general adjectives related to polarity
prediction (i.e. bad, great, awesome) whereas au,i allows the network to focus on
more precise words related to the affinities of a person with respect to a product
(i.e. brand name, specificities, attributes). Examples of words selected by attention
are shown in Figure 3.5.

3.1.3 General Architecture

As shown in Figure 3.1 and Figure 3.3, our architecture (HRAN) is composed
of two distinct-yet-linked neural networks. A MLP for recommendation (taking
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Figure 3.3 – Detailed view of the model for an input of n sentences of m words.
(Top) The sentiment analysis RNN , consisting of two RBAs, one for
words (RBAw) and one for sentences (RBAs). (Bottom) Multi-layer
perceptron for recommendation.

profiles as input and predicting a score) and a hierarchical RNN for sentiment
analysis (taking text and estimating its polarity). HRAN is thus trained in an Multi-
Task Learning (MTL) fashion, since both its neural networks are optimizing distinct
losses. This MTL framework is a common strategy in Representation Learning (RL)
as it allows for the representation of complex, heterogeneous entities (in this case:
the ratings and the reviews). We first describe the MLP before returning to the
hierarchy of the sentiment analysis module.

3.1.3.1 Hierarchical Sentiment Analysis Network

The second network takes only the opinions as input and tries to predict their
polarity. It is composed of two RBAs, used one after the other in order to hierar-
chically encode the opinions (first, at the level of words, and then, of sentences)
and of a classification layer. After the double encoding, the review is represented
by a vector er:

RBAw : ({w}, `w) 7→ es RBAs : ({es}, `s) 7→ er (3.9)

The words w of the sentences are encoded in es then the sentences are aggre-
gated in er.

Finally, this er representation passes through a classification layer of weights
W pred. We use an softmax to obtain a distribution in the space of possible scores:
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psent = softmax((W preder) + bp) (3.10)

The goal of this network is to minimize the Negative Log-Likelihood (NLL) on
the score prediction, which is equivalent to trying to predict the polarity of the
review.

3.1.3.2 Hyper-parameters, Objective and Training

Our models are implemented using Pytorch 1. We jointly minimize two objective
functions: the MSE (for the recommendation MLP) and the NLL (for the sentiment
classification network). Note that optimizing this joint objective allows us to
alleviate the shortcomings of MSE mentioned in Section 2.1.5, while still allowing
us to compare ourselves to other models. The entire network parameters are
trained by gradient descent, using the Adam optimization algorithm (Kingma
and Ba 2015). The final minimized cost is the sum of the MSE and the NLL. The
hyper-parameters are the same for all the experiments that follow. The hidden
layers are the same size as the word and phrase embeddings: 200 for the RBA and
words and 40 for the MLP (20 for users, 20 for products).

3.2 Experiments and Results

First, we present the data used to evaluate our model. The first set of evaluations
proposed is quantitative, it consists in evaluating the performances of our models
in sentiment analysis (classification of scores) and in recommendation (prediction
gap). Then, in order to qualitatively evaluate the model, we propose to observe
the learned representations.

3.2.1 Data and Pre-processing

For our experiments, we rely on consumer reviews extracted from Amazon (J.
McAuley et al. 2015a). We have selected five review bases from different thematic
areas whose statistics are detailed in the Table 3.1. The cold start problem is not
addressed in this chapter and the original review bases are subsampled: only the
reviews of users and products with at least five reviews are kept.

To separate reviews into lists of sentences and sentences into lists of words, we
use the library spacy 2. The words are encoded into representations learned during

1. http://pytorch.org/
2. https://spacy.io/

http://pytorch.org/
https://spacy.io/
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Dataset #Reviews #Users #Items p(1) p(2) p(3) p(4) p(5)

Instant Video 37126 5130 1685 4,6 5,1 11,3 22,7 56,3
Digital Music 64706 5541 3568 4,3 4,7 10,5 25,6 55,0
Video Games 231780 24303 10672 6,4 5,9 12,2 23,6 51,9
Clothes S.J. 278677 39387 23033 4,0 5,5 10,9 20,9 58,6
Movies 1697533 123960 50052 6,1 6,0 11,9 22,6 53,4

Table 3.1 – Statistics of the different scores for the Amazon databases used. The
scores are in percentage. Each column p(r) reports the percentage of
items in the dataset with the rating r.

training. Only the 10,000 most used words are kept, the others are replaced by a
representation dedicated to unknown words. Finally, the data are separated into
five equal sets for the cross-validation procedure. For each evaluation campaign,
we use four sets (80 % of the data) for training, and one set (divided in two) for
validation (10 %) and evaluation (10 %).

3.2.2 Sentiment Analysis Evaluation

Our first task is sentiment analysis, which involves predicting the polarity of a
text. We propose to compare the performance of our model against three bench-
mark models that also use text representations:

• FastText (Bojanowski et al. 2016). Coming from the work around word2vec,
the idea is to learn representations of words specific to the classification
task. These representations are averaged (over the review) and classified by
logistic regression.

• HAN Hierarchical Attention Networks for Document Classification (Z. Yang et al.
2016): This model is equivalent to our hierarchical RNN, without the person-
alized attention.

• NSUPA Neural Sentiment Classification with User & Product Attention (Chen et
al. 2016): This model is an evolution of HAN aiming at taking into account
the user/item biases, as in our approach. To do so, the authors propose
to project the text into an attention space parameterized by user and item
representations. In their formulation, this amounts to replacing ti in the Equa-
tion 3.7 by ti = tanh(W tu[hi; i;u] + bu). Where Chen et al. (2016) propose to
inject the profile parameters directly into the sentiment classification model,
we propose a more flexible approach, relying on two independent models
connected by the W ` parameters (Equation 3.8).
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• SVM Support Vector Machines. SVMs have given very interesting results in
sentiment classification in a binary context (merging negative reviews on
one hand, positive reviews on the other hand and eliminating ambiguous
reviews –3 stars–) (Pang, L. Lee, et al. 2008). Previous papers (Z. Yang et al.
2016; Chen et al. 2016) report poor performance under fine classification on
the five stars. We indeed did not obtain satisfactory results in this setting,
regardless of the preprocessing considered. For this reason, the SVM results
are not present in the following result table.

We evaluate the sentiment analysis capabilities of the models in terms of cor-
rect classification rate (accuracy). The results are reported in Table 3.2. Our first
benchmark, FastText, is largely outperformed by hierarchical models that take
sentence structure into account. The richness of the word representation space
and the relevance of this space for opinion analysis are not enough to compensate
for the loss of document structure and the weakness of the word aggregation
function (a simple average).

The comparison of the three hierarchical models shows the importance of
modeling user/product biases to pass a performance threshold: these biases are
present in NSUPA and in our approach (HRAN) but not in HAN. Between our
proposal and NSUPA, the performances are very close. The challenge of our for-
mulation was to reach the state of the art performances in sentiment classification
and to better transfer the relevant information to the recommendation profiles.

FastText HAN NSUPA HRAN

Instant Video 62.60 64.50 65.88 66.60
Digital Music 63.58 68.03 70.08 68.80

Video Games 62.51 67.67 68.60 69.11
CSJ 67.83 71.96 71.99 71.49

Movies 64.56 68.95 71.20 71.62

Table 3.2 – Accuracy metric on the sentiment analysis task. The reported scores
are averaged over 5 splits (in %).

3.2.3 Recommendation Evaluation

The second objective of our approach is score prediction, a classical task in CF.
We opted for a standard reference in the domain: MF, which infers the scores
only from the user profiles and items learned from the scores, without taking the
reviews into account.
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Dataset (#reviews) Mean (µ) w/offset MF TransNet HRAN

Instant Video (37.126) 1.25 1.137 1.024 1.526 0.937
Digital Music (64,706) 1.19 0.965 0.903 1.522 0.838
Video Games (231,780) 1.45 1.281 1.267 1.313 1.076
CSJ (278,677) 1.215 1.123 1.365 1.285 1.081
Movie (1,697,533) 1.436 1.148 1.118 1.359 1.058

Table 3.3 – RMSE in rating prediction. The reference values are the global mean
µ, the global bias (Equation 3.2), a MF and the Transnet model. The
values presented are the average RMSE over the five ensembles.

On the contrary, the second reference, TransNet (Catherine and Cohen 2017),
only takes the text into account: TransNet adopts an approach based on the
matching between the texts of the user’s past and the texts associated with the
target item, in the way that was proposed by Dias et al. (2016). The r̂ui score
is directly predicted from the existing textual profiles, without going through a
factorization of the observations.

As usual in recommendation, we put these performances in perspective against
trivial models predicting respectively the overall mean of the dataset (µ) and
the mean corrected for user and item bias (w/offset). The results are presented in
Table 3.3. We use Root Mean Square Error (RMSE) as the evaluation measure 3.

In terms of rating prediction, our model is systematically better than the refer-
ence models. The TransNet model is disappointing since it is almost systematically
below average -except on the most supplied dataset-: being based only on text, it
requires a lot of data to be competitive. Our model is far superior to the MF, which
demonstrates the ability of our architecture to extract relevant profile information
from textual data.

