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Abstract
Deep neural networks are state-of-the-art in a wide variety of tasks, however, they
exhibit important limitations which hinder their use and deployment in real-world
applications. When developing and training neural networks, the accuracy should
not be the only concern, neural networks must also be cost-effective and reliable.
Although accurate, large neural networks often lack these properties. In this thesis,
we leverage the properties of structured matrices from the Toeplitz family to build
compact and secure neural networks. Our contributions are twofold.
First, we propose a new neural network architecture that is not only accurate

but also compact and easy to train. The purpose of this contribution is to study
deep diagonal-circulant neural networks, which are deep neural networks in which
weight matrices are the product of diagonal and circulant ones. We perform a
theoretical analysis of their expressivity and propose an initialization procedure and
an intelligent use of nonlinearity functions to facilitate training. Furthermore, we
show that these networks outperform recently introduced deep networks with other
types of structured layers. We conduct a thorough experimental study to compare
the performance of deep diagonal-circulant networks with state-of-the-art models
based on structured matrices and with dense models. We show that our models
achieve better accuracy than other structured approaches while requiring 2x fewer
weights than the next best approach. Finally, we train compact and accurate deep
diagonal-circulant networks on a real-world video classification dataset with over 3.8
million training examples.
Secondly, we propose an approach to build robust neural networks to adversarial

examples. In this contribution, we introduce a new Lipschitz regularization for
Convolutional Neural Networks that improves the robustness of neural networks.
Lipschitz regularity is now established as a key property of modern deep learning
with implications in training stability, generalization, robustness against adversarial
examples, etc. However, computing the exact value of the Lipschitz constant of
a neural network is known to be NP-hard. Recent attempts from the literature
introduce upper bounds to approximate this constant that are either efficient but
loose or accurate but computationally expensive. In this work, by leveraging the
properties of doubly-block Toeplitz matrices, we introduce a new upper bound of the
singular values of convolution layers that is both tight and easy to compute. Based
on this result we devise an algorithm to train Lipschitz-regularized Convolutional
Neural Networks.
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Résumé
Les réseaux de neurones profonds sont considérés comme étant état de l’art dans une
grande variété de tâches, mais ils présentent des limites importantes qui entravent
leur utilisation et leur déploiement. Lors du développement et l’entraînement de
réseaux de neurones, la précision ne devrait pas être la seule préoccupation, ils se
doivent aussi d’être efficaces et sécurisés. Bien que précis, les réseaux de neurones
dotés de nombreux paramètres n’ont souvent pas ces propriétés. Dans cette thèse,
nous exploitons les propriétés des matrices structurées de la famille de Toeplitz
pour construire des réseaux de neurones compacts et sécurisés. Nous réalisons deux
contributions sur ces thématiques.
Premièrement, nous proposons une nouvelle architecture de réseau de neurones

précise, mais également compacte et facile à entraîner. L’objectif de cette contribution
est d’étudier les réseaux de neurones diagonaux-circulants, qui sont des réseaux de
neurones profonds pour lesquels les matrices de poids sont le produit des matrices
diagonales et circulantes. Nous effectuons une analyse théorique de leur expressivité
et proposons une procédure d’initialisation et une utilisation intelligente des fonctions
de non-linéarité qui facilitent leur entraînement. Nous montrons que nos modèles
atteignent une meilleure précision que les autres approches structurées tout en
nécessitant deux fois moins de paramètres. Enfin, nous entraînons des réseaux de
neurones diagonaux-circulants sur un ensemble de données de classification vidéo qui
contient plus de 3,8 millions d’exemples.
Deuxièmement, en plus d’être compacts et précis, les réseaux de neurones se

doivent d’être sécurisés. Pour améliorer leur robustesse, nous proposons une nouvelle
régularisation pour les réseaux convolutifs basée sur la constante de Lipschitz. La régu-
larisation Lipschitz est maintenant établie comme une propriété clé de l’apprentissage
profond avec des implications en stabilité, généralisation et robustesse contre les
attaques adversariales, etc. Cependant, le calcul de la constante de Lipschitz d’un
réseau de neurones est connu pour être un problème NP-complet. De récentes tenta-
tives introduisent des bornes supérieures pour approximer cette constante qui sont
soit efficaces, mais peu précises, soit précises mais coûteuses. Dans cette thèse, en
exploitant les propriétés des matrices de Toeplitz à bloc de Toeplitz, nous introduisons
une nouvelle borne supérieure de cette constante pour les couches convolutionnelles
qui est à la fois précise et facile à calculer. Sur la base de ce résultat, nous con-
cevons un algorithme pour entraîner des réseaux de neurones convolutifs avec une
régularisation Lipschitz.
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1.1 Context and Motivation

Since the dawn of computer science, researchers have been trying to emulate intelli-
gence through computers. Alan Turing was the first, in a paper called Computing
Machinery and Intelligence (Turing, 1950), to lay the foundation for what we now
call Artificial Intelligence. In the last 20 years, with the surge in data collection and
computing resources, the interest and use cases for Machine Learning have grown
exponentially. More specifically, Deep Learning, a subfield of Machine Learning,
consisting of training Deep Neural Networks on high-level data (images, sounds,
texts) have shown great achievements, even outperforming humans on certain tasks.
One of the most remarkable breakthroughs of Deep Learning happened in 2012

during the ImageNet Large-Scale Visual Recognition Challenge (Russakovsky et al.
2015). The challenge aims at evaluating different algorithms for object detection and
image classification. In 2012, Krizhevsky et al. obtained 1st place and beat every other
participant by a 10.8% margin with a neural network architecture called AlexNet.
The main reasons for this success are twofold. First, they used a convolutional
neural network (CNN) with more than 60 million parameters which was one of the
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Figure 1.1: The neural network architecture (AlexNet) proposed by Krizhevsky et al. (2012)
which won the ImageNet Large-Scale Visual Recognition Challenge in 2012.

largest models of the time. Secondly, they designed a specific architecture to exploit
dual programmable graphics processing units (GPUs) to speed up the arithmetic
operations, which enabled them to significantly reduce training time. Figure 1.1
shows the AlexNet architecture which consists of five convolution layers with two
fully connected layers at the end.

Following this result, many architectures with an increasing number of parameters
have been developed. This growth in the number of parameters has led to an
substantial gains in accuracy, exceeding even human performance, on the ImageNet
dataset (He et al. 2015). Table 1.1 shows a list of the different state-of-the-art
architectures along with their size and accuracy. As we can see, the accuracy of the
models generally improves at the cost of the model size. For computer vision models,
Tan & Le (2019) have empirically shown that the relationship between model size
and accuracy seems to obey a power law. This relationship has also been observed
for neural networks designed for Natural Language Processing (NLP) (Kaplan et al.
2020; Rosenfeld et al. 2020) aided by the availability of large-scale datasets such as the
Common Crawl dataset (Raffel et al. 2020) which constitutes nearly a trillion words.

As a result of their size and improved accuracy, deep neural networks now achieve
state-of-the-art performances in a variety of domains such as image recognition (LeCun
et al. 1998; Krizhevsky et al. 2012; He et al. 2016; Tan & Le, 2019), object detection (Liu
et al. 2016; Redmon et al. 2016; Redmon & Farhadi, 2017), natural language process-
ing (Merity et al. 2016; Vaswani et al. 2017; Radford et al. 2019; Brown et al. 2020), speech
recognition (Hinton et al. 2012; Abdel-Hamid et al. 2014; Yu & Deng, 2016), games (Silver
et al. 2017), etc. Specifically, computer vision and natural language processing models
have achieved sufficient performance for being used in real-world applications such
as autonomous vehicles (Sadat et al. 2019), translation (Bahdanau et al. 2015), vocal
assistants (Li et al. 2017a), etc.
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Authors Models #Params TOP-5 Acc.

Krizhevsky et al. (2012) AlexNet 61M 84.7%
Simonyan & Zisserman (2014) VGG 144M 92.0%
He et al. (2016) ResNet-152 60M 93.8%
Szegedy et al. (2017) Inception-ResNet-v2 56M 95.1%
Xie et al. (2017) ResNeXt-101 84M 95.6%
Hu et al. (2018) SENet 146M 96.2%
Real et al. (2019) AmoebaNet-A 469M 96.7%
Huang et al. (2019) AmoebaNet-B 556M 97.0%

(a) Computer Vision Models

Authors Models #Params

Peters et al. (2018) ELMo 94M
Radford et al. (2018) GPT 110M
Devlin et al. (2019) BERT 340M
Yang et al. (2019) XLNet (Large) 340M
Liu et al. (2019) RoBERTa (Large) 355M
Radford et al. (2019) GPT-2 1B
Shoeybi et al. (2019) MegatronLM 8B
Raffel et al. (2020) T5-11B 11B
Rosset (2020) T-NLG 17B
Brown et al. (2020) GPT-3 175B
Fedus et al. (2021) Switch Transformers 1T

(b) Natural Language Processing Models

Table 1.1: Evolution of the number of parameters for Computer Vision and Natural Language
Processing models developed in the years after AlexNet.

However, accuracy is not the only concern, when implemented in a critical decision
process, neural networks need to be compact, cost-effective and secure. Although
accurate, large neural networks often lack these properties. Indeed, training state-
of-the-art models on computer vision or natural language processing tasks requires
gigabytes of memory and can take several months on a single GPU (Krizhevsky et
al. 2012; Brown et al. 2020). For example, the GPT-3 model proposed by Brown et
al. (2020), culminates at 175 billion parameters and requires 355 years of training on
a single GPU and $4 600 000 to train on a cloud-computing platform (Li, 2020). It
has also been estimated by Strubell et al. (2019) that the training and development
costs of the large Transformer model proposed by Vaswani et al. (2017) with neural
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Figure 1.2: Examples of structured matrices.

architecture search emits an estimated 284 019 kg of CO2 whereas a human life will
consume an average of 5 000 kg of CO2 for one year. Furthermore, with the rise
of smartphones and “Internet of things” devices (IoT) with limited computational
and memory resources, neural networks also need to be efficient during the inference
phase. In addition, with the growing concern over data privacy, methods such as
federated learning are gaining ground. Federated learning involves training a model
across multiple decentralized devices (e.g., smartphones) with local data samples.
This avoids the step of centralizing all users’ data into one server, thus addressing,
even modestly, the issue of data privacy. Thus, building compact and cost-effective
neural networks have been an important goal in order to reduce training time, reduce
cost and allow for faster research and development.
In addition to being compact and cost-effective, neural networks also need to be

secure. Due to their high complexity and expressivity, large neural networks exhibit
instability to small perturbations of their inputs. Unstable neural networks tend
to be vulnerable to adversarial examples, i.e., imperceptible variations of natural
examples, crafted to deliberately mislead the models (Globerson & Roweis, 2006; Biggio
et al. 2013; Szegedy et al. 2014). Figure 1.3 gives an example of an adversarial attack
on an image. The small perturbation (center) is added to the original image (left)
leading to an adversarial image (right). This behavior can cause serious security
problems when neural networks are used for critical decision-making (e.g., self-driving
cars, predictive justice, etc.).

This thesis focuses on the problem of training neural networks which are not only
accurate but also compact, easy to train, reliable and robust to adversarial examples.

1.2 Problem Statement and Contributions

Neural networks, which find their roots in the work of McCulloch & Pitts (1943) and
Rosenblatt (1958), can be analytically described as a composition of multi-dimensional
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Figure 1.3: Example of Adversarial Attack on an image.

linear functions interlaced with nonlinear functions (also called activation functions).
More formally, a neural network is a function NΩ : Rn → Rm parameterized by a set
of weights Ω of the form:

NΩ(x) = ψ(p) ◦ ρ ◦ ψ(p−1) · · · ◦ ψ(2) ◦ ρ ◦ ψ(1)(x) . (1.1)

Here, p corresponds to the depth of the network (i.e., the number of layers) and ρ
is a nonlinear function. Each ψ(i) is a multi-dimensional linear function ψ(i) : x 7→
W(i)x + b(i) parameterized by a weight matrix W(i) and a bias vector b(i) and Ω is
the union of the parameters of all the layers.
Classical neural networks typically have a large number of parameters to train.

If they have no restrictions on the weight matrices W(i), the layers are said to be
fully connected. Typically, fully connected neural networks have a large number
of parameters. For example, a fully connected neural network with p layers and n
neurons on each layer (W(i) ∈ Rn×n) will have pn(n+ 1) parameters. Since the input
and output dimensions are generally large (e.g., ImageNet has an input dimension of
2242 × 3 and an output of 1000), simple fully connected neural networks with few
layers accumulate over hundreds of millions of parameters. Generally, this type of
neural network has been shown to perform poorly due to a large search space or due
to the important expressivity of the model which leads to overfitting1. Moreover,
they are computationally expensive, which makes them impractical for a number of
use cases (smartphones, IoT devices, etc.). To reduce the number of parameters on
each layer, researchers have devised specific linear operations that reduce the number
of parameters and have better properties for the problem at hand.

1For Machine Learning models, overfitting is a well understood phenomenon. However, it has been
discovered that large deep neural networks exhibit a “double descent” phenomenon (see Spigler
et al. (2019)), where the performance first gets worse (overfits) then gets better with longer
training.
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An example of widely used neural networks with specialized and more compact
linear operations are Convolutional Neural Networks (CNN) (LeCun et al. 1998;
Krizhevsky et al. 2012; He et al. 2016; Tan & Le, 2019) which achieve state-of-the-art
results for computer vision tasks. Convolutional neural networks, which find their
roots in the work of Fukushima & Miyake (1982), use specific weight matrices which
encode the translation invariant property often desirable to process images. Whereas
a classical linear layer with a dense matrix will have n× n parameters, a convolution
layer only has k × k parameters where k � n is the kernel size and is usually small
(e.g., 3 or 5 for classical convolution layers). A convolutional neural network is the
most common type of structured neural networks. Indeed, the convolution operation
can be represented by a structured matrix i.e., a matrix that can be represented
with less than n2 parameters.

In addition to offering a more compact representation, the structure of certain
matrices can be exploited to obtain better algorithms for the matrix-vector product,
thus optimizing memory and computing operations. Based on the success of convolu-
tional neural networks, researchers have studied and proposed other types of neural
networks based on weight matrices with different structures (e.g., Sindhwani et al.
(2015) and Moczulski et al. (2016)). Figure 1.2 shows different types of structured ma-
trices that have been used for deep learning. Although convolutional neural networks
have been state-of-the-art for computer vision tasks, it remains unclear whether
other types of structured networks can be beneficial to other types of applications
and which type of structure can provide both accuracy and efficient computation.
The contributions of this thesis lie at the intersection of linear algebra, Fourier

analysis and deep learning. As a result, we build compact and secure neural networks
by leveraging the properties of structured matrices from the Toeplitz family. Hereafter,
we summarize our contributions.

1.2.1 Training Compact Neural Networks

As a first contribution, we use circulant matrices, which are a particular type of
matrix from the Toeplitz family, to devise a new compact architecture replacing fully
connected neural networks. More precisely, we study deep diagonal-circulant neural
networks, which are deep neural networks in which weight matrices are replaced by
the product of diagonal and circulant ones. Besides making a theoretical analysis of
their expressivity, we introduce principled techniques for training these models: we
devise an initialization scheme and propose a smart use of nonlinearity functions in
order to train deep diagonal-circulant networks. Furthermore, we show that these
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networks outperform recently introduced deep networks with other types of structured
layers. We conduct a thorough experimental study to compare the performance of
these networks with state-of-the-art models. We show that our models achieve better
accuracy than other structured approaches while requiring 2x fewer weights than the
next best approach. Finally, we train accurate deep diagonal-circulant networks on a
real-world video classification dataset with over 3.8 million training examples.

This contribution has been the subject of the following publications:
• Training Compact Deep Learning Models for Video Classification using Circu-

lant Matrices in the European Conference on Computer Vision Work-
shops on Video Classification

• Understanding and Training Deep Diagonal Circulant Neural Networks in the
24th European Conference on Artificial Intelligence.

1.2.2 Training Robust Neural Networks

As a second contribution, we build robust neural networks by studying the properties
of the structure of convolutions. We devise a new upper bound on the largest singular
value of convolution layers that is both tight and easy to compute. Our work is
based on the result of Gray (2006) which states that an upper bound on the singular
value of Toeplitz matrices can be computed from the inverse Fourier transform of
the characteristic sequence of these matrices. From our analysis immediately follows
an algorithm for bounding the Lipschitz constant of a convolution layer, and by
extension the Lipschitz constant of the whole network. Finally, we illustrate our
approach to adversarial robustness. Recent work has shown that empirical methods
such as adversarial training offer poor generalization (Schmidt et al. 2018; Rice et al.
2020) and can be improved by applying Lipschitz regularization (Farnia et al. 2019).
To illustrate the benefit of our new method, we train neural networks with Lipschitz
regularization and show that it offers a significant improvement over adversarial
training alone.
Additional joint contributions have also been made on the topic of robust neural

networks. A first work studied the effectiveness of noise injection at training and
inference time in neural networks to protect against adversarial attacks. In this
work, we have shown that noise drawn from the Exponential family offers a provable
protection against adversarial attacks. A follow-up work conducts a geometrical
analysis of defense mechanisms designed to protect neural networks against several
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types of attacks. This work shows that neural networks designed to be robust against
one type of adversarial example offer poor protection against other types of attacks.

The contribution on adversarial robustness has been the subject of the following
publications:
• On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix

Theory in the 35th AAAI Conference on Artificial Intelligence
• Theoretical evidence for adversarial robustness through randomization in the

Advances in Neural Information Processing Systems.
• Advocating for Multiple Defense Strategies against Adversarial Examples

in the European Conference on Machine Learning Workshop for
CyberSecurity

Outline of the Thesis

This thesis is organized in six chapters. First, Chapter 2 gives an introduction to
the theory of Toeplitz matrices and on supervised learning and neural networks.
This chapter presents the necessary technical tools we will need for presenting the
related work and for our contributions. Chapter 3 is dedicated to discussing the
state-of-the-art approaches related to our contributions. The chapter is divided into
two parts. First, we review some techniques to build compact neural networks with an
important focus on techniques that use structured matrices. The second part focuses
on presenting regularization methods for improving the robustness of neural networks.
Chapter 4 and Chapter 5 constitute our main contributions. Chapter 4 presents
results on compact neural networks built from diagonal and circulant matrices.
Chapter 5 presents our new regularization scheme to improve the robustness of
neural networks based on the properties of doubly-block Toeplitz matrices. Chapter 6
proposes a discussion and some perspectives on our contributions. Appendix B
constitutes some complements to Chapter 4. It provides additional experiments on
video classification with compact neural networks. Finally, Appendices C and D
provide further work on the robustness of neural networks done during this Ph.D.
thesis.
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This chapter gives an overview on the theory of Toeplitz matrices and on supervised
learning with neural networks. The first section describes the mathematical properties
of Toeplitz matrices and some known theorems that we use in this thesis. A Toeplitz
matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal,
from left to right, is constant. This simple property has led to interesting theoretical
results and numerous applications. We will use a number of these results in the
context of neural networks. The second section of this chapter is divided into four
parts. First, we review notions of supervised learning which refer to the problem of
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optimizing the parameters of a function in order to map an input to an output based
on a series of input-output pairs. Then, we formally define neural networks and
recall some of their properties. We pursue by introducing the concept of adversarial
examples which we will use in Chapter 5. Finally, we present some recent theoretical
results on neural networks that allow a better understanding of the contributions of
this thesis.

2.1 A Primer on Circulant and Toeplitz Matrices

2.1.1 Properties of Circulant Matrices

A circulant matrix is a matrix in which each descending diagonal, from left to right,
is constant and each row of the matrix is a cyclic right shift of the previous one:

C =



c0 cn−1 cn−2 · · · · · · c1

c1 c0 cn−1
. . .

...

c2 c1
. . .

. . .
. . .

...
...

. . .
. . .

. . . cn−1 cn−2
...

. . . c1 c0 cn−1

cn−1 · · · · · · c2 c1 c0


. (2.1)

The n×n circulant matrix C is fully determined by the sequence of scalars {ch}h∈I+
n

where I+
n = {0, . . . , n− 1}. Furthermore, the (j, k) entry of C is given by

(C)j,k = c(k−j) mod n . (2.2)

Algorithm 2.1 Matrix-vector product with a circulant matrix
1: procedure CIRCMUL(c,x) . first column of the circulant matrix C, vector x
2: x̃← FFT(x)
3: c̃← FFT(c)
4: y← IFFT(x̃� c̃) . element-wise vector-vector product
5: return y . return the result of the product Cx
6: end procedure

In linear algebra, circulant matrices are important due to their numerous properties.
Indeed, circulant matrices can be compactly represented in memory using only n
values instead of n2 values required for arbitrary matrices. In addition, algorithms
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exist to speed-up the matrix-vector product operation from O(n2) to O(n logn).
Finally, circulant matrices commute and are closed under the sum and products. All
these properties can be demonstrated with the special diagonalization of circulant
matrices with the matrix expansion of the Discrete Fourier Transform (DFT), i.e.,
Fourier matrix, and an explicit formula of their eigenvalues. The Fourier matrix is of
the form:

Definition 2.1 (Fourier Matrix). The Fourier matrix of order n is defined as
follows:

Un =



1 1 1 · · · 1
1 zn z2

n · · · zn−1
n

1 z2
n z4

n · · · z
2(n−1)
n

...
...

...
...

1 zn−1
n z

2(n−1)
n · · · z

(n−1)(n−1)
n


, (2.3)

where zn = e−
2πi
n is an nth root of unity.

The diagonalization of circulant matrices is given by the following theorem:

Theorem 2.1 (Davis (1979)). The eigenvalues λk and the eigenvectors y(k) of a
circulant matrix C = circ(c) with c ∈ Rn are as follows:

λk =
∑
j∈I+

n

cje
− 2πi

n
jk ⇔ λk = (Unc)k , (2.4)

and
y(k) = 1√

n

(
1, e− 2πik

n , . . . , e−
2πik(n−1)

n

)>
. (2.5)

Furthermore, the circulant matrix C can be expressed in the form

C = 1
n

U∗ndiag(Unc)Un . (2.6)

Based on this decomposition, we can state several properties of circulant matrices:

• Matrix-vector product: Let x ∈ Rn an arbitrary vector then the product Cx
can be expanded as follows:

Cx = 1
n

U∗ndiag(Unc)Unx (2.7)

= 1
n

U∗n
((

Unc
)
�
(
Unx

))
(2.8)
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where � is the element-wise vector multiplication. Thus, the matrix-vector product
Cx can be reduced to an element-wise multiplication between the characteristic
vector c and the vector x in the Fourier domain. Furthermore, the multiplication
between the Fourier matrix Un and a vector can be efficiently computed with the
Fast Fourier Transform (FFT) algorithms (Cooley & Tukey, 1965). Algorithm 2.1
details the steps required to perform the O(n logn) multiplication between a
circulant matrix and a vector.

• Closeness under sum: Let x,y ∈ Rn, X = circ(x) and Y = circ(y) then,
Z = X + Y is also a circulant matrix with Z = circ(x + y):

X + Y =
( 1
n

U∗ndiag(Unx)Un

)
+
( 1
n

U∗ndiag(Uny)Un

)
(2.9)

= 1
n

U∗n(diag(Unx)Un + diag(Uny)Un) (2.10)

= 1
n

U∗n(diag(Unx) + diag(Uny))Un (2.11)

= 1
n

U∗n(diag(Un(x + y)))Un (2.12)

= circ(x + y) (2.13)

• Closeness under product: Let x,y ∈ Rn, X = circ(x) and Y = circ(y) then,
Z = XY is also a circulant matrix with Z = circ(x� y):

XY =
( 1
n

U∗ndiag(Unx)Un

)( 1
n

U∗ndiag(Uny)Un

)
(2.14)

= 1
n2 U∗ndiag(Unx)UnU∗ndiag(Uny)Un (2.15)

= 1
n2 U∗ndiag(Unx)(nI)diag(Uny)Un (2.16)

= 1
n

U∗ndiag(Unx)diag(Uny)Un (2.17)

= 1
n

U∗ndiag(Un(x� y))Un (2.18)

= circ(x� y) (2.19)

In this thesis, we also make use of specific type of circulant matrices called f-
circulant matrices which are one of the building blocks of low displacement rank
operators presented in Section 2.1.4 and also enjoy compact representation and fast
matrix-vector product. An f -unit-circulant matrix is defined as follows:
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Definition 2.2 (f -circulant matrix). Given a vector x and a scalar f , the f-
circulant matrix, Zf (x), is defined as follows:

Zf (x) ,



x0 fxn−1 fxn−2 · · · · · · fx1

x1 x0 fxn−1
. . .

...

x2 x1
. . .

. . .
. . .

...
...

. . .
. . .

. . . fxn−1 fxn−2
...

. . . x1 x0 fxn−1

xn−1 · · · · · · x2 x1 x0


. (2.20)

We denote Zf the f -unit-circulant, defined by the vector (0, 1, . . . , 0)>, a matrix of
the form:

Zf =



0 0 0 · · · · · · f

1 0 0 . . .
...

0 1 . . .
. . .

. . .
...

...
. . .

. . .
. . . 0 0

...
. . . 1 0 0

0 · · · · · · 0 1 0


. (2.21)

The matrix-vector product Zfx scales the last element by f and makes a circular shift
on the components of the vector x by one resulting in Zfx = (fxn−1,x0, . . . ,xn−2)>.

2.1.2 A Fourier Representation of Toeplitz Matrices

Toeplitz matrices generalize circulant matrices by relaxing the cyclic right shift on
the rows. Therefore, a Toeplitz matrix is a matrix in which each descending diagonal,
from left to right, is constant, i.e., a matrix of the form:

A =



a0 a−1 a2 · · · · · · a−n+1

a1 a0 a1
. . .

...

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a−1 a−2
...

. . . a1 a0 a−1

an−1 · · · · · · a2 a1 a0


. (2.22)
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Chapter 2 Background

The n× n Toeplitz matrix A is fully determined by a two-sided sequence of scalars
{ah}h∈In where In = {−n+ 1, . . . , n− 1} and the (j, k) entry of A is given by

(A)j,k = ak−j . (2.23)

Similarly to their circulant counterpart, Toeplitz matrices can be represented com-
pactly in memory using only 2n− 1 values instead of n2 values required for arbitrary
ones. Toeplitz matrices have been extensively studied in the context of operator and
spectral theory (Grenander et al. 1958; Widom, 1965; Böttcher & Silbermann, 2012). One
important result regarding Toeplitz matrices is Szegö’s theorem (Szegö, 1915) which
describes the asymptotic behavior of the determinant of large Toeplitz matrices.
Because Toeplitz matrices do not have a closed-form expression for their eigenvalues,
studying their spectrum is not as straightforward as their circulant counterpart. In
order to devise results on Toeplitz matrices, Grenander et al. (1958) introduced a
representation based on the Fourier transform. Indeed, Toeplitz matrices can be
generated from a 2π-periodic function where the values of the Toeplitz matrix are the
Fourier coefficients of this generating function. The spectrum of Toeplitz matrices
can be described precisely from the properties of their generating functions. This
representation of Toeplitz matrices has been widely studied in contexts such as signal
processing, trigonometric moment problems, integral equations and elliptic partial
differential equations with boundary conditions, etc. (Parter, 1961; Widom, 1965;
Avram, 1988; Serra, 1997; Tilli, 1997, 1998; Tyrtyshnikov & Zamarashkin, 1998)

The Fourier representation of Toeplitz matrices can be described as follows. Let
{ah}h∈In be the characteristic sequence of the Toeplitz matrix A ∈ Rn×n. Then, the
trigonometric polynomial f : R→ C of the form

f(ω) =
∑
h∈In

ahe
ihω (2.24)

is the inverse Fourier transform of the sequence {ah}h∈In . From this function, one
can recover the sequence {ah}h∈In using the standard Fourier transform:

ah = 1
2π

∫ 2π

0
e−ihωf(ω) dω . (2.25)

We can, now, define an operator T mapping integrable functions to Toeplitz matrices:

Tn(f) ,
( 1

2π

∫ 2π

0
e−i(i−j)ωf(ω) dω

)
i,j∈I+

n

. (2.26)

In the following, when it is clear from context, we will write T(f) instead of Tn(f).
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2.1 A Primer on Circulant and Toeplitz Matrices

2.1.3 Block Circulant, Block Toeplitz and the Convolution
Operator

Block Toeplitz and Block Circulant Matrices

We can adapt the structure of circulant matrices and their properties to block matrices.
A block circulant matrix is a matrix where each block is repeated identically along
diagonals and each row of blocks is a cyclic right shift of the previous one. Therefore,
an nm× nm block circulant matrix A is fully determined by a sequence of blocks
{A(h)}h∈I+

n
and where each block A(h) is an m × m matrix. The block circulant

matrix A =
(

A((k−j) mod n)
)
j,k∈I+

n

is given by

A =



A(0) A(n−1) A(n−2) · · · · · · A(1)

A(1) A(0) A(n−1) . . .
...

A(2) A(1) . . .
. . .

. . .
...

...
. . .

. . .
. . . A(n−1) A(n−2)

...
. . . A(1) A(0) A(n−1)

A(n−1) · · · · · · A(2) A(1) A(0)


. (2.27)

The diagonalization of circulant matrices can be extended to block circulant matrices
where the diagonalization is done by blocks and the unit matrix is the Kronecker
product of the Fourier matrix with the identity. The following theorem describes
this block diagonalization:

Theorem 2.2 (GutiérrezGutiérrez & Crespo (2012)). Let A be an n2 × n2 block
circulant matrix defined by the sequence of blocks {A(h)}h∈I+

n
, then:

A = 1
n

(Un ⊗ In)∗bdiag(Ψ(0), · · · ,Ψ(n−1))(Un ⊗ In) , (2.28)

where ⊗ is the Kronecker product, bdiag is the block diagonal operator, Un is the
Fourier matrix of size n× n and Ψ(0), . . . ,Ψ(n−1) are blocks determined as follows:


Ψ(0)

Ψ(1)

...

Ψ(n−1)

 = (Un ⊗ In)


A(0)

A(1)
...

A(n−1)

 . (2.29)
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One can remark that when the blocks are of size 1×1, i.e., scalars, this theorem coin-
cides with Equation (2.6) of Theorem 2.1. Although interesting, this representation
does not provide a closed form expression of the eigenvalues of the block circulant
matrix. However, in the special case where the blocks are also circulant matrices
– the matrix is called a doubly-block circulant matrix – then we can extend the
diagonalization and get a closed form of the eigenvalues of doubly-block circulant ma-
trices. First, we can remark that if the blocks A(0), . . . ,A(n−1) are circulant matrices
then the blocks Ψ(0), . . . ,Ψ(n−1) are also circulant matrices because they are linear
combinations of circulant matrices which are closed under the sum and products.
Therefore, using Theorem 2.1 for each block of the block diagonal independently, we
have:

bdiag
(

Ψ(0), · · · ,Ψ(n−1)
)

= 1
n

(I⊗Un)∗Λ(I⊗Un) , (2.30)

where Λ = diag
(
(Unψ

(0), . . . ,Unψ
(n−1))

)
and the vectors ψ(0), . . . , ψ(n−1) are the

characteristic vectors of the circulant matrices Ψ(0), . . . ,Ψ(n−1) respectively. By com-
bining Equation (2.28) and Equation (2.30), we obtain the eigenvalues decomposition
of a doubly-block circulant matrix. Given a doubly-block circulant matrix A, we
have:

A = 1
n2 (Un ⊗Un)∗Λ(Un ⊗Un) . (2.31)

This decomposition makes it possible to express the eigenvalues of a doubly-block
circulant matrix with the characteristic vectors of the circulant matrices composing
it. Furthermore, one can note that the eigenvectors are independent of the values of
the matrix and can be expressed with the Fourier matrix.

Akin to circulant and block circulant matrices, we can extend the block structure
to Toeplitz matrices. An nm× nm block Toeplitz matrix B is fully determined by
a two-sided sequence of blocks {B(j)}h∈In and where each block B(h) is an m×m
matrix. The block Toeplitz matrix B =

(
B(k−j)

)
j,k∈I+

n

is given by

B =



B(0) B(−1) B(−2) · · · · · · B(−n+1)

B(1) B(0) B(−1) . . .
...

B(2) B(1) . . .
. . .

. . .
...

...
. . .

. . .
. . . B(−1) B(−2)

...
. . . B(1) B(0) B(−1)

B(n−1) · · · · · · B(2) B(1) B(0)


. (2.32)
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2.1 A Primer on Circulant and Toeplitz Matrices

Block Toeplitz and doubly-block Toeplitz matrices (block Toeplitz matrix where
the blocks are also Toeplitz) do not have a block diagonalization nor a closed-form
expression for their eigenvalues. However, the Toeplitz operator defined in Equa-
tion (2.26) can be extended to block Toeplitz and doubly-block Toeplitz matrices.
For block Toeplitz matrices, the trigonometric polynomial that generates the block
Toeplitz matrix B can be defined as follows:

FB(ω) ,
∑
h∈In

B(h)eihω . (2.33)

The function FB is said to be the generating function of the block matrix B. To
recover the block Toeplitz matrix from its generating function, we use the Toeplitz
operator defined in Equation (2.26); therefore by construction, we have Tn(FB) = B.

Relation with the Convolution Operator

Figure 2.1: A convolution: a kernel sliding over an image and acting as a filter.
Illustration taken from Dumoulin & Visin (2016).

Doubly-block circulant and doubly-block Toeplitz matrices are interesting structure
due to their relation to 2-dimensional convolutions. We recall that a discrete
convolution can be seen as a kernel sliding over the image and acting as a filter.
Figure 2.1 illustrates the convolution operation with the image (blue), the kernel
(gray) and the resulting operation (green). It has been shown by Jain (1989) that
the result of a discrete 2d-convolution can be obtained by applying a doubly-block
Toeplitz matrix to the input signal. A doubly-block Toeplitz matrix is a block
Toeplitz matrix where the blocks are also Toeplitz. To illustrate, we consider a
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discrete convolution between a 2-dimensional signal x and a kernel K where the
kernel is defined as follows:

K =


k0 k1 k2

k3 k4 k5

k6 k7 k8


then, the doubly-block Toeplitz matrix M that performs the convolution can be
represented as:

M =


T(0) T(1) 0

T(2) T(0) . . .

. . . T(0) T(1)

0 T(2) T(0)

 .

where T(j) are Toeplitz matrices and the values of the kernel K are distributed in
the Toeplitz blocks as follows:

T(0) =



k4 k3 0
k5 k4 k3

k5
. . .

. . .

. . . k4 k3

0 k5 k4


T(1) =



k7 k6 0
k8 k7 k6

k8
. . .

. . .

. . . k7 k6

0 k8 k7



T(2) =



k1 k0 0
k2 k1 k0

k2
. . .

. . .

. . . k1 k0

0 k2 k1



In practice, the signal often can have multiple channels (e.g., images have 3 channels
corresponding to the colors red, green and blue). Let us denote cin and cout the
number of the input and output channels respectively. Then the input signal has
a dimension of cin × n × n, performed by a kernel of size cout × cin × k × k, and
outputs a signal of size cout ×m×m with m = n− k + 2p+ 1 where p corresponds
to the padding. The matrix for the multi-channel convolution is the concatenation
of cout · cin doubly-block Toeplitz matrices.
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hn−1 · · · h1 h0
...

. . . h0 h−1

h1
. . .

. . .
...

h0 h−1 · · · h−n+1


Hankel


1 v0 · · · vn−1

0
1 v1 · · · vn−1

1

1
...

...

1 vn−1 · · · vn−1
n−1


Vandermonde


1

u0−v0
· · · 1

u0−vn−1
1

u1−v0
· · · 1

u1−vn−1
... · · ·

...
1

un−1−v0
· · · 1

un−1−vn−1


Cauchy

Figure 2.2: Representation of Hankel, Vandermonde and Cauchy matrices

2.1.4 LDR: General Framework for Structured Matrices

In this thesis, we mainly focus on structured transforms from the Toeplitz family.
The properties of matrices from the Toeplitz family presented in the previous section
make them good candidates for applications in the context of signal processing and
deep neural network. However, other structured matrices with other properties
have been considered. In this section, we briefly present these families of structured
matrices and introduce LDR, a more general framework to capture all structured
matrices. Below a description of some known structured matrices:

• Hankel matrix: A Hankel matrix has constant values along each of its
anti-diagonals.

• Vandermonde matrix: A Vandermonde matrix is a matrix where each term
follows a geometric progression. A very important special case is the complex
matrix associated with the Discrete Fourier transform (DFT) presented in
Equation (2.3) which has a Vandermonde structure.

• Cauchy matrix: A Cauchy matrix is an m×n matrix with elements aij such
that aij = (ui−vj)−1 with ui−vj 6= 0, i ∈ {0, . . . ,m−1} and j ∈ {0, . . . , n−1}.

Figure 2.2 shows the representation of the parameters sharing of Hankel, Vandermonde
and Cauchy matrices. The study of these matrices with those from the Toeplitz family
can be unified thought to the concept of Low Displacement Rank (LDR) initially
proposed by Kailath et al. (1979). Although these matrices appear to have very
different kinds of structure, they can be all associated with a specific displacement
operator

4

A,B : Rm×n → Rm×n which takes a matrix, M, and outputs a low rank
matrix

4

A,B(M) such that rank(

4

A,B(M))� min(m,n).
More formally, two displacement operators can be defined as follows (for simplifi-

cation, we consider m = n):
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Operator Matrices Class of structured Rank of
A B matrices M

4

A,B(M)
Z1 Z−1 Toeplitz ≤ 2
Z1 Z>0 Hankel ≤ 2

Z0 + Z>0 Z0 + Z>0 Toeplitz + Hankel ≤ 4
diag(v) Z0 Vandermonde ≤ 1

Z0 diag(v) Inverse of Vandermonde ≤ 1
diag(u) diag(v) Cauchy ≤ 1
diag(v) diag(u) Inverse of Cauchy ≤ 1

Table 2.1: Displacing Matrices Associated with Families of Structured Matrices.

Definition 2.3 (Sylvester & Stein displacement operators). Let A,B ∈ Rn×n, the
Sylvester displacement operator

4

A,B : Rn×n → Rn×n is defined as follows:

4

A,B(M) , AM−MB (2.34)

The Stein displacement operator 4A,B : Rn×n → Rn×n is defined as follows:

4A,B (M) ,M−AMB (2.35)

where

4

A,B(M) = A 4A−1,B (M) if the operator matrix A is non-singular, and

4
A,B(M) = −4A,B−1 (M)B if the operator matrix B is non-singular.

Based on this definition, if M is a structured matrix, there exist operator matrices
A and B such that

4

A,B(M) is low rank. In particular, A and B can be chosen
to be diagonal or f -unit-circulant matrices (see Definition 2.2) for several classes of
structured matrices. Table 2.1 shows some specific choices of operators for the four
classes of structured matrices presented above as well as other types of structured
matrices from the same family. We now define the matrices that can be considered
structured with respect to the Sylvester or Stein operator.