3.2.4 Attention Visualization

One of the major advantages of our model is the possibility of using attention
modules for introspection in the context of the sentiment classification task. In-
deed, the attention vectors allow to isolate the discriminating elements (words
and sentences) in the corpus. We proceeded as follows: the set of attention
vectors of the RBAw module of the entire n evaluation sentences is retrieved:
attw = {α0, ..., αn}. The index of the maximum value of each of these vectors indi-

3. Our experiments initially incorporated the hybrid thematic factorization model (J. McAuley
and Leskovec 2013). However, the code provided by the authors consistently gives inferior results
to the standard MF. For this reason, the results from this approach are not presented in the table
below
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cates which word represents the most interest in each sentence; these words are
therefore the most discriminating. For the corpus Video Games, the words resulting
from the introspection of the model are represented as a word cloud in Figure 3.4.
Globally, the cloud shows feeling words (often very positive, in relation with the
unbalanced distribution of the data presented in Table 3.1).

Some domain-related words (e.g. game, playing) also appear.

Figure 3.4 – Cloud of the most discriminating words in the dataset Video
Games according to the global attention vector. The size is propor-
tional to the number of times the word is the most important in a
sentence of the corpus.

Introspection becomes more interesting when we consider separately the two
components of attention ag –general term– and au,i –personalized attention– (cf
Equation 3.8). For general attention, as in the previous experiment, the extracted
words are mainly generic polarizing words like good, worst, love(Figure 3.5 - left).

The Figure 3.5 (right) illustrates on the contrary the words put forward by
personalization. By considering the whole population, we have highlighted the
most frequently recurring words: personalization allows the model to focus on
words that are much more specific than those coming from the generalist attention;
these words are similar to attributes in the video game domain. We observe
characteristic entities such as Wolfenstein, Lara (Croft), Zelda or publishers such as
Sony, Blizzard, Capcom. It is this information that, integrated with user and product
profiles, allowed us to reach a performance threshold on the recommendation
task.
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Figure 3.5 – Word clouds. (Left) words discriminating for the model using only
the generalist component of attention in the equation (Equation 3.8)
– (Right) words only discriminating in the sense of the personalized
component of attention in the equation (Equation 3.8).

3.2.5 Explaining suggestions with attention

One of the challenges that drives us to deal with recommendation in a textual
space, beyond the improvement in score prediction, lies in the ability to automat-
ically explain to the user of the system the suggestions that are offered to him.
Our personalized sentiment analysis model should act as a filter to replace the
user in reading product reviews: we want to automatically isolate the sentences
and words that are likely to attract their attention.

To study this possibility, we ran our architecture on a user-item pair (Figure 3.6):
the figure on the right gathers all the outputs of our two-headed model, a score
prediction, an extraction of the important words, and finally, thanks to the atten-
tion module on the sentences, an extraction of the sentences important for the user
among the reviews on the target item. The sentences presented are ordered by
attention scores (in blue). The figure on the left shows what the user has actually
written on this item 4.

Commercial recommendation systems are starting to integrate explanation
mechanisms to get out of the black box logic. These explanations are generally
centered on the target item. We demonstrate here the possibility of personalizing
the explanations to each user of the system.

4. The attentions on the sentences written by the user himself are higher than on the sentences
of other authors, which seems logical.
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Figure 3.6 – Example of attention analysis for recommendation explanation.
On the left, the review written by the user and its associated score. On
the right, the different outputs of our system: the predicted score, the
sentences we consider useful for the user –extracted from the reviews
on the targeted item–, the keywords associated with the target.

3.3 Conclusion

In this paper, we focused on user and product modeling via online review
corpora.

Our goal was to better integrate text in the recommendation process. Based on
work in sentiment analysis, we presented an architecture composed of two neural
networks operating in parallel and linked by an attention mechanism.

We have shown that such a model allows to improve the recommendation per-
formance (accuracy of predicted scores) while offering an elegant way to explain
the system’s suggestions.

HRAN leverages the representation power of the MTL setting in which it is
trained as well as the text-modeling properties of an attention mechanism, at a
time where Bidirectional Encoder Representations from Transformers (BERT) did
not exist.

Possible extensions of this work would replace the sentiment analysis, RBA-
based part with a Transformer-based architecture. The model’s performances
could then benefit from the computational efficiency and the modeling power of
a Transformer. It would indeed remove the need for stacked Recurrent Networks
and still make the attention mechanism available for inference, assuming the
Transformer’s self-attention is coupled to the global attention vector.
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Chapter abstract

Regardless of the use-case, a user profile is often composed of several fields or
attributes of different nature.
Our work focuses on leveraging the natural-language fields of a user pro-
file to build a representation that contains the information of the categorical
attributes present in the user profile.
We set our work in the context of an under-studied field: Professional Profile
Extraction – a crucial challenge for any Human Resources (HR) department.
In this paper, we propose an approach to learn and evaluate professional em-
beddings.
We first highlight the technical issues associated with this specific data. Then,
we propose an architecture that compares different word embedding models
to encode the textual information. Finally, we learn user profiles and propose
three original evaluation tasks to illustrate the strengths and weaknesses of
our approach.

The work in this chapter has led to the publication of a conference paper :

• Clara Gainon de Forsan de Gabriac, Vincent Guigue, and Patrick Gallinari
(2020). “Resume: A Robust Framework for Professional Profile Learning
& Evaluation”. In: ESANN 2020 - 28th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning. Bruges,
Belgium. url: https://hal.archives-ouvertes.fr/hal-02503464.
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Learning to match candidates with job offers is a major challenge for any in-
stitution’s HR department. The fast development of online job-boards (Monster,
JobTeaser etc.) and professional social networks such as LinkedIn 1, makes this task
increasingly crucial (Adikari and Dutta 2014). As such, improving profile model-
ing of users on their past experiences (jobs, education) may allow the development
of new tools to suggest relevant skills and to connect unformatted job titles and
descriptions to standardized ontologies like ESCO 2.

In this work, we propose a method to learn and evaluate professional profiles
of users using the information contained in their LinkedIn profile. In doing so, we
extend what could be considered a Recommendation problem (where we would
aim at recommending an applicant the best suited job offer) into a new applicative
domain: Professional Profile Learning.

Unlike traditional Expert Matching methods that mainly rely on categorical
data (W. Tang et al. 2010; Karimzadehgan et al. 2008; Wenbin Tang et al. 2012),
we aim at building meaningful professional representations using user-generated
texts only (their job titles and descriptions, and their educational background)
during training in a self-supervised setting. Our hypothesis is that a professional
representation is well constructed if we can learn to retrieve users-specific infor-
mation from it.

In other words, we want our profiles to encode a sufficient amount of infor-
mation to predict the future of users’ careers, the skills, and the industrial field
associated with their profile. This approach is in line with the of Representation

1. https://www.linkedin.com/
2. https://ec.europa.eu/social/main.jsp?catId=1326

https://www.linkedin.com/
https://ec.europa.eu/social/main.jsp?catId=1326
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Figure 4.1 – A high-level illustration of the Next Job Generation Task. The user
profile is built by encoding their t first professional experiences (or
jobs). Then, a decoder is trained to generate the user’s last job, Ĵobt.
This formulation is a practical proxy for learning to predict a user’s
next job.

Learning (RL) and to some extent, Multi-Task Learning (MTL). We aim at lever-
aging the implicit links between all the data present in a profile to evaluate the
constructed user representation. Besides, the originality of our evaluation method
lies in the textual generation of a user’s next professional experience (illustrated
on Figure 4.1). We feel this task is a demanding and relevant one, as it can only be
made possible by fully understanding the user’s career. Note that we address the
next job prediction task with a generative approach rather than a classification
one for two reasons. Firstly, the high noise level of the data makes it irrelevant
to turn professional experiences into classes (because no two people will write
about the same experience in the same way). Secondly, the generative approach
also provides the Explainable Artificial Intelligence (xAI) part of our model, as
it outputs text that is understandable and possibly explainable with regard to
the user’s career, which would not have been the case with a classification task.
This design choice however brought its lot of challenges, namely regarding the
evaluation metrics, as explained in Section 2.3.3.

Related Work. The topic of professional profile representation learning has
been gaining traction over the past years, either through fake profile detection
(Adikari and Dutta 2014; Adikari and Dutta 2020), job recommendation (Ken-
thapadi et al. 2017) or job prediction (Liangyue Li et al. 2017; Paparrizos et al.
2011). Similarly to these works, we are interested in learning to represent a user’s
professional profile. However, we differ from those work on four main aspects.

Firstly, we only use the past experiences or the education of a user to learn
their representation, then evaluate the representation with the remainder of the
data available on the profile (skills, industry and next experience). We indeed
propose an evaluation framework that can be applied and extended to broader
applications (other social network profiles, recommendation. . . ).
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Secondly, while Kenthapadi et al. (2017), Liangyue Li et al. (2017), and Paparri-
zos et al. (2011) predict a user’s next job, they only focus on the job title, when
we also generate a job description. This enables us to better understand a user’s
individual professional career, and to identify their specificity, interests and so on
more precisely.