Definition 2.4 (L-like matrices Pan (2001)). For an n × n matrix M and an
associated operator

4

A,B (or 4A,B), the value r = rank(

4

A,B(M)) (or r =
rank(4A,B(M))) is called the displacement rank. If the value of r is small rel-
ative to n as n grows large, then we call the matrix M L-like having a structure
of type L. For example, in the case where the operator

4

A,B is associated with
Toeplitz matrices (i.e., A = Z1 and B = Z−1, see Table 2.1), we call the matrix M,
Toeplitz-Like.
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An important result allows us to express structured matrices with low-displacement
rank directly as a function of their low displacement generators. This result can
then be used to decompose structured matrices and define efficient algorithms for
matrix-vector products.

Theorem 2.3 (Krylov Decomposition Pan & Wang (2003) and Sindhwani et al. (2015)).
If an n× n matrix M is such that 4A,B(M) = GH> where G = (g(1) . . .g(r)),H =
(h(1) . . .h(r)) ∈ Rn×r and the operator matrices satisfy: An = aI, Bn = bI for some
scalars a, b, then M can be expressed as:

M = 1
1− ab

r∑
j=1

krylov(A,g(j)) krylov(B>,h(j))> (2.36)

where krylov(A,v) is defined by:

krylov(A,v) = [v Av A2v . . . An−1v] (2.37)

In the case of Toeplitz-like matrices, the above theorem can be simplified as follows:

Theorem 2.4 (Toeplitz-like matrix decomposition Pan (2001)). If an n× n matrix
M satisfies

4

Z1,Z−1(M) = GH> (M is Toeplitz-like) where G = (g(1) . . .g(r)),H =
(h(1) . . .h(r)) ∈ Rn×r, then M can be written as:

M = 1
2

r∑
j=1

Z1(g(j))Z−1(Jnh(j)) (2.38)

where Jn is the reflection of the n× n identity matrix and Z1 and Z−1 are f-unit-
circulant matrices (see Definition 2.2).

In the next chapter, we will see how this general framework have been used in the
context of compact neural networks.

2.2 Supervised Learning and Neural Networks

2.2.1 Introduction to Supervised Learning

Supervised learning consists in learning a function that maps an input to an output
based on input-output pairs. For example, one could learn to “predict” if a fruit will be
tasty based on its features (e.g., size, weight, color, consistency, etc.). These features
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are used as inputs to the function and the function outputs a value characterizing
the taste of the fruit.
In the following, we will formalize the learning problem described above with

the statistical learning framework. First, let us define the domain space X which
corresponds to the set of inputs that we wish to label. Let us denote the label space
Y and a finite sequence of pairs S =

{(
x(1), y(1)

)
. . .
(
x(m), y(m)

)}
in X × Y. Such

pairs i.e., labeled examples, are called training examples and the set S is called the
training set. We denote D the joint distribution over X × Y. The main objective of
the task at hand is to output a function h : X → Y that maps the input x ∈ X to
the output y ∈ Y. This function is called the hypothesis or the classifier. Given the
probability distribution D, we aim to measure how likely the hypothesis h makes
an error when labeled points are randomly drawn from the distribution D. Let us
define the true error or risk of the hypothesis h that we wish to minimize:

RD(h) , E(x,y)∼D
[
L
(
h(x), y

)]
. (2.39)

where L : Y × Y → R+ is a loss function which measures the correctness of the
hypothesis. For example, for classification problems, we can use the 0-1 loss defined
as:

L(h(x), y) , 1[
h(x)6=y

] (2.40)

However, in practice, the joint probability distribution D is unknown; therefore,
the true error is not directly available to the learner. The learner only has access to
the training data, S, and can calculate the empirical error, i.e., the error over the
training samples. We define the empirical risk as follows:

RS(h) , 1
|S|

∑
(x,y)∈S

L
(
h(x), y

)
. (2.41)

The learning paradigm which consists in minimizing this value is called Empirical
Risk Minimization denoted ERM.

We use the ERM paradigm as a surrogate to find a hypothesis h that minimizes
the true risk RD. However, all hypotheses that minimize the empirical error do not
necessarily minimize the true risk. For example, consider the following function:

hc(x) =

y
(i) if ∃i ∈ [m] s.t. x(i) = x

c otherwise
(2.42)
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(a) Underfitting (b) Overfitting (c) Good fit

Figure 2.3: Decision boundary of three classifiers with different complexity for the same set
of samples.

Clearly, this function, for any training, S and a binary target, will have RS(h1) =
RS(h2) = 0, whereas one the two functions will have a true risk ≥ 1

2 (under the
reasonable assumption that S is a negligible set with respect to D). The phenomenon,
called overfitting, happens when the classifier fits the training data “too well” but will
likely have a high error on unseen data. One possible solution to this phenomenon is
to apply ERM with a restricted search space to prevent the learning algorithm to
output a function such as hc in Equation (2.42). We call this set the hypothesis class
and is denoted H. Each h ∈ H is a function mapping from X to Y. We call ERMH,
the set of learned hypotheses that uses the ERM paradigm over the hypothesis class
H and a training data S. Formally,

ERMH(S) = arg min
h∈H

RS(h) . (2.43)

For a training sample S, we denote hS ∈ ERMH(S), one solution of applying
ERMH on the set S, if there exist multiple hypotheses with minimal error on the
training sample, then the minimization problem returns an arbitrary one. In practice,
the hypothesis class is chosen on the basis of an assumption about the relationship
between the data and its label. For example, if the relation between the data and
its label is supposedly linear, then the hypothesis class can be the set of all linear
functions. This kind of restriction is called the inductive bias because the learner is
biased towards a particular set of predictors.

The ERM paradigm assumes that a hypothesis hS that minimizes the risk RS will
also minimize the true risk RD. To verify that this assumption is correct, we need
to ensure that all hypotheses in the hypothesis class H are good approximators of
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their true risk. We say that a hypothesis class has the uniform convergence property
if there exists a function mH : (0, 1)2 → N such that for every ε, δ ∈ (0, 1), if S is a
sample of size m ≥ mH(ε, δ) examples drawn independently and identically according
to D, then, with probability of at least 1− δ:

∀h ∈ H, |RD(h)−RS(h)| ≤ ε , (2.44)

where the function mH, called the sample complexity, measures the minimal number
of examples needed to ensure that with probability of at least 1− δ, Equation (2.44)
holds. The i.i.d. assumption is common in statistical learning theory. It is easy to see
that the error between RS(h) and RD(h) is dependent on the representativeness of
the sample S with respect to the underlying distribution D. Therefore, the parameter
δ characterizes the probability of having a nonrepresentative sample. The quantity
1− δ is the confidence parameter of the prediction.

The following result gives the sample complexity measure the maximum value for
which the hypothesis class has the uniform convergence property.

Theorem 2.5 (Shalev-Shwartz & Ben-David (2014)). Let H be a finite hypothesis
class, then H enjoys the uniform convergence property with sample complexity:

mH(ε, δ) ≤
⌈ log(2|H|/δ)

2ε2
⌉
, (2.45)

where |H| is the cardinal of the set H. Note that we can also write the bound
from Theorem 2.5 as follows: for all h ∈ H, we have

RD(h)︸ ︷︷ ︸
Error

≤ RS(h)︸ ︷︷ ︸
Estimation Error

+
√

log(|H|/δ)
2mH(ε, δ)︸ ︷︷ ︸

Complexity penality

, (2.46)

with probability 1− δ. This bound is called a generalization bound and consists in
bounding the true error by the empirical error and a complexity penalty. In the
above theorem, the condition on the finiteness of the hypothesis class might by too
strong. For example, if we consider the set of linear functions parameterized by a
set of real-valued parameters the hypothesis class is infinite and the theorem above
does not apply. To characterize the learnability of infinite hypothesis classes, several
complexity measures have been proposed. One of the first, discovered by Vapnik &
Chervonenkis (2015), relies on a combinatorial notion called the Vapnik-Chervonenkis
dimension (VC-dimension). They showed that having a finite VC-dimension is a
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necessary and sufficient condition for the uniform convergence property. In the
same vein, the Rademacher complexity (Koltchinskii & Panchenko, 2000), measures the
richness of the class of real-valued functions with respect to a probability distribution.
In Section 2.2.4, we will study recent generalization bounds specific to neural networks
where the complexity penalty is dependent on the Lipschitz constant of the weights
matrices.

A fundamental question of the ERM paradigm remains: how to choose the correct
hypothesis class for which ERMH will not lead to overfitting? We answer this question
by decomposing the true risk into two different components as follows:

RD(hS) =
[
min
h∈H

RD(h)
]

︸ ︷︷ ︸
Approximation Error

+
[
RD(hS)−min

h∈H
RD(h)

]
︸ ︷︷ ︸

Estimation Error

(2.47)

• Approximation Error: The approximation error corresponds to the mini-
mum risk achievable by a classifier in the given hypothesis class. Intuitively,
this error measures the quality of the hypothesis class and therefore the quality
of the prior knowledge. Enlarging the hypothesis class, i.e., allowing more
complex functions, can decrease the approximation error.

• Estimation Error: The estimation error is the difference between the ap-
proximation error and the error made by the ERM predictor. Recall that the
empirical risk is only an estimate of the true risk. This error is dependent on
the sample size and the complexity of the hypothesis class.

Recall that the main goal is to minimize the true risk RD(hS), however, Equa-
tion (2.47) shows a trade-off called the bias-complexity trade-off. The trade-off is as
follows: if we choose a large and complex hypothesis space, we reduce the approxi-
mation error but at the same time we can increase the estimation error because a
complex hypothesis space might lead to overfitting. Conversely, choosing a small
hypothesis space might reduce the estimation error but increase the approximation
error leading to underfitting. We can illustrate the overfitting and underfitting phe-
nomenons with Figure 2.3 which shows the decision boundary of 3 classifiers for
the same set of samples. Figure 2.3a shows a classifier which underfits the data,
meaning the decision boundary is not complex enough to separate the data correctly.
Figure 2.3b shows a classifier that almost perfectly fits the training data but is likely
to have a higher error rate on the unseen data. Finally, Figure 2.3c shows a classifier
that seems to have a good compromise between the two.

25



Chapter 2 Background

As seen above, defining a small hypothesis class might lead to underfitting and a
large hypothesis class might lead to overfitting. A good way to balance the trade-off
would be to minimize the empirical risk while also minimizing the complexity of the
hypothesis class. Let us define a regularization function r : H → R which takes a
hypothesis as input and measures the “complexity” of the hypothesis. We could now
update the learning rule as follows:

arg min
h∈H

[RS(h) + r(h)] (2.48)

This learning rule minimizes the empirical risk RS(h) and a well chosen regularization
function r. If r( · ) is carefully chosen, this prevent overfitting and improve generaliza-
tion on unseen data. This learning rule is closely related to Structural Minimization
Paradigm (SRM) (Shalev-Shwartz & Ben-David, 2014). In the next section, we will
present a classical regularization function for neural networks and we will introduce
a new regularization scheme in Chapter 5.

2.2.2 Preliminaries on Neural Networks

Neural networks, which find their roots in the work of McCulloch & Pitts (1943) and
Rosenblatt (1958), can be analytically described as a composition of linear functions
interlaced with nonlinear functions (also called activation functions). A feedforward
neural network can be defined as follows:

Definition 2.5 (Neural Network). Given a depth p ∈ N, let w = {w(i)}i∈[p+1] and
b = {b(i)}i∈[p] be sequences of integers, Ω =

{(
W(i),b(i)

)}
i∈[p]

a set of weights

matrices and bias vectors such that W(i) ∈ Rw(i)×w(i+1) and b(i) ∈ Rb(i) and a
sequence of activation functions ρ = {ρi}i∈[p]. Let X ⊂ Rw(1) and Y ⊂ Rw(p+1) be
the input and output spaces respectively. w(1) and w(p) refer to the input and output
dimension respectively. A neural network is a function Nρ

Ω : X → Y such that

Nρ
Ω(x) , φρpW(p),b(p) ◦ · · · ◦ φ

ρ1
W(1),b(1)(x) (2.49)

where φρiW(i),b(i) : Rw(i) → Rw(i+1) (also called layer) is a function parameterized by
the weight matrix W(i), the bias vector b(i) and the activation function ρi. φρiW(i),b(i) :
is defined as follows:

φρiW(i),b(i)(x) , ρi
(
W(i)x + b(i)

)
, (2.50)
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2.2 Supervised Learning and Neural Networks

and ρp is identity function.

Based on this definition, for a given training set S ⊂ X × Y, a set of activation
functions ρ, a set of weights and biases Ω and a loss function L : Y × [k]→ R+, the
ERM learning paradigm for neural networks is given by

arg min
Ω

1
|S|

∑
(x,y)∈S

L(Nρ
Ω(x), y) (2.51)

For classification problems, the zero-one loss is non-convex, and finding a near optimal
solution is an NP-hard problem (Ben-David et al. 2003; Feldman et al. 2012). Instead,
a common approach is to use a surrogate loss such as the logistic loss multiclass
function and estimate the parameters by maximizing the likelihood over the data.
This loss L : Y × [k], is defined as follows:

L(Nρ
Ω(x), y) = − log

 e
(Nρ

Ω(x))
y∑

j∈[k] e
(Nρ

Ω(x))
j

 (2.52)

The generic approach for minimizing the empirical risk in Equation (2.51) is by
gradient descent with the backpropagation algorithm (Rumelhart et al. 1986) which
consists in computing the gradient with the chain rule.
As seen in the previous section, the SRM paradigm minimizes two terms, the

empirical risk and a weight function measuring the “complexity” of the hypothesis.
It has been shown that the `2 norm of the weights of a network can be used as a
measure of complexity of the network (Hinton, 1987). This regularization, also called
weight decay, prevents weights from growing too large. The SRM learning algorithm
can then be expressed as follows:

arg min
Ω

1
|S|

∑
(x,y)∈S

L(Nρ
Ω(x), y) + λ

∑
(W,b)∈Ω

(‖W‖F + ‖b‖2) (2.53)

where λ > 0 is the regularization parameter.
Choosing the right activation function has been an active area of research. Hereafter,

we present three common activation functions used by practitioners.

• Sigmoid activation
ρ(x) = 1

1 + e−x
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Figure 2.4: Graphical representation of three common activation functions

The sigmoid activation function is one of the first continuous nonlinear functions
to be used in the context of neural networks. It takes a real value as input and
outputs another value between 0 and 1.

• Hyperbolic Tangent activation

ρ(x) = ex − e−x

ex + e−x

The hyperbolic tangent activation function is similar to the sigmoid activation
function but instead of returning between 0 and 1, the function returns values
between -1 and 1.

• Rectified Linear activation (ReLU) (Nair & Hinton, 2010)

ρ(x) = max(0, x)

The ReLU activation was proposed to avoid the vanishing gradient problem.
The vanishing gradient problem, discovered by Bengio et al. (1994), occurs with
hyperbolic tangent or sigmoid activation when the magnitude of the input
values are almost saturated at −1 or 1, in this case the gradient is close to 0
and difficulties of optimization and convergence occur. The ReLU activation
addresses this problem due to the simple values of its gradients which are either
0 or 1 on R− or R+ respectively. Furthermore, it has the advantage to be less
computationally expensive than tanh and sigmoid functions because it involves
simpler mathematical operations.
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2.2 Supervised Learning and Neural Networks

• Leaky Rectified Linear activation (Leaky-ReLU) (Maas et al. 2013)

ρ(x) = max(α, x)

More recently, the Leaky-ReLU (α > 0) activation function was proposed. It
introduces the parameter α which characterizes the slope on R−. The advantage
of Leaky-ReLU over the ReLU nonlinear activation is that it prevents sparse
gradient, which facilitates convergence of neural networks.

Figure 2.4 presents the graphical representation of the activation functions presented
above. In this thesis, we will use the Leaky-ReLU function with different α when we
train deep neural networks. We simplify the notation Nρ

Ω with NΩ.

2.2.3 Adversarial Attacks & Robustness of Neural Networks

As seen in the introduction (Chapter 1), deep neural networks achieve state-of-the-art
performances in a variety of domains such as natural language processing (Radford
et al. 2019), image recognition (He et al. 2016) and speech recognition (Hinton et
al. 2012). However, it has been shown that such neural networks are vulnerable to
adversarial examples, i.e., imperceptible variations of the natural examples, crafted
to deliberately mislead the models (Globerson & Roweis, 2006; Biggio et al. 2013; Szegedy
et al. 2014). Because it is difficult to characterize the space of visually imperceptible
variations of a natural image, existing adversarial attacks use `p norms as surrogate
measures. We can formally define an adversarial example as follows:

Definition 2.6 (Adversarial Pertubation). Given an example x and its predicted
label y, k number of classes, a trained neural network NΩ with arg maxi∈[k]

(
NΩ(x)

)
i

=
y and a radius ε ∈ R, an adversarial perturbation is a vector τ ∈ X such that:

arg max
i∈[k]

(
NΩ(x + τ )

)
i
6= y , (2.54)

s.t. ‖τ‖p ≤ ε

where ε is a small value defined by the attacker.

Note that this definition assumes that the attacker (the person crafting the attack)
has access to the parameters of the model. Typically, an attack method is either
white-box (complete knowledge of the model and its parameters) or black-box (no
knowledge of the model). It is possible to consider that the white-box setting admits
too strong assumptions because a model and its parameters could very well be hidden
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from the public. In general, it is safer to assume that the adversary has complete
knowledge of the model and its defense. This principle is known in the field of
security as the Shannon’s maxim (Shannon, 1949). Therefore, in this thesis, we only
consider defenses against white-box attacks.

Implementing Adversarial Attacks

Since the discovery of adversarial perturbations, a variety of procedures, a.k.a.
adversarial attacks, have been developed to generate adversarial examples. FGSM
(Goodfellow et al. 2015), PGD (Madry et al. 2018) and (Carlini & Wagner, 2017) to name
a few, are the most popular ones. To find the best perturbation τ , existing attacks
can adopt one of the two following strategies:

Loss maximization. In this scenario, the procedure maximizes the loss objective
function L(NΩ(x + τ ), y), under the constraint that the `p norm of the perturbation
remains bounded by some value ε, as follows:

arg max
τ :‖τ‖p≤ε

L(NΩ(x + τ ), y) . (2.55)

The typical value of ε depends on the norm ‖ · ‖p considered in the problem setting.
The current state-of-the-art method to solve Equation (2.55) is based on a projected
gradient descent (PGD) (Madry et al. 2018) of radius ε. Given a budget ε, it recursively
computes

x(t+1) =
∏
Bp(x,ε)

x(t) + α arg max
τ :‖τ‖p≤1

τ>∇x(t)L
(
NΩ
(
x(t)), y)

 (2.56)

where Bp(x, ε) = {x + τ : ‖τ‖p ≤ ε} is the ball of norm p with radius ε, centered at
x, α is a gradient step size, and ∏B is the projection operator on the ball B. The
PGD attack is currently used in the literature with p = 2 and p =∞. The attack
with the norm p =∞ is state-of-the-art for the loss maximization problem.
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2.2 Supervised Learning and Neural Networks

Perturbation minimization. This type of procedure searches for the perturba-
tion with the minimal `p norm, under the constraint that L(NΩ(x + τ ), y) is bigger
than a given bound c:

arg min
τ

‖τ‖p , (2.57)

s.t. L(NΩ(x + τ ), y) ≥ c

The value of c is typically chosen depending on the loss function L. For example, if L
is the 0-1 loss, any c > 0 is acceptable. Equation (2.57) has been tackled by Carlini &
Wagner (2017), leading to the following method, denoted C&W attack in the rest of the
chapter. It aims at solving the following Lagrangian relaxation of Equation (2.57):

arg min
τ

‖τ‖p + λg(x + τ ) , (2.58)

where g(x + τ ) < 0 if and only if L(NΩ(x + τ ), y) ≥ c. The authors use a binary
search to optimize the constant c, and gradient descent to compute an approximated
solution. The C&W attack is currently used in the literature with p ∈ {1, 2,∞}
and is state-of-the-art with p = 2 for the perturbation minimization problem if we
consider that the attacker has unlimited computing power.

Defending against Adversarial Attacks

Given the security risks that adversarial attacks pose, it is important to design
defenses to protect neural networks against these kinds of attacks. Adversarial
Training was introduced by Goodfellow et al. (2015) and later improved by Madry et
al. (2018) as a first defense mechanism to train robust neural networks. It consists
in augmenting training batches with adversarial examples generated during the
training procedure. The structural risk minimization paradigm is thus replaced by
the following min max problem, where the classifier tries to minimize the expected
loss under the maximum perturbation of its input:

min
Ω

max
τ :‖τ‖≤ε

1
|S|

∑
(x,y)∈S

L(NΩ(x + τ ), y) + λ
∑

(W,b)∈Ω
(‖W‖F + ‖b‖2) . (2.59)

Although adversarial training lacks formal guarantees, it is one of the few techniques
that proves to be empirically very effective.
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2.2.4 Recent Results on the Theory of Neural Networks

In this section, we give recent generalization bounds for neural networks. Neural
networks have the astonishing property of providing a low error rate on unseen
data although they have more parameters than the number of training samples and
therefore have the capabilities to fit random labels (Zhang et al. 2017). In this context,
traditional approaches of statistical learning fail to explain why large neural networks
generalize well in practice.

Harvey et al. (2017) have introduced a generalization bound of neural networks with
the VC-dimension as a complexity measure of the hypothesis class. They improved
over previous bounds (Bartlett et al. 1998; Anthony & Bartlett, 1999) by showing that
the VC-dimension of a p-layer feedforward neural network is equal to the depth times
the number of parameters. Unfortunately, this kind of bound with such a complexity
measure is of little help to better understand the generalization capabilities of neural
networks.

More recently, Bartlett et al. (2017) have proposed to use a scale-sensitive complexity
measure instead of combinatorial ones (i.e., VC-dimension) which can work with
real-valued function classes and are sensitive to their magnitudes. They proposed
to use the product of the spectral norms of the weight matrices (i.e., the Lipschitz
constant of the weight matrices) of the network to this scale-sensitive complexity
measure. In addition, they investigated the margins and show that normalizing these
Lipschitz constants by the margin allows to better control their excess risk (the
test error minus the training error) across training epochs. The margin has been
previously studied in relationship to generalization by Langford & Shawe-Taylor (2002)
and more recently by Neyshabur et al. (2018).
In what follows, we present generalization bounds for neural networks which are

independent of the number of parameters of the network and use as a complexity
penalty the Lipschitz constant of the weight matrices. In addition, following the
Section 2.2.3 on Adversarial Attacks, we present the work of Farnia et al. (2019) which
introduce adversarial risk and empirical adversarial risk and present an adversarial
generalization bound similar to the one proposed by Bartlett et al. (2017).

First, let us formally define the Lipschitz constant of a function as well as the
spectral norm of a matrix. We will use these notions in the following and later in
the thesis. Formally, the Lipschitz constant of a function is defined as follows:
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Definition 2.7 (Lipschitz Constant). The Lipschitz constant with respect to the
`p-norm of a Lipschitz continuous function f : Rn → Rm is defined as follows:

Lipp(f) , sup
x,y∈Rn

x 6=y

‖f(x)− f(y)‖p
‖x− y‖p

. (2.60)

In the following of this thesis, we denote Lip2(f) by Lip(f) for simplicity and if
Lipp(f) = k, we denote the function f as k-Lipschitz. The spectral norm of a matrix
W, which is equivalent to the Lipschitz constant of the function x 7→Wx, is defined
as follows:

Definition 2.8 (Spectral norm). Given a matrix W, the spectral norm of W
denoted ‖W‖2 is defined as:

‖W‖2 , sup
x∈Rn
x 6=0n

‖Wx‖2
‖x‖2

. (2.61)

Note that the spectral norm also corresponds to the largest singular value of the
matrix denoted σ1(W).
Before presenting the bound from Bartlett et al. (2017), let us introduce and

recall some notations. Let NΩ be a neural network parameterized by Ω as in the
Definition 2.5. Let us recall the risk with respect to the neural network NΩ and a
distribution D as in Equation (2.39):

RD(NΩ) = P(x,y)∼D

[
arg max
i∈[k]

(NΩ(x))i 6= y

]
. (2.62)

Bartlett et al. (2017) extended the notion of risk with a margin operator M : Rk×[k]→
R defined as M(v, j) , vj −maxi 6=j vi and an extension to the 0-1 loss called the
ramp loss Lγ : R→ R+ as:

Lγ(r) ,


0 r < −γ,

1 + r/γ r ∈ [−γ, 0],

1 r > 0,

(2.63)

Now, we can define the margin risk as

Rγ,D(NΩ) , E(x,y)∼D
[
Lγ
(
−M(NΩ(x), y)

)]
, (2.64)

33



Chapter 2 Background

and the empirical margin risk as

Rγ,S(NΩ) , 1
|S|

∑
(x,y)∈S

Lγ
(
−M(NΩ(x), y)

)
. (2.65)

Note that the margin risk and the empirical margin risk upper bound the risk and
empirical risk. The generalization bound proposed by Bartlett et al. (2017) for neural
networks is stated as follows:

Theorem 2.6 (Bartlett et al. (2017)). Let (ρ(1), . . . , ρ(p)) be nonlinearities where
∀i ∈ [p],Lip

(
ρ(i)
)
< ∞ and ρ(i)(0) = 0. Let w(1), . . . , w(p+1) be integers such that

W(i) ∈ Rw(i)×w(i+1) and let W = maxiw(i). Let X a matrix where the rows of X
are the input data x(1), . . . ,x(m) ∈ S. Let NΩ : Rw(1) → Rw(p+1) be a neural network
parameterized by Ω as in the Definition 2.5 where

(
W(1), . . . ,W(p)

)
are the weights

matrices. Then for every margin γ > 0, the following bound applies:

RD(NΩ) ≤ Rγ,S(NΩ) + Õ
(
‖X‖FRΩ
γ|S|

ln(W ) +
√

ln(1/δ)
|S|

)
(2.66)

with probability at least 1− δ, where the spectral complexity RΩ is defined as

RΩ =
( p∏
i=1

Lip
(
ρ(i)
)∥∥∥W(i)

∥∥∥
2

) p∑
i=1

∥∥∥W(i)>
∥∥∥2/3

2,1∥∥W(i)
∥∥2/3

2


3/2

(2.67)

where Õ( · ) ignores logarithmic factors and the norm ‖ · ‖p,q is defined by ‖W‖p,q ,(∑n
j=1(∑m

i=1 |aij |p)
q
p

) 1
q .

As we stated in the introduction, the generalization of neural networks is important
but should not be the only metric to consider. Indeed, a neural network that performs
well on natural data could be vulnerable to adversarial attacks. We saw in the
previous section that adversarial training is a technique that successfully improves
the robustness of neural networks by learning on adversarial examples instead of
natural ones. In the following, we present recent results devised by Farnia et al. (2019)
on the generalization capabilities of neural networks trained with adversarial training.
First, let us define the adversarial margin risk as:

Radv
γ,D(NΩ) , E(x,y)∼D Lγ

(
−M(NΩ(x + τ adv

Ω (x)), y)
)
, (2.68)
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where τ adv
Ω (x) is an adversarial perturbation following the loss maximization strategy

presented above. The adversarial empirical margin risk Radv
γ,S is defined similarly as

in Equation (2.65). The adversarial generalization bound is stated as follows:

Theorem 2.7 (Farnia et al. (2019)). Let (ρ(1), . . . , ρ(p)) be nonlinearities where
∀i ∈ [p],Lip

(
ρ(i)
)

= 1 and ρ(i)(0) = 0. Let b = maxx∈S ‖x‖2. Let X ⊂ Rw(1) and
Y ⊂ Rw(p+1) be the input and output spaces respectively. Let NΩ : X → Y be a neural
network parameterized by Ω of depth p and of largest width W = maxiw(i) following
the Definition 2.5. Assume that for a constant c1 ≥ 1 the weights matrices satisfy:

∀i, 1
c1
≤

∥∥∥W(i)
∥∥∥

2∏p
j=1
(∥∥W(j)

∥∥
2
)1/p ≤ c1 (2.69)

and that c2 ≤ ‖∇xL(NΩ(x), y)‖2 holds for a constant c2 > 0, any y ∈ Y and any
x ∈ B2(x, ε). Let us consider an attack such that

∥∥∥τ adv
Ω (x)

∥∥∥
2
≤ ε with r iterations,

and a stepsize α. Then for every margin γ > 0, the following bound applies:

Radv
0,D(NΩ) ≤ Radv

γ,S (NΩ) +O


√√√√(b+ ε)2p2W log(pW )Radv

NΩ
+ p log

(
rp|S| log(M)

δ

)
γ2|S|


(2.70)

with probability at least 1 − δ, where the adversarial spectral complexity Radv
Ω is

defined as

Radv
NΩ ,

[ p∏
i=1

∥∥∥W(i)
∥∥∥

2

(
1 + (α/c2)1− (2α/c2)rΦr

Ω
1− (2α/c2)ΦΩ

ΦΩ

)]2 p∑
i=1

∥∥∥W(i)
∥∥∥2

F∥∥W(i)
∥∥2

2
(2.71)

and where ΦΩ is defined as: ΦΩ ,
(∏p

i=1

∥∥∥W(i)
∥∥∥

2

)∑p
i=1

∏i
j=1

∥∥∥W(j)
∥∥∥

2

These generalization bounds for neural networks give us a theoretical justification
for Lipschitz regularization. However, computing the spectral norm of the weights
matrices is a difficult task. In the next chapter, we will review some known techniques
and we propose in Chapter 5 new efficient method for regularizing the Lipschitz
constant of neural networks.
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2.3 Summary of the Chapter

As explained in the Introduction (Chapter 1), our contributions lie at the intersection
between neural networks and structured matrices. In this chapter, we have reviewed
the necessary concepts to present our contributions and some related works.
First, Section 2.1 introduced circulant and Toeplitz matrices which are the main

mathematical objects used in this thesis. Circulant and Toeplitz matrices are
structured matrices in which each descending diagonal, from left to right, is constant.
These structured matrices are the building blocks of our contribution on compact
neural networks (Chapter 4) and enable fast approximation of the Lipschitz constant
of convolution layers leading to a new regularization scheme (Chapter 5).
Finally, in Section 2.2.1, we gave a quick overview of the concept of supervised

learning, which presents the mathematical tools for optimizing a parameterized
function in order to map an input to an output based on a series of input-output
pairs. Although the statistical learning framework considers generic hypothesis
space, in this work we use a class of functions called neural networks presented in
Section 2.2.2. We also presented, in Section 2.2.3, the concept of adversarial attacks
and robustness of neural networks. We showed how a neural network can be sensitive
to small perturbations to its input and thus vulnerable to adversarial examples.
Reducing the sensitivity and therefore increasing the robustness of neural networks
is the central theme of our second contribution presented in Chapter 5. Finally, in
Section 2.2.4, we have presented some recent results on the theory of neural networks.
These results give us insights on how neural networks generalize and a theoretical
justification of the regularization scheme that we propose in Chapter 5.
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This chapter, divided into two parts, is intended to provide an overview of the state
of the art related to our contributions. First, we present current methods for building
compact neural networks. Since the scope of application of these techniques is broad,
we have chosen to focus mainly on work that uses linear algebra tools and more
particularly structured matrices. We present in the first subsection an overview of
general techniques for building compact neural networks. In the next subsection, we
present in more detail the current methods for building compact neural networks
with structured matrices. Finally, we discuss these techniques with respect to our
contribution to compact neural networks.
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The second part of this chapter presents current methods for regularizing the
Lipschitz constant of neural networks with the aim of improving their robustness.
This section is divided into four parts. First, we present techniques that focus on the
computation of the Lipschitz constant of neural networks. Although theoretically
and empirically interesting, we will see how these techniques do not scale and
therefore cannot be applied to current neural network architectures. The following
subsection presents the approach of Lipschitz regularization via the Lipschitz constant
of individual layers of the networks. We describe the advantages and disadvantages
of this approach. Moreover, in the third subsection, we focus our presentation on
current techniques that compute the singular values of convolution layers. Finally, we
discuss these techniques with respect to our contribution on Lipschitz regularization
of convolutional neural networks.

3.1 Related Work on Compact Neural Networks

3.1.1 General Techniques to Build Compact Neural Networks

As seen in the Introduction (Chapter 1), scaling up networks can lead to better
accuracy (Tan & Le, 2019; Brown et al. 2020). However, large neural networks lead
to difficult and expensive training and after observing that a lot of parameters in
large neural networks were redundant (Dai et al. 2018; Frankle & Carbin, 2018), an
important question arises: do neural networks need to be over-parameterized? And if
not, how to build accurate and compact neural networks?

Numerous other directions have been investigated to build compact and cost-
effective neural networks without impacting the accuracy. For example Gupta et al.
(2015) and Micikevicius et al. (2018) have proposed to represent weights with limited
numerical precision to reduce training time and memory requirements. They used
half-precision floating-point format instead of single-precision floating-point format
which uses 32 bits of computer memory. In the same direction, Courbariaux et al.
(2015) have proposed a method to train neural networks with binary weights without
an important loss in the accuracy.
An important idea in model compression, proposed by Buciluǎ et al. (2006), is

based on the observation that the model used for training is not required to be
the same as the one used for inference. Indeed, models compressed after training
can be deployed on smartphones or IoT devices. Based on this idea, multiple
post-processing techniques have been developed: a quantization procedure which
consists in converting the weights into a binary or integer formats after the training
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Figure 3.1: Illustration of the scaling of the EfficientNet architecture.

phase (Rastegari et al. 2016; Mellempudi et al. 2017), pruning techniques (Han et al.
2016; Lin et al. 2017; Dai et al. 2018) or sparsity regularizers (Collins & Kohli, 2014;
Liu et al. 2015; Dai et al. 2018) which consists in removing redundant weights after
training and taking advantage of the sparse structure of the weight matrices.

Sparse neural networks have also been extensively studied since the seminal work
of Frankle & Carbin (2018) in which they propose the Lottery Ticket Hypothesis. This
hypothesis states that there exists a sparse subnetwork of a dense neural network
that when trained in isolation can match the test accuracy of the original dense
network after training for at most the same number of iterations. This hypothesis
led to a series of works on sparse neural networks (Malach et al. 2019; Zhou et al. 2019;
Evci et al. 2020).

Moreover, Ba & Caruana (2014) have empirically demonstrated that shallow neural
networks can learn the complex functions previously learned by other deep neural
networks. This result led Hinton et al. (2015) to propose a technique called model
distillation which consists in training a large complex model using all the available
data and resources to be as accurate as possible, then a smaller and more compact
model is trained to approximate the first model. Although interesting for deployment
purposes, this approach still requires to train one large network and one shallow,
which entails a significant training cost.

More recently, Zoph et al. (2018) and Real et al. (2019) have designed algorithms that
automatically tune the width and depth of neural network architectures to obtain
the best trade-off between compactness and accuracy. With this approach, Tan &
Le (2019) found a new compound scaling method that uniformly scales network width
and depth leading to efficient and compact architecture. Figure 3.1 illustrates the
different scaling proposed by Tan & Le (2019).
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3.1.2 Building Compact Neural Networks with Structured
Matrices

An effective method to build compact neural networks is to constrain the hypothesis
space by imposing a structure on the weight matrices which constitute the different
layers of the network.

Structured Neural Networks with Low Rank Approximation

For example, Sainath et al. (2013) were among the first to use low-rank matrices in deep
learning contexts followed by the work of Jaderberg et al. (2014) and Yu et al. (2017).
Their work consists in replacing the weight matrices of size n×m by the product of
two rectangular matrices of size n× r and r×m, where r corresponds to the rank of
the new matrix. In order to reduce the number of parameters, the rank r is chosen
to be small such that r � min(m,n). By representing the weight matrices with a
low-rank decomposition, one can reduce the storage from mn parameters to (mr+nr)
and accelerate the matrix-vector product from O(mn) to O(mr + rn). To enforce
the low-rank constraint, reduced storage and computation time during training, the
authors trained the coefficients of the two rectangular matrices directly. Formally, let
W ∈ Rn×m be a weight matrix and let W̃ be the low-rank approximation of rank r
of the matrix W. Then, the low-matrix W̃ can be decomposed by the product of
two rectangular matrices U ∈ Rn×r and V ∈ Rr×m such that W̃ = UV. Therefore,
a neural network layer with low-rank approximation can be expressed as follows:

φU,V,b(x) = ρ(UVx + b). (3.1)

The scalar r defining the size of the two rectangular matrices becomes an hyper-
parameter and controls the trade-off between the expressivity and compactness of
the layer.
In the same vein, Oseledets (2011) have proposed the Tensor Train decomposition

(TT-decomposition), which is based on the tensor rank decomposition (Tucker
decomposition) proposed by Hitchcock (1927) and named after Tucker (1966). The TT-
decomposition is defined as follows. Let A ∈ Rn1×n2×···×nd−1×nd be a d-dimensional
tensor. The Tensor-Train Decomposition factorizes A in a product of third-order
tensors and it is given by:

(A)(i1,...,id) = (G(1))(i1,:)(G
(2))(:,i2,:)(G

(3))(:,i3,:) . . . (G
(d))(:,id) (3.2)
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where G(i) are matrices and G(i) are third-order tensors of size ri × ri+1 called TT-
cores. The sequence {rk}dk=0 is referred to as the ranks of the TT-representation. The
above equation can be equivalently rewritten as a sum of elements of the TT-cores:

(A)(i1,...,id) =
∑

α1,...,αd−1

(G(1))(i1,α1)(G(2))(α1,i2,α2) . . . (G(d))(αd−1,id) (3.3)

Oseledets (2011) have shown that for an arbitrary tensor A, several TT-representations
exist with different ranks. The TT-decomposition can be very efficient in terms of
memory requirement if the ranks are small. Indeed, the tensor A has ∏d

k=1 nk values
compared with ∑d

k=1 nkrk−1rk values.
The TT-decomposition has been extensively used in the context of deep learning.