Thirdly, our approach is closer to Text Summarization (Mani and Maybury
1999; Paulus et al. 2017) in the sense that we do not rely on supervision to
learn profiles and use the BiLingual Evaluation Understudy (BLEU) score as an
evaluation metric.

Lastly, those works do not study the professional profile representation of a
person using only their educational background.

The robustness of our approach relies on recent advances in the field of Natural
Language Processing (NLP) and in particular regarding embedding models. While
text representation learning has long been performed at document level in a bag-
of-words setting (Blei et al. 2003), Word2vec Mikolov et al. (2013b) allows us to pre-
dict words in a local context, opening the way for meaningful word embeddings
and text generation applications. A second generation of word embedding mod-
els introduces solutions to take into account out-of-vocabulary words through
subword information encoding (Bojanowski et al. 2016) and even more recent
proposals focus on contextual embeddings and generative settings to improve
sentence understanding (Peters et al. 2018).

Professional Profile Learning: A new application domain. Several technical
issues make this problem difficult: professional and educational experiences are
free texts: not only are they noisy and subject to typos, but they also prevent us
from adopting a classification framework, as there are as many experiences as
there are users. Moreover, aggregating different jobs to build a single user profile
is non-trivial, as users often mention several times the same job before obtaining
a promotion. Finally, we chose a challenging framework where the final tasks
–skills, industry and next-job predictors– are used for evaluation purposes only,
without helping to refine the profiles. We want to demonstrate our ability to en-
code relevant information in a very compact embedding from a noisy data source.

Our framework Resumé relies on robust word embedding models to encode
textual information (Bojanowski et al. 2016; Peters et al. 2018). We then aggregate
job or education embeddings obtained via those models to build a user repre-
sentation. On top of this framework, our main contribution lies in the evaluation
approach; we were provided with more than 700,000 LinkedIn pages (illustrated
in Figure 4.2) which enables us to measure our ability to predict skills and in-
dustrial field for our set of users. We also provide an original Recurrent Neural
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Network (RNN)-based generative approach for the next job prediction task as well
as an evaluation procedure relying on a Neural Machine Translation (NMT) metric
(Papineni et al. 2002a).

Ethics of Professional Profile Learning. Learning use profiles from such sen-
sitive data is as ethically tricky as it is technically challenging. For starters, our
user representations are necessarily biased because of the LinkedIn profiles have
been scraped at a given time, yielding incomplete careers, buzz words that do not
reflect today’s trends and so on. Besides, while our data do not contain the name
of the users, they are not totally anonymous since they contain personal informa-
tion like high school names and job locations. Moreover, our data are biased by
the fact that they come from LinkedIn profiles, which means that they represent
people with an access to the internet and an ease of use of social networks. They
may also be biased by the fact that they might contain profiles of people that have
suffered from discriminations in their professional life.

The biases of this data coupled with the inherent opacity of Machine Learn-
ing (ML) models make it is easy to imagine how the work presented in this
manuscript could be used to harmful ends. One could design a model that learns
to discriminate people coming from a certain region, country or even high-school
and deflect the blame onto the learned model, arguing that algorithms cannot be
xenophobic.

However, learning professional user profiles can also do a lot of good. From
a HR standpoint, professional user profiles could be used to better match job
offers with applicants, all the while adding some novelty and serendipity to the
traditional process (which often consists in selecting candidates that have similar
backgrounds than actual employees). For an employment agency, it could be used
to uncover discriminative behaviors from companies, as well as an overview of
the job market at a given time. Finally, from a user’s point of view, it could be
a tool for highly personalized professional coaching, giving insights regarding
what training would help them attain the job they want.

In this chapter, we introduce our models, detail the experimental settings in
which we built our representations and, finally, we show that the noise level in
the raw data leads to a surprising ranking of our approaches.

4.1 Models

Each user’s raw profile consists in a set Eu of chronologically ordered textual
experiences: Eu = {e0, . . . , eT , eT+1}. An experience can either be a professional
(it is then referred to as a “job”) or an educational one (“edu”). The user is also
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Professional	Experiences

Project	Manager
Leader	of	a	group	of	7	people	and	responsible	of	relations	with	a
subcontractor.	Development	of	an	open-source	user-friendly	web
solution	to	analyze	geographical	[...]

Text

Deputy	Project	Manager	&	Developer
Creation	of	a	service	translating	English	sentences	to	SQL
queries.	Technologies:	SQL,	Java,	Spring,	Natural	Language
Processing	[...]

Software	Development	Intern
Module	Development:	Modules	are	packages	that	can	be
deployed	on	a	Jahia	platform	to	extend	or	modify	it,	they	act	like
plug-ins	[...]

...

Education

Masters	Degree
Obtained	from	Institut	National	Des	Sciences	Appliquées
(INSA),	Engineering	school

High	School	Diploma
Obtained	with	honors	form	Michelet	High	School

Jobt-1

Jobt

Job0

Software 
Development Microsoft 

Office

Management

Java

...

Skills

Information	Technology
and	Services

Industry

Edu1

Edu0

Figure 4.2 – A user profile schema. A user is composed of their professional
experiences, their education, their industry and their skills.
Note that the skills and industry are categorical values, whereas both
the professional experiences and the education are free texts.

associated with a set of skills described as a binary vector in the skill domain:
su ∈ {0, 1}S . The industrial field is denoted bu ∈ {1, . . . , B}.

Our models are composed of an experience encoder that deals with raw texts
and an experience aggregator that outputs a user profile: zet = enc(et), zu =

agg(ze0 , . . . , zeT ).

Then we train three independent components tackling the next job prediction
task êT+1 = dec(zu), the skill prediction ŝu = fs(zu) and the industrial field cate-
gorization b̂u = fb(zu).

4.1.1 Text, Past Experiences and User Representations

We aim at representing a user’s professional information using only their past
experiences. Such data is noisy and contains a lot of out-of-vocabulary or rare
tokens (e.g., product names, degree names, misspelled words . . . ). We thus choose
text-encoding models capable of leveraging subwords information: FastText (Bo-
janowski et al. 2016) and Embeddings from Language Models (ELMo) (Peters et al.
2018).

Word Embedding models. FastText is a word embedding model based on a
skip-gram formulation and optimized using negative sampling. It is more robust
than Word2vec since it relies on subword encoding. Each character n-gram will
correspond to a zg embedding and a word embedding is simply the sum of its
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...

Representation	Building

Aggregation
FastText	pre-trained
FastText	data-oriented
ELMo	pre-trained

Word	Embeddings

...

Representation	Evaluation

industry

Skills	Predictor

Industry	Classi�er

Text	Generator

Figure 4.3 – A schematic representation of our architecture.

subwords’ representations zw =
∑

g zg. Note that the word itself is part of its set
of n-grams. At the word level, the skip-gram formulation is implemented using
a Binary Logistic Loss sliding on the text of size T with a context-window Ct for
the word wt:

BLL(w) =
T∑
t=1

[∑
c∈Ct

`(z>wtzwc) +
∑
c̄ /∈Ct

`(−z>wtzwc̄)

]
(4.1)

with `(x) = log(1 + e−x). As FastText is light and easy to train, we will compare
pre-trained (referred to as FTpt) and specifically trained embeddings (FTCV, FTedu)
on our different tasks.

ELMo is a recent word embedding model relying on contextual embeddings:
words’ representations depend on their contexts. In practice, zw is obtained after
running a Bidirectional Recurrent Neural Network (BiRNN) over the text: zw is the
representation of previous words until w in one direction and of the following
words in the other direction. As opposed to FastText, ELMo relies upon millions of
parameters and we will only use the pre-trained version of this word embedding
model.
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Profile representation. In this work, an experience et is simply encoded by
averaging all its words’ representations (Equation 4.2, Equation 4.3). Then, we
represent users as an aggregation of their experiences (eq. Equation 4.4).

et = (w
(t)
1 , ..., w

(t)
N ) (4.2)

zet =
1

N

N∑
n=1

z
w

(t)
n

(4.3)

zu =
1

T + 1

T∑
t=0

zet (4.4)

Note that in the case of ELMo representations, individual word representations
z
w

(t)
n

are not averaged into zet . We rather define zet as the representation of the
word sequence, that is zet = z

w
(t)
N

with N the length of experience et.

4.1.2 Tasks, Predictors and Decoder

We evaluate the meaningfulness of our user representations through three tasks:
the prediction of their skill set, the prediction of their industrial field and the
generation of their next job. We refer to them as the Skill Predictor, the Industry
Predictor, and the Next Job Decoder.

4.1.2.1 Predictors

Since we aim at evaluating our embeddings’ quality, we made the predictors
simple. Both the Skill Predictor fs and the Industry Predictor fb consist of two
linear layers separated with tanh activation functions and followed by a sigmoid
for the former and a softmax for the latter:

fs(zu) = sigmoid(W>
2 (tanh(W>

1 zu)))

fb(zu) = softmax(U>2 (tanh(U>1 zu)))

When predicting a user’s skill set, we are interested in predicting all the right
skills and only the right skills, placing us in a multi-label classification task. This
predictor is trained to optimize a Binary-Cross-Entropy Loss function. The indus-
try prediction is a simple mono-label classification task. The Industry Predictor is
trained to optimize a Cross-Entropy Loss function.
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4.1.2.2 Decoder

The Next Job prediction, however, is a harder task: it cannot be addressed as
a classification task since the number of unique jobs is of the same order of
magnitude as the number of users. Thus, we choose to generate the title and the
description of a user’s next job eT+1 from their representation zu.

In this context, we implemented a RNN with a Long Short-Term Memory (LSTM)
as the recurrent cell, followed by a linear layer (of weights V ), that decodes zu into
a sequence of words êT+1. At each time step (Equation 4.5), we feed the decoder
both the user representation zu and the last-predicted token.

dec(zu, w
(T+1)
n ) = V >LSTM([zu, w

(T+1)
n ]) (4.5)

= ŵ
(T+1)
n+1 (4.6)

It is trained to optimize a Cross-Entropy Loss function between the predicted
word ŵ

(T+1)
n and the label w(T+1)

n , for every word in the actual sequence.

4.2 Experiments

4.2.1 Dataset presentation

Our dataset consists of over 700,000 LinkedIn user profiles, and almost 5,000,000

professional experiences. General information concerning the dataset are reported
in Table 4.2.1. Finer statistics about both professional and educational experiences
can be found in Table 4.2.1.

Global Dataset Information
Total Profiles 740,983

Train Split 445,097

Valid Split 147,909

Test Split 147,977

Skills Number 523

Industries Number 150

Table 4.1 – General dataset information. The training, validation and test splits
are built following a 60/20/20 partition.
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Number of experience per profile Experience sequence length
Professional Education Professional Education

Average 5.8 2.4 47.5 10.7
Median 5 2 34 10

Min 3 1 5 5

Max 8 4 64 64

Table 4.2 – Table of experience information. The left part presents statistics of
experience number throughout the dataset. The right part presents
information about the length of the experiences.

In this work, we are interested by 4 types of information on a LinkedIn pro-
file: their professional experiences, their education, their skills, and the industrial
domain they work in.

Figure 4.4 is a screenshot of a real-life LinkedIn profile. It perfectly illustrates
both the richness and the challenges of our dataset.

The professional experiences of a user can be of very variable lengths, depend-
ing on the user’s age, their personal tendency to change jobs and their industrial
domain. One can note that they are also formatted in a very specific way: they
contain a lot of abbreviations, proper nouns (product names, for instance) and are
often organized in short, non verbal bullet points.

On the other hand, the educational background of a user tends to be more con-
cise, because their is no “description” field that the user can fill in. This example
highlights an interesting aspect of our data, which the fact that even if the user
did fill their profiles in English, the education section is quite often composed of
country-specific degrees and untranslatable institution names.

Finally, Figure 4.4 illustrates how repetitive and redundant the skills of a profile
can be: the user has the skills Digital Marketing, Marketing Strategy, Online Market-
ing, etc. Of course it makes sense for a user to add as many keywords as possible,
so as to appear in as many queries as possible, thus making our dataset quite
noisy.

There are more than 95,000 different skills cited in the dataset but we only retain
those appearing in at least 3000 profiles, leaving us with 523 skill classes. The
retained skills are thus neither exhaustive nor disentangled. Dataset exploration
revealed on the contrary a certain overlap in skills due to the fact that user try to
be as precise and covering as possible when filling them. Similarly, we kept the
150 most common industrial fields, also referred to as industries.
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Jobs

Education Skills

Figure 4.4 – A LinkedIn Profile’s screenshot.

4.2.2 Experiments

We compare three different word embedding models and study the predictabil-
ity of a career given a person’s past education and past jobs.

Our three user representations rely respectively on a FastText model trained on
our data FTCV , a pre-trained FastText FTpt 3 and a pre-trained ELMo. 4

Since our primary goal is to learn a user’s professional representation, using
a user’s past jobs is a natural choice of input. However we are also interested in
studying the impact of a person’s education on their career, leading us to apply
the same framework of professional representation to the educational experiences
of a person (the degrees they obtained, and the institution they got it from).

In both cases, we aim at building a representation that is rich enough so that
simple models can learn to retrieve skills and industrial fields from it, as well
as predict the user’s next job. Whether we consider the jobs or the education
of a user does not change the training setup of either the Skill Predictor or the
Industry Predictor, but when it comes to the next jobs prediction we have to adapt
the task. In the case where we take jobs as an input, the next job prediction label
is the latest professional experience on a user’s profile. When we build a user’s

3. https://fasttext.cc/docs/en/crawl-vectors.html
4. https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
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representation from their degrees, we use their first professional experience as a
label for the next job prediction task.

4.2.3 Training details

4.2.3.1 Trained FastText Models

Both FTCV and FTedu are trained in an unsupervised setting with a dimension
of 300. All other parameters are FastText library’s defaults.

4.2.3.2 Evaluation Models

Common parameters. All models are implemented using the Deep Learning
framework Pytorch (Paszke et al. 2019). The data is split according to the ratio
reported in Table 4.2.1. The Text Generators are trained with a vocabulary of
40,000 words.

Experiments on jobs data. All three evaluation models (Skill Predictor, Indus-
try Classifier and Next Job Predictor) are trained on a maximum of 100 epochs
with an early stopping mechanism (with a patience of 3), an Adam optimizer and
a learning rate of 1e-3.

Both classifiers have a batch size of 128. The size of their hidden layer is 300.

The Next Job Predictor has a batch size of 80 when trained on ELMo representa-
tions, 160 when trained on FastText ones. It has a drop out ratio of 0.5, the hidden
size of the LSTM cells is 256.

Experiments on education data. Both classifiers are trained on a maximum of
100 epochs with an early stopping mechanism (with a patience of 3), an Adam
optimizer and a learning rate of 1e-1. They are trained with a batch size of 16 and
a hidden layer of size 300. The Next Job Predictor is trained similarly to the one
trained on the jobs data.

4.3 Results

In this section we present and analyze the results of our experiments. Tables
are divided in three parts: the upper part is the baselines results, the middle
part reports the results on the jobs, and the bottom part shows the results on the
education, except for Table 4.5 where the education does not appear.
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Accuracy Precision Recall F1

Top 1 Top 10 Top 1 Top 10 Top 1 Top 10 Top 1 Top 10

Random 0.68 6.80 N/A N/A N/A N/A N/A N/A
Most Common 6.25 31.32 0.39 25.59 6.25 31.32 0.74 26.03

Professional Profiles
FTCV 38.40 79.87 37.49 81.47 38.40 79.87 36.38 79.24

FTpt 35.55 77.09 34.61 79.20 35.55 77.09 33.18 76.27

ELMo 39.18 80.37 39.31 81.91 39.18 80.37 37.22 79.75

Education
FTedu 14.60 53.66 21.02 79.82 14.60 53.66 13.24 55.45
FTpt 12.12 51.45 20.50 78.75 12.12 51.45 10.51 53.03

ELMo 13.58 44.83 14.57 66.84 13.58 44.83 9.73 41.89

Table 4.3 – Industry classification results on 150 classes. Each column reports
the metric on the test set, either on top 1 or top 10. For each metric,
the higher the score, the better.

In the upper part of each table, “MC” stands for “Most Common”, which is
the model that always outputs the majority class (for industry classification) or
classes (for skills prediction).

The two bottom parts of the tables are themselves divided into three rows, each
accounting for a specific embedding model representation:

• FTCV and FTedu stand for FastText models trained on our dataset (professional
and educational respectively),

• FTpt is a pre-trained FastText model, 5

• ELMo is a pre-trained ELMo model. 6

4.3.1 Quantitative Analysis

The results of the Industry Classification task are reported in Table 4.3, those
of the Skills Prediction task in Table 4.4.

We can observe that ELMo achieves the best results, both in Skills Predictions
and Industrial Classification when it comes to professional profiles. However, the
FastText CV-oriented model achieves close results. Our intuition is that while
ELMo performs especially well in disambiguation, professional experiences are

5. https://fasttext.cc/docs/en/crawl-vectors.html
6. Available at https://allennlp.org/elmo
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Hamming Precision Recall F1

Most Common 3.00 24.45 23.06 23.73

Professional Profiles
FTCV 2.44 36.82 39.26 34.63

FTpt 2.39 36.54 34.83 32.31

ELMo 2.33 37.72 37.76 34.85

Education
FTedu 2.91 5.94 23.10 9.19

FTpt 3.50 6.64 28.13 10.39
ELMo 10.34 6.74 7.88 5.67

Table 4.4 – Skills Prediction Results on 523 classes. For each metric, the higher
score, the better, except for the Hamming loss, where a lower score
indicates a higher resemblance to the ground truth.

written in a way that leaves more importance to rare words than ambiguous ones.
This allows FastText models to achieve comparable performances, and to be con-
sidered a serious alternative to ELMo in situations where training time is critical.