Novikov et al. (2015) was one of the first to use this technique to reduce the number
of parameters of neural networks by using the decomposition to replace the fully
connected layer of the VGG architecture (Simonyan & Zisserman, 2014). They reported
a compression factor of the dense weight matrix up to 200000 times leading to the
compression factor of the whole network up to 7 times with only 0.3 point drop of
TOP-5 accuracy on ImageNet (Deng et al. 2009). With this work, Novikov et al. (2015)
have demonstrated that the TT-decomposition allows an important reduction of the
number of parameters while preserving the expressive power of the layers. Later, the
TT-decomposition was used in other types of architectures. Garipov et al. (2016) used
it to compress convolution layers as well as fully connected layers. Yang et al. (2017)
used it in the context of video classification, Tjandra et al. (2017) compressed the
layers of recurrent neural networks and finally, Ma et al. (2019) developed a compact
architecture based on TT-decomposition for Language Modeling.
However, the Tensor-Train decomposition has some limitations. Although it can

reduce the number of parameters when the ranks are low, finding the best alignment
of the tensor dimensions in order to find the best optimized TT-cores remains a
challenging problem, as stated by Pan et al. (2019).

Neural Networks with Diagonal and Circulant Matrices

Cheng et al. (2015) proposed to replace the weight matrix of a fully connected layer
by the product of a circulant and a diagonal matrix leading to following structured
layer:

φD,C,b(x) = ρ(DCx + b) , (3.4)
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where the circulant matrix is learned by a gradient-based optimization algorithm and
the diagonal matrix entries are sampled at random in {−1, 1}. The idea of replacing
dense matrices with circulant ones comes from their use in dimensionality reduction
with the fast Johnson-Lindenstrauss transform (Hinrichs & Vybíral, 2011; Vybíral, 2011),
binary embedding (Yu et al. 2014), and kernel approximation (Yu et al. 2015), etc.
Circulant matrices exhibit several interesting properties from the perspective of
numerical computations. Recall from Theorem 2.1 that circulant matrices can be
diagonalized with the Fourier Transform as follows:

C = 1
n

U∗ndiag(Unc)Un . (3.5)

where the vector c corresponds to the first columns of the matrix C. This decom-
position allows a compact representation in memory (n values instead of n2) and
efficient matrix-vector product with the FFT algorithm (see Algorithm 2.1). Despite
the reduction of expressivity, Cheng et al. (2015) demonstrated good empirical results
using only a fraction of the original weights (90% reduction).

Moczulski et al. (2016) built upon the work of Cheng et al. (2015) and Huhtanen &
Perämäki (2015) and introduced two Structured Efficient Linear Layers (SELL) based
on the Fourier and cosine transforms. First, by observing that the DC transform
cannot express an arbitrary linear operator they proposed to apply the result of
Huhtanen & Perämäki (2015) which states that almost all matrices can be decomposed
as a product of DC transforms.

Theorem 3.1 (Reformulation from Huhtanen & Perämäki (2015)). For every matrix
M ∈ Cn×n, for any ε > 0, there exists a sequence of matrices {A(i)}i∈[2n−1] where
A(i) is a circulant matrix if i is odd, and a diagonal matrix otherwise, such that∥∥∥A(1) . . .A(2n−1) −M

∥∥∥ < ε.

Based on this result, they proposed to parameterize the layers of a neural network
with k products of diagonal and circulant matrices as follows:

φD,C,b(x) = ρ

((
k∏
i=1

D(i)C(i)
)

x + b
)

(3.6)

where D and C are sequences of k diagonal and circulant matrices respectively.
This structured layer is therefore parameterized by n(2k + 1) values and the value
k becomes a hyper-parameter controlling the trade-off between compactness and
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expressivity. By diagonalizing the circulant matrix, the layer in Equation (3.6) can
be expressed as a product of diagonal matrices and the Fourier transform as follows:

φρd,c,b(x) = ρ

(
1
nk

(
k∏
i=1

diag
(
d(i)

)
U∗ndiag

(
Unc(i)

)
Un

)
x + b

)
(3.7)

Although interesting and demonstrating good empirical results, the work of Moczulski
et al. (2016) suffers from multiple limitations. First, the result from Huhtanen &
Perämäki (2015) is expressed with respect to n, the size of the matrices A. Therefore,
the theorem does not provide any insights regarding the expressive power of k factors
when k is much lower than 2n− 1 as it is the case in most practical scenarios they
consider. Finally, in order to stay in the real domain, they replaced the Fourier
transform in Equation (3.7) with the cosine transform thus learning a different kind
of linear transform (see the work of Sanchez et al. (1995) which characterizes the
matrices diagonalizable by the cosine transform). Furthermore, because the cosine
transform does not diagonalize circulant matrices, Theorem 3.1 no longer applies.

General Representation of Structured Linear Maps: LDR and K-Matrices

General frameworks for structured matrices that reduce the memory footprint but
also accelerate matrix-vector product operations have been used to build compact
neural networks. Sindhwani et al. (2015) have used the notion of low displacement
rank presented in Section 2.1.4 to learn a broad family of structured matrices. Recall
from Theorem 2.4 that all matrices expressed as the following sum of products are
called Toeplitz-like matrices:

M = 1
2

r∑
j=1

Z1(g(j))Z−1(Jnh(j)) (3.8)

where Zf is an f -circulant matrix defined in Definition 2.2, G =
(
g(1) . . .g(r)

)
,H =(

h(1) . . .h(r)
)
∈ Rn×r with r � n and Jn is the reflection of the n×n identity matrix.

More precisely, Sindhwani et al. (2015) proposed to learn Toeplitz-like matrices by
learning the factors G and H. Therefore, they proposed the following parameterized
layer:

φG,H,b(x) = ρ

 r∑
j=1

Z1
(
g(j)

)
Z−1

(
Jnh(j)

)x + b

 (3.9)
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where the rank r is a hyper-parameter and controls the number of parameters of
the layer. In addition to offer fast matrix-vector product, they have showed that
this class of layers is very rich from a modeling perspective. More precisely, they
characterize the expressivity of the layer as follows:

Theorem 3.2 (LDR expressivity Pan (2001) and Sindhwani et al. (2015)).
The set of all n× n matrices that can be written as, 1

2
∑r
i=1 Z1(g(i))Z−1(Jnh(i)) for

some G =
(
g(1) . . .g(r)

)
,H =

(
h(1) . . .h(r)

)
∈ Rn×r contains:

• All n× n Circulant and Skew-Circulant matrices for r ≥ 1.
• All n× n Toeplitz matrices for r ≥ 2.
• Inverses of Toeplitz matrices for r ≥ 2.
• All products of the form A(1) . . .A(t) for any r ≥ 2t.
• All linear combinations of the form ∑p

i=1 βiA(1,i) . . .A(t,i) for any r ≥ 2pt.
• All n× n matrices for r = n.

where each A(i) above is a Toeplitz matrix or the inverse of a Toeplitz matrix.

In the same line of work, Thomas et al. (2018) have proposed neural network layers
directly form the Krylov decomposition presented in Theorem 2.3 which encompasses
an even larger family of structured matrices including Toeplitz-like, Vandermonde-
like, Cauchy-like ones. Despite being elegant and general, we found that the LDR
framework suffers from several limits which are inherent to its generality and makes
it difficult to use in the context of deep neural networks. As acknowledged by the
authors, the number of parameters required to represent a given structured matrix
(a Toeplitz matrix) in practice is unnecessarily high (higher than required in theory)
making the training very hard.
More recently, another type of generalization of structured linear maps has been

proposed by Dao et al. (2019) and Dao et al. (2020). They introduced a family of
matrices called kaleidoscope matrices (K-matrices) which are the product of sparse
matrices with specific predefined sparsity patterns. They showed that this type of
matrices can capture any sparse matrix with near-optimal space (parameter) and time
(arithmetic operation) complexity. The authors claim that their structured linear
maps can capture more common structures with a few numbers of parameters than the
displacement operators presented above. More precisely, their representation is based
on products of a particular building block known as a butterfly matrix introduced
by Parker (1995). Butterfly matrices have been extensively used in numerical linear
algebra (Parker, 1995; Li et al. 2015) and machine learning (Mathieu & LeCun, 2014;
Jing et al. 2017; Munkhoeva et al. 2018; Choromanski et al. 2019; Dao et al. 2019).
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3.1.3 Discussion

In this section, we have shown current methods and techniques for designing compact
neural networks with structured matrices. Our contributions on Deep Diagonal
Circulant Neural Networks are a direct follow-up to the work of Cheng et al. (2015),
Sindhwani et al. (2015), Moczulski et al. (2016) and Thomas et al. (2018) focusing on
compact neural networks with structured matrices. More precisely, we extend the
work of Moczulski et al. (2016) by training fully structured networks (i.e., networks
with structured layers only) hence demonstrating that diagonal-circulant layers are
able to model complex relations between inputs and outputs. Although, this diagonal-
circulant layers fit in the low displacement rank framework, we demonstrate much
better performances in practice. Indeed, thanks to a solid theoretical analysis and
thorough experiments, we were able to train deep (up to 40 layers) circulant neural
networks, and apply, for the first time, this structured architecture in the context of
large-scale video classification. This contrasts with previous experiments in which
only one or a few dense layers were replaced inside a large redundant network such
as VGG (Simonyan & Zisserman, 2014).

3.2 Related Work on Lipschitz Regularization

3.2.1 The Global Lipschitz Constant of Neural Networks

The regularization of the Lipschitz constant of neural networks has seen a growing
interest in the last few years. Indeed, numerous results have shown that neural
networks with a low Lipschitz constant exhibit better generalization (Bartlett et al.
2017) and higher robustness to adversarial attacks (Szegedy et al. 2014; Tsuzuku et al.
2018; Farnia et al. 2019).

The Lipschitz constant, defined in Definition 2.7, is a measure of the stability of
the network. If the Lipschitz constant is high, the network will tend to be more
sensitive to input perturbations, meaning, if the input changes by ε, the output
changes by at most kε. The Lipschitz constant of a function can also be expressed
using the differential operator as follows:
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Theorem 3.3 (Rademacher’s Theorem). If f : Rn → Rm is a Lipschitz continuous
function, then f is differentiable almost everywhere. Moreover, if f is Lipschitz
continuous, then

Lip(f) = sup
x∈Rn

‖Dxf(x)‖2 (3.10)

where Dx is the differential operator of f at x.

Tsuzuku et al. (2018) have studied the relationship between the robustness and
the Lipschitz constant and the margin of neural networks. By the definition of the
Lipschitz constant, we have the following:

‖NΩ(x)−NΩ(x + τ )‖2 ≤ Lip(NΩ)‖τ‖2 (3.11)

Recall the margin operator M : Rk × [k]→ R from Section 2.2.4 defined as:

M(v, j) , vj −max
i 6=j

vi (3.12)

Then, we have the following proposition which characterizes the robustness of a
neural network with respect to its margin and Lipschitz constant.

Proposition 3.1 (Tsuzuku et al. (2018)).

M
(
NΩ(x), y

)
≥
√

2Lip(NΩ)‖τ‖2 =⇒ M
(
NΩ(x + τ ), y

)
≥ 0 (3.13)

If the inequality on the right-hand side of Equation (3.13) is verified then the
adversarial margin is positive, i.e., the network correctly predicts the label. From
this proposition, we can conclude that for a given neural network with specific
margins, a lower Lipschitz constant allows for an increase in robustness. Note that
the margin is already maximized in a multi-class setting with the cross-entropy loss
as stated in Hein & Andriushchenko (2017). A multitude of work have tried to reduce
the Lipschitz constant in order to improve adversarial robustness. However, Virmaux
& Scaman (2018) have shown that computing the exact Lipschitz constant of a neural
network is NP-hard. The following theorem shows that, even for shallow neural
networks, exact Lipschitz computation is not achievable in polynomial time:

Theorem 3.4 (Virmaux & Scaman (2018)). Let us define the problem associated
with the exact computation of the Lipschitz constant of a 2-layer neural network with
ReLU activation:
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Input: Two matrices W(1) ∈ Rl×n and W(2) ∈ Rm×l, and a constant c ≥ 0.

Question: Let N = W(2) ◦ ρ ◦W(1) where ρ is the ReLU activation function.
Is the Lipschitz constant Lip(N) ≤ c ?

Then, assuming that P 6= NP, the problem above is NP-hard.

To overcome this difficulty, researchers have relied on devising a tight upper bound
of the Lipschitz constant. For example, Virmaux & Scaman (2018) have shown that
the Lipschitz constant of a neural network N can be explicitly formulated using
Theorem 3.3 and the chain rule:

Lip(N) = sup
x∈Rn

∥∥∥W(p)diag(ρ′p(θp)) . . .W(2)diag(ρ′1(θ1))W(1)
∥∥∥

2
, (3.14)

where θi = φρiW(i),b(i) ◦ · · · ◦ φ
ρ1
W(1),b(1)(x) is the intermediate output after i layers and

ρ′i is the derivative of ρi. The Lipschitz of the neural network N can then be upper
bounded as follows:

Lip(N) ≤ max
∀i, σi∈[0,1]w(i+1)

∥∥∥W(p)diag(σp−1) . . . diag(σ1)W(1)
∥∥∥

2

≤ max
∀i, σi∈[0,1]w(i+1)

∥∥∥ΣΣΣ(p)V(p)>diag(σp−1) . . . diag(σ1)U(1)ΣΣΣ(1)
∥∥∥

2

≤
p−1∏
i=1

max
σi∈[0,1]w(i+1)

∥∥∥∥Σ̃ΣΣ(i+1)
V(i+1)>diag(σi+1)U(i)Σ̃ΣΣ(i)

∥∥∥∥
2

(3.15)

where Σ̃ΣΣ(i) = ΣΣΣ(i) if i ∈ {1, p} and Σ̃ΣΣ(i) = ΣΣΣ(i)1/2 otherwise. The first inequality is
due to the fact that the derivatives of the activation functions are bounded, i.e.,
ρi(x) ∈ [0, 1]w(i+1) , the second inequality is obtained by decomposing each weight
matrix W(i) with the Singular Value Decomposition such that W(i) = U(i)ΣΣΣ(i)V(i)>;
and finally, the last inequality is due to the submultiplicativity of the operator norm.
Although accurate, this bound is still computationally expensive to compute due to
the singular value decomposition and the optimization for each layer. In the same
line of research, recent work (Fazlyab et al. 2019a,b; Latorre et al. 2020) has proposed a
tight bound on the Lipschitz constant of the full network with the use of semi-definite
programming. More precisely, Fazlyab et al. (2019) have demonstrated the following
result:
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Theorem 3.5 (Lipschitz bounds Fazlyab et al. (2019)). Consider a neural network
N : Rn → Rm such that N(x) = W(2)ρ(W(1)x + b(1)) + b(2). Suppose the activation
function ρ is slope-restricted in the sector [α, β], i.e.,

α ≤ ρ(y)− ρ(x)
y − x

≤ β ∀x, y ∈ R. (3.16)

Define the set Tn as the following:

Tn = {T ∈ Sn | T =
n∑
i=1

λiie(i)e(i)> +
∑

1≤i<j≤n
λij(e(i) − e(j))(e(i) − e(j))>, λij ≥ 0}.

where Sn is the set of all symmetric matrices of size n× n. Suppose there exists a
constant c > 0 such that the matrix inequality

M(c,T) ,
(
−2αβW(1)>TW(1) − cIn (α+ β)W(1)>T

(α+ β)TW(1) −2T + W(2)>W(2)

)
≤ 0, (3.17)

holds for some T ∈ Tn. Then ‖N(x)−N(y)‖2 ≤
√
c‖x− y‖2 for all x,y ∈ Rn.

From Theorem 3.5, the constant c is an upper bound on the Lipschitz constant of the
network. The authors proposed to find the tightest bound by solving the following
optimization problem (Semidefinite Program):

minimize c subject to M(c,T) ≤ 0 and T ∈ Tn, (3.18)

where the decision variables are (c,T) ∈ R+ × Tn. Note that M(c,T) is linear in c
and T and the set Tn is convex. Although, these works on devising a global bound
on the Lipschitz constant of a neural network are theoretically interesting, they lack
scalability They can only be computed on small networks and cannot be used during
the training of large neural networks for regularization purposes.

3.2.2 Lipschitz Constant of Individual Layers

Instead of regularizing the ERM using the global Lipschitz constant, researchers have
devised techniques to reduce the Lipschitz constant of individual layers instead. The
global Lipschitz of a neural network can easily be upper bounded by the product of
the spectral norm of each weight matrix as follows:
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Proposition 3.2 (Virmaux & Scaman (2018)). Let N be a neural network of p layers
with 1-Lipschitz activation functions (e.g. ReLU, Leaky ReLU, Tanh, Sigmoid, etc.),
then, the Lipschitz constant of the neural network can be upper bounded as follows:

Lip(N) ≤
p∏
i=1

∥∥∥W(i)
∥∥∥

2
, (3.19)

where W(i) are the weights matrices of the neural network.

Remark. The Lipschitz constant of a layer φρW,b (with a 1-Lipschitz activation
function) is equal to the spectral norm of the matrix W (largest singular value). Let
φρW,b : Rn → Rm such that φρW,b = ρ(Wx + b) then by definition of the Lipschitz
constant (see Definition 2.7) and of the operator norm, we have:

Lip
(
φρW,b

)
= sup

x∈Rn
x 6=0

‖Wx‖2
‖x‖2

= ‖W‖2 (3.20)

The trivial bound given by the product of layer-wise Lipschitz constants in Equa-
tion (3.19) is known to be loose and pessimistic. Furthermore, we can show that
reducing the Lipschitz constant of each layer independently does not imply that the
global Lipschitz constant of the network will be reduced.

Proposition 3.3. Let N be a neural network, then decreasing the Lipschitz constant
of one or more layers does not imply reducing the Lipschitz constant of the network,
i.e., Lip(N).

Proof of Proposition 3.3. Let us prove this claim with a counter-example. Let
N1(x) = A(2)ρ(A(1)x) and N2(x) = B(2)ρ(B(1)x) where ρ is the ReLU activation
function. Let

A(1) =
(

0 −1
−1 0

)
A(2) =

(
−1 −1
−1 0

)

B(1) =
(

0 0
0 −1

)
B(2) =

(
−1 −1
−1 −1

)

then:
∥∥∥A(1)

∥∥∥
2

= 1,
∥∥∥A(2)

∥∥∥
2

=
√

2 and
∥∥∥B(1)

∥∥∥
2

= 1,
∥∥∥B(2)

∥∥∥
2

= 2
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From Theorem 3.3 and the chain rule, the Lipschitz constant of the networks N1

and N2 can be expressed as follows:

Lip(N1) = sup
x∈[0,1]2

∥∥∥A(2)diag(x)A(1)
∥∥∥

2

Lip(N2) = sup
x∈[0,1]2

∥∥∥B(2)diag(x)B(1)
∥∥∥

2

It is easy to verify that:

Lip(N1) = 1 +
√

5
2 ≈ 1.618 and Lip(N2) =

√
2 ≈ 1.414

which concludes the proof. �

While we cannot have a guarantee that the global Lipschitz will be reduced, we could
still have an idea of the value of the global Lipschitz with the upper bound presented
in Equation (3.19).

Huster et al. (2018) have demonstrated several limitations on the expressive power of
neural networks where the product of layer-wise Lipschitz constants is constrained. In
the same vein, Couellan (2019) empirically showed that Lipschitz Regularization offers
a trade-off between adversarial robustness and expressivity of the network. However,
the bound in Equation (3.19) appears in multiple generalization bound (Bartlett et al.
2017; Neyshabur, 2017; Golowich et al. 2018) and adversarial generalization (Farnia et al.
2019) (see Chapter 2) which could suggest that reducing the bound would improve
the generalization capabilities of neural networks and its robustness.

Based on this theoretical insight, researchers have developed several techniques to
constrain the Lipschitz constant of each layer in order to improve the generalization
and robustness of neural networks. A technique to enforce 1-Lipschitz layers is to
impose or promote an orthogonality constrain of the weight matrices. A square
orthogonal matrix M is a matrix whose columns and rows are orthogonal unit vectors
and all eigenvalues are equal to 1. Cisse et al. (2017) and more recently Huang et al.
(2020) and Wang et al. (2020) have proposed to minimize the following term:

β

2
∥∥∥W>W− I

∥∥∥
2
, (3.21)

to promote the orthogonality constraint, in addition to the usual loss function: In
the above equation, the hyper-parameter β controls the constraint. A higher β would

50



3.2 Related Work on Lipschitz Regularization

Algorithm 3.1 Power method for producing the largest singular value, σ1, of a
non-square matrix, W (Golub & VanderVorst, 2000; Gouk et al. 2018)
Require: affine function f(x) = Wx + b, number of iteration N
Ensure: approximation of the Lipschitz constant Lip(f)
1: Randomly initialise x
2: for i = 1 to N do
3: x←W>Wx/‖x‖2
4: end for
5: return ‖Wx‖2/‖x‖2

lead to a better orthogonality constraint and therefore, a Lipschitz constant “almost”
equal to 1 for all the layers.
On the other hand, Anil et al. (2019) proposed to enforce the orthogonality of

weight matrices by directly optimizing on the Stiefel manifold (i.e., the manifold of
orthogonal matrices, see Absil et al. (2009)). To perform this optimization, they made
use of an iterative algorithm first introduced by Björck & Bowie (1971). For a given
matrix W = W(0), the algorithm finds the closest orthonormal matrix by computing
the following term:

W(k+1) = W(k)
(

I + 1
2V(k) + · · ·+ (−1)r

(
−1

2
r

)(
V(k)

)r)
(3.22)

where V = I−W(k)>W(k). Although this algorithm works well on dense matrices,
it can be difficult to apply it to convolutions. Li et al. (2019) built upon this idea
and proposed an algorithm to enforce the orthogonality of convolution layers. They
used the orthogonal projection proposed by Kautsky & Turcajová (1994) and Xiao et al.
(2018) to build convolutional neural networks with orthogonal convolutions.

All techniques that impose an orthogonality constraint on the weights matrices
successfully reduce the Lipschitz constant of the layers of the networks. Moreover,
when the Lipschitz constants of all the layers are low, we could have an idea of
the value of the global Lipschitz with the upper bound of Equation (3.19) (i.e., if
Lipschitz constant of all the layers are equal to 1, then, the network will have a
Lipschitz constant below 1). However, enforcing the orthogonality constraint, either
by regularizing with the term of Equation (3.21) or by optimizing on the Stiefel
manifold, is the costly operation which make it difficult to scale on large neural
networks.
Another technique, called Spectral Normalization, consists in normalizing each

weight matrix by its largest singular value, thus imposing each layer to be 1-Lipschitz.
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Algorithm 3.2 Convolutional power method (Farnia et al. 2019)

Require: 2d-convolution function f : Rn×n → Rm×m with kernel k, 2d-convolution-
transpose function g : Rn×n → Rm×m with kernel k number of iteration N

Ensure: approximation of the Lipschitz constant Lip(f)
1: Initialize x with a random vector matching the shape of the convolution input
2: for i = 1 to N do
3: x← f(x)/‖f(x)‖2
4: x← g(x)/‖g(x)‖2
5: end for
6: return ‖f(x)‖2/‖x‖2

As with the orthogonality constraint, this technique leads the network to have a
global Lipschitz constant at most 1. Yoshida & Miyato (2017) were the first to propose
this method to improve the generalization of neural networks followed by (Gouk
et al. 2018; Miyato et al. 2018; Farnia et al. 2019) for improving generalization and
robustness against adversarial attacks. In order to perform spectral normalization,
they divided the values of each weight matrix by an approximation of its largest
singular value. The approximation of the largest singular was computed using the
power method (Golub & VanderVorst, 2000).
The power method is an iterative eigenvalue algorithm (also known as the Von

Mises iteration (Mises & Pollaczek-Geiringer, 1929)). Given a matrix W and a random
vector b(0), the eigenvector associated with the largest eigenvalue of the matrix W
can be computed with the following recurrence relation:

b(k+1) = Wb(k)∥∥b(k)
∥∥

2
(3.23)

Then, the largest eigenvalue (when we talk about “largest eigenvalue” we mean in
absolute value) can be obtained with the Rayleigh quotient:

σ1(W) = b(k)>Wb(k)

b(k)>b(k) (3.24)

With a sufficient number of iterations, the algorithm provably converges to the largest
eigenvalue of the matrix. To find the largest singular value, we can leverage the
relation between eigenvalues and singular values:

σ(W) =
√
λ(W>W) (3.25)
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The rate of convergence of the algorithm depends on the ratio between the second-
largest eigenvalue and the largest eigenvalue. Indeed, a ratio close to one can lead to
slow convergence. The pseudocode of the power method is given in Algorithm 3.1.
Altough, Algorithm 3.1 needs explicit matrix for computing the largest singular value,
Farnia et al. (2019) and Ryu et al. (2019) extended the power method to convolution
layers where the matrix W is not explicitly constructed. The pseudocode of their
method is presented in Algorithm 3.2.
In the context of deep learning and spectral normalization, the largest singular

value needs to be computed for each layer of the network at each step of the training.
Given that current state-of-the-art architecture have between 50 and 100 layers (He
et al. 2016; Tan & Le, 2019), using the power method until convergence is prohibitive.
In Chapter 5, we propose a new regularization scheme for reducing the Lipschitz
constant of individual layers. We will shown in Section 5.4.3 that our approach is
more efficient that the power method even with a small number of iterations.

3.2.3 Singular Values of Convolutional Layers

The power method is not the only technique available for approximating the largest
singular value (Lipschitz constant) of a convolution layer. Several works have devised
bounds or approximations on the largest singular value of convolution layers by
exploiting the structure of the convolution operation (Jia et al. 2017; Sedghi et al. 2018;
Bibi et al. 2019; Singla & Feizi, 2019).

To approximate the singular values of a convolution layer, Sedghi et al. (2018) have
exploited the properties of doubly-block circulant matrices (i.e., a circulant block
matrix where each block is also a circulant matrix). Indeed, a doubly-block circulant
matrix is the matrix representation of a convolution with circulant padding. In
their work, Sedghi et al. (2018) assume that the properties of doubly-block circulant
matrices are ‘close’ to the properties of a doubly-block Toeplitz matrix.
To compute the singular values of doubly-block circulant matrices, Sedghi et al.

(2018) have demonstrated the following result:
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Theorem 3.6 (Theorem 5 from Sedghi et al. (2018)). Let A be a doubly-block
circulant matrix such that:

A =



C(0) C(n−1) C(n−2) · · · · · · C(1)

C(1) C(0) C(n−1) . . .
...

C(2) C(1) . . .
. . .

. . .
...

...
. . .

. . .
. . . C(n−1) C(n−2)

...
. . . C(1) C(0) C(n−1)

C(n−1) · · · · · · C(2) C(1) C(0)


where C(i) = circ(ci), ∀i ∈ I+

n . Let K = (c0, c1, · · · , cn−1)> then, the singular values
of the doubly-block circulant matrix A are the modulus of the entries of U>nKUn.

To prove Theorem 3.6, Sedghi et al. (2018) used the diagonalization of doubly-block
circulant matrices (see Chapter 2, Equation (2.31)). The main advantage of this
approach is that the singular values of a doubly-block circulant matrix can be
computed with the Fast Fourier Transform algorithm (see Section 2.1) which offers
a reduced complexity compared to classical approaches for computing the singular
values of a matrix. However, this approach exhibits several limitations. First,
this method results in a loose approximation of the maximal singular value of a
convolution layer which does not use the circulant padding, which is often the case in
practical settings. Also, the complexity of their algorithm is dependent on the size of
the input which can be high for large datasets. Finally, for multi-channel convolution,
their method requires the computation of the spectral norm of n2 matrices each of
size cin × cout as stated in the following theorem:

Theorem 3.7 (Theorem 6 from Sedghi et al. (2018)). Let M be the matrix en-
coding the linear transform computed by a multi-channel convolution layer. Let
K ∈ Rcin×cout×n×n such that (K)i,j for all i, j ∈ [n]2 be constructed as in Theo-
rem 3.6, Let K̃i,j = U>n (K)i,jUn and define the following operator matrix

P(i, j) =


(
(K̃)(0,0)

)
i,j

· · ·
(
(K̃)(0,cout−1)

)
i,j

...
...(

(K̃)(cin−1,0)
)
i,j
· · ·

(
(K̃)(cin−1,cout−1)

)
i,j

 (3.26)

54



3.2 Related Work on Lipschitz Regularization

Then

σ(M) =
n−1⋃
i,j=0

σ(P(i, j)). (3.27)

In the same vein, Singla & Feizi (2019) have used the properties of convolutions
to devise several bounds on the singular values of convolution layers. Recall from
Section 2.1.3 that a convolution kernel is a 4 dimensional tensor of size cout × cin ×
k1 × k2. Singla & Feizi (2019) have demonstrated that the largest singular value of a
convolution layer φK parameterized by a kernel K can be upper-bounded as follows:

Theorem 3.8 (Reformulation of Theorem 1 from Singla & Feizi (2019)). Let K ∈
Rcout×cin×k1×k2 be the kernel of a convolution layer φK, then,

Lip(φK) ≤ min
{√

k1k2‖R‖2,
√
k2k2‖S‖2

}
(3.28)

where R and S are matrices of size k1cout × k2cin and k2cout × k1cin defined as
follows:

R =


(K)0,0 · · · (K)0,cin−1

(K)1,0 · · · (K)1,cin−1
...

. . .
...

(K)cout−1,0 · · · (K)cout−1,cin−1

 (3.29)

S =


(K)>0,0 · · · (K)>0,cin−1
(K)>1,0 · · · (K)>1,cin−1
...

. . .
...

(K)>cout−1,0 · · · (K)>cin−1,cout−1

 (3.30)

In order to prove this result, Singla & Feizi (2019) built upon the work of Sedghi
et al. (2018) and have also only considered circulant convolutions (performed by
doubly-block circulant matrices). Instead of proposing a method to compute all
singular values of the equivalent doubly-block circulant matrix, their method is an
upper-bound on the largest singular value of the Jacobian of the convolution. Because
this method is independent of the input dimension, the computational complexity is
substantially reduced compared to the approach of Sedghi et al. (2018), however, the
reduction in computational complexity is at the expense of accuracy as we will show
in Chapter 5.
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3.2.4 Discussion

We have presented state-of-the-art methods for regularizing the Lipschitz constant
of neural networks with the aim to improve their robustness against adversarial
attacks. The power method (Golub & VanderVorst, 2000) is a popular technique for
approximating the maximal singular value of a matrix. Recent works in deep learning
use this method in a wide variety of settings, for example, robustness (Tsuzuku et
al. 2018; Farnia et al. 2019), generalization (Yoshida & Miyato, 2017; Gouk et al. 2018)
or to stabilize the training of Generative Adversarial Networks (GANs) (Miyato
et al. 2018). Despite a number of interesting results, using the power method is
expensive and results in prohibitive training times. Other approaches to regularize the
Lipschitz constant of neural networks have been proposed by Sedghi et al. (2018) and
Singla & Feizi (2019). These methods exploit the properties of circulant matrices to
approximate the maximal singular value of a convolution layer. Although interesting,
theses method results in a loose approximation of the maximal singular value. Our
work is positioned at the intersection between these works, we will introduce a new
approach for regularizing the Lipschitz constant of neural networks, that is more
efficient than the power method and more accurate than methods relying on the
structure of convolutions.
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Diagonal and Circulant Matrices for
Compact Neural Networks

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Diagonal and Circulant Matrices for Matrix Decomposition . . . . . 59
4.3 Analysis of Diagonal Circulant Neural Networks . . . . . . . . . . . 62

4.3.1 From Matrix Decomposition to Neural Networks . . . . . . . 64
4.3.2 The Expressive Power of Diagonal-Circulant Neural Networks 67

4.4 How to Train Deep Diagonal Circulant Neural Networks? . . . . . . 73
4.4.1 Initialization Scheme of Diagonal-Circulant Neural Networks 73
4.4.2 Analysis of the Use of Nonlinearities . . . . . . . . . . . . . . 76

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Comparison with Other Structured Approaches (Q1) . . . . . 77
4.5.2 Comparison with Other Compression Based Approaches (Q2) 81
4.5.3 Large-scale Video Classification on the YouTube-8M Dataset

(Q3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.4 Exploiting Image Features . . . . . . . . . . . . . . . . . . . . 84

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Introduction

As seen in the previous chapters, structured matrices are at the very core of most
of the work on compact networks. Despite substantial efforts (e.g., Cheng et al.
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(2015) and Moczulski et al. (2016)), the performance of compact models is still far from
achieving an acceptable accuracy motivating their use in real-world scenarios. This
raises several questions about the effectiveness of such models and about our ability
to train them. In particular two main questions call for investigation:

1. What is the expressive power of structured layers compared to dense layers?

2. How to efficiently train deep neural networks with a large number of structured
layers?

We aim at answering these questions by studying deep diagonal-circulant neural
networks (a.k.a. DCNNs), which are deep neural networks in which weight matrices
are the product of diagonal and circulant ones.

To answer the first question, we propose an analysis of the expressivity of DCNNs
by extending the results obtained by Huhtanen & Perämäki (2015) which states that
any matrix can be decomposed into the product of 2n− 1 alternating diagonal and
circulant matrices. We introduce a new bound on the number of diagonal-circulant
products required to approximate a matrix that depends on its rank. Building on
this result, we demonstrate that a DCNN with bounded width and small depth can
approximate any dense neural networks with ReLU activations.

To answer the second question, we first describe a theoretically sound initialization
procedure for DCNN which allows the signal to propagate through the network
without vanishing or exploding. Furthermore, we provide a number of empirical
insights to explain the behavior of DCNNs and show the impact on the number
of nonlinearities in the network on the convergence rate and the accuracy of the
network. By combining all these insights, we are able (for the first time) to train
large and deep DCNNs and demonstrate the good performance of these networks on
a large-scale application (the YouTube-8M video classification problem) and obtain
very competitive accuracy.

The chapter is organized as follows: Section 4.2 introduces our new result extending
the one from Huhtanen & Perämäki (2015). Section 4.3 proposes a theoretical analysis on
the expressivity of DCNNs. Section 4.4 describes two efficient techniques for training
deep diagonal-circulant neural networks. Section 4.5 presents extensive experiments
to compare the performance of deep diagonal-circulant neural networks in different
settings with respect to other state-of-the-art approaches. Finally, Section 4.6 provides
concluding remarks.
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4.2 Diagonal and Circulant Matrices for Matrix
Decomposition

As seen in the Background (Chapter 2), circulant matrices exhibit several interesting
properties from the perspective of numerical computations. Most importantly, any
n× n circulant matrix C can be represented using only n coefficients instead of the
n2 coefficients required to represent classical unstructured matrices. In addition, the
matrix-vector product is simplified from O(n2) to O(n logn) using the convolution
theorem. As we will show in this chapter, circulant matrices combined with diagonal
matrices can have a strong expressive power. They can also be used as building
blocks to represent any linear transform (Schmid et al. 2000; Huhtanen & Perämäki,
2015) with an arbitrary precision.

We are interested in the relation between the product of diagonal and circulant
matrices and the expressivity of low-rank matrices. Huhtanen & Perämäki (2015) were
able to bound the number of factors that is required to approximate any matrix A
with arbitrary precision. We recall this result in Theorem 4.1 as it is the starting
point of our theoretical analysis.

Theorem 4.1 (Reformulation from Huhtanen & Perämäki (2015)). For every matrix
M ∈ Cn×n, there exists a sequence of matrices A(1) . . .A(2n−1) where A(i) is a
circulant matrix if i is odd, and a diagonal matrix otherwise, such that for any ε > 0,
we have ∥∥∥A(1) . . .A(2n−1) −M

∥∥∥
F
< ε . (4.1)

Unfortunately, this theorem is of little use to understand the expressive power
of diagonal-circulant matrices when they are used in deep neural networks for two
reasons:

1. the bound only depends on the dimension of the matrix M, not on the matrix
itself;

2. the theorem does not provide any insights regarding the expressive power of m
diagonal-circulant factors when m is much lower than 2n− 1 as it is the case
in most practical scenarios we consider in this chapter.

In the following theorem, we improve the result of Huhtanen & Perämäki (2015) by
expressing the number of factors required to approximate M, as a function of the
rank of M. This is useful when one deals with low-rank matrices, which is common
in machine learning problems. Note that in this chapter, our results hold for complex
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matrices. This is due to the fact that they are based on Theorem 4.1 which holds for
complex matrices.

Theorem 4.2 (Rank-based diagonal-circulant decomposition). Let M ∈ Cn×n

be a matrix of rank at most k. Assume that n can be divided by k. There exists
a sequence of 4k + 1 matrices A(1) . . .A(4k+1), where A(i) ∈ Cn×n is a circulant
matrix if i is odd, and a diagonal matrix otherwise, such that for any ε > 0, we
have ∥∥∥A(1) . . .A(4k+1) −M

∥∥∥
F
< ε . (4.2)

Proof of Theorem 4.2. Let UΣV∗ be the SVD decomposition of M where
U,V and Σ are n× n matrices. Because M is of rank k, the last n− k columns
of U and V are null. In the following, we will first decompose U into a product of
matrices WRO, where R and O are respectively circulant and diagonal matrices,
and W is a matrix which will be further decomposed into a product of diagonal
and circulant matrices. Then, we will apply the same decomposition technique to
V. Ultimately, we will get a product of 4k + 1 matrices alternatively diagonal and
circulant.
Let R = circ(r1 . . . rn). Let O be an n× n diagonal matrix where (O)i,i = 1 if

i ≤ k and 0 otherwise. The k first columns of the product RO will be equal to
that of R, and the n− k last columns of RO will be zeros. For example, if k = 2,
we have:

RO =



r1 rn 0 · · · 0
r2 r1

r3 r2
...

...
...

...

rn rn−1 0 · · · 0


(4.3)

Let us define k diagonal matrices D(i) = diag(d(i)
1 . . . d

(i)
n ) for i ∈ [k]. For now,

the values of d(i)
j are unknown, but we will show how to compute them. Let Z1,k

and Z1,n be 1-unit-circulant matrix respectively of size k × k and n× n as defined
in Section 2.1 and let W = ∑k

i=1 D(i)Zi−1
1,n . Note that the n− k last columns of

the product WRO will be zeros. For example, with k = 2, we have:
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W =



d
(1)
1 d

(2)
1

d
(2)
2 d

(1)
2

d
(2)
3

. . .

. . .
. . .

d
(2)
n d

(1)
n


(4.4)

WRO =


r1d

(1)
1 + rnd

(2)
1 rnd

(1)
1 + rn−1d

(2)
1 0 · · · 0

r2d
(1)
2 + r1d

(2)
2 r1d

(1)
2 + rnd

(2)
2 0 · · · 0

...
...

...
...

rnd
(1)
n + rn−1d

(2)
n rn−1d

(1)
n + rn−2d

(2)
n 0 · · · 0

 (4.5)

We want to find the values of d(i)
j such that WRO = U. We can formulate this as

a linear equation system. In case k = 2, we get:



rn r1

rn−1 rn

r1 r2

rn r1

r2 r3

r1 r2
. . .