Another interesting trend that emerges from our results is that professional
experiences of a user are more informative than their education when it comes to
predicting their skills or industrial field. Although it is relieving to see that one’s
education does not completely determine one’s career, we observe that the FTedu

models still achieves some reasonable performances on the industry classification.

Bleu score

Bleu Bleu-1 Bleu-2 Bleu-3 Bleu-4

FTpt 1.91 20.6 3.5 0.8 0.2
FTCV 2.15 22.2 3.8 0.9 0.3
ELMo 1.74 22.5 3.8 0.6 0.2

Table 4.5 – Experimental results on job generation (title & description)

Table 4.5 details the Bleu score (Papineni et al. 2002a) for our text generation
task. The idea of the Bleu score is to count the number of n-grams that the
generated sentence has in common with the reference. The Bleu score represents
the overall resemblance between the generated sentence and the reference, and
the Bleu -n scores account for the number of common n-grams between the
generated sentence and the reference. Let us notice that the Bleu score expresses
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a degree of common words between sentences, rather than an actual semantic
similarity.

On this task, we can notice that the CV-oriented FastText performs better than
both ELMo and the pre-trained FastText. Note that we did not report the next-job
generation results for the education dataset because the models systematically
output a single generic first job (“Intern”) with no real job description.

This ranking among our approaches is surprising, it points out that the CV
style does not follow a classical language model: a robust and dedicated model is
required to tackle misspellings, abbreviations, ellipses, acronyms that characterize
the fast writing style observed on CV. The same kind of conclusions has been
drawn in P. Jain et al. (2019).

4.3.2 Qualitative Analysis

Industry Classification. When taking a closer look at the industry predictions,
we notice situations where the model misclassifies a profile:

• The actual industry is semantically very close the the predicted industry;

• The profile is assigned a label that a human could not predict, because the
label seems inconsistent with the career.

We report examples of those situations in Table 4.6. Note that misclassification
may also happen when a user profile is what we call “eclectic”, that is to say
when a user’s jobs are low-qualified and unrelated to one another (i.e., there is
no “career path” emerging from their profile). This situation rarely occurs in the
education dataset, probably because people tend to emphasize their professional
experiences more than their education, which they keep short and consistent. 7

Text Generation. The next job generation highlights the difficulty for our mod-
els to generate long job descriptions as well as very specific sentences. And ex-
ample of generated text is illustrated in Figure 4.5. It is interesting to note that,
even though all models seem to get stuck in a generation loop quite quickly, the
FastText CV model expresses the communication aspect where the other models
see a client relationship management.

The main point of this example is that the 3 models do express the market-
ing aspect of the job, which means they all could somehow capture the career

7. The median number of professional experiences per person on our dataset is 5 while the
median number of education experiences is 2.
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# Profile Predicted
Industry

Actual
IndustryDegree Institution

(1)
Engineer,
computer
science.

Polytech’
paris-sud. Computer

Software

Information
Technol-
ogy and
Services(0)

Exchange
program,
computer
science.

École Poly-
technique of
Montreal.

(1)

Specialized
sales,
merchandising,
marketing
activities.

Sedima.
Marketing

and
Advertising

Farming

(0)

High School
Diploma in
agricultural
mechanics

Gustave
Eiffel High
school.

Table 4.6 – Examples of misclassified profiles. The first column from the left is
the rank of their experience in the profile (the higher, the more recent).
The second column divides the profile of the user in its degree and
institution (the place where the degree was obtained). The last two
columns report the predicted industry of the user and their actual
industries.
The first profile illustrates the case where the predicted and the actual
industries are semantically close. The second profile shows a profile
that would be hard to classify for a human without more information.
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Ground	Truth

FastText
pre-trained

ELMo

FastText
CV-oriented

E-commerce	Consultant
My	mission	consists	in	reaching	the	goals	set	up
by	the	clients	regarding	their	profitability	and/or
notoriety	issues	[...]

Marketing	Manager
Management	of	the	client	relationship,	Social
networks	management,	Social	networks
management	[...]

Marketing	Manager
Managing	the	communication	strategy	and	the
communication	strategy	for	clients	[...]

Sector	Manager
Management	of	the	client	relationship,	UNK,	stock
management,	stock	management	[...]

Figure 4.5 – Illustration of text generated by our decoder. Ground Truth is the
actual label of the profile. The bold font indicates the job title, the
text in italic is the job description.

evolution of the user, since all models only had access to the person’s previous
jobs.

Such predictions highlight the complexity and diversity of our data. While not
human-like, those predictions can add a lot of value to a CV database as they cap-
ture the essence of a career. The analysis of both skills and industry prediction for
all three models indicate that a consequent part of the wrong predictions makes
sense to a human reader. For instance, a profile containing the skills Office Pack,
Photoshop and Marketing is predicted to have the Microsoft Word, Adobe Photoshop
and Digital Marketing skills. Similarly, a Developer working in the Pharmaceutical
Industry can be either predicted in the “IT” or the “Pharmaceutical” industry.
Those observations lead us to believe that the representation of our users is rather
satisfactory. Most prediction errors are understandable and could be tackled by a
more thorough data pre-processing.

4.4 Conclusion

We propose a novel approach to professional profile learning, Resumé, that is
self-supervised and relies on free text, along with three evaluation tasks. We com-
pare the impact of the use of a contextual word embedding model to the use of a
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more classical one on our evaluation tasks, at a time where the Transformer archi-
tectures were not readily available. Our experiments show that using a light word
embedding model to represent users is not only sufficient to model their profes-
sional information but also compares with if not outperforms heavier architecture
on all of our tasks. We also study the impact of the educational background of
a user in the pre-determination of their career, and find that the education of a
person alone is rarely sufficient to predict either their skills or their first job. It can
however be used to determine the industrial field that the user is going to work
in.

From a broader perspective, we proposed a framework that uses user profiles’
textual traces to build a user representation, and the reminder of the profile to
evaluate the richness of the learned user embedding. The conducted experiments
confirm the intuition that a user’s textual traces are very rich and can be used
to describe them, even when using early models such as FastText or ELMo. This
framework can be applied to a lot of different use cases, as long as it involves user
profiles, thus offering a lot of possibilities.

In future work, we aim at modeling personalized user dynamic as a mean to
better understand how their tastes and needs evolve through time. We detail two
possible interesting architectures to do so in Chapter 5.

An immediate improvement of the framework would be to train it in an
end-to-end fashion, thus leveraging the MTL framework to fine-tune the word-
embeddings representation. Besides, it could be interesting to compare those
word-embedding models with more recent architectures, such as Bidirectional
Encoder Representations from Transformers (BERT).

Another appealing direction would be to address the representation of even
more complex entities, such as companies and especially the prediction of even
more elaborate signals, like fund-raising or company expansion.

Finally, one could extend the Resumé framework to build a job training model,
helping users reach their career objectives by indicating the skills they should
acquire.
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U S E R D Y N A M I C M O D E L I N G

Chapter abstract

The two previous chapters proposed methods to learn and represent critical
aspects of a user: their tastes, their professionnal experiences, skills and indus-
trial domain.
While there is a form of forecasting in the next-item and next-job prediction
tasks, we want to go further in our understanding of the user and learn the
way change over time.
For this reason, we want to learn and model a user’s dynamic, or evolution.
That is to say, we would like to be able to understand how a user is going to
change in time. This idea relies on the assumption that a user’s tastes and
profile can change as they grow older or become more expert in a given domain.
This chapter presents two exploratory architectures to achieve user dynamic
modeling as a perspective for future work in User Representation (UR). The
work presented in this chapter is still ongoing, and we detail the difficulties
faced.
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Modeling user dynamic is a crucial challenge for many applications, but it has
seldom been studied from a Natural Language Processing (NLP) point of view.

Namely, J. J. McAuley and Leskovec (2013) used this hypothesis to learn how
the expertise level of a user could affect their opinion on beers. In the context of
Human Resources (HR), such modeling could allow to refine the prediction of a
person’s next job, by refining their professional trajectory via their seniority in
their field. It could also be used to learn how to disentangle the personal dynamic
of a person from the dynamic of the industry they work in, once again refining
the user representation.

In this chapter, we propose an exploratory approach to User Dynamic Modeling.
We look at this problem from a Professional Profile point of view. In other words,
we are interested in modeling a person’s career dynamic or trajectory. At a larger
scale, such modeling would allow us to compare different types of profiles (for
instance, those that obtain promotions quickly and those who do not) but also
to compare the impact of the industrial domains and/or the skills on a person’s
career. This could answer questions such as "Is it longer to gain experience in
Information Technologies that in other industries?" or "Should I learn Java rather
than C in order to get a promotion faster?".

One of the main difficulty is to find temporally labelled textual data, i.e., user
profiles which attributes would change over time. Another challenge is to for-
mulate a reasonable assumptions that can link those textual data to some form
of evolution. In our case, we want to explore the career evolution of a user by
associating to each of their job ji with an expertise level ei. Our assumption is that
throughout their career, users will gain knowledge and expertise in the field they
work in. This implies that their expertise sequence must be monotonic, as a user
cannot lose experience from one job to another (they may however not earn any).

In the following sections, we describe two architectures that rely on the afore-
mentioned hypotheses. They aim at using a user’s dynamic to predict their next
jobs, as well as the level of expertise associated with such jobs. Both of them
contain a Bidirectional Encoder Representations from Transformers (BERT)-based
text-generation module as a way to ensure a correct user (or job) representa-
tion learning. The idea of those architectures is to learn what pertains to a user
and what pertains to the industrial domain when it comes to a person’s career
evolution. The first one builds on the Back Translation (BT) mechanism and the
other on a Variational Auto-Encoder (VAE). Those architectures are part of an
ongoing work. We also describe the challenges and obstacles faced during the
implementations of those models.
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5.1 Job Expertise Rewriting

This first architecture is inspired from the work of Lample et al. (2018), in
which they re-generate (or rewrite) textual reviews by changing their attributes
(in particular: polarity, age of the author etc.).

We extend their idea to the application of job prediction. In this setting, the text
we want to rewrite is a user’s job, and its attributes are the industrial domain of
the user, as well as the expertise level associated to the job.

Such a model would allow for two distinct applications. On the first hand, the
rewriting of a job with a higher expertise level could be a proxy for the user’s
next professional experiences or promotions. On the second hand, rewriting users
careers’ evolutions in different industrial fields could allow us to distinguish
between different types of users in terms of dynamics (some users tend to gain a
lot of expertise fast, others do not) but also between industries (some have a lot
of turnover and thus a do not favor experience gain in the short term etc.).

The intuition behind this architecture is that rewriting a job with another exper-
tise level in a given industry will amounts to understanding what makes a job’s
expertise. At the latent level, the model will have to learn what makes a job an
entry-level position rather than a senior one, in order to rewrite it with a differ-
ent expertise level. At the human level, the model will produce understandable
and possibly explainable sentences that can lead to a lot of interesting qualitative
results.

5.1.1 Model

The proposed architecture is presented on Figure 5.1. It is composed of two
parts: the DAE and a BT module. Note that both modules actually share the same
weights (that is, the encoder of the DAE is the same than the of the BT.)

While Lample et al. (2018) use a Bidirectional Recurrent Neural Network
(BiRNN) as the Encoder and an attentive Recurrent Neural Network (RNN) as
the decoder, the Job Rewriter model could leverage recent, possibly pre-trained,
Transformers architectures such as BERT to encode and decode the jobs.

5.1.2 Training

Let j = [w0, w1, ..., wN−1, wN ] be a word sequence of length N + 1 describing a
textual job description. Its corresponding set of attributes consists of a industry
and an expertise level such that att = [indj, ej]. This set of attribute is converted
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Figure 5.1 – Illustration of the Job Attribute Rewriting Model. It is constituted
of two parts: a DAE and a BT module.

to embeddings zatt and then fed to the decoder to serve as conditioning for the
text rewriting.

The DAE part ensures that the decoder can reconstruct text j with attribute
zatt from a partial, corrupted representation zjc . This is to ensure that, in the BT

part, the decoder can generate ĵ′ or ĵBT from a potentially noisy representation
by leveraging the conditioning information contained in zatt’ and zatt respectively.
Note that in the first part of the BT part, the initial job representation zj is fed to
the decoder with a conditioning zatt’ that has been randomly sampled across the
dataset so that j can be re-written with a new set of attribute into ĵ′

The model would be trained to optimize a composite loss L that combines both
the Denoising and the Back Translation Losses:

L = αLossDAE + βLossBT (5.1)

with α and β hyper parameters to tune.
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5.1.3 Inference & Evaluation

Because we have no actual labels for the rewritten jobs ĵ′, we resort to a mix of
metrics for evaluation. Once the model has converged, we will evaluate the quality
of rewritten jobs ĵ′ through three metrics: the BiLingual Evaluation Understudy
(BLEU) score, the perplexity metric, and the F1-score. The BLEU score serves as an
evaluation of how many ngrams we kept from the original job j.

In this precise setting, the objective would not be to get a perfect BLEU score
(which would mean that we only recopied j into j′, thus missing the attribute-
rewriting objective) but rather to make sure it is reasonably high.

The perplexity measure would be used as an indicator of the generated text’s
fluency, i.e., whether j′ look like it could have been written by a human. It is a
proxy to evaluate the quality of the generated text, regardless of the attribute-
rewriting objective.

Finally, the F1-score would be used to evaluate how well we can retrieve at-
tributes e′ and ind′ (rather than e and ind) from j′. It would serve as a quantitative
evaluation of the conditional attribute-rewriting objective.

5.2 Industry Latent Space Structuring via VAE

VAEs are a widespread type of generative architecture. They are especially used
for their ability to structure their latent representation space.

The idea of a VAE architecture is motivated by the knowledge that entangled
representations are quite hard to work with in the context of next job prediction.

In a lot of conducted experiments, it has become apparent that a naive Mean-
Squared Error (MSE)-trained model failed to auto-encode a given job, regardless
of the Auto-Encoder (AE)’s architecture (Multi-Layer Perceptron (MLP), RNN. . . ).

Our intuition is that a model could learn a professional trajectory if the latent
space was structured, or at least, disentangled. We leverage the structuring prop-
erties of VAEs in order to achieve the convergence of such a space, and then allow
a model to learn transitions between points (i.e., jobs) in that space.

Like in Section 5.1, we dispose of jobs j = [w0, ..., wN ] that are associated with
an industrial field indj and a level of expertise ej . In this project, we aim at
learning a latent space that is structured at two different levels: the industry and
the expertise level.
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5.2.1 Model & Training

The expected latent space is illustrated on Figure 5.2. The first part of the project

Figure 5.2 – Illustration of the expected latent space. The VAE model will have
learned to structure the latent space by industry, and to structure
each industry subspace by experience level.

consists in an encoder-decoder couple for the VAE and a standalone word decoder,
as illustrated on Figure 5.3.

The encoder EncVAE is fed a representation of the job it has to encode, along with
a marker of the corresponding industry and experience level. The decoder DecVAE

will learned to reconstruct the input from a point of the latent space sampled
with the reparametrizing trick. This encoder-decoder couple would be trained by
optimizing a classical VAE Loss:

LossVAE = Lossrec + LossKL

LossVAE = NLL(zjobi , ẑjobi) + KL (qφ(h | z)‖p(h))

with qφ(h | z) the distribution of the latent representation h knowing input z,
and p(h) the distribution of the latent space variable, following the notations of
Section 2.3.1.4.

Once the VAE converged, the decoder Decwords would learn how to reconstruct
the input job jobi from its representation in the structured latent space, hjobi . It
would thus optimize a reconstruction Loss:
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Figure 5.3 – Illustration of the VAE training procedure.

Losswords = CrossEntropy(x,y)

Losswords =
1

N

N∑
i=1

−x[y] + log

(∑
j

exp(x[j])

)

Both EncVAE and DecVAE can be implemented as simple MLP since they do
not have to handle variable length inputs. Decwords could be implemented as a
Transformer Decoder, possibly pre-trained on our target language (French).

The last module of this project is called the Transition module, and is illustrated
on Figure 5.4.

This transition module f would learn how to move from one job to the next. Its
applications could be two-fold: firstly, it could be used as a "simple" job predictor
(combined with the Decwords module). Secondly, it could provide higher-level in-
sights regarding a user’s expertise evolution. Indeed, at inference time, it could
be ran as many times as there are jobs in a career, and provide us with a sequence
of expertise levels. This sequence could be averaged and compared between in-
dustries, but it could also be used as an answer to the question: what entry-level
job will give the user’s career the most momentum?

5.2.2 Inference and Evaluation

Since our ultimate goal is to study the user’s dynamics, the evaluation will focus
on the Transition module (although intermediate models would be tested along
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Figure 5.4 – Illustration of the transition model. It will take as input a point of
the latent space and learn the next point, i.e., the person’s next job.

the way for development purposes). The Transition model would be evaluated
with an Accuracy metric in a k-nearest-neighbors setting.

5.3 Challenges & Obstacles

The architectures presented in this Chapter are subject to a number of chal-
lenges and obstacles that we develop here.

The lack of direct supervision on experience. The biggest obstacle to the
previously presented architectures is that we do not have an actual supervision
on the level of expertise associated with a professional experience. We tried several
naive labeling approaches, namely linearly attributing a level of expertise to a
person’s jobs, in the spirit of J. J. McAuley and Leskovec (2013). They proved
inconclusive, indicating that more complex strategies are required.

Noisy and unstructured data. As we detail in Chapter 4, the data we use
(LinkedIn pages) are quite noisy, for a number of reason. At a low-level, they are
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subject imprecisions such as wrongly filled job durations, misspelled words, job
descriptions filled with emojis only. . .

From a higher level, they are also noisy because there are almost as many jobs as
there are users, since no two people will describe a given professional experience
in the same way.