. . .



×



d
(2)
1
d

(1)
1
d

(2)
2
d

(1)
2
d

(2)
3
d

(1)
3
...
...



=



(U)0,0

(U)0,1

(U)1,0

(U)1,1

...


(4.6)

The ith block of this block-diagonal matrix is a Toeplitz matrix induced by a
contiguous subsequence of length k + 1 of (r1, . . . rn, r1 . . . rn). Set rj = 1 for all
j ∈ {k, 2k, 3k, . . . n} and set rj = 0 for all other values of j. Then it is easy to
see that each block is equal to Zα1,k for some α. Note that the matrices Zα1,k are
invertible. This entails that the block diagonal matrix above is also invertible.
So by solving this set of linear equations, we could find d

(1)
1 . . . d

(k)
n such that

WRO = U. We can apply the same idea to factorize V = W′RO for some matrix
W′. Finally, we get

A = UΣV∗ = WROΣO∗R∗W′∗ (4.7)
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Note that the matrix WR can be decomposed as follows:

WR =
(

k∑
i=1

D(i)Z(i−1)
1,n

)
R (4.8)

where the last matrix Z(k−1)
1,n R is a circulant matrix because both matrices are

circulant (see Theorem 2.1). The same reasoning can be applied with the matrix
R∗W′∗. Therefore, by construction, the matrices WR and R∗W′∗ can both
be factorized by 2k circulant and diagonal matrices. Also note that OΣO∗ is
a diagonal matrix, because O and Σ are diagonal matrices. Overall, A can
be represented with a product of 4k + 1 matrices, alternatively diagonal and
circulant. �

A direct consequence of Theorem 4.2, is that if the number of diagonal-circulant
factors is set to a value K, we can represent all linear transforms M whose rank is
K−1

4 . Compared to Huhtanen & Perämäki (2015), this result shows that structured
matrices with fewer than 2n diagonal-circulant matrices (as it is the case in practice)
can still represent a large class of matrices.

In the following section, we will analyze the expressivity of neural networks based
on diagonal and circulant matrices. In order to characterize the expressivity, we
will decompose the matrices of a dense neural network with diagonal and circulant
matrices based on Theorem 4.2.

4.3 Analysis of Diagonal Circulant Neural Networks

Zhao et al. (2017) have shown that circulant networks with 2 layers and unbounded
width are universal approximators. However, results on unbounded networks offer
weak guarantees and two important questions have remained open until now:

1. Can we approximate any function with a bounded-width diagonal-circulant
network?

2. What function can we approximate with a diagonal-circulant neural network
that has a bounded width and a small depth?

We answer these two questions in this section. First, we present two lemmas that
establish a link between the matrix decomposition presented in Theorem 4.2 and
DCNNs and allow us to present our answer to the first question (Corollary 4.1). Then,
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we analyze the expressive power of small depth diagonal-circulant neural networks
by comparing them to dense neural networks. As in the previous section, we still
work in the complex domain. Therefore, we need to extend the definition of neural
networks to the complex domain. First, let us introduce an extension of the ReLU
function.

Definition 4.1 (Complex ReLU function Trabelsi et al. (2018)). Let us define the
complex ReLU function ρ : Cn → Cn by: ρ(z) = max(0,R(z)) + i max(0, I(z))

Definition 4.2 (Dense Neural Network). Given a depth p ∈ N, let us define Ω ={(
W(i),b(i)

)}
i∈[p]

a set of weights matrices and bias vectors such that W(i) ∈ Cn×n

and b(i) ∈ Cn. Let X ⊂ Cn and Y ⊂ Cn be the input space and output space
respectively. A dense neural network is a function NΩ : X → Y such that

Nρ
Ω(x) , φρW(p),b(p) ◦ · · · ◦ φ

ρ

W(1),b(1)(x) (4.9)

where ρ is the complex ReLU function, φρW(i),b(i) : Cn → Cn is a layer parameterized
by the weight matrix W(i) and the bias vector b(i), which can be expressed as follows:

φρW(i),b(i)(x) , ρ
(
W(i)x + b(i)

)
, (4.10)

Definition 4.3 (Diagonal-Circulant Neural Network). Given a depth p ∈ N, let us
define Π =

{(
D(i),C(i),b(i)

)}
i∈[p]

a set of weight matrices and bias vectors such

that D(i) ∈ Cn×n is diagonal, C(i) ∈ Cn×n is circulant and b(i) ∈ Cn. Let X ⊂ Cn

and Y ⊂ Cn be the input space and output space respectively. Let us denote the
product of D(i) and C(i) by DC(i). A diagonal-circulant neural network is a function
NΠ : X → Y such that

Nρ
Π(x) , φρDC(p),b(p) ◦ · · · ◦ φ

ρ

DC(1),b(1)(x) (4.11)

where φρDC(i),b(i) : Cn → Cn is a layer parameterized by the weight matrix DC(i), the
bias vector b(i) and can be expressed as follows:

φρDC(i),b(i)(x) , ρ
(
DC(i)x + b(i)

)
, (4.12)

where ρ is the complex ReLU function.

Diagonal-circulant neural networks are compact due to the layer being parameter-
ized by diagonal and circulant matrices. Indeed, diagonal and circulant matrices of

63



Chapter 4 Diagonal and Circulant Matrices for Compact Neural Networks

size n× n can be represented with only n values. Therefore, the layer φρDC(i),b(i) is
parameterized by 3n complex values.

Diagonal-circulant neural networks can have more parameters than a dense neural
networks but their depth need to be scaled accordingly. Let p1 and p2 be the depth
of a dense neural network and a diagonal-circulant neural network respectively, then
p2 needs to be higher than p1

n+1
3 to have more parameters than the dense network.

4.3.1 From Matrix Decomposition to Neural Networks

The purpose of this section is to extend the matrix decomposition presented in
Theorem 4.2 to neural networks (Lemma 4.1) and show that bounded-width diagonal-
circulant neural networks can approximate any dense neural network (Lemma 4.2).

Lemma 4.1. Let W(1) . . .W(p) ∈ Cn×n, b ∈ Cn and let X ⊂ Cn be a bounded set.
There exists c(1) . . . c(p) ∈ Cn such that for all x ∈ X we have

ρ
(
W(p) . . .W(1)x + b

)
= φρW(p),c(p) ◦ . . . ◦ φ

ρ

W(1),c(1)(x) (4.13)

where φρW(i),c(i) = ρ(W(i)x + c(i)) and ρ is the complex ReLU function.

Proof of Lemma 4.1. LetWWW(j) = ∏j
k=1 W(k) and let us define the following

set:
S = {(WWW(j)x)t | x ∈ X , t ∈ [n], j ∈ [p]} (4.14)

and let Ξ = max{|R(v)| : v ∈ S}+ i max{|I(v)| : v ∈ S}. Intuitively, the real and
imaginary parts of Ξ are the largest any activation in the network can have. Define
ψW(i),c(i)(x) = W(i)x + c(i). Let c(1) = Ξ1n. Clearly, for all x ∈ X we have
ψW(1),c(1)(x) ≥ 0, so ρ(ψW(1),c(1)(x)) = ψW(1),c(1)(x) where ρ is the complex ReLU
function. More generally, for all j < p− 1 define c(j+1) = 1nΞ−W(j+1)c(j). It is
easy to see that for all j < p we have

ψW(j),c(j) ◦ . . . ◦ ψW(1),c(1)(x) =WWW(j)x + 1nΞ . (4.15)

This guarantees that for all j < p,

ψW(j),c(j) ◦ . . . ◦ ψW(1),c(1)(x) = ρ ◦ ψW(j),c(j) ◦ . . . ◦ ρ ◦ ψW(1),c(1)(x) . (4.16)
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Finally, define c(p) = b−W(p)c(p−1). We have,

ρ ◦ ψW(p),c(p) ◦ . . . ◦ ρ ◦ ψW(1),c(1)(x) = ρ
(
WWW(p)x + b

)
, (4.17)

which concludes the proof. �

The following lemma is our first result on the expressivity of diagonal-circulant
neural networks. It states that a diagonal-circulant neural network with bounded
width and depth can approximate any dense neural network. To prove this result,
we use the matrix decomposition from Theorem 4.1 and Lemma 4.1 to decompose
the dense matrices of the layers of a dense network and unfold it.

Lemma 4.2. Let NΩ be a dense neural network of width n and depth p, and let
X ⊂ Cn be a bounded set. There exists a diagonal-circulant neural network NΠ of
width n and of depth (2n− 1)p such that for any ε > 0, we have

‖NΩ(x)−NΠ(x)‖2 < ε, ∀x ∈ X . (4.18)

Proof of Lemma 4.2. Let us assume NΩ = φW(p),b(p) ◦ . . . ◦ φW(1),b(1) . By
Theorem 4.1, for any ε′ > 0, any matrix W(i), there exists a sequence of 2n− 1
diagonal, {D(i,j)}i∈[p],j∈[2n−1], and circulant matrices, {C(i,j)}i,∈[p],j∈[2n−1], such
that for all i ∈ [p], ∥∥∥∥∥∥

2n−1∏
j=1

D(i,2n−j)C(i,2n−j) −W(i)

∥∥∥∥∥∥
F

< ε′ . (4.19)

For simplicity, let us denote the product of the two matrices D(i,j)C(i,j) by
DC(i,j). By Lemma 4.1, we know that there exists a sequence of bias vectors{
c(i,j)

}
i∈[p],j∈[2n−1]

such that for all i ∈ [p],

φρDC(i,2n−1),c(i,2n−1) ◦ . . . ◦ φ
ρ

DC(i,1),c(i,1)(x) = ρ
(
DC(i,2n−1) . . .DC(i,1)x + b(i)

)
.

(4.20)
Now if ε′ tends to zero,∥∥∥φρDC(i,2n−1),c(i,2n−1) ◦ . . . ◦ φ

ρ

DC(i,1),c(i,1) − ρ
(
W(i)x + b(i)

)∥∥∥
2

(4.21)
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will also tend to zero for any x ∈ X , because the ReLU function is continuous
and X is bounded. Let NΠ = φρDC(p,2n−1),c(p,2n−1) ◦ . . . ◦ φ

ρ

DC(1,1),c(1,1) , because all
functions are continuous, for all x ∈ X , ‖NΩ(x)−NΠ(x)‖2 tends to zero as ε′

tends to zero which concludes the proof. �

Now that we know that diagonal-circulant neural networks can approximate any
dense neural networks with arbitrary precision, we can extend is result to any
function, thus demonstrating that they are universal approximators. First, let us
present universal approximation results for neural networks. Cybenko (1989) and
Hornik et al. (1989) have shown that neural networks with a single hidden layer and
sigmoid activation can approximate any function if the hidden layer is allowed to be
arbitrary large. However, arbitrary large neural networks lack practical applications.

More recently, the universal approximation results have been extended to bounded
width neural networks with arbitrary depth (Hanin, 2017; Lu et al. 2017). More
formally, we have the following result for neural networks with ReLU activations:

Theorem 4.3 (Universal Approximation Theorem for Neural Network Hanin (2017)).
For any continuous function f : [0, 1]n → R+ of bounded supremum norm, for any
ε > 0, there exists a neural network NΩ parameterized by Ω with an input layer of
width n, an output layer of width 1, hidden layers of width n+3 and ReLU activations
such that

∀x ∈ [0, 1]n, |f(x)−NΩ(x)| < ε . (4.22)

From Lemmas 4.1 and 4.2 and Theorem 4.3 by Hanin (2017) which states that
dense neural networks are universal approximators, we can prove that bounded-width
diagonal-circulant neural networks are also universal approximators.

Corollary 4.1. Diagonal circulant neural networks with bounded width are
universal approximators in the following sense: for any continuous function
f : [0, 1]n → R+ of bounded supremum norm, for any ε > 0, there exists a
complex-valued diagonal-circulant neural network NΠ of width n + 3 such that
∀x ∈ [0, 1]n+3, |f(x1 . . .xn)− (NΠ(x))0| < ε where | · | refer to the complex
modulus.
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Proof of Corollary 4.1. From Theorem 4.3, we know that there exists a
dense neural network NΩ with an input layer of width n, an output layer of
width 1, hidden layers of width n + 3 and ReLU activations such that ∀x ∈
[0, 1]n, |f(x)−NΩ(x)| < ε. From NΩ, we can easily build a dense neural networks
ÑΩ of width exactly n+ 3, such that ∀x ∈ [0, 1]n+3,

∣∣∣f(x1 . . .xn)−
(
ÑΩ(x)

)
0

∣∣∣ < ε.
Thanks to Lemma 4.2, this last network can be approximated arbitrarily well by a
diagonal-circulant neural network of width n+ 3. Note that the matrices in the
diagonal-circulant neural network are complex, even though we are approximating
a real-valued function. �

The previous result shows that diagonal-circulant neural networks are universal
approximators of real-valued functions. However the depth needed is in O(n) where
n is the width of the network (size of the input). The depth needed to reach universal
approximation is not small, in our experiments, n can be over 3000. Nonetheless,
Cheng et al. (2015) have provided empirical evidence that diagonal-circulant neural
networks with small depth can offer good performance. In the following subsection,
we study the theoretical expressivity of diagonal-circulant neural networks with
bounded-width and small depth. This study allows us to better understand why
DCNNs show good empirical performances with limited depth.

4.3.2 The Expressive Power of Diagonal-Circulant Neural
Networks

In this subsection, we study the expressive power of diagonal-circulant neural networks
with small depth. To assess the expressivity of DCNNs, we compare the depth needed
to approximate dense neural networks with low total rank which we define as the
sum of ranks of each weights matrix. With the concept of total rank, we present in
the following, our result on the expressive power of DCNNs with respect to the total
rank of dense neural networks.

Definition 4.4 (Total Rank). The total rank κ(NΩ) of the neural network NΩ

corresponds to the sum of the ranks of the matrices W(1) . . .W(p) as follows

κ(NΩ) ,
∑
i∈[p]

rank(W(i)) . (4.23)
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Theorem 4.4 (Rank-based expressive power of DCNNs). Let NΩ be a dense
neural network of width n, depth p and a total rank K, and assume n is a power
of 2. Let X ⊂ Cn be a bounded set. Then, for any ε > 0, there exists a diagonal-
circulant neural network NΠ of width n such that ‖NΩ(x)−NΠ(x)‖2 < ε for all
x ∈ X and the depth of NΠ is bounded by 5K.

Proof of Theorem 4.4. Let NΩ be a dense neural networks parameterized
by Ω = {(W(i),b(i)}i∈[p] of width n, depth p. Let k(1) . . . k(p) be the ranks of
matrices W(1) . . .W(p), which are n × n matrices. Assume that ∀i, n can be
divided by ki. By Theorem 4.2, for any ε > 0, any matrix W(i) of rank k(i), there
exists a sequence of diagonal matrices {D(i,j)}i∈[p],j∈[4ki+1] and circulant matrices,
{C(i,j)}i,∈[p],j∈[4ki+1], such that for all i ∈ [p],

∥∥∥∥∥∥
4ki+1∏
j=1

D(i,4ki+2−j)C(i,4ki+2−j) −W(i)

∥∥∥∥∥∥
F

< ε′ . (4.24)

Using the exact same technique as in Lemma 4.2, we can build a diagonal-circulant
neural network NΠ, such that

‖NΩ(x)−NΠ(x)‖2 < ε, ∀x ∈ X , (4.25)

for which the total number of layers is bounded as follows:

∑
i∈[p]

(
4k(i) + 1

)
≤ p+ 4

∑
i∈[p]

k(i) ≤ p+ 4κ(NΩ) ≤ 5κ(NΩ) . (4.26)

where κ(NΩ) is the total rank of the dense neural network NΩ. �

Remark that in the theorem, we require that n is a power of 2. We conjecture that
the result still holds even without this condition. This result refines Lemma 4.2 and
answers our second question: does DCNN of bounded width and small depth can
approximate a dense neural network of low total rank? Note that the converse is not
true because an n× n circulant matrix can be of full rank, therefore approximating
a DCNN of depth 1 can require a dense network of total rank equal to n.
Finally, what if we choose to use diagonal-circulant networks with a small depth

to approximate a dense neural network whose matrices are not of lower rank? To
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answer this question, we present three results. First, we characterize the negative
impact of replacing matrices by their low rank approximation. Then, we extend this
result to neural networks and bound the error between a dense neural network with
full total rank and one with low total rank. Finally, Corollary 4.2 presents our result
which bounds the error between a dense neural network with full total rank and a
diagonal-circulant neural network.

Lemma 4.3. Let W ∈ Cn×n with singular values σ1 . . . σn, and let b,x,y ∈ Cn.
Let W̃ be the matrix obtained by an SVD approximation of rank k of matrix W.
Then we have:∥∥∥ρ(Wx + b

)
− ρ

(
W̃y + b

)∥∥∥
2
≤ σ1‖x− y‖2 + σk+1‖x‖2 (4.27)

Proof of Lemma 4.3. Let us denote σj be the jth singular value of W and
recall that σ1(W) = ‖W‖2 by the definition of the spectral norm. Furthermore,
we have σ1(W) = σ1(W̃) because the greatest singular values are equal for both
W and W̃. Also, note that

∥∥∥W− W̃
∥∥∥

2
= σk+1. First, let us bound the formula

without ReLUs:

∥∥∥(Wx + b
)
−
(
W̃y + b

)∥∥∥
2

=
∥∥∥Wx− W̃x− W̃

(
y− x

)∥∥∥
2

(4.28)

≤
∥∥∥(W− W̃

)
x
∥∥∥

2
+
∥∥∥W̃∥∥∥

2
‖x− y‖2 (4.29)

≤ ‖x‖2σk+1 + σ1‖x− y‖2 (4.30)

Finally, it is easy to see that for any pair of vectors x,y ∈ Cn, we have

‖ρ(x)− ρ(y)‖2 ≤ ‖x− y‖2 , (4.31)

because the complex ReLU function is 1-Lipschitz. This concludes the proof. �

The lemma above bound the error between a linear transform and its equivalent
low rank approximation. In the following, we extend this result to neural networks.

Proposition 4.1. Let NΩ : Cn → Cn be a dense neural network, with ReLU
activation, parameterized by Ω =

{(
W(i),b(i))}

i∈[p]
with W(i) ∈ Cn×n,b(i) ∈ Cn

for all i ∈ [p] and NΩ = φW(p),b(p) ◦ . . . ◦ φW(1),b(1) of depth p and width n. Let
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Ω̃ =
{(

W̃(i),b(i))}
i∈[p]

where W̃(i) is the matrix obtained by the SVD approximation

of rank k of matrix W(i). Define the network NΩ̃ and let σ(i)
j be the jth singular

value of W(i) and denote σ(max)
j = maxi σ(i)

j , the largest jth singular value across
layers. Then, for any x ∈ Cn, we have:

• if σ(max)
1 = 1: ∥∥∥NΩ(x)−NΩ̃(x)

∥∥∥
2
≤ p

(
Rσ

(max)
k+1

)
. (4.32)

• if σ(max)
1 6= 1:

∥∥∥NΩ(x)−NΩ̃(x)
∥∥∥

2
≤

((
σ

(max)
1

)p − 1
)
Rσ

(max)
k+1

σ
(max)
1 − 1

(4.33)

where R is an upper bound on the norm of the output of any layer in NΩ.

Proof of Proposition 4.1. Let x(0) ∈ Cn and y(0) = x(0). For all i ∈ [p], define
x(i) = ρ

(
W(i)x(i−1) + b(i)

)
and y(i) = ρ

(
W̃(i)y(i−1) + b(i)

)
. We aim to upper

bound the difference in norm of x(i) and y(i). First, let us consider the linear
transform within x(i) and y(i): The difference in norm between x(i) and y(i) can
be upper bounded as follows:∥∥∥x(i) − y(i)

∥∥∥
2
≤ σ(i)

1

∥∥∥x(i−1) − y(i−1)
∥∥∥

2
+ σ

(i)
k+1

∥∥∥x(i−1)
∥∥∥

2
(4.34)

≤ σ(max)
1

∥∥∥x(i−1) − y(i−1)
∥∥∥

2
+ σ

(max)
k+1 R (4.35)

where the first inequality stems from Lemma 4.3 and the second by setting
σ

(max)
j = maxi σ(i)

j where σ(max)
j is the largest jth singular value across layers and

R = maxi
∥∥∥x(i)

∥∥∥
2
. From there, we need to consider two cases:

• If σ(max)
1 = 1: we have a recurrence relation of the form an = an−1 + s with

a0 = 0 which can unfold as follows: an = ns. We can apply this formula to
bound our error as follows:∥∥∥x(p) − y(p)

∥∥∥
2
≤ p

(
Rσ

(max)
k+1

)
. (4.36)
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• If σ(max)
1 6= 1: we have a recurrence relation of the form an = ran−1 + s with

a0 = 0 which can unfold as follows: an = s(rn−1)
r−1 . We can apply this formula

to bound our error as follows:

∥∥∥x(p) − y(p)
∥∥∥

2
≤

((
σ

(max)
1

)p − 1
)
Rσ

(max)
k+1

σ
(max)
1 − 1

, (4.37)

which concludes the proof. �

Proposition 4.1 bounds the error between a dense neural network and a neural
network whose matrices are the low rank approximations of the first ones. Two cases
are presented. If the largest singular value across the network is equal to 1, then
the error is polynomial with the depth of the network. In the case where the largest
singular value across the network is different from 1, the error is exponential with
respect to the depth of the network.
Now, we can easily extend Proposition 4.1 to diagonal-circulant neural networks.

By Theorem 4.4, we can replace the layers with low rank approximation by the
product of diagonal and circulant matrices leading to a diagonal-circulant neural
network with a higher depth.

Corollary 4.2. Let NΩ be a dense neural network of depth p and width n and
parameterized by Ω =

{
(W(i),b(i))

}
i∈[p]

. Let σ(i)
1 be the largest singular value of

W(i). Let X ⊂ Cn be a bounded set. Let k be an integer dividing n. There exists
a diagonal-circulant neural network NΠ of width n and of depth m = (4k + 1)p,
parameterized by Π =

{
(D(i)C(i), c(i))

}
i∈[m]

such that, for any x ∈ Cn, we have:

• if σ(max)
1 = 1:

‖NΩ(x)−NΠ(x)‖2 ≤ p
(
Rσ

(max)
k+1

)
. (4.38)

• if σ(max)
1 6= 1:

‖NΩ(x)−NΠ(x)‖2 ≤

((
σ

(max)
1

)p − 1
)
Rσ

(max)
k+1

σ
(max)
1 − 1

, (4.39)

where R is an upper bound on the norm of the output of any layer in NΩ.
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Proof of Corollary 4.2. Let NΩ̃ be a dense neural network of depth p and
width n and let Ω̃ =

{(
W̃(i),b(i))}

i∈[p]
such that W̃(i) is the matrix obtained by

the SVD approximation of rank k of matrix W(i). With Proposition 4.1, we have
an error bound on

∥∥∥NΩ(x)−NΩ̃(x)
∥∥∥

2
. Now each matrix W̃(i) can be replaced by a

product of 4k+ 1 diagonal-circulant matrices. By Theorem 4.4, this product yields
a diagonal-circulant neural network of depth m = (4k + 1)p, strictly equivalent to
NΩ̃ on X . This concludes the proof. �

C1
. .
.
C9
. .
.
C18

R1

R2

Figure 4.1: Illustration of the expressivity of diagonal-circulant neural networks.

We highlight the significance of these results with the two following properties.

Properties. Let RK be the set of all functions NΩ : Cn → Cn for all n, repre-
sentable by a dense neural network with complex ReLU activation of total rank at
most K and let Cp be the set of all functions NΠ : Cn → Cn for all n, representable
by deep diagonal-circulant networks of depth at most p, then:

∀K,∃p RK ( Cp (4.40)

∀p,@K Cp ⊆ RK (4.41)

We illustrate the meaning of these properties using Figure 4.1. As we can see, the
set RK of all the functions representable by a dense neural network of total rank K
is strictly included in the set C9K of all diagonal-circulant neural networks of depth
9K (as by Theorem 4.4). These properties are interesting for many reasons. First,
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Equation (4.41) shows that diagonal-circulant networks are strictly more expressive
than networks with low total rank. Second and most importantly, in standard
deep neural networks, it is known that the most of the singular values are close
to zero. This phenomenon is called rank collapse and it has been first observed
by Saxe et al. (2013) and confirmed later by Sedghi et al. (2018) and Arora et al.
(2019). Equation (4.40) shows that these networks can efficiently be approximated by
diagonal-circulant networks. Finally, several publications have shown that neural
networks can be trained explicitly to have low-rank weight matrices (Li & Shi, 2018;
Goyal et al. 2019). This opens the possibility of learning compact and accurate
diagonal-circulant networks.

4.4 How to Train Deep Diagonal Circulant Neural
Networks?

Training diagonal-circulant neural networks has revealed to be a challenging problem.
Indeed, as discussed earlier, the expressivity of diagonal-circulant neural networks
scale with depth. In the following, we devise two techniques to facilitate the training of
deep diagonal-circulant neural networks. First, we propose an initialization procedure
which guarantees the signal is propagated across the network without vanishing nor
exploding. Secondly, we study the behavior of DCNNs with different nonlinearity
functions and determine the best parameters for different settings. Note that we
choose to train diagonal-circulant neural networks with real matrices instead of
complex ones. Indeed, the complex version of diagonal-circulant neural networks
would have twice the number of parameters.

4.4.1 Initialization Scheme of Diagonal-Circulant Neural Networks

In order to facilitate the training of deep diagonal-circulant neural networks, we extend
the Xavier initialization (Glorot & Bengio, 2010) which is an initialization scheme
proposed for dense and convolutional neural networks. First, for each circulant
matrix C = circ(c) with c ∈ Rn, each ci is randomly drawn from N

(
0, α2), with

α =
√

2
n . Next, for each diagonal matrix D = diag(d) with d ∈ Rn, each di is drawn

randomly and uniformly from {−1, 1} for all i. Finally, all biases in the network are
randomly drawn from N

(
0, α′2

)
, for some small value of α′.

Lemma 4.4. Let c,d,b be random variables in Rn such that c ∼ N (0, Inα2),
b ∼ N (0, Inα′2) and di ∼ {−1, 1},∀i uniformly. Define C = circ(c) and D = diag(d)
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Define y = DCu +b for some vector u in Rn. Then, for all i, the probability density
function (p.d.f.) of yi is symmetric. Also:

• Assume u0, . . . ,un−1 are fixed. Then, we have for i 6= i′:

Cov(yi,yi′) = 0 and Var(yi) = α′2 +
∑
j

u2
jα

2 (4.42)

• Let x be random variables in Rn such that the p.d.f. of xi is symmetric for all
i, and let ui = ρ(xi). We have for i 6= i′ :

Cov(yi,yi′) = 0 and Var(yi) = α′2 + 1
2
∑
j

Var(xi)α2 (4.43)

Proof of Lemma 4.4. By an abuse of notation, we write c0 = cn, c−1 = cn−1

and so on. First, note that: yi = ∑n−1
j=0 cj−iujdj + bi. Observe that the term

cj−iujdj has symmetric p.d.f. because of dj . Thus, yi has a symmetric p.d.f..
Now let us compute the covariance.

Cov(yi,yi′) =

 n−1∑
j,j′=0

Cov
(
cj−iujdj , cj′−i′uj′dj′

)+ Cov(bi,bi′) (4.44)

=
n−1∑
j,j′=0

E
[
cj−iujdjcj′−i′uj′dj′

]
− E[cj−iujdj ]E

[
cj′−i′uj′dj′

]
(4.45)

Observe that E[cj−iujdj ] = E[cj−iuj ]E[dj ] = 0 because dj is independent from
cj−iuj . Also, observe that if j 6= j′ then E

[
djdj′

]
= 0 and

E
[
cj−iujdjcj′−i′uj′dj′

]
= E

[
djdj′

]
E
[
cj−iujcj′−i′uj′

]
= 0 . (4.46)

Therefore, the only non null terms are those for which j = j′. We get:

Cov(yi,yi′) =
n−1∑
j=0

E
[
cj−iujdjcj−i′ujdj

]
(4.47)

=
n−1∑
j=0

E
[
cj−icj−i′u2

j

]
(4.48)
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Assume u is a fixed vector. Then, Var(yi) = ∑n−1
j=0 u2

jα
2 and Cov(yi,yi′) = 0 for

i 6= i′ because cj−i is independent from cj−i′ . Now assume that uj = ρ(xj) where
xj is a random variables in Rn. Clearly, u2

j is independent from cj−i and cj−i′ ,
thus, we have:

Cov(yi,yi′) =
n−1∑
j=0

E
[
cj−icj−i′

]
E
[
u2
j

]
. (4.49)

For i 6= i′, then cj−i and cj−i′ are independent, we have E
[
cj−icj−i′

]
= E[cj−i]E

[
cj−i′

]
=

0 and Cov(yi,yi′) = 0 if i 6= i′. Let us compute the variance. We get Var(yi) =∑n−1
j=0 Var(cj−i)E

[
u2
j

]
. Because the p.d.f. of xj is symmetric, E

[
x2
j

]
= 2E

[
u2
j

]
and

E[xj ] = 0. Thus,

Var(yi) = 1
2

n−1∑
j=0

Var(cj−i)E
[
x2
j

]
= 1

2

n−1∑
j=0

Var(cj−i)Var(xj) (4.50)

which concludes the proof. �

Now we can state our result on the initialization of diagonal-circulant neural
networks. The following proposition states that the covariance matrix at the output
of any layer in a diagonal-circulant neural network is constant. Moreover, note that
the result of this proposition is independent of the depth of the network.

Proposition 4.2 (Initialization of Diagonal-Circulant Neural Networks). Let NΠ

be a diagonal-circulant neural network of depth p initialized according to our procedure,
with α′ = 0. Assume that all layers 1 to p− 1 have ReLU activation functions, and
that the last layer has the identity activation function. Then, for any x ∈ Rn, the
covariance matrix of NΠ(x) is 2

nIn‖x‖22.

Proof of Proposition 4.2. Let NΠ , φD(p),C(p) ◦ . . . ◦ φD(1),C(1) be a p layer
diagonal-circulant neural network. All matrices are initialized as described in
the statement of the proposition. Let y = D(1)C(1)x. Lemma 4.4 shows that
Cov(yi,yi′) = 0 for i 6= i′ and Var(yi) = 2

n‖x‖
2
2. For any j ≤ p, define

z(j) = φD(j),C(j) ◦ . . . ◦ φD(1),C(1)(x) . (4.51)
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By a recursive application of Lemma 4.4, we get

Cov(z(j)
i , z(j)

i′ ) = 0 and Var(z(j)
i ) = 2

n
‖x‖22 (4.52)

which concludes the proof. �

The effect of Proposition 4.2 is that the signal and the gradient will not vanish
during the training, facilitating the convergence. The fact that the result of Propo-
sition 4.2 is independent of the depth of the network allows us to train very deep
diagonal-circulant neural networks.

4.4.2 Analysis of the Use of Nonlinearities
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Figure 4.2: Impact of increasing the slope of a Leaky-ReLU in DCNNs.

We empirically found that the ReLU activations had an impact on the training of
deep diagonal-circulant neural networks on CIFAR10 dataset. Indeed, the deeper the
network, the more nonlinear it is, which makes convergence difficult. In an experiment,
we replace the ReLU activations with Leaky-ReLU activations (cf. Section 2.2.2) and
vary the slope of the Leaky-ReLU (a higher slope means an activation function that is
closer to a linear function). The results of this experiment are presented in Figure 4.2.
In this experiment, we try different slopes for the Leaky-ReLU activation and train
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diagonal-circulant neural networks with different depth. We can observe that a higher
slope (making the network more linear) facilitates convergence, allowing us to train
deeper networks. This is an interesting result, since we can use this technique to
adjust the number of parameters in the network (increasing depth), without facing
training difficulties. We hence rely on this setting in the experimental section.

4.5 Experiments

This experimental section aims at answering the following questions:

Q1 How do DCNNs compare to other approaches such as ACDC, LDR or other
structured approaches?

Q2 How do DCNNs compare to other compression based techniques?

Q3 How do DCNNs perform in the context of large-scale real-world machine learning
applications?

4.5.1 Comparison with Other Structured Approaches (Q1)
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Figure 4.3: Comparison of the training loss of DCNNs and ACDC networks on a regression
task with synthetic data.
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Figure 4.4: Comparison of the training loss of DCNNs and ACDC networks on a CIFAR-10
dataset.

Comparison with ACDC

In Chapter 3, we have discussed the differences between the ACDC framework and
our approach from a theoretical perspective. In this section, we conduct experiments
to compare the performance of DCNNs with neural networks based on ACDC layers.
We first reproduce the experimental setting from Moczulski et al. (2016), and compare
both approaches using only linear networks (i.e., networks without any nonlinear
activation). The synthetic dataset has been created in order to reproduce the
experiment on the regression linear problem proposed by Moczulski et al. (2016). We
draw X and W from a uniform distribution between [-1, +1] and ε from a normal
distribution with mean 0 and variance 0.01. The relationship between X and Y is
defined by Y = XW + ε. The results are presented in Figure 4.3. In this simple
setting, while both architectures demonstrate good performance, we can observe that
DCNNs offer a better convergence rate. In Figure 4.4, we compare neural networks
with ReLU activations on CIFAR-10.

We found that networks which are based only on ACDC layers are difficult to
train and offer poor accuracy on CIFAR-10 (we have tried different initialization
schemes including the one from the original paper, and the one we introduce in this
chapter). Moczulski et al. (2016) managed to train a large VGG network however these
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Figure 4.5: Network size vs. Accuracy compared on Dense networks, DCNNs, DTNNs,
neural networks based on Toeplitz matrices and neural networks based on Low
Rank-based matrices.

networks are generally highly redundant and the contribution of the structured layer
is difficult to quantify. We also observe that adding a single dense layer improves
the convergence rate of ACDC in the linear case, which explains the good results of
Moczulski et al. (2016). However, it is difficult to characterize the true contribution
of the ACDC layers when the network has a large number of expressive layers. In
contrast, deep DCNNs can be trained and offer good performance without additional
dense layers (these results are in line with our experiments on the YouTube-8M
dataset).

Comparison with Dense Networks, Toeplitz Networks and Low Rank
Networks

We now compare DCNNs with other state-of-the-art structured networks by measuring
the accuracy on a flattened version of the CIFAR-10 dataset. Our baseline is a
dense feed-forward network with a fixed number of weights (9 million weights).
We compare with DCNNs and with DTNNs (see below), Toeplitz networks, and
Low-Rank networks (Yu et al. 2017). We first consider Toeplitz networks which are
stacked Toeplitz matrices interleaved with ReLU activations since Toeplitz matrices
are closely related to circulant matrices. However, Toeplitz networks have a different
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Figure 4.6: Accuracy of different structured architecture given the number of trainable
parameters.

structure than DCNNs (they do not include diagonal matrices), therefore, we also
experiment using DTNNs, a variant of DCNNs where all the circulant matrices have
been replaced by Toeplitz matrices. Finally we conduct experiments using networks
based on low-rank matrices as they are also closely related to our work. For each
approach, we report the accuracy of several networks with a varying depth ranging
from 1 to 40 (DCNNs, Toeplitz networks) and from 1 to 30 (from DTNNs). For
low-rank networks, we used a fixed depth network and increased the rank of each
matrix from 7 to 40. We also tried to increase the depth of low rank matrices, but
we found that deep low-rank networks are difficult to train so we do not report the
results here. We compare all the networks based on the number of weights from
21K (0.2% of the dense network) to 370K weights (4% of the dense network) and
we report the results in Figure 4.5. First we can see that the size of the networks
correlates positively with their accuracy which demonstrated successful training in
all cases. We can also see that the DCNNs achieves the maximum accuracy of 56%
with 20 layers (∼ 200K weights) which is as good as the dense networks with only
2% of the number of weights. Other approaches also offer good trade-offs but they
are not able to reach the accuracy of a dense network.
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Architectures #Parameters Accuracy

Dense 9.4M 0.562
DCNN (5 layers) 49K 0.543
DCNN (2 layers) 21K 0.536
LDR–TD (r = 2) 64K 0.511
LDR–TD (r = 3) 70K 0.473
Toeplitz-like (r = 2) 46K 0.483
Toeplitz-like (r = 3) 52K 0.496

Table 4.1: Comparison of LDR and Diagonal-Circulant neural networks on a flattened version
of CIFAR-10.

Comparison with LDR networks

We now compare DCNNs with the LDR framework using the network configuration
proposed by Thomas et al. (2018): a single LDR structured layer followed by a dense
layer. In the LDR framework, we can change the size of a network by adjusting the
rank of the residual matrix, effectively capturing matrices with a structure that is
close to a known structure but not exactly (in the LDR framework, Toeplitz matrices
can be encoded with a residual matrix with rank=2, so a matrix that can be encoded
with a residual of rank=3 can be seen as Toeplitz-like.). The results are presented in
Table 4.1 and demonstrate that DCNNs outperform all LDR networks both in terms
of size and accuracy.

4.5.2 Comparison with Other Compression Based Approaches (Q2)

We provide a comparison with other compression based approaches such as HashNet
(Chen et al. 2015), Dark Knowledge (Hinton et al. 2015). Table 4.2 shows the test error
of DCNN against other known compression techniques on the MNIST datasets. We
can observe that DCNN outperforms HashNet (Chen et al. 2015) and Dark Knowledge
(Hinton et al. 2015) with fewer number of parameters.

4.5.3 Large-scale Video Classification on the YouTube-8M Dataset
(Q3)

To understand the performance of deep DCNNs on large-scale applications, we
conducted experiments on the YouTube-8M video classification with 3.8 training
examples introduced by Abu-El-Haija et al. (2016). This section provides a summary
of the results obtained on the YouTube-8M dataset, the full experimental analysis
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Architecture #Params Error (%)

LeNet (LeCun et al. 1998) 4.2M 0.61
HashNet (Chen et al. 2015) 46K 2.79
Dark Knowledge (Hinton et al. 2015) 46K 6.32
DCNN 25K 1.74

Table 4.2: Comparison with compression based approaches.

Architecture #Weights GAP@20

Baseline 5.7M 0.773
4 DC 25K 0.599
32 DC 122K 0.685
4 DC + 1 FC 4.46M 0.747

Table 4.3: GAP score on the YouTube-8M dataset with DCNNs.

is reported in Appendix B. Notice that we favor this experiment over ImageNet
applications because modern image classification architectures involve a large number
of convolution layers, and compressing convolution layers is out of our scope. Also,
as mentioned earlier, testing the performance of DCNN architectures mixed with
a large number of expressive layers makes little sense. The YouTube-8M includes
two datasets describing 8 million labeled videos. Both datasets contain audio and
video features for each video. In the first dataset (aggregated) all audio and video
features have been aggregated every 300 frames. The second dataset (full) contains
the descriptors for all the frames. To compare the models we use the GAP score
(Global Average Precision) proposed by Abu-El-Haija et al. (2016). On the simpler
aggregated dataset we compared off-the-shelf DCNNs with a dense baseline with 5.7
million weights. On the full dataset, we designed three new compact architectures
based on the state-of-the-art architecture introduced by Abu-El-Haija et al. (2016).