This behavior can also be observed in the case of industrial domain: a person
that has made a career as an Information Technologies) (IT) engineer for Phar-
maceutical companies could either fill their industry as "IT" or "Pharmaceutical",
further blurring the contours of said domains.

Aside from that, job titles and descriptions can often contain proper nouns
such as product, software or company names. Furthermore, the skills presented
in the users’ profiles can be highly redundant (it is common to have a user fill
out "Office Pack" as a skill, as well as "Microsoft Excel" or "Excel") and/or hardly
discriminative (a big proportion of profiles presented the "communication" and
"management" skills).

The noisiness and highly unstructured nature of our data make it quite hard to
have a denoised, structured latent space to work with.

Insufficient data. Because the data at our disposal is extremely noisy, the data
selection process has led to a dramatic reduction of available profiles.

In order to validate our hypotheses, we needed profiles with at least 3 profes-
sional experiences above a minimum word count, written in French, with consis-
tent job durations (a lot of profiles had either no or erroneous job duration filled
out) and corresponding to one of the 150 most common industrial domains across
the dataset. While various attempts to balance the pre-requisite have been tried,
it systematically lead to a drastic, possibly fatal, reduction of the dataset’s size.

Are all careers comparable? Another, less technical, possible obstacle lies in
the feasibility of comparing any and all careers to one-another, especially in a
common latent space. Even from a naive, non-expert point of view, one can see
that it is not trivial to compare the career of a researcher to the of a cuisine chef.
Their studies and jobs are widely different in number, nature and timeline.

This limitation however could probably be overcome with the help of HR ex-
perts, assuming they would help refining assumptions about the common latent
space.
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5.4 Conclusion

In this chapter, we present two exploratory architectures for User Dynamic Mod-
eling, an aspect that is too often overlooked in UR. Those models are parts of an
ongoing work and we presented the issues and difficulties met at implementation
time.

We present the underlying ideas and intuitions motivating each architecture,
one based on the BT mechanism, the other on a VAE, despite not being able to
exploit them in time.

We also present the obstacles faced during the conception of those architectures.
The lack of supervision on experience, the highly unstructured and noisy nature
of our data and the constraints imposed by data filtering proved to be great
difficulties.

We hope to have detailed them enough to encourage future work in this direc-
tion.
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The work presented in this thesis bridges the domains of Recommendation,
Natural Language Processing and professional profile learning by focusing on
User Representation. This interest for learning rich and versatile user representa-
tions is the result of both the trends of Representation Learning and increasing
personalization of systems in Deep Learning, especially in Recommendation.

This work also aims at providing explainable user representations, in the wake
of the Explainable Artificial Intelligence movement. Explainability is, in our opin-
ion, one of the biggest challenges that the Deep Learning community is now
facing. Indeed, the services of computational power (CPU, GPU) rentals have
exploded and it is more and more common to have companies open-source the
weights of their Deep Learning models, making it increasingly easy to train, de-
ploy and fine-tune Deep Learning models. However, the challenge lies in the
resistance of users to interacting with Deep Learning models which predictions
are still often too opaque to be understood.

It is easy to understand why people would not want to have to rely on black-
box models in their daily lives, let alone in their professional lives. This is why
making Deep Learning understandable and and their decisions explainable and
fair is so crucial, even if Artificial Intelligence can only ever be used as an aid and
not as a replacement: building trust between the users and the systems is the only
way for these systems to be used to their full potential and really serve society
beyond movie recommendation.

Fairness Learning is an entire field of Artificial Intelligence that focuses on
identifying and correcting biases in Machine Learning models. The approaches
to Fairness Learning vary, but the common goal of the domain is to ensure that
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fair Machine Learning models’s predictions are independent of sensitive and/or
discriminatory variables such as gender, ethnicity etc.

It is with this idea in mind that we proposed a User Representation framework
that leverages user textual traces to build their representation, and metadata of
their profile to evaluate the obtained representation. Its strength resides in two
main aspects. Firstly, user textual traces are not only uniquely descriptive of a
person, but this kind of data is also omnipresent and easily accessible. Secondly,
the intuition of the framework (using natural language to represent a user and
other data to evaluate the profile) is generic enough to be applied to numerous
use cases aside from professional profile learning.

In this chapter, we first summarize the contributions that we propose in this
thesis before discussing interesting directions for future work.

6.1 Summary of Contributions

In this thesis, we propose an approach to User Representation through the lens
of Representation Learning using Natural Language Processing in the context of
Recommendation and professional profile learning. This work has shown a suc-
cessful use of Natural Language Processing to refine User Representation, both as
an original Representation Learning approach in a Recommendation context in
Chapter 3 and as a new application domain: Human Resources, or Professional
Profile Learning in Chapter 4.

In Recommendation, Collaborative Filtering and in particular Matrix Factoriza-
tion yields good performances but tend to be opaque (i.e., it is hard to explain
the suggestions outputted by those models).

This observation led us to propose a model that takes advantage of user review
texts and uses them to provide insights regarding the suggestions outputted by
the model. Leveraging user-generated text allows for a better user representation,
as well as understanding what they like and why.

This approach relies on the advances of Deep Learning and Natural Language
Processing. The proposed model is composed of a classical Multi-Layer Perceptron
and a sentiment analysis module. Both parts share representations to learn a
representation of the user’s tastes that is a function of both their ratings and
reviews. The sentiment analysis is a hierarchical model based on an Recurrent
Neural Network coupled to a personalized attention mechanism.

We compared our architecture against several other deep architectures, and our
experiments show that our model improves the accuracy of the predicted score
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while also offering explanations regarding the suggestions made; thanks to the
attention mechanism that provides a personalized reading model for each user.

User Representation and Representation Learning are gaining increasing focus
because of their versatility and robustness. It is especially interesting to combine
both because of the heterogenous nature of user profiles. Regardless of the use-
case, a user profile is generally composed of several fields of different nature.

It is our intuition that amongst those data, user-generated texts are the most
uniquely descriptive of a person. We thus propose a Natural Language Pro-
cessing-centered framework, Resumé, that allows the comparison of several word
embedding-based User Representation methods in a particularly interesting, yet
unexplored application: professional profile representation.

Professional profile representation using online Curriculum Vitae is an ideal
application because the available resources are plentiful and the profiles rich from
various heterogeneous data, such as the professional experiences, the skills and
the industrial domain of a user.

The Resumé framework leverages the profile’s heterogeneous data as well as
textual data in order to provide a comprehensive evaluation of the user profile. It
relies on attribute classification tasks as well as text generation, thus evaluating
the user representation in depth.

We compared the representations outputted by two types of embedding models
(FastText, Embeddings from Language Models), as well as different input data
(professional experiences and educational background, both free texts). On one
hand, our experiments show that a light feed-forward model trained on the data
match or outperform heavier recurrent architectures; on the other hand, they
showed that the education of a user is insufficient to predict their first job or
skillset, while their professional experiences are far more informative.
However those works present limitations and can be improved upon in different
directions, be they either applicative or technical ones.

6.2 Perspectives for future work

Future research extending the present work can go in several directions. We dis-
tinguish between technical and applicative perspectives. The former propose tech-
nical improvements that we believe could increase current performances, while
the latter present possible extensions of the present work to address new applica-
tions. Our main technical perspectives are centered around leveraging recent Nat-
ural Language Processing architectures and user dynamic modeling. We briefly
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introduce two possible dynamic architectures (that are more thoroughly detailed
in Chapter 5) before discussing applicative perspectives.

6.2.1 Short-term Perspectives

In this section, we propose two ways of improving the contributions presented
in this thesis. Firstly, we propose to improve the existing architectures with more
recent models and additional training strategies. Secondly, we propose an ex-
tension of the work done on User Representation in the form of User Dynamic
Modeling, i.e., learning to represent users’ evolution.

6.2.1.1 Improving our contributions

Improving User Representation in Recommendation. We propose two ways
of improving the model proposed in Chapter 3.

Firstly, and since the model is already trained to jointly optimize two losses, it
would require little work to introduce another loss in the architecture, a serendip-
ity or ranking metric for instance. If it is not obvious that the performances would
benefit from such change, it is still interesting to try because it could yield a better
user experience both in terms of recommendation accuracy and surprise. How-
ever, such an architecture would require special attention regarding the balancing
of the losses during training.

Secondly, the sentiment analysis module could be replaced by a newer, more
robust architecture like a Transformer. Again, it would not be extremely compli-
cated to replace the Recurrent Bidirectional Attentive modules with Transformers
and the model could benefit from both the parallelization of the computation and
the representation power of the Transformers while still sharing weights with the
Recommendation module.

Improving User Representation in Professional Profile Learning. Chapter 4

presents a framework that, in its present form, is mostly used for representation
evaluation purposes. However, one could consider to use an end-to-end approach
in order to fine-tune (or learn from scratch) user representations. That is to say, we
could train the whole framework on the tasks of the evaluation models: Skills Pre-
diction, Industry Prediction and Next Job Generation. This Multi-Task Learning
approach could be highly beneficial to the quality of the representation learned,
if trained correctly 1.