Experiments on the aggregated dataset with DCNNs We compared DCNNs
with a dense baseline with 5.7 million weights. The goal of this experiment is to
discover a good trade-off between depth and model accuracy. To compare the models
we use the GAP score (Global Average Precision) following the experimental protocol
proposed by Abu-El-Haija et al. (2016), to compare our experiments. Table 4.3 shows
the results of our experiments on the aggregated YouTube-8M dataset in terms of the
number of weights and GAP score. These results suggest that we can compress the
baseline at the cost of a little decrease of GAP score.
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Architecture #Weights GAP@20

original 45M 0.846
DBoF with DC 36M (80 ) 0.838
FC with DC 41M (91 ) 0.845
MoE with DC 12M (26 ) 0.805

Table 4.4: GAP score on the YouTube-8M dataset with different layers represented with
diagonal-circulant decomposition.

Experiments with DCNNs Deep Bag-of-Frames Architecture: The Deep
Bag-of-Frames architecture can be decomposed into three blocks of layers, as illus-
trated in Figure 4.7. The first block of layers, composed of the Deep Bag-of-Frames
embedding (DBoF), is meant to model an embedding of these frames in order to
make a simple representation of each video. A second block of fully connected layers
(FC) reduces the dimensionality of the output of the embedding and merges the
resulting output with a concatenation operation. Finally, the classification block uses
a combination of Mixtures-of-Experts (MoE) (Jordan & Jacobs, 1993; Abu-El-Haija et al.
2016) and Context Gating (Miech et al. 2017) to calculate the final class probabilities.
Table 4.4 shows the results in terms of the number of weights, size of the model
(MB) and GAP on the full dataset, replacing the DBoF block reduces the size of the
network without impacting the accuracy. We obtain the best compression ratio by
replacing the MoE block with DCNNs (26%) of the size of the original dataset with
a GAP score of 0.805 (95% of the score obtained with the original architecture). We
conclude that DCNN are both theoretically sound and of practical interest in real,
large-scale applications.

Embedding Dim Reduction Classification

Video

Audio

FC

FC

concat MoE
Context
Gating

Figure 4.7: Diagram of the state-of-the-art neural network architecture, initially proposed
by Abu-El-Haija et al. (2016) and later improved by Miech et al. (2017).
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Architectures & Hyper-Parameters: For the first set of our experiments (ex-
periments on CIFAR-10 ), we train all networks for 200 epochs, a batch size of 200,
Leaky ReLU activation with a different slope. We minimize the Cross Entropy Loss
with Adam optimizer and use a piecewise constant learning rate of 5×10−5, 2.5×10−5,
5×10−6 and 1×10−6 after respectively 40K, 60K and 80K steps. For the YouTube-8M
dataset experiments, we built a neural network based on state-of-the-art architecture
initially proposed by Abu-El-Haija et al. (2016) and later improved by Miech et al.
(2017). Remark that no convolution layer is involved in this application since the input
vectors are embeddings of video frames processed using state-of-the-art convolutional
neural networks trained on ImageNet. We trained our models with the CrossEntropy
loss and used Adam optimizer with a 0.0002 learning rate and a 0.8 exponential
decay every 4 million examples. All fully connected layers are composed of 512 units.
DBoF, NetVLAD and NetFV are respectively 8192, 64 and 64 of cluster size for
video frames and 4096, 32, 32 for audio frames. We used 4 mixtures for the MoE
Layer. We used all the available 300 frames for the DBoF embedding. In order
to stabilize and accelerate the training, we used batch normalization before each
nonlinear activation and gradient clipping.

4.5.4 Exploiting Image Features

Architectures #Parameters Accuracy

DC (1 layers) 124K 0.757
DC (3 layers) 217K 0.785
LDR-SD (r = 1) 140K 0.701
LDR-SD (r = 10) 420K 0.728
Toeplitz-like (r = 1) 110K 0.711
Toeplitz-like (r = 10) 388K 0.720

Table 4.5: Accuracy of scattering models followed by LDR or DC layer on CIFAR-10 dataset.

Dense layers and DCNNs are not designed to capture task-specific features such
as the translation invariance inherently useful in image classification. We can further
improve the accuracy of such general-purpose architectures on image classification
without dramatically increasing the number of trained parameters by stacking them
on top of fixed (ie non-trained) transforms such as the scattering transform (Mallat,
2010). In this section we compare the accuracy of various structured networks,
enhanced with the scattering transform, on an image classification task, and run
comparative experiments on CIFAR-10.

84



4.6 Concluding Remarks

Our test architecture consists of 2 depth scattering on the RGB images followed
by a batch norm and LDR or DC layer. To vary the number of parameters of
Scattering+LDR architecture, we increase the rank of the matrix (stacking several
LDR matrices quickly exhausted the memory). The Figure 4.6 and Table 4.5 show
the accuracy of these architectures given the number of trainable parameters.

First, we can see that the DCNN architecture very much benefits from the scattering
transform and is able to reach a competitive accuracy over 78%. We can also see
that scattering followed by a DC layer systematically outperforms scattering + LDR
or scattering + Toeplitz-like with fewer parameters.

4.6 Concluding Remarks

This chapter dealt with the training and understanding of diagonal-circulant neural
networks. To the best of our knowledge, training such networks with a large number
of layers had not been done before. We also endowed this kind of architecture
with theoretical guarantees, hence enriching and refining previous theoretical work
from the literature. More importantly, we showed that DCNNs outperform their
competing structured alternatives, including the very recent general approach based
on LDR networks. Our results suggest that stacking diagonal-circulant layers with
nonlinearities improves the convergence rate and the final accuracy of the network.
Formally proving these statements constitutes the future directions of this work.
We would like to generalize the good results of DCNNs to convolutional neural
networks. We also believe that circulant matrices deserve particular attention in deep
learning because of their strong ties with convolutions: a circulant matrix operator
is equivalent to the convolution operator with circular padding. This fact makes any
contribution to the area of circulant matrices particularly relevant to the field of
deep learning with impacts beyond the problem of designing compact models.
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5.1 Introduction

In this chapter we introduce a new upper bound on the largest singular value of
convolution layers that is both tight and easy to compute. Instead of using the
power method to iteratively approximate this value, we study the properties of
doubly-block Toeplitz matrices and its links with Fourier analysis. Our work is based
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on the result of Gray (2006) which states that an upper bound on the singular value
of Toeplitz matrices can be computed from the inverse Fourier transform of the
characteristic sequence of these matrices. We first extend this result to doubly-block
Toeplitz matrices (i.e., block Toeplitz matrices where each block is Toeplitz) and
then to convolutional operators, which can be represented as stacked sequences of
doubly-block Toeplitz matrices. From our analysis immediately follows an algorithm
for bounding the Lipschitz constant of a convolution layer, and by extension the
Lipschitz constant of the whole network. We theoretically study the approximation
of this algorithm and show experimentally that it is more efficient and accurate than
competing approaches.
Finally, we illustrate our approach on adversarial robustness. Recent work has

shown that empirical methods such as adversarial training (AT) offer poor gener-
alization (Schmidt et al. 2018), and can be improved by applying Lipschitz regular-
ization (Farnia et al. 2019). To illustrate the benefit of our new method, we train a
large Wide ResNet with Lipschitz regularization and show that it offers a significant
improvement over adversarial training alone, and over other methods for Lipschitz
regularization. In summary, we make the three following contributions:

1. We devise an upper bound on the singular values of the operator matrix of
convolution layers by leveraging Toeplitz matrix theory and its links with
Fourier analysis.

2. We propose an efficient algorithm to compute this upper bound which enables
its use in the context of Convolutional Neural Networks.

3. We use our method to regularize the Lipschitz constant of neural networks for
adversarial robustness and show that it offers a significant improvement over
AT alone.

5.2 Results on the Spectrum of Matrices from the
Toeplitz Family

5.2.1 Upper-Bounds on the Largest Singular Value of Toeplitz and
Block Toeplitz Matrices

Doubly-block Toeplitz matrices inherit the properties of Toeplitz and block Toeplitz
matrices. Recall that for Toeplitz and block Toeplitz matrices, there exist no
closed-form expression to compute their eigenvalues. However, we can represent
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Toeplitz and block Toeplitz matrices with a 2π-periodic function which can describe
very precisely the spectrum of the matrices. Let {ah}h∈In be the characteristic
sequence of a Toeplitz matrix A ∈ Rn×n and let {B(h)}h∈In be the characteristic
sequence of m × m blocks of a block Toeplitz matrix B ∈ Rnm×nm such that
A = (aj−i)i,j∈In and B = (B(j−i))i,j∈In with In = {−n+ 1, · · · , n− 1}. Building on
the results presented in the Background (Chapter 2), we can define two trigonometric
polynomials f : R→ C and F : R→ Cm×m as follows:

f(ω) ,
∑
h∈In

ahe
ihω F (ω) ,

∑
h∈In

B(h)eihω . (5.1)

f(ω) and F (ω) are the inverse Fourier transforms of the sequences {ah}h∈In and
{B(h)}h∈In respectively. From there, inspired by the work done by Grenander et al.
(1958), we recall from Section 2.1.2 the operator T mapping integrable functions to
Toeplitz matrices:

T(f) ,
( 1

2π

∫ 2π

0
e−i(i−j)ωf(ω) dω

)
i,j∈I+

n

, (5.2)

with this operator, we have T(f) = A and T(F ) = B.
Now, we can state two known theorems which upper bound the largest singular

value of Toeplitz and block Toeplitz matrices with respect to their generating functions.

Theorem 5.1 (Bound on the singular values of Toeplitz matrices). Let f : R→ C,
be a continuous and 2π-periodic function, then T(f) ∈ Rn×n is a Toeplitz matrix
generated by the function f We can bound the largest singular value of the Toeplitz
matrix T(f) as follows:

σ1(T(f)) ≤ sup
ω∈[0,2π]

|f(ω)|. (5.3)

Theorem 5.1 is a direct application of Lemma 4.1 in Gray (2006) for real Toeplitz
matrices.

Theorem 5.2 (Bound on the singular values of Block Toeplitz matrices Gutiér-
rezGutiérrez & Crespo (2012)). Let F : R→ Cm×m be a continuous and 2π-periodic
matrix-valued function, then, T(F ) ∈ Rmn×mn is a block Toeplitz matrix generated by
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the function F . We can bound the largest singular value of the block Toeplitz matrix
T(F ) as follows:

σ1(T(F )) ≤ sup
ω∈[0,2π]

σ1(F (ω)). (5.4)

5.2.2 Upper-Bound on the Largest Singular Value of Doubly-Block
Toeplitz Matrices

We extend the reasoning from Toeplitz and block Toeplitz matrices to doubly-block
Toeplitz matrices (i.e. block Toeplitz matrices where each block is also a Toeplitz
matrix). A doubly-block Toeplitz matrix can be generated by a function f : R2 → C
using the 2-dimensional inverse Fourier transform. For this purpose, we define an
operator D which maps a function f : R2 → C to a doubly-block Toeplitz matrix
of size nm × nm. For the sake of clarity, the dependence of D(f) on m and n is
omitted. Let D(f) , (Di,j(f))i,j∈I+

n
where Di,j(f) is a m×m matrix defined as:

Di,j(f) ,
( 1

4π2

∫ 2π

0

∫ 2π

0
e−i((i−j)ω1+(k−l)ω2)f(ω1, ω2) dω1 dω2

)
k,l∈I+

m

. (5.5)

We are now able to combine Theorems 5.1 and 5.2 to bound the largest singular
value of doubly-block Toeplitz matrices with respect to their generating functions.
Note that in the following, we only consider generating functions as trigonometric
polynomials with real coefficients therefore the matrices generated by D(f) are real.

Theorem 5.3 (Bound on the largest singular value of a Doubly-Block Toeplitz
Matrix). Let f : R2 → C be a multivariate trigonometric polynomial of the form:

f(ω1, ω2) ,
∑
h1∈In

∑
h2∈Im

dh1,h2e
i(h1ω1+h2ω2). (5.6)

Then, D(f) ∈ Rnm×nm is a doubly-block Toeplitz matrix where dh1,h2 is the h2
th

scalar of the h1
th block of the matrix. We can bound the largest singular value of

the matrix D(f) as follows:

σ1(D(f)) ≤ sup
ω1,ω2∈[0,2π]2

|f(ω1, ω2)| (5.7)
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Proof of Theorem 5.3. By definition, a doubly-block Toeplitz matrix is a block
matrix where each block is a Toeplitz matrix. Let A be a mn×mn doubly-block
Toeplitz matrices determined by the sequence of blocks {A(−n+1), . . . ,A(n−1)} of
size m×m where the blocks A are Toeplitz matrices such that A(i) is determined
by the sequence of scalars {di,−m+1, . . . , di,m−1}. Therefore the matrix A can
be expressed with the operator T with the matrix-valued generating function
F : R→ Cn×n such that:

F (ω1) =
∑
h1∈In

A(h1)eih1ω1 (5.8)

From Theorem 5.2 we have:

σ1(T(F )) ≤ sup
ω1∈[0,2π]

σ1(F (ω1)) (5.9)

Note that because the function F is a linear combination of the Toeplitz matrices
A and that Toeplitz matrices are closed under addition and scalar product, F (ω1)
is also a Toeplitz matrix of size m × m. Therefore, we can define a function
f : R2 → C such that:

f(ω1, ω2) =
∑

h2∈Im
[F (ω1)]h2

eih2ω2 (5.10)

f(ω1, ω2) =
∑

h2∈Im

 ∑
h1∈In

A(h1)eih1ω1


h2

eih2ω2 (5.11)

f(ω1, ω2) =
∑

h2∈Im

 ∑
h1∈In

A(h1)


h2

ei(h1ω1+h2ω2) (5.12)

f(ω1, ω2) =
∑
h1∈In

∑
h2∈Im

dh1,h2e
i(h1ω1+h2ω2) , (5.13)

From Theorem 5.1, we can write:

σ1(F (ω1)) ≤ sup
ω2∈[0,2π]

|f(ω1, ω2)| (5.14)

⇒ sup
ω1∈[0,2π]

σ1(F (ω1)) ≤ sup
ω1,ω2∈[0,2π]2

|f(ω1, ω2)| (5.15)

⇒ σ1(T(F )) ≤ sup
ω1,ω2∈[0,2π]2

|f(ω1, ω2)| (5.16)
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Because the function f(ω1, · ) is the generating function of F (ω1) it is easy to show
that the function f is also the generating function of the matrix T(F ). Therefore,
T(F ) = D(f) which concludes the proof. �

5.3 Extending the Bound to Convolutional Layers

From now on, without loss of generality, we will assume that n = m to simplify
notations. A discrete convolution operation with a 2-dimensional kernel applied
on a 2-dimensional signal (e.g., an image) is equivalent to a matrix multiplication
with a doubly-block Toeplitz matrix (Jain, 1989). In practice, the input signal
often has 3 or more dimensions called channels (for example, RGB images have 3
channels, one for each color). If we denote cin, the number of channels of the input
signal, then, the input signal is a tensor of size cin × n × n. Moreover, when we
perform multiple convolutions on the same signal the output signal will have multiple
channels denoted cout. Therefore, the kernel is defined as a 4-dimensional tensor
of size: cout × cin × s × s. The operation performed by a 4-dimensional kernel on
a 3-dimensional signal can be formulated as the concatenation (horizontally and
vertically) of doubly-block Toeplitz matrices. Hereafter, we bound the singular value
of multiple vertically stacked doubly-block Toeplitz matrices which corresponds to
the operation performed by a 3-dimensional kernel with cout = 1 on a 3-dimensional
signal.

Theorem 5.4 (Bound on the largest singular value of stacked Doubly-block Toeplitz
matrices). Consider doubly-block Toeplitz matrices D(f1), . . . ,D(fcin) where each
fi : R2 → C is a multivariate polynomial of the same form as Equation (5.6).
Construct a matrix M with cin × n2 rows and n2 columns, as follows:

M ,
(
D>(f1), . . . ,D>(fcin)

)>
. (5.17)

Then, we can bound the largest singular value of the matrix M as follows:

σ1(M) ≤ sup
ω1,ω2∈[0,2π]2

√√√√ cin∑
i=1
|fi(ω1, ω2)|2 . (5.18)

In order to prove Theorem 5.4, we will need the following lemmas:
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Lemma 5.1 (GutiérrezGutiérrez & Crespo (2012)). Let f : R2 → C and g : R2 → C
be two continuous and 2π-periodic functions. Let D(f) and D(g) be doubly-block
Toeplitz matrices generated by the functions f and g respectively. Then:

• D>(f) = D(f∗)

• D(f) + D(g) = D(f + g)

Lemma 5.2 (Serra (1994)). If the doubly-block Toeplitz matrix D(f) is generated
by a function f : R2 → R, then the matrix D(f) is Hermitian.

Lemma 5.3 (Serra (1994)). If the doubly-block Toeplitz matrix D(f) is generated
by a non-negative function f not identically zero, then the matrix D(f) is positive
definite.

Lemma 5.4 (Zhang (2011)). Let A and B be Hermitian positive semi-definite
matrices. If A−B is positive semi-definite, then:

λ1(B) ≤ λ1(A) (5.19)

We need now to extend the well known Widom identity (Widom, 1976) which
expresses the relation between Toeplitz and Hankel matrices to doubly-block Toeplitz
and Hankel matrices. Let us first generalize the doubly-block Toeplitz operator
presented in Section 5.2.2.
Given a function f : R2 → C, let Gαp(f) be a matrix such that Gαp(f) =(

Gαp
i,j (f)

)
i,j∈I+

n

where Gαp
i,j is defined as:

Gαp
i,j (f) =

( 1
4π2

∫ 2π

0

∫ 2π

0
e−iαp(i,j,k,l,ω1,ω2)f(ω1, ω2) dω1 dω2

)
k,l∈I+

n

. (5.20)

Note that as with the operator D(f) we only consider generating functions as
trigonometric polynomials with real coefficients therefore the matrices generated
by G(f) are real. And as with the operator D(f), the matrices generated by the
operator Gαp are of size n2 × n2.
We will use the following α functions:

α0(i, j, k, l, ω1, ω2) = (−j − i− 1)ω1 + (k − l)ω2

α1(i, j, k, l, ω1, ω2) = (i− j)ω1 + (−l − k − 1)ω2

α2(i, j, k, l, ω1, ω2) = (−j − i− 1)ω1 + (−l − k − 1)ω2
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α3(i, j, k, l, ω1, ω2) = (−j − i+ n)ω1 + (−l − k − 1)ω2

We now present the generalization of the Widom identity for Doubly-Block Toeplitz
matrices below:

Lemma 5.5 (Extension of Widom Identity to doubly-block operators). Let f :
R2 → C and g : R2 → C be two continuous and 2π-periodic functions. Let fg be the
product of the functions f and g such that (fg)(ω1, ω2) = f(ω1, ω2)g(ω1, ω2). We
can decompose the Doubly-Block Toeplitz matrix D(fg) as follows:

D(fg) = D(f)D(g) +
3∑
p=0

Gαp>(f∗)Gαp(g) + Jn2

 3∑
p=0

Gαp>(f)Gαp(g∗)

Jn2 .

(5.21)
where Jn2 is the reflection of the identity matrix of size n2 × n2.

The proof of this Lemma is delayed to Appendix A. Now we have all the elements
to prove Theorem 5.4 which bounds the largest singular value of vertically stacked
doubly-block Toeplitz matrices with their generating functions.

Proof of Theorem 5.4. Consider doubly-block Toeplitz matrices D(f1), . . . ,D(fcin)
where each fi : R2 → C is a multivariate polynomial of the same form as Equa-
tion (5.6). Construct a matrix M with cin × n2 rows and n2 columns, such
that:

M ,
(
D>(f1), . . . ,D>(fcin)

)>
. (5.22)

First, let us observe the following equality which relates the largest singular value
of the matrix M and the largest eigenvalue of the sum of the doubly-block Toeplitz
matrices composing M:

σ2
1(M) = λ1

(
M>M

)
= λ1

(
cin∑
i=1

D>(fi)D(fi)
)
. (5.23)
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Secondly, let us bound the largest eigenvalue of the sum of doubly-block Toeplitz
generated by |fi|2:

λ1

(
cin∑
i=1

D
(
|fi|2

))
= λ1

(
D
(
cin∑
i=1
|fi|2

))
(5.24)

= σ1

(
D
(
cin∑
i=1
|fi|2

))
(5.25)

≤ sup
ω1,ω2∈[0,2π]2

cin∑
i=1
|fi(ω1, ω2)|2. (5.26)

where the first equality is due to Lemma 5.1, the second equality is due to
Lemma 5.2 and the last inequality is due to Theorem 5.3. To finalize the proof,
we need to demonstrate that the following inequality holds:

λ1

(
cin∑
i=1

D>(fi)D(fi)
)
≤ λ1

(
D
(
cin∑
i=1
|fi|2

))
. (5.27)

In order to prove the inequality above, let us study the positive definiteness of the
following matrix:

D
(
cin∑
i=1
|fi|2

)
−

cin∑
i=1

D>(fi)D(fi), (5.28)

One can observe that the term D
(∑cin

i=1 |fi|2
)
of Equation (5.28) is a real sym-

metric positive definite matrix by Lemmas 5.2 and 5.3. Furthermore, the term∑cin
i=1 D>(fi)D(fi) of Equation (5.28) is a sum of positive semi-definite matrices.

Therefore, if the subtraction of the two is positive semi-definite, one could apply
Lemma 5.4 to prove the Equation (5.27). We know from Lemma 5.5 that

D(fg)−D(f)D(g) =
3∑
p=0

Gαp>(f∗)Gαp(g) + J

 3∑
p=0

Gαp>(f)Gαp(g∗)

J. (5.29)
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By choosing f = f∗, g = f and with the use of Lemma 5.1, we obtain:

D(f∗f)−D(f∗)D(f) = D(|f |2)−D>(f)D(f) (5.30)

=
3∑
p=0

Gαp>(f)Gαp(f) + J

 3∑
p=0

Gαp>(f∗)Gαp(f∗)

J.

(5.31)

From Equation (5.30), we can see that the matrix D(|f |2)−D>(f)D(f) is positive
semi-definite because it can be decomposed into a sum of positive semi-definite
matrices and because positive semi-definiteness is closed under addition, we have:

cin∑
i=1

(
D
(
|fi|2

)
−D>(fi)D(fi)

)
≥ 0 (5.32)

By re-arranging and with the use Lemma 5.1, we obtain:

cin∑
i=1

D
(
|fi|2

)
−

cin∑
i=1

(
D>(fi)D(fi)

)
≥ 0 (5.33)

D
(
cin∑
i=1
|fi|2

)
−

cin∑
i=1

(
D>(fi)D(fi)

)
≥ 0 (5.34)

We can conclude that the Equation (5.27) is true and therefore by Lemma 5.4 we
have:

λ1

(
cin∑
i=1

D>(fi)D(fi)
)
≤ λ1

(
D
(
cin∑
i=1
|fi|2

))
(5.35)

σ2
1(M) ≤ sup

ω1,ω2∈[0,2π]2

cin∑
i=1
|fi(ω1, ω2)|2 (5.36)

σ1(M) ≤ sup
ω1,ω2∈[0,2π]2

√√√√ cin∑
i=1
|fi(ω1, ω2)|2 (5.37)

which concludes the proof. �
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To have a bound on the full convolution operation, we extend Theorem 5.4 to
take into account the number of output channels. The matrix of a full convolution
operation is a block matrix where each block is a doubly-block Toeplitz matrix.
Below, we present our main result:

Theorem 5.5 (Bound on the largest singular value on the discrete convolution
operation). Let us define doubly-block Toeplitz matrices D(f1,1), . . . ,D(fcin,cout)
where each fi,j : R2 → C is a multivariate polynomial of the same form as
Equation (5.6). Construct a matrix M with cin × n2 rows and cout × n2 columns.
We can bound the largest singular value of the matrix M as follows:

σ1(M) ≤

√√√√cout∑
i=1

sup
ω1,ω2∈[0,2π]2

cin∑
j=1
|fij(ω1, ω2)|2. (5.38)

First, in order to prove Theorem 5.5, we will need the following lemma which
bounds the singular values of a matrix constructed from the concatenation of multiple
matrices.

Lemma 5.6 (Bound on the singular values of concatenation of matrices). Let
us define matrices A(1), . . . ,A(p) with A(i) ∈ Rn×n. Let us construct the matrix
M ∈ Rn×pn as follows:

M ,
(
A(1), . . . ,A(p)

)
(5.39)

where ( · ) define the concatenation operation. Then, we can bound the singular
values of the matrix M as follows:

σ1(M) ≤

√√√√ p∑
i=1

σ1(A(i))2 (5.40)

Proof of Lemma 5.6.

σ1(M)2 = λ1
(
MM>

)
(5.41)

= λ1

( p∑
i=1

A(i)A(i)>
)

(5.42)

97



Chapter 5 Bound on the Lipschitz Constant of Convolution Layers

≤
p∑
i=1

λ1
(
A(i)A(i)>

)
(5.43)

≤
p∑
i=1

σ1
(
A(i)

)2
(5.44)

⇔ σ1(M) ≤

√√√√ p∑
i=1

σ1(A(i))2 (5.45)

which concludes the proof. �

Now, the proof of Theorem 5.5 is a combination of Lemma 5.6 and Theorem 5.4.

Proof of Theorem 5.5. Let us define the matrix M(i) as follows:

M(i) =
(
D(f1,i)>, . . . ,D(fcin,i)>

)>
. (5.46)

We can express the matrix M as the concatenation of multiple M(i) matrices:

M =
(
M(1), . . . ,M(cout)

)
(5.47)

Then, we can bound the singular values of the matrix M as follows:

σ1(M) ≤

√√√√cout∑
i=1

σ1(M(i))2 (5.48)

σ1(M) ≤

√√√√cout∑
j=1

sup
ω1,ω2∈[0,2π]2

cin∑
i=1
|fi,j(ω1, ω2)|2 (5.49)

where the first inequality is due to Lemma 5.6 and the second one is due to
Theorem 5.4. This concludes the proof. �

Theorem 5.5 depends on the convolution matrix M, however, we can easily
formulate the bound with the values of a 4-dimensional kernel. Let us define a kernel

98



5.4 Computation and Performance Analysis of LipBound

K ∈ Rcout×cin×s×s, a padding p ∈ N and d = bs/2c the degree of the trigonometric
polynomial, then:

fij(ω1, ω2) =
d∑

h1=−d

d∑
h2=−d

ki,j,h1,h2e
i(h1ω1+h2ω2). (5.50)

where ki,j,h1,h2 = (K)i,j,a,b with a = s− p− 1 + h1 and b = s− p− 1 + h2.
In the rest of the chapter, we will refer to the bound in Theorem 5.5 applied to a

kernel as LipBound and we denote LipBound(K) the Lipschitz upper bound of the
convolution performed by the kernel K.

5.4 Computation and Performance Analysis of
LipBound

This section aims at analyzing the bound introduced in Theorem 5.5. First, we
present an algorithm to efficiently compute the bound, we analyze its tightness
by comparing it against the true largest singular value. Finally, we compare the
efficiency and the accuracy of our bound against the state-of-the-art methods.

5.4.1 The Maximum Modulus of a Trigonometric Polynomial

In order to compute LipBound from Theorem 5.5, we have to compute the maximum
modulus of several trigonometric polynomials. However, finding the maximum
modulus of a trigonometric polynomial has been known to be NP-Hard (Pfister &
Bresler, 2018), and in practice they exhibit low convexity (see Figure 5.1). We found
that for 2-dimensional kernels, a simple grid search algorithm such as PolyGrid (see
Algorithm 5.1), works better than more sophisticated approximation algorithms
(e.g. Green (1999) and DeLaChevrotiere (2009)). This is because the complexity of the
computation depends on the degree of the polynomial which is equal to bs/2c where
s is the size of the kernel and is usually small in most practical settings (e.g. s = 3).
Furthermore, the grid search algorithm can be parallelized effectively on CPUs or
GPUs and runs within less time than alternatives with lower asymptotic complexity.

To fix the number of samples S in the grid search, we rely on the work of (Pfister
& Bresler, 2018), who has analyzed the quality of the approximation depending on S.
Following this work we first define ΘS , the set of S equidistant sampling points as
follows:

ΘS ,
{
ω | ω = k · 2π

S
with k = 0, . . . , S − 1

}
. (5.51)
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Figure 5.1: Contour plots of multivariate trigonometric polynomials where the values of the
coefficient are the values of a random convolutional kernel. The red dots in the
figures represent the maximum modulus of the trigonometric polynomials.

Then, for a trigonometric polynomial f : [0, 2π]2 → C, we have:

max
ω1,ω2∈[0,2π]2

|f(ω1, ω2)| ≤ (1− α)−1 max
ω′1,ω

′
2∈Θ2

S

∣∣f(ω′1, ω′2)
∣∣, (5.52)

where d is the degree of the polynomial and α = 2d/S. For a 3 × 3 kernel which
gives a trigonometric polynomial of degree 1, we use S = 10 which gives α = 0.2.
Using this result, we can now compute LipBound for a convolution operator with
cout output channels as per Theorem 5.4.
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Algorithm 5.1 PolyGrid Algorithm
1: procedure PolyGrid(f, S) . polynomial f , number of samples S
2: σ ← 0, ω1 ← 0, ε← 2π

S
3: for i = 0 to S − 1 do
4: ω2 ← 0
5: for j = 0 to S − 1 do
6: ω2 ← ω2 + ε
7: σ ← max(σ, |f(ω1, ω2)|)
8: end for
9: ω1 ← ω1 + ε

10: end for
11: return σ . approximated maximum modulus of f
12: end procedure

5.4.2 Analysis of the Tightness of the Bound

In this section, we study the tightness of the bound with respect to the dimensions
of the doubly-block Toeplitz matrices. For each n ∈ N, we define the matrix M(n) of
size kn2 × n2 as follows:

M(n) ,
(
D(n)>(f1), . . . ,D(n)>(fk)

)>
(5.53)

where the matrices D(n)(fi) are of size n2 × n2. To analyze the tightness of the
bound, we define the function Γ, which computes the difference between LipBound
and the largest singular value of the function M(n):

Γ(n) = LipBound(KM(n))− σ1(M(n)) (5.54)

where KM(n) is the convolution kernel associated with the matrix M(n).
To compute a very close approximation of the exact largest singular value of M(n)

for a specific n, we use the Implicitly Restarted Arnoldi Method (IRAM) (Lehoucq
& Sorensen, 1996) available in SciPy. The results of this experiment are presented in
Figure 5.2. We observe that the difference between the bound and the actual value
(approximation gap) quickly decreases as the input size increases. For an input size
of 50, the approximation gap is as low as 0.012 using a standard 6×3×3 convolution
kernel. For a larger input size such as ImageNet (224), the gap is lower than 4.10−4.
Therefore LipBound gives an almost exact value of the largest singular value of the
operator matrix for most realistic settings.
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Figure 5.2: Representation of the function Γ(n) defined for different kernel size.

5.4.3 Comparison of LipBound with State-of-the-Art Approaches

1x3x3 32x3x3

Ratio Time (ms) Ratio Time (ms)

Sedghi et al. 0.431± 0.042 1088 ± 251 0.666± 0.123 1729 ± 399
Singla & Feizi 1.293± 0.126 1.90± 0.48 1.441± 0.188 1.90± 0.46
Farnia et al. 0.973± 0.006 4.30± 0.64 0.972± 0.004 4.93± 0.67

LipBound 0.992± 0.012 0.49± 0.05 0.984± 0.021 0.63± 0.46

Table 5.1: Comparison of the accuracy of approximation methods for computing an approxi-
mation of the largest singular value of a convolution layer.

In this section we compare our PolyGrid algorithm with the values obtained using
alternative approaches. We consider the 3 alternative techniques by Sedghi et al.
(2018), Farnia et al. (2019) and Singla & Feizi (2019) which have been described in
Chapter 3, Section 3.2.
To compare the different approaches, we extracted 20 kernels from a trained

model. For each kernel we construct the corresponding doubly-block Toeplitz matrix
and compute its largest singular value. Then, we compute the ratio between the
approximation obtained with the considered approach and the approximated singular
value obtained by IRAM, and average the ratios over the 20 kernels. Thus good
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Network LipBound (ms) Power Method (ms) Ratio

AlexNet 4.75± 1.10 38.75± 2.52 8.14
ResNet 18 29.88± 1.73 148.35± 14.92 4.96
ResNet 34 54.73± 3.62 266.85± 25.35 4.87
ResNet 50 60.77± 4.62 467.61± 36.52 7.69
ResNet 101 102.72± 11.53 817.06± 102.87 7.95
ResNet 152 158.80± 20.84 1373.57± 164.37 8.64
DenseNet 121 125.55± 14.59 937.35± 11.52 7.46
DenseNet 161 176.11± 19.13 1292.61± 30.50 7.33
DenseNet 169 188.03± 19.74 1372.62± 21.16 7.29
DenseNet 201 281.13± 23.41 1930.19± 170.79 6.86
VGG 11 13.73± 1.19 81.78± 4.45 5.95
VGG 13 14.96± 1.99 102.04± 4.20 6.82
VGG 16 21.92± 1.94 132.29± 5.99 6.03
VGG 19 29.05± 0.66 162.28± 4.87 5.58
WideResNet 50-2 113.28± 45.44 468.74± 6.54 4.13
SqueezeNet 1-0 18.44± 5.93 222.40± 25.49 12.05
SqueezeNet 1-1 18.26± 6.65 209.80± 3.59 11.48

Table 5.2: Efficiency of LipBound computation vs. the Power Method with 10 iterations on
full networks.

approximations result in approximation ratios that are close to 1. The results of
this experiment are presented in Table 5.1. The comparison has been made on a
Tesla V100 GPU. The time was computed with the PyTorch CUDA profiler and we
“warmed” up the GPU before starting the timer for caching purposes.

The method introduced by Sedghi et al. (2018) and presented in Section 3.2.3
computes the largest singular value of convolution layers based on doubly-block
circulant matrices. Doubly-block circulant matrices perform a convolution with a
“wrapping around” operation which do not correspond to the more general setting.
We can see in Table 5.1 that the values differ by an important margin. This technique
is also computationally expensive as it requires computing the SVD of n2 small
matrices where n is the size of inputs. Singla & Feizi (2019) have shown that the
singular value of the reshape kernel is a bound on the largest singular value of the
convolution layer. Their approach is very efficient but the approximation is loose
and overestimate the real value. As said previously, the power method provides a
good approximation at the expense of the efficiency. We also compare our approach

103



Chapter 5 Bound on the Lipschitz Constant of Convolution Layers

to the power method with 10 iterations from Farnia et al. (2019) (see Algorithm 3.2).
The results show that our proposed technique: PolyGrid algorithm can get the best
of both worlds. It achieves a near perfect accuracy while being very efficient to
compute.
The results of Table 5.1 shows the performance for the computation for only one

convolution layer. However, during the training Lipbound or the power method need
to be computed for every layer of the network and the computation time is dependent
on the architecture of the network, for example, the size of the activations or the size
of the kernels. In Table 5.2, we compare our approach method against the power
method on the full architecture, i.e., the time needed for the computation on all
the layers of the networks. We measure on the following convolutional architectures:
AlexNet (Krizhevsky et al. 2012), ResNet (He et al. 2016), DenseNet (Huang et al.
2017), VGG (Simonyan & Zisserman, 2014), WideResNet (Zagoruyko & Komodakis, 2016),
SqueezeNet (Iandola et al. 2016). Table 5.2 shows that our approach is systematically
faster than the power method by a factor up to 12 when considering all the layers of
the networks. This demonstrates the scalability of our method.

5.5 Lipschitz Regularization for Adversarial Robustness

One promising application of Lipschitz regularization is in the area of adversarial
robustness. Empirical techniques to improve robustness against adversarial examples
such as Adversarial Training only impact the training data, and often show poor
generalization capabilities (Schmidt et al. 2018). Farnia et al. (2019) have shown that
the adversarial generalization error depends on the Lipschitz constant of the network,
which suggests that the adversarial test error can be improved by applying Lipschitz
regularization in addition to adversarial training.
In this section, we illustrate the usefulness of LipBound by training a Wide

ResNet (Zagoruyko & Komodakis, 2016) with Lipschitz regularization and adversarial
training. Our regularization scheme is inspired by the one used by Yoshida & Miyato
(2017) but instead of using the power method, we use our PolyGrid algorithm
presented in Section 5.4.1 which efficiently computes an upper bound on the largest
singular value of convolution layers.

We introduce the AT+LipReg loss to combine Adversarial Training and our Lip-
schitz regularization scheme in which layers with a large Lipschitz constant are penal-
ized. We consider a neural networkNΩ : X → Y with p layers φ(1)

W(1),b(1) , . . . , φ
(p)
W(p),b(p)

where W(1), . . . ,W(p) are the weight matrices and Ω is the union of all the parameters
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as defined in Definition 2.5. Given a distribution D over X × Y, we can train the
parameters of the network by minimizing the AT+LipReg loss as follows:

min
Ω

Ex,y∼D
[
L(NΩ(x + τ adv

Ω (x)), y) + r(Ω)
]

(5.55)

where L is the cross-entropy loss function, τ adv
Ω (x) is an adversarial perturbation fol-

lowing the loss maximization strategy presented in Section 2.2.3 and the regularization
function r is defined as follows:

r(Ω) = C1
∑

(W,b)∈Ω
(‖W‖F + ‖b‖2)

︸ ︷︷ ︸
`2 regularization

+C2

p−1∑
i=1

log(LipBound(KW(i)))

︸ ︷︷ ︸
Lipschitz regularization

(5.56)

where C1, C2 are two user-defined hyper-parameters. Note that regularizing the
sum of logs is equivalent to regularizing the product of all the LipBound which is
an upper bound on the global Lipschitz constant. In practice, we also include the
upper bound on the Lipschitz of the batch normalization since we can compute it
very efficiently (see Appendix C.4.1 of Tsuzuku et al. (2018)) but we omit the last
fully connected layer.
In this section, we compare the robustness of Adversarial Training (Goodfellow

et al. 2015; Madry et al. 2018) against the combination of Adversarial Training and
Lipschitz regularization. To regularize the Lipschitz constant of the network, we
use the objective function defined in Equation 5.55. We train Lipschitz regularized
neural networks with LipBound (see Theorem 5.5) implemented with PolyGrid
(see Algorithm 5.1) (AT+LipBound) with S = 10 or with the specific power method
for convolutions introduced by Farnia et al. (2019) with 10 iterations (AT+PM).
Table 5.3 shows the gain in robustness against strong adversarial attacks across

different datasets. We can observe that both AT+LipBound and AT+PM offer a
better defense against adversarial attacks and that AT+LipBound offers a further
improvement over the Power Method. Figures 5.3a and 5.3b show the Accuracy under
attack with different numbers of iterations of the PGD algorithm. Table 5.4 presents
our results on the ImageNet Dataset. First, we can observe that the AT+LipReg
trained networks offer a better generalization than with standalone Adversarial
Training. Secondly, we can observe the gain in robustness against strong adversarial
attacks. Network trained with Lipschitz regularization and Adversarial Training
offer a consistent increase in robustness across `∞ and `2 attacks with different ε
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(a) Robustness against `∞ attacks for different classifiers trained with Adversarial Training given
the number of iterations.
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Figure 5.3: Accuracy under attack on CIFAR10 test set with `∞ and `2 attacks for several
classifiers trained with Adversarial Training given the number of iterations.

106



5.5 Lipschitz Regularization for Adversarial Robustness
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(a) Comparison of the distribution of the norm of the Jacobian of the baseline model against the
model trained with Lipschitz regularization.
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(b) Comparison of the distribution of the norm of the Jacobian of the model trained with Adversarial
training against the model trained with Adversarial training and Lipschitz regularization.

Figure 5.4: Distribution of the norm of the Jacobian matrix with respect to the CIFAR10
test set from a Wide ResNet trained with different schemes.
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Model Accuracy PGD-`∞ C&W-`2 0.6 C&W-`2 0.8

Baseline 0.953± 0.001 0.000 ± 0.000 0.002 ± 0.000 0.000 ± 0.000
AT 0.864 ± 0.001 0.426 ± 0.000 0.477 ± 0.000 0.334 ± 0.000
AT+PM 0.788 ± 0.010 0.434 ± 0.007 0.521 ± 0.005 0.419 ± 0.003
AT+LipReg 0.808 ± 0.022 0.457± 0.002 0.547± 0.022 0.438± 0.020

(a) Results on CIFAR10 dataset

Model Accuracy PGD-`∞ C&W-`2 0.6 C&W-`2 0.8

Baseline 0.792± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.000 ± 0.000
AT 0.591 ± 0.000 0.199 ± 0.000 0.263 ± 0.000 0.183 ± 0.000
AT+LipReg 0.552 ± 0.019 0.215± 0.004 0.294± 0.010 0.226± 0.008

(b) Results on CIFAR100 dataset

Table 5.3: Accuracy under `2 and `∞ attacks of different training schemes on CIFAR10/100
datasets.

value. We can also note that increasing the regularization leads to an increase in
generalization and robustness.

Finally, we also conducted an experiment to study the impact of the regularization
on the gradients of the whole network by measuring the distributions of the norm
of the Jacobian matrix with respect to the inputs from the test set. The results of
this experiment are presented in Figure 5.4a and show more concentrated gradients
with Lipschitz regularization. Indeed, we can observe that while the median is
higher, the regularization decreases the number of points with very high Lipschitz
constant. Although Lipschitz regularization is not a Jacobian regularization, we
can observe a clear shift in the distribution. This suggests that our method does
not only work layer-wise, but also at the level of the entire network. A second
experiment, using Adversarial Training, presented in Figure 5.4b demonstrates that
the effect is even stronger when the two techniques are combined together. It
also demonstrates that Lipschitz regularization and Adversarial Training (or other
Jacobian regularization techniques) are complementary. Hence they offer an increased
robustness to adversarial attacks as demonstrated above.

Experimental Settings CIFAR10/100 Dataset. For all our experiments, we
use the Wide ResNet architecture introduced by Zagoruyko & Komodakis (2016) to
train our classifiers. We use Wide ResNet networks with 28 layers and a width
factor of 10. We train our networks for 200 epochs with a batch size of 200. We
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Model Natural
PGD-`∞ C&W-`2

0.02 0.031 1.00 2.00 3.00
Baseline (He et al. 2016) 0.782 0.000 0.000 0.000 0.000 0.000
AT 0.509 0.251 0.118 0.307 0.168 0.099
AT+LipReg (C2 = 0.0006) 0.515 0.255 0.121 0.316 0.177 0.105
AT+LipReg (C2 = 0.0010) 0.519 0.259 0.123 0.338 0.204 0.129

Table 5.4: Natural accuracy and accuracy under `2 and `∞ attacks of different training
schemes on the ImageNet dataset.

use Stochastic Gradient Descent with a momentum of 0.9, an initial learning rate
of 0.1 with exponential decay of 0.1 (MultiStepLR gamma = 0.1) after the epochs
60, 120 and 160. For Adversarial Training (Madry et al. 2018), we use Projected
Gradient Descent with an ε = 8/255(≈ 0.031), a step size of ε/5(≈ 0.0062) and 10
iterations, we use a random initialization but run the attack only once. To evaluate
the robustness of our classifiers, we rigorously followed the experimental protocol
proposed by Carlini et al. (2019) and Tramer et al. (2020). More precisely, as an `∞
attack, we use PGD with the same parameters (ε = 8/255, a step size of ε/5) but
we increase the number of iterations up to 200 with 10 restarts. For each image,
we select the perturbation that maximizes the loss among all the iterations and the
10 restarts. As `2 attacks, we use a bounded version of the Carlini & Wagner (2017)
attack. We choose 0.6 and 0.8 as bounds for the `2 perturbation. Note that the `2
ball with a radius of 0.8 has approximately the same volume as the `∞ ball with a
radius of 0.031 for the dimensionality of CIFAR10/100.

Experimental Settings for ImageNet Dataset. For all our experiments, we
use the ResNet-101 architecture (He et al. 2016). We have used Stochastic Gradient
Descent with a momentum of 0.9, a weight decay of 0.0001, label smoothing of 0.1,
an initial learning rate of 0.1 with exponential decay of 0.1 (MultiStepLR gamma =
0.1) after the epochs 30 and 60. We have used Exponential Moving Average over the
weights with a decay of 0.999. We have trained our networks for 80 epochs with a
batch size of 4096. For Adversarial Training, we have used PGD with 5 iterations,
ε = 8/255(≈ 0.031) and a step size of ε/5(≈ 0.0062). To evaluate the robustness of
our classifiers on ImageNet Dataset, we have used an `∞ and an `2 attacks. More
precisely, as an `∞ attack, we use PGD with an epsilon of 0.02 and 0.031, a step size
of ε/5) with a number of iterations to 30 with 5 restarts. For each image, we select
the perturbation that maximizes the loss among all the iterations and the 10 restarts.
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As `2 attacks, we use a bounded version of the Carlini & Wagner (2017) attack. We
have used 1, 2 and 3 as bounds for the `2 perturbation.

5.6 Concluding Remarks

In this chapter, we introduced a new bound on the Lipschitz constant of convolution
layers that is both accurate and efficient to compute. We used this bound to regularize
the Lipschitz constant of neural networks and demonstrated its computational
efficiency in training large neural networks with a regularized Lipschitz constant.
As an illustrative example, we combined our bound with adversarial training, and
showed that this increases the robustness of the trained networks to adversarial
attacks. The scope of our results goes beyond this application and can be used
in a wide variety of settings, for example, to stabilize the training of Generative
Adversarial Networks (GANs) and invertible networks, or to improve generalization
capabilities of classifiers.
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6.1 Summary of the Contributions

State-of-the-art in a variety of domains, deep neural networks exhibit important
limitations. Indeed, current neural networks tend to be very large in terms of their
number of parameters which make them difficult to train and to deploy in real-world
applications. Furthermore, they exhibit instability to small perturbations of their
inputs which lead to adversarial attacks.

In this thesis, we have used structured matrices from the Toeplitz family to make
contributions to the field of deep learning. Our contributions are twofold. First, we
studied deep diagonal-circulant neural networks, which are deep neural networks in
which weight matrices are the product of diagonal and circulant ones. Using diagonal
and circulant matrices instead of dense ones allows for an important reduction in the
number of parameters which make them more efficient and cost-effective. In addition
to being more compact than fully connected neural networks, diagonal-circulant neural
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networks have a high expressivity that makes them useful for numerous use cases. In
order to characterize the expressive power of diagonal-circulant neural networks, we
build upon the work of Huhtanen & Perämäki (2015) which states that any matrix can
be decomposed into a product of alternating diagonal and circulant matrices. Based
on this result, we have successfully demonstrated that neural networks with diagonal
and circulant matrices are universal approximators and characterized their expressive
power with respect to their depth. We also demonstrated the effectiveness of this
class of compact neural networks to video classification with a real-world dataset.
Secondly, we studied the properties of doubly-block Toeplitz matrices which

are equivalent to the convolution operation. Using the properties of this type of
structured matrix and a Fourier representation introduced by Grenander et al. (1958),
we devised an upper-bound on the singular values of convolution layers leading
to a new regularization scheme that improves the robustness of neural networks
against adversarial attacks. In order to use this upper-bound in a large-scale setting,
we introduced the PolyGrid algorithm (see Algorithm 5.1) which efficiently and
accurately computes an approximation of this upper-bound.

6.2 Perspectives and Future Works

6.2.1 Designing Compact Transformers for Natural Language
Processing

In order to improve upon our work on compact neural networks, one idea follows
naturally. The race towards larger convolutional neural networks seemed to have
slowed down following the work of Tan & Le (2019) which devised compact state-of-
the-art neural networks for image recognition. However, other types of architecture,
e.g., Transformers which rely heavily on dense matrices, have seen their number of
parameters exploding in recent years. The latest model which was designed by Fedus
et al. (2021) has 1 trillion parameters, 5.7 times than the second largest, proposed by
Brown et al. (2020), which had 175 billion parameters.
In Chapter 4 and Appendix B, we have used the diagonal-circulant decomposi-

tion for compressing embedded layers in the context of video classification. This
decomposition could also be used to compress attention layers of Transformers
networks (Vaswani et al. 2017) where the attention layer is described as follows:

Attention(Q,K,V) = softmax
(

QK>√
dk

)
V , (6.1)
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where Q,K and V are dense matrices. Taking this layer as a building block leads to
large neural networks as demonstrated by the GPT-3 architecture with 96 attention
layers and 175 billion parameters. Although, the diagonal-circulant decomposition
could successfully reduce the number of parameters of attention layers, it may have
limited impact on multi-head attention layers which are a concatenation of small
attention layers due to the reduced dimension of each matrix.

6.2.2 Regularization on the Condition Number of Convolution
Layers

In Chapter 5, we have proposed an upper-bound on the largest singular value
of convolution layers which allow us to regularize the Lipschitz constant of the
network thus improving the robustness. However, an important reduction of the
Lipschitz constant seems to prevent the network from learning correctly. Indeed,
as demonstrated by the work of (Zhang et al. 2019), accuracy and robustness are
actually at odds, meaning that improving the robustness (i.e. in our case, reducing
the expressivity) hurts the training and the natural accuracy of the network. In our
experiments, the phenomenon called rank collapse (Saxe et al. 2014) where the rank
of the weights matrices tend to decrease during training combined with a strong
Lipschitz regularization would prevent convergence. An interesting solution would be
to regularize the largest singular value and promoting the smallest in order to enforce
orthogonality. The following bound on the condition number of general matrices
Guggenheimer et al. (1995) could be studied:

κ(W) ≤ 2
|det(W)|

(‖W‖F√
r

)r
(6.2)

where r is the rank of W. As such, using the bound as a regularizer will enforce
the orthogonality, just like a layer normalization. Therefore, we could design some
heuristic regularizers to encourage a smaller

(
‖W‖F√

r

)r
and larger |det(W)| separately,

as given by the following objective function:

min
Ω

Ex,y∼D

[
L(NΩ(x), y) + C1

p∑
i=1

∥∥∥W(i)
∥∥∥

F
+ C2

p∑
i=1

log
∣∣∣det

(
W(i)

)∣∣∣] (6.3)

where the determinant of doubly-block Toeplitz matrices under some assumption
could be expressed with the Szegö Theorem (Szegö, 1915) and can be approximated
with the help of Random Matrix Theory (Basor, 2017).
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6.2.3 Going Beyond the Lipschitz Constant

Finally, in order to better understand the behavior of neural networks and the
transformation they perform, it would be interesting to go beyond the Lipschitz
constant and consider their full spectrum. Indeed, the spectrum of a linear map is a
set that contains the eigenvalues and can be seen as a description of the properties
and behavior of the operator. For example, for a linear operator L : X → X , the
spectrum gives precise information on the solvability of the following linear equation

λx− Lx = y (6.4)

It is natural to ask if we could define a spectrum that equivalently gives information
on the following nonlinear equation

λx− F(x) = y . (6.5)

In this line of research, Kachurovskii (1969) have defined a spectrum for nonlinear
continuous Lipschitz operators which share important properties with the spectrum of
linear operators. More precisely, let F : X → X be a nonlinear continuous Lipschitz
map, the Kachurovskij spectrum of F is given by

σ(F) , {λ ∈ C | λI− F is not a lipeomorphism} (6.6)

where a nonlinear Lipschitz continuous operator is a lipeomorphism if its inverse
is also nonlinear Lipschitz continuous. We can also define the complement of the
spectrum, i.e., the Kachurovskij resolvent set as follows:

µ(F) , C \ σ(F) (6.7)

The resolvent set can be seen as the set of complex numbers for which the operator
is well behaved. The Kachurovskij spectrum is a compact subset of the complex
plane but may be empty. Kachurovskij have also shown that the emptiness of this
spectrum can be prevented if we restrict ourselves to nonlinear continuous Lipschitz
operators that admit a Fréchet-derivative F′(x0) at some point x0 ∈ X . In this case,
the Kachurovskij spectrum share all the properties of a linear operator which are:
closed, compact, bounded and non-empty.
Neural networks with differentiable nonlinearities are differentiable nonlinear

Lipschitz continuous functions, therefore the study of the Kachurovskij spectrum could
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give important insight on their stability, invertibility and robustness to adversarial
examples.

6.3 Discussion

Although our contributions offer concrete techniques for building compact and
reliable neural networks, they also highlight some important difficulties in them.
First, if we discard techniques such as pruning or quantization for building compact
neural networks due to the necessity of training a large neural network prior to
compression, designing parameters-efficient neural networks that are compact by
design requires rethinking the whole architecture. For computer vision tasks, the
convolution operation is a compact and powerful transform, however, we still haven’t
found such equivalent transforms for other use cases. Although the multi-head
attention layer is more efficient than the attention layer for NLP tasks, using this
type of transform in a neural network is still very parameter-hungry as demonstrated
by the recent state-of-the-art for language models (Brown et al. 2020).
Secondly, defense techniques against adversarial attacks have shown great im-

provements in the last few years. However, with current state-of-the-art techniques,
it is still difficult to reach an accuracy higher than 60% on CIFAR10 (which is
considered a small dataset) and the accuracy decreases further on datasets with a
larger dimensionality. Consequently, building robust neural networks still remain very
much an open question. We believe that further breakthroughs in this area will come
as a by-product on research on understanding neural networks. Accordingly, we hope
that our contribution to the understanding of diagonal-circulant and convolution
neural networks is a small step in this direction.
Appendix
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Appendix A
Generalization of Widom Identity

This appendix aims at proving a generalization of Widom Identity for doubly-block
Toeplitz operators. The Widom identity, which states the relation between Toeplitz
and Hankel operators, was introduced by Harold Widom in a 1976 seminal paper
(Widom, 1976). Let us define the semi-infinite Toeplitz and Hankel operators:

T∞(f) ,
( 1

2π

∫ 2π

0
e−i(i−j)ωf(ω) dω

)
i,j∈{0,...,∞}

(A.1)

H∞(f) ,
( 1

2π

∫ 2π

0
e−i(i+j+1)ωf(ω) dω

)
i,j∈{0,...,∞}

(A.2)

Then, for f and g integrable functions, the Widom identity can be written as follows:

T∞(fg)−T∞(f)T∞(g) = H∞(f)H∞(g∗) (A.3)

Note that Widom extends this identity from finite Toeplitz matrices:

Tn(fg)−Tn(f)Tn(g) = Hn(f)Hn(g∗)− JnHn(f∗)Hn(g∗)Jn (A.4)

where Jn is the anti-identity matrix, i.e., the reflexion matrix.
We would like to expend the identity presented in Equation (A.4) to finite doubly-

block Toeplitz operator. We will need to generalize the doubly-block Toeplitz operator
presented in Section 5.2.2. Let Gαp(f) =

(
Gαp
i,j (f)

)
i,j∈I+

n

where Gαp
i,j is defined as:

Gαp
i,j (f) =

( 1
4π2

∫ 2π

0

∫ 2π

0
e−iαp(i,j,k,l,ω1,ω2)f(ω1, ω2) dω1 dω2)

)
k,l∈I+

n

. (A.5)

Note that as with the operator D(f) we only consider generating functions as
trigonometric polynomials with real coefficients therefore the matrices generated
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by G(f) are real. And as with the operator D(f), the matrices generated by the
operator Gαp are of size n2 × n2.
We will use the following α functions:

α0(i, j, k, l, ω1, ω2) = (−j − i− 1)ω1 + (k − l)ω2

α1(i, j, k, l, ω1, ω2) = (i− j)ω1 + (−l − k − 1)ω2

α2(i, j, k, l, ω1, ω2) = (−j − i− 1)ω1 + (−l − k − 1)ω2

α3(i, j, k, l, ω1, ω2) = (−j − i+ n)ω1 + (−l − k − 1)ω2

We now present the generalization of the Widom identity for Doubly-Block Toeplitz
matrices below:

Lemma A.1 (Generalization of Widom Identity). Let f : R2 → C and g : R2 → C
be two continuous and 2π-periodic functions. We can decompose the Doubly-Block
Toeplitz matrix D(fg) as follows:

D(fg) = D(f)D(g)+
3∑
p=0

Gαp>(f∗)Gαp(g)+Jn2

 3∑
p=0

Gαp>(f)Gαp(g∗)

Jn2 . (A.6)

where J is the reflection of the identity matrix of size n2 × n2.

Proof of Lemma A.1. Let (i, j) be matrix indexes such ( · )i,j correspond to
the value at the ith row and jth column, let us define the following notation:

i1 = bi/nc j1 = bj/nc

i2 = i mod n j2 = j mod n

Let us define f̂ as the 2 dimensional Fourier transform of the function f . We refer
to f̂h1,h2 as the Fourier coefficient indexed by (h1, h2) where h1 correspond to the
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index of the block of the doubly-block Toeplitz and h2 correspond to the index of
the value inside the block. More precisely, we have

(D(f))i,j = f̂(bj/nc−bi/nc),((j mod n)−(i mod n))) (A.7)

(Gα0(f))i,j = f̂(bj/nc+bi/nc+1),((j mod n)−(i mod n))) (A.8)

(Gα1(f))i,j = f̂(bj/nc−bi/nc),((j mod n)+(i mod n)+1)) (A.9)

(Gα2(f))i,j = f̂(bj/nc−bi/nc),((j mod n)−(i mod n))) (A.10)

(Gα3(f))i,j = f̂(bj/nc+bi/nc+n),((j mod n)+(i mod n)+1)) (A.11)

We simplify the notation of the expressions above as follow:

(D(f))i,j = f̂(j1−i1),(j2−i2) (A.12)

(Gα0(f))i,j = f̂(j1+i1+1),(j2−i2) (A.13)

(Gα1(f))i,j = f̂(j1−i1),(j2+i2+1) (A.14)

(Gα2(f))i,j = f̂(j1−i1),(j2−i2) (A.15)

(Gα3(f))i,j = f̂(j1+i1+n),(j2+i2+1) (A.16)

The convolution theorem states that the Fourier transform of a product of two
functions is the convolution of their Fourier coefficients. Therefore, one can observe
that the entry (i, j) of the matrix D(fg) can be express as follows:

(D(fg))i,j =
2n−1∑

k1=−2n+1

2n−1∑
k2=−2n+1

f̂(k1−i1),(k2−i2)ĝ(j1−k1),(j2−k2).

By splitting the double sums and simplifying, we obtain:

(D(fg))i,j =
∑

k1,k2∈P

(
f̂(k1−i1),(k2−i2)ĝ(j1−k1),(j2−k2) + f̂(−k1−i1−1),(k2−i2)ĝ(j1+k1+1),(j2−k2)

+ f̂(k1−i1),(−k2−i2−1)ĝ(j1−k1),(j2+k2+1) + f̂(−k1−i1−1),(−k2−i2−1)ĝ(j1+k1+1),(j2+k2+1)

+ f̂(k1−i1+n),(−k2−i2−1)ĝ(j1−k1−n),(j2+k2+1) + f̂(k1−i1+n),(k2−i2)ĝ(j1−k1−n),(j2−k2)

+ f̂(k1−i1),(k2−i2+n)ĝ(j1−k1),(j2−k2−n) + f̂(k1−i1+n),(k2−i2+n)ĝ(j1−k1−n),(j2−k2−n)

+ f̂(−k1−i1−1),(k2−i2+n)ĝ(j1+k1+1),(j2−k2−n)
)

(A.17)

where P = {(k1, k2) | k1, k2 ∈ Z, 0 ≤ k1 ≤ n− 1, 0 ≤ k2 ≤ n− 1}.
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Furthermore, we can observe the following:

(D(f)D(g))i,j =
n2∑
k=0

(D(f))i,k(D(g))k,j =
∑

k1,k2∈P
f̂(k1−i1),(k2−i2)ĝ(j1−k1),(j2−k2)

(
Gα1>(f∗)Gα1(g)

)
i,j

=
∑

k1,k2∈P
f̂∗(k1+i1+1),(i2−k2)ĝ(j1+k1+1),(j2−k2)

=
∑

k1,k2∈P
f̂(−k1−i1−1),(k2−i2)ĝ(j1+k1+1),(j2−k2)

(
Gα2>(f∗)Gα2(g)

)
i,j

=
∑

k1,k2∈P
f̂∗(i1−k1),(k2+i2+1)ĝ(j1−k1),(j2+k2+1)

=
∑

k1,k2∈P
f̂(k1−i1),(−k2−i2−1)ĝ(j1−k1),(j2+k2+1)

(
Gα3>(f∗)Gα3(g)

)
i,j

=
∑

k1,k2∈P
f̂∗(k1+i1+1),(k2+i2+1)ĝ(j1+k1+1),(k2+j2+1)

=
∑

k1,k2∈P
f̂(−k1−i1−1),(−k2−i2−1)ĝ(j1+k1+1),(k2+j2+1)

(
Gα4>(f∗)Gα4(g)

)
i,j

=
∑

k1,k2∈P
f̂∗(i1−k1−n),(k2+i2+1)ĝ(j1−k1−n),(j2+k2+1)

=
∑

k1,k2∈P
f̂(k1−i1+n),(−k2−i2−1)ĝ(j1−k1−n),(j2+k2+1)

Let us define the matrix Jn2 of size n2 × n2 as the anti-identity matrix. We have
the following:

(
Gα1>(f)Gα1(g∗)

)
i,j

=
∑

k1,k2∈P
f̂(k1+i1+1),(i2−k2)ĝ

∗
(j1+k1+1),(j2−k2)

=
∑

k1,k2∈P
f̂(k1+i1+1),(i2−k2)ĝ(−j1−k1−1),(k2−j2)

⇔
(
Jn2Gα1>(f)Gα1(g∗)Jn2

)
i,j

=
∑

k1,k2∈P
f̂(k1−i1+n),(k2−i2)ĝ(j1−k1−n),(j2−k2)
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(
Gα2>(f)Gα2(g∗)

)
i,j

=
∑

k1,k2∈P
f̂(i1−k1),(k2+i2+1)ĝ

∗
(j1−k1),(j2+k2+1)

=
∑

k1,k2∈P
f̂(i1−k1),(k2+i2+1)ĝ(k1−j1),(−j2−k2−1)

⇔
(
Jn2Gα2>(f)Gα2(g∗)Jn2

)
i,j

=
∑

k1,k2∈P
f̂(k1−i1),(k2−i2+n)ĝ(j1−k1),(j2−k2−n)

(
Gα3>(f)Gα3(g∗)

)
i,j

=
∑

k1,k2∈P
f̂(k1+i1+1),(k2+i2+1)ĝ

∗
(j1+k1+1),(k2+j2+1)

=
∑

k1,k2∈P
f̂(k1+i1+1),(k2+i2+1)ĝ(−j1−k1−1),(−k2−j2−1)

⇔
(
Jn2Gα3>(f)Gα3(g∗)Jn2

)
i,j

=
∑

k1,k2∈P
f̂(k1−i1+n),(k2−i2+n)ĝ(j1−k1−n),(−k2+j2−n)

(
Gα4>(f)Gα4(g∗)

)
i,j

=
∑

k1,k2∈P
f̂(−k1+i1−n),(k2+i2+1)ĝ

∗
(j1−k1−n),(j2+k2+1)

=
∑

k1,k2∈P
f̂(−k1+i1−n),(k2+i2+1)ĝ(−j1+k1+n),(−j2−k2−1)

⇔
(
Jn2Gα4>(f)Gα4(g∗)Jn2

)
i,j

=
∑

k1,k2∈P
f̂(−k1−i1−1),(k2−i2+n)ĝ(j1+k1+1),(j2−k2−n)

Now, we can observe from Equation A.17 that:

D(fg) = D(f)D(g) +
3∑
p=0

Gαp>(f∗)Gαp(g) + Jn2

 3∑
p=0

Gαp>(f)Gαp(g∗)

Jn2 .

(A.18)
which concludes the proof. �
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This Appendix reports some additional experiments on video classification with
diagonal-circulant neural networks. These experiments have been done in the context
of the YouTube-8M1 video classification challenge. This work was recognized as one
of the 5 original approaches by the Google AI team that organized the workshop (Lee
et al. 2018).

1https://www.kaggle.com/c/youtube8m
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B.1 Introduction

Classification of unlabeled videos streams is one of the challenging tasks for machine
learning algorithms. Research in this field has been stimulated by the recent release
of several large annotated video datasets such as Sports-1M (Karpathy et al. 2014),
FCVID (Jiang et al. 2018) or the YouTube-8M (Abu-El-Haija et al. 2016) dataset.

The naive approach to achieve video classification is to perform frame-by-frame
image recognition, and to average the results before the classification step. However, it
has been shown by Abu-El-Haija et al. (2016) and Miech et al. (2017) that better results
can be obtained by building features across different frames and several deep learning
architectures have been designed to learn embeddings for sets of frames. For example
Deep Bag-of-Frames (DBoF) (Abu-El-Haija et al. 2016), NetVLAD (Arandjelović et al.
2016) or architectures based on Fisher Vectors (Perronnin & Dance, 2007).

The DBoF embedding layer processes videos in two steps. First, a learned trans-
formation projects all the frames together into a high dimensional space. Then, a
max (or average) pooling operation aggregates all the embedded frames into a single
discriminative vector representation of the video. The NetVLAD embedding layer is
built on a technique called vector of locally aggregated descriptors (VLAD) (Jégou et
al. 2010). This technique that aggregates a large number of local frame descriptors
into a compact representation using a codebook of visual words. In NetVlad, the
codebook is directly learned end-to-end during training. Finally, NetFisherVector
(NetFV) is inspired by Perronnin & Dance (2007) and uses first and second-order
statistics as video descriptors also gathered in a codebook. The technique can benefit
from deep learning by using a deep neural network to learn the codebook (Miech et
al. 2017).
All the architectures mentioned above can be used to build video features in

the sense of features that span across several frames, but they are not designed to
exploit the sequential nature of videos and capture motion. In order to truly learn
spatio-temporal features and account for motion in videos, several researchers have
looked into recurrent neural networks (e.g. LSTM (Yue-HeiNg et al. 2015; Li et al.
2017b)) and 3D convolutions (Karpathy et al. 2014) (in space and time). However,
these approaches do not outperform non-sequential models, and the single best model
proposed by Miech et al. (2017) (winner of the first YouTube-8M competition) is based
on NetVLAD.

The 2nd YouTube-8M Video Understanding Challenge includes a constraint on the
model size and many competitors have been looking into building efficient memory
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models with high accuracy. There are two kinds of techniques to reduce the memory
required for training and/or inference in neural networks. The first kind aims at
compressing an existing neural network into a smaller one, (thus it only impacts the
size of the model at inference time). The second one aims at constructing models
that are compact by design.

B.2 Compact Architecture using Diagonal and
Circulant Matrices

Building on the matrix decomposition presented in Chapter 4, we introduce a compact
neural network architecture for video classification where dense matrices have been
replaced by products of circulant and diagonal matrices.

B.2.1 Base Model

Embedding Dim Reduction Classification

Video

Audio

FC

FC

concat MoE
Context
Gating

Figure B.1: Diagram of the architecture proposed by Miech et al. (2017) and used for the
experiments. The sample goes through an embedding layer and is reduced with
a Fully Connected layer. The results are then concatenated and classified with a
Mixture-of-Experts and Context Gating layer.

We demonstrate the benefit of the decomposition into diagonal and circulant
matrices using a base model which has been proposed by Miech et al. (2017). This
architecture can be decomposed into three blocks of layers, as illustrated in Figure B.1.
The first block of layers, composed of the Deep Bag-of-Frames embedding, is meant
to process audio and video frames independently. The DBoF layer computes two
embeddings: one for the audio and one for the video. In the next paragraph, we will
only focus on describing the video embedding (The audio embedding is computed in
a very similar way). We represent a video V as a set of m frames {v(1), . . . ,v(m)}
where each frame v(i) ∈ Rk is a vector of visual features extracted from the frame
image. In the context of the YouTube-8M competition, each vi is a vector of 1024
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visual features extracted using the last fully connected layer of an Inception network
trained on ImageNet. The DBoF layer then embeds a video V into a vector v′ drawn
from a p dimensional vector space as follows:

v′ = max
{
Wv(i) | v(i) ∈ V

}
(B.1)

where W is a matrix in Rp×k (learned) and max is the element-wise maximum
operator. We typically choose p > k, (e.g. p = 8192). Note that because this
formulation is framed in term of sets, it can process videos of different lengths (i.e.,
a different value of m). A second block of layers reduces the dimensionality of each
embedding layer (audio and video), and merges the result into a single vector by
using a simple concatenation operation. We chose to reduce the dimensionality of
each embedding layer separately before the concatenation operation to avoid the
concatenation of two high dimensional vectors.

Finally, the classification block uses a combination of Mixtures-of-Experts (MoE)
and Context Gating to calculate the final probabilities. The Mixtures-of-Experts
layer introduced by Jordan & Jacobs (1993) and proposed for video classification
by Abu-El-Haija et al. (2016) is used to predict each label independently. It consists of
a gating and experts networks which are concurrently learned. The gating network
learns which experts to use for each label and the experts layers learn how to classify
each label. The context gating operation was introduced by Miech et al. (2017)
and captures dependencies among features and re-weight probabilities based on the
correlation of the labels. For example, it can capture the correlation of the labels ski
and snow and re-adjust the probabilities accordingly.

B.2.2 Robust Deep Bag-of-Frames pooling method

We propose a technique to extract more performance from the base model with
DBoF embedding. The maximum pooling is sensitive to outliers and noise whereas
the average pooling is more robust. We propose a method which consists in taking
several samples of frames, applying the upsampling followed by the maximum pooling
to these samples, and then averaging over all samples. More formally, assume a video
contains m frames v1, . . . ,vm ∈ R1024. We first draw n random samples S(1) . . .S(n)

of size k from the set
{
v(1), . . . ,v(m)

}
. The output of the robust-DBoF layer is:

1
n

n∑
i=1

max{Wv : v ∈ Si} (B.2)
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Depending on n and k, this pooling method is a trade-off between the max pooling
and the average pooling. Thus, it is more robust to noise, as will be shown in the
experiments section.

B.2.3 Compact Representation of the Base Model

In order to build compact layers, we use the diagonal-circulant matrix decomposition.
The layers are represented as follows:

φ(x) = ρ

([
m∏
i=1

D(i)C(i)
]
x + b

)
(B.3)

where the parameters of each matrix D(i) and C(i) are trained using a gradient
based optimization algorithm, and m defines the number of factors. Increasing the
value of m increases the number of trainable parameters and therefore the modeling
capabilities of the layer. In our experiments, we chose the number of factors m
empirically to achieve the best trade-off between model size and accuracy.

To measure the impact of the size of the model and its accuracy, we represent layers
in their compact form independently. Given that circulant and diagonal matrices
are square, we use concatenation and slicing to achieve the desired dimension. As
such, with m = 1, the weight matrix of size 1024 × 8192 of the video embedding
is represented by a concatenation of 8 DC matrices and the weight matrix of size
8192 × 512 is represented by a single DC matrix with size 8192 × 8192 and the
resulting output is sliced at the 512 dimension. We denote layers in their classic form
as “Dense” and layers represented with circulant and diagonal factors as “Compact”.

B.2.4 Leveraging Architectural Diversity

In order to benefit from architectural diversity, we also devise a single model architec-
ture that combines different types of embedding layers. As we can see in Figure B.2,
video and audio frames are processed by several embedding layers before being re-
duced by a series of compact fully connected layers. The output of the compact fully
connected layers are then averaged, concatenated and fed into the final classification
block. Figure B.9 shows the result of different models given the number of parameters.
The use of circulant matrices allow us to fit this model in GPU memory. For example,
the diversity model with a NetVLAD embedding (cluster size of 256) and NetFV
embedding (cluster size of 128) has 160 millions parameters (600 Mo) in the compact
version and 728M (2.7 Go) in the dense version.
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Video
DBoF

NetVLAD
NetFV

FC
FC
FC

Audio
DBoF

NetVLAD
NetFV

FC
FC
FC

average

average

concat MoE
Context
Gating

Embedding Dim Reduction Classification

Figure B.2: Diagram of architecture with several embeddings devised to leverage the diversity
of an Ensemble in a single model.

B.3 Experiments

In this section, we first evaluate the pooling technique proposed in Section B.2.2.
Then, we conduct experiments to evaluate the accuracy of our compact models. In
particular, we investigate which layer benefits the most from a circulant representation
and show that our approach where both the diagonal and the circulant is learned
performs better than the approach from Cheng et al. (2015) for the video classification
problem. Finally, we compare all our models on a two dimensional size vs. accuracy
scale in order to evaluate the trade-off between size and accuracy of each one of our
models. All the figures of this section can be found at the end of the chapter.

Experimental Setup All the experiments of this appendix have been done in the
context of the 2nd YouTube-8M Video Understanding Challenge with the YouTube-8M
dataset. We trained our models with the full training set and 70% of the validation set
which corresponds to a total of 4 822 555 examples. We used the data augmentation
technique proposed by Skalic et al. (2017) to virtually double the number of inputs.
The method consists in splitting the videos into two equal parts. This approach is
motivated by the observation that a human could easily label the video by watching
either the beginning or the ending of the video. All our experiments are developed
with TensorFlow Framework (Abadi et al. 2015). We trained our models with the
CrossEntropy loss and used Adam optimizer with a 0.0002 learning rate and a 0.8
exponential decay every 4 million examples. All fully connected layers are composed
of 512 units. DBoF, NetVLAD and NetFV are respectively 8192, 64 and 64 of
cluster size for video frames and 4096, 32, 32 for audio frames. We used 4 mixtures
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for the MoE Layer. We used all the available 150 frames and robust max pooling
introduced in Section B.2.2 for the DBoF embedding. In order to stabilize and
accelerate the training, we used batch normalization before each nonlinear activation
and gradient clipping. We used the GAP (Global Average Precision), as used in the
2nd YouTube-8M Video Understanding Challenge, to compare our experiments. The
GAP metric is defined as follows:

GAP =
P∑
i=1

p(i)∆r(i) (B.4)

where P is the number of final predictions, p(i) the precision, and r(i) the recall.
We limit our evaluation to 20 predictions for each video. All experiments have been
realized on a cluster of 12 nodes. Each node has 160 POWER8 processor, 128 Go of
RAM and 4 Nividia Titan P100.

Robust Deep Bag-of-Frames pooling method We evaluate the performance
of our Robust DBoF embedding. In accordance with the work of Abu-El-Haija et
al. (2016), we find that average pooling performs better than maximum pooling.
Figure B.3 shows that the proposed robust maximum pooling method outperforms
both maximum and average pooling.

Model #Parameters CR GAP@20 Diff.

Dense Model 45M – 0.846 –
Compact DBoF 36M 18.4 0.838 -0.008
Compact FC 41M 9.2 0.845 -0.001
Compact MoE 12M 72.0 0.805 -0.041

Table B.1: Effect of the compactness of different layers.

Impact of Circulant Matrices on Different Layers This series of experiments
aims at understanding the effect of compactness over different layers. Table B.1 shows
the result in terms of the number of weights, compression ratio (CR) with respect to
the dense model and GAP score. In these experiments, for speeding-up the training
phase, we did not use the audio features and exploited only the video information.
The compact fully connected layer achieves a compression rate of 9.5 while having
a very similar performance, whereas the compact DBoF and MoE achieve a higher
compression rate at the expense of accuracy. Figure B.4 shows that the model with
a compact FC converges faster than the dense model. The model with a compact

131



Appendix B Diagonal Circulant Neural Networks for Video Classification

DBoF shows a big variance over the validation GAP which can be associated with a
difficulty to train. The model with a compact MoE is more stable but at the expense
of its performance.

Another series of experiments investigates the effect of adding factors of diagonal-
circulant layers. Table B.2 shows that there is no gain in accuracy even if the number
of weights increases. It also shows that adding factors has an important effect on
the speed of training. On the basis of this result, i.e. given the performance and
compression ratio, we can consider that representing the fully connected layer of the
base model in a compact fashion can be a good trade-off.

#Factors FC Layer GAP@20
#Parameters CR

– 6.29M – 0.861
1 12K 99.8 0.861
3 73K 98.8 0.861
6 147K 97.6 0.859

Table B.2: Evolution of the number of parameters and accuracy according to the number of
factors.

Comparison with Related Works Circulant matrices have already been used
in neural networks by Cheng et al. (2015). They proposed to replace fully connected
layers by a circulant and diagonal matrices where the circulant matrix is learned by
a gradient based optimization algorithm and the diagonal matrix is random with
values in {-1, 1}. We compare our more general framework with their approach.
Figure B.5 shows the validation GAP according to the number of epochs of the base
model with a compact fully connected layer implemented with both approaches.