1. In practice, mixtures of losses are hard hyper-parameters to tune, hence the condition of
training the model correctly.
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Besides, and similarly to the model of Chapter 3, the Résumé framework could
be extended to handle other types of architectures, from Bidirectional Recurrent
Neural Network to Transformers.

6.2.1.2 User Dynamics modeling

Understanding and modeling user dynamic is the key to improving any user-
centric system’s performances durably, be it only for churn detection.

While there is a short-term dynamic description in the generation of a user’s
next job, it is clearly incomplete because such predictions are only made one time
step further in time and they do not allow for contextual analysis (e.g., comparison
between industrial sectors, education . . . ).

Both those propositions have been hindered by several obstacles. On top of
the User Dynamic Modeling being an ambitious task, both philosophically and
scientifically, we were faced with technical difficulties. Namely, the unstructured
and noisy nature of the data which, coupled to strong data filtering constraints
led to a dataset of insufficient size. Additionally, the absence of job experience-
level supervision (and the insufficiency of naive labelling methods) is still a major
obstacle to be lifted.

In this section we briefly remind you of two architectures for professional
dynamic modeling that we detailed thoroughly in Chapter 5.

Job Expertise Rewriting. Rewriting a user’s job given a certain attribute value
can be the cornerstone of many applications.

Attribute Rewriting with expertise level as a job attribute could highlight a
user’s career evolution. Specifically, it could be the cornerstone of a shift detection
model, that could predict when a person is going to gain a level of expertise.
Such application of Attribute Rewriting could yield interesting qualitative results
comparing the dynamics of different industrial domains, but also the different
types of career trajectories among users. The combination of both those studies
could in turn help understand what part of a person’s career evaluation pertains
to the domain they work in, and what pertains to them.

Attribute rewriting relies on a Back Translation mechanism and a Denoising
Auto-Encoder, combined so that the model can learn to rewrite text without col-
lapsing. One could leverage pre-trained Transformers models to build upon Lam-
ple et al. (2018)’s work and possibly improve the quality of generated text as well
as reduce training time due to the high parallelization capacity of Transformers
over Recurrent Neural Networks (RNNs).
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Such architecture could be applied to tasks different from career prediction,
such as J. J. McAuley and Leskovec (2013)’s beer ratings (where the attribute is
the level of expertise in beer) or churn detection (where the attribute would be
the customer’s level of engagement).

Professional Latent Space structuring via VAE. Another approach to user dy-
namic modeling consists in the structuring of a meaningful latent space through
Variational Auto-Encoder, and then to learn a "user trajectory" model, that would
learn the transition from one point in space to the next. In the spirit of Word2Vec,
the idea is to build an interpretable and navigable latent space.

In the use-case of professional profile learning, said space would be divided in
two levels of attributes: the industry, and the expertise level within that industry.
The latent space would be structured by a Variational Auto-Encoder conditioned
on both those attributes. Once the latent space has converged, one could learn a
trajectory predictor that outputs a user’s next point in the space. This could allow
us to predict a person’s next job and / or to compare average user trajectories
across different industries.

This idea can also be applied to other situations. For instance, such a struc-
tured latent space could be useful in a movie Recommendation setting where
the first level of structuring would be the movie genre, and the second one the
year in which the movie came out (this is assuming cinematic genres evolve with
time). Basically, the structuring of the latent space would allow for a fine-grained
evolution prediction and comparison.

6.2.2 Long-term Perspectives

If the quality of the proposed Natural Language Processing-based user repre-
sentation can be improved and broadened, so do the possible applications for
such representations.

6.2.2.1 Recruitment

We see the work proposed in this thesis as a starting point for the development
of Artificial Intelligence models that would aid human recruiters in their work.
Indeed, it is our strong belief that recruitment can never (and should never for
that matter) rely solely on computer programs. Human Resources is too much
of a complex and critical application domain to be devoid of human experts. For
this reason, we describe long-term applications where the extensions of our work
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would only served as an aid or a tool and not as an autonomous, decision-making
agent.

Possible applications of our work, especially in the Human Resources domain,
lead us to question ourselves about the trends and needs to come in the industrial
landscape.

Obstacles to an Artificial Intelligence-aided Human Resources. The thorniest
questions are about the ethics of using Artificial Intelligence models trained on
such sensitive personal data (even when pseudo-anonymized, Curriculum Vitaes
(CVs) still contain personal information such as locations) in such a crucial domain
(one can easily understand that the professional domain is more critical than
movie recommendation).

The reasons why some people (either working in Human Resources or poten-
tially subject to Human Resources processes) are wary of using Artificial Intelli-
gence in the Human Resources process usually encompass the fear of discrimi-
native decisions and the selection of profiles or CVs on insufficient criteria (and
thus, the fear to select irrelevant profiles and to miss some that could have been a
match).

On the other hand, it is clear that the process of pre-selecting candidates for a
job offer could use some automation, as there can be a lot of applicants.Besides, as
of today, a lot of companies require an applicant to give out their Curriculum Vitae
but also to fill out a company-made form in order to standardize their application.
This forms are expensive to develop for the company and time consuming for
the applicant to fill out. A model that is trained to standardize any applicants’
Curriculum Vitae into a company-wide profile would be a great gain of time.

On top of that, computer-aided recruitment processes are already used, as pre-
dictive recruitment or chatbot-assisted interviews. Besides, it is safe to imagine
that LinkedIn, which is a Microsoft-owned company, is working on the valoriza-
tion and leveraging of the data available on its platform. Thus, it is imperative
that publicly available research be done on such topics. Otherwise, it means leav-
ing these matters in the hands of already very powerful companies, at the risk
of being eventually forced into using such Artificial Intelligence-aided processes
without a way to know how they work exactly.

Future Challenges. That being said, there is still a lot of work to be done before
Artificial Intelligence can make its way into any companies Human Resources
departments. In our opinion, the future needs of the sector will revolve around
three main axes: Understandability, Fairness, and Rewriting.
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As we mentioned throughout this thesis, Understandability of models is a nec-
essary step to build trust for job applicants as well as recruiters. It is unreasonable
to think that companies would use an Artificial Intelligence model at the risk of
not understanding the recruitment process. Similarly, it is safe to say that a lot of
applicants would feel reluctant regarding an Artificial Intelligence-aided process,
and could clearly feel cheated if not selected without being given a reason.

Additionally, Fairness is decision-making models are an absolute requirement,
even if such models were only aiding the decision process alongside a human, so
as to limit the possibility of discrimination.

With those three main axes in mind, we propose several possible applications
of this work.

Once both those topics are satisfactorily addressed, another industrial need lies
in Rewriting. We mentioned that applications can be quite numerous for a job
offer, and that candidates’ CVs lack standardization. Research in this direction
could yield significant gain of time, as well as some more equity for applicants:
automatically rewriting their CVs or application could smooth out differences in
aspect (for instance, the layout of the Curriculum Vitae, clumsy writing. . . ) and
help focus on their skills and qualifications. In such context, the rewriting of
CVs would propose a fairness that goes beyond the legal, mandatory aspects of
recruitment. This could even be considered to be fairness applied to new criteria,
further leveling the field for all applicants.

The work presented in this thesis, and especially in Chapter 4 could easily be
extended into a tool for Human Resources or Employment Agency. Indeed the
Job Prediction module of the Resumé framework is essentially a job recommender.
As such, it could be used to help job seekers in their researches, by comparing
their profile to available offers. In Human Resources, it could be used to pre-select
candidates for a specific job offer. Another way to see it, is that Resumé could help
standardize applicants’ CVs and project them into a common latent space, together
with actual employees of the company. One could then easily see what candidate
would be a good match for a replacement within the company, for instance.

But the work of this thesis can also be helpful directly to the user. Identifying
the profiles that correspond to the user’s target dream job could yield indications
so as to which skills the user should acquire, what training they should follow
etc. Namely, it could detect trendy skills and blooming industrial sectors, in the
user profiles as wall as in the job offers. Coupled with a human coach, the model
could aid the job seeker to refine either a reconversion or a improvement strategy.
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6.2.2.2 Other sectors

User segmentation. This work focuses on personalization relative to a single
user, but it is possible to consider User Representation in a broader aspect, namely
for group-representation purposes. While it is already a widespread practice to
adapt one’s system to a particular group of users (namely through the mean of
customer segmentation) it is, to the best of our knowledge, done on static criteria
such as geo-location, age and so on. We argue that the present work could be the
basis for refined user segmentation, based on their interactions with the system
rather than their metadata.

User compatibility. Building on traditional Recommendation methods, one can
imagine a system that would match users based on compatibility. While the first
idea that comes to mind is online dating, it could be even more interesting to think
about it from a professional point of view. More often than not, the choice between
two equally competent candidates for a job leans toward the person that would
be the best match for the existing team. Knowing that, one could improve their
automated candidate pre-selection by integrating a (possibly learned) similarity
measure between the candidates’ professional representations.
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