Compact Baseline Model with Different Embeddings To compare the per-
formance and the compression ratio we can expect, we consider different settings
where the compact fully connected layer is used together with different embeddings.
Figures B.6, B.7, B.8 and Table B.3 show the performance of the base model with
DBoF, NetVLAD and NetFV embeddings with a Dense and Compact layer. Notice
that we can get a bigger compression rate with NetVLAD and NetFV due to the
fact that the output of the embedding is in a higher dimensional space which implies
a larger weight matrix for the fully connected layer. Although the compression rate
is higher, it is at the expense of accuracy.
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Embedding Method #Parameters CR GAP@20

DBoF FC Dense 65M – 0.861
FC Circulant 59M 9.56 0.861

NetVLAD FC Dense 86M – 0.864
FC Circulant 50M 41.1 0.851

NetFisher FC Dense 122M – 0.860
FC Circulant 51M 58.1 0.848

Table B.3: Impact of the compression of the fully connected layer of the model architecture
with Audio and Video features vector and different types of embeddings.

Tradeoff Between Model Size and Accuracy To conclude our experimental
evaluation, we compare all our models in terms of size and accuracy. The results
are presented in Figure B.9. As we can see in this figure, the most compact models
are obtained with the circulant NetVLAD and NetFV. We can also see that the
complex architectures described in Section B.2.4 (DBoF + NetVLAD) achieve top
performance but at the cost of a large number of weights. Finally, the best trade-off
between size and accuracy is obtained using the DBoF embedding layer and achieves
a GAP of 0.861 for only 60 millions weights.

B.4 Concluding Remarks

In this appendix, we demonstrated that circulant matrices and diagonal matrices can
be a great tool to design compact neural network architectures for video classification
tasks. Our experiments demonstrate that the best trade-off between size and accuracy
is obtained using circulant DBoF embedding layers. We investigated a model
with multiple embeddings to leverage the performance of an Ensemble but found
it ineffective. The good performance of Ensemble models, i.e., why aggregating
different distinct models performs better that incorporating all the diversity in a
single architecture is still an open problem. Our future work will be devoted to
address this challenging question and to pursue our effort to devise compact models
achieving the same accuracy as larger one, and to study their theoretical properties.
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Figure B.3: Impact of robust DBoF with n = 10 and k = 15 on the Deep Bag-of-Frames
embedding compared to max and average pooling.
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Figure B.4: GAP score of models according to the number of epochs for different compact
models.
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Figure B.5: GAP difference between the approach proposed by Cheng et al. (2015) where
the diagonals from the decomposition are initialized from the set {−1,+1} and
kept fixed and our approach where the values of the diagonals are learned.
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Figure B.6: GAP score of models with compact DBoF embedding and dense fully connected
layer.
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Figure B.7: GAP score of models with compact NetVLAD embedding and dense fully con-
nected layer.
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Figure B.8: GAP score of models with compact NetFV embedding and dense fully connected
layer.
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This Appendix concerns a collaboration with Rafael Pinot, Laurent Meunier, Hisashi
Kashima, Florian Yger, Cédric Gouy-Pailler and Jamal Atif. This work has been
published at the Conference on Neural Information Processing Systems (NeurIPS)
2019. It investigates the theory of robustness against adversarial attacks. It focuses on
the family of randomization techniques that consist in injecting noise in the network
at inference time. All proofs of this appendix can be found in the long version of the
paper.1 For simplification, we left the notation as in the original paper.

1https://arxiv.org/abs/1902.01148
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C.1 Introduction

Adversarial attacks are some of the most puzzling and burning issues in modern
machine learning. An adversarial attack refers to a small, imperceptible change of an
input maliciously designed to fool the result of a machine learning algorithm. Since
the seminal work of Szegedy et al. (2014) exhibiting this intriguing phenomenon in
the context of deep learning, a wealth of results have been published on designing
attacks (Goodfellow et al. 2015; Kurakin et al. 2016; Moosavi-Dezfooli et al. 2016; Papernot
et al. 2016a; Carlini & Wagner, 2017; Moosavi-Dezfooli et al. 2017) and defenses (Goodfellow
et al. 2015; Papernot et al. 2016b; Meng & Chen, 2017; Guo et al. 2018; Madry et al.
2018; Samangouei et al. 2018)), or on trying to understand the very nature of this
phenomenon (Fawzi et al. 2016, 2018a,b; Simon-Gabriel et al. 2018). Most methods
remain unsuccessful to defend against powerful adversaries (Carlini & Wagner, 2017;
Athalye et al. 2018; Madry et al. 2018). Among the defense strategies, randomization
has proven effective in some contexts. It consists in injecting random noise (both
during training and inference phases) inside the network architecture, i.e., at a given
layer of the network. Noise can be drawn either from Gaussian (Lecuyer et al. 2018;
Liu et al. 2018; Rakin et al. 2018), Laplace (Lecuyer et al. 2018), Uniform (Xie et al.
2018), or Multinomial (Dhillon et al. 2018) distributions. Remarkably, most of the
considered distributions belong to the Exponential family. Albeit these significant
efforts, several theoretical questions remain unanswered. Among these, we tackle the
following, for which we provide principled and theoretically-founded answers:

Q1: To what extent does a noise drawn from the Exponential family preserve
robustness (in a sense to be defined) to adversarial attacks?

A1: We introduce a definition of robustness to adversarial attacks that is suitable to
the randomization defense mechanism. As this mechanism can be described as a non-
deterministic querying process, called probabilistic mapping in the sequel, we propose
a formal definition of robustness relying on a metric/divergence between probability
measures. A key question arises then about the appropriate metric/divergence for
our context. This requires tools for comparing divergences w.r.t. the introduced
robustness definition. Renyi divergence turned out to be a measure of choice, since
it satisfies most of the desired properties (coherence, strength, and computational
tractability). Finally, thanks to the existing links between the Renyi divergence
and the Exponential family, we were able to prove that methods based on noise
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injection from the Exponential family ensures robustness to adversarial examples (cf.
Theorem C.1).

Q2: Can we guarantee a good accuracy under attack for classifiers defended with
this kind of noise?

A2: We present an upper bound on the drop of accuracy (under attack) of the
methods defended with noise drawn from the Exponential family (cf. Theorem C.2).
Then, we illustrate this result by training different randomized models with Laplace
and Gaussian distributions on CIFAR-10 dataset. These experiments highlight the
trade-off between accuracy and robustness that depends on the amount of noise
one injects in the network. Our theoretical and experimental conclusion is that
randomized defenses are competitive (with the current state-of-the-art (Madry et al.
2018)) given the intensity of noise injected in the network.

Outline of the chapter: We present in Section C.2 the related work on randomized
defenses to adversarial examples. Section C.3 introduces the definition of robustness
relying on a metric/divergence between probability measures, and discusses the
key role of the Renyi divergence. We state in Section C.4 our main results on the
robustness and accuracy of Exponential family-based defenses. Section C.5 presents
extensive experiments supporting our theoretical findings. Section C.6 provides
concluding remarks.

C.2 Related works

Injecting noise into algorithms to improve their robustness has been used for ages in
detection and signal processing tasks (Mitaim & Kosko, 1998; Zozor & Amblard, 1999;
Chapeau-Blondeau & Rousseau, 2004). It has also been extensively studied in several
machine learning and optimization fields, e.g. robust optimization (Ben-Tal et al. 2009)
and data augmentation techniques (Perez & Wang, 2017). Recently, noise injection
techniques have been adopted by the adversarial defense community, especially for
neural networks, with very promising results. Randomization techniques are generally
oriented towards one of the following objectives: experimental robustness or provable
robustness.

Experimental robustness: The first technique explicitly using randomization at
inference time as a defense appeared during the 2017 NeurIPS defense challenge (Xie
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et al. 2018). This method uniformly samples over geometric transformations of the
image to select a substitute image to feed the network. Then Dhillon et al. (2018)
proposed to use stochastic activation pruning based on a multinomial distribution
for adversarial defense. Several works (Liu et al. 2018; Rakin et al. 2018) propose to
inject Gaussian noise directly on the activation of selected layers both at training and
inference time. While these works hypothesize that noise injection makes the network
robust to adversarial perturbations, they do not provide any formal justification on
the nature of the noise they use or on the loss of accuracy/robustness of the network.

Provable robustness: Lecuyer et al. (2018) proposed a randomization method
by exploiting the link between differential privacy (Dwork, Roth et al. 2014) and
adversarial robustness. Their framework, called “randomized smoothing” 2, inherits
some theoretical results from the differential privacy community allowing them to
evaluate the level of accuracy under attack of their method. Initial results by Lecuyer
et al. (2018) have been refined by Li et al. (2018), and by Cohen et al. (2019). Our work
belongs to this line of research. However, our framework does not treat exactly the
same class of defenses. Notably, we provide theoretical arguments supporting the
defense strategy based on randomization techniques relying on the exponential family,
and derive a new bound on the adversarial generalization gap, which completes the
results obtained so far on certified robustness. Furthermore, our focus is on the
network randomized by noise injection, “randomized smoothing” instead uses this
network to create a new classifier robust to attacks.
Since the initial discovery of adversarial examples, a wealth of non randomized

defense approaches have also been proposed, inspired by various machine learning
domains such as adversarial training (Goodfellow et al. 2015; Madry et al. 2018), image
reconstruction (Meng & Chen, 2017; Samangouei et al. 2018) or robust learning (Good-
fellow et al. 2015; Madry et al. 2018). Even if these methods have their own merits, a
thorough evaluation made by Athalye et al. (2018) shows that most defenses can be
easily broken with known powerful attacks (Carlini & Wagner, 2017; Chen et al. 2018;
Madry et al. 2018). Adversarial training, which consists in training a model directly
on adversarial examples, came out as the best defense in average. Defense based on
randomization could be overcome by the Expectation Over Transformation technique
proposed by Athalye et al. (2017) which consists in taking the expectation over the
network to craft the perturbation. In this chapter, to ensure that our results are not
biased by obfuscated gradients, we follow the principles provided by (Athalye et al.

2Name introduced by Cohen et al. (2019) after the work of (Lecuyer et al. 2018).
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2018; Carlini et al. 2019) and evaluate our randomized networks with this technique.
We show that randomized defenses are still competitive given the intensity of noise
injected in the network.

C.3 General definitions of risk and robustness

C.3.1 Risk, robustness and probabilistic mappings

Let us consider two spaces X (with norm ‖ · ‖X ), and Y . We consider the classification
task that seeks a hypothesis (classifier) h : X → Y minimizing the risk of h w.r.t.
some ground-truth distribution D over X × Y. The risk of h w.r.t. D is defined as

Risk(h) , E(x,y)∼D[1(h(x) 6= y)].

Given a classifier h : X → Y, and some input x ∈ X with true label ytrue ∈ Y, to
generate an adversarial example, the adversary seeks a τ such that h(x+ τ) 6= ytrue,
with some budget α over the perturbation (i.e., with ‖τ‖X ≤ α). α represents the
maximum amount of perturbation one can add to x without being spotted (the
perturbation remains humanly imperceptible). The overall goal of the adversary is
to find a perturbation crafting strategy that both maximizes the risk of h, and keeps
the values of ‖τ‖X small. To measure this risk "under attack" we define the notion
of adversarial α-radius risk of h w.r.t. D as follows

Riskα(h) , E(x,y)∼D

[
sup
‖τ‖X≤α

1(h(x+ τ) 6= y)
]
. (C.1)

In practice, the adversary does not have any access to the ground-truth distribution.
The literature proposed several surrogate versions of Riskα(h) (see Diochnos et al.
(2018) for more details) to overcome this issue. We focus our analysis on the one used
by Szegedy et al. (2014) and Fawzi et al. (2018) denoted α-radius prediction-change risk
of h w.r.t. DX (marginal of D for X ), and defined as

PC-Riskα(h) , Px∼DX [∃τ ∈ B(α) s.t. h(x+ τ) 6= h(x)] (C.2)

where for any α ≥ 0, B(α) , {τ ∈ X s.t. ‖τ‖X ≤ α} .
As we will inject some noise in our classifier in order to defend against adversarial

attacks, we need to introduce the notion of “probabilistic mapping”. Let Y be
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the output space, and FY a σ-algebra over Y. Let us also denote P(Y) the set of
probability measures over (Y,FY).

Definition C.1 (Probabilistic mapping). Let X be an arbitrary space, and (Y,FY)
a measurable space. A probabilistic mapping from X to Y is a mapping M : X →
P(Y). To obtain a numerical output out of this probabilistic mapping, one needs to
sample y according to M(x).

This definition does not depend on the nature of Y as long as (Y,FY) is measurable.
In that sense, Y could be either the label space or any intermediate space correspond-
ing to the output of an arbitrary hidden layer of a neural network. Moreover, any
mapping can be considered as a probabilistic mapping, whether it explicitly injects
noise (see Dhillon et al. (2018), Lecuyer et al. (2018) and Rakin et al. (2018)) or not.
In fact, any deterministic mapping can be considered as a probabilistic mapping,
since it can be characterized by a Dirac measure. Accordingly, the definition of a
probabilistic mapping is fully general and equally treats networks with or without
noise injection. There exists no definition of robustness against adversarial attacks
that comply with the notion of probabilistic mappings. We settle that by generalizing
the notion of prediction-change risk initially introduced by Diochnos et al. (2018) for
deterministic classifiers. Let M be a probabilistic mapping from X to Y, and dP(Y)

some metric/divergence on P(Y). We define the (α, ε)-radius prediction-change risk
of M w.r.t. DX and dP(Y) as

PC-Riskα(M, ε) , Px∼DX
[
∃τ ∈ B(α) s.t. dP(Y)(M(x+ τ),M(x)) > ε

]
. (C.3)

These three generalized notions allow us to analyze noise injection defense mechanisms
(Theorems C.1, and C.2). We can also define adversarial robustness (and later
adversarial gap) thanks to these notions.

Definition C.2 (Adversarial robustness). Let dP(Y) be a metric/divergence on
P(Y). The probabilistic mapping M is said to be dP(Y)-(α, ε, γ) robust if

PC-Riskα(M, ε) ≤ γ . (C.4)

It is difficult in general to show that a classifier is dP(Y)-(α, ε, γ) robust. However,
we can derive some bounds for particular divergences that will ensure robustness
up to a certain level (Theorem C.1). It is worth noting that our definition of
robustness depends on the considered metric/divergence between probability measures.
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Lemma C.1 gives some insights on the monotony of the robustness according to the
parameters, and the probability metric/divergence at hand.

Lemma C.1. Let M be a probabilistic mapping, and let d1 and d2 be two metrics on
P(Y). If there exists a non decreasing function φ : R→ R such that ∀µ1, µ2 ∈ P(Y),
d1(µ1, µ2) ≤ φ(d2(µ1, µ2)), then the following assertion holds:

M is d2-(α, ε, γ)-robust =⇒ M is d1-(α, φ(ε), γ)-robust (C.5)

As suggested in Definition C.2 and Lemma C.1, any given choice of metric/divergence
will instantiate a particular notion of adversarial robustness and it should be carefully
selected.

C.3.2 On the choice of the metric/divergence for robustness

The aforementioned formulation naturally raises the question of the choice of the
metric used to defend against adversarial attacks. The main notions that govern the
selection of an appropriate metric/divergence are coherence, strength, and compu-
tational tractability. A metric/divergence is said to be coherent if it naturally fits
the task at hand (e.g. classification tasks are intrinsically linked to discrete/trivial
metrics, conversely to regression tasks). The strength of a metric/divergence refers
to its ability to cover (dominate) a wide class of others in the sense of Lemma C.1.
In the following, we will focus on both the total variation metric and the Renyi
divergence, that we consider as respectively the most coherent with the classification
task using probabilistic mappings, and the strongest divergence. We first discuss
how total variation metric is coherent with randomized classifiers but suffers from
computational issues. Hopefully, the Renyi divergence provides good guarantees
about adversarial robustness, enjoys nice computational properties, in particular when
considering Exponential family distributions, and is strong enough to dominate a
wide range of metrics/divergences including total variation.

Let µ1 and µ2 be two measures in P(Y), both dominated by a third measure
ν. The trivial distance dT (µ1, µ,1(µ1 6= µ2) is the simplest distance one can define
between µ1 and µ2. In the deterministic case, it is straightforward to compute
(since the numerical output of the algorithm characterizes its associated measure),
but this is not the case in general. In fact one might not have access to the true
distribution of the mapping, but just to the numerical outputs. Therefore, one needs to
consider more sophisticated metrics/divergences, such as the total variation distance
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dTV (µ1, µ2) , supY ∈FY |µ1(Y )− µ2(Y )|. The total variation distance is one of the
most broadly used probability metrics. It admits several very simple interpretations,
and is a very useful tool in many mathematical fields such as probability theory,
Bayesian statistics, coupling or transportation theory. In transportation theory, it
can be rewritten as the solution of the Monge-Kantorovich problem with the cost
function c(y1, y2) = 1(y1 6= y2): inf

∫
Y2 1(y1 6= y2) dπ(y1, y2) , where the infimum is

taken over all joint probability measures π on (Y × Y,FY ⊗ FY) with marginals
µ1 and µ2. According to this interpretation, it seems quite natural to consider the
total variation distance as a relaxation of the trivial distance on [0, 1] (see the book
of Villani (2008) for details). In the deterministic case, the total variation and the
trivial distance coincides. In general, the total variation allows a finer analysis of
the probabilistic mappings than the trivial distance. But it suffers from a high
computational complexity. In the following of the chapter we will show how to ensure
robustness regarding TV distance.

Finally, denoting by g1 and g2 the respective probability distributions w.r.t. ν, the
Renyi divergence of order λ (Rényi, 1961) writes as

dR,λ(µ1, µ2) , 1
λ− 1 log

∫
Y
g2(y)

(
g1(y)
g2(y)

)λ
dν(y). (C.6)

The Renyi divergence is a generalized measure defined on the interval (1,∞), where
it equals the Kullback-Leibler divergence when λ→ 1 (that will be denoted dKL),
and the maximum divergence when λ→∞. It also has the very special property of
being non decreasing w.r.t. λ. This divergence is very common in machine learning,
especially in its Kullback-Leibler form as it is widely used as the loss function
(cross entropy) of classification algorithms. It enjoys the desired properties since
it bounds the TV distance, and is tractable. Furthermore, Proposition C.1 proves
that Renyi-robustness implies TV-robustness, making it a suitable surrogate for the
trivial distance.

Proposition C.1 (Renyi-robustness implies TV-robustness). Let M be a proba-
bilistic mapping, then ∀λ ≥ 1:

M is dR,λ-(α, ε, γ)-robust =⇒ M is dTV -(α, ε′, γ)-robust (C.7)

with ε′ = min

3
2

(√
1 + 4ε

9 − 1
)1/2

,
exp(ε+ 1)− 1
exp(ε+ 1) + 1

 . (C.8)
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A crucial property of Renyi-robustness is the Data processing inequality. It is a
well-known inequality from information theory which states that “post-processing
cannot increase information” (Beaudry & Renner, 2012; Cover & Thomas, 2012). In
our case, if we consider a Renyi-robust probabilistic mapping, composing it with a
deterministic mapping maintains Renyi-robustness with the same level.

Proposition C.2 (Data processing inequality). Let us consider a probabilistic
mapping M : X → P(Y). Let us also denote ρ : Y → Y ′ a deterministic function. If
U ∼ M(x) then the probability measureM ′(x) s.t ρ(U) ∼M ′(x) defines a probabilistic
mapping M ′ : X → P(Y ′). For any λ > 1 if M is dR,λ-(α, ε, γ) robust then M ′ is
also is dR,λ-(α, ε, γ) robust.

Data processing inequality will allow us later to inject some additive noise in any
layer of a neural network and to ensure Renyi-robustness.

C.4 Defense mechanisms based on Exponential family
noise injection

C.4.1 Robustness through Exponential family noise injection

For now, the question of which class of noise to add is treated ad hoc. We choose
here to investigate one particular class of noise closely linked to the Renyi divergence,
namely Exponential family distributions, and demonstrate their interest. Let us first
recall what the Exponential family is.

Definition C.3 (Exponential family). Let Θ be an open convex set of Rn, and
θ ∈ Θ. Let ν be a measure dominated by µ (either by the Lebesgue or counting
measure), it is said to be part of the Exponential family of parameter θ (denoted
EF (θ, t, k)) if it has the following probability density function

pF (z, θ) = exp{〈t(z), θ〉 − u(θ) + k(z)} (C.9)

where t(z) is a sufficient statistic, k a carrier measure (either for a Lebesgue or a
counting measure) and u(θ) = log

∫
z exp{< t(z), θ > +k(z)} dz.

To show the robustness of randomized networks with noise injected from the Expo-
nential family, one needs to define the notion of sensitivity for a given deterministic
function:
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Definition C.4 (Sensitivity of a function). For any α ≥ 0 and for any ‖ · ‖A and
‖ · ‖B two norms, the α-sensitivity of f w.r.t. ‖ · ‖A and ‖ · ‖B is defined as

∆A,B
α (f) , sup

x,y∈X ,‖x−y‖A≤α
‖f(x)− f(y)‖B . (C.10)

Let us consider an n-layer feedforward neural network N ( · ) = φn ◦ · · · ◦ φ1( · ).
For any i ∈ [n], we define N|i( · ) = φi ◦ · · · ◦ φ1( · ) the neural network truncated
at layer i. Theorem C.1 shows that, injecting noise drawn from an Exponential
family distribution ensures robustness to adversarial example attacks in the sense of
Definition C.2.

Theorem C.1 (Exponential family ensures robustness). Let us denote N i
X( · ) =

φn ◦ · · · ◦ φi+1(N|i( · ) + X) with X a random variable. Let us also consider two
arbitrary norms ‖ · ‖A and ‖ · ‖B respectively on X and on the output space of N i

X .

• If X ∼ EF (θ, t, k) where t and k have non-decreasing modulus of continuity
ωt and ωk. Then for any α ≥ 0, N i

X( · ) defines a probabilistic mapping that
is dR,λ-(α, ε) robust with ε = ‖θ‖2ω

B,2
t (∆A,B

α (N|i)) + ωB,1k (∆A,B
α (N|i)) where

‖ · ‖2 is the norm corresponding to the scalar product in the definition of the
exponential family density function and ‖ · ‖1 is the absolute value on R. 3

• If X is a centered Gaussian random variable with a non degenerated matrix
parameter Σ. Then for any α ≥ 0, N i

X( · ) defines a probabilistic mapping that
is dR,λ-(α, ε) robust with ε = λ∆A,2

α (φ)2

2σmin(Σ) where ‖ · ‖2 is the canonical Euclidean
norm on Rn.

In simpler words, the previous theorem ensures stability in the neural network
when injecting noise w.r.t. the distribution of the output. Intuitively, if two inputs are
close w.r.t. ‖ · ‖A, the output distributions of the network will be close in the sense of
Renyi divergence. It is well known that in the case of deterministic neural networks,
the Lipschitz constant becomes bigger as the number of layers increases (Gouk et
al. 2018). By injecting noise at layer i, the notion of robustness only depends on
the sensitivity of the first i layers of the network and not the following ones. In
that sense, randomization provides a more precise control on the “continuity” of the
neural network. In the next section, we show that thanks to the notion of robustness
w.r.t. probabilistic mappings, one can bound the loss of accuracy of a randomized
neural network when it is attacked.

3The notion of continuity modulus is defined in the arxiv version of this chapter:
https://arxiv.org/abs/1902.01148.
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C.4.2 Bound on the generalization gap under attack

The notions of risk and adversarial risk can easily be generalized to encompass
probabilistic mappings.

Definition C.5 (Risks for probabilistic mappings). Let M be a probabilistic map-
ping from X to Y, the risk and the α-radius adversarial risk of M w.r.t. D are
defined as

Risk(M) , E(x,y)∼D
[
Ey′∼M(x)

[
1
(
y′ 6= y

)]]
(C.11)

Riskα(M) , E(x,y)∼D

[
sup
‖τ‖X≤α

Ey′∼M(x+τ)
[
1
(
y′ 6= y

)]]
. (C.12)

The definition of adversarial risk for a probabilistic mapping can be matched with
the concept of Expectation over Transformation (EoT) attacks (Athalye et al. 2018).
Indeed, EoT attacks aim at computing the best opponent in expectation for a given
random transformation. In the adversarial risk definition, the adversary chooses
the perturbation which has the greatest probability to fool the model, which is a
stronger objective than the EoT objective. Theorem C.2 provides a bound on the
gap between the adversarial risk and the regular risk:

Theorem C.2 (Adversarial generalization gap bound in the randomized setting).
Let M be the probabilistic mapping at hand. Let us suppose that M is dR,λ-(α, ε)
robust for some λ ≥ 1 then:

|Riskα(M)− Risk(M)| ≤ 1− e−εEx
[
e−H(M(x))

]
(C.13)

where H is the Shannon entropy H(p) = −∑i pi log(pi) .

This theorem gives a control on the loss of accuracy under attack w.r.t. the robustness
parameter ε and the entropy of the predictor. It provides a trade-off between the
quantity of noise added in the network and the accuracy under attack. Intuitively,
when the noise increases, for any input, the output distribution tends towards the
uniform distribution, then, ε → 0 and H(M(x)) → log(K), and the risk and the
adversarial risk both tends to 1

K where K is the number of classes in the classification
problem. On the opposite, if no noise is injected, for any input, the output distribution
is a Dirac distribution, then, if the prediction for the adversarial example is not the
same as for the regular one, ε → ∞ and H(M(x)) → 0. Hence, the noise needs to
be designed both to preserve accuracy and robustness to adversarial attacks. In the
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Section C.5, we give an illustration of this bound when M is a neural network with
noise injection at input level as presented in Theorem C.1.

C.5 Experiments

To illustrate our theoretical findings, we train randomized neural networks with a
simple method which consists in injecting a noise drawn from an Exponential family
distribution in the image during training and inference. This section aims to answer
Q2 stated in the introduction, by tackling the following sub-questions:

Q2.1: How does the randomization impact the accuracy of the network? And,
how does the theoretical trade-off between accuracy and robustness apply in
practice?

Q2.2: What is the accuracy under attack of randomized neural networks against pow-
erful iterative attacks? And how does randomized neural networks compare
to state-of-the-art defenses given the intensity of the injected noise?

Experimental setup We present our results and analysis on CIFAR-10 (Krizhevsky
& Hinton, 2009). We used a Wide ResNet architecture (Zagoruyko & Komodakis, 2016)
which is a variant of the ResNet model proposed by He et al. (2016). We use 28 layers
with a widen factor of 10. We train all networks for 200 epochs, a batch size of 400,
dropout 0.3 and Leaky Relu activation with a slope on R− of 0.1. We minimize
the Cross Entropy Loss with Momentum 0.9 and use a piecewise constant learning
rate of 0.1, 0.02, 0.004 and 0.00008 after respectively 7500, 15000 and 20000 steps.
The networks achieve for CIFAR10 and 100 a TOP-1 accuracy of 95.8% and 79.1%
respectively on test images.
To transform these classical networks to probabilistic mappings, we inject noise

drawn from Laplace and Gaussian distributions, each with various standard deviations.
While the noise could theoretically be injected anywhere in the network, we inject
the noise on the image for simplicity. More experiments with noise injected in the
first layer of the network are presented in the supplementary material. To evaluate
our models under attack, we use three powerful iterative attacks with different norms:
ElasticNet attack (EAD) (Chen et al. 2018) with `1 distortion, Carlini&Wagner attack
(C&W) (Carlini & Wagner, 2017) with `2 distortion and Projected Gradient Descent
attack (PGD) (Madry et al. 2018) with `∞ distortion. All standard deviations and
attack intensities are in between −1 and 1. Precise descriptions of our numerical
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experiments and of the attacks used for evaluation are deferred to the supplementary
material.

Attacks against randomized defenses: It has been pointed out by Athalye et
al. (2017) and Carlini et al. (2019) that in a white box setting, an attacker with a
complete knowledge of the system will know the distribution of the noise injected
in the network. As such, to create a stronger adversarial example, the attacker can
take the expectation of the loss or the logits of the randomized network during the
computation of the attack. This technique is called Expectation Over Transformation
(EoT) and we use a Monte Carlo method with 80 simulations to approximate the
best perturbation for a randomized network.

Trade-off between accuracy and intensity of noise (Q2.1): When injecting
noise as a defense mechanism, regardless of the distribution it is drawn from, we
observe (as in Figure C.1) that the accuracy decreases when the noise intensity grows.
In that sense, noise needs to be calibrated to preserve both accuracy and robustness
against adversarial attacks, i.e., it needs to be large enough to preserve robustness
and small enough to preserve accuracy. Figure C.1 shows the loss of accuracy on
CIFAR10 from 0.95 to 0.82 (respectively 0.95 to 0.84) with noise drawn from a
Gaussian distribution (respectively Laplace) with a standard deviation from 0.01 to
0.5. Figure C.2 and C.3 illustrate the theoretical lower bound on accuracy under
attack of Theorem C.2 for different distributions and standard deviations. The term
in entropy of Theorem C.2 has been estimated using a Monte Carlo method with
104 simulations. The trade-off between accuracy and robustness from Theorem C.2
thus appears w.r.t. the noise intensity. With small noises, the accuracy is high,
but the guaranteed accuracy drops fast w.r.t. the magnitude of the adversarial
perturbation. Conversely, with bigger noises, the accuracy is lower but decreases
slowly w.r.t. the magnitude of the adversarial perturbation. These Figures also
show that Theorem C.2 gives strong accuracy guarantees against small adversarial
perturbations. Next paragraph shows that in practice, randomized networks achieve
much higher accuracy under attack than the theoretical bound, and keep this accuracy
against much larger perturbations.

Performance of randomized networks under attacks and comparison to
state of the art (Q2.2): While Figure C.2 and C.3 illustrated a theoretical
robustness against growing adversarial perturbations, Table C.1 illustrates this trade-
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Figure C.1: Impact of the standard deviation of the injected noise on accuracy in a randomized
model on CIFAR-10 dataset with a Wide ResNet architecture.
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Figure C.2: Illustration of the guaranteed accuracy of different randomized models with
Gaussian noises given the norm of the adversarial perturbation.
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Figure C.3: Illustration of the guaranteed accuracy of different randomized models with
Laplace noises given the norm of the adversarial perturbation.
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Distribution Sd Natural `1 EAD 60 `2 C&W 60 `∞ PGD 20

– – 0.958 0.035 0.034 0.384

Normal 0.01 0.954 0.193 0.294 0.408
0.50 0.824 0.448 0.523 0.587

Laplace 0.01 0.955 0.208 0.313 0.389
0.50 0.846 0.464 0.494 0.589

Table C.1: Accuracy under attack on the CIFAR-10 dataset with a randomized Wide ResNet
architecture. We compare the accuracy on natural images and under attack with
different noise over 3 iterative attacks (the number of steps is next to the name)
made with 80 Monte Carlo simulations to compute EoT attacks. The first line is
the baseline, no noise has been injected.

off experimentally. It compares the accuracy obtained under attack by a deterministic
network with the one obtained by randomized networks with Gaussian and Laplace
noises both with low (0.01) and high (0.5) standard deviations. Randomized networks
with a small noise lead to no loss in accuracy with a small robustness while high
noise leads to a higher robustness at the expense of loss of accuracy (∼ 11 points).

Attack Steps Madry et al. Normal Laplace

0.32 0.5 0.32 0.5

– – 0.873 0.876 0.824 0.891 0.846
`∞ – PGD 20 0.456 0.566 0.587 0.576 0.589
`2 – C&W 30 0.468 0.512 0.489 0.502 0.479

Table C.2: Accuracy under attack of randomized neural network with different distributions
and standard deviations versus adversarial training by Madry et al. (2018). The
PGD attack has been made with 20 step, an epsilon of 0.06 and a step size of
0.006 (input space between −1 and +1). The Carlini&Wagner attack uses 30
steps, 9 binary search steps and a 0.01 learning rate. The first line refers to the
baseline without attack.

Finally, Table C.2 compares the accuracy and the accuracy under attack of
randomized networks with Gaussian and Laplace distributions for different standard
deviations against adversarial training from Madry et al. (2018). We observe that the
accuracy on natural images of both noise injection methods are similar to the one
from Madry et al. (2018). Moreover, both methods are more robust than adversarial
training to PGD and C&W attacks. As with all the experiments, to construct an
EoT attack, we use 80 Monte Carlo simulations at every step of PGD and C&W
attacks. These experiments show that randomized defenses can be competitive given
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the intensity of noise injected in the network. Note that these experiments have
been led with EoT of size 80. For much bigger sizes of EoT these results would be
mitigated. Nevertheless, the accuracy would never drop under the bounds illustrated
in the Figures C.2 and C.3, since Theorem C.2 gives a bound that on the worst case
attack strategy (including EoT).

C.6 Concluding Remarks

This chapter brings new contributions to the field of provable defenses to adversarial
attacks. Principled answers have been provided to key questions on the interest of
randomization techniques, and on their loss of accuracy under attack. The obtained
bounds have been illustrated in practice by conducting thorough experiments on
baseline datasets such as CIFAR. We show in particular that a simple method based
on injecting noise drawn from the Exponential family is competitive compared to
baseline approaches while leading to provable guarantees. Future work will focus on
investigating other noise distributions belonging or not to the Exponential family,
combining randomization with more sophisticated defenses and on devising new tight
bounds on the adversarial generalization gap.
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This Appendix concerns a collaboration with Rafael Pinot, Laurent Meunier and
Benjamin Negrevergne. This work has been published in the European Conference on
Machine Learning Workshop for CyberSecurity. It conducts a geometrical analysis of
defense mechanisms designed to protect neural networks against. This work shows
that neural networks designed to be robust against one type of adversarial example
offers poor robustness against other types of attacks.
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D.1 Introduction

We have seen that deep neural networks are vulnerable to adversarial examples.
Because it is difficult to characterize the space of visually imperceptible variations of
a natural image, existing adversarial attacks use surrogates that can differ from one
attack to another. For example, Goodfellow et al. (2015) use the `∞ norm to measure
the distance between the original image and the adversarial image whereas Carlini &
Wagner (2017) use the `2 norm. When the input dimension is low, the choice of the
norm is of little importance because the `∞ and `2 balls overlap by a large margin,
and the adversarial examples lie in the same space. An important insight in this
chapter is to observe that the overlap between the two balls diminishes exponentially
quickly as the dimensionality of the input space increases. For typical image datasets
with large dimensionality, the two balls are mostly disjoint. As a consequence, the
`∞ and the `2 adversarial examples lie in different areas of the space, and it explains
why `∞ defense mechanisms perform poorly against `2 attacks and vice versa.

Building on this insight, we advocate for designing models that incorporate defense
mechanisms against both `∞ and `2 attacks and review several ways of mixing existing
defense mechanisms. In particular, we evaluate the performance of Mixed Adversarial
Training (MAT) (Goodfellow et al. 2015) which consists of augmenting training batches
using both `∞ and `2 adversarial examples, and Randomized Adversarial Training
(RAT) (Salman et al. 2019), a solution to benefit from the advantages of both `∞

adversarial training, and `2 randomized defense.

D.2 No Free Lunch for Adversarial Defenses

In this Section, we show both theoretically and empirically that defenses mechanisms
intending to defend against `∞ attacks cannot provide suitable defense against `2
attacks. Our reasoning is perfectly general; hence we can similarly demonstrate the
reciprocal statement, but we focus on this side for simplicity.

D.2.1 Theoretical analysis

Let us consider a classifier f∞ that is provably robust against adversarial examples
with maximum `∞ norm of value ε∞. It guarantees that for any input-output pair
(x, y) ∼ D and for any perturbation τ such that ‖τ‖∞ ≤ ε∞, f∞ is not misled by the
perturbation, i.e., f∞(x+ τ) = f∞(x). We now focus our study on the performance
of this classifier against adversarial examples bounded with a `2 norm of value ε2.
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(a) 2D representation of the `∞
and `2 balls of respective ra-
dius ε and ε′

(b) A classifier trained with
`∞ adversarial perturba-
tions (materialized by the
red line) remains vulnerable
to `2 attacks.

(c) A classifier trained with
`2 adversarial perturbations
(materialized by the blue
line) remains vulnerable to
`∞ attacks.

Figure D.1: 2-dimensional representation of `∞ and `2 balls

Using Figure D.1a, we observe that any `2 adversarial example that is also in the `∞
ball, will not fool f∞. Conversely, if it is outside the ball, we have no guarantee.
To characterize the probability that such an `2 perturbation fools an `∞ defense

mechanism in the general case (i.e., any dimension d), we measure the ratio between
the volume of the intersection of the `∞ ball of radius ε∞ and the `2 ball of radius ε2.
As Theorem D.1 shows, this ratio depends on the dimensionality d of the input vector
x, and rapidly converges to zero when d increases. Therefore a defense mechanism
that protects against all `∞ bounded adversarial examples is unlikely to be efficient
against `2 attacks.

Theorem D.1 (Probability of the intersection goes to 0).
Let

B2,d(ε) ,
{
τ ∈ Rd | ‖τ‖2 ≤ ε

}
(D.1)

and
B∞,d(ε′) ,

{
τ ∈ Rd | ‖τ‖∞ ≤ ε

′
}
. (D.2)

If for all d, we select ε and ε’ such that Vol(B2,d(ε)) = Vol(B∞,d(ε′)), then

Vol(B2,d(ε)
⋂
B∞,d(ε′))

Vol(B∞,d(ε′))
→ 0 when d→∞. (D.3)
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Proof of Theorem D.1. Without loss of generality, let us fix ε = 1. One can
show that for all d,

Vol
(
B2,d

(
2√
π

Γ
(
d

2 + 1
)1/d))

= Vol(B∞,d(1)) (D.4)

where Γ is the gamma function. Let us denote

r2(d) = 2√
π

Γ
(
d

2 + 1
)1/d

. (D.5)

If we denote U , the uniform distribution on B∞,d(1), we get:

Vol(B2,d(r2(d))⋂B∞,d(1))
Vol(B∞,d(1)) (D.6)

= Px∼U [x ∈ B2,d(r2(d))] = Px∼U

[
d∑
i=1
|xi|2 ≤ r2(d)2

]
(D.7)

= Px∼U

[
d∑
i=1
|xi|2 − Ex∼U

[
d∑
i=1
|xi|2

]
≤ r2(d)2 − Ex∼U

[
d∑
i=1
|xi|2

]]
(D.8)

Note that when d is sufficiently large we get

r2(d)2 − Ex∼U

[
d∑
i=1
|xi|2

]
= r2(d)2 − d

3 < 0 (D.9)

Then, with Hoeffding inequality, we finally obtain:

Vol(B2,d(r2(d))⋂B∞,d(1))
Vol(B∞,d(1)) ≤ exp

−
(
r2(d)2 − d

3

)2

d

 (D.10)

Then, thanks to Stirling’s formula

r2(d) ∼
d→∞

√
2
πe
d1/2. (D.11)

Then the ratio between the volume of the intersection of the ball and the volume
of the ball converges towards 0 when d goes to ∞. �
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Theorem D.1 states that, when d is large enough, `2 bounded perturbations have
a null probability of being also in the `∞ ball of the same volume. As a consequence,
for any value of d that is large enough, a defense mechanism that offers full protection
against `∞ adversarial examples is not guaranteed to offer any protection against `2
attacks 1.

Dataset Dim. (d) Vol. of the intersection

– 2 e−0.183 (≈ 0.83)
MNIST 784 e−7.344

CIFAR 3072 e−29.76

ImageNet 150528 e−1478.71

Table D.1: Bounds of Theorem D.1 on the volume of the intersection of `2 and `∞ balls at
equal volume for typical image classification datasets. When d = 2, the bound is
10−0.183 ≈ 0.83.

Note that this result defeats the 2-dimensional intuition: if we consider a 2
dimensional problem setting, the `∞ and the `2 balls have an important overlap
(as illustrated in Figure D.1a) and the probability of sampling at the intersection
of the two balls is bounded by approximately 83%. However, as we increase the
dimensionality d, this probability quickly becomes negligible, even for very simple
image datasets such as MNIST. An instantiation of the bound for classical image
datasets is presented in Table D.1. The probability of sampling at the intersection of
the `∞ and `2 balls is close to zero for any realistic image setting. In large dimensions,
the volume of the corner of the `∞ ball is much bigger than it appears in Figure D.1a.

D.2.2 No Free Lunch in Practice

Our theoretical analysis shows that if adversarial examples were uniformly distributed
in a high-dimensional space, then any mechanism that perfectly defends against
`∞ adversarial examples has a null probability of protecting against `2-bounded
adversarial attacks. Although existing defense mechanisms do not necessarily assume
such a distribution of adversarial examples, we demonstrate that whatever distribution
they use, it offers no favorable bias with respect to the result of Theorem D.1. As
we discussed in Chapter 5, there are two distinct attack settings: loss maximization
(PGD) and perturbation minimization (C&W). Our analysis is mainly focusing on

1Theorem D.1 can easily be extended to any two balls with different norms. For clarity, we restrict
to the case of `∞ and `2 norms.
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loss maximization attacks. However, these attacks have a very strict geometry2.
This is why, to present a deeper analysis of the behavior of adversarial attacks and
defenses, we also present a set of experiments that use perturbation minimization
attacks.

Attack PGD-`2 Attack PGD-`∞
Unprotected AT-`∞ Unprotected AT-`2

Average `2 norm 0.830 0.830 1.400 1.640
Average `∞ norm 0.075 0.200 0.031 0.031

Table D.2: Average norms of PGD-`2 and PGD-`∞ adversarial examples with and without
`∞ adversarial training on CIFAR-10 (d = 3072).

Adversarial training vs. loss maximization attacks To demonstrate that `∞
adversarial training is not robust against PGD-`2 attacks we measure the evolution
of `2 norm of adversarial examples generated with PGD-`∞ between an unprotected
model and a model trained with AT-`∞, i.e., AT where adversarial examples are
generated with PGD-`∞ 3. Results are presented in Table D.2.

The analysis is unambiguous: the average `∞ norm of a bounded `2 perturbation
more than double between an unprotected model and a model trained with AT PGD-
`∞. This phenomenon perfectly reflects the illustration of Figure D.1c. The attack
will generate an adversarial example on the corner of the `∞ ball thus increasing the
`∞ norm while maintaining the same `2 norm. We can observe the same phenomenon
with AT-`2 against PGD-`∞ attack (see Figure D.1b and Table D.2). PGD-`∞ attack
increases the `2 norm while maintaining the same `∞ perturbation thus generating
the perturbation in the upper area.

As a consequence, we cannot expect adversarial training `∞ to offer any guaranteed
protection against `2 adversarial examples .

Adversarial training vs. perturbation minimization attacks. To better
capture the behavior of `2 adversarial examples, we now study the performances
of an `2 perturbation minimization attack (C&W) with and without AT-`∞. It
allows us to understand in which area C&W discovers adversarial examples and

2Due to the projection operator, all PGD attacks saturate the constraint, which makes them all
lies in a very small part of the ball.

3To do so, we use the same experimental setting as in Section D.3 with ε∞ and ε2 such that the
volumes of the two balls are equal.
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the impact of AT-`∞. In high dimensions, the red corners (see Figure D.1a) are
very far away from the `2 ball. Therefore, we hypothesize that a large proportion of
the `2 adversarial examples will remain unprotected. To validate this assumption,
we measure the proportion of adversarial examples inside of the `2 ball before and
after `∞ adversarial training. The results are presented in Figure D.2 (left: without
adversarial training, right: with adversarial training).

ε′ = ε ε′ = ε×
√
d

0

0.5

0.1

·104

ε′ = ε ε′ = ε×
√
d

0

0.5

0.1

·104

Figure D.2: Comparison of the number of adversarial examples found by C&W, inside the
`∞ ball (lower, blue area), outside the `∞ ball but inside the `2 ball (middle, red
area) and outside the `2 ball (upper gray area). ε is set to 0.3 and ε′ varies along
the x-axis. Left: without adversarial training, right: with adversarial training.
Most adversarial examples have shifted from the `∞ ball to the cap of the `2
ball, but remain at the same `2 distance from the original example.

On both charts, the blue area represents the proportion of adversarial examples
that are inside the `∞ ball. The red area represents the adversarial examples that
are outside the `∞ ball but still inside the `2 ball (valid `2 adversarial examples).
Finally, the brown-beige area represents the adversarial examples that are beyond
the `2 bound. The radius ε′ of the `2 ball varies along the x-axis from ε′ to ε′

√
d. On

the left chart (without adversarial training) most `2 adversarial examples generated
by C&W are inside both balls. On the right chart most of the adversarial examples
have been shifted out the `∞ ball. This is the expected consequence of `∞ adversarial
training. However, these adversarial examples remain in the `2 ball, i.e., they are in
the cap of the `2 ball. These examples are equally good from the `2 perspective. This
means that even after adversarial training, it is still easy to find good `2 adversarial
examples, making the `2 robustness of AT-`∞ almost null.
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Baseline AT MAT NI RAT-`∞ RAT-`2

`∞ `2 Max Rand N U N U N U

Natural 0.94 0.85 0.85 0.80 0.80 0.79 0.87 0.74 0.80 0.79 0.87
PGD-`∞ 0.00 0.43 0.37 0.37 0.40 0.23 0.22 0.35 0.40 0.23 0.22
PGD-`2 0.00 0.37 0.52 0.50 0.55 0.34 0.36 0.43 0.39 0.34 0.37

Table D.3: Comprehensive list of results consisting of the accuracy of several defense mecha-
nisms against `2 and `∞ attacks.

D.3 Reviewing Defenses Against Multiple Attacks

Adversarial attacks have been an active topic in the machine learning community
since their discovery (Globerson & Roweis, 2006; Biggio et al. 2013; Szegedy et al.
2014). Many attacks have been developed. Most of them solve a loss maximization
problem with either `∞ (Goodfellow et al. 2015; Kurakin et al. 2016; Madry et al. 2018),
`2 (Kurakin et al. 2016; Carlini & Wagner, 2017; Madry et al. 2018), `1 (Tramèr & Boneh,
2019) or `0 (Papernot et al. 2016a) surrogate norms. As we showed, these norms
are really different in high dimension. Hence, defending against one norm-based
attack is not sufficient to protect against another one. In order to solve this problem,
we review several strategies to build defenses against multiple adversarial attacks.
These strategies are based on the idea that both types of defense must be used
simultaneously in order for the classifier to be protected against multiple attacks.

D.3.1 Experimental Setting

To compare the robustness provided by the different defense mechanisms, we use
strong adversarial attacks and a conservative setting: the attacker has a total
knowledge of the parameters of the model (white-box setting) and we only consider
untargeted attacks (a misclassification from one target to any other will be considered
as adversarial). To evaluate defenses based on Noise Injection, we use Expectation
Over Transformation (EOT), the rigorous experimental protocol proposed by Athalye
et al. (2017) and later used by Athalye et al. (2018) and Carlini et al. (2019) to identify
flawed defense mechanisms.

To attack the models, we use state-of-the-art algorithms PGD. We run PGD with
20 iterations to generate adversarial examples and with 10 iterations when it is used
for adversarial training. The maximum `∞ bound is fixed to 0.031 and the maximum
`2 bound is fixed to 0.83. We chose these values so that the `∞ and the `2 balls have
similar volumes. Note that 0.83 is slightly above the values typically used in previous
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publications in the area, meaning the attacks are stronger, and thus more difficult to
defend against.
All experiments are conducted on CIFAR-10 with the Wide-Resnet 28-10 archi-

tecture. We use the training procedure and the hyper-parameters described in the
original paper by Zagoruyko & Komodakis (2016). Training time varies from 1 day
(AT) to 2 days (MAT) on 4 GPUs-V100 servers.

D.3.2 MAT – Mixed Adversarial Training

Earlier results have shown that AT-`p improves the robustness against corresponding
`p-bounded adversarial examples, and the experiments we present in this section
corroborate this observation (See Table D.3, column: AT). Building on this, it is
natural to examine the efficiency of Mixed Adversarial Training (MAT) against mixed
`∞ and `2 attacks. MAT is a variation of AT that uses both `∞-bounded adversarial
examples and `2-bounded adversarial examples as training examples. As discussed
by Tramèr & Boneh (2019), there are several possible strategies to mix the adversarial
training examples. The first strategy (MAT-Rand) consists in randomly selecting
one adversarial example among the two most damaging `∞ and `2, and to use it as a
training example:

MAT-Rand :

min
Ω

E(x,y)∼D

[
Ep∼U({2,∞}) max

‖τ‖p≤ε
L(NΩ(x + τ ), y)

]
. (D.12)

An alternative strategy is to systematically train the model with the most damaging
adversarial example (`∞ or `2):

MAT-Max :

min
Ω

E(x,y)∼D

[
max

p∈{2,∞}
max
‖τ‖p≤ε

L(NΩ(x + τ ), y)
]
. (D.13)

The accuracy of MAT-Rand and MAT-Max are reported in Table D.3 (Column:
MAT). As expected, we observe that MAT-Rand and MAT-Max offer better robust-
ness both against PGD-`2 and PGD-`∞ adversarial examples than the original AT
does. More generally, we can see that AT is a good strategy against loss maximization
attacks, and thus it is not surprising that MAT is a good strategy against mixed loss
maximization attacks. However efficient in practice, MAT (for the same reasons as
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AT) lacks theoretical arguments. In order to get the best of both worlds, Salman et
al. (2019) proposed to mix adversarial training with randomization.

D.3.3 RAT – Randomized Adversarial Training

We now examine the performance of Randomized Adversarial Training (RAT) first
introduced by Salman et al. (2019). This technique mixes Adversarial Training with
Noise Injection. The corresponding loss function is defined as follows:

min
Ω

E(x,y)∼D

[
max
‖τ‖p≤ε

L
(
ÑΩ(x + τ), y)

)]
. (D.14)

where ÑΩ is a randomized neural network with noise injection as described in
Appendix C, and ‖ · ‖p define which kind of AT is used. For each setting, we consider
two noise distributions, Gaussian and Uniform as we did with NI. We also consider
two different Adversarial training AT-`∞ as well as AT-`2.
The results of RAT are reported in Table D.3 (Columns: RAT-`∞ and RAT-`2).

We can observe that RAT-`∞ offers the best extra robustness with both noises, which
is consistent with previous experiments, since AT is generally more effective against
`∞ attacks whereas NI is more effective against `2-attacks. Overall, RAT-`∞ and a
noise from uniform distribution offers the best performances but is still weaker than
MAT-Rand. These results are also consistent with the literature, since adversarial
training (and its variants) is the best defense against adversarial examples so far.

D.4 Concluding Remarks

In this chapter, we tackled the problem of protecting neural networks against multiple
attacks crafted from different norms. We demonstrated and gave a geometrical
interpretation to explain why most defense mechanisms can only protect against one
type of attack. Then we reviewed existing strategies that mix defense mechanisms
in order to build models that are robust against multiple adversarial attacks. We
conduct a rigorous and full comparison of Randomized Adversarial Training and
Mixed Adversarial Training as defenses against multiple attacks.

We could argue that both techniques offer benefits and limitations. We have
observed that MAT offers the best empirical robustness against multiples adversarial
attacks but this technique is computationally expensive which hinders its use in
large-scale applications. Randomized techniques have the important advantage of
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providing theoretical guarantees of robustness and being computationally cheaper.
However, the certificate provided by such defenses is still too small for strong attacks.
Furthermore, certain Randomized defenses also suffer from the curse of dimensionality
as recently shown by Kumar et al. (2020).
Although, randomized defenses based on noise injection seem limited in terms of

accuracy under attack and scalability, they could be improved either by Learning
the best distribution to use or by leveraging different types of randomization such as
discrete randomization first proposed by Pinot et al. (2020). We believe that these
certified defenses are the best solution to ensure the robustness of classifiers deployed
into real-world applications.

165





Appendix E
Résumé de la thèse en Français

Contenus

E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
E.1.1 Contexte et Motivation . . . . . . . . . . . . . . . . . . . . . 167
E.1.2 Problématiques et Contributions . . . . . . . . . . . . . . . . 170

E.2 Réseaux de Neurones Compacts basés sur les matrices Diagonales et
Circulantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

E.3 Constante de Lipschitz des Couches Convolutionnelles . . . . . . . . 175

E.1 Introduction

E.1.1 Contexte et Motivation

L’une des percées les plus remarquables de l’apprentissage profond s’est produite
en 2012 lors de la compétition de reconnaissance d’image ImageNet (Russakovsky et
al. 2015). Cette compétition vise à évaluer différents algorithmes pour la détection
d’objets et la classification d’images. En 2012, Krizhevsky et al. ont obtenu la première
place et ont battu tous les autres participants avec une marge de plus de 10,8% grâce
à un réseau de neurones appelé AlexNet. Les raisons principales de ce succès sont
doubles. Premièrement, ils ont utilisé un réseau de neurones convolutif (CNN) avec
plus de 60 millions de paramètres, qui était l’un des plus grands modèles de l’époque.
Deuxièmement, ils ont conçu une architecture spécifique pour exploiter deux cartes
graphiques en parallèle (GPU) afin d’accélérer les opérations arithmétiques, ce qui
leur a permis de réduire considérablement le temps d’apprentissage du réseau. La
figure E.1 montre un schéma de l’architecture d’AlexNet qui se compose de cinq
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Figure E.1: L’architecture de réseau de neurones convolutifs (AlexNet), proposée par
Krizhevsky et al. (2012), qui a remporté la compétition de reconnaissance
d’image ImageNet en 2012.

couches convolutives avec deux des couches entièrement connectées à la fin. La figure
montre également la répartition de la charge de travail entre les deux GPU.
Après l’introduction d’AlexNet, de nombreuses architectures avec un nombre

croissant de paramètres ont été développées. Cette augmentation du nombre de
paramètres a conduit à une augmentation de la précision des modèles, dépassant
même les performances humaines, sur l’ensemble de données d’ImageNet (He et
al. 2015). Le Tableau E.1 montre une liste des différentes architectures de pointe
avec leur taille et leur précision. Comme on peut le voir, la précision des modèles
s’améliore généralement au prix de la taille du modèle. Pour les modèles de vision
par ordinateur, Tan & Le (2019) ont montré que la relation entre la taille du modèle
et la précision semble obéir à une loi de puissance. Cette relation a également été
observée pour les réseaux neuronaux de traitement du langage naturel (NLP) (Kaplan
et al. 2020; Rosenfeld et al. 2020) aidés par la disponibilité de larges ensembles de
données tels que le Common Crawl (Raffel et al. 2020) qui constitue près d’un trillion
de mots.
Grâce à leur taille et à leur précision accrue, les réseaux de neurones profonds

atteignent désormais des performances de pointe dans divers domaines tels que la
reconnaissance d’images (LeCun et al. 1998; Krizhevsky et al. 2012; He et al. 2016; Tan &
Le, 2019), la détection d’objets (Liu et al. 2016; Redmon et al. 2016; Redmon & Farhadi,
2017), le traitement du langage naturel (Merity et al. 2016; Vaswani et al. 2017; Radford
et al. 2019; Brown et al. 2020), speech recognition (Hinton et al. 2012; Abdel-Hamid
et al. 2014; Yu & Deng, 2016), le domaine de la santé (Faust et al. 2018) etc. Les
modèles de vision par ordinateur et de traitement du langage naturel ont atteint des
performances suffisantes pour être utilisés dans des applications du monde réel telles
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Auteurs Modèles #Params TOP-5 Préc.

Krizhevsky et al. (2012) AlexNet 61M 84.7%
Simonyan & Zisserman (2014) VGG 144M 92.0%
He et al. (2016) ResNet-152 60M 93.8%
Szegedy et al. (2017) Inception-ResNet-v2 56M 95.1%
Xie et al. (2017) ResNeXt-101 84M 95.6%
Hu et al. (2018) SENet 146M 96.2%
Real et al. (2019) AmoebaNet-A 469M 96.7%
Huang et al. (2019) AmoebaNet-B 556M 97.0%

(a) Modèles de reconnaissance d’images

Auteurs Modèles #Params

Peters et al. (2018) ELMo 94M
Radford et al. (2018) GPT 110M
Devlin et al. (2019) BERT 340M
Yang et al. (2019) XLNet (Large) 340M
Liu et al. (2019) RoBERTa (Large) 355M
Radford et al. (2019) GPT-2 1B
Shoeybi et al. (2019) MegatronLM 8B
Raffel et al. (2020) T5-11B 11B
Rosset (2020) T-NLG 17B
Brown et al. (2020) GPT-3 175B
Fedus et al. (2021) Switch Transformers 1T

(b) Modèles de traitement automatique des langues

Tableau E.1 : Évolution du nombre de paramètres des modèles de reconnaissance d’image
et de traitement du langage naturel développés dans les années qui ont suivi
l’architecture AlexNet.

que les véhicules autonomes (Fagnant & Kockelman, 2015; Sharma & Zheng, 2021), la
traduction (Wu et al. 2016), les assistants vocaux (Li et al. 2017a), etc.
Cependant, la précision des modèles ne devrait pas être la seule préoccupation,

lorsqu’ils sont mis en œuvre dans un processus de décision critique, les réseaux de
neurones doivent être compacts, efficaces et sécurisés. Bien que précis, les grands
réseaux de neurones n’ont souvent pas ces propriétés. En effet, l’entraînement de
modèles de pointe sur des tâches de reconnaissance d’image ou de traitement du
langage naturel nécessite des gigaoctets de mémoire et peut prendre plusieurs mois
sur un seul GPU (Krizhevsky et al. 2012; Brown et al. 2020). Par exemple, le modèle
GPT-3 proposé par Brown et al. (2020), culmine à 175 milliards de paramètres et
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l’entraînement durerait 355 ans sur un seul GPU et coûterait $4 600 000 sur une
plateforme de cloud computing (Li, 2020). Il a également été estimé par Strubell
et al. (2019) que la formation et le développement du modèle Transformer proposé
par Vaswani et al. (2017) avec l’optimisation des hyperparamètres émettraient environ
284 019 kg de CO2 alors qu’une vie humaine consomme en moyenne seulement 5 000
kg de CO2 pendant un an. En outre, avec l’essor des smartphones et des objets
connectés aux ressources de calcul et de mémoire limitées, les réseaux de neurones
doivent également être efficaces pendant la phase d’inférence, c’est-à-dire, la phase
d’exécution du modèle. De plus, avec la préoccupation croissante concernant la
confidentialité des données, des méthodes telles que l’“apprentissage collaboratif”
gagnent du terrain. L’apprentissage collaboratif consiste à entraîner un modèle sur
plusieurs appareils décentralisés (par exemple les smartphones) avec des échantillons
de données locales. Cela permet d’éviter l’étape de centralisation de toutes les
données des utilisateurs sur un seul serveur, ce qui permet de résoudre le problème de
la confidentialité des données. Ainsi, la construction de réseaux de neurones compacts
et efficaces reste un objectif important afin de réduire le temps d’entraînement, de
diminuer les coûts et de permettre une R&D plus rapide.

En plus d’être compacts et efficients, les réseaux de neurones doivent également être
sécurisés. En raison de leur grande complexité et expressivité, les larges réseaux de
neurones sont instables aux petites perturbations. Ainsi, cette instabilité mène à des
vulnérabilités face aux exemples antagonistes, c’est-à-dire aux variations impercepti-
bles des exemples naturels, conçus pour tromper délibérément les modèles (Globerson
& Roweis, 2006; Biggio et al. 2013; Szegedy et al. 2014). La Figure E.3 présente un
exemple antagoniste sur une image. La petite perturbation (au centre) est ajoutée à
l’image originale (à gauche), ce qui donne une image contradictoire (à droite). Ce
comportement peut causer de graves problèmes de sécurité lorsque des réseaux neu-
ronaux sont utilisés pour des prises de décisions critiques (par exemple, les décisions
judiciaires, les voitures autonomes, etc.).
Cette thèse se concentre sur l’entraînement de réseaux de neurones qui sont non

seulement précis, mais aussi compacts, efficients, faciles à entraîner, fiables et robustes
aux exemples antagonistes.

E.1.2 Problématiques et Contributions

Les réseaux de neurones, qui trouvent leurs racines dans les travaux de McCulloch
& Pitts (1943) and Rosenblatt (1958), peuvent être décrits analytiquement comme
une composition de fonctions linéaires entrelacées avec des fonctions non linéaires
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Figure E.2: Exemples de matrices structurées.

(également appelées fonctions d’activation). Plus formellement, un réseau de neurones
est une fonction NΩ : Rn → Rm paramétrée par un ensemble de poids Ω de la forme:

NΩ(x) = ψ(p) ◦ ρ ◦ ψ(p−1) · · · ◦ ψ(2) ◦ ρ ◦ ψ(1)(x) . (E.1)

Ici, p correspond à la profondeur du réseau (c’est-à-dire, le nombre de couches)
et ρ est une fonction non linéaire. Enfin, chaque ψ(i) est une fonction linéaire
multidimensionnelle ψ(i) : x 7→W(i)x + b(i) paramétrée par une matrice de poids
W(i) et un biais b(i) et Ω est l’union des paramètres de chaque couche.

Si les réseaux de neurones n’ont pas de restriction sur les matrices de poids W(i),
on dit que les couches sont entièrement connectées. En règle générale, les réseaux de
neurones entièrement connectés ont un grand nombre de paramètres. Par exemple,
un réseau de neurones entièrement connecté avec p couches et des n neurones sur
chaque couche (W(i) ∈ Rn×n) aura O(pn(n+ 1)) paramètres. Comme les dimensions
d’entrée et de sortie sont généralement importantes (par exemple, le jeu de données
ImageNet a une dimension d’entrée de 2242 × 3 et une sortie de 1000), les réseaux de
neurones entièrement connectés avec peu de couches peuvent facilement accumuler
des centaines de millions de paramètres. Il a été montré que ce type de réseau est peu
performant, car l’entraînement n’optimise pas suffisamment bien les paramètres en
raison d’un grand espace de recherche. En outre, l’entraînement est long et complexe,
ce qui les rend peu pratiques pour un certain nombre de cas d’usage (smartphones,
objets connectés, etc.). Pour réduire le nombre de paramètres sur chaque couche,
de nombreux chercheurs ont mis au point des opérations linéaires spécifiques qui
réduisent le nombre de paramètres et ont de nombreuses propriétés intéressantes.
Les réseaux de neurones convolutifs (CNN), qui utilisent des opérations linéaires

spécialisées et plus compactes, sont considérés comme l’état de l’art concernant les
tâches de vision par ordinateur (LeCun et al. 1998; Krizhevsky et al. 2012; He et al.
2016; Tan & Le, 2019). Ces réseaux neuronaux convolutifs utilisent des matrices de
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Figure E.3: Exemple d’exemple antagoniste avec une image.

poids spécifiques qui permettent une invariance du traitement par translation, ce qui
est souhaitable pour traiter des images. Alors qu’une couche linéaire classique avec
une matrice dense a n× n paramètres, une couche convolutionnelle n’a que k × k
paramètres avec k qui correspond à la taille du noyau et qui est généralement petite
(3 ou 5 pour les couches convolutionnelles classiques). Un réseau neuronal convolutif
est le type le plus courant de réseau neuronal structuré. En effet, l’opération de
convolution peut être représentée par une matrice structurée, c’est-à-dire, une matrice
qui peut être représentée avec moins de n2 de paramètres.
En plus d’offrir une représentation plus compacte, la structure de certaines ma-

trices peut être exploitée afin d’obtenir de meilleurs algorithmes pour multiplier la
matrice avec un vecteur, cela permet d’optimiser la mémoire et de réduire le nombre
d’opérations réalisées. En se basant sur le succès des réseaux de neurones convolutifs,
les chercheurs ont étudié et proposé d’autres types de réseaux basés sur des matrices
de poids avec différentes structures (Sindhwani et al. 2015; Moczulski et al. 2016). La
Figure E.2 montre différents types de matrices structurées qui ont été utilisées pour
l’apprentissage profond. Bien que les réseaux de neurones convolutifs soient état de
l’art pour les tâches de vision par ordinateur, il reste à savoir si d’autres types de
réseaux structurés pourraient être utiles à d’autres types d’applications et quel type
de structure pourraient fournir à la fois précision et efficacité de calcul.
Les contributions de cette thèse se situent à l’intersection de l’algèbre linéaire,

l’analyse de Fourier et de l’apprentissage profond. En conséquence, nous construisons
des réseaux de neurones compacts et sécurisés en exploitant les propriétés des
matrices structurées issues de la famille de Toeplitz. Ci-après, nous détaillons nos
contributions.

Entraînement de Réseaux de Neurones Compacts

Comme première contribution, nous étudions les réseaux de neurones dans lesquels
les matrices de poids sont le produit des matrices diagonales et circulantes. Les
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matrices circulantes sont un type particulier de matrice de Toeplitz. Cette nouvelle
architecture compacte permet de remplacer les réseaux de neurones entièrement
connectés tout en maintenant la performance. Outre une analyse théorique de leur
expressivité, nous introduisons de nouvelles techniques pour l’entraînement de ces
modèles : nous concevons une procédure d’initialisation et proposons une utilisation
intelligente des fonctions de non-linéarité afin de faciliter leur entraînement. Nous
montrons que ces modèles sont plus précis que les autres approches structurées tout
en nécessitant deux fois moins de poids que les meilleures approches. Enfin, nous
entraînons des réseaux de neurones profonds basés sur des matrices diagonales et
circulantes sur un ensemble de données de classification vidéo qui contient plus de
3.8 millions d’exemples.

L’analyse expérimentale des réseaux de neurones profonds basée sur des matrices
diagonales et circulantes sur l’ensemble de données de classification vidéo a été publiée
dans le cadre de l’Atelier sur la reconnaissance de vidéo de la Conférence
Européenne de Vision par Ordinateur. Ce travail a été réalisé dans le cadre de
la compétition YouTube-8M organisée par Google. Ensuite, l’analyse théorique de
l’expressivité de ces réseaux a été publiée dans un deuxième article dans le cadre de
la 24e Conférence Européenne sur l’Intelligence Artificielle.

Entraînement de Réseaux de Neurones Robustes

Comme deuxième contribution, nous proposons une procédure pour entraîner des
réseaux de neurones robustes en étudiant les propriétés de la structure des con-
volutions. Nous concevons une nouvelle borne supérieure des valeurs singulières
des couches de convolution, qui est à la fois précise et facile à calculer. Notre
travail est basé sur le résultat de Gray (2006) qui indique qu’une borne supérieure
des valeurs singulières des matrices de Toeplitz peut être calculée à partir de la
transformée de Fourier inverse de la séquence caractéristique de ces matrices. De
notre analyse découle immédiatement un algorithme de régularisation de la constante
de Lipschitz d’une couche convolutive, et par extension de la constante de Lipschitz
de l’ensemble du réseau. Enfin, nous utilisons notre approche pour améliorer la
robustesse des réseaux de neurones convolutifs. Des travaux récents ont montré que
les méthodes empiriques telles que l’entraînement contradictoire offrent une faible
généralisation (Schmidt et al. 2018) et peuvent être améliorées en appliquant une
régularisation Lipschitz (Farnia et al. 2019). Pour illustrer l’avantage de notre nouvelle
méthode, nous entraînons des réseaux de neurones avec la régularisation Lipschitz et
montrons qu’elle offre une amélioration significative de robustesse.
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Le principal résultat des travaux décrits dans le Chapitre 5 a été publié dans le
cadre de la 35e Conférence AAAI sur l’Intelligence Artificielle. D’autres con-
tributions conjointes ont également été publiées sur le thème des réseaux neuronaux
robustes. La première, publiée dans le cadre de la Conférence en Intelligence Ar-
tificielle et Neurosciences Computationnelles, étudie l’efficacité de l’injection
de bruit à l’entraînement et à l’inférence dans le réseau pour protéger contre les
attaques adverses. Dans ce travail, nous montrons que le bruit tiré de la famille
exponentielle offre une protection garantie contre les attaques adverses. La deuxième
contribution conjointe, publiée dans le cadre de l’Atelier de Cybersécurité de la
Conférence Européenne de l’Apprentissage Automatique, effectue une anal-
yse géométrique des mécanismes de défense destinés à protéger les réseaux neuronaux
contre différents types d’attaques. Ce travail montre que les réseaux neuronaux
conçus pour être robustes contre un type d’attaque adverse offrent peu de protection
contre d’autres types d’attaques.

E.2 Réseaux de Neurones Compacts basés sur les
matrices Diagonales et Circulantes

Ces dernières années, la conception de réseaux neuronaux compacts et performants a
été un sujet de recherche actif. Ce domaine est motivé par des applications pratiques
dans les systèmes embarqués (pour réduire l’empreinte mémoire (Sainath & Parada,
2015)), l’apprentissage fédéré et distribué (pour réduire la communication (Konečný
et al. 2016)), etc. Outre un certain nombre d’applications pratiques, la question de
savoir si les modèles doivent réellement être aussi larges ou si des réseaux plus petits
peuvent atteindre une précision similaire est également une question de recherche
importante.
Les matrices structurées sont au cœur même de la plupart des travaux sur les

réseaux compacts. Dans ces modèles, les matrices de poids dense sont remplacées
par des matrices ayant une structure précise (par exemple, les matrices de rang
faible, les matrices de Toeplitz, les matrices circulantes, LDR, etc.) Malgré des
efforts importants (Cheng et al. (2015) and Moczulski et al. (2016)), les performances
des modèles compacts sont encore loin d’atteindre une précision acceptable motivant
leur utilisation dans des scénarios du monde réel. Cela soulève plusieurs questions
sur l’efficacité de ces modèles et sur notre capacité à les entraîner. En particulier,
deux questions principales appellent à investigation :
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1. Quelle est l’expressivité des couches structurées par rapport aux couches denses ?

2. Comment entraîner efficacement des réseaux neuronaux profonds avec un grand
nombre de couches structurées ?

Dans cette thèse, nous nous efforçons de répondre à ces questions en étudiant les
réseaux neuronaux basés sur les matrices diagonales et circulantes (a.k.a. DCNN),
qui sont des réseaux neuronaux profonds dans lesquels les matrices de poids sont
le produit des matrices diagonales et circulantes. L’idée d’utiliser ensemble des
matrices diagonales et circulantes vient d’une série de résultats en algèbre linéaire
par Müller-Quade et al. (1998) et Huhtanen & Perämäki (2015).

Pour répondre à la première question, nous proposons une analyse de l’expressivité
des DCNN en étendant les résultats obtenus par Huhtanen & Perämäki (2015) qui
indique que toute matrice peut être décomposée en un produit de 2n− 1 matrices
diagonales et circulantes. Nous introduisons une nouvelle borne sur le nombre de
produits requis pour approcher une matrice qui dépend de son rang. Sur la base
de ce résultat, nous démontrons qu’un DCNN avec une largeur limitée et une faible
profondeur peut être autant expressif que n’importe quel réseau de neurones dense
avec des activations ReLU.
Pour répondre à la deuxième question, nous décrivons d’abord une procédure

d’initialisation pour les DCNN qui permet au signal de se propager à travers le
réseau sans disparaître ou exploser. En outre, nous fournissons un certain nombre
d’expériences pour expliquer le comportement des DCNN et montrer l’impact du
nombre de non-linéarités dans le réseau sur le taux de convergence et la précision. En
combinant toutes ces connaissances, nous sommes en mesure de former des DCNN
de grande taille et de grande profondeur. Pour finir, nous démontrons les bonnes
performances de ces réseaux dans le contexte de la reconnaissance de vidéo.

E.3 Constante de Lipschitz des Couches
Convolutionnelles

Ces dernières années ont vu un intérêt croissant pour la régularisation Lipschitz des
réseaux de neurones, dans le but d’améliorer leur généralisation (Bartlett et al. 2017),
leur robustesse aux attaques adverses (Tsuzuku et al. 2018; Farnia et al. 2019), ou
leurs capacités de génération (par exemple pour les GANs : Arjovsky et al. (2017) and
Miyato et al. (2018)). Malheureusement, le calcul exact de la constante de Lipschitz
d’un réseau de neurones est un problème NP-complet (Virmaux & Scaman, 2018)
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et en pratique, les techniques existantes telles que celles proposées par Virmaux &
Scaman (2018), Fazlyab et al. (2019) ou Latorre et al. (2020) sont difficiles à mettre en
œuvre pour les réseaux neuronaux à plus d’une ou deux couches, ce qui entrave leur
utilisation dans les applications d’apprentissage profond.

Pour surmonter cette difficulté au lieu de calculer la constante globale, la plupart
des travaux se sont concentrés sur le calcul de la constante de Lipschitz des couches
du réseau. Le produit des constantes de Lipschitz de chaque couche est une borne
supérieure de la constante de Lipschitz de l’ensemble du réseau, et elle peut être
utilisée comme substitut pour effectuer une régularisation Lipschitz. Comme la
plupart des fonctions d’activation courantes (telles que la ReLU) ont une constante
de Lipschitz égale à un, la principale difficulté consiste à calculer la constante de
Lipschitz de l’application linéaire sous-jacente qui est égale à sa plus grande valeur
singulière. Les travaux dans ce domaine de recherche s’appuient principalement sur un
célèbre algorithme itératif appelé méthode de la puissance itérée (Golub & Van derVorst,
2000) utilisée pour approximer la valeur singulière maximale d’une fonction linéaire.
Bien que générique et précise, cette technique est également coûteuse en termes de
calcul, ce qui en empêche son utilisation pour l’entraînement de larges réseaux de
neurones.
Dans cette thèse, nous introduisons une nouvelle borne supérieure des valeurs

singulières des couches de convolution, qui est à la fois précise et facile à calculer. Au
lieu d’utiliser la méthode de la puissance itérée pour approximer cette valeur, nous
nous appuyons sur la théorie des matrices de Toeplitz et ses liens avec l’analyse de
Fourier. Notre travail est basé sur le résultat de Gray (2006) qui indique qu’une borne
supérieure des valeurs singulières des matrices de Toeplitz peut être calculée à partir
de la transformée de Fourier inverse de la séquence caractéristique de ces matrices.
Nous étendons d’abord ce résultat aux matrices de Toeplitz par blocs de Toeplitz
(c’est-à-dire une matrice de Toeplitz par blocs où chaque bloc est également Toeplitz)
et ensuite aux opérateurs convolutionnels. De notre analyse découle immédiatement
un algorithme de régularisation de la constante de Lipschitz d’une couche convolutive,
et par extension de la constante de Lipschitz de l’ensemble du réseau. Nous étudions
théoriquement l’approximation de cet algorithme et montrons expérimentalement
qu’il est plus efficace et plus précis que les approches concurrentes.

Enfin, nous illustrons notre approche sur la robustesse aux exemples antagonistes.
Des travaux récents ont montré que les méthodes empiriques, telles que la formation
contradictoire (Adversarial Training ou AT), offrent une faible généralisation (Schmidt
et al. 2018) et peuvent être améliorées en appliquant une régularisation Lipschitz (Far-
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nia et al. 2019). Pour illustrer les avantages de notre nouvelle méthode, nous entraînons
un large réseau de neurones avec AT et la régularisation Lipschitz et montrons qu’elle
offre une amélioration significative par rapport à un entraînement contradictoire seul
et par rapport aux autres méthodes de régularisation Lipschitz. En résumé, nous
apportons les trois contributions suivantes :

1. Nous proposons une nouvelle borne supérieure des valeurs singulières des couches
convolutionnelles en nous appuyant sur la théorie des matrices de Toeplitz et
ses liens avec l’analyse de Fourier.

2. Nous proposons un algorithme efficace pour calculer cette borne qui permet son
utilisation dans le contexte des réseaux neuronaux convolutifs.

3. Nous utilisons notre méthode pour régulariser la constante de Lipschitz des
réseaux de neurones et montrons qu’elle permet un gain significatif de robustesse
face aux attaques adverses.
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ABSTRACT

Deep neural networks are state-of-the-art in a wide variety of tasks, however, they exhibit important limitations which

hinder their use and deployment in real-world applications. When developing and training neural networks, the accuracy

should not be the only concern, neural networks must also be cost-effective and reliable. Although accurate, large neural

networks often lack these properties. This thesis focuses on the problem of training neural networks which are not only

accurate but also compact, easy to train, reliable and robust to adversarial examples. To tackle these problems, we

leverage the properties of structured matrices from the Toeplitz family to build compact and secure neural networks.

RÉSUMÉ

Les réseaux de neurones profonds sont considérés comme étant état de l’art dans une grande variété de tâches,

mais ils présentent des limites importantes qui entravent leur utilisation et leur déploiement. Lors du développement

et l’entraînement de réseaux de neurones, la précision ne devrait pas être la seule préoccupation, ils se doivent aussi

d’être efficaces et sécurisés. Bien que précis, les réseaux de neurones dotés de nombreux paramètres n’ont souvent

pas ces propriétés. Cette thèse se concentre sur le problème de l’entraînement de réseaux de neurones qui ne sont

pas seulement précis, mais aussi compacts, faciles à entraîner, fiables et robustes aux exemples contradictoires. Pour

résoudre ces problèmes, nous exploitons les propriétés des matrices structurées de la famille de Toeplitz pour construire

des réseaux de neurones compacts et sécurisés.

MOTS CLÉS

Apprentissage Profond, Réseaux de Neurones, Matrices Structurées
